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The idea of an operational category over .. A gene rzes 

the notions of t'ltipleable and equational ca tegory over 

A, and 0 also the dual notions of cotripleable and 
.r 

.-

coe~U..a.tiona) cate<j]ory. An operational catego~y, U: V'4 A "" 
~.' L, 1 

.i~'-~iven by a prerntation 

\~l~ ~ 

( e ,H) 

'4 CT 
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whte 9 is a functqr bij::tiVe 0"" objepts and 0 is a . 

splifi~llback. R:Op( A) .. Ca.:tjA is defined aS the' 

category of operatiônal categories (and functors) with 

gi ven presentations. Another category, Op (A) over Ca.tl A o 

of operational categories wi th standard presentations is 

also defined. Th,ere is a fixed theorv a ,;' emploved in 
- 0' ~ 

every standard presentation. Op 0 (A) is ,'retract of Op ( A) 

/ 1 
/ over Co.tjA : 

, 

/ 
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i.e. every operational category (and functor) has a 

standard presentation (but not s-l1!). Also R has o 

a lef'\: adjoint "L, and Op (,4.) is complete. Fi,naIly, 
o ~. 

there is a cate<;J0ry of algebras, .ê.*-Alq over Ca.tIA 
J 

such that OPo(~~ S.-Alg over Ca.tjA. Thus, the 

operational oategories can be determined by th,eir 

11 

internaI structure, without reference to any presentation. 

Sorne. properties of operational categories and SOIT\e special' , 

cases are also exarnined. 
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RESUME 

Le concept de catégorie opérationne Ile sur A 

généralise les notions de ca tégorie triplable et équationnelle 

sur A et aùss i les noti ons duales de ca'tégorie cotriplable .. 
et coéquatiqnnelle. Une c.atégorie opérationne Ile, U: V + A 

t 

est donnée par une présentation (e ,!f> 

1-1 
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où e est u~cteur,bijectif 'sur les objets et Vestun 

produi t fibré spécifié. R:0p (A) -+ CatlA est défini cOJT\IIIe 

étant la catégorie des catégories opérationnelles (et 

foncteurs) dont les présentations sont spécifiées. 
. 

Nous définissons aus!)i une .• utr~ catégorie,Opo(AI sur Ca..t./A 

• de catégories opérationnelles avec présentatiOI1~andards. 
:h y a une thp.orie fixe, 6

0
, employ~e dans toutes les 

présentatio~s standard!? OPo (Al est un rétracte de Op (Al 

sur Cat/A:' 

1 " 
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Cct:t/A 

c 'est-A-dire toute cat~gorie opérationnelle possêde 

une présentation standard (mais pas s~i!). De plus Ro 

possêde une adjonction ~ gauche Lo et Opo (A) est' complê'te. 

Enfin, il existe une catégorie' dl algèbres, S*-Alg sur Catl-A . -. 

telle que OPo {A)z S*-Alg over CM./A. Ainsi, les catégories 

opérationnelles peuvent être déterminées par leur struc,ture 

interne sans faire référence à quelque présentation 

que ce soit. Nous examinons aussi quelquep propriétés 
, 

et cas particuliers des catégories opérationnelles. 
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lNT RODUCT l ON 

This paper considers operat:i'anal categories, a 

generalization of the algebraic categories of Lawvere 

[5J and the eq~atianal oategorïes af Linton [6,7). As well 

as aIl the tripleable categories, the cotripl:eable 

eategories are ~perational too. 

Lawvere 1 s idea was to represent an algebraic theory, 

say that af groups, by a product preservinq functor which 

is bijective on abjects (b.n.) 

• 9 :nOP -+- T 

where~is the, free category with finite products on 

on~ generator. Then, relative to the base functar 

H: S e.t.6 x ~<Jp - S e.t:..6 

( X, n)-- Xn 

the category of models (V) for the theory, wi th forgetful 

functor (algebraic) to Set~, is constructed bl' the pullbacJt 

, ,. 

'. 

" 
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V ISe..t.6 
T 

U 1-1 

js et. e 

\ 

S e.t.6 
1 Se..t.6 ~ H* 

where H* j s the exponentia1 transpose of H. (Here v is the 

category of product preserving functors froIT! T to S e.:t-6 wi th 

forgetful functor U being evaluation at 1). For GlLp, 

T is generated by ~ a multipJ..j.catoi-on rnap In: 2-+1, an 

identity e:0-+1 and ~n inverse P1ap i:1-+1, c10sed upJwith 

resp~ct to'finite products, composition and sorne equations' 

e.~. m(id,i) = et, or x.X-1= e (t isç;:the terJTlina1 morphism 

1+0) • 

p 

JI>< Linton genera1ized this idea by letting the base , ~. 

functor be the hornfunctor 

op . 
Horn: ' S e...t.6 x S e.t.6 .... S ~th 

Horn: A 

(where Seth is the 'category in \'lhich ~he homsets of A live). 

An equationa1 theory is a product preserving, b. o. functor 

e;A op + T 

and the equationa1,./f~ctor is created by pu11ing back as 

beforE~: "':. 

.. 

t 
! , 
1 

1 

l, 
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\, 

-----_1 S e.t.6 T 

ls e,t~ 8 

A"'" ----:----..... S e-t.6 
Yoneda 

Note tha t T may be large wi th respect ta S e.;t.6. It is 

assumed,where necessary, that there is a Grothendieck 

3 

uni verse V containing a universe U. Set.6 is the category 

of small sets wi th respect ta U ~ En.6 is the cateq9ry of 

small sets wi th respect to V. Wl th T V-srna Il, the 

pullback is constructed in the category of (C'1.6-) sl'1all 

categories. Linton showed that all tripleable categories 

are equa tional. Also equational are non-tripleab le categorie s 

such as Complete Boolean Algebras (CBA) over Se..t.6 (see [4J) , 

and Burroni' s [2J categories of graphical algebras, which 

are tripleable over Gph, the category of (directed 

multi-) gra~hs and graplv'- homomorphisms • 

The notion of operational category was introduced 

by J. Lambek at' a meeting of the Midwestern Category Theory 

Serninat at Waterloo University in 1968. He freed the base 

functor tq be any 

1i:A x B - C 

and a theory to be any b. o. functor 

6:B - T t 

1 -
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An operational category V (wi th presen tation (e ,H» lS 

given by the pullback 

v 

1-1 

______ ~ cG 
H* 

(H* is the transpose of H.) Thus all al<j€braic and 

equational categories are operational. In' particular / 

aIl tripleable categories are operational. By a duality 

argument, the cotripleable categories are tao. 

A category of qperational categories (with 

4 

presentations) and operational functors (with presentations) 

over A, Op (A), is constructed wi th a forgetful functor 

R:Op(A) +Cat/A. However, much of the focus of this 
'\ 

work will be on operational categories and functors without 

regard to any particular presentation. There are several 

reasons for this. Firstly, a gi ven operational category 

wi Il usually have many presentations. ri'wo di fferent 

methods of standardizing the presentation will be given. 

Secondly, Op (A) is not a very attractive categdry. There 

is no left adjoint to the forgetful functor and there is no 

" easy construction of limi ts in Op( A) • Finally, one of 
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the motivations for this work was to characterise 

the operational categories l.n Ca-t/ A, where no presentation 

i5 given. Unfortunately, the operational categories 

and functors (without preèentatrons) don't forM a 

category, since two operational functors acting w~th 

respect to incompatible presentations may not compose 

to forrn an operational functor (c.L Proposition 111.312). 

Hence, the category of operational categories Most 

1 gain1ully ernployed is a category of operational categories 

~ 

with standard presentations, OPo(A). Its forgetful functor 
\ 

Ro:OPo(A)+Cat/A has a left adjoint and OPo(A) has aIl 

lirni ts. Also i t is equivalent to a category of algebras 

wAich enables the operational categories and functors 

to be characterized in terms of their internaI structure. 

Of course, this construction of models from a theory 

(relative to Hl is a generalised semantics functor, 
, 

Sem:Th(8)oP~'Cat:/A with a left adjoint 

Str: Cati A -+ Th (B) op sending U: V""': A to 

the full image of B + CA -+ CV (c. f. (6)}. 

Other, generalisations of tripleable and equational 

categories and their duals have been explored in [3J 1 [10] 

and GLl]. In (3J, Davis considers 'equational systems of 

functors'. The constructions employa base functor 
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(l. 
Ax .4. + 1{ which exploits the ability to compose 

'endofunctors. The only examples tha t he g ives which 

aren't operational are cateqories of nachines. Thiébaud, 

in his unpubl~shed thesis [lOJ, constructs a generalised 

Structure-Semantics adjunction, based on the theory of 

bimodules. As i t happens, th~s adjunction is re;â kt/ 

to tha t for Ra: Opo (Al + C a.:t/ A, though no re ference is 

made to operationality in the sense of Dullbacks. Once 

he has created the adjunct~on, fTlost of his work is devoted 

to studying the algebras for the resulting triple,.ê. . 

Here i t is the operational categories thernselves which 

are considered. Wyler, in [11J, studies cate<Jories of 

ets wi th relations and rnappings which preserve the structure. 

ide fran categories operatianéù over Se.t:.h, his exaI'!(lles include fields 

"eld extensions) and sriall categories (with functors). None 

( 

of these authors characterise their objects of study through 

in ternal properties or provide standard presentations. 

Here, the name 'ope rational' irnplies the exclusion of 

situations in which relations are inherent, such as Wyler's 

examples of fields and categories. 

( 
In chapter l operational categories an~ functors are 

defined, the standard presentations are given and the left 

adjoint lor Ro is created. Aside f'rom Beck 1 S rrripleability 

Theorem, §l is due to J. Larnbek. Chapter 2 is devoted to 
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shuffle retracts, the algebraic material {..,hich culrninates 

'" 
in the constrlJlction of the S -algebras.. In Chapter III 

-* 
the triple induced bl' L ~ R is related to shuffle retracts 

o 0 

and Op (AI is shawn to be efJuivalent to 5 -Alg over 
o -* 

Ca~/A. Exarnples of operational categori~s are given, 

as weIl as counter-examples to sorne appealing hypotheses. 

Finally, mild conditions are given for L R ~l, for 
o 0 

operationality to be equivalent to Beck's Tripleability 

Conditions (given below), and for limits and colimits 

to exist in an operational categorl'. 

Except where stated above to the contrary, aIl work 

presented is due to the author. 
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CHAPTER 1 

OPERATIONAL CATEGORIES 

§ 1. operational Categories 

" Definition 1.1: Let 8:S .... r be a functor bijective on 

objects and let H: A x B ... C be any functor. 

Construct the pullback U:V +4 

D 

A 

_______ ~ __ ' ____ ~~ CT 

______ ~--__ -+I CB 
H* 

Then (1),U) is an operational category with ~ 

presentation (6 ,H). By convention, objects (D,U) of 

Ca.t! Amay be d~noted V or V ovcr A, 1.1i th the U suppressed. 

An object of V is an alc;ebra i.e. a pair (X, 4» e:Â:r<C
T such 

, 

that . 

~e = H*X 

h morphism of P is a hornornorphism- i.e. a pair (f,t) in 

AxCTsuch that 

te·- H*f 
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proposition 1.2: Let U;:V ... Abe àperational with 

presentation (s, H). Then UOP: VoP.... AOP i5 operational .• 

Further, for any category y, uV:VY~AV is 

operational. Finally, given F:,\' .... Athen V:E .... A', 

the pullback of U a~(fng F, is operational. 
,,,1 r 

Proof: The conclusions follow irnrnediately from the following 

three pullbacks: 
, , 

(cTJ., cp --~- CopTq> 

(C6)CJi? cepS cp 

. 8 op 
~IOO ..- (C ) coplf1? 

H _ 

(ij*) y 
\ 
j 

---

t 
(CS) Y __ !Z_~d CY, B 

E --~----+I V ______ ~ __ ~~ CT 

vJ u_1 
A' ---_~ A 

'\ 

Lemma 1~3: Every operational category is ope~ational with 

respect to an evaluation functQr ev:AxCA~C i.e. the èxponential (_ ::r 

transpose of the identi ty on CA. 

, 
t 
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Proof: Given U:V + A operational with presentation (8 ,H) " 

construct the pushout 

B 

cre. 
____ CA 

H** 

;> bijective on objects irnplies el bijective on ob] ects . . 
C(-) to the pushout yields the pullback 

A 
sub 

where sub (substitution) is the transpose of evaluation. 

For a:P,+Q in CA we have 

(subX) (.P) = PX 

(subX)(a) = a x 

NOw 

= (H**B) X 

= (H*X)B' 

10 

l 
1 
( . 
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Morphisms of B a~e dealt with similarly. 50 

CH**sub = H* and the càtegory constructed w~th respect 

to the evaluation is. V. 

Wi th respect to an evaluation, an algebra is a 

pair (X,~) where 

~8 = subX 

That is, given a:P+Q in CA, we have 

4>8P PX 

_en 1~ l nx .. 
4>8P QX 

Let (f, t): (X,~) -+- (X' ,~') be a homomorphism. Then for each 

weT (8P ,60) 

4>91' 
tep 

~' 9P ~ 

~w l l ~'w 
~9Q t

aQ 
~'9Q 

commutes by the naturality of t. As before, ~ep=px etc. 

" -. but a1so 

~ep 
_. (S\bf) (P) 

- pf 
1.1 . 1 

1 
\-
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, f 12 

PX pf 
1 PX' 

4>w 

1 J .' w 

1.2 

QX Qf 1 QX' 

Conversely, let (X,~) and (X', ~') be two algebras 

and assume that f:X+X' in A satisfies (1.2) for each w in 

T. Then there is a natural transformation t:~~~' 

defined by t(1.1). This defines aIl components of t sinee e 

is bijective on objects. Obviously, (f,t):(X,4»-+(X',4>') is a 

a homomorphisme Thus homorphisms correspond to morphisms of 

A satisfying (1.2). Consequent1y, .we have 

Lemma 1.4: 

0: V -+ Aoperational irnplies U faithful. 

