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CHAPTER l

THE EQUATIONS OF STELLAR STRUCTURE

The Observational Material

The fact that a star can only be studied through

its light may seem. at first. to impose severe limitations

on the knowledge to be acquired concerning the nature of

these bright pinpoints on the night skYe When Mother

Goose said

"Twinkle, twinkle little star,
How l wonder what you are".

she expressed not only the astronomer's interest in his

subject. but also his continuaI battle with the atmosphere

that introduces such uncertainty into his observations.

In spite of the difficulties observational astronomy

is able to provide information on several quantities with

a reasonable degree of accuracy. Three quantities which

will concern us are the mass. the radius and the luminosity.

The total mass or a star May be determ1ned if 1t 1s a

member of a well-observed binary system. For other stars

masses are determined largely through inference. from

relations to other observables as determined for binaries.

The radius ls less weIl defined than mass. since stars

do not have an abrupt border. However. as density of

stellar matter decreases. the properties change with

respect to absorbtion and emission of light. The effect

l
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Is to produce a reasonably sharp 'edge' wlth the uncertainty

in the precise placing of this point only a negligible part

of the radius itself. The sun appears to have a sharp

cleavage between the chromosphere and the corona. Eclips

ing variables generally show a very sharp drop in the light

curve at the instant of totality. Again much of our knowl

edge of radii depends on binanies. Luminosity is defined

as the total radiant energy in aIl wave-Iengths emitted

from the surface of the star per unit time.

Another observational feature of interest is the

spectral class. The apparently bewildering differences in

appearance of stellar spectra can be arranged in anorderly

array of graduaI changes. The system in its early (and

still largely valid) form is the work of Miss A. J. Cannon

and her co-workers and is described in detail in the

preface to the Henry Draper catalogue (1). Further im

provements and revisions are given by Morgan. Keenan and

Kellman (2) and elsewhere(3).

The spectral sequence was explained by Saha (4)

as an effect of surface temperature. If. from the spectral

class or otherwise. we can assign a surface temperature

to a star. then we have fixed the rate at which a square

centimeter of surface radiates. If we know the luminosity

of the star and the contribution to that luminosity of

unit area. then the radius, can be determined. The
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luminosity itself affects the spectrum so that if the dis

tance to the star is unknown, so that the apparent magni

tude cannot be directly converted into absolute magnitude,

the spectral effects still permit a reasonable estimate.

The discussion by Kuiper (5) in 193~ fixed a temperature

scale which has been revised and modified by Morgan and

Keenan (6) on the basis of recent photoelectric colours.

Systematic studies of the luminosities and spectral

classes were made by Hertzsprung in a series of papers

starting ln 1905 (7) and by Russell (8). The culmination

of their work is the Hertzsprung-Russell diagram. The

H-R diagram is a plot of observations of individual stars,

the co-ordinates being spectral class and luminosity, or

absolute magnitude. It is found that a large majority

of stars fall in a well-defined band on the H-R diagram.

This band, the Main Sequence, runs from brlght stars of

early spectral type to faint late ones in a rough diagonal.

Midway up in brlghtness a branch springs from the Main

Sequence, but separated, and runs roughly horizontal towards

late types. (Fig. 1). This is called the Giant Branch.

If we examine the stars in a globular cluster, we find

that the H-R diagram is very différent in appearance.

(Fig. 2.)

Baade finds (9) that stars fall into two classes

which he calls populations. These correspond to the two
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types of R-R diagrams. Various suggestions as to the

reason for the differences have been made, principally

differences in chemical constitution and in age (10).

The spectral classes correspond to differences in

energy production per unit surface area. They are re

lated to differences in luminosity or total energy pro

duction. Renee implicit in the H-R diagram is an

empirical relation between Luminosity and Radius. If a

study is made of stars whose masses are sufficiently weIl

known, it ia found that there is also a relation between

Luminosity and Mass.

Any theory of stellar structure has as its goal to

aatisfy the empirical Luminosity-I~ss-Radiusrelation.

The DifferentiaI Equations of Stellar Structure

A stellar model may be defined as the specification

of the values of physical variables throughout a star.

More particularly, we wish to know at any point in the

star the temperature, pressure and density of mat ter/and

the rate of variation of these quantities. We want to

know certain properties of the matter, notably which form

of Gas Law or Equation of State is valide Is energy

being generated at the point in question, and,if so, by

what mechanism and at what rate? How is energy transported

by convection, conduction or radiation, or sorne combina-
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tion? What is the nature and spectral distribution of the

radiation? How is the radiation affected on passing

through matter at this point? What is the chemical composi

tion?

We answer some of these questions by making what

appear to be reasonable assumptions. For example,we may

decide that the energy gener a t i on is a certain function of

temperature and density. These are the basic postulates of

the model. With these postulates we solve the differential

equations of stellar structure. either exactly or by a suit

able approximation method. Our final goal is to determine

the mass, radius and luminosity of the model for comparison

with some specifie star. or with the Hertzsprung-Russell

diagram.

Let the variables be defined as follows:

r i8 the radius to point inside the star.

p is the density at the point.

P(r) is the total pressure at the point.

Led is the net rate of flow of radiant energy through

the aphere of radius r.
M(r) is the mass interior to radius r.

R is Boltzmann's constant.

H is the mass of the proton.

G is the gravitational constant.

e is the velocity of light.
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~ is the mean molecular weight per particle in

units of the proton masse

Also let I..,M,R be the surface values of L(r),M(r),r.

As for units, besides the standard c.g.s. units, it is

often useful to express r 1 L(r), Mer) as fractions of their

surface values~ P(d, fer) as fractions of their central

values, and L. Mt R in terms of the values for the Sun

L0,M0,R0.

We are to concern ourselves here with stars showing

spherical symmetry and in a state of equilibrium. Everything

happens along a radius vector. The star does not change

while we examine it, and,indeed,is assumed not to have

changed for a fairly long period preceeding our study.

These assumptions characterize by far the greater portion

of stellar studies to date.

Consider a star in hydrostatic equilibrium under

its own gravitation. This means the pressure exerted out

wards by the elastic properties of a small mass of gas

exactly balances the force due to the weight o~ aIl the

gas above it. I~ S is the value o~ gravity at r , then

the change in pressure between the two sides o~ a thin

slab of matter dr thick, of mass dm is given by

1.1 dP = -3d"" = -~fdr

But by Newton's law

1.2
=
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Therefore

le
dr

= - GMer) p
r'

The mas s of a spherical shell dr in thickness at

radius r is the volume of the shell multiplied by the

density.
di<\(r) = 411 rln1.4 dr t:

1.3 and 1.4 are the first two equations of stel1ar

structure. We shall find it useful to combine them. We

differentiate 1.3 with respect to rand substitute 1.4

.A.rt~dP]:: -4'TTr'o
dr LP dr 1

The total pressure P is composed of two parts, the

gas pressure ~ and the radia tion pressure f":

1.6 P=p!l ~pr

The gas pressure depends on the equation of state.

