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Abstract 

This thesis presents a novel approach in formulating kinelllatic COllstraints and 

il (f)('thodology for the dynamie modclling of mechanical systems with nOllholollomic 

(·ollplillgS. The rnethod prcsented hel'c is based on the natural orthogonal comple­

lIlellt (NOC) of the kincmatie constraint matrix assoeiated with the lincal' homoge­

liCOUS form of the kinematic constraint.s. The mcthod of the NOe 18 tlsed to model 

rnecha.IIÏcal systems consisting of ffiult.iple-loop kinematic chains with nonholonomic 

cOllstraints. Moreovcr, the mcthod of the NOC, whcn couplecl with an optirnization 

t.echllique, can he Ilsed fol' the fccdfol'ward control of redundantly actuatcd systems, 

as shown Iwl'c. 

The IIlcthod of the NOe is first discussed in cletail with the aic! of an exall1-

pie of a two-whceled rneehanical system. Then, non holonomie robotie mechanical 

systems, for examplc, automatic guided vehicles (AGVs), are analysecl for sil11ula-

Lion purposes. As a result, genel'al-purpose software is developecl fol' the kinematic 

éLlld dynamic analyses of thrce-degrec-of-freeclom (3-DOF) AGVs. These AGVs use 

oll1llidirectional whccls whieh, in contrast to eonventional whccls, e.g., the wheels in 

fllI automohilc, result in 3-DOF motion of the vehicle. Isotropie designs of 3-DOF 

AGVs fol' dil't'd killcmat.ics arC' proposed, which should enhancc the control of the 

ve·hiclc. 

\Vit.h aclvanced computer graphies, a common trend is to use motion animation 

ill a:>s('ssing the timc rcsponse of the systenls under study. This brought about issues 

or algol'ithmic complcxity that are inherent to motion animation. These issues are 

add\'('ssed wit.h an C'xamplc involving the attitude represcntatiol1 of a rigid body and 

t!\(' choin> of a suit.ablc coordillatc frame in representing t.he clynamic equations of 

\\lotion. 
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RéSUlll.é 

Cette thèse presente une approche origil1<1ll' ~\ la flll'Illlllatiull dt'S (,Olltldilltl'~ 

cinématiques et une mét.hode pour modeler Ici dynall1iqll(' dl' S~'St('II\l'S ;\ l'oIlPII'~ 

Hon-holonomes, La méthode est bRsée sm l'idé(, gélj("l'êl 1(· cl Il COIII pl("1I1<'11 t UI t h01l.0lléll 

naturel de la matrice correspondant à la forllle lill(~é\ill' hOlllO,!!,('I1(' dt'~ (Ulltl'dil\lt·~ 

cinématiques. La méthode du complélllent ort.hogollal Il ,)\, Il 1'1,1 ~(' prl,t,(· hi!'11 ;\ \.\ 

simulation de systèmes comprenant plusieurs hOllcl<,s ('illé·\lI,,\.i(II((·~, \':ll out 1'1" t'lI 1" 

liant à des méthodes d'optimisation, la, comnullld(' ('Il houl'1(· 01\\'('\,1.(' dl' ~\'st('I1I1'S :\ 

motorisation redondante est obtenue. 

La méthode du complément orthogoHal Ilat.1l11'! ('st prl'·S(·lIt('·(, t'Il d('·tilil iI\'('( 

l'aide d'un exemple d'un système mécanique à deux 1'01\('S, Pllis, I<.~ S,\'~ti'l1l<'~ 1 \)\,,) 

tiques non-holonomes, t.el que les véhicules autollomes, rOllt l'()''.il'\. d'III((, ("\.11<1(· dl' 

profondie. Un logiciel à usage général est donc lllis au poillt pOlir !H·\'II\I,t,\.n'l'éllI,dY"'I· 

cinématique et dynamique des véhicules autollOIl1('~ Ù \.Ioi~ de!!,,,'· c1t' lil)(·I'1('· (.l cldl) 

Ces derniers sont munis de roucs omnidil'cctiolll(('ll(·s qlli, (,OIl\.lilil(·III(,lI\. élUX IOU(· ... 

d'une autOlTIobile, permettent au véhicule un 1l10UV('lllClIt. il :l cldl. La ('ul(('t'!)l.ioll 

d'lin véhicules autonomes isotrope ct à 0 del1 est. j)r('senLpp, éI fill dl' rd( dit.(·(' Id ('ulll 

mande du véhicule. 

L'animation graphique devient de plus en plus \'(~palldll(' ('Ollllllt· ol\\.il ~('I vclliI " 

l'analyse de systèmes mécano-robotiques. La questioll de cOlllpl(·xit.t'· ,dp,o('itItIIlH!1lt· 

des méthodes d'analyse devient alors importanle et est. dOliC adt<,s:·,é·c (:Ollllllt' i Il,, ... 

tration, un exemple trait.ant de la représentation de !'oril'Iltat.ioll d'lIl1 (lJlI)~ 1 iglfl(· 

est présenté, l'importance du choix d'un rep<'I(' COllV('lIit!JIc· pOIll' la Il'pd's('IILdioll 

des équations dynamiques étant démontré. 
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Claim of Originality 

The éLuthor daims the originality of the itcms listecl below: 

• A Ilew criterioll is devcloped to c1ctssify kinematic constraints of mechanical 

systf'Irls. III order to dctect the holonomicity of kinematic constraints, two 

1('llllllélS al"(' providcd along with their proofs. 

• 'l'he dYllélll1ic lllodelling of nonholonomic mcchanical RyStcIlls baseJ 011 the 

nat,lIral orthogollal complcmcnt (NOe) of the kincmatic cOllstraint Illéttrix, 

that rpsldts from t.he lincar homogeneous kinematic constraints. is devcloped. 

• 'l'II<' dpgrc'('·of-frcedom (DOr) and controllability information of a system may 

))(' obtai JH'd as a part of t.he dynamic model of a mechanical syst.em using the 

NOe. Thus, thc lime required to separately Jete'rmine the DOF of a system 

and 1.0 test ils conlrollability is eliminated. 

• The devclop('d dynamic modelling technique, mentioned in the secolld item 

aboVf', is coupled \Vith an optimization technique tü analyse the dynamics of 

1I01lholonomic systems \Vith redundant actllation and illeqllality constraints. 

• Computer software for the kinematic and clynamic analyses of 3-DOF duto­

matie guided vehicl('s (ACYs) of arbitrary architecture eonsisting of ol1l1lidi­

rcct.ional wlw('ls is deV('lopC'd. 

• A cOllcept. of i ... otropic df'sign for the direct kinematics of 3-DOF AGVs If> 

illtl'Odllced t.!lat. will ('é1se the control of thesc vchicles. 

• 'l'hl' depelldl'IlC<' of eIficiency and accuracy of t.he simulation and animation 

cod(' Oll cool'dillat.e frames in reprcsenting thc dynamic model of a system IS 

('xt<'1lsivC'ly étllalysecl. 

• Alt.cl'Il<lt.i\·c approaches of attitude l'cprescntation of rigid bodies for simula­

t.iOll purposes arc inlroduccd with a discussion on their mCl'its and demerits. 

SlIggf'st.ions arc made for thc mot.ion animation of lllechanicai systems. 

This r('seal'ch wOl'k has bCCll part.ially rcported by Saha and Angelcs (l98U, 

ln91a, 1991h, 1991c, 1991d) in jOllrnals and conference proceedings. 
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Chapter 1 

Introduction 

A mechanical system consists or rigid bodi('s coupkd by killl'lll,lI.ic p,lil':-'. Hi)!.ld 

bodies in a mechanical system arc called l//lb. l\inclIIatic pails t.ha!. II'S!.lilt tlll' 

independent motion of the links arc known as .low/s or (·O/lp/III.'f8. III il Il)('('lIilll 

ical system, a set of links coupled by joints rorms a li/II('/IW//{, l'lW/II. 1\1111·lllêll.l< 

chains may be simple or complex. Simple chaills arc defîlled her<' ilS kilH'llIitl,il dlclill:-' 

containing links having a dcgl'ee of connecliV1l!J sll1élller t.lIrlll 01 ('qu,II 1.0 t.wo. II. is 

recalled that the degree of connectivity of a lillk is t.h!' IlUIlI!>('r or rip,id !lodil'S t !J.II 

arc coupled 1.0 the said link by joints. Tllf'rcforc, :-.implc kill('llIa!.!" ('h,liIlS ('1110111-

pass bot.h s('rial manipulators and closed singk-Ioop li Il I\ilg('s. 011 t.hl' otl)('\' hillld, 

complex kinematic chains are those containing at least 011(' lillk h,tVill)!. il d(')!.I'('(· 01 

connectivity greater than or eqllal to thrcc, for ('xéllllple, ilUt.Olllilt.ic p,lIid(·d whi( 1(· ... 

and parallel manipulators. A joint that. allows a \('5ll ict.iv(~ 1Il0t.iOIl of t!I<' l'i,f..',id IH){I­

ies in a kinematic chain, thus, leads to kinc1IIfl/ir' colis/mw/s. 'l'II<' r1I<11 i" 1.('1 i ... t.«':-. 

of kinematic conslraillts, apart from the type of a kill('lIl,ttic pair, i.e., il joi lit. or ,1 

coupling, depend on the topologyof the systelIl. The Lo!>olo,!.!,y or a kill('llliÜic Cllclill 

is defined as a description of the number of lillks and joillts ill él syst.elll illld l.h('i 1 

interconnections, disregarding geolllctric details ~I\ch as lillk 1('l1gth~ ,llIcI ~lliLJ)(':-'. 

In dynamic analyses of mechanical byslems, i.e., desigll, ~illlld,tI,IOll illlcl «(JIII,IUI 

of mechanical systems, kinematic con~traints play a vital rol(,. Whilc' cle'l ivill)!, t II<' 
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dyllillTlÏ<' rn()(I,~1 of a Jm'chanical ~ystern, t.ltese constraints are treatcd differently, de­

JH'nding on th(· fIlodclling techniques, as in I\anc (1968), Mcirovitch (1970), Hustoll 

clllei Pas:·wrdlo (I9H) and Mllir and NCllfIlan (1988). The kincrnat.ic formulation 

afbts tJw cOlllpl('xit.y of the deIivatioJl of t!w dYlIamic equations of motion, as dis­

('w.;s(·d ill Chaptc·l's 2 and ~~, whcl'e sCV('l'al appl'oachcs arc prescntcd for the dynamic 

lIloc!e'lling of nwchélllicai systems. 

A review of kincllIdtic constraints IS givcl1 In the s('cth'! below. Theil' def­

initiol1s, cltal'actcl'istics and differel!C('s are illllstrated in order to provide a c1car 

IIllde'l'st.i1nding of t.he' fonns of kiJWnlc\tic constraints, to address the associat.ed clif­

tÎcIlIt.ics dllC' to t.!w pltysi{'s of t.he joint.s and to c\ecide lIpon the ll1é.thcll1atical too\::' 

JH'( essary in ('oping wit.h !-ollelt difficulties. This will also hclp III undcrstanding the 

"('rmillology and the methods lIsed in this thesis. 

1.1 Classification of Mechanical Systems Accord­
ing to their Kinematic Constraints 

In mcchanical ~ystems, kinematic constraint:-. arc representcd by a set of al ge­

braie or differe11tial equat.iolls. The pxiste11ce of algcbraic const.raints means that a 

8('1. of corresponding diffC'rential ('(jllations exists. 1I0\\'e\'('r, the reverse is not tl'lle, 

i.e., t.he exist.en('(' of diff('rcntial kincmatic con!'>traints <loes 110t mean that a corre-

sponeling set. of algchraic cCl'tations exists. In the former case, whcre a set of algebraic 

('()lJat.iolls C'xisl.s, I.hp CO\lstraint equatiolls arc call('d ha/Of/orme constlaints, whcrcas, 

in the latter Cclse, t.he differclltial constraint. ('quations that do not have equivalent 

alg('braic cquations arC' kllo\\'n as nO/lho!ono1Jllc constrctints. Tllll~. based 011 the type 

of const rai lits, m('chanical systems l11a)' he c1assified as holonolllie or nonholonomie 

sys!'(·ll1s. A ll1('chanical system III wlIJch ail joint.!'> kad to holollomie constlaints is 

cèll1cel a holonomie l11c('hanical systcm. On the eontrary, if the rnechanical system 

has at least 011(' non holonomie eonstraint., it is known as a J1onholonomic rnechanical 

8Y8t.('I11. Th roughou t I.his t hesis, a nwchan ical system is assumed to consist of 171, 
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independent constraints, of which Il arc holonolll ic and 1/ a l'l' 11011 holollOl1l ie. Th Il:-., 

m=h+1I 

Moreover, p denoting the number of gCllcrali:::cd coo/'{llI/alc8 t.hat aJ'(' <lt'Iil\('d iI~ t hO~I' 

variables which give an unambigllolls r('prcs('11I,at.ion of t.IH' cOllfigmat iOIl of t 1\(, S~'S­

tem, i.e., with the help of thcsc coordinatps, a 1Il1iqw' n)l)ri~ltrat iOIl of t III' sy:-.tl'III ill 

the 3-dimensional Cartesian spacc is possible, is grPélt.cr tltall 1/1. 

1.1.1 Holonomie Constraints 

A h%nomie1 constraint may he defincd as a COIISt.l'élillt, that. Cilll 1)(' l'X!>I 1':-':-'1'<1 

by an algebraie, usually nonlinea r, relation arnollgst Uw g,<'Il<'raliz('d ('oord i Il il t l'~ ,lI1d, 

possibly, time. The set of gcn('ralized coordillal.<'s is Ilot Illliqll(" a:-; 1.11(,\,(' is 1110\'1' 

than one set of eoordinates capable of dcscrihillg the (,ollfigltrélt.ioll of t.1\(' sy~klll 

uniquely. However, the sets of gcnerali:-wd coordilla!'<'s I1IlIS!. 1)(' fillit,<" sillgl('-v,dlll'd 

and continuous functions that are twice diffcff'ntiable wit.h 1 (');]><,('/, to ti"H'. No\\', 11\1' 

eonstraints arising due to the presence of the JOIIlt.S éllld Ut<' t.o]>olog,y of t\w killl'III<II i( 

ehains of the holonomie system arc expresscd cl:' 

f(O,t) = 0 ( 1. 1 ) 

where fis a vector function of class C2 (Rndin, 1 D76), 8 is a p-dillH'lIsiollal V('dol 

whose components are the gcncralizcd eoordinat<,s alld l c\<'1I0!.<'S !.illH'. It. is a~~Il\lll'd 

here that the mechanical system at hand (,ollsists of ft holo/lolllic co/lsl.rélillb ,)/dy, 

i.e., it is assumed that n = O. Thus, fis an h-dilll(~lIsi()llal wctOI' t.1t,1I. i!-l c1dill<'d, 

along with 8, as 

and 

Furthermore, the holonomie eonstraiIlts of eq.( 1.1) cali },e diffC'l'ent.iat,c'c! wit./, J'(',>/J('( 1. 

to time, which yields a linear relation arnongst the gC71cralzzcd ,"p(On/s, D, lIétlll<'ly, 

( 1.1) 

lThe word h%,tOnne is derived from the Grcck word "olo.~, W/Ilel. IIII!élll'> wIJolr'. 
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wllf'rl' J i!> an h x ]J matrix and b is an h-dimC'nsional vector, both, in gencral, heing 

fllllC't.ions of t1\C' g('I\('ralij',C'd coordinéltC's and tilllC. Note that the lcft-hand sicle of 

('q (1.2) is tht' t.ot.al dl'rivativc' of f(8, t) wit.h l'('spcct to time, i.l'., 

and 
iJf 

b=­
Dt 

( 1.3) 

,1I1c! 1\C'llre, 011<' can ohtain eq.(l.l) by integrating the explcssion givell in eq.(1.2). 

What. follows is lltat., for holonomie syst.cms, the kinematie eonstrainls in the form 

of (·q.(1.2) are llIt('gmblc and cq.(l.:3) forms the hasis fol' the neccssary and sufficient 

condit.ions for illt('grdbility of diffcrcntial equatiolls in the for111 of eq.( 1.2) (Ince, 19.56; 

Spil'g('I, J 9~.1). Thl'sC' holonolllicity conditions for the kincmatic constraint equations 

of cl n\('( hanic,t! system can he' stat.C'd as: ail p x JI matrices, each of which is derived 

<lS tlt(· gradi('nt of j, with rcspe'ct t.o (J, i.e., fJja!i)O, for i = 1,"', h, where j, is the 

Il.h ('olUll1n of matrix J1', must be symmctric. In addition, 

Db, _ Dj, 
(JO - at ' 

whcre b, is the lth el<-mcnt of vector b. 

for 1 = l,' .. ,Il 

Alt.C'l'Ilativ('ly, int.egrability conditions can be obtained, as in lsidori (1985) ancl 

Nakalllura and Mukltcljec (1990), by using the definitions below and a theorem from 

nonlill<'ar cont.rol th('ory. 

Definition 1.1 Lie bracket: If vedor x, and two vedor fields fI (x) and f2(x) bclong 

lo an open subset U of Rn, thcn the Lie bracket or Lie producl of 

fI and f2, d(,llOted by [fI, f2], is a thinl vector field dcilncd by 

Df2 ûfl 
[fI, f2](x) = ûx fI (x) - ÜX f2(x) 

Definition 1.2 Involutiv(' distribution: A lincarly independellt set of vector fields 

{fI,'·', fm } is said to be involut.ive if, and only if, there exist scalar 

funct.ions Ol)k such that. 

m 

[fil f)] = L Q,)J.fk 

1.=1 
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Theorem 1.1 Frobenius's Tlworell1: Ld {fI."" f",} 1)(' cl ,,1'1 01 "('( lOI li('ld" th.\t 

are Iin('ady indep{'IHII'1I1 at {'(lch poinl x, '1'111'11. Iht' ~I'! or \(·(t"l 

fields is said to he (,oll\pl<'lely illlq!,l'ahlt' if .• \llt! olll.\' if. il i~ 111\0111 

tiVe'. 

The presence of lI/tcgml fO/'III.~ of kinclllatic ('onst r(linl~ ill " holllllOIlI\( ~\,,,t(·III. 

as in eq.( 1.1), alJows the dimclI~ion of t.he' V{'rtOI' of g('II('I',lhzl,t! CllOi dillil!l'~ 10 lit' 

reduccd to a minimal set of gencl'alized (,ool't1il!,II('s. III fat l, by "Oh'lIlP, fUI Il ul 1 hl' l' 

generalized variables from the Il eonstl'aints, t 1((' nllllll)('1' uf p,('llt'l'alizt'd (()III dllld\t'" 

is recluced to q, whcl'e q == 1'- h. l\lo\'('O\'('r, tlw~(' Il c()oldill,t!('~ ;\11' lIu\\' illt!t'I"'IIt!t'lt! 

and any arbittaly infinitcsilllai ('hang(' in tht';,t' li coortllll"tl';' Il'pl(';'('llls ,\ Il/I,·,,,,fdf 

displacement of t.h(: system. Notp thc\t t1H' dt'gn'('-of-fl('t,t!olll (DO\o') 01 " ~\:-,I('III 

is dcfined as the nUll1ber of uulcjJflldfl/l gf.I/(/'{/!t::fd ('(J{//'IllIIlIlf." 1 h.1I dll' 1«'( (''':-'011.\ 

and sufficient to control the systf'1l1 sllch that, givC'1l il (l'I'I,lill IOldiglllolllOIl .• 111\' 

arbitrar)' change of these coordillatcs will IJlOV(' tI((' ~ysl l'Ill 1,0 allol ht'I IOlllip,III.IlIt1I1. 

That is, using q independellt coordilla1.<'s, il, i~ po~~ibll' 10 IlIO\'I' III!' :-'\'"lt'llI flUIlI 

a known configuration to allother d('si('('d eOllfig1ll',t! iOIl. T""~, 1111' DOlo' 01 III!' 

holonomie system al, hand i:; q. Th is kads t 0 éI r(,~1 tI t for 11010110111 il' "y .. ;1 1 '111',' III 

a holonomie sy~tel1l, the 1/I11l/lIwm 11111111)('1'01' g(>IH'raliz(·d (oOldillélll'~ \('qIlÎ\('" Itl 

completely spccify the configuration of (1)(' :,ystl'Ill is I>qllal to 1111' DOF of Ill!' "",,11'111 

In dynamics, the motion of a syht,elll cali 1)(' tH'cdl'r\ ill 11'1'111" (JI 1 li(' I11utH}1I ul 

a point in a multi-dimcnsional spaee tel'mecl tl)(' ((JTlJi!JllI (// {(JII .... 1)(/('( (NI'lllIfI 1 k ri IId 

Fufaev, 1967). For a holollomie sy~tc'lIl, the dill]('nsioll of llw (oldl).!,lIlid,ioll ~p.It·(· 1" 

equal to its DOF, i.e., q, and hellce, al, (Illy instclllt, t!w ~y~t('111 ('ilii 1)(' d(·~( lilH'd 1,.\ 

a vector 8 in a q-dimcnsiol1ctl spaec. 

Finally, a holonomie constl'ai n t lIlay be disti IIgll ihlwc! iI~ pi 1111'1 .... df1 () 1/ (Jill/(' III 

rheonomic2 , as described bclow: 

2scleronomiC and rheOllomlC owe thelr nalllC'!' ta tlll' Cn'C'k wonl., ~J.."'II~ .1IId ,f,I(), WIH"'" 1111';[11-

ings are hard and 10 flow, hellce changeable, rC'!'pcctlvdy 
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• ,c;rlfl'OlIOTnZC: Holonomie constraints in whieh timc t docs not appcar expliciily 

art· known as "c\eronornie constraints, i.e., thc constraints can be expresscd as 

f(O) = 0 01' JO = 0 

• l'j,rollomu:: Contrary to sc\cl'Onomic cOllstraints, if olle of the holonomie COIl­

st.raint.s in a set. of const.raint equat.ions cont.ains t explicit.ly, as in cq.(1.l) or 

eq.(J .2), t.hen they arc rcfcl'red 1.0 as rheonornic constl'aints, i.e., 

f(O,l)=O 01' JÔ=-b 

1.1.2 Nonholonomic Constraints 

Nonholollomic constraints, first identified by Hertz in 1894 (Nelmark and Fu­

fa<'v, 1967), rest.l'ict the kmcmatically possible mot.ions, i.e., the possible values of the 

v<·lociti<>s of the individual links, of the system. For simplicity, it is assumed tltat 

th(' Il holonomie eonstraints al\ow the elimination of h generalized cool'dinates, the 

lIumb<'l' of gen('ralized eoordinates nccded to describe the system thus being rcduccd 

1.0 ]J - j,. 

lJnlike holonomie constraints, eq.( 1.2), fol' nonholonomic systems, is 17oninte­

!lm"'(', i.e., t.he dirrcr('ntiai expression involved does not am ou nt to the total time 

d(·rival.iV<' of élll)' wct.or fUlletion f(O, t). Morcover, sincc no algebraic function of 

1.11<' g<'lINéllized coordinatcs ean hc derivcd from nonholonornic constraints, n gcn­

('raliz('d coordinates cannol. lw (>xpressed in tcrll1s of other gcneralized coordinates. 

Thus, él lIollholonomie system can he defincd as a mechanical system in which the 

111111111/11111 I/llmbcl' of the gn/(/'{l!?::cd cool'dl1lales l'equired to speczfy the configuration 

of Ihe .'lyslcm al (II/y tHIlC /.'. gl'eater thall the DOF of the system. 

A dist.inguishing pl'operty of a nonholollomie system is that not ail variations 

0(' it.s g<'IH'l'aliz<'o coordinatC's, irrespective of how they arc chosen, correspond to a 

mot ion of t.llt' !->ystelll scüisfyi ng i ts eonstl ai nts. Morcover, eontrary to holonomie 

const J'aillt.s, the constraints on tlw admissible vf'locities of the individual parts of a 
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Fig. 1.1 A disk l'oHillg 011 il plalle' 

ï 

nonholonomic system do not lead t.o restrictions 011 t.heir .tdillissihl(· (,oltli).!,llltlt.iulh 

Furthermore, the existence of a single lIollint('grc\ hk COliS 1.1 ri i Il L d()('s ilOt. ,t! W<I.'·'" .l',11" 1 

antee the system to he nonholoIlomic, sincc titis (ollstl'aint Illdy prov(' 1.0 \)(' illt(·).!,1 ,!il\(' 

by virtue of the remaining constraillt eqllations. For élll (·Xdlllpl(· or !>\l('1t <1 Cd!>(" t I\(' 

reader is referred to Nelmark and FlIfacv (1967). 

As mentioned hefore, the dimension of the configurat.ioll SP,I('(', wlti( Il (dll ,d"'(l 

be defined as the minimum !lumber of gcncralizcd cool'dill,t\,('!> 11('( ('!>!>dly lu "'P('( il\, 

the configuration of a system completcly, is different fWIlI it.s \)01" If 1.11<' sy!>t.('11i 1'" 

nonholonomic. In fact, the dimension of the configurcttioll SPd«' of ,t lIollhulollOllli( 

system is always larger than iLs 001". Moreover, a distillcl.ioll is llIarl(· 11('1'(' IH'I.W(·(·II 

the minimum number of coordinates reqllired 1.0 sjJ(,('lflj t!1(' (ollfip,lIl'ctl.ioll of fi !>y!>t.('111 

completely, i.e., the dimension of its configumtioll space, alld t.h(' Illillilllllill 1I1111t1H'1 

of coardinates necessary to control t.he syst.em, i.e., t.lH! \)OF of \.Il<' ~y!>t(')11 

Ta exemplify a nonholonomic system, a 1'igid disk rollillg 011 Cl hOI izolll.al (Jltlll(' 

without slippage, as shawn in Fig. l.1, is considered. TIIlI!>, ,l !JIll'" ml/Illy 1l1Ot.1<J11 

of the disk is assumed. The configuration of this disk al. éllly illSt..llIl, i:-. «jlllpl('t.<-Iy 
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spC'cified by five generalized coordinates, namely, two rectanguldr coordinates of the 

ITlaSS centre of the diRk, say, Xc alld Yc, and thrce angles representing the orientation 

of the body with respect 1,0 t.he inertial frame, say, the Euler angles 0, <P and '1/;. The 

IHI1'(' rolling condition may, alternatively, be statecl by saying that the clisk moves in 

contact with a pC1jcclly rough fixed horizontal plane. A rough surface, in contrast to 

ft Jwrfcclly smooth surface, does not allow arbitrary changes of the five generalized 

coordinéltes. If the surface is smooth, the disk can take on any position, i.e., slippage 

occurs, as long as it remains in contact with the plane. The five coordinates can, 

th('refore, have any arbitrary values representing a possible displacement of the body, 

which, then, implies that t.he system has five DOF. However, when the plane is rough, 

t.he condition that. t.he displacement of the point of contact be zero must he satisfied, 

<lI\eI this implies that the quantitics rcpresenting any arbit.rary configuration of the 

disk on t.he plane arc not independent. In faet, the velocity of the mass centre of 

t./Je disk must satisfy two scaJar constraints. These constraints can he written in the 

[orm of eq.( 1.2) where vector b vanishes. The expressions for J o.:,d () are: 

and 

while vcctors jl and j2 are given as 

j 1 = [r cos (} sin 4>, r sin 0 cos 4>, 7' cos </>, 1, OlT 

j2 = [-r cos 0 cos 4>, r sin 0 sin 4>, r sin <p, 0, IV 

(1.4) 

(1.5) 

wh('rc r is the radius of the clisk. Now, it can he readily verified that 8jt/8() and 

Ôj2/ 8(), t,wo 5 x 5 matrices, are nonsymmetric. Thus, the resulting constraint equa­

tions are nonhoJonomic and the DOF of this system turns out to be three. 

Not.e that, while pure rolling conditions are satisfied, the five coordinates may 

take on arbitrary values as tIlt' disk rolls on the plane, i.e., the disk can take on 

any position relative to the plane. To justify this assertion, it is shown in Nelmark 
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and Fufaev (1967) how the disk can bc brought from a p,i\'t'Il posit.ion. <!p!H)ll'd b~ 

vector 90 == [00' 4>0' 1/Jo, Xo, VolT to any ot hC'r pl'('scriIH'd posit.ion gin'Il by 

91 = [Ob <Pl, 1/JI, Xl, vdT
• First, the disk is l'OII('d frol1\ il poillt. Co 011 1.1«' 

plane whose coordinates are (xo, Va) t.o a point CI that is giwll by (.l'!, III) aloll!!, illly 

curve of length r(1/JI -1/Jo + 27rk), where k is ail arhitral'y const.c\nt.. Tla'll, t,l\l' dis\.; 

is rotated around the axis perpendicular t.o the plall(, al, point CI lInt.il tht' élllp,lt' <II 

takes the desired value <Pl' Finally, the disk is tilted 1.0 I.h(· posit.ioll wlWl't· () = (JI' 

This verifies that. the dimension of t.h<, configmat.ion SIlt\('(' is fi\'(', wht'l't'<lS t.ht' DOF 

of the disk rolling on the plane is thrce. A similar sitllat.io\l <\1 iS('H in ('V('l'yd.l)' lift' 

when parking a car, which requires a hct of cOlllplcx l11anot'uv\,('s 1.0 plan· tilt' ('d!' if! 

a space between two other parked cars. 

Further classifications of mechanical systcms arc possihlt, t.hclt. 01('(' hased on t.11<' 

values of the components of vcctor h, as in eq.( 1.2). Tll<'sC are: 

• catasfatic: If all compon{'nts of b vanish, i.e., if wctor h do('s ilOt. app('al 

in eq.(1.2), the constraints are called catast.atic. A dis!.: lolling 011 a plallt' i:-. 

a catastatic nonholonomic system. It is poillt('d out. he\(' t.hat. a. lI«'c!tdllical 

system contaînîng catast.atîc integrahle cOllstraint equat.iollH is Ilot alwilys il 

scleronomic system because, upon int('grat.ion of ('C).( 1.2), t.ilT\(' 1I1(\Y app('é\l 

explicitly in its algebraic forms, i.e., the systcm is r1H'onolllic . 

• acatastatic: Acatastatic constraints have at least one nonJ',<'1O corn PO!WIlt. of b. 

1.2 Robotic Mechanical Systems 

A mechanical system may be either controlled or ulIcollt.l'OlIed. A disk roll i IIP; 011 

a plane is an example of the latter, but most. engineering syst.ellls an~ controllt·d. Ail 

example of a control1ed system is t.he 6-001" manipulator cl(~veloped dllring Wortel 

War II, which was meant to reproduce the motion of the ill'lll of a TIIélllT)(,c\ lIIa:-.-

ter manipulator by means of e1ectronic amplificrs. A systcm IIl1de'r dip;it.itl e 011-



( 

Cbapt.N 1. Introduction 10 

trol is mueh more v('rsatile because it allows for programmlllg, Thus, a computer­

controlled meehallical system is referrcd 1.0 here as a 1'Oboiic mec/wnical system, 

popularly knowll as a 1'Obol, A 1'obotl, accordillg to the International Standard Or­

gan ization (Poole, 1989), is (Iefined as .ln aul omo iically conf l'olled, 1'ep1'Ogl'am mable, 

l1tulli-pnrposc mampula/wc machine, wzth or wzthout locomot1On, /01' 1lse ln indlls­

t1'1al alllo1Tlalum applzcallOns, 1I0weV('r, modem robots cne Ilot only restricted to 

industrial applications. Tlwy are also uscd in ullstl'uctured cnvironmcnts like hospi­

tais and military ctpplicatiolls. To use robots in an Ullst ructured cllvironment, the 

autOJlomOUS nature of the robots is important, which essentially dcpends on accu­

ratl' sensors and on-lille computations allowing robots to make decisiolls, In any case, 

IOhots can be cither holonomie or non holonomie. This allows one 1,0 c1assify rohotic 

meehanical systems as (a) holonomie robotie mcchanieal systems (HRMS) and (b) 

nonholonomic JOhotic l1l('chanical systems (NHRMS). Examples of HRMS are seriaI 

and parallcl mallipulators whosc kinematic cOllstraints are holonomie. On the other 

hand, alltomatic guidcd vehicles (AGVs) and snake-likc articulated mobile robots 

with crawler tracks (llirose and Morishima, 1990) are NHRMS, since non holonomie 

cOllst.raints arise duc to rolling of whcels and crawler movement.s. Yet another ex-

illl1f>lc of a NIIHMS is RoboTRAC (Hil1er and Sehmitz, 1990), a. system supported 

wit h wlwcls and legs. 

Althoup;h the first industrial robot was built in 19.54, the research in dynamics of 

seriaI manipulators startcd in the Iate seventies and has been considered an almost 

aceolllplished subj('ct. In this area, the problem of dynamie simulation for real­

tirne control of mallipulator~ has been addressed by Luh et al. (1980), Walker and 

Orin (1982), Kane and Levinson (1983), Khalii et al. (1986), Lee and Chang (1986), 

Angelcs and Ma (1988) and Balafoutis ct al. (1988), just to mention a few. 

Wit.h thc int.roduction of flexible manufacturing cells in faetory automation, 

t.he tH'C('ssity of illCl"easing l110hility in fixed lObotic manipulators was [eiL In eITeet, 

3Tht' term robot is d('ri,t'd from t.ht' Czcch word l'Ohota, wlllCh mcans forccd labour or compulsory 
SCr\'\ ("(' It was first. IIsed III Iwo plnys wrillcn by the Czech author Karel Capek. The more popular 
011(' is llo.~stlm·s Ufllt'crsal Robot~ 

, 
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the research on mobile robotic systems is ('('('('ivi ng 1110('(' a IId 111 0 \'(' a t. t ('Ilt.illll. III 

this context, walking machines and rollillg rohot.s arC' wd!-kIlOWII molli!(' robots. 

Walking machines are leggcd mobile robols. TIH'y of[('1' indep('II(lc'lIt. nmt.l'ol of t.h(·il 

joints and have the greatest capabilit.y of goillg oV<'r ullst.\'I1ct.u\'(·d !.l·nain. 110\\'('\'('1" 

due to the presence of comp!ex kinematic chaim; and t.ht'ir t.illll·-vélryillg t.o\loloAY, 

they are difficult to control and the computations requi\'('d fol' l(',l!, cont.m! .\\Id \',11<111('(' 

are prohibitive. Also, power drain is larg<' (Waldl'Oll, l!)Sf); Pook. 1 !)~H) and t I\('il 

payload cap~bility is quite rest.ricted (IIiros(' and Morishima., W!lO). 011 I.h(· ot.I\('1 

hand, AGVs are wheeled mobile robols and pel'forlTl weil if t.h(· t.('nain is hOI izolll.al 

or has only a limited siope. The motions of AGVs a1'(' \'('êlsollah!y slIIoot.h and t.11I·il 

wheels have good traction (Poole, 1989). TI\('y arc favonr('d ill t.hl' sltop Hoors, 

because the)' are more energy efficient (Muir and N,'uIlHln, W87a) thall ol.h(·rs 011 

rigid, horizontal surfaces. An AGV with a seria! rnanipulat.or III01Int.('d on t.op is 

believed to find wide applications in fadories, offiC<'s, hospitals, supl'l'Il1arkl·t.s and 

houses. However, AGVs are nonholonomic syst('l\ls and t.hcir kin(,lllat.ic pl'op('\'l.il's 

demand a special treatment for th('ir dynamic élnalysis, which is a motivation fol' tilt' 

research work reported here. 

1.3 A Survey of Nonholonomic Robotic Mechan­
ical Systems 

Since the developmcnt of AGVs in the sixties, t.hey have rnost.ly hec'II IIs(·d ill 

factories. These models are li ke driverlcss forkli rI. t.rucks and cali ha IId 1(> larl!,(' loacls 

from one are a of the factory 1.0 another, but cU'C g('IH'rally const.r,lil)('d t.o follow .t 

fixed path. These paths are usually physicai g1lidl'IHtths :-'1Icll as illdIlCt,ivl~ 01 WII('­

guided, optical and magnetic guidcpaths (Premi and Besant., 1 !)8:~; BC)('l!,li, 1 !J8f); 

Hammond, 1986; Tsumura, 1986). They arc fairly ~imple and l'dlablc'. 1I0WI'Vl'I, 

these systems have severe drawbacks as paths are not. easily altl!rable, wltic:1t l<-acls 

to limited control over vehicle paths and stopping points, hig\w)' inst.allation ('ost. ill 

the case of the wire-guidcd systems and high maintenance cost.s dll(' lo t.he wear and 
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t(~ar of the paint or the reflectivc tape of optical systems. The use of virlual guide­

palh8 (Bocgli, 1985) It~ads to a ncw generation of AGVs, also known as alltonomOllS 

1'OIJOI8 (Poole, 1989), i.e., autonomous wheeled mobile robots. In these systems, the 

acttlaJ configuration of the vchicle is obtained from indirect information, which is 

procpssed using its on-board computer. This information may be obtained from 

indicators Iike inertial navigation systems, dead-reckoning systems, sonic or laser 

heacons, corner-cube and laser-scanning (Tsumura, 1986), computer vision systems 

(Bo('gli, 1985; IIammond, 1986) and frcc-whcel techniques (Culley and Daldur, 1988). 

Tlwse navigation systems cxtend the application of AGVs to space and undersea ex­

plorations (Tanaka, 198,5), nttcl('ar and explosive handling (Maki, 1985; Meieran and 

Ce/halls, 1986), sf'curity (Kajiwara et al., 1985), military (Lindauer and IIiU, 1985), 

rnohility for the disabled (Tachi ct a!., 1981), patient care (Nakano ct al., 1981; 

Borenstcin and Karen, 1985) and construction work (Saito et al., 1985; Kangari 

and Yoshida, 1990), Desides, AGVs have been developed for research pm'poses as 

in Iijima ct al. (1H81), Moravec (1983), Dillmann and Rembold (1985), Cheng et 

al. (1989) and othcrs. 

Mobility is an csscntial fcature of AGVs that is achieved by wheellocomotion 

systl'ms. Locomotion of AGVs with three or four wheels is more common, although 

six or more whecls arc also possible. Some configurations even have sets of double 

wh('('ls, l'Our whcc\s oITer more stability, more traction when al! wheels are driven, 

and slightly better clearance capabilities, Thrce wheels oITer less complex steer­

illg, t.I}(~ dimÎnation of suspension mountings, less weight for the wheel assembly, 

and Home navigational improvements. IIowever, there are many ways to construct, 

1110Ilnt. and steel" t.he wheels. Figure 1,2 iIlustrates sOllle popular wheel configurations. 

Figure 1.2(a) shows a whcc\ configuration where two rcar wheels are independently 

driv('J1 and also used for stccring purposes. For stability, CL frce- or caster-wheel 

is atlached 1,0 the front. This wheel configuration is used in the YAMABICO 3.1 

AGV (Iijima ct al., 1981). a similar vehicle being analyscd in Chapter 4 of this the­

sis. TIl(' appro(\rh of Cybermation, Ine., USA, is that aH wheels are driven and 
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cG A casler wheel c~® 

~ lc0 Lcc0 Lcc0 
(a) Cb) 

• 
" (61c® 

(c) 

Fig. 1.2 (a) Two rear wheels are drivcn, (b) Thrc(' wh('pls m(' syllch\,()llol1~ly dl iV('11 
and steered, (c) Three sets of douhle-whccls arc drivC'1I alld sl.(·(·\'(·d . 

steered, as shown in Fig. 1.2(b), in total synchronisatioll. III I>ol.h ca!'>('s, as showll 

in Figs. 1.2(a) and (b), the systems have 2-DOF. In the fOI'lT)('r cas", th" sysl.('111 

can move in a straight path that is parallel 1,0 the whe('1 ve\ocitiC's alld CéllI ro1.at(· 

about an axis perpendicular to the floor, whilc, i/l !.Il(' laUer, th(' systelll (éIIl 1I10V(' 

anywhere on the floor but cannot rotate about a vertical axis, l'<'sldtillF, ill two I)(J~SI-

ble independent motions of the vehiclcs. Carnegie Melloll's P LOTO (MoI av('c, 1 !)X:~; 

Bortz, 1984) has a set of two wheels OH cach of the t.I1l'<'(' SlippOi t I('F,~ of a 1.1 iall­

gular platform, as shown in Fig 1.2(c), which leads to a :J-DOF AGY. COII(ol'diét':, 

CONCIC-2 (Cheng et al., 1989; Rajagopalall and Huard, IDS!)) 0p(·ml.(!s éL~ pi t.J 1<'1 

a 2- or a 3-DOF AGV. A modifiable wheclba::.c cOllfig1ll'atioll of CONCIC-2 is VC'I y 

useful in studying different kinematic, dynarnic alld cOlltlO1 aspc'cts of the AGY lb 

driven or driven and steered whecls may he ass('rnbled ill the v(,l'ti('(!s of Ct triallgulal' 

Figs. 1.2(a) and (c)-, rcctangulal' or rhombie platforIll. Althollgh SOli\(' of t.}1<' AGV!'> 

mentioned above have 3-DOF, thcir control is difficult bc'nulsc' they have' I<'dllllclallt. 
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Fig. 1.3 Wheel configuration of a centre-dl'iven AGY. 

aduat.ion, i.e., the nUtllber of driven wheels is greater than their DOF. One way of 

avoiding redundant. actuation in a 3-DOF AGV is to have a centre-driven vehicle 

(Carlisle, 1984), in which lateral movements of the vehicle are possible by stcering 

the two drivcn whcels together, as shown in Fig. 1.3. For stability of the vehicle, 

foll(' caster whecls arc attached at the four vertices of a rectangular platform. This 

systC'ffi has the disadvantage that, to change its direction of motion from longitudinal 

to lateral, it has 1.0 come to a complete stop 1.0 orient the driven wherls froIn the 

former to the latter direction, as shown in Fig. 1.3. The invention of the Mecanum 

whecl (.Jonsson, 1985) or Omnidircctional wheel (Carlisle, 1984; Adams, 1984; Muir 

and NC'uman, 1987a) or Ilonator (Daniel et aL, 1985), shown in Fig. 1.4, allows for 

a 3-DOF mobility in a vehicle without redundant actuation. Contrary to the con­

ventional whecls, Figs. 1.2 and 1.3, an omnidirectional wheel consists of a. wheel hub 

about. which rollers are mount.cd at an angle a, as shown in Fig. 1.4(b), such that. 

t.heir spin axes, vectol'S e', are not parallel to the axis of the wheel hub, which in turn 

is pêtrallcl ta vedor e. If vcctOI'S e and e' are parallel then the assembly will lead 

1.0 a kincmatic structure of a conventional wheel and henre, the wh cel is no longer 

0111nidirC'ctional. The rotation of thcse rollers adds another DOF to the wheel and 

hCIl(,{', to the syst.em. Howevel', this wheel is difficult to manufacture. Moreover, 

if t.h(' in('rtial propcrties of the rollers are not negligible, then the computational 
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roller 

whccl 
hub 

e' whecl 
hub 

Fig. 1.4 (a) An omnidirectional wh('C\, (b) A scl\('lIIat.ic diagraJl\. 

complexity increases in the dynarnic modelling of AGVs wit.h t.his t.ype of wl\('('ls. 

Gcnerally, AGYs are popular NIIRMS. Ilow('vcr, NIlHMS that. art' 1I1O\,(' «lIlI­

plex than AGVs also cxist.: a 16-DOF snake-lik(' artinIlat.('d Jl\obile I\H 1 10h01. 

(Hirose and Morishima, 1990)-a hybl'id configuratioll cO/lsisti/lg of six êl/'t.ind.tf,('d 

body and crawler tracks that has exC<'lIcllt tCl'l'élin adapt.a.hilit.y, Sllflici('lIt payload 

capacity and high mobility-has been dcvcloped lo satisfy t.1I(\ 1't'<t"il'<'IlI('lIts of a 1111-

clear reactor plant in Japan; a space vehicle (Nakallll\l'éL and MlIkhl'rj('(', I!HHJ) t.hat 

has been conceived by NASA for perforrning vé\riolls tasks in spac('; élnd HoboTB i\(: 

(Hiller and Schmitz, 1990), a wheelcd-and-Ieggcd mobile systeIll fOI l'ollgh-I,('1'1'aill 

locomotion. 

1.4 Research Objectives 

Literature investigations reveal that, since the invention of AGVs, atl,('lIl.ioll 

has mostly been paid to navigation systems, path-plallllillg éllld o\'sl.cl<'l<' élvoidiUlU' 

algorithms. The problems of kinematics and dynamics p('/'t.ailling 1.0 ACV:; rOI clllal­

ysis, design, simulation and control pmposes have b('(,11 1'<,( etIt1y ctddr<'ss('d by éL 1'1'\\1 

researchers. The kinematic rnodelling of AG V!'> was r(,pOl ted by Agl/llô et al. ( J !)~7), 

Muir and Neuman (1987a, 1987b), Cheng and Ha.jagopalall (1988) alld AI(!x;llldl'l 

and Maddocks (1989), while dynarnic analysis hy Cyril et. al. (1 !)H!J) , M lIir a/ld N(!w-
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lJIan (I!J88) and Agull6 et al. (1989), and control by d'Andréa-Novcl ct al. (1991) 

alld Samsoll alld Ait-Ahd('rrahim (1991). A Ilwt.hod bascd on the nalnral o7'lhogonal 

('{)mp'w/(~lIl (NOe) (Angeles and Le'e, 1988) is devised in the prC'sent research for 

t.lw dYllarnic mOc!f'lIing of NIIRMS. AGVs of vôrious architectures arc modellccl to 

t,f'f,t the lH'rfofllldllce of t.he modelling t.echnique' devcloped here. 

