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The idea of an operational category over A gene ?k}'\zes

the notions of tripleable and equational category over

. (%

, and also the dual notions of cotripleable and
-

coegjua‘tiona"l category. An operational categoty, U:D~ A A
b L, ! .

A

-2 . N
ig given by a presentation (8,H) .

*»

o \ s

H* .
where 5 is a funct&r bijective on objects and P is a
specifie 11back. R:Op(.A) + Cat/A is defined as the’
category of operaticnal categories (and functors) with
given presentations. Another c‘ateqory, OpO(A) over Cat/A
of operational categories with standard presentations is
also defined. There is a fixed theory eo,/employed in
every standard presentation. OpO(A) is 7’/retract of Op(A]

over Cat/A: ) {



\ ; operational categories can be determined by their

"3

ii
0p_ (A) e Op (4) ' )
Cat/A

.

€

i.e. every operational category (and functor) has a
» &
standard presentation (but not s+4il). Also Ro has
a left adjoint 'Lb and Op (A) ig complete. Finally, ,
there is a category of algebras, S,-Alg over Cai/A

such that Opo()Qz' S,~Alg over (Cat/A. Thus, the \

internal structure, without reference to any presentation.

( : Some, properties of operational categories and some special

cases are also examined.,
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le concept de caté&gorie opérationnelle sur A
généralise les notions de catégorie triplable et équationnelle
sur A et aussi les notions duales de cat&gorie cotriplable

et co&quationnelle. Une cat&gorie opérationnelle, U:D+A

est donnée par une pré&sentation (6,H)

[

oll & est un~foncteur bijectif ‘sur les objets et D estun
produit fibré spécifié. R:0p(A) » Cat/A est défini comme
étant la catégorie des catégories opérationnelles (et

foncteurs) dont les présentations sont spécifiées.

-

Nous définissons aussi une .autre catégorie, Op, (A} sur Cat/A
de c::itégories opérationnelles avec présentations"sﬁandards.
il vy a uné théorie fixe'eo, employée dans toutes les
présenta:tions standards. Opo-(A) est un rétracte de op (A)

. .

sur Cat/A:’ .
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0P (A) ———2——> OP(A)
S
R, R
Cat/A '

c'est-3-dire toute cat8gorie opérationnelle poss&de

une présentation standard (mais pas s-il!). De plus Ro
possé&de uge adjonction & gauche Lé et OpO(A) est’ complé&te.
Enfin, il existe une catégorie d'algdbres, S,~Alg sur CatlA
telle que Opo(Ahz S,~Alg over Cat/A. Ainsi, les catégories
opérationnelles peuvent &tre déterminées par leur structure
inﬁerne sans faire référence & quelque présentation

gue ce soit. Nous examinons aussi quelques propriétés

et cas particuiiers des catégories opérationnelles.
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INT RODUCT ION

This paper considers operational categories, a
generalization of the algebraic categories of Lawvere
[5]and the eqéational categories of Linton[6,7]. As well
as all the tripleable categories, the cotripleable

¢ategories are operational too.

Lawvere's idea was to represent an algebraic theory,

say that of groups, by a product preserving functor which
is bijective on objects (b.0.)

L 9:KOP 4 T

where_x‘jq)is the, free category with finite products on
oné generator. Then, relative to the base functor
H: Sets x EOP--—» Sets
the category of models (D) for the theory, with forgetful

functor (algebraic) to Sets, is constructed by the pullback

l
- ;b -

%
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T
D ~Se A
\
U Sezs?
Sets = ’Setéﬁop

where H*is the exponential transpose of H. (Here ¥ is the
category of product preserving functors from T to Sexts with
forgetful functor U being evaluation at 1). For Grp,
T is generated by _lfl_oe a multiplicat&on map m:2+1, an

‘
identity e:0-1 and an inverse map i:1ls1, closed up’with
respect to'finite products, composition and some edquations’

Txzp
e.d. m(id,i) = et, or x.x1: e (t is;the terminal morphism

1-+0).

]
t 4
.

o Linton generalized this idea by letting the base

functor be the homfunctor

. op

Hom: Sets x Sets - 'ngz,

Hom: A x AOP =+ Sets

s

o

(where Sets is the category in which the homsets of A live).

An equational theory is a product preserving, b.o. functor

B;Aop >T

L]

and the equational,/furnctor is created by pulling back as

before: ... , ' ,
- - d
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3
0 ~Sets |
v l/ ——J ' Sets?
A Yoneda - Seds A” .

Note that T may be large with respect to Sets. It is
assumed,where necessary, that. there is a Grothendieck
universe V containing a universe U. ’ Sets 1is the category
of small sets with respect to U; Ené is the category of
small sets with respect to V. With T V-small, the

pullback is constructed in the category of (Ené-)small

categories. Linton showed that all tripleable categories

14

are equational. Also equational are non-tripleable categories

such as Complete Boolean Algebras (CBA) over Sets (see [4]),
and Burroni's [2] categories of graphicalalgebras, which
¢

are tripleable over Gph, the category of (directed

multi-) gravhs and graph~ homomorphisms.

The notion of operational category was introduced
by J. Lambek at a meeting of the Midwestern Category Theory
Seminar at Waterloo University in 1968. He freed the base

@

functor to be any

H:A X B —

and a theory to be any b.o. functor

B:B—-—-—»T

SRRE IO RPN



An operational category p (with presentation (6,H)) 1s

given by the pullback

A .

(H* is the transpose of H.) Thus all algebraic and
equational categories are operational. In’particular,
all tripleable categories ar2 operational. By a duality

argument, the cotripleable categories are too.

A category of operational categories (with
presentations) and operational functors (with presentations)l
over A, Op(A), 1is constructed with a forgetful functor \
R:0p(A) » Cat /A . However, much of the focus of this
work will be on \operational categories and functors without
regard to any particulizl presentation. There are several
reasons for this. Firstly, a given ope;:ational category
will usually have many presentations. Two different
methods of standardizing the presentation will be given.
Secondly, Op(A) is not a very attractive categdry. There

is no left adjoint to the forgetful functor and there is no

easy construction ‘of limits in Op(A). Finally, one of
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the motivations for this work was to characterise

the operational categories ain Cat/A, where no presentation
is given. Unfortunately, the operational categories

and functors (without preéentatfons) don't form a
category, since two operational functors acting with
respect to incompatible presentations mayv not compose

to form an operational functor (c.f. Proposition III.312).
Hence, the category of operational categories most
gainfully employed is a category of operational categories
with standard presentations, Op;(A). Its forgetful fuﬁctor
Ro:Op;(A)+Cat/A has a left adjoint and Opy(A) has all
limits. Also it is equivalent to a category of algebras
which enables the operational categories and functors

to be characterized in terms of their internal structure.

Of course, this construction of models from a theor&
(relative to H) is a generalised semantics functor,
Sém: Th (8) °F -;"'Cat/A with a left adjoint
Str:Cat/A -+ Th(B)°P sending U:0~+ A to

the full image of B~+c? >C? (c.f. [6]).

Other, generalisations of tripleable and equational
categories and their duals have been explored in [3], [10]
and [11Il In [3], Davis considers 'equational systems of

functors'. The constructions employ a base functor



A .44-* A which ekploité the ability to compose
‘endofunctors. The only examples that he gives which
aren't operational are categories of machines. Thiébaud,
in his unpublashed thesis [107], constructs a generalised
Structure-Semantics adjunction, based on the theory of
bimodules. As it happens, this adjunction is re/z f2e’

to that for RO:Op0 (A) » Cat/A, though no reference is
made to operationality in the sense of nullbacks. Once
he has created the adjunction, most of his work is devoted
to studying the algebras for the resulting triple, S .

Here it is the operational categories themselves which

are considered. Wyler, in [llj, studies categories of

ets with relations and mappings which preserve the structure.
ide from categories operational over Sets, his examples include fields
réeld extensions) and sall categories (with functors). None
of these authors characterise their objects of study through
internal properties or provide standard presentations.
Here, the name 'operational' implies the exclusion of
situations in which relations are inherent, such as Wyler's
examples of fields and categories.
2

In chapter I operational categories and functors are
defined, the standard presentations are given and the left
adjoint for Ry is created. Aside from Beck's Tripleability

Theorem, §1 is due to J. Lambek. Chapter 2 is devoted to

Bt gt - L
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shuffle retracts, the algebraic material thch culminates
in the construction of the §*-Elgebras" In Chapter III
the triple induced by Lda Rbis related to shuffle retracts
and OpO(A/ is shown to be equivalent to 5*—Alg over

Cat/A. Examples of operational categories are given,

as well as counter—exampies to some appealing hypotheses.
Finallz, mild conditions are given for LoRo «1l, for
operationality to be equivalent to Beck's Tripleability
Conditions (given below), and for limits and colimits

to exist in an operational category.

Except where stated above to the contrarv, all work

presented is due to the author.
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CHAPTER 1

OPERATIONAL CATEGORIES

§1. Operational Categories

b )
Definition 1.l: Let 6:B +T7 be a functor bijective on

objects and let H:AxB-+C(C be any functor.

Construct the pullback U:D +A4

'
D 1

vl T l c®
e CB

A *

Then (0,U) is an operational category with?

presentation (6,H). By convention, objects (7D,U) of

Cat/A may be denoted D or D over A, with the U suppressed.
An object of P is an algebra i.e. a pair (x,<l>)eAs<cT such

-

that

\

I

%8 = H*X

A morphism of P is a homomorphism i.e. a pair (f,t) in

AxCTsuch that

—

tp - = H*f
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Proposition 1.2: Let U;D+Abe aperational with

presentation (8,H). Then UPP:pOP +» 0P is operational.
Further, for any category V, UV:DVBAV is

operational. Finally, given F:A' +Athen V:E=+A',

the pullback of U ai}i&ng F, is operational,.

Proof: The conélusioﬁs follow immediately from the following

L

three pullbacks:

g CP
- (CB)OP Cep
AP Wf(cg) = c"PBﬁp )
U ———— LY ——
UV l f (CB)V \ (Cy)e N
i .
H
L ‘
W oy ()Y = ?)®
. E "‘”"i"’—* v + CT
v --—--—l U J-——:—-‘
+
A' e mer———— A S ———————— CB

Lemma 1.3: Every operational category is operational with

respect to an gyaiuation functor ev:AxCA-»C i.e. the exponential
at

transpose of the identity on CA.
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Proof: Given U:D -+ A operational with presentation (6,H),.

coﬁstruct the pushout

[an)
m—-—-——,—ﬂ
..._..L
-~

‘
H** *

H

where H** is the other transpose of H. Since the object functor,
| |:Cat -~ Set preserves pushouts (it has a right adjoint), ©
bijective on objects implies §' bijective on obfects. Applying

¢) to the pushout yields the pullback Y,

’
D - - CT > CT .
} [
A
B
v A sub = C CH** + C , *

~

where sub (substitution) is the transpose of evaluation.
A \

For a:P +Q in (" we have
(subX) (P) = PX
(subX) (a) = oy :
Now
N H** N ™
(C7 "sub) (X)B = SUbX({H**B)
= (H**B)X ;
N ) :
= (H*X)B ;' ) b
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Morphisms of B are dealt with similarly. So

* % )
M "sub = m* and the cdategory constructed with respect
® ¢

to the evaluation is. 7.

With respect to an evaluation, an algebra is a

pair (X,9) where

%8 subX

That is, given a:P+Q in CA, we have

oepP PX
d6a l“ . o= j & .
0P 19).4

et (f,t): (X,8)+(X',t" be a homomorphism. Then for each

weT (8P ,0Q)
L Y
tBP
9P ———————  §'OP
dw J l‘b'w
Q’BQ——'?-"-'—* ¢'eq - _
eQ
commutes by the naturality of t. As before, 98 P=PX etc.
. Bu?also ’
- P ;
FBP (subf)( ) 11

- Pf

-



pPf

pX ——————— PX'
dw o'w

QX ———— QX'

of

a

Conversely, let (X,¢) and (X',%') be two algebras
and assume that f:§+x' in A satisfies (1.2) for each v in
T. Then there is a natural transformation t:¢-+¢'
defined by ,(1.1). This defines all components of t since ©
is bijective on objects, Obviously, (f,t):(X,)>(X',s') is a
a homomorphism. Thus homorphisms correspond to morphisms of
A satisfying (1.2). Consequently, we have

<

ILemma 1.4:

U:D~+Aoperational implies U faithful.

