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1. Introduction

It is well-known that the LIML estimator of a single equation from a linear simultan-
eous equations model has no moments, and that the generalized IV (2SLS) estimator
has as many moments as there are overidentifying restrictions. For a recent survey, see
Mariano (2001); key papers include Fuller (1977) and Kinal (1980). In this paper, we
propose a new method, based on the use of polar coordinates, to study the existence,
or non-existence, of moments of IV estimators. This approach is considerably easier
than existing ones. The principal new result of the paper is that the JIVE estimator
proposed by Angrist, Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999)
has no moments. This is a result that those who have studied the finite-sample prop-
erties of JIVE by simulation, including Hahn, Hausman, and Keuersteiner (2004) and
Davidson and MacKinnon (2006), have suspected for some time.

In the next section, we discuss a simple model with just one endogenous variable on
the right-hand side and develop some simple expressions for the IV estimate of the
coefficient of that variable. We also show how the JIVE estimator can be expressed
in a way that is quite similar to a generalized IV estimator. Then, in Section 3, we
rederive standard results about the existence of moments for IV and K--class estima-
tors in a novel way. In Section 4, we show that the JIVE estimator has no moments.
In Section 5, we show that the results for the simple model extend to a more general
model in which there are exogenous variables in the structural equation. In Section 6,
we present some simulation results which illustrate some of the consequences of nonex-
istence of moments for these estimators. Section 7 concludes.

2. A Simple Model

The simplest model that we consider has a single endogenous variable on the right-hand
side and no exogenous variables. This model is written as

yt = βxt + σuut,

xt = σv(awt1 + vt),
(1)

where we have used some unconventional normalizations that will later be convenient.
The structural disturbances ut and the reduced form disturbances vt are assumed to
be serially independent and bivariate normal:

[
ut

vt

]
∼ N

([
0
0

]
,

[
1 ρ

ρ 1

])
.

The n--vectors u and v have typical elements ut and vt, respectively. The n--vector w1,
with typical element wt1, is to be interpreted as an instrumental variable. As such,
it is taken to be exogenous. The disturbance ut in the structural equation that de-
fines yt can be expressed as ut = ρvt + ut1, where vt and ut1 are independent, with
ut1 ∼ N(0, 1− ρ2).
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The simple instrumental variables, or IV, estimator of the parameter β in model (1) is

β̂0 =
w1
>y

w1
>x

, (2)

where the n--vectors y and x have typical elements yt and xt, respectively. It is
well known that this estimator has no moments, since there are no overidentifying
restrictions, as indicated by the “0” subscript in β̂0.

When there are overidentifying restrictions, W denotes an n× l matrix of exogenous
instruments, with wi denoting its ith column. The generalized IV, or 2SLS, estimator,
that makes use of these instruments is

β̂l−1 =
x>PW y

x>PW x
, (3)

where PW ≡ W (W>W )−1W> is the orthogonal projection on to the span of the
columns of W. The estimator is indexed by l − 1, the degree of overidentification,
which is also the number of moments that it possesses. Note that (1) may be taken to
be the DGP (data-generating process) even when there are overidentifying restrictions.
This involves no loss of generality, because we can think of the instrument vector w1

as a particular linear combination of the columns of the matrix W.

It is clear from (3) that the generalized IV, or 2SLS, estimator depends on W only
through the linear span of its columns. There is therefore no loss of generality if we
assume that W>W = I, the l × l identity matrix. In that case,

x>PW x =
l∑

i=1

(wi
>x)2 = σ2

v

(
(a + w1

>v)2 +
l∑

i=2

(wi
>v)2

)
, (4)

where the last expression follows from (1). If the true value of the parameter β is β0,
then we can also see that

x>PW (y − xβ0) = σuσv

(
(a + w1

>v)w1
>u +

l∑

i=2

(wi
>v)(wi

>u)
)

= ρσuσv

(
(a + w1

>v)w1
>v +

l∑

i=2

(wi
>v)2

)

+ σuσv

(
(a + w1

>v)w1
>u1 +

l∑

i=2

(wi
>v)(wi

>u1)
)
,

(5)

where u1 is the n--vector with typical element ut1.
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It follows from (4) and (5) that the expectation of β̂l−1−β0, conditional on the vector
of reduced form disturbances v, is

