
1 nfrastructu re
for DEVS Modelling and Experimentation

Hongyan Song
Supervisor : Prof. Hans Vangheluwe

School of Computer Science
McGill University, Montréal, Canada

A thesis submitted ta the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements of the degree of

Master of Science in Computer Science

Copyright @2006 by Hongyan Song

Ail rights reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-32788-3
Our file Notre référence
ISBN: 978-0-494-32788-3

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

After over thirty years of research and development, Discrete EVent system Specification (DEVS)
has been widely accepted and applied in the Modelling and Simulation community. Recently,
standardizing DEVS formalism and expanding DEVS application have become major chellanges
for DEVS researchers. In this thesis, we present our efforts to facilitate the pro cess of DEVS
modelling, and to promote DEVS standardization and application.

The Infrastructure for DEVS Modelling and Exmperimenting provides facilities to facilitate the
DEVS modelling process at four different levels. At the modelling level, a visual DEVS mû
delling environment has been built, in which DEVS models can be created graphically, and
simulator-neutral model representation in modelling language Modelica can be generated au
tomatically. At the model verification level, a Modelica Model Compiler has been developed,
by which the simulator-neutral model representations are checked automatically and transla
ted into simulator-specific model representations. At the simulation level, simulation trace has
been standardized using the XML DTD. Interfaces for generating standardized simulation trace
represented in XML for Python DEVS has been provided. At the model validation level, a Visual
DEVS Trace Piotter has been developed, by which the standardized DEVS simulation trace in
XML can be plotted visually.

Après plus de trente ans de recherche et de développement, les spécifications de système
discrètes d'événement (DEVS), ont été largement acceptées et appliquées dans la communauté
de modelage et de simulation. Récemment, la normalisation du formalisme de DEVS et les
extensions de l'application de DEVS sont devenus des défis principaux pour les chercheurs de
DEVS. Dans cette thèse, nous présentons nos efforts de faciliter le processus de modelage en
DEVS, et de favoriser la normalisation et l'application de DEVS.

L'infrastructure pour le modelage et expérimentation de DEVS fournit des équipements pour
faciliter le processus de modelage de DEVS à quatre niveaux différents. Au niveau modelant,
un environnement de modelage visuel de DEVS a été construit. Cet environnement permet
la création des modèles graphiques de DEVS aussi bien que la génération automatique d'une
représentation de modèle simulateur-neutre dans la langue modelante Modelica. Au niveau de
la vérification de modèle, un compilateur de modèle de Modelica a été développé, par lequel
les représentations des modèles simulateur-neutres sont vérifiées automatiquement et traduites
en représentations de modèles simulateur-spécifiques. Au niveau de la simulation, la trace de
simulation a été normalisée en utilisant le XML DTD. Des interfaces pour produire une trace
normalisée de simulation représentée dans XML pour le Python DEVS ont été fournies. Au
niveau de la validation de modèle, un traceur visuelle de trace de DEVS a été développée pour
tracer visuellement la trace normalisée de simulation de DEVS.

Acknowledgements

Sorne parts of this thesis are based on previous works done in the MSDL (Modelling, Simulation,
and Design Lab) at McGili University. 1 would like to express my sincere gratitudes to people
who have made contributions to this thesis.

First, many thanks to my supervisor Prof. Hans Vangheluwe. His insight and passion in the
modelling and simulation are the keys to the success of this thesis.

Thanks to Steven Xu's flModelica compiler and help on reusing components of that compiler.

Thanks to Denis Dube's original DEVS meta-model and help on using State Charts in AToM3.

Thanks to Ernesto Posse's ideas on Python DEVS code generation in AToM3 and help on
system maintenance.

And finally, thanks to people who have read and commented on this thesis.

ii

1 Discrete EVent system Specification (DEVS) Formalism

1.1 Introduction

1.2 Discrete Event System Specification

1.2.1 Classic DEVS

1.2.2 Clarification of Concepts. .

1.2.3 Parallel DEVS

1.3 Abstract DEVS Simulation Engine

1.3.1 Abstract Simulator for Classic DEVS

1.3.2 Abstract Simulator for Parallel DEVS

1.4 DEVS modelling and Simulation Enviroments .

1.4.1 PythonDEVS

1.4.2 DEVSJava

1.4.3 ADEVS

1.5 Conclusions....

2 Architecture and Design

2.1 Introduction...........

2.2 Modelling Language Concepts.

2.2.1 Modelling

2.2.2 Modelling Language

2.2.3 Meta-modelling.

2.2.4 Simulation

2.2.5 Verification .. .

2.2.6 Validation

2.2.7 Modelling and Simulation Process

2.3 Motivation and Purpose

2.4 The Overall Architecture

2.5 Conclusions

3 Standardized Trace Representation and Trace Piotter

3.1 Introduction

3.2 Design and Implementation

iii

Contents

4

4

6

6

9

10

13

13

17

22

22

25

26

27

28

28

31

31

31

32

34

34

35

35

37

40
44

45

45

47

3.2.1 Architecture of the Trace PIotter

3.2.2 XML DTD for Trace Output

3.2.3 Trace Parser

3.2.4 Visual Trace PIotter

3.3 Case Study

3.4

3.3.1 XML Represented Trace for the Processer Model

3.3.2 Plotting Trace Using the Simple PIotter ...

3.3.3 Plotting Trace Using the Customized PIotter

Conclusions

4 Modelica Representation and Model Compiler

4.1 Introduction

4.2 Modelica and Its Model Description Constructs

4.3 Design and Implementation

4.3.1 The Architecture

4.3.2 Representing DEVS in Modelica

4.3.3 Representing DEVS Components in Modelica

4.3.4 Using Language-Specifie Library Functions in Modelica

4.3.5 The Model Compiler: from Modelica to PythonDEVS

4.3.6 Python DEVS Code Generator

4.4 Case Study

4.5 Conclusions............

5 Visual DEVS Modelling Environment

5.1 Introduction

5.2 Modelling and Meta-Modelling in AToM3

5.3 Design and Implementation

5.3.1 Architecture

5.3.2 Meta-Modelling DEVS in AToM3 .

5.3.3 User Interface Model - State-chart

5.4 Code Generator: from Visual Model to Modelica

5.4.1

5.4.2

5.4.3

5.4.4

Mapping Visual Model Components to Modelica Representation

Atomic DEVS Code Generator

CoupledDEVS Code Generator

Event Generator

5.5 Case Study

5.6 Conclusions

6 Case Study

6.1 Introduction.

iv

47

48

52

56

59

60

60

61

63

64

64

66

70

70

71

74
76

77

80

85

88

89

89

91

93

93

93

97

98

98

98

103

103

105

107

108

108

6.2 DEVS Models of the Chained-Processor System. 109

6.2.1 The Processor Model. 109

6.2.2 The Chained-Processor Model 110

6.3 The Visual Models 112

6.3.1 Job Event 112

6.3.2 Atomic Processor 112

6.3.3 The Coupled DEVS Model - Chained Processors 113

6.3.4 Experiment Model .. 113
6.4 The Modelica Representation 114

6.4.1 Job Event 114
6.4.2 Atomic Processor . . . 114
6.4.3 Chained Processors - Root . 116
6.4.4 The Experiment Model 117

6.5 Python DEVS Representation. 118
6.5.1 Job Event 118
6.5.2 Atomic Processor 118
6.5.3 Coupled Multi-Processors 121
6.5.4 The Experiment Model 122

6.6 Simulation Trace 124
6.7 Trace Plotting Using Visual Trace PIotter 126

7 Conclusions and Future Work 128

Bibliography 132

v

List of Figures

1.1 Mapping between DEVS Models and Simulators

1.2 Messages Used in Classic DEVS Coordinators and Simulators

1.3 Messages for Parallel DEVS Coordinators and Simulators

1.4 Prototypes of Python DEVS Models

1.5 Fully Qualified Name in Python DEVS

1.6 Class Diagram of the Python DEVS Simulator

1.7 The Inheritance Diagram of DEVSJava

1.8 Class Diagram of DEVS Java

1.9 Class Diagram of ADEVS

2.1 Modelling Language Breakdown .

2.2 Modelling and Simulation Process

2.3 Current General Practice of DEVS Modelling and Simulation Process

2.4 Architecture of the Infrastructure for DEVS Modelling and Simulation .

3.1 Architecture of the Trace PIotter

3.2 Fully Qualified Model Name ...

3.3

3.4

3.5

Two-Ievel Trace Parser

Temporary Trace Representation

Plottable Trace Representation .

3.6 Class Diagram of the Static Trace Parser

3.7 Parsing T mpEvent into DevsEvent .

3.8 Class Diagram of Dynamic Parser

3.9 State Parser

3.10 Simple State Parser

3.11 Visual Trace PIotter

3.12 Terms Used in Trace PIotter.

3.13 Plotting Trace Using the Simple PIotter

3.14 Plotting Trace Using the Customized PIotter

4.1 Architecture for Modelica based DEVS Modelling and Simulation.

4.2 Predefined DEVS Elements in Modelica

VI

13

14

18

22

23

23

24

24

25

31

36

37

40

47
50

51

52

53

53

55

55

56

56

57

58

60

61

71

72

4.3 The Architecture of DEVS Modelica Compiler

4.4 The Modelica Abstract Syntax Tree Structure . .

4.5 The Class Diagram of Python DEVS Generator .

5.1 Architecture of DEVS Visual Modelling Environment .

5.2 DEVS Meta-Model

5.3 State Chart for DEVS Visual Modelling GUI Interface

5.4 Meta-Model for Atomic DEVS Model

5.5 Meta-Model for Coupled DEVS Model

5.6 Meta-Model for DEVS Event

5.7 An Example of Visual Atomic DEVS Model - Generator

6.1 Coupled Model for the Chained-Processor System

6.2 DEVS Event - Job

6.3 Atomic DEVS Model - Processor

6.4 Coupled DEVS Model - Chained Processors .. .

6.5 An Example of a DEVS Simulation Experiment .

6.6 The Beginning Events of a Simulation

6.7 Simulation Trace That AH Processors Having Jobs

vii

78

81

82

93

94

96

99

103

104

105

110

112

112

113

113

126

127

3.1 Values of modelEvents for Example 3.1 ..

3.2 Values of coupleComp

List of Tables

54

54

1 ntrod uction

DifferentiaI equations have been commonly accepted as a standard modelling formalism for
describing continuous-time dynamic systems for many years. However, though there are many
formalisms used for representing dis crete event systems, there is still no consensus on a com
monly accepted one for discrete event modeling.

Ho [Y.C89J lists the following challenges that must be addressed when one tries to develop a
universally applicable modelling framework for Discrete Event Dynamic Systems (DEDS):

1. The discontinuous nature of Discrete Events

2. The continuo us nature of most Performance Measures

3. The importance of Probabilistic Formulation

4. The need for hierarchical modelling

5. The presence of Dynamics as weIl as Structure

6. The feasibility of the Computational Burden

7. The need for both experimental and theoretical components

Zeigler [ZV93J claims that a system theoretic framework can provide a solid modeling foun
dation for addressing these issues in a unified manner. He further argues that discrete event
simulation models can be captured as a subclass of systems using the Discrete EVent system
Specification (DEVS) formalism, which is built on system theory.

DEVS was first proposed by Zeigler in the 1970's[ZPKOOJ. As a mathematical basis for dis crete
event modelling, DEVS provides not only a formaI representation of discrete event dynamic
systems that is independent of any computer realization, but also a guidline for how to build
abstract DEVS simulation engines to simulate the models. Since its inception, DEVS has
attracted a lot of attention, though no standard has emerged yet.

After over thirty years of research and development, the DEVS formalism has been extended
from its original formalism currently known as Classic DEVS[Van04J, which only supports se
quential discrete event modelling and simulation, to Parallel DEVS, CELL-DEVS, Dynamic DEVS,
Real-time DEVS and so forth[ZPKOOJ. Many DEVS modelling and simulation evironments, such
as DEVSJava[Zei05], Python DEVS[BV02], and ADEVS[Nut05J have been designed and imple
mented. With the support of so many tools, DEVS has been applied in many different fields.
[ZKB99J introduces an approach of distributed supply chain modelling using Parallel DEVS;
[AEA +02J presents a method of modelling fire spreading using Cell-DEVS; and [SK94J proposes
ideas of modelling a water supply system using DEVS.

The major goal of modelling and simulation is to facilitate the understanding of the system
under study. To achieve the goal of DEVS modelling and simulation, we first have to build
convenient tools to make DEVS modelling and simulation easy to use and to be understood.
There are many efforts in this direction. [PP93J presents visual modelling of DEVS using
higraphs; [HK06J introduces a specification language DEVSpeci for DEVS model representation;
[AHW05J and [STOOJ propose ideas on trace visualization for studying complex systems.

In this thesis, we present our efforts to facilitate and promote DEVS modelling and simulation
- an Infrastructure for DEVS Modelling and Experimentation. At the modelling level, we use

3

meta-modelling and a visual modelling language to construct a visu al DEVS modelling envi
ronment. In this approach, we not only build a meta-model for DEVS, but also our entire
modelling environment is modeled. At the textual model representation level, we describe our
models in Modelica[Fri04], which is a popular model description language for both continuous
and discrete models, and use a Model Compiler to translate the simulator-neutral Modelica
represented models into programming language-specifie simulation models. At the simulation
level, we standardize the trace representation in XML, and build a generic Visual Trace Piotter
which can plot any trace that follows the XML trace description DTD.

The organization of this thesis is as follows. In chapter 1, we first review the Discrete EVent
system Specification formalism and sorne of its popular variants. In chapter 2, we discuss the
design architecture of the Infrastructure, in which a big picture of the whole system is given.
In chapter 3, 4, and 5, we presents the sub-systems of the Infrastructure. In chapter 3, we
introduce DEVS simulation trace standardization and the Visual Trace Piotter. In chapter 4, we
discuss representing DEVS models in Modelica and the Model Compiler, which compiles models
described in Modelica into models represented in Python DEVS. In chapter 5, we presents
issues of meta-modelling the DEVS formalism, building a visual DEVS modelling environment,
and generating Modelica model representations from visual DEVS models. In chapter 6, we
give a case study, in which an example demonstrating the whole process of building DEVS
models using the Infrastructure is discussed. Finally, in chapter 7, we draw conclusions on the
Infrastructure and talk about further efforts to improve the Infrastructure.

Discrete EVent system Specification (DEVS)
Formalism

1.1 Introduction

DEVS (Discrete EVent system Specification) was first proposed by Zeigler in the 1970's as
a mathematical basis for deterministic discrete event modelling ([ZPKOO]). DEVS provides
a formaI representation of discrete event dynamic systems that is capable of mathematical
operation and independent of any computer realization. In DEVS, a complex system can be
specified by two different kinds of models, atomic models and cou pied models. Atomic models
can be connected together to form coupled models. The composed cou pied models and atomic
models cau be further connected to create more complex hierarchical cou pied models.

Atomic models are the basic units in DEVS[Van04]. The structure of atomic models is de
scribed as components with inputs, states, and outputs. The behaviour of an atomic model is
specified by functions that reflect the state change and output to the environment of the model
corresponding to different inputs. The input and output concepts in atomic DEVS have two
levels of meaning. First, each model may have input and output ports, by which the model
can interact with its environment. Second, what can go through the ports are input events
that the environment sends to the model and output events that the model sends back to the
environment. The input and output in an atomic model mean not only events but also ports
through which events come in or send out. The modularity of the atomic models cornes from
the port concept, by which the implementation of an atomic model only needs to consider
the input events coming from its input ports and send its output to appropriate output ports.
Issues such as how events come to input ports and how to send an event to other models do
not need to be considered at the atomic model level.

The states specified in an atomic model are called sequential states, which are not the complete
model states. They actually represent identifications of discrete model state space partitions[PP93],
which means that the state space of an model can be partitioned exclusively into many different
parts, and each of them is identified by a name (sequential state). The behaviour of a model
can be seen as the model staying at different sequential states. Within different sequential
states, the model can react to different events or react differently to the same events. After
processing an event, the model may changes its state.

The behaviour of a model changing its sequential state from one to another is called state
transition. How a model does its state transitions is determined by its transition functions.
Input events lead to "external event transitions", which means that upon occurrence of an
input event, whether the model transits to another state and how to transit to another state
is determined by the external event transition junction. The time interval a model stays in a

1.1 Introduction 5

particular state in the absence of external events is determined by the time advance function.
When this time has elapsed, an event is triggered. The time scheduled events are called internaI
events. Upon the occurrence of an internaI event, the model produces an output event by its
output function and transits to a new state determined by its internaI state transition function.

Atomic DEVS models can be cou pIed together by connecting their input and output ports to
build a coupled model. Cou pIed models have their own input and output ports, which can be
used to connect other cou pIed or atomic models to create even larger hierarchical models. When
used to connect to other models, coupled models are not distinguishable from atomics models,
so they are reusable to build hierarchical models in the same way as atomic components.

Since its inception, DEVS has been studied over 30 years. The specification has evolved and
been extended by many researchers. The original version is now called Classie DEVS, and the
lat est edition is called Parallel DEVS ([ZPKOO], [AB94], [Van04]). The major difference between
Classie DEVS and Parallel DEVS is the way they deal with transition collisions. Classie DEVS
does not provide any mechanism of processing transition collisions at atomic level. It is the task
of the select function of a cou pIed model to break the tie between simultaneous transitions.
In Parallel DEVS, transition collisions have been broken by the confluent transition function
at atomic level. So there is no need at coupled level to process simultaneous transitions (see
section 1.2.2).

In addition to Classie DEVS and Parallel DEVS, there are many other extended versions of
DEVS. The most significant extensions are Cell-DEVS ([WGOla], [WGOlb]) , and Dynamie Struc
ture DEVS (DSDEVS) ([Bar97], [UhrOl]). Cell-DEVS makes DEVS more efficient in modelling
phenomena that are suitable for state space partitioning. DSDEVS makes it possible for DEVS
to model situations that include dynamic structure changes.

One advantage of DEVS is that it provides not only a modular, hierarchical modelling frame
work, but also a concept of abstract simulator (i.e., operational semantics), by which the model
behaviour can be generated. There are many different implementations of DEVS modelling and
simulation tools available now ([Zei05], [BV02], [Nut05]). Each one has its own features and
functionalities. We will investigate sorne of them to get a flavour of the difference.

The Modelling and Simulation industry in nature has a tight relationship with computer and
software development technology. During the time of DEVS evolution significant progress has
been made in the software engineering industry. From the software design point of view, struc
tural software design has gradually finished its mission, object-oriented software development
and model driven architechure become more and more populer. From a computing language as
pect, much effort is spent on the research of visuallanguage and software visulaization. Though
these new trends have not reached the level that can replace aIl the tranditional technologies,
they can potentially promote and facilitate the development and application of modelling and
simulation technology. In this thesis, we present an infrastucture we built for facilitating
DEVS visual modelling and experimentation, in which sorne new technologies like visu al meta
modelling, and visu al languages are used. Before we further discuss our infrastructure, let us
review sorne related background about DEVS.

We will first discuss the basic DEVS formalisms, Classie DEVS and Parallel DEVS. Then we
will look into algoritms for DEVS simulators. After that, we will present the features of sorne
implementations of DEVS modelling and simulation tools. We will use DEVSJava, ADEVS, and
Python DEVS as examples to explain the features and differences.

1.2 Discrete Event System Specification 6

1.2 Discrete Event System Specification
The DEVS formalism fits the general structure of deterministic, causal systems in classical
systems theory. DEVS allows for the description of system behaviour at two levels. At the
lowest level, an atomic DEVS describes the autonomous behaviour of a discrete-event system
as a sequence of deterministic transitions between sequential states as well as how it reacts to
external input (events) and how it generates output (events). At the higher level, a coupled
DEVS describes a system as a network of coupled components. The components can be atomic
DEVS models or coupled DEVS in their own right. The connections denote how components
influence each other. In particular, output events of one component can become, via a network
connection, input events of another component. The DEVS formalism is closed under coupling:
for each coupled DEVS, a resultant atomic DEVS can be constructed ([Zei84]). As such, any
DEVS model, be it atomic or coupled, can be replaced by an equivalent atomic DEVS. The
construction procedure of a resultant atomic DEVS is also the basis for the implementation of
an abstract simulator or solver capable of simulating any DEVS model. As a coupled DEVS
may have coupled DEVS components, hierarchical modelling is supported.

To be suitable for simulation un der simulators implemented in different architectures, there are
basically two types of DEVS specifications. Classic DEVS specifies models that are suitable for
simulation under sequential DEVS simulators. Parallel DEVS defines models that are amenable
to parallel simulation.

1.2.1 Classic DEVS

Classic Atomic DEVS Formalism

The atomic DEVS formalism is a structure describing the different aspects of the discrete-event
behaviour of a system([ZPKOO]):

AtomicDEVS == (X, Y, S, bext , bint, >. , ta)

The time base T is continuous and is not mentioned explicitly[Van04]

Each atomic DEVS model has a set of input events X, a set of output events Y, and a set
of sequential states S. The model transits its state through state transition functions. Upon
arrivaI of an input event x, the new state is determined by the return value of bext((s, e), x),
which means that the new state is determined by the current state s, the time it stays at s,
and the input event x. When there is no external event, the time interval the model stays on
its current state is determined by applying the ta function to the current state. And the next
state of the model is determined by bint(S), where s is the current state. Just before an internaI
state transition, the model can generate an output event by applying the >. function to the
current state s, Le. >'(s). Details on each part of the formalism are explained as below.

The state set S is the set of sequential states: the DEVS dynamics consists of an ordered
sequence of states from S. Typically, S will be a structured set (a product set)

S = x~lSi

This formalizes multiple (n) concurrent parts of a system. It is noted how a structured state
set is often synthesized from the state sets of concurrent components in a coupled DEVS model.

1.2 Discrete Event System Specification 7

The time the system remains in a sequential state before making a transition ta the next
sequential state is modelled by the time advance function

ta: S --+ IRt, +00·

As time in the real world always advances, the image ofta must be non-negative numbers. ta = 0
allows for the representation of instantaneous transitions: no time elapses before transition to
a new state. Obviously, this is an abstraction of reality which may lead to simulation artifacts
such as infinite instantaneous loops which do not correspond to real physical behaviour. If the
system is to stay in an end-state s forever, this is modelled by means of ta(s) = +00.
The internai transition function

models the transition from one state to the next sequential state. 6int describes the behaviour
of a Finite State Automaton; ta adds the progression of time.

It is possible to observe the system output. The output set Y denotes the set of admissible
outputs. Typically, Y will be a structured set (a product set)

This formalizes multiple (1) output ports. Each port is identied by its unique index i. In a
user-oriented modelling language, the indices would be derived from unique port names.

The output function

À: S --+ y U {0}

maps the internai state onto the output set. Output events are only generated by a DEVS
model at the time of an internai transition. At that time, the state before the transition is used
as input to À. At all other times, the non-event 0 is output.

To describe the total state of the system at each point in time, the sequential state sES
is not sufficient. The elapsed time e since the system made a transition to the current state s
needs also to be taken into account to construct the total state set

Q = {(s, e) 1 sES, 0:::: e :::: ta (s)}

The elapsed time e takes on values ranging from 0 (transition just made) to ta(s) (about to
make transition to the next sequential state). Often, the time left a in astate is used:

a = ta(s) - e

Up to now, only an autonomous system was described: the system receives no external inputs.
Hence, the input set X denoting an admissible input values is defined. Typically, X will be a
structured set (a product set)

This formalizes multiple (m) input ports. Each port is identied by its unique index i. As with
the output set, port indices may denote names.

The set n contains an admissible input segments w

1.2 Discrete Event System Specification 8

w: T -. X u {0}

In discrete-event system models, an input segment generates an input event different from the
non-event 0 only at a finite number of instants in a bounded time-interval. These external
events, inputs x from X, cause the system to interrupt its autonomous behaviour and react in
a way prescribed by the external transition function

6ext : Q x X -. S

The reaction of the system to an external event depends on the sequential state the system is in,
the particular input and the elapsed time. Thus, 6ext allows for the description of a large class
of behaviours typically found in discrete-event models (including synchronization, preemption,
suspension and re-activation).

When an input event x to an atomic model is not listed in the 6ext specification, the event is
ignored.

Classic Coupled DEVS

The coupled DEVS formalism describes a discrete-event system in terms of a network of coupled
components[Van04].

CoupledDEVS =< XSelj, Y selj , D, {Md}, {ld}, {Zi, d}, Select >,

The component self denotes the coupled model itself. Xselj is the (possibly structured) set of
allowed external inputs to the coupled model. Yselj is the (possibly structured) set of allowed
(external) outputs of the coupled model. D is a set of unique component references (names).
The coupled model itself is referred to by means of self, a unique reference not in D.

The set of components is

{Mi 1 i E D}.

Each of the components must be an atomic DEVS

Mi = (Xi, Yi, Si, 6ext,i, 6int,i, .Ài , ta,i), Vi E D

The set of inuencees of a component, the components influenced by i E DU {self} is h The
set of aU influencees describes the coupling network structure

{Ii 1 i E D U {sel f} }

For modularity reasons, a component (including self) may not influence components outside
its scope the coupled model, rather only other components of the coupled model, or the cou pIed
model self:

Vi E Du {self}:Ii ç Du {self}

This is further restricted by the requirement that none of the components (including self) may
influence themselves directly as this could cause an instantaneous dependency cycle (in case of
a 0 time advance inside such a component) akin to an algebraic loop in continuous models:

1.2 Discrete Event System Specification 9

Vi E Du {sel!}:i (j:. Ii

Note how one can still encode a self-Ioop (i E Ii) in the internaI transition function.

To translate an output event of one component (such as a departure of a customer) to a
corresponding input event (such as the arrivaI of a customer) in influencees of that component,
output-to-input translation functions Zi are defined:

{Zi,j 1 i E Du {sel!}, jE Ii},

Zself,j : X self -t X j , Vj E D,

Zi,self : Yi -t Yself, Vi E D,

Zi,j : Yi -t X j , Vi,j E D.

Together, Ii and Zi,j completely specify the coupling (structure and behaviour).

As a result of coupling of concurrent components, multiple state transitions may occur at the
same simulation time. This is an artifact of the discrete-event abstraction and may lead to
behaviour not related to real-life phenomena. A logic-based foundation to study the semantics
of these artifacts was introduced by Radiya and Sargent [RS94]. In sequential simulation
systems, such transition collisions are resolved by means of sorne form of selection of which of
the components' transitions should be handled first. This corresponds to the introduction of
priorities in sorne simulation languages. The coupled DEVS formalism explicitly represents a
select function for tie-breaking between simultaneous events:

select: 2D
-t D

select chooses a unique component from any non-empty subset E of D:

select(E) c E.

The subset E corresponds to the set of all components having a state transition simultaneously.

Model coupling is the mechanism used in DEVS to group many models into a composite, cou pIed
model. Coupled models are not distinguishable from atomic models when they are cou pIed with
atomic models. Based on the feature of closure under coupling of DEVS, complex system can
be hierarchically constructed by model coupling.

1.2.2 Clarification of Concepts

Sequential State and State Space Partition

As we mentioned earlier, Sequential State is one of the key concepts used in DEVS to describe
model behaviour. The Sequential State of an atomic DEVS model is the exclusive partition
identifications of the model state space ([PP93]). The trajectory of the model behaviour can
be seen as a sequence of numbered pairs of Sequential State and holding time, where the
holding time means how long the system remains in the Sequential State. The Sequential State
has different meanings depending on the model state, and it is determined by one or sorne of
the model state variables.

1.2 Discrete Event System Specification 10

A traffie light ean be a good example to explain the difference between Sequential State and
model state. In DEVS, a traffic light can be modelled as an atomic DEVS. The atomic traffic
light DEVS model state may have many attributes such as producer, location, light col ors
and so forth. However, no matter how many attributes the model state may have, the life cycle
of a typical traffic light can be represented as repeating changing its color to Red, Yellow, and
Green after certain time intervals. So the Sequential State of a typical traffic light DEVS model
can be reprensented as the set of {Red, Yellow, Green}. In this example, the sequential state of
a traffie light is determined by the values of one attribute (light colors) of the model state.

External. Internai. and Output Events

There are three kinds of events for a DEVS model, Input Events (External Events), Time Sched
uled Events (Internai Events), and Output Events. Input Events are events from the model's
environment; Time Scheduled Events are events scheduled by the model's time advance func
tion; and Output Events are events the model generates to communicate with its environment.
Input Events cause an external state transition, so Input Events are also called External Events.
Time Scheduled Events lead to an internai state transition. That is why they are also called
Internai Events. Output Events are the side-effect of processing the internai events. One thing
needs to be remembered is that only an internai state transition can generate Output Events.
If an external transition wants to produce an Output Event, it must schedule an Internai Event,
and wait until the scheduled time interval has elapsed to generate an Output Event via the
scheduled Internai Event.

State Transition and Transition Collisions

In DEVS, State Transition means, upon the occurrence of a certain event, the behaviour that
a model changes its sequential state from one to another. External events can cause an exter
nal state transition and an internai event will lead to an internai state transition. What will
happen if more than one event occurs at the same simulation time? Chow presents the con
cept of Transition Collisions to represent mutually interfering simultaneous events ([ABK94]).
Transition Collisions can happen between multiple external events, external events and internai
events, and multiple internai events. Different measures to deal with Transition Collisions among
simultaneous events lead to the distinction between Classic DEVS and Parallel DEVS.

With these concepts in mind, now let us discuss Parallel DEVS.

1.2.3 Parallel OEVS

In Classic DEVS, the select function of a cou pied model is used to break the tie of simultaneous
internai events. At the simulation level, the simulator uses the select function to sequentialize
these events. There is no mechanism both at atomic level and coupled model level to deal with
the situations when an external event and an internai event occur simultaneously. In Classic
DEVS, the external events are chosen to override any simultaneous internai event. AIso, there
is no mechanism for processing simultaneous external events. The simultaneous external events
are sim ply serialized or one is selected and others are ignored.

In arder ta improve the capability for processing simultaneous events of Classic DEVS and to
add the ability for parallel simulation, a revised version of DEVS, Parallel DEVS, was proposed.
Parallel DEVS extends Classic DEVS at both atomic level and coupled level. At the atomic level,
a Parallel DEVS has a input bag, which makes it possible for the Parallel DEVS to queue the
distinct events happening simultaneously or the events that have not been processed yet. In

1.2 Discrete Event System Specification 11

addition to the input bag, each atomic Parallel OEVS has a Confluent transition function, which
is used to handle simultaneous events. Because of the existence of the Confluent transition
function constructed by the modeller at the atomic level, a coupled Parallel OEVS is relieved of
the burden of selecting a right event to process when there are multiple events occuring at the
same time.

