
1

"

1'111 DKSIGM OP A HYBIUD KIC&OPlOCKSSOÏ./

8D1U.Y DlCISIOli PiOGIWIMABLE eotn"ROLLU

by

Robert Douglas Hudson

\

A thes1s subm1tted to the Faculty of Graduate Stud"es and Research 1n

partial fulfUlment of the requirements fo~e degree of

Master of Engineering

Department of Mechanical Enginee~
McG111 University

Montreal, Canada

October, 1984

Copyrlght te 1984. Robert Douglas Hudson

....

/

. .

(

-ii -

THE DESIGN OF A HYBlÙn KICROPIWCBSSOI./'\

BDIAJlY DECISION PIIDGIWtKABLE CONTlOLLBIl'

The design and implementation of a' hybrid microproce8sor/binary
'" J

decision (mP/,BD) progr,allllllable control,ler 18 presented in terms of both

hardware and software. This hybrid configuration enables ON/OFF control

tasks to' be realized, 1n linear time" by the BI) processor, while

~odulating co~trol tasks are performed conve~iOnallY in the mP. In

addit1on, mP-assisted BD program and hardware manàgeruent, and operator-

to-~p corumunic~J:ion are made possi b 1 e. A prototy,pe programmable

controller, consisting of two stand-alone processors, was const,f,ucted.

An operatlng system, BD09, was developed -which supports aIl process

tasks and internaI system functlons. As weIl, a mP-based optlmizing
6

compiler was ~ritten ta translate high level logie descriptions into
". \

'exeeutable BD machine code.

The theory of binary dee1s1on process1ng ls presenfed and BD ...
\

computational charact'erlst1cs: are analYzed.·, A new algorithm foor the

The pefforma~ce of the hyb~~d . reduct10n of B~ ,logic 1s also describ~d.
?'

co~troller 1s~ eval uated and: 'corupared to, that of a boolean, single-bit,

J Indu5triaf Control Unit through two application examples. A substantial

lmprovement 1n time and space coruplexity 1s demonstrated.
f

/
1

/'

1
1

/

/
/

----. ,,--'~--~ .. -............... ------

1

. •

l '
(1

- iU

-(RKSmŒ
tl , '

CONCEPTloH D'UN COHTllOLEUR PR.OGlWIKABLE HYBRIDE COMPOSE D'UN
l ,

HICitOPHOC&SSKUH. KT D-UNK MACHINE DE DECISION BlNAIH.E

La conception et la réalisation d-un contrôleur programmab l~

hybride, compo8~ d'un microprocesseur et d'une machine de décisio>n
~ 1;' l ,

binaire (mP/BD) sont d6crlts en termes de matérie l ainsi que de

!~logicie 1. Cette Cconfiguration 'hybride permet au processeur BD

#'
d'effectuer en temps linéaire les tâches de contrôle logique et au même

,moment, le mP exécute les tâches de contrôle proportionne 1. En plus, ce
(

systême permet: 1) une gestion du programme et 'du matérie l BD par le mP

et aussi, 2) une communication entre l'opérateur et la machine BD. Un
, ,1 - .

prototype de contrô leur programmab le, compor tant deux processeurs

lnd~pendants, a êté construit. Un système d'exploitation 8009, qui

effectue toutes les tâches de processus industriel' ainsi que les

fonctions inhérentes au, système,. a été développ6. Finalement, un
... f;,-

compilateur optimisan~ "qui tr~du1t des systêmes ,logiques combinatoires .
sous forme 'compIéhensible par la machine BD, a été êgalement développé.

La théorie et les caractéristiques du processus de décision binaire

sont' présentées et analysées. Un nouvel algorithme pour la rêjuction de

la logique BD est aussi décrit. La performance du contrôleur hybride

est êvaluée et comparée à celle d~une Unité de Contrôle Industrielle

(MCI4500) pour deux applications ~ypiques.
, 1

Une amélioration

substantielle de la complexité dans le temps et dans l'espace est
"

démmtrée lorsque la technique développée est utilisée.

!
/

/

/

-

r -

- iv -

The work pre8ent~d in this thesis was carrled out under the

8upervision'"of Dr. Paul J. Zsombor-Murray and Mr. Louis J. Vroomen. The

author wishes to exprèss his deepest gratitude to them for the guidance , i 0

and encoura~ement recei ved during the course of this study. The work
•

was supported by grant A 4219 of the Natural Sciences and Engineering

Research Counci l'of Canada.

Special thanks are also due to Mr. Meir Levi and Mr. A~tun "Cio Kucuk

,who. in addition to being good friends. contributed mater1ally to the

succeS8 of ,this project. Finally. the 'author \oT1shes ta thank his \oTHe.

Anne Sage-Hudson. for he,r love and support. and -for her cheerful apd

carefu 1 typing of the manus crlpt, wh1ch' was prepared on the word-

processing fad l iUes of the McG1l1 Cancer Centre.

"

44#4===

/

, .

ACIA
BD
CLK
CLR /
DAG
eO~HUX

EOP
EPROM
EW
IC

ICU
IN
1/0
IRI
ISP
IV
LCU

" un
LMlJ
HtolU

IIP"
Mp
HUX
NS
OB
OP
OR
OIS "
OV
PC

peu
PIA
PI~
PLA
PLe
PM
PROM
psu
[{OK
RI,S

(}
'.

---- ... -~ ----~ ~ .. ~--,

. '

-v-

LIST OP ABBUVWIOIIS ,
J

Asynehronous COll1lDunlcations Interrace Adapto!'
Binary Decision
Clock
Clear
Directed Acycl1c Graph
Demultiplexor
End of Program
Erasable Programmable Read On1y Melllory
East/West
lntegrated Cireui t

Industrial Control Unit
Instruction
Input/Output
Intelligent Reflex! ve Interface
Instruction Set Proces8or
Input Variable Reg1ster
Log1e Control Unit
Light Emitt.ing Diode
Libra,ry Management ~nit

He mot y Management Unit

Mieroprocessor
Program Memory ,
Multiplexor
North/South
Output Bank ~egister
Operation Code
Output Register
Operating System'
Output Variables
Program Counter

Programmable Control Unit
Peripheral Interface Adaptor
Proportional Integral and Derivàt1ve
Programmable Logi e Array
Programmable Logie Contra lIer
Pattern Matehing Aigorithm
Programmable Read Only Memory

~

PrC?,Jram Seheduler Unit
Read Only Memory
Run/Stop

o.

."

, -,

,
•

, .

J

..

-Rf X
alA
spn
ss \
t'If.. \
VLSI
XOIt'

,
. ,

\ ,

1

•

- vi-

LIST 01' AlIlt.BYIA1'1œ5 (coot 'cl),

Real"'T1Jae' Ex~cutive •
Read/wdt~ -
Single-Po~~/S1ngle-Throw Svitch
Single Step­
Transistor-Transistor-Logie
Very Large Scale Integration
Exc lus ive-oa

"

\

\
\
,

\

•
1/

..

..

~----~-~_·'_--"""""...,.,,,,,j,,,"'_""_11Oi _IIIIii!!!!_ - ,;;"." """"""· e..-..... --...::--------

"

"

...

. ,

"

vii

TAlLE OF COIITBIIITS

CIIU'IKIl 1 - urnoouCTION

1.0 General Introduction
1.1 Introduction to Programmable Logic Controllers
1.2 Introduction to Binary Declsion-Based Programmable

Controllers

1.2. 1
1.2e 2

Blnary Decision Processors
The Micr:oprocessor IBinary Decision Hybrld
Controller '

1.3 Binary Decision Literature Sur vey
1.4 Research Motivation and Objectives

CIIAP'ŒIt.2 - BIliAltY DECISIOH THEOIlY

2.0 Introduction
2.1 Binary Decision ~rogralDS
2.2 The Binary D~clsion Representation of Comblnatorial

Swltching Functions

J . 2.2.1

2.2.2
2.2.3
2.2.4

""1

The Binary Decls1on-Combinatorial,Circult
Analogy \
Binary Decis ion Diagrams
Analysis of Binary Decision Method
Minlmization of Binary Decision programs

2.3 The Binary Declaion Representation of Sequentlal
. Swltching Functions

Pa,ce

1-1
1-4
1-10

1-10
1-16

1-18
1-28

2-1
2-1
2-5

2-5

2-11
2-(5
2-22

2-27

2.3.1 The Binary Decision-Sequentlal Circuit Analogy 2-27

CIIAP'rKIl 3 - THE DESIGH OF THE HYBRID IIP IBD SYSTEM

3.0 System Overvlew
3.1 mP System Architecture

3.1.1 mP System Organizatlon
3.1.2 'mP Prototype Hardware Design

\

3-1
3-2

3-2
3-3

" '

•

(-,

- vi:U. -

c

TABLE OF COlfIENTS (cont"'d)

CllAPTKIl 3 (cont'" d)

3.2 Hinary Decision Processor Design

3.2.1
3.2.2
3.2.3
3.2.4

Physical Description
programmer's Model
Instruction ~et
Hardware Uesign

3.2.4.1
3.2.4.2
3.2.4.3
3.2~4.4
3.2.4.5
3.2.4.6

Gontroi Section
program Memory
Sys tem Glock

,

Field Input ~ection
Field Output ~ect1on
Timers and Flip-Flops

3.3 mF/BD Interface Ueslgn

j CIIAPUIl 4 - aPI BD HYBJUD PLC OPERATING SYSTEK DESIGM

4.0 Introquct1on
4.1 Th.e I:ID09 Operat1ng System

4.1.1
4.1.2
4.1.3

4.1.4

Interrupt IJecoder
Real Time l!.xecutive
mP and fiD program Scheduler and Memory
Management Uni ts
mP and !iD Ll.brary Management Units

4.2 The BUlSUG Operating System

4.2.1
4.2.2

program Initl.alization
K~al T1me Executive

4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4

Interrup"t Decoder
l:IIJS'WI -S'ervice l<.outine
ISDHW l Service Kouti ne
Keyboard Service Koutine

4.2.3 fiD Memory Management Unit .
4.2.3.1 '"'-Intertace Oevice Drivers

4.2.4 Miscellaneous Utility Subrout.i:1tS

\

Pàge

)-3

3-4
3 .. 7
,3-8
3-12

3-12
3-27
3-29
3-:.29
3-31
,3-34

3-36

4-1
4-2

4-2
4-4
'4-10

4-12

4-13

4-14
4-15

4-16
4-18
4-18
4-19 ,

4-20

4-29

4-31

"

"

. ..

(

- ix -

TAHLE OF CONTENTS (cont' d)

CHAPTKR 5 - RlNAK.Y IJKCISION PlmGRAM OPTIMlZATION

5.U Introduction
5.1 Hinary Decision P:rogram Upt~mization
5.2 Optlmizing Compiler Design

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

InHialization
Truth Table Generation
HD Table Generation
BD Table Optimization
Machine Code Generation

5.3 ~ Optimizing Compiler Analysis .

5.3.1
5.3.2
5.3.3
5.3.4

The Mathemat~cal basis ot tne PMA A~gorithm
Optlmization è:fficlency
Computational Time Complexity
Computational Space Complexi ty

"
CHAPTKR 6 - mP/BD PLC APPLICATIONS

6.0 Introduction
6.1 Example l - Traffic Intersection Controller
6.2 txample 2 - Industrlal Hoiler Contro.i

6.2.1
6.2.2

Hurner Automat~on System Functions
Combustion Control System

~ 7 - CONCLUSIONS ")

7.1 Summary of l{esults

7.1.1
7.1.2

.. 7.1.3

mP/tlD Hybnd Controller
BD Program Compiler
Binary Decis1.on Analysis

7.2 Recommendations tor future Work
" '

APPENPIX 1 - A SliORT llliVLEW OF BOOLEAN ALGEBRA

,
"",.

\
\
\

APPKNDIX II - I!:iP IlliPlŒSIiliTATION OF COMPUTER STRUCTUllliS

Page

5-1
5-;1'
5-2

5-2
5-4
5-5
5-11
5-1,]

5-21 -

,5-21
5-27
5-30
5-33

6-1
1>-1
0-14

b-lb
6-20

, \
• 7-1 1

7-1
7-3
7-3

7-4

l<,-l

Al-l

A2-1

J"

..

- x -

TABLE OF COlfrEl'ITS (cont' d)

Page

APPKHDU III - BDBUG PROGRAK LISTING
, , AJ-l

APPE.NDIX IV - BDC-4 OPTlMIZIHG COHPlLEk LISTING A4-1

- xi -

LIST OF FlGUK&S AND TABLES

CHAPTKIl 1 - llITIlODUCTI08 "

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10'
1.11
1.12

1.1

Figures

Programmable Logic Array.
Finite-state machine model.
Finite-state sequence concroller models.
MC14500-based Industrl.al Control Unit.
BD representacion of switching logic.
Computational workload: HO vs. Boolean logic.
mP/BD sequence controller block diagram.
Early BD program by C.Y. Lee.
Boute's BD machine.
BD diagram by ~.B. Akers.
Holck BD mach1ne block diagram.
mP/BD integracion scheme.

Tables

Sequence concroller comparisons.

CIIAPTU. 2 - BDlAi.Y DBCISIOII THEORY

2.1
2.2

2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
2.11
2.12

Figures

IF-THEN-ELSE schematic representations.
Sequence controller evaluation of combinatorial
switching functions.
BD representat10n of the taggle flip-flop.
BD diagram for a combinatorial switching function.
Conversion of truth table logic to BD logic.
BD diagrams for the fundamental logic connectives.
Conversion of Boolean equatlons ta BD diagrams
using the Shannon series expansion.
BD representat10n of multi-function logic.
BD logic minimization techniques.
Analysis of the trellis structure.
Example of a minimized BD program.
State descript10ns of the blnary serial adder.

Page

1-7
1-7

1-12

1.-2
2-4

2-6
2-12
2-14
.l-16
2-19

2-21
2-23
2-26
2-28
2-30

- xii -

LIST OF FlGUIlKS AND TABLES (cout'" d) ..,.

œAP'ŒIl 3 - 'l1II DESIGII OF THE HYBltlD aP IBD SYSTEM

3.1
3.2
3.3
).4
3.5
3.b
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.1
4.2
4.3

Figures

80 machine prototype layout.
Instruction word format.
80 processor block d~agram.
Program Counter circuit diagram.
Logic Control Unit circuit diagram.
Logic Control Unit timing diagram.
Clock-Interrupt Circuit diagram.
Clock restart ciJcuit timing diagram.

1 /'

Auto/Manual SOutrol Interface circuit diagram.
Program memory circuit diagram.
System clock circuit diagram.
Field input section circuit diagram.
Field output section circuit diagram.
Timer hardware circuit diagram.
mF/BD Interface Module circuit diagram.

Tables

BD instruction set.
Timer hardware circuit truth table.

-.P/BD HYBUD PLC OP&KATIHG SYSTKM DESIGII

filgures

8D09 oiS black diagram.
program size reduction by partition.
Hardware self-test program.
BD8UG Interrupt Decoder algorithme
BDBUG hardware interrupt service routine algorithme
BD memory change algorithme
BD block memory e,xamine algorithm.
HD address translation algorithme
BD load memory algorithme
Restart BD clock algorithme
Halt BD clock algorithme
Single step BD algorithme

Tables

BDBUG command set.
MC6~21 PIA control codes.
8-bit control register codes.

Page

3-5
3-9
3-13
)-14
3-16
)-19
)-20
3-22
3-24
)-28
3-30
)-32
3-33
3-35
)-37

3-9
3-35

4-3
4-b
4-9
4-17
4-17
4-l)
4-23
4-l6
4-26
4-26
4-28
4-l8

4-21
4-21
4-l4

,
- xiii -.,

'---..

LIST OF FIGURHS AND TABLES (cont'" d)

a&APTEIl 5 - BIli.üY DECISION PROGIWt O~lKIZATION
1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13

5.14
5. 15
5.16

5.1

Figures

BD program compiler bloek diagram.
Truth table output veetor.
Control funetion input format.
BD table record format.
Preorder BD diagram traversal.
BD table representation of XOR function.
Minimization of an 8-input AND gate program.
Reduction of isomorphie program logie.
PMA algorithm operation example.
Maèhine code generation subroutine flowehatt.
BD machine code program for the 2-bit magnitude
eomparator.
Log1e reduction eharaeterlsties of the PMA algorithme
Affect of variable distribution on BD logie
reduction.
Affect of variable ordering on BD logie reduction.
Example of a non-binary-complete BD program.
PMA algorithm computational time eomplexity.

Tables

2-b1t magnitude comparator truth table.

CIIAPTU 6 - KP/BD PLe APPLICATIOItS

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.1
6.2
6.3

Figures

Traffic intersection controller state d1agram.
80 diagrams for each traffie controller state.

~

BD program for the tratfie eontroller. ~
MC14SUO program for the traffie codtrolfer.
Burner automation system sUste diagram.
BD diagrams for eaeh burner controller state.
BD program for the burner automation eontroller.
MC14SUO program for the burner automation controller.
Combustion control system sehematie diagram.

('ables

~xternal ti~E, hardware for the traffie controller.
80 proeessor 1/0 for the traftie controller.
BD proeessor 1/0 terminal assignments for the
traftie eontroller.

--- -------- ---- --------

Page

5-3
5-3
5-6
5-6
5-10
5-10
5-12
5-15
5-18
5-22
5-23

5-25
5-l6

5-29
5-29
5-34

5-16

/)-2-
6-6
6-9
6-10
6-17
6-24
6-l9
6-32
b-37

6-4
6-4
6-4

-

()

- xiv - '

LIST OF FIGURES AND TABLBS (cout' d)

CHAPTKR 6 (cout'd)

--

b.4
0.5

b.b

b.7

, .~

Typical package boiler field 1/0 requirements.
hxternal timer hardware for the burner automation
controller.
BD processor l/O,for the burner automation
controller.
HD processor 1/0 terminal ass1gnments tor the
burner automation controller.

.-

/

~. -------'~---·~-"--~-'_ ... = ______ ._---• ..,''''''u ...• ___ .-,_---

J
1

Page

b-15
b-15

b-22

b-.23

/

-~-----------~~~~~~~~~~- -~- --- - --

1-1

CHAPTKJl 1

DITIlODUCTIOIi

1.0 Geaera1 Introduction

lndustrial process control can De regarded as a means to produce a

set of responses to a set of stimuli, i.e., ta generate control actions

in response ta measured process variables. The procedures by which the

control actions are produced are often divided into two categories;

logical and analog. Logieal procedures are satisfactorily described by

a few binary digits, or bits of ~nformation, which are processed by

Î
simple digital logic circuits. Analog control procedures are best

described by real numbers or, at least, by Many bits. They are

processed by analog circuits or by digital processors capable of fairly

precise arithmetic.

A "hardwired" controller is composed of the minimum circuitry

necessary to serve a specif~ed process. This traditional approach tends

ta produce ,the faseese, physically smallest and most energy efficient

,implementatlon of a control procedure. However, except in circumstanees

in whlch these attributes are exigent, modern industrial controllers are

now designed around programmable automata which ofter the advantage of

standardized hardware components with the flexibility ta accommodate

virtually any control procedure.

As a result dist~ibuted mieroproeessor (mP) networks are gradually

replacing conventional hardwired analog equipment, i.e., of the second

category, tor continuous control applications, while programmable logic
\ ..

i

--1~_

(

1-2

eontrollers (PLC) are replaeing diserete eomponent gate and relay logie,

i.e., of the first category, for ON/OFF control. This thesis presents

the design of such a PLe wh1ch ia based in part on a "binary declsion"

programmable automaton. ,

, • Most contemporary PLe designs use table-lookup-baaed PLA/ROM

archi tectures' and fin1te-state machine or micropro,ceaaor archi tectures

which operate on encoded Boo lean sum-of-produ'cts expressions.

Unfortunately, many program steps are required to evaluate aIL but the

most trivlal Boolean swltching functions. ln facto the number of steps

increases exponentially wlth the number of binary input variables needed

in the comput:atlon. As weIl this approach ls limited to the ,seriaI

generation of single, binary-valued control functions.

For these reasons. switching funetion design methods, more

efflcient than Boolean equations, were sought and ~n 1959 Lee devise~ an

improved technique which he called binary decision (BD) programming

[Lee59]. He demonstrated that this approach alwayslevaluates switching

functions in a number of stepa equal to or less than the number of input

variables. The binary decision approach can also generate multiple,

parallel-output switching functions. However, the practical

Implementation of binary decision programming to the design of

programmable sequence controllers awaited the design of suitable

hardware. a formaI 10gle rep'resentation and the development ct

mlnimization methods.

Unllke Boolean 10gle, the mathematical basls of binary deeision

logie was not immediately evident. :Hnee it did not seem amenable to

algebraic manipulation, Lee thought that formaI logie reduction

· , t
1-3

(,
procedures such as Karnaugh mapping did not exist. BD program

simplification was a cut-and-try effort which re lied on the intuition

and experience of the programmer.

The research presented in this thesis describes the design of a

programmable controller system which includes a prototype binary

decislon-based sequential automaton for the execution of ON/OFF process

control functions. This controller- is integrated into a conventional

microprocessor system 80 that compleK control functions invol ving bath

ON/OFF and proportional tasks may be performed concurrently and

effic1ently. Ta exploit program optimization or to adapt the BD control

logic to changlng process conditions, the microprocessor also acts as a

supervisor to the BD machine. Updated control routines are transferred

by the mP to the BD p!=,ogram memory in the same manner as it stores data

into lts own me~ory."

A mathematlcal basls for blnary decislon loglc, developed from

Boolean algebra, la also presented. lt ls used to analyze the

computational characterls"tlcs of the binary declsion process. FormaI

logic minimlzatlon procedures are developed. A functional BD program

compiler is described which accepts switching funct10ns presented in

truth table form. This compiler reduces them to a binary decision

structure and translates this logic into BD machine language.

Flnally, a real-time process control operating system 1s described

which performs job schedu11ng, 1nt~r-processor and operator

cOIDIDunicat10n functlons and program 11 brary / sys tem memory management

tasks. The program supports multi-programmed BD processes and maintalns

a BD program 11brary ln dlsk storage.

1-4

(1.1 IDtroductlpn to Progr...able Loglc CoDtrollera

A programmable logic controller i8 an industrial process control

device used to implement ON/OFF control funetions, e.g., in chemical

batch processing, eleetromechanlcal machinery and motor control. ON/OFF

control 18 characterized by signal type, i.e., a binary digital signal,

and by control function type, i.e., combinatorial or se.quential

8wltch1ng funct10ns which do not require arithmetic process1ng.
'.1

Programmable logic controllers have replaced traditional hardwired

re 1ay and gate logic circuits in many appl lcations because of the high

cost ot design, fabrication, testing, installation, startup and

maintenance of dis cre te component circui ts. In addition program

modification is a fairly simple task with stored program automata

whereas it often requires major redesign of a hardw1red system. In

other words, hardw1 red logic is i nf leKi b le and eKp~nsi ve while

programmable logic i8 very flexible and economical. Although Many types

of, programmable log1c controllers exist, they all consist of a basic

control circuit and a program memory. The control unit la uaually one

of the following:

1) Programmable Logic Array (PLA). A PLA is an integrated circuit

containing an array of semlconductor logic gates in which inputs and

outputs are connected by a cross-bar matrix of a semiconductor Read Only

Memory (ROM). Any gate logic circuit represèntation of a Boolean sum-

of-produets expression can be implemented simply by programming the

requ1red erasure pattern ot cross-point connections. This i8 done

(during manufacture (ROM) or in the field (Programmable Read Only Hemory

\)

1.

1 •

1-5

... \
- PROM) leav1ng on1y those connections which define the logic. The

connections may be conductive links, diodes, transistors or invertors

[Korn77}.

Two gate matrices are contained in the PLA logic gate array. One

logically ANDs inputs together to form minterms or implicants of the

function while the second ORs these" minterms together to define complete

switching functions. Up to 2° parailel functions of the n input

variables ean be programmed iu this way. The method is quite economical

since gating for unused input combinations need not be provided. A PLA

ls illustrated in figure 1.1.

A PLA-based control 1er is indlcated when the control funetions are

strlctly combinatorial functions of a relatively small number of Boolean .,

variables. As ROM access times vary between 35 and 1500 nano-seconds,

outputs are available in periods comparable to those of high density

circuit gate logie de lays. Al though mul ciple functions are comput'ed ln

parailel, these functions are 11mited to single-bit output. As weIL,

this approach cannot accolDlllodate sequential logic or outputs of tlmed

duratlon.

2) Flotte-State Se9uential Automata. A finite-state machine i8 an

abstract model of a sequential switchlng function. A sequential circuit

differs from a combinatoriai circuie ln ehat the outputs are contingent

upon both the current inputs and the pareicular sequence of previous

inputs to the circuit, represented by internaI circuit states. Examples

of finite-state sequence controller applications include vend1ng

r)

machines, arcatle games and traffie control lights [Koha70].

-- ----......,...."... " ~ ~
. '--.,. ___ ~ __ ._...,-jS,.q---------"""'4I-_____ """" __ '_'-"-*-"'"--

.-------------~----------- -~-

..
1-6

\'

Finite-state controllers are, mode lIed as shown in figure 1.2. The

next internaI state of the machine is computed by a com'binatorial

fun'ction of current inputs and current state. The output of this

tunction is introduced to a memory device, often implemented as a latch

or aD-type t lip-f lop, which l"e~ains the current s tate unti l the new ..

state i8."latched"~n" or stored, e~ther by a synchroi1izing pulse fram an

external clock or by a change of inputs. Switching'tunction outputs are

generated by a second combina~~rial function of external inputs and by

the present state. These . combinatorial circuits are frequently

imp-l'emented as PLAs or' may be. stot:ed in ROM as a set of program

instructions sequentially executed under the control of a program

counter. Figure 1.3 illustrates sequencl!! controllers based on a) PLA

logic and b) stored progltam logic.

,. State machine based ·programmab,.le 'controllers are used in low-level

control applications because their mass-produced hardware is fairly

econQmical land the control logic ls not usually altered during the
~

lifetime of' the product. Standard off the-shelf components are used to
.

design hardware. This limits the development cost ta that of designing

the control sequence itself.

3) Single ~ Mul ti-bi t M~croprocessors. Combinatorial, sequential and

even proportional control algorithms can be executed by single-or multi-

bit microprocessors using their arithmetic and logic processing power.

The incentive to use microprocessor-based PLCs was the simplification ot

peripheral interfacing to equipment such as printers and recorders for

(
the generation of program documentation and status reports, 0 the

lmproveme~t of tault diagnoais capacity reaident in the PLC and the

1

i
,~---. --- ----- ,-,.------ -. ". -,

(
\

1-7

ABD

1 Aiië ..
'--

,

ARr

l'

ABC

L-) r-
D ë cil A A

Ql = Aie +- ABë + Aië
Q2 = ÀBé + Aië + ABD

Q3 = Aie + ABD

~
\

9 1
L-)

figure 1.1 Programmabl~ Loglc Array.

FIELD
INPUTS

SYNCBRONIZING
v CLOCJC. __;."

FIELD
OUTPUTS

----...... DIGITAL t----.....

CURIDIT-STATE
INPUTS

LOGIC

STATE
KEMJRIES

NEXT-STATE
OUTPUTS

\ --

figure 1.2 Finite-state machine model.

_ ~ ... ___ ,. _____ ~ ... _ ~-., _ .. ~-~~!\WIi~J.t'ti7"r ~~-~----~"- _ ... ~. ~--,

'.

'.

a
cl

.
'" 1-8

.,. L
(,

r AND-GATE PLA "'1 / OR-GATE PLA ""
,

, ,

" ..,)
,

~

,
INPtrrS D D~ STAn: 1 OU'I'PUTS

! ~ ~
OUTPUTS

(al

..

OUTPUTS

(b)

figure 1.3 Flnlte-state sequence controller models.
(a) PLA-based logic and. (b) stored program log1e.

(

,,>'

...

,

o

1

1-9

exploitation of conventiona1 programming languages to simplify the

production of control programs from relay ladder diagram, gate logic

diagram or control floW'chart process descriptions. As a result man y
l

tr'aditional computer programming languages such as FORTRAN and BASIC

have also been adapted to ipclude process control statements.

Microprocessor hardware ls we Il developed and i,nexpensl!ve, and

programming techniques are weIl understood.
1

<
However, in switching logic applications, the parallel architecture

of common 8-bit or 16-bit microprocessors is often a liability.

Programs that"consist Of' encode~lean sum-of-products expressions
'\

descri~ing the switching functions to be, realized, examine singIe- bit

variables serially and produce single-bit results. Most conventional

microprocessor-archltectures cannot access single accumulator bits in a

straightforward tnanner. Some indirect means of isolating individual

bits such as bit-maslting or shifting the accumulator contents into the

carry-bit must be employed to emulate seriaI input or output. In

addition ta introducing this considerable program instruction overhead,

these techniques make it difficult to permute the arder in which

variables ire tested.

The~otorola MC14500 single-bit. microprocessor, called an

t
lndustriak Control Unit (leU), has recelved considerable attention tor

'--!.)

use in 'a programmable contrpller design (Taba81,Greg77 l. The leU system

z;equires a mul ti-bit mieroprocessor-based, development faeility to

campi le machine code programs from gate logi<c or re lay ladder

representations. Furthermore the leU evaluates functions in a purely

seriaI manner. This lengthens the cycle time of the control algorithm

"

f

1-10

reducing the contr01ler's effecti veness in fast time-constant processes.

The seriaI evaluation of output variables may also cause incorrect

control actions to take place if a group of output variables i5 required

to appear simultaneously to define a certain process state, e.g., as

input ta a digital-to-analog converter. An leU system 15 illustrated in

figure 1.4 together with a sample program.

It will be shown in chapter 2 that a large number of program steps

are required to evaluate aIL but the mdst trivial of Boolean

expressions. This number increases exponentially with the number of

input variables applied to the control 1er. ln addition, microprocessor

instructions frequently consist of Many bytes of machine code and

consume several clock cycles to execute. These factors combine to

increase the ove~ll cycle time of the control algorithm, an important
..... ,~

parameter in the selection of programmable controller equlpment in Many

industrial applications.

The. characterlstics of three main programmable controller

architectures can be defined in terms of mode of operation, speed, cost,

complexity and tlexibility. The comparison &ummarized in table 1.1 was

previously described by Tho et al {Tho79].

1.2 Introduction to Binary Decision-Based Progra-.able Cqntrollers

1.2.1 Binary Decision Processors. A binary decision processor lS a

flnite-s~.te automaton that evaluates combinatorial or sequential logic

represented as a binary decision program instead of a Boolean equation.

Figure 1.5 ill ustrates a binary tree f lowchart representing a typical BD

J

~ ,

../

""'"' \

RAM
IiEMORY

"

PROGRAH COUNTER

14516

ROH
INSTRUCTIONS

2H6

lCU

IdlDRE55

JUKP
WRITE

RES ET

.v
cc

-=-

RE5ET
PUSH8UTTON

FLAGS 1 MC14500BIt----...,

1 BIT DATA BUS

R AO Al A2 AJ A4 AS A~ AJ AS A9 H 0 F 0 W

figure 1. 4
•

MC14500-based lndustrial Control Unit •

LD A

OR B

STO HEHORY

LD C
i-'

OR D 1
AND HDtORY

5TO LOAD

RlIl.F.~ Of PROCr.SSING
0I'~RA1'10N FORMAT

BINARY 1 BINARY SEQUENTlAL
DECISION DECISION
BASED PROGRAMS
PROGRAHHABLE
CONTROLLER

P ROGRMIl'IA BLE BOO LEAN PARALLEL
LOGIC ARRAY ALGEBRA
BA5ED
CONTROLLER

MICROPROCESSOR BOOlEAN SEQUENTIAL
BASED ALr.EBRA
CONTROLLER AND

SEQUENTIAL
CIRCUITS

table 1.1

1

)

sr.-,,!)
INPUT OUTPUT LlHITlNr. HARDWARr
FORMAT FORMAT FACTOR COHl'lFXITY

SEQUENTlAL PARALLEL HEMORY SIMPLE
ACCESS
TIME

PARALLEL PARALLEL INPUT! INCREASES
OUTPUT WTTH
LONGEST CIRCUIT
PATH COHPlEXlTY
PROPAGATION
DELAY

SEQUENTlAL SEQUENTIAL PROCESSOR SIMPLE
SPEED

(

'"
Sequence controller compar1sons.

APPUCATION
rU.XIRILlTY

SOfTWARE
PROCRAM-
HABLE

IIARDWARE
rROGRAM-
HABLE

SOFTWARF.
PROGRAH-
HABLE

....
1

N

1-13

A· o 1

Q b Q : Ao! + AoB

o 1 0 1

c:JDotJ
figure 1.5 BD representat10n of switch1ng 1ogic.

200

BOOLEAN UPPEIt \SOUND

BOOLEAN AVERAC! CASE

150
en
1>.

"" ...
en
z
0 g

100
~
tJ

"'" 0 ..
50

BD UPPER SOUND

AVERACE CASE

5 10 15

1 OF VARIABLES

figure 1.6 Computational workload: BD vs. Boolean logic.

(

1-14

program ,along with the corresponding Boolean function. The BD machine,

executes the program by examining the variables associated with each

instruction (shown as a Boolean literal within anode). The'sampled

logic levels provide branching criteria upon which the next instruction

is selected. ln the figure, the branching possibilities are shown as

directed edges connecting pairs of nodes. Flow is from top ta bottom.

As can be seen each instruction connects with at most two other

instructions and thus the proces~or must ehoose one out of two, a binary

deelsion. This testing sequence leads the processor to a terminal or

output instruction (shown as boxes) in which the appropriate control

action has been tabulate~

Two factors make BD processors faster than other stored-program

contro llers. The first is that fewer variables are tested when

evaluating switching tunctions. Boolean-based PLes use equations

encoded as sum-ot-products expressions in which literaIs (variables) may

appear several times. ëvery variable in an expression is tested in

sequence to evaluate the complete function. The BD processor needs only

to compute one path, from root ta leaf, of the program, where each path

18 mathematieally equi valent ta a product-of-variables expression. Thus

the binary decision processor tests fewer variables in arder to evaluate

alogie funetion.

The second factor is shorter variable testing time. A

mleroproces8or-based controller requires from one to three machine

instructions to read and test an input variable. Eaeh instruction

typically consumes fram three to five clock cycles. Hence, an average

of ten cycles may be required ta test each variable. The BD processor

1

(

1-15

uses Just one clock cycle to input a variable, test it, and btanch to

the next instruction. In fact several complete functions can be

evaluated in only n cycles, where n is the number of independent

variables of the function.

The difference betweeo Boolean and BD program instruction sequence

length is illustrate,d ln figure 1.6. The Boolean upper bound Is

estimated from the worst-case situation in which aIL 2n minterms are

significant and each minterm subsumes all n literals (a degenerate case,

since then the function would always be implied). In this case the

Boolean-based controller would execute n2,n instructions during each loop

through the program. The average-case workload is estimated by assuming
l

that the logic can be reduced by Karnaugh mapping or some simllar

method, and that on the average the number of terms of the function is

reduced by two-thirds. Also the implicants subsume on the average on1y

three-quarters of the set of Independent literaIs. Thus c he Boo l ean-

method average workload i8 estimated to be (0/4)2n • Clear ly this la

still an exponential order growth.

The BD upper bound is known to be n variables per program cycle.

Slace BD logie Is a1so reducible (Chis topie is diseu~sed in chapters 2

and 5), It mighc be assumed that the average program running time can be

reduced by one-quarter. Figure 1.6 shows that the growth in BD

processor work10ad to evaluate combinatoria1 switching functions Is

strlctly 1inear in the number of process variables.

'.
The speed of the binary decision ',algorithm makes it applicable to

\)
fast time-constant proeesses, permits greater process model complexity,

and/or enables time-sharing of the control 1er among process loops.

. 1 -

..

,
\

1-16

1.2.2 Tbe K1croprocesaor/B1nary Decision Bybr1d Con~roller. In

industrial contro l systems the overall contro l procedure can often be

~iv1ded into repeated combinatorial or sequential ON/OFF functions and ,

proportional functions invol v ing the acquisition and generation of

analog process signaIs. Note that BD programmable controllers are weIL

8uited to performlng ON/OFF functions while mlcroprocessors are better

aulted to perform the arlthmetic computation required ta approximate the

continuous functions found in control modulation tasks. The hybrid

cOlllbinatlon of the two procey\0r types enables bath control funetions to
,

be provided by a single control 1er. In addition the BD processor gaina

aceess through the mP interface to traditional computer peripherals such

as terminais, printers and bull< memory.

A microprocessor/binary decislon (mP/BD) hybrid differs from

conventional programmable eontrollers in several ways. Havlng two (or

more) co-processors perm1ts the simultane~~~: ~xecutlon of classical PlO

(Proportional, Integral and Derivative) and ON/OFF control algorithms.

Secondly, the inereased speed of the BD processor makes real-time

concurrent mul tl-programming and /program sehedul1ng practical. Sinee

the BD ls provided aeeess to a program 11brary via the mP interface and

disk. se~eral programs can be scheduled
B

t 0 s t art and s.t 0 pat

predete4ined times. Thirdly, the BD contro11er can respond to

uns,c.heduled events sueh as process excursions by brlng.ing the

appropriate recovery programs in from the l1brary.

A block d1agram of the general 1ayout of the mP/BD hybrid

programmable control 1er ls shown in figure 1.7. The design of the BD

hardware and mP 1ntll:rfac~ 18 treated ln chapter 3.

, .
•

r

(

-

"ru
INPUTS;
OllPUTS

,

1/0
1--PORTS

Ugure 1.7

Ugure 1.8

1-17

pPEUTO~
INTEJl-
FACt

t
r tNTEIFACE l !ID 1/0 III' f--1 HODI/I.E r PROCESSOR PORTS

t t
III' ID

PROCRAH PROCJWI
H!:.'tllY !\DIliY

mP/BD sequence control 1er block diagram.

1. T x ; 2.4

2. T Y ; 0.3

3. T z 0.1

4. T '! 3.S
5. T 1 1.0

Early BD program by C. Y. Lee.

=$..

FIELD
1 NPUTS 1
OUTPUTS

(

_-1 _______ .. ____ ~.--__

1-18

} .. 3 Biaary Dec:1.81on Liter.ture Survey

Although BD methods were proposed as an alternative to conventional

Boolean techniques by C.Y. Lee in 1959, the idea failed to win much

support among logic designers. Clear1y Boolean algebra has produced

Many systematic and effective tools which the logic designer is unlikely

to give up in favour of sorne less deve10ped approach. However a small

number of researchers have contributed to the development of BD

methodology.and hardware. This research is cited below in chronological

order.

Shannon - 1938. Prior to 1938, switching circuit engineering consisted

of mapping intricate interconnections of relay contacts and sliitches for
,

the electrical control of telephone exchanges, motor control equipment,

etc. Although the theory of g{neral Impedance networks h.ad been weIL

defined, the design of switching logic could not be cOl1lprehensively

described mathematically. A systematic theory for the analysis of

swltching networks based on the Propositional Galculus subset of Boolean

Algebra was presented by Claude Shannon of MIT [Shan38). This work

provided a basls for the representation of switching circuits by sets of

equations. These could be manipulated, according to algebraic rules, sa

as to simpl1fy the circuit.

Shannon presented Many of the postulates and theorems now used ta

manipulate Boolean logic including laws of commutation, association and

distribution. A series expansion for switching functions analogous ta

the Taylor series expansion of continuous functions was also defined.

This expansion, known as Shannon~s Expansion Theorem, is used to deri ve

the mathematical basis of binary decision logic in chapter 2.

1-19

(
Together with the De Morgan's theorems, this work was used to

deve lop many practical design techniques such as Karnaugh mapping whieh

aids in the recognition of AND. OR, XOR and MAJORITY imp l ieants. A

short review of Boolean Aigebra is presented in Appendix l.

Lee - 1959. An al ternati ve to the Boo lean representation of switching

circuits was proposed by C.Y. Lee lLee59j. Lee's research attempted to

overcome the inherent inf lexibility of Boolean algebra in manipulating

other than series-paraI le l circuits. Moreover, he thought the 800 lean

representation to be extremely inefflcient for switchlng runction

eval uatlon. Lee proposed a structure ca lIed binary decislon programming

to syllbolically represent swltch1.ng circuits. The method was based on a

single instruction

T x; A, B

which says, if the variable x 1.s 0, take the next instruction from

program address A, but if x is 1, the next instruction i5 taken from

address B. Switchlng circuits were deseribed by sequences of these

instructions. An example from Lee's work of a typlcal relay circuit and

its binary decision program are shown in figure 1.8. The program is

eval uated beginning wlth instruct.ion 1. lt x is 0 then the instruction

at address 2 is computed, if x is l then address 4. This procedure ls

continued untll the symbol 0 or l is encountered, representing the

circuit outputs 0 and l respectively. These may also indicate exit

addresses.

Binary decislon programs were recognized as an efficient

representation for the computation of switchlng functions. Funct1.ons

J

1-20

wet'e always evaluated in a number of program instructions that never

exceeded the number of ~witching variables. Lee also showed that

binary decision programming could be used as a logic design technique.

He proved that switching functions could be more compact ly re'presented

in binary decision form than by Boolean sum-of-product expressions.

However Lee's logie reduction procedures were not systematic and relied

heavily on the skill of the programmer.

Boute - 1976. A.binary decision-based programmable control 1er was

described by R.T. Boute of Bell Telephone, Belgium [Bout76].

Contemporary Boolean-based controllers evaluated every Boolean literal

in the series of terms comprising the control function. The possibility

that the logical result of a term might be determined before all of the

variables were tested was ignored. Such controllers were judged too

slow for high speed control applications. Boute's research was direeted

at detecting when the logical proposition impl1ed by a Boolean

expression had been conclusively satlsfied or violated, so that the

controller could branch away from the computation at the earliest

opportunity. lnstead of accumulatlng Boolean combinatlons of input

variables to arrive at control outputs, the binary decision controller

used the inputs ta direct branchlng wlthln the program 50 that only

enough literals ta uniquely deflne the function output were tested.

Only two machine instruction types were Included, branch-on-test and

output.

Boute proposed ta implement the controller using only seven le

chips representing six functional blocks. These blocks included program

memory (two ROMs), a presettable program counter, preset logic, an input

-

(

1-21
,~

v,riable selector, an output variable selector and.latch, and a clocl~.

A bioek diagram of Houte's binary decision controller is shawn in figure

1.9a, cogether with the instruction word format, figure 1.9b.

Boute concluded that the use of binary decision controllers

presented ad vantage8 i n term~of 8 peed, simp 1 ici ty and ease of

programming. Both combinatorial and 8equential awitching functions were

readily programmed. The problem of binary decision logic reduction was

not addressed in this research.

Altera - 1978. A method to define digital functions in terma of a

"binary decision diagram" was explored by S.R. Altera of General IUectric

[Alter 78). The research was aimed at f inding concise, implementation-

free logic descriptions to bridge the gap between analytically-weak

functional design languages and conventional descriptions such as truth

tables, Boolean equations, Karnaugh maps, etc., aIl of whi·ch tend to

grow exponentially with the number of variables invol ved. Akers showed

that these dlagrams could be used to determine the output value of a

digital function for analysis and test generation, and to obtain actual

implementations. Methods were also described for defining larger

digital functlons by interconnecting the diagrams.

A binary decision diagram to descrlbe the Boolean function.

F ,. A + BC

is shown in figure 1.10. The function 18 evaluated by~ encering, the

diagram at the node. labe lIed A. If A'" 1, then F :a 1 and the procedure

ends. If A- 0, the branch Iabelled 018 followed to notte B. If B" 1,

then F - 0 and again the procedure ends. Otherwise, the O-branch 18

,
., ... -~ .. ~~::~~-.,;: o-M ---. .. _~ -

i

1-

1
1

j-

--

FIELD
INPUTS

4

ROM 1

D<2:!) D7 D6

/)

INPur
SELECTOR

(a)

figure 1.9

ROM 2

A(7 :O}

ourPUT
LATCH FIELD

OUTPUTS

D 1 ~ 16• 1 J-- [t 21 11 0 1 ROH l

1
· ~ BRAHCH VARIABLE

CRITERION(V)' RAME
OR

OUTPUT \
VALUE (D) ~

OP CODE

D' [7-1 61 si 41 31 21 dol ROM 2

NEXT INSTRUCTION'S
ADDRESS FOR

- VALUE OF INPUT
VARIABLE = V

- o~Pur INSTRUCTION

(b)

'--

, " ~

Boute's HO machine. (a) 810ck diagram and,
(b) instruction ward format.

li>

1

~
1

N

1-23

-

•

. .,..

o 1

A d G
E6b

....

figure 1.10 BD diagram by S.B. Akers.