It can be shown (11 p. 600 ff) that for practically aIl

cases of interest the correct equation of state is the

Perfect Gas Law.

1.7 p, = ~ fT
The radiation pressure ia given by the Stefan

Boltzmann Law.

1.8 p,.%~a.TIt

where a is the radiation constant.

For stars of mass up to two or three times that of

the Sun we can neglect pr compar-ee to P'3 in 1.6 (Il p.603

ft.)
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When radiation passes through agas which absorba

part of it, the momentum of the radiation is decreased.

It ia this momentum transferred to the matter which is the

radiation pressure. The fraction of the radiation abaorbed

by a maas dm = pdr ia proportional to dm and the constant

of proportionality K is called the opacity coefficient.

The momentum transferred la equal to the energy absorbed

div1ded by the velocity of light. The pressure Is the

momentum per unit area, and the energy passing through unit

area ls the total energy through the sphere of radius r

which is Ler) divided by the surface area of the sphere.

The above ia expreased as

1.9 - dOr = Ur) Kp dr
r 'T1H'a. C

Radiation pressure decreases outwards.

If 1.8 and 1.9 are combined we may write

1.10
dT(r) _
-r;- - - 3 K L(r) e.

~b1T o.c ra. i 3

The 1uminosity will increase as we move outward

through a thin layer if the layer contains sources of energy.

If the energy generated per unit maas la s then

1.11 dL(r) = 41tr4 Ep dr

1.10 and 1.11 are the rema1ning two equations of

ate11ar structure. We must glve sorne suitab1e specifica-

tion to K and €.
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A very userul rorm in which to put the opacity is

known as Kramers' Law or rule. The opacity coerricient

varies with wave-length. Rosseland defined the proper

mean opacity coefficient which will be referred to as the

opacity K (Il p. 611 )

1.12 \'\ = LKo 1'105

This ls an approxima te form obtained by use of the

correspondence principle or quantum mechanics. Corrections

to 1.11 are often expressed by multiplying the right hand

side by a quantity T , known as the guillotine factor, be-

cause its principal purpose is to correct for the sharp cut-

off at absorbtion edges. It is obtained by comparison with

an opacity table constructed with better approximations to

atomic absorbtion mechanisms. The gui l l ot i ne factor often

includes another correction called the Gaunt Factor.

Study of opacity tables reveals that the guillotine

factor for a particular model can be weIl represented by

T"\
fJtr

This depends partly on the manner in which f and T

-,

vary together in a star. Entering a table of opacities

which ls arranged by density and temperature, we would

take a sort of diagonal path across the table to find

the entries of interest at different levels. This series

of values is weIl represented by the guillotine factor

1.13.



1.13 wlth
P I-tr

Ii'o T s.s-n

expression

Combinlng

A usefu1

10

1.12

ls derived if we insert 1.14

into 1.10, take the derivative of the resulting expression

with respect to rand final1y substitute from 1.11

1.15

The generation of energy is by atomic fusion with

the compound nucleus formed being less massive than the

total of the original masses. Thlsmass defect appears

as energy. There are current1y two well-studied processes

known and others are being investlgated. The gener a l form

of the energy gener a t i on equation i8

1 .16 € ~ E 0 fI T "

where €OJ 5 and n depend on the particular process.



CHAPTER II

CHANGING VIEWE OF THE SUN

The history of the study of ste11ar structure up

to the end of 1938 forms almost a complete unit, as much

as any subject constantly under study can be said to

divide itse1f into stages. Chandraaekhar's Monograph (12)

publiahed ear1y in 1939 was an impressive summing up.

A broad picture was presented, 1eaving the reader with the

feeling of a field not comp1etely explored, but with the

major out1ines drawn. It is perhaps only to be expected

that Chandrasekhar would app1y himse1f di11igent1y to render

ing the book obso1ete as quickly as possible. Others have,

independent1y, assisted him.

In 1951 Chandrasekhar contributed the chapter on

Stellar Structure to a volume commemorating the fiftieth

anniversary of the Yerkes Observatory. A comparison of

the two treatments is very instructive, particularly with

regard to how a field of science may change in Just over a

decade. The basic equations are the same. Certain arguments

are repeated a1most verbatim. Gone comp1ete1y, however,

are the detailed examinations of the behaviour of Polytrope

solutions. Instead there is everywhere the mark of new

knowledge of the atom and its properties. Most notable in

its effect is the still-growing understanding of the

Il
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mechanisms of energy generation.

The proposal, by Bethe and Critchfield (13), of

a mechanism whereby four protons could fuse to become one

alpha partiele with release of energy, was made berore the

war, in 1939. It was not until after the war that informa

tion was available on which reasonably precise calculations

could be based. Further changes may be expected, partly

from new investigations and partly when the trlead curtain",

which hinders radiation of information at the time of writ

ing, is lifted. The work of Salpeter (14) may be noted for

its effect on the results of Epstein and Motz.

Cowling (15) had studied the problem of convective

stability. Consider a small element of matter ln the

Interlor of a star which suddenly increases slightly in

temperature due to sorne natural fluctuation. The heating

causes it to expand, and, belng now less ln denslty than the

surrounding matter, wlll tend to rise. As it rises, the

pressure of the surrounding gases decreases, and there la

further expansion. This expansion cools the element. If

the process takes place with negligible transfer of heat

to or from the surroundings, we have very close to an

adiabatic expansion and cooling. If the temperature gradient

of the surrounding gases is small enough, the element in

time reaches the same temperature and pressure as the
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layer it ls in, and the eddy dies out.

If however, the expanding element cannot cool itself

fast enough compared with the surrounding matter, the eddy

persista, and will increase. This Instability leads to

the existence of a convective zone. The radiative gradient

predominates provided it Is smaller than the adiabatic

gradient. If the radiative gradient is greater than

adiabatic, a convective zone results. We express the condi-

tion for stability as

2.1 /' (dT)
Trad.

Cowling assumed that energy generation took place

at a rate depending on sorne, as yet unknown, power of the

temperature. He found that if this exponent was greater than &

" number between 6 and 7", the star must have a central

region in convective equilibrium.

