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Abstract

Semantic trees have often been used as theoretical tools for showing the unsatisfiabil-
ity of clauses in first-order predicate logic. Their practicality has been overshadowed,
however, by other strategies though considerable effort has been made to improve se-
mantic tree theorem provers over the last decade.

In this thesis, we propose building a parallel system through the integration of se-
mantic trees with resolution-refutation. The proposal comes from the observations that
the appropriate strategy for one class of theorems is often very different from that for
another class and many semantic trees tend to be linear. In the linear semantic tree,
one of the two branches from each node leads to a failure node. Such linearity is
attractive because we can focus our efforts on closing the remaining branch. Unfor-
tunately, the strategy of building a closed linear semantic tree is incomplete. To help
to achieve closure, we introduce the use of unit clauses derived from resolutions when
necessary, leading to a strategy that combines the construction of semantic trees with
resolution-refutation.

The parallel semantic tree theorem prover, called PPHERBY, utilizes dedicated res-
olutions in scalable manner and strategically selects atoms to construct semantic trees.
In addition, a parallel grounding scheme allows each system to have its own instance of
generated atoms, thereby increasing the possibility of success. The PFHERBY system
presented performs significantly better and generally finds proof using fewer atoms

than the semantic tree prover, HERBY and its parallel version, PHERBY.



Résumé

Les arbres sémantiques ont souvent servi comme des outils théoriques pour démontrer
la non-satisfiabilité des clauses dans la logique de premier ordre de prédicat. Leur
caractére pratique a, cependant, été éclipsé par d’autres stratégies d’épreuve malgré
Peffort qui fut investi dans le but d’améliorer les systemes basés sur les arbres sémantiques
pendant la derniere décénie.

Dans cette thése, on propose la construction d’un systéme parallele par I’intégration
des arbres sémantiques avec la résolution-réfutation. Cette idée émerge du fait de
remarquer que la stratégie convenable pour une classe de théorémes est souvent
différente de celle qui convient & une autre classe et plusieurs des arbres sémantiques
sont linéaires. Un arbre sémantique linéaire est un arbre sémantique dans lequf;l une
des deux branches de chaque nceud meéne a un nceud d’échec. Une telle linéarité
est intéressante parce qu’elle nous permet de concentrer nos efforts sur la ferme-
ture de la branche restante. Malheureusement, la stratégie de construire un arbre
sémantique linéaire est incompléte. Pour réaliser la fermeture, nous introduisons, 1a
oll ¢’est nécessaire, des clauses a unité qui sont dérivées de résolutions. Ceci méne a
une stratégie qui combine la construction des arbres sémantiques avec la résolution-
réfutation.

Le systéme parallele d’aide 2 la preuve basé sur I’arbre sémantique, appelé Pr-
HERBY utilise stratégiquement les atomes avec 1’aide des résolutions spécifiques
d’une maniere qui permet 1’échelonnage dans le but de construire les arbres

sémantiques. De plus, un arrangement au sol paralléle permet & chaque systeme
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d’avoir sa propre instance des atomes produits, ce qui augmente la possibilité de
succés. Le systeme présenté, PrHERBY, performe d’une fagon qui est significative-
ment meilleure et trouve généralement la preuve en utilisant moins d’atomes que
HERBY, le systéme d’aide a la preuve basé seulement sur I’arbre sémantique et sa

version parallele PHERBY.
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Chapter 1

Introduction

Automated theorem proving is a subfield in artificial intelligence that is mainly con-
cerned with mechanized reasoning. Sound reasoning shows that conclusions logically
follow from facts. Such an argument is called a proof. Although the formulas ex-
pressed in first-order logic are generally undecidable, there are proof procedures that
can verify that a formula is valid, if indeed it is valid. The fundamental theorem of
Herbrand is basis for most proof procedures. The theorem states that we can prove the
unsatisfiability of formulas by considering the interpretations over the Herbrand uni-
verse instead of all interpretations over all domains. The semantic tree is a systematic
way of organizing the interpretations over the Herbrand universe. A set S of clauses is
unsatisfiable if and only if there is a finite, closed, semantic tree of S [CL73].

Besides the theoretical foundation of confirming the unsatisfiability of sets of
clauses, constructing a semantic tree for determining the unsatisfiability of a set of
clauses has been overshadowed by other strategies such as Robinson’s resolution prin-
ciple, Loveland’s model elimination and Kowalski’s connection graph method.

Considerable effort has been made to improve semantic tree theorem provers over
the last decade. Almulla investigated the practicality of a semantic tree theorem prover
in his thesis [AIm95]. His prover solved 29 of the 84 Stickel test set problems by sim-

ply constructing canonical semantic trees. It solved a total of 47 theorems after some



refinement [AN96]. HERBY, the same type of theorem prover designed by Newborn,
can now solve all but five of them while THEO, Newborn’s resolution-refutation theo-
rem prover, can solve all of them [NewO1].

It is surprising that semantic tree prover could do well on the Stickel test set. Fur-
thermore, there are many researches availablé regarding the very similar strategy such
as tableau methods. However, the semantic tree theorem prover is still not compet-
itive with resolution-based provers. The motivation of this research is to extend the
Almulla’s serial work to the parallel case, actually improving the scalability and there-
fore the performance.

Proving theorems is difficult because the search space of the most interesting the-
orems is enormous and the direction for the search unclear. Which rules to apply,
and in what order, is not necessarily obvious. It is a well-established observation that
different strategies work for different sets of theorems. In order to build more pow-
erful systems, besides struggling to improve the semantic tree method, integrating it
with different strategies offers interesting prospects. We believe that the semantic tree
method could play an important role in automated theorem proving due to its inherent
semantic-oriented nature and its correspondence with the resolution-refutation method.

In this thesis, we first investigate linear properties of semantic trees. In a linear
semantic tree, one of the two branches of each node leads to a failure node. Such
linearity is attractive because it enables us to focus our efforts on closing the remain-
ing branch. Unfortunately, the strategy of building a closed linear semantic tree is
incomplete. To help to achieve closure, we introduce resolutions to the clauses when
necessary. This in turn leads to a strategy that combines the construction of semantic
trees with resolution-refutation.

Next, we present a parallel semantic tree theorem prover, called PPFHERBY, com-
bined with the resolution-refutation method. Whereas many parallel systems adopt a
competitive model, in which each slave processor runs with different parameters or

strategies, that is therefore limited to a number of heuristics available [Sch97, New98,



ANO98], our parallel system generally shows extensive scalability by strategically se-
lecting atoms with the help of dedicated resolutions. Moreover, a parallel grounding
scheme allows each system to have its own instance of generated atoms, which in-
creases the likelihood of success. The parallel system presented here shows better per-
formance and generally constructs shorter semantic trees than HERBY and its parallel

version, PHERBY.

1.1 Test sets

Producing a list of problems to test theorem provers is hard, because what is easy
for one system might not be for another. Many people have tried to compile lists of
theorems that can evaluate provers fairly. Among these is the Stickel test set, compiled
to test his PTTP (Prolog Technology Theorem Prover) in 1988 [Sti88]. It receives
wide recognition and provides a suitable testing environment because of its wide range
of theorems with varying degrees of difficulty. Besides PTTP, it has been used for
decades to develop and test theorem provers, such as SETHEO [Let92]. It was also
used to develop several strategies of HERBY and tune the prover to handle a variety of
situations.

The set is too easy, however, for recent, highly sophisticated provers. In our ex-
periment for this thesis, we used a subset of the TPTP (Thousands of Problems for
Theorem Provers) [SS98] library, which is a large source of theorems developed to
make the testing and evaluation of automated theorem proving systems more mean-

ingful.

1.2 Organization of the thesis

In this section, we present an overview of the thesis. We have developed a system

named PrHERBY (Parallel HERBY with Resolution), which embodies the proposed



ideas. We will compare the performance of PPHERBY with the existing theorem
provers, HERBY and its parallel version, PHERBY. We made experiments with the
420 CADE-14 selection lists, which is a part of the TPTP library and listed in Ap-
pendix A. Theorems used in examples are drawn mostly from the Stickel test set

[Sti88].

In Chapter 2, we introduce theorem proving, preliminaries and present Herbrand’s
theorem. We present two examples to show how automated theorem proving is used in
the real context of solving interesting problems in the field of artificial intelligence and
mathematics. Next, we introduce various theorem proving procedures with examples
such as semantic tree, resolution-refutation and linear refinement.

In Chapter 3, we introduce the linear form of semantic trees. The linear semantic
tree is the formalization of the observation that many closed semantic trees tend to be
very thin rather than complete. We show an example of intégrating semantic trees with
resolutions to help to achieve closure.

In Chapter 4, we present a semantic tree with ungrounded atoms and the corre-
spondence relation with the resolution proof tree. We illustrate the difficulties using
ungrounded atoms in constructing semantic trees through examples and present the
parallel chained grounding strategy. We also discuss modified atom selection heuris-
tics, and introduce the parallel unit list passing strategy.

In Chapter 5, we describe several previously developed parallel systems and discuss
our new technique to achieve parallelism using iterative deepening depth-first search
as a means of generating atoms. We show how to generate parallel semantic trees with
a simple example. We present our implementation named PrTHERBY. Then, we explain
algorithms and operations of master processor and slave processors.

In Chapter 6, we present the results of experiments using variable number of ma-
chines. Instead of the Stickel test set, we choose problems in the TPTP library that

were used in the CADE-14 competition. We show performance improvement by the



parallel chained-resolution grounding scheme. We compare the performance of Pr-
HERBY with HERBY and PHERBY. Also, we compare the depth of semantic trees
between HERBY versus PPHERBY and PHERBY versus PrHERBY.

In Chapter 7, we discuss the scalability of PPHERBY. We measure the system times
of master processor and the ratio of the generated versus used atoms. We compare the
number of clauses generated by the master and slave processors to analyze the behavior
of PrHERBY. Finally, a section is devoted to the review of semantic tree generation and
resolution-refutation methods we discussed.

In Chapter 8, we present a summary along with some possible extensions and ideas

for future work.



Chapter 2

Theorem Proving Procedures

Theorem proving techniques can provide valuable assistance in solving a wide variety
of problems. These include answering open questions from mathematics, designing
and validating logic circuits, and proving that computer programs meet their specifica-
tions. Theorem proving techniques have been used even in an application associated
with computer vision [GWY99].

Finding a general decision procedure to check the validity of formulas of the first-
order logic is one of the fundamental questions in mathematical logic. As shown by
Church, the problem is undecidable. Although the whole first-order logic is undecid-
able, there are proof procedures that can verify whether a formula is valid, if indeed it

is valid.

2.1 Preliminaries

In this thesis, we present theorems in Skolemized clause form in the language of first-
order predicate calculus. The following terminology and definitions are used through-
out the thesis and are not covered separately [CL73, NewO1].

Logical operators are: A [conjunction], V [disjunction], — [negation], = [implica-

tion], < [if and only if].



Quantifiers are: V[universal quantifier], J[existential quantifier].

A term is an expression composed of individual constants, variables, and functions
that are themselves terms. For example, a, f(z), and g(f(y), b, f(b)) are terms, given
that a and b are constants, f and g are functions and x and y are variables.

A predicate is a relation in the domain of discourse. The relation is either true or
false. A predicate has zero or more arguments that are terms.

If P is an n-place predicate symbol, and ¢y, .. ., %, are terms, then P(ty,...,%,) is
an atom. This definition differs from the convention that an atom is usually a ground
instance. In this thesis, we make a distinction between an ungrounded and a ground
atom if necessary.

A literal is an atom or the negation of an atom; the negation is denoted by a negation
symbol, —, preceding the predicate. A literal and its negation are called complementary
literals.

A formula is defined as follows:

1. A literal is a formula.

2. If P and @ are formulas, then so are:
-P,PVQ,PNQ,P=Q,P&Q.

3. If P is a formula, for any variable z, so are: (Vz)P, (3z)P.

A clause is a disjunction of literals. A clause containing only one literal is called
a unit clause. When a clause contains no literals, it is an empty or a null clause and
is denoted by ®. The ® clause indicates the logical constant FALSE, since it has no
literal that can be satisfied by an interpretation.

Skolemization is a procedure to replace all the existentially quantified variables by
Skolem functions in order to obtain a quantifier-free first order formula. For example,

in the following formula,
(3z) (YY) (V2)(Fu) (Vo) P(z,y, 2, u,v)
the Skolemization procedure replaces x by a Skolem constant SK, u by a Skolem

7



function SK1(y, z) and obtains the Skolemized formula.
(Vy)(Vz)(Yv) P(SK,y, 2, SK1(y, 2),v)

Skolem functions express the dependency of existentially quantified variables on those
universally quantified variables placed before them.

A set S of clauses is a conjunction of all clauses in S, where every variable in S is
considered governed by a universal quantifier.

A substitution is a finite set of the form {¢;/vy,t2/vs,. .., tn/vn}, Where every v;
is a variable, every t; is a term different from v; and no two elements in the same set
have the same variable after the stroke symbol. For example, a clause P(z, f(a,y))
with a substitution {b/z, c/y} generates an instance P(b, f(a, c)) of the clause.

Let 6 = {t;/v1,...,ts/vn} be a substitution and E be an expression. Then E6
is an expression obtained from E by replacing simultaneously each occurrence of the
variable v;, 1 < i < n, in E by the term ¢;. 6 is called an instance of E.

A substitution 6 is called a unifier for a set {E1, ..., Ey} if and only if E10 =
E,0 = -.. = E,0. The set is said to be unifiable if there is a unifier for it.

A substitution o is more general than substitution 8 if there is some substitution A
such that § = o \.

A unifier o for a set {Ey, ..., Ex} of expressions is a most general unifier if and
only if there is a substitution X such that = o X for each unifier @ for the set.

If two or more literals (with the same sign) of a clause C have a most general unifier
o, then Co is called a factor of C.

A clause C subsumes a clause C, if there exists a substitution « such that Ci« is
a subset of C. In this case, C; is a logical consequence of (.

The most general unifier can be defined also in connection with subsumption.

The most general unifier(mgu) of two predicate instances P; and P, is the one
that produces a substitution instance P3 such that P; subsumes every other substitution

instances. The mgu produces the most general substitution instance.



Given two clauses C; and C, with no variables in common and two literals L; and
L, in C; and O, respectively, if L; and —Ly have a most general unifier o, then the
clause
(Cio — Lio) V (Coo — Loo)
is called a binary resolvent of C; and C5. The literals L, and Ly are called the literals

resolved upon.

A resolvent of clauses C; and C; is one of the following binary resolvents:

1. a binary resolvent of C; and C.
2. a binary resolvent of C5 and a factor of Cj.
3. a binary resolvent of C; and a factor of Cb.

4. a binary resolvent of a factor of C'; and a factor of Cy.

Suppose two or more identical instances of a literal appear in the binary resolvent
of two clauses. All but one of these identical instances can be deleted without changing
the meaning of the binary resolvent. The resulting binary resolvent is called a merge
clause.

A set-of-support of a set S of clauses is a subset T of S if S — T is satisfiable. A
set-of-support resolution is a resolution of two clauses that are not both from S — T.

An interpretation is an assignment of truth values to atoms in propositional logic.
In first-order logic, an interpretation of ‘a set of clauses consists of a nonempty do-
main D and an assignment of values to each constant, function and predicate symbol.
For a constant a, an interpretation I assigns an element of D to a. For a function
f, I assigns a mapping of D™ to D where n is the arity of f. (Note that D" =
{(z1,+++,zn)|z1 € D, -, z, € D}). For an n-place predicate P, I assigns a mapping
of D" to {TRUE,FALSE}.

Finally, we explain two equality-related definitions.

Demodulation is the rewriting of terms. Given a clause C containing a term ¢
and a unit equality clause of the form Fqual(c, 3), where ¢ is an instance of o (t =

ao), replace C by C’, obtained from C by replacing all occurrences of ¢ by ¢ where
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t' = Bo. For example, given P(f(a,a)) and demodulator Equal(f(z,z), g(z)), the
demodulation replaces P(f(a, a)) with P(g(a)).

Paramodulation is a generalization of demodulation. Given a clause C containing
aterm t and a clause D containing an equality literal Equal(c,3), where ¢ unifies with
a with substitution u, we derive clause C’, which is Cp with ¢ replaced by Su. For

example,
D : Equal(sum(0, z), x) a=sum(0,z); 8=z
C : Equal(sum(y, minus(y)),0) t = sum(y, minus(y))
C'": Equal(minus(0),0) w: {0/y, minus(0)/z}

Before proceeding, we define a logical consequence, validity and unsatisfiability

of a formula formally as follows.

Definition 1 Given formulas F}, ..., F, and a formula G, G is said to be a logical
consequence of Fi, ..., F, (or G logically follows from Fi, ..., Fy) if and only if for

any interpretation I in which Fy A Fy A ... A Fy, is true, G is also true.

Definition 2 A formula is said to be valid if and only if it is true under all interpreta-

tions. A formula is said to be invalid if and only if it is not valid.

Definition 3 A formula is said to be inconsistent or unsatisfiable if and only if it is
false under all interpretations. A formula is said to be consistent or satisfiable if and

only if it is not inconsistent.

If G is a logical consequence of axioms F; A Fo A ... A F,,, the formula (F1 A Fo A
...AF,) = Giscalled a theorem. In mathematics as well as in other fields, we can for-
mulate many problems as formulas that consist of axioms, hypotheses and conjectures.
Moreover, it can be shown that proving that a formula is a logical consequence of a
finite set of formulas is equivalent to proving that the formula is valid or that the nega-
tion of the formula is inconsistent [CL73]. Specifically, in a refutation theorem prover,

one can prove the unsatisfiability (inconsistency) of a theorem by negating the given
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formulai.e., =(F1 AF; A... A F, = G), and showing that this yields a contradiction.
Hereafter, resolution refers to resolution-refutation unless otherwise stated.

The proofs generated by theorem provers often show precisely how and why con-
jectures follow from sets of axioms and hypotheses. The proof sequence might not
only be a convincing argument that the conjecture is a logical consequence of axioms
and hypotheses, but may show the process leading to problem solutions. For example,
in the missionaries and cannibals problem below, the proof would describe safe moves

for missionaries to cross the river.

Example 1 (The missionaries and cannibals problem) Three missionaries and three
cannibals stand on the left bank of a river. They all want to get to the right side. They
have a boat that can hold one or two of them at a time. If at any time the cannibals
outnumber the missionaries on either side of the river, however, they will eat the mis-
sionaries. Is it possible for all six to cross the river without losing a missionary?

Solution : We define a predicate S(i,j,k) representing a state where i is the number
of missionaries on the left side of the river, j is the number of cannibals on the left side
of the river, and k denotes the location of the boat (R: right side, L: left side).

The initial state is S(3,3,L) and the goal state S(0,0,R). All the possible moves can

be defined as in the next page. The first axiom,

5(3,3,L) = {S(3,1,R) A S(3,2, R) A (2,2, R)}

indicates how 3 missionaries and 3 cannibals on the left side of the bank with the boat

possibly move. In fact, the axiom is a conjunction of the 3 axioms presented below.
S(3,3,L) = {S(3,1,R)}
S5(3,3,L) = {S(3,2,R)}
S(3,3,L) = {5(2,2, R)}

If the formulated problem is submitted to THEO [NewO1] after negating the goal

statement, it generates the following proof. For convenience, parentheses are ignored.
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Hypothesis 5(3,3, L)

Axioms $(3,3,L) = {S(3,1,R) A 5(3,2, R) A S(2,2,R)}
S(3,1,R) = {S(3,2,L) A S(3,3,L)}

5(3,2,R) = S(3,3,L)
5(2,2,R) = {5(3,2,L
S(3,2,L) = {S(3,1,R
5(3,0,R) = {5(3,1, L
3,1,L)

(
3,
(
( 3,3,L)}
(3,2
(
S( = {S(3,0,R) A S(1,1,R)}
(
(2,
(
(o,
(
(
(1,

(
(3,0,R) A S(2,2,R)}
(3,2, L)}

YA S

YAS

YA S

YA S
S(1,1,R) = {S(2,2,L) A S(3,1,L)}
S(2,2,L) = {S(1,1,R) A S(0,2,R)}
5(0,2, R) = {S(2,2,L) A S(0,3,L)}
S YA S
S YA S

YA S

YA S

0,3,L) = {5(0,2, R
0,1, R) = {5(0,2, L

(
(0,1,R)}
(1,1,L)}
5(0,2,L) = {S(0,1,R (
(

( 0,0, R)}
S(1,1,L) = {S(0,0,R

)
0,1, R)}

Conjecture S(0,0, R)

THEO finds a proof in phase 1 and reconstructs the proof in phase 2. A proof line,
for example, 32> (29a,26b) SOOR “SO1R shows that clause number 32 was
generated by resolving the first literal (written by a) of clause 29 with the second literal

(written by b) of clause 26.
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Phases 1 and 2 clauses used in proof:
32>(29a,26b) SOOR "SO1R
33>(32b, 24b) SOOR "SO3L
34>(33b,22b) SO0R "S02R
35>(34b, 20b) SO00R "S22L
36> (35b,17b) SOOR "S11R
37>(36b,16b) SOOR "S31L
38>(37b,13b) SOOR "S30R
39>(38b,11b) SOOR "S32L
40> (39b,5b) SOOR "S31R
41> (40b, 2b) SOOR "S33L
42>(41b,1la) SOOR
43> (42a,31la) []

The theorem prover is attempting to prove that the negated conjecture statement
together with the hypothesis and axioms is unsatisfiable. The conjecture statement

S(0,0, R) is obtained by taking off ~S5(3, 3, L) from the proof line
41> (40b,2b) SOOR "S33L

by resolving with the first clause S(3, 3, L). Consequently, the reverse order, showing
how —5(3, 3, L) is reached, gives a safe sequence for the missionaries and the canni-

bals to cross the river.

The next example shows an application of theorem proving in mathematics. For
some of the open questions in mathematics, theorem provers helped to solve them
by supplying a proof, by generating a finite model, or by finding a counterexample
[WOLB92]. The following example shows also the importance of demodulation and

paramodulation strategies for solving mathematical theorems.

Example 2 In a group, (z~!)™! = z for all z in the group [LO85].
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Axioms for a group:

1. Equal(f(e,x),x) e is a left identity

2. Equal(f(z,e),x) e is a right identity

3. Equal(f(g(z),z),e) there exists a left inverse
4. Equal(f(z,g(x)),e) there exists a right inverse
5. BEqual(f(f(z,v), 2), f(z, f(y,2))) associativity

6. Fqual(z, x) | reflexivity of equality

7. =Equal(g(g(a)), a) denial of the theorem

Proof:
8. Equal(z, f(z, f(9(z), 2)))

The clause is deduced by paramodulating into term f(z,y) of clause 5 using from term

f(z, g(z)) of clause 4 resulting in

Equal(f(e, ), f(z, f(9(2),2)))

Demodulating into the term f(e, z) of the result using clause 1 will generate clause 8.

9. Equal(g(g(z)), z)

This clause was deduced by paramodulating from term f(z, g(x)) of clause 4 into term

f(g(z), 2) of clause 8 resulting in

Equql (9(9()), f(z,€))

f(z, e) is = by demodulation, using clause 2.

Clauses 9 and 7 resolve together, thus proving the theorem.

2.2 Semantic trees

By definition, a set S of clauses is unsatisfiable if and only if it is false under all

interpretations over all domains. Since considering all interpretations over all domains
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is hard for most theorems of any difficulty, we can attempt to find a single special
domain H such that S is unsatisfiable if and only if it is false under all interpretations
over this particular domain. Such a domain does exist, and it is known as the Herbrand

universe of S. This is defined as follows:

Definition 4 (Herbrand universe) Let Hy be the set of constants appearing in S. If
no constant appears in S, then Hy = {a}, where a is an arbitrary constant. For ¢ =
0,1,2, ..., let H;;1 be the union of #; and the set of all terms of the form f" (¢4, ..., t,)
for all n-place functions f™ occurring in S, where t;, j = 1,...,n, are members of
the set ;. Then each H; is called the i-level constant set of S, and H is called the
Herbrand universe of S [CL73].

Herbrand’s Theorem states that there is a finite set of instantiations of clauses in
S that is propositionally unsatisfiable if a set S of clauses is unsatisfiable. Herbrand’s
Theorem enables us to handle a potentially infinite domain with finite means.

When no variable appears in a term, a set of terms, an atom, a set of atoms, a literal,
a clause, or a set of clauses, they are called ground ones. Thus, we can use a ground
term, a ground atom, a ground literal, and a ground clause to indicate that no variable

occurs in them.

Definition 5 (Herbrand base) Let S be a set of clauses. The set of ground atoms of
the form P"(¢y, ..., t,,) for all n-place predicates P" occurring in S, where ¢y, ..., ¢, are
elements of the Herbrand universe of S, is called the Herbrand base of S, or the atom

set. Elements of the Herbrand base are called ground atoms.

Example 3 Consider theorem WOS12 (from the Stickel test set). There are three
predicates: p, Equal, and o; two functions: f and g; and two constants: a and e.