(

1-24

followed to no de C, which de termines the value of t.~ functlQn.

Diagrams for several common combinatorial and sequential switching

functions were obtained by Akers along with rules tor deri ving blnary

decisi,Cfl diagrams from truth tables and Boolean equations. A method to

define a BD diagram in a computer as a list of ordered triples (variable

name, Q-branch, I-branch), was also devlsed. It ia easlly seen that the

binary decision diagram of Akers is functionally equivalent to the

r
binary decision program of Lee. They are in fact mutually comp1ementary

as the BD program ls eë:j.sl ly trans lated to computer code but 15 dif f leul t

to analyze,.whereas the BD diagram, being a graphical description, is

easl1y analyzed but i6 dlfficult ta lmplement directly on a computer.

ln thiS way they ha v~ the same re lationship as a con ventiona l computer

program and Hs logic f lowchart. Akers also noted the need for logic

reduction and demonstrated diag'ram' structures that permitted

simplification. He recognlzed that different and often simpler diagrams

could be obtained by-changing the order of examinatlon of variables.

This concept ia d1scussed in chapter 5 •

Kange, Cerny, Tb.ayse, ~ al. =. 1978. The problems invo l ved 1 n the

representation, mlnimization and hardware implementation of binary

decision programs / diagrams were s tudied cooperati ve 1 y and separate 1y by

Mange, Cerny, Thayse, et al. in 1978.

A generai method to implement any blnary decision diagram in

hardware was found by Mange which invol ved replacing every node in the

diagram by a one-to-two demultiplexor (D~MUX.) [Mang7~1. Unlike binary

trees 1 BD diagrams can ha ve more than one path into anode.
o

These were

hand Led by ORing together a11 multip le node inputs to obtain a single

- - ---------

---------------------------------------....

1-25

bit input to the DI:. MUX. Such a circuit provldes a spatia l real i'zation

of a binary decision diagram. Mange also described a general sequential

rea1ization whleh represented the BD diagram as a series of instructions

executed sequentia11y by a "Binary Decision Machine."

The synthesis of minimal binary decision diagrams for multiple

output, incomp1ete1y specified switching functions was also studied by

Cerny, Mange and Sanchez [Cern79 l. Their method was to Urst reduce the

logie to !ts minimal (prime implicant) forme Two algorithms were

devised to do this, a deterministlc but 1engthy procedure and a fast

heuristie. The resu1ting binary tree was then converted to a binary

decision diagram. The methods were programmed in FORTRAN on a PDP-llllü

in 1979.

The binary decision program optimization methods considered by

Cerny and others were not appl ieable to programs in which paraI le l logic

branches reeonverged at a node. A class of functions called P-functions

was devised by Thayse [Thay81l to provide an analytical means of finding

a reduced form for reconvergent functions. The method transforms

unreduced Boolean equations to blnary diagrams by iteratl ve appl ication

of a set of composition laws acting upon a pair of funetions (g,h)

called the domain function and the codomain function, respectively. The

initial value of the domain function 15 the Boo1ean eqaation F and the

initial value of the codomaln function ls the Boolean constant 1. The

procedure terminates when the domain function has been transformed into

l and the codomain funetion has become the function F. Many ways exist

to apply the compositioQ Iaws each producing a different binary program.

AIL of the rules are exhausti veiy applied to the functions during each

- - ------

1-26
f

" .
iteration. Onlya amall number of these functions are useful for

generating optimal programs. lt ia not known whether this method has

been implemented in software.

Zao.bor-Murray, Vroo.en et: al. ::. PHB. An eKtension of üoute'a 8inary

Decision machine to ineorporate some measure of parallel architecture

was proposed and implemented by Zsombor-Murray, Vroomen, Tho and Ho1ck

at MeGill (Th079,Zsom79]. This improvement enab Led mu 1 tiple switching

functions to be evaluated simul taneous ly. The inst ruction set was

expanded to include conditional branehing on either input polarity and

paraI le l output of, optionally, tour or fourteen bits. The number of

input and output points was eltpanded to 64 and 14, respectively, as

opposed to eight of each in the Boute machine.

The binary decision controller was imp lemented as a demonstration

unit consisting of a BD processor, fieid 1/0 ports and a control and

programming console. The system was TTL compatible. needed only a

single S-volt power supply and operated ln three modes; loading,

verification and execution. Hand-compiled programs were loaded into the

instruction memory by means of 16 data entry switehes after presetting

the program counter to the address at the first irlstruction. The

program could be veritied by single-stepping through it from the control

console or could be executed at either of two clock rates, O.5Hz or

70kHz. I:.xamples were devised and tested to demonstrate the feasibility

of imp lementing combinatorial and sequential swltching logic in binary

decision logic. A block diagratr. ~f the Ho lek machine is illustrated in

figure 1.11.

.....

FIELD :1 INPUTS

, ---

MEMORY ADDRESS BUS (7:0)
PROGRAM 1<

DiS D14 D03:0)

L---

X

INPUT
SELECTOR

figure 1.11

>1 PROGRAM I~
DATA BUS (7:0) COUNTER ~

r---------
1 ~
1

--j

1

1
1

L-\~ OPERATIO~
1 \ DECODER 1

• ---- ____ J L... ______ _

f
E

1 : FIELD

OUTPUT OUTPUTS

LATCHES

• ----.

Holck ~U machine block dlagram.

SYSTEM
CLOCK

J

)

.....
1

N
.......

1-28

1.4 Kesearcb Motivation and Objectives

The concept, design and implementation of binary decision-baaed

programmable controllers has been a topic of interest to several

independent researchers as shown above. They have established that

purely ON/OFF control functions are best performed by BD-based automata

as opposed to conventional microprocessors. However, current BD

architectures are mainly suited to applications in which a controller

must slmultaneously attend ta a number of small independent process

loops, e.g., each requiring only a few bits of input atla-output.'

The objective of this research was to develop a hybrid mP/HD PLC

prototype that would be better suited for process control applications

of a larger scale.

as

Conaider that the size of a complete BD program grows exponentially

2 0 +1-1, where 0 ia the number of input variables. Five 4-input

procedures would require no more than' 155 instructions, easily

accommodated within a 256 location program memory. l~ is doubtful

whether any programmable controller, PLA or microprocessor-based, or

even hardwired logic could economlcally compete with a BD implementation

which would luevitably produce a computed output atter executing only

four instructions.

On the other hand, a single 64 input program could require as many

as 2b5_1 or 3.7x10 19 instructions, an intractable size! Usiog standard

64k memory. the limiting program SlZ~ is stlll only 15 inputs. Since

many common processes have th1rty ta fort y lnputs, one (or more) of the

tollowing solutions might be necessary ta accommodate theae ln a BI)

controller:

. .
1-29

1) Limit the number of inputs to the BD processor.

2) Partition the global control algorithm into several manageable

independent sections, each executed by a separate BD controller.

3) As 2) above, but the program sections required at any particular

time are paged in and out of the BD program memory. This is

equivalent to "virtual memory".

4) Reduce the program loglc to Hs minimum size sa that the reduc.ed

program cau be accommodated in memory.

The hybrid controller proposed in this thesis conslsting of a BD machine

and a mieroprocessor "supervisor" would be able to implement any of

these solutions uslng the Integration scheme as shown ln figure 1.12.

The standard microprocessor system which consists of basic blocks

8ueh as the microprocessing unit, &AM memory and analag r/o convertors,

\.
acts as the central processor. One (or more) BD controllers are

connected ta the mP vla standard data, address and control busses.

Binary decision program code, compiled by the mE, Is transferred to the

80 memory in the same manner as data is stored in a standard RAM memory.

The operation of the BD 15 under the control of the supervisory rnP. In

the loading mode, the BD program counter is preset to the initial

location of the program and is incremented by the mP as instructions are
,

loaded. The BD is activated by again presetting its program counter and

setting it in the run mode. From this moment, the BD controller

pertorms its repeated UN/OFF control routines and the mP ls free tor

other tasks su ch as running proportional control algorithms.

This research encompasses the design of hardware required to

interface the HO with the mP, and the establishment of necessary -..)

-

(

MICROPROCES SOR

1-30

CRT
&

...... -----1 KEY BOARD

PRINTER
-----1------1

orSK

BD
e--+--+-------~NTERFACE~------------~ BD

MODULE PROCESSOF

Hl Hl

"1""':-"'1""'

BD BD

I.1NTERFAC:E P'RùCESSO'F

MODULE #n
#n

......... '"' ..
tI) [() [()

0 0 0
p::j p::j p::j

tI) < S tI)

~ ~ ~
~ ~ ~
~ z
~ 0
< t.)

figure 1.12 mP/~D integration scheme.

•

;..

1-31

structures and protocols ta enable lnterprocessor communication. This

was achieved by the author in cooperation with Levi [Huds82,Levi82aj.
,

The design of the mF/BD system's hardware and software i5 discussed in

chapters 3 and 4, respectively. In addition, the scope includes the

development of a practical optimizing compiler for BD programs that

would fit into the hybrid contro 11er and produce control programs

without presenting too much overhead to the main tasks of the system.

Since it has been shown that decision program optimization i8 an NP-

complete problem under polynomial sized inputs [Hyaf76,MoreijOJ. we were

restricted to finding a method that produces an near-optimal program in

reasonable time. The compiler design i5 presented in chapter 5.

The ulterior motivation of this research, however, i5 to promote

" the concept of using binary decision automata for the computation of

combinatorial and sequential ON/OFF contro l funet-ions. A recent survey

of programmable controllers did not reveal a single BD-based machine

[Flyn84J. In spite of this the BD machine could be a valuable

industrial tool. To gain aeceptance, the theory, design and

illp lelilentation of BD machines must be formalized. It 15 bel1eved that

the machine is not generally understood because the theory of operation

i8 not yet rigorous ly defined and lJecause conventional re lay ladder and

gate dlagrams remaln ditticult to represent in terms of BD logie. As

well systematic procedures for wri ting and minimizing BD program8 need

to be de veloped. lt i8 hoped that this work will provlde some of this

formallsm and encourage the commercialization of BD hardware.

(

-

2-1

(

CHA.PTKIl 2

B~Y DECISION TB80RY

2.0 Introduction

This chapter presents a theoretical basls for blnary dec1a1on

progranming. The re lationships between the b1nary decision method and

convent10nal comb1natorial and sequential switcn1ng function

representations are developed. Proofs are of fered to show the

equivalence of the different methods, and certain characterist1cs of

binary declsion programs that suggest an approach to logic mlnimization

are discussed.

2.1 Bloary Dec1810a Progr ..

I~ May be shown that any combinatorial or sequential switching

function can be re~resented as a sequence of binary dec1sion

instructions i.e.. as a binary decision program. This method of

description was proposed by Lee as an alternative to the use of Boolean

equations. lntroduced into switching theory by Shannon in 1938.

A blnary declsion program instruction ls a two-address conditional

transter statement of the torm:

Label Xi A. B

This instruction is read: if the variable x ia O. then evaluate the

program statement labe lIed A, e Ise If x 18 1. then evaluate atatement B.

This 1nstruction 1s represented d1agrammatically in figure 2.1.

-

2-2

(

,
o \ 1 ,----..qi

A B A B A B

figure 2.1 IF-THEN-ELSE schematic representations.

-- -" ", -------

2-3

The deficiency of the Boolean method lies' in the large amount of

computational work that must be expended to evaluate a typical

expression. ln particular, the Boolean method exhausti vely evaluates

every literaI and implicant comprising the switching function, an amount

of work of exponential order. The fact that an implicant can be shawn ta

be FALSE if at least one of its literaIs is FALSE or that an ent1re

expression is TRUE if at least one of its implicants lS TRUE ls

camp le te l y disregarded. In contrast, the binary decision method

evaluates any combinatorial switching function in a number of steps

which is always equal to or less than the number of input varlables.

Consider the following control function of tour implicants in three

independent variables:

Q(A,B,l.) .. A!c + ÀB~ + ABC + ABC (2.1)

A PLC program to implement equation 2.1 in an MC14S00 ICU-based

•
contra 11er ls presented in figure 2.2a.

Figure 2.2b illustrates the mathematical operations performed by

the PLC program ta evaluate Q(O,l,O). Aî.though nineteen instructions

are executed in computing the function in the conventional way, the

value of the first impllcant was known after just two program steps

ainee the second literaI in this term has the value o. Likewise the

value of Q was eonclusively determlned after the seventh program step

since the value of the second implicant 18 1. A binar~ decision program

for equation 2.1 is shown in figure 2.2c. Figure 2.2d i llustrates the

sequence of BD instructions that are executed to compute Q(O, l ,0). ln l

the BD case, only three instructions are executed, equal to the number

of input variables.

-

Q

Q1

Q2

Q3

Q4

Q5

Q6

figure 2.2

2-4

LOC A Q ; l-S-C + A-B-C + A-B-C + A-B-C

ANDe B ., 1-a-C + I-B-ë + A-B-C + A-B-C

AND C = 0-0 + I-B·ë + A-i-c + A-B-C

STO TEMP • a + I-B-ë + A-B-C + A-B-C

LOC A = o + l·B·ë + A-i-c + A-B-C

AND B = a + 1-1-ë + A-B-C + A-B-C

ANDe C ., 0+ 1-1 + A-B-C + A-B-C

Oll TEMP '" 0+ 1 + A-i·c + A-B-C

S1'O TEMP '" 1 + A'B'C + A'B-C

LD A = 1 + O'B'C + A-B-C

ANDe B 1 + O-O-C + A-B-C

ANDe C 1 + 0-1 + A-B-C

-OR TDU' = 1 + a + A-B-C

STO TEK!' = 1 + A-II-C

LD It. = 1 + O-B-C

AND B 1 + 0-1-C

AlfD C • 1 + 0-0

Oll TEMP = 1 + 0

STO Q la 1 --19 srus

(a)
.

(b)

A Q1. Q4

Il ; Q2. Q3

C O. 1

c ; 1. a

Il QS. Q6 Q4 B ; QS. Q6

C 1. a os c 1. a

c O. 1 Q6 c 0, 1

(c) (d) ,
,/

Sequence control 1er evaluation of combinatorial switching
functions. (a) leU program for equation 2.1. (b) Hoolean
evaluation method. (c) BD program for equation 2.1. (d)
BD eva~uation methoa.

,

. .

2-5

Another deficiency of the Boolean method is the description of

sequential control functions. The temporal character of such functions

cannot be mode lIed by simple Boolean Aigebra, and external memory i5

required to save previously computed values of the function. Binary

decision programs can embody circuit history information within the

transfer paths of the program, and so are better suited to the

representation of sequential functions. Figure 2.3 shows a BD program

f lowchart for a common sequential circuit, the toggle f lip-f lop.

program flow ls in the left side of the diagram when Q=O'and in the

right side when Q~l. A toggle input controls the switching of the

progr'am f low from side to aide. Thus the BD program is able to remember

the prevlous state of the T f lip-f lop in the transfer structure of the,

program and does not have to reread Q from an external memory. BD

f lowcharts are discuased in detai! in section 2.2.2.

2.2 Tbe BiDary DecisioD ~epre8eDtatioD of Co.binatorial SwitchiDg

FuactiODS

The mathematical basis of blnary decision logic did not seem

evident to Lee. lt has since been demonstrated by various authors

(AKer7~,Cern79,More82], howev~, that blnary decision programs are

l
re lated to the series expânsion of a Boolean equation.

2.2.1 The Bioary Deci.s1.on-co.b.1.oatorial Circuit Analogy. Consider the

switching function:

j
(2.2)

Q = 0

"

2-6

Q = 1

BD representat~on of the toggle flip-flop.

. ,
•

r

2-7

The serles expansion of this tunction is obtained by recursively

ey.panding equation 2.2 about each of its var~les according to the

formula:

f (X l' X2 ' ••• , ~) .. Xl' f (0, X2 , ••• , Xn) + Xl' t (1 , XZ' ••• , Xn)

Continuing this process n times yields:

(2.3)

f(ü, ••• ,ü)X 1 X2···X n + f(ü, ... ,l)X 1 X2",X n + +

t(l, ••.• l)XIX2 ... ~ (2.4)

~quation 2.3 is known as Shannon's I:.xpanslon Theorem. The proot ot

equation 2.3 is demonstrated in Theorem 2.1.

Theorea 2.1: Shannon's Expansion Theorem.

Proof: Let Xl equal O. Thus:

f(O,X 2 ,· .. ,Xn) .. (lj)'f(O'XL""'~) + (O)·f(1,X2 ... ·'~)

- f (0, X2 ' ••• , ~)

NOIN let Xl equal 1. Thus:

f(l,X2""'~) .. (I)'f(O'X2""'~) + (l)'f(l,X2'''''~)

• f (1 , X2 ' ••• , Xn)

This completes the proof by perfect induction. o

If equatlon 2.2 ls expanded about an arbitrary variable, Xi' the

following equation i5 obtained:

(2.5)

NOIN let:

and,

f (Xl' ••• , Xl .. 1 , ••• , Xn) .. H

•

2-8

then,

Q - Xi . G + Xi . H (2 • 6)

'for any arbitrary function Q and variable Xi. The binary decision

instruction:

Q (2.7)

is shown to be equivalent to equation 2.6 in Lemma 2.1.

"

Le 2.1: Q • 11 . G + Xi . Ii • Q Xi; G, li

•
JI

Proof: By definition, the binary decision instruction can be represented

by the followlng truth table:

f
i Q

o G

l li

Evaluating equac10n 2.6 with ~ • 0, i.e.,

Q - (0) . G + (0) . Ii

- G

and with ~ • 1, i.e.,

Q - (I) . G + (1) . H

- H

yields the truth table:

f
i Q-

o G

l H

which i8 identical to the truth table of the binary decision

instruction. Thus equations 2.6 and 2.7 are shawn to be equ1"alent by

perfect induction. o

2-9

Siace the product of each expansion can be represented as a binary

decision instruction, lt follows dlrect ly that a blnary decision program

ls equivalent to the complete series expansion of a Boolean switching

funetion. Ta 111ustrate this point coosider the series expansion of

equation 2.1, i.e.,
l' t

\ ,
Q(A,_,C) - U~-f(O,O,ü) + DC-fCO,O,l) + ABC-fCO,I,O) +

ABC-f(O,I,I) + ABC·fCl,O,O) + Alk.-f(l,O,l) +

AB~ - f (l , l , 0) + ABC - f (l , l , l)

where: ' f(O,O,O) - 0 f(I,Ü,Ü) -

f(O,O,l) - 1 f(l,O,l) - 0

f(D,l,O) - 1 f(I,l,O) - 0

f(O,I,I) - a fO,l,l) - l

(2.8a)

Substituting the values of f(O,O,D), etc., into equatlon 2.8a and

factoring terms using the Distrlbutive Property yields equation 2.8b: \

Q(A, B, C) - A [iH ~ -O+C - l) + B (C - l +C ù) J

A[HU~-l+C-O) + BCC-O-+-C-I)J (l.8b)

Now let:

Qi - (~(C-O+C-l) + BCC-I+C-O)] Cl. 9)

and,

Q4 - (BCC-l+C-O) + B«~-O-+-C-I)J (l.lU)

then,

QCA,B,C) - A - QI + A Q4

Similarly, let:

Q2 - ~ - a + C - l

and,

Q3 • ~ - 1 + C - a

-

2-10

in equation 2.9, and let:

QS - C . i + C . 0

and,

Q6 - C . u + C . 1

ln equation 2.10. Equation l.8b 19 rewrltten in terms of the expansion
.i

equatioDs for eaeh variable 8S fo11ows:

\.l - A Qi + A Q4

Qi - li Q2 + B Q3

Q2 - C 0 + C 1

Q3 - ë: 1 + C 0

Q4 - B QS + B Q6

QS - C + c 0

Q6 C 0 + C

However sinee 1t 1B "nown by Lemma 2.1 that:

then this sequence of equatloDS 18 logically equl valent to the binary

deeislon prograll: , .'

Q A' QI, Q4 \ ,)

QI B; Q2, Q3 (
"-

Q2 C· 0, ,,~~'" ,
1

Q) C· , i, 0 1
J
" Q4 B' , QS, Qb

/

QS C; 1 , 0

Q6 Ci 0,
/

This equlvalence i8 formally 8tated in Theorem 2.2.

2-11

Tbeore. 2.2: For every combinatorial sw1tching function there

exists an equivalent binary decis10n program.

Proof: Any combinatorial switching function can be expressed as an

equi valent series expansion by Shannon's Expansion Theorem. A series of

sing le variable equations of the torm:

where 1 t: {1,2, ••• ,n} and G, li define subexpressions of F in the series

expansion, may be obtained by algebraic manipulation. Taken as a whole,

these equations are equivalent to the original switchlng function. By

Lemma 2.1, each of the single variable equatlons is equivalent to a

binary decision instruction. Hence, the sequence of blnary decis10n

instructions, i.e., the binary decision program, must a1so be equivalent

to the original switching function. o

2.2.2 Bloary Dec1.sioD Di.grallS. A me t hod 0 f represent ing digi ta l

functions in terms of a binary decision diagram was proposed by Akers

lAker7~J.
~.

BD pr;J}gram and BD dlagram representatlons of switching tunctions
1

are equ1valent and complementary. A BD pro'gram lS easily translated to

executable computer code but lS dltflcult to analyze, whereas a BD
~

diagram, being a graphica1 descriptl0n, 1s easlly analyzed but 15

d1fticult ta implement on a computer. lt lS conven1ent ta regard the BD

d1agram as the logic f lowchart for BD programs.

Consider the BD d:i.agram for equation 2.1, figure 2.4a. The

function is evaluated by traversing the diagram, i.e., v1s1ting a

sequence of nodes ind1cated by the directed edges, or branches, aï the

2-12

(a)

(b)

figure 2.4 BD diagram for a combinatorial switching function (a).
(b) /W evaluatl.on method. •

l

2-1~

diagram, beglnning from the topmost node. (ln this example each node has

Just one entry and two exit branches: a blnary tree [Ah074j. Nodes may

be permitted to have more than one entry branch, but not more than two

exits.) Durlng the traversal, the exit branch f rom each node is

selected on the basis of the value of the input variable listed ln the

node. This process continues unti l an exit branch i5 encountered which

leads to one of the rectangular nodes at the lowest level of the

diagram, in whlch the values of the function have been pretabulated.

Figure 2.4b illustrates the evaluatlon of Q(O,l,O). Comparlng Ugure

2.4 with figure 2.2c) and d) reinforces the analogy between the two

representations.

Depending on the form in which the tunction is def ined a number of

procedures for deriving tiD diagrams from switchlng functlons have been

proposed. A simple procedure to conscruct a BD diagram trom an ordered

truth table is described below. A n- Level blnary tree is constructed

su ch Chat every node in the tree has one unique entry branch (except tor

the root) and two unique exit branches. ALI of the eXl t brancnes oi the

nodes at the lowest leve! are terminated by rectangular output nodes.

The non-output nodes are labelled with the sWltching variables appearing

at the top of the truth table, ln the tollowing manner. The root node

" is labelled wHn the leit-most variable ot the truth table. The second

varlable trom tne Lett 15 assoclBted wlth all the nodes at the second

level ot the tree, lImnedlately below the root. The tnnd variable is

associated with tne thlrd level of tne tree, etc., tlgure ..:.5a and b.

The left exit branch ot every node lS labellea ",ttn a U ana the right

exit branch with a 1. Ihus each path ln the tree 15 uniquely ldentlfled

~--

figure 2.5

o o

o o

1 1

2-14

(a)

(b)

X
n

o

1

1

Q

Conversion of truth table logic to BD logic.
(a) Truth table and, (b) corresponding BD diagram.

2-15

by the sequence of branch labels, a or l, formed by the concatenation of

the input values selecting that path, e.g., the leftmost path Is

selected by the set (A,li,\...) .. (0,0,0). The output nodes are then

labelled from left to right with the corresponding values of the

switching function tabulated in the truth table from top to bottom. A

I:SD diagram consisting of aIl 2 n combinatlons ls called a complete

,
diagram and can be shown ta have 2 n -1 decision nodes and 2n outputs.

Since a complete 80 diagram contains no additional information compared

to that contained in a truth table, they may be considered equivalent

representations dltfering only in information topology.

This Knowledge leads to another simple way at proving that any

comblnatorlal switching function can bt:: represented as a binary dec1sion

program. lt ia known that any switchlng circult can be wrltten in the

canonical torm, Involving only three operators, AND, UR, and NUT. Since

BD dlagrams can be constructed from truth tables tor these three

functions, figure L.ba, it follows that any functlon can Oe "built" from

combinat ions of these simple liD dlagrams in the same manner as alogie

gate circuit is assembled using the conventional Boolean approach,

figure L.ob. (The BD dlagrams ln figure 2.6 are shawn unreduced. tsD

logic minlmization Is dlscussed ln sectlon 2.2..4 and in chapter 5.)

2.2.3 ABalysis of Binary Decision Metbod. As prevlously discussed ln

\

chapter l, the growth in computational complexity of the boolean

representatlon of switchlng C1rCU1ts lS an exponentlal tunctlon of the

number of lndependent Clrcult variables, whereas the bindry decislon

method exhlblts strictly Ilnear gr-owth. These r-elatlonsh1ps were

figure 2.6

2-16

OR NOT

(a)

~ •
o 1

(A + B)·C

(h)

SD diagralDs for the ful'ldamental logic connectives.
(a) AND, OR and NOT functions. (b) Superposition
of HO- diagrams to forlD a compound function.

-

------------~----------- --------

2-17

il1 ustrated in figure 1.6. The eseential difference between the two

computational methods was suggested in figure Z.Z.

A physical understanding of the BD computational process can be

gained from the top010gy ot a binary decision diagram. The series

expansion of an-variable function, equation 2.'4, contains Zn terme,

representlng aIL of the combinations ot the n variables bèginning wlth

(Xl XZ···Xn) and endlng with (Xl XZ ••• Xn)' The coefficient of each term

1n the serles 1s the value of the tunction correspondlng to that

combination, sueh that for a binary-valued function the coefflclent lS l

for aIL ot the minterms that are subsumed by the prlme implicants of the

) function and U for all others. A complete b1nary decislon diagram,

figure 2.5, is a one-to-one mapping of the terms Dt the series expansion

to the Zn paths of the tree. Coefficients are represented by the output

boxes at the bottom of the tree. Hence if one wrltes out the literai

expression imp11ed by the tree, one obtains:

f (X l ' Xz ' ••• , ~) - Xl [XZ' •• [~ . f (0,0, ••• ,0) + Xn' f (0,0, ••• , l) J + ••• J +

Xl [X Z ••• l-Xn . f (l , 0 , ••• , 0) + X n . f Cl , 0 , ••• , 1)] + •••]

•
i.e., the series expansion of the Boolean' function in fully factored

torm.

ln thl.S way, the BD dlagram tactors the tenns ot the function such

that all of the minterms subsuming the llteral Xl are grouped into one

subtree, and the minterms subsuming the literal,X I appear ln a separate

subtree. Thus the minterms represented by these two subtrees are

mutually dlsJolnt. It Xl lS TkU!:. then Xl must be FALS!:. and all of the

lIinterms subsumlng Xl are FALSE as weIL. l::lse, lt Xl lS TKUc. then Xl

IIUSt be PAL!)!:. and the set of minterms subsumlng Xl must aIL be FALt>E.

2-18

In either casé, exaètly one-half of the mlnterms are rejected

ilJlllediately based on the evaluatlon of only one variable, which i8 never

reevaluated. (This Is strictly true only in the case of so-called simple

BD programs, i.e., those in which a variable never appears more than

once in aoy particular path. The more general case of non-simple

programs ls discu8sed by Thayse lThay81 J.) T'his di vision process Is

repeated at each level of the diagram. As ooly one variable is examined

per level, and as there exists only n levels, hence not more than n

variables are ever examined ln this computat ional proeess. The blnary

decls 10n met nod br anches away f rom Imp l i cant s whose l ogiea l propos i t ion

is known ta be FALSE and does 50 at the earliest posslble time. This 18

the crucial ditference between the conventional Boolean approach and the

binary decision program method.

Consider figure 2.7, the BD diagram of equatlon 2.1. Figure 2.7a

shows a diagram of the funetion after the first application of Shannon1s

Expansion Theorem. The function 15 divided into two bracketed terms,

one ANDed with A and the other with A. The expressions within the

brackets no longer lovaI ve the literaI A as a result of the factoring

pro cess. Figure 2.7b shows the complete BD diagram of the fully

expanded function in wh~eh the subtrees have been label Led with the

corre~sponding terms from the serles expansion. At eaeh leve l one

add~tional Ilterai has been taetored trom the rema~ning expressions.

The evaluat~on of ~(A,B,C) '" (0, 1,0) was shawn in f~gure 2.4. In figure

2.7c the eorresponding serles expansion 1s evaluated in the binary

decision manner.

2-19

Q

_ 0
0
0 ,

r--L , .. ~--,
: ac+Bè: : Bë+BC :
L. ___ __ .1 l __ - - - - ~

(a)

Q

i-c< •. ë 0 à l B-C'B-C !------~---~ f---~- -----i

, ë'O+~'l 0 1 ë'l +C.O "ë.l + C.O 0 1 ~ë'O+C'1 :;---- -;~-~---~::i--O---~~-G---~
(, c '1 C 1111 C " C 1

1 Il 1 1\ 1 Il 1

, 1 Il 0 1 "' Ô [:]'1 f) 1 1
::Ç1 r,,11~ r;,'II' 1 0 '1Ç1 ~I 1 1 Il Il l' '1 ,

L..J L..J"LJ L:J'I" II~ L:.J,
1 L------=.I'--------~IIL-------:JL-------jJ L.... _______________ --' L.. _______________ _

flgure 2.7

(b)

Q(O.l.O) = li· [i<ë·o + C'l) + B(ë-l + C,O)] + 0-(]

=

=

3 STEPS

l(ë.o + C'l) + l(ë'l + c·O)

0-1+0·0

Cc)

Convernon of Boolean equations to BD diagI"ams
using the Shannon series expansion.
(a) r.xpansion of equation 2.1 about variable A.
(b) Complete series expansion.
(c) t.valuation of eq\.\lvalent Boolean expression.

-

2-20

A further computational advantage of binary decision over

conventional Boolean algebra is the ability of the BD method to evaluate

multip le switching Eunctions simul taneous ly. For example, consider the

following set of process control functions.

QI '" fl(Xl'X2'''··~)

Q2 ... f2(XpX2'····~)
"

In the traditional Boolean approach these three functions would be

computed serially by the evaluation of independent sum-of-product

expressions describing each function. However, Qi' QZ and Q3 cao be

evaluated, in pal:alle 1. using the BD method. requiring only n steps or

less to compute all three functions. Unlike Boolean methods which

evaluate functions by arithmetic computation of algebraic equations.

binary decision programming uses the input values as branching criteria,

to direct the computation ,towards an output instruction in which the

correct results have been previously stored. Conceptually, the data

field of an output instruction can be made arbitrarily large to generate

/
multiple functions in parallel. Ttle procedure for progrlimming multiple

switching functions ia defined by the truth table describing three

control functions. F. G. and H, shown ln figure 2.8a. Parallel output ..
data for each comblnation of the input variables ls formed simply by

concatenating the three functions. Figure 2.Sb illustrates the BD

diagram for these functions.

Likewlse. blnar y decis ion programmi ng can e va l uate swi t ching

functions that have more tha.n two possible dlscrete modulo-two values~

i.e •• Ql € {O,l.lO.ll •••• }. The application of the an method to the

o

o

1

f1gure 2.8

2-21

o

o

1 "

(a)

Cb)

X
n

o

1

1

F G H

BD representation of multi-functlon logic.
'(a) Mu1tl-function lOglC truth table.
(b) Equlvalent BD diagram.

-

2-22

computatl.on of mulU-valuelC1 loglc i5 another area whl.ch demonstrates the

advantage of this method over lts Boolean counterpart. The theoreucal

basis tor dOlng 50 is also suggested by the series expansion of a

boolean switching function. Recall that the complete expansion of a

general funcUon takes the form of equation l.4.

r(x.l, ••• ,x.o) • Xl X2 .. ·Xo
o f(0,Q, ... ,0) + XIX2···Xn·f(U,U,.~,1) + +

(2.4)

In conventional binary dec1sion logie, f(U,O, ••• ,O) ta f(l,l, ... ,I) have

only two values, 0 or L However, in lIlulti-valued logie the~ can cake

on aoy mulU-bit value within a defined range. The va lues of

f(O,O, ... ,O) to f(l,l, ... ,I) are stored in the data tlelds of JiU output

instr u ctlQns. Since, as previously deseribed, the data tleld lS

arbitrarily large, multl-bit data i5 easily accomodated withia this

field. (The support ot multi-valued logie represents a major ditterence

be tween Boute's BD machine and the lio lck mode 1.)

2.2.4 Kinialzacion of Blnary Decision prograas. In his article on

binary decision diagrams, Akers demoostrated that comblnatorial logic

expressed in binary decision form could be minimized in a manner

analogous to Boolean logic reduction [Aker7d,McCISb). An examp1e trom

his work is described below.

Consider the BD diagram resulting from the function t = AB~ + AC,

f1gure l.9a. Note that the output of the leftmost node at the C-level

i5 0 bath when C i5 FAL!:Ir. and when C i5 TKUi:.. Since the value of the

output ls Indepe'ndent of C, the node ls safe 1y pruned trom the diagram

and replaced by a single output, tigure 2.9b. L1Kewise, the pair of

(

j

o

çy
o 1

d Q
o l rÊ]-'" r -\--., 1 llEJI

1 0 Il 0 1
1 Il 1
L ___ .JL ___ .J

r-.J-,
1

1
1 l ___ .J

o l

DG
r
1

1

Ca)

(h)

(c)

figure 2.9 BD logic minImIzatI0n technIques.
Ca) Detection of Isomorphlc program constructs.
(b) ElIminatIon of Isomorphlc logic by "pruning".
Cc) Trelllsing of resultant loglC.

2-24

rightlJlost nodes at the C-level generate identical output combinatlons

and so must imply the same logieal proposition. These are combined ioto

a single node, figure 2.9b. Note, however, that the two branches ot the

rlghtlJlost node at the B-level now lead to a single node, meaoing that

Chis paCh 18 independent of the value of B. ln figure Z.ge, che

superfluous node ls removed and the diagralll i9 further simpllfied by

grouping aIl of the a-outputs and l-ouCputs togeCher Co farm a so-ca lled

tre Il ls structure.

Th~ mathematical basis for the minimizatlon of BD logie lS deri ved

Dy the consideration of equivalent Boolean equations obcalned from Lemma

Z.l. By this LelllD.a, the Boolean equation deseribing the leftmost node

, at the C-Ieve l of figure 2.9a ls:

Q • C . 0 + C . 0 e

But Qc is also equal to 0 by:

Qc • ~ . 0 + C . 0

• (~ + C) o

(2.11a)

(Distributive Property) (l.llb)

• l . 0 (Complementatlon Property)(l.llc)

• 0

Lik.ewlse, the pair of rlghtmost nodes at the C-level of figure 2.9a are

descrlbed by the equations:

and,

Qc(left) • ~ . ü + C .

Qc(right)- ~ . 0 + C • l

- Qc(lefc)

(2.l3)

(2.13a)

Thus Qc(left)· Qc(right)" The B node i5 eliminate<.. aeeording to che

relations:

\

Qc(left) + B

Qc(left) + B

- (H + B) • Qc(l~ft)

2-25

Qc(right)

Qe(left) (by Z.13a)

(Distributive Property)

(2.14a)

(2.14b)

(2.14e)

- l . Qc(left) (Complementation Property)(2.14d)

- Qc(left)

As can be seen from the above, the mathematical basis for the

minimization of BD logie is a result of the Distributive and

Complementation Properties of combinatorial logie.

The trellising exhibited in figure 2.9c i5 also a direct outeome of

the Distributive Property. Consider the BD diagram of tigure 2.10a.

Note that the second and third outputs of the diagram both imply the

value b. Aceording to the method suggested above, these should be

combined to form a single output node. By Lemma 2.1 this diagram is

equivalently described by equations 2.15s, b, and e.

Q - Xi QI + Xi Q2 (2.15a)

Ql - Xj a + Xj b (2.1Sb)

QZ - Xj b + Xj c (2.1Se)

By substitution of the values of QI and Q2 into 2.1Sa, we obtain:

Q - Xi(Xja + Xjb) + Xi (Xjb + Xjc) (2.16a)
, ,

,. Xi Xja + XiXj b + Xi x.j b + Xi Xj c (Distributive Property) (2.16b)

- Xi Xja + (Xi Xj + Xi X J) b + Xi X j C (Distributive Property) (2.16c)

The middle term of equat10n 2.16c represents the tre 111sing of the two

identical outputs nodes, figure 2.10b. Trellising results in more than

one transfer path enteriog the b output node in the BD diagra~ At this

point, the diagram can no l~nger be called a binary tree and must

instead be ealled a directed aeyelic graph (DAG) [Sta080] •.

~

1 ,

-\

0) 0 0 1 a 1

\. J 1 ~ > d b
0 1 0

Ô rQ' ra' 1 1 1 1
1 b lib 1
1 1 1 1
L ___ .J L ___ .J

(a)

tilt

ligure l.lO

1 0

D Ô

~~SlS ot the trellis structure.
«a) Detection ot isomorphic nodes.

1

Q
O

(b)

('t» Trellis1ng to combine isomorphic nodes.

1

èJ

\-.

..

N
1

N
- (1\

2-27

The 1Il1n1mization prlnclples discu8sed above can be applied to 80

programs as well as IW dlagrams. Conslder the tW progra~ in rigure

2.1.c. Note tnat tne instructions labelled ~L ana ~b are ide~tlcal, as

are instructions QJ and ~). Ihus program size 15 reéuced by comblning

these equlvalent instructlons, resultlng ln the program of rigure 2.11a.

Figure L.llb shows the trelllsed riO dlagram ot ttle program.

The topelC of tH} program optl.mlzatlon lS discussed ln turther detail

in chapter 5, which considers the deslgn of a BU program optimizing

compl.ler for use in tne mP/BD hYbrld programmable controller.

2.3 Tbe 8ioary Decision Representation of Sequential Svitcb1ng

FUDC~10G8

As described in section 2.1, a BD program is a sequence of transfer

instructions in whicn the values ot the input varlables are used to

control the program flow. tach lnstruction sequence terminates with an

output instruction which contains the appropria te value ot the control

function. Sl.nce the discrete cransfer paths ar,e capable ot storing

input histories and since the program is capable of performJ..ng l~gical

operations on the Input data, then bD programs are, by definition,

capable ot descrlbing sequentlal switching clrcults. An example wnich

illustrated the use of BD programmlng techniques tor tRe representation

of a sequentia l SWl tching contro l function was presented in r l.gure ".3.

2.3.1 Tbe Bioary Decislon-Sequential Clrcui t Ana logy. Cons ide r the

sequent1al sw1tch1ng function:

-

Q A ; Q1 Q4

QI B Q2 Q-3

Q2 c ; 0 1

Q3 C 1 0

Q4 B ; Q3 Q2

(a)

figure l.. 11

. -----..

()
0 1

01 il)
~l l~

a ~ a

:1 ~
(b)

.0

Example of a min1mized BD program.
(a) Minimized 80 program for equation 2.1.
(b) HO diagram showing trellis structure •

l
~

'\\...-.-

Nilo.
1

N
(X)

(

2-29

(2.17)

The behaviour of this funetion is dependent upon both the eurrent input

and the partieular input history whieh preeeded the eurrent input.

Although the number of sueh histories May be large, they can otten be

grouped into a tinite number of distinct classes ealled the internaI

states S, ot the funetion. In general, a sutfieient number of states

must be deflned to ensure that the appropriate output ls produced tor

aIl valid input combinations.

The logical operation of a sequential funetion is spec~fied by

mapping, for aIl states, the output and state transitions generated by

the funetion for eaeh input within a given state. This mapping is

presented in various ways, e.g., 1n graphieal form (State IJiagram), in

tabular form (State Table), or in equation torm (State Output and State

Transition funetions). Figure 2.12 illustrates the form ot eaeh ot these

representations for a common sequential funetion, the binary serial

adder.

This funetion adds two binary-coded numbers by the seriaI addition

of digit pairs starting with the lowest order digits., Two distinct

'input states are required to distinguish between the ditferent sum and

carry outputs when carry - 0 and carry - 1, whieh result trom the

addition of identieal input bits. Figure 2.12a tabulates the binary

arithmetic resul ts whieh are used to def'ine the input-output mapping of

the function.

The state d1agram, figure 2.1.lb, represents the funetion as a

direeted graph in whieh the vertiees are labelled witn .the state names

and ares are labelled with the input/output mappings corresponding to

-

PlU:.lo),.NT

STAn.

A

II

, "

SI eIH Xl Xo z eoJr 50

A 0 0 0 0 0 A 10/1 11/1

A 0 0 1 1 0 A

A 0 1 0 1 0 A

A 0 1 1 0 1 Il

Il 1 0 0 1 0 A

Il 1 0 1 0 1 Il

Il 1 1 0 0 1 Il

Il 1 1 1 1 1 Il

(a) (b)

Nt.XT loTATt. LlKCUIT OUTPUT

(\Xo)
00 01 10

A A A

A II B

figure 2.12

(X
1

X
O

)

11 00 Ul 10 11 Z - SI Œ Xl Œ> Xa

B a 1 1 0
sa - 5(X 1 + Xo) + SIX1~0

Il 1 U U 1

(C) " (d)

State descriptions of the binari seriaI adder.
(a) The truth table, (b) state diagram, (c) state
table and, (d) state output and transition functions.

l'V

1

"" o

2-31

each state. Let A deaignate the state of the adder when carry = a and B

designate the state when carry = 1. The connectivity network indicates

the appropriate state transition for each cornbination of eurrent atate

and input. The state table, figure 2.Ue, lists the next state and

output of the funetion for each combinat ion of current state and input.

Finally, the combinatorial equations of the atate output and state

transition funetions are shown in figure Z.lZ,d.

All of these function descriptions are clearly equivalent since

they all convey exactly the same information .. It follows that any

structure that correct1y encodes this data ~s also a valid description

of a sequential funC'tion. Cons~der for example the following

genera1ization of Lee's binary decision instruct~on:

A XIXo; (A,O), (A,l), (A,l), (B,O) (2.18)

This instruction is read: in state A, if the variables X1X o have the
- 1

values 00 then transfer to state A and output 0, else if the variables

have the values 01 then transfer to state A and output l, else if the

variables have the values 10 then transfer ta state A and output l,

finally if the variables have the va lues Il thsn transfer to state Band

out-put O.

Equation 2.18 is a sequentia1 quaternary decision instruction that

encodes the information in the first row of figure 2.12b. The trio of

binary decision instructions:

A Xl; Al, A2

Al XO; (A,O), (A, l)

AZ XO; (A,l), (B,O)

is shown to be equiva1ent to equation Z.18 in Lemma Z.2.

•

2-32

A quaternary decision instruction can be decomposed

into an equivalent serles of binary decislon instructlons.

Proof: Consider that the four palrs of (Sl,Zl) terms in equation 2.18
G

are related to the switchlng varlables X1,XO by the combinatorial

function:

where:

A(XI,Xv) 2 (~lXo'f(O,o) + X1XO·t(O,1) +

XIXO'f(l,O) +)(lXv'fO,l)]

f(O,ü) ,. (A,U)

f(O,l) • (A,1)

fO,O) a (A,i)

f(l,l) - (B,O)

(2.19a)

Substituting the values of f(O,O), etc., lnto equatlon 2.19a and

factoring terms using the Distributive Property ylelds equation 2.19b.

:-/ow let:

and,

A(Xl,Xv) = Xl(XO'(A,O) + XO'CA,I)] +

X 1 (Xa . (A .. 1) + XO' (B , 0)]

Al - (XO'(A,O) + Xv'CA,l)]

Al - [Xo'(A,l) + Xv'CB,O)]

(2.19b)

Equation 2.19b i8 rewritten in terms of the single variable equations as

follows :

A ,. Xl 'Al + Xl 'Al

Al· XO'(A,O) + Xv'CA,l)

Al oz XO'(A,l) + XU'CB,O)

However, by Lemma 2.1 thlS sequence of equatlons i5 loglcally equivalenC

to the binary decis10n program:

-

2-33

A Xl; Al, A2

Al Xo; (A,a), (A,I)

A2 XO; (A,l). (B,O)

The extension of this Lemma to higher order decision instructions

is straightforward. o

A two-instruction quaternary decision program is clearly sufficient

to represent the complete state of the f!.lnction. Repeating the process

for state B of the adder example produces the binary decision program:

B Xl; BI, B2

BI Xo; (A,I). (B,O)

B2 Xo; (B,O). (B,l)

Together these two program segments completely define the s~quential

operation of the binary seriaI adder function.

