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Abstract 

HIS thesis presents novel theoretical modelling and experimental studies of the biophysics 

of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging 

(fMRI) with the central aim of advancing calibrated fMRI. Calibrated fMRI is an imaging 

technique that measures the changing hemodynamic and metabolic factors that contribute to the 

BOLD signal, and is reliant on a preliminary calibration procedure that uses hypercapnic or 

hyperoxic gas challenges. However, the need for specialized gas delivery and monitoring 

equipment and associated biophysical confounds of the gas challenges have hampered the 

widespread adoption of calibrated fMRI. One such confound is the magnetic susceptibility of 

dissolved oxygen, which, like deoxyhemoglobin, is paramagnetic. A theoretical model for 

calculating the susceptibility of dissolved oxygen in blood was derived and experimentally 

validated in ex vivo plasma samples, showing excellent agreement between theory and 

measurement. These findings indicate that the susceptibility of dissolved oxygen has a negligible 

contribution to the overall susceptibility of blood and are consistent with deoxyhemoglobin being 

the predominant source of contrast during hyperoxic BOLD studies.  

Intravascular signal is known to significantly contribute to the BOLD signal, however, it 

is difficult to incorporate into BOLD signal simulations due to the vast number of red blood cells 
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in vessels. To address this, a model to describe intravascular signal evolution during free induction 

decay, a spin echo sequence, or a multi-echo spin echo sequence was derived using a validated 

analytical model of diffusion-induced decay in weak field inhomogeneities. The derived model 

was in excellent agreement with simulations under a range of conditions including field offset 

strength, inhomogeneity extent, and pulse sequence. With its ability to accurately predict the full 

dephasing and refocusing time course of blood, this model could be applied to better understand 

intravascular BOLD effects, including during gas-free calibration, and more general blood 

relaxation properties. 

Finally, a gas challenge-free alternative to fMRI calibration was investigated. This was 

based on measuring the reversible component of signal decay resulting from the field 

inhomogeneities surrounding deoxygenated blood vessels. Simulations showed that diffusion in 

the extravascular space resulted in an underestimation of the calibration constant of approximately 

15–40%, depending on the underlying vessel-size distribution. A method for characterizing and 

correcting this underestimation was proposed and validated in silico and in vivo. This work could 

greatly simplify calibrated fMRI by removing the need for a gas challenge. 
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Résumé 

ETTE thèse présente de nouvelles modélisations théoriques et des études expérimentales de 

la biophysique du signal qui dépend du niveau de l'oxygénation du sang (BOLD), issu de 

l'imagerie par résonance magnétique fonctionnelle (IRMf), avec l'objectif central d’avancer l'IRMf 

calibré. L'IRMf calibré est une technique d'imagerie qui mesure les facteurs hémodynamiques et 

métaboliques changeants qui contribuent au signal BOLD et repose sur une procédure de 

calibration préliminaire qui utilise des tests de gaz hypercapniques ou hyperoxiques. Cependant, 

la nécessité d'un équipement spécialisé de livraison et de surveillance des gaz et des confins 

biophysiques associés aux tests de gaz, a empêché l'adoption généralisée de l'IRMf calibré. Une 

des sources de confusion est la susceptibilité magnétique de l'oxygène dissous qui, comme la 

désoxyhemoglobine, est paramagnétique. Un modèle théorique pour calculer la sensibilité de 

l'oxygène dissous dans le sang a été dérivé et validé expérimentalement dans des spécimens de 

plasma ex vivo, démontrant un excellent accord entre la théorie et la mesure. Ces résultats 

indiquent que la susceptibilité de l'oxygène dissous a une contribution négligeable à la 

susceptibilité globale du sang et supportent le fait que la désoxyhemoglobine est la principale 

source de contraste lors des études hyperpoxiques BOLD. 
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On sait que le signal intravasculaire contribue de manière significative au signal BOLD, 

mais il est difficile d'incorporer ce signal dans des simulations du signal BOLD en raison du grand 

nombre de globules rouges dans les vaisseaux. Pour remédier à cela, un modèle pour décrire 

l'évolution du signal intravasculaire lors de la décroissance d'induction libre, une séquence d'écho 

de spin ou une séquence d'écho de spin à écho multiples a été dérivée en utilisant un modèle 

analytique validé de la décroissance du signal par diffusion dans des inhomogénéités de champ 

magnétique faible. Le modèle dérivé était en excellent accord avec des simulations dans une 

gamme de conditions, y compris la puissance du champ, l'étendue de l'inhomogénéité et la 

séquence des impulsions radiofréquences. Avec sa capacité à prédire avec précision le déphasage 

complet et le recentrage du signal dans le sang, ce modèle pourrait être appliqué pour mieux 

comprendre les effets intravasculaires BOLD, y compris lors de la calibration sans gaz, et des 

propriétés plus générales de relaxation du sang. 

Enfin, une alternative pour la calibration sans l’utilisation de gaz a été étudiée. Ceci était 

basé sur la mesure de la composante réversible de la décroissance du signal résultant des 

inhomogénéités du champ entourant les vaisseaux sanguins désoxygénés. Les simulations ont 

montré que la diffusion dans l'espace extravasculaire a entraîné une sous-estimation de la constante 

de calibration d'environ 15 à 40%, selon la distribution de la taille du vaisseau. Une méthode pour 

caractériser et corriger cette sous-estimation a été proposée et validée en silico et in vivo. Ce travail 

pourrait simplifier considérablement l'IRFF calibré en supprimant le besoin d'un défi gazeux. 
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Introduction 

AGNETIC resonance imaging (MRI) is fundamentally impacted by inhomogeneities in 

the polarizing magnetic field (B0) at all spatial scales [1]. Inhomogeneities at the 

macroscopic scale span across many imaging voxels and arise from magnet imperfections, 

gradient and shim coils, and from susceptibility differences between large structures such as air 

and tissue. Besides some notable exceptions, such as quantitative susceptibility mapping [2], these 

variations are typically considered a nuisance, resulting in broad areas of signal dropout and 

geometric distortion, without adding physiological information. At the microscopic scale, 

fluctuations in the magnetic field from atomic and molecular motion result in longitudinal and 

transverse relaxation [3]. Variations in relaxation across tissues give MRI its vast array of contrasts 

for tissue identification and are largely responsible for the profound impact MRI has had on 

medicine [4]. In between, at the mesoscopic scale, susceptibility differences in structures smaller 

than a voxel, such as cells, result in changes in the signal that are dependent on physiological 

parameters of interest, such as blood volume or trabecular bone structure [5]. Mesoscopic 
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inhomogeneity has been especially important for the development and understanding of functional 

MRI (fMRI) based on the blood oxygenation level-dependent (BOLD) signal [6-8]. This manifests 

itself as inhomogeneities around the red blood cells, directly affecting intravascular water, and as 

inhomogeneities surrounding vessels, affecting extravascular water, with both intra and 

extravascular compartments known to significantly impact the BOLD signal [9,10]. 

The use of the BOLD signal to map regions of correlated neural activity has become 

ubiquitous in cognitive neurosciences. The BOLD signal is sensitive to the volume of blood in 

tissue and the concentration of paramagnetic deoxyhemoglobin in blood [11]; the latter being 

determined by the balance of oxygen delivered through blood flow and the oxygen consumed by 

oxidative metabolism. Upon stimulation, changes in neural activity are accompanied by increases 

in cerebral blood flow and metabolism [12-15]. Thus, the BOLD signal is an indirect and 

qualitative measure of neural activity and is very sensitive to the flow-metabolism relationship. 

Calibrated fMRI is an imaging method used to disentangle and quantify the metabolic and 

hemodynamic changes inherent in standard BOLD fMRI [15]. This has made it a powerful tool 

for comparing functional responses across groups where vascular or metabolic physiology may 

differ, such as in aging or neurovascular diseases [16]. However, current fMRI calibration methods 

require gas challenges that use specialized gas delivery and monitoring equipment that can be time 

consuming to set up and administer and uncomfortable for the subject. Furthermore, intravascular 

signal is often ignored in biophysical models and simulations of the BOLD signal, including 

calibrated fMRI [15,17,18]. One reason for this is that, currently, there is no satisfactory model for 

incorporating intravascular signal into simulations in a way that is computationally tractable and 

that can accurately describe the dephasing and refocusing of blood signal during gradient echo or 

spin echo sequences [19,20]. 
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One common gas challenge for calibrated fMRI is the inhalation of oxygen enriched air 

(inducing hyperoxia) [21,22]. This method has come under scrutiny recently due to a study 

suggesting that the concentration of dissolved oxygen in arterial blood plasma is sufficiently high 

during hyperoxia to significantly alter the magnetic susceptibility of blood and, as a result, the 

BOLD signal [23]. This is in contradiction to the conventional assumption that only changes in the 

concentration of deoxyhemoglobin in venous blood lead to BOLD signal differences during 

hyperoxia. The objectives of this thesis, therefore, are: 

1. To determine how dissolved oxygen in blood affects hyperoxia-based BOLD fMRI studies, 

such as fMRI calibration. 

2. To derive an analytical signal model that can describe the complete transverse signal 

evolution from blood under gradient echo, spin echo, and multi-echo sequences. 

3. To simplify calibrated fMRI by developing a calibration technique that does not require a 

gas inhalation experiment. 

To achieve these objectives, BOLD relaxation properties were studied using analytical 

signal models and simulations. Where advancements in the theoretical models were made, an 

emphasis was placed on using experiments to validate their predictions or demonstrate their proof-

of-principle. In all, it is hoped that this work underscores the role that analytical modelling and 

simulations can play in improving our understanding of the biophysics of the BOLD signal and in 

guiding imaging strategies to probe brain physiology. 

This thesis is composed of three manuscripts and is laid out as follows. The thesis begins 

with a review of the relevant literature in Chapter 2, including background on cerebral physiology, 

the BOLD effect, and intravascular signal modelling. Chapter 3 describes the simulation 
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methodology used in the thesis, including its development and its implementation. To address the 

controversy surrounding the effect of dissolved oxygen on BOLD fMRI, oxygen’s susceptibility 

in blood is theoretically derived and experimentally validated. Chapter 4 presents this work and is 

a paper published in Magnetic Resonance in Medicine (Vol. 75(1):363–71). Chapter 5 presents an 

extended analytical model for intravascular signal evolution that can be applied to simplifying the 

calculation of intravascular signal in BOLD simulations or to fitting experimental relaxometry 

data. This chapter is a manuscript prepared for submission to Journal of Magnetic Resonance. 

Amongst other applications in this thesis, the simulations gave useful insights into gas-free 

calibration and the quantification of the reversible transverse relaxation rate, R2′, where earlier 

studies performing this were unable to address the impact of diffusion-induced loss of phase 

coherence [24-28]. In Chapter 6, an empirical signal model, based on the simulation results, is 

proposed for gas-free calibration and is compared against conventional hypercapnia-based 

calibration techniques in vivo. This chapter is a manuscript that has been submitted to NeuroImage. 

Finally, Chapter 7 discusses the overall thesis outcomes and areas of future work. 
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Background 

UNCTIONAL MRI (fMRI) based on the blood oxygenation level-dependent (BOLD) signal is 

predicated on the coupling between neural activity and cerebral blood flow (CBF), as well 

as the physical relationship between the oxygenation state of hemoglobin and its magnetic 

susceptibility. This chapter explores these biophysical relationships and how they give rise to the 

BOLD effect and how physiological parameters of interest may be inferred from the BOLD signal. 

2.1 Neurovascular Coupling 

2.1.1 Neural Energetics 

In all neurons, an electric potential exists across the cell membrane; it is produced by an unequal 

distribution of ions, primarily K+ and Na+, in the intra- and extra-cellular spaces. When a neuron 

receives an electrical or chemical signal at its dendrites, ion channels across the cell membrane 

F 
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open or close in a coordinated fashion allowing ions to flow in or out of the cell depending on the 

electrochemical gradients. This electrochemical signal will propagate down the dendrites to the 

neuronal body, or soma. If the soma is depolarized beyond a cell-specific threshold, an electric 

impulse will propagate along the cell axon via an action potential. Each neuron’s action potentials 

are of the same magnitude; therefore, the amplitude of the soma’s depolarization is transmitted by 

the frequency of action potential firing [29]. When an action potential reaches an axon synapse, 

neurotransmitters are released, allowing the signal to propagate to post-synaptic neurons. From a 

thermodynamic perspective, neuronal signalling is an energetically downhill process [30]; 

returning the neuronal ionic and neurotransmitter gradients to their basal levels requires energy 

metabolism. This is fuelled by adenosine triphosphate (ATP) consumption and the ATP is 

replenished primarily by oxidative metabolism of glucose [31]. 

 The brain does not have large reserves of glucose or oxygen, requiring the two to be 

constantly delivered to the brain through the blood supply. Glucose is dissolved in plasma and it 

diffuses down its gradient from blood into tissue when it enters the capillary bed. Oxygen, on the 

other hand, has very low solubility in plasma; to compensate, the vast majority of oxygen is 

transported bound to hemoglobin (Hb) in red blood cells [32]. The volume fraction of red blood 

cells in blood, referred to as the hematocrit, is on the order of 40–45% [33]. This allows for a 

substantial amount of oxygen to be delivered to tissue once in the capillary bed. The resulting 

fraction of oxygen that is extracted from blood in the brain (the oxygen extraction fraction – OEF) 

has been found to be approximately 35–40% and is very uniform across the brain, as determined 

by both MRI and positron emission tomography [34-37]. 

With the use of a variety of imaging techniques, it has been well established that cerebral 

blood flow (CBF), the cerebral metabolic rate of glucose, and the cerebral metabolic rate of oxygen 
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(CMRO2) all increase in activated regions of the healthy brain [12,15,31]. To meet the neuronal 

demands for glucose and oxygen, smooth muscle surrounding arterioles will relax or contract, 

driven by various signalling mechanisms, thereby controlling CBF via arteriolar diameter. This 

relationship between neural activity, energy metabolism, and CBF is known as neurovascular 

coupling and it provides the physiological foundation for most functional neuroimaging. 

2.1.2 Cortical Cerebrovascular Physiology 

The majority of neuronal signalling and cell metabolism of the central nervous system is localized 

to grey matter (GM). White matter (WM) consists primarily of the myelinated axon bundles that 

conduct neural signals between brain regions and their supporting glial cells. Accordingly, cerebral 

blood volume (CBV) in GM is approximately twice that of WM, with CBV being ~4–5.5% in GM 

[34,38]. Fresh oxygenated blood is delivered to the brain by arteries. Pial arteries divide across the 

surface of the brain and eventually dive into the cortex becoming penetrating arterioles. 

Penetrating arterioles become parenchymal arterioles and branch off at different depths throughout 

the cortex, as shown in Figure 2.1. All arteries and arterioles are surrounded to some degree by 

smooth muscle, allowing them to dilate or constrict to control blood flow [39]. 

Glucose and oxygen extraction and water and waste exchange are generally thought to 

occur primarily at the level of the capillaries. However, recent experimental evidence from two-

photon microscopy with a partial pressure of oxygen (pO2) tracer has shown that a significant 

fraction of baseline oxygen extraction occurs at the precapillary arterioles and suggests that the 

role of capillaries may be to supply oxygen during focal increases in neural activity [40,41]. 

Capillaries have no smooth muscle but are instead composed of specialized endothelial cells and 

are surrounded by pericytes and astrocytic end feet, which have debated vasoactive properties and 
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may play a role in transcellular water and ion exchange, respectively [39]. Capillaries form a dense 

web of interconnected vessels, increasing their surface area and granting them close proximity to 

neurons. The density of capillaries also varies with cortical depth, as shown in Figure 2.2, and is 

highly correlated with neuronal synaptic density [42,43]. 

 

Figure 2.1: Drawing of intracortical penetrating arterioles and draining venules. 

Each arteriole (venule) is labeled according to its depth of penetration (drainage) with 1 being the 
shallowest layers and 6 being the deepest, as proposed by Duvernoy et al. [42]. Arterioles are red 
and labeled ‘A’, and venules are black and labeled ‘V’. The scale on the right corresponds to the 
six cortical cellular layers and subcortical (SC) white matter. Adapted from [42]. 

Veins drain blood and metabolic waste products, such as carbon dioxide, from the brain. 

In contrast to arteries, veins are thin-walled, valve-less, and only large pial veins possess smooth 

muscle [39]. As a result, post-capillary veins do not appear to actively participate in the control of 

blood flow and are thought to passively change their volume in response to increased driving blood 

pressure [13,44]. Superficial cortical veins in the pia matter drain the cortex and subcortical WM. 
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Like penetrating arterioles, cortical veins and venules drain blood from different ranges of cortical 

depths, as shown in Figure 2.1. 

 

Figure 2.2: Section of cortical vessels. 

Stereoscopic microscope images of Indian ink injected and fixed section of cortex. The variable 
density of capillaries tangentially and across depths is evident. The scale on the left shows the six 
cortical cellular layers and subcortical (SC) white matter, and the drawings show the cell and fibre 
types. The scale on the right shows the cortical vascular layers, as proposed by Duvernoy et al. 
[42]. Adapted from [42]. 

The distribution of blood volume amongst the three compartments (arterial, capillary, 

venous) is not equal. Different studies have put the arterial CBV at approximately 10–20% of total 

CBV, and capillary and venous CBV in the range of 30–50% of CBV (such that the sum of the 

three adds up to 100%) [19,43,45,46]. The radii of the largest penetrating arteries range from 25–

120 μm, and the smaller penetrating and parenchymal arterioles range in size from 5–20 μm [42]. 

Capillary radii are generally around 1.5–5 μm [19,40,46-48]. Due to fixation and embedding 

methods used in ex vivo samples, veins often get deformed [42,46]. After accounting for this, 

estimates of the radii of draining cortical veins are greater than those of arteries, on average, and 
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are ~10–60 μm [42]. The distributions of vessel sizes have been fit to statistical distributions using 

different imaging modalities. Germuska et al. [49] have estimated the median vessel sizes using 

vessel-size index MRI with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) contrast 

agent and have reported that the distribution of sizes can be described by a Frechet distribution 

with a median radius of 10.1 μm. Similarly, Lauwers et al. [46] have described the distribution of 

vessel sizes from confocal laser microscopy on Indian ink injected ex vivo human brain. They 

found that the inverse of the square root of the radius of all vessels followed a normal distribution. 

The mean radius of capillaries was 3.25 μm and the mean radius of all vessels was 3.9 μm, much 

smaller than the median radius of 10.1 μm obtained by Germuska et al. [49]. These distributions 

are explicitly shown in Chapter 6. The discrepancy between the two distributions may be due to i) 

shrinkage of the ex vivo samples due to their preparation [46], ii) surface vessels being excluded 

from ex vivo analyses, and iii) a distinct lack of larger vessels due to the ex vivo samples 

originating in a sulcus [42]. This highlights the challenge in obtaining a “true” distribution of 

cerebral microvascular sizes. 

2.2 BOLD Imaging 

2.2.1 Origins of the BOLD Signal 

The biophysical basis of BOLD fMRI is dependent on the fact that oxygen in the body is 

transported bound to hemoglobin within blood. Hb is a large protein with four heme prosthetic 

groups with an iron ion in the ferrous oxidation state (Fe2+) at each of their centres that can bind 

oxygen. The binding of oxygen to Hb changes its magnetic susceptibility, χ, from paramagnetic in 
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the deoxygenated state to diamagnetic in the oxygenated state [50]. The susceptibilities of blood 

and the surrounding tissue are close to matched when the blood oxygen saturation level (SO2: the 

fraction of Hb molecules in the oxygenated state) is near 100% [51]. Where susceptibilities differ, 

offsets in the local B0 field arise, which lead to quicker dephasing of the transverse magnetization, 

i.e., shortened irreversible and apparent transverse magnetization relaxation times (T2 and T2
*). 

The dependence of the B0 inhomogeneity on susceptibility differences across blood vessels 

can be expressed analytically by solving Maxwell’s equations if the vessels are approximated as 

infinitely long cylinders of uniform susceptibility. Based on the orientation of the blood vessel 

relative to B0 and the susceptibility difference, Δχ, between the vessel and the surrounding medium 

(tissue), the field offset, ΔB0, is given by [52] 

 
outside  cylinder

inside  cylinder
(2.1) 

where the geometry and variables are as defined in Figure 2.3a. This solution describes a 

characteristic dipole field about the cylinder (Figure 2.3b). 
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Figure 2.3: Field offsets produced by an infinite cylinder. 

(a) Geometry used to describe the orientation of B0 relative to the cylinder (adapted from [53]). (b) 
Normalized frequency offset produced when B0 is perpendicular to the cylinder. 

What enables the use of the BOLD signal as a surrogate of neural activity is that increases 

in neural activity lead to increases in CBF, to allow for more nutrients to be delivered to the 

activated tissues. Furthermore, there is a significantly larger increase in CBF than in CMRO2
 [14], 

resulting in a decrease in the venous concentration of deoxygenated Hb (deoxyHb), an increase in 

T2
*, and, therefore, an increase in the measured BOLD signal [6-8]. In summary, increased neural 

activity leads to an increased BOLD signal, under normal physiological conditions. 

The concentration of deoxyHb in venous blood, or conversely, the concentration of oxygen 

in venous blood, is related to CMRO2 and CBF through Fick’s principle of conservation of mass: 

 

 

 (2.2) 



2.2 BOLD Imaging 13 

 where CxO2 is the concentration of oxygen in arterial blood (x = a) or venous blood (x = v) and 

SxO2 is the saturation of hemoglobin in arterial or venous blood. The first approximation in Eq. 

(2.2) comes from the assumption that the majority of oxygen in blood is bound to hemoglobin and 

that the dissolved oxygen content is negligible [32]. The second approximation comes from the 

assumption that arterial blood is fully saturated such that SaO2 ≈ 1. When these assumptions are 

violated, such as under hyperoxia, then the first two expressions must be used. 

2.2.2 Vessel-Size Sensitivity 

Since the early days of BOLD fMRI, it has been appreciated that the sensitivity of the BOLD 

signal is not uniform across vessel sizes [17,52,54,55]. The sensitivities are often assessed by the 

changes in either the apparent transverse relaxation rate (R2
*) for gradient echo (GE) BOLD or the 

irreversible transverse relaxation rate (R2) for spin echo (SE) BOLD. The origin of this vessel-size 

sensitivity is the diffusion of water molecules through the field inhomogeneities resulting from the 

blood-tissue Δχ. Diffusion of water molecules through tissue can be described by a Gaussian 

probability distribution function along each dimension [56]: 

 (2.3) 

 where P(X, t)dx is the probability of molecules diffusing a distance X along one dimension in a 

time t, and D is the diffusion coefficient. Due to cell boundaries that restrict mobility, diffusion 
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can vary greatly across tissues in the brain, and what is measured in vivo is referred to as the 

apparent diffusion coefficient (ADC). The ADC of cortex is relatively isotropic and is 

approximately 0.75–1.0 μm2/ms [57-59]. 