E(β̂l−1 − β0 |v) =
ρσu

σv

(
(a + w1

>v)w1
>v +

∑l
i=2(wi

>v)2

(a + w1
>v)2 +

∑l
i=2(wi

>v)2

)
. (6)

The right-hand side of (6) can be rewritten as ρσu/σv times

1− a(a + w1
>v)

(a + w1
>v)2 +

∑l
i=2(wi

>v)2
. (7)

The estimator β̂l−1 has as many moments as the second term above. Observe that
the random l --vector with typical component wi

>v is distributed as N(0, I), so that
the denominator of this second term is distributed as noncentral chi-squared with
l degrees of freedom and noncentrality parameter a2. Notice that this denominator
vanishes when w1

>v = −a and wi
>v = 0, i = 2, . . . , l. This point will be crucial when

we discuss the existence of the expectation in (6).

We can replace the matrix PW in (3) by other matrices A> with the property that
AW = W, and this leads to other estimators of interest. For instance, if we make
the choice A = I − KMW , where MW = I − PW is the orthogonal projection
complementary to PW , we obtain a K--class estimator. With K = 1, of course, we
recover the generalized IV estimator (3).

In general, under the assumption that AW = W, we see that

x>A>(y − xβ0) = σuσv(aρw1
>A>v + ρv>A>v + aw1

>A>u1 + v>A>u1), (8)

of which the expectation conditional on v is

E
(
x>A>(y − xβ0) |v)

= ρσuσv(aw1
>v + v>Av). (9)

Similarly,
x>A>x = σ2

v (a2 + av>A>w1 + aw1
>v + v>Av). (10)

The factor of A> is retained in the second term on the right-hand side because we
do not necessarily require that A should be symmetric, so that Aw1 = w1 does not
necessarily imply that A>w1 = w1. It follows from (9) and (10) that

E(β̂l−1 − β0 |v) =
ρσu

σv

(
aw1

>v + v>Av

a2 + av>A>w1 + aw1
>v + v>Av

)
. (11)

Both the numerator and the denominator of this conditional expectation vanish if
v = −aw1. This condition also implies that the numerator and the denominator of
the second term in (7) vanish.

– 3 –



Now we make the change of variables

v = ξ − aw1, (12)

whereby the n--vector ξ is distributed as N(aw1, I). With this change of variables, the
numerator of the factor in parentheses in expression (11) becomes

aw1
>ξ − a2 + ξ>Aξ − aξ>w1 − aw1

>Aξ + a2 = ξ>Aξ − aw1
>Aξ,

and the denominator becomes

a2 + aξ>A>w1 − a2 + aw1
>ξ − a2 + ξ>Aξ − aw1

>Aξ − aξ>w1 + a2 = ξ>Aξ.

The factor in parentheses in expression (11) therefore simplifies to

ξ>Aξ − aw1
>Aξ

ξ>Aξ
= 1− a

w1
>Aξ

ξ>Aξ
, (13)

of which expression (7) is a special case.

Before investigating the existence or nonexistence of moments of expression (13), we
consider the particular case that was rather misleadingly called “jackknife instrumen-
tal variables,” or JIVE, by Angrist, Imbens, and Krueger (1999) and Blomquist and
Dahlberg (1999).1 This estimator makes use, for its single instrumental variable, of
what we may call the vector of omit-one fitted values from the first-stage regression of
the endogenous explanatory variable x on the instruments W :

x = Wγ + σvv. (14)

The omit-one fitted value for observation t, x̃t, is defined as Wtγ̂
(t), where Wt is

row t of W, and the estimates γ̂(t) are obtained by running regression (14) without
observation t.