Naturally when Bethe and Critchfield proposed their

Carbon-Nitrogen cycle, dependent on the seventeenth or

elghteenth power of temperature, convective cores were

assumed for aIl modela. It wes true that an alternative

reaction existed, the proton-proton mechanism, dependent

on the fourth power of temperature. It was clear, however,

that in a reasonably hot stellar in~erior, the Carbon-

Nitrogen cycle would provide aIl but a negligible portion

of the energy. Only the faintest of stars, the red dwarfs,



were expected to gener a t e their energy by the proton-proton

reaction.

Epstein (16a) sought to refine solar models by taking

into account both en~rgy sources to see if the sun did have

any appreciable source of luminosity from the proton-proton

reaction. The results were unexpected. The sun, Epstein

found, gets almost aIl its energy gener a t i on in this fashion.

The carbon-nitrogen cycle plays a minor role. Using

Salpeter's energy gener a t i on formula, Epstein and Motz recal

culated the model (l6b). The results are similar, but the

composition ls almost pure hydrogen which ls not reasonable

for a star which has been buming hydrogen into helium for

4,000,000,000 years or more.

Epstein and Motz believed the difficulty with the

second model was in the opacity figures. These depend

on the composition, which is usually determined only after

the model is completed. Accordingly they calculated a third

model. Tnis was treated as a double eigen value problem.

A model is calculated with assumed composition and opacity.

The composition ia then determined for the resulting model

by comparing it with the sun for mase, luminosity and

radius. The new composition is used for a new model. An

iterative process ia set up which leads to a final model

whoae initially assumed and finally determined composition
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and opacity agree. In brief, this is a self-consistent

model.

This model (16c) contains 93.1% hydrogen, 6.7%

helium, and 0.2% h~avier elements. This is a reasonab1e

composition. The proton-proton reaction is found to provide

all by a negligib1e fraction of the energy. Consequent1y,

the convective core would be smal1 if it exists at all.

Epstein and Motz find the core occupys about 8% of the

solar radius and includes 4% of the masse Only 29% of the

energy is generated inside the core.

The temperature and denslty distributions given by

Epstein and Motz will be of importance further on in this

paper. They are p10tted in Figure 3.

Opacity ca1culations are a1so affected by the newer

know1edge.Estimates of the probable composition of stel1ar

gas mixtures have changed considerably, and better wave

functions are known. The opacity tables published before

and during the war are badly outdated. Keller and Meyerott

have undertaken the computation of an extensive series of

opacity tables. They have published their preliminary in

vestigations into the factors which will affect the results,

such as electron screening and occupation numbers of the

bound levels in ions. (17). Preliminary tables are being

readied for publication which will omit some of the refine

ments to be ultimately included.



CHAPTER III

REMARKS ON THE CALCTffiUS OF VARIATIONS

The Original Problem

The Calculus of Variations came into being as a

method of handling a certain class of problems. Here are

a few typical examples.

a. The Isoperimetric Problem: Find a closed curve

of given perimeter and greatest area.

b. The Brachistochrone: Two points, one higher

than the other are to be connected by a curve

along which a frictlonless mass point moves,

under the acceleration of gravlty, in the

shortest possible time. This is the problem

which gave rise to the calculus of variations.

It was~eated by Jakob Bernoullli in 1696.

c. Least Surface of Revolution: The curve

y = y(x) ~O ls revolved about the x axis.

The resultlng surface has as its ends two circles

of fixed radius in the planes x = Xc and x = x,.
What is the curve if the surface of revolution

i8 to be the smallest possible. This least

surface is the one formed if two wire circles

held the proper distance apart coaxially are

dipped ln a soap solution and withdrawn wlth a

16
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soap film joining them. The film over one of

the circles must be pierced so that air pressure

18 the same on bot h sides.

Each of these problems can be stated in the form of

a definite integral to be minimized subject to sorne sort

of restraining condition. The third problem6 for example

i8 equivalent to finding the minimum value of the surface

area

subject to

The Variation

The problem 6 then. i8 to minimize the integral

3.3 J [~l ~{'F(1.,~ • ~ · ) d1.
'1;0

where the values 1.." 1 t, J ~ (i 0) J ~ (1.) are gi ven. F is

twice continuously differentiable with respect to its three

ar,guments. The second derivative of y is also assumed

continuous. Let ~ =- ~ ('1) be the desired function gi ving
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the minimum. That ia. in a sufficiently small nelghborhood

of the function f(x), the Integral J(y) is smallest when

~ ~ ~ ('X).

where yt (1.) is a function

with a continuous second derivative defined in the neighbor-

hood of y(x). ~ (1.) Vaniahes at 1-:: 1.- 0 1 ~:: 1. 1 but is

ia known as the variation of the

otherwlse arbitrary. E ls a small parameter. The

quanti ty 5~ :: E ~ ("( )

function y.

The Integral Yl ~1 :: J [ ~ f é ~1 may be regarded as

a function ~ (E) whi ch has a minimum at cS = 0

relative to aIl values of f in a sufficiently aIDa Il

neighborhood of E= 0 , ~nd therefore ~I (0) =O. It

is permissible to differentiate the Integral

under the integral signe Then a necessary condition for

a minimum is

which holds for aIl functions ~ (~)

requirements.

satisfying the

We transform 3.5 by performing a partial Integration
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on the second part or the integra1, noting that 7(Xo) :::: 7(X.,) =0

which is valid of every one of our functions ~ • Since

the functions ~ are arbi trary, except for the end points.

3.6 can ho1d only if

3·7

Natu~aIIy the vanishing of a first derivative doea

not necessari1y signify a minimum, but rather an extremum.

Most of the prob1ems of the varlational ca1culus are

minimum problems, however.

We shaI1 introduce the notation oJ~ é f (0).

the first variation of J. Then it May be shown that S
ia an operator with the following properties.

8 operates through an Integral signe

S operates on functions exactly as the differ-

ential operator d doea

B May be restricted to operate on only one of the

variables in an integrand Ieaving the rest

unchanged, and doea not operate on the variable

of Integration.

If variation is taken with respect to the variable ~I

then 83 =0 at both the limi ts of integra t Lon, è

commutes with d.
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If an Integral l ls set equal to a constant, then

~I ;; O.

The general aim of techniques aS described above is

to derive a differential equation such as 3.7 by minimizing

an Integral of the form 3.3 where additional variables and

derivatives of variables may be contained in the argument

of F. The technique ls to set the variation with respect

to a particular variable 2 of the Integral equal to zero,

and then, by partial Integration, transform the integrand

into a differential expression multiplied by the variation

of' ~. Then since 8~ is arbi trary, the differential

expression must vanish, which is the desired differential

equation.

Subsidiary Conditions

The variational calculus goes beyond the problem of

minimizing integrals between fixed end pointse There often

exist one or more restraining condltions.