Often, a morphism, f, of D and its underlying

morphism, Uf, in A will be given the same name.

Recall Beck's Tripleability Thebrem[B]. Given

U:D+4,a U—split coequalizer is a diagram in A of the form

Uf y
ue —= UD 3 - X
\g—jg/- - %

t i
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such that
y.Uf = y.Ug

yx = id

Uf.t id

Ug.t = xvy

These equations force y to be the coequalizer of Uf and Ug
in A. Moreover, since equations are preserved bv any
functor, this is an absolute coequalizer (see Par&[9]).

U creates coequa;izers of U-split coequalizers if, whenever
such a system as (1.3) occurs, then y = Uy' where y' is a
doequalizer of £ and g. The theorem may then be stated as

follows

Theorem 1.5 (Beck): Let U:D~+Ahave a left adjoint.

Then U is tripleable iff the following conditions hold:

i)h\b reflects isomorphisms \

ii) U creates coequalizers of U-split coequalizers.

Here i) and ii) will be called Beck's Tripleability
Conditions (B.T.C.). Trivially, this theorem and the
conditions can be dualized to yield a theorem about

cotriples. . : .

Proposition 1.6: U:QAwkopérational impldes U satisfies
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{ B,.T.C. and their duals.

* Corollary 1.7:U:D-»A operational with a left (respectively
right) adjoint implies U is tripleable (respectively
cotripleable).

Proof of 1.7:For triples just combine Beck's Tripleability

Theorem with Proposition 1.6. Then dualize to obtain the

[
result for cotriples.

~

Proof 1.6: Let U:D+A be operational with a presentation (6,ev).
Inspection shows that U reflects isomorphisms. For the second
condition of B.T.C., consider a U-split coequalizer as in

(1.3) with C = (UC,%.,) and D = (UD,QD). Then, given any

weT(3pP,00)) we have
- e Py
PUC T PUD ———— DX

¢Cw ) : ¢Dw duw

QUC ——e—— QUD ———— QX

y

wiéh Py and Qy coequalizers (since y is an absolute coequalizer
and the left-hand squares commute). Hence there is a unique

map ¢w:PX>QX making the diagram commute. By the unigueness
condition for coequalizers, ¢ is a functor T+ and for o:P+Q in CA,

$6a = o . Also by unigueness, y yields a homomorphism. The

dual result holds by (1.2}).

§2¢t Ooperational Functors

-
"\'sw"

Definitions 2.1: Let U:D+A and U:D'+A be two operational categories

. e



-
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o

with presentations (68,H) and (g',H') respectively. A

morphism of presentations, (6,H) -+ (6',H'), is a pair

of functors (j;,j,) = j and a functor k:C+C' such that

the following diagrams commute

J2

TV — T

B' ——eim B
3
2.1
H*, CE\\\\fjl
A / hB"’
H'* ]

Let G:D +9' Dbe a functor over A. G is an gperational functor

with presentation (j,k) if (j,k): (¢,H)>(p"*,H') is a morphism

of presentations such that G is the induced functor into the
pullback in

2.2

A N CB\{} |
§§§§Q§b P — LB,

Hence there is a categorv, Op(A) with objects (D,e,H) where

(6,H) is a presentation of P and morphisms

p YEPEL R
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the t-:riplets (G,j,k):(p,9,H) ~(D',6',H'") where G is

the operational functor induced by .(j,k) +(p,H) -~ (0',H'").
Composition and identities are given by those of

Cat/A. ‘Hence there is a forgetful functor R:Op(A)—»CaI/A,

sending (D, 3 ,H) to D and (&;j,k) to G.
Noté that since operational catégories and functors can

have more than one presentation, the composite of two
operational functors in which the presentations are

incompatible may not be 'op.erational (c,f. Example II11.3.12).

Hence they do not form a category over Cat/A.

v

Now a functor L: Cat/A — Op(A) will be
built. -The construction of LD employs a standard
theory, 8, independent of D. . ~

Definition 2.2: The standard theory ¢,:B,+T, is given =
I N .

by a subcategory inclusion where B,is geherated by the -
[ . N

graph

Y
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e e — =

and To is generated by the graph

B ————L——,B..
o} 5

subject to the equations:

Bud wm-y
8 ] m t ul - Y' 2 3
w'e = id .
wal = id
L J
Note that both B and To are finite categories.
) { .
, (*-)’:,: - When considefilng functors on Ta it will be the choice




v~

of w (and w') which will determine the algebra. The
other peripheral morphisms are there to prevent unwanted

choices of w, in some sense to guard the w 's.*

The base functor HD:AXBO + C(D) for the construction

of LD 1s contained in the following definition cf C.

Definition 2.3: C: Cat/A ~ Catis defined as follows:

C?D 1is given by the pushout in Cat

Dxeo :
DXBO - OxT

o

UxB . PD

AXBO -———v-—-]-_I—‘;'————d cp

For G:D - D' over A, CG:CV+ CD' is given

by the universal functor from the pushout

* A nalve approach to the problem of choosing a standard
theory would be to consider the theory

. i . .i)w w2 =-w
T

B -

and to set up a base functor so that for each object of 7 there
is a morphism, wp , with wupZ == wp. The problem is that for each
object of A, its identity is also idempotent, so that there
would be an extra copy of A in our resulting operational
category. Also ¢w = uwp® would generate unwanted algebras.

By the choice of §,, these nuisances are excluded.




(
DxB — DxT
R
D' xB - D' xT
, 0
\ R '
A x 50 » CV
The uniqueness pi‘operty of pushouts quarantees the
P functoriality of C.
(» Definition 2.4: Let U:D+ A and U':D' » A be in

Cat/A and let G:D + D' be a functor over A.

Then LU:LD +A is~the operational category given

by the pullback

LD ——i————-. CDTO

D

LU cpbo

B
A e 0°°

LG:LD+L?D over A is the operational functor

induced by cCG

o -

o —: - b s e ottt
£ e Ut O T N St B STt g s o e

19
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LD — + cho T
$ LG cG'o ‘
2.7
LD'.i - cD'TO
v 4 B
A — CP7 O »
\ CGBO
{ $
A r CD'BO ’

(The base of the cube commutes by (2.5). By the
universal property of pullbacks, L is ; functor.
There is no conflict between the two uses of L applied
to U, LU:LD +A and LU:LD +LA,“é’ince LA = A ' Since (2.4)

commu tes, there is a ng':p+RLD over A

? ‘ Pp* \
\\‘ T
N LD > cp'o
N (]
codo
A I CDBO

which yields a matural transformation n':1l + RL: Cat/A+Cat/A.

. >
Iemma 2.,5: CD is generated by the following graphs and

.0

o et
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equations (for a discussion of this type of construction

see Barr and Wells [1])

i) the coproduct of six copies of A; Agt...+As
(regarded as a graph.with equations.

kii) for each XelA|, Gy 1 Byt Yy 10y B 5 ry' y(SUbscripts
normally omitted).

iii) for each DelUl,wD yol,

with .domains and codomains qgven by

Yy
X —————— X
o} 5
( ; Oy Bx
. | wpy

with the wy's occuring only if X=UD. These morphisms
are subject to the equations

iv) for each feA(X,X'):

-
[y T ————— Pr—— - e e = . I
e [ P - e B e mietmst




R

S e

T
I

(1

ty
fo's = o £,
1

BBy = Bl rf

1 ]
f2Y‘x ¥ x'f3

(subscripts on f's often omitted).

v) For X = UD

B = Y

L B
: Bxup = Yi
vi) for each fe?d(D,C)

£ f

ap = ucfy

L}
fiup = oty

vii) for each De|D]| -

E
=4
no
[
o

g
o-
n

oy

"The inclusions HD: AxB;*CD and

.Pp:0T,>CV are given by:

22
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HD(X.B,) = X, 3 P, (D,B,) = (UD),
(.’ ——
HY(X,a) = Po(D,a) = o
' ! X D : Ub
HD (X,y') = ‘.Y'x PL{D,Y') = vy,
HU(f,Bk) = fk Pv(D.w) - w'D
Pp(D,u') = uw'y, .

P (f,B ) =f
k= 0,e0.,5 4 k k

Proof: Considetr the category C and the functors HD
and pv constructed in the lemma. A quick inspection
" shows that H(UX§O)=p(Dxeo) . Now consider a pair of
) functo_rs F:AXBo—rX and F!' :DXTO->X such that F(UXBO)=F' (DXBO) .

befine FP":0+X by its action of the generators of C

fF"l,\
Y et

F"X

x = F(X'I}k)
F"f, = F(f,B)
F"ax = F(X,a)
FUy', = F(X)Y) ’ B
i F"wD = F'(D,w)
‘ F"wi) = F' (.D,w')

»

7/

It "is trivial to check that F" preserves the equations
in the definition of C and hence is a functor. Also
F'HD = F and F"pv = F'. Thus ¢ is a pushout and

Q- :

R may be identified with CD.
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§3: Standard? Prasentations

The idea of operational retracts (defined below)
leads to a standard presentation of operational categoXies

and functors similar to the presentation of L.

Definition 3.1: Let U:D +A be operational with

presentation (g,H). Let D=(UU’,4>D) be an algebra (e will
always be the functor part of D with respect to the given

presentation) and X a retract of UD in A

X
X T—/—/——— UD yx = id
v

-

satisfying the following condition: for any composable

pair of morphisms Wy w3 in 7,

w w

the following equation holds

e
Pl

(H*y) eB3°D“’2 (H*xy) gg Opwq (H*x) o = (H*y) 6330Dw2w1 (H*x) 68, 3.2

Then{y,D,x}is called \an operational retract.

Given, the presentdtion by an evaluation, we have

w w
6P L » gQ — 2 -+ OR 3.1a

(Ry) 0Dm2(QXY)Qle(PX) = (RY)Qszwl(Px)

W e
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i ‘ . o : .
, ~ The value of operational retracts is that if{y,D,x} is
: one,then X underlies an algebra (X,e) with ¢ given by

#8p = PX and for o:6P»9Q in T

Pu = QYO WPX

Px

PX ~~————— PUD
dw ¢Dw

QX e QUD

Qy

(3.2) guarantees that ¢ is a functor i.e. for wq and w, as in

(3.1a) we have: .
!

[(Ry) &0, (Qx)] [(Qythm'l (Px)]

1

{
®m2¢wl

= (Ry) @puyuy (PX)

= @wzml

while if Wy = 8a then: ) .

$oa (Qy) o8 (Px)

1

Qy D Px QDG subUD

. i .

(subX) a

L}

"

(q} For ¢ defined by (3.3) we write: s
) - H* *
- ¢ = H YQ»DH X
= Yopx

|




/

There are many situations under which (3.2) may
hold e.g. if xy is a homomorphism or, y and x‘ derive
from a U-split cocequalizer (c.f. Lémma I11.3.1) 1In
more complicated situations, the commutativity of
homomorphisms with terms such as ¢w may be invoked
many times, in a back-and-forth process, to establish

(3.2). .Also, the equations ¢ = yepx o for {y,b,x} an

operational retract, may be used (c.f. Example III.3.13).

Lemma 3.2 Let G:0 -+ D' be an operational functor as in
(2.2). Thenif {y,D,x} is an operational retract for D
with yop¥ =¢p*, then (y,GD,x} is an opérational retract
and yq:GDx = o

Proof:

=z ¥'GD!
= xJ2q1pe

k32 (H*yo Ji*x)

(H'*y) (kI31'D) (H'*x)

(H'*y) (1'GD) (H"*x)

(H'4y) & (H'*x)

YegX

Definition 3._3_: Define C':0p{A)*Cat as follows

c'(P, e ,H) is generated by:.

ia) the underlving graph and equations of C(P) and

-

-

26
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viii) if{y,D,x}is an operational retract for (0,8 ,H)

with yépx = opr then yupx = wpr and Yo'x w'pre

The quotient functor C(p) - ¢¥DV,6 ,H) is called -

Now let (G,j,k): (D, & ,H) = (D',86',H') be in

Op(A). Since, by Lemma 3.2, CG preserves the equations
viii) it induces C'(G,j,k): c'(D, 6 ,H)» C (D', 8 ',H").