This procedure may be applied, in general, to any sequentia~

function which is adequately described by one of the standard logic

representations. It effectively establishes the equivalence of

sequential switching functions and binary decision programming. This

equi valence is formally stated in Theorem 2.3.

Theore. 2.3: For every finitely-computable sequential switching

function there exists an equivalent binary decisio~ progra~

Proof: Any finitely-computable. discrete sequential switching function

can be expressed by means of a state table, state diagram or simi lar

technique. A series of Zn-ary decision instructions of the form:

S X1 X2 ... Xn ; (Sl'Zl>' (SZ,ZZ)' •••• (S2 n , Z 2n)

where n ia the number of externaL switching variables of the function,

2-34

may be obtained by inspection from the rows of the function's state

table. These instructions map the comblnatorial state transi tion and

state output functions of the switchlng function for each of it's

internal states. ~aken as a whole, the instructions form a 2 n-ary

r
decision program equivalent to the original switching function. By

a generalization of Lemma 2.2, each of the Zll-ary decision instructions

may be decomposed into a set of' 2n-1 bina,ry decision s çatements. Hence,

the complete sequence of blnary decision instructions, Le., the binary

decision program, must also be equivalent to the original sequential

switching .function. o

Historlcally, blnary decislon research has been predominantly

confined to the use of ,IiU for purely combinatorial applications.

Consequently, very few results whlch detail the sequential properties of

BD have been reported in the literature. Since, as shown above, binary

dec1s1on programs are equ1valent to conventional switching functions, it

may be expected that the sequential properties of BD, e.g., loglc

mlnimization procedures, etc., will be closely analogous to those of

conventional logic. The investigation of the sequential nature of BD is

an important are a of future research.

---- ~

,

\
~

3-1

CHAPTER 3

THE DESIGN OF THE HYBRID .P/BD ~
\

3.0 Syste. Overviev

The design of the general purpose mP/BD hybrid programmable

controller is shown in figure 1.7. This configuration consists of a

l

microprocessor control subsystem integrated w~th a BD processor control

subsystem by a communications interface. Each unit has Hs own program

memory and field 1/0 sect-ions. As a result both sequential automation

(-ON/OFF) an! proportional control functions May be~ executed

simul taneous ly by the hybrid contro 11er.

The micropcocessor's other function in the system ls to service the

operator's interface console (CRT, keyboard, printer, annunclator) lind

bulk memory units., Th~ BD processor requires communication with the

system periphera Is to load ne~ program segments f rom bulk storage, ta

send data to the CRT or to inp~ût from the keyboard. Since BD

architecture i8 unsuited to the generation of communication protocols,

the microprocessor handles 1/0 to the BD through the communications

interface.

The hybrid controller, figure 1.12, makes use of "mlc-raprocessor
1 •

address, data and control busses to interconnect thé system elements.
• 1

BD interface modules are connected to the peripheral int:erface bus 50

that logically and electrically they appear ta the mP as ordinary

peripherals. This interface design enables several BD processors to be

connected with a common mP supervisor. Vroomen [Zsom79] and Levi

3-2

[LeviB4) have proposed PLC configurations consisting of a number of

distributed, semi-independent bD controllera termed Programmable Control

Units (PCU) or Intelligent Ret lexive Interfaces (IlU) WhlCh are

connected to and controiled by a shared supervisor. liowever, the bybrld

IUP/BD progralllllable controlier presented in this thesis has only one BD

unit •

\, System hardware design can be broken down 1'ato three sections, llLP

and bus architecture, BD processor hardware and the intertace module.

~.
These elements are described in the foilowing sections.

3.1 aP Systea Architecture

3.1.1 aP Syste. Organizatloll. The mP system conslsts of a central

-
mi c roc om put e r p l us ope rat a r i n ter f ace de v i ce a and t he pro ces s II 0

interface. The mlcrocomputer eommunicates with the system peripherals

via a combined address, data and control bus.

The principal task of the mP in the PLC system 18 the execution of

pio control algorithms. According ta the task division scheme, ùN/üFF

control functlons are reserved for the BD machine because of '-its

superlor logie processing charaeteristlcs. The mP is also responsible

for ON/OFF and PID program compi lation, program 11brary''''malntenance,

task-scheduling, and system communication functlons.

Process 1/0 is achieved with conventional rack mounted 1/0 \
terminal and signal conditioning cards which are intertaced ta the mP

via the syste~ bURe To enhance system reliability these are physically

and logically independent from the BD processor's 1/0 cards.

-- -- ---------

f

3-3

~ ,.
3.1.2 aP Pro~o~ype Har~are Design.. Hardware de \/e lopment was conf i 1ed

ta the BD proces~or and a commercially avallable ~WTPc (Southwe~t

Technical Pruducts Corp.) 6duY computer system furnished the mP half Jf

the mF/BD hybr1d programmaole cootroller. ~he ~~TPc sf~[em uses a

:-Iotorola MCb~u'::l ti!lo blt 'lMlJ~ rnlcrùprücessor JO a standard ~~-SJ bus

lIIother~oard [ArtwdOj. The operator lnterface equl;:>ment i'i slmulated

w1th a Lear-Siegler ADM-Sa Cln tertIll.nal 1oI1en Keyboard, attached to the

55-30.per1pheral 1oterfaCt: bus \/la a MP-:'2 t<.S-232 communlcaë10n

1nter~ace adaptor cardo The system also has a :1.F-b~ dual S-1nch f loppy

1
disk dri ve for secondary storage and an Epson MX-dU printer for hardcopy

1

output. These are attached to the 5;,-3U bus ""ltn a DC-j d1Slt controller

careL and a MP-LA parallel commun1cat10:1 lntertace .,ldaptor card,

respectl. vely. The 5\lTPc system norma 11y runs tne T~C (Technica L Systerus

Consu 1 tants) F lex 9.U disk operatlng system. However for PLC emulat1on,

tlle system ls controlled by the BD09 or BDBUl. operatlng system as

descrlbed 1n chapter 4.

The BD processor 15 interfaced to the S~-3U bus v la a custom-bul11:

MC6821 PIA (Peripheral Interface Adaptor)-based cardo This 1s descrlbed

1n section 3.3 of this chapter.

3.2 Bioary Decision Proces8or Design

-
The BD prdcessor"'s hardware deslgn is based on Holck's stand-aione

BD machine which was implemented as a demonstration.-unit in the DATAC

laboratory in 1979 [Zsom79]. Holck's design has been enhanced ta

1nclude a larger instruction set, more 1/0 points and a control and data

Î _ _ __ _ --\--(~i

3-4

bus to the mP. (The Holck machine ..,as itself ao extension of Boute's

design, figure 1.9, ta 1ncorporate parallel, multt-blt output.)

3.2.1 Pb'81calDesctipt1on. The BD processor prototype, r 19ure 3.1.

1s 35 cm. long by 19 cm. wlde. It comprises the expanded Holck BD

;>rocessor. a local ?rogrdlIl!D.l.ng and control console conslsting Ji 24 ::,PST

sw1tches and 24 LED status llghts. 12 input pOlnts, 2. output bank.s, a

5(J-conductor cable to the mP/Bù Interface. an auto/manual mode sWltch

and an auto-mode reset butto~

The circuIt 15 const;ructed wlth w1re-wrapped. dlscrete TTL logic

components and requlres an external 5-volt regulated power supply. A

1.00UOO MHz crystal 15 provlded ta drive the system clock.

Programm1ng and control ot the BD proce55'Jr 15 perfùrmed

automatically by the 1nterfaced mP or manuaIly. by an operator, via the

switch console. The AUTO/~A"''''UAL SWlCch. located at the lete-rear of the

circuit board, selects tne control mode. In manuai mode, the BD

processor i5 isolated from the interface and 18 controlled dlrectly wlth

~ ~
':~the switch console located at the r1.ght-front of the board. The console

consiats ot 8 control sliitches labelled with function descriptions and

16 programmlng or data entry switches labelled DO to 015. [n manual

programming mode, these 16 sliltches are connected to the data bus and

permit the 256x16 RAM memory ta be loaded w1th user programs. In the

program counte!" preset mode, DO to 07 are connected ta the address bus

for initialization of the PC ta the starting address of the control

program. These 9witches are d~",o:lbied when the 80 processor 18 operated

remote Iy via the mP interface.

1 -

l'

1
J •

OL'TPUT ~
BA.\,. a
DISPLAY

l'lPl"T PlljS

1 "i5nUCTIO~
OISI'LAY (1 ~

1 "iSnUCT ION
nl~rlAY (7

PItOClV..'1
cnmlm
Dispur

OUTPUT
1lA."iII: 1
OISPUY

CO"iTROl
SIllTCHES

DATA
SWlTCHES
(15:8)
DATA
SIlITCHES
(7 01
l'fi'UT
5111 TCHES

l

8)

'1)

f

,

"

".

f

)-5

\ \
50 - CONOUCTOR
CABLE rD mP / BD

INTER FACE

r-1
.0.000.000'0 rbl

• ~
/;JsIJITC DDDDDDD

tlOOOO 0 COD
000 D DODO 000
00000000000000
oDoDDDD
DDDDDDD~DDDDD

.'iI!' ..
,...--,.-. n.oo.ooaon

LJU_o 0 n QIJrJIJO

n.oO!1oaaQ

tlona opO!1ooatl

ggg&;g9Jf0&J
g!JJ&JfdJ~flJ&J9J
~&;{0~g&J~~
&;&J&JfdJg&J&Jg

e ©)CQ}
GND PIJR

figure 3.1 BD machine prototype layout.

.'

BD
PROC[S SOR

LOCAL
PROGRA."1H l 'lG
AND CO'."TROL

CONSOLE

1 \

3-6

The contents of the data and address busses are cont1nuously

disp layed on the conso le by 3 rows of LED status l1ghts, located beh1nd

the switch panel. This display operates in both auto and manual control

modes.

In the auC:o mode, programming and control signaIs are sent ta the

80 tram the mP interface via the cable located at the left-redf of&- the

board. lmmediately in front of the cable 1s the AUTO-MOD!:: RESET

pushbutton. This pravides the operator with a means of haltlng the BU

hardware when the machine i8 in the automatic mode and it 15

1nconvenient or iœpossible ta reset the BD from the operator~5 keyooard.

Ooly twelve field inputs are implemented ln the ilD prototype.

These are divided into four wired inputs and eight simulated inputs

driven by SPST switches labelled lU ta 13 and JU ta J3, located on the

switch console at the frant-right. The inputs are active during both

control modes.

Similarly, ooly two banks of field outputs are currently

implemeoted. Of these, four bits are available for external control and

the remaining twenty bits are simulated on LED lights. The LED

indicator lights for Bank 0 are located a~ the Ieft rear of the circult

board while those for Bank lare located immediately behind the console

switch panel.

A terminal blbck la located on the right-front edge of the circuit

..
board ta bring ia 5-volts from an external voltage-resulated power

supply.

--- - ~ .. _-'. .

\
\

)-7

3.2.2 Progra_er's Model. lnstructlon ~et Processor (I~P) notat10n is

used below to describe the elements of the programmer's model. r~p 1s a

unl.torm syrnbollc language used to conveniently descrlbe the organl.zation

and operation of computers. The notation 1s fully explained in Appendix

Il.

The programmer's model of the BU proce~sor conSl.sts of:

1) Program Counter. The 8-b1t program counter\PC<7.ü> contalns the

address of the current executable instruction in the 250 location, 1b­

bit w1de program memory\Mp[255:Uj<15:ü>. Durlng operatlon the contents

of the PC are e1ther 1ncremented or preset to a branch address specified

1n the current 1nstruct10n\I:-'<15:ü> as an uncond1t1onal tunctlon of the

operat10n co-de and a cond1t10nal funct10n of ,"he selected input

variable.

2) Input Variable Kegister. The b4-bit input variable register

\1 V(63:0> 1s the main process l.nput channe l to the }iD processor. All b4

bits are dlrectly addressable trom either of two input instructions.

3) Output Registera. The output section consists of slxteen L4-blt

output reglsters\OR[15:0]<1l:ü> each with twelve independent s1gnals and

thel.r 10glcal comp lements. The programmer outputs data ta the process,

optionally 1n groups of tour bits or twe l ve bits, by uslng a "short"

output or a "long" output instruction, respectlvely. The output data 15

5witched to the appropriate output register by the output bank regl.ster.

4) Output Bank Register. The 4-bit output bank register\OM<3:0>

contraIs the switching of the output data to one of the sixteen output

---- -~--7--- -

<,

3-8

r@gist@[s. Output to independent process loops under the control of the

same BD processor can b@ kept safely separate in this way. An

instruction ta select an output bank is usually placed at the beginning

of each BD program.

l.2.3 Instruction Set. In principle, BD programs contain only two

operating instructions, input-test-branch and output. For the mP/BD

hybrid programmable controller the instruction set ls enhanced to

support multi-prograllDing, i.e., one or 1D0re BD programs controlling one

or lDore process loops. and BD-mP cOllllllunlcation. Eight inat ructions have

been defined and a further eight operation codes are available for

future expansion. The presently defined instructions are summarized in

table 3.1. Bit numbers refer to fields within the.,.,l..?t; The irlstruction

format is shown in figure 3.2.

1) INPUT-TEST-BRANCH. The INPUT instruction Implementa the IF-THEN-

6
ELSE branching logic fundamental to the BD concept. The instruction

causes the Logic Control Unit to input the selected variable eX) from

the input variable register, test 1t and ta update the program counter

to the, memory address of the next sequential program instruction. The

instruction format comprises the input variable address and the IF

condition branch address. On the ELSE candi t 10n the processor

automatically branches to the default instruction located in the next

consecutive memory location. No loss of generality ls incurred,

however, since two INPUT instructions have been implell'ented to allow

branching on Èüther p'olarity of the input variable.

~- -~------~~----------------------

,

1 _

OPEkATION
CODE

oox.x
01 x.x

1000

1100

1110

1010

1101

3-9

IN!>T.WCTlUN

INPUT Al<D T~:'T

OUTPUT LUNG

OUTPUT SHORT

OUTPUT BANK SEL.I:.(.T

END OF PkOGR.VI

INTEIUtUPT

fUNCTlON

INPUT L.INE IS S~LECT~U ay
IN<IJ.8>. V - X œ IN<l4).
1 F V -O. GU TO PC+ 1 •
IF V-I. JU~IP TO IN<7 0).

L.OAD APPRUPKIAr~ OUTPUT
8ANK wITti IN< II 0>. GO TO
PC+I

LOAD APPKOPKIAT~ OUTPUT
8ANK WITti IN<II 8>. JUMP
TU INO 0>

L.OAD UUTPUT ~ANK Kl:.uISTEK
IIlTlt IN<: II d>. JUI1P TO
IN<7 0>

110 CLOCK IS D[~A8LI:.D IF
~TOP FL.AL IS HICH. ELSt:.
GO TO PC+I

80 INTEKIWPT !dC.NAL TO ,.p
l:' Gt:NEkAT~U. JUPU' TO
IN<7 0>

1111 JUKP (UNCDN1HTlONALLY) JUMP TU tNO.O>

table 3.1 ~D instruction set.

I·op

:t ~I
CODE •• ,

,. INPUT ADDRESs •• 1

1 LONG OUTPU'l' •

• • • JUMP ADDRESS •••

r:PUT BANK,
SHORT

OUTPUT

\
hgure 3.2 Instruction word format.

3-10

IN(15:!4) comprise the operation code (op-code) fiel.d, i.e.,

OP(l:0):aIN(15:14>. Codes OP(l:O)-OO and 01 deEine the t""o types of

INPUT. The input variable address contained in IN(13:8> selects one of

the 64 input variables. Thus the 8elected variable 18 X:-IV<IN(1):8».
fil

}{ i8 EXCLUSIVE-ORed with IN<14) to obtain the next branch addres5, as

follows. If (IN<l4) (f)X) - 1 then the next instructlon's address 1s

contained in IN<7:0). Otherwise lf (IN<l4) Œ> X) • 0 then the next

instruction's addres8 is PC + 1. The op-code tield i8 restricted ta two

bits by the six-bit input variable address field requlred ta address &4

independent inputs. A proposed modification to the present' design ls to

configure the input section as slxteen banks of sixteen directly
Lj

addressable inputs. This would reduce the width of the input address

field to four bits, but would require a four-bit input bank regist~r

similar to the output bank register codljguration.

2) OUTPUT. The OUTPUT instruction transfers the comp~ted value Paf the

l' switching function describing tl)e control procedure ta the appropriate

output bank via the output register. Two types of instructions are

defined, one that outputs a full set of 12 parallel bits to the output

register, and a second that outputs only 4 bits. If the process la

controlled with four bits or less the so~called SHORT OUTPUT instruction

may be used. This saves program memory, since the next sequential

instruction's address ~8 found in the lower ~ight bits of the SHORT

OUTPUT instruction. If the LONG OUTPUT is used, the RD processor

selects the instruction at the next address.

The instruction i5 invaked by OP(3:ü> .. 1000 or 110U. 'If OP<2> .. 0

.then it is a LONG OUTPUT instruction and IN<ll:O> cantains literai

-1 ----.----

3-11

output variables \OV<ll :0), wh.l.ch are transterred to the 12 bas ot the

output register addressed by the output "bank register, l..e., UV<ll:U) -)

'\

OK[OB(3:û)]<ll:ü). lJP<2>"l is a SHU1<T UUTPUT l.nstructl.on. IN<ll:éJ>

containa four litera1 output variables, UV<ll:~» and It-.<7:U> contains

the next iostructloo·s address, l..e., UV<ll:ti) -) UK[Uth3:f)J<11:ti>.

The lower elght bits of the output register are unchanged by a ~riüAT

OUTPUT instruction.

3) JUI1P (U~CO~UITIONALLY). This instruction penni ts the programmer ta

prevent a programming impasse when an instruction defaul ts to a next

address trom whl.ch the program t low does not log1cally contlnue. !lucn

situations might occur when a LON{, OUTPUT lnstructlon requl.res a

supplemeotary Jump or when bath resu1ts ot an INPUT lnstruction require

a lump to different sections of the program. fhe JUMP instruction is

invoked wl.th the op-code OP<J:û)-llll. The JUMP address 1S contained ln

11'4< 7 :0). IN<l1:8> is undefined.

4) INTERIWPT. The INTI:.1UWPT instructl.on 15 used ta lnl.tiate BD to mP

communication. A BD interrupt may be programmed if a process variable

has exceeded its specif1ed 1imit, a major dlsturbance has caused an

equipment trip, or a "benchmark" event has occurred which must be

annunciated. The op-code ot an INTI:.l<.l<.UPT l.nstructlon l.S UP<3:ü> .. 11Ul

and IN<7 :0> cc!ntains the addres1

r:ND-OF-PRUGMM instruction.

of the next instruction, norma1ly an

5) lUW-OF-PROGKAM (r.UP). The r:OP instruction marks the logical end of

each BD program. The BU machine can be halted on1y af ter execut~on of

/

3-12

an EOP to pre vent possible loss of process control due to incorrect or

incomp lete output. The EOP instruction is invoked with OP():O) - 1010

/
and IN(ll :0> contains program and possible interrupt information.

Program execution continues at the next consecuti ve instruction if the

BD machine has not been halted.

6) OUTPUT BANK SELECT. The OUTPUT MANK S~LECT instruction latches the

address of the output bank serving the next program segment into the

output bank register. This instruction is normally.used when several

process control programs are running concurrently to separate outputs

from indi vidual programs. The instruction is invoked by OP<3:ü)-lllO.

IN<1l:8) contains the address of the desired output bank and IN(7:0)

contains the address of the next sequential program instruction.

3.2.4 H.ardware Design. A block diagram of the binary decision

processor is shawn in figure 3.3. The machine consists of five major

sections; the control section, program memory, system clock, field input

and field output sections. The design of each of these sections ls,
(

presented below.

3.2.4.1 Control Section. The control section consists of the

Program Counter, the Logic Control Unit, the Clock-Interrupt Circuit and

the AlÂo/Manual Control Interface.

1) program eounter. The ~-bit program counter (PC), figure 3.4, is

lmplemented with a pair of 74161 4-bit sYQchronous presettable cou~ters

arranged to fo~m a ripple-counting circuit. The preset input~ are

connected ta IN<7:0) of the instruction register. Preset data 15

..- -

~

f

F
1

,

f .

...

INPUT DATA
SELEC10R

'-

1

,

r
CONTROL

LOCIC

j

CLOCK
LOCle

MANUAL DATA

1 SIHTCflES

INSTRUCTION!
DATA DISPLAY

00 01
LED ~

DRIVERS

TRISTATE 11 j

ADDRESS
DISPLAY

00 0

lo<}-

~

BUFFERS LINE DRIVERS

HANUAL CONTROL

1 SWITCHES
PROGRAM
HE~RY

10- ~
~

1 1
AUTO/HANUAL

BANK INTERFACE
SELECT ~

LOr.IC

•
"r-'T""

PROGRAM comtrER

+ t L.,

T 1 1-

aP/BD INTERFACE

,tigure 3.3 HD processor black dlagram.

-

T
...--

,..
r---

.-

FIELD
OUTPUT
BANK l

FIELD
OUTPUT
BANK 2

~

FIELD
OUTPUT
BANK 15

,

w
1

1-'
"i W

3-14

CLOCK LOAD ADDRiSS BUS
rrJ t"r-' r~

/1>
CLI\ --

CLR
D7 1>.7 J

,/ D6 A6 ./
V D5 74161 AS J
V D4 A4 './

V r

--r-- p LOAD
" u2a \.-

CLK C
,1--

CU
n3 11~ ./

V
D2 A? ./

V
Dl 74161 Al ./

V
DO An r

/

--
V cc r--- p LOAD

U19
rL", '" ~

DATA BUS CLEAR

flgure 3.4 Program C ounter, circuit diagram.

1 .
l'

-

l

3-15

latched lnto the 74161's by a low signal on the roA1) line, which is

conrrected to the branch dec1sion logic of the Logic Control Unit,

coupled with a law-to-high transitlon of the system clock. The PC

increments if the DJA1:i line i8 h1gh during a low-to-h1gh clock

transition. The PC is uncond1tionally cleared by a hlgh-Iaw-high strobe

of the CLEAR line. Outputs of 'the PC are connected ta the system
l'

address bus,..-

2) Logic Control Unit. The Logie Control Unit (LCU), figure 3.5,

consists of an op-code decoder and a branch decision circuit which is

connected to the ~ 11ne of the PC. Input ta the LCU includes

IN< 15: 12>, the system clock and the selected input variable ~ The LCU

also has a strobe generating circuit whlch synchronizes the action of

some of the instructions wlth the low phase of the clock cycle. The

operation of the LCU ls described as follows.

The OP code, IN<15:12>, ls presented ta the LCU at the start of

each machine cycle. Simultaneously one input variable, selected from

~ the field input register by IN<13:8>, appears on line X. These two

actions always occur regardless of which type of instruction is

executed. The r:mrn output of the branch decision circuit is enabled by

~e1ther \D15-014) or cond,1t1onally by [(D14 œ X)·rrrs). Thus aIL

instructions wieh OP(3:2>"11 such as SHORT OUTPUT (1100), BANK SWITCH

(1110), INTERRUPT (l10l) and JUMP (llli) invoke uncondit1onal branching

to IN<7:0) 1n the next machine cycle. (Recali that aIL BD program

instructions take Just one mach.ine cycle.) 'The tm.l INPUT instructions

invoke branching only if the function (D14 EEl X) 18 TRUE. Since the input

·t ,

3-16

C1J(015 D14 D13 D12

snOllE

'Il q2

1 ... tr-'-

~
LONG OUTPUT , - .;., OPO: 0) • 1000

~ ~

I~ I~
•

EOP

OP():O) • 1010

OP{):O) .. 1110

INTERRUPT

OP(3:0) :: UOI

(

x

flgure 3.5 Logic Control Unit circuit diagram.

1

(

3-17

section always lnterprets IN(13:8> as an input address even with non-

input instruction types, the (D14 œ X) circuit is inter locked with m
to inhibit unwanted branches in these circumstances. At the present

time only two OP<3:0>"'OXXX instructions have been implemented, the

INPUT-TEST-Bl~CH pair. The branch decision circuit would have to be

augmented to decode a Il four bits if the remaining OXXX instructions

were to be allocated ln the future. The LOAD output i5 ~nterlocked with

the system clock ta inhibit this signal during the first half of the

machine cycle. This ansures that branching datd is stable for at least

one-hal f cycl'e before the PC can be preset and circumvents any timing

problems caused by unsynchronized operation of the [OAIS l lne.

The strobe generating circuit consists of a 74123 dual monostable

mu1tivlbrator ~hich produces two short dura tian strobe signais, ql and

Q2' used ta latch data into the output register. The !:>HOKT OUTPUT

lnstructipn, decoded by (ql·m·m), latch\s rour upper bits of output ,

data from IN<li:8> into OR[OB<3:0>l<1l:8). The LONG OUTPUT instruction,

decoded by (q2 ·rn·m), latches eight bits or output data from IN(7:0>

into OR[OB<3:Ü>]<7:0). But since ql is generated by (CLK'D15) and q2 by

(CLl('OlS'l>I4) t:hen ql i5 produced simultaneously with q2 in ail

instances when q2 15 generated. Likewise (Ql·m·ITT2) i5 ddditionally

decoded ~n ail" cases when (q2 ·m·i5TI) is generated. Thus a LONG OUTPUT

operation code a1so enables the SHORT OUTPUT signal resulting ln all

twelve output b~t5 being latched ~n parallel. The actual data output

operation i5 synchronized with the high-to-Iow transit~on of the systel1l

clock by Interiocking ql and q2 with CLK to ensure that IN<il:O> i9

stable before latching it into the output register.

" ;

- ,

v

3-18

The EDP signal is deeoded, without strobe, as (OlS-1JTl-D13-Irn).

The EOP signal is used by the Clock-Intl!rrupt Circuit to permit the üD

machine to be halted only at the end of a control program. The

OP~'~8tion of this inter lock circuit ia discussed later.
\.'" ~,~(~ .
~ The BANK SWITCI1 signal, decoded by (Ql-014'013'1)'T2), causes the

1\'

output bank address in IN<ll :8> to bE/ latched ,into the output bank

register. The data transter i5 synchronized with the high-to-low
.'

transition ot thé system clock by ql t ensure data stabil i ty.

The INTr.IUWPT slgna l, deeoded by i5 al so used by

the Cloek-Interrupt Circuit.

The JUMP instruction is y the branch decision

circuit since OP<3:2>"1l. A JUMP signal does not have to be decoded by

the Logie Control Unit sinee no other action' i8 required.

The operation of the Logie Control Unit is described ~Y the timing

d1agram shawn in Ugure 3.6.

3) Clock- Interrupt Circui t. The Clock-Inter r upt Ci rcui t, figure 3.7, _
<,

provides an interlock signal to the system clock. aD processor

operation la hal ted by removing the clock signal from the Logie Control

Unit. The system elock can be inhib1ted in tour ways; by fai'lure of the

1 MHz clock, by manual reset, by IiO generated interrupt, and by mP

generated interrupt.

The microprocessor interrupts the HO clock by raising the STOP tlag

causing U81-3 to fall. This signal propagates through U!32 and becomes a

low input t6"U!35, a 7474 J)-type f lip-f lop. The next EOP instruction

clocks U85 causing the output to fall, which inhibits the system clock

through U82 and causes U!i2-11, the BD-CLOCK-ON f lag, to fall as we 1.1.

- ----------

~c_ ,~. ,"~.~--

f

~
1
~
" • a

J
j
l
1
1
1 '.

1

1
l '"
1

l

.-

f~

'" >

'- '!

CLOClC

D14

Dl5-

SELECTED
INPUT

ŒAD

ql

q2

J:r ~.

IMPUr
(BRAMCH IF

SELECTED IIfl'UT:l)

,
"

IIISTl.UCrIOII T'lPE

IIIPIJT
(BRAHCH IP

SELECTE» INPUT::O)

EOP, LOMe OUTPUT
(BIWICB IŒVER)

" lAKl SWlTCH, lRTEaRUPT,
JlJHP, SHOH OUTPUT

(BItANCH -ALVAYS)

1 1 1
1 1 1 1

... 1 ~ 1 SYNCHRONOUf llITH CLOCr.I

,--__ ..;.-__ ---lJa I!"~ 1 1
1 fil

1 1
: 1 SYNCHRONOUf \lITH CJ.OClI

l ' 1 Il .of J 1
1 1 1 1 1
1 • 1 1
1 1 1 1
1 il 1 ij 1
1

1

SYNCHRONOU5 llITH CLOCXI
r-----~------~--~ 1 1

1 1

SYNCHRONOU~ WITH CLOCX1\'
~ ____ +-__ ~ ____ ~ ____ ~~n n~~~n: ~

1 1
1 1

rl fl SYNCHRONout WlTH CLOCl:
~------~------~------~------~--~ 1 1

,
figure 3.6 Logic Control Unit timing diagram.

"

W
1 ...

\0

1 >

1

i
t, ,
1 ~

1
< 1

1

,)
1
"

~ ~--~_ _ ..

~
~"-

~
f

~

, !'ii;"
... _r-o"tl .., ,--\

l,' }!

'-'

INTEUUPT
FLAC'

Q

USO

~ 1 ru CLR Y INTERRUPT
7476

EOP

l1tHr CaYSTAL

STOP
PLAG

3

IWilJAL
tplI/STOP

11"""'-_10&> ..

J

ri

,>

ëLi 1 ~

-
P

1 5

CU7~74

Vcc ~ëii 1--'
lA

"::' 1 U86
10 28

"'1"- ~ Il f'~ 4- ~lf~ "'-"-,,...... ,,_

.----//

~

.J

Ta JI) CLOCK

U27-2
~

'\

~ 1D-ctoCl..QII
12 U82 FLAG

74121 4 \

~8D CLOCl E)6 ro ID -LOCIC \
> 5 • ~M

""
.... 4J

'> ,j

figure 3.7- Clock-Interrup~ Circuit diagra~.

..
c.

f'

..

W
1

N
0

.rJ.

(

.,

\ •

'~

... . '

3-21 . /

'N.t1s- latt.er signpl 19. fed back t-o the, mP co conflrm that the BD

processor q.as hal ted.

At the end of the mP to "BD c"ommun1cat1on the mP restarts the BD

; processoJ:' by lowering the STOP f lag causing U81-3 to rise. The D f lip-
o

flop, U85, 19 set»y a shoJ:'t pulse to the 1I1nput produced bya pulse

form1ng circuit consisting of U44 and U81. This ci rcuit' operates as

folloWR. During stable operation U132-3 ia fed dlrectly and. in inverted

form t9 U8l. Thus U81-6 i8 normally high. When the STOP flag i8

lowered, a low-to-high transition occurs at U82-3. This transi tion

prCipagates immediately to the firat' input of the tOlo-input NAND gate,

U81-4. but the Re network discharge constant causes a short delay ln the

transition reaching the second input. Momentarily both inputs are high

wbich reS"ults in a brief 1001 pulse at U81-6. the operation of this

circuit i9 illoatrated 1,y the timing diagram of figure 3.8.

the BD interrupts itself indirectly through the mP. When .an

INTERRUPT instruction is executed by the BD, the decoded slgnal strobes

the mP INTERRUPT flag and clock~ a 7476 J-K flip-flop set to toggle

,mode. The microprocessor responds by set ting the STOP f lag. As be fore

we want the BD sys tem to haIt on an EOP instruction. In the event that

several programs are being concurrently elCecuted by the BD processor, Ole

want the system to haIt on the EOP of the program which generated the

interrupt. Since i t i8 unl1ke 1y that the mP can respond to the 80

interrupt before the in,terrupting program's EOP is eKccuted. the STOP

flag ls masked by the J-K flip-flop acting upon U81-2 until the

interrupt ~ccurs a second Ume • This toggles th~ fI ip-flop once agaln

and enables the STOP f lag. The mP reads the BD data bus to deterœlné

,
*.-~- '.'

f
~
f·

1
i.
r .
l~

"

\.

()

\\,
I!,
\1

~ ,
~~

\\
:

1 .
-+ \\.

1
,\
\.

,

•

,
, ,

.
0

U81-3

U82-3

",-;.""':'

->:: -
. ,-.3-22

BD RESTAltt

.1
1

. U44-10 ____ .-...;1

1
1
1

R-C 1 1

NETWORK ----"":'-+,..' ____ _
1 l'
1 1

U81- 6 -~----'U---_--:--

Hgure 3.8 C'lock restatt c1r~u1t timing d1agram.

~,"

"

"'

, .

3-23
, 0

" i

the reason for the lnterrupt after it has co~nf1rmed that the BD clock 18

halted. At the end of the BD to mP communication the micro restarts the

BD processor as before.
,

The AUTO-MODE RJ:::SET Cl>ntact ls a momentary contact pushbutton that

conditiona11y resets the output of U85 by' strobing the Gt'R input. In

\.
auto-mode, the mP recognizes that the BD-CLOCK-ON signal has reset and

responds by raising the STOP f lag, which inhibits the circuit aiter the

pushbutton 15 released. This re5et contact 'ls provided as a safety

feature as it allows the operator to halt the BD proceaoor locally whi le

the system i5 ln automatic mode. The operation of this c1rcuit 18

inde pendent of an EOP instruction and so provides a way to hal t the BD

machine if a program faiis.

In manual mode the clock signal 18 lnh1bited by a manual RUN/STOP

switch located on the BD switch console.

Failure of the l MHz clock ls a1so detected by the Clock-Interrupt

Circuit. The clock output ls fed to U86, a retriggerable monostable

multi vibrator. which generates a high output as long as ,the clock signal

18 present. Upon clock failure, the muIt1"lbrator times out and lowers

the BD-CLOCK-ON fiag to the mP via U82-12. The mP ~cogni zes th!,! fallure

and takes appropriate action.

4) Auto/Manual Control Interface. The Auto/Ma:lual Control Interface.

figure 3.9, interfaces the two ~arallel sets of control 'iignals provided

by the mP super"isor and manual control console switches. The circuit

()
1a controlled by the AUTO/MANUAL (A!M) selector switch. When the switch

i8 in the AUTO position, aIL manual control switches are locked out and

•

,
t

. t
1

'f,

,
:-

-~

~ , to ~ STOP
~ U82-1 'nAG lIV

TO
U29-1

"

~,
Î

Cl"U~-.
C2.,,l2 - _
c:l-2~ '._
Ci-24
Cl~25~,_.,

O.E.
1:2-24.'

. Cl-2,)

Cl-l

~

U70

11.244

'cc AtH
SWlTCH

;

JI

éé
n-L , l , 1
",t:: ' "

HANUAL
RUN/STOP

•

R/W
HEHORT

AUTO
LOAD

EllABLE

!il 1 1

PRES!T SINGLE RESET
PC STEP PC

figure 3.9 . Auto/Kdbual Control Interface circuit d1agram.

Tt) TQ
U14 U4-2

r . r

HAHUÂL
DATA
SlllTCH
ENA.LE

..

,0

TO
U4-9

.

'. 1

CLOCK
RATE

!)ELECTOIl

~

,f'
<:...

Il

....,
:;

1
N
."..

)

"3-25

cannot affect the B~ procesior-$ L1kewise when the AUTO/MAt,illAL swltch 18

in the MANUAL posi.tion, the mP interface circuits are locked-out.

U70 buffers the auto-mode control signaIs coming from the mP/BD

'"
interface module. The outputs of U70 are ANDed with the manual control

8witches to determine which set of control slgnals <rperate the BD
A - \

processor. The BD-side out.puts of t~e trl-state buffer, !U70, are wired

with pull-up res istors t.hat pu Il the l~nes high when the buffer is

deact.i vate~ by t h~ AUTO/MANUAL switch. This pre vents the floating

~utputs of U70 from possibly locking-out the manual control switches

while in manual mode. Likewise the manual switches default ta the high

output state when t.he Inr:erface 19 in the auto-mode. This 15 achieved

by w1ring the groûnd bus of the switches ta the AUTOjMANUAL switch.. ln

manual-mode the bus ls pulled 10w, thus enabling normal switch

operation. In auto-mode, the bus 18 pulled hlgh and the manual switche8

aIL output the high state regardless of the switch position since bath

inputs ta the swi t ches are high.

Control switch functions are descri bed as follows.

i) MANUAL RUN/STOP. The MANUAL R/S switch Is connected to U82-1 in the

Clock-Interrupt Circuit, previously descrlbed. Through this latter

circuit, the MANUAL Ris switch disables the BD Clock to haIt program
1

execution after the next EOP instruction. The counterpart to this

O· switch in the mP control bus is the STOP signal whkh i5 also fed to the

Clock-Interrupt Circuit.

H) SINGLE STl:.P PC. The SINGLE STt:.P switch and flip-flop circuit

prov:!.9.~ "a manual clock input ta the BD processor whe:!. the system clock

ia inhibit.ed by the Clock-Interrupt Circuit. The switch ia

~l

.....

3-26

automatlcally enabled when. th~ system e Lock is inhibl ted. The SINGLE

STEP Bwitch 1B then able ta drive the system cLock through U33, an XOR
I~ .-

"-
gate. This switch 1s used ta advance the PC durlng program loading and

veriflcation: It Is dupllcated in the mP control bus for remote

manipu lation of the pc.

IH) RESET PC. The RESET pc swi tch 15 direct ly connected ta the CLR

inputs of the PC. lt enables the operator to reset the program counter.

This switch 15 not duplicated in the mP control bus since the PC' i5

cleared by loading It with O"'s in the automatic-mode protocol.

i v) PEŒSET Pc. The PRES!::T PC swltch enables manuai prese!=tlng of the

program counter by DO to D7 of the manual switch console or from the mP

control interface. The output of thls switch lB connected to the LOAD

Une of the program eounter via U27-3 and U33-3and Is enabled by the

.~

AUTO LOAD ENABLli. (ALE) switch. The operation of these swltches 15 as

follows. When ALE i8 high the sys tem's 'LO'irn signal, produced by the
,

branch dec1sian clrcuit of the Log1e Control Unit, 15' al10wed ta control

program counter operation. However when ALE 19 Law the system input 18'

locked-out to pre vent the Log1c Control Unit fram accidentally

prese t tlng the program counter. This i8 ne cessary during program

loading since the LeU 15 not otherwise prevented from trying to execute

the data on the data bus as it is loaded iota program memory. The

manua =- PRESET pc switch is acti ve when ALE i8 low. Both of these

controls are duplicated in the mP control bus.

v) R/Q MI::MORY. The R/Q sw1tch controls the operation mode of the RAM

program memory. During normal operation the signal 18 111gh to e'1~ ~Le

the readlng of memory data. The signal 15 lowered to enable writing of

/

(

3-27

new programs into memory. This signal is directly cohnected to the RAM

packages and is dupliaated in the mP control bus.

vi) MANU AL DATA SWITGH ENABLE. This switch enables the manual data

swltches on the local console for program loading and program counter

presetting. lt activates a set of tri-state buffers which isolate the

switches from the data bus.

vii) OUTPUT ENABLE. This signal exists only on the mP control bus. lt

ls used to inhibit the output data from being latched into the output

ports by unintentional operations of the Logic C6ntrol Unit during mP/BD

communications.

3.2.4.2 Progra. Me.ory. The BD processor program memory is

implemented with a set of four 128x8 MG6810 RAM packages providi.Jlg a

total of 256 words of 16-bit wide memory, figure 3.10. The chips are

connected to the processor's address and data busses. "",

The read/wrlte (RIt:) mode line is controlled by the Auto/Manual
'.

Contsal Interface circuit described in the previous section. When this

line is in the read state, instructions are accessible to the system but

cannot be al tered. Indi vidual memory locations are accessed by an

instruction address provided by the program counter via the address bus.

In the write state, the contents of the RAM devlces can be altered

to allow loading Ç>f new programs into memory. The literal contents of

the data bus are written into the memory'location selected by the

address bus data during this mode. Successive l\ocations are filled by

\
strobing the clocK input of the program counter ~hile its LOAD line is

held high to select the incrementing mode. After each new instruction's

r
!

3-28

\
READ/I.'RIT'E \.1 16-BIT' DATA BUS ,..,

128-255
L--S DIS

/ .. 6 014 ~ V
Al

013
012 ~ A3 DU

2 010
-./

1 gé V 0
V
~ IR/W 6810

128-255
rs 07 /

6 06 "/

~ ÏAZ D5
ni. "/

~ " 3 D3
2 n' V 1 Dl
0 DO

V
t-- ~/ii 6810

0-127

~. ~, ~s 015 ./

lt.. 014

~
,~ , D13 -../

i. 012 -/

II": 3 011
V 2 DIO ~
~ 1 09

0 D8 './

V
~ iR Iii 6810

0-127
s D7 ../

V 6 06 '/

V
5 05

~ .. 04

~ 3 03
2 02 -../

~ 1 Dl 1 0 DO
V

iR/ii 6810 '---

1 ~

\
.......

o
8-BIT ADQJtEss BU9

figure 3.10 Program memory circuit dlagram.

-------- -

3-29

data has stabilized on the data bus. it i5 stored in the program memory

by a h1gh-low-high strobe .of the RIO line.

The RAM/address bus interface 1s driven by 8T95 drivers (not shown)
Jo.

as~ current soucrcing capacity of the 61HO ICs ia insufficient to

d'rive the entire address bus load.

,-
3.2.4.3 System Cloclt. The system clock consists of the 1.00000 MHz

crystal and, on the current BD prototype, a pair of 4040 counters

forming a frequency dividing circuit, figure 3.11. The latter circuit

furn1shes two reduced-frequency clocks, 62.5 kHz (1 MHz/2 4) and 0.5 Iiz

(1 MHz/2 21) which are used as functional system clocks for normal BD

processor operation and "slow motion" checkout operation, respectively.

The clock speed is selected by the CLOCK RATh SELECTOR 8witch on the

manual control console through the NAND gate circuit of U4. The output

of U4-€L 18 sent to the Clock-Interrupt Circuit as prev10usly described.

The CLOCK RATE SELECTOR switch i8 not dupl1cated on the mP control

bus and is not affect.ed by the AUTO/MANUAL switch.

The frequency divider circuit was implemented in the Holck

prototype to re lax the design requirement for h1gh speed lC components

and ta make circuit debugging easier. However. now that the circuit

characteristics are weil established the frequency dlvider ls no longer

required. It is pro,posed to eliminate th1s circuit in future

prototypes.

3.2.4.4 Field Input Section. The input section consists of tour

74150 16-1 Multiplexors connected with a 74151 8-1 Multiplexor (MUX).

•

,l
"
"

1
{

f

Ll

1

j

!

l

'1
l

,;

,

~

1.OOOOOHHz
CRYS~AL

lWl

U86-10

TV CLOCr;-INnuUPT
CIRCUIT

U2

• III{) Q4 1

4'U1 QI
4040

U3

'1 Qg 1

tigure 3.11

~

SW29 mn
(

FROH AUTO/twn\..L
SIllTCH I1cri.ri~

~

Syste. clock circuit diagram.

:

..

TO CLOCK-INTERRUPT
6 .. CIRCUIT

UB2-5

•

W
1

W
o

3-31

figure 3.12. Together these comprise the 64-bit field input register.

The output of U25, the 8-1 MUX, constitutes the selected input variable,

X, sent as input 'to the LCU. /

IN<l3:10> are connected in parallel to the data selector address

inputs of the four 16-1 MUX chips to generate four selected field

inputs. U25 selects one of these according to IN<9:8>.

The operation of the input section ia not interlocked with the op-

code decoder circuit of the LCU (see section 3.2.4.2). Thua 1t always

Interpreta IN<13:8> aa an input address regardless of the actual

instruction being executed.

An improved configuration would see U2S replaced by a 74150 16-1

MUX dd ven by a 4-bit input bank register Instead of IN<9:8). In this

case aixteen banks of 16 inputs could be handled, but this would require

the Implementation of an INPUT BANK SELECT instruction.

Figure 3.12 also shows the distribution of the eight inputs

simulated by manual switches and of the four field inputs.

3.2.4.5 Field Output Section. The output section, figure 3.13,

consists of the output bank register, the output bank address

demultiplexor and sixteen sets of outpu~ reglster latches. The
~ '\

':.. operation of this circuit is as follows.