Cons1der for example the problem of the shape of a

uniform string hanglng under the influence of gravity be

tween two fixed points. The Integral to be minimized is that

which gives the height of the centre of gravity of the

string above sorne reference plane. But if the string i8

not elastic, then its total length, expressible a8 an

Integral in arc-Iengths, i8 constant. A subsidiary condi-
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tion of this form, expressible as the fact that a certain

Integral remalns constant ls ealled a Holonomle Constraint.

Other constraints not expressible as integrals are called

Nonholonomic. We are not here concerned with these.

We May write the integral to be minimized and the

holonomic condition, respectively, as

The condition for a minimum la SJ "= 0 Since

K is a constant we have ~K : 0 always. Then if ft. is

sorne arbitrary constant we have

3.9 5J + }..~K :: 0

It can be shown that this condition ia equivalent

to wri ting 3.7 wi th F" = f + À. K. The value or Â

and or the constants of Integration determined fvom the

boundary conditions and from K:: C. À is known as

a Lagrange Multiplier.

Many fine detailed treatments of the methods of

the calculus of variations exist. That of Courant and

Hilbert (18) quite extensive.
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The Inverse Problem

The manner in which the calculus of variations leads

from a problem in an integral to be minimized to a differen

tial equation raises the inverse problem: Can a given

differential equation be profitably treated as an integral

general answer can be given. Most theorems are conditions

of necessity, and sufficiency conditions are rare. While

some techniques exist which will aid in attacking a parti cu-

lar problem, success is largely a matter of good fortune

and Ingenuity. This aspect of the calculus of variations

May be called nmor e of an Art than a Science. ft

One sufflciency condition whlch will be of importance

to us in the next chapter, is quoted by Courant and Hilbert

(p.257) from Bolza. For a given ordinary second order

differential equation ~"::: -tC 'X, ~ 1 ~ ') one can always find

functions F and G and a Lagrange mul tlplier Î\ auch tha t

will make '.7 when solved for ~ Il iden-

tical with the differential equation.

Let us assume, however, that we have been success-

fuI in obtaining the expllcit form of the two integrals

- - - - - - - - l n ':a-.- -We- now- pr oceedt o flnd an approximate solution of

the differential equation by the method of trial functions.

A trial function is a function which is thought to be a
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close approximation of the actual solution of the equation

and which contains a number of undetermined parameters. A

polynomial expansion

ia one example.

The trial function is chosen so that when it and

ita first derivatives are substitute.d in the integrands

3.8, the integration may be carried out in closed forme

We reason that if the differential equation ia derived by

minimizing J with K constant, then the values of the para-

meters in the trial function which will make the trial

function most closely fit the exact solution are to be

obtained by the same process.

We write J' k ' to indicate that the trial func-
J

tion haa been substituted and the integration carried out.

3.11

3.12

JI=J(a.a. ·····0)1 1 j n

J
I 1

S +ÀbK =0

K 1 = K(ao,Q,.·-··· an)

The Lagrange multiplier À is known , Recalling that S
haa the properties of the differential operator we have



or

3.14 aI.'· ~~') èo. + (~:> À:a~') Sa, + .

. . . + (1l.1 -+ ?-.d)<'\ !a" - 0
àa" oan )

The variations Ca ~ .' .• •. ~ Ono 0 J 00, J are

_ _ _ _ _ _ _comp'Le t e.Ly. indepe-ndent-Gf-ea-ch-othe-r. - !f'h er e1'or e- - - - - - - - - -

dJ' + Î'- ~I _ 0

dao ôao

ar:
- -+
00"

=0

3.15 is a set of n equations in the n parameters.

When they are 8olved, the trial function with these para-

metera is the variational approximation to the solution of

the differential equation.

Clearly much depends on the choice of a trial

function which i8 capable of close approximation to the

actual solution. The published numerical integrations of

stellar models are very useful attacking the particular

problem of this investigation.



CHAPTER IV

THE VARIATIONAL FORM OF THE EQUATIONS

Introductory

At the beginning or the present investigation it was

110ped that a single variationa1 integral might be found

which wou1d generate aIl four_ of J'he ~t~lla~ strucJ;'lg'e _

differentia1 eqlations (1.2. 1.4, 1.10 and 1.11). or the

two equivalent second order differential equations (1.5

and 1.15). Considerable labour was expended in the attempt

without success. The 1ack of sufficiency conditions makes

a definite proof of impossibi1ity a problem which must be

solved a1most from first principles. an effort which did

not seern worthwhile.

Let us turn our attention to the two second order

equations 1.5 and 1.15. name1y.

d~ [~~J = - 41lGr;o
-Sl [....ë dT7.5~l __ 3(7.5-'t()Ko~or~faTY\
clr r'" dr"j 4ac

These are both or the form ~ Il =f(r: ~: f)
In ea ch case p Ls re1ated to ~,so essentia1ly ~'I=·f(rl~ljl).

____Tbu~ -'fLe_canJind- an-integra1- (posa i-bl-y-wi-th- a- res training- - - - - - -

condition) which will, on variation, 1ead to the required

differential equation.
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For convenience we shall differentiate between the

two equations and their respective families of integrals,

derivatives, consequent algebraic equations etc., by

referring to those arising from 4.1 aS the Hydrostatic set

and those trom 4.2 as the Energy set.

The Hydrostatic Set

Consider the integrals

4.3 and

Let P be the variable. The variational operator

is not to operate on p.

44 1::1 :,81:;0
•

If CI is a Lagrange multiplier, then

4· 5

give

4·7

8HTc,~I=o

Ô[~J)'(~rdJ +C, SU>Pdr] -z: 0

l J,. rJ..of .Ji. (8P) dr ... c. rA,·f(&P)r~dr : 0
Cl f or dr Jo..

The first term of 4.6 ia integrated by parts to

J:!.d.P ~p J,. -1.1r -.S! fr1 dFl 5Pd r
~ dr dr ~ drJ

Q. a.



The integrated part vanishes since

limita. Bence 4.6 becames

cSP:o
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at bath

or

l l- r.cL [...1: 1 sU:] -CI Pr ~( ~ Pci r ::: 0
4.9 Cl. ldr P cl r J

=0

Since ~p ia arbitrary. the bracketed part or the

lntegrand must vanish. But this is identlcal wlth 4.1
provlded

4 CI = - 41TG.10

Multlply 4.1 by P and integra te between a and .e,.