Often, a morphisrn, f, of V and its underlying 

morphism, Uf, in A will be given the sarne name. 

Reeall Beck's Tri~leability Theorern[aJ. Given 

U: V -+~ , au-split coequalizer is a diagram in A of the form 

Uf y 
uc r UO ;.======~I X 
~. x 

t 
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su ch that 

y.Uf - y.Ug 

yx = id 
1.3 

Uf. t = id 

Ug.t - xy 

These equations force y to be the coequalizer of Uf and Ug 

in A. Moreover, since equations are preserved by any 

functor, this is an absolute coequalizer (see paré[9J). 

U creates coequalizers of u-split coequalizers if, whenever 

,. ,Such a system as (1.3) occurs, then y = Vy' ,where y' is a 

ôoequqlizer of f and g. The theorem may then be stated as 

( follows 

Theorem 1. 5 (Beek): Let U: V -+Ahave a laft adjoint. 

Then U is tripleable iff the following conditions hold: 

i) t refleets isomorphis~s \ 

ii) U creates eoequalizers of U-split eoequalizers. 

Here i) and ii) will be called Beck's Tripleability 

,Conditions (B.T.C.). Trivially, this thedrem and the 

conditions ean be dualized ta yield a theorem about 

cotriples. 

(l 
'- . 

Proposition 1.6: U:V.-+Aoperational impldes U satisfies 

! 

• 
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B.T.C. and their duals. 

,J eoro11ary 1.7:U:V-+A operationa1 with a 1eft (respectively 

right) adjoint implies U is tripleable (respectively 

cotrip1eable) . 

Proof of 1.7:For triples just combine Beck's Tripleability 

Theorem wi th Proposi~ion 1.6. Then dualize to obtain the 

" resu1t for cotrip1es. 

Proof 1.6: Let u: V-+A be operat.i.onal wi th ? presentation (e 1 ev) . 

Inspection shows that U reflects iso~orphis~s. For the second 

condition of B.T.C., consider aU-split coequa1izer as in 

(1.3) wi th e = (UC, 4>C) and D = (UD 1 IJD). 'l'hen 1 gi ven any 

W E: T( 9P , 8Q) we have 

pue ____ ~ PUD --P....;y~_l PX 

1 .. 
Que ====:::::::: QUD ----.... ~ QX Oy 

with Py and Oy coequa1izers (since y is an abso1ute coequalizer 

and the left-hand squares commute~ Hence there is a unique 

map ~w:PX+OX making the ~iagram commute. By th~ uniqueness 

condi tion for coequalizers, ~ is a functor T ~ and for Cl :P-+Q in CA, 

~eCl = ax ' Also by uniqueness, y yields a homomorphisme The 

dual result holds by (1.2). 

§2:0perationa1 Functors 
1 

Definitions 2.1: Let U:V-+A and tr:V'-+Â he two operational categories 
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with presentations (e,H) and (e',H') respective1y. A 

rnorphism of presentations, (e,H) -+ (e' ,H'), is a pair 

of functors (j l' j 2) = j and a functor k: C-+C' such that 

the fo11owing diagrams commute 

T' 
j2 

, T 

e' 1 r e 

B' 
jl 

, B 

2.1 
8 . 
C~' 

C 
~ 8 ,~ 

, ) ~ 

H'* 

Let G: V -t V' be a functor over A. G ~s an ,ol?era't.ional functqr 

with presentation (j,k) if (j,k): (a,H)-+(el,H') is a rnorphisrn 

of presentations such that G is tpe induced functor i.nto the 

pu11back in 

i~vj 
CT k j 2 '>C,T 1 

j C· j e' 2.2 

A --- c~ C', , 
1 B' 

A • C' l' 

Hence there is a category, 0E(A) with objects (D,e,H) where 

(e ,H) :l.S a presentati(!)n of V and morphisrns 

~. ' 
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the triplets (G,j,k): (D,a,H) + (V' ,e' ,H') where G is 

the operational funetor induced by (j ,k) :.(f,H) + (8' ,H') • 

Composi tian and identi ties are <Ji-ven by those of " 
-

C~/A. Hence there is a forgetful functor R:Op(A)+Cat/A, 

sending (V, a , H) to V and (G; j ,k) ta G. 

Note that sinee operatianal categories and functors can 

hùve more than one pr~sentation, the composite of two 

operational funetors in which the presentations are 

incompatible may not be op.erational (c! f. Example lIt. 3 .12) • 

Hence they do no;t forrn a category aver Ca.:t;A. 

Nowa functor L: Ca;t/A -- Op(A) will be 

built. 'The construction of LV employs a standard 

the ory , 9
0 

independent of V. ' 

Definition 2.2: The s~andard theory e.o:Bo+To is given ... 

by a subcateg.ory inclusion w~ere Bois geherated b~ thë J -

graph 

wj' 

, , 



( 

( 

" 

• .1 

B 
y 

a Je 
Bl 

al 1 
B 2 1 yI 

and To is generated by the 

B ::r: 
0 

a 1 
Bl 

w 

wl 

al l 
B2 

, 
y' 

subject to the equations: 

BwCll __ ~y 

a 'w'a' _ yI 

w'w - id 

) 

lBS 

r e 
B4 

l' al 

B) 

graph 

1 B.
S 

l e 

1 B4 

r a' 

B3 

• 
Note tha t both 8 0 and T 0 are fini te categories. 

. . 

17 

" 

,f 

When considering lunctors on ro it will be the choice 
. J t 

'"", _ •• • ~--~_ .. - .... ,- -,$'." dt- - ..... ~'iM-____ ~ __ ~_._ • . .... 

2.3 
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of w (and w ') which will 'determine the algebra. The 

other peripheral morphisms are there to prevent unwanted 

choices of w 1 in sorne sense to guard the w 's. * 

The base functor HV:AxB 0 -+ C (!I) for the construction 

of LV ~s contained in the following definition of C. 

DefinitJ.on 2.3: C:Ca...v'A ..... Catis defined as follows: 

CV is given by the pushout in Ca.:t 

UxB o 

AxB o 

lIxe. 
_______ 0 ____ •• VxT 

ri :v 
-~":":H.,....V-_ .. b CV 

For G:V -+ V' over A, CG:CV-+ CV' is given 

by the universal functor from the pushout 

2.4 

* A nalve approach to the problem of choosing a standard 
theory would be to consider the the ory 

w 

B e 

and to set up a base functor 50 that for each object of V there 
is a morphism, Wo , wi th Wt;l" - wC" 'rhe problem is tha t for eqch 
object of A, its identity is also idempotent, 50 that there 
would be an extra copy of A in our resulting operational 
category. Also ~w - WOn would gener'ate unwanted algebras. 
By the choice of 9

0
, these nuisances are excluded. 

.... - --'- - ........ _, 
r il • 

___ :N_' 
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VxB l 'OxT 

l 
O~Bo 1 0 ~o ._ 

P' ï B o. ~ , v 'Ix 1 0 

AXBo---l ' CV~ 
~ A x B , CV' 

_ 0 

2.5 

. 
The uniqueness property of pushouts guarantees the 

functoriality of C. 

. 
(-

Definition 2.4: Let U:'O, .... A and U':O' -+Abe in 

Cati A and let G: 0 -+ V' be a functor over A • 
. 

A Then LU:LV +A is-the operational category given 

by the pullback , 

LU 2.6 

LG: LV -+ LV' over A is the opera tional functor 

induced by CG 

,1 
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(The base of the cube commutes by (2.5). By the 

universal property of pullbacks, L is a functor. 

There is no conflict between the two uses of L applied 

to U, LU:LV +A and LU:LV -+LA, --g-ince LA:!' A. Since (2.4) 

conunu tes, there i5 a n li' : O+RL tJ over A 

p * \ 
V ............. 

11 

Tl'~ 
LV J jo' CVTo 

V 
U 

1 CDS, j 
A • 1 CVao 

which yields a natural transformation n' : l -+ RL: Ca.:t/A~a;t/A. 

• 
Lemma 2.5: C 11 i5 generated by the following graphs and 

-------. 

i 
i 

1 

j 



rOi 
' .. ~ .... 

-( ) 

~---
equations (for a discussion of this type of construction 

see Barr and Wells [lJ) 

i) the coproduct of six copies of A; Ao+ ••• +AS 

(regarded as a graph_ '\,lith equations. 

,ii) for each Xe:IAI, '7.,Sx'Yx ,a"'x'S'x''Y'x(subscripts 

norma11y omitted) • 

iii) for each De: 1 Vj, wD ,wb, 
wi th .domains and codornains ~ ven by 

O:x 1 l Bx 
un x- 1 X4 1+----wl 

a'x 1 
D 

1 a'x 

X2 1 
yi 

X3 
x 

with the Wo' S occuring only if X=UD. These rnorphi~ms' 

are subject to the equations 

iv) for each fe:A(X,X'): 

.. 

21 

/ 
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( 
f1Clx Cl ,f - x 0 

fSl3x = I3x,f4 

fS"fx = yx,fo 

f4al~ = (l'x,f3 
" 

~13' x - l3'x,f1 

f y' = 2 ·X y'x,f3 

(subscripts on f's often ornitted). 

v) For X • un 

13x.~)3c = Y,X 

6xwoCXX = Yk 

vi) for each :ÉEV(O,C) 

( 
f 4 Wo ----:;-wCf l' 

f1wo - w~:4 

vii) for each DtlVI -

WDWo = id ... 

Wowo = id 

1 

~.-
../ 
\ 

f 
-The inclusions Hv: AxBd.-+CV and 

...... 

.pp: vxTo-+-CV are given by: 

I~t~·'~',~,,_--_-!_= ____________ ~\. __ . ~_~w ______________________________ ~ ____ ~~ __ .~==~~-- --___ L 



\ ' 1: 

.: 

,.. 
{} 

O· -

• 

23 
HV(X.B

k
) = ~ Pv (D,Bk) =: (UO}k, 

~ 

PV(D,a) = a 

· UU 
HV (X, a) = ax 

· . .. • 
PV(D,y') = , 

y UV RD (X,)" ) = l' . x 
av (f ,Bk) ::: f k PVCD,w) • w' 

1) 

1:'V(D,w'J = III ' 1) 

k = 0, ••• ,5 
Pv (f ,Dk> = f k 

Proof: Consider the category C and the functors HV 

and Pp constructed in the lenuna. A quick inspection 

shows that H (Ux~o) =p (V><8
0
)' Now consider a pair of 

functors F:AxBo-+X and !t" :VxT-+X such that F(uxBo)=F 1 (0)<9 ). 
, _ 0 • 0 

!Je fine F If
: C+X by i ts action of the generators of C 

FflX 
k = F (X ,Bk) 

F"f k = F (f ,Bk) 

Fila = F(X,a) x 

• 
F"Y' - F (X /y) x 

F"w 
D • F' (D,w) 

• 
F"w ' D = F' (D,w' r 

J 
It ois tri vial ta check that F" preserves .the equations 

in the definitian of C and hence is a functor. Also 

F"Ht>, • F and F"Pf) = F'. Thus C is a pushout and 

may be identifiéd wi th d). 

_ JIll w" 'œ 



(] 

o 

.. 

§3: Standard Presêntgtions 

The idea of operational retracts {defined 

leads to a standard presentation of operational 

and functors similar to the presentation of L. 

24 

Definition 3.1: Let U: 'D -+A be operational with 

presentation (a,H). Let D= (urf,4>D) be an a1gebra (~D will 

always be the functor part of D wi th respect to the given 

presentation) and X a retract of UD in A 

x 
x UD yx = id 

y 

satisfying the following condition: for any composable 

pair of morphisms wl,w2 in ï, 

BB 
1 

the following equation holds 
_;,/.------0-

Then {y ,D,x lis operational retract. 

Gi ven. the pre sen by an evaluation, we have 

8P 
W1 w2 

--___ +1 eu -------~. 6R 

3.1 

3.2 

3.l.a 

3.2a 

.. 
.. 
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The value of operational retracts is that if' { y, D,x} i5 

one,then X underlies an algebra (X,~) with cil given by 

t-6P =' PX and for a: ep-+-:eQ in T 

Px 
PX -----+-1 PUIJ 

QX +-l --Q~y~-- QUIJ 

3.3 

(3.2) guarantees that 41 is a functor i.e. for /.il l and w2 as in 

(3.la) we have: 

'While if wl" Sa then: 

~ea ;: (Qy) 4l
0

9a (Px) 

= QyWPx 

= ay!YPx 

= (subX) a 

For • defined by (3.3) we wri te: ," 

~ = H*ytoH*X 

=, ytDx 



o 

• 

There are many' si tuations under which (3.2) may 
, 

hold e. g. if xy is a homomorphisI11 or, y and x deri ve 

from a V-split coequalizer (c.f. Lemma III.3.l) In 

more complicated situations, the commutati vi ty of 

..------homomorphisms with terms such as iI>w rnay be invoked 

many tirnes, in a back-and-forth process, to establish 

26 

(3.2). _Also, the equations ~ = Y~Dx , for {y,D,x} an 

operational retract, may be used (c.f. Exarrip1e IIL3.13). 

LeITlJTla 3.2 Let G:V ~ V' be an operational functor as in 

(2.2),. Then if {y,D,x} is an operational retract for V 

wi th y 4IoX :r ~D" then {y, GD, x J is an Qperational re tract 

and Y~GD x • ~GrI. 

Proof: 

~GD' li: 1T'GD' 

= k j211'D' 

= k j2 (H*Y~Ji*x) 

= (H'*y) (kj~lI'D) (H'*x)' 

= (H'·y) (11 'GD) (H '''x) 

• (H'*y) ëpGD(lf'*x) 

Définition J.;!: Define Cf :Op{A)~Ca..t 

Cf (V, e ,H) is generated by: . 

as follows 

ia) the underlying graph and equations of C{V) and -
_..l. __ ~ ___ ~_ 



( 

( , 

L 
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viii) if {y ,D,x} is an operational retract for (V, e ,H) 

with y4Dx = ~, then YWo_x = wD' and ywfl;:j< - w'D'. 