 

Figure 2.4: GE and SE BOLD vessel-size sensitivities. 

Vessel-size dependence of the effective gradient echo (solid line) and spin echo (dashed line) 
relaxation rates. Reproduced from [17]. 

Depending on the relative proportions of the characteristic diffusion distance and the 

dephasing induced by the field inhomogeneities, the system of spins is said to be in one of three 

dephasing regimes: motional narrowing, intermediate, or static dephasing [60]. Motional 

narrowing corresponds to the case where diffusion is large relative to the field inhomogeneities, 

such as surrounding small vessels. Static dephasing corresponds to the opposite, such as 

surrounding large vessels, where diffusion is small relative to the field inhomogeneities. And the 

intermediate dephasing regime is observed in between these extremes.  Figure 2.4 shows how these 

regimes manifest themselves in the GE and SE BOLD relaxation rates. These curves can be 

explained by two competing processes: the ability to dephase, and the ability to refocus. For 

smaller vessels, nuclei are exposed to a range of field inhomogeneities as they diffuse. This 

exposure to a wide range of field inhomogeneities results in each spin accumulating a smaller net 

phase but also a loss of phase memory and irreversible signal loss. As the vessel size increases, 



2.2 BOLD Imaging 15 

the amount of dephasing increases since more nuclei become consistently exposed to large field 

offsets. By the same argument, the ability to refocus the dephasing with a 180° pulse also increases 

with vessel size since the likelihood of nuclei being exposed to the same fields prior to and after 

the pulse increases. This explains why R2 and R2
* are almost equal for the smallest vessels, because 

refocusing was less effective and because there was less decay to begin with (motional narrowing 

regime: small R2
*, small R2). For large vessels, decay is quite strong and so is the refocusing (static 

dephasing regime: large R2
*, small R2). For intermediate vessels, the amount of decay starts to 

become more significant but the refocusing is still not effective enough to undo all the dephasing 

(intermediate dephasing regime: medium R2
*, medium R2). 

Because of these features, GE BOLD is particularly sensitive to blood oxygenation changes 

in large draining veins, such as on the pial surface, and SE BOLD is more sensitive to blood 

oxygenation changes around capillaries. Given the correlation between capillary and synaptic 

density discussed in section 2.1.2, SE BOLD is considered more spatially specific to changes in 

neural activity than GE BOLD [17,61,62]. However, GE BOLD is much more commonly 

employed since it has higher sensitivity because of its larger R2
*. 

The reliance of R2
* on the concentration of deoxyHb ([dHb]) can be described by [15] 

 (2.4) 

where R2|0
* is the R2

* from non-deoxyHb sources, k is a field strength and sample-dependent 

scaling factor, CBVV is the venous CBV (or volume of deoxygenated blood), and β, the non-linear 

dependence of R2
* on [dHb], is a parameter that reflects diffusion-induced dephasing. From extra-

vascular simulations, β is approximately 2 for small vessels, 1 for large vessels, and somewhere in 



Background 16 

between 1 and 2 for distributions of vessel sizes [15,17,52]. Recent studies have also aimed to 

measure β in vivo: maps of β across the brains of rats have been generated with the administration 

of the contrast agent, feraheme, and the changes in R2′ were related to the change in contrast agent 

concentration to measure β [63]. However, using a contrast agent that substantially alters the 

susceptibility of blood and the dephasing regime of extra-vascular water, may not be appropriate 

for estimating β, as β is itself dependent on the dephasing regime [64]. β has also been measured 

in humans in grey matter by increasing the participants’ inspired oxygen levels while measuring 

changes in R2
* [65]. This latter technique may be more appropriate for measuring β because, like 

the BOLD signal, it is localized to deoxygenated CBV and it only slightly alters the susceptibility 

of blood by changing SvO2. 

2.2.3 Calibrated fMRI 

The physiological changes underlying the BOLD signal can be ascertained through biophysical 

signal modelling. With the use of Fick’s principle and by combining results from simulations and 

experiment, Davis et al. [15] created a simple model of how hemodynamic and metabolic changes 

influence the BOLD signal, known as the calibrated fMRI model. This model is represented by the 

equation below 

 
ΔBOLD
BOLD

CBF
CBF

CMRO
CMRO

(2.5) 

where the subscript ‘0’ refers to a value at baseline.  accounts for coupling between changes in 

CBVV and CBF, arising from an empirical power law relation between the two, and is known as 

the Grubb constant [13,66,67]. This value is approximately 0.2 – as measured by changes in CBF 

and deoxygenated CBV induced by hyper- and hypocapnia [67] and visual and sensorimotor 
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stimulation [13]. β is as described in the previous section. M, known as the BOLD calibration 

constant, is proportional to the resting concentration of deoxyHb in blood and it represents the 

maximum fractional increase in the BOLD signal, which would theoretically occur upon removal 

of all deoxyHb in blood (i.e. venous SO2 → 100%) [15]. M is related to the resting physiology and 

relaxation rate in Eq. (2.4) by the following [14] 

 (2.6) 

 

If M is known, Eq. (2.5) can be inverted to measure fractional changes in CMRO2 from 

task-induced BOLD and CBF signals. The goal, therefore, of an fMRI calibration experiment is to 

measure M across the brain. Several techniques exist for measuring M, including increasing 

inspired CO2 (inducing hypercapnia) while acquiring BOLD and CBF images [15] or increasing 

inspired O2 (inducing hyperoxia) while acquiring BOLD images and measurements of arterial pO2 

[21]. By removing the need for estimating CBF changes with lower signal-to-noise ratio arterial 

spin labelling images, hyperoxic M estimates have greater precision than hypercapnic estimates 

[22], however, they require the assumption of baseline hematocrit and OEF, which can lead to 

increased bias [26]. By combining the two gas challenges, it is possible to estimate baseline OEF 

and CMRO2 and, hence, reduce some of the bias of hyperoxic calibration [36,68]. Recent 

controversy surrounding the magnetic susceptibility of dissolved oxygen in blood did bring into 

question the use of hyperoxia in BOLD studies, however, this issue is resolved via the work 

presented in Chapter 4. 
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Shortly after the introduction of calibrated fMRI [14,15], Kida et al. [24] proposed a gas-

free calibration technique based on the measurement of the transverse relaxation rates, R2 and R2′. 

R2 and R2
* were measured using multi-echo spin echo and gradient echo echo planar imaging 

sequences, from which R2′ was determined via the relation R2
* = R2 + R2′. These relaxation rates 

and CBF were sequentially measured in rats under anesthesia and under additional neural activity 

modulating agents to infer the metabolic and hemodynamic-induced changes in R2 and R2′ and to 

compare them to an MR spectroscopic measure of ΔCMRO2. This required long total acquisition 

times that were feasible with the paradigm of pharmacological agents employed in animals but 

would not easily translate to tasks of shorter duration often employed in humans. A key finding, 

however, was that R2′ was ~3 times more sensitive to changes in venous oxygenation than R2, 

suggesting that R2′ alone may be sufficient to assess vessel oxygenation. Fujita et al. [25] later 

used this finding to perform gas-free calibration in healthy human subjects by quantifying R2′ at 

rest only using the GESFIDE (gradient echo sampling of FID and echo) sequence [69], and 

substituting  in Eq. (2.6) with R′2|0. Other methods for gas-free calibration have since been 

proposed and this is the topic of Chapter 6. 

2.2.4 Intravascular BOLD Signal 

In developing the calibrated fMRI model in Eq. (2.5), intravascular (IV) contributions to the BOLD 

signal were ignored [14,15]. However, due to the strong field offsets generated by deoxyHb, 

intravascular nuclei, while small in number relative to extravascular (EV) nuclei, can make up 

approximately 50% of the BOLD signal at 1.5 T, 30% at 3 T and 10% at 7 T for conventional 

acquisition parameters [9]. Given this non-negligible contribution, it is important to consider IV 
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contributions when modelling the BOLD signal. From a simulation perspective, a straightforward 

way to incorporate IV signal is by populating the vessels to the desired hematocrit by modelling 

red blood cells as spherical perturbers (for which the field offsets can be described analytically) or 

another, more realistic, geometry [10,70]. However, this method is extremely computationally 

demanding given the enormous number of red blood cells that populate each vessel. A simpler 

alternative is to analytically calculate the IV signal and to incorporate it into a purely EV signal 

model, although this has typically only been done assuming monoexponential decay while 

ignoring the dephasing and refocusing of IV signal during a spin echo [19,71-73]. 

The relaxation rate of blood itself has predominantly been described by theories of 

chemical exchange or molecular diffusion [74]. In exchange theory [75], water molecules are in 

fast exchange between red blood cells and plasma, with a susceptibility-induced Larmor frequency 

shift between the two sites, such that the transverse magnetization dephases over time. In 

molecular diffusion theory, the diffusion of water molecules through the distribution of field 

offsets produced by red blood cells results in the net dephasing of transverse magnetization over 

time [76]. Given that red blood cells are compact (generally described by a biconcave disc with a 

diameter of ~8 μm and thickness of 2.5 μm [77]) and diffusion in plasma is relatively high, blood 

is typically considered to be in the motional narrowing regime [60]. In this case, the molecular 

diffusion theory can be described by the so-called weak field approximation of Jensen and Chandra 

[76]. 

The relaxation rate of blood (R2,blood) from both exchange and diffusion theories can be 

described by the general expression [78] 

 (2.7) 
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where R2,0 reflects the intrinsic relaxation rates in red blood cells and plasma and will have a 

dependence on the hematocrit and the oxygenation of red blood cells, and ΔR2 is the added 

relaxation rate from either exchange or diffusion. ΔR2 depends on the pulse sequence (GE or SE) 

and the spacing between 180° pulses if a multi-echo SE sequence is used to measure R2. The 

dependence of ΔR2 on B0 and the physiological parameters from both theories is ΔR2 ∝ Hct (1 – 

Hct) ((1 – SO2) B0)2, where Hct is the hematocrit [45,76,79]. The weak field approximation 

explicitly models the dependence on the inhomogeneity length scale (i.e. the red blood cell size), 

whereas, in exchange theory, this size dependence is subsumed in the exchange lifetime of water. 

The molecular diffusion theory would appear to be a more intuitive description of the 

process leading to dephasing since there is a range of field offsets that nuclei are exposed to in and 

around red blood cells. In fact, studies at multiple field strengths from 1.5 to 7 T have found that 

the weak field approximation produces better fits to measured relaxation rates in blood samples 

than the exchange model [78,80,81]. However, not all studies find this trend [82], and in reality, 

the differences between the two models’ predictions may be small enough to not be of practical 

concern [78].
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Deterministic Diffusion Simulations 

 substantial amount of the work in this thesis consisted of simulating the evolution of 

transverse magnetization in the presence of magnetic field perturbations, such as those 

produced by red blood cells or blood vessels. The method of simulation employed is referred to as 

the deterministic diffusion method [83]. A brief background on this method is provided, followed 

by a more detailed description of how it was implemented in this thesis.  

3.1 Background 

The deterministic diffusion method was originally developed by Bandettini and Wong [83] to 

efficiently simulate the extravascular MR signal where blood vessels were modelled as infinite 

cylinders. This method differs from Monte Carlo (MC) simulations – where the phases are 

calculated for individual hydrogen nuclei following a random walk throughout the field 

inhomogeneities – in two notable ways: 

A 
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1. Diffusion of nuclei is modelled as a blurring of the transverse magnetization across space.  

2. The transverse magnetization and the field inhomogeneities are calculated across a 

discretized grid in either two-dimensional (2D) or three-dimensional (3D) space. 

The first point was justified by the fact that, as discussed in Section 2.2.2, the unhindered diffusion 

of water molecules across space will follow an isotropic Gaussian probability distribution over 

time. In this case, the diffusion of transverse magnetization can be modelled as the convolution of 

the magnetization with a Gaussian smoothing kernel. Discretizing the magnetization across space 

enables the practical implementation of the convolution. 

In addition to these differences, Bandettini and Wong’s original implementation of the 

deterministic diffusion method calculated the signal from an ensemble of randomly oriented 

vessels in a radically different manner – in keeping with the aim of improving the computational 

efficiency of the simulations. Unlike earlier MC simulations, where blood vessels (or cylinders) 

were typically randomly distributed and randomly oriented in 3D [10,17,52,55,84], the 

deterministic diffusion method only considered the transverse magnetization in a 2D plane with a 

single infinite cylinder placed at its centre and normal to the plane, as shown in Figure 2.3. The 

ratio of the cylinder’s radius and the simulation plane’s width were chosen to give the desired 

CBV. The simulations were repeated with the B0 angle stepped through a range of azimuthal and 

polar angles and the final MR signal from an ensemble of randomly oriented vessels was obtained 

by averaging the simulations from each B0 angle. Later, Schwarzbauer and Deichmann [23] 

showed that the simulations were rotationally invariant under changes in ϕ, thereby further 

reducing the simulation time by eliminating the need to step through azimuthal angles. 
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The above approach substantially reduced the time required to simulate the signal from an 

ensemble of vessels as compared to 3D Monte Carlo (MC) simulations, however, it is limited to 

modelling infinite cylinders and does not give an estimate of the variability of the simulations like 

one gets from MC simulations, where the simulations are repeated with multiple random walks of 

spins. These limitations can be removed by performing the simulations in 3D with multiple vessels 

all randomly oriented in space, just as in 3D MC simulations [71]. Each vessel can take on a 

different radius and any orientation in space, and to get a measure of the variability in the 

simulations, the simulations can be repeated with multiple simulation networks, each with the same 

CBV but with a different distribution of the vessels in space. Other than the method used to 

calculate the transverse magnetization, these simulations are identical to MC simulations and can 

be used to calculate the signal from any distribution of perturbers, be they cylinders or spheres, for 

which there exist analytical expressions for the field inhomogeneities generated by them, or more 

arbitrary geometries, for which the field offsets can be calculated by Fourier-based forward field 

modelling [85-87]. 

Finally, while running  the simulations in 3D presented a trade-off between the simulations’ 

computational efficiency and their ability to generate variability in their results, Pannetier et al. 

[73] managed to satisfy both requirements by returning the simulations to 2D. They randomly 

distributed multiple cylinders, all perpendicular to the 2D plane, up to the desired CBV. Rather 

than average the simulations over a series of B0 directions, they calculated the signal just once but 

where the field offsets surrounding the vessels were calculated from the weighted average of the 

field offsets generated at two orthogonal B0 directions (one parallel and one perpendicular to the 

vessels). This was done to mimic the B0 distribution of a 3D vessel network. By rerunning the 
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simulations using multiple spatial distributions of the vessels in 2D, they obtained the same sort 

of variability one might get in 3D. 

3.2 Implementation 

In this thesis, simulations were performed in both 2D and 3D, depending on the application: vessel 

networks were simulated in 2D and sphere networks were simulated in 3D. For simplicity, the 

theory of the deterministic diffusion method will be presented in 2D but, given that the convolution 

process is independent along each dimension, extension of the method to 3D is trivial. All 

simulations were run in MATLAB (MathWorks, Inc., Natick, MA) with some of the functions 

coded in C using the MEX library. Here, the general implementation of the simulations is 

described, and the details of the applications are described in the chapters that follow. 

3.2.1 Defining the Perturbers 

The simulations here were all run over areas or volumes with isotropic side length, W. The 

simulations were discretized onto a lattice with N elements per dimension, resulting in a spatial 

resolution Δx = W/N. In the case of the 2D vessel networks, the networks were defined in the 

following way: 

1. Vessels were modelled as infinite cylinders perpendicular to the simulation plane. 

2. The centre coordinate of each vessel was randomly selected from a continuous uniform 

distribution across the plane with each coordinate ranging from -W/2 to +W/2. 

3. Vessel radii were either constant or randomly selected from a distribution of radii. 
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4. Vessels were added to the plane until the desired volume fraction, ζ, was reached. 

This process results in a 2D matrix, P, describing the locations of the perturbers, such that Pkl = 1 

when the (k,l)-th lattice element is occupied by a perturber and Pkl = 0 otherwise.  

In addition to the perturber matrix, there is a corresponding field inhomogeneity matrix, 

Δω, that describes the net field offset at each lattice element. Here, Δω was calculated as the 

superposition of the field offsets generated by each perturber. Analytical expressions for the field 

offsets generated by a single vessel or sphere are given in Eqs. (2.1) and (5.13), respectively. 

Rather than calculate the field inhomogeneities produced by the vessels as the average from two 

orthogonal B0 directions, as in Pannetier et al. [73], we chose to assign each vessel its own 

randomly oriented B0 direction. An example vessel network is shown in Figure 3.1. This method, 

originally proposed by Miller and Jezzard [88], is more likely to reproduce the distribution of field 

offsets in a 3D network as compared to the orthogonal averaging method. To sample from a 

uniform distribution of angles across the unit sphere, the B0 azimuth, ϕ, was randomly selected 

from a uniform distribution ranging from 0 to 2π and the polar angle, θ, was assigned from a 

sin(θ)/2 distribution. This was implemented by setting θ = cos-1(2u-1), where u was randomly 

selected from the uniform distribution ranging from 0 to 1 [89]. 
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Figure 3.1: 2D vessel map and its field inhomogeneity map. 

(a) Example 2D vessel map (i.e., the P matrix). The blue circles correspond to the vessel cross 
sections. The vessel radii are random. (b) The random B0 directions assigned to each vessel. The 
directions are represented by the arrows and are overlaid on a semi-transparent version of the 
vessel map. (c) The field inhomogeneity map (i.e., the Δω matrix) generated by the vessels. All 
the vessels were assigned the same susceptibility offset, Δχ, and the map was normalized by ω0Δχ. 

In the case of the 3D sphere distributions, spheres of equal radii were distributed throughout 

the simulation volume until the desired ζ was reached and Δω was computed from the 

superposition of the dipole fields generated by each sphere. 

3.2.2 Tracking Transverse Magnetization 

The calculation of the transverse magnetization across space was performed by simultaneously 

accounting for precession, transverse relaxation, and diffusion. As is common – although not 

necessary – with many MC or deterministic diffusion simulations of the BOLD effect, longitudinal 

relaxation and the effects of imaging gradients were ignored [10,17,52,54,70,90,91]. In both the 

2D and 3D models, the complex magnetization, M, was calculated in discrete time steps, δt, and 

was operated on by a relaxation and precession matrix, R, and a diffusion kernel, D. The 

magnetization at the j-th time point was given by 
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 (3.1) 

where ⋅ denotes element-wise multiplication and ∗ denotes convolution. Following an initial 90° 

excitation pulse, Eq. (3.1) implies that each element of the lattice had a uniform magnetization 

with an initial phase of 0 and a magnitude of 1. 

The relaxation and precession matrix was given by 

 (3.2) 

where T2,ip (T2,ep) is the irreversible intra-perturber (extra-perturber) transverse relaxation time, e.g. 

in the case of a vessel network, T2,ip  was the T2 of blood and T2,ep was the T2 of grey matter. In the 

cases where just the effects of susceptibility induced dephasing were considered, T2,ip and T2,ep 

were ignored. 

Diffusion was modelled by an isotropic, Gaussian blurring of the magnetization along each 

dimension, independently. This was implemented by linear convolution (i.e., non-circular 

convolution) of the magnetization with the one-dimensional discrete diffusion kernel with a width 

parameter equal to the expected mean-square displacement of the spins, σ2 = 2Dδt, where D is the 

diffusion coefficient of water in the tissue of interest. The discrete diffusion kernel is the solution 

to the discrete-space, continuous-time diffusion equation [92]. The k-th element of the kernel was 

given by [92] 

 (3.3) 

where Nhw is the number of elements in the kernel half-width, such that the total number of 

elements in the kernel is 2Nhw + 1, and  are the modified Bessel functions of the first kind 
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of integer order k-Nhw. The half-width of the kernel was a minimum of 6σ (rounded up to the 

nearest integer) and was extended, if necessary, until 1 –  ≤ 5×10-8. This requirement assured 

that the kernel was approximately normalized and, therefore, that magnetization was conserved. 

As an example, in the simulations employed in Chapter 6, the same simulation networks were 

rescaled for vessel networks with radii ranging from 1–16 μm. For D = 0.8 μm2/ms, δt = 0.25 ms, 

and a matrix size of 10202, the normalization error, 1 – , across the full-width at 6σ was  

8×10-9 for the 1-μm networks and 1.5×10-4 for the 16-μm networks. As a result, the kernel was 

extended from a half-width of 1 to 3 for the 16-μm networks, reducing the normalization error to 

2×10-9. 

Refocusing pulses were modelled by taking the complex conjugate of the magnetization at 

each lattice element. Finally, the signal magnitude at the j-th time point was given by 

 (3.4) 

where N′ was the number of elements summed along each dimension. N′ is different from the total 

number of lattice elements along each dimension, N, and is explained below. 

3.2.3 Lattice Resolution and Extent 

In every application of the simulations, the required spatial resolution, Δx, and the spatial extent 

of the lattice, W, need to be considered. The required spatial resolution is generally constrained by 

sampling the field offsets generated by the smallest perturbers. Here, this was determined in 

advance of each study by simulating at a much higher spatial resolution than necessary and then 

finding a lower resolution where the root mean square error (RMSE) between the reference signal 
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and the test signals was still below any noticeable threshold. Generally, this RMSE threshold was 

~10-3, where the simulations were normalized to 1. 

The spatial extent of the lattice should be large enough such that: 

1. It contains enough perturbers for the simulations to converge relatively quickly. 

2. Convolution edge effects do not contaminate the sampled lattice area. 

3. Long-ranging field effects from the largest perturbers can be experienced by the spins. 

The lattice must also be small enough to meet the specific memory constraints of the CPU being 

used for the simulations. The three conditions enumerated above help define three regions for 

running the simulations: the sampled lattice area, the unsampled lattice edge, and the padded edge. 

As shown in Figure 3.2, the lattice occupies both the sampled lattice area and the 

unsampled lattice edge, and it has extent W and N elements per side. It is over the lattice (both 

sampled and unsampled regions) where the magnetization and diffusion are calculated using Eq. 

(3.1). The sampled lattice area is the region over which the magnetization is summed in Eq. (3.4) 

to calculate the net MR signal. It has extent W′ and N′ elements per side, with W′ ≤ W and N′ ≤ N. 

The sampled lattice area is related to the convergence of the simulations by the law of strong 

numbers, which tells us that the simulations will converge on the true mean as the number of 

perturbers is increased and the variance of the sample mean will be proportional to 1/(# perturbers) 

[93]. From this, the variance on the simulation estimates can be reduced by increasing the number 

of perturbers in each simulation network and/or by increasing the number of networks (Nnet) to run  



Deterministic Diffusion Simulations 30 

 

Figure 3.2: Layout of  the simulation plane. 