4.11 (J,. P5L Ct.: .siE] dr ;: - 41'\ Cr (J,f Pr4 dr
Jo. dt" [fJ dr J~

I: , 4The right hand lntegra1 la from .3.

gration or the lert hand side glves

Partial lnte-

4.12

In the right hand slde of 4.l2 the lntegrated part

will vanlsh ln many cases. If the upper 11mit ls the

boundary of the star_ then densities and pressures are low

enough for the perfect gas law to operate and ~ ci T.
Bence the term vanishes at an upper limit corresponding to
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the boundary. If the 10wer 11mit la the centre of the star

the term vanlshes there. Otherwise the term cou1d hard1y

be expected to vanlsh at the lower limit in any real star.

It la un1ike1y that the term would vanish for non-vanishing

upper and lower 1imits.

The relation resultlng from 4.11 and 4.12 when the

integrated part vanishes (e.g. for a star in radiative

equi1ibrlum throughout) is

4 H=Z1TG-.13

Care must be taken regarding the use of 4.13 in

evaluating constants after the process of minimizing ia

complete. In both the examp1es to fo1low it will be

noted that the norma1izing condition on l together with

4.10 and 4.13 are equiva1ent to one of the minimizlng

equations.

If the star is not in radiative equi1ibrium through-

out, we have

For a radiative enve10pe fitted on to a convective core,

the last term in 4.14 may be eva1uated and the expression

becomes a useful fitting condition.
H l

We are to evaluate~and~after inserting our chosen

trial functions f(n.) and P(ft) . Minimlzing the resu1ta

subject to the condition that f(~) ls not to be varied,
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which ia implicit in the derivation above. we obtain cer

tain relations between our parameters. Then 4.13 will

prove uaeful in disentangling combinations of variables

in these relations. Finally, with our trial functiona

now containing sorne of the parameters in numerica1 form we

May evaluate those remaining from the boundary conditions.

nameLy, by integrating 1. 4 and 1. Il to obtain Land fI\.
Examples are given fol1owing the derivation of the

Energy Set.

TI!.! Energy Set

We shall find it convenient to introduce new variables

into 4.2

4.16 Cl = -3(7.S- rt) Ka E:o
4ac

Then we have 4.2 in the form
7-- - 1

4·17 i:- ~z~~ ~rl ~ c/r'f"~

Consider the integrals
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The variable is now ~ and. again, ~ does not operate

on p.

S\'\=o

Let Cz be the Lagrange multiplier.

Integrating the first term of 4.21 by parts gives

r 2. d '\. 1. ij,. ci r. r 1. 41 c d
4.22 f Z - ,. V ~~ (1, - 0.~ li 1.-ç dr 0 ~ r

As before the integrated part vanishea at both 1imits

where ~~ =0

4-23 J: Ur~ ~~J-7--CLrLpL~'J b~dr ~O

The bracketed part of the integrand must vanish.

This ia identica1 with 4.17 provided

Mu1 tiply 4.17 by ~ and integrate between a.

f: ~1;[? ~fl dr = c'L"rjo''j ~ dr

and t.
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The right hand Integral ls K= 1 from 4.18.

Partial Integration of the left hand side glves

The lntegrated part can be transformed with the aid

of 1.10 , 1.14, and 4.15.

The rlght hand side vanishea at the boundary, the

1eft hand side will insure vanishing at the centre of a

star even if a point source mode1 shou1d make L(O) t 0,

The discussion fo1lowing 4.12 now app1ies here wlth

obvious modiflcations. The analogues of 4.13 and 4.14

are



CHAPTER V

A SOLAR MODEL: FIRST APPROXIMATION

The Choice of a Trial Function

An examination of graphs of the temperature and den

sity distributions of solar models, and of stars of less

than solar mass presents a striking resemblance to the

Ubell-shaped ft curve of the Gauss error function. (11.p.629)

The values given by Epstein and Motz (16c) were plotted and

the impression was confirmed. This particular model was

chosen because it seemed to gi ve a truer picture than

earlier models based solely on the carbon cycle, and the

conclusion that convective core is small makes it unimport-

ant in a first approximation variational treatment.

The plots made were of log r l 1 Pcvs og ogp and

log r vs log log~ (Fig. 3). The deus i ty curve is
T

almost a straight line curving slightly at the upper end.

A straight line in these coordinates indicates exponential

variation with a power of r given by the slape. The

temperature line is more curved throughout, and the slape

is generally less than for the density.

Measuring the slopes of the lines, It ls seen that

32
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is a very good approximation to the density distribution.

The function

ia not so good a fit, but will serve as a first approxima-

tion.

Accordingly 5.1 and 5.2 are chosen as trial functions

with rf..., f3 1 pc. J Tc. as parameters to be determined. The

equation of state ia the perfect gas law, hence from 5.1

and 5.2 we obtain

The substitution ~ = 0'-+ (3 is made so that the parameters

in F may easily be kept distinct from those in p.
The former are to be varied, the latter kept constant.

The opacity is treated as Kramer's law without

guillotine factor as in 1.12 which is

5 4 K '" 1./ L• no T3.5

The energy is generated by the proton-proton re-

action.