Parallel DEVS Atomic Models

The atomic model for Parallel OEVS is ([ZPKOO])

APDEVS = (X, Y, S, bext , bint, bcon , À, ta),

where

X is the set of input events

y is the set of output events

S is the set of sequential states

bext : Q x X b -> S is the external state transition function, where Xb is a set of bags over
elements in X

bint: S -> S is the internaI state transition function

bcon : S x X b -> S is the confluent transition function, subject to bcon(s, 0) = bint(S)

À: S -> yb is the output function

ta: S -> lRt U 00 is the time advance function

Q = {(s, e) 1 SES, 0 < e < ta(s)} and e is the elapsed time since the last state transition.

Parallel OEVS improves OEVS formalism in the following areas.

1. The external state transition function bext can accept bags of input events. The major
difference between the data structure set and bag is that the set is exclusively ordered,
which means that an element in a set can not appear more than once. While the bag
is unordered, the same element can show up many times. This improvement makes it
possible for Parallel DEVS models to accept multiple events at the same time.

2. Parallel OEVS uses the confluent transition function bcon to deal with the transition colli
sions between external events and internaI events. This gives the modeler an opportunity
to control the model behaviour when the model receives an external event at the time of
an internaI state transition. The confluent transition function has two commonly used
implementations, internal events first or external events first. Internal events first means,
when there is a transition collision between an internaI event and an external event, the
internaI event is processed first, then the external event. This is the default behaviour of
the confluent transition function. It can be represented as bcon(s, x) = bext(bint(S), 0, x).
This means that the internaI event is processed by the internaI transition function first,
immediately after that, the external event is processed by the external transition func
tian. That is why the elapsed time is 0 for the external transition function. External
events first has the opposite meaning. The confluent transition function for an exernal
events first model can be described as 6con (s,x) = 6int(6ext(s,ta(s),x)). This means that
the internaI event must wait until the external event has been processed.

3. In Classic OEVS, external events are always processed by the external state transition
function bext . In Parallel OEVS, an external event can be processed either by the external
state transition function bext or by the confluent transition function bcon depending on

1.2 Discrete Event System Specification 12

the time the external event arrives. When an external event arrives at a time e, if
o < e < ta (s), the event is processed by the Oext function, if e = 0 or e = ta (s), the event
is processed by the oean function. Because the input of the confluent transition function
is a bag, the implementation of the function should guarantee that oean (s, 0) = Oint (s),
which means that when the input bag is empty, the confluent transition function should
have the same semantics as the internaI transtion function.

Parallel DeVS Cou pied Models

The structure of a Parallel DEVS coupled model is similar to the ClassicDEVS coupled model
except that the former do es not have the select function ([ZPKOOJ).

CPDEVS = < X, Y, D, {MÛ, {Id}, {Zi, d} >
Here, X, Y, D, Id and Zi,d have the same meaning as that for Classic DEVS coupled models,
and for each d E D, Md is a Parallel DEVS model. For coupled models, Parallel DEVS removes
the select function that exists in Classic DEVS cou pIed models. This clears the way for parallel
simulation.

Now we can summarize the mechanisms used by Classic DEVS and Parallel DEVS to deal with
transition collisions as follows. In Classic DEVS, transition collisions among internaI events of a
coupled model are tackled by the select function of a coupled Classic DEVS model; for transition
collisions among external events and internaI events, external events always override internaI
events; for transition collisions among external events, there is no mechanism specified in Classic
DEVS to deal with this situation (which can actually never occur due to the sequential nature
of Classic DEVS). In Parallel DEVS, the confluent transition function at atomic model level
is used to tackle transition collisions among external events and internaI events; simultaneous
external events are collected in the bag data structure of Parallel DEVS models, and the external
transition function and the confluent transition function of the Parallel DEVS accept bags rather
than sets as their input parameters. Because models of Parallel DEVS are simulated in parallel,
there is no transition collision among internaI events.

1.3 Abstract DEVS Simulation Engine 13

1.3 Abstract DEVS Simulation Engine

The DEVS models can be simulated in many different ways. A generic and modular framework
for DEVS simulation was proposed by Zeigler in [ZPKOO]. The idea of the framework is that,
usually a DEVS model is a hierarchical tree in which Atomic Models as leaf nodes and Cou pied
Models as root and branch nodes. So the simulator of the DEVS models may have a similar
hierarchical structure. In order to distinguish the difference between simulators for coupled
and atomic models, the simulators for cou pied models are called coordinators. The mapping
between a DEVS model and its hierarchical simulator is shown below .

............... , ,

.......... ",

.. , .. , , ,'''', ..

Figure 1.1: Mapping between DEVS Models and Simulators

Because it uses a sequential select function at cou pied model level to serialize the transition
collisions inside a coupled model, Classic DEVS is suitable for sequentialized simulation. On the
other hand, Parallel DEVS is by nature suitable for parallel or distributed simulation. Parallel
simulation can fully take advantage of the intrinsic parallelism of models. So for much complex
systems, parallel simulation could be much more efficient than sequential ones. Certainly, the
efficiency cornes with more sophisticated algorithms, and much more effort for developing a
parallel simulator.

1.3.1 Abstract Simulator for Classic DEVS

The main task of a simulator is to generate a behaviour trace for the mode!. We mentioned
earlier that there are three kinds of events in each DEVS model, external events, internaI time
scheduled events, and output events. So a qualified DEVS simulator should have the capability
to properly process these kinds of events. At simulation level, each DEVS event is wrapped
with a time stamp, which is the virtual time at which the event occurs. In addition to the
three kinds of DEVS events, the Classic DEVS simulator introduces a new type of event to
synchronize the model initialization process. So there are four kinds of messages sent between
DEVS simulators and coordinators. They are:

1. Initialization message (i, t): sent at the initialization time from the parent simulator
object to all its subordinates;

1.3 Abstract DEVS Simulation Engine 14

2. InternaI state transition message (*, t): sent from the coordinator to its imminent child
to schedule the next event;

3. Output message (y, t): sent from subordinates to their parents to notify output events of
the subordinates;

4. Input message (x, t): sent from a coordinator to its subordinates to notify input events
to the subordinates.

Root

0, t) (', t)

......
".

'
0. o,. • ...

'l'~ t l

.......
'.
".

. ~ ":;' .~ \"

1 Simulator

"~.Y' d'o.,. \" \ ..•.
f-....J:----"----''---, ":" \!4 ":" \'"

1 Simulator

Figure 1.2: Messages Used in Classic DEVS Coordinators and Simulators

The messages sent among coordinators and simulators can be described as in Figure 1.2, in
which line segments with text represent messages, and the arrow on a line segment indicates
the direction of a message.

Simulator for Classic Atomic DEVS

From Figure 1.2, we can see that the simulator for a atomic model receives three kinds of
events. At the beginning of each simulation mn, the simulator receives an (i, t) event, at which
the simulator updates its last event time tl and computes its next event time tn. Then tl and
tn are sent to the parent coordinator.

1. A (*, t) message can cause an internaI event transition, upon which the simulator calls
the model's output function to generate an output event (y, t), which is sent to the parent
of the simulator. Then, the internaI state transition function is called, and the model
state is updated. After that the tl and tn variables are recomputed and sent to the parent
coordinator.

1.3 Abstract DEVS Simulation Engine 15

2. When a (x, t) message is received, an external state transition is triggered. The elapsed
time is computed, and the external state transition function is caIled. After the state
transition, the tl and tn are updated and sent to the parent coordinator.

3. Every time the tl and tn are updated, they must be sent to the parent coordinator. By
coIlecting aIl the tls and tns of its subordinates, the coordinator can determine its last
and next event times. How the coordinat or determines its last and next event times will
be discussed in the cou pIed model simulation algorithm.

1. when an (i. t) message is received

tl = t - e

tn = tl + ta(s)

send tl, tn to parent

2. when a (*. t) message is received

if (t == tn)

else

y = >'(s)
send (y, t) to parent

s = t5int (s)
tl = t

tn = tl + ta(S)

send tl to parent

error

3 when a (x. t) message is received

if (tl <= t <= tn)
e = t - tl

else

S = b'ext(s, e, x)

tl = t

tn = tl + ta(s)

send tl, tn to parent

error

In this algorithm, variable tl ho Ids the virtual time when the last event occured, and the tn

represents the simulated time of the next event. During the simulation, the relation tn =

tl + ta(s) holds. The variable e denotes the elapsed time since the last event, at a given
global time t, we have e =: t - tl. Sorne issues of this algorithm should be remembered.
First, the internaI transition will be interrupted unconditionaIly by an external event. There
is no mechanism in this algorithm to make an external event wait until the current internaI
transition finishes. Second, when an internaI state transition is interrupted, the unfinished
internaI transition is discarded. There is no way to recover the internaI transition from where
it is interrupted. Third, there is no provision in the algorithm for the situation when an internaI
transition is interrupted but the model state does not change.

1.3 Abstract DEVS Simulation Engine 16

Coordinator for Classic Coupled DEVS

As for a simulator for atomic DEVS, a coordinator for a coupled DEVS also receives three kinds
of events from its parent and sends one event to its parent. The only difference is that the
coordinat or can also get events from its subordinates and send events to its subordinates.

1. When an (i, t) event is received, the coordinat or forwards the (i, t) to aIl its direct
subordinates, and collects aIl the subordinates' next event times and last event times,
and saves them in an event list. The last and next event time for the cou pIed model are
computed using tl = max{tld 1 d E D} and tn = min{tnd 1 d E D}.

2. When a (*, t) event arrives, the coordinator uses the select function to determine which
subordinate should be executed. After the execution of the subcomponent, the coordina
tor updates its last time and next time.

3. When a (x, t) event arrives, the coordinator first checks which components are connected
to the port from which the (x, t) event cornes, and sends the (x, t) to the components.
It then updates its last and next event time.

4. When receiving an output event (Yd*, t) from the imminent component d *, the coordinator
first checks whether the output port of d* is connected to the coupled model. If it is, then
the event will be sent to the coordinator's parent coordinator. And then, the coordinator
collects the subordinates that connect with the output port of d *, and sends (Yd*, t) to
the subordinates.

1. when a (i, t) message is received

for each d in D

send (i, t) to d

get ail tndS and update event-list

sort event-list according to the value of tnd

tl = max{tld 1 dE D}

tn = min{tnd 1 dE D}

send tl' tn to parent

2. when a (*, t) message is received

if (t == tn)

else

d* = select(event-list)

send (*, t) to d*

get tnd. from d* and update the event-list

sort the event-list

tl = t

tn = min{tnd 1 dE D}
send tl, tn to parent

error

1.3 Abstract DEVS Simulation Engine

3. when a (Yd •• t) message is received from port Pd.

if Pd. connects with one of the current coupled model's output ports

send (Yd •• t) to parent

for ail d E D and d has connection with Pb

send (Yd •• t) to d

4. when a (x. t) message is received at port p

if (il <= t <= tn)

else

for ail d E D and d has connection with p
send (x. t) to d through port pd that connects with p
get ail tnds and update event-list

sort the event-list

tl = t

in = min{tnd 1 dE D}

send tl. tn ta parent

error

17

Here, tl and tn have the same meanings as that in atomic simulators. The event-list is a list of
triple (d, tld, tnd), and d* means the selected component whose event will be processed next.

Root Coordinator

The root coordinator is mainly a time scheduler. There is no real DEVS model corresponding
to the root coordinator. Attached to it is the real simulator that has a corresponding DEVS
model. At the beginning of each simulation run, the root sends a (i, t) message to its child (the
attached simulator or coordinator), and computes the next event time. Then, it repeatedly
sends (*, t) messages to its children and computes the next event time until the simulation
ends.

t = ta
send (i. t) to the child
t = child.tn

do

send (*. t) to the child

t = child.tn

until simulation end condition

1.3.2 Abstract Simulator for Para"el DEVS

The model specification for Classic DEVS in nature does not support paraUel simulation. Parallel
DEVS has revised the parts that impede parallel simulation of Classic DEVS models. Conse
quently the simulator for Parallel DEVS needs the mechanisms that support parallelism.

When it cornes to parallel simulation, one important issue is how to synchronize the paraUelized
executions. Typically there are two different strategies used to synchronize parallel processors,
conservative techniques and optimistic techniques ([AT02], [ZPKOO]). The conservative method
uses time stamped messages to synchronize the paraUel processors. A processor is aUowed to

1.3 Abstract DEVS Simulation Engine 18

pro cess an event at time t, only when it is certain that no other events will arrive with a time
stamp that is sm aller than t. This method implies that at any time only the event with the
smallest time stamp can be executed. In an optimistic parallel simulation, the processor will
proceed assuming that it will not receive an event with a time stamp less than the one that is
being processed. When it receives an event with a time stamp t smaller than events that have
heen processed, the processor will roll back the processed events to the first event whose time
stamp is smaller than t.

The overhead of the conservative method is the posibly huge number of synchronization mes
sages that are used to determine which event is the one that has smallest time stamp. In the
optimistic method, in or der to roll back the events, aIl the state information of simulation must
he saved. When the system is complicated, and the state can be very large and hence the
memory requirement is not a small issue.

The Parallel DEVS formalism is in nature for parallel simulation, either for the conservative
method or for the optimistic approach. In the following part of this chapter, we will discuss an
algorithm for conservative simulation of Parallel DEVS ([ABK94]).

As in Classic DEVS, there is a mapping structure between Parallel DEVS models and Parallel
DEVS simulators. The synchronization between simulators and coordinators is also do ne by
sending messages. In order to support the parallelism, the messages used in the Parallel DEVS
simulator are slightly different from those of the Classic DEVS simulator.

Root

(@. t (t, t) done, t)

Figure 1.3: Messages for Parallel DEVS Coordinators and Simulators

Figure 1.3 shows the messages used for the implementation of a conservative Parallel DEVS
simulator. There are five kinds of messages, (@, t), (q, t), (*, t), (y, t) and (done, t). (@, t),
(q,t), and (*, t) are sent from coordinator to its subordinates, and (y, t), and (done, t) are sent
by subcomponents to their parent. (@, t) is used by a coordinator to notify its subcomponents

1.3 Abstract DEVS Simulation Engine 19

that it is the time to generate output; (q, t) is sent by a coordinator to inform its subordinates
of the arrivaI of an input event; and (*, t) is to trigger the state transitions. The receiver
will determine the type of the transition applied based on the context in which the message
received. The (y, t) message is sent by the subordinates to their parent to notify an output; and
the (done, t) is sent by a subcomponent to notify its parent that a message has been processed.

Abstract Simulator for Atomic Parallel DEVS

The main tasks of the atomic simuIator are to pro cess the received messages and report the
resuIts to the sender. The aIgorithm can be described as beIow.

when a (@. t) message is received

if t = tn

else

y = À(s)
send (Y. t) to the parent coordinator

send (done. t) to the parent coordinator

error

when a (@. t) message is received

if t = tn

else

y = À(s)
send (Y. t) to the parent coordinator

send (done. t) to the parent coordinator

error

when a (*. t) message is received

if tl <= t <= tn and bag is not empty

if t -- tn

if bag is empty
s Oint(S)

else
S ocon(s, bag)
empty bag

else
e = e - tl
S = 8ext (s, e, bag)
empty bag
tl = t
tn = tl + ta(S)
send (done. t) to the parent coordinator

else

error

1.3 Abstract DEVS Simulation Engine

when a (q, t) message is received

lock the bag

add q to the bag

unlock the bag

send (done, t) to the parent coordinator

20

Rather than finishing the processing of an event in one message, this algorithm uses different
messages to notify the simulator when to generate an output, pro cess an arrived event, and
when to do a state transition, This gives a clear processing structure at the cost of adding sorne
message sending overhead. Also, the confluent function for the atomic Parallel DEVS models
solves the problem of transition collision. However, an internaI transition is still unconditionally
interrupted when an external event occurs before the scheduled time interval for the transition
elapses.

Coordinator for Coupled Parallel DEVS

The (@, t) message received by a coordinator is simply sent to the coordinator's subordinates.
The (y, t) message is sent to all the components in the sender's influencees set h If the model
of the coordinator is in the 1;, then the (y, t) is sent to the coordinator's parent. For a (*, t)
message, the coordinator routes the (q, t) events down to aIl its atomic influencees.

when a (@, t) message is received from the parent coordinator

if t == tn
tl = t

else

for each child in imminent child set
send (@, t) to child
cache child reference in the synchronize set

wait until (done, t) received from ail imminent children

send (done, t) to parent coordinator

error

when a (y, t) message is received from child i

for each influencee j in li

q = Zi. j(Y)
send (q, t) to influencee j

cache j in the synchronize set

wait until (done, t) received from ail influencees

if self E Ii

y = Zi, self (y)
send (y, t) to the parent coordinatar

when a (q, t) message received from the parent coordinator

lock the bag

add event q ta the bag

unlock the bag

1.3 Abstract 0 EVS Simulation Engine

when a (*. t) message is received from the parent coordinator

if tl <= t <= tn

for each influencee j in lself and each q in bag
q = Zself, j (q)

else

send (q. t) to j
cache j in the synchronize set
empty bag
wail until ail (done. t) are received

for each i in the synchronize set
send (*. t) to i

wait until ail (done. t) are received
tl = t
tn = min{ti}
clear the synchronize set
send (done. t) to parent coordinator

error

Root Coordinator for Parallel DEVS

21

The root coordinator has no corresponding DEVS modeL It is attached to a coordinator that
simulates a modeL By repeatedly sending the (@, t) and (*, t) message to the attached simu
lator or coordinator, the root coordinator makes the simulation run until a certain termination
condition is met.

t = child,tn

do

send (@. t) to the child

wait until (done. t) received from the child

send(*. t) to the child

wait until (done. t) received

t = child,tn

until simulation end condition

There are many different ways to implement a ParaI/el DEVS simulator. In the next chapter,
we will introduce DEVS Java and ADEVS, They both support ParaI/el DEVS, However, the
interfaces of these two implementations are not the same,

1.4 DEVS modelling and Simulation Enviroments 22

1.4 DEVS modelling and Simulation Enviroments

After many years of research in DEVS, there are many modelling and simulation envlron
ments for DEVS available. Here, we will give a short introduction about Python DEVS
([BV02]), DEVS Java ([Zei05]), and ADEVS([Nut05]), from which we can get a general idea
of DEVS modelling and simulation. More information about the latest development of DEVS
modelling and simulation environments can be found at the DEVS standardization web site
http://www.sce.carleton.ca/iaculty/wainer /standardj.

1.4.1 PythonDEVS

Python DEVS is a DEVS modelling and simulation package developed at MSDL (Modelling, Sim
ulation, and Design Lab) headed by prof. Hans Vangheluwe, at McGili university. The original
purpose of Python DEVS is for teaching about DEVS, so it is not very complicated. The simu
lator is implemented in the programming language Python, so it is called Python DEVS. From
a modelling and simulation point of view, Python DEVS only supports Classic DEVS modelling
and sequentialized simulation. However, with the support of the meta-modelling tool AToM 3 ,

Python DEVS has the capability of visual modelling and model transformation, which me ans
that you can draw DEVS model visually, and transform an DEVS model to models represented
in other model formalisms or vice versa. More information about Python DEVS visual modelling
and model transformation can be found at http://moncs.cs.mcgill.ca/MSDL/research/projects/DEVSj.

BaseDEVS
, inllOe +parent: CoupledDEV$ - None

WostCEVS .ylO: lnt - None

PorLt'· l +condFlag: ~oolean _ Tme
+InCounter: int _ 0 Ports +IIyInput: Dl.ctlonary
+OutCounter: int _ 0 p.~, 'hostOEVS +ll}'OUtput: Dlctionary
+nalle: String l_~:-n.~":::-,:,,st,-;n::ng::""=:-;-_____ -i:
+ __ lnit __ <islnput:boot.nalle: string) o:ts + __ 1n1t __ (na~ :String) ~onentsSet
+typeO: String ,,+type(): Stnng

+addlnPort{nalle:String): Port
+addOUtPort (nalle: String): Port
+getModelNiM(); String
+getHodEtFuttNar.eO: String

loutLine
O

1
AlomlcDEVS

+AtolllcIOCounter: int • a
Hbpsed: f10at
+state
+ __ inlt_ (na~:String)
+poke (p :Port. e: Event)
+peek(p:Port): Event
+extTransi hon (); State
+intTransi hon (}: State
+outputFnc (): void
+titeAdvance (): float

+getPortNaIle (lMIdel: BaseDEVS, port: Port): String

CoupiedDEVS
+coup1edIDCounter: int - 0
+Col!ponentsSet: List
+1(; List
+EIC: List
+EOC: List
+ __ ln1 t __ (naH:String)
+addSubHode1 (IOde 1: BasicDEVS): void
+connectPorts (pl: Port. p2: Port)
+select(iIllll..1st:L1st): BasicDEVS

____ parent
~

Figure 1.4: Prototypes of Python DEVS Models

Figure 1.4 is the class digram of the abstract model classes used in Python DEVS [3]. From
this figure, we can see that BaseDEVS is the root of the inheritance class tree, which provides
the functionalities that are common to both atomic DEVS and coupled DEVS. Besides the
DEVS models, Python DEVS explicitly models a Port class. The reason for modelling the Port
class is that ports cannot be neglected when you build a DEVS model especially when you
want to couple models together, though ports are not explicitly described in Zeigler's DEVS
specification.

1.4 DEVS modelling and Simulation Enviroments 23

The meanings of most of the attributes and the purpose of the functions are obvious. One thing
that needs to be mentioned is the function of getModelFullName. In Python DEVS, each model
instance has a name, and the name is given at the time when the model instance is created.
This model name is purely a string and it can be invoked by using the function getModelName.
After models are coupled together, the new created coupled model has a name, and the models
that are cou pIed also have their own names. The full model name reflects the coupling relation
of model names.

A

Figure 1.5: Fully Qualified Name in Python DEVS

Figure 1.5 is an example of a cou pIed DEVS model in which model B is created by coupling mod
els C and D, and model A is built by coupling models Band E. In this figure, C. getModelName ()
returns "C" and C. getModelFullName () returns "A. B. C". Here "c" is the model's name
and C CA. B. C" is the model's fully qualified name.

1 AtomicSolver 1
l+recelve (aDEVS: Ato.icDEVS, -sg: Dictionary): Dichonary

1 CoupledSolver

+rec'!!ive (cDEVS:Coup ledDEV$. ItSg: DlCtionary): OlCtionary

1
LBaseDEvs}qlel. Simulalor

:1 Lo ln1 t (!IOde 1: Bas@DEVS)
+augllent(d: BaseDEVS)
+send (d :BaseDEVS, ... g: Dictionary): DlCtlonary
+si-.Jlate (t: Float-1OO. 0)

1

Figure 1.6: Class Diagram of the Python DEVS Simulator

Figure 1.6 shows the structure of the Python DEVS simulator. The simulator architecture is
simple. Here, the AtomicSolver has the same meaning with the concept of atomic simulator we
mentioned above, and CoupledSol ver is an alias of the coupled coordinator mentioned earlier,
and the simulator is just the root coordinator. The AtomicSolver and CoupledSolver have
only one function receive. In this function, all the messages have been processed and routed
to their right destinations. The purpose of the augment function in the simulator is to add
time related attributes to DEVS models. This is a feature of Python, in which class instances
can be augmented at run time.

1.4 OEVS modelling and Simulation Enviroments

Figure 1.7: The lnheritance Diagram of DEVSJava

entlty
Stnng

+enhty (nille:String}
+get_oa.e (): String
+equal(ent;entlty): bQohan
+eq(str:Strinq); boolE!an
+greater than(ent:entity): boolean

dev~

+de'l5 (naft: Stnn9)
+ini tu hze (): vOld
+in)ect (p: Stnng, ',a 1: entl ty, e; double}: 'Icid
+lIa~eContent (p: Stnng, value: enti ty): content
+lItssigeOnPort (x: .essago:, p: String, 1: Int): boa lean

atomlc

+atotic (na~: StringJ
+passivate 0: void
+holdln (p: String, '5: doub le): void
+passivateIn (phase: String): void
+phaseIs (phase: String): boolean
+<:Ielttnt(J: void
+deltext (e: double, x: lessag@): void
+deltcon (e: double, x: RS5age): vOld

1
simulator

*tl: double
.tN: doubh

+sikllator(nalle: String . IOde 1: deys)
+imtulneO
+de lte,t(e: doub le. x: ftssage): void
+deltintO: ·,oid
+out(): Ie'isage

coupled
+co~()nents: soU

+coup led (naM: String)
+add lb: devs): void
+qetCol!ponents (): set

dlgraph
+coupling: couprel
+dlgraph (nalle: Strinq)
+AddCoup ling (dl: devs. pl: String. d2: devs. p2: StrIng): vOld

.tN: double

.g: deys
#p: deys
"t: devs
"gHai 1: l'eS sage
q:.Mail: ~ssage
.tHall: lessage

l
' simTrlp ,

+siITrip()

coordinator

+coordinator(nalle: String. G: devs. P: devs, T: deys)
+lnltiahze(): vOld
+de l 18lt (e: double. x: _usage): veld
+de 1 tint Î): vOld
+out(): loeSS age

Figure 1.8: Class Diagram of DEVS Java

24

1.4 DEVS modelling and Simulation Enviroments 25

1.4.2 DEVSJava

DEVSJava is a DEVS modelling and simulation environment developed by Hessam Sarjoughian
and Bernard Zeigler at the University of Arizona. DEVSJava supports paraUel model execu
tions on a uni-processor. Models in DEVSJava can also be readily mapped to DEVSjHLA and
DEVSjCORBA for distributed execution in combined logicaljrealtime settings.

devs

+devs () basic_sim support t
+initialize(tl'!:ADfVS_ITI'E_ TYPE): voia

bsi. suppor
+preferred_ thread: int

+-devs!) +parent: devsn '
+typeIsNetworKl!: deys t +l<ey: unsigned long
+typelsAtanic(!: atanic '
+typeIsNI>tExec!) : netExec ct

+getParent () " devsn •
+setParent (parent: devsn') : void atomic sim_support t
+prefer _ thread (thread_id: int): void +o"ninL thr: void *

f +preferred_ thread: int
+t: ADEVS THE TYPE

1
+tL: ADEVS TIMË TYPE

silll support +tN: ADEVS= TIf<E= TYPE
devsn +q_index: int

+aetive: bool
+ini tia lize (tO: ADEVS_ TI ME_ TYPE) : void +X: adevs_bag<PortVa lue>'
+getNI>tExec!} : netExec· +y: adevs_bag<Po rtVa lue>'

alomlc

+atollic ()
+init{) : voia
+delta int(): void
+del ta= ext (e: ADEVS_ TIME_ TYPE, x: adevs_bag<Portvalue>&): void
+del ta_conf(x:adevs_bag<PortValue>/i,!: voio
+output_ fune (y: adevs_bag<PortVa lue>&),' void
+output(port:ADEVS PORT TYPE, value: ADEVS 10 TYPE,

y: adevs_ba~<PortVa lue>&): void - -
+tioeNext (): ADEVS TIME TYPE
+timeLast(): ADEVS-TIME-TYPE
+timeCurrent (): AOÊVS TÏf<E TYPE
+e lapsed (): ADEVS_ TI ME_ TYPË
+sig .. (): ADEVS_ TIME_ TYPE
+ta (): ADEVS TIME TYPE
+ho ld (dt: ADEVS_ TIfE_ TYPE),' void
+passi vate (): void
+gc_outputl g:adev,_bag<PortValue>&!, voia

Ü
net exec sim _support t

+garbage: adevs set<devst::> si. SlJj)f 0

+safe_set: adevs _ set<netExec't>-t

rt

netExec

+netExec ()
+getCanponent s! c, adevs _ set<devs'>/i,} , voia
+route(pv,PortValue&, model, deyS " r:adev5_bag<EventReceiver>&!: voio
+gc_model s(removed:adev5_set<devs'>/i,}: voio
+CanponentSetChanged(}: boal
+-netExecl)

Figure 1.9: Class Diagram of ADEVS

Figure 1.7 1S the class inheritance diagram for DEVSJava. In this diagram we can see aU

1.4 OEVS modelling and Simulation Enviroments 26

the elements in DEVSJava. Besides the classes related to DEVS, it defines sorne common data
structures for specifying algorithms used in DEVS modelling. The simTrip on the right bottom
corner of the figure plays the role of the root coordinator, which st arts a simulation process.

Figure 1.8 is the class diagram for the abstract models and the simulators of DEVSJava. An
interesting feature of DEVSJava is that the simulator and coordinator have the same interfaces
as an atomic DEVSJava model. This means that the simulator of DEVSJava itself is modeled
in DEVS!

1.4.3 ADEVS

ADEVS is a DEVS modelling and simulation library developed by James J. Nutaro at the
University of Arizona. ADEVS was developed in C++, and it supports both Parallel DEVS
and Dynamic Structure DEVS (DSDEVS). Figure 1.9 is the class diagram of the structures of
ADEVS's abstract DEVS models and simulators. These diagrams are drawn based on the source
code of ADEVS at http://www.ece.arizona.edu/-nutaro/index.php.

1.5 Conclusions 27

1.5 Conclusions
As a possible candidate for the standard of Discrete Event System modelling and simulation,
DEVS provides not only specifications for building models of Discrete Event Systems, but also
suggestions of building DEVS simulators. In this chapter, we first reviewed the DEVS specifica
tion. In the review, we followed the historical order of DEVS evolution, from Classic DEVS to
Parallel DEVS. The major difference between Classic DEVS and Parallel DEVS is the mechanism
for processing conflicting state transitions. In Classic DEVS, how to process simultaneous ex
ternal events is not specified. External events have a higher priority than simultaneous internaI
events. Simultaneous internaI events in a cou pIed model are processed by the order determined
by the coupled model's select function. In Parallel DEVS, simultaneous external events are
saved in a model's bag data structure. The conflict between simultaneous external events and
internaI events is resolved by the confluent function at the atomic modellevel. Because models
are simulated in parallel at atomic model level, there is no internaI state transition conflict in
Parallel DEVS.

After reviewing the DEVS specification, we looked into algorithms for building DEVS simulators.
Corresponding to DEVS model structure, DEVS simualtor has two data structures, simulator
and coordinator. Simulators provide mechanisms for simulating atomic DEVS models, whereas
coordinat ors have facilites for simulating coupled DEVS models. The root coordinat or provides
time progress information to all its subordinate coordinators and simulators.