1. p(e, z, )

2. p(g(z), z, €)

3.p(z,y, f(=z,y))
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. =p(z,y,u) V p(y,2,0) V p(y, 2,w) V p(z, v, w)
.—p(z,y,u) V p(y,z,v) V p(z,v,w)V
. Equal(z, )

=
=
N
&

. = Equal(z,y) V Equal(y, )
. ~Equal(z,y) V ~Equal(y, z) V Equal(z, z)

© 00 N O Ot

. =p(z,y,u)|-p(2,9,v) V Equal(u,v)
10. ~Equal(u,v) V =p(z,y,u) V p(z,y,v)
11. ~Equal(u,v) V —p(z,u,y) V p(z,v,9)
12. =Equal(u,v) V =p(y, z,y) V p(v, ,y)
13. =Equal(u,v) V Equal(f(z,u), f(z,v))
14. ~Equal(u,v) V Equal(f(u,y), f(v,¥))
15. ~Equal(u,v) V Equal(g(u), g(v))

16. p(z, e, )

17. p(z, g(z), €)

18. —o(z) V —o(y) V —p(z, 9(y), 2) V o(2)
19. —o(z) V =Equal(z,y) V o(y)

20. o(a)

Negated_conclusion

21. —o(e)

The Herbrand universe of the theorem is the infinite set:
Herbrand universe(WOS12) = {a, ¢, g(a), g(€), f(a, a), f(a,e), f(e, a),
fle,€),9(g9(a)), 9(g(e)), 9(f(a, @), 9(f(a,€)), 9(f (e, a)), 9(f (e, €)), f(a, g(a)),
f(a,g(e)), f(a, 9(f(a,a)),--- }.

The Herbrand base of the theorem is then:
Herbrand base(WOS12) = {0(a), Equal(a, a),p(a, a, a), o(e), Equal(a, €),
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Equal(e, a)’ Equal(e’ e)’ p(a” a” e)’p(a7 e’ a)’p(e’ a, a)7p(e’ a” e)’p(e’ e’ a)’
p(e, e,€),0(g(a)), Equal(a, g(a)), Equal(e, g(a)), - -}.

Definition 6 (Ground instance) A ground instance of a clause C of a set S of clauses
is a clause obtained by replacing variables in C by members of the Herbrand universe

of S.
We now consider a special interpretation over the Herbrand universe.

Definition 7 (Herbrand interpretation) Let S be a set of clauses; H, the Herbrand
universe of S; and Z, an interpretation of S over H. Z is said to be an Herbrand

interpretation of S if it satisfies the following conditions:
1. To each constant, map all constants in S to themselves.

2. Let f be an n-place function and (hy,...,h,) be elements of H. In Z, f is
assigned a function that maps (h1, . . ., hy) (an element of H™) to f(hy,. .., hs)

(an element of H).
A Herbrand interpretation is conveniently represented by a set
Z={my,my,...}
where m; is either A; or —=A; of an atom set A = {A;, Ay,.. .} forj=1,2,....

Theorem 1 (Herbrand’s Theorem, Version II) A set S of clauses is unsatisfiable if and
only if there is a finite unsatisfiable set S " of ground instances of clauses of S. (see the

proof in [CL73].)

Even though it is true that we need to consider only Herbrand interpretations to
check unsatisfiability, the Herbrand interpretations are infinite if a set of clauses con-
tains functions because the possible Herbrand universe is infinite. Herbrand’s theorem
has a particular structure, semantic tree, which allows us to express unsatisfiability of
a set S in a systematic way. The semantic trees we shall consider here are binary

semantic trees.
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Definition 8 (Semantic Tree) Given a set S of clauses, a semantic tree is a downward-
growing binary tree in which the branches are labelled with atoms from the Herbrand
base (H B) and their negations (~H B) (see Figure 2.1). Eachnode N; (j = 1,2,3,...)

is assigned a set of clauses as follows:

e The root node MV, is assigned S.

e For any other node N; (j = 2,3,...) with the nodes on the path to it, namely
Ny, ..., N;_; and with the branches leading to it labelled with H B or -HB, we
assign all resolvents of H B or —H B with all clauses in the nodes Ny, ..., N;j_1
and with the clauses so generated except resolvents already generated in the

nodes on the path to it or in N;.

o The edges below any node are labelled with complementary literals.

Example 4 Consider theorem S16QW (from the Stickel test set).
1: p(z,a) Vp(z, f(z))
2: p(z,a) Vp(f(z), z)
Negated_conclusion

3: "‘p(x, a) \ —'p(xa y) \ —'p(ya IL')

Figure 2.1 shows a corresponding semantic tree of the theorem S16QW. The root
node contains the given set S of clauses. Each other node contains resolvents of an
atom on the branch leading to it with all clauses in the nodes on the path.

For each node N, let I(N) be the union of all the atoms attached to the edges
connecting the root of the tree with the node N and A be the atom set of S. A node
N is called a failure node if I(N) falsifies some ground instance of a clause in S, and
there is no other failure node on the path from N to the root of the tree. A semantic
tree is closed if and only if every branch terminates in a failure node. In that case, the
set S is unsatisfiable. A complete semantic tree is a semantic tree in which every path

from the root node down the tree contains every atom or negated atom of the set A.
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1: p(x,a)Vp(, f(z))
2: p(z,a) Vp(f(z),z)
3: —p(z,a) Vv -p(z,y) V ~py, z)

vew)

4 (1a, 1a) p(a, f(a))
5 (la,2a) p(f(a), a)

pla, f (a)/ \p(a, f(a))

6 (20'7 30) _'p(f(a)’ a’) v _‘p(f(a')v a) 7 (2av 1b) ¢

—p(f(a), a)/ \J(f (a),a)

8(30,20) ®|  [9(3a,30) @

Figure 2.1: A binary semantic tree of theorem S16QW

The mechanism of constructing a semantic tree allows insight into the process of
establishing unsatisfiability for a set of clauses. The Herbrand base of an unsatisfiable
set S of clauses can be infinite with the corresponding infinite complete semantic tree.
However, we can build a closed semantic tree with only a finite subset of the Herbrand

base if indeed it is unsatisfiable.

2.3 Resolution-refutation proofs

The resolution principle was first proposed by J.A. Robinson in 1965 [Rob65] and con-
stituted a major breakthrough for automated theorem proving. Resolution is a binary
operation inferring a clause from two clauses. Typical resolution-refutation provers
generate such a new clause from a given set S of clauses and attempt to produce the
empty clause ®. If S contains @, then S is unsatisfiable. Otherwise, S must be exam-
ined to see whether ® can be derived.

In the previous section, we presented semantic trees. Now, we shall derive resolution-

refutation proofs from the semantic tree to prove the completeness of the resolution
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principle.

Given a semantic tree 7", some non-failure nodes of the 7 can be forced to become
failure nodes if new resolvents of clauses in S are added to S. Thus, the number of
nodes in 7 can be reduced and ® will eventually be derived. Based on the semantic

tree, the algorithm for obtaining a resolution-refutation proof repeatedly
1. finds two failure nodes that are siblings

2. resolves the clauses that fail at these nodes to generate additional clauses of the

resolution-refutation proof

3. generates a new semantic tree based on the set of base clauses and those clauses

that were added in step 2.

When ® is generated, the algorithm terminates outputting a resolution-refutation
proof. In the example below, we show the procedure that produces a resolution-

refutation proof from a closed semantic tree.

Example 5 Consider the closed semantic tree for theorem S16QW (Figure 2.1). In the
semantic tree, we choose the two failure nodes containing clauses 8 and 9 and resolve
together clauses 2 and 3, which fail at these nodes. These two falsified clauses must
have a complementary pair of literals, and therefore can be resolved. Before resolving
the two clauses, clause 3 is factored. This generates clausé 4. Hence, the resolution

occurs between clauses 2 and 4:
4: (3ab) —p(z,a) V —p(a, z)

5: (2b,4a) p(a,a) V —p(a, f(a))
Next, construct the semantic tree for the modified set of clauses after adding clauses
4 and 5 (Figure 2.2). Again, we choose the two failure nodes containing clauses 9 and
10 and resolve together clauses 5 and 1, which fail at these nodes. In this case, resolvént

6 is factored and clause 7 added:
6: (5b,1b) p(a,a) V p(a,a)

7: (6ab) p(a,a)
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: p(z,a) V p(z, f(z))

: p(z,a) V p(f(z), )

: —p(z,a) vV —p(z,y) V -p(y, 7)
: (3ab) —p(z,a) V —pla,x)

: (2b,4a) p(a,a) V —p(a, f(a))

a,a) /

(a, f(a))

[SA - R S

—

-p p(a,a)
6 (la,la
7 (1a,2a) p(f(a),a)

8 (1a, 5a) —p(a, f(a))

p(a, f(a)) —p(a, f(a))
/ N\

9 (2a,5b) ® 10 (2a, 1) ®

=B

Figure 2.2: Modified semantic tree for SI6QW after adding clauses 4 and 5

: plx,a) V pla, f(z))

: p(z,a) Vp(f(z),z)

: p(z,a) V -p(z,y) V -p(y, 2)
: (3ab) —p(z,a) V ~p(a,x)

: (2b,4a) p(a,a) V —p(a, f(a))

: (5b,1b) p(a,a) V p(a,a)

: (6ab) p(a,a)

~p(a,a) / \ p(a.0)

[11 (1a,70) @ 11 (1a,3c) ®

N O Ot W N

Figure 2.3: Modified semantic tree for SI6QW after adding clauses 6 and 7
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i p(z,a) Vp(z, f(z))

: p(z,a) V p(f(z), )

¢ —p(z,a) V -p(z,y) V -p(y, )
: (3ab) ~p(z,a) V —p(a, z)

: (2b,4a) p(a,a) vV —p(a, f(a))

: (5b,1b) p(a,a) V p(a,a)

: (6ab) p(a,a)

: (7a,4a) —p(a,a)

: (7a,8a) @

© 00 N OOt W N

Figure 2.4: The root node of the semantic tree for SI6QW after adding clauses 8 and 9

After constructing the semantic tree for the modified set of clauses with added
clauses 6 and 7 (Figure 2.3), we choose the remaining two failure nodes and resolve
together clauses 7 and 3 that fail at these nodes. Clause 3 is factored again and the
previously generated clause 4 is used for the resolution:

8: (7a,4a) —p(a,a)

The semantic tree constructed for the modified set of clauses after adding clause 8

finally generates:
9: (7a,8a) ®
This “collapsing” of the semantic tree actually corresponds to a resolution proof

which is presented with clauses 4 to 9 in Figure 2.4.

2.4 Linear resolution

Linear resolution was proposed by D.W. Loveland [Lov70] and D. Luckham [Luc70]
in 1970. Among the most powerful refinements of unrestricted resolution, linear res-
olution offers exceptional opportunities for the application of heuristic searches by
virtue of relatively simple structure of the linear proof. Furthermore, every theorem

has a linear resolution proof.
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Definition 9 Given a set S of clauses, a proof beginning with a clause Cp in S is a

linear resolution if the following conditions are met as shown in Figure 2.5:

o fori =0,1,...,n — 1, Ci,1 is a resolvent of C; (called a center clause) and B;

(called a side clause), and

e each B; is either in S, or is a C; for some j, 7 < 1.

Co
Ch o B1

)

Cn—l

o n—1

N\

Ch

Figure 2.5: Linear resolution

Example 6 Consider theorem S16QW in Figure 2.6. A linear resolution proof is

shown in Figure 2.7. A clause can be used more than once in the proof.
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1: p(z,a) Vp(z, f(z))
2: p(z,a) vV p(f(z),z)
negated_conclusion

3: —p(z,a)V-p(z,y)V -0y, )

Figure 2.6: Theorem S16QW

|3 . =p(z,a) V-p(z,y) V -0y, ) |

|4: (3ac) -p(a,a) | |1: p(z,0) V p(z, f(2))

5: (4a,1a) p(a, f(a))

\

6: (5a,3c) -p(f(a),a)| |2: p(z,a)Vp(f(2)2)

\

| 7: (6a,2b) p(a,a) l

Figure 2.7: A linear resolution proof of theorem S16QW
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Chapter 3

Semantic Trees with Resolutions

In this chapter, we consider linear properties of semantic trees and then define lin-
ear semantic trees integrated with resolutions. With this observation, we introduce a

strategy that constructs semantic trees with resolutions to facilitate closure of the trees.

3.1 Motivation

We introduced resolution-refutation proofs in section 2.3. There is a procedure to
convert a semantic tree to a resolution proof by successively collapsing a pair of leaves.
It is possible also to convert a resolution proof to a semantic tree (discussed in section
4.1). We also introduced linear resolution in section 2.4. This, then, raises the question:
If there is a linear resolution proof, “is there not also a closed linear semantic tree? ”
We made an observation that many semantic trees found by HERBY are rather
thin. An experiment clarified this by showing that more than half of the proofs are
almost linear, which means all non-terminal nodes are on one path [YAN98]. The
experiment showed that 33 out of the 78 proofs found by HERBY in the Stickel test
set are completely linear; another 8 had all but one non-terminal node on a single path;
and yet another 8 had all but two non-terminal nodes on a single path. The following

example shows a typical semantic tree. It is linear with the exception of one branch.
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1. p(e,z,x)
Example 7 Consider theorem 2.p(9(z), 7€)

3.p(z,y, f(z,y
WOSI19 from the Stickel test set. The ( (:9)

4. =p(z,y,uw) V -p(y, z,v) V —p(u, 2, w) V p(z,v, w)
closed semantic tree is linear except 5. —p(z,y, 1) V =ply, 7,0) V —p(@, v,w) V plu, 2,)
for a single branch. 6. Equal(z,x)

7. =Equal(z,y) V Equal(y, z)

8. ~Equal(z,y) V ~Equal(y, z) V Equal(z, 2)
9. —p(z,y,u) V —p(z,y,v) V Equal(u,v)

10. = Equal(u,v) V -p(z,y,u) V p(z,y,v)

11. ~Equal(u,v) V =p(z,u,y) V p(z,v,y)
12. =Equal(u,v) V —p(u, z,y) V p(v, z,y)
13. =Equal(u,v) V Equal(f(z,u), f(z,v))
14. =Equal(u,v) V Equal(f(u,y), f(v,y))
15. = Equal(u,v) V Equal(g(u), g(v))

16. p(z, e, x)

17. p(z, g(x), €)

18. =o(z) V —o(y) V —p(z,y,2) V 0o(2)

19. —o(z) V ~Equal(z,y) V o(y)

20. —o(z) V o(g(z))

21. o(e)

22. ﬁEqual(u, v) V Equal(i(z,u), i(z, v))
23. = Equal(u,v) V Equal(i(u, ), i(v, x))
24. o(z) V o(y) V o(i(z, y))

25. o(z) V o(y) V p(z, (2, ), y)

26. —p(x,u, z) V ~p(z,v, z) V Equal(u,v)

27. =p(u, y, 2) V p(v, ¥, 2) V Equal(u,v)
28. Equal(g(g(z)), )

29. o(a)

30. o(b)

31. p(b, g(a),c)

32. p(a,c,d)

negated_conclusion

33. —o(d)
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3.2 Linear semantic trees

The linear property of semantic trees is as attractive as the linear property of resolution,
because it allows us to focus our efforts on closing the remaining branch. Such linearity
is the result of an attempt to close the tree as soon as possible. Hence, unit clauses are
preferred over other non-unit clauses when it comes to atom selection heuristics. As a
result, trees generally become thinner as proofs go deeper. In fact, unit preference or
fewest-literals preference are the favored strategies in many theorem proving systems.

Let us define the linear semantic tree as follows:

Definition 10 (Linear Semantic Tree) Let N be a node at which an atom A is to be
selected and T'(V) be the set of clauses assigned to nodes on the path from the root
to N. A linear semantic tree for T(N) is a semantic tree, where each edge is labelled

with an atom or negated atom in such a way that:

e for the node N, there are two immediate edges F;, E,, with a positive atom A
and its negative — A attached to them. One of the atoms always falsifies a clause

in the set T'(V) of clauses.

e for the node N, let I(N) be the union of all the sets of atoms attached to the
edges of non-terminal nodes from root to the N. I(N) does not contain any

complementary pairs.

The linear semantic trees defined above are semantic trees with all non-terminal
nodes on one path. A linear semantic tree is closed if and only if every branch termi-
nates in a failure node. Unfortunately, a linear semantic tree exists for some but not
all theorems. This tree reminds us of a vine-form proof in linear resolution or input
resolution. This adds a further restriction in that each resolution in the proof has at
least one base clause as an input, but not every theorem has a proof in vine-form.

A semantic tree represents the possible Herbrand interpretations of the theorem.

If the tree is linear as defined above, one of the two branches from each node in the
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semantic tree always leads to a failure node. This is equivalent to unit resolution, in
which one of the two parent clauses is a unit clause. Unit resolution is known to be
the same as input resolution [Cha70], and not every theorem has a proof of the input

resolution.

l.-7VaVh

2. kVhVj
3-kVhVj

4.—a V —b

5.-aVb

6.-hV —c
negated_conclusion
7.-hVece

Figure 3.1: Theorem SO6ANCES

Example 8 Consider theorem S06ANCES from the Stickel test set in Figure 3.1. A
linear semantic tree cannot be constructed for this theorem, because there is no way to
choose an atom to close the first branch of the tree. A closed, non-linear semantic tree,
however, is possible as shown in Figure 3.2.

The M in the figure denotes a useless atom [NewO1], which means that no resol-
vents are generated by the atom. There are two useless atoms in the tree. If an atom
turns out to be useless, the right branch is not searched. This is one of the heuristics
used in HERBY. It is justified, because the right subtree would be closed with the same

atoms as the left.

To help to achieve linearity, we introduce resolution when necessary. If a given
set S of clauses is a theorem, one must obtain successively shorter clauses to deduce
a contradiction. Providing unit clauses through resolution gives a way of progressing

rapidly toward shorter clauses. We call this a combination strategy.
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l.ﬂlz\/th 5-aVb
2. kVhVj 6.-hV-c
3-kVhVj
4.-a V b 7.-hVe
a —a
8.(4a)-b 8(16)-j V h
9 25a;b ( Z
—b b K
002 [()®] 1,/ \
9.(6a)—-c | |#9.(1c)"jVa
Dsane | ik
e |1L(30)kV
12.(8b)—j
(10)®]| [ (92)® —c
-k k
13.(2a)h V4 | [13.(3a)h Vj
14. 10a)j 14.(11a)j
—j J - J
(12)®@| |[(14)®| |(12)®]||(14)®

Figure 3.2: A closed semantic tree of theorem SO6ANCES
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Resolution and semantic tree methods are sound and complete. Neither the com-
pleteness nor the soundness of the combination strategy is violated whether the unit
clauses come from a semantic tree or from resolution.

We can construct a closed linear semantic tree for the above theorem SO6ANCES
as shown in Figure 3.3. Two resolutions are added during the construction of the linear
semantic tree. Notice that the atoms used in the proof are the same as the ones used in

the closed semantic tree in Figure 3.2, except for the useless atoms b and c.

1. —Z VaVh 5.-aVb

2. kVhVj 6.-hV-c

3-kVhVy

4.-a Vb 7.-hVc

(resolution) 8.(6b, 7b)—h

h —h
8a)d =
( ) 10 22}
11.(3b —vk \/
(reso utlong 12.(4b, 5b)—a
a —Q
12q)® 13.(16)-j V h
L2)2] |
J 2J
(14a)®] [15.(2)k V h
16.(3¢c)~k VvV h
17.(106)k
18.(116)—k
-k k

(18a)® 1(17a)®

Figure 3.3: A closed linear semantic tree with resolutions of theorem

SO6ANCES

3.3 Semantic trees with resolutions

The idea of combining semantic trees with resolutions has a rudimentary origin back to

HERBY: the BCR (base clause resolution) heuristic. HERBY resolves unit clauses in
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the set-of-support with every other clause, adding at most one resolvent for each input
pair to the set of base clauses [New01]. That HERBY can solve 79 theorems out of the
84 Stickel test set is partially attributable to this strategy. Without the BCR heuristic,
only 75 of the 84 are solved, since SOSHASP2, S20FLEI1, S21FLEI2 and S29WOS5
cannot be solved within the 60-second time limit.

The combination strategy has been tried on several occasions [Lov69, Hur99]. In
the case of GANDALF_TAC [Hur99], Gandalf was combined into a higher-order logic
theorem prover to support first-order logic proofs. Most other combining strategies are
used to improve performance, because there is a tendency for the two procedures to
complement each other.

It is considered that combining several different tactics is apparently effective in
the theorem proving community because different strategies work for different sets of
theorems. Almulla [AN96] mentioned that there were some theorems for which the
semantic tree prover performed better than the resolution-refutation prover and vice
versa. Though the argument is no longer true in his examples as discussed in 7.4,
combining semantic tree method with resolutions gives interesting prospect.

The usefulness of adding resolvents is due to the fact that a resolvent is a logical
consequence of the resolved clauses. The resolvent is true for every interpretation in
which both parent clauses are true.

The closed linear semantic tree in Figure 3.3 is simpler than the closed semantic
tree in Figure 3.2, because the linear structure eliminates useless atoms. In the presence
of useless atoms, we are not able to continue the construction of the linear semantic
tree as they do not contribute to closure. On the other hand, if a unit clause is added
and an atom is chosen from the unit clause, the linearity is guaranteed as at least one
branch will be closed. This increases the importance of smart atom selection strategies,
however, and that of finding proper resolution pairs.

With these observations, we envisioned a strategy in which resolutions are applied

whenever necessary to construct semantic trees. If an atom is selected through a series
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of resolutions, the atom is more likely to trigger closure than an atom chosen arbitrarily
from sets of clauses as shown in Figure 3.3. Moreover, we can apply several strategies
developed for resolution-refutation to generate these atoms.

In our implementation of a parallel system based on master-slave, two different
ideas with the previous discussions are applied. Firstly, resolutions are preformed
solely in the master processor to generate atoms located deep inside of the theorem.
Secondly, linearity is not enforced because the resolvents of the master are not added
to the set of the clauses in a slave processor and a slave processor runs constructing a
non-linear semantic tree. We are concerned mainly with the possibility of integrating
resolutions into semantic trees and therefore, with the parallel strategy that was not
limited by a number of available strategies.

We discuss grounding strategies and a parallel semantic tree prover that combines

with resolutions in the next chapters.
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Chapter 4

Grounding Strategies and atom

selection heuristics

In this chapter, we introduce a semantic tree with ungrounded atoms and show a corre-
spondence of the semantic tree with resolution-refutation. Then, we propose a strategy
for grounding atoms useful in constructing semantic trees in parallel. We also discuss
the modified atom selection heuristics.

The atoms of a semantic tree are ground ones that are a subset of the Herbrand
base (Definition 5). However, most atom selection heuristics do not guarantee the
absence of variables. Therefore, a grounding scheme must be used and good grounding
schemes are often the key to proving difficult theorems. However, it may result in
delayed or missed closure if not properly applied. For that reason, many atom selection
heuristics are designed to return atoms with a minimum number of variables, thus
minimizing the effect of the grounding procedure.

HERBY approaches the problem by simply assigning the constants given in a the-
orem to variables. It uses an arbitrary constant a if no constant appears in the theorem.
If a theorem has n > 1 constants, HERBY grounds a literal formed at ply 7 by selecting
the (i + 1)** modulo n constant. We call this a fixed grounding strategy. Resolution,

on the contrary, uses the most general unifier to generate resolvents. To explain this,
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the following theorem is relevant here.

Theorem 2 If C is a resolvent of C'1 and C?2 and if D1 and D2 subsume C'1 and C2,

respectively, then there is a resolvent D of D1 and D2 that subsumes C' [Pla76].

D, ,\D/o D,
N

Figure 4.1: Subsumption theorem

Subsumed clauses can be deleted in most cases. For example, a resolvent can be
deleted if it is subsumed by an input clause or a clause that was previously derived by
resolution. Resolution produces a clause that subsumes any clause that can be derived
by generating ground instances of clauses and carrying out resolutions on them.

In HERBY, the most general substitutions occur only with a few atom selection
heuristics, which will be discussed later (Section 4.5). For example, suppose the fol-

lowing clauses are considered in the atom selection heuristics.

1.P(a,z,y) V ~C(y)
2.-P(z',b,y")
3.C(f(b))

Then, two atoms are generated: C'(f(b)), created by resolving clause 1 and clause
3 with the substitution { f(b)/y} and P(a, b, (b)), generated by resolving the resulting

resolvent of clause 1 and clause 2 with the substitution {a/z’,b/z, f(b)/y'}. They are

the most general instances under the given clauses.
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However, atoms grounded by the fixed grounding do not guarantee the most general
substitutions in clauses. These atoms can generate clauses subsumed later by the most
general instances. Consequently, they can prevent a semantic tree from closing or
make it to find a longer proof. The goal of a grounding strategy is to find an atom that

is general enough to prevent such circumstances.

4.1 Semantic trees with ungrounded atoms

With respect to grounding variables, we might think of a semantic tree with ungrounded
atoms. In this case, a unit clause or a literal picked by atom selection heuristics will be
used without applying a grounding strategy beforehand. The variables in the atom are
grounded whenever needed during semantic tree construction. The semantic tree will
eventually achieve the goal of having the most general atoms under the given clauses,
thus eliminating the necessity to determine what variables have to be grounded with
what constants. Therefore, such a semantic tree does not need the extra work incurred
by having unifiers that are not the most general.

This form of semantic tree indeed exists. It is called a semantic tree with un-
grounded atoms or a semantic tree with variables. It is a simple extension of the
semantic trees we considered and was proposed by Plaisted as a mathematical ob-
ject. In fact, there is a correspondence between a semantic tree with variables and a
resolution-refutation proof tree [Pla76].

The resolution-refutation proof tree is a binary one in which every node is labelled
with a clause. Each clause labelling the father node must be a resolvent of clauses
labelling son nodes. This tree preserves the entire structure of the resolution proof,
except that it includes a separate copy of a subtree for each occurrence of the same

resolvents in the proof.