Clos(·ly related design problerns associated \Vith the 3-D01" AGVs with om­

Ilidi rectiollal wheels are the optimum selection of the total number of whcels, the 

Illlrnlwr of drivclI wh('('ls, wheel size, stcc/'ing method, orientation of the whcc\s, pro­

fiI(' and orientation of the l'OlIcr8, number of 1'011ers in a whcel, etc., some of which 

an' addr(,s8e'd I\{'/,c for thc first lime. Kinemat.ic designs of the 3-001" AGVs bascd 

OB the tranflformation matrix for direct kil1cmatics are donc, whcrc the optimum 

orientation of the rolle18 relative to the whed 1mb and the optimum positions and 

ori('Ilt.at.ions of t.he whcc\ hubs with respect to t.he platform are found. 

1"inally, simulation is recognized as an important tool that can be used in the 

design and control of mechanical sy:.tems and, consequently, simulation of NHRMS 

is givcn due attC'ution. 

1.5 Thesis (~ontributions 

The present. research focuses on the development and application of a clynamic 

modC'lIing tcdlllique fol' nonholonomic systems, known as the method of the NOe. 

ThiR technique is based on a novel formulation of kinematic constraints arising from 

diff('I'Œ!. types of kinematic pairs and a. suitably clefined orthogonal complement of 

the associated kinematic constl'aint matrix. Bere, two lemmas are given in §3.1 

\Vith regard 1.0 the classification of kinematic constraints that avoid the necessity of 

finding the gradicnts of the rows of the kinematic constraint matrix, genel'ally re­

<]lIin'c\ to dpt('rminc the integrability of first-ordcr differcntial equations arising from 

t.he cUllst.raints in the kinematic pairs. A mechanica.l system consisting of multiple 

kin(,l11atic chains or loops, multi-loop systems for brevity, cven in the presence of re-
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dundant actuation, can be analys('d with this Ilwt.hod, as dt'scrilH'd ill ~:L:J .lI1d !i:Ui. 

The DOF of a mechanical system can 1)(' dl'\('l'lllilH'd wit h t II<' adoptl'd II\('\ hodolllp,~·. 

which then allows the prediction of t1H' contlo1\ahility of t.hl' sys\('lIl. TI\(' t!uillit~, 

between kinematic const.raints and nonwol'king ('onst raint. "'J'l'lIrll<'s ('(111 hl' l'xploitt'd 

for design purposes. To this end, sinn' a lIonholollomic m('chélllicili SYSt.I'1\I collsists of 

both holonomic and nonholonomic cOllplings, thl' d('\'l'lo()('c\lIwthod cali hl' sllitahly 

applied to a holonomic system as weil. 

The method of the NOe is th('n appli<'d t.o t.hl' dyllalllic sil\lulat.ioll of dilfl'I­

ent NHRMS, which leads to sllitablc simulation algorithms. Fil'st., t.!1<' silllulatioll 01 

a 3-wheeled 2-DOF AGV is reported, the l'csult.s showillg that th(' IIwt.hot! of t.11I' 

NOe is an accurate simulation tool. A general-purposc comput.l'l' pl'Op,ralll, O~INI, 

is developcd that allows uscrs to pcrform inve'l SP kinclllatics, c\yn.lll1ics allt! l'orwell d 

dynamics leading to the simulation of 3-001-' AGVs cOllsist.illg of ally 11111111)('1' 01 

omnidirectional w hcels. Red ulldant aet uatioll i Il :~- DO F wh i c!es is abo <'ollsidl'I t,Il 

where th~ dynamic modelling is donc using t.h(' mct.hod of t.\1(' NOe <'l>lIpll'<! with 

an optimization technique. With the mcthodology deyc'Ioped ill this t.lll'sis, lilllit.a­

tions on the motor torques can be takcn into account ill thc illVl'\'se dyllal\lÎcs illld 

simulation of 3-DOF AGVs. MOl'cover, kinematic designs al'(' !'('(H)I't.l'd, wll<'!'('by 

an accurate and efficient scheme for direct killcmatics, alld hCIICl" cOIlt.rol, cali 1)(' 

achieved. 

Finally, a current important featme in design and J'('al-t.imc cOIlt.rol, llitllH'ly, 

animation, is thoroughly addressed. IIere, the fn'quelley al. wllich t.he configllrat.ioll of 

a system is computed must match the speed al. which t.he systcm mOVl'S. !lOWl'V(,\" 

a fast algorithm with poor accuracy is usclcss. 'l'hus, il is being ~h()wn with (li 1 

example that the representation of adynamie model in diffel'cnt. cool'dillate sYS\'<'IIIS 

affects the efficiency and aecuracy of t.he simulat.ion algolit.hlll thlls pIOdIlC('d. '1'11<' 

results are followed by some suggestions wllich ('aIl he hdpful whe'lI OlIC' att.l'lTIpts \'0 

derive a simulation algorithm for animation purposes. 
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1.6 Thesis Outline 

A review of classification of mcchanical systems and al! pertinent definitions 

arc prcsented in this chapter. Hclated issues are also discussed, as pertaining to 

holonomie, nonholonomic and rohotie mcehanieal systems. Objectives of the researeh 

and the thesis contributions arc inclucled as weIl. 

A review of Hw cxisting methodologies for the dynamic modclling of nonholo­

lIolllic rncchanical systems that have bccn uscd sinee 1894 is given in Chapter 2. 

Wit.h t.he advent of eornput.ers, il. has beeome a natural tendency to derive algo­

rit.hllls I<,ading to the automatic development of dynamic models of systems eonsist­

ing of complex kinematie chains. This led to some methods based on orthogonal 

complement.s of kinematic constraints that are bl'icfly describcd in Chapter 2. 

The dynamic modclling of nonholonomie l'obotie mechanical systems using a 

special claSH of orthogonal complements, namely, the NOC, is prescntcd in Chapter 3 

as adynamie modelling met.hod, in six steps. The crucial step in this formulation 

is fillding the NOe of the kinematic constraint matrix. The independence of the 

kim'matie constraint equations étrising from a holonomie or a nonholonomic coupling 

is diseussed in Chapt('l' 3 and two lemmas assoeiated with holonomie and nonholo­

lIomie ('Onstraints thett hclp in ident.ifying the n,Üurc of kinematle constraints, as in 

§~J.l, arc proven. Moreover, the Illethodology fol' multi-Ioop systems is dcscribed in 

§:J.3. An optimization technique cou pied with the method of the NOC is given for 

Ill<'chanical systellls with redundant actuations. 

Chapter 4 dcals with the modelling of nonholonomic robotic mechanical sys­

j,ems. The' Il1rthod of the NOC is, first, exemplified with a system consisting of an 

axle coupl('d t.o two wheels, as in §4.1. Then, a simulation algorithm of a 3-wheeled 

~-DOF AGV is developed that. has bccn tested when the vehicle is moving in a eir­

('ular trajcclory and in a path consist.ing of two straight lines connected by a smooth 

('U1'\"(,. Th(' dynamic analysis of a 3-DOF AGV with aIl wheels driven may be ob-
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tained by a direct applicat.ion of the' NOe. 1I00\'I'\'l'r, if 11101'<' 1 h,lIl t hn'(' \\'h('I·I~ ;111' 

actuated then the system becomes redlllldantly a('tllat('ll. .\ Il ,li mal choin' ill tilldill)!. 

a motor-torque setpoint for the controll('r is to use optilllizalioll 1 (·c1l1liqlll·S. Titus. a 

method described in §3,6, applied to re'dundant.ly act.uatl'd :l-DOF A(;Vs. IS d('lin'd, 

In Chapter 5, kinema tic designs for :J- DO F AGV s t ha!. (\l'(' basl'd UI\ t IH' isol !llpil 

matrices associated with the inverse and direct kinelllat ics a!'(' ~lddn'ssl'd, II. has hl'I'II 

shown that a matrix rclated to the inverse kil](,lI\atics of 1 1Jl' :~-I)(W A( :Vs 1',1111101 

be made isotropie. On the othel' haml, geolIwt.rical paralll('1l'1 S ul 1 hl' vl'hicks (ul' 

responding to the isotropie matrix for dil'C'ct kincmat,i,s al'(' slIggI'stpd whi< h will 

increase the accuracy and efficiency of the cont.rol algorit.hms of Ut<' \'('hirks, 

Sorne aspects of animation, Iike rigid-body attit.ud(' 1'<'111<·SI·1I1..1I iOIl <llId II\(' 

choice of a coordinate frame to represent t.11<' dynalllic !'qllat.iolls ui Illot.ioll of cl 

system that affect the efficiency of a simula.t.ioll aigoritlllli Il'adillg, pO~!-lihl'y, tu <III 

unrealistic animation of the system, are studied in Chapt.(·l' G. A (d!-l(' !-lt.lIdy 01 il disk 

rolling on a plane is included and guidclines are provided fol' <ll\illl,tI,ioll (llll'pOS('" 

Finally, Chapter ï concludes with a gcncral dis('us~iOlI 011 t.!H' acIli('w'IJl<'1\1 ~ ill 

this research and suggestions for further research work, 

Several appendices are includcd for completcll<'sS of t.his t.lj('si~, i\PIH'lldix A 

contains sorne detailed derivations that would distract. t.he I(',ld!'r if ill( Itld('d Wlt.hill 

the main body of the thcsis. Appcndix B gives the ddaikd d(·script.ioll of dl<' <1('1 i Vil 

tions of equations of motion of a disk rolling Oll a planc' ill LI\(' disk-fix('<1 illId ill('I1.iill 

frames, the results bcing used in Chapter 6. 
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Chapter 2 

Dynamic Modelling of 
N onholonomic Systems. A 
Review 

The existence of kinematic constraints in the differential form of eq.(1.2), that 

impose no restrictions on the possible configurat.ions of a mechanical system, was rec­

ogni7.cd at the end of the ninctccnth century. Lagrange, in his celebrated Alécaniquc 

Analylique (1788), did not suspect the existence of such constraints (NeTmark and 

Fu faev , 1967). Thus, he assumed that independent coordinatcs with independent 

variations could be chosCll for any mechanical system, once allowance had been 

made' for the conditions lInposed by the nature of the system, which is equivalent 

to saying t.hat it. is always possible to find a set of independent coordinates defining 

I.h(' configll"cüion of the SystClll at any instant. This ovelsight was discovercd after 

a considerable al1lount of time had elapsed, in connection \Vith the study of various 

caS('fI of mot.ion of rigid bodies constrained to roll without slipping either on a plane 

or on a slllooth warp<,d surface. 

ln regard to the dynamics of multibody mechanical systems, the primary inter­

est is in motion stlldy or simulation. Simulation is defined as, glven the present state 

of a system, ... ay al lime l = 0, and the luslory of the e:ctel'na[ moment,.; and forces, 

fil/cl Ihe .'llalc va1'lllblrs in Ihe future, l.e., al any lime t > O. Here, tenns like state 
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and state variable are understood in the matai Se'llse (Kail,lth. I!)~O). 'J'hus,1I spt \lI 

state variables of a system of 1 particle's can hc dcfincd as t II(' sd of posit.ion alld 

velocity vectors of all the partic1es. Alternativcly, t.he set of posit ion and 1Il01lH'nt,1l11l 

vectors of ail the particles can play the l'ole of stcüe variablc's as w('11. 11\ simulatioll, 

internaI or rcactioIl forces at the int.crcol1lH'ct.ioll of t.11<' joint.s 1I('('d ilOt. Ill' fOlllul, 

because they do not contribute to the motion of the system. IIow('V<'r, \.1((' COllst rai lit 

reaction forces are important in design, for thcy produ('(' s\.rc·ss, st.rail\, \\,('(11' ,1IId, 

eventually, failure. In simulation, to obtain a dynamic mode! of H syst(~1lI Ilsing N(·\\·­

ton's Second Law compels one t.o introcluce and c1iminate t,\1(' r(·act.ioll rol'(,('S 1'1'0111 

the equations of motion. But, since t.he minimu In llulIllwl ')1' gCI\('1 ,11 i;l,(·d ('001'<1 i Il,t! ('S 

that are necessary and sufficient to describc t11C' cOllfiguratioll of a holollolllic sy'it ('III 

are independent, the application of variational pri nciplcs li kC' t.he' In'lIl CI Jill of /li l" IItII 

w01'k and the p1'inciple of sfallOlIal'y action lead t.o a. set. of dYI\<llllie ('(pliltioIlS which 

do not include the kinematic constraints, Thus, for holollolllie sysl.('lIIS, dynallli( 

equations which are frec of constraint forces may he obt.rlincd, On t.\w COI Il,1 ,II y, 

due to the nonintegrability of sorne kinematic eOllstra.int.s of lion holonolllie :-'ySt.c·III:-', 

the minimum number of generalized coordinates l'equil'cd t.o ddille its (,ollfip,1l1 H­

tion completely is Ilot independent. Thel'efol'c, the use of a Silllilill' Ill<'t.hodolop,y, 

as adopted in modelling holonomie systems, cmploying variatiollal pl'iJl('iplc·s, forc('s 

one to introduce the kinematic constrainLs int.o the dynalllie cquat.lolls of lllot.iOI! (JI 

nonholonomic systems via a set of Lagrange mult.iplie!'s, whieh do Ilot vHnish in P,(·II­

erai. However, it will be seen tha.t the differC'llt tleatlllC'I1t. of kill('lIliltic ('011:-.1.1'<11111.:-., 

as explained in some of the formula.tions of §2,2, and Chap!'('!' :J, 1(~:-'lIlts il! (,ollst!'tlill1. 

force-free dynamic models of nonholonomic systcms, i!'n's[><'( tive or the pl ill('ipl(' II:-.(!<I 

to obtain the models. 

Pertaining ta the dynamie analysi~ of meehanical sy:-.tc·ll1S, ~ev(!ral I-;e/w/ al­

pUl'pose software packages like MEDUSA (Dix and Lchmé\n, 1 Un), lM Il (Shdh alld 

Uicker, 1972), DRAM (Chace and Sheth, 1973), VECENT (Alldl(!wS a/ld K('sa-

1 
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vall, 197.5), DAIJS (ClOsllf'ck and Ford, 1988)1 pte., have beell devcloped to generate 

dYllarnic (~fj\lati()ns of motion automatÎcally, 1,0 illtegratc the differential eqllations 

IlIlHH'rically and \'0 solve for t,I({' inter Il al rcactioll forces al, t.he joillt.s of t.he mechani­

cal HyHt(~rn uIIder stlldy. The objective' behind gcncral-purpose software' is to use the 

cLbi 1 it.y of t.he pro('('ssor for the dynam ie analyses of mcchanieal systems, i.e., 1,0 obtain 

<III ccollolllic and l'pliable der-,igll of a system in cl. eonsiderably short time since neithel' 

inv('S/,lf)<'llL !lO/' time are l'equi/'cd 1,0 huild the prototype and to test its performance. 

Mon'()v<~r, wh('11 a software package is URCel, the d('sign variables of the system can he 

vétr~('d int.,~ractively to invC'stigate the changes in its performance. Furthcl'Inore, us­

illg t.1H's(, packag('s, dYllamic Jl10clels can be gelH'rat.cd without knowing Illuch about 

the fOl'lllulation techniques or the theOl'y behind them. In clynamies, it is always 

d('sirahle t,o have a symbolic rcpresclltation of the governing equations of mot.ion in 

or<!el' t,o gain insight int.o the behavio'lI' of t.hc system. Somctimes, t.he symbolie 

/'eprC's(,lltat.ioll of cC/llat.ions of motion increascs the efficiency of comput.er simula-

t.iOIlS, as intcl'lIH'dwt.e stcps arc Ilot required. Software like AUTOLEV (Schaechter 

et. ct!., 1988), an illt.Nactivc symbolic elynamics package based on Kane's method 

(l\allt', 1!JG8; Kane and Levinson, 1985), provides a symbolic fOll1llddtioIl of the 

dymllllic modd, implementing FORTRAN code for simulation results. I-Iowever, 

A U'l'OLEV l'lIIIS cunently in personal computers and does not provide animations 

of th{' sil1lulal{'d motions. 

III §2.1, 80111(' elefinitions will be introduced which will be used throughout this 

tll<'sis. 'l'hen, a brief review of differcnt formulations of the dYl1amic modelling of 

lIonholoIlomic systems is given. 

11\IEDUSA: Machine DYllamics Universal System Analyzerj IMP: Illtegrated Mechamsms Pro­
gram; DRAl\1 Dynamlc Rcspollse of Artlculated Maclullery; VECENT: Vector Network; DADS 
Dyllalllic A nalysis and Drslgll Syst.em 
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2.1 Sorne Definitions 

Let a nonholonomie mechanieal system poss('ss q DO F and 1)(' COtlllh 1,;('<1 of 1 

links. Moreover, a p-dimensional gencralized cool'dinatc WC!.O\' 9 is ddil\cd aH 

(~.\ ) 

where 8[ and 8 D are q- and m-dimensional VC'rt.OJ'S of indc}J('Julrnl .1)('1/(.,.(/[/::('(/ ('(J­

ordinates and dependent gcneralized coordinatc8, respcct.ivdy, which al(' eXpl('HH('d 

as 

Note that, sinee nonholonomie eonstl'aints arc nonint.eg\'éIOle, no explicit. 1'('lill.ioll 

exists between 8[ and 8 D and, thus, no set of iJldepeJld('l\t g('ll('l'ali~('d cool'dil\a!.(·s 

ean be chosen which will complctely describc ct configurat.ion of the lloJlholol\Ollli( 

system. Now, a veetor of generalized spfeds is d('fiJlcd as t.h(' t.in\(' lat.(' of chan!!,(· of 

8, namely, 

(:l.:q 

where vectors iJ 1 and iJ D are the time rates of change of vcctOl'S 9[ allt! 9/J, \'('SpCC­

tively. It is pointed out here that, as in eq.(1.2), t.he kiJl(,lllat.ic COJlS!.1 aill!.s Utll always 

be expressed as linear functions of the gencrali~ed specds. Thus, t/sillg t/I<' cOllsl.rctill1. 
. . 

equations, eq.(1.2), vector (JD can be cva\uatcd in tenDS of (J/. 

Furthermore, vector ljJ is introduced as a p-dimcllsiollal V('lt.OI' of fjCl/('/'o!tzn! 

forces, and is expressed as 

(VI) 

where the q- and m-dimcnsional vectors cp [ and ljJ D are callcd the irulcprnt/r:lIl alld 

dependent generahzed force vectors, respectively. 

Also, pertaining to the motion of a mechanical system, the twist of the ill) 1 igid 

link of the kinematic chain of the system under study, t l , ulJdergoillg élll arbit.l'ill'y 

motion in the 3-dimensional spaee, is defined in tCI'JI1S of its étnguléLl' V<'locit.y W 1 éLlle! 
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the vclocity of the corresponding mass centre é" although any other point of the 

body could be used, both being, in general, 3-dimensional vedors. Rence, ti is the 

6-dirncnsional vector defined as 

(2.5) 

Moreover, if l, denotes the inertia tensor of the ith link about its mass centre and this, 

as weil as ail vector quantities involved, are referred to the ith link-fixed coordinate 

system, whose angular velocity is 0'" then the 6x6 matrices of extended angula1' 

vdocity of the coordinate system, W" of exlended mass and its time derivative, MI 

and M" respectively, are defined as 

[1 0] alld M, _= [10' 00] M, == à m,l (2.6) 

wherc mIl 0 and 1 denote the mass of the ith link, the zero and the identity 3x3 

t.cnsors, respectively. The cross-product tensor {l" as in eq.(2.6), is defined as 

8(0', X x) 
n = =,. xl u, - âx - v, (2.7) 

for an arbitrary 3-dimensional vector x. Henceforth, the cross-product tensor of any 

;l-dimensional vector z will be denoted by Z, unless otherwise indicated. Further­

more, if n, and f, are the resultant moment and the resultant force acting on the ith 

link, respectively, the latter being applied at the mass centre of this link, then the 

1Vl'rnch w, acting on the ith link is defined in accordance with the definition of tl, as 

a 6-dimensional vector, i.e., 

(2.8) 

Finally, for a mechanical system composed of llinks, the 6l-dimensional vectors 

of gellemlized twist and generalized wrench, t and w, respectively, are defined as 

(2.9) 

and the 61 x 61 matrices of generalized angular velocity, W, of generalized mass, M, 

and the time rate of change of the latter, M, are given by 

w = diag[W},···, Wd (2.lOa) 
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M == diag[M t ,··· ,Mzl 

M == diag[M t ,···, Mzl 

2.2 A Review of Different FOrnll.dations 

(~.\llb) 

(:?\()() 

Earlier attempts to obtain dynamic modcls of nonholollolllic sys\.I'IllS, 1'1'1'1' 0\ 

constraint forces, were based on the principlc of virtual work alld tl\(' variai i01l,1i 

principle of stationary action. The pl'inciplr of vil't.ual work wlticlt is has('d llpon 

virtua.l displacements has found almost universal acccptance. III faeL, t.h(· allilly~t 

can dispense with virtual displacement.s by formally dif[(')'('nl.iat.illg \.h(' ,l!,1'III'rilli;l,l'd 

coordinates and suitably ident.ifying t.h(' vc!o('it.i{'s élnd allgular v('locit.i(·s ill\'olvI·(1. 

Nevertheless, t.he principle of virtual work is incillded in t.his revi('w for cOlllpl('\,c·II('SS. 

Thus, a Vlrtual dlsplacemenl of a system if! ddîlle'd as a. displa(,(,IIl<'IIt. Itncl('l'l-',oll(' 

by the system as the result of vlrtual variatio/ls of iLs g('IH'raliiWd (,oolclillat.c·:,. /\ 

virtual variation, in general, is imagined as an arbit.rary infinit.('sirll,,1 varial,lOII of a 

coordinate, which is compatible with I,he cOlIsl,raints illlpos('cI on t.h!' sysl,(·III. /\ Il 

links of the system thus undergo physically possible virt.ual di~pla('('III(,lIl,s ill. no 

time at ail. Now, in dynamics, the principl!' of vil'tual work is I)a~c·d 011 hot.h t.l1I' 

principle of virtual work of statics a.nd the d'Alemhert. principh' (l\Ikirovil,clt, \!JïO; 

Greenwood, 1977), which is statcd as, "the work dOIl(' by t.he' (·xt.(·l'lIal, int('llIal 01 

reaction and inertia forces associated with U«' virLual displaœlll('llt, is ~('I'O, i.(·., 

the total virtual work vanishes." Thus, U«' principle of vil tllal work yi('lds t.!«' 

d'Alembert-Lagrctnge equations of the system Il Il de!' study, lIétlllC'ly, 

CU 1) 

where MJ is the virtual variation of (J and'/' is a. scalar functioll d('lIoting t.h(~ kirwt.i( 

energy of the system. The kinctic enel'gy of a system of rigid bodies is silllply UI<' :'1I1r1 

of the kinetic energies of ail 1 rigid bodies of the system. Thil:', T cali I)(~ expll's~('d 

as 
~r1 ~11' 1']' T = L.J I l = L.J -tl M,t, = -t Mt 
1=1 1=1 2 2 
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Moreovcr, V == V(9, t) is the potcntial energy of the systcm and -av/ao represents 

the gencralizcd forcc duc to thc potential V. Fl1l'thermore, cP ean be expressed by 

a7rs a7rD 

cP = aiJ - ao 
ln which 7rs and 7r D are the power supplied to and the power dissipated by the 

syst.em, respcctivcly. Equation (2.11) may be rewritten as 

(2.12) 

whcrc L = T - V is the Lagrangian of tne system. 

2.2.1 Lagrange's Equations 

ln the prcsence of holonomie constraints only, a set of independent general­

i~cd coordinates, vector (J l, may be chosen. Henee, bO in eq.(2.12) may be replaced 

by bO J and, cOfl'cspondingly, cP by l/J J' Since thf:> components of b9 J are indepen­

dcnt., eq.(2.12) If:>ads to the q independent sealar Lagrange equations of motion of a 

holollomie system (Meiroviteh, 1970; Greenwood, 1977), i.e., 

(2.13) 

In modelling nonholonomic systems that eonsist of holonomie and nonholo­

nomie constraints, it is possible to choose a set of p generalized eoordinates such 

t.hat. no holonomie eonstraint.s appear in the set of eonstraint equations, i.e., h = O. 

ln t.UI'Il, constraint eqllations consist of only n non holonomie constraints, i.c., the 

Humber of scalar constraint.s is m = n. Thus, recalling the definition of the virtual 

vélriat.ion, if. is se('n from eq.(1.2) that the variations of 0 satisfy a system of linear 

homog<'lIcolis equations whieh is as follows: 

Jb9 = 0 (2.14) 

whcl'P J Îs an n x p matrix and 89 is a p-dimcnsional vector. Nonholonomic con­

:;t.raint.s are now ineorpomted iuto the d'Alembert-Lagrange equations, eq.(2.12), via 
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an n-dimensional vector À of Lagrange mult.ipli<'rs (l\'I<'il'l>\'it.ch, 1!lïO), whil'h lt'.lt\:-. 

to 

(:'U.')) 

In eq.(2.15), the components of 80 arc Ilot inc!cpelld{,llt. IIO\\'('v<'l', \'('d.OI' ..\ l'illl bt' 

chosen in such a way that the expression in brackets of ('(J.(~,15) v,lIlish<'s fol' t\H' 

given n components of vector MJ, The remaining q compolH'IJls \)('illg ind('(ll'lIdt'lIt, 

they can be chosen arbitrarily, as in the case of a holonomie sY~(,('IIl, II. follows t1w(, 

(~. Hi) 

which yields the p scalar equations of motion of the lIOII hO\OllOIll il' syst.elll (1'vlt'iI o\'i \'('11. 

1970; Greenwoocl, 1977) under discussion, Mol'coV<'l', cq,(~,I(i) t.oge·t.h(·1 with ('q.( I,~), 

forms a complete system of p + n scalar e((uations wit.h ]J IInknown g,(,II('l'ali~('d cO()('­

dinates and n unknown Lagrange multipliers. TI\(' llC'c('ssity of int.rodllcillg, Lag,1 allg,t' 

multipliers in the dynamic models of nOllholonomic syst,C'lIls is il lIlajor <!mwback ill 

the study of these systems. Howcvcr, vcetor ..\ has a physical llH'illlillg: 1.11<' ('0111-

ponents of .\ are the gel1eralized nonworking J'('action fOl,(,(\S dll(' t.o lIollholol\Olllir 

constraints, 

v 

2.2.2 Caplygin's Equations 

Caplygin (Nelmark and Fufaev, 1967) pointed out that, in ((~ll.aill (,OI\SeI'VéL­

tive nonholonomic systems, kinematic constraillts cali be expressed ilS 1101\lOg,CI\('ol\~ 

equations which are linear in 8. In other words, it is possible t,o obtaill iJ /J il\ t,('IIII~ 

of Ih, Le., 

(~.17) 

where U is an n X q matrix. A.:cording to Caplygill, in these systems, 8 f) apIH·(tI S Il<'i­

ther in U nor in the Lagrangian L, such systems being knowll n()Wad(ly~ as (;aplygill 

systems. Moreover, Nelmark and Fufaev (1967) extcndcd th,! dcfinitioll of (;aplygin 

systems to those nonconservative nOllholonomic systems ill which !lOI\(! of U, l"~ 1[.'> 

and '!rD contain 8D , Caplygin systems arc rcmal'kable ill that t1wir dyllélllli( ('qlla-
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tions of motion can he scparated from the nonintegrable constraint equations. It is 

cvidcnt from the form of <'q.(2.17) that 801 may be assumed to be independent and 

hOIJ can be wri Hen as 

Now, the d'Alembert-Lagrange equations, eq.(2.l2), in terms of the variation of 01 

IS glven as 

[i( D!, ) _ DL _ ~1 + UT ~( a.L )V60/ = 0 
dt aO I DOl dt DOD 

from which, by virtue of the independence of Uh, the equation below is obtained 

(2.18) 

A llCW Lagrange function L" is introduccd sueh that the depcndent gencralized speeds 

OD arc eliminated from the original Lagrange function L by means of eq.(2.17). Thus, 

lIsing the chain rulc, the uscful relations shown below are readily obtained: 

DL· = aL + (DilD f D.L 
ao 1 DO 1 DO r ao D 

(2.19a) 

D~" = D~ + (a~D? D.L 
80/ DO / DO 1 DO D 

(2.19b) 

Snbstituting cqs.(2.19a) and (2.19b) into eq.(2.18), one obtains 

i[D~· _ (a~D)T 8.L ]_ 8L" + (u8Df 8.L + UT i( D.L ) = 4Jr 
dt 80] 80] 80D ao] ao] aOD dt DOD 

(2.20) 

ln cq.(2.20), the 11. x q matrices DilDIDO/ and DOD/ail/ can be expresscd using 

eq.(2.17) as 

(2.21a) 

(2.21b) 

where au 1 ao / is defined in snch a way that each 8u.1 DO /, for i = 1, ... , n, is a q x q 

matrix, u. being the zth column of matrix UT. Now, the nq x n matrix è and the 

/HI x q matrix au 1 80] are defined a" 

(2.22) 
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where 0 is the q-dimensional zero ved.or. l\lol'l'oYcl', (()u, / iJO d'/'O / ~I \'l'S t hl' 1 th 

columnof matrix (8ÔD/80dT. Furthcrmol'c, using cqs.(2.21a) alld (2.:nh), t·«.(2.20) 

is rewri t ten as 

d 8L· 81* dUT OU 7" 8L 
dt ( DO 1 ) - 88

1 
- [dt - (DOl) e] (JO IJ = cP/ 

with dUT/dt heing calculated as 

dUT auTo 
-=-8 

dt DO / 
(2.2·1 ) 

where the q x nq matrix DUT / 88 1 is sueh that (/Ju,/ 88/)0/ l'cpn·s(·nt.s tlll' lt.h co) Il III Il 

of dUT / dt. Matrix 8UT / 80 1 is defined by 

8UT aUI 

801 == [DO 1 ' 

Finally, using eq.(2.24), Caplygin's c<)uat.iolls of Illot.ioll (Ne'I11lill'k alld "'u­

faev, 1967; Dolapchiev, 1969) are obtained from cq.(2.2:J) as 

i(8~· ) _ DL* _ [DUT _ (DUT )1']è( DfJ )' :::: <P/ 
dt 801 801 881 (JO / (JO J) 

where the symbol (8L/DOD)' means that ail the dcpetl<!ellt. ge'lle'l'ali:'-:t'd spe'('ds ill 

the expression DL/88D have bCCll climinat.cd lIsing c«.(2.17). 'l'hus, eq.(2.2!») I('adi'> 

to q independent constraint-frcc equat,ions of motion of a lloldlO!OIlOlllic Sysl.!·111 ill 

terms of the independent gcncralized coordillates and its tilllc de'l ivatiV<'s. No!.(· 

that one of the integrability conditions for a set of ve)ocity cOllst.l'i\.illt. ('(lIlilt.ioIlS, 

eq.(1.2), that is given in the prcvious chapter, is that ail q x q llIat,riU's nu,/no / 1'01 

i :::: 1, ... ,n he symmetric. Thercforc, i Tl the presence of only holollOl1l ie COlls1.1 étÎ lits, 

the holonomicity conditions are written as 

for i = 1,···,11. (:?2G) 

Moreover, the ith column of the expression in brackets of eq.(2.2.l), by vir!.lI!! of 

eq.(2.26), vanishes, i.e., 

OUI iJ _ ( Du, )T 0 = 
a81 1 DOl 1 0 ('2.27 ) 

Renee, Caplygin's equations reducc to the Lagrange equatiolls of I!lot.ioll for holo­

nomie systems. 
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2.2.3 Gibbs-Appell's Equations 

Gibbs-Appcll's f~quations of motion of non holonomie systems are based on the 

concept of accc!(:ralwn energy 8, similar to the kinetie cnergy T. These equations 

W('I'e first discovcred by Gibbs in 1879 (Gibbs, 1879, 1961) and independently dis­

covcrcd in 18!)9 and studied in detail by Appel\. Gibbs-Appell's cquations (Gibbs, 

187f), HWl; Appell, 1899; Nelmark and Fufacv, 1967; Desloge, 1986a, 1986b) are 

givcn in terrns of qllasi-coordznates as 

a8 
aq = 4>q (2.28) 

where S' is the accelerafion eneryyor the Gzbbs-Appell juncfion for a system of rigid 

bodies in motion. A general form of the Gibbs-Appell function for rigid-body motion 

can be found in Ginsberg (1988). Moreover, q and l/lq are the q-dimensional vectol'S of 

quasi-coordinates and generalized forces, respectively. Quasi-coordinates, as defined 

in Nelmark and Fufaev (1967) and Greenwood (1977), are motion variables that 

are of a differential nature, but are not integrable. For example, as illustrated in 

Ginsberg (1988), the equations of motion may be obtained in terms of the angular 

velocity, as the equations of motion of a disk rolling on a plane, derived in Chapter 6, 

but tl1<.'rc is no orientation vector that may be used to form a corresponding set 

of gcncralized coordinates. Moreover, quasi-coordinatcs are introduced by means 

of linear relations bctween the derivatives of quasi-coordinates and the generalized 

(2.29) 

wh(>re U q is a p x p matrix, and q and q' are p-dimensional vectors but the prime 

does not denote differentiation here. The dimensions of U q , q and q' may vary 

d('pcnding on the formulation technique. For example, in the derivation of Gibbs­

App<'ll's equations, U q , q and q' are a q x p matrix and q-dimensional vectors, 

rcsp<,ctively. The form of Gibbs-Appell's equations is very simple, but in many 

cOlllpl('x problcms it is mllch harder to write down the acceleration energy than 

t.he <'xprcssion for th(' kinctic energy. lIowever, it is pointed out in Nelmark and 
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Fufaev (1967) that the acceleration energy rolll p I('tely chmaet criiWS tIlt' dy lia \Il Îcs 

of a nonholonomic system in the sense that., having an ('XIH'('ssioll fol' t.h(· t'II Il et iOIl 

S only, and no furthcr information about t.h(' syst.elll (ill pélrt Îcular, ilOt. kllowi II~ 

anything about the constraints impospd on tht' syst.em), the' ('(l'lélt.iOIlS of IllOt.ioll 

can he derived. This assertion is proven by showing t.hat. il. is possihl(' t.o lillll 1.\\'0 

different dynamic systems for which thc expression T is t.\H' sal1l(' hut. t.!\(' fUII('t.i,)\\ 

S is different. 

Simultaneously, Volterra (1898) derived thc equat.ions of \\lot.ion in vclriahlt's 

which he called motion characteristics. Latel", Vorollec (1901) who is ont' of t.tH' 

founders of the meehanies of nonholonomic syst.ems, d('rived I.lw (·«(ltat.ions of 1110-

tion, similar to eq.(2.25), withoul. making tl\(' rcstrict.iV<' é1ssullIpl.iolls whi('h 1('lltl 

to Caplygin systems. Voronec's equations can, thcr('for(', 1)(' appli!'d 1.0 il lar!!'('1 

class of nonholonomie systems. Morcovel', Mag,gi (1901) show('d thelt Volt('l'\'el'S élnd 

Gihhs-Appell's equations may he derivcd from his l11<'tho<l, first. propos(·d in I~!)(i. 

Furthermore, Papstavridis in his rec('nt papCl'S (Papstavridis, 1 !)~~, 1 m)O) d('l·iv(·d g,('­

ometrically the eonstraint-frec equations of Mag,gi for B1ecllélllical syst.(·lIIs wit.h lill<'ilr 

nonholonomic and/or holonomie eonstraints élnd the lIIost g,('1I('\'a1 Gihhs-App('I1':-­

equatiol1s of motion for systcms undcr nonlinl'cll nonholollolllic COllstraints. lit' i1lso 

showed how t.o calculate the constraint rcactio11 forces. 

2.2.4 The Principle of Stationary Action 

The principle of stationary action eOllsickrs the lIlotiOIl of éIIl ('Iltil(' Sy:-.I.(·111 

between two times t l and t2 • It is an intcgral pl inciple t.hat redlle('s t.he pl'obl('lIIs (JI' 

dynamics to the investigation of the stational'y vaIlles of a defillit.(! illl.q!,ral. AC(,OIding, 

to this principle, the actual mot.ion of the system is flucb that 

1
t2 

(bT + 8W)dl = 0 
t, 

(2.:HJ) 

where ST is the variation of the kindic encrgy and hW is t.he virt.ual work dorJ(' 

hy the system due to potential fidds, applicd ('xtcl'llal éLcti()ll~ and diflsipatioll. Fol' 
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conservativc systems, 8W = -8V, where 8V is the variation of the potential energy, 

and cq.(2.:JO) takes on the farm 

1
t2 

6Ldt = 0 
t1 

(2.31 ) 

Equation (2.31), when applicd to a holonomie system, leads to the familiar Hamilton 

principlc, namely, 

(2.32) 

wh cre L is the Lagrangian of the system. HamiIton's principle, as given in eq.(2.32), 

can be stated as, "the actual path in the configuration space of a system rendel's 

t.he value of the definite integral in eq.(2.32) stationary with respect to all arbitral'y 

variations of the path between the two instants t l and t 2 , provided that the path 

variations vanish at these two end points." It can be shown that, for conservative 

holonomic systems, lIamilton's principle leads to the well-known Euler-Lagrange2 

equations of motion of a eonservative holonomie system (Meirovitch, 1970; Green­

wood, 1977): 

(2.33) 

I1owever, using eq.(2.30) and introducing the Lagrange multipliers, the equations 

of motion of nonholollomic systems in the presence of externa'l moments and forces 

can be readily obtained in the Corm of eq.(2.l6), as derived in Meirovitch (1970), 

Grecnwood (1977) and others. 

2.2.5 Hamilton's Canonical Equations 

A different procedure of replacing q second-order equations by 2q first-order 

olles can be obtained by writing Hamilton '8 canonical equations of motion. To obtain 

sueh equations, a new function H(lh,p, t), known as the Hamiltonian, is defined as 

(2.34) 

2This equation was first derived by Euler in 1744 and was later apphcd to mechanical systems 
by Lagrange 
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where p is the vectol' of the generalized mOllwnta which is gi\'l'II as 

Moreover, 

1 8T, 1 in" 
P=L:-· =L:M,t,=Mt=-. 

,=1 ao 1 1=1 (J() J 

8H 
8(h 

(2.:lG) 

Hamilton's canonical equations may he obtaincc\ by varying hoUI sid('s of eq.(2.:l·\) 

and comparing the coefficients of the same variations. I1owc\'('I', \Ising tilt' idt'II( i­

ties in eqs.(2.35) and (2.36), Hamilton's eanonical eqllatiollH can h<, oht.ailH'd frolll 

Caplygin's equations of motion (Nermark and Fufaev, 19(7), ('q.(2.2:'), as 

. aH 
()l =­op 
Il = cp/ - aH _ fauT _ (?U flè'( .f?" )' 

aO I aO I dOl ùOu 

(., .\" ) _ .. ,a 

(2.:l7h) 

where è' is é of eq.(2.22) in whieh 01 is suhst.itlllcd by fJ 11/ Up. 'l'Il(' Ill(,iwinp, of t.1H' 

expression (aL/aOD)' was explained in §2.2.2, whcn derivillg (~aplygill's (·qllat.ioll:-' 

of motion. 

2.2.6 Kane's Equations 

Kane's equations, also referred to as Lagrange's fonll of d' i\ 1('llIlwl t. '8 Prillcipl(' 

in Huston, Passerello and Harlow (1978) and Huston and Pass('J'(·lIo (l~m), l~)X(J), 

are derived by considering that, for a q-DOF IlOllltolollolllic 1I1('c1litllical sy-;I.(·III, " 

set of q indepenclent parameters exists whicl. are lillcal' (,olllbiniÜioll'i of (), i.(·., <lll 

expression similar to cq.(2.29) cxists WhCIC 0 is sllhstitllt.<,d by iJ 1 i111d U'i' q alld q' 

are a q x q matrix and q-dimensional vcetors, l'especti Vf'ly. '1'11<'1 dore, Ct is ~~i V('II by 

Moreover, matrix U q and vector q' arc ehoscn in such a. way tltat eq.(2.:38) cati 1)(' 

solved unique1y for 01. Furthcrmore, the compollcnt.s of Ct are d('fil}('d in Kall<' (1 !H.;:s) 

as generalized speeds. Now, the twist of the üh link is wl'iUen as 
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wlwre the 6-dirn('nsional vcct.or VI and the 6 x q matrix Y, arc both functions of () 

and time. Moreover, matl'ix Y, is givcn as 

whcre the 3 x q matrices Y~ and Y~ are defined as 

Y w = [w 1 
•.. w q

] and y C

I 
-_ [c' l,,"" c'

q
,] ,- " " 

while vcctors w; and ë; for j = 1,"', q, are the jth partial angular velocity and 

jt" 1Jllrlial velocity (Kane, 1983; Levinson, 1987) of the ith link, respectively. Then, 

frolll d'Alembert 's principlc, Kane's cquations of motic)}1 (Kane, 1961; Kane and 

Wang, 1 ~)65; I\alle, 1983) arc derived as 

(2.40) 

which leads to q independcnt equations of motion of the nonholonomic system at 

hand, lP[ and cPÎ being calculated as the q-dimensional vectors of gcneralized active 

fm'ces and gcnemlized ine/'tw forces (Kane, 1983), respectively. Moreover, vectors 

cPl and t/Ji are calculated as 

,J,. V T d ,J,.*[ -_ VTw* 'YI = w an 'Y (2.41) 

where the 61 x q matrix Y is defined as 

v = [Vi, .. ·,vTf (2.42) 

and w is a 61-dimensional vedor of the generalized wrench acting on the system of 1 

links. 'l'he generalized wrellch of inertia moments and forces, a 61-dimensional vector 

w·, is given by 

w· = -Mt - (M + WM)t (2.43) 

The expression for w*, as in eq.(2.43), will be obvious from Chapter 3 of this thesis, 

whet'e the uncoupled Newton-Euler equations of motion of the 1 links are derived. 

Not.e that, in <,q.(2..1 1), w contains external and constraint wrenches. However, 
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since constraint wrenches do not cont.l'ibut.<, to the Illot.ion of t.11<' Hysl<'Ill, II\('y al\­

tomatically vanish from Kane's formulation. Thus, it. is not. Il f '("(,SSi\l'y t.0 COllsid('1 

the constraint moments and forces white evaluating the g<'lwrali,wd aet iw fOl'n's ill 

eq.(2.40). 

Passerello and Huston (1973) ext('nded I\ane's formulat.ion which, cont.rar)' 

to eq.(2.38), is based on the original definition of q, i.e., <'q.(1.1!)). Ac("ol'ding t.u 

Passerello and Huston, vector q in eq.(2.29) is d('fined in sueh a wely that. t.1\(' lasl 

n scalar equations of eq.(2.29) are equivalent. to eq.( 1.2) and t.h(' l"<'lIIaiuillg <'qlla­

tions are left arhitrary, such that U~1 exiHts. ]\'lorcovcl', t.o 1)(' cOlllpat.ible wit.h I.I\(' 

nonholonomic constraints, eq.( 1.2), t.he last n COlllpol}('nt.s of vect.ol' q ml' ail :1.<'1"0. 

It is pointed out in Passerello and Huston (197:3) that, fol' holollolllie syst.<'IlIS, I.h(' 

generalized inertia force c/>i of Kane's equations lIl<ly he <,valua t.('d fi 0111 t.h<, ki Il<'l.i(' 

energy of the system, which is the lcft-hand side of cq.(2.1:l). This ()Privat.ioll ilvoids 

the computation of the acceleration of the hodies in the syst.<'Ill. lIow<'V('I" ill ordc'l 

to obtain I<ane's equations of motion of nonholollomic syst.ems, thC' compul.al.ioll 01 

the acceleration components is rcquircd. Passcr('lIo and Hust.oll (U}7;!) show<'d I.hat. 

the burden of computillg the aceclel'atioll terrilS of the bodi<'s in lIollholonOlllil' sys­

tems can be eliminated. In their met hod, the tc'un c/>i of ét 11011 holollol1l ie SY:-'\.('1I1 is 

evaluated from the kinetic energy of the system and hy illvert.illg lIIal.rix U'I' Thlls, 

the dynamic equations which appcarcd in Passcrdlo and Il USt,OIl (1 9n) Illay ilOt. 1)(' 

the most convenient for all types of pl'oblems. IIowcvcl', hy a.pproprial.ply C!tO()Sillg 

the first q components of q, a set of equa.tiolls of motioll Célll be ()ht,ailJ(~d, whicll 

amounts to a simplified version of (~aplygin '8 equation8. 