Based on the same DEVS specification, many different DEVS modelling and simulation environ
ments have been implemented. In this chapter, we briefly introduced Python DEVS, DEVSJava,
and ADEVS. Python DEVS supports Classic DEVS. DEVSJava supports Parallel DEVS. ADEVS
supports both Parallel DEVS and DSDEVS. Besides the functionalities, the structures of the
different implementations are also different. To show the structural differences among different
implementations, we presented the class diagrams of the different implementations.

Now, we have reviewed the DEVS specification and sorne existing implementations. In the
next few chapters, we will discuss the design and implementation of our Infrastructure of DEVS
Modelling and Experimentation, the main topic of this thesis.

Architecture and Design

2.1 Introduction

The reality that there are many available DEVS modelling and simulation envionments with
different features significantly inhibits application of DEVS ([Zei05], [BV02], [Nut05]). Morever,
due to the fact that the complex systems that need to be modelled are usually not trivial for
most common users. DEVS, with its theoretical foundation, is not easy to grasp.

The main goal of this thesis research is to facilitate DEVS modelling and simulation, to promote
DEVS standardization and application. The ultimate goal of DEVS modelling and simulation
is to build a correct model for a system under study. The process of building a correct DEVS
model usually includes the following phases, Modelling, Verification, Simulation, and Validation.
So our question becomes how we can best support each step of the process.

Recently, visual modelling technology has become more and more popular in both software
engineering and modelling and simulation industry. By representing models as graphs, visual
modelling makes complex models easy to build, understood, and communicated. Many visual
modelling languages, such as the Unified Modelling Laguange (UML, which includes both visual
and textual notations), Entity Relationship Diagram(ERD), and Object Role Modelling(ORM),
have been developed and applied in different domains.

DEVS is a formalism suitable for modular and hierarhical system modelling. So DEVS models
are naturally represented graphically. Sorne beneficial research has been done on visual DEVS
modelling. [PBV03] presents ideas on generating visual DEVS modelling environments using
Meta-modelling technology. [PP93] proposes using Digraphs to visualize DEVS mode!. Though
both of these have sorne limitations, they give helpful inspirations for visual DEVS modelling.
We will enhance and improve these ideas to build a visual DEVS modelling environment to
facilitate DEVS model creation and structural analysis at the Modelling stage.

When it cornes to model verification, the first question is how models are represented. Sorne
forms of representations are easy to be verified, while others are not. At present, almost in ail
available DEVS modelling and simulation environments, models are represented in a program
ming language. Models are represented in Java for DEVSJava, C++ for ADEVS, Python for
Python DEVS, and so forth. Since the verification process usually needs sorne model structure
information, programming languages are not a good choice of model representation language
for verification purposes.

Modelling languages (also called model description language) are high-Ievel declarative lan
guages specificaly designed for hight-level abstract model representation. Recently, many mod
elling languages have been developed and applied successfully in different industries. The
Specification Description Language (SDL) has been used in telecommunication industry for de-

2.1 Introduction 29

scribing communication protocols; UML has been used by software engineers to specify software
and business models; Modelica has been used in the modelling and simulation world for specify
ing models of physical systems. These success stories give us some indication that representing
DEVS models in a high-level modelling language is a better choice for the purpose of model
verification.

High-level modelling language emphasize on specifying models in a precise and concise way.
Models represented in modelling languages usually cannot be run or simulated directly. A
common pratice is that in the Modelling phase, models are represented in modelling languages.
When it comes to simulation, high-level modelling representations are transfomed into models
represented in programming languages, which are suit able for model execution or simulation.
The transformation pro cess is usually done by a model compiler. The model compiler usually at
least has the following three capabilities. First, it checks whether the models are syntactically
correct for a specific modelling language. Second, it verifies whether the models are structurally
correct models for a certain formalism. And finally, it transforms the models to representations
in a target programming language.

The model compiler can verify that a model is syntactically correct against a specific modelling
language, and structurally correct against a certain modelling formalism. However, it cannot
give one the confidence that the model reflects the behaviour of a real system correctly. Simula
tion is a process of running models with experimental data in a virtual environment to emulate
the behaviour of a real system. By feeding the models with certain experimental input param
eters, the virtual simulation environment can execute the models to generate output data. The
output data combined with the simulation time gives the simulation trace. The behaviour of a
model is reflected by the simulation trace. Comparing the simulation trace with experimental
results obtained through experiments on the real system, a mode lier can validate whether a
model reflects the behaviour of the real system correctly.

From the discussion above, we can see that model validation is basically done by analyzing
the simulation trace. In reality, the simulation trace of the models of a complex system is
usually huge, so the task of model validation is not trivial. Two issues need to be considered
for relieving the burden of model validation. First, representing the simulation result in an
appropriate format. Second, developing tools to facilitate the validation process.

The Extensible Markup Language (XML) was originally designed for representing data for large
scale electronic publishing. Now it plays an increasingly important role for data exchange
on the web and in other areas. In the software modelling industry, the Object Mangagement
Group (OMG) has defined the standard XML format (XML Metadata Interchange) for exchanging
meta-infomation for UML implementations of different vendors. In the web representation field,
HTML follows the standard XML grammar since version 4.0. In the application domain, many
applications, such as Dia, Inkscape, Eclipse, and so forth, save the graph files or meta-data in
XML format. The major feature of representing data in XML format is that the structure of a
XML file can be specified by a Document Type Definition(DTD) or an XML Schema. Based on the
DTD or XML Schema, an XML file can be easily validated by an XML validator and transformed
from one format to another using the eXtensible Stylesheet Language Transformations (XSLT).
These features of XML make it a good candidate for representing DEVS simulation trace.

Though XML is flexible and easy to be validated, an XML representation of the simulation
trace is still textual. For human consumption, a graphical data representation is much more
expressive than a textual one. Trace visualization is the process of transforming textual infor
mation into graphical representation. Some research has been done on trace visualization for

2.1 Introduction 30

facilitating the trace analysis. [STOO] proposes ideas on building trace visualization and anal
ysis tools for sypervisory control systems. [AHW05] presents proposaIs on trace visualization
for interactive performance analysis of complex systems. These give us confidence that trace
visualization is a practical and reasonable way for DEVS trace analysis.

In this chapter, we discuss the design and architecture of the DEVS modelling and simulation
infrastructure. As we discussed above, the infrastrusture is designed to facilitate DEVS mod
elling and simulation in the following aspects. At the Modelling level, we use visual modelling
technology to build a DEVS visual modelling environment. At the Verification stage, we rep
resent DEVS models in a neutral modelling language, and use model compiler to verify the
neutrally represented DEVS models and transform that neutral representation into a language
specifie model representation. At the Simulation step, we use a standardized XML format to
represent DEVS simulation traces. And finally, at the Validation phase, we build a DEVS visual
trace pIotter for facilitating the DEVS trace validation process.

The organization of this chapter is as followings. Firstly, we introduce sorne background con
cepts that we use to design and architect the system. Secondly, we discuss the motivations and
purposes for designing and implementing the infrastructure. Thirdly, we present the architec
ture of the infrastructure, and give explanations for the choices we make at each step. And
finally, we draw sorne conclusions for this chapter.

2.2 Modelling Language Concepts 31

2.2 Modelling Language Concepts

The following describes the various aspects of modelling languages. In particular, a precise
terminology is introduced. This section is based on [VdL03].

2.2.1 Modelling

Models are abstractions of reality. The structure and behaviour of systems we wish to analyze
or design can be represented by models. These models, at various levels of abstraction, are
always desribed in sorne formalism or modelling language. In addition to the syntax of a model
(how it is represented), one needs to also specify its meaning (i.e., assign semantics).

One can, for example, specify on the one hand how a system dynamically evolves over time.
On the other hand, it is possible to concentrate purely on the static structure of the system,
without specifying its dynamic transitions between states. This demonstrates how, depending
on the circumstances, one has to choose the right modelling abstraction.

So, after we get an abstraction from the reality, we have two questions that must be answered.
The first is how we describe our models. And the second is how we can demonstrate that our
model is right. For the first question, models are usually described by a model description
language. The solution for the second is often by simulation.

2.2.2 Modelling Language

Models can be described graphically using visual modelling languages or textually with textual
modelling languages. To "model" modelling languages and ultimately synthesize visual mod
elling environments for those languages, we will break down a modelling language into its basic
constituents. This is illustrated in Figure 2.1. It is inspired by the description by Rarel and
Rumpe[RROO].

Modelling Languages
(Fo'l1'aismsi

Figure 2.1: Modelling Language Breakdown

No matter which language you use to describe it, two main aspects of a model are its syntax
(how it is represented) on the one hand and its semantics (what it means) on the other hand.

2.2 Modelling Language Concepts 32

The syntax of modelling languages is traditionally partitioned into concrete syntax and abstract
syntax. In textual languages for example, the concrete syntax is made up of sequences of
characters taken from an alphabet. These characters are typically grouped into words or tokens.
Certain sequences of words or sentences are considered valid (i.e., belong to the language). The
(possibly infini te) set of all valid sentences is said to make up the language. Costagliola et. al.
[Costagliola, Lucia, Orefice, and Polese 2002] present a framework of visual language classes
in which the analogy between textual and visual characters, words, and sentences becomes
apparent. Visual languages are those languages whose concrete syntax is visu al (graphical,
geometrical, topological, . . .) as opposed to textual.

For practical reasons, models are often stripped of irrelevant concrete syntax information during
syntax checking. This results in an "abstract" representation which captures the "essence" of
the model. This is called the abstract syntax. Obviously, a single abstract syntax may be
represented using multiple concrete syntaxes. In programming language compilers, abstract
syntax of models (due to the nature of programs) is typically represented in Abstract Syntax
Trees (ASTs). In the context of general modelling, where models are often graph-like, this
representation can be generalized to Abstract Syntax Graphs (ASGs).

Once the syntactic correctness of a model has been established, its meaning must be specified.
This meaning must be unique and precise. Meaning can be expressed by specifying a semantic
mapping function which maps every model in a language onto an element in a semantic domain.
For example, the meaning of a Causal Block Diagram is given by mapping it onto an Ordinary
Differentiai Equation. For practical reasons, semantic mapping is usually applied to the abstract
rather than to the con crete syntax of a model. Note that the semantic domain is a modelling
language in its own right which needs to be properly modelled (and so on, recursively). In
practice, the semantic mapping function maps abstract syntax onto abstract syntax.

2.2.3 Meta-modelling

Meta-modelling is a heavily over-used term. Here, we will use it to denote the explicit de
scription (in the form of a model in an appropriate meta-modelling language) of the abstract
syntax set. Often, meta-modelling also covers a model of the concrete syntax. Semantics is
however not covered. On the one hand, a meta-model can be used to check whether a general
model (a graph) belongs to the abstract syntax set. On the other hand, one could, at least in
principle, use a meta-model to generate all elements of the syntax set. This explains why the
term meta-model and grammar are often used inter-changeably.

Several languages are suit able to describe meta-models. Two approaches are in common use:

1. A meta-model is a type-graph. Elements of the language described by the meta-model
are instance graphs. There must be a morphism between an instance-graph (model) and
a type-graph (meta-model) for the model to be in the language. Commonly used meta
modelling languages are Entity Relationship Diagrams (ERDs) and Class Diagrams (adding
inheritance to ERDs). The expressive power of this approach is often not sufficient and an
extra constraint language (such as the Object Constraint Language in the UML) specifying
constraints over instances is used ta further specify the set of models in a language. This
is the approach used by the OMG to specify the abstract syntax of the Unified Modelling
Language (UML).

2. A more general approach specifies a meta-model as a transformation (in an appropriate
formalism such as Graph Grammars) which, when applied to a model, verifies its mem-

2.2 Modelling language Concepts 33

bership of a formalism by reduction. This is similar to the syntax checking based on
(context-free) grammars used in programming language compiler compilers. Note how
this approach can be used to model type inferencing and other more sophisticated checks.

Both types of meta-models (type-graph or grammar) can be interpreted (for flexibility and
dynamic modification) or compiled (for performance).

Note that when meta-modelling is used to synthesize interactive, possibly visual modelling
environments, we need to model when to check whether a model belongs to a language. In
free-hand modelling, checking is only done wh en explicitly requested. This means that it is pos
sible to create, during modelling, syntactically incorrect models. In syntax-directed modelling,
syntactic constraints are enforced at all times during editing to prevent a user from creating
syntactically incorrect models. Note how the latter approach, though possibly more efficient,
due to its incremental nature - of construction and consequently of checking - may render
certain valid models in the modelling language unreachable through incremental construction.
Typically, syntax-directed modelling environments will be able to give suggestions to modellers
whenever choices with a finite number of options present themselves.

The advantages of meta-modelling are numerous. Firstly, an explicit model of a modelling
language can serve as documentation and as specification. Such a specification can be the basis
for the analysis of properties of models in the language. From the meta-model, a modelling en
vironment may be automatically generated. The flexibility of the approach is tremendous: new
languages can be designed by simply modifying parts of a meta-model. As this modification is
explicitly applied to models, the relationship between different variants of a modelling language
is apparent. Above all, with an appropriate meta-modelling tool, modifying a meta-model and
subsequently generating a possibly visual modelling tool is orders of magnitude faster than
developing such a tool by hand. The tool synthesis is repeatable and less error-prone than
hand-crafting.

As a meta-model is a model in an appropriate modelling language in its own right, one should
be able to meta-model that language's abstract syntax too. Such a model of a meta-modelling
language is called a meta-meta-model. It is noted that the notion of "meta-" is relative.
In principle, one could continue the meta- hierarchy ad infinitum. Luckily, sorne modelling
languages can be meta-modelled by means of a model in the language itself. This is called
meta-circularity and it allows modelling tool and language compiler builders to bootstrap their
systems.

A model m in the Abstract Syntax set needs at least one concrete syntax. This implies that
a concrete syntax mapping function mapping an abstract syntax graph onto a con crete syntax
model is needed. Such a model could be textual (e.g., an element of the set of all Strings),
or visual (e.g., an element of the set of all the 2D vector drawings). Note that the set of
concrete models can be modelled in its own right. It is noted that grammars may be used
to model a visual concrete syntax. AIso, concrete syntax sets will typically be re-used for
different languages. Often, multiple concrete syntaxes will be defined for a single abstract
syntax, depending on the user. If exchange between modelling tools is intended, an XML-based
textual syntax is often used. If in such an exchange, space and performance is an issue, a
binary format may be preferrable. When the formalism is graph-like as in the case of a circuit
diagram, a visual concrete syntax is often used for human consumption. The concrete syntax
of complex languages is however rarely entirely visual. When for example equations need to be
represented, a textual concrete syntax is more appropriate.

2.2 Modelling Language Concepts 34

FinaIly, a model m in the Abstract Syntax set needs a unique and precise meaning. As previously
discussed, this is achieved by providing a Semantic Domain and a semantic mapping function.
This mapping can be given informally in English, pragmatically with code or formally with
model transformations. Natural languages are highly ambiguous and not very useful since
they cannot be executed. Code is executable, but it is often hard to understand, analyze and
maintain. It can be very hard to understand, manage and derive properties from code. This is
why formalisms such as Graph Grammars are often used to specify semantic mapping functions
in particular and model transformations in general. Graph Grammars are a visual formalism
for specifying transformations. Graph Grammars are formally defined and at a higher level
than code. Complex behaviour can be expressed very intuitively with a few graphical rules.
Furthermore, Graph Grammar models can be analyzed and executed. As efficient execution
may be an issue, Graph Grammars can often be seen as an executable specification for manual
coding. As such, they can be used to automatically generate transformation unit tests.

2.2.4 Simulation

A model is an abstraction of a real system. We can ascertain that a model accurately reftects
the structure and behaviour of the system it represents by means of simulation. Simulation of a
model described in a certain formalism (such as Petri Net, Differentiai Aigebraic Equations (DAE)
or Bond Graph) pro duces simulation results: the dynamie input/output behaviour. Simulation
may use symbolic as weIl as numerical techniques. Simulation, whieh mimies the real-world
experiment, can be seen as virtual experimentation, allowing one to answer questions about
(the behaviour of) a system. As such, the particular technique used does not matter. Whereas
the goal of modelling is to meaningfully describe a system presenting information in an und er
standable, re-usable way, the aim of simulation is to be fast and accurate. Symbolic techniques
are often favoured over numerieal ones as they allow the generation of classes of solutions rather
than just a single one. For example, Asin(x) + Bcos(x) as a symbolic solution to the har
monic equation ~ (with A and B determined by the initial conditions) is preferred over one
single approximate trajectory solution obtained through numerical simulation. Furthermore,
symbolic optimizations have a much larger impact than numerieal ones thanks to their global
nature. Crucial to the SystemExperiment/ModelVirtual Experiment scheme is that there is a
homomorphie relation between model and system: building a model of a real system and subse
quently simulating its behaviour should yield the same results as performing a real experiment
followed by observation and codifying the experimental results. A simulation model is a tool
for achieving a goal (design, analysis, control, optimisation, . . .). A fundamental prerequisite
is therefore sorne assurance that inferences drawn from modelling and simulation (tools) can be
accepted with confidence. The establishment of this confidence is associated with two distinct
activities; namely, verication and validation.

2.2.5 Verification

There are two different aspects of meanings for the word verification in the modelling commu
nity. For a model represented in a specific modelling formalism, model verification means the
process of checking whether a model satisfies the requirements of the formalism. To be specific,
check whether a model has certain structrual features specified by the formlism. For model
transformations, verification is the pro cess of checking the consistency of a simulation program
with respect to the lumped model it is derived from. More explicitly, verification is concerned
with the correctness of the transformation from sorne intermediate abstract representation (the
conceptual model) to the program code (the simulation model) ensuring that the program code

2.2 Modelling Language Concepts 35

faithfuUy refiects the behaviour that is implicit in the specification of the conceptual mode!. A
model compiler may automate the transformation from conceptual model to simulation model
(code). If this compiler can be verified, aU transformations by the compiler are verified.

2.2.6 Validation

Validation is the process of comparing experimental measurements with simulation results
within the context of a certain Experimental Frame[ZPKOO]. When comparison shows dif
ferences, the formaI model built may not correspond to the real system. A large number of
matching measurements and simulation results, though increasing confidence, does not prove
validity of the model however. A single mismatch between measurements and simulation re
sults invalidates the mode!. For this reason, Popper has introduced the concept of falsification,
the enterprise of trying to falsify or disprove a mode!. A model may state that water in a pot
boils at lOoDe. Many experiments will confirm this model, until either the pot is closed or is
taken to a different altitude. A falsified model should not lead to an outright rejection of the
mode!. Rather, it should lead to a refinement of the model's experimental frame on the one
hand and to an attempt to expand the model to the current experimental frame. In the case
of the water boiling in a pot, a restricted experimental frame would state that the pressure
must be constant (latm). Expanding the model would express the relationship between boiling
point and pressure and volume.

2.2.7 Modelling and Simulation Process

Modelling and simulation is an iterative process. One cannot build a correct model for a
complex system in one go. Based on the concepts introduced ab ove , a general pro cess for
modelling and simulaltion can be described as shown in Figure 2.2. This process includes four
steps: Modelling, Verification, Simulation, and Validation. The process of creating a
correct model for a real system is an iterative pro cess of repeating these four steps.

In the Modelling step, the modeler analyzes the system in question. Based on the features of
an appropriate interest and the nature of the problem, the modeler builds a tentative model
using specific model formalism for the system. The tentative model can be expressed either in
model description languages or in programming languages. Because this is a tentative model,
it cannot be guaranteed correct both in syntax and in semantics.

In the Verification phase, the verification model takes the tentative model as input. Based
on the features of the specific formalism, it checks whether the tentative model meets the syntax
requirements of the fomalism used to build this mode!. If the model passes the verification,
it will be forwarded to the next phase. The modeler may have to analyze the real system
and the feedback from the verification to refine the tentative model until it passed the syntax
verification.

At the Simulation level, a formalism specific simulator takes the tentative model that passes
syntax verification as input and generate the simulation trace that refiects the behaviour of the
mode!. The generated trace can be represented in sorne structured text file, or just a collection
of data with specific type in memory.

At Validation time, the generated simulation trace is analyzed. The job of trace analysis can
be done automaticaUy by sorne software, or semi-automaticaUy by sorne analysis facilitating
tools, or totaUy by hand. By comparing the analysis result with data obained by observing
the real system, the modeler can determine whether the tentative model is as desired. If the
analysis results match the experimental or observed data, we get the model we want. The

2.2 Modelling Language Concepts 36

modeler may have to go back to the analysis phase to analyze the real system again and to
reflne the tentative model, until a validated model is obtained.

No

Figure 2.2: Modelling and Simulation Process

This four-step process, Modelling, Verification, Simulation, and Validation, is just a
high-Ievel description of the modelling and simulation procedure. How it works concretely
depends on the modeler's preference and how the modelling and simulation tools are built.

2.3 Motivation and Purpose 37

2.3 Motivation and Purpose

In chapter 1, we used DEVS Java, Python DEVS, and ADEVS as examples to discuss the features
of currently existing DEVS modelling and simulation environments. From that discussion, we
can see that these existing systems share sorne common features from the four-step modelling
and simulation process. Firstly, at the Modelling level, there are no tools available to facilitate
the model creation. Secondly, at the model representation and verification level, models are
represented in specific programming languages and the verification process is usually done by
hand. Thirdly, at the simulation and validation level, simulation traces are represented in pure
text format and no tools are available to facilitate trace analysis. The modelling and simulation
pro cess for most current existing DEVS modelling and simulation environments can be shown
as in Figure 2.3.

Tentative DEVS Model

Represented in Programming Language

Trace Represented as Text File

or Collection of Data in Memory

Figure 2.3: Current General Practice of DEVS Modelling and Simulation Process

From the introduction of chapter 1, we can see that DEVS specifies a two-Ievel structure for
Discrete Event Sytem modelling and simulation. On the one hand, DEVS specifies the syntax
and semantics of DEVS models; on the other hand, DEVS gives the algorithms and suggested
structures for building DEVS simulators. The major benefit of DEVS specification is that
it clearly separates the task of model creation from the task of building a DEVS simulator.

2.3 Motivation and Purpose 38

DEVS modellers concentrate on specifying models, while simulator builders focus on improving
simulators' performance. The interfaces beween DEVS models and simulators are very clear.
If a model is created following the DEVS specification, it should be possible to simulate it by
means of any standard DEVS simulator. However, in reality, at least at this time, things are not
that simple. Models written for DEVS Java cannot be simulated by the Python DEVS simulator.
Models written for ADEVS are specifie to ADEVS. Though those models are aIl DEVS models,
the fact that DEVS simulators cannot simulate DEVS models (written for other simulators) is
certainly not the intention of the DEVS specification.

There are many reasons causing the incompatibility among DEVS models and simulators. One
major reason is the practice that DEVS models are represented in progamming languages.
In most of the current existing DEVS modelling and simulation environments, models are
represented in the language in which the simulator is coded. For example, models in Python
DEVS are described in Python code, models for DEVSJava are represented in Java code, and
models in ADEVS are specified by C++ code. Though programming language represented
models may be more efficiently and smoothly simulated by the language-specifie simulator.
This approach has many drawbacks as explained below.

1. It blurs the boundary of labour division. GeneraIly, modellers are domain experts who
have a rich knowledge in specific domains. The main purpose of using DEVS for a modeller
is to solve problems in hisjher domain. One should not expect that do main experts
are also computer programming professionals. On the other hand, simulator builders
are computer scientists (or programmers) who are good at making simulators that can
run efficiently and correctly. The simulator builders are not necessarily domain experts.
Because DEVS models are represented in programming languages, the modellers (or DEVS
users) first must be programmers, or they even do not know how to write a model, not
to mention a correct DEVS model.

2. It makes model reuse difficult. DEVS is a formalism for high-Ievel model description.
DEVS models have nothing to do with computing implementation details. While pro
gramming languages are good at specifying execution and implementation details to make
a program run effeciently and correctly, one must provide extra details or enforce extra
constraints on a DEVS model in order to represent it in programming languages. High
level of model descripton is usually easier to reuse than low-Ievel model specification with
implementation details. For example, in Python DEVS, atomic DEVS models are defined
as Python classes that inherit from the predefined Python class AtomicDEVS. From a soft
ware design and implementation perspective, this is a good solution. However, when it
cornes to model reuse, things become complex. One's original intention is to reuse a
DEVS model, but now one has to consider not only how to reuse a DEVS model, but also
how to reuse a Python class that inherits from another Python class AtomicDEVS.

3. It makes DEVS standardization more difficult. This statement is meaningful at two
levels. First, representing DEVS models in programming languages lowers the high-Ievel
DEVS specification to programming language level with implementation details. The
more details involved, the more difficult it is to standardize DEVS. Second, programming
languages are similar at almost the same abstract representation level. Each language
has its own specifie features. It is hard to say which programming language is better
for DEVS model representation. One cannot convince others that which programming
language should be used as standard for DEVS model representation. This situation
creates the deadlock today that DEVS simulators (in one language) cannot simulate DEVS

2.3 Motivation and Purpose 39

models (represented in another programming language). All existing DEVS modelling and
simulation environments are built based on DEVS specification, they are all correct in
their own regimes. No one can cross the programming language boundary.

4. Tt makes automatic model verification difficult. As we mentioned earlier, model verifi
cation is the pro cess of checking whether a model satisfies the DEVS specification. It is
much harder to get a model's structure information at the programming language level
than at the model description level. Though in sorne languages like Java, this can be done
through the reflection mechanism, the price is high. For other programming languages
like C++, it is almost impossible.

These disadvantages of representing DEVS models in programming languages have severely
impeded DEVS expansion and application. In order to facilitate the pro cess of DEVS modelling
and simulation, and to promote DEVS standardization and application, we are motivated to
build an infrastructure for DEVS modelling and simulation. We hope that our efforts can solve
or partially solve the problems we have in DEVS modelling and simulation today, and open
more chances for future research.

The infrastructure concenstrates on issues in the following areas. Firstly, at the modelling stage,
we build visual modelling tools to facilitate the pro cess of DEVS model creation. Secondly, at
the model representation and verification level, we represent DEVS models in high-Ievel model
description language, and use the model comiler to verify DEVS models automatically. Thirdly,
at the simulation level, we represent simulation trace in standard XML documents. And finally,
at the model validation level, we build visual trace plotting tools to facilitate the process of
trace analysis.

2.4 The Overall Architecture 40

2.4 The Overall Architecture

Figure 2.4 gives the overall architecture of the infrastructure for DEVS modelling and simula
tion. Corresponding to the four-step modelling and simulation pro cess, we build tools or add
functionalities at each step.

Visual Component

Manipulation Model

Modelling

Verification

Model Repository

................. .. f . ..:. . ..:. . .:.. ':' .. ':'.:":.:":.:":.:":.":'.'=':' •• .:..:..:.:..:.:..:.:..: • ..:. • ..:. • ..:. • .:.. ,. !:1~eJ ~~~S!t~'r ...•.

Simulation

Validation

DEVS Models Represented in

Simulator·Specific

Programming language

Figure 2.4: Architecture of the Infrastructure for DEVS Modelling and Simulation

2.4 The Overall Architecture 41

Modelling At the Modelling stage, we provide a DEVS visual modelling environment, in
which DEVS models can be created and manipulated graphically. The visual modelling envi
ronment has the following features.

1. The environment is automatically generated. Everything in the environment is modeled.
Firstly, DEVS abstract syntax is meta-modelled. The DEVS meta-model specifies the
properties and constraints on visual DEVS components and relations among DEVS com
ponents. So the visual modelling environment can do sorne model checking jobs at the
visual modelling level based on the meta-model. Secondly, the operations that can be
performed on each DEVS component are also modelled. This has two benefits. First,
it limits the opportunities of misoperations for users. Second, it helps maintain model
consistency at the visu al modelling level. Because in the operation model, not only can
operations on one component be specified, the actions for dealing with chained effects
on other model components caused by operations on one model component can also be
specified.

2. Graphical models created in the visual enviroment are transformed into the neutral Mod
elica representation rather than to models represented in programming languages. We
have discussed in the previous section that programming languages are not a good choice
for DEVS model representation. So, in the DEVS modelling and simulation infrastruc
ture, we use the declarative object-oriented modelling language Modelica to describe DEVS
models to counter the drawbacks of representing DEVS model in programming languages.
Certainly, Modelica is not the only choice for neutral DEVS model representation. We
choose Modelica for two major reasons. First, Modelica is a mature modelling language,
it has been successfully used to describe continuous models in different domains. Sec
ond, Modelica has language features that are suitable for describing both continuous and
discrete models. DEVS have been envisioned as a potential formalism for hybrid system
modelling. Combining them may open more chances for future research. We counter
the drawbacks of representing models in programming languages using Modelica in the
following ways. First, Modelica is a declarative high-Ievel model language. It is easier
to be learned by domain experts. So modellers can concentrate on specifying models in
Modelica. And simulator builders are focusing on building model compilers and model
simulators. The labour division between modellers and simulator builders become clear.
Second, because Modelica is a high-Ievel model description language without implementa
tion details, models represented in Modelica are easier to be reused and standardized than
those represented in programming languages. Finally, the model compiler that compiles
Modelica models into language-specifie models can do the model verification automati
cally.

3. The visual modelling environment is automatically generated based on the DEVS meta
model, and the DEVS component manipulation model. This means that the environment
is not hard coded. When the DEVS meta-model or the component manipulation model
is changed, the environment can be easily updated.

Verification At the Verification level, a DEVS Modelica model compiler is provided. The
model compiler has the following functionalities. Firstly, it makes sure that the models are
syntactically correct Modelica models. Secondly, it checks that the models satisfy DEVS speci
fication. And finally, it generates the simulator-specific DEVS model representations.

2.4 The Overall Architecture 42

Simulation At the Simulation stage, simulation traces represented in XML are generated.
The syntax and the meaning of the content of the XML represented simulation trace are
specified an XML DTD. The benefits of using XML and DTD are obvious.

1. It defines a clear interface between DEVS simulators and trace plotting or analysis tools.
Different simulators, DEVS Java, or Python DEVS, can generate simulation traces in
the same format if they both follow the specification of the DTD. This opens many
chances for further study of the simulation trace. First, trace plotting and analysis tool
builders can concentrate on building tools without considering implementation details of
different simulators. The trace representation is specified by the XML DTD. If a tool can
understand the XML DTD, then ail the XML files that satisfy the DTD can be plotted
or analyzed by the too!. Second, it make trace comparison possible. For the same DEVS
model, if it is simulated by different DEVS simulators using the same XML DTD, the
simulation trace should be the same. This is significant for standardizing and certifying
DEVS simulators.

