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Poscre oy

Abstract

This thesis presents a novel approach in formulating kinematic constraints and
a methodology for the dynamic modelling of mechanical systems with nonholonomic
couplings. The method presented here is based on the natural orthogonal comple-
ment (NOC) of the kinematic constraint matrix associated with the lincar homoge-
neous form of the kinematic constraints. The method of the NOC is used to model
mechanical systems consisting of multiple-loop kinematic chaing with nonholonomic
constraints. Moreover, the method of the NOC, when coupled with an optimization
technique, can be used for the feedforward control of redundantly actuated systems,

as shown here.

The method of the NOC is first discussed in detail with the aid of an exain-
ple of a two-wheeled mechanical system. Then, nonholonomic robotic mechanical
systems, for example, automatic guided vehicles (AGVs), arc analysed for simula-
tion purposes. As a result, general-purpose software is developed for the kinematic
and dynamic analyses of three-degrec-of-freedom (3-DOF) AGVs. These AGVs use
omnidirectional wheels which, in contrast to conventional wheels, e.g., the wheels in
an automobile, result in 3-DOF motion of the vehicle. Isotropic designs of 3-DOF
AGVs for direct kinematics are proposed, which should enhance the control of the

vehicle.

With advanced computer graphics, a common trend is to use motion animation
in assessing the time response of the systems under study. This brought about issucs
of algorithmic complexity that are inherent to motion animation. These issues are
addressed with an example involving the attitude representation of a rigid body and
the choice of a suitable coordinate frame in representing the dynamic equations of

motion.
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Résumé

Cette these presente une approche originale a la formulation des contiaintes
cinématiques et une méthode pour modeler la dynamique de systémes a couples
uon-holonomes. La méthode est basée sur I'idée générale du complément orthogonal
naturel de la matrice correspondant a la forme lin¢aiie homogtne des contraintes
cinématiques. La méthode du complément orthogonal naturel se préte bien a la
simulation de systemes comprenant plusicurs boucles cinématiques. i oulre, en la
liant & des méthodes d’optimisation, la commande en houcle ouverte de systemes

motorisation redondante est obtenue.

La méthode du complément orthogonal natuiel est présentée en détail avee
I’aide d’un exemple d'un systeme mécanique a deux roucs. Puis, les systemes 1obo
tiques non-holonomes, tel que les véhicules autonomes, font objet d’une ¢tude ap
profondie. Un logiciel & usage général est donc mis au point pour permettire Panalyse
cinématique et dynamique des véhicules autononmes a trois degié de liberté (3 ddl)
Ces derniers sont runis de roues omnidirectionnelles qui, contrailement aux roues
d’une automobile, permettent au véhicule un mouvement a 3 ddl . La conception
d’nn véhicules autonomes isotrope et a 3 ddl est presentée, a fin de faciliter la com

mande du véhicule.

L’animation graphique devient de plus en plus répandue comme outil servant a
Panalyse de systemes mécano-robotiques. La question de complexité algorithimique
des méthodes d’analyse devient alors importante et est done adiessée Comme illus
tration, un exemple traitant de la représentation de Porientation d’un coips rigide
est présenté, 'importance du choix d’un repcte convenable pour la repiésentation

des équations dynamiques étant démontré.
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Claim of Originality

The author claims the originality of the items listed below:

A new criterion is developed to classify kinematic constraints of mechanical
systems.  In order to detect the holonomicity of kinematic constraints, two

leinmas are provided along with their proofs.

The dynamic modelling of nonholonomic mechanical systcms based on the
natural orthogonal complement (NOC) of the kinematic constraint matrix,

that results from the lincar homogeneous kinematic constraints, is developed.

The degree-of-freedom (DOF) and controllability information of a system may
be obtained as a part of the dynamic model of a mechanical system using the
NOC. Thus, the time required to separately determine the DOF of a system

and to test its controllability is eliminated.

The developed dynamic modelling technique, mentioned in the second item
above, is coupled with an optimization technique to analyse the dynamics of

nonholonomic systems with redundant actuation and inequality constraints.

Computer software for the kinematic and dynamic analyses of 3-DOF auto-
matic guided vehicles (AGVs) of arbitrary architecture consisting of omnidi-

rectional wheels is developed.

A concept of isotropic design for the direct kinematics of 3-DOF AGVs is

introduced that will ease the control of these vehicles.

The dependence of cfficiency and accuracy of the simulation and animation
code on coordinate frames in representing the dynamic model of a systemn is

extensively analysed.

Alternative approaches of attitude representation of rigid bodies for simula-
tion purposes are introduced with a discussion on their merits and demerits.

Suggestions are made for the motion animation of mechanical systems.

This research work has been partially reported by Saha and Angeles (1989,

[991a, 1991b, 1991c, 1991d) in journals and conference proceedings.
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Chapter 1

Introduction

A mechanical system consists of rigid bodies coupled by Kinematic pairs. Rigid
bodies in a mechanical system are called links. Kinematic pairs that 1estiict the
independent motion of the links arc known as joints or couplngs. In a mechan
ical system, a set of links coupled by joints forms a kimematic chaim. Kinematic
chains may be simple or complez. Simple chains are defined here as kinematic chains
containing links having a degree of connectivaty smaller than o1 equal to two. 1t is
recalled that the degree of connectivity of a link is the mumber of rigid hodies that
are coupled to the said link by joints. Therclore, simple kinematic chains encom-
pass both serial manipulators and closed single-loop linkages. On the other hand,
complex kinematic chains are those containing at least one link having a degree of
connectivity greater than or equal to three, for example, automatic gnided vehicdes
and parallel manipulators. A joint that allows a testiictive motion of the rigid hod-
ies in a kinematic chain, thus, leads to kincmatic constraints. T'he characteristies
of kinematic constraints, apart from the type of a kinematic pair, i.c., a joint or a
coupling, depend on the topology of the system. The topology of a kinematic chain
is defined as a description of the number of links and joints in a system and thein

interconnections, disregarding geometric details such as link lengths and shapes.

In dynamic analyses of mechanical systems, i.c., design, simulation and contiol

of mechanical systems, kinematic constraints play a vital role. While deriving the
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dynamic model of a mechanical system, these constraints are treated differently, de-
pending on the modelling techniques, as in Kane (1968), Meirovitch (1970), Huston
and Passerello (1974) and Muir and Neuman (1988). The kinematic formulation
affects the complexity of the detivation of the dynamic equations of motion, as dis-
cussed in Chapters 2 and 3, where several approaches are presented for the dynamic

modelling of mechanical systems.

A review of kinematic constraints is given in the section below. Their def-
initions, characteristics and differences are illustrated in order to provide a clear
understanding of the forms of kinematic constraints, to address the associated dif-
liculties due to the physics of the joints and to decide upon the mathematical tools
necessary in coping with such difficulties. This will also help m understanding the

terminology and the methods used in this thesis.

1.1 Classification of Mechanical Systems Accord-
ing to their Kinematic Constraints

In mechanical systems, kinematic constraints are represented by a set of alge-
braic or differential equations. The existence of algebraic constraints means that a
set of corresponding differential equations exists. Ilowever, the reverse is not true,
i.c., the existence of differential kinematic constraints does not mean that a corre-
sponding set of algebraic eqrations exists. In the former case, where a set of algebraic
cquations exists, the coustraint equations are called holonomic constiaints, whereas,
in the latter case, the differential constraint equations that do not have equivalent
algebraic equations are known as nonholonomic constraints. Thus, based on the type
of constraints, mechanical systems may be classified as holonomic or nonholonomic
systems. A mechanical system i which all joints lead to holonomic constiaints is
called a holonomic mechanical system. On the contrary, if the mechanical system
has at least one nonholonomnic constraint, it i1s known as a nonholonomic mechanical

system. Throughout this thesis, a mechanical system is assumed to consist of m
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independent constraints, of which & are holonomic and n are nonholonomic. Thus,
m=h+n

Moreover, p denoting the number of generalized coordinates that are defined as those
variables which give an unambiguous representation of the configuration of the sys-
tem, i.e., with the help of these coordinates, a unique configuration of the system in

the 3-dimensional Cartesian space is possible, is greater than m.
1.1.1 Holonomic Constraints

A holonemic' constraint may be defined as a constraint that can be expressed
by an algebraic, usually nonlinear, relation amongst the generalized coordinates and,
possibly, time. The set of generalized coordinates is not unique, as there is more
than one set of coordinates capable of describing the configuration of the system
uniquely. However, the sets of generalized coordinates must be finite, single-valued
and continuous functions that are twice differentiable with 1espect to time. Now, the
constraints arising due to the presence of the joints and the topology of the kinematic

chains of the holonomic system arc expressed as
£(6,t) =0 (1.1)

where f is a vector function of class C? (Rudin, 1976), 8 is a p-dimensional vector
whose components are the generalized coordinates and ¢ denotes time. It is assumed
here that the mechanical system at hand consists of & holonomic constraints only,
i.e., it is assumed that n = 0. Thus, fis an h-dimensional vector that is delined,
along with 8, as

f= [fl,"' afh]T and 6 = [01?""011]7'

Furthermore, the holonomic constraints of eq.(1.1) can be differentiated with respect,

to time, which yields a linear relation amongst the generalized speeds, 8, namely,

JO+b=0 (1.2)

1Phe word holouomic is derived from the Greek word holos, which means whole,
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where J is an b x p matrix and b is an h-dimensional vector, both, in general, being
functions of the generalized coordinates and time. Note that the left-hand side of
eq (1.2) is the total derivative of £(@, 1) with respect to time, i.c.,

of of ‘
1-55 and b-gz (1.3)

and hence, one can obtain eq.(1.1) by integrating the expiession given in eq.(1.2).
What follows is that, for holonomic systems, the kinematic constraints in the form
of eq.(1.2) are wtegrable and eq.(1.3) forms the basis for the necessary and sufficient
conditions for integrability of differential equations in the form of eq.(1.2) (Ince, 1956;
Spiegel, 1985). These holonomicity conditions for the kinematic constraint equations
of a mechanical system can be stated as: all p x p matrices, cach of which is derived
as the gradient of j, with respect to 8, i.e., 9j,/08, for ¢ = 1,---, h, where j, is the
1th column of matrix I, must be symmetric. In addition,

b, _ i,

50 = a0 for :=1,---,h

where b, is the 1th element of vector b.

Alternatively, integrability conditions can be obtained, as in Isidori (1985) and
Nakamura and Mukhetjee (1990), by using the definitions below and a theorem from

nonlinear control theory.

Definition 1.1 Lic bracket: If vector x, and two vector fields f;(x) and f(x) belong
to an open subset U of R™, then the Lie bracket or Lie product of
fi and f2, denoted by [fy, f2], is a third vector ficld defined by

of, ofy
I — —f(x)

10 aJ00) = Z2600) - 5

Definition 1.2 Involutive distribution: A linearly independent sct of vector ficlds
{f1,---,f.} is said to be involutive if, and only if, there exist scalar

functions a, such that

[fn f]] = E at]kfk
A=1
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Theorem 1.1 Frobenius’s Theorem: Let {f;,-«- . £, } be a set of vecton fields that
are linearly independent at each point x. Then, the set of vecto
ficlds is said to be completely integrable if, and only if, it i~ mvolu

tive.

The presence of integral forms of kinematic constraints in a holonomic svstem,
as in eq.(1.1), allows the dimension of the vector of generahized coordinates to he
reduced to a minimal set of generalized coordinates. In fact, by solving tor I of the p
generalized variables from the h constraints, the number of generalized coordimates
is reduced to g, where ¢ = p—h. Morcover, these ¢ coordinates are now independent
and any arbitraiy infinitesimal change in these ¢ coordimnates tepresents a possible
displacement ol the system. Note that the degree-of-ficedom (DOIY) of a system
is defined as the number of independent gencralized coordinales that are necessary
and sufficient to control the system such that, given a certain configniation, anv
arbitrary change of these coordinates will move the system to another confignration.
That is, using ¢ independent coordinates, it is possible to move the svstem from
a known configuration to another desired confignration.  Thus, the DOI ol the
holonomic system at hand is ¢. This leads to a result for holonomie systems: ITn
a holonomic system, the munimum number ol generalized coordinates requined to

completely specify the configuration of the system is equal to the DOF of the svstem

In dynamics, the motion of a system can be ticated in terms of the motion ol
a point in a multi-dimensional space termed the configuration space (Neimark and
Fufaev, 1967). For a holonomic system, the dimension of the confignration space 1s
equal to its DOF, i.e., ¢, and hence, at any instant, the system can he described by

a vector 8 in a ¢g-dimensional space.

Finally, a holonomic constraint may be distinguished as either scleronomie o

rheonomic?, as described below:

2seleronomic and rheenomic owe their names to the Greek words shleros and rheo, whose mean-
ings are hard and to flow, hence changeable, respectively
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e scleronomae: Holonomic constraints in which time ¢ does not appear explicitly

are known as ocleronomic constraints, i.e., the constraints can be expressed as

f(6)=0 or J§=0

e rhiconomac: Contrary to scleronomic constraints, if one of the holonomic con-
straints in a set of constraint equations contains ¢ explicitly, as in eq.(1.1) or

¢q.(1.2), then they are referred to as rheonomic constraints, i.e.,

f(6,t)=0 or JO=—b
1.1.2 Nonholonomic Constraints

Nonholonomic constraints, first identified by Hertz in 1894 (Neimark and Fu-
facv, 1967), restrict the kinematically possible motions, i.e., the possible values of the
velocities of the individual links, of the system. For simplicity, it is assumed that
the h holonomic constraints allow the elimination of h generalized coordinates, the
number of generalized coordinates needed to describe the system thus being reduced

to p —h.

Unlike holonomic constraints, eq.(1.2), for nonholonomic systems, is noninte-
grable; i.c., the differential expression involved does not amount to the total time
derivative of any vector function f(8,t). Moreover, since no algebraic function of
the generalized coordinates can be derived from nonholonomic constraints, n gen-
cralized coordinates cannot be expressed in terms of other generalized coordinates.
Thus, a nonholonomic system can be defined as a mechanical system in which the
minimum number of the generalized coordinates required to specify the configuration

of the system at any time 1s greater than the DOF of the system.

A distinguishing property of a nonholonomic system is that not all variations
of its generalized coordinates, irrespective of how they are chosen, correspond to a
motion of the system satisfying its constiaints. Morcover, contrary to holonomic

constraints, the constraints on the admissible velocities of the individual parts of a
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Fig. 1.1 A disk rolling on a plane

nonholonomic system do not lead to restrictions on their admissible conligurations
Furthermore, the existence of a single nonintegrable constiaint does not always guaw
antee the system to be nonholonomic, since this constraint may prove to he integrable
by virtue of the remaining constraint equations. For an example of such a case, the

reader is referred to Neimark and Fufaev (1967).

As mentioned before, the dimension of the configuration space, which can also
be defined as the minimum number of generalized coordinates necessary to specily
the configuration of a system completely, is different from its DOI*f the system s
nonholonomic. In fact, the dimension of the configuration space of a nonholonomic
system is always larger than its DOF. Morcover, a distinction is made here between

the minimum riumber of coordinates required to speeify the configuration of a system

completely, i.e., the dimension of its configuration space, and the mininmum numben

of coordinates nccessary to control the system, i.c., the DO of the system

To exemplify a nonholonomic system, a rigid disk rolling on a horizontal plane
without slippage, as shown in Fig. 1.1, is considered. Thus, a pure rolling motion

~ of the disk is assumed. The configuration of this disk at any instant is completely
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specified by five generalized coordinates, namely, two rectangular coordinates of the
mass centre of the disk, say, x. and y., and three angles representing the orientation
of the body with respect to the inertial frame, say, the Buler angles 0, ¢ and . The
pure rolling condition may, alternatively, be stated by saying that the disk moves in
contact with a perfectly rough fixed horizontal plane. A rough surface, in contrast to
a perfeetly smooth surface, does not allow arbitrary changes of the five generalized
coordinates. If the surface is smooth, the disk can take on any position, i.e., slippage
occurs, as long as it remains in contact with the plane. The five coordinates can,
therefore, have any arbitrary values representing a possible displacement of the body,
which, then, implies that the system has five DOF. However, when the plane is rough,
the condition that the displacement of the point of contact be zero must be satisfied,
and this implies that the quantitics representing any arbitrary configuration of the
disk on the plane are not independent. In fact, the velocity of the mass centre of
the disk must satisfy two scalar constraints. These constraints can be written in the

formm of eq.(1.2) where vector b vanishes. The expressions for 3 urd 8 are:
J= [::;;] (1.4)
and
0=100, ¢ ¥ ze el (1.5)
while vectors j; and j; are given as

Ji=|rcosfsing, rsinflcos¢, rcos¢, 1, O]T

jo=[-rcosfcosd, rsinfOsing, rsing, 0, 1]7

where 7 is the radius of the disk. Now, it can be readily verified that 8j;/90 and
Jj2/00, two 5 x 5 matrices, are nonsymmetric. Thus, the resulting constraint equa-

tions are nonholonomic and the DOF of this system turns out to be three.

Note that, while pure rolling conditions are satisfied, the five coordinates may
take on arbitrary values as the disk rolls on the plane, i.e., the disk can take on

any position relative to the plane. To justify this assertion, it is shown in Neimark
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and Fufaev (1967) how the disk can be brought from a given position denoted by
vector 89 = [fo, ¢o, Yo, To, Yo|7 to any other prescribed position given by
6, = [0, ¢, ¥, 1, wi]¥. First, the disk is rolled from a point Cy on the
plane whose coordinates are (o, yo) to a point C; that is given by (a1, 1) along any
curve of length r(y; — Yo + 27k), where k is an arbitrary constant. Then, the disk
is rotated around the axis perpendicular to the plane at point C'y until the angle ¢
takes the desired value ¢;. Finally, the disk is tilted to the position where 0 = 0.
This verifies that the dimension of the configuration space is five, whereas the DO
of the disk rolling on the plane is three. A similar situation atises in everyday life
when parking a car, which requires a set of complex manocuvres to place the car in

a space between two other parked cars.

Further classifications of mechanical systems are possible that are based on the

values of the components of vector b, as in eq.(1.2). These arc:

o catastatic: If all components of b vanish, i.c., if vector b does not appea
in eq.(1.2), the constraints are called catastatic. A disk tolling on a plane is
a catastatic nonholonomic system. It is pointed out here that a mechanical
system containing catastatic integrable constraint equations is not always a
scleronomic system because, upon integration of cq.(1.2), time may appeai

explicitly in its algebraic forms, i.e., the system is rheonomic.

o acatastatic: Acatastatic constraints have at least one nonzeto component of b.

1.2 Robotic Mechanical Systems

A mechanical system may be either controlled or uncontrolled. A disk rolling on
a plane is an example of the latter, but most engineering systems are controlled. An
example of a controlled system is the 6-DOI" manipulator developed during World
War I, which was meant to reproduce the motion of the arm of a manned mas-

ter manipulator by means of electronic amplifiers. A system under digital con-
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trol is much more versatile because it allows for programming. Thus, a computer-
controlled mechanical system is referred to here as a robotic mechanical system,
popularly known as a robol. A roboi®, according to the International Standard Or-
ganization (Poole, 1989), is defined as an automatically controlled, reprogrammable,
multi-purpose mampulative machine, wuth or wethout locomotion, for use wn indus-
tral aulomation applicalions. However, modern robots are not only restricted to
industrial applications. They are also used in unstructured environments like hospi-
tals and military applications. To use robots in an unstructured environment, the
autonomous nature of the robots is important, which essentially depends on accu-
rate sensors and on-line computations allowing robots to make decisions. In any case,
1obots can be either holonomic or nonholonomic. This allows one to classify robotic
mcechanical systems as (a) holonomic robotic mechanical systems (HRMS) and (b)
nonholonomic 1obotic mechanical systems (NHRMS). Examples of HRMS are serial
and parallel manipulators whose kinematic constraints are holonomic. On the other
hand, automatic guided vchicles (AGVs) and snake-like articulated mobile robots
with crawler tracks (Hirose and Morishima, 1990) are NHRMS, since nonholonomic
constraints arise duc to rolling of wheels and crawler movements. Yet another ex-
ample of a NIIRMS is RoboTRAC (Hiller and Schmitz, 1990), a system supported

with wheels and legs.

Although the first industrial robot was built in 1954, the research in dynamics of
serial manipulators started in the late seventies and has been considered an almost
accomplished subject. In this area, the problem of dynamic simulation for real-
time control of manipulators has been addressed by Luh et al. (1980), Walker and
Orin (1982), Kane and Levinson (1983), Khalil et al. (1986), Lee and Chang (1986),

Angeles and Ma (1988) and Balafoutis et al. (1988), just to mention a few.

With the introduction of flexible manufacturing cells in factory automation,

the necessity of increasing mobility in fixed 10botic manipulators was felt. In effect,

3The term robot is derived from the Czech word robota, which means forced labour or compulsory
service It was first used m two plays written by the Czech author Karel Capek. The more popular
one is Rossum’s Umversal Robols
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the research on mobile robotic systems is receiving more and more attention. In
this context, walking machines and rolling robots are well-known mobile robots,
Walking machines are legged mobile robots. They offer independent control of thei
joints and have the greatest capability of going over unstructured terrain. However,
due to the presence of complex kinematic chains and their time-varying topology,
they are difficult to control and the computations required for leg control and balance
are prohibitive. Also, power drain is large (Waldron, 1985; Poole, 1989) and thei
payload capability is quite restricted (Ilirose and Morishima, 1990). On the other
hand, AGVs are wheeled mobile robots and perform well if the terrain is hotizontal
or has only a limited slope. The motions of AGVs are reasonably smooth and thei
wheels have good traction (Poole, 1989). They are favoured in the shop floors,
because they are more energy efficient (Muir and Neuman, 1987a) than others on
rigid, horizontal surfaces. An AGV with a serial manipulator mounted on top is
believed to find wide applications in factories, offices, hospitals, supermarkets and
houses. However, AGVs are nonholonomic systems and their kinematic properties
demand a special treatment for their dynamic analysis, which is a motivation [or the

research work reported here.

1.3 A Survey of Nonholonomic Robotic Mechan-
ical Systems

Since the development of AGVs in the sixtics, they have mostly been used in
factories. These models are like driverless forklift trucks and can handle large loads
from one area of the factory to another, but are generally constrained to follow a
fixed path. These paths are usually physical guidepaths such as inductive ot wire-
guided, optical and magnetic guidepaths (Premi and Besant, 1983; Boegli, 1985;
Hammond, 1986; Tsumura, 1986). They are fairly simple and rchable. However,
these systems have severe drawbacks as paths are not casily alterable, which leads
to limited control over vehicle paths and stopping points, higher installation cost in

the case of the wire-guided systems and high maintenance costs due to the wear and
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tear of the paint or the reflective tape of optical systems. The use of virlual guide-
paths (Bocegli, 1985) leads to a new generation of AGVs, also known as autonomous
robots (Poole, 1989), i.e., autonomous wheeled mobile robots. In these systems, the
actual configuration of the vehicle is obtained from indirect information, which is
processed using its on-board computer. This information may be obtained from
indicators like inertial navigation systems, dcad-reckoning systems, sonic or laser
heacons, corner-cube and laser-scanning (Tsumura, 1986), computer vision systems
(Boegli, 1985; Hammond, 1986) and free-wheel techniques (Culley and Baldur, 1988).
These navigation systems extend the application of AGVs to space and undersea ex-
plorations (Tanaka, 1985), nuclear and explosive handling (Maki, 1985; Meicran and
Gelhaus, 1986), security (Kajiwara et al., 1985), military (Lindauer and Hill, 1985),
mobility for the disabled (Tachi et al., 1981), patient care (Nakano ct al., 1981;
Borenstein and Koren, 1985) and construction work (Saito et al., 1983; Kangari
and Yoshida, 1990). Besides, AGVs have been developed for research purposes as
in lijima ct al. (1981), Moravec (1983), Dillmann and Rembold (1985), Cheng et
al. (1989) and others.

Mobility is an essential feature of AGVs that is achieved by wheel locomotion
systems. Locomotion of AGVs with three or four wheels is more common, although
six or more wheels are also possible. Some configurations even have sets of double
wheels. Four wheels offer more stability, more traction when all wheels are driven,
and slightly better clearance capabilitics. Three wheels offer less complex steer-
ing, the elimination of suspension mountings, less weight for the wheel assembly,
and some navigational improvements. However, there are many ways to construct,
mount and steer the wheels. Figure 1.2 illustrates some popular wheel configurations.
Figure 1.2(a) shows a wheel configuration where two rear wheels are independently
driven and also used for steering purposes. For stability, a free- or caster-wheel
is attached to the front. This wheel configuration is used in the YAMABICO 3.1
AGV (Iyjima et al., 1981), a similar vehicle being analysed in Chapter 4 of this the-

sis. The approach of Cybermation, Inc., USA, is that all wheels are driven and
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A caster wheel O

(a) (b)

e E®

Fig. 1.2 (a) Two rear wheels are driven, (b) Three wheels are synchronously driven
and steered, (c) Three sets of double-wheels are driven and steered.

steered, as shown in Fig. 1.2(b), in total synchronisation. In both cases, as shown
in Figs. 1.2(a) and (b), the systems have 2-DOI. In the former case, the system
can move in a straight path that is parallel to the wheel velocitios and can rotate
about an axis perpendicular to the floor, while, in the latter, the system can move
anywhere on the floor but cannot rotate about a vertical axis, resulting in two possi-
ble independent motions of the vehicles. Carnegic Mellon’s PLUTO (Moravee, 1933,
Bortz, 1984) has a set of two wheels on cach of the three support fegs of a tiian-
gular platform, as shown in Fig 1.2(c), which leads to a 3-DOIF AGV. Concordia’s
CONCIC-2 (Cheng et al., 1989; Rajagopalan and Huard, 1989) operates as cither
a 2- or a 3-DOF AGV. A modifiable wheelbase configuration of CONCIC-2 is very
useful in studying different kinematic, dynamic and contiol aspects of the AGV Its
driven or driven and stecred wheels may be assembled in the vertices of a triangular

Figs. 1.2(a) and (c)—, rectangular or rhombic platform. Although some of the AGVs

mentioned above have 3-DOF, their control is difficult because they have redundant
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Fig. 1.3 Whecel configuration of a centre-driven AGV.

acluation, i.e., the number of driven wheels is greater than their DOF. One way of
avoiding redundant actuation in a 3-DOF AGV is to have a centre-driven vehicle
(Carlisle, 1984), in which lateral movements of the vehicle are possible by steering
the two driven wheels together, as shown in Fig. 1.3. For stability of the vehicle,
four caster wheels are attached at the four vertices of a rectangular platform. This
system has the disadvantage that, to change its direction of motion from longitudinal
to lateral, it has to come to a complete stop to orient the driven wheels froin the
former to the latter direction, as shown in Fig. 1.3. The invention of the Mecanum
wheel (Jonsson, 1985) or Omnidirectional wheel (Carlisle, 1984; Adams, 1984; Muir
and Neuman, 1987a) or Ilonator (Daniel et al., 1985), shown in Fig. 1.4, allows for
a 3-DOF mobility in a vehicle without redundant actuation. Contrary to the con-
ventional wheels, Figs. 1.2 and 1.3, an omnidirectional wheel consists of a wheel hub
about which rollers are mounted at an angle «, as shown in Fig. 1.4(b), such that
their spin axes, vectors €', are not parallel to the axis of the wheel hub, which in turn
is parallel to vector e. Hf vectors e and €’ are parallel then the assembly will lead
to a kinematic structure of a conventional wheel and hence, the wheel is no longer
omnidirectional. The rotation of these rollers adds another DOF to the wheel and
hence, to the system. However, this wheel is difficult to manufacture. Morcover,

if the inertial properties of the rollers are not negligible, then the computational
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roller f I

Fig. 1.4 (a) An omnidirectional wheel, (b) A schematic diagram.,
complexity increases in the dynamic modelling of AGVs with this type of wheels,

Generally, AGVs are popular NIIRMS. However, NIIRMS that are more com-
plex than AGVs also exist: a 16-DOI snake-like articulated mobile KR 1 10bot
(Hirose and Morishima, 1990)—a hybrid configuration consisting of six articulated
body and crawler tracks that has excellent terrain adaptability, suflicient payload
capacity and high mobility—has been developed to satisfy the requirements of a nu-
clear reactor plant in Japan; a space vehicle (Nakamura and Mukherjee, 1990) that
has been conceived by NASA for performing various tasks in space; and RoboT'"RAC
(Hiller and Schmitz, 1990), a wheeled-and-legged mmobile system for rough-terrain

locomotion.

1.4 Research Objectives

Literature investigations reveal that, since the invention of AGVs, attention
has mostly been paid to navigation systems, path-planning and obstacle avoidance
algorithms. The problems of kinematics and dynamics pertaining to AGVs for anal-
ysis, design, simulation and contro! purposes have been recently addressed by a few
researchers. The kinematic modelling of AGVs was reported by Agulld et al. (1987),
Muir and Neuman (1987a, 1987b), Cheng and Rajagopalan (1988) and Alexander
and Maddocks (1989), while dynamic analysis by Cyril et al. (1989), Muir and New-
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man (1988) and Agullé et al. (1989), and control by d’Andréa-Novel et al. (1991)
and Samson and Ait-Abderrahim (1991). A method based on the natural orthogonal
complement (NOC) (Angeles and Lee, 1988) is devised in the present research for
the dynamic modelling of NHRMS. AGVs of various architectures are modelled to

test the performance of the modelling technique developed here.

Closely related design problems associated with the 3-DOIF AGVs with om-
nidirectional wheels are the optimum selection of the total number of wheels, the
nurnber of driven wheels, wheel size, steering method, orientation of the wheels, pro-
file and orientation of the rollers, number of rollers in a wheel, etc., some of which
are addressed here for the first time. Kinematic designs of the 3-DOF AGVs based
on the transformation matrix for direct kinematics are done, where the optimum
orientation of the rollets relative to the wheel hub and the optimum positions and

orientations of the wheel hubs with respect to the platform are found.

Finally, simulation is recognized as an important tool that can be used in the
design and control of mechanical systems and, consequently, simulation of NHRMS

is given due attention.

1.5 Thesis Ceontributions

The present research focuses on the development and application of a dynamic
modelling technique for nonholonomic systems, known as the method of the NOC.
This technique is based on a novel formulation of kinematic constraints arising from
different types of kinematic pairs and a suitably defined orthogonal complement of
the associated kinematic constraint matrix. Here, two lemmas are given in §3.1
with regard to the classification of kinematic constraints that avoid the necessity of
finding the gradients of the rows of the kinematic constraint matrix, gencrally re-
quired to determine the integrability of first-order differential equations arising from
the constraints in the kinematic pairs. A mechanical system consisting of multiple

kinematic chains or loops, multi-loop systems for brevity, even in the presence of re-
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dundant actuation, can be analysed with this method, as deseribed in §3.3 and §3.6.
The DOF of a mechanical system can be determined with the adopted methodology,
which then allows the prediction of the contiollability of the system. The duality
between kinematic constraints and nonworking constraint wrenches can be exploited
for design purposes. To this end, since a nonholonomic mechanical system consists of
both holonomic and nonholonomic couplings, the developed method can be suitably

applied to a holonomic system as well.

The method of the NOC is then applied to the dynamic simulation of differ-
ent NHRMS, which leads to suitable simulation algorithms. Iirst, the simulation ol
a 3-wheeled 2-DOF AGYV is reported, the results showing that the method of the
NOC is an accurate simulation tool. A general-purpose computer program, OMNI,
is developed that allows users to perforim inverse kinematics, dynamics and forward
dynamics leading to the simulation of 3-DOI AGVs consisting of any number ol
omnidirectional wheels. Redundant actuation in 3-DOI vehicles is also considered
where the dynamic modelling is done using the method of the NOC coupled with
an optimization technique. With the methodology developed in this thesis, limita-
tions on the motor torques can be taken into account in the inverse dynamics and
simulation of 3-DOF AGVs. Moreover, kinematic designs are reported, whereby
an accurate and efficient scheme for direct kinematics, and henee, control, can be

achieved.