Then in the defining equations for variables (4.15

and 4.16), for J and K (4.18) and in the differential equa

tion <4.17), we have
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5·7

4 Â = Z3
~~~ =0 n = ~

We shall also use

V n+~5
I~ =~~ =-~z z

Concerning Infinite Stars

A star is generally regarded as a physical entity

with definite bounds. Therefore solutions in which pressure.

density and temperature vanish only at infinity are regarded

with suspicion. They are 'limiting cases' considered of

interest only as indicating the limit of a family of finite-

radius solutions. Chandrasekhar's chapter on polytropes

(12) contains an example of this view. If. however. the

physical variables fall off together and vanish sssymtoti

cally. the model may not be objectionable.

At sorne point the density is so low that interatomic

spacing is very large. and the equations of stellar struc-

ture no longer hold for such rarified material. Assume,

next) that by the time the density has become this small.

the temperature and pressure are also negliglble compared

with their values deep in the interior. Also assume that

energy generation does not occur in the outer layers; a

reasonable assumption since the temperature is low. Then.

if the density decreases sufficiently more rapidly than

the radius increase~, the mass of the star will be finite.
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even if the extent ia infinite.

Under the above conditions there should be no ob-

jection to an infinite-radius stellar model regarded as

an idealization. Every stellar model i8 idealized to sorne

extent, frequently to a very great degree.

The functiona 5.1, 5.2 and 5.3 meet the requirements.

The mass is finite, and the difference in Maas between the

Infinite star and one of this form,cut short at the sun's

radius,ia negligible. The Epstein-Motz results show that

the convective core ia small, and the difference between

their convective core solution and the Gausa error curve at

small radii ia also negligible.

To the above arguments, let us add the well-known

beautiful behavior of error-curve integrals when the limita

are 0 and e.D • These limita are accordingly adopted.

The Hydrostatic Set

5·9
H~ }l"'L [dP]a dr =

o ~ dr

= 3-J7f Pc&~
~ pc. (Z~-o(.)%

It ia necesaary that
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for this

5·11

integra1 to existe

l ~ hfPrldr ::: Pc~cl~r4e-(~ -tA)rld,

APc~
4 ( 't< -t vi.. flz.

Constants and combinations of variable may now be

e=2~5·12

convenient1y _gr ouped . _ -'Khe-defJ.n i t l Qllil_be low -ar-e- ch os en- -- - -- - -

to agree with those in the second approximation.

A
:: 3n f{~

. \(D fi

G ::: ~fÇ.~
8

Then

and

Taking derivatives

dH = -21~At{(~-te)

à~ (4\\-6)'11.

-zr~ ·3G.
(ZQ'-te)%·

-è-H- - - ~_I 1- - - - - - - _~ "L - - -=r- - - - - - - - - - - - - - - - -------- t1 ...L _ -:L

- - - - - - - - 5·16 cl~ = r: -d ?t -ff

5.16 fo11ows from the definition of A and Gin 5.12.
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~H-tCI ~I:::o

(
è~ b({ -t * ~ fc \ + Cl (li! ~ ~ ;- 4 s r~) ~ 0
~(S' ~Pc ) d~ d,c.

(~ f C. li \ è 'l{-t (W. t c. *.) jll', ~ 0
d'l< ô~)

Since b'( and ~ Pc are independent

5.18
li =0
~'(

Inserting 5.14, 5.15 and 5.16 into the two parts

of 5.18, we obtain,respectively,after transposition:

These are two aimultaneous equations to be solved.

Since ft and (3 both contain f, and pc. , there are too

many variables and we can only obtain certain of them

in terms of others. The boundary and normalization condi

tions will later enable us to solve for each variable

explicity. We reduce the number of variables to two by
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writing

ond

5.19 and 5.20 become

5.22 Qt (t t 1) t 3 =. 0

5•23 Qt 1. (4- t -1) t ( Z1: t 1) =0

Eliminating Q.:

Expressed in terms of t,the condition(5.10)that the

integral 5.9 exist ia t ~ Y4. The deaired root of 5.24 is

t = 0.7359

Instead of evaluating Q directly. we sha11 take

the expression for Q(5.2~and compare it with the defini

tion 5.21, in which we substitute the definitions for A.

From the normalizing condition l'''' 1 and by express-

ing 5.11 in terms of t and e we

i~(~~;)tl' [e;;~J ~ 1

obtain
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Rere we have two equationa in three unknowns when

the value of t Ls inserted. Recall 4.13 (Ii::;( 11 G) • a

form which applies to this case. This expression ia of no

value here. howe ver . which may be verified by expreaaing

5.9 in terms of t. Then 4.13 ia the product of 5.26 and 5.27.

The reason for this ia that 5.26 and 5.27 depend on the

definition of Cl and the normalization. and these two

conditions together with 4.13 are equivalent to the second

of 5.18.

We shall leave further discussion of the solution

until after the evaluation of the energy expressions.

The Energy Set

In this approximation

T
IS/l T 1% - 'Sja.fir'

~ = - le. e
~1-= T v V =~%

Le t ~ : 1SP and e:: '2 cf...

J" = .Lf-e [~J'Ldr = @~ ~s J11;4e -(q-&)r~dr
Z 0 (JI cil'"' · Z /?a 0

= ~~'$ï
He> fla (~- e)ii'a

It ls necessary that
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Keeping defini tions_c ons i s ten~ wi t~ th~ ~~cQIlii -

approximation. let

5·32

5·33

Then

Il:IE tl~

J = <+- e~;t

Taking derivatives

Also from the definition of E and F.

5.35 -il ~ \:>J C\~ ~ ~
__ _ _ _ _ _ _ _ _ _ _ _ _ _cl3"--- - - -T'" - - - - - - -~-Tc.- - - -Tç- - - - - - - - - - - - - - --

5·36

From

ct J -f Cl. dk =-C)

d4> d4>
a"d



we obtain, respectively

5·37

As before, we must reduce the number of variables.

Let

5·39

Since y:: zy~

-:: Z '>/:l. E(Z 3lU' t 3c)~~ e
N b9 c~ F (ttr-I) 717.

Then the equations are

5·40 N11r( M+ 4)-+1 =c

5·41 90 ri AT" ( t\r -1) .. (:z 3 IV" t :3 o} =D

Eliminating N

5.42 b7I\rl_ZI~N" -j;;(.o =0

5.43 v = 3.6543

From 5.39 and 5.41 we have

5·44-
3 (<:lAd '30) Y, cr Y, ê]

:= -1l v.. 15 '1.. 2 J C. (N ...,) 3i~ 'Pc. ~
From the normalization

5.45 iif (1.5)'1, [T< 'r.1-" 'J =-/
2 'la. ( ;;2. :3 IV'"I 3Of/L b ~



Parameters and Units

By the choice of normalization we define a relation

in our uni ts. The product C. k is unaffected by a change in

the value of li as long as C, ia also changed accordingly.

We may fix our unite by noting

R -.L 1'" )K ~ l r y; Pd r "" 4rr 0 Pd M(r) ~ IV P -

Let these define the relation between our units of

mass and our units of pressure numerically. Then inserting

values of t into 5.26, and 5.27 (with 5.46)

5·47 =\

From 5-48 and 5·49

From 5.48 and 5.47

5·50
;\11.

= 143. 'fp e
5·51 whence l1= 14J. f

-
Pc. = 3·Z334P

(units of length)-2

Putting this into 5.47

5.52 /1, = 109,5")C 104 (units of density)
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Inserting the known value of the solar mass we can

con vert to c.g.s. units.

Solution of the energy set invo1ves a know1edge of

chemical composition to obtain opacity and energy generation

coefficients. Usual1y we require the mode1 to give us this

information. A discussion of how this may be done is found