The vector of omit-one estimates γ̂(t) is related to the full-sample vector of estimates γ̂

by the relation

γ̂(t) = γ̂ − 1
1− ht

(W>W )−1Wt
>ût,

where the ût are the residuals from regression (14) run on the full sample, and ht is
the tth diagonal element of PW ; see, for instance, equation (2.63) in Davidson and

1 Actually, Angrist, Imbens, and Krueger (1999) called the estimator we will study JIVE1,
and Blomquist and Dahlberg (1999) called it UJIVE. But it is most commonly just called
JIVE.
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MacKinnon (2004). Under our assumption that W>W = I, we may write ht = ‖Wt‖2.
Further, Wtγ̂ = (PW x)t. It follows then that

x̃t = Wtγ̂
(t) = (PW x)t − 1

1− ‖Wt‖2 (PW )tt(MW x)t = xt − (MW x)t

1− ‖Wt‖2 , (15)

since the tth diagonal element (PW )tt of PW is ht = ‖Wt‖2. We assume throughout
that 0 < ht < 1 with strict inequality, thereby avoiding the potential problem of a zero
denominator in (15). This assumption is not at all restrictive, since, if ht = 0, the tth

elements of all the instruments vanish, whereas, if ht = 1, the span of the instruments
contains the dummy variable for observation t.

For the JIVE estimator, we wish to define the matrix A in such a way that the vector
x̃ of omit-one fitted values is equal to Ax. By letting the (t, s) element of A be

ats =
1

1− ‖Wt‖2
(
(PW )ts − δts‖Wt‖2

)
, (16)

where δts is the Kronecker delta, we may check that

n∑
s=1

atsxs =
1

1− ‖Wt‖2
(
(PW x)t − xt‖Wt‖2

)
= xt − (MW x)t

1− ‖Wt‖2 = x̃t,

and that, for i = 1, . . . , l,

n∑
s=1

atswsi =
1

1− ‖Wt‖2
(
wti − wti‖Wt‖2

)
= wti,

so that AW = W, as required.

With x̃ defined as above, the JIVE estimator is just

β̂J =
x̃>y
x̃>x̃

, (17)

which is similar to the IV estimator (2) and the generalized IV estimator (3).
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3. Existence of Moments for IV Estimators

In this section, we study the problem of how many moments exist for the estimators
discussed in the previous section under DGPs belonging to the model (1). We begin
with the generalized IV estimator β̂l−1 given in (3), which, although it has properties
not shared with many other estimators, allows us to appreciate the relevant issues and
the methodology for dealing with them.

We saw that, when there are l instruments, the estimator β̂l−1 has as many moments as
the expression given in equation (7). With the change of variables (12), this expression
is just the second term on the right-hand side of equation (13). Since A = PW here,
this second term is, except for the factor of a, equal to

w1
>ξ

ξ>PW ξ
=

z1∑l
l=1 z2

i

, (18)

where zi ≡ wi
>ξ. The zi are mutually independent, and they are distributed as stan-

dard normal except for z1, which is distributed as N(0, a).

We now once more change variables, so as to use the polar coordinates that correspond
to the cartesian coordinates zi, i = 1, . . . , l. The first polar coordinate is denoted r,
and it is the positive square root of

∑l
i=1 z2

i . The other polar coordinates, denoted
θ1, . . . , θl−1, are all angles. They are defined as follows:

z1 = r cos θ1,

zi = r cos θi

i−1∏

j=1

sin θj , i = 2, . . . , l − 1, and

zl = r

l−1∏

j=1

sin θj ,

where 0 ≤ θi < π for i = 1, . . . , l− 2, and 0 ≤ θl−1 < 2π. The use of polar coordinates
in more than two dimensions is relatively uncommon. Anderson (2003, p. 285) uses
somewhat different conventions to obtain an equivalent result. In terms of these polar
coordinates, expression (18) is just cos θ1/r. It is also easy to show that, for 1 ≤ j < l,

l∑

i=j+1

z2
i = r2

j∏

i=1

sin2 θi. (19)

The joint density of the zi is

1
(2π)l/2

exp
(
− 1−

2

(
(z1 − a)2 +

l∑

i=2

z2
i

))
=

e−a2/2

(2π)l/2
exp

(
− 1−

2
(r2 − 2ar cos θ1)

)
.
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The Jacobian of the transformation to polar coordinates can be shown to be

∂(z1, . . . , zl)
∂(r, θ1, . . . , θl−1)

= rl−1 sinl−2 θ1 sinl−3 θ2 . . . sin θl−2 ;

see Anderson (2003, p. 286). Consequently, the mthmoment of (18), if it exists, is
given by the integral

e−a2/2

(2π)(l−2)/2

∫ π

0

sinl−2 θ1 dθ1 . . .

∫ π

0

sin θl−2 dθl−2

× cosm θ1

∫ ∞

0

rl−m−1 dr exp
(
− 1−

2
(r2 − 2ar cos θ1)

)
.