The quotient functor C(O) -+- C ,( 0, a ,H) is called qV. 

Now let (G, j , k): (0, e, H) -+- (V', a " H') be in 

Op(A). Since, by Lemma 3.2, CG preserves the equations 

viii) it induces C' (G,j,k): Ct(V, a,H)-I- <:,,(0',6 ',H'). 

The functoriali ty of C guarantees that of C', and the qp 1 S 

forro the coroponents of a natural transfor~ation 

'1: C + C' : Op (A).+Ca.,t/ A. There is also the base 

functor H'(V, e ,H) .. <JVflV:AxB -+- CV+C' (V,a,H)" 

Lernma 3.4: 

i) If 

= 

in C' (V, e ,H), then there is an i (l~i ~ n) such that 

ii) If 

j 
(' 

in C' (V, e ,H), then there ar~ i <j such that 

3.4 

3.5 

., 

, ~ l _,_= ______ ~. _____ :c,, __ ==c..~_--:..::-=-·_'_· _____ - _-"~==_ _______ ~ 
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= 

and 

= y y 1"···" .y. 4>D y. l"··"··y n n- ~. ~- , 0 
l 

= V" l······y·~D y. l······y J.n~n"" J, J- 0 
J 

iii) Hence, if y'x' = id, yx'= id and 

Y '1.1) , ::<'yl.l) 
D' D = id 3.6 

then Y'~)),x' - Y~Dx am {y,D,X} is; an operational retract. 

Proof: 

i) The proof is by induction on the length of the proof 

of (3.4) where the length of the proof is rneasured by 
. -

the number, of applications of the generating_ equations 

of C'(V, 9,H). The case for n = 0 is trivial. Assume that 

(3.4) i5 proved in n steps and (3.5) holds for sorne i. Now 

consider aIl proofs of length n-t l which can be obtained from 

(3.4). Trivia11y, applications of il cause no prob1erns 

while ivl and v) are inapplicable. The on1y type of 

application of vi) which is of ~nterest is one of the form 

w ::W=:3!V'~ -_-_:~~~ .. ______ "_ ___ ~~ r .... __ ~_ ~-____ .. --. __ ... _ 

= fwO!. wi thout 1055 
~ 



c 
, 

() 

.. 

of generality, consider only the first case. Then 

Also 

= y wD y 1······y!fwD v. 1- ..... v n n- 1 ·-1- - 0 n ~-

y y 1······Y·~D y. l······y n Il- ~ . 1- 0 
1 

yy 1······Y.'f~DY· l······Y. n Il- ~. 1- "0 
1 

= ynyIl-I······yi'~D'.fyi-l"······yo 
1. 

Tri via11y 1 after any applications of vii) the resul t . 

29 

still holds and, a priori, applications of 'viii) preserve 

ii) This proof follows exactly the same linea as i). 

iii) For (3.6)" to ;h.old i.n C' (V, e ,H) the w 's must 

" be e lirninated, which in this case can only be done by an 

application of vii). Hence, 

Y ~w' x'yw x DI D = ~'w'idw z C C 

... 

for sorne Z,Zi and C and so by ii) of the lernma: 

1 



( 

., 
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and 

""cJ> x' - v' cl> x ' yX 
4 D' - .. D' 

= z' cJ> z 
C 

= v'x'ycJ> x .. D, 

= v~ X .. D 

Hence, in the notatiOl) 0f (r. 3.2) 

\H*y' ) aB 4>D 1 w2 (H*x:y) 6B cl>DWl (H*x) OB 
221 

Hence {y,D,x} is an operational retract. 
; 

Definition 3.5: OPa (A) is the subcategory of Op(A) 
\ 

(with inclusion i) with objec~s those (V, 6 / H) such that 

6 :6
0 

and H :: qbHl1:AxBo-+ CV ~C where qb 
is a 'minimal ·epimorphism' in the fOllowing sense: if , 

q'v· rqofor sorne epimorphism qo:CV -+Co and Vis 

pres'ented by, (9
0 

,qoHV), then r is an lsomorl'his.rn. 

Ax B _~H_f)_", cv q'v 
----... ·c o 

~~ 
c' o 

~ . 

~._,---------------,_.~-----



t . , 
\ 

( 

o 

The morphisms of Opo (A) are those 

(Gyj,k): CV ,,9 o ,H) ~ (V1 ,9o /H 1 ) suc:h that 

j = (id,id) and k is induced by CG: 

gl 
V 

cV# C 

0-

1 1 
,.-:.,. 

CG k 

cv' 
qlV' 

Cf 

Hence the ql t s are the components of a natural 
V 

transformation C -+Co:oPo (A) -+Ca..t where 

C o(V,6 o ,H) = C and Co(G, 6 o,k) = k. The objects and 

morphisms of OPo(A) are said to have 

standard presentations. The forgetful functor, 

OPo (A) -+ Ca.tl A i8 called Ro· 

-Lemma 3.6: 

Let (G,9 o,k): (V,'9 o ,H) -+ (VI' ao,Hj) be in 

Opo (A). Then q,p :CV -+ C factorises through 

. qV: cV -+ C' ( V, 9 0 , H) i. e. go = rgV' for sorne r. 

Further, we have the cornmuting diagra~ 

C· (V, ~ , H) o 

Co (G, 1 eo,k) 

r 
C 

C':Vl'eo,Hl)--~r~l---+' Cl 

31 

, 
; 

. _______ ._ .. J 



( 
, 

Hence any presentation of the forrn (eo,H (1), 60,H» is 

standard. 

Proof: Let YWDx .wO' be a generating equation of 

C'(V,So,H). Then Y~Dx", ~D' for (V,6 o ,H). Hence 
.-

YWDx = wD' in C. Hence, there is a functor 

r: C'( V, e 0 ,H)+C induced by the identity on 
1 

32 

cV. Now since both k and C 'G are induced by CG and q V 

is an epirnorphisrn, we have the desired cornrnuting square., 

• 

The res t follows. 

Theorem 3.7: There is a functor s :Op (A) + Op 0 U\) 
',1 

over CiLtjA (RoS - R) such that si ~ id. In other 

words, eve~l operational category (resp. functor) has 

a standard pr~sentation. 

Proof: Let (V, e ,H) he in Op(A). Let P be the 

._-~ ------~ 



( 

() 

operational category given by the standard presentation 

, 1 c"IV,e,H) T o 

l 
cr (V,6,H) Bo ' 

j _1 

A 

There is an F:V"Pgiven by the definition of Cl. Fis 

faithful since U: V'-"A is. To see that F is a 

rnonomofphism, assume FD = FD'. Then wD = wD'in 

C'(V, e ,H). Now apply Lemma 3.4. 

33 

Conversely, let (X,~) be an algebra in p. Then, from 

the equations {2,3) for T 
.. 0 

B 4> wa x x = 3.7 

For source-target reasons, 4>w may not include Cl 1 s, e 1 s 

and y 's (or their primed versions). Hence it is a 

composite of morphisms in A, w 1 sand w' 's. In fact, 4>w 

can always be written without 'w l 's. T~ Ree this, assume ~w 

cannot be written without using an w'. Then, since no 

equation in Lemma 2.5 allows the interaction of w' 's and 

a 's or a '5 (e.g. no cornrnutivity), equations of type v) 



, 

( 
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cannot be invoked. Thus, a 's and a 's cannot be elirninated 

and (3.7) cannot be established. Contradiction. Hence, ~w 

can~e written using only morphisrns in A and w 's. AIso, 

for source-target reasons, only one w occurs. That is 

wi th x, y morphisms in A. Then by the construction of 

Cl (V, e ,H) , 

r = yyx 

Now recall diagram (2.4). Then 

11 (Ux 8 0 ) - u 

U 11 (vx-e o) - u 1 

3.8 

where ail 11 's are projections to the first factor. Since 

C 'is the pushout, we can define 

F - < U, UlI >: C', ~,. e ,H) -+ A. In the notation of 

Lemma 2.5 

, 

1 
"1 

li 



t 
; 
• 

, , 

i 

() 
FXk = X 35 

Ffk f --=---=-= 
Fax = Fa x 

= Fyx 

• · · 
= FwO 

, 

• id -x 01) = x 

Hence P r~~pects equations viii} from the definition of 

C'{V, e ,H) and 50 F = F'ICJV for sorne Fl-Thus, applying 

FI to (3. 8) Y ie Ids f 

id = yx 

Applying the sarne arguments ta another equatian in the 

definition of To (c.f. (2_3», ~w.' with y' ,x' 

in A and y'x' - id. Now since w'w • id, 

id 

Ben ce. 1 by Lemma 3.4, hl - ywOX with {y ,D,x} (Jon operational 

retract. Renee, ytox = t D, for sorne D'and so ~w • ywoX - un. 
i.e. (X.,~) = FD'. Now if f:X -+ X' is a hornorphisrn 

. 
FD-fFO' then fWD=l.I.lo,f. Hence by Lemma 3_ 4, f~D = \1f and so f 

is a homornorphisrn of V. Thus F is also surjective and 50 i5 

an isomorphisme Since P was defined up to isornorphism 



(} 
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we identify P with 'O. 

Now let (G,j,k): (V, e IH) .... (Vl~ \,H ~ be an 

operational functor. Then consider the operational funçtor 

, . 
-V----------------+ 
~ ~ 1 

~A 

By defini tion, U 1 G = U. But also 

(lI'GD) :: ~GD~ 
\ 

= "'GD , 

:: C 'Gw 
0 

= (C'GTo~ )w 
]) 

:: (C'GTO"D)û.l. 

- (lI'G D)w - 0 

So "GD = 11 1 GaD for each D in V. 1 Now, bv .. the faithfulness 

of U1.1 Gf == f - GDf for each rnorphism f of 1). Tfiûs ' 

G • G i. e. G has a standard presentation. 
0 

•• 

l 

l 



( 

() 

o 

Define s(V', S,H) = (V,So' S(V, 9,H» and 

s(G,j,k) - (G,Oo ,C'G). s is a functor and 

Now for (G,6 o ,k): (V 9o ,Hf -+- (V
l

, 6o ,H
l

) 

standard as in Definition 3.5, 

R S = ~. o 

(6 01 H(V,eQ,H) is a presentation of V and by LeITlltla 
,; 

3.6 qv':CV ~ C factors through C'('O,So,H). So, by 

37 

the Iminimality' of ql (see Oefinilion 3.5) C'(V,6 o ,H)== C •. 

. Sirnilarly for C'(V1 , 61,H). Thus, since both 

k and C'G are induced by CG, C'G ~ k. Hence si ~ id. 

From its construction, it is clear that 

L:Ca.:tjA-+-Op(A) factors throulJh i i.e. L = iLo' for 

Là~Ca.t/A +oPo(A). Because of the problern of 

non-matching presentations, L is not an adjoint for R (c.f. 
-: 

Proposition III.3.14). However, we have 

Theorem 3.8: Lois left adjoint to Ru. 

Proof: The unit n, is given by the n' found in Definition 

2.4 (since RaL a = RL) • 'l'he couni t €, lS gi veri by the 

ope~ational functors presented by the quotient functors 

'liJ:CV-+ c. 

.. 

.. 
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1 

() 
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T 
C~ n,_TC 

1 ~T 
1 C 0 

l 

The naturali ty of q 'V guarantees 'that the couni t ITlorphisms 

define a natural transformation LoRo +1. 'l'he identities for 

the adjunction are easily checked. 

.. 

.' 

( 
> 1 



CHAPTER II 

SHUFFLE RETRACTS 

§ 1: Sh uf f le- retracts 

In order to characterise the operational categories 

and functors, the idea of beine; closed under operational 

retracts must be translated into a property which can be 
." 

searched for without reference to presentations. ïhe 

(J notion of shuff1e retract will be substituted for that 

of operationa1 retract.> In fact, n-shuffle retracts 

will be defined for n a positive integer. However, the 

. essence of the idea occurs in (l-)shuffle retracts. 

. ~ 
Definition 1.1: Given U: O+A,-construct a grapfî 

ShIV)(~Sh(V,l» the graph of shuffles, with 

objects triplets (y,D,x) where 

x ___ X~_+I UU ---y----+I Y 

... 

lies in A (by convention, X wil~ alway~ hé-the domain 

.0 of x ànd y the. coqomain -of y etc.). Let (yI ,D' ,x') be given 



f , 
t 

t 

1 
() 

o 

.... ZIF 
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x' x' UDf y' 
---""----~ y' 

There are arrows between (y,D,x) and (y',D,x') 

only if X-X' and y-Y'. Then arrows f: (y,O,x,)-+-(y' ,D' ,x') 

are given by those f =0 -+- D'in V such that both triangles of 

commute. Composition is that of V. r.che arrows of this 

category are called right shuffles. We write 

(y/D,x) = (y' (Uf) ,D,x) 

-+- (y',D',(Uf)x) 

= {y',D',x') 

Arrows in Sh IV)q? are called left shuffles 0 Define . 
(y,D,x) and (y',D',x') to be 

shuffle equivalent «y,D,x) :!: (Y',D',x'» if they lie in the 

same component of Sn (VI i O\e. in A we have the 

cammuting diagram 

. 4 ut 



f( 
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y 

In other words, the equivalence is obtained by rnaking 

a sequence of right and left shuffles. The equivalence , 

class of (y,D,x) is denoted [y,o,xJ: 

oefinitions 1.2~ 

To cope fully with (1.3.2) a 1arger graph 

Sh' ('0,1) L=- Sh' (V)) is required. Its objects are of ' . 
the form (y,C,z,D,x) where 

X ______ x __ -+. UD ______ Z __ -+I UC, 

lies in A. Note that z is a ~orphisrn in A, not, in 

general, in the image of V. Let (y',C';z',D',x') be 

anQther object of Sh' {V} <Jiven by the diagranl 

o 



( 
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X' 
, 

x • UD' 
, 

z 'UC' 'i' , Y' - "" 

There are at'rows between thern ~mly if X = X' and Y = Y~ 

Then ~ àre either arrows fI: Çyz,D,x) -+ (y'z' ,D' ,x') or 

arrows f2: (y,C,zx) -+ (y'.'C',z'x') in Sh(V) i.e. either .. 