Upon execution of a BANK SWITCH instruction, the bank select signal

generated by the LCU clocks the contents of IN<II:8) into the output

bank register, U41, a 7475 quad D-type flip-flop. The o~tputs of U41

are fed in paral1el to two 74154 4-16 demultiplexors, U39 and U40, to

decode the latched output bank address. U40 enables the upper four

------------------------~-~_.~-~--
l

(

--

IBP1lT
PIlCS {~ -

-
~ J3
~ .. J2

~"'Jl
~"'JO

•

-
k 13
~

12
~ .. -Il .. -~ ID. -.-

.1.. ,
:' Vcc

1MU3:8)
~

(48-64)

13
Q

119

3 A IN(10)/ -
~2 B INQBI

~1 C IN<l2lj -
o 74158

IN (13).;'

.
(32-41)

15 Q

U8 IN(l0y
3 A - "-

bZ B
IN (ll)/

1 c
IN (12)/

bO 7415~
IN {l3).;'

(16-31)

DIS Q
117

A nHl/ll1
03 B mOlli
1>2

C IN(In.
Dl D nHl'tY

DO 74150

(0-15)

OlS Q

U6
IN(~O}

Dl .A
IN(l~

B
02 IN(l2).-

C Dl
INi.13}

D
0074150

3-32

•

rN(R) A

INM 11

U25

D3 Q

D2

Dl

DO 7415:]

,

<

~

.,1;

TO LOCIC-CONTROL
UNIT

x 1133-1

r

\

figure 3.12 Field input section circuit diagram.

~-- --_._--------------

~

J

f
t
1-
1 • ,
~

-1
~

1
1
1

'-

J-

..

OUfPUf
EMABLE
(FROII .P
INTERFACE)

SIIORT
otrrPU'J:
U81-8

DATA BUS

BANI.
SEJ;ECT
U42-11

LONG
OUTPUT
081-11

..

,

.... IN(ll)

IN(lO)

: IN(9)

IN(B)

..

"

. ?
~

>ft.

V

010)

OB(2)
U41

OBm

f 7475
OB{O)

J

'--

v-

-

figure 3.13

1

DATA lUS
1'1'

IN(U)

Ël QO ~BAnO " IN.il()
Ë2 " IN(9}

U52
-{>- ~J. QI '- . IN(8)

Ë 7475
A U40
a J
C

r--t>- 1Anl.5 D fll5 l'dl!.iIl
74154 .

1'\ IN(6)

1'\ -.l.fti.2)
U51

IN(4)
F. 7475

J Ël QO , ... RANK 0 rv-
Ë2 Ql r---P ~-.I: '\ IN.1J)

A U39 JN(2)

B 1\ lli.ill U50

c " IN.ill

o Q15 f-t>'" BANI(t;i Ë 7475

74154 "- . J 0---

Field output section circuit diagra ••

~

OVJOKIU

ov lOl{lO:t

ov [0](9)

ov (01 (8)

OV[O] (7)

OV [0](6)

av [0] (5)

av [01 (0

ov[o1 (J)

OVlO](2)

ovlO](J)

ov..iQl<O)

,.

-

-
TO IlfTERFACE

W
1

W w

(,

\

3-34

lat~bes 1n each output reg1ster and U39 enables the lower eight latches.

During executton of a SHORT OUTPUT instruction, the LeU generates a

pulse on the short output line. This briefly enables U40, causing a
/ .

pulse ta 9ccur on the' selected output line which clocks lNOl :8> into a

7475 flip-flop latch (U52 in the figure). Likewise, the execution of a

LONG OUTPUT instruction generates a pulse on the selected output line of

U39 which latches IN<7:0> into the lower bfts of the output reglster
lj~

(U50 and U51 in the figure).

The DEMUX chips are interlocked wlth the OUTPUT ~NABLE signal

provided by the mP control interface. This inhibits aIl of the output

latcbes during mP to BD communications to pre vent output data from being

accidentally overwritten.

3.2.4.6 Ti.ers and Flip-Flops. External 55S-based timers are used

ta generate timing functions, figu"re 3.14. Timera are started, by the

outputting of a timing request R, and run for a predetermined, hand set

periode The timer's condition i8 establ1shed by reading an input line

as shown t'a table 3.2. To m1nimize the number of input points required,

one additional output common to aIl timers i8 used to activate a flip-

flop to select between T or R"T.

Flip-flops are simply implel1lented by tying one out?ut 1ine ~ack

into the input.regi8ter. The output bank latch becomes the memory

elenaent.

-

~

o
! ,
i.

, t
Il

---- .

" 3-35

l>----....... ~-------.... ,
Vcc

555
TIMER

, >----..... -t.,;lo---------L~

figure 3.14 Timer hardware circuit diagram.

-THŒR R T F R·T

INACTIVE 0 0 0 0
1 0

..
TIMING 1 1 0 1

1 0

EXP 1 RED 1 0 0 0
. 1 1

IMPOSSIBLE 0 1 X X
CONDItION

table 3.2
y

Timer hardware circuit truth table.

.., t_"'--""-__ ·-....... ~ -,!0!1~=-=:-"1IIII.19F--.. ~--. ..,..'""'.------------------,.____:"":"OI~--, "\ -- *- - "-

(\.

3-36

3.3 "/BD Interface DeaLga

.The mP/SD Interface Module 19 a MC6821 Perlpheral Interface Adaptor

(PIA)-based card which drives the BD processor's 16-bit bidirectional

data bus and a-bit control bus. The data bus ta connected to the BD

program memory via US and U6, 74245 tri-state transceivers, figure 3.15.

BD programs are downloaded from the mP to the BD memory or read back

lnto the mP via this bus.

Additional 74244 tri-state drivers, U7 and U8, connect the lower

four bits Bf the data bua ta the field input register of the BD and

bring out twel ve field, outputs from output bank O. These ,are required

to implement a BD hardware verification mode in which a test program i8

loaded into the BD memory and executed. The mP transmits test data over

the four inputs and compares the program output with a tabulated set of

results.

The data bus drivers are controlled by U3, the 74273 8-bit control

register. The ENABLE BI/VER line selects which set of drivers, U5-U6 or

U7-U8, are connected to the PIA. The t ransmiss ion di rection of US and

U6~ls controlled by the DIR output of the control register.

Auto-mode contrOl signaIs such as AUTO LOAD ENABLE, STOP, PRESET PC

and OUTPUT ENABLE, are also generated by this control register. The R/Q

and SINGLE STEP signaIs are provided by the CB2 and CAZ outputs of the

PIA. INTERRUPT, BD-CLOCK-ON and AUTO/MANUAL switch position signaIs are

fed back ta the mP 'lia the CAl and CBI control inputs of the PIA. A mP

interrupt la generated by the PIA when a transition occurs on either CAl

or CBl to 1ndicate to the mP a change 1n the status of the BD processor.

-- - -----~._----___ ..t_ ..

3-37

~

~
U5 ~
~ , 74245

r:F)
:---

> -
~

Ub ~
~

74245 t::::.
L-J

PAO

~}
· U7 ~.

~ "l ·
i PA7 74244 f4--

N ..
~ J t ..

04 PBO il
~
~ ua

PU ~ · . · '\ 74244 t::-
~

PB7
~ CAl _IN'l'.-

--.J
~ ~ ~ 55

<-
~ ., CA2

..
~ ~ ~

CBI a/li ...
CBl " BD-cLOCK~N -'

1 ~ i
6821

.~~
~

~
.. ~
... 'i 'i • ~

UI0

ïë'D A/M ...
A I~ _ STATll~ J

i--- 8D CU< 5TATUS
U3 STOP

iIAN LOAD PC -

1 ())ITPPT PlA HP' ::::

74273
AUTO LOAn ENABLE -~ ,

figure 3.15 mP/BD Interface Mod~le circ~it diagram.

Cl-Il.
TO

Cl-21

0(15:0)

C2-14
10

C2-21

CI-6
TO

CI-9/TO
TEST INPUTS

CI-lO
10

Cl-HI

FROM
OUTPUT
BANJ. 0

C2-6
TO

C2-l3

Cl-23
CI-U
C2-2Z

C2-23

CI-3

CI-24
C2-lS
C2-24
CI-lS

," ,

\

-

,
1

" 3-38

(
The EXCLUSIVE-OR cl~cu1t consisting of ut and U10-3 and U~0-4

, .ultiplexes tHe BD-CLOCK-ON and AUTO/HANUAL switch position signaIs onto

the CBI input. The circuit 18 drlven by the A/H STATUS and BDCLK STATUS
1

signaIs generated by the 8-blt control reglster to enable the mP to

dlscriminate between a change 1'0 the AUTO/MANUAL switch position and a

change in the status of the BD-CLOCK-ON flag.

The mP/BD interfac~ module i8 connected to the 55-30 bus, 1/0

expansion area of the SWT~ 6809 co.puter and occup1es flve aeaory

locations.

()

.. --- '"'

,
--"

4-1

(

CII&PTU. 4

,.p/BD JlYBIW) PLe OPUATlBG SYSDII DlSIGII

4.0 Iatroduc~IOQ

An operating system (O/S) 1s a program which manages the hardware

and software resources of a computing system and coordinates the

interaction of the resources to achieve the system's pur pose. The

hardware resources of the mP/BD PLC consist of the mP-based controller,

the BD-based controller, and the operator interface. The software

resources include mP and BD process control pr'ograms, program compi lers,

and other support software. This chapter describes two operating

syste~s created for the mP/BD PLe.

The first section discusses the design of a real-time, concurrent

multi-programming process control operating system: BD09. This program

supports task scheduling in each of the processors, manages program

memory allocation for the efficient execution of concurrent tasks,

, ma1ntains libraries of pre-compiled control programs and executes inter-
u

processor and operator communication functions. The pur pose of its

\
discussion is to outline the philosophy of operation of the PLC desig~

It has been implemented thus far only in rudimentary forro.

The second secti'On of this chapter deals with the design of the

system software currently used to operate the SWTPc 6809 computer in

conjunction with the BD processor prototype. This program, called

BDBUG, implementa operator-controlled functions:

-

'-

4-2

1) mf-BD communications;

2) BD program retrieva~om a dlsk-based librarYi and

3) BD proces8or initialization. load1ng and operating commands.

4.1 The BD09 Operating Syatea

) A commercial version of the mf/BD hybrid programmable controller

would differ from conventionsl PLes in several ways:.

.1) The parallel processors (mP and BD) enable simultaneous execùtion
>~.

of PlO and Sequential Automation control tasksj
JI

2) High processor speed (particularly in the BD unit) makes concurrent

.ulti-programming feasible in real-time; and

3) The hardware interrupt structure of the hybrid PLC enables the

controller ta respond to scheduled and unsche?uled process events

vith any appropriate strategy Including changing the active control
A

algorithms without operator intervention.

"

Tbe mP-resident BD09 operating system contains the sy~em software

requ1red. to perform task scheduling for the dual processors and to

execute internal and external system communications functions. Consider

the program structure illustrated in figure 4.l. The functionsl ,
elements are descrlbed in the f~llowing sections.

4.1.1 Interrupt Decoder.. The interrupt decoder 16 the highest level of

the 8009 a/s. Process contro 1 algorithms are executed on 4n "round-

robin" basts as the' primary task of both the m? and BD processors. The '\

(Ols program resides in the mP as a background task until an event such

--

-........... -~-,---- .

Q

..
!
i

BD BD
PROC1WI LIBRARY

SCHEDULER \ MANAGER

"'-r-
&.

BD DISK
HEMORY OPERATING
MANAGER SYSTEM

BD è

HARDWARE
DRIVERS

-, figure 4.1

(

()

4-3

INTERRUl'T
DECODER

REAL TIME
EXECUTIVE

1IlP
PROGRAM

SCHEDULER

1IlP
MEHORY
MANAGER

't

mP
LIBRARY
MANAGER

orSK

r SOFTWARE INTERRUPTS

HARDWARE rNTERRUPTS

OPERA TOR REQUEST

REAL-TIME CLOCK

0

1·
OPEMTOR
INTERFACE
EXECUTIVE

OPERATING
SYSTEM

!)

'i;'

r,

,

BV09 OIS block diagram.

-------~"' .. , .. .,.

-.J

1

(>

,.

,
.'

, <: ...

1

- ...

,(

c,

4-4

as a programmed interrupt, process eq'uipment trip, contro 11er hardware

malfunction or operator intervention interrupts one or bo~h of the

processors. Control ot the mP is switched ta the 8D09 ols by the

hardware interrupt vector clrc'uitry of the microprocessor, where the

~terrupt is decoded 1.n arder to start the appropriate service routine.

Multiple interrupts are served on a first-in, first-out basis. The

hardware interrupt mask is set by the service routines sa that ther

cannat be hal ted by subsequent iry:errupts. A po lling routine in the

Interrupt Decoder scans the interrupt flag bits of the system

peripherals ta de termine the source and control is passed ta the Keal

Time ~xecutive tor action. AIl interrupts, cha~nelled through the IRQ

line of the MC6809, have equal priority although the polling routine

does impose an arder in which mul tip le lnterrupts are recognized. The

controller resumes execution of the old job schedule or a newly assigned

one after aIl the interrupts have been cleared.

4.1.2 i.eal Tlae Executive. The Real Time Executive (RTX) is composed

of the interrupt servicing routines which activate program managers and

hardware drivers for four categories of interrupts. These are described

below.

1) Software traps. These occur it the process variables have exceeded

the precompiled range of the active control algori.thms. ln a scheme

analogous to "virtual memory", programs of excessi ve length are di vided

.'" into a series of semi-independent sections, each valid in a specitlc

control range, which are moved into and out ot program memory as range

boundaries are encountered. This iB of particular importance in the BD

G

processor where the memory requirement of binary-complete programs grows

with input variable count as 20 +1• Here, software traps are implemented

by replacing the control output instructions at the upper and Iower

limits of the variable range by software interrupt instructions

containing an appropriate error code, figure 4.2. Other situations

favouring the use of software traps for the detection of abnormal or

noteworthy proeess conditions inciude equipment trips whlch require

specifie ahutdowo programs or "benchmark" events which must be

annunciated to the operator.

The Executi ve reads the interrupt code from the Iast executed EOP

instruction in either the mP or BD, as appropriate, ta determine the

type of condition present and the action to be taken. In the case of an

mP program interrupt, the Executive can read tois data directly as the

control of the mP is automatlcally transferred ta the OIS and the

process control algorlthm la suspended at the Interrupt location.

However, in the case of a BD interrupt, the" protocol ia somewhat

•
different. When an lnterrupt is generated by the BD machine, the

Executive responds by ralslng the STOP flag to haIt the operation of the

BD processor. The BD unit is not permitted to stop itself since other
."

programs concurrently exeeuting in the BD program queue must be allowed

to continue normally. The response time of the ols ia insuf fieient to

ensure that the STOP flag i8 raised before the interruptlng program

reaches its EOP instruction, the only legal place a program can be

halted.~ To prevent any of the other EOP instructions in the ether

programs from stopping the BD proeessor, a toggle flip-flop sets a mask

ta lock out the EOP signaIs from affecting the Clock-Interrupt Circuit

\

figure 4.2

r

INTERRUPT
lEQUlST 1

4-6

INTERRUPT
REQUEST 2 , , , \

).. -""(, "" -... / " ., V' 'y ... "\
1 1 1 1
~_ .A ,. _ ""

'" ;,"
r~, r~ï r J -, r~,
1 1 1 1 1 1 1 1
L_J L_J

PROG1W1 2

Program size reduction by partition.

4-7

(8ee chapter 3). The mask 18 cleared by the execution of a second

interrupt instruct1on. Normally this will come from the same program.

The BD machine then stops at the next EOP instruction. (If the

subsequent interrupt occurs due to anocher program detecting an abnormal

process condition, then the two events are likely to be connected and

the encire program queue probably needs to be changed to adapt the

controller to the new operating conditions. If the two events are

unrelated the initial software interrupt would recur once the BD

processor W3S released by the oiS, resulting ln a second interrupt

sequence.) If add1tional control programs are necessary, in the case of

e1ther the mP or BD unit, the Real Time Executive requests the files

trom the appropriate library management routine and passes it to the

appropriate memory manager for installation into the program queue.

2)' Hardware Traps. BD processor hardware traps occur if the unit

unexpectedly stalls, signalled by the fall of the BD-CLOGK-UN f lag in

the contra l lnterface, or if the machine 15 decoupled trom the mP by

operator manipulation of the AUTO/MANUAL switch. Other hardware traps

can be generated by self-check program8 included in the mP and BD

program queues to detect processor or peripheral failures. If the BD

unit has failed but can be restarted, a diagnostic program i5 loaded and

run to determine the source of the error. Control program executl.on is

resumed if the fault is non-fatal. Otherwise, the operator 18 alerted

and the process is put under manual control. Methods of detecting

hardware failur~ includc time-out circuits which in normal operation are

reset by the periodic execut10n of a particular instruction sequence.

-

4-8

If the sequence 18 not executed, either due to hardware problems or the

problem of a program caught in an Infinite loop, the circuitry times-out

and generates a warning flag. Another method of dete~tlng hardware

problems 18 to Include a short program in the queue which reads a test

pattern sequence of input data bits, controlled by the OIS, figure 4.~

Any detected discrepancY,indicates errors in the input clrcuitry and

Inltlates an interrupt.

3) Operator Requests. The operator Interrogates the PLC by sending an

Interrupt through the keyboard devlce. The Executive.' can provide

Info['matlon BU ch as the operational status of each proces8or. the

listing of the current program queues, and the contents of program

libraries. The operator çan also update the program queues via the

program Schedulers for either the mP or BD unit, compile new programs

and change the contents of the program libraries.

4) Real-Time Clock Interrup~. This independent Cime-base i8 u8ed to

synchronlze the ols with scheduled process events 8uch as equipment

startup and shutdown. On a periodic bas1s, the real-Cime clock

generates an interrupt which causes the Executive to increment a

register containing time counts repre8eneing the actual time-of-day.

The Executi ve interrogates ehe program Scheduler routines for both the

mP and BD unie to determine if a scheduled event i6 pending. If so, the

memory and library management routines are activated to 1mplement the

required changes. If not, the ols resumes the execu~ion of the prev10us

program queues.

--------- '.

t ~':'-h.""<

'"

, "

~ ~ ~~f

c

1

o

Jr""
o

INTERRUPT .

1

01
o 0-0}

tJ
EOP

~
L

PC
F8
F9
FA
FB
FC
FD
FE
PF

'--

1

BD PROGRAH

CODE16 FUNCTION
40FE INPUT VAR "0"
48FE INPUT VAR "1"
50FE INPUT VAR "2"
58FE INPUT VAR "3"
AOOl EOP
FOOO JUMP TO a
DFOO INTERRUPT
AFOl EOP (INTERRUPT)

,

figure 4.3 Hardware self-test prograa.
1

- \.
)

~
1

\0

..

(

4-10

4.1.3 aP .ad BD Progra. Scheduler and Ne.ory Nanage.ent Unit8. The

Program Scheduler and Memory Management Units for the mP and BD

proce5sors are functionally ldentical. They are described as fo1lows.

1) program Scheduler Unit (PSU). The PSU 15 a routine which allows the

operator ta schedu1e the startup and shutdown of individual control

tasks. A table is maintained by the PSU which lists the programs tha~

have been scheduled together with the time-of-day of the event and .an

on/off flag to indlcate whether the control task ls ta be started or
~~

\

stopped. The opera:tor maltes insertions or deletions to the table from

the keyboard device. Period1cally, the real-cime clock interrupt causes

the PSU to scan the program table. The actuai time-of-day i9 compared ta

the t~ble entrfes ta determine if a scheduled event shouid be processed

during this interrupt periode If so, the PSU requests the program from

the library and passes it

loadlng into program memory

to the Memory Management Unit (MMU) for

ft·" '" pr{o~ to execution. The table cntry is then

deleted. If a program is to be turned-off, the PSU requests the MMU to

remove it from the program memory. Control 1er task process1ng ls

resumed after the PSU 18 fin1shed its examlnation of the table.

rr
2) Memory Management Unit. Since one or more control algorithms may be

in the program memory concurrently, the MMU i6 responslble for space

1
allocation to ensure that active programs are not damaged by accidentaI

overwriting. A memory map ls used to record the disposition of each

progr am in progr am memory as we Il as the a v al1ab 1 e free areas. The MMU

19 made up of three parts:

4-11

1) ALLOCATOR. This routine searches the memory map for free areas to

assign to lncoming programs. The new program is rejected if

Insufficient space 15 aval1able. Successive program additions and
,

deletions may leave inter-program gaps which tend to fragment the memory

and waste useable space. The Allocator 18 able ta rewrite the program

memory to concentrate the iree sectora together sa that allocation of

this space, l118y continue.

11) RELOCATOR. Control programs which are cOOlpiled in absolute

addresslng mode, such as BD programs, cannot be loaded into memory areas

arbitrarily selected by the memory Allocator because the conditional and

uncondit1onal jump instructions contain location-dependent data. This

data must be translated to coincide with the actuai are a allocated to

the program prior to loading. The Relocator compares the compiled

location of new programs as they are processed by the MMU with the load

addresses provided by the Allocator routine, aud adds or subtracts the

d1fference irom each transfer instruction in the programs.

11i) LOADER. Allocated, relocated programs are transferred from the

working area of the MMU to the program memory area. ln the case of mP-

based programs, this is simply accomplished by rewriting the programs in

a different section of the same Random Access Memory. Operations in the

BD processor's memory are more involved. The Loader signals the Real

T1me Executive to interrupt the BD processor if it is still executing

contro l programs. This is achieved by raising the STOP f lag in the

interface control bus. After the execution of the next EOP instruction,
(

the BD clock ia interrupted and the BD-ClOCK-ON signal falla to confirm

\

4-12

that the machine has halted. The Loader then actives the control bus ta

preset the HO processor's program eounter to the initial location of the

allocated area, at ter which it transfers the new program to the BD unit.

When complete, the Loader signaIs the [{eal Time Executive to lower the

STUP flag, thus restarting program execution. The procedure for

unloading programs is to update the memory map to ref lect the additional

free area ..

4.1.4 aP .ad BD Lf.brary lIanage.ent Unf.ta. lnacti ve mP and BD cont ro 1

programs are stored in disk-resident program libraries. The Library

Management Units (LMU) ma~ntain directorles apart from the global disk

directory ta fllcilitate program retrie~al in response to requests from

the Rea l Time Executi v e. cach directory record conSl.sts of an

identification ns.:mber, a program classification number, the compiled

memory location and the length of the program.. The LMU's support three

types of library requests which originate from either the operator or

the Rtl{:

1) ~ Storage. programs are automatically saved in the libraries

after compilation. The directory 19 checked to see if a program of the

same number is already present. If so, the operator can choose to

rep lace the exis ting program with the new one or ta abandon the new

file.

2) ~ H.etrieval. programs are transterred from the libraries at the

"Cequest of the RTX. Disk transfers are handled by the embedd~d disk

(~ operating system routines.

----~-----------------

4-13

3) Fi1~ De1etion. Programs are removed tram the 1ibrar le~ by operator

request when. they are no longer required or when they have been

superseded by newer versions.

4.2 The BDBUG Operatlog Systea

The BD8UG program is currently being used to operate the SWTPc

6809/BD processor development syste~ lt implements many of the high

and low level features of the BD09 oiS such as the Interrupt Decoder.

three of the four classes of interrupt servicing routines of the Real

Time Executive, the Relocator and Loader routines of the BD Memory

Management Unit and the operator interface. This program served as the

test bed for the communication interface hardware descri bed in chapter

3.

BDBUG is used in conjunction with the FLEX 9.0 DOS and the V-BUG

monitor, a local modification to the commercially distributed S-BU<.;

mon1tor [Vro081]. These other programs supply disk transfer and

terminal communication subroutines for use by BDBUG. A fully

1ntegrated. EPIWM-based version of BDBUG and the requ1red subsets of

FLEX and V-BUG ia under development.

Operator interface commands are patterned after the V-BUG command

set. Programs, once loaded Into the mP worklng memory by FLEX. can be

relocated and loaded into the BD processor's program memory by keyboard

commands. The BD unit can be started, stopped and single-stepped

through programs, among other functions, via the keyboard. The

structure of the BDBUG program ls described 1n the following sections.

A complete listing of BDBUG 15 presented in Appendix III.

"

4-14

4.2.1 progra .. InJ.tla1i.zatlon. When control of the SWTPc 6809/BD hybrid

system is passe~ to the HDBUG program from either FLEX or V-BUG, certain

lnitialization procedures are required to configure the computer for the

hybrid raIe. These actions are:

1) Set Interrupt Mask. !his pre vents random interrupts trom interfering

with the initialization procedure, in particular, whi le the interrupt

vector is being changed.

2) Store .!!9. Vector. The starting address of the Real Time Executive

!terne1 is stored in the IRQ vector of the 6809 mP. AlI subsequent ~

interrupts (as opposed ta FIRQ or mrr: interrupts, for examp1e) cause the

6809 to j ump ta t his address for proces sing.

3) Initialize ACIA.. Communication with the operator interface terminal

18 achieved by a seriaI Asynchronous Communication Interface Adaptor

(ACIA) card which resides on the S~ITPc computer SS-30 Input/Output (1/0)

bus. This card automatically generates the RS-232 protocois for the

seriaI transmission of keyboard and CRT data. It must be initialized ta

set the transcei ver parameters ta the appropriate values.

4) Initialize ~ Interface. BD interface communication is controlled by

a parallel Peripherai Interface Adaptor (PIA) card in slot 3 of the SS-

30 1/0 bus. The PIA is initialized to enable the BD ta mP communication

pathway.

5) Initialize "r.;vents" Printer. An "events" printer is used in

industrial control systems to log messages, alarms and actions of the

control system dur1ng day to day operations. This information 15 used

..

-

(

J

4-15
".

in performance analys1s of process equipment and provides a record of

events surround1ng an emergency situation. The mF/BD development system

uses a standard EPSON dot matrix prin ter. Once initiallzed, It can be

turned on or off by the operator via the BDBUG command set.

6) ~ Operational Status of the BD Processor. BDBUG remembers the

auto/manual and runnlng/stopped status of the BD processor as a means of

determining the validity of operator requests. E.g., an operator

command ta restart the BD processor ls 1nvalld if the processor 18

already running. The actual status is ascertalned from the BD interface

card.

7) Clear System Interrupts. Interrupts, from either the BD processor

hardware, software, or the operator termina lare cleared by performing a

microprocessor LOAD operation of the data registers of the 55-30 bus

interface adaptor dev1ces.

8) Print Prompt Characters. BDBUG writes the characters "»" to the CRT

screen ta indicate that it Is operatlng and ready to receive operator

commands.

9) 1 Enable Interrupts. As a final step" the Interrupt mask Is removed

ta activate the mP/BD prototype PLC.

4.2.2 R..eal Time Executi.ve. The RTX comprises the Interrupt Decoder and

interrupt hand l.ers for three categories of signa l s, BD software

intertupts (BDSWI), 80 hardware inter'rupts (BDHWI), and keyboard devlce

interrupts. These routines are described be low.

(

4-16

...

4.2.2.1 lnterrupt Decoder. This routine 18 actlvated by a 10w

pulse on the nrQ line of the MC6809. The internal interrupt circuitry

stops the execution of the current program at the end of the current

instruction ànd saves the entire machine state (PC, Accumulators, Index

Register5. Stack Pointers, Condition Code Register and Direct: Page
~.I

Register) on the system stack. The hardware interrupt mask i9 set and

the PC i5 loaded with the contents of memory address FFFS-9 l6 , the

interrupt vector location. The computer starts execution at: this

address which contains a v'ectored j ump instruction to the beginning of

the Interrupt Decoder routine. Figure 4.4 shows an algorithmic

description of the Interrupt Decoder. This routine polIs the BD and the

keyboard input interface cards to determine which device has, ini tiated

the interrupt. The routine examines PIACRA<7> and PIACRB<7>. the

control registers of the A side and B side, respectl vely, of the MC6821

PIA which contro 1 s mP-BD communication. A high signal indicates a BOSWI

and BDHWI, respecti velYe The routine then ~eads ACIACR<7> and

ACIACR<O>, the contro l register of the MC6850 ACIA 'which controls the

operator terminal communications. A hlgh signal Indlcates a keyboard

Interrupt.

The poll1ng order priori tlzes the interrupts ln the order BDSWI,

BDMWI, KEYBRD. The appropriate Interrupt handling routine 1.s called as

a subroutine of the Interrupt Decoder as soon as an interrupt f lag is

recognized. Thus, if two interrupts are present, the first one polled

is serviced inunediately. The handllng routines return to the Interrupt

Decoder at the completion of the subroutine and polllng 18 resumed. If

no further interrupts are found, the Interrupt Decoder executes a

,

~J

4-17

PROCÊDURE INTERRUPT.DECODER

•

IF INT: =.&DSWI THEN
- ACTIVATE PROGRAM INTERRUPT HANDLER
IF INT: =BDHW l THEN
- ACTIVATE HARDWARE INTERRUPT HANDLER.
IF-INT:=KEYBRD THEN <

- ACTIVATE OPERATOR INTERFACE HANDLER
CLEAR INTERRUPT FLAGS AND RESUME CONTROL TASKS

RE'l1lR;N

figure 4.4 BDBUG lnterrupt Dec~r algor1 thIll.

(.
PROCEImmE HARDWARE.INTERRUPT.~DLER

KEPEAr UP TO 256 TIMES

figure 4.5

/

BEGIN
IF BD: =MANUAL/STOPPED TBEN

STORE BD STATUS
ELSE

END,

IF BD: =MANUAL/RUNNING THEN
- STORE BD STATUS
ELSE

IF BD: =AUTO/STOPPED THEN
STORE BD STATUS

ELSE
IF BD:=AUTO/RUNNING THEN

STORE BD STATUS

REPORT BD STATUS OR POLLING FAr'LURE

BDBUG hardware interrupt service routine algorithme

4-18

7
return-from-interrupt (RTl) instruction, ta resume whatever task was\

\
executing before the lnterrupt occurred. If no other tdsk was executing

the prompt characters are re-lssued and the system awaits another event.

4.2.2.2 BDSWI Service Routine. BD program interrupts are

generated by INT~RRUPT instructions embedded in active BD programs. In

the mP / BD PLC thes.e are used to indicate noteworthy process conditions

which may require differ~nt control sequences. This feature has not

been fully implemented ln the laboratory prototype. When a SDSWI

interrupt ls recognlzed, the service routine simgly sends the message

~D 'PGM INTERRUPT" to the C~T screen and clears the interrupt f lag of

PIACRA by executing a LOAD instruction of PIAORA, the data register of

the PIA. No 0 the r a c ti 0 n l s ta ken a t pre sen t • The r 0 u tin eth e n

executes a return-from-subroutine (RTS) instruction to return to the

Interrupt Decoder.

4.2.2.3 BDBWI Service Routine. BD hardware interrupts are

generated by the BD-CLOCK-ON line of the Clock-Interface Circuit (see

section 3.2.4.1) and by transitions of the AUTO/MANUAL switch (see

section 3.3). These two lines are multiplexed onto the CBI lnput of the

PIA. A mP ,controlled EXCLUSIVE-OR (XOK) circuit 15 used to discriminate

between changes in these two signaIs. The BDH~I routine activates the

'\
XOR circuit to determine the correct operational status of the BD

processor and stores the state of the BD-CLOCK-ON and AUTO/MANUAL switch

in memory locations CLKRtG and AMREG, respectively. This scheme is used

because these lines cannat be read direct ly, due ta the "write-only"

characteristics of the BD control interface reglster.

4-19

Referring to figure 3.15, the high state on the CBl input is

achieved only when the BD-CLOCK and A/M outputs of the BD control

register are identical to the actual states of the BD-CLOCK and A/FI

signaIs from the BD processor. Any other combination produces the low

state on CBI. BDHWI polIs the XOR circuit by writ1ng the four

combinations of BD-CLOCK and A/R to the control register in sequence.

When the correct combination is polled, CSI goes high and an interrupt

15 generated by the PIA. The Interrupt does not affect the mP as 1t ia

already ln the interrupt state and has set the hardware mask, however,

the PIA sets a f lag in PIACRB<7) to indicate the event. BDHWI scans
,

this f lag after each combination is sent, to determine if the correct

combinat ion ,was polled. If 50, the routine saves the current state of

the BD processor in status registers and reports the new machine state

to the CRT. If the polling routine fails to identify the correct

combination after trying aIl four, it retries as many as 255 times and

then reports the failure to the CRT. An a1gorithmic description of the

BDHWI interrupt service routine ia shown in figure 4.5.

4.2.2.4 Keyboard Service R.outine. Operator interrupts are

generated by the acti vation of any key on the terminal keyboard device.

SDBUG commands consist of a forward slash character "1", followed by a

single character alphabetic code. (This arrangement perm~ts the ols to

discriminate between BOBUG and V-BUG commands. A continuing goal of

this research 1s to load bath of these monitors into a single EPROM and

to operate them simultaneously.) The input code is matched to the set

of legal commands stored in a jump table in memory. A data match causes"

the routine to call the command as a subroutine. An error messdge 15

,

1

4-20

issued to the CRT if the input characters are not found in the command

table and the oiS returns from the interrupt state. A summary of the

valid conunands i8 presented ln table 4.1.

4.2.3 BD Me.ory Manage.ent Unit. In addition ta transmitting program

data to and from the 80 program memory, the MMU roùtines generate

control codes for the control of the BD Program Counter and Clock­

Interrupt Circuit via the Auto/Manual Control Interface as descr1bed in

section 3.2.4.

Operator commanda implement the kernel of the 80 Memory Management

Unit described in section 4.1.3. Some of the commands are patterned

after conventional microprocessor monitor conunands. E.g., individual

memory locations can be examined and changed using the "lM" command,

whole sections of BD program memory can be examined using the "Il"

command, and BD programs can be activated using the "/J" commando As

well, several of the commands are unique to che BDBUG ols, e.g., the

program relocation command, "/T", that trans lates the absolute addressea

of executable BD program instructions so that the program can be loaded

into any contiguous section of BD memory, the load command, "IL", chat

loads programs from the mP memory ta BD memory, or the s~ngle-step

command, "/s", that allows the operator to debug program logic by

executing instructions one at a time. ln addition, other commanda are

implemented which control the peripheral eventa printer, report the

current status of the BD processor to the CRT and a llow an order ly exit

from BDMUG to either FLEX or the V-BUG monitor.

-

BD
STAn:

kUN

STOP

RESET
BD PC

LOAD HEM.

REAn MEM.
.~

SINGLE
ST!:.P PC

VElUn

COHMAND

lM XX
lE ss-n: xxxx
IT SSSS-EEE~ XX-YY
IL SS-EE XXXX
IJ S5
IH
IS S5
IR
Ip
1>
1+

table 4.1

4-21

FUNCTION

MEMORY CHANGE
EXAMINE A BLOCK OF BD MEMORY
TRANSLATE BD PROGRAM 'ORIGIN
LOAD BD MEMORY FROM mP
JUMP TO BD PROGRAM
HALI BD PROCESSOR
STEP THROUGH BD PROGRAM
REPORT BD PROCESSOR STATU5
PRINTER ON/OFF TOGGLE
RETURN TO V-BUG
RETURN TO FLEX

SDBUG command set.

COMMUNICATION DATA lŒGISTI::R SINGLE K/Q PIACRA
DIRECTION DIRECTION STEP CODE 16

A B CA2 CBZ

lin TO mP INPUT INPUT Hl H 3D

BD TO mP INPUT INPUT H H 3D

mP TO bd OUTPUT OUTPUT H-L2-H H 35

mP TO BD OUTPUT OUTPUT H H-L-H 3D

BD TO mP INPUT INPUT H H 3D

N/A NIA NIA H-L-H H 35

BD TO mP INPUT INPUT H H 3D

1 - H - Digital Sl.gnal Level High.

2 - L • Digital Signal Level Law.

,
table 4.2 MCb621 PIA control codes.

PIACRS
CODE 16

3D

3D

3D

35

3D

3D

3D

-

'.
4-22

The design of each of these commands 18 described below.

1) Change BD Memory. This routine is invoked with the "/M XX" command

where XX 16 i6 the address of the memory location to be examined and

changed. The command i8 functionally identical to the V-BUG memory

change commando The operator examines individual BD memory loc~tions

beginnl~g with XX 16 and has the options of changing the contents qf the

memory location and progressing to the next location, leaving the

contents unchanged and progress1ng to the next location, or leaving the

contents unchanged and back8tepp1ng to the preced1ng location. The

routine is aborted by a carriage return or invalid (e.g., not hex)

memory data. An algorithmlc description of this command is shown 1n

figure 4.6.

The BD processor must be in the AUTO mode and be stopped tor the

routine to be effective. These conditions are verified by checking the

BD clock status and BD Auto/Manual, status registers rnaintained by the

BDliWI routine.

The direction of the bidirectional BD interface databus is set with

the interface driver subroutines TOBD and TOMP. Likewise the presetting

of the BD PC to the address XX 16 and the actions of reading the BD

memory data and changing the BD memory data are handled by the

subroutines PRSTPC, RDi-/RP and LDWRD, respecttveIy. These subroutines

configure the two control registers of the MC6li21 PIA on the interface

module as weIl as the 8-bit BD control register 80 that the data

transfers can take place. A summary of the control codes and resulting

80 operational states is presented in tables 4.2 and 4.3,.

4-23

PROCEDURE BD.MEMORY.CHANGE
IF BD STOPPED AND IN AUTO MODE THEN

BEGUI
INPUT BD MEMORY ADDRESS FROM KEYBOARD
REPKAT UNTIL A CARRIAGE RETURN OR INVALID DATA --lS
RECEIVED

BEGIN
SET BD TO DESIRED ADDRESS
READ MEMORY DATA AND REPORT TO CRT
INPUT USER RESPONSE FROM KEYBOARD

IF DATA IS VALID MEMORY DATA THEN
- STORE IN BD MEMORY AND READ BACK TO VERIFY

CONTENTS, OUTPUT A "1" IF DIFFERENT
INCREMENT BD PC

IF DATA IS A CONTROL CHARACTER THEN
- DECREMENT PC IF A Il " WITHOUT CHANGING

MEMORY DATA
INCREMENT PC WITHOUT CHANGING MEMORY DATA

figure 4.6 BD memory change algorithme

PROCEDOKE BD.BLOCK.MEMORY.EXAMINE
IF BD STOPPED AND IN AUTO MODE THEN

BRGI8
- READ STARTING AND ENDING ADDRESSES DELIMITING THE BLOCK OF

BD MEMORY TO BE TRANSFERRED TO THE mP
- READ mP BUFFER ADDRESS
REPKA7 UNTIL ENTlRE BLOCK 15 TRANSFERRED

BEGIN
- READ BD MEMORY LOCATION, STORE IN mP BUFFER AND ECHO

TO CRT
INCREMENT BD PC

figure 4.7 BD block memory examine algorithme

f­
I
1

BD
STATE

RUN

STOP

RESET
BD PC

LOAD HEM.

READ HEM.

SINGLE STEP
PC

VERIFY

AUTO LOAD
ENA BLE
CR 7

H

H

L

i..
"-

L

H

H

OUTPtIT PRESET
ENA BLE PC

CR 6 CR 5

H H

H H

L H-L-H

L H

L H

H H

L H

table 4.3

STOP BD-CLOCK AUTO/MAN VERIF"Y cm-tM CONTROL
FLAn POLL POLL ENABLE DIR'N CODE16 CR 4 CR 3 CR 2 CR 1 CR 0

L H H H L EE

H L H H L F6

H L H H H 17

H L 'H H H 37

H L H H L 36
~
1
N

H L H H L F6 ~

L H H L L AC .

8-bit control register codes.

2) Examine.! Block of BD Memory. This routine ia invoked with the "lE

SS-EE XXXX" command where SS 16 is the starting address of the BD memory

block to be read, EE 16 ~6 the ending address of the black and XXXX16 18

the mP address where the data 16 ta be buffered. lt transfers a block

of BD memory to the mP and outputs it ta the CRT. The BD processor must

be in the AUTO mode and be in the stopped condition on entry ta the

8ubroutine. The interface driver subroutines are once again used ta

configure the BD proces80r for thls operation.

description of the command i8 presented ln figure 4.7.

An algorithmic

3) Translate Absolute BD Addresses. This routine ls invoked with the

"/T SSSS-EEEE XX-yy" command wherc SSSS16 and EEEE16 are the startlng

and ending addresses of the mP flle buffer \.,rhich contains the BD program

code to be relocated, and XX 16 and YY16 are the current BD program

origin and deslred or~gin, respectively. The purpose of this command i8

to assist the operator in allocating memory space ta previously complled

programs which start from arbitrary memory origins. Once loaded into

the mP working memory from disk, a Rrogram can be conditioned by

translation of the absolute address mode transfer instructions, to load

in any contiguous area of BD memory. Figure 4.H presents an algorithmic

description of this commando

4) Load ~ Memory. This routine ls invoked liflth the "IL SS-EE XXXX"

command where SS16 and EE16 are the starting and ending addresses of the

contiguous block of BD memory ta be loaded and XXXX 16 18 the mE address

of the file buffer. The operator loads BD programs ta the program

memory using this command. The BD processor must be in the AUTO mode

---~--'---------

4-26
PROCKOURE TRANSLATE.BD.PRUGRAM.ADDRESSES

REAn mP ADDRESSlS DELIMITING BD FILE BUFFER AND CALCULATE FILE
LENGTH. ABOKT PROCt.DURJ:: IF < ZERO
READ ORIGINAL AND NEW BD PROGRAM ORIGINS AND CALCULATE ThE
OFFSlT BETWE~N THlM

REPEAT FOR ENTIRE FILE
BEGIN '

- TEST NJ::XT INSTk.UCTlON IN THE. BD FI LE \.
IF NOT AN EOP OR LONG OUTPUT INSTRUCTION THEN

- ADDcOFFSET TO ADDRESS FIELD AND REPLACE IN BUFFER

RETURN

figure 4.8 tiD addres8 translation algorithme

PRDCBDUiK LOAD.BD.MEMORY
IF BD STOPPED AND IN AUTO MODE THEN

BEGIJl
- READ STARTING ADDRESS AND PRESET BD PC
- READ ENDING ADDRESS AND CALCULATE WaRD COUNT
- READ mP BUFFER ADDRESS
REPEAX FOR ENTlRE FILE

BECDI

DI)

figure 4.9

READ NEXT RECORD
STORE IN BD
INCREMENT BD PC

RD load memory algorithme

PR0CEDUR8 RESTART.BD.CLOCK
IF BD STOPPED AND IN AUTO HODE THEN

BEGIB
- READ STAATING AODRESS AND PRESET BD PC
- ENABLE BD CLOCK BY LOWERING ~TOP FLAG

RND

figure 4.10 Restart BD clock algor~thm.

4-27

and be in the stopped state for the subroutine to execute. Interface

driver subroutines are called to configare the interface control

reglsters and to execute the data transfer. An algorithmic description

18 presented in figure 4.9.

5) Restart BD Clock. This routine is invoked with the "/J ~S" command

where S5 16 is the address to which th~ PC i6 preset before restoring the

BD clock ta the LCU. This command i5 functionally equivalent to the v-

BUG "Jump" commando The BD proce6sor must be in the AllTO mode and not

running, otherwise the subroutine is aborted. The interface drivers

PRSTPC and TOliO are called to configure the interface control reg~sters.

An algorithmic description of this routine is presented in figure 4.10.

6) Halt BD Clock. This command permits the operator to haIt the BD

processor execution at the next EOP instruction. It is invoked with the

"/H" commando The routine does not verify that the processor has

stopped, ta avoid a blocking situation it an EOP ~s not encountered.

The BD machine can be halted alternately via the R~S~T button. The BD

processor must be in the AUTO mode and running. Figure 4.11 shows an

algorithmic description of the haIt commando

7) Single Step BD PC. Th~s command permits the operator ta generate

single clock pulses ta advance the BD PC one instruction at a time for

program checkout purposes. The routine is invoked with the "/S SS"

command where 55 16 is the starting address of the BD program to be

executed. The subrout~ne presets the BD PC to 55 16 and executes the

instruction residing in this location. Single stepping is contra lled

from the keyboard by hitting any key except the "carr iage return", which

1 .

(.