Consider theorem A in Figure 4.2. A resolution-refutation proof tree (Figure 4.3)

and a corresponding semantic tree with ungrounded atoms (Figure 4.4) are shown.
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1.P(z) V —Q(x)
2.Q(a) v Q(b)
negated_conclusion

3.-~P(x)

Figure 4.2: Theorem A

Q@) [ vV eW) [P(2) V -Q()] [-P(z) g
-------------- ~ Q(a) oA P(r) |
Q) ~Q(x) =

O
=
<

Figure 4.3: A resolution-refutation proof tree of the theorem A and

atoms obtained

P(z)V -Q(z)| | ~P(z)
~P(z)\  P(z) {a/z}

>

P()][Q(@) v QW) [[P(z) v ~Q) | ~P() g
Q)N ~Qa)  ~P@)\ P(){b/z} |=
Q@ P(b) :

QB ~__—Q()

Figure 4.4: A corresponding semantic tree with the ungrounded atoms

of Figure 4.3
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Note that the semantic tree is drawn with root low and leaves high, and it is irregular
where it contains different atoms at the same level. The leaves indicate the clauses that
are inconsistent with atoms on the path.

A semantic tree with variables is basically a resolution-refutation proof tree in
which the branches are labelled with instances of the literals resolved away in the
resolution of each clause. These instances are chosen so that a clause C' in S fails at a
node N when C has a ground instance C'o such that atoms from the root of the seman-
tic tree to the node N logically imply —Co. As indicated in Figure 4.3 by dashed lines,
atoms are obtained by finding the most general instances of resolved away literals. If
there are variables, these remain ungrounded. When the semantic tree is constructed,

ungrounded atoms are grounded when necessary.

4.2 Difficulty using ungrounded atoms

Despite the correspondence mentioned above, using ungrounded atoms in construct-
ing semantic trees is impractical. Note that the proof direction reverses that of the
resolution-refutation proof tree. The grounding in a branch must be consistent with all
other branches at the same level and with all branches at all levels under the current one
that are not deployed yet. Otherwise, the proof will be incorrect. As an example, we
show an incorrect proof of theorem S13ROB1 from the Stickel test set using a slightly
modified HERBY for this purpose:

1: p(z,y)
2: —ply, f(z,9) vV p(f(z,y), f(z,9) V 9(z,y)

negated-conclusion

3: —'p(ya f($ay)) \ —‘p(f(x,y)a f(x,y)) N —'Q(xv f(m,y)) N —'q(f(m,y), f(a:,y))

Four more clauses are added by the BCR heuristic. Parentheses and disjunction

symbols are omitted.
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4 (3a,1a) —pfryfry ~qzfzy ~qfzyfry

5 (3b, 1a) —pz fyx ~qyfyz ~qfyzfyz

6 (2a, 1a) ~pfxyfry qry

7 (2b, 1a) —px fyx qyx

Figure 4.5 shows the semantic tree constructed using ungrounded atoms. The #n

notation at the end of the literals indicates that the literal is resolved away with the n'®
atom on the path to the root of the tree. For the first atom, in this case, let us suppose
that pzy is chosen because it is the only unit clause available in the clause list. The first
literal —pzy closes the left branch. The other branch generates 6 more clauses. Clauses
8 and 9 are deleted, because they are subsumed by existing clauses and denoted by #

at the end of the clause number.
8# (1a,2a) —pz fyz#1l —~pfyzfyz qyz
9% (1a, 3a) —pz fyz#l ~wfyzfyz ~qyfyz ~qfyzfyz
10 (la,4a) ~pfzyfry#l —~qz fzy ~qfzyfzy
11 (1a, 5a) —pz fyz#l =gy fyr ~qfyzfys
12 (1a, 6a) ~pfryfry#1l qzy
13 (1a, 7a) ~pfrfxy#l qyx

Atoms 2 and 3 are chosen by the second atom selection heuristic(ASH2) as follows:

GENERATE ATOM USING ASH2:

Cl,C2 resolve to C4, which resolves with C3

C1:13 (la,7a) ~pfxfry#l qyx

C2: 11 (la,5a) ~pz fyz#l —qyfyz ~qfyzfyz

C3:12 (la,6a) ~pfryfry#l qry
14 (

C4: 13a,5a) ~qfxyfry

The atom generated is : 15: gxfxy
2: gfaafaa
3: gafaa
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1. ~pxy 1. pzy

10 (1a,4a) ~pfzy fey#l ~qz foy ~qfzyfoy
11 (1la, 5a) — 1= -
18 (1a, la) poy#l (1,50) ~pa fuz 1 ~av/ve mafyefve
12 (1a, 6a) —pfry fey#1 qoy
13 (la,7a) ~pfrfay#l qyx

2. qfaaV \qfaafaa

[14 (2a, 10c)-pfaafaa#l ~qafaa ~qfaafaa#2 | I 15 (2a, 12b) ~pf faafaaffaafao#l qfaafaa#2 I

SIV 3. -gafaa

l 16 (3a, 14b) ~pfaafaa#tl ~qafaa#3 ~qfaafaa#2 ” 17 (3a, 12b) ~pfafaafafaattl qafaa#s |

Figure 4.5: SI3ROB1 : An incorrect semantic tree with ungrounded atoms

Atoms 2 and 3 are grounded in this example for an illustration. As there are no
constants in this theorem, grounding them with an arbitrary constant a does not affect
the discussion.

In this example, the literals resolved away with the first atom pzy are unified dif-

ferently when the atom 2 and 3 resolved with the other literals in the clauses.
16 (3a, 14b) —pfaafaa#1 ~qafaa#3 ~qfaafaa#2
17 (3a,12b) =pfafaafafaa#l gafaa#3

The first atom pzy resolves away the two same literals of clauses 10 —p fry fry#1
and 12 —pfxyfry#]1 at the beginning. It turns out, however, that they are grounded
differently depending on the remaining literals as the tree goes deeper.

We may think that the already resolved literals do not affect the semantic tree con-
struction. This is not true, however. Observe that in Figures 4.3 and 4.4, resolution
tries to find a ® among the given clauses from the bottom up. Only two clauses are
involved in a unification of resolution. The semantic tree on the other hand, attempts to
close the tree from the top down. The atoms therefore, must satisfy unifications of all
unifiable clauses in the subtree. In this example, however, the unification later exposes
an inconsistency.

The general rule of the selection of an ungrounded atom is not to choose an atom
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Chained_resolution(Atom A)

{

if (A does not contain any variables) return A
LetR— A
for (all clauses C in clause list) {
for (all literals L in C) {
If (Just. Ru= Lypor~Ryu = Lp) {
R — Rpu
if (R does not contain any variable) return R }}}

return fixed grounding

Figure 4.6: Algorithm of chained-resolution grounding

that subsumes a given clause. As the definition of the subsumption says (2.1 Prelimi-
naries), if an ungrounded atom subsumes a given clause, there is a likelihood that the
remaining literals of the subsumed clause are instantiated differently as the tree goes
deeper. In the above example, pzy is not an appropriate atom. It simultaneously sub-
sumed the given clauses 2 and 3, but used to resolve two literals, 10 -p fzy f a:y#l and
12 —~pfxyfry#1. Later, these are instantiated differently according to the remaining

literals.

4.3 Chained-resolution grounding

To determine whether one clause subsumes another is a computationally intensive pro-
cedure. Moreover, it is not clear how to apply a consistent grounding scheme in a
semantic tree with ungrounded atoms, although it helps to comprehend the relation

with the resolution proof.
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In this thesis, semantic trees use a newly proposed grounding scheme. The fol-
lowing is relevant to the scheme. Chained-resolution grounding [Lap98] described in
Figure 4.6 is a scheme using a series of resolutions with the literals on the path to the
root of a tree to obtain ground instances as in Figure 4.6. Let A be the atom we are
grounding. The scheme ensures that either A or —A resolves with clauses on the path
to the root of the tree.

We give partial proof of theorem SI9APABH from the Stickel test set as an exam-

ple.

1. ma(z, e,y) V —a(z,t,y)

2. =i(m(z),d(l,y))

3. -r(h)

4.a(h, z,d(g(2),y))

5. a(m(s), e,n)

6. ~a(m(z), 2,d(g(2),y)) V a(m(z), z,y) V i(m(z), )
7. ma(m(z), z,y) V —a(h, z,9) V i(m(k(y)), d(p, v))
8. ma(h, z,y) V a(m(z), 2,y) V i(m(x), y)

9. ~a(m(z),z,9) V a(h, z,y) V ~i(m(z),y)

J

Q

10. —a(z,t,y) V c(y) V —r(x)

11. ma(m(x), z,y) V a(m(z), z,d(9(z), y))
12. ~i(m(z),y) V i(m(x), d(9(2),v))

13. =a(h, z,y) V a(m(k(y)), 2, y)

14. —a(z, z,y) V a(z, 2,d(p, y))

15. ma(z, z,y) V a(z, z,d(l, y))

16. -a(z, z,d(l,y)) V a(z, 2, y)

17. —a(z,e,n) V r(x)
negated_conclusion

18. —¢(y)

The semantic trees illustrating the output generated by HERBY are given in Figure

4.7. Each node is identified by numbers inside circles, and each path is identified by
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its numeric label. Number 1 identifies a left branch and number 2 a right branch.

At the output of S19APABH . THM, the notation (1a, 2b) means that the first literal
of the chosen atom is resolved with the second literal of clause 2. The # symbol after
a literal indicates the literal is resolved away. The same symbol after a clause number
indicates that the clause is deleted somehow.

The first atom comes from the first literal of clause 17 and contains a variable
z. —azen is chosen by heuristic 5 (ASHS5a) explained in section 4.6. The heuris-
tic searches for a unit clause with one variable, at most, among expanded clauses by
the BCR heuristic, which is not the case here. Next, starting from the last clause, it
searches for a clause with two literals and one variable at most.

At node 1, the atom azen is resolved with the ground1 atom —ahen, thus substi-

tuting h for z. At this point, the atom is replaced with ahen and tree construction is

@ ahen/ \-wahen
azxen
1
@ '/ \

Figure 4.7: Partial semantic trees for the output of SI9APABH

repeated.

Theorem: S19APABH.THM

Predicates:
Functions:
ESAF:

ESAP:

airc
etpnlhs:gdkm

NEXTC=18 TIME=3600 XARS=35

GENERATE ATOM 1l: "axen H5a.17 TO0 N1 CO Ul2

e, t,p,n,l, h and s are constants and g, d, k and m are functions
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Branch on atom:

1: axen to node 1

GENERATE CLAUSES AT NODE 1

19: (la,1la)
20# (la,7a)
21# (la, 7b)
22: (la, 8a)
23: (la,9a)
24: (la,lla)
25: (la,l3a)
26: (la,l4a)
27: (la,l1lb5a)
28: (la,17a)
29: (la, 7b)

~“axen#l
“amxen#l
“amxen
“ahen#l
“amxen#l
“amxen#1l
“ahen#l
“axen#l
“axen#l
“axen#l
“amxen#l

GENERATED 11 CLAUSES

Branch on atom:

“ahen#1l

“axtn
“ahen imkndpn
imkndpn
amxen ~imxn
ahen “imxn
amxedgen
amknen
axedpn
axedln

rx
“ahen#1l

1l: ahen to node 1

GENERATE CLAUSES AT NODE 1

19: (la,la)
20: (la,7b)
21: (la, 8a)
22: (la,13a)
23: (la,14a)
24: (la,1l5a)
25: (la,l17a)

“ahen#l
“amxen

“ahen#l
“ahen#l
“ahen#l
“ahen#l
“ahen#l

GENERATED 7 CLAUSES

PATH: 1

“ahen#1l

“ahtn

imkndpn
amxen ~imxn
amknen
ahedpn
ahedln

rh

GENERATE ATOM USING ASHI1:
Cl and C2 resolve to the NULL clause

Cl: 25: (la,17a) “ahen#l rh

C2: 3: "rh

The atom generated is: 26: rh
2: rh H1 T19 N2 C7 U0

Branch on atom:

2: "rh to node 2

GENERATE CLAUSES AT NODE 2

PATH: 11 FAILS:

Branch on atom:

27:

(2a,17b)

~ahen#i

2: rh to node 3

GENERATE CLAUSES AT NODE 3

PATH: 12 FAILS:

26:

(2a, 3a)

“rh#2
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PATH: 1 FAILS:
Branch on atom: 1l: “ahen to node 4

GENERATE CLAUSES AT NODE 4

19: (la, 9b) "amxen ahen#l “imxn
20: (la,l6b) “ahedln ahen#1l

4.4 Grounding strategy of parallel chained-resolution

In this section, we propose a relatively simple grounding method that inherits the idea
of the chained-resolution grounding, but utilizes the parallel environment thus, we
believe, effectively captures the semantics of the given clauses.

The fixed grounding strategy is definitely context insensitive and naive. On the
other hand, the chained-resolution grounding introduced in Figure 4.6 tries to deduce
a ground atom naturally by finding a literal resolvable with a clause on the clause list.
One disadvantage of the scheme is that it can be expensive: O(n) unification checks,
where 7 is the number of literals on the active path. In addition, the scheme tends to
be left or right subtree oriented, depending on the order of unification, since it takes
the first ground literal as the next atom.

The algorithm can be modified to relieve such a drawback. For example, it can take
the shortest ground literal from the unifications of both branches, with the cost of the
increasing time complexity.

In this scheme, clause ordering is so important. When the clause list contains non-
unifiable literals, the chained-resolution grounding is not different from the idea of the
fixed grounding. We usually select clauses in the negated conclusion of a theorem first,
followed by all the remaining clauses in reverse.

If we assume that maximizing the number of resolutions facilitates success, we can

take the atom that maximizes the number of resolutions on a given path. In practice,
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however, this does not necessarily lead to success. Moreover, the time complexity
required to find the atom is a major drawback.

Parallel chained-resolution is the solution to the problems just described. This is
similar to chained-resolution grounding, except that each processor takes a different

instance of the same atom. The procedure is given in Figure 4.8.

Example 9 In the previous theorem S19APABH, let us suppose an atom azen is cho-
sen and distributed to each slave. The first slave will have the first ground atom ahen

as a result of the following round of the parallel chained-resolution.

Branch on atom: 1l: axen to node 1

GENERATE, CLAUSES AT NODE 1
9: (la,la) -—azen#l  —axtn

20# (la,7a) —amzen#l -ahen imkndpn
21# (la,7b) —amzen —ahen#l1  imkndpn
22: (la,8a) —ahen#l| amaxen —imzn
23: (la,9a) —amzend#l ahen —iman
24: (la,1la) ﬁ_&_’[ﬂ_.’L'_@T_L#l amzedgen

25: (la,13a) l—wahen#ll amknen

26 : Ela, 14a§ Sazendl  azedpn

27: (la,1b5a) =-azen#l azxedin

28: (la,17a) -azen#l rT_____

29: (la,7b) —amzen#l |-uahen#1| imkndpn

The second and third slaves will have the same second and third ground atoms
ahen as shown in the dashed framed box. As for the fourth slave, the negation of the
given atom is applied, and the amsen is used instead of the given atom azxen. If all
the above attempts fail, fixed grounding is used as a last resort. An experiment with

parallel chained-resolution strategy is presented in table 6.3.

Branch on atom: 1: —-azxen to node 1

GENERATE CLAUSES AT NODE 1

19:  (la,5aq)
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ground_atom(atom C')
{
if (the atom selected does not contain variables) then return
ground_instance =0
for (all clause C; in clause list) {
generate binary resolvents of (C, C;) and (=C, C;);
for (each resolvent R just generated) {
for (each literal L in R) {
find a literal just resolved away
if (the literal has no variable) {
ground_instance-++
if (ground_instance == s) {
negate the literal /*to have the same sign of the atom*/
install the literal as the atom
return}}}}}
if (all the above attempts fail)

use fixed grounding

Figure 4.8: Grounding algorithm of parallel chained-resolution at slave s
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4.5 Modified atom selection heuristics

In this section, we describe the heuristics used by PrHERBY except for the ASH_Parallel
heuristic, which will be discussed in Figure 5.9.

These heuristics enable the system to choose atoms that will close the semantic tree
at the nodes at which they are successful or likely will lead to the closure. The strate-
gies used in ASH1 to ASH3 borrow the concept of hyperresolution where electrons

consist only of atoms that are resolvable with the nucleus [CL73].

Example 10 Consider the following theorem:
1Q
2 R
3 -QV-RVS
Negated_conclusion

4 =S
If a hyperresolution succeeds in deriving a contradiction, as in the tree below,

ASH3 obtains atoms S, Q and R by taking the most generally unified resolvent at
each level of resolution. Then, the branch of the semantic tree where the atoms are
obtained is closed.

-QV-RVS S

~QV-R

)

UR (unit resulting) resolution is an inference rule that produces a unit clause (UR
resolvent) from a set of clauses, one of which is a non-unit clause (nucleus) and the rest

are unit clauses (electrons). ASH4 maintains the unit clauses resulting from the UR
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resolution and tries to find a contradiction among them. Most atom selection heuristics
are those of HERBY with minor changes [NewO1].

Atom selection heuristic 1 (ASH1): Search for a pair of unit clauses that are
resolvable to yield the @ clause. If a pair is found, use the atom substituted with the
mgu (most general unifier) of the two clauses as the next Herbrand base atom. The
next two nodes both fail.

Atom selection heuristic 2 (ASH2): Search the clause list for three clauses C'1,
C2 and C3, in which C1 and C?2 are unit clauses and C3 has two literals. C'1 resolves
with the first literal of C3 to yield a clause C4, which in turn resolves with C2 to yield
the ® clause. If a trio is found, two unit clauses substituted with mgus are used as the
next Herbrand base atoms. After proceeding to the next two nodes, the branches are
closed.

Atom selection heuristic 3 (ASH3): Search the clause list for four clauses C'1, C'2,
C3 and C4. C1, C2 and C3 are unit clauses, and C4 has three literals. C'1 resolves
with the first literal of C4 to yield a clause C5. That, in turn, resolves with C2 to
yield a clause C6. And that, in turn, resolves with C3 to yield the ® clause. If a quad
is found, three unit clauses substituted with mgus are used as the next Herbrand base
atoms. After proceeding to the next three nodes, the branches are closed.

Atom selection heuristic 4 (ASH4): A unit clause list is maintained by resolving
a unit clause with clauses containing two literals, or two other unit clauses with clauses
containing three literals. Then, if any two unit clauses on the list resolve to yield the ©
clause, a unit clause substituted with the mgu is chosen as the next atom. This heuristic
does not guarantee a node failure, since the unit clauses might come from different
paths in the tree. Otherwise, the node in which the atom is found will fail.

Atom selection heuristic 5 (ASHS5): Search the base clauses for a unit clause that
has not been previously selected, and select it for the next atom. If it is not available,
search the remaining clause list for a unit clause. One child of every node at which this

heuristic chooses an atom will be a failure node.
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4.6 Atom guiding heuristics

The heuristics, ASH1 to ASH3, create a closed semantic tree at the nodes at which
they are successful. These heuristics are greedy in the sense that they work locally but
do not guarantee overall success. However, by trying to close each branch, the atoms
guide the proof so that the whole tree eventually closes.

The ASH_Parallel heuristic discussed later (Figure 5.9) delivers atoms that are ex-
pected to accomplish the role of ASHI to ASH3. Besides these, each slave depends
on the other heuristics. According to experiments, ASHS5 is used most often. ASHS is
called after the ASH Parallel heuristic.

In the use of ASHS, if a clause set contains
Equal(a,a)

—Equal(z,y) V Equal(g(z), 9(v))

which correspond to a subset of S26WOS2 in the Stickel test set, it is possible to
generate unit clauses repeatedly if ASHS5 is not used carefully. This happens when

Equal(a, a) resolves with —Equal(z, y) and generates

Equal(g(a), g(a))

ASHS5 next chooses Equal(g(a), g(a)) and generates

Equal(g(g(a)), 9(g9(a))) - .-

To handle this problem, we refine and replace ASHS as follows:

Atom selection heuristic 5a (ASHS5a)

e Choose a ground unit clause with an opposite sign from the previously selected

atom in the clause list excluding base clauses.

e Choose a ground unit clause with the same sign as the previously selected atom

in the clause list excluding base clauses.
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e Choose a unit clause with one variable in the clause list excluding base clauses.

e Choose a literal from a clause containing two literals and one variable, at most,

whenever possible in the clause list.
Atom selection heuristic 5b (ASH5b)

e Choose a ground literal from the unit clause list collected by ASH4 with an

opposite sign from the previously selected atom.

e Choose a ground literal from the unit clause list collected by ASH4 with the

same sign as the previously selected atom.
e Choose a literal from the unit clause list with one variable.
e Choose a literal from the unit clause list with more than one variable.
Atom selection heuristic 5¢ (ASHSc¢)

e Search the base clauses and choose a literal with at most one variable in the

clause list.

e Search the clause list excluding base clauses and choose a literal with at most

one variable in the clause list.

o Choose a literal of a clause in the clause list.

4.7 Unit-list-passing heuristic

ASH4 maintains a unit list containing unit clauses found at nodes where atoms are
selected by resolving a unit clause with another clause containing two or three literals.
If two unit clauses on the list resolve with the mgu p to yield the ® clause, then the
unit clause after applying u is selected as the next atom. This atom is preferred over

the one selected by ASHS. The atom does not guarantee the closure of the node where
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the atom is found because the two unit clauses may not be on the same path to the root
of the tree. Nonetheless, ASH4 has been found to be a powerful heuristic and is often
the key to proving difficult theorems [NewO1].

In this parallel implementation, each slave also maintains the unit list. In addition to
that, the unit-list-passing heuristic combines the unit lists in an attempt to find useful
atoms. The master initiates the transfer at the beginning. At intervals, slave ¢ — 1
passes its unit list to slave i. After receiving the unit list, each unit clause in the list is
examined to see if it is resolvable with a unit clause in the unit list of slave 7. If it is,
then the clause is selected as the next atom; otherwise, the clause is added to the unit
list of slave i.

Unfortunately, it takes time to process the whole unit list with the current, simple
comparison method. Therefore, the configuration for the experiment uses this heuristic
only once for each slave during the time limitation.

Despite the fact that the chances of finding resolvable pair in the list are slim as we
attempt to exploit various search spaces by generating atoms in quite different orders,
the potential of the unit-list-passing heuristic lies in the fact that semantic trees tend to
be thin. It increases the chance of successful selection of atoms as the size of the unit
list grows larger.

The success of this strategy relies on the linear property of semantic trees and the
search technique. The effectiveness of this strategy is never less than ASH4. In fact, it

is a parallel extension of the ASH4.

51



Chapter 5

Exploiting Parallelism: Highly
Competitive Computing Model

5.1 Parallel systems

With the rapid development of computer technology and algorithmic approaches that
help to speed up inferences, it is very likely that the performance of provers will im-
prove. However, the search space of the most interesting theorems still remains enor-
mous. Due to the emergence and growth of parallel architectures, parallelization is
considered to have great potential to attack the problem. Several attempts have been
made to parallelize automated theorem proving systems. A taxonomy of parallel strate-
gies for deduction, by Maria Paola Bonacia and Jieh Hsiang [BH94], surveys them
thoroughly. Here, we classify parallel systems into Prolog based, resolution based,
and semantic tree based systems.

Prolog technology theorem prover [Sti88] is basically an extension of Pro-
log’s inference mechanism to first-order logic, based on the model elimination prin-
ciple [Lov69b]. Well-known parallel Prolog technology theorem provers include
PARTHENON [BCLM92], PARTHEO [SL90] and METEOR [Ast94]. In these

provers, each concurrent process has access to the input set of clauses and tries to apply
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a clause to one of the current goals. Each process selects an input clause, possibly a
different one for each process, and tries to resolve it with the input goal generating new
subgoals. The distribution of tasks is done by task stealing in which a process obtains
new tasks from the queues of other processes.

Another branch in Prolog technology theorem prover is SETHEO [Let92] based
systems. The main proof unit is based on a refinement of the connection method,
which is, in effect, identical to the model elimination procedure. SETHEO itself is not
a parallel system, but many parallel systems are based on it. Examples are SiCOTHEO
[Sch97], SPTHEO [Sut99], RCTHEO [Ert92] and CPTHEO [FW93].

PARROT [JO92] is a resolution based, parallel version of OTTER. OCTOPUS
[New98] is also a parallel version of THEO. PARROT introduces parallelism by al-
lowing multiple processes to generate resolvents. The parallel deduction system based
on this scheme consists of one master process and several slaves. The master selects
clauses for each slave, and each slave generates resolvents from them.

OCTOPUS, too, runs with one master and as many slaves as are available. Each
slave carries out the same search procedure, but each sets its own limits on the number
of literals in a clause and the number of constants, functions, and variables in a literal.
Some processors use the set-of-support strategy in addition.

PHERBY [ANO8] is a parallel version of the semantic tree based prover HERBY.
It exploits parallelism by using a larger set of heuristics than HERBY and uses coop-
erative computing to determine atom quality.

Besides the classification of Prolog based, resolution based and semantic tree based
systems, we can also classify parallel theorem provers into two categories: one divides
the search space among several slaves, which necessarily increases communication
overhead and requires strategies for fair task distribution. The other runs multiple
copies of the serial theorem prover with different settings.