Finally, a current important feature in design and real-time control, namely,
animation, is thoroughly addressed. Here, the frequency at which the configuration of
a system is computed must match the speed at which the system moves. However,
a fast algorithm with poor accuracy is useless. Thus, it is being shown with an
example that the representation of a dynamic model in different coordinate systems
affects the efficiency and accuracy of the simulation algorithm thus produced. The
results are followed by some suggestions which can be helpful when one attempts to

derive a simulation algorithm for animation purposes.
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1.6 Thesis Outline

A review of classification of mechanical systems and all pertinent definitions
are presented in this chapter. Related issues are also discussed, as pertaining to
holonomic, nonholonomic and robotic mechanical systems. Objectives of the research

and the thesis contributions are included as well.

A review of the existing methodologies for the dynamic modelling of nonholo-
nomic mechanical systems that have been used since 1894 is given in Chapter 2.
With the advent of computers, it has become a natural tendency to derive algo-
rithms leading to the antomatic development of dynamic models of systems consist-
ing of complex kinematic chains. This led to some methods based on orthogonal

complements of kinematic constraints that are briefly described in Chapter 2.

The dynamic modelling of nonholonomic robotic mechanical systems using a
special class of orthogonal complements, namely, the NOC, is presented in Chapter 3
as a dynamic modelling method, in six steps. The crucial step in this formulation
is finding the NOC of the kinematic constraint matrix. The independence of the
kinematic constraint equations arising from a holonomic or a nonholonomic coupling
is discussed in Chapter 3 and two lemmas associated with holonomic and nonholo-
nomic constraints that help in identifying the nature of kinematic constraints, as in
§3.1, are proven. Moreover, the methodology for multi-loop systems is described in
§3.3. An optimization technique coupled with the method of the NOC is given for

mechanical systems with redundant actuations.

Chapter 4 deals with the modelling of nonholonomic robotic mechanical sys-
tems. The method of the NOC is, first, exemplified with a system consisting of an
axle coupled to two wheels, as in §4.1. Then, a simulation algorithm of a 3-wheeled
2-DOF AGYV is developed that has been tested when the vehicle is moving in a cir-
cular trajectory and in a path consisting of two straight lines connected by a smooth

curve. The dynamic analysis of a 3-DOF AGV with all wheels driven may be ob-
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tained by a direct application of the NOC. However, if more than three wheels are
actuated then the system becomes redundantly actuated. A natural choice in tinding
a motor-torque setpoint for the controller is to use optimization techniques. Thus, a

method described in §3.6, applied to redundantly actuated 3-DOI AGVs, s derived.

in Chapter 5, kinematic designs for 3-DOI" AGVs that are based on the isotropic
matrices associated with the inverse and direct kinematics are addressed. It has been
shown that a matrix related to the inverse kinematics of the 3-DOIT AGVs cannol
be made isotropic. On the other hand, geomnetrical parameters ol the vehicles cor
responding to the isotropic matrix for direct kinematics are suggested which will

increase the accuracy and efficiency of the control algorithins of the veliicles,

Some aspects of animation, like rigid-body attitude repiresentation and the
choice of a coordinate frame to represent the dynamic equations ol motion of a
system that affect the efficiency of a simulation algorithm leading, possibly, to an
unrealistic animation of the system, are studied in Chapter 6. A case study of a dish

rolling on a plane is included and guidelines are provided for animation purposes

Finally, Chapter 7 concludes with a general discussion on the achievements in

this research and suggestions for further research work.

Several appendices are included for completeness of this thesis. Appendix A
contains some detailed derivations that would distract the 1eader if included within
the main body of the thesis. Appendix B gives the detailed deseription of the deriva
tions of equations of motion of a disk rolling on a plane in the disk-fixed and inertial

frames, the results being used in Chapter 6.




Chapter 2

Dynamic Modelling of
Nonholonomic Systems. A
Review

The existence of kinematic constraints in the differential form of eq.(1.2), that
impose no restrictions on the possible configurations of a mechanical system, was rec-
ognized at the end of the nineteenth century. Lagrange, in his celebrated Mécanique
Analytique (1788). did not suspect the existence of such constraints (Neimark and
Fufacv, 1967). Thus, he assumed that independent coordinates with independent
variations could be chosen for any mechanical system, once allowance had heen
made for the conditions 1mposed by the nature of the system, which is equivalent
to saying that it is always possible to find a set of independent coordinates defining
the configuration of the systen: at any instant. This oversight was discovered alter
a considerable amount of time had elapsed, in connection with the study of various
cases of motion of rigid bodies constrained to roll without slipping cither on a plane

or on a smooth warpod surface.

In regard to the dynamics of multibody mechanical systems, the primary inter-
cst is in motion study or simulation. Simulation is defined as, qiven the present state
of a system, say at ime t = 0, and the history of the external moments and forces,

find the state varables in the future, v.e., at any time t > 0. Here, terms like state
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and state variable are understood in the usual sense (Kailath, 1980). Thus, a set ol
state variables of a system of [ particles can be defined as the set of position and
velocity vectors of all the particles. Alternatively, the set of position and momentum
vectors of all the particles can play the role of state variables as well. In simulation,
internal or reaction forces at the interconnection of the joints need not be found,
because they do not contribute to the motion of the system. However, the constraint
reaction forces are important in design, for they produce stress, strain, wear and,
eventually, failure. In simulation, to obtain a dynamic model of a system using New-
ton’s Second Law compels one to introduce and eliminate the reaction forees from
the equations of motion. But, since the minimum number of generalized coordinates
that are necessary and sufficient to describe the conliguration of a holonomic system
are independent, the application of variational principles like the proneiple of virtual
work and the principle of stationary action lead to a set of dynamic equations which
do not include the kinematic constraints. Thus, for holonomic systems, dynamic
equations which are free of constraint forces may be obtained. Ou the contrary,
due to the nonintegrability of some kinematic constraints of nonholonomic systems,
the minimum number of generalized coordinates required to define its configuia-
tion completely is not independent. Therefore, the use of a similar methodology,
as adopted in modelling holonomic systems, employing variational principles, forces
one to introduce the kinematic constraints into the dynamic equations of motion ol
nonholonomic systems via a set of Lagrange multiplicrs, which do not vanish in gen-
eral. However, it will be seen that the different treatment of kinematic constramnts,
as explained in some of the formulations of §2.2, and Chapter 3, 1esults in constraint,
force-free dynamic models of nonholonomic systemns, irrespective of the principle used

to obtain the models.

Pertaining to the dynamic analysis of mechanical systems, several general-
purpose software packages like MEDUSA (Dix and Lehman, 1972), IMP (Sheth and
Uicker, 1972), DRAM (Chace and Sheth, 1973), VECENT (Andiews and Kesa-



Chapter 2 Dynamic Maodelling of Nonholonomic Systems. A Review 29

van, 1975), DADS (Crosheck and Ford, 1988)! etc., have been developed to generate
dynamic equations of motion automatically, to integrate the differential equations
numerically and to solve for the internal reaction forces at the joints of the mechani-
cal system under study. The objective behind general-purpose software is to use the
ability of the processor for the dynamic analyses of mechanical systems, i.e., to obtain
an economic and reliable design of a system in a considerably short time since neither
investment nor time are required to build the prototype and to test its performance.
Morcover, when a software package is used, the design variables of the system can be
varjed interactively to investigate the changes in its performance. Furthermore, us-
ing these packages, dynamic models can be generated without knowing much about
the formulation techniques or the theory behind them. In dynamics, it is always
desirable to have a symbolic representation of the governing equations of motion in
order to gain insight into the behavionr of the system. Sometimes, the symbolic
representation of equations of motion increases the efliciency of computer simula-
tions, as intermediate steps are not required. Software like AUTOLEV (Schaechter
et al., 1988), an interactive symbolic dynamics package based on Kane's method
(Kane, 1968; Kane and Levinson, 1985), provides a symbolic foimulation of the
dynamic model, implemeunting FORTRAN code for simulation results. However,
AUTOLEV runs currently in personal computers and does not provide animations

of the simulated motions.

In §2.1, some definitions will be introduced which will be used throughout this
thesis. Then, a brief review of different formulations of the dynamic modelling of

nonholonomic systemns is given.

'MEDUSA: Machine Dynamics Universal System Analyzer; IMP: Integrated Mechanisms Pro-
gram; DRAM Dynamic Response of Articulated Machinery; VECENT: Vector Network; DADS
Dynamic Analysis and Design System
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2.1 Some Definitions

Let a nonholonomic mechanical system possess ¢ DOF and be compased of {

links. Moreover, a p-dimensional generalized coordinate vector 8 is defined as
— T QTT .

where 0; and @p are ¢- and m-dimensional vectors of independent gencralized co-
ordinates and dependent generalized coordinates, respectively, which ate expressed

as

6, =(0,--,0,]7 and 8p = [0p4r,---,0,)" (2.2)

X4

Note that, since nonholonomic constraints are nonintegrable, no explicit relation
exists between @; and @p and, thus, no set of independent generalized coordinates
can be chosen which will completely describe a configuration of the nonholonomic
system. Now, a vector of generalized speeds is defined as the time rate of change of
8, namely,

=10, 6p)" (2.3)
where vectors §; and 90 are the time rates of change of vectors @; and 8y, respec-
tively. It is pointed out here that, as in eq.(1.2), the kinematic constraints can always
be expressed as linear functions of the generalized speeds. Thus, using the constraint,

equations, eq.(1.2), vector éD can be evaluated in terms of 9,.

Furthermore, vector ¢ is introduced as a p-dimensional vector of generalized

forces, and is expressed as
¢=¢,+ 9y (2.4)

where the ¢- and m-dimensional vectors ¢; and ¢ are called the independent and

dependent generalized force vectors, respectively.

Also, pertaining to the motion of a mechanical system, the twist of the eth 1igid
link of the kinematic chain of the system under study, t,, undergoing an arbitrary

motion in the 3-dimensional space, is defined in termns of its angular velocity w, and
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the velocity of the corresponding mass centre ¢,, although any other point of the

body could be used, both being, in general, 3-dimensional vectors. Hence, t; is the

=[%]

Morcover, if I, denotes the inertia tensor of the ith link about its mass centre and this,

6-dimensional vector defined as

(2.5)

as well as all vector quantities involved, are referred to the ith link-fixed coordinate
system, whose angular velocity is @,, then the 6x6 matrices of extended angular
velocily of the coordinate system, W,, of extended mass and its time derivative, M,
and M., respectively, are defined as

_n,o]
=lo .l

L O

w O ml

I, o] (2.6)

M,E[ o o

] and M‘E[

where m,, O and 1 denote the mass of the ith link, the zero and the identity 3x3

tensors, respectively. The cross-product tensor §2,, as in eq.(2.6), is defined as

__ 0o, x x)
. = x

for an arbitrary 3-dimensional vector x. Henceforth, the cross-product tensor of any

=0, x1 (2.7)

3-dimensional vector z will be denoted by Z, unless otherwise indicated. Further-
more, if n, and f, are the resultant moment and the resultant force acting on the ¢th
link, respectively, the latter being applied at the mass centre of this link, then the
wrench w, acting on the ith link is defined in accordance with the definition of t,, as

a 6-dimensional vector, i.e.,

w, = [';:'] (2.8)

Finally, for a mechanical system composed of | links, the 6/-dimensional vectors
of generalized twist and generalized wrench, t and w, respectively, are defined as

t W
t=1: and w=1|: (2.9)
t wi
and the 6! x 6/ matrices of generalized angular velocity, W, of generalized mass, M,

and the time rate of change of the latter, M, are given by

W = diag[Wy,---, W] (2.10a)
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M = diag[M,,- -, M|] (2.100)
M = diag[My, -, M)] (2.10¢)

2.2 A Review of Different Formulations

Earlier attempts to obtain dynamic models of nonholonomic systems, free ol
constraint forces, were based on the principle of virtual work and the variational
principle of stationary action. The principle of virtual work which is based upon
virtual displacements has found almost universal acceptance. In fact, the analyst
can dispense with virtual displacements by formally differentiating the generalized
coordinates and suitably identifying the velocitics and angular velocities involved.
Nevertheless, the principle of virtual work is included in this review for completeness.
Thus, a wirtual displacement of a system is defined as a displacement undergone
by the system as the resull of virtual variations of its generalized coordinates. A
virtual variation, in general, is imagined as an arbitrary infinitesimal variavion of a
coordinate, which is compatible with the constraints imposed on the system. All
links of the system thus undergo physically possible virtual displacements at no
time at all. Now, in dynamics, the principle of virtual work is based on both the
principle of virtual work of statics and the d’Alembert principle (Meiroviteh, 1970;
Greenwood, 1977), which is stated as, “the wotk done by the external, internal or
reaction and inertia forces associated with the virtual displacement, is zero, i.e.,
the total virtual work vanishes.” Thus, the principle of vittual work yields the
d’Alembert-Lagrange equations of the system under study, namely,

d ar . ar oV
w96 "6 ? " 90

where 66 is the virtual variation of @ and T is a scalar function denoting the kinetic

760 =0 (2.11)

energy of the system. The kinetic energy of a system of rigid bodies is simply the sum
of the kinetic energies of all { rigid bodies of the systern. Thus, T can be expressed

as

1 L
t'M,t, = 5t;‘ Mt

l {
T=ST=Y
1=1 =1

N}
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Morcover, V = V(8,t) is the potential energy of the system and —9V/90 represents

the generalized force due to the potential V. Furthermore, ¢ can be expressed by

6= orS  onP
09 96
in which 7% and #P are the power supplied to and the power dissipated by the

system, respectively. Equation (2.11) may be rewritten as

d oL, 0L ..
[5(55) — 55 — #1760 =0 (2.12)

where L = T -V is the Lagrangian of the system.
2.2.1 Lagrange’s Equations

In the presence of holonomic constraints only, a set of independent general-
ized coordinates, vector 87, may be chosen. Hence, 60 in eq.(2.12) may be replaced
by 60 and, correspondingly, ¢ by ¢;. Since the components of 60; are indepen-
dent, eq.(2.12) leads to the ¢ independent scalar Lagrange equations of motion of a
holonomic system (Meirovitch, 1970; Greenwood, 1977), i.e.,

Ei(b—é;) ~ 38, = ¥ (2.13)

In modelling nonholonomic systems that consist of holonomic and nonholo-
nomic constraints, it is possible to choose a set of p genecralized coordinates such
that no holonomic constraints appear in the set of constraint equations, i.e., h = 0.
In turn, constraint equations consist of only n nonholonomic constraints, i.c., the
number of scalar constraints is m = n. Thus, recalling the definition of the virtual
variation, it is scen from eq.(1.2) that the variations of 8 satisfy a system of linear

homogencous equations which is as follows:
356 =0 (2.14)

where J is an n x p matrix and 80 is a p-dimensional vector, Nonholonomic con-

straints are now incorporated into the d’Alembert-Lagrange equations, eq.(2.12), via



“

Chapter 2. Dynamic Modelling of Nonholonomic Systems. A Review

(4
-1

an n-dimensional vector A of Lagrange multiplicrs {Meiroviteh, 1970), which leads

to
d oL oL TyiTcn "1 e
[?lz(_a—é)——a?—gb—.] ,\] 68 =0 (2.15)

In eq.(2.15), the components of §8 arc not independent. lowever, vector A can be
chosen in such a way that the expression in brackets of ¢q.(2.15) vanishes for the
given n components of vector 68. The remaining ¢ components being independent,

they can be chosen arbitrarily, as in the case of a holonomic system. It follows that

d oL 0L .
E(gg)*'é-o‘:qﬁ-h]rk (2.16)

which yields the p scalar equations of iotion of the nonholonomic system (Meiroviteh,
1970; Greenwood, 1977) under discussion. Morcover, eq.(2.16) together with eq.(1.2),
forms a complete system of p+n scalar equations with p unknown generalized coor-
dinates and n unknown Lagrange multipliers. The necessity of introducing Lagirange
multipliers in the dynamic models of nonholonomic systems is a major drawback
the study of these systems. However, vector A has a physical meaning: the com-
ponents of A are the generalized nonworking reaction forces due to nonholonomie

constraints.
2.2.2 éaplygin’s Equations

éaplygin (Neimark and Fufaev, 1967) pointed out that, in certain conserva-
tive nonholonomic systems, kinematic constraints can be expressed as homogencous
equations which are linear in 8. In other words, it is possible to obtain 0p in terms
of 8;,1ie.,

6p = U8, (2.17)

where U is an n x ¢ matrix. According to Caplygin, in these systems, @) appeats nei-
ther in U nor in the Lagrangian L, such systemns being known nowadays as Caplygin
systems. Moreover, Neimark and Fufacv (1967) extended the definition of Caplygin
. . , . . . [N U I ."
systems to those nonconservative nonholonomic systems in which none of U, L, =

and 70 contain 8p. Caplygin systems are remarkable in that their dynamic equa-
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tions of motion can bhe separated from the nonintegrable constraint equations. It is
evident from the form of eq.(2.17) that 6@; may be assumed to be independent and

68, can be written as

68, =Ué0,

Now, the d’Alembert-Lagrange equations, eq.(2.12), in terms of the variation of 6;

is given as

1 oL
Sy - = =+ UT S (200766, = 0

from which, by virtue of the independence of §8;, the equation below is obtained

d 0L oL d 0L
— ()= — + UT (=
dt(ao,) 00, L7 a8p

)= ¢; (2.18)

A new Lagrange function L” is introduced such that the dependent gencralized speeds
8, arc eliminated from the original Lagrange function L by means of eq.(2.17). Thus,
using the chain rule, the useful relations shown below are readily obtained:

oL _ AL  96p. ;L

a6; = 30, * %8, 28, (2.192)
oL~ 9L  36p ., L
— = — . ; 2.19b
d6; 06, +(001) 06p ( )
Substituting eqs.(2.19a) and (2.19b) into eq.(2.18), one obtains
d oL* 98p 0L . OL* vbp L __pd 0L
—_—] g — - : —(—) = 2.20
dt’ 98, (001) 6013] 00; (001) d9p dt(BOD) o1 (2.20)

In eq.(2.20), the n x ¢ matrices d0p/08; and 80p/08; can be expressed using
eq.(2.17) as

96, oU

—— - T_—

30, () 90, (2.21a)
0,

—= =U 2.21b
26, ( )

where 9U/00; is defined in such a way that each du,/96;,fori=1,---,n,isaqgxgq
matrix, u, being the ¢th column of matrix U7. Now, the nq X n matrix ® and the
ng x g matrix gU/98; are defined ac

6, .- 0
ot } and -—a—qs

0=
0o ... é[ 801

duy /90,
: } (2.22)

611"/001
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where 0 is the g-dimensional zcro vector. Morcover, (Ju,/d0;)78; gives the ith
column of matrix (BQD/BOI)T. Furthermore, using eqs.(2.21a) and (2.21b), eq.(2.20)
is rewritten as

. . T :
with dUT /dt being calculated as

(S~
o
-
~—

d—fl? = %I-;—:—(L) (2.24)
where the ¢ x ng matrix U7 /80, is such that, ((’)u,/601)91 represents the ith column
of dUT /dt. Matrix dUT /98 is defined by

08, — o8, " 06

Finally, using eq.(2.24), Caplygin’s cquations of motion (Nefmark and -
faev, 1967; Dolapchiev, 1969) are obtained from eq.(2.23) as

d oL oL 9uT  auT . . al
dt'9e,”  06; - —)' = 2.25
dt(801) 001 [ ao[ ( ()01 ((r)O])) (bl ( ))

where the symbol (BL/aQD)’ means that all the dependent generalized speeds in
the expression dL/38p have been climinated using eq.(2.17). Thus, ¢q.(2.25) leads
to ¢ independent constraint-free equations of motion of a nonholonomic system in
terms of the independent generalized coordinates and its time derivatives. Note
that one of the integrability conditions for a set of velocity constraint equations,
eq.(1.2), that is given in the previous chapter, is that all ¢ x ¢ matrices du,/98; for
, =1, -+, n be symmetric. Therefore, in the presence of only holonomic constiraints,
the holonomicity conditions are written as

gu, _ (Quyr
86, 08, "’

Moreover, the ith column of the expression in brackets of ¢q.(2.25), by virtue of

for 1=1,"+-,n (2.26)

eq.(2.26), vanishes, i.e.,
Ou, o (Ou
06, a0,

Hence, Caplygin’s equations reduce to the Lagrange equations of motion for holo-

0 (=76, =0 (2.27)

nomic systems.
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2.2.3 Gibbs-Appell’s Equations

Gibbs-Appell’s equations of motion of nonholonomic systeins are based on the
concept of acceleration energy S, similar to the kinetic cnergy T. These equations
were first discovered by Gibbs in 1879 (Gibbs, 1879, 1961) and independently dis-
covered in 1899 and studied in detail by Appell. Gibbs-Appell’s cquations (Gibbs,
1879, 1961; Appell, 1899; Neimark and Fufacv, 1967; Desloge, 1986a, 1986b) are

given in terms of quasi-coordinates as

S

% =@, (2.28)
where S is the acceleration energy or the Gibbs-Appell function for a system of rigid
bodies in motion. A general form of the Gibbs-Appell function for rigid-body motion
can be found in Ginsherg (1988). Morcover, q and ¢, are the ¢-dimensional vectors of
quasi-coordinates and generalized forces, respectively. Quasi-coordinates, as defined
in Neimark and Fufacv (1967) and Greenwood (1977), are motion variables that
are of a differential nature, but are not integrable. For example, as illustrated in
Ginsberg (1988), the equations of motion may be obtained in terms of the angular
velocity, as the equations of motion of a disk rolling on a plane, derived in Chapter 6,
but there is no orientation vector that may be used to form a corresponding set
of generalized coordinates. Moreover, quasi-coordinates are introduced by means
of lincar relations between the derivatives of quasi-coordinates and the generalized
speeds as

q=U,0+¢ (2.29)

where Uy is a p X p matrix, and q and q' are p-dimensional vectors but the prime
does not denote differentiation here. The dimensions of Uy, q and q' may vary
depending on the formulation technique. For example, in the derivation of Gibbs-
Appell’s equations, U,, q and ¢’ are a ¢ x p matrix and ¢-dimensional vectors,
respectively. The form of Gibbs-Appell’s equations is very simple, but in many
complex problems it is much harder to write down the acceleration energy than

the expression for the kinctic energy. However, it is pointed out in Neimark and




Chapter 2. Dynamic Modelling of Nonholonomic Systems. A Review 31

Fufaev (1967) that the acceleration energy completely characterizes the dynamics
of a nonholonomic system in the sense that, having an expression for the function
S only, and no further information about the system (in particular, not knowing
anything about the constraints imposed on the system), the equations of motion
can be derived. This assertion is proven by showing that it is possible to find two
different dynamic systems for which the expression T is the same but the function

S is different.

Simultaneously, Volterra (1898) derived the equations ol motion in variables
which he called motion characteristics. Later, Voronec (1901) who is one of the
founders of the mechanics of nonholonomic systems, derived the equations of mo-
tion, similar to eq.(2.25), without making the restrictive assumptions which lead
to Caplygin systems. Voronec's cquations can, therefore, be applied to a larger
class of nonholonomic systems. Moreover, Maggi (1901) showed that Volterra’s and
Gibbs-Appell’s equations may be derived from his method, first proposed in 1896.
Furthermore, Papstavridis in his recent papers (Papstavridis, 1988, 1990) derived ge-
ometrically the constraint-free equations of Maggi for mechanical systems with linear
nonholonomic and/or holonomic constraints and the most general Gibbs-Appell’s
equations of motion for systems under nonlinecar nonholonomic constraints. He also

showed how to calculate the constraint reaction forces.

2.2.4 The Principle of Stationary Action

The principle of stationary action considers the motion of an entire system
between two times t; and {5. It is an integral piinciple that reduces the problems of
dynamics to the investigation of the stationary values of a definite integral. According
to this principle, the actual motion of the system is such that

t
/2(6T +6W)dt = 0 (2.30)
t

1

where 8T is the variation of the kinetic energy and W is the virtual work done

by the system due to potential fields, applicd external actions and dissipation. Ior



PR

Chapter 2. Dynamic Modelling of Nonholonomic Systems A Review 32

conservative systems, §W = —8V | where 8V is the variation of the potential energy,
and eq.(2.30) takes on the form

t
“6Ldt =0 (2.31)

t

Equation (2.31), when applied to a holonomic system, leads to the familiar Hamilton

principle, namely,

t
§ [ Ldt=0 (2.32)

t
where L is the Lagrangian of the system. Hamilton’s principle, as given in eq.(2.32),
can be stated as, “the actual path in the configuration space of a system renders
the value of the definite integral in eq.(2.32) stationary with respect to all arbitrary
variations of the path between the two instants ¢; and ¢y, provided that the path
variations vanish at these two end points.” It can be shown that, for conservative
holonomic systems, Hamilton’s principle leads to the well-known Euler-Lagrange?
cquations of motion of a conservative holonomic system (Meirovitch, 1970; Green-

wood, 1977):
d oL oL
a5, " 56, =

However, using ¢q.(2.30) and introducing the Lagrange multipliers, the equations

(2.33)

of motion of nonholonomic systems in the presence of external moments and forces
can be readily obtained in the form of eq.(2.16), as derived in Meirovitch (1970),

Greenwood (1977) and others.
2.2.5 Hamilton’s Canonical Equations

A different procedure of replacing ¢ second-order equations by 2q first-order
ones can be obtained by writing Hamilton’s canonical equations of motion. To obtain

such equations, a new function H(8y,p,t), known as the Hamiltonian, is defined as

H(8;,p,t)=p0, - L (2.34)

¥This equation was first derived by Euler in 1744 and was later applied to mechanical systems
by Lagrange




L'

Chapter 2. Dynamic Modelling of Nonholonomic Systems A Review a3

where p is the vector of the generalize(l momenta which is given as

()1 .
M,t, = Mt = 235
Z ae, Z; 00, (2:35)
Moreover,
aH al: o
'8—0—1 = - 20, (2..1())

Hamilton’s canonical equations may be obtained by varying hoth sides of eq.(2.34)
and comparing the coefficients of the same variations. However, using the identi-
ties in eqs.(2.35) and (2.36), Hamilton’s canonical equations can be obtained from
éaplygin’s equations of motion (Neimark and Fufaev, 1967), ¢q.(2.25), as

. H
0 = 9 (2.37a)

ap
, OH oUT  9U e 2k
P =91~ 75g, ”[00, ~ (3, 16 oo,)

(2.37h)

where @' is © of eq.(2.22) in which 8; is substituted by &1{/dp. The meaning of the
expression (8L/B@D)’ was explained in §2.2.2, when deriving Caplygin’s equations

of motion.
2.2.6 Kane’s Equations

Kane’s equations, also referred to as Lagrange’s form of d’Alembert’s Principle
in Huston, Passerello and Harlow (1978) and Huston and Passerello (1979, 1930),
are derived by considering that, for a ¢-DOI" nonholonomic mechanical system, o
set of q independent parameters exists whicl, are lincar combinations of 8, i.c., an
expression similar to eq.(2.29) exists whete 8 is substituted by 6, and U, qand ¢

are a ¢ X q matrix and ¢g-dimensional vectors, respectively. Thetefore, ¢ is given by
q=U,0,+ ¢ (2.38)

Moreover, matrix U, and vector ' are chosen in such a way that eq.(2.38) can be
solved uniquely for 8;. Furthermore, the components of ¢ are defined in Kane (1983)

as generalized speeds. Now, the twist of the «th link is written as

t, = V,q+v, (2.39)
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where the 6-dimensional vector v, and the 6 x ¢ matrix V, are both functions of 8

and time. Morcover, matrix V, is given as

[

Vi
where the 3 X ¢ matrices V¥ and V¢ are defined as

[W!,--+,w! and V= [¢l, - ¢

i

\h

while vectors w! and ¢! for j = 1,.++,q, are the jth partial angular velocity and
jth partial velocity (Kane, 1983; Levinson, 1987) of the ith link, respectively. Then,
from d’Alembert’s principle, Kane’s equations of motion (Kane, 1961; Kane and

Wang, 1965; Kane, 1983) arc derived as

¢ +¢7=0 (2.40)

which leads to ¢ independent equations of motion of the nonholonomic system at
hand, ¢, and ¢ being calculated as the ¢-dimensional vectors of generalized active
forces and generalized inertia forces (Kane, 1983), respectively. Moreover, vectors

¢; and @] are calculated as
¢;=V'w and ¢} =VTw (2.41)
where the 6! x ¢ matrix V is defined as
v=[vI... vhiT (2.42)

and w is a 6l-dimensional vector of the generalized wrench acting on the system of |
links. The generalized wrench of inertia moments and forces, a 6{-dimensional vector
w*, is given by

w* = —Mt — (M + WM)t (2.43)
The expression for w*, as in eq.(2.43), will be obvious from Chapter 3 of this thesis,

where the uncoupled Newton-Euler equations of motion of the ! links are derived.

Note that, in eq.(2.41), w contains external and constraint wrenches. However,
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since constraint wrenches do not contribute to the motion of the system, they au-
tomatically vanish from Kane's formulation. Thus, it is not necessary to consider

the constraint moments and forces while evaluating the generalized active forees in

eq.(2.40).

Passerello and Huston (1973) extended Kane’s formulation which, contrary
to eq.(2.38), is based on the original definition of q, i.e., eq.(2.29). According to
Passerello and Huston, vector q in eq.(2.29) is defined in such a way that the last
n scalar equations of eq.(2.29) are equivalent to cq.(1.2) and the remaining equa-
tions are left arbitrary, such that Uq" exists. Morcover, to be compatible with the
nonholonomic constraints, eq.(1.2), the last n components of vector ¢ are all zero.
It is pointed out in Passerello and Huston (1973) that, for holonomic systems, the
generalized inertia force ¢} of Kane’s equations may be evaluated fiom the kinetic
energy of the system, which is the left-hand side of eq.(2.13). This derivation avoids
the computation of the acceleration of the bodics in the system. lHowever, in ordel
to obtain Kane’s equations of motion of nonholonomic systems, the computation ol
the acceleration components is required. Passcrello and Huston (1973) showed that
the burden of computing the acceleration terms of the bodies in nonholonomic sys-
tems can be eliminated. In their method, the teim @} of a nonholonomic system is
evaluated from the kinetic energy of the system and by inverting matrix U,. Thus,
the dynamic equations which appeared in Passerello and Huston (1973) may not be
the most convenient for all types of problems. However, by appropriately choosing
the first ¢ components of g, a set of equations of motion can be obtained, which

amounts to a simplified version of Caplygin’s equations.

In dynamics, an independent set of dynamic equations is preferable since the
dimension of the problem is minimum, which, in turn, enhances the speed of the
simulation algorithm. Moreover, if the set of generalized coordinates is not indepen-
dent, the solution of a dynamics problem involves the solution of a set of differential
and algebraic equations, which is far more complex than the numencal integiation of

purely differential equations (Gear and Petzold, 1984; Park and Haug, 1986). Thus,
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an important consideration here is the choice of independent coordinates in reduc-
ing the dimension of the dynamics problem. An arbitrary sclection of independent
coordinates often results in ill-conditioned matrices. To cope with such a situation,
Wehliage and Haug (1982) presented a method of partitioning the set of generalized
coordinates using the LU factorization of the matrix J. On the other hand, Mani
et al. (1985), Singh and Likins (1985), Kim and Vanderplocg (1986) and Liang and
Lance (1987) used numerical techniques whereby matrix J was decomposed to de-

termine a set of independent coordinates.