DC 

or 71~ X Uf2 y 

z'~ 4 
De' 

. commutes. Once again, the arrows of Sh' (V) (resp. 

Sh' (VI op) are cal1ed right (resp. 1eft) shuff1es,- a.nd 

objects lying ip ~he same componen~ of Sh'(V) are 

shuffle equivalent (=') with equivalence classes denoted 

by. [y , C , z , 0 , x] . 

Definition 1. 3: 

The idea of shuffle equivalence allows us to define 

the following central noti ons. (y,C,z,D,X) shuffles out if 

(y,C,z,D,x) e' (y' ,D' ,id,D' ,x') for !70me y' ,D', and x'. A 

shuffle retrac::t is an equivalence class [y,O,x] of Sh(V) 

such that X:Y, yx=id and (Y/D,xy,D,~) shuffles out. 

Note tha t i t doesn' t 'follow tha t Y or x is a hornornorphism 

(c.f. Example III.3.7). A shuffle hornornorphism bet~een 
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shuffle retracts [y,D,xJand [y' ,D' ,x'] is' a morphism 

fe:A(x,X') such that 

(y',D'x'f) _ (fy/D,x) 1.1 

Shuffle homomorphisms are well-defined since if 

(y,D,x) :: (t,C,z) then (t,C,zf) :: (y/D,xf) etcetera. 

From (1.1) it follows that the shuffle retracts and shuffle 

homomorphisms forro a category called S( V} with an . 

underlying functor S(u) to A 

S{U) s (V) --1- A 
( 

(y, D,x) ..-- X 

f ........... f 

Sh (Vl and Sh' (Vl can adopt the structure of categories 
r 

by us ing tbe cOlTlposi tion rules of V. An arbi trary 
. . 

morphism of Sh'(V) is then a pair (f2 ,fl ) of 

morphisms of V such that aIl paths commute in 

z 
UD 1 UC 

X/.flI lUf~ y 

~UD' ~ 
z' " UC' 

1 , 



( 

{ t . " 

l'. 

, 

1 ( 

, 
1 

0' ( 
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Lemmâ' 1.4: 

There is an embedding Sh(V) +Sh!(V) sending (y, D, x) 

·to (y,D,id,D,x) and f:(y,D,x) -+- (y',D'.,x') -to .. {f,.f}. There 

are also two 'contractions' Sh' IV) +Sh(V) sending 
, . 

(y,C,Z,D,'x) to (yz,D,x) (resp. 
\ 

(y,c,zx» and (f2,f1) to fl 

(resp. f2». They pre~erve shuffle equivalence. ~~u~, if 

ér,D,xJis a shuffle retract with 

(y,D,xy,D,X):' (z' ,C,id,C,z) 

Then 

[y,D,x] --. [yxy,O,x] 

= ,{ z' , C, z] 

.1 
and 50 

. (y,O,xy,D,X)=' (zl,C,id,C,z-) .. 
;:' (y,O,id,D,x) 

Lernma 1.·5: LÈ!t 'U:V ~ Abe operational with presentation' 

(e,H). ' 

i) If (y, D, lé) :: (y .. , D' ,x') in S h ( V r thèn 

y fux - :y 'tD.x' • 

t( ii) Similarly, if (y,C,z,Dr~) ;1 (y' , C' , z' , IJ' , X f ), then' 

I.,l~~_~_. ______ ~_ .-.::.:' ',---~- -~- --- -. 

" 

.. 

1 

1 
.1 

" 

\ 

1 

l' JI 
. L-



1 
- 1 
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YIIJCZfPDX = y' ~C. z· fPD,x' 
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iii).Hence, all shuffle retracts (resp. homornorphisms) are 

;operational retracts (resp. homornorph1s~s). 

proof: The method of the pr..oofs o~ i) and ii) are simplified 

versions of that of Lernma 1.3.4 Le. it is sufficient to 

check the result for right shuffles, which is easy. For 

iii) just apply i), ii) and Lemma 1.4. 

Lernrna 1. 6: Let G: V..)V' b~ a functor over A. If 

(y,D,x) - (Yl,D1,xl) then (y,GD,x) - (y l'GD l'X_l) • 

Similarly, if (y,C,z,D,x) =' (Yl,Cl,Zl,DVxl) th,en 

'(y,Ge,z,GD,x) :' (Yl,GCltzl,GDl.tX,r). 

Proof: As before, it is sufficient to check the hypofbesis 

for'the generating equivalences, in fact just ~or the right . , 

shuffles ',and then apply induction. The second statement 1,s 

proved exactly like the first. 

f. 
Consider" a right shuff le , 

>Il 

• (y ,D,~) = ~tUf iO,x) f:D -+- C in V 

+ (t,C, (Uf) x) " 

= (t,C,z) 

.' . 
Then 

\ ,., . ~ .', l 
I,,~~~ __ ,, ____ ~ __ ~~-,-____ ~ __ ~~ ______ ~~" __ .~~~ __________ ~_f .. S.i_.~. ___ 3Ë~·~~~ .• N~W~.~~·~I~. __ ' •. _-~M.,qy~.~-~-===~.~. __ 



(y,GO,x) = (tU' (Gf) ,D,x) U'G - U 

-+- (t,GC,U' (Gf)x) 

... (t, GC, z) 

Scan be extended to be a functor 

S: Ca:t / A-+- Ca:t 1 A. Le tG: V -+- V' be a 

functor in Ca.tIA. Then we have -

S ( G): S ( V) ~ S (V' ) , 

[y, o,xJI-±'[Y' GD, ~ 

f f 

By the lemma, SG is we11-defined i.e. its imag~ 

SV' and its definition is independent of the 

representative of the equivalence c1ass cho 

Lemma 1'.7: 

i) If (y',[y,D,x),X') ( t ' , [t, C , z] , z ' )-

then ,(y'y,D,xx') _ (t't,C',zz') in Sh(V). 

ii) Sirnilarly, if 

" , 
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(Y;'[Yr,Dl,x~,y~,[y,l),XJ'Y'l):;" (t3,[~,Ci,zJ,t2,[t,'c,z~,tî) then 

(Y3Yl,Ii'~2y,D,xYl) :;' (t;1i,q,;t2t,C, zti>· -. 
iii) '!'hus if t'.:",,' • 

" 

[y'-, [y,D~XJ ,x'] is a shuffle retract' with respect tOI sV 

.. 



J 

\ 
\ 

() 

then [y'y' D,xx'] is one with respect to V. SimilarlY, 

shuffle homornorphisrns re~ain shuffle hornomorphisms. 

Proof: 
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i) We need only check for right (and left) shuffles and 

then apply induction. 

If 

(Y',[y,D,x] ,x') = (t'SUf,[y,D,:x:] ,x') 

-+ {t', [t,C,z], (SUf)x') f: [y,D,X] + [t,C,z] 

• (t', 1 t,C,zl.,z~) 

Then 

C,<SUf)y,D,x) (t,C,zSUf) 

Thus 

(y'y,O,xx') = (t' (SUf)y,D,xx') 

- (~'t,C, (SUf)x') 
'-- ' 

ii} This i8 ,prswedas in i). 
• ~ l;. 

'iii) :LetlY ", Gr~~,xJ/x'Jbe a shu~fJ,.e retract for SV. 

Then. 

[ 1 0 " D' 'J - 1 [y J D' D 'J y y, 1 xx.y y, , xx = y, 1 xy, , xx 
l ) 

.' \,::' ~'y , 0, id, D f ~X" J 

.; '..w.4-__ ~ _____ ....... _____ ........ _~ t ... -.:_ 
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Propos i tion 1. 8: . 'l"here is a triple on Ca..:t; A, the shuf f le 
, 

triple, S = (S,T],ll~ "lith S given as above, and for 
1 - 1 

o ove%:' A, the 'uni t nO is CJiven by . 

nvD = [id ,y, id] 

nvf = f ' 

and mu l tipI i ca ti on llO gi ven by . 

flO[Y', [y,D,»] ,x'] • [y'y,D,-X'X] 

-- f 

Proof: Clearly n is a natural transformation. llV i5 

well-defined by LeIlÙna 1 .. 7. Now J.~t---G-fV-::" V" over 

A. 
-) 

Then 

-
IIp,s2 G[y,, [y,D,x] ,x'J =' [yI, [Y,GD,x},x'J 

- [y 1 Y , GD, xx'· J 
=SC;[y'y,D,xx'J 

-SGlJv[Y', [y,D,x],X'J 

. Thus -a ,is a natural transfomation. The proofs that 

\lSn -. id = lll)S and lJSll = IJflS are left as easy exercises. 
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The category of algebras for.§. will he denoted 

§.-Alg wi th the corresponding adjanction being p§.--j U§.. 

§2: n-Shuffle Retracts 

Operational categ,ories h~ve a ITIore detailed structure 

than arbitrary S-algebras e.g. if V is operational 

with respect to (e,H) and [y,D,x] is a shuffle retract,and 

so an operational retract, wi th y 4>OX = 4> ri' then this equation 

can be employed to obtain new operational retracts .which 

are not shuffle retracts'c.f. Exarnple III.3.1~. 'Do capture 

, 

these properties of operational categories, a countable sequence 

of triples §.n = (Sn, nn, lJ n ) must be constructed wi th 

.§.l = S and Sn: §.n-i-Alg -+§n-l-Alg (§a-Alg = Ca1:.!A). 

, Of necessity, the triples must be constructed in~uctively. 

The, information reguired for the induction i5 contailled in the 

following ,hypothes'is. 

Hypothesis 2. n: Par each In, n there i s a triple 

§zn = (Sm, nrn, \lm> on §.ro...rAlg such that for 

(V, dl ' d2 ' ••• dzn.-]), an §m..l-algebra (~ i5 ~e 

st:pucture morphisl'li for Êk)' .§n (V,d!,d2'·· '.'\n-y has 

as objects some triplets (y,D,x) such that 
p 

. , 



t 
t 

f 

1 
~ 

1 
t 

-----.... 
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___ X __ ... un __ ... y ____ t y 

lies in A, and has as morphisms (y,D,x) -+ (y , ,D' , x') sorne 
\ 

f:X !"X'. Let the struct.ure morphisms for 

Sm (V,dl,d2, .•• dm-ll be (Sm:l~ For each 

.êrn-ïalgebra, there is also a graph,Sh(V ,m). They 

are defined sa that the following statements hold: for 

V in Ca.ti A, SIL {V, 1) = Sh(V) and 

given an.êm-l-algebra (V,d 1 ,d 2, ••• 'in-i, Sh(V,m) 

is generated by 

il the underlying graph cf' Shi p,m-l) and 

ii) if D - dm-l[Y' ,D' ,x'] then (y,D,x) -+ (yy' ,D' ,x'x) 

ii) i8 called an rn-expansion (with respect to Dl. Note _that 

for k (. m, k-expansions ar'a also ITl-expansions. An 

rn-expansion as an arrow of Sh(V,m) is called an 

rn-contraction. Define an equivalence relation on the 

objects of Sh Iv ,ml by (y,D,x) =m ( r ' .1 D' IX') if f th ey .. 
lie in the sarne cornponent of Sh(V,m). Equivalence 

classes are denoted ,[y,D,xJ. Now Sh' (V,rn) (and its 
.... 

equivalence relation == irt ) are constructed relative to 

Sh{V,rn) just as Sh' (V).(and its equivalence 



1 
.1. 

(, , 

Cl 

51 

relation::' ) were gene~ated relative to Sh(V). Then 

(y,C,z,D,X) m-shuffles out if (y,.C,z,D,x) - , =m (t' , D' , id, D' ,t) 

for some t,t'and D'. Finally, any (y,·D,x) such that 

yx = id and (y,D,xy,D,x) m-shuffles out is an 
,( 

m-shuffle retract. An m-,huffle homomorphism 

[y,D,X]-~~Y' ,D' ,x'] is an f:X -+X' in ~ such that 

,(fy,D,x)'=m (y' ,D',x'f).t'iThen, Sm(V,dl,d2, ••• d rn-1) ~ 

the category of m-shuffle retracts and homorphisms for 

V over A wi th an underlying functor §zn U: êrn V~ A. 

The unit, nrn' 'of .êmappl~ed to V over A is 

given by 

o ~ [id,V,idJ 

f~ f 

and th} multiplication, Pm, at V over. A. is given 

[yi, [r,'D,x] ,x'] ....-- [y 1 Y , D, xx 1] 

" f .--.. f 

by 

( 

'Definition 2.1: Assurnin<j (2 •. n) 1 define S'h/V,n+l) etc. 

and--~!= S· -A1g+ §n -Alg just as in (2 .n+ 1.) • 
, ~ 

. -. 

, -.... 



1 

1 
1. 
1 

1 

• '1 

( ) 

() 

Lemma 2. 2: AS surne (2" n). Le t (V, dl' ••. dn ) be an 

.2ri-algebra. Given that SIlTIV is an .êJc -algebr? 
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for sorne k~O with (%+,i0k [yr, Ij,D,x],x'] = [Y'y,D,xx'J (if k>l) 

and (Sn+ld}k f = f, then 

i) if [y',[y,D,x],x'] =k+Ift',[t,C,z],z'] in 

Sh( 9:l+1V ,k+ 1) then [y' y ,D,xx']:: n't'l [t' t,C, ~.~ '] -

ii) Further, if 
~ . 