2. The XML trace representation is specified by an XML DTD. So XML represented simula
tion trace files can be easily validated by XML validators against the DTD. Additionally,
with the support of XSLT, one XML simulation trace file can be easily transformed to
other formats for further study.

3. XML is a standard way of data representation. It has been widely used in many different
fields. For users, the learning curve is smaller than using a private format of data rep
resentation. For tool developers, there are many standard libraries available in different
progamming languages for accessing and manipulate contents of XML files, which can
save both time and investment.

Validation At the Validation level, we provide a visu al trace pIotter for facilitating the
process of human trace analysis. Validation is to check whether a model meets the goal it was
created for. Trace analysis is one of the effective methods in validating a model sin ce traces
represent the actual flow of events in the systems [STaa]. There are many different ways for
trace analysis. No matter what way one uses, and what purpose it is for, visualization tool
is definitely an effective facilitator. Sorne people have successfully used this technique in their
research. [STaal introduces a trace visualization and analysis for supervisory control systems,
in which they found the tool was effective in reducing the time for simplifying understanding
of the dynamic behaviours of the system and finding problem areas. [AHWa5] presents a
trace visualization tool to interactively analyze the performance of parallel programs. Based
on this understanding, we build a visual tace pIotter to visualize DEVS model sequential state
transitions and state variable changes along the simulation time. This piotter provides two
different level user interfaces. For simple usage, one can sim ply browse the simulation trace
visually by selecting interesting model properties. For complex application, one can customize
the model state parser used by the pIotter to reparse the raw model state information and
providing customizable filtered traces.

Features of the Overall Architecture Besides the features at each stage of the four-step
process, below are sorne special characteristics of the overall architecture.

1. Two-Ievel of model reuse. From Figure 2.4, we can see that there are two model reposi
tories, a graphical model repository and a Modelica model repository. This means that

2.4 The Overall Architecture 43

model reuse can happen at two different levels of this architecture. This is meaningful in
the following situations. First, in a complex system, sorne components may be suit able
for graphie al representation, while others are better represented in text. This way of
design makes it possible for reuse of both the graphie al and textual components. Second,
this ensures the visual modelling environment and textual modelling envrionment can be
used independently. Users can choose either one depending on their own preferences.

2. Clear boundaries between different steps. In the architecture, the boundaries between
each step are very clear. The results of the Modelling step are Modelica DEVS repre
sentations. The results of the Verification are language-specifie model representations.
And the results of the Simulation step are XML represented simulation traces. The clear
interfaces fetween different steps make the architecture very flexible and scalable.

3. Open structure, considering current existing DEVS modelling and simulation enviroments
and opening chances for future research. This is closely related to the feature 2 above.
This architecture is a open structure for DEVS modelling and simulation. It can be used
combined with current existing DEVS modelling and simulation environments. But it do es
not depend on any language-specifie DEVS simulator. Because models are represented
in the high-Ievel modelling language Modelica, with a proper model compiler, the models
can be translated to any language-specifie representation, and so be simulated by different
simulators. Similarly, because the XML represented simulation trace is specified by the
XML DTD, the trace pIotter is also independent of specifie simulators. Traces from
different simulators can be plotted by the same pIotter, and the same trace file can be
plotted by different plotters with different functionalities.

2.5 Conclusions 44

2.5 Conclusions

In this chapter, we discussed the design and architecture of our infrastructure for DEVS mod
elling and experimentation. We first introduced sorne commonly used modelling and simulation
concepts and gave a general description of a commonly adopted modelling and simulation pro
cess. Then we discussed the current practice of DEVS modelling and simulation, and sorne
drawbacks of representing DEVS models in progamming languages. After that we presented
the ideas of building the infrastructure for DEVS modelling and simulation. Finally, we intro
duced the architecture of the infrastructure and gave a simple explanation for each part of the
infrastructure.

In the next few chapters, we will discuss each part of the infrastructure in more detail. Parts of
the infrastrucure are presented in a bottom-up fashion. In chapter 3, we introduce the visual
DEVS trace pIotter. In chapter 4, we discuss the DEVS Modelica model representation and
the model compiler. In chapter 5, we present the DEVS meta-model and the visual modelling
environment. In chapter 6, we present a case study demonstrating the infrastructure at work.

Standardized Trace Representation and Trace Piotter

3.1 Introduction

Model building is an iterative process, which means that it is very rare that one can build a
right model at the first time. The Modelling, Verification, Simulation, and Validation
pro cess will be executed again and again, until a desired model is obtained. So, after a model
is created, the modeler must find ways to make sure that the model really reflects both the
structure and behaviour of the system under study. The structure of the model can be checked
by visual modelling tools or model compilers. The behaviour is checked by way of simulation
and validation.

The basic idea of simulation and validation is that, by doing the model simulation, we can
get a simulation trace. By analyzing the simulation trace, we can know the behaviour of the
model. Due to the fact that systems modeled in DEVS are very complex, the task of analyzing
simulation trace is not trivial. Research in the modelling and simulation has shown that
trace visualization tools can significantly facilitate the pro cess of trace analysis[AHW05J[STOO].
Though there are many DEVS modelling environments available now, there is no DEVS-specific
trace visualization tool available.

[AHW05] and [STOO] propose approaches for trace visualization for specific complex systems.
They provide valuable information for DEVS trace plotting, however, as they are specific to
applications, we cannot apply them directly to DEVS. DEVS is a neutral formalism for discrete
event modelling and simulation. Though there are many different kinds of DEVS implementa
tions without standardized interface, they have sorne features in common. First, each DEVS
model has state variables to describe the model status. Second, at simulation time, all DEVS
simulators are event driven, which means that a state trace record can only be generated at
the time that an event occurs. When an event occurs, the state of the model usually changes
accordingly. So the simulation trace of a DEVS model can be represented as a series of state
values with a time stamp that marks the time the model state changes.

There are many different existing DEVS simulators and simulation traces generated by different
simulators are represented differently. In order to make it possible for our trace pIotter to plot
traces generated by different DEVS simulators, the trace file that the pIotter takes as input
must be simulator independent. Based on this analysis, we decided to save the trace file in an
XML format. There are many benefits of using the XML format. Firstly, XML as standardized
way for data storage has been widely accepted by people both in industry and academic area.
There would be less resistance and no big curve for learning. Secondly, XML can be defined
by a DTD (Document Type Definition) or XML Schema, one can validate a XML file against
its DTD or XML Schema. This makes it easier to verify a trace file syntactically right before
plotting. Thirdly, with XSL T support, updating and evolution of a trace file are easy.

3.1 Introduction 46

Usually, the simulation trace of a DEVS model is huge. So the task of parsing a huge XML file
is not trivial. In order to make the parsing process more efficient, we use a two-Ievel parsing
method. In this approach, we parse the model structure information and separate the trace
records into groups according to the model (or sub-model) a record relates to. At plotting time,
the number of trace records processed at each plot is thus much smaller than the original one.

For the convenience of us ers with different levels of computer programming knowledge and
users with different plotting requirements, we provided two plotters which are called simple
pIotter, splotter.py, and customized pIotter, cplotter.py. The simple pIotter assumes that the
sequential state of a DEVS model is determined by one attribute of the model state. The
user just needs to select the model of interest, and the attribute determining the sequential
state. The pIotter will then visualize the trace automatically. The customized pIotter is more
powerful and complex. It provides a programming interface, by which the users can program
themselves to determine how the sequential state is calculated from the whole state, and which
part of the state attributes should be shown and how to show them in the pIotter. In the
simple pIotter, the state attributes shown on the pIotter are taken from the trace file directly,
which is generated by the simulator using the state's string conversion function specified by
the modeler.

The following part of the report is organized as follows. First, we discuss the design architecture
of the pIotter. Then we look into each part of the pIotter in more detail. After that, an example
shows how to use the simple and customized plotters is given.

3.2 Design and Implementation 47

3.2 Design and Implementation

3.2.1 Architecture of the Trace Piotter

When it cornes to designing a trace pIotter for DEVS, one first should consider the foUowing
issues. 1. Where does the trace data come from? 2. What is included in the trace file? 3. How
is the trace represented?

XML DTD

• __________________________________ 4 . . .

Figure 3.1: Architecture of the Trace PIotter

For the first question, a simple answer is that the trace data cornes from a DEVS simulator.
But the trick is that there are many different DEVS simulators (such as DEVSJava, ADEVS,
and PythonDEVS) available now, and there are no commonly accepted rules to specify how
the simualtion trace should be generated. This means that for different DEVS simulators, the
simulation traces are different.

What is included in the DEVS simulation trace? This question faces the similiar situations as
that for the first question. Because there is no standard for DEVS simulation trace output, so
the contents of the simulation trace from different DEVS simulators are different. For sorne
simulators, they only output values of state variables interested for every simulation, while
others may output aU state variables. Without knowing what is included in the trace output,
it is implossible to develop tools to plot it.

At present, almost aU the DEVS simulators are using private data structure to represent the
simulation trace. Because the DEVS simulators are developed using different programming

3.2 Design and Implementation 48

languages, the simulator-specific data structure usually has language-specifie features. If we
use the specifie format used by one simulator, then it will be very difficult to use this pIotter
to plot a trace generated by other DEVS simulators.

Bearing these questions in mind, we design the architecture of the trace pIotter as in Figure 3.l.
In this architecture, the answers for the three questions are as follows. For the first question,
the answer is that the data can come from any DEVS simulator. For the second question, the
answer is that what can be included in the simulation trace file is sepcified by the XML DTD.
And for the third question, simulation traces are represented in XML files, and how XML files
are organized is specified by the XML DTD. So, for any DEVS simulatior, if it can generate XML
reprenented simulation trace conforming to the XML DTD in Figure 3.1, then the simulation
trace can be plotted by the visual DEVS trace pIotter.

From Figure 3.1 we can see that the Trace Parser takes the XML represented trace file as input,
and parses the XML file into a represention that can be recongnized by the trace pIotter. Then,
the pIotter does the plotting job. Before we discuss how the XML trace is parsed and plotted,
let us look into the XML DTD to see what is specified in a XML represented simulation trace.

DTD for XML Trace Representation

1. <!ELEMENT trace (event+»

2. <!ELEMENT event (model, time, kind, port*, state»

3. <!ELEMENT model (#PCDATA»

4. <!ELEMENT time (#PCDATA»

5. <!ELEMENT kind ("IN" l "EX" I#PCDATA»

6. <!ELEMENT port (message»

7. <!ELEMENT message (#PCDATA»

8. <!ELEMENT state (attribute+»

9. <!ELEMENT attribute (na me, type, value+»

10. <!ELEMENT name (#PCDATA»

11. <!ELEMENT type (#PCDATA»

12. <!ELEMENT value (#PCDATAlattribute)*>

13. <!ATTLIST port name CDATA #IMPLlED>

14. <!ATTLIST port category ("1" l "0") #REQUIRED>

15. <!ATTLIST attribute category ("P" l "C "1" PC "1" CC") #REQUIRED>

16. <!ENTITY title "DEVS Simulation Trace" >

17. <!ENTITY publisher "MSDL">

18. <!ENTITY copyright "Copyright 2006 MSDL" >

3.2.2 XML DTD for Trace Output

We have mentioned earlier that one of the benefits of using XML is the capability for file
validation. The validation is done by checking whether an XML file conforms to a DTD or
XML Schema. XML Schema and DTD serve for a same purpose, the major difference is that the
expressiveness of XML Schema is more powerful than DTD. CorrespondingIy, the XML Schema

3.2 Design and Implementation 49

is more complex than DTD. For simplicity reasons, we used DTD rather than XML Schema to
specify the trace file.

The DEVS formalism is used to model discrete event systems. The DEVS simulators basically
are all event-driven simulators. 80 the DEVS simulation trace is an ordered collection of events.
For each event, which time the event occurs, what type the event is, internaI or external, what
the model ports' status is, and what the model state is, basically are the concerns a trace
analysist wants to know. Based on these assumptions, we design the XML DTD for DEVS trace
representation as below.

From the DTD, we can see that a trace file consists of a trace element. The trace element
is composed of a collection of event elements, which includes at least one event. This is
meaningful in the sense that a trace file without any event is useless. Based on line 1 of this
DTD, a valid XML trace file will look like below.

<trace>

<event> ... </event>

<event> ... </event>

<event> ... </event>

</trace>

Line 2 defines the event element of the trace file, which means that an event is composed
of a model element, a time element, a kind element, and zero or more port elements, and
astate element. The model element is the name of the DEVS model, in which the event
occurs. The time means the simulation time at which the event occurs. The kind element
is the type of the event, where "IN" means internaI event, and "EX" means external event.
The port element includes information about model port status when the event occurs. The
state element provides the state information of the model when the current event occurs. 80
an event element in the XML trace file can be represented as follows.

<event>

<model> ... </model>

<time> ... </time>

<kind> ... </kind>

<port> ... </port> * optional

<state> ... </state>

</event>

The model name specified by the model element is the fully qualified name of a DEVS model.
A full qualified model name is a model name that can reftect the composition relation among
parent and its child models. For example, if we simulate a coupled model A that has a structure
as shown in Figure 3.2, then the fully qualified name for model A is still A. And for sub-models
B, C, D, and E, their fully qualified names are A.B, A.C, A.B.D, and A.B.E respectively.

3.2 Design and Implementation 50

A

c B

DD
Figure 3.2: Fully Qualified Model Name

Line 5 in the DTD specifies values that are allowed for the kind element. For an atomic model,
the kind for an event can be "IN" or "EX", where "IN" means internaI event, "EX" means
external event. For an coupled model, the kind can be empty or anything allowed in XML
PCDATA. The reason we specify the value of kind for atomic models is that it is reasonable to
distinguish external events from internaI events when we plot a simulation trace.

Lines 6, 7, 13 and 14 specify the structure of the port element. The port element has two
attributes, name and category, and one message element. The name attribute is just the text
name of the port in question. The values of the category attribute of a port element can be
"1" or "0", where "1" means input port and "0" means output port. The message element
is the current message (or event) in the DEVS port. The represention of the message is in
textual format. If the message structure is complex, the modeler should provide a function to
transform it into a text format. Below is an example of a valid port element, which means
that there is a message "Job id=!, size=3" at an input port named "in".

<port name=" in" . category=" 1" >

<message>Job id=l. size=3</message>

<jport>

Lines 8, 9, 10, 11, 12, and 15 specify the structure of the state element. Astate is composed
of one or more attributes. Each attribute of the state has an attribute called category,
and three elements name, type, and value. The category attribute of the attribute element
can be "P" "c" "PC" or "CC" where "P" means primitive type "c" means customized (or , , , , ,
user defined) type, "PC" means a collection of values of a primitive type, and "CC" means a
collection of values of a customized type. The type for an attribute can be any text that is
meaningful to represent the attribute data type.

Below is an example of a customized attribute whose category attribute is "c". Its name is
currentJob, and the type is Job, which is a user defined type. The Job type has two attributcs,
ID and size. In this case, the currentJob' s value is ID=! and size= 4.2687284882.

3.2 Design and Implementation

<attribute category= "C" >

<name>currentJob</name>

<type>Job</type>

<value>

<attribute category= "P" >
<name>ID</name>
<type>lnteger</type>
<value>l</value>

</attribute>
<attribute category= "p" >

<name>size</name>
<type>Float</type>
<value>4.26872848822</value>

</attribute>

</value>

</attribute>

Model Siructure

Information

Figure 3.3: Two-Ievel Trace Parser

51

3.2 Design and Implementation 52

3.2.3 Trace Parser

After we define the format of the trace file, it is the Trace Parser's job to parse the XML file
into a format that can be plotted by the Trace Plottter. As we mentioned earlier, the number
of records (events here) in a simulation trace file is usually huge. So, if we parse the file every
time a user wants to plot a different property of a model, the plotting pro cess will not be
very efficient. In order the improve the plotting performance, we design a two-Ievel parsing
architecture, in which we use two parsers, a static parser and a dynamic parser to finish the
trace parsing job. The structure is shown in Figure 3.3.

The idea of the two-Ievel parsing architecture cornes from the fact that the structure of the
model will not change at plotting time. For the trace of a coupled DEVS model, if we can
group the events into collections according to the model that an event belongs to, the number
of events that need to be parsed will be significantly decreased. So the task of the Static Parser
is to traverse a whole XM L trace file to get the structural information of the model, and to
split trace events into groups based on the model (or sub-model) that an event belongs to. In
order to regroup the trace events, the static parser partialy parses trace events and transforms
them into a temporary trace representation. The temporary trace representation will be further
parsed by the dynamic parser to do the real plotting task.

Temporary Trace Representation and Plottable Trace Representation

The temporary trace representation and the plottable trace representation have the same in
formation. The main difference is the representation of the model state information. In the
temporary trace representation, the state inforamation is still in XML format, while in the plot
table trace representation, the state information is represented in pure text format. There are
two reasons for keeping the state information in XML format in the temporay representation.
First, the task of the static parser is to parse the structure information of the model. The model
structure information can be obtained without parsing the state of the model. The second,
and the most important reason is that because we support the dynamic plotting function, the
meta-information, like the attributes of a state and the type of each attribute of the state must
be kept.

The temporary trace representation is discribed in Figure 3.4. The XML trace file is parsed into
a collection of TmpEvent object ordered by the time attribute, which represents the simulation
time that an event occurs. The type property of the TmpEvent represents the type of the
event, namely external event or internaI event. The portlnfo is the textual representation of
the ports status when this event occurs. This information is parsed from the port element of
the XML representation and it includes both input and output ports' status. The xmlState
is the state element of a trace event in the XML representation. It is still kept in XML node
format. How to parse the state part of the XML is the job of the Dynamic Parser.

TmpEvent

-time: Float

-type: String

-portlnfo: String

-xmlState, Strina

Figure 3.4: Temporary Trace Representation

3.2 Design and Implementation 53

Figure 3.5 is the class diagram of the plottable trace representation. The time and type
property have the same meanings as that of the temporary representation. The state attribute
cornes from the original intention of plotting sequential state of a DEVS mode!. Now, it means
a special value obtained from the xmlState of a TmpEvent using specific plotting (or parsing)
rules. It can be a value of a specific state variable or a value obtained from several state variables
using a specific parsing rule. How to get this value will be introduced in the following section
when we discuss the State Parser. The content is the combination the textual representation
of port information and the textual representation of the state information. Here, the XML
represented state information has been parsed into textual format.

DevsEvent

-time: Float

-type: String

-state: String

-content: Strina

Figure 3.5: Plottable Trace Representation

Static Parser

The class diagram of the static trace parser is shown in Figure 3.6. The static parser takes
a trace file name as its parameter. After the static parsing process, the results are save into
modelSet, modelEvents, modelState, modelType, and coupleComp properties.

StaticParser

-fileNarne: String

-modelSet: Set

-mdoelEvents: Map (Dictionary)

-mode!State: Map (Dictionary)

-modelType: Map (Dictionary)

-coup!eCoffiP: Mao Dictionarvl

+1ni t (fileName: String)

-initialize(): void

-parseEvents (): void

+getModel Type (modelName: String): String

+getSubComponents (modelName: String): List

+getModels (): Set

+getModelEvents (modelName: String): List

+getModelStateAttributes (modelNarne: String): List

Figure 3.6: Class Diagram of the Static Trace Parser

The modelSet is the set of sub-models included in the simulated mode!. Each sub-model is
identified by its full qualified name. For cou pIed model A in Figure 1.5, the modelSet of A is {A,
A.B, A.C, A.B.D, A.B.E}. The events of each model are saved into a map structure called
modelEvents, in which model names are used as keys and a list of model events as the value of
a corresponding key. For a trace file like Example 3.1, the key and value pairs of modelEvents
as given in Table 3.1.

3.2 Design and Implementation

<trace>

<event><model>A.C</model>el</event>

<event><model>A.B.E</model>e2</event>

<event><mdoel>A.B.D</model>e3 </event>

<event><model>A.C</model>e4</event>

<event><model>A.B.E</model>e5</event>

<event><model>A.B.E</model>e6</event>

</trace>

Example 3.1: Trace Example for Static Parser

Keys Value

A el, e2, e3, e4, e5, e6

A.B e2, e3, e5, e6

A.C el, e4

A.B.D e3

A.B.E e2, e5, e6

Table 3.1: Values of modelEvents for Example 3.1

54

Both the events for coupled models and events for atomic models are saved in the same map
structure. The structure of a cou pIed model event and the structure of an atomic model event
are different. Events for coupled models are parsed into DevsEvents, however, events for atomic
models are parsed into TmpEvents. The reason for this difference is that we do not know which
part of the state will be used for plotting, so we should keep aIl the state information for atomic
models, so we can dynamically parse the state when users change their plotting criteria.

The modelState is also a map structure, which saves the state information about each model
indexed by the model name. The state information for each model is simply a list of attribute
names of the model state. Because the cou pIed models have no state information, it only works
for atomic models. Model Type is used to indicate whether a model is an atomic model or a
cou pIed model. An atomic model is indicated as "A", and a coupled model is represented by
"C". For cou pIed models, the map structure coupleComp maps from a model name to a list of
its atomic models. For the model A in Figure 1.5, the coupleComp will look like Table 3.2.

Value

A.C, A.B.D, A.B.E
A.B.D, A.B.E

Table 3.2: Values of coupleComp

3.2 Design and Implementation 55

The operations of the TraceParser class just return the values as that are indicated by function
names. The meanings are obvious.

Dynamic Parser

Figure 3.8 is the class diagram of the dynamic parser. This class' constructor takes a list of
trace events and astate parser as its parameters. The trace events are of type TmpEvent, the
results of the static parser. We mentioned earlier that in the temporary trace representation
the state information is still in XM L format. 80 the state parser's task here is to parse the state
information in the XML representation. For each event in the event list, the dynamic parser
gets a state (or value) using the state parser provided. Then it translates the XML represented
state information into a pure textual representation. The textual state information together
with the port information in the temporary representation are used to compose the content
value of the plottable trace representation. The value parsed from the XML state information
using the state parser is saved in the state property in the plottable trace representation. The
mapping relation is shown in Figure 3.7.

TmpEvent

-time: Float

-type: String

-portlnfo: String

-xmlState: Strinq

DevsEvent

-time: Float

State Parser -type: String

Il L-------'~_state: String
Dynamic Parser . . -t·· ~ ~~ concenc' St r~na

Figure 3.7: Parsing T mpEvent into DevsEvent

The events attribute of the dynamic parser is a list of plottable events, the result of the dynamic
parsing. The states attribute is a set of values obtained from the XML state representation
using the state parser for aH events. These two are the information needed by the visual pIotter.

DynamicParser

-stateParser: StateFarser

-events: List

-states' List

+ini t (modelEvents: List, stateParser: StateFarser)

+getStateParser (): StateFarser

+getEvents (): List

+getStates (): List

Figure 3.8: Class Diagram of Dynamic Parser

Besides the constructor, there are three public functions of this class. The getStateParser
returns the current state parser used; the getEvents returns a list of generated DevsEvents;
and the getStates returns a set of states (or values) parsed from aH the events.

3.2 Design and Implementation 56

State Parser and Simple State Parser

Figure 3.9 is the class diagram of the state parser. There are two tasks for astate parser. First,
get a value from the XML represented state for interesting state variables. Second, translate the
XML represented state into a pure textual presentation. The first task is done by getSeqState
function and the second is done by the getString function. Both these functions take an XML
represented model state as parameter. The getSeqState returns a textual represented value,
and the getString returns the textual representation of the model state.

StateParser

+QetString (nl State: Stnng): Stnng
+getSeqState (ulSt.lte: String): String

Figure 3.9: State Parser

For a given XML represented state, how to display it on the screen, and how to get a value
for plotting are dependent on the user's interest. This means that only the user knows how to
define these functions. So it is the user's task to provide a valid state parser for dynamic state
parsing. For different plotting purposes, the parsers will be different.

SimpleStatePar'ier
-attrNaIle: Strinq
+lnit (attrNaIe:Stnng)
+getString (1lI1State :Strlng): Stnng
+getSeqState (ulSt .. t€:: StrIng): String

Figure 3.10: Simple State Parser

In or der to make it easy to use, we provide a predefined version of the state parser called
simple state parser. The class diagram of a simple state parser is shown in Figure 3.10. The
StateParser and the SimpleStateParser provide the same interface to users. The difference
is that the simple state parser takes an attribute name as parameter. This means that the
getSeqState function of the simple state parser can only get the value of a single state variable.
For sorne simple plotting tasks like watching the value change of a state variable along the
simulation time, the simple parser is very useful. The user only needs to specify the state
variable that is of interest, and the system takes care of the rest. The weakness of this state
parser is that it gets the value of the state variable from the trace without any processing. If
one wants to do sorne pre-processing before plotting, the normal state parser is the only choice.

3.2.4 Visual Trace Piotter

The XML represented trace has been parsed. How to plot it is the job of the visual pIotter.
The class diagram of the trace pIotter is shown in Figure 3.11.

There are six parameters needed to construct a visual pIotter. The parent is a frame window
in which the pIotter will be displayed. The meaning of rowList, ti tle, and rowTi tle are
shown in Figure 3.12. The eventList is a list of DevsEvents to be plotted. It corresponds to

3.2 Design and Implementation 57

the events pro pert y of the Dynamic Parser. The scale parameter specifies how to map the
pixel of the screen to the time unit of events. The default is 1.0, which means that one pixel
on the screen corresponds to one time unit. The trick for DEVS event plotting is in the values
of the rowList. Originally, the rowList only includes the sequential states of the model being
plotted.

+parent: Frame

+rowList: List

+eventList: List

+title: String

+rowTitle: String

+scale: Float

TracePlotter

+ini t (parent: Frame=None 1 rowList: List= [] ,
eventList: List= [] • ti tle: String=' DEVS PIotter'.
rowTi tle: String=' state' ,plotterScale: Float=l. 0)

+makeOperationArea (): void

+showTraceText (): void

+onDoubleRightClick (event: Event): void

+onRightClick (event: Event): void

+setSçale (event: Event): void

+initpanel (event:Event): void

+updateDisplay (): void

+previousOne (): void

+nextOne (): void

+toBegin (): void

+toEnd (): void

+previousPage (): void

+nextPage (): void

+saveToPostScript (): void

+clodeWindow (): void

Figure 3.11: Visual Trace PIotter

The nature of DEVS is such that a model can only change its state when an event occurs.
So, besides the sequential state, the values of any state variable can be used as rowList to be
plotted. When the sequential states are used, we can see the sequential states change along
the occurring time of events. While the values of a state variable or the combined values of
sorne state variables are used as the values of the rowList, we can see when the values change,
and which events cause the value changes. The rowList can be obtained from the Dynamic
Parser' s states property.

Figure 3.12 is an screen shot of the event pIotter with sorne marks, from which one can see how
the rowTitle, rowList, title, scale, and eventList are displayed on the screen.

Simple Piotter and Customized Piotter

Corresponding to two kinds of state parsers, two different user interfaces are provided. The
Simple PIotter provides interfaces for using the simple state parser, and the Customized
PIotter gives interfaces for the customized state parser.

3.2 Design and Implementation 58

! r4 1

theSysiem ProcessorO

Figure 3.12: Terms Used in Trace PIotter

3.3 Case Study 59

3.3 Case Study
In the previous two sections, we have discussed the design and implementation of the trace
piotter. Now let us look at a case study to see how to use the trace piotter and what it looks
like. The model used in this case study is the Processor model in chapter 6.

<trace>

<event>

< model >theSystem. ProcessorO< / model >

<time>3.0</time>

<kind>EX</kind>

<port name= "IN" category= 'T' >
<message>(job 2, size 5.527549)</message>

</port>

<state>

<attribute category= "P" >
<name>processorStatus</name>
<type>String</type>
<value>BUSY </value>

</attribute>

<attribute category= "P" >
<name>queueLength</name>
<type>lnteger</type>
<value> l</value>

</attribute>

<attribute category= "e" >
<name>currentJob</name>
<type>Job</type>

<value>

<attribute category= "P" >
<name>ID</name>
<type>lnteger</type>
<value> l</value>

</attribute>

<attribute category= "P" >
<name>size</name>
<type>lnteger</type>
<value>4.26872848822</value>

</attribute>

</value>

</attribute>

</state>

</event>

Example 3.2: Simulation Trace of the Processor Model

3.3 Case Study 60

3.3.1 XML Represented Trace for the Processer Madel

In order to use the pIotter, we first have to generate the simulation trace. Depending on the
length of the simulation time and the complexity of the model, the simulation trace can be
very huge. Example 3.2 represents one event in the simulation trace. It can be read as "at
simulation time 3.0, an external event occurs at the model System. ProcessorO. At that time,
the port and state status of the model are (as shown by the port and state element in
XML)".

3.3.2 Plotting Trace Using the Simple Piotter

Figure 3.13 is the graphical user interface for the simple pIotter. From the file menu, one
can select the trace file to be plotted. After a file is selected, the pIotter caUs the static
parser to parse the file, and the model structure information is displayed. Users can select
the model they are interested in. Once a model is selected, the model state attributes are
displayed. One can select an attribute from the attributes list. Once an attribute is selected,
the pIotter uses the selected attribute as parameter to construct a simple state parser, which
can then be used by the dynamic parser to parser the trace state. And finaUy, the results are
displayed. Figure is a screen shot for plotting processorStatus and queueLength attributes
of theSystem. ProcessorO.

.UktiHmffliMitNjUMU4 _ox
[110

.roceS$orSta
theSystem. ProcessorO

IDLE

BUSY

lime

_:;'0- ~! T8)Cl ~~~~~~ l'Ost~t i ~
theSystem.ProcessorO

q;:~9r.U.L.ngfllr""'------~~ ~ • 'e~--~~~--------~i q------~!

L-. ~

o~.oo~--------~3.00~--~.=2'----~'~oo-----------.~.OO~~9~~------~l2~œ~~me

_. Texl

Figure 3.13: Plotting Trace Using the Simple PIotter

3.3 Case Study 61

3.3.3 Plotting Trace Using the Customized Piotter

Figure 3.14 is the graphical user interface for the cutomized pIotter. The file menu and the
model selection part have the same meanings as that of the simple pIotter. Unlike in the
simple pIotter, after a model is selected, astate parser must be given. This state parser is
written by the user. After astate parser is given, the pIotter caUs the dynamic parser using
this state parser. The results of the dynamic parsing are then displayed. Figure 3.14 shows
the screen shot of using a customized state parser named PStateParser. py for a Processor
model theSystem.ProcessorO.