The parallel versions of THEO and HERBY, OCTOPUS and PHERBY, are com-

petitive models running the same slaves with different settings. In the case of THEO,
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dividing work among slaves is not practical in a loosely coupled distributed environ-
ment due to dependency on a large hash table. It is not clear how to join hash tables
distributed in each processor and find a contradiction. In the case of semantic tree, the
work can be divided among slaves, since semantic tree branches do not depend on each
other. One problem, however, is synchronizing the atoms at each level. If we ignore
synchronization and use irregular semantic trees instead, fair task distribution is still a
difficulty, because semantic trees as found by HERBY tend to be thin. A goal is made
to generate a scheme which is scalable to a large number of processors.

Using various strategies to prove theorems has proved useful. Gandalf, developed
by Tanel Tammet, uses a time slicing method for each strategy and defeated competing
provers in CADE 1997 and 1998. Although Gandalf is a serial prover, the slicing con-
cept fits well in parallel systems. Each processor automatically chooses a different set
of strategies, ones that are probably appropriate for the given theorem. It requires little
communication among processors and is easy to implement. Its major disadvantage
is that the number of different, relevant strategies is limited and there is much effort
overlap among competing strategies. The system is not scalable, therefore, and returns
diminish rapidly as the number of processors increases.

In this chapter, we present a scheme to achieve a large freedom of scalability— that
is, generally producing increasing returns as the number of processors is increased.
We introduce a resolution method used in the master of the parallel scheme in the next

section.

5.2 IDDFS resolution

IDDFS(Iterative Deepening Depth-First Search) is an algorithm that suffers the draw-
backs of neither breadth-first nor depth-first search on trees. It first performs a depth-
first search to depth one. It then discards the nodes generated so far, starts over, and

performs a depth-first search to depth two. Once again, it starts over and performs a
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IDDES()

{
while(iter_depth < MAX_ITERATIONS) {

iter_depth++; /* increase iteration depth */
search_tree(); /* Begin search */

}

search_tree()

{

if (IV is the root node ) {
for (all base clauses C;) {
generate factors of C;
for(j =i—1L;5>=1;—-) _
generate binary resolvents of (C;, C;)}}
else {
for (all base clauses C;) {
generate resolvents of C; and inference I}
generate factors of I
for (all inferences I;) {

generate resolvents of I; and with inference I3} }

Figure 5.1: IDDFS algorithm for a theorem with clauses C; at some node N at depth

D and with inferences I; on the path to node N
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search to depth three, continuing this process until a goal state is reached. This algo-
rithm is guaranteed to find the shortest-length solution with a minimal use of space.
The disadvantage of IDDFS is that it performs extra computations before reaching the
goal. Nonetheless, it has been shown that this wasted computation does not affect the
asymptotic growth of the run time of exponential tree searches [K0r85].

When THEO tries to find a proof, it carries out an IDDFS. The root of the tree
corresponds to a set of base clauses. Branches leading from one node to another cor-
respond to inferences that can be performed on the clauses at which the branches are
rooted. Each node other than the root consists of clauses generated by the inference on
the branch leading to it. On the first iteration, a search for a linear proof of length one
is performed. On the second, a search for a proof of length two is carried out, and so
on.

Although the semantic tree method has a binary branching factor, resolution has
a much larger branching factor (on the order of b¢ where b is the number of clauses
and d is the depth of the node), because each node is generated by resolving together
all pairs of base clauses, factoring individual base clauses, and then resolving each of
the resulting clauses with some of the base clauses. Resolution strategy in theorem
proving generally results ‘in very short, fat trees. We describe the procedure in Figure

5.1.

5.2.1 An example

Consider theorem A in Figure 4.2. Figures 5.2 and 5.3 show the iterations that IDDFS
carries out on the theorem. On the first iteration when the depth is one, three clauses
are generated and no proof is found. On the second iteration, six more clauses are
generated and no proof is found. On third iteration, while expanding the fourth clause,

the ® clause is finally generated.
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1.P(z) V -Q(x)

2.Q(a) v Q(b)
3.~ P(z)
4: (3a,1a) 4: (2b,1b) 4: (2a,1b)
—Q(z) P(b) vV Q(a) P(a) v Q(b)
(a)

1.P{z) V ~Q(z)

2.Q(a) v Q(b)
/ 3P \
4: (3a,1la) 4: (2b 1b) 4:(2a,1d)
~Q(x) )V Q(a) P(a) v Q(b)
5: (4a,2b) 5: (4a, 2a) 5: (4a,3a) 5:(4b,1b) 5: (4a,3a) (4b, 1b)
Q(a) Q(b) Q(a) P(a) v P(b) Q(b) P(a) Vv P(b)
(b)

Figure 5.2: (a) first and (b) second iteration of theorem A
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1.P{z) V ~Q(z)
2.Q(a) v Q(b)
3.-P(z)

/B
N\
4: (3a,la) (.
—Q(z)

‘\

\

/ I
(WRN

5 : (4a, 2b) VN

Qa) o

/N

6 : (5a,1b) 6 : (5a,4a)
P(a) P

()
Figure 5.3: (c) third iteration of theorem A

5.2.2 Search strategies

Several search strategies can be used during IDDFS to restrict the number of generated
clauses. In some cases, although these strategies can result in longer proofs, they
usually do reduce the search space and yield proofs in less time.

Merge proof search generates binary resolutions at each node in the tree with the
clauses at that node and with a parent node that contains a merge clause. If merge
clauses are not available, the resolution happens only with a base clause in the root
node.

NC (Negated Conclusion) search requires that inferences at the first level must
include one clause from negated conclusions.

Extended search is carried out on level n of a tree on the n'* iteration if a clause C
at level n or deeper can be resolved with a clause C’ that has only one literal and that is

an ancestor of C. The extended search strategy is an attempt to pursue clauses that are
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more likely to lead to a contradiction. Therefore, if a theorem has a proof of length n,
a proof can be found at an iteration k, where k£ < n. In Figure 5.3, the extended search
strategy finds a proof without performing the next iteration.

IDDFS generates clauses continually until it finds a proof. By definition, it gets
increasingly closer to a proof. When it applies to resolution, for example, the extended
search strategy tries to take advantage of this property; it examines unit clauses placed
deeper in some circumstances to see if the contradiction is reached. In a semantic tree
construction, however, choosing appropriate atoms—that is, ones that close the tree
or lead to the tree closure—is the most important factor. We are concerned mainly,
therefore, with the development of these atom-selection algorithms.

Unfortunately, choosing appropriate atoms before the construction of a semantic
tree is a time consuming task and they are not easily found in the most interesting
theorems. In fact, we experienced that picking literals randomly among clauses was
ineffective. In HERBY, the random selection is the last resort (ASHS5c in section 4.6).

We discuss the use of IDDFS resolution in the next section.

5.3 Parallel semantic tree generation

The concept that IDDFS gets closer to a proof as it deepens brings an interesting idea
that the search space can be explored by constructing semantic trees simultaneously.
We distribute the atoms collected by the master among the processors so that each can
construct its own distinct semantic tree. Each processor will construct a somewhat dif-
ferent semantic tree, depending on the atoms given to it by the master. The semantic
tree will be different according to the behavior of the IDDFS execution and the num-
ber of unit clauses generated. Even the same atoms repeatedly collected by different
iterations will be distributed in a different order in a very systematic way.

As an example, consider an atom distribution scenario. The atoms collected in Fig-

ures 5.2 and 5.3 are shown in Figure 5.4. Atoms are numbered sequentially according
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7| Q@)
6] Qa)
5| Q)
4 | -Q(z) 10| P(a)
3| Qa) 9| Qa)
1| -Q(z) 2 | -Q(z) 8 | ~Q(z)
(a) 1% iteration (b) 274 iteration (c) 374 iteration

Figure 5.4: Atoms collected at each iteration.

to the order of generation by IDDFS.
Starting from the first atom in the Figure 5.4 (a), each is distributed to each slave.
In this scheme, slave 3 receives the i** atom which is modulo number of slaves. The

first slave receives the atom —Q)(x) and constructs a closed semantic tree with atoms:

1. =Q(z) from the master. Applying parallel chained-resolution grounding, we

obtain
1. P(z) V =Q(z)

2. V Q(b)

3. = P(z)

The first slave takes the first ground atom —Q(a) and generates a resolvent

(1a,2a) Q(b).

2. Q(b) from atom selection heuristics, because the branch is closed by resolving
the (1a,2a) Q(b) with clause 1 and resolving the resolvent P(b) with clause 3.
The selected atom Q(b) then generates a resolvent (2a,1b) P(b).

3. P(b) from atom selection heuristics.

4. P(a) from atom selection heuristics. The semantic tree is shown in Figure 5.5.
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Figure 5.5: Semantic tree construction at the first slave

As indicated in Figure 5.4, the second iteration begins generating —Q(z). The

second slave receives the same atom —Q)(x) as the first slave. However, it is grounded

differently.

1.

—-@Q(z) from the master. Applying parallel chained-resolution grounding, we

obtain:
1.P(z) V =Q(x)
2{ata v
3.—P(z)
The second slave takes the second ground atom —()(b) and generates a resolvent

(1a,2b) Q(a).

Q(a) from atom selection heuristics because the branch is closed by resolving
(1a,2b) Q(a) with clause 1 and resolving the resolvent P(a) with clause 3. The

selected atom QQ(a) then generates a resolvent (2a,1b) P(a).
P(a) from atom selection heuristics.

One more atom P(b) is necessary to close the whole tree. The closed semantic

tree is shown in Figure 5.6.
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Figure 5.6: Semantic tree construction at the second slave

o
o1
1

The third slave with the atom Q(a) constructs a closed semantic tree very similar
to the first slave except for the order of the selected atoms.

The fourth atom —Q) () is the same as the first and second one. Because the ground-
ing algorithm cannot find the fourth ground atom in the given theorem, -Q(a) is used
by the fixed grounding strategy, and the fourth slave acts like the first.

The fifth to ninth slaves repeat the procedure described above with atoms 5 Q(b),
6 Q(a), 7 Q(b), 8 =Q(z), 9 Q(a) if slaves are available. Otherwise, the redundant
atoms are discarded. |

With the tenth atom P(a), the slave will construct a semantic tree with atoms:

1. P(a) from the master. It closes a branch resolving with clause 3. The negated

atom —P(a) generates a resolvent (1a,1a) =Q(a).

2. =Q(a) from atom selection heuristics because the branch is closed by resolving
(1a,1a) ~Q(a) with clause 2 and resolving the resolvent Q(b) with clause 1, and

resolving the resolvent P(b) with clause 3.
3. Q(b) from atom selection heuristics.
4. P(b) from atom selection heuristics. The semantic tree is shown Figure 5.7.
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Figure 5.7: Semantic tree construction at the tenth slave

Note that atom P(a) from the master is hidden inside the set of clauses and difficult
to locate by means of atom selection heuristics without depending on luck. The scheme
we propose provides the opportunity to generate these atoms.

The scheme will inevitably generate previously generated atoms repeatedly. How-
ever, if the extended search strategy is used to collect atoms, only the atoms collected in
Figure 5.4 (a) and (c) will be used in this case. Our implementation permits the number
of redundancies to be proportional to the number of processors. If the previously gen-
erated atom contains variables, this can have the effect of generating different, useful
atoms due to the parallel chained-resolution grounding strategy. Also, the atoms are
delivered to processors at different times making them to construct different seman-
tic trees. Redundancy is an important factor, moreover, in achieving the algorithm’s
scalability.

The pseudo-codes for generating atoms from the master and for receiving atoms
at a slave are given in Figures 5.8 and 5.9. The hb._list is an array where the atoms

generated so far are stored.



SEARCH() {
while (proof not found) {
performs IDDFS
if (PROOF_FOUND message arrives during search) return
if (generated clause is a unit clause) {
if (already in hb_list and the redundancy factor is exceeded) do not add
copy into hb_list[nexthb]
keep track of the next atom which is shortest with minimum variables }
while (a given time and hb_list is not empty ) {
if (PROOF_FOUND message arrives) return
if (SEND_ATOM message arrives) {
pack the next atom information and send it

break;}}}

Figure 5.8: Search algorithm collecting unit clauses at the master

5.4 PrHERBY : Parallel Semantic Tree Prover with Res-
olutions

We implemented a system named PrHERBY which embodies the ideas presented in
earlier chapters (Figure 5.10). The slaves are based on HERBY with the atom receiving
algorithm. The master is also based on HERBY but mainly carries out IDDFS and
communications with slaves. It uses PVM (Parallel Virtual Machine environment)
[GB94] for message passing.

The master spawns the number of slaves given by the command line argument,
reads input clauses, and increases the number of base clauses, if possible, by perform-

ing the BCR (Base Clause Resolution) heuristic (Figure 5.11). Before spawning slaves
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ASH _Parallel () {
Send the master SEND_ATOM message asking for an atom
while (time is not exceeded) {
if (a message with an atom arrives) {
unpack the atom information
install the atom as the next atom

break;}}

Figure 5.9: Atom receiving algorithm of a slave

and performing IDDFS, the master tries to make a closed semantic tree using a few
atoms which apparently close branches. Simple theorems are solved at this stage. If
no more atoms are generated, then the master carries out IDDFS during which it gath-
ers atoms and regularly checks for messages from slaves. Atoms collected are sent to
slaves according to the order of message arrival. If a slave finds a proof, it immediately
sends a message to the master. The master stops the search as soon as it receives this
message, collects outputs including the used atoms from the slave that found a closed
semantic tree and data for performance measures, and kills all slaves in order to start a
new problem. Even the master can find a contradiction during IDDFS.

After the master spawns slaves, the slaves process input clauses and increase the
number of base clauses, if possible, by performing BCR (Base Clause Resolution)
heuristic (Figure 5.12). Various atom selection heuristics are then tried to find an atom.
Those that obviously close branches are tried first. A semantic tree is constructed by
resolving the selected atom with clauses on the path to the root. If the tree contains
two contradictory unit clauses, the branch is closed. The slave then backtracks up the
tree and tries to close the remaining branches.

If atoms can not be generated by a slave with ASH1 to ASH4, the slave sends a
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Figure 5.10: System architecture

message to the master asking for an atom. The ASH._Parallel heuristic in Figure 5.9
handles this situation. As soon as the master receives the message, it sends an atom
to the slave. Each slave performs the parallel grounding scheme that instantiates the
given atom. ASHS is the last resort if no atom is chosen with the previously performed

heuristics. New atoms continue to be selected until a proof is found, the predetermined

time is reached, or no more atoms can be generated.
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Chapter 6

The Experiments and Results

We now present the results of experiments using the PPTHERBY system with various
numbers of slaves. After introducing the test environment, we compare the results with

HERBY'’s and then with PHERBY’s.

6.1 Test environment

The Stickel set has been considered for a long time as a suitable test environment of
many theorem provers having a large number of theorems with conditions such as
accessibility, domain diversity, and varying difficulties.

However, HERBY is now able to solve 79 out of the 84 theorems in the Stickel
test set. PrHERBY performs better than HERBY and is able to solve 83 of the 84
theorems. Among the five unsolved theorems by HERBY, PrHERBY is able to solve
four: S44WO0S20, S46W0S22, S52WO0S28, and SI9APABH. Both PrHERBY and
HERBY were unable to solve theorem SS0WOS26.

Since the theorems in the Stickel set are relatively easy to prove, it is hard to dis-
tinguish performance variations between systems. In this experiment, therefore, we
used a subset of the TPTP library. The TPTP (Thousands of Problems for Theorem

Provers) [SS98] library is a rich source of theorems developed to make the testing and
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evaluation of automated theorem proving systems more meaningful.

The theorems in the set come from a wide range of mathematical areas. These
theorems vary widely in terms of the number of axioms each contains (from only a
few to several hundred), the number of literals that each clause contains (from no more
than a couple to as many as twenty), and the number of the character length of each
literal (from only several to as many as forty to fifty). Due to its diversity, single
strategy alone can not solve all of them. The appropriate strategy for one subclass is
often very different from the one appropriate for another [New00].

From the TPTP library, we used the selected subset of 420 theorems in the CADE-
14 (Conference on Automated Deduction) competition (Appendix A). Using the same
time parameter as in the competition, 300 seconds, we carried out a series of experi-
ments.

Among various LINUX based workstations with Pentium II or III CPUs ranging
from 350 MHz to 1 GHz, and memories ranging from 128MB to 512MB, we chose
fifteen 800MHz Pentium III machines with 256MB memories to obtain uniform test
results. We varied the number of processors used by PPHERBY and presented the re-
sults of 5, 10 and 15 machines. Results from 30 machines were also presented for a
reference. We used all kinds of available machines to run PPHERBY with 30 machines.
In fact, the machines added additionally mostly have lower specifications than the 15
homogeneous machines. However, the results are not compared with other configura-
tions except one for a reference.

We performed the experiments at night when the other system activities are mini-
mal in order to maintain consistent CPU load and memory usage, and therefore mini-
mize variables that might affect the analysis.

A successful proof by PPHERBY depends on many factors. Experimental results
are obtained by considering these. A few of the most crucial ones, based on the testing

experience, are listed below:
1. Frequency of atom selection using the ASH4 heuristic. Some theorems cause
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PrHERBY to use ASH4 too often without success, preventing the selection of

other atoms.

2. Intervals in which to use the unit-list-passing heuristic. The heuristic is CPU
intensive and often spends time that could be better used in performing other

computations.

3. The number of the same atoms when the master collects them. The number

increases as more slaves become involved.

4. The relative involvement of each selection heuristic. Atoms selected by
ASH _Parallel are used most often. However, the atoms selected by ASHS5a,
ASHS5b and ASHS5c¢ should be used with reasonable frequency to improve suc-

CCSS.

6.2 Comparison with HERBY

The results summarized in Table 6.1 show significantly improved performance of Pr-
HERBY over HERBY in each category of the MIX division of the CADE-14 com-
petition. The results of HERBY and PrHERBY with 30 machines are presented in
Appendix A in detail. The competition is divided into several divisions according to
problem and participating system characteristics. According to the competition, the
MIX division is for mixed CNF(Conjunction Normal Form) Really-Non-Propositional
Theorems [Sut97]. Mixed refers to Horn and non-Horn problems, with or without
equality, but not including unit equality problems. Really-Non-Propositional means

that the Herbrand universe is infinite. The MIX division is divided into four categories:

1. The HNE Category: Horn with No Equality (128')

2. The HEQ Category: Horn with Equality (106)

INumber of theorems
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Table 6.1: System performance by theorem category.

Category Thms HERBY PrHERBY(5) PrHERBY(10) PrHERBY(15) PrHERBY(30)

HNE 128 20 49 50 50 50
HEQ 106 14 24 26 31 32
NNE 12 5 8 8 8 8

NEQ 174 58 76 77 80 92
Total 420 97 157 161 169 182

3. The NNE Category: Non-Horn with No Equality (12)

4. The NEQ Category: Non-Horn with Equality (174)

These results are displayed by the theorem category used, the number of theorems
in each group, and the number of theorems solved by HERBY and PrHERBY. Note that
the number in parentheses beside each PrtHERBY indicates the number of machines
that PFHERBY used.

As the data show, the results of PPHERBY with 5, 10 and 15 machines show im-
provement solving 60, 64 and 72 more theorems each than HERBY had been able
to solve. Besides the overall performance, PFHERBY with 10 and 15 machines on
HNE and NNE category did not show any improvement after 5 machines. The NNE
category has too small size (a total of twelve theorems) to draw a conclusion. The
HNE category, however, were mostly solved by the master before slaves found a proof
as indicated in the output data in Table 6.5 or Appendix A. Resolutions-refutation is
more appropriate than the semantic tree approach to attack the theorems in HNE group
in this case. Particularly, PPHERBY with 30 machines, PFHERBY(30), outperformed

HERBY by solving a total of 85 more theorems in the set of 420. The result shows
an outstanding 87% (97 vs. 182) improvement over HERBY. In all cases, PPHERBY

solved significantly more theorems than HERBY.
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6.2.1 Speed-up of the parallel systems

ATP systems are usually evaluated in terms of

e the number of problems solved, and
e the number of problems solved with a solution output, and

e the average runtime for problem solved

in the CADE ATP system competition.

In order to evaluate PrHERBY, besides the criteria above, we compare the same
amount of computing power applied to the sequential algorithm in terms of speed-up.
We compare the run-times of PPHERBY with HERBY for theorems to be proven. The
run-time of HERBY for a given theorem is denoted by 7;. The run-time of PrTHERBY,
7,, is the time until one of the processors has found a proof. Based on the run-times,
we define the speed-up S for a given theorem in the usual way: S = —%

The CPU time of HERBY and slaves of PPHERBY is very close to the wall clock
time. In the case of the master, however, the CPU time is less than the wall clock time
because a portion of it is consumed as the system time to communicate with slaves.
The analysis of the system time is presented in section 7.2.1. In the calculation of the
speed-up, CPU times are compared instead of the wall clock time. If the master found
a proof, the CPU time includes the system time for fair comparison.

In contrast to many parallel algorithms (for example, numeric computation), the
speed-up obtained varies widely from theorem to theorem. This is due to the complex
behavior of the search algorithm that depends on the theorems. Especially, the parallel
strategy proposed here makes the speed-up vary by utilizing the atom selection of the
master. The generated unit clauses can be used to close open branches of the semantic
tree much earlier, thus accelerating the closure. This reduces the amount of necessary
search dramatically thus increasing the speed-up values.

Among experimental data, we used 77 theorems for speed-up comparisons. Those

were theorems that were solved by all configurations of machines including HERBY.
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Although HERBY solved 97 theorems, there were theorems unsolved by some set of
machines.

Figure 6.1 shows speed-up values of each theorem obtained from the configurations
of different numbers of machines P. We produced a vertical stacked bar chart for
clarity. The data are sorted by P = 5 speed-up values. The values of P = 10, P=15
and P = 30 are added on top of them. We do not present the results of the stable front
part, which shows small incremental speed-ups without any irregularities. Sometimes
the speed-ups are huge and the variance is very high. There are cases that theorems
solved with fewer machines are not solved with more machines or theorems are solved
faster with fewer machines.

Figure 6.2 presents another view of the speed-up values. It shows the ratio of 7,
over 7T, for each theorem using different numbers of machines. The dotted line corre-
sponds to S = 1 and the solid line to S = P, where P is the number of machines. The
area above the dotted line contains theorems where PrHERBY is slower than HERBY.
The area below the solid line contains theorems which yield a super-linear speed-up,
that is, S > P. For the graph of P = 5, three points with the speed-up values less than
1 are not showed to match the scale to other graphs.

The figure presents that many theorems show super-linear speed-up. There are
several cases in which PFHERBY is running slower than HERBY. In these cases, we
think, the unit clauses generated were not effective to the proof of the theorem or
misled the search of the proof.

The overall mean values for the speed-up are summarized in Table 6.2. In general,
it is rather difficult to give a good estimation of a mean value for the speed-up over a
set of examples, especially in cases where the speed-up shows a high variance. For our
measurements, we considered two common mean values: arithmetic and geometric
mean. The arithmetic mean is often too optimistic, resulting in a mean value too large,
because a few large values of speed-up are taken into account too much. On the other

hand, the geometric mean is often considered appropriate because it yields results that
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Figure 6.2: PrHERBY’s run-time 7, over HERBY’s run-time 7; and different numbers

of machines P (continued on next page)
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are not biased to a few extreme values.

For the 77 theorems solved by all configurations, the geometric mean from P = 15
to P = 30 shows that the speed-up is decreased. In this case, direct comparison is not
appropriate because not all 30 machines are the same. As another explanation, it seems
that the high variance of the speed-up values that caused the increase in the arithmetic
mean value was mitigated in the geometric mean.

Measuring the mean values for those theorems solved by all configurations is some-
what misleading because it does not take into account the prover’s other strong points
such as the number of solved theorems. To compensate for this, we calculated the
speed-up values again for the theorems that were solved by at least one configuration
this time. For the unsolved theorems, the maximum CPU time, 300 seconds, is applied.

For those 194 theorems except for those theorems that were solved immediately
with zero second CPU time (to calculate the geometric mean), the mean values show
the very high speed-up values that increases as the machines are added. In this case, the
theorems solved by PrHERBY but not by HERBY (assumed 300 seconds), especially

if it takes a few seconds, contributed to the large speed-up shown in Table 6.2

Table 6.2: Mean values of speed-up for different numbers of machines P

Mean PrHERBY(5) PrHERBY(10) PrHERBY(15) PrHERBY(30)
For 77 theorems solved by all configurations
Geometric mean 2.05 2.15 2.83 271
For 194 theorems solved by at least one configuration
Geometric mean 4.79 6.01 9.53 10.94
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6.2.2 Results of the two strategies: parallel chained-resolution
grounding and unit-list passing

Table 6.3 shows the performance improvement resulting from the parallel chained-
resolution grounding strategy. Note that groups with zero entries have been removed
from the table. The strategy applies whenever an atom comes from the master. Each
slave has a different instance of the same atom, if possible, that the master delivers
many times. The table shows how many theorems were solved before and after ap-
plying the strategy. It shows also the differences of the both results. after column
shows the experiment that has been performed with both strategies enabled. before
column indicates the results of PPHERBY without the grounding or unit-list passing
strategy.

The parallel chained-resolution grounding strategy not only enhances overall per-
formance but also increases system scalability. Before using it, the system scalability
was weaker; as a result, theorems that had been solved using a small number of slaves

failed to be solved more often using a bigger number.

