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. ABSTRACT
N %
THE DRSIGN OF A HYBRID MICROPROCESSOR/ -
_ &
BINARY DECISION PROGRAMMABLE CONTROLLER ﬂ

a

’

The design and implementation of a hybrid microprolcessor/binary

“3

decision (mP/‘BiJ) programmable controller is presented in terms of both
hardware and software. This hybrid configuration enables ON/OFF control

tasks to' be realized, in linear time, by the BD processor, while

modulating control tasks are performed conventionally in the mP. 1In
addition, mP-assisted BD program and hardware management, and op’erator-
to-BD communication are made possible. A prototype prografnmérble
controller, consisting of two stand-alone processors, was const{;;ucted.
An operating sy;stem, BD09, was developed which supports all process

tasks and internal system functions., As well, a mP-based op.timizing
8 - ‘ '
compiler was written to translate high level logic descript.\ions iato

>
1

‘executable BD machine code.
Lm«' X,

The theory of binary decision processing is presented and BD

s

computational characteristics/are analyzed.® A new algorithm for the

N 1

reduction of BD.logic is also déscribed. The performance of the hyblr;d

"
v 4

controller is+evaluated and compared to.that of a boolean, singlé-bit,

Industrial Control Unit through two application exampleé. A substantial

o h R
lmprovement in time and space complexity is ;demonstrated.
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CONCEPTION D"UN CONTROLEUR PROGRAMMABLE HYBRIDE COMPOSE D~UN

7' , MICROPROCESSEUR ET D"UNE MACHINE DE DECISION BINAIRE
: Ay
La conception et la réalisation d”un contrdleur programmablg
h);bride, composé d un lmicroprocesseur et/_d'une\ machine de décision
binaire (mP/BD) sont décrits en termes de matériel ainsi que de
. o
- fqlogiciel. Cette r/'L:Srafi.gur:at.ion ‘hybride permet au processeur BD
d’e\ffectuer en temps linéalre les t3ches de contrd8le logique et au nEme
moment, le mP exfcute les tdches de contrdle proportionnél. En plus, ce
gystéme permet: 1) une gestion du programme ert du matériel BD par le mP
et aussi, 2) :ime communication entre l’opérac‘eutiet la machine BD. Un
. prototype de contrdleur programmable, comportant deux processeurs
indépendants, a Eté& ponsttuit; Un systéme d"exploitation BDO9, qui

effettue toutes les taches de processus industriel: ainsi que les

fonctions inhérentes 4au systme, a &€& développé. Finalement, un

b1 kS L]

compllateur Opéimisaf{‘é qui tréduit des syst@mes .loglques combinatoires
, sous forme 'comptéheﬂsible par la machine BD, aété également développé.
] T ) La théorie et les caraccé;:'istiques du processus de décision binaire
sont: présentées .eC_ anaiysées. Un nouvel algorithme pour 1la wduction de
la logique BD est aussi décrit. La performance du contrdleur hybride
“est 8valuée et comparée d celle d"une Unitéde Contrdle Industrielle
(MC14500) pour deux applic]ations typiques. Une amélioration

substantielle de la complexité dans le temps et dans l7espace est
Y

démntrée lorsque la technique développée est utilisée.
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CHAPTER 1

INTRODUCTION

1.0 General Introduction

Industrial process control can be regarded as a means to produce a
set of regponses to a set of stimuli, i.e., to generate control actions
in response to measured process variables. The procedures by which the
control actions are produced are often divided into two categories;
logical and analog. Logical procedures are satisfactorily described by
a few binary digits, or bits of information, which are processed by
simple digital logic circuits. Analog control procedures are best
described by real numbers or, at least, by many bits. They are
processed by analog circuits or by digital processors capable of fairly
precise éfithmetic.

A "hardwired" controller is composed of the minimum circuitry
necessary to serve a specified process. This traditional approach tends

to produce the fastest, physically smallest and most energy efficlent

.implementation of a control procedure. However, except in circumstances

e St i ——_— { e

in which these attributes are exigent, modern industrial controllers are
now designed around programmable automata which ofter the advantage of
standardized hardware components with the flexibility to accommodate
virtually any control procedure.

’ As a result distributed wmicroprocessor (mP) networks are gradually
replacing conventional hardwired analog equipment, 1.e., of the second

category, tor continuous control applications, whi}e programmable logic

i
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controllers (PLC) are replacing discrete component gate and relay logic,

i.e., of the first category, for ON/OFF control. This thesis presents

the design of such a PLC which is based in part on a "binary decision”
programmable automaton.

. Most contemporary PLC designs use table~lookup~based PLA/ROM
architectures and finite~state machine or micropro‘cessor architectures
which operate on encoded Boolean sum=-of-products expressions.
Unfortunately, many program steps are required to evaluate all but the
most trivial Boolean switching functions. In fact, the number of steps
increases exponentially with the number of bir;ary input variables needed
in the computation. As well this approach is limited to the serial
generation of single, binary-valued control functionms.

For these reasons, switching function design methods, more
efficient than Boolean equations, were sought and in 1959 Lee devised an
improved technique which he called binary d”ecision (BD) pro‘gramming
[Lee59]. He demonstrated that this approach always“vnevaluates switching
functions in a number of steps equal to or less than the number of input

variables. The binary decision approach can also generate multiple,

parallel—outpui switching functions. However, the practical

'implementation of binary decision programming to the design of

programmable sequence controllers awaited the design of suitable
hardware, a formal logic representation and the development ot
minimization methods.

Unlike Boolean logic, the mathematical basis of binary decision
logic was not immediately evident. Since it did not seem amenable to

algebraic manipulation, Lee thought that formal logic reduction

e AR AT L T ST AN A o - - - -

ke
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procedures such as Karnaugh mapping did not exist. BD program
simplificacion was a cut—and-try effort which relied on the intuition
and experience of the prograummer.

The research presented in this thesis describes the design of a
programmable coatroller system which includes a prototype binary
decision-based sequential automaton for the execution of ON/QFF process
control functious. This controller is integrated into a conventional
microprocessor system 8o that complex control functions involving both
ON/OFF and proportional tasks may be performed concurrently and
efficiently. To explolt program optimization or to adapt the BD control
logic to changing process conditions, the microprocessor also acts as a
supervisor to the BD machine. Updated control routines are Crapsferred
by the mP to the BD‘program mewmory in the same manner as it stores data
into its own mem0ty:"

A mathematical basis for binary decision logic, developed from
Boolean algebra, 1s also presented. It is used to analyze the
compucat:;nal characteristics of the binary decision process. Formal
logic minimization procedures are developed. A functional BD program
compiler is described which accepts switching functions presented in
truth table form. This compiler reduces them to a binary decision
structure and translates this logic into BD machine language.

Finally, a real~time process control operating system ig described
which performs job scheduling, inter—-processor and operator
communication functions and program library/system memory management

tasks. The program supports multi—-programmed BD processes and maintains

a BD program library in disk storage.

- - [ e Skl hl
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1-4
l.1 Introduction to Programmable Logic Controllers

A programmable logic controller 1is an industrial process control
device used to implement ON/OFF control functions, e.g., in chemical
batch processing, electromechanical machinery and motor control. ON/OFF

control is characterized by signal type, 1l.e., a binary digital signal,

and by control function type, i.e., combinatorial or sequential

t

switching functions‘yhich do not require arithmetic processing.
Programmable loéic controllers have replaced traditional hardwired
relay and gate logic circuits in many applications because of the high
cost of design, fabricatién, testing, installation, startup and
maintenance of discrete component circuits. In addition program
modification is a fairly simple task with stored program automata
whereas it often requires major redesign of a hardwired system. In
other words, hardwired logic 1is inflexible and expensive while
proééammable‘logic 1s very flexible and economical. Although many types
of programmable logic controllers exist, they all consist of a basic
control circuit and ; program memory. The control unit is usually one

\

of the following:

1) Programmable Logic Array (PLA). A PLA is an integrated circuit

containing an array of semiconductor logic gates in which inputs and
outputs are connected by a cross—bar matrix of a semiconductor Read Only
Memory (ROM). Any gate logic circuit representation of a Boolean sum~
of -products expression can be implemented simply by programming the
required erasure pattern ot cross-point connections. This is done

during manufacture (ROM) or in the field (Programmable Read Only Memory

e —— s i e
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~ PROM) leaving only those connections which define the logic. The
connections may be conductive links, diodes, transistors or invertors
[Korn?7].

Two gate matrices are contained in the PLA loglic gate array. One
logically ANDs inputs together to form minterms or implicants of the
function while the second ORs these minterms together to define complete
switching functions. Up to 2D parallel functions of the n input
variables can be programmed in this way. The method is quite economical
since gating for unused input combinations need not be provided. A PLA
is illustrated in figure l.l.

A PLA-based controller is indicated when the coutrol functious are
strictly combinatorial funcc%ons of a relatively small number of Boolean
variables. As ROM access times vary between 35 and 1500 nano-seconds,
outputs are available in periods comparable to those of high density
circuit gate logic delays. Aithough multiple functions are computed in
parallel, these functions are limited to single-bit output. As well,
this approach cannot accommodate sSequential logilc or outputs of timed

duration.

2) Finite~State Sequential Automata. A finite-state machine is an

abstract model of a sequential switching function. A sequential circuit
differs from a combinatorial circuit in that the outputs are contingent
upon both the current inputs and the particular seq;ence of previcus
inputs to the circuit, represented by internal circuit states. Examples

of finite-state sequence controller applications include vending

machines, arcade games and traffic control lights [Koha?ﬂ].

e e ——————— e = 8
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_ Finite-state controllers are modelled as shown in figure 1.2. The
next internal state of the machine is computed by a combinatorial
function of current inputs and current state. The output of this

L]

tunction is introduced to a memory device, often implemented as a latch
or a D—typeitlip-flop, which retains the current state until the new
state is."latched 1n" or stored, either by a synchronizing pulse from an
external clock or by ;\change of inputs. Switching tunction outputs are
generated by a secbndlcombinacprial function of external inputs and by
the present state. These .combinatorial circuits are frequently

/ . _
1mp1;mented as PLAs or* may bg stored in KOM as a set of program
instructions sequentially executéd under the control of a program
counter. Figure 1.3 illustrates sequencg‘controllers based on a) PLA
logic and b) stored program logic. ] . . . / N

State machiﬁe based-érogrammange ‘controllers are used in low-level

control applications because thelr mass—-produced hardware is fairly

econgmical and the control logic is not usually altered during the

)\
}

lifetime of the product. Standard off-the-shelf components are used to
design hardware. This limits the developmeat cost to that of designing

the control sequence itself.

3) Single or Multi-bit Microprocessors. Combinatorial, sequential and
even proportional control algorithms can be executed by single-or multi-
bit microprocessors using their arithmetic and logic processing power.
The incentive to use microprocessor—based PLCs was the simplification ot
peripheral intertacing to equipment such as printers aund recorders for
the generation of program documentation and status reports, °the

improvement of tault diagnosis capacity resident in the PLC and the

-~
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exploitation of conventional programming languages to simplify the
production of control programs from relay ladder diagram, gate logic
diagram or control flowchart process descriptions. As a result many
trta)lditional computer programming languages such as FORTRAN and BASIC
have also been adapted to ipclude process control statements.
Microproces;or hardware is well developed and ipexpenskve, and
programming techniques are well under.J‘stood. ’

However, in s(witching logic applications, the parallel architecture
of common 8-bit or 16-bit microprocessors is often a liability.
I;rograms that consist of encoded olean sum—of-products expressions
describing the switching function; to be realized, examine single-bit
variables serially and produce single-bit results, Mo‘st conventional
microprocessor- architectures cannot access single accumulator bits in a
straightforward manner. Some indirect means oaf isolating indivi;ual
bits such as bit—-masking or ghifting the accumulator contents into the
carry-bit must be employed to emulate serial input or output, In
addition to introducing this considerablle program lnstruction overhead,
these techniques make it difficu.lt to permute the order in which
variables are tested,

The,~MMotorola MCl4500 single-bit, microprocessor, called an

Lo .
Industrial Control Unit (ICU), has received considerable attention tor

~—/

use in-a programmable contrpller design [Taba81,Greg77]. The ICU system
requires a multi-bit microprocessor-based. development facility to
compile machine code programs from gate logic or relay ladder
representations. Furthermore the ICU evaluates functions in a purely

serial manner. " This lengthens the cycle time of the control algorithm

s
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reducing the controller’s effectiveness in fast time-constant processes.
The serial evaluation of output variables may also cause incorrect
control actions to take place 1f a group of output. variables is required
to appear simultaneously to define a certalin process state, e.g., as
input to a digital-to—analog converter. An ICU system 1s illustrated in
figure 1.4 together with a sample program.

It will be shown in chapter 2 that a large number of program steps
are required to evaluate all but the mdst trivial of Boolean
expressions. This number increases exponentially with the number of
input variables applied to the controller. In addition, microprocessor

. 8
instructions frequently consist of many bytes of machine code and
consume several clock cycles to execute. These factors combine to
increase the ovesaii cycle time of the control algorithm, an important

parameter in the selection of programmable controller equipment in many

industrial applications.

The characteristics of three main programmable controller
architectures can be defined in terms of mode of operation, speed, cost,
complexity and flexibility. The comparison summarized in table 1l.l was
previously described by Tho et al [Tho79].

o

1.2 Introductioun to Binary Decision—-Based Programmable Controllers

r

1.2.1 Binary Decision Procesgsors. A binary decisien processor is a
finite—-state automaton that evaluates combinatorial or sequential logic
represented as a binary decision program instead of a Boolean equation.

Figure 1.5 i1llustrates a binary tree flowchart representing a typical BD

v gy b
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program :along with the corresponding Boolean function. The BD machine s
executes the program by examining the variables assocliated with each
instruction (shown as a Boolean literal within a node). The sampled
logic levels provide branching criteria upon which the next instruction
is selected. In the figure, the branching possibilities are shown as
directed edges connecting pa1~r8 of nodes. Flow is from top to bottom.
As can be seen e;ch instruction connects with at most two other
instructions ‘and thus the processor must choose one out of two, a binary
decision. This testing sequence leads the processor to a terminal or
output instruction (shown as boxes) in which the appropriate control
action has been tabulated, '

Two factors make BD processors faster than other stored-program
controllers., The first 1s that fewer variables are tested when
evaluating switching functioms. Boolean-based PL(Cs use equations
encoded as sum—of-products expressions in which literals (variables) may
al;pear several times. Every variable in an expression is tested in
sequence to evaluate the complete function. The BD processor needs only
to compute one path, from root to leaf, of the program, where each path
is mathematically equivalent to a product-of-variables expression. Thus
the binary decision processor tests fewer variables in order to evaluate
a logic function.

The second factor 1is shorter variable testing time. A
microprocessor—based controller requires from one to three machine
instructions to read and test an input variable. Each instruction
typlcally consumes from three to five clock cycles. Hence, an average

of ten cycles may be required to test each variable. The BD processor

PO B
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uses just ome clock cycle to input a variable, test it, and branch to
the next instruction. In fact several complete functions can be
evaluated in only n cycles, where n is the number of iadependent
variables of the function.

The‘difference between Boolean and BD program instruction sequence
length is illustrated in figure 1.6. The Boolean upper bound is
estimated from the worst—case situation in which all 2" minterms are
significant and each mlaterm subsumes all n literals (a degenerate case,
gince then the function would always be implied). In this case the
Boolean-based controller would execute n2" instructions during each loop
through the program. The average-—case workload 1s estimated by assuming
that the logic can be reduced by Karnaugh mapping or some similar
method, and that on the average the number of terms of the function is
reduced by two-thirds. Also the implicants subsume on the average only
thre;-quarters of the set of independent literals. Thus the Boolean-
method average workload 1is estimated to be (n/4)2%. Clearly thisg is
still an exponential order growth.

The BD upper bound is known to be n variables per program cycle.
Since BD logic i{s also reducible (this ctopic is discussed in chapters 2
and 5), it might be assumed that the average program running time can be
reduced by one-quaéter. Figure 1.6 shows that the growth ian BD
processor workload to evaluate combinatorial switching functions'is
strictly linear in the number of process variables.

Y .
The speed of the binary decision ralgorithm makes it applicable to

N
fast time-constant processes, permits greater process model complexity,

and/or enables time-sharing of the controller among process loops.
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1e2.2 The MNicroprocessor/Binary Decision Hybrid Controller. In
industrial coantrol systems the overall cor;cr:ol procedure can often be
divided into repeated combinatorial or sequential ON/OFF functions and
proportional functions involwving the acquisition and generation of
analog process gignals, Note that BD programmable controllers are well
suited to performing ON/OFF fuanctions while microprocessors are better
suited to perform the arithmetic computation required to approximate the
continuous functions found in control modulation tasks. The hybrid
combination of the two proce&eor types enables both control functions to
be provided by a single control ler. In addition the BD processor gains
access through the mP interface to traditional computer peripherals such
as terminals, printers and bulk memory.

A microprocessor/binary decision (mP/BD) hybrid differs from
conventional programmable controllers in several ways. Having two (or
more) co-processors permits the simultane<%§___ gxecution of classical PID
(Proportional, Integral and Derivative) and"\ ON/OFF control algorithms.
Secoandly, the increased speed of the BD processor makes real-time
concurrent mulﬁti-progtalmning and ‘program scheduling practical. Since
the BD is provided access to a program library via the nP interface and

2

;iisk, seyeral programs can be scheduled to start and stop at
predetenéxined times. Thirdly, the BD countroller can respond to
unscheduled events such as process excursions by bringing the
appropriate recovery programs in from the library. .

A block dlagram of the general layout of the mP/BD hybrid
programmable controller is shown in figure l.7. The design of the BD

hardware and mP interface is treated in chapter 3.
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}«3 Binary Decision Literature Survey

Although BD methods were proposed as an alternative to conventional
Boolean techniques by C.‘Y. Lee in 1959, the idea failed to win much
gupport among logic designers. Clearly Boolean algebra has produced
many systematic and effective tools which the logic designer is unlikely
to give up in favour of some less developed approach. However a small
number of researchers have contributed to the development of BD
methodology and hardware. This research is cited below in chronological

order.

Shannon - 1938. Prior to 1938, switching circuit engineering consisted

of mapping intricate interconnections of relay contacts and switches for
the electrical control of telephone exchanges, motor control equipment,
etc. Although the theory of g{neral impedance networks had been well
defined, the design of switching logic could not be comprehensively
described mathematically, A systematic theory for the analysis of
switching networks based on the Propositional Calculus subset of Boolean
Algebra was presented by Claude Shannon of MIT [Shan38]. This work
provided a basis for the representation of switching circuits by sets of
equations. These could be manipulated, according to algebraic rules, so
as to simplify the circuit.

Shannon presented many of the postulates and theorems now used to
manipulate Boolean logic including laws of commutation, association and
distribution. A series expansion for switching functions analogous to
the Taylor series expansion of continuous functions was also defined.
This expansion, known as Shannon”s Expansion Theorem, 1is used to derive

the mathematical basis of binéry decision logic in chapter 2.
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Together with the De Morgan”s theorems, this work was used to
develop many practical design techaiques such as Karnaugh mapping which
aids in the recognition of AND, OR, XOR and MAJORITY implicants. A

short review of Boolean Algebra is presented in Appendix L.

Lee — 1959. An alternative to the Boolean representation of switching

Tt - - LT BT e T TR

circuits was proposed by C.Y. Lee [Lee59]. Lee™s research attempted to
overcome the inherent inflexibility of Boolean algebra in manipulating
other than series—parallel circuits, Moreover, he thought the Boolean
represgsentation to be extremely inefficient for switching function
evaluation. Lee proposed a structure called binary decision programming
to symbolically represent switching circuits. The method ‘;as based on a
single instruction
T x; A, B

which says, if the variable x is 0, take the next instructiocn from
program address A, but 1f x 15 1, the next instruction is taken from
address B. Switching circuits were described by sequences of these
instructions. An example from Lee”s work of a typical relay circuit and
its binary decision program are shown in figure 1.8. The program is
evaluated beginning with instruction l. It x is 0 then the instruction
at address 2 is computed, if x 1s | then address 4. This procedure is
continued until the symbol O or I is encountered, represeunting the
circuit outputs O and 1 respectively. These may also indicate exit
addresses.

Binary decision programs were recognized as an efficient

representation for the computation of switching functions. Functions

i ek # e bt e e rm——— e e
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were always evaluated in a number of program instructions that never
exceeded the number of switching variables. Lee also showed that
binary decision programming could be used as a logic design technique.
He proved that switching functions could be more compactly re‘presented
in binary decision form than by Boolean sum-of-product expressions.
However Lee™s logic reduction procedures were not systematic and relied

heavily on the skill of the programmer.

Boute — 1976, A.binary decision-based programmable control ler was

described by R.T. Boute of Bell Telephone, Belgium {Bout76].
Contemporary Boolean—-based controllers evaluated every Boolean literal
in the series of terms comprising the control function. The possibility
that the logical result of a term might be determined before all of the
variables were tested was ignored. Such coatrollers were judged too
slow for high speed control applications. Boute”s research was directed
at detecting when the logical proposition implied by a Boolean
expression had been conclusively satisfied or violated, so that the
controller could branch away from the computation at the earliest
opportunity. Instead of accumulating Boolean combinations of input
variables to arrive at control outputs, the binary decision controller
used the 1inputs to direct branching within the program so that only
enough literals to uniquely define the function output were tested.
Only two machine instruction types were included, branch-on-test and
output.

Boute proposed to implement the controller using only seven IC
chips re.presenting six functional blocks. These blocks included program

memory (two ROMs), a presettable program counter, preset logic, an input
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vgriable selector, an output variable selector and,latch, and a clock.
A block diagram of Boute”s binary decision controller is showa in figure
1.9a, together with the instruction word format, figure 1.9b.

Boute concluded that the use of binary decision controllers
presented advantages in termiﬂof speed, simplicity and ease o‘f
programming. Both combinatorial and sequential switching functions were
readily programmed. The problem of binary decision logic reduction was

not addressed in this research. !

Akers - 1978. A method to define digital functions in terms of a

"binary decision diagram” was explored by S.B. Akers of General Electric
[Aker78]. The research was aimed at finding coacise, implementation-
free logic descriptions to bridge the gap between analytical ly-weak
functional design languages and conventional descriptions such as truth
tables, Boolean equations, Karnaugh maps, etc., all of which tend to
grow exponentially with the number of variables involved. Akers showed
that these diagrams could be used to determine the output value of a
digital function for analysis and test generation, and to obtain actual
implementations. Methods were also described for defining,' larger
digital functions by interconnecting the diagrams.
A binary decision diagram to describe the Boolean function,
F = A+ BC

is shown 'in figure 1.10. The function 1is evaluated bysentering the
diagram at the node labelled A, If A= 1, then F =] and the procedure
ends. If A= Q, the branch labelled 0 is followed to node B. If B = 1,

then F = 0 and again the procedure ends. Otherwise, the O—branch is

\
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fol lowed to node C, which determines the value of tl‘é function.
Diagrams for several cCommon combinatorial and sequential switching
functions were obtained by Akers along with rules for deriving binary
decisign diagrams from truth tables and Boolean equations. A method to
define a BD diagram in a computer as a list of ordered triples (variable
name, 0O-branch, l-branch), was also devised. It is easily seen that the
binary decision diagram of Akers is functionally equivalent to the
binary decision’program of Lee. They are in fact mutually complementary
as the BD program 1is easily translated to computer code but is difficult
to analyze,.whereas the BD diagram, being a graphical description, is
eagsily analyzed but is difficult to implement directly on a computer.
In this way they hav#the same relationship as a conventional computer
program and its logic f lowchart. Akers also noted the need for logic
reduction and demonstrated diagram-structures that permitted
simplification. He recogn‘ized that different and often simpler diagrams
could be obtained bychanging the order of examination of variables.,

This concept 1s discussed in chapter 5.

Mange, Cerny, Thayse, et al. — 19/8. The problems involved in the

representation, minimization and hardware implementation of binary
decision programs/&iagrams were studied cooperatively and separately by
Mange, Cerny, Thayse, et al. in 1978.

A gemeral method to implement any bina;'y decision diagram in
hardware was found by Mange which involved replacing every node in the
diagram by a one—to-two demultiplexor (DtMUX) [Mang78]. Unlike binary
trees, BD diagrams can have more than one path into a node. These were

o
handled by ORing together all multiple node inputs to obtain a single
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bit 1ioput to the DEMUX. Such a circult provides a spatial realization
of a binary decision diagram. Mange also described a general sequential
realization which represented the BD diagram as a series of instructions
executed sequentially by a "Binary Decision Machine."

The synthesis of minimal binary decision diagrams for multiple
output, incompletely specified switching functions was also studied by
Cerny, Mange and Sanchez [Cern79]. Thelr method was to first reduce the
logic to {ts minimal (prime implicant) form, Two algorithms were
devised to do this, a deterministic but lengthy procedure and a fast
heuristic. The resulting binary tree was then converted to a binary
decision diagram. The methods were prog\rammed in FORTRAN on a PDP-11/20
io 1979.

The binary decision program optimization methods coansidered by
Cerny and others were not applicable to programs in which parallel logic
branches rteconverged at a node. A class of functions called P-functions
was devised by Thayse [Thay8l] to provide an analytical means of finding
a reduced form for reconvergeat fuanctions. The method transforms
unreduced Boolean equations to binary diagrams by iterative application
of a set of composition laws aéting upon a pair of functions (g,h)
called the domain function and the codomain function, respectively. The
initial wvalue of the domain function 1s the Boolean equation F and the
initial wvalue of the codomain function is the Boolean coastant 1. The
procedure terminates when the domaln function has been transformed iante
1 and the codomain function has become the function F. Many ways exist

to apply the composition laws each producing a different binary program.l

All of the rules are exhaustiveiy applied to the functions during each
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iteration., Only a small number of these functions are useful for

generating optimal programs. It is not known whether this method has

been implemented in software.

Zsombor-Hurray, Vroomen et al. — 1978. An extension of Boute’s Binary

Decision machine to incorporate some measure of parallel architecture
was proposed and implemented by Zsombor-Murray, Vroomen, Tho and Holck
at McGill [Tho79,Zsowm/9]. This improvement enabled multiple switching
functions to be evaluated simultaneously. The instruction set was
expanded to include conditional branching oan either input polarity and
parallel output of, optionally, tour or fourteen bits. The number of
input and output points was expanded to 64 and 14, respectively, as
opposed to eight of each in the Boute machine.

The binary decision controller was implemented as a demonstration
unit consisting of a BD processor, fieid 1/0 ports and a control and
programming console. The system was TTL compatible, needed only a
single 5-volt power supply and operated 1in three modes; loading,
verification and execution. Hand-compiled programs were loaded into the
instruction memory by means of 16 data entry switches after presetting
the program counter to the address ot the first instruction. The
program could be veritied by single-stepping through it from the control
console or could be executed at either of two clock rates, 0.5Hz or
70kHz. bkxamples were devised and tested to demonstrate the feasibility
of implementing combinatorial and sequential switching logic in binary
decision logic. A block diagrar ~f the Holck machine is illustrated in

figure 1.11.
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1.4 Research Motivation and Objectives

The concept, design and implementation of binary decision-based
programmable controllers has been a topic of interest to several
independent researchers as shown above. xThey have established that
purely ON/OFF control functions are best performed by BD—based automata
as opposed to conventional microprocessors. However, curreat BD
architectures are mainly suited to applications in wﬁich a controller
must simultaneously attend to a number of small independent process
loops, e.g., each requiring only a few bits of input and~output..
The objective of this research was to develop a hybrid mP/BD PLC
prototype that would be better suited for process control applications
of a larger scale.

Consider that the size of a complete BD program grows exponentially
as 2n+1_1’ where n 18 the number of input variables., Five 4-input
procedures would require no more than ‘155 {instructions, easily
accommodated within a 256 locatlon program memory. It is doubtful
whether any programmable controller, PLA or microprocessor-based, or
even hardwired loglc could economically compete with a BD implementation
which would 1inevitably produce a computed output atter executing only
four instructions.

On the other hand, a single 64 input program could require as many
as 265-1 or 3.7x1019 instructions, an intractable size! Using standard
64k memory, the limiting programsize is st1ll only 15 inputs. Since
many common processes have thirty to forty 1unputs, one {or more) of the

tollowing solutions might be necessary to accommodate these 1n a BD

couatroller:
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1) Limit the number of inputs to the BD processor.

2) Partition the global control algorithm into several manageable
independent sections, each executed by a separate BD controller.

3) As 2) above, but the program sections required at any particular
time are paged in and out of the BD program memory. This is
equivalent to "virtual memory".

4) Reduce the program logic to its minimum size so that the reduced
program can be accommodated in memory.

The hybrid controller proposed in this thesis consisting of a BD machine

and a microprocessar "supervisor" would be able to implement any of

these solutions using the integration scheme as shown in figure [.12.

The standard microprocessor system which consists of basic blocks
such as the microprocessing unit, RAM memory and analog 1/0 convertors,
acts as the central processor. OUne (or more) BD conttollers are
connected to the mP via standard data, address and control busses.

Binary decision program code, compiled by the mP, is transferred to the

BD memory in the same manner as data is stored in a staandard RAM memory.

The operation of the BD is under the control of the supervisory wP. In

the loading mode, the BD program counter is preset to the initial

location of the progfam and 1s i{ncremented by the wP as instructions are

¥

loaded. The Bd is activated by agaln presetting its program couater ana
setting it in the run mode. From this moment, ;he‘BD controller
performs its repeated ON/OFF control routines and the mP is free tor
other tasks such as running proportional control algorithms.

This research encompasses the design of hardware required c&

interface the BD with the mP, and the establishment of necessary
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structures and protocols to enable interprocessor communication. This
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was achieved by the author in cooperation with Levi [Huds82,LeviB2a].
The design of the mP/BD syster\n's hardware and software is discussed in
chapters 3 and 4, respectively. 1In addition, the scope includes the
development of a practical optimizing compiler for BD programs that
would fit into the hybrid controller and produce control programs
without presenting too much overhead to the main tasks of the system.
Since it has been shown that decision program optimization 18 an NP-
complete problem under polynomial sized inputs [Hyaf76,More80], we were
regtricted to finding a method that produces an near-optimal program in
reagonable time. The compiler design is presented in chapter 5.

The ulterior motivation of this research, however, is to promote
the concept of using binary decision automata for the computation of
combinatorial aand sequential ON/OFF coutrol functdions. A recent survey
of programmable controllers did not reveal a single BD-~based machine
(Flyn84]. In spite of this the BD machine could be a valuable
industrial tool. To gain acceptance, the theory, design and
implementation of BD machines must be formalized. It is believed that
the machine i1s not generally understood because the theory of operation
is not yet rigorously defined and because conventional relay ladder and
gate diagrams remaln ditticult to represent in terms of BD logic. As
well systematic procedures for writing and minimizinﬁg BD programs need

to be develoPed.° It is hoped that this work will provide some of this

formalism and encourage the commercialization of BD hardware.
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CHAPTER 2

BINARY DECISION THEORY

2.0 Introduction

This chapter presents a theoretical basis for binary decision
programning. The relationships between the binary decision method and
conventional combinatorial and sequential switching function
representations are developed. Proofs are offered to show the
equivalence of the different methods, and certain characteristics of
binary decision programs that suggest an approach to logic minimization

are discussed.

2.1 Binary Decision Programs

It may be shown that any combianatorial or sequential switching
function can be represented as a sequence of binary decision
instructions i.e., as a binary decision program. This method of
description was proposed by Lee as an alternative to the use of Boolean
equatioans, 1ntroduced into switching theory by Shannon in 1938.

A binary decision program instruction 1s a two—address conditional
transter statement of the form:

Label x; A, B
This ingtruction is read: if the variable x is 0, then evaluate the
program statement labelled A, else if x is 1, then evaluate statement B.

This instruétion is represented diagrammatically in figure 2.l.
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The deficlency of the Boolean method lies in the large amount of
computational work that must be expended to evaluate a typical
expression. In particular, the Boolean method exhaustively evaluates
every literal and implicant comprising the switching function, an amount
of work of exponential order. The fact that an implicant can be shown to
be FALSE 1f at least one of its literals is FALSE or that an entire
expression 1is TRUE if at least one of its implicants 1s TRUE is
completely disregarded. In contrast, the binary decision method
evaluates any combinatorial switching function in a number of steps
which is always equal to or less than the number of input variables.

Consider the following control function of tour implicants in three
independent variables: L

Q(A,B,.) = ABC + ABC + ABC + ABC (2.1)
A PLC program to implement equation 2.1 in an MC14500 ICU;rased
controller is presented in figure 2.2a.

Figure 2.2b illustrates the mathematical operations performed by
the PLC program to evaluate Q(0,1,0). Although nineteen instructions
are executed in computing the function in the conventional way, the
value of the first implicant was known after just two program steps
since the second literal in this term has the value O. Likewise the
value of Q was conclusively determ@ned after the seventh program step
since the value of the second implicant 1s l. A binary decision program
for equation 2.] is shown in figure 2.2c. Figure 2.2d 1llustrates the
sequence of BD instructions that are executed to compute Q(0,1,0). In

the BD case, ouly three instructions are executed, equal to the number

of input variables.
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figure 2.2

Q1

Q3

Q5
Q6

LDC A Q=z1B-C+A-B-C+ A-B-C+ A-B:C
ANDC B £1°0.C + A*B-C + A-B-C + A-B-C
AND c = 0.0+ AB-C + A-B:C+ A'B-C
STO TEMP = 0+ A-B-C + A-B-C + A-B°C
LDC A = O+ 1-B-C + A-B-C + A°B°C
AND B - 0+11.C+ A-B-C + A-B-C
ANDC c =z 0+ 1-1 + AB:C+ A“BC
OR TEMP = 0+ 1+ A-B-C + A-B-C
STO TEMP s 1+ aA-B-C+ A-BC
LD A = 1+ 0-8:C+ aA-B-C
ANDC ] - 1 + 0-0:C + A-B°C
ANDC c a 1+ 0-1+A-B-C
oR TEMP = 1+ 0+ A-B-C
STO TEMP = 1+ A“B-C
LD A = 1+ 0-B-C
ARD B = 1+ 0-1-C
AND c = 1+ 0-0
oR TEMP = 1+ 0
STO Q = 1
19 STEPS
(a) ~ (b)

A » qli Q‘

B ; Q2, Q3

c;: o0, 1

B ; Q5, Q6

c; 1, o o5 ¢ ; 1, ©
c; 0 1 @ ¢ ; 0 1
(c) (d) ,

Sequence controller evaluation of combinatorial switching
functions. (a) ICU program for equation 2.l. (b) Boolean
evaluation method. (c) BD program for equation 2.1. (d)
BD evaluation methoa.
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Another deficiency of the Boolean method is the description of
sequential control functions. The temporal character of such functioas
cannot be modelled by simple Boolean Algebra, and external memory is
required to save previously computed values of the function. Binary
decision programs can embody circuit history information within the
trangfer paths of the program, and so are better suited to the
representation of sequential functions. Figure 2.3 shows a BD program
f lowchart for a common sequential circuit, the toggle flip-floﬁ.
Program flow is in the left side of the diagram when Q=0 and in the
right side when Q=1. A toggle input controls the switching of the
progr“am flow from side to side. Thus the BD program is able to remember)’
the previous state of the T flip-flop in the transfer structur’e of th/e,

program and does not have to reread Q from an external memory. BD

f lowcharts are discussed in detail in section 2.2.2.