2.3 The Use of Orthogonal Complements in Dy-
namics

Recent developments in fast mathematical processors attracted researchers to
automatically develop dynamic models of comiplex mechanical systems and to ef-
ficiently integrate the resulting differential equations of motion for simulation and
animation purposes. The use of an orthogonal complement of the velocity constraint
matrix, for example, J in eq.(1.2), that allows one to obtain constraint-free equations
of motion, has been 1eported by many researchers. Some of these approaches will be

reviewed below with a discussion of their merits and demerits.

2.3.1 Derivation of Dynamic Equations

One of the carly research works in developing dynamic models of mechanical
systems using an orthogonal complement is reported in Huston and Passerello (1974).
In their paper, the equations of motion were first written in terms of p generalized
coordinates as

10 + CO = ¢V + ¢V (2.44)

where T is a p X p positive-definite symmetric matrix, C@ is a p-dimensional vector
of generalized forces due to convective inertia terms, ¢ and ¢V are p-dimensional

vectors of generalized working forces and generalized nonworking constraint forces,
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respectively. The kinematic constraints are assumed to be holonomic, i.e., of the

form

f(8) =0 (2.15)

.

Note that, in eq.(2.45), the constraints are functions of 8 only. Therefore, only
scleronomic constraints were considered. Hence, this method, in its present form,
precludes its application to nonholonomic systems. lHowever, the principle used
to eliminate the constraint forces from the dynamic equations can be extended to
nonholonomic systems. Let the system consist of /i (h < p) scleronomic constraints

and, hence, f is an h-dimensional vector. Differentiation of eq.(2.45) leads to
Jo = (2.46)

where J is the h x p Jacobian matrix of f with respect to 8. According to this
formulation, eq.(2.44), along with eq.(2.45), leads to p + h scalar equations in 2p
unknowns, 8 and d)N, which admit an infinity of solutions, for p > h. However,
given suitable initial conditions, the solution of eq.(2.44) is bound to be unigue,
based on the causality principle of dynamic systems (Vidyasagar, 1973). Motcover,
the solution for 8 does not involve @, and a question atises, namely, what are
the conditions on @" such that vector 8 is uniquely determined? ‘To answer this
question, both sides of eq.(2.44) are premultipied by 9" and integrated, which leads

to a quadratic form, as in Huston and Passerello (1974), namely,
0'10 = 2 / 0" oW di + 2 / 0" ¢V i

. . AT ; . . /
Now, since ¢" is arbitrary, @ ¢" must be zeio for 8 to be independent, of ¢p®
Furthermore, this condition and eq.(2.46) must hold for all values of 8 and 0. Thus,

¢~ must lie in the range of J7, i.e., an h-dimensional vector X exists such that
o =JT\ (2.47)

Alternatively, by definition, the generalized nonworking constraint force ¢ does not

produce any power. Hence,

0 pN =0
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Since J@ = 0 from cq.(2.46), there exists an undetermined vector A such that

¢q.(2.47) is true.

To satisfy the condition that 9T¢N must be zero, a p x ¢ matrix T is defined
in such a way that the matrix T is an orthogonal complement of J, i.e., JT = O,
where O is the h x ¢ zero matrix. Then, premultiplication of both sides of eq.(2.44)
by T” yields .
T'10 + T7Cé = T W (2.48)
where @V vanishes in the equations of motion. Moreover, ¢ scalar equations of
motion, as in eq.(2.48), along with A scalar equations of constraints, eq.(2.45), are
sufficient to solve for the p unknowns in vector 8. It is pointed out here that, although
this method is elegant, no guidelines are provided for the calculation of the matrix T
and thus, it. might be difficult to obtain T for large systems. [Furthermore, the system
has ¢-DOJ and ¢ coordinates are sufficient to control and describe the configuration
of holonomic systems. With this methodology, the evaluation of extra h coordinates

becomes redundant and the time required for their computation can be saved.

A similar approach has appeared in Hemami and Weimer (1981) which, un-
like the approach of [uston and Passcrello (1974), is applicable to nonholonomic
systems. Here, also, no formal construction proceduire of an crthogonal matrix is
mentioned. However, it is suggested in Hemami and Weimer (1981) that, since T
is not unique, some transformations such as premultiplication of eq.(2.44) by I"! or
premultiplication of eq.{2.46) by a nonsingular h x k matrix might ease the problem

of finding T.
2.3.2 The Computation of an Orthogonal Complement

The general concept of formulating constrained dynamic equations of motion
using an orthogonal complement of a velocity constraint matrix is the same, i.e., to
climinate the constraint forces from the dynamic models of constrained mechanical

systems.
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Kamman and Huston (1984) used the zero-eigenvalue theorem in this conteat.

The theorem is based on the zero cigenvalues of matrix J7J, which are nothing but

the zero singular values of J. In this approach, a p x ¢ matrix T is constructed whose

columns are the independent eigenvectors associated with the zero cigenvalues of the
p x p matrix J7J. Thus,

JOIT=0 (2.19)

where O is now the p X ¢ zero tmatrix. Premultiplication of both sides of eq.(2.19)

by TT, under the assumption that both J and T are of full rank, leads to
JT=0
and the equations of motion may be obtained from eq.(2.43).

Alternative approaches for obtaining the orthogonal complement of matrix J

are available. The singular-value-decomposition, the QR decomposition and the
) Gram-Schmidt orthogonalization procedure (Stewart, 1973; Golub and Van Loan, 198.3)

of the velocity constraint matrix J are suggested by Mani et al. (1985) and Singh and
Likins (1985), Kim and Vanderploeg (1986), and Liang and Lance (19387), 1espec-
tively. These algorithms involve numerical schemes of a complex nature. To avoid
this difficulty, an alternative approach of finding an orthogonal complement is pro
posed by reformulating the kinematic constramts and choosing a natural et of gener
alized coordinates. The proposed technique involves neither cigenvalue caleulations
nor requires any decomposition schemes which are undesirable for the development

of fast and accurate simulation algorithms.




Chapter 3

The Method of the Natural
Orthogonal Complement (NOC)

The method of the natural orthogonal complement (NOC) relies on a novel
formulation of kinematic constraints. An orthogonal complement of the kinematic
constraint matrix, derived in the present approach, arises nalurally from the defi-
nition of the velocity field of the system at hand as a linear transformation of the
independent generalized speeds, which are usually the time derivatives of the joint
displacements of kinematic pairs or couplings, i.e., the joint rates. The resulting
orthogonal complement is termed the natural orthogonal complement and thus, the
adopted methodology is called the method of the NOC, as first introduced in An-
geles and Lee (1988). It has successfully been applied to systems with holonomic
couplings (Angeles and Ma, 1988; Angeles and Lee, 1989; Ma and Angeles, 1989)
and systems with flexible bodies (Cyril et al., 1989; Darcovich, 1991). In this thesis,
the dynamic modelling of mechanical systems based on the NOC has been extended
to nonholonomic systems. The NOC method is presented here in a unified man-
ner, which helps to systematically develop a dynamic model of a mechanical system
containing holonomic and nonholonomic couplings, as well as serial and multi-loop
kinematic chains. Moreover, wlile developing a dynamic model, the method is ca-
pable of detecting the DOF and the controllability of the systemn, as pointed out in

§3.3. Thus, prior to the dynamic analysis of a proposed design, it is not necessary
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to perform separate analyses for the determination of the system’™s DO and its con

trollability. Also, if the design is suitable, a part of the dynamic analysis is already
done. Hence, the determination of the DOF of a system, along with the test for its
controllability, can be performed as a part of the dynamic analysis. Furthermore, it
will be apparent from subsequent chapters, in which the method is used to derive
the equations of motion of different mechanical systems, that the NOC is evalnated
without any complex computations. It is also shown in §3.6 how the method of the

NOC can be used in the presence of redundant actuation.

3.1 Formulation of the Kinematic Constraints

The crucial step in successfully modelling a broad class of medhanical systems
with the NOC is the representation of the kinematic constiaints. Generally, as shown
in Chapters 1 and 2, the form taken on by these constraints is such that they are
linear in the generalized speeds and linearly independent among them. Within the
framework of this methodology, both holonomic and nonholonomic constraints are
expressed as a system of equations that are limcar and homogencous in the fwsls of
all the bodies of the systeni, and, most frequently, lincarly dependent among them
The twist of the :th rigid link, which contains the necessary and sufficient informa-
tion for determining the velocity field of this ith link, is defined in §2.1 Moicover,
it is assumed that the ith body of the system under study that comprises { ngid
links and k£ kinematic pairs is coupled to the yth link through cither a holonomiic
or a nonholonomic coupling, which is denoted as the (z,7) joint. Now, mechanical
couplings that produce holonomic and nonholonomic constraints on the twists of the
coupled bodies—velocity constraints—are represented as a system of linear homoge
neous equations in the twists of the two coupled bodies, say t, and t,, defined as

eq.(2.5), namely,

Aot Aty =0, for (i) =Lk g € (1, fand £  (31)
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Fig. 3.1 Two links coupled by a revolute joint.

Furthermore, for m’ scalar constraints, the m’ x 6 coefficient matrices A,, and A,
are, in gencral, configuration-dependent, i.c., they are functions of the generalized
coordinates. Here m’ denotes the total number of kinematic constraint equations,
which are usually linearly dependent. The forms of matrices A,, and A, ;, for holo-

nomic and nonholonomic couplings, are derived below.
3.1.1 Holonomic Constraints

The fundamental lower kinematic pairs, namely, the prismatic and revolute
pairs, always lead to holonomic constraints. These pairs are called fundamental
because the other four lower kinematic pairs—the screw, the cylindrical, planar and
spherical pairs— can be derived as a combination of these. Mechanical couplings
other than the lower kinematic pairs, that produce holonomic constraints are, among,

others, pulley-belt, cam-follower and gear-train transmissions.

As an example shown in Fig. 3.1, the kinematic constraints of two links coupled
by a revolute joint are derived as follows: If 0, is the joint rate for the (2,2 — 1)st

revolute pair coupled to the ith and the (2 — 1)st links, then, referring to Fig. 3.1, the
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relative angular velocity of the ith link with respect to the (i = D)st link, w, —w, . is
0,e;, where vector e, is the unit vector parallel to the axis of the (2,0 — st revolute
pair. Thus, the equation constraining the angular velocities of two suceessive links
is given by:

e X (w—w_1)=0
or

E(w,—w,-1)=0 (32)

where E, is the cross-product tensor, as defined in eq.(2.7), associated with veetor

e,. Moreover, from Fig. 3.1 it is clear that

é, = él—-l + w1 X b,_[ +w, Xr, (.;3)

where the 3-dimensional vectors ¢,_; and ¢, denote the position of the mass centies
of links 2 — 1 and ¢, respectively. Morcover, vectors b,_y and r, aie shown in 1ig. 3 1.
Equations (3.2) and (3.3) are now written in terins of the link twists, which readily

produces an equation of the form of eq.(3.1), namely,
Ati+ A, it =0 (3.4)
where the 6x6 matrices A,, and A,,_; arc as shown below:

A —[B o]’

E,. O ]
1,1 R; 1

Al,l—l = [B;—l -1

with R, and B,.; being the cross-product tensors associated with vectors r, and

(35)

b,.;, respectively.
3.1.2 Nonholonomic Constraints

This subsection will be limited to nonholonomic pure rolling, and hence, no
slippage is considered. As an example of this type of nonholonomme conpling, a rigid
body rolling on a plane without slipping is shown in Fig. 3.2, the non-slip condition

in linear homogencous form being derived below. If the rigid body is considered as
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Ci—lV
0

Fig. 3.2 A rigid body rolling on a plane.

the «th link of a system and the plane is a part of the boundary of the (i — 1)st link,

then, referring to Iig. 3.2, the resulting nonholonomic constraint is stated as
éa = ét-—] + W, X b:—l + w, X r; (36)

where the vectors appearing in eq.(3.6) are shown in Fig. 3.2. Moreover, eq.(3.6)
can also be written in the form of eq.(3.4), with the 3 x 6 matrices A,, and A, ,_,

defined as

A,=[R 1] and A, =[B. -1] (3.7)

and the cross-product tensors R, and B,_; are associated with the vectors r, and

b,_1, respectively, as shown in Fig. 3.2.

From eqs.(3.4), (3.5) and (3.7), it is apparent that kinematic constraints, whether
holonomic or nonholonomic, can be written in the form of lincar homogeneous equa-
tions in the twists of every pair of coupled bodies of a mechanical system. An
essential difference between the holonomic and nonholonomic constraints previously

derived is stated in the form of lemmas.

Lemma 3.1 Holonomic kinematic constraints written in the form of egs.(3.4) and
(3.5) always lead to six linearly dependent scalar constraint equations,

te., m = 6.
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Proof: Let a matrix A, be defined as

A=

E 0 -E o .

Rl 1 Bg—l —'1

where the first two column blocks of matrix Aj, amount to the 6 x 6 matrix A,
in eq.(3.5) and the last two column blocks correspond to the 6 x 6 matrix A,,_; in
eq.(3.5). To prove that these six holonomic constraints are dependent, it is suflicient
to show that the matrix Aj in eq.(3.8) is rank deficient. This is done as follows:
matrix Ay is a 6 X 12 matrix, its rank thus being at most six, e, the matis
has at most six independent rows. To find its rank, clementary operations can be
performed on the columns of Ay, as shown in §A.1, that do not change its rank,

thereby producing a reduced 6 x 6 matrix A}, as shown below:

= [lg Cl)] (3.9)

It is clear from eq.(3.9) that three eigenvalues of the 6 x 6 matrix Aj are those ol
the 3 x 3 identity tensor, 1, the other three cigenvalues of the same matrix being,
those of E,, which, as proven in §A.3, has exactly one zero cigenvalue, associated
with the unit eigenvector e,. Thus, the rank of matrix AJ, is five and, henee, of the
six constraint equations, only five are independent. When uncoupled, a rigid body
in the 3-dimensional Cartesian space has six DOF. Therefore, a revolute pair that
allows only one DOF' motion of the coupled hodies leads to five independent sealan

constraints, as reflected by the rank of matrix A}, Morcover, if the six constraint

equations were independent, the DOF of a revolute joint would be zero, i, the

coupled bodies would be rigidly connected. Hence, any joint, possessing one o1
more DOF, leading to holonomic constraints, has six dependent constraint equations.
Moreover, among kinematic pairs, an increase in the DOF means an elimination of

an independent constraint cquation.

Lemma 3.2 Nonholonomic kinematic constraints, as given in cqs.(3.4) and (3.7),

always result in three linearly independent scalar constraint equations.
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Proof: In asimilar way to the holonomic case, a matrix A, is constructed as follows:
A,=[R, 1 B_, -1} (3.10)

where the four column blocks of the 3 x 12 matrix A, are those of the matrices A,
and A,,_q, given in ¢q.(3.7). Now, matrix A, is reduced, as explained in §A.2, and

amounts to the 3 x 3 identity tensor, namely,
Al =1 (3.11)

which shows that the three constraint equations in eq.(3.7) are lincarly independent.

3.2 Dynamic Modelling of Mechanical Systems
Using the NOC

The method of the NOC, as pertaining to mechanical systems composed of
constrained rigid bodies, first introduced in Angeles and Lee (1988). is described in

six steps, namely,

Step 1: The Euler equations of motion, describing the rotational motion of the ith
link, are given by

;l—t(I,w,) +o, xIw, =n,

or

Lw, + Lw, + o, x Lw, =n, (3.12)

where I, is the 3 x 3 inertia tensor of the ith link about its mass centre and w,,
o, and n, arc the 3-dimensional vectors of angular velocity of the ith link, angular
velocity of the tth coordinate frame fixed to the :th link and the resultant moment
acting on the ith link, respectively. Moreover, Newton’s Second Law, describing the

motion of the mass centre of the 7th link, is expressed as

d . .
m(m,c,) + o, x (m¢,) =1

or

me, +mo; x¢, =1, (3.13)
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where m, and f; are the mass of the ith link and the resultant force acting on the
mass centre of the :th link, respectively. Now, recalling the definitions of the twist,
t,, wrench, w,, extended angular velocity matrix, W, extended mass matrix, M, of
the zth link, and the rate of change of the latter, M., as defined in §2.1, the Newton-
Euler equations, eqs.(3.12) and (3.13), governing the motion of the ith body, can be

written in a compact form as:

M,t, = —(M, + WM,)t, + w! + wV (3.1

where the resultant wrench vector w, has been decomposed as
W N
W, =W + W

with w? and w¥ being defined, in accordance with the definition of w,, as the
working wrench and the nonworking constraint wrench, both acting on the 1th body,
respectively. The former represents working moments and forces supplied by actu-
ators or arising from gravity or dissipation, whereas the latter denotes nonworking

moments and forces whose sole role is that of keeping the bodies together.

Step 2: It is assumed that the mechanical system under study is composed of { rigid
links. Then, the Newton—Euler equations for all the individual links can be written
as

M, = -M,+ WM )t, +wV +wN, for 1=1,.,! (3.15)

Next, by virtue of the definitions given in §2.1, of the 6/-dimensional vectors of gener-
alized twist t and the 6{ x 6/ matrices of generalized angular velocity W, peneralized
mass M, and its time-rate of change, M, the | dynamic equations, cq.(3.15), can

now be expressed as
Mt =—(M+WM)t+w" +wV (3.16)

where w" and w? are defined, similar to w, as the 6l-dimensional vectors of genei-
alized working wrench and generalized nonworking constraint wiench, respectively.

They are given as
y & w N

Wi W)
w o= : and w' = :
w" wY
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squation (3.16) is formally identical to eq.(3.14), and constitutes a set of 6/ uncon-

strained scalar dynamic equations. Moreover, if eq.(3.16) is rewriticn as
w? +wl = Mt + (M + WMt (3.17)

then the negative of the right-hand side of eq.(3.17) is recognized as the generalized
inertia wrench, denoted in eq.(2.43) by w*. This is equivalent to the inertia force
in d’Alembert’s equations of motion of a moving particle, which is defined as the
negative of the product of the mass of the particle and its acceleration. The right-
hand side of eq.(3.17) is used in §2.2.6 to find the generalized incrtia forces of Kane’s

cquations of motion.

Step 3: The kinematic constraints produced by holonomic and nonholonomic cou-
plings are derived in a differential form. Within the methodology adopted here, as
proven in §3.1, every holonomic coupling gives rise to six linearly dependent scalar
cquations. Also, every nonholonomic coupling, in the abscence of slippage, gives risc
to three linearly independent scalar equations. These constraints can be written as
a system of lincar homogeneous equations in the twists of the ! links of the sys-
tem, which is equivalent to the following linear homogeneous system in the vector of
generalized twist:

At=0 (3.18)

Here, A is a (6y + 3v) x 6] matrix, ¥ and v being the numbers of holonomic and
nonholonomic pairs or couplings, respectively, so that the total number of kinematic

pairs & is equal to v + v.

Step 4: Under the assumption that the DOF of the system is ¢, the ¢-dimensional
vector @ of independent generalized speeds is recalled from eq.(2.3). Then, the
vector of generalized twist can be represented as the following linear transformation
of § I

t =T8; (3.19)

where T is a 6/ x ¢ malrix that is, in general, a function of the generalized coordinates,

0, and time. Upon substitution of t, as given by eq.(3.19), into eq.(3.18), the relation



Chapter 3. The Method of the Natural Orthogonal Complenient (NOC') 4

below is obtained:
ATé;=0 (3.20)
Since all the components of vector 91 are independent, the relation below can be

readily derived:

AT =0 (3.21)

where O is the (6y + 3v) X ¢ zero matrix. Equation (3.21) shows that T is an
orthogonal complement of A. Because of the particular form of choosing this com-
plement, eq.(3.19), T is termed the natural orthogonal complement (NOC) of AL It
is pointed out here that, to obtain the NOC of the kinematic constraint matrix A,
as shown in eq.(3.21), the choice of eq.(3.19) is important, because for matrix T to
be the NOC, the generalized twist must be written as a linear combination of the
independent generalized speeds. In serial-type mechanical systems, for example, a
g-axes ¢-DOF serial robotic manipulator, where all the joint rates can be considered
as the independent generalized speeds, an expression for t in the form of eq.(3.19)
is readily available. However, in the presence of unactuated joints that occur in a
multi-loop mechanical system, e.g., in a parallel 1obotic manipulator, where not all
joints are actuated, deriving the expression appeating in eq.(3.19) is not straightfor-
ward. Thus, in §3.3, a method is given to find the NOC for mechanical systems with

unactuated joints.

Step 5: Since the role of the nonworking constraint wrenches is limited to keeping
the coupled links together, they do not contribute to changes in the energy of the

system. Hence, the power 7"V developed by the constraint wrenches vanishes, i.c.,
N =tTwlV =0 (13.22)
Substitution of eq.(3.19) into eq.(3.22) leads to
3Ll N Qo
6, T"wN =0 (:3.23)
and, due to the independence of the components of vector 0, eq.(3.23) leads to

TTwh =0 (13.24)
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where 0 is the g-dimensional zero vector. Now, it is apparent from eq.(3.24) that w?
lies in the nullspace of matrix TT. Morcover, by virtue of the definition of matrix
A, T is an orthogonal complement of A. Thus, the vector of nonworking constraint

wrench, w?, lies in the range of the transpose of A, i.c.,
wV = AT (3.25)

where A is a (6 4 3v)-dimensional vector of undetermined scalars which are nothing
but the Lagrange multipliers discussed in §2.2.1. It is pointed out here that the
duality between kinematic constraints and nonworking constraint wrenches (Saha
and Angeles, 1991d), as evident from eqs.(3.18) and (3.25), can be exploited in order

to determine the constraint torques and forces which are needed for design purposes.

Step 6: Upon multiplication of both sides of the 6/-dimensional Newton-Euler un-
coupled equations of the system, eq.(3.16), by the transpose of T, the vector of
nonworking constraint wrench is eliminated from the said equation, which is obvious

from eq.(3.24), the equation thus obtained being reduced to:
T'Mt = -TT(M + WM)t + T7w" (3.26)
Now, both sides of eq.(3.19) are differentiated with respect to time, which yields
t =TO; + TO, (3.27)

Note that the entities of T are not, in general, simply the time derivatives of the
corresponding entities of T, because the vector bases on which T is expressed are

usually time-varying.

1%

Furthermore, w" is decomposed as follows:

wW =wt 4 wé 4t w? (3.28)

where w? represents the generalized wrench due to torques and forces applied by
the actuators, if any, whercas w@ and w2 account for gravity and dissipative effects,

respectively.
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Substituting eqs.(3.19), (3.27) and (3.28) into eq.(3.26), a svstem of ¢ indepen

dent dynamic equations are derived for a constrained mechanical system, namely,

TTM(T(}I +T6)) = ~TT(M + WM)TO; + T (w ' + w" + w'))

or
10,)8,=C(0,,0)0, + T +~v+ 6 (3 20)
where
I = TTMT: ¢ x ¢ matrix of generalized inertia.
C= —TT[MT + (M + WM)T]: ¢ x ¢ matrix of convective mettia terms

r = TTwA: ¢-dimensional vector of generalized driving foree
~ = TTwC: ¢-dimensional vector of generalized foree due to gravity

§ = TTwP: ¢g-dimensional vector of generalized dissipative force

From the foregoing discussion, then, it becomes apparent that eq (3.29) tep
resents the Euler-Lagrange dynamic equations of the system at hand, fiee ol non
working generalized constraint forces. Morecover, the dynannc model thus derved
is applicable to mechanical systems consisting of both holonomic and nonholononne
couplings. Furthermore, the dynamic equations have heen derived without tesorting,
to lengthy partial differentiations, which would be the case if either a straghtforwand

or a recursive derivation of the Fuler-Lagrange equations had been attempted.

3.3 Derivation of the NOC in the Presence of
Unactuated Joints

The presence of unactuated joints is very common in mdti-loop mechanical
systems, an example of such a system being an automatic guided veludle, Inorder to
obtain the dynamic equations of motion in the presence of unactuated joints with the
aid of the NOC method, 1t is necessary to rederive eq.(3.19) in Step 4 and eq.(3.27)

in Step 6 of the adopted methodology given in §3.2. In any mechanical systemn, the
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generalized twist of all the links can be written as a lincar transformation of the

p-dimensional vector of the generalized speeds which need not be independent, i.e.,
t=T,0 (3.30)

where the 60 x p matrix T,, is a function of vector @ and time. Substitution of
¢q.(3.30) into eq.(3.18) yields
AT,0 =0 (3.31)

Since the components of 8, in general, are not independent,
AT, #0 (3.32)

which has already been pointed out in Step 4 of §3.2. However, a set of independent
generalized speeds which are, normally, a set of actuated joint rates, grouped in the
g-dimensional vector f;, can be chosen, where q is the DOF of the system, in the
absence of redundant actuations. Morcover, @p is defined as the vector of rates of
the remaining joints in the system, i.e., as the vector of unactuated joint rates. Thus,

vector @ can be expressed according to eq.(2.3), while eq.(3.30) can be rewritten as
t = T]é] -+ T[)é[) (333)

where

T,. = (T1, Tp]

and T; and Tp are 6/ x ¢ and 6! x m matrices, respectively. Furthermore, to write
t as a linear transformation of vector 8, an expression of 6p in terms of 8, similar
to eq.(2.17), is derived as follows: an m x p matrix J is first derived, whose rows
are the m independent rows of the (6 + 3v) x p matrix AT,,. These independent

constraint equations are expressed as
Jo=0 (3.34)

where eq.(3.34) is eq.(1.2) in which the m-dimensional vector b does not appear.

Thus, with the approach introduced here, no distinction needs to be made between
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catastatic, acatastatic, scleronomic and rheonomic constraints, tor all are treated
as catastatic ones. Note that it is not recommended to compute matiin J from
eq.(3.31), since such computation will involve decomposition technigues sinnlar to
those mentioned in §2.3.2, which, due to their complexity, are not recommended for
the development of fast simulation algorithms. [n fact, a scheme based on indepen
dent loop equations of the whole kinematic chain (Gosselin, 1988; Nahon, 1990) 1~
presented in §3.4, which also allows one to obtain the DO of the mechanical system

at hand using the relation given in Angeles and Gosselin (1988) as
q = dimN ()] (3 35)
where M (J) is the nullspace of J.
Now, eq.(3.34) is tewritten as
3,6, +3,6, =0 (3 30)

where

J=[J;, I
J; and Jp being m x ¢ and m x m matrices, respectively. Il the mechanical system
at hand is controllable by its minimal set of actuated joints, then Jyy is of tull rank
Thus, Jp! exists and, hence, the dependent generalized speeds are computed as given
by eq.(2.17), namely,
6, = U8, (3 37)
where the m x ¢ matrix U is derived from eq.(3.36) as

U=-I3'3,

Upon substitution of eq.(3.37) into eq.(3.33), an expression for L s obtained as,

t=(T;+T,0)0, (13.3%)

Since 8; is defined as the vector of independent generalized speeds, the NOC of

matrix A, in the presence of unactuated joints and n the absence of redimdant
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actuation, is given hy
T=T;+TpU=T;-TpIp'J, (3.39)
Matrix T is now obtained as
T=T,+TpU+TpU

or

T = T[ - T])JBIJl + TDJ;)ljl)JBIJI - TDJ—DI.:]I (3.40)

Knowing matrices T and T from eqs.(3.39) and (3.40), a set of constrained Euler-
Lagrange dynamic equations of motion of mechanical systems in the presence of

unactuated joints is written as
1(6);, = C(0,0,)0,+T7+~+6 (3.41)

where I, C, 7,4 and é are defined in Step 6 of §3.2. It is pointed out that, contrary to
eq.(3.29), matrix I in eq.(3.41) is a function of all generalized coordinates. Morcover,
matrix C is, in general, a nonlinear function of the generalized coordinates and lincar

in the independent generalized speeds.

It is apparent from eqs.(3.39) and (3.40), that matrices T and T entail cum-
bersome expressions. Thus, for multi-loop systems where matiix T is time-varying.
the derivation of T and T at any instant using these equations will lead to expen-
sive algorithms. Efficient methods of calculating both T and T, while avoiding the

cumbersome expressions, are shown in §3.5.

3.4 A Relation between the Actuated and Unac-
tuated Joint Rates

In the present formulation, the derivation of matrix J, as in eq.(3.34), is nec-
essary in order to find a relation between the actuated and unactuated joint rates

which, in turn, allows one to determine the dependent generalized speeds in terms of
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the independent generalized speeds. In fact, in the absence of redundant actuation,
the unactuated and actuated joint rates can play the roles of the dependent and
independent generalized speeds, respectively. The presence of unactuated joints is
very common in mechanical systems with kinematic loops. In a multi-loop system,
a set of m independent constraint relations can be conveniently obtained from the
independent kinematic loops of the kinematic chains. The independent hinematic

loops are recognized hete from the graph representation of mechanical systems

3.4.1 Graph Representation of Kinematic Chains

The concept of a mechanical network, derived from that of an electrical network,
allows one to systematically describe kinematic chains (Davies, 1981). Topologically,
a mechanical network containing joints and links s analogous to an electrical network
made up of nodes and impedances. Hence, graph theory offers a systematic way ol
representing the topology of kinematic chains. 'Fhe graph representation ol kinenmatic
chains has been used by, among others, Dobrjanskyj and Freudenstein (FI6T) and
Baker (1981). It consists of a diagram where cach hnk is 1epresented by a pomt
and cach joint by an edge. Thus, the graph representation of a kinematice chain of a
mechanical network is a collection of points connected by edges  Pertinent definitions
of terms and results to be used in this thesis can be found in (Harary, 1969), and

hence, they are not included here.

The number of independent kinematic loops in a mechanical system is found by
counting the number of independent cycles, ', in the associated graph. The nnmber
C in a connected graph is given in turn by Euler’s formula for graphs (Harary, 1969),
namely,

C=Q-P+1 (3.12)

where @) is the number of edges and P’ is the number of points. Morcover, (/s an
invariant of the graph G. The determination of the independent loops in a multi

loop system is illustrated with an example pertaining to a 3-wheeled 2-DOF AGV.
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&/ A caster wheel

Fig. 3.3 A 3-wheeled 2-DOF AGV

The result will be used later in Chapter 4. The graph for this AGV, as shown in
Iig. 3.3, is drawn in Fig. 3.4(a) where points B, P, R\, Ry, I' and L represent,
respectively, the base, i.e., the floor on which the AGV moves, the platform, the
left rear wheel, the right 1ear wheel, the front caster wheel and the fork connecting
the platform with the fiont wheel. A spanning tice is shown in ig. 3.4(b). The
spanning tree is not unique and thus, other spanning trees could have been chosen.
The chords corresponding 1o this spanning tree are shown in Fig. 3.4(¢) and finally,
the two resulting cycle bases, i.e., the two independent kinematic loops of the system

al hand, are shown in Fig. 3.4(d).

3.5 Calculation of the NOC and its Time Deriva-
tive

The derivation of the NOC, particularly using eq.(3.39) is, in general, costly,
except for very simple systems such as a disk rolling on a planc or a planar four-bar
linkage. An efficient method of calculating T (Ma and Angeles, 1989) can be readily
derived by noticing that T depends on generalized coordinates only. Moreover, the

Jth column of T equals i)t/f)o.” for y =1,-++,q. Thus, T can be found as follows:

T= [tlalzl,t'm:t""stléq=1] (3.43)

other 6,s of 01 are zeto
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(a) (b) ()

B

(d)
Fig. 3.4 (a) A connected graph, (b) A spanning tree, (¢) Chords, (d) Independent

loops.
i.e., the jth column of T is calculated as the generalized twist of the system assuming

that all the independent speeds except the jth one are zero. which has a value ol

unity.