Table 6.3: Effect of the parallel chained-resolution grounding (PrHERBY (15))
[ 800 [ car [ coL [ gEo | Gre [ HEN | LcL | Lpa | NuM | RNG | RoB | SET | Toul |

before 3 22 1 8 3 6 44 1 9 3 1 61 162
after 4 22 1 10 3 6 46 1 9 4 1 62 169
+/- +1 +2 +2 +1 +1 +7

Table 6.4 presents the results before and after applying the unit-list passing heuris-
tic. The performance is not as effective as the grounding strategy but still shows some

enhancement to the system.
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Table 6.4: Effect of the unit-list passing heuristic (PtHERBY (15))

| [ Boo | car [ coL | aeo [ ere | HEN | Ler | Loa | NuM [ rNG | ROB | seT | Totat |
before | 4 | 24 | 1 8 3 s |45 | 1 9 4 1 | 61 | 166
after | 4 | 2 | 1 | 10 | 3 6 | 46 | 1 9 4 1 | 62 | 160
+/- -2 +2 +1 +1 +1 +3

6.3 Comparison with PHERBY

In this section, we compare the performance of PPrHERBY with PHERBY. PHER-

BY [AN98] is the first parallel version of HERBY by Almulla. Since he participated in
the CADE-15, the performance data was not revealed anymore except a brief summary
of the performance of PHERBY with demodulation [Ala00]. In order to compare per-
formance, we obtained the source code of PHERBY with demodulation and performed
experiments under the same conditions with PrTHERBY. According to the system de-
scription of the competition, PHERBY uses a bigger set of heuristics than HERBY, as

well as cooperative computing in determining the quality of atoms to be used.

6.3.1 Comparison of solved theorems

The table 6.5 shows the theorems that PHERBY or PrHERBY solved with 15 machines
within 300 seconds. We presented CPU and wall clock times. We also measured a
number of atoms needed to construct a closed semantic tree. In the case of PFHERBY,
”NA” in ATOMs column indicates that the master solves the theorem. Therefore, the
number of atoms is not available. ”-” indicates that the theorem is not solved. These
data are the average of two runs. CPU time has been truncated to two significant digits
but the wall clock time is measured in integer values. There are cases that the wall
clock time is less than the CPU time because of the truncation.

Each system solves not only quite a different number of theorems, but also dif-
ferent kinds of theorems although they are based on the same HERBY. In particular,

PrHERBY obtains a number of solutions in HNE category through resolutions by the
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Table 6.5: Performance comparison of PHERBY and PrHERBY with 15 machines
(CPU : CPU time in sec, WC : Wall clock time in sec)

PHERBY(15) PrHERBY(15)
No | Theorem | — o T ATOMs || CPU| WC | ATOM:
T | GRPO48-2 | 898 | 12 a5 17| 8 32
2 | LcLoos-1 || 976 | 15 77| 5693 | 66 NA
3 | LCL009-1 - 1788 | 20 NA
4 | LCLO10-1 - | o24| o NA
5 | LCLO1I-1 - Sl sar| e NA
6 | LCLO22-1 | 016 5 31| 897 10 NA
7 | LCL023-1 N S 17s7| 2 NA
§ | LCLO25-1 | 59.86 | 61 4| 163| 2 25
9 | LCLO29-1 || 85.66 | 88 59 || 85.85 | 100 NA
10 | LCL033-1 - |l o010 o NA
11 | LCLO42-1 | 1600 | 18 2 - :
12 | LCLO45-1 | 014 | 1 12 || 3280 35 40
13 | LCLO64-1 | 028 | 6 0] 03| o 24
14 | LCLO75-1 - | 1294 15 NA
15 | LCLO83-1 - - |l 10052 | 125 NA
16 | LCL086-1 - A a27| 6 NA
17 | LCLO87-1 - S o12e| 1 NA
18 | LCLO8S-1 - || 7563 | 88 NA
19 | LCL101-1 - | 09| 1 NA
20 | LCL102-1 - - | 147.26 | 153 NA
21 | LCL104-1 - 16| 2 NA
22 | LCL107-1 - -l o4a6| o NA
23 | LCL108-1 - Il 3s0| 4 NA
24 | LCL110-1 - - || 238.64 | 294 NA
25 | LCL111-1 - Al 033 o NA
26 | LCL118-1 - | 494| 6 NA
27 | LCL120-1 - Sl 128 2 NA
28 | LCL130-1 - |l 006 | o NA
29 | LCL182-1 | 0.40 | 10 29 7090| 8 44
30 | LCL187-1 | 0.16 | 0 14| 013| o 2
31 | LCL192-1 || 0.15| 1 15 012| o 4
32 | LCL194-1 || 0.14 | 1 0] 012 o0 4
33 | LCL195-1 | 015 1 23| 053 o 16
34 | LCL196-1 || 64.49 | 66 89 - i
35 | LCL198-1 - - | 207.29 | 209 125
36 | LCL201-1 || 0.15 | 2 21| 385| 4 28
37 | LCL204-1 || 0.6 | 2 20 49| s 46
38 | LCL207-1 || 04| 2 20| o11| 0 8
39 | LCL208-1 0.15 2 25 0.43 0 19
40 | LCL210-1 || 078 | 6 27| 017] o 12
a1 | LCL211-1 | 016 2 2| o1| o 5
42 | Loz || o1s| 2 20| o023] o 12

(continued on next page)
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No | Theorem PHERBY(15) PrHERBY(15)
CPU | WC | ATOMs CPU | WC | ATOMs
43 | LCL214-1 0.16 2 25 0.15 0 11
44 | LCL215-1 0.15 2 26 0.19 0 12
45 | LCL216-1 0.16 2 25 0.09 0 7
46 | LCL217-1 0.15 1 20 0.13 0 8
47 | LCL218-1 0.16 2 24 0.12 0 9
48 | LCL230-1 0.16 2 28 0.16 0 10
49 | LCL231-1 0.15 2 27 0.56 0 24
50 | NUMO002-1 0.15 7 10 0.14 0 5
51 | NUMO003-1 0.14 1 8 0.13 0 7
52 | NUMO004-1 0.15 7 15 0.12 0 4
53 | PLAOO7-1 | 112.11 | 113 53 - - -
54 | PLAO16-1 || 147.49 | 151 66 - - -
55 | PLAO19-1 2118 | 23 36 - - -
56 | PLA022-1 9.81 15 31 - - -
57 | PLA022-2 8.61 14 29 - - -
HNE category Solved 36/128 Solved 50/128
58 | BOO004-1 0.15 5 11 0.81 0 17
59 | BOO009-1 3.08 10 36 6.49 6 36
60 | BOO010-1 0.16 6 17 74.71 76 44
61 | BOO012-1 1.06 6 31 3.20 3 26
62 | BOOO16-1 || 136.90 | 142 74 - - -
63 | CAT001-4 0.15 1 10 0.14 0 10
64 | CAT002-1 0.14 8 30 1.37 1 40
65 | CAT002-4 0.16 2 48 0.15 0 9
66 | CAT003-1 - - - || 266.48 | 268 145
67 | CAT003-2 0.15 2 2 1241 | 45 53
68 | CAT003-4 0.15 1 5 0.14 0 6
69 | CAT(004-1 0.24 7 28 3221 33 100
70 | CAT004-4 0.16 1 22 0.39 0 23
71 | CAT005-4 0.25 6 22 3.21 3 50
72 | CAT006-4 0.48 7 25 0.44 0 26
73 | CAT009-1 7.41 8 60 0.24 0 20
74 | CAT009-4 5.84 8 34 240 7 47
75 | CAT010-1 6.81 8 66 0.19 0 16
76 | CATO11-4 || 224.68 | 227 121 - - -
77 | CATO014-4 - - - 3472 | 35 80
78 | CATO018-1 0.16 2 13 0.16 0 14
79 | COL002-3 - - - 1.18 1 NA
80 | GRP012-3 8.25 10 40 0.51 0 19
81 | HENO003-3 347 8 40 0.10 0 13
82 | HENO0O5-1 95.10 | 96 48 - - -
83 | HENOOS-3 - - - 28.01 28 92

(continued on next page)
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No | Theorem PHERBY(15) PrHERBY(15)
CPU | WC | ATOMs CPU | WC | ATOMs
84 | HENO0O08-1 0.16 1 21 4.59 4 48
85 | HENOQO8-3 0.78 8 33 0.21 0 20
86 | HENO09-5 - - - 1202 | 12 43
87 | HENO12-3 5.38 8 77 0.28 0 21
88 | LDA003-1 444 | 15 61 0.38 0 22
89 | RNGO006-3 16.83 | 19 34 || 113.04 | 114 58
90 | RNGO037-1 1.08 6 21 0.59 0 25
91 | ROBO16-1 - - - 0.93 1 22
HEQ category Solved 28/106 Solved 31/106
92 | ANAQ02-2 || 136.15 | 138 69 - - -
93 | SET005-1 015 | 12 10 0.11 0 7
94 | SET007-1 0.16 8 12 0.14 0 9
95 | SETO011-1 0.15 5 7 0.12 0 10
96 | SET012-1 0.15 8 21 3935 | 40 44
97 | SET013-1 26.68 | 30 60 || 64.00 | 88 NA
98 | SET014-2 0.16 2 9 0.18 0 9
99 | SETO015-1 | 199.57 | 202 58 || 5637 78 NA
100 | SETO055-6 0.19 6 11 0.20 0 2
NNE category Solved 9/12 Solved 8/12
101 | CAT001-3 0.15 6 10 0.27 0 15
102 | CAT002-3 0.16 4 35 0.14 0 7
103 | CAT003-3 0.15 4 5 0.22 0 15
104 | CAT004-3 0.15 3 13 1.20 2 32
105 | CAT005-3 1204 | 16 29 - - -
106 | CAT006-3 1399 | 17 37 1.73 2 35
107 | CAT009-3 46.08 | 50 45 - - -
108 | CATO11-3 - - - 7.61 8 58
109 | CATO014-3 - - - 12.51 13 69
110 | GEO002-2 - - - 17.11 | 23 NA
111 | GEOO006-1 2602 | 28 41 92,15 | 92 38
112 | GEOO11-1 - - - | 46.46 | 46 56
113 | GEO026-2 - - - 1.46 2 25
114 { GEOO030-2 5.46 8 36 1.83 2 34
115 | GEO036-2 - - - 17.30 | 18 49
116 | GEOO039-2 - - - 2.75 3 22
117 | GEO040-2 0.17 4 17 0.17 0 10
118 [ GEO059-2 - - - || 56.45 | 57 59
119 | GEO077-4 - - - |f 133.71 | 135 33
120 | GRPO0O08-1 016 | 10 6 0.16 0 7
121 | GRP039-4 | 265.16 | 268 55 - - -
122 | NUMO009-1 0.33 2 7 0.41 0 4
123 | NUM042-1 - - - 0.95 1 10
124 | NUM139-1 0.20 2 23 0.17 0 1

(continued on next page)
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No | Theorem PHERBY(15) PrHERBY(15)
CPU | WC| ATOMs CPU | WC'| ATOM;s
125 | NUM180-1 1.61 21 24 0.75 0 7
126 | NUM183-1 0.20 2 37 1.41 1 13
127 | NUM228-1 0.20 6 23 0.18 0 1
128 | RNGO040-1 0.16 2 3 0.19 0 9
129 | RNG041-1 0.22 2 15 0.15 0 4
130 | SET019-4 - - - 0.69 0 10
131 | SET024-4 - - - 0.47 0 6
132 | SET025-4 0.21 24 6 0.29 0 4
133 | SET025-9 21.03 | 24 16 53.18 | 62 NA
134 | SET027-4 020 | 10 7 0.25 0 4
135 | SET031-4 020 | 16 10 - - -
136 | SET050-6 0.18 6 30 0.14 0 4
137 { SETO051-6 0.19 5 30 0.18 0 3
138 | SET062-6 5.48 8 16 0.50 1 9
139 | SETO063-6 773 | 34 21 13.51 14 17
140 | SET064-6 730 | 22 23 3551 | 36 26
141 | SET067-6 - - - 4649 | 46 27
142 | SET076-6 13.98 17 39 - - -
143 | SETO078-6 0.39 8 13 0.22 0 5
144 | SETO080-6 0.71 3 14 0.59 0 12
145 | SETO081-6 0.18 6 2 0.22 0 4
146 | SETO083-6 - - - 11.17 11 15
147 | SETO084-6 |l 153.79 | 156 56 || 101.92 | 102 21
148 | SETO085-6 89.56 | 94 59 0.50 0 8
149 | SET093-6 0.19 3 13 0.21 0 6
150 | SET094-6 9.16 12 47 - - -
151 | SET095-6 57.16 | 62 27 {] 100.31 | 101 25
152 | SET101-6 0.61 3 14 0.41 0 10
153 | SET102-6 0.18 5 14 0.23 0 4
154 | SET108-6 0.18 19 1 0.11 0 2
155 | SET117-6 0.17 10 13 0.19 0 4
156 | SET125-6 - - - 2364 | 24 21
157 | SET153-6 0.62 | 186 19 26.15 | 27 15
158 | SET167-6 0.19 S 26 3.07 4 14
159 | SET168-6 0.18 5 26 0.57 0 6
160 | SET187-6 30.21 34 21 3.21 3 11
161 | SET192-6 - - - 0.41 0 6
162 | SET193-6 - - - 0.57 0 9
163 | SET196-6 0.18 1 15 0.14 0 2
164 | SET197-6 0.17 2 15 0.13 0 2
165 | SET199-6 0.18 17 21 0.55 0 9
166 | SET201-6 - - - 27.58 | 28 23

(continued on next page)
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No | Theorem PHERBY(15) PrHERBY(15)
CPU| WC | ATOMs | CPU | WC | ATOMs
167 | SET203-6 0.20 6 22 1.62 2 12
168 | SET204-6 0.19 6 27 0.14 0 2
169 | SET231-6 0.18 3 18 0.17 0 1
170 | SET232-6 || 17.56 32 22 0.59 1 7
171 | SET233-6 || 17.61 34 22 2.11 2 10
172 | SET234-6 0.18 18 26 0.26 0 3
173 | SET235-6 0.17 20 16 1.14 1 15
174 | SET236-6 0.18 19 18 0.37 0 5
175 | SET238-6 - - - || 13.90 14 12
176 | SET239-6 0.61 8 26 0.27 0 5
177 | SET240-6 - - - || 21.42 22 21
178 | SET241-6 - - - 2,98 3 15
179 | SET242-6 0.20 4 3 0.15 0 3
180 | SET252-6 0.34 3 20 0.39 0 7
181 | SET253-6 0.20 12 20 0.39 0 6
182 | SET386-6 || 43.65 | 300 57 5.64 6 12
183 | SET411-6 - - - 435 4 16
184 | SET451-6 0.56 4 24 0.61 1 9
185 | SET479-6 0.19 10 37 0.14 0 3
186 | SET553-6 019 | 70 19 0.40 1 7
187 | SET558-6 || 0.19 4 3 - - -
188 | SETS564-6 0.52 2 27 - - -
189 | SET566-6 0.49 3 24 - - -
NEQ category Solved 67/174 Solved 80/174
[ MIXdivision || Solved 140/420 | Solved 169/420 |
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Table 6.6: PHERBY s performance by theorem category

Category Thms PHERBY(5) PHERBY(10) PHERBY(15) PHERBY(30)

HNE 128 33 36 36 36
'HEQ 106 21 27 28 28
NNE 12 7 9 9 8

NEQ 174 65 67 67 68
Total 420 126 139 140 140

master. Except the total number of theorems solved, PHERBY performs as well as
PrHERBY. Rather, PHERBY solved more theorems than PrHERBY if we exclude the
solutions of the master. The master of PPHERBY, however, has precedence over the
slaves if a proof found at the same time. From the observations, we might use instances
of PHERBY as slaves for future implementation.

CPU time varies showing no particular patterns between two systems. However,
WC time exaggerated with log-scaled y-axis reveals that the WC time in PHERBY
takes more than PrHERBY as shown in Figure 6.3.

It shows the WC time of the theorems solved by both systems. In the case of Pr-
HERBY, we compensated the WC time that is measured less than the CPU time due to
integer truncation by adding one. PPFHERBY solved the first 80 theorems immediately,
but PHERBY shows significant delays to solve them. Implementation details of the
systems make the difference. PHERBY controls each slave using Perl language scripts
while PrHERBY implements the whole control using C. PHERBY does not utilize
the whole given time solely to computations in this implementation. Its overhead to
capture outputs and close a session is also larger than PrHERBY’s.

Another difference of the two systems is scalability. An experiment in Table 6.6
indicates that PHERBY shows no scalability in the configurations of more than 15
machines. In fact, PHERBY configures the system by statically allocating time limit

to each atom selection heuristics according to the number of slaves already available.
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Figure 6.4: Comparison of the depth of the trees : HERBY vs. PrHERBY(15) and
PHERBY(15) vs. PPHERBY(15)

6.3.2 Comparison of proof trees

As shown in the previous section 6.2.1, the speed-up values imply that PrHERBY
can prove theorems effectively. As a consequence, it might generate smaller semantic
trees than HERBY. To verify this, we compared the number of atoms generated for
58 theorems solved by HERBY, PHERBY(15) and PPrHERBY(15) at the same time in
figure 6.4. PrHERBY might find a proof using IDDFS of the master. In this experi-
ment, the master has precedence over slaves if a proof is found at the same time. Those
theorems are excluded because they do not construct a semantic tree. Two graphs com-
pare the number of atoms of HERBY versus PrTHERBY(15) and PHERBY(15) versus
PrHERBY(15). Data from HERBY and PHERBY(15) were sorted according to the
numbers of atoms generated, in ascending order.

We are using the atom-generation scheme in which the same atom and its negation
are used at each level of a semantic tree. When more atoms are generated, the semantic
tree goes deeper. The master performs a series of resolutions to select an atom to send

to a slave, but these steps are performed separately in the master and do not affect
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Table 6.7: Mean values of the numbers of atoms

HERBY PHERBY (15) PrHERBY(15)

26.0 20.9 9.6

the construction of semantic trees. If the master sends an atom to a slave, then the
slave builds a semantic tree as if it had selected the atom. When 15 computers prove a
theorem, one or more is going to find a better proof than the serial case and the shorter
proofs are not a big surprise.

The average number of atoms in Table 6.7 clearly shows that PPHERBY generates
shorter semantic trees than the other two systems. It supports our claim that the atoms

sent by the master are useful enough to generally shorten the proof length.
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Chapter 7

Discussion

In this chapter, we give detailed observations and analysis of the factors affecting the

performance and scalability of systems. Finally, we suggest further enhancement.

7.1 System subsumption relationships

System subsumption relationship exists between systems if a system solves supersets of
the problems solved by other systems [SS98b]. We can reveal the comparative strength
and weakness of systems by analyzing it.

Table 7.1 lists theorems that were solved by either HERBY or PHERBY/(15) but
not by PrFHERBY(15). “-” indicates that the theorem was not solved. As shown in the
table, each group of theorems shows a very distinctive behavior. This fact exposes the
diversity of the TPTP library and the experimental foundation that no single strategy
most appropriately used in one subclass can solve other classes (which require very
different strategies).

As examples of this diversity, our experiments show that the system subsumption
relationships do not exist completely. Even though PrHERBY(15) is based on HERBY
and solved far more theorems (97 vs. 169) than HERBY, nine theorems were solved

by HERBY but were not by PPFHERBY(15).
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Table 7.1: System subsumption relationships (15 machines)

HERBY | PHERBY | PrHERBY HERBY | PHERBY | PrHERBY

Theorem Proof Proof Proof Theorem Proof Proof Proof
LCL042-1 - yes - CAT009-3 - yes -
LCL196-1 - yes - GRP(039-4 - yes -
PLAOO7-1 - yes - SET031-4 - yes -
PLAO16-1 - yes - SET(076-6 - yes -
PLAO19-1 - yes - SET082-6 yes - -
PLA022-1 yes yes - SET094-6 yes yes -
PLA022-2 yes yes - SET194-6 yes - -
BOO016-1 - yes - SET195-6 yes - -
CAT011-4 yes yes - SET558-6 - yes -
HENO05-1 - yes - SET564-6 - yes -
ANA002-2 - yes - SET566-6 yes yes -
CAT005-3 yes yes -
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Similarly, regarding the system subsumption relationship between PHERBY and
PrHERBY, PrHERBY(15) did not solve twenty theorems that PHERBY(15) solved
though PrHERBY did solve more theorems than PHERBY. PtHERBY otherwise sub-
sumes PHERBY.

Along with these phenomena, the system subsumption relationships do not exist
completely among PrHERBYs with different numbers of machines. In this case, the
strategy of distributing a number of atoms appears to be incompetent. Atoms from the
master might divert the proofs for some theorems.

IDDFS sequence prompts this behavior, because the distribution order of atoms is
not inclusive. For example, let us consider the atoms collected in table 7.2. Table 7.3

indicates the atoms distributed to each slave when PrHERBY uses 1, 2 and 5 slaves.

Table 7.2: Sequence of the collected atoms at the master

atomy | atomsg | atomg | atomy | atoms | atomg | atomsy

Table 7.3: Sequences of the atoms received at each slave

1 Slave 2 slaves 5 slaves

Sl 51 S2 Sl Sz Sg S4 55

1%t | atom; || atom, | atomy || atomy | atomsy | atoms | atomy | atoms

" | atomsy || atoms | atomy || atomg | atomy

34 | atoms || atoms | atoms

4th | atomy || atoms

5th | atoms

6th

Table 7.3 shows that the same slave takes different sets of atoms in different con-

figurations. This different sequence of atoms does not guarantee that PPHERBY will
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always find the proofs solved with fewer slaves although it will diversify attempts to
find proofs. Increasing the number of the same atoms is a way to relieve the symptoms,

but it should not deteriorate the overall performance with limited time constraints.

7.2 Scalability

In this section, we analyze the scalability of PFHERBY. We measured the system times
for implementing the message passing mechanism between machines and the ratio of

used atoms to generated atoms of the master.

7.2.1 System times

In PrHERBY, each slave utilizes most of the given time to construct semantic trees
and spends negligible amount of the time on the operation of receiving atoms from
the master according to experiments. On the other hand, the master spends substantial
amount of the given time to distribute atoms to each slave.

PrHERBY is highly CPU-intensive. We can estimate the time spent on the message
passing by measuring system times. In UNIX, the run time of a program consists of
CPU and SYSTEM time and system calls to measure them are provided.

To identify the overhead of the master, we compare the system times of the 218
theorems that were not solved under any configurations. We choose the unsolved the-
orems because the system time of the master for solved theorems varies too much to
determine any patterns the system has and the theorems are generally solved in a few
seconds in many cases.

Table 7.4 shows the average system time of the master with a different number of
machines. The table is divided according to theorem categories. With the increasing
number of machines, PPHERBY shows increasing system times but the increment is
generally very small compared to the addition of the number of machines. Even if the

number of machines is doubled, the system time is increased just by 2 to 3 seconds.

93



Table 7.4: Mean values of the system times in seconds

category Thms PrHERBY(5) PrHERBY(10) PrHERBY(15) PrHERBY(30)

HNE 70 29.1 314 323 34.7
HEQ 68 379 39.4 39.7 41.6
NNE 4 69.3 69.8 71.2 70.9
NEQ 76 284 30.2 30.3 311

Figure 7.1 shows the system time for each category. Unlike the mean values, the
graphs reveal particular patterns. Among the four of them, HEQ and NEQ show
smooth curves that do not present big differences in system times as the number of
machines increases. NNE category has too small samples to analyze, but the data
shows that the difference between 15 and 30 machines is very small.

For HNE category, the first half of the graph fluctuates according to the number of
used machines. In fact, theorems of PLA (Planning) domain in the field of Computer
Science show the behavior. The system time increases as the machines are added. The
theorems in the domain are also hard to solve in PrtHERBY experiments.

For HEQ category, theorems of HEN (Henkin Models) domain in the field of Logic
spends a third of the given time on the system time.

Because the analysis is based on the unsolved theorems, other than showing the
system behavior, its relevance with theorems to be solved is unknown. However, if
we assume that atoms contribute more in finding a proof as more atoms are generated,
we can expect that the scalability of PPHERBY can be achieved in the theorems of the

group not mentioned above.

7.2.2 Used versus generated atoms

The master generates a number of atoms through resolutions. These atoms are col-
lected and distributed upon requests from slaves. We measured what percentage of

the generated atoms were used for distribution and thus consumed. For the same 218
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unsolved theorems, Figure 7.2 compares the ratio of used atoms to generated atoms of

PrHERBY obtained as follows.

Used atoms

100

Generated atoms
As the number of machines increases, the ratio gets bigger meaning that PPHERBY

with more machines uses more atoms. The ratio, however, is below 10% in most cases.
If the atom supply is not sufficient, many slaves are going to work on their own without
taking the advantage of the competition caused by the atom distribution. In that case,
the situation is the same as running several copies of HERBY. On the other hand,
the system can use as many machines as possible while the atom supply lasts if the
overhead is negligible as the system times in this case. As a strategy of the master, we

can control the consumption rate of the generated atoms according to the number of

available machines.

2
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Figure 7.2: Sorted ratio of used vs. generated atoms with log-scaled y axis

The results summarized in Table 6.1 shows that performance generally improves

for HEQ and NEQ categories as the number of slaves increases. From the illustration
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of Figure 7.1 and 7.2, we can infer the scalability of PPTHERBY because the system
overhead is not proportional to the number of machines and the available number of
atoms is large enough.

There are thousands of atoms that can be distributed, leading to different proof at-
tempts while the number of different strategies is far less. Unlike SiCoTHEO [Sch97],
OCTOPUS [New98] and PHERBY [AN98], which are limited by the number of avail-
able strategies, PrPHERBY is scalable for theorems in many domains. The more slaves

become involved, the more closed semantic trees can be built for those theorems.