[Y3' [~'Ii'~] ,'12', [y,D,x] ,yiJ =rl+l [t3' [tzeyzi!1=i z [t,C,z] ,\']then 

[~,}].r DrXff2' y, D,xYi]:: A+l [~' ty q, zHt' c, Zt\'] • 

Proof: 

i) As before, it is sufficient ta'check the 

equi valences for generating shuffle equi valences 1. e. for 

right (,and left) shuffles and for k+l-expansions (and 

contractions). Right shuffles are dealt with as in LeffiITla 

1. 7. If there is the k+ l-expansion 

ry~D,~ = (Sn+lQ)k[t' 1 [t,C,zJ,z~ 

, '. l!:' t, C, z z 'J 

then t't = y, D = C and zz' - x. Thus 

-[Y'y,D,XX'] =[y~tJt,c,'zz 'x'] 

ii) This is" proved as in i). 

" 

, , 
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Lenuna 2.3: Assume (2.n) and,let (V,d l , •••• ,dn) be an 

§n-algebra. Then SntlV is an ~ -algebra for 

every k. 

Proof: Since SntlV is an ~ -algebra, induction 

b'ased on Lemma 2.2 shows that (%tld)k is well-defined for 

aIl k. Clearly, i t is a structure rnorphisrn for SntlV 

i.e. Sn+lV is an §x: -algebra for every k. 

Lenuna 2. 4: As s urne (2 • n) • Le tG: V .... V 'ove r A be a 

homomorphisrn of §n-Alg. 

i) If (y/D,x) =kt1 (Yl,Dl'x» for sorne k, O~k~n, then 

(y,GD,x) =ktl (Yl,GDl,xl)' 
1 

ii) Sirnilarly, if (y,C,z,D,x) '=k+l (Yl,Cl,z IrUl,X}) then 

(y,GC,z,GD,x) =ktl (Yl,GCl,zl,GDl,xl)' 

Proof: 

i) As this lenuna is an extension of lemma 1.6,' it is 
~ 

sufficient for the inductive proof to consider 

ktl-expansions (and contractions)., ,;Let U' = dk ty .1 D,x] • 

Then (y',D',x') 9c+1 (y'y,D,xX'). But 

r; 

GD' = G\(YfÜ,X] 

= dkSG[y,D,x] 

• ~ [y,GD,x] 

Th uS [Yt ,GD' ,x '1 =k+l [y 1 y, GD , xx ' ] - [y l' GD l' xù as required. -
-::.. 

, 

1 
• 1 

1 
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ii) This is proved _ as i~ i). 

·9 
Thus, asstlIlli'hg (2.1\1), SnTl. can be extended to a functor 

§n -Alg -+ ~ -Alg as follows. Let 

G: (V, dl' d 2' ••• d n) --+- (V', d'l' d 2' ... ,d d be an 
.. 

S -alg~bra homomorphisme Then %+lG is defined by 
-n 

[y,D,x] 1--+- [y,GD,x] 

f ~ f 

By the lemma, SntP is well-defined. Also 

( Sn +1d ' ) k S k (Sn +P) [y', IY, ~, x] , x ~ = (S nt:t1 ' )k fY' , [y ,G~, x] ,x ~ 

= Dr' y, GD, xx' ] 

,.. %tpEY'y,D,xx'J 

= (Sn+lG)(S;+ld~ [y' , [y,O ,x~ , x ~ 

Hence Sn+IG 1s an.êK -homomorphism for 1" k, n Le. an 

§n -homomorphisme 

Theor-em 2.5: For each n, (·2.n) ho1ds. In particular 1 

/, 

Proof: Proposition 1.8 i9 just (2.1). Given (2.ri), defirte 

eveJ;ything as in (2.n+1). Trivia11y,l1n+lis a natural 

transf.ormation. \.Intl is well-defined and a natural 
,~ 

l 
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transformation, by Lernrrla 2.3. Thus (2.n+l) holds. 

Proposition 2.6: nntlSn:Sn-+Sn+lSnis an isomorphism which 

has, for each (V, dl' d 2' ••• %-1, the inverse (~d~:1+l as 

in Lemma 2. 3 • 

Proof: Let l'ln+1Sn V::tI and (Snd)n+1 = dn+l" Then d n +l l'l = id" 

sinee %+1 is a structure morphisme Now let 

[y' , [y, D, x] , x' ] E 1 S n+1S n V 1. Then b~7 Lemma 2.2 

[y'y,O,XX']ES n V. Hence [y'y, [id,O,idJ,xx~ ES2V , n 

and (Gnd)n [y'y, [id,D,id],xxj - fYy' ,~,~x~. Also, 

(Snd)n[y, [id,O,i.~ ,x] =: [y,D,x]. So i 

1'1 d r yi, [y'O'>9 ,x']:: [id, [y'y,D,XX I
] ,id] 

n+t . 

=n+I[Y'Y' [id,D, id] ,xx'] 

=nt l [y' , [y , 1) 1 x] , X ~ 

Trivially ndn+lf =f. 

Thus ~+1 Sn V is an isomorphism for each V and so 

n .s i8 an isomorphism., ntrn 

n,: .S: '':-,al,g,e,bras 
-* 
CUL -

Definition 3.1: Let (V, {dn }) be sueh that, for each n, 
, 

(V,d l ,d2 , ••• d n) is'an~-algebra. Then 

(V, {dn }) is an ~*-~l~ebra. Sirnilarly, if 
w ,0 0 1• 

(V' , {d lri) is another ~*-alCJebra and G: V+V' 

, 

i 



) -' 

! 

1 
' . 

( 

is an §.n -homomorphism for eaeh n, then G fa an 

~* -homomorphisme These categories and functors forro a 

eategory ealled ~*-Al~ with a forgetful functor 

U.: S.-Alg+ Cat/A. 

Proposition 3.2: U. has a lef'!;: adjoi,nt F •• 

Proof: Let V be a eategory over A. Since fh+l~n =: Sn -
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for aIl n by Proposi tiQn 2 • .6, Sns.t <>1 SJ. for aIl n >1. CalI the . 
isomorphism "n:SnSV= sV. Define "-1 = ).1. Then 

F.O - (0, ~>lIn}) is an 2.*-algebra. Now let 

G:O +V ' be a funetor over A. Then F *G • SG is, by 

"l'heo!:'em 1.8, an g-hoITIomorphism and so, sinee l'ln S is a 

natural transformation for eaeh n, SG is an 
'. 

S * -homomorphisITI. Henee, Fol. ,is a functor Cat/A + S -Alg. ... -* 

Now the unit for the adjunetion is n: 1. + S = U. F tt'" 

The e~:>unit at ('0 0' {d n }} is E: = d1:F.V+ (V,{dn }). 

E is an ~*-homomorphism sinee 

dlS1E = d1Sl.dI 

= dll ).! 

- EV I -
and for n>l 

- .... - -

{' 

~, . 

4 
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dnSne:[y' , [y,D,X] ,x'] :: dn[y' ,d1[Y,n,x] ,x'] 

= dn [y f Y , D, xx 'J 
= d1[y'y,n,xX'J 

= e: v [Y', DI , D, x J , x 'J n 

Now the equations for the adjunction are 

and 
" 

Thus F .. --i U." 

.' 

- id 

= \.IV SnV 

= id 
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CHAP'j$R. III 

, -
" 

A 'CHARACTERIS'ATION OF OPERATI'ONAIi éA'TEGORIES . 
• 

In thls chapter the operati0!lal categories are 

characteriseq by their internaI structure. Spécifically, 

the operationaJ: c~egories are exactly the §.* -alg~bras. 

'We approach this'" result by first showinc; that the triple 
« 

associa ted to the adjunction Lo --f ~ is just S. 

The following lemma links the construction!$. of LV and SV. 

Lemma 1.1: 

in CV, then there is an i (l~i~n) such that 

• ' q 

'''''''1, 

ii) 'If à' 

'f 
.. '. ,. " ~i '! 1 l ,~' 

" 

e , 

, ; 

, \ 

1 

j . 
1 
1 
l' 
1 
1 
1 • 
! , 

1 -, 
, .~--." 



i' 
1 

,. 

, 
- : 

o l' 

p 

r 

1 

L 
r 

l . 
~ . 

( ) 

• 0,," 

.. 
- ' 

C
-.. ' .: ,). 

• 

then there are ,i <~ such that 

Hi) Hence, if y'x' = id, y~:;1 id and y'wD'x'yI,llOx. id then 

y'W-o; Xl = yw 0 x; and [y' D/,g is a shuffl~ retract. 

Proof: The proofs aIl run parallel to parts of that of 

1.3.4. Lernma II.l.~ may aiso be used. 

Theorem le 2: RoLo:: S: Ca.ti A -+-Ca.t.;A. Hence, the 
• , 1 

comparison functor K:OPo(A) -+-,2-Alg provides, each 

operational cate~ory (resp. func~or) with a st~ndard~ 
presentation, wi th the structure o'f 'an· S-algebra (resp • 

• - 0 

.2-:-hOmomorphism). \ F'6r V· operational with -a standard 

presentation, the' structure lT\orphi,sm d is given by 
r~ (' 

d: St> 

f f 

59 

'-, 
~roof: Let (X,t) Q~ an algebra in LV. Th~eJ;\, 'bl' 

duplicating the arguments of Theorern 1.3. 7, 

l, 

.. 

.. 



1 

1 

c) 

" 

1 

i ()' 
\ 

l ' 

60 
" 

;.--- ~w = YWDX yx = id 

. , 

0 

::.:. _l 

~(&). -y' wOx' y'x' = id 

id = y'w' x'yw x D' D 

Hence, by Lemma 1.1, y·wn.x' - YUlOX and [y,D.'~ is ci shuffle 

retract. Similarly, morphisms in !oU are shuffle 

h6momorphisms. Thus, there is a functor ~V:~oLoV+S.V. 

Conversely 1 de fine ~V * : SV + Ro L 0 V 

by 

with respect to the given presentation of 

well-defined by Lemma II.1.5. clearly,~v 

L l, ÇlV~V :: id, too. 

. 

LV. '~V 

~V= id. 

is 

By Lernrna 

To see that RoLo G iii: S (G) .for a func't.or G: V + V' over 

A, we che€k that S CG)' satisfies the definition of LG 

( c. f. ( l 0'2. 7. ». Trivially, , (LU,') S (G) • 

·'C0 
LU. For the other 

l ' 

arm of the pullback note that 

~ 
nGD = ~LGllD 

-
= 11 • LG,no 

= CG T o"nD 

'= CGTOt 
nO 

- M 
- ;f1"-~-"" ... """_~ __ .. _ .... iI' •• -. ... -"" .... -~~ .~coI.o • ."lt A 

J' 
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/ 

Hence 

lI'S{G) [y,D,x] = ~'[y , GD 1 x] 

o Also 1I"SGf 

= (HO') *!,tnGV (H.V') *x 

= (CG.HV)*Y{CGTO~n~) (CG.HV)*x 

= CG T 0 (HO) "y ~t)V (HO)"x 

= CGT 011' [y, D, xJ 

- H*Uf - R L f. o 0 

§2: The Characterisation Theorem 
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Lemma 2.1: Let U: V -+ A ,be operationa1 wi th standard 

presentation (e 0 ,H). Asswne t~at n-shuff1e retracts for 

,~ V are operational retracts and V is an ~-algebra , . 

for sorne n>l with dk:Sk f) +V given by 

for l~k~n. Then if, for somè k,l~k~n+l 

.. (y,D,x) 9c {y' ,D' ,x\) 2.1 
. . 

. , 

Further, , if, 

f , 
.. 
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)
<YtC,Z,D,X)';: k (yi ,C'!ZI,O',X') then Y"'CZ(PDX = Y''''C,Z''''D'X ' • 

Hence, if [y,D,~ i5 an n+l-shuffle retract then it is an 

operational retract and~V ia an S l-algebra. 
-nt 

Proof: The hypothesis for n = 0 i5 just Le~a II.1.5. The 
( 

proof there can be expanded to cover the general case simply 

by checking equivalence by shuffle expansions, (and 

contractions). Assume that .the result holds for n and that 

(2.1) holds. Let D = dn[t,D' ,zJ. Then 

(y,D,x) sntl(yt,D' ,zx) 

= (y',v',x') 

,. 
Where yt - t'and zx = x'. Then 

... 
~D = tto'Z' 

and' y~ x 
'D = ytt

I1
zx 

-y'trfC' 

Theorem 2.2: There is an·equivalence 

K' :0% (A) -+ ~ -Alg over Ca:t/A. 

procf;, Define 1$' :Op o(A), -+ .ê...t -Alg by 

,K'(V,9 o,H) = (V,{dn}),artd K'(G,id,k) • Gwhere' d
n 

is given by 

[y ,D,x] ~(X,ytDx) 

f ,.... f 

- _ ...... _---- --~----- ~ l' __ ~_~~._~ ... ___ ... _""""-.~"*'" __ "--"~"'-~_"-""'__ • & 

J ~", • 
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By Theorem 1. 2, V is an ,ê,-alge8ra wi th structure 

rnorphism. d'. Assume now that V is an S -algebra 
J: -n 
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with structure morphisms d n • ~hen Lernrna 2.1 shows that 

V is an §n+l-algebra wi th structure morphism dn+l· 
. 

Hence V is an ~* -algebra by induction. Now let 

(G,id,k): <V, 6
0

,H) "*' <Vlr 6 0 ,Hl) be an operational 

func~or with a standard presentation. By Theorern 1.2, G is 

an 2 -homornorph~sm. Assume that G is an 

~ -horno~rmorphism. Then 

Gdn+lfY,D, x] = G (X, Y ~ox) 
;j / 

= (X~y~GDX) 
: 1 

:1 à~~JJY,GD,xJ 

= d ~ ll+IG [y, D, xJ 

where the second line holds since,by Lemma 2 ;1, [y,O,x] is an 
,'. 

operational retract and Lemma I.3.2 gives operational 

functors this property. ,Also, G4rtlf - f = d~+ISntlGf. 50 G 
JI' . ---. 

is an 5 ,-hornomorphism. Thus, by induction,~-is an 
-nT.L 

, . S. -homomorphisme -
) 

/ 

. 