The entire simulation plane is enclosed in the solid black box, within it are: the sampled lattice 
area, designated by the black grid of width W′; the unsampled lattice area, designated by the grey 
grid with edge width W′′; and the padded edge, designated by the external edge with no grid and 
of edge width Wpad. The total lattice width is W = W′ + 2W′′ and the total simulation plane width 
is W + 2Wpad. Shown on the right is the net diffusion kernel for a total simulation time T; its half-
width is ~6σnet and W′′ should be greater than or equal to it. The usefulness of the padded edge is 
exemplified by the large vessel in the top right corner of the simulation plane, whose field offsets 
extend a considerable distance from its centre and into the sampled lattice area. Note that the grid 
size in the figure is much coarser than generally used in the simulations and is only drawn this way 
for illustrative purposes. 

the simulations over. If the number of perturbers is to be increased but the volume fraction kept 

constant, then W′ must be increased. This can be summarized by the relation 

 (3.5) 
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As a result of using linear convolution to compute the diffusion process, elements near the 

edge of the lattice will be given by a weighted sum of elements inside the lattice and elements 

outside the lattice with no magnetization. The unsampled lattice edge accounts for these 

convolution edge effects where the diffusion kernel interacts with areas outside of the lattice, 

which have no magnetization, and therefore corrupt the “true” magnetization inside the lattice. The 

minimum required unsampled edge length, W′′, can be determined by considering the net kernel 

width, σnet, at the end of the simulation time, T. We want the probability of magnetization at the 

very edge of the lattice to be able to diffuse into the sampled area to be approximately 0. Since we 

determined that a half-width of 6σ was sufficient to capture nearly all magnetization, W′′ can be 

determined by 

 (3.6) 

An unfortunate consequence of having to predefine the unsampled edge width when creating the 

simulation networks is that, if one later wanted to simulate for a time > T, then the networks would 

need to be recreated with a larger W′′. Fortunately, most BOLD imaging sequences do not consider 

the transverse magnetization much beyond ~100 ms, therefore, one can pick a conservative 

estimate for T such that the networks can be reused in most cases. 

The final simulation region is the padded edge. It extends beyond the lattice by an amount 

Wpad and allows for perturbers to populate the region outside of the lattice, where the magnetization 

is not tracked. This is useful in cases where the field offsets generated by perturbers are 

experienced in the lattice but the range of spin diffusion in the simulation time is too short to 

require calculating the magnetization in this area since the likelihood of spins from the padded 

edge diffusing into the sampled area, and vice versa, is very low. The minimum width required for 
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this area can be determined by selecting a threshold for which the ΔB0 from the strongest perturber 

should be sensed within the lattice. For example, if one chooses to sample down to some fraction, 

b, of the maximum ΔB0 produced by a vessel of radius R, then making the combination of the 

unsampled edge length and the padded edge a minimum size of b½R would ensure this – since the 

field offsets generated by a vessel fall off with distance r as (R/r)2. 

As a final comment, the use of the unsampled edge and the padded edge can be removed 

by performing the convolutions with the diffusion kernel using circular convolution and by 

calculating the field offsets using Fourier-based forward field modelling, respectively [73,94,95]. 

Circular convolution has the effect that spins diffusing out of the simulation lattice will wrap 

around to the other side of it and, therefore, never experience regions of undefined magnetization 

or field inhomogeneity. This circular convolution can be calculated using the product of the Fourier 

transforms of D and M. Similarly, Fourier-based forward field modelling, when performed using 

circular convolution, will also result in long-ranging field offsets wrapping around the lattice to 

the opposite edge. Although we are unaware of any side-by-side comparison of the two different 

implementations, our own experience was that the required time to calculate the convolution in the 

Fourier domain was longer. This was because, when calculated in the Fourier domain, the diffusion 

kernel needed to be a complex matrix of the same size as the simulation matrix and the forward 

and inverse Fourier transforms of M had to be calculated prior to and after multiplication with the 

diffusion kernel, respectively. When calculated in the spatial domain, the diffusion kernel could 

be significantly smaller than the lattice size and it could operate along each dimension 

independently. As a result, the convolution calculation in the spatial domain required fewer 

mathematical operations and was faster. This was our primary reason for calculating the 

simulations in the spatial domain. 
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In Chapters 5 and 6, these methods are applied to spherical and cylindrical perturbers, 

modelling red blood cells and blood vessels, respectively.
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The Susceptibility of Blood During 

Hyperoxia 

4.1 Preface 

HE use of hyperoxia in BOLD studies has gained in popularity because of its ability to 

passively increase venous oxygenation and, therefore, increase the BOLD signal and 

provide physiologically relevant contrast [21]. Furthermore, due to the lack of significant perfusion 

changes arising from hyperoxia, it provides an attractive means of calibrating the BOLD signal 

without needing to use inherently low signal-to-noise ratio arterial spin labelling sequences to 

measure perfusion changes during the gas challenge. 

In addition to oxygen’s impact on the BOLD signal through its influence on T2
*, it is known 

to directly reduce T1 [96,97], making it possible to monitor changes in the partial pressure of 

T 
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oxygen (pO2) in tissues during hyperoxia [98-101]. This T1 shortening is the result of oxygen being 

a paramagnetic molecule [102], just like deoxyhemoglobin. While the concentration of dissolved 

oxygen in blood is generally low enough to be ignored under normal physiological conditions 

[32,74], at elevated pO2 levels, the susceptibility of arterial blood may become substantially more 

paramagnetic, resulting in a confounding contribution to the BOLD signal. This is, in fact, 

precisely what was recently predicted by Schwarzbauer and Deichmann [23] using a theoretical 

model for the susceptibility of blood with dissolved oxygen. 

After evaluating the susceptibility calculations in [23], we determined that they were 

flawed in multiple ways, including overestimating the volume fraction occupied by dissolved 

oxygen and an inability to accommodate blood with non-standard hematocrit values. This chapter 

(based on [103]) presents a reformulation of the susceptibility of blood that accounts for these 

errors and that is validated through susceptibility measurements in oxygenated ex vivo bovine 

plasma and distilled water. This paper included two appendices that are included at the end of the 

chapter, for continuity. 
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4.2 Abstract 

Purpose 

It has been predicted that, during hyperoxia, excess O2 dissolved in arterial blood will significantly 

alter the blood’s magnetic susceptibility. This would confound the interpretation of the hyperoxia-

induced blood oxygenation level-dependent (BOLD) signal as arising solely from changes in 

deoxyhemoglobin. This study, therefore, aimed to determine how dissolved O2 affects the 

susceptibility of blood.  

Theory and Methods 

We present a comprehensive model for the effect of dissolved O2 on the susceptibility of blood 

and compare it with another recently published model, referred to here as the ideal gas model 

(IGM). For validation, distilled water and samples of bovine plasma were oxygenated over a range 

of hyperoxic O2 concentrations and their susceptibilities were determined using multi-echo 

gradient echo phase imaging.  

Results 

In distilled water and plasma, the measured changes in susceptibility were very linear, with 

identical slopes of 0.062 ppb/mm Hg of O2. This change was dramatically less than previously 

predicted using the IGM and was close to that predicted by our model. The primary source of error 

in the IGM is the overestimation of the volume fraction occupied by dissolved O2. 

Conclusion 
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Under most physiological conditions, the susceptibility of dissolved O2 can be disregarded in MRI 

studies employing hyperoxia. 

Keywords 

susceptibility; dissolved O2; blood BOLD; hyperoxia 
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4.3 Introduction 

The magnetic susceptibility of materials and tissues is of fundamental importance in NMR and 

MRI: it relates the magnetization induced in matter to an applied external field, and differences in 

susceptibility across boundaries can produce non-local field offsets that alter the MR signal. The 

susceptibility of hemoglobin (Hb) is of particular significance since the molecule undergoes 

conformational changes and electronic rearrangement when binding O2 that result in a conversion 

of Hb from being paramagnetic in the deoxygenated state to diamagnetic when oxygenated [50]. 

This property of Hb has been exploited in several MRI techniques, most notably blood oxygenation 

level-dependent (BOLD) functional MRI (fMRI) for the localization of changing neural activity 

[6-8] and susceptibility weighted imaging for the identification of veins [104]. These techniques 

are made possible by the fact that, under normal physiological conditions, Hb in veins and 

capillaries is partially saturated with O2, making these vessels paramagnetic relative to the 

surrounding tissue, resulting in frequency offsets between the vessels and tissue and increased 

transverse decay [11]. On the other hand, Hb in arteries under normal physiological conditions is 

generally nearly fully oxygen saturated, imparting little susceptibility difference relative to the 

surrounding tissue and, therefore, negligible contributions to BOLD fMRI and susceptibility 

weighted imaging (neglecting inflow enhancement effects). 

Some fMRI techniques now use hyperoxia as a means of altering the BOLD signal: under 

hyperoxia, the partial pressure of O2 (pO2) in blood is high enough such that nearly all arterial Hb 

is oxygenated and an excess of O2 molecules are dissolved in arterial blood [32]. The excess O2 in 

arterial blood that is not consumed by tissue metabolism ends up bound to Hb in veins, reducing 

the venous concentration of deoxy-Hb (dHb) and resulting in a subsequent increase in the BOLD 
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signal relative to normoxia (breathing of room air). By modulating the BOLD signal, hyperoxia 

has been used in calibrated BOLD [21,22] and has also been proposed as a method for measuring 

deoxygenated cerebral blood volume [105]. 

Being a paramagnetic molecule, O2 can have significant effects on MR images; it creates 

large susceptibility differences between air cavities and tissue, and in turn, can lead to extensive 

areas of signal dropout in -weighted images and geometric distortion in echo-planar imaging. It 

has also been shown to produce aberrant  fluctuations during hyperoxia in brain regions fairly 

distal to the airways [106] and in peripheral vascular reactivity BOLD studies employing air-

pressurized cuffs, even in slices up to 15 cm away from the cuff [107]. Despite these effects of 

gaseous O2, the susceptibility of dissolved O2 in blood is commonly ignored during normoxia since 

the amount dissolved in plasma is normally very small and its contribution to the net susceptibility 

of blood is negligible compared to that of the other major constituents, specifically oxygenated 

and deoxygenated red blood cells (RBCs) and plasma [74,108,109]. 

Recently, Schwarzbauer and Deichmann (SD) extended the model of the susceptibility of 

blood to include dissolved O2 [23]. SD theoretically predicted that when concentrations of 

dissolved O2 in blood were sufficiently high, such as during hyperoxia, dissolved O2 would 

significantly contribute to the susceptibility difference between arterial blood and the surrounding 

tissue. Using their extended model and simulations, they predicted that in going from normoxia to 

hyperoxia, MR signal changes from tissues populated by arteries could be substantial and even 

comparable to venous-driven BOLD contrast. Considering that BOLD studies are geared towards 

measuring changes in dHb and not dissolved O2 directly, the implications of SD’s findings for 

fMRI studies using hyperoxia, such as calibrated BOLD, are profound and have led us to re-

examine the model of the susceptibility of dissolved O2 proposed by SD. 
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In this article, we show that the model used by SD for incorporating the effect of dissolved 

O2 into the susceptibility of blood was inaccurate, specifically, the volume fraction of dissolved 

O2 was significantly overestimated. We present an alternative model that corrects for this 

overestimation and we have validated it by measuring the effect of increasing levels of dissolved 

O2 on the susceptibility of distilled water and ex vivo bovine plasma.  

4.4 Theory 

Unless stated otherwise, all susceptibilities are volume susceptibilities in the International System 

of Units (SI); however, several original sources used cgs units and the susceptibility is often 

expressed as molar or mass susceptibility. Table 4.1 and Section 4.10 describe all of the 

susceptibility values used throughout this article, including their original sources and their 

conversion to volume susceptibility in SI units. 

For a mixture of substances in solution, such as in blood, the net susceptibility of the 

solution, , is given by the weighted sum of the individual susceptibilities, , 

 (4.1) 

where the weighting factors, , are the volume fractions occupied by the substances in solution. 

Applying this to blood,  can be divided into contributions from RBCs and plasma [108], 

 (4.2) 
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where Hct is the hematocrit,  includes contributions from intracellular water, 

paramagnetic dHb, and diamagnetic oxy-Hb, and  includes contributions from water and 

plasma proteins. 

 

 

Table 4.1: Susceptibility values including their sources and their conversion to volume 

susceptibility in SI units. 

Substance Symbol Source 
(ppm, cgs units) Conversion factor 

 
(ppm, SI 

units) 

 
(ppm, SI units) 

water  −12.96 cm3/mol [102] Eq. (4.10) −9.022 −9.001 

oxygen  3415 cm3/mol [102] 
 ⋅ 293.15 K / 

(T + 273.15) / 
b 

1383 1342 

hemoglobin 
(diamagnetic 
component) 

a −0.587 cm3/g [108] 
 ⋅ 5.5 10–6 

mol/cm3 ⋅ 64450 
g/mol [108] 

−2.61 −2.61 

plasma 
proteins 

a −0.587 cm3/g [108]  / 0.730 cm3/g 
[110] −10.1 −10.1 

difference 
between 
deoxygenated 
and 
oxygenated 
RBC 

 0.27 [108,111]  ⋅ 310.15 K / 
(T + 273.15) 3.57 3.39 

SI, International System of Units. 

All sources were in cgs units. 
aAside from H2O, the molar susceptibilities of the diamagnetic molecules were assumed to be temperature-

independent [109]. 
b  is the partial molar volume of O2 dissolved in water (see Section 4.9 for more details). 
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To account for dissolved O2, SD divided  into contributions from O2, with a volume 

fraction , and from RBCs and plasma, with a volume fraction . For the volume 

fraction of O2, they used , where  is the Bunsen solubility coefficient of O2 in blood, 

which was taken to be 3.1 10–5 mL O2/mL blood/mm Hg [32]. Crucially, this quantity, , 

is the volume that O2 in blood would occupy as an ideal gas at standard temperature and pressure 

(STP) per mL of blood, it is not the physical volume fraction occupied by O2 in blood [112]. In 

fact, when O2 dissolves in a liquid such as blood or water, the volume occupied by the O2 in 

solution is orders of magnitude less than the volume occupied by the same number of moles in the 

gaseous state at STP. Additionally, in this model, the contribution of dissolved O2 to  is only 

valid for an average Hb concentration (and therefore Hct) [112]; however, the amount of O2 that 

can be dissolved in blood is proportional to the amount of blood water, which in turn is dictated 

by Hct since it displaces plasma – the largest source of blood water. Therefore, SD’s formulation 

considerably overestimated  and did not account for the effect that Hct has on the amount of 

O2 that can dissolve in blood. We refer to this model for the susceptibility of dissolved O2 as the 

ideal gas model (IGM).  

To account for the volume of dissolved O2 and Hct, we consider the O2 dissolved in each 

water compartment of blood – specifically, the water in plasma and the water in RBCs [33] – since 

quantities such as the partial molar volume of O2 dissolved in water are well documented and 

enable direct calculation of the change of water volume as a function of pO2. The details for 

calculating  and the relevant susceptibilities are given in Sections 4.9 and 4.10, respectively.  
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When the formulations for  and from Spees et al. [108] are modified such that 

the susceptibilities of the contributing components are all expressed using volume susceptibilities 

and the contribution from dissolved O2 to the water compartment is added, we get 

 (4.3) 

and 

 (4.4) 

 

In Eq. (4.3),  is the intracellular volume fraction of Hb and is equal to 0.266 [108], 

 represents the diamagnetic contribution to the susceptibility from each Hb molecule 

regardless of oxygenation state,  represents the susceptibility difference between fully 

oxygenated and fully deoxygenated RBCs (ignoring dissolved O2), and SbO2 is the fractional O2 

saturation of Hb. In Eq. (4.4),  is the susceptibility of plasma proteins and , the volume 

fraction of plasma proteins, is given by the product 0.052, where  0.07 

is the assumed mass fraction of proteins in plasma [108],  1.026 g/cm3 [110], and  

0.730 cm3/g is the partial specific volume of plasma proteins [110]. 

4.5 Methods 

Susceptibility measurements were made in oxygenated samples of distilled water as well as ex vivo 

bovine plasma in a large water phantom for imaging. Details of the methods are given below. 
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4.5.1 Sample Preparation 

Distilled water was used for the experiments in water and ex vivo bovine plasma (GeneTex, Inc., 

Irvine, CA) was used for the plasma experiments. The plasma composition was 8 g/dL of protein, 

a molality of 174.5 mmol/kg, <2 mg/dL of Hb, and 8 g/L of tri-sodium citrate (Na-citrate) 

anticoagulant. All measurements were conducted at room temperature. 

For each water and plasma measurement, a 50-mL centrifuge tube was filled three quarters 

full with the liquid and sealed with a rubber septum and self-adhesive film. O2 was bubbled through 

the liquid at a low flow rate (< 5 L/min) for 0 – 10 minutes using a catheter connected to a medical 

O2 supply. 

After bubbling, the sample was gently agitated to ensure uniform oxygenation. The 

oxygenated liquid was transferred via syringe to a 120-mm long, 15-mL polypropylene centrifuge 

tube with a 17-mm outer diameter that was also sealed with a rubber septum and self-adhesive 

film. Another needle was inserted in the tube such that as much air as possible could be expelled 

prior to imaging it. 

Immediately after the transfer, the sample was imaged while the pO2 of the remaining 

liquid in the large centrifuge tube was measured. pO2 measurements were made with an Orion Star 

A323 dissolved O2 meter connected to a photo-luminescence pO2 probe (Thermo Fisher Scientific 

Inc., Waltham, MA).   
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4.5.2 MR Susceptometry 

To measure the susceptibility of the samples, we used the relation between the susceptibility 

difference inside and outside the tube, , to the Larmor frequency shift inside the 

tube, , by approximating the tube as an infinite cylinder [52]: 

 (4.5) 

where  is the centre frequency and  is the angle the tube makes with the external field, B0. For 

small , the field offset outside of the tube is negligible. 

Based on our theory, the expected difference in susceptibility between plasma at a pO2 of 

110 mm Hg (at normoxia) and at 550 mm Hg (upper range of hyperoxia challenges) is 

approximately 24 ppb. Using Eq. (4.5) with the tube aligned parallel to B0, this change in 

susceptibility would result in a frequency shift of only 1 Hz at 3 T, therefore the imaging protocol 

was designed to be sensitive to frequency shifts with a precision < 0.1 Hz. 

To measure the frequency shifts across the phantom, we used multi-echo gradient recalled 

echo (GRE) imaging and used the linear relation between phase and frequency over time: 

 (4.6) 

where  is the phase at time t at the voxel with coordinates  and  is the phase 

offset immediately after excitation at that voxel. 
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4.5.3 MRI Data Acquisition 

All imaging was on a 3-T Siemens TIM Trio system (Siemens, Erlangen, Germany) using the 

vendor-supplied 32-channel receive-only head coil. The prepared sample was placed along the 

axis of a plastic 4-L cylindrical phantom filled with distilled water as a reference medium while 

two poly(methyl methacrylate) (PMMA) inserts held the tube in place by its ends. The phantom 

was positioned in the head coil with the tube aligned parallel to the B0 field. A single slice, 2D 

multi-echo GRE sequence with monopolar readout was used for imaging. A 5-mm axial slice 

centred on the mid-point of the tube was acquired on a 256 256 matrix over a 200 200 mm2 field 

of view. Imaging parameters were: 16 echoes, first echo time (TE) of 3.0 ms, 3.75-ms echo 

spacing, 500 Hz/pixel readout bandwidth, and a 90-ms repetition time (TR). The total acquisition 

time was 23 s. Prior to running the sequence, Siemens advanced shimming was performed on the 

slice. 

For the plasma samples only, forcing all of the air bubbles out of the tubes was sometimes 

not possible; in this case, the phantom was tilted upwards slightly in order to shift the bubbles 

away from the imaging slice. For all plasma samples, therefore, an additional low-resolution 2D 

multi-slice GRE scan was acquired such that the tube angle could be measured on the magnitude 

images. This scan used the same imaging parameters as the single slice acquisition above except 

it used twenty 5-mm slices with a 1-mm slice gap, a 128 128 matrix, a single readout with TE = 

20 ms, and a 500 ms TR. 
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4.5.4 Image Processing 

All image processing was performed in MATLAB (The MathWorks Inc., Natick, MA). To 

accurately generate phase images for each echo, we reconstructed individual channel images using 

the multi-channel recombination method introduced by Robinson et al. [113]. We adapted their 

implementation to our data by using all 16 echoes at the full spatial resolution of the acquisition. 

The offset-corrected images were bound between  and were saved for processing in the main 

pipeline. Magnitude images were output from the scanner, using sum of squares reconstruction. 

To calculate  from the magnitude and offset-corrected phase images, the following steps 

were performed: temporal phase unwrapping, field map estimation, background field removal, and 

susceptibility calculation. These steps are summarized in Figure 4.1. First, the phase images were 

temporally unwrapped such that the phase values were no longer bound between . For the n-th 

echo, this was done by adding the phase of the product of the n-th complex image and the complex 

conjugate of the (n–1)-th complex image to the phase of the previously unwrapped image. The 

phase of the first echo was left unmodified. 

After phase unwrapping, a field map, , was estimated by linearly fitting the phase 

over time on a voxel-wise basis using weighted least-squares. The squared magnitude image values 

were used as the fit weights [114]. The frequencies were given by the linear coefficients of the fits 

and maps of their estimated uncertainties, , were also produced. 

To correct for macroscopic field inhomogeneities, , a retrospective background 

field estimation method was used [115]. In the original method, a second-order 2D polynomial 

was fit to the field map across the entire phantom using weighted least-squares and subtracted from 

 to produce a corrected map, . Prior to fitting, regions of interest (ROIs) covering the 
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tubes and the voxels whose values in the magnitude image were below a certain threshold were 

masked out such that the fit would not be influenced by the offset of interest in the tube and by 

unreliable frequency measurements, respectively. 

 

Figure 4.1: Schematic overview of the field mapping pipeline. 

The pipeline converts the raw phase images to background-corrected frequency maps. The dotted 
black circle on the frequency maps in the centre column represents the boundary of the inclusion 
ROI within which the background field mapping was performed. The top right is a zoom-in of the 
background-corrected field map with the windowing adjusted to highlight the frequency difference 
inside and outside the tube. The dashed black circle within the zoom-in represents the boundary of 
the ROI in the tube over which the frequency values were averaged for determining  with Eq. 
(4.5). 

In our study, we found that fitting  across the entire phantom with a 2nd-order 2D 

polynomial did not satisfactorily remove the inhomogeneity in the region of the tube since large 

frequency fluctuations near the phantom wall tended to skew the fit. Therefore, we tested higher-
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order fits and restricted the fit to a 55-mm diameter inclusion ROI that was just over three-times 

the diameter of the tube (as shown in the centre column of Figure 4.1). A 6th-order 2D polynomial 

gave  closest to 0, the lowest variance, and the highest adjusted coefficient of determination 

(R2) of the fits when the phantom and the tube were both filled with distilled water and when no 

tube was present at all. To exclude voxels with low signal from the fit, a threshold corresponding 

to the maximum signal from any voxels with partial voluming with the tube wall was used. The 

weighting values for each voxel in the fit were given by , where  = 1.6 10–2 Hz 

prevented division by zero. 