2.2 The Binary Decision Representation of Combinatorial Switchiang

Functioans

The mathematical basis of binary decision logic did not seem
evident to Lee. It has since been demonstrated by various authors
[Aker78,Cern79,More82], howev&,{, that binary decision programs are

i ]
related to the series expansion of a Boolean equation.
2.2.1 The Binary Decision-Combinatorial Circuit Analogy. Consider the

switching function:

. j’
Q - f(xl,XZ,'oo,xn) (202)




RN

f@i gure 2 . 3
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i

BD representation of the toggle flip-flop.

(2]
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The series expansion of this tunction 1s obtailned by recursively
expanding equation 2.2 about each of its varﬁ@gles according to the
formula:
f(Xl,Xz,...,Xn) Ll Xl'f(O,Xz,.--,Xn) + xl't(l,XZ,o-o,xn) (2.3)
Continuing this process n times yields:
E(X yeeen X)) = £(0,000,0) X Xjeee X 4 FQULeee, D)X XpeadX o+ 0ee 4
f(l,...,l)xlxz...xn (L.4)
kquation 2.3 is known as Shannon”s kxpansion Theorem. The proof of

equation 2.3 is demonstrated in Theorem Z.l.
Theorem 2.l: Shannon”s Expansion Theorem.

Proof: Let X, equal O. Thus:
£C0,Xp,000,X,) = (0)-f(0,xz,...,xn) + (0) £(1,Xy,000,X,)
= £(0,Xy,000,5Xp)
Now let X; equal l. Thus:
£(1,X5,000,X) = (I)-f(o,xz,...,xn) + (1) £(1,Xp,.00,X,)
= £(1,Xp,000,Xp)

This completes the proof by perfect induction. a

If equation 2.2 is expanded about an arbitrary variable, Xi,the
following equation is obtained:
Q= By "£(X),e 0o, X520, 000,X) +?xl-f(xl,...,xial,...,xn) (2.5)
Now let:
E(XpyeeesX=0,000,X ) =6
and,

E(X|,eeesX =1, 0ua,X ) = H




then, ,
Q= Xi "G+ X, v H (2.6)

3

for any arbitrtary function Q and variable Xy~ The binary decision
instruction: .

Q X;; 6, H (2.7)
is shown to be equivalent to equation 2.6 in Lemma 2.l.

Lemma 2.1: Q=X, "G+ X, ' H®"QX;; G, H
-

L4
Proof: By definition, the binary decision instruction can be represented

by the following truth table:

Evaluating equation 2.6 with Xy = 0, L.e.,
Q=(0 -6+ (0) - H
= G
and with Xy = l, 1l.e.,
g Q=(I) -G+ (1) - H
= H

yields the truth table:

which 1is identical to the truth table of the bianary decision
instruction. Thus equations 2.6 and 2.7 are shown to be equivalent by

perfect induction. ‘ O
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Since the product of each expansion can be represented as a binary
decision instruction, it follow; directly that a binary decision program
is equivalent to the complete serles expansion of a Boolean switching
function. To {llustrate this point consider the series expansion of

s

equation 2.1, L.e.,
-\

Q(A,i‘u,c‘) = ABC-£(0,0,0) + ABC-£(0,0,1) + ABC-£(0,1,0) +

ABC-£(0,1,1) + aBT-£(1,0,0) + aBC £(1,0,1) +

ABC-£(1,1,0) + ABC-£(1,1,1) (2.8a)
where: ' £(0,0,0) =0 £(¢1,0,0) = 1
£(0,0,1) =1 £(1,0,1) =0
£(0,1,0) =1 £(1,1,0) = 0
£(0,1,1) =0 £(1,1,1) =1

Substituting the values of £(0,0,0), etc., into equation 2.8a and
factoring terms using the Distributive Property yields equation 2.80b: ,

Q(A,B,C) = A[B(C-0+C-1) + B(T-1+C Q)] +

A[B(C-1+C-0) + B(Z-0+C-1)] (2.8b)
Now let:
Ql = [B(C-0+C-1) + B(L:1+C-0)] (2.9)
and,
Q4 = [B(C-1+C-0) + B(T-0+C-1)] (2.10)
ﬁhen,
Q(A,B,C) = A - Ql +A Q4
Similarly, let: /
Q=CT-0+cC -1
and,

Q3=C-1+¢C -0
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in equation 2.9, and let:
5 =C - -1+C-0
and,
6 =C - -0+C -1
in equation 2.10. Equation 2.8b is rewritten in terms of the expansion
equations for each variable as fd{iows:
Q =4 :Ql +4A - Q4

Ql = B - Q2+ B -+ (3

Q2 =T- 0+C - 1
Q=C- 1l+C~- 0
Qs =B - Q5 + B - Q6
Q5 =C - 1 +C - 0
Qe =C - 0+cC - 1

However gince it is known by Lemma 2.1 that:
Q=X G+X -H®Q Xy; 6, H

then this sequence of equations {8 logically equivaleant to the binary

decision program: v e
Q  A; Ql, Q4 |
Ql B; Q2, Q3 (
Q2 ¢C; 0, 1 T

Q3 ¢; 1, 0 |
Q4 B; Q5, Q6
Q5 ¢; L, ©

Q6 C; 0O, 1

This equivalence is formally stated in Theorem 2.2.

]
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Theorem 2.2: For every combinatorial switching function there

exists an equivalent bilnary decision program.

Proof: Any combinatorial switching function can be expressed as an
equivalent series expansion by Shannon”s Expansion Theorem. A series of

single variable equations of the form:

F=X, ~G+X; H

where 1 e {1,2,...,n} and G, H define subexpressions of F in the series
expansion, may be obtained by algebraic manipulation. Taken as a whole,
these equations are equivalent to the original switching function. By
Lemma 2.1, each of the single variable equations is equivalent to a
binary decision instruction. Hence, the sequence of binary decision

instructions, i.e., the binary decision program, must also be equivalent

to the original switching function. O

2.2.2 Binary Decision Diagrams. A method of representing digital
functions in terms of a binary decision diagram was proposed by Akers
|Aker78].

BD pzl,'/fggram and BD diagram representations of switching tunctions
are equivalent and complementary. A BD program 1s easily translated to
executable computer code but 1s dltfxc‘ult to analyze, whereas a BD
diagram, being a graphi'cal description, is easily analyzed but is
difticult to lwmplement on a computer. Lt 1s convenient to regard the BD
diagram as the logic flowchart for BD programs.

Congsider the BD diagram for equation 2.1, figure 2.4a. The

function is evaluated by traversing the diagram, i.e., visiting a

sequence of nodes indicated by the directed edges, or branches, of the
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0 0 L
0 1 0 1 0 1 0 1
\ / \ _/ \
0 1 1 0 1 0 0 1
(a)

1 0
1 1 0 1 ] 1
£ \ \ / \ ya \
0 1 II!I 0 1 0 0 1-
(b)
figure 2.4 BD diagram for a combinatorial switching functiom (a).

(b) BD evaluation method.
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diagram, “beginning from the topmost node. (In this example each node has
just one entry and two exit branches: a binary tree [Aho74). Nodes may
be permitted to have more than one entry branch, but not more than two
exits.) During the traversal, the exit branch from each node 1is
selected on the basis of the value of the input variable listed 1n the
node. This process continues until an exit branch is encountered which
leads to one of the rectangular nodes at the lowest level of the
diagram, in wi]ich the values of the function have been pretabulated.
Figure 2.4b 1llustrates the evaluation of Q(U,1,0). Comparing tigure
2.4 with figure 2.2c) and d) reinforces the analogy between the two
representations.

Depending on the form in which the function is defined a number of
procedures for deriving BD diagrams from switching functions have been
proposed. A simple procedure to construct a BD diagram trom an ordered
truth table is described below. A n—level binary tree s constructed
such that every node in the tree has one unique entry branch (except tor
the root) and two uynique exit branches. All of the exit branches of the
nodes at the lowest level are terminated by rectangular output nodes.
The non-output nodes are labelled with the switching variables appearing
at the top of the truth table, 1n the tollowing manner. The root node
is labelled witn the left-most variable of the truth table. The second
variable from the lett 1s associated withall the nodes at the second
level of the tree, 1immediately below the root. The tnird variable 1s
associated with tne third level of tne tree, etc., Ligure ..3a and b.
The left exit branch ot every node 1s labelleda with a U ana the right

exit branch with a |. 1hus each path 1n the tree is uniquely 1identified
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5 X X Q

0 0 0 Q

0 0 1 Q,

1 1 1 Q0
(a)
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Q Q3 Q QR_3 Ry By Yo
)
(b)
Al
figure 2.5 Conversion of truth table logic to BD logic.

T -

(a) Truth table and, (b) corresponding BD diagraam.
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by the sequence of branch labels, 0 or 1, formed by the concatenation of
the input values selecting that path, e.g., the leftmost path 1is
‘selected by the set (A,B,L) = (0,0,0). The output nodes are then
labelled from left to right with the corresponding values of the
switching function tabulated in the truth table from top to bottom. A
BD diagram consisting of all 2% combinations is called a complete
diag‘\ram aad can be shown to have 2%-1 decision nodes and 2™ outputs.
Since a complete BD diagram contains no additional information compared
to that contained in a truth table, they may be considered equivalent
representations ditfering only in information topology.

This knowledge leads to another simple way ot proving that any
combinatorial switching function can be represented as a binary decision
program. It 1s known that any switching circuit can be written in the
canonical torm, involving only three operators, AND, OR, and NOT. Since
BD diagrams can be constructed from truth tables tor these three
functions, figure J.ba, it follows that any function can be "built" from
combinations of these simple BD diagrams in the same manner as a logic
gate clrcuit is assembled using the conventional Boolean approach,
figure Z2.6b. (The BD diagrams in figure 2.6 are shown unreduced. BD

logic minimization is discussed 1n section 2.2.4 and in chapter 5.)

2.2.3 Analysis of Bimary Decision Method. As previously discussed 1n
chapter 1, the growth in computational complexity of the Boolean
representation of switching circults 15 an exponential runctron of the
number of independent circult variables, whereas the binary decision

method exhibits strictly linear growth. These relationships were



2-16

E
2

(a)

™
*
0
> A+
3
0 1
c c
0 1 0 1 > (A+B)-C
0 0 0 1 0 1 0 1
_/
(b)
figure 2.6 BD diagrams for the fundamental logic connectives.

(a) AND, OR and NOT functions. (b) Superposition
of BD diagrams to form a compound function.

/\
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illustrated in figure l.6. The essential difference between the two
computational methods was suggested in figure 2.2.

A physical understanding of the BD computational process can be
gained from the topology ot a binary decision diagram. The series
expansion of a n-variable function, equation 2.4, contains 20 terms,
representing all of the combinations of the n variables beginning with
(X,X,...X,) and ending with (X)X,...X ). The coefficient of each term
in the series 1s the value of the tunction corresponding to that
combination, such that for a binary-valued function the coefficient 1s 1
for all of the minterms that are subsumed by the prime implicants of the
'function and U for all others. A complete binary decision diagram,
figure 2.5, 1s a one-to-one mapping of the terms ot the series expansion
to the 2% paths of the tree. Coefficients are represented by the output
boxes at the bottom of the tree. Hence 1if one writes out the literal
expression implied by the tree, one obtains:

£(X],Xp,000,%) = 21[22...[211{(0,0,...,0) + th-f(0,0,...,l)J + oeee] *

xl[22...[‘7(“-5(1,0,...,0) +XE(L,0,000, 1)) + Lo
i.e., the series expansion of the Boolean function in f::l ly factored
torm.

In this way, the BD diagram tactors the terms' of the function such
that all of the minterms subsuming the literal Xl are grouped into one
subtree, and the minterms subsuming the lil:era].l)&l appear 1n a separate
subtree. Thus the minterms represented by these two subtrees are
mutually disjornt. It X; 1s TRUL then X, must be FALSE and all of the
minterms subsuming X| are FALSE as well. Else, 1t X, 1s TRUs then Xl

must be FALSE and the set of minterms subsuming X| must all be FALSE.



In either case, exactly one-half of the minterms are rejected
immediately based on the evaluation of only one variable, which is never
reevaluated. (This is strictly true only in the case of so-called simple
BD programs, i.e., those in which a variable never appears more than
once 1n any particular path. The more general case of non-simple
programs 1s discussed by Thayse [Thay8l].) This division process is
repeated at each level of the diagram. As only one variable is examined
per level, and as there exists only n lev)els, hence not more thann
variables are ever examined in this computational process. The binary
decision method branches away from implicants whose logical proposition
is known to be FALSE and does so at the earliest possible time. This is
the crucial ditference between the conventional Boolean approach and the
binary decision program method.

Consider figure 2.7, the BD diagram of equation 2.1. Figure 2.7a
shows a diagram of the function after the first application of Shannon’s
Expansion Theorem. The fuanction is divided into two bracketed terms,
_one ANDed with A and the other with A. The expressions within the
brackets no longer 1nvolve the literal A as a result of the factoring
process. Figure 2.7b shows the complete BD diagram‘of the fully
expanded function in which the subtrees have been label led with the
corresponding terms from the series expansion. At each level one
additional literal has been tactored from the remaining expressioans.
The evaluation of Q(A,B,C) = (0,1,0) was shown in figure 2.4. In figure
2.7c the corresponding series expansion is evaluated in the binary

decision maaner.
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figure 2.7 Conversion of Boolean equations to BD diagrams

using the Shannon series expansion.

(a) Expansion of equation 2.1 about variable A.
(b) Complete series expansion.

(¢) kvaluation of equivalent Boolean expression.
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A further computational advantage of binary decision over
conventional Boolean algebra is the ability of the BD method to evaluate
multiple switching functions simultaneously. For example, consioder the
following set of process control functions.

Q = fl(xl,xz,...,xn)

Q = fZ(Xl"XZ':“’Xn)

Q3 = £30X],Xp, w0, Xp)
In the traditional Boolean approach these three functions would be
computed serially by the evaluation of independent sum-of-product
expressions describing each function. However, Qp» Q) and Q3 can be
evaluated, in parallel, using the BD method, requiring only n steps or
less to compute all three functions. Unlike Boolean methods which
evaluate functions by arithmetic computation of algebraic equations,
binary decision programming uses the input values as branching criteria,
to direct the computation towards an output instruction in which the
correct results have been previously stored. Conceptually, the data
field of an output instruction can be made arbitrarily large to generate
multiple functions in parallel. The procedure for progrimming multiple
switching functions is defined by the truth table describing three
control“functions, F, G, and H, shown in figure 2.8a. Parallel output
data for each combination of the input variablés is formed simply by
concatenating the three functions. Figure 2.8b illustrates the BD
diagram for these functious.

Likewise, binary decision programming can evaluate éwitching

functions that have more than two possible discrete modulo-two wvalues,

i.e., Q, e {0,1,10,i1,...}s The application of the BD method to the
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BD representation of multi-function logic.
"(a) Multi—function logic truth table.
(b) Equivalent BD diagram.
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computation of multi~-valued logic is another area which demonstrates the
advantage of this method over 1ts Boolean counterpart. The theoretlical
basis tor doing so is also suggested by the series expansion of a
’
Boolean switching function. Recall that the complete expansion of a
general function takes the form of equation Z2.4.
(X heeesXg) = X KpeeeX 0 £(0,0,000,0) + X X peaX t£(U,0,0e0 1)+ ¥
Xlxz...xn'f(l,l,...,l) (2.4)
In conventional binary decision logic, f(U,0,...,0) to f{l,]l,...,1) have
only two values, 0 or l. However, in multi-valued logic these can take
on any multi-bit value within a defined range. The values of
£(0,0,000,0) to £(l,1,...,1) are stored in the data tields of BD output
instructiegns. Since, as previously described, the data tield 1s
arbitrarily large, nulti1-bit data is easily accomodated withia this

field. (The support of multi-valued logic represents a major ditterence

be tween Boute’s BD machine and the Holck model.)

2.2.4 Mininization of Binary Decision Programs. In his article on
binary decision diagrams, Akers demonstrated that combinatorial logic
expressed in binary decision form could be minimized in a manner
analogous to Boolean logic reduction [Aker78,McCl56]). An example trom
his work is described below.

Consider the BD diagram resulting from the function f = ABC + AC,
figure 2.9a. Note that the output of the leftmost node at the C-level
is 0 both when C is FALSE and when C is TRUL. Since the value of the
output is independent of C, the node 1s safely pruned from the diagram

and replaced by a single output, tigure 2.9b. Likewise, the pair of

‘l .
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prg

figure 2.9

(b)

(c)

BD logic minimization techniques.

(a) Detection of 1somorphic program constructs.
{b) Elimination of 1isomorphic logic by '"pruning".
(¢) Trellising of resultant logic.
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rightmost nodes at the C-level generate identical output combinations
and s<; must imply the same logical proposition. These are combined into
a gsingle node, figure 2.9b. Note, however, that the two branches ot the
rightmost node at the B-level now lead to a single node, meaning that
this p_a_th is independent of the value of B. In figure 2.9¢c, the
superf luous node 1s removed and the diagram is further simplified by
grouping all of the U-outputs and l-outputs together to form a so—called
trellis structure.

The  mathematical basis for the minimization of BD logic 18 derived
by the consideration of equivalent Boolean equations obtained from Lemma
2.1. By cthis Lemrna, the Boolean equation describing the leftmost node
at the C-level of figure 2.9a {s:

’ Q=T -0+C -0
But Q. 1s also equal to O by:

QC-C'O+C'O (2.11a)
= (C +C)* 0 (Distributive Property) (2.11b)
=1 -0 (Complementation Propergy)(z.llc)
=0

Likewise, the pair of rightmost nodes at the C-level of figure 2.9a are

§

described by the equations:

>
QC(lEfC) - C 0+ C -1 ('2.12,
and,
Qu(righe)= C © 0+ C L (2.13)
= Qc(lefr) (2.13a)

Thus Qc(left) = Qc(righr.)‘ The B node 1s eliminatec« according to the

relations:

—_— — e ——
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Q, = B - Qc(lefc) + B~ Qc(right) (2.14a)
- E * QC(left) + B Qc(left) (by 20138) (Zolhb)
= (B +38) - Qc(léft) (Distributive Property) (2.14¢)

=1 Qqleft) (Complementation Property)(2.l4d)

= Qc(left:)

As can be seen from the above, the mathematical basis for the
minimization of BD logic is a result of the Distributive and
Complementation Properties of comblnatorial logic.

The trellising exhibited in figure 2.9c is also a direct outcome of
the Distributive Property. Consider the BD diagram of tigure 2.10a.
Note that the second and third outputs of the diagram both imply the
value b. According to the method suggested above, these should be
combined to form a single output node. By Lemma 2.1 this diagram is

equivalently described by equations 2.15a, b, and c.

Q =% " Q *+X "Q (2.15a)
. Q = XJ Ta Xy b (2.15b)
Q, = xj - b + xj - e (2.15c)

By substitution of the values of Q and Q, into 2.15a, we obtain:
Q= Xi(XJa + ij) + xi(ij + ch) (2.16a)

)

= X, Ria + XyX;b + xiij + X;X;c (Distributive Property) (2.16b)

] 3 3
= Xixja + (Xixj + xiXJ)b + Xixjc (Distributive Property) (2.16c)

The middle term of equation 2.16c represents the trellising of the two
identical outputs nodes, figure 2.10b. Trellising results in wmore than
one transfer path entering the b output node in the BD diagram. At this
point, the diagram can no longer be called a binary tree and must

instead be called a directed acyclic graph (DAG) [Stan80].
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tigure 2,10 Aadiysls of the trellis structure.
(a) Detection ot isomorphic nodes.
(b) Trellising to combine isomorphic nodes.




The minimization principles discussed above can be applied to BD
programs as well as BU diagrams. Consider the BD prograé in tigure
2.4c. Note that the instructions labelled Y/ and yb are identical, as
are instructions Q3 and Q5. lhus program size 1s reduced by combining
these equivalent instructioans, result{ng 10 the program of rigure Z.lla.
Figure l.1lb shows the trellised 8D diagram ot the program

The topac of BD program optimization 1s discussed 1n further detail
in chapter 5, which considers the design of a BD program optimizing

compl ler for use in the mP/BD hybrid programmable controlier.

2.3 The Binary Decision Representatioun of Sequential Switching

Functioas

As descripbed in section 2.1, a BD prograwm is a sequence of transfer
instructions in which the values of the input variables are used to
control the program flow. Lkach 1nstruction sequence terminates with an
output instruction which contains the appropriate value ot the control
function. Since the discrete transfer paths are capable ot storing
input histories and since the program is capable of performing lggical
operations on the 1nput data, then BD programs are, by definition,
capable of describing sequential switching circuits. An example which
illustrated the use of BD programming techniques tor the representation

of a sequential switching control function was presented in figure 2.3.

2.3.1 The Binary Decision-Sequential Circuit Analogy. Consider the

sequential switching function:
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B ; Q , Q
c ; 0 , 1
cC ;1 , 0

(a)

figure 2.11

(b)

Example of a minimized BD program.
(a) Minimized BD program for equation 2.l.
(b) BD diagram showing trellis structure.
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L = £(X),Xy,.04,X,,S) (2.17)
The behaviour of this function is dependent upon both the current input
and the particular input history which preceded the current input.
Although the number of such histories may be large, they can otten be
grouped into a finite number of distinct classes called the internal
states S, ot the function. In general, a sutficient number of states
must be defined to ensure that the appropriate output is produced tor
;ll valid input combinations.

The logical operation of a sequential function 18 specified by
mapping, for all states, the output and state transitions generated by
the function for each input within a given state. This mapping is
presented in various ways, e.g., 1n graphical form (State Diagram), in
tabular form (State Table), or in equation torm (State Output and State
Transition functions). Figure 2.12 i1llustrates the form ot each ot these
representations for a common sequential function, the binary serial
a;der.

This function adds two binary-coded numbers by the serial additiomn
of digit pairs starting with the lowest order digits., K Two distinct
input states are required to distinguish between the ditferent sum and
carry outputs when carry = 0 and carry = 1, which result trom the
addition of identical input bits. Figure 2.12a tabulates the binary
arithmetic results which are used to define the input-output mapping of
the function. .

The state diagram, figure 2.l2b, represents the function as a
directed graph in which the vertices are labelled with the state names

and arcs are labelled with the inpuﬁ/output mappings corresponding to
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(a) The truth table, (b) state diagram, (c) state
table and, (d) state output and transition functions.

1

X X
1

0

11/1

ot-¢



each state. Let A designate the state of the adder when carry = O and B
designate the state when carry = l. The connectivity network indicates
the appropriate state transition fog each combination of current state
and input. The state table, figure 2.12¢, lists the next state and
output of the function for each combination of current state and input.
Finally, the combinatorial equations of the state output and state
transition functions are shown in figure 2.12d.

All of these function descriptions are clearly equivalent since
they all convey exactly the same informations. It follows that any
structure that correctly encodes this data 1s also a valid description
of a sequential function. Consider for example the faollowing
generalization of Lee”s binary decision instruction:

A X X5 (A4,0), (A,1), (A,1), (B,0) \ (2.18)
This instruction is read: in state A, If the variables XXy have the

M
values 00 then transfer to state A and output O, else if the variables
have the values Ol then transfer to state A and output 1, else if the
variables have the values 10 then transfer to state A and output 1,
finally if the variables have the values 1l then transfer to state B and
output O.

Equation 2.18 is a sequential quaternary decision instruction that
encodes the information in the first row of figure 2.12b. The trio of
binary decision instructions:

A Xy Al, A2
Al Xg; (A,0), (A,1)
A2 Xg; (A, 1), (B,0)

is shown to be equivalent to equation 2.18 in Lemma 2.2,
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Lemma 2.2: A quaternary decision instruction can be decomposed

into an equivalent series of binary decision instructions.

Proof: Consider that the four pairs of (51,21) terms in equation 2.18
L

are related to the switching variables X,X, by the combinatorial

function:
A(X|,Xg) = [X)Ry-£(0,0) + X Xy 1(0,1) +
X, Ro £(1,0) + XX £(1,1)] (2.19a)
where: £(0,0) = (A,0) £(1,0) = (A,1)
- £(0,1) = (A,1) £(1,1) = (B,0)

Substituting the values of f£(0,0), etc., 1nto equation 2.19a and
factoring terms using the Distributive Property ylelds equation 2.19b.
A(X), %) = R [Ry-(4,0) + Xy (A, )] +
X (X" (A,1) + Xq(B,0)] (2.19b)
Now let:
.. Al = [XO~(A,0) + X5 (A,1)]
and,
A2 = (R (A,1) + X5°(B,0)]
Equation 2.19b is rewritten in terms of the single variable equations as
]
follows:
A =X Al + X A2
Al = X53°(4,0) + X5°(4,1)
A2 = XO-(A,l) + X, (8,0)
However, by Lemma 2.1 this sequence of equations is logically equivalent

14

to the binary decision program:



A X3 Al, A2
Al Xg; (A,0), (A1)
A2 X3 (A1), (B,0)
The extension of this Lemma to higher order decision instructions

is straightforward. 0

A two—instruction quaternary decision program is clearly sufficient
to represent the complete state of the function. Repeating the process
for state B of the adder example produces the binary decision program:

B X5 Bl, B2

Bl Xy; (4,1), (B,0)

B2 Xp; (B,0), (B,1)
Together these two program segments completely define the sequential
operation of the binary serial adder function. ’

This procedure may be applied, in gemeral, to any sequential
function which 18 adequately described by one of the standard logic
representations. It effectively establishes the equivalence of
sequential switching functions and binary decision programming. This

equivalence is formally stated in Theorem 2.3.

Theorem 2.3: For every finitel y—computable sequential switching

function there exists an equivalent binary decision program

Proof: Any finitely-computable, discrete sequential switching function
can be expressed by means of a state table, state diagram or similar
technique. A series of 2P-ary decision instructions of the form:

S X XgeeK 3 (S1,2)), (S5,Z2), wee » (5y0,Zyn)

where n is the number o6f external. switching variables of the function,

~



may be'obtained by inspection from the rows of the function”s state
table. These instructions map the combinatorial state transition and
state output functions of the switching function for each of 1it”s
internal states. Paken as a whole, the instructions form a 2%-ary
decision program'equivalent to the original)switching function. By
a generalization of Lemma 2.2, each of the Zn-ary decision instructionms
may be decomposed into a set of>20-] binary decision statements. Hence,
the comp}ete sequence of binary decision instructions, i.e., the binary
decision program, must also be equivalent to the original sequential

switching function. ) 0

Historically, binary decision research has been predominantly
confined to the use of BD for purely combinatorial applications.
Consequently, very few results which detail the sequential properties of
BD have been reported in the literature. Since, as shown above, binary
decision programs are equivalent tg conventional switching functioms, it
may be expected that the sequential properties of BD, e.g., logic
minimization procedures, éﬁc” will be closely analogous to those of
conventional logic. The investigation of the sequential nature of BD is

an important area of future research.
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CHAPTER 3

o t

THE DESIGN OF THE HYBRID mP/BD SYS¥YEM

3.0 System Overview

L3
»

The design of the general purpose mP/BD hybrid programmable
controller is shown {in figure 1.7. This configuration consists of a
micr0processor’control subsystem integrated with a BD processor coatrol
subsystem by a communications interface. Each unit has its own program
memory and field I1/0 sections. As a result both sequential automation
(‘ON/OFF) an?d proportional control functions may bg?executed
simultaneously by the hybrid controller.

The microprocessor’s other function in the system is to service the
operator”s interface c¢onsole (CRT, keyboard,printer,aénunciator)and
bulk memory units. The BD processor requires communication with the
system peripherals to load new program segments from bulk storage, to
send data to the CRT or to input from the keyboard. Since BD
architecture is unsuited to the generation of communication prafocols,
the microprocessor handles 1/0 to the BD through the communications
interface.

The hybrid controller, figure 1.12, makes use of/mic?cpgocessor
address, data and control busses to interconnect the ;ystem gl;qents.
BD interface modules are connected to the peripheral %ncerface bus so
that logically and electrically they appear to the mP as ordinary

peripherals. This interface design enables several BD processors to be

connected with a common mP supervisor. Vroomen [Zsom79] and Levi




[Levi84] have proposed PLC configurations consisting of a number of
distributed, semi-independent BD controllers termed Programmable Control
Units (PCU) or Intelligent Retlexive Interfaces (IRI) which are
connected to and controlled by a shared supervisor. However, the hybrid
mP/BD programmable coatroller presented in this thesis has only one BD
unit.

% System hardware design can be broken down into three sections, wP
and bus architecture, BD processor hardware and the intertace module,

These elements are described in the following sections.

3.1 =P System Architecture

3.l.1 wP System Organization. The mP system consists of a central
microcomputer plus operator interface devices and the procéss [/0
interface. The microcomputer communicates with the system peripherals
via a combined address, data and control bus.

The principal task of the mP in the PLC system 1is the execution of
PID control algorithms. According to the task division scheme, ON/OFF
control functions are reserved for the BD machine because of “its
superior logic processing characteristics. The mP is also responsible
for ON/OFF and PID program compilation, program library-maintenance,
task-scheduling, and system communication functions.

Proces; I/0 is achieved with conventional rack mounted 1/0
terminal and signal conditioning cards which are intertaced to the aP
via the system bus. To enhance system reliability these are physically

and logically independent from the BD processor’s 1/0 cards.




3-3

1
*

is

3.1.2 mP Prototype Hardware Design. Hardware development was confined
to the BD processor and a commercially available SWTPc (Southwest
Technical Products (orp.) 58UY computer system furnished the mP half »f
the mP/BD hybrid programmable controller. The 5>WIPc system uses a
Motorola MCbsuY ¥/lo bit NMUb microprocessor Jn a standard 55-5J bus
motherboard {ArtwdU]. The operator interface equipment 1is simulactea
with a Lear-5iegler ADM-5a CK1 terminal witn keyboard, attachead to the
55-30 peripheral interface bus via a MP-5/ R5-232 communication
interf{éce adaptor card. The system also has a MF-68 dual 5-{nch floppy
disk driive for secondary storage and an Epson MX-8U printer for hardcopy
output. These are attached to the $5-3U bus witn a DC-3 disk controller
card and a MP-LA parallel communication 1intertace adaptor card,
respectively. The SWTIPc system normally ruas tne TSC (Technical sSystems
Consultants) Flex 9.0 disk operating system. However for PLC emulation,
the system is controlled by the BDU9 or BDBUL operating svstem as
described in chapter 4.

The BD processor 1is interfaced to the S5-3U bus via a custombuilt

MC6821 FIA (Peripheral Ianterface Adaptor)-based card. This is described

in section 3.3 of this chapter.

3.2 Binary Decision Processor Design

The BD processor”s hardware design 1s based on Holck”s stand-alone
BD machine which was implemented as a demonshtratiom«unit in the DATAC
laboratory in 1979 [Zsom79]. Holck”s design has been enhanced to

include a larger imstruction set, more I/0 points and a control and data
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bus to the mP. (The Holck machine was itself an extension of Boute~s
design, figure |.9, to incorporate parallel, multi-bit output.)
-

J.2.1 Physical Description. The BD processor prototype, tigure 3.1,
is 35 cm. long by 19 cm. wide. It comprises the expanded Holck BD
processor, a local programming and control console consisting of 4 5SPST
switches and 24 LED status lights, 12 input points, 2 output banks, a
SU-conductor cable to the mP/BD 1nterface, an auto/manual mode switch
and an auto—-mode reset button.

The circuit 1s constructed with wire-wrapped, discrete TTL logic
components and requlires an external S‘Vélt regulated power supply. A
1.00000 MHz crystal 1s provided to drive the systeuw clock.

Programming and control ot the BD processor 1s performed
automatically by the interfaced mP or manually, by an operator, via the
switch console. The AUTO/HANUAL switch, located at the lert-rear of the
circuit board, selects tne control mode. In manual mode, the BD
processor 1s lsolated from the interface and is controlled directly with

{E;the switch console located at the right—fronc of the board. The console
congists ot 8 control switches labelled with function descriptions and
16 programming or data entry switches labelled DO to Dl5. In manual
programming mode, these 16 switches are coannected to the data bus and
permit the 256x16 RAM memory to be loaded with user programs. In the
program counter preset mode, DO to D7 are connected to the address bus
for initializatioa of the PC to the starting address of the control

program. These switches are disabled when the BD processor is operated

remotely via the mP interface.

\
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The contents of the data and address busses are continuously
displayed on the console by 3 rows of LED status lights, located behind
the switch panel. This display operates in both auto aand manual control
modes.

In the auto mode, programming and control signals are sent to the
BD from the mP ianterface via the cable located at the left-rear ofthe
board. Immediately 1o front of the cable is the AUTO-MODE RESET '
pushbutton. This provides the operator with a means of halting the BD
hardware wkén the machine 1s {n the automatic mode and it is
inconvenient or impossible to reset the BD from the operator’s keyboard.

Only twelve field inputs are implemented 1n the BD prototype.
These are divided into four wired inputs and eight simulated inputs
.
driven by SPST switches labelled IV to I3 and JU to J3, located on the
switch console at the front-right. The inputs are active during both
control modes.

Similarly, only two banks of fileld outputs are curreatly
implemented. Of these, four bits are available for external control and
the remaining twenty bits are simulated on LED lights. The LED
indicator lights for Bank O are located at the left rear of the circuit
board while those for Bank 1 are located immediately behind the console
switch panel.