The functoriality of C guarantees that of C', and the dp 's
form the components of a natural transformation
q:C~+C':0p(AmCat/A, There is also the base

functor H'(D,6 ,H) = qDHD:AXB-rCD-*C'(D,e,H).

Lemma 3.4:
i) 1f
- !
yme - ynu@rlyn_lwm_lyn__znu-ao..._“’lU)Dl_‘[O 3.4

‘ in ¢'(D, 8,H), then there is an i (l<i «n) such that

Y‘ng - ynyn_loq--onl’i¢DiyJ';_l--n-u.Y1yo 3.5
- //
R
ii) If
' [ l u
Yo cZupX = Ypupn¥pe1%pn-1¥p-2°cccc-Y19p1¥,
in C'(D, ¢,H), then there are i<j such that
~.
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YO 28 X

= ynyn—l"\'"yj¢lﬁyj-l"°"'YZQDZYZ—I"""YO
and
yzé x = ynyn-l"'"'YiQDiYi—l"f"'yo
y«>czx = ynynfl......yjthjyj_l'-----‘JO
iii) Hence, if y'x' = id, yx = id and ~
y'wé,x'ymn = id 3.6

then y'epx' = yepx ad {y,D,X} iy an operational retract.

Proof:

L]

i) The proof is by induction on the length of the proof
of (3.4) where the length of the proof is measured by
the number.of applications of the generating‘éduations
of C'(D, 8 ,H). The case for n = 0 is trivial. Assume that
(3.4) 1is proved in n step; and (3.5) holds for some i. Now
consider all proofs of léngth ntl which can be obtained from
(3.4). Trivially, applications of i) cause no problems
while iv) and v) are inapplicable. The onlv type of
application of vi) which is of jnterest is one of the form

- ' . ] ) = 3
mei wpf £ (for £:D » D' ) or upf mei' Without loss
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of generality, consider only the first case. Then

fo, = 3t and so:
Di Dif .

7

wa)( - ynwD ""rr‘l.‘. ..-ylmD yo
n " 1
= YW Y qeeeess¥ifwl v, SLL..LLy
n Dn n—-1 i Di- i-1 o
- ]
= Yl Ypopeeee e Y9 ‘fyi-l' ceeedyy
n i
Also
yQDX - ynyrl—l......yi¢DiYi‘_l..'...yO
- 1
= Y YqeeeeerYy fQ>Diy:.L_l......y_o

— 1
= YYpepeeeeerYy q’D'ifyi-l" TR A

Trivially, after any applications of vii) the result

still holds and,a priori, applications of wviii) presefve

’

(3.5). ,

ii) This proof fol;ows exactly the same lines as i).
iii) For (3.6) to hold in c'(V, 6,H) the w 's must
be eeliminated, which in this case can only be done by an

application of vii). Hence,

waI'),x'wax = 32! wéidwcz

for some 2,2' and C and so by ii) of the lemma: ,

Wamriize
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R . ] ' —
{ A Y opxlyepx = 2'0.0.2 %

and ‘

1’ '.¢Dlx'

"

N
e
N

]

! L)
vty ey

= y<l>Dx
Hence, in the notation of (I.3.2)

X *
(H*Y) gp_tpw , (HXY) 6B2¢le(H*x) 6B

3 1

B, C2C1

3

% *
(H*y) eB3q’D“’2“’1 (H*%) op

o Hence {y,D,x} is an opérational retract.
¢ . L.

-

t 1 *
{(H*z') d>m4>w(Hz)eB

Definition 3.5: Op,(A) is the subcategory of Op(A)

B

30 ¥

— Kyt *
= [H*y )9B2¢D' w,, (H*xy) equ)D‘”l(H*x) B

1

(with inclusion i) with objects those (D, 6,H) such that

6 =6, and H = quD:Ax.BO-* CD + (¢ where qb

" is a 'minimal epimorphism' in the following sense: if

q'p= rqofor some epimorphism qp:CP »(, and D is
presented by. (éo,qOHD), then r is an isomc?phis,m.

N

- ll .
. . . ' p

AxB -—-—H-z—--oC‘D —-——--———&C

TN A

[}

1
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The morphisms of’Opo(A) are those

(G,3,k) = (D,Leo,H) - (Dl,eo,Hl) such that
j = (id,id) and k is induced by CG:

Q'D

cY, —— ¢

- CG k

CcP'——— ('

Dl

Hence the q:') 's are the components of a natural
transformation C +&,:0p, (A) »Cat where
CO(D,SO,H) = C and CO(G, 6 ,/k) = k. The objects and

morphisms of Op,(A) are said to have

standard presentations. The forgetful functor,
OPO(A)'*CAI/A is called R,.
“bemma 3.6:
Let; (G, 8 g/,k): (D,”0,,H) ~ (P;, 6,,H)) be in
Op, (A). Then qp:CD - C factorises through
qpsC0+ Cc'(D, 8,,H) i.e. qp = rqy. for some r.

Further, we have the commuting diagram

C'(D’aO'}i) ———‘F—-—" C -
c' (G, eo,k) ‘ ‘\k
c'fpl'eo'ﬁl)-——TﬁT——*'cl . -

o~ ———— T Mo

ey

L YO
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Hence any presentation of the form (GG,H'(U, 8o,H)) is

standard.

.
Proof: Let yupX =wp' be a generating equation of
C'(D, 0 o'H). Then yepx = o for (D6, ,H). Hence

YupX = w ,in C. Hence, there is a functor

D
r: C' (D, ® o +H)+C induced by the identity on
CD. Now since both k and C'G are induced bgy CG and g p

is an epimorphism, we have the desired commuting square..

Cf(D,6,H) C
[cx;
C'G
C.'D'\
'(vl,e ,Hl) C 4
“~—

The rest follows.

14

Theorem 3.7: There is a functor s: Op(A) * Op (A)

over CWA (R,s = R) such that si ~ id. In other

words, every operational category (resp. functor) has

a standard presentation,

Proof: Let (D, 8,H) be in Op(A). Let P be the
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[ Z

operational category given by the standard presentation

(90, H(Dy p ,H)."

P v CP(D,8,H) 0

——

A - — C'(D,e,H)Bo.

There is an F: D »P given by the definition of C'. F is
!

faithful since U: D +A is, To see that F is a

monomorphism, assume FD = FD'., Then wp = Wy in

CcYV, 6,H). Now apply Lemma 3.4.

Conversely, let (X,¢) be an algebra in P, Then, from

the equations (2.3) for To

Bx¢wax = Yy 3.7

For source-target reasons, ¢®w may not include o 's, B 's
and y 's (or their primed versions). Hence it is a

composite of morphisms in A, v 's andw' 's, In fact, ¢%uw

-

can always be written without #' 's. Tq see this, assume %uw
cannot be written without using an w'., Then, since no
equation in Lemma 2.5 allows the interaction of w' 's and

hY

a 's or B's (e.g. no commutivity), equations of type v)
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)

=

cannot be invoked. Thus, o 's and B8 's cannot be eliminated
and (3.7) cannot be established. Contradiction. Hence, duw
can be written using only morphisms in A and w 's. Also,
for source-target reasons, only one w occurs. That is
»
bw = yaupXy

= YuwpX

with x,y morphisms in A. Then by the construction of
3

c'(D, 8 ,H), ‘

=2
|

B(wax)a

Y(BwDa)x 3.8

’

YYX

Now recall diagram (2.4). Then

ﬂ(UxBo) - U
U Tl(f)xeo) - U . /
where all 1 's are projections to the first factor. Since
C is the pushout, we can define
F=<U, UT>: C'(QL o,H) = A, In the notation of

ILemma 2,5

h



TR T o R > oy o

o e e e %

£ | Ty 3 O

(i

FE, = f
Fax = FBX
= FWD'
= ],dx UDb = X‘

-

Hence F respects equations viii) from the definition of
cYo, o ,h) and so F = qub for some F,.Thus, applying

{
Fito (3.8) yields

id = yx

1

Applying the same arguments to another equation in the
definition of T, (c.£f. (2.3)), ¢u' = y'w‘D.x' with y',x!'
in A and y'x' = id. Now since w's = id,

id = %w'dw

= y'wD.x'wax

‘Hence,, by Lemma 3.4, ¢ = yuix with {y,b,x} an operational

retract. Hence, yéDx = éD' for some D' and so ¢u = Yupx = %.
i.e. (X,%) = FD'. Now if f:X - X' is a homorphism

FDFD' then fup=wpif. Hence by Lemma 3.4, £f#p = 8yf and so f
is a homomorphism of 0. Thus F is also surjective and so is

an isomorphism. Since P was defined up to isomorphism

. o
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o~
Vg

we identify Pwith D,

Now let (G,3,ki: (D, o,H) + (D1, &,H)be an
operational functor. Then consider the operational functor

(GO' eO'C'G): (D’ 60' H (Dl e IH)) > (vll eO IH (Dl1 61,H1))

) 9 . —
T D- b C'(v,B,H)TOC'GTo
& ’ g , > 5 T
—= C! 6,,H
o 1 l l (D), 81,8 ) 0
Ul 5
A — C'(D,6,H) ¢
:§Q§§§: \ﬁ\\\éngo 8
A - > C'ﬁ(pllelrljl) 0

By definition,U;G = U. But also

(9'GD)

¢GDQ \

“Gp ,
C'Gu '

]

D
(c'GTOoD)w

. = (C'GT

H)

0¥ 'D)

- 1

= (1 GOD)m
So ¥'GD = %'G,D for each D in D, ' Now, by the faithfulness

of Uy, GE = £ = Gof for each morphism £ of 0. THus

§ ("} Go = G i.e. G has a standard presentation.
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Define s (D, ¢,H) = (D,8 B(D , ¢ ,H)) and

0’
s(G,3,k) = (G,8,,C'G). s is a functor and RS = R.
Now for (G,6_,k): (D eO,H)”-* (0,,08,,H;)

standard as tn Definition 3.5,

(84, H(D, 8,,H) is a presentation of D and by Lemma
e

3.6 qf:CD > C factors through C'(7,6,H). So, by

the 'minimality' of q' (see pefinition 3.5) c'(D,6,4,H) = C..

- $imilarly for C'(Dy,6y,H). Thus, since both

k and C'G are induced by CG, C'G = k. Hence si ~ id.

From its construction, it is clear that
L:; Cat/A+Op(A) factors through i i.e. L = iL,, for
Lg: Cat/A >0p,(A). Because of the problem of

non-matching presentations, L is not an adjoint for R (c.f.

Proposition III.3.14) . However, we have

Theorem 3.8: L,is left adjoint to Ry.

Proof: The unit n, is given bv the n' found in Definition -~
2.4 (since RyL,= RL). The counit ¢, is given by the
operational functors Jpresented by the quotient functors

%:CD‘* C-
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T
LOB D -—e-------—----—b- C%‘Ta
v | T
1% —+ C 0
’ >~ CDBO ' B

-

The naturality of g'p guarantees that the counit morphisms
define a natural transformation LgRy +1. The identities for

the adjunction are easily checked.

£

|
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CHAPTER II

SHUFFLE RETRACTS

§1: shuffle. retracts N

In order to characterise the operational categories

~ and functors, the idea of being closed under operational

-

retracts must be translated into a property which can be
searched for without reference to presentations. The

notion of shuffle retract will be substituted for that

of operational retract.. In fact, n-shuffle retracts

will be defined for n a positive integer. However, the

‘essence of the idea occurs in (l-)shuffle retracts.