(20)

Here, the integral with respect to θl−1 has been performed explicitly: Since neither
the density nor the Jacobian depends on this angle, the integral with respect to it is
just 2π.

Expression (20) can certainly be simplified, but that is not necessary for our conclusion
regarding the existence of moments. The integral over r converges if and only if the
exponent l −m − 1 is greater than −1. If not, then it diverges at r = 0. The angle
integrals are all finite, and the joint density is everywhere positive, and so the only
possible source of divergence is the singularity with respect to r at r = 0. Thus
moments exist only for m < l. This merely confirms existing results, which were first
demonstrated in Kinal (1980) by a more complicated argument.

The methodology employing polar coordinates can be used to investigate the properties
of other estimators. As an example, we cite another class of estimators examined by
Kinal, namely, K--class estimators with exogenous K < 1. For these estimators, the
matrix A is I−KMW .

We begin by constructing the n × n orthogonal matrix U with its first l columns
identical to those of W, the remaining n − l columns constituting an orthonormal
basis for the orthogonal complement of the span of the columns of W. If we denote
those remaining columns by uj , j = l + 1, . . . , n, we can define zj ≡ uj

>ξ. The zj are
all standard normal and independent of the zi, for i = 1, . . . , zl. Then we have

ξ>Aξ = ξ>UU>AUU>ξ. (21)

Observe that
AU = (I−KMW )[w1 . . . wl ul+1 . . . un]

= [w1 . . . wl (1−K)ul+1 . . . (1−K)un],

and so

U>AU =
[
Il O
O (1−K)In−l

]
. (22)
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Let z ≡ U>ξ. This accords with our previous definitions, in that the zi, i = 1, . . . , l,
are the first l components of z. Then

ξ>Aξ = z>U>AUz = z1
>z1 + (1−K)z2

>z2, (23)

where z1 is the l --vector made up of the first l components of z, and z2 contains the
other components.

The denominator of the second term on the right-hand side of (13) is thus given by (23).
The numerator is, as before, just z1. If we now transform to the polar coordinates for
the full n--vector z, rather than just for the l components of z1, we have, in terms of
these new polar coordinates, that z1 = r cos θ1, as before. Then, from the result (19)
applied to our n--dimensional coordinates, we see that

z2
>z2 =

n∑

i=l+1

z2
i = r2

l∏

j=1

sin2 θj ,

so that

z1
>z1 = z>z − z2

>z2 = r2 − z2
>z2 = r2

(
1−

l∏

j=1

sin2 θj

)
.

The right-hand side of (23) can therefore be written as

r2
(
1−

l∏

j=1

sin2 θj + (1−K)
l∏

j=1

sin2 θj

)
= r2

(
1−K

l∏

j=1

sin2 θj

)
.

Note that, because K < 1, the right-hand side above cannot vanish for any values of
the θj . The mthmoment of the K--class estimator is therefore a multiple integral with
finite angle integrals and an integral over r of the function

rn−m−1 exp
(
− 1−

2
(r2 − 2ar cos θ1)

)
.

This integral diverges unless n−m− 1 > −1, that is, unless m < n.
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4. Existence of Moments for JIVE

We now move on to the JIVE estimator, for which the matrix A is given in (16) by
its typical element. As above, we construct an orthogonal matrix U, of which the first
l columns are those of W. Since AW = W, the first l columns of AU are also just
the columns of W. In order to construct the remaining n − l columns of U, consider
the vectors ηi, i = 1, . . . , n, defined so as to have typical element uti/(1 − ht), where
ht = ‖Wt‖2 as before. Choose the vectors uj , j = l + 1, . . . , l + k, as an orthonormal
basis of the space spanned by the vectors MW ηi, i = 1, . . . , l. Clearly, k ≤ l. The
remaining orthonormal basis vectors, uj , j = l + k + 1, . . . , n, are then orthogonal
to both the wi, i = 1, . . . , l, and the uj , j = l + 1, . . . , l + k, and so also to the ηi,
i = 1, . . . , l.