A terminal blbck is locaied on the right-froant edge of the circuit

w

board to bring in 5-volts from an external voltage-regulated power

supply.
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3.2.2 Programmer’s Model. Instruction Set Processor (ISP) notation is
used below to describe the elements of the programmer”s model. ISP is a
unitorm symbolic language used to conveniently describe the organization
and operation of computers. The notation is fully explained in Appendix

IL.

The programmer s model of the BD proce\s\sor consists of:

1) Program Counter. The 8-bit program counter\PC<7.0> contains the

3

address of the current executable instruction in the 256 location, lo6-
bit wide program memory\Mp{[255:0]<15:0>. During operatlion the contents
of the PC are either incremented or preset to a branch address specified
in the current instruction\IN<15:0> as an unconditional tunction of the

operation code and a conditional function of the selected input

variable.

2) Input Variable Register. The 64-bit input variable register

\IV<63:0> is the main process 1nput channel to the BD processor. All b4

bits are directly addressable trom either of two input instructions.
/

3) Output Registers. The output section consists of sixteen 24-b1t

output registers\OR{15:0}<11:0> each with twelve independent signals and
their logical complements. The programmer outputs data to the process,
optionally in groups of ftour bits or twelve bits, by using a "short"

output or a "long" output instruction, respectively. The output data is

switched to the appropriate output register by the output bank register.

4) Output Bank Register. The 4-bit output bank register\OB<3:0>

controls the switching of the output data to one of the sixteen output



registers. Output to independent process loops under the control of the
same BD processor can be kept safely separate in this way. An
fnstruction to select an output bank is usually placed at the beginning

of each BD program.

3.2.3 Instruction Set. In principle, BD programs contain only two
operating instructions, input-test-branch and output. For the mP/BD
hybrid programmable controller the instruction set is enhanced to
support multi-programming, i.e., one or more BD programs controlling one
or more process loops, and BD-mP communication. Eight instructions have
been defined and a further eight operation codes are available for
future expansion. The presently defined ifinstructions are summarized in
table 3.l1. Bit numbers refer to fields within the.iN: The instruction

format is shown in figure 3.2.

1) INPUT-TEST-BRANCH. The INPUT instruction implements the IF-THEN-

GELSE branching logic fundamental to the BD concept. The instruction
causes the Logic Control Unit to input the selected varfiable (X) from
the input variable register, test it and to update the program counter
to the memory address of the next sequential program instruction. The
fastruction format comprises the input variable address and the IF
condition branch address. On the ELSE condition the processor
automatically branches to the default instruction located in the next
consecutive memory location. No loss of generality is incurred,
however, since two INPUT instructions have been implemeanted to allow

branching on either p‘olarity of the input variable.




R

OPEKATION INSTRUCTION FUNCTION
CODE
00XX INPUT AND TEST INPUT LINE 1S SELECTED BY
01xx INCI3.B>. V = X @ INCI4D,
IF v=0, GO TO PC+].
"& IF Vel, JUMP TO INK7 0).
1000 OUTPUT LONG LOAD APPROPRIATE QUTPRUT
BANK WITH INCIl 0>. GO TO
PC+1
1100 OUTPUT SHORT LOAD APPROPRIATE OUTPUT
BANK WITH INCil 8>. JUMP
TO INCT OO
1110 QUTPUT BANK SELECT LOAD OQUTPUT BANK RLGLISTER
WITH INC1L 8>. JUuMP TO
INGD O
1010 END OF PROGRAM 8D CLOCK [S DISABLED IF
STOP FLAG IS HIGH. ELSE
GO TO PC+i
110} INTERKUPT 80 INTEKRUPT 51GNAL TO nmP
IS GENEKATLU. JUMP TO
INCT 0>
i1l JUHP (UNCONDITIONALLY) JUMP TU INC7.0>
table 3.1 BD instruction set.
bib b
5 1211 s
.OP CODE..
. INPUT ADDRESS..
. « .. .LONG OUTPUT . . . .
.JUMP ADDRESS
PUT BANK,
SHORT
OUTPUT
&}
figure 3.2 Instruction word format.

W
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INC15:14> comprise the operation code (op-code) field, 1i.e.,
OP<1:0>:=INC15:14>s Codes OP<1:0>=00 and Ol define the two types of
INPUT. The input variable address contained in IN<13:8> selects one of
the 64 input variables. Thus the selected variable is X:=IVCINCI3:8)>)>.
X 18 EXCLUSIVE-ORed with IN<K14> to obtain the next branch address, as
follows. If (INCKI4> @ X) = ] then the next instruction”s address is
contained in IN<7:0>. Otherwise 1f (INCl4> ® X) = 0 then the next
instruction”s address is PC + 1. The op-code tield 1is restricted to two
bits by the six-bit input variable address field required to address 64
independent inputs. A proposed modification to the present'design is to

configure the input section as sixteen banks of sixteen directly
LAl

addressable inputs. This would reduce the width of the input address

field to four bits, but would require a four-bit input bank register

similar to the output bank register co&ﬁ%guration.

2) OUTPUT. The OUTPUT instruction transfers the computed value of the
switching function describing the control procedure to the appropriate
output bank via the output register. Two types of instructions are
defined, one that outputs a full set of 12 parallel bits to the output
register, and a second that outputs only 4 bits. 1If the process is
bontrolledxwith four bits or less the so-called SHORT OUTPUT instruction
may be used. This saves program memory, since the next sequential
instruction”s address 1s found in the lower eight bits of the SHORT
OUTPUT 1iastruction. If the LONG OUTPUT is used, the BD processor
selects the instruction at the next address.

The instructioun is invoked by OP<3:0> = 1000 or 110U. "If OP<2>=0

-

.then it is a LONG OUTPUT instruction and INK11:0> contains literal

= .
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output variables\UV<11:0>, which are transterred to the 12 bits ot the
output register addressed by the output bank registe;, lee., UVKLILIO> -5
OR[OB<3:O>](11:U>.\ UPCZ2>=] 1is a SHOKT OUTPUT 1instruction. INL1l:8)>
contains four literal output variables, 0V<ll:8>, and IN<K7:0> contains
the next instruction”s address, 1.e., OV<lLl:8> => OR[OB<3:0>}<1l1l:8>.

The lower eight bits of the output register are unchanged by a SHORT

OUTPUT instruction.

3) JUMP (UNCONDITIONALLY). This lnstruction permits the programmer to

prevent a programming impasse when an ianstruction defaults to a next

address trom which the program tlow does not logically continue. Such

PPN
[P

situations might occur when a LONG OUTPUT 1nstruction requires a
supplementary jump or when both results ot an INPUT instructiom require
a jump to different sections of the program. [he JUMP instruction {s
invoked with ‘the op-code 0P<3:0>=}lll. The JUMP address 1s contained 1in

IN<7:0D>. INC11:8> is undefined.

4) INTERRUPT. The INTLRRUPT instruction is used to initiate BD to mP
communication. A BD interrupt may be programmed if a process variable
has exceeded its specified limit, a major disturbance has caused an
equipment trip, or a "benchmark" event has occurred which must be
annunciated. The op—code of an INTEKRUPT 1nstruction 1s UP<3:0>=1101
and IN<7:0> cdntains the addresi of the next instruction, normally an

END—-QF-PROGRAM 1instruction.

5) END-OF-PROGRAM (kUP). The EOP instruction marks the logical end of

each BD program. ‘The BD wmachine can be halted only after execution of
|
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an EOP to prevent possible loss of process control due to incorrect or
incomplete output, The EOP instruction 1is invoked with OP<3:0> = 1010
and IN<11:0> contains program and possible interrupt information.

Program execution continues at the next consecutive instruction 1if the

BD machine has not been halted.

6) OUTPUT BANK SELECT. The OQUTPUT BANK StLECT instruction latches the

address of the output bank serving the next program segment into the
output bank register. This instruction 1s normally,K used when several
process control programs are running concurrently to separate outputs
from individual programs. The instruction is invoked by OP<3:0>=1110.
INC11:8> contains the address of the desired output bank and INK7:0>

'

contains the address of the next sequentlal program instruction.

3.2.4 Hardware Design. A block diagram of the binary decision
processor is shown in figure 3.3. The machine coansists of five qajor
sections; the control section, program memory, system clock, field input
and field output sections. The design of each of these sections is,

presented below.

3.2.4.1 Control Section. The control section consists of the
Program Counter, the Logic Control Uanit, the Clock-Interrupt Circuit and

the Auko/Manual Control Interface.

1) Program Counter. The 8-bit program counter (PC), figure 3.4, is

implemented with a pair of 74161 4-bit synchronous presettable counters
arranged to form a ripple-counting circuit. The preset inputs are

connected to INK7:0> of the instruction register. Preset data is

g et a e — . - -
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figure 3.4 Program Counter circuit diagram.

.
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latched into the 74161°s by a low signal on the LOAD line, which is
conmected to the branch decision legic of the Logic Control Unit,
coupled with a low-to~high transition of the system clock. The PC
increments if the LDAD line is high dL;ring a low-to-high clock
transition. The PC is unconditionally cleared by a high-~low-high strobe
of theﬂm line. Outputs of ‘the PC are connected to the systen

address bus.-

2) Logic Control Unmit. The Logic Control Unit (LCU), figure 3.5,

consists of an op-code decoder and a branch decision circuit which is
connected to the LUAD 1line of the PC. Input to the LCU includes
INC15:12>, the system clock and the selected input variable X. The LCU
also has a strobe generating circuit which synchronizes the action of
some of the lustructions with the low phase of the clock cycle‘. The
operation of the LCU is described as fol lows.
The OP code, INK15:12>, is presented to the LCU at the start of
each machine cycle. Simultaneously one input varilable, selected ~fr:om
« the field input register by IN<K13:8>, appears on line X. These two
actions always occur regardless of which type of instruction is‘
executed. The LOAD output of the brar'lch decision circuit is enabled by
#either (D15°D14) or conditionally by [(Dl4 ® X)-BTIS].  Thus all
instructions with OP<3:2>=11 such as SHORT OUTPUT (1100), BANK SWITCH
(1110), INTERRUPT (1101) and JUMP (1111) invoke unconditional branching
to IN<K7:0> in the next machine cycle. (Recall that all BD program

instructions take just one machine cycle.) The two INPUT instructious

{“,r invoke branching only if the function (D14 @ X) is TRUE. Since the input
o ,"\ ‘9 R
-t e \ B e
. , ‘_ U - - w.\wzﬁf bt biatekib i - °
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t
section always interprets IN<13:8> as an input address even with non-
input instruction types, the (Dl4 @ X) circuit is interlocked with BI5
to inhibit unwanted branches in these rcircumscances. At the present
time only two OP<3:0>=0XXX instructions have been implemented, the
INYPUT—TEST—BRANCH pair. The branch decision circuic’ would have to be
"augmented to decode all four bits if the remaining 0XXX instructions
were to be allocated in the future. The LOAD output is interlocked with
the gsystem clock to inhibit this signal during rthe first half of the
machine cycle. This ensures that branching data is stable for at least
one~half cycle before the PC can be prese't and circumvents any timing
problems caused by unsynchronized operation of the L[OAD line.

The strobe generating circuit consists of a 74123 dual monostable
multivibrator which produces two short duration strobe signals, q, and
q,, used tt; latch data into the output register. The 5SHORT OUTPUT
instructipn, decoded by (ql-m-m), latchibs fou}' upper bits of output
data from INC11:8> into OR[OB<3:0>]<11:8>. The LONG OUTPUT instruction,
decoded by (qz-m-m), latches eight bii;:s of output data from IN<7:0>
fato OR[0B<3:0>]<7:0>. But since q, 1is generated by (CLK-D15) and q, by
(CLK:D15-DTZ%) then q, is produced simultaneously with q, 1in all
instances when q, is generated. Likewise (q-DI3-DT2) is additionally
decoded 1n all cases when (q,°DI3-BT2) is generated. Thus a LONG OUTPUT
operation code also enables the SHORT OUTPUT signal resulting in all
twelve output bits being latched in parallel, The actual data output
operation is‘ synchronized with the hi’gh-to-—low transition of the system
clock by interlocking q; and g, with TLK to ensure that INCil1:0> is

stable before latching it into the output register.
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The EOP signal is decoded, without strobe, as (D15-B5T4:D13-D12).
The EéP signal is used by the Clock-Interrupt Circuit to permit the BD

machine to be halted only at the end of a control program. The

ope’;@ption of this interlock circuit is discussed later.
i
AT

5 The BANK SWITCH signal, decoded by (ql'DlA'Dl3'm), causes the
output bank address in INCI1:8> to be” latched into the output bank

register. The data traunster is synchronized with the high-to-low

o

transition of thé system clock by q, tQ ensure data stability.

The INTERRUPT signal, decoded by (q;° DI3:Dl2), is also used by

the Clock—~Interrupt Circuit. ' ) '
The JUMP instruction is implicitly decoded@y the branch decision
circuit since 0P<3:i>ll. A JUMP signal does not have to be decoded by
the Logic Control Unit since no other action‘is required.
The operation of the Logic Control Unit is described tgy the timing
diagram shown in t‘igure 3.6.

3) Clock-Interrupt Circuit. The Clock~-Interrupt Circuit, figure 3.7,

¢

provides an interlock signal to the system clock.’ BD processor

operation is halted by removing the clock signal from the Logic Control
Unit. The system clock can be inhibited in tour ways; by failure of the
1l MHz clock, by manual reset, by BD generated’interrupt, and by mP
generated interrupt. F

The microprocessor interrupts the 'B'D clock b& raising the STOP tlag
causing U81-3 to fall. This signal propagates through U82 and becomes a
low input to, U85, a 7474 b-type flip—flo;). The next KOP instruction

clocks U85 causing the output to fall, which inhibits the system clock

through U82 and causes U82-11, the BD-CLOCK-ON flag, to fall as wel.l.

A A R “ nSe s o g -
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Logic Control Unit timing diagram.
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This- latter signal 1is fed back to the.mP to confirm that the BD
i)

processor has halted.

At the end of the mP to BD communication the mP restarts the BD

processor by lowering the STOP flag causing U81-3 to rise. The D flip-
. .

, flop, U85, is set by a short pulse to the P input produced by a pulse

v

forming circuit consisting of U44 and UBl., This circuit operates as

follows. During stable operation U82-3 is fed directly aund. in inverted

form tg UB81. Thus U81-6 is normally high. When the STOP flag is

lowered, a low-to—high trausition occurs at U82~3. This transition

2

propagates immediately to the first input of the two—input NAND gate,

U81-4, but the RC metwork discharge constant causes a short delay in the
transition reaching the second input, Momentarily bothA inputs are h;gh
which results in a brief low pulse at U81-6. F'f‘he ope;'ation of this
circuit is 1lldstrated by the timing diagram of figure 3.8,

The BD interrupts itself indirectly through the mP. When an

INTERRUPT instruction is executed by the BD, the decoded signal strobes

the mP TNTERRUPT flag and clocks a 7476 J-K £1ip-flop set to toggle

, mode. The microprocessor responds by setting the STOP flag. As before

we want the BD system to halt oa an EOP instruction. 1In the event that
several programs are being concurrently executed by the BD processor, we
want the system to halt on the EOP of the program which generated the
1nterr°'upt. Since 1t is unlikely that the mP can respond to the BD
interrupt before the interrupting program”s EOP is executed, the STOP
flag is masked by the J-K flip-flop acting upon U81-2 until the
interrupt occurs a second time. This toggles the flip-flop once again

and enables the STOP flag. The mP reads the BD data bus to determine
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the reason for the interrupt after it has confirmed that the BD clock is

halted. At the end of the BD to mP communication the micro restarts the

* BD processor as before.

The AU'i‘O—MODE RESET contact is a momentary contact pushbutton that
conditionally resets the output of U85 by strobing the CLR input. In
auto-mode, the mP recognizes that the BD-CLOCK-ON signal has reset and
responds by raising the STOP flag, which inhibits the circuit after the
pushbutton is released. This reset contact ks provided as a safety
feature as it allows the operator to halt the BD processor locally while
the systen is in automatic mode. The operation of this circuit is
independent of an EOP instruction and so provides a way to halt the BD
machine 1f a program fails. @

In manual mode the clock signal i3 {nhibited by a manual RUN/STOP
switch located on the BD switch console.

Failure of the 1 MHz clock is also detected by the Clock-Intertupt
Circuit. The clock output is fed to UB6, a retriggerable monostable
multivibrator, which generates a high output as llong ag ‘the clock signal
i8s present, Upon clock failure, the multivibrator times out and lowers

the BD—CLOCK-ON flag to the mP via U82-12. The mP recognizes the fallure

and takes appropriate action.

4) Auto/Manual Control Interface. The Auto/Manual Control Interface,

A

figure 3.9, Lnterfaces the two parallel sets of control signals provided

by the mP supervisor and manual control console switches. The circuit
18 controlled by the AUTO/MANUAL (A/M) selector switch. When the switech

is in the AUTO position, all manual control switches are locked out and
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cannot affect the BD procesdors Likewise when the AUTO/MANUAL switch is
in the MANUAL position, the mP interface circuits are locked-out.

U70 buffers the auto-mode control signals coming from the mP/BD
interface module. The outputs of U70 are ANDed with the manual conocrol
switches to d:atermine which set oi contr9l slgnals o\”perate the BD

i

processor, The BD-side outputs of the tri-gstate buffer, !U?O, are wired

with pull-up resistors that pull the lines high when the buffer is

deactivated by the AUTO/MANUAL switch. This prevents the floating

outputs of U70 from possibly locking~out the manual control switches
while in manual wode. Likewise the manual switches default to the high
output state when the interface is in the auto-mode. This 1s achieved
by wiring the ground bus of the switches to the AUTO/MANUAL switch. In
manual-mode the bus is pulled low, thus enabling normal switch
operation. In auto-mode, the bus is pulled high‘ and the manual switches
all output the high state regardless of the switch position since both
inputs to the switches are high.
Control switch functions are described as follows.

1) MANUAL RUN/STOP. The MANUAL R/S switch i1s connected to U82-1 in the
Clock~Interrupt Circuit, previously described. Through this latter
circult, the MANUAL)R/S switch disables the BD Clock to halt program
execution after the next EOP instruction. The counterpart to this
switch in the mP control bus is the STOP signal which i1s also fed to the
Clock~Interrupt Circuit.

11) SINGLE STkLP PC. The SINGLE ST&P switch and £1lip-flop circuilt
provide a manual clock input to the BD processor when the system clock

13 inhibited by the Clock-Interrupt Circuit. The switch 18

R
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automatically enabled when.thg system clock is inﬁibited. The SINGLE
STEP@ switch is then able t? drive the system clock through U33, an XOR
gate. This switch is used to advance the PC during program loading and
vertfication. It is duplicated in the mP control bus for remote
manipulation of the PC.

i1i) RESET PC. The RESET PC switch is directly connected to the CLR
inputs of the PC. It enables the operator to reset the program counter.
This switch 1is not duplicated in the mP control bus since the PC is
cleared by loading it with 0%s in the automatic—mode protocol.

iv) PRESET PC. The PRESET PC switch enables manual preserting of the
program counter by DO to D7 of the manual switch cousole or from the mP
control interface. The output of this switch is connected to the LOAD
line of the program counter via U27-3 and U33-3 and is enabled by the
AUTO LOAD ENABLE (ALE) switch. The operation of these switches is as
follows. When ALE is high the system”s LOAD signal, produced by the
branch decision circuit of the Logic Control Unit, is allowed to control
program counter operation. However when ALE is low the system 1nput- is
locked-out to prevent the Logic Control Unit from accidentally
presetting the program co‘unter. This 1s necessary during program
loading since the LCU is not otherwise prevente;‘i from trying to execute
the data on the data bus as it is loaded intc; program memory. The
manua - PRESET PC switch 1is active when ALE 1is low. Both of cheée
controls are duplicated in the wP coutrol bus.

v) R/W MEMORY. The R/W switch controls the operation mode of the RAM\
program memory. During normal operation the signal is ltigh to enable

the reading of memory data. The signal is lowered to enable writing of
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new pfograms into memory. This signal is directly cohnected to the RAM
packages and is duplicated in the mP control bus.,

vi) MANUAL DATA SWITCH ENABLE. This switch enables the manual data
gwitches on the local comsole for program loading and program counter

presetting. It activates a set of tri-state buffers which isolate the
N ‘ ¢

switches from the data bus.
vii) OUTPUT ENABLE. This signal ex'ists only on the mP control bus. It

is used to inhibit the output data from being latched into the output

ports by unintentional operations of the Loglc Céntrol Unit duriong mP/BD -

communications.

A

3.2.4.2 'Progran Memory. The BD processor program memory is
implemented ;Jith a set of four 128x8 MC6810 RAM packages providipng a
total of 256 words of l6-bit wide meifiory, figure 3,10. Thg chips are
comnected to the processor”s address and data t;usses. N

The read/write (R/W) mode line’is controlled by the Auto/Manual
Control Interface clircuilt described in the previous section., When this
iine is 1in the read state, instructions are accessible to the system but
cannot be alterede Individual memory locations are accessed by an
inst'ruction address provided by the proéram counter via the address bus.

In the write state, the contents of the RAM devices can be altered
to allow loading 9of new programs into memory. The literal contents of
the data bus are written iato the memory'location selected by the
address bus data during this mode. Successive llocations are filled by

| o
strobing the clock input of the program counter while its LOAD line is

held high to select the incrementing mode. After each new instruction”s

s § o gt et an

|

N . st s i
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data has stabilized on the data bus, 1t is stored in the program memory
by a high-low—high strobe of the R/R line.

The RAM/address bus interface is driven by 8T95 drivers (not shown)
as_the current souhrcing capacity of the 6810 ICs is insufficilent to

drive the entire address bus load.

/
3.2.4.3 System Clock. The system clock consists of the 1.00000 MHz

crystal and, on the current BD prototype, a pair of 4040 counters
forming a frequency dividing circuit, figure 3.1l. The latter circuit
furnishes two reduced~frequency clocks, 62.5 kiz (1l MHz/Zl‘) and 0.5 Hz
(1 MHz/ZZl) which are used as functional system clocks for normal BD
processor operation and "slow motion" checkout operation, respectively.
The clock speed is selected by the CLOCK RATkL SELECTOR switch on the
manual control console through the NAND gate circuit of U4 The output
of U4~-6 is sent to the Clock-Interrupt Circult as previously described.

The CLOCK RATE SELECTOR switch 1s not duplicated on the mP control
bus and is not affected by the AUTO/MANUAL switch.

The frequency divider circuit was implemented in the Holck
prototype to relax the design requirement for high speed IC components
and to make circuit debugging easier. However, now that the circuit
characteristics are well established the frequency divider is no longer
r‘equired. It is proposed to eliminate this <':1rcuit in future

prototypes.

L)

3.2.4.4 Field Input Section. The input section consists of tour

74150 16-1 Multiplexors connected with a 74151 8-1 Multiplexor (MUX),
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figure 3.12. Together these comprise the 64-bit field 1input register.
The output of U25, the 8-1 MUX, constitutes the selected input variable,
X, sent as input 'to the LCU. y

INC13:10> are connected in parallel to the data selector address
inputs of the four 16-1 MUX chips to generate four selected field
inputs. U25 selects one of these according to IN<9:8>.

The operation of the input section is not interlocked with the op-
code decoder circuit of the LCU (see section 3.2.4.2). Thus it always
interprets INC13:8> as an input address regardless of the actual
instruction being executed.

An improved configuration would see U25 replaced by a 74150 16-1
MUX driven by a 4-bit 1nput bank register instead of IN<9:8>., In this
case sixteen banks of 16 inputs could be handled, but this would require
the implementation of an INPUT BANK SELECT instruction.

Figure 3.12 also shows the distribution of the eight inputs

simulated by manual switches and of the four field imputs.

3.2.4.5 Field Output Section. The output section, figure 3.13,
consists of the output bank register, the output bank address
demultiplexor and sixteen sets of output:t{ register latches. The
operation of this circuit is as follows. N

Upon execution of a BANK SWITCH instruction, the bank select signal
generated by the LCU clocks the contents of IN<11:8> into the output
bank register, U4l, a 7475 quad D-type flip-flop. The outputs of U4l
are fed in parallel to two 74154 4-16 demultiplexors, U39 and U40, to

decode the latched output bank address. U4Q enables the upper four

A

B T LR o
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latches in each output register and U39 enables the lower eight latches.
During execution of a SHORT OUTPUT instruction, the LCU generates a
pulse on the short output line. This briefly enables U40, causing a
pulse to occur on the selected output line which clocks IN<11:8> into a
7475 flip-flop latch (U52 in the figure). Likewise, the execution of a
LONG OUTPUT instruction generates a pulse on the selected output line of
U39 which latches IN<7:0> into the lower bits of the output t;}egistet
(U50 and U351 in the figure).

The DEMUX chips are interlocked with the OUTPUT ENABLE signal
provided by the mP control interface. This inhibits all of the output

latches during mP to BD communications to prevent output data from being

accidentally overwritten.

3.2.4.6 Timers and Flip-Flops. External 555-based timers are used
to generate timing functions, figure 3.14. Timers are started by the
outputting of a timing request R, and run for a predetermined, hand set
period. The timer”s coundition 1is established by reading an input line
as shown in table 3.2, To minimize the number of input points required,
one additional output common to all timers is used to activate a flip-
flop to gelect between T or R‘T.

Flip-flops are simply implemented by tying one output line back

into the input register. The output bank latch becomes the memory

element.
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figure 3.14  Timer hardware circuit diagram.

. TIMER R T F R-T

INACTIVE o 0 0 0

1 0
TIMING 1l 1 0 1

1 0
EXPIRED 1l 0 0 0

' 1 1 '
IMPOSSIBLE O 1 X X
CONDIT;I'.ON
PO
_ table 3.2 Timer hardware circuit truth table.
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3.3 wP/BD Interface Design

The mP/BD Interface Module 18 a MCH821 Peripheral Interface Adaptor

(P1A)-based card which drives the BD processor”s 16-bit bidirectional

data bus and 8-bit control bus., The data bus ts connected to the BD
program memory via US and U6, 74245 tri-state transceivers, figure 3.15.
BD programs are downloaded from the mP to the BD memory or read back
into the mP via this bus.

Additional 74244 tri-state drivers, U7 and U8, connect the lower
four bits of the data bus to the field input register of the BD and
bring out twelve field outputs from output bank 0. These are required
to implement a BD hardware verification mode in which a test program is
loaded into the BD memory and executed. The mP transmits test data over
the four inputs and compares the program output with a tabulated set of
results.

The data bus drivers are controlled by U3, the 74273 8-bit control
register. The ENABLE BI/VER line selects which set of drivers, U5-U6 or
U7-U8, are connected to the PIA. The transmission direction of US and
U6 1s controlled by the DIR output of the control register.

Auto-mode control signals such as AUTO LOAD ENABLE, STOP, PRESET PC
and OUTPUT ENABLE, are also generated by this control register. The R/W
and SINGLE STEP signals are provided by the CB2 and CA2 outputs of the
PIA. INTERRUPT, BD-CLOCK-ON and AUTO/MANUAL switch position signals are
fed back to the mP Qia the CAl and CBl control inputs of the PTA. A mP
interrupt 1s generated by the PIA when a transition occurs on either CAl

or CBl to indicate to the mP a change in the status of the BD processor.

-
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v
M

The EXCLUSIVE-OR circuit consisting of Ul and Ul0-3 and ULO-4
multiplexes tlie BD-CLOCK~ON and AUTO/MANUAL switch position signals onto
the CBl input. Thé\ci;cuit is driven by the A/y STATUS and BDCLK STATUS
signals generated by the 8-bit control register to enable the amP to
discriminate between a change in the AUTO/MANUAL switch position and a
change in the status of the BD-CLOCK-~ON flag.

The mP/BD interfacé module 18 connected to the SS~30 b;s, i/0

expansion area of the SWTPc 6809 computer and occupies five memory

locations. -
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CHAPTER 4

mP/BD HYBRID PLC OPERATING SYSTEM DESIGN

4.0 Introducgion

»

f
An operating system (0/S) 1is a program which manages the hardware

and software resources of a comppting system and coordinates the
interaction of the resources to achieve the system”™s purpose. The
hardware resources of the mP/BD PLC consist of the mP-based countroller,
the BD-based controller, and the operator interface. The software
resources include mP and BD process control programs, program compilers,
and other support software. This chapter describes two operating
systeus created for the mP/BD PLC.

The first section discusses the design of a real-time, coancurrent
multi-pro;ramming process control operating system: BD09, This program
supports task scheduling in each of the processors, manages program
memory allocation for the efficient execution of concurrent tasks,

v maintains libraries of pre—~compiled control programs and executes inter-
w
processor and operator communication functions. The purpose of its
discussion is to outline the philosophy of operation of the PLC design.
It has been implemented thus far ounly in rudimentary form.

The second section of this chapter deals with the design of the

system software currently used to operate the SWITPc 6809 computer in

conjunction with the BD processor prototype. This program, called

BDBUG, implements operator-coantrolled functions:

5 e s ¢ R % e b s s v m o e vl v [ SV o e ———— e i
A it 3 s T -
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1) mP-BD communications; ) _
2)  BD program retrievai\érom a disk-based library; and

3) BD processor initialization, loading and operating commands.
s 23

4.1 The BDO9 Operating System

A commercial version of the mP/BD hybrid programmable controller

would differ from conventional PLCs in several ways:

1) The parallel processors (mP and BD) enable simultaneous execug}on
of PID and Sequential Automation control tasks;

2) High processor speed (particularly in the BD unit) makes éoncurreut
multi-programming feasible in real-time; and

3) The hardware interrupt structure of the hybrid PLC enables the
controller to respond to scheduled and unscheduled process events
with any approprilate strategy including changing the active consrol

algorithms without operator intervention.

The mP-resident BD0OY9 operating system contains the system software
required to perform task scheduling for the dual processors and to
execute internal and external system communications functions. Consider

the program structure illustrated in figure 4.1. The functional

elements are described in the following sections.

4.1.1 Interrupt Decoder. The interrupt decoder is the highest level of
the BD09 O/S. Process control algorithms are executed on an "round-
robin" basis as the primary task of both the w® and BD processors. The %

0/S program resides in the mP as a backgroun& task until an event such

——— »
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as a programmed interrupt, process equipment trip, controller hardware
mal function or operator intervention interrupts one or both of the
processors. Control ot the mP is switched to the BDO9 0/S by the
hardware interrupt vector circhitry of the microprocessor, where the
nterrupt is decoded i1n order to start the appropriate service routine.
Multiple interrupts are served on a first-in, first-out basis. The
hardware interrupt mask is set by the service routines so that they®
cannot be halged by subsequent 1$;errupts. A polling routine in the
Interrupt Decoder scans the interrupt flag bits of the system
peripherals to determine the source and control is passed to the Real
Time Executive tor action. All interrupts, chafnel led through the TRQ

9

line of the MC6809, have equal priority although the polling routine
does impose an order in which multiple interrupts are recognized. The
controller resumes execution of the old job schedule or a newly assigned

one after all the interrupts have been cleared.

4,1.2 Real Time Executive. The Real Time Executive (RTX) is composed
of the interrupt servicing routines which activate program managers and
hardware drivers for four categories of interrupts. These are described

below.

1) Software traps. These occur it the process variables have exceeded

the precompiled range of the active control algori}hms. In a scheme
analogous to "virtual memory", programs of excessive length are divided
into a series of semi—-independent sections, each valid in a specitic
control range, which are moved into and out of program memory as range

boundaries are encountered. This 1s of particular importance in the BD

¢
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processor where the memory requirement of bimary-complete programs grows
with input variable count as 2u+1. Here, software traps are implemented
by replacing the control output instructions at the upper and lower
limits of the variable range by software interrupt instructions
containing an appropriate error code, figure 4.2. Other situations
favouring the use of software traps for the detection of abnormal or
noteworthy process conditions include equipment trips which require
specific shutdown programs or "benchmark" events which must be
annunclated to the aperator.

The Executive reads the interrupt code from the last executed EOP
instruction in either the mP or BD, as appropriate, to determine the
type of condition present and the action to be taken. 1In the case of an
mP program interrupt, the Executive can read this data directly as the
control of the mP 1is automatically transferred to the 0/S and the
process control algorithm 1s suspended at the interrupt location.
However, in the case of a BD interrupt, the protocol 1is somewhat
different. ﬁhen an interrupt is generaged by the BD machine, the
Executive responds by raising the STOP flag to halt the operation of the
BD processor. The BD unit is not permitted to stop itself sinie other
programs concurrently executing in the BD program queue must be al lowed
to continue normally. The response time of the 0/S§ is insufficient to
ensure that the STOP flag is raised before the interrupting progranm
reaches its EQOP imnstruction, the only legal place a program can be
halted., To prevent any of the other EOP instructions in the other
programs from stopping the BD processor, a toggle flip-flop sets a mask

to lock out the EOP signals from affecting the Clock-Interrupt Circuit
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(see chapter 3). The mask 1s cleared by the execution of a second
interrupt instruction. Normally this will come from the same progranm.
The BD machine then stops at the next EOP instruction. (If the
subsequent interrupt occurs due to another program detecting an abnormal
process condition, then the two events are likely to be connected and
the entire program queue probably needs to be changed to adapt the
coatroller to the new operating conditions. If the two events are
unrelated the initial software interrupt would recur once the BD
processor was released by the 0/S, resulting in a second lnterrupt
sequence,) If additional control programs are necessary, in the case of
either the mP or BD unit, the Real Time Executive requests the files
from the appropriate library management routine and passes it to the

appropriate memory manager for installation into the program queue.

2) Hardware Traps. BD processor hardware traps occur if the unit

unexpectedly stalls, signalled by the fall of the BD-CLOCK-UN flag in
the control interface, or if the machine i{s decoupled from the mP by
operator manipulation of the AUTO/MANUAL switch. Other hardware traps
can be generated by self-check programs included in the mP and BD
program queues to detect processor or peripheral failures. If the BD
unit has failed but can be restarted, a diagnostic program is loaded and
run to determine the source of the error. Control program execution is
resumed 1f the fault is non—-fatal, Otherwise, the operator 1is alerted
and the process is put under manual coutrol. Methods of detecting
hardware failure include time-out circuits which in normal operation are

reset by the periodic execution of a particular ingtruction sequence.

e : IS L




If the sequence 1s not executed, either due to hardware problems or the
problem of a program caught in an infinite loop, the circuitry times-out
and generates a warning flag. Another method of detetyting hardware
problems 1is to include a short program in the queue which reads a test
pattern sequence of input data bits, controlled by the 0/S, figure 4.3.
Any detected discrepancy indicates errors in the input circuitry and

1

initiates an interrupt.