‘ —

Definition 1.1: Given U: D#A,~construct a graph

Sh{?P) (=Sh(D,1)) the graph of shuffles, with

objects triplets (y,D,x) where

/

lies in A (by convention, X will always bé the domain

of x and Y the codomain of y etc.). Let (y',D',x') be given

B e
s

S FON




MBS A X

by

X! - x' uD"' —_ oy

There are arrows between (y,D,x) and (y',D,x')
only if X=X' and ¥Y=Y'. Then arrows f: (y,D,x,)>(y’',D',x")

are given by those £:D+ D' in 7 such that both triangles of

1 aoe g

L

T e B s

u?
2N
X uf Y
N
x ™\ v
up'

commute. Composition is that of 0. 'The arrows of this

ght shuffles. We write

category are called ri

. (y,D,x) = (v'(Uf),D,x)

Arrows in Sh(ﬂfgare called left shuffles. Define

(v,D,x) and (y',D',x")

shuffle equivalent ((v

+ (y',D', (Uf)x)

= {yv',D',x")

-

to be

b

r

(D,x) 2 (v',p',x")) if they lie in the

same component of Sh(D)

commuting diagram

i.e, in A we have the

PO

e V.
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C
v}

b9
e

L %
y P
sx * e 8o r\?
U“"S—-’-.*o—*—g—_-ﬁg*’-
o) (N} —
< o
‘<~ ® ¢ g0 g
/

c

In other words, the equivalence is obtained by making

a sequence of right and left shuffles. The equivalence f

class of (y,D,x) is denoted [y,p,x]:

Definitions 1.2}

To cope fully with (I.3.2) a larger graph
Sh'(9,1) (= Sh'(D)) is required. Its objects are of

the form (y,C,z,D,x) where

ey y

lies in A. Note that z is a morphism in A, not, in
- general, in the image of D, Let {(y',C';z2",D'",x") be

another object of Sh'(?) given by the diagram

-
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Xl _____’_(_'_.+_ UDI Z' > UC' y' — Yl j"f

There are arrows between them only if X = X' and Y = Y.
Then they are either arrows f;: (yz,D,x)~+ (y'z',D',x') or

arrows fy: (y,C,zx) -+~ (y',C',z'x"') in Sh(D) i.e. either

L4

OO DS
BN N

uc!

" commutes. Once again, the arrows of Sh' (D) (resp.

e S

Sh'(D)°P) are called right (resp. left) shuffles, and

objects lying in the same component of Sh'(?D) are

shuffle equivalent ( 2') with equivalence classes denoted

by [y.C,z,D,x].

¥

Definition 1,3:

The idea of shuffle equivalence allows \fs to define

the following central notions., (v,C,2,D,x) shuffles out if *

(y,C,2,D,x) g! (y',D',id,D',x') for some y',D', and x'. A

shuffle retract is an equivalence class [y,D,x] of Sh{D)

such that X=Y, yx=id and (y,D,xy,D,x) shuffles out.

Note that it doesn't follow that v or x is a homomorphism

(co£f. Ekample I1I1.3.7). A shuffle homomorphism between

T e R e e T T e T ey




P

-

shuffle retracts ['y‘,D,x].and [y',D',x'] is’ a morphism

feA(X,X') such that :

(y',p'x'f) = (fy,D,x) . 1.1

Shuffle homomorphisms are well-defined since if

(y,D,x) = (t,C,z) then (t,C,zf) = (yv,D,xf) etcetera.

From (1.1) it follows that the shuffle retracts and shuffle

homomorphisms form a category called S(P) with an

underlying functor 5(U) to A

-

5{v) S(D) w— A

(Y,DiX) e X

£ bt £
Sh(DP) and Sh'{D) can adopt the structure of categories
by using 'the composition rules of P. An arbitrary
morphism of Sh'(D) 'is then a pair (£5,£1) of

morphisms of D such that all paths commute in

.
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Lemma 1.4: i
There is an embedding Sh(D) +Sh!(D)  sending (y,D,x)
to (y,D,id,D,x) and f:(y,D,x) + (y',D',x") -to (f,£f). There
are ail‘so two ‘'contractions' Sh' (V) +Sh(D) sending
(y,C,z,D,'x) to (yz,D,x)‘ (resp. (y,C,zx‘)\) and (éz,fl) to f3
(resp. f2)). They preserve shuffl'e. equivalence. Thus, if
,D,x]is a shuffle retract with
(y,D,xy,b,x)="' (2',C,id,C, z)
Then )
() | | ﬂ
. [v,D,x] = [yxy,D,x]
‘ ’ = [z',C,z] , .
b AER S “.
. .
and so .
T . {y/Dyxy,D,x)=" (24,C,1id,C,2) .
=t (y,D,id,D,x) ’
o . N 0
Lemma 1.5: Let U:D -~ Abe operationa;l. with presentation -
(8,H). ‘
i) 1f (y,b,x) # (v*D',x') in Sh(D] then
Y px = y o', )
) v :;.i) Similarly, if (y,ct,z,n,‘ex)‘s' (y',c—',z'n,l{',x'), then’
¢ ) " " ’
i » “ .




45

e v N v——
~~
L *

Yo Zox = y'ec,z'wn,x'
/

iii). Hence, all shuffle retracts (resp. homomorphisms) are
/Operational retracts (resp. homomorphisms).

Proof: The method of the proofs of,i) and ii) are simplified
_versions of that of ILemma I.3.4 i.e. it is sufficient to N
check the result for right shuffles, which is easy. For R
iii) just apply i), ii) and Lemma 1.4,

B

Lemma 1.6: Let G:D*D' be a functor over A, If

". ‘ (y',D,X) "_..‘. (yl ,Dl,Xl) then (Y,GD,X) E (y l’GD l,x—‘l) . {.
(} Sifnilarly, if (y.C,z,D,x) =' (y1,Cp2z1,D1,x1) then
8 (y,GC,z,GD,x) =' (y1,6C31,21,GD3,x9.

Proof: As before, Ei.t is sufficient to check the hypothesis
for the generating equi\'.rale;uces, in fact just for the right
sh};ffles',and then apply iﬁduction. The second statement is
proved exactly like the first.

a

Consider~a right shéffle

EU. e (7.DX) = (EU£;0,%) = £:D+Cin D

+ (t,C, (Uf) x)

-= (t,C,Z)
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: (y,G6D,x) = (tU'(Gf),D,x) U'G = U
+ (t,GC,U"' (Gf) x)
= (t,GC,z)
S can be extended to be a functor
S:Cat/A+Cat /A, Let G:D D' be a ‘
functor in(Cat/A. Then we have - P
S(G): s(D) — S(D') ’
[YlDrXJP-t .YIGDlx]
) £ o £
( By the lemma, SG is well-defined i.e. its image lies

SP' and its definition is independent of the

Lemma 1.7:

)

i) 1f (y*',[¥,D,x],x') = (t

then (y'y,D,xx"')

ii) Similarly, if

representative of the eguivalence class cho

', [t,c,Z),2') in Sh(s

(t't,C,zz') in Sh(D).

(Yél[yllchxllYél[YrDrx]rY';) =! (t;;r[tycyz;) ItéI[tl'clz]’It;) then

(Y3¥yDrXysy,D,xy)) =" (tit,G,zt t,C 2t]).

iii) Thus if

-

o,
&

[y'—, [y,D;x] ,x'] is a shuffle retract with respect to'SD

()
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then [y'y'D,xx'] is one with respect to D. similarly,
shuffle homomorphisms remain shuffle homomorphisms.

Proof:

i) We need only check for right (and left) shuffles and
then apply induction.

If

(v' . {y,D,x] ,x")

(t'suf,[y,D,%].x")

- (t',[t,Cc,2), (sup)x") f£:[y,D,x] »[t,Cr7]
(t',{t,C,z|,2")

-

- A
Then

((suf)y,D,x) -

i

(t,C,28Uf)

Thus
|

(y'v,D,xx") (t'(Suf)y,D,xx')

u

(&'t,C, (SUE)x')
= (f't,é,zz') -
ii) This is prgvedas in i).
iii) Let ['y“, Er;lgi,i],x'] be a shuffle retract for S0,
" < Then. -

[Y'YlDrxx"Y'YIDixx'J z! [‘Y')YrDa'xYIDrxx']
j L s'Eg'y,D,id,D,gx']

t

. - w2 [ 0 S v—

PUpR—
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1

Proposition 1.8: There is a triple on Cat/A, the shuffle

triple, 8§ = (§,n,u) with S given as above, and for

! ¢
D over A, the unit np is given by

npb = [id,D,id]

f 14

npf
and multiplication Wpgiven by .

UD[Y' F EYIDIMJ rx':l - B/'y,l),—x'x]

( | uvf = f

-

Proof: Clearly n is a natural transformation. ¥ is

well-defined by Lemima 1.7. Now ;Le,e{vy:'ﬁ; D' over

- n . /

3
s

wsZaly', [0, x],x D= [, Goe0,x,x']
=[y'y,GD,xx"]
=SG[y'y,D,xx"]
=sGuy [y, [y, b,x],%x"]
' Thus g is a natural transformation. The proofs that

8n = id = uns and uSu = uuS are left as easy exercises,

.
&

S .

s ol ot bl A i
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The category of algebras for S will be denoted
S-Alg with the corresponding adjunction being F§——-i U§-.

»

§2: n-Shuffle Retracts
- y

Operational categories have a more detailed structure
than arbitrary S-algebras e.g. if D is operational
with respect to (¢,H) and [y,D,x] is a shuffle retract,and
so an operational retract, with yépx =¢py, then this equation
can be employed to obtair; new operational retracts which
are not shuffle retracts’c.f. Example III.3.13. . To capture '
these properties of operational categories, a countable s';equence

of triples S, = (Sp,Mn,¥n) must be constructed with

"'S'l = § and sn:..S_II“l-Alg -*_S_n_l-Alg (§O-Alg= Cat/A).

- Of necessity, the triples must be constructed inductively.

The . information required for the indugtion is contained in the

following hypothesis.

Hypothesis 2.n: For each mg¢n there is a triple

Sm = (Smy "m,"m) on Sp-1-Alg such that for
stpucture morphism for §. ), §,(0,d;,d;, ..‘.dm_l) has

as objects some triplets (y,D,x) such that » .
Vo

IS ng 0 ov SV SRR ol - oy Ty foont- g oc S g~ oo~ T

P, - = - n e B o e
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lies in A, and has as morphisms (y,D,x) - (y',D',x') some
f:X *X'. Let the structure morphisms fl)r
Sm (0,d1,42,...dp) be (Syd). For each
Sy~ 2lgebra, there is also a graph, $Sh{V ,m). They

are defined so that the following statements hold: for
D in Cat/A, S8i{D,1) = Sh(D) and

given an -algebra (D'dl'dZ""c}n—i' Ship,m)

§m—1

is generated by

i) the underlying graph cf Sh{D,m-1) and
ii) if D = dm_l[y',D',x'] then (y,D,x) -+ (yy',D',x'x)

ii) is called an m-expansion (with respect to D). Note that

for k «m, k-expansions are also m-expansions. An
m—-expansion as an arrow of Sh(D,m) is called an

m-contraction. Define an equivalence relation on the

objects of 3$u(D,m) by (y,D,x) S (y',D'",x') iff they

lie in the same component of Sh(?D,m). Equivalence
classes are denoted [v,D,x]. Now Si'(D,m) (and its

equivalence relation = 5 ) are constructed relative to

" Sh(D,m) just as Sh'(V]).(and its equivalence
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relation =' ) were generated relative to Sh(D). Then

(y,C,2,D,x) m-shuffles out if (y,C,z,D,x) =4 (t',D',id,D',t)

for some t,t' and D'. Finally, any (v,D,x) such that
yx = id and (y,D,xy,D,x) m—-shuffles out is an

m—-shuffle retract. _gjhuffle homomorphism

[y,D,x]—»[y',D',x'] is an £:X +X' in A such that
|(fy,D,x)"Em (y' 'D',X|f)a&Then, Sm(v,dl,dz,.-.dm_l) ?AS

the category of m-shuffle retracts and homorphisms for

D over A with an underlying functor § U:S, D+A.