The inverse dynamics problem in robotics 1s defined as, given a task, for cram-
ple, to follow a path by an AGV, find the required joint torques and forees, .., the
motor torques at the wheels of the AGV. In this problem, matiin T does not appean

in the dynamic equations, because the driving torques are obtained as
=TT Mi+ (M+ WMj)t —w" — w'/| (3.41)

where t may be calculated recursively from a known twist rate of a link m a kinematic
chain, which is required to perform the given task. Howevero in forward dynam
ics, which arises in simulation studies, T appears, but its diect calculation can be
avoided. In fact, the generalized inertia terms that are quadiatic m 6, C(6,0,)6,
in eq.(3.41), can be evaluated efficiently using the techmque introduced by Walker

and Orin (1982) for serial manipulators and which has later been extended by Ma
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and Angeles (1989) for parallel manipulators. With this technique, the foregoing

quadratic terms are calculated as
C(8,608; = —(T+v+8)ly _, (3.45)

i.c., the first term of the right-hand side of ¢q.(3.41) is computed from inverse dy-
namics (Walker and Orin, 1982) as the negative of the sum of the remaining three
terms when 6 is set equal to 0. Equation (3.45) can be readily implemented in

dynamic simulations of mechanical systems.

3.6 Application of the Method of the NOC in the
Presence of Redundant Actuation

Redundant actuation occurs when the number of driven actuators in a sys-
tem exceeds the DOF of the system at hand. The degrece of redundant actuation
is given by the difference between the number of driven actuators and the DOF of
the system. Motcover, since the number of equations governing the dynamics of the
system is always equal to its DOF, in inverse dynamics, defined in §3.5, the dynamic
cquations cannot uniquely yield the required torques of the actuators, because an
underdetermined system of equations arises. Furthermore, the set of kinematic equa-
tions relating the twist of the end-effector, for example, the gripper of a serial-type
manipulator, or the platform of an AGV, and the actuated joints, is also underde-
termined. The underdeterminacy in the kinematic and dynamic equations, resulting
from redundant actuation, can casily he avoided by ‘feathering’ the redundant ac-
tuators, i.e., not driving the redundant actuators while leaving the cortesponding
joints free to move. However, in feathering, unless the choice of the driven actuators
is based on some suitable performance criterion the system may function poorly. On
the other hand, redundant actuation allows greater safety in case of breakdown of
individual actuators  For example, if a mechanical system is tedundantly actuated,
it can still be controlled if one or more actuators break down- up to the degree of

redundant actuation. Redundant actuation may be applied to parallel-architecture
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robots, e.g., parallel manipulators and AGVs, in order to make them lighter and
faster, although the advantage obtained through redundant actuation might be off-
set by the weight of the extra actuators. In many instances the use of redundant
actuation is advisable and a common approach to address such a problem is through

constrained optimization, which is outlined in the subsection below.
3.6.1 Constrained Optimization

A general constrained optimization problen is stated as

mxin f(x) (3.16a)
subject to h(x) =0, for 1=1,....¢, (3. 1Gh)
g,(x) =0, for y=1,. ,ea (3 160)

where x is a u-dimensional vector of design variables, while ¢, and ¢, denote the num
ber of equality and inequality constraints, respectively. Function f(x) is normally
called the objective function, while eq.(3.46b) 1epresents a set of equality constraints
and eq.(3.46¢) represents a set of inequality constraints. For convenience, the dis-
cussion is limited to objective functions which are twice continuously differentiable

throughout the region of interest.

The constraints given by eqs.(3.46b) and (3.46¢) are nonhinear m general. How
ever, the constraints of interest that arise from the dynamics of a mechanical system
with redundant actuation are lincar. Thus, only hnear constraints are considered

here and, hence, the optimization problem is 1edefined as

mxin fix) (3.47a)
subject to Ax=b, (3.47h)
Azx > b2 (°;47( )

where A is a matrix of dimension ¢, x jt, while Ay is a matrix of dimension e, # 1.
The conditions for a minimum f(x) can be found in any book on optimization, for

example, Gill et al., (1981), and hence, are not given here. An optimization problem
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subject to linear constraints can be solved by linear or quadratic programming (Gill

et al., 1981), if the objective function f(x) is linear or, correspondingly, quadratic.

An optimization problem in the form of either eqs.(3.46a)~(3.46¢) or eqs.(3.47a)-
(3.47¢) can be readily solved by using any standard procedure. For instance, in this
research, an IMSL! (IMSL, 1990a) subroutine, DQ2ROG, is used. This subroutine
is based on Powell’s implementation of the dual quadratic programming algorithm
by Goldfarb and Idnani (1983), for convex quadratic programming subject to con-

straints, as given in cqs.(3.47b) and (3.47c).
3.6.2 System Dynamics Under Redundant Actuation

A nonholonomic mechanical system possessing ¢-DOF requires at least ¢ actu-
ators for its control. It is now assumed that, under redundant actuation, y actuators
are driven to control the ¢-DOF of the systemn, whete ¢ > ¢, thus leading to an
optimization problem. Let te be the ¢-dimensional twist vector representing the
angular velocity of the end-effector and the velocity of 1ts mass centre, C. It is
assumed here that the dimension of the twist vector te ¢ uncides with the DOF of
the system, ¢. Moreover, 0 4 is defined as the gi-dimensional vector of actuated joint
rates. Note that, in §3.2 and §3.3, since the nuimber of actuators is equal to the DOF
of the systenm, a set of actuated joint rates is always taken as the sct of independent
generalized speeds. In the present case, the joint rates are not independent, but the
¢ components of the twist of the end-effector are independent, and hence, they can
play the tole of the independent generalized speeds. Thus, using the method of the
NOC, a set of dynamic equations is obtained in terms of the angular velocity of the

end-cffector and the velocity of the mass centre, namely,

I(0)te = C(8,te)te + wi + wl + wpP (3.48)
G

where the ¢ x ¢ matrices I and C, and the g-dimensional vectors wgl, wé and w2

are defined in a similar way to the definitions of the matrices and vectors associated

'IMSL Mathematical Library consists of FORTRAN subroutines for mathematical applications.
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with the dynamic equations given in ¢q.(3.29). However, in inverse dynamices, it is
necessary to calculate the joint variables, their time derivatives and the corresponding,
torques to perform a certain task. This is done as follows: I'iest, an expression
relating the twist of the end-effector t¢ and the accaated joint rates 05‘\ is written in
a similar way to eq.(3.30), i.c.,

te =Ta0, (3.19)
where T4 is a ¢ x g matrix. Then, the wrench of the cnd-effector we, required to
perform a task, is obtained from the equations of motion, eq.(3..48). Morcover, the

power supplied to the system can be calculated as
= tlw (3.50)

Furthermore, when g joints are driven, the power supplied by the actuators, 7, is
given as
T

=0 ,74 (3.51)
where 74 is the p-dimensional vector of actuated joint torques. Now, since the
power supplied by the actuators must be equal to the power input to the system,
i.e. = w°, a relation between the actuator torques and the wrench of the end-
ie., m4 5, lation bety the actuator torq [l hoof tl |

effector is readily derived, namely,

7 T A qr
oATA = thC (v;.-r)))

Again, to solve the problem of inverse dynamics, defined in §3.5, the joint rate vector
64 must be known. Thus, cq.(3.49) mnust be solved for 8 4 to obtain the required joint
torques T4. But eq.(3.49) leads to an underdetermined system of lincar equations
that does not define 84 uniquely. However, using an optimization approach unde

the equality constraints, eq.(3.49), a unique solution can be found, namely, as
0, = Lt (3.53)

which minimizes 1/2(929,1) if matrix L is defined as the pseudo-inverse of T 4 (Rao
and Mitra, 1971), i.e.,
L=THT, 1)) (3.54)



Chapter 3. The Method of the Natural Orthogonal Complement (NOC) 62

Now, substitution of ¢q.(3.53) into eq.(3.52) leads to
tiwd = tJLT 7,

or

tL(wl —LTr,4) =0 (3.55)

One possible way of verifying that eq.(3.55) holds is by equating the expression in
the brackets to zcro, i.e.,

Wév —LTTA =0

or

wi =LTr, (3.56)

Equation (3.56) is also an underdetermined system of linear equations and can be

solved for 74 in a similar way to eq.(3.49), i.e.,
T4 = (LT)'wi = L(L'L)"'wi (3.57)

in which the solution vector 74 minimizes 1/2(7574). Using eq.(3.54), eq.(3.57) is
A

simplified as

ra=TIwA (3.58)

Note that in solving eqs.(3.49) and (3.56), only the linear constraints are considered.
However, if there are any limitations or. the motions and available power of the

actuators, they can be accounted for through inequality constraints, as in eq.(3.47¢).

Dynamic simulation, defined in the preamble of Chapter 2, under redundant
actuation, can be readily done by using eq.(3.56) and integrating the dynamic equa-

tions of motion of the system under study, eq.(3.48).
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Chapter 4

Dynamics of Nonholonomic

Robotic Mechanical Systems
(NHRMS)

Nonholonomic robotic mechanical systems (NHRMS), as defined in §1.2, are
nonholonomic mechanical systems under computer control.  Well-known examples
of such systems are automatic guided vehicles (AGVs). AGVs are widely used in
modern factories, particularly in flexible manufacturing cells, and, more 1ecently, in
houses, offices, as well as in space applications. Most ol the industrial AGVs use
only kinematic models for their control purposes. However, the smooth and aceu-
rate control of state-of-the-art AGVs requires that their dynamics he considered.
Moreover, fast algorithms are needed for the on-line computations of the required
motor torques that enable the vehicle to decide upon the course of action at any
instant. Thus, the systematic approach to dynamic modelling, namely, the method
of the NOC for the modelling of nonholonomic mechanical systems that has been
proposed in Chapter 3, is used to model a 3-wheeled 2-DOI AGV and a few 3-DOF
AGVs with omnidirectional wheels. The method is first excmplifiecd with a simple
nonholonomic system, a 2-wheeled mechanical system, where all necessary calceula-
tions are given in order to explain the different steps in modelling the nonholonomic
system. Then, the dynamic model of a 3-wheeled 2-DOF AGV is obtained. FFinally,

a general-purposce code, OMNI, is written for the inverse kinematics, dynamics and
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simulation of 3-DOF AGVs consisting of A ommnidirectional wheels. The developed

software is tested for 3-, 4- and 6-wheeled vehicles.

4.1 A Two-Wheeled Mechanical System

A 2-wheeled mechanical system moving on a floor, as shown in Fig. 4.1, is
assumed to consist of an axle that is coupled by two revolute pairs to two wheels.
The system at hand is nothing but the axle of the 3-wheeled 2-DOF AGV connected
by two driving wheels, as shown in Iig. 3.3. Here, pure rolling of the wheels on the
floor is assumed and henee, nonholonomic constiaints arise, as derived in §3.1.2. The
dynamic analysis of the 2-wheeled system forms the basis of modelling the AGV of
Fig. 3.3. Since the system has 2-DOF, two wheels in the system are considered to be
driven or actuated by two independent motors. The kinematic analysis of the system
is done separately in §4.1.1, the results of which are used in the dvnamic analysis of

the system.
4.1.1 Velocity and Acceleration Analyses

For analysis, a coordinate frame of unit vectors i, j and k is fixed at the centre

of the axle, (". According to I'ig. 4.1, t'  velocity of point C can be written as
Ve = + Vvero,

where vy is the velocity of point O; and vg)o, is the relative velocity of C with

respect to Oy, Velocity vy can be written in terms of the radius r of the wheels and

2 “’Ct/ @,/
©

Fig. 4.1 A 2-wheeled mechanical system

1.
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the actuated joint rate of the first wheel, 6, namely,
vi=—0irj (1)

and v¢yo, can be expressed as the cross product of the angular veloaty, w, ol the

system with vector a;, a vector from point O, to point (', i.e.,
Vejo, = w X a; (2

The angular velocity of the 2-wheeled mechanical system may be written from the

joint rates of the driving wheels as
w = vk = n(0, — 0,)k (1.3)

where ¥ is the angular velocity component of w about k, while n = r/l, { being the
length of the axle, as shown in Fig. 4.1. Now, using cqs.(1.1) and (1.2}, a relation

between the velocity of point C and the actuated joint rates, 0 and 0,, 15 piven by
. v L
VCEC=—3(01+01)J (1

Combining eqs.(4.3) and (4.4), the twist, te, of the centre of the axle or the end
effector of the system, is written as a linear translormation of the mdependent jomnt
rates, vector 8;, namely,

te = Tc6, (1)

where t¢ is a 6-dimensional vector, 8; is a 2-dimensional vector and T is a 6 2 2

matrix. These are defined as
e, =0, 0)" (10)
and

_nl2k —Qk]
TC_z[—lj 1]

The same relation, eq.(4.5), can also be obtained from

Ve =€ = Vy+ Ve, (1.7
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where vy 1s the velocity of point Oz, In order to obtain the relation between the
twist rate of the centre of the axle and the actuated joint accelerations and rates,

the relation given in eq.(4.5) is differentiated with 1espect to time, thereby obtaining
te =Tcl; + T8, (4.8)

where
te =W, &, 6, =0, 0,) (4.9)

and T¢, producing the centrifugal and Coriolis acceleration terms, is given by

.1 .f0 01 | :f0 O
TC:?W[nlJ:EWW '] (4.10)

i
where the expression for i in terms of the actuated joint 1ates is available fiom
eq.(4.3). Thus, upon substitution of the expression for ¥ into eq.(4.10), matrix Te
1s rewritten as

) 1 . . [0 0
Te = 5711'(01 —0,) [ ; i] (4.11)
4.1.1.1 Inverse Kinematics

Inverse kinematies is defined as, grven the Cartesian posihions of the system al
hand and thewr timne derwvatives, dctermine the joint lustories, v.c., joint angles, rales

and accelerations,

Since the motion of the axle is planar, a 6-dimensional twist vector is unneces-

saty, for a reduced 3-dimensional twist vector will suflice. Il vector te is replaced by
. . . ] . .

a J-dimensional twist vector, t., defined in terms of the angular velocity component

about k., , the velocity along 1, #, and the velocity along j, y, of the system, then

eq.(-1.5) can be rewritten in the moving coordinate frame i-j-k as indicated below,

provided the matrix Te is replaced by a corresponding 3 x 2 matrix T, namely,
I r
t. = T8, (4.12)

where

) R ) 1
te =, & y]¥ and T(‘=377 0 0 (4.13)
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N

Note that the second 1ow of matrix T¢ is zero. thus, the velocity commonent along i
for the 2-wheeled system vanishes, which is obvious due to the puerolhng constramts
in the wheels. Thus, e¢q.(4.12) leads to a system of two equations m two unhnowns
Hence, vector 8, is calculated as

0, = St,. (110

where the 2 x 2 matrix S is as follows:

S 1 [ 1 =2/
= -1
=1 —2y1
It is to be noted that, as pointed out in Step 6 ol §3 2, since "'y ol eq (1.13)
is represented in a moving coordinate frame the time detivatine ol ‘Tp. cannot be
. . . . . O ’ . g
obtained by simply differentiating the clements of T, with tespect to tune. Thus,
A £ (
the expiession for the acceleration inversion s derived from eq (1 8). Now, if the
6-dimensional twist rate vector te of eq.(1.8) 1s teplaced by a 3 dimensional vecton
| I
) N . . N N ! )
t~. and the 6 x 2 matrix T¢ is replaced by a 3 <~ 2 matiny T, . then eq (18) 1-
C ( |

rewritten as

t';'(.:T'(.é,+T;0, (115)
where
) ‘ L 00
te = & §T and Te=opr(fi=0,) |1 | (110)
- 0

Morcover, eq.(4.15) that has been detived fiom eq.(1.8) can also bhe obtamed by

differentiating eq.(4.12) as
t,. = T,0; + W T,.6 (117

where We is a 3 x 3 transformation matiix which takes into account the motion of

the coordinate frame i-j-k and is given by

0 0 0
We=1]0 0 — (118)
0 ¢ 0

Now. the actuated jownt accelerations can be obtained by regardimg eq (4.15)

as an overdetermined system of three equations in two nnknowns | he least-squares
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approximation of this system is given as
w N .
b, =T,k — T,.8)) (4.19)
v 1 1 e ’ N . . ]
where T’ = [(Te)"(Te)]"YTe)T is the Moore-Penrose generalized inverse of T

(Rao and Mitra, 1971). Matrix T'(.I is 1eadily calculated as

| 10 =2/]
Te =3511_1 o ~2/1]

. . ML .
and for consistent input values of the components of vector t., the solution for
8, given by eq.(4.19) is exact, i.e., the least-squares error is zero. Alternatively.
the independent joint accelerations can also be found from the time derivative of

eq.(4.14).

To obtain the independent actuated joint angles, 8, eq.(4.14), which relates the
Cartesian velocities with joint rates can be integrated, with known initial conditions,

using any standard integration scheme.

4.1.1.2 Direct Kinematics

As opposed to inverse kinematics, direct kinematics is defined as, given the
independent generalized coordinales of the system at hand and thewr Lime derivalives,

determine the positions, velocities and accelerations of the end-effector of the system.

Velocities and accelerations of the axle can be easily computed from eqs.(4.12)
and (1 15), rtespectively. Tn order to determine the configuration of the system.
the orientation of the system in the inertial frame, i.c., the orientation between the
moving frame and the inertial frame, 1, and the Cartesian coordinates of the system,
re and y., need to be evaluated. First, ¢ is obtained by integrating the expression

for ¢, as given by the first scalar relation of eq.(4.12), namely,

Y =0 —0,) (4.20)
Then, the Cartesian velocities, t. and g, of point C in the inertial frame are written
as

bo=—gsing, g = geosy (1.21)
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Clearly, the scalar equations in eq.(4.21) are the nonholonomic constramnts of the
system which are nonintogral;'lo and thus, do not lead to algebraic equations as
functions of ¥, z. and y.. However, in direct dynamies, since the actuated joint rates
are specified, the expression for y i eq.(4.21) is 1eadily obtained using eq.(4.12),
§ being the third compouent of vector tg.. Also, angle ¢ is known from eq.(1.20)
Hence, eq.(4.21) can bcntegrated to obtain the positions of the system, e the

Cartesian coordinates z, and y., with the known initial position of the centre of the

axle. )
4.1.2 Dynamic Modelling

The dynamic modelling of the 2-wheeled mechanical systemis done using, the
method of the NOC, whereby the systetn is assumed to consist of thiee tigid links, as
denoted by the encircled numbers of IMig. 4.1. Note that, since the angular velocity of
the wheels w, = w+0,i, for 7 = 1,2, have nonzero horizontal components, 1.e | 0,i. the
definitions of 3-dimensional reduced twist vectors are not suflicient to desetibe the
twists of the wheels. Thus, to develop the dyvnamic model of the 2-DOT 2-wheeled
mechanical system in a unified way, the 6-dimensional vectors of twist and twist rate

are used,

The kinematic constraint equations of the 2-wheeled system i the form ol
eq.(3.18) are derived as follows: First, the nonholonomic himematic constramts he

tween links 1 and 0 are written using the methodology desciibed mg3.1 as
A, =0 (4 22)
where the 3 x 6 matrix Aj; is given by
Ayw=T 1]

the 3 x3 cross-product tensor ¥ being associated with vector k. T'hen, the constraints

due to the revolute coupling at point Oy are wiitten as

Assts + Ayt =0 (4.23)
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with the 6 x 6 kinematic constraint matrices Az and Aj; being given by

T

A:H:[U/Q)T (1)] and A31=[—~T O]

o -1

where X is the cross-product tensor associated with vector 1. Kinematic constraint
matrices arising from the couplings between links 2 and 0, and 3 and 2 are obtained
in a similar way to egs.(4.22) and (4.23), respectively. Thus, the 18 x 18 matrix A,

appearing in eq.(3.18), for the 2-wheeled system, is as follows:

¥ 1 O O O O
Y O 0 O Y o0
o -1 0 o unr 1 N
A=10 o0 o 1 o o (4.24)
O O - O Y 0
o 0 0 -1 —uY 1]

In order to obtain the generalized twist of the system at hand as a linear transfor-
mation of the actuated joint rates, 1.e., eq.(3.19), the twist of the left wheel (body 1)
1s written as

b= W 4 05T, —rrjTT (4.25)
The relations for the other links are similarly obtained as
t, = [w"' + (}‘Zill" —7‘()2j7']T and  ty = [wy . éT]T (4.26)
and the 18-dimensional vector t is given by
t=[t7, tT, )7 (4.27)

. . . ’ .
Now, upon substitution of the expressions for the components of vector tgs, as in
eq.(1.12), into eqs.(4.25) and (4.26) leads to an expression in the form of eq.(3.19)

where the 18 x 2 NOC matrix for the the system is obtained as

[ i+9k -k
-1j 0 .
_ nk i—nk
T = 0 o (4.28)
nk —nk
L ~(r/2)]  —(r/2)j]
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Matrix T of eq.(4.28) is easily verified as the NOC' of matrix A of eq.(1.21) by noting,
that AT =O.

The equations of motion in absence of dissipation are denved as
19, = r (129)

where the generalized matrix consisting of the convective inettia terms € and the
gencralized force due to gravity acceleration 4, both of eq.(3.29), vanish. Note that
the dissipation, which would damp out the simulation ctiors, prolibits one from
assessing the accuracy of the simulation algotithms. Henceforth, dissipation is not
included in the models. The 2 x 2 matrix I and the 2-dimensional vector 7 are as

follows:

2 e X 2
1=£'_'_[-3+g ‘ 1] T:[ﬂ]
2 - 3+ T2

with m being the mass of cach wheel. The scalats 71 and 7, are the applied torgues at
the motors of the wheels. Morcover, in deriving the dynamic model of the 2-wheeled
mechanical system, the mass of the axle (bady 3) is considered neghigible compared
to the mass of the wheels. Furthermore, 1t has been shown in §A 1 that the denved
dynamic model of the system at hand is the same as the one developed nsing, lane’s

formulation

It is pointed out here that, while developing the dynamic equations of motion
for the 2-wheeled system, eq.(4.29), the derivation of matnx A, as in eq.(-1.24), 15
redundant. Thus, the evaluation of the kinematic constraint mattices for a 3-wheeled

2-DOF AGV and 3-DOF AGVs are not shown in §4.22 and §11.2
4.1.3 Trajectory Planning

For planar rigid-body motion, three coordinates specifying the onentation and
position of the system are necessary. However, due to nonholonomic constiaints
at the wheel-floor interface, the system at hand possesses only 2-DOFEF. Thus, the

orientation and position of the system cannot be specified athitianly, the reasons
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Fig. 4.2 A circular trajectory: Variations of (a) sweep angle, 1, and Cartesian

coordinates, . and y., with time, and (b) ye vs. Z..

being explained in §1.1.2. Hence, proper trajectory planning is required for smooth

motion of the system, without which the relations of cq.(4.12) may be violated.

i 4.1.3.1 A Circular Trajectory

The 2-wheeled system is considered to traverse a circular path of radius £2in i
seconds. The sweep angle, 1, which is also the orientation of the moving coordinate
frame attached to the centre of the axle, point C, with respect to the inertial frame
fixed al point O, is assumed to be a fifth-order polynomial function of time, such
that it satisfies the zero velocity and aceeleration conditions at the starting (¢ = 0)

and finishing points (t = t;),1.c. point P of Fig. 4.2(b). This is given as

Py = ag+art +... + ast® (4.30a)
subject to $(0) =0, $(0)=0, P(0)=0 (4.30D)
and Y(ty) =2m, z/}(tf) =0, ¢(t;) =0 (4.30c¢)

Using the six conditions at the two ends, cqs.(4 30b) and (4.30c), the coeflicients arc

calculated as follows:

ap = 0.0 rad, ap = 0.0 rad/s, ag = 0.0 rad/s?,
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po

az = (20m/t3) vad/s®, ay = —(307/t}) rad/s',  ag = (127 /1) rad/s".

The Cartesian coordinates of the centre of the axle for the 2-wheeled system are now

given as*

re=Rcosyp and y.= Rsin (131

The time derivatives of angle 3 and the Cartesian coordinates are obtained by dil
ferentiating the expressions in eqs.(4.30a) and (1.31), respectively, with iespect to
time, which are then used to specify the required twists and twist rates of the system
in the moving coordinate frame, as in the left-hand sides of eqs.(:1.12) and (1.15)
The variations of ¢, z. and y. with time for R = 5.0 m and t; = 60.0 s are shown in

Fig. 4.2(a), whereas the circular trajectory is shown in g, .L.2(h).
4.1.4 Inverse Kinematics and Dynamics Results

For numerical purposes, the gcometrical and inertial patameters of the system

are considered as

the radius of the wheels, r=0.05 m,
the length of the axle, [=0.1m,
the mass of the wheels, m o= 2.0 kg

The required joint rates and accclerations to traverse the chicular path, as
shown in Fig. 4.2(b), are calculated from eqs.(4.14) and (4.19), 1espectively, whose
plots are shown in Figs. 4.3(b) and (c¢)', respectively. The required joint angles, as
shown in Fig. 4.3(a), to traverse the same path, are calculated by integrating the
expressions in eq.(4.14) with given initial conditions. Integration is petformed with
the help of the DIVPRK, a subroutine of the IMSL package (IMSL, 1990b), which

solves first-order differential equations by the Runge-Kutta 5th/6th order method for

INote that, due to lack of space along the abscissac and ordinates of the plots of Figs 42
and 4.3, ‘Cart. coord’, ‘jt ' and ‘accn ’ are substituted for words Cartesian coordinate, jount
and acceleration, respectively. These abbreviations will be used throughout this thess whenever
necessary.
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Fig. 4.3 Required joint (a) angles, (b) rates, (c) accelerations and (d) torques.

a specified step size and tolerance. Note that the tolerance has no units, because the
DIVPRK subroutine attempts to control the norm of the local error in the solution
of a differential equation in such a way that the global error is proportional to the

specified tolerance and the global error is defined as

max[le(1)],...,le(»)]]

where ¢(2) = [@(¢) — (e))/max[l,|z(2)]]. The parameters z,(:) and 2(z) arc, re-
spectively, the true and computed solutions of a differential equation at the desired
value 2 of the independent variable, e.g., time for the present study, for z = 1,...,v.
The results of joint angles are obtained with a step size of 0.6 s and tolerance of
0.001, and are shown in Fig. 1.3(a). The joint torques required to follow the circular

path are obtained from the equations of motion of the system, eq.(4.29), and arc




Chapter 4. Dynamigs of Nonholonomic Robotic Mechanical Systems (NHRMS) ™

6 -10
. 6 x10 ] (a) ' 2 x10 — (b) '
§ §- e ‘ .
— 3 -2 - \\ ' "I
bo \\ ! II
: 5 Y
":l; .E -4 B ‘\\ “ r"
= 8 A
. o] -6+ e §
© 0
5
_2 ) 1 _8 t L o
0 20 40 60 0 20 40 60)
time (s) time (8)
(a) — 0y, 02 (rad); - - 0y, 0 (rad/s). (b) - o (vad), - - o, (m).- -y ()
Fig. 4.4 Simulation crrors in joint and Cartesian spaces,

shown in Fig. 4.3(d). It is apparent form IMigs. 1.3(¢) and (d) that the plots for joint
torqucs are pioportional to the plots for joint accelerations which show that there s

no convective inertia term in the dynamic model of the system at hand.
4.1.5° Simulation Results

Simulation involves direct dynamics via integration of the dynamic equations
of motion. For the 2-wheeled system under study integration of eq.(1.29) may be
obtained in closed-form, but, in general, numerical integration is essential in solving
nonlinear differential equations, as derived for AGVs in §1.2 and §1.1. "Thus, «a
numerical integration scheme, the subroutine DIVPRK of the IMSL package, is used
in order to obtain the simulation results for the 2-wheeled mechanical system. The
use of this subroutine allowed the author to get acquainted with the software by
testing the effect of different variable arguments of the program and giving several

inputs for which the tesults could be predicted intuitively.

To obtain the first-order diflerential equations, as required by the DIVPRIx
subroutine, from the sccond-order differential equations of motion, ¢q.(4.29) is wiit-

ten in the state-space form, namely,

x = Hx +u (432)
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where the 4 x 4 matrix H and the 4-dimensional vectors x and u are given by

_ [0 11 _ Q, _ 0
H:[O OJ, x:[ol] and u:[I_IT]

where 8; = [0y, 0,]7 is the vector of actuated joint angles 0; and 0;. Morcover,
once the joint rates are obtained from the integration of the dynamic model, the
orientation of the system and the position of the mass centre of the sysiem can
be readily available from the direct kinematics. Simulation was carried out with a

step size of 0.6 s and tolerance of 0.001. The corresponding simulation errors in the

joint angles and joint rates, 8; and 6,, defined as the difference between the desired

variables and the vatiables that were obtained after integration of the equations of
motion, are shown in Fig. 4.4(a), whereas the crrors in the sweep angle 1, and in the
Cartesian coordinates, r. and y., are shown in I'ig. 4.4(b). The higher errors in joint
angles may be attributed to the fact that the desired joint angles were calculated
from the integration of the vequired joint rates, whereas the required joint rates,
along with the sweep angle and the Cartesian coordinates, were calculated from the
algebraic expressions, eqgs.(4.14), (4.30a) and (4.31), respectively. It is well-known
that numerical integration accumulates errors. Thus, to calculate the joint angles,
errors ate introduced twice, during inverse kinematics and during simulation. On
the other hand, errors in 64, ¥, z. and ye result from simulation only. llowever,
the errors in both joint angles and joint rates, the sweep angle and the Cartesian
coordinates are very small. Hence, the deviation of the simulated trajectory from

the actual circular path is not noticeable.

4.2 A Two-Degree-of-Freedom (DOF) Automatic
Guided Vehicle (AGV)

The architecture of a 3-wheeled 2-DOF AGV is shown in Fig. 3.3, whereas a
schematic diagram of the vehicle is shown in Fig. 4.5(a), that has been in use for
different purposes, for example, as a mobile platform for nursing robots {Borenstein

and Koren, 1985) and for artificial intelligence rvesecarch (lijima et al., 1981). A
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(a) (b)
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Fig. 4.5 (a) A schematic diagram of a 3-wheeled 2-DOI AGV, (b) Disassembled
vehicle.

dynamic model of the 3-whecled 2-DOF AGYV is obtained here using the method
of the NOC. It is assumed that the AGV under study contains thiee wheels and
a platform. Moreover, the platform is coupled by revolute pairs to the two rear
wheels. Furthermore, only the two rear wheels are driven o1 actuated by independent
motors and, since, the vehicle has two degrees ol freedom, no redundant actuation
is present. Thus, the angular displacemients of the actuated joints can he considered
as the independent joint variables. For stability purposes, a caster wheel is attached
at the front of the platform, as shown in Figs. 3.3 and 4.5(a), which s lice Lo attain
any orientation according to the motion of the vehicle, A coordinate rame of unit
vectors 1, j and k is fixed at the centroid C of the platform, as shown in Fig. 1 5(a).
and unit orthogonal vectors e, f, (z = 1,2,3) are attached to the centies of the
wheels, numbered 1, 2 and 3. Here, according to the definition of the architecture ol

the vehicle, e, and f,, for : = 1,2, ate parallel to 1 and j, respectively.
4.2.1 Velocity and Acceleration Analyses

From Fig. 4.5(a), the angular velocily of the vehicle can simply be written using,
the joint rates of the driving wheels and can be expressed by eq (43). An equation

relating the velocity of the platform with the actuated joint rates is obtamed by
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writing eqs.(4.1) and (4.2) for the AGV as
ve =¢ = —an(l, — 0;)i— 3(01 +0,)j (1.33)

where n = r/l, while the radius of the wheels is r, and distances { and « are shown
in Fig. 4.5(a). These parameters define the architecture of the vehicle. Combining
eq.(4.3) for the 2-DOF AGV and eq.(4.33), the twist of the platform, i.c., the end-
effector of the AGV, denoted by te is written as a lincar transformation of the

independent joint rate vector o 1, namely,
tec = Tcé[ (1.31)

where to and 0 are 6- and 2-dimensional vectors, respectively, which are defined in

eq.(4.6). Moreover, the 6 x 2 matrix T¢ is given by

Tc=77[ § ok ]

—ai— (1/2)) ai—(1/2)]

The same relations, ¢q.(4.33), can also be obtained from a relation given in eq.(1.7).