3) Operator Requests. The operator interrogates the PLC by sending an

interrupt through the keyboard device. The Executive’ can provide
information such as the operational status of each processor, the
l1sting of the current program qu;ues, and the contents of progranm
libraries. The operator can also update the program queues via the
Program Schedulers for either the mP or BD unit, compile new programs

and change the contents of the program libraries.

4) Real-Time Clock Interrupt. This independent time-base is used to

syonchronize the 0/S with scheduled process events such as equipment
startup and shutdown. On a periodic basis, the real-time clock
generates an interrupt which causes the Executive to increment a
register containing time counts representing the actual time-of-day.
The Executive interrogates the Program Scheduler routines for both the
mP and BD unit to determine if a scheduled event is pending. 1If so, the
memory and library management routines are activated to implement the

required changes. 1f not, the 0/S resumes the execution of the previous

program queues,

e e v
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4.1.3 =P and BD Program Scheduler and Memory Management Units. The
Program Scheduler and Memory Management Units for the mP and BD

processors are functionally identical. They are described as follows.

1) Program Scheduler Unit (PSU). The PSU 1is a routine which allows the

operator to schedule the startup and shutdown of {ndividual control
tasks. A table is maintained by the PSU which lists the programs that
have been scheduled together with the time-of-day of the event andllan
on/off flag to indicate whether the control task is to be started or
stopped. The opedra‘tor makes i{nsertions or deletions to the table from
the keyboard device. Periodically, the real-time clock interrupt causes
the PSU to scan the program table. The actual tiwme-—of-day is compared to
the table entries to determine if a scheduled event should be processed
during this interrupt period. If so, the PSU requests the pr;gram from
the library and passes it to the Memory Management Unit (MMU) for
loading into program memory prf’o@g ;o execution., The table entry 1s then
deleted. If a program 18 to be turned-off, the PSU requests the MMU to

renove it from the program memory. Controller task processing is

resumed after the PSU 1is finished 1its examination of the table.

14
2) Memory Management Unit. Since one or more coatrol algorithms may be

in the program memory concurrently, the MMU is responsible for space
allocation to ensure that active programs are not damaged by accidental
overwriting. A memory map 1ls used to record the disposition of each
program in program memory as well as the available &free areas. The MMU

is made up of three parts:
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i) ALLOCATOR. This routine searches the memory map for free areas to
aggign to incoming programs. The new program 1s rejected 1f
insufficient space is available. Successive program additions and
.
deletions may leave inter-program gaps which tend to fragment the memory
and waste useable space. The Allocator {s able to rewrite the program

memory to concentrate the free sectors together so that allocation of

this space may continue.

11) RELOCATOR. Control programs which are compiled in absolute
addressing mode, such as BD programs, cannot be loaded into memory areas
arbitrarily selected by the memory Al locator because the conditional and
unconditional jump instructions contain location-dependent data. This
data must be translated to coincide with the actual area allocated to
the program prior to loading. The Relocator compares the compiled
location of new programs as they are processed by the MMU with the load
addresses provided by the Allocator routine, and adds or subtracts the

difference from each transfer instruction in the programs.

iii) LOADER, Allocated, relocated programs are transferred from the
working area of the MMU to the program memory area. In the case of mwP-
based programs, this is simply accomplished by rewriting the programs in
a differeant section of the same Random Access Memory. Operations in the
BD processor’s memory are more involved. The Loader signals the Real
Time Executive to interrupt the BD processor if it is stil1l executling
control programs. This i3 achieved by raising the STOP flag in the
interface control bus. After the execution of the next EOP instruction,

the BD clock is 1aterrupted and the BD-C10CK-ON signal falls to confirm

N - [ e =



-

Eioel

T 4-12

that the machine has halted. The Loader then actives the control bus to
preset the BD processor’s program counter to the initial location of the
al located area, atfter which it transfers the new program to the BD unit,
When complete, the Loader signals the Real Time Executive to lower the
QTUP flag, thus restarting program execution., The procedure for
unloadiné programs 1is to update the memory map to reflect the additional

free area.

i

4.1.4 wP and BD Library Management Units. Inactive mP and BD control

programs are stored in disk-resident program libraries. The Library
Management Units (LMU) maintain directories apart trom the global disk
directory to facilitate program retriewal in response to requests from
the Real Tiﬁle Executive. bach directory record consists of an
identification ngmber, a program classification number, the compiled
memory location and the length of the program. The LMU’s support three
types of library requests which originate fromeither the operator or

the RTX:

1) File Storage. Programs are automatically saved in the libraries
after compilation. The directory 1s checked to see if a program of the

same number 1is already present. If so, the operator can choose to

replace the existing program with the new one or to abandon the new

file.

2) File Retrieval. Programs are transterred from the libraries at the

tequest of the RTX. Disk transfers are handled by the embedded disk

operating system routines.

»
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3) File Deletion. Programs are removed from the libraries by operator

request when.they are no longer required or when they have been

superseded by newer versions.

4.2 The BDBUG Operating System

The BDBUG program is currently being used to operate the SWTIPc
6809/BD processor development system. It implements many of the high
and low level features of the BD0O9 0/S such as the Interrupt Decoder,
three of the four classes of interrupt servicing routines of the Real
Time Executive, the Relocator and Loader routines of the BD Memory
Management Unit and the operator interface. This program served as the
test bed for the communication Interface hardware described in chapter
3.

BDBUG is used in conjunction with the FLEX 9.0 DOS andr the V-BUG
monitor, a local modification to the commercially distributed S—-BUG
monitor [Vroo8i]. These other programs supply disl-< transfer and
terminal communication subroutines for use by BDBUG. A fully
integrated, EPROM—based version of BDBUG and the required subsets of
FLEX and V-BUG is under development.

Operator interface commands are patterned after the V-BUG command
set. Programs, once loaded into the mP working memory by FLEX, can be
relocated and loaded into the BD processor”s program memory by keyboard
commands. The BD unit can be started, stopped aund single-s‘tepped
through programs, among other functions, via the keyboard. bThe
structure of the BDBUG program is described in the following sections.

A complete listing of BDBUG is presented in Appendix IIIL.

s S WOV ~ R [,
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4.2.1 Program Initialization. When control of the SWTPc 6809/BD hybrid
system is passed to the BDBUG program from either FLEX or V-BUG, certain
initialization procedures are required to configure the computer for the

hybrid role. These actions are:

1) Set Interrupt Mask. This prevents random interrupts from interfering

with the initialization procedure, in particular, while the interrupt

vector is being changed.

2) St:.ore IRQ Vector. The starting address of the Real Time Executive

kernel 1is stored in the IRQ vector of the 6809 mP. All subsequent IRQ
interrupts (as opposed to FIRQ or NMI interrupts, for example) cause the

6809 to jump to this address for processing.

3) Initialize ACIA. Communication with the operator interface terminal

is achieved by a serial Asynchronous Communication Interface Adaptor
(ACIA) card which resides on the SWTPc computer S$S-30 Input/Output (1L/0)
bus. This card automatically generates the RS5-232 protocols for the
serial transmission of keyboard and CRT data. It must be initialized to

set the transceiver parameters to the appropriate values.

4) Initialize BD Interface. BD interface communication is controlled by

a parallel Peripheral Interface Adaptor (PLA) card in slot 3 of the §S-

30 1/0 bus. The PIA is initialized to enable the BD to mP communication

pathway.

o
T

5) Initialize "Events'" Printer. An "events" printer is used in

industrial control systems to log messages, alarms and actions of the

control system during day to day operations. This information is used
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in performance analysis of process eqdipment and provides a record of

events surrounding an emergency situation. The mP/BD development system
uses a standard EPSON dot matrix printer. Once initialized, it can be

turned on or off by the operator via the BDBUG command set.

6) Get Operational Status of the BD Processor. BDBUG remembers the

auto/manual and ruonning/stopped status of the BD processor as a means of
determining the validity of operator requests. E.g., an operator
command to restart the BD processor is invalid if the processor is
already running. The actual status is ascertained from th‘e BD interface

card.

7) Clear System Interrupts. Interrupts, fromeither the BD processor

hardware, software, or the operator terminal are cleared by performing a
microprocessor LOAD operation of the data registers of the $§5~30 bus

interface adaptor devices.

8) Print Prompt Characters. BDBUG writes the characters '">>" to the CRT

screeun to indicate that it 1s operating and ready to receive operator

commands .

9) Enable Interrupts. As a final step, the interrupt mask is removed

to activate the mP/BD prototype PLC.

4.2.2 Real Time Executive. The RTX comprises the Intercvupt Decoder and
interrupt handlers for three categories of signals, BD software
intertupts (BDSWI), BD hardware interrupts (BDHWI), and keyboard device

interrupts. These routines are described below.
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4.2.2.1 Interrupt Decoder. This routine is activated by a low
pulse on the IRQ 1line of the MC6809. The internal interrupt circuitry
stops the execution of the current program at the end of the current
instruction and saves the entire machine state (PC, Accumulators, Index
Registers, Stack Pointers, Condition Code Register and Direct Page

Ve .

Register) on the system stack. The hardware interrupt mask is set and
the PC is loaded with the contents of memory address FFF8-916, the
interrupt vector location. The computer starts execution at this
address which contains a vectored jump instruction to the beginning of
the Interrupt Decoder routine. Figure 4.4 shows an algorithmic
description of the Interrupt Decoder. This routine polls the BD and the
keyboard input interface cards to determine which device has initiated
the interrupt. The routine examines PIACRA<K7> and PIACRBK7>, the
control registers of the A side and B side, respectively, of the MC6821
PIA which controls mP-BD communication. A high signal indicates a BDSWI
and BDHWI, respectively. The routine then reads ACIACR{7> and
ACIACRC0>, the control register of the MC6850 ACIA ‘which coatrols the
operator terminal communications. A high signal indicates a keyboard
interrupt.

The Polling order prioritizes the interrupts in the order BDSWI,
BDHWI, KEYBRD. The appropriate interrupt handling routine is called as
a subroutine of the Interrupt Decoder as .soon as an interrupt f£lag is
recognized. Thus, 1if two interrupts are present, the first one polled
is servicéd immediately. The handling routines return to the Interrupt -
Decoder at the completion of the subroutine and polling is resumed. If

no further interrupts are found, the Interrupt Decoder executes a
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_«  PROCEDURE INTERRUPT.DECODER
IF INT:=BDSWI THEN
- ACTIVATE PROGRAM INTERRUPT HANDLER '
- IF INT:=BDRWI THEN ,
- ACTIVATE HARDWARE INTERRUPT HANDLER
. IF .INT:=KEYBRD THEN c -
- ACTIVATE OPERATOR INTERFACE HANDLER
CLEAR INTERRUPT FLAGS AND RESUME CONTROL TASKS

RETURN

figure 4.4 BDBUG Interrupt Decoder algorithm.

{

" PROCEDURE HARDWARE.INTERRUPT.H}({\TDLER
REPEAT UP TO 256 TIMES
BEGIN -
IF BD:=MANUAL/STOPPED THEN
- STORE BD STATUS

ELSE
! IF BD:=MANUAL/RUNNING THEN

- STORE BD STATUS

ELSE
~ IF BD:=AUTO/STOPPED THEN

— STORE BD STATUS

ELSE
IF BD:=AUTQO/RUNNING THEN

~ STORE BD STATUS

END
— REPORT BD STATUS OR POLLING FALLURE
RETURN '
H
figure 4.5 BDBUG hardware interrupt service routine algorithm.
(i f -
Y
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-7
return—from—interrupt (RTL) instruction, to resume whatever task was)
executing before the interrupt occurred. If no other task was executing

the prompt characters are re-issued and the system awaits another event.

4.2.2.2 BDSWI Service Routine. BD program interrupts are
generated by INTERRUPT instructions embedded in active BD programs. In
the mP/BD PLC these are used to indicate noteworthy process conditions
which may require different control sequences. This feature has not
been fully implemented in the laboratory prototype. When a BDSWI
interrupt 1is recognizéd, the gervice routine simply sends the message
%in 'PGM INTERRUPT" to the CRT screen and clears the interrupt flag of
PfACRA by executing a LOAD instruction of PIAORA, the data register of
the PIA. No other action 1is taken at present. The routine then
executes a return-from-subroutine (RTS) instruction to return to the

3

Interrupt Decoder.

) 4.2.2.3 BDHHI-Service Routine. BD hardware interrupts are
generated by the BD-CLOCK-ON line of the Clock-Interface Circuit (see
section 3.2.4.1) and by transitions of the AUTO/MANUAL switch (see
gectlon 3.3). These two lines are multiplexed onto the CBl input of~the
PIA. A mP,concrolled EXCLUSIVE-OR (XOR) circuit 1is used to discriminate
between changes in these two s}gnals. The BDHQI routine activates the
XOR circuit to determine the correct operacignal status of the BD
processor and stores the state of the BD-CLOCK-ON and AUTO/MANUAL switch
in memory locations CLKRLG and AMREG, respectively. This scheme 18 used

because these lines cannot be read directly, due to the "write-only"

characteristics of the BD control interface register.

<
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Referring to figure 3.15, the high state on the CBl input is
achieved only when the BD-CLOCK and A/M outputs of the BD control
register are identical to the actual states of the BD~CLOCK and A/M
signals from the BD processor. Any other combination produces the low
‘state on CBl. BDHWI polls the XOR circuit by writing the four
combinations of BD~CLOCK and A/M to the control register in sequence.
When the correct combination 1s polled, CBl goes high and an interrupt
1s generated by the PIA. The intetrrupt does not affect the mP as 1t is
already in the interrupt state and has set the hardware mask, however,
the PIA sets a flag in PLACRBC7> to indicate the event. BDHWI scans
this flag after each combinatfon is sent, to determine if the correct
combination was polled. If so, the routine saves the current state of
the BD processor in status regisgers and reports the new machine state
to the CRT. If the polling routine fails to identify the correct
combination after trying all four, it retries as many as 255 times and

then reports the failure to the CRT. An algorithmic description of the

BDHWI interrupt service routine is shown in figure 4.5.

4.2.2.4 Keyboard Service Routime. Operator interrupts are
generated by the activation of any key on the terminal keyboard device.
BDBUG commands consist of a forward slash character "/", followed by a
single character alphabetic code. (This arrangement permits the 0/S to
discriminate between BDBUG and V-BUG commands. A continuing goal of
this regsearch 1s to load both of these monitors into a single EPROM aand
to operate them simultaneously.) The input code is matched to the set
of legal commands stored in a jump table in memory. A data match causes

the routine to call the command as a subroutine. An error messdge 1s

Bl CE——
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issued to the CRT 1f the input characters are not found in the command
table and the O0/S returns from the interrupt state. A summary of the

valid commands is presented in table 4.l.

4.2.3 BD Memory Management Unit. In addition to transmitting program
data to and from the BD program memory, the MMU roudtines generate
control codes for the control of the.BD Program Counter and Clock-
Interrupt Circuit via the Auto/Manual Control Interface as described in
section 3.2.4.

Operator commands implement the kernel of the BD Memory Management
Unit described in section 4.1.3. Some of the commands are patterned
after conventional microprocessor monitor commands. E.g., individual
memory locations can be examined and changed using the "/M" command,
whole sections of BD program memory can be examined using the "/L"
command, and BD programs can be activatéd using the "/J" command. As
well, several of the commands are unique to the BDBUG 0/S, e.g., the
program relocation command, "/T", that translates the absolute addresses
of executable BD program instructions so that the program can be loaded
into any contiguous section of BD memory, the load command, "/L", that
loads programs from the mP memory to BD memory, or the single-step
command, "/S", that allows the operator to debug program loglc by
executing instructions one at a time. In addition, other commands are
implemented which control the peripheral events printer, report the
current status of the BD processor to the CRT and allow an orderly exit

from BDBUG to either FLEX or the V-BUG monitor.
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COMMAND FUNCTION

/M XX MEMORY CHANGE

/E SS-EE XXXX EXAMINE A BLOCK OF BD MEMORY

/T SSSS—EEEE XX-YY TRANSLATE BD PROGRAM ORIGIN

/L SS-EE XXXX LOAD BD MEMORY FROM mP

/J S$ JUMP TO BD PROGRAM

/d HALT BD PROCESSOR

/S SS STEP THROUGH BD PROGRAM

/R REPORT BD PROCESSOR STATUS

/P PRINTER ON/OFF TOGGLE

/> RETURN TO V-BUG

/+ RETURN TO FLEX

" table 4.1 BDBUG command set.
BD CUMMUNICATION DATA REGISTER SINGLE K/W  PIACRA PIACRB
STATE DIRECTION DIRECTION STEP CODE;, CODE ¢
A B CA2 CB2

KUN BD TO mP INPUT  INPUT Hl H 3D 3D
STOP BD TO mP INPUT  INPUT H H 3D 3D
RESET mP TO bd OUTPUT OUTPUT k-L2-H H 35 3D
BD PC
LOAD MEM. mP TO BD OUTPUT OUTPUT H H-L-H 3D 35
READ MEM. BD TO wP INPUT  INPUT H H 3D 3D
SINGLE N/A N/A N/A H-L-H H 35 3D
STEP PC
VERIFY BD TO wP INPUT  INPUT H H 3D 3D

1 - H = Digital Signal Level High.

2 - L = Digital Signal Level Low.

table 4.2 MC6821 PIlA coﬁtrol codes.
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The design of each of these commands is described below.

1) Change BD Memory. This routine is invoked with the '"/M XX" command

where xxlé is the address of the memory location to be examined and
changed. The command is functionally identical to the V-BUG memory
change command. The operator examines individual BD memory locatioms
beginning with XX, . and has the optious of changing the contents of the
memory location and progressing to the next locatlon, leaviang the
contents unchanged and progressing to the next location, or leaving the
contents unchanged and backstepping to the preceding location. The
routine 1s aborted by a carriage retura or invalid (e.g., not hex)
memory data. An algorithmic description of this command is shown in
figure 4.6.

The BD processor must be in the AUTO mode and be stopped tor the
routine to be effective. These conditions are verified by checking the
BD clock status and BD Auto/Manual, status registers maintained by the
BDHWI routine. .

The direction of the bidirectional BD interface databus is set with
the interface driver subroutines TOBD and TOMP. Likewise the presetting
of the BD PC to the address XX16 and the actions of reading the BD
memory data and changing the BD memory data are handled by the
subroutines PRSTPC, RDWRD and LDWRD, respectively. These subroutines
configure the two control registers of the MC6821 PIA on the interface
module as well as the 8-bit BD control register so that the data
transfers can take place. A summary of the control codes and resulting

BD operational states is presented in tables 4.2 and 4.3.
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PROCEDURE BD.MEMORY.CHANGE
IF BD STOPPED AND IN AUTO MODE THEN
BEGIN
INPUT BD MEMORY ADDRESS FROM KEYBOARD
REPEAT UNTIL A CARRIAGE RETURN OR INVALID DATA 18

RECEIVED

BEGIN
- SET BD TO DESIRED ADDRESS

- READ MEMORY DATA AND REPORT TO CRT
- INPUT USER RESPONSE FROM KEYBOARD

IF DATA IS VALID MEMORY DATA THEN
- STORE IN BD MEMORY AND READ BACK TO VERIFY

CONTENTS, OUTPUT A "?" IF DIFFERENT

~ INCREMENT BD PC
. IF DATA 1S A CONTROL CHARACTER THEN

- DECREMENT PC 1F A " " WITHOUT CHANGING
MEMORY DATA
- INCREMENT PC WITHOUT CHANGING MEMORY DATA
END
END
RETURN
figure 4.6 BD memory change algorithm.

PROCEDURE BD.BLOCK.MEMORY.EXAMINE
IF BD STOPPED AND IN AUTO MODE THEN

BEGIN

READ STARTING AND ENDING ADDRESSES DELIMITING THE BLOCK OF
BD MEMORY TO BE TRANSFERRED TO THE mP

~ READ mP BUFFER ADDRESS

REPEAT UNTIL ENTIRE BLOCK 1S TRANSFERRED

BEGIN
- READ BD MEMORY LOCATION, STORE IN mP BUFFER AND ECHO

. TO CRT
— INCREMENT BD PC
END
END
RETURN

figure 4.7 BD block memory examine algorithm.



BD

s

AUTO LOAD OUTPUT PRESET STOP BD-CLOCK AUTO/MAN VERIFY COMM CONTROL
STATE ENABLE ENABLE PC FLAG POLL POLL ENABLE DIR'N  CODE,
CR 7 CR 6 CR 5 CR 4 CR 3 CR 2 CR 1 CR O
RUN H H H L H H H L EE
STOP H H H H L H H L F6
RESET L L H-L-H H L H H H 17
BD PC
LOAD MEM. L L H H L H H H 37
~
READ MEM. L L H H L H H L 36 -~
[}
N
SINGLE STEP H H H H L H H L F6 s
PC
VERIFY H L H L H H L L AC .
table 4.3 8-bit control register codes.
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2) Examine a Block of BD Memory. This routine is invoked with the "“/E

5S-EE XXXX" command where S5)¢ 1s the starting address of the BD memory
block to be read, EE 6 Ms the ending address of the block and XXXX, ¢ is
the mP address where the data is to be buffered. It transfers a block
of BD memory to the mP and outputs it to the CRT. The BD processor must
be in the AUTO mode and be 1in the stopped condition on entry to the
subroutine. The interface driver subroutines are once again used to
configure the BD processor for this operation. An algorithmic

description of the command 1s presented in figure 4.7.

3) Translate Absolute BD Addresses. This routine is invoked with the

"/T SSSS~EEEE XX-YY" command where $585,, and EEEE,, are the starting
and ending addresses of the mP file buffer which contains the BD program
code to be relocated, and XX, and YY,, are the current BD program
origin and desired origin, respectively. The purpose of this command is
to assist the operator in allocating memory space to previously compiled
programs which start from arbitrary memory origins. Ounce loaded into
the mP working memory from disk, a program can be conditioned by
translation of the absolute address mode transfer instructions, to load
in any contiguous area of BD memory. Figure 4.8 presents an algorithmic

description of this command.

4) Load BD Memory. This routine is invoked with the "/L SS-EE XXXX"

command where 5§, aud EE,;, are the starting and ending addresses of the
contiguous block of BD memory to be loaded and xxxxw 1s the mP address
of the file buffer. The operator loads BD programs to the program

memory usiang this command. The BD processor must be ia the AUTO mode

B PR, e e,
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PROCEDURE TRANSLATE.BD.PRUGRAM.ADDRESSES
- READ mP ADDRESSLS DELIMITING BD FILE BUFFER AND CALCULATE FILE
LENGTH. ABURT PROCEDURE IF < ZERO
- READ ORIGINAL AND NEW BD PROGRAM ORIGINS AND CALCULATE THE
OFFSET BETWEEN THEM
REPEAT FOR ENTIRE FILE

BEGIN
- TEST NEXT INSTKUCTION IN THE BD FILE‘L

IF NOT AN EOP OR LONG OUTPUT INSTRUCTION THEN
- ADD OFFSET TO ADDRESS FIELD AND REPLACE IN BUFFER
END
RETURN

figure 4.8 BD address translation algorithm.

PROCEDURRE LOAD.BD.MEMORY
IF BD STOPPED AND IN AUTO MODE THEN
BEGIN
~ READ STARTING ADDRESS AND PRESET BD PC
~ READ ENDING ADDRESS AND CALCULATE WORD COUNT
~ READ mwP BUFFER ADDRESS
REPEAT FOR ENTIRE FILE
BEGIN
~ READ NEXT RECORD
~ STORE IN BD
~ INCREMENT BD PC
END
END

figure 4.9 BD load memory algorithm.

PROCEDURE RESTART.BD.CLOCK
IF BD STOPPED AND IN AUTO MODE THEN
BEGIN
~ READ STAKTING ADDRESS AND PRESET BD PC
- ENABLE BD CLOCK BY LOWERING STOP FLAG
END
RETURN

H
’ { figure 4.10 KRestart BD clock algorathm.

-
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and be in the stopped state for the subroutine to execute. Interface
driver subroutines are called to counfigure the interface control
registers and to execute the data traunsfer. An algorithmic description

is presented in figure 4.9.

5) Restart BD Clock. This routine is invoked with the "/J 38" command

where 85, is the address to which the PC is preset before restoring the
BD clock to the LCU. This command is functionally equivalent to the V-
BUG "Jump" command. The BD processor must be in the AUTO mode and not
running, otherwise the subroutine is aborted. The interface drivers
PRSTPC and TOBD are called to configure the interface control registers.

An algorithmic description of this routine is presented in figure 4.10.

6) Halt BD Clock. This command permits the operator to halt the BD

processor execution at the next EOP instruction. It is invoked with the
"/H'" command. The routine does not verify that the processor has
stopped, to avoid a blocking situation if an EOP 1s not encountered.
The BD machine can be halted alternately via the RESET button. The BD
processor must be in the AUTO mode and running. Figure 4.11 shows an

algorithmic description of the halt command.

7) Single Step BD PC. This command permits the operator to generate

single clock pulses to advance the BD PC one instruction at a time for
program checkout purposes. The routine is invoked with the "/S SS"
command where 5516 is the starting address of the BD program to be
executed. The subroutine presets the BD PC to 5816 and executes the
instruction residing in this location. Single stepping is countrolled

from the keyboard by hitting any key except the ‘'carriage return", which
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PROCEDUORE HALT.BD.CLOCK
IF BD RUNNING AND IN AUTO MODE THEN
- DISABLE BD CLOCK AT NEXT EOP BY RAISING STOP FLAG
RETURN

figure 4.11 Halt BD clock algorithm.

PROCEDURE SINGLE.STEP.BD.PC
IF BD STOPPED AND IN AUTO MODE THEN
BEGIN
— READ STARTING ADDRESS AND PRESET BD PC o
REPEAT UNTIL A "CR" 1S READ FROM KEYBOARD
. BEGIN

— EXECUTE INSTRUCTION AT PC

— INCREMENT PC

~ READ USER RESPONSE FROM KEYBOARD

END

»

RETURN

figure 4.12 * Single step BD algorithm.
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aborts the subroutine. The operator monitors the execution sequence via
the BD console control lights to verify the program operation. The BD
processor must be Iin the AUTO mode and in the stopped state on entry to

the subroutine. Figure 4.12 presents a description of the algorithm.

4.2.3.1 Interface Device Drivers. These device drivers implement
the basic communication functions of the BD interface module and

remotely activate the control circuits of the BD processor.

1) PRSTPC. This subroutine presets the BD program counter remotely to a
S .\\;~_yalue passed by the calling routine of PRSTPC in the A register of the
M%6809. Prior to sending the PC data, the direction of the 16-bit
/}ﬂterface data bus 1is configured for mP to BD communications by the
‘subroucine TOBD. The LOAD line of the PC 1s lowered by storing the code
17,¢ Lnto the interface-based BD control register. PC data is put on
the data bus by performing a STORE operation of the contents of
accumulator A into the PIA data register PIAORA, and is toggled into the
program counter by strobing the CA2 line of the PIA. This generates a

clock pulse which latches the data into the PEC.
The latter half of this subroutine, that part which strobes the BD

clock, 1is also callable as a separate subroutine called STEP which is

generally used to strobe the BD clock.

2) TOBD. This subroutine configures the PIA data registers for data
output on both the A and B sides. This is accomplisted by storing the
code 394 in each of the PIA control registers to access the PIA data

% direction registers. These are configured for data output by storing
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the code FF;¢ in each one. The data output registers are restored by
storing the code 3D;, in the PIA control registers. A complete
description of PIA programming techniques and codes i1s presented in the

MC6821 Product Information Sheet in the Motorola MC6800 Application

Handbook [Moto75].

3) TOMP. This subroutine configures the PIA data registers for data
input on both the A and B sides. The procedure is similar to the TOBD
subroutine except that the code 0016 is stored in the data direction

registers to configure the PIA for input.

4) LDWRD. This subroutine transfers one instruction from the mP to the
BD program memory iato the location currently addressed by the BD PC.
The bidirectional interface data bus is configured for wP to BD
communication by storing the code 3716 into the 8-bit BD control
register. The BD instruction word 1s passed to LDWRD in the D
accumulator. It is transferred to the data bus by executing a STORE of
the accumulator into PIAORA and PIAORB. The BD R/W line is strobed, to
write the data into BD memory by storing first the code 3516\;nd then
3D, into PIACRB. This lowers the CB2 control output of the PIA which

is interfaced to the R/WN line.

5) RDWRD. This subroutine transfers one instruction from the BD program
memory to the mP. The data bus is configured for BD to mP communication
and the data is read from the bus by executing LOAD Accumulator A and B
instructions from the PIA data registers PIAORA and PIAORB. The

subroutine returns the data in the D accumulator.
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4.2.4 Miscellaneous Utility Subroutines. In addition to the RTX and
MMU, a number of utility operator commands are implemented in BDBUG.

These are described below.

1) Report BD Status. This routine is invoked with the "/R" command. It

reads the current auto/manual and running/stopped status of the BD

processor and reports the information to the CRT.

2) Events Printer Control. This routine controls the oun/off status of

the system events printer. When on, all data sent to the CRT 1s echoed
to the printer. This is a toggie—type control. It is invoked with the

"/P" command.

3) Transfer to V-BUG or FLEX. These commands, invoked with the "/>" and

"/+'" codes, resi:ectively, execute orderly exits from BDBUG to either V-
BUG or FLEX. The MC6809 interrupt circuitry is restored to pre—BﬁBUG

state by executing a return-from-interrupt (RTI) instruction to the

.

warm—start addresses of V-BUG or FLEX as appropriate,

]

4) Inhibit Qutput with "Esc" Key. This subroutine allows data output to

the CRT or Events Printer to be temporarily inhibited or aborted from
the keyboard with the "Esc'" key., The first activation of "Esc" stops
the output. A subsequent hit resumes the output. Output may be aborted

by striking "Carriage Return'" while in the inhibited mode.

\

e
v

.
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CHAPTER 5

BINARY DECISION PROGBRAM OPTIMIZATION

5.0 Iatroduction

This chapter describes a BD program optimization method that has
been developed based upon a pattern matching algorithm (PMA). The PMA
algorithm reduces BD program loglc of combinatorial switching functions
to near—-minimum form by an exhaustive search‘for redundancies.  The

method has not yet been generalized to include sequential logic.

5.1 Binary Decision Program Optimization Ly

As shown previously, any combinatorial or sequential switching
function can be represented by a binary decision program. Generating a
complete BD program from a truth table or state transition table i8 a
trivial but lengthy task, since program size grows exponentially (in the
case of combinatorial functions) as 2™-] decision instructions and 2"
output instructions for a n-variable program.

In most control situations, however, the number of unique outputs Ls
less than 2%, implying that the complete program cah be optimized Ry the
elimination of redundant decision instructions and outputs.
Furthermore, certain infrequently occurring outputs can be deliberately
omitted from'a BD program if the controlled process has a long time-
constant. (Should such a condition occur, the BD processor can generate

a system interrupt and have the omitted control outputs downloaded from
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the microprocessor to deal with the condition.)

The BDC-4 (Binary Decision Compiler’— version 4) program is an
MC6809 assembly language program that generates a set of BD iastructions
from common control logic descriptions such as truth table, Boolean
function, or relay- or gate-logic diagram. The BD object code 1is
optimized to remove all redundant information, The output is a BD
program load module ready to be downloaded from the wmicroprocessor to
the BD program memory. The process by which this i{s achieved is
illu;trated in figure 5.1. In the {1rsc step, switching function logic
is entered in a high level format such as a Boolean equation, etc. This
description 18 then reduced to an equivalent truth table by a set of
subroutines which interpret these 1aput formats and generate the
requlired tables.

Subsequently, the truth table data is mapped into a BD program
table which is operated on by th# optimization algorithm to minimize the
table size. The reduced BD table is then converted to BD machine code.

The algorithms which perform these other functions are described

individually in following sections of this chapter.

5.2 Optimizing Compiler Design

Control logic descriptions are reduced to BD programs in a five

step process. The main functions of each step are described below.

5.2.1 Initialization. Compile time parameters for the target BD

program are entered into the compirler in the 1ni1tialization section.
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ENTER
LOGIC
DESCRIPTION

CONSTRUCT
BD TABLE

p

MINIMIZE
BD TABLE

3

CONVERT TO
MACHINE CODE

\
figure 5.1 BD program compiler block diagram.
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figure 5.2 Truth table output vector.
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The compiler begins by writing a title page on the operator”s terminal
which identifies the program and version number and lists the data eantry
format options supported by that version. In the current version, only
truth table data entry format 1s supported. BD program parameters are

then requested and entered via an interactive question and answer
<

routline. Necessary BU program parameters include:
- BD prograom number

- BD program class
- the number ot in&jpeudenV switching variables (n)

- the number ot fi:\ ouébuts
R s

- input terminal assxgg;;nt for each variable

v

- output bank assignment
All input data 1s checked tor out-of-range and bad-format errors which
cause the program to repeat the data request message and to reread the
bad data. Control 1s passed to the logic function input routine at the

end of the initialization process.

5.2.2 Truth Table Generation. A truth table output vector 18 that
part of a trutnh table 1n which the outputs corresponding to each
combilnact.on orf the lnput variables are stored, figure 5.2. The 1nput
routine begins bv calculating the number of output data elements to
1apul trom the kKeyboara. 1t then writes a data 1nput request message
‘
which specifies the number or clements expected and the required input
tormat. The routine parses the 1nput data stream 1nto 4-digit

hexadecimal numbers and writes a carrlage return/line-reed code to the

terminal atter every complete number. Arter every tour numbers, an

N
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additional line feed is sent, figureas.&

The input data is stored in the first column of a 2% row by 2
column array in the workling memory area of the program. All input data
1s checked for out-of-range and bad-tormat errors. An error message 1S
issued in the event of an input error and the data 1s reread.

After all of the data elements have been successfully read, the
routine calculates the amount of storage area used by the array and

allocates the work area tor the BD table routine. Control 1is then

passed to that routine.