With this construction, the tth element of Auj , for j = l + 1, . . . , n, is

− utjht

1− ht
= utj − utj

1− ht
,

so that Auj = uj − ηj . Define the n× (n− l) matrix Z by the relation U = [W Z].
Then, putting our various results together, we see that

U>AU =
[

W>

Z>

]
[W (Z −H)], (24)

where H ≡ [H2 H3], with H2 = [ηl+1 . . . ηl+k] and H3 = [ηl+k+1 . . . ηn]. Consider
the product W>H3. Element (i, j) of this matrix is

n∑
t=1

wtiutj

1− ht
= ηi

>uj = 0,

since we saw above that the uj are orthogonal to the ηi.

These results show that equation (24) can be written in partitioned form as

U>AU = I−



O D12 O
O D22 D23

O D32 D33


, (25)

where element (i, j) of the n× n matrix D is

dij =
n∑

t=1

utiutj

1− ht
. (26)

The index 1 of the partition refers to elements in the range 1, . . . , l, the index 2 to
those in the range l + 1, . . . , l + k, and the index 3 to the other elements.
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As before, we let z = U>ξ, and we partition z> as [z1
> z2

> z3
>] conformably with the

partition of D. Then, from (21),

ξ>Aξ = z1
>(z1 −D12z2) + [z2

> z3
>]

[
I−D22 −D23

−D32 I−D33

][
z2

z3

]
. (27)

Next, we see that
w1
>Aξ = u1

>AUz = z1 − d>z2. (28)

Here the 1×k row vector d> denotes the top row of the matrix D12, and so (28) holds
because u1

>AU is just the top row of (25).

Consider next the expectation of w1
>Aξ/ξ>Aξ conditional on z2 and z3, recalling that

the components of z are mutually independent. This conditional expectation, should
it exist, can therefore be computed using the marginal density of the vector z1. We
may apply a linear transformation to this vector which leaves the first component, z1,
unchanged and rotates the remaining l − 1 components in such a way that, for the
value of z2 on which we are conditioning, all components of the vector D12z2 vanish
except the first two, which we denote by δ1 and δ2, respectively. Thus d>z2, which is
the first component of D12z2, is equal to δ1. Since the components of z1 except for
the first are multivariate standard normal, and since the first component is unaffected
by the rotation of the other components, the joint density is also unaffected by the
transformation.

Next we make use of the l--dimensional polar coordinates that correspond to the trans-
formed z1. In terms of these, expression (28) becomes r cos θ1 − δ1, and (27) becomes

r2 − δ1r cos θ1 − δ2r sin θ1 cos θ2 − [z2
> z3

>]
[

D22 − I D23

D32 D33 − I

] [
z2

z3

]
.

Thus the conditional expectation we wish to evaluate can be written, if it exists, as a
multiple integral with finite angle integrals and an integral over the radial coordinate r

with integrand

rl−1 r cos θ1 − δ1

r2 − δ1r cos θ1 − δ2r sin θ1 cos θ2 − b2
exp

(
− 1−

2
(r2 − 2ar cos θ1)

)
. (29)

The quantity b2 is defined as

b2 = [z2
> z3

>]
[

D22 − I D23

D32 D33 − I

] [
z2

z3

]
, (30)

and it is indeed positive, since the matrix in its definition is positive definite, as can
be seen by noting from (26) that a typical element of the matrix D − I is

n∑
t=1

utiutj
ht

1− ht
,
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where we use the fact that
∑n

t=1 utiutj = δij by the orthonormality of the uj . Thus
D − I = U>QU , where Q is the diagonal matrix with typical element ht/(1 − ht).
Since we assume that 0 < ht < 1, Q is positive definite. This implies that D − I and
the lower-right block of D − I that appears in (30) are also positive definite.

Unlike what we found for the conventional IV estimator and the K--class estimator
with K < 1, the denominator of (29) does not vanish at r = 0. However, it does have
a simple pole for a positive value of r. Let δ1 cos θ1 + δ2 sin θ1 cos θ2 = d. Then the
denominator can be written as r2 − rd− b2, which has zeros at

r =
d±

√
d2 + 4b2

2
.

The discriminant is obviously positive, so that the roots are real, one being positive
and the other negative, whatever the sign of d. The positive zero causes the integral
over r to diverge, from which we conclude that the JIVE estimator has no moments.