For each sample,  at the centre of the tube was averaged over a 12-voxel diameter 

ROI, giving  (ROI represented by the dashed black circle in the top-right field map in Figure 

4.1). For the plasma samples, the tilt angle, , of the tube was measured by selecting three points 

along the axis of the tube on the low-resolution multi-slice image and then calculating the angle 

between the line of best fit through the points and B0. Finally,  was calculated from Eq. (4.5) 

using , the measured value of  for plasma or  = 0 for water, and  from the scanner 

(stored in the image headers). The uncertainty on , , was estimated using standard error 

propagation methods with  equal to the standard deviation of  in the tube ROI and  

= 0.5° for all samples, including water. 

We tested the validity of the background field removal and susceptibility calculation by 

performing Fourier-based forward field modelling on a digital representation of our phantom [85-

87] using realistic susceptibility values for all the materials [116]. After fitting the generated 

background field to a 6th-order polynomial and subtracting this fit, the relationship between the 

remaining field shift inside the tube and the susceptibility difference between the liquid inside the 
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tube and outside the tube agreed with the infinite cylinder model to within 0.1% when the tube 

angle relative to B0 was varied from 0 to 5°. This was in agreement with other studies examining 

the range of validity of the infinite cylinder model [117,118]. 

4.5.5 Analysis 

The measured values of  in water and plasma were compared with the theory presented above 

using the pO2 and temperature measurements from the oxygenated samples to calculate  inside 

the tube, , and from the distilled water in the phantom to calculate  in the surrounding water, 

. Equation (4.4) for  was used for the calculations of both  and : for the bovine 

plasma,  was given by the product [protein]  0.08 g protein/cm3 plasma × 0.730 cm3 

plasma/g protein = 0.058 and for water,  was set to 0. For each set of measurements, the line 

of best fit for  vs. pO2 was found using a general least-squares approach that incorporated the 

uncertainty in both the pO2 and  measurements [119]. Differences between the measured and 

theoretically predicted slopes of /pO2 were tested for statistical significance using a two-tailed 

t-test. Additionally, the measured slopes in all three solutions were themselves compared for 

statistical differences using an analysis of covariance (ANCOVA) test. 

Since the original model for  [108] did not use anti-coagulant nor did it account for 

the susceptibilities of electrolytes, an offset between the measured susceptibility in plasma and the 

theoretical predictions from Eq. (4.4) was present. To account for this offset, we incorporated 

electrolytes and Na-citrate into our calculations by assuming that they also dissolve in the water 

compartment of Eq. (4.4). 
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To account for Na-citrate, we measured its susceptibility in water using our technique 

described above by dissolving 8 g/L of it in distilled water (the same concentration as the bovine 

plasma). We also repeated our measurements of the effect of dissolved O2 on the susceptibility of 

the Na-citrate solution by oxygenating the solution over a range of pO2 values. 

For the electrolytes, we assumed that Na+ and Cl– were the sole electrolytes contributing 

to the susceptibility since they constitute the majority of the electrolyte concentration in plasma 

[120]. Given a total molality of 174.5 mmol/kg in the plasma samples, we varied the molality of 

NaCl from 0 – 175 mmol/kg and determined which value resulted in the susceptibility offset that 

matched the measurements. 

Finally, since the solubility coefficient of blood, , that the IGM used was measured for 

whole blood with normal Hb concentrations [112], it was not possible to compare it directly to our 

measurements in water and plasma. Since  was based on the volume that all the moles of O2 

dissolved in blood would occupy as an ideal gas at STP, as a means of comparing this theory to 

our measurements, we first calculated the mole fraction and volume fraction in water/plasma using 

our theory, then converted these using the ideal gas law to the volume fraction that O2 would 

occupy if the same number of moles were in the gaseous state: 

 (4.7) 

 where R = 82.06 (cm3 atm)/(mol K) is the ideal gas constant,  = 273.15 K,  = 1 atm, and 

 is the partial molar volume of O2 dissolved in water. For this comparison, we calculated 

 in the same manner as SD [23], described in Section 4.10. 
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4.6 Results 

Oxygenating and scanning the samples was conducted at room temperature. The average 

temperature of the solutions was (22 ± 1) °C for distilled water, (23 ± 1) °C for distilled water with 

8 g/L of dissolved Na-citrate, and (21.92 ± 0.08) °C for plasma. The reason for the variation in 

temperature ranges was that the distilled water experiments were performed on multiple days 

whereas the plasma samples were performed over several hours. The pO2 and temperature of the 

water in the phantom was measured multiple times throughout the experiment and the average 

values were (151 ± 3) mm Hg and (21.1 ± 0.2) °C, respectively. 

Using the multi-slice scans of the plasma samples, the average tilt angle of the tubes was 

(1.4 ± 0.8)° with a maximum angle of 2.7° with respect to B0. 

An example of the field mapping and background field removal for a scan of an oxygenated 

water sample is shown in Figure 4.1. In the inclusion ROI used for fitting the background field, 

the typical estimated uncertainty on the frequencies was approximately (0.040 ± 0.008) Hz with a 

maximum uncertainty of 0.1 Hz and inside the tube was (0.036 ± 0.007) Hz with a maximum 

uncertainty of 0.05 Hz. This technique was therefore capable of measuring frequency offsets with 

our specified precision  0.1 Hz in our ROI. 

Plots of  vs. pO2 for all three solutions are shown in Figure 4.2. Figure 4.2 also shows 

our model’s predictions and the IGM’s predictions for  using the average temperature of each 

solution and the surrounding water in the phantom in the calculations of both. Note that in this 

figure the  offsets for the theoretical predictions have been adjusted such that the lines intersect 
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with the lines of best fit at normoxia in order best visualize the differences in /pO2 slopes. We 

have labeled our theory with our initials “BMHP”. 

 

Figure 4.2: Measured susceptibilities with dissolved oxygen 

Measured susceptibility differences (squares plus error bars) between oxygenated water (a), water 
+ Na-citrate (b), and bovine plasma (c) and the surrounding water in the phantom. In each plot, the 
dashed black line is the line of best fit for the measurements, the solid red line is the predicted 
susceptibility difference using our theory (BMHP), and the solid grey line is the predicted 
susceptibility difference using the ideal gas model (IGM) employed by Schwarzbauer and 
Deichmann [23]. To better compare the effect of dissolved O2, the vertical offsets of the theoretical 
predictions have been adjusted in the plots such that the lines intersect with the lines of best fit at 
normoxia. For clarity, the graphs’ limits are constrained to the range of measured  rather than 
the full range predicted by the IGM. 

The regression coefficients for the measured data are shown in, Table 4.2 as well as the 

coefficients from our theory and the IGM. The far right column gives the coefficient of 

determination (R2) for the lines of best fit; from these results and qualitatively from the plots in 

Figure 4.2, ’s dependence on pO2 is obviously very linear for all three solutions. 

From the  measurements of distilled water with dissolved Na-citrate, we found the 

susceptibility of dissolved Na-citrate to be  = (–12.1 ± 0.2) ppm. For plasma, we used this 

value and tested the effect that dissolved Na-citrate and dissolved Na-citrate + NaCl had on the 
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slope and offset of our theory. We found that the added solutes had no measurable effect on the 

slope but large effects on the offset. When both solutes were included in the model, 125 mmol 

NaCl/kg plasma was the molality that produced the offset that best matched the measurements. 

This value is within an acceptable range, given a molality of 174.5 mmol/kg [120]. 

The most salient result was the discrepancy between the measured and modelled slopes of 

/pO2.  We found that the IGM overestimated the slope by over 500%, whereas our theory 

produced a much more accurate prediction of the slope but still overestimated it by 14% – 21%. 

Table 4.2: Susceptibility of dissolved oxygen fit results. 

The coefficients of the linear fits of the measured and theoretical changes in  vs. pO2 using 
our theory and the ideal gas model (IGM). Fits are of the form . 

Solution  
(ppb/mm Hg) 

 % 
difference 

t-test 
(P) 

 
(ppb) 

 % 
difference R2 

water      

Measured 0.062 ± 0.002   –9.8 ± 
0.8  0.993 

BMHP 0.075 21 2 10–4 –11 12 
IGM 0.42 580 3 10–17 –65 560 

water + Na-citrate      

Measured 0.063 ± 0.003   –32 ± 1  0.998 
BMHP + 8 g/L Na-
citrate 0.072 14 0.06 –32 0 

IGM 0.41 550 2 10–6 –62 94 

plasma      
Measured 0.062 ± 0.005   –121 ± 2  0.973 
BMHP 0.071 15 0.09 –74.4 –39 
BMHP + 8 g/L Na-
citrate 0.071 15 0.10 –95.4 –21 

BMHP + 8 g/L Na-
citrate + 125 
mmol/kg NaCl 

0.071 15 0.10 –122 0.8 

IGM 0.40 550 7 10–6 –129 7 
IGM, ideal gas model 
aBMHP theory by Berman, Ma, Hoge, and Pike. 
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As demonstrated by the P-values in Table 4.2, the differences between the measured and 

our modelled slopes were statistically significant in water (P = 2 10–4) but not significant in water 

+ Na-citrate nor in plasma (P = 0.06 and 0.10, respectively). At a pO2 of 550 mm Hg in plasma, 

these errors in the slopes translated into errors in the susceptibility of 145 ppb using the IGM and 

4.5 ppb using our theory. When we compared the three measured /pO2 slopes from water, water 

+ Na-citrate, and plasma using an ANCOVA test, there was no significant difference between the 

three of them (P = 0.8). 

Finally, the high degree of linearity between  and pO2 would suggest that the detailed 

model presented here could be further simplified. This is because the volume fraction of O2, , 

is extremely linear as a function of pO2, so we can express it as , similar in form to 

the original IGM but with an empirically estimated constant of proportionality ( . Linearly fitting 

Eq. (4.8) vs. pO2, we get  5.42 10–8 mL O2/mL H2O/mm Hg at 22 °C and 4.24 10–8 mL 

O2/mL H2O/mm Hg at 37 °C. Based on the measured slopes of /pO2, the corresponding values 

of  to use would be (1140 ± 60) ppm at 22 °C and (1090 ± 50) ppm at 37 °C using Curie’s law. 

4.7 Discussion 

Here we have introduced a new model for the susceptibility of blood that incorporates dissolved 

O2 in the water compartments of blood and we have measured the change in susceptibility of 

plasma as a function of increasing pO2. Previous studies have already evaluated the change in 

 for whole blood with pO2 ranging from 0 up to ~120 mm Hg [108,111]; the work presented 

here complements these studies by considering the change in  over the hyperoxia range 120 
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mm Hg < pO2 < 600 mm Hg. Plasma, rather than whole blood, was used here in order to 

disentangle dissolved O2-induced susceptibility changes from Hb-induced susceptibility changes. 

We found that the IGM for the susceptibility of dissolved O2 dramatically overestimated 

the change in susceptibility in all three of the solutions we studied. This was due to the 

overestimation of the volume fraction of dissolved O2, as described in the Theory section and 

Sections 4.9 and 4.10. Our model was in much better agreement with the measurements although 

it did slightly, but statistically significantly, overestimate the slope of /pO2 for water. We 

speculate that two separate factors may be contributing to the slightly decreased slope. The first is 

that, while Curie’s law is sufficient for modelling the change in susceptibility for most 

paramagnetic molecules of interest in MRI, diamagnetic contributions to the susceptibility of O2 

from pairwise intermolecular interactions are greater with increasing molar density [121]. Our 

estimate of  may not have fully accounted for the diamagnetic contribution since O2 dissolved 

in liquid is actually at a much higher density than as a gas and our reference value for  was 

measured with O2 in its gaseous state at 1 atm [102]. 

In addition to intermolecular interactions having a potential impact on the diamagnetic 

contribution to , there is evidence for O2–H2O interactions that may affect the paramagnetism 

of . Dissolved O2 has been found to add another ultraviolet absorption band to the spectra of 

organic solvents, including water [122]. It is believed that this is caused by a charge transfer effect 

in which O2 behaves as an electron acceptor and the solvent molecules as electron donors. Given 

that O2’s paramagnetic behaviour is the result of it having two unpaired electrons, it is plausible 

that this charge transfer could fractionally reduce the effective number of unpaired electrons and, 

therefore, reduce the magnetic moment and paramagnetism of dissolved O2. It is not clear how 
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much each of the above two mechanisms contribute to the observed minor discrepancy between 

theory and experiment and it is beyond the scope of this study. 

If we briefly re-examine how increased dissolved O2 in arterial blood may affect -

weighted imaging, it is best to put it in perspective with the changes occurring in venous blood. If 

a subject has average resting physiological conditions with arterial pO2 = 110 mm Hg, Hct = 0.4, 

and O2 extraction fraction = 0.35, then the venous SbO2 will be 0.65. If arterial pO2 increases to 

550 mm Hg under hyperoxia and changes in O2 metabolism and blood flow are considered 

negligible, then the venous SbO2 will increase to 0.74 [32]. Using our model for  at 37 °C 

with  = 1090 ppm, as measured, the expected change in the susceptibility of arteries would be 

–5.3 ppb*, whereas the change in veins would be –127 ppb. The change is more than 20 times 

larger in venous blood than in arterial blood, meaning that any possible signal change that may 

arise from  in arteries would be dwarfed by the change resulting from veins. For comparison, 

the IGM predicted a change of +125 ppb in arteries. A scenario where arterial susceptibility 

changes may actually contribute more noticeably would be in the event of scanning extremely 

anemic patients during hyperoxia. Performing the analysis above but with Hct = 0.2,  for 

arteries is +7.1 ppb and for veins is –98 ppb. In this case, caution may be required when interpreting 

BOLD signal changes from hyperoxia; however, for most physiological conditions, hyperoxia-

driven  contrast will be dominated by dHb in veins and capillaries. 

                                                
*  Arteries show a negative change in susceptibility because at 110 mm Hg, SbO2 is 

approximately 98% and at 550 mm Hg, it increases to essentially 100%. Therefore, the change in 
susceptibility from the 2% dHb converting to oxy-Hb outweighs the positive change in 
susceptibility from the added dissolved O2. 
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4.8 Conclusion 

We have presented a model for the susceptibility of blood that incorporates dissolved O2 and we 

have experimentally validated the theory over a wide range of pO2 values in distilled water and in 

plasma. We found that the change in susceptibility was marginally less than predicted and we have 

characterized the observed solubility of dissolved O2 in water and its susceptibility such that they 

can easily be incorporated into future modelling. Most importantly, in contrast to previous 

predictions that overestimated the volume fraction of dissolved O2 [23], our results indicate that 

the effect of dissolved O2 on the susceptibility of blood is negligible, even at the highest levels of 

hyperoxia. This work shows that, except in some extreme physiological circumstances, the 

susceptibility of dissolved O2 can generally be ignored in MRI studies employing hyperoxia. 

4.9 Calculating the Volume Fraction of O2 in Water 

Here we describe how we calculate the volume fraction of dissolved O2 in water, , for a given 

pO2.  can be given by the product of the mole fraction of O2 dissolved in water, , and the 

partial molar volume of O2 dissolved in water, , all divided by the total molar volume of 

the O2-water solution: 

 (4.8) 

 

For the range of pO2 encountered under normoxia and hyperoxia, the dissolved O2-water 

solution is very dilute, therefore, the molar volume of H2O ( ) is used in place of the partial 
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molar volume.  is obtained by Henry’s law using an empirical formula for the reference  at 

atmospheric pressure [123]: 

 (4.9) 

with A = −66.7354, B = 8747.55 K, C = 24.4526, and T is the temperature in degrees Celsius. 

 can be obtained empirically by the formula  = (31.7 – 0.04 °C–1 ⋅ T) cm3/mol 

[124]. Over the range of pO2 explored in this study, the ratio of pO2/  at 37 °C remains 

relatively constant at 731. For example, when pO2 = 500 mm Hg and T = 37 °C, Eq. (4.8) gives a 

volume fraction for dissolved O2 of 2.12 10–5, whereas in the IGM,  500 mm Hg = 1.55 10–2. 

To test the agreement of these calculations with the established solubility coefficient of O2 

in blood at STP, when  for a given pO2 is converted back to the gaseous volume of O2 relative 

to water volume using Eq. (4.7) and then converted to the gaseous volume of O2 relative to blood 

volume using Eq. (5) from [112], we end up with a Bunsen solubility coefficient of O2 in blood 

equal to 3.13 10–5 mL O2/mL blood/mm Hg. This is in perfect agreement with the original value 

given in [32,112]. 

4.10 Details of Susceptibility Calculations 

Here we layout in detail how the susceptibilities of several of the constituents of blood and our 

experimental samples were calculated.  
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As shown in Table 4.1, the molar susceptibility of O2 is governed by Curie’s law and is 

therefore inversely proportional to temperature. We converted to volume susceptibility by dividing 

the molar susceptibility by the partial molar volume of O2, whereas in the IGM, the molar 

susceptibility was divided by the molar volume of gaseous O2 at 1 atm and 37 °C. The result is 

that  is actually significantly larger in our model and the product  works out to be 

roughly the same for our two models. However, since  in the IGM is overestimated, the factor 

 significantly reduced the contribution of the remaining constituents of . 

For the susceptibility of water, it has been shown that there exists a slight temperature 

dependence, such that  is given by [125] 

 (4.10) 

where D = 1.38810 10–4 °C–1, E = −1.2685 10–7 °C–2, and 4  (−12.96 10–6) cm3/mol is the 

molar susceptibility of H2O at 20 °C [102]. Spees et al. [108] did not account for this temperature 

dependence, therefore, our values for  differ slightly. 

In order to measure Na-citrate’s susceptibility in distilled water and to incorporate this into 

the susceptibility of the plasma samples, the mole and volume fractions of Na-citrate in the samples 

were calculated using a molecular mass of 294.10 g/mol and a partial molar volume of 69.32 

cm3/mol [126]. Similarly, for NaCl we used a partial molar volume of 16.3 cm3/mol at 22 °C [127] 

to help convert the molality to a volume fraction and to convert from molar susceptibility to get a 

volume susceptibility of –23.2 ppm [102].
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Transverse Signal Evolution in Blood 

5.1 Preface 

AVING determined the microscopic contributions of oxygen to the susceptibility of blood, 

the next aim was to analytically describe the signal evolution from blood due to molecular 

diffusion through the mesoscopic field inhomogeneities produced by partially deoxygenated red 

blood cells in plasma. Given the success of the weak field approximation of Jensen and Chandra 

for fitting T2 relaxometry data from blood [76,78,80,81] and its algebraic simplicity, it was used 

in this study to derive a closed-form solution of signal evolution under any arbitrary train of 180° 

refocusing pulses (including a single spin echo or free induction decay). 

The derived closed-form solution was validated using simulations of the transverse 

magnetization from distributions of spheres, as described in Chapter 3. Although spheres have 

been used as a simple geometric approximation of red blood cells [10,70], the motivation for their 

use here was that they have an exact analytical solution for the parameters of the weak field 

H 
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approximation, making it possible to predict the simulated time courses a priori with the closed-

form solution. One set of analyses was intentionally kept general because the theory of the weak 

field approximation has been used to model signal relaxation from tissues other than blood, such 

as brain and liver iron [76,128]. It is finally shown how the analytical parameters that were derived 

for the weak field approximation break down at high volume fractions when spheres cannot 

overlap, as may be the case for a typical hematocrit of blood. However, it was possible to 

empirically derive these parameters and recover the agreement for volume fractions up to ≈ 40%. 

This last finding holds promise for employing the weak field approximation to describe signal 

from systems of perturbers with more complex geometries and spatial distributions, such as more 

realistic red blood cell shapes or iron depositions in brain tissue or liver, where analytical 

expressions for the weak field parameters may not be readily determined. This chapter is based on 

a manuscript prepared for Journal of Magnetic Resonance. 
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5.2 Abstract 

Purpose 

To derive a general expression for the transverse signal time course in a system of magnetic 

perturbers in the motional narrowing regime. This was examined with a focus on modelling 

intravascular signal decay. 

 

Theory and Methods 

A closed-form solution (CFS) for transverse signal decay under any train of refocusing pulses was 

derived using the weak field approximation. The CFS was validated via simulations of spins 

diffusing in the presence of spherical perturbers with a range of sizes, magnetic susceptibilities, 

and distributions. 

Results 

The CFS was valid in the motional narrowing regime and partially into the intermediate dephasing 

regime. When compared to a well-known expression for the transverse decay rate, fits to the CFS 

were in excellent agreement for multi-echo spin echo sequences but diverged for free induction 

decay. The CFS accurately predicted the signal decay at high volume fractions of non-overlapping 

spheres – like the hematocrit of blood – when the volume fraction and the characteristic perturber 

length were appropriately scaled. 

Conclusion 
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Transverse signal decay in the motional narrowing regime can be accurately described 

analytically. This theory has applications in areas such as quantitative tissue iron imaging, 

relaxometry of blood, and contrast agent imaging. 

Keywords 

transverse relaxation; CPMG; magnetic inhomogeneities; blood; diffusion 
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5.3 Introduction 

Understanding the detailed nature of transverse signal decay in the presence of magnetic 

perturbations plays an important role in many fields of MRI: from deriving baseline physiological 

parameters related to the blood oxygenation level-dependent (BOLD) signal [5] to quantifying 

structural properties of bone [129]. In the presence of magnetic perturbers, it is well known that 

the observed T2 or T2
* relaxation times depend on several factors, such as the perturbation 

magnitude (i.e., field strength and magnetic susceptibility offset between the perturbers and the 

surrounding medium), the interplay between molecular diffusion and the spatial scale of the 

perturbers, and the refocusing rate in a multi-echo spin echo sequence [60,130]. Depending on the 

combination of these parameters, the system is said to be in one of three dephasing regimes: static 

dephasing, motional narrowing, or an intermediate dephasing regime, with each regime displaying 

unique signal characteristics.  

For RBCs in blood, the shape and size of the cells and the diffusion coefficient of blood 

water have relatively low variability, such that the system exists in the motional narrowing regime. 

In the motional narrowing regime, the characteristic time for a water molecule to diffuse the length 

of a perturber is much less than the time for a spin at the surface of a perturber to dephase [131]. 

Using an algebraic approximation for the temporal correlation function, Jensen and Chandra [76] 

derived an expression for how the transverse signal decay rate would change (ΔR2) in a random 

distribution of perturbers as a function of the refocusing interval in a Carr-Purcell-Meiboom-Gill 

(CPMG) acquisition. This model is referred to as the weak field approximation (WFA). Following 

an alternative approach known as the Gaussian phase approximation, Sukstanskii and Yablonskiy 
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[131] derived a closed-form solution for how the transverse signal would evolve during free 

induction decay (FID) and as a function of spin echo (SE) time in a single SE type measurement. 