(4.35)

To find the twist rate of the platform, the twist relation obtained in eq.(4.34)
is differentiated with respect to time, which is given by ¢q.(4.8). The resultant 3 x 2
matrix T¢ for the 2-DOF AGYV is given by

0 0

. _ 2 . = g
Te = »*(0; = 02) (1/2)i—aj (1/2)i 4 q

(1.36)
4.2.1.1 Inverse and Direct Kinematics

Since the motion of the platform is planar, a reduced 3-dimensional twist vee-
tor, tg, as defined in eq.(4.13) of §4.1.1.1, is invoked again for the kinematic analysis
of the 3-wheeled 2-DOF AGV. Then, ¢q.(4.34) can be written in the moving coor-
dinate frame i-j-k, as shown in eq.(4.12), provided that matrix T¢ is 1eplaced by a
corresponding 3x2 matrix Ty, namely,

, 1 ~1

Te=n| —a a (4.37)
=2 -1/2
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The actuated joint rates can now be obtained by solving the overdetermined system
of equations resulting from eq.(4.34), namely, eq.(4.12) for the 2-DOF AGV. This is
given by

6,=Tc "ty (4.38)

I . . . . '
where T'¢’ is the well-known Moore-Penrose generalized inverse of matrix T, and

is defined in eq.(4.19).

Acceleration inversion is performed by substituting the 6-dimensional twist rate
vector tc with the 3-dimensional vector t.:'C and the 6 x 2 matrix ’i‘(; is replaced by
a 3 x 2 matrix T’c Three scalar equations relating the twist rate of the platform
and the actuated joint rates and accelerations are shown in eq.(4.15) where vectors

i"lc and 8; arc the time derivatives of vectors t'C and 0, respectively. Matrix T’C is

given as
. . . 0 0
Te =00, —02) [ 1/2 /2
—-a a

Note that the expression for ty of the 2-DOF AGV can also be obtained from
cq.(4.17), where the 3 x 3 transformation matrix W¢ takes into account the mo-

tion of the i-)-k frame. The actuated joint accelerations are then computed from

¢q.(4.19) for the AGV.

To obtain the actuated joint angles 8y, the expressions for the joint rates,
¢q.(4.38), arc integrated, with known initial conditions, using any standard integra-
tion scheme. Direct kinematics results may be obtained by following the outline

given in §4.1.1.2.
4.2.2 Dynamic Modelling

It is assumed that the system at hand consists of five rigid bodies, which are
numbered 1 to 5, as shown in Fig. 4.5(b). The 2-DOF AGV under study is a multi-

loop mechanical system, its vectors of unactuated or dependent joint angles and rates
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being defined as
05 =0 04" and by=(0s i) (+4.39)

where 63, 04 and 653, ()4 are joint angles and their time rates of change of the {ront
caster wheel (body 3) and of the fork (body 4) connecting the caster wheel assembly
with the platform (body 5), respectively. The generalized twist ot the whole system
is obtained by writing the twists of the five individual bodies as a lincar transforma-
tion of all the joint rates. Now, the generalized twist t, as in ¢q.(3.30), is defined as

a 30-dimensional vector, namely,
t=[t7,....t7]" (1.10)

where t, for : = 1, 2, t3 and t, are given as

t = [’pk +oxl] fa = [(¢ + 04)!‘ + 0:593] and t, = [ . ('/’ + (}4)!<
: —rfj 1’ —r05f; TEM T le—bpi 4 (v + 0k < dy
(1.11)

where dj represents the vector directed fiom point Az Lo the mass centre of the
fork connecting the caster wheel assembly with the platform aud tgs is nothing but
the twist of the platform. The generalized twist rate vector can be obtained fron
the time derivative of t. Since the latter contains dependent joint rates, a relation
between these, vector @p and the independent joint rates 0, is required, whicl is
obtained in §4.2.2.1. Morecover, the dependent joint accelerations appear in the time
rate of the generalized twist vector. Thus, an expression relating the dependent joint
accelerations with the independent joint rates and accelerations is obtained from the
time derivative of eq.(4.51). Once vector 8p is obtained in terms of @4, and 84 as
function of 8; and 8, the equations of motion can be readily detived from eq.(33.29)

using either the scheme given in §3.3 or §3.5, namely,
16)8;=C(6,6,)0; + T (4.42)

where I and C are 2 x 2 generalized inertia matrix and matrix of convective inertia

terms, respectively. The 2-dimensional vector T is given as

T = [7‘1, TQ]T
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with 71 and 7, being the applied motor torques at the left and right actuated wheels,
respectively. Note that the generalized force due to gravity acceleration vanishes
and, in the absence of dissipation, vector 8 of e.(3.29) does not appear. An explicit
derivation of the equations of motion of the 2-DOF AGV based on the methodology
given in §3.3 is attempted using MACSYMA (1983), a symbolic manipulation pack-
age. The symbolic caiculations result in cumbersome expressions for the elements of
the 2 x 2 matrices I and C of eq.(4.42). The two simplest expressions aimong all the
clements of matrices I and C, one from each matiix, are shown in §A.5. The cum-
bersome expressions are due to the system architecture and to the expressions for
matrices T and T, cqs.(3.39) and (3.40), respectively. Thus, an efficient algorithmic
approach is necessary to generate a dynamic model of the system, which has been

done using the methodology outlined in §3.5.

4.2.2.1 A Relation between the Actuated and Unactuated Joint Rates

In order to find a relation between the actuated and unactuated joint rates,
cq.(3.34) for the 3-wheeled 2-DOF AGV is desired. Thus, matrix J is obtained from
the independent loops of the multi-loop system. As shown in §3.4.1, the system
contains two independent loops. Since pure rolling of the wheels is considered the
velocities of the contact points of the wheels with the floor are zero. Hence, using
the left loop BR,PLF B of Fig. 3.4(d), the velocity of point Og, vz, is derived from

the velocity of point Oy, namely,
Vi = V) + zl-k X a; + ((/) + 04)k X ag (4.43)

where a; and aj are the vectors from O to Az and Aj to Os, respectively. A vector
relation similar to ¢q.(4.43) can also be obtained using the right loop of Fig. 3.4(d),
i.c., loop BR,PLFB. To this end, six scalar constraints arc obtained from the two

loop equations that can be written in the form of eq.(3.34), i.c.,

Jo=0 (4.44)
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where the 6 x 5 matrix J and the 5-dimensional vector 8 are given below:

J= T‘j 0 _.7'f3 —-(193 *(l/2)j + ((I + [J)l - (I(‘J] ( 1 I'r))

0 Tj —-7‘f3 —(1e3 (l/2)j + ((l + 1))1 - (10.;

and

while  is given by

0 = [03) 047 I/‘]T
in which 63, 84 and 7, as shown in Fig. 4.5(a), are defined as the joint angle of the
caster wheel about an axis parallel to vector ey, the joint angle of the fork about an

axis parallel to k, and the angle of rotation of the platform about k, respectively

Moreover, the 2-dimensional unit vectors ez and fy are given as
es = [cfy, s04, 0], fy = [—s05, s0;, 0" (1.16)

where s(:) and ¢(:) denote the sine and the cosine of angle (+), respectively. Fur-
thermore, since all vectors in eq.(4.45) have two nonzero components, the six scala
constraints of eq.(4.44) are reduced to only four. However, explicit expressions ol
eq.(4.45) show that only three of these constiaints are independent  Thus, the
nullspace of J of eq.(4.44) is of dimension two, which is nothing but the DOI of
the AGV under study. The independent constraints are now expressed in the form
of eq.(3.36) as

3,0, +3p0 =0 (4.47)

where the 3 x 2 matrix J; and the 3 x 3 mavrix Jpp are given by

0 0 rsly, —dcly a+b—dcl,
Ji=1r 0 and Jp=|-rchy —dsly —=l/2-d s0, (4 138)
0 r —-r C04 —d 304 1/2 —-d .504

To test the contr.llability of the system, i.c., the invertibility of matiix Jp, the
determinant of Jp is calculated as —{dr, which means that the dependent vatiables,

ot .
vector @ , can always be calculated in terms of 8;, namely,

0 =Ud, (1.49)
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the 3 x 2 matrix U being given by

c04/2 — (a + b)s0y/1 c0s/2 + (a + b)s0y/1
U= [rsf/(2d) + (a4 b)cls/d=1] rs0,/(2d) = g(a+ b)clyf/d +1] | (4.50)
n -7

Alternatively, thiee independent constraints 1elating the independent and the de-
pendent variables, eq.(4.47), can also be obtained by using different independent
loops, e.g., BRyPLI'B and BR,PR,;B of Fig. 3.4(a). Note that the constraints
arising from the loop BR; PR2B lead to an expression for the angular velocity of the
platform in terms of the independent joint rates, eq.(4.3). Now, since the angular
velocity of the vehicle, 1[), the third component of vector 9l, is available from the
kinenmiatic analysis of the system, namely, eq.(4.12) for the AGV, the calculation of
# is redundant. Motcover, to obtain the dependent joint accelerations, 6 p, which
are necessary for the dynamic analysis, eq.(4.47) needs to be differentiated with re-
spect, to time. Furthermore, since the frame in which the matrices J; and Jp are
represented is not stationary, the time derivative of eq.(4.48) will no longer lead to a
determined set of equations, and hence, 6p must be found from an overdetermined
system of equations using the Mooie-Penrose generalized inverse of Jp. To avoid
redundant and generalized inverse calculations, the expression for 1,/'), derived in the
kinematic analysis, is substituted in the loop equations, eq.(4.44), the two vector
equations from loops BRPLFB and BR,PLI'B becoming identical. Thus, only
two independent scalar equations are obtained that relate the dependent and inde-
pendent joint rates. The two independent scalar constraints which result either from
the first or sccond row of eq.(4.44), where the expression for 3 is substituted from
cq.(4.34), are given by

J0;+3p0p=0 (4.51)

where J; are Jp are now reduced to
J={(r/2)j +n(a+ b)i—dnes (r/2)j+n(a+ b)i+ dnes] (4.52a)
JD = [—ng -—de3] (452b)

Since the vectors in cq.(4.52a) are 2-dimensional, J; and Jp are 2 x 2 matrices. The

2-dimensional vectors @7 and 8p are defined in eqs.(4.6) and (4.39), respectively.
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Now, eq.(4.51) again confirms that the DOF of the systemi at hand is two and the
2 x 2 matrix Jp of eq.(4.52b) is never singular because the two vectors ey and f; are

orthogonal, and hence, lincarly independent,

4.3 Numerical Results for the AGV

Numerical results for the 3-wheeled 2-DOE AGV ate obtained based on the
methodology adopted in §4.2.1 and §1.2.2. Since the AGV under study possesses
2-DOF, proper path planning is necessary for the smooth motion of the vehicle on

the floor. This is done below.
4.3.1 Trajectory Planning

The performance of the vehicle is tested while traversing a civeular path and
two straight paths connected by a smooth curve. The former path is generated in

§4.1.3.1 and the latter is planned below.

4.3.1.1 Two Straight Paths Connected by a Smooth Curve

In the industrial application of AGVs, for example, in production shops where
AGVs carry raw materials, tools and other equipment, it is necessary to switeh lanes
while avoiding obstacles. Thus, from a practical point of view a path consisting ol
two straight lines connected by a smooth curve is planned, as shown in g, 4.6.
For a smooth operation of the vehicle, the following conditions are 1mposed on two
straight segments of the path, namely, segments [4 P and PPy For the segment

POPI,

att=0:
P =0, 7/')=0312;=0; T = Tg, T =0, =05
Ye =Yo, Yo =0, §c=0. (1.53a)

att=t1:
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<

Obstacle

- S —e T,

Fig. 4.6 'Two straight lines connected by a smooth curve.

=0, lZ"_—Os ¢'=0» Lo = Ty, .i)cz(), 7c=0»
Ye =y ?)c = 3]1, yc = 0. (4531))

where ¢ denotes time and the time-dependent variables ¢, x. and y. are shown in
Iig. 4.6. Moreover, ty, To, Yo, Y1, 1 are user-specified constants. The other straight
line, segment, PP, is considered as the successive mirtoi umage of the segment
Py PPy about lines I, and ViVy or ViV, and Hy [, Furthermore, a similar set of
conditions given in eqs.(4.53a) and (4.53b) can be obtained for the segment P, Ps. In
eqs.(4.53a) and (1.53b), conditions on ¥ and x. are very simple and no calculations
are required for path planning, while a cycloidal motion (Rothbart, 1956; Chen, 1982)
is used to satisfy the conditions on y. along 5 FP;. Now, two straight lines that arc
generated between segments oy and P, Ps are connected by a polynomial which

satisfies the conditions given below:

al ye =191 : re=ay, x,=0, ay=0, 2/ =0
at ye=y2 ¢ Te = I3, ;1::: = 0, :L:' — 0, :L,::// =0 (4.54)

where (-) denotes d(-)/dy. and 71, x4, y1 and yp are user-specified constants. A
seventh-order polynomial . = f(y.) is used to satisfy the conditions given in
eq.(4.54) where y. of f(y.) is calculated based on the assumption that g. = g,
which remains constant along segment Py P;, and hence, the value y. is nothing but

(t — )i for t < t,, 1y being the travelling time along segment Py P;.
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Fig. 4.7 Two straight paths connected by a smooth curve: Variation of (a) ¢, 1,
and y. vs. time, (b) ¥, z. and g, vs. time, (¢) o, Foand §ovs. time,and (d) yovs
T

The variations of ¥, r., y. and their time detivatives are shown in g, 17 o
the total time of 60.0 s with ¢; = 1505, t, =450 s, g =0y =232 m, 0, = =232
m, yo = =275 m, y; = —1.85 m, y; = L7 m and y, = 0.12 m/s. ‘S and ‘1 ol
Fig. 4.7(d) denote the start point Py and the end point /2y of Fig 1.6, respectively
Note that during the travel of the curved segment PP, of Fig. 4G, the angulm
speed of the AGV is specified according to the tume rate of change of the carvature
Moreover, the required velocity of the mass centre of the AGV is the velocity that
is tangential to the curve joining P and P,. Since the AGV possesses only 2 DOF

the specification of the required twist satisfies the relations given by eq.(4.12) for the
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2-DOF AGV and, hence, the least-squares approximation 8; of the actuated joint

rates of €q.{(4.38) is the exact solution, i.e., the least-squares error is zero.

4.3.2 Numerical Example

For numerical results, the geometrical parameters of the vehicle are considered

as

the radius of the wheels, r = 0.05 m,
the length of the axle, [=0.4m,
the distance from the edge Ay A2 to point C, a = 0.101 m,
the distance botween the points C and Az, b= 0.202 m,
the height of the connecting link, h=0.1 m,

the offset of the caster wheel, d = 0.025 m.
The inertial parameters are considered as:

the mass of each wheel, m, = 2.0 kg,

the mass of the platform, m = 20.0 kg.

The inertia tensor for each wheel in the e,-f,-k {frame, for i = 1, 2,3, is given by

0.0025 0 0
I = 0 0.00125 0 l<g1112
0 0 0.00125

For symbolic manipulation, as in §A.5, the platform is assumed to be a triangular
plate. However, an assumption where the platform is in the form of a box is more
practical because an AGV needs to carry an on-board computer, batteries for the
power supply and other nccessary equipment. A similar architecture is used in
YAMABICO 3.1 (lijima et al., 1981), for which the dimensions of the platform are
0.35 m x 0.35 m x 0.55 m. Using the same dimensions and considering the mass

of the platform as 20.0 kg, the inertia matrix of the platform (body 5) in the i-j-k
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Fig. 4.8 Required joint angles and rates to traverse a circular trajectory  Jomnt

(a) angles and (b) rates of the wheels, (¢) angle and (d) rate of the revolute pair that
couples the fork of the caster wheel with the platform.

frame is calculated as

0.7083 0 0
I; = 0 0.7083 0 kgm?
0 0 0.1083

Compared to the mass of the wheels and the platform, the mass of the fok (hody 1)

is assumed negligible.

4.3.3 Inverse Kinematics and Dynamics Results

The joint angles and their time rates of change required to traverse a cirenlan

path, as shown in Fig. 4.2, are calculated from inverse kinematics, as given in 1.2.1 1,
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Fig. 4.9 Required actuated joint (a) accelerations and (b) torques to traverse a
circular trajectory.

and plotted in Fig. 4.8. The actuated and unactuated joint angles are obtained by
integrating eq.(4.38) together with the expression for 8p, which is obtained from
¢q.(4.51), using the DIVPRK subroutine of the IMSL package. A step size of 0.3 s
and tolerance of 0.001 is used for integration purposes. A different step size than the
one used for the 2-wheeled mechanical system is chosen to obtain a faster convergence
tate of the solutions of the differential equations. Note that, to traverse a circular
path, angle 64 should be equal to the angle corresponding to the curvature of the
circle, which is constant. The steady-state value of angle 04, as in Fig. 4.8(c), is
the angle at which the caster wheel assembly of the veliicle should be oriented. The
Jump in Fig. 4.8(¢) is due to zero initial condition for angle 6. On the other hand,
if the intial value of 0, is calculated based on the curvature of the path, then this
value does not vary over the tiavelling period of the vehicle, i.e., there is no jump.
Moreover, for a constant 0, 0., should be zero, which is not the case in Fig. 4.8(d).
The error in (}.., which is a function of 8y, 0; and the geometrical parameters of the
vehiele, is mainly due to the integration errors in 04. The accuracy of 0y as well
as @4 can be increased by providing a smaller tolerance to the integration scheme.
The actuated joint accelerations and the cortesponding joint torques are shown in

Fig. 1.9, A comparison of Figs. 1.9(a) and (b) shows that the plots of the latter
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Fig. 4.10 Reqnired joint angles and rates 1o traverse a path consisting of two
straight lines connected by a smooth curve: Joint (a) angles and (b) rates of the
wheels, (c) angle and (d) rate of the revolute pair that, couples the fork of the caster
wheel with the platform.

ate not proportional to those of the former, which is a clear indication of the elledt
of the convective inertia terms in the dynamic model of the vehicle. Morcover, o
small discrepancy in the smoothness of the plots of the actuated joint torques, as

Fig. 4.9(b), is due to the variables 04 and 04, as evidenced 1 [Figs. 4.83(¢) and (d)

Inverse kinematics and dynamics results for the vehicle moving in a path con
sisting of two straight lines connected by a curve, as shown in Figs. 4 6 and 4.7, e
shown in Fig. 4.10. To obtain the joint angles, the step size and tolerance are taken
as 0.3 s and 197° for the DIVPRK subroutine. Here, a smaller tolerance 1s provided

to enhance the accuracy. The required actuated joint accelerations and torques are
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Fig. 4.11 Required actuated joint (a) accelerations and (b) torques to traverse a
path consisting of two straight lines connected by a smooth curve.

plotted in Fig. 4.11.
4.3.4 Simulation Results

Simulation leading to direct dynamics involves the integration of the equations
of motion, eq.(4.42). The first-order differential equations obtained from the state-
space representation of eq.(4.42) are solved using the DIVPRK subroutine of the
IMSL package. The state-space form of the equations of motion of the AGV is given
by

x=Hx+u (4.55)

where the 4 x 4 matrix H and the 4-dimensional vector u are given by

H= [8 I"}C] and u= [IST]
Vector x = [0, 04, 0., 0.2]7' is the 4-dimensional state vector. Simulation results
are obtained from the integration of eq.(4.55) and direct kinematics. The integration
step and tolerance arc taken as 0.3 s and 0.001, respectively. When the vehicle
traverses a circular path, simulation errors in joint and Cartesian spaces are plotted
in Figs. 4.12(a)-(c). Since the simulation errors in both spaces are very small, the

simulated trajectory in Fig. 4.12(d) cannot be distinguished from the planned circular
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Fig. 4.12 Simulation errors while traversing a circular trajectory.

path. On the other hand, when the vehicle traverses a path consisting of two straight
lines connected by a curve, the simulation errors in the actuated joint angles, joint
rates and in the Cartesian variables v, x. and y. are shown in IMig. 4.13. The step
size and tolerance for the DIVPRK routine are taken as 0.3 s and 107% 1espectively.
Referring to Fig. 4.13(d), the simulated trajectory of the two straight lines connected
by a curve cannot be distinguished from the original path due to small simulation

€rrors.
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Fig. 4.13 Simulation errors while traversing a path consisting of two straight lincs
connected by a sinooth curve.

4.4 Three-DOF Automatic Guided Vehicles

An automatic guided vehicle with omnidirectional wheels which allow a 3-
DOF motion of the vehicle (Muir and Neuman, 1987a) is shown in Fig. 4.14(a).
An omnidirectional wheel consisting of a wheel hub and several rollers mounted on
it is shown in Figs. 1.4(a) and (b). A general architecture of a 3-DOF AGV, as
shown in Fig. 4.14(a), is considered for analysis purposes. The vehicle is assumed
to consist of A omnidirectional wheels, of which p are actuated, and a platform.
The platform is coupled by revolute pairs to all the wheel hubs. To obtain a 3-

DOF motion of the vehicle, at lcast three wheels must be driven or actuated, i.e.,
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ith wheel

AN

o

roller

Fig. 4.14 "A schematic diagram of (a) a A-wheeled 3-DO AGV and (b) an omni-
directional wheel.

p 2 3. If more than three wheels are actuated, the systemn becomes redundantly
actuated. Dynamic models of redundantly actuated AGVs are developed based on
the methodology given in §3.6. The number of vollers in a wheel hub is such that
the vehicle moves smoothly. Morcover, only one roller at a time is in contact with
the floor. Furthermore, for analysis purposes, a coordinate frame of unit vectors i, j
and k is fixed at the centroid C' of the platform, as shown in Fig. 4.14(a). According
to Fig. 4.14(b), orthogonal unit vectors e, f, and e, £ (+ = 1,--+,}) are attached
to the mass centre O, of the ith wheel hub and to the mass centre O of the roller
mounted on the ¢th wheel and in contact with the floor, respectively. Note that the
roller mounted on the :th wheel and in contact with the floor is tetmed here the oth
active roller. Also, vector e, is oriented at an ang ¢ 3, with respect to the unit vector
i of the vehicle, as indicated in Fig. 4.14(a), and e, is oricnted at a, with respect to

e,, which is shown in Figs. 1.4(b) and 4.14.
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4.4.1 Velocity and Acceleration Analyses

Referring to Figs. 4.14(a) and (b), the velocity of the mass centre of the ith
wheel, v,, can be derived from the velocity of the mass centre C of the platform, ¢,
as

vi=Cc+wxd, (4.56)
where w is the angular velocity of the platform and d, is the vector directed from
point €' to point O,. The velocity of point O, can also be determined from the

spinning of the rollers and wheel hubs, i.e.,
v, = 1, 0'f —rif, (4.57)

where r and 7, are the radii of the wheel hubs and rollers, respectively. The param-
eters 0, and 0: arc the joint rates of the ith wheel hub, or wheel, for brevity, and the
ith active roller about the axes parallel to e, and e:, respectively. Using eqs.(4.56)
and (4.57), an equation relating the joint rates of the ith wheel and the ith active

roller with the twist of the platform is obtained as
0,6, = I't¢ (4.58)
where the 3 x 2 matrix @, and the 3 x 6 matrix I are given by
O, =[-f -rf], I'=[-D; 1] (4.59)

and D, is the 3 x 3 cross-product tensor associated with vector d,. The 2- and

6-dimensional vectors, 8, and tc, respectively, are defined as
6.=[0, 07, tc=[wl, &7 (4.60)

Note that, for planar motion of the platform, a 3-dimensional twist vector of the
platform, as defined in eq.(4.13), is suflicient to describe the motion. Also, vectors

] r . . e .
e, e, f,, f,in the i-j-k frame can be written as

e, = [cf, sBi, O]T, e:=[c7‘, M, O]T (4.61a)

f,=[~sB, cB O, f =[-s1, cy, 0]T (4.61b)
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where v; = a, + 4. Upon substitution of cqs.(L.6la) and (1 61b) into eq.(15H8)
and introduction of the 3-dimensional twist vector te of the platform, an expression

relating (). with t’C is derived, namely,
@0, = I't,. (-1.62)

where @, and T of eq.(4.59) are redefined as the 2 x 2 and the 2 x 3 matrices displayed

below:

_ sp, SV _[—dise, ] 0] .
('),—r[__cﬂl -—pC‘/z] and F—[d.(‘é. 0 (-1.63)

with p = r,/r and d, being the magnitude of the projection of vector d, on the plane
of the platform. Furthermore, angle 8, appearing in eq.(1.63) is shown in Iig. L. 11(a)

Vector d, in the i-j-k frame can be expressed as
d, = [d,cb,, d,s6,, h)" (1.64)

where h is the perpendicular distance from the mass centre ol the «th wheel, pomt
0,, to the plane of the platform containing point C. It is pointed out here that the

parameter h does not appear in the kinematic and dynamic analyses of the 3-DOI

AGVs.

Since eq.(4.62) is obtained by expressing all the vectors and matrices of eq.(4.55)
in the moving i-j-k frame, the time derivatives of the elements of @, and I' of e¢.(1.63)
do not lead to ®, and I'. Thus, for acceleration analysis, the expression in eq.(4.5%)

is differentiated with respect to time, i.c.,
©.0, + 0.6, = I't¢ + I'tc. (1.65)

Equation (4.65) is now rewritten using the 3-dimensional vectors of twist and twist

rate of the platform, as defined in eqs.(4.13) and (4.16), respectively, namely,
©.0, + 6,0, =Tt +I't,, (4.66)

Using the definitions given in egs.(4.61a) and (4.61b), the 2 « 2 matiix @, and the

2 x 3 matrix I of eq.(4.66) are given as

0, = [cﬂ: p C’ra] and T = —dg [:Z:

0 0]
B p st

0 0 (1.67)
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Giiven eqs.(4.62) and (4.66), the inverse and direct kinematics of A-whecled 3-DOI

AGVs are obtained below.

4.4.1.1 Inverse Kinematics

For inverse kinematics of the 3-DOF AGVs under study, the actuated joint
angles and their time derivatives, which are not independent in the presence of
redundant actuation, are determined from the 1equired twist and twist rate of the
platform traversing a desired path. Referring to eq.(4.62), the 2 x 2 matrix @, is
nonsingular, unless angle «, is equal to 0 or 7, because det(®,) = r?p sa, # 0. Note
that the singularity of matrix ©, at «, = 0 or 7 arises and then, the wheels become
conventional, like the wheels in automobiles, which have two DOF. Thus, for any

nonzero value of a,, 8, is obtained from eq.(4.62) as
0, =0, 'Tt, (4.68)
where ©,7'T is given by

ap_ 1 —dips(vn—8) —pevn —psm
G‘ F - rp sq, dz S(ﬂt - 61) cﬂx 3,81 (469)

From eq.(4.68), the joint rates of the ith wheel and the ith active roller, 0, and 0!,

respectively, are given as

. 1 : . .

0, = Ty osa, [ditp s(v = 6) + 3 e + 7 7] (4.70)
and

. 1 .

0 = ——[df s(By ~ 6)+ & B, + 5 Bl (4.71)

Now, for a A-wheeled vehicle, two A-dimensional vectors, @ and 8 consisting of all
the joint rates of the wheel hubs and the joint rates of the active rollers, respectively,

are derived from cq.(4.68) as

§=Lt, and § =L't, (4.72)
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where the A x 3 matrices L and L' are given as

[mdy s(y—61) pen e
L= (1.7T3)
Lady $(n = 80) v e s
and y
mdy s(Br—61)  mesr gsp
L'= : : s (170
Lp\dy s(Bx = 6x\) i\ By gy s
while , = —1/(r sa,) and 3] = 1/(ry sa,) for ¢ = 1,---, A, In the presence of less

actuated wheels than the total number of wheels in the vehicle, e, when g < A, @
and L are partitioned as
6 = [z:] and L= [II:}:’] (1.75)
where 64 is the it-dimensional vector consisting of the joint rates of the actuated
wheel hubs and @ consists of the remaining joint rates, i.e., of the joint rates of the
A — ¢ nonactuated wheel hubs. Morcover, Ly and Ly are the o x 3 and (A=) ~ 3
matrices relating the twist of the platform with the joint rates of the actuated and
nonactuated wheel hubs, 1espectively. Furthermore, a vector of unactuated jomt
rates éu is introduced, which contains all the joint rates of the active rollers for all
the wheels and nonactuated wheel hubs. The (2A = p)-dimensional veetor @ and
the (2A — u) x 3 matrix Ly are defined accordingly, i.c.,
0(] = [ 0 ] and Ly = [ L ] (1.76)
N Ly
The relations required to obtain the actuated and unactnated joint rates are now

readily available from eqs.(4.72)~(4.76) as
éA = LAt’C and éu = Lut'(; (41.77)

The actuated and unactuated joint accclerations arc now written from eq.(4.66) by

following the similar steps in obtaining eq.(4.77) from eq.(4.62), namecly,

04 = Laty + Lat,. (1.784)

éU = Lytlc + I‘.l(]t’cv (1.78h)
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Since all the vectors and matrices of eq.(4.72) are represented in the moving coor-
dinate i-j-k frame, the entries of the 1 x 3 matrix L, and the (2A — @) x 3 matrix
Lu are not simply the time derivatives of the elements of Ly and Ly of eq.(4.77),
respectively. Thus, eqs.(4.78a) and (4.78b) are denived using eq.(4.66). ‘1 he actuated
and unactuated joint angles required by the AGV Lo move in a specified path are

obtained by integrating eq.(4.77), with known initial conditions.

4.4.1.2 Direct Kinematics

To obtain the twist of the platform from the given actuated joint rates, the
relation between the twist of the platform and the actuated joint rates, as given in
cq.(4.77), is used. Since the vehicle has three DOF, for a vehicle with three actuated
wheels, matrix L4 is 3 x 3. Hence, for a nonsingular L matrix, the twist of the

platform is obtained as

te = L3'0, = T46,4 (4.79)

where T4 = L3'. The singularity of matrix L, will be pointed out in Chapter 5.
However, for AGVs consisting of more than three wheels, the relation between the
twist of the platform and the actuated joint rates leads to more equations than
unknowns, i.c., to an overdetermined system of algebraic equations. For a consistent,
set of input data, i.e., vector 6 4, vector t'c can be calculated with the help of the

Moore-Penrose generalized inverse, i.e.,
, .

where T4 = LY = (LTL4)~'L%. The twist rate of the platform is now obtained

from eq.(4.78a).