4-28

PROCEDURE HALT.BD.CLOCK
IF BD RUNNING AND IN AUTO MODE THEH

- DISABLE BD CLOCK AT NEXT EOP BY RAISING STOP FLAG
IUITURH

..
figure 4.11 HaIt BD clock algorithme

PROCEDOKE SINGLE.STEP.BD.PC
IF BD STOPPED AND IN AUTO MODE THEM

BECIB

uroRH

- READ STARTING ADDRESS AND PRESET BD PC •
REPEAT UNTIL A "CR" lS READ FROM KEYBOARD

BEGIB
- EXECUTE INSTRUCTION AT PC

INCREMENT PC
- READ USER RESPONSE FROM KEYBOARD

END

figure 4.1L t Single step HO algorithme

,
-

\
,
\

4-29

aborts the subroutine. The operator monitors the executiDn sequence via

the BD console control lights ta verify the program operation. The BD

processor must be ln the AUTO mode and in the stopped state on entry to

the subroutine. Figure 4.12 presents a description of the algorith~

4.2.3.1 Interface Deviee Drivers. These device dri vers implement

the basic communication functions of the BD interface module and

remotely activate the ~ontrol circuits of the BD processor.

1) PRSTPC. This subroutine presets the BD program counter remoteiy ta a

value passed by the calling routine of PRSTPC in the A register of the

MC6809. Prior to sending the PC data, the direction of the 16-bit
\

_~terface data bus is configured for mP to BD communications by the

subroutine TOBD. The LOAD line of the PC 1S iowered by storing the code

17 16 into the, interface-based BD control register. PC data is put on

the data bus by performing a STORE operation of the contents of

accumulator A into the PIA data register PIAORA) and is toggied into the

program counter by strobing the CAZ line of the PIA. This generates a

clock pulse which latches the data into the PC.

The latter half of this subroutine, that part which strobes the BU

clock, is also callable as a separate subroutine called STEP which is

generally used to strobe the BD clock.

2) TOBD. This subroutine configures the PIA data registers for data

output on both the A and B sides. This is accompli3r~d by storing the

code 39 16 in each ot the PIA control registers ta access the PIA data

direction registers. These are configured for data output by storing

-

4-30

the code FF 16 in each one. The data output reg1s ters are restored by

storing the code 30 16 in the PIA control registers. A complete

description of PIA programming techniques and codes ls presented ln the

MC6821 Product Information Sheet ln the Motorola MC6800 Application

Handbook [Moto 7S J.

3) TOMP. This subroutine configures the PIA data registers for data

lnput on both the A and B sides. The procedure is similar to the TOBD

subroutine except that the code 0016 ls stored in the data direction

registers ta configure the PIA for input.

4) LDWRD. This subroutine transfers one instruction from the mP ta the

BD program memory i[1to the location currently addressed by the BD PC.

The bidirectional interface data bus is configured for mP ta BD

communication by storing the code 37 16 into the 8-bit BD control

register. The BD instruction word is passed to LDWRD in the D

accumulator. lt 15 transferred to the data bus by executing a STŒŒ of

the accumulator lnto PIAORA and PIAORB. The BD R/~ line i8 strobed. to

!

write the data into BD memory by storing f'irst the code 35 16 and then

3D16 into PIACRB. This lowers the CHZ control outpilt of the PIA which

ls interfaced to the RIt\! line.

S) RDWRO. This sùbroutine transfers one instruction from the BD program

memory to the mP. The data bus ls conflgured for BD to mP communication

and the data is read from the bus by executing LOAD Accumulator A and B

instructions from the PIA data registers PIAORA and PIAORB. The

8ubroutine returns the data in the 0 accumulator.

v- ,

4-31

4.2.4 KlaceIIaneou8 Ut! Ilty Subroutines. In addition to the RTX and

MMU, a number of utility operator commands are implemented in BD BUG.

These are descr1bed below.

1) Report BD Status. This routine 1s invoked with the "/R" commando lt

reads the current auto/manual and running/stopped status of the BD

pro~essor and reports the information to the CRT.

2) Events Printer Control. This routine controls the on/off status of

the system events pr1nter. When on, aIl data sent ta the CRT '1S echoed

to the printer. This 1s a toggie-type control. lt 1s 1nvoked with the

"/ p" commando

3) Transfer ta V-BUG ~ FLEX. These commands, invoked with the "/>" and.
.

"/+" codes, respecti vely, execute order ly exits from BDBUG ta either V-

BUG or FLEX. The MC6809 interrupt c1rcuitry is restored to pre-BDBUG

state by executing a return-from-interrupt (RTL) instruction to the

warm-start addresses of V-BUG or FLEX as appropriate.

" ,
4) Inhibit Output with "Esc" Key. This subroutine allows data output to

o

the CRT or Events Printer to be temporarily inhib,ited or aborted from

the keyboard with the "Esc" key. The first activation of "Esc" stops

the output. A subsequent hit resumes the output. Output may be aborted

by striking "Carriage Return" whi le in the inhibited mode.

f
"

5-1

CHAPTER 5

BlNAK.Y DECISION PROGRAK OPTIKIZATION

5.0 Introduction

This chapter describes a BD program optimization method that has

been developed based upon a pattern matching algorithm (PMA). The PMA

algorithm reduces BD program logic of combinatorial switching functions

<L.

to near-minimum form by an exhaustive search for redundancies. The ,

method has not yet been generalized to include sequential logic.

5.1 Bioary Decision Prograa Optla1zation , ,

As shown previously, any combinatorial or sequential swltchlng

function can be represented by a binary decision progra~ Generating a

complete 80 program from a truth table or state transition table is a

trivial but lengthy tasK, since program size grows exponentially (in the

case of combinatorial functions) as 2n-1 decision instructions and 2n

output instructions for an-variable program.

In most control situations, however, the number of unique outputs is

less than 2n , implying that the complete program can be optimized QY the

elimination of redundant ~'ecision instructions and outputs.

Furthermore, certain infrequently occurring outputs can be deliberately

omitted from'a BD program if the controlled process has a long time-

constant. (ShoulJ such a condition oc~urJ the BD processor can generate

a system interrupt and have the omitted control outputs downloaded from

5-2

the microprocessor to deal with the condition.)

The BDC-4 (Binary Decision Compiler - version 4) program is an

MG6809 assembly language program that generates a set of BD instructlons

from COmmon control logic descriptions such as truth table. Boolean

function. or relay- or gate-Iogic diagram. The BD obJect code 15

optimized to remove aIL redundant information. The output is a BD

program load modu le ready to be down loaded from the mlcroprocessor ta

the BD program memory • The process by which this ls achieved ls ..
illustrated in figure 5.1. In the first step, swltchlng function logic

ls entered ln a high level format such as a Boolean equation, etc. This

description ia then reduced ta an equivalent truth table by a set of

subroutines whicl:! interpret these input formats and generate the

required tables.

Subsequently, the tr~th table data is mapped into a BD program

table whlch is operated on by tn.@ optlmizatlon algorlthm to minlmize the

table size. The reduced BD table is then converted ta BD machine code.

The ilgorithms which perform these other functlons are described

lndividually in following sections of this chapter.

5.2 Opti~ziog Co.pl1er ,Design

Control logic descriptlons are reduced to BD programs in a five

step procèss. The main functions of each step are descrtl>ed below.

5.2.1 Initlallzatlon. Compile tlme parameters for the target BD

program are entered into the compller in the Inltlalizatlon section.

-

5-3

ENTER
LOGIC

DESCRIPTION

1

CONSTRUCT
BD TABLE

"
MINIMIZE
BD TABLE

,

CONVERT TO
MACHINE CODE

\
figure 5.1 BD program comp1ler block d1agram.

A B Q
r-- -,

0 0 1 0 1
1 1

1
0 l 1 I~ OUTPUT VECTOR

1 0 1

" {
1 l 0 1 L ___ ...

flgure S.2 Truth table output vector.

(

5-4

The compiler beg1ns by In"iting a title page on the operator's terminal

which identifies the program and version number and lists the data entry

format options supported by chat version. ln the current version, only

truth table data entry format 15 supported. BD program parameters are

then requested and entered via an interactive question and answer
J!

routine. Necessary B0 program parameters include:

- BD prograo number

- BD program class
i

- the number ot in~~enden9 sw1tching variables (n)

the number ot fi~ ou~puts
L,"-", /

- input terminal assi~nt for each variable

- output bank asslgnment

All input data 1.5 check.ed tOI:" out-of -range and bad-format errors wh1ch

cause the prograo to repeat the data request message and ta reread the

bad data. Cont ro l 15 passed. to the logic function lnput routine at the

end of the inltial1zatlon process.

5.2.2 Trutb Table Generation. ~ truth table output vector ~s that

part of a truth table ln WhiCh the outputs corresponding ta each

comblnatLon or tn~ input variables are stored, flgure 5.2. The input

routine beglns Dy calculating the :1umber or output ddta elements to

input tram the Keyboarù. lt tuen I .. ;rites a data input request message

which specifies the number or e lements expected and the required lnput

t ormat. The routine parses the lnput data stream lnto 4-digit

hexadec1mal numbers and writes a carrlage return/llne-teed code to the

terminal arter .:very complete number. Arter every tour numbers, an

. --------- --

[

\
\

/
[

[

/
/

5-5

add1tional line feed i5 sent, figure 5.3.

The input data i5 5tored in the Eirst column of a 2 n row by 2

column array in the worklng memory area of the program. AIL input data

15 checked for out-of-range and bad-tormat errora. An error message 15

i5sued 1n the event of an input error and the data is reread.

After aIl oE the data elements have been successEully read, the

routine calculates the amount of storage area used by the èrray and

allocates the work area tar the BD table routine. Control i5 then

passed ta that routine.

5.2.3 BD Table Generation.. This section generates a doubly Ilnked list ,

data structure called a BD table to represent the HD program. t:.ach of "

the 2n+ 1-1 records in the blnary-complete BD table comprlse tour tlelds:

a reference number, a FALSE-conditlon pOlnter, a fRUE-condlt10n p01~,)er,

and a Fl-WH pOlnter, flgure 5.4a. The reterence number 15 a rour-digit

hexadeclmal (hex) number wh1.ch ndoes the lnput variable assoClated with

that BD lnstructlon. The Elrst tWD dlglt~ tron tne leit are an index to

the input termlnal assignoent taole constructed ln the compller

initillzatlon sectlon prevlously descrlbed. Dunng cne Odchlne code

translation phase, the syooolic .. ar{ablè aaiile lS rè?dced ";lth the

actual address of the lnput ln the b ... -blt lnput register stored 1:1 thlS
•

table. The second two dlglts enumerate the occurences Jr d va~~able l~

the BD table. Thus every lnstruction has a unique reterence ~u~ber.

The binary deCision transfer loglc l~ represented by [~e F~L~E

branch and TKU~ branch pOinters contalned ~n tne second and thira tlelds

of the BD table record. Eaeh of these four-dlglt hex numoers rerers ta

flgure 5.4

5-6

ENTER 16 DATA '..lORDS IN HEX

0002
0004
0004
0004

0001
0002
0004
0004

0001
0001
0002
0004

0001
0001
0001
0002

figure 5.3 Control tunetion input format.

REF. FALSE TRUE FROM
CODE LI NI< LINK LINK

(a)

REF. FFFF16
OUTPUT FROM

CODE DATA LINK

(b)

dD table record format. (a) Input lnstructlon
format and, (b) output lnstructlon format.

5-7

the location ln the BD table of the next sequential BD instruction,

corresponding to the FALSE and TRUE outcomes, respectlvely, of the input

, variable. The pointer fields contaln the physlcal memory addresses of

the subsequent lnstructions to fac1litate indexing into the table. The

last field links the current 80 instruction with Hs logical predecessor

to enable bidirectional program traversaI for the logic optirnization

section of the compi 1er. The f ~e Id contains the physical memory address

of the preceding instruction in the 80 table.

In the case of an output BD 1nstruction, the format ot a 8D table

record 15 somewhat different, figure 5.4b. The reference number is

cOlllposed as above except that the fust subfield is assigned the value n

for aIl output instructions, \lhere n is the number of input variables

comprising the control function. Output instruction occurrences are

enumerated in the sarne manner as transfer instructions by the second

subfield of the reference number. The neKt field is assigned the hex

value FFFF. (Th1.s serves ta further distingu1.sh them from transfer

ins t ructions. The actual value has no significance.) The th1rd field

1n the BD table record contains the part1.cular output data corresponding

to the output instruction's location in the truth table output vector.

The first output instruction ln the BD table 15 a8sociated with the

first entry ln the output vector. the second w~th the second, etc. The

last field in the BD table record is once again a link tleld, containing

the physical memory address of the preced1.ng instruction ln the table.

Switch1.ng functlon logic 15 oapped lnto the l.m table by storing the

contents of the output vector 1.nto appropriate outpuc instructions.

::'ince the output vector 18 a ll.near, contiguous data structure. the

5-8

output data 15 more easily proces5ed by the optimizing algorithm with1n

the output vector rather than the SD table. However the algorithm must
,

redirect transf'er pointers in the BD table based on the'output vector

operations ta e l1minate redundant instructions. Hence, a return index:

into the BD table i5 stored ln the second column of the output vector

array to indicate the locatlon of the output instructlon in the BD tab le

conta1ning the output vector data, figure 5.2. The physical memory

address of each output instruction la stored by the table generatlng

routine immed1ately after such an instructlon 15 created.

The 8D table i5 generated wlth a preordt:!r stack traversal algorithm

[Stan80j. Preorder ls usually deflned, 1.n the contex:t of binary trees,

as the traversaI of the r~oot no de follo~led by the preorder traversal ot

the subtrees ln left to right arder, figure 5.5. ln ter ms 0 f ~ D

programs, preorder refers to the generation of an instruction followed

by the preorder generation of the FAI..St and TRU!:: outcome instructions ~n

that arder. Slnce preorderlng i5 deflned recursl. ve l y, the TRUc branch

ls not generated unti l the entire subprogram rooted by the FALSi'.. branch

18 comp lete. The pur pose of a stack traversaI is ta save on a pushdown

stack, the set of TRUr.. branches whosc generation ls postponed by the

preorder generation of the FALSE brdnches. TKUf:. branches are r~moved

from the stack 011 a last-in, fl.rst-out basis tor process~ng. The

algorithm ends when the stack contain$ no more postponed TRU!:. branches.

A formaI statement of the aLgorithm iG'presented below as Algorithm 5.1.

Al&oritha S.ls Preorder stack tralle'rsal ut BD programs.

1. Let RUOT be a pOlntet" to the ftest record in an empty !SU

table. Store ROOT in the FROM field of the flrst record, i.e.,

1 •

5-9

FkOM(KOOT) (- ROOT.

2.
t-

If ROOT has the value FFFF 16 then go to step S.

3. Generate a BD table record ln the location pointed ta by ROOI.

4. Save the table address of ROOT on the stack to postpone the

generation of the TRUE branch subtable until the FALSE branch

ls completely processed, i.e., ROOT -) STACK. Link the FALSE

branch to the next consecutive table location and store RDOT

in the FROM field of that next location, Le., FALSE(ROOT) (-

ROOT+l and FROM(~OOT+l) (- ROOT. The FALSE branch of an

output record 15 asslgned the value FFFF 16' +f the current

record cepresents an output instruction then store lWOT in the

output vector table beside the appropriate output data

element. Store the value of the data ln the output

instruction. Increment RUOT and go to step 2, i.e., RD DT (-

ROOT+l.

5. RellOve a postponed record from the stack and save the value of

ROOT in the TRUE branch field. Store the address of the

postponed instruction in the FROM field of ROOT, 1.e ••

TkUE(STACK) (- ROOT and FROM(ROOT) (- STACK.. If the stack 18

elllpty, then terminate the algorithm..

A BD table generated by algorithm 5.1 18 illustrated ln figure 5.6a

along with the correspondlng BD diagram, figure 5.6b. Reference numbers

of BD instructions in the table are shown in parentheses besi-de the

II&tchlng BD diagram nodes.

.'
,

----------------~ .. -

5-10

figure 5.5 Preorder ~D dlagram traversal.

lIf'
ADORESS

lt1tib
108E
169b
logE
16Ab
10Al.
IIIa6

fl.gure 5.6

iU:.FElU:.HC& FAl.SE TkUE FROM
NllKBE.i BRAHeH BkAllCIi BRAHClI

0000 Ib8E IbAtI 1686
0100 1696 169E 1686
01.00 FFFF UOOO 168!
0201 FFFF 0001 168E
aLOI IbA.!:. 1680 10811
0202 FFFF 0001 lUb
0203 FFFF 0000 16A6

(a)

(b)

BD table representatlon of XOR function.
(a) 8D table showlog !Jr~nchlog logic.
(b) rlD dlagrdm produced t rom table.

5-11

Reference numbers are generated by the algorithm such that if the

sYllbolic variable number 150 to n-l, a transter instruction is

generated. If the number i5 n, then an output ls created. The

reference number is lncremented every tlme a new branch ls traversed.

The result 18 that all of the instructions whlch embody a common input

variable have the same symbolic variable number. These appear in a BD

diagram as the set of nodes comprising one level of the dlagram, figure

5.6b.

Following the generation of the compl,ete 80 tabl~: control 15

passed to the optimizing algorithm described next.

~.2.4 BD Table Opticizatlon. BD programs can be reduced in size if

more than one of the combinat ions of the input variables yield identical

output states. Optlmizatlon 15 desirable Slllce it signlflC«Ïnt ly reduces
"-

program storage requirements, one of the main disadvantages of BD

methods where binary-complete program length lS of exponentlal order in

the number of input variables.

Gonsider an elght input AND gate, flgure 5.7a. A full BD program

would have 511 program steps. Since there are only two possible output

states and the F'AL!:>c state lS generated in al L cases except one, the

program can be pruned to less than a dozen steps without 108ing any

information. A reduced BD program is 11lustrated by the liD diagram of

figure S.7b.

The compiler uses a pattern recognition algorithm which searches

for repetitious patterns in the truth table output vector data to guide

the BD table optimization procedure. The algori thm systematically forms

A

B

c
D

E

F

G

H

\,

~
1

.i

~

• ...
•

(a)

figure 5.7

l~l~l
n 0 ~l

o ~
O~l

O-Q

(b)

Mlnlmlzatlon of an ij-input AND gate program.
(a) B-input AND gate and, (b) minimized program.

t~

\J1
1
~
N

b

5-13

subsets of the output vector and searches for identical sub8ets in the

remaining elements. Once a corresponding subset is found, the BD table

i8 traversed to the root instructions predecessing the redundant output

sets, figures 2.9a and b. The transfer pointers of the instructions are

then rerouted as requlrE!d ta elimlnate redundant 10g1c from the BD

table. The duplicate set of output data e lements in the output vector

are marked as being e11minated 50 that they are not subsequently

reexamined by the algori thm.

S1nce the number of instructions that can be removed by a

successful matching of duplicate output patterns is proport10nal to the

size of the comparison group, the algori~hm begins with the largest

possible subset of the output vector, length(vector)/2, and then reduces

it in later iterations. ln thl..s way aIl possible combinat~ons of output

data elements are exhaustively compared to) ensure that an opt1mally

reduced BD program is obtained. A.n analys1s of the Pattern Matching

Algorithm efficiency ls presented 1n sect10n 5.3 ot this chapter. A

form.aI statement of the PMA ls given below as AIgorlthm 5.2.

Algoritba S.2. Pattern Matching Algori thm for BD program

optimizatton.

1. Divide output vector into two subsets. Resul t 1s 2 subsets

each of 2n- 1 e lements.

2. Compare every comb1nation of these subsets for 1dentical da-ta

patterns.

3. Prune BD table where possible.

-------- --

5-14

4. Subdlvide subsets by 2. Kesult is 21 subsets each of 2 n - i

e lements after the i th iteration. Go to s tep 2. Continue

until i9"n. Stop' aUer this Iteration.

As discussed, the ~D table pruning routine uses the FROM pointers

to traverse the program backwards to find the Bl) instructions at the

root of bath the subprogram defined by the pattern subset and the

duplicate subset of output elements. The root of a subprogram wlthin a

complete BD program ls found h"'logZ[size(subset)] levels abO'Je the

out put lns t ructions, figure 5.8a. The subprogra'm ls then e limina ted

from the BD table 'by redirecting the branch pointer of the root's

predecessor from the redundant subprogram to the root of t he pat tern

subprogram, figure 5.8b.

An eltample of the operation of the PMA algorithm ls shown in f ig~

5.9. The function, defined by table 5.1, represents a 2-bit magnit;ude

comparator. Two lnput numbers, A and B, are represented by the binary

The comparator output

{100 ,010,00 l} represents the conditions {A<B,A"B,A>B}, respecti velYe

'- ,-
'-/

The full BD diagram for the function, figure 5.9a, ls reduced by j

algorithm 5.2 to the locally optimum dlagram of figure 5.9f in four

iterations.

In the first iteration the output vector ls divided into two

subsets whlch are compared. No minimlzation ls possible at this stage

aince the subsets are not identical, figure 5.9b.

In the next i teration, the output vector ;. 5 furt her subdi vided 1nto

four sets of four outputs, figure 5.9c. The first 8ubset 18 selec~ed as

J

l
Il -

\.

~
\

O· - '1

r-0-:r-()-:~
1 Il 1~

il] 8::[J 8:
L...: _____ ~L.: _____ ::1

1-4 ~I
s

h = log 2s = 1

,
-'

"------>
.,-J

(:fI

~tJ

,
" v - ,

1 B 1
\ J
l"-"'\

1 \
r-J-j r-~-,

1 o l
1 1 1 L ___ .J L ___ .J

(a) (b)

figure 5.8 Keduction of isomorphic program iogic.
(a) Location of root node, (b) r.limination of
isamarphic group (shawn in dashed lines).

\.

U1
1

1-"
U1

5-16

Xl r Xz X) X4 YI 'lL Y3

A B A<B A=B A>B

0 0 0 0 0 1 0 (2)

0 0 0 (l 1 0 0 (4)
0 0 1 0 1 0 0 (4)
0 0 l 1 1 0 0 (4)

0 1 0 U 0 0 1 (1)

0 1 0] 0 1 0 (2)

0 1 1 0 1 0 0 (4)

0 1 1 1 1 0 () (4)

1 0 0 0 0 0 1 (1)

1 0 0 1 0 0 1 (1)

1 0 1 0 0 0 (2)

1 0 1 1 ' i 0 • 0 (4)
~

1 1 0 0 0 0 1 (1)

1 1 0 1 0 0 (1)

1 1 0 0 0 l (1)

1 1 1 0 0 (2)

table 5.1 2-bit magnitude comparator truth table.

5-17

the pattern group and lS compared with the remaining three. Agaia, no

match is found. Next the second group 1S selected as the pattern and 16

compared w1th the remal.nlng two for a match. (lt is not nece6sary to

compare the second pattern wlth the first agaln as no match was found

when the two subsets were prevlously compared.) This test ls

unsuccessful as lS the comparlson of the thlrd with the fourth group.

" Continulng ln algorlthm 5.2, the output vector ls divided into

elght groups of two outputs aIl of which are exhaustively compared,

f 19ure 5.9d. ldenticai outputs are found between subsets 1-6, 2-4,)-8

and 5-7. FIgure 5.9d shows the duplicate output groups ln dashed lines

to indicate where they have been ellminated from the BD program. The

pointers which led to the duplicate groups have been rerouted to the

•
pattern group in eàch case.

In the flnal iteration, the output vector 15 dlvlded lnto eignt

remaining groups, each of JUs t one out put, figure 5.ge. Many mat ches

are found S1nce there are only three distInct output values. Once again

the nodes ~hich have been eliminaoted are shown in dashed llnes and the

pointers ha ve been rerouted. The final. fully reduced diagram is shawn

in figure 5.9f.

Following the optimization of the BD table, control is passed to

the machine code instruction algorithme

5.2.5 Kach1.oe Code Generation. The flnal part of the compiler involves

puttiog actual BD operation code and memory addresses ioto the BD table

instructions in place of the compiler reference addressing. The set of

program parameters r including program number, n,i\mber of paraI leI output
't,

channe l s, output bank assignment and l.nterrupt codes, i5 used by the

/

(1

5-18

(a)

L-_________________ ~----------------~I '~ __________________ ~------------------

(b)

L-. ___ ~------J '-' ---_~-------' .'-______________ ~-----J c.,.--.,.-----~------~

figure 5.9

•

2

cc)

PHA algorithm opeLat~on example. (a) lhnaLy-complete
BD diagram. (b) Dlv~s~on of output vectoL ~nto
groups of e~ght. (c) Dlv~s~on of output vectoL lnto
groups of four. (d) D~vls~on of output vectoL lato
groups of t""o. PMA algorlthm succeeds ~n rnatchlog
patterns, Lesulting ln el~m~nat~on of ~somorphlc

logic (shown ~o dashed llnes). Ce) Dlvislon of output
vector iota groups of one. lsomorphlc loglC 15

• el1mlnated. (f) Flnal, fully reduced BD dlagram.

5-19

~ , ,
,,--< -,
";."--: ~~'