This derivation resulted in the same ΔR2 as in the FID limit for spheres from the weak field 

approximation. The WFA has successfully been applied to model relaxometry results from ex vivo 

blood samples [76,78,80,81] and in vivo tissue non-heme iron depositions, also known as magnetic 

field correlation imaging [76,128]. 

Many of the theories describing relaxation in the different dephasing regimes [5,76,131], 

including the WFA, assume that the positions of the perturbers are uncorrelated. This leads to the 

unrealistic scenario where perturbers can physically overlap. At low perturber volume fraction, the 

amount of overlap is negligible, however, at higher volume fractions (e.g. ~40–45% hematocrit in 

blood), this is not the case. In exchange theory [75] and in more recent diffusion models of 

relaxation [74,79], this has been overcome by scaling the volume fraction of the perturbers, ζ, with 

the volume fraction of the surrounding medium, 1 – ζ. While this scaling is particularly important 

for accurately describing relaxation from blood, where ζ is on the order of 40%, the experimental 

evidence to support this scaling factor is limited and difficult to tease apart from other contributions 

to relaxation such as the intrinsic relaxation rates of the perturbers and medium [78,82,132]. 

The WFA has typically been used to compare its predictions of ΔR2 with in vivo 

experiments or simulations to make inferences on the underlying physiology. With the increasing 

use of SE-based pulse sequences that sample away from the spin echo itself, such as asymmetric 

spin echo [133], gradient echo sampling of the spin echo [134], and gradient echo sampling of FID 

and echo [69], it is important to be able to compare the measurements with the entire predicted 

time course, rather than solely the signal observed at the spin echoes. Here we present a closed-

form solution describing the complete transverse signal time course for an arbitrary number of 
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refocusing pulses using the weak field approximation. We compare the solution to the asymptotic 

solution for ΔR2 and to simulations from networks of spheres over a range of conditions, including 

when the spheres overlap or not. 

5.4 Theory 

Following the derivation of the WFA from Jensen and Chandra [76], for a system of hydrogen 

nuclei subjected to a spatially varying magnetic field, the total field along the longitudinal direction 

at a point r is given by the sum of the main magnetic field, B0, and an inhomogeneous component, 

ΔB(r). The spatial variation of this field can be described by an average over the inhomogeneous 

component for all pairs of points, r and r′, referred to as the spatial correlation function: 

 (5.1) 

where  denotes the average over the field inhomogeneities in space. Due to molecular 

diffusion through the field over time, C will effectively vary over a time interval Δt and is described 

by the temporal correlation function, K(Δt): 

 (5.2) 

where the average is over space and all possible diffusion trajectories. 

For a system of spins in the motional narrowing regime, diffusion across the field 

inhomogeneities reduces the transverse signal magnitude, S′(t), at time t during a CPMG 

experiment [76,131]: 
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 exp (5.3) 

where σ(t) is a spin flip function of magnitude 1 and which changes sign upon application of any 

180° refocusing pulses. 

Although analytic expressions for K(t) for systems of spheres and infinite cylinders exist 

[76,131], deriving an exact expression for K(t) is, generally, only tractable for simple geometries. 

A relatively simple form can be derived by considering the angular average of C(r) and assuming 

it decays monotonically towards 0 as r → . By assuming that this radial correlation function, 

G(r), decays as a quadratic exponential, i.e., 

 (5.4) 

where G0 = C(0) is the mean square field inhomogeneity and rc is a characteristic length that 

depends on the exact description of the perturbers, then, for unrestricted and isotropic diffusion in 

three-dimensions, K(t) will take the algebraic form [76] 

 (5.5) 

where D is the diffusion coefficient of water. This derivation assumes that the object is finite in 

three-dimensions, or more practically, that the field changes quickly relative to diffusion along any 

direction. Therefore, it cannot describe the correlation function for long cylinders, which are 

frequently used to model blood vessels, or broad disks. Using (5.5) and assuming that S′(t) decays 

monoexponentially as t → , an asymptotic solution for ΔR2 is [76] 
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 (5.6) 

where 180 is the CPMG refocusing interval and F is [76]: 

 (5.7) 

 

Using the correlation function in Eq. (5.5), it is also possible to explicitly solve the integral 

in Eq. (5.3) to produce a closed-form solution (CFS) for the signal magnitude at any time, t. If no 

refocusing pulses are applied, then the solution of this integral gives the FID signal: 

 exp (5.8) 

where τD ≡ rc2/D is the characteristic time for water molecules to diffuse over twice the 

characteristic length scale. In the case of a SE or CPMG sequence, this equation holds for t < 1/2 

τ180. This and the following expression were recently independently derived [135]. After one 

refocusing pulse, we get 

 

exp

(5.9) 
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where t > 1/2 τ180 if only one refocusing pulse is applied or ½ τ180 < t < 3/2 τ180 if another pulse is 

applied at t = 3/2 τ180. Continuing in this manner, the CFS after N refocusing pulses can be deduced 

[136]: 

 

exp

(5.10) 

This expression holds even if no more pulses are applied after the N-th refocusing pulse and the 

system proceeds to evolve freely as an FID. 

5.5 Methods 

The evaluation of Eq. (5.10) was implemented in MATLAB R2015a (MathWorks, Natick, MA) 

using a function handle that was updated at each refocusing pulse and that iteratively added the 

terms in the summation to itself up to the N-th pulse. As written, Eq. (5.10) represents a general 

solution for transverse signal decay that could apply to a variety of systems given appropriate 

values for rc and G0 and that the conditions of the WFA are satisfied. To assess the validity of the 

CFS with concrete values, we considered spherical perturbers, for which rc and G0 are known. 

Also, given our aim of using the CFS to describe intravascular signal decay, where RBCs are the 
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principal magnetic perturbers, modelling the perturbers as spheres is a common first 

approximation. For spheres of radius R and with a susceptibility offset (Δχ) relative to the external 

medium, rc and G0 are [76] 

 (5.11) 

and 

 (5.12) 

where ζ is the volume fraction occupied by the spheres and Beq is the maximum field offset at the 

equator of a sphere and perpendicular to B0, given by Beq = B0Δχ / 3 (using SI units for Δχ). Note 

that the WFA assumes that the positions of the spheres are uncorrelated, which allows for the 

possibility of overlapping spheres. 

5.5.1 Simulations 

To assess the accuracy of the CFS, we compared it to simulations of the transverse MR signal from 

networks of randomly positioned spheres using MATLAB. The simulations were performed using 

the deterministic diffusion method in three-dimensions [71], described in detail in Chapter 3. This 

is a computationally efficient simulation technique and it inherently models the perturber 

boundaries as freely permeable, as required by the WFA. 

The field offsets generated by each sphere were given by 
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 (5.13) 

where θ is the angle between B0 and the line joining the centre of a sphere and a point a distance r 

from the sphere centre. The field offsets for each sphere were independently calculated and 

summed across the lattice. 

Using this simulation framework, the accuracy of the CFS was examined across the 

dephasing regimes and then more specifically in the context of modelling intravascular signal. 

Unless stated otherwise, common simulation settings for both cases included B0 = 3 T, time step 

δt = 0.25 ms, total simulation time = 80 ms, D = 2.7 μm2/ms to approximate free water diffusion 

in plasma at 37 °C [137], and intrinsic T2 relaxation was ignored. 

5.5.2 General Validation of the Closed-Form Solution 

To evaluate the general validity of the CFS across dephasing regimes, the simulations were run on 

networks where the sphere radii were increased from 1.5 μm up to 40 μm with ζ held constant at 

3%. Δχ of the spheres was set to 1.2 ppm, which is equivalent to the susceptibility offset between 

60% oxygenated RBCs and plasma (see Eq. (5.14) below). Under these settings, the parameter 

typically employed to classify the dephasing regime, α = τDδω = rc
2/D γBeq, varies from 0.22–160, 

where α  1 defines the motional narrowing regime, α  1 defines the static dephasing regime, 

and α ~ 1 represents the intermediate regime. Simulated pulse sequences included FID, spin echo 

(echo time = 80 ms), and CPMG using τ180 = 40 or 10 ms, resulting in 2 or 8 echoes, respectively. 

For networks where the sphere radius was less than 3 μm, the time step needed to be decreased to 

0.05 ms to properly sample the diffusion effects in the field offsets around the perturbers; for larger 
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radii, time steps less than 0.25 ms negligibly affected the simulations. These simulations were 

performed on 10 randomly seeded networks of 1.5-μm radius spheres on a 6003 lattice with a side 

length of 154 μm isotropic. These networks were reused for the larger radii by assigning them an 

effective lattice size of 154 μm × R/1.5 μm. 

5.5.3 Validation of the Closed-Form Solution to Model Intravascular Signal 

To evaluate the specific ability of the CFS to model decay as the volume fraction increased to 

levels comparable to the hematocrit of blood, the sphere radius was fixed at 3 μm and a range of 

volume fractions were tested to better reflect realistic blood hematocrit values. Simulations were 

only run using a 180 of 40 ms since this adequately allowed for both FID and spin echo 

characteristics to be observed. Multiple field offsets were considered by using blood oxygen 

saturations (SO2) of 0.6, 0.7, 0.8, and 0.9 and calculating Δχ using 

 (5.14) 

where Δχdo = 4π⋅0.27 ppm is the susceptibility difference between fully deoxygenated and fully 

oxygenated RBCs, and SO2,ref = 0.95 is the oxygen saturation at which the susceptibility of RBCs 

and plasma are matched [103,138]. These SO2’s resulted in Δχ from 1.2 ppm down to 0.17 ppm. 

Three sets of random perturber distributions were considered: one set where spheres could 

overlap and two sets where overlap was not allowed. The first non-overlapping distribution, 

referred to here as “random non-overlapping”, was generated by randomly placing the spheres 

without overlap, until the desired ζ was reached. This method of distributing the spheres could 

generally only reach a volume fraction of ~40% before there were no more spaces available to 

place new spheres without overlap. The second distribution of non-overlapping spheres was 
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generated by randomly placing the spheres on a hexagonal close packed (HCP) lattice until the 

desired ζ was reached. With the HCP arrangement, the maximum possible packing was ζ ≈ 74%. 

Examples of the three distributions at ζ = 40% are given in Figure 5.1. These simulations were 

carried out with ζ between 3% and 60% (where possible) on 8 different networks per ζ-value on a 

2003 lattice with a side length of 150 μm isotropic. 

5.5.4 Analysis 

Prior to comparing the simulations with the CFS in Eq. (5.10), the simulations were averaged 

across all random networks for each set of run parameters (e.g. ζ, 180, Δχ). Each set of signals was 

compared by examining the root mean square error (RMSE) between the time series as well as 

ΔR2. ΔR2 was calculated at the final time point, echo time (TE) = 80 ms, using ΔR2 = –ln(S)/TE. 
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Figure 5.1: Example cross-sections through the sphere distributions. 

The three three-dimensional distributions were all popoulated to 40%. (a) The overlapping 
distribution where the sphere positions were uncorrelated and hence allowed to overlap. (b) The 
random non-overlapping distribution where sphere positions were randomly assigned without 
overlap until the desired volume fraction was reached. (c) The hexagonal close packed distribution 
where the spheres were randomly assigned to the lattice elements of a hexagonal close packed 
distribution until reaching the desired volume fraction. The sphere boundaries are emphasized in 
black to highlight the differences between the distributions. 

For the specific case examining non-overlapping perturbers, the simulations diverged from 

the CFS as ζ was increased. This behaviour has been described previously and it has been 

suggested that the volume fraction, ζ, be replaced by an apparent volume fraction ζ′ = ζ(1 - ζ) to 

account for this [75,79]. If correct, then the parameter G0, which represents the mean square field 

inhomogeneity, should exhibit a quadratic dependence on ζ, rather than the linear one in Eq. (5.12). 

In addition to G0, the characteristic perturber length, rc, was also introduced in Eq. (5.4) in the 

context of the radial correlation function, G(r), and it is, in theory, only dependent on the perturber 

radius, although it is speculated to have some ζ-dependence [139]. To verify these hypotheses, 

G(r) was computed for all the simulation networks using the discretized ΔBklm and then fit to Eq. 

(5.4), from which G0 and rc were determined. These fitted G0 and rc values were then substituted 

into the CFS to compare its agreement with the simulations. 
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5.6 Results 

5.6.1 Closed-Form Solution Vs. Monoexponential Decay 

Examples of the CFS for multiple refocusing intervals are shown in Figure 5.2 and are plotted 

along with the monoexponential decay described by Eq. (5.6). These curves were generated as 

described in the Methods section where the spheres approximated RBCs with ζ = 40%, radius = 3 

μm, and SO2 = 60%. Figure 5.2 shows an enlargement of the CFS and the monoexponential curve 

for the case 180 = 10 ms; the points of maximal refocusing are shifted significantly earlier in time 

than the spin echo times and the monoexponential curve does not pass through them. Despite this 

offset, when at least three spin echoes from the CFS were fit to a monoexponential decay, the fitted 

ΔR2 values were within 2% of those predicted by Eq. (5.6) for the ranges 180 = 1–75 ms and D = 

0.5–4 μm2/ms, as shown in Figure 5.2c. For the FID, it is evident from Figure 5.2a that the CFS 

initially diverges from monoexponential decay and gradually reaches it. Thus, values of ΔR2
* from 

the monoexponential expression significantly overestimate the ΔR2
* estimated using up to ten 

echoes from the CFS, particularly at short echo spacings (Figure 5.2d). 
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Figure 5.2: Comparions of the closed-form solution vs. the monoexponential 

approximation. 

The CFS in Eq. (5.10) and the monoexponential approximation in Eq. (5.6) from Jensen and 
Chandra [76] were calculated for spheres in blood using ζ = 40%, R = 3 μm, D = 2.7 μm2/ms, and 
SO2 = 60%, unless specified otherwise. (a) Example time series for two τ180 values and for an FID. 
(b) The τ180 = 10 ms time series is expanded to highlight some of the characteristics of the CFS, 
such as the shift in the maximal refocusing points and the differences between it and the 
monoexponential approximation. (b) shares the same legend as (a), and the green markers 
represent the CFS signal at the spin echo times. (c) and (d) The percent differences between ΔR2

(*) 
estimated from the monoexponential curve and the CFS shown for several diffusion coefficient 
values and as a function of echo spacing. (c) Comparison of the CPMG signals where ΔR2 from 
the CFS was estimated using three echoes. (d) Comparison of the FID signals, where ΔR2

* from 
the CFS was estimated using ten echoes. (c) and (d) share the same legend. CFS = closed-form 
solution, ζ = volume fraction, R = radius, D = diffusion coefficient, SO2 = oxygen saturation. 
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5.6.2 General Validation of the Closed-Form Solution 

Figure 5.3 compares the simulated FID and τ180 = 40 ms time series against the closed-form 

solution for several radii. The agreement between simulation and CFS is close for the 1.5-μm 

radius but for the 40-μm radius, the CFS significantly overestimates the decay. At the 5.2-μm 

radius, the agreement is also close but the decay is slightly overestimated by the CFS. These three 

radii demonstrate the transition from the motional narrowing regime to the static dephasing regime 

and Figure 5.4, which compares ΔR2 and the RMSE between the simulations and the CFS, shows 

this transition in its near entirety. 

 

 

Figure 5.3: Comparison of the mean simulated signals vs. the CFS for select sphere radii. 

Simulated FID (a) and CPMG (b) sequences shown. The shaded bands represent the mean ± 
standard deviation of the simulated signals and the dashed lines represent the CFS for each radius. 

5.6.3 Modelling Intravascular Signal 

To consider the CFS’s ability to model intravascular signal, it was compared against simulations 

where the sphere radius was set to 3 μm. Above, the CFS was found to be in good agreement when  
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Figure 5.4: Accuracy of the CFS vs. simulations across a range of radii and pulse 

sequences. 

Page 83: (Left) Comparison of ΔR2
(*) from the simulations (circle markers) with the predicted 

values from the CFS (black line). The error bars represent the standard deviation of the mean 
simulated values. (Right) The RMSE across time between the mean simulations and the CFS. Note 
that the ΔR2 scales change between the pulse sequences’ figures, whereas they are constant for the 
RMSEs. Each row is from a different pulse sequence. RMSE = root mean square error. 

the volume fraction was set to 3% and Δχ corresponded to an SO2 of 60%. Here, those simulations 

were repeated with ζ up to 60%, encompassing typical hematocrits, and SO2 up to 90%. 

Figure 5.5a–c show the average radial correlation functions for the simulated three sphere 

distributions at ζ = 40% along with the fits to Eq. (5.4). None of the distributions exactly show the 

Gaussian decay described by Eq. (5.4), including the overlapping distribution. However, as shown 

in Figure 5.5d, the G(r = 0) values (i.e., the mean square field offsets, G0) increase linearly with 

volume fraction for the overlapping networks according to Eq. (5.12) and they vary quadratically 

according to ζ(1 - ζ) for both non-overlapping distributions, in agreement with earlier predictions 

[75,79]. From the fits of Eq. (5.4) to G(r), the fitted rc are in excellent agreement with Eq. (5.11) 

and are independent of volume fraction for overlapping spheres (Figure 5.5e). For the non-

overlapping networks, however, the fitted rc decreases with increasing volume fraction by an 

amount that depends on the exact distribution of the spheres. Since G(r) was not exactly Gaussian 

and since the G0 values were in such good agreement with theory, all fits to G(r) were constrained 

to pass through G0 at r = 0. 

Example simulated and predicted time series using the CFS are given in Figure 5.6a–c, the 

effective ΔR2 for all ζ are given in Figure 5.7a–c, and the RMSE between the simulations and CFS 

are given in Figure 5.7d–f. In the overlapping networks, the maximum RMSE is 0.016 for all ζ 



5.6 Results 

 

85 

and SO2. Given that the signals range from 1 (at t = 0) to 0, those magnitudes of RMSE are 

negligibly small. In the random non-overlapping distribution, the largest RMSE is 0.024 and it 

occurs at ζ = 30%, as shown in Figure 5.6e, where one could argue that that degree of error is still 

relatively negligible. In the HCP distribution, the RMSE steadily increases for ζ > 20% up to 0.06 

at ζ = 60%, where it appears more substantial (Figure 5.7e). 

 

 

Figure 5.5: Radial correlation functions, G0, and rc. 

(a–c) Mean radial correlation functions from the three sphere distributions at a volume fraction of 
40% (circle markers) along with their fits to the Gaussian decay in Eq. (5.4) (dashed line). These 
have been normalized such that their values at r = 0 are proportional to ζ or ζ(1 - ζ) for the non-
overlapping networks. (d) The mean square field inhomogeneity values, G0, from the three 
different sphere distributions as a function of volume fraction. These have also been normalized. 
The dashed line and the dash-dotted line show the cases where G0 is proportional ζ or ζ(1 - ζ), 
respectively. (e) The characteristic length parameter, rc, obtained from the fits to the simulation 
networks’ radial correlation functions as a function of volume fraction. These rc values are 
compared to the value predicted from Eq. (5.11), which for a radius of 3 μm gives rc = 2.73 μm 
(dashed black line). (d) and (e) share the legend on the bottom right. Note that the random non-
overlapping networks could generally only be populated up to a volume fraction of ~40%. 
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Figure 5.6: Simulated signals vs. the CFS for three sphere distributions. 

In all three simulations, ζ = 40%, τ180 = 40 ms, and the distributions are: (a) overlapping, (b) random 
non-overlapping, and (c) hexagonal close packed. The shaded bands represent the mean ± standard 
deviation of the simulated signals and the dashed lines represent the CFS for each SO2 as predicted 
using the fitted G0 and rc values from the networks’ radial correlation functions. The plotted 
colours correspond to the SO2 values in the colour bar on the right. 

Independent of the exact agreement between the CFS and simulations, it is apparent from 

Figure 5.6 and Figure 5.7 that the amount of decay is significantly reduced in the non-overlapping 

networks. This is expected given that G0 for both was decreased by a factor (1 - ζ) relative to the 

overlapping distribution. However, between the two non-overlapping distributions, the decay in 

the random non-overlapping distribution is significantly reduced relative to the HCP distribution. 

Additionally, the degree of refocusing in the random non-overlapping distribution is decreased and 

the time to maximum refocusing is shifted earlier in time. Both observations are explained by the 

decreased rc. The impact of the decreasing rc can also be seen in Figure 5.7b–c, where the non-

monotonic changes in ΔR2 cannot be explained by a quadratic dependence on ζ alone. If that were 

the case, ΔR2 should peak at ζ = 50%, whereas in the random non-overlapping distribution it peaks 

at ζ ≈ 30% and in the HCP distribution it peaks at ζ ≈ 40%. 
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Figure 5.7: Accuracy of the CFS across all volume fractions. 

Accuracy of the CFS for the three different sphere distributions as assessed using ΔR2 (a–c) and 
the RMSE (d–f). Mean simulated ΔR2 are represented by the circle symbols and the CFS-predicted 
ΔR2 are represented by the x’s. The sphere distributions are overlapping (a and d), random non-
overlapping (b and e), and hexagonal close packed (c and f). The symbol colours correspond to 
the SO2 values in the colour bar on the bottom right. Note that the ΔR2 scale in (a) is four times 
those of (b) and (c). 

5.7  Discussion 

In this study, we have used the weak field approximation model to describe the entire transverse 

signal time course. We found that the closed-form solution and the original WFA expression for 

monoexponential decay provide very similar estimates for ΔR2 in CPMG sequences; however, the 

discrepancy for the measured FID decay can be significant (up to as much as 100% error in the 

estimates of ΔR2
*). In light of the agreement between the simulations and the CFS in the motional 

narrowing regime, as detailed in Figure 5.4, we would attribute this discrepancy to the ΔR2
* model 
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not accurately accounting for the amount of time required for the FID to approach 

monoexponential decay. Considering that most multi-echo gradient echo sequences use echo 

spacings less than 20 ms, the discrepancy could be substantial if one were to use measured ΔR2
* 

values to obtain quantitative estimates of the underlying tissue properties.  

 To determine the dephasing regime in which the CFS was valid, we compared it with 

simulations in which the sphere radii were increased from 1.5 μm up to 40 μm (Figure 5.3). These 

simulations used a low volume fraction of 3% such that the issue of perturber overlap would be 

negligible. In most of the pulse sequences, the CFS started to significantly overestimate the decay 

for R > 5.2 μm but was accurate for smaller radii. The motional narrowing regime is most 

commonly classified using the dimensionless inequality α = τDδω  1 [60]. With our simulation 

parameters, a radius of 5.2 μm results in α = 2.7, meaning that the WFA is valid in the motional 

narrowing regime, as expected, and it can be applied across the motional narrowing-intermediate 

dephasing regime boundary but not well beyond it. The simulations in this study used a diffusion 

coefficient of 2.7 μm2/ms, corresponding to that of free water in plasma [137]. This should be an 

accurate representation of the diffusion coefficient at low perturber concentrations, however, as 

the perturber concentration increases, the apparent diffusion coefficient will decrease as the 

diffusion will be hindered by the finite permeability of the perturbers. For blood, the apparent 

diffusion coefficient may be in the range of 1.5–2.1 μm2/ms [137,140]. With RBCs modelled as 

3.0-μm spheres, this would result in a maximum α of 1.6, meaning that the WFA can still 

accurately describe the relaxation from RBCs when using a decreased diffusion coefficient. 