Clear ly 1 U oK' 1 =- R •• o 

Theorern 1:.2 , K' Lo C:. F. 
* 

~ 

!' 

Also, by the def,ini tion of f. and 

Now the S -algebras ('0, { d }) (respectively 
-. . n 

"':;: • 
, -



, 
i \ 

.J 

1 
, 

, 

JO 
L,_ . , . - .. 
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'\ 

S -hararorj;:iüsms G) 'will be shown to be operational with -* 
respect to a Standard presentation, (eo,II"O) (resp. 

(id, CItG) ) •. Firs t Hf' (V, {dn n must be constructed' and sorne 

of its properties establis~ed. 

Definition 2.3: Define CU :.2. -Alg + Cat as foLlows; for 
1}, 

(V, {'\t}) an §.* -algebra, Cl' (V, {an}) is 

generated by 

ia) the underlying graph and equations of cV 
-

viii) .i!f 1;here is an n such that dn[y,D,X] = .D' in r 
...J 

= ClJD, 

= 

If G: V + V' is an 5* -homomorphism then CG - , 

prese~ves the equations viii) anà so induces 

C"G:CH(V,{dn })+ C"(V' ,{d~}). The.quo~ieI)t 

functors q":CV + C"(V,{dn }) yield a natural 
V. 

transformation q":C + C-=.2*--Alg + Cat. The base 
\~ , 

functor i8 H"(O~{dn}) = q"HV:AxBo+C"(V,{dn }).' There.is 

à!so ~e 90mmuting diagrfID, fram the definition of CV: 

, .. 

~~ ~~ ~-""-----
. ! ............ '--'-...-~ ... _- -----.... ~------~ ""'-..-.~ ... , ..... _~--_. 



6S 

( ) 

\ .' 

. 
1 " 

VxT 
0 

cV 
q"p 

Cil (V, {d
n

}) 

C) / 
Ax8 CG 

. 
j 

0 C""G 2.2 . .. 

\ 1 , 
t . 

\.. 

1 
, 
1 . V' >cT 

1 
0 CV' q" en (1" , {dn}) i 'D ~ l , 

i 1 
\ : 1 L 

Il 
l, 

1 
", , 

,q~ 
'. 
1 

~ , 

.' <J, 

. , " . . ' 

\ 

o 

, . -.-------



( / 

Il 

J 

:~. b 
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Lenuna 2 0 4: 

.. 
,il if' 

= 

in C" (Ul ;, {dn }) th en there is an i such that l.d~rn and an 

n such that (y,D,xh:n~ (y '1.':' 0 oy.,Di,y, 10.1' ). . m 1il'"".L l. l- 0 

ii) if 

= Ymtu[, Ym-1°···· 'YlwD y 
rn ' .1. 0 

then thére are i<j and an n such that 

. 

c 

, , 
1 

1 
J 

: ' 
! 

(y, C, Z t D , x) ~.' n (y mY rn-l • 0 • • • y j ,D~ , Y j _ i ° •. ' • • Yi ' Di tY i -:-1 • 0 • JO • Y 0) 

iii) Further, if y'x' = id, yx = id and YLtt'x~YwDx = id 

then y'w&x' = Y'wDx and there is an n such that[y,D,~ is an 
u 

n-shuff1e retract. 

Proof: 

i) This lemma is an extension of Lernt'l\a 1.1. Hence i t is \-

sufficient to check the hypothesis for expansions (and 

contractions). If equi valence ls by, say i an n-expansion 

" , 

'1 

1 

, 

1 ._-, 
L 



, 
1 

1 
t , 
1 

t' 

-1 

, ~ 
1 , 

, j 

l 
. i 

, 
i 
( . 
1 

.... 11 

( 

, 

, ,. 

of type viii) then we have, D - dn [yl' DI , Xl] and 
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~D • so 

where yI = YYl and xlx = Xl. Thus 

= (y' ,01 , Xl) 

\ 
shuffle contractions are ~~alt witn si~ilarly" Since 

only finitely many expansions and contractions can be used 

in many proof, let n be the highes.t level of equi~alence 

used. 

ii) and iii). follow as in 1,1. 

Proof of Theorem 2.2 (cont'd): 

Let (V,{dn}) be an ~*-~gebra. Construct the 

'{~ opera:tional category P (~ Kil (V 1 {~}J) using the J 

presentation (eo/H·(V,{~}». 

P Cil (V, {dn } ) T 0, , .. 

.J l --

A c" (V, {d
n 

} ) B 0 . 

Since U.2.4)is a cornmuting diagram, there is a functor 

F:V -+op over A, sending D to (UD'<Z>D) and f to f, 

w~ere 4I D:To -+oC' (V,{dn }) maps w to w
D

" F ia 



1 

1 

1 

, , 
) 

\ 
) -

( J 

( 1 
! 
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faithfu1 sinee U is. To see F is a monomorphism note that if 

WD = / wDtin Cil (V, {dn})~ then by Lemma 2.4, tn = 4>D' and so 

n = D'. 

New let (X,4» be an algebra in p. By repeating the 

arguments of TheoreITlS l. 3. 7 or 1l1.1.2 we show that 
"-

~W - ywDx, ~w' = y'w' x ~nd id s y'w y'xw x. Hence,by Lemma O. Dr n ..,. 
2.4, ~w' - ywOx and,for sorne n, (y,n,xJis an n-shuffle 

retraet. Let D' = dn[y,n,x]. Then 

tw' = 
, 

W D' 

""-Thus (X, t) = FU'. Now if f: FD + FD' is a homomorphism in 

p *then f wrr--=~nce,o by ~mma 2. 4, 

(f,D/_~d) =n (id,O' ,f) f017 sorne n and f i8 a morphism of ~~ 

SnVo{ Hence f = dnf 15 a rnorphisM D +D' of lb. 

• ThuSy P :::: V over A, ~,oe'r1at eve'Z"'j' '§,*-algebra has a 

standard presentation as an oper~tional category.' 

, 

ft 

. Now conSide.r an - §,* -homornorphisrn G: P ... V' • Then 

the eommutativity of (2.2) shows that Gis-the tnduced 
, 

operational functor (K"G) in the di,agram 

1) - , 

.. 



'. 

1 - .. 

V .... C"(V {d }) Ta 

~ 
, n 

~o . 
Vf 1 Cil <V' {d'l)Ta 

j 
, n 

A :t: CII(V1,{dn})BO 

'A ~o 
~. C"<V',{dn,})B O 

Thus Kil is inverse to K' as far as opera~ional 

categories and functors are concerned. Now it must be 

checked thàt presentat.ions are respeeted too. The 

presentation for K"lt' (V, 6 0 ,H) is spE!cified by the 

genefating equations in C fI( V,{d }). 
n YWDX =- wD ' if 

~,O,xJis an n-shuffle retract with j [y,D,x]= D'. aut 
n 

then [y,O,xJis an operational.retract with Y~ox = ~o,and 
in C, y li}) x = III D'. Henee, the iden ti ty on CV induces a 

functor e"(K' (V, 6 0 ',\I» + C. Thus, by the 

'minimality~ of q ,C n( V, {d }} := C. Also, 
n 

if (G,.60 ,k) ls â m?rphism of 090 (A), then,sinee both k 
" 

and e'G are induced by CG, k := C'G. Thus K"K' ~ id. 

Consider K'Rft(V,{<\t}) = (V/~C\P). '"Assume that 

dn • dri for O~k~n. Let[y;p,x]be an n+l~shuffle retract 

'wfth-d' [y,D,xJ= D',. Then ,Y1JX = wô' in e,"(V,{9m,}). 
nH. 

\ 

\ 
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so, 

( 
r 



1 
l 

'. /i 

1 

l 
î 
1 , 
! 

l 
T. 

( 

( 1 

( ) 
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Hence, by Lemma 2.4, [y,D,x] is an m-shuffle retract for 

sorne m, with dmf.Y,D,x] = DI. Without loss of <Jenerality, 

Ibn+l. So 

D' ::: dm[y,D,~ 

= dJid''kry,D,~ ,id] 

,. d [y,D,x] 
n+l 

Thus d 'n+l = %+1· 50 dfI ,= dn for aIl n and hence 

Trivially, K' K"G = G for 
-', 

- any .@. -homomorphisme Thu~ K' is an equi valence • 

. 
Corollary 2.5: OPo(A) is completewith limits preserved by Ro. 

Proof: Ca:tIA is complete. So ,ê,-Alg is 

complete and U preserves limits. By induction,,, ~-Alg 

'is complè,te and u,ê,n preserves liI!li ts. Hence, <Ji ven any 

diagra~ in ,ê,*-Alg, its underlying diagram in 

Gat(A has a limit which.exists in ~n-Alg for each 

n, and so in ê*-Alg. Hence, by Theorem 2.2, ?Po(A), being 

equivalent to ~*-Alg, is complete.with limits 
... , 

preserved QY Ro_ 

.. 

\, 



00 

! 
1 

1 
l 
! 
1 

! 

( , 

• 

J,' . 

\' .. ,() 

1 

..J 

• 

71 

§ 3: 0 Ekamples 

, 

• J Under this .heading are co11ected a d'ive1:se assortrnent 

of exarnples. Sorne ar~ quite general propositions, such 

as the dernonstration that aIl slice categories are 
< 

operational. Others illustrate the manipulation of 

shuftl.es, with a view towards providing counter­

examples to sorne reasonable (but false).hypotheses: 

Lernrna 3.1: Let U: V .. A be a functor. Then for any 

U-,spli:t coequalizer as in (I.I.3),o [y,o,x] is a shuffle 

retract .. ~ 

Plioof: 

(y,D,xy,D,x) = (y/D, (Ug)t,D,x) 

"'" o(yUq,C,t,D,x) 

= (y Uf',C,t,D,x) 

+ (y,D, (Uf)t,D,x) 

• (y , D; id , D, x) 

.. , 
'Proposition 3.2: LetU:V ... A havè a left adjoint F. 

Then SV " AT wherè T i8 the triple aS8ociated"with • 
th~ adjunction. In particu~ar, if ~ is trip,leable, then 

SV '= °V. Dually, if U:V +.A has a righ~ adjoint th~n 

! < 

,# 

-"-' 

; ., 

. ; o. 



1 -, 

.... 

sV = AG where Q is the, assoeiated cotriple, and if 

V 'ls cotripleable then SV = V. Thus tripleal?le and 

cotripleable categdries are operational. 

Proof: Let' [y,D,x] be a shuffle retract. Th~n there is 

a'!-algebra (X,ydTX) (where d = U~D:TUD ~ UO) sinee 

ydTXTlX • ydnuDx , 

= yx ue:nu - id 

1 id - $ 

and 
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(ydTx)T(ydTX) = YdT{XY)TdT~X: 
l = YdTdT2X E is a natura.l tr,ansformat:-~~n 

2 
:;a yd'IJunT x 

, 

= yd'rxJ.lx . 

t. -, 
If f is a shuffle hornomorphisrn [Y;D,XJ ~ [yi ,p' ,x'] then 

~ 

(y',D'~xlf) :i (fy,D,x) and so, (y'clJ'rx')Tf - (ydTx). Henee 

f is a !-homOrnorphism. These construc'tions respect the, 
t 0 -

, 'equivalenc~relation and so define a functor LV -+ ",!. 

• , 

Now, let :(X,y) be a !-algebra. Every algebra for a 

triple indu~es aU-split coequalizer ~itp. respect to any 

a~jun,ctio~ defining the triple. _ 

" 

'. 

~---.-,---'-- - • 

,. 
• '.- , 1 ~ 

t-

b ..... '. ,r '.., 

. 
j' • 

l , -.-



~ . 
.... 

'. 
'" j.~~l 

'a-

I 
1 

1 "' 
1 # 

1 
,1 

l ' 
~ 1 

1 
1 ( i ) 

• 1 

• 

, , 
j 

.. ' '-_"'f "''2''''' 
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y' 
TX 
------~-

x 

.> • r"'" . 

" '" ,Thus by Lel!l.I!}a 3.1, [y,FX,nx] i8 souffle retract. Clearly, 

!-homomorphisms yield shuffle homomorphis~s. Hence 

there is a functor A! -+ SV. 
t 

, 
are' 1t is easy to check that these functors 

...... . ~ 

inverse. The dual results follow from P~opo~ition 1.1.2. 
1 

" 
Exarnples 3.3: By. Proposi ti'on 1.1. 2, -the pullback' of any 

oRerational category is operational. Thua, for example, 

th~ catego.ry of firiite groups over ~.çategory of f:inite sets 

(GJr.P~f -+ Se.-t:.6 f ) is operational. 

r 

Example 3.4: Any full subcategory closed under retracts 

i6 operational. Thus, given a group G, U:~ub (G) -+ GJtp 

(where Sub(G) is the full subca~egory of subgroups of G) 

operational. Also'GJr.Pf -+ Sez.6 is operationa~. 

- . . , , 

-. 

is 

j: .. :() . 
L,~.~"." .. ~_~_-'_t _.;..... •..•. '.:. ~ •.... c. 

\' 

. . .. 

t 
Î 

/ 

1 

Î 
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Exarnele 3.5: If U: V -+ A iS'a fibration then all shuffle 

retracts are trivial. t 
.-- ."" 

Proof: Recall that, given U:1' -+ A, f:D -+ D' is a eartesian 

z;narEhisrn in V if, for a~y' f 1 :Dl 
-+ DI such that Ufl = Uf, 

then there is a 

~I = f~. u:V -+ A is a fibration if, given x:x -+ Y in A 

with,UD = Y, then there is.a cartesian morphism f:D' -+ D 
" 

with Uf '= x. Also cartesian·morphisms must be elosed under 

composition. 

New let [y,D,X] be a shuffle retrac1.an~ l~t· 
'- x' :X' -+ D pe a cartesia'n rnorphism over x. Then !fi 

L • 

[y,D,~J = \id,x' ,id]. However, if···there is an x":X'" -+ D 

such that U~"6 = x then [id,X, id] :: [id,X 1 , id] • Henee, 
, 

many interesting fibrations aren't qperational. 