5.2.3 BD Table Gemeratiom. This sectionugenetates a doubly linked list
data structure called a BD table to represent the BD program. tach of
the 2°*1-| records in the binary-complete BD table comprise tour tields:
1
a reference number, a FALSE-condition pointer, a [RUE-condition poif Fer,
and a FKUM pornter, figure 5.4a. The reterence number 1s a rour-digic
hexadecimal (hex) number which nawes the 1nput variable associated with
that BD 1instruction. The first two digits rfrom tne left are an index to
the input terminal assignment table constructed 1an the compller
initilization section previously described. During tne machine code
trans lation phase, the symbolic varfable name 1s rep.aced «~1ith the
actual address of the input 1a the bu-bil 1nput register stored 1a this
table. The second two digits enumerate the occurences 5 a varzaovle 11
the BD table. Thus every 1instruction has 2 unlque reterence number,
The binary decision transfer logic 1s represented bv tne FALSE
branch and TRUE braaoch pointers contalned :n tne second and thirg rields

of the BD table record. Lach of these four-digit hex numbers rerers to

Rl
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ENTER 16 DATA WORDS IN HEX

0002
0004
0004
0004

0001 ]
0002
0004
0004

0001
0001
0002
0004

0001
0001
0001
0002

figure 5.3 Control function input format.

REF. FALSE TRUE
CODE LINK LINK

(a)

REF. ’ OUTPUT | FROM
(b)

b

figure 5.4 8D table record format. (a) Input instruction
format and, (b) output 1nstruction format.
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the location in the BD table of the next sequential BD instruction,

corresponding to the FALSE and TRUE outcomes, respectively, of the input

,variable. The pointer fields contain the physical memory addresses of

the subsequent instructions to facilitate indexing into the table. The
last field links the current BD instruction with its logical predecessor
to enable bidirectional program traversal for the logic optimization
section of the compiller. The field contains the physical memory address
of the preceding instruction in the BD table.

In the case of an output BD instruction, the format of a BD table
record is somewhat different, figure 5.4b. The reference number 1s
composed as above except that the first subfield {s assigned the value n
for all output instructions, wheren is the number of input variables
comprising the control function. Output instruction occurrences are
enumerated in the same manner as transfer {nstructions by the second
subfield of the reference number. The next field is assigned the hex
value FFFF. (This serves to further distinguish them from transfer
instructions. The actual value has no significance.) The third field
in the BD table record contains the particular output data corresponding
to the output instruction”s location in the truth table output vector.
The first output ifastruction 1n the BD table 1s associated with the
first entry 1in the output vector, the second with the second, etc. The
last field in the BD table record 1s once again a link field, containing
the physical memory address of the preceding instruction 1n the table.

Switching function logic 1s mapped into the BD table by storing the
contents of the output vector 1into appropriate outpul instructioas.

Since the ocutput vector 18 a linear, contiguous data structure, the
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output data is more e;asily processed by the optimizing algorithm within
the output vector rather than the BD table. However the algorithm must
redirect transfer pointers in the BD tablé based on the-output vector
operations to eliminate redundant 1instructions. Hence, a return index
into the BD table is stored in the second column of the output vector
array to indicate the location of the output instruction in the BD table
containing the output vector data, figure 5.2. The physical memory
address of each output instruction is stored by the table generating
routine immediately after such an instruction is created.

The BD table {s generated with a preor;der stack traversal algorithm
[Stan80]. Preorder is usually defined, in the context of binary trees,
as the traversal of the toot node followed by the preorder traversal ot
the subtrees 1in left to right order, figure 5.5. In terms of BD
programs, preorder refers to the generation of an instruction followed
by the preorder generation of the FALSt and TRUE outcome instructions 1n
that order. Since preordering is defined recursively, the TRUL branch
is not generated until the entire subprogram rooted by the FALSE branck;

14
18 complete. The purpose of a stack traversal is to save on a pushdown
stack, the set of TRUL branches whose generation is postponed by the
precorder generation of the FALSE branches. THRUL branches are removed
from the stack on a last~in, first-out basis for processing. The
algorithm ends when the Stack contains no more postponed TRUE branches.

A formal statement of the algorithm is presented below as Algorithm 5.1.

Algorithm 5.1. Preovder stack traversal gf BD programs.

.
P

1. Let ROOT be a pointer to the firgst record in an empty BD

n

table. Store ROOT in the FROM field of the first record, i.e.,




FROM(ROOT) <~ RUOT,

2. If ROOT has the value FFFF ¢ then éo to step 5.

3. Generate a BD table record in the location pointed to by ROOT.

4, Save the table address of ROOT on the stack to postpone the
generation of the TRUE branch subtable until the FALSE branch
is completely processed, i.e., ROOT -> STACK. Link the FALSE
branch to the next consecutive table location and store ROOT
in the FROM fi1eld of that next location, i.e., FALSE(ROOT) <~
ROOT+1 and FROM(ROOT+1l) <- ROOT. The FALSE branch of an
output record is assigned the value FFFFlb. If the current
record represents an output instruction then store ROOT in the
output vector table beside the appropriate output data
element. Store the value of the data {n the output
instruction, Increment RUOT and go to step 2, i.e,, ROOT (-
ROOT+1.

5. Remove a postponed record from the stack and save the value of
ROOT in the TRUE branch field, Store the address of the
postponed instruction in the FROM field of ROOT, 1i.e.,
TRUE(STACK) <- ROOT and FROM(ROOT) <- STACK. If the stack is

empty, then terminate the algorithm.

A BD table generated by algorithm 5.1 is illustrated in figure 5.6a
along with the corresponding BD diagram, figure 5.6b. Reference numbers
of BD instructions in the table are shown in parentheses beside the

matching BD diagram nodes.
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figure 5.5 Preorder BD diagram traversal.
wp REFERENCE FALSE TRUE FROM
ADDRESS NUMBER BRANCH BKANCH BRANCH
1686 0000 168E 16A6 1686
168E 0100 1696 169E 1686
1696 0200 FFFF 0000 168E
169E 0201 FFFF 0001 1 68E
1646 0101 16AL 1686 1686
16AE 0202 FFFF 0001 1646
1686 0203 FFFF 0000 1646
(a)
(0000)
0 1
o () o
- [¢] 1 0
(02000 / \ (0201) (0202)/ (0203)
0 1 1 0
(b)
figure 5.6 BD table representation of XOK function.

(a) BD table showing branching logic.
(b) 8D diagram produced trom table.

G
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Reference numbers are generated by the algorithm such that if the
symbolic variable number is O to n—1l, a transter instruction {is
generated. [f the number is n, then an output is created. The
reference number {s i1ncremented every time a new branch is traversed.
The result 1is that all of the instructions which embody a common input
variable have the same symbolic variable number. These appear in a BD
diagram as the set of nodes comprising ome level of the dlagram, figure
S.6b. "

Following the generation of the complete BD tablé,‘ control is

passed to the optimizing algorithm described next.

5.2.4 BD Table Optimization. BD programs can be reduced in size if
more than one of the combinations of the input variat;les yield identical
output states. Optimization 1s desirable since it signiflg\@nt ly reduces
program storage requirements, one of the main disadvantages of BD
methods where binary-complete program length 1s of exponential order ia
the number of input variables.

Consider an eirght input AND gate, figure 5.7a. A full BD program
would have 511 program steps. Since there are only two possible output
states and the FALSE state 1s generated in all cases except one, the
program can be pruned to less than a dozen steps without losing any
information. A reduced BD program is illustrated by the BD diagram of
figure 5.7b.

The compliler uses a pattern recognition algorithm which searches

for repetitious patterns in the truth table output vector data to guide

the BD table optimization procedure. The algorithm systematically forms




T O m m o O = P

TI-¢

(a) (b)

figure 5.7 Minimization of an 8-input AND gate program.
(a) B-input AND gate and, (b) minimized program.
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subsets of the output vector and searches for identical subsets in the
remaining elements. Once a corresponding subset is found, the BD table
is traversed to the root instructions predecessing the redundant output
sets, figures 2.9a and b. The transfer pointers of the instructions are
then rerouted as required to eliminate redundant logic from the BD
table. The duplicate set of output data elements in the output vector
are marked as being eliminated so that they are not subsequently
reexamined by the algorithm

Since the number of instructions that canm be removed by a
successful matching of duplicate output patterns is proportional to the
slze of the comparison group, the algori¢hm begins with the largest
possible subset of the output vector, length(vector)/2, and then reduces
it in later iterations. In this way all possible combinations of output
data elements are exhaustively compared to ensure that an optimally
reduced BD program is obtained. An analysis of the Pattern Matching
Algorithm eff{ciency Is presented in section 5.3 of this chapter. A

formal statement of the PMA is given below as Algorithm 5.2.

Algorithm 5.2. Pattern Matching Algorithm for BD Program

optimizatioan.

l. Divide output vector into two subsets. Result is 2 subsets
each of 297! elements.

2. Compare every combination of these subsets for identical data
patterns. fv’:?

3. Prune BD table where possible.



5-14
Q

4, Subdivide subsets by 2. Kesult is 2! subsets each of 2071
e lements after the ith‘ iteration. Go to step 2. Continue

Ve
until isn. Stop atter this iteration.

Ad discussed, the BD table pruning routine uses the FROM pointers
to traverse the program backwards to find the BD instructions at the
root of both the subprogram defined by the pattern subset and the
duplicate subset of output elements. The root of a subprogram within a
comp lete BD program i{s found h=log2[size(subset)] levels abowve the
output instructions, figure 5.8a. The subprogram is then eliminated
from the BD table by redirecting the branch pointer of the root”s
predecessor from the re'dundant subprogram to the root of the pattern

subprogram, figure 5.8b.

-

An example of the operation of the PMA algorithm is shown in figure -
4 \‘\/

5.9. The function, defined by table 5.1, represents a 2-bit magni tude
comparator. Two input numbers, A and B, are represented by the binary
patterns xlxz and X3X4 respectively, The comparator output
{100,010,001} represents the conditions {A{B,A=B,ADB}, respectiavely.
The full BD diagram for the function, figure 5.9a, is reduced by’
algorithm 5.2 to the locally optimum diagram of figure 5.9f in four
iterations.

In the first iteration the output vector is divided intc; two
subsets which are compared. No wminimization is possible at this stage
since ‘the subsets are not identical, figure 5.9b.

In the next iteration, the output vector Is further subdivided 1nto

four sets of four outputs, figure 5.9c. The first subset is selected as
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(a) (b)
figure 5.8 Reduction of isomorphic program logic.

(a) Location of root node. (b) Llimination of
isomorphic group (shown in dashed lines).

E
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2-bit magnitude comparator truth table.

table 5.1
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the pattern group and 15 compared with the remaining three. Agaia, no
match is found. Next the second group 1s selected as the pattern and is
compared with the remalning two for a match. (It is not necessary to
compare the second pattern with the first agalin as no match was found
when the two subsets were previously compared.) This test 1is
unsuccessful as 1s the comparison of the third with the fourth group.

Continuilng in algoritham 5.2, the oJ:put vector is divided into
eight groups of two outputs all of which are exhaustively compared,
figure 5.9d. Identical outputs are found between subsets 1-6, 2-4, 3-8
and 5-7. Figure 5.9d shows the duplicate output groups 1n dashed 1lines
to indicate where they have been eliminated from the BD program. The
pointers which led to the duplicate groups have been rerouted to the
pattern group 1in eiLh case.

In the final iteration, the output vector is divided into efgnt
remaining groups, each of just one output, figure 5.9e. Many matches
are found since there are only three distinct output values. Once again
the nodes which have been eliminated are shown in dashed lines and the
pointers have been rerouted. The final, fully reduced diagram is shown
in figure 5.9f.

Following the optimization of the BD table, control is passed to

the machine code ianstruction algorithm.

5.2.5 Machine Code Generation. The final part of the compiler involves
putting actual BD operation code and memory addresses into the BD table
instructions in place of the compiler reference addressing. The set of
program parameters{ including program number, nﬂpber of parallel output

channels, output bank assignment and interrupt codes, is used by the

=3
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PMA algorithm operation example. (a) Binary-complete
BD diagram. (b) Division of output vector into
groups of eight. (c) Division of output vector 1into
groups of four. (d) Division of output vector 1iuato
groups of two. PMA algorithm succeeds 1in matching
patterns, resulting in elimination of 1somorphic
logic (shown 1in dashed lines). (e) Division of output
vector into groups of one. lsomorphic logic 1s
eliminated. (f) Final, fully reduced BD diagram.

.
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compiler to generate control instructions. Since seversgl forms of input
and output 1instructions are defined in the instruction set (see chapter
3) of the BD processor, &he compiler evaluates each situation in which
more than one torm would fit, and inserts the form which ylelds the
shortest code. In additlon an End-of-Program (LOP) instruction is
inserted at the end of the BD program.

Machine code is generated in two passes. In the first pass, a
preorder stack traversal algorithm 1s once again used to traverse the
reduced BD table. As each record is processed, an equivalent BD machine
code 1lnstruction is geunerated in a work area immediately following the
BD table. Since actual BD transfer instructions contain just one branch
address while the second is assumed, by convention, to be the next
consecutive address, the branch—on-TRUE form of INPUT code is normally
generated by the preorder traversal algorithm. If, however, the FALSE
branch of a transfer instruction has already been generated and the TRUE
branch has not, then the branch-on-FALSE form is used. This situation
might occur i1if the FALSE branch pointer h:@ been redirected by the
pruning operation to an earlier section of the BD program, generated
first according to the preorder traversal algorithms If both the FALSE
and TRUE branches of a transfer instruction are already generated, each
requiring branching to previous parts of the program, then a branch-on-
FALSE INPUT code i8 created followed by an unconditional JUMP to the
TRUE address.

In many control programs, the OQUTPUT instruction is the last code
executed before a loglcal EOP. A branch to the EOP is thus included in

every QUTPUT code. If SHORT QUTPUT instructions are specified by the
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program parameters, the address of the EOP 1s inserted into IN<C7:0> of
the OUTPUT code. Otherwise, unconditional JUMP instructions are
inserted in the program immediately following LONG OUTPUT codes. In
either case, the actual address of the EOP may be unknown since it is
the last instruction to be generated. Hence a temporary code is stored
in the appropriate OUTPUT branch address locqtion which 1s replaced by
the actual address on the second pass through the BD machine code

&

program.

A flowchart of the preorder stack traversal algorithm for the
generation of BD processor machine codes is given in tigure 5.10.

The finished program is saved on the secondary storage device in
the BD program library under the program number specified by the
programmer. An optional printout of the machine codes 1is available. A
BD program ftor the 2-bit magnitude comparator function previously
described in figure 5.9 is 1llustrated in figure 5.11. The complete

BDC—-4 program listing is presented in Appendix IV.

5.3 Optimizing Compiler Analysis

5.3.1 The Mathematical Basis of the PMA Algorithm. As discussed in
chapter 2, the mathematical basis for the minimization of BD logic is
derived from the Distributive and Complementation Properties of Boolean
Algebra, i.e.:

A Q+B - Q=(A+B) - Q (5.1)

and,

A-Q+A-Q=Q (5.2)



WRITE EOP
AND LINK
{00

PRINT
LISTING

SAVL ON
DISK

} SHORT

TRIM L&R
BRANCHES

flgure 5.10

Machine code generation subroutine flowchart.

(Flow direction is down and right.)

WRITE FOLLOW
BR1 L-BRANCH
WRITE WRITE FOLLOW
BRO JMP TO R STACK
FOLLOW
R-BRANCH
WRITE __J FOLLOW
sW1 STACK
WRITE LONG WRITE JMP POLLOW
outeut ™1 1O EOP STACK
WRITE SHORT FOLLOW
| ouTPUT STACK

z-¢

¥
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figure 5.11

E10l
4009
4407
4806
4C06
C20F
C40F
080D
F006
440C
4804
Cl0F
0808
0COB
FO05
A000

BD machine code program for the 2-bit magnitude

coaparator.

" SELECT BANK 1, JUMP TO 1

INPUT X, JUMP TO 9 IF X,=I
INPUT X,, JUMP TO 7 IF X,=l
INPUT X3, JUMP TO 6 IF X3=1
INPUT X,, JUMP TO 6 1F X,=I
OGUTPUT "2", JUMP TO 15
OUTPUT "4", JUMP TO 15

INPUT X4, JUMP TO 13 IF X3=0
JUMP TO 6

INPUT X,, JUMP TO 12 IF X,=l
INPUT X3, JUMP TO 4 IF X3=I
OUTPUT "1™, JUMP TO 15

INPUT X4, JUMP TO 11 IF X3=0
INPUT X, JUHP TO 11 IF X,=0
JUMP 10 5

END OF PROGRAM

§

- e
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The PMA algorithm searches the output vector to find instances in which
either of these two properties apply. Equation 5.1 results:in the
recombination or trellising of logical transfer paths leading to
identical subfunction in a BD program, figure 5.12a, while equation 5.2
results in th; elimination of the BD instruction involving B and the
unification of the two identical subfunctions, figure 5.12b. The common
requirement of both these cases is to identify pairs of identical
subfunctions within the BD logic.

The PMA algorithm method relates the logic of the subfunction to
the pattern of outputs generated by the output nodes. ,An assumption is
made that 1if the pattern of outputs of two subfunctions are identical,
then the logic represented by the subfunctions must also be identical.
This assumption is valid since the BD table is a binary-complete
structure, i.,e., each level of the BD diagram is homogenous 1n a
variable, figure 5.13a. The subfunction indicated by the first dashed

box in figure 5.13a may be described by the BD instructions:

Q) B; Qp Q4
Q2 C; a, b

Qj C; C, d

The loglc represented by these two BD programs is identical, only the
labels are different. However the subfunctions indicated by the dashed

boxes in figure 5.13b, a non-binary-complete tree, are not identical as
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Logic reduction characteristics of the PMA algorithm.

(a) Trellising ot isomorphic logic and,

of redundant logic.

(b) elimination
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Level 0

} lLevel 1

.l lLevel 2

Cutput

Q ..................... Level 0
0 1
e Level 1

0 1 0 1
F Q o ... Level 2

0 1 0 1 0 1 0 1

/L \ Z L A Vi \
a b c d a b c d Output

4
(b)

figure 5.13 Affect of wvariable distributiom on BD logic reduction.

(a) Levels that are homogeneous in a variable are
amenable to logic reduction. (b) Levels that are
heterogeneous in a variable are not.

~
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@
the levels are not homogenous in a variable. The subfunctions are

described by the two followlng sets of instructions:
Fy c; a, b
F3 D; ¢, d

and,

Although the output patterns are similar, these subfunctions do not
desecribe the same switching logic.

The usefulness of the PMA algorithm for the minimization of

randomly generated BD programs is thus restricted. The approach 1is
assured of success only when binary-complete programs are considered.
Such programs are always obtained from the truth table representation of
switching functions, however, and so the compiler is designed to reduce
any of the other control function descriptions to the truth table form
as a necessary first step.
5.3.2 Optimization Efficiency. Through 1:sexheust1ve search strategy,
the PMA algorithm successfully finds and eLiminLtes all of the logic
redundancies in the binary-complete BD table. It can be shown, however,
that the minimization efficlency depends on the initial choice of the
otrder in which variables are evaluated by the BD program.

Consider the reduced program obtained by the PMA algorithm for the
two—bit magnitude comparator in figure 5.9f. The minimized program

examines the variables in the order X, X9, X3, X, and requires twelve
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1nstructionsq1pcluding the output nodes, a 61% reduction from the
complete programs Figure 5.14 depicts the minimized program for the
same function in which the wvariables are tested in the sequence X;, X4,
Xos X4e Here only nine instructions remain ;fter minimization, a 71% °
reduction in size.

At any time, therefore, the PMA algorithm is oanly certain of
finding a local wmininum, Other algorithms are reported in the
literature which claim to find the global minimum [Poll65,Schw74].
These employ some sort of variable reordering scheme to search for the
one sequence of variables which yi;lds the highest degree of
optimization. Very little progress has been made, however, 1in
discovering good methods of guiding the search procedure. The size of
the search space canvbe estimated by the number of different BD programs
which describe the same function. If the binmary-complete program
constraint is maintained, then there are n ways of choosing the first
variable, n—-1 ways of choosing the second, etc., i.e,, n! different BD
programs which describe the same function.

]} Consider the more general case in yﬂich the binaryfgomplete
restriction 1s relaxed. Each instruction is permitted to evaluate any
of the variables as long as a variable is not tested more than once in a
transfer path from root to output of the program, figure 5.15. From the
diagram, it can be seen that there are n ways of choosing the first
variable, n-l independent ways of choosing each of the two variables at
the second le;él, etc. In general, the number of ways of choosing a

i
variable at the i':h level of the BD diagram is (n--i)2 and so the total

number of different BD programs which describe the same function is:
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figure 5.14 Affect of variable ordering on BD logic reduction.

) ¥

figure 5.15 Example of a non-binary-complete BD program.
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S= - (n—i)Zi

This represents an enormous search space for the ‘ariable—
reordering algorithms to search through to find the most tavourable
sequence. [t 1s submitted that the objective of BD program optimization
in the context ot industrial process control should be to obtain an
acceptable approximation to the global mlnimum with the least
computational work and memory cost. With a sutficlently fast algorithm,
real-time adaptive coatrol 1s feasible. ‘[t was shown that BD program
optimization without variable reordering 1s, at best, a NP-complete
problem, wmeaning that the best algorithm still requires an exponeatial
order améunt of work. Research continues in the DATAC laboraCOry‘CO
determine the upper and lower bounds tor optimization efticiency with

and without variable reordering, and preliminary results iandicate that

the PMA algorithm is expected to rind local minima within about 0% of

the global.

5.3.3 Computational Time Complexity. The time complexity of an
algorithm is a measure of the number ot steps required to execute the
algorithm as a function ot the si1ze &f the input. If for a given size
the complexity is taken as the maximum complexlt( over all inputs of
that size, then this is called the worst—-case complexity. The worst-
case complexity of an algorithm is usually much easier to estimate than
the average—case complexity since one does not have to make assumptions
about the distribution of the 1néuts.

In the case of BD program minimization, the input size 1s often
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taken.to be the number of independent variables of the switching
function. Since tue PMA algorithm searches tor redundant logic by
comparison of output vector subsets, the worst-case complexity for a
given vector is obtained when every element 1s exhaustively tested with
every other. The number ot comparisons made 1s reduced by successtul
logic pruning, since duplicate output patierns are el1iminated trom the
output vector at each stage. However, the amount of reduction depends
on the distribution of the output data elements, a difticult measure to
quantify. The analysis presented below is tor the worst-case tlime

complexity of the PMA algorithm.

Definitiom: 5.1 Let k; be the number or subsets into which the output

vector i{s divided in the 1P iteration of the algorithm.

Defimitiom: 5.2 Let my be the number of data elements subsumed by each

subset jn the 1th iteration.

During one iteration of the PMA algorithm, the tirst subset is
compared amongst ky-l others, the second is compared amongst k;-2

others, etc. A total of

ki-l
(kg=1) + (ky=2) + ceo + 1 = 7 (ky=3) (5.3)
j=1

subsets are therefore compared for each iteration. The summation of the

first k;-1 terms of equation 5.3 is obtained below.

k-1 ky-l ky-1
r (k=3) = ¢ ky -¢p
j=1 i=1 j=1

= kg (ky=1) = ky(ky=1)/2

= ki(ki—l)/Z
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Every comparison between a palir of subsets involves my individual
comparigons of data elements. Thus, the total number of individual
comparisons made during one iteration of the PMA algorithm is:
miki(ki—l)/Z (5.4)
As described in section 5.2.4, the algorithm is iterated n times to
completiona for a o variable BD program. Hence, the total nuube& of

comparison steps executed 1is:

(5.5)

a

n
Tomgky(kyg-1)/2
1=l

Now ki is equal to 21, e.g.,Z1 subsets in the first iteration, 22-4 in
the second, etc. And my 1s equal to Zn_i, e.g., each of the two subsg}s
in the first iteration subsume 27/2 outputs, which is reduced by a
factor of 2 in each further i{teration. Equation 5.5 is ghus rewritten
as:

n

r 2™t 2iety2 "~ (5.6)

i=1

The summation of the first n terms of equation 5.6 is obtained below.

y
Do -m

n
2071 oty - ¢ 202 (2i-1)

i=1 . i=] A,
n
= (2% ¢ @i-n 4
1=]
n n
= (2% [ 2t-1 1y
{=] i=]
- (Zn-l) [2n+l_l _u]h
= 0(2%M) \ (5.7)

(We say that g(n) is O(f(n)) if there exists constants c and ny such

that g(n) is less than or equal to cf(n) for all n greater than ot
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equal to no.) The last two terms were eliminated to simplify the final

step. Since

-

22n N (Zn-l)[2n+l—l-n]
the order of complexity is unaffected by this omission.

Karasick has designed a variation of the PMA algorithm that has a
worst case complexity of 0(n2™) [Kara84,Hulsss]. The algorithm
slmultaneously builds and optimizes the BD program through a postorder
traversal procedure, during which all nodes are visited but only those
nodes that branch to existing nodes are created.

Since both of these algorithms are of exponencialr order, cowmputer
workload can be expected to increase rapldly with an increasing number
of variables. The growth 1in cowmputational workload for the PMA
algorithm is 11lustrated in figure 5.16. The BDC-4 compiler limits the
number of input variables of a problem to eight in order to bound the
slze of working memory. Significantly, compiler performance was not seen
to degenérate when computing eight input variable problems, running on a

1 MHz 6809 computer.

5.3.4 Compatational Space Complexity. The space complexity of an
algorithm is a measure of the amount of work space required to execute
the algorithm as a function of the size of the input. -

The space complexity of the BDC-4 program 1s computed below. The
output data entry routine stores the output ve‘.\tor in main memory
consuming 0(2%) locations. The BD table, which has length 0(2n+1). is

similarly stored in working memory. It is overwritten by the PMA

algorithm such that the reduced BD table does not use any extra memory.

———
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figure 5.16 PMA glgorithm computational time complexitye.




Finally, the machine code generator creates the executable BD object
code which consumes O(size of program) memory. In the worst case, the
slze of program is once again O(2n+l). Therefore the worst case space
complexity of the BDC-4 compiler is:

0(2™ + 201 4 antly o g(s5-2M) (5.8)
In comparison, Karasick™s version of the PMA algorithm has a worst case
space complexity of 0(2:2"). This improvement is achieved by generating
the reduced BD program dynamically without physical reference to the
binary-complete BD table. As well the output vector is not required in
main memory as it {s sequentially scanned only once to build the
program. The variable reordering methods described in [Drie82] use
extensive working area to describe each subfunction of the main program
In fact, an exponential number of tables are created, each of which uses
O(hz) gpace in the height, h, of the subfunction represented. These

tables are retained throughout the compilation to check for subfunction

r?
.

'1som0tphisms. This is another indication of the impracticality of the
dynamic variable reordering algorithms in a real—-time process control

environment.
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CHAPTER 6

mP/BD PLC APPLICATIONS

6.0 Introduction

Two examples are presented 1in this chapter that show how the mP/BUD
hybrid programmable controller can be applied to the realization of
process control tasks. In both examples, the resultant mP/8D PLC
programs are compared to programs prepared for a Motorola MCL4500
single-bit microprocessor-bagsed control ler. The mP/BD-based control ler

imp lementations are consistently shorter and faster.

-
IR et

6.1 Example | - Traffic Intersection Controller

This example demonstrates the use of the BD processor "for
sequential automation tasks by the 1implementation of a traffic
intersection controller. The state diagram of the control algorithm,
described in the MC14500 handbook |[Greg77]; is shown in figure 6.l.

The traffic signal switching procedure is as follows. The North-
South (Nb) and East-West (EW) trattic flow directions are controlled by
standard red-yellow—green tratffic lights. Traffic may proceed directly
through the intersection or turn right on the green signal.‘but left
turns are prohibited. The NS direction is assumed to be a major
thoroughfare, conveying large volumes of traffic at rush hours. For the
convenience of NS vehicles, a priority left turn signal is provided,

i.e., EW and straight-through NS traffic is halted while NS cars may




figure 6.1

&l

NS-RED

STATE 6

NS ~RED

NS—-RED
EW-RED

Traffic

[ S -

STATE 7

EW-YEL 4

STATE 5

6-2

STATE 0

TZ (HOD + LR)

NS -RED
EW-RED

STATE 1

STATE 2

NS-RED

STATE 3

NS-GRR
EW-RED

THZ (MOD + LR + EWR)

LEGEND

T™Z - TIMER ELAPSED

MOD - RUSH HOUR MODE

NSR - NORTH/SOUTH REQUEST
EWR - EAST/WEST REQUEST
LR -~ LEFT TURN REQUEST
NS ~ NORTH/SOUTH

EW - EAST/WEST

GRN - GREEN LIGHT

YEL - YELLOW LIGHT

ntersection controller state diagram.
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turn left onto the EW street. To improve rush hour flow in the NS

direction, the control system can be operated in two modes:

1) a regular mode in which the control ler sequences through all ot the
states in the state diagram of figure 6.1, on a timed basis
independent of traffic volume; and

2) a rush-hour mode in which the controller remains in the NS green
state unless 1t receives an alternate sequence request from an
attending operator. EW and lett-turn requests are serviced for a
timed period after which the controller returns to the NS green
state.

The mP/BD PLC 1s capable of implementing this sequential automation
control task in the BD processor. As the program is short, only 42
steps, 1t 1is not necessary to partition the control algorithm into
subsections to be pagfﬁjinto and out of memory by the mP. Three
hardware timers are assumed to be connected to the BD 1/0 banks 1in the
manner of section 3.2.4.6. The timers are started by three field
outputs, while three field inputs indicate timing interval expiration,
table 6.1. The common field output, used to discriminate between the
timer active and expired states, 1is not required in this example since
only one timer is active at a time and the controller remains in the
same state until the timed interval has expired. Other field inputs are
assigned to a mode control switch and NS, EW or left turn request
switches, Seven other field outputs operate the red, yellow and green
lights in the two directions plus the left arrow light, table 6.2. The

f

1/0 terminal assignments are summarized in table 6.3,
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DEVICE FUNLILON TIMEK TKIGGER TIMeR QUTPUT
* STGNAL S1GNAL
TIMEK | NS GREEN Tasi Thso
TIMEK 2 EW GREEN AN Teut T, w0
LEFT ARRUW ,
TIMER 3 KbU OVEKLAP TYl Tyo
AND YELLOW
2
table 6.1 External timer hardware for the traffic controller.
INPUTS OUTPUTS
SIGNAL DESCRIPTION SIGNAL DESLRIPTION
Ths0 TIMEK OUTPUT Tysi TIMER TRIGGER ~,
Tewo TIMER OQUTPUT Tewt TIMER TRIGGER
Tyo T1MELK OQUTPUT Ty; TIMER TRIGGER
NSR NOKTH/SOUTH Rys N5 RED LaMP
) REQUEST Yus N> YELLOW LAMP
Gng NS GRELN LAMP
EWR EAST/WEST G, NS LEFT AKKOW
REQUEST
HOD REGULAR /RUSH Ry EW KED LAMP
HOUR MODE Tey EW YELLOW LAMP
ey EW GREEN LAMP
LR LEFT RLQUEST
.
table 6.2 BD processor 1/0 for the traffic controller.
SIGNAL OLTPUT BIT >1GNAL INPUT CHANNEL
NUT USED VLD Tosu 34
Trsl ovelu> Tewo 33
Teul ovV<9> Ty, 32
Ty; uv<B> MOD 0
Hns ov<T> NoR NI X s
Yo oveed> EWR 2 #
¢ Gns oves> LR 3
Rgy 0v<4d 2
Yeu V<>
Cpy ove>
G ov<L>
NUT UStD ov<0>
table 6.3 BD processor 1/0 terminal assignments for the traffic

controller.

[ VP
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Binary decision diagrams for each control state in figure 6.] are
shown in figure 6.2. The input nodes are labelled with the variable
tested by the node. Output nodes are labelled with the control signal
data appropriate to each state according to the order, 0V<11:0).
Outputs 0V<I1l> and OVK0O> are undefined in this example. OQOutput bank 1|
is used.

The BD program for this control task, figure 6.3, requires 42
instructions. In contrast, an MCl4500-based control program, figure
6.4, Tequires 152 instructions. While execution speed i3 not ad
important parameter in this example, it is clear that the cycle time of
the BD processor 1in each coantrol state is significantly’ faster than the
microprocessor-based program. In addition, the BD program could be
partitioned into segments ilmplementing the normal control mode and the
rush hour mode separately. The mP could then transfer the appropriate

program into BD memory on a pre-~scheduled basis.

Example 2 contlnues on page 6-l4.
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COMMENT PCyo COLE, ¢ DESCRIPTION
STATE 0 ' 00 E101 SELECT OUTPUT BANK 1, JUMP TO 1
01, 0204 INPUT Tyy, JUMP TO 4 IF Tyg=0
ENTRY O . 02 8690° ouTPUT §11010010000
03 F0O01 JUMP TO 1
. , 04 000F INPUT MOD, JUMP TO 15 IF MOD=Q
05 4COF INPUT LR, JUMP TO 15 IF LR=]
06 4408 INPUT NSR, JUMP TO 8 IF NSR=l
07 4812 INPUT EWR, JUMP TO 34 IF EWR=l ’
STATE 3, ENTRY 3 08 8330 OUTPUT 001100110000
. 09 4408 INPUT Tyg,, JUMP TO 8 IF Tygo=l
PL . e
10 0015 INPUT MOD, JUMP TO 21 IF MOD=Q
11 4C15 INPUT LR, JUMP TO 21 IF LR=l
12 0809 , INPUT EWR, JUMP TO 9 IF EWR=0
13 FO15 JUMP TO 21
STATE 1| : 14 , 0612 INPUT Tpp0,JUMP TO 18 IF Tgyg=0
ENTRY 1 <15 8592 OUTPUT 010110010010 - '
16 ; FOOE JUMP TO 14
STATE 2 17 0208 INPUT Ty,, JUMP TO 8 IF Tyy=0
ENTRY 2 18 8690 OUTPUT 011010010000
19 FO11 JUMP TO 17
- -
STATE 4 20 0217 INPUT Ty,, JUMP TO 23 IF Tyy=0
ENTRY 4 21 8650 oUTPUT 881001010000 .
22 FOl4 JUMP TO 20
23 C718 OUTPUT 0111, JUMP TO 24 ™
24 0217 INPUT Tyy, JUMP TO 23 IF Tyy=0
25 FO1B JUMP TO 27
STATE 5 26 021D INPUT Ty, JUMP TO 29 IF Tyo=0
ENTRY 5 27 8690 OUTPUT 3?1010010@00
’ 28 °© FOlA JUMP TO 26
29 0022 INPUT MOD, JUMP TO 34 IF MOD=0
30 4822 . INPUT EWR, JUMP TO 34 IF EWR=]
31 4COF INPUT- LR, JUMP TO 15 IF LR=l]
32 F022 JUMP TO 34
STATE 6 i3 0625° INPUT Tgyo, JUMP TO 37 IF Tg0=0
ENTRY 6 34 8584 OUTPUT 618110000100
. 35 F021 JUMP TO 33 :

STATE 7 36 0227 INPUT Ty, JUMP TO -39 IF T;§§§3
* ENTRY 7 37 8688  OUTPUT 6%1010001000 .
8 F024 JUMP TO 36

39 c728 OUTPUT 0111, JUMP TO 40
40 0227 INPUT Ty, JUMP TO 39 IF Tyy=0
41 A000 EUP, JUMP TO 0 >
. \ . .
' figure 6.3 BD program for the traffic controller.