7.3 The number of clauses generated

In this section, we compare the number of clause generated. we choose the unsolved
theorems in PPHERBY(15) to find out the system’s particular behavior. The following
table shows a typical output of the unsolved theorem GEOQ02-1. After the theorem
name, the collected information of the master comes next. The information of each
slave follows. We explain each parameter below.

19 ../P97/GEO002-1+short+ran.p

XXXXXXXX CPU: 221.59 5YS:75.99 WC: 299 RES: 9492429 Nodes: 7036929 ATOMs: 7702 NATOM: 479
BASE : 56 REVISED CLS: 83 -GROUND: 0 -UATOM: 0

>> [§ 3] CP: 296.75 WC: 298 RES: 22706 ARE: 1114720 Nod: 415 SA:158 U: 12349 ASHs: 17 1 0119 0 6 4 4
>> [S 1] CP: 100.77 WC: 299 RES: 6217 ARE: 603329 Nod: 171 SA: 65 U: 16602 ASHs: 2 4 0 20 0 16 2 8
>> [§12] CP: 297.38 WC: 298 RES: 2299 ARE: 1684286 Nod: 74 SA: 72 U: 15703 ASHs: 4} 0 0 0 0 30 12 6
>> [§ 0] CP: 298.85 WC: 300 RES: 10327 ARE: 938520 Nod: 266 SA: 74 U: 26044 ASHs: 2 0 0 30 0 12 7 9
>> [§ 7] CP: 298.70 WC: 300 RES: 2232 ARE: 1657773 Nod: 78 SA: 73 U: 18078 ASHs: 1 0 4} 0 0 28 10 10
>> [S 6] CP: 298.85 WC: 300 RES: 3029 ARE: 1469343 Nod: 92 SA: 81 U: 19383 ASHs: 1 2 0 0 0 30 11 10
>> [S 2] CP: 298.60 WC: 300 RES: 5976 ARE: 1366756 Nod: 158 SA: 84 U: 23587 ASHs: 3 2 0 24 0 22 5 9
>> [S 4} CP; 298.01 WC: 300 RES: 4231 ARE: 652399 Nod: 134 SA: 64 U: 30892 ASHs: 4 0 0 27 0 15 5 2
>> [§ 8] CP: 150.27 WC: 300 RES: 1956 ARE: 1147073 Nod: 68 SA: 60 U: 15845 ASHs: 2 0 0 0 0 21 10 7
>> {$10] CP: 298.82 WC: 300 RES: 1730 ARE: 1171971 Nod: 61 SA: 52 U: 21203 ASHs: 1 1 0 g 0 18 8 7
>> [S 9] CP: 298.19 WC: 300 RES: 4802 ARE: 1931783 Nod: 116 SA: 88 U: 16519 ASHs: 3 0 6 0 0 25 11 16
>> [§ 5] Cp: 295.53 WC: 298 RES: 4416 ARE: 2530158 Nod: 116 SA:110 U: 11105 ASHs: 0 0 0 0 0 28 24 22
>> [$13] CP: 298.74 WC: 300 RES: 3537 ARE: 1888162 Nod: 97 SA: 81 U: 17328 ASHs: 0 2 3 0 0 31 8 11
>> [S11}] CP: 301.4% WC: 303 RES: 23154 ARE: 1128828 Nod: 420 SA:158 U: 11871 ASHs: 17 1 0119 0 S 4 5

We averaged the number of clauses generated (RES), which is used for constructing

semantic trees and the clause generated during atom selections (ARE). In addition, the
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RES the number of resolutions for IDDFS in the master
and for semantic tree construction in slaves.

ARE the number of resolutions generated in the atom selection
procedure of each slave.

CP, CPU CPU time.

SYS system time.

WC wall clock time.

Nodes,Nod number of nodes.

ATOMs generated atoms in the master.

NATOM distributed atoms.

SA number of atoms used for constructing a semantic tree.

U unit clauses generated.

ASHs frequency of the used atom selection heuristics.

number of clauses generated in the master (RES) are compared in Figure 7.3. The
data are displayed in ascending order according to the number of clauses generated by
slaves (ARE).

The graph shows that the master and the slaves of PPHERBY are dealing with sig-
nificantly different number of clauses. It shows that the number of clauses generated
for a semantic tree construction, which is denoted by Slave, is very small. In slaves
of PrHERBY, more clauses are generated in the process of selecting atoms than con-
structing a semantic tree itself. On the other hand, the master generates huge number
of clauses in general than the above two factors.

The graph clearly presents a uniform limit of the number of clauses that PPHERBY
can reach and implies that PPTHERBY spends CPU time mostly on executing atom
selection procedures which involve generating clauses.

From the observation, we consider that the further aspect of performance enhance-
ment is the efficiency of strategies. It is well known that the system equipped with the
equality-handling strategy is superior in solving the theorems with equality. Merely
adding it does not guarantee overall performance improvement, however, because it

tends to generate superfluous clauses.
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Figure 7.3: Comparison of the number of clauses generated (S1lave : clauses gen-
erated to construct a semantic tree, Atom : clauses generated to search for atoms,

Master : clauses generated by IDDFS in the master)

In PrHERBY, the atom selection heuristics have a substantial margin of improve-
ments. Those heuristics generate many clauses for atom selections and consequently,
limited amount of time is available for expanding a semantic tree deeper.

Newborn’s successful prover, THEO [NewO1], provides an insight of the enhance-
ment. THEO uses a large hash table to store information about clauses generated dur-
ing the search. Unit hash table resolution in THEOQ deletes a literal in a clause if the
negative hash code of the literal is found in the hash table. If every clause or resolvent
of PPTHERBY were hashed at generation time as THEO does, PFHERBY could achieve
many operations in O(1). A clause can be shortened whenever one of its literals has a

resolvable pair in the hash table, thereby increasing the likelihood of success.
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7.4 Semantic tree generation vs. Resolution-refutation

Semantic tree generation is a systematic way of implementing the Herbrand’s theo-
rem. It has been argued in Almulla’s thesis [AIm95] that the semantic tree generation
method can grow to become no less than the other practical methods for detecting
unsatisfiability. As a proof of the argument, Almulla presented several theorems for
which the semantic tree generation gave far better results than resolution-refutation.

We verified whether the argument regarding the usefulness of semantic tree gen-
eration is still valid. For all examples—Pigeonhole theorem [Pel86], Arbitrary graph
theorems [Pel86, Urq87], Foothold theorems, and Shoe-Boxes theorems— HERBY
and THEO showed immediate proofs with differences that hardly provide any mean-
ingful interpretation. Therefore, the assertion that there are theorems for which the
semantic tree generation gives better results is no longer valid with these examples.

HERBY and THEO that Almulla had used for the tests have been improved sub-
stantially for the past several years. Especially, HERBY adapted many successful
strategies of THEO. For example, atom selection heuristic 4, maintaining unit list, is
an adaptation of THEO’s unit resolution strategy.

Basically, there exists a correspondence between the two methods as mentioned
in section 4.1. Although the performance shows that the semantic tree generation is
still weaker than the resolution theorem prover, THEO, with the absolute metric of the
number of theorems solved, the difference is largely related to the sophistication of the
implementation, not the power of the approach.

We strongly believe that the semantic tree generation can be as good as the other
methods for proving unsatisfiability, including the resolution-refutation method. Fur-
thermore, it has exceptional possibilities of linearity and scalability as exploited in this

thesis.
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Chapter 8

Conclusions

In this chapter, we summarize our work and suggest possible extensions.

8.1 Summary

We have the idea of combining resolutions to the semantic tree construction because
of the observation that most semantic trees tend to be thin. Linearity is favored in var-
ious theorem provers due to its simplicity and easy applicability of several strategies.
Because the strategy of building linear semantic trees is incomplete, we introduced res-
olutions to provide closure of semantic trees and envisioned a strategy of integrating

semantic trees with resolutions. This combination strategy has some prospects:

1. As the linear property of semantic trees suggests, applying resolvents to obtain
closure is a promising way to lead to a proof. Applying a resolvent is legitimate,

because it is a logical consequence of the resolved clauses.

2. Different strategies tend to complement each other since no single strategy per-

forms optimally on all theorems or in every area.

3. Semantic trees and resolution-refutation proof trees are convertible to each other.

Once a resolution-refutation tree is built, atoms to close the corresponding se-

101



mantic tree can easily be obtained.

4. Sophisticated strategies used in resolution-refutation provers can be applied to

refine atom selections.

With these prospects, we effectively integrated the semantic tree construction with
resolution-refutation by building a parallel semantic tree prover, PFTHERBY. Among
the several design alternatives of parallelization, we used iterative deepening depth-
first search to explore the search space at the master side. Slaves constructed semantic
trees on their own but got assistance by asking the master for atoms when their use-
ful strategies ran out. In addition, we proposed parallel chained-resolution grounding
scheme, in which each slave tries to take different instances of the same atoms.

The implemented system followed similar schemes such as strategy parallelism
[WL99] and scheduling method [SW00]. The schemes were to perform several strate-
gies competitively or try to find adequate strategies in advance. PPTHERBY performed
resolutions in the master in an effort to find suitable atoms. The atoms were transferred
to slaves competitively in very diversified orders and with opportunities for taking dif-
ferent instances.

We performed experiments with the 420 CADE-14 selection list, which is a part of
the TPTP library. We compared the overall performance of three systems—HERBY,
PHERBY, and PrHERBY. Our experiments demonstrated that PP[HERBY significantly
outperformed the semantic tree theorem prover, HERBY and PHERBY, the first paral-
lel version of HERBY. Moreover, it was usually able to build shorter closed semantic
trees.

We compared the system time and the consumed number of atoms among various
system configurations of PrTHERBY. The comparison showed that the atoms generated
in the master were consumed rapidly as the number of slaves increased but the master
was still generating enough atoms. Furthermore, the system time increased very slowly
as the number of slaves was increased, showing that PPTHERBY is scalable in many

domains.
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Finally, we presented the number of clauses generated from the master, from slaves
to find atoms and from slaves to construct semantic trees.

In our comparisons and discussions, we provided aspects that could be enhanced. A
section is devoted to the review of the methods we discussed: semantic tree generation

versus resolution-refutation.

8.2 Future work

e Further work to show a minimum proof is required. Not all the atoms selected
contribute to a proof. Keeping atoms that contribute to the proof enhances un-
derstanding of it. One possibility would be to use the same IDDFS scheme to
construct a semantic tree at slave side. The semantic tree would be built using the

IDDEFS scheme, reordering atoms selected so far according to their importance.

e Demodulation and paramodulation strategies have not been incorporated into
the system. These methods are known to generate unnecessary clauses. But this
disadvantage could be overcome in PrHERBY by applying the rules to atoms
generated by the master. Specifically, parallel-chained demodulation would be
advantageous, because it would give a different copy of demodulated resolvents

to each slave.

e Although we experimentally measured the efficiency of the theorem provers,
PrHERBY, PHERBY and HERBY, an analytical study of the efficiency of the-
orem proving strategies has emerged [PZ97]. Further research into the theoreti-
cal analysis of theorem proving strategies could supplement the work described

here.

e The current scheme delivers atoms upon requests by slaves. Information about
how atoms are generated can also be included at the time of delivery. The slave

then repeats the resolutions and increases the number of clauses. This strategy
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is an extension of the BCR scheme but more context sensitive.

e The current parallel system is static in the sense that communication between the
master and slaves is unidirectional and does not include any active information
to affect the decision of atom selections. If atom selection procedures could be
improved substantially, as discussed, decisive information obtained from various

techniques of decision making could be used to enhance performance.
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Appendix A

Experimental results

A.1 HERBY versus PrHERBY(30)

The table in this appendix lists the results of experiments on HERBY and PrHERBY
(30 machines) with the theorems of CADE-14, MIX division.

The first and second columns show the sequential numbers and theorem names,
respectively. The Prf columns indicate whether the theorem is solved(‘O’) or not(*-
’). The CPU columns give the CPU time. The WC columns give the wall clock time.
The SYS column gives the system time taken for the master to implement the parallel

strategy. When a slave finds a proof, the system time is negligible and is indicated by

L3R4

The RES column contains the number of resolutions generated until a proof is
obtained or the time limit is reached. For PrHERBY, it is the resolutions generated by
the slave that found the proof if there is a proof. Otherwise, it is the ones generated by
the master. The number of resolutions is equivalent to the number of clauses produced.

The Node columns give the number of nodes generated until a proof is obtained
or the time limit is reached. For PPHERBY, it is the nodes generated by the slave that
found the proof if there is a proof. Otherwise, it is the ones generated by the master

using IDDFS.
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The At om column contains the number of atoms generated by the master until a
proof is obtained or the time limit is reached. The UA column contains the number of
atoms distributed by the master to slaves. This number cannot exceed the number of
atoms in the At om column. The SA column gives the number of atoms generated by
the slave that found a proof. A ’NA’ in the SA column indicates that the master itself

found the proof.
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Table A.1: HERBY vs. PPHERBY(30) : test results