The unit, ry, of gmapplied to D over A is

dgiven by
D e [id,D,id]
f f
and th; multiplication, uy, at?D over A.is given by ' ,
- 7

[y*» [y /i) yx'] b [y'y,D,xx']/
- 9

£ — £

4

L]

‘Definition 2.l: Assuming (2.n), define S'h(D,n+i) etc. {\‘

and By s 5, -Alg> Sp-Alg just as in (Z.n+1).
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Lemma 2,.2: Assume (2.n). lLet (U,dl,...dn) be an

_S_’n.-'-algebra. Given that Sny1D is an S -algebra

for some k20 with (Sxm+]§i)k [y', [y,l.),x],x'] = [y’y,D,xx'_] (if k>1)

and (Spyd)ik £ - £, then
1) if [y',[v.D,x],x'] =qlt',[t,C,2],2'] in
Sh( Syu?,k+1) then [y'y,D,xx"]zpe1[t't,Crz2'}"
ii) Further, if
[v3, [wxl o5 [y ool oyl =s [y, [5G 2] gzle,C 2], 'l then
[% %5 Dy’ ¥ Doy’ 12 001 [5' 6 Gr 283 € Cozy' ] -

Proof:

1) As before, it is sufficient to check the
equivalences for geﬁex‘:ating shuffle equivalences i.e. for
right (and lefﬁ) shuffles and for k+l-expansions (and

contractions). Right shuffles are dealt with as in Lemma

1.7. If there is the k+l-expansion

. » .
[y/p,d = (Sn:FIQ)k[t' ’ [t,C,Z],zj
.- [t't,c,zz‘]

then t't = y, D = C and zz' = x. Thus
—[r'y,D,xx] =[y't" t,C, 22 " x']

ii) This is proved as in i).
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Lemma 2.3: Assume (2.n) and. let (D,dl,'....,dn) be an
Sy-algebra. Then S 0 is an § -algebra for

every k. .

Proof: Since Sp4iP is an S, -algebra, induction

based on Lemma 2.2 shows that (§41jd)kx is well-defined for

all k. Clearly, it is a structure morphism for Smlv

i.e. Sp;Pis an g, —algebra for every k.

Lemma 2.4: Assume (2.n). Let G:P+?D' over A be a
homomorphism of §,~Alg.

i) If (y,D,x) =41 (y1,DP1,x3) for some k, U<¢kén, then
(y,GD,%) =gy (Y1, GDyx1).

ii) Similarly, if (v,C,z,D,x) *E]'{-fl (v1,C1,2 1,D1,x3) then

(Y,GC,Z,GD,X) E].(+l (yl’GClIZl,GDl’XI)'

Proof:

i) As this lemma is an extension of lemma 1.6, it is
*
sufficient for the inductive proof to consider
k+l-expansions (and contractions). Let D' = dy[v,D,x].

Then (y',D',x"') e 1 (y'y,D,xx'). But

GD'

G4, [y, D,x] :

a:sG[v,D,x]

d];[y,GD,x]

Thus [y',GD',x'l Ej+1 [y'y,QD,xx'] = [yl,Gnl,xﬁas reqﬁired.

e

ottt

¢ mrn

s

£ o
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ii) This is proved. as in i).
Nid '
Thus, assumihg (2.m), S, canbe extended to a functor
S,"Alg-+S -Alg as follows. Let
G:(0,dy,dy...d,) — (?,d%dY,...,d}) be an

§n-algébra homomorphism. Then §,41G is defined by

[y»D,x] ¥— [y,GD,x]

£ — f

By tfle lemma, Sy 6 is well-defined. Also

f

(S, 8" )y Si(8,,8) [r' s BoDex1exl] = (58" 0 [ [y, 6% %], %]
=[y'y,GD,xx']
= S;1+1G&'Y1Drxx']

‘Sn+1ﬁ)(5n}-1d)k [v',[y,p,x) ,x%

Hence S, /G is an 5; ~homomorphism for 1« k.s n i,e. an

-~homomorphism.
Sa * _

A
.

Theorem 2.5: For each n, (2.n) holds. 1In particular,

Proof: Proposition 1.8 is just (2.l1). Given (2.n), define
everything as in (2.n+l). Trivially,nn+lis a natural

transformation. Unil is well-defined and a natural
*
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transformation, by Lemma 2.3. Thus (2.n+1l) holds.

¢

Proposition 2,6: n S, +Sp54is an lsomorphlsm which

n+l sn

has, for each (7,4, dp,...4,), the inverse (S,d),, as
in Lemma 2.3,

e tHen dn+l“ = id.

since Crt1 is a structure morphlsm. Now let

Proof: Letn l P-nand (S d) d

v's[y/0,x],x'] €| S48, D|. Then by Lemma 2.2
[y'y,D,xx']sSnD. Hence [y'y,[:id,D,id],xxﬂesl?-lD
and (S dn[y'y,[id,D,id],xx"] = [y',D,xx7. Also,

(s,d) [y, [J.d D,id] ,x] = [y D,x]. So

nd lfy [y,D, XJ x']= [id,[y'y,D,xx'],id]
ze1[Y'y, [id,D, id] , xx 1]

=ne1ly’ [y, o]

Trivially nd ,;f =f.
Thus n,4 S, P is an isomorphism for each P and so

"nfn 1§ an isomorphism..

53 ‘s‘;;-,al‘g,ebras .

Definition 3.1: Let (D, {d,}) be such that, for each n,

(D, dy,dy,...d,) is'ans -algebra. Then

(0, {dp}) is an Sx-algebra. Similarly, if
S ——— T Te——i—

(D' ,1d'y) is another S,~algebra and G:D+D!

]

OISR
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is an 8§, -homomorphism for each n, then G is an

S, ~homomorphism. These categories and functors form a

category called S,-Alg with a forgetful functor

Ux: S,-Alg+ Cat/A.

Proiposition 3.2: Usx has a left adjoint Fx.

Proof: Let D be a category over A, Since §415n = 5n

for all n by Proz;ositicm 2.6, 8,5 =8 for all n>l., Call the
isomorphism v,:8nS0= 8D. Definewvy = u. Then

F,p = (D, {vwy}) is an Ss—algebra. Now let

G:D+D ' be a functor over A. Then F,G = SG is, by

Theorem 1.8, an g—homomorphism and so, since npS is a
nat:.ural trans:formation for each n, §8G is an

S, ;homomorphism. Hence, F, is a functor Cat/A + §_-Alg.
N Now the unit for the adjunction is n:l1+ 85 = U,F,..
The counit at (9 K d. 1 ise = d,:F, 0~ (D,{dn})h.

€ is an S,-homomorphism since

dlSlE d,58,d

] 1
R —
-
[

o ~

H

[y]

<
[

and for n>l

i
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(1
dnsnz[y' ) [v,p,x] ' x'] = dn[y' ,dll:y,D,xj +x']
=d [v'y,D,xx']
) =4, [v'y,D, xx']
= evn[y',[y,D,xJ ,x']
Now the equations for the adjunction are .
= id
and ) v
(1 €n oFaNp = V.8n. .
F, 07 *7D 1°%p
= UD Sﬂv
= id
P
Thus F, ~ U,. . . .




an R e et b

W B

CHAPTER III '

1

A CHARACTERISATION OF OPERATIONAL CATEGORIES.

'
>

)

In this chapter the operational categories are
characterised by their internal structure. Spééificglly,

the operational categories are exactly the §.*-alggabr'as.

‘We approach this'result by first showing that the triple
¢

associated to the adjunction LO-—{ i?ois just S.
. ‘
§l: R.L_ = g

The following lemma links the COnstructioris of LV and sD,

a
.

Lemma l.1:

a
i

~ AYTifT \

a

= Yo Yo qUh ¥ e ees¥yon ¥ o
yup* n“D, n—]f"Dn -2 J."’D1 o ]

o

-

in €0, then there is an i (l¢i<¢n) such that

(1L

(y,D,x)

e, "o

(ynyn_l. edss .}{,i‘,Di ’yi_l-’n LY ..Yo)

ii)If : - s L.

O SV
K

[T ISR Vg

ron
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. ' '
- ok ) ywézwa L] yannyn_ln .w 0.- ass me ylelyo

4

then there are i<i such that

(Y.’CIZ,D'X) £ ! (ynyn_l. awe .gj ’ j:’ j_l. edes .yi ’Di,yi_ln cow oyo)

e &

§
iii) Hence, if y'x' = id, yx = id and y'wl'),x'ymox = id then
y'wgix' = yud x and [v'D,x] is a shuffle retract.
Proof: The proofs all run parallel to parts of that of
. I.3.4. Lemma II.1l.4 may also be used. o

-

Theorem 1.2: RL, = S: Cat/A *Cat/A. Hence', the

comparison functor K: Op,(A) ~S-Alg provideé, each

| 6perational category {resp. functor? with a standard”

preseritatic'an, with the struéture 'o‘f‘a'n- S-algebra (resp.
é_vhc;momorphisrﬁ): \Ff;r D operat::Lonal with .a standai‘d
g L présenﬁatién, the: structure morphi‘sxn‘ d is given by
¢ 7 : |
d : Sp — D “ N
[y,D,);] ~ (X,yepx) -, ” "
| f c--..’ £ ‘
v R . e t. - ° T \ . - LS

Proof: Let (X,¢) be an alc;ebra in LD. Th°ef,1, ’by

{ ; (“) R duplicating the arquments of Theorem I.3.7,

- ' ()
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v CR

— v = YuX yx = id
20’ = y'wl')x' y'x' = id
id = y'w]'),x'yme

Hence, by Lemma 1.1, y'm;J.x' = ymD'x and [y,D,x] is a shuffle

retract, Similarly, morphisms in IOD are shuffle
homomorphisms. Thus, there is a functor ¢ p:RyL,V +S.0.
Converselv, define ¢D' :89 *ROLOD

by)

T [YID’x] - (XiYQDX) . .
£ N\ £ |

with respect to the given presentation of LD, ,@b is

well-defined by Lemma II.l.5. Clearly,(bt; ¢D= id. By Lemma

© - i

1.1, ¢b¢b = id, too. ] oo . . -

¥

) . ¢

P

To see that RoLoG = S(G) for a functor G:‘b'*v" over
; A, we cheek that S(G) satisfies the definition of LG

. {c.f. (I.2.7)). Trivially, (LU!)S(G) = LU. For the other

| arm of the pullback note that @ . s
) — : o ’ 6
b = %LGnD
- . ! . - };
- L} i *
v = ¥ ;G,nD . ‘ ' . ) :

1]

(‘) - ; ’._\ cc o1 np ' o o 7

! - ' ¢ . : . . .
| ' = cGlde ‘ -

1) T X

P — - .-
N — - - b e A
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Hence

1' [y,GD, x]

(HD') *ye, .. (HD') *x

it

1's(G) [YIDIX]

g _ (CG.HD) *y(CGToo, ) (CG.HD) *x

CcGTo (Hp) =y oy, (HD)™*x

[

= cclos' [y,p,x]

FRURRSI

1"

¥R L _G[y,D,x] ' -

R LA

©
P

° Also u'?Gf - H*U_f - RoLof. Thus SG = R,L,G. Hence s = R,L,-

PX

g §2: The CharacteriSation Theorem

T e s s, R NG

Lemma 2.1: Let U:D +A.be operational with standard j

presentation (6,H) . Assume that n-shuffle retracts for

s
\

‘ " P are operational retracts and ? is an Sn—algebra -

s

for some n>l with dy :Syx P +D given by

&
’ [Y'D,'ﬂ H(XIYQDX)
, ‘ f o £ .

i

for l¢k¢n. Then if, for someé k,ld'ff‘m«r‘l

-

. (y,D,x) 5 (y',D',x%) .-~ . 2.1 !

() o then Y—'PDX = y'epx'. ' Further, Af

L ‘“ " . - "
T - K - - ) Tt “ ‘1
‘ . o

s T e DR TR T Y
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j
ey
g j(y,C,z,D,x% E}'{ (y"' C',2z',D",x") t}?en y¢cz d>Dx = y'¢c'z'd>D'x' .
§ Hence, if [y,D,x] is an n+l-shuffle retract then it is an
; operational retract and D is an §n+l-algebra.
Proof: The hypothesis for n = 0 is just Lemma II.1l.5. The
Ledtas
proof there can be expanded to cover the general case simply
,, by checking equivalence by shuffle expanéions'(and
; contractions) . Assume that the result holds for n and that
(2.1) holds. Let D = d,[t,D',Zz]. Then
(y,D,x) %m_(ytpD' yZX)
= (yl ,D',X') N
t
- >
; (} Where yt = ' and zx = %'. Then
. .
- °D - t@D'z
and ° . $ x = yto_zx ¢
A S A
- yl ¢U}c'
Theorem 2.2: There is an equivalence  —
; : K':0p, (A)+ S, -Alg over Cat/A.
| Proofi Define K':0p ,(A)~ S, -Alg by
- X'(D,8 ,H) = (D,{d_},and X' (G,id,k) = G where G
is given by i
2’ .
C) . . . [y,D.XJ H(XIY'PDX)
| Cf ;
! . ’ ) s
. ‘ : . |
‘a | ;i

e ke ey e i o
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By Theorem 1.2, D is an S-algelra with structure
mOrphism,di. Assume now that D is an § —algebra

with structure morphisms dn. then Lemma 2.1 shows that

? is an §+;-algebra with structure morphism dp).