The orientation and the position of the mass centre of the platform in an inertial

frame is found by integrating the following relation:

[telr = (Qlrte (4.81)

where the 3-dimensional vector [tp]r is the twist of the platform represented in an
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inertial frame Z, whercas the 3 x 3 matrix [Q]r is the orientation of the i-j-k frame

with respect to the Z-frame. Vector [t-]r and matrix [Q]7 are given by

, ¥ I 0 0
tclr= 2] and [Qlz =0 ey —sy (:1.32)
je 0 s e

4.4.2 Dynamic Modelling

In order to develop the dynamic model of 3-DOK AGVs, it is assumed that the
mass of the rollers is much smaller compared to the mass of the wheel hubs, Morcover,
since the radius of the rollers is also much smaller than the radius of the wheel
hubs, the moments of inertia of the rollers about their centroids are considerably
small and hence, can be neglected. However, the moments of inertia of the rollers
about the centroids of the wheel hubs may be significant.  Thus, to account for
the mass of the rollers and their moments of inertia about the centroids of the
wheel hubs, an omnidirectional wheel is assumed to consist of a wheel huby in which
the rollers are rigidly attached to the hub. Therefoie, for dynamic modelling, the
system can be assumed to consist of A wheel hubs and the platform. Morcover, pure
rolling is assumed at the roller-floor interface. Furthermore, the control of 3-DOV
AGVs with more than three actuated wheels leads to redundant actuation, and thus,
dynamic models of 3-DOF AGVs with redundant actuation are developed separately
in §4.4.3. Note that the 3-dimensional reduced twist and twist 1ate vectors, as used in
kinematics to denote the twist of the platform and its rate of change are not suflicient
to represent the twist of the wheel hubs and, hence, the 6-dimensional twist vector
and its rate of change are used for all bodies in developing the dynamic maodels of
interest. Also, due to the reasons given in §4.1.2 the dissipation is not ineluded in
the model of 3-DOF AGVs. Thus, an assessment for accuracy of the simulation
software, OMNI, that is developed in §4.5 is possible. Now, the generalized twist of

the vehicle is given by a 6(A + 1)-dimensional vector, i.c.,
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where the twist of the :th wheel is written as

tx = ["j)kT + o"e;l', éT + '(l’(k X d‘)T]T, fOl‘ 1 = 1’ KN A

In an AGV with three actuated joint rates, the latter can play the role of
the independent generalized speeds, 1.e., 0, of ¢(.(3.29) can be substituted by 0,4 of
¢q.(4.75). The unactuated or dependent joint rates and accelerations for the dynamic
analysis can obtained from eqs.(4.77) and (4.78b), respectively, as in §1.4.1.1. The
dynamic model of a A-wheeled 3-DOF AGV with three actuated wheecls is obtained
based on the methodology given either in §3.2 for p = A =3 or in §3.3 for p =3
and A > 3. In both cases, ie., g = A =3 and g =3, A > 3, a fast algorithm can be
developed using the schemes described in §3.5. The equations of motion for 3-DOF

AGV with 3-actuated wheels are written as
10, =CO; + (4.84)

where I and C are the 3 x 3 matrices of generalized inertia and convective inertia
terms, respectively, while 7 is the 3-dimensional vector containing the joint torques
of the actuated wheels. In eq.(4.84), the generalized force duc to gravity vanishes
and the generalized inertia matrix is a constant matrix I, i.c., Lis independent of the
generalized coordinates. The generalized vector due to dissipation does not appear,

since no dissipation is considered.

4.4.3 Inverse Dynamics in the Presence of Redundant Ac-
tuation

Three-DOF AGVs with more than three actuated wheels lead to redundant
actuation and the actuated joint rates can no longer be considered as the independent
generalized speeds. However, the components of the reduced twist vector tg of the
platform consisting of the angular velocity 3 of the platform and the twvo Cartesian
velocities & and g, i.c., t’C = [l/", &, §)7, are always independent. Thus, to apply

the method of the NOC to redundantly actuated AGVs, vector t, can play the role
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of the independent generalized speeds and an equation similar to eq.(-1L81) is teadily

derived as
Icte = Cete + wi (4 }5)

where I¢ and Cg are the 3 x 3 matrices of inertia terms and convective inettia
terms, respectively, associated with the vector of independent generalized speeds,
to. Vector wi is the 3-dimensional generalized wrench acting on the platforn
Again the generalized wrench w& due to gravity vanishes and w!! does not appear.
For the control of a redundantly actuated vehicle, the actuator torques are obtaimed
as follows: From the power balance of the system at hand, an expression relating the
joint torques and the generalized wrench w@ of eq.(4.85), as in ¢q.(3.55) of §3.6, 15

obtained with the aid of the expression for 0\ of eq.(1.77}, namecly,
A_ T "
We = LT3 (1.86)

Equation (4.86) leads to an underdetermined system of thice scalar equations in
(> 3) unknown actuator torques, vector 74. Equation (4.86) can be solved for 74
resorting to an optimization approach. In fact, vector 74 can be obtained so that it
optimizes an objective function f(74) subject to the equality constraints of ¢q.(1.86)

For example, if f(7.4) = 1/2(7h74), the joint torques are readily derived as
- / ! A y -
TA = LA(L;’:LA) lw(‘. = .Pf‘w(. (1.87)

Moreover, linear inequality constraints arising from the motor torque limitations may
be included, along with eq.(4.86), in optimizing f(74). The inequality constraints
can be expressed as

TA S‘rf{ (1.88)

where T4 is the vector containing the limiting values of the joint torques. The
solutions of the actuated joint torques are obtained using the DQ2ROG subroutine

of the IMSL package.
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4.4.4 Simulation

A general-purpose code for the simulation of A-wheeled 3-DOF AGVs, OMNI,
leading to direct dynamics is developed in §4.5. For that, first, given the actu-
ated joint torques, the generalized wrench acting on the platform is calculated using
¢q.(4.86). Then, differential equations, eq.(4.85), resulting from the dynamic model
of a 3-DOF AGV, along with the relation given in eq.(4.81), are integrated in order
to find the orientation and the position of the mass centre of the platform. A set of
first-order differential equations required for the DIVPRK subroutine of the IMSL
package is written as

x = Hx +u (4.89)

where the 6 x 6 matrix H and the 6-dimensional vectors x and u are given by

n=[0 9] x=[] wr us=[ 0] e

with the 3-dimensional vector [tg]r and the 3 x 3 transformation matrix [Q]r being
defined in eq.(4.82). The set of first-order differential equations, eq.(4.89) is now
integrated using the DIVPRK subroutine of the IMSL package with given initial

condition, Xg.

4.5 OMNI: A Software Package for the Analyses
of Three-DOF AGVs

A general-purpose software package is developed based on the kinematic and
dynamic analyses of 3-DOF AGVs with A-wheels, of which p are actuated, with
ity A 2 3. The software is based on the kinematic and dynamic models developed in
§1.4. Given the number of wheels, the number of actuated wheels, the architecture
of the vehicle and its inertial parameters, the software solves the kinematic and

dynamic problems at four different levels, which are described below. -
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Level 1: Velocity and acceleration inversion.

Input:

e The total number of wheels, A, in the vehicle, and the number of actuated

wheels, p.
e The radii of the wheel hubs and the rolleis.

e The orientation of the rollers of the ith omnidirectional wheel with 1espect to

its hub, i.e., a, forz =1,.--, A,

e The orientation of the ith wheel with respect to the platform, i.e., the orienta

tion B, betweeni and e, for? = 1,---, A.

e The position of the mass centre of the :th wheel hub, O,, i.c., vector d,, for ¢ =
1,--+, A, Note that the third component of d,, & of ¢q.(-1.64), neither appears
in the kinematics nor in the dynamics relations. Thus, & is not required.
Moreover, to compute the first two components of d,, angle 4, and the distance

d;, as defined before in eq.(4.64), for ¢ = 1,---, A, should be supplied.

e The travelling time and the number of intervals at which the results are re-

quired.

e The required twist of the platform and its time rate of change at every sampled

point of the interval.
Output:

e The actuated and unactuated joint rates and accelerations, vectors 84, 85 and

their time rate of change at the desired points.
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Level 2: Position inversion.

Input:

e The total number of wheels, A, in the vehicle, and the number of actuated

wheels, p, as in Level 1.
e The history of the joint rates, which are obtained from the output of Level 1.

e The initial conditions for all the joint angles, which include actuated as well as

unactuated joints, i.e., vectors 8,4 and 0y, at time ¢ = 0.
e The travelling time and the number of time intervals.
Output:

e The joint angles, vectors 8 4 and 8y, for ¢ > 0.

Level 3: Inverse dynamics.

Input:

e The total number of wheels, A, in the vehicle, and the number of actuated

wheels, 1, as in Level 1.
e The architecture of the vehicle, as in Level 1.

e The mass and the inertia tensor of the zth wheel, fori = 1,.--, ), and the mass

and the inertia tensor of the platform.
e The travelling time and the sampled instants for which the torques are required.
Output:

e At the desired time, the actuated joint torques are calculated based on eq.(4.84)
when g = 3. On the other hand, for u > 3, the actuated torques are obtained

using the scheme given in §4.4.3.
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v Level 4: Dynamic simulation

Input:

The total number of wheels, A, in the vehicle, and the number of actuated

wheels, g, as in Level 1.
e The architecture of the vehicle, as in Level 1.

e The mass and the inertia tensor of the ith wheel for ¢ = 1, -+, A, and the mass

and the inertia tensor of the platform.

The history of the joint torques.

The initial values for the configuration and the twist of the vehicle at 1 = 0.

The travelling time and the sampled instants for which the simulation results

are required.
. Output:

e The configuration and twist of the platform at time ¢ > 0.

The software that has been developed in this research, OMNI, is used in analysing
several 3-DOF AGVs. Results are obtained for different vehicles traversing three

different paths, as explained below.

4.6 Inverse Kinematics and Dynamics Results

OMNI is tested with 3-DOF AGVs of different, architectures following different,

trajectories, which are planned in §4.6.1.
4.6.1 Trajectory Planning

~ Three different paths are chosen in testing the performance of the vehicles

: under study, namely,
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(b)

Xc (m) and y. (m)

17 Bnn e E [ o
)

0.5 1 1.5 2
time (s) X ¢(m)
(a) — x. for Path 1 and y. for Path 2.
(b) — Path 1, - - Path 2; S: start and E: end points.

Fig. 4.15 Variation of (a) . vs. time for Path 1 and y. vs. time for Path 2, and
(b) ye vs. z..

Path 1: The vehicle is assumed to move in a straight path parallel to the z.-axis
of Fig. 4.15(b) with a fixed orientation. The path is planned in such a way that the
vehicle starts and stops with zero velocity and acceleration, which has been achieved
with a cycloidal motion (Rothbart, 1956; Chen, 1982). The variation of z. with time
is shown in Fig. 4.15(a).

Path 2: This path is such that the vehicle moves along a path parallel to y. of
Fig. 4.15(b) with constant orientation. The variation of y, with time is shown in

Iig. 4.15(a).

Path 3: This path is the two straight lines connected by a smooth curve, as shown
in Fig. 4.6, which is plotted in different scales. In contrast to the 2-DOF AGV, where
angular velocities are specified depending on the curvature of the curved path, the
three components of the required twist of the platform are specified independently,
because the system has 3-DOF. Thus, a path is specified in such a way that the
orientation of the platform remains fixed at » = 0, in the segment Py P, of Fig. 4.6;
then, it changes its valuc to /2 following a cycloidal motion and, then, continues
with constant orientation, i.e., at ¥» = 7/2, along the segment P, P; of Fig. 4.6. The

variation of angle ¢ and the Cartesian coordinates, along with their time derivatives,
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Fig. 4.16 Two straight paths connected by a smooth curve: Variation of (a) ¢,
z. and y. vs. time, (b) ¥, . and g, vs. time, (c) ¥, T, and g vs. time, and (d) ¢,
VS. Ze.

are shown in Figs. 4.16(a)-(c). The path is shown in Fig. 4.16(d). The plots of the
inverse kinematics and dynamics results obtained for different. vehicles moving in

Paths 1, 2 and 3 are given in Figs. 4.20-4.32.
4.6.2 A Three-Wheeled AGV: All Wheels are Actuated

The kinematic and dynamic analyses of the 3-whecled 3-DOF AGV shown
Fig. 4.17 are performed using OMNI. For numerical computations, the geometrical

parameters of the vehicle are given in Table 4.1.
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Fig. 4.18 A 4-wheeled 3-DOI" AGV.

Fig. 4.17 A 3-wheeled 3-DOF
AGV.

For dynamic analysis, the system is assumed to consist of four rigid bodies, as

indicated in Fig. 4.17, by the encircled numbers. The inertial parameters are now

given as follows:

my = 2.0 kg,
m = 32.0 kg.

the mass of each wheel hub,

the mass of the platform,

The inertia tensor for each wheel in the e,-f;-k frame, for ¢ = 1,2, 3, is given by

0.01 0 0
L= 0 0.00515 0 kgm?
0 0 0.00515
The inertia tensor I, of the platform, in the i-j-k frame, is
1.0888 0 0
L= 0 1.0888 0 kgm?
0 0 1.7067

Here, all the three wheels of the vehicle are considered actuated. The kinematics
results obtained from Levels 1 and 2, along with the actuated joint torques to move

the vehicle in the specified paths that are calculated from Level 3, are shown in

Figs. 4.20-4.25.
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Wheel, ¢ | o, (deg) | 3. (deg) | & (deg) | d, (m)
1 90.0 90.0 90.0 0.3
2 90.0 210.0 210.0 0.3
3 90.0 330.0 330.0 0.3

The radius of the wheel hubs, r = 0.1 m and
the radius of the rollers, », = 0.01 m.

Table 4.1 Architecture of a 3-wheeled 3-DO AGV.

Wheel, ¢ | a, (deg) | B, (deg) | &, (deg) | d, ()
1 45.0 0.0 506.3 0.36
2 135.0 180.0 123.7 0.36
3 45.0 180.0 236.3 0.36
4 135.0 0.0 303.7 0.36

The radius of the wheel hubs, r = 0.1 m and
the radius of the rollers, r, = 0.01 m.

Table 4.2 Architectuie of a 4-wheeled 3-DOF AGV.

4.6.3 A Four-Wheeled AGV

A 4-wheeled 3-DOF AGV is shown in Fig. 4.18, whose architecture is given in
Table 4.2. The vehicle consists of five rigid bodies. The inertial parameters ol the
wheels are those given for the wheels of the 3-wheeled vehicle, The mass 1 and the

inertia tensor Iy of the platform, in the i-j-k frame, are as follows:

1.2333 0 0
m=370kg, Is=| 0 06167 0 [|kegn?
0 0 1.6033

Two cases of a 4-wheeled 3-DOF AGV are considered. In the first case, three wheels
are actuated. For example, wheels 1, 2 and 3, as denoted in IMig. 4.18 by the encireled
numbers, are considered to be the actuated wheels. In the other case, all four wheels

are actuated.

4.6.3.1 Three Wheels are Actuated

The kinematic and dynamic models obtained are based on c¢q.(4.84), wheie
the total number of wheels is greater than the number of actuated wheels. It is to

be noted here that the software reads two different input data files containing the



Chapter 4 Dynamics of Nonholonomic Robotic Mechanical Systems (NHRMS) 111

geometrical and inertial parameters, where the values for all the actuated wheels
must be specified in a sequential order at the beginning of the data files. Thus, the
geometrical and inertial parameters for wheel 1 are given first, then for the second
and next for the third wheel. No order is necessary for the other wheels, but the
geometrical and inertial parameters of the two data files must correspond to each
other. The kinematics results are the same as those obtained in §4.6.3.2 for the case
of all actuated wheels. The required torques to move the vehicle along Paths 1 and

3 are shown in Figs. 4.26(a) and (b), respectively.

4.6.3.2 All Four Wheels are Actuated

In the case of an AGV with four actuated wheels, the system is redundantly
actuated. Thus, the dynamic analysis is donc through torque optimization. The
results are shown in Figs. 4.27 to 4.31. Note that, to move along a path parallel to
vector 1 fixed to the vehicle, i.e., to move sideways, the wheels 1 and 2 should supply
torques in opposite directions. The same is true for wheels 3 and 4. Due to the
definitions of the unit vectors in Fig. 4.18, the required joint motions and torques
to move sideways have the same sign, as evidenced in Fig. 4.28, which shows that
the joint variables for wheels 1 and 3 are actually in the opposite direction to those
for wheels 2 and 4, respectively. When the vehicle moves along Path 1, the required
joint angles and rates for the active rollers, i.e., the rollers which are in contact with
the floor, are zero. The joint angles and rates for the active roller, to move along
Paths 2 and 3, are shown in Figs. 4.29(a)-(b) and 4.31(a)-(b), respectively. Notc
that the comparison between Figs. 4.26(b) and 4.30(d) shows that the maximum
required motor torques at wheels 1, 2 and 3 are less when four wheels of the AGV
arce actuated. Since a torque minimization scheme is used in obtaining the required
torques at the four actuated wheels of the vehicle, the maximum torque requirements
are smaller than the maximumn required torques at the three actuated whecls of the
4-wheeled vehicle. The inverse dynamics results are also obtained by considering the

torque limitations. For instance, the plots shown in Fig. 4.33(a) are obtained by
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Fig. 4.19 A 6-wheeled 3-DOF AGV.

considering that the maximum allowable torque at the motor of wheel 4 is 0.01 Nm
along the whole trajectory. From Fig. 4.33(a), it might appear that there is also
a torque limitation on wheels 1 and 3 during the movement of the straight line
segments, P,P; and PPy of Fig. 4.6, respectively, which is not true.  Actually, to
move along a straight path parallel to j fixed to the vehicle, the magnitudes of the
joint variables at the two front or rear wheels, | and 2, and 3 and 4, 1espectively,
should be the same. On the other hand, to move along a straight path parallel to i
fixed to the vehicle, the magnitudes of the joint variables at the two side wheels, |
and 4, and 2 and 3, should be the same. Thus, when the vehicle first moves along the
straight path, i.e., segment PP, of Fig. 4.6, the joint torque at wheel 3 is the same
as that at wheel 4. Similarly, when the vehicle moves along segment 12, £ of Fig. 4.6,
where the orientation of the i-j-k frame fixed to the platform is at. 90° with the
inertial frame, i.e., the vehicle moves along a path parallel to 1, then the magnitudes
of the torques at wheels 1 and 4 are cqual. However, during the movement, along
segment P, P,, there is a torque limit only on wheel 4, whereas the variations of the
other joint torques are such that these compensate for the linnt on wheel 4. Note
that the AGVs under study have 3-DOF. Thus, the required torques at. motors of the

vehicle with three actuated wheels are unique and no torque restiction is possible
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Wheel, ¢ | a, (deg) | B, (deg) | 6, (deg) | d, (m)
1 90.0 90.0 90.0 0.3

90.0 210.0 210.0 0.3

90.0 330.0 330.0 0.3

90.0 30.0 30.0 0.3

90.0 150.0 150.0 0.3

6 90.0 270.0 270.0 0.3

St o W N

The radius of the wheel hubs, » = 0.1 m and
the radius of the culiers, r, = 0.01 m.

Table 4.3 Architecture of a 6-wheeled 3-DOF AGV.

On the other hand, if more than three wheels are actuated then any arbitrary limits
can be placed on the rest of the motors. In fact, specifying zero limits on the rest of
the wheels, which is equivalent to a vehicle consisting of more than three actuated
wheels, leads to a solution. For more than three actuated wheels, limits on the
number of motors can be specified as long as the compensations by the other motors
are possible. Otherwise, OMNI returns an error message that says, “There is no

solution.”

4.6.4 A Six-Wheeled AGV

The 6-whecled vehicle shown in Fig. 4.19 is considered using the geometrical
parameters given in Table 4.3. The system at hand consists of seven rigid bodies.
The inertial parameters for each wheel and the platform are the same as in the case

of the 3-wheeled vehicle.

4.6.4.1 Three Wheels are Actuated

Wheels 1, 2 and 3 arc assumed to be actuated. Thus, the kinematic structure
of the 6-whecled AGV is the same as that of the 3-wheeled AGV of Fig. 4.17, and
hence, the kinematics results are the same. The required torques to traverse the
path of two lines connected by a curve are shown in Fig. 4.32(a). It is evident from
Iig. 4.32(a) that, due to the three additional wheels, the required joint torques at the

three actuated wheels of the 6-wheeled AGV are higher than those of the 3-wheeled

- 2
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vehicle, as shown in Fig. 4.24(d).

4.6.4.2 Four Wheels are Actuated

Here, wheels 2, 3, 4 and 5, as in Fig. 4.19, are actuated. In order to nse
the OMNTI software, the gecometrical and inertial parameters of these four wheels
should be given in a sequential order at the beginning of the data files. Results from
inverse dynamics are obtained by torque optimization. The requited joint torques at
the actuated wheels to traverse Path 3 are given iu I'ig. 4 32(b). The 1equived jont
torques to move along Path 3 are also obtained by specifying a limit of 0.01 Nmon the

maximum allowable torque of wheel 2 of the venicle, which is shown in Iig. 1.33(h).

4.6.4.3 All Six Wheels are Actuated

The required actuated joint torques are shown in Iigs. 4.32(c) (d), while the
6-wheeled vehicle traverses a path consisting of two straight lines connected by a
smooth curve. Since the torque minimization scheme is used to lind the six actuaton
torques of the vehicle, the maximum torques at wheels [, 2 and 3, as shown in
Fig. 4.32(c), are less than the maximum required torques at wheels 1, 2 and 3 of
the 3-wheeled vehicle, as shown in Fig. 4.24(d). The results are also obtained by
placing limits on the maximum allowable motor torques of wheels 2 and 6, which are

0.01 Nm and 0.025 Nm, respectively. The results are shown in Ifig. 4.34.

4,7 Simulation Results for Three-DOF AGVs Us-
ing the OMNI Software

Simulations for 3-DOF AGVs were done by considering different vehicles mov-
ing in Paths 1, 2 and 3. In all the cases, thie simulation eriors are very small and
the simulated path cannot be distinguished from the planned one when the step size

and tolerance are taken as 0.3 s and 0.001, respectively. One set of simulation results
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for the 6-wheeled vehicle with all actuated wheels is shown in Fig. 4.35, where the
history of input torques is obtained from the inverse dynamics results of the AGV

in the presence of inequality constraints, as given in Figs. 4.34(a)-(h).
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Fig. 4.20 Required actuated joint (a) angles, (b) rates, (¢) accelerations and (d)
torques for the 3-wheeled AGV to traverse a straight path parallel to vector i fived
to the vehicle (Path 1).
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Fig. 4.21 Required joint (a) angles and (b) rates for the active rollers of the 3-
wheeled AGV to traverse a straight path parallel to vector i fixed to the vehicle
(Path 1).
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Fig. 4.22 Required actuated joint (a) angles, (b) rates, (c) accelerations and (d)
torques for the 3-wheecled AGV to traverse a path parallel to vector j fixed to the
vehicle (Path 2).
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Fig. 4.23 Required joint (a) angles and (b) rates for the active rollers of the 3-
wheeled AGV to traverse a path parallel to vector j fixed to the vehicle (Path 2).
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Fig. 4.24 Required actuated joint (a) angles, (b) rates, (¢) accelerations and (d)
torques for the 3-wheeled AGV to traverse a path consisting of two straight lines
connected by a smooth curve (Path 3).
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Fig. 4.25 Required joint (a) angles and (b) rates for the active rollers of the

3-wheeled AGV to traverse a path consisting of two straight lines connected by a
smooth curve (Path 3).
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Fig. 4.26 Required joint torques at the three actuated joints of the 4-wheeled

AGYV to traversc (a) a path parallel to vector j fixed to the vehicle (Path 1) and (b)
a path consisting of two straight lines connected by a smooth curve (Path 3).
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Fig. 4.27 Required actuated joint (a) angles, (b) rates, (c) accelerations and (d)
torques of all the actuated wheels of the 4-wheeled AGV to traverse a straight path
parallel to vector j fixed to the vehicle (Path 1).
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Fig. 4.28 Required actuated joint (a) angles, (b) rates, (¢) accelerations and (d)
torques for the 4-wheeled AGV to traverse a path parallel to vector i fixed to the

vehicle (Path 2).
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Fig. 4.29 Required joint (a) angles and (b) rates for the active rollers of the 4-
wheeled AGV to traverse a path parallel to vector i fixed to the vehicle (Path 2).
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Fig. 4.30 Required actuated joint (a) angles, (b) rates, (c) accelerations and (d)
torques for the 4-wheeled AGV to traverse a path consisting of two straight lincs
connected by a smooth curve (Path 3).
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Fig. 4.31 Required joint (a) angles and (b) rates for the active rollers of the
4-wheeled AGV to traverse Path 3.
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actuated joints of the 6-wheeled AGV while moving in a path consisting of two
straight lines connected by a smooth curve (Path 3).
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Fig. 4.33 Required joint torques at the four actuated joints of the (a) 4-wheeled
and (b) 6-wheeled vehicle with torque restrictions while moving in Path 3.
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Chapter 5

Kinematic Design of Three-DOF
AGVs

Several issues regarding the design of omnidirectional wheels for 3-DOI AGVs
warrant a deep study. The orientations of the wheel hubs relative to the platform,
the roller orientation with respect to the wheel hub, the number of rollers in a wheel
and the roller profiles, are only a few issues that are worth mentioning. Morcover,
for autonomous behaviour of the vehicles, it is necessaty to have an eflicient control
algorithm for on-line computations of the joint parameters. The effect of kinematics
on the performance of the vehicles is studied in the section below, and then, a design
is suggested based on the transformation matiices relating the joint angles with the

twist of the platform.

5.1 Effects of Kinematics on the Performance of
AGVs

The accuracy of the inverse and direct kinematics results of robotic mechanical
systems depends on the condition number of the associated matiices, whose inverses
are required in calculating the controller setpoints. Ior instance, if an AGV is as-
signed to move in a desired trajectory, its joint variables and their time derivatives

are calculated from inverse kinematics. These variables are later used to obtain the
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joint torques. The latter are set by the controller to move the vehicle along the spec-
ified path. The condition number of a matrix is a measure of the relative roundoff
error amplification of the computed results with respect to the relative roundoff error
of the input data, upon solving a system of equations associated with that matrix
(Golub and Van Loan, 1983). Hence, the accuracy of the kinematics results depends
on the condition number of the matrices whose inverses are needed. Matrices with
small condition numbers produce accurate results. In fact, a condition number equal
to unity, which does not. introduce any roundoff error amplification in the solution, is
the best that can be achieved. Thus, robustness of the kinematic control is ensured.

Matrices with a condition number of unity are called isotropic.

5.2 Design Criteria

Referring to eq.(4.62), the inversion of matrix @, is required in determining the
actuated as well as the unactuated joint rates, as in eq.(4.68). However, the matrix
is singular at o, = jm, with j being an integer, i.e., an omnidirectional wheel is
cquivalent to a conventional wheel when a, = 0,7,27,.-- for y = 0,1,2, - - -, respec-
tively. Moreover, in direct kinematics, where the twist of the platform is calculated
from the actuated joint rates, the solution for ty, as in eq.(4.77), is required, which
is given by eqs.(4.79) or (4.80), i.e., the evaluation of L3 or L is necded. 1t is clear
from eq.(4.77), where L4 is obtained using eq.(4.73), that if v, — 6, = y7, or v, = jw
or (25 + 1)x/2, for ¢ = 1,-.-,u, with j and g being an integer and the number of
actuated wheels, respectively, then L, is rank deficient. Since v, = a, + £, and 6,
are not configuration-dependent, but rather architecture-dependent, rank deficiency

of L 4 results in a singular design of the vehicle.
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5.3 Condition Number and Isotropic Design

Let K denote a k£ x k& matrix. The condition number of K (Stewart, 1973;

Golub and Van Loan, 1983), x(K), is defined as
~(K) = |l (5-1)

where || - || denotes the norm of its matrix argument (-). If the Euclidean norm
is adopted, which is invariant under isometiic transformations, and hence under
reflections or rotations of the k-dimensional configuration space at hand, then a
frame-invariant condition number is derived. The definition of the condition number
given in eq.(5.1) can be used with any matrix norm. For the Buclidean or Itobenius

norm, the norm of matrix K is defined by

K] = /tr(K"NK) (5.

ot
I
~—

in which N is a positive-definite k x & matrix that serves for normalization purposes.
For instance, if N is defined as (1/k)1, with 1 being the & x & identity matiix,
then the Euclidean norm of the identity matrix turns out to be unity. Cleatly, the
definition of N does not affect the resulting condition number. Morcover, from the
definition of the norm of a matrix, as given in eq.(5.2), the best conditioned matiices
are those that are multiples of an orthogonal matrix. Thus, matnx K has a minimum

condition number when the following holds:
K'K =01 (5.3)

where o is a scalar. Note that, since the inverse of a rectangular matrix is not defined
the condition number of a p x k (¢ > k) matrix K cannot be given by eq.(5.1).
Other definitions of the condition number, also applicable to 1ectangular matrices,
for instance, the ratio between the maximumn and minimum singular values of a
matrix can be used. Moreover, in the presence of linearly independent columns, the
square of the condition number of the p x k matrix K is equal to the condition numbes

of KTK (Stewart, 1973). Thus, the condition number of the y x k matrix K is unity
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if eq.(5.3) holds. Matrix K that satisfies eq.(5.3) is termed isotropic. Furthermore,
from eq.(5.3), the inverse of a square K is simply (1/0?)KT. Likewise, the generalized
inverse of a rectangular isotropic K is simply (1/62)K7. Equation (5.3) is the isotropy

condition for matrix K. This condition will be used presently to attempt isotropic

designs of 3-DOF AGVs,

5.4 Non-Existence of Isotropic Design for Inverse
Kinematics

To verify the existence of an isotropic design for inverse kinematics, matrix ©,,

given in eq.(4.63), is written as

o= L] o4

where v, = a, + 8,. Angles a,, f, and the radius r of the wheel hubs are shown in

Fig. 4.14 and the ratio p is given by p = r,/r. Now, ®T@, is evaluated as

@T@.:ﬁ[ ! "’Cf"] (5.5)
peay  p

which is a symmetric and positive-definite 2 x 2 matrix. To derive eq.(5.5), =, is
replaced by a, + ,, which has been used in egs.(4.61a) and (4.61b). It is clear from
¢q.(5.5) that for ©, to be isotropic, the diagonal entries of matrix @7@, must be
identical, whereas the off-diagonal element must be zero. The off-diagonal element
of @7@, is zero when a, = (25 + 1)7/2 for j = 0,1,2,--- etc. The diagonal entries
are identical if the ratio 1/p? is equal to unity. Since a value of p = 1 implies that the
radius of the wheel hubs is equal to the radius of the rollers, this is not practically

feasible. Thus, an isotropic design for inverse kinematics is ruled out.

5.5 Isotropic Design for Direct Kinematics

Since for 3-DOF AGVs with j actuated wheels, the px3 matrix L4 of eq.(4.77)
is not dimensionally homogeneous, different algebraic manipulations with the ele-

ments of the matrix may lead to meaningless operations. For example, in order to
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find L4L%, the first element of the first column of the matrix product is obtained
from the inner product of vector 1;, defined as the first row of matrix L, by itself,

ie., l{ll. Vector 1; can be written from eq.(4.73) as

L = nldy s, evi, st (5.6)

where £; has been substituted for 4y — 8,. The first component of 1 is dimensionless,
whereas the other two components both have units of m=!. Now, the inner product
of 1; by itself leads to the addition of numbers of different dimensions. Motcover,
matrix LEL4 contains entries of different dimensions and the use of its clements as
the components of an objective function that can be minimized for the minmmmum
condition number of matrix Lj, as suggested at the end of this chapter, leads to
algebraic operations between dimensionally nonhomogencous parameters. Thus, a
previous normalization of matrix L4 is needed. To this end, the first column of this
matrix is divided by a characteristic length L, which can be achieved with a suitably

defined matrix N, as indicated in eq.(5.2). The normalization matrix can be given

as
1/L* 0 0
N=| 0 10
0 0 I

The p x 3 matrix L4 is obtained after normalization as

er sy moeyr s
La=| : : : (5.7)
€ S€u Mu CVu My $Tu
where ¢, = 1,(,, 3, = —1/(r say,) and {, = d,/L for ¢ = 1,---,pu. The left-hand side
of eq.(5.3) for matrix L4 is now derived as the 3 x 3 symmetric and positive-definite

matrix, namely,

R] Rz R_’;
R=LTL,= (R, Ry Rs (5.8)
R3 [{5 R(;
where
Ri=¢ s’ + -+ s, (5.9a)

Ry = ey sbieyr + -+ euny s€ucy, (5.9h)
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Ra = eim sisyi + - + € s6ust (5.9¢)

Ri=n? i+ + nz c*y, (5.9d)
1

Rs = 5[7”2 s21 + -+ 4+ 2 829,) (5.9¢)

Rs=n} sy 4+, 8™y, (5.9f)

Now, from eq.(5.3), an isotropic design for direct kinematics of the AGVs is achieved

if the conditions below are satisfied:
Ri=0% R;=0, R3=0, Ry=0% R;=0, Rs=oc> (5.10)

Using the isotropy conditions given in eq.(5.10), 3-, 4- and 6-wheeled 3-DOF AGVs

are designed where all the wheels of the vehicles are actuated.