In dynamics, an independent set. of dynamic equétt.iolls is preferable sill("(' \.11<' 

dimension of the problem is minimum, which, in turn, <'llhalH·(·s t.he specd of li\(' 

simulation algorithm. Moreovcr, if the set of g<'lIC'ra1i;,t,ed coorùi Il (Ü<'s i8 1I0!. iIHlqH'/I­

dent, the solution of a dynamics pl'oblcm involves the solut.io/l of il 8('t of dirr('J(~llt.ial 

and algebraic equations, which is far more complC'x t.han the nUJllCII< al in\.e~l atioll of 

purely differential equations (Gear and Petzold, 1981; Park élnd IIatlg, 1!)8(j). Titus, 
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ail important consideration here is the choiœ of indepcndcnt coordinatcs in rcduc­

ing the dim(,Tlhion of t1J(' dynamics problcm. An arhitrary selection of independcnt 

coordinates oft('11 results in ill-conditioned matrices. To cope \Vith su.h a situation, 

Wehage and lIaug (1982) prcscnted a method of partitioning the set of generalized 

coordillates \Ising the LU factorization of the matrix J. On the othcr hand, Mani 

(,t al. (1985), Singh and Likins (I9S5), Kim and Vanderplocg (1986) and Liang and 

Lance (1 f}87) uRcd llUmerical techniques whereby matrix J was decomposed to de­

!.prrniIH' a set of indcp<'IHlpnt coordina1.es. 

2.3 The Use of Orthogonal Complements in Dy-
• namlCS 

Recent dcvelopments in fast mathematical processors attracted researchers to 

automatically df'vdop dynamic models of complex mechanical systems and to ef­

fkiently integrat.c t.he rcsulting different.ial equations of motion for simulation and 

animat.ion pm·poscs. The use of an orthogonal complement of the velocity constraint 

mat,rix, for ('xaTllple, Jin eq.(1.2), that allows one to obtain constraint-free equations 

of motion, has bccn lcportcd by many researchers. Some of these approaches will be 

review('d bclow with a discussion of their melits and demerits. 

2.3.1 Derivation of Dynamic Equations 

One of t.he eady research works in deve10ping dynamic models of mechanical 

systems llsing ail orthogonal complement is reported in Huston élnd Passerello (1974). 

III their papcr, tl1<' equations of motion were first written in terms of p generalized 

('()ord i nat.cs as 

(2.44) 

whcl'C 1 is a p x p positive-dcfinite symmetric matrix, CO is a p-dimensional vector 

of gCllcralizcd forces due to convective inertia terms, c/JW and cjJN are p-dimensional 

vectors of gellcralizcd working forces and gencralized nonworking constraint forces, 
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respectively. The kinematic constraints are assullwd to })(' holollomie, i.('., of t hl' 

form 

f( 0) = 0 

Note that, in eq.(2.45), the constraints are fllnctions of 0 ollly. TIl<'l'l{ol'(' 0111,' , .' 
scleronomic constraints were considcred. H('llc(', lhis nwt.ho<!, in its 11I'C'S('llt fOI'IlI, 

precludes its application to nonholonomic systems. lIow('vel', LI\(' prindplt· lIs(·d 

to eliminate the constraint forces from the dyni\mic ('quat.ions (<lll })(' ('xkl\(kd tu 

nonholonomic systems. Let the system consist of Il (II < JI) Scl('I'OIlOlllic COllst l'a i IIt:-. 

and, hence, fis an h-dimensional vector. DifferC'ntiation of ('q.(2,45) I('ads t.o 

where J is the h x p Jacobian matrix of f wit.h r{'~p('rt t.o O. A('c()rdill~ 10 t.ltis 

formulation, eq.(2.44), along with eq.(2.45), le,lds to JI + h sealclr eqllélt.iolls ill '2/1 

unknowns, 0 and cpN, which admit an infinity of solut.iolls, for l' > h. lIowc'y('r, 

given suitable initial conditions, the solutioll of cq.(2.tH) is bOl\lId \'0 1)(' IIl1iqll<', 

based on the causality principle of dynamic syst.('ms (VidyasHgar, 1978). MOI('ov('r, 

the solution for 0 does not involve cpN, and a queslion al is('s, Il éI Il \('1 y, whal H\,(' 

the conditions on cpN such that vector (J is lIniqucly c\PI,c'J'llIil\('d? '1'0 étIlSW('r titis 

question, both sides of eq.(2.44) are prC'multipied by i/ ,lTld illtq.!,l'at,l'd, wlli('1t I(·élcl:-. 

to a quadratic form, as in Huston and Passc'n'lIo (191,1), llélllll'ly, 

W 'T N . N 
Now, since cp is arbitrary, (J 4> lTIllSt be /':C'IO for () to 1)(' ind('lw/lIlc'llt of (1) 

Furthermore, this condition and eq.(2.46) ITlII:-.t Itold 1'01 ail Vedlll'!'> of (} alld O. TllIl~, 

cpN must lie in the range of J1', i.e., an h-dilllell~ionai vc'c!,or ..\ c'xi:-!'s sllch tlta!' 

(VI7) 

Alternatively, by definition, the gcncralizcd nOlJworking coll~traillt forc(' cf>N do(· ... Ilot 

produce any power. Hence, 



Chapt.er 2. Dyn1lrJllc Modelhng of Nonho\onomic Systcms. A Rcview 38 

Since JO = 0 from cq.(2A6), there exists an undetel'mined vcctor .\ such that 

eq.(2A7) is truc. 

'1'0 satisfy the condition that iJT cjJN must be zero, a p x q matrix T is defincd 

Hl such a way that the matrix T is an orthogonal complement of J, i.e., JT = 0, 

w})('/,c 0 is the h X q zero matrix. 'l'hen, prclllllltiplication of both sides of eq.(2.44) 

hy TT yields 

(2.48) 

whcre cpN vanishes in the equations of motioll. Moreover, q scalar equations of 

motioll, as in cq.(2.48), along with h scalar equations of constraints, eq.(2A5), arc 

sufficient 1,0 solve fol' the p unknowns in vector 8. It is poinkd out hcl'c that, although 

this llIethod is elegallt, no guid('lines arc providcd for the calculation of the matrix T 

and t.hus, i1. llIight. he difTicult t.o obtain T for large system:'>. Furthel'l11ore, the system 

has q-DOF and q cool'dinatt's a\'(> sufficicnt to control and descl'ibc the configuration 

of holonomie systems. With this rnethodology, the evaluation of extra h coordinates 

l)(>comes redundant and the t.ime required for their computation can be saved. 

A similal applOach has appeared in lIemal1li and WeirnCl (HlSl) which, UIJ­

like t.he approach of Huston and Passcrcllo (1974), is applicable to non holonomie 

~ystcms. H('I'<', also, 110 formaI constl'llction procedUle 01 an orthogollal matrix is 

llwnt.iolled. lIowev('r, it is sugg('st.ed in IIemami and Wcimcr (1981) t.hat, sillce T 

is Ilot unique, sOllle transfOlmations such as premultiplication of eq.(2.4·1) by 1-1 or 

pl'C'lllultiplicatioll of <,q.{2.46) bya nonsinguJar Il x h matrix might case the problcm 

of fillding T. 

2.3.2 The Computation of an Orthogonal Complement 

'l'he gClIcral cOllcept of fOl'lllulating constrained dynamic equatiolls of motion 

lISiIlg an ort.hogollal complement of a vclocity cOllstraint matl'ix is the same, i.e., to 

diminatc t1H' ('onstraint forces from t.hc dynamic modcls of COllstrained mcchanical 

syst('ll1s. 
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Kamman and Hust.on (19~H) used the zt'l'O-eigc/lNdlll' IlIron'lIl in t.his ronlt';..I. 

The theorem is hased on the zero cigcnvalucs of tnat.rix J'l'J, which art' 1\O\.hinp; bill 

the zero singular values of J. In this approach, a JI x q mat rix T is const ruc\,pd who:-.l' 

columns are the independent eigenvect.ors associat.<'d with t.!\(' Zt'IO t'ig('lIvalllt's of thl' 

p x p matrix JTJ. Thus, 

(:!.·19 ) 

where 0 is now the p x q zero matrix. Prenllllt.iplicat.ioll of hot.!1 sidt'S of l'q.(2.,I!)) 

hy TT, under the assumption that hoth J and T arc of full rallk, lt'at!s \.0 

JT= 0 

and the equations of motion may be oht.ailwd frolll ('q.(2A(~). 

Alternative approaches for obtaining the orthogonal COlllpl(·III(·II\. of 111,\1 ri, J 

are available. The singular-value-decompositiol1, t.he QB t!('<,olll)lo:-.it iOIl ancl Ill!' 

Gram-Schmidtorthogonalization procpdure (St<'wart., 19n; (:o!lIb el Il cl Van Loall, 1!IKn 

of the velocity constraint matrix J are slIggcstt'd hy Malli ('1. al. (!()~:») and Sillgh ,llId 

Likins (1985), Kim and Vandcrploeg (1986), alld Liang and Lall('(' (1!I~ï), 1(':-'1'('(0 

tively. These algorithms invo!ve nUIlH'rical scllC'IllCS of a cOlllpll'x Iltlt III ('. '1'0 "void 

this difficulty, an altemativc approach of finding élIl orl.hogon,t! (OIl1pl(·III(·II1. i:-. pl () 

posed by reformulating the kilH'll1atic ('on~tréllnt.:-. allt! choo:-.illg cl 1II1IIlm!..,(·\' (JI' gt'Jlt'J 

alized coordinates. The proposed technique involVl's llC'itllt'l' ('ig('llvahH' c,t!ndet! JOII:-' 

nor requires any decomposition sclWInCS which an' IIlldt'sirabl(' fol' III<' d(·Vt'lopllJt'1I1 

of fast. and accurat.c simulation algorit.llIl1s. 
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The Method of the Natural 
Orthogonal Complement (NOC) 

The method of the natural orthogonal complement (NOe) relies on a novel 

formulation of kincmatic constraints. An orthogpnal complement of the kinematic 

coTlstraint matrix, d('rived in the prespnt approach, arises lIalll1'lllly from the deH­

IIÎtÎOIl of the vclocit.y field of the system at hand élS a linear transformation of the 

ind<'I><'IHlcnt ge'lwralized speeds, which are uSllally the time derivatives of the joint 

displan'lIwl1ts of kinematic pairs or couplings, i.e., the joint. rates. The rcsulting 

ort.hogonal complement is t.el med the nalund orthogonal complemenl and thus, the 

;\(lopt,('<1 IIwthodology is called the lllethod of the NOe, as fil'st introcluced in An­

g('I('s and Lep (1988). Il has suc('('ssful1y bC(,1l applied to ~ystCJllS with holonomie 

rouplillgs (Âng('les and Ma, 1988; Angeles and Lee, 1989; Ma and Angeles, 1989) 

and systems with flexible' bodies (Cyril et al., 1989; Darcovich, 1991). In this thesis, 

Ut<' dynamic modelling of l1lechanical systems based on the NOe has bcen extendccl 

t.o nonholollolllic systems. The NOe method is presented here in a llnified man-

11er, which 1\('I\>s 10 ~yst(,llIdtically (IeVE'lop a dYllcunic ll10dcl of a mcchanical system 

cont aillillg holonolllie alld lIolll!olollolllic couplillgs, cI~ well a!:> ~crral alld IIlulti-Ioop 

kilwmatic chaim,. l\lO!'COV('I', wll1k dcveloping adynamie model, the method is ea­

pablp of d<'t.<'ding the DOl" and the controllahility of the system, as pointed out in 

~:1.:J. Titus, prior 10 t.hr dynamic éllIalysis of a proposcd design, it is Ilot necessary 
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to perform separate analyses for the dekrIllina( ion of tll<' S,\'sl,<'111 ':- IHW ,IlId ils 1 \lll 

troIlability. Also, if the design is sllitahlp, a part of the' dynalllic alwlysis is aln'.HI,\' 

done. Hence, the detC'rminat.ion of tll(' DOr of a systelll, along \Vit.h t.11l' kHI fur its 

controllability, can be performed as a part of t.he <lynamie analysis. FII\'t.\H'rtllon', i( 

will be apparent from subsequent chaptcrs, ill wllich t.\H' I\lt't.hod is lIsec! (0 d<'ri\'p 

the equations of motion of diffcrent nl('chanieal systems, t.ha(. t I\(' Noe is ('\',I\lI<ltp<l 

without any complex computations. It. is all'o showlI ill §:U; ho\\' (II(' 1I\('t.hud of t hl' 

NOC can be used in the presence of r('(hmdan( ,Icl,Ucüioll. 

3.1 Formulation of the Kinematic Constraints 

The crucial step in successflllly modclli IIg él hl nad class of 1l11'1 ha Il ic,d :-y:-Il'III:­

with the NOe is the represcnt.ation of the kilH'lllat.ic cOllsl.1 clilltS. (;<'llI'l'all,\', as ~h()\\'11 

in Chapters 1 and 2, the form takcn on by th('SI' (,{Hlst.rélillt:- i:- ">I\ch t II"t t 1\(')' cll(' 

linear in the generalized sp('eds and lillcarly ill<!('!><'IH!<>IIt. élllJOlIg t.I1I'III. \,tVit.hill t hl' 

framework of this mcthodology, both holonolll ie and 11011 holollollli< (,olls!.r" i Il!.S cil (' 

expressed as a system of equatiolls that. are II/Ha/' and hOll/og('/J('o/l"; ill I.lw II/".~/.~ 01 

aIl the bodies of the systcm, alld, 1I10st freqll<'IIt.ly, lillPétrly <I('I)('I\(kllt. <1 1 Il o Il).!, t.11l'11I 

The twist of the lth l'igid link, wllich cOIlt.rlillS (he ,\('«'ssary cllld sltfli('i('ltl, iIlI'O\'IIIiI­

tion for determini ng the veloci ty field of this Il h 1 i Jlk, i~ (kfi IH'd i Il !i~.1 l\vI 01 ('OV('I , 

it is assumed that the it.h body of the sYSt.<'1I1 IIlId('1 ~tl\dy I.h,t!, ('Olllpl i:-,c's 1 Ilgic\ 

links and k kinematic pairs is cou pied to the )th lillk t1l1ollgh ('il.l)('1 cl hulO!lOllli( 

or a nonholonomic coupling, which is dC'noted as the (z,j) joillt. Now, lllc'clléllli(',d 

couplings that producc holonomie and lIollholollomic consl.rainb 011 t.\\C' t.wist.s of 1.1\(' 

coupled bodies-vclocity eonstl'aints--dre repl'cselltpd a:-, ét ~y:-,I.<'\I1 01 lill('ctl' hOlllogC' 

neous equations in the twists of the two coupll'd bodil's, say t, clllil t), de·filwd ;1:-' III 

eq.(2.5), namely, 

A",t, + A',JtJ =0, for(i,j)=l,···,k; !,)EP, Ljillld'ij (:LI) 
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Fig. 3.1 Two links coupled by a revolute joint. 

FlI!'thermore, for m' scala!' cOllstraints, the m' x 6 coefficient matrices A.,. anel A.,) 

arc, in general, configuratioll-dependcnt, i.e., t.hey are functions of the gencraIized 

coordinates. Bele 111' dellotes the total nurnher of kinematic eonstraint equatiolls, 

whieh are uSlially linearly dependent. The fonns of matrices A.,. and A',J! [or holo­

lIomie and 1I0llholonomic eOllplings, are derived below. 

3.1.1 Holonomie Constraints 

The flll/da mental lower kincmatie pairs, namely, the prismatic and rcvollite 

pairs, always lcad to holonomie constraints. These pairs are eallcel fundamelltal 

IH'C1tusc the oth('r four lower kincmatic pairs~~~the sercw, the eylindrical, planar and 

spll<'rical pairs~--- can be dcrivcd as a combinat ion of these. Mechanical couplings 

ot.hrr titan t h(· low('r kincmatic pail s, that produce holonomie cOllstraints arc, among 

ot.ltcrs, pulley-l){'lt, cam-follower and gcar-traill transmissions. 

As an cxamplc shown in Fig. 3.1, the kinematie constraints of two links cou pied 

hy a revolut(· joint are derivcd cl,s folJows: If O. is the joint rate for the (2, i - l)st 

l'('volute péli!' couphl to t.he /I,h and the (1 - 1 )st links, then, l'cferrillg to Fig. 3.1, the 
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relative angular vclocity of the ith link with l't'Spl'ct. t,o tilt' (i - 1 )st lillk, W I - WI_I, i:-. 

O,ei, where vector el is the unit vcct.OI' parall('1 to tl\(' axis or thl' (1,1 - I)st. l't'\'Ollltl' 

pair. Thus, the equation constraining thc angular wlocit.i('s of t.WO SII('I'I'ssin' lill\.::-. 

is given by: 

et x (w l - WI-l) = 0 

or 

Et(wt - WI-l) = 0 

where E, is the cross-product tensol', as defil\('d in c<).(2.7), associalt'd wit.h ''l'rloi 

el' Moreover, from Fig. 3.1 it is clcal' that 

(:~·:n 

where the 3-dimensional vectors Ct-I and Ct dcnotc the posit.ioll of t.I\I' IllilSS ("('1111(':-. 

of links z -1 and i, respectivcly. MOl'cover, vccLOl'S b l _ 1 éllld 1'1 il\(' :-.hO\\'11 ill \·'ig. :~ 1. 

Equations (3.2) and (3.3) are now Wl'ÎUCIl in tCl'll1S of tll<' lillk t.wisb, whit h l('adily 

produces an equation of the for111 of c<).(3.1), lIamdy, 

where the 6x6 matrices AI'I and AI,I-l are as showlI Iwlow: 

At,l = [~: ~], [
-El 

AI,I_I = B 
1-1 

(:\.,1 ) 

with R, and B I - 1 being the cross-product tenson; associa!.<·d wit.11 wc1.()I':-' rI illld 

b t - Il respectively. 

3.1.2 N onholonomic Constraints 

This subsection will be limited to nOllho\ollomic 1'111(' /'(Jllill!!" cilld 11<'11«', III) 

slippage is considercJ. As an examplc of this type of T10llholollOIIlH (Ollplillp', cl 1 igid 

body rolling on a plane without slipping is shoWIl ill Fig. :J.~, t1H' Ilorr-slip «)JIdi1.itJlI 

in linear homogcncous form bcing dC'rived 1H'low. If the rigid hody i:-. ('()Il~id(·I'(·d il ... 
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link i-l 

Fig. 3.2 A rigid body rolling on a plane. 

the ·tth link of a system and the plane is a part of the boundary of the (i - 1 )st link, 

then, referring to Fig. 3.2, the resulting nonholonomic constraint is statcd as 

(3.6) 

whNc the vect.ors appearing in eq.(3.6) are shown in Fig. 3.2. Moreove1', eq.(3.6) 

can also be written in the [o1'm of eq.(3.4), with the 3 x 6 matrices A,., and At.t-l 

dcfined as 

A,.,=[R, 1] and A,.,-I=[B,-1 -1] (3.7) 

and the cross-product. tensors RI and B'_l are associated with the vectors rI alld 

b'_l' rcspectively, as shown in Fig. 3.2. 

Fl'Om ('qs.( 3.4), (3.5) and (3.7), it is apparent that kinematie eOllstraints, whetllC'J' 

holonomie 01' l\onholonomic, can be written in the Conn of lineal' hOlllogeneous equa­

t.iolls in th<, t.wists of every pail' of coupled bodies of a mcchanical system. An 

l'ss('ut.ial di r[(' l'C Il cc betweell the holonomie and nonholonomic const1'aints previously 

deriv('d is statcd in the fonn of lemmas. 

Lemma 3.1 Holonomie killcmatic constraints w1'itten in the fo1'm of eqs.(3.4) and 

(3.5) always lead to six lillcarly depcndent sealar eonst1'aint equations, 

i.e., 111' = 6. 
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Proof: Let a matl'ix Ah be dcfilled as 

o 
1 

1.-, 

whel'e the first two column blocks of matl'ix Ah amOllllt. 10 IIH' (i X () IIIè\t.rix A,., 

in eq.(3.5) and the last two column blocks cor\'('spoIHI 1.0 t.he Ci x (i mat.rix A,,'_I ill 

eq.(3.5). To prove that these six holonomie COl1st.rainls <In' d('I)('IIlIl'I\t, il. is slIfliri('lIt 

to show that the matrix Ah in eq.(:t8) is l'a\lk dp[ici('llI.. This is dOIl(' as folio",:.;: 

matrix Ah is a 6 x 12 matl'ix, its l'élnk thus Iwillg al lI\OSt. six, i.('., t.!H' lIlat.ll:>' 

has at most six independent rows. '1'0 find ils rank, ('lellH'lItary o\>('rat.iolls cali IH' 

performed on the columns of Ah, as shown ill ~iA.l, I.hat. do ilOt. rlwllgp it.s rallk, 

thereby producing a reduced 6 x 6 llIalrix Ail' as sllowlI helo\\': 

AI = [El 0] 
h 0 1 

It is clear from eq.(3.9) that thrce cigenvah\('s of tl\(' (i x (i lI\dll'i'\ A" ,Il'(' t.!to:-o(' (JI 

the 3 x 3 identity tensor, 1, the olher tlll'ce eig,cllvallll's of t!H' SdllH' IlIat.ri, lH'illg 

those of En which, as proven in §A.a, has l''\éH 1 Iy Oll(' ;1,('1'0 (·ig('IIV;t!lI(', Hssociat.(·d 

with the unit eigenvector el' Thus, tl\(' rank of Illatrix A" is li\'(· alld, )\('11<'(\ of t.llt' 

six constraint equations, only five arc indepclldC'ltl. WI\('I\ UJ\('ollplcd, il rigid body 

in the 3-dimensional Cartesian spacc ha:- six DOF. Th('ll'fore, ft J'('volut.p pail' 1 liaI. 

allows only one 001" motion of the cou pied bodi('s ICild:-. 1.0 fi\'(' illd('IH'lId('lIt :-o(',d"l 

constraints, as reflected by the rallk of mal.rix Ail' MOl<'owr, if LlI<' :-.ix cOlIst.lilillt 

equations were independent, the DOF of a revolut.(, joillt wOllld \)(' ;1,('1'0, i.(·., t.1\(' 

coupled bodies would be rigidly cOllllcctcd. Hellcc, ally joillt., po:,s('ssillg 011(' 01 

more DOF, leading to holonomie constrdints, bas six depc'JICI('II{, C'ollstl'aillt ('ltllatioll ..... 

Moreover, among kinematic pairs, an increas(' in tlte DOl" 1Il('dl\:-' ilil l'Iilllillatioll of 

an independent constraint equatioll. 

Lemma 3.2 Nonholonomic kinematic conslraints, as gIV(!lI III (·q:-..(:lA) éllld (:L 7), 

always result in three lincarly independent scal<l\' (,(H1:.t! "ill\. l'qllatiolls. 
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Proof: In a sirnilar way to the holonomie case, a matrix An is COllstructed as follows: 

(3.10) 

where the four column blocks of the 3 x 12 matrix An are those of the matrices A •.• 

and A •. I-h givcn in eq.(3.7). Now, matrix An is reduced, as explained in §A.2, and 

aHlollllts to the :3 x :l identity tensor, namely, 

(3.11) 

which shows that the thrce cOl1stl'aint equatiol1s in eq.(3.7) are linearly independent. 

3.2 Dynamic Modelling of Mechanical Systems 
Using the NOe 

The mcthod of the NOe, as pertaining to meehanieal systems eomposed of 

const,rained rigid bodies, first introduced in Angeles and Lee (1988). is described in 

six steps, lIitllwly, 

Step 1: The Euler cquations of motion, describing the l'otational motion of the ith 

Iink, are givell by 

0\' 

(3.12) 

wll<'re Il is t.he 3 x 3 inertia tensor of the ith link about its mass centre and w" 

0'. and n. are the 3-dimensional vectors of angular velocity of the ith link, angular 

vdocity of the lth coordinate frame fixed to the lth link and the resultant moment 

f\d.ing on the ith link, respectively. Moreover, Newton's Second Law, describing the 

motion of the mass centre of the ith link, is expressed as 

0\' 

(Il (m,c,) + (T, x (m,c,) = f, 
ct 

(3.13) 
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where m, and f, are the mass of the Îth link and tlH' l'I'sultal\( foret' adil\,I!; 011 (hl' 

mass centre of the zth link, resp('cti\'('ly. Now, IWcllling t IIC' dt'lilli! iOlls of t.hl' t wis\, 

t" wrench, w" cxtendcd angular velocit.y matrix, W" ('x!I'I\(h'd 1ll,ISS IlIatl'ix. MI or 
the ith link, and the rate of change of the lat.ter, M" as c\('finc'd ill 3'2.1, the' N('w(oll­

Euler equations, eqs.(3.12) and (3.13), gov(,l'1ling tlw llIotion or t.h(' d,h body, cali IH' 

written in a compact t'orm as: 

(:U·I) 

where the resultant wreneh vedor w, has been d('com!>osc'd as 

w = wH' +wN 
1 1 1 

with w~v and w;' being defined, in accordalJ('e' wit.h t.hc' ch·fillit.ioll of W I , as t III' 

working wren ch and the nonworking const.raint wrcneh, boUt adillg 011 tilt' /I,b hody. 

resp(;'ctively. The formel' represcnts working moments and r()I'(,(~S suppliee! by adu­

ators or arising from gravit y or dissipation, whcreas the I,ttt.cr dl'lIo(,('S Ilollwol'killp, 

moments and forces whose sole rolc is that of kceping tl\(' bodies (,op,<'t.hl·r. 

Step 2: It is assumed tItat the mechanical system \lnder st.udy is (,OlllpOSC'c! or Irigid 

links. Then, the Newton-Euler cquat ions fol' ail the illdividuétl lillks CéllI II(' WIÎl.t.(·1I 

as 

Next, by virtue of the definitions given in §2.1, of the (il-di llIellsiollal v<,cl.ors of gC'II('r­

alized twist t and the 61 x 61 matrices of genel'alize'd allguléll' ve·locit.y W, g('lIe'rali~('d 

mass M, and its time-rate of chétllgc, M, t!w 1 dYlléllllic e·qllat.ioIlS, (.«.(:1. I!)), (élii 

now be expressed as 

Mt = -CM + WM)t + W W + w N 

where w W and w N are defined, similar 1.0 w, as the ()J-dimcllsiollal wc!.ors of l!,e'll<'l­

alized working wrench and generalized nonworking cOllstraint. WI ('11<:11, f(·:'(H'ct.ive·ly. 

They are gi ven as 

and 
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Equat.ion (:3.16) is formaJly identical to eq.(3.1~), and constitutes a set of 61 uneon­

strailled scalar dynamic equations. Moreover, if eq.(3.16) is rewrittcn as 

w W +wN = Mt+ CM+ WM)t (3.17) 

t}H'n the negative of the right-hand side of eq.(3.17) is recognized as the generalizecl 

incrtia wrench, dpnot('d in cq.(2.43) by w*. This is equivalent to the inertia force 

in d'Alf'mbcrt's cquations of motion of a moving particle, which is defined as the 

lIegat.ive of t.he produd of the mass of the particle and its acccleration. The right­

hand side of eq.(3.17) is used in §2.2.6 to find the gcneralizecl i ncrt.ia forces of Kane's 

{'</uations of motion. 

Step 3: Th(' kiIlcmatic cOJlstraints produced by holonomie and Ilonholonomic eOll­

plings arc dcrived in a differential forrn. Within the methodology adopted here, as 

I)I'OVPIl in §:J.l, cvery holonomie coupling gives rise 1.0 six linearly dependent scalar 

eqllations. Also, cvery nonholonomic cOllpling, in the absence of slippage, gives risc 

to thrce lincarly independcnt scalar equa,tions. These cOllstraints can be written as 

a system of !incar homogeneous equations in the twists of the l links of the sys­

tCI11, which is cquivalent t.o the following linear homogeneous system in the veetor of 

gcneral ized twist: 

At = 0 (3.18) 

Berc, A is a (6, + 3v) X 61 matrix, , and v being the numbers of holonomie and 

nOllholonomic pairs or couplings, respectively, so that the total number of kinematie 

pairs k is ('quaI to 1 + Il. 

Step 4: Uude\' the assumptiou that the DOF of the system is q, the q-dimcnsional 

vedo\' il[ of independent generalized speeds is \'cealled [rom eq.(2.3). Then, the 

vedor of gencralizcd twist can be reprcsellted as the following linear transformation 

(3.19) 

whc\'e'r is a 61 x q mat.rix that is, in gencral, a function of the gencralized coordinates, 

(J l, and time. Upon substitution of t, as given by eq.(3.19), into eq.(3.18), the relation 
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below is obtained: 

AT8[ = 0 

Since all the components of vector (JI arc indcpcndent, t.he relat.iol\ !wlo\\' rail 1)(' 

readily derived: 

AT=O 

where 0 is the (6, + 3v) x q zero matrix. Equat.ion (~L21) shows t.hr\\. T is illl 

orthogonal complement of A. Bccause of the pmticular fonll of choosing t.his COlIl­

plement, eq.(3.19), T is termed the natural orthogonal cOll/ph'llIcnt. (NOe) of A. Il 

is pointed out here that, to obtain the NOe of t.he kiJl('lllélt.ic (,ollst.raint. 111,11,1 ix A, 

as shown in eq.(3.21), the choice of eq.(:J.19) is import.allt, becalls<' for Illat.l'ix 'l' t.u 

be the NOe, the generalized twiRt must he' \VI it.t.pll as il Iill<'élr COlllhillat.ioll of t.h(' 

independent generalized speeds. In s('rial-type mcchallÎcaJ sySt.<'IlIS, fol' <'Xillllpl<', il 

q-axes q-DOF seriaI robotic manipulator, wltere ail the joillt ra.t.es cali \)(' cOI\:-id('l'l't! 

as the independent generalized spee(ls, an expl'<'ssion for t ill t.ht' [onll o[ <'q.(:~.I!J) 

is readily available. Howcvcr, in the prcscn,c of IIllélduaf,cd joint.s t.ltrd. O('ClII' ill d 

multi-Ioop mechanical system, l'.g., in a paralIcllOhotic Illéwipulat.or, whe!'l' ilOt. ail 

joints are actuated, deriving the expression app(,iU illg in cq. (3.1 ~)) is lIOt. st.rnight.for­

ward. Thus, in §3.3, a method is givcll to find t.lte NOe for Ilwc!mlli(,é11 systellls \Vit.ll 

unactuated joints. 

Step 5: Since the role of the nonworking constl'élint wrench~s il) )illlitc'd 1.0 Iwppillg 

the coupled links togl'ther, they do not contribut.e 1.0 changes in LIt<' enel'gy of t.h(' 

system. Hence, the power rr N developcd by the cOllstraillt. wl'enchcs vanisll<'s, i.('., 

Substitution of eq.(3.19) into cq.(3.22) lcads to 

and, due to the independence of the component.s of vec:l.ol' 'h, eq.(:3.2:.J) leads t.o 

(a.21 ) 
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wlIere 0 is the q-dinH'lIsional zero vect.or. Now, il. is apparent from eq.(3.24) that w N 

lies in the I1ullHpacp of rnatrix TT. MOl'cover, by virt,uc of the dcfitlition of matrix 

A, T is an ort.hogonal complement. of A. Thus, the vedor of nonworking constraint. 

wf('llch, w N , lies in the l'ange of the transpORe of A, i.e., 

(3.25) 

wherc ~ is a (6, + 3t,)-dimensional vector of ulldetcrmincd scalars which are 1J0thing 

hlll. th(' Lagrange mult.ipliers discusscd in §2.2.1. It is pointed out hcre t.hat the 

duality bctwecn kinematic constraints and nonworking constraint wrenches (Saha 

and Angelcs, 1991(1), as cvident from eq8.(3.18) cl,nd (3.25), can he exploited in orcier 

1.0 df·t.ermine t)H' cOllstraint tOlques and forces which arc Iwcded for design purpose8. 

Step 6: li pOil lllult.ipllcatlOll of both sides of the 6/-dimensiollal Newt.on-Euler Ull­

COll pIed equatioTls of the system, eq.(a.16), by the transposc of T, the vector of 

nOllworking constraillt wrcllch is climillclted from the saie! cquation, which is obvious 

frolll C'q.(3.24), thc cquation thus obtaincd I)('ing reduced to: 

(3.26) 

Now, both sides of eq.(3.19) are e!ifferentiated with respect. to t illle, which yields 

(3.27) 

Nol<' that tht" entities of Tare not, in general, simply the time derivat.ives of the 

('OITPspollding cntit.ics of T, becausc the vector bases on which T is exprcssed arc 

lIslIally tlllH'-varyillg. 

FUI't11<'1'I110I'C, wH' is decornposed as fo11ows: 

(3.28) 

wherc w" rcpresent.s the gcncralizcd wrench duc to torques and forces applied by 

t.})(' actllators, if an)', whcrcéls wC and wD account for gravit y and dissipative effeds, 

rt'spl'ct.i v(\ly. 
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Substit.uting cqs.(3.19), (:J.27) and (:L2~) illlo ('q.(:l,:!(i), cl ~\·~It'tll of (/ illdl'llI'lI 

dent dynamic equatians are <!crive<! fa\' a COllst \'aillt'd 1l11'challic.d ~~ SII'IlI, """ll'''', 

or 

where 

1 == TTMT: q x q matrix of gCllcrali,wd illert i". 

e == -TT[MT + CM + WM)T]: q x fi matrix of (011\'('( t i\'(' 111('11 id 1('lllh 

r == TTwA: q-dlllJ('llsional vec\'o\' of g<'II('raliz('d drivillg for('(' 

'"Y == TTwG: q-dil1lcllsional vcetOI' of g('Il<'rali:œd forCI' dll(' tu glcl\'II\' 

6 == TT w D: q-dinlC'l1siol1al vcetOl of g('lIel aliz('d dls:-.ipat i\'(' rOI «' 

From the foregoing discussion, t1\('n, it I)(,(oll\('~ a I>l>ell'('1l 1 111,,1 (''1 (:L~!l) 1('1' 

rcscnts the EulC'r-Lagrang<' dYlIamic ('quatiolls of tlH' sy~I('1I1 .11 Il.111<1, 1'1('(' lIl' II<JII 

working gCI}('rali:œd constraint forc('s. 1\101'<'0\'('1, th(· dYlI.1I111( IlIorll'l tlrll~ d('II\'I,<I 

is applicabl<' to Il1eChrlllicaJ ~ystclll!i cOllsistill,l!, of bot Il holollOIlIJ( dllcl 11()IIItO\uIIOIIII( 

couplings. FlIl'tll<'\'morc, t1H' dyllall1ic <'qllatioll" haVi' 1)('('11 cI('1 i\I'c1 \\'IIII()III I('''(JII III)!, 

to lengthy partial diffC']'('nt iatiolls, which wOllld \)(' t IJ(' ('a~(' il ('11 \1('1 .1 "II digit! f()1 \\'.11 d 

or a recursi ve dcrivatioll of the ElIl('r-- Lagrang(' ('(Jlra t i(HI" Itad 1)('('11 ,II 1 ('III pl (·d. 

3.3 Derivation of the Noe in the Presence of 
Unactuated Joints 

The presence of llllactuated joillt.s is V('ly COli 1 111011 ill IlIldll-l()up 111('( 1I<lIIII.d 

systems, ail cxampl(' of Sllch a sy~telll lH'illg ail all t.o III a 1 i( gllid"d \'(·1111 1(·. III <JI d(" III 

obtain the dynamic cquations of mot 1011 i fi tlH' p!'('~('I)( (' of 1I11ell'l Il.1 1 (·d j <Ji Il b \VII il 1 III' 

aid of the NOe rncthod, It i~ Ilec('~sary to r<,d(~I'I\'(~ (·q.(:U!I) in SI('P ,1 iliid (·q.(:L~7) 

in Step 6 of the adoptpd nwthodology givpn in fj:Ll. III etrly 1I11'('lldlll( <I! ..,y"tt·IJI, t.ltI' 
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g('IH'ralilwd twist of ail the links can he writtel1 as a IiIH'ar transformation of tl\(' 

p-dilllcnsiollal vedor of the gelleralized specds which Ilc('d not he independent, i.e., 

(3.30) 

whf'l'(' the ()[ x p matrix Tm is a function of vector (J al\d time. Substitution of 

(·q.(:l.ao) into eq.(:3.18) yields 

(3.31 ) 

~illC<' the cornpol\cnts of 8, in gcncral, arc not independcnt, 

which lias already becn pointed out in Step 4 of §3.2. However, a f:ct of imlependenl 

g(,I1('/'alized sJ)('eds whirh are, Ilormally, a set of artuated joint rates, grouped in the 

q-dillH'lIsiollal vector il 1, can be chosen, wlH're q is the DOF of the system, in the 

a 1>8('1\('(' of 1 edul\da nt art lia tion~. !\toreover, 8 D is ddincd as the vedor of rates of 

t.lw lemainingjoints in tl\(' systelll, i.e., as the V<'ctor of unart.llélted joint rates. Thus, 

Vf'ctor 8 can he ('xpressf'd élccording to cq.(2.3), while eq.(a.30) can be rewritten as 

. . 
t = T j {}/ + T[){}JJ (3.33) 

wh('I'!' 

and TI and TD are 6/ x q and 6/ x 111 matrices, respectively. Furthcrmorc, ta writc 

t as il lilwar transformation of vecLo/' 81, an expression of 8n in tenns of 81, similar 

t.o ('<\.(2.1 iL is den v('cI as follow8: an m x p IIlatrix J is firsl derivcd, whose 1'OW8 

an' t!H' 7lI ind('IH'IHit'nt rows of t.he ((h + 3v) x ]J matrix ATm. Thcse indcpendent 

(,(lIIst.laint cqudtions arc ('xprf'ssed as 

J{) = 0 (3.34 ) 

",IU'J'(' t'q.(3.:H) is ('q.( 1.2) in which the m-dimeJ1sional vcctor b does not appear. 

Thus. wit h t hl' approach introduccd hcre, no distinction neecls ta he made bctwcen 
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catastatic, acatastatic, scleronomic and rheonolllÏc cOIl:-.lr.linl'l. fut ail al'l' 1 1'1'.11 et! 

as cat.astatic OIH'S. Note that il is not r('('OIIIIlH·ndt·d 10 C\Jtll(>llh' 111.111 i\ J l'Ill li 1 

eq.(3.31), since su ch computation will invol\'(' dt'composition Il'( hniqut's si III tl,\I' Itl 

those mentioned in §2.3.2, which, dl\(, 10 thf'ir complpxily. an' IInl J'(·(,OIllllll'llIlt·d fOI 

the development of fast simulation algorithms. In fact.. a scl\(,l1l<' !,a:-.(·d 011 int!('IH'll 

dent loop equations of the wholC' kill<'lIlatic chaill (Go:-.selill, !!)~~: Naholl. !!)!)()) 1:-' 

presented in §3.4, which also allow~ onp to oblaill t\w DOF of II\(' IIU·('h.lllic,d ~\·~tt-III 

at hand using the' relation givcn in Ange'les élllt! (:os~('lin (l!)~~) d:-' 

q = dilll[N(J)] (:~ :~:») 

whcre N(J) is the nullspace of J. 

Now, eq.(3.:J4) is lcwrittC'll as 

. . 
J/(J/ + JJ)lJf) = 0 

wherc 

JI and JD being m x q and 111 x 1// llIatric('~, l'<':-.p<,ctiv('ly. If Ill«' 111('( /l,Ill Il ,d ",\,..,1('111 

at hand is controllablc hy its lllillilllal:-.<'I. of acl,llal,pd joillh, t\l«'11 Jo i.., uf 111111,111" 

Thus, Jï/ {'xi~ts and, henc(', the ekp('nd('nt g('IH'I',diz('t! :-.p('(·d~ cIJ'(' «(JII'I"I! (.t! d~ .!!,1\'(·11 

by eq.(2.l7), namely, 

where the m x q rnatrix U is ekriv<'d frolll (·q.(:l.:J(i) <1:-' 

U = -JjjIJ, 

Upon substitution of cq.(:3.37) illto e·q.(:J.:J:3), clll (·xPW..,..,iOII fOI t 1'> UI,t.IIII<'t! cl"', 

Since (JI IS defined as the \"('cto!' of illdcpefldf'1l1 g('II<'I,t1iz('t! "'lwl'(\"" 1 1\1' '\0(' III 

matrix A, in the prcscn('(' of llllactuated jOillt s aBri ln t IJ(' ;d)"'('I1( (' 01 II'dllllt!,III1 
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ilctllittion, is givcn hy 

(3.39) 

Matrix T is now obtained as 

or 

(3.40) 

1\J1owing matric<,s T and T from ('qs.(3.39) and (3.40), a set of constrained Eulcr-

Lagrange dynamic eqllcttiol1s of mot.ion of mechanical syst.ems in the presence of 

IInilctllat.cd joint.s is writ.t<'ll as 

.. .. 
I(O)O[ = C(0,0[)8[ + T + ï + é (3,41) 

wlU'rc 1, C, T, ï and é arc defincd in Stcp 6 of §3.2. It is point.cd out that, contrar)' to 

<'q.(a.29), rna1.rix 1 in eq.(3,4 1) is ct function of ail gencralizcd coordinates. Morcover, 

III a tri x C is, i Il g<'lH'ral, a nonlj ncar fundion of the generalizcd coordi Ilat.es and liuca l' 

in th(' indf'pelld<'llt gcncralizf'd s!){'cds. 

IL is appéU (,Ilt. flOm eqs.(:J.:m) and (3.40), that matrices T and T entctil CUtn-

1)(,1'solll(' f'XPI('ssiollS. Thns, for multi-Ioop dystCIl1S whel'<' l1lat.tix T is time-va1'ying, 

t.1H' d('rivat.ioll of T alld T at any ins! ant using t hcse eqllations will lcad to expell­

siv(' algonthllls. F:fficiellt lIIethods of calculating both T and T, while avoiding the 

Clllllh('rsonH' expr<'ssiolls, arc showll in §3.5. 

3.4 A Relation between the Actuated and Unac­
tuated Joint Rates 

III t.h(' pt'es{'nt formula! ion, thc dCl'ivatioll of matrix J, as in eq.(3.34), is nec­

t'ssary in 01'<1('1' to find a relation betw{'('n the actuated and unactuated joint rates 

which, in t mil, allows olle to dct(,l'min(' the dcpendent generalized speeds in terms of 
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the independent gC'lH'raliiWd spc'cds, III fad, ill thl' ab~H'lll'l' of 1('t!lllld"lIt ,\(,tll;t\ioll, 

the unactuated and actuated joillt reltl's CéllI play tll!' 1'0"':-' of tlll' d('IH'IIII('lIt cllld 

indcpendent gelH'ralizec! sp('eds, (,C'sjwcI ivc'Iy. 'l'hl' pl'l'S('1I1'\' of 1111"('\ Il,llt'd joillts i:-. 

very common in Illechanica! systcllls wit h killl'IlIé1t.Ïc loops, III ,1 IIIl1lt i-Ioop Syst('III, 

a set of m indqwndent CClnstraint ('('!atiolls cali 1)(' (,OIl\'('lIicllt I~' ohl,lill('d l'Will 1 hl' 

indcpendent. kilJ('lllat ie loops of th(' kill('llIat ie < h"ills, 'l'II(' illllq)('llIll'lIt killl'llI.d i( 

!oops arc recogllized !WH' l'rolll t Il<' graph \'('pl <,:-('111 "t iOIl of IIl<'CIIHlli( ,II :-~'sl ('III~ 

3.4.1 Graph Representation of Kinelllatic Chains 

The COl1cC'pt of a ll1('chc\IIÏcallH't work, dcriv(·d fro\ll 1 hat of ,\II (·1(·( 1 l'Il ,d 111'1 WOI k, 

allows one to systernatically descrilw killcllIal i< ('hélills (Dd\'i(':-, 1 !)K 1). Topolop,i( .111,\, 

a mechallicalllc\work eOlltaillingjoillt.s <lIld Iillk:-Is all,dop,oll:-' lu ,III (·1(·( 1 l'l( ,,111('I\\'ul k 

made up of noc!rs and imp('d<U1ces. I1('lIn', fJ/'IlfJh tIlt o/'y olkl:-' " :-',\ ,,1 ('III,d,l( wely III 

reprcsentillg the topology of ki 1H'lllat ie cha i liS. TI\(' p,1 ,1 ph 1 ('PI (':-( '11 t ,dlUIl ul k i 1\l'llI.dl( 

chains has Iwell lIscd by, among othc'IS, Dohrj .. n~kyi and FI'l·lld(·n"I(·ill (1%7) .Illcl 

Baker (1981). It (,ollsists of a diagram \\'II<'\,(' ('ach IllIk i ... 1(·pl'l·~(·III(·c1 hy cl p()11I1 

and each joint by ail ('dgc', 'l'hus, t\\(' graph J'('PIl's('lItation 01 ,1 kin('lIlat.i(' ('hain of cl 

mcchanical netwol'k is a collection of point.s ('0111)('('1('<1 by t'c\P,('s 1'('11 ill('lIt ddillil iOIl:-­

of terms and resllits to be uscd in this t}]('sis ('cllI 1)(' foulld ill (11.11 dl,\', 1 !J(;l)), dllt! 

hence, they are ilOt. inc\llded he'l'e, 

The number of indcpcndellt killcmat.ic lo()p~ in a IIIC'( h,uli< al :-,y ... t(·111 i ... IOlllld l,y 

cOllnt.ing the IlIlmher of indepcndcnt eyc\('s, (', ill Ut<' a:-,s()('ia!.<·d p,1 clph, 'l'Il<' nllllllwl 

C in a cOllnect.ed graph is given in turn hy 1':111('1'\ fOI'IIII1I<l for p,l'aph:-, (1Ial,1I y, J !)W), 

namely, 

C=(J-P+I 

where Q is the Ilumber of edges and P is the nlllll!H'1 of pOillt..., .\'IOI(·()\,(,I', (: i~ ,lIl 

invariant of the glaph g. The det('l'I11illatioll of the illd('IH!III\coIlt. loop.., ill iL 1lI1l1t.i 

100p system is illustrated wit.h ail cxample p('rtainillg lo il :i-wlwc'lC'd ~-))OF !\CV, 

'. 