,...L., ,..\...., ... ~, ... \...,1., r"-,
,21141111111111121
L _.-1 L_..J L_.J L_J L _J L_J

~~~'-----.-----''------..,-----~'------....----~ 
1 2 J 4 5 6 l 8 

1 1 1 1 

(d) 

(e) 

(f) 

figure 5.9 (cont'd) 

-----



5-20 

compiler to generate control instructions. Since several forms of input 

and output instructions are defined in the instruction set (see chapter 

3) of the BD processor, t'he compiler evaluates each situation in which 

more than one torm would fit, and inserts the form which yields the 

shortest code. In addition an End-of-Program (~OP) instruction ls 

inserted at the end of the BD progra~ 

Machine code is generated in two passes. In the first pass, a 

preorder stack traversal algorithm 1s once again used to traverse the 

reduced BD table. As each record 1s processed, an equivalent BD mach1ne 

code instruction 1s generated in a work area immediately following the 

BD table. Since actuai BD tranafer instructions contain Just one branch 

address while the second is assumed, by convention, to be the next 

consecuti ve addresB, the branch-on-TRUE form of INPUT code ia norma1Iy 

generated by the preorder traversaI a1gorith~ If, howe ver, the F AL::; E 

branch of a trausfer instruction has a1ready been generated and the TRUE 

brauch has not, then the branch-on-FALSE form is used. This' situation 

might occur if the FALSE branch pointer h~ been redirected by the 

pruning operation ta an ear1ier section of the BD program, generated 

first according to the preorder traversaI aigorith~ If bath the FALSE 

and TRUE branches of a transfer instruction are al ready generated, each 

requiring branching ta previous parts of the program, then a branch-on-

FALSE INPUT code is created followed by an unconditional JUMP to the 

TRUE address. 

ln Many control programs, the OUTPUT instruction is the last code 

executed before a 10gica1 EOP. A branch to the ~OP 18 thus included in 

every OUTPUT code. If S~ORT OUTPUT instructions are speclfied by the 

-



5-21 

program paramet..er'i, the address of the EOP ls lnserted into IN<7:ü) of 

tne OUTPUT code. Othe rwise, uncondi t 10na l JU MP 1ns t ruct 10ns are 

lnserted in the program immedlately following LONG OUTPUT codes. In 

either case, the actual address of the EOP may be unknown sinee it ls 

the last instruction ta be generated. Henee a temporary code 15 stored 

in the appropriate OUTPUT branch address loc~tion which i5 replaced by 

the,aetual address on the second pass through the BD machine code 

program. 

A flowchart of the preorder stack traversaI aigorithm for the 

generatlon of BD processor machine codes 15 g1ven in tigure 5.10. 

The finished program ls saved on the secondary 5torage device in 

the BD program Iibrary under the program number specified by the 

prograumer. An optionai printout of the machine codes 15 available. A 

BD program tor the 2-blt magnitude comparator function previously 

described.in flgure 5.9 i5 illustrated in figure 5.11. The complete 

BDC-4 program listing is presented in Appendix IV. 

5.3 Op~~zlag Co.pl1er ADaly.18 

5.3.1 The Katheaatical Basls of the PHA Algorlth.. As discussed in 

chapter 2, the mathematical basis for the minimization of BD logic is 

derived from the Distributive and Complementation Properties of Boolean 

Aigebra, i.e.: 

A • Q + B • Q - (A + B) . Q ( 5.l) 

and, 

A . Q + A . Q - Q (5.2) 

.JI 



.-

'l'ES 

\./RITE EOP 1 AND LINK 

~ 

TaIH LU 
BRANCHES 

~ 
{P 

-'BRANCII "----1 \lIUTE FOLLOW 

~~P~ 

r 

SHORT 

1 

f 19ure 5.10 

BRI L-8RANCH 

\#RITE ~OLLOW BRO JM? TO R STACK 

FOLLnll 
R-SRANCt! 

1 1 

WHITE 
~ 

roLLOW 
SI/l STACK 

• \/RITE LONG IIRITE lM? l'OLLOW 
OlTTPUT TO EOP STACK 

liR 1 TE SIIOR1H f'OI.LOW 
OlTTPUT STACK 

Machine code generation subrout1ne flQwchart. 

(Flow direction is down and right.) 

/ 

~ 

\Jl 
1 

N 
N 



i .. 

o 
1 
2 
3 
4 

. 5 
(, 

7 
8 
9 

10 
11 
12 
13 
14 
15 

Ugure 5.11 

·J 

ElOI 
4009 
4407 
4~0() 

4CO~ 
è20,Y 
C40F 
0800 
FOOb 
440C 
4804 
ClOP 
0808 
OCOB 
F005 
AOOO 

5-23 

COMMENTS 

SELECT BANK 1. .lUMP TO 1 
INPUT Xl' JUMP TO 9 IF Xl~1 
INPUT X2 > JUMP TO 7 IF X221 
INPUT X3 ' JUMP TO 6 IF X3~1 
INPUT X , JUMP TO 6 IF X4=1 
OUTPUT ~2" JUMP TO 15 , 
OUTPUT "4", JUMP TO 15 
INPUT X)' JUMP TO 1) IF X)=O 
JUMP TO 6 
!NPUT X2 ' JUMP TO 12 IF X2

z 1 
INPUT XJ , lUMP TO 4 IF X)sl 
OUTPUT 1", JUMP TO 15 
INPUT X), lUMP T9 Il IF X)zO 
INPUT X4 ' lUMP TO Il IF X4-0 
JUMP 1'0 5 
END OF PROGRAM 

BD machine c9de program for the 2-blt magnitude 
comparator. ~. 'J' 



5-24 

The PMA algorithm se&rches the output vector to find instances in which 

either of these two properties apply. Equation 5.1 results~in the 

recombination or trellising of logical transfer paths leading to 

identical subfunction in a BD program, figure 5.12a, while equation 5.2 

result8 in the elimination of the BD instruction involvlng B and the 

unification of the two identieal subfunctions, figure S.llb. The common 

requirement of both these cases is to identify pairs of identieal 

subfunctions within the BD logie. 

The PMA algorithm method relates the logie of the subfunctlon to 

the pattern of outputs generated by the output nodes. ,An assumption 18 

made that if the pattern of outputs of two subfunctions are ldentlcal, 

then the logie represented by the subfunetions must also be ldentical. 

This assumption is valid slnce the BD table 15 a binary-complete 

structure, i.e., eaeh level of the BD diagram ls homogenou5 in a 

variable, figure S.13a. The subfunction indicated by the first dashed 

box in figure 5.138 may be deseribed by the BD instructions: 

QI B" , Q2' Q3 

Q2 C· , a, b 

Q3 C· , c, d 

and the second by the instructions: 

B" , 

c" , a, b 

c" , c, d 

The loglc represented by these two BD programs is iderttieal, only the 

labels are dlfferent. Howe~er the subfunctions indieated by the dashed 

boxes ln figure S.13b, a non-binary-compfete tree, are not identical as 

-



tlgure 5.12 

(a) 

(b) 

5-25 

'. rQ-----
1 ......... ..,'--, 

o l 

l ' 

'), " , , 
l , 

1 

" 

, 
,,- .... , 

, 1 
, 1 

r-( 
l , 

1 

80 
1 

,..._L-, r-.l.-, 
1 1 1 
1 1 1 
1 1 1 l ___ ~ L __ .... 

Logic reductlon charact~ristlCs of the PMA algorlthm. 
(a) Trelllslng ot isomorphlc logic and, (b) ellmination 
of redundant logic. 

• 
... -



5-26 

001 .................... . Level 0 

I~--~~-~~ ~~.~.~.~.~ 
~1 Il 0 1 1 

I.evel 1 

10 0 ii 0 O···f I.evel 2 

id rj [] 6J::rj b GJ bi L __________ ~~ __________ ~ 
Output 

(a) 

..................... Level a 
1 

"0 ......... . Level 1 

Level 2 

Output 

(b) 

figure S.U Affect of varlable distribution on BD logic reduction. 
(a) Levels that are homogeneous in a variable are 
amenable to loglC reduction. (b) Levels that are 
heterogeneous in a varlable are note 

\. 



(1 

1 .. 

5-27 

.. 
the levels are not homogenous in a variable. The subfunctions are 

descrlbed by the two follow1ng sets of instructions: 

S' , 

C' , a. b 

D' • c. d 

and, 

D' , 

B' , 

C' 1 c, d 

Although the output patterns are similar. these subfunctions do not 

des~ribe the same switching logic. 

The usefulness of the PMA algorithm for the minilllization of 

randomly generated BD programs is thus restricted. The approach is 

assured of success only when binary-complete programs are considered. 

Such programs are always obtained from the truth table representation of 

switching functions. however, and sa the compiler is designed ta reduce 

any of the other contra l function descriptions to the truth table form 

as a necessary first step. 

5.3.2 Opt.1.llizatioo Effic1.ency. Through ita ex~ust1ve search strategy, 

l 
the PMA algorithm successfully finds and el1I1linates all of the log1c 

redundancies in the blnary-complete BD table. lt can be shown, however, 

that the lIlinimizatlon efficiency depends on the initial choice of the 

arder in which variables are evaluated by the BD program. 

Consider the reduced program obtained by the PMA algorithm for the 

two-bit magnitude comparator in figure 5.9f. The minimized program 

examines the variables ln the arder Xl. X2 • X3 ' X4 and requires twelve 



5-28 

instructionsqincluding the output nodes, a 61% reduction from the 

complete program. Figure 5.14 depicts the minimized program for the 

same function in which the variables are tested in the sequence Xl' Xj, 

X2, X4• Here only nine instructions remain after minimlzation, a 71% 

reduction in size. 

At any time, therefore, the PMA algorithm Is only certain of 

finding a local 'minimum. Other algorithms are reported in the 

11terature which claim to find the global minimum [Poll65,Schw74]. 

These employ some sort of variable reordering scheme to search for the 

one sequence of variables which yields the hlghest degree of 

optlmization. Very litt le pro$ress has been made, however, ln 

discovering good methods of guiding the search procedure. The size of 

the search space can be estimated by the number of different BD programs 

which describe the same function. If the binary-complete program 

constraint is malntained, then there are n ways of choosing the first 

variable, n-l ways of choosing the second, etc., i.e., nI different BD 

programs which describa the same function. 
~ 

Consider the more general case in which the binary-complete 

restriction i8 relaxed. Each instruction is permitted to evaluate any 

of the variables as long as a variable is not tested more than once in a 

trag.sfer path from root to output of the program, figure 5.1S. From the 

diagram, it cao be seen that there are n ways of choosing the first 

variable, n-1 independent ways of choosing each of the two variables at 

the second level, etc. ln general, the number of ways of choosing a 

i 
variable at the i th level of the BD diagram i$ (n-i)2 and so the total 

number of different 8D programs which describe the same function is: 



G§29 
o 1 

(0 B 
\ 

, figure 5.14 Affect of variable orqering on BD logic reduction. 

.. 

figure 5.15 Example of a non-b1nary-complete BD program. 

... 



\ 

5-30 

n-1 
s = 

This represents an enormous search space for the variable-
1 

reordering algorithms ta search through ta find the most tavourable 

\'-­
sequence. lt lS subm~tted that the Objective of BD program optunization 

in the context ot industrlal process control should be to obtaln an 

acceptable approximàtion to the global minimum with the leaat 

computational work and memory cost. With a sutflciently fast algorithm, 

real-time adaptlve control lS feaslble. lt was shown that BD program 

optimization wlthout variable reordering lS, at best, a NP-complete 

problem, meaning that the best algorithm sti 11 requlres an exponentia l 

order amount of work. Research continues in the OATAC laboratory, to 

determine the upper and lower bounds tor opti~zation eftlciency with 

and without variable reordering, and pre liminary resul ts lndicate that 

the PMA al'gorithm ls expected to tind local minima wlthin about 10% of 

the global. 

5.3.3 Co.put.tional Tiae Coaplexity. The tlme complexity of an 

algorithm ls a measure of the number ot steps required to execute the 

algorithm as a functlon ot the Bize or the input. If for a given size 

the complexity is taken as the maximum complexlt~ over aIl lnputs of 

that size, then this i5 called the worst-case com~lexity. The worst-

case complexity of an algorithm is usually much easier to estimate than 

the average-case complexity sinee one does not have to make assumptions 

about the distribution of the inputs. 

In the case of ~D program minimization, the input size lS often 



/' 

[ 
1 

5-31 

~ 
,1;-

taken,1o be the number of independent varlables of the switching 

function. Since t~e PMA algorlthm searches tor redundant logic by 

comparison of output vector slJbsets, the worst-case complex1ty for a 

g1 ven vector is obtained when e ver y el ement l s exhaus t 1 ve l y tes ted wi th 

every other. The number ot compar1sons made lS reduced by successtul 

lOglC prunl.ng, sinee dupllcate output patterns are ellminated trom the 

output vector at each stage. However, the amount of reductlon depends 

on the distribution of the output data elements, a difticult measure to 

quantify. The analyais presented below is tor the worst-case tlme 

complexity of the PMA algorithm. 

Def1aitloa: 5.1 Let k 1 be the number ot subsets into which -the output 

vector is dl.vlded ln the i th 1terat10n of the algor1th~ 

Def iDit1oa: 5.2 Let mi be the number of data e lelllents subsumed by each 

subset in the 1 th i terat10n. 

Ourlng one lteration of the PMA algorithm, the tlrSt subset 1s 

compared amongst "i-1 others, the second 18 cOlllpared amongst lt 1 -2 

others, etc. A total of 

k1 -1 
(kel) + (ki -2) + ••• + 1 - Z (k1-j) 

j-1 
(5.) 

8ubsets are therefore compared for each 1terat1on. The summation of the 

first k1 -1 terms of equat10n 5~3 1s obta1ned below. 

- k1(k i -l) - ki (k1-1)/2 

k 1 (K1-1)/2 

( 



5-32 

Every comparison between a pair of subsets involves mi individual 

comparit'ons of data elements. Thus, the total number of individual 

comparisons made during one iteration of the PMA algorithm is: 

(5.4) 

As described in section 5.2.4, the algorithm is iterated n times to 

complet10n for a n variable BD program. Hence, the total nUllbe\. of 

comparison steps executed ia: 

n 

(5.5) 

Nov k 1 16 equal to 2 i , e.g., 21 sut>seta in the first iteration, 22.4 in 

the second, etc. And 111 1 i5 equal to 2n - i , e.g., each of the two subsets 

in the f1rst ileratlon subsume 2"/2 outputs, whlch is reduced by a 

., 
factor of 2 ln each further iterat10n. Equatlon 5.5 18 thus r~wr1tten 

n 
l: 2n- 1 21 (21-1)/2 

1-1 
(5.6) 

The au ... atlon of the firet n ter1lL8 of equatlon 5.6 15 obta1ned be1ow. 

n 
-)~I 

0----

l: 2n- 1 21 (21-1)/2 _ l: 2n /2 (2 i -l) 
1-1 1-1 

n 
(2n- 1 ) r (21-1) ~ \ 

1-1 
n n 

(20 - 1 ) [ l: 21_ l: 1] 
1-1 1"1 

- (2n- 1 ) [ 2 n+ 1_1 -0], 

- 0(22n ) (5.7) 

(We say that g(n)' 18 O(f(o» if there ex1sts constants c and nO 8u
o
ch 

that g(n) 18 less than or equal to cf(n) for aIl n greater than or 

1 

, 
1 
• 



5-33 

equal ta nO.) The last two terCIB were eliminated to siœplHy the final 

step. Since 

the arder of complexity i8 uoaffected by this omission. 

Karasick. has desigoed a variation of the PMA algorithm that has a 

worst case complexity of 0(n2 n ) (KaraIH,Hur:ts84j. The algorithm 

simul taneously builds and optimizes the BD prog!"am through a postorder 

traversal procedure, during which all oodes are visited but ooly those 

nodes that branch ta existing oodes are created. 

Sioce bath of these algorlthms are of exponential order, computer 

worltload cao be expected ta increase rapidly with an increasing number 

of variables. The growth in computational workload for the PMA 

algorlthm i9 l11ustrated ln figure 5.16. The BDC-4 compiler limits the 

number of input variables of a problem to eight in arder ta bound the 

ail:e of working memory. Slgnificant ly, campi 1er performance was oot seen 

f 
ta degeoerate when computlng eight input variable problems, running,on a 

1 Hliz 6l:i09 computer. 

5.3.4 Coapotatiollal Space Coaplexity. The space complexity of an 

algorithm ia a measure of the amount of work space required to execute 

the algorithm as a function of the size of the input. 

The space complexity of the 8DC-4 program 15 computed below. The 

output data entry routine stores the output ve~tor in main memory 

consuming 0(2 0
) locations. The BD tablé, whlch has length Ù(2 n+ 1), la 

slmilarly stored in working memory. lt isoverwrltten by the PMA 

algorithm such that the reduced BD table does not use any extra memory. 

-



5-34 

60,00.0 

50,000 

'> 

40,000 e". 
VI 

L.... .... """ ~ 
I.&J 
t-
VI 

Z a 
t-
~ 30,000 t-
:::::l 
~ 
~ a 
u 
LL. 
a 
.... 

20,000 

10, 000 

.. 5 10 

# OF VARIA.BLES - N 

figure 5.10 PMA algorithm computational tirne complexity. 

1 - - - -----------~_. -~----



( 

5-35 

F1naIIy, the œachlne code generator creates the executable BD object 

code whlch consumes O(slze of program) memory. ln the ,",orst case, the 

size of program 1s once again O(2n+l). Therefore the ,",orst case space 

complexity of the I:WC-4 compiler 15: 

(5.8) 

In comparison, Karaslck-s version of the PliA aigorithm has a worst case 

space comp lexlty of 0(2· 2n). Th1s lmprovement ls achleved by generatlng 

the reduced BD program dynamically without physlcai reference to the 

binary-complete BD table. As weIL the output vector 18 not required ln 

main memory as it ls sequentlally scanned only once to bul1d the 

program. The varlable reorderlng methods described ln [Drle82J use 

extensl ve worklng area to descrlbe each subfunctlon of the maln program. 

ln fact, an exponentlal number of tables are created", each of whlch uses 

0(h 2 ) space ln the height, h, of the subfunction represented. These 

, taq,l:S are reta\ned throughout the compllation to check for subfunctlon 
----- _r/ '. 

lsomorphisms. This ls another indlcation of the 1mpractical1ty of the 

dynamic varlable reorder1ng algorithms ln a real-time process control 

environment. 



6-1 

CltAPTU 6 

ar/BD PLC APPLlCATlOIIIS 

6.0 Introduction 

Two examples are presented in this chapter that show how the mF/BU 

hybrid programmable controller ean be applied to the realization of 

process control taslts. In both examples, the resultant mP!IW PLC 

programs are eompared to programs prepared for a Motorola MC145uO 

single-bi t mieroprocessor-based contro l l er. The mP! BD-based contro 11er 

illlplementations are consistently shorter and faster. 

6.1 luaple 1 - Traffic Intersection Controller 

This example demonstrates the use of the BD proces8or for 

sequentia l automation tasks by the Implementation of a traf f ic 

intersection controiler. The state diagram of the control aigorithm, 

described 1n the MC1450U handbook [Greg77ji is shown 1n figure 6.1. 

The traffic signal switching procedure is ,as foilows. The North-

South (N~) and &ast-West (EW) traUie f low directions are controlled by 

standard red-yellow-green traffic lights. Traffie may proceed directIy 

through the intersection or turn right on the green signal, but Ieft 

turns are prohibited. The NS direc t ion is assumed ta be a maj or 

thoroughfare, conveying large volumes of traffic at rush hours. For the 

convenlence of NS vehlcles, a prlority Ieft turn signal Is provlded, 

( 
i.e., r:w and straight-through NS traf fOie is hal ted while NS cars may 

l 



1 

figure 6.1 

6-2 

TliZ· MODo 
!.R°ËWi 

00 (ii5D + U) 

""- -

~ 
fitt - TIHER ELAPSED 
!«lD - RUSH ROUR ltJDE 
HSR - NORTH/SOUTH REQUEST 
E\iR - EAST /WEST REQUEST 
LA - LEFT TURN REQUEST 
HS - NORTH/SOUTH 
l\J - EAST /WEST 
GlIN - GREEN LIGII'I' 
TEL - YELLOW LIGII'I' 

THZ (HOD + LR + EWIl) 

o ' 

Traff 1\nteuect1on controller statQ diagram. 



6-3 

turn left onto the EW street. To improve rush hour tl<?w in the NS 

direction, the control system can be operated 1n two modes: 

1) a regular mode in which the control 1er sequences through all ot the 

-states in the state diagram of figure 6.1, on a timed basis 

independent ot traEfic volume; and 

2) a rush-hour mode in which the controller remains in the NS green 

state unless it receives an alternate sequence request tram an 

at tend ing ope r ator. EW and lete-turn requests are serviced tor li 

timed period after which the controller returns to the NS green 

state. 

The mP IBD PLC i8 capable of implementlng this sequential automation 

control task in the 'BD processor. As the pragralll is short, only 42 

steps, it is not necessary ta partition the control,algorithm into 
fiF? 

subsections to be page1t into and out of memory by the IIIP. Three 

hardware timers are assumed ta be connected ta the BD 110 banks in the 

manner of section 3.2.4.6. The t1.mers are started by three field 

outputs, wh11e three field inputs indicate timing inter val expiration, 

table 6.1. The common field output, used ta discriminate between the 

timer acti ve and expired states, is not required in this example since 

only one timer is active at a time and the controller remains in the 

same state until the timed inter val has eltpired. Dther field inputs are 

assigned ta a mode control switch and NS, EW or left turn request 

switches. Seven other field outputs operate the red, yellow and green 

lights in the two directions plus the Ieft arrow l1ght, table 6.2. The 

r/o tpl:''!Iinal asslgnments are summarized in table 6.3. 

, .. 

r 
1 

. , -



~ 

..... 

1 

, 

lIt.VlCt. 

TlIIEk 

TlHU J 

FUt.L 1 lUt. 

NS CREt.N 

E Il Gttt. U. ANI! 
lt. n: "Kltul/ 

K.t.1J uv 1:.K1.AP 
AAD YELLOI/ 

6-4 

Tll'lt.k Tkll.GEIL 
~ll.!\Al 

Tl "ILk uUTPUT 
~l\''''Al 

Tt.IIU 

table b.l External Omer hardware for the tratflc controller. 

INPUT:. OUTPUTS 

SIGNAl. OESCII.IPTlON SICNAl Dt.:'L.RIPTlON 

T~O TlMJ::K OUTPUT TNSI Tl/'IEli. TIlH.CU .-.., , 
TEWO TlI'ŒR OUTPUT TEIII TlM.6R TllIGGER 
TyO Tl/ft.K OUTPUT Tn nm,K TIlIGGER 

NSIl NOI<Ttl/SOUTIi RNS N:' IU:.D l.AHP 
IU.\JUt.:.T 'l'NS N:' 'l'El.1.01/ LAKP 

GNS NS GRE I:.N l.AHP 
EW I:.A.5T/IIEST 

IU:.QUt.l>T 
~ NS l...t.FT AlU\OW 

!tOI) REGUl.AR./RUSIi 1lEW I:.W KEn l.AHP 
IiOUR l'IODE YEW [W YEl.LON LAKP 

1W EW GRt:t.N I...UtP 

LB. un Rt.QUEST 

table 6.2 BD processor 1/0 for the traffie eontroller. 

:.l(.NA1. ù~ TPUT IIIT ~l(,NA1. INPU1 CHANNI:.L 

NUT USEl! UV<I1) T:.:.u 34 

T N:'l OV<IU> T1:.IIU J) 

! TI:.ll 1 UV(9) T'lU J2 
T n uV<8> ~IOIJ 0 
KNS uV<7) N~R ........ _-A.~ ... ''\J,1 . • ",~., 
YNl> OV(&) El/li. 2 " 
GNS OVü) LR 3 
REW OV(4) ' .. 
YEW OV(]) 

"EW OV(2) 

"L OV<l> 
NU! L'Sl:.D UV<O> 

table 6.3 BD processor 110 termInal asslgnments for the trafflC 
eont roller. 



6-5 

Binary decis10n dlagrallS for each control state 1n figure 6.1 are 

shown in figure 6.2. The input nodes are labelled with the variable 

tested by the node. Output nodes are labelled with the control signal 

data appropriate to each state accordlng to the arder, OV<l~l:O>. 

Outputs OV<ll> and OV<O> are undeflned ln this example. Output bank l 

is used. 

The BD program for this contro l task., figure 6.3, requires 42 

instructions. In contrast, an MC14500-based <;ontrol progralll, figure 

6.4, requires 152 instructions. 1 While execution speed 18 not an 

important parameter in this example, 1t 18 clear that the cycle time of 

the BD processor in each contro l state 18 s1gnif1cant 1y, faster than the 

microproceS8or-based program. In addition, the BD program could be 

partitloned lnta segments implementing the normal control mode and the 

rush hour mode separately. The rnP could then transfer the appropriate 

program into BD memory on a pre-schedu Led basis. 

Example 2 continues on page 6-14. 



'~-

...1 

1 ___ ~ 

7\ 
\ 

" '-

0 1 ENTRY 0 

if 
0 1 

~, 
1 0 

/ 

~ 
( 0 

0 
1 0 

hgure 6.2 

0 ENTR'I 1 

~ ENTRY 2 

~ 

STATE l 

JO: ~ ÇJ\ , , 
0-

0 ENTRY 2 

5 r", K 2 

BD diagrams for eaeh traffle controller state. 

.. 
'. 



-. 

~ 

• 

~ 

0 l ENTRY J 

ç( 
\ 1 "\. 

0 l EtiTRY 4 

~ 

0 1 

;;. 

.~ a a-
I ...... 

1 0 0 1 

'\ GO TO 1. lB-o 
STATE J STATE 4 .-

figure 6.2 (con~'d) 
/ 

~ 
( 

, 



6-8 

'" 
é ..:a ..0 

.... 
"" 
5 
"" II) 

CI 

.. 

) 
-p-- . 

... 

~I 
0 

" .. ,;., 

-." 
,&J 

C o 
fJ -

N 

\ 

.' 



, 

.. 
v , 

" 6-9 

\'" COMMENT PC 10 COUE16 DE~CRIPTION 
... 

STATE 0 00 ElOI SELECT OUTPUT BANK l, JUMP TO 1 
01 0204 INPUT T

Û
?' JUM? TO 4 IF TyO~O 

ENTRY 0 ,02 869Ù" OUTPUT 10 1 0010000 
03 FOOI JUMP TO 1 
04 OOOF INPUT M'oD, JUMP TO 15 IF MOD-O 
05 4COF INPUT LR, JUMP ro 15 IF LR-l 
06 4408 INPUT NSR, JUMP TO 8 JF NSR-l 
07 4812 INPUT EWR, JUMP TO 34 IF EWR-l 

( 
STATE 3. ENTRY 3 08 8330 OUTPUT 001100110000 

.;,~'-, 09 4A08 INPUT TNSO ' JUMP TO 8 IF TN~O-1 
10 0015 I~PUT MOD, JUMP TO 21 IF MO -0 

~ 11 4C15 INPUT LR, JUMP TO 21 IF LR-l 
12 0809--", INPUT EWR, JUMP TO 9 IF EWR-O 
13 F015 JUMP TO 21 

( 
STATE 1 14 0612 INPUT T

5w8
;JUMP TO 18 IF, TEWO-O 

ENTRY 1 15 8592 OUTPUT 1 110010010 1 

16 1- FOOE JUMP TO 14 

STArE 2 17 0208 INPUT T • JUMP TO 8 IF TyO·O "-

ENTRY 2 18 8690 OUTPUT Ù?1010010000 
19 FOll JUMP TO 17 

41-
~ 

STATE 4 20 0217 INPUT T~W' JUMP TO 23 IF TyO-O 
ENTRY 4 21 8650 OUTPUT 1001010000 . 

22 F014 JUMP TO 20 
23 C718 OUTPUT 0111. JUMP TO 24 ~ 

24 0217 INPUT Ty~, JUMP TO 23 IF TyO-O 
25 FOIB JUMP TO 7 

(' STATE 5 26 0210 INPUT T • JUMP TO 29 IF TyO"'O 
ENTRY 5 27 8690 OUTPUT Ô?1010UI0000 

F 
28 "'- FOIA JUMP TO 26 
29 0022 INPUT MOD, JUMP TO 34 IF MOO-O 
30 1 4822 ~INPUT EWR, JUMP ro 34 IF EWR~l 
31 4COF INPUT, LR, JUMP TO 15 IF LR=1 
32 F022 JUMP TO 34 

STATE 6 33 0625' INPUT T W ' JUMP TO 37 IF TEWO"O 
ENTRY 6 34 8584 OUTPUT 518110000100 

35 F021 JUMP TO 33 

- ~ STATE 7 36 0227 INPUT T , JUMP TO '39 IF TyO 
ENTRY 7 37 8688 OUTPUT Ô?1010001000 

38 F024 JUMP TO 36 
39 C728 OUTP!;';' 0111, JUMP TO 40 

('. 40 0227 INPUT TyO ' JUMP TO 39 IF TyO=O 
'41 AOOO CUP, JUMP TO 0 ') 

, ,. , 
figure 6.3 tsD program for the traffic controller. 

i1t 
__ .... ,.. __ ~ ..... ~- .. .-- f ~.~ 

- ..... P "<}- ~ __ ~~ --, .. -.....,..~----. . 



L 
/ 

... 
~ 

1 ./ 

". , 
6-10 

COMMENTS PClO INSTRUCTION DESCRIPTION 

00 XNOR RR ENA8LE INPUTS 
01 IEN RR 

" ' Î -tz:lIo 
" 

STAIl 0- 02 LD LR IF [STATE O'TRZ'(Hlm +'LR)] 
03 ORC MOD THEN 
04 ANDC BO' ~ ~ r ... 

(, 

05 ANDC BI 
06 ANDC B2 
07 ANDC" m 

'08 OEN RB. 
09 sio BO 
10 STO ~IWI 11 STO FLAC STATE 1 
l2 STOC PE START LEFT ARROW TIMER 
13 STOC TEWI , 
14 S'1;O GL TURN ON LEfT ARROW -
15 LD NSR IF [STATE O'TR!'HOD'~' 
16 ORC EWR (EWR + NSR)] THEN -. 
17 ANDC LR- \ 

18 AND MOD 0 

:r 19 ANDC TRZ 
20 'ANDC BO . 

, 

21 
.. 

ANDC BI 
22 ANDC B2 • 23 L OEN RR o\, 
24 STO BO 
15 STO BI 
26 STO ;~Sl FLAG STATE 3 

- 27 STO START NS GREEN TIMER 
28 STOC PE 
29 STOC TNSI 
30 STO GNS TURN ON NS GREEN 

~1 LOC BO IF (STATE O'TF[Z'EWR-r;R' 
32 ANDC BI m-MOD) TSEN 
33 ANDC B2 
34 AND- MOD 
35 AND EWR 
36 ANDC LR 
37 ANDC NSR 
38 ANDC TRZ 
39 OEN RR 

.J-

40 'STO BI 
41 STO B2 FLAC STATE 6 
42 STO TEWI START EW GREEN TIMER 
43 STO PE 
44 STOC PE 

figure b.4 MC1450U ~rogram for the tratfic controller. 



(-

" \ 

~ ( , 

itr 

0 

'" 

COMMENTS 

STATE 1 

, \ 

SUTE 2 

STATB 3 

, 

.. 

. 'PCI0 

45 
46, 

47 
48 
49 
50 
51 
52 
53 
54 
55 

~ 56 
57 
58 

59 
60 

.61 
62 
6~ 
64 
65 
66 
67 
68 
69' 

70 
7i 
72 
73 
14 
75 
16 
77 
7H 
79 
80 . 
81 
82 
83 \. 

, ,( 

, , 

~ 
d 

6-11 

CD' 

INSTRUCTION DESCRIPTION 

' STOC T~WI 
STO GEW TURN ON EW GREEN 

LD 80 IF (.STA!! I-m) JHEN 
ANDC BI !\ 

ANDC B2 
ANDC m 
OEN RR ~, 
STOC BO 
STO 81 FLAG STAT! 2 

TURN OFF L~FT ARROW STOC CL 
'STO 

!II 
START RED OVERUP TIMER 

SIO 
STOC P! 
STOC TYI 

\ 

LDC BO ;tF (STAT! 2 -m) THEN 
AND BI 
ANDC B2 
ANDC TFIZ 
OEN RR 
STO BO FLAG STAT! 3 
STO TNSI START NS GREEN TIMER 
STO PE 
STOC PE 
STOC TNSI 
STO GNS . TURN ON NS GREEN 

Ln EWR IF [STATE 3-m-
THEN' OR LR (ROU + LR + EWR») 

ORC MOD 
ANDC mz 
AND BO 
AND BI 
ANDC B2 
DEN lU{ 

STOC BD 
STOC BI FLAG STAT! 4 
STO B2 
STO YNS TU~-ON NS, YELLOW 
STOC GNS TURN OFF NS GREEN 
STO TYI . START NS YELLOW TlMSR 

figure 6.4 (cont'd) 

---~-- ,---.... --_ ..... --- .... ---~~~ ....... - ~~ ~~t ... ..,..~m$·ppn ...... ...lII'"~~ .... ?---.-.--~~~--- -.-,--- - -- ~ 

.t 

. " 

""-

t 
~ 

, ~ 

• 

~ . 

-----



.. 

" 

o • ' 6-12 
~ . 

COMl1ENTS PClO INSTRUCTION DESCIUPTION 

84 STO PE / 85, STOC PE 
86 STOC Tn 

STATt 4 87 LDC BO IF (STATE 4-TH2) THEN 
88 ANDC BI 
89 AND B2 
90 ANDC THZ 
91 OEN RR 
92 STO BO FLAC STATE 5 
93 STOC YNS TURN OFF NS YELLOW 
95 STO PE ~ 

96 STOC PE 
97 STOC TYI ,.;-

STAT! 5 98 LD EWR I-F [STATE 5· mz . (ROrJ + EWR)] 
99 ORC MOD THEN 

100 ANDC TRZ 
101 AND BO 
102 ANDe BI 
103 AND B2 
104 ;r DEN RR 
105 STOC BO 
106 STO BI FLAG STAIE 6 
107 STO GEW TURN ON EW GREEN 
108 STO ;~WI START EW GREEN TIMER 
109 STO 
110 STOC PE 
111 STOC TEWI 

" IF (STATE 5·TR%-~OD'LR.E;f) . 112 LD BO 
113 ANDe BI THEN" 
114 AND B2 

.. 115 ANDC 1HZ 
( 116 AND MOD 

117 AND LR 
118 ANDC EWR 
119 OEN RR 
120 STOC B2 FLAG STATE 1 

( 121 STO GL TURN ON LEFI ARROW 
112 SIO TEW1 STARI TIMER 
123 STO PE 
124 STOC PE 
125 sroc TeWI 

figure 6.4 (cont 'd) 

; 

" 



\. 

~ •. .> 

, 1",)'- 6-13 
" ,t/ "" 
\'\ 

COMMENTS PC lO INSTRUCTION DESCRIPTION 

STATE ~ 126 ~De BO IF (STATE 6'THZ) THEN 'f. 

127 AND BI 'f' 

128 AND B2 

/ 129 ANDe THZ , 
130 DEN RR 
131 STO BO FLAG STATEJ 
132 STO YEW TURN ON EW YELLOW 
133 SToe GEW TURN OFF EW GREEN 
134 STO T yI ' START TIMER 
135 STO PE 
136 SToe PE 

~ 137 SToe TYl 

~ 
STATE 7 138 LD BO IF '(ST~E 7'~) THEN 

139 ,AND BI G 
140 AND B2 

1 " 141 ANDe TMZ 
142 DEN RR 

t, 

143 SToe BO .\ 

144 SToe BI FLAG STATE 0 
145 SToe B2 
146 SToe YEW TURN OFF EW YELLOW 
147 STO Tyr START RED DVERLAP TIMER 
148 '/ 

STO PE 

J 
149 SToe PE . < 
150 SToe Tyr 
151 °NOPF SET FLAG TD RESET PC, 

, figure 6.4 (cont'd) 

.. 
1 

1 
/ . 

" 

" , 1 



, 1 

" 

6-14 

6.2 "xaaple 2 IndUfJt:r1«1 Boiler Control 

,This example~demonstrates. the use of the complete mP/BD PLC for 

f bot'h proportional cqntrol and sequential automation tasks in parallel. 

An industrial facility wi Il usually have one or more single-burner, " ~ 

gas- or oi l-fired, indus tria l package boi l ers supplying low-preSsurt\, 
• , 1 

steam for proceas heating, cooling, drying, and space heating 

(Wood77,B&W75]. Such package boilers are fitted with' simple measu'rement 

and control devices uaed ta maintain steam pressure and fuel and air 

f Iows. In addition, they are provided with some sequentiel logie to 
\ 

automate startup and shutdown proced,ures. Typical inputs and outputs 

for a single boiler system are sho.m in table 6.4. 

Boiler controls are traditionally imp) emented with pneumatic or 

electric-analog hardware as weJ.l as with relay or digital hardware for 

the logic tasks. The capital cost of this hardware may be 

disproportionate to the value of a single-boiler system, since bai 1er 

controls are uBually designed for complicated multiboiler. mult1burner, 

mliltifuel installations. ~ince modern 'distributed microprocessor-baaed 

control' systems are~also designed for large applications, they present 
, 

the same economic disadvantage. A hybrid inP/BD PLC system, however, ia 

1 
we Il-sui ted to a less complicated 10s ta11ation. Proportional control 

task,s can be. processed digita lly in the mP while sequential automation 

functions can be implemented 1n the BD processor. Supervisory control 

i8 maintained by thé mP in conjunction with the operator control 

interface .• 



1 

J 

( '" 

·' '" \ 

~) 6-15 \. 
." 

-
INPUTS TU MIC~OPROCESSOk STEAM HEAOgR PRESSURE 

SrEAM FLOW SENSOR (OR FUEL FLOW) 
AIR FLOW SENSOR 
DltUM LEVEL 
VARIOUS SETPOINTS AND LIMITS 

OUTPuts FROM HIC~OPROCESSOR FORCE.D DRAFT FAN DAMPER POSITION 
FUEL CONTROL VALVE POSITION 
FEEDWATt::R CONTROL VALVE POSITION 

i 
INPU'fS TO BD PROCE5'SOR 

OUTPUTS FROM 80 PROCESSOR 

, 

• 
FURNACE DRAF~LIMITS 
DRUM LEVEt. LIMITS 
AIR FLOW LIMITS 
FUEL VALVE LIMITS 
FLAME DETf.CTOR SIGNALS 
STOP/START SIGN~LS 

PURG~ SEQUENCE STATUS 
BURNER LIGHT-OFF STAT.US 
FUEL VALVE INTERLOCK COMMANDS 
ALARM ANNUNCIATOR COMMANDS 

BOlLER TYPE: SINGLE BURNER. GAS-FIRED, PACKAGE BOlLER 
12 MW (50,000 PPH), 107 MPa (250 psi) PRESSURt 

Typical package boller field 1/0 requirements. 

DEVIC~ FUNCTION TIMElt TRIGGER TIMER OUTPUT 
SIGNAL SIGNAL 

TUŒR l • PUKGE TIMER TpRGI T pRG 

TIMEK 2 LIGliT-OFF TLOI T LO 
TIMER 

TIMER 3 SAFETY DELAY TSDI T SD 
TIMER 

TI MER 4 POST-PURGE TpPI T pp 
TIMER 

table 6.5 External timer h~rdware f,or che burner au~oma C ion 
controller. 1 

'p 

.. 

, , . 



D 

6-16 -1 

6.2.1 BUrDer AutOUt1.01l Syste. Functioll.8. The o'urner auto~tlon 'system 

for a common s1ngle-burner~ gas-f1red 12 MW (SO.GOG PPH) steam capaclty. 

1.7 MPa (250 psi) steam pressure, industr1al pacRage baller ia shown in 

the state diagram of figure 6.S. The control seq1uence 18 characterized 

by seven states: 

1) Pre-purge state. The purge cycle replaces the air inside the boller 

furnace with outside air before the boil er le 11 t ta remove any tue l 

vapors which may cause an expl.osion durlng, burner ignition. In the pre-

purge state, the control system erisures chat the fuel val ve 19 closed. 

that no flame la detected in the furnace. Chat the furnace airflow 19 

8ufficient for purging and that the boi 1er 18 ready. These 8t"e the 

purge permissl yeso When the ayatem proves chat these conditions exist. 

lt 111 uminntes the Purge-Ready-l.amp to alert the operator. It then 

awaits the act! vation of the Start-Purge-Pushbutton before entering the 

purge s tate. 

2) Purge state. The operator st-arts a purge cycle Umer whicb 18 pre­

set for an appropr1ate tillling period based on the furnace volùme and the 

purge air f low-rate~ At least elght complete air changes must be 

accomplished accord1ng to the NF PA safety code [NFPA76]. The control 

system illuminates a Purge-in-progress Lamp to indicate the control 

state. The purge <tycle may be 1nterrupted if the purge perm1ss1 ves are 

lost tor a per10d longer than two seconds or if the operator presses the 

Stop-Pushbutton. In chis case the control system returns to the pre-

purge state. At the end of the t ........ · minute purge period, providing that 

no interruption occurred, the control system 111um1nates the Purge-

/ 

-



6-17 
'J, 

- , 
\ 

,- .. .. 
" 

fiiï 
1 

PRC + 

'-

'! 

M,c1LR 'ISJ!I.) 

"~ 

.. P~ - START PURGE P. li. 
PI ac - STAR! LIGHT-oFP' P.J • 

LO PJ
STOP 

- STOP P.B. 

m - TIMER EUPSr:n 
R ~ - TIMER RESET 
BLI - BOILER PERMISSIVES 
IINR - BURNER PERMISSIVES 
PRe - PURGE PERMISSIVES , 
LO - Llc:HT-oFF PERMISSIVES 

fig\4re 6.5 
.r-

Burner automation system state diagram. 

'fi 

--- j 



• 
6-18 

COllplete Lamp and enters the pre-light-off state. 

3) Pre-light-off state. The control system ensures that the burner ls 

ln the proper state prior ta burnel; igni tian by checking chat the 
'1) 

automatlc fuel ~ut-off val ve i8 closed and that ·the fuel supply 

pressure Is withln l imit~ These are ca lIed the pre-..l ight-of f 

permissi ves. The Burner-Ready-Lamp ls illuminated when these are proven. 

a The oper~tor can in~errupt the l1ght-off procedu:e if the permissives 

cannat be proven after a reasonable period by pressing the Stop-
'" j 

PushbuttQn. Otherwise, the control system awaits the Start-Light-Off-

Pushbutton to enter the light-off state. 

4) Llght-off state. The automatic fuel shut-off valve ia opened to 

admit fuel to the burkr a~â the e1ectri.c spark j,gniter is energized. 

The 19niter is operated for a period of ten seconds after which the 

control system turns off the Burner-Ready-Lamp and enters the burner-

monitor state. 

5) Burner-monltor state. This 15 the normal operating-8~ate of the 
a ~ 

control system while the b~rner ls lit. The monitor continuously checks 

the condition of the burner permissives and the boiler permissives-to 

, ensure that the unit is operating within approved safEFty limits. If any 

of the permissives are lost,. the control system enters the safety 
""" 

shutdowÏl state. A normal shutdown ls invoked by the actl vatlon of the 

S top-Pushbucton .... 