HERBY PtHERBY(30)
No || Theorem | ™p [ cru Jwe[node ] safle] ceul sys|we] RES Node | Awm | vA [ sa
1 [[oreoss2 [l 0 1213 [ 13 | 334 | &2 [ o 042 . 0 1831 9 2006 | 217 | 19
2 || LcLoos-1 - | 20787 | 300 | 723 | st || - | 2727 | 2329 | 299 | assoeas | 1749505 | 291031 | 5584
3 || Lcroosa - [ 20685 | 300 | 754 | a5t || - | 26555 | 2898 | 299 | s71ss03 | 2328065 | 262316 | 5935
4 || Lcwoosr || - [ 30591 [ 306 | 233 | 99 [| o | 5747 | ss2 | 66 | 1848666 | 644968 | 121883 | 1118 | NA
s || LcLoos-1 - 129881 [ 300 ] 313|121 o 1776 ] 294 | : 503820 | 215469 | 37760 | 644 | NA
6 || LcLoto-t - | 20894 [ 300 [ 450 [ 146 || © 027 | 005 0 4728 2052 655 | 133 | NA
7 [ eeronra || - Jaos72 [ 304 | 250 | 102 [ o 541 | 099 7 162635 7079 | 13908 | 532 | Na
8 || Lcroiz1 - [ T29812 | 300 | 427 | 206 || - | 25890 | 3820 | 299 | 8586406 | 3438081 | 95967 | 2112
9 | Lcros . | 30416 [ 304 T 216 | 99 || - | 25720 | 3962 | 299 | 8949401 | 3535361 | 100112 | 2312
10 || Lcros - | 29825 | 300 | a67 | 199 || - | 25905 | 3661 | 299 | 8757643 | 3315713 | 37183 | 3003
1 || weroter || - [ 20013 [ 300 | 307 | 133 || - | 25738 | 3797 | 209 | sso7239 | 3as0s17 | 27891 | 3598
12 || o171 . 6427 | 66 | 86l | 398 || - | 26150 | 3475 [ 209 | 6296743 | 3153921 | 59772 | 2255
13 || Lcrois1 . 2736 | 28 | 778 | 398 || - | 25883 | 3756 | 299 | 8899194 | 3358209 | 26248 | 2699
14 || Lerozea || - | 20865 [ 300 [ a3 [ w21 || o 915 | 155 | 1 27243 | 119622 | 23929 | 577 | Na
15 §| LCLo23-1 - |30s51 | 306 [ 33 [ 126 of 1785 ] 277 | 2 529893 | 232180 | 39311 | 463 | NA
16 || LcLoza-1 - | 29898 [ 300 | 184 | so || - | 25472 | 4261 | 299 | 10551036 | 3972097 | 52240 | 1454
17 || Lowozs || - | 29959 | 300 | 147 | 66 || © 086 ) 1 338 38 2951 | 288 | 23
18 || Lcrozs-1 - | 30220 | 302 | 160 [ 72 || - | 26766 | 2964 | 209 | 7515986 | 2533377 | 183142 | 1086
19 || Lorozo-1 - 20871 [ 300 150 73] o se1s | 1506 | 100 | 4179814 | 1245655 | 118125 | 885 | nNa
20 || Lcroso: - | 20956 | 300 | 137 | e3 || - | 28222 | 1548 | 299 | 4ssea20 | 1249281 | 162434 | 1096
21 || Loross1 || - | 30650 | 307 | 320 | 155 || o 009 | o004 0 3138 1378 158 15 | Na
22 || Lcross-1 - | 20738 | 300 | 423 | 205 || - | 27122 | 2551 | 299 | 6041226 | 2292225 | 128597 | 1594
23 || Lclose1 || - | 29886 | 300 | 287 | 136 || - | 25904 | 3797 | 299 | 9631845 | 3388929 | 183622 | 1849
24 || LcLose- . | 20959 [ 300 | 123 | sa || - | 24725 [ s059 | 299 | 13781101 | 4283005 | 414304 | 758
25 || LcLodor - | 30065 | 300 | 131 | ss || - | 27595 | 2152 | 299 | 6639503 | 1725953 | 264954 | 879
26 || Lowoa21 || - [ s0s03 | 305 | 323 [ 1ea || - | 28173 | 1628 | 299 | s3a2735 | 1219585 | 286915 | 938
27 || Lowoasa || - ] 29914 [ 300 | 146 [ 66 || 0 | 2302 N 604 70 | sas97 | 356 | 39
28 || LCLO47-1 - | 20970 | 300 | 181 | 74 [| - | 24327 | 5425 | 299 | 13101658 | 4865025 | 162844 | 1220
29 || LeLods-1 || - | 29966 | 300 | 200 | 76 || - | 26520 | 3173 | 299 | 7440721 | 2688001 | 227146 | 1366
30 || LcLoss-1 - | 20958 [ 300 | 185 | 75 [[ - | 24041 | 4735 | 200 | 11543018 | 4218881 [ 205218 | 1332
31 || Lewoso-r f| - | 29959 | 300 { 17t [ 76 || - | 27114 | 2656 [ 209 | 6491842 | 2313217 | 200623 | 1387
32 || vowosia || - ] 29952 | s00 | 169 | 73 || - | 26933 | 2824 | 209 | ess1asz | 2369025 | 232601 | 1497
33 || Lcwos2-t - | 20953 [ 300 [ 183 | 74 || - [ 24801 | 4060 | 299 | 11973121 | 4399617 | 198896 | 1336
34 || LCLOS3-1 - | ao176 | o2 | 222 | sa || - | 25138 | 4537 | 299 | 10539724 | 3895809 | 291465 | 1379
35 || rcLoss-1 . | 20963 [ 300 | 167 | 68 {| - | 26900 | 2836 | 299 | esorses | 2424833 | 225262 | 1479
36 || Loross-1 || - | 29945 | 300 | 153 | 62 || - | 23795 | 5916 | 299 | 14511912 | s467137 | 61054 | 250
37 || Lowosz1r [ - | 20950 [ 300 [ 197 | 75 || - | 23705 | 6020 | 299 | 15011375 | ss27553 | 174784 | 1339
38 || LcLoss - | 20960 | 300 [ 187 | 75 || - | 25252 | 4478 | 299 | 10960105 | 4009985 | 187007 | s61
30 || rcrose-1 - | 20964 [ 300 | 179 | 73 J| - | 24085 [ 4698 | 299 | 10994036 | 4045313 | 257752 | 1359
40 || Lcwoso-r || - {29995 | 300 | 179 | 73 || - | 25604 | 4126 | 209 | 9900168 | 3520513 | 296043 | 1473
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HERBY PrHERBY(30)
No |} Theorem |=p | cru T we] Node [ sa[[pr] cru sys [we ] RES Node | Atom | UA [ sA
a1 I orosar | - | 29860 | 300 295 | 126 |l © 0.75 - 1 397 47 2092 | 342 | 29
2 || Leros-1 || - | s0117 | 301 251 | 128 || - | 27626 | 1956 | 209 | 5201004 | 1687553 | 125685 | 364
43 || rcrossa || - | 29847 | 300 317 | 138 || - | 24680 | 5034 | 209 | 12974805 | 4379649 | 300579 | 1606
aa || veroror | - | 29999 | 300 209 | 90 |{ - | 27802 | 1874 | 209 | 4778464 | 1470465 | 216568 | 1678
45 || Lcrort- || - | 29943 | 301 387 | 174 || - | 25085 | 4621 | 209 | 12490780 | 3781121 | 354202 | 1747
46 || Lovorsa || - | 29748 | 300 614 | 286 || o | 1798 | 266 | 21 542550 | 191984 | 40086 | 1404 | NA
47 || Lovosor || - | 29933 | 300 180 | 82 || - | 28308 | 1497 | 299 | 4052509 | 1188865 | 193636 | 1080
48 || crossa | - | 29807 | 300 693 | 338 || o | 6941 [ 1700 | &7 | 3867130 | 1401587 | 67839 | 1214 | na
49 |[ Lorossa [ - [ 0262 | 303 | 2427 [ 146 || o 352 | 116 5 220223 85514 -| 13208 | 684 | NA
so || Lcrosz1 J| - [ 29901 [ 300 259 [ 121 || o 095 | 033 2 40667 15954 3452 | 380 | NA
51 || LcLoss-1 || - | 31022 | 310 807 | 179 || o | 5130 | s12 | 61 | 1996955 | 696010 | 58940 | 1430 | NA
52 || Lcroso-1 || - | 299.88 | 300 w5 [ 210 [ - | 26750 | 2059 | 299 | 6249822 | 2521601 | 153612 | 1963
53 || Lcrosor |[ - | 30088 | 303 s60 | 262 || - | 24611 | 4991 | 299 | 12633823 | 4209153 | 328705 | 2884
sa || wcroot1 [ - | 15866 | 160 865 | 398 || - | 26795 | 28.83 | 200 | sosa365 | 2485761 | 219086 | 2554
55 | LcLos21 f| - | 297.80 | 300 694 | 320 || - | 27008 | 2678 | 209 | 7202183 | 2196993 | 245851 | 2687
s6 || Lcross1 || - | 16408 | 165 s64 | 398 || - | 27971 | 1694 | 200 | a1mie00 | 1316865 | 191155 | 2649
s7 || Lcross1 || - | 30059 | 302 264 | 120 || - | 25498 | 4139 | 209 | 10168643 | 3693569 | 166817 | 2253
s || Lcroos-1 || - | 29773 | 300 751 | 365 || - | 26371 | 3301 | 209 | 7797425 | 2727425 | 248256 | 2849
so || Lcrion1 || - | 30352 | 304 1 | 122 || o 091 | on 1 17666 7654 1763 | 401 | NA
60 || rcLioz-1 || - | 29886 | 300 m | 5| o | ms ]| a3 [ 11s 858593 | 281333 | 75936 | 1663 | Na
61 || LcLiosr Il - | stieo | si2 | 1in0s | 128 || - | 28143 | 1533 | 209 | 3266652 | 1285633 | 89207 | 450
62 || LcLioa1 || - | 30986 | 310 05 | 93 o 151 | 019 2 20926 8129 292 | s08 | Na
63 || LcLior1 || - [ sonso | 303 350 | 168 || o 020 | 000 0 1210 820 103 21 | NA
64 || Lcrios-1 || - | 29810 | 300 418 [ 205 || o 513 | 042 6 43021 14981 6670 | 692 | Na
65 || weLior | - | 29957 | 300 151 | 68 || o 841 . 8 634 82 | 31266 | 560 | 43
66 || oL || - | 20951 | 300 m | sl o 030 | 010 1 175 3653 678 0| NA
67 || vounz1 || - | 29950 | 300 125 | 58 || - | 24352 | 5357 | 299 | 15111158 | 4701185 | 312312 | 1149
68 || Lcunsa || - | 20961 | 300 19 | ss || - | 26052 | 3634 | 299 | 10689767 | 3057665 | 270465 | 1210
69 [ LeLiar || - | 20952 | 300 153 | 67 || - | 26055 | 37.08 | 299 | 10867888 | 3061249 | 311622 | 1197
70 || vounsa || - | 20961 | 300 147 | 67 || - | 25032 | 3772 | 299 | 11369372 | 3260417 | 232231 | 1117
71 || Leuist || - | 29948 | 300 135 | 62 || - | 25702 | 4039 [ 299 | 11537157 | 3327489 | 323047 | 1238
72 || Lcunst {[ - | 20924 | 300 370 | 175 || o 288 | 066 4 96981 48591 6890 | 698 | NA
73 || Lcuizoa I - 3667 | 38 789 | 398 || o 330 | 078 4 120688 50089 9009 | 617 | NA
74 || Louizin || - | 20816 | 300 303 | 146 || - | 26725 | 2984 | 299 | 6980937 | 2607105 | 122833 | 2019
75 || LcLizs-1 || - | 29896 | 300 279 | 134 || o | 26026 | 1834 | 280 | 4128455 | 1559048 | 101397 | 2166 | Na
76 || Lozt || - | 20826 | 300 769 | 366 || - | 27920 | 1602 | 209 | 3408373 | 1397761 | 60651 | 2358
77 || Louizst | - | 30257 | am 280 | 134 || - | 27845 | 1832 | 209 | 4052916 | 1585665 | 73627 | 1881
78 §| LcLasor || - | 20782 | 300 367 | 176 || O 005 | 001 0 673 324 51 0| NA
79 || vousia | - | so127 | a2 331 | 164 || - | 27455 | 1876 | 200 | asa004 | 1675777 | ssses | 1715
80 || LcLisz1 || - | 20904 | 300 29 | 129 || o 1.56 ) 1 584 61 9552 | 439 | 32
8t || Lcuisza || o 0.00 0 5 2 || o 0.12 ; 0 35 5 0 o 2
82 || Lcusz1 || o 001 0 9 3| o 0.10 . 0 7 13 0 4
83 |l LcList || o 001 0 9 3 [ o 0.13 . 0 80 13 0 o] 4
84 || LcLios1 || o | 9825 | o8 us | 97 o 034 ) 1 828 87 1246 | 138 | 16
8s || LcLisst1 || - | 29927 | 300 266 | 18 || - | 26133 | 3515 | 209 | 10706189 | 2659329 | 510346 | 2153
86 || LcLios1 I - | 29902 | 300 25 | 118 || - | 26049 | 3657 | 299 | 11180372 | 2886657 | 535771 | 2218
87 || LcLzoit || - | 29909 | 300 267 | 127 || 0 656 | 127 8 299621 70691 | 34606 | 874 | NA
88 || Lcraoat || - | 30363 | 304 3 | 137 || o 0.12 ) 0 2@ 31 770 93 | 13
89 || Lcroo71 || o | sse9 [ 86 a6 | 9 [ o 0.12 . ) 175 2 615 67 | 10
90 || Lcros1 [ o | 2487 | 25 169 | 67 | o 0.20 . 0 255 3 308 97 | 16
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HERBY PrHERBY(30)
No || Mheorem 17 T cpu | WC | Node | SA || Pf | CPU | svs | wCc | ®Es Node | Atom | UA [ sa
ot J] roraior J - [0 [ 300 | 280 [ 128 o [ 000 -T o 237 28 758 | 164 | 10
92 || cazia [[o| oo | of u| 4l o] on N 109 15 362 6| s
93 [ reczisa [ o | o2r ] o si| ] o] e -] 158 19 g2 | | 9
o4 [ Loaier JJ o 06| of | s o] on - o 124 18 | ]| s
95 | tazis1 [ o] o2 | of si| wl ol on - 237 23 | 1086 | 142 | 12
96 || Loaier || o | 217 | 28] w0 | e { o] ous -] o 139 19 sz | a8 | 9
o raurt T o] e | 5| 2| o7 o] on -1 o 157 1] 1w [ w9
98 || Loags ff o f w38 ] o8| 22| w7 o o6 -1 330 40 904 | 133 | 13
90 |[ rerazar JI - [ 30303 | 304 | 203 [0 [| - 2708 | 2302 | 299 | 7258510 | 1730049 [ 368212 | 1612
100 || reeaser [ o [nzma [ s | 268 [ 108 ] o | o2 -] o 236 28 | 105t | 1| 1
w01 || Laasir || - [299a6 [ 300 | 303 [ 133 f o | oss -] o 532 51| s | 17 | 17
102 || teeaser | - T 299s0 [a00 | st | m | - | 23608 | 6141 | 299 | 15142003 | seseres | 143205 | um
103 | nomooz1 [l o | 0ot | o 5| sl o] o - e 143 14 0 o] s
104 [ nomoos1 o 1 o | o] 2] off o 015 - 261 23 2w 27| 7
05 || vomoost [ o | oot [ o 7] 3 o] on -] e 81 9 0 o] 4
106 || Pracoss [ - | 20886 [ 300 | 17 | 76 || - | 26389 | 3360 | 299 | 13202915 | 1925121 | o27598 | s70
107 || pracosa || - | 29950 | 300 | 101 | sa [| - | 26416 | 3312 | 299 | 12528421 | 1933313 | s30214 | 804
108 || pLacost || - | 20044 | 300 | wss | s J| - [ 26313 | 3343 | 209 | 13233350 | 1923073 [ o18a40 | w0
109 || pracos2 [ - [ 29951 [ 300 | w7 | 7 || - | 26556 | 3195 | 299 | 12615378 | 1925633 | ssoo23 | sss
110 || pracort || - {20060 | s00 | uso | 70 || - | 25206 { 4430 | 299 | oerar69 | 3182081 [ 772496 | 784
il || pracost | - [ 20948 [ 300 | aor | a4 [[ - | 26377 | 3355 | 299 | 12019301 [ 1957889 | 877135 | ses
12 || peacos-t || - [ 20956 | a0 | 1s3 | 7o || - | 26402 | 3271 | 299 | ossee00 | 2019841 | s27120 | sa9
us [ pracos2 J| - [ 20944 T30 | w01 | sa [[ -] 26502 | 3259 | 299 [ 0731320 | 2011649 | 781410 | w65
114 || pLaotor [[ - [ 29934 [ s00 | uimr | 76 || - | 26530 | 3213 | 299 | r2a03es0 | 1934337 [ 32606 | so2
s |[ eeaonin |- {29952 [ a0 | v [ 73 [ - | 26548 | 3re1 | 299 [ 13279368 | 1911207 | 75008 | sm
16 || praoniz || - | 29952 [ s00 | 185 | st || - | 2esss | szas | 200 [ vnaos7re | i0aasm | 7esnaa | s
17 || praorzr |- 20956 [ s | v [ m [ - | 26445 | 3287 | 200 [ 13837951 | 2001021 [ 018513 | se7
us || praois1 J| - [ 29952 [ 300 | ast [ || - | 26416 [ 3320 | 299 | 13045213 | 2001921 | sasazs | so2
119 [[ praotar [ - {20046 | 300 | 177 | 7w || - | 26461 | 3211 | 299 | 13209972 | 1931777 | se26ss | 867
120 || praoiaz || - [ 20951 [ 300 | 1 | 7 || - | 26710 | 3034 | 299 | 10951544 | 1844737 | 7ag2sa | 722
121 || praoist || - | 29945 | soo | 1ss | s || - | 26385 | 3384 | 299 | 13276267 | 1939969 | 930768 | s70
22 || eraoter J| - T a2z 300 | we [ 75 || - | 25805 | 3841 | 200 | sizaery | 2637825 | eesos0 | s76
123 || praoist | - [ 29873 | 300 | 180 | 83 || - | 26366 [ 3292 | 299 | 12510835 | 1902593 [ sas30 | sss
124 || peaotor J| - [ 20967 [ 30 | v | 76 || - [ 25752 | 3043 | 209 | s363a46 | 270757 | 673202 | 869
125 |[ praozit | - [ osoas [ a0 [ 177 [ w6 [[ - [ 26287 | sas0 | 299 [ 12263421 | 2100785 [ 89131 | 9e1
126 || pLaczzr | o | 246 | 2 1ses | s || - | 26223 | 3458 | 299 | 12501456 | 2064385 | 952165 | 9043
27 || praoze2 | o | aes [ 4| | st || - | 26120 | 3584 | 209 | 1aszes7o | 2134017 | osw3e7 | 03
128 || pracest || - | 29880 [ 300 | 1 | w3 |[ - | 26177 | 51 | 299 | 14265705 | 2117633 | 9sa2s0 | o1
129 [ Boooos1 || o | 13s | 1| e | 26 || o | 1os B 1862 30 | w0 | 24 | 21
130 || Boooor-1t | - [ 29764 300 | 179 | 76 || - | 21844 | 7887 | 299 | 15867830 | evasses | aes109 | 1424
131 || Boovos-1 || - | 29996 | s01 | 183 | m [[ - | 21070 | 7rs1 | 299 | 15977998 | eor2001 | 424276 | 1367
132 [ Boooos1 o] 1| 1] | x| o] ewm N 2733 63 | 15051 | 302 | 28
133 || Boooto-t J| - 200t Ja0 | 10| e2f] o | 1m0 HEE 3963 75 | 19110 | aso | 28
134 || Booor-1 J| - [ 29961 [ 300 | 13| e [[ o | o0m -] o 2205 39 [ 16571 | w7 |
135 || moootar || - [ 2779 [ 300 | 155 | 75 [ - | 21845 [ 7935 | 299 | 16380115 | 6055009 | av2932 | 1000
136 || Booots-1 || - [ soris | ze2 | 1es | m || - | 21453 | 311 | 299 | 16971908 | 7128577 | asesws | 132
137 || Boooter || - | 29809 | 300 | 170 | 72 || - [ 22077 | 7651 | 299 | 15860579 | 6610433 | 452440 | 1243
138 || oooi7-t || - | asss0 | 300 | 165 | o [ - [ 22076 | 7609 | 299 | 15833820 | ecv0r93 | asiizs | 1302
139 || caroor-t J| - [ 20873 | a0 | a3 T uas [| - | 22486 | 7208 | 299 | 16289640 | easo0ss | 196937 | 3298
140 || caroora || - | 29920 [300 | i [ 200 [ 0 [ 1w NEE 299 33 [ 12255 | 364 | 21
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HERBY PHERBY(30)
No i Theoem I7er T CPU | WC | Nods | SA || P | cPU | sys | wC | Res Node | Awm | UA | SA
141 || carooz1r J| - [ 29824 [ 300 [ 36t | 156 || - | 22873 | 6820 | 299 | 16080624 | 6184449 | 168507 | 2516
142 || carooo4 JI - T 2soar fa0 | a3 fuso [ of oes ] 02| 1 siro | 19 | 1ms 0| Na
143 [ caroos1 || - [ 29857 [ 300 [ a1 [ 165 || o [ 10339 -] 106 20040 868 | 112162 | 2164 | 139
144 || caroos2 J| - | 29934 [ 300 | 08 ] o[ o | 715 NI 688 g7 | 216081 | 1311 | s
4s || carooas o ] 000 | o ] sl o] o -] o 181 21 o] ols
146 || carooat || - [ 29853 [ 300 | 203 [ 127 || o | 16548 - | e 71054 3306 | 145833 | 2875 | 154
147 || carooa-s || - [ 29916 | 300 | 323 [ 147 || o | om K 1040 104 | 10599 [ 30 | 30
148 || caroos4 [ o[ os| o] s o] ox B 2759 338 | 103 | 3w [ 31
149 [ carosa || o ] o | s o] 1e -2 1804 27 | 12s4s | 609 | 42
150 || caroos-1 || - [ 29805 [ 300 [ 262 {120 [ o | 034 -1 o 679 N EE
151 || catoos-a || - 29920 [ 300 | 345 [ 145 || 0 | oes -{ 1 1080 144 | 1s09s | 4 | 37
152 || carotor J| - [2877 [ 300 | 261 [ s f[ o | 018 -1 o 427 n| o] w|n
153 || caroros || - | 29908 | 300 | 341 [was J| - | 23100 | 660 | 209 | 17854728 | ss76193 | 599313 | 2454
154 || caronia || o | 269 | 23| w2 | m [ o] u9ss - | 120 14331 1833 | 170945 | 1238 | 152
155 || catoias || o | ss3 | s| ]| 2| o] 136 - s 2255 267 | 30853 | 908 | 63
156 || carorg1 [l o[ o009 | o as| 1] o] om -] e 48 38 w| nfn
157 || caroigs J| - | 29848 | 300 1 367 [ 157 J| - | 22756 | 6073 | 299 | 18098163 | sossras | seaat9 | 1sss
158 || cmoort J| - | 20939 | 300 [ 253 [ 108 [[ - 227908 | 6951 | 209 | 16309993 | 5759489 | esiz07 | 1347
150 || cmoosa || - T 20048 [ 300 | 7] 35 || - | 2m70 [ 2008 | 299 | 7909180 [ 1526273 | 288136 | 62
160 || cvoort || - [ 29949 [ 300 | 2ot | w0 || - | 29328 | 448 | 200 | 1ssearo | 239105 | 140579 | 844
161 || coroo23 || - | 20952 [ 200 | 28| e J[ o | 116 [ 00s | 1 12573 2693 886 o[ v
162 || cowooss J| - [ 20930 [ 300 | 297 [ w0 [| - | 26425 | 3305 | 209 | 7issure | 2627585 [ 361738 | 2084
163 || cowoos4 || - [ 20088 | 300 | 314 [ 131 || - T o648 | 3250 [ 299 | 7151084 | 2627585 | 364603 [ 2296
164 || corooss [| - [ 20861 | 300 | 357 | 1a9 || - {26504 | 3200 [ 209 | 7238007 | 2662013 | 363255 | 2363
165 || coLooss || - [ 30070 | 301 [ s00 [ w29 || - [ 26495 | 3209 [ 299 | 7181374 [ 2634753 | 3ese93 | 2226
166 || cooos7 || - [ 20005 | 300 | 327 [ uss J| - [ 2727 [ 2507 | 209 | sesvosi | 1094241 | 437931 | 2368
167 || corooss || - [ 30040 | 301 | 3e1 | us3 [| - [ 2728 [ 2589 [ 299 | soasos7 | 1992103 | asaast | 2453
168 || coLooso || - [ 29930 | 300 [ 306 | 120 [| . | zrea1 [ 2nua | 209 | eramss | 20s3121 | azs1sa | 2255
169 || coosa2 || - 120937 [ 300 | 320 [ 130 || - (2739 [ 2563 | 299 | sesazst [ 101329 | 4s08aa [ 2235
170 || coroas || - | 29952 | 300 | 287 [ wm || - | 27143 | 2580 | 299 | sssoses | 1968641 | 43466 | 2310
171 || couosaq [| - [ 29952 [ 300 | 280 [ 123 || - | 21198 | 2520 [ 299 | seaasos | 1ssors1 | 433438 | 2330
1 Torrozs fl o [ 02| o @ 6]l o] 0w -1 o 1332 7] w3 | 27| 2
173 || Greosta || - [ 20899 | 300 | 245 | 122 || - [ 28743 | osa [ 299 | 1easrer | so1793 | esnas | 2330
174 | oreos21 || - [ 20954 [ 300 | ami | ss || - [ 28786 | o8 [ 200 | 1s3357 [ 7roser [ eve3s | 2530
175 [ orposa1 || - [ 20938 | 300 [ 219 [ 109 || -1 28794 [ oas [ 209 | 1somsia | o007 | sex0 [ 2517
176 || Greoss1 || - [ 29938 | 300 | 249 | 124 || - [ 28730 | 1005 [ 299 | 1esasss | si7is3 | ssoo0 | 2424
177 || oreos71 [| - | 29949 | 300 | 193 [ o6 || - [ 20055 | e91 | 200 | 11320 | sosor7 | e229 | 2023
178 || Greorz-t [I - [ 29934 [ 300 | 201 [ 100 J| - | 28995 | 695 | 200 | 12s5869 | siaoa0 | 122400 | 1368
179 || oreozar {| - | 29933 [ 300 | ima | e7 J[ - [ 0057 | 726 | 299 | 1267852 | sie097 | 119364 | 1189
180 || oreovsa J| - [ 20940 [ 300 | 213 Jros || - [ 28077 | 720 | 200 | 1320367 | asssar | 149808 | 1496
181 | creore1 [| - T 29937 [ 300 | 217 [ies || - | 28045 | 827 | 299 | 1sa7586 | se3m13 | 166860 | 1113
182 || Greo771 || - [ 20945 | 300 [ 109 | o8 || - [ 28090 | 775 [ 209 | usmemr | sseres | 1esan | 1aat
183 || oreors-1 J| - | 29938 | 300 | 216 [ios || - [ 20035 | 735 [ 209 | 1543777 | sseo3s [ ieonts | 1427
184 || oreorot J| - | 29946 [ 300 | 100 | 98 || - | 20003 | 767 | 200 | 1594160 [ 571905 | 166092 | 1383
185 || oreoso-1 J| - [ 20937 [ 300 | 213 Jios || - [ 28048 | 820 | 209 | 1ssieas | ses2a9 | 168723 | 14a8
186 || oreosst || - | 20034 | 300 | 210 [ wes J[ - | 28170 | 150 | 209 | 15378 | 1aa1793 | av0ss | 1563
187 GRP086-1 - 29945 300 175 87 - 281.56 1591 299 3107788 1432577 44395 1362
188 || oreosr1 || - [ 29946 | 300 [ 104 | o7 || - [ 2sre2 | 1573 | 299 | 3134697 | 1asoae7 | assse | 1383
189 || Greog71 || - 20948 | 300 | 163 | s || - [ 28516 | 1260 | 299 | 2624965 | 1035777 | 1130a5 | 1257
190 || Greooo-1 [| - [ 29940 [ 300 | 100 | 98 || - | 28547 | 1200 | 299 | 2sie578 | o933 | 1sse7r | 1008
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HERBY PrHERBY(30)
No Theorem =5 % [ cpu [ we] Node [ sa [[ ] cru sys | we | RES Node | Atom | ua | sa
191 || GRP100-1 - | 29941 | 300 199 | 98 [[ - | 28509 | 1191 | 209 | 2505570 905729 | 187958 | 1356
192 || ore101-1 - | 29936 [ 300 { 217 [ 105 {[ - 1 28530 | 1255 | 200 | 2525335 920065 | 186696 | 1085
193 || GRP102-1 - | 29944 | 300 | 217 [ 105 || - | 28576 | 1170 | 209 | 2494802 019041 | 192364 | 1398
194 || GrP103-1 - | 29952 [ 300 | 217 | 105 || - | 28584 | 1206 | 299 | 2515870 924673 | 189007 | 1380
195 || GRP104-1 - | 29952 | 300 168 | 83 || - [ 21972 | 1694 | 299 | 3408816 | 1450497 | 108369 | 1128
196 || GRP105-1 - | 29938 | 300 167 | 83 || - | 27599 | 1677 | 299 | 3360020 | 1427457 | 107641 | 1174
197 || GrP108-1 - | 29930 | 300 15 | o7 || - | 28002 | 1693 | 299 | 3526833 | 1504769 | 105489 | 1259
198 || GRP109-1 - | 29942 | 300 173 | 86 || - | 27008 | 1683 | 200 | 3409194 | 155105 | 107707 | 1207
199 || HENO03-1 . | 29879 | 300 157 | 2 || - [ 19018 | 10630 | 299 | 15352522 | 9968120 | 46812 | 1940
200 || HEN003-3 || o | 9973 | 100 | 233 | 103 || o 021 . 0 281 42 s71 | 158 | 18
201 || HENOOZ-1 - {29908 | 301 124 | 56 [[ - [ 18800 | 10872 | 299 | 15420317 | 10150913 | 41569 | 1582
202 (| HENooa-3 || - | 20885 | 300 | 276 | 130 || - | 20568 | 7055 | 299 | 14674233 | 6097405 | 345744 | 2410
203 || HEN00S-1 - 29919 | 301 261 | 111 || o | 22630 S 2 18261 475 | 39514 | 2143 | 124
204 || HENo00s-3 || - | 29899 | 300 | 307 | 138 || O 029 ) 0 503 84 895 | 269 | 29
205 || HEN006-1 - | 29866 | 300 27 | 99 |[ - | 19502 | 10207 | 299 | 16437012 | 9500673 | 41811 | 1480
206 || HENoo63 || - | 290.87 | 301 302 | 135 || - | 23812 | 5912 | 299 | 12535873 | 5172737 | 309612 | 2258
207 || HENooss || - | 29944 | 300 | 248 | 110 || - | 26413 | 3338 | 209 | 9319396 | 2683393 | 427134 | 1766
208 || HEN007-1 [ 29777 T 300 [ 245 | 108 || - [ 19628 | 10076 | 299 | is4sasso | oas1ssz | 44755 | 1871
209 || HENoo7-3 || - | 29907 | 300 | 297 | 136 || - | 25032 | 4680 | 209 | 10443084 | 4180093 | 335281 | 2272
210 || HEN00S-1 2238 [ 24 [ a6 [ 2 [ © 0.26 . 0 916 40 298 88 | 20
211 || mEnoos3 || o | 3266 | 33 376 | 86 || 0 005 - 0 142 25 100 0| 1
212 || HEN009-1 - | 29830 [ 300 | 231 | o8 [ - [ 19573 | 10135 | 299 | 16928443 | oa7s6s7 | 45786 | 2207
213 || HENooo3 || - ] 29912 | 300 | 3ss | 168 || - | 25170 | as0s | 200 | 10715874 | 3796481 | 404836 | 24%2
214 || HENoo9-5 || - | 29927 | 300 | 215 | 104 || o | 6355 i 27284 2363 | 131506 | 960 | 121
215 || HENo010-1 - | 29895 [ 300 | 271 | 105 || - | 19603 | 10136 | 299 | 16874365 | 9595393 | 30960 | 1569
216 || HEN0105 || - | 29948 | 300 | 205 | 95 || - | 26282 | 3428 | 2909 | 7751246 | 2613249 | s4s084 | 1521
217 || HENo11- - | amra1 | 230 259 | 119 || - | 20202 | 9512 | 299 | 16648068 | 8890369 | 73345 | 2346
218 || mENot1s || - [ 29927 | 300 | 235 | 106 || - | 27603 | 2102 | 209 | ssavesa | 1301105 | 498409 | 1262
219 || HENO12-1 T 20865 | 300 192 | 86 || - | 18840 | 10841 | 299 | 15439262 | 10196481 | 48807 | 2106
20 || mENo123 || - | 29937 [ 300 | 213 | 127 || © 0.18 . 0 224 36 361 | 104 | 13
21 || LAT005-5 - [ 20888 | 300 | 233 | 105 || - | 22066 | 6783 [ 299 | 14032812 | 670913 | 658056 | 1445
222 || LAT005-6 - | 29791 | 300 | 243 [ 109 [| - | 23450 [ 291 | 299 | 15253354 | s315073 | sss109 | 1359
23 || LcLidsa - [ 29977 {300 | 236 | 103 || - | 26390 | 3323 | 299 | 8267976 | 2307585 | 712067 | 1406
24 || LCL146-1 - {20873 | 300 | 238 | 104 || - [ 26391 | 3355 | 200 | 8361764 | 2349569 | 727650 | 1384
225 || Lpaoos-1 || o | 5637 | 56 | 4325 [ 116 || © 025 - 0 493 70 sg9 | 182 | 18
26 || Numor7-2 || - | 29845 | 300 [ 401 | 108 || - | 21980 | 7755 | 299 | 16326557 | 7085569 | 196607 | 1871
227 || RrNGo04-1 - | 29928 | 300 166 | 68 || - | 21887 | 7825 | 299 | 16144154 | 6929409 | 409433 | 1333
28 || RNGoos3 || o | 6496 | 65 | 1982 | 57 | o | 12665 T 34957 337 | 221874 | 1162 | 93
229 || RNGoo7-1 || - | 29895 | 300 163 | 66 || - | 21557 | 8159 | 299 | 16935960 | 7022593 | 521840 | 1245
230 || RNGoos1 || - | 300.16 | 301 141 | 60 || - | 22078 | 7699 | 299 | 15901874 | 6719480 | 472333 | 1095
21 || RNG037-t || O | 14412 | 144 | 1744 | 73 || O 130 . 2 2669 67 6454 | 411 | 27
232 || rNGosor || - | 29925 | 300 155 | 67 || - | 25477 | 4285 | 209 | 11970882 | 3188225 | 708261 | 1124
233 || ROBOII1 - | 29905 | 300 | 319 | 136 || - | 26389 | 3339 | 209 | simar9 | 2408961 | 678704 | 1580
234 || RroBo16-1 - | 29927 | 300 35 | 151 || O 029 . 0 192 28 1092 | 182 | 18
25 || ANaoo22 || - | 29824 | 300 | s1867 | 253 || - | 23605 | 6025 | 299 | 16337122 | 629953 2914 | 2300
236 || SETO0S-1 || O 0.01 0 29 61 o 0.16 . 0 722 ) u 13| 7
27 || sET0071 || O 0.02 0 4| 710 o 0.14 - 0 1749 63 20 151 9
238 || serour || o 0.02 0 31 11| o 0.14 . 0 369 27 14 1| 10
239 || SETO12-1 - | 29930 | 300 126 | 58 || o 3.14 ! 3 741 70 8470 | 384 | 32
20 || SETO122 - {29900 [ 300 | 273 | 120 || - | 22258 | 7485 | 200 | 17439722 | 6866945 | 232603 | 1811
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HERBY PHHERBY(30)
No | heorem "ot T CPU | WC | Nods | SA || Pt | CPU | sYs | wC | RES Node | Awm | ua | sa
241 || sero3-1 || - [ 29963 [ 300 | 137 | &1 [| o | 7234 [ 2580 | o8 | sasesro [ 2312359 | 138354 | 1049 | nNa
242 [[ sevonsa | - 29963 [ 300 | 203 [ es || - | 22230 | a0 | 299 | 16795634 | 6798337 | 226410 | 2342
w || sero2 I o [ oor ] 0 B[ sl o] on -] o 109 9 7| 1] 4
2a || serois1 || - [ 29942 [ 300 | 137 | 61 [ o | eo78 | 2300 | sa [ ‘asosses | 2028972 | 122369 | 854 | nNa
us || serois2 || - [20952 [ s00 [ 18t [ 7o [[ - 22270 | 7396 | 299 | 1671537 [ 6728193 | 208496 | 1935
u6 || sErosss || o | o008 | o 7] 2l o] ou - o 43 7 0 o] 2
247 || atGoors || - [ 20897 [ 300 | aso | a3 || - | 2ssss | os2 | 200 | sumser | essass | 1sso74 | 517
248 || carom-3 || - [ 048 [ 3001 705 {2s0 || o | 027 N 213 2 see | 122 | 14
219 [[caroms [ o] seos | 7] sa| m] o] oos -{ o 202 17 m | s1| 7
250 [[ caross | o | 0as [ 6| 2% [ o o0s -] o 21 19 LN
251 || carosss || - [ 29939 [ 300 | 301 [z [[ o | ess - o 982 89 | 2i6 | 303 |
252 [ caroos3 [ o | 245 | m] me| 7| o] 255 -] s 2975 ass | 4336 | 380 | 46
253 || carooss | o [ ses | s | s | e[ o] em -] s 3041 274 | um | e00 | 47
254 || carong3 || - | 20831 [ 300 | au [ 133 [| - | 24268 | 5390 | 209 | 177essag | arorrr | 330048 | 1086
255 || carirs I o [sses [ s6 [ 20| w3 o] 23 - s 1049 105 [ so10 [ s6a | 52
256 || caroas || - 291 [ s | 39 [wsf[ o] 4 -] 4330 az | sus | sz | 4
257 || GEooo11 | - [ 29929 [ 300 [ a2 [ 102 [[ o [ esss -] e 4119 i1 | 3186 | 676 | 66
258 [ Geooor2 J| - [ 29944 [300 [ 27| @[l o[ om -] e 1690 7 180 | 103 | 16
259 || oBoooz1 [| - [ 2om3s [ 300 | 1016 | o2 || - [ 22045 [ 7476 | 209 | os1s164 | 7068161 | 17998 | 1150
260 || Geoooz2 || - [ 29893 [ 30 | 157 | m || o | sos1 | 2063 | 81 | 257732 [ 106726 | 10191 | sso [ nNa
261 || Grooo4-1 || - [ 29884 [ 300 | 143 [ e [[ - | 21884 | 7805 | 209 | 10aa0185 | 7276033 | 155m2 | 1m0
262 || ceooos-1 [| - T29m96 [ 300 | 1629 102 || o | 14946 HECRE AN
263 || ceooos1 ]| - | 29894 [ 300 [ 163 | 70 || o ] 21519 -] 2 3847 os | ne | e | =
264 || aBooos2 || - | 29876 [ 300 | a7 [uso || - ] 202 [ 80 | 299 | 10228379 [ esdossr | 1sseo | 728
265 || Geootot J| - [ 29870 | 300 | 107a9 | 70 || - | 22536 | 7137 | 299 | 10287984 | 6679041 | 10123 | 1331
266 || croowo2 || - | 29908 [ 300 [ seo [ sa |- [ 22830 | 6863 | 299 | 10400807 [ 6454273 | 7548 | 1021
267 || ceoonra | - [ 20908 | 300 [ 295 | 60 {| - [ 22200 | 7501 | 299 | 10523280 [ 6057560 | 6962 | 737
268 || oBooiz1 | - [ 29sea [ 300 [ 343 [ w3 || - [ 23053 [ 6694 | 209 | ssoa132 | e15067 | 12800 | 103
269 || cEoo1s1 || - [ 29865 | 300 | 235 [1o9 |- ] 2s1s2 | eser | 299 | s7so3ss | eo3sor7 | isoor | 1519
270 [ aeovzs2 J| - [ 29928 [ 300 | saar | 12 || o | 1206 - [ 130 | 1010 ases | 26188 | 1820 | 106
2711 [ aeoozs2 [| - [swa1 Jso | a3 | s o[ 030 -1 1599 4 393 | 215 [ 17
22 | geoozz2 || - [ 20786 300 | uss | s [| - [ 21437 | s240 [ 209 | 1isma0ms | 21633 | 264 | 121
273 || omooso2 [| - [ amss {214 | 2 [ e || o | o -] o 2618 76 536 | 281 | 23
274 || omooss2 || o [ 11056 | 10 | 1036 | st [l - | 22557 [ 7aaz | 299 [ roameess [ esssizr | 1356 [ 10
25 || ceoos72 || - [ 29994 [ 300 | 164 | | o | esa0 - e 15084 s05 | 6116 | 410 | 8
216 || ceooso2 || - [ 29857 | s00 | 24| 9 | o | 1n B 1876 o0 | 1297 | 1sa | w
211 | geoooz | o | 003 | o B3| sf o] om -1 0 450 2 05 [ 46| 9
278 || orooa12 || - [ 29844 | 300 | 196 [ 86 [| - | 21846 | 7002 | 299 | a2z | az2emr | useas | 1om
279 || cronazz || - | 29900 [ 300 | 12 [ se [[ - | 21635 [ s0es | 299 | 11309882 | 7467000 | 11672 | 1065
280 {| oBoo4s-2 J| - [ 29880 | 300 | 1ea | s J| - [ 21938 | 7733 | 209 | 10968817 | 7256065 | 12183 | 1183
281 || grooas2 [| - [aom77 [ 300 | 205 [ o6 [| - [ 22035 | 6167 | 209 | 10550969 | 6332417 | 1068 | 1262
282 || GBooso2 [| - [ 20930 [300 | a6 [ e9 [ 0 | 855 -] 2210 100 [ 6595 | 305 | 42
283 || Groosa2 J| - [ 29885 [ 300 [ 214 [ oo || - [T220m [ 730 | 299 | 11167944 | 7189505 | 10281 | 1195
284 || GEooes-2 J| - [ 20mes | 300 | 201 | o4 J| - | 21965 | 7738 [ 200 [ 11309824 | 7244801 | 120m | 12
285 || crooss2 || - | 29878 [ 300 | 205 [ 96 [[ - ] 22008 | 7684 [ 299 | 11339801 | mus960 | 12122 | 137
286 || Groos7-2 || - [ 29886 | 300 [ 233 | w2 [ - | 22001 [ 6889 | 299 [ 10970643 | eazso13 | s13s | 401
27 || omoores || -1 aass | 60 | 24 || - | 2252 | a2 | 299 | esasrss | 420929 218 | 221
268 [[oroorra || - | mas | m s | 8] o | 1em - [ us 28395 70 897 | 407 | 3
289 || oreoos-1 || o | 023 | o 1| 1ull o] oz -] 384 18 | o] s | 10
200 || areos-1 || - | 29814 [ 300 | 244 [ 107 J| - | 25709 | 4006 | 299 | 11837784 | 3245569 | 383086 | 477
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HERBY PrHERBY(30)
No || Mheoem "oy T CPU | WC | Node | SA || Pt | CPU | SYs | WC | RES | Nodc | Atom | UA | SA
291 || oreozs2 || - | 2992t | 300 | 223 | 97 || - | 26075 | 3684 | 299 | 10714425 | 2974209 | 465065 | 786
292 || oreoze2 || - | 29943 | 300 | 201 | 89 || - | 2634 | s124 | 209 | 13835834 | 4476417 | 342399 | 1233
295 || GRPo27-1 || - | 29960 | 300 | 133 | 56 || - | 23334 | 6406 | 299 | 16111436 | seassds | 290556 | 904
294 || Greoso1 || - | 29899 | 300 | 223 | o1 || - | 23128 | 6578 | 299 | 14374697 | 5592065 | a6mis7 | 1101
295 || GReo3o4 || - | 290927 | 30 | 215 | o1 || - | 22706 | 7008 | 299 | 15297216 | e03201 | steoar | 1188
296 || GRPoa0-3 || - | 29918 | 300 | 157 | 67 || - | 24049 | ses | 299 | 13441078 | 4198977 | 465874 | 1263
207 || ~umooos || o | oos | o] 13| 4| o | o3 T o 449 13 o o 4
298 || Numosz1 || - | 29886 | 30 | 111 | S0 || o | 119 - 358 w| 4| s | 1w
299 || ~umosst || - [ 29920 | 300 | 117 | so || - | 2813a | 1661 | 299 | ss7rora | 1308785 | 122081 | 461
300 || Numosi-t || - | 30084 [ 301 | 102 | 48 || - | 28010 | 17.68 | 299 | se09977 | 1471489 | 158777 | 319
301 || Numoss-t || - | 30276 [ 304 | 1tz | st || - [ T27ams [ 2246 | 299 | sesorso | ara001 | arar03 | 2m2
302 || Numosst || - | 29918 | 300 | 103 | 49 || - | 277.33 | 2001 | 299 | 6392918 | 1268737 | 460477 | 264
303 || Numiset || - | 20920 | 300 | 1s | 53 || - | 27648 | 2106 | 299 | 8772223 | 1701577 | 19939 | 368
304 | Numiso1 || o [ o0 | o| 3] 1] o] o1 B 2% 3 o ol
35 || Numiant || - | 29934 | 300 | 109 | s2 || - | 27956 | 1805 | 299 | 9297377 | 1sesas7 | 142074 | 350
306 | Numiazt || - | 29922 | 300 | 115 | 55 || - | 28639 | 1133 | 299 | 7988370 | 758273 | 212348 | 374
307 || Numtas-1 || - | 2930 | 300 | 109 | si || - | 28666 | 1077 | 299 | 8092137 | 760833 | 206023 | 384
308 || Numiso-1 || - | 29931 | 300 | 19 | 55 || - | 26753 | 1056 | 299 | 79237121 | 745473 | 210675 | 363
309 || numisor || - [ 2920 [ 300 | us | 55 || o | oes S o 315 9| 3| 21| 7
310 || Numtss1 || - | 29945 | 30 | w7 | 7 || 0 | 133 N 617 2| o] 8|5
a1t || Numioor || - [ 30599 [ s06 | 69 | a1 || - | 2se6s | sa0 | 209 | es1sser | samer | 195820 | 1s2
s12 || Numzott || - | 29869 | a0 | 107 | st || - | 2804 | 1745 | 209 | 9963956 | 1as070s | 97213 | 3%0
33 || numzzst [ o [ o0 | o] 3| 1o | o - 28 3 o ol 1
st || Numzs21 || - [ 29920 | 300 | 103 | 48 || - | 28375 | 1408 | 299 | e7s1554 | 1065985 | 162067 | 354
315 || Numasst f| - | 29029 [ 300 | w09 | s2 || - | 273 | 2035 | 299 | s7raam2 | ussesst | 262710 | 34
316 || RNGoaol || 0 | o2 9| 7| o | o - o 32 4 | 260 | st | 9
317 || rvooar1 || 0 | oot B3| 4| 0| ou o 300 13 o] o4
318 || serorzs || - | 2928 | 300 | 112 | so || - | 28235 | 1560 | 2909 | es21e10 | 11s1as9 | a7z | a7t
319 || serois4 || - | 2904 | 30 | 120 | 50 || 0 | o030 | o 202 s| 13| e |3
320 || sEro2s || o | 4ss | 5| s | 31| o | o4 -1 o 557 ]| | e s
321 || seroes4 || - [ su34 [ 32| 14 | s | 0 | om o 784 12 o| o] 4
322 || sEroeso || - | 2om64 | 300 | 101 | 44 || 0 | 192 - e 8163 32 | 10192 | 198 | 16
3 || sETozi4 || 0 | o005 | o| 1| 4] o | o - o 153 i3 o ol 4
324 || serosta || - | 31974 [ 320 | 106 | a5 || 0 | 156 B 1277 8| 84| 12| B
05 || serars || - [T2993s | 300 | 107 | a7 || - | 25802 | 3970 | 209 | 8172170 | 3sosess | sasst | 314
32 || seroso6 || o [ oo | o 9| 4o | on - o 79 9 o o s
37 || sewsis || o | oo | o 7 o | ois - o 66 7 o o
328 || sErosts || - | 29933 { 300 | 109 | a7 || - | 28268 | 1533 | 299 | 7219470 | 1071105 | 336041 | 450
329 || semoezs || - | 29952 | 30 | 139 | || 0 | o043 1 e 48 35 | 4 | 8| 9
30 || sETO36 || 0 | 023 % | 10| 0| oe S 437 36 | 616 | 14| 14
331 || serosas || o | o2 277 | 1| o | 2195 | = 587 36 | 2601 | 211 | 18
332 || semoers || - | 2930 | 300 | 107 | 46 || - | 28509 | 13.04 | 299 | esi7i00 | ssiess | 3teoas | 4as
333 || SETOs6 || - | 29901 | 300 | 115 | 50 || - | 28470 | 1323 | 299 | 6599319 | ssee2s | 328271 | 440
34 || seroris || - | 29932 | 300 | 145 | 66 || 0 | 322 - s0 510 2 | w594 | 25 | 12
335 || seroras || - | 29950 | 300 | 117 | 52 || - | 28144 | 1600 | 299 | 6879649 | 1201153 | 267423 | 369
336 || sETo7a6 || - | 29949 | 300 | 103 | a6 || - | 28305 | 1486 | 299 | e3ssoas | 1105409 | 226463 | 368
337 || seroras || - | 29944 | s00 | 111 | 49 || - | 28273 | 1501 | 299 | 6486813 | 1095169 | 226621 | 353
338 || serorss || - | 29940 | 300 | 13 | s2 || - | 29124 | 668 | 209 | 3403347 | 423425 | 170195 | 302
339 || sETores || - | 29965 | 300 | 111 | 46 || - | 27713 | 2045 | 299 | 7711945 | 1421313 | 329141 | 433
340 || serorss || 0 | o006 | o| 11| 5] o | o1 -1 o 246 1 o] o s
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HERBY PrHERBY(30)
No || Theorem |75 [ cpu [ wc] Node [ sA f r | cru| sys | wc]| mes Node | Atom | UA [ sA
3a1 || seTo796 || - | 20925 | 300 | 15 | so || - | 28138 | 1653 | 209 | 747857 | 1170137 | 311576 | 312
342 || serosos || o 0.13 0 7| s o 0.19 . 1 310 17 204 | 35 | 6
343 || sETos16 || o 007 0 B| 4] o 020 . 0 179 13 0 o[ 4
344 || sETos26 || o | 8514 | 85 o5 | 22 o | 043 ] s 703 28 | a2s0 | 363 | 35
345 || sETos36 || o | 6149 | 62 9 | 40 || o 127 . 2 759 0 240 | 82 | 15
346 || sErosas || o | 7212 | 73 9 | 0| o | 7904 ] s 1648 s9 | 83762 | 301 | 18
347 || seTosss || o | 1264 | 12 60 | 24 || o 0.54 ; 453 2 sss | 43 | 8
348 || serosss || o 007 1 9| 4 o 023 . 0 277 13 0 o 6
349 |{ sET094-6 || o | 3816 | 38 74|l o 274 . 3 610 23 339 | 59 | 7
350 || serooss || - | 30040 | 301 [ 121 | 53 || o [ 10433 -] 106 918 36 | 129298 | 343 | 20
351 |[ sETo966 || - | 29923 | 300 | 138 | s8 || - [ 28396 | 1441 | 209 | 7835410 | o0ssar { 287836 | sso
352 || serio1s || - | 30126 | 301 | 105 ] a5 || o 048 . 0 493 26 617 [ 96 | 13
353 || seTio26 || o 715 8 ss | 4| o 024 . 0 226 12 0 o 4
354 || sEri0s6 || o 0.00 0 s| 21 o 0.16 - 0 152 5 0 o| 2
355 || sET1176 || O 0.02 0 7] 3] o 017 . 0 164 9 0 o 4
356 || sET12a6 || - | 20928 [ 300 | 107 | 4 || o | 12790 N 1980 70 | 147161 | 377 | 29
357 || sETi2s6 || - | 20967 | 300 [ 115 | 46 || o | 1480 -] s 1384 67 | 19952 | 237 | 20
358 || sEr1306 {| - | 20954 | 300 [ 103 | a3 || - | 28270 | 1451 | 299 | 601891 | 1158657 | 199050 | 433
359 {| sEr13s6 || - | 20066 | 300 | 111 | aa {| - | 27004 | 2730 | 299 | 9ssa9s1 | 2248193 | 269212 | 321
360 || sET1aa6 || - | 30007 | 300 [ 158 | 71 [[ - | 28474 | 1252 | 299 | 7741494 | 61697 | 262673 | 556
361 || sET1466 || - | 29852 | 300 | 135 | 61 || - | 28516 | 1268 | 299 | so28049 | 881153 | 281858 | 421
362 || ser1a7s || - [ 20921 [ 300 [ 137 | 64 || - | 28567 | 1205 | 299 | 7680008 | 836609 | 274348 | s28
363 || sETiass || - | 20927 [ 300 { 133 | ex || - | 28549 | 1222 | 209 | 7670649 | 833537 | 270004 | s38
364 || SET1496 || - | 20934 | 300 [ 141 | 66 || - | 28586 | 1224 | 209 | 7544538 | 823809 | 268773 | 534
365 || semisis || - | 30083 | 301 | 136 | e1 || - | 28516 | 1287 | 209 | 7801076 | 842753 | 259898 | s22
366 || SET1536 || O 8.64 9 a7 of 1770 T 290 21 ] 19601 | 120 | 15
367 || sET1636 || - | 30492 | 305 | 156 | 69 || - | 27916 | 1261 | 299 | 7513588 | 836097 | 270119 | 306
368 || sET1666 || - | 29955 | 300 | 133 | s6 || - | 22657 | 1547 | 299 | 6900677 | 1166337 | 223955 | s57
369 || seriers || o 491 5 2| 20 || o 3.84 . 4 583 31 5834 | 185 | 12
370 || SETI686 || © 3.60 3 | 3| o 0.56 . 0 320 16 590 | 40 | 6
3n || sersss || - | 30391 | 305 | 150 | 67 || - | 25474 | 1178 | 299 | 7304195 | 820441 | 220881 | 544
372 || sErs6s || - | 30080 [ 30t | 110 ] so || - | 27469 | 1119 | 209 | 6469205 | 690177 | 268402 | 271
373 || ser1s76 || o | 14841 [ 148 | 125 | s3 ]| o 1.05 . 1 256 2% 613 | 17 | 16
374 || sErisss || - | 20859 | 300 | 121 | s6 || - | 25121 | 1161 | 299 | 6634602 | 734209 | 275185 | 251
375 || sEr1sos || - | 20030 | 300 | 1290 | so || - | 27164 | 1285 | 299 | 7708114 | 880129 | 274261 | 323
376 || sET1926 || O 3.61 3 s7| 2] o 059 - 0 240 21 25 | 30 | n
377 |{ sET936 || o | 1788 | 18 771 2 o 3300 | 66 608 36 | 28027 | 357 | 20
378 || serioas || o | 3062 | 39 o4 | 38 || - | 27693 | 1191 | 299 | 7026586 | 784897 | 291440 | 470
379 || seTi9s6 || o | 2975 | 30 86 | 34 ]| o 1.10 . 1 1095 60 1415 | 165 | 16
380 || SET1966 || O 0.00 0 sT 2] o 0.16 . 0 46 5 0 o 2
381 || sET1976 || © 001 0 5| 20 o 017 . 0 46 5 0 of 2
382 || sETI996 || o | 4241 ) a2 | w08 ] || o 120 . 1 359 32 585 | 122 | 9
383 || SET2016 || - [ 29923 | 300 | 156 { 6 [| O 0.88 - 1 492 39 1055 | 133 | 14
384 || sem2036 || o | 1064 | 11 s | 18| o 052 - 0 383 25 513 | 40 | 7
385 || SET2046 || O 0.00 0 s 20 o 0.16 . 0 49 5 0 o 2
386 || sET2306 || - | 30328 | 304 | 119 | sa || - | 26718 | 1248 | 299 | 7507370 | 832001 | 276108 | 283
387 || sET2316 || © 0.00 0 3| 1] o 0.15 . 0 2 3 0 o[ 1
388 || sET2326 || 0 | 3449 | 35 2| 8| o 088 . 1 308 19 836 | 102 | 11
389 || sET2336 || O | 2652 | 27 8 | 3 || o 091 ; 0 303 12 982 | 131 | 5
390 || sET2346 || O 013 0 9] 3l o 034 - 0 156 9 116 o 3
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HERBY PrHERBY(30)
No- | Theorem "5 T Cpy [ 'WC | Node | SA || Pt | CPU | SYs | WC | RES | Node | Atom | UA | SA
391 || serass6 [[ - | 20904 [ 300 | 155 76 || o [ os4 HE 364 17 871 | 139 | 10
392 || serases [ o [ 2288 | 23| 88| 3| o] om -] o 266 14 aa | 54| 7
393 || serasss || - [ 29963 {300 | 14| 57l 0o | om -] 498 19 o5 | 59 | 7
394 [l sero6 | o [ o3| of 6| s o] o -] o 225 16 o| ol s
395 || seTaaos || - [ 29874 [ 300 | 143 62 [ o ] o2 -] o 239 11 197 | 31| s
396 || ser2a16 [| - [ 20938 [ 300 [ 1] s8] o | su -] 3 430 %6 | 415 | 162 | 17
397 || seT2426 | o [ 02 | o 7| 3l o] o1 -] o 144 7 o| o 3
398 || sBr2as6 || - [ 29906 { soo | 131 | eo || - | amem [ 877 | 299 | sos6959 | s97s05 | 154162 | 476
399 || seraass || - | 29934 [ 300 | 135 | so [| - | 25332 | 1262 | 209 | 7387683 | w4887 [ 252865 [ 450
400 f[ sems6 [ o | 408 | 4| 55| » | o] o -1 o 258 19 322 | 36 7
an || seresss | o ] 32 [ 3] 4w ] o] o -] o 274 2 as7 | 49 ] 9
402 || sema6i6 || - | 29859 | 300 | 137 [ 63 [ - | 25238 | 1192 | 299 | 7401598 | s4ssos | 256407 | 423
403 || semaess || o | som0 | s [ or | a2 o | 4w -] s 505 25| an| 57| 8
404 | seraris || - {30110 [ 300 | 153 | s [ o | 366 - 4 571 35 | s3s3 a1 | 14
a5 | semasi6 [l o | s | 15| s ] | o] os -] o 340 w | 166 | 130 | 15
a5 || serasas [ - | 2870 [ 300 | 19 | es || - | 25726 [ 1135 | 299 | ea298as | 750081 | 260922 | a7
a7 || serar96 || o | 0o | o 7] 3 o] on -] 74 7 o] o] 3
408 || sErsoss || - | 29906 | 300 | 120 | e2 [[ - | 26551 | 996 | 209 | esa1s:2 | e3920 | 262397 | 2m3
409 || sErsors || - | 29936 {300 | 124 | 51| o | 346 N 769 35 | 93076 | 189 | 14
410 || serstos || - [ 29937 [ 300 | 137 | 1 || - | 26334 | 1265 | 299 | 7301327 | 832001 | 265768 | 444
411 |[ sersies || - [ 0523 [ 305 | 124 | 51 || - | 2mer [ 1127 | 299 | 6735000 | es3s21 | 287338 | 260
412 || sersizs || - [ 29955 | 300 | m7 | sa f| - | 27000 | 1062 | 299 | es21293 | es0241 [ 271116 | 210
413 || serssa6 || o | sees | ss | 104 | 43| o | os0 -1 o m 21 1| a0
414 || serssss || - | 30401 | 304 | 133 [ s0 [ 0 | 4378 -] & 122 28 | esi2 | 33 | 12
415 || sEsso6 || - | 30047 | 301 | 135 | so || - | 25107 | 1246 | 299 | 6896158 | 820737 | 281048 | 419
416 || serssi6 || - | 29881 [ 300 | 137 | eo [| - | 27000 | 1520 | 299 | 6558537 | 1104897 | 203613 | 423
417 [[ serseas || - [ 29950 [ 300 | 129 | ss || - | 2s678 | 1467 | 209 | 6471081 | 1158657 | 187300 | 437
418 || SETsea6 || - 30177 | 302 | 156 [ 69 || 0 | 480 -1 s 734 31 | 3465 | 158 | 18
419 || sersess || - | 29886 | 300 | 138 | e || - | 2688 | 985 | 299 | sa3a9a2 | 676353 | 177233 | 34
420 || sErse6-6 || O | 5423 | sa | 103 | 45 [ - | 2su12 | 920 | 299 | s00s540 | ese3ss | 176116 | 441
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Index