Chaptn a 'l'II!' Mpt,hod of tlll' Nat.ural Ort.hogonal Complelllent. (NOC) 56 

A caster wheel 

Fig. 3.3 A 3-wheelC'd 2-DOF AGV 

TIH' r(,~\IIlt will 1)(' uS('d later in Chapt.cr 4. The graph fol' this AGV, as shoWIl ill 

Fig. :l.:l, is dl'awn in Fig. :3.4(a) wlH'l'C' points /3, P, Rt, R2' F and L represcnt, 

l'('slwctiwly, th(' hase, i.t'., t.h(' flool' on which the AGV move~, the platform, the 

It·n, l'<'at' wh('('\, li\(' right. Icar whct'\, t.he front. (ast.er whc<,\ dllel tlH' fork conllecling 

t!\(' platforJll \Vit.h t))(' flollt wh(>('l. A sl>clnllillg tlCC is !'>howlI in Fig. :3.4(b). The 

spallll\llg tJ'(>(' is Ilot unique and thus, other spélnning trees could have been chosen. 

The chords COIJ'('RpOlldiug 1.0 thi::. spallIling trcc arc showII in Fig. :3A(c) and finally, 

t.he two J(>sult.ing cyc\<, bc\sc~, i.e., t.he t\\'o independcnt kilwmatic loops of the system 

al. halld, al'(' showll in Fig. 3A(d). 

3.5 Calculation of the NOC and its Time Deriva­
tive 

'l'hl' dCl'ivation of thC' Noe, particularJy using eq.(3.39) is, in general, costly, 

('x('ept for v{'ry simple syst.el1ls such as a disk rolling on a plane or a planaI' four-bar 

linkage. An dfici('llt l1lethod of calculating T (l"Ia and Angeles, 198B) cali be readily 

dt'ri \,('d by Ilot i< illg t hat T dcpends 011 generalizcd coordillat(·~ ouI}'. t\forcovcr, the 

jth coll1mn (,fT ('quaIs at/DO), for J = 1, ... ,q. Thus, T l'an be roulld as follows: 

(3.43) 
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Fig. 3.4 (a) A collnectecl gmph, (h) A spallllill!!, tn'I', (e) ('11111.1", (d) IlIdl'pI'lIdl'ltI 
loops. 

i.e., the ]th column of T is calculated as the'I!.('III·l'ali21't! t.\\'i:-.I (JI 1 III' :-'\,:-'\l'ill .1:-'''lllllill.l'. 

that aIl the indcpelldent spceds ex«'pt the J t. h 011<' cil (' Z('J(). \\' h il Il Il,,:-. .1 \'allll' III 

unity. 

The inverse dynamics problcm in l'Ohotics IS dC'filwd (\:-., ,1//1'1 Il a la.~I.·, fol' I./'alll-

pie, to follow a pa/h by ail ItGV, fil/ri Iht reqll/I'((l.Jo/1I1 1{)I'fjlll.~ aI/ri jOl'n .", 1.1., 11/1 

mo/m' torques al Ihe wheels oflhe AGV. III titis plOblc'lIl. 11l"lli, ri' dOl'" 1101 clplH'cll 

in the dynamic e([uations, hf'cause the drivillg tOl'q\l(':-' alc' ollt.lilll'd cl" 

where i may be calculatcd n'cursively from Cl kllOWII t.wi~t r,lIc' (JI cl lillk III " kiIlC'IIIi" il 

chain, which is required to perforlll the give'lI litsk. /loWC·VI'I. ill lUI ward dyllcllll 

ics, which arises in simulatioIl studi('s, T (I/>I)('ar:" IJllt il.., duc'( 1 C .dc 111,11 iOIl ("II IJ!' 

avoided. In raet, the gencrali2C'd i(l<'rtia tcnm that rlrc' qll,IC!J,t!1C 1110 1, C((J,O,)OI 

in eq.(3.4l), can be cvaluated efficiC'lItly \lsillg 1 II<' tc·c IIl1lqll(' illl lodllC (·d Ily W.dkc·1 

and Orin (1982) f.Jr seriai manipulatof!l and whiclt !tas late·( 1)('('11 c'xlc'IJ(lc'c1 Ily ~\'Ll 
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and ÂlIgpl('s (J mm) for parallC'1 manipulators, With this technique, the fOl'C'going, 

CJlladrat.ic l('l'IllS are calclllatcc! as 

(3,45 ) 

i,l'" the first t('rlll of the l'ight-hand side of eq.(:JAl) is computed l'rom inverse dy­

namics (Walkcr and Orill, 1 !)S2) as thp negat.iV<' of th(' sum of the rernaining three 

f,('rlll:-; whcn 8/ is :-;(·t <'qllrll to 0, Eqlliltion (:3.'15) Cilll be l'cadil)' illlplemented ill 

dynalll ie :-;i IIlulatiolls of lTH'ch ail ica 1 systems, 

3.6 Application of the Method of the Noe in the 
Presence of Redundant Actuation 

Hpdlllldalll. act.lIatioll occurs wlH'1I thp nllmbcr of driven actllators in a sys-

t.('f11 ('xcccds the DOF of the system at hane!. The dcgl'CC of /'cdllndant acluatioll 

is givell by thp diffcrC'llce bctwcclI the number of dri\'cn actuators and the DOF 01 

1.11<' :-;ys!.('lIl. MOlC'ovel', sill(,(' the lIumlwr of cqll<üions govcrning the d)'Ilamics of t!1C' 

system is ah .. :ays ('qllal to its DOF, in inverse dYllômics, defin('d in §:L5, the dyllall1ic 

<'<JlIrltioIlS call1lol IIl1iqt1('ly yi('ld the rprjuired torques of tllC' actuéltOI'S, because ail 

lIlId('rdet.('rmiIWd s.Y~t.('m of equatiolls arises, Fmtlwrlllore, t he ~d of kincmatic ('C}ua­

t.iolls J'('lat.ill!!; the twist of the ('IHI-cffedor, for examplc, th<, g,1 ipP('1 of a scnal-typ(' 

IIlltlliplllatOl, or t.he platfol'III of an AGV, and t1H' (\ctllatf'd joints, is also undel'de-

t.('l'lIIilll'd, The 1III<I('ld(,t('1 IIlinaL)' ill the kill<'lllcltic rlllcl dYllcllllic <'quat iOIl~, l'('sult.illg, 

frolll l'('dlllldc\llt. aduatioll, Cdll casily he avoickd by 'fcat.hcrillg,' the rcdundant. ac­

t u,dors, i,t'" Ilot drivillg the' re'dulldallt. act.uat.ol's while I('avillg the COl'lcsponding, 

joint.s fr('(' t () IIlO\'('. 1I00\'('\'el" in feathering, tlnless the choicc of the driven acluators 

is has('d 011 sOlJle suÎtc\ble performance criterion the system may fUllction poody, On 

t.he ot.h('r hand, redllndant ad nation allows gr('at.cr safety in (ase of breakdown of 

individllal ad ualO! s Fol' exampl(', If a mechanica! systcm is lccltllldant.ly actuated, 

it can still 1)(' ('ont 1'01 hl if 011(' or 1I100'e acttlélt()l~ break dowll-- UI> to the degl'ce of 

l'l'dlllldant artllat iOll, Hedundant act uatioll lllay be applied to l>drallel-architect.ure 
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robots, e.g., parallcl manipulators and AGVs, in ord('r to l1Iak(· tl1l'l1I lightt'l' .1I1t! 

faster, although the aelvant.agC' obt.ained t.hrou!!,h J'(·(hlIIdallt art lIat iUII l1Iighl IH' oU'· 

set by the weight of the ext.ra aet uators. III IlliIny illstaIH'('s t hl' IIS(' of r(·dllndallt 

aduation is advisable and a COllllllOII approach 10 addn'ss SII('1t .1 pl'Ohlt'Ill is t.hroll!!,h 

constrained optim izatioll, which is 011 t.Ji lied i Il 1 lit' su bs(·ction I)t'Jo\\'. 

3.6.1 Constrained Optimization 

A general constrained optimizatioll prol.;It'1lI is st.at(·d a~ 

mm f(x) (:L.\(if') 
x 

subjcct to III(X) = 0, fol' 1 = l, ...• Cf (:1. Hil,) 

9J{X) ~ 0, for J = l,. ., Cu (:~ ·I(il ) 

where X is a Il-dimensional vector of d('sign wlriilh/es, \Vhil(· (', alld ('II d('llol.(· t.Jw 1111111 

ber of equality and iueqllality cOlIst.raillts, l'<'SIH'ct.ively. 1,'11 Il et iOIl f(x) is 1I0I'ln.dl.\' 

calleel the objective fl/lIctioll, while eq.(:1.46b) 1 ('Pl'('l';('Il t.s a S(·1. uf ('qll,dity (ollst.l'aillb 

and eq.(3.46c) rcpl'f'sents a set of illf'quality cOlIst.raillb. For (OIlWlli('IU'(', tl\(' di~· 

cussion is limitcd to objective funct.ions which arc twin' COIlt.iIlIlOIl:-ly dirr(·J'(·IIt.iahl(' 

throughout the J'('gion of intcrcst. 

The constraints givcn by cqs.(3.4(ib) and (:3AGc) élr(' 110111111('''1 III g(·Il(·lal. lIo\\' 

ever, the constraints of intcrest that al ise froIll t.h(· dylltlllli( ~ 01 a 111('( 1t"11 ical sy~t.('11I 

with redundant actuation are lin(·ar. Thus, ollly llll<'ilr COIl:-t.1 "illt.~ M(' consid('l'('d 

here and, hence, the optimizatioll probl('n1 is l('ddillCd as 

111111 f(x) 
x 

subjcct to Alx= b l 

(:l.Ha) 

(:3.17\,) 

(:~.17( ) 

where Al is a matrix of dimension Ce X Il, whilf' A2 i~ é\ lIJat.rix of dillJ('JISiOIl ('" /' Il. 

The conditions for a minimum f(x) can \)(' foulld in ,Uly book 01\ optllnizat.ioll, fCII 

example, Gill et al., (1981), and henre, are not. givC'1I 1)('['(,. Ali uptilllizat.iol\ pl'Ol,l('1I1 
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s1tbj('d to lilu'ar coll~traillts can be f>olVC'd by [Ill fa/' or quadm/1C pl'Ogmmming (Gill 

ct al., IH81), if t.h(· objective f\llldion f(x) i~ lillPar or, correspondingly, quadratie. 

An optirni~cttion problcrn in the forrn of cit.her eqs.(3,46a)-(3,46c) or eqs.(3,47a)­

(a.He) cali he f(·adily solvcd hy Ilsing any standard procedure. For instance, in this 

('('s('ar('lI, an IMSI} (IMSL, 1990a) subroutinc, DQ2ROG, is used. This suhroutinc 

is has('d on Pow(·II's impl('Illcntation of the dual quadratie progralIlIl1ing algorithm 

hy C;oldfarh and Idnani (198:1), for eonvex qlladratic programming subject to con­

straillt.s, as givclI in ('qs.(3A7b) and (3A7c). 

3.6.2 System Dynamics Under Redundant Actuation 

A nonholollolllic nwchanical system possessing q-DOF requirC's at least q actll­

at.ors for its control. It is 1I0W assum('d that, ulIdcr rcdulldanl. dt'tuation, Il actuators 

Ml' drivl'II to cont.rol the q-DOF of the system, whele Il > q, tilUs leading to an 

optimization pl'Ohlem. Let te be the q-dimensional twist \'cctor representing the 

angular wloci ty of t.he end-effector a nd the "doci ty of 1 ts IlIclSS centre, C. 1 t i~ 

assllllH'd lH're that the dlll1cnsion of the twist vcetor te c llllciclcs with the DOF 0/ 

t.he systelll, q. [\'loreover, iJ A is defined as the Il-di mensional veetor of ad lIated joint 

rat.('s. Not.e t.hat., in ~{:3.2 and §3.:1, since the number of actuators is equal to the DOF 

of tl)(' systelll, ct s('l of actuat('d joint rates is always taken as t.he set of independenl 

gell('ralized speeds. In the present case, the joint rates arc Ilot II1dependcnt, but the 

I[ (,OIllPO\H'\lts of t.1H' twist of the end-effcdor ar(' independent, dl1<1 hence, they can 

play the' 101(' of t.h(' indqH'lldent generali~ed sp('eds. Thus, lI~illg the method of the 

Noe, a sel of dYllamic ('quatiolls is obtaillcd in terms of the anguléu velocity of the 

(·nd-effect.or and the "clocity of the mass centre, lIamcly, 

. 4 G D 
I(9)te = C(9, tc)tc + Wc + Wc + Wc (3.48) 

wlH're t1H' li x Cf Illcttrices 1 alld C, and the q-dill1ensiollctl vectors wJ, wg and w@ 

an.' d('fjned in a similar way to the definit iOlls of the' lIlatrices cllld vcctors associated 

IIMSL Mathl'lIIatlral Llhrary COll818t8 of FORTRAN hubroutlllcs for llIé\themat.lcal apphcatlOlls. 
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with the dynamic equations gi\'{'[) in ('q.(3.2~)). 110\\'('\'("" ill ill\'('l'S(' dylléllllÎcS. it i~ 

necessary to calculatc the joint variahks, their t il1l(, dt'ri\'at i,'('s alld t lu' rO\'1'('sIH)lIdillg 

torques to perform a c<,rtain télsk. This is dOIl(' as follo\\'s: First. ,Ill ('XI>1'('ssioll 

relating the twist of the <'Ild-eff('ctor te and the clC, lwted joillt 1'.11 ('S (}.I is ",rit t('11 in 

a similar way to eq.(a.aO), i.e., 

p.·I!) ) 

where TA is a q x Jl matrix. Then, the wrellell of t.1\(' ('lId-('I!'('c(,or wél., l'('qllilt·d tu 

perform a task, is obtained from the cquatiolls of mot.ion, ('q.(:L·l~). ~lol'(·()\·(,I'. t hl' 

power supplied to the system can be ealculated as 

Furthermore, when Jl joints are drivC'n, the pOW<'l' SlIppli('d Ily t Il<' .ldllatOI'S, 7r.
I , i~ 

glven as 

where TAis the IJ-dimensional vedor of aduated joint tOl'qll(·s. Now, sill( (' th· 

power supplied by the act.uators must be equal t.o li\(' POW(" illpllt. 1.0 t.1)(' sySt.(·III, 

i.e., 1i'A = 1i's, a relation between the act.uat,or torqlH'S alld t.lw \VI'('Il< h or t.llt' ('11<1-

effcdor is readily derived, namcly, 

'T T A 
(J AT,t = tcwc 

Again, to solve the problem of inversC' dynamics, dC'fÎlH'd ill ~i:Uj, tll<' joillt. rat.(' w('(,o/ 

iJ A must be known. Thus, eq.(:3.49) must he solv('c1 for iJ A t,o Obt.ili/I t!w /'('<)uilt'd joillt 

torques TA. But eq.(3A9) Icads tü élll ttlldC'rdt'le\'lllillc·d ~.Y~t('111 or li/Will' (·qucd.iOIl" 

that does not define 8.4 ulliqucly. I1owev('r, lISillg éUl Opt.ill/izatioll approach ulld," 

the equality constraints, cq.(~JAn), a ullique ~olllt.ion Célll 1)(' f(JIIllcl, lIil/l/l'ly, a:-. 

(JA = Ltc 

which minimizes 1/2(8~iJA) if rnatrix Lis defincd as the jJo.;(·lIr!O-II//J(,/,Sf or TA (Hau 

and Mitra, 1971), i.e., 
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Now, substitut.ion of cq.(3.53) into eq.(3 . .52) leads to 

t T A tTLT 
CWC = C TA 

or 

(3.55) 

One possible way of verifying that eq.(3.55) holds is by equating the expression in 

the hrackcts to zero, i.e., 

or 

A LT Wc = TA (3.56) 

Equation (3.56) is also an underdetermined system of linear equations and can be 

solved for TAin a similar way to eq.(3.49), i.e., 

(3.57) 

in which the solution vector TA minimizes 1/2(T~TA)' Using eq.(3.54), eq.(3.57) is 

simplified as 

(3.58) 

Note that in solving eqs.(3.49) and (3.56), only the linear constraints are considcrcd. 

lIowcvcr, if there are any limitations OT. the motions and available power of the 

act.uators, they can be accounted for through inequality constraints, as in cq.(3.47c). 

DynamÎc simulation, defined in the preamble of Chapter 2, under redundant 

act.uat.ion, can be n'adily dOllc Gy lIsing eq.(3.56) and integrating the dynamic equa­

tÎons of motion of the system under study, eq.(3.48). 



Chapter 4 

Dynamics of N onholonomic 
Robotic Mechanical Systems 
(NHRMS) 

Nonholonomie robotie meehaJlical systems (NIIHI\'IS), as (h-fill<'d in !il.~, (lJ'(' 

nonholonomic mechanical systems under co III puter cOlltrol. W( ·11- kllowll ('Xélill l'II .~. 

of such systems are automatic guided vehicles (AGVs). AC:Vs arc widdy liser! in 

modern factories, particularly in flexible manufacturillg cdls, élnd, I\lOI(' 1('('t'llUy, ill 

houses, offices, as weIl as in space applications. Most of LIl<' illdustrial A< :Ys US(' 

only kinematic modcls for thcir control pnrposC's. lIowcv('r, t.!1(' sl1\Oot.h (llId a(,('I1-

rate control of state-of-thc-art ACYs rcquircs that t.\J('ir dylld Illi( S 1)(' ('(JIl:-.id(·J(·cl. 

Moreover, fast algorithms are JlC'cdcd for the on-line cOlllput.at.iolls or t II(' IPqllilPd 

motor torques that enable thc vehiclc 1,0 deeide lIpon the coursc' or <lCt.ioll ,d, <Illy 

instant. Thus, thc sy" l,ema tic approach ta dylla 111 ie lIlodell i Ilg, IIétlllC'1 y, t Il<' IlWt. hod 

of the NOe for the modelling of Ilc))lholollomic IlIcchallical syst.ellls t.hclt. hil~ I)('c'II 

proposed in Chaptcr 3, is mec! t.o lI10dcl a :3-whœled ~-J)OF ACV dlld d fnv :~-J)OF 

AG Ys with omnidirectional whecls. The TIl<'t.hod is first eX(!llIplific·d wit.h il ~illlplc' 

nonholonomic system, a 2-whceled I1lcchanical sy:-.telll, whelC cdl nCU'SSéLry (akllla­

tians are given in arder ta explain the diffcrcnt st.cps in moddlillg t.he lJo/lholo/lolllic 

system. Then, the dynamic model of a 3-whee\cd 2-DOF AGY is obtailwd. FlllcLlly, 

a general-purposc code, OMNI, is written for the inv('rsc kill('lllétt.iC':-., dyllil/lli( ~ (tlld 
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simulation of :3-DOF AGYs consisting of À olllllidirectiollal wltcels. Tite devcloped 

software is tcstpd for :3-, 4- and 6-wheclcd vchicles. 

4.1 A Two-Wheeled Mechanical System 

A 2-wheeled IIlcchanical system moving on a floor, as shown in Fig. 4.1, is 

assumed to consist of an axle that is cotlpled by two revolute pairs to two whcels. 

The system at hand is nothing but the axle or t.!w :3-wheeled 2-D01" ACY cOllllected 

hy two driving whcels, as shown in Fig. :3.3. Berc, pure rolling of the whecls on thc 

floor is asslIlIlcd and hellc,1, lIonhoJonolllic con~tl aillts al ise, a~ dei ivcd in §3.1.2. The 

dynarnic analysis of the 2-wheded syst.em fomls the basis of moclelling the AGY of 

Fig. :J.:3. Silice the system has 2-DOF, two W\1('('18 in the system are considercd ta be 

driw'll or act.llat.f'd by t wo indqwlldf'llt mot.ors. The kinematic analysis of t.he sy~tcm 

if; dor,f' ::>t'paratcly in §4.1.1, the results of which arC' used in the dYllcllllic allalysis of 

tl)(' s ys telll. 

4.1.1 Velocity and Acceleration Analyses 

For analysis, a coordinate frame of unit vectors i, j and k is fixed at the centre 

of tlH' «xIe, C. Accordillg to Fig. 4.1, JI \"elocity of point C can be writtell as 

wll<'l"<' VI is tll(, vdocity of point 0 1 and velo
l 

is thl' relative velocit.y of C with 

r('spect t.n (JI. Vdocity VI C<lll he written in terms of the radius l' of the wheels and 

CG) 

Fig. 4.1 A 2-whec1ed J1wchanical system 
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the actuated joint rate of the first w}1<'<'I, Ot. néllllcly. 

(1 1) 

and VelO! can be expressed as the cross product of Il)(' élllgular \'t'lot II.\'. w, 01 1 lit, 

system with vedor al, a vector from point DI 10 point. C, i.t' .. 

( 1 :!) 

The angular velocity of the 2-whecled mechanicéll syS\.<'llI Illay 1)(' Wl'illt'II l'IOlll tilt' 

joint rates of the driving wheds as 

. ., 
w = 1!'k = 11 (f) 1 - ()2)k ( \.:q 

where -0 is the angular velocity compon('Ilt. of w ahout. k, \Vhilt' '1 = ,./1. 1 I)t'ill.!!, tilt' 

length of the axle, as shown in Fig. 4.1. Now, usiJlg, <'qs.( 1.1) alld (.\.:!), éI It'ldlllJlI 

between the velocity of point C and the actuat('d joilll 1,lIt's. 01 cllld (}2. 1:-' ).',1\'1'11 by 

( 1,1) 

Combining eqs.(4.3) and (4.4), th<, t.Wlst, t(', of 1 Il<' ('('Jlt\'(, of Ut(' <Ixl(' ur II\(' t'Ild 

(-'ffeetor of the system, is written as a lill(,élf 1 rélll:-,Iorllléli iOJl of 1 Il(' 111I!I'\)('I1t!I'111 JUIIl1 

rates, vcctor 01, namely, 

wherf' te is a 6-dirncnsional \'<,clor, Or is ct :2-<!llll('Jlsioll,t! V('( (01 dlld 'J\, i:-- d (, / :! 

matrix. These arc defincd as 

and 

- T Tl'!' te = [w ,c , 

T ' - ?l [ 2k 
c - 2 -lj 

-2k] 
-lj 

The same relation, eq.( 1.5), can éllso be obt.aill<'d fJOt\1 
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wl)('n~ V2 J~ the wlocity of point O2 , ln ordel' to obt.ain the relation betwccn thc 

twi~t rale of the centre of the axle alld the act uated joillt accelcl'ations and raLes, 

the Idation given ill 1'<1.(-1.5) is diffcl'clI!idtcd with lespect \'0 tillle, til<,rcby obtaining 

W IH'I (' 

. . l' TT 
te == [w , ë 1 , (1.9) 

and Tc, prodllcing th(' (('Iltrifugal and Coriolis c1cceleration t('\'II1S, i.., givcn by 

. 1· [0 
Tc = fl1f' li 0] 1· [0 

l , = -1'11' , 
1 :2 1 ~] 

wh('I(' tll(' ('xpn'ssion fol' lj, in terms of the act.lIatc·d joint latcs I~ clvailablc flOlll 
. . 

('q.('1.:I). Tlllls, upon sllh~titlltioll of the expression fol' 1/' illto <'q.(4.10), lllatrix Tc 

1 S r<,w 1'1 !.tell as 

~] ( ,1.11 ) 

4.1.1.1 Inverse Kinematics 

Inv('rs(' kill('lllat les is dcfillpd c\s, gl1)[11 Ihe CariesULIl pOSlllOn:> of Ihe ::I!l'ilem al 

hal/d and Ih('II' lm/( derlva/ives, ddrnnine Ihe JOint Ills/o/'l(,/", 1.C., JOlllt angles, mir.' 

fi 1/ li (/ ('('d (' 1'111 /() 1/8. 

Sill( (' t.he Illot.ion of \'11<' axlc is planar, él (j-dillwllsiollal twi:o.t VCclOl is UIlIlC('('!'>-

:-'<11)', fOI é\ /'('([//('((/ :J-dilllcll:,ional t.wist. vector will suflice. If vedor te is replaccd hy 

.\ :1-dilll('llsional t wis! vcdor, t~., defilH'd in tCl'lllS of the étllgulal' "c1ocity component 

.tlJOIlt. k, 1/'" t.!1<' \'(']ocity alollg i, :i', élnd the ve!ocity alollg j,l;, of t.he system, t.hclI 

('«.(-1.5) (,élll b(' l'('writtell ill th(' 11l0ving coordinate frame i-j-k as indicated below, 

pro\'i<i<-d t.11t' Illatl'ix Tc is rcplaced by d corrcsponding 3 x 2 mat.rix T~., narnely, 

(4.12) 

1 1 [1 
Tc = -:)11 0 

- -1 
~ll 
-1 

(4.13) 
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Note that the second 10\\' of matrix T~, is Z('l'll, Ihl\:--, Ill\' \·,'I~H It\ 1U11I!1l'1I('1I1 .d\lll).', i 

for the 2-whce\ed syst ('Ill \'allislws, w hilll is ob"iol\:-- d 11(' 1 li 1 hl' P\II l' 1 (111111).',1 \)11'" 1 1.1111 h 

in the wheds. Thus, eq.(·l, 12) l('ads to <l systelll of t \\'0 "qUell IUlh III t \\" \III kll\l\\·I1'" 

Helice, vedor 8 1 is calculatecl as 

(1 1 1) 

whcre the 2 x 2 rnat,rix S is as fol1ow~: 

1 [ 1 S = -11 
2 -1 

-:1./1] 
-'2/1 

It is to he lIot,('d that, as poillled out ill SI('p fi of ~i:l '2, ... ill«· 'l'; ul l'q (LI:\) 

IS repres('nted in a lIloving, ('001 di Il ,1\\' fralll\' II\(' 1 Ill\(' d"1 i\dl 1\(' ul 'l';. \ dlllllll Ill' 

obtaincd by simply differplItiatillg, t Il(' ('1('1\1('111:-- uf '1';. ",it h \1· ... 111" 1 II) \ III\('. Tltl\ .... 

the explcsl>ioll for the rlcreleratioll ill\'Pr:o>io!l I~ d('li\'('c1 IIOIJl 1''1 (1 S). :--';U\\, JI IIIl' 

6-dimcnsional twist l'al<' \'celor te 01 \'q.(.t.~) 1:-. I('pltl('('d h\ d :\ dllllt·I\:-'IIJlI.ti \,., l'JI 

i~, and the 6 x 2 matrix Tc is l"('pl,,('('<1 \>\ d :l "' '2 111.1111\ 'l'; . 1\11'11 (''1 ( 1 :-;) l, 

rewri t l(,11 as 

wlwre 

Mor('ovcr, eq.(4.15) that hcl~ \w(,1l dei Î\'('d 1'10111 ('q.(.I.~) (.Iii .i1..,,, 1)(' (JI,I dllH·d 1,\, 

diffcrentiating eq.( 1, 12) a~ 

( 1. 1 Î ) 

wherc Wc is a 3 x 3 tl'étIlSforlllatiolllllatlix whi(h t.ak(·:-- il\lo d«'Ollltl \11<' Illuf.IOIIU! 

the coordinate frame i-j-k and is gl "('Il Ily 

wc=: [~ 
o 

o 1 -1/) 
o 

Now. the aetuaLe'c1 JOInt é\(C('kratiolli> e,UI 1)(' oIJ!.aill(·c\ IJy I('g"udlll)!, (''1 C'1.10) 

as an ovcrcletcrminccl sys\'e'lII of thrce' e·qllélt.ioll~ in two 111I"II{)Wll~ '1 1)(' h'il:-.t-Sqllil('(·:-' 
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approximation of this systPIll is givcn as 

when! T~.I == [(T~:fJ'(T~.)l-l(T~.f is thc MoorC'-Penrose gcnclalizcd inversc' of T~. 

(H ao and Mitra, uni). Matrix T~.I is lcadily c(llculatcd as 

, 1 1 [1 
Tc = "1. 17 -1 

o 
o 

-2/t] 
-'2/1 

aild for cOllflistent illput values of the compollC'nts of vedor i~., the solution for 

01 given hy eq.( 4.19) is exact, i.e., the least-squares errol' is zero. Alternative!y. 

the in<!pp<'IHlcnt joint acc<'lerations can a!so be found from t.he time derivativc 01 

('q.( 1.14). 

'J'o obtalll t!\(' indepencl<'llt actuated joint angles, () J, eq.(·1. \LI), which re!(ücs the 

CarU'sian vclocitie~ with joint rates can hc integratcd, with known initial conditions, 

IlSillg any st.andard illtC'gration sd)('nw. 

4.1.1.2 Dil'ect Kinematics 

As oppos('c! to inverse kinematics, direct kinclllatics is definecl as, ylven the 

IfId(fJt'71dclIl q('flfmh::rd ('oordillalcs of Ihe sy~tfm al /laud aud/heu'llme (lt:rll'alioes. 

ddc/'lIIil1(, litt' [J08t11O/18, vc!onl1('s and accelerallOlls of Ihe r'lul-elTeclol' of Ihe system. 

V<,!ocities and c\ccrlelatiol1s of the axle can be easily t'Olllputed from eqs.(4.12) 

,\tld (-Il!»), It'Slwct.i\'('ly. ln orcier to dct('rlllinc the configuration of the system. 

t!J(, ori('lIlatioll of th(' syst,t'Ill ill t1w illC'rtial fl'aIl 1C', i.e., the oriclItation hetween the 

Ill(}\'ing fl'mll(' alld t }lI' iner! ial frame, 1/', and the CartcsÎan coordinates of the system, 

.r " élnd ]je, 1\('('<1 to hl' ('Vetl uatcd. Fi l'st., 1/' is obtai ned by integrating the expression 

for ~', as giV(,1l by t.hl' fil'st scalar l'clat ion of eq.(4.12), namcly, 

(4.20) 

Theil, t Il<' Carlesian velocit.i('s, .i·e and Ye, of point C in the incl t.ial frame arc wl'ittcn 

as 

.i· e = - li sin 1/', (4.21 ) 
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Clearly, the scalar equations in C'q.(·I.:2I) an' t hl' llollholollOIlIIl' lOlIsI rdlllb of t !t., 

system which are nonintC'gra bl(, and t hU8, do not k.ld t 0 ,t\p,l'ht ,lie t'q 1\.11 \llll~ d~ 

functions of ~), .re and UC. lIow('wr, in dir<'ct dynil1l1ics, ~illl'l' 1 II<' <1('1 lIal('d joilll t ,\11':-' 

are specified, the exprcssion for li III ('q.(-1.21 ) is [('adily ohlailll'd IlSillp, ('q.(·I.I'2), 

il being the thir<l COll1pOlJ('Il~ of vC'clor t~,. AIso, angl<, ~/. is 1-110\\'11 fl'lllll l·q.( I.~ll) 

Hence, eq.(4.21) can !:~ lIlt.cgrat.{'d to oht.ain Ill<' positiolls of Ill<' sysll'lIl, i.I'., t.h(' 

Cartesian coordinates Xc and Yc, with the known init.ial posil ion Ill' t III' 1 l'III \'l'of 1 Il!' 

axle. 

4.1.2 Dynamic Modelling 

The dynamic IIlocleiling of tlH' 2-whc('led 1111'( h,lIli(',t1 it.' :-,1<'1lI is dUI\!' Ilitinp, 11\1' 

method of the NOe, whcreby the syst<'tll i8 a~s\llll<'d 1,0 (Ollitisl 01 11111'(' IIp,id lillb, d:-' 

clenotcd by the cncircled lIumbers of Fig. ,1.1. Nol(' thitt, si 11('(' 1 II<' dll)!,lIlal VI '101 il V (JI 

the whecls w, = w + O,i, for i = 1,2, haw' 1l01l;Wro horizonl ,d (,OIIlIHIIII'III~, 1.(' , ri, i. 1 III' 

dcfinitions of 3-dimensional reduccd t.wist v('clols al(' 1l0\' ~lIrri( i('111 lu d(·..,n ih(· 1 Ill' 

twis ts of t}l(' whf'els. '['hus, 1.0 d('\'('lop the' dy Il,1111 il' Il Hl( kl III 1 Ill' ~ -DO F ~- \\' hl'( ,11'.1 

mcchanical syst.em ill a tlllified Wcl)', the' (i-dillH'll~i()II,t\ ';P( tUI..,of 1\\,1..,1 dlld 1\\'1..,1 l'dl(' 

are llscd. 

The kincmatic collstrdillt ('(!Ilatiolls of 1,11(' ~-wh('('I(,d ~y..,I('111 III Ill(' l!lllli 01 

eq.(3.18) are dcrived as follows: First, tlw lIollholollOllli( klll('llldll< «(Jll .... I,I,IIII"- Ill' 

twe(,11 links 1 and 0 arc written \Ising UH' Illet 1 IOdol O,!!, v eI(':-,( 1 ilwel III ll:~.l cl"\ 

where the 3 x 6 mat ri x AlI is givclI by 

the 3 x3 cross-product tensor 'li bcillg associat.(·d wit.h VC'ctOI' k. '1'11('11, Uw (Ollitt.1 clillb 

due to the rcvolute coupling at poillt. 01 are WI it.t.en ar.; 



Ch.lIMr" DylllllniCS or NOllholOIlOlTllC Hohotic l\1echllnical SyhtCIJ1S (~IlRÏ\IS) ïU 

with th!' (; x fi killPllléltic constraint matrices A.13 élnd A 31 being givcn by 

[
-y 

and A:31 = 0 

w}wre Y is the cross-prodlJct tellsor éls~ociat('d with vector i. Kincrnatic constraint 

matrice!'> arisillg from t1J(' cOllplillgs betwcen links 2 and 0, dnel :3 and 2 arc obtaincel 

ill a sirnilar way to ('qs.(4.22) alld (4.2:l), respcct.ivcly. 'l'hus, the 18 x 18 matrix A, 

élPIH'aring ill pq.(:J.18), for the ~-w~l('ehl system, is as follows: 

r\)! 1 0 0 0 0 
-y 0 0 0 y 0 

A= 
0 -1 0 0 ( //2)Y 1 

(,1.24 ) 
0 0 r\)! 1 0 0 
0 0 -y 0 y 0 
0 0 0 -1 -(//2)'1" 1 

III ord('r 1.0 ohtaill the gCllcralized twist of the system al, hcllld as él 1 i BeaI' t.rallsfor-

lIIat.ion of t.h(' aet lIéltcd joint ratt's, 1.('., ('q.(~t 1!1), t.he twist of t.11(, ldt. ",hed (body 1) 

IS writ,t,<'11 as 

(4.25) 

TI\(' n'Iat.iolls for t.he other links arc similarly obtainC'd af> 

(4.26) 

alld t.l1<' lS-dilll<'lIsional wct.oI' t is giv<'11 by 

( 4.2ï) 

Now, upon sllbstitlltinn of the ('xprl'~SiOllS for the COll1pOllcnt.f> of vcctor t~, as in 

('q.(·1.12), illto ('q8.(4.2.1) alld (4.2G) leads t.o ail expression in the forrn of cq.(3.19) 

wh<'I'<' the 18 x 2 NOe matrix for the the systell1 is obtaillcd as 

i + IJk -l/k 
-rJ 0 

T= 
lJk i - 7Jk 

(4.28) 
0 

. 
-rJ 

l1 k -"k 
-(r/2)j -( r/2)j 
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Matrix T of cq. (" .28) is easily veri fi(·c1 ml t h<.' N 0(' of 111,11 ri" A \lI" l'q. ( \.:! 1) h~' 1101 i IIg 

that AT = O. 

The equations of motion in absence of dissipé\tioll ,I\t' dt'll\'(·d d~ 

I8[ = T ( 1 :.!!l) 

whcre the gcneralized matrix consistillg of t h(' (011 \'('11 i \,(' i I\t'Il i,l tt '11 ilS C ,li \( 1 1 lit' 

gencralized force due to gravit y accekratioll T, holh of (·q.(:L:!!I), \"lIlÏ~h. Nott' tlr,lI 

the dissipation, which would damp out t.he simulatioll ('1 lOIS, pl"ohtllils ul\(' IIUIII 

ass('ssing the accuracy of the simulcllioll algolithllls. lIt'lIcdol'lh, di""ip,lIiulI j ... lIt1t 

inc\uded in the 1l10dels. Thc 2 x 2 l\1atl"ix 1 cllid t.1l<' 2-dilll('II"itlll,t! \'t'('(1I1' T "It· .1'" 

follows: 

-1/
2 

] 
a + 11'}, • 

wi th ln being tht' mas~ of cacl! whc('l. The SCc\I,1I ~ TI ,tlld T 2 ,II (' II\(' "p pl i(·d 1 ui (1' I('~ .1 1 

the motors of the wheels. l\lol"<'o\'el", ill derivillp, (1)(' dyll<llli i( Illtld(·1 \)1" II\(' 2- wll(·('I(·( 1 

mechanical system, the mass of the axle (bcdy :q i~ llJlI~id(·I(·d 1I(·,f.!,II,L',IIJIt' (OIIIPdl(·d 

to the mass of t.he whcels. FurtlH'rmon" Il, hcl~ 1)('('11 ~1r()\\'11 ill ~!;\ 1 t !J,II t II<' <1('11\'('1\ 

dynamic mode) of the system al hand is th<, salll<' éI~ t II(' 011(' d('\'('lop('d lI~ill,f.!, 1\"111"" 

formulat.inn 

It is pointcd out herc that., whil<' d('v(·loplllp:' t.1\(' dyllallllt' ('(1'1.11 iOlls ur Il lOt 1011 

for the 2-whecl<,d system, eq.(4 .29), the derivat.ioll of IIlcltllX A, cl~ ill l'q.( ,1.:2,1), 1 ... 

reclundant. Thus, the evaluat.ion of t.hc kirl<'lIlat ie com,t.l'ailit. Illat 1 i( ( .... for a :i- wll('('\c'd 

2-DOF AGV and 3-00F AGVs arc ilOt. shoWIl ill ~i,1.2 2 dl](1 ~i,1 ,1.2 

4.1.3 Trajectory Planning 

For planaI' rigid-hody lIlotion, three cO(Jl'dillélt.e~ :'1JC'cifyill).', t.1\(~ OII<'IILd,1tJ1I alld 

position of the systenl are Ilecessary. II owevC'l' , dllC' to lIollholollOllli(' (OIlSt.lillllb 

at the whecl-floor interface, the syst.em at !tand posse:,~e:, ollly :2-1 HW. T!t II~, tilt' 

orientation and position of tll<' system cannol be SP('( ifi(~d .1111111 éLlII)', !.II<' 1 ('a~()I1~ 
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Fig. 4.2 A circulaI' lrajectory: Variations of (a) sweep angle, 1/J, alld Cartesian 

coorclinaü's, .I·e and '//e, with time, and (b) Yc vs. xc· 

lH'illg ('xplaill!~d ill §1.1.2. HCllce, propcl' trajcctol'y planning is rcquired for smooth 

lIIotio!l of t.he HYH!.C!lI, wit.houf. which the relations of cq.( 4.12) may be violatcd. 

4.1.3.1 A Circular Trajectory 

The 2-wh('('led syst.elll is con~idel'(,d to traverse a circular patlt of radius R in if 

S('(,ollCls. 'l'II(' SW('cp allgl(" 11', which is also the orientation of the moving coordinat<, 

fl'é\IIH' cltlach('d 10 the (,(,IIt.re of t.he axlc, point C, with respect to the illertial frame 

fixcd al. poillt. 0, i:-. a~:-'lIl1l('d t.o be ét firt.h-order polynomial f\lJldioll of time, such 

1 héll. il satisfies t.he Z('I'O ve!ocity and acœleration conditions at the starting (t = 0) 

allcl finishitl[!, point.s (l = t J), i.('. point P of Fig. 4.2(b). This is given as 

'Nt) = (Lo + aIt + ... + a5 l5 

subject Lü 1/J(0) = 0, ~(O) = 0, ~(O) = 0 

and V,(tJ) = 271", ~(tf) = 0, ~)(tJ) = 0 

( 4.30a) 

(4.30b) 

(4.30c) 

Usilll!, t.h{· six ('ondit.iolls at the t.wo ends, cqs.(4 30b) and (4.30c), the coefficients arc 

ao = 0.0 rad, al = 0.0 radis, 
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The Cartesian coordinates of the centre of the' axle for t1l<' 2-wllt't'I('<I systt'lIl ,Il'!' lIu\\ 

given as· 

J'c = R cos Il' and !JL' = Il sil1 1/' ( 1 :~ 1 ) 

The time derivatives of angle 1/' and tht' Cartesian c()ordilliltt'~ art' nbtaillt'd by dd 

ferentiating the exprcssions in eqs,(4.:30a) and (·1.:31), l'<'SI)('ctÎ\'('ly, wit.h I\'SIH't 1 lu 

time, which are then w,wd t,o spccify the r(,(!llirc'd twist.s éllld 1.\\·I~t r,\t<'s or tilt' ~y~\t>11l 

in the moving coordinate frame, as in the Icft-hand sid('s or eqs.(·1.12) ,lIId (1.1;») 

The variations of ~', .Tc and !Je wit.h tiIlH' for R = :l.0 III and 1 f = GO.O S,lit' !--hO\\ïl ill 

Fig. 4.2(a), wh('rcas 1.11(' circulaI' tlaj('ctory is showlI ill Fig .. 1.2(b). 

4.1.4 Inverse Kinematics and Dynamics Results 

For nUlllcrical purposes, the gcol1H'trical éllid ill<'rtidllhlltllll('tt"~ or t.llt' sy~tt'1I1 

are considercd as 

the radius of the whecls, /. = o.or) Ill, 

the length of the axle, 1 = 0.·1 III, 

the mass of the whcels, III == 2.D kg 

The requirecl joint rates and accc\eratiolls ta t.raV('1 ~(' t11<' cil <'Ilia!' path, ,,'> 

shawn in Fig. 4.2(b), arC' calculated fr01l1 cqs.(/l.ltl) <llId (/I.I!J), I('SIJ('( tiwly, wll<)'o(' 

plots are shown in Figs. 4.3(b) and (c)', resp<,ctively. TI\(' 1('ql\ir('<1 joillt. al1gl(·~, ,,'> 

shown in Fig. 4.3(a), to traVN::i(' the ::iall1C pat.h, are calclllatc'd IJy il1t.<,/~r"t.il1g t.!J(' 

expressions in cq.(4.14) with givcll illitial conditiol1s. Int.egratioll i~ P('I fOI'II\(·<I wit.11 

the help of the DIVPHK, éI sllbroutille of t.lw lMS!' packrig(' (lMSL, !!)!)O!», wl,i( I, 

solves first-Oldel' differential equatiol1s by the HlIIIg(·-l\ult.a !i/,hj(it.h 01 d('1 IIwt,hoc! fOI 

lNote that, duc to lack of spa('(' ,dong t.he ahscls,>ae and ordlll:ltf'~ (JI' 11lf' pl(Jf~ (JI' FI!!;'> tJ L 
and 4.3, 'Cart. coord', 'jt' and 'accn' ar(' substil.uted for words Cart.f'~JaIi ('()(jrdIII a t.f', JUlllf 
and acceleration, respectlvcly. Thci'>c ahhrcvlat IOns wdl hc u,>('d t.hruuj!,hIJllI 1 Il 1'> 1 llf'''l~ wl'('IH'v('r 

necessary. 
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Fig. 4.3 I~equired jOillt (a) angles, (b) rates, (c) accelerations and (d) torques. 

a. sp<,cified step size and tolerance. Note that the toleranœ has no units, because the 

DIVPH 1\ suhroutillc at.tcmpts to control the norm of the local errol' in the solutioll 

of a difr('J'('llt ial e«uation in such Cl way that tl](' global eITor is ploportional to tlw 

sj>(·cified t.okrance and the global errol' is defincd as 

max[jE(l )1, ... , lê(v)1] 

wl\t're ~(t) = [.1"(/) - .l't(I)J/max[l, l:r(i)IJ. The parameters Xt(i) and x(z) arc, re-

sp(·ctiVf'Jy, the tnH' and cOlllputeci solutions of a differcntial equatioll at the desired 

\'alt\(' 1 of th(' indc))(,lIdcnt variahle, c.g., time for the present stucly, for i == 1, ... , /1. 