Hence D is an S, ~algebra l:;y induction. Now let

(é,id,k) :(D,eo,H) + (D1 8, +H1) be an operational

functor with a standard presentation. By Theorem 1.2, G is
an S ~homomorphism. Assume tl:xat.G is an

S -homormorphism. Then
n 3

Gdn+][Y,D,X] - G(’le¢ x)
oy
(xqu)@x)

' - ;lﬁ,’GD'xJ

dmf N [y,D,x]

where the second line holds since,by Lemma 271, [y,D,x] is an
operational retract ariﬁ Lemma I.3.2 gives operational

functors this property. Also, Gdn...lf - f = dn+lsm1Gf' so G
\ -

is an S 1—homomorphlsm. Thus, by 1nductlon , G-is an
- §*—homomorphism. N /)

e i

t

Clearly, U ,K' =- Ré- Also, by' the definition of F, and
Theorem 1.2, K'L, & E.

T

~
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i . N -
i K 1 N 1
. Sy~hamamorphisms G) will be shown to be 6perational with
respect to a standard presentation, (e, ,H"D) (resp.
(id,C"G)).. First H“(D,{dn}) must be constructed and some
of its properties established, A ‘
Definition 2.3: Define C":§*—Alg-+Cat as follows; for
A .
(0,{d,}) an S, -algebra, C"(p,{8,}) is
generated by .
' ia) the underlving graph and equations of C7
viii) if there is an n such that .dn[y,D,x] = D' ir{ ' “te
SpP, then . J .
(‘w} wax = ND|
] - 1
- wax - le

e " '
If G: D+ D' is an S, -hc;tpomorphism then CG
preserves the equations viii) and so induces ’ S
- crG:Cm (D, {d 1~ C"(D"{dﬁ})“ The\quo@:;i.e;r\;t'
functors q;):pv -+ C"(V,{d,}) yield a natural
transformation q":C + C":§,-Alg * Cat. The base
functor is H“w{idnh = Q"HD:AXB_~C"(D,{d,})." There.is .

aiso the commuting diagram, from the definition of CD:

-

o
)

Y

. L Tk
[ ) 5 e i S o S ot Pt 24 G it - y——




)
+ ' *
@
.
T
.
,
-
)
\ x

B

-

q"p

o

] .

)

CG

- c"(9,{a_}

' c"G

1

q”p

~- C"(v’,{dn})

o

65
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Iemma 2.4:

i) if- §

"

| - ;

X = y (] y _eees e .y w y 1

Yup m D_*m-1 1"p,%o ;

. ¢ . € g

; ¢

! i

5 |

; N in C"(?.7{d,}) then there is an i such that l¢i¢m and an :

'n such that (y,D,X)=z_. Y. eeV.,;D eeV ), ‘

| c : (Y, L ) 1 (ym‘/iﬁ—l .‘11 Dy yi"'l p O) ‘

ii) if ’ ‘ - |

x i

% - i

! . o ' - ! - t
(‘"} . yw(‘zwa - YmmI)mYm_l. .‘0 . e Iylelyo

’
i

' > i :

then there are i<j and an n such that * P

(YIC'Z'D’?{) .-=-,In (mem_luo;..yj,Dﬁ,Yj_i--f..yi,Di,yiTl..-,-yb)

1 "

iii) Further, if y'x' = id, yx = id and nyJ.'x.'wax = id ' X

A . then ywlx' = yo)x and there is an n such that[y,D,x] is an L

n~-shuffle retract.

s v Proof: ' ‘

—- n

i) This lemma is an extension of Lemma 1.1l. Hence it is P

s e B e

(\} ' ' sufficient to check the hvpothesis for expansiohs (and ~

contractions). If equivalence is by, say, an n—-expansion
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¢

. - -
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e ' 6%
of type viii) then we have, D = dn[yl,DJ’xﬂ and

W = YiWniXge S0 yupx = YY{0piX X = y'wD,xl.

where y' = Yy, and x3x = x'. Thus

(y,D,x) En"'l (YerD' rxlx)

= (y*,D',x'")

Shuffle contractions are iralt with similarly. Since ’
only finitely many expansions and contractions can be used
in many proof, let n be the highest level of equiwmalence

. used.

ii) and iii). follow as in l.1l.

‘Proof of Theorem 5.2 {cont'd):
15

Let (D,{dn}) be an §*-¢*gebra. Construct the
‘ D
operational category P (= K"(D,{d,})) using the zs

presentation (8o ,H"(D,{d_1)).
| T

P -——I———» c" (9,4 N'o

A — C"(D,{dn})BO‘ )

Since (1.2.4)is a commuting diagram, there is a functor

F:D »P over A, sending D to (UD,¢D) and f to £,

where @D:T0-+C'(D,{dn}) maps w to wpe F is




.
.

N § . L

[

\

faithful since U is. To see F is a monomorphism note that if

D= D', »
Now let (X,¢) be an algebra in Pp.
arguments of Theorems I,3.7 or~IIIJL2 we show that

w = yu)Dx, dw' = ‘y'w',x and id = }rlexlxw

D
2.4, du' = ymax and,for some n,

retract. Let D' = dn[y,D,x]. Then
b = mD,
¢m| - m'D' ‘t

N
Thus (X, ®) = FD'.

P “then fu wa. Hence, by Lemma 2.4,

D/).f
(£,0,id)
s D. Hence f = d,f is a morphism D +D' of b.

ThusVP D over All e.,that everv

standard presentatlon as an operatlonal category.

N

.Now congider an- S, ~homomorphism G: D +D'.

the commutativity of (2.2) shows that G is the induced

operational functor (K"G) in the diagram

i
oL

¢prand so

-
[v,D,x]is an n-shuffle

:n(id,D',f)fé: some n and f is a morphism of

—algebra has a

Then

68

By repeating the

x. Hence, by Lemma

Now if £:FD + FD' is a homomorphism in




. ) ~ c"(9,1a. 1) "o
! l \ ‘ W—O | N "
D' ! — C"(D',{dr'!})To
1
S . c"(é',{d 1 Bo |
i n

\ e
A > c"(v',{dn'})so

Thus K" is inverse to K' as far as operational

T A e, o,

categories and functors are 'concerned. Now it must be
checked that presentations are respected too. The

; presentation for KX"K'(D, eob,ﬂ) is specified by the
generating equations in C*(7D, {dn}); Yo X = wp, if

’ ['y,D,x]is an n-shuffle retract with in[y,D,x]z D', But .

then [y,D,x]is an operational retract with yé % = ¢p.and so,

in ¢, YuX = wpe Hence, the identity on CD induces a

o

functor C"(K'(p, 6, M)) =+ (. Thus, by the
'minimality" of ¢ . C"(D, {dn}) = C, Also, e
f ' if (G,.8,,k) is & morphism of Opg (A), then,since both k .

and C'G are induced by CG, k =C'G. Thus K"K' ~ id.

Consider X'R"(D,{&,}) = (D,{d4}). “Assume that

-

d, = df for O<ksn, Let[y,D,x]be an n+l;\-shuffle retract

-wifhdl;';l[_y'n'sz D'. Then ‘ygbx = W in C_"(D, {dm}).

»

x

P _ _
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Hence, by Lemma 2.4, [y,D,x] is an m-shuffle retract for
some m, with dm y,D,x] = D', Wiéhout loss of generality,

m>n+l. So

D'

i

dm[_‘[,D,X] ) LA
dm[id,dﬁrgy,D,ﬂ ,id]

gﬂ[y D]

o

Thus d'ml.—. %ﬂ' So dl,'1 = d, for all n and hence

K'K" (DI {drl}') @ (D, {%} ) - Tri‘i;’-ally, K.K"G - G for

- any S, -homomorphism. Thus K' is an equivalence.

Corollary 2.5; Opo(A) is completewith limits preserved by R,
Proof: (Cat/A is complete. So S-Alg is

complete and (U preserves limits. By induction, 5,-Alg

is complete and uSh preserves limits. Hence, given any
diagram in S.—Alg, its underlying‘diagram in

Gat/A has a limit which .exists in §n-A1g for each .

n, and so in S,-Al§. Hence, by Theorem 2.2, op,(A), being

<

equivalent to S,-Alg, is complete.with limits

~ ¢
¥,
preserved by R.. .

*
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53: . Ckamples

_Proof:

' ‘Ur;der this heading are collected a divetrse assortment
of examples. Some are ;;uite general propositions, such
as the demonstration that all slice categories are
0pe‘rational. Others illustrate the manipulation of '
shuffles, with a view towards providing counter-

examples to some reasonable (but false) hypotheses. -

Lemma 3.1: Let U:D +Abe a functor. Then for any
U~split coequalizer as in (I.1,3), [y,D,x] is a shuffle -

retract . Q

(y,D,xy,D,x) = (y,D, (Ug)t,D,x)
> °(YUnglt'Dr5§)
o , = (¥ UF,C,t,D,x)

’ ' + (y,D; (ﬁf)t,D,x)

= (.YID:idIDIx)

< . 7 f

'_ "Proposition 3.2: Let U:D +A have a left adjoint F.

Then SD = A-T- wheré T is the triple asrsociatgd“with
the adjunction. 1In particu;l.a}:, if D is tripleable, then

S = :D. Dually, if U:P +A has a right adjoint then ° J;

3




2 .
PR RO R S

(4

.
-y 5 MeMER Y T AR 5

72
sU = AG where G is the associated cotriple, and if
Dis cotripleabie then SP = D. Thus tripleable and
cotripleable categories are operational. .
" proof: Let [v,D,x] be & shuffle retract. Then there is
a T-algebra (X,ydTx) (where d = Uep:TUD > UD) since
A
/ ydenx = 'y,dnUDx .
“ = yXx Ueny = ‘id'"
. 3‘ = id - ' '
and .ot
(ydTx)T(ydTx) = vAT (xy) TdTx ,
. , ) ’ -
= ydesz . e is a natural tr,‘ansformat;i?n
o E ) ~ S
. . = _yd“UD'II X . u ‘= UeF
= yd'.!’xux ‘ 5‘ .

. b .
1f £ is a shuffle homomorphism [v,D,x] - [v¥',D’,x'] then

(y';*D",x'f)r £ (fy,D,x) and so. (y'd@’Tx')Tf = (ydTx). Hence

fis a _’I:-homomorphism. These construc’tions respect the : g

et < .
‘equivalence/’relation and so define a functor LD -+ AL,

Now, let {X,y) be a T-algebra. Every algebra for a

triipleﬂ induces a U-split coequalizer with resPeét to any

® Rl

adjunction defining the triple. . . , C

-

.
e
3
5

s

A
A At . WA i T WA ’,
by Wt Kot 1 B v,

>
'
A ¢
e A -

L

i g e S L. - . o - . -




. .
° < ‘
: - ’ 73
n - . .

Cn &hus by Lemma 3.1, [y,Fx,nxJ ls shﬁffle retract. Clearly,

T-homomorphisms yield shuffle homomorphisms. Hence

there is a functor AI * s?.

|
o
2 :z"‘. ' ' ( - c o

It is easy to check that these functors are
e

‘o
s .
. . 4 . .
¢ i T - .
- . C e . P
. o =
o A % . . .
PR S o S ¢ RSP ~Rape | e -~ e e e ax
- ~ @
N N ) .
- b
. »
.
o
.

inverse,

The dual results follow from Proposition 1.1.2.

i
-

A\

!

¢

Examples 3. 3 By. Prop051tlon I.1.2, the pullback of any

' operat;onal category 19 operatlonal. Thus, for example,

the category of finite groups over %mtegory of finite sets
(anf + Setéf) is operational.
P A r

Example 3.4: Any full subcategory closed under retracts

is operational,

USSub (G) + Gxp

Thus, given a group G,

(where Sub (G) is the full subcategory of subgroups of G)'is

&

s , operational. Also'Gapg + Sets is operational.
¢ - .
{
© Ll .
i
f .
R )
e . (L'} ey " L]
!
) P
L} # *
@ - FY -
-, ‘ ' -
- ﬁ' - ~ o ot N ]
. - N - -
| e e e
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.'1.7 :

' composition.