It is illuminating to rederive this result for the special case in which the design of the
instruments is perfectly balanced, in the sense that ht = l/n for all t. This is the case,
for instance, if the instruments are all seasonal dummies and the sample contains an
integer number of years. A major simplification arises from the fact that k = 0 in this
circumstance. This follows because, for i = 1, . . . , l, ηi is proportional to wi, so that
MW ηi = 0. Thus block 2 of the threefold partition introduced above disappears.

The second simplification is that the matrix A becomes PW − (
l/(n − l)

)
MW , as

can be seen from (16) by setting ‖Wt‖2 = l/n. The denominator ξ>Aξ can then be
written as

l∑

i=1

(wi
>ξ)2 − l

n− l
‖MW ξ‖2.

The first term is just ‖z1‖2 = r2, and minus the second term, which replaces the b2

of (30), is clearly positive. Thus ξ>Aξ = r2 − b2 = (r + b)(r − b), and the singularity
at r = b is what causes the divergence.

5. Exogenous Explanatory Variables in the Structural Equation

In most econometric models, the structural equation contains exogenous explanatory
variables in addition to the endogenous one, and these extra explanatory variables are
included in the set of instrumental variables. In this section, we briefly indicate how
to extend our previous results to this more general case.

We extend the model (1) as follows:

y = xβ + W2γ + σuu,

x = σv(W1a1 + W2a2 + v).
(31)
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Here W2 has l′ columns, and the full set of instruments is contained in the matrix
W = [W1 W2], where without loss of generality W>W = I, as before. Again without
loss of generality, we assume that W1a1 = aw1, where w1 is the first column of W1.

We will show in a moment that all of the estimators we have considered so far can still,
when applied to the model (31), be expressed as solutions to estimating equations of
the form

x>A>(y − xβ) = 0, (32)

where the matrix A now must satisfy the requirements that AW1 = W1 and that
AW2 = A>W2 = O. Assuming that these requirements are met, we can see easily
enough that equations (8), (9), and (10) are still satisfied. Consequently, as before, the
estimator has as many moments as the expression w1

>Aξ/ξ>Aξ that appears in (13).

Consider first the generalized IV estimator. The estimating equations for both β and γ

are given by
x>PW (y − xβ −W2γ) = 0 and

W2
>(y − xβ −W2γ) = 0.

(33)

There is no factor of PW in the second equation here, because PW W2 = W2. If we
premultiply this second equation by x>W2(W2

>W2)−1, it becomes

x>P2(y − xβ −W2γ) = 0,

where P2 projects orthogonally on to the span of the columns of W2. Subtracting
this last equation from the first one in (33), we obtain the generalized IV estimating
equation for β alone:

x>P1(y − xβ) = 0,

where P1 projects orthogonally on to the span of the columns of W1. Observe that,
because of the orthonormality of the columns of W, PW − P2 = P1, and P1W2 = O.
For the IV estimator, then, A = P1, which does indeed satisfy the required conditions
that AW1 = W1 and AW2 = A>W2 = O.

Thus, for the IV estimator, the expression w1
>Aξ/ξ>Aξ becomes

w1
>ξ

ξ>P1ξ
=

z1∑l
i=1 z2

i

,

just as in (18), where now l is the dimension of W1. The remainder of the analysis of
the IV estimator follows exactly as before.

The K--class estimator with exogenous K < 1 can readily be seen to be defined by the
estimating equation

x>(M2 −KMW )(y − xβ) = 0,
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where M2 = I−P2. Thus A = M2−KMW , and it is easily verified that AW1 = W1

and AW2 = A>W2 = 0. The matrix U>AU, given before by (22), is now

U>AU =




Il Ol,l′ Ol,n′

Ol′,l Ol′,l′ Ol′,n′

On′,l On′,l′ (1−K)In′


,

where n′ = n− l− l′; recall that W2 has l′ columns. It follows that ξ>Aξ is still given
by (23), where z2 now contains the n′ components defined by the dimensions that
are orthogonal to all the instruments. Our earlier analysis remains good except that
moments of order m exist only if m < n− l′.

For the JIVE estimator, the vector x̃ of omit-one fitted values is defined exactly as
before, using the full matrix W of instruments. In this case, the estimating equation
(32) for β becomes

x̃>M2(y − xβ) = 0.