The l't'sult.s of joillt illlg/('S arc obtained with a step size of 0.6 sand to!erancc of 

0.001, illld are showII ill Fig. 1.3(<1). The joint torques requircd to follow the circulaI' 

pat il .11'(' ohtttillcd fl'Ol11 the eqllations of motion of the system, <>'1.(4.29), and arc 
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Fig. 4.4 Simulation clTors in joint. aI\(l (~al !.c'siall sp.\I (':-'. 

shown in Fig. 4.3(d). It is apparent f'orm Figs. '1.:3(c) alld (d) LIt.1I tIlt' plub fUI jlliltl 

torquc:; ale piUpol'tional to the plot.s for joint é\c('('!('ratiolls whic It :-.1t()W t Il.11 t hl'J(' 1" 

no convective inertia term in the d,vnamic modd of tilt' Sy~«'111 al Italld. 

4.1.5' Simulation Results 

Simulation involves direct dynamics via intcgratioll 01 III<' dylldllli(' ('«(11;11 iOIl:-' 

of motion, For the 2-wheeled systclll uuder sl.udy inl.e'grill,ion of ('q.(,\.~!)) tndy 1)(' 

obtained in closed-form, but, in genera!, numerica.l integrat iOIl is (,:-'~C'lIl.i.d ill ~()Ivillg, 

nonlinear differential equatiolls, as dC'rivcd for AGYs in !i/\.~ dlld !r\.1. Tltlls," 

numerical integration schell1c, the sllbroutinc DIVPHK of 1,11<' IMS!' packilgc', i:-. IIsC'd 

in order to obtain the simulation resu!ts for tht' 2-whcd('d II\('Cbdllic ct! ~y~t.('1l1. 'l'III' 

use of thi~ subroutinc allowed the authol' to gc'\' .l(qllailltC'cI wiLlI L11<' ~O!t.\VillC' I,,' 

testing the effect of differcnt variable argulllents 01' UIC' pIO).!,I.!111 dlld ).!,Ivill,!!, :-.c ' \'('1 dl 

inputs for which the 1esults could be predict,('d illtllitiv(!ly. 

To obtain the first-order diffcrcntial equéltioJls, a~ l'C'quilccI IJy 1.11<' DIV!'B h. 
-

subroutine, from the second-order differcntial ('qllatiolls of 1Il0t.iOIl, c'CJ.(~.~!)) is \VI il.-

ten in the state-space form, namely, 

. x = Hx+ u 
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wbc~r(! the ~ X 4 matrix H and the 4-dirncnsional vectors x and u are given by 

and 

where (J/ = [0 1, 02]T is the vcetor of actuated joint angles 01 and O2, Moreover, 

once the joint rate~ ale ohtairl<'d from the integration of the dynamic model, the 

orientat.ion of the system and the position of the mélSS centre of the systcm can 

bc! readily availablc from t.he (lirect kincmatics. Simulation \Vas ca1'1'icd out with a 

stcp sizc of 0.6 sand tolcrance of 0.001. The corrcsponding simulation e1'1'01'S in the 

joint anglcs and joint rates, (} 1 and iJ /, dcfined as the diffcrence bctween the desirec! 

variahles and t.!l<' Vélli(tbks t.hat were obtaillcd after integratlOll of t.he equations of 

mot.ion, are showll in Fig. ~.,l(d), whereas the error~ in t.he swcep allgle '!/J, anc! in the 

CarU'sian coordinat,c's, .re élnd ]Jo arc showll ill Fig. 4.4(b). The higher errors in joint 

allglc's lIIay \)(' aUri hllt('d to the fad that the desired joint angles were calculated 

from t.ll<' illt.cgration of the l'e<)uired joint rates, whereas the rcquired joint rates, 

along wit.h t.he swecp angle' and the Cartesian coordinates, were ca\culatcd from the 

algc'braic ('X)1'C'SSiOIlS, eqs.('l.14), (4.30a) and (4.31), respcctively. It is well-knowll 

that. IllIllH'rical int.<.'gratioll accllll1ulates crrors. Thus, to calculate the joint angles, 

('nors aH' introduccd twice, during inverse kincmatics é~nd during simulation. On 

t.he' other hand, ('ITOrS in 0/, It', Xe and ]Je rcsult from simulation only. lIowever, 

t.he ('l'I"OI'S in both joint. étngle's and joint rates, the sweep angle and the Cartesian 
, 

coordinat.es (l\'(' very small. Bence, the c!eviation of thc simulated t.rajectory from 

t,)\(, act.ual circulcH pat.h is not noticeablc. 

4.2 A Two-Degree-of-Freedom (DOF) Automatic 
Guided Vehicle (AGV) 

The (\!Thitedure of a 3-wheeled 2-DOF AGY is shown in Fig. :3.3, whereas a 

Sdl<'lllé\tic diagl'am of the ,"ehiclc is shown in Fig. 4.5(a), that has been in use for 

difr{'n'nt purposes, for <'xampk, as a mobile platfonn for nursing robots (Borcnstein 

.\lld '1\01'(,11, 19~r)) and for artificial intelligence l'escarch (Iijima et al., 1981). A 
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CD 
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Fig. 4.5 (a) A schematic diagram of a 3-whC'('hl :2-DOI<' ACV, (h) Disêls:-'(·llll,ll·d 
vehicle. 

dynamic model of the 3-whecled 2-DOF AGV is oblaillcd I\('\c' Il:-.ill.!.!, 1.1)(' IIl1't 11l,,1 

of the NOe. It is assumed that the AGV undcl ~ttld'y (OllLlillS t.ltl C'C' wlw('b, ,\llcl 

a platform. Moreover, the platform is couplC'd hy 1'('\,01111.(' )l<Iil':-' tu thl' t.WO Il'dl 

wheels. Furthermore, only the two l'ear whcels arc dl'ivcn 01 élt tllat('cl hy in<!c')H'IHII'liI 

mot ors and, since, the vehicle has two degrcps of fr('cclolll, HO l'edlllldallt. acl,llitl i011 

is present. Thus, the angular displacelllcnts of the actuctt.C'd joillt.S (,êllI 1)(' (,oll~id('n'd 

as the independent joint variables. Fol' st.abilily )>11\ pOSC'~, cL (clSt.C'1 wh('c'I is aU clllll'd 

at the front of the pld,lform, as S!tOWII in Figs. :L:~ éllld II.:i(a), \Vllic II h 1'1('(' t.() ,tI,L,ill 

any orientation accOlding to the motion of t.he ve!llc!<'. A C o()ldillat.c' flalllc' of IIl1it 

vectors i, j and k is fixed at t.he ('cntroid C of tll<' »Icltfol'lll, élS ~1t()WII ill Fi/!,. ,) [")(d). 

and unit orthogonal vcctors e ll fi (z = 1,2,:J) are il ttadl<'d 1.0 t!w (('III.II'S of t.1)(' 

whecls, numbered 1,2 and 3. Here, a(,col'ding to the defillit.ioll of t!l<' arc hit.c·( 1.1111' 01 

the vehicle, el and f" fol' i = 1,2, al(' pal'cdl<'i tu i ctnd j, ('(':-'1)('( t.iveol,v. 

4.2.1 Velocity and Acceleration Analyses 

From Fig. 4..5 ( a), t1w angular velocit.y of t II(' v('hie le' c'<l1I :-.illlply 1)(' WI it.t.(·11 Il:-.ill).', 

the joint rates of the rlriving wheels and can 1)(' c'xprc'ss('d I)'y ('q (/\ :q. Ali C'<)llt1tioll 

relating the vclocity of the platform wit.h th(' ét('tuat.('d joillt. 1"11',, i" O!,t.dlllt'd l,y 
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writing eqs.(4.1) and (4.2) for the AGV as 

where 71 = r/l, while the radius of the whcels is 7', alld distall('('s 1 alld IL al'<' sltoWII 

in Fig. 4.5(a). These parameters dcfinc tlw arrilit<,cture of tI\(' vl'ilide. COlllbillill).!, 

eq.(4.3) for the 2-DOF AGY and eq.(4.33), tlw twist of t.he plat,fol'lll, i.e., t.he ('lld­

effector of the AGY, denoted by te is writtell as a lill<'ar \.1,llISfol'lIlat.ioll of t.l\(' 

independent joint rate vector () l, namdy, 

(·\.:~·I) 

where te and (} 1 are 6- and 2-dimensional vcctoni, resp<,cti v('ly, which a.J'(' d('fi 1I('cl ill 

eq.(4.6), Moreover, the 6 x 2 matrix Tc is givcll by 

[ k -k] 
Tc = 7] -ai - (//2)j ai - (l/2)j 

The same relations, cq.( 4.33), can also he obtaincd l'rom éI rdat.ioll g,iwlI in 1'<J.(·\.7). 

To find the twist rat~ of the platform, t.he twist relat.ioll oht.ail\('d ill ('q.(4.:J/I) 

is differentiated with respect to time, which is given by cq.( 1.8). 'l'l\(' l'<':mlt.allt. :1 i<. ~ 

matrix Tc for the 2-DOF AGY is given by 

Tc = 71
2(01 - O2 ) [(1/2)°1, _ ([J' (I/)? .] 2 1 -1. (lJ 

4.2.1.1 Inverse and Direct Kinematics 

Since the motion of the platform is planar, éI redllced a-dilllcnsiollél.l t.wist. V('C­

tOI', t~, as denned in eq. (4.13) of §4 .1.1.1, is i llvoked again fol' t.he ki 1I1'1IIrd.ic flllrdysis 

of the 3-wheeled 2-DOF AGY. TheIl, eq.(4.34) CéLn be writt.('11 in t.IJ(~ lIIovÎng, C(JOI'­

dinate frame i-j-k, as shown in eq.( 4.12), plOvidC'c! that rna1.l'ix Tc: i~ J(~pllLC('d IJy il 

corresponding 3x2 matrix T~, naTncly, 

T~. = 7] [ ~a 
-l/2 

-1 1 a 

-1/2 
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T~J(' aduated joint rates can now be obtained \Jy solving the ovcrcletcrmined system 

of equations l'csult,ing from cq.(4.34), namely, cq.(4.12) for the 2-DOF AGV. This is 

givcn by 
• 1 [ , 

81 = Tete ( 4.38) 

where T' cl is the well-known Moore-Penrose generalized inverse of matrix T~ and 

is clefined in eq.( 4.19). 

Acceleration inversion is performed hy substituting the 6-dimensional twist rate 

vedor ie with the 3-dimensional vector ie and the 6 x 2 matrix Ta is replaced by 

a :3 x 2 matrix Tc:. Three scalar equations rdating the twist rate of the platform 

and the actuated joint rates and accelel'ations are shown in eq.(4.15) where vectors 

i~ and B[ are the time derivatives of vectors t~ and 8[, respectively. Matrix T~ is 

glven as 

" Note that the expression for te of the 2-DOF AGY can also be ohtained from 

cq.(4.17), where the 3 x 3 transformation matrix Wc takes into account the mo­

tion of the i-j-k frame. The actuated joint '1ccelerations are then computed from 

eq.(4.19) for the ACY. 

To obtain the actuated joint angles 81, the expressions for the joint rates, 

cq.(4.38), arc intcgrated, with known initial conditions, using any standard integra­

tion schemc. Direct kinematics results may he obtained by following the outline 

givcn in §4.1.1.2. 

4.2.2 Dynamic Modelling 

It is assumcd that the system at hand consists of five rigid bodies, which are 

numbcrcd 1 to 5, as shown in Fig. 4.5(b). The 2-DOF AGY under study is a multi­

loop mechanical system, its vcctors of unactuated or dependent joint angles and rates 
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being defined a.s 

where 83, 84 and 03 , 04 are joint angles and their time l'ales of change of tlw frollt 

castel' wheel (body 3) and of the fork (body 1\) cOIIIH'cting t.he Cclst.(·r wh('(·1 ,\s~wl\lbl~' 

with the platform (body 5), rcspectively. The gClIt'l'ali:t,('d t.wi:-.t fOI t.llt' whol(' sYSil'1I1 

is obtained by writing the twists of t.ht' Cive indi\'iduaJ bodies as a lilll'ar 1 ra liS fol'l llil-

tion of aIl the joint rates. Now, the g('nerali,wd twist t, as in ('q.(:L:W), is <!(·!iIWt! a:, 

a 30-dimensional vector, namely, 

_ 7' TT 
t = [t1 , ••• , t 5 1 

where t l for i = 1, 2, t 3 and t., are givcn as 

(-LlO) 

[ 
(II' + 0,,) k ] 

ë - h~,i + (II' + (J,dk ;( dl 
(1,.11) 

where d3 represents the vector dir<'cLed flOlIl point ;\3 t.o tI\(· III,ISS c(·nt.\'(· of t.\\(' 

fork connecting the castel' whecl assemhly wit.h the platforlll élnd t" i:, lIot.lting bill 

the twist of the platform. The genel'aliwd twist rat.(' V('ct.or ('clll be obtain('c\ fl'OIII 

the time derivativc of t. Since the latter cont.ains depend(~lIt joint rat.!'s, a l'C'Iat.ioll 

between these, vector iJ D and the indepcnd('IIt. joillt. rat.e" iJ /, is l'('qllil't'd, wlti( Ir i:, 

obtained in §4.2.2.1. Moreovel', the dCl)('ndcllt. joint éuc('ler,lt,ions app('al' ill t\w t.ill)(, 

rate of the generalizcd twist. vcct.or. Thlls, an expl'<'ssion l'elat.ing t.Il<' c1(·p(·IICI(·IIt. joilll 

accelerations with the independent joint rat(·s and ét('ce!('J'clt.ioIIS is obt.aill<'d fl'{)11I t.\1<' 
. . .. 

time derivative of eq.(4.51). Once W'ctor OD is obtaill<'d in t.C'IIIlS of 0 1, alld Of) as fi 

.. . 
function of 01 and 01, the equations of motion can he J'('adily dt'liV<'d fl'olll (·q.(:J.:l!I) 

using either the scheme given in §3.3 or §3.5, néllIIely, 

.. .. 
1(0)8/ = C(O,Od8/ + T (1.1:l) 

where 1 and C are 2 x 2 gencl'alized incrt.ia llIal.l'ix and lIIéltl'i x of cOllvc·cti VI' i 11('1 tirl 

terms, respectively. The 2-dirnensional vcctor T is givcn as 
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with T} and T2 l)('ing t.lw applied motor tOl'quC''l at tlle Icft and right actuatcd whecls. 

respectively. Note that the gC'l1cralized forc(' due ta gravit y élccelcl'atioll VélllislJ('s 

and, in the ahs('nc<~ of dissipation, vC'ctor 6 of eq.(3.29) docs Ilot appear. An cxplicit 

derivatioll of the ('quatiolls of motion of the 2-DOF AGY based on the rnethoclology 

giv<'n in §:1.3 is attcmptC'd \Ising MACSYMA (1983), a symbolic manipulation pack­

age'. The symbolic caiculations result in cumbenmme expressions for the clements 01 

t.he 2 x 2 lTléltrices 1 and C of eq.( 4.42). The two simplcst expressiolls among ail the 

('I('rnents of matrices 1 and C, one from each matIix, are showl1 ill §A.5. The CU111-

hersoITw expressions are due 1.0 the system architecture and 1.0 the expressiol1s for 

llIiürin's T (wd T, ('qs.(3.39) and (3.40), respectivc1y. Thus, an efficient algorithmic 

approilch is Ilcccssary ta gCIH'rate a dynarnic model of the system, which has becn 

<lone \ISing th~ methodology outlincd in §3.5. 

4.2.2.1 A Relation between the Actuated and Unactuated Joint Rates 

In orde'1' t.o find a relation bctween the actuated and unactuated joint rates, 

eq.(:3.31) for tlw 3-whecled '2-DOF AGY is de5ircd. Thus, matrix J is obtained from 

the indepcnd('l1t loops of the multi-Ioop system. As shawn in §3.4.1, the system 

contains two independent. loops. Since pure rolling of the whccls is considercd the 

velocit.i('s of the contact points of the whecls with the floor are zero. Hencc, using 

t.he l('ft loo)l BRIPLFB of Fig. 3.4(d), the velocity of point 0 3 , V3, is derived from 

the vdocity of point 0 1 , narncly, 

. .. 
V3 = VI + 'I/'k x a} + Cl/J + 04)k x a3 ( 4.43) 

wherc al and a3 are the vcctors from O} ta A3 and A3 ta 0 3 , respectively. A vector 

relat.ion similar to eq.( 4.43) can also be obtained using the right. loop of Fig. 3.4( dl, 

i.e., loop B U2 P LF'B. Ta this end, six scalar constraints arc obtained from the two 

loo!> cquélt.ions t.hat can he writtcn in the fonll of eq.(3.34), i.e., 

JO = 0 ( 4.44) 
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where the 6 x 5 matI'ix J and t.hC' 5-dimcllsional v('dor 8 an' p,i\'t'u Ill·lo\\': 

J = [~ 0 -rf3 - de3 -(l/2)j + (a + h)i - de.\] 
1'J -1'f3 - de3 {l/2)j + (a + b)i - de.1 

(1 1 r») 

and 

8= [:1 1 
. ' 

while () is given by 
./ 

J,fI' 8 == [O~, O'h 

in which ()3, (}4 and '!/J, as shown in Fig. 4.5(a), arc dl'fined as t.!\(' joillt. augl(· of t Ill' 

caster wheel about an axis parallel to veetor e;\, t.hc joint. élllgl(· of t.11<' fork aholl\' ,III 

axis para11el to k, and the angle of rot.ation of t.he plat.forlll ahollt. k, r(·sIH·('\.iwly 

Moreover, the 2-dimensional unit vectors e3 and fa arc giV<'1I as 

( I..\()) 

where s(·) and c(.) denote the sine and the eosiue of allgl(' (.), \'(·sIH·('t.iV!'ly. Fil\'­

thermore, since ail vectors in eq.( 4.45) have two nonzc'ro COlllp()J\(,Ilt.S, t lit' six S(',tlill 

constraints of eq.(4A4) are rcdllccd to only 1'0111'. lIowc'VC'l', expli< it. t'xpJ('SSiOIIS 01 

eq.( 4.45) show that only three of thesc constl aints are illdl'pt·II<I(·1I1. 'l'blls, t.11t· 

nullspace of J of eq.(4.44) is of dimension two, whieh is lIot.hing hlll. 1.11<' DOl" (II 

the AGV under study. The indcpendcnt eomtrélillts arc' now ('XPI (·s'i(·d in t.JJ(' 101111 

of eq.(3.36) as 

where the 3 x 2 matrix JI and the:] x a matrix J[) éue giV('1l hy 

[ 

l' 80" 
and J[) = -1' cO" 

-1' COol 

-ri cO,. 
-d ..,04 

-ri ..,04 

a + Il - rl d)'I] 
-1/'2 - d ,<;0 .. 
1/'2 - fi .... 0 .. 

('LH) 

To test the contr~Jlability of the system, i,e., t.!1<' invcrlibilit.y of lII,d.1 ix .1/), 1.I1!' 

determinant of J D is calculated as -ldl', whieh meallS thal. t,11(' d('I)('lId('lIt Villiill,I(':" 

,/ . 
vector () , can always be calculated in tel'ms of () /, llélTlH'ly, 

,/ , 

(J = U(J/ ('l.'l!)) 
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t}1(' :J x 2 mat.rix U Iwing givcn by 

[ 

cO,../2 - (a + b)sO,../1 
U = r .<;0,../(2d) + 7/[( (l + b)r04/ d - 1] 

7/ 

c04/2+(a+b)sO .. /1 ] 
r sO .. /(2d) -1J[(a + b)cO,tld + 1] 

-71 

8:~ 

Alt(>rnativ('ly, t.h)(~(~ illdepC'lldent. cOllstraints lelating thf' indepcndent and t.he de­

pClldcllt variables, pq.(4.1ï), can abo be oht.ain('d by using different indcpendent 

loo{>s, e.g., Il RI PLFIJ and BRI P R2 B of Fig. 3A(a). Note that the constraints 

étl'isillg from tJ}(' loop B RI P H2 13 }cad to an expl ession for t.he angular vclocity of the 

platform in tenns of the illdependC'llt joint ratC's, eq.(4.3). Now, since the angular 
. ./ 

vplocit.y of tlw V(>hicle, '1/-', the third compol1C'nt. of vector () , is available [rom the 

killcmatic analysis of the sy~tC'1I1, lIamely, eq.p.12) for the AGV, the calculalioll of 

li) is n~dulldant. MOIC'OVC'I, 10 obtain the dcpcndent. joint. accelcrations, 0 D, which 

élrc lIeC(>ssary fol' the dynamic analysis, eq.(4.1ï) nceds to be differcntiated with re­

SP(>('t 1.0 time. Fmth('rll1orp, since the [rame in which the matrices JI and J f) are 

rcprcscnt('d is not stationary, the t.ime derivative of eq.( 4.48) will no longer lead to a 

determin('d set of ('quat.ions, and hellre, 0 D must be fOllllcl [rom an ovcrdetenninecl 

syst(>m of ('qUittions lIsing the MOOic-Penrose generalized inverse of JD. To avoid 

redundant and gelH'lùlized illversp cdlculat.ions, the expression for lk, c1crived in the 

kilH'mat.ic analysis, is substit.uted in the loop equations, eq.( 4.44)~ the two vector 

C'qllat.ions from loops B RI P LF Band B R2P LF B becoming identical. Thus, only 

two indC'pcIHIC'Ilt. scalar ('<[uations arc obtainccl thüt relate the dcpcndcnt and indc­

IH>ndent joint rat.es. The t.wo independent scaldI cOllstraints which result cither from 

t.h(> first or second row of cq.(4.44), where the expression for 1/J is substituted from 

('q.('1.~J'1), are giV<'n by 

w h('("(' JI arc J D arc now rcduced t.o 

JI = [(r/2)j + 1J(a + b)i - d71e3 (1'/2)j + 7]( a + b)i + d71e3] 

JD = [-rf3 - de3] 

(4.51 ) 

(4.52a) 

(4.52b) 

Sincc tht' vcctors in c<[.( 4.52a) are 2-dimensional, JI and J D are 2 x 2 matrices. The 

1-dimellsional v('dors th and iJ D are defined in eqs.( 4.6) and (4.39)~ respectively. 
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Now, eq.(4.51) again confirms t.hat tlH' DOF of Iht' syslC'11I al hand i~ 1\\'0 .\nd 111t, 

2 x 2 matrix J D of eq.( 4.52b) is never si ngula l' l)I'ca US(' 111(' 1 \\'0 \'l'cl 01 ~ (',1 il nd fi ,Ill' 

orthogonal, and hence, lincarly indc[lell<!('III. 

4.3 Numerical Results for the AGV 

Numerical results for the 3-whe('led 2-1)010' AGY (\1(' oht,lil\('t! h,I~('d 011 II\(' 

methodology adopted in §4.2.1 and §,1.2.2. Sinn' t.he' AC:V IIndl'r si IId,\' IU)i'>SI'i'>i'>I"'; 

2-DOF, proper path planning is nccessary for t.1H' SIIlOOt.1t IllOtion or III!' vl,ltirh' 1111 

the fioor. This is donc bclow. 

4.3.1 Trajectory Planning 

The performance of t.he vehicle is tcst.('d while t.rclVl'l~illg 11 (ilclliar palh cllld 

two straight paths connected by a smooth c\II've. 'l'II<' 1'01111('(' pat.1t is p,l'III'l'at l'd i Il 

§4.1.3.1 and the latter is planned below. 

4.3.1.1 Two Straight Paths Connected by a Smooth Curve 

In the indllstrial application of ACVs, for example, in product.ioll shops wlwl'l' 

AGVs carry raw materials, 1.0018 and other eqllipmcnt, il. is 11('('('ssal y 1.0 switdl lal)(,~ 

while avoiding obstclcles. Thlls, [rom a prclct.ical point of view ,L pat.\l cOII:--ist.illg, (JI 

two straight lines lOIUlectcd by a strlooth clIl've is pl a III l<'d , riS !>howlI i Il Fil!,. tUI. 

For a smooth operation of the vehicle, the following conditions ill'(' illl(>o!>('d 011 1 WIJ 

straight segments of the path, namely, segrrH'nts fJuPI alld /J'l/J,\: For t.IlC' s('I!,IIwlll 

at t = 0 : 
. .. 

'IjJ = 0, lP = 0, 'I/J = 0; 

Yc = Yo, Yc = 0, Ye = O. 

at t = II : 
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Obstacle V:z 

Fig. 4.6 Two st raight lilles cOl1ncct.ed by a smoot.h cmve. 

. .. 
IP = 0, ~,= 0, ~,= 0; ;L'r = .1'0, Xc = 0, j\ = 0; 

Yc = !lh Yc = iJ., iic = O. (tl.53b) 

where l denotes time and the time-dependent variables '1/', Xe and Ye are shown in 

Fig. 4.6. Mo\'('ov<,r, il, ,1'0, Yo, !h, YI are IIser-sp<,cified constant.s. The ot.her straight 

lil\(" s<'glllC'tll. IJ'}.J\, is cOllsidc\'ed as t.he suctes!otive minol Illlagc of the segmcnt 

I~)PI c1bout. lillPS 11 1 //1 and VI \'1 or ViV2 and flt!12' Furthcrmorc, a slfl1llar set or 

colldit.ions givm in eq:-..(·1.5:la) and (4.5:lb) can he obtained for t.he segment P2 P3' In 

<'qs. ('1.5:la) alld (·1.5:\h), condit.ions on 1/, and ,re are very simple and no calculations 

,U'(' I('<!uir<,<! fo\' pat.h planlling, while a cycloidal mot.ion (Rothbart, 19[;6; Chen, 1982) 

is mwd to satisfy t.he conditions on Ye along POp\. Now, two straight lines that arc 

gCl\('rat.ed lw!.w('('n scgmcnts Po PI and P2 P3 arc conneded by a polynomial which 

s,üisfi('s t.1w conditions givcll bclow: 

at !Je = YI : 1 a " a .1'''/ = a ,re = Xl, Xe = , Xc = , e 

at !Je = Y2 : 1 0 X" = 0 X", = 0 :rc = X2, Xc = 'c 'e (4.54) 

where (.)' d('not<,s d(·)/dYe and :l'}, :Z'2, YI and Y2 are user-specified constants. A 

s(,\,(,lIth-ordcl' polynomial .re :::: f(Ye) is uscd to satisfy the conditions given 111 

('q.('I.M) wh(']'(' .'Je of f(yc) is calculated bascd on the assumptio\1 that Yc = YI, 

wh1d\ n'mains constant along segment PI P2, and hence, the value Ye is nothing but 

(t - 'dÛt for' :::; il., t'l b('ing the' travelling time along segment Pt P2' 
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Fig. 4.7 Two strai&ht paths cOIlIl('dC'd by éI S.~llOOt.!t (1IIV(': V.lIiatioll or (.I) Il .. l, 

and Yc vs. time, (b) l/J, .Tc and lic vs. tinH', (c) 1/', .i\. and fi, v:'. t.illl(', ilnd (d) fi, v:, 

·t'c· 

The variations of ~', .l'c, Yc and thcir t.im(' dC'livat.iw:, il\(' showll in FI)1,. ,\ ï lOI 

the total time of 60.0 s with il = \.5.0 S, 12 = ·l!) 0 S, .l'() = .1'1 = :! :t~ III, .1' l. = -~ :S~ 

m, Yo = -2.75 m, YI = -1.85 Ill, Y'2 = l.ï!) III and .iiI = O.I:! 111/ ..... 'S' .IIICI 'E' (JI 

Fig. 4.7(d) denote the stal-t point. Po alld t,}l(' ('IHI point /)j or Fig .I.(i, 1'(,:-'1)('( tiv(·ly 

Note that during the travc! of the cllrvcd S('glll<'lIt /)1/)2 of Fig .. \ (i, !.II(' éllI)!;III.11 

speed of the AGV is spccified according to t11C' tlllH' ral(' of ('h.III!!,!' (JI' tll<' (1IIv"tlll!' 

Moreover, the l'pquired vclocity of the ma~s centre or 1.11(' AC:V i:, 1,111' vdocity lllr11 

is tangential to the curve joining PI and P2' Sinu' tll<' ACV PW;S(':'<';('S only 2 DOl" 

the specification of the reqllired twist f>at i~fie~ t be 1 ('I.t!, iOIl:' gi V( 'II I)y ('1(. ( ~ . 12) roI' 1,/11' 
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'2-DOF A(:V anrl, h('ncc, the )('ast-squarcs approximation 8[ of the actllat.ed joint 

réltC!H of eq.(/t.~JR) is the exact sO)l\tion, i.e., HH' )('ast-sqllarcs error is z('ro. 

4.3.2 Numerical Example 

For n1ll1)('rical reslllt8, the gcometrical parameters of the vehiclc are considercd 

as 

the radi LIS of the whecls, 

t.he )c'ngth of tlw ax)(', 

l' = 0.0.5 Hl, 

1 = 0.'1 m, 

the' distance' from the e<lge At A2 to point C, a = 0.101 m, 

the' distanc(' \V'tW(,CIl the points C and A3' 

the Iwight of t.he connccting Iink, 

the offsC't. of tl)(' castel' whecl, 

Il = 0.20:l 111, 

11=0.1111, 

cl = 0.025 m. 

'l'II<' illc>rtial paramct,ers are considered as: 

the mass of each wheel, 

t.he mass of t.he platform, 

111", = 2.0 kg, 

111 = 20.0 kg. 

'l'he inel't.ia t.ensor for caeh whcel in the el-fl-k frame, for i = 1,2,3, is given by 

[

0.0025 
Il = 0 

o 
° 0.00125 

° 
~ 1 kgm

2 

0.00125 

VOl' symbolie manipulat.ion, as in §A.5, the platfol'Ill is assllmed to be a triangulaI' 

plat.('. I1owevcr, an c\~sl1rnptioll whcre the platform is in the fo1'111 of a box is more 

pradical b('cause an AGV n('('ds to carry aIl on-board cOlIlputer, batt.eries for the 

power supply and ot h<'r ncccssary equipmellt. A simi)ar architecture is used in 

YAMABICO;J.I (lijilllé\ et al., }981), for which tllP dimensions of the platform arc 

0.:l5 III x 0.:l5 III x 0.55 m. P"ing the sa me dimensions and considcring the mass 

of the' platfO\'\11 as 20.0 kg, the illcrtia matnx of the p)atform (body .5) in the i-j-k 
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Fig. 4.8 Requin'cl joint allgle~ a 11<1 rat<'s 10 I,r<lV('1 ~(' il < in IIIM 1.1 d i<'( LOI Y .JOIIr! 

(a) angles and (b) rat('s of tire whee\s, (C') angle' éllld (<1) lill<' ()f t.\J(' ('('vollll(' l'dil 111;11 

couples tht' fork of tire castel' wlwc\ wit.h t.lH' plctlJol'Ill. 

franl(' is caklllat<>d as 

[

0.708:3 

If; = ° 
° 

o 
0.70S:J 

o 

Compared to the mass of the \\'11('('ls éllld the IJI<lt/'OIII1, 1 II<' IlIrI~'" {JI t.lf(' I(JI k (I)(Hly ,1) 

is assllmed ncgligiblc. 

4.3.3 Inverse Kinematics and Dynamics Rcsults 

The joint angles and thcir lime rates of change reql1iJ('d 10 I.lclv(·I~(· il (i1<'III,1l 

path, as shown in Fig. 4.2, are cakulal.('d from illv('r~(' killemali< ... c1~giv(·Jlill~~1.~.1 1, 
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Fig. 4.9 Reqllired actuated joint (a) accelel'alions aIld (b) torques to t.ra\'crse a 
cil cillaI' t.raj(·dory. 

,lIId plot.tcd ill Fig. 4.8. The actllated and unacluated joint. allgles arc obtained by 

illt.!'grat.illg ('q.(4.38) togdher with the expression for BD, which is obtaillcd from 

eq.(L11), llsing t.he DIVrRK subroutine of the IMSL packagc. A stcp sizc of 0.:3 s 

alld t.ol(·(,étllcc of 0.001 is llsed for intC'gratioll purposcs. A differcnt step size than the 

011(' IIsed for t.}\(' 2-wlweled I11cchanical system is choscn to obtaill a faster convcrgence 

1 ct (,f' of the sol ut.ioIls of th<, (li rf('rclI tial equations. Note thal, to traverse a ci l'culaI' 

l>ctt.h, allgle 0, sholild be equal 1,0 the angle corresponding to the curvature of the' 

circ!(', which is const.ant. The stcady-state value of angle 0", as in Fig. 11.8( c), is 

t.1H' allgl(' at whirh the castel' whcel asscrnbly of the velticle shoulcl be orientcd. The 

jUlllp in Fig. '1.8(c) is duc t.o z('ro initial condit.ion for angle 0". 011 the oUler hand, 

if t.h<, ind,ial v,due of 0" is calculat.ed bascd on the CUl'vature of the path, then thi5 

vahJ(' do('s ilOt. vary oyel' t.he t.lélvelling pcriod of the vehicIc, i.e., tbere is no jump. 

MOJ'('owr, for a const.ant 0,,, 0" shonld he zcro, which is not the case in Fig. 1.8( cl). 

'l'l\(, ('l'l'or in iJ,,, which is cl. funct.ion of 8/, 0" and the geornelrical parameters of the 

Vdllc!P, is maillly duc to the intcgration errors in 0". The accuracy of 0" as weil 

dS 0" cali 1)(' in('J'cé\s('d by pl'o"iding a smallel' tolelance ta the integration scherne. 

Th(' <\rt.uat<'d joint a('('('lc>rations and t.he concspondillg joint torques are shawn in 

Fig. ,Ul. A (,()\1Ipal'ison of Figs. ·1.9(a) and (b) shows that the plots of the latter 
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Fig. 4.10 Reqnircd joint angles and rates to travel':'(> Cl patlt (ollsi:,t.illg, or I.wo 

straight lines connectcd by a smooth cmve: .Joint. (a) ClJlglc>S illld (1)) I.JI,(·S 01 t II(' 
wheels, (c) angle and (cl) rate of the rC'volllt.c pair tha,t. (,oll]>l('s t11<' rOI k of t.Il<' (.10.,1<'1 
wheel with the plat.form. 

ale not proportion al to those of the former, wlrich is ,1 ('I('dl illC!r< éd iOIl of 1,11<' ('11(,( t 

of the convective inertia terms in thc dynamic Illodcl or t.Il<' V<'lri('ll'. MOI('OV('I, li 

small discrcpancy in the smoothness of the plot.s of tll<' il< tUett(·cI joillt I.OI'<!1I<':', cl:' III 

Fig. 4.9(b), is due to the variables 0" and 04, él!'. evidellc('c1 III FIg,:,. Il)0:)((') illid (<1) 

Inversc kinematics and dynarn ics 1'<>8111 t.s for the velr icl(· IIlovi IIP; i Il il }Jed,11 ({JII 

sisting of two straight lines connected by il CIII ve, as showll ill Fig..,. ~ (j rliid ~. 7, d)(' 

shown in Fig. 4.10. To obtain the joint angles, the stC'J> :'IZ(! .llld (,ol('/rtll«' al<' 1."\.;('11 

as 0.3 sand 10-5 for the DIVPRK subrolltine. I1eJ'(~, é1 ~lfIalJc.r tol('I'iIIlU' I~ plCJv/d(·d 

to enhance the accuracy. The rcql1ired act.uat<'d joint él('('(·I('lél1.i()lI~ ,Illd t(Jlqllf'~ .11(' 
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Fig. 4.11 Required actua.ted joint (a) accelerations and (b) torques to traverse a 
path consisting of two straight lines connected by a smooth curve. 

plottcd in Fig. 4.11. 

4.3.4 Simulation Results 

Simulation leading to direct dynamics involves the integration of the equations 

of motion, eq.( 4.42). The first.-r:>rder ùifferential equations obtained from the state­

spacc representation of eq.( 4.42) are solved using the DIVPRK subroutine of the 

IMSL pa.ckage. The statc-space form of the equations of motion of the AGV is given 

by 

x=Hx+u ( 4.55) 

wherc the 4 x 4 matrix H and the 4-dirnensional vector u are given by 

Vedor x == [0 1 , O2 , 01, O2 ]1' is the 4-dimensional state vector. Simulation results 

are obtaincd from the integration of eq.( 4.55) élnd direct kinematics. The integration 

step and tolcrance are taken as 0.3 sand 0.001, l'espcctively. When the vehicle 

traverses a <'Îrculal' path, simulation e1'1'ors in joint and Cartesian spaccs are plotted 

in Figs. 4.12(a)-(c). Sillet' the simulation errors in both spaces eue very small, the 

simulatcd t.rajectory in Fig. 4.12( d) cannot br distinguished from the planned circulaI' 
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Fig. 4.12 Simulation errors while travel'sing a circulaI' t.raje'ct.ory. 

path. On the other hand, when the vchicle traverses a path (,ollsist.illg or t.wo ~t.riliJ.!,ht. 

lines connected by a curve, the simulat.ioll errors ill t.he' adllat.e'd joillt. (lIIJ.!,ks, joillt 

rates and in the Cartesian va.riables 'l/J, Xc and lie arc S!tOWIl ill Fig. 'LI :!. Th .. ~t.('p 

size and tolerance for the DIVPRK l'Outinc are tal·am as O.:! sand 1O-.'i, l(·s()(·ct.iV<'ly, 

Referring to Fig. 4.13( d), the simulated trajectory of t.1l(! two st.raight. Iilles COIIIH'ct.(·cI 

by a curve cannot be dist.inguished [rom the original pat.h due t.o slIlall Silllllbd,IOII 

errors . 
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Fig. 4.13 Simulation en'ors whilc traversing a path consisting of two straight lines 
conl1cctcd by a smooth curve. 

4.4 Three-DOF Automatic Guided Vehicles 

An automatic guided vehicle with omnidireciional wheels which allow a 3-

DOF motioll of the vehic1e (Muir and Neuman, 1987a) is shown in Fig. 4.14(a). 

An omnidirectional whcel consisting of a wheel hub and several roller;:; mounted on 

it is shown iu Figs. 1.4(a) and (b). A general architecture of ? 3-DOF AGV, as 

shown in Fig. 4.l'!(a), is considcrcd for analysis pUl'poses. The vehicle is assumed 

to consist of 1\ ol1l1lidircctional whccls, of which Il are actuated, and a platform. 

The platform i8 cou pied by rcvolute pairs to ail the whecl hubs. To obtain a 3-

DOl" mot.ion of the vcbide, at least threc whcels must be driven or actuated, i,e., 
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e). -

roller 

(a) 

• 

• 
• r~ 

!) 1 

(b) 

Fig. 4.14 'A schematic diagram of (a) a À-wl}('elcd :l-DOF ACV ,llIcl (1)) éllI Ollllli­
directional wheel. 

Il- 2: 3. If more than three wheels are actuat.cd, the sysLcm \)('('()lIlC'S J'(·dulldilllt.ly 

actuated. Dynamic models of redundantly acLuated AGVs éll'<' d(·veloJ>(·d bél~(·d 011 

the methodology given in §3.6. The nttmber or l'ollen; ill a wlj('('1 hllb is SIICIt t.h,,1 

the vehicle moves smoothly. Mor('oV<'r, ollly OllC l'olier al, él !.illl(· is ill c'()J)!.ad. wiLlI 

the fIoor. Furthcrmore, for analysis purpOSf'S, a coordilla!.(' fralll<' of ullit. V('( t.OI'S i, j 

and k is fixed at the centroid C of th(' platfol'llI, a,~ showlI ill Fig. tl.l/l(a). A('('Oldill,l!, 

to Fig. 4.14(b), orthogonal unit vecl.ors el, fi élnd e:, r: (1 = 1,'" ,À) are al.t.acll!'c1 

to the mass centre Ol of the ith whcel huI> alld to t.lte 1Il.-ISS cclI!.r(· 0: of t.Jl<' 1'01\('1 

mounted on the ith wheel and in contact with the floor, l'cspf'ctively. Not.e t.hat. t.!1<' 

roller mounted on the zth whœl and in contact. \Vltlt the f1()())' is LCIIIH'd herc' t11<' ,1.11 

active roller. AIso, vector el is Oliellted a.1, éLIt étllg e (il with )'c~p('( t Lo t11<' ulli!. V(·(·t.OI 

i of the vehicle, as indicated in Fig. 4.lt1(a), and e; i~ OI'iclIled al, 0'1 with respect. I,{J 

e" which is shown in Figs. 1.4(b) étnd 4.14 . 
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4.4.1 Velocity and Acceleration Analyses 

Rcferring to Figs. 4.14(a) and (b), the vclocity of the mass centre of the ith 

whœl, v" can be derivcd from the vdocity of the mass centre C of the platform, c, 

(4.56) 

wlwre w is the angular velocity of the platform and dl is the vector directed from 

point C to point 0,. The velocity of point 0, can also be determined from the 

spinning of the rollers and wheel hubs, i.e., 

( 4.57) 

wherc r and TT are the radii of the wheel hubs and rollers, l'espectively. The param­

cters 0, and 0: are the joint rates of the ith wheel hub, 01' wheel, for brevity, and the 

ith active l'olIer about the axes parallel to e, and e:, respectively. Using eqs.(4.56) 

and (4.57), an cquation l'elating the joint rates of the ith wheel and the ith active 

rol1el' with t.he twist of the plat.form is obtained as 

( 4.58) 

whel'e the 3 x 2 mat.rix 8, and the 3 x 6 matrix rare given by 

( 4.59) 

and D, is the 3 x 3 cross-product tensor associated \Vith vedor dl' The 2- and 

6-dimensional vectol's, 0, and te, respectively, are defined as 

( 4.60) 

Not.e t.hat, for planaI' motion of the platfoI'm, a 3-dimensional twist vecto!' of the 

plat.forlll, as defined in eq.(·L13), is sufficient. to describe the motion. Also, vectors 

e., e;, fIl f:, in the i-j-k frame can he written as 

e, = [c,8., sj3" of, e; = [qll S'l' OlT 

f, = [-s,8., c,8., of, f; = [-S,,, Cf" OlT 

( 4.61a) 

(4.61b) 
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where li = Q, + I~,. Upon subst.it.ut.ion of <'qs.(·I.Gla) alld (1 (ilb) illln <'<1.( l.r)~) 

and introduction of the 3-di mensionôl twist v('cl 01' t~ of 1 hl' pla 1 forlll, a 1\ <''X 11I'('ssioll 

relating 6, with t~ is dcrived, namely, 

(.I.(;~) 

where 8, and r of eq.(4.59) arc rcdefincd as the:2 x:2 and t.hl':2 x :llllè\t.rin's display<'d 

below: 

r.;,. [ sf3, 
0, = r -cf3, and o ~] 

with p = rr/r and d, being the magnitude of t.he projcdioll of Vl'C!.OI' d, Oll t.ll<' pIeU\(' 

of the platform. Furthermore, angle 8, appC'ôring ill <'Cl.( '\.():n Îs showll in Fi,!!, .. 1.\ 'I(a) 

Vector d, in the i-j-k frame can \)(' expl'csscd as 

( ·1.(;,1 ) 

where h is the perpendicular distance from t.he mass ccnt.l'<' 01 t.ll<' !I,I! wl\('('I, 1'111111 

0" to the plane of the platform containing point C. ft is poilllPd Ollt. he'\'(' t.I!,!I. t.!lI' 

parameter h does not appear in the kinemat.ic alld dynaTllÏ<' ,IIl<llys('s or 1.11(' :~-J)OI·' 

AGVs. 

Since eq.( 4.62) is obtained by expressi ng ail t.he vect.OI'S and Illall'i('('s of <'Cf. (~.!iX) 

in the moving i-j-k frame, the timc derivati ves of t.he dCIIl<'lIt.S of 0, H.lId r of ('q. ('I.(;:l) 
. . 

do not lead to E>, and r. Thus, for acccleratioll analysis, 1I1(' ('xpIPssion ill 1'<j.(/I.!iX) 

is differentiated with respect t.o t.imc, i.e., 

.. .. . 
B,O, + 0,6, = rte + rte 

Equation (4.65) is now rewrit.ten using t.he 3-dilllcllsiollal V<'cl.OI s of twist. i1l1d t.wi~t 

rate of the platform, as defined in cqs.(4.13) and (1.16), l'cs[H,ct.iwly, lIilllH'ly, 

( 1. (i(i ) 

Using the definitions given in eqs.(4.61a) and (1Jilb), the ~ ;< 2 llIéll,lix 0, alld t.IH' 

2 x 3 matrix t of eq.(4.66) are given as 

. . [cf3, 
0, = r'IjJ sf3, and 

o 
o ~] (~.(j7) 
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(:iv('n cqs.(4.G2) and (4.66), the inverse and direct kinematics of '\-whecled 3-DOF 

AGYs are obtained helow. 