&
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COMMENTS PCg INSTRUCTION _ DESCRIPTLON
00 XNOR RR ENABLE INPUTS
01 1IEN RR .
N e
STATE O © 02 LD LR " IF [STATE 0-TMZ:(MOD + LR)]
03 ORC  MOD THEN ‘ .
04 ANDC B0 T
05 ANDC Bl
06 ANDC B2 ’
07 ANDC: TNZ
08 OEN RR
09 STO BO .
10 STO  Tgur
11 STO oE FLAG STATE 1 g
12 STOC PE START LEFT ARROW TIMER
13 STOC  Tgyr i
14 ST0 G TURN ON LEFT ARROW_
15 LD NSR IF [STATE 0-TMZ-MOD-IR-
16 ORC EWR (EWR + NSR)] THEN *°
17 ANDC LR- b
18 AND  MOD °
> 19 ANDC THZ
20 'ANDC  BO k
21 ANDC Bl
22 ANDC B2 % )
23 {OEN  RR s )
26 ° STO BO
25 STO Bl
26 STO  Tygy FLAG STATE 3
\ - 27 sT0 B START NS GREEN TIMER
28 STOC PE
29 STOC  Tygy ‘
30 . STO  Gyg TURN ON NS GREEN
31 LDC  BO IF (STATE 0-THMZ-EWR-LR-
32 ANDC Bl NSK-MOD) THEN
33 ANDC B2
34 AND  MOD
35 AND  EWR
36 ANDC LR '
37 ANDC NSR
) 38 ANDC THZ
B 39 OEN  RR
40 STO Bl :
41 STO B2 FLAG STATE 6
42 STO  Tgyp START EW GREEN TIMER
43 STO PE -
44 STOC PE
figure 6.4 MC14500 program for the tratfic controller.
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COMMENTS . ’Pclo INSTRUCTION : DESCRIPTION
45 + STOC Tyyy
) ] 46 STO  Gpy TURN ON EW GREEN
STATE 1 . 47 LD 80 . IF (STATE 1-TMZ) IHEN
. 48 ANDC Bl N
y 49 ANDC B2
50 ANDC TMZ
51 OEN RR )
- . 52 STOC BO
‘ 53 STO Bl FLAG STATE 2
54 STOC G, TURN OFF LEFT ARROW
55 STO  Typ START RED OVERLAP TIMER
> 56 STO PE o
57 STOC PE (
58 STOC Tyy
STATE 2 59 LDC B0 IF (STATE 2-TMZ) THEN
' 60 AND Bl
61 ANDC B2
62 ANDC THZ
. 63 OEN RR L
64 STO B0 FLAG STATE 3
65 STO  Tygy START NS GREEN TIMER
66 STO PE " :
67 STOC PE
68 STOC Tygy
69 STO  Gyg -TURN ON NS GREEN
STATE 3 70 LD EWR IF [STATE 3-THZ: \
: 71 OR LR (MOD + LR + EWR)] THEN
72 ORC  MOD ) -
73 ANDC THZ
74 AND BO ay
75 AND Bl
76 " ANDC B2
77 OEN RR )
\ 78 " STOC BO ' .
79 STOC Bl FLAG STATE 4
0 80 STO B2
81 STO  Yyg TURN -ON NS, YELLOW
82 STOC Gyg TURN OFF NS GREEN
83 STO  Typ " START NS YELLOW TIMER

figuré 6.4 (cont”d)
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COMMENTS PCyq INSTRUCTLON DESCRIPTION
84 STO PE /
85. STOC PE ’
86 STOC Typ
STATE 4 87 LDC BO IF (STATE &4-TMZ) THEN
88 | ANDC Bl
. 89 AND B2
90 ANDC TMZ
91 OEN RR
92 STO B0 FLAG STATE 5
93 STOC Yyg TURN OFF NS YELLOW
. 95 STO PE <%
96 STOC PE
97 STOC Ty
STATE 5 98 LD EWR IF [STATE 5-TMZ-(HOD + EWR)]
99 ORC  MOD THEN
100 ANDC THZ
.~ 101 AND  BO
102 ANDC Bl
103 AND B2
104 OEN RR
105 STOC BO X
106 STO Bl FLAG STATE 6
107 STO  Ggy TURN ON EW GREEN
108 STO  Tgyp START EW GREEN TIMER =
109 STO PE
110 STOC PE
111 STOC  Tpyr
112 LD BO IF (STATE 5-m-r~ton-LR-M)
113 ANDC Bl THEN * ‘
114 AND B2
115 " ANDC THMZ
{ 116 * AND  MOD
117 AND LR .
118 ANDC EWR
119 OEN RR
120 STOC B2 FLAG STATE 1
¢ 121 STO G, TURN ON LEFT ARROW
122 STO  Tgyuy START TIMER )
123 STO PE
124 STOC PE
125 STOC  Tguyp

figure 6.4 (cont”d)
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COMMENTS PCq INSTRUCTION DESCRIPTION
STATE 6 126 , LDC  BO IF (STATE 6°TMZ) THEN
127 AND Bl
128 AND B2
, 129 ANDC TMZ ’
130 OEN RR
131 ST0  BO FLAG STATE 7
132 STO  Ygy TURN ON EW YELLOW
133 STOC Gpy TURN OFF EW GREEN
134 ST0  Tyy- START TIMER
135 ST0 PE
136 STOC PE
137 STOC Ty )
STATE 7 138 LD  BO IF "(STAJE 7-TMZ) THEN
139 AND Bl AR o
140 AND B2
141 ANDC THMZ
f 142 OEN RR
” 143 STOC BO
144 STOC Bl FLAG STATE 0
145 STOC B2
. / 146 STOC Yy, TURN OFF EW YELLOW
147 ST0  Tyy START RED OVERLAP TIMER
148 STO PE
149 STOC PE
150 STOC Typ
151 *NOPF SET FLAG TO RESET PC.
, figure 6.4 (cont’d)
4
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6.2 Example 2 - Industrial Boiler Control

h

-

;oo
This example_demonstrates the use of the complete mP/BD PLC for

both proportional control and sequential automation tasks in parallel‘.
‘ Anﬂ industrial facility will usually have one or more single—purner, ¢
gas- or oil~fired, industrial lpackége boilers supplyi’ng low-predsure,
steam for process heating, cooling, drying, and space heating
[Wood77,B&D‘l75]. Such package boilers ar; fitted with sinple measurement

and control devices used to maintain steam pressure and fuel and air

flows. In addition, they are provided with some sequential logic to

'

\
automate startup and shutdown procedures. Typilcal inputs and outputs

for a single boiler system are ghown in table 6.4. )

Boiler controls are traditionally impl emented with pneumatic or
electric—-analog hardware as well as with relay or digital hardware for
the logic tasks. The capital cost of this hardware may be
disgproportionate to the value of a single-boiler system, 8ince boiler
controls are usually designed for complicated multiboiler, multiburner,
multifuel installations. §1nce modern 'distributed microprocessor-based
control systems areyalso designeﬂd for large applications, they ;;resent
the same economic disadvantage. A hybrid mP/BD PLC system, however, is\
well;suited to a less complicaéed installation. Proportional Icont:rol
tasks can be, processed digitally in the mP while sequential automation
functions can be implemented in the BD processor. Supervisory f:ontrol

is maintained by the mP in conjunction with the operator control

interface.
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INPUTS TO MICROPROCESSOR STEAM HEADER PRESSURE
STEAM FLOW SENSOR (OR FUEL FLOW)
AIR FLOW SENSOR
s *  DRUM LEVEL
) VARIOUS SETPOINTS AND LIMITS
OUTPUTS FROM MICROPROCESSOR FORCED DRAFT FAN DAMPER POSITION
" FUEL CONTROL VALVE POSITION
¢ - : FEEDWATER CONTROL VALVE POSITION
' . - i ]
INPUTS TO BD PROéEﬁOR FURNACE DRAFE, LIMITS
o . DRUM LEVEL LIMITS
. AIR FLOW LIMITS
FUEL VALVE LIMITS
. FLAME DETECTOR SIGNALS
STOP/START SIGNALS
OUTPUTS FROM BD PROCESSOR PURGE SEQUENCE STATUS
: BURNER LIGHT-OFF STATUS
N FUEL VALVE INTERLOCK COMMANDS
ALARM ANNUNCIATOR COMMANDS
BOILER TYPE: SINGLE BURNER, GAS-FIRED, PACKAGE BOILLER
12 MW (50,000 PPH), 1.7 MPa (250 psi) PRESSURE
/Zable 6:4' Typical package boiler field I1/0 requirements.
DEVICE FUNCTION TIMER TRIGGER TIMER OUTPUT
SIGNAL SIGNAL
TIMER 1 . PUKGE TIMER TprGL Tpre
TIMER 2 LIGHT-QFF TLOI TLO
TIMER i
TIMER 3 SAFETY DELAY TSDI TSD
TIMER
TIMER 4 POST-PURGE Tppr Tpp
TIMER h
table 6.5 External timer hardware for the burner automation
controller. T
R

BT °
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6.2.1 Burner Automation System Functions. The Burner automation-system

for a common single-burner, gas-fired 12 MW (50,000 PPH) steam capacity, '

1.7 MPa (250 psi) steam pressure, industrial package boiler is shown in

the state diagram of figure 6.5. The control sequence is characterized

by seven states:

1)'Pre-purge state. The purge cycle replaces the air inside the boller

" furnace with outside air before the boiler is 11t to remave any tuel
vaporg which may cause an cxplosion during, burner 1gn.icion. In the pre~
purge state, the control system erisures that the fuel valve is closed,
Fhat no flame i8 detected in the furnace, that the furmace airflow is
sufficient for purging and that the boiler is ready. These are the
purge permissives. When the system proveé that these conditions exist,
it 11l uminates the P;J"rge-l{eady-l.amp to alert the operator. It then

awaits the activation of the Start—Purge—Pushbutton before eantering the

purge state,

2) Purge state. The operator starts a purge cycle timer which is pre~

set for an appropriate timing period based on the furnace volume and the
purge air flow-rate. At least eight complete air changes must be
accomp lished according to the NFPA safety code [NFPA76]. The control
system illuminates a Purge—in-Progress Lamp to indicate the control
gtate. The purge ¢ycle may be interrupted 1f the~ purge permisshives are
lost for a period longer than two second‘s or if the operator presses the
Stop~Pushbutton. In this case‘the control system ret:urps to the pre=~

purge state. At the end of the tw. minute purge period, providing that

no interruption occurred, the control system i1luminates the Purge-

.’
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STATE 1
"PRE-PURGE

u PBPIG ‘BLR"PRG ¢

P

STATE 7 FRC + PB

NORMAL |
SHUTDOWN 4

STCP

STATE 6

SAFETY £
SHUTDOWN

BLR+ BNR

‘LO
THZ.(BLR- BNR) \
STATE 4
LIGHT-OFF
ez &
~
. * LEGEND 2
PB,.c - START PURGE P.B.
P o START LIGHT-OFF P.B.
‘ Eg'ror - STOP P.B.
. ™ - TIMER ELAPSED
R - - TIMER RESET h .
) , BLR - BOILER PERMISSIVES
. * BNR - BURNER PERMISSIVES
. PRG - PURGE PERMISSIVES .
X Lo - LIGHT-OFF PERMISSIVES . '
. ‘ . .
o +
figure 6.5 Burner automation system state diagram.
- '/'
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Complete Lamp and enters the pre-light-off state.

3) Pre-light-off state. The control system ensures that the burner is

in the proper state prior to burmer ignition by checking that the
4] 2

automatic fuel %\ut-off valve is closed and that .the fuel supply -

pressure 18 within limitk. These are called the pre-light~off

permissives. The Burner-Ready-Lamp is 1lluminated when these are proven.
The oper?tor can interrupt the light-off procedufe 1f the permissives
cat;uot be proven after a réasonab];e period by pressing the Stop—
Pt;shbucch. IOtherwise, the control system awaits the Start-Light-0ff-

4

Pushbutton to enter the light-off state.

4) Light-off state. The automatic fuel shut-off valve is opened to
LY 4t

admit fuel to the bur&‘mr and the electric spark igniter 18 energized.
The igniter is operated for a period of ten seconds after which the

control system turns off the Burner—Ready-Lamp and enters the burner-

~
N
<

mounltor state.

5) Burner-monitor ‘state. This is the normal operating-state of the
& Tos

coantrol system while the burner is 1it. The monitor coantinuously checks

the condition of the burner permissives and the boiler permissives-to
ensure that the unit is operating within approved safety limits. If any
of the permissives are lost,.the control system enters the safety

shutdowh state. A normal shutdown is invoked by the activation of the

Stop~Pushbutton, -

6) Safety shutdown state. A two second timer 1s activated. After this

delay, the burner and bloiler pernissives are rechecked to ensure that

I3

Q

i~
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“

the satety f\azalj'g still exists and was not due to a momentary signal
@ =~y
\
loss. If the permissives can be reestablished the control system
returns to the monitor state and resumes normal operation. Otherwise,

an Alarm Lamp is 1illuminated ‘and the normal shutdown sequence is

initiated.

7) Normal shutdown state. To safely shutdown the boiler, the automatic

fuel shut—-off valve 1s closed. However, the normal air flow {is
magintained to remove unburned fuel andvpotentially hazardous combustion
products from the furnace. This is called the post—purge cycle. The
control system activates a post-purge timer and awaits the end of this
period after which it shuts down the air fan and returas to the pre-

f
purge state.

The burner ‘automation task is executed in the BD processor. Once
aéﬁﬁ, it 1is not nece‘ssary to partition the program into subsections
since it 1is relatively short, only 94 instructions. Eighteen process
inputs and fourteen outputs are useds The outputs are broken down into
three categories, timers and f lip-flops, indicator lamps, and boller
equipment commands., These are assigned to b\anks 0, i, and 2,
respéctively. The 1/0 terminal assignments are summarized in tables
6.5, 6.6 and 6.7.

s

BD diagrams for each control state are shown in figure 6.6. The
input nodes are labelled with the process variable tested by each node
and output nodes are labelled with the control actions appropriate to
each state according to the order 0V<11:0>. The BD ptogram for this

control task is shown in figure 6.7, Some optimization has been carried

out by hand, e.g., the flip—flop used in state 2 saves the re-
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examination of the purge and boiler permissives by independent
ingtructions. 1t causaes the' program flow to loop back after the timing
period expires and to execute the existing set of input instructions a

second time. On the second pass, the program flow'bypasses the timer

and branches to the shutdown state if the purge permissives cannot be

[

'
.

reestablished.

"In’ contrast, the MC14500-based con&rol program requires 180
instructions, fig,\.;re 6.8. The BD program could be further optimized to
combine the safety—-shutdown state with the normal shutdown and place the
safety timer logic within the main monitor loap. ( In this case, the
number of physical state transitions would be reduced and would suggest

a program partitioning into startup, monitor, and shutdown sequences.

°

The mP could then tramsfer the appropriate program into BD memory on an

interrupt basis.

1
=3
—

6.2.2 C;)nbustton/Control System. The com"bus);;on control system is
responsible for maintaining !:he air flow and fuel flow into the furnace
in the proper ratio to.ensure efficient yet safe combusﬁion, figure 6.9.
The stean pressure is the primary measured variable for combu_scion rate.
1f the heat produced in the furnace decreases, then the rate of steam
production is less than the rate of steam consumption and the supply
pressure falls. The xz)eve-rse is true if the heat rate increases. St;eam
pressure measurement takes into account changes in both the flow rate

\
and BTU content of the fuel. \

v i
\

~. The primary controlled variable is the Forced Draft (F.D.) fan

speed. Steam production ratk is increased by increasing the air flow

\ O\G\

.
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through fﬁs\furnace. The combustion control system Wsures the ratio

of the steam flow and air flow and attempts to control fuel flow rate to

maintain the proper excess air quantity. When the increase in F.D. fan

.speed.1s fed forward to the fuel valve control loop, the control system

opens the fuel control valve to admit more fuel. The exact 'valve

setting is8 trimmed by the steam flow/air flow ratlo measurement.

“

Water level in the steam production drum of the boiler is commonly
controlled by a single-element feedwater control loop. The drum level
is measured and compared to a fixed set-point, internal to the

>

controller. The difference between the set-point and actual water level

. 18 used to modulate the feedwater control valve position. The actual mP

control program to implement the combustion control system is not
pravided as it is a conventional PID control task. - . »

Because of its ability to perform proportional control in addition
to, and in paralilel with, sequential logic functions, the hybrid mP/BD
programmable controller is much more suitable for boiler control task&

than are conventional programmable controllers and requires a lowe

capital investment than traditional hardware.

¥ ) =
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INPUTS OUTPUTS
SIGNAL < DESCRIPTION SIGNAL DESCRIPTION
T
Torg TIMER OUTPUT TpRGI TIMER INPUT
Tio TIMER OUTPUT TLor TIMER INPUT
Tpp TIMER OUTPUT Tppl TIMER INPUT
Tep TIMER OUTPUT Top1 ‘TIMER INPUT
£F FLIP-FLOP FI?D FLIP-FLOP
PBpgc START PURGE Leg PURGE READY LAMP
PUSHBUTTON Lp1p PURGE IN PROGRESS
‘ LAMP
PB START BURNER L PURGE COMPLETE
BNR o PC
LAMP
PUSHBUTTON Lgg BURNER READY LAMP
PB STOP PUSHBUTTON Lp TRIP ALARM LAMP
STOP A >
AFSVoppy = SHUTOFF VALVE AFSV CLOSE AFSV
LIMIT SWITCHES AFSV OPEN AFSV
Fperr FLAME DETECTOR FAN: gk:sz FORCED DRAFT
PRG ¢ MINIMUM PURGE IGN ENERGIZE IGNITORS
AIRFLOW LIMIT
SWITCH
DFTy 1N FURNACE DRAFT
DFTpay LIMIT SWITCHES -
DLVLy 1y BOLLER DRUM \
DLVLysy WATER LEVEL LIMIT
SWITCHES
AFyr1y FURNACE AIRFLOW
MINIMUM LIMIT
SWITCH
FPy1n FUEL SUPPLY
FPyax PRESSURE LIMIT
SWITCHES
table 6.6 BD processor 1/0 for the burner automation controller.

R4
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OUTPUTS INPUTS
SIGNAL OUTPUT BIT SIGNAL INPUT CHANNEL
(BANK 0)
NOT USED ov<11:5> TprG 36
Tppr ov<a> To 35
Tgp1 ov<3> Tpp 34
T ov<2> T 33
LOIL SD
T ov<i> FF 32
. PRGI
s FFp ovV<Oo> ’
PBpre 18
(BANK 1) PBgnm 17
Lra ov<s>
Lgr ov<sd> AFSViyop 10
LPC ov<3> AFSVapeN i
. Lprp ove2> DCTR
Lpr ov<1> T GaF 7
DFTyAx 5
(BANK 2) DLVLy 1y 4
IGN ov<iL DLVLyax 3
AFSYV, ov<1io> AFy1N B 2
) FAN. ov<9> FPyIN 1
AFSV ov<s> FPyax 0
. NOT USED ov<7:0> .
table 6.7 ° BD processor 1/0 terminal assignments for the burner
automation controller. ¢
-~ 4
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. 4 .
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0
1 4
(1) 000010
- Ps \ | -
PRG
2o
0 1
f /LJ . / LY .
60 TO
ENTRY 2
@ d w '
L) figure 6.6 BD diagrams for each burner controller state.
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¥
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. U
PRG
AF
1 .
|(0) 00000 | (0) 01010 R E
GO TO ! ‘
T 1 0) 00000
T cn TO 0
Sp ENTRY 1
0 1
(D) 00011 ! (1) 001000
GO TO
- ENTRY 3

figure 6.6 (cont'd)
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(0) 0000
(1) 100000

GO TO

ENTRY 7

ENTRY 6

1

(0) o000

figure 6.6 (cont'd)
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(1) 000001
(2) 0001

GO0 TO
ENTRY 1

STATE & ot

1

AN

GO TO
ENTRY 35

1 ENTRY 7

¥

(0) 10000
(1) 000001

(2) 0001
N

STATE 7
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GO TO (0) 00100
ENTRY 5 (2) 1100
- &5

/
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pg
ENTRY 3
b
‘ 1
. ‘ 0
%
1 STATE 3
()
o 1 o\ i
. (1) 000000 (1) 010000
' y
PB PB
sTOP BNR
Y
0 1 0
co 10
ENTRY 7

STATE 4
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ENTRY § )
F-
DCTR
1
AFS ‘ i
OPEN .
STATE S 2

figure 6.6 (cont'd)
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ENTRY 7
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COMMENTS PCyq CODE ¢ DESCKIPTION *
STATE 0, ENTRY 1 0 E101 BANK SWITCH TO 1
. 1 180¢C INPUT DFTyyy, JUMP TO 12 IF 0
2 540C INPUT DFTy,y, JUMP TO 12 IF 1
’ 3 100C INPUT DLVLy v, JUMP TO 12 IF O
4 4coc INPUT DLVLy,y, JUMP TO 12 IF 1
5 080C INPUT AFy y, JUMP TO 12 IF 0
6 280C INPUT AFSVocop, JUMP TO 12 IF 0
7 600C INPUT Fpopg, JUMP TO 12 IF 1
8 1coc INPUT PRG,n, JUMP TO 12 IF 0
‘ 9 8002 OUTPUT 008500000010
10 491B INPUT PBppe, JUMP TO 27 IF 1
11 F0Ol JUMP TO 1
12 8000 OUTPUT 000000000000
13 FOO1 JUMP TO 1
STATE 2 14 EOOF BANK SWITCH TO O
15 1821 INPUT DFTyry, JUMP TO 33 IF O
16 5421 INPUT DFTy,y, JUMP TO 33 IF 1
17 1021 INPUT DLVLyy, JUMP TO 33 IF 0
18 4c21 INPUT DLVLy,y, JUMP TO 33 IF 1
19 0821 INPUT AFy;yn, JUMP TO 33 IF 0
20 2821 INPUT AFSV(jgp, JUMP TO 33 IF 0
21 6021 INPUT Fpopg, JUMP TO 33 IF 1
22 1c21 INPUT PRG,p, JUMP TO 33 IF 0
23 oLlA INPUT PB , JUMP TO 26 IF 0
24 8000 OUTPUT 085850000000
25 F000 JUMP TO O
. 26 121F INPUT Tpgpn, JUMP TO 31 IF O
ENTRY 2 27 8002 OUTPUT 558000000010
. 28 ELLD BANK SWITCH TO 1
. 29 8004 OUTPUT 000000000100
30 FOOE JUMP TO 14
3l 8008 OUTPUT 000000001000
32 F028 JUMP TO 40
i3 0224 INPUT FF, JUMP TO 36 IF 0
3 - 8000 OUTPUT 000000000000
. \\ 35 F0O0O0 ' JUMP TO O
36 800A "OUTPUT 000000001010
: .37 460E INPUT Tgp, JUMP TO I47IF 1
! ﬁ v 38 8003 OUTPUT (00000000011
\ 39 FOOE JUMP TO 14
\\ STATE 3, ENTRY 3 40 E129 BANK SWITCH TO 1
. ' 41 282F INPUT AFSV(; g, JUMP TO 47 IF 0
42 042F INPUT FPyry» JUMP TO 47 IF O
: 43 4U2F INPUT FP,,,,, JUMP TO 47 IF |
k 44 8010 OUTPUT 000000010000
45 0328 INPUT PB JUMP TO 40 IF 0

BNR’

figure 6.7 BD program for the burner automation controller.
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COMMENTS PC,, CODE,, > DESCRIPTION
46 F033 JUMP TO51
‘ 47 8000 OUTPUT 000000000000
48 0128 | INPUT PByrgp, JUMP TO 40 IF O
49 F054 .+ JUMP TO BZ
STATE 4 50 0E37 INPUT Ty, JUMP TO 55 IF O
ENTRY 4 51 E034 BANK SWITCH 0
52 8004 OUTPUT 000000000100
53 E236 BANK SWITCH 2
54 CcC3z2 OUTPUT 1100, JUMP TO 50
STATE 5, ENTRY 5 55 2043 INPUT Fperp, JUMP TO 67 IF O
56 2443 INPUT AFSVpcy, JUMP TO 67 IF O
57 0443 INPUT FPypy, JUMP TO 67 IF 0
58 4043 INPUT FPy,y, JUMP TO 67 IF 1
59 1843 INPUT DFT,y, JUMP TO 67 IF O
60 5443 INPUT DFTy,y, JUMP TO 67 IF 1
61 1043 INPUT DLVLyyy, JUMP TO 67 IF 0
62 4C43 INPUT DLVLy,x, JUMP TO 67 IF 1
L 63 0843 INPUT AFypy, JUMP TO 67 IF Q
64 0137, INPUT PBgrop, JUMP TO 55 IF 0
65 (,\FOSA JuMp 1O B4
" STATE 6 66 0646 INPUT Tgp, JUMP TO 70 IF O
ENTRY 6 67 E044 BANK SWITCH TO 0
68 8008 OUTPUT 000000001000
69 F042 JUMP TO 66 ,
70 04F INPUT Fyopgs JUMP TO 79 IF 0
71 204F INPUT AFSVgppy, JUMP TO 79 IF 0O
72 044F INPUT FPyyy» JuMp TO 79 IF O
o 73 404F INPUT FPy,y, JUMP TO 79 IF 1
74 184F INPUT DFTypp» JUMP TO 79 IF O
75 S544F INPUT DFTy,y, JUMP TO 79 IF 1
76 1Q4E INPUT DLVLy{y, JUMP TO 79 IF O
77 4C4E INPUT DLVLy,y, JUMP TO 79 IF 1
. 78 4837 INPUT. AFyyy» JUMP TO 55 IF 1
79 8000 OUTPUT 003000000000
80 E151 BANK SWITCH TO 1
81 8020 OUTPUT 000000100000
82 F054 JuMp TO 84
STATE 7 83 0A54 INPUT Tpp, JUMP'TO 90 IF O
ENTRY 7 86 E055 BANK SWITCH TO 0
85 8010 OUTPUT 000000010000

figure 6.7 (cqnt'd)
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COMMENTS

PCIO CODE16

DESCRIPTION

86
87
88
90
‘91
92
93

EL157
8001
E259
E15B
8001
E25D
€300

.

‘figure 6.7 (cont~d)

BANK SWITCH TO 1

OUTPUT 000000000001

BANK SWITCH TO 2

BANK SWITCH 1
OUTPUT 000000000001
BANK SWITCH 2
OUTPUT 0011, JUMP TO O

\
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COMMENTS PCio INSTRUCTION DESCRIPTION
START UP 00 XNOR RR
01 IEN RR
STATE 0 02 LDC BO IF (STATE 0) THEN
’ 03 ANDC « Bl _FLAG STATE 1
04 ANDC B2 .
05 OEN RR
06 - §TO  BO
STATE 1 07 LD BO IF (STATE 1-BLR-BNR) THEN
08 ANDC Bl FE
09 ANDC B2
11 - ANDC DFTy,y
, 12 AND  DLVLyyy
13 ANDC DLVLy,y
14 AND  AFyrn
15 AND  AFSVeyop .
16 ANDC" Fperr
17 AND  PRG,p
18 OEN RR
© 19 STO  Lpp LIGHT PURGE-READY LAMP
20 STOC Lgpop RESET STOP LAMP
21 AND  PBpp. IF {PBpg;) THEN
22 OEN RR ‘
.23 STOC Lpg RESET PURGE-READY LAMP
24 STOC BO FLAG STATE 2 )
* 25 STO Bl :
STATE 2 26 LDC BO IF (STATE 2-BLR-PRG‘PBgrqp)-
27 AND Bl THEN ! ] .
28 ANDC B2
N 29 AND  DFTypy
30 ANDCc DFT
31 AND  DLVLyyy
‘32 ANDC DLVLy,y ° \
33 AND  AFy1n
34 AND  AFSV(, op
35 AND  PRG
36 STOC TEMP
37 AND  PBgpop
38 OEN  RR
39 STOC * Tppey RESET PURGE CYCLE TIMER
. 40 STOC Tgpy RESET SAFETY DELAY TIMER
< 4l STOC Lpp JRESET PURGE+LN-PROGRESS LAMP
. 42 STOC FFy, RESET FLIP-FLOP
43 ST0  BO FLAG STATE 1
44 STOC Bl
figure 6.8 MC14500 program for the burner automation controller.



6-33

. COMMENTS PCjo INSTRUCTION ) DESCRIPTION
45 >LDC  TEMP IF (STATE 2-BLR*PRGPBgrop)
46 ANDC  PBgrop THEN
47 OEN RR \
48 ST0  Tpgel START PURGE CYCLE TIMER  » -
49 STO  Lpyp LIGHT PURGE-IN-PROGRESS LAMP
_ 50 ANDC  Tppc IF (TIMER EXPIRED) THEN ‘
' 51 OEN RR ‘
52 STOC  Tpper . RESET PURGE CYCLE TIMER \
53 STOC Tgpg RESET SAFETY DELAY TIMER \
54 STOC Lprp RESET PURGE-IN-PROGRESS LAMP
55 STOC FFp RESET FLIP-FLOP
56 STO  Lpg LIGHT PURGE COMPLETE LAMP
57 ST0  BD FLAG STATE 3
° 58 Loc B0~ IF [STATE 2-FF-(BIR + BNRK)]
" 59 AND Bl . THEN
60 ANDC B2
61 AND  TEMP ;
62 STO  TEMPI ) ’
63 AND FF
64 OEN RR
65 STOC Tpper RESET PURGE CYCLE TIMER
66 STOC Tgpr RESET SAFETY DELAY TIMER
67 STOC Lpyp RESET PURGE-IN-PROGRESS LAMP'
68 STOC FFp RESET FLIP-FLOP
69 STO  BO FLAG STATE 1
70 STO Bl )
71 LD TEMP1 IF [STATE 2'FF-(BLR + BNR)].
72 ANDC FF THEN .
73 OEN RR e
. 74 . ST0  Tgpp START SAFETY DELAY TIMER
75 ANDC Tgp IF (SAFETY DELAY TIMER
76 OEN RR EXPIRED) .THEN
77 STO  FF SET FLIP-FLOP
. 78 STOC' Tgpp RESET SAFETY DELAY TIMER
. STATE 3 79 LD  BO IF (STATE 3-LO) THEN
’ ’ ) 80 AND Bl \
8l ANDC B2
. B2 AND  AFSVo o , ‘ .
v 8 AND - FPypy K Y ~ .
84 ANDC FRy,y . .é?}ﬁ -
85 STOC TEMP ' \ S
. figure 6.8 (cont”d)+ .
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COMMENTS Pclg, _ INSTRUCTION . DESCRIPTION
86 OEN RR
87 STO  Lggp LIGHT BURNER READY LAMP
, 88 AND  PBgyp IF (PBgygp) THEN
90 STOC Lgp RESET BURNER READY LAMP
. ‘ 91 STOC Lpg RESET PURGE COMPLETE LAMP
92 STOC BS FLAG STATE 4 !
93 STOC Bl a
. 94 STO B2
95 LD BO IF (STATE 3-L0) .
- 96 AND Bl o
; o 97 ANDC B2
98 AND  TEMP
99 OEN RR .
100 $TOC Lpp RESET BURNER READY LAMP
101 AND  PBgpgp IF (PBgrgp) THEN v
102 OEN RR .
| 103 STOC Lpg .RESET PURGE COMPLETE LAMP
y : 104 STO Bs FLAG STATE 7
. ' 105 LDC BO IF (STATE 4) THEN
. . 106 ANDC Bl
: 107~ - AND B2 \\\v\w
108 OEN RR -
‘ 109 STO  Tiop START LIGHT-OFF TIMER
. . : 110 STO  AFSV OPEN: FUEL SHUTOFF VALVE
) 111 " STO IGN START IGNITOR \
112 ANDC Ty, IF (TIMER EXPIRED) THEN
‘ 113 OEN RR
. 114 STOC Ty o1 RESET LIGHT-OFF TIMER
© 115 STOC IGN RESET IGNITOR -
116 STO B0 FLAG STATE 5 }
. D §
STATE 5 117 LD BO IF (STATE 5°BLR*BNR)
118 ANDC Bl THEN
. . 119 AND B2 / )
120 AND ' Fporp
. 121 AND  AFSVppy ,
122 AND  FPyin
\ ) \ 123 ANDC  FPyux
- . ‘ 124 AND  DFTyry
125 ANDC DFT
. . 126 AND  DLVLyyy
; . 127 ANDC  DLVLy,y
¢ 128 AND  AFyqy

figure 6.8 (cont’d) ‘

e m e e mmawaw .