5.5.1 A Three-Wheeled AGV

A plausible assumption is made here, namely, that the design has the following
symmetries, i.e.,

a=a and d,=d, for ¢=1,2,3 (5.11)

Further assumptions are made by considering that the three axes of the hubs, e, for

t = 1,2,3, are symmetrically distributed, i.e.,
47

2m
B = B, ﬂ2=?+ﬂ and ﬂ3=‘3—+3
Also, the positions of the mass centres of the wheels are placed at the vertices of an

cquilateral triangle that inscribes a circle of radius d. With the above assumptions,

six entrics of R, as in eqgs.(5.9a)-(5.9{), are calculated as

Ry = 3¢ s%¢ (5.12a)
Ry = enlste + sée( - +7) + sée( - + 1) (5.12b)
Ry = enfsgsy + sts(or +7) + sés( o + 1) (5.12¢)
Ry =n*[*y + c%%’£ +7) + cz(%’—r +7)] (5.12d)
Rs = -;-712[827 + 32(2?” +7)+ 8‘2(%7r +7)] (5.12€)
Ro =y + 15 +2) + (5 + ) (5.121)
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where

1 d
e=n(n=—-— (=7 and y=a+/ (5.13)

From eqs.(5.12a)—(5.12f), Ry, R3 and Rs vanish, and Ry and R are found as (3/2)5°.
Thus, from eqs.(5.10) and (5.12a),

3 2
3e? s% = 5172 =0 (h.1:1)
which leads to
3 1.5
l=p?= 5.15
) 57 i (5.15)
and
2
2, _ 0 _ 1 .
S 6 = 3—6—2- = ——2('_2 (-r).l())
Hence, c%¢ is derived as
20t -1
20 R
¢ = 50 (5.17)
and angle ¢ being given by
1
— gl \
E=a+pf—-6=tan oI (5.18)
Thus, for a real solution &,
1
o n.1Y

It is now evident from eq.(5.18) that, if 3 = é and ¢ = 1/V/2, the roller otientation
with respect to the wheel hub is found to be (2) + 1) /2. Yor j =0, « = 7 /2 which
has been used in the previous chapter in analysing the 3-wheeled AGV. Morcover,
with d = 0.3 m and r = 0.1 m, as shown in Fig. 4.17, for the 3-wheeled vehiele, the
characteristic length L and the value of o are calculated from eqs.(5.13) and (5.15)

as 0.42426 m and 12.25 m~! | respectively.

5.5.2 A Four-Wheeled AGV

For 4-wheeled AGVs with all actuated wheels, the following assumptions are
made:

61 = 6, 52 = g + 5, (53 =7 + (5 an(l (‘)4 = :"21 + (‘) (520d}
3
Bi=B, fo=5+B, fo=m+f and f = (5.20b)
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Using eqs.(5.20a) and (5.20b), R, for i = 1,:--,6 of eq.(5.8) are obtained as

Ry =& 6+ 6 s+ € %6+ €] 5%y (5.21a)
Ry = ey s€ievt + €amz s&acyz + €ans s€acya + €ana s€acys (5.21Db)
R3 = ey s&ism + €am2 s€a28y2 + €anz s€3syz + eang s€4574 {5.21¢)
Ra=ni &+ v 415 Py +0i (5.21d)
Ry = %[nf s2m + 07 822 + 02 273 + 1 2 (5.21e)
Re =1} $*n + 02 $ya + 1} Py + ) $*v (5.21f)

where ¢, and 9, for 7 = 1,---,4 were defined before, as in eq.(5.7), whereas &, and
v, of ¢qs.(5.21a)-(5.21f) are, respectively, a, + f — 6 and o, + f + (k — 1)7 /2 for
k = 1,---,4. Note that, according to the isotropy conditions given in eq.(5.10),
Ry = Ry = 0, thus, from eqgs.(5.21b) and (5.21c), R, and Rj3 are equal when

ST =Y, $Y2 = CY2, SY3=CYV3, SV = CY4 (5.22)

In order to satisfy the above relations, eq.(5.22), the following must hold:

M=o+ B = (2 + 1)-;5 (5.23a)
BEas+ B+l =2+ 1] (5.23b)
BEazt+ B4 = (2J3+1)§- (5.23¢)
T Ea4+ﬂ+3§ = (2j4 + 1)% (5.23d)

where j, fori = 1,-.-,4 are integers. Now, it can be shown that if all 3, of eqs.(5.23a)-
(5.23d) are set to zero then no isotropic design is possible. However, with j; = ja =0
and j; = j4 = 1 an isotropic design can be achieved. To this end, a set of relations

is derived from eqs.(5.23a)-(5.23d) using a; = a and n; = 7, namely,
a;=qa, aqg=ag=a—7 and M=y, pP=y=—7 (5.24)

Using eq.(5.24), the expressions for R,, fori = 1,- -, 6, are rewritten, from eqs.(5.21a)-

(5.211), as

Ry = 283[s%¢ + s* (£ - )] (5.25a)
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Fig. 5.1 An isotropic 4-wheeled 3-DOI* AGV.,

Rz = enfsfey + sée(y + %) +8(€ = m)ey + s(€ — 7)e(y + g)] (5 260)

Ry = enfsgsy + ss(y+ 2) +5(€ = msy +5(€ = m)s(r+ D)) (5260)

Ry = 2n[c*y + Ay + %)] (5.25d)
Rs = n?[s2y + s2(7 + 5)] (5:25c)
Re = 20%[s*y + s(y + %)] (5.250)

where € = n¢, n = —=1/(r sa), ( = d/L and v = o + 3. Now, liom eqs.(5.25a)
(5.25f), the off-diagonal entries of LYL 4 for the 4-wheeled vehicles vanish., Morcover,
the diagonal elements are cquated with g2, Then, a relation similar to eq.(5.15) is
obtained as
a__ 2 -
0! = (5.26)
Again, the isotropy conditions, eq.(5.10), of the 4-wheeled AGVslead to ¢ > 1/y/2 for
real solutions of €. Angle ¢ is given by eq.(5.18). Now, with ¢ = 1/y/2 and f# = 0, an
isotropic vehicle architecture is obtained which is shown in Fig. 5.1, the geometiical

parameters being given in Table 5.1. The values for o and 1, are calculated as 2/r

and v/2d, respectively, with the radius of the wheels 7, and d as shown in Iig. 5.1
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Wheel, ¢ | o, (deg) | B, (deg) | 6, (dg) | d, (m)
1 45 0 —45 d
2 45 90 45 d
3 —135 180 135 d
4 —-135 270 225 d

133

Table 5.1 Architecture of an isotropic 4-wheeled 3-DOF AGV.

5.5.3 A Six-Wheeled AGV

In addition to the assumptions of eq.(5.11) the following symmetries are con-

sidered:

5w

fi=8, =" +85, ﬂ3=%’-’+ﬂ, pi=2T 46, fs=T+pand fo=n+

Then, the isotropic design of the 6-wheeled vehicles is done in exactly the same way
as for the 3-whecled AGVs. The design analysis for 6-wheeled AGVs leads to

2 3

g =

r? s2a

Angle € and the ratio ¢ are given by eqs.(5.18) and (5.19), respectively.

In summary, isotropic designs for direct kinematics of 3-, 4- and 6-wheeled
AGVs are obtained based on the isotropic conditions which are given in eq.(5.10).
For a real solution of angle €, the isotropic conditions lead to ¢ > 1/v/2 for all vehicles
under study. Moreover, eq.(5.18) provides a relation for the angles associated with
the AGVs. Furthermore, when an isotropic design does not exist for 3-DOF AGVs,
design variables can be chosen in such a way that the condition number of matrix
L4 is minimum. This may be achieved by minimizing a norm of a vector f defined
by f = [R —0% Ry, Rs, Ry—o0? Rs, Rs—c?T. Finally, once the homogeneous
matrix L, has been used to obtain the direct kinematics results, the substitutions
that were made to normalize the different elements of matrix L4 may be used in

obtaining the actual physical dimensions.
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Chapter 6

Motion Animation of

Nonholonomic Systems. A Case
Study

With the advent of fast processors and, more recently, with the development
of powerful graphics hardware and software, the on-line animation of the motion of
dynamic systems has become possible. Motion animation can find applications in the
design and control of mechanical systems. In design, before a system is actually set
in operation, its performance can be assessed on a computer monitor with the help of
an animation tool coupled with a simulation progiam In contiol, motion animation
allows one to predict the behaviour of an existing system, in 1eal tine, before the
system is in action, which is important for cases whereby a system is designed to
work in a dangerous or inaccessible environment. Therefore, it is essential to have an
efficient algorithm that will lead to a realistic animation of the system under study.
Moreover, accuracy is another aspect of the animation and simulation, without which
an efficient algorithm is meaningless. Furtheimore, besides o methodology for the
dynamic modelling of a mechanical system, a set of generahized coordinates and one
coordinate frame are necessary to describe and render graphically the motion of
the system. The choice of genecralized coordinates, of course, depends on various
issues, e.g., ease of sensing for feedback control, or simplicity of representation of the

equations of motion for fast simulation purposes. Also, using a certain coordinate
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frame to represent the dynamic equations of motion might lead to a faster or more
accurate algorithm than using others. Since there can be many coordinate systems
that are suitable for the representation of the dynamic model, one has to be chosen
among them, based on certain selection criteria. These criteria will be discussed
in this chapter. Other issues to be addressed in the realm of motion animation
are rigid-body attitude representation, both holonomic and nonholonomic kinematic
constraints and computational complexity. A suitable procedure, based on the NOC,
described in Chapter 3, allows the systematic modelling of a mechanical system
in any reference frame with any set of generalized coordinates. Various attitude
representations and coordinate frames are compared with regard to computational
complexity. The procedure is illustrated with a case study of a nonholonomic system,

namely, a disk rolling on a plane.

6.1 Dynamic Model of a Disk Rolling on a Plane
Using the NOC

The method of the NOC is used here to derive the equations of motion of a
disk rolling on a plane, as shown in Fig. 1.1, as is described below: The velocity ¢
of the mass centre C of the disk, which is assumed to coincide with its centroid, is

related to the angular velocity of the disk w, namely,
c=wx(c—q) (6.1)

where q and ¢ are the position vectors of the point of contact, @, and the centroid

of the disk, C, respectively. Denoting vector ¢ — q by r, eq.(6.1) is rewritten as:
¢c=wxXr (6.2)

The kinematic constraint equations in the form of eq.(3.18) are written from eq.(6.2)
as

At=0
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where A is a 3x6 matrix, namely,
A=[R 1]

and R is the cross-product tensor associated with r. The angular velocity w of the
disk is now chosen as the 3-dimensional vector of independent generalized speeds,
which is plausible because the degree of freedom of the system is three, Thus, the

twist of the disk, t, can be expressed as a lincar transformation of w, namely,
t = Tw (6.3)
with the 6x3 matrix T defined as

<[4

It can be readily proven that matrix T is an orthogonal complement of A by noting

that
AT =0
Matrix T is now calculated as
. (0]
t=[g]

Then, the equations of motion of the disk rolling on a plane are readily derived,
which are given by

Io=Cw+v+6 (6.4)

where the 3 x 3 generalized inertia matrix I, the matiix of convective inertia terins C
and the 3-dimensional vectors of generalized force due to gravity v and of generalized

dissipative force § are expressed as

I=TTMT =1 + mr'rl -r@r) (6.5)
C=-TT(M+WM)T + MT] = -I¢ - » Ip + m(rvr —a’rR) (6.6)
~ = TTw® = mRg (6.7)
6 = TTw? = n, + Rf; (6.8)
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where o is the angular velocity of the coordinate frame in which the equations of
motion of the disk are represented, m is the mass of the disk and I¢ is the 3 x 3
inertia tensor of the disk about its centroid C. Morcover, the sign @ denotes the
tensor product of the two vectors beside it. Furthermore, vectors g, ng and f; are,
respectively, the 3-dimensional vectors of acceleration due to gravity, of Cartesian—
as opposed to generalized—moment and of Cartesian force acting at the mass centre

of the disk, the last two items arising from dissipation in the system.

Note that eq.(6.5) has a physical interpretation, namely, the gencralized inertia
matrix I is nothing but the mass moment of inertia of the disk about the contact
point (). Furthermore, 4 is the moment of the gravity force about the contact point
(). Equation (6.4) is used for the simulation of the disk motion. Dissipation is
not considered in order to assess the accuracy of the various schemes which will be

discussed in §6.3.

6.2 Orientation Representation

It is a common practice in dynamics to denote the orientation of a rigid body
using Fuler angles. This representation, although not invariant, is amongst the sim-
plest because of its minimal set of variables. Its use is not recommended in cases
where bodies attain arbitrary orientations. In these cases, Euler angles lead to fre-
quent algorithmic singularities. The representation of 1igid-body orientation using
linear and quadratic invariants, as proposed in Angeles (1988), as well as the use of
the orientation matrix itself, along with a matiix-differential equation, are recom-
mended as alternate approaches to the orientation repiesentation by Euler angles.
The performances, i.e., speed and accuracy, of two orientation 1epresentations are
compared to the orientation representation by Euler angles These are the orienta-
tion representations based on quadratic invariants, best known as Euler-Rodrigues
parameters, and the full orientation matrix and its differential equation. Note that,

as indicated in §6.2.1, in contrast with the representation of an orthogonal matrix
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hy its quadratic invariants, the use of linear invariants leads to higher computational

complexity and algorithmic singularities, and hence, the latter has been avoided.
6.2.1 Alternate Orientation Representations

Let Q be the matrix denoting the orientation of the coordinate frame attached
to the disk with respect to the inertial frame, which is assumed to be a continuous
and differentiable function of time. Then, the time derivative of the orientation

matrix Q, Q, is given as in Angeles (1988), by

Q=0QQ (6.9)

where €2 is defined, similar to eq.(2.7), as the cross-product tensor associated with
the angular velocity & of the coordinate frame in use. Note that, in this chapter, the
notation that has already been introduced in eq.(1.81) will be used in representing,
vectors and matrices in a coordinate frame C, 1 ¢, vector components and matrix
entries are included in a vector or, correspondingly, in a matrix array with a subseript
C, namely, as [ - ]¢, where () indicates the vector or matnx at hand. Now, if the
coordinate frame used to express €2 is different from that of Q, c.g., 1f Q15 expressed
in an inertial frame denoted by T and €2 is represented in any moving coordinate

frame M, then eq.(6.9) is modified as

[Qlr = (Qlz[2]m (6.10)

Integration of the equations of motion, eq.(6.4), will give the angular velocity
of the disk, w, which is necessary to calculate the angular velodity of the coordinate
frame, o. Now, the time derivative of the orientation matrix, eq.(6.9) or eq.(6 10),
can be readily obtained and the integration of these equations will give the orientation
matrix. It can be noticed that the matrix differential equation, either eq.(6.9) o
€q.(6.10), comprises nine scalar differential equations, which inay affect the efficiency
of the simulation algorithin. Alternatively, one can use the linear or the quadratic

invariants of the rotation matrix Q (Angeles, 1988). However, if the linear invaiiants
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are used, algorithmic singularities will occur whenever the disk attitude amounts to
a rotation of 180° from its reference orientation. This problem can be avoided if the
quadratic invariants are used instead. Morcover, it can be shown that the calculation
of the orientation matrix Q requires less computations when, instead of the linear
invariants, the quadratic invariants are used. The quadratic invariants, better known

as Fuler-Rodrigues parameters, of matrix Q, are defined as

[So] e

szesin(—z—) and sp = cos(=)

where e is the unit eigenvector of Q associated with its recal eigenvalue +1 and £ is
defined, according to Euler’s Theorem (Euler, 1776), as the angle of rotation. Now,

the orthogonal matrix Q is given as
Q=(2s2—1)1+25®s+2ses x 1 (6.11)

Introducing a 4-dimensional vector 5, which is defined as [sT, so|7, the time deriva-

tive of the quadratic invariants is written as
=30 (6.12)

where 9 = [s7, $]" and ¥ is given by

— 1 Sol -5
> =§[ ' ] (6.13)

with S being the cross-product tensor associated with vector s. As is apparent from
eq.(6.10), if 9 is represented in the Z-frame and o is expressed in the M-frame, then

the relation appearing in eq.(6.12) is modified as
[z = [Zzlo]m (6.14)

where

(X = % [SOI_TS][ITS]I]

The orientation matrix, besides its representation by Euler angles, will be evalu-
ated in two ways for comparison purposes: (i) by integrating the matrix-differential
cquation, eq.(6.9) or eq.(6.10), (i1) by integrating the differential equations of the

quadratic invariants, as given either in eq.(6.12) or in eq.(6.14).
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6.3 Equations of Motion of a Rolling Disk in Dif-
ferent Coordinate Frames

The equations of motion of the disk, eq (6.4), are detived in three different
coordinate frames, namely, F, a disk-following frame delined as a coordinate frame
that follows the disk without being attached to it; D, a disk-fixed hame, rvigidly
attached to the disk and Z, an inertial frame. The dynamic equations of motion in
frame F are derived next, whereas the dynamic models of the systent in the D- and
ZI-frames are given in Appendix B. The simulation schemes for finding the orientation

and position of the disk using F-, D- and Z-frames are outlined in §6.4.
6.3.1 A Disk-Following Frame

The F-frame is defined as a coordinate frame following the disk without being
attached to it, its origin being located at the centroid of the disk and its vector v
coinciding with the disk spin axis, as shown in Fig. 1.1. The difference in motion
between F and the disk is that F remains with its origin fixed at the disk centre and
its two unit vectors f; and f; remain in the plane of the disk, but do not spin with

the latter. The unit vectors v, f; and f; are defined below:

e v is a unit vector parallel to the spin axis of the disk, which is perpendiculiu

to the plane of the disk.

e f; is defined as a unit vector directed from the contact point of the disk with
the plane, @, to the centioid, C'. This vector lies in the plane of the disk and

is perpendicular to v.

o f; is defined as a unit vector such that

f1=f2><v

Now, vector r is equal to rf;, which can be written in the F-frame as

[l‘]f = T‘[fg]}- (()lr))
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where r is the radius of the disk and [f]x = [0, 1, 0]7. Substituting [r]+ in eq.(6.5),

the inertia matrix in the F-frame can he expressed as

M = [Ic]r + mr*(1 - ()7 @ [f2]7) (6.16)

To evaluate the matrix of convective inertia terms in the F-frame, as in eq.(6.6), it
is noted that both vector  and matrix I¢ vanish when represented in the F-frame.
Morcover, if d) denotes the disk spin, then the angular velocity vector of the F-
frame, &, is equal to w — ;Z;v, which can be understood from the motion of the disk,

as illustrated in Fig. 1.1. Furthermore, [¢]x is written as
[0]F = [w]F — [V]F (6.17)
where [v]# = [0, 0, 1]7. Then, matrix [C]# is computed as
[Clr = —[o]r x [Ic]r — mr?[o]Z(6:]5([f)F x 1) (6.18)

and

[v]F = mr(f2]F x [g]» (6.19)

where
g]F = [Flzlgls

with [F]r and [g]r = [0, 0, —g¢|7 being the matrix that denotes the orientation of
the F-frame with respect to the inertial frame and the acceleration vector due to
gravity, respectively, both represented in the I-frame, whereas the scalar g is the

gravity acceleration.

Note that it is a common practice in the dynamics literature to use the Euler
angles, 8, ¢ and ¢, indicated in Fig. 1.1, as the generalized coordinates of the disk,
while their time derivatives 6, ¢ and ), play the role of the independent generalized

speeds. Then, [w]r can be written as

[w]x = [—0, bcosl, ¥+ ¢sin 0 (6.20)
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Using eq.(6.20), along with eqs.(6.16), (6.18) and (6.19), the equations of motion in

the F-frame are derived as

V)€ = [C')r € + [1]5 (6.21)
where
mr? ) 0 0 it . 0 —-5'(/.)3()(‘0 —(i.d.)('()
Xr= - [0 1+ 5s%0 6s0 |, [Cr = e ApsOcl  60s0c0  20c0
0 6s0 6 ‘ 5cl 50¢0 0
and

[v]r = —mgrsin0[1, 0, 0]"

Moreover, € = [#, &, ¥]T and vector & is the time derivative of €, while s(+) and
¢

¢(-) represent the sine and cosine of (-}, respectively. Furthermore, note that the

inertia matrix in eq.(6.16) and the matrix of convective inertia terms in eq.(6.18)

are different from those appearing in eq.(6.21), because the vectors of independent

generalized speeds, [w]r and &, are different. In fact, [w]r = [U]£€, where

-1 0 0
[Ur=10 ¢ 0
0 s0 1

Equation (6.21) is that reported in the literature on nonholonomic systems

(Passerello and Huston, 1973).

In simulation, it is necessary to know the position and orientation of the disk
in an inertial frame. The position will be obtained fiom integration of the velocity

expression for the mass centre of the disk in the inettial frame, which is obtained as
[¢]r = [Flz[¢]r (6.22)

where [¢]r is determined by writing eq.(6.2) in the F-frame as
[¢e]r = [w]F x [r]r = r[w]F x [f2]F (6.23)

Now, using Euler angles as generalized coordinates, matrix [F]z can be written as

cp —slséd cls¢
[Flr = |s¢ slcp —clcd (6.24)
0 cl sl
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Alternatively, the orientation matrix [F]z can be computed by integrating the ex-
pressions for the time rate of change of the orientation matrix, [F)z, or for the time

rate of change of the quadratic invariants, 1]z, which are given below,

[F)z = [Flz[Q)r or [0 = [Z]0]r (6.25)

Note that, when Euler angles are not used as generalized coordinates, the
angular rate v, appearing in €q.(6.17), is obtained by first solving for [w]# from
the dynamic equations of motion, eq.(6.4), expressed in the F-frame. Then, the

expression for 1 is written as

¥ = ([vlr = [f2] 5 tan 0) [w) s (6.26)
Kquation (6.26) can also be derived from eq.(6.20). Now, angle 0 appearing in

¢q.(6.26) can in turn be calculated in two ways, namely,

e From Fig. 1.1,
sinf =kTv and cosf = k'f, (6.27)

where k is the unit vector parallel to the z.-axis. Then, angle 8 can be de-
termined from eq.(6.27) by expressing the associated vectors in the I-frame,
which are readily recognized as: [k]r = [0, 0, 1)7, [f.]Jz and [v]r being the

sccond and third columns of matrix [F]z, respectively.

o Another approach is to solve a differential equation in 0, which is the negative

of the first component of [w]r, as in eq.(6.20), namely,
b= (6 ]Hwlr (6.28)

where [fi]r = {1, 0, 0)7.

6.4 Simulation Schemes

Simulation schemes are given based on the cquations of motion, the orientation

and position representation of the disk using the F-, D- and Z-frames.

Rt
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6.4.1 Using Frame F

Given the initial conditions, i.c., the initial position, orientation mattix and

angular velocity of the disk, the simulation can be implemented in one of five ditferent

ways, namely,

(F1)

(F2)

(F4)

(F5)

Equation (6.21) is integrated to obtain Buler angles and their time deriva
tives. The constraint equation, which is the expression for the veloeity of the
mass centre of the disk, eq.(6.22), is obtained using eqs.(6.15), (6.20), (6.23)
and (6.24). However, only the first two scalar equations of eq.(6.22) need to
be integrated. because the third component of ¢ has a closed-form iutegral,
namely, 7 cos 0. Therefore, cight scalar first-order dilferential equations are to

be integrated.

When Euler angles are not used as generalized coordinates, an alternate ap-
proach is employed which consists of solving eq.(6.4) in the F-lrame to obtain
the generalized speed [w]z. Then, the velocity of the mass centre can be ob-
tained from egs.(6.15), (6.22) and (6.23), where the orientation matiix [F];
is obtained by integrating the vector differential equation for [9]1 of eq.(6.25)
and using the relation in eq.(6.11). Finally, cqs.(6.26) and (6.27) are used
to calculate tl' and 0, respectively. This approach will give nine equations to

integrate.

Alternatively, instead of using the geometrical relations of ¢q.(6.27), eq.(6.28)
is utilised to evaluate #. Therefore, there will be one additional differential

equation, thereby deriving ten scalar ordinary diflferential equations.

The time derivative of matrix [F]z, [F]z in ¢q.(6.25), ¢q.(6.26) and eq.(6.27) are
used to obtain the orientation matiix, z/’ and 0, respectively. Thus, fourteen
first-order differential equations are to be integrated with this approach to

obtain the simulation results.

Similar to F4, but eq.(6.28) is used instead of eq.(6.27).
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6.4.2 Using Frame D

With the initial conditions, that is, the initial position, orientation matrix and

angular velocity of the disk, the simulation can be implemented using the equations

of iotion, the expressions associated with the orientation and position representation

of the disk in the D-frame, as derived in §B.1. Similar to the case of the F-frame,

any one of the schemes given below can be used:

(D1)

(D2)

(D3)

Using eq.(B.7) and the first two components of [¢]z, as given in eq.(B.8), which

will lead to cight first-order differential equations.

Using nine scalar differential equations, three from the equations of motion,
eq.(6.4), expressed in the D-frame, four from the time rate of change of the
quadratic invariants, cq.(B.9), and two components of [¢]7. Equations (B.11)

and (B.12) are then used to calculate ¥ and 0, respectively.

Instead of using geometrical relations, differential equations are used to calcu-
late ¢ and 0, eqs.(B.10) and (B.13), respectively, which will make a total of

eleven first-order differential equations to integrate.

Alternatively, the matrix-differential equation for [D]z, as in eq.(B.9), is used

to calculate the orientation matiix. This approach is similar to D2.

Differential equations, egs.(B.10) and (B.13), are used as in D4 to find ¥ and

0, respectively. This will lead to sixteen differential equations.

6.4.3 Using Frame 7

(I1)

The simulation results are obtained from one of the following schemes:

First, vectors [r]r and [F] ate calculated as 7[f]; and r[f,], respectively. Then,
the equations of motion in the Z-frame are solved for the angular velocity of
the disk, [w]7. The expression for [#]z, eq.(B.21), is used to find the orientation

matrix. Here, nine first-order differential equations need to be solved.
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¢ = 1p=0.0 deg, 0=0.0 deg/s

Case | 0 (deg) ¢ (deg/s) " (deg/s)
0.217633 | 57.295780 | —28.6478490
1.004186 | 103.132:405 | —74.48151H
6.099778 | 240.642278 | —211.994388

23.465159 | 550.039493 | —521 391602

Table 6.1 Initial conditions.

w @R eviis g

(12) Alternatively, the time derivative of matrix [D]z in eq.(B.21) is utilised to
derive the orientation matrix, which results in six more dillerential equations

for simulation.

6.5 Simulation Results

Twelve simulation algorithms for animation were developed, as described in
the previous section, in order to test their accuracy and speed. Simulation results
for a time period of 3.5 s, shown in Figs. 6.1 to 6.5, were obtained by integrating the
differential equations with the help of the DVERK! subroutine of the IMSI, package
(IMSL, 1980), which solves first-order differential equations by the Runge-Kutta
5th/6th order method. The integration was performied with a tolerance of 1073, The
tolerance that is used by the DVERK subroutine has no units. The 1easons are
the same as those that have been given in §4.1.4 for the DIVPRK subroutine of the
IMSL package (IMSL, 1990b). The results, shown in Figs. 6.1 to 6.3 and 6.4(a), were
obtained with a step size of 0.007 s. To study the cffect of the step size, a stalley

step of 0.00175 s was taken, the corresponding simutlation results being shown in

Fig. 6.4(b).

To test the performance of the computer animation software, i.c., whether the
animation is a true representation of the real motion of the disk, a set of initial condi-

tions from Table 6.1, which corresponds to the steady states, e.g., circular motions of

IDVERK is another version of the DIVPRK subroutine of the IMSL (1990b) package that has
been used in the previous chapters
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the disk, are supplied to the simulation programs. For that purpose, a steady-state
analysis is done in §A.6 using the equations of motion in the F-frame, eq.(6.21),
where Euler angles are the generalized coordinates, as in scheme F1. Henceforth,
Il to F5, D1 to D5. and I1 and 12 will be understood as the simulation schemes
mentioned in §6.4.1, §6.4.2 and §6.4.3, respectively. Initial positions, velocities and
orientation matrices for the simulation programs, based on the schemes F2-F5, D1-
D5 and [1-12, are similarly obtained, which also correspond to the circular motions
of the disk. It is pointed out here that no different steady-state analyses were done,
but Euler angles and their time derivatives in Table 6.1 were transformed to the
initial conditions, which are compatible with the other routines to generate circular
trajectories on the horizontal plane. Simulation tesults from the different schemes

are given based on accuracy and speed.

6.5.1 Accuracy

The deviation of the plots of the y.- vs. z.-coordinates ol the centroid of the
disk, Figs. 6.2 (a)-(d) for the initial condition A of Table 6.1, fiom the circular
trajectories, i.e., from a steady state, reflects the instability of the system under
study. Similar responses were observed in the cases of the initial conditions B and
C of Table 6.1 and, finally, in D, a limit cycle is observed, as in I'ig. 6.4(a), which is
in agreement with the initial conditions. In fact, with all the schemes, a delay in the
growth of instability is observed as one goes from initial condition A to B and from
B to C, but with initial condition D no deviation is noticed even for a simulation
time of 70 s. The instability can be attributed to both the physics of the system and
numerical errors. Smce it is very difficult to input the exact values for the initial
conditions corresponding to the steady states, the given values can be considered as
perturbed values and the system may deviate from the circular trajectories due to
its intrinsic instabilities. To detect the nature of the instability, an analysis, based
on the principle of conservation of energy, was done when the disk was rolling on

a plane in the absence of external and dissipative forces. The total energy at any
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(d) — I, TE=0 for 2.