When we performed simulations that more closely resembled RBCs using a range of SO2 

values and increased volume fractions, the CFS was in excellent agreement with the WFA. This 

was in spite of the fact that the radial correlation functions of the simulation networks did not 
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always show the Gaussian decay proposed by Jensen and Chandra [76] (Figure 5.5). The overall 

shape of G(r) was similar for the overlapping and the HCP distributions and tended to be 

monotonically decreasing. G(r) for the random non-overlapping distribution, however, was non-

monotonic and it displayed oscillations about G(r) = 0. Whatever discrepancies that do exist 

between the simulated signals and the CFS could perhaps be reduced by modifying the expression 

for G(r) to better reflect the empirical values depending on the exact perturber distribution. 

Novikov and Kiselev [141] have considered this where they derived a sinc-based radial correlation 

function and found reasonable agreement with simulations in the motional narrowing regime. 

Judging from Figure 5.5, a sinc-based radial correlation function may better describe G(r) for the 

randomly non-overlapping distribution but likely not for the HCP distribution, therefore the 

modification will still need to be perturber distribution-dependent.  

This study also provides further validation that the true volume fraction, ζ, must be replaced 

with a scaled version, ζ′ = ζ(1 - ζ), when considering systems with relatively high volume fractions 

[79]. Kiselev and Novikov [79] have justified this scaling both formally as the second order density 

correction from the virial expansion as well as qualitatively, where the roles of “perturber” and 

“external medium” become reversed as ζ increases. This scaling applies to the mean square field 

inhomogeneity, G0, and is extremely important given that the effective decay rates are generally 

considered to be linearly proportional to G0, as in Eq. (5.6). In addition to this, we have shown that 

the decay rates are further reduced by changes in the characteristic length, rc, as ζ increases. By 

ignoring terms lower than 1st-order in t in Eq. (5.10), it can be shown that the asymptotic 

dependence of the relaxation rate on rc is quadratic. Therefore, the signal relaxation becomes quite 

sensitive to any changes in rc. This is apparent in the large difference in the relaxation rates between 

the two non-overlapping distributions, which is nearly a factor of two at ζ = 40%. 
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To the best of our knowledge, this relationship between rc and the volume fraction has only 

been briefly discussed in the literature but it has not been thoroughly investigated [139]. To make 

predictions of the transverse signal with the CFS for the non-overlapping distributions, we were 

required to fit Eq. (5.4) to the empirically determined radial correlation functions from the 

simulation networks themselves. It would be convenient if the simulation networks did not need 

to be created at all. An improved understanding of the statistical properties of the perturber 

distributions, in a manner similar to what has been done with time-dependent diffusion studies 

[142] may enable this. 

One limitation of this study is that the validation of the CFS was only performed using 

spherical perturbers. This was done since there exist analytical solutions for G0 and rc that allowed 

for the simulations to be predicted a priori. However, by increasing the volume fraction without 

overlap, the field distributions became less like those from spheres with uncorrelated positions. In 

this case, the CFS was still able to accurately capture the signal evolution. For other geometries, 

the parameters G0 and rc would take on other values but they would scale with volume fraction 

and field offset strength similarly. Using the Gaussian phase approximation in the long-time limit 

(which shows the same long-time behaviour as the WFA), Sukstanskii and Yablonskiy [131] 

calculated ΔR2 for randomly oriented ellipsoids of revolution. Even for the case of an oblate 

spheroid where one radius is twice the length of the other – a geometry that has previously been 

used to represent RBCs [140] – ΔR2 would still be within 4% of that of spheres (when the sphere 

and ellipsoid volumes and volume fractions are matched). This reflects how the field 

inhomogeneities can be approximated as those from a sphere in the long-time limit [143]. In the 

short-time limit, both FID and SE relaxation depend on the ratio of the surface area to the volume 

[131]. This ratio for an oblate spheroid is approximately 2/3 of a sphere’s, so a sphere does not 
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reliably reproduce the initial time course. Therefore, particularly in the long-time limit, fits to the 

CFS for spheroids might still be cautiously interpreted as if they were spheres. 

Another limitation of both the theory and the simulations includes the assumption that the 

water diffusion inside, outside, and across the perturbers is equal. For very small perturbers or for 

small volume fractions, such as iron depositions, this is likely not significant. For RBCs, the 

cellular permeability to water is finite and the lifetime between exchanges of a water molecule 

across the cell is approximately 10 ms [45,132,144]. Water is, therefore, quickly exchanging across 

the RBC boundary, and, as discussed above, this may be suitably modelled with a single diffusion 

coefficient that is the weighted sum of the intra- and extra-cellular diffusion coefficients [74]. The 

WFA has successfully been applied to relaxometry data from a range of tissues in vivo, such as 

blood samples [76,78,80-82] and tissue iron [76], where the parameters G0 and rc have different 

interpretations but are still related to the mean square field inhomogeneity and perturber size. This 

too is evidence that these limitations have only a minimal effect on the WFA’s ability to 

characterize relaxation from tissues in the motional narrowing regime and to provide fitted 

parameters of physiological interest.  

We envision the CFS could be used to simplify the simulation of transverse signal decay 

from systems in the motional narrowing regime, such as blood, where the sheer number of 

perturbers makes simulation a computational burden. This could be achieved by directly 

substituting the simulation time course with the CFS analytical time course, provided appropriate 

values for G0 and rc. As shown with the spheres at high volume fractions, when analytical solutions 

for G0 and rc are not apparent, these parameters could be empirically determined by fitting the 

radial correlation function. Another application of the CFS could be to decrease the total scan time 

required for fitting transverse signal decay to the WFA by substituting the large number of 
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refocusing rates used during a CPMG experiment with fewer refocusing rates and sampling the 

signal at time points away from the spin echo times. The non-SE samples would provide additional 

information, related to the characteristic perturber size, that could then be fit using the CFS. It may 

even be feasible to reduce the number of acquisitions to one with many GE readouts. 

5.8 Conclusion 

We have derived and validated a closed-form solution for transverse signal decay under an 

arbitrary number of refocusing pulses using the weak field approximation. When using the signal 

at the spin echoes from the CFS to fit for ΔR2, it was in excellent agreement with a well-known 

expression for asymptotic ΔR2 derived in the original WFA study [76], showing self-consistency 

of the CFS within the WFA. This comparison also showed that the time for an FID to approach 

monoexponential decay can be substantial and, thus, caution should be taken if applying the 

asymptotic model of ΔR2
* decay to gradient echo data. 

When compared against simulations from spherical perturbers, the CFS was found to be 

very accurate in the motional narrowing regime – as expected – and partially into the intermediate 

dephasing regime. This was the case when the volume fraction varied from 3%–60% and the 

perturbers could overlap. When the perturbers could not overlap, the relaxation rates of the 

simulations were significantly reduced relative to the overlapping case. In the context of the weak 

field approximation, these reductions in ΔR2 could be explained by reductions in the mean square 

field inhomogeneity, G0, which was proportional to ζ(1 - ζ) and independent of the perturber 

distribution as well as reductions of the characteristic length, rc, which were dependent on both ζ 

and the perturber distribution. These changes in G0 and rc could both be empirically determined 
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by fitting the radial correlation functions of the simulation networks, resulting in excellent 

agreement between the CFS and simulations up to ζ ≈ 40%. 

This study has advanced biophysical signal modelling from tissues where the perturber 

volume fraction is substantial. This could help simplify simulations from tissues such as blood or 

reduce the amount of time required for quantitative in vivo or ex vivo MR acquisitions from systems 

in the motional narrowing regime. 
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Gas-Free Calibrated fMRI 

6.1 Preface 

S discussed in Section 2.2.3, the first gas-free fMRI calibration experiments employed 

multi-echo gradient echo and spin echo sequences and combined the data to quantify R2
′ 

[24,25]. However, these multi-echo estimates of R2
′ are known to be highly sequence-dependent 

[145], as they will be impacted by multi-exponential decay [25,146], spin echo refocusing rate 

[75,147], and, similarly, diffusion-induced loss of phase history for single echo spin echo 

sequences [27]. Blockley et al. [27] proposed a gas-free calibration technique based on the ratio of 

spin echo and asymmetric spin echo images that overcomes multi-exponential decay issues yet is 

still affected by the diffusion-induced spin echo attenuation. 

This chapter presents a study whose aim was to develop an asymmetric spin echo-based 

calibration method that would be accurate, insensitive to multi-exponential decay, and could 

correct for diffusion-induced spin echo attenuation. Ideally, this could have been guided by 

A 
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analytical signal modelling, however, most signal models can only accurately predict signal from 

vessel networks over a limited domain of vessel sizes [148]. As signal decay is known to span all 

three dephasing regimes (motional narrowing, intermediate, and static dephasing) due to the range 

of vessel sizes present in the brain, this study was instead guided by signal simulations from blood 

vessel networks, as described in Chapter 3, using a blood susceptibility calculation, as described 

in Chapter 4. Based off the simulation results, a correction scheme for the spin echo attenuation 

was proposed and validated using additional simulations and in vivo experiments in healthy 

subjects. The principal advance of the proposed correction scheme is that, with the acquisition of 

at least one more pair of spin echo and asymmetric echo images, the correction can be derived 

from the data itself, rather than applying an assumed scaling factor as previously suggested [27]. 

This chapter is based on a manuscript submitted to NeuroImage. Supplementary results pertaining 

to the measurement of signal dephasing from macroscopic field inhomogeneities are provided in 

Appendix A. Ethics approval of this study is provided in Appendix B. 
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6.2 Abstract 

Calibrated functional magnetic resonance imaging (fMRI) is a method to measure the metabolic 

and hemodynamic contributions to the blood oxygenation level dependent (BOLD) signal. This 

technique typically requires the use of a respiratory challenge, such as hypercapnia or hyperoxia, 

to estimate the calibration constant, M. There has been a recent push to eliminate the gas challenge 

from the calibration procedure using asymmetric spin echo (ASE) based techniques. This study 

uses simulations to better understand spin echo (SE) and ASE signals, analytical modelling to 

characterize the signal evolution, and in vivo imaging to validate the modelling. Using simulations, 

it is shown how ASE imaging generally underestimates M and how this depends on several 

parameters of the acquisition, including echo time and ASE offset, as well as the vessel size. This 

underestimation is the result of imperfect SE refocusing due to diffusion of water through the 

extravascular environment surrounding the microvasculature. By empirically characterizing this 

SE attenuation as an exponential decay that increases with echo time, we have proposed a quadratic 

ASE biophysical signal model. This model allows for the characterization and compensation of 

the SE attenuation if SE and ASE signals are acquired at multiple echo times. This was tested in 

healthy subjects and was found to significantly increase the estimates of M across grey matter. 

These findings show promise for improved gas-free calibration and can be extended to other 

relaxation-based imaging studies of brain physiology. 

Keywords 

calibrated fMRI; BOLD; asymmetric spin echo; relaxometry; diffusion; cerebral metabolic rate of 

oxygen  
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6.3 Introduction 

Calibrated functional magnetic resonance imaging (fMRI) was developed to disentangle the 

hemodynamic and metabolic contributions to the blood oxygenation level dependent (BOLD) 

signal using simultaneous measurements of the gradient echo BOLD signal and cerebral blood 

flow (CBF) [14,15]. A calibration experiment is run to estimate the calibration constant, M, and is 

most commonly performed using a respiratory challenge where subjects inhale a gas mixture with 

additional carbon dioxide and/or oxygen to elicit changes in the BOLD signal and CBF or arterial 

oxygen tension [15,21,36,68]. The use of hypercapnia, the state of elevated CO2 in blood, suffers 

from multiple limitations: it may violate the assumption of iso-metabolism on which standard 

calibration models depend [149-152], and it typically measures perfusion changes using time-

resolved arterial spin labelling (ASL), an imaging technique with a low signal-to-noise ratio. 

Similarly, the use of hyperoxia, the state of elevated O2 in blood, requires either the additional 

measurement of the oxygen extraction fraction and the concentration of hemoglobin in blood or 

the assumption of those two parameters [21,22] that can lead to bias [26]. Hyperoxia may also 

produce concomitant decreases in CBF if blood CO2 is not controlled [153,154]. In general, gas 

challenges require additional apparatus and increased subject tolerance and preparation, thus, a 

gas-free alternative would greatly improve the appeal of calibrated fMRI. 

To date, a limited number of studies have examined gas-free calibration of the BOLD 

signal by substituting the gas challenge with a measurement of R2′ at rest, the reversible component 

of the transverse relaxation rate [24,25,27,28]. Under the assumption that the primary difference 

between the apparent and the irreversible relaxation rates (R2
* and R2, respectively) in a voxel is 

from the field inhomogeneities generated by deoxyhemoglobin (deoxyHb) [25,26], R2′ is the 
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favoured candidate for gas-free calibration due to its intimate relationship with baseline blood 

oxygen saturation and the deoxygenated cerebral blood volume (CBV) [5]. However, as in most 

areas of MR relaxometry, the apparent values of R2′ are highly dependent on the measurement 

technique and may produce different values due to multi-exponential decay, imperfect spin echo 

refocusing, and other acquisition related factors [145]. Blockley et al. [27] recently proposed a 

calibration technique that is insensitive to multi-exponential decay based on using spin echo (SE) 

and asymmetric spin echo (ASE) imaging. When compared against traditional hypercapnic 

calibration, their ASE calibration underestimated M across grey matter (GM) and the visual cortex, 

on average. This underestimation was postulated to arise from incomplete spin echo refocusing of 

spins diffusing in the extravascular space. This effect is the same source of contrast in SE BOLD 

imaging, and is known to be vessel-size and field strength dependent [17].  

In addition to imperfect SE refocusing, several other sources may confound the observed 

R2′ values. Macroscopic field inhomogeneities, which are prominent around air-tissue interfaces, 

lead to dramatic geometric distortions and signal intensity distortions in echo planar imaging (EPI). 

The intensity distortions tend to increase R2′ and these effects can be mitigated by a range of 

acquisition-related methods [155]. Cerebrospinal fluid (CSF) has recently been shown to 

significantly increase measured R2′ in grey matter [156,157]. This is postulated to arise from a 

chemical shift between CSF and parenchyma, resulting in enhanced signal dephasing in tissue 

voxels with partial voluming with CSF [158]. By adding a fluid attenuated inversion recovery 

(FLAIR) preparation to the imaging sequence, the CSF signal can be eliminated and the R2′ of 

neighbouring parenchymal voxels tends to decrease. Unlike field inhomogeneities and CSF, which 

can be prospectively and retrospectively managed, additional non-deoxyHb sources of tissue 

magnetic susceptibility, such as iron depositions and myelin, will alter R2′ in a less predictable 
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manner (they can increase or decrease R2′, depending on their susceptibility and relative 

concentration). Kida et al. [24] found that these other sources of susceptibility have negligible 

contributions to the observed R2 and R2
* (and hence R2′) at 7 T in rats. In this study, which was 

performed at a field strength of 3 T, we do not consider these other sources, consistent with earlier 

work [27,146]. 

The purpose of this study was to determine how incomplete refocusing of SE and ASE 

signals affects the estimation of R2′ and how it can be accounted for to obtain a more accurate 

estimate of M. Simulations were used to determine the vessel-size dependence of the R2′ 

underestimation and to develop a strategy to retrospectively correct for it. This strategy was tested 

in vivo, taking precautions to avoid confounds from macroscopic field inhomogeneities and CSF 

partial volume. These ASE-based M calculations were compared against hypercapnic calibration 

in the same subjects. 

6.4  Theory 

6.4.1 Calibrated fMRI with Asymmetric Spin Echo Imaging 

The standard calibrated fMRI model that relates changes in CMRO2 and CBF to changes in the 

gradient echo (GE) BOLD signal is [15] 

 
ΔBOLD
BOLD

CBF
CBF

CMRO
CMRO

(6.1) 
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where the subscript ‘0’ refers to a value at baseline and ΔBOLD = BOLD – BOLD0.  is the Grubb 

constant and accounts for coupling between CBV and CBF arising from an empirical power law 

relation between the two [66]. β describes the non-linear dependence of the change in R2
* on the 

susceptibility offset of blood relative to tissue [17,64]. M is proportional to the resting 

concentration of deoxyHb in blood and it can be considered the maximum fractional increase in 

the GE BOLD signal, which would theoretically occur upon removal of all deoxyHb in blood (i.e., 

venous oxygen saturation → 100%) [14,159,160]. Under the assumption of iso-metabolism, M is 

estimated with hypercapnia (MHC) by measuring changes in CBF and the BOLD signal using 

 

ΔBOLD
BOLD

CBF
CBF

(6.2) 

 

Rather than perturb the oxygen saturation (SO2) like a gas-based calibration would, a spin 

echo image perturbs the spins of the system such that, in the absence of diffusion, the SE will 

refocus all the spin dephasing induced by deoxyHb present in blood vessels and will, therefore, be 

equal to the maximum possible GE BOLD signal. To then estimate R2′, one can acquire another 

image with R2
*-weighting, since R2

* = R2 + R2′. Acquiring an ASE image is appropriate for this 

because it will have the same slice profile as the SE image. Example SE and ASE sequences and 

their transverse signal decays are displayed in Figure 6.1. If the spin echo in the ASE image is 

shifted earlier by a time τ, the signal can be described by 

 ASE e TEe (6.3) 
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where TE is the echo time, τ is the ASE offset, and S0 is the signal at TE = 0. In the convention 

used here, τ > 0 corresponds to TE occurring a time τ after the SE occurs. Eq. (6.3) assumes τ > 0 

but in the case of τ < 0, τ should to be replaced by |τ|. The SE signal, SSE, is also described by Eq. 

(6.3) but with τ = 0. If τ is chosen to be the same as the echo time used for functional imaging, 

then M from ASE imaging (MASE) can be estimated from the ratio of an SE and ASE image, both 

acquired at time TE [27]: 

 ASE

 
(6.4) 

 

 

 

Figure 6.1: Example asymmetric spin echo sequences and transverse decay. 

The SE and ASE pulse sequences share the same 90° excitation pulse and sample the signal at the 
same echo time (TE, dotted vertical line). The black curve represents the pure SE sequence signal 
decay. The dashed orange curve represents the ASE sequence signal decay when the ASE offset 
is +τ. The dashed blue curve represents the ASE sequence signal decay when the ASE offset is  
–τ. The three signals have no T2 decay, no diffusion effects, and only show R2′-related decay and 
refocusing. The two ASE signals are equal at TE. 
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6.4.2 Quadratic Spin Echo Attenuation 

The model of gas-free calibration described above by Eq. (6.4) applies in the absence of diffusion, 

where the 180° pulse will perfectly refocus the dephasing surrounding blood vessels. To determine 

how SE attenuation from diffusion depends on TE and τ, simulations of the SE and ASE signals 

were run from vessel networks as a function of vessel radius. These considered the decay resulting 

from field inhomogeneities only and ignored intrinsic T2 decay (details provided in the Methods 

section below). Figure 6.2 shows examples of the simulations for three different vessel radii as a 

function of TE. The grey curves show the entire simulated time series, like the simulated signals 

in Figure 6.1, however, diffusion is incorporated and there are more spin echo times displayed. 

The impact of diffusion on the individual simulated time series is that the amount of SE attenuation 

increases with increasing TE and the time at which maximum refocusing occurs shifts earlier in 

time than the nominal SE time. Also, the amount of decay and refocusing both increase with 

increasing vessel size. The coloured envelopes represent the signals at the echo times, i.e., when 

the decays are actually sampled, be it the SE or ASE signals. The signal envelopes for all radii and 

for more values of τ are shown in Figure 6.3. The key qualitative observations are: 

1. With respect to TE, the envelopes are all well described by a quadratic-exponential decay 

early on and by linear-exponential decay later, with the time to transition being 

proportional to vessel radius. 

2. With respect to τ, the envelope for a given radius is approximately a shifted copy of that 

radius’ envelope from τ = 0. The shift is by an amount τ in time and an amount R2′τ along 

the ordinate. R2
′ is smallest for small vessels [17], hence the shift is smaller for them and 

greater for large vessels. 
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Figure 6.2: Example simulated time series from SE and ASE sequences. 

The individual time series for each TE are shown by the greyscale curves, with black to grey 
representing earlier to later TEs and TE incrementing by 4 ms. The coloured signal envelopes 
represent the signals at the echo times. In the case of the SE simulations (top row), each envelope 
shows only the signal at the SE times (tSE). In the case of the ASE simulations (bottom row), each 
envelope shows only the signals at the times TE = tSE + τ. The maximum tSE simulated was 100 
ms, therefore, TE ranges from 28 ms to 72 ms for the ASE envelope. Each column depicts the 
simulations from a network containing a different vessel radius (1 μm, 10 μm, or 100 μm). The 
plotted greyscale ASE signals are for a negative ASE offset but the resulting differences between 
their signal envelopes and the signal envelopes from the positive offsets were negligible. 

The simulations above were repeated on networks populated by two different distributions 

of vessel radii, referred to here as the Lauwers [46] and Frechet distributions [49], and shown in 

Figure 6.4. The Lauwers distribution had very few radii > 10 μm, whereas the Frechet distribution 

peaked near 10 μm and had a long tail out to 60 μm. Similar signal behaviour can be seen in the 

simulations from the Lauwers and Frechet vessel-size distributions, shown in Figure 6.5. In this 

case, the Lauwers distribution, which is primarily microvascular, appears to transition from 

quadratic- to linear-exponential decay earlier than the Frechet distribution and its vertical shift is 

smaller, 



Gas-Free Calibrated fMRI 

 

106

 

 

 

Figure 6.3: Logarithm of the ASE signal envelopes as a function of TE and vessel radius. 

Each sub-figure shows the envelope for different ASE offsets, τ, where τ = 0 corresponds to the 
pure spin echo signal. Within each sub-figure, each curve represents the mean signal from a 
different vessel radius, and they all share the legend in (a). The ranges of TE for each sub-figure 
are τ ≤ TE ≤ 100 ms – τ. Error bars represent the mean ± standard deviation (SD) of the simulations 
across networks. 

 

 

Figure 6.4: Histograms of the Lauwers and Frechet vessel-size distributions. 

The values represent the frequency with which the given ranges of radii occur across all vessel 
networks of a given distribution. 
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Figure 6.5: Logarithm of the ASE signal envelopes as a function of TE for the Lauwers and 

Frechet vessel-size distributions. 