• 
Proposition 3.6: Sliee eate'gories are operational. 

, 
Praof: Let AIX -+ A be a sliee category (the. objeet~~f 

AIX are pairs (A,a), a.:A"!,: X).A quick inàuction shows 

that if (Y, (A!a),x) ë (Y"',,(A,',a'),x') clien ax = a'x'. Aiso 

(y, (A,a) ,x) :: (id, (x,ax) ,id). lt easily follows tnat 

's{A./x) = A/x.. 
'. 

Proposition 3.7: satisfying B.T.C. and being faithful does 

(-) not imply that a functor U:V -+ A is operationai. 

... . . " 

t 

1 
1 . , 

" " 
i· 
i 

r 

t ' 
._-~---_I. 
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7,5 

( ) .. 
(> 

Proof: 'Generate k"by the graph, 
.' . 

" 

B 
, 1 

"Il 

, . 

A 
j" 

C 

, 

). and the ~uations 

" " 
v 

jfJc - id ' . -
fk 'f f 

.. 
" J = 

0 't 

B ~ 
1. Lêt D:O .. A be given by the subcêltegory inc_lusion 

B 
" 

" 

c " 

Trivially, U satisfies B. T; C. • Now, 

) 
( j f 1 B , k j f , B , k) :' ( j , C 1 fk j f 1 B , k ) 

l ' 
= '"( j , C, f, B, k) 

':' (jf,B,id,B,k) 

() 
,,' 

",' 

\ 
'-

',1 

• 
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( 
, 

So '(jf ,B,k) is a shuffle retract over At yet ,no object of 
. 

." lies over A. Mence, there can be no §.-aJ.9.~_ra structure 

for Vi. e. 1) is not 'Operational. ' . , 
'Example 3.8: Here is constructed a category fo~whicb 

snt IV rit: Sn." + 1 (where 1 is the terminal category). 

This categery will be used below te create counter-
• f 

examples te various attractive hypotheses. 

l j 

" \ 

~t A be qenerated by the graph -
o '. 

l , 

" , 
)~ 

\ : . \ , 

and the 'equations 
;j 

1 

1 
i) jfk = id 

ii) fkj'f - g2hgl - ", 

f 
f ' 
! , 

iii) jg2 .. jfg4 

iv) glk = g3k 

v) g4h93 
~ 

= id 
1> 

0 
~ 



\ 

( 

() 

() 
t 

1 
t 

," 

Let U:V ... A, be the inclusion generated by 

======= D -- - - - - --_. 

+-------E 

~ Clairn 1: All non-trivi~l identities (i.e. composites of 
, . 

generàtors equalling an identity morphism of A) are 
, . \ 

contained in the following list (note that not,all the 

morphisms in the list are identities!). 

ëomposites of these 

b) jf~, all d~fined morphisms of the forms ~ 

jfÀk and jÀk where À i5 in a) 1 and; aIl 

composites of these. 
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;/ Proof: All the generating identities in the definition of 

A are in the list and it i9_c1oryed under application of 
\.-.....-

generating equations. 

Now a11 candidates f,or shuffle retract for V can be 

obtained by 1 splitting' an identity in the list into a pair 

of maps. When this is done aIl but one of any composition 

1 

3.1 

J 

( 

'. 

1 

f t 



, " 
" 
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l' 
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of identities must vanish. Bence, afte~ taking equivalence 

i~to account, there is only one possible, non-trivial 

shuffle retract, namely, (jf,B,k) - (j,C,fk). New 
• 

" 

fjf,B,kjf,B,k) ... (j,C,flejf,B,k) 

= (j,C,92hgl,B,k) 

'. 
1 

. :' (j9'2,E,h,D,9lk ) 

= (jf94,E,h,D,"'93k ) 
• 9-

... (jf,B,94h93,B,k)· 

1 •. (j f , B , ;id, B , k) 
1 

1 , 
" . 

So, [jf,B,kJ iS,a non-trivial s~ffle retract. 

Now ass~e that there i8 a non-trivial shuffle 

homomorphism fo: [id,Do,id] +- [id,D~,id]. Then 

3.2 

Assume further that the shortest proof of equivalence (the 
. 

length of a proof is the number of shuffles eMployed) is 
~. 

begun by 'splitting' the identity in the left-hand term of 

the equjv.alence (3.2) •. '!'hen id = f 2f 1 wJ:1ere f 2 :; nVf2' Le. f 

is a morphism of 1). By examil\ing the list (3.1) it is 

' . .. _._~....:.. 

, 1 

'" i 

.' 

'. 
,':) 



() -
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11 

: .. " 

, 
(fO,D~4'1d) = (fo ' B~g'4hg 3) 

( f og 4 1 E , hg 3 ) 
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The ~ext step in the proof must be a right shuffle. The 

onl~ equation involving som~ing of the forro f9~4 is 

jfg4 = jg2" Bence fo = fljf + for som~ fI- Thus 

and the 'j' cannot b~ eliminated except by reversing the 

'. 

equivalences alrea~y used, contradicting minimality. Thua, 
, -,- . 

in any minimal proof of an egui valence (3. 2), the f irst 

step must pe a right shuffle. 

Lemma 3. 9: Gi ven U: V + A, as sume tcha t no minimal. ,proof 
'. 1 

of equi valence 

if,D,id)~ (~d,D',f) 3.3 
~ 

" in ShlV)can begin with a left shuffle 

(from the left-hand term). Then every non-trivial shuffle 

homomorphisrn f (i.e not in the image of Tl) has a minimal 

pr~of of (3.3) which begins by 



l, 

( ) 

, . 

(f,D,id) • (f3f3,D,~d) 

-+- (f 3' Dl' f j) 

= ( f 3 ' Dl' f 2 fI) 

-+- (f 3 f
2

,D2 ,f1) 

G where f 1 doesn i t underlie any fi: 0 -+- °2 • 

, . 

80 

. 
Proof: The proof;is by induction on the minimum length of 

proof of (3.3). If the proof is in one step then f€Im (rl) ~ 

Assume the hypothesis for the cases with thè l'Iinirnurn length 
" 

of proof being n. Let f satisfy (3.3) with a l'linirnum proof 

length df n+1. By ass\ll1lption, the p,roof with a 

right shuffle 

By minimality, the next' shuffle must' be to the 'left 

\ 

Uow if f 1 ~ ",:,Uf i for fI: 0"" O2 ' 

. . \ 
and so the proof 'of (3.3) rnay be <J~ven ~J) n steps. 

Contradiction. Hence fI is'as required. 

.' J 

! 

1 
l 
i 
< 

l 
l 



\, 

. ' . 

( ) 

t 

1 

. """ 

• 
. . 

81 

Returning to the particular f1 at hand, the search 

'for morphisms f:3 Elm (Tl) such that ft • 
3 f 2 f 1 in a non-trivial 

, 
way with f

2 
and fI as 

, -
above shows that they are all , 

the fom f' ... 3 ... ( f • g 4) (hg 3>' • Bence the first two steps 
. 
'of the minimal proof look like 

/ 

f~o;Odid) -(f3 ,Dl'fj> 

~ ....... 'f3 f 3'4'E,h93 ) 

~ But this ecjùi val.ence can be obtainad by 

(fo·,DO,id) :: (fo' B,CJ4h93) 

(foQ4 ,E, h93) 

in one step. Hence, no such fJ as considered here can 

be employed ,in a minimal proof of (3.3). " 50' tl;le on ly 

shuffle homomorphisms between tf.ivial shuffle objects 

are fn)m V Le •. n is full. 

To complete the characterization of LV the shuffle 

o~ 

• hornomorphisrns into and out of [j f ,B,k] must be analyèed. '. 
{ . 

The morphisms out of A in A are all of the forro fok. 

Assume (fokj f ,A, k) ;: (id,X, fok) for sorne fo and X., Then 
\ 

by the usual argtlI!lents, in any rninïmal proof we \ have 

" 

" 



ft 
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û 

( , 

, 

(fokjf,B,k) = (fI fkj:f ,S,k) 

= (~l g2hgl ,B,k) 

," 

t 
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Now ta eliminate the • 9 2 ' a • j' must be intl'oduced. So 

f 1 = f 2:), and 

Hence, 'the proof ,above is not l11iniJt}al. Contradiction. 
/ . 

50 there are no such shuffle homo;morph1sms. 

In the sarne way i t is shown that there are no shuffle . 
homomorphisms into [jf,A,k] from any shuffle retract. 

Thus, S~ ~ V + 1. Sinc~ the isolated [j f , A, kJ can have 
, ~ 

no influence on the construction ,of shuffle retraets aIl of 

the 'above work generalises ta show that sn+lv ~ Sn1) + 1. 

Proposition 3.10: For an arbitrary A, 52 j S. Henee, 

fLoRoll and so the iMage of Op(A) is not a full subcategory 

of Ca.tjA. (Note that Op(A) isn't a subeategory of Ca.~jA sinee' 

presentations aren't unique.} 

Proof: Wi th V as in Example 3.8, S2V Il: SV t 1. 
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Proposition 3.11: Let OPf<A) be the full subcategory of. 

Ca~/A of operational categorie's with forgetful .functor 

~. Then ~ there is an A such that Rf has nO left adjoint. 

, 1?roof: Assume. Rf has a left adjoint Lf', Then, for any 

category V over A, we have, 

1 
r1I 

, ' 

nf D,-------------+ 

whére F and G are the universal functors (for ,notational 

c!,nvenience, the forgetful functors will often he ignored). 

So GF • id and F is a monomorphisme Consider the category 

D~ of Example 3.8. By' Lenuna (II. h·~) , [j f , T'lB, k] is a shuffle 

retract for LfV. Hence,there is an object over A in 

LfV. Thus, LfV ::: Lo~ and Il f ::: 110. 

NOW,IlVo 
. , 

-+ L2V and 
o 

so LfV fails to have the required universal property. 

Contradiction. Thus, Rf has no left adjoint. 

1 

, 
·1. 

1 
1 

. l 
, , 
1 

~ 

., , 
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Proeosition 3.12: The operationa1 categories and fùnctors 
o 

don't form a subcategory of C«Z/A. 
'""---

Proof: A pair of operationa+ functors 

.... 
are constructed whose composite G2G1 ,isn't operational. 1 

This is possible because G1 and G2 are ,operational 
, . 

with respect to two differe~t presentations of V2 -

Thé, example is based on a modification of Example ~.8 .. 
<'T 

Let A be generatèd by the graph, 

J • 

,,,Ii 

and equè;ltions: 

c .. ,--- E 

'Il 
,) 

g2 

'Ir" • 



.. 

" 

. . 

.' 

.... 

... 

( ) 

-
( ) 

• 

-

"," 

. , 
-* 

/ 

~,-

il jfk = id 

ii) fkjf = g2h9l 

' , , iii) 91k -g3k 

.. iv) j92 = j~q4 . 
v) g4h93 = id 

vi) kp = q 
" . , 
: ,~ , ..., 

Let ,°1 ' q~ the subcategory generated by 

t-

f' ) g1 
A- I 1 D 

~~ tJ .. 
f 1:' ,q~ , 

C 4 

92 
E 

SVI = VI + l, (where the 'new' abject is A2'\.~ [jf ,B,k]) 

by-the. sarne reasoning as in Exarnple 3.8. 
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Let V2 = SV1 • GI - nV : V1 - SOI' is operatioÎlal 
I 

since VI = SVo ' where Vo i8 the subcategory generated by\ 
1 

.. 

J., 

1 
l , 

l . 
." 1· 

1 

. -,' -
., 

l' 

. ,"' . - • ri 
r, 



.cr 

, ," 

. , . 

( 

, " 

.' . 

, , 

'11 
'~'o r Bt' ~3 :',0 

f Ç(4 
. , 

C ~,'e_-____ E 
92 

"" 
Let V3 be generatEid by 

.- , 
"- -"--

" t~~) 

7X~ g~_" 

~./ fr~'D 
c 

.' 1 

with ~3Ai' =' A ;= U3A 2 ~ 
" 

" , 

.Ji: 

, \ 

1 >.(Jo 

.. . , 

l' 

.' 

" 1 

.' . 
.. -. 

t ••• 'l',' 

'i 

• ... _ ~ 1 

1 j~ , , 

,\ , 
1 

, , 

".\> t> 

• ,J, 

" . 

'Now ~ and G2 must be pre sented operationall.y. 

Let C, be generated bv .. 
i) the graph and equations of C~3 and 

1 ;> ii) the equatibns 1 . 

, .. 
{ " 

, . 
. ; 

• 1 

, ' 

. ',. ,1 .-~ 

0, 

. 
" ' 

-. 

" 1 ~ • 

... _. " ~. ~1 

, . 
" 

,­
., -

.1 :" 

" 

v 

, . 
.. .~', " .. , 

,1 

:-' . 

" 1 
" 1 : 
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'" H is given by AxB -+ av3' -+ C. As before, the only non-trivial 
. 0 \ 

shuffle retract is [j)f,B,k] ° Clearly, the only shuffle 

hornornorphisrn is p: [id, X, id] -+ [j f ,B, k] • 

presented by (90,H). 

Thus V3 is 

In V2 , calI [i~,A,idJ= Al and G·f,B,k] = Azo 

Then, Gl = nV is operational through the presentation 

for. V2 whose S-algebra rnàp sends [jf,B,k] to Al. 
l 

By syrnrnetry" 02 ,is also operational with respect to 

a presentation rnapping [jf,B,k] to A2 • 

fi 

(for Now, since CG
2 

:C0
2 

-+ CV
3 

preserves the equations 

the 'second' presentation at V2 , narnely jfwBk = wA 
2 

it,induces a presentation for G2 ,ioe. G2 is operational. 