in Chapter VII. For such an unsophisticated mode1 as this

examp1e on1y the methods merit discussion. The results

themse1ves wou1d be of no value.

Epstein and Motz give, at the centre of their small

convecti ve core

Log P, = 17·30

Log P. = 1·99

Log Tc = 7·11

\'\'0 = 1.506 x 1023

Eo = 6.550 x 10-30 aIl c.g.s. units



CHAPTER VI

A SOLAR MODEL: SECOND APPROXIMATION

By examining the graph (Fig. 3) and measuring the

slopes of the two curves we see that

ia a good approximation. The curve i8 very near1y a

straight line, which indicates exponential variation with

sorne power of r. The "slope", whose value indicates the

power of r, is nearly equal to 2.

The temperature curve disp1ays more curvature, and

the slope of the tangent is less than 2 in gener a l . The

discrepancy is not very severe, and it may be possible

to improve the model considerably with a smal1 correction

terme We retain the previous density trial function 6.1,

and adopt a temperature function.

where i t 18 a s aumed that e- Ls small compared to ci...

and p.
Then

6.,
\ -(ct t;3)r'l

p== Pc. (11--e.r~/e =

We note that the differential equation 1.10 will have

its right hand side proportional to r near the origin

44
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where temperate and denaity (and hence energy generation

per unit volume) are aensiblv constant. Thus dT; 0
" dr

at the origin and 6.2 has no ~irst power term in r. The

second derivative doea not vanish. We would also expect

the physical variables to be even ~unctions of rand hence

only even powers would appear in an expansion.

With few exceptions the variables are identical with

those uaed in Chapter V. The procedure ia an obvious

extension of that previously used: hence commenta are

made only when dif~erences appear.

The Hydrostatic Set

6.5

:<'tt.( -t--~). 3·S-{TI -t
lb (l'{rJ..)'h

3· S' 7 .~,.t~L~~ l
'3 z(l ~- Gl )'II.. J
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As bei'ore

6.6

Then

and e=ZrA

The integra1 does not exist un1ess

Put

6.10

- - -
------------- - - - - - - -

-----------------



6.11

P.

6.12

6.13

6.15

6.16

47

Then

Take derivatives with respect to the parameters of

'b .

6.17
dl _--
d f..

l-
Pc.



48

We will have to reduce the number variables to equal

the number of equations by expressing certain of them in

terms of others. There ia a slight difference between C

and Q of Chapter V.

6.18

Because the variations of the parameters are inde-

pendent we can write

6.19

6.20

6.21

6.22

6.2,3

dH- C dI :=0
_-T '-dodfc le.

These lead, respectively, to

C[S(IIt'+~ttl)~t(1t-,)(tt,D + 3 : 0

C«t +ll~S'(i1etst +2.) t s( <+t -1) ("Ct lIt +1) +t (4t- lj'

(ttl)} +3 (4t -1\ [( 2t "1)t5~1



49

These tbree equations in the unknowns C, sand t

may require considerable labour to solve. We desire, if

possible to take advantage of' the recurI'ence of certain

terms. The most rigourous methods of attack lead to im

possibly complicated expressions. We take refuge in a

result of the Theory of Equations: any method of eliminating

a variable between two equations which doea hot violate

the fundamental laws of' algebra will not "destroy" a root.

It will at most introduce extraneous roota which can be

tested afterwards for validity.

Eliminat C by aolving 6.22 and introducing the re

suIt into 6.23 and 6.24. Because of recurrence of terms

in the equations, there is cancellation leading to un-

expected simplification. We obtain, respectively

6.25

6.26

- 3t (4t -\ )(zt -1)
-5= ZZt 3- l ,\e - 7t - 3

6.25 and 6.26 may be regarded as simultaneous

linear equations in 5 whose coefficients are polynomials

in t. We discard the trivial roots 5=0 t=o and

t=- 'Iq.
J • Then the determinant condition for

simultaneous roota ia
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Recall that we must have t ::7 1/4. This four th

degree polynomial is easily treated by Horner's or Newton's

approximation methods.

6.27 has no real solution.

We turn back to equations 6.22. 6.23 and 6.24. In

these let s = O. Then 6.22 and 6.23 become identical. If

we express C in terms of Q of Chapter V. we have 6.23 and

6.24 identical with 5. ZZ and 5.23. This ls to be expect-

ed sinee s = 0 implies b = 0 and the trial functions of

Chapter V are precisely this special case of our present

trial functions.

As far as the hydrostatic equations are concerned.

our small correction term is vanishingly small.

The Energy Equations

In the energy integrals we have the temperature

raised to the ~ and ~3 powers. Sinee the correction

term b i8 assumed small, we employ the bionomial expansion

ta two terms.

6.28
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As bef'ore we take q, = 15 f3 Then

0: t[;:(frrdr'i. ~ _(.~Zd.)f~ cl r
= ~' t .~r'[r{ -,iJ)'-15~-e-(-t-,G)r'4~'15fl'r Je

~ - - - - - - - - - - - - 3-J1f:- T,~~ -~Z-S~~u-+'--f"-+~-~-tb4--o;'J +rzo<\J (i -o-~o<)t~ -'irJ.jfr- - -
I~ l. \(+-2d--) V;l.L

R. +I~~.( ~-2 tiP

The integral exists only if (,.30 ~ ;;.;.. 2d.. ;;;- 0

K ~[OOr~2 T vdr = T,,'pc1~l(l+ytrl)e~(~-,( ~)r>'dr

::: ~ ?c''';; (isflt (z( y4+30~) t <J.J 10
8 r- ( 1"'4)4- Jo ,?()f2.

We define E and F as in Chapter V

E~

F~

Taking derivatives

----------------------------------------



6.36 dl1 ::: 1s .v P

d~ ( Y~ -7 30 0< ) Sl4

6.37 cl Y\ = -~ VD&( t+ +30"} +7S ytl
d<l> 3 ( y ~ ..j. 300<.) 'IA.

6.38 -d.K- - YJ1--d1ë ~

«e have

6.39 dJ dk'
~+C"2.-::::0dt-

52
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6·41

Similar to the definitions of Chapter V

-t ~ .u: 8E ~'hrt~~
---------b~-- -2- o(- - - - - - Z- )Jc~D -

.-!- = Ar
Zr). Ar~ 1
V -::.z~

Then from 6.39. 6.40 and 6.41 respectively

6·45 9oF[2.2. S.l('1 (1 L"l ~ iAJ" ""10) +- ,~o..u..v( .".-1)( I\r -# 4) of. lb", '1.( Ilr -1) 'l}
+Z(1,3 Ar +30)t 10 a.r..w =0
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6.47 2700(1/-u-'t+8N" ilb).A.J,I"L-t IS- (ZII N" '!+38t JV I. +77 6, 11./" +4~o)..w 
- 4N"{N"-J)(b1tV~-,(I~N"-n.O) ::= ()

To solve these equations, we change variables to

eliminate the tri vial roots M., -;;(j 1 N" '= D

Write

Then 6.46 and 6.47 become

and .cu » D -11'= J
1 •

6. 50 48,u.( t1f" ..I)(II",,-z. i 'i /IJ- t/b )..w"l -( AI/~ 3+ sa?1\)"'&+77 t. N" +ffO)..w

- (b 1q'1.-l,IZN -IZO)::.D

The numerical solution or 6.49 and 6.50 is carried

out by setting the lert hand side equal to X. A value is

chosen for Ar and ...ur Ls found from 6.49. Then this pair

of values Ar and~ is inserted in the left hand side

of 6.50 and X Is found. A graph Is plotted to flnd where

X vanishes.
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The only admis sable root i8

~ = 6.680

Then

whence

1r = 2.24 f3 = 1.99 fi..

The use or the binomial expansion to two terms was

made on the assumption that ~ would be small compared

with the other parameters. Since this i8 not the case,

this root has no validlty. We are no better orf than we

were in the hydrostatic set with no root at aIl.

As in the hydrostatic set. the equations 6.43. 6.44,

6.45 reduce to the two equations or the first approximation

if A = O.

We are forced to conclude that we must turn te some