ASHI1, 47
ASH2, 47
ASH3, 47
ASH4, 47
ASHS, 47

ASH _Parallel, 63
atom, 3

atom set, 14

automated theorem proving, 1

BCR heuristic, 29
binary resolvent, 5

binary semantic trees, 16

chained-resolution grounding, 40
clause, 4

closed linear semantic tree, 26
closed semantic tree, 17
combination strategy, 27
complementary literals, 3
complete semantic tree, 17
conjunction operator, 3

consistent, 10

demodulation, 6
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demodulator, 6

disjunction operator, 3

electrons, 46
empty, 4
existential quantifier, 3

extended search, 57

factor, 5
failure node, 17
fixed grounding strategy, 32

formula, 3

ground, 14
ground atom, 14

ground instance, 16

Herbrand base, 14
Herbrand interpretation, 16
Herbrand universe, 14
HERBY, 2

hyperresolution, 46

IDDFS, 53
if and only if operator, 3

implication operator, 3



inconsistent, 10 semantic tree, 17

input resolution, 26 semantic tree with ungrounded atoms,
instance, 4 34

interpretation, 6 semantic tree with variables, 34
invalid, 10 set-of-support, 5

) ) Skolemization, 4
linear resolution, 22

. . Stickel test set, 1, 6
linear semantic tree, 2, 26

literal, 3

substitution, 4
. subsume, 5
logically follows, 9
system subsumption, 89

merge clause, 5

term, 3
more general, 5

THEO, 2
most general unifier, 5

theorem, 10
negation operator, 3

unifier, 4
nucleus, 46

unit resolution, 27
parallel chained-resolution, 44 unit-list-passing heuristic, 50
parallel semantic tree theorem prover, 2 universal quantifier, 3
parallel-chained demodulation, 102 unsatisfiable, 10
paramodulation, 6 useless atom, 27
predicate, 3

valid, 10
PrHERBY, 64

vine-form, 26
proof, 1

refutation theorem prover, 10
resolution-refutation proof tree, 34

resolvent, 5

satisfiable, 10
scalability, 2
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