G2G1 can never be an ~-homomorphisrn. This is 

because any structure rnap d for ~3 ITlU~t rrap .-

p: [id, x, id] -+ [j f,B ,k] to Pi X -+ A2 ° Hence 

dS (G2GJ![jf ,B,kJ = d[jf ,B,k] 

= A2 .. 
But 

G2G1 d [jf ,B,k] = .G2G1A 

= A 
l 

etc •. 

e?' 



( 1 
1 ... 

1 

-t 

propo~ition 3.13:~In general", S2+ id. Here,· Exarnple 

3.8 .. will be extended to demonstrate this. 

Let A be generated by the graph 

A' 

88 

h' j 
'. 

and the equations: . 

i) jfk = id vi) yx = id 

ii) fkjf = 92h1l vii) fkxy - g2h 'gi -
i,ii) jg2 - jf94' viii) jg2 - jfg4 -

"" . 
iv) glk - 93k - ix) gix "" g3kx 

v) g4hg3 = id x) g4h '93 = id 

"g 



1 

f 
~ 
r, 

Let U: V +' A be $e inclusion generated by 

f 

----------~,~ C ~.f------------
g' 

2 

D 

E 

C1aiI!1 1: AlI non-trivial iqentities are.'contained, 

in the followinl} list: 
1 \.,1 

a) 92hg1' g2hg3' g4hgl' g4hg3~ g2hlgi, gihlgj, 

g4hlgi, g4hlg3' , and aIl defined composites of 

these 

b) jfk, aIl defined rnorphisms of the forms jfÀk and 

jÀk where À is in a),and aIl composites of these • 

• c) YX, YÀx where À is in b), and aIl composites of 

these. 

Proof: This is proved as in Example 3.8. 

89 

3.1 



, 
i 

l 
1 

.. 
'''---.. 

(' 
, 1 

...... , 

90 

/ 
Hence (bY spli tting identi ties, the only possible shuffle 

retracts are (jf,B,k), (y,A,x), (yjf,B,kx). ~ 

Claim 2: If (f 2' A, fI) :: _JtZ-rx-;-f.J) then ei ther of 2 - fi, 
,--

fI = fi and X = A', ~ f 2 = f3'Ji. 

Proof: The only rnorph~srn of V into or out ot A is gi. 

Hence, as before, [jf,B,k] is a non-trivial shuffle 

retract, since [id,A, id] can only he equivalent to 

itself in Sh[V). 

(y,A,xy,A,x) shuffles out iff,the central 1 X' is 

eliminated. This can only be dorie by applying vi) 

or vii). Now vi) cannot bè employed since no 'y' 

ean be introduced before (to the right of), this 'x'. 

vii) ean only be used by introduein'J a jfk = id 

(y,A,xy,A,x) = (y,A,jfkxy,A,x) 

6 

The central 'j' can only be eliminated by i) or ii). i) 

and ii) are innapplicable sinee no 'f' can be introduced 

before this 'j' except by vii), which is futile. So 

(y,A' ,xl isn' t a shuffle retract. Also, consider 

(yjf,A,kxyjf,A,kx). The central 'j' can only be 

eliminated by applying i) or ii). To ernploy ii), i) must 



f} 

be used to provide the required 'fk'. ''But an" 
, '" 

application of i) introduces another unwanted 'j'. 

So (yjf,B,kx) isn't a shuffle retract either: Thus the 
, 1 

only non-tri vial shuffle retract in sV is [j f,B, k] • 

By an argument para1lel to that in Exarnple 3.~, 

there are no non-trivial shuffle hornornorphis~s in SV. 

Hence, V is an ~-al<Jebra. HO\'Tever, 

(y, A' ,xy, A' , x) == 2 (y j f , B , kxy , A' ,x) 

==' (yj,C,fkxy,A' ,'x) 

.. (y j, C, g 2 h ' 9 i ' A' , x) 

- (yjgi,D' ,h' ,C' ,gix ) 

Il (yj f 9 4' D' , h' , C' ,g 3 kx) 

- (yjf,B,g4h 'g3,B,kx) 
""1 "'-:::'~b 

(yjf ,B,id,B,kx) ~\, 1 = 

,91 

So [y,A,x] is a 2-shuffle retract lying over X. But V has 

no objects lying over A', 50 V is not an ~2-algebra and ~2 

is a non-identity triple. This example can be further 

extended to show that S ~ id. 
-n '"F 

Proposition 3.14: R:op(A) + Ca:t/A never has a left adjoint. 

Proof: Assbme that R has a 1eft adjoint L '. Given 



, \ 

U:V .... A, let LV = (LV,8 p ,HV) with 8p:BV .... TV. 

Consider any (small) category B~ Then there is 

the operational' category .... (A,lB'll B) 
o 

'A 
o 

and the functor U: 11 7 A. Hence there is an operational 

functor (G,j,k):(LV,8 V,P.V) .... (Â,lB,,-rB) such that 

(I.2.l) holds. Now, for each A in A, l1 B*A = lB which is 

a monomorphisme Hence j 1 : B .... Bp is a monomorphisme 

Since B was chosen arbitrarily, BV must be larger than 

~y small category i.e. BV is large. Contradiction. 

Thus, R has no 1eft adjoint. 
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For 'those familiar wi th Thiébaud' s thesis, we present 

the following result • 
• 

.#' 
propos~tion 3.15: Consider Thiébaud' s 5tructure-Semantics 

'J 

adjunction, Cononoids (A) =====-+ Ca.tl A. This adj unction 

factors throu<Jh that for OPo,(A) :with KlK2 ::: id. 

\ 
\. 

( 

J Q 



. 
, r 

K 
Coraonoids (A)::;:4=====1=====, OPo (A) 

Cat/A 

Proof: Only a sketch of the proof will be CJiven here; 

the functors between CrnDnoids (A) and OPo(A) will be 

defined, while the proof s of the details will be 

left to the reader. 

A (bimodule) CC11rnoid. (or cotriple) G on A is a 

triplet" (G,E,a) where G is a bimodule on A i.e. G is 

93 

a functor A op x A -+ S e.t.6 and E:: G -+ A - HoPl A and 0: G + G0G are 

na tural transformations sa ti~fying the usual kinds of 

cotriple equations. 

The sePlantics functor sends Q to its co~~lCJebra5. 

For exactlx the saP1e reasons that the co-alCJebras for 
) 

a cotriple are opera tional wi th a gi ven, s'tandard presentation, 

those for Gare too. Hence, the SeP1antics functor factors 

through Ro. 

Conversely, <Ji ven an opera tional category wi th 

/ 



0 

'. ' . 

~ .' 

standard presen t~tion 0' (V,Bo,H) define an equivalence 

relation on the ~riplets (y,D,x) 
Il 

:x " y X UD + 1 

in A by (y,D,x) =* (y' ,DI/X') iff y~Dx = yl~D'x'. with 

respect to the standard presentation. ECJuivalence 

94 

classes are denoted {y,D,x}. NO\&l define a ca:ronoid~ G on A 

by 

G ( X ,y) = {{ y 1 D, x} 1 dom x = X, cod y = y} 

--.... , A 

[y, D,XJI-I --+-, yx-- , 
1 

ô: G G~G 

[y, D,x] 1-1 ---I-I [y,D,iduDJ e [idUDiD,X] 

Thus, there is a functor Op (A) + COI'lonoiëIs:A) over 
o 

Cati A. 

---



« • 
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§ 4: Limits, Co1irnits and Equa t'ional Categories 

A1though Proposition 3.~ showed that B.'i'.C. doesn't 

imp1y operationality, under rni1d conditions the two concep"ts 

are equivalent. 

Lemma 4.1: 
, ". 

Let U:V -+A be faithful with V having and U 

preserving pullbacks. Then, if (y,D,x) :: (y' ,D' ,x'), it is 

50 via a 1eft-right shuffle equivalence Le. a left shuffle 

, ' . fo11owed by a right shuffle. Dually, if V has and U 

preserves pushouts, then al1 shuffle equi valences are 

achieved through right-left shuff1es. 

Proof: 

Consider a right-1eft shuff1e 

(yUf,C,x) -+ (y, D, (Uf) x) 

- (y,D,(Uf')x') 

'+ (yUf' ,C' ,x') 

Now consider the pullback in V. 

.. 
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1 

l 
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\. 
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, . 

<>, 

C -----~. D 
f 

Since U preserves pullbacks and (Uf)x:(Uf')x', there is a z 

in V such that 

Hence 

x = (Ug) z ·t 

X' = (Ug ') z 

("yUf,e,x)= (yUf,C, (Ug) z) . 

~ (yU ( f g). , P , z) 

, 
) 

'" (yU (f' g' ) ,P, z) 

~(yUf' ,C', (U,g') z) 

Thus, any right-left shuffle can be converted to a 

, h" <t 

le ft-right shuffle .. Since righ t shuff les compose (as do left 

shuffles), this corrunutivity allows any sequence of left and 

right shuffles to be reduced to a left-right pair. The 

proof-for the dual is straight forward . 
, , 

{ 
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:; 
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~ 

proEosi tion 4.2: 

Consider U: V -+- A with' V having, and U preser'\Zing 

llb k d U t , f' B T C '_l''-en SV::: VI'; pu ac s an aSSUITle sa ~s ~es .• •• .U in 

particular, V is operationa1. Oually, if V has 

------and U preserves pushouts, and U satisfies the dua1s of 

B.T.C. then sV ::: V. 

Thus, under the conditions on U above we see, using 

Proposition 1.1.6, that V is o,erational iff sV ::: V iff 

U satisfies B.T.C •• 

Picot: Given a shuffle system [y,D,x] we h.ave (y,D,xy,D,x) 

shuffles out. By Lenuna 4.1" this' can be done by first 

making two shuflles to the 1eft, over the right and left D'S 

and then two to the right. Wi thout 10ss of generali ty, the . 

first shuffle on (xy,D,x) is unnecessary, since if ~t 

derives from x = (Uf) t then [~,o·,x] :: [yUf,O' ,t] wheré 

f:O -+- D'. Thus the pattern of shuffles is as follows 
ç. 

(y,D,xy,D,x) - (y , D, (Ug) t, D, x) -
-+- (yUg,C,t,D,x) 

... (y'Uf,C,t,D,x) = 

-+- (yI ,D', (Uf)t,D,x) 

= (y 1 , DI, Uh , D, x) 
.r 

-+- (y' ,D' ,id,D', (Uh)x) 

.. 

., . 

"j 

l· 
.... 



( 

'. 
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But Uh could also, at the last rnove, shuffle to the left ~ 

Applying Lenuna 4.1, the set-up can be rnodified so that 

Uf. t=id. Thus 

1 

y=yxy 

-y (Ug) t 

=y' (Uf) t 

=y' 

and ,the actual shuffle process .is 

(y,D,xy,D"x)=(y,D, (Ug) t,D,x) 

+ (yUg ,C, t, 1), x) 

= (yUf , C, t, 1), x) 

+(y,D,id,D,x) 

Thïs system yields a U~split coequalizer (see (I.l. 3»). 

Thus y=Uy 1 for sorte y' and [y ,D, x] is a tri vial shuffl~ 

retract. A shuffle hornornorp~ism is an f; D + D' such that 

(f, D', id) _ (id, D, f). Ap!,lyinq IJemma 4.1 shows that we mùst have 

{ f , D' , id ) = ( f , D f , (Ud) s ) 

...... (fUd,D" ,s) 

= (Ul,D",s) 

.... (id ,D, f) , , 

for sorne s, d, and 1. 
, , 



-' 

l, 

\ 
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Now construct the kernel pair (k l ,k 2 ) of d in V. U 

preserves this kernel pair by hypothesis and d equalizes 

th~ pair (id,sd). Thus, there is a t in A such that kit=id 

and k 2 t-sd. Putting aIl this together ~rields a U-spllt 

eoequalizer 

Ukl Ud 

• 
Uk ~ 

~ 
s 

ri t 

Thus, q ls the eoequalizer of i ts kernel pair. Now, 1 

eoequalize~ k l and k2 • Thus there is an f' in V sueh 

that ~ 1 d=l. ·Hence Uf 1 Ud=Ul. But fUd=Ul an~ d is an 
, 

epimorphism. Thus Uf r::,f i.e. ever'.l shuff le hornornorphism 
V 

is a morphism of V and SV ~ V. ... 

Proposition 4.3: If V 'is operational with respect to 

the presentation (6,H) where the base functor H:Ax13~C 

is such that A and C have and H preserves a <J:i.ven class 

of limits e.<J. finite produets, pullbaeks, finite limits, . 
a,ll lirni ts, then U crea tes these liPli ts. <> rl'he dual resul ts 

about colimi ts also l101d. 

Proof: The proof for finite products will be shown. The 
~ 

other preofs fellow exactly the same pattern and the dual 

resul ts follow from 1.1.1. Let (X, ~) and (XI ,-4J 1) be two 

algebras in (V,8,H). 'l'hen 4J x <f>'is well-defined sinee Chas 

.. 



, , 
t , 

, 
l-
I 
1 , 
i 

1 

o 
(' ; 

produ9ts. Thus (XxX',~x~') is an algebra sinee 

. (tx~')e = ~ex~'e 

= H*xxH*X' 

= H*(}{xX') 

Theorern 4.4: Let U:V + A be equatlonal. Then if A 
') 

has sorne class of limits then U creates limits of that 
-

elass. Further, if A has pullbacks then sV '" V. 

From this follows the well-known result that the 

equatio'nal cp.tegories over S e.:t!.:J (as a full subeate<]ory 

of Op (SW) lie over ,a full subcate'qory of Ca!-/Se4 * 

Le. every functor over A between equational cate<]ories 

is operational. 
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Proof: Since Se.:th has aIl srnall liP'li ts and the Yoneda functor 

preserves any limits which exist in A, the technique of 

Proposition 4.3 yields the' first "result. For tl)e second, 

just apply Proposition 4.2. 

.. 
* Here Sel6 is a (sMall) category of sets inside a larger 

uni verse. Cal is the category of small categories in this 
universe. 
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