Each sub-figure shows the envelope for different ASE offsets, τ, where τ = 0 corresponds to the 
pure spin echo signal. All sub-figures share the legend in (a). Error bars represent the mean ± SD 
of the simulations across networks. 

consistent with the results in Figure 6.3. 

We propose that the diffusion-induced SE attenuation can be characterized by ignoring the 

transition to linear-exponential decay and considering the attenuation as an additional quadratic-

exponential decay term with rate constant (R2,diff)2. This decay would commence at  

TE = τ and the ASE signal in Eq. (6.3) would be modified as 

 (6.5) 

We refer to this model of the ASE signal as the quadratic ASE (q-ASE) model. The (R2,diff)2 term 

can be visualized by plotting the expression 

 (6.6) 
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The final equality is a simplification for the simulations only because S0 is normalized to 1 and the 

intrinsic R2 is set to 0. This indicates that (R2,diff)2 can be estimated from the initial slope of ΔR2 vs. 

TE. 

Taking the ratio ln(SSE/SASE) using Eq. (6.5) gives 

 (6.7) 

Since τ ≤ TE, the ratio will always be less than R2′τ and is consistent with M being underestimated 

from ln(SSE/SASE) alone, as in Eq. (6.4). From the linear TE-dependence, it should be possible to 

estimate (R2,diff)2 and R2′ if this ratio is measured at two or more echo times. M can then be 

estimated using 

 (6.8) 

where TEfunc is now the BOLD echo time of the functional experiment that the calibration is to be 

applied to. 

Alternatively, one could use a fixed TE and fit the quadratic dependence of Eq. (6.7) using 

several values of τ. However, more data would be required to fit the quadratic relationship and 

other experiments and theories of SE decay have shown that this ratio can become quadratic around 

the SE as a function of TE or τ in the absence of diffusion [1,5,161]. Therefore, these two distinct 

quadratic behaviours could confound the estimate of (R2,diff)2. 
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6.5 Methods 

6.5.1 Simulations 

The simulations in this study used the deterministic diffusion method [83]. This consisted of 

populating a two-dimensional (2D) plane with vessels to the desired CBV, where blood vessels 

were modelled as cylinders perpendicular to the plane. To model the random orientation of the 

vessels, the direction of the main B0 field was randomized for each vessel [88]. This vessel-wise 

randomization of the B0 direction was used rather than physically reorienting the vessels relative 

to the plane because it resulted in a more easily controlled CBV and still generated the desired 

distribution of field offsets since the field offsets along a direction parallel to a cylinder are 

invariant. An example vessel distribution and the resulting field offsets are shown in Figure 6.6. 

 

 

Figure 6.6: 2D vessel map and its field inhomogeneity map (single radius) 

(a) Example 2D vessel map. The blue circles correspond to the vessel cross sections. (b) The 
random B0 directions assigned to each vessel. The directions are represented by the arrows and are 
overlaid on a semi-transparent version of the vessel map. (c) The field offset map generated by the 
vessels. All the vessels were assigned the same susceptibility offset, Δχ, and the map was 
normalized by B0Δχ. 
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The deterministic diffusion simulation method spatially discretizes the area over which the 

simulation is run onto a lattice and, for a given distribution of vessels, calculates the field offsets 

generated by them over this lattice [73,83]. Following an initial 90° excitation pulse, each element 

of the lattice has a uniform magnetization with an initial phase of 0 and magnitude of 1. In time 

steps, δt, the magnetization at the (k,l)-th lattice element, Mkl, precesses by an angle Δϕkl = γ ΔBkl 

δt, where ΔBkl is the field offset at that lattice element. Diffusion is modelled by an isotropic, 

Gaussian blurring of the magnetization along each dimension independently. This was 

implemented by linear convolution of the magnetization with the 1D discrete diffusion kernel with 

a width parameter equal to the expected mean-square displacement of the spins, σ2 = 2Dδt, where 

D is the diffusion coefficient of water in tissue [95]. The k-th element of the kernel is given by 

 (6.9) 

where Δx is the physical spacing between lattice elements and Ik is the modified Bessel function 

of the first kind of order k. The half-width of the kernel was a minimum of 6σ and was extended, 

if necessary, until 1 - ΣDk ≤ 5e-8. This requirement ensures that the kernel is normalized and it 

was empirically tested for accuracy with preliminary simulation tests. 180° refocusing pulses were 

modelled by taking the complex conjugate of the magnetization at each lattice element. Finally, 

the signal magnitude at the n-th time point is given by 

 (6.10) 

where N is the number of lattice elements summed along each dimension and the sum was only 

performed over the central 1/3 of the lattice width along each dimension to avoid convolution edge 

effects. 
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The field offsets generated by each vessel were given by modelling them as infinite 

cylinders perpendicular to the simulation plane with [52]: 

 (6.11) 

where R is the vessel radius, r is the distance from the point of interest to the centre of the vessel, 

θ is the angle between B0 and the centre line of the vessel, ϕ is the angle between the vector defined 

by r and the component of B0 in the plane, and Δχ is the susceptibility difference between the blood 

within the vessel and the surrounding tissue. The field offsets from each vessel were independently 

calculated and summed across the lattice to give ΔBkl. 

To determine the echo time dependence of the SE attenuation, simulations were run from 

time 0 (i.e., immediately after excitation) up to the spin echo time (tSE), with tSE incremented in 4-

ms steps from 4 to 100 ms. Since the simulations only ran up to tSE, the ASE signals were 

determined using negative ASE offsets (i.e., τ < 0) and testing showed that the signal difference 

for positive vs. negative τ was negligible (results not shown). Simulations were performed using 

B0 = 3 T, CBV = 2% (representing venous CBV), Δχ = 4π⋅0.04 ppm, diffusion coefficient D = 0.8 

μm2/ms, and time step δt = 0.25 ms. This Δχ approximately corresponds to vessels with an SO2 of 

60% and hematocrit of 40% and where tissue has the same susceptibility as fully oxygenated blood 

[103,138]. Ten networks were randomly seeded with 1.0-μm vessels on a 10202 lattice with a side 

length of 255 μm isotropic. At this resolution, each vessel could be sampled up to eight times 

across its diameter, and using higher resolutions had a negligible impact on the results. These 

networks were reused to perform the simulations for radii up to 20 μm by assigning them an 

effective lattice size of 255 μm × R/1.0 μm. For R ≥ 20 μm, the same scaling was employed, 
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however, the lattice was resampled to a 63752 grid to ensure the diffusion kernel and field offset 

map were sampled at a high enough spatial resolution. All simulations were run using MATLAB 

R2015a (MathWorks, Natick, MA). 

For the vessel-size distributions, the Lauwers distribution was obtained using the 

parameters for the complete vessel network in [46] with the radii ranging from 3.0–40 μm. The 

Frechet distribution was implemented in MATLAB using the gevrnd function with the input 

parameters μ = 10.1 μm, σ = 5.8, and k = 0.41 taken from [49] and with the radii ranging from 2.5–

60 μm. 

To evaluate the hypothesis that ln(SSE/SASE) may have a linear dependence on TE, the ratio 

was calculated from the previous simulations as a function of TE and τ. The calibration constant, 

M, was then calculated from simulations with a finer division of radii from 1–100 μm and the 

Lauwers and Frechet radii distributions using two TEs to fit for R2′ and (R2,diff)2 with Eq. (6.7). We 

tested this with τ = +30 ms and TEs of 40 ms and 50 ms. The fitted R2′ values from the two different 

τ values were substituted into Eq. (6.8) to calculate M using TEfunc = 30 ms. For comparison, M 

was also calculated at a single TE of 40 ms with τ = +30 ms using Eq. (6.4), as in Blockley et al. 

[27]. These ASE-based M calculations were compared against the “ideal” M given by the 

maximum possible gradient echo percent signal change at TE = 30 ms. Since these simulations 

ignored T2 relaxation, the maximum signal was taken to be 1. 
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6.5.2 In Vivo Study 

MR Imaging 

We evaluated the quadratic ASE model on nine healthy participants (4 female, 5 male; 19–39 years 

of age; mean age = 28 ± 7 years) using a 3 T scanner (Discovery 750, GE Healthcare, Waukesha, 

WI). The study was approved by our institutional review board and all participants gave informed 

written consent. Subjects were scanned with a 2D ASE EPI sequence with FLAIR preparation. 

Imaging parameters included: field of view = 224×224 mm2; 96×96 matrix; bandwidth = 250 kHz; 

slice thickness = 2.0 mm + 1.0-mm gap; 34 slices (interleaved); flip angle = 90°; ASSET factor = 

2; four TEs of 42, 50, 60, and 70 ms; τ = 0 and 30 ms; inversion time (TI)/repetition time (TR) = 

2.0/8.0 s. This combination of TI/TR was determined to null the signal from CSF in preliminary 

testing on two additional subjects. Slices were angled parallel to the anterior commissure-posterior 

commissure line and aligned to the top of the brain. This typically resulted in whole-cerebrum 

coverage and partial cerebellum coverage. For each TE-τ image, 15 complex volumes were 

acquired with two additional dummy volumes. 

During the hypercapnic calibration, participants were imaged with a dual-echo pseudo-

continuous arterial spin labelling (ASL) sequence with a 2D EPI readout and the following 

imaging parameters: field of view = 224×224 mm2; 64×64 matrix; bandwidth = 250 kHz; slice 

thickness = 5.0 mm + 1.0-mm gap; 18 axial slices acquired in a top-down order; flip angle = 90°; 

ASSET factor = 1.5; TE1/TE2 = 9.5/30 ms; TR = 3.6 s; ASL label duration = 1600 ms; post-label 

delay = 900 ms. Slices were aligned to the top of the brain and the labelling plane was located 20 

mm inferior of the most inferior slice. 100 volumes were acquired with four additional dummy 

volumes. 
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A separate B0 field map was acquired using a 2D, fast spoiled gradient recalled echo, three-

echo sequence with a monopolar readout, a field of view matched to the ASE images, 256×256 

matrix, TE1 = 4.45 ms, echo spacing = 2.1 ms, TR = 500 ms, and flip angle = 30°. High resolution 

structural images were acquired using a 3D MP-RAGE acquisition [162] with a 1-mm isotropic 

resolution, 192×256×256 matrix, TR/TI/TE = 6.66/650/2.93 ms, and 10° flip angle. 

Hypercapnia Gas Challenge 

All subjects underwent a hypercapnic gas challenge in the MR scanner consisting of breathing 

medical air for 2 min, 5% CO2 in medical air for 2 min, then medical air for 2 min. Participants 

were delivered the gases with an automated flow controller (FloBox 954, Sierra Instruments, Inc., 

L Monterey, CA) connected to a non-rebreathing circuit with an extended expired gas reservoir 

that was open to the room at its end [163]. Gases were delivered at a constant flow rate of 20 l/min, 

and partial pressures of oxygen and carbon dioxide in the breathing mask were monitored with 

BIOPAC O2100C and CO2100C modules connected to a BIOPAC MP150 acquisition unit 

(BIOPAC Systems, Inc., Goleta, CA). The mean end-tidal partial pressures of CO2 (PETCO2) and 

O2 (PETO2) at rest were determined from the 60 s of end-tidal measurements prior to the 

hypercapnia challenge, and the mean changes in the end-tidal values were determined from the 

final 60 s of the hypercapnia challenge. 

Image Processing 

All image analysis was ultimately performed in the individual subjects’ ASL image space, 

however, image preprocessing was generally performed in each image’s native space. A 

combination of tools from Statistical Parametric Mapping (SPM) 8 (Wellcome Trust Centre for 



6.5 Methods 

 

115 

Neuroimaging, London, UK), FMRIB Software Library (FSL) v5.0.7 [164], and MATLAB were 

used for image analysis. 

For each TE-τ ASE combination, the image volumes were motion corrected using SPM 

realign, complex-averaged across time, then converted to magnitude images. The mean magnitude 

images were coregistered to the mean TE/τ = 42/0 ms image using SPM coreg and then brain 

extracted using FSL BET [165]. The TE/τ = 42/0 ms brain extracted, distortion corrected image is 

referred to as the ASE reference image. Geometric distortion correction of the images was 

performed using the B0 field map with FSL FUGUE [166]. The field map was fit by nonlinear 

estimation in the complex domain [167] and smoothed by fitting it to a 3D smoothing spline in 

MATLAB. Voxels in the ASE images where the estimated distortion was greater than 1 voxel 

were excluded from later analyses. 

The ASL images were motion corrected using the SPM ASL toolbox [168]. Simultaneous 

geometric distortion correction and registration of the mean echo 1 image to the structural image 

was performed using boundary-based registration with FSL’s epi_reg utility (white matter (WM) 

segmentation described below) [169,170]. The distortion correction was then applied to all echo 1 

and echo 2 images. 

Calculation of the M values was performed on anatomically defined grey matter regions of 

interest (ROIs). Segmentation of the structural image was performed using SPM8 new segment 

[171], giving tissue probability maps and the nonlinear deformation into MNI space. The inverse 

deformation fields were used to transform four atlas-based ROIs corresponding to the frontal, 

occipital, parietal, and temporal lobes from MNI space to subject space [172]. These ROIs were 

then multiplied with the GM tissue probability maps, transformed to ASL-space, and thresholded 
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at 0.75 to produce binary masks. A fifth ROI consisting of all GM thresholded at 0.75 was also 

used. The transformation matrices to the structural image for the ASE reference image were 

estimated using epi_reg: given the lack of GM-WM contrast and the pronounced CSF-parenchyma 

contrast in the FLAIR-ASE images, the CSF segmentation was used for the contrast boundary.  

Macroscopic field inhomogeneities unequally affect the ASE and SE signal intensities and, 

hence, the apparent R2′; therefore, several efforts were made to exclude regions of excess signal 

intensity distortions arising from field inhomogeneities and to compensate for moderate signal 

dropout. The field gradients across the slice, frequency, and phase encode directions were 

calculated numerically by central differences on the smoothed field map. The τ = 30 ms ASE image 

intensities were corrected for gradients across the slice, Gs, by dividing them on a voxel-wise basis 

by the factor sinc(γGsτΔz/2π) [1], where γ = 2.675×108 rad/s/T is the gyromagnetic ratio of 1H, 

and Δz is the slice thickness. The sinc correction method relies on an ideal square slice profile; this 

assumption was tested using Bloch simulations of the pulse sequence and by measurement of the 

slice profile in a phantom and it was found to be in close agreement up to the first zero of the sinc 

function. Voxels where the sinc term was less than 0.5 were excluded from the ROIs for analysis. 

In-plane field gradients can lead to gradual dephasing and, for gradients above a critical threshold, 

can push the gradient echoes in the EPI readout trajectory out of the k-space acquisition window, 

resulting in abrupt signal loss [173,174]. Therefore, only voxels where the in-plane gradient 

magnitude was less than 50% of the critical gradient magnitude were included for analysis. This 

corresponded to including voxels where the gradient magnitude was less than 84 μT m-1 along the 

readout direction and less than 56 μT m-1 along the phase encode direction. Despite these 

precautions, the estimated R2′ values in the temporal lobe were still artefactually elevated; 

therefore, only slices superior to the cerebellum were included in the ROIs for analysis. 
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Data Analysis 

After transformation of all ASE images into each subject’s own ASL space, their intensities were 

averaged across the five ROIs and the ratio of the mean SE over the mean ASE signal was 

calculated at each echo time. Non-linear fitting of this ratio vs. TE to the q-ASE model in Eq. (6.7) 

was performed in MATLAB using lsqcurvefit with the trust-region-reflective algorithm. This 

resulted in fits for R2′ and (R2,diff)2 from which M was then determined using the non-linearized 

version of Eq. (6.8). Whether the q-ASE model statistically significantly increased the M values 

relative to those determined using only the TE = 42 ms data was assessed using a single-sided 

Wilcoxon signed rank test for each ROI, with P < 0.05 deemed significant. 

For comparison, M was calculated across the ROIs from the dual-echo ASL images during 

the hypercapnia challenge. To calculate CBF-weighted changes, tag-control subtraction of the first 

echo images was performed using sinc interpolation. The second echo images were used as BOLD-

weighted images. The percent signal changes of the BOLD and CBF signals were determined from 

their modelled responses using a general linear model analysis on the averaged signals across the 

ROIs [36]. Both the averaged BOLD and CBF signal time courses were modelled by convolving 

the hypercapnia stimulus paradigm with a gamma-variate function with a mean lag of 30 s and a 

standard deviation of 15 s [175]. The temporal derivative was included as an additional regressor 

to account for temporal delays in the responses. In the BOLD images only, linear drift and tag-

control nuisance regressors were included. M values for each ROI were then calculated using Eq. 

(6.2) with α = 0.2 [67] and β = 1.3 [151,176]. Whether the hypercapnic M values differed 

significantly from the ASE and q-ASE M values was determined using a two-sided Wilcoxon 

signed rank test for each ROI, with P < 0.05 deemed significant. 
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6.6 Results 

6.6.1 Simulations 

The quadratic decay term, (R2,diff)2, is visualized in Figure 6.7 by plotting the initial slope of ΔR2 

vs. TE for the SE signals. The fitted slopes, which give (R2,diff)2 by Eq. (6.6), appear to follow a 

sigmoidal relationship that is monotonically decreasing with vessel radius, as shown in Figure 

6.7b. The (R2,diff)2 values for the Lauwers and Frechet vessel radius distributions are (14.1 ± 0.5) 

s-2 and (5.3 ± 0.6) s-2, respectively. From Figure 6.7a and c, if (R2,diff)2 was estimated by fitting the 

tangent at later times, there would be an underestimation that would be worse for the smaller radii. 

 

 

 

Figure 6.7: The TE-dependence of ΔR2. 

The dependence is given for individual radii (in μm) (a) and for the two distributions of radii (c). 
Error bars in (a) and (c) show the mean ± SD of the simulated ΔR2 values. The initial relationships 
of ΔR2 vs. TE are plotted with the straight lines. The slopes of the lines reflect the (R2,diff)2 term 
and those values from (a) are plotted as a function of vessel radius in (b). The slopes in (c) for the 
Lauwers and Frechet distributions are (14.1 ± 0.5) s-2 and (5.3 ± 0.6) s-2, respectively. 
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The log-ratio, ln(SSE/SASE), as a function of TE is shown in Figure 6.8 for a subset of τ 

offsets. For a given TE and given τ, the curves for each radius are vertically offset from each other 

and they increase monotonically with vessel size. This reflects the true difference in R2′ for the 

different vessel sizes that is widely known for GE BOLD [17]. At the vessel-size extremes of 1 

μm and 100 μm, both ratios are relatively flat as a function of TE. These arise from two different 

mechanisms, however. The ratio is flat for the 1-μm simulations because the signal rapidly 

transitioned from quadratic to linear decay, as observed in Figure 6.3. Conversely, the ratio is 

relatively flat for the 100-μm simulations because the diffusion-induced SE attenuation is small 

since the scale of diffusion is much less than that of the field offsets surrounding the vessels. In 

between these radii, it can be seen how the curves transition. For the shortest τ offset, the slopes 

monotonically decrease with increasing radius (ignoring the 1 μm simulations). At the later τ 

offsets, the slopes no longer decrease monotonically with increasing radius but rather they peak 

around 10 μm. This change in behaviour with increasing τ is the result of the early quadratic decay 

being missed in the SE signals for the smaller vessel sizes as TE is increased, as predicted above 

by Figure 6.7. 

 

 

Figure 6.8: The SE/ASE log-ratio for individual radii. 

The radii, in μm, are labelled in (c). Error bars represent the mean ± SD of the log-ratio across all 
simulated networks although they are mostly obscured by the connecting lines. 
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Figure 6.9: The SE/ASE log-ratio for the Lauwers and Frechet vessel-size distributions. 

The distributions are labelled in (c). Error bars represent the mean ± SD of the log-ratio across all 
simulated networks. 

These same ratios are shown for the Lauwers and Frechet vessel-size distributions in Figure 

6.9. These results are consistent with those of the individual radii above. The error bar sizes vary 

between the two distributions because there were far more vessels per network in the Lauwers 

simulations than the Frechet simulations. The vertical offset between the two curves reflects the 

intrinsic differences in R2′ between the two vessel-size distributions; the Frechet distribution has 

larger ratios because its vessel sizes are larger overall. The slope of the Lauwers curve at the 

smallest τ is initially steeper than that of the Frechet curve but it plateaus at the later echo times. 

The slope of the Frechet curve is relatively unchanged from τ-to-τ. 

Figure 6.10 shows the results of calculating M using the ratio ln(SSE/SASE) at a TE of 40 ms 

with τ = 30 ms (denoted MASE). When the ratio from TE = 50 ms was incorporated to calculate R2′ 

and (R2,diff)2 using the q-ASE model, almost all radii’s M values were substantially increased 

(denoted Mq-ASE). These ASE-based M values were compared against the “ideal” M value (Mideal), 

calculated as the maximum possible GE BOLD percent signal change at TE = 30 ms. MASE only 

agreed to within 5% of Mideal for radii > 40 μm, whereas for Mq-ASE, this level of agreement was  
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Figure 6.10: Simulated M values across radii. 

(a) Radius-wise comparison of the ideal M-values (Mideal) calculated from the maximum GE BOLD 
signal at TE = 30 ms vs. M when calculated using ln(SSE/SASE) at a TE of 40 ms with τ = 30 ms 
(MASE) and M when calculated using the quadratic ASE signal model (Mq-ASE) to fit for R2′ and 
(R2,diff)2 with SE and ASE signals at TE = 40 and 50 ms. (b) The estimated (R2,diff)2 values from the 
q-ASE model for each vessel radius. Error bars represent the mean ± SD across all simulated 
networks. 

attained for radii > 7 μm. The corresponding estimated (R2,diff)2 values are shown in Figure 6.10b. 

Similar results are observed in the Lauwers and Frechet radius distributions in Table 6.1. 

6.6.2 In Vivo Imaging 

The ratios of the SE and ASE signals, ln(SSE/SASE), were calculated for all subjects from the image 

intensities averaged across the GM ROIs. In one of the subjects, these ratios displayed substantially 

more variability than in the other subjects resulting in this subject being excluded from any 

analyses. The ratios from the remaining subjects are shown in Figure 6.11 along with their model 

fits to Eq. (6.7). Included in Figure 6.11 are the average model fits derived from the mean of all 

subjects’ fitted R2′ and (R2,diff)2. Those fits are tabulated in Table 6.2. 
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Table 6.1: Mean simulated M values from the vessel-size distributions. 

Mideal is the maximum percent GE BOLD signal at TE = 30 ms; MASE is the estimated M value 
from ln(SSE/SASE) with τ = 30 ms at either TE = 40 or 50 ms; Mq-ASE is the estimated M value 

using the ASE and SE signals from both TEs and fitting for (R2,diff)2 and R2′ prior to calculating 
M. The corresponding estimated (R2,diff)2 values from the q-ASE fitting are also given. Values are 

displayed as mean ± SD. 