4.4.1.1 Inverse Kinematics 

For inverse kinematics of the 3-DOF AGYs under study, the actuated joint 

angles and their timc derivatives, which are Ilot independent in the presence of 

redllndant actuation, are dcl.ermined fl'Om the lequil'ed twist and twist rate of the 

platform Lraversing a desired path. Rcferring ta eq.( 4.(2), the 2 x 2 matrix 0. is 

JloJ\si Ilglllar, ulll('ss angle 0'. is eqllal Lo 0 or 7r, because det( St) = 1'2 P SQt =J:. O. Note 

that. t.he singularity of mat.1'Îx 0. at al = 0 or 7r arises and then, the whecls beconw 

con \'eJüional, like the wheels in automobiles, which have two DOF. Thus, for any 

J\on~el'o value of QIl (J. is obtained from eq.(4.62) as 

where s.-Ir is given by 

-P Cil 

cf3. 
-p s"'(.] 

sf3l 

(4.68 ) 

(4.69) 

Frolll eq.(4.68), the joint rates of the ith wheel and the ith active raller, Ô. and Ô:, 

respectivcly, are given as 

. 1 . 
O. = ---[d.1Î' sb. - 8.) + x c"'(. + y s'Y.] 

r SQ. 
(4.70) 

and 

Ô: = _l_[d,~ s(f3. - 81 ) + X cf3. + y sf3.] 
1'r saI 

(4.71) 

. .' 
Now, for a '\-whecled vehic1e, two '\-dimensional vectors, (} and (J consisting of aIl 

the joint rat.es of the wheel huhs and the joint rates of the active l'allers, respectively, 

arc' derivcd from cq.(4.68) as 

• 1 .' 1 

(J = Lte and (J = L'te (4.72) 
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where the>. x 3 matrices Land L'are givcn as 

['l,d, S(~' - bd 'II (')1 'II .'), 1 
L= 

'1\ ~o.;')\ 1'Vi \ sb,\ - 8,\) '1' CI' 

(,1. 7:1) 

and 
[ 'M, s(P, - D, ) I/~ C/1, '1; ,;11, ] 

L'- . - . 
r/,(i., ,,,(13,\ - 8,,) II', C/1, Il \ '''1', 

( 1. ï 1 ) 

while 1], = -l/(r SOI) and 11: = l/(rr sn,) for 1 = 1,···.,\. In tilt' !>n'sc'II('(' of k~.., 

actuated wheels than the total number of wheels in thc' \·c·hidc" i.c' , ",11<'11 Il < ,\, 0 

and Lare partitioned as 

and 

where 0 A is the Il-dimcnsional v('ctor eonsisl.illg 01 tllC' joill\. r,II,c's or 1.111' <I( I.lli1lt-d 

wheel hubs and ON consists of the 1'emainingjoilll ralc's, i.('., of III<' join\. l'at(·s of Ill<' 

>. -IL nonactuated whcel hubs. Mor<'ov('1', LA alld LN are t.11C' Il x :J alld P - Il) / :\ 

matrices 1'clating the twist of the plnt.forlll \Vit.11 t.!\(' joint. nll,(':-' or t.\\(' éI( t.l\at.c·d dllcl 

nonactuated wheel hubs, lcspcctively. Furtlwrlllor(', a V('C 1.01 of UlldC \.lIat.(·d j011l1 

rates Ou is introduced, which conlains ail t1H' joint. rat.c·s of t!H' ael ivc' 1011('1:-' roI' ,dl 

the wheels and nonactuated wlH'el huhs. Th(· (2)' - Il)-dilll('lIsi(llléll V('dol" 01, éllld 

the (2)' - Il) X 3 matrix Lu ar(' ddined aceordillgly, i.('., 

and Lu == [t~] 
The relations required to obtain the aet1\,tlc'c1 ,111(1 UWH t1\atC'c1 joillt. 1.11.(':-, dJ(' I/O\\' 

readily availablc from eqs.(4.72)-('1.76) as 

and 
• 1 

Ou = Lute: 

The actuated and unactuated joint aceclcratiolls arc now Wl'itt,('1I rlOlII ('q.( 1.(j(j) IJy 

following the similar steps in obtaining cq.(4.77) rl'OBI cq.(4.(j~), lIétlllcIy, 

.. -,., 
Ou = Lute + Lute 

(11. 7Hil) 

(1.7HIJ) 
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Sinœ ail OH' yC'ctors and matrices of (~q.(4.72) arC' l'('presented in the moving coor­

<linate i-j-k frame, the ('ntriC's of the Il x ~j IIldlrix L.t a/ld the (2.\ - Il) X 3 matrix 

L" are not sirnply the time derivatives of tll<' ('1('llIcl!ts of LA and Lu of C'q.(4.77), 

l'(·SI)(~ctively. Thus, eq:'l.(4.78a) and (4.78b) are dellved u!:>ing eq.(4.66). '1 he actuated 

alld unactuated joint angles required by the AGV ln move in a specified path are 

ob1.ained by in!'<'grating <'q.( 4.77), with known initial conditions. 

4.4.1.2 Direct Kinematics 

'fo obt.ain t.he t.wist of the platforrn from the giVCll aduated joint rates, thc 

rdat.ion bctw('('n t.hc twist of the plat.form and the actua1.ed joint rates, as given in 

pq.(4.77), is lIspd. Since the vehicle has thrce DOF, for a vehicle with three aduated 

whcC'ls, matl'Îx LA is 3 x 3. Hence, for a Ilonsingular L. i matrix, the twist of the 

platforrn is obtained as 

(4.79) 

when' TA == LAI. 'fhe singularity of matrix LA will be pointed out in Chapter 5. 

However, fol' AGVs consistiug of more than thl'ee wheels, the relation between the 

!'wist. of the platform and the actuatcd joint. rates leads to more equations than 

lluknowlI.;;, i.('., to an overdetcl mined system of algebraic eqtlations. For a consistent 

s<'l. of input dat.a, i.('., vedor BA, vector t~ can be ca\culated with the help of the 

Mool'(·-Penrosc gcncralizcd inverse, i.e., 

whcre T~\ == L~ 

from <''1.( 4. 78a). 

( 4.80) 

T 1 T _ (LAL,d- L~t. The twist rate of the platform is now obtained 

The orient.at.ion and the position of the mass centre of the platform in an inertial 

frame is found by integratillg the following relation: 

[t~lr = [Qh(· (4.81) 

wl\('l'(, the 3-dill1cnsional vedor [t~lT is the t.wist of the platform represented in an 
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inertial frame I, whereas the 3 x :J matrÏx [Q]I is tll(' orit'ntatioll of tlH' i-j-k l'l'il Il Il' 

with respect to the I-frame. Vedor [t~ 1r and 1lI,lt rix [Q]r an' gi \','11 h., 

[t~1r = [fl and [Qlr = [~ 

4.4.2 Dynamic Modelling 

In order to develop the dynamic 1I10dcl of :l-])OF AGVs, il, is asslIllH'd t.hat tilt' 

mass of the rollers is much smal\er compared Lo t Il(' mass of t.he w\t('el hllhs. l"t 0 l'CO\'I '1' • 

since the radius of t.he rolkrs is also 111 \1 ch slIIalkl' tball t.1\(' 1',Idi1ls of t.I\(' w\tt,,'1 

hubs, the moments of incrtia of the rollers about thcir C('lIt.roid~; al'<' considt'l'"bl\' 

small and hence, can be neglected. IIowcvcr, 1.11<' 1ll01lH'lIt.S of ill('I't.ia of t.ht' rollt,l'~ 

about the ccntroids of the whed hllhs may 1)(' significallt.. 'l'hlls, 1,0 cH COli III. fOI 

the mass of the rollers and thcir monH'nts of inert.ia ahollt t.ll(' Ct'nt.roids of t Ill' 

wheel hubs, an omnidirectiollal wlH'cl is assullwd 1.0 C<H1sist. of ri wh",'1 hllb ill \Vhi( Il 

the roll ers are rigidly at tached 1.0 the hu h. Thcl'efOl e, fol' t!y Il cl 111 ic 1 IlOt! ('II i Il).!,, t.Il!' 

system can be assllllled ta consist of ,.\ whcc\ hllbs aile! th(' pl,üfol'lIl. MOI('ov('I', p1l1'1' 

rolling is assumed at the l'Oller-floar interface. F\II'tlwrlllol'<', 1.11<' control of :~-J)()F 

AGVs with more than three actuated ",,1H'cls kads 1,0 lC'dllnditnt a('t.u,tI,ioll, illld t1111~, 

dynamic models of 3-001" AGVs with redundant. acLllrtt.IOIl al'<' d('VI'lo(>('d ~('pilr,I1,('ly 

in §4.4.3. Note that t.he 3-dimensional reduc{'t! twi~t. and twist. 'ctl,t' v('('t,o,~, riS u~('d ill 

kinematics to denote the twist of the platform alld it.~ rat(' 01 chilllP,t' tll(' Ilot ~ulli( il'III 

to represent the twist. of the wlwel IlIIb~ cmd, 11('11(,(" t.be (j-dilll('II~i(J1lc" t wi~t, v('( 1,01 

and its rate of change are u:'icd for aIl bodi('~ ill devC'lopilig tll<' dYII'lllli( III(J(I('I~ 01 

interest. Also, duc to the reason~ givell in §'1.1.2 the di~~,ipatioll is ilOt. illclud('d ill 

the model of 3-DOF AGVs. Thus, an aSSC~SITH'lIt for a( (,1II'élCY of tll<' silJlulatioli 

software, OMNI, that. is devcloped in 8'1.5 is p()o.;~ible. Now, t!1(' g('II('rëtli:œd twi~t, {JI' 

the vehicle is given by a 6('x + 1 )-dimcnsional Vl'ctor, i.e., 

t = [tf, 'J' TT ... t, t(.] , " ~ 
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wlH're the twist of the zth whcC'1 is written as 

In an AGV with three actuated joint rates, the latter ean play the role of 

tlw independcnt generali;wd spceds, i.C'., ih of eq.(3.29) can he sub~titut("(l by iJ A of 

eq.( 4.7.5). The unactuatC'd or dependent joint rat ('s and accC'\C'rations for the dynamic 

analysis can obtaincd from eqs.(4.77) and (4.78h), rC'spcctivcly, as in §,tA.l.l. The 

dynamic ITlOd('1 of a "\-whee\cd 3-DOF AGY with three actuatecl whecls is ohtainccl 

baspd on t.hC' IIwthodology givC'n eit.her in §3.2 for Il = ,,\ = 3 or in §3.3 for Il = 3 

and ,,\ > :J. In both (ases, i.C'., Il = ,,\ = 3 and IL = 3, ,,\ > 3, a fast. algorithm cau be 

devcloped IIsing t,\}(' schcmes described in §3 .. 5. The equations of motion for 3-DOF 

AGV with :J-actuated wlH'els arc written as 

( 4.84) 

whC're 1 and C are the 3 x 3 matrices of generalized incrtia and convective inertia 

t.erms, respcctively, while T is the 3-dimensional vector eontainillg the joint torquC'f, 

of the actuated whccls. In eq.(4.84), the generalized force duc to gravit y vanishes 

and the geucralizcd inertia matrix is a const.an f Illltt,rix l, i.e., 1 is independent of the 

genpra.li;wd coordinates. The generalizf'd vedor duc to di:-.sipation does not appear, 

sine<' no dissipation is considcrcd. 

4.4.3 Inverse Dynamics in the Presence of Redundant Ac­
tuation 

Th\'('('-DOF AGVs with more than three actuated wheels lead to redundant. 

actuat.ion and the act.uated joint rates can no longer be considered as t.he independcnt. 

gClleralizcd sp('cds. Howe\'er, the components of thé reduccd twist vedor t~. of the 

platforrn (,ol1sisting of the angular veloeity J'of the platfOlm and t.he hm Cartesian 

vdocit.ies j. and y, i.e., t~ == [J7, j., Û]T, arc always indcpendent. Thus, to apply 

tl\(' met.hod of the NOe to rcdundantly actuat.cd AGVs, vedor t~ l'an play the role 
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of the independent generalizC'd speC'ds élnd an t'quaI iOIl similar 10 t'q.(·I.X 1) is Il'cHlil., 

derived as 

where le and Ce arc the 3 x 3 Illatrin's of illt'rtia lt'I'II1S alld ('01I\'t'('\ i\'t' inl't 1 Ici 

terms, respectivC'!y, associatC'd with 1 he vC'ctor of illd('IH'lIdl'1I1 p,t'II('I alizt'd S(ll'l'Ib., 

t~. Vector w~ is the 3-climensiollal gl'n('l'éllizt'd W\'('l\t h ,lrI ill!!, 011 1 Ill' pied l'lit III 

Again the generalized wrench w~ duC' to gravily vélnisht's ,llId \Vi! dOl'S ilOt. .1(1(11'<11'. 

For the control of a redundantly actuated vchicl(" tht' ,tctualOl 100t(lll's an' oblallll'd 

as follows: From the power halance of the systPIll al. hand, ail ('xpr('ssioll n·lat.ill/!, 1 II«' 

joint torques and the generalized wrench wé~ of <'q.(11.8.')), as ill ('q.p . .').')) of !i:\'(i, 1:-' 

obtained wit h the aid of the expression for (JA of ('q.(.1. ï/), 11<1111<,1 v, 

A T 
Wc = LAT" (·I.;-';(i) 

Equation (4.86) leads to ail underdctC'rmillcd sysl('1II of tbll'(' scalar ('qllatiolls ill Il 

(> 3) unknown actuator torquC's, vedor TA. Eqllat.iol1 ('1.8(j) (ail 1)(, solVt'd fOI T 1 

resorting to an optirnization approach. In fa ct , v('ctor T 0\ Célll 1)(' obt.aillt'cf .,(} l.h,II il 

optirnizes an objective function f( TA) subject 1,0 lIH' ('qu,di 1, y 1'011:-.11 ai IIt.S of t'Cf.( ,I.;-';(i) 

For example, if f(TA) = 1/2(T~TA), the joint. t.orqll(,~ (II'<' l'<'adily d('I'IV('cf as 

Moreover, !inear inequa!ity constraints arising from tll(' Il\otor t.orqll(' limit.at.iolls IIIi1y 

be included, along with eq.(4.86), in optimizing f(TA)' 'l'II<' il\('qllalit.y COllht.lclillb 

can be expressed as 

where T~ is the vector containing the limiting vahJ('s of tllC' joint. t.OI (l'J('S. TIlt' 

solutions of the actuated joint torques arc ohtailwd lIsing the DQ1HO(; !-.llhrOIlt.illf' 

of the IMSL package . 
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4.4.4 Simulation 

A gerH'ral-purpose code for the simulation of À·whecled 3-DOF AGVs, OMNI, 

I('ading to direct dynamics is dcvclopcd in §4.5. For that, first, given the actu­

al.ed joint. torqu('s, t.he gCllcrali~ed wrf'llch acting on thc platform is calculatcd using 

(~q.(4.86). Tlwf), diff('rclltial equations, eq.(4.85), result.ing from the dynamic mode} 

of a :J-DOF AGV, alollg with the relatioll givcn in eq.( 4.81), are integrated in order 

t.o fi Ild the orif'ntation and t.ile position of the mass centre of the platform. A set of 

firfo.t-onkr differcntial equations requircd for the DIVPRK subroutine of the IMSL 

pnCkrlg(' is wriUell as 

x = Hx+ u ( 4.89) 

wh('l'(' the 6 x 6 matrix H and the 6-dimensional vectors X and u are given by 

( 4.90) 

wit.h the :J-dimcnsional vector [t~lT and the 3 x 3 transformation mat.rix [Q]T being 

dpfirwd in eq.(4.82). The set of first-order diffcrent.ial equations, eq.(4.89) is now 

int.pgrated lIsing the DIVPRK suhrout.ine of the IMSL package with given initial 

condit.ioll, xo. 

4.5 OMNI: A Software Package for the Analyses 
of Three-DOF AGVs 

A gellf'fal-pmpose softwcu'e package is developed based on the kinematic and 

dynamic analyses of 3-DOF AG Vs \Vith À-whf'els, of which Il are actuated, \Vith 

IL, À 2::J. The softwalc is bmwd Oll the kinematic and dynamic models developed in 

§·t A. Giv('1l t.ll<' Iltllllber of whe('ls, the numher of actuated whcels, the architecture 

of the vehic\co and ils inertial param('t('rs, the software solves the kinematic and 

dynalllic problc'l11s at four diffe\'cllt lcycls, which are described bclO\.· 
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Level 1: Vclocity and acceleration inv('rsion. 

Input: 

• The total number of wheels, À, III the whicle, élnd t.hl· lIUlllh"l of aet uall'd 

wheels, Il. 

• The radii of the wheel hubs and t.he 1'011('1 s. 

• The orientation of the l'oUen, of the ith oll1nidirc·(·t.iolla\ w\\(·('\ wil.h II':-'I)('c(. 10 

its hub, i.e., 0'1 for i = 1,,' " À. 

• The orientation of the ith wheel with respect. to the p\at,fOrlll, i.e., th(' oril'ltI,c1 

tion {31 between i and el for 1 = l, ... , À. 

• The position of the mass ccntre of the zth whcc\ hu!>, (JI' i .1'., VI'( tor cl" for 1 = 

1,"', ,\. Note that the third componcnt of cl
" 

Il of ('q.(.I.()/I), l)('it!tC'l' "ppl'cllS 

in the kinematics nor in the dynarnics relations. Thus, li is ilOt. Il·qlli!(·d. 

Mol'eover, to compute the first two COmpOIH'nts of d" allgle hl ilnd t.h(~ dist.c1I1( (' 

di, as defined before in eq.( 4.64), for i = 1,'" , À, should 1)(' ~lIppli(·d. 

• The travelling time and the number of illLerva\s aL which t.!)(' I('sltlb cil<' 1('­

quired. 

• The required twist of the platform and its t.imc rate of challg(' al. ('VC'IY salllplt'd 

point of the inLerval. 

Output: 

• The actuated and unactuated joint rates amI accelclat.iolls, vect.ors 0 A, OU c1l1d 

their time rate of change at the dcsired points. 
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Level 2: POHit.ion inversion. 

Input.: 

• The total number of wheels, .A, in the vehicle, and the number of actuated 

whecls, p, as in Level 1. 

• The history of the joint rates, which are obtained from the output of Level 1. 

• The initial conditions for ail the joint angles, which include actuated as weil as 

unactuated joints, Le:, vectors 0 A and Ou, at time t = O. 

• The travelling time and the number of time intf'rvals. 

Out.put.: 

• The joint angles, vectors 0 A and Ou, for t > O. 

Level 3: Invers(' dynamics. 

Input: 

• The total number of wheels, .A, in the vehicIe, and the number of actuated 

whee1s, p, as in Levcl 1. 

• The architecture of the vehicle, as in Level 1. 

• The mass and t.hc inertia tensor of the ith wheel, for i = 1,' .. ,À, and the mass 

and t.he incrtia tensor of the platform. 

• The travelling time and the sampled instants for which the torques are required. 

Output: 

• At the desired time, the actuated joint torques are calculated based on eq.( 4.84) 

when Il = 3. On the other hand, for Il > 3, the actuated torques are obtained 

using the scheme given in §4.4.3. 
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Level 4: Dynamic simulation 

Input: 

• The total number of wheels, À, in thc vchicle, and the Ilumber of act.ual<'d 

wheels, Il, as in Level 1. 

• The architecture of the vehicle, as in L('vcl 1. 

• The mass and the inertia tensor of the ith whccl for 1, = l,' .. , À, aJld \.lit' 111é1:-S 

and the inertia tensor of the platform. 

• The history of the joint torques. 

• The initial values for the configuration and the twist of t.he v('hicle at. 1 = O. 

• The travelling time and the sam pied inst.ants fol' which t.he simulat.ioll J'(·:wlt:-. 

are required. 

Output: 

• The configuration and twist of the platfol'/ll al. time l > O. 

The software that has been developed in this rcsearch, OMNI, is lIs(·d ill êlll,dyxillg 

several 3-DOF AGVs. Results are obtained for different vchicl('s t.rav('rsill~ t.hrc·(· 

different paths, as explained below. 

4.6 Inverse Kinematics and Dynamics Results 

OMNI Îs tested with 3-DOF AGVs of diffcrent. archikdmes followillg difr(·l'('lI1. 

trajectories, which are planned in §4.6.1. 

4.6.1 Trajectory Planning 

Three different paths are chosen ln testing the performance of t.he vehiclps 

under study, namely, 
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Fig. 4.15 Variation of (a) Xe vs. time for Path 1 and !le vs. time for Path 2, and 
(h) !Je vs. xc' 

Path 1: The vehicle is assumed to move in a straight path parallel to the xc-axis 

of Fig. 4.15(b) with a fixed orientation. The path is planned in such a way that the 

vehicle starts and stops with zero velocity and acceleration, which has been achieved 

with a cycloidal mot.ion (Rothbart, 1956; Chen, 1982). The variation of Xe with time 

is shown in Fig. 4.l5(a). 

Path 2: This )lat.h is such that the vehicle moves along a path pat'aBel to Ye of 

Fig. 4.l5(b) with constant orientation. The variation of !Je with time is shown in 

Fig. 4.15(a). 

Path 3: This path is the two straight lines connected by a smooth curve, as shown 

in Fig. 4.6, which is ploUed in different scales. In contrast to the 2-DOF AGV, where 

angular \'clocities are specified depending on the curvature of the curved path, the 

thre<' components of the required twist of the platform are specified independently, 

b('cause the system has 3-DOF. Thus, a path is specified in such a way that the 

orient.ation of the platform remains fixed at 'IjJ = 0, in the segment POPI of Fig. 4.6; 

then, it changes its value to 'Ir /2 following a cycloidal motion and, then, continues 

with constant. orimtation, i.e., at ~, = 'Ir /2, along the segment P2 P3 of Fig. 4.6. The 

\·ctrlation of angle ~, and the Cartcsian coordinatcs, along with their time derivatives, 
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Fig. 4.16 Two straig~t paths connected hy a s~ooth cmve: Variatioll of (il) 1/', 
Xc and Yc vs. time, (b) "p, Xc and Yc vs. time, (c) "p, Xc alld iic vs. tilJlp, alld (d) !l, 

vs. Xc' 

are shown in Figs. 4.16(a)-(c). The path is shown ill Fig. '1.IG(el). Thc' plot.s of t.11<' 

inverse kinematics and dynamics results ohtailled for difrel'C!llt vehicles 1Il0Villp, ill 

Paths 1, 2 and 3 are given in Figs. 4.20-1.32. 

4.6.2 A Three-Wheeled AGV: AlI Wheels are Actuated 

The kinematic and dynamic analyses of the 3-wheeled ~l- DOl" AGV shoWII 111 

Fig. 4.17 are performed using OMNI. For numerical computatiolls, the gC'olllc!tl'ical 

parameters of the vehicle are given in Table 4.1. 
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Fig. 4.17 A 3-wheeled 3-DOF Fig. 4.18 A 4-wheeled 3-DOF AGV. 
AGV. 

For dynamic analysis, the system is assumed ta consist of four rigid bodies, as 

indicated in Fig. 4.17, by the encircled numbers. The inertial parameters are now 

givcn as follows: 

the mass of each wheel hub, 

t.he mass of t.he platforrn, 

mw = 2.0 kg, 

m = 32.0 kg. 

The inel'tia tensor for each wheel in the el-fi-k frame, for i = 1,2,3, is given by 

[

0.01 
Il = 0 

o 
o 0 1 0.00515 0 kgm2 

o 0.00515 

The inertia tensor II of the platform, in the i-j-k frame, is 

[

1.0888 0 
14 = 0 1.0888 

o a 
o 1 a kgm2 

1. 7067 

Here, ail the three wheels of the vehicle are considered actuated. The kinematics 

results obtained from Levels 1 and 2, along with the actuated joint torques to move 

the vehide in the specified paths that are calculated from Level 3, are shown in 

Figs. 4.20-·1.25. 
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Wheel, i a, (d('g) /1, (d('g) 8. (dq~) dl (1JI) 
1 90.0 90.0 90.0 0.:1 
2 90.0 210.0 210.0 0.:1 
3 90.0 330.0 :1:30.0 0.:1 

The radius of the wheeI hubs, /. = 0.1 III alld 
the radius of the rol1el's, l', = lLO 1 Ill. 

Table 4.1 Architectur(' of a :l-wl)('('kd :1-))0\0' A(;V. 

Wheel, l a. (deg) 13. (c!eg) fi, (dq~) d. (Ill) 
1 45.0 0.0 5ü.:1 O.:Hj 

2 135.0 180.0 12:1.7 O.:W 
3 45.0 180.0 2:W.a O.:W 
4 135.0 0.0 :lO:I.7 O.:W 

The radius of the whec\ huhs, l' = 0.1 III and 
the radius of the rol1('rs, l', = 0.01 Ill. 

Table 4.2 Architcdllle of a 4-whccled :1-))01-' i\(;V. 

4.6.3 A Four-Wheeled AGV 
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A 4-whee1ed 3-DOF AGY is shown in Fig. 4.18, who~e <Ll'chit.l'ctlll'<' is li,iV('I\ ill 

Table 4.2. The vehicle consists of five rigid bodies. The Îll(,l't.ial Pill'illlld,('\'s 01 t.11!' 

wheels are those given for the whcels of the 3-wheclecl vehicle. 'l'II<' lJlilSS 11/ allel t.11(' 

inertia tensor 15 of the platform, in the i-j-k frame" éU'(' as foll()w~: 

m = 37.0 kg, 
[

1.2333 
15 = 0 

o 

a 
O.GHi7 

o 
o 1 o 1-:,.1,111

2 

I.GO:n 

Two cases of a 4-wheeled 3-DOF AGY are considcrcd. In the fil'~1. cas(', 1.111'('(' wlle·(·I~ 

are actuated. For example, whecls 1, 2 and 3, as denotcd i 1\ Fig. t\ .18 by the encÎ\'clc'd 

numbers, are considered to be the actuated wheels. In the ol.lWI' (asc, ail rOll\' wll<'(·I" 

are actuated. 

4.6.3.1 TInee Wheels are Actuated 

The kinematic and dynamic models obtained are basc<] OH (!q.(t\.~1), wllC'1(' 

the total number of wheels is greater than the number of actuéLl.ecl wlJ('ds. It. i:-. 1.0 

be noted here that the software reads two different input dal.a fik~ cOIlt.aillillg 1.11<' 
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georn('trical and inertial paramet.ers, where Hw values for aU the actuated wheels 

must l)(~ sp('cificd in a s('qucntial order at the beginning of the data files. Thus, the 

.l!;(·olll('trical and inertial parameters for wheel 1 are given first, then for the second 

and next. for the thircl wheeL No order ;5 necessary for the other wheels, but the 

.l!;pouH't.rical and inert.ial paramctcrs of the two data files must correspond ta each 

01 h('r. The killernat.ics r('sult.s are the same as those obtained in §tL6.:3.2 for the case 

of ail actuat.cd wheels. The required torques to move the vehicle along Paths 1 and 

:J an' showlI in Figs. 4.26(a) and (b), respectively. 

4.6.3.2 AlI Four Wheels are Actuated 

ln the case of an AGY with four actuated wheels, the system is redundantly 

actuated. Thus, the dynamic analysis is donl through torque optimization. The 

r('suIt.s are shown in Figs. 4.27 to 4.31. Note that, to move along a path parallel to 

vector i fixed ta the vchicle, i.e., to move sideways, the whecls 1 and 2 should supply 

torques in opposite directions. The same is truc for wheels 3 and 4. Due to the 

definit,ions of the unit vectors in Fig. 4.18, the required joint motions and torques 

to rnove sidcways have the same sign, as evidenced in Fig. 4.28, which shows that. 

the joint variables for wheels 1 and 3 are actually in the opposite direction ta those 

for wlw('ls 2 alld 4, respectively. When the vehicle moves along Path 1, the required 

joint. angles and rates for the active rollcrs, i.e., the rollers which are in contact with 

t.he floor, arr zero. The joint angles and rat.es for the active raller, to move along 

Patlu; 2 and 3, arc shown in Figs. 4.29(a)-(b) and 4.31(a)-(b), respectivcly. Note 

t.hat the comparison between Figs. 4.26(b) and 4.30( d) shows that the maximum 

l'('quired mot.or torques at. whecls 1, 2 and 3 are less when four wheels of the AGY 

are actuat.cd. Since a torque minimization scheme is used in ohtaining the required 

t.orqlles at. t.he four actuatcd whccls of the vehicle, the maximum torque requiremenLs 

arc smallcr t.han tlw maximum requircd torques at the three actuated whecls of the 

·l-wlwclrd whiclc. The inverse dynamics results dre also obtained by considering the 

torque limitat.ions. For instance, the plots shawn in Fig. 4.33(a) are obtained by 
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Fig. 4.19 A 6-whcelc'd :l-DOF AGV. 

considering that the maximum allowablc torque at tll<' mot.or of wll<'<'1 ·1 is 0.01 NIII 

along the whole trajectory. From Fig. '1.:33( a), il lIlight. apP('fIr t.hat t.1J('n· iH a\sll 

a torque limitation on whecls 1 and 3 durillg the lllOV<'IlJ(~IIt. of t.he HI.I·aight. lill(' 

segments, P2P3 and POPI of Fig. 4.6, rcspcctivcly, which is ilOt. 1.1'11<'. Act.llally, t.o 

move along a straight path pat'allcl to j fixcd 1,0 the vehicle, tlw III <lg Il i t.udes of !.IJ(' 

joint variables at the two front or rear whccls, 1 and 2, éllld :J allrl '1, 1 (·:'J>e·ct.iv(·ly, 

should be the same. 0n the other hand, to moV<' alollg ast.I aight. path par,llle·1 t,o i 

fixed to the vehicle, the magnitudes of the joillt. variclhlc':-' al. t111' I.wo Hidc' wlw(·ls, 1 

and 4, and 2 and 3, should he the saille. Thus, will'Il t11C' V<'hicl(' lils!. 1I10YC'S aloll/-!, t.Il1' 

straight path, i.e., segment POP! of Fig. 4.6, the joint t.orquc~ at. wlH'd :l is the S,UII(' 

as that at wheel 4. Similarly, whell t.he' vehiclc rlI0VCS along sq~IIl<'IIt. 1)2/~1 of Fig. ,1.(i, 

where the orientation of the i-j-k frame fixc'd to the plat,fol'lll is al, my' wit.h t.1J(' 

inertial frame, i.e., the vehicle mayes along a pal.h parallc'I 1.0 i, t.!J('1I t}1C' lI1élgllit.lld(·., 

of the torques at whee1s 1 and 4 are equal. IIowcvcr, dllrillJ.!; Ut(' !II0YC·/T1C'1I1. aloll/-!, 

segment PIP2, there is a torque limit ollly Oll wb('e1 'l, wll<'lc!ét!'> t,lw variat.ioll:' of t.h(· 

other joint torques are such that thesc compc'll~àtc for tbe lilIllt. 011 wlte('1 tl. Nok 

that the AG Vs under study have 3-DOF. Thus, the l'eqllir('c! 1.01 ques at. IIlot.ors of t.!w 

yehicle with three actuated wheels are unique and no torque 1 c·st.llc:tiOJl is possi \JI(· 
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Wheel, i cg) f3, (deg) bl (deg) dl (m) 
1 
2 
:3 
4 
5 
6 

90.0 
90.0 
90.0 
90.0 
90.0 
90.0 

90.0 
210.0 
330.0 

30.0 
150.0 
270.0 

90.0 0.3 
210.0 0.3 
330.0 0.3 

30.0 0.3 
150.0 0.3 
270.0 0.3 

The radius of the whee! hubs, l' = 0.1 m and 
the radius of the lUHers, l'r = 0.01 m. 

---l 

Table 4.3 Architecture of a 6-whce!ed 3-DOF AGY. 

113 

On the other hand, if more than thrcc wheels are actuated then any arbitrary limits 

cali be placed on the l'est of the motors. In fact, specifying zero limits on the l'est of 

the whecls, which is equivalent to a vehicle consisting of more than tlll'ee actuatcd 

wll('cls, !{'ads to a solution, For more than three actuated wheels, limits on the 

lIumber of motors can be specified as long as the compensations by the other motors 

are possible. Otherwise, OMNI returns an error message that says, "There Îs no 

solution." 

4.6.4 A Six-Wheeled AGV 

The 6-whecled vehicle shown in Fig. 4.19 is considered using the geometrical 

IHu'ametel's given in Table 4.3. The system at hand consists of seven rigid bodies. 

'l'II<' incrtial paramcters for each wheel and the platform are the same as in the case 

of the 3-wheelcd vehicle. 

4.6.4.1 Three Wheels are Actuated 

Wll<'cls 1, 2 and 3 arc assumed to be actuated. Thus, the kinematic structure 

of t.he 6-whecled AGY is the sa me as that of the 3-wheeled AGV of Fig. 4.17, and 

IH'I1CC, th(, kinemat.ics results are the same. The required torques to traverse the 

path of t,wo lines collnected by a curve are shown in Fig. 4.32(a). It Îs evident from 

Fig. -1.32(a) that, duc to the threc additional whecls, the required joint torques at the 

thl'{,(' actllat,('d wheels of the 6-wheeled AGY are higher than those of the 3-wheeled 
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vehicle, as shown in Fig. ,L24(d). 

4.6.4.2 Four Wheels are Actuated 

Here, wheels 2,3,4 and 5, as in Fig. -1.19, arc artllall'd. III llldl'r III Il:-.(' 

the OMNI softwarc, t.he geol1wtrical and ilwrti,d parallld('rs ur tht'St' l'om \\'I\(,l'b 

should he given in a sequential order al, the Iwginnillg of t,)H' <ldl" lill's. Hl'!">III!.s l'rolll 

inverse dynamics are ohtaincd hy torquc optimizatioll. TI\(' \'('qllill't! joint t.orqIH's al 

the actuated wheels to traverse Path 3 are giV('1l ill Fig. Il :t~(b). TIlt' Il'quin'd jOlnl 

torques to move along Path 3 are also ohtailwd by specifying a lilllit. of 0.0 1 N Illon 1 Il(' 

maximum allowable torque of wh('('1 2 of tht' \'l'hicle, which is showl\ ill Fig; .. \.:l:~( Il). 

4.6.4.3 Ail Six Wheels are Actuated 

The required actuated joint torques arc showlI in Figs. t\.:~1(c) (<1), wltill' 1111' 

6-wheeled vehicle traverses a path consisting of two st.raight, lill('s (,ollll(·ct.<-d by il 

smooth curve. Since the torque minimizatioll r-.chclIlc is IIs('d t.o 1il\<I 1,11<' six He!'II,II,ol 

torques of the vehicle, the maximulll torqu('s ctt. wlt<'els l, 2 and :~, as showlI il\ 

Fig. 4.32( c), are less than the maximum ('t'qllircd (,orqll(':-' al. wltl,<,ls 1, 2 alld :~ (JI 

the 3-wheeled vehicle, as shown in Fig. 1.:H(d). Tite l'<'slllt.s ill(' ,tlr-.o ol)tail1<'d by 

placing limits on the maximum allowablc mot.or torqll('s of wlt('('ls 1 and (i, whidl al l' 

0.01 Nm and 0.025 Nm, respcctivcly. The ('('sults are showll ill Fig.1.:JIJ. 

4.7 Simulation Results for Three-DOF AGVs Us­
ing the OMNI Software 

Simulations for 3-DOF AGVs wcrc done hy considerillg difrl'\C'IIt. v<,biclC's 1I10V­

ing in Paths 1, 2 and 3. In aIl the cases, the ~irnllléLti()ll ('l'lors ilI(' Vl'ry slllall élnd 

the simulated path cannot be distinguishcd from 1.1)(' plallJl('d Olll' wlwlI t.1H' ~t.('P SiZl' 

and tolerance are taken as 0.3 sand 0.001, respective/y. One ~d. of silllulat.ioli reslllb 
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for t.he 6-whec\ed vehicle with ail actuated whecls is shawn in Fig. 4.35, where the 

history of input torques is obtained from the inverse dynamics rcsults of the AGY 

in the presence of incquality constraints, as given in Figs. 4.34(a)-(b). 
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and (b) 6-wheeled vehiclc \Vith torque rcslrid ions whilc' moving ill Pat.1s :i. 
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Fig. 4.34 Required joint torques at the six actuated joints of the 6-wheeled vehicle 
with t.orque restrictions while moving in Path 3. 
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Fig. 4.35 Simulation errors in (a) joint angles of the first three actuated wheels, 
(h) & (c) act.uat('d joint rates of ail the six wheels and (d) Cartesian space while the 
6-wheel('d AGY is moving in a path consisting of two straight lines connected by a 
STlloot h cu\'\'(' (Path :1). 
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Chapter 5 

Kinematic Design of Three-DOF 
AGVs 

Several issues regarding the design of ornniclil'cctional wheels fOI" :J-DOF ACVs 

warrant a deep study. The orientations of the whc<'1 huhs l'dal.iv(' 1.0 t.1H' pl"t.fOr\II, 

the roller orientation with respect to t.he whC'd IllIb, t.he I1l1rn)(,1" of ro\l<,l's in il wh!'('1 

and the roller profiles, are only a fcw issues that. ar<' worth nH'lll.iollillg. MoJ'('oV('l', 

for autonomous behaviour of the vehiclcs, it is nccessélly Lo have' (\11 (·fficiplll. cOlll.rol 

algorithm for on-line computations of t.he joint parameLcrs. 'l'he (·f('<,< 1. of kilwlllilt.ics 

on the performance of the vehicles is st.udied in t.he s('clion Jwlow, and U\('II, a d('sign 

is suggested based on the transformat.ion mat.Iices rdat.ing I.hc' joillt. angl('s wit.Jl 1.11<' 

twist of the platfol'm. 

5.1 Effects of Kinematics on the Performance of 
AGVs 

The accuracy of the inverse and direct kinemat.ics r<~~l\lts of rohot.ic mcchalliCéd 

systems depends on the condition numher of the associat.{'d mati iCC'~, wllm;e illvc'rsc's 

are l'equired in ca1culating the controller setpoints. For illstaIlce, if élll i\(;V is élS­

signed to move in a desired traject.ol'y, its joint variclble~ éllld thc'il" till\(, delivativ('''' 

are calculated from inverse kinematics. Thes<, variables ale latc'I lI~ed t,o ol)\.(lill t.IlC' 
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joint torques. The latter are set by the controller to move the vehicle along the spec­

iHed path. The condition number of a matrix is a measure of the relative roundoff 

error amplification of the computed results with respect to the relative roundofT error 

of the input da.ta, upon solving a system of equations associated with that matrix 

(Colub and Van Loan, 1983). Hence, the accuracy of the kinematics results depends 

on the condition number of the matrices whose inverses are needed. Matrices \Vith 

sruall condition numhers produce accurate results. In faet, a condition number equal 

to unit y, which does not introduce any roundoff error amplification in the solution, is 

the best. that can be achieved. Thus, robustness of the kinematic control is ensured. 

Matrices with a condition number of unit y are called isotropic. 

5.2 Design Criteria 

Referring to eq.( 4.62), the inversion of matrix 8. is required in determining the 

aduated as well as the unaetuated joint rates, as in eq.(4.68). However, the matrix 

is singular at a. = j1r, ,vith j being an integer, i.e., an omnidirectional wheel is 

equivalent. to a conventional wheel when a. = 0, 1r, 21r,' .. for j = 0,1,2, . ", respec­

tively. Morcover, in direct kinematics, where the twist of the platform is calculated 

from t.he actuat.ed joint. rates, t.he solution for t~, as in eq.(4.77), is required, which 

is given by cqs.(4.79) or (4.80), i.e., the evaluat.ion of LAI or L~ is necded. It is clear 

from eq.(4.77), where LA is obtained using eq.(4.73), that if " - 61 = J1r, or " = j1r 

or (2j + 1)1r /2, for i = 1,"', Il, with j and Il being an integer and the number of 

actuated whccls, respectively, then LA is rank deficient. Since " = a. + PI and 6. 

ar<> not. configurat.ion-dependent, but rather architecture-dependent, rank deficiency 

of LA results in a singular design of the vehicle. 
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5.3 Condition Number and Isotropie Design 

Let K den ote a k x k matrix. The condition 1lI11111wl" of K (Skwart., 1 !)7:~; 

Golub and Van Loan, 1983), K(K), is defincd as 

(fl.l ) 

where II· Il denates the norm of its matrix argument (.). If t.he Euclid('all ilOrIn 

is adopted, which is invariant under isornctl ie transforl\lat.ions, éllld h('II("(' ulld,'!' 

reflections or rotations of the k-dimensional configuration space al. héllld, I.h(,11 il 

frame-invariant condition number is dcrivcd. The dcfinit.ioll of t.h(' cOlldit.ioll 11111\11)('1' 

given in eq.(5.1) ean he uscd with al/y matrix l\Ol'll1. For t.he Ellclid<'élll or FlOlwlIills 

norm, the norm of matrix K is <lefined by 

IIKII == y&(K'fNK) (G.:l) 

in which N is a positive-definite k x /..- matrix that serves for 1I01'llléllizat.ioll purpOS('s. 

For instance, if N is defined as (ljk)l, with 1 being t!1<' k x 1.. id(·lll.it.y 1I1c1tlix, 

then the Euclidean norm of the identity matrix turus out 1,0 1)(' ullit.y. CI(·"tly, \.1)(' 

definition of N does not affect the resulting condit.ioll IIUllIl)(·I. MOlPOV('I, fl'Olll \.Il<' 

definition of the norm of a matrix, as given ill cq.(.1.2), t.he lH'sl COlldlt.ioll(·d llléttl in's 

are those that are multiples of an orthogonal matrix. Thlls, llIat.llX K \tas il lllillil\llllll 

condition numher when the following holds: 

where 0' is a scalar. Note that, since the inverse of a rcctanglliar IIlatrix is 1101. (kfill('cI 

the condition number of a J1 x k (J-l > k) matrix K cali Ilot I)(~ giV('1l by eq.(!>.J). 

Other definitions of the condition number, also applicabl(' 1,0 \(·ctallglllal' IIIitt.rin·s, 

for instance, the ratio between the maximum and minillllllll sillglll,lI' valll('s of il 

matrix can he used. Moreover, in the presence of linearly indqwlld('nl m!ulllll'i, t.!t(' 

square of the condition number of the Il x k malrix K is equal to t.Jw condit.ion 1I11111bei 

of KTK (Stewart, 1973). Thus, the condition lIumber of the Il x k IIléttrix K is Illlit.y 
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if eq.(5.3) holds. Matrix K that satisfies eq.( 5.3) is termed isotropie. Furthermore, 

from eq.(5.~3), the inverse of a s4uare K is sim ply (1/ a 2 )KT . Likewise, the generalized 

inverse of ;t rectangular isotropie K is simply (1/ a 2)KT • Equation (5.3) is the isotropy 

condition for matrix K. This condition will be used presently to attempt isotropie 

designs of 3-DOF AGVs. 

5.4 Non-Existence of Isotropic Design for Inverse 
Kinematics 

To verify the existence of an isotropie design for inverse kinematies, matrix S., 

given in eq.(4.63), is written as 

S [ 
s{J. 

... = r -c{J. (5.4) 

where "Y. = a, + {J,. Angles G" (J. and the radius r of the wheel hubs are shown in 

Fig. 4.14 and the ratio p is given by p = rr/r. Now, 8;S. is evaluated as 

eT 0. = r2 [1 p ca.] 
1 p CG. p2 (5.5) 

whieh is a symmetrie and positive-definite 2 x 2 matrix. To derive eq.(5.5), '1 is 

replaced by a. + (J" whieh has been used in eqs.(4.61a) and (4.61b). It is clear from 

eq.(5.5) that fol' S. to be isotropie, the diagonal entries of matrix s;e, must be 

id<>ntical, whereas the off-diagonal element must be zero. The off-diagonal element 

of ets. is zero when a. = (2j + 1)7r /2 for j = 0,1,2,' .. etc. The diagonal entrÎes 

arc id<,ntical if the ratio 1/ p2 is cqual to unity. Sinee a value of p = 1 implies that the 

radius of the wheel hubs is equal to the radius of the rollers, this is not praetically 

fcasible. Thus, an isotropie design for inverse kinematies is ruled out. 