6-35
COMMENTS PCyq INSTRUCTION DESCRIPTION
; 129 STOC TEMP
- 130 AND  PBorqp IF (PBgypop) THEN
131 * OEN
132 STO Bl FLAG STATE 7
133 LD BO IF [STATE 5-(BLR + BRK)]
134 ANDC Bl THEN
135 AND B2 -
136 AND  TEMP
137 OEN RR
138 STO Bl ° FLAG STATE 6
139 STOC B2 5
STATE 6 140 LDC  BO IF (STATE 6) THEN
141 AND Bl
142 AND B2 \
143 OEN RR .
144 STO  Tgpp START SAFETY DELAY TIMER
145 ANDC Tg IF (TIMER EXPIRED) THEN
146 OEN  RR
147 STOC Iﬁ{ RESET SAFETY DELAY TIMER
148 STO  TEMP
149 AND  Fporp IF (STATE 6-TMZ -BLR‘BNR)
150 AND  AFSV THEN
151 AND  FRyry
152 ANDC FP.
153 AND  DFTyry
154 ANDC DFT )
155 AND  DLVLyry
. 156 ANDC  DLVLyax
157 « AND ARy
158 STOC TEylPl
159 OEN RR
160 STO B0 FLAG STATE 5
161 STOC Bl ,
162 LD TEMP1
163 AND  TEMP IF (STATE 6-TMZ'(BLRK + BER))
. 164 OEN RR THEN
o 165 STO Ly, LIGHT TRIP ALARM LAMP
L 166 STO  B{ FLAG STATE 7
STATE 7 167 LD BO IF (STATE 7) THEN .
168 AND Bl
‘ 169 AND B2 .
170 OEN RR '
171 . ~S8TO  Tppg START POST-PURGE TIMER

' figure 6.8 (cont”d)

R B - R S S R .



)

A

! 6-36
COMMENTS PCio INSTRUCTION DESCRIPTION
172 STO  Lgpop . LIGHT STOP LAMP
173 STO  AFSV, CLOSE FUEL VALVE
174 ANDC Tpp IF (TIMER EXPIRED)
175 OEN RR THEN
176 STOC Tppp RESET POST-PURGE TIMER
177 stoc B1 FLAG STATE 1
178 STOC B2
179

NOPF SET FLAG TO RESET PC

figure 6.8 (cont”d)
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CHAPTER 7
CONCLUSIONS

“

7.1 Summary of Results

7.1.1 mP/BD Hybrid Controller. It has been shown that a hybrid wmP/BD
programmable controller architecture offers substantial advantages over
conventional programmable automata in terms of flexibility, erficiency

and economy. In this regard, it was demounstrated that:

b

1) Binary decision machines support the evaluation of multi-valued
switching logic, the parallel execution of serial switching tunctions
and the realization of time-dependant sequential functions. In
contrast, PLA-based PLCs are limited to the evaluation of binary-valued
combinatorial logic while multi-bit mP controller architeculxres are

constrained to emulate serial input machines.

2) BD automata always evaluate combinatorial tunctions in a number of
steps equal to or less than the number of input variables, where
Boolean-based machines, such as the ICU, consume exponential order
prc;cessing time. This relative speed advantage of the BD machine is
advantageous for tast time-constant process applications, permits the

use of more complicated process models and/or allows the control of a

number of concurrent tasks.

3) The BD processor”s Logic Unit con®ists of only five logi: gates.

Hence signal propagation through the LU 1s extremely fast. This




ey

suggests that planned VLSI implementations of the BD architecture will
operate at high clock rates, limited only by ilmnstruction memory access

and input/output butfer cycle times, and will be/inexpensive to design
4

and fabricate due to the reldtively low number logic elements.

4) Previous BD architectures were restricted to simple control tasks
by their limited memory resource and the characteristic exponential
growth of BD program size with tne'number ot input variables. The
instruction set pf the existing Holck BD prototype has been enhanced to
add wmore I/0 capacity and to introduce an interface bus tor
communication with a host mP. As a result the controller may employ
program optimization and/or partictioning strategies to increase the
processing capabilities of the BD machine.
N

The technical teasibility of the hybrid programmable controller was
validated by the construction and testing of a laboratory prototype
system which includes a microcomputer, a BD machine and the BD(UY process
control operating systeme TIwo programmable controller applications are
presented which compare the performance of the mP/BD hybrid u'rith a
conventional MC14500 ILU. The mP/BD implementations are consistently
shorter and taster than the ICU examples. A 72% reduction in program
size, from 152 MCl4500 instructions to 42 BD instructions, 1s achleved
in the tratti¢ controller task while a 48%4 reduction, from 130 MC14500
instructions to 94 BD instructions, 1s obtained 1n the boiler control
application. In the latter example only the sequential automation
prograuns are compared since the ICU’s single-bit architecture 1s not
intenc&ed for, nor capable ot, handling the combustion control modulation

‘i

tasks. These may be handled in the mP half of the hybrid controller.
\
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7.1.2 BD Program Compiler. The design and operation of a practical
optimizing compiler for combinatorial logic functions is described which
p‘roduces near~optimally reduced BD programs. It is conten::ied that 1in
industrial applications it 1s preferable to obtain a size reduction
within 10%4-15% ot the optimum in a short time rather than exhaustively
searching among up to ngl(n--i)zjL different programs tor the global
minimum. The worst—caizo time complexity of the heuristic PMA
?pcimizatiqn algorithm is U(22n) and the space complexity is less than

0(2n+3). A tormal expected-case time complexity analysis was not
p -,

attempted.

1.1.3 Binary Decision Analysis. Another objective of this research
was to galn some physical understanding of the binary decision process
and ‘its relation-ship to Boolean logic.

It is known that the 20 paths of a complete BD program have a one-
to-one correspondance with the series éxpansion terms of a Boolean
expression which realizes thew same function, From this 1t is concluded
that combinatorial binary decision logic 1is not' morphologically
different trom Boolean logic. As 1n the case of Shannon”s Lxpansion
Theorem, the BD metk;od factors switching functic;n 1mplicants so that
following each evaluation of a literal, half ot the remaining terms are
determined to be logically FALSE and, hen@e}, need not be fturther
evaluated. This happens at most n times for a n-:lnpuf tunction.

However, the BD method automatféally branches away trom FALSE terms at

the earliest possible moment whereas the Boolean method continues to

R s T T A i ss
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evaluate'literals associated with the FALSE implicants., This is the
-
fundamental distinqlion and the hallmark of the BD method.
The BD branching process is also shown to be completely analogous

to the state—transition description of sequential switching logic.

7.2 Recommendations for Future Hor.k ) .

It 1s suggested that the presen&research continue in the following

directions: !

1) System software development. It is recommended that the system

software be divided into two separate packages; an LPRUM-based monitor

composed‘ of BDBUG and elements ot V-BUG to provide low level device

drivers and the boot-strap loader, and the disk-resident BDUY real-time

process control operating system. Further deﬁé}‘l@pment ot BDLO9 t;z
{

implement the full scope ot program management features is also

required.

2) Program compilers. The optimization and run-time characteristics of
BDC~4 should be jnvestigated through a series of benchmarking
experiments.(/T/t;is would permit an objective evaluation of this
compiler’s performance in comparison with other optimization algorithms.
In addition, the remaining planned data 1input tormats, e.g., relay
ladder diagram and logic gate diagram formats, should be implemented in

BDC-4 .

On a broader horizon, the development ‘ot an optimizing compiler tor

sequential logic BD programs is indicated. This may involve the
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adaptation or creation of a high level programming language which could
adequately describe both sequential and combinatorial kD logic
functionss Finally, a compiler for mP control algorithms 1s also

required.

-

3) System hardware development. Specific enhancements to current BD
machine designs should be studied with the objective of improving the
processor’s execution gspeed and efticiency. It is conservatively
estimated that; a continuous instruction th-roughput of 10 MIPS (million
instructions per second) may be realized with a processor constructed
with fast Schottky F-series- TTL technology. In practice, the liniting
speed parameter is memory access time. Other suggested BD hardware
enhancements include.an expanded instruction set, an effective increase
in the directly addressable program memory space, and a rationalization
of the 1/0 section design.

The design and construction fot a VLSI BD processor represents
another area for future work. Two versions of this device are
envisioned; a single-chip device for use with '"smart" Bb-VPased
instruments, and a general purpose Binary Decision Unit (BLU) for use
in hybrid controller applications.

Finally, the development ot a commercial mP/BD programmable
controller system 1s indicated. This would likely require the
participation ot an industrial PLC manutacturer to provide marketing
services and to ensure that the system conforms t}g_(\accepted industrial
standards. A single~board BD evaluation kit has been constructed which
may be offered for limited commercial distribution. Its function would

be to tamiliarize engineers and scientists with the principles of BD

3 \



%

3

A A

-

. processing and could be ysed to develop new instrumentation and control

applications

‘

4) Applications. It is suggested that BD methods have important
applications in the control of low-information bandwidth, high speed
systems, e.g., robotics and other dynamically unstable mechanical

systems, in which the need for highly precise control actions is

secondary to the requirement that they be available in real time. A

distributed network of BD controllers, for example, stationed at the

joints of a robot manipulator device and each programmed with the

control actions for 1ts particular joint, could be used to operate a

manipulator in response to commands from a central mP or directly trom
stimuli in the manipulator’s environfignt. This represeats a significant
departure from traditional robot control systems which rely gn "brute-
force" methods to solve large systems of governing equations and which
require correspondingly large computers to produce control actions in

near real time. The development ot BD-based robotic control systems is

a very important area of future research.
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APPENDIX 1
A SHORT REVIEW OF BOOLEAN ALGEBRA
Al.]l Switching Functions
»
Assume the existence of a discrete function
F = f(xl,...,xn) (Al.l)

where the set of independent variables X; to X, are bianary valued
variables. Let X, be one member of this set. Thus for all Xi’s:
el g

Xy € {0,1} (Al.2)
A switching function i3 a discrete function defined by equations Al.l
and Al.2 in which F can take on a set of discrete values determined by

Q¢

the state of the independent variables and the rules of algebra used to
combine them. The function 18 said to syitch among 1its possible

discrete values. If the rules of Boolean Algebra are used then a binary

switching function is obtained.

Al.2 Operators

Three princip'a’l operations for the combination of variables are
defined in Bo;)lean Algebra. . y
1) Dis junction between two variables 1is denoted by the symbol “+°. It
is defined such that the result of the operation is 1| 1f either or

both of the variables have the value 1 and is 0 1f both of the

variables are 0., This operation is illustrated in table Al.l.

b — 07 - -



2)

3)

Al-2

X, X X, +X,
0 0 0
0 1 1
1 0 1
l 1 1

table Al.l! = Disjunction Operation

o

Conjunction between two variables is denoted by a ~*°. It 1is
defined such that the result of the operation is 1 only 1f both of
the variables have the\value 1 and is O 1f either or both of the

variables are 0. This operation 1s illustrated in table Al.2.

0 0 0
0 1 0
(\.__/
1 0 0
1 1 1

table Al.2 - Conjunction Operation

—~r

Complementation is a uniary operation denoted by the symbol .

.It is defined such that the result of the operation is 1 if the

variable has the value 0 and is O if the variable has the value 1.

This operation is illustrated in table Al.3.

S S
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table Al.3 - Complementation Operation

Al.3 Boolean Equations

A Boolean switching function is a binary function in which the
value of the function F is either 0 or 1. It ;:h be described by a
mapping of the solution set of F and its variables or by a general
equation expressed in terms of the set of independent variables and the
principal operatigns. The Boolean equation can be derived from the
~+mapping by segregating all the points in the domain which map to the
value 1. These particular values are called the minterms of the
function. The minterms are rewritten in terms of the names of the
independent variables implied in the expression such that where a
variable has the value 1 it is written in its asserted form and where it

i8 0 it 1is written in its complemented (or negated) form.
A Boolean equation.is evaluated from left to right according to the
order of precedence of the operators. Thus complementations are
performed first fol lowed ?y conjunctions and finally disjunctions.

Variables thabi_are grouped together with parentheses must be evaluated

before noan-bracketed terms.



Al.4 Algebraic Properties
In addition to the logical operations, or connectives described
above, there exists a group of algebralc rules that define the manner in
which switching furhxccions are manipulated. These are summarized below.
1) The Distributive Law defines the way in which terms of a Boolean
equation may be factored or expanded, equations Al.5a and Al.5b:
XY + XZ =X (Y + 2) (Al.5a)
or,
wn XY +2Z2'Y = (X+2)Y / (Al.5b)
2) The Assoctiative Law defines the way in which terms of a Bodlean
equaéion may be grouped together, equations Al.6a and Al.6b:
X+ (Y+2Z)=X+7Y) + 2 (Al.6a)
or,
X-(Y-2) = (X°Y)Z (Al.6b)
3) The Commutative Law defines the order in which variables may appear

in a function, equations Al.7a and Al.7k

X+Y=Y <+ X (Al.7a)
A .. §
or,
/' . X'Y = Y°X (Al.7b)

4) The Absorption Law defines equivalent expressions for a set of
Boolean expressions, equations Al.8a, Al.8b, Al.8c and Al.8d:

X+ (X°Y) =X “{Al.8a)

X (% + Y)(— x ' (Al.8b)

or,

e R | .




5)

6)

7

Al.5

Al-5

X+ (X-Y)=X+Y (Al.8¢c)

or,
(X + Y) = XY (Al.84d)

The Complementation Law defines the result of operations applied to

a single variable in its asserted and negated form, equations Al.9a.

and Al.9b: .

X+X =1 (Al.9a)
or,

X =0 (Al.9b)
The rules of Boolean Algebra include a set oz(rdefinitiona for the

result of miscellaneous operations as follows:

X+X =X (Al.10a)

X+0 =X (A1.10b)

X+ 1 =1 (Al.10c)

XX =X ) . (Al.10d)

X1 =X (Al.10e)

] X0 =0 (Al1.10£)

" De Morgan”s Theorems

(+1 = X7 (Al.lla)

(LY =X+ ¥ " (Al.11b)

Shannon“s Expansion Theorem

Finally, a Boolean function can be expressed in terms of two other

functions by means af Shannon”s Expansion Theorem.

such

i

.
v——————ne g Rt
o

Ay

F o= £(X),000,Xy) = Ry °Fl + X -F2 (AL.12)

that Xy = 0 in Fl andxi-linFZ. |
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The expans&n theorem may be regarded as a means of factoring out a
particular variable from an equation, The result is composed of two
parts, an expression which includes the negated form of the factored
variab]:e and another with the asserted forms It may also be noted that

the factored variable no longer appears in either of the sub-functions.
. -
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APPENDIX II

ISP REPRESENTATION OF COMPUTER STRUCTURES

A2.1 1sp Hdtation ‘ '
Instruction Set Processor (ISP) notation was developed to provide a

uniform symbolic language in which to describe the organization and

operation of computers [Bell7l,Siew74]. The organization of a computer

or controller 1s described 1n ISP by declaratiogs of memory, registers,

data types, data operations, and instructions.

ISP declarations contain: .
- the normally used name,
- an abbreviation to be used in subsequent definitions, separated

from the normally used name by the alias operator "\", and
- a complete deshription including size and a numbering sequence.

Sharp brackets "< >" indicate the size of a regist;r, including
some counting scheme. Square brackets "P\l" specify the number of
identical entities that are present. The default, no square brackets,
indicates that only one entity is present. The range operator ":" is
used to denote an abbreviated list of elements. The order of the range
numbers indicates the physical order of the range elements.

The replacement operator '":=" is used to define equivalence
relationships among a set of elements. The causes and consequences of
an 1instruction are repyesented by the conditional action operator '=>"
where 3 logical condition describes when the consequential action

sequence 18 invoked and the action sequence describes what resultant
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transformations take place., The transfer operation "<-" denotes the
exchange of bit patterns from one data carrier to another. Concurrent
or alternative activities are described by the concurrency operator ';",

Sequential activities are denoted by the word "next'"., Boolean operators

’ ©
(",/\,\/) denoting complementation, conjunction and disjunction,

respectively, and relational operators (=,4,<,>) are also defined in

ISP.
A2.2 ISP Representation of the Prototype BD Processor

A2.2.1 Processor Declarations

Processor state
Program.Counter \PC<7:0>

Output .Bank.Register\0B<3:0>

Primary memory

Program.Memory\Mp[255:0]<15:0>

Console state
Control.Switches\CnSW<7:0>
Data.Switches\D.SW<15:0>
Input.Switches\I.SW<7:0>
Input.Pins\I.PN<3:0>
Console.Lights\C.LT<23:0>
Qutput.Lights\O.LT[1:0])<11:0>

Auto.Manual,Switch\A.SW

we o pmr e e —————— A&
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Reset .Button\PB

Output.Pins\0.PN<3:0> %

mP/BD interface state

Control.Register\CR<7:0>
Daca.Réﬁieter\DR(lS:O)
1/0.Register \IOR{15:0>
Interrupt.Flag\Interrupt
End.of .Program.Flag\EQOP
Single.Step.Strobe\SS.Strobe
Memory.Write.Strobe\W.Strobe

BD.Clock.On\BD.CLK.ON

Input/Output state
Input.Data.Type.Logical\X
Input.Variable\IV<63:0>
Output .Data.Type.Logical .Multibit\OV<11:0>

OQutput .Registers\OR[15:0]<11;0>

A2.2.2 Processor State Definitions
System.Clock:=(
" (C.SW<3>=1 => System.Clock=70kHz);
(C.SW<3>=0 => System.EI;EEkO.SHz))
Clock\CLK:=(
(AeSW=0/\

(CeSWL7>=]l => CLK:=System.Clock);
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(C.SW<7>=0 => CLK:=C.SW<0>));
(A.SW=1/\

- (CR(A>?§?i; CLK:=System.Clock);

% (CR<4>=1 => CLK:=SS.Strobe)))

Console.Lighta:=(
(A.SW=0/\
(C.SW<2>=1 => C.LT<7:0>:=PC;
C.LT<23:8>:=Mp[PC]);
(q.sw<2>-o => C.LT<7:0>:=PC;
C.LT<23:8>:aD.SW<15:0>));
(A.SW=1 => C.LT<7:0>:=PC;

C.LT<23:8>:=Mp[PC]))

I1/0.Mapping:=(
(IV<3:0>:=1.SW<3:0));
(IV<19:16>:=1.8W<7:4>);
(IV<35:32>:=1.PN<3:0>);
(OR[0B]<11:0>:=0V<11:0>);
(0.LT[1:0])<11:0>:=0R[1:0])<11:0>);

(0.PN<3:0>:=0R[1]<11:8>))

Clear.PC:=(

(A.SW=0/\C.SW<6>=0 => PC <~ 0))

f o - - - - e S AR o WA SN WSt e
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Preset.PC:=(
(A.SW=0/\C.SW<7:0>=0100x011/\CLK => PC <= D.SWK7:0>);

(A.SW=1/\CR<7:0>=00010111/\CLK => PC <- DR<7:0>))

Load .Memory : =( >
(A.SW=0/\C.SW<7:0>=0101x001 => Mp[PC] <- D.SW<15:0>);
7
(A.SW=1/\CR<7:0>=00110111/\W.Strobe => Mp[PC] <- DR<15:0>))
Read .Memory :=(
(A.SW=0/\C.SW<7:0>=0101x111 => C.LT<23:8> <~ Mp[PC]); =

(A.SW=1/\CR<7:0>=00110110 => DR<15:0> <~ Mp[PC]))

Step.Through:=(
(A.SW=0/\C.SW<7>=0/\CLK);

(A.SW=1/\CR<7:0>=11110110/\CLK))

Reset .BD:=(
(A.SW=1/\PB=1);

(A.SW=0/\C.SW<7>=0/\PB=1))

Run:={
(A.SW=0/\ ‘ -
(C.SW<7:0>=1111x111));
(A.SW=1/\

(CR<7:0>=11101110))

‘v—-——-ﬁ
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“Run:=(
(A.SW=0/\
(C.SW<7>=0/\EOP=]1/\Interrupt=0));
(A.SW=1/\
(CR<7:0>=11110110/\EOP=1/\Interrupt=0));

(Reset.BD))
BD.Clock.On:=Run

Verify:=(
(A.SW=]1/\CR<7:0>=10101100 =>
IV<35:32>:=I0R<3:0>;

OR[0]<11:0>:=I0R<15:4>))

A2.2.3 Instruction Format . »
Instruction\IN<15:0>:=Mp[PC]

Transfer.Address:=IN<7:0>

Interrupt.Data:=IN<11:0>
Long.Output .Data:=IN<11:0>

Short.Output.Data:=IN<1]:8>

Output.Bank.Register\0B:=IN<11:8>
Abbreviated.Operation.Code\A.OP<1:0>:=IN<15:14>

Full.Operation.Code\OP<3:0>:=IN<15:12>

e of et e e
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All ianstructions
A

Input, Short Output,
Interrupt, Bank Select,
and Jump instructions
EOP 1imstruction

Long Output instruction

Short Output instruc-
tion

Bank Select instruction
Input instructions

All other instructions

‘
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A2,2.4 Instruction Execution
Ingtruction.Set :=(
(A.OP=00/\X=0 => BC <~ IN<7:03);
(A.OP=0/\X=1 => PC <- PC+l);
(A.0P=01/\K=1 => PC <- INK7:0>);
(A.0P=01/\X=0 => PC <~ PC+l);

(OP=1000 => OR[OB]<11:0> <- INK11:0>;PC <~ PC+1);

. (OP=1100 => OR[0B]<11:8> <- INK11:8>;PC <~ INK7:0>);

Y

»
(OB=1010 => EOP=]1;PC <= PC+l);

(OP=1101 => INTERRUPT="INTERRUPT;PG <- IN<K7:0>);
(OP=1110 => 0B<3:0> <- INK11:8>;PC <- INK7:0>);

(OP=1111 => PC <~ INK7:0>))

A2,2.5 Interpreter
Instruction.Interpreter:=(
(Run=1 => Instruction.Execution;

next Instruction.Interpreter))

H
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Input Instruction
Input Instruction
Input Instruction
Input Instruction

Long Output In-~
struction

Short Output In-
struction

EOP Instruction

Interrupt In-
struction

Bank Switch In-
struction

Jump Instruction
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Fededededededodedodededededodededededededodcieiidededededeodoideicdevedciovedede

v

o % % s oo b ok X Sk F F *

BDBUG -~ BD MONITOR
VERSION 1.1 - MARCH 1984

R.D. HUDSON

DATAC

MCGILL UNIVERSITY
MONTREAL CANADA

FOR US

EVALUATION SYSTEM W/
V-BUG MONITOR AND FLEX 9.0

DOS

COMPUTER LABORATORY

% % % % %

b

E WITH A BD/6809

3k ok o *

Fedededededededededeededodedeitdedededododededricdodedodcdedeicicdedede felleode i

¥

% -— SYSTEM EQU'S --

*

PIAORA EQU  $EO030 H/W EQU'S

PIACRA EQU  PIAORA+l

PIAORB EQU  PIAORA+2

PIACRB EQU  PIAORA+3

BDMCR  EQU  PIAORA+SE

ACIACR EQU  $E004

ACIASR EQU  ACIACR

ACIADR EQU  ACIASR+1

PINIT  EQU  $FC6F V-BUG EQU'S

BADDR2 EQU  $FD20

BADDR  EQU  $FD2B

BYTE EQU  $ED3C

OUT4H  EQU  $FD6A

OUT2H  EQU  $FD72

PSTRNG EQU  $FDYE

PCRLF  EQU  $FDAZ'

PDATA  EQU  $FDAE

INCHE  EQU  $FDBA

INCH EQU  $FDCO

oUTS EQU  $FDDD

OUTCH  EQU  $FDDF

ACINIZ EQU  $FE10 o

¥

% -=— BDBUG INITIALIZATION =--

*
ORG  $A000

*

BDBUG  ORCC #$50 SET INTERRUPT MASK
TFR S,V :
LDD  #RTX
STD  $DFC8 STORE IRQ VECTOR
LDA  #$91 INITIALIZE ACIA

STA

ACIACR

L I3
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LBSR TOMP INITIALIZE PIA
LDX  {#$E060 ’
LDA  #1
LBSR PINIT INITIALIZE EVENT PRINTER
CLR  $DFES
BSR  BDIRQ GET ACTUAL BDM STATUS
LDA  PIAORA CLEAR INTERRUPTS
LDA  PIAORB
LDA  ACIADR
*
BUG2 LDX  #MSGl PRINT PROMPT ' * CHARACTERS
LBSR PSTRNG
CWAI {#$EF ENABLE INTERRUPTS AND WAIT
BRA  BUG2
*
% ~-- INTERRUPT DECODER ---
. .
RTX TST  PIACRA SOFTWARE (CAl) INTERRUPT?
n§; RTX1
B BDSWI
RTX1 TST  PIACRB HARDWARE (CB1l) INTERRUPT?
BPL  RTX2
BSR  BDHWI
RTX2 LDA  ACIASR OPERATOR (ACIA) INTERRUPT?
BPL  RTX3
LSRA
BCC  RTX3 !
LBSR KEYBRD
RTX3 RTI
*
* —- SOFTWARE INTERRUPT (CAl) SERVICE ROUTINES --
*
BDSWI LDX  #MSG12 'BD PGM INTERRUPT'
LBSR PSTRNG
LDA PIAORA
RTS RETURN
%*
* —— HARDWARE INTERRUPT (CBl) SERVICE ROUTINES --
*
BDHWI LDD  #$FF3F SET LOOP COUNTER
PSHS A
STB  PIACRB SET CONTROL REGISTERS
CLR  CLKREG FOR POLLING
CLR  AMREG
LDA BDMIR
LDB  PIAORB CLEAR EXISTING INTERRUPT
*
HWI1 ORA  #$C TEST RUNNING/AUTO
STA  BDMCR
TST  PIACRB
BMI  HWI2
ANDA {#$F7 TEST STOPPED/AUTO
STA  BDMCR




-

HWI2

HWI3

HWI4

HWIS

HWI6

*

* —— OPERATOR

*
KEYBRD

KBD1

KBD2

4TST
BMI
ANDA
STA
TST
BMI
ORA
STA
TST
BMI
DEC
BNE
LDX
LBSR

LDB
STB
BITA
BEQ
coM
BITA
BEQ
coM
LDD
TST
BEQ
LDD
TST
BEQ
TFR
STA
STA
LDA

LEAS
LBSR
RTS

LBSR
CMPA
BNE
LBSR
TFR
LBSR
LDX
CMPB
BEQ
LEAX
CMPX
BNE
LDX

PIACRB
HWI2
#$F3
BDMCR
PLACRB
HWI2
#8
BDMCR
PIACRB
HWI2
0,8
IRQ1
#MSG2
PSTRNG

#$3D
PIACRB
#8
HWI3
CLKREG
fta
HWI4
AMREG
#$F2EA
AMREG
HWIS5

##$F6EE

CLKREG
HWI6
B,A
BDMCR
BDMTR
PIAORB

1,5
BDSTAT

A3=4

TEST STQPPED/MANUAL
TEST RUNNING/MANUAL

IF INCONCLUSIVE, LOOP AND
POLL AGAIN

REPORT POLLING FAILURE
RESET PIA CONTROL REG

SET STATUS REGISTERS

SET BD CONTROL REG /f/
4

L]

RESTORE STACK
REPORT BD STATUS
RETURN

REQUEST SERVICE ROUTINES -- .

INCHE
#$2F
KBD2
INCHE
A,B
OUTS
#CMDTAB
0, X+
KBD3
2,X
#TABEND
KBD1
#MSG2

EY

*/*?...1F NOT, ABORT

READ COMMAND CODE

MATCH COMMAND TO TABLE

NOT FOUND?...ALERT OPERATOR

' WHAT?'
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LBSR FDATA
RTS RETURN
KBD3 JsR  [0,Xx]* SERVICE OPX REQUEST
RTS RETURN
* .

%  COMMAND JUMP TABLE

*

CMDTAB FCC 'L’
FDB  BDLOAD

FCC ‘E*

FDB  BDEXM //
FCC 'M*

FDB  BDMCHG
FCC *J

FDB  BDRUN
FcC ‘H*

FDB  BDHALT
FCC ‘D’

FDB  BDSTAT
FCC 'T*

FDB  BDTRNS
FCC 'S

FDB  BDSTEP
FCC '+

FDB  FLEX
FCC 'y

FDB  MON

FCC 'p!

FDB  PRNTR

TABEND EQU =
*

* [D - REPORT BD STATUS
*

BDSTAT LDX  {/MSG8 'BD STATUS: °*
LBSR PSTRNG
LDX  #MSGSA *MANUAL/'
TST AMREG
BEQ STAT1
LDX  {IMSG9B 'AUTO/ !
STAT1 LBSR PDATA
LDX  #MSG10A *STOPPED'
TIST CLKREG
BEQ STAT2
LDX  #MSG10B ‘RUNNING' 1
STAT2 LBSR PDATA
’ RTS RETURN

*

* [P - PRINTER TOGGLE
*

PRNTR TST  $DFES TEST PRINTER STATUS

BNE  PRNT1
INC $DFES TOGGLE ON IF OFF 1
RTS
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PRNT1 CLR  $DFES TOGGLE OFF IF ON
RTS
*
* *ESC' STOPS LISTING .
v
ESCTRP LDA  ACIASR KEY HIT? ' *
BITA #1
BEQ ESC2
LDA  ACIADR READ CHARACTER
ANDA #$7F
CMPA {#$13B
BNE  ESC2 RETURN IF NOT *ESC'
ESC1 LDA  ACIASR
BITA #1
BEQ ESCl WALT FOR ANOTHER HIT
LDA  ACIADR
ANDA #$7F
CMPA #$1B
BEQ ESC2 RETURN IF 'ESC'
CMPA #$0D
BNE  ESC1
ORCC #2 SET V-FLAG IF °'CR'
ESC2 RTS RETURN
*
* /> - TRANSFER TO MONITOR
*
MON LEAS 4,S RESTORE STACK TO INTERRUPT
LDD  #$FFOO
STp  10,S CHANGE RTI RETURN ADDRESS
RTI
*
# [+ - TRANSFER TO FLEX
*
FLEX LBSR ACINIZ RESTORE ACIA COMM.
LDA  #$D¢
STA scg§1 CLEAN FLEX LINE BUFFER
LEAS 4, RESTORE STACK TO INTERRUPT
LDD  #$CDO3
STp 10,5 CHANGE RTI RETURN ADDRESS
RTI
* Y
LIB  BDBUG2 i
* - BDBUG MESSAGES AND BUFFERS --
L
MSG1 FCC ' ', %4
MSG2 FCC ' WHAT?',$4
MSGS5 FCC ' - ',84
MSG8 FCC  'BD STATUS: ', $4
MSG9A FCC  'MANUAL/',$4 h
MSG9B FCC  'AUTO/',S$4
MSG10A  FCC  'STOPPED',$4
MSGl0B  FCC  'RUNNING',$4




MSG12

AMREG
CLKREG
BDMIR

FCC

ORG

RMB
RMB

‘..END

A3-7

‘BD PGM INTERRUPT', $4

*
1
1
1

BDBUG
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Plows

* /M - BD MEMORY CHANGE AT $BB:

*

BDMCHG  TST
BNE
TST
BEQ
LBSR
BVS
CHGL LBSR
TFR
LDX
LBSR
TFR
LBSR
LBSR
LBSR
LBSR
TFR
LBSR
LBSR
LBSR
BVC
CMPA
BEQ
CMPA
BNE
LDA
STA
STA
CHG2 RTS
CHG3 PSHS
LBSR
BVS
TFR
PULS
PSHS
LBSR
LBSR
LBSR
LBSR
CMPD
BEQ
LDA
LBSR
CHG4 TFR
INCA
BRA
CHG5 TFR
DECA

BRA
*

CLKREG
CHG2
AMREG
CHG2
BYTE
CHG2
PRSTPC
D,Y
#MSGS
PSTRNG
Y,D

OUT2H

OUTS
TOMP
RDWRD
D,X
OUT4H
OUTS
BYTE

CHG3

#e°
CHGS
#$D
CHG4
#$F6
BDMCR
BDMTR

A
BYTE
CHG2
A,B

A

A,B
TOBD
LDWRD
TOMP
RDWRD
0,S++
CHG4
f*?
OUTCH
Y,D

CHG1
Y'D

CHG1

* [J - START BD AT $BB

S o s A

TEST BD IS STOPPED AND
IN AUTO, ABORT IF NOT

READ BD ADDRESS

SET BD PC

PRINT ADDRESS

GET DATA FROM BD AND PRINT

READ USER RESPONSE

**7...GO BACK ONE STEP

*CR'?.. +ABORT

DATA?.. .READ NEXT BYTE

STORE IN BD

READ BACK TO CONFIRM DATA

PRINT *?' IF ERROR

OTHERWISE GO FORWARD ONE STEP

e




e

BDRUN  TST
BNE
TST
~ BEQ
’ LBSR
BVS
LBSR
LBSR
LDA
STA
STA
RUN1 RTS
*
* [E - EXAMINE
*
BDEXM  TST
BNE
TST
BEQ
LBSR
BVS
LBSR
PSHS
LDA
LBSR
LBSR
BVS
SUBA
INCA
STA
LBSR
LBSR
BVS
TFR
LBSR
LBSR
LBSR
EXM1 LBSR *
STD
TFR
LBSR
LBSR
LBSR
DEC
BNE
EXM2 LEAS
EXM3 LDA
‘ STA
STA

RTS—
*

* /L - LOAD BD MEMORY $SS—-$EE FROM MP $XXXX

CLKREG
RUN1
AMREG
RUN1
BYTE
RUN1
PRSTPC
TOBD
#$EE
BDMCR
BDMTR

BD MEMORY $5S-$EE, SAVE AT MP $XXXX

CLKREG
EXM3
AMREG
EXM3
BYTE
EXM3
PRSTPC
A

it -
OUTCH
BYTE
EXM2
0,S

0,S
OUTS \
BADDR
EXM2
X,Y
PCRLE
PCRLF
TOMP
RDWRD
0, Y++
D,X
OUTS
OUT4H
STEP
0,S
EXM1
1,S
#$F6
BDMCR
BDMTR

A3-9

TEST BD IS STOPPED AND
IN AUTO, ABORT IF NOT

READ FIRST ADDRESS AND
PRESET BD PC

RESTART BD

RETURN

TEST BD IS STOPPED AND
IN AUTO, ABORT IF NOT

READ STARTING BD ADDRESS

PRESET BD PC

READ LAST BD ADDRESS

CALCULATE WORD COUNT TO

TRANSFER

READ mP BUFFER ADDRESS

READ BD DATA, SAVE IN mP,
AND OUTPUT TO SCREEN

DECREMENT WORD COUNT

AND LOOP

RETURN

\

RS




A3-10

* v
BDLOAD TST  CLKREG TEST BD IS STOPPED AND
BNE  LOAD3 IN AUTO, ABORT IF NOT
TST  AMREG
BEQ  LOAD3
LBSK  BYTE READ FIRST BD ADDRESS
BVS LOAD3
LBSR  PRSTPC PRESET BD PC
PSHS A
LDA AR
LBSR  OUTCH
LBSR  BYTE READ LAST BD ADDRESS
BVS LOAD2
' SUBA 0,S CALCULATE WORD COUNT
INCA
STA 0,S
LBSR  OUTS
LBSR  BADDR READ mP BUFFER ADDRESS
BVS LOAD2
LOAD1 LDD 0,X++
LBSR  LDWRD STORE DATA IN BD
LBSR  STEP
DEC 0,S DECREMENT WORD COUNT AND
BNE LOAD1 LOOP