6) Safety shutdown state. A two second cimer is activated. After chis 
, 

delay, the burner and boiler permissi VElS are rechecked to ensure that 

{ 

.. ' 



1 

•• 

( 

6-19 

the satety haza~ sU Il exis t sand wa-s not due ta a momentary signal 
~, ~ 

loss. If the permissives can be reestablished the control system 

returns to the monitor state and resumes normal operation. Otherwise, 

an Alarm Lamp ls i lluminated '~nd the norma l ahutdown sequence is 

initiated. 

7) Normal shutdown state. To safely shutdowa the boiler, the automatic 

fuel shut-off valve is closed. However, the normal air flow 1s 

maintained ta remove unburned fuel and potentially hazardous combustion 

products from the furnace. This is called the post-purge cycle. The 

control system activates a post-purge tlmer and awaits the end of this 

period after which it shuts down the air fan and returns t-o the pre-

purge stace. 

The burner 'automation task ia executed in the BD processor. Once 

-........,.-' \ 
agàJ.n, it is not necessary to partition the program into subsections 

Binee it is relaCi vely short, only 94 ins~ructions. Eighteen process 

inputs and fourteen outputs are used. The outputs are brpken down into 

three categories, timers and fI ip-f laps, indicator lamps, and boiler 

equipment commands. These are assigned to banks 0, l, and 2, , 

res pecti ve ly. The 1/0 termina l assignments are summarized 1n tables 

6.5,6.6 and 6.7. 

HO diagrams for each concrol state are shawn in f~gure 6.6. The 

input nodes are labelled with t.he process variable testéd by each node 

and output nodes are labelled with the control actions appropriate ta 

each state according to the order OV<ll:ü>. The BD ptogram for this 

concrol task is shawn in figure 6.7. Some optimization has been carried 

out by hand, e.-g., the f lip-f lop used in s tate 2 saves the re­

~ 



6-20 ' 

exam:J"nation of the purge and boiler permis si 'l,es by independent 

instructions. lt causes the' program flow to loop back after the timing 

period expires and to execute the ~xisting set of ,input instructions a 

second time. On the second pass, the program f low'bypasses the timer 

and branches to the shutdown state if the purge permissives cannot be 

reestabl1shed. 

In' contrast. the MC14500-based control program requires 180 

1 

instructions. figure 6.8. The BD program could be further optimized to 

combine the safety-shutdown state with the nOlimal shutdown and place the 

safety timer logic within the main monitor loap. In this case, the 

number of phys~cal state transitions would be reduced and would s\lg~_est 

a program partitioning into startup, monitor, and shutdown sequences. 

The mP cOllld then transfer the appropriate program into BD memory on an 

interrupt basis. 

/ 6.2.2 Co.bustiv.......-Contro1 System. The conibus~on contro l system is 

responsible for maintaining Fhe air flow and fuel flow into the furnace 

in the proper ra~io tOJensure efficient yet safe combustion, figure 6.9. 

The steam pres~u\e ls the primary measured variable for combustion rate. 

If the heat produced in the furnace decreases, then the rate of steam 

production is less than the rate of steam cOl}sumption and the supply 

pressure falls. The reverse 15 true if t;he heat rflte increases. Steam 

pressure measurement takes Into account changes in/both the flow rate 

\ 
and BTU content of the fuel. \ 

\ 
\ 

The prlmary controlled variable is the Forced Dra: t (F.D.) fan 

speed. Steam production rat'è is increàsed by increasing the air f low 

:: 

1 



{(-
} 

'. 

f 

1 .-

( 

( \ 
) 

6-21 

through t~furnace. The combustion control system ~sures the ratio 

of the steam flow and air flow and attempts ta control fuel flow rate to 

uintain the proper excess air quantity. When the increase in F.D. fan 

,speed. is fed forward to the fuel val ve contro'l loop, the control system 

opens the fuel control valve to admit more fuel. '!he exact 'valve 

setting i8 trimmed by the steam flow/air flow ratio measurement. 

Water level in the steam production drum of the boiler ia commonly 

controlled by a single-element feedwater control loop. The drum level 

is measured and compared to a fixed set-point, internaI to the 

controller. The difference between,the set-point and actual water level 

ia used ta modulate the feedwater control val ve posi tion. The actual mP 

control program to implement the combustion control system is not 

prQvided as lt i~ a conventional PlU control task. 

Because of lts ability to perform proportional control in addition 

to, and in paral"lel with, sequential logic functions, the hybrid mP/BD 

programmable controller i8 much more 

than ar~ conventional programmable 

suitable for boiler control taskr 

contra llers and requires a lowe1 

capital investment than traditional hardware. 

~_..-.. ___ ~ __ .... "" ........ ___ • __ ._ ..... ~ .. fF~ '.!'~"'~'-"}\':.-.tJ.!'JI:.:~ .. ~,.t..,<. 
, 



6-22 

INPUTS OUTPUTS 

SIGNAL DESCRlPTION SIGNAL DESCRIPTION 

TpRG TIMER OUTPUT TPRG1 TIMER INPUT 
TI.O TIMER OUTPUT TLOr TIMER INPUT 
Tpp TIMER OUTPUT TpPI TIMER INPUT 

;~D TIMER< OUTPUT 
T;Dr TIMER INPUT 

FLlP-FLOP F D FLIP-FLOP 
--./ 

PBpRG START PURGE LpR l'URGE READY LAMP 
PUSHBUTTON LpIP PURGE IN PROGRESS 

LAMP 
PBBNR START BURNER LpC PURGE COMPLETE 

LAMP 
PUSHBUTTON LBR BURNER READY LAMP 

PBSTOP STOP PUSHBUTTON LrA TRIP ALARM LAMP 
LSTOP STOP LAMP 

AFSV
OPEN 

. SHUTOFF VALVE AFSVC CLOSE AFSV 
LIMIT SWITCHES AFSVO OPEN AFSV 

FDCTR FLAME DETECTOR FANC CLOSE FORCED DRAFT 
FAN 

PRGAF MINIMUM PURGE IGN ENERGIZE IG~ITORS 
AIRiLOW' LIMIT • SWlTCH 

" ~FTMIN FURNACE DRAF! 
DFTMAX LIMIT SWITCHES 

DLVL~UN BOILER DRUM 
DL~ WATER LEVEL LIMIT 

SWITCHES 

AFM1N ~URNACE AIRFLOW 
MINIMUM LIMIT 
SWITCH 

FPMIN FUEL SUPPLY 
FPMAX PRESSURE LUj.lT 

SWITCHES 

table 6.6 BD processor 1/0 for the ourner automation control 1er. 

( ; 

il 

W~_. 

- _. --~----_ .... - _. ---~~~-



6-23 

OUTPUTS INPUTS 
, 

SI~NAL OUTPUT IHT SIGNAL INPUT CHANNEL -

(BANK 0) 
NOT USI:.O OV<l1:5> TpRG 36 
TpPI OV(4) TLO 35 
TSOl OV(3) Tpp 34 
TLOl OV(2) TSD 33 
t pRGI OV(l> FF 32 

~, 

FFO OV(O) 
PSpRG 18 

(BANK 1) PBSNR 17 
- " NOT USE[} OV(ll :6> PBSTOP 16 

LorA OV(S> 
LBR OV(4) AFSVCLSD 10 
LpC OV(3) AFSVOPEN t LplP OV(2) FOCTR 
LpR OV(l> PRGAF 1 
LSTOP OV(O> DFT~UN 6 

DFTMA.l{ 5 
(BANK 2) DLVLz.tIN 4 

IGN OV<ll> DLV~ 3 
AFSVO OV(lO> AFKIN 2 

\ 
FANC OV<9> FPKIN 1 
AFSV OV<8> FPMAX 0 
NOT 5s~D OV<7:0> 

, 
table 6.7 BD processor 1/0 terminal asslgnments for the burner 

automation controller. Q 
.-

. " 

( ) 

, 



.. 

1 

) 

- - _"e _____ _ 

figure 6.6 
\ 

EImlT 1 

STAD 1 

1 

o 

1 

~ 
t..=:LJ 

BD d1agrams for each burner controller state. 



\. j 

/ 
(0) 00000 

GO TO 
ENTlty 1 

1 

o 1 

figure 6.6 (cont'd) 

... 

J 

6-25 

STAT! 2 

o~ 
- ~ , 

(9. 
1 0 

0) 00000 G 
r.(l TO 0 

E~"'TRY 1 

(1) 001000 • 

co TO 
E..\"'TRY 3 

(0) 00010 
(1) 000100 



J 

\ 

o 

GO TO 
E:,TRY 7 

6 6 (cont'd) figure . 

STAn 6 

l 

~ O~ 

l~ a KIN 

. 1 

STAT! 7 

," 

...J 

-



,. 

, 

/ 

"" 

.. • 

6-27 

ENTRY 3 

1 

, ~l 
'X;) 

0 

o 

r-:;Lt 
~ 

1 

~ ENTRY 7 

ENTaY 4 

(0) 00100 
(2) 1100 

figure 6.6 (con~'d) 

.- --._...-~-_.«-- ->------,,------------

, . 

•• 

.. 
() 

.,., 

l 

0 1 

1 :~~. '1 

'---

STAn 4 

.. 



.. 

ENTII.Y 5 

.. 

6 (cont'd) figure 6. 

6-28 

STAn' , 

, 

"-

, 

-



6-29 

COMMl:.NTS PC lO CODt.. 16 DESCR'IPTION , 

STATE 0, ENTRY 1 0 ELOI BANK SWITCH TO 1 
1 180C INPUT DFTM1N , JUMP TO 12 IF 0 
2 540C INPUT DFTMAX •. JUMP TO 12 IF 1 
3 looe INPUT DLVLMIN , JUMP TO 12 IF 0 
4 4eoc INPUT DLVLMAXJ JUMP TO 12 IF 1 
5 o~OC INPUT AFMIN , JUMP TO 12 IF 0 
6 280C INPUT AFSVCLSO J JUMP TO 12 IF 0 

" 
7 600C INPUT FDCTR ' JUMP TO 12 IF 1 
8 lCOC INPUT PRG&Ô' JUMP Ta 12 IF 0 
9 8002 OUTPUT 00 00000010 

10 4918 INPUT PB pRG , JUMP TO 27 IF 1 
11 FOOI JUMP TO 1 
12 8000 OUTPUT 000000000000 
13 FOOI JUMP TO 1 

STATE 2 14 EOOF BANK SWITCH TO 0 
15 1821 INPUT DFTMIN , JUMP TO 33 IF 0 
16 5421 INPUT DFTMAX , JUMP TO 33 IF 1 
11 1021 INPUT DLV~IN' JUMP TO 33 IF 0 
18 4C21 INPUT DLV~, JUMP TO 33 IF 1 
19 0821 INPUT AFMIN , JUMP TO 33 IF 0 
20 2821 INPUT AFSVCLSD ' JUMP TO 33 IF 0 
21 6021 INPUT FDCTR ' JUMP TO 33 IF 1 
22 lCZl INPU~ PRGAF , JUMP TO 33 IF 0 
23 OllA INPUT PBgô88 , JUMP TO 26 IF 0 
24 8000 OUTPUT a 0000000 
25 FOOO JUMP TO,O 
26 121F INPUT T ,JUMP TO 31 IF 0 

ENTIlY 2 27 B002 OUTPUT D~8000000010 . 
28 EllD BANK SWITCH TO 1 
29 8004 OUTPUT 000000000100 
30 FOOE JUMP TO 14 
31 8008 OUTPUT 000000001000 
32 F028 JUMP TO 40 
33 0224 INPUT FF, JUMP TO 36 IF 0 

\ 
34 8000 OUTPUT 000000000000 
35 FOOD \ JUMP TO 0 . / 

36 BOOA l'OUTPUT 000000001010 , 37 460E INPUT TSD ' JUMP TO l~'--IF 1 
38 8003 OUTPUT OUOOOOOOOOll 
39 FOOE JUMP TO 14 

\ 

[~) STATE 3, ENTKY 3 40 E129 BA~K SWITCH Ta 1 
41 2~lF INPUT AFSVCLSD ' JUMP TO 47 IF 0 

\. 
42 042F INPUT FPMIN , JUMP Ta 47 IF 0 
43 4U.lF INPUT FP ,JUMP TO 47 IF 1 
44 8010 OUTPUT OtlèôOOOlOOOO 
45 0328 INPUT PBBNR , JUMP TO 40 I~ 0 

Il 
flgure 6.7 BD program for the burner automation control 1er. 

o 1 . • 



; 

6-30 
" 

( COMMENTS PC lO CODE 16 
. DESCRIPTION 

~ 46 F033 JUMP TO"51 
47 8000 OUTPUT 000000000000 
48 0128 INPUT PBSIOP ' JUMP TO 40 IFO 
49 F054 JUMP Ta a 

STATE 4 50 OE37 . INPUT TLO ' JUMP TO 55 IF 0 
" - ENtRY 4 51 E034 BANK SWITCH 0 

52 8004 OUTPUT 000000000100 
53 E23& BANK SWITCH 2 
54 CC32 OUTPUT 1100 t JUMP TO 50 

STATE 5. ENTRY 5 55 2043 INPUT FOCTRt JUMP TO 67 IF 0 
56 2443 INPUT AFSVOPEN ' JUMP TO 67 IF 0 
57 0443 INPUT FPMIN • JUMP Ta 67 IF 0 
58 4043 INPUT FPMAX • JUMP TO 67 IF 1 
59 1843 INPUT OFTMIN • JUMP Ta 67 IF 0 
60 5443 INPUT DFTMAX • JUMP Ta 67 IF 1 
61 1043 INPUT OLV~IN' JUMP TO 67 IF 0 
62 4C43 INPUT DLVLMAX • JUMP Ta &7 IF 1 
63 0843 INPUT AFM1Nt JUMP TO 67 IF 0 
64 0137 .r INPUT PB~IOP t JUMP TO 55 IF 0 
65 (' F054 JUMP TO 

STA'l'I 6 66 0646 INPUT Tso • JUMP TO 70 IF 0 
ENTRY 6 67 E044 BANK SWITCH TO 0 

68 8008 OUTPUT 000000001000 
69 F042 JUMP TO 66 
70 204F INPUT FDCTR ' JUMP TO 79 IFO 
71 244F INPUT AFSVOPENt JUMP Ta 79 IF 0 
72 044F INPUT FPMIN • JUMP Ta 79 IF 0 

. , 73 404F INPUT FPMAX • JUMP TO 79 IF 1 
74 184F INPUT DFTMIN • JUHP TO 79 IF 0 
75 S44F ~NPUT DFTMAX • JUMP TO 79 IF 1 
76 l04E INPUT DLVLM1N • JUMP Ta 79 IF 0 
77 4C4E INPUT DLVLMAX ) JUMP Ta 79 IF 1 
78 4837 INPUT>AFMO~. JUMP Ta 55 IF 1 
79 8000 OUTPUT 00 00000000 \ 

80 EISl BANK SWITCH TO 1 
81 8020 OUTPUT 000000100000 
82 F054 JUMP TD 84 

STATE 7 83 OA5A INPUT Tpp • JUMP"TO 90 IF 0 
ENTRY 7 84 E05S BANK SWITCH TO 0 

85 8010 OUTPUT 000000010UOO 

figure 6.7 (co,nt'd) 

( 
, C"~ 

1 

/ 

/ 
" 

1 
• 1 

-~~ ......... ~-

--- ~_ . ....-.-..--~ ...... """,.~ ___ .. 7':..,.......,_"';'~JU- ~-'T"'-..~,..-



, 

1 
f· 
f 
r 
! 

.. 

'. 

6-31 

.' 
\ 

• .J 



\ 

COMMENTS 

START UP 

STATE 0 

STATE 1 

STAT! 2 

fl.gure 6.H 

1 -

00 
01 
. 
02 
03 
04 
05 
06 

07 
08 
09 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
22 

_ 23 
24 
25 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
3H 
39 
40 
41 
42 
43 
44 

INSTRUCTION 

XNOR RR 
IEN RR 

LOC BO 
ANDC ,BI 
ANDC 82 
OEN RR 

. STO BO 

BO 
BI 

6-32 

LD 
ANDC 
ANDC 
AND 

. ANDC 
B2 ~ 
DFTMIN 
DFTMAJ{ 
DLVLMIN 
OLV~ 
AFMIN 
AFSVCLSO 
FDCTR 
PRGAF 

AND 
ANDC 
AND 
AND 
ANDC" 
AND 
OEN 
STO 
STOC 
AND 
OEN 
STOC 
STOC 
STO 

RR 
LpR 
LSTOP 
PBpRG 
RR 
LpR 
BO 
BI 

LOC BO 
AND BI 
ANDC B2 
AND DFTM1N 
ANDCe. DFTMAX, 
AND DLVLM1N 
ANDC DLVLMAX ~ 

AND AFMIN 
AND AFSVCLSD 
AND PRGAF 
STOC TEMP 
AND PBSTOP 
OEN RR 
STOC . TpRG1 
STOC TSDI 
STOC LpIP 
STOC FFD 
STO BO 
STOC BI 

'il 

DESCRIPTION 

IF (STATE 0) THEN 
FLAG STATE 1 

IF (STATE 1"BLRo8NR) THEN 

LIGHT PURGE-REAnY LAHP 
RESET STOP LAMP 
IF {PBpRG) THEN 

RESET PURGE-READY LAHP 
FLAC STATE 2 

._.;i 

IF (STATE 2°BLRopRG"PBSTOP)o 
THEN 1 

'\ 

RESET PURGE CYCLE TIMER 
RESET SAFETY DELAY TIMER 

lRESëT PURGE7 1N-PROGRLSS LAMP 
RESET FLIP-FLOP 
FLAG STATE 1 

MC145UU program for the burner automation control 1er. 

-



... 

COMMENTS 

... 

STATE 3 

\ 

--

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

58 
.. 59 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
'73 
·74 
75 
76 
77 
78 

79 
80 
81 
82 
83 
84 
85 

-

INSTRUCTION 

""LDC 
ANDC 
OEN 
STO 
STO 
ANDC 
OEN 
STOC 
STOC 
STOC 
STOC 
STO 
STO 

Wc 
AND 
ANDC 
AND 
STO 
A1iD 
OEN 
STOC 
STOC 
STOC 
STOC 
STO 
STO 

LD 
ANDC 
OEN 

, STO 
ANOC 
OEN 
STO 
STOC' 

TEMP 
PBSTOP 
RR 
TpRGI 
LpIP 
TpRG 
RR 
TpRGI 
TSDI 
LPIP 
FFO 

;SC 
.; 

BO 
BI 
B2 
TEMP 
TEMP1 
FF 
RR 
TpRGI 
TSOI 
LpIP 
FFD 
BO 
BI 

TEMP1 
FF 
RR 
TSDI 
TSD 
RR 
FF 
TSDI 

LD BO 
AND BI 
ANDC B2 

6-33 

AND AFSVCLSD 
AND FPMIN 
ANDC FPMAX , 
STOC TEMP 

DESCRIPTION 
:>a ) 

~F (STATE 2"BLR"PRG"PBSTOP) 
THEN 

START PURGE CYCLE TIMER J 
LIGHT PURGE-IN-PROGR~SS LAMP 
IF (TIMER EXPIRED) THEN 

RES~T PURGE CYCLE TIMER 
RESET SAFETY DELAY TIMER 
RESET PURGE-IN-PROGRESS LAMP 
RESET FLIP-FLOP 
LIGHT PURGE COMPLETE LAMP 
FLAG STATE 3 

IF [STATE 2"FFo(RLl + ENi)] 
THEN 

RESET PURGE CYCLE TIMER 
RESET SAFETY DELAY TIMER 
RESET PURGE-IN-PROGRESS LAHP\ 
RESET FLIP-FLOP 
FLAG STATE 1 

,. 

IF [STATE 2"FF"(HLR + BNR)]. 
THEN ... 

START SAFETY DELAY T,lMER 
IF (SAFETY DELAY TIMER 
EXPIRED) ,THEN 
SET FLIP-FLOP 
RESET SAFETY DELAY TIMER 

IF (STATE 3"LO) THiN 

~1gure 6.8 (cont;d)~ 
~ 

,,' ", h 

, <, 

; 



(1 
--...;: 

./' 

.. j 6-34 
'" 

( ÇOMMENTS PClO INSTRUCTION . DESCRIPTION 

86 OEN RR 
87 STO 'LBR LIGHT BURNER READY LAMP 
88 AND PBBNR IF (PBBNR) THEN 
90 STOC LBR RESET BURNER READY LAMP .. , 91 STOC ~bC RESET PURGE COMPLETE LAMP 
92 STOC FLAG STATE 4 
9) STOC BI t: 

,. 
94 STO B2 . 

95 LD BO IF (STATE 3 'Ui) 
96 AND BI ,.-

~ 97 ANDe B2 
98 AND TEMP 
99 OEN RR 

100 STOC LSR RESET BURNER READY LAMP 
101 AND PBSTOP IF (PBSTOP ) THEN \ ~" 102 oEN RR 
f03 STOC ~~C .RESET PQRGE COMPLETE LAMP 

; 104 STO FLAG STATE 7 

105 LDC BO IF (STATE 4) THEN 

10~ ANDC BI 

\--' . 
10 ~ AND B2 
108 OEN RR 

~ 109 5TO TL01 START LIGHT-OFF TIMER 
110 5TO AFSVo OPEN" FUEL SHUTOFF VALVE 

\ III t STO IGN START IGNITOR 
112 ANDC TLO IF (TlMER EXPlRED) THEN 
113 OEN RR 
114 STOC TLOI RESET LIGHT-OFF TIMER 
115 STOC IGN RESET IGNITOR ') 116 STO BO FLAG STATE 5 

STATE 5 117 LD BO IF (STATE 5' BLR' .,BNR) 
118 ANDC BI THEN , 119 AND B2 
120 AND ' FDCTR 
121 AND 'AFSVOPEN 
122 AND FPM1N 
123 ANDC FPMAX : 
124 AND DFTMIN 
125 ANDe DFTMAX 
126 AND DLV~IN 
127 ANDC DLVLMAX 

?' 128 AND AFMIN i' " . v 

figure 6.8 (cont 'd) 

\ -



6-35 

COMMENTS PC lO INSTRUCTION DESCRIPTION 

129 STOC TEMP 
• 130 AND PB STOP IF (PBSTOP ) THEN 

131 ·OEN RR 
132 STO BI FLAG STATE 7 
133 LD BO IF (STATE 5·(BLR. + BNR)] 
134 ANDC BI THEN 
135 AND H2 

'" 136 AND TEMP 
137 OEN RR 
138 STO BI 0 FLAG STATE 6 
139 -STOC B2 '''p. 

STATE 6 140 LOC BO IF (STATE 6) THEz( 
141 AND BI 

"-142 AND B2 
143 OEN RR 
144 STO TSOI START SAFETY DELAY TIMER 
145 ANDC ao IF (TIMER EXPIREO) THEN 
1~6 DEN 
147 sroc .1'----- ./ RESET SAFETY DELAY TlMER SOI 
148 STO TEMP 
149 AND FOCTR IF (STATE 6'!HZ 'BLR'BNR) 
150 AND AFSV THEN 
151 AND FPMIN 
152 ANDC FPMAX 
153 AND DFTM1N 
154 ANDC OFTMAX 
155 AND DLVL~UN 

,-

156 ANDC DLVLMAX 
157 , AND AF~IN 
158 STOC TE Pl 
159 DEN RR 
160 STO BQ F'LAG STATE 5 
161 STOC BI r 
162 LO TEMPI 
163 AND TEMP IF (STATE 6'TMZ'(!LR + ~» 
164 OEN RR THEN 
165 STO LTA LIGHT TRIP ALARM LAMP 
166 STO BQ FLAG STATE 7 

STATE 7 167 LD BQ IF (STATE 7) THEN . 
168 AND BI 
169 AND B2 
170 OEN RR 
171 !" STO TpPI START POST-PURGE TlMER 

figure 6.8 (cont'd) 

• 

~ 

,- ·~"--",;"',,,· ____ u ... _ .. '- -



6-36 

COMMENTS PC lO INSTRUCTION DESCRIPTION 

172 STO LSTOP LIGHT STOP LAMP 
173 ST(} AFSV CLOSE FUEL VALVE C 
174 ANDC Tpp IF (TIMER EXPIRED) 
175 OE.N RR THEN 
176 STOC !rPI RESET POST-PURGE TIMER 
177 STOC FLAG STATE 1 
178 STOC B2 
179 NOPF SET FLAG TO RESET PC 

\ 

figure 6.8 (cont'd) 

l, 

t) 

( 

\ 



t,C" ." 

1 
fi , 
1 

~( 
1 

,i 

,~ 
p , 
'1 
l' 
1 --

.-. 

, 

J " 

.".'" 

.. 

STf'.AM 
PRESSURE 

SENSOR 

K If 

FORCED DRAFT 
FAN 

~flgUre 6.9 

~ 

~; 

1 
SETPOINT 

STEAK 
'FLOW 

SENSOR 

K li 

AIl 
FLOW 
SENSOR 

FUEL CONTROL 
VALVE 

" 

K 

/' 
INTERNAL 
SETPOINT 

DRUM 
LEVEL 
SENSOR 

1 

If 

FEEDWATER CONTROL 
VALVE 

Combustion control syste~ 8chematic diagram. 

. ~, 

..-

LEGElm 

6 SUBTRACTOR 

K - PROPOII.TIONAL 

1 - INTECRAL 

[ - SUHHER 

~ TRANSFER -
STATION 

~ 
Q\ 

OPERATOR 
1 

- w 
INPUT 

..... 
STATION 



7-1 

CtiAPTEJt 7 

COIfCWSIOMS 

7.1 Sw.aaryof Resules 

7.1.1 aP/Bb Hybrid Coneroller. It has been shown that a hybrid mP/BD 

progr~mmable controller architecture offers substantial advantages over 

conventional programmable automata in terms of flexibility, etficieney 

and economy. In this regard; it wap demonstrated that: 

1) IHnary decision machines support the evaluation of multi-valued 

switching logic, the parallel execution of seriaI switching tunetions 

and the realization of time-dependant sequentiai funetions. In 

contrast, PLA-based PLc.;s are limited ta the evaluation of binary-valued 

combinatorial logic while multi-bit mP controller architectures are 

constrained to emulate seriaI input machines. 

2) HD automata always evaluate combinatorial tunetions in a number of 

steps equal to or less than the number o( input variables, where 

Boolean-based machines, such as the leU, consume exponentlal order 
, 

proeessing time. This relative speed advantage of the BD machine i5 

advantageous for tast time-constant proces5 applications, perm~ts the 

'Use of more compllcated process models and/or allows the control of a 

number of concurrent ,tasl<.s. 

3) The BD processor's Logic Unit eon'f>ists of only five logt.;: gates • 
. ( 

Henee signal propagation through the LU i8 extremely fast. This 

, ----•... _- -~-- ~--~---~~~._---_._----~- -



.. 

( 

7-2 

suggests that planned V l.~I implementations of the 80 architecture will 

operate at high clock rates, limited only by instruction memory access 

and input/output butfer 

and fabricate due to the 

cycle times, and will betÂnexpenSlve to 

reliftively low number llogic elements. 

design 

4) Previous liD architectures were restricted ta simple control tasks 

by their 11mited memory resource and the characteristic exponential 

growth of BD program size with the ~umber ot lnput variables. The 

instruction set ftf the existing Holck 1W prototype has been enhanced to 

add more 1/0 capacity and to lntroduce an interface bus tor 

communication with a host mP. As a resuit the controller may employ 

~rogn~m optimizatl0n and/or partitloning strategies ta increase the 

processing capabilities of the liD machine. 

The technical teaslbllity of the hybrid programmable controller was 

validated by the construction and testing of a lai>'oratory protcnype 

system WhlCh includes a microcomputer, a BD machine and the BU09 process 

control operating system. Two programmable controller applications are 

presented which compare the performance ot the mP/BD hybrid with a 

conventional MC14500 I~U. The mP/BD lmplementations are consistently 

shorter and taster than the ICU examples. A 7'2.% reductlon in program 

size, from 152 MC14500 instructions to 42 lm instructions, 15 achieved 

in the trattlç: control 1er task. while a 4ti1. reduction, from HW M(;14500 

instructions to 94 liD instructions, lS obtained ~n the boiler control 

application. In the latter example only the sequentlal automatIon 

programS' are compared since the lCV's slngle-bÏt archltecture lS not 

intenqed tor, nor capable ot, handling the combustion control modulation 
:[1 

tasks. These may be handled in the mP half of the hybrid controller. 

\.. 

\ .. 



7-3 

7.1.2 BD progra. Co.p~ler. The design and operation of a practical 

optimizing compiler for combinatorial logic functions is described which 

produces near-optimally reducèd BD programs. It is contended that in 

industrial applications it i6 preferable to obtain a size reduction 

within 10%-151. ot the optimum in a short time rather than exhaustively 
n-1 

searching among up to fi (n_i)2
i 

different programs tor the global 
i=O 

minimum. The worst-case time complexity ot the heurlstic PMA 

}}ptimizatiQn algori thm is U(22n) and the space complexity ls less than 

0(2 n + 3 ). A tormal expected-case time complexlty analysis was not 

attempted. 

7.1.3 6inary Decision Analysis. Another objective of this research 

was to gain some physical understanding of the binary decision process 

and its relationship to Boolean logic. 

lt is known that the 2 n paths of a complete HD program have a one-

to-one correspondance with the series expansion terms of a ~oolean 

expression which realizes the same functio~ from this it ls concluded 

that combina toria l binary deci sion loglc i s, not morpho l ogica lly 

ditferent trom Hoolean 10glC. As ln the case of !:ihannon's l:.xpansion 

Theorem, the !:iD method factors sWltching function lmplicants 50 that 

following each evaluation ot a literaI, half ot the remaining terms are 

determined to be logically FALS~ and, henèe, need not be turther 

eval uated. This happens at most n times for a n-lnput tunction. 

However, the BU method automaÜ-dally branches away tram FALS~ terms at 

the earliest possible moment whereas the Boolean method continues to 

• 1 -



\' 

.. 

( 

_ 7-4 

evaluate'literala associated with the FALSE implicants. This ia the 

fundamental diStin(\~iOn and the hallmark of the HO Methode 

The liD branching process is also shown to be completely analogous 

to the state-transition description ot sequential switching logi~ 

7.2 Kec:o.-eDdationa for Future Vort 

It is sugg.ested that the presen~ research continue in the tollow1ng 

directions: 
\ 

1) System software development. lt ls recommended that the system 

software be divided into two separate packages; an hPKUM-based monitor 

composed of HOBUt; and elements ot V-HUG to provide 10w level device 

drivers and the boot-strap loader, and the disk-resident HDüY real-time 

process control operating syst'em. Further del~'lc;;-'pment ot iW09 t9 
Î 

implement the full scope ot program management features is also 

required. 

2) program compilers. The optimization and run-time characteristics of 

BDC-4 should be :f.-nvestigated through a series of benchmarking 
/ 

experiments. (-- Thi s wou Id permi t an obJ ecti ve e va l uation ot this 

compl1er's rerformance in comparison with other optimization algorithms. 

In addition, the remaln~ng planned data input tormats, e.g., relay 

ladder diagram and logic gate d1agram formats, should b'e implemented in 

BDC-4. 

On. a broader horizon, U-,e deve lopment "ot an opti,m1Zing compiler for 

sequential logic HO programs Is indi"cated. This may involve the 

, 1 

-
d 



.. 

, , 

7-5 

adaptation or creation of a high le vel programming language wtlich eould 

adequately describe both sequential and eombinatorial tH) logic 

funetions; Finally, a compiler foIt mP control algorithms ~s also 

required. 

3) System hardware development. Specifie enhancements to current HD 

machine designs shouid be studied with the objective of improving the 

processor's execution speed and efticiency. lt is conservatively 

estimated that a continuous instruction throughput of 10 MIPS (million 

instructions per second) may be realized with a processor constructed 

w!th fast Schottky F-series- TTL technology. In practice, the lillliting 

speed parameter is memory access time. Uther suggested JiU hardware 

enhancements include-an expanded instruction set, an etfective increase 

1n the direct l y addressable p.rogram memory space, and a rationa l ization 

of the 1/0 section design. 

The design and construction fot a VLSI ISD processor repre8~nt8 

another area for future work. Two versions of this device are 

envis1oned; a single-chip device for use with "smart" BU-b'ased 

instruments, and a generai purpose Hinary Decision Unit (.IWU) for use 

in hybrid controller applications. 

Finally, the development ot a commercial mP/BO programmable 

controller system is indicated. This would likely require the 

participation ot an ~ndustrial PLC manutacturer to provide marketing 

services and to ensure that the system conforms ~ accepted industnal 
cl 

standards. A single-board HO evaluation kit has been constructed which 

may be offered for limited commercial distribution. Its tunction would 

be to tamiliarize engineers and scientists with the pr~nciples of HD 

.. 
\ / 



" 

i' 
t 

/ 

( 

• 
/ 

! 

7-6 

" 
processlng and could be used to develop new instrumentation and control 

applications. 

4) Applications. lt Is suggested that HD Methode have important 

applications in the control of low-information bandwidth, high speed 

\ " 

systems, e.g., roboties and other, dynamically unstable mechanical 

systems, in which the need for highly precise control actions Is 

seeondary ta the requirement that they be available in real time. A 

d1strlbuted network ot lW controllers, for example, s tationed at the 

joints of a robot manlpulator device and each programmed w:ith the 

control actions for l.ts partü:ular joint, could be used ta operate a 

manipulator ln x;esponse ta commands from a central mP or direct ly trom 

stimuli in the manlpulator~s environ~nt. This represents a signiUcant 

departure from trad1tlonal robot control systems which rely on "brute-". 
force" methods ta sol ve large systems of governing equat10ns and which 

require correspondingly large computers ta produce control actions in 

near real time. The development ot HD-based robotie control systems 18 

a very important area of future research. 

---'-"-.-_ ......... _.-..' ._. __ ........ ....."" .......... ...--,..'--" ..... ,----­___ ~_" __ A_------ pc 

., 

--



1-1. 1 

RBPU1*ZS 

Aho74 J.K., and Ullsan, J.O., "The Design and 

1 
Aho, A. V., Hopcroft, 

Analysis of Computer Algorithms", Addison-Wesley, Reading, 

Mass., 1974. 

Aker78 Akers, S.B., "Binary Decision DiagralllS", IEEE Trans. Computera, 

Vol.e-27, No.6, June 1978, pp. 509-516. 

Artw80 Artwick., B.A., "Mlcrocomputer Interfacing", Pr,.ntlce-Hall, 

Englewood CHffs, NJ, 1980. 

B&W72 "STEAM/ its generatlon and use", The Babcock and Wllcox Co., 

New York, 1972v 

BeH7l Bell, C.G., and Newell, A., "Computer Structures - Readings 

and Examples", McGraw-Hill, New York, 1971. 

Bout 76 Boute, R.T., "The Blnary-Decision Machine as Programlllable 

Controller", Euromicro Newsletter, Vol.l, No.2, 1976, pp. 16-

-. 22. 

\ 

Cern 79 Cerny, E., Mange, D., and Sanchez, E., "Synthesis of Minimal 

Binary Decision Trees", IEEE Trans. Computers, Vol.e-28, No.7, 

July 1979, pp. 472-482. 

Drie82 van-Driel, C.J., "Binary Decision Compiler Algorithms", Memo 
,\ 

82-2, DATAC Computer La1loratory, Montreal, Quebec~ September 

1982. 

Flyn84 Flynn, W.R.,' "Range of PC Offerings Continues to Grov' , Control 

Engineering, Vol.31, No.l, January 1984, pp. 81-86. 

---



\ 

( 

Greg77 
'IlF 

Huds82 

Huds84 

Iiyaf 76 

Kara84 

l<oha70 

l<orn77 

Lee 59 

--­Lev182a 

: 

R-2 

Gregory, V., and Del lande, 8., "MC14500B Industrial Control 

Unit ltandbook",Motorola Semieonduetor Produets, Ine., Austin, 

Tex., 1977. 

l:iudson, R., Zsombor-Murray, P.J., and Vroomen, L.J., "Operating 

System for the !iD/mP Programmable Control 1er", lnt'l Journal 

pf Min~ and Microcomputers, Vol. 4, No. 3, 19H2, pp. 58-62. 

Hudson, R., Vroomen, L.J., and Karasiek, Mo, "Binary Decision 

Program Optimization Algorith.ms", Proe. of Twenty-Fourth lnt'l 
'\ 

Symp. on Mini and Microcomputers, Bari, 1taly, June 19ti4, pp. 

51-55. 

Kyafil, L. and lUvest, R.L., "Constructing Optimal Binary 

Decision Trees i6 NP-Comp l ete", Information Processing 

Letters, VoLS, No.l, May 1976, pp. 1S-17. 

Karasick, M., "Binary Decision Tree Reduction", Technical 

Report SO<':~-!:S4.1t>, McGill University, School of Computer 

Science, October 1984. 

Koha vi, Z., "Swi tching and Finite Automata Theory", McGraw-

H.ill, New York, 1970. 

Korn, G.A., "Microprocessors and Suli Digital Computer Systems 

for Engineers and .scientists", McGraw-Hill, New York., 1977. 

Lee, C\ Y., "Representation of ~wi tching Circui t s by lSinary 

Decision Programs", Bell Syst. Tech. J., Vol.3a, JuIy 195,9, pp. 

985-999. 

Levi, M.H., and Hudson, R. D., "Binary Decision 

Processor /Hicroprocessor ln terface", InternaI Memo, DATAC 

Computer Laboratory, Montreal, Quebec, April 1982. 

- _ ..... ~~,... 



( 
Lev182b 

Lev184 

Hang78 

KcC156 

Kore80 

Kore82 

Koto75 

NFPA76 

Po1l65 

( 

R-3 

Levi, K.H., Vroo1llen, L.J., and Zsombor-Murray, P.J., IIModular 

Programmable Controllers Using an Intelligent Ref lelei ve 

Interface". Proc. T~entieth ISMM Int-l Symp. on Mini' and 

Kicrocomputers, July 1982, Cambri,,Sige, Mass., pp. 8-10. 

Levi, M.H., "Inte ll1gent Ref l exi ve Interf aces and Their 

Applications", M.Eng. Thesis. McGill University, Department 

of Mechanical Engineering, To be published. 

Mange, D., "Arbres de Decision Pour Sys temes LQgiques Cables 

au Programmes", Bulletin de l-Association Suisse des 

Electriciens, Vol. 69, 1978, pp. 1238-1243. 

McCl uskey, E. J., "Minimizatton of Boo lean Functions", Bell 

Systo Tech. J., Vo1.35, No.S. Nov. 1956, pp. 1417-1444. 

Moret, B.M., Thomason, M.G., and Gonzales. R...C., "The Actlvity 

of a Variable and Hs Relàtion to De~ls1on 'l"rees", ACM Trans. 

Program Lang. 5yst., Vol.Z, No.4, October 1980, pp. 580-595. 

Moret, B.M., ''Decision Trees and Diagrams", ACM Comput1ng 

Surveys, Vo1.14, No.4, Deeember 1982, pp. 593-623. 

"M6800 Microprocessor Applications Hanual", Motorola -

Semieonductor Products Ine., New York, 1975. 

"Standards for Prevention of 'Furnaee Explosions in Fuel 011-

and Gas-Fired Single Rurner Boiler-Furnaces ll
, NFPA National 

Fire Protection Association Standard 85, Boston, 1,976. 

Pollack, S.L., "Conversion of Limited-Entry Decision Tables ta 

Computer Pt"ogra~sll, Comm. ACM, Vol.B, No.li" November 1965, 

pp. 677-682. 

, 
/ 



," 

( 
Sban38 

Shwa74 

Siev74 

StanSO 

Taba81 

Th&y81 

Tho 79 

Vroo81 

Wood 77 

( 

R-4 
• 

Shannon, C.E., "A Symbolic Analysis of Relay and Svitching 

Circuits", Trans. AIEl::, Vol.57, 1938, pp. 713-723. 

Shwayder, K... "Extend1ng the Information Theory Approach to 

Converting Limited-Entry Decision Tables to Computer PrograDis" , 

_Comm. ACH, vod!, No.9, September 1974, pp. 532-537. 

Siewiorek} D.P., "Introducing ISP", Computer, Vol.7, No,.12, 

Dec. 1974, pp. 39-41. 

Standish, T.A., "Data Structure Techniques", Addison-Wesley, 

Reading, Mass., 1980. 

Tabachnik, R.L., Zsombor-Murray, P.J., Vroomen, L.J., and Tho 

Le-Ngoc, "Sequence Contra llers wi th Standard Hardware and 

Custom Firmware", IEEE Micro, Vol. 1, No.2, May 1981, pp. 9-25. 

Thayse,A., "P-Functions: A New Tool for the Analssis and 

Synthesis of Binary programs", IEEE Trans.' Computers, Vol.e-JO, 

No.2, February 1981, pp. 126-lJ4. 

Tho Le-Ngoc, Zsombor-Murray, P.J., and Vroomen, L.J., "A 

Binary-Decision Approach to Industrial Programmable 

Contro llers". Proc. Int'l Symp. Measurement and Control, 

Grenoble,Jun~" 1979, pp. 57-61. 

Vr.oomen, L.C.,· and Vroomen, L.J., "V-bug 2.0", InternaI Memo, 

DATAC Computer Laboratory, McGill University, Montreal, July 

191:11. 

Woodrut f, E.B., and Lammers, H.B., "Steam Plant Operation", 

.McGraw-Hill, New York, 1977. 

\ 

( 

-



'N< 

" " .. 

l 

t 

f 
~ 

r 
t 
J: 

!t 

t 
<' ob· , ,-

Zsom79 

• 

\ . 

J 

R-5 

Zsombor-Murray, P.J., Vroomen, L.J., Tho Le-Ngoc, and Holck, 

P.H., liA Blnary-Declsion-Based Program.mable Control 1er", Proc. 

Second Int'l Symp. on Measurement and Control, Fort Lauderdale, 

Fla •• December 1979. pp. 60-65. 

; . 
. . 

" 



Al-l 

APPKHJ)IX 1 

A SHORT KEVIEW OP BOOLEAN ALGEBRA 

Al. 1 Sv.U:ch1ng PunCUODS 

li 

Assume the existence of a discrete function 

(Al. 1) 

\ where the set of independent variables Xl to Xn are binary valued 

variables. Let Xi be one member of th1s set. Thus for aIL Xi's: 

(AI.2) 

A switching function i8 a discrete function defined by equations AI.I 

and AI.2 in wnlch F can take on a set of discrete values determlned by 

the state of the independent variables and the rules of algebra uaed to 

combine them. The function i8 said to switch among its possible 
" 

dlscrete values. If the ,ru les of Boolean Algebra are used then a b1nary 

switching function ia obtained. 

A.I.2 Operatora 
, 

Three princip'al operations for the combinatlon of variables are 

defined in Boolean Algebra. 1 
1 

1) Disjunction between two variables is denoted by the symbol '+#. lt 

ia def1ned such that the result of the operation is l if either or 

both of the variables have the value 1 and 1s 0 if both of the 
p 

variables are O. This operation is illustrated in table AI.I. 

l 

( -~, "-~""_-I·""'-



Al-2 
"\ 

,~ 
/#'~/ 

,,,-
Xl X2 X1+Xz 

0 0 0 

0 1 1 

0 l 

1 l 

table ALI - D1sjunction Operation 

2) Conjunctlon between two variables 18 denoted by a'·'. It 1s 

defined such that the result of the operat1bn 1s l only if both of 

the variables have the value 1 and is 0 if either or both of the 
\ 

variables are O. This operation 18 illustrated in table AI.Z. 

3) Complementatlon 18 a unlary operation denoted by the symbol 

. It 18 deflned such that the resul t of the operation is 1 if the 

var1able has the value 0 and ls 0 if the varlable has the value 1. 

Thls operation 18 11lustrated in table AI.3. 

, 



s 
Al-3 

o l 

1 0 

table AI.3 - Compl~mentation Operation 

.' 

Al.3 Booleen KquatloOB 

A Boolean switching function i5 a binary function in which the 

--value of the function F is either 0 or 1. It can be described by a 

mapplng of the solution set of F and lts variables or by a general 

equation expressed in terms of the set of independent variables and the 
, 

principal operations. The Boolean equation can be derived from the 

<'klRapplng by segregating aIL the points in the domain which map to the 

value 1. These partlcular values are called the minterms of the 

functlon. The minterms are rewritten ln terms of the names of the 

independent variables implied in the expression such that where a 

variable has the value 1 it ls written in its asserted form and where it 

ls 0 it ls written in its complemented (or negated) forme 

A Boolean equation.ls evaluated from left to right according to the 

order of precedence of the operators. Thus complementations are 

performed first followed by couJunctions and finally disjunctions. 
<~,-, 

Variables tha~are grouped together with parentheses must be evaluated 

before non-bracketed terma. 

( 

1 



Al-4 

Al.4 Algebraic ProperCles 

In addition to the logical operations, or connectives described 

above, there exists a group of algebraic rules t~at define the manner in 

which ~witching functions are manipulated. These are summarized below. 

1) The Distributive Law defines the way in which terms of a Boolean 

equation may be factq~ or expanded, equations AI.Sa and AI.Sb: 

x·y + X·Z m X·(Y + Z) (AI.Sa) 

or, 

X·Y + Z·Y - (X + 4)·Y / (Al. Sb) 

2) The Associative Law defines the way in which terms of a Boolean 

equation may be ~ouped together, equations AI.6a and Al.6b: 

x + (Y + Z) - (X + Y) + Z (AI.6a) 

or, 

(AI.6b) 