5.5 Isotropie Design for Direct Kinematies 

Sitlec for 3-DOF AGVs with IL actuated wheels, the I-l x 3 matrix LA of eq.( 4.77) 

is Ilot dimetlsionally homogenco\ls, different algebraic manipulations with the ele­

ments of the matrix may lead to meaningless operations. For example, in order to 
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find LAL~, the first elernent of the first COlUlll1l of the' Illatrix pl'Oduct is ohl,aill<'d 

from the inner product of vector Il, defincd as t.he ftrst. row of Illat.rix L t. hy it~wlf. 

i.e., Iflt. Vector lt can be writt.en from eq.{4. n) as 

(.'i.(i) 

where Ç1 has been substituted for Il -Dl' The ftrst compolll'Ilt of II is diIJl('IISiollk'ss, 

whereas the other two components both have units of Ill- I. Now, t.hl' illlH'1 \>1'0<11\('1 

of Il by itself leads t.o the addition of nurnbers of diffc'\'('IIt. dilllc'lIsiolls. 1\101 ('()\'('l', 

matrix L~LA contains entries of different dimellsiolls alld t.he lUit' of il s ('1('1111'111 s ,IS 

the cornponents of an objective function that can he millillliz('d for 1 II(' llIillllllllll\ 

condition number of rnatrix LA, as suggested al. the end of t.his chapt.('r, kads 1.0 

algebraic operations between dimcnsionally llollhoIllOgc'IIC'OU:-' pa ra Il lI'I.C'1 s. Thus, il 

previous normalization of matrix LA is nccdcd. '1'0 t.his ('lId, the first. ('011111111 of this 

matrix is dividcd by a characteristic length E, which Céln 1)(' achic've'd wit.h ft suit.ahly 

defined matrix N, as indicated in eq.(.5.2). TIl(' normalization lIIatrix ('ail hc' givC'1l 

as 

[

l/I} 
N= 0 

o 
o 0] 
1 0 
o 1 

The l' x 3 matrix LA is obtained after normalizal.ioll as 

1/1 Cfl 

(G. 7) 

where ft = 7],(n 7], = -1/(1' sa,) and (, = d,/ L for i = 1,' .. , Il. The Idt.-hand sidl' 

of eq.(5.3) for rnrl.trix LA is now derivcd as the :3 x 3 syrnmet.ric and positive'-dc,rinit.(, 

matrix, namely, 

where 

R - 2 2t + 2 2t 1 = (1 S '- 1 + . . . (Il S '-Il ( :".%) 

U>·%) 
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(5.9c) 

(5.9d) 

(5.9p) 

(5.9f) 

Now, from eq.(5.3), an isotropie design for direct kinematics of the AGVs is achieved 

if the conditions below are satisfied: 

(5.10) 

Using the isotropy conditions given in eq.(5.1O), 3-, 4- and 6-wheeled 3-DOF AGVs 

are designed where ail the wheels of the vehicles are actuated. 

5.5.1 A Three-Wheeled AGV 

A plausible assumption is made here, namely, that the design has the following 

sYlllmetries, i.e., 

a. = 0' and d. = d, for i = 1,2,3 (5.11) 

Further assulllptions are made by considering that the three axes of the hubs, e. for 

i = 1,2,:J, are symmetrically distributed, i.e., 

2~ 4~ 
(JI = (3, (32 = 3 + (3 and (33 = :3 + (3 

Also, the positions of the Illass centres of the wheels are placed at the vertices of an 

equilateral triangle that inscribcs a cil'cle of radius d. \Vith the above assumptions, 

six cntrics of R, as in eqs.(5.9a)-(5.9f), are calculated as 

RI = 3(2 S2~ 

21r 41r 
R2 = Cl7 [sç Cf + sf. c( 3" + ,) + s~ c( 3 + , )] 

21r 41r 
R3 = fl1[sçs, + ses( 3 + ,) + sçs( 3 + ,)] 

2~ 4~ 
R4 = 77 2

[c
2

, + c2
( 3 + ,) + c2

( 3 + ,)] 
1 21r 4~ 

R5 = 2112[82, + 82(3 + ,) + 82(3 + ,)] 
21r lb 

R6 = 172
[8

2
, + 8 2

(_ + ,) + 8 2
(_ + ,)] 

3 3 

(5.12a) 

(5.12b) 

(5.12c) 

(5.12d) 

(5.12e) 

(5.12f) 
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where 
1 d 

(: = TJc, "1 = ---, ( = -L and 1 = (\ + /1 
r so 

1 :10 

(Ii. 1 :q 

From eqs.(5.12a)-(5.12f), R2' R3 and Rs vanish, and Roi and Hl; art> roulld ilS (:1/'2)1/ 2 . 

Thus, from eqs.(5.l0) and (5.12a), 

which leads to 

and 

Hence, c2e is derived as 
2t _ 2(2 - 1 

c 1, - 2(2 

and angle e being given by 

1 e = 0 + fi - li = tan -1 --;:;;:::;:;;=:===;:: 
)2(2 - 1 

Thus, for a l'eal solution e, 
. 1 ( >­

'> - J2 

(rU·I) 

(Ii. 1;») 

(Ii.I(i) 

(ii.lï) 

(!U ~) 

(Ii.I!») 

It is now evident from eq.(5.l8) that, if fi = b a.nd ( = 1/ h, \.II<' 1'011('1 ot i('lltatiol\ 

with respect to the wheel hub is found to be (2) + 1)7r /2. Fol' j = 0, (\' = 7r /'2 whi('h 

has been used in the previous chaptcl' in analysing the :3-wlw!'hl AGY. Mon'ov('I', 

with d = 0.3 m and r = 0.1 m, as shown in Fig. tI.17, 1'01' t\\(' :l-wl)('(·J<.d v('hicl<" tll<' 

chal'acteristic length L and the value of a are calculatcd il'Olll ('q~.(ii.l:n cLlld (!J.I:») 

as 0.42426 m and 12.25 rn-l, respectivcly. 

5.5.2 A Four-Wheeled AG V 

For 4-wheeled AGVs with al! actuated whcels, the followillg clSSll1llpt.iollS al'!' 

made: 

7r 
b2 = "2 + b, 83 = 7r + 8 and 

:i7r 
b'l = "2 + l> (ii.:Wa) 

{JI = {J, 
7r 

P2 = "2 + {J, f33 = 7r + fi an cl 
:l7r 

(-J-a ="2 + I-J (ii.20I, ) 
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tJsing eqs.(.5.20a) and (5.20b), RI for i = 1," ',6 of eq.(5.8) are obtained as 

R 2 2è 2 2t 2 2t + 2 2t 1 = (1 S ,>1 + (2 S ,>2 + f3 S <,,3 f4 S <,,4 

Ra = fl111 SÇIS,1 + f2112 Sf.2S'2 + (3113 sç3s ,3 + (4114 Sç.IS'4 

R4 = 11~ C
2
'1 + 11i C

2
'2 + 115 C

2
'3 + 11,~ C

2
'4 

Rs = ~ [11~ s2'1 + 11i S2'2 + 115 S2'3 + 1l,~ s2,41 

Ils = 11~ 8
2
'1 + 11~ S2'2 + 1l~ C

2
'3 + 1l,~ 8

2
'4 

131 

(5.21a) 

(5.21b) 

(5.21c) 

(5.21d) 

(5.21e) 

(5.2lf) 

where (, and 1/1 for i = 1,'" ,4 were defined before, as in eq.(5.7), whereas Çl and 

,. of eqs.(5.21a)-(.5.2lf) are, respectively, a, + /3 - {) and a, + f3 + (k - l)n,/2 for 

A· = 1,'" ,1. Note that, aecording to the isotropy conditions given in eq.(5.1O), 

R2 = Ra = 0, thus, from eqs.(5.21b) and (5.21e), R2 and R3 are equal when 

In order to satisfy the above relations, eq.(5.22), the following must hold: 

Il == al + {3 = (2j1 + 1)~ 

,2 == 0'2 + {3 + ; = (2h + 1) ~ 
7r 

,3 == 0'3 + {3 + 7r = (2)3 + 1)-
4 

a 37r (' ) 7r 
14 == 0'4 + jJ + 2 = 2)4 + l '4 

(5.22) 

(5.23a) 

(5.23b) 

(5.23c) 

(5.23d) 

where J, for i = 1,"',4 are integers. Now, it can he shown that if ail JI of eqs.(5.23a)­

(5.23d) arc set to zero then no isotropic design is possible. IIowever, \Vith JI = h = 0 

and )2 = )4 = 1 an isotropie design can be achieved. To this end, a set of relations 

is derived from e(}s.(5.23a)-(5.23d) using al = a and 1/1 = 1/, namely, 

0'2 = 0', 0'3 = 0',1 = a - 7r and 112 = 1/, 173 = 7/,1 = -11 (5.24) 

lising e(}.( 5.24), the expressions for Rtl for i = 1, ... ,6, are rewritten, from eqs.(5.21a)­

(5.21f), as 

(5.25a) 
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e' 
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------------~~,' 

j 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

------~~[~ 
Fig. 5.1 An isotropie 4-whec\cd 3-DOF i\( :V. 

1f' 7r 
R2 = f7][SeC i' + sech + '2 ) + s( ç - 71' )c-y + 8( ~ - 71" kh + "2 ) J 

71' 71" 
R2 = f11[SeS, + se8h + '2) + s(e - 71")"', + ."(ç - 71")·.,h + "2)] 

71' 
R4 = 27][c2, + c2h + '2)] 

1f' 
Rs = 7]2[s2, + 82h + '2)] 

1f' 
R6 = 27]2[8

2
, + 82h + '2)] 

where f = 7](, 7] = -1/{7' sa), ( = d/L and, = ()' + (-1. Now, l'IOIl! (·q~.(!).~Ga) 

(5.25f), the off-diagonal entries of L~LA for the Il-wh<'<'led vehicl(·s vélilish. Mon·ovN, 

the diagonal elements are cquated with (J2. Then, a relat.ioll silllilar t.o cq.(G.IG) is 

obtained as 

Again, the isotropy conditions, eq.(5.1O), of the 1-whceled AC:Vs kite! Lo ( ~ 1/ v0. fol' 

l'eal solutions of ç. Angle ç is given by eq.(.5.18). Now, with (== I//'i alld (-1 == 0, ail 

isotropie vehicle architecture is obtaim'd which is showlI il! Fig. S.I, the ~(!Oll)('tl i(;d 

parameters being given in Table .5.1. The values fol' (J alld JI al'e calclllat.ed as '2/,. 
and y'2d, respectively, with the radius of the whcels 1', and ri as showil in Fig. G.I 
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Whcel, t 0'1 (deg) f31 (deg) 8, t"d"g) d, (m) 
1 45 0 -45 d 
2 45 90 45 cl 
3 -135 180 135 cl 
4 -135 270 225 cl 

Table 5.1 Architecture of an isotropie 4-wheeled 3-DOF AGV. 

5.5.3 A Six-Wheeled AGV 

In addition to the assumptions of eq.(5.1l) the following symmetries are con­

sidcl'cd: 

2rr 4rr 5rr rr 
(JI = (J, (J2 = ""3 + (J, (J3 = 3 + f3, (J4 = 3 + (J, (Js = '3 + (J and f36 = rr + fJ 

Thcn, thc isotropie design of the 6-wheeled vehicles is done in exactly the same way 

as for the 3-whecled AGVs. The design analysis for 6-wheelecl AGVs Ieads to 

Angle e and the ratio ( are given by eqs.(5.18) and (5.19), respectively. 

In summary, isotropie designs for direct killematics of 3-, 4- and 6-wheeled 

AGVs are obtaincd based on the isotropie conditions which are given in eq.(5.10). 

For a rcal solution of angle ç, the isotropie conditions lead to , ~ 1/ v'2 for aH vehicles 

lIIHlcr study. Morcover, eq.(5.18) provides a relation for the angles assoeiated with 

t.he ACVs. Furthermorc, when an isotropie design does not exist for 3-DOF AGVs, 

design variables can he chosen in such a way that the condition nnmber of matrix 

Lit is minimum. This may be aehieved by minimizing a norm of a vector f defined 

hy f = [RI - a2, H2' R3, R4 - a2, R5, Rs - (]"2jT. Finally, once the homogeneous 

llIatrix LA has been used to obtain the direct kinematics reslllts, the substitutions 

t.hat were made to normalize the different elements of matrix LA may be used in 

obtaining the actual physical dimensions. 
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Chapter 6 

Motion Animation of 
Nonholonomic Systems. A Case 
Study 

With the advent of fast processors and, more l'c('('lItly, \Vil Il 1,11(' d('vl'loplllt'lll 

of powerful graphies hardware and software, tlw on-lillC' élllilll<lllOll of 1 II<' Illotioll 01 

dynamic systems has become possible. Motion allimation ('<Ill find applicatiolls ill tllI' 

design and control of mechanical syst<·llls. 1 Il dcsi!!,lI, 1)('[01 (' il S.V!->tPIIl i!-> <Ict.llél Ily SI'l 

in operation, its performance can he .lss('sscd 011 il ('01111)\11,('1' 1I10llitoi wil It 1 II<' Ilt'lp of 

an animation tool coupled with asillllliation plO!!,ltllll III (0111101, IllOlioll t1l1illlaliofi 

allows one to predict the behaviour of an ('xistil1!!, systPIll. ill )(·.d 11111(', 1H'[o)(' tlw 

system is in action, which is important for casc's wlH'I<'IJY .l !->,V!->1('111 i!-> d(·!->ip,lH'd 10 

work in a dangerous or inaccessible cnvironrlH'nt. TIt('1 ('1'01<', it. i!-> ('!->'>('1I1 i.t1 t.o Il.lVC· <Ill 

efficient algorithm that wililead to a rC'ali<;tic anill1.lI,ion 01 tlw !->y!->tC'IlI IIl1d(·(' !->tlldy. 

Moreover, accuracy is another aspect of tll(' anilllatioll cll1d !->lIl1l1l.d IOIl, \VII hOllt W"I<" 
an efficient algorithm is mcaningkss. FllrtlwlIIIO)(', I)(·:-.id(·:-, li 1ll<'1 hodolo!!,y 1'01 tllI' 

dynamic modelling of a mechanical sylll,('lll, a !->('\, of P,('I}('I allz('d ('001 dl!lillC'<; and (Jll<' 

coordinate frame are necessary to dcsni 1)(' éllld l('IId('1 gl d )JII i( .11 1 y Ill(' 1ll0t.iOIl 01 

the system. The choice of gencralized coordinctt(·s, of ('<Jllr!->(', dC'f)(,l1d~ 011 wu iOIl!-> 

issues, e.g., ease of sensing for fcedhack control, or simplicily of )'('PI C'~c'ntatioll of t!w 

equations of motion for fast simulation purpos('<,. AI~o, mlllg a (,C" tain ('001 dinatc' 
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frame t.o rcpresent. t.he dynamic equa.t.ions of mot.ion might lead 1.0 a faster or more 

accUI'ate algol'ithm than using others. Since thcl'e can be many coordinatc systems 

that arc suitahle for the representation of the dynamic model, one has to he chosen 

arnong them, hascd on certain selection criteria. Thesc criteria will be discussed 

in this chapter. Other issues to be addresscd in the l'calm of motion animation 

arc rigid-hody attitude representation, both holollomic and nonholonomic kinematic 

cOflstraints and computational complexity. A suitable procedure, based on the NOC, 

described in Chapter 3, allows the systematic modelling of a mechanical system 

in any rcference frame with any set of generalized coordinates. Various attitude 

rcpresentations and coordinate frames are compared with regard to computational 

complexity. The procedure is illustrated with a case study of a nonholonomic system, 

narn('ly, a disk rollillg on a plane. 

6.1 Dynamic Model of a Disk Rolling on a Plane 
Using the NOe 

The rnethod of the NOC is used here to derive the equations of motion of a 

disk rolling on a plane, as shown in Fig. 1.1, as is describcd below: The velocity ë 

of the maRS centre C of the disk, which is assumed to coincide with its ccntroid, is 

rclat('d to the angular velocity of the disk w, namcly, 

ë = w x (c - q) (6.1 ) 

whcre q and c are the posit.ion vectors of the point of contact, Q, and the centroid 

of the disk, C, respectivc1y. Denoting vedor c - q by r, eq.(6.1) is rewritten as: 

ë =w x r (6.2) 

The kinematic constraint equations in the form of eq.(3.18) are written from eq.( 6.2) 

as 

At = 0 
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where A is a 3x6 rnatrix, narncly, 

A = [R 1] 

and R is t.he cross-product tensor associatcd with r. Th(, Hllguli\!' v('locit.)' w of t hl' 

disk is now chosen as the 3-dimensional vcct.or of ind<'(>('lIdc'llt p,l'Iwraliz('d SI)('('ds, 

which is plausible because the degrec of frc('do\ll of t.h(' syst ('III is t.h J'('(', Thlls, t II!' 

twist of the disk, t, can be express('d as a lin(,él!' trallsforma 1.1011 of w, Il,11\l('ly, 

t=Tw ((i,:\ ) 

with the 6 x 3 matrix T defined as 

It can be readily proven that matrix T is an 01 thogonal (,Ol1lpl<'llIc'nt of A by lJoLillp, 

that 

AT=O 

Matrix T is now calculated as 

Then, the equations of motion of the disk rol\ing on a plall<' aJ'(' l'<'adily dpriV<'d, 

which are given by 

Iw = Cw + 1 + 6 (6.'1) 

where the 3 x 3 generalized inertia matrix l, the matlÏx or ('ollve'('Livc' illc'l'Lia tC'llIIS C 

and the 3-dimensional vectors of gencralizcd fol'cc' due 1.0 gl'é1vity 1 and 01 gC'IH'raliz('d 

dissipative force 6 are expressecl as 

1 = TTMT = le + m(rT 1'1 - r 0 r) (n,S) 

T . ,. ''J' 
C = -T [(M + WM)T + MT] = -le - (J' y le: + 7Il( ri.) r - (J' rR) ((j,(j) 

; = TT wG = mRg (G,7) 

6 = TT w D = nd + Rfd (fi,X) 
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wherc fT is t.he angular V('locity of t.he coordinat.e frame in which the equations of 

motion of the disk arc l'f~I)!'eseI1t(~d, m is t.he mass of the disk and le is the 3 x 3 

inertia t.ensor of the disk about itf> centroid C. Moreovc'r, the sign 0 denotes the 

lcn,<;01' produd of t.he two vectors besidc it. Furthermore, vcctors g, nd and rd are, 

respectivcly, thc 3-dimensional vectors of acccleration duc to gravit y, of Cartesian­

as opposed to generalized-mornent and of Cartesian force acting at the mass centre 

of the disk, the last two items arising from dissipation in the system. 

Note that eq.(6.5) has a physical interpretation, namely, the gcneralized inertia 

rnatrix 1 is nothing hut the mass moment of inertia of the disk about the contact 

point q. FurtIH'rlllo!,(', , is th~ moment of t.he grdvity forc(' about the cOIltact point 

CJ. Equation (6.4) is used for thc simulation of the di"k motion. Dissipation is 

Ilot considered in order t.o assess the accuracy of the variou~ ~chemes which will be 

discussed in §6.3. 

6.2 Orientation Representation 

It is a corn mon practice in dynamics to c1enote t.he orientation of a rigid body 

Ilsing Enl<'r angles. This represent.ation, although not invariant, is amongst the sim­

plest b('('am;(' of its minimal set of variahles. Its lIS(' is not recommended in cases 

wl\f're bodies aUain arbit.rary oriclltations. In these casetl, Euler angles !ead to fre­

((lient algorithmic singularities. The representation of ligid-body orientation using 

li/1(,(ll' and quad1'lllu' invariants, as proposed in Angeles (1988), as well as the use of 

the orimtat,ion matrix its('lf, along with a matlix-diffcrcntial ('quation, arc rccom­

lIl('nd('d as alt(,l'Ilat(· approaclH's to the orientation replespntation by Euler angles. 

The lH'rformances, i.p., spced and accuracy, of two orientation lepresentatiollS arc 

rOlllpared to tll(' ori(,lltatioll rcprescntation hy Eulcr angles 'l'hcsc are the orienta­

t.ion l'('pr<'s('nt.atiolls bascd 011 quadratic invaridnts, best known as Elllcr-Rodrigues 

parallH'tcrs, and th(' full orientation matrix and ils differential cquation. Note that, 

as indicatt'd in §6.~.1, in contrast with the rcpresentation of an orthogonal matrix 
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l:>y Hs quadratic invariants, the use of linear invariant.s 1('cl<ls to higlll'r computatiollal 

complexity and algorithmic singulariti~s, and 11('1IC<" t.he lat tcr h'l~ I)t't'n a\"oid('d. 

6.2.1 Alternate Orientation Representations 

Let Q be the matrix denoting tlw orient.ation of t.!H' t llordillc\!'(' frclll\(' cltt adlt'd 

to the disk with respect to the in('rtial frallle, which is clSSlIlIl('d 10 ht' cl ("Ollt.iIlIlOIlS 

and differentiable function of tinw. Theil, t.11l' tillH' d('ri"cll i\'(' of t.h(' Ori('II\.cll.ioll 

matrix Q, Q, is given as in Angeles (1988), by 

Q=nQ (fU) ) 

where n is defined, similar to eq.(2.7), as the cross-produ('\, t.('l\sor c\sso("icll.('d wit.h 

the angular velocity fT of the coordinate fl'ame in lIS('. No\.(' \.hal., ill this (hapt t'r, t III' 

notation that has already bccn introduced in ('q.(·I.~I) willlH' IIS('<I ill J'('I)J'('S('lItllll-', 

vectors and matrices in a coordinate frame C, 1 (' , v(·etor ("OIIlPOIl('lIt ~ éllld 1Ilrt\.rix 

entries are included in a vector or, corr~spondillgly, il\ ri IIlill.rix i11 r"y \Vit h ri slIl)~nipt 

C, name1y, as [ . ]c, where (.) indicatcs the vcetor or III a 1. l'IX i11. hellld. Now, if I.h(' 

coordinate frame used to express n il" differcnt. [roll\ that 01" Q, ('.g., II" Q lS ('xpr('s~('d 

in an inertial frame denoted by l and n is represcnt.<·d ill é111)' IIIOl/illg ("001 dillal (' 

frame M, then eq.(6.9) is modificd as 

((i.1 ()) 

Integration of the equations of motion, cq.(6.4), will giv(' li\(' all/!,Idar VI,ItH'it.y 

of the disk, w, which is necessary to calculatc t.he allgulcll" VI'lo( it.y of tllI' (O(lJ'(lilIetl.(' 

frame, CT. Now, the time derivativc of the orient.ation llIat.rix, (·q.((i.!)) or ('q.((; 10), 

can be readily obtained and the integr.:ttion of tIH'SC ('<Jlléttioll~ will gIY(' tllI' ori('Ilt.atioll 

matrix. It can be noticed that the matrix di Œ('r<'IIt.ial (~q lIat. iOIl, (·i 1.11<'1' ('q. (li. 1)) 01 

eq.(6.1O), comprises nine scalar differ('ntial (>qllatiolls, wlli!''' lIIelY ;df('1 t. Il)(' ('fri( i('II( y 

of the simulation algorithm. Altcl'Ilatively, 011<' ('clll lise tilt' lil)('cll 01' 1.11<' qllcHlreLl.I!' 

invariants of the rotation matrix Q (Angeles, 1988), lIow('wr, if t.!w lilll'<Ir illViIl ictlll.~ 
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arc Ilsed, algorithmic singularities will occur whenever the disk attitude amounts to 

a rotation of 1800 from its rcference oriental ion. This problem can be avoided if the 

quadratic invariants arc used instead. Moreover, it can he shown that the ca\culation 

of t.he orientation matrix Q rcquires less computations whcn, instead of the lincar 

invariants, the quadratic invariants are used. The quadratic invariants, better known 

as Elller-Rodrigues parametcrs, of matrix Q, are ddincd as 

s==esin(~) and so=cos(~) 

wh('re e is the unit eigenvector of Q associated with its l'cal eigenvalue +1 and fi is 

defined, according 1.0 Euler's Theorem (Euler, 1776), as the angle of rotation. Now, 

t.hc ort.hogonal matrix Q is givcn as 

Q = (2s~ - 1)1 + 2s 0 s + 2S08 X 1 (6.11 ) 

Introducing a 4-dimcnsional veetor 71, which is defined as [sT, saf, the time deriva­

tive of the quadratic invariants is written as 

(6.12) 

whcre ;, = [sT, sof and E is given by 

E == ! [sol -; S] 
2 -s 

(6.13) 

with S heing the Cl'oss-product tensor associated with vedor s. As is apparent from 

eq.((UO), if 71 is repl'csented in the I-fl'ame and fT is cxpressed in the M-frame, then 

the relation appearing in eq.(6.l2) is modified as 

(6.14) 

whcl'C 

[E'] =! [Sol + [Sh] 
l - 2 -[sJI 

The orientation matl'ix, besides its representation by Euler angles, will be evalu­

ated in two ways for comparison purposes: (i) by integrating the matrix-differential 

cquation, (\q.(6.9) or ('q.(6.ID), (ii) by integrating the differential equations of the 

quadratic invariants, dS givcn either in eq.(6.12) or in eq.(6.14). 
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6.3 Equations of Motion of a Rolling Disk in Dif­
ferent Coordinate Franles 

The equations of motion of the disk, <'q (6A), cll'l' !Ielin'd in tbl'l,t· dil\'C'I'l'nt 

coordinate frames, namely, F, a disk-followillg franl<' dc'lilH'!1 as a coordinatc' fl',lllIt' 

that follows the disk without being attached t.o il.; D, 11 disk-liXt'd flalll(', l'ig,idly 

attached to the disk and I, an inertial frame. The dyllalllic equélt.ions of Il\otioll in 

frame :F are derived next, whereas the dynalllic Illodds of t he' syst.PI1l in t.1\(' D- and 

X-frames are given in Appendix ll. The simulat.ion scl1<'llH's for linding 1.11<' ol'ic·nt.at i011 

and position of the disk using F-, V- alld I-frélllH's art' olltlint·d ill !{(i .. \. 

6.3.1 A Disk-Following Frame 

The F-frame is defincd as a coordillatc framc followill~ 1.11(' disk wit.hollt. Iwin,!!, 

attached to it, its origin being located at the c<'IIt.roid of t.1H' disk and it.s Vl'c!.or v 

coinciding with the disk spin axis, as shown in Fig. 1.1. The dirr('('('I\('(' ill 11IOt.ioll 

between :F and the disk is that :F IcmaillS wit.h it.s ori~ill fixc·d at. t1\(' disk (,(·IIt.I'(· and 

its two unit vectors f. and f2 no'main ill the plaJ\c of the disk, bllt do ilOt. spin wit.11 

the latter. The unit vectors v, f. and f2 arc defillcd Iwlow: 

• v is a unit vector parallcl to the spin axis of tl\(' clisk, which is (>('I,/)('lIdiclllal 

to the plane of the disk. 

• f2 is defined as a unit vectol' din·cted froll\ t.lf(' cOlltact poillt. of !.Il<' c1isk wit.h 

the plane, Q, to the ccntlOid, C. This vC'dol' li('s ill tif{' pliUlt' of !.II<' disk ,lIId 

is perpendicular to v. 

• fI is defincd as a unit vector such that 

Now, vector r is equal to 1-f2 , which can be wl'ittell ill tlw F-frél.II)(· a!-. 

((j.l!j) 
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wh(!re r is the radius of the disk and [f2JF = [0, 1, of. Substituting [r].:F in eq.(6.5), 

the inertia matrix in the .r-frame can he expressed as 

(6.16) 

1'0 cvaluatc the malrix of convective inertia terms in the F-frame, as in eq.(6.6), it 

is noted that both vector rand matrix ie vanish when rcpresented in the .r-frame. 

Moreovcr, if tÎ; denotcs the disk spin, then the angular velocity vector of the F­

frame, CT, is equal to w - ~v, which can be understood from the motion of the disk, 

as illust.rat.ed in Fig. 1.1. Furthermore, [O"].:F is written as 

[O'].:F = [w].r - ~[V]F (6.17) 

whcre [v].:F = [0, 0, If. Then, matrix [C].r is computed as 

( 6.18) 

and 

(6.19) 

where 

[g]F = [FJi[gJr 

with [F]r and [g]x = [0, 0, _gJT being the matrix that denotes the orientation of 

tlw J"-framc with respect to the inertial frame and the acceleration vector due to 

gravit y, respect.ively, both represcnted in the I· frame, whereas the scalar 9 is the 

gravit y acce\crat.ion. 

Note that it is a corn mon practice in the dynamics literature to use the Euler 

angles, 0, ~ and t/J, indicated in Fig. 1.1, as the generalized coordinates of the disk, 

while their time derivatives il, ~ and ~, play the role of the independent generalized 

spcf'ds. T'hell, [W]F can he written as 

[W].r = [-Ô, ~cosO, ~,+ ~SillOJ1' (6.20) 
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Using eq.(6.20), along with eqs.(6.16), (6.18) and (6.1~)), the ('<Juat.iolls of mnt.illll in 

the .r-frame are derivcd as 

where 

[l']F = -- 0 mr
2 [5 

4 0 

and 

[l']:Fë = [C']:F e + blF 

2 

[ 

0 
1111' • 

[C']}" = - ·14> .... 0(·0 
<1 • 

5c/>('{) 

b].1'=-mgrsinOp, 0, Orr 

-f).cP .... OcO 
(if) .~(}('() 

fiiJc(} 

(i. ~ 1 ) 

Moreover, e = [0, 4>, ~V and vector ë is tI\(' tillH' d(·J'ivélt.iV<' of e, whih' ... (.) and 

c(·) represent the sine and cosi ne of (.), rcsp(,ct.i v('ly. Fil J'tlIC'I'I1l01'(', 1I0t,C' t.hal. t.!w 

inertia matrix in eq.(6.16) and the Hlôtrix of lOllvectivt' illt'rt.ia I.('J'IIIS in (·q.(G.lS) 

are different from those appearing in cq.(6.21), lH'calls(' t 11<' VC'( 1.01':-' of illd('I'C'lIdc'lIt 

generalized speeds, [w].1' and e, are diffcrcnt. In faet, [W]F = [U]Fe, wll<'rc' 

[U],F = [~Ol c~ ~ll 
:.;0 

Equation (6.21) is that reportc'd in t.hc' lit.('rat.II('(' 011 lIolJholollOlllic syst.(·III:-' 

(Passerello and Huston, 1973). 

In simulation, it is necessary to kIlOW the positioll alld ()J'i(·lIl.at,i()1I of 1.11<' di~k 

in an inertial frame. The position will he ohtaincd flOlII illl.q.!,rélt.ioll of t!w wlocit.y 

expression for the mass centre of the disk in tilt' il1<'1 t,ial 1'1 ,1I111', whiclt is nbt.ailu·d a'i 

where [<:].1' is determined by writing C'q.(6.2) in t1((' F-fr<lll](, as 

Now, using Euler angles as generalized coordinates, lIIat.l'ix [Fly Célil 1)(' wriU('lI a~ 

[

C1> 
[F]r = sc/> 

o 

-80,<;4> 
.sOcrjJ 

cO 

cO::;rjJ 1 
-cOcrjJ 

.<;0 
((i.~I\) 
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Alternativcly, the orientation matrix [F]I can be computcd by integrating the ex­

prcssic)[ls for the t.ime rat.e of change of the ori<'I1tation matrix, [Fh, or for the time 

rate of change of the quadratie invariants, [i7h, which are given helow, 

[1']1 = [F]I[n]F or [1)]T = [~']T[O"],F (6.25) 

Note that, when Euler angles are not usC'd as gpneraJized coordinates, the 

angular rate tb, appearing in eq.(6.17), is obtained by first solving for [w],F from 

the dynamic equations of motion, eq.(6.4), expressed in the F-frame. Then, the 

expression for 1/J is written as 

(6.26) 

Equation (6.26) ean also be derived from eq.(6.20). Now, angle 0 appearing in 

eq.(6.26) can in turn be ealculated in two ways, namely, 

• From Fig. 1.1, 

(6.27) 

whcre k is the unit veetor parallel to the zc-axis. Then, angle () can be de­

tcrrnined from eq.(6.27) by expressing the associated vectors in the I-frame, 

which are rcadily recognizcd as: [k)I = [0, 0, 1]1', [f.dT élnd [vJr being the 

second and third columns of matrix [F]r, l'espectively . 

• Another approach is to solve a differential equation in 0, which is the negativc 

of the first component of [w),F, as in eq.(6.20), namely, 

ô = -[f.]}[w],F (6.28) 

where [fd.F = (1, 0, of· 

6.4 Simulation Schelues 

Simulat.ion SChCIlH'S arc givcn hascd on t.he equat.ions of motion, the orientation 

alld position \'('I)J'('s('r1t.ation of th<' disk using the F-, V- and I-fl·ames. 
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6.4.1 Using Frame :F 

Given the initial conditions, i.e., the initial position, ori(·ntat.ioll lIIatlix ami 

anglliar velocity of the disk, the simulation can 1)(' implc!lwllt,ed in onl' of li\'l' difft'lt'lIl 

ways, namely, 

(FI) Equation (6.21) is integrated to obtaill Euler étllgl<,s éllld tlH'ir t ill\(, dl'ri\',\ 

tives. The constraint equation, which is the expl'<'SSlon fol' t.\\(. wlocity of t ht· 

mass centre of the disk, eq.(6.22), is oht.aincd lIsing t'<Is.(C>.I;», «l.:!O), «>'2:l) 

and (6.24). However, only the first two scalar c<!ltéltiollS of <'q.«(i.22) 1I(·('d lu 

be integrated. becausc the thinl COmpOII('lIt of é has a c1osl'd-fo\"lll illt,q.!,l'aL 

namely, ï cos O. Thercfore, cight scalar fil'st-ol d('1' dilf('\'l'IIt.ial ('<)lIatioll:-' al'l' I,t) 

be integrated. 

(F2) When Euler angles arc not used as gell('l'ali~('d cooldill,II,('s, ail alt('l'IléÜ(' ap­

proach is employed which consists of solvillg eq.(GA) in t.1«' ,r-fl'élllw 1.0 obtaill 

the generalized speed [wl.1". Tlwn, the velocity of t.ll<' Inass ("('IIt.I'(' Célll IH' o\'­

tained from eqs.(6.15), (6.22) a!ld «().2:.3), whel"(' tht' ori('lItatio!l mat.I ix Wh 
is obtained by Illtegrating the vector diff{,l'cntial cqltat.ioll fol' [TIll of ('q.(i.2!i) 

and using the relation in eq.(G.ll). Finally, eqs.(G.2G) ,11111 ((i.27) ,lI (' lISI'c1 

to calculate 1/' and 0, rt'spcctively. This approach will giV<' lIill(' (·quitt.iolls 1,0 

integrate. 

(F3) Alternatively, instead of using t!lC gcometrical reiatioJ\s of eq.((j.27), (~q.((i,2H) 

is utilised to evaluate O. Thercfore, there will be Ol\(' addit.ional diff(!rc'lIt.ial 

equation, thcreby deriving ten scalar ordillary diffc'\'('lItial ('qllatiolls. 

(F4) The time derivative of matrix [F]r, [th in ('q.«().2f)), (·q.(6.2G) and (·q.(G.~7) éU'(' 

used to obtain the orientation mati ix, 1Î' alld 0, l't'Sl)('cliwly. Thlls, fOllrl,('('11 

first-order differential equatiol1s arc to he intC'gral,('d wit.h tlli:. ap(H'oadl t,o 

obtain the simulation rcsults. 

(F5) Similar to F4, but eq.(6.28) is uscd instead of eq.(G.27). 
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6.4.2 Using Frame V 

With the init.ial conditiolls, that is, the initial position, orientation matrix and 

anglliar vclocity of the disk, the simulation can be implemented using the equatiolls 

of motion, the expressions associated with the orient.ation and position representation 

of the disk in the V-frame, as dcrivcd in §Jll. Similar to the case of the .r-frame, 

ally on(' of th(' schcllIcs giVCIl hclow can he useel: 

(Dl) Using cq.(B.7) and the first two components of [ë]z, as given in eq.(B.8), which 

will lead to eight first-ordcr diffcrcntial equations. 

([)~) Using nill(, scalar difrerential cquations, till'ee from the equations of motion, 

eq.(6.4), ('xprcssed lTl the V-frame, four from the time rate of change of the 

qlladratic invariants, cq.(B.9), and two components of [ë]r. Equations (B.11) 

and (0.12) are then uscd 1,0 calculate 'IjJ and 0, respcctively. 

(Da) Inst('éH\ of using g('ometrical relations, differential equations are used to calcu­

lat(· ~, and 0, eqs.(B.10) and (B.13), respectively, which will make a total of 

e\evcn first-order differential cqnations 1,0 integrate. 

(IH) AJt.('rnatiVf'ly, the matrix-differcntia\ equation for [D]r, as in eq.(B.9), is used 

to calclliatc the orientation matI ix. This approach is similar 1,0 D2. 

(D5) Difrerential cquations, eqs.(B.IO) and (B.13), are used as in D4 1,0 find 'IjJ and 

0, resp<,ctively. This will lcad 1,0 sixteen differcntial eqnations. 

6.4.3 U sing Frame I 

The simulation results are obtained from one of the following schemes: 

(1 1) First, vectors [rh and [rh are calculated as r[f2lr and r[f2]r, respectiveIy. Then, 

the cquations of motion in the X-frame are solved for the angular velocity of 

th<, disk, [w]r. 'l'Il(' cxpr<,ssion for [i7h, eq.( B.21), is used ta find the orientation 

mat rix. Il C\'f' , nille first-ord('\' difre\'ential cquatioll& Ilced to be solved. 
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Case o (dcg) qy (d('gjs) ~, (de'gjs) 
A 0.217633 57.295780 - 28.G·178~)O 

B 1.00,1186 103.132·105 -7,1..I8151fl 

C 6.099778 2,10.6,12278 - 211. 9~).1 :1~8 
D 23.465159 550.0:3!)·19;1 -521 :HH (iO~ 

Table 6.1 Initial conditions. 

(12) Alternatively, the time (krivative of ll1,lI,rix [Dh in ('(Jo( B.21) is u\.ilisl'd t() 

derive the orientation matrix, which rcsults in six \lIo\'e dif[('\'('IIt.ial (·quat.iolls 

for simulation. 

6.5 Simulation Results 

Twelve simulation algorithms fo\' animation were dcv('loj>('c\, as c!csnilH'd ill 

the previous section, in order to test their accuracy alld spe·('d. Silllulat.ioll J'('slllt.s 

for a time period of 3.5 s, shown in Figs. 6.1 to 6 .. 5, were obtailll'c\ hy illte·grat.illg t1\1' 

differential equations with the help oÎ t.he DVElU\1 SUbI'Ollt.ill(· of 1.11(· IMSL IMekag(' 

(IMSL, 1980), which solves first.-orJcr diffcn'ntial (·qllat.iolls by t!w HIIIIP;(·-l\lIt.\.a 

5th/6th order method. The intcgration was p('rfo!'flH'c! with a t,ol('rill)('(' of 10-;'. 'l'II<' 

tolerance that is used by the DVERK sllbrollt.in<~ has 110 IIlli\.s. 'l'II<' l<,a'iOIlS dJ'(' 

the same as those that have bcen giv<'ll in §4.1A for t,JJ(' DIVPHI\ suhrOllt.ill(· or t,l1<' 

IMSL package (IMSL, 1990b). The reslllt.s, 8howll in Figs. G.I \.0 G.:J alld (iA(a), W('J(' 

obtained with a step size of 0.007 s. '1'0 study the effect of Ut<· st('P si,w, a !-I!II," "'1 

step of 0.00175 s was taken, the corrcsponding Sillllllcüioll rcsul\.s lH'ing S!tOWII ill 

Fig. 6.4(b). 

To test the performance of the computer animation soft.ware·, i.e., w!tdlJ('1' Ut<' 

animation is a true representation of the l'cal motioll of tlte disk, il spI, of init.ial uHldi­

tions from Table 6.1, which cOlTcsponds to the steady stat.es, e.g., cil'< Illar motiolls of' 

InVERK is another version of thc DIVPRK &ubroutlllc of the IMSL (I!J!JOb) pa('kaw' t.hat. ha .. ., 
been used in the previous chapters 
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the disk, arc supplicd to the simulation prograrns. For that purpose, a steady-state 

analysis is donc in §A.6 using the equations of motion in the F-frame, eq.(6.21), 

where Euler allgles are the gencralizcd coordiJlctte~, as in ~cheme Fl. Henceforth, 

FI to P5, Dl to D.5. and Il and 12 will he unde'rstooe! etS the simulation seheme:; 

lTIcntioncd in §6.4.1, §6.4.2 and §6.4.:3, rcspectivcly. Initial positions, velocities and 

ori('rJtat ion matrices for the simulation programs, bctsed on the schcnws F2-F 5, D I­

D!) and 11-12, ar(' similarly obtained, which also correspond to the circular motions 

of the disk. It is pointed out here that no diffcJ'('nt steady-st.at.f' analyses were donc, 

but Euler angles and their time derivatives in Table 6.1 \Vere transformed to the 

initial conditions, which aJ'(' compatible with the other routines to g('nerate circulaI' 

trajpctories on t.he horizontetl plane. Simulation lcsult:, frolll the diffelcnt schemes 

an' givcn hased on accuracy and speed. 

6.5.1 Accuracy 

The dcviat.ion of the plots of the Yc- vs. xc-coordillates of the centroid of the 

disk, Figs. 6.2 (a)-(d) for the initial condition A of Table 6.1, flOm the circulaI' 

t.rajectorics, i.e., from a steady state, reftects the instahility of the system under 

st.lldy. Similar rcsponses were observed in the cases of the initial conditions il and 

C of Table 6.1 and, finally, in D, a limit eycle is observed, as in Fig. 6.4(a), which is 

in agreement with t.he initial conditions. In fact, \Vith aIl the schemcs, a delay in t.he 

growt.h of instability is obs('rved as one goes from initial condition A to Band from 

B to C, but. with initial ~ ondit iOIl D no deviat.ion is not lccd even for a simulation 

tinw of 70 s. The instability can he attnbuted 1,0 both the physics of the system and 

1l11llwrical cr1'Ors. SlIlce il. is very difficliit to input the exact values for the initial 

rondit ions corn'l'ponding to the steady states, the given vellues can he considered as 

pcrturbcd values and the systelTl may deviate from the circulaI' trajectories due to 

it.s intrinl'ic instabilit.ies. To dd,cct the nature of the instability, an analy.,is, based 

on t h(' princi pIc of conservation of encrgy, \Vas donc wh(,11 the disk was rolling on 

" plalle in tht' ctbsence of cx!'('rnal and dissipative forces. The total energy at any 
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Fig. 6.1 Plots of the differencc in tot.al f'1)(,l'gy (TE) v<;. 1,111)(' fo)' tlll' illif i,d 
condition A with step size of O.OOï s and initial t.otal ('1I('Ip,y of O.(J()!)S2.r),1 .1. 

instant is compared with Üw initial total ('II('I!!,)' alld t.I\I' ddl('II'III(' ill ('I)('I'p,y, III 

Joules, is plottf'd against lillle, III s('collds. MO]('O\'('I, wlll'[1 (IIC' (()(,d ('I]('[!!,y 1('III,lill~ 

constant but the motioll of t1w disk d('vial.('s fl'oll! il..., ~((',I(I'y ..,1 ail-, ill..,I."bilily dllC' 

to the dynamic behaviolll' of t}1<' ~y~f<olJl i.., d('I('( tc'cI 011 (111' ullJ('f' Il,1IId, if 11J(' lo\',d 

energy changes as the disk df'vi,II('!o> f)'(JII) il'> (11'Cll1<11 lllol iOIl. 111('11 t!w 1I111J)('II( ,d 

instability is confirrned. Furtllf'rmol'(" if tJ)(' toI ct! CIIClgy of 1 Il<' di~k, wllic h, f(Jf' p,iVl'1I 

inertial properlies of the disk, dq)(,llds 011 ils po~i\'ioll alld Vt'Ioc It.y, 1 .... higl)('l', I.})('II 1 III' 

system is less sensitive to the ina(,(,lII'acif's in 1 II(' illiti,d condll 1()1I~, wltich i.., ('viel('111 

from Figs. 6.1 lo 6.4. For example, in Figs. (j,J(b) aile! fi :~(I)) Ill!' dirr('I('I!«'S il! 10\.," 

energy at time t = 2.653 s (malked ''''') ale I.:H7SH / 10- 11 .J dlld 7 ()m~:J1 / IO-'J ,l, 
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fC'SI)('ctivply, fOf :-.( 1H'T1H' F'2. 1'\01,(' that, Jr\ hoth the cases, tl\{' difr(,l'cnce in tot.al 

erH'fgy is Vf'ry small, how('v<'r, t.he Yc- vs. xc-coordinates in Fig. 6.2(b) for scheme 

F'2 al. t = :Ui5:J :-. (IlIrtrk('d '*') do Ilot CO\'l'('spolld 1.0 tlte cilClllar trajedory--it is 

Ullfl('C('Ssary 1,0 d,'rive' tl\(' ('quat iOll of ct circl(' from the givell initial conditions in 

ordpr tu (,UlIIlJll'llt. Oll the Cetrtcsiall position of the lIlass C<'lltle of the disk in the 

,1'c - JJc-plitlH', dS 1.1)(' figuw is s('lf-explanatory-- , wlH'reas Fig. GA (a) shows a stal:le 

motioll of t1H' (lisk clt the point. Illark('d '*'. 1\. :-.imilar (lxplallcltioll (aIl be provided 

for 1,1)(' c!plitY in t IH' growth of t hl' instability \\'I)('n the (,l'I'or in tlH' total encrgy is 

sllfficiellt.ly Sllletll, i.(' , withill some toh'rancc. lIowevcr, a 10\\'('1' :-.tcp ~ize improves the 

silllulat.ioll f('sldt:-., which (ail 1)(' Iloti(('d flOlll Fig. Ci -I(b), ill lülltta:-.t 1,0 Fig. 6.'2(a), 

showillg t.hat tll(' gr()\'\'t h of t.!l<' ill:-.tclbdity has 1)(l('Il dclaycd. 