_ox

state
theSystem. ProcessorO

IOLE

BUSV 0. 0.

Figure 3.14: Plotting Trace Using the Customized PIotter

The main difference between the Simple Plotter and the Customized Plotter is that one
must provide aState Parser for using the Customized Plotter. Example 3.3 is the cus
tomized state parser PStateParser. py used in Figure 3.14. This example is very simple. It is
only used for demonstration purpose. The idea is the same as writing a complex one.

From xml.dom.minidom import *

class PStateParser(object):

def getString(self. xmIState):

for node in xmIState.childNodes:

if node.nodeType == Node.CDATA_SECTION_NODE:
return node.nodeValue #node.chiidNodes[O].data

return "No state string"

3.3 Case Study

continue

def getSeqState(self. xmIState):

attributes = xmIState.getElementsByTagName("attribute")

for attribute in attributes:
attrName = attribute.getElementsByTagName("name")[0]
txtName=attrName.childNodes[O].data
#print txtName. "-". self.attrName

if (txtName== "processorStatus"):
attrValue = attribute.getElementsByTagName("value")[0]
txtValue=attrValue.childNodes[O].data
return txtValue

return "Error"

Example 3.3: A Customized State Parser for the Processor Model

62

3.4 Conclusions 63

3.4 Conclusions

In this chapter, we discussed the design and implementation of the DEVS Visual Trace Piotter.
The main features of the PIotter include: 1. Standardized XML trace representation; 2. Two
level trace parsing architecture; 3. Simple predefined state parser and customizied state parser.

The standardized XML trace representation makes it possible for the pIotter to be used to plot
not only the simulation trace generated by Python DEVS, but also simulation traces generated
by other simulators that follow the XML DTD. The simulation trace for a complex system is
usually huge. The two-level trace parsing architecture, which first parses the model structure
information and separates event trace records to groups according to the model a record belongs
to, makes the trace parsing pro cess more efficient. The two types of state parsers make the
pIotter easy to use.

Modelica Representation and Model Compiler

4.1 Introduction

With the development of computer software and hardware technologies, modelling and simu
lation technology are used more extensively. As a consequence of this trend, more and more
modelling languages appear for describing models in different application domains. SDL[EHS97]
has been used in the telcommunication industry for describing protocol models, UML has been
used by software engineers for specifying business and software models, Modelica [Fri04] has
been used for describing models of physical systems, and so forth.

A modelling language, also called a model description language, is ideally a declarative lan
guage for describing model specifications. Though they share many common features with
programming languages, modelling languages and programming languages serve different pur
poses. Generally speaking, modelling languages stress high-Ievel solution specifications in sorne
appropriate formalism(s). The main task of a modelling language is to make a solution spec
ification concise, precise, and easily understood. Programming languages emphasize on the
execution of a solution, whose main task is to represent the solution in a way that can be
executed correctly and effeciently by a computer.

DEVS is a formalism for discrete event system modelling. Because of its mathematical rigour
and capability of hierarchical modelling, DEVS has been applied in many different fields [Zei03]
[ZKB99][ZV93]. However, in many available DEVS modelling environments, like DEVSJava
[Zei05], PythonDEVS[BV02], ADEVS[Nut05] and so forth, models are still described in pro
gramming languages. In fact, DEVS capabilities are commonly "grafted" on an object-oriented
programming language. This gives the modeller access to the full expressive power of the
programming language such as inheritance, lexical scoping, and libriaries. The weaknesses of
using programming languages to represent models (see chapter 2) have severely affected the
application and standardization of DEVS.

[HK06] proposes a high level formalism-specific model description language DEVSpeci for DEVS
model representation. This language is designed for DEVS, so it has features specifie for DEVS
model descriptions. However, DEVSpeci is a purely new language. It has few users and is
difficult to use for specifying non-DEVS models. DEVS has been evisioned as a suit able formal
ism for integrating systems that have both continuous and dis crete components, as discribed
in [ZPKOO]. Using a language that lacks the capability of describing continuous models may
undermine DEVS' potentials.

In this chapter, we discuss our effort of using the declarative object-oriented modelling language
Modelica to describe DEVS models. Modelica is an object-oriented model description language
that has been successfully used to specify models of systems in many physical domains. Though
Modelica is originally designed for describing physical models, it has enough constructs for

4.1 Introduction 65

discrete event model description.

The following features lead us to Modelica as the model description langage for DEVS model
description. Firstly, Modelica has been developed and applied for over a decade, it is a rela
tively mature modelling language. Secondly, Modelica has a large model repository for diffent
industries and a large group of users. Thirdly, DEVS has been envisioned as a formalism that
is suit able for hybrid system modelling. Modelica has been successfully used for describing
continuous models. If DEVS models are also described by Modelica, we are one step further to
the goal of hybrid system modelling using both DEVS and continous model formalisms. Lastly,
constructs such as (computationally) non-causal parameter-coupling equations may be used to
increase the usability of DEVS.

The organization of this chapter is as follows. In the first section, we present a simple intro
duction of Modelica to get a basic idea of Modelica language features. In the second section,
we discuss how to represent DEVS model components using Modelica constructs. In the third
section, we look into issues of compiling a Modelica DEVS model representation into Python
DEVS. In the fourth section, we give a case study of representing a DEVS model in Modelica
and subsequently translating the Modelica representation into Python DEVS. Finally, in the
fifth section, we draw conclusions for this chapter.

4.2 Modelica and Its Model Description Constructs 66

4.2 Modelica and Its Model Description Constructs

Modelica is an object-oriented model description language. It provides a structured, computer
supported way of doing mathematical and equation-based modelling. The main objective of
Mode/ica is to make it easy to exchange models and use model libraries. The design goal of
Mode/ica is to build a modelling language based on the Differentiai Aigebraic Equation (DAE) for
ma/ism with discrete-event features to handle discontinuities and sampled systems. This design
goal allows Modelica to be a multi-formalism, multi-domain, general-purpose modelling lan
guage. The approach built on non-causal modelling with true ordinary differential and algebraic
equations and the use of object-oriented constructs facilitate reuse of model knowledge[Fri04].

Though Modelica is object-oriented, the Mode/ica view on object-orientation is different from
normal object oriented languages. Since Modelica emphasizes structured mathematical mod
elling, object-orientation is viewed as a structuring concept for describing complex large sys
tems. There are three ways for structure description in Modelica, which are hierarchies,
component-connections, and inheritanee. Hierarchy and inheritance are basically done in the
same ways as normal object-oriented languages. The component-connection is a special feature
of Modelica. In normal programming languages, interactions between components are done
through function calls or message passing mechanisms. In Modelica, components interactions
are done through connections. The ide a is that each component has connectors (or ports)
through which the component can send output and aceept input. Connectors of different com
ponents can be connected together to compose connections. Then, the output of one component
can be linked as an input of another component via connections. Modellers do not need to
specify how output of one component can become input of the other component. This can be
deduced automatically by the model compiler based on model equations.

Mode/ica is a declarative language. The concept of declarative description is that Modelica mod
els are primarily mathematical descriptions. Dynamic behaviours of a system are declaratively
specified by mathematical equations. Rather than specifying specifie details on how to achieve
the result of problems, Modelica models stress on what kind of mathematical relations hold
among model members. This way of model description is at a higher level of abstraction than
normal object-oriented modelling, sinee sorne implementation details can be omitted [Fri04].

Many other features make Mode/ica suitable for high-Ievel model description. For spaee reasons,
we do not discuss them here. Sinee our purpose is to represent DEVS models in Modelica, let
us look into some Modelica constructs that are related to DEVS representation.

Class Like any object-oriented programming language, the basic structural element in Mod
e/ica is a class. Almost everything in the real technical world can be represented as a Modelica
class, and a complex model can be hierarchically composed of classes through class inhertanee
and composition. But the structure of a Modelica class is different from classes in other lan
guages. The significant feature making Mode/ica different from other programming languages
is how Modelica uses classes for describing model behaviour. In common object-oriented pro
gramming language, system behaviour is described by methods. In Modelica, in most cases
model behaviours are described by equations. Tough equations in Modelica are represented in
the same way as assignments in other languages, Modelica equations only reflect the equality
relationship among variables. There is no assignment relation among equation member vari
ables. For example, in Java, lIa = b + c" means assigning the addition result of variable b
and c to variable a. In Modelica, equation "a = b + c" only means the relationship among
variable a, b, and c. It has the same meaning as equation 1 lb + c = a". Variables in an

4.2 Modelica and Its Model Description Constructs 67

equation can be written in any order if the relationship reflected in the equation is not changed.
Besides the equation feature for supporting non-causal modelling, Modelica provides function
and algorithm constructs for normal causal modelling. The difference hetween functions in
Modelica and functions in normal programming languages is that Modelica functions are also
classes. They are special classes that can either stand alone or he embedded into other classes.

Restricted Classes Class is the fundamental structure element in Modelica. A class in Model
ica can be defined using the keyword class. But under certain conditions, the keyword class can
he replaced by one of five other, more specific keywords: model, connector, record, block,
and type. On the one hand, the restricted class mechanism makes Modelica code easier to read
and maintain. It is also modeller-friendly sin ce the mode lIer does not need to learn several
different language constructs, but just the class concept. On the other hand, aIl properties
of a general class are identical to aIl kinds of restricted classes. For example, the syntax and
semantics of definition, instantiation, inheritance, and general properties are defined in the
same way for aIl kinds of classes. Such orthogonality simplifies the construction of a Modelica
compiler since only the syntax and semantics of the class construct, along with sorne validity
checks on a restricted class need to he implemented. The following summarizes the restrictions
and usage of each kind of restricted class in terms of sorne examples [Xu05].

model The only restriction of a model restricted class is that it may not he used in connections.
Its semantics are identical to the general class construct in Modelica, and it is most commonly
used.

record The record class is used to descrihe structured data. No equations are allowed in the
definition or in any of its components. For example:

record Address

String streetName;

Integer apartmentNumber;

String city;

String zip;

end Address;

type A type is a class that is an alias or extension of an existing class. A type restricted
class may only he an extension to a predefined type, enumeration, record, or array of type.
BasicaIly, the purpose of using type is to identify a data structure by a meaningful name. Below
is a simple example of using type.

type Point = Real[2);

da 55 classl

Point p = {I.O. 2.0};

end classl;

connector The restrictions of connector classes are identical to those of record classes, except
that connector classes are designed to be used in connections.

4.2 Modelica and Its Model Description Constructs 68

block The block restricted class is used to model causal (input/output) block diagrams. In
Modelica, the two keywords, input and output, are used as component prefixes to postulate
the data flow direction. All declared variables in a block must either have the prefix input or
output. A block class may not be used in connections. Below is a simple example of the block
construct.

block RectangleArea

input Real width;

input Real height;

output Real area;

equation

area = width * height;

end RectangleArea;

Package Classes in Modelica can be organized into packages. Package is a restricted class with
sorne enhanced capabilities. It is restricted in the sense that it may only contain class definetions
and constant declarations. In a Modelica package, variable and parameter declarations are not
allowed. Without variables and parameters, the equation part is meaningless and certainly
not allowed. However, the Modelica package has sorne enhanced functionalities that normal
classes do not have. First, a package can import name spaces or components from other
packages. Second, a package can be marked as encapsulated, which means that this package
is an independent unit, usage or reference of components in other packages must be explicitly
imported. A simple example of Modelica package is shown below.

package packexample

import pack!. *;

import pack2.Class1;

constant Real pi = 3.14159;

class DemoCiass

end DemoClass;

end packexample;

Function Functions are natural parts of mathematical models. So it is natural to have struc
tures in the Modelica language allowing users to define mathematical functions. The body of
a Modelica function is an algoritm that specifies the execution behaviour when the function is
called. The parameters for a function are specified by the keyword input, and results are saved
to variables marked by the ouput keyword. There are sorne constraints on Modelica functions.
Firstly, at most one algorithm clause is allowed in a function's body. No equations and
initial algorithms are allowed. Secondly, calling a function requires either an algorithm or
an external function interface. And thirdly, no calls to the Modelica built-in operators der,
ini tial, terminal, sample, pre, edge, change, reini t, delay and cardinali ty are allowed
in a function as their arguments are time-varying signaIs as opposed to instantaneous values.
Below is a simple example of a Modelica function.

4.2 Modelica and Its Model Description Constructs

runction Multiply

input Real x;

input Real y;

output Real result;

algorithm

result := x * y;

end Multiply;

69

Built-in Types There are four built-in types in Modelica, which correspond to primitive types
Real, Integer, Boolean, and String. These built-in types are aH classes. They have most of
the features of normal Modelica classes. The only difference is that the value of the variable
of a built-in class can be accessed directly through the variable's name, rather than using the
dot notation [Fri04]. For example, if we have a variable declared in a class as "Real x j , , ,

then we can use x as this ' 'y : = x; J J. Rather than using x. value, the value of x is accessed
directly and assigned to variable y's value attribute.

4.3 Design and Implementation 70

4.3 Design and Implementation

We have discussed the language features of Modelica and benefits of high-Ievel model represen
tation using Modelica. Now let us see how we can use Modelica to facilitate DEVS modelling
and simulation. In this topic, we discuss two issues. The first is how DEVS models can be rep
resented in Modelica. The second is how DEVS models represented in Modelica are translated
for simulation purposes.

4.3.1 The Architecture

Modelica is a high-Ievel model description languge. Models described in Modelica cannot be
exectued or simulated directly. In order to further study or analyze the correctness and precision
of a model, model simulation or execution is necessary. This requires sorne way to transform
Modelica model representations into formats that are suit able for execution or simulation. As
a common way of practice, the task of transforming high level model representations into
executable or simulatable formats is done by model compilers.

As in the case of compilers for programming languages, a model compiler has at least two major
tasks, syntax checking and target code generation. Syntax checking is to make sure that the
source code satisfies the source language grammar. Syntax checking is the premise of correct
target generation. Syntactically correct source makes correct target generation possible. Target
generation is to translate the source code into a desired representation, be it a representation
in another language or machine code.

When it cornes to compiling DEVS Modelica representations, the following tasks need to be
done by a DEVS Modelcia compiler. Firstly, it is the compiler's responsibility to make sure
that those models are syntactically correct Modelica models. Secondly, the compiler has to
check that those DEVS models syntactically satisfy the DEVS Modelica specification. Thirdly,
Modelica is a typed language, so the model compiler must check that those models satisfy
Modelica's type rules. And finally, the model compiler must have the capability to generate
simulator-specific model representation. Here the simulator-specific model representation can
be any format that can be simulated by a DEVS simulator. It could be Java code for DEVSJava,
C++ code for ADEVS, or Python code for Python DEVS, and so forth.

Due to the fact that there are many existing DEVS simulation environments, the Modelica
representation should be expressive enough, so it can be transformed into any DEVS simulator
specific representation. Figure 4.1 is the software architecture for using Modelica in DEVS
modelling and simulation. We envision Modelica as a standard DEVS model representation.
We can build a Modelica model repository for models in different fields. The models in the
Modelica repository are not necessarily pure DEVS models. When one models a new system,
for components that are already in the model repository, the existing models can be reused
directly. The modeller only needs to build models for components without existing models.
The newly created models and reused existing models in the Modelica repository are combined
together by the model compiler.

This way of using Modelica for DEVS modelling and simulation has the following benefits.
First, it promotes high-level model knowledge reuse. Sinee a Modelica model representation
is at a higher level of abstraction than a programming language model representation, model
reuse in a Modelica repository is at a higher level than model reuse at programming language
library level. High level models usually do not change as often as low level models, so the
benefit is obvious. Second, it promotes DEVS standardization. High-level models omit many

4.3 Design and Implementation 71

implementation related details, so they are easy to be standardized. And thirdly, Modelica
has the capability for multi-domain, multi-formalism model representation, while DEVS is a
potential formalism for integrating discrete and continuous systems for hybrid modelling and
simulation. Combining Modelica and DEVS opens many chances for future development.

DEVS Model

Modelica

Model Repository

.-------~--------ï
Simulator-Specific

Model Representation (e.g. Python)

Figure 4.1: Architecture for Modelica based DEVS Modelling and Simulation

4.3.2 Representing DEVS in Modelica

Modelica Constructs vs. DEVS Components

As discussed in chapter 1, there are two types of DEVS models, atomic DEVS models and
coupled DEVS models. An atomic DEVS model has inputs, outputs, sequential states, external
transition function, internaI transition function, time advance function, and output function.
Coupled models have inputs, outputs, ports, and sub-models. As in a programming language,
atomic and coupled DEVS models can be represented as Modelica classes. Sub-models are
described by class instances. Structural inputs and outputs can also be described as Modelica
classes. Transition functions can be represented as Modelica functions. For the sequential
states, Modelica has an enumeration type, which can be used to represent enumerated values.

Now we know which Modlica constructs can be used to represent which DEVS components.
The question is, if we just describe DEVS models using Modelica classes, how we can know
which class is AtomicDEVS and which class is CoupledDEVS. To solve this problem, we use
"prototypes". We define a DEVS package, in which aU the DEVS components are specified. AU
user-defined Modelica constructs, if they extend from the predefined DEVS classes, are treated
as DEVS components. For example, if we find a Modelica class definition like this: "class Car
extends AtomicDEVS;", then we assume the Car class defines a atomic DEVS model. The
Car class is a direct sub-class of the AtomicDEVS. If the Car class is further sub-classed by other
classes, then those sub-classes of the Car class are also assumed to be atomic DEVS models.
This way of sub-classing is caUed indirect sub-class. Similarly, aU other DEVS components can
be identified in this way.

4.3 Design and Implementation 72

Predefined DEVS Modelica Elements

Figure 4.2 is the class diagram of predefined DEVS Modelica classes. The root of the diagram
is DEVSElement. AlI other classes are extended from the root class DEVSElement. The classes
are in two groups. Classes extending from DEVSComponent represent DEVS cornponents, and
classes extending from DEVSCollection represent collection data structures.

DEVSQueue

Figure 4.2: Predefined DEVS Elements in Modelica

There are three basic purposes for using predefined classes. First, classes extending from
DEVSComponent are mainly used for identification purpose, which means that DEVS compo
nents' Modelica representation should extend from corresponding predefined classes. For ex
ample, if one wants to define an atomic DEVS model in Modelica, then the Modelica class
representing that model must extend from the predefined AtomicDEVS class. Second, Modelica
has enough constructs for continuous model description. However, for discrete event system,
the array element in Modelica is not very convenient for operations on complex data collection.
So classes extending from DEVSCollection are mainly for simplifying collection data opera
tion. And finally, Modelica is a typed language. This means that a Modelica function can only
work with parameters with the same types as in the function's declaration. For example, if we
define a function accepting a parameter of Integer type, we cannot calI this function with a
parameter of Real type. Because there is no a common root class (like Java' S object class)
for all Modelica classes, the type rule makes building collection structure for holding data with
different types very difficult. For example, we have a list of mixed DEVS component objects,
which include DEVS port instances, model objects and events. If these objects have no a corn
mon ancester class, it will be difficult to hold them in one collection data structure. If the
collection data structure has a add function accepting a parameter of DEVSPort type to add a
DEVS port object, because of the type rule, you cannot use this add function to add an object
with types other than DEVSPort. You have to define other functions to add other objects to
the collection. With the support of the predefined hierarchical classes, things become easier.
For the same add function, if we define it accepting a parameter of DEVSElement type, then,
all the objects of sub-classes of DEVSElement can be valid parameters to this function.

4.3 Design and Implementation 73

Predefined BaseDEVS Except the BaseDEVS class, all other predefined DEVS component
classes are empty classes purely for identification purpose. The BaseDEVS defines two utility
functions for event processing. The definition of the BaseDEVS is shown as below.

class BaseDEVS

function poke

input DEVSPort outPort;

input DEVSEvent evt;

end poke;

function peek

input DEVSPort inPort;

output DEVSEvent evt;

end peek;

end BaseDEVS;

The poke function sends an event to an output port of a DEVS mode!. It takes two input
parameters, evt the DEVS event that is being sent, and outPort, the DEVS port that the
event is being sent to. The peek function retrieves an event from an input port. It takes two
parameters, inPort, the port from which an event will be retrieved, and evt, the event that is
retrieved from the inPort.

Predefined DEVSList We presented several collection data structures in Figure 4.2. We only
define the DEVSList here for demonstration purposes. Below is the definition of the DEVSList
class. Other classes can be defined in a similar way, when they are needed.

class DEVSList

function append

input DEVSElement de;

end append;

function pop

input Integer index;

output DEVSElement de;

end pop;

end DEVSList;

We take the semantics of Python List as the semantics of the DEVSList functions. For sim
plificity reasons, we only defined two functions for the DEVSList. Append means append an
element to the end of a list. It takes an input parameter of DEVSElement type. So all pre
defined DEVS classes and their children are valid elements to be appended to the list. The
pop function takes an input parameter index of Integer type, and an output parameter de of
DEVSElement type. This function pops a DEVSElement de at the position of the list indicated
by the input parameter index to the output parameter de. Other list operations can be added
to the DEVSList definition in a similar way.

Predefined DEVSState There is no DEVS state element in the DEVS specification. The
DEVSState class represents the state variables of an atomic DEVS mode!. We represent the

4.3 Design and Implementation 74

state variables in a separate class called DEVSState. This is also an empty class. However,
the real state class for an atomic DEVS model must have at least one variable seqState,
which represents the sequential state of that model with the type of that model's SeqStates.
Each atomic DEVS model must have a variable called state representing its model state
variables and sequential states. For example, we have an atomic DEVS model AModeI. Then
the definitions of AModel and its model state are as below.

class AModelState

AModel.SeqStates seqState=AModel.SeqStates.initiaIState;

end AModelState;

class AModel

extends AtomicDEVS;

type SeqStates = enumeration("sql", "sq2",);

AModelState stateO;

end AModel;

Modelica Keywords with Transformed Meanings

Input and output keywords in Modelica are used to specify that a parameter of Modelica
functions is an input or output parameter. In DEVS Modelica, we borrow these two words in
DEVS model definitions with different semantics. The input in a DEVS Modelica class me ans
an input DEVS port, and output means an output DEVS port. For example, the statement
{ 'input DEVSPort p_inO;" means the declaration of a input DEVS port variable p_in.
These meanings are only effective for port declarations in atomic or coupled DEVS model
definitions. In functions, the input and outout keywords still have their original Modelica
semantics.

In Modelica, functions should not have side effects on model state, which means that a Modelica
function can only manipulate its parameters and local varilables, not the global model state
variables. In DEVS Modelica, we deliberately loose this rule for state transition functions,
output function, and time advance function of the atomic DEVS models. Because these four
functions are inherent to DEVS atomic models, and the reason of their existance is to change
the model state. It is very cumbersome to describe the model behaviour if we do not loose this
function rule. Except these four functions, other functions in DEVS Modelica follow the normal
Modelica function rules.

4.3.3 Representing DEVS Components in Modelica

Combining our above discussions, we get the Modelica prototypes for DEVS components.

Atomic DEVS Models An atomic DEVS model can be represented by a Modelica class like
below.

4.3 Design and Implementation

class modelname

extends AtomicDEVS;

parameter declarations { parameter Integer i; }

sequential states declaration { type SeqStates = enumeration(" sql" , "sq2",);}

model state declaration { ModelState stateO; }

input port declarations { input DEVSPort pjnlO; }

output port declarations { output DEVSPort p_outlO; }

function extTransition j jexternal transition function

end extTransition;

function intTransition; j jinternal transition function

end int Transition;

function outputFunction j joutput function

end outputFunction;

function timeAdvance j jtime advance function

output Real timespan;

end timeAdvance;

end modelname;

75

The atomic model include parameters, sequential states, model state, input and output ports,
and behaviour functions. In the parameter declarations part, parameters needed for instanti
ating a model are specified. Sequential states are represented using the Modelica enumeration
type. The model state is declared as a normal Modelica class instance variable. Input and
output ports are declared using input and output keywords and predefined class DEVSPort. All
the functions are defined as normal Modelica functions. The timeAdvance function requires a
output parameter timespan, through which the value of the time interval for specifie sequential
state is returned.

Coupled DEVS Models Similar to atomic models, the prototype of Modelica representation
for cou pIed DEVS models is shown below.

class modelname

parameter declarations

input port declarations

output port declarations

sub-model declarations

equation

port connections {connect(m1.p_out, m2.pjn); }

end modelname;

A coupled DEVS model has parameters, input and output ports, sub-models, and port con
nections. Ports and parameters are declared in the same way at those for atomic models.
Sub-models are declared as normal Modelica class instances. Port connections are defined by
Modelica's conne ct function. Originally, the connect function is used to connect two Modelica
connectors, and here we use it to connect two DEVS ports.

4.3 Design and Implementation 76

DEVS Event. Port. and Model State DEVS event, port, and model state are just represented
as normal classes that extend from corresponding predefined DEVS classes. These classes are
like the Modelica restricted class record in that they only have data members without an
equation part. An extra requirement for the model state is that it must have a seqState
variable as we mentioned above.

4.3.4 Using Language-Specifie Library Functions in Modeliea

When we do DEVS modelling in Modelica, we use utility functions very often. In most cases
there are corresponding library functions in programming languages for utility functions. If we
can use these functions, rather than implementing them again in Modelica, we can save a lot
of time. There are two issues with using language-specific library functions in Modelica. First,
the signatures of these functions must be declared in Modelica format. So we can make sure
these funcions are used syntatically right at Modelica level. And second, there must be a way
for the Modelica model compiler to know where the definitions of these functions are when the
compiler transforms the Modelica model represnetations into simulator-specific models.

Declaring Language-Specifie Funetions in Modeliea

For the first issue, we designed a special Modelica package called externalfunctions, in which
the utility functions that can be found in programming languages are declared in Modelica for
mat. Below is an ex ample of the delcaration of a function randint in the externalfunctions
package.

package externalfunctions

function randint

input Integer ia;

input Integer ib;

output Integer randvalue;

end randint;

end externalfunctions;

Mapping Funetions from Modeliea to a Specifie Programming Language

For the second issue, we define an XML file called funcmapping.xml, in which the mappings
between utility functions' Modelica declarations and language-specifie library locations are de
fined. So the model compiler can import appropriate libraries in target language when Modelica
models are being compiled.

Two kinds of mappings can be defined in the funcmapping. xml file, package mapping and
function mapping. Package mapping indicates a corresponding package name in the target
language for a Modelica package. Function mapping specifies the target funciton name and
package for a Modelica function. So during target generation, the compiler only needs to
import a specifie fun ct ion in the target package rather than the whole package. Below is part
of the funcmapping. xml file with a package mapping and a function mapping example.

4.3 Design and Implementation

<?xml version= "1.0"?>

<mappings>

<package-mapping>

<name>devs</name>

<mappackage>DEVS</mappackage>

< / package-mapping>

<function-mapping>

<name>randint</name>

<mapname>randint</mapname>

<mappackage>whrandom</mappackage>

</function-mapping>

</mappings>

4.3.5 The Model Compiler: from Modelica to PythonDEVS

77

As we mentioned earlier, Modelica is a model description language. In order to do simulation,
Modelica model representations must be translated into models that are represented in a pro
gramming language that can be simulated by a specific DEVS simulator. This task is done by
the Modelica model compiler. Because Modelica is a general purpose modelling language, mod
els represented in Modelica can be translated into models represented by most general purpose
programming languages. Here we use Python as target language to see how we can compile
DEVS Modelica models into Python DEVS models.

This part of our work is based on Steven Xu's p,Modelica compiler [Xu05]. p,Modelica focuses on
the continuous parts of the Modelica language. It does not support constructs such as functioo,
algori thm, if ... else statement and so forth. The code generated from p,Modelica is
Octave code, which can be used by GNU Octave for numerical computation and experimentation.
We enhance the p,Modelica compiler with the capability of processing programming language
features of the Modelica language, so it can compile DEVS Modelica models.

Architecture of the DEVS Modelica Compiler

Figure 4.3 gives the architecture of our DEVS Modelica compiler. Like any normal language
compiler, the DEVS Modelica compiler includes four parts, parsing, scoping (building symbol
tables), type checking, and code generation. Even though the p,Modelica compiler only supports
continuous features of the Modelica language, its parser supports the full language features of
Modelica. So at the parser level, we use the parser of p,Modelica directly. At the scoping level,
in addition to the programming language features of Modelica, the p,Modelica compiler does
not support the import statement. Due to the fact that import is a important mechanism
in Modelica for supporting model reuse, we add this function to our DEVS Modelica compiler
at the scoping level. For the continuous language features, we reuse the functionalities of the
p,Modelica compiler. Due to time limitations, we did not do much on type checking. We simply
reuse JLModelica's type checker for simple name look up. Since Steven Xu has discussed the
p,Modelica compiler in detail in his thesis [Xu05], we do not spend much time on those issues
in this thesis. The following discussions focus on the code generator that generates code from
DEVS Modelica to Python DEVS.

4.3 Design and Implementation 78

Figure 4.3: The Architecture of DEVS Modelica Compiler

Mapping between DEVS Modelica Representation and Python DEVS

Python DEVS is a DEVS modelling and simulation framework written in Python. As we discussed
in chapter 1, Python DEVS has defined three DEVS components, atomic DEVS model, coupled
DEVS model, and DEVS port. So the DEVS Modelica representation of atomic models, coupled
models, and ports can be translated into corresponding Python DEVS components. In Python
DEVS, events and model states are simply represented by normal Python classes. So DEVS
events and model states in Modelica representation are sim ply translated into Python classes.
We now know the mappings between DEVS Modelica components and Python DEVS elements.
Let us see how to generate each Python DEVS component from DEVS Modelica.

Atomic Models As we mentioned above, an atomic Modelica model representation has pa
rameters, ports, sequential states, model state and transition functions. The task of generating
a Python DEVS representation for an atomic model Modelica representation is to generate each
part of the atomic Modelica representation model into Python DEVS.

In Python, the construction of a class instance is done by the __ init __ function. Each Python
class that needs parameters to initialize its instances must have an __ ini t __ method through
which the initialization value for the parameters are passed to the class instances' attributes.
The parameters of the __ ini t __ function of a Python class play the same role as the parameters
of a Modelica class. So the parameters of a Modelica class are translated into parameters of

4.3 Design and Implementation 79

the __ init __ function of a Python class when we translate a DEVS Modelica representation into
Python DEVS.