Fig. 6.1 Plots of the difference in total energy (TE) vs. time for the initial
condition A with step size of 0.007 s and initial total encigy of 0.0098254 J.

instant is compared with the initial total encigy and the diflerence in energy,
Joules, is plotted against time, i seconds. Morcover, when the total eneigy 1emains
constant but the motion of the disk deviates from its steady state, instability due
to the dynamic behaviour of the systemis detected  On the other hand, if the total
energy changes as the disk deviates from its arcular motion. then the numerncal
instability is confirmed. Furthermore, if the total energy of the disk, which, for given
inertial properties of the disk, depends on its position and velocity,is higher, then the
system is less sensitive to the inaccuracies in the initial conditions, which is evident
from Figs. 6.1 to 6.4. For example, in Figs. 6.1(b) and 6 3(b) the differences in total

energy at time ¢t = 2.653 s (matked **’) are 1.31758 ~ 107" J and 7 60834 ~ 1077 ],
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respectively, for scheme F2. Note that, in both the cases, the difference in total
energy is very small, however, the y.- vs. z.-coordinates in Fig. 6.2(b) for scheme
2 at t = 2.653 s (marked **7) do not correspond to the ciicular trajectory—it is
unnecessary to derive the equation of a circle from the given initial conditions in
order to comment on the Cartesian position of the mass centie of the disk in the
re — ye-plane, as the figure is self-explanatory— , whereas I'ig. 6.4(a) shows a stalle
motion of the disk at the point marked “*'. A similar explanation can be provided
for the delay in the growth of the instability when the error in the total energy is
sufficiently small, i.e , within some tolerance. However, a lower step size improves the
simulation 1esults, which can be noticed from Fig. 6 4(h), iu contrast to Iig. 6.2(a),

showing that the growth of the instability has been delayed.

6.5.2 Speed

To comment on the speed of the algorithms F1-F5, D1-D5 and [1-12, as de-
scribed in §6.4, a study of CPU times was done. In some cases, after a certain time
of simulation, the total energy suddenly changes its value, indicating the initiation
of numerical instability, which depends on the nitial conditions, as can be seen in
Figs. 6.1 and 6.2. Furthetmo. o, it can be readily understood that, if simulation is
continued beyond the jump in the total energy, the execution time not only depends
on the complexity of the algorithm, but also on its numerical sensitivity. Therefore,
in order to comment on the complexity of the algorithm. a simulation time, e.g.,
2.1 s, is chosen so that the disk motion is stable, 1 c., it follows a ciicular trajec-
tory in all cases. However. the ('PU time needed to execute a program is different
at different times, because this time depends on the load of the computer system.
So, data were taken at night when the computer system was assumed to be under
constant load and by using double-precision on a SUN 3/75 workstation. To ensure
correct data, the repeatabihity of the results was considered. The data were taken
until at least five CPU times fell within a small error range, e.g., 3.5%. Finally, the

CPLU times were calculated as the average of the five readings mentioned above. The
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(d) — 11, - - I2.

Fig. 6.2 Plots of y. vs. z. for the initial condition A with step size of 0.007 s and
initial total energy of 0.0098254 J.

results of the comparative study of the CPU times with the initial condition A are
shown in Fig. 6.5. It was noticed that the different initial conditions under study do
not significantly affect the CPU time. Also, with lower step sizes the required CPU

times increase by the factor of the decrement of the step size.

6.6 Analysis of the Results

The classical problem of a rigid disk rolling on a horizontal plane was used as a
case study highlighting the methodology underlying computer animation. Algorithimn

accuracy was measured as the time between the start of the simulatiou and the
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Fig. 6.3 Plots of the difference in total energy (TE) vs. time for the initial
condition D with step size of 0.007 s and initial total eneigy of 0.0105278 J.

growth of the instability beyond a certain bound. This instability was detected
using a set of initial conditions leading to a ciicular trajectory of the mass centre of
the disk under study on the horizontal surface. Thus, the instability occurs when the
disk deviates from its circular path. Fuithermore, algorithin efficiency was defined as
the CPU time taken by the algorithm to complete the simulation for a certain time
of the stable disk motion. In the present case this timeis 2.1 s from the beginning of
the dish motion corresponding to a circular path. Animation algorithms wete then
compated regarding their accuracy and speed for different independent generalized
coordinates and different frames. The accuracy of the simulation algorithims, based

on schemes I'l and D1, corresponding to the initial conditions A, B, C and D of
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0.00175 s and initial total encigy of 0.009825.1 ).

Table 6.1, is the same, which is evident from the fact that they have the same set
of scalar differential equations. Simulation results with extreme initial conditions,
i.e., A and D, are shown in Figs. 6.1 and 6.2, and Figs 6.3 and 6.1, respectively.
The results for the initial conditions B and (' of Table 6.1 are similar, but there
are delays in the mitiation of instability, as mentioned in §6.5.1. However, there
is a difference in theit speed, as shown in IFig. 6.5 for the imtial condition A of
Table 6.1. This difference 1esults from the computation of the orientation matrx
[D]z, which requires more operations than calculating matnx [F]r. Morcover, for
a realistic animation, it 1s recommended to use the D-frame, bhecanse the effect of
the spin action of the disk will be clear using the orientation matrix [D]7. On the
contrary, if the F-frame is used. matrix [F]z should be postmultiphed by matiix [P],
matrix P being defined in eq.(B 1), to obtam the same effect In fact, the resulting,
matrix, after multiplication, leads to matrix [D]z. The comparative results; based on
accuracy, for F2-F5, are shown in Figs. 6.1(b) and 6.2(h) for the imtial conditions
A and in Figs. 6.3(b) and 6.1(a) for the initial conditions . Moreover, the results
for the algorithms based on schemes )2 D5 are shown in Figs 6.1(c), 6.2(c), 6.3(¢)
and 6.4(a) and in Figs. 6.1(d). 6.2(d), 6.3(d) and 6.4(a) for those based on schemes

[1-12. Apart from schemes F1 and D1, schemes FF4, D and 12 lead to the most
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Fig. 6.5 CPU time in seconds for the initial condition A using the schemes shown
inside the bars.

accurate simulation 1esults in the F-, D- and I-frames, respectively. It is noted
that scheme D35, which uses differential equations instead of geometrical relations
to evaluate angles 3 and 0, results in a more accurate simulation algorithin, which
is surprising because the use of differential equations involves integration resulting
in cumulative errors  On the contrary, the use of geometrical relations does not
involve any such errors. This unexpected result can be explained as follows: Angles
i and 0 are computed in scheme D4 from cumbersome expiessions, eqs.(B.11) and
(B.12), which require vector dot and cross products, and the evaluation of norms
of vectors. Vectors dy, d; and v, appearing in the geometrical relations, in the Z-
frame, are the first, second and third columns of matrix [D]z, respectively, which are
obtained from the integration of the matrix-differential equation. On the other hand,
expressions for g+ and 0, eqs.(B.10) and (B.13), respectively, require less cumbersome
computations, while vectors fy, f, and v in the F-frame, as proposed in scheme D5, do
not require any integration and have very simple forms, namely, [1, 0, 0]7, [0, 1, 0]¥
and [0, 0, 1]7, respectively. Therefore, scheme D4, which requires the integration
of nine scalar differential equations, three for each column vector of matrix [Dy,
produces more numerical errors than scheme D5, which needs simpler operations
to cevaluate ¢ and 0. in addition to the integration of the latter two differential

equations. Further comparisons between the results based on schemes F4, D5, 12,

L.y



Chapter 6. Motion Animation of Nonholonomic Systemns A Case Study 15t

F1 and D1 show that the last two schemes, where the equations of motion are in
terms of Euler angles, are better than the others. A comparative study on the ('PU

times shows that the simulation software based on scheme F1is the fastest algorithm
for simulation purposes and in the case of an animation program to be coupled with
a simulation scheme, scheme D1 should be considered as the most efficient algorithm,
However, as pointed out in §6.2, the use of Fulet angles in representing the otientation
of a body is not suitable in many applications. Choosing the components of the
angular velocity of the disk as the independent generalized speeds and writing down
the equations of motion in a suitable coordinate frame provides one with different
means for obtaining dynamic models of mechanical systems. In addition, alternate
orientation representations were introduced in §6.2.1, which have been utilised to
implement the simulation of the disk motion, as in schemes 12 15, D2 Db and 1112,
Furthermore, before selecting an algorithm for animation. it is always wise to paform
a comparative study, as indicated above, in otder to decide on the fastest, the most
accurate and the most practically feasible simulation scheme. For that, the method
of the NOC is suitable to express the dynamic equations of motion i any coordinate
system using an arbitrary set of generalized coordinates, as 1s made evident in §6.1,
§6.3 and Appendix B. Moreover, it has been noticed that schemes 194, DS and 12,
which integrate nine scalar differential equations to obtain the orientation matnix,
lead to more accurate results than schemes 12, 13, D2, D3 and [1, which tequite ouly
four differential equations to be integrated and some additional computations, as in
eq.(6.11). Furthermore, scheme D5 produced more accurate results than scheme D

In fact, from Fig. 6.5, it is clear that the use of redundant differential equations does
not lead to a significant increase in the CPU tune. Hence, it s tecommended not to
always discard the integration of differential equations over algebraic or geometiical

solutions.
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Chapter 7

Conclusions and Suggestions for
Further Research

The thesis is concluded with a brief summary of the completed work as well as

the practical use of the results. Suggestions for further research are also outlined.

7.1 Discussion

A review of classification of mechanical systems based on kinematic constraints
is given in Chapter 1 in order to clearly understand the terminology and the dis-
cussion in connection with the kinematic and dynamic analyses of nonholonomic
robotic mechanical systems containing both holonomic and nonholonomic couplings.
Robotic mechanical systems, i.e., mechanical systems under computer control, are
classified based on the kinematic constraints which arise from the kinematic cou-
plings. Thus, a class of robotic systems, termed nonholonomic robotic mechanical
systems (NHRMS), is defined. Chapter 2 gives an overall review of different formu-
lations for dynamic modelling of nonholonomic mechanical systems. The review has

been given with mernits and demetits of different dynamic modelling techniques.

A new method for the dynamic modelling of mechanical systems is introduced
in Chapter 3 as a six-step method. The method is based on a novel formulation of

kinematic constraints. In the adopted kinematic formulations, two lemmas are given
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in connection with the holonomicity of kinematic constraints. Dynamic models of
nonholonomic mechanical systems are then developed using the natural orthogonal
complement (NOC) of the kinematic constraint matrix, which is formulated in §3.1

The dynamic modelling technique developed hete, termed the method of the NOC,
was suitably used for the dynamic modelling of mechanical systems with multiple
kinematic loops. Moreover, mechanical systems with redundant actuation can also
be modelled with the aid of the NOC in conjunction with an optimization technique
Thus, a complete modelling technique is inttoduced in this thesis, which s capable
of modelling a broad class of robotic mechanical systems composed of rigid bodies

and both holonomic and nonholonomic constraints.

The method of the NOC is then used to model different NHRMS, as in Chap-
ter 4 for dynamic simulations. However, as pointed out in Step 5 ol 3.2, the model
thus developed can be exploited for the design of mechamceal systems (Saha and
Angeles, 1991d). The performance of AGVs was tested using the kinematic and
dynamic models derived here while following different paths o order to avord dis
continuous motions of the vehicles, which are harmnful to the driving motors, proper
path planning was done, whereby the system always started and stopped with zero

velocity and acceleration.

Since dissipation leads to damping of the built-up error upon integration of the
ordinary differential equations of motion, it becomes difficult to assess the accuracy
of the various schemes that are developed for simulation puiposes. On the other
hand, it is intuitively easy to judge the validity of the simulation results with no
dissipation, because, if the dynamic model of a system includes dissipation, then
deviations from the intuitive results cannot be exactly ascertained either due to the
characteristics of the dissipative model or due to the dynanmic model atselt, since
nothing is known about the natute of the tool developed here  Thus, o spite of
the ability of the method of the NOC to account for dissipation; as done i Cyril
et al. (1989), using the 3-wheeled 2-DOF AGV of §1.2, dissipation models are not

included in this thesis for the simulation of the NHRMS under study
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With regard to 3-DOF AGVs, a software package, OMNI, is developed for
AGVs consisting of any number of omnidirectional wheels, which analyses a vehicle
in four different levels. OMNI may help a designer in selecting an AGV for a par-
ticular application. The design of 3-DOF AGVs based on the isotropic kinematic
transformation matrix for direct kinematics is done in Chapter 5. The design aims
at providing robust direct kinematic control with respect to manufacturing and mea-
surement errors. Note that the design of the 4-wheeled 3-DOF AGV, as shown in
Fig. 5.1, is novel in that, as opposed to existing designs, the wheel axes are not
parallel. On the other hand, designs with thiee driven wheels exist whose archi-
tectural parameters are similat to those obtained here. Note that the conditions of
isotropic design for direct kinematics of 3-DOF AGVs are general, in a sense that
¢q.(5.10) can be used for isotropic design of AGVs consisting of an arbitrary number

of omnidirectional wheels.

Finally, some issues associated with computer animation are discussed in Chap-
ter 6. It is well-known that fast and accurate animation and simulation programs are
needed to produce a realistic representation of a moving system. It has been pointed
out that a coordinate frame used in representing the dynamic equations of motion
affects the simulation algorithm. Moreover, alternative approaches for representing

the orientation of a rigid body for fast simulation are introduced.

7.2 Suggestions for Further Research

The author would like to suggest further research work to extend that reported

here, namely,

(i) Consideration of different types of dissipation models in simulation.

(i1) The extension of the kinematic formulation and the dynamic modelling tech-
nique, introduced in this thesis, to nonholonomic systems with rubber tyred

wheels.
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(iif)

The developed tool for dynamic modelling of mechanical systems has potential
in solving for constraint moments and forces arising due to the constraints at
the joints. Thus, the method can be extended to design complex mechanical

systems like AGVs, whose simulation models are developed in this thesis.

The number of rollers in a wheel and the profile of the rollers can be designed

optimally.

Finally, with regard to the simulation of the systems, a performance criterion
may be established in deciding upon the best reference frame to represent the

equations of motion.
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Appendix A

Basic Derivations

A.1 Reduction of Matrix A,

From eq.(3.8), matrix Ay is given as

(A.1)

E, O —-E, 0O
A= [ 0 —1]

R, 1 B

)

Now, obvious clementary operations are performed on matrix A, that do not perturb

its rank, i.e.,

[EL O -E, O], . J[E O -E O], _
rank( R 1 B._, _1])-—ranl\( R 1 B, O])_
(A.2)
E 0O oOo o], . [E O O 0] _
mnl\([R' © B IR O])—mnl\([R‘ >0 0])_
) (A.3)
E, O OO
ld[ll\([o 1 O O]) (A.4)

and hence, the rank of matrix A, is equal to the rank of the 6 x 6 matrix AJj, as

obtained from eq.(A.4), namely,

-5 9]
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A.2 Reduction of Matrix A,

From eq.(3.10), matrix A, is given by
A,=[R, 1 B, -1] (A 6)
Elementary operations are performed on matrix A, as

rank([R, 1 B,.; -1])=rank(|]R, 1 B,., O])=
rank((R, 1 O O])=rank(]O 1 O O} (A7)

and hence, the rank of matrix A, is equal to the rank of the 3~ 3 identity matiin 1.

A.3 Eigenvalues of tensor E;

First, the cross-product tensor E,, associated with a unit vector e, is delined

by
Jd(e, X x
E,E—(——'——lzelxl (A.R)
Ix
for an arbitrary 3-dimensional vector x. Then, a proof of B = —E,, is given, which

will be used to calculate the eigenvalues of E,.

Proof: Referring to the definition of E,, eq.(A.8), for an arbitrary 3-dimensional

vector X,

E’x = (e, x 1)[(e, x 1)x]

= (e, x 1)(e, x x)

e, X (e, x %) (A.9)
Furthermore, eq.(A.9) can be written as

Elx=e, x (e, x X)

= (eTx)e, — (e'e,)x

il

(e, De)x —x

=—(1-e 0e)x (A.10)
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where @ denotes the tensor product of the two vectors beside it, which can also be

expressed as

— T
e e = ee,

Now, the tensor E? is obtained as follows:

E’ = E’E,
=—(1-eQe)e x1)

=-e, x1+4 (e, de)(e x1) (A.11)
For any arbitrary vector x, the expression (e, ® e,)(e, x 1)x is given by
(e, ©e)(e, x 1)x=(e,®e,)(e, x X) = ee! (e, x x) (A.12)

According to the definition of vector cross product, vector (e, x x) is orthogonal
to vector e,, and hence, (e, @ e,)(e, x x) vanishes. Thus, since x is arbitrary

(e, @ e,)(e, x 1) vanishes and eq.(A.11) then reduces to
E’ = -e, x 1= -E, (A13)

"To obtain the eigenvalucs of E,, let A and y # 0 be an eigenvalue and the associated

cigenvector of E,, respectively, i.e.,
Ey =)y (A14)
Premultiplying both sides of eq.(A.14) by E, yields
Ely = \E,y = \%y (A.15)
Repeating the same operation gives
Ely = A\Ely = X%y (A.16)

From eq.(A.13), E? = —E,, and hence, the left-hand side of eq.(A.16) can be substi-

tuted by —E,y which results in

~Ey =Xy (A17)
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Using eq.(A.14), eq.(A.17) is rewritten as

-y = Ny
or
AN+ 1)y =0 (A 18)
and, since y # 0, eq.(A.18) leads to
AA P+ 1) =0

which thus produces the three eigenvalues of tensor E,, namely,

A=0, V-l and —v-| (A1)

A.4 Kane’s Equations of Motion of a Two-Wheeled
Mechanical System

Let two independent generalized coordinates be ) and 0,, as shown m Fig. 1.1
According to the methodology described in §2.2.6, matnx U, and vector ¢ are as-
sumed to be the 2 x 2 identity matrix and the 2-dimensional zero veetor, 1espectively
Thus, § = @;. The angular velocity and the velocity of the mass centre of the left

wheel, i.e., body 1, are given in eq.(4.25) which yields
Y=[1+7k —nk] and V| ={-rj 0] (A 20

where V'{ and V| are the 3 x 2 matiices consisting of partial angular velocities and
partial velocities of body 1, respectively. Similar expressions for the right wheel and

the axle can be found which, when combined with cq.(A.20}. lead to,

[ i+1k /LY
-] 0
_ nk i—nk .
V= 0 —rj (A2
nk -nk
= (r/2)]  —(r/2)]]

Note that matrix V of eq.(A.21) is the same as the NOC matiix of the system, e,

T of eq.(4.28), which is duc to the definition of the twist of the vigid body in Kane’s
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formulation, as m eq.(2.39) where v, = 0. Now, according to the definition of the
generalized active and inertia forces of Kane’s equations, ¢q.(2.41), the generalized
active force is the same as the left-hand side of eq.(3.17), whereas the generalized

inertia force is nothing but the right-hand side of eq.(3.17).

A.5 Symbolic Derivations of Inertia Terms

The symbolic equations of motion of a 3-wheeled 2-DOF AGV are derived
using MACSYMA, symbolic manipulation software. The mass of the fork (body 4)
connecting the caster wheel assembly with the platform is assumed to be negligible.

Morcover, the platform is considered as a thin plate in the form of an equilateral

triangle whose vertices are at a distance b from the centroid. Matrices T and C are

now calculated based on the scheme given in §3.3, namely,

_ [ ]12] _ [Cu C])]
I= d C= . A.22
L] e Cn Cn (A.22)

One of the simplest elements of matrix I, 11y, is as follows:

My [Irsin 204 — 4(a + b)rsin® 0,)? + my[(e + b)rsin 204 — Ir cos? 0]

I, =
" 1612 e
(1 4 sin® 0,)|Isin 204 — 4(a + b)sin® 0,]°
+
6412
M2 (1 4 cos? 0,)[(a + b) sin 204 — Lcos? 04]°
+ ;
1612
my,r? sin 204 sin? 0,(a + H)[Ism 20, — 4(a + b)sin® 0]
B 3202
+7n,‘.1‘2[—1r sin@y — 2(a + b)r cos 04]°
16d412
mert  mb*rt omd®? ot 3myr?
‘)
92 4/2 + 2 + d 9 (A'~3)
and one of the simplest clements of matrix C, (', is
O4[lsin 20, + 4 sin’ (),
(g = —nu'.“’[lsin 04 + 2(a + b) cos 04){ sl sin 20, _;'91(2(;—*- b)sin” 04}
+r(0., + ) [=2(a + b)sinf; — I cos 0,] r cos 04[l¢ - ’d( 4+ 1/)) sin 0,]
161%d? 161242

_l1sm[d (04 + v+) cos 04 + Y(a+ b))

N } + mr?[lsin 204 — 4(a + b)sin? 04]
(
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{r03[l sinfy — 2(a + b) cos 0,] rsin? O4[1y — 2d(0, 4 ") sin 0,)

3212d . 3202
__sinfy cos 04[d(04 + 1) cos 04 + (a + b)e)
. ' 1612
_(94 + ) sin O4(lsin 8y — 2(a + b) cos 04 — 2d]
. . 3212 »
(04 + ) cos 04[2(a + b)sinby + lcosO4] (04 + ¢)[(« + b)sin 204 + L cos* 0, ]
+ b
3212 ) 164?
~sin 04 cos 0. y — . - 1) s .
—mr?®((a + b) sin 20, — I cos? 04]{7 sinlycoshlly 312)(/(0‘ b )sin o)
”
__cosz 0, [d(04 + 1/)) cos 04 + (a + b)zl"]
. . 412
(04 + 1) cos Ouflsin 04 — 2(a + b) cos 04 — 2d]
. . 812
(84 + ¥)sin 042(a + b) sin 04 + 1 cos 04)
8!?
(04 + P)[Isin 204 + 4(a + b)sin® 0]
32102 }
+mwT2[l Sin 204 . 4((1 + b) Sin2 04]{5“1 0 [l'l/’ — 812 I + t/7 Slll ()l]
"
__sin 4 cos 04[d(04 + 1) cos 04 + (a + b)ap)
412
_(04 + 9) sin O4[lsin 04 — 2(a + b) cos 0,4 — 2d]
_ ' 812
, 0s 04(2 b) sin 0. s0. :
-l-(O‘ T ) cos 0| (a\—l}; )sinfa + ! cos ‘]} + 1 [(a + b)sin 204 — Lcos® 0]
{— cos 8, sin (L,[ld) - 2(/ '+ 1/’ qm();] cos? ()4[(1((),, + ) cosly + (a + [,')(./i’]
. _ 412 214
+(04 + ) cos O4[lsin 04 — 2(a + b) cos 0y — 2d]
412
(04 + ) sin 04]2(a 1—;1)) sinfy + lcos 0, ]} B nm;/')r'" (A1)

where the radius of the wheels r, [, @, b and d are shown in Mg 4.5 Parameters i,

and m are the mass of each wheel and of the platfotm, respectively.
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A.6 Steady-State Analysis of a Disk Rolling on
a Plane

A steady state of a system is defined either as a constant state or as a periodic
state, as time approaches infinivy. In the case of a disk rolling on a plane, a steady
state can be a circular motion of the disk, i.c., given certain initial conditions, the

mass centre of the disk will trace a circle.

Thus, when the disk rolls in a circular trajectory, the generalized cootdinates,
Euler angles, and their time derivatives can be specified as
0=0,, 0=0 =0
¢=¢20t3 ¢2=¢U$ (.f)zo
Y=ot =1, P=0

where ¢p and 1o are constant angular rates, which are specified in the initial condi-
tions, whereas t denotes time. Now, the conditions in eq.(A.25) are substituted into
the equations of motion, eq.(6.21). The last two scalar equations in eq.(6.21) ae

identically zero, while the first scalar equation gives
2 . . 4_(] . )
5¢5 sinf, cos 0, + 6dorpo cos Oy + —sin b, = 0 (A.20)
r

To solve the above equation for 0, the usual trigonometric identitios are introduced,

namely,
) 2 1 — z? 0,
sinf, = —1-—_*—:6?, cosl, = 72 and z =tan ey
Substituting for sinJ, and cos 8, into eq.(A.26), a quartic cquation in . is obtained,
namely,
e 2t -z —-1=0 (A 27)
where _ _
S Mg Sy Mo

" 34 - 3dotpor’ 3o Sdotbor
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Equation (A.27) was solved numericzlly resorting to the ZPOLR subroutine of the
IMSL package which computes the zeros of a polynomial with real coefficients by
Laguerre’s method. Given the dimensions of the disk and the initial angular rates
é(, and 1/;0, cq.(A.27) is found to have two complex and two real roots Complex
roots do not correspond to any physically attainable state 0,, and hence, they are
discarded. One of the two real roots led to an angle which was less than —90°, and
was discarded as unfeasible. So, only one meaningful angle, 0,, corresponding to the
only remaining root &, was considered for the steady-state analysis. Finally, 0, was
cvaluated as

0, =2tan"!

Solving for 0,, the complete set of initial conditions for the steady state was obtained.
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Appendix B

Dynamic Model of a Rolling Disk
in Two Different Coordinate
Frames

The equations of motion of a disk rolling on a planc are derived in the D- and
Z-frames that were introduced in Chapter 6. The orientation representation and the
calculation of the position of the mass centre of the disk in the D- and Z-frames are

also discussed in this appendix.

B.1 A Disk-Fixed Frame

The D-frame is defined as a coordinate frame which is rigidly attached to the
disk, its origin being located at the centroid of the disk. Unlike the F-frame, the
D-frame spins with the disk. Thus, the coordinate system D and the disk move wilh
the same angular velocity. The unit vectors dy, d; and v, associated with this frame,

shown in Fig. 1.1, are defined below:

o d; is a unit vector rigidly fixed to the planc of the disk, directed from the
centroid, C, of the disk to its periphery and is perpendicular to v, as defined

in §6.3.1.
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e d, is defined as the unit vector given below
d] = dg XV
If matrix P denotes the orientation of vector r in the D-frame, i.e., if P denotes

the relative orientation between the F- and D-frames, represented in the D-frame,

then f; in the D-frame is written as

[flp = [Plo[f2]+ (B.1)
where [P]p is given as
cp s 0
[Plp=|-s¢¥ cp 0 (B.2)
0 0 1
Now, vector r in the D-frame is
[r]p = r(f2]p (B.3)

It is to be noted that, due to the inertial axial symmetry of the disk, I¢ has the
same representation in the F- and D-frames, i.e., [I¢]p = [Ig]r. Therefore, matrix

Iin this frame can be obtained from eq.(6.5) as

[ = [Le]r + mr?(1 - [f2]p @ [f2]p) (B.4)

In this frame the angular velocity of the coordinate frame is the same as the
angular velocity of the disk, i.e., [e]p = [w]p. Morcover, from Fig. 1.1 it is clear

that 9 is the relative angular speed of D with respect to F. Ilence,

[Elo = =4 [vlo x [t]o = =r$(v]r x [fa]o (B.5)

In the above expression, the identity [v]p = [v]r is used, which is clear from Fig. 1.1.
Moreover, [I¢]p = [Ic]r = G, where O has been defined before as the 3x3 zero

matrix. Using eqs.(B.3) and (B.5), matrix [C]p is given as

[Clp = ~[wlo x Icls +mr? {§([vV]= x [fo]o) ® [folo + [w]blfalo([f]o x 1)} (B.6)
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whereas 4 in the D-frame is

(vl = mr{fa]p x (ID]7[glr)

where [D]7 is the matrix representing the orientation of the D-frame with tespect. to

the inertial Z-frame, in the Z-frame.

Now, if Euler angles are taken as the generalized coordinates, then the dynamic

equations appearing below are obtained:

[Ilpé = [C')pé + [7p (13.7)

where [I'lp = [I')r, [C'lp = [C)r and [¥]p = [v]F. Note that the generalized
coordinates 0, ¢ and 3 are defined in such a way that theit values do not depend
on any choice of the coordinate frames. Ience, the equations of motion derived
using Euler angles as the generalized coordinates are the same in hoth the F- and

D-frames.

For animation purposes, the velocity of the centroid in the mertial rame T can
be written as
[¢]z = [D]z{¢)p (B.8)
where
[€lp = [w]p x [r]p = r{w]p x [R]p
with matrix [D]7 in terms of Euler angles being given by

cpcp — sOsgpsyp  —chsy — sOsge) (Vs
[Dlr = | s¢pctp + slchsip  —spsip + sOchpeyp  —cled
chsy clcyp S0

By virtue of the definition of Euler angles, as in Fig. 1.1, the expression in eq.(13.8) his
the same form as that appearing in ¢q.(6.22). Alternatively, to obtain the orientation

matrix [D]z, either of the two differential cquations can be integrated, namely,
D)z = Dl or [A)r = [Br(w]o (B.9)

where [2]p is © represented in the D-frame and {¥']7 is cvaluated from the quadratic

invariants of [D]z. Furthermore, once [w]p is obtained by integrating eq.(6.4) in the
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D-frame, the term 4 appearing in eq.(B.6) is readily evaluated by writing eq.(6.26)

in the D-frame as
¥ = ([V]p — [fp tan6)" [wlp = ([v]F = [f2]p tan 0)  [w]p (B.10)

Angles ¥ and 0, as appearing in eqgs.(B.2) and (B.10), respectively, can be computed

geometrically or by integration of the differential equations, as indicated below:

e I'rom Fig. 1.1,

, d¥(k x v) d’(k x v)
siny = ————= and cosph = ——— (B.11
] Tl vl )
Also,
-
sinf=k”v and cos0 = KLy x (kx v)] (B.12)

[lv < (k xv)]|

It is convenient to express the vectors of the above expressions, egs.(B.11) and

(B.12), in the Z-frame, where they have simple forms, as explained in §6.3.1.

e The differential equation for ¢ appears in eq.(B.10), whereas the differential

cquation for § is given below, i.e.,
0= -[t]plwl (B.13)

where

(il = [Plo[fi]F
B.2 An Inertial Frame

As shown in Iig. 1.1, 1, j and k are defined as three unit vectors, parallel to the
Te, Yo and z. axes, respectively. The evaluation of the expression for vectors r and
r in this frame is not as straightforward as in the F- and D-frames. It is described
below how to obtain r and r: First, vector f; is defined as

_ vx(vxk)
T v x (v x K]

= BV (B.14)
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where B is the 3x3 matrix defined as
(ViK1 -k v
\/1 — (vTk)?

while vectors r and r arc rf; and rfy, respectively. Upon differentiation of ),

B =

(B4

eq.(B.14), we obtain

fy = Nv (B.10)

with N given by

N

T2 (T ]
——[v @ k+ (vTK)1 + (v k)vok-(v )k)k vk
1 — (vTk)? [ — (vTk)

] (B.17)

Equations (B.14) and (B.16) can be readily obtained in the Z-frame by noting that
[k]r = [0, 0, 1]7 and [v]7 is the third column of the associated orthogonal matiis
representing the orientation of the disk in the inertial frame, which is nothing but

the orientation matrix [D]z, as introduced in §13.1.

It is clear from egs.(B.15) and (B.17) that matrices B and IN are undelined
when vectors v and k are parallel. It is also clear from IMig [.] that vector v can
be parallel to vector k only when the flat surface of the disk touches the plane on
which the disk rolls, i.e., when the disk is no longer in its rvolling motion. In this
situation, the motion can be described as the disk moving on the plane. Now, 1t s
straightforward to calculate [r]z and [f]z, required for the derivation of matiices [1};
and [C]z, by writing eqs.(B.14) and (B.16) in the I-frame and, heneey the inertia
matrix is given as

Mz = [Ie]r + mr(1 = (Bl & {f]7) (B 18)

where [Ig)r is [D]z{lc]#[D]E. Notice that, in the expression for C in cq.(6.6), (o],

vanishes, whereas [I¢]7 is [w]r x [Ic]z. Therefore, matrix [C]z is obtained as
[Clr = —[w]r x [I¢]7 + 7117‘2([@]1— ¢ [f2)7) (B.19)

and [¥]z is
[vlz = mr{fa]z x [g)z (13.20)
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With eqs.(B.18), (B.19) and (B.20), the equations of motion in the Z-frame arc

complete.

For animation purposes, the velocity of the centioid is given as

¢z = rlw]z x [f]r

and the orientation matrix is obtained either from the matrix-differential equation
or from the 4-dimensional vector differential equation in the Euler-Rodrigues param-
cters, namely,

[D]r = [Qz[D]z or [0]z = [E]z{w]z (B.21)

Iiquation (B.21) is nothing but eqs.(6.9) and ¢q.(6.12) in the Z-frame.