6.5.2 Speed 

'1'0 comm<'llt on the sp('cd of thc algorithrns FI-F5, DI-D.~ and Il-I:Z, as de­

sCl'ibed in §6.4, a sludy of CPU limes was dOIl('. In sO!ne cases, artel' a certain time 

of silllulat.ion, t.1H' tot.al {'n('rgy sudd('ltly changes ils value, indiccltlllg the initiation 

of nlllll('l'ical instabihty, which d('!>ends 011 the Illitial condit iOIlS, a~ can he seCll in 

Flg,S. (l.1 élnd (i.2. Fmt h(,lIllO, ,', il. call be readily ulld(,l'st.ood thdt, if simulation is 

(,ollt.inlH'd l)I'yollel the jUlllp in Uw total (,lIergy, tll<' executlOll time Ilot ollly dcpcnds 

011 the COIl1 plexity of the a Igol'i th Ill, but also on i ts nUIlH'l'ical scnsi t i vi ty. T!t('reforc, 

in ord('r to (OIllIlH'llt Oll tll<' \olllplpxity of the algorithm. a simlllat.ion tilll<', e.g., 

2.1 s, is ('ho:-'('II :-'0 th a t t 11<' cl i:-.k lI\otion is stah le, i c., i t follows a ci 1 culaI' trajcc­

tory in ail (,el:-'cs. I1o\\,('V('!'. tll(' (,PU time necdcd to {'xe('ut(, a program is differcnt 

ct!. difr('!'('lIt tIIlH'S, h('('cll1~~l thi~ time depends 011 the load of the computer system. 

So, delta W('1(' tclk('11 at night. wll<'11 t h(' computc'r syst.em WdS a:-,sull1cd to he undcr 

('onstclnt load clll<l by u~IIlg dO\lI>I<'-pl< ci:-.ion OB et StlN :3/75 \\'olbtcüioll. '1'0 Cllsure 

('orn'cl <Iatct, tht' l'ep(,cltabihty of the n'sltlts was considcn'd. The data were taken 

unt il al least fin' ('pp tillws [('II \rit hill a small l'l'roI' range, e.g., 3 . .5%. Finally, the 

CPt 1 tinH's \\'('1'<' (cllculat<'d a:-. t IH' é\V('l'age of t!w five readings Illcntioncd above. The 
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Fig. 6.2 Plots of Yc vs. Xc for the init.ial condition A \Vit.h ~t.('P siz(' o[ (l.007 s alld 
init.ial tot.al energy of O.00982M .1. 

results of the comparative study of the CPlJ tilJH'~ with tl)(' illit.ial cOllditio!l A illt' 

shown in Fig. 6 . .1. It \Vas noticed that t Il(' dirr('J('IlI illit.ial (olldil iOlls t1l1dpr st.lldy do 

not significantly affect. the CPU lilll<'. Also, \Vllh 10\\'('1 !-ol('p ~JZ('s 1 If(' !('quiJ('d CP!) 

times increase by the factor of tl\(' c!c'Cn'IlWllt of tilt' ~I('p ~iz('. 

6.6 Analysis of the Results 

The classical problem of a rigid cl isk rolllll~ 011 a horiZCJll1 ill plall!' wa~ 1l~('rI ,IS il 

case study highlighti ng the met hodology Illld('r1yi II~ ('0 III pli 1 ('1 illl i III il 1 iOIl. J\ Igoll t.h III 

accuracy was rncasured as the tilTH' betW('PIl 1 If(' ~I art (J[ 1 II<' '->1111111,11 iOIl 'Llirl 1 II<' 
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Fig. 6.3 Plots of the difference in total energy (TE) vs. time for the initial 
condit.ion D with step size of 0.007 s and initial total enclgy of 0.010.5278 J. 

growth of th<' instability }wyolld a certam bouncl. This instabihty \Vas detected 

usinp, a sd of initictl conditions kading 1,0 a cilcttlar trajectory of tll<' mass centre of 

the disk under st udy on tlH' horizontal surface. Thus, the insiability OCCl1l'S when the 

disk d<'viates fl'OII\ lts circulaI' path. FtII thermore, algorithlll efficiency was clefînecl as 

t.he (,PU t.illH' tak<'11 by ilw algorithm to complete the silllulation fol' a certain time 

of t.he stable clisk motion. In the present case thls time is 2.l s from the begimlÏng of 

the disk motion corl'csponding to a circulaI' path. Animation algo!'itlnl1s \Vele then 

l'olllpalpd reg::lrding t heir atCllI'élCy and speed for different independent generalized 

roordinates and dlffe!'ellt frames. The accuracy of the simulation algorithms, based 

011 sclH'lll(,s Fl alld Dl, corresponding to the initial conditions A, B, C and 0 of 

4 

4 
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and initial total cncrgy of 0.010,)278 .J, (1)) t.11I· illitial conditiull A \Vit.h ~I('p sizi' ul 
0.00175 s and initial total ('n{'lgy of O.009~2'),1 .J. 

Table 6.1, is th(' sa me, which is ('vidpllt 1'1'0111 tll<' l'ad t.h"t. tll<'Y h.!\'(· tl\l' S,IIIII' ~('I 

of scalar differcntial equations. Sim1llat ion r('sults \Vit Il {·xt.n·lIl1' illit i,II ('olldlt.ioll ..... 

i.e., A and D, arc shown in Figs. (i.1 and 6.2, cllHI Fig,s (i.:1 tllHI G.·I, Il'SJl('('\ iv(·h'. 

The results fol' the initial conditiolls Band (' of Tabl(' (i.1 il 1'(' ~illlil<ll', hlll tlw\(' 

are dclays in the lIIitiatioll of illstabilit.y, as Illl'Iltioll('d in ~i(i.:).I. II0wI'vI'I', t I\I'J"(' 

is a differcncc in tlH'il ~peed, as showll in Fig. (i . .) fol' t.1](· illlt.ial ('olldllioll :\ (JI 

Table 6.1. This differcnce IcslIlts fl'om t.!w (olllput.at.ioll (JI' t.II(' 01 il'lIt ,II i011 IIlall'lx 

[Dh, which r('ql\ir('~ more operat.ion" than cél!clliating III.!t IIX IF]I. l\loII'()\'I'I', fOI 

a realistic animation, it IS reCOlllTlH'IHkd to 1I~(' t II(' 'V-l'l'HIll<" 1)('( dllS" t.1](· l'III'('\, (JI 

the spin action of the disk will 1)(' c\ "il 1 tl~i\lg IIIC' 01 i(·llt.lI iOIl III,lIl'lX [D]I. 011 Il](' 

contrary, if the' ,F-frtllllt' is u~ed. Illctl rix [Fh ~llUlIld 1)(· po"t Illlllllplll'd by 1)],11.1 ix [plf), 

rnatrix P being dcfilled in cq.(B 1), to ohtclill 111<' ~éllll(' (·rrc·1 t. III fait, Il](' I(· ... \lltill,!!, 

matrix, artel' multiplication, kad~ to mat.l'ix [Dh. '1'1](' (,Olllptllét1.iVl' 11'~ldl", IJdM·d 011 

accuracy, for F2-F5, arc ~hOWll ill Fig~. G.l(iJ) alld (i.~(lJ) lOI tll(' illlti,II «(JlldJl,i(JIJ~ 

A and in Figs. 6.3(b) and 6..1(a) fol' tl](' initial (ollditiolls 1>. !\lo/('o\'('I, t1)(' J('SIIIt~ 

for the algorithms hascd Oll S<1](,llJ('~ \)~ J)!) al(' :-,hOWll in Fig ... (j.I(), h.:l((), G.:l(() 

and 6.4(a) and in Figs. 6.1(d). 6.2(d), (i.:l(d) and (i.'l(a) fOI tluJ'-,(' b,ISC'd 011 ~(II<'III<'''' 

11-12. Apart from schcmcs FI and \)1, hc!lI'lIH'S 1"1, ))5 tllld I~ I('ad 10 t\w 1II0 ... 1. 
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acnlratc simulat.ioll lCSldts in thc F-, V- and I-frames, respcct.ively. It is noted 

t.hat. scl)(,/lH' D5, which uses diffcrential cquat.ions illstcad of gcometrical relations 

1.0 evaluat(· angl('s 1/' and 0, re:,ults in a more accurate simulation algorithm, which 

is sllrprisillg I)('cause the us(' of diffcr('(1t.ial cquations involves int('gration rcsulting 

in nunulatiV<' ('l'roI':' On the contrary, the use of geometrical rclctt.ions does not 

involvc any such ('rl'Ors. This unexpcct.ed rcsult can he explained as follows: Angles 

~, and 0 are comput,ed in scheme 04 from cumbersome explcssions, eqs.(B.ll) and 

(B.12), which r('quire vcetor dot and cross produets, and the evaluation of l10rms 

of V<'ct.ors. V('ctors dl, d 2 and v, appearing ill the geometrical l'clat ions, in t.he I­

fralll!', are t1w first., s('cond and thir<l columns of matrix [D]r, respcctively, which arc 

oht.aillcd from t.he inkgrat.ion of t.he matrix-differcntial equatioll. On the other hand, 
. . 

expn'ssions for ~'and 0, eqs.(R10) and (B.13), respect.ively, require less cumbersome 

computat.ions, whilc \'('dors f), f:.! and v in the .r-frame, as proposed in scheme 05, do 

not requin' any illtegration and have very simple forrm, Ilamely, [1, 0, of, [0, 1, of 
and [0, 0, 1 V, n'spectively. Th('refore, schell1e D4, which requires the integration 

of nille scalar diffcrcnt.ial equat.ions, t.hree for each colunln vcetor of matrix [D]r, 

produCl's more 1l11IlH'rica\ ClTors t.hall scherne 05, which needs simpler operations 
. . 

t.o {'va\uatl' ~, and O. in addit ion to t.he integratioll of the latter two differential 

('(]llat ions. Furt h('1' col1lparisons \)('t.WC('Il the rcsults based on schemcs F4, 05. 12, 

, 
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FI and Dl show that the last t\Vo sell('I11es, wl)('l'{' II\(' <'qllal iOlls of 11101 iOIl ,\l'l' ill 

terms of Euler angles, are better than the ot.lI('rs. A ('olllpal',lIi\'t' sllldy 011 IlIt' ('Pll 

times shows that the simulation software hdsed 011 s('hclIH' FI is 1 lit' [,1:-11':-1 al~lll'il hlll 

for simulation pur poses and in the ('asc of ail <llIimalioll plOgl'cllll 10 \)(' ((lupll'd \\'ith 

a simulation schemc, scheme Dl should he' cOllsid<'! "d as tilt' mllst ('lfieit'Ilt ,d~ol'il hlll. 

Howcver, as poi nted out in §6.2, the use' of EII\('I ,lIIgles i 11 It'pl't'SI '111 IUp, 1 lit, 01 i(,11 t,II iOIl 

of a body is not suitable in many applicatio1ls. Choosillp; tilt' (OIlIJH>lH'II\.S of 1 lit' 

angular velocity of the disk as the ind<'J)(,lldell\. /!,<'II('rclliz<'d spI'cds .lnd \\'1 il illp, dO\\'11 

the equations of motion in a suitable cool'dilldl<' frame providt's 011<' \\'il Il dill't'II'1I1 

means for obtaining dynamic \l1odf'ls of llJ('cbdni(,cll systellls. 111 "ddltioll, ,tllt'I'II,II,I' 

orientation representations wel'(, intlodllCt'd in ~i(i.2.1, wlIicli Il.1\'1' I)('t'II 1I1 ilis('d 10 

implemcnt thc simulation of tl](' disk motion, ,I~ ill :-c1H'II\(,~ F~ F!i, \)~ D!") .1I1t! II I~. 

Furthermorc, bcfore sclccting an algol'it.hlll fol' allilllélt.ioll. il is ,t!way:- wis(' 10 Jlt 1 fOI III 

a comparative study, as inchcat<'d abov(', ill 01<1('1' to d('('idp 011 tilt' I.lslt':-t, 1 lit' 11\0:-1 

accurate and the most practically f('a~ible' simulat.ioll sci)(,Il\(,. FOI 1 h.II" t II(' IlIt't.IIod 

of the NOe is suitable to cxpn'ss the dYlléllIlic ('quaI iOlls of IIlot 1011 III .111.1,1 < 001 dill.II<' 

system using an arbitrary :'.et of g<'Il('lalIz('d ('()ordilldlt's, cl~ I~ 111.1<11' <'vid('II\. ill ~i(i.I, 

§6.3 and Appendix B. Mo!'eover, it hels \)('('11 110\'\('('cI th,\\. :-.( Ilt'II\(,~ F,I, D!") ,lIId I~, 

which integrate nille :'.calar difft'!'ential ('qllatiolls \'0 oblillll t.!w 01 i('111 dl iOIl IIldt Il'<, 

lead to more accurate !'csults than sc!}(,IlH'S F2, F:J, ))2, D:J cl lit! Il. wll" h I<'qlll\(' (Jill) 

four differential equations to 1)(' integl'at<>d and "'01ll(~ acldillOll,d t(JlllpUt.d,I(JII~, ".., ill 

eq.(6.11). Furthermore, schenw 05 p!'odll('('d 1ll01'(' ct< ('malt' J('~I1II:-. 1 h,," ~( IWllw ().1 

In fact, from Fig. 6 .. 5, it is cleal that tht' lIS(' of lt'dullcI,lIlt. cldr('II'IIII,L! t'ql1a!'I(JIl~ do('''' 

not lead to a significant inCl'case in tll<' CPt! tllllt'. 11('11 ( (', il. 1'" [('( 01l1l1l('IHlcclIlO!, tu 

always discard the integration of diffcl'<,ntial ('qllatiolls OV('I ,llpplJl ,L1( (JI' ,11;<'011 \('\, 1 i< ,t! 

solutions. 
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Chapter 7 

Conclusions and Suggestions for 
Further Research 

The thesis is eoncludf'd with a bricf sumlllary of th<> completed work as weil as 

tlH' practicaillse of the results. Suggestions for fmther rcsearch are also outlined. 

7.1 Discussion 

A review of dassification of meehanieal systems based on kinematic constraints 

is given in Chaptcr l in arder to clearly lIndcrstand the iC'rminology and the dis-

C\lSSiOlI in COIIIICct.ioll \Vit h t.he kinematic and dynamic analyses of nonholonomic 

rohot.Ï<" llH'chanical systellls (,olltaining both holonomie and I\onholol\omie couplings. 

Hohot.ic 111<'< hanical systC'IIlS, i.e., mcehanical systems undcr compllt<'r control, are 

classifif'd bas('cI on the kinematic eonstraints which arise from the kincmatic cou-

plings. Thus, a clas~ of robot ie ~ystcms, term('d lion holonomie l'obotie mechanieal 

syst('lIIS (NlIH~tS), is (i<-fiJl(·d. Chapter 2 givc's ail ovcrall \'('vic\V of differellt formu­

lat.iolls for dyllalllic 11l0<klling of non!tolol\ornic mechanical sy~tcms. The review has 

h('('11 gi\'('11 wit.h llH'nts and d('II\('1 its of diffcr('nt dynamic 1\10dellillg techniques. 

A ncw llH't hoo for the oynamic modclling of mcchanical systems is introduced 

in Chapter :1 as a six-ste!> methoo. Tht' n1('t hod is based on a novel formulation of 

kinel1lat ie COllst raints. III the adopted kinematic formulat ions, two lemmas are given 
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in connection with the holonomicity of kinC'llIc\tic (,ollstraillts. ))Yllalllic lIIodl'ls 01 

non holonomie rncchanical systC'llls arC' tlH'1l <I('\'('lop('<I usillg tl\(' Il cil III' cl 1 oltltop,ullal 

complement (NOe) of the kiIH'lllatic cOllstraillt IIlcltri\:, ",hicl! is fOllllulatl'd ill ~i:L1 

The dynamic modelli ng l,C'chniqu(' d('\'('lop('(\ 1«,11" km (('d t 1((' Il (('1 hod of IIJ(' N 0(', 

was suitably used for the' dynalllic I\lo(kllillp, of 1111'( h<llli( cd ~y~tl'I1IS \Vit h 1111111 ipk 

kinematic loops. Morcover, ll11'chanical syslc'llI~ Wlt h Il'd1llldallt acl Il.lt IDII C"II alsu 

be modelled with the aid of the' NOe in cOlljull( 1 iOIl wit h cllI opl \llIizat 1011 lt>dIlII<IUl' 

Thus, a complete modelling tC'chniquC' is intlOdlll'('d in 1 Ills t11l'~is, \Vhil h \~ ('clpallll' 

of modelling a broad class of robot ic Ill<'ChallICcll sysIPllIs l'Olllpo~l'd of 1 ip,id lIodil'~ 

and both holonol11 ie' and non holollOIll ie l'Ollst l'cl i III s. 

The m<'lhod of th(' Î';OC is tlwH wwd 1,0 1110(1.,1 dilrl'll'lI1. N11BI\IS,.ls ill (,hclP­

ter 4 for dynamic silllulrüions. 110\\'('\,('1" ,IS poilltl'd out ill SkI' :) 01 ~i:t~, thl' l\Iodl·1 

thus developed cali be l'xplOlt('d for t Il(' (k~lglI of I\l('( IlélIl IC,t! ~) ~II'IIIS (Scdlcl ,llId 

Angeles, 1991d), The pNfo1'Jllanc(' of AUV~ \Vas t('~I<'d 1I~illp, 11((' killl'lIlilt il' illld 

dynamic rnod('ls dcriVl'd h('r(' whIl(' followlIIg diff('I('lIt p(dh~ III (lldl'\ tu ,,\'old dl" 

continuous motions of the \'chicks, whi<ll ar<' h,lI1l1f1l1 to t Ill' drivilll!, Illot or~, PIOPl'l 

path planning WétS dOliC, wlH'rehy t1H' S)':-.Ic'III alw,l)'s slc\rll'd alld ~t(lPI)('d with Z('III 

velocity and acce)eration. 

Since dissipation Icads to d'lInping of t1w huilt-up t'l'Iol IlpOIl illlq!,I.d iOIl of 1111' 

ordinary differential equations of motion, it b('(oll\('S dilficlIll 1,0 aS~I':-'s t/w ac c 111<11)' 

of the various schemcs that arC' d('\'('lopc'd for silllulat iOIl PIIlI)()~C·S. 011 t.!1C' ot.!1C'1' 

hand, it is intuitively casy to judgc the validity of li\(' ~lJnul(tt 1011 IC'~IJ!I,S wit h 110 

dissipation, bccallse, if the dynalllic modd of a S)'~t('111 il\( IlIcI(':-, di,,:-'lp;d,ÎOII, 1111'11 

deviat.ions from th<.' intuit.ive r('sldts nlllllot he c'xélctly a~c ('1 Llilll'r! ('It 1iC'1' <1111' tu t111' 

characteristics of the dissipatÎw' \flodC'1 or dllC' t,o t.hC' <IyJldlllll \11011(·1 11,:-,(·11, :,ill((' 

nothing is known about the natlllc of tl\(' 1,001 c!c-v('lop('c! h('I(' Tlllh, III "11I1,1' (JI 

the ability of the Il1<'t.hod of t!w NOe to (LCI'Ollllt fOi di..,:-.iIMtioll, a" c1oJl(' III Cyl il 

et al. (1989), using the 3-wlH'elC'd 2-DOF AGV of ~i't.~, di:-."ip,dioll IlIcj(kls arc' 1101 

incl uded in this thesis for the' si 11111 la t iOIl of t1)(' :--: IIltM S Il Jldc'I ~llIdy 
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With regard to :J-DOF AGYs, a software packagc, O~vlNI, is developed for 

ACYs consisting of any nurn!)('r of omnidircctional whccls, whieh analyses a vehicle 

in four different lC'veis. OMNI rnay hclp a designer in sel('ding an AGY for a par­

ticular application. The desIgn of 3-DOF ACYs based on the isotropie kinematic 

trallsformation matrix for dilect kinematics i8 done in Chaptcr 5. The design aims 

al, providing robust direct kinematic control with respect to manufacturing and mea­

sllrrment ('rrors. Note that. the design of the 1-whecled 3-DOF AGY, as shown in 

Fig. 5.1, is nove! in that, as opposed to existing designs, the whcel axes are not 

parallel. On the other hatHl, dcsigns wit.h tlllcC driven wh('cls exist whose archi­

tecturaI pal alllders are similal to those obtairl('d here. Note that the conditions of 

isotropic design for direct kinematics of 3-DOF AC Ys are general, in a sense that 

('q.(5.1O) can be us('d for isotropie design of ACYs consisting of an arbitrary number 

of oIllnidirectional wh<,els. 

Finally, some issues associated with computer animation are disctlssed in Chap­

ter 6. It, is well-kllowlI that fast, and accu rate animation and simulation programs are 

lIeNled t.o produre a realistic representation of a moving system. It has been pointed 

out that a coordinate frame used in representing the dynamic equations of motion 

aff('ds the simulat.ion algorithm. Morcover, alternative approaches for represent.ing 

t Iw orif'lltatioll of a rigid body for fast simulat ion arc introduccd. 

7.2 Suggestions for Further Research 

The author would likc to suggest further research work to extend that reported 

Il('l'e, nallle/y, 

(i) COl1sidcl'éllion of diffcl'cnt types of dissipation models in simulation. 

(ii) The extension of the kinematic formulation and the dYllamic modelling tech­

nique, introduced in this th('sis, t.o nonholonornic systems with rubber tyred 

whc('ls. 
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(iii) The developed tool fOI' dYllamic 1lI0dellin,l!, of Ilwchallical systellls Il<\s polt'Ilt i,lI 

in solving fol' constraint moments and forn's arisill,l!, dut' to the nlllst l'aillts a' 

the joints. Thus, the mcthod can he eX\.(,llcled t 0 d('sigll ('0111 pl<'x IIIt'(' h,ullcal 

systems like AGY s, whose simulation 11l0d('1s al'(' d(·v(·lop(·d ill t his t.ht'sis, 

(iii) The number of ro11ers in a whec\ ancl t.1l<' profil(' of Ut<' l'oll<-I's Célll IH' dt'si/!,I\('d 

optimally. 

(iv) Finally, with regard to the simulation of I.he syst.ellls, éI pt'I fOl llIélllc(' nilt-rioll 

may he estahlished in deciding upon the 1)('81. reft'I'('IH'(' l'l'dll\(' 1.0 l'<'I>I'('St'lI1. tilt' 

equations of motion. 
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Appendix A 

Basic Derivations 

A.1 Reduction of Matrix Ah 

From ('q.(:J.8), matrix Ait is given as 

o 
1 ~] (A.1 ) 

Now, obviollS clen1('ntary operations are performed on matrix Ah that do Bot pcrturb 

it.s rank, i.e., 

(A.2) 

rank( [El 0 0 g]) = rClllk([~: 0 0 gJ) = RI 1 B I- 1 +RI 1 0 . 
(A.3) 

[E 0 0 g] ) (A.4) rallk( 0 1 0 

c\l1<.1 hence, the rank of matrix Ait is cqual to the rank of the 6 x 6 matrix Ah, as 

obt.ailll'J fr01l1 l'q.(A.4), Ilamely, 

Ah = [~ ~] (A.5) 
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A.2 Reduction of Matrix Ali 

From eq.(3.10), mat.rix An is givPI1 by 

Elementaryoperations arc p('rforll1('d on Illat rix A'I a~ 

rank([R, 1 B,-t -l])=rélnk([R, 1 

rank([ RI 1 0 0]) = rank([ 0 1 

D,_1 0])= 

o 0]) 

lïO 

(:\ (j) 

(:\.7) 

and hence, the rank of mal.I·ix Ali is t'quaI to the rallk of t.!\(' ;{ " .~ id('lIt il~' \11.111 i, 1. 

A.3 Eigenvalues of tensor Ei 

First, the cross-product tell:,or El, asso( iatC'd \Vit.h cl 1IIIil \'('('101' c, i~ d(·liJl(·d 

by 

E 
= D(e l x x) 

1 - fJx == el x 1 

for an arbitrary 3-dimensional vedo!' x. TlwlI, il proof of E~I =- -E" is 1-',iv('II, \Vhi( h 

will be used to ca\culate tht' ('ig('llva!t\('s of El' 

Proof: Referring to the definitiOlI of E" cq.(A.8), fOI ,Ill i11 I>il l'il 1 Y :I-dllIIf'IISioll .. 1 

vector x, 

E~x == (el x 1)[(e, x 1)x] 

== (el x 1)(el x x) 

Furthermorc, eq.(A.9) can be writtcn as 

E;x == el x (el x x) 

_ T 'J' 
= (et x)e, - (el el)x 

( A.!)) 

(A.IO) 
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where 121 denotcs t.he tcnsor prodllct of the two vectors beside il, which can alsa be 

expressed as 

Now, the tensor E~ is obtained as follows: 

== -(l-e, 0 e,)(c, x 1) 

== -et x 1 + (et 0 et)(et x 1) (A.ll) 

For any arbitrary vedor x, the expression (el 0 el) (el x l)x is givcll by 

(e, 0 e,)(el x l)x == (e, 0 e,)(e, x x) == e,e:(e, x x) (A.12) 

According ta thc dcfinit.iol1 of vedor cross product, vedor (el X x) Îs orthogonal 

ta vedor e" and hcncc, (el 0 e,)(e, x x) vétnishes. Thus, since x is arbitrary 

(el (9 e t )( el xl) vanishcs and eq.( A.II) t.hen l'l'duces to 

E~ = -el x 1 = -El (A.13) 

To obt.ain the cigenvalucs of E" let À and y =f 0 be an eigenvaluc and the associatcd 

e'ige'nvcctor of El, r(\spectively, i.e., 

E,y = Ày (/\.1·1 ) 

PJ"(\lIIldt.iplying both sicles of l'q.(A.14) by El yielcls 

(A.15) 

Hq)('ating t.he' saine operation gives 

(A.16) 

10'1"0111 eq.(A.13), E;l = -E" and hence, the left-hand si de of eq.(A.16) can be substi­

tukd by -ES which l'csults in 

(A.17) 
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Using eq.(A.14), eq.(A.17) is l'cwrittcn as 

or 

(A I~) 

and, since y =J. 0, eq.(A.l8) leads to 

which thus produces the three eigenvalues of t('lIsor E" lIélll\('I\', 

). = 0, Rand - v=T 

A.4 Kane's Equations of Motion of a Two-Wheeled 
Mechanical System 

Let two independent gen('laliz('d morditl"t!':, 1)(' (JI alld ()l, d:' :,ItOWII III FI]!,. ,1.1 

According to t.he mct.hodology d(':,crilwd in ~i~.:!.(), III"t Il:': U,/ <llId v('dol q' <II (' i1'i­

sumed to be the 2 x 2 i(kntity Illatri:.: amI the ~-dill](,lIsi{)IIé11 Z('l'o V(,(·t.Il", Il'SI)('( t IVI'lv 

Thus, q = iJ J. The élllgular veloci ty and tl1<' vploci ty of t.1 \(' IlIéI:':' ('('IIt.1 (' of t 1 \(' 1<-1 t 

wheel, i.e., hody 1, are giV(,ll in eq.(4.2.5) wltich yields 

whcre V'î' élnd V~ are the 3 x 2 lllcl.ttiCC's consist.ing of IMI t i.t! <l1I)!;ld.LJ v('lo('it j(,:- .lIld 

partial velocities of body 1, respect i VC'ly. SimÎlar ('Xpr(':'SIOII:' fOI t III' 1 ÎIl,Itt. wlll'('1 ,llId 

the axle can be found which, when cOlllbined with ('q.( A .:W). 1('.,,1 t 0, 

i + 1Jk -l/k . 
0 -l'J 

V= 'lk i - ,/k 
(;\.~I) 

0 -l'J 
l/k -l/k 

-(T/2)j -(1'/2 )j 

Note that matrix V of eq.(A.21) is the saille il:' I.h(~ NOe IIwt 1 ix of 1.111' :,y,,1.I·111, i ('., 

T of eq.( 4.28), which is duc to the ddinition of t.he twist. of t.h(' 1 igid body il! KrUll''.., 
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formulation, ah lTl l'q.(2.:H)) wlwrc VI = O. Now, according to the definition of the 

pprwraliz('d active ami irwrtia forces of Kam":-; equatioTls, eq.(2.41), the gcncralizcd 

act.ivp fol'(,(' i:-. the sarne as tllf' lC'ft-hanci sicle of cq.(~3.lï), whereas the gcneralized 

irH'rt.ia force is nothing hut the right-hand sicle of eq.(3.17). 

A.5 Symbolic Derivations of Inertia Terms 

The syrnholic eqllations of motion of a ~-wh('elcd 2-DOF AGY are derived 

\Ising MACSYMA, syrnbolic manipulation software. The mass of the fork (body 4) 

conll(·ctinp, t\\{' castel' wlH'<'i assC'lllbly with the platforlll is é1s~lIlllecl to be negligible. 

Mor<'ovei', thp plat.forlll i:; considcled as a th in plate in the [mm of aIl equilateral 

triangle whosp vC'rtiC(·s arC' dt él dist.allce b [1'0111 the centroid. l'vlatrices 1 and C are 

now calculatecl has(·d Oll the scl\('IlH' given in §3.:3, narncly, 

_ [CIl and C = C 
'21 

OIH' of UIP simpl(':,t plerncnts of I11cürix l, JlI , is as fo11ows: 

(A.22) 

1 _ 111 w [17'sin20,,-,t(a+b)rsin2 0,d 2 IIlw[(a+b)l'sin20,,-lrcos20 .. ]2 
Il - 1612 + .1l2 

11/ 111 1'2 ( 1 + sin 1 O.)[lsin 20., - ,1((1 + b)sin 2 0 .. ]2 
+-- 6,11 2 

Ttl w1·2(1 +co~20.d[(({+h):-.in2()4 -!CO';,20,,]2 
+ WF 

111",,.1 sin '204 sin 2 (),(a + b)[ls1ll20:, - 'I(a + b) sin2 O,a] 
~2f2 

1II1l'1'2[-ltsinO, - 2(a + b)/'COSO,,]2 + ---=------ -.....:..--.....:..-__ .-:.-
16d l l l 

711",1''' 111 li 1'2 1//(12,.2 111/,2 ~m\U1·2 
+ '2/l + ~ + -12 - + -.1- + 2 (A.23) 

aIld OlH' of t.he simplest c1(·lIH·nt.s of matrix C, e12 , is 



Appf'ndix A Basic Derivations 

• 2 . • • 

{
l'03 [/sin04 - 2(a + b)cosO,.1 l'sin 0,.[11/' - 2d(0. -/- ~/')~ill(}d 

32J2d + 3'2121' 
sin04 cos04[d(04 + ~)COS04 + (a + b)J,] 

16[2 

(Ô4 + ~)sin04[/sin04 - 2((1 + h)COS04 - '2rl] 
32/2 

1 ï 1 

(04 + ~)cos04[2(a + b)sin04 + 1 cos 0 .. ] (0 .. + J')[(a -1- b)sin'20. +- [cos'2 (J . .] 

+ 32/2 t !fil" -l 
2[( b)' 20 1 20]{1'sinO"cos04 [lJ'-'2d(0,.+-J,)siIlO . .] 

-ml' a + sm 4 - ,OS '. 8FT 

cos2 04 [d(04 +~) cos 0" + (a + b)~'] 
412 

(04 + ~,) cos 04 [1 sin 0,. - 2(a + h) (OS (J .. - 2d] 
81 2 

(0" + ~) sin 0,,[2(a + h) sin 0 .. + l cos (J •• ] 

8/2 

_ (04 + ~)[l sin 20" + 4(0 + b) sin2 O .. ]} 
J2[2 

2[1' 20 ( b)' 20 ]{sin
2

0,.[hj'-2d(0,. + J')Sill(),d 
+mwr sm 4 - 4 a + SIl1 .. SPI' 

sinO" cos04[d(04 + ~,) cos 04 + (a -1- b)1j,] 
4[2 

(04 + ~)sin O .. [/sin 0,. - 2(a + h) cos 0 .. - 'lei] 
8/2 

(0,,+1~)cosO .. [2(a+b)sin() .. +lcosO,,]} ,/.[( l' ')0 1 ,'ll + 8[2 + m lll 1 (l -1- J) :-'.11 ~ '. - (OS O .• 

{ 
- cos 04 sin 04[/~, - 2d(0. + Il) sin (J • .] cos2 0 . .[d(O .• -1- 1/') (OS (J,. -\- ((/ + fi )1/'1 

4[2 + '21 2 --- --

(04 + ~)cos04[lsin04 - 2((1 + b),osO .. - 2d] 
+ 4[2 

(04 + ~) sin 0 .. [2( a + b) sin O .• + 1 cos O.d } nUl/in''2 (/\.:~.I ) 
+ 4[2 - 1 

whcre the radius of the whccls l', i, a, b and cl éll(' SIIOWII ill FIg, 'Ui 1><11 <llll<'kl:-' 1//", 

and m are the mass of each whecl and of the plat.follll, ['('SI)('( 1 iv,·ly. 



1 

.. 

Appendix A. Basic Derivat.ions 

A.6 Steady-State Analysis of a Disk Rolling on 
a Plane 

A steady state of a system is dcfined eithe\' as a rOIlst.allt. st.at,(· o\' ilS il !wl'iodir 

state, as time approachcs infini\'y. In the case of a disk \'ollillA Oll a plillll" a stt·,\(l~· 

state can he a circular motion of the disk, i.e., givcll (,Pl't.clill illil inl condit.ions, t Il!' 

mass centre of the disk will trace a circle. 

Thus, when the disk rolls in a circula.t· trajcctory, the g(',\('rali~('d l'OOt dillélt ('S, 

Euler angles, and their time derivat.ivC's can he spccified as 

0= Os, 0=0, 0=0 

cP = cPot , cP = cPo, cP=O 

1P = '!/Jot 1/) = 'l/Jo, 1/) = 0 

(A.~:) ) 

where ~o and ~o are constant angular rat.es, which arc sp<,cifi('d in t!1<' init.i(t! (olldi­

tions, whereas t denotes time. Now, the conditions in eq.(A.2:») <11'(' !->uhstit.ul.('cl illl.o 

the equations of motion, eq.(6.21). The last two scala\' eqlléLl.iolls in (·q.«i.~ 1) alf' 

identically zero, while the tirst scalar cquat.ion givcs 

• 2 • . • t1g . 
5cPo sm 08 cos 08 + 6rPo1Po cos O., + - Stll O., = (1 

r 

To solve the ahove equation for 08 , the lIsuai trigonomctric idcllt.it,i('s élJ'(' int.l'Odll('(·d, 

namely, 
2x 

sin Os = , 
1 +X2 

1 - ;/;2 

cosO = -- and 
s 1 + x2 

0, 
:1: = tclll -

l 

Suhstituting for sin Os and cos Os into eq.(A.2G), a qual'tic cqllatio/l in ./: is o"t.ai/wel, 

namely, 

(A 27) 

where 
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Equation (A.27) was solved numericdly resorting to the ZPOLR subroutine of the 

IMSL I/ackagc which computes the zeros of a polynomial \Vith l'cal coefficients by 

Lagucrrc's mct,hod. Givcn thc dimensions of the disk and the initial angular rates 
. . 

,po and l/JO, cq.(A.27) is round to have two cOlllplcx and two l'cal roots Complex 

roots do not correspond to any physically attainable state 08! and hence, they are 

discarded. Olle of the two real roots led to an angle which was less than -900
, and 

was discarded as unfeasible. So, only one meaningful angle, Os, correspondirrg to the 

only remaining root X 6 was considered for the steady-state analysis. Finally, Os was 

cvaluated as 

O q t -1 
8 = IJ ,an Xs 

Solving for 06 , the complete set of initial conditions for the stcady state was obtained. 



Appendix B 

Dynamic Model of a Rolling Disk 
in Two Different Coordinate 
Frames 

The equations of motion of a disk rolling 011 a pla,\le are <!l'riv('d ill d\{' '0- alld 

X-frames that were introduced in Chapter 6. The orientat.ion J'('IH'c'sctll,atioll illld t.11!' 

calculation of the position of the mass centre of the dis\': ill tll<' V- alld X-fl',IIl1<'S al(' 

a1so discussed in this appendix. 

B.I A Disk-Fixed :Frame 

The V-frame is defined as a coordinate frame which is l'i[!,idly at.l.ached t.o !.Il<' 

disk, its origin being located at the cC'ntroid of the disk. U nlil\(' th(' F-fl'iLlIlC', t11!' 

V-frame spins with the disk. Thus, the coordinate syst.em V élnd t.he disk "love \Vil.h 

the same angular velo city. The unit vectors d" d 2 and v, associal.C'd wit.h t.ltis fl',1I11<', 

shown in Fig. 1.1, are defincd below: 

• d 2 is a unit vector rigidly fixed to the plane of 1,1)(' d isk, di J'('dc'c1 fl'olll tlt<' 

centroid, C, of the disk 1,0 its periphery and is pCl'pcndiclllar 1,0 v, as ddill('d 

in §6.3.1. 
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• dl is definf!d as the unit vcct.or given bclow 

If matrix P denotes the orientation of vector r in the V-frame, i.e., if P denotes 

the J'('lative oricntation bctwecn the F- and V-frames, rcpresented in the V-frame, 

t.lIPIl f2 in the V-frame is written as 

(B.1 ) 

where [Plv is given as 

[Plv= [-7~ :; ~ 1 (B.2) 

Now, vedor r in the V-frame is 

(B.3) 

It is to be noted that, due to the inertial axial symmetry of the disk, le has the 

same representatioll in the :F- and V-frames, i.e., [Ic]v = [Iel,r. Therefore, matrix 

1 in this frame can be obtained from eq.(6.5) as 

(B.4) 

In this frame the angular velocity of the coordinate frame is the same as the 

itllgular velocity of the disk, i.e., [D'Jv = [wlv. Morcover, from Fig. 1.1 it is clear 

lltat 1/' is thc relative angular specd of V with respect to F. Hence, 

(B.5) 

In the ah ove expression, the ident.ity [v]v = [VlF is used, which is clear from Fig. 1.1. 

Moreover, [iclv = [ic].1' = 0, whcre 0 has been è.efined before as the 3x3 zero 

matrix. Usillg eqs.(B.:3) and (13.5), matrix [C]v is givcn as 
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whereas , in the V-frame is 

where [D]r is the maLrix representing t.he orientat.ion of t.11<' 'V-fi <Ill\(' \\'it li It'~PI'( 1. tll 

the inertial I-frarne, in the I-frarne. 

Now, if Euler angles arc taken as t.he g(,IH'\'é\li~(·d coonlillat(·s, UWlI t Ill' dyll'lIl1il 

equations appearing below are obtaill('d: 

[l')v~ = [C'lvè + b1v (ILi) 

where [1'11> = [l'lF, [C']v = [C/).F and b]v = b]F. Not.\' t.h.\! 1.11<' ).!,(·lIl·l',dIZI'd 

coordinates 0, </> and 'IjJ are defillC'd in snch il \Vay t.hat. tlU'il \'.d\ll'~ do ilOt. tkpt'Ild 

on any choice of the coordinate frames. 11('11(,(" tll<' ('qll,L1 iOlls of IIlot.ioll dl'l'lvI'd 

using Euler angles as the generalized coordinat(·s are thl' SillIlI" ill bo!.l, t.11<' F- <111<1 

V-frames. 

For animation pm'poses, the velocity of t.11<' C<'11I.roid ill 1.1\1' IllI'rLi,t1 rldll\(' 11.111 

be wri t ten as 

[è]T = [D]r[è]v 

where 

with matrix [Dh in terms of Euler angles hcillg giVl'1l hy 

[ 

c<pc'lj; - 808</>81/' 
[DJr = s<pc'lj; + .5 Oc</>s1t' 

cO<<;1jJ 

-C<P8~' - .-;0 . .,</>01' 
-.<;<p.'n/' + .~O('(I)(·II' 

cOcll) 

(IL~ ) 

By vi l'tue of the definition of Euler angles, as in Fig. 1.1, t1[(! ('xpres~i{)11 ill ('q.( B.H) hil" 

the same form as that appearing in cq.(G.22). Alt('l'I1ativcly, t.o obtaill Ut(' Ori(·lll.at.ioll 

matrix [Dh, either of the two diffcrcntial cquatiotls cau be itltqJ;l'élt.('d, llalll<'ly, 

[n]r = [D]r[n]v or [ilh = [~'lr[w]v (Il.!)) 

where (n]v is n representcd in the V-frame and [~/lr is eVéllll,tI('d 1'10111 th!' qllüdltltil' 

invariants of [D]T. Furtherrnore, once [w1v is ohtained by illt.cgratillg (·q.(G,1) ill 1.11(' 
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V-frame, the term ~ appC'aring in eq.(n.6) is readily cvaillated by writing eq.(6.26) 

in th(' V-frame as 

. T T t/J = ([v]v - [f21v tan 0) [w]v = ([v].1' -lf21v tan 0) [w]v (D.lO) 

Angles 1P and 0, as appearing in cqs.(B.2) and (13.10), respcctivcly, can be computcd 

gmrnct.rically or by integration of the differential cql1ations, as indicated below: 

• From Fig. ].1, 

. df(kxv) 
s III ~,= Il k x v Il 

Alfio, 

sin 0 = kT v and 

and 
df(k x v) 

cos 1/-' = IIk x vII 

cos 0 = k1'[v x (k x v)] 
!Iv x (k x v)1I 

(B.l1) 

(B.12) 

It is convcnicnt to express the vectors of the abovc expressions, eqs.(B.ll) and 

(B.12), in the Y-frame, wherc they have simple fOl'ms, as explained in §6.3.1. 

• The differcntial cqllation for t/J appears in eq.(13.10), whereas the diffcrcntial 

equation for 0 is given below, i.c., 

(B.13) 

where 

B.2 An Inertial Frame 

As shown in Fig. 1.1, i, j and k arc dcfined as three unit vectors, parallel to the 

·t'c, .'le and Zr axC's, l'<,spect.ively. The evaluation of the exprcssion for vectors rand 

i' in this frame is Ilot as straightforward as in the :F- and V-framcs. Il is dcscribed 

bclow how to ohtain rand r: First, vedor f2 is dcfined as 

f2= vx(vxk) =Bv 
IIv x (v x k)1I 

(B.14) 
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whcre B is the 3 x 3 mat.rix dcfined élS 

eq.(B.14), we obtain 

with N given by 

B = (vTk)l - k l0 v 

- JI - (v1'k)2 

l' 2 T. ') 

N = I [ k (Tk) (v k) v 0 k - (v k) k \ k] -- J v 0 + v 1 + 1 (1'k) } 1 - (vTk)2 - V • 

(B.lb) 

(lUi) 

Equations (B.14) élnd (B.16) can be l'C'adily obtailH'd ill t.h(' T-frall\<' hy I\ot.il\~ t.h.\\ 

[k]r = [0, 0, If and [V]I is the third colunlll of t.he asso('iakd Ol't. 1 IO).!,OIl a 1 111,111" 

representing the orientation of the c1isk in t.11C' illcl'tial fl';1 11 1<', whi('h is Ilot hill).!, bill 

the orientation matrix [D]r, as introtlllccd in liB.l. 

It is dear from eqs.(B.15) and (B.17) tll<lt mat.ri«'s B illl<l N a!'(' IIl1ddilll'd 

when vectors v and k are pal'allel. It is also clC'ar frolll Fig 1.1 111.11, VI'( t.OI' v (.III 

be parallcl to vector k only wheTl the flat surface of t.he disk t01!c!WS t.lf(' plall(' (JII 

which the disk raIls, i.e., whclI the disk is no IOll.!;C'J' ill it.s rollillg "1Ot.ioll. 111 tlli" 

situation, the mot.ion can be dcscrihcd as the disk lllovillg Oll t11C' plclll<'. Now, II. '" 

straightforward to calculate [rlr and [r]r, reqllil'(,cl fol' t.lf(' dC'liv,diOIl of 111,,111«':-' [1]1 

and [Ch, by writing cqs.(B.14) and (B.IG) in tlte T-fl'HIIIC' dlld, "('11('(', \.II(' ilH'I'Lld 

matrix is given as 

(li IX) 

where [Ich is [D]r[Ic].J:-[Dlf. Notice that, in t.hp ('xpl'(':-.sioll fol' é in ('q.(fi.Cil, [0']1 

vanishes, whereas [iclr is [wh x [Ic]r. Tbercfol'e, matl'ix [Cl r i:-. obtailH'c\ a:-. 

and bh is 
(JL~{J ) 
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With pqs.(B.18)1 (RIn) and (13.20), the eqllatiolls of motioll in the I-franw arc 

For animation purposes, the vc'Iocity of the c('ntlOid is gi \'(~n as 

and the orientation matrix is obtained eithcr from the lTIatrix-differential equatioll 

or from the 4-dim(,l1sional vector differential cquation in the Eulcl'-Rodrigucs pétl'am­

pt,{'rs, namely, 

[DlI = [nlI[Dh or [i]]r = [:EJr[wJr (13.21 ) 

Equation (B.2I) is not.hing but ('fJs.(6.9) and ('q.(6.12) ill tl\(' I-frall1e. 