Previously, as can be seen from (17), it was just x̃>(y − xβ) = 0. Thus we see that
the new A matrix is M2 times the old one. The old matrix satisfies AW = W by
construction, and so the new one satisfies the required conditions that

M2AW = M2[W1 W2] = [W1 O] and A>M2W2 = O.

For the n′ = n − l′ dimensions orthogonal to W2, the columns of the orthogonal
matrix U can be constructed just as before. In addition, the l′ columns of W2 complete
the set of columns of U. Then, since (with the new A) AW2 = O and W2

>A = O,
the l′ rows and columns of equation (25) corresponding to W2 are replaced by zeros.
Thus equations (27) and (28) still hold with appropriate redefinitions of the vectors
z1, z2, and z3 so as to exclude the eliminated l′ dimensions. This means that z1 has
l components, z2 has k, and z3 has n′ − l − k. The analysis based on (27) and (28),
leading to the conclusion that the JIVE estimator has no moments, then proceeds
unaltered.

6. Consequences of Nonexistence of Moments

The fact that an estimator has no moments does not mean that it is necessarily a bad
estimator, although it does suggest that extreme estimates are likely to be encountered
relatively often. However, when the sample size is large enough and, for cases like
the simultaneous equations case we are considering here, the instruments are strong
enough, this may not be a problem in practice.

In some ways, the lack of moments is more of a problem for investigators performing
Monte Carlo experiments than it is for practitioners actually using the estimator. Sup-
pose we perform N replications of a Monte Carlo experiment and obtain N realizations
β̂j of the estimator β̂. It is natural to estimate the population mean of β̂ by using
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the sample mean of the β̂j , which converges as N →∞ to the population mean if the
latter exists. However, when the estimator has no first moment, what one is trying to
estimate does not exist, and the sequence of sample means does not converge.

To illustrate this, we performed several simulation experiments based on the DGP (1).
Both standard errors (σu and σv) were equal to 1.0, the sample size was 50, ρ was 0.8, β

was 1, and a took on two different values, 0.5 and 1.0. There were five instruments, and
hence four overidentifying restrictions. For each value of a, 29 different experiments
were performed for various values of N, starting with N = 1000 and then multiplying
N by a factor of (approximately)

√
2 as many times as necessary until it reached

16,384,000.

In the first experiment, a = 0.5. For this value of a and a sample size of only 50,
the instruments are quite weak. As can be seen in Figure 1, the averages of the
IV estimates converge quickly to a value of approximately 1.1802, which involves a
rather serious upward bias. In contrast, the averages of the JIVE estimates are highly
variables. These averages tend to be less than 1 most of the time, but they show no
real pattern. The figure shows two different sets of results, based on different random
numbers, for the JIVE estimates. Only one set is shown for IV, because, at the scale
on which the figure is drawn, the two sets would be almost indistinguishable.

In the second experiment, a = 1.0, and the instruments are therefore a good deal
stronger. As seen in Figure 2, the averages of the IV estimates now converge quickly
to a value of approximately 1.0489, which involves much less upward bias than before.
The averages of the JIVE estimates do not seem to converge, but they vary much
less than they did in the first set of experiments, and it is clear that they tend to
underestimate β.

In additional experiments that are not reported here, we also tried a = 0.25 and
a = 2. In the former case, the results were quite similar to those in Figure 1, except
that the upward bias of the IV estimator was much greater. In the latter case, where
the instruments were quite strong, the averages of both the IV and JIVE estimates
appeared to converge, to roughly 1.012 for the former and 0.991 for the latter. Thus,
based on the simulation results for this case, there was no sign that the JIVE estimator
lacks moments. It would presumably require very large values of N to illustrate the
lack of moments when the instruments are strong.

7. Conclusions

In this paper, we have proposed a novel way to investigate the existence of moments
for instrumental variables and related estimators in the linear regression model. Our
method is based on the use of polar coordinates. For generalized IV and K--class
estimators, we obtain standard results in a new and simpler way. However, the main
result of the paper concerns the estimator called JIVE. We show that this estimator has
no moments. Simulation results suggest that, when the instruments are sufficiently
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weak, JIVE’s lack of moments is very evident. However, when the instruments are
strong, it may not be apparent.
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Figure 1. Means of two estimates of β: n = 50, a = 0.5
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Figure 2. Means of two estimates of β: n = 50, a = 1.0
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