A

[T N —— A

> -0

, N 7'

Example 3,5: If U:D - A is a fibration then all shuffle

retracts are trivial. C.
\

Proof: Recall that, given U:D = A, £:D ~» D" is a cartesian

morphism in 0 if, for apy'flle + D' such that Uf1 = Uf, \

then there is a 'E:Dr ~ D such that Ug =:id;, and
£, = fg. ‘UsD + A is a fibration if, given x:X + Y in A

with-UD = Y, then there is a cartesian morphism £:D' -+ D

with Uf = x. Also cartesian*morphisms must be closed under

o
7 o a
.
’

o~
-

Now let [v,D,x] be a shuffle retra;i,and 1éti

x':X' + D be a cartesian morphism over x. Then »
[y,p,x] :X\i.d,X',id]. However, if-there is an x":X" + D .
such that Ux", = x then [id,X,id] = [id,x',id]. Hence,
) many intérestind'fiprafions aren't operational. .
.
Proposition 3.6: Slice categories are operational. - .

Proof: Let A/X » A be a slice category ~ (the objects of

A/X are pairs (A,a), a:A » X). A quick induction shows

that if (y,(a,a),x) = (y"', (A',a'),x"') then ax = a'x'. Also .
(Y;(A,a),x) £ (id, (x,ax),1id). 1t easily follows that .
. Shrx)= A/x.

]

Proposition 3.7: Satisfying B.T.C. and being faithful does

not imply that a functor U:?P - A is operational.

A v i B kel Sk
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N 0‘
Proof: 'Generate A“by the graph
B
{ . : *
- 7 (
4 ""—, ‘
- A ~ - - C z
3.
and the gquitions
, - ' ) | ‘
- © jfx = id .
« . fk3f = £ .
I .
! ‘ ) i
-5 . . . ) .7
" Lat U:D + A be given by the subcategory inclusion -
- - . ‘e \ "
s ‘ ; B . .
- . -
£ ' 4 ‘
'h Trivially, U satisfies B,T.C.. Now
| (3€,B,k3£,B,k) =' (j,C,fkjf,B,K) : o *
. = '(jrcrlelk) F
~ =! (ijBIidlBlk) |
N | |
4". - - ‘ \\
. - .
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So (if,B,k) is a shuffle retract over A, yet no object of

D lies over A. Hence, there can be no g—a;gigb_ra structure

for 0 i.e, P is not operational.

* il

Example 3.8: Here is constructed a cateqory for- which

s“*lv = $%0 + 1 (where 1 is the terminal categorir).

)

This category will be used below to create counter-

examples to various attractive hypotheses.

-

~ Let A be generated by the graph

and the equations
i) jfk
ii) fki'f
R iii) 3g,

iv) g,k

<)

id

gohg,
ifg,
g3k
id

S - I U

IS Rt ARV A i, St wOKod
.
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©a) gphgy, gyhg4, gghg;, 94ha3 and all defined
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i
0]
w
]
>
L

Claim 1: All non-trivial identities (i.e. coﬁposites}gf

lgenerators equalllng an identity nm:phlsm of A) are

contained in the fbllow1ng list (note that not all the

morphisms in the list are identities!).

-

Eomposites of these .
b} jfk, all défined morphisms of the forms
jfik and jik where X is ih a),and*all
| composites of these. D
Proof: All the generating identities in the definition of

A are in the list and it ig\cloéed under application of

AN
AN

generating equations.

Now all candidates for shuffle retract for P can be
cbtained by 'splitting' an identity in the list into a pair

of maps, When this is done all but one of any composition

3.1




e s et vr e i e Sy A

. . i
of identities must vanish. Hence, after taking equivalence

into account, there is only one possible, non-trivial

L

) shuffle rgtract, namely, (jf,B,k) = (j,C,fk). Now

\
[

o (J£,B,kj€,B,k) + (3,C,£k3€,B,k)
» B p = (3,C,9,09, ,B,k)
£ (39,+E,h,D,g;k) .
‘ | - (389, ,E,0, D/g3k) o
x f*‘(jf,B,g4h93,B,k)~ C o

, . . ],’r‘ (jf,B'idyB'k)

¢ .
. .
-, o ¥ -
. . f ' )
- .
. e ]
f , . , . .
4 . .

!
.~ o

T he

: ; ‘
( .- So, [jf,B,kJ is,a non-trivial shuffle retract.

PRI T

FE - .
“ Now assume that there is a non-trivial shuffle

homomorphism foz[id,Do,id] +~[id,Dé,id]. Then

’ *
- LT -
' P “ N
. r
.

(£,,Dyvid) = (id,D!,£f.). 3.2

LR SR L TR TR SRR

Assume further that the shortest proof of equivalence (the
length of a proof is the numbernof shuffles employed) is
begun by 'splitting' the identity in the left-hand term of '

the equiwalence (3.2).  Then id = f,f, where f, = npf,-i.e. f

i is a morphism of D. By examining the list (3.1) it is R

( ) apparent that fzf1 = g4hg3

i
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O SN
" \ ' ' (fo,D;,yid) = (fo,ng*4hg3)
(fog4,E,hg3)

e
L]

The next step in the proof must be a right shuffle. The

Mo e - i e +
SRR B A g o

sy

only equation involving som?ing of the form :Epg‘1 is |

e B st

jfg, = jg,. Hence f_ = £,3£  for some fl; Thus

R

(f1j92 /D, hg~3)

A J

and the 'j' cannot be eliminated except by reversing the

PR R ARt e

. equivalences alrea&y used, contradicting minimality. Thus,

v 'T"‘
in any minimal proof of an equivalence (3.2), the first

0 . step must be a right shuffle,

Lemma 3.9: Given U:0 + A, assume that no minimal proof

of equivalence

{£,D,id)& (id,D',f) , . 3.3
L4 * t

in Sh(D)can begin with a left shuffle

(from the left-hand term). Then every non-trivial shuffle

homomorphism £ (i.e not in the image of 1) has a minimal . i '

proof of (3.3) which begins by - ﬂ — i

9

L
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(£,D,id) = (fo_;’,D,;d)

+

= (f3,D1’f2f1) o -
' “ o MRS T T L ’

i

_where f, doesn't underlie any f
W]

v,
1.D+Dz.

Proof: The proof,is by induction on the minimum length of
proof of (3.3). If the proof is in one step then feIm(n).
Assume the hypothesis for the cases with the minimum length

of proof being n. Let f satisfv (3.3) with a minimum proof

length Of ntl. By assumption, the proof must be with a

- right shuffle

N . . _'(f'D'id)’ b (f3'Dl'f§)

By minimality, the next shuffle must be to the left

X

‘ ' (£3/D1/£3) > (£55,,D,f)) \

|

How if fl ‘E{-Ufi for fi: D*Dz,

(f,D,id) - Yf3f2,D2{fl) : - o

(n ] and so the proof of (3.3) mayu be given ip n \steps.

Contradiction. Hence fl is'as required. . (‘

-
o Aot TS it

B e
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Returning to the particular p at hand, the search

81

'for morphisms £ieIm(n) such that £ = £,f; in a non-trivial

way with f 2 and f‘1 as above shows that tﬁey are all of

the form fi = (f'g4) (hg3).. Hence the first two steps

‘of the minimal proof look like

4

.

L(fo.‘Dd id) —’(f3obllf§)

R “"(f3f594030h93) f

 But this equivalence can be obtained by

]
[

in one step. Hence, no such f} as 'consideied here can
be employed .in a minimal proof of (3.3). . So the only
shuffle homomorphisms between trivial shuffle objects

are from Pi.e.., n is full.

To complete the characterization of LD the shuffle
* homomorphisms into and out of [jf,B,k] rust be analvsed.

o

The morphisms out of A in A are all of the form fok.

Assume (fokjf,A,k) = (id,x,fok) for some f0 and X. Then
'

by the usual arguments, in any minimal proof we have

f and .

f = £

0 1l

PETE T RRET TA R e
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p
g
3

&

= (i’flgzhgl +B,k)

Now to giiminate the 'g,' a 'j' must be introduced. So

= f2 | - .

ST A K s

Hence, the proof .above is not minigal. Contradiction.

So there are no such shuffle homomorphisms.

-

-

i

In the same way it is shown that there are no shuffle

homomorphisms into [§£,A,k] from any shuffle retract.

»

Thus, SP ~ D % 1. Since the isolated [jf,A,k]can have
. S‘_ I3 .
no influence on the construction of shuffle retracts all of -

_the' ‘above work generalises to show that stlD =« gD 4 1,

3

[

Proposition 3.10: For an arbitrarv A, 52 # S. Hence,

*LORO;Jl and so the image of Op(A) is not a full subcategory
of Cat/A. (Note that Op(A) isn't a subcategorv of Cat/A since
presentations aren't unique.)

Proof: With P as in Example 3.8, SZD = SD + 1. .
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I

Now " = R.LR L, . Hence L,R)L, # L,  and so L R, ¥ l.

v

Proposition 3.1l: Let Opf(A) be the full subcategory of.

Cat/A of operational categories with forgetful functor
Re- Then, there is an A such that R; has noleft adjoint.

"Proof: Assume Ry has a left adjoint Lc. Then, for any

category D over A, we have,

-

/

.H.

y
IS,

b

'w.here F and. G are the universal functors (for\ notational i
cpn.\(renience, the forgetful functors will often be ignored).

. sé: GF = id and F is a monomorphism. Consider the category
D of Example 3.8. By Lemma (11.1.%6),[j£,nB,k] is a shuffle
retract for L;). Hence there is an object over A in

LfD. Thus, Lfﬂ = Lo? and Neg = Nge

Now,n,  equalizes ng, and Lngp:L D + LgD and
so LfD fails to have the réquiréd universal property.

Contradiction. Thus, Re has no left adjoint.

et L
.
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Proposition 3.12: The operational categories and functors %
don't form a subcategory of Cat/A. |

S S
" Proof: A pair of operational functors k
G ! G 3
1. 2 }

. Dl + vz > 173
’ are constructed whose composite G2G1 +isn't operational. , .

. This is possible because G, and G, are operational
, - with respect to two different presentations of Dz.
Thé, example is based on a modification of Example 3.8, g

Let A be generated by the graph. ) o / N

and equations:

~

(I




" ' - ) r
o : £ \
} T “_._._—-—._—_

i) . jfk = id
ii) fkjf = gohg

1}
el
Q'

lh\}

o iv) jg?_

]
'.a.
o)

v) gzhg,
vi)  kp = g

4’

A
" v p o

C

.

SDy = Dy + 1. (where the 'new' object is A,.= [if,B,K])
by -the same reasoning as in Example 3.8, .

~

1

85

. Let 7, = SO, . Gy = np_:P; — §D, .is operational

since Dl = SDO, where DO is the subcategory generated bY\

+

BRI T,

LR
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B ]
L] R 4 -~
? o
5 . f v f ' v
. ) -3 q.' w . . .
e e - . - < N 4 L] -
B C . ’ P
0 N ¢ L - ‘,
D : . "
Let U, be generated by . 14 .
« ’ ks e ° :
v AN T ) ) .
. X - ' » - A
-: . . a . - - 1
I P ) % q L4 T i ‘ .‘
. By o . L
) . . » % » H
L A . - f A_ [ .
- e ' . ’ » - v ‘ - "
- . ' . - ("3 o i
A 7‘ LA
. ( ien S ' -
t WY ‘ ot ’ -
\ ~ wIEh Ushy'= A = Ug2,. : : Lo ”
| Qg Gz H vz 3 ——" 03 is ,given b}" . . ’ . ® "_" - - N )
+ i+ ' v L) ('«
1 Y . . '
. . Gy (id,a,id) = A - o i ek
\ . T 2 M- - 1 v . st ~A- .
,' iy J A ’ ' j L R .
_ G2 (Jf'B,k) : A2 v K‘ : ;
S
‘Now %, and G, must be presented operationally. - .
Let ( be generated by ’
i) the graph and equations of CU3 and -
| i N A
-ii) the equations ! . < .
(—... ) — j s ) . L ?
- ) ' ' R . » .1 e “'(\ -
. . } N [ ¢
« ' 1 ’L- i .
* 1 i
. . P
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jfwk-w
B 2

jfmék = W,

2
ﬁ - -

H is given by AxBo-+§Djf>C. As befor?, the only non-trivial
shuffle retract is [jf,B,k]. Clearly, the only shuffle
homomorphism is p: [id,x,id] + [§f,B,k]. Thus D, is
presented by (60,H).