In Python DEVS it is not necessary to declare ports. Input and output ports are added to models
through method calls. There are two methods for adding ports to a DEVS model, addOutPort
and addlnPort. AddOutPort adds an output port to a DEVS model, and addlnPort adds
an input port to a DEVS model. Bath these methods take a string representation of a port
name name as parameter and return a port instance variable that points to the newly added
port. These two methods are defined in the BaseDEVS class of the Python DEVS prototypes, so
they can be called in AtomicDEVS and CoupledDEVS directly. For example, in a Python DEVS
atomic model class' __ ini L_ function, ' , self. out = self. addOutPort (, 'p_out' ,) , , means
this model has an output port called "p_out", and this port can be accessed by self. out
at runtime. In DEVS Modelica, the owner relationship that a model has with sorne ports is
handled through port declarations. For example, "input DEVSPort p_inO;" in Modelica
means that a model has an input port "p_in". To translate port declarations in Modelica
models into ports in Python DEVS models we use the following policy. Input port declarations
are translated into Python DEVS' addlnPort caUs, and output port declarations are translated
into addOutPort caUs. The port name in Modelica declaration is translated as both port
instance variable and port name. For example, the Modelica declaration of ' 'input DEVSPort
p_in () ; " is translated into ' 'self. p_in = self. addlnPort (' 'p_in' ') " in Python DEVS.

Sequential states of an atomic DEVS model in Modelica are represented as members of a Mod
elica enumeration type. In Python, there is no enumeration type data structure. However,
Python has the concept of class variables. The sequential state of an atomic DEVS model are
class variables, because aU model instances of the same kind of model have the same sequential
states. Sa, the enumeration of sequential states in DEVS Modelica is translated into class vari
ables in Python. For example, if atomic DEVS model AModel in Modelica representation has
a statement "type SeqStates = enumeration (' 'Idle' " "Busy");". Then its Python
DEVS representation will have code as shown below.

cJass AModel:

Idle = "Idle"

Busy = "Busy"

In DEVS Modelica, model state of a atomic model is declared as a variable of the atomic model.
We treat it the same way when we translate a Modelica model into Python DEVS model.
For example, "ModelState state () ; " in Modelica will be translated into "self. state =

ModelStateO" in Python DEVS.

In Modelica, functions are also classes with limited functionalities. In Python, methodsjfunctions
are members of a specific class. So, the embedded transition functions of an atomic DEVS Mod
elica model are translated into member fun ct ions of a Python DEVS class. The input parameters
of a Modelica fun ct ion are translated into parameters of a corresponding Python function. The
output parameters of a Modelica function are translated to variables that are returned from the
corresponding Python function. Modelica representation of internaI transition function and ex
ternal transition function of an atomic model have no output parameters. However, in Python
DEVS, bath the internaI and external transition functions are required to return the model
state after the transitions. So, the statement "return self. state" is added ta the end of
both these functions in Python DEVS. In Modelica, the time advance function has an output

4.3 Design and Implementation 80

parameter timespan, sa the last statement of the generated time advance function in Python
DEVS is "return timespan". The timespan is a local variable of the function, there is no
self qualifier before it. The output function in Modelica has neither input parameters nor out
put parameters, so there are no parameters and returns in the corresponding generated Python
DEVS output function.

Coupled DEVS Model In DEVS Modelica, coupled models have parameters, ports, model
instances (or sub-models), and connections. Parameters and ports can be translated into
Python DEVS in the same way as that for ports and parameters of an atomic model. In Mod-
elica, DEVS model instances are represented as normal Modelica class instances in the form
"model-name model-instance-variable(parameters);". However, in Python DEVS,
besides the normal parameters, each model has a textual name for instance identification in
a simulation environment. In order ta satisfy this requirement of Python DEVS, the model
instance-variable above is treated as both variable name and textual instance name when the
Modelica representation is translated into Python DEVS. For example, the model instance dec
laration in Modelica "AModel al (x=l, y=2);" is translated into "self. al=AModel (x=l,
y=2, name=" al' ,) " in Python DEVS. The Modelica connect function for connecting DEVS
ports in Modelica representation of coupled model is simply replaced by Python DEVS's connectports
function, which is a member function of the Python DEVS cou pIed model prototype.

DEVS Events We have translated atomic models and coupled models. Next it is the turn of
DEVS events. Events are much simpler in Modelica representation than models. Events only
have parameters and attributes, which are sim ply translated ta Python code as what we do for
parameters and attributes of atomic models.

Primitive Data Types Modelica has four primitive data types, Real, Integer, Boolean, and
String. They are translated into Python's Float, Integer, Boolean, and String respectively.

4.3.6 Python DEVS Code Generator

As we mentioned earlier, the j.lModelica parser supports the full language features of Modelica.
The result of the j.lModelica parser is the Abstract Syntax Tree (AST) of the parsed model. A
special feature of the AST generated by j.lModelica is that it is generated based on the Visitor
Design Pattern [Xu05]. Sa generating code for the AST is just to create a new visitor to traverse
the AST and generate code for each no de of the tree.

The Structure of the Modelica Abstract Syntax Tree

Figure 4.4 shows a few elements on the top of the AST. Here the ClassFile corresponds to a
Modelica source file. An AST may include one or more source files. Two situations can lead an
AST to have more than one ClassFile. First, the compiler compiles over one file at a time.
Second, one Modelica source imports classes or packages in other source files.

Each ClassFile is composed of zero or more RegularClassDefinitions. There is a short
syntax for defining a class in Modleica, which is called Short Class Definition. This is
usually used to give a informative type name to an existing class [Fri04]. For example, , 'class
Age = Integer;" defines a new class Age, which has the same meaning as Integer. So, the
RegularClassDefini tion here is a general concept. It means aU the Modelica class definitions
that do not use the short syntax. It can be a package, a class, a function or a restricted
class definition. The RegularClassDefinition is composed of zero or one ElementList,
zero or one EquationPart, and zero or one AIgorithmPart. If a RegularClassDefinition

4.3 Design and Implementation 81

refers to a package or record, it may only have an ElementList. If it is a function, it may
have a ElementList and an Algori thmPart. If it is a class, it may have an ElementList
and an EquationPart. A RegularClassDefinition can be empty, none of its components is
mandatory.

Figure 4.4: The Modelica Abstract Syntax Tree Structure

In Modelica, embedded class definitions are allowed, which means one class can be defined inside
another class definition. So the ElementList may have zero or many RegularClassDefini tions
and zero or many ComponentClauses. ComponentClause is also a general term. BasicaUy, it
means aU the Modelica declarations. It can be a variable declaration, a parameter declaration,
and so forth. The EquationPart and Algori thmPart are the constructs for model behaviour
description in Modelica. Equations are used to specify equality relations among state variables
for continuous models. Algorithms are used to describe programming language features of a
model.

For space reasons, we only present these components in a {tModelica AST. More information
can be found in [Xu05J.

The Python DEVS Code Generator

Once we have a model's AST, the task of code generation for the model is just to generate
code for each no de of the AST and put code for aU the nodes of the AST together foUowing the
grammar of the target language.

Figure 4.5 is the class diagram of the Python DEVS code generator. It is a visitor class to the
AST, so it has corresponding visiting methods to the nodes of the AST. Because we do not
support aU the Modelica language features, it only includes the visiting methods corresponding
to constructs related to DEVS Modelica representation.

Obviously, the responsibility of each visiting method is to generate code for the corresponding
AST node. On the bottom of Figure 4.5, there are some non-visiting methods. The reason of
the existence of non-visiting funcitons is related to the different positions of some constructs
in the source language and target language. Most of the Modelica language features can be

4.3 Design and Implementation 82

translated into corresponding Python DEVS constructs following the order they are visited by
the visitor. However, for sorne other Modelica features, like the import statement, input and
output parameters, the positions of their Python counterparts are significantly different. For
these language features, the code are generated by the methods beginning with the prefix
, 'make)). Because the visiting methods' meanings are obvious, let us introduce the methods
that begin with the ' 'make)) prefix.

+indentLevel: Integer

+indent: String

+output: String

+modelicapath: String

+currentClass: ~trin(f

PythonDEVSGenerator

+writeToFile(file:String): void

+visitAST{ast:AST1: void

+visi tClassFile (classFile :ClassFile): void

+visitRegularClassDefini tion (r: RegularClassDefini tion): void

+visi tComponentClause (cClause: ComponentClause): void

+visitOeclaration(decl :Declaration): void

+visi tClassModification (cm: ClassModification): void

+visi tElementModification (elro: ElementModification): void

+visitEqualsModification (eqm: EqualsModificationl: void

+visitlmportClause (importClause: ImportClause): void

+visitConnectRefExp(exp:ConnectRefExp): void

+visi tExtendsClause (extendsClause: ExtendsClause): void

+visi tRegularEqStm (eq: RegularEqStm): void

+visi tConnectEqStm (eq: ConnectEqStm): void

+visi tFunCallStm (eq: FunCallEqStm): void

+visitCondi tionalEqStm (eq: Condi tionalEqStm): void

+visitForEqStm(eq:ForEqStm): void

+visi tForlndicesExp (exp: ForlndicesExp): void

+VisitlndentlnExpExp (exp: IndentlnExpExp): void

+visitRangeExp(exp:RangeExp): void

+visitWhenEqStm (eq: WhenEqStm) : void

+visi tAtomicAlgStml (eq: AtomicAlgStml): void

+visitCompRefExp(exp:CompRefExp): void

+visi tSingleCompRefExp (,exp: SingleCompRefExp)! void

+visi tArrSubExp (exp: ArrSubExp): void

+visitLessGtExp(exp:LessGtExp): void

+visitLessExp(exp:LessExp): void

+visitEQEQExp(exp:EQEQExp): void

+visitGreaterExp (exp :GreaterExp): void

+visitFunCallExp (exp: FunCallExp): void

+visitSumExp (exp: SumExp) : void

+visi tldentExp (exp: IdentExp): void

+visi tSubtractExp (exp: SubtractExp): void

+visitRealExp(exp:RealExp): void

+visitlntegerExp(exp: IntegerExp): void

+visitFunArgsExp(exp:FunArgExp): void

+visitNamedArgExp(exp:NamedArgExp): void

+visitAnnotationExp(exp:AnnotationExp): void

+visitStringExp (exp: StringExp): void

+ •.•••• Il'
+makelmports (inentation: String, impList: List): String

+makeParameters (paraList: List): String

+makeFunctionlnputs (inList: List): String

+makeClasslnputs (indentation: String, inList: List 1: String

+makeClassOutputs {indentation: String. outList: List 1: String

+makeSeqStates (indentation: String, sList: List): String

Figure 4.5: The Class Diagram of Python DEVS Generator

4.3 Design and Implementation 83

makelmport In Modelica, there are two ways to map a package to the st orage of a com
puter file system, mapping a package to a directory and mapping a package to a file. If
a package is mapped to a directory, the package name becomes the directory name, and
classes inside the package are saved as individual files with extention name "mo" un der
the directory. If a package is mapped to a file, then the package name becomes the file
name, and all class definitions inside the package are saved in the same file. For example,
we have a package "modelica. msdl. devs" package. For the first method, it is mapped to
the' '$MODELICAPATH/modelica/msdl/devs/' , directory, under which each class definition in
the package is saved as an individual file, such as AtomicDEVS .mo, CoupledDEVS .mo and so forth.
For the second approach, the package is mapped to ' '$MODELICAPATH/modelica/msdl/devs .mo' '.
In our implementation, we only support the second way of package mapping. TheMODELICAPATH
is a environment variable for Modelica, which includes predifined paths for Modelica libraries.

When you want to use definitions in other packages, there are four ways in Modelica to import
resources in other packages [Fri04J. They are shown as below.

1. import <packagename>; / /qualified import
2. import <packagename>.<definitionname>; / /single definition import
3. import <packagename>.*; / /unqualified import

4. import <shortpackagename> = <packagename>; / /renaming import

The packagename here is the fully qualified name of the imported package including possible
dot notation. Due to time limitation, we do not support the full import semantics in the DEVS
Modelica compiler. Only the second and third options above are supported.

In Python, there are two forms of syntax for importing modules. One is similar to Mod
elica's qualified import, which imports the module name into the current namespace. The
syntax is ' 'import modulename". The other is in the form of "from modulename import
defini tionname or *". The first form of import can only import the module name into
the importing namespace. The second one can implement the semantics of Modelica's single
definition import and unqualified import. However, the restriction on the second form import
in Python is that this kind of import can only appear at the beginning of a source file before any
definition or declararation. Modelica's import statement has no such constraint. 80 the task of
the makelmports method of the PythonDEVSGenerator is to collect all the import statements
in a Modelica file, translate them into Python's second form of import statements and put them
at the beginning of the target Python DEVS file.

makeParameters In Modelica, parameter declarations for a class follow the same way as
class variable declarations. The only difference is that parameter declarations are modified
by the parameter keyword. While in Python, parameters for a Python class are declared as
the parameters of the class's constructer method __ ini t __ . 80 the makeParameters method's
responsibility is to translate parameters of a Modelica class to the parameters of the __ ini t __
method of a corresponding Python class. Below is an example of translating Modelica class A' s
parameters pi, p2 into parameters of corresponding Python class A's __ init __ method.

4.3 Design and Implementation

Modelica Class:

classA

parameter Integer pl;

parameter Real p2;

end A-

Python Class:

cJass A:

def _jniL(pl, p2):

84

makeFunctionlnputs In Modelica, functions are also classes. Input parameters of a Modelica
function are specified by modifying a variable declaration with the input keyword. While in
Python, declarations of fun ct ion parameters are different from declarations of a class's variables.
80 the task of the makeFunctionlnputs method is to translate the input parameters of a
Modelica function into parameters of a corresponding Python function. Below is an example.

Modelica function:

function foo

input Integer a;

input Integer b;

end foo;

Python function:

def foo(a, b):

makeClasslnputs and makeClassOutputs As we mentioned earlier, we use Modelica input
and output keywords with transformed meanings to declare input and output ports in the
atomic and coupled DEVS models. These port delcarations are translated into Python DEVS's
addlnputPort function and addOutputPort funciton respectively. This task is done by the
makeClasslnputs and makeClassOutputs method. As indicated by their names, makeClasslnputs
is responsible for translating input port declarations in Modelica into Python DEVS's addlnput
Port and makeClassOutputs is responsible for translating output port declarations.

4.4 Case Study 85

4.4 Case Study
We have discussed issues of representing DEVS models in Modelica and how to translate Model
ica representations into Python DEVS models. Now let us see a real example of Modelica DEVS
model representation.

Our example is to model an event generator that pro duces an output event after a random time
interval. The model is represented by two Modelica classes, GeneratorState and Generator.
As indicated by the names, the GeneratorState class represents the model state, and the
Generator class describes the model. The model has two sequential states, G_IDLE, and
G_GENERATING. This is represented by the enumeration type SeqStates in the Generator class.
Corresponding to the two sequential state, SeqStates has two enumeration values. Aiso the
Generator class has a variable state of type GeneratorState. The GenerateState class has
a seqState variable, which in fact is used at simulation time to reflect the behaviour of the
sequential state. Below is the Modelica representation of the Generator model.

class GeneratorState

extends DEVSState;

Generator. SeqStates seqState(start=Generator. SeqStates. GJ DL E);

end GeneratorState;

class Generator

extends AtomicDEVS;

parameter Integer ia=O;

parameter Integer ib=O;

parameter Integer szl=O;

parameter Integer szh=O;

output DEVSPort g_out;

GeneratorState stateO;

type SeqStates = enumeration(GJDLE, G_GENERATING);

function intTransition

algorithm

if (state.seqState == SeqStates.GJDLE) then
state.seqState := SeqStates.G_GENERATING;

elseif (state.seqState == SeqStates.G_GENERATING) then
state.seqState := SeqStates.GJDLE;

end if;

end intTransition;

function outputFnc

DEVSEvent evt = nul!;

4.4 Case Study

continue ...

algorithm

if (state.seqState == SeqStates.G_GENERATING) then
evt := Job(szl. szh);
poke(g_out. evt);

end if;

end outputFnc;

function timeAdvance

output Integer timespan;

algorithm

if (state.seqState == SeqStates.GJDLE) then
timespan:=randint(ia. ib);

elseif (state.seqState == SeqStates.G_GENERATING) then
timespan := 0;

end if;

end timeAdvance;

end Generator;

86

The DEVS Modelica compiler takes the two Modelica classes above and generates the Python
DEVS representation below. Corresponding to the model and model state classes in Modelica,
two Python classes with the same name GeneratorState and Generator are generated. Be
sides the elements described in Modelica models, two extra functions __ stL_ and toXML are
generated for the Python DEVS classes. These are two utility functions for generating model
state information when the model is simulated.

class GeneratorState:

def _jniL(self):

self.seqState = Generator.GJDLE

def __ str __ (self):

strRep = "

strRep = strRep + "\nseqState: " + str(self.seqState)
return strRep

def toXML(self):

strRep = "

strRep = strRep + "\n<attribute category=\ "P\" >"

strRep = strRep + "\n\t<name>seqState</name>"

strRep = strRep + "\n\t<type>Generator.SeqStates</type>"

strRep = strRep + "\n\t<value>" +str(self.seqState)+ "</value>"

strRep = strRep + "\n</attribute>"

return strRep

4.4 Case Study

class Generator(AtomicDEVS):

GJDLE = 'GJDLE'

G_GENERATING = 'G_GENERATING'

def _jniL_(self, ia, ib, szl, szh, name):

AtomicDEVS._jniL(self, name)

self.ia = ia

self.ib = ib

self.szl = szl

self.szh = szh

self.name = name

self.g_out = self.addOutPort("g_out")

self.state = GeneratorStateO

def intTransition(self):

if (self.state.seqState == Generator.GJDLE):
self.state.seqState = Generator.G_GENERATING

elif (self.state.seqState == Generator.G_GENERATING):
self.state.seqState = Generator.GJDLE

return self.state

def outputFnc(self):

evt = None

if (self.state.seqState == Generator.G_GENERATING):
evt = Job(self.szl, self.szh)
self.poke(self.g_out, evt)

def timeAdvance(self):

if (self.state.seqState == Generator.GJDLE):
timespan = randint(self.ia, self.ib)

elif (self.state.seqState == Generator.G_GENERATING):
timespan = 0

return timespan

def __ str __ (self):

strRep = ""

strRep = strRep + "\nstate: " + str(self.state)

return strRep

def toXML(self):

strRep = "

strRep = strRep + "\n<attribute category=\ "C\" >"

strRep = strRep + "\n\t<name>state</name>"

strRep = strRep + "\n\t<type>GeneratorState</type>"

if (self.state!=None):
strRep = strRep + "\n\t<value> "+self.state.toXMLO+" </value>"

else:
strRep = strRep + "\n\t<value>None</value>"

strRep = strRep + "\n</attribute>"

return strRep

87

4.5 Conclusions 88

4.5 Conclusions

In this chapter, we first briefly introduced the object-oriented modelling language Modelica.
Then we discussed issues of representing DEVS models in Modelica. Then we introduced the
Modelica model compiler, which compiles the Modelica DEVS representation into Python DEVS.
Subsequently, we presented a case study to see how we represent a real DEVS model in Modelica,
and introduced the generated Python DEVS representation from the Modelica model represen
tation.

From this chapter, we can draw the following conclusions. First, the way of representing DEVS
models in Modelica, and then tanslating the Modelica model representation into simulator
specific model representation is feasible. Second, Modelica is a suit able choice for high-Ievel
model description, and it has enough features for describing DEVS models. Third, the model
compiler plays a important role in the model transformation process. It can not only check
the correctness of model syntax, but also generate utility functions (such as trace output) to
relieve the burden of modellers.

Visual DEVS Modelling Environment

5.1 Introduction

Research and application of visu al modelling technology in the software engineering industry
has made great progress in recent years. Compared to hand written textual model specification,
visual models are more intuitive and easier understood. Visual model representations can be
used not only as model specifications but also as effective tools for communication and collab
oration. Furthermore, visual models can effectively reflect the interactions and the structural
relations among different models. It makes model analysis and design more effecient.

One of the key issues of visual modelling is how to specify the visu al modelling rules, which
means how to specify constraints, space arrangements, and connections on visu al constructs.
In textual languages, grammars are used to describe language syntax. For visual languanges,
meta-models play a similar role as grammars in textuallanguages. The idea is to build a meta
model for a modelling formalism, in which the formalism's visu al syntax is specified. When
one create models using that formalism, one must follow the rules specified by the meta-model
of the formalism.

For DEVS, sorne research has been done on DEVS visual modelling. [PP93] proposes ideas
on visual modelling DEVS behaviour using higraphs. [PBV03] demonstrates the possibility of
visual modelling DEVS in AToM3, and implements a code generator that can generate Python
DEVS code from visual DEVS models. [Dub06] uses meta-modelling and State-charts to build
visual modelling environments for DEVS, in which both the DEVS formalism and the visual
modelling environment are modelled. The DEVS formalism is modelled by Entity Relation (ER)
diagrams and the modelling environment is modelled by State-charts.

AToM3 is a multi-formalism modelling and meta-modelling environment. In AToM3, formalisms
are modelled by a common meta-meta-model, ER diagram. Based on the common meta-meta
model, models specified by one formalism can be easily transformed into models represented
in another formalism. The meta-modelling technology used in AToM3 can specify both the
visu al grammar for a formalism and visual appearance of components of the formalism. After
building a meta-model for a formalism, the AToM3 meta-model compiler takes the meta-model
as input, and generates a visual modelling environment for that formalism. The operations
that can be executed in the environment are specified by State-charts.

In this chapter, we look into an enhanced version of the visual modelling enviroment of [PBV03].
The enhancements have been done mainly in the following ways. First, at the meta-modellevel,
the new version presents the model instance concept, which means that, for a coupled DEVS
model, its sub-models are instances of defined DEVS models. This enhancement makes DEVS
visual models more compact and easy to understand. Second, new components, event and

5.1 Introduction 90

model state, have been modeled in the DEVS meta-mode!. And finally, the Modelica DEVS
code is generated from the visual models rather than code for Python DEVS.

The organization of this chapter is as following. In section 1, we discuss modelling and meta
modelling in AToM3. In section 2, we present the architecture of the visual modelling environ
ment. In section 3, we discuss meta-modelling DEVS in AToM3. In section 4, we look into the
code generator that translates visual models into Modelica model representations. In section
5, a case study demonstrates how to use the visual modelling environment. Finally, in section
6, we draw conclusions for this chapter.

5.2 Modelling and Meta-Modelling in AToM3 91

5.2 Modelling and Meta-Modelling in AToM3

We have discussed modelling and meta-modelling technologies in chapter 2. A meta-model is
a model for a modelling formalism. There are two common purposes for using meta-modelling
technology. First, a meta-model specifies the syntax of a modelling language. So the meta
model can be used to generate the components of the modelling language and check whether a
generated model is a syntatically valid model for the modelling language that is defined by the
meta-model. This feature of meta-modelling is usually used to build visual modelling environ
ments. By building a visual meta-model for an modelling language, the modelling environment
system can dynamically check whether the visual syntax is correct while one is drawing a vi
suaI model. Second, meta-modelling can facilitate the pro cess of model transformation. Model
transformation means transforming models specified in one formalism to corresponding mod
els, posibly described in another formalism. A complex dynamic system may contain diverse
components. At the modelling level, each component may be modelled in a different formal
ism. However, at the simulation level, in order to study and analyze the system as a whole, it
may be required to transform the diverse models specified in different formalisms into models
described in one formalism that is suit able for simulation. When it cornes to model transfor
mation, a key issue is how to find an appropriate construct in the target formalism to represent
a component in the source formalism. A effective way to solve this problem is to meta-model
all the formalisms involved using another formalism. Since all the formalisms involved in the
transformation are meta-modelled by the same formalism, and components of all the formalism
can be generated from the same meta-modelling language, finding matched components in a
target formalism to represent constructs in source formalisms will be not a problem.

These two advantages of meta-modelling inspire us to use meta-modelling technology to build a
visual modelling environment for DEVS. The benefits of using meta-modelling in building such
an DEVS modelling environment are obvious. Firstly, meta-modelling provides the capability of
model checking at visual modelling level. Because the visual DEVS modelling environement is
not a free-drawing, we need to add sorne rules and constraints to enforce the visual DEVS syntax.
This can be perfectly done by meta-modelling DEVS. Secondly, DEVS has been envisioned as
a generic formalism suitable for both modelling and simulation. Many modelling formalisms
that are not suit able for simulation can be tansformed to DEVS and then be simulated. Meta
modelling for DEVS can make the transformation easier.

In this chapter we will discuss building a visual modelling environment for DEVS formalism
using the meta-modelling technology in AToM3. Before we build a meta-model for DEVS, let
us first look at how meta-modelling is done in AToM3.

AToM3 (A Tool for Multi-formalism Meta-Modelling) is a interactive tool for building meta
models. AT oM3 provides not only the facilities for specifying the grammar of a modelling
language, but also the utilities for defining the appearance for constructs of the modelling
language. At the meta-meta-modelling level, the modelling language used in AToM3 is the
ER (Entity Relationship) formalism with extended constraints. The core part of AToM3 is a
meta-model processor. When an instance of AToM3 starts, the meta-model pro cess or loads
its own ER model to bootstrap the system. After it is ready, it provides a visual modelling
(or meta-modelling) environment, in which one can build and manipulate ER meta-models for
other formalisms. Also one can load meta-models for other formalisms to do multi-formalism
modelling and meta-modelling.

When modelling using the ER formalism at the meta-meta-Ievel, the modelled object and its
features are specified by entities with attributes. AToM3 can specify two kinds of attributes,

5.2 Modelling and Meta-Modelling in AToM3 92

regular and generative [VdL05]. Regular attributes are used to specify the characteristics of
the components at meta-model level modelled by the current meta-meta-Ievel ER formalism.
Generative attributes are used to specify the properties of constructs at model level that are
modelled by the currently defined meta-model. If the model level model is used further to
describe other models, it will have its own generative attributes. Besides specifying meta-model
attributes, it is also possible to specify the graphical appearance at the meta-meta-Ievel for each
entity of the lower meta-Ievel. This graphical appearance is in fact a special kind of generative
attribute, which specifies how instances of meta-Ievel components and their attributes will be
visually displayed. This feature provides AToM3 the capability of supporting visual model
manipulation at the lower meta-Ievel.

In order to fully specify a modelling formalism, the meta-meta-Ievel language must have the
capability of specifying not only the structural and graphical notations, but also the constraints
and operations. In AToM3, the ER formalism has been extended to work with the Object
Constraint Language (OCL) and Python functions. ER is mainly used to express structural and
graphical notations. Constraints and actions are described by OCL or Python functions.

Two major steps one needs to go through for building a new modelling environment for a specifie
formalism in AToM3. First, build a ER meta-model for the formalism, in which you specify the
structure, visu al apperance, and constraints for the components of the formalism. Second, load
the State-charts formalism and build a State-chart specifying the behaviour for visual manipu
lation of entities in the formalism. After these two steps, the AToM3 meta-modelling processor
generates a visual modelling environment. In the newly generated modelling environment, one
can build models using the specifie formalism graphically.

5.3 Design and Implementation 93

5.3 Design and Implementation

5.3.1 Architecture

The architecture of the DEVS visual modelling environment is given in Figure 5.1. First, we
build a DEVS meta-model, in which DEVS components are specified. Then a GUI behaviour
model is defined, in which the operations that can be executed on visual DEVS model com
ponents are specified. After that, the AToM 3 meta-model processor generates a visual DEVS
modelling envionment.

Visual DEVS Models

Represented in Modelica

GUI
Behaviour Model

Figure 5.1: Architecture of DEVS Visual Modelling Environment

In the generated visual modelling environment, DEVS models can be drawn graphically. At
this time, the visual models are represented as ASG (Abstract Syntax Graph) objects in Python.
In the graph, each component is represented as a graph node. The code generator's task is to
travel the ASG graph, and translate this model representation into a Modelica representation
mentioned in chapter 4.

5.3.2 Meta-Modelling DEVS in AToM 3

Figure 5.2 is the meta-model for DEVS. Meta-models in AToM 3 are represented as ER diagrams.
In this figure, the "V2" following entity and relation names means version 2 of the DEVS meta
model. The ER model in Figure 5.2 can be understood as follows. We begin from atomic
models.

5.3 Design and Implementation

_~~':;St~"n~gm~·i!~hKI'. ~A~~n"~'aOmeuijle"':~St~rin~gi!~~· '~.ÎÎf; .. ~Y.,.~1r- A~::nect
_ isVisible :: Boolean - isVisible :; Boolean < disconnect

bosStat.

ActIOn ..
:> connecl
:> disconnect

_ classVariables :: List - classVariables :: List

_ parameters :: List - paramelers :: List

_ attributes :: List - attributes :: List

- inil:: Texl

- extTransition:: Texl

- inil:: Texl

- isMainModel :: Boolean
Attribut ...

- name :: String

AHribut ...
- intTransitlon ;; Texl - type :: String

- name :: String

- attributes :: List

J

- outputFunc :: Texl

- timeAdvance:: Text

fctlon ..

- parameters:: Texl V -isVisible: Boolean

:> connec!

< disconnect
Actions,

:> connec!

Attribut ... < disconnect

- condition : Tex1

L-0ac_tion,_,rex_t ~'-.....rç--Jil_~~~
JoO.ltriOU es:

- name:: Stnng

Attribut ...
- condition : T ext

- action :: Texl

• name :: String

- • initiai :: Boolean
- timeAdvance :: TexI

- output :: T ext

~ • ~xtAction:: Texl
• ,ntAClion :: Texl

• classVariables: List

- parameters :: List

- attributes :: List

- inil:: Text

- sir:: Text
- otherFunc :: Text

Figure 5.2: DEVS Meta-Model

Actions,

> connect

< disconnect

< checkValidity

94

Atomic DEVS Madel For atomic DEVS we model the following properties. Each atomic
model has a name of string type. This name is not the fully qualified name mentioned above.
It is just a nomal string name, which will be used to instantiate the atomic mode!. An atomic
DEVS may have a list of class variables. Here the class variable has the same meaning as
that in common object-oriented langages. The class level variables can be accessed using class
(model) names without instantiation of the class (or model). Parameters models the values
needed to initialize a model instance. Attributes represents the state variables of an atomic
mode!. Besides properties inside the entity rectangle, there are two other properties described
by the relation arrow, stateDevsV2 and portDevsV2. stateDevsV2 represents the sequential
states of an atomic model, and portDevsV2 describes the input and output ports of an atomic
DEVS mode!. Each atomic DEVS has one or more sequential states and one or more ports.