LOAD2 LEAS 1,5
LOAD3 LDA #$F6

STA BDMCR
STA + BDMIR
RTS RETURN

*

* /S - SINGLE STEP BD STARTING AT $BB
*

BDSTEP  TST CLKREG TEST BD IS STQPPED AND
BNE STP2 IN AUTO, ABORT IF NOT
. TST AMREG
BEQ STP2
LBSR  BYTE READ STARTING BD ADDRESS
BVS STP2
LBSR  PRSTPC PRESET BD PC
LDB #$F6
STB BDMCR EXECUTE INSTRUCTION AND
STP1 LBSR  INCH READ USER RESPONSE
ANDA  {i$7F
CMPA  #3$D *CR'?...ABORT
BEQ STP2
LBSR  STEP OTHERWISE SINGLE STEP
BRA STP1 AND LOOP
STP2 LDA #$F6
STA BDMCR
STA BDMTR
RTS RETURN
*

* [H - HALT BD AT NEXT EOP

o
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%*
BDHALT  TST CLKREG TEST BD IS RUNNING AND
BEQ , HALT1 IN AUTO, ABORT IF NOT
TS®  AMREG
BEQ HALT1
LBSR  TOMP
LDA #$F6 SEND STOP CODE
STA BDMCR
STA BDMTR
HALT1 RTS RETURN
% - .
% /T - TRANSLATE BD PGM IN mP $SSSS—$EEEE .
* FROM ADDRESS $XX TO $YY
*
BDTRNS LBSR  BADDR2 READ mP ADDRESSES
BVS TRANS4
PSHS Y
TFR X,D
SUBD 0,5+ CALCULATE WORD COUNT
BLT TRANS4 ABORT IF  ZERO
TFR D,X
LEAX 1,X
LBSR  OUTS ]
LBSR  BYTE READ ORIGINAL BD ADDRESS
BVS TRANS4
PSHS A
LDA -
LBSR  OUTCH
LBSR .BYTE READ NEW BD ADDRESS
BVS TRANS3
SUBA O,S CALCULATE OFFSET
STA 0,S .
TRANS1  LDD 0,Y
ANDA  #$F0
CMPA  i#$AO *EOP'?...DON'T OFFSET
BEQ TRANS2
CMPA  #$80 *LONG OUTPUT'?...DON'T OFFSET
BEQ TRANS2
, ADDB  O,S OTHERWISE ADD OFFSET AND
TRANS2  LDA 0,Y LOOP
STD 0,Y++
LEAX -1,X

BNE TRANS1
TRANS3 LEAS 1,S
TRANS4 RTS RETURN
*

* AVAILABLE SUBROUTINES
*

PRSTPC LBSR TOBD PRESET BD PC
LDB  #$17 .
STB  BDMCR
STA  PIAORA

STEP PSHS  A,B



TOBD

TOMP

LDWRD

LDD
STA
STB
PULS
RTS

PSHS
LDD
STA
STA
STB
STB
LDA
STA
STA
PULS
RTS

PSHS
LDD
STA
STA
CLR
CLR
STB
STB
PULS
RTS

PSHS
LDB
STB
LDB
STB
STA
LDD
STA
STB
PULS
RTS

LDA
STA
LDA
LDB
RTS

#$353D
PIACRA
PIACRA
A,B

A,B
#$39FF
PIACRA
PTIACRB
PIAORA
PIAORB
#1$3D
PIACRA
PIACRB
A,B

A,B

#$393D
PIACRA
PIACRB
PIAORA
PIAORB
PIACRA
PIACRB
A,B

A,B
#$37
BDMCR
1,S
PIAORA
PIAORB
#$353D
PIACRB
PIACRB
A,B

#$36
BDMCR
PIAORB
PIAORA

A3-12

SET INTERFACE FOR mP TO
BD COMMUNICATIOR

SET INTERFACE FOR BD TO
mP COMMUNICATION

LOAD ONE WORD TO
BD MEMORY

READ ONE WORD FROM
BD MEMORY
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BDC-4 :

*
ettt tededcird il i dedtdedicidedeiedei i riededetoiniciniriedok

Rk R F % F ¥ ¥ ¥ ¥ FF
é

BDC-4 :
VERSION 4.1
MARCH 1984

R.D. HUDSON & A. KUCUK
DATAC COMPUTER LABORATORY
MCGILL UNIVERSITY
MONTREAL CANADA

REQUIRES 6809 MPU, FLEX
9.0 DOS AND V-BUG MONITOR

BD PROGRAM COMPILER

% ook % o b ok b % s+ % % % %

|
i

* --- SYSTEM EQU'S ---
%*
ACIASR  EQU  $E004 HARDWARE EQU'S
ACIADR EQU  $E005
INCHE  EQU  $F806 V-BUG EQU'S
OUTCH  EQU  $F80A
PDATA  EQU  $F80C
PCRLF EQU  $F8OE
PSTRNG EQU  $F810
INLINE EQU  $F818
DECBIN EQU  $F81A
BINDEC EQU  $F81C
PINIT  EQU  $FC6F
BADDR  EQU  $FD2B
OUT4H  EQU  $FD6A
OUT2H  EQU  $FD72
oUT2S EQU  $FDDB
LINBUF EQU  $C080 FLEX EQU's
DOCMND EQU  $CD4B
*
* -- BDC-4 BUFFER ASSIGNMENTS --
« .
ORG  $0000
* -
CONSTA RMB 1
CONSTB RMB 1
CONSTC RMB 1
CNTR RMB 2
DIF RMB - 1
FNCIN  RMB 1 ,
INLIST RMB 8 -
INPUTS RMB 1
LASTX  RMB 2
LASTY  RMB 2 )
LVLICTR RMB 1 ]
MCODE  RMB 2 A

s



A4-3

NODE RMB 1

OFFSET RMB 2

OUTBNK RMB 1

OUINUM RMB 2

OUTPTS RMB 1

PC1 RMB 2 .

PGMADD RMB 2

PGMCLS RMB 2 .

PGMNUM RMB 2 .

PGMSIZ RMB 2

PNTRL  RMB * 2

PNTR2  RMB 2

PRP RMB 1

RSLTL  RMB 2

SUB RMB 10

TEMP RMB 2

TREE RMB 2

L]

* -— INPUT BDC-4 PARAMETERS AND OPTIONS —-

%*

* PGMNUM - BD PROGRAM NUMBER

*  PGMCLS - BD PROGRAM CLASS

* INPUTS - NUMBER OF SERIAL INPUT VARIABLES

* QUTPTS - NUMBER OF PARALLEL OUTPUT VARIABLES

* QUTBNK - BD PROGRAM OUTPUT BANK

* INLIST - SERIAL INPUT CHANNELS

* CNTR - TEMPORARY LOCATION

[-3 _
ORG  $0200 -

*

BDC LDU  #$0200 DEFINE ,USER STACK
LDX  #MSGO HARDCOPY REQUEST

JSR [PSTRNG]
JSR {INCHE]

CMPA  #'Y
BNE  BDCl ‘
LDX  #$E060 YES?...THEN INITIALIZE PRINTER
LDA #1 S
JSR  PINIT
*
BDC1 LDX  #MSGl
, JSR  [PSTRNG] PRINT MENU .
. LBSR INDATA INPUT OPTION CODE
BVS  BDC1
CMPD #3
BLT  BDClA
LDD  #0
BDC1A CMPD  #0
BGT  BDC1B VALID OPTION CODE?
LDX  #MSGS IF NOT, REPEAT MENU '
JSR  [PSTRNG]
BRA™ BDCl
BDCIB  PSHU D ' Q
*

BDC2 LDX  #MSG2B ENTER PROGRAM NUMBER

o e ak— v Y
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JSR  [PSTRNG]
LBSR  INDATA

BVS  BDC2
LBSR BINASC
STD  PGMNUM
* «
BDC3 LDX  #MSG2C ENTER PROGRAM CLASS
JSR  [PSTRNG]
LBSR INDATA
BVS  BDC3
LBSR BINASC
STD  PGMCLS
* ]
BDC4 LDD O0,U ASSUME 7 INPUTS IF TF
CMPD #1
BEQ  BDC4A
LDA 837
STA  INPUTS
BRA  BDCS '
BDC4A LDX  #MSG2 OTHERWISE ENTER NUMBER
JSR  [PSTRNG] OF INPUT CHANNELS
LBSR INDATA T )
BVS  BDC4
LBSR BINASC )
STB  INPUTS : \
* 4
BDCS LDX  #MSG2A ENTER NUMBER OF OUTPUT -,
JSR  [PSTRNG] CHANNELS
LBSR INDATA
BVS  BDCS
STB / OUTPTS
*
LDA  #$31 ENTER INPUT CHANNEL
STA  CNTR ASSIGNMENTS AND STORE
LDY #INLISTJ IN LIST
BDC6 LDX  #MSG2D
JSR  [PSTRNG]
LDA CNTR .
JSR  [OUTCH]
JSR  OUT2S
LBSR INDATA
BVS  BDC6
STB  Q,Y+
INC  CNTR
LDA  CNTR
CMPA INPUTS
BLE  BDC6
SUBA . #$31 o
STA  INPUTS
STA  CNTR
k4
BDC7 LDX  #MSG2E - ENTER OUTPUT BANK

JSR [PSTRNG ]
LBSR INDATA
BVS  BDC7



P
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STB  OUTBNK ;
*
BDC8 PULU D RESTORE OPTION CODE
CMPD #1
BEQ  ENTER
BRA  TFENT ,
*
# -- INPUT TRUTH TABLE --
*
* QUTNUM - NUMBER OF BYTES IN OUTPUT VECTOR
* (OFFSET - SUB-TREE DISPLACEMENT IN TRUTH TABLE
* TRUTAB - ADDRESS OF FIRST BYTE IN TRUTH TABLE
+* TREE - ADDRESS OF BYTE FOLLOWING END OF
* TRUTH TABLE
%*
ENTER LDB  #1 CALCULATE TRUTH TABLE LENGTH
ENT1 ASLB EQUAL TO 2R (N=# OF INPUTS)
ROLA .-
DEC CNTR '/
BNE  ENT1
STD  OUTNUM
Jr
ENT2 LDY  #TRUTAB
JSR  [PCRLF]
LDX  #MSG3 PRINT INPUT REQUEST PART ONE
JSR  [PSTRNG] ‘gik
LDX  {#LINBUF
LDD  OUTINUM
JSR  [BINDEC] CONVERT DATA ELEMENT COUNT
LDA  #4 INTO DECIMAL BEFORE PRINTING
STA  0,X (
LDX  #LINBUF
ENT3 LDA  0,X+
CMPA  #$30
BEQ  ENT3
LEAX -1,X
JSR  [PDATA]
LDX  #MSG4
JSR  [PDATA]
*x
LDD  OUTNUM INITIALIZE DATA COUNTER
STD  CNTR
JSR  [PCRLF]
*
ENT4 LDA  #4 INPUT DATA IN GROUPS OF FOUR
sTA  -1,U
ENTG4A JSR  BADDR
BVC  ENT4B
LDX  #MSG5 REPORT ERROR IF NOT HEX
JSR  [PDATA]
BRA  ENT4A . ‘
ENT4B JSR [PCRLF] o
STX 0,Y STORE DATA IN TRUTH TABLE .
LEAY 4,Y
LDX  CNTR
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ENT5S
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]

TF2

TF3

LEAX
STX
BEQ
DEC
BGT
JSR
BRA

LDD
ASLB
ROLA
ASLB
ROLA
STD
ADDD
STD

BRA

—- TABULATE

FNCTN
DIF

PRP
RSLT1

LDD
ASLB
ROLA
ASLB
ROLA
STD
ADDD
STD

LDX
JSR
LBSR
BVS
STB

LDX
JSR
LBSR
BVS
STB

LDX
JSR
LBSR
BVS
STB

-1,X
CNTR
ENTS
-1,U
ENT4A
[PCRLF]
ENT4

OUTNUM

OFFSET
##TRUTAB
TREE

BDCMPIL

A4-6

CALCULATE NUMBER OF BYTES OF
STORAGE USED

CALCULATE DATA DELIMITING
ADDRESSES

THE VALUES OF THE TF=(A/S+B+C*S) --

3 L.S.

4 MQS'

#$80

OFFSET
#TRUTAB
TREE

#MSG20
[PSTRNG]
INDATA
TF1
CONSTA

#MSG218B
(PSTRNG]
INDATA
TF2
CONSTB

#MSG21C
[PSTRNG]
INDATA
TF3
CONSTC

THE INPUT FUNCTION (7 BITS)
DIFFERENTIAL PART OF TF;

BITS OF FNCTN

PROPORTIONAL PART OF TF;

BITS OF FNCTN

PARTIAL RESULT BUFFER

NO. OF BYTES IN OUTPUT VECTOR

PRINT THE TYPE OF

TRANSFER FUNCTION

PRINT INPUT REQUEST
AND ENTER CONSTANT B

PRINT INPUT REQUEST
AND ENTER CONSTANT C



»']

" TF4

TES

CLR
LDA

ANDA -

STA
LDB
LSRB
LSRB
LSRB
STB
LDD
STD
LDA
LDB

ADDD
STD
LDA
LDB

ADDD
STD
ANDB
STD
LDB
LDA
STD
INC
LDA
CMPA
BNE
NQP

LIB
END

FNCTN
FNCTN
#$7
DIF
FNCTN

I7

PRP
#$0
RSLT1
CONSTB
PRP

RSLT1
RSLT1
CONSTC
DIF

RSLT1
RSLT1
#1$FE
,Y++
FNCTN
#30

, Y+
FNCTN
FNCTN
#$80
TF4

BDE-4A
BDC

A4-7

GET INPUT FUNCTION
DIFFERENTIAL PART OF THE TF

PROPORTIONAL PART OF THE TF

MULTIPLICATION OF CONSTB
WITH PROPORTIONAL PART

«

MULTIPLICATION OF CONSTC
WITH DIFFERENTIAL PART

DROP OF LSB

STORE INPUT FUNCTION AND
OUTPUT OF TF

IS END OF FUNCTION REACHED?
NO?...CONTINUE CALCULATIOR
CONTINUE

P DT YPYL S




BDCMP4

BDCMP5

N

o
=
Z
t

PRN1

PRN2

PRN3

PRN4

PRNS

LEAX
PULU
CMPY

BEQ

STX
LDA
STA
STY
BRA

STX
NOP

--- PRUNE

LVLCTR -
PNTR1
PNTR2

LDD
LSRA
RORB
STD
LDA
STA

LDD
STD
TST
BMI
LDD
ADDD
STD

TST
BMI
BSR
BVC
BSR

LDD
ADDD
STD
CMPD
BLC

LDD
ADDD
STD
ADDD
CMPD
BLO

INC

8,X

Y

#0
BDCMP5

4,Y
0,Y
NODBE
LASTX
BDCMP2

MCODE
CONTINUE

BD TABLE ---

A4-9

INCREMENT CURRENT ADDRESS

GET ADDRESS OF LAST INCOMPLETE
NODE FROM STACK AND CHECK

IF ITS THE DUMMY NUMBER

IF SO THE PROGRAM IS FINISHED
IF NOT COMPLETE 'TO' POINTER
OF THAT NODE, ADJUST NODE
ACCORDINGLY AND STORE NEW
LASTX

PRUNING LEVEL COUNTER
MASTER SUB-TREE POINTER
TRIAL SUB-TREE POINTER

OFFSET

OFFSET
1
LVLCTR

{#fTRUTAB
PNTR1 ..
[PNTR1]
PRNS
PNTR1
OFFSET
PNTR2

[PNTR2]
PRN4
CMPARE
PRN4
ADJUST

PNTR2
OFFSET
PNTR2
TREE
PRN3

PNTR1
OFFSET
PNTR1
OFFSET
TREE
PRN2

LVLCTR

. —— - . -

DIVIDE TRUTH TABLE IN TWO

INITIALIZE SUB-TREE LEVEL COUNTER

ADDRESS MASTER SUB-TREE

IF MASTER SUB-TREE IS CANCELLED
SELECT ANOTHER

ELSE ADDRESS TRIAL SUB-TREE
STORE IN POINTER

IF TRIAL SUB-TREE IS CANCELLED D

SELECT ANOTHER,

ELSE BEGIN COMPARISON

PRUNE SUB-TREE IF REDUNDANT
ADDRESS NEXT TRIAL SUB-TREE
MORE SUB~TREES?

IF YES, CONTINUE PRUNING

ELSE ADDRESS NEXT MASTER SUB-TREE

MORE SUB-TREES?
IF YES, CONTINUE PRUNING

ELSE REDUCE OFFSET SIZE
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LDD  OFFSET
LSRA
RORB
STD  OFFSET IF SUB-TREE SIZE IS NON-ZERO
CMPD #2
BNE  PRN1 CONTINUE PRUNING
BRA  MACHINE ELSE BEGIN MACHINE CODE
*
* - COMPARE MASTER AND TRIAL SUB-TREES --
*
CMPARE LDD OFFSET CALCULATE NUMBER OF LEAF NODES
LSRA TO COMPARE = OFFSET/4
RORB ~
LSRA )
RORB
PSHS A,B
LDX  PNTR1 ADDRESS MASTER AND TRIAL
LDY  PNTR2 SUB-TREES
%
CMP1 LDD  0,X COMPARE LEAF NODES IN SEQUENCE
CMPD 0,Y =
BNE  CMP2 ABORT ROUTINE IF NOT EQUAL
LEAX 4,X
LEAY 4,Y
LDD 0,S DECREMENT NODE COUNTER
SUBD #1 AND LOOP
STD 0,S
BNE  CMP1
ORCC {2 SET OVERFLOW FLAG IF SUB-TREES
CMP2 LEAS 2,S ARE REDUNDANT
RTS
*
* —- ADJUST SIBLING POINTERS AND CANCEL REDUNDANT NODES --
*
ADJUST LDY PNTRL ADDRESS MASTER SUB-TREE
BSR  POINTR FIND PARENT NODE AND SAVE
TFR  Y,X
LDY  PNTR2 ADDRESS REDUNDANT SUB-TREE
BSR  POINTR FIND PARENT NODE
LDD 0,Y
LEAY [6,Y] IS PARENT LEFT OR RIGHT OFFSPRING
LSRA OF GRANDPARENT ‘
RORB
BCS ADJ1
STX  2,Y AS APPROPRIATE, CHANGE LEFT OR
BRA ADJ2 RIGHT POINTER OF GRANDPARENT
ADJ1 STX  4,Y TO PARENT OF MASTER SUB-TREE
%
ADJ2 LDD  OFFSET DIVIDE OFFSET BY FOUR TO
LSRA CALCULATE # OF LEAF NODES
RORB IN SUB-TREE
LSRA
RORB
LDY  PNTR2 ADDRESS REDUNDANT SUB-TREE

ey s

~

—r—
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—- CREATE BD TABLE FROM TRUTH TABLE DATA --

INPUT VARIABLE IDENTIFIER
INPUT SUBNODE IDENTIFIER

LAST USED TABLE ADDRESS

TEMP STORAGE

CURRENT ADDRESS POINTER

USED AS AN INDEX TO SEARCH SUB

NODE
SUB
LASTX
TEMP
X-REG
Y-REG

| S R |

o2 o o % 3 o 4 B %

BDCMPIL DEC INPUTS INITIALIZE BUFFER LOCATIONS
LDY #SUB AND STACK
LDA #SFF
STA NODE

BDCMP1 STA 0,Y+
CMPY #SUB+9

BLE  BDCMP1
LDY  #TRUTAB
STY  TEMP
LDD  #0 5 -
PSHU A,B ‘
LDX  TREE INITIALIZE LASTX
STX  LASTX
*
BDCMP2 LDY  #SUB SELECT NEXT NODE AND
INC  NODE PUT NODE AND SUB ID
LDA  NODE IN TABLE
INC  A,Y
LDB  A,Y
STD 0,X .
w
CMPA INPUTS CHECK IF THIS NODE IS AN
BGT  BDCMP3 OUTPUT IF SO BRANCH TO
* OUTPT
LEAX 8,X PUT ADDRESS OF NEXT NODE
STX -6,X IN 'LEFT' BRANCH COLUMN
LEAX -8,X
PSHU X PUT PRESENT ADDRESS ON STACK
LDD  LASTX FOR LATER RETRIEVAL
STD  6,X STORE LASTX ADDRESS IN °‘FROM'
STX  LASTX POINTER, STORE NEW LASTX AND
LEAX 8,X INCREMENT X-REG
BRA  BDCMP2
*
BDCMP3  LDY  TEMP IF NODE IS AN OUTPUT GET
LDD  0,Y++ VALUE FROM VECTOR AND
STD  4,X PUT IN BD TABLE ALSO
LDD  #$FFFF PUT *FROM' POINTER IN VECTOR
STD  2,X
LDD  LASTX
STD  6,X
STX  0,Y++

STY TEMP
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ADJ3 coM O0,Y COMPLEMENT LEAF NODE DATA

LEAY 4,Y ‘

SUBD #1

BNE ADJ3 CANCEL REMAINING LEAF NODES

RTS
»
* —— FIND PARENT OF A SUB-TREE --
* .
POINTR LEAY [2,Y) ADDRESS PARENT NODE AND
PTR1 LDA 0,Y READ NODE ID

CMPA LVLCTR )

BLE PTR2 STOP IF PARENT IS FOUND

LEAY [6,Y] OTHERWISE CONTINUE

BRA PTR1
PTR2 RTS
*

LIB  BDC-4B

\



*
b4
*

MACHINE LDD

MC1

MC2

MC3

MC4

MC5

PSHU
STD
STD
STD
LDX
LBSR
TFR
LDX

Lpa
ORA
LDB
STD

CMPY
BEQ
LDD
ADDD
STD
LEAX

LDA
CMPA
BGT
LBSR

LDD
CMPD
BLS
LBSR
LDA
ORA
STA
LDD
PSHU
LDY
BRA

BSR
L.DD
CMPD
BHIY
LDY
LDB
LBSR
LBSR
BRA

LDY
BRA

A4-12

——- GENERATE BD MACHINE CODE ---

i#0 INITIALIZE BUFFERS
A,B

PGMADD

LASTY

PC1

TREE

TRIM1 .
X,Y

MCODE

OUTBNK WRITE A BANK-SELECT INST
##$EO

#1

0,X

{##0 TEST END CONDITION
MC8

PCl

#1

PCl

2,X

0,Y TEST NODE TYPE
INPUTS

MC6

TRIM TRIM L&R BRANCHES

2,Y TEST IF L-BRANCH PRUNED
LASTY .
MC4

BRANCH WRITE A BRANCH~ON-1 INST
0,X IF L-BRANCH NOT PRUNED
#$40

0,% , /
4,Y

A,B,X STACK R~-BRANCH AND

2,Y FOLLOW L TO NEXT NODE
MC1

BRANCH WRITE A BRANCH-ON-0 INST
4,Y IF L-BRANCH PRUNED

LASTY

MCS -
4,Y WRITE A JUMP-TO-R INST

7,Y IF R-BRANCH ALSC PRUNED
JUMP

UNSTACK FOLLOW STACK TO NEXT NODE
MC1 i

4,Y OTHERWISE FOLLOW R-BRANCH
MC1

. e madr —



MC6

MC7

MC8

MC9

MC10

MC10A

MC11

*

* -- CREATE A

*
BRANCH

LDA
CMPA
BEQ
LBSR
LBSR
BRA

LBSR
LBSR
BRA

LDD
CMPD
BEQ
LEAX
LDD
ADDD
STD

LDD
STD
STX
LDD
STD
LDX

LDD
CMPB
BNE
LDD
LDA
STD
CMPX
BLO
LBSR

LBSR
JSR
CLR
LDA
STA
JMP

LDB
PSHS
LDU
LDA
PULS
STA
ANDA
LSLA
LSLA
LSR

4,Y
#$77
MC7
OQUTPUT
UNSTACK
MCl

SWI
UNSTACK
MC1

0,X
#$FOEE
MC9
2,X
PC1

#

PCl

#$A000
0,X
LASTX
PCl
PGMSIZ
MCODE

0,X
#$EE
MC10A
PC1l

0,X

0, X++
LASTX
MC10
PRINT

DISC
[PCRLF]
$DFES
#$0D
$CC11
$CDO3

A4-13

TEST OUTPUT OR SWI
WRITE AN OUTPUT INST
AND FOLLOW STACK TO
NEXT NODE

WRITE AN SWI INST AND
FOLLOW STACK TO NEXT NODE

OVERWRITE JUMP-TO-EQP
IF IT'S THE LAST INST

WRITE AN EOP INST

REPLACE EE-CODES WITH
PC OF EOP INST

OPTIONAL PRINTOUT ROUTINE

SAVE BD PROGRAM ON DISC
RETURN TO FLEX

BRANCH INSTRUCTION --

0,Y

U
#INLIST
B,U

U

CNTR
#$0F

CNTR

LOOK UP INPUT CHANNEL -
NUMBER FROM INLIST

EXTRACT INPUT SELECTOR
ADDRESS
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LSR CNTR

LSR  CNTR
LSR  CNTR
ORA  CNTR
PSHS Y,A,B LINK TREE TO CODE AND
LDD  PCl WRITE A BRANCH-ON-CONDITION
STD  6,Y INST \
PULS A,B
LDY 2,Y ADD BRANCH-ON-CONDITION
LDB  7,Y ADDRESS
STD  0,X
PULS Y
STY  LASTY
RTS RETURN
*
* _- CREATE AN OUTPUT INST --
*
OUTPUT LDA  OUTPTS LONG OR SHORT OUTPUT?
CMPA #4
BLE OUT1
LDD  4,Y WRITE A LONG OUTPUT INST
ORA  #$80
STD  0,X
LDD  PCl LINK TREE TO CODE
STD  6,Y
LDB  #SEE WRITE A JUMP-TO-EOP INST
BSR  JUMP
BRA  OUT2
d
oUT1 LDA 5,Y WRITE A SHORT OUTPUT INST
ORA  #$CO
LDB  #$SEE
STD  0,X
LDD  PC1 LINK TREE TO CODE
SID  6,Y
0UT2 STY  LASTY
RTS RETURN

*

* --”"CREATE AN SWI INST =--
*

SWI LDD PCl LINK TREE TO CODE
STD  6,Y ,
ADDD #1 WRITE AN SWI INST
STD  PCl
LDA  #$DO
STD  0,X++
LDA  #$A0 WRITE AN EOP INST WITH
LDB  5,Y SWI CODE
STD  0,X .
LDB  #$EE WRITE A JUMP INSTRUCTION
BSR  JUMP TO NEXT PGM
STY  LASTY
RTS RETURN
*

* == CREATE A JUMP INST --
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{ JUMP LEAX 2,X WRITE A JUMP INSTRUCTION
. LDA  #$FO TO PC SUPPLIED IN B-REG
STD  0,X BY CALLING® ROUTINE
LDD PCl
ADDD {#1
STD PCl .
RTS RETURN
x
* -- FOLLOW A POINTER TAKEN OFF STACK --
*
UNSTACK LDY O0,U TEST EOF CONDITION
BEQ UNST2
PSHS X
PULU A,B,X UNSTACK A BRANCH AND
CMPY LASTY TEST IF PRUNED
BHI  UNST1
LDB  7,Y LINK BRANCH TO CODE
STB  1,X IF PRUNED AND FOLLOW
PULS X STACK AGAIN
BRA  UNSTACK :
UNSTl  LDD PCl OTHERWISE FOLLOW BRANCH
, ADDD #1
' STB  1,X
PULS X
UNST2  RTS
%
# - TRIM COLLAPSED L&R BRANCHES --
*
TRIM PSHS X TEST IF L-BRANCH COLLAPSED
LDX 2,Y
BSR  TRIMl
STX  2,Y
LDX 4,Y TEST IF R-BRANCH COLLAPSED
BSR  TRIML v
STX 4,Y ~
PULS X
BRA TRIM2
TRIML  LDA 0,X DOES BRANCH LEAD TO INPUT?
CMPA INPUTS
, BGT TRIM2
LDD 2,X
CMPD 4,X IF SO, IS THAT INPUT COLLAPSED?
BNE TRIMZ
TFR  D,X IF SO, TRIM THE NODE AND CHECK
o BRA  TRIMIL IT*S SIBLINGS
TRIM2  RTS
%
*# - PRINT BD PROGRAM LISTING —-
*
. PRINT  LDX  #MSGl7 PRINT LISTING OF PGM
i JSR  [PSTRNG]  STARTING WITH PGM NUMBER
.. LDD  PGMNUM
JSR  [OUTCH]
TFR B,A

¥
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JSR
LDX
JSR
LDY
LDD
STD

PRNT1 LEAX

JSR
JSR
LDX
JSR
LEAX
STX
JSR
LDX
JSR
BSR
BVS
JSR
CMPY
BLS

PRNT2 RTS

*
*
*

-~- SAVE BD

DISC LDX

JSR
JSR
CMPA
BEQ
LDX
LDY

DISCl LDD

STD
CMPA
BNE
LDD
STD
LDX
LDD
BSR
TFR
BSR
LEAX
LDD
BSR
TFR
BSR
LDD
STD
JSR

DISC2 RTS

%
*
*

[ouTCH]
#MSG17A
[PSTRNG]
MCODE
#0

PC1

0,Y
OUT4H
QUT2S
PCl
OUT4H
1,X

PC1
QUT2S
0,Y+
OUT4H
ESCTRP
PRNT2
[PCRLF]
LASTX °
PRNT1

{

A4-16

PRINT mP ADDRESS OF DATA

PRINT BD PC NUMBER

PRINT BD OP-CODE
CHECK FOR 'ESC* HIT

RETURN g

PROGRAM ON DISC =--

#MSG6
[PSTRNG]
[INCHE]
#'N
DISC2
#LINBUF
#MSG7
0,Y++
0,X++
#4
DISCl
PGMNUM
$C089
#$C090
MCODE
HEXASC
B,A
HEXASC
1,X
LASTX
HEXASC
B,A
HEXASC
{##$C080
$CCla
DOCMND

{

PRINT DISC TRANSFER REQUEST

ENTER REPLY
IF NO RETURN TO FLEX

OTHERWISE CALL SAVE SUBROUTINE
FROM FLEX

LOAD COMMAND STRING

ADD PGM NUMBER

ADD MEMORY BOUNDS

RESET LINE BUFFER POINTER

CALL DOS

-- INPUT EDITABLE BINARY DATA --

4
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. . )
INDATA LDX #LINBUF FLEX LINE BUFFER
JSR [INLINE]
LDX {#iLINBUF
JSR [DECBIN] CONVERT DATA TO BINARY
RTS RETURN
*
* —-— CONVERT BINARY TO ASCII -~
* -
BINASC LDX J#ILINBUF FLEX LINE BUFFER
JSR  [BINDEC] ,
LDD -2,X LOAD LAST TWO CHARS.
RETURN '
* N
% -~ CONVERT HEX TO ASCII --
*
HEXASC PSHS A SAVE NUMBER
LSRA '
LSRA N
LSRA
o, LSRA -
BSR HEX1 CONVERT FIRST PART’
*PULS A
ANDA  {i$F CONVERT SECOND PART
HEX1 ADDA {#$30 % o
CMPA #$39 CONVERT NUMBER TO ASCII
BLE HEX2
ADDA {7 v
HEX2 STA 0,X+ SAVE ASCII NUMBER o
RTS ’
*
* -~ INTERRUPT PRINTING WITH 'ESC' -- "
*
ESCTRP LDA ACIASR KEY HIT?
BITA {1
BEQ ESC2
LDA ACIADR READ CHARACTER
ANDA #$7F
CMPA {#$1B ' )
BNE ESC2 RETURN IF NOT ‘ESC®
ESC1 LDA ACIASR
BITA #1
BEQ ESCL WAIT FOR ANOTHER HIT
LDA ACIADR
ANDA__ #$7F
CMPA #$1B *
BEQ ESC2 RETURN IF ‘ESC'
CMPA #$0D
BNE ESC]1
ORCC {#2 SET V-FLAG IF °'CR'
ESC2 RTS RETURN
*
* -—— BDC-4 BUFFERS AND MESSAGES®--- ;
*
MSGO FCC $A, 'Output hardcopy requived (Y*/N)? ',$4

MSG1 FCC  $A,° BD PROGRAM COMPILER V4.1'

. - -



MSG2
MSG2A

MSG2B
MsG2C
MSG2D

MSG2E .

MSG3
MSG4
MSGS
MSG6
MSG7
MSG17
MSG17A

MSG20
MSG21B
MSG21C

TRUTAB

'

. r

. A4~-18 .
4
FCC  $D, $4,$A
FCC 'l - Combinatorial or sequential logic '
FCC * (TRUTH TABLE)', $D, $A
FCC '2 =~ PID control (TRANSFER FUNCTION)'®
FCC $D, $4,8A $
FCC® 'Enter option ‘tode - ', $4  —y
FCC ‘'Enter number of inputs (up t3~8) - ', $4
\FCC ‘Enter number of output channels '

FCC *(up to 12) ~ ',$4
FCC *Enter BD program number - ',$04

FCC '‘Enter program class - ', $4
FCC .'Enter channel assignment for input #',$4
FCC 'Enter output bank assignment - ', $4

FCC *Enter ', $04 .
FCC ' * output words in HEX ', $04 )
FCC ' *% ILLEGAL DATA, RE-ENTER %*%', $D, $4

FCC 'Save new program on disc (Y*/N)7 ',$4

FCC  'SAVE,1,BDxx.BDP, xx0xX, xxx%’,$D, $4

FCC $A, 'BD MACHINE CODE - PROGRAM NUMBER ', $04

FCC °*ADDR PC  CODE',$04,$0D - ’ ,
FCC  '==== === ———=' $D,$A,$4

FCC *The transfer function is in the form °*

FCC  * (A/S+B+C.S) *,$D,$A ¥

'FCC  'Enter constant A-',$4
FCC 'Enter constant B-',$4
FCC 'Enter constant C-',$4

EQU =

Led . ) \\