In D,, call [igg,zx,id]': a; and [3£,B,k] = A,

27
Then, Gy = hD is operational through the presentation
for. D, whose S-algebra map sends [i£,B,k] to B;-
By\symmetry, Dz’is also operational with respect to

a presentation mapping [3£/B,k] to A,. ’

LY

Now, since CGZ:CDZ-+CD preserves the equations

3

for the 'second' presentation at Dz' namely jmek = Wy etc, '

2
it. induces a presentation for G, i.e. G2 is operational.

GZGl can never be an §—homomorphism. This 1is

because any structure map d for 03 nust map

ﬁ:[id,x,id]'*[jf,B,k] to piX*A,. Hence

dS(GzGl)[jf,B,k] a{if,B,k]

But

(GG a[if,B,k] = 6,62

L
o
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Proposition 3.13:

‘En general,:§2¥ id.

3.8 will be extended to demonstrate this,

Let A be generated by the graph

g
N el ' e
D « g7
3
hl
, 9}
El
92

and the equations: -

i)
ii)
iii)
iv)

v)

jfk
fk3 £
g,
g,k

94095

vi) yx
vii) fkxy
viii) gy
ixf gix

x) g&h'gé

Here, Fxample

id

goh

jfg

88

lgi

4

gékx

id
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Let U:D +A be the inclusion generated by

»

Claim l: All non-trivial identities are..contained.

in the following list: L

a) g hgy, 9gyhg3, g4hgy, g,ihgy gyh'gy, gih'gs,
gsh'gl, gph'gl, " and all defined composites of
these

b) jfk, all defined morphisms of the forms jEArk and
jAk where X is in aj,and all composites of these.

~C) yx, yrx where ) is in b), and all composites of
these,

1

Proof: This is proved as in Example 3.8.

89

3.1
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Hencef/by splitting identities, the only possible shuffle

retracts are (jf,B,k), (y,A,x), (yif,B,kx). . b

Claim 2: If (fz,A,fl) %ﬂiﬁ%TXTTI) then eitherbf2 - fé,

£ =fi and X = A',_o_r_f =f3gi.

1 2
Proof: The only morph%fm of D into or out of A is gi.

Hence, as before, [jf,B,k] is‘a non-trivial shuffle
retract, since [id,A,id] can only be equivalent to
itself in Sh(D]}.

(v,A,xv,A,x) shuffles out iff the central 'x' is
eliminated. This can onlv be done by applying vi)
or vii), Now vi) cannot be employed since no 'y’
can be introduced before (to the right of) th%s 'xt,

vii) can only be used by introducing a jfk = id

(y,A,xy,A,x) (y,n,jfkxy,A, x)

(y,A,jgéh'gi,A,x)

" g
The central 'j' can only be eliminated bv i) or ii). 1)
and ii) are innapplicable since no 'f' can be introduced
before this 'j' except by vii), which is futile. So
(y,A',x) isn't a shuffle retréct. Also, consider
(vijf,A,kxyjf,A,kx). The central 'j' can only be

eliminated by applying i) or ii). To employ ii), i) must

o



L

be used to provide the required 'fk'. ®But any

application of i) introduces another unwanted 'j'.

So (yjf,B,kx) isn't a shuffle retract either. Thus the

i
only non-trivial shuffle retract in s? is [jf,B,k].

By an argument parallel to that in Example 3.8,

there are no non-trivial shuffle homomorphisms in §7.

Hence, D is an S-algebra. However,

(v,A',xy,A',Xx) Eé (yjf,B,kxy,A',x)
! (ercrkaYrA';x)

= (yj,C,géh‘gi,A',x)

1}

(ngérD'rh'rC'lgix)

. , = (yifg},D',h',C',gikx)

(vyif,B,9,h'g3,B,kx)

«
S
w?

w \ = (vjf,B,id,B,kx)

so [y,A,x] is a 2-shuffle retract lying over X. But D has
no objects lying over A',so D is not an §2-algebra and §2
is a non-identity triple. This example can be further

extended to show that §n;¢ id.

Proposition 3.14: R:0p(A) » Cat/A never has a left adjoint.

Proof: Assume that R has a left adjoint L'. Given
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Consjder any (small) category B. Then there is

the 6perational' categoryw-(A,lB ’ 113)
o]

and the functor U:® »A, Hence there is an operational '
functor (G,j,k):(LD,eD,H,D) + (A,lB,'nB) such that

(X.2.1) holds. Now, for each A in‘ A, ﬁB*A,-: 1B which Jis
a monomorphism. Hence j;:B +Bpis a monor\n‘orphism.
Since B was chosen arbitrarily, Bp must be larger than

any small category i.e. Bp is large. Contradiction.

Thus, R has no left adjoint.

For those familiar with Thiébaud's thesis, we present

the following result.

»

-~ .

Proposition 3.15: Consider Thiébaud's Structure-Semantics
J

adjunction, Coronoids(A) - CatfA, This adjunction

~ factors through that for Oﬁé\(A) with KiK, = id.

\1
!
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Proof: Only a sketch of the proof will be given here;
the functors between Camwnoids (A) and Opo(A) will be

defined, while the proofs of the details will be ’

left to the“reader.

A (bimodule) cammnoid. (or cotriple) G on A is a
triplet’ (G,e,8) where G is a bimodule on A i.e, G is
a functor APxA+Sets and €:G+A = Hom 4 and 6:G -+ GBG are
natural transformations satisfying the usual kinds of

cotriple equations.

The semantics functor sends G to its co-algebras.

For exactly the same reasons that the co-algebras for
l

a cotriple are operational with a given, standard presentation,

those for G are too. Hence, the Semantics functor factors

~

through Ry

Conversely, given an operational category with
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standard presentdtion, (?,8,,H) define an equivalence

relation on the tlriplets (v,D,x)
\

1

in A by (y,D,x) =, (y',D'l,x') iff y@Dx = y'cbD.x'.with

respect to the standard presentation. Equivalence
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classes are denoted {y,D,x}. Now define a camonoidr G on A

by ‘ .

G(x,y) = {{y,D,x} |domx = X, cody = Y}

gfr G ——— A .

. [y,D,x]— vx - .

s G ——r GG

[v,D,x]—— [y,D,idp] @ (id,,D/x]

Thus, there is a functor OpO(A) + ComonoidgA) over

Cat/A.



§4; Limits, Colimits and Equational Categories

Although Proposition 3.7 showed that B.7T.C. doesn't
imply operationality, under mild conditions the two concepts

are eguivalent,

Lemma 4.ll:
SRS

Le't U:D*A be faithful with D having and U
preserving pullbacks. Then, if (y,D,x) £ (v',D',x"), it is
so via a left-right shuffle equivalence i.e. a left shuffle
followed byv' a right shuffle. Dually, if D has and U
preserves pushouts, then all shuffle equivalences are
achieved through right—left shuffles.

’

Proof:

Consider a right-left shuffle

+

(yUf,cC,x) (v,D,(Uf) x)

(v, D, (UE")x")

+ (yUg',C',x")

Now consider the pullback in P



]

Since U preserves pullbacks and (Uf)x=(Uf')x', there is a z

in D such that

x =(Uqg)z f

x'=(Ug')z
Hence

(yuf,c,x)=(yUf,C, (Uqg) z)
+(yU(fg).,P,z)
=(yU(f'g'),P,z)
*(yUf',C',(QG')Z)
Thug, any rightileél shuffle gan be converted to a ‘
left-right shuffle.. Since right shuffles compose (as do left
shuffles), this commutivity allows any sequence of left and

right shuffles to be reduced to a left-right pair. The

proof -for the dual is straight forward.
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Proposition 4.2:

Consider U:D - A with'uv having, and U preserving
pullbacks and assume U satisfies B.T.C.. Then S0 = 0i in
particular, p is operational. Dually, if D has
and f{)reserves pushouts, and U satisfies the duals of

B.T.C. then SU = U,

Thus, under the condltlons on U above we see, using
Proposition I.1.6, that Dis O}}eratlonal iff 80 = D iff

U satisfies B.T.C..

Proof: Given a shuffle system [y,D,x:] we ﬁpve (y,D,xy,D,x)

shuffles out. By Lemma 4.1,.this can be done by first

making two shuffles to the left, over the right and left D's

and then two to the right. Without loss of generality, the ’

first shuffle on (xy,D,x) is unnecessary, since if it
derives from x = (Uf)t then [y,D,x] = [yUf,D',t] where

f:D > D', Thus the pattern of shuffles is as follows
R

(y,D,xy,D,x) = (y,D, (Ug)t,D,x)

-+ (yUg,C,t,D,x)

* = (y'Uf,C,t,D,x)
> (g

,D',(Uf)t,D,x)

= (y',D',Uh,D,x)

+a

(y',D',id,D', (Uh)x)

ol m t
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But Uh could also, at the last move, shuffle to the left !’
Applying Lemma 4.1, the set-up can be modified so that

Uf.t=id. Thus

°

and the actual shuffle process.is

(y,D,xy,D,x)=(y,D, (Ug) t,D,x)
+(yUg,C,t,D,Xx) . .
=(yUf,C,t,D,x)

+{y,D,id,D,x)

This system yields a U=split coequalizer (see (I.1l.3)). -
Thus y=Uy' for some ¥' and [v,D,x] is a trivial shuffle’

retract. A shuffle homomorphism is an f£; D+ D' such that

(f,D',id) = (id,D,f). Aprlyving Lemma 4.1 shows that we must have
‘ (f£,0p',id) = (£,p*, (Ud)s) ' - b .
. w »- (fud,n",s) e
= (Ul,D",s) ’ *
~ (id,p,f)

for some s, d, and 1.
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Now construct the kernel pair (kl,kz) of din 7. U
preserves this kernel pair by hypothesis and 4 equalizes
thé pair (id,sd). Thus, there is a t in A such that kl‘t:id

and k,t=sd. Putting all this together yvields a U-split

coequalizer
Ukl o ud -
g t .

Thus, d is the coequalizer of its kernel pair. Now, 1

" coequalizes kl and k,. Thus there is an f' in D such

that £'d=1. -Hence Uf'Ud=Ul. But fUd=U1 and;d is an
epimorphism. Thus Uf'=f i.e. every shuffle homo}t\orphism

&~
is a morphism of P and SD = D. - .

Proposition 4.3: If D -is operational with respect to

the presentation (6,H) where the base functor H:A%f——a(
is such that A and C have and H preserves a gjven class . ,

of limits e.q. finite products, pullbacks, finite limits,

all limits, then U creates these limits. The dual results

about colimits also hold. . .

Proof: The proof for finite products will be shown. The
D

other proofs follow exactly the same pattern and the dual

results follow from I.1l.1. Let (X,%)and (X',2') be two

algebras in (0,8,H). Then <I>><®\is well-defined since C has
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products. Thus (XxX',®x¢') is an algebra since
T(exe')e = ¢oxe'e ‘ 5
= H*XxH*X' -
= H*(XXX')

&

Theorem 4.4: Let U:D -~ A be equational. Then if A

has some class of limits ghen U creates limits of that

class. Further, if A has pullbacks then S0 = 0,

From this follows the well-known result that the ﬂ
equational categories over Seifs (as a full subcateqory

of Op(Sets) lie over a full subcategory of Cat/Sets *

i.e. every functor over A betweeq equational categories

is operational.

Proof: Since Seshas all small limits and the Yoneda functor
preserves any limits which exist in A, the techniqug of

Proposition 4.3 yields the first result. For the second,

just apply ﬁroposition 4.2, “

* Here Sets is a (small) category of sets inside a larger
universe. Cat is the category of small categories in this
universe.
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