Sequential State As one of the most important concepts in DEVS, the Sequential State
(stateDevsV2 in Figure 5.2) has been modelled as follows. Each sequential state has a name,
which is used to identify it. The name of the sequential state is unique inside an atomic DEVS
mode!. A sequential state has a output property, which specifies what will be sent out and
which port the output should be sent to. The timeAdvance attribute describes how long a
model can stay in this sequential state. The extAction and intAction properties specify the
common actions that needs to be taken before the model transit from this sequential state to
another sequential state. There are two ways to transit a sequential state to another sequen
tial state, via internaI transition or external transition. InternaI transitions are triggered by
internaI events, and external transitions are triggered by external events. The model behaviour
of transition from one sequential state to another is modelled by the relation between two se
quential states, internalTransitionV2 and externalTransitionV2. Both of these relations

5.3 Design and Implementation 95

have two properties, condition and action. Condition specifies in which circumstances the
internaI or external transition occurs, and action specifies the operations that need to be done
before the transition.

Port Each DEVS model may have one or more ports, by which the model can receive external
events and send out its output events. Ports are modelled by entity portDevsV2 in Figure 5.2.
A port has a name and a type. The name is a string used to identify the port. And the type
indicates that the port is an input or output port.

Event Entity devsEventV2 models the input and output events in DEVS models. An event
has a name and a list of attributes. The name is used to identify the type of event in
stances. Attributes specify the properties of an event. Each attribute is a <name, type,
value> triple. In order to make it possible to provide instantiation information at visual model
level, an event is modelled with two extra properties, classVariables and parameters, where
the classVariables represents an event's type-Ievel properties, and the parameters means
parameters needed to initialize an event instance.

Coupled DEVS Model As we mentioned in chapter 1, a coupled DEVS model is composed of
a set of sub-models, and sub-models can be either coupled models or atomic models. A coupled
DEVS model is specified by coupledDevsV2 in Figure 5.2. Like atomic models, each coupled
model has a name, a list of parameters, classvariables, and attributes, which have the
same meanings as those in atomicDevsV2. The fact that each coupled model may have one
or more sub-models is specified by the containModel V2 relationship. This relationship st arts
from a coupledDevsV2 entity and ends at insDevsV2. The constraints (which are not shown
on the figure.) on this relationship specify that each coupledDevsV2 entity contains one or
more insDevsV2 entities. The insDevsV2 entities here actually represent sub-models. Why we
use instances rather than sub-models themselves will be discussed later. Besides sub-models, a
coupled DEVS model may or may not contain ports. This is specified by the containsPortV2
relationship.

Model Instance For large modelling and simulation projects, model reuse plays a important
roles at both design and implementation level. Because model reuse can not only save money
and time, by using existing tested standard models, it can also improve a system's scalability
and compatibility. In the visual DEVS modelling environment, we use the model instance
concept to support model reuse.

In DEVS specification, each coupled model can have both cou pIed or atomic sub-models. There
are two basic possiblities of reusing sub-models. First, the sub-models have been defined, tested
and used in other projects. Second, the sub-models are not defined, but you will use the sub
models many times in your current projects. For the first situation, reproducing existing models
is certainly not a effecient way of working. For the second situation, redrawing or redefining
the same model many times is also not a good way of working. So we use the model instance
concept in the DEVS meta-model to facilitate the model reuse process in DEVS visual modelling.

The model instance concept is represented by the insDevsV2 entity in Figure 5.2. Each
insDevsV2 entity has three attributes, name, type, and parameters. Name is used to iden
tif y a model instance; type specifies which model the instance is of; and parameters defines
parameters that are needed to initialize this instance. With the support of the model instance,
model reuse becomes very easy in DEVS visual modelling. For both situations mentioned above,
a model only needs to be defined once. When one uses it for coupling, one only needs to spec-

5.3 Design and Implementation 96

if y a model instance and couple it with other model instances or the current cou pied model
that you are building. Because model coupling is done through port connections, insDevsV2
also has ports, and the ports have the same defintions as they have in the atomicDevsV2' s
model definition. The fact that a visual model instance may also have ports is specified by the
relationship containPortV2 between the insDevsV2 entity and portDevsV2 entity.

This practice of using model instances for DEVS model coupling can bring two main benefits.
First, it facilitates model reuse and hence saves time and money for model building. Second,
because the definition and application of a model are separated, the hierarchical structure of
visual DEVS models becomes very clear and easily understood.

Figure 5.3: State Chart for DEVS Visual Modelling GUI Interface

5.3 Design and Implementation 97

5.3.3 User Interface Model - State-chart

The design principle of AToM3 is "Modelled everything". In AToM3, not only are all the
formalisms and the system kernel modelled, the behaviour of the graphical user interface of
AToM3 is also modelled. The behaviour model is specified in the State-chart formalism. The
idea is that there is a common model in State Chart that specifies all the common visual
constructs manipulation behaviour in AToM3. When you build a modelling environment for
a new formalism, if the visual modelling behaviour is covered by the common State Chart in
AToM3, then everything is fine. If there are sorne new operations in the newly created visual
modelling environment that are not covered by the corn mon State-chart, one needs to build a
State-chart to specify the new behaviour. The formalism-specific State-chart can communicate
with the common State-chart, and they work together to specify the graphical manipulation
behaviour of the newly created modelling environment.

Figure 5.3 is the State-chart for DEVS visual modelling environment. This State-chart is orig
inally created by Denis Dube. It is modified for supporting the enhanced functionalities.

5.4 Code Generator: from Visual Model to Modelica 98

5.4 Code Generator: from Visual Model to Modelica

We have discussed how to represent DEVS models in Modelica in chapter 4. In this chap
ter, we look into how to translate the visu al DEVS models mentioned above into Modelica
representation.

5.4.1 Mapping Visual Model Components to Modelica Representation

In chapter 4, we have discussed the Modelica DEVS constructs. We have defined Modelcia
prototypes for atomic DEVS models, cou pied DEVS models, DEVS states, DEVS events, and
DEVS ports. 80 it is very easy to find corresponding Modelica representations for the entities
atomicDevsV2, coupledDevsV2, DevsState, eventDevsV2, and portDevsV2 defined in Figure
5.2. There are two other entities insDevsV2 and stateDevsV2 in Figure 5.2. For a coupled
DEVS model, insDevsV2 just means the instance of an existing model. This means that
when we do model coupling, it is the model instances, not the model types that are coupled
together. 80 the insDevsV2 entities are translated into model instantiations. For an atomic
DEVS Modelica representation, the sequential states are described as elements of an enumeration
type. In the visual meta-model, each atomic DEVS may have one or more sequential states. 80
the name of each stateDevsV2 instance can be translated into an element of the SeqStates
enumeration. The behaviour of a model is refiected on the other properties of the stateDevsV2
entities.

5.4.2 Atomic DEVS Code Generator

In Chapter 4, we have defined a prototype for atomic DEVS models. BasicaUy, the Modelica
representation of an atomic DEVS model looks like this.

class ModelName

extends AtomicDEVS;

parameter pl, p2, ;

ModelState state;

type SeqStates=enumeration(sql, sq2, ...);

input inPortl, inPort2, ;

output oPortl, oPort2, ;

function externalTransition

end externalTransition;

function internalTransition

end internalTransition;

function timeAdvance

end timeAdvance;

function outputFunction

end outputFunction;

end ModelName

80 the task of generating Modelica representation from the visu al model is to get the corresond
ing parts of the prototype from the visual DEVS model. From Figure 5.2, we can get Figure
5.4, which includes aU the components that are related to an atomic DEVS model.

5.4 Code Generator: from Visual Madel ta Modelica

hasState

IActlons:

:> connect

> disconnect

Attributes:

- name :: String

- attributes :: List

nternalTnmsllion ~

iAttributes:

- condition:: Texl

- action :: Tex!

Attributes:

• name :: String

- isVisibie :: 8oo1ean

t-- -classVariables :: List

- parameters :: List

- attributes :: Ust

• fnit:: Texl

- extTransllion:: Text

- inlTransition :: Texl

• outputFunc:: Text

- timeAdvance :: Text

c:ontalnsStateV2

ctions:

> connec!

< disconnect

A.unou es:

- name :: String

~ - initial :: Boolean

- timeAdvance :: T ext

- output:: Texl
'--______ -'-; - extAclion :: Text

- intAction :: Texl

contalnsPortVl

!Actions:

t-- :> connec!

> dlsconnecl

Attnbules:

- name :: String

- portType :: Enum

extemalTransitionV-.!

f-- Attribules:

I..L. -condition :: Texl

i' - -action :: Text

Figure 5.4: Meta-Model for Atomic DEVS Model

99

Based on Figure 5.4 and the prototype of Modelica representation for an atomic DEVS, let us see
how we can get the Modelica componets from the properties of the atomic DEVS meta-mode!.

Madel Name From Figure 5.4 we can see that in the atomicDevsV2 entity, there is a name
attribute, which specifies that each atomic DEVS model built from this meta-model has an
attribute name. This name is the name of the newly created model's name. Given a newly
created visual atomic model atmDEVS, a model's name is translated into Modelica representation
as below.

class atmDEVS.name

end atmDEVS.name;

For example, if the value of the atmDEVS' s name attribute is "Processor", the code like below
will be generated.

class Processor

end Processor;

Parameters There is a parameters attribute in the atomicDevsV2 entity. The parameters
is a list of AToM 3 Attribute type. AToM3 Attribute is a generative type, which is usu
ally used to define the properties of models that are created from a meta-mode!. Here we
use the Attribute to describe the initialization parameters for a mode!. An instance of the
AToM3 Attribute type has three member variables, name, type, and initial value. So the

5.4 Code Generator: from Visual Model to Modelica 100

parameters of the atmDEVS' s Modelica representation can be generated using the following
template. For each parameter param in atmDEVS' s parameters we can get a Modelica state
ment such as, "parameter param. type param. name = param. ini tValue;". For example, if a
visual model has an parameter num with type of Integer and initial value 1. It is translate to
"parameter Integer num = 1;" in Modelica.

Model State In DEVS Modelica representation, we define a prototype class DevsState. Each
atomic DEVS's Modelica representation has astate attribute, which is of type DevsState.
The DevsState entity in Figure 5.4 means the same thing as the predefined DesvState class
in DEVS Modelica. We separate the model state variables from an atomic DEVS model and
represent them in a specifie entity. This separation makes it very clear to see in the visual
model which part reflects a model's state and which part reflects a model's behaviour. A DEVS
model state is very simple. It has a name and a list of attributes. The name is sim ply a string
that identifies the state. The attribute is of type generative AToM3 Attribute type, which is
further composed of type, name, and initial value. In Modelica representation, the model
state is represented by a Modelica class that extends from the predefined DevsState class. The
name of the DevsState entity is translated into the Modelica class name, and the attributes
are translated into class properties. Besides the explicitly specified model state attributes, in
DEVS Modelica, each model state has an attribute seqState of type SeqStates that represents
the current sequential state of the model. This attribute has an initial value that represents
the model's initial sequential state. In visual DEVS models, an atomic model may or may not
have a explicitly defined state. If an atomic model has no explicitly defined model state, a
Modelica class with the name of the model's name concatenated with "State" is generated.
The generated class has only one attribute seqState with the type of the model's SeqStates.
So the Modelica representation for a model state will look like below.

class state.name

extends DevsState;

state.attributes;

end state.name;

Sequential States In DEVS Modelica, sequential states of an atomic DEVS model are repre
sented by the Modelica enumeration type. In the meta-model shown in Figure 5.4, the visual
DEVS sequential states are described as stateDevsV2 entity. The Modelica enumeration type
is composed of a set of strings. Each stateDevsV2 entity has an attribute name. So the Model
ica representation of a model's sequential state are generated from names of the stateDevsV2
entities in a visual DEVS model. For example, if a visual DEVS model has two stateDevsV2
entities, Sa, and Sb, then the Modelica representation of the model's sequential states will be
"type SeqStates = enumeration(Sa.name, Sb.name);".

Input and Output Ports As shown in Figure 5.4, visual DEVS ports are specified by the
portDevsV2 entity. Each port has two attributes, name and type. Name is used to identify a
port, and type specifies whether a port is an input or output one. In DEVS Modelica, input
and output keywords are used to specify the type category of a port. And the predefined class
DevsPort is used to indicate a variable as a DEVS port. So, for a given visual DEVS port p, the
Modelica representation for p is "p. type DevsPort p. name 0 ;". For example, if p is a input
port with name "in", then its Modelica representation is "input DevsPort in 0 ;". Similarly,
if p is an output port named "out", then the Modelica representation is "output DevsPort

5.4 Code Generator: from Visual Model to Modelica 101

out 0 ;".

Internai Transition InternaI transition represents the process of an atomic DEVS model chang
ing its sequential state from one state to another, when the time interval specified for the
former state expires. In DEVS Modelica, an internaI transition of a model is described by an
if else statement in the model's internaI transition function. As shown in Figure 5.4, in
visual DEVS models, internaI transitions are represented by internalTransitionV2, which
actuaIly represents the relationship between two visual sequential states. Each relationship
internalTransitionV2 has two attributes, condition and action. Condition specifies the
condition under which the internaI transition occurs, and the action describes the opera
tions that will be done on the model state if that transition happpens. So the condition
of a visual internai transition can be translated into Modelica's if statement's condition
expression, and the action is the if' s body. Because of the nature of exclusiveness of inter
naI state transitions, only the internaI transition for one sequential state can be translated to
Modelica's if statement, and others must be translated into elseif statements. Besides the
internalTransitionV2 itself, the intAction attribute of the stateDevsV2 entity is related to
the internaI transition beginning from the sequential state specified by that stateDevsV2 en
tity. The intAct ion of a sequential state specifies the common operations that need to be done
on the model state for aIl internaI transitions begins from this sequential state. For example,
if an atomic DEVS model has three internaI transitions in its visual mode!. The first internaI
transition has an start sequential state Sa and an end state Sb, the second one st arts at Sb and
ends at Sc with condition cl and action al, and the third one st arts at Sb and ends at Sa with
condition c2 and action a2. The Modelica representation for these internaI transitions will be
generated like this.

if (state.seqState == Sa) then

Sa. i ntAction;

state.seqState :=Sb;

elseif (state.seqState == Sb) th en

Sb.intAction;

if (cl) then

al;

state.seqState := Sc;

end if;

if (c2) then

a2;

state.seqState := Sa;

end if

end if;

External Transition Similar to internaI transitions, external transitions are used to specify
the behaviour of a DEVS model changing its sequential states when an external event occurs.
In DEVS Modelica, external transitions have the same statement structure as that of internaI
transitions. In visu al DEVS model, external transitions also have a similar visual structure
as that of the visual internai transitions. The only difference is that the common operations

5.4 Code Generator: from Visu al Model to Modelica 102

for external transitions of a sequential state is specified by the extAction attribute of the
sequential state. The condition and action attributes of an external transition have the
same meanings as those for an internaI transiton. So if we treat the example for the internaI
transition above as external transitions. Then we can a similar Modelica representation as
below. The major difference is that this piece of code is part of the model's external transition
function.

if (state.seqState == Sa) then

Sa.extAction;

state.seqState : =Sb;

elseif (state.seqState == Sb) th en

Sb.extAction;

if (cl) then

al;

state.seqState := Sc;

end if;

if (c2) then

a2;

state.seqState := Sa;

end if

end if;

Time Advance Function In DEVS, the time advance function is used to specify how long a
model can stay in a specifie sequential state. In DEVS Modelica, the time advance behaviour
for each sequential state is described by an if Modelcia statement. In visual DEVS models, the
time advance behaviour of a sequential state is specified by the timeAdvance attribute of the
stateDevsV2 entity. So, for a visual DEVS sequential state Sa, the Modelica representation of
its time advance behaviour can be generated as below.

if (state.seqState == Sa) then

Sa. ti meAdva nce

end if;

Because the time advance function is used by DEVS simulators to determine the time units for
staying at different sequential states, it has to return a number to indicate the time interval
the model will stay for eaeh sequential state of a mode!. In chapter 4, we have given a out
put parameter timespan for this special purpose. So the timeAdvance attribute of a visual
sequential state can have a block of Modelica code, but the final result must be assigned to the
timespan parameter.

Output Function The output function for an atomic DEVS model is used to specify the
behaviour of generating an output event for the mode!. Similar to a model's time advanee
funetion, at different sequential states, a DEVS model may produce different output events. In
the Modelica representation, the output behaviour of a model is described by an if statement.
And in the visual model, the output is represented by the output attribute of the stateDevsV2

5.4 Code Generator: from Visual Madel ta Modelica 103

entity. So the Modelica representation of the output behaviour for a sequential state Sa can be
generated like this.

if (state.seqState == Sa) then

Sa.output

end if;

5.4.3 CoupiedDEVS Code Generator

Coupled DEVS models make hierarchical DEVS modelling possible. Figure 5.5 is the part
of DEVS meta-model for describing coupled DEVS. A coupled DEVS model consists of ports,
instances of other models, which can be both coupled and atomic DEVS model instances.
The ports of components of a cou pIed model and the ports of the cou pIed model itself can be
connected via channels.

We have discussed in chapter 4 that, in DEVS Modelica, coupled DEVS models are rep
resented by a Modelica class that extends from predefined class CoupledDEVS. The name,
classvariables, parameters, attributes, and ports can be translated into Modelica rep
resentation following the same way as that of in atomic models. Model instances can be
represented as Modelica class instantiations. For example, instance la has name "ia", type
"ModelA", and parameters "a=2, b=3". Then the Modelica representation for la is "ModelA
ia(a=2, b=3);". Channels are described by the Modelica function connect. For example, if
there is a channel between instance la' s output port "out" and instance lb' s input port "in",
then the Modelica representation for this channel is "connect (la. out, lb. in) ;"

ttnoutes:

- name :: String

- isVisible :: Boolean

- classVariables:: List

- paramelers :: List

- attributes :: List

oontainModelVl

IActions:

~ : ~~;:,tect
Attributes:

- name :: String

b -type :: String

r-' -parameters :: Text

- isVisible :: Boolean

-init::Text ~
- iSMainMod~1 ::_Boo_,e_an ___ ,_ro_n_ta_''''_Po_rt_vz_-,

""'-- jActions:
> connec!
.,. dlsconneet

Attributes:

- name:: String

- portType :: Enum

channelVl

~Actions:
.,. connec!
< disconnect

__ < checkValidity

Figure 5.5: Meta-Model for Coupled DEVS Model

5.4.4 Event Generator

Figure 5.6 is the meta-model for DEVS events. In DEVS Modelica, events are represented
by Modelica classes that extend from predefined Modelica class DevsEvent. So the Modelica
representation for a visual DEVS event's attributes can be generated as the same way that

5.4 Code Generator: from Visual Madel ta Modelica 104

for attributes of an atomic DEVS. The only difference is that the Modelica representation for
events extending from DevsEvent class while the atomic model representation extends from
AtomicDEVS.

AunoulO",

- name :: String
- classVariables: List

- parameters :: List

- attribules :; List

- init:: Text
. sir:; Tex!

- otherFunc :; Text

Figure 5.6: Meta-Model for DEVS Event

5.5 Case Study 105

5.5 Case Study

We have discussed meta-modelling DEVS and Modelica code generation. Now let us see a
case study. Figure 5.7 is the visual model of an atomic DEVS model named Generator.
The Generator has two sequential states, G_IDLE and G_GENERATING. At the beginning, the
model is in G_IDLE state. After a rand am time interval specified by timeAdvance attribute
"timespan:=randint(ia, ib)", the sequential state is changed ta G_GENERATING. At the
G_GENERATING state, the model produces a output specified by the G_GENERATING state's output
attribute, then the model sequential state changes back ta G_IDLE. The model will continue
this kind of transitions until the simulation experiment ends.

TimeAdvance: _GENERATING
timespan:=ran la, lb);

Oulput:
TlmeAdvance:

timespan := 0;

Outputevt := Job(szl, szh);

poke(g_out, eyt);

Figure 5.7: An Example of Visual Atomic DEVS Madel - Generator

Below is the generated Modelica representation for the Generator model in Figure 5.7. The
Modelica representation includes two classes, GeneratorState and Generator class. Note
that, for this model, no corresponding DevsState entity appears. SA the generated model state
GeneratorState has only one property seqState, which is a variable of type Generator. SeqStates.
The mIe is that for each visual atomic DEVS model, if the model state is specified explicitly, a
Modelica class with a name specified by the model state will be generated, and the seqState will
be added as its property. If there is no explictly defined model state for a visu al atomic model,
a class named by the model's name concatenated with "State" is generated. And the generated
class has only one attribute seqState with the type of the atomic model's SeqStates.

class GeneratorState

Generator.SeqStates seqState(start=Generator. SeqStates.1 DLE);

end GeneratorState;

5.5 Case Study

class Generator

extends AtomicDEVS;

parameter Integer ia=O;

parameter Integer ib=O;

parameter Integer szl=O;

parameter Integer szh=O;

output DevsPort gout;

GeneratorState stateO;

type SeqStates = enumeration(IDLE, GENERATING);

function intTransition

algorithm

if (state.seqState == SeqStates.GJDLE) then
state.seqState := SeqStates.G_GENERATING;

elseif (state.seqState == SeqStates.G_GENERATING) then
state.seqState := SeqStates.GJDLE;

end if;

end intTransition;

function outputFnc

DevsEvent evt = nuli;

algorithm

if (state.seqState == SeqStates.G_GENERATING) th en
evt := Job(szl, szh);
poke(g_out, evt);

end if;

end outputFnc;

function timeAdvance

output Integer timespan;

algorithm

if (state.seqState == Generator.SeqStates.IDLE) then
timespan:=randint(ia, ib)

end if;

if (state.seqState == Generator.SeqStates.GENERATING) then
timespan:=O

end if;

end timeAdvance;

end Generator;

106

For space reasons, we do not present examples for coupled DEVS models here. For an example
of visual modelling of coupled DEVS models, please see the case study in the next chapter.

5.6 Conclusions 107

5.6 Conclusions

AToM3 is a tool for multi-formalism modelling and meta-modelling. In this chapter, we first
discussed the mechanisms of meta-modelling in AToM3. Then we introduced issues of meta
modelling and building a visual modelling environment for DEVS in AToM3. Meta-models in
AToM3 can specify not only the structure for model components, but also the visual appearance,
constraints, and actions of the components. Incoporated with the State-charts that specify
the visual model manipulation behaviour, the meta-model can be used by AToM3's meta
model processor to generate a visual DEVS modelling environment. In the visual model!ing
environment, graphical DEVS models can be easily built and be translated into neutral Modelcia
representation, which will be further compiled by the compiler introduced in chapter 4.

Now we have finished the discussion of al! three parts of the Infrastructure for DEVS Modelling
and Experimentation. In next chapter, we will give a case study of how the Infrastructure works
for the full DEVS model!ing and simulation process.

Case Study

6.1 Introduction

In the previous chapters, we have introduced the different parts of the DEVS modelling and
simulation infrastructure. In this chapter, we present a case study as an example of how to
model and simulate a system using this infrastructure.

Our example is to model and simulate a chained processor system [BV02]. This system includes
a series of processors connected together. The processors can pro cess jobs. Each processor has
a queue, which can hold a limited number of jobs waiting to be processed. Each processor has
three ports, an "in" port, an "out" port, and a "discard" port. Jobs enters a processor through
the "in" port. If the processor is busy, the newly arrivng job is put into the processor's queue.
If the queue is full, the new job is discarded through the "discard" port. If the processor is not
busy when a new job arrives, the job is processed immediately. The inter-arrival-time of jobs
is uniformly distributed. It takes time for the processer to pro cess a job. How long it takes
depends on the size of the job. A chained processor system is composed of a number of such
processors connected sequentially.

The organization of this chapter is as follows. In the first section, we discuss the design of DEVS
models of the pro cess or and the chained processors. In the second section, we demonstrate the
visual models of the system built using the visual DEVS modelling envrionment. In the third
section, the Modelica representations generated from the visual models are presented. In the
fourth section, Python DEVS code generated from the Modelica representation is discussed. In
the fifth section, the simulation trace and some plotting results using the Visual Trace Piotter
are discussed. Finally, in the sixth section, we draw some conclusions for this chapter.

6.2 DEVS Models of the Chained-Processor System 109

6.2 DEVS Models of the Chained-Processor System

As described in the system specification, there are mainly two types of components in the
chained-processor system, the processor, and processors chained together. The processor can
be described as an atomic DEVS model, and the chained processor can be specified as a Cou pIed
DEVS model. In or der to simulate the chained processor system, we need another DEVS model
which simulates the pro cess of generating jobs. We call this model Generator, which is also
an atomic model.

We have discussed the design of the Generator model in chapter 4. We do not repeat it here,
and we begin with the Processor model.

6.2.1 The Processor Model

The Processor has two sequential states, P _IOLE and P -BUSY. When there is no job to process,
the Processor is in the P _IOLE state; when a new job arrives, the Processor becomes busy
and is in the P -BUSY state. The specification states that the Processor can discard a job when
the current processor's queue is full. In DEVS, the output events correspond to sequential
states. Only when the time interval for a specific sequential state expires, can an output event
be produced. For the Processor model, there is no output event for the P _IOLE state. The
processed jobs will be sent out when a time interval expires for the sequential state P-BUSY.
In order to discard jobs that cannot be processed by the current Processor, we need another
sequential state P -DISCARDING whose output event is the job that needs to be discarded. 80
the set of sequential states of the Processor model is S = {P _IOLE, P -BUSY, P -DISCARDING}.

A processor can accept unprocessed jobs, output processed jobs, and discard jobs when the
current processor's capacity is full. 80 the Processor model has three ports, an input port
p_in for accepting jobs, an output port p_out through which processed jobs are sent out, and
an output port p_discard that is used to discard arriving jobs when the processor's queue
is full. Events arriving at p_in port, and events sent to p_out and p_discard ports are all
jobs. We can distinguish the input, output, and discarded jobs with timestamp and the ports
that jobs pass through. For simplification reason, we do not distinguish them. 80 both input
and output events for the Processor mode! are jobs. Each job has a size indicating how long
a processor takes to pro cess it, and a identification number used to distinguish jobs. 80 the
input events and output event sets for the Processor model are X = {instances of Job}, Y
= {instances of Job}, and the job is described as Job(id, size).

The behaviour of the Processor model can be described as follows. At the beginning, the
Processor is in the P _IOLE state. If there is no job arriving, the Processor will stay in the
P _IOLE state forever. When a new job arrives, the Processor transits its sequential state to
the P _ BUSY state and begins processing the newly arrived job. The Processor will stay in the
P -BUSY state until the time interval specified by the job's size expires. During this period time,
when a new job arrives, the P -BUSY state will be interrupted. The Processor has to remember
how long it had been in the P -BUSY state and then check the status of its queue. If the queue
is not full, the new job is put into the queue, and the Processor continues in the P -BUSY state,
until the time le ft specified by the size of the job that is being processed expires. If the queue
is full, the Processor goes to the P -DISCARDING state, and discards the incoming job, and then
goes back to the P -BUSY state immediately. The Processor will stay in the P -BUSY state until
the job that is being processed when the Processor is interrupted is finished. Just before the
time specified by the job's size expires, the Processor outputs the current processing job onto
the p_out port. Then, the Processor checks the status of its queue. If the queue is empty,

6.2 DEVS Models of the Chained-Processor System 110

the Processor goes to the P _IDLE state waiting for new jobs. If the queue is not empty, the
Processor takes the first job of the queue as its current job, and goes to the P -BUSY state
again, and repeats the previous process. Based on the above analysis, we obain the model state
variables and the behaviour of the Processor model.

Basically, we need state variables to express the following information, the job that is being
processed, the queue of the Processor, the size of the queue, and the time spent on the P -BUSY
sequential state when a new job interrupts the P -BUSY state. So the Processor model has
four state variables, named currentJob, queue, queueSize, and timeElapsed. Each of the
variables represents the corresponding information mentioned above.

The behaviour functions for the Processor model can be described as below.

External Transitions

bext(pJDEL) =
bext(P_BUSY)
bext(P_BUSY) =

Internai Transitions

P_BUSY
P_DISCARDING, if the queue is full
P_BUSY, if the queue is not full

bint(P_BUSY) = P JDLE, if the queue is empty
bint(P_BUSY) = P_BUSY, if the queue is not empty
bint(p_DISCARDING) = P_BUSY

Output Function

À(p _BU SY) = job, the job currently being processed
À(P_DISCARDING) = job, the incomingjob

Time Advance

ta (P_IDEL) = INFINITY
ta(P_BUSY) = currentJob.size - timeElapsed
ta (P_DISCARDING) = 0

6.2.2 The Chained-Processor Madel

The chained-processor model is a coupled DEVS model with atomic Processor models con
nected together. Once the Processor has been designed, coupling individual processors to
gether is straightforward. It is simple to make channels that connect corresponding ports
together. The connections for the chained-processor model are shown in Figure 6.1.

Chained Processors

Processor 1
r_

Processor2 Processor n
ut

p put p put P put

, r-- ~
in pin p_disc rd pin p_disC1 rd P n r_d scard

Figure 6.1: Coupled Model for the Chained-Processor System

6.2 DEVS Models of the Chained-Processor System 111

The coupled model has three ports corresponding to the ports of the Processor models. The
first Processor model's input port p_in is connected with the coupled model's input port r _in.
The last Pocessor 1 s output port p_discard is connected with the coupled model's output
port Ldiscard. For aU other Processors, each model's input port p_in is connected to its
previous model's output port p_discard. And the output ports p_out of aU the Processors
are connected to the output port r _out of the cou pIed mode!.

6.3 The Visual Models 112

6.3 The Visual Models

We have discussed the specification and design of the chained-processor system. Now let us see
how the models can be represented in the Visual DEVS Modelling Environment introduced in
chapter 5.

6.3.1 Job Event

The visual representation of the Job event is shown in Figure 6.2. The Job event has two
parameters, szl and szh, and two attributes, id and size. The two parameters szl and szh
represent the Job's size lower boundary and high boundary. The id and size have the same
meanings as we discussed above. The size attribute is initialized with a random integer value
uniformly chosen between size boundaries szl and szh.