other type of correction term or some other type of trial

function if we wish to elaberate and improve the results

of Chapter V.



CHAPTER VII

ADDITIONAL REr~KS

Improving the Trial Functions

The failure to obtain any improvement by adding

the small correction term to the temperature distribution

of Chapter V raises the question of what other means may

be used to improve our results. We can broaden the ques-

tion by asking, "What ia to be done when our simple density

trial function is no longer valid~n We may further inquire,

"Are we restricted to the study of stars in a range where

previous numerical Integration provides a guide?" An

answer to the last question will be found te deal as weIl

with the first two.

Suppose we turn from our previous models of Infinite

radius and consider fini te stars. The first obvious ad-

vantage ls that we now have a definite radius to speak of.

We may now think of the r of our integrals as being

defined as a fraction of the total radius. Let us ~1~

our trial functions as series expansions in periodic func-

tions of r • We must, of course, be careful that we

have proper behavior of the trial functions and their

first and second derivatives st the origin and boundary.

We will probably prefer, however, to choose our functions

56
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in such a way that a convective core can be fitted with

the aid of the fitting conditions arising out of 4.14 and

4.28.

An examination of 4.3 and 4.18 shows that it will be

very much to our s.dvantage to have the orthogonal property

in the first derivative. A cosine series should be satis-

factory if taken to enough terms. The very considerable

labour of eva1uating the derivatives in Chapter VI~ and of

solving the algebraic equations will be much diminished.

The Disposable Constants

We cannot expand both our temperature and density

functions to an unlimited number of terms. How Many para-

meters are at our disposaI?

In the temperature expansion the 1imit Is set only

by the number of simu1taneous equations we are willing to

solve. Every parameter ai in temperature provides an

equation o~ the form

We have~ say~ n parameters of temperature and m o~

density~ and a total of n equations arising from 7.1. We

have a norma1ization condition K = 1. We have an empirical

relation between mass, luminosity and radius. This can be

broken down into two relations mass in terms of radius and



luminosity in terms of radius. Thus# including the

normallzation, there are three conditions available to fix

additional parameters. The radius itse1f is not an independ-

ent condition.

If we assume a composition and a particu1ar form

of opacity 1aw (i.e. fixf!,O"" and'l) and if we treat
----------------

the hydrostatic and energy sets independently# then we have

three disposab1e density parameters. We can compromise be-

tween the two sets of solutions by taking some form of mean#

such as the 1east-squares mean of the density distributions.

The c10seness of agreement of the distributions from the

two sets is a measure of how c10sely we approach the exact

solution when we take a 1irnited number of terms in the

expansion.

We are ~ore likely to want our model to determine

for us the composition. If we assume a certain percentage

of heavy elements and the proportions of these elements

then we can fix the ratio of hydrogen to helium, and two

density parameters. We may want more available constants.

In this case we treat the hydrostatic and energy equations

as related. This ia preferable in any case aS the separa-

t ion ~~omewhaj:;~t'tjf_iciaL- . Bcbh -s e.cond-ior-der- d-i-i':t'erentiaj,- - - - - - -

equations are necessary for complete specification of the

interior. Now there are two normalization conditions# an



59

extra parameter can be fixed.

Here we encounter the difficulty that our energy

equations 7.1 and the corresponding set in the hydrostatic

case

will not lead to the sarne n relations between the tempera-

ture and density parameters. Examining the two variational

principles involved, we see that the hydrostatic set ls

fixed the moment we set up trial functions and equation

of state. The energy set depends on the composition

assumed, directly as far as E o and Ko are concer-ned.

indirectly in choosing~ and ~ to fit the guillotine factor.

Composition enters intojU when we relate the two sets by

the equation of state, since the hydrostatic set ls ex-

pressed in f1 and Pc. , and the energy set in f.. and Tc.
We can write Eo , Ko and)J. as nwnerical constants

multlplied by simple functions of the hydrogen and helium

abundances. Then let 7.1 be solved in the form

7·3

Where ~j are the density parameters, X the fractional abund-

ance of hydrogen and Y that of heliwn. 7.2 has solutions

7.4
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Then X, Y, cr and tt are determined from the condition

that al ~ ~~ for aIl i. Then we have two normalizations

and the mass and luminosity conditions to be satisfied. If
1

n = 4, then Q.j :. ai are exactly sufficient to fix X,

y tS and rt ' and we have four disposable dens i ty par-ame t er-s ,

If n '> 4, we ha ve more equations than needed and will

need to take a least squares solution. We stilr ha veTour ------

density parameters. If ~< ~ ~ must use one or more of

the remaining conditions and sacrifice one or more density

parameters. The number of density and temperature parametera

are now equal.

The test for consistency of the model ia by comparison

of the predicted march of opacity as temperature and denaity

vary with tabulated opacities.

In Concluaion

The model described in Chapter V was simple to

develop. The integrations, taking of derivatives and alge

braie solution were rapidly done. The addition of the

correction term in Chapter VI multiplied the labour many

fold. Such complications are capable of destroying the

-- - - - - - - - - a d-vant a-ge- t O-be - 6-Xp-ected_o_vj;lr_m..l-IDe~icaL int~gra~io~ me thods ,

especially with the increased use of high speed computera

in the field of atellar modela. If, however, the trial

functions are carefully chosen, then the work of evaluating
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the parameters May be greatly reduced.

Certain advantages now become apparent. The trial

function May be expected to be valid over a reasonable

range of radi1. By decreasing the amount of hydrogen

and increasing correspondingly the amount of helium. the

evolutionary track of the star May be followed with very

little addit10nal work. It should also be noted that it

will not be necessary to recompute the entire model each

time a new opacity table appears. Only a small portion of

the job need be repeated. The variational method may have

considerable utility in making a preliminary exploration

of regions later ta be more fully studied by other means.

Only further investigation can show in detail its capabil

ities and limitations.
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