3) The Commutative Law clefines the order in which variables may appear 

" 
in a function, equations AI.7a and AI.7tx 

'" or, 

(" 

x + Y - Y + X 

'" 
X·Y - Y·X 

(AI.7a) 

(AI.7b) 

4) The Absorption Law defines equivalent expre~sions for a set of . 
Boolean expressions, equations AI.Sa, AI.Sb, AI.Se and AI.Bd: 

x + (X·Y) - X ~Al.8a) 

... or, 

x·Ot+Y}(-x (AI.Sb) 

or, 

- - - ..... --- ----- --_·~ ____ ."_tv~ .. ,--...-~_~ __ 



r 

Al-5 

x + (X-Y) • X + Y (Al.Bc) 

or, 

x-ex + Y) • X-y (Al.8d) 

5) The Complementation Law def1nes the result of operations applied to 

a single variable in its asserted and negated form, equations Al.9a. 

and Al.9b: 

x + X - 1 (Al.9a) 

or, 

x'X - 0 (AI.9b) 

6) The rules of Boolean Algebra include a set o~definit1ons for the 

result of œ1scellaneous operations as follows: 

, 
~ 

7) . De Morgan' s TheorelU 

x + X - X 

X+O - X 

X + 1 - 1 

X'X - X 

X-l - X 

X'O - 0 

(r:tY) - x·y 
(n> - X + Y 

Al.5 5 .......... '. &xpaae1on Tbeorea 

~ 

(AI.I0a) 

(Al. lOb) 
\ 

(AI.IOc) 

(AI.IOd) 

(AI.IOe) 

(Al. lOf) 

(AI.lla) 

(Al.l1b) 

Flnally, a Boolean funct~on can be expressed in terms of two other 

funetions by mesns of Shannon's Expansion Theorem. 
l 

'L 
F - f(Xll'~"~) - Xi'Fl + Xi -F2 

auch that ~ • 0 in FI and Xi - 1 in F2. 

(AI.12) 



r 
f 
l' l'_ 

t 
;~ 

( 

( 

\ 
Al-6 

\ 

The expans~n theorem may be regarded as a means of factoring out a 

particular variable from an equation. The reaul t ia composed of two 

parts, an expression which Includes the negated form of the factored 

variable and another with the asserted form. lt may a1so be noted that 

the factored variable no longer appears in either of the, sub-functlons. 
1 

\ 

( 
< 

a::zW 4 U ~j 



A2-1 

( 

APPUiDU II 

ISP UPUSKll'lATIOli or COIIPUTII. STlDC'lUR&S 

Al. 1 ISP HOcaclou 

Instruction Set Processor (ISP) notation wa8 developed to provlde a 

unlform symbollc language in which to describe the organization and 

operation of computers [Bel171,Siew74 J. The organization of a computer 

or controller i8 described in ISP by deciaratiOQ8 of memory, reglsters, 

data types, data operations, and instructions. 

ISP declarations contain: 

the normally used name, 

ao abbreviation to be used in subsequent definitions, separated 

from the normally used name by the alias operator "\", and 

a complete description including size and a numbering sequence. 

Sharp brackets "( >" indicate the size of a register, including 

sorne counting scheme. 
\ 

Square brackets "['~-J." specify the number of 

Identlcal entitles that are present. The default, no square brackets, 

indicatea chat only one entity Is present. The range operator ":" is 

used to denote an abbreviated list of elements. The arder of the range 

numbers indicates the physical order of the range elements. 

The rep lacement operator ": ... " ls used ta deflne equi valence 

relatlonshlps among a set of elements. The causes and consequences of 

an instruction are represented by the conditional action operator "_)" 

where î loglcal condition describes when the consequential action 

sequence 18 Invoked and the action sequence describes what resultant 

.1 
-----.-----------------------------------------~------------~-



{! 
'\ 

, 

t 
" , 

,. 

" ~ 

-

( 

( , 

A2-2 

traQsformations take place. The transfer operation "<_" denotes the 

exchange of bit patterns from one data carrier to another. Concurrent 

or al ternati ve act1 vities are descr1bed by the concurrency operator ";". 

Sequential act1 v1ties are denoted by the word u next". Boolean operators 

(- ,1\, \/) denoting complementation, conjunction and disjunction, 

respectively, and relational operators (.,.,<,» are also def1ned in 

tsP. 

A.2.2 UP IepreMIl"taUOIl of the Prototype BD Proc:eaaor 

A.2.2.1 Processor DeelaraUolUI 

ProceS80r state 

Program.Counter\PC<7:0> 

Output.Bank.Register\OB<3:0> 

Pr1œary memory 

Program.Memory\Mp[255~Ol<15:0> 

Console state 

Control.Switches\C.SW<7:0> 
\ 

Data.Switches\D.SW<15:0> 

Input.Switches\I.SW<7:0> 

Input.P1ns\I.PN<3:0> 

Console.L1ghts\C.LT<23:0> 

Output.Lights\O.LT[l:OJ<ll:O> 

Auto.Kanual.sWitch\A.SW 

( 



( 

( .~ 

.~ -

Reset.Button\PB 

Output.Pins\O.PN<J:O> 

aP/BD interface state 

Control.Register\CR<7:0> 
1 

Data.Reg~ster\DR<15:0> 

I/O.Reg1ster\IOR<15:0> 

Inter~upt.Flag\Interrupt 

End.of.Program.Flag\EOP 

Single.Step.Strobe\SS.Strobe 

Hemory.Write.Strobe\W.Strobe 

BD.Clock.On\BD.CLK.ON 

Input/Output state 

Input.Data.Type.Logical\X 

A2-J 

Input.Variable\IV<63:0> 

Output.Data.Type.Logical.Multibit\OV<ll:O> 

Output.Registers\OR(15:0]<11;O> 

A2.2.2 Prooeasor State Def1n1t100a 

System.Clock:-( 

(C.SW<3)-1 -> System.Clock-70kHz); 
-J' __ 

(C.SW<3>-O -) System.Clo~.5Hz» 

Clock\CLK.:-( 

(A.-SW-O/\ 

(C.SW(7>-1 -> CLK:-Systea.Clock); 

.. -- - ~-------- - ~-
• L __ _ 1 



( 

/ 

/ 

( 

A2-4 

(C.SW<7>-O -> CLK:-C.SW<O»)j 

(A.SW-l/\ 

(CR<4)~) CLK:-System.Clock)j 

(CR<4)':1 -~ CLK:-SS.Strobe») 

Console.L1ghts:-( 

(A.SW-o/\ 

(C.SW<2)-1 -> C.LT<7:0):-PC; 

C.LT<23:8):-Mp(PC); 

(C.SW<2>-O -> C.LT<7:0):-PC; 

C.LT<23:8):-D.SW<15:0»). 

(A.SW-l .~ C.LT<7:0):-PC; 

C.LT<23:8):-Mp(PC]» 

I/O.Mapping:-( 

(IV<3:0):-I,SW<3:0»; 

(IV<19:16):-I.SW<7:4»; 

(IV<35:32):-I.PN<3:0»; 

(OR[OB]<ll:O):aOV<ll:O»; 

(O.LT[l:O]<11:O):20R[l:O]<11:O»; 

(O.PN<3:0):-OR(lJ<11:8») 

Clear.P~:-( 

(A.SW-O/\C.SW<6)-O -) PC <- 0» 

.. 



( 

) 

A2-S 

Preaet.PC:-( 

(A.SW-O/\C.SW<7:0>-OlOOxOll/\CLK -> PC <- D.SW<7:0»j 

(A.SW-l/\CR<7:0>-OOOlOlll/\CLK -> PC <-,DR<7:0») 

Load.Memory:-( 

(A.SW-o/\C.SW<7:0>-OlOlxOOl -> Mp[PC] <- D.SW<15:0»; 

.. 

(A.SW-l/\CR<7:0>-OOllOlll/\W.Strobe -> Mp[PC) <- DR<15:0») 

'1 

Read.Memory:-( 

(A.SW-o/\C.SW<7:0>-OlOlxlll -> C.LT<23:8> (- Mp[PC]}~~ 

(A.SW-l/\CR(7:0>-OOllOllO -> DR<15:0> (- Kp[PC]» 

Step.Through:-( 

(A.SW-O/\C.SW(7>-O/\CLK)j 

(A.SW-l/\CR(7:0>-11110llO/\CLK» 

Reset.BD:-( 

(A. SW-l/\PB-l); 

(A.SW-O/\C.SW(7>-o/\PB-l» 

Run:-( 
• 1 

(A.SW-O/\ 

(C.SW<7:0>-1111xlll»j 

(A.SW-l/\ 

(CR(7:0>-1110lllO» 

.. 
R ;a,a:. a 1 -,.... _ ... _~~--~-

• 
1 

f -



}' 

-( \ ' 

A2-6 

(A.SW-O/\ 

(C.SW<7>-O/\EOP-I/\Interrupt-O»j 

(A.SW-I/\ 

(CR<7:0>-11110llO/\EOP-l/\Interrupt-D»; 

(Reset .BD» 

o 
BD.Clock.On:-Run 

Ver1fy:-( 

(A.SW-l/\CR<7:0>-lOlOllOO -> 

IV<35:32>:-IOR<3:0>j 

Ok(0]<11:o>:-rOR<15:4») 

Al.I.l laacruetion For.ac 

Instruction\IN<15:0>:-Mp(PC] 

Transfer.Addres8:-IN<7~O> 

Interrupt.Data:-IN<ll :0> 

Long.Output.Data:=IN<ll:O> 

Short.Output.Data:-IN<11:8) 

Output.Bank.Register\OB:-IN<11:8> 

Abbreviated.Operation.Code\A.OP<1:O):-IN<15:14> 

Full.Operation.Code\OP<3:0):-IN<15:12) 

• 

-

AlI instructions 
\ 

\. 

Input, Short Output, . 
Interrupt, Bank Select, 
and Jump instructions 

EOP instruction 

Long Output instruction 

Short Output instruc- , 
tion 

Bank Select instruction 

Input instructions 

AlI other instructions 

, " 



, , 

1 

. ( 

( 

t 

Al.2.4 Ioatructioa Execution 

Instruction.Set:-( 

(A.OP-OO/\X-O -) PC (- IN<7:0»; 

(A.OP-O/\X~l -> PC (- PC+l)j 

(A:OP-91/\K-l -) PC (- IN<7:0»j 

(A.OP-Ol/\X-O -) PC (- PC+l)j 

A2-7 

(OP-IOUO -) OR[08](11:0) (- IN<11:0)jPC (- PC+l)j 

(OP-IIOO -> 0&[08](11:8) (- IN<11:8)jPC (- IN<7:0»; 

, 
(OP,-lOlO -) EOP-ljPe (- PC+l)j 

(OP-UOI -) LNTERRUPT--INTERRUPTjPG (- IN(7:0»; 

(OP-lllO -) OB<3:0) (- IN<ll:S>;PC (- IN<7:0»j 

(OP-llll -) PC (- IN(7 :0») 

Al.2.S Interpreter 

Instruction. Interpreter:-( 

(Run-l -) Instruction.Execution; 

next Instruction.Interpreter» 

, • < 

Input Instruction 

Input Instruction 

Input Instruction 

Input Instruction 
j 

Lop.g Output In­
struction 

Short Output In­
struction 

EOP Instruction 

Interrupt' In-
struction 

8ank Switch In-
struction 

Jump Instruction 



1 

l 
f 

Al.O BDBUG PIOGJ\AM LISTDIG 

( 

Al-1 

APPKNDIX III 

( 

, 

\ 



A3-2 

* 
***"''******* 1< 1< '" " 1. '1df* te ,'. i. 1.Ir*"lrn"f<************* 
-If * 
* BDBUG ... BD MONITOR * 
* VERSION 1.1 - MARCH 1984 * 
* * 
* R.D. HUDSON * 

1 * DATAC COMPUTER LABORATORY * ", 
* MCGILL UNIVERSITY * 
* MONTREAL CANADA # 

* * 
* FOR USE WITH A BD/6809 * 
* EVALUATION SYSTEM W/ * 
* V-BUG MONITOR AND FLEX 9.0 * 
* DOS * 
* * 
*****************"ff*************'r****"Irlrlrlrlc 
* 
* -- SYSTEM EQU'S --

* 
PIAORA EQU $E030 H/W EQU'S 
PIACRA EQU PIAORA+l 
PIAORB EQU PIAORA+2 
PIACRB EQU PIAORA+3 
BDMCR EQU PIAORA+$E 
ACIACR EQU $E004 
ACIASR EQU ACIACR 
ACIADR EQU ACIASR+l 
PINIT EQU $FC6F V-BUG EQU' S 
BADDR2 EQU $FD20 
BADDR EQU $FD2B 
BYTE EQU $SD-~C ! OUT4H EQU $FD6A 
OUT2H EQU $FD72 
PSTRNG EQU $FD9E 
PCRLF EQU $FDA2< 
PDATA EQU $FDAE 
INCHE EQU $FDBA 
INCH EQU $FDCO 
OUTS EQU $FDDD 
OUTCH EQU $FDDF 
ACINIZ EQU $FElO (} 

* 
* BDSUG INITIALIZATION 
* , ORG $AOOO 
* 
BDBUG ORCC #$50 SET INTERRUPT MASK 

TFR S,U 
LDD #RTX 
STD $DFC8 STORE IRQ VECTOR 
LDA 11$91 INITIALIZE ACIA 
STA ACIACR 



{ 

;J' 

* 
BUG2 

* 

LBSR 
LDX 
LDA 
LBSR 
CLR 
BSR 
LDA 
LDA 
LDA 

LDX 
LBSR 
CWAI 
BRA 

TOMP 
#$E060 
#1 
PINIT 
$DFES 
BDIRQ 
PIAORA 
PIAORB 
ACIADR 

#MSGI 
PSTRNG 
#$EF 
BUG2 

* INT!RRUPT DECODER 

* 
RTX 

RT.XI 

RTX2 

RTX3 

* 

TST 

~ 
TST 
BPL 
BSR 
LDA 
BPL 
LSRA 
BCC 
LBSR 
RTL 

PIACRA 
RTXI 
BDSWI 
PIACRB 
RTX2 
BDHWI 
ACIASR 
RTX3 

RTX3 
KEYBRD 

A3-3 

INITIALIZE PIA 

INITIALIZE EVENT PRINTER 

GET ACTUAL BDM STATUS 
CLEAR INTERRUPTS 

PRINT PROMPT' 'CHARACTERS 

ENABLE INTERRUPTS AND WAIT 

SOFTWARE (CAl) INTERRUPT? 

HARDWARE (CBI) INTERRUPT? 

OPERATOR (ACIA) INTERRUPT? 

* -- SOFTWARE INTERRUPT (CAl) SERVICE ROUTINES -

* 
RDSWI 

* 

LDX 
LBSR 
LDA 
RTS 

ifMSGl2 
PSTRNG 
PIAORA 

'BD PGM INTERRUPT' 

RETURN 

* -- HARDWARE INTERRUPT (CBl) SERVICE ROUTINES --
* 
BDHWI 

* 
HWIl 

LDD 
PSHS 
STB 
CLR 
CLR 
LDA 
LDB 

ORA 
STA 
7ST 
BMI 
ANDA 
STA 

fiSFF3F 
A 
PIACRB 
CLKREG 
AMREG 
BDMTR 
PIAORB 

#$C 
BDMCR 
PIACRB 
HWI2 
ff$F7 
BDMCR 

SET LOOP COUNTER 

SET CONTROL REGISTERS 
FOR POLLING 

CLEAR EXISTING INTERRUPT 

TEST RUNNING/AUTO 

TEST STOPPED/AUTO 

\ 

-



* 
HWI2 

HWI3 

HWI4 

HWIS 

HWI6 

* 

* 

... 

TST 
-' Btfi 

ANDA 
STA 
TST 
BM! 
ORA 
STA 
TST 
BMI 
OEC 
BNE 
LOX 
LBSR 

LOB 
STB 
BITA 
BEQ 
COM 
BITA 
BEQ 
COM 
LDO 
TST 
BEQ 
LDD 
TST 
BEQ 
TFR 
STA 
STA 
LDA 

PIACRB 
HWI2 
It$F3 
BDMCR 
PIACRB 
HWI2 
1f8 
BDMCR 
PIACRB 
HWI2 
0,5 
IRQl 
ilMSG2 
PSTRNG 

(;$3D 
PIACRB 
#8 
HWI3 
CLKREG 
#4 
HWI4 
AMREG 
fi$F2EA 
AMREG 
HWIS 
(i$F6EE 
CLKREG 
HWI6 
B,A 
BOMCR 
BDMl'R 
PIAORB 

LEAS 1,5 
LBSR BOSTAT 
RTS 

A3-4 

TEST STQPPED!MANDAL 

TEST RUNNING !MANDAL 

IF INCONCLUSIVE, LOOP AND 
POLL AGAIN 

REPORT POLLING FAILURE 

RESET PIA CONTROL REG 
4-

SET STATUS REGISTERS 

SET BD CONTROL REG 

RESTORE STACK 
REPORT BD STATUS 
RETURN 

* OPERATOR REQUEST SERVICE ROUTINES 

* 
KEYBRD 

K.BDI 

KB02 

LBSR 
CMPA 
BNE 
LBSR 
TFR 
LBSR 
LDX 
CMFB 
BEQ 
LEAX 
CMFX 
BNE 
LDX 

INCHE 
(t$2F " 
KBD2 
INCHE 
A,B 
OUTS 
#CMDTAB 
O,X+ 
KBD3 
2,X 
/tTABEND 
KBDl 
(iMSG2 

'!'? •• IF ~OT, ABORT 

READ COMMAND CODE 

MATCH COMMAND TO TABLE 

NOT FOUND? •• ALERT OPERATOR 

t WHAT?' 

.. 

/ 

-



A3-S 

LB'SR PDATA 
RTS RETURN 

KllD3 JSR [D,X]' SERVICE OPX REQUEST 
RTS RETURN 

* 
, .. COMMAND JUMP TABLE 

* 
CMDTAB Fee 'L' 

FDB BDLOAD 
Fee 'E' / FDB BDEXM 
Fee 'M' 
FDB BDMCHG 
Fee 'J' 
FDB BDRUN 
Fee 'H' 
FDB BDHALT 
Fee 'D' 
FDB BDSTAT 
Fee 'T' 
FDB BDTRNS 
Fee 'S' 
FDB BDSTEP 
Fee '+' 
FDB FLEX 
Fee ' )' 

FDB MON 
Fee 'P' 
FDB PRNTR 

TABEND EQU '* 
* 
* ID - REPORT BD STATUS 

* 
BDSTAT LDX ttMSG8 'BD S1'ATUSl ' 

LBSR PSTRNG 
LDX #MSG9A 'MANUAL/' 
TST AMREG 
BEQ STATI 
LDX fFMSG9B 'AlITOI' 

STATI LBSR PDATA 
LDX fFMSG IOA 'STOPPED' 
TST CLKREG 
BEQ STAT2 
LDX ilMSGlOB 'RUNNING' 

STAT2 LBSR PDATA 
RTS RETURN ~ 

* 
* IP - PRINTER TOGGLE 

* 
PRNTR TST $DFE5 TEST PRINTER STATUS 

BNE PRNTI 
INC $DFE5 TOGGLE ,ON IF OFF 
RTS 

-



A3-6 

Pruttl CLR $DFES TOGGLE OFF IF ON 
RTS 

* 
* 'ESC' STOPS LISTING ! 

* 
ESCTRP LDA ACIASR KEY HIT? 

BITA tFl 
BEQ ESC2 
LDA ACIADR READ CHARACTER 
ANDA #$7F 
CHPA ff$lB 
BNE ESC2 RETURN IF NOT 'ESC' 

ESC 1 LDA ACIASR 
BITA tn 
BEQ ESCI WAIT FOR ANOTHER HIT 
LDA ACIADR 
ANDA #$7F 
CHPA tl$lB 
BEQ ESC2 RETURN IF 'ESC' 
CMPA II$OD 
BNE ESCI 
ORCC #2 SET V-FLAG IF 'CR' 

ESC2 RTS RETURN 

) * 
* / > - TRANSFER TO MONITOR 

* 
l«>N LUS 4,S RESTORE STACK TO INTERRUPT 

LDD #$FFOO 
STD 10,5 CHANGE RTl RETURN ADDRESS 
RTI 

* 
* /+ - TRANSFER TO FLEX 

* 
fin LBSR ACINIZ RESTORE ACIA COMM. 

LDA {f$~ STA $C 1 CLEAN FLEX LINE BUFFER 
LUS 4, RESTORE STACK TO INTERRUPT 
LDD #$CD03 
STD 10,5 CHANGE RTl RETlJRN ADDRESS 
RTl 

* 
LIB BDBUG2 

, -
* BDBUG MESSAGES AND BVFFERS --

* 
MSG1 Fce ',$4 
MSG2 Fce ' IlHA:'?', $4 
MSG5 Fce - ' , $4 
MSG8 Fce 'BD S:'A!US: ' , $4 
MSG9A Fec ' Mfu"'1:AL l ' , $4 

( MSG9B Fec 'AIITo/' • $4 
MSGIOA Fce 'STOPPED' • $4 
MSGIOB Fce 'RUNNI~G',$4 

.. 



·' , 

1 

J 

( 

• 

MSG12 

* 
* 
AHREG 
CLKREG 
BDHTR 

* 

A3-7 

Fee 'BD PGM INTERRUPT', $4 

ORG * 
RMB l 
RMB l 
RMB l 

• END SOBUG 

" 



A3-8 

'* IH - BD MEMORY CHANGE A;~\ '* 
'* 
BDMCHG TST CLKREG TEST BD 15 STOPPED AND 

BNE CHG2 IN AUTO, ABORT IF NOT 
TST AMREG 
BEQ CHG2 
LBSR BYTE READ BD ADDRESS 
BVS CHG2 

CHGl LBSR PRSTPC SET BD PC 
TFR D,Y 
LDX #MSGS 
LBSR PSTRNG 
TFR Y,D 
LBSR ,OUT2H PRINT ADDRESS 
LBSR OUTS 
LBSR TOMP 
LBSR RDWRD GET DATA FROM BD AND PRINT 
TFR D,X 
LB SR OUT4H 
LBSR OUTS 
LB SR BYTE READ USER RESPONSE 
Bve ,CHG3 
CMPA tt' .. • ·1 ••• GO BACK ONE STEP 
BEQ CHGS 
CMPA #$D • CR ' ? ••• ABORT 
BNE CHG4 
LDA #$F6 
STA BDMCR 
STA BDMTR 

CHG2 RTS 
CHG3 PSHS A 

LB SR BYTE DATA? ••• READ NEXT BYTE 
BVS CHG2 
TFR A,B 
PULS A 
PSHS A,B 
LBSR TOBD 
LBSR LDWRD STORE IN BD 
LBSR TOMP 
LBSR RDWRD READ BACK TO CONFIRM DATA 
CMPD O,S++ 
BEQ CHG4 
LDA li'? PRINT .? IF ERROR 
LBSR OUTCH 

CHG4 TFR Y,D OTHERWISE GO FORWARD ONE STEP 
INCA 
BRA CHGl 

CRGS TFR Y,D 
DECA 
BRA CHGl 

'* 
'* IJ - START BD AT $SB 



AJ-9 

( 
* , 

BDRUN TST CLKREG TEST BD IS STOPPED AND 
BNE RUNl IN AUTO, ABORT IF NOT 
TST AMREG 
BEQ RUNl 
LBSR BYTE READ FIRST ADDRESS AND 
BVS RUNl PRE5E'! BD PC 
LBSR PRSTPC 
LBSR TOBD 
LDA i'$EE RE5TART BD 
STA BDMCR 
STA BDMTR 

RUNI RTS RETURN 

* 
1\' lE - EXAMINE BD MEMORY $55-$EE, SAVE AT HP $XXXX 

* 
BDEXM TST CLKREG TEST BD IS STOPPED AND 

BNE EXM3 IN AUTO, ABORT IF NOT 
TST AMREG 
BEQ EXli3 
LBSR BYTE READ STARTI~G BD ADDRESS 
BVS EXM3 
LBSR PRSTPC PRESE'! BD PC \ 

PSHS A \~ 

LDA fI' -
LBSR OUT CH 
LBSR BYTE READ LAST BD ADDRESS 
BVS EXM2 

" SUBA O,S CALCULATE WORD COUNT TO 
INCA TRANSFER 
STA 0,5 
LBSR OUTS \ 
LB SR BADDR READ mP BUFFER ADDRESS 
BVS EXM2 
TFR X,Y 
LBSR PCRLr 
LBSR PCRLF 
LBSR TOMP 

EXMl LBSR" RDWRD READ BD DATA, SAVE IN mP, 
STn O,Y++ AND OUTPUT TO SCREEN 
TFR D,X 
LBSR OUTS 
LBSR OUT4H 
LBSR STEP 
DEC O,S DECREMENT WORD COUNT 
BNE EXMl AND LOOP 

EXM2 LEAS 1,5 
EXM3 LDA #$F6 

~ STA BDMCR 
STA BDMTR 
RTS- RETURN 

* 
* IL - LOAD BD MEMORY $SS-$EE FROM HP $XXXX 

, 
. _-~.- ----_ .. - .. 

., 



( 

* 
BDLOAD TST 

BNE 
TST 
BEQ 
LBSR 
BVS 
LB SR 
PSHS 
LDA 
LBSR 
LBSR 
BVS 
SUBA 
INCA 
STA 
LBSR 
LBSR 
BVS 

LOADI LDD 
LBSR 
LBSR 
DEC 
BNE 

LOAD2 LEAS 
LOAD3 LDA 

STA 
STA 
RTS 

CLKREG 
LOAD3 
AMREG 
LDAD3 
BYTE 
LOAD3 
PRSTPC 
A 
/;' -
OUTCH 
BYTE 
LOAD2 
0,5 

O,S 
OUT'S 
BADDR 
LOAD2 
o,x++ 
LDWRD 
STEP 
0,5 
LOADI 
1,S 
~;$F6 
BDMCR 
BDMTR 

Al-IO 

TEST BD IS STOPPED AND 
IN AUTO, ABORT IF NOT 

READ FIRST BD ADDRESS 

PRESET BD PC 

READ LAST BD ADDRESS 

CALCULA TE WORD COUNT 

READ mP BUFFER ADDRESS 

STORE DATA IN BD 

DECREMENT WORD COUNT AND 
LOOP 

RETURN 

* Is - SINGLE STEP BD STARTING AT $BB 

* 
BDSTEP TST 

BNE 
TST 
BEQ 
LB SR 
BVS 
LBSR 
LDB 
sn 

STPl LB SR 
ANDA 
CHFA 
BEQ 
LBSR 
BRA 

STP2 

* 

LDA 
STA 
STA 
RTS 

CLKREG 
STP2 
AMREG 
STP2 
BYTE 
STP2 
PRSTPC 
II$F6 
BDMCR 
INCH 
#$7F 
II$D 
STP2 
STEP 
STPl 
#$F6 
BDMCR 
BDMTR 

* IH - HALT BD AT NEXT EOP 

TEST BD IS STOPPED AND 
IN AUTO, ABORT IF NOT 

READ STARTING BD ADDRESS 

PRESET BD PC 

EXECUTE INSTRUCTION AND 
READ USER RESPONSE 

, CR ' ? ••• ABORT 

OTHERWISE SINGLE STEP 
AND LOOP 

RETURN 

\ 

.. 



A3-11 

* 
BDHALT TST CLKREG TEST BD 1S RUNNING AND 

BEQ ..i' HALTl IN AUTO, ABORT IF NOT 
T-m- AMREG 
BEQ HALTl 
LBSR TOMP 
LDA #$F6 SEND STOP CODE 
STA BDMCR 
STA BDMTR 

HALTl RTS RETURN 

* 
* /T - TRANSLATE BD PGM IN mP $SSSS-$EEEE 

* FROM ADDRESS $XX Ta $YY 

* BDTRNS LBSR BADDR2 READ mP ADDRESSES 
BVS TRANS4 
PSHS y 

TFR X,D 
SUBD O,S++ CALCULATE WORD COUNT 
BLT TRANS4 ABORT IF ZERO 
TFR D,X 
LUX l,X 
LBSR OUTS .-
LBSR BYTE READ ORIGINAL BD ADDRESS 
BVS TRANS 4 
PSHS A 
LDA #'-
LBSR OUTCH 
LBSR ,BYTE READ NEW BD ADDRESS 
BVS TRANS 3 
SUEA 0,5 CALCULATE OFFSET 
STA O,S 

TRANS l LDD O,Y 
AN DA #$FO 
CHFA #$AO 'EOP'? •• DON'T OFFSET 
BEQ TRANS 2 
CHFA #$80 • LONG OUTPUT'? "' DON'T OFFSET 
BEQ TRANS 2 
ADDB O,S OTHERWISE ADD O~FSET AND • TRANS 2 LDA O,Y LOOP 
srD 0, Y++ 
LEAX -l,X 
BNE TRANSI 

TRANS 3 LEAS l,S 
TRANS4 Rrs RE11.tRN 

* 
* AVAlLABLE SUBROUTINES 

'* 
PRSTPC LBSR TOBD PRESET BD PC 

LDB #$17 
sn BDMCR 
STA PIAORA 

STEP PSHS A,E 

• 
/ 



Al-12 

t LDD tl$353D .. 
STA PIACRA 
STB PIACRA 
PULS A,B 
RTS 

* TOBD PSHS A,B SET INTERFACE FOR mP TO / 

LDD tF$39FF BD COMMUNICATION 
STA PIACRA 
STA PIACRS 
STB PIAORA 
STB PIAORB 
LDA #$30 
STA PIACRA 
STA PIACRB 
PULS AJB 
RTS 

* TOMP PSHS A,B SET INTERFACE FOR BD TO 
) LOO #$393D mP COMMUNICATION 

STA PIACRA 
STA PIACRB 
CLR PIAORA 
CLR PIAORB 
STH PIACRA 
STB PIACRB 
PULS A,B 
RTS 

* LDWRD PSHS A,H LOAD ONE WORD TO 
LOB #$37 BD MEMORY 
STB BOMCR 
LDB • 1,S 
STB PIAORA 
STA PIAORB 
LOO #$353D 
STA PIACRB 
5TB PIACRS 
PULS A,B 
RTS 

* 
RDWRD LOA #$36 READ ONE WaRD FROM 

STA BDMCR BD MEMORY 
LDA PIAORS 
LDB PIAORA 
RTS 

* 

~ 

( 

, , 
.. ---~-- -

! 



( 
A4-1 

APPDDU iv 

64.0 BDC-4 OP'fDllZI.: COIIPIIJUl. LISTIBG 

\ 



/ 

" 

(" -.. 

A4-2 

NAM BDC-4 .. 
AAAA A AA Ail IcAA A AAAA It 1e*1e •• il .~AAA. ItAIt. A AA .. .. 
* BDC-4: BD PRO GRAM COMPILER * 
* VERSION 4.1 * 
* MARCH 1984 .. 
k .. 

* R.D. HUDSON & A. KUCUK .. 
k ~ DATAC COMPUTER LABORATORY .. 
k, MCGILL UNIVERSITY * 
* MONTREAL CANADA * 
k .. 

'* 
k 

REQUIRES 6809 MPU J FLEX 
9.0 DOS AND V-BUG MONITOR 

k 

k 

k --- SYSTEM EQU' S ---

* 
ACIASR EQU $E004 HARDWARE EQU'S 
ACIADR EQU $EOOS 
INCHE EQU $F806 V-BUG EQU'S 
OUTeH EQU $F80A 
PDATA EQU $F80C 
PCRLF EQU $F80E 
PSTRNG EQU $F810 
INLINE EQU $F818 
DECBIN EQU $F81A 
BINDEC EQU $F81C 
PINIT EQU $FC6F 
BADDR EQU $FD2B 
OUT4H EQU $FD6A 
OUT2H EQU $FD72 
OUT2S EQU $FDDB 
LINBUF EQU $C080 FLEX EQU'~ 
DOCMND EQU $CD4B 

* 
'* BDC-4 BUFFER ASSIGNMENTS --

'* 
ORG $0000 

'* 
CONSTA RMB 1 
CONSTB RMB 1 
CONSTC RMB 1 
cm RMB 2 
DJF RMB ' 1 
FNCTN RMB 1 
INLIST RMB 8 
INPUTS RMB 1 
LASTX RMB 2 
LASTY RMB 2 
LVLCTR RMB 1 
MCODE RMB 2 

Y 

-----~ -- - ----

~ 

.. 



A4-3 

NODE RMB l 
OFFSET RMB 2 
OUTBNK RMB l 
OUTNUM RMB 2 
OUTPTS RMB l 

"'-./ 

PCl Rt1B 2 
PGMADD RMB 2 
PGMCLS RMB 2 
PGMNUM RMB 2 
PGMSIZ RMB 2 
PNTR1 RMB 2 j 

PNTR2 RMB 2 
PRP RMB 1 
RSLT1 RMB 2 
SUB RMB 10 
TEMP RMB 2 
TREE RMB 2 

'" 
* INPUT BDC-4 P~ERS AND OPTIONS 

* 
* PGMNUM - BD PROGRAM NUMBER 

* PGMCLS - BD PROGRAM CLASS 

* INPUTS - NUMBER OF SERIAL INPUT VARIABLES 
c--' * OUTPTS - NUMBER OF PARALLEL OUTPUT VARIABLES 

* OUTBNK - BD PROGRAM OUTPUT BANK 

* INLIST - SERIAL INPUT CHANNELS 

* CNTR TEMPORARY LOCATION 

* 
ORG $0200 

* 
(),y, 

BDC LOU #$0200 DEFINE .. USER STACK 
LOX IIMSGO HARDCOPY REQUEST 
JSR [PSTRNG] 
JSR [INCHE] 
CMPA /t,y 
BNE BDCl 
LOX #$E060 YES? •• THEN INITIALIZE PRINTER 
LDA 411 J 
JSR PINIT 

* 
BDCl LDX 41MSGl 

JSR [PSTRNG] PRINT MENU 
_ LB SR INDATA INPUT OPTION 'CODE 

BVS BDCl 
CMPD #3 

, , 
BLT BDClA 
LDD #0 

BDClA CMPD #0 
BGT BDClB VAUD OPTION CODE? 
LDX 4FMSGS IF NOT, REPEAT MENU 

\, 

JSR [PSTRNG] 

f BRA BDCl 
, BDClB PSHU D \), , 

* 
BDC2 LDX #MSG2B ENTER PROGRAM ,NUMBER 

.' 

~; 1 

). 
,,l- D N 

, 1 - . -.-.. ... _--,~-~ 



A4-4 

JSR [PSTRNG] 
LBSR INDATA 
BVS BDC2 
LBSR BINASC 
SrD PGMNUM 

* 
BDC3 LDX #MSG2C ENTER PROGRAM CLASS 

JSR [PSTRNG] 
LBSR INDATA 
BVS BDC3 
LBSR BINASC 
STD PGMCLS 

* , 
BDC4 LDD O,U ASSUME 7 INPUTS IF TF 

CMPD III 
BEQ BDC4A 
LDA 11$37 
STA INPUTS 
BRA BDCS 

BDC4A LDX #MSG2 OTHERWISE ENTER NUMEER 
JSR (PSTRNG] OF INPUT CHANNELS 
LBSR INDATA '\ 
BVS BDC4 , 

~ 
LBSR BINASC 
sn INPUTS 

* 
BDCS LDX tFMSG2A ENTER NUMBER OF OUTPUT ." 

') 

JSR [PSTRNG] CHANNELS \ 
LBSR INDATA 
BVS )iDCS 

* 
STB (OUTPTS 

LDA 11$31 ENTER INPUT CHANNEL 
STA CNTR ASSIGNMENTS AND STORE 
LDY #INLIST,t IN LIST 

BDC6 LDX tFMSG2D 
JSR [PSTRNG] 
LDA CNTR 
JSR [OUTCH] 
JSR OUT2S 
LBSR INDATA 
BVS BDC6 
STB 0, y+' 

INC CNTR 
LDA CNTR 
CMPA INPUTS 
BLE BDC6 
SUBA. 11$31 
STA INPUTS 
STA CNTR 

* 
{ 

BDC7 LDX IIMSG2E ENTER OUTPur BANK 
JSR [PSTRNG] .... LBSR INDATA 
BVS BDC7 

" .. 

-.Y~ f', 



,. 
A4-S 

STB OUTBNK l' 

* 

" 
BOC8 PULU D RESTORE OPTION CODE 

CMPD #1 
BEQ ENTER 
BRA TFENT 

* 
* INPUT TRUTH TABLE --

* 
* OUTNUM - NUMBER OF BYTES IN OUTPUT VECTOR 

* OFFSET - SUB-TREE OISPLACEMENT IN TRUTH TABLE 

* TRUTAB - AODRESS OF FIRST BYTE IN TRUTH TABLE 

'* TREE - ADDRESS OF BYTE FOLLOWING END OF 

* TRUTH TABLE 

* 
ENTER LDB fil CALCULATE TRUTH TABLE LENGTH 
ENTI ASLB EQUAL TO 2A (N=41 OF INPUTS) 

ROLA • 
DEC CNTR 
BNE ENIl 
STD OUTNUM 

* 
ENT2 LDY inRUTAB 

JSR [PCRLF] 
LDX iiMSG3 PRINT INPUT REQUEST PART ONE 
JSR [PSTRNG] ,~ LDX ffLINBUF 
LDD OUTNUM 
JSR [BINDEC] CONVERT DATA ELEMENT COUNT 
LDA #4 INTO DECIMAL ~EFORE PRINTING 
STA O,X 
LDX liLINBUF 

ENT3 LDA O,X+ 
CMPA 11$30 
BEQ ENT3 
LEAX -l,X 
JSR [PDATA] 
LDX iiMSG4 
JSR [PDATA] 

* 
LDD OUTNUM INITIALIZE DATA COUNTER 
STn CNTR 
JSR [PCRLF] 

* 
ENT4 LDA #4 INPUT DATA IN GROUPS OF FOUR 

STA -l, U 
ENT4A JSR BADDR 

BVC ENT4B 
LDX #MSGS REPORT ERROR IF NOT HEX 
JSR [PDATA] 
BRA ENT4A 

( ENT4B JSR [PCRLF] t. , 
STX O,Y STORE DATA IN TRUTH TABLE 

( LEAY 4,Y 
LDX CNTR 

\ -



* 
ENT5 

* 
ENT6 

* 

LEAX 
sn 
BEQ 
DEC 
BGT 
JSR 
BRA 

LDD 
ASLB 
ROLA 
AS LB 
ROLA 
STD 
ADDD 
STD 

-l,X 
'CNTR 
ENT5 
-l,U 
ENT4A 
[PCRLF] 
ENT4 

OUTNUM 

OFFSET 
liTRlITAB 
TREE 

BRA BDCMPIL 

A4-6 

CALCULATE NUMBER OF BYTES OF 
STORAGE USED 

CALCULATE DATA DELIMITING 
ADDRESSES 

* TABULATE THE VALUES OF THE TF=(A/S+B+C*S) 

* * FNCTN - THE INPUT FUNCTION (7 BITS) 
* DIF - DIFFERENTIAL PART OF TF; 
* 3 L.S. BITS OF FNCTN 
* PRP - PROPORTIONAL PART OF T~; 
* 4 M. S. BITS OF FNCTN 
* RSLTI - PARTIAL RESULT BUFFER 

* 
TFENT 

* 
TF1 

* TF2 

* 
TF3 

* 

LDD 11$80 
ASLB 
ROLA 
ASLB 
ROLA 
STD 
ADDD 

• STD 

LDX 
JSR 
LBSR 
BVS 
STB 

LDX 
JSR 
LBSR 
BVS 
STS 

LDX 
JSR 
LBSR 
BVS 
STB 

OFFSET 
ffTRlITAB 
TREE 

UMSG20 
[PSTRNG] 
INDATA 
TF1 
CONSTA 

tFMSG2lB 
[PSTRNG] 
INDATA 
TF2 
CONSTB 

fFMSG2lC 
[PSTRNG] 
INDATA 
TF3 
CONSTC 

NO. OF BYTES IN OUTPlIT VECTOR 

PRINT THE TYPE OF 
TRANSFER FUNCTION 

PRINT INPlIT REQUEST 
AND ENTER CONSTANT B 

PRINT INPlIT REQUEST 
AND ENTER CONSTANT C 

• 

-



1 cu 
TF4 LDA 

ANDA· 
STA 
LOB 
LSRB 
LSRB 
LSRB 
STB 
LOO 
STO 
LOA 
LOB 
MUL 
ADDO 
sro 
LOA 
LOB 
MIlL 
AOOO 
STD 
ANDB 
STD 
LDB 
LDh 
STD 
INC 
LDA 
CMPA 
BNE 

TFS NQP 

'* 
LIB 
END 

',J 

( 

, , , 

FNCTN 
FNCTN 
It$7 
OIF 
FNCTN 

fJ~ 

PRP 
It$O 
RSLTl 
CONSTB 
PRP 

RSLTl 
RSLTl 
CONSTC 
OIF 

RSLTl 
RSLTl 
II$FE 
,Y++ 
FNCTN 
11$0 
,Y++ 
FNCTN 
FNCTN 
11$80 
TF4 

BDC-4A 
BDC 

v 

A4-7 

GET INPUT FUNCTION 
OIFFERENTIAL PART OF THE TF 

PROPORTIONAL PART OF THE TF 

MULTIPLICATION OF CONSTB 
WITH PROPORTIONAL PART 

MULTIPLICATION OF CONSTe 
WITH DIFFERENTIAL PART 

DROP OF LSB 

STORE INPUT FUNCTION AND 
OUTPUT OF TF 

IS END OF FUNCTION REACHED? 
NO? •• CONTINUE CALCULATION 
CONTINUE 

" 
.~ 

._-



) 
A4-9 

BDCMP4 LEAX S,X INCREMENT CURRENT ADDRESS 
PULU y GET ADDRESS OF LAST INCOMPLETE 
CMPY tlO NODE FROM STACK AND CHECK 
BEQ BDCMPS IF ITS THE DUMMY NUMBER 

* IF SO THE PROGRAM IS FINI SHED 
sn 4,Y IF NOT GOMPLETE 'TO' POINTER 
LDA O,Y OF THAT NODE, ADJUST NODE 
STA NODE ACCORDINGLY AND STORE NEW 
STY LASTX LASTX 
BRA BDCMP2 

* 
BDCMPS STX MCODE 

NOP CONTINUE 
1< 

* PRUNE BD TABLE ---
1< 

1< LVLCTR - PRUNING LEVEL COUNTER 
1< PNTRl - MASTER SUB-TREE POINTER 
1< PNTR2 - TRIAL SUB-TREE POINTER 
1< 

PRUNE LDD OFFSET DIVIDE TRUTH TABLE IN TWO 
LSRA 
RORB 
STD OFFSET 
LDA #1 INITIALIZE SUB-TREE LEVEL COUNTER 
STA LVLCTR 

1< 

PRNI LDD tITRUTAB ADDRESS MASTER SUB-TREE 
STD PNTRl L] 

PRN2 TS1 [PNTRl IF MAST ER SUB-TREE IS CANCELLED 
BMI PRNS SELECT ANOTHER 

- LDD PNTRl 
ADDD OFFSET ELSE ADDRESS TRIAL SUB-TREE 
STD PNTR2 STORE IN POINTER 

1< 4't 
PRN3 TST [PNTR2] IF TRIAL SUB-TREE 15 CANCELLED 

BMI PRN4 SELECT ANOTHER, 
BSR CMPARE EL5E BEGIN COMPARISON 
Bve PRN4 
BSR ADJUST PRUNE SUB-TREE IF REDUNDANT 

1< 

PRN4 LDD PNTR2 ADDRESS NEXT TRIAL SUB-TREE 
ADDD OFFSET 
STD PNTR2 
CMPD TREE MORE SUB-TREES? 
BLO PRN3 IF YES, CONTINUE PRUNING 

1< 

PRNS LDD PNTRl ELSE ADDRESS NEXT MASTER SUS-TREE 
ADDD OFFSET 
STD PNTRl 
ADDD OFFSET 
CMPD TREE MORE SUB-TREES? 
BLO PRN2 IF YES, CONTINUE PRUNING 

1< 

INC LVLCTR ELSE REDUCE OFFSET SIZE 

-



* 

LDD 
LSRA 
RORB 
STD 
CMPD 
BNE 
BRA 

OFFSET 

OFFSET 
fi2 
PRNI 
MACHINE 

A4-10 

IF SUB-TREE SIZE IS NON-ZERO 

CONTINUE PRUNING 
ELSE BEGIN MACHINE CODE 

* COMPARE MAST ER AND TRIAL SUB-TREES --

* CMPARE 

* 
CMPl 

CMP2 

* 

LDD 
LSRA 
RORB 
LSRA 
RORB 
PSHS 
LDX 
LDY 

LDD 
CMPD 
BNE 
LEAX 
LEAY 
LDD 
SUBD 
STD 
BNE 
ORCC 
LEAS 
RTS 

OFFSET 

A,B 
PNTRI 
PNTR2 

O,X 
O,Y 
CMP2 
4,X 
4,Y 
O,S 
III 
O,S 
CMPI 
112 
2,S 

CALCULATE NUMBER'OF LEAF NaDES 
TO COMPARE = OFFSET/4 

ADDRESS MASTER AND TRIAL 
SUB-TREES 

COMPARE LEAF NODES IN SEQUENCE 

ABORT ROUTINE IF NOT EQUAL 

DECREMENT NODE COUNTER 
AND LOOP 

SET OVERFLOW FLAG IF SUB-TREES 
ARE; REDUNDANT 

* -- ADJUST SIBLING POINTERS AND CANCEL REDUNDANT NaDES --

* 
ADJUST 

ADJl 

* 
ADJ2 

* 

LDY 
BSR 
TFR 
LDY 
BSR 
LDD 
LEAY 
LSRA 
RORB 
BCS 
STX 
BRA 
STX 

PNTRl 
POINTR 
Y,X 
PNTR2 
POINTR 
O,Y 
[6,Y] 

ADJl 
2,Y 
ADJ2 
4,Y 

LDD OFFSET 
LSRA 
RORB 
LSRA 
RORB 
LDY PNTR2 

ADDRESS MASTER SUB-TREE 
FIND PARENT NODE AND' SAVE 

ADDRESS REDUNDANT SUB-TREE 
FIND PARENT NODE 

IS PARENT LEFT OR RIGHT OFFSPRING 
OF GRANDP ARENT 

AS APPROPRIATE, CHANGE LEFT OR 
RIGHT POINTER OF GRANDPARENT 
TO PARENT OF MAST ER SUB-TRÊE 

DIVIDE OFFSET BY FOUR TO 
CALCULATE # OF LEAF NODES 
IN SUD-TREE 

ADDRESS REDUNDANT SUB-TREE 

) 

-



\ 

'ft 

A4-8 
( 

'* -- CREATE BD TABLE FROM TRUT~ TABLE DATA 

'* NODE - INPUT VARIABLE IDENTIFIER 
'* SUB - INPUT SUBNODE IDENTIFIER 
'* LASTX - LAST USED TABLE ADDRESS 
'* TFY.P - TEt-f.P STORAGE 
'* X-REG - CURRENT ADDRESS POINTER 
'* Y-REG - USED AS AN INDEX TO SEARCH SUB 

BDCMPIL DEC INPUTS 
LDY ItSUB 
LDA ftSFF 
STA NODE 

'* 
BDCMPl 

* 
BDCMP2 

* 

'* 

'* BDCMP3 

STA 
CMPY 
BLE 
LDY 
STY 
LDD 
PSHU 
LDX 
STX 

LDY 
INC 
LDA 
INC 
LDB 
STD 

CMPA 
BGT 

LEAX 
STX 
LEAX 
PSHU 
LDD 
STD 
srx 
LEAX 
BRA 

LDY 
LDD 
SrD 
LDD 
STD 
LDD 
STD 
STX 
STY 

O,Y+ 
#SUB+9 
BDCMPl 
#TRUTAB 
TEMP 
#0 
A,B 
TREE 
LASTX 

#SUB 
NODE 
NODE 
A,Y 
A,Y 
O,X 

INPUTS 
BDCMP3 

8,X 
-6,X 
-8,.X 
X 
LASTX 
6,X 
LASTX 
8,X 
BDCMP2 

TEMP 
0, Y++ 
4,X 
#$FFFF 
2,X 
LAsrX 
6,X 
O,Y++ 
TEMP 

INITIALIZE BUFFER LOCATIONS 
AND Sr/(CK 

) 
lNltIALlZE LAS-yX 

SELECT .ElIT .o~ AND' 
PUT NODE AND ~ ID 
IN TABLE 

CHECK IF THIS NODE IS AN 
OUTPUT IF SO BRANCH TO 
OUTPT 
PUT ADDRESS OF NEXT NODE 
IN 'LEFT' BRANCH COLUMN 

PUT PRÈSENT ADDRESS ON STACK 
FOR LATER RETRIEVAL 
STORE LASTX ADDRESS IN 'FROM' 
POINTER, STORE NEW LASrX AND 
INCREMENT X-REG 

IF NODE IS AN OUTPUT GET 
VALUE FROM VECTOR AND 
PUT IN BD TABLE ALSO 
PUT 'FROM' POINTER IN VECTOR 

j 

1,< 



l 

ADJ 3 

.. .. .. 
POINTR 
PTRI 

PTR2 .. 

COH 
LEAY 
SUBD 
BNE 
RTS 

O,Y 
4,Y 
#1 
ADJ 3 

FIND PARENT OF A 

LEAY [2,Y] 
LDA O,Y 
CMPA LVLCTR 
BLE PTR2 
LEAY [6,Y] 
BRA PTRI 
RTS 

LIB BDC-4B 

, j 

A4-11 

col&LEHENT LEAF NODE DATA 
" 

CANCEL REMAINING LEAF NODES 

SUB-TREE --

ADDRESS PARENT NODE AND 
READ NODE ID 

STOP IF PARENT IS FOUND 
OTHERWISE CONTI~E 

'~""'''II,----'- --- - ~ 



A4-12 

* * --- GENERATE BD MACHINE CODE ---

MACHINE LOD 
PSHU 
STD 
STD 
STD 
LDX 
LBSR 
TFR 
LDX 

fla 
A,B 
PGMADD 
LASTY 
PCI 
TREE 
TRIMI 
X,Y 
MCODE 

* 

* 
MCl 

* Mez 

* MC3 

* MC4 

* Mes 

* 

LDA OUTBNK 
ORA #$EO 
LDB ttl 
STD O,X 

CMPY flO 

BEQ MCS 
LDD PCI 
ADDD in 
STn PCI 
LEAX 2,X 

LDA 
CMPA 
BGT 
LBSR 

LDD 
CMPD 
BLS 
LBSR 
LDA 
ORA 
STA 
LDD 
PSHU 
LOY 
BRA 

BSR 
LOO 
CMPD 
SHI 
LDY 
LDB 
LBSR 
LBSR 
BRA 

LDY 
BRA 

O,Y 
INPUTS 
MC6 
TRIM 

2, Y 
LASTY 
MC4 
BRANCH 
D,X 
/1$40 
O,X 
4,Y 
A,B,X 
2, y 
MCl 

BRANCH 
4, Y 
LASTY 
Mes 
4,Y 
7, Y 
JUMP 
UNiTACK 
MCl 

4,Y 
MCl 

INITIALIZE BUFFERS 

WRITE A BANK-SELECT INST 

TEST END CONDITION 

TEST NODE TYPE 

TRIM L&R BRANCHES 

TEST IF L-BRANCH PRUNED 

WRITE A BRANCH-ON-l INS! 
IF L-BRANCH NOT PRUNED 

, 

STACK R-BRANCH AND 
FOLLOW L Ta NEXT NODE 

WRITE A BRANCH-ON-O INST 
IF L-BRANCH PRUNED 

WRITE A JUMP-TO-R INST 
IF R-BRANCH ALSO PRUNED ' 

FOLLOW STACK TO NEXT NODE 

OTHERWISE FOLLOW R-BRANCH 



MC6 

* 
MC7 

* 
MCS 

* . MC9 

* 
MClO 

MelOA 

* 
MC 11 

* 

LOI. 
CHPA 
BEQ 
LBSR 
LBSR 
BRA 

4,Y 
tl$77 
MC7 
OUTPUT 
UNSTACK 
MCl 

LBSR SWI 
LBSR UNSTACK 
BRA MCl 

LDD 
CMPD 
BEQ 
LEAX 
LOD 
ADDD 
STD 

O,X 
1,$FOEE 
MC9 
2,X 
PCl 
ln 
PCl 

LDD I,$AOOO 
STD O,X 
STX LASTX 
LDD PCl 
STD PGMSIZ 
LDX MCODE 

LDD 
CMPB 
BNE 
LDD 
LDA 
STD 
CMPX 
BLO 
LBSR 

LBSR 
JSR 
CLR 
LDA 
STA 
JMP 

O,X 
#$EE 
MelOA 
PCl 
O,X 
O,X++ 
LASTX 
MClO 
PRINT 

DIse 
[PCRLF] 
$DFES 
#$OD 
$CC11 
$CD03 

A4-13 

TEST OUTPlIT OR SWI 

WRITE AN OUTPUT INST 
AND FOLLOW STACK TO 
NEXT NODE 

WRITE AN SWI INST AND 
FOLLOW STACK TO NEXT NODE 

OVERWRITE JUMP-TO-EOP 
IF IT'S THE LAST INST 

WRITE AN EOP INST 

REPLACE EE-CODES WITH 
pe OF EOP INST 

OPTIONAL PRINTOlIT ROUTINE 

SAVE BD PROGRAM ON DISC 
RETURN TO FLEX 

* CREATE A BRANCH INSTRUCTION --

* 
BRANCH LDB O,Y 

PSHS U 
LDU #INLIST 
LDA 
PULS 
STA 
ANDA 
LSLA 
LSLA 
LSR 

B,U 
U 
CNTR 
#$OF 

CNTR 

LOOK UP INPUT CHANNEL 
HUMBER FROM INLIST 

EXTRACT INPU'!' "ELECTOR 
AOORESS 

------------------------------
f 

!' -
/ 



• 

LSR CNTR 
LSR CNTR 
LSR CNTR 
ORA CNTR 
PSHS Y,A,B 
LOO PCl 
STn 6,Y 
PULS A, B 
LOY 2, y 
LOB 7, Y 
STn O,x 
PULS y 
STY LASTY 
RTS 

A4-14 

LINK TREE TO CODE AND 
WRITE A BRANCH-ON-CONDITION 
INST 

ADD BRANCH-ON-CONDITION 
ADDRESS 

RETURN 

* CREATE AN OUTPUT INST --
• 
OUTPUT 

• 
OUTl 

OUT 2 

* 

LDA 
CMPA 
BLE 
Lnn 
ORA 
STn 
Lon 
STO 
LOB 
BSR 
BRA 

OUTPTS 
#4 
OUTl 
4,Y 
11$80 
O,X 
PCl 
6,Y 
fl$EE 
JUMP 
OUT 2 

LOA 5,Y 
DRA II$CO 
LOB ft$EE 
STO O,X 
LOO PCl 
STO 6,Y 
STY LASTY 
RTS 

LONG OR SHORT OUTPUT? 

WRITE A LONG OUTPUT INST 

LINK TREE TO CODE 

WRITE A JUMP-TO-EOP INST 

WRITE A SHORT OUTPUT INsr 

LINK TREE TO CODE 

RETURN 

* --~CREATE AN SWI INST -­
• 
S~I 

* 

LDD 
STO 
AODD 
STn 
LOA 
STO 
LOA 
LOB 
STD 
LOB 
BSR 
STY 
RTS 

PCl 
6,Y 
#1 
PCl 
#$00 
O,X++ 
#$AO 
S, y 
O,X 
#$EE 
JUMP 
LASTY 

* CREATE A JUMP INST --

LINK TRE~ TO canE 

WRITE AN SWI INST 

WRITE AN EOP INST WITH 
SWI COOE 

WRITE A JUMP INSTRUCTION 
Ta NEXT PGM 

RETURN 

.. 



-

* 
JUMP LEAX 

LDA 
STD 
LDD 
ADDD 
srD 
RTS 

'* 

2.X 
/1$FO 
O.X 
PCl 
#1 
PCl 

A4-1S 

WRITE A JUMP INSTRUCTION 
Ta PC SUPPLIED IN B-REG 
BY CALLING1ROUTINE 

RITURN 

'* FOLLOW A POINTER TAKEN OFF STACK --

* UNSTACI< 

UNSTl 

LDY 
BEQ 
PSHS 
PULU 
CMPY 
BHI 

O,U 
UNST2 
X 
A,B,X 
LASTY 
UNSTl 

LDB 7, Y 
STB l,X 
PULS X 
BRA UNSTACI< 
LDD PCI 
ADDD ft! 
STB l,X 
PULS X 

UNST2 RTS 

'* 

rEST EOF CONDITION 

UNSTACK A BRANCH AND 
TEST IF PRUNED 

LIN!< BRANCH TO CODE 
IF PRUNED AND FOLLOW 
STACK AGAIN 

OTHERWISE FOLLOW BRANCH 

'* -- TRIM COLLAPSED L&R BRANCHES --

TlUM 

TRI Ml 

TRIM2 

PSHS X 
LDX 2. Y 

TRIMI BSR 
STX 
LDX 
BSR 
STX 
PULS 
BRA 
LDA 
CMPA 
BGT 
LDD 
CMPD 
BNE 
TFR 
BRA 
RTS 

2, Y 
4, Y 
TRI Ml 
4, Y 
X 
TRIM2 
O,X 
INPUTS 
TRIM2 
2,X 
4,X 
TRIM2 
D,X 
TRIMI 

TEST IF L-BRANCH COLLAPSED 

TEST IF R-BRANCH COLLAPSED 
il 

DOES BRANCH LEAD TO INPUT? 

IF 50, IS THAT INPUT COLLAPSED? 

IF 50, TRIM THE NODE AND CHECK 
Ir' S SIBLINGS 

'* -- PRINT BD PROGRAM LISTING --

PRINT LDX lFMSG17 
JSR [PSTRNG] 
LDD PGMNUM 
JSR [OUTCH] 
TFR B,A 

PRINT LISTING OF PGM 
STARTING W+TH PGM NUMBER 



, 

PRNTI 

PRNT2 

* 

JSR 
LDX 
JSR 
LDY 
LDD 
STD 
LEAX 
JSR 
JSR 
LDX 
JSR 
LEAX 
STX 
JSR 
LDX 
JSR 
BSR 
BVS 
JSR 
CMPY 
BLS 
RTS 

[OUTCH] 
f/MSGl7A 
[PSTRNG] 
MCODE 
fla 
PCI 
O,Y 
OUT4H 
OlJT2S 
PCI 
OUT4H 
l,X 
PCI 
OUT2S 
O,Y++ 
OUT4H 
ESCTRP 
PRNT2 
[PCRLF] 
LASTX 
PRNTI 

A4-16 

PRINT mP ADDRESS OF DATA 

PRINT BD PC NUMBER 

PRINT BD OP-CODE 
CHECK FOR 'ESC' HIT 

RETURN 

* -- SAVE BD PROGRAM ON OISC -­

* DIse 

DIsel 

DISC2 

* 

LOX 
JSR 
JSR 
CMPA 
BEQ 
LOX 
LOY 
LOD 
STD 
CMPA 
BNE 
LOD 
STD 
LDX 
LDD 
BSR 
TFR 
BSR 
LEAX 
LDD 
BSR 
TFR 
BSR 
LDD 
STD 
JSR 
RTS 

tlMSG6 
[PSTRNG] 
[INCHE] 
tl'N 
DIse2 
4FLINBUF 
tfMSG7 
O,Y++ 
O,X++ 
114 
DISCl 
PGMNUM 
$C089 
#$C090 
MeODE 
HEXASC 
B,A 
HEXASC 
l,X 
LASTX 
HEXASC 
B,A 
HEXASC 
#$C080 
$CC14 
DOCMND 

PRINT OISC TRANS FER REQUEST 

ENTER REPLY 
IF NO RETURN TO FLEX 

OTHERWISE CALL SAVE SUBROUTINE 
FROM FLEX 

LOAD COMMAND STRING 

ADD PGM NUMBER 

ADD MEMORY BOUNDS 

RES ET LINE BUFFER POINTER 

CALL DOS 

* INPUT EDITABLE BINARY DATA -­

* 

-



l 

f-

t 

• 
j 

INDATA LDX 

* 

JSR 
LDX 
JSR 
RTS 

#LINBUF 
[INLINE] 
#LINBUF 
[DECBIN] 

A4-17 

FLEX LINE BUFFER 

CONVERT DATA TO BINARY 
RETURN 

* eONVERT BINARY TO ASCII --

* BINAse LDX #LINBUF 
[BINDEC] 
-2,X 

JSR 

~ 
* * eONVERT HEX TO ASCII 
* 
HEXAse PSHS A 

LSRA 
LSRA 
LSRA 

~ LSRA 
BSR HEXI 

:;;o'PULS A 
ANDA I;$F 

HEXI ADDA #$30 
CMPA 1;$39 
BLE HEX2 
ADDA ln 

HEX2 STA O,X+ 
RTS 

* 

FLEX LINE BUFFER 
, 

LOAD LAST TWO CHARS. 
RETURN 

SAVE NUMBER 

-, 
eONVERT FIRST PART' 

eONVERT SEClD PART 
\ 0 

CONVERT NUM R TO ASCII 

SAVE ASCII NUMBER 0 

* INTERRUPT PRINTING WITH 'ESC' 

* 
ESCTRP 

ESCI 

ESC2 

* 

LDA ACIASR 
BITA {Il 
BEQ ESC2 
LDA ACIADR 
ANDA #$7F 
CMPA lF$lB 
BNE ESC2 
LDA ACIASR 
BITA IFI 
BEQ ESCI 
LDA ACIADR 
ANDA 1F$7F 
CMPA ..... lF$lB 
BEQ ESC2 
eMPA #$OD 
BNE ESCI 
ORCC ln 
RTS 

KEY HIT? 

'READ CHARACTER 

RETURN IF NOT 'ESC' 

WAIT FOR ANOTHER HIT 

RETURN IF 'ESC' 

SET V-FLAG IF 'CR' 
REtURN 

* --- BDC-4 BUFFERS AND MESSAGES'---

* MSGO 
MSGI 

FCC $A,'Output hardcopy requined (Y*/N)? ',$4 
FCC $A,' BD PROGRAM COMPILER V4.1' 

1) 



\ 

, 
>. 

" t. ... -

\ ~ 

.. ' .. 

MSG2 
MSG2A 

MSG2B 
MSG2e 
MSG2D 
MSG2E 
MSG3 
MS~ 

MSGS 
MSG6 
MSG7 
MSG17 
MSG17A 

MSG20 

MSG21B 
MSG21C 

* 
TRUTAB 

* 

' ... 

Fce 
Fce 
Fce 
Fce 
Fce 
Fce ~ 
Fce 

\ Fce 
Fce 
Fce 
Fee 
Fee 
Fce 
Fee 
Fec r 
Fce 
Fce 
Fce 
Fce 
Fce 
Fce 
Fce 
"rce 
'Fee 
Fec 
Fee 

\. 
$D,$A,$A 

A4-18 
r 

'1 eombinatorial or sequential logic ' 
'(TRUTH TABLE)',$D,$A 
'2 PID control (TRANSFER FUNeTION)' 
$D,$A,$A 

0' Enter option "code - " $4 
'Enter number of inputs (up t~1 - ',$4 
'Enter number of output channels ' 
'(up to 12) - ',$4 
'Enter BD program number - ',$04 
'Enter program class - ',$4 

• 'En~er channel assigrunent for input if' , $4 
'Enter output bank assignment - ',$4 
'Enter " $04 
, output words in HEX ',$04 

** ILLEGAL DATA, RE-ENTEB **',$D,$4 
'Save new program on dise (Y*/N)? ',$4 
'SAVE,l.BDxx.BDP,XXXX,xxxx.'~$D,$4 
$A, 'BD MACHINE CODE - PROGRAM NUMBER " $04 ' 
'ADDR PC CODE',$OA,$OD 
,---- --7-',$D,$A,$4 
'The transfer funetion is in the form ' 
, (A/S+B+C.S) ',$D,$A 
'Enter constant A-',$4 
'Enter constant B-',$4 
'Enter constant C-',$4 

EQU * 
.. 