6.3.2 Atomic Processor

rSlate

,b typ&=TeKt il1lt.value=Job:nuli

>E/=LlStinrr.valuEr-

'8 type=lnleger mil.value:O

~ed type:Float init.value=O.O

Advance:
timespan:=INFINITY;

,1.

Job

Paramelels:
5z1 type",lnteger init.value",Q

szh Iyptl=tnteger Imt.value=O

Attributes"
Id type=lnteger init.value:O
size type: Tan Init.value=lnteger:randlflt(szl, szh)

Figure 6.2: DEVS Event - Job

TlmeAdvance
timespan::O:

Output
poke(p_discard. peek(p_Îfl));

Figure 6.3: Atomic DEVS Model - Processor

The atomic Processor model is shown in Figure 6.3. This model includes two parts, the
ProcessorState part and the model behaviour part. The ProcessorState discribes the state

6.3 The Visu al Models 113

variables for this model, and the behaviour part uses the state diagram describing the sequential
state transitions, time advance behaviour, and output in each state.

6.3.3 The Coupled DEVS Model - Chained Processors

.~~ -===---Q'

Generalor ~ ~ p' ._~)~
Processor p_~'" ~

p2

: Proœssor oS ._t.
·-~F • : ProcesSOfp~ ~t..

Figure 6.4: Coupled DEVS Model - Chained Processors

Figure 6.4 is an example of the chained-processor model named Root with three Processors.
For simulation purposes, we include a Generator model gl, which is responsible for generating
jobs in the coupled model. So the first Processor pl' 5 input port p_in is connected with gl '5

output port g_out, rather than the coupled model's input port p_in.

6.3.4 Experiment Model

Experiment" RootExperiment

MOdel" Root

Package

Paramelers"
ria:2, rib=5, rszl::3, rszh=10, rsize=2

Termlflation Condillon.

lime=1QOO

Verbose True

Trace. True

Figure 6.5: An Example of a DEVS Simulation Experiment

For completeness and convenience reasons, we include a visual experiment model component in
the visual DEVS modelling environment. This model is used to specify simulation experiment
parameters for a specifie model. Figure 6.5 is an example of using the visual experiment
specifying simulation parameters for the coupled model Root mentioned above.

6.4 The Modelica Representation 114

6.4 The Modelica Representation

Models have been designed and created graphically. The next step is to generate Modelica
representations for the visual models. The following are Modelica representations for the visual
models mentioned in the previous section.

6.4.1 Job Event

The Job event is represented by a Modelica class. To express the fact that it is a DEVS event.
This class extends the predefined model DevsEvent. The id property of the Job class has
a special comment "ID", which is used to indicate the uniqueness of the id attribute for
each Job instance. This property will be treated differently when a Modelica representation is
translated into a computing language-specifie model.

class Job

extends DevsEvent;

parameter Integer szl;

parameter Integer szh;

Integer id = 0" ID" ;

Integer size = randint(szl, szh);

end Job;

6.4.2 Atomic Processor

The visual atomic Processor model is represented by two Modelica classes, ProcessorState
and Processor class. The ProcessorState class represents the model state variables, and
hence it extends from the predefined DevsStat e class. The Processor class reprsents the real
DEVS model of a processor, and so it extends from AtomicDEVS class.

Processor State

class ProcessorState

extends DevsState;

Job cu rrentJob = nu Il;

DevsList queueO;

Integer queueSize = 0;

Real timeElapsed = 0.0;

Processor.SeqStates seqState(start=Processor.SeqStates.P JDLE);

end ProcessorState;

Here, the state variable queue is represented as a DevsList object. The DevsList is a pre
defined class for DEVS in Modelica. It has the same semantics as the List type in Python.
The automatically generated attribute seqState represents the model's sequential state. It is
a type of Processor. SeqStates and is intialized with the model's initial sequential state.

Processor Model

Below is the Modelica code for the Processor model. Besides the standard atomic DEVS model
functions, there is a function called ini tialization. This function cornes from the ini t

6.4 The Modelica Representation 115

function of the visual atomic DEVS model. One can use it to initialize a model's state variables.

class Processor

extends AtomicDEVS;

parameter Integer qSize=O;

parameter String name=" a";

input DevsPort pjn;

output DevsPort p_out;

output DevsPort p_discard;

ProcessorState stateO;

type SeqStates = enumeration(P JDLE, P _BUSY, P _DISCARD);

function initialization

algorithm

state.queueSize := qSize;

end initialization;

function extTransition

algorithm

if (state.seqState == SeqStates.P JDLE) th en
state.cu rrentJob: = peek(pj n);
state.timeElapsed:=O;
state.seqState := SeqStates.P _BUSY;

elseif (state.seqState == SeqStates.P _BUSY) then
state.timeElapsed:=state.timeElapsed+elapsed;

if (len(state.queue)<state.queueSize) then
state.queue.append(peek(pjn)) ;
state.seqState := SeqStates.P _BUSY;

elseif (len(state.queue)==state.queueSize) then
state.seqState := SeqStates.P _DISCARD;

end if;

end if;

end extTransition;

function intTransition

6.4 The Modelica Representation

continue ...

algorithm

if (state.seqState == SeqStates.P _BUSY) then

if (len(state.queue)==O) then
state.timeElapsed:=O;
state. cu rrentJob: =null;
state.seqState := SeqStates.P -'DLE;

elseif (len(state.queue»O) th en
state.timeElapsed:=O;
state.currentJob: =state.q ueue. pop(0);
state.seqState := SeqStates.P _BUSY;

end if;

elseif (state.seqState == SeqStates.P _DISCARD) then
state.seqState := SeqStates.P _BUSY;

end if;

end intTransition;

function outputFnc

DevsEvent evt = null;

algorithm

if (state.seqState == SeqStates.P _BUSY) then
poke(p_out. state.currentJob);
state.currentJob:=null;

elseif (state.seqState == SeqStates.P _DISCARD) then
poke(p_discard. peek(pjn));

end if;

end outputFnc;

function timeAdvance

output Integer timespan;

algorithm

if (state.seqState == SeqStates.P -'DLE) then
timespan:=INFINITY;

end if;

if (state.seqState == SeqStates.P _BUSY) then
timespan := state.currentJob.size - state.timeElapsed;

elseif (state.seqState == SeqStates.P _DISCARD) then
timespan:=O;

end if;

end timeAdvance;

end Processor;

6.4.3 Chained Processors - Root

116

The chained processors model extends the CoupledDEVS class. The coupled model constructs
subcomponents and connect them.

6.4 The Modelica Representation

class Root

extends CoupledDEVS;

parameter Integer ria;

parameter Integer rib;

parameter Integer rszl;

parameter Integer rszh;

parameter Integer rsize;

parameter String name;

output DevsPort r _out;

output DevsPort r _discard;

continue ...

Generator gl(ia=ria, ib=rib, szl=rszl, szh=rszh);

Processor pl(qSize=rsize);

Processor p2(qSize=rsize);

Processor p3(qSize=rsize);

equation

connect(gl.g_out, pl.pJn);

connect(pl.p_out, r_out);

connect(pl.p_discard, p2.pJn);

connect(p2.p_out, r _out);

connect(p2.p_discard, p3.pJn);

connect(p3.p_out, r_out);

connect(p3.p_discard, r_discard);

end Root;

6.4.4 The Experiment Model

117

Once the models have been constructed, the next step is to do experiments with the models. The
experiment class extends the DevsExperiment class. It instanstiates the simulation model with
given parameters and constructs a simulator with the model instance. When it is translated
into language-specifie code, the simulator will be executed and the model is simulated.

class RootExperiment

extends DevsExperiment;

Root rootModel(ria=2, rib=5, rszl=3, rszh=10, rsize=2, name=" RootExperiment");

Simulator sim(simModel=rootModel);

end RootExperiment;

6.5 Python DEVS Representation 118

6.5 Python DEVS Representation

In order to simulate the DEVS models, the Modelica represented models must be translated
into programming languge-specific models. Theoretically, the Modelica representation can be
translated into any language-specifie DEVS models suit able for simulation by specifie DEVS sim
ulators. Below is the Python DEVS code generated by the DEVS Modelica compiler introduced
in chapter 4 for the Modelica models discussed above.

6.5.1 Job Event

The Python DEVS representation of the Job event is also a class. In order to keep the uniqueness
of the id pro pert y, a class variable idNumber is generated. Each time a Job is created, the
idNumber is incremented. Subsequentially, the newly created Job's id is assigned with the
value of the idNumber. AIso, for trace study and analysis purposes, a utility __ stL_ fun ct ion
and a toXML function are generated. The former function is used to translate a Job into a
string representation, and the latter retruns the XML representation of a Job.

class Job(object):

idNumber = 0

def _jniL(self, szl, szh):

self.szl = szl

self.szh = szh

self.id = Job.idNumber + 1

Job.idNumber = Job.idNumber + 1

self.size = randint(self.szl, self.szh)

def _str __ (self):

strRep = "

strRep = strRep + "\nid: " + str(self.id)

strRep = strRep + "\ nsize: " + str(self.size)
return strRep

def toXML(self):

strRep = "

strRep = strRep + "\n<attribute category=\" P\" >"

strRep = strRep + "\n\t<name>id</name>"

strRep = strRep + "\n\t<type>lnteger</type>"

strRep = strRep + "\n\t<value>" +str(self.id)+" </value>"

strRep = strRep + "\n</attribute>"

strRep = strRep + "\n<attribute category=\" P\" >"

strRep = strRep + "\n\t<name>size</name>"

strRep = strRep + "\n\t<type>lnteger</type>"

strRep = strRep + "\n\t<value>" +str(self.size)+" </value>"

strRep = strRep + "\n</attribute>"

return strRep

6.5.2 Atomic Processor

The Modelica representation of ProcessorState and Processor model are translated into
Python classes ProcessorState and Processor.

6.5 Python DEVS Representation

Processor State

class ProcessorState:

def _jniL(self):

self.currentJob = None

self.queue = Il
self.queueSize = 0

self.timeElapsed = 0.0

self.seqState = Processor.P JOLE

def __ str __ (self):

strRep = "

strRep = strRep + "\ncurrentJob: " + str(self.currentJob)

strRep = strRep + "\nqueue: "

for item in self.queue:
strRep = strRep + "\n\t" + str(item)

strRep = strRep + "\nqueueSize: " + str(self.queueSize)

strRep = strRep + "\ntimeElapsed: " + str(self.timeElapsed)

strRep = strRep + "\nseqState: " + str(self.seqState)

return strRep

def toXML(self):

strRep = "

strRep = strRep + "\n<attribute category=\" C\" >"

strRep = strRep + "\n\t<name>currentJob</name>"

strRep = strRep + "\n\t<type>Job</type>"

if (self.currentJob!=None):
strRep = strRep +" \n\t<value>" +self.currentJob.toXMLO+" </value>"

else:
strRep = strRep + "\n\t<value>None</value>"

strRep = strRep + "\n</attribute>"

strRep = strRep + "\n<attribute category=\" P\" >"

strRep = strRep + "\n\t<name>queue</name>"

strRep = strRep + "\n\t<type>list</type>"

strRep = strRep + "\n\t<value>"

for item in self.queue:
strRep = strRep + "\n\t" + item.toXMLO

strRep = strRep + "\n\t</value>"

strRep = strRep + "\n</attribute>"

strRep = strRep + "\n<attribute category=\" P\" >"

119

6.5 Python DEVS Representation

continue

strRep = strRep + "\n\t<name>queueSize</name>"

strRep = strRep + "\n\t<type>lnteger</type>"

strRep = strRep + "\n\t<value>" +str(self.queueSize)+" </value>"

strRep = strRep + "\n</attribute>"

strRep = strRep + "\n<attribute category= \" P\" >"

strRep = strRep + "\n\t<name>timeElapsed</name>"

strRep = strRep + "\n\t<type>Reak/type>"

strRep = strRep + "\n\t<value>" +str(self.timeElapsed)+" </value>"

strRep = strRep + "\n</attribute>"

strRep = strRep + "\n<attribute category=\" P\" >"

strRep = strRep + "\n\t<name>seqState</name>"

strRep = strRep + "\n\t<type>Processor.SeqStates</type>"

strRep = strRep + "\n\t<value>" +str(self.seqState)+" </value>"

strRep = strRep + "\n</attribute>"

return strRep

Processor Model

class Processor(AtomicDEVS):

PJDLE = 'PJDLE'

P_BUSY = 'P_BUSY'

P_DISCARD = 'P_DISCARD'

def _jniL_(self, qSize, name):

AtomicDEVS._jniL(self, name)

self.qSize = qSize

self.name = na me

self.pjn = self.addlnPort(" pjn")

self.p_out = self.addOutPort(" p_out")

self.p_discard = self.addOutPort(" p_discard")

self.state = ProcessorStateO
self.initialization()

def initialization(self):

self.state.queueSize = self.qSize

def outputFnc(self):

evt = None

if (self.state.seqState == Processor.P _BUSY):
self.poke(self.p_out, self.state.currentJob)
self.state.currentJob = None

elif (self.state.seq5tate == Processor.P _DISCARD):

self.poke(self.p_discard, self. peek(self.pjn))

120

6.5 Python DEVS Representation

continue

def extTransition(self):

if (self.state.seqState == Processor.P -'DLE):
self.state.currentJob = self.peek(self.p-Ïn)
self.state.timeElapsed = 0
self.state.seqState = Processor.P _BUSY

elif (self.state.seqState == Processor.P _BUSY):
self.state.timeElapsed = self.state.timeElapsed + self.elapsed

if (Ien(self.state.queue) < self.state.queueSize):
self.state.q ueue.a ppend(self. peek(self. p-Ïn))
self.state.seqState = Processor.P _BUSY

el if (Ien(self.state.queue) == self.state.queueSize):
self.state.seqState = Processor.P _DISCARD

return self.state

def intTransition(self):

if (self.state.seqState == Processor.P _BUSY):

if (Ien(self.state.queue) == 0):
self.state.timeElapsed = 0
self.state.currentJob = None
self.state.seqState = Processor.P -'DLE

el if (Ien(self.state.queue) > 0):
self.state.timeElapsed = 0
self.state.currentJob = self.state.queue.pop(O)
self.state.seqState = Processor.P _BUSY

elif (self.state.seqState == Processor.P _DISCARD):
self.state.seqState = Processor.P _BUSY

return self.state

def timeAdvance(self):

if (self.state.seqState == Processor. P -' DLE):
timespan = INFINITY

elif (self.state.seqState == Processor.P _BUSY):
timespan = self.state.currentJob.size - self.state.timeElapsed

elif (self.state.seqState == Processor.P _DISCARD):
timespan = 0

return timespan

6.5.3 Coupled Multi-Processors

121

For Python DEVS, each model requires a name. In the generated coupled Python DEVS models,
each sub-model is given a name using the textual representation of the sub-model's instance
variable name. For instance, the Generator instance gl is given the name ' 'gl' , .

6.5 Python DEVS Representation

class Root(CoupiedDEVS):

def _jniL_(self, ria, rib, rszl, rszh, rsize, name):

CoupledDEVS._jniL(self, name)

self. ria = ria

self.rib = rib

self.rszl = rszl

self.rszh = rszh

self. rsize = rsize

self.name = name

self.r _out = self.addOutPort(" r _out")

self.r _discard = self.addOutPort(" r _discard")

self.gl = Generator(ia = self.ria, ib = self.rib, szl = self.rszl, szh = self.rszh,
name='gl')

self.addSubModel(self.gl)

self.pl = Processor(qSize = self.rsize, name='pl')

self.addSubModel(self.pl)

self.p2 = Processor(qSize = self.rsize, name='p2')

self.addSubModel(self.p2)

self.p3 = Processor(qSize = self.rsize, name='p3')

self.addSubModel(self.p3)

self.connectPorts(self.gl.g_out, self. pl. p-Ïn)

self.connectPorts(self.pl.p_out, self.r _out)

self.connectPorts(self.pl.p_discard, self.p2.pjn)

self.connectPorts(self.p2.p_out, selfLout)

self.connectPorts(self.p2.p_discard, self.p3.p-Ïn)

self.connectPorts(self.p3.p_out, self.r _out)

self.connectPorts(self.p3.p_discard, self.r _discard)

6.5.4 The Experiment Model

122

For Python DEVS, besides the experiment class, an experiment termination condition function
and a _.JlIaio __ block of Python code are generated. Thus, the generated Python DEVS models
can be executed directly by the Python interpreter. Users can modify this piece of code for
their own convenience.

class RootExperiment(object):

def _-ÏniL(self):

self.rootModel = Root(ria = 2, rib = 5, rszl = 3, rszh = 10, rsize = 2, name = "RootEx
periment")

self.sim = Simulator(model = self.rootModel)

6.5 Python DEVS Representation

continue

def terminate_whenEndTimeReached(model, dock, end_time=1000):

if dock >= end_time:

return True

eIse:

return False

if __ name __ == ' __ main __ ':

experiment = RootExperimentO

experiment.si m .si m u late(term i nation_cond ition =term i nate_when EndTi meReached, verbose= T rue,

trace= True)

123

6.6 Simulation Trace 124

6.6 Simulation Trace

Once Modelica DEVS representations are compiled into Python DEVS models, the Python mod
els can be simulated by the Python DEVS simulator. Based on the automatically generated
__ stL_ and toXML functions of the Python DEVS models, an XML representation of DEVS sim
ulation trace file is generated. Below is a small part of the simulation trace for the experiment
RootExperiment mentioned above.

<trace>

<event>

<model>RootExperiment.pl</model>

<time>O.O</time>

<kind>EX</kind>

<state>

<attribute category=" C" >
<name>currentJob</name>
<type>Job</type>
<value>None</value>

</attribute>

<attribute category=" P" >
<name>queue</name>
<type>DevsList</wpe>
<value></value>

</attribute>
<attribute category=" P" >

<name>queueSize</name>
<type> Integer</type>
<value>2</value>

< / attribute >
<attribute category=" P" >

<name>timeElapsed</name>
<type>Reak/type>
<value>O.O</value>

< / attribute >
<attribute category=" P" >

<name>seqState</name>
<type>Processor.SeqStates</type>
<value>P JDLE</value>

</attribute>

</state>

</event>

</trace>

This part of the simulation trace includes the details of one event for the model RootExperiment . pl.
This event is the initialization event which occurs at simulation time O. Because the intial
ization event is sent by the coordinator, the value of the kind element of this event is set as
, 'EX' , , which means an external event to RootExperiment . pl. The initial values of the state

6.6 Simulation Trace 125

variables of this model are reflected by the values of corresponding attribute elements of the
event.

6.7 Trace Plotting Using Visual Trace Piotter 126

6.7 Trace Plotting Using Visual Trace Piotter

Now we have the XML representation of the simualtion trace. We can use the visual trace
pIotter (see chapter 3) to plot the trace file.

, , •

,: ,: Il

AJJ 1

"""

:::1 "'~~~---:-~. -:: _:J.
p ID~f .. ~ ______ :! ._

~------~,r-----~mr--~r-~r---mr-----m~r------',m----,mr------~Anr-~t._

'.'"" '=:1 'IOlE .. ~ ________________ ...

~-----------------------------m~----~~--------------------~---t~_

,.:~œ.1
'JDe' _

r--t'me

_.
l'Itpl

RootExperiment

Figure 6.6: The Beginning Events of a Simulation

Figure 6.6 is a simulation trace for aB models beginning from simulation time O. On the top of
the figure is the trace of the Generator gl, from which we can see that after a random time
interval, a Job is generated. Next to gl is the Processor p1. Because pl) s input port p_in is
connected with gl' s output port g_out, every time a job is generated in gl, an external event

6.7 Trace Plotting Using Visual Trace Piotter 127

occurs in Processor pl. As pi' s p_discard port is connected with p2' s p_in port, once a job
is discarded from pi, a external event happens at p2. P2 and p3 have the same relation as that
of pi and p2. Because during the simulation time shown in Figure 6.6, p2 has never discarded
a job, there is no external event in p3, and so it is always in the P _IDLE state.

RootExperiment.pl , , ,

: 1 : ~
"J- l'

f._ , .

RootExperiment.p3

'_:~~.~ __ -----,r.~ __ ---4t--:) ô

~------~jj~~~'lOO----------~Jl~"".~~_
Figure 6.7: Simulation Trace That All Processors Having Jobs

Figure 6.7 presents the simulation trace during a period time that all the three processors have
jobs. Combining Figure 6.6 and Figure 6.7 , we can see that, at the beginning of the simulation,
pi is very busy, p2 can get jobs occasionally, and p3 is free; after a period of time, p2 becomes
very busy, and discards jobs occasionally to p3. From the two figures we also see that p3' s
seqState coordinate has only two states P _IDLE and P -BUSY, while pi and p2 have three states
P _IDLE, P -BUSY, and P ~ISCARD. This means that p3 only transits its sequential states between
P _IDLE and P -BUSY, and it has never discarded a job.

Conclusions and Future Work

We have finished the discussion of the Infrastructure for DEVS Modelling and Experiment system.
Let us give a summary to the thesis, draw conclusions for the research, and present issues for
future work.

In this thesis, we mainly discuss the following issues. In the first chapter we discussed the
background of DEVS and introduced sorne related research in building DEVS modelling and
simulation environments. In the second chapter, we presented sorne concepts used in this thesis
and introduced the overall architecture of the Infrastructure. In the third chapter, we discussed
model validation and trace plotting, and introduced the design and implemention of the DEVS
visual trace pIotter. In the fourth chapter, we looked into neutral DEVS model representation,
in which we introduced the object-oriented model description language Modelica, and discussed
representing DEVS models using Modelica and challenges of translating neutral Modelica repre
sented DEVS models into programming language represented models. In the fifth chapter, we
discussed meta-modelling and building visual modelling environment. We introduced multi
formalism modelling and meta-modelling environment AToM3, designed and implemented the
DEVS visual modelling environment in AToM3. In the sixth chapter, we put everything in
troduced in the previous chapters together and gave a case study using ail the parts of the
Infrastructure to build DEVS models for the chained processors system.

In the research and development of the Infrastructure, we made the following contributions to
DEVS modelling and simulation.

1. We defined an XM L DTD to standardize the DEVS simulation trace. The benefits of using
standardized simulation trace are obvious. The standardized simulation trace makes a
clear interface between DEVS simulators and DEVS simulation trace plotters. One trace
pIotter can plot traces generated by different simulators follow the same XML DTD. Traces
generated by one simulator can be plotted by different plotters that understand the same
XML DTD.

2. We designed and implemented a visual DEVS trace pIotter that can visualize a standard
ized XML represented DEVS simulation trace. The visual trace pIotter can display traces
of different models. This makes trace analysis and model debugging much easier than
reading simulation trace in pure textual format.

3. We proposed and demonstrated the ideas of representing DEVS models in high-level mod
elling language Modelica, and built a Modelica model compiler that can translate Model
ica DEVS model representations into Python DEVS model representations. Representing
DEVS models at a high level has many benefits. Firstly, it release the burden of the
modeller to learn programming languages. Secondly, it provides opportunities for model
compilers to verify models' syntax automatically. And finally, high-Ievel model represen-

Conclusions and Future Work 129

tations in modelling languages are easier to be standardized than models represented in
low-Ievel programming languages.

4. We built a visual modelling environment for DEVS. There are two major features of the
visual modelling environment. First, the environment is mode lIed and is generated auto
matically based on its models. Second, the visual DEVS models built in the environment
can be translated into Modelica DEVS model representations.

5. We integrated the meta-modelling, visual modelling, neutral model representation, and
trace visualization technologies together to demonstrate the viability and feasibility of
applying them to DEVS modelling and exmperiment.

The following aspects need more efforts for the future research.

1. For the visual modelling environment, the visual modelling GUI interface needs to be
enhanced. Due to the fact that the visual modelling environment is automatically gener
ated, the graphical user interface of the environment is not very user friendly. More work
needs to be done in the future to make it more user friendly.

2. The Modelica compiler checked Modelica DEVS models' syntax and generated Python
DEVS model representations. One more issue for the compiler needs to be considered in
the future. Which parts of the DEVS formalism should be verified and enforced by the
compiler, and how to do that?

3. The Modelica DEVS model compiler can only generate output for Python DEVS now.
Compilers for generating output for other DEVS simulators such as DEVSJava, and ADEVS
should be considered in the future.

4. We presented a case study using the Infrastructure in this thesis. This partially tested
the functionalities of the system. More case studies need to be do ne to further test the
system.

Bibliography

[AB94] Chow A.C.H. and Zeigler B.P. Parallel DEVS: a parallel, hierarchical, modular
modeling formalism. In Winter Simulation Conference Proceedings, 11-14 Dec.,
pages 716-722, 1994.

[ABK94] Chow A.C., Zeigler B.P., and Doo Hwan Kim. Abstract simulator for the parallel
DEVS formalism. In AI, Simulation, and Planning in High Autonomy Systems,
1994 ('Distributed Interactive Simulation Environments 'J, Proceedings of the Fifth
Annual Conference on 7-9 Dec. 1994, pages 157-163, 1994.

[AEA +02] Muzy A., Innocenti E., Aiello A., Santucci J.F., and Wainer G. Cell-DEVS quan
tization techniques in a fire spreading application. In Proceedings of the Win ter
Simulation Conference, 2002. Volume 1, pages 542-549, 2002.

[AHW05] Knupfer A., Brunst H., and Nagel W.E. High performance event trace visualiza
tion. In Parallel, Distributed and Network-Based Processing, 2005. PDP 2005. 13th
Euromicro Conference on 9-11 Feb. 2005, pages 258-263, 2005.

[AT02] Ferscha Alois and Satish K. Tripathi. Parallel and distributed simulation of discrete
event systems. Technical report, 2002.

[Bar97] Fernando J. Barros. Modeling formalisms for dynamic structure systems. ACM
Transactions on Modeling and Computer Simulation (TOMACSJ, 7(4):501-515,
1997.

[BV02] Jean Sebastien Bolduc and Hans Vangheluwe. A modeling and simulation package
for classic hierarchical DEVS. Technical report, 2002.

[Dub06] Denis Dube. Graph layout for domain specific modelling. Master's thesis, McGill
University, 2006.

[EHS97] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL : formal object-oriented
language for communicating systems. Prentice Hall, London, New York, 1997.

[Fri04] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica
2.1. IEEE Press, New York, 2004.

[HK06] Ki Jung Hong and Tag Gon Kim. DEVSpecl: DEVS specification language for mod
eling, simulation and analysis of discrete event systems. Information and Software
Technology, 48:221-234, 2006.

[HROO] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and ail that stuff,
part i: The basic stuff. Technical report, Jerusalem, Israel, 2000.

[Nut05] James J. Nutaro. ADEVS: A discrete event system simulator. Technical report,
2005.

BIBLIOGRAPHY 131

[PBV03] Ernesto Posse, Jean-S' ebastien Bolduc, and Hans Vangheluwe. Genera-
tion of DEVS modelling and simulation environments. Technical report,
http://www.cs.mcgill.ca/ hv jpublicationsj03.SCSC.DEVScodegen.pdf, 2003.

[PP93] Herbert Praehofer and Dietmar Pree. Visual modeling of DEVS-based multi
formalism systems based on higraphs. In Proceedings of the 25th conference Winter
simulation, pages 595-603, Los Angeles, California, United States, 1993.

[SK94] Hae Sang Song and Tag Gon Kim. The DEVS framework for discrete event sys
tems control. In AI, Simulation, and Planning in High Autonomy Systems, 1994
('Distributed Interactive Simulation Environments 'J, Proceedings of the Fifth An
nual Conference on 7-9 Dec. 1994, pages 228-234, 1994.

[STOO] Takahashi S. and Ishioka T. Trace visualization and analysis tool for supervisory
control systems. In Systems, Man, and Cybernetics, 2000 IEEE International Con
ference on Volume 2, 8-11 Oct. 2000, pages 1198-1203, 2000.

[Uhr01] A. M. Uhrmacher. Dynamic structures in modeling and simulation: a reflective
approach. ACM Transactions on Modeling and Computer Simulation (TOMA CS),
11(2):206-232,2001.

[Van04] Hans. Vangheluwe. The dis crete event system specification (DEVS) formalism.
Technical report, 2004.

[VdL03] Hans Vangheluwe and Juan de Lara. Computer Automated Multi-paradigm Mod
elling: Meta-modelling and Graph Transformation. IEEE, New Orleans, Louisiana,
December 2003.

[VdL05] Hans Vangheluwe and Juan de Lara. Model-Based Development: Meta-Modelling,
Transformation and Verification, pages 289-312. The Idea Group Inc., October
2005.

[WG01a] G. Wainer and N. Giambiasi. Timed cell-DEVS: modeling and simulation of cell
spaces. In Discrete Event Modeling and Simulation: Enabling Future Technologies,
Springer, 2001.

[WG01b] Gabriel A. Wainer and Norbert Giambiasi. Application of the cell-DEVS paradigm
for cell spaces modeling and simulation. Simulation, 76(1):22-39, 2001.

[Xu05] Weigao Xu. The design and implementation of the p,modelica compiler. Master's
thesis, McGill University, 2005.

[YC89] Ho YC. Editor's introduction to special issue on deds. Proceedings of the IEEE,
77:3-6, 1989.

[Zei84] B. P. Zeigler. Multifacetted Modeling and Discrete Event Simulation. Academic
Press, London, 1984.

[Zei03] B.P. Zeigler. DEVS today: recent advances in discrete event-based information tech
nology. In Modeling, Analysis and Simulation of Computer Telecommunications Sys
tems MASCOTS 2003 (l1th IEEE/A CM International Symposium on 12-15 Oct.
2003), pages 148-161, 2003.

BIBLIOGRAPHY 132

[Zei05] Bernard P. Zeigler. Introduction to DEVS modeling and simulation with JAVA:
Developing component-based simulation models. Technical report, 2005.

[ZKB99] Bernard P. Zeigler, Doohwan Kim, and Stephen J. Buckley. Distributed supply
chain simulation in a DEVSjCORBA execution environment. In December 1999
Proceedings of the 31st conference on Winter simulation: Simulation-a bridge to
the future - Volume 2, 1999.

[ZPKOO] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation:
Integmting Discrete Event and Continuous Complex Dynamic Systems, 2nd Edition.
Academic Press, New York, 2000.

[ZV93] Bernard P. Zeigler and Sankait Vahie. DEVS formalism and methodology: Unit y
of conception j diversity of application. In Proceedings of the Winter Simulation
Conference, pages 573-579, 1993.