M calculation 

Lauwers Frechet 

M [%] M/Mideal 
(R2,diff)2 

[s-2] M [%] M/Mideal 
(R2,diff)2 

[s-2] 

Mideal  
(TE = 30 ms) 5.8 ± 0.2   8.2 ± 1.1   

MASE  
(TE = 40 ms) 3.6 ± 0.2 0.62 ± 0.01  7.0 ± 1.0 0.86 ± 0.01  

MASE  
(TE = 50 ms) 3.1 ± 0.2 0.53 ± 0.02  6.6 ± 0.9 0.81 ± 0.02  

Mq-ASE 5.2 ± 0.3 0.88 ± 0.01 9.3 ± 0.4 8.3 ± 1.1 1.02 ± 0.02 6.5 ± 0.8 

 

The ASL data from another subject were excluded due to improper labelling plane 

positioning. The remaining 7 subjects’ mean changes in PETCO2 and PETO2 during the hypercapnia 

challenge were 9 ± 2 mm Hg and 15 ± 5 mm Hg, respectively. The gas delivery was not iso-oxic 

although this would only give an average change in arterial SO2 from approximately 97% at rest 

to 98% during hypercapnia [32], resulting in a negligible contribution to the BOLD signal. 

The mean calibration constants in the GM ROIs as determined from hypercapnia (MHC), 

ASE at TE = 42 ms (MASE), q-ASE fit with the first three TEs (Mq-ASE (3 TEs)), and q-ASE fit with 

all four TEs (Mq-ASE (4 TEs)) are displayed in the bar plot in Figure 6.12. 
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Figure 6.11: The SE/ASE log-ratio in vivo as a function of TE for the grey matter ROIs. 

Individual subjects’ values are plotted with the coloured markers and their resulting fits to Eq. 
(6.7) with the first three TEs are plotted with the coloured dashed lines. The mean fits are 
represented by the solid black lines. All axes share the same set of axis labels as (a). GM: grey 
matter. 

 

Table 6.2: In vivo (R2,diff)2 values across grey matter. 

The mean ± SD in vivo (R2,diff)2 values across the grey matter (GM) ROIs of 8 subjects. The fits 
for (R2,diff)2 were performed using either the first three echoes or all four echoes. 

# of Echoes 
in q-ASE Fit 

Mean (R2,diff)2  [s-2] 

Frontal GM Occipital GM Parietal GM Temporal 
GM 

All Grey 
Matter 

3 -0.1 ± 18 17 ± 20 12 ± 16 10 ± 24 6 ± 12 

4 -1 ± 11 9 ± 10 6 ± 7 3 ± 15 2 ± 7 
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Figure 6.12: Comparison of M in the grey matter ROIs averaged across 7 subjects. 

M was measured using hypercapnia (HC), from the first ASE echo time (ASE (TE=42 ms)), with 
the q-ASE model fit to the first three TEs (q-ASE (3TEs)), or all four TEs (q-ASE (4TEs)). * 
denotes the ASE or q-ASE M values were significantly different from the HC values (P < 0.05). # 
denotes the q-ASE M values were significantly greater than the ASE (TE=42ms) M values (P < 
0.05). 

6.7 Discussion 

Gas-free fMRI calibration holds great appeal for improving access to calibrated fMRI methods; 

however, technical challenges still impede its adoption. In this study, we have examined SE 

attenuation resulting from diffusion through the microvasculature with the principal aim of being 

able to compensate for this attenuation in calibration. Despite SE attenuation being a well-known 

phenomenon, it has generally been disregarded in earlier studies using gas-free calibration 

[24,25,28] or acknowledged as a limitation of current implementations [27]. Here, we have shown 

that the attenuation substantially reduces the calibration constant when estimated with ASE 

imaging, in line with previous analytical simulations and in vivo measurements [27], but that the 

underestimation can be compensated by acquiring additional ASE images. 
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6.7.1 Microvascular Simulations 

Using simulations from networks of vessels with identical radii and from two different 

distributions of radii, the general nature of the SE attenuation became much more apparent. By 

empirically describing the attenuation by a quadratic-exponential decay early on and a linear-

exponential decay later, it was possible to identify several features of it: i) the overall magnitude 

of the attenuation is largest for intermediate vessel sizes; ii) the time to transition from quadratic 

to linear decay is proportional to vessel size; and iii) the attenuation at later ASE offsets (τ ≠ 0) 

can approximately be described by the SE (τ = 0) attenuation but translated in time by τ and with 

an additional offset given by the intrinsic R2′ weighting. The first feature is already well known 

from SE BOLD vessel-size sensitivity studies [17,61,62]. The second and third features are novel 

findings of this study and led us to propose the quadratic ASE (q-ASE) biophysical signal model, 

described by Eqs. (6.5)–(6.7), with the addition of the diffusion-induced attenuation constant, 

(R2,diff)2. This model correctly predicts that ln(SSE/SASE) underestimates M, and, crucially, it allows 

for the underestimation to be quantified by measuring the SE and ASE signals at two or more TEs. 

A model where the decay exponent was not exactly 2 but was empirically determined was 

considered; however, it was decided to keep the exponent at 2 based on the simplicity with which 

it allows the fitting of ln(SSE/SASE) vs. TE and based on the success with which it corrected the M 

values in simulations. In contrast to the simulations here, previous analytical calculations using a 

detailed BOLD signal model accounted for SE attenuation by modelling it as a linear exponential 

decay [26,27]. Those calculations also predicted an underestimation of M, however, as shown 

above, the linear decay does not provide a means by which it can be easily corrected. 

A consequence of the transition from quadratic to linear decay is that the window of time 

to characterize the SE attenuation is limited: once the signal transitions to linear-exponential decay, 
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the attenuation becomes indistinguishable from intrinsic R2 and gives a decreased apparent R2′ 

(and, therefore, decreased M). This is evident when comparing the estimated (R2,diff)2 values from 

the simulations in Figure 6.10b and Table 6.1 with the true (R2,diff)2 values in Figure 6.7. The true 

(R2,diff)2 values are largest for the smaller radii and decrease monotonically with increasing radius, 

however, the estimated (R2,diff)2 values peak for the intermediate vessel sizes. Because of this, the 

q-ASE model is still unable to effectively compensate for the underestimation in M for the smallest 

vessel sizes, whereas it performs remarkably well for intermediate to large radii. Physiologically, 

this would correspond to the correction working for most post-capillary vessels if one takes the 

upper cut-off radius for capillaries to be ~4–5 μm [19,40,46-48]. Note that, referring to a “true” 

(R2,diff)2 value is also not entirely accurate since the estimation of it was still dependent on the limits 

over which it was fit . 

6.7.2 In Vivo Imaging 

Encouraged by the simulation results, we sought to determine the feasibility of measuring (R2,diff)2 

in vivo and to compensate for the SE attenuation during calibration. We measured SE and ASE 

images (τ = 30 ms) at TEs of 42, 50, 60, and 70 ms with the CSF signal nulled to avoid its 

contamination of R2′. Anticipating that the ratio of the SE over the ASE signal could plateau at 

later echo times, we fit for (R2,diff)2 and R2′ using either the first three TEs or all four. Independent 

of the number of TEs, there was considerable variability in the fits across subjects that resulted in 

positive and negative values for (R2,diff)2; however, for all but the frontal GM ROI, the mean fits 

resulted in positive (R2,diff)2 (Table 6.2), and the values were in line with those predicted by the 

simulations. The mean (R2,diff)2 values were larger for the three-TE fits vs. the four-TE fits, perhaps 

implying that ln(SSE/SASE) does plateau beyond TE = 60 ms. The resulting increases in M were 
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significant in the occipital and parietal ROIs for the three-TE fit but not the four-TE fit, further 

suggesting that the data at the later echoes should not be used (Figure 6.12). Relative to 

hypercapnia, the ASE-based M estimates all underestimated MHC, although the underestimation 

was not statistically significant for all comparisons. 

Note that although MHC was used for comparison, this does not imply that it is the standard 

for calibration. As discussed in the Introduction, hypercapnic calibration suffers from its own 

setbacks and technical challenges, including what exact values to use for α and β [18,20]. This 

means that the true magnitude of the underestimation of M in the ASE methods could be less (or 

more) than implied by the comparison against MHC. Furthermore, if CMRO2 were to decrease 

during the hypercapnic challenge, then the true MHC would be less than the estimated value and 

could account for a significant fraction of the discrepancy [149,177]. An alternative measurement 

of R2′ may be a more appropriate comparison. This could consist of separate multi-echo GE and 

SE acquisitions, using a relatively short SE spacing to reduce the impact of diffusion-induced 

attenuation. In this case, multi-exponential decay would complicate the comparison but a 

correction could be incorporated [25]. 

When compared against the study by Blockley et al. [27], the measured MASE values 

relative to MHC values are consistent. In that study, SE and ASE images were acquired at a single 

TE of 40 ms with a spiral readout with a marginally higher in-plane resolution, the same slice 

thickness, no CSF suppression, and similar post-processing steps. The mean ratio of MASE/MHC 

across all GM was ≈ 0.9 in that study and ≈ 0.7 here for the 42-ms TE data. The reduced ratio was 

expected in our study because CSF suppression has been shown to reduce R2′ estimates in GM by 

~20–30% [156,157]. This further underscores the importance that SE attenuation likely plays in 

the resulting underestimation of R2′ and M. 
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6.7.3 Biophysical Signal Modelling 

The q-ASE signal model presented here is complementary to biophysical signal models that 

propose a Gaussian signal characteristic about the spin echo [5,158,178]. These signal models 

typically assume perfect SE refocusing and describe a Gaussian-like decay around the spin echo 

with respect to TE or τ, whereas the q-ASE model describes a Gaussian-like decay of the spin echo 

itself as a function of TE. These Gaussian SE signal characteristics are still present in our 

simulations (see the individual time series in Figure 6.2) since the simulations used no assumptions 

about the underlying frequency distribution shape (e.g. Lorentzian or Gaussian) other than that the 

individual fields produced by the vessels are modelled as dipoles from infinite cylinders. The 

quantitative BOLD model is one such model of Gaussian signal decay around the SE, and it is 

used to relate R2′ to deoxygenated-CBV and SO2 [158]. Since this model ignores the effects of 

diffusion, it may benefit from the q-ASE model by correcting its estimate of R2′. 

Deriving more physiological quantities from the q-ASE model may be possible since 

(R2,diff)2 does have some vessel-size/diffusion dependence that may be complementary to and 

overlapping with the dependence of R2′ on SO2 and CBV [5]. A more thorough investigation 

spanning a range of CBV, SO2, field strengths, etc. would be required to ascribe more 

physiological meaning to (R2,diff)2. For now, the q-ASE model provides a means for describing the 

SE attenuation and we do not expect this conclusion to vary drastically with the normal range of 

physiological variability for reasons described next. 
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6.7.4 Limitations and Future Work 

Some limitations of the simulations are that they were only performed at a single CBV and a single 

field offset strength (i.e., combination of B0, SO2, and hematocrit). Based on similar analytical 

signal models that also show SE attenuation that is approximately quadratic-exponential, such as 

the Gaussian phase approximation [131] or the weak field approximation [136], we expect (R2,diff)2 

to be directly proportional to CBV. What remains unclear, however, is how the time to transition 

from quadratic-exponential to linear-exponential decay may vary with changing CBV. The effect 

of changing the strength of the field offset, δω, is similar to changing the vessel radius, R. Typically 

this is summarized by the dimensionless quantity δωR2/D [60], such that changes in δω or D can 

alternatively be considered as a change in R2. This means that a doubling of δω would correspond 

to a shift along the (R2,diff)2-R curve by a factor of . In addition to this shift, by following the 

reasoning in Weisskoff et al. [54] regarding the expected dependence of ΔR2 on δω, and defining 

(R2,diff)2 as d2 lnSASE / dt2, then (R2,diff)2 would also need to be scaled by 22. Altogether, if δω is 

scaled by a factor λ, then the new (R2,diff)2 can be estimated from 

 (6.12) 

Since the “true” (R2,diff)2 is a monotonic decreasing function of radius, the factor on the right would 

be sub-linear such that the net proportionality to λ would be less than quadratic. 

Another important limitation of this study is that it ignored intravascular (IV) signal. IV 

signal has a significant contribution to the BOLD effect at field strengths of 1.5 T and 3 T because 

of hydrogen nuclei’s proximity to hemoglobin [9]. IV spins are typically considered to be in the 

motional narrowing regime [60], which would relate to the smallest radii simulated here. In this 

case, IV SE attenuation would quickly reach linear-exponential decay and would be irrecoverable. 
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This would further contribute to the early plateau of ln(SSE/SASE) vs. TE and the consequent 

underestimation of M. Applying IV crushers may increase the estimated M values [161]. 

Despite considerable efforts to reduce R2′ contributions from macroscopic field 

inhomogeneities in vivo, the results in the frontal and temporal ROIs were still inconsistent with 

the results in the occipital and parietal ROIs. The M values in the frontal and temporal ROIs were 

in the range of the other ROIs’, suggesting that the bulk effects of the field inhomogeneities were 

largely avoided; however, the increase in M from the q-ASE model failed to reach statistical 

significance in the frontal and temporal ROIs, suggesting that there was increased signal variability 

in these regions that could arise from residual field effects. In future studies, further increasing the 

spatial resolution and/or performing z-shimming could help alleviate these issues but at the 

expense of increased readout and/or scan time [179]. 

This study also did not show any causal relationship between the measured (R2,diff)2 and R2′ 

parameters and blood oxygenation. While beyond the scope of this study, this could be done by 

repeating the ASE imaging experiments during a hypercapnia or hyperoxia challenge. Given the 

large variability of (R2,diff)2 measured here, either the imaging technique would require further 

refinement to be more sensitive to the small changes in (R2,diff)2 expected from a gas challenge or 

a larger cohort of participants would be needed. 

Ideally, one would like to apply the q-ASE correction using an individual’s measured 

(R2,diff)2 parameter. Unfortunately, this measurement added considerable time to the scan and it 

was quite variable on the individual subject-level – requiring the data from one subject to be 

excluded from analysis. Although it is expected that (R2,diff)2 will have both a CBV and SO2 

dependence, it may be more beneficial to acquire SE and ASE images at a single TE and to apply 
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the q-ASE correction using an assumed (R2,diff)2 value. This would be akin to the calibrated fMRI 

parameter β, which could be measured in vivo [63,65] but is generally assumed a constant across 

the brain. Considering the (R2,diff)2 values from the simulations and the in vivo measurements, a 

value around 10–15 s-2 may be appropriate. 

6.8 Conclusions 

In this study, we sought to characterize the attenuation of SE and ASE signals arising from 

diffusion of water surrounding the microvasculature. Using simulations, we have shown how this 

attenuation varies for different vessel sizes and how it impacts gas-free calibrated fMRI based on 

ASE imaging. We have proposed that the initial attenuation be described as a quadratic-

exponential decay term, (R2,diff)2, such that it can be measured and compensated for by acquiring 

SE and ASE signals at multiple echo times. This strategy successfully corrected the 

underestimation of the fMRI calibration constant in the simulations for intermediate vessel radii 

and above. By replicating these experiments in vivo in healthy subjects, we showed that the M 

values obtained from the ratio of the SE and ASE images at a single TE could be significantly 

increased by incorporating the ratios from later TEs; however, they still tended to underestimate 

the M values obtained from the more common hypercapnic calibration. Future studies of gas-free 

calibration and R2′ imaging will benefit from incorporating an estimation of (R2,diff)2 in their fitting 

or using an assumed value to compensate for the underestimation of R2′. 
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Discussion and Conclusions 

7.1 Discussion 

7.1.1 Hyperoxic BOLD Signal 

YPEROXIA in MRI has applications ranging from calibrating the BOLD signal [21,22], to 

measuring OEF, CMRO2, CBV, microvascular venous vessel sizes [36,49,105], to 

monitoring tumour oxygenation [180]. These studies have assumed that the R2
* changes during 

hyperoxia result from the passive increase in venous oxygenation and are not influenced by 

dissolved oxygen in arterial blood. By theoretically calculating and experimentally measuring the 

magnetic susceptibility of dissolved oxygen in plasma, it was argued here that this assumption was 

valid, save perhaps for conditions such as anemia. In conjunction with this study, Ma et al. [181] 

measured the R1 (1/T1), R2, and R2
* relaxation rates in oxygenated plasma samples. All relaxation 

rates were determined to significantly depend on pO2 and with similar relaxivities (relaxation rate 

H 
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per mm Hg). However, after incorporating these relaxivities into a detailed analytical BOLD signal 

model [18], they had a negligible contribution to the BOLD signal and the estimated fMRI 

calibration constant (M) up to arterial pO2 levels of 610 mm Hg [181], in agreement with our 

prediction based on the susceptibility measurements. 

At the same time as the studies above were conducted, Ozbay et al. [182] measured the 

susceptibility across the brain using quantitative susceptibility mapping during the breathing of 

medical air and of 100% O2. CSF is an excellent model for in vivo validation of our measurements 

because it has a leaky barrier with the brain [39], allowing excess oxygen to diffuse from capillaries 

to parenchyma to CSF, and it lacks hemoglobin that would contribute to the susceptibility 

measurement. The choroid plexus, where CSF is produced, would also permit excess oxygen from 

capillaries to diffuse into ventricular CSF [39]; however, the vascularization of the choroid plexus 

itself could confound the susceptibility measurement from ventricles. In a section of brain that 

included the ventricles, the combined sulcal and ventricular CSF susceptibility was found to 

change by (3.8 ± 1.8) ppb across 14 healthy volunteers [182]. Using the oxygen solubility in water 

and the susceptibility of O2 measured here (4.24×10-8 ml O2/ml H2O/mm Hg and 1040 ppm, 

extrapolated to 37 °C), this would correspond to a pO2 increase of approximately (80 ± 40) mm 

Hg. In comparison, Zaharchuk et al. [98] measured the pO2 of human bodily fluids in vivo using 

the pO2 dependence of R1 and found that sulcal CSF increased by ~100 mm Hg and ventricular 

CSF had no significant increase in pO2 after 100% O2 inhalation. The estimate of ΔpO2 = (80 ± 

40) mm Hg is in good agreement with these findings, although how much of that comes from 

ventricles vs. sulci is unclear. 

This mounting experimental evidence from our own measurements and from other labs 

would suggest that the susceptibility of dissolved oxygen, while certainly measurable, is 



7.1 Discussion 

 

135 

insufficient to significantly confound the BOLD effect at the concentrations normally attained 

under hyperoxia. Other studies have reported negative BOLD signal changes in CSF and white 

matter during 100% hyperoxia and positive BOLD changes in cortical grey matter [106,183]. In 

one of these studies, performed in rats and mice, they attributed the negative BOLD change in 

white matter to the accumulation of oxygen in the extravascular space [183]. This explanation, 

while plausible, seems unlikely to be able to explain the whole effect considering the experimental 

findings discussed above. The negative BOLD change could be due to other factors, such as 

hypoperfusion induced by hyperoxia and/or concomitant decreases in blood CO2 [153,154] or 

changes in macroscopic field inhomogeneities resulting from the changing O2 content in air [106]. 

In humans, the latter effect is most noticeable around the nasal sinuses and ear canals, but in 

rodents it could be more extensive given their smaller brain volumes. 

7.1.2 Intravascular Signal Modelling 

The key findings from the intravascular signal modelling in Chapter 5 were: (1) a closed-form 

solution to the weak field approximation was derived and it can describe the transverse signal 

evolution for an FID, spin echo, or CPMG sequence; (2) when the volume fraction of the spherical 

perturbers was increased, the decay rates did not monotonically increase when sphere overlap was 

not allowed; (3) the WFA parameters, G0 and rc, could be empirically determined by fitting the 

radial correlation function of the perturbers and, when substituted into the closed-form solution, 

the signal evolution at high volume fractions could be accurately predicted; and (4) the empirically 

fitted rc values deviated from their analytically predicted values when sphere overlap was not 

allowed and the deviation increased with volume fraction. Finding (2), where the relaxation rate 

did not monotonically increase, is a well-known phenomenon and had been reported early on by 
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Thulborn et al. [132] where they measured R2 with increasing blood hematocrit. Finding (3) is a 

promising result because it implies that G0 and rc can be empirically determined for other perturber 

geometries (or volume fractions) that cannot easily be described analytically. In this case, any 

realistic geometry for red blood cells could be used, such as a biconcave disk.  

Finding (4), that rc varies with volume fraction, has potential implications for fitting the 

weak field approximation to experimental data, regardless if the fit is to the raw data with the 

closed-form solution or to the measured relaxation rates with the ΔR2 model from Jensen and 

Chandra [76], as is typically performed [76,78,80-82]. If the effect is as large as the simulations 

indicate, then if one is fitting blood relaxometry data from samples with a range of hematocrits, 

then each sample should be fit for its own rc value, otherwise, if the samples are simultaneously 

fitted, some model for how rc should vary with hematocrit should be included. Given that the 

change in rc was also dependent on how the spheres were distributed (randomly non-overlapping 

or hexagonal close packed), knowing how rc might vary for realistic red blood cell shapes and 

distributions a priori is still premature. The shapes of RBCs may be adequately described by oblate 

spheroids or biconcave disks, for example, but their distribution and orientations could be highly 

variable, to the degree where they could be randomly spaced or they could string together forming 

a rouleaux [184]. This result may help explain why the weak field approximation failed to provide 

a reasonable fit to relaxometry data from post-natal umbilical cord blood in a recent study [82]. In 

that study, hematocrit was varied from 20–80% and a wide range of oxygenations were used and 

the relaxometry results from all blood samples were simultaneously fit to give a single rc value for 

the entire set of samples (in addition to other model parameters). Trying to translate this finding to 

the exchange theory of relaxation, it is parameterized by a characteristic field shift between sites, 

Δω, and the lifetime between intra-/extra-cellular exchanges, τex. Δω can be considered the root 
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mean square field inhomogeneity, such that (Δω)2 should be comparable to γ2G0. If τex is 

interpreted as a correlation time for field fluctuations, rather than strictly representing the exchange 

time between intra-/extra-cellular spaces [55,76,143], then it can be related to rc through τex ~ rc2/D, 

such that τex might be expected to vary as the volume fraction is increased. In their exchange model 

fit, Portnoy et al. [82] only fit for a single value of τex across all samples, and did so without issue. 

This may be explained in part by the fact that Δω was divided into two separate frequency shifts, 

(ωdia + ωoxy) and (ωdeo - ωoxy), related to the diamagnetic and paramagnetic contributions to blood 

susceptibility. Therefore, there was an additional fitting parameter compared to the diffusion 

model fit that may help explain why the fitting to the diffusion model failed whereas the exchange 

model succeeded. 

7.1.3 Gas-Free Calibrated fMRI 

Our overall findings from the gas-free calibration study in Chapter 6 were consistent with previous 

studies: estimates of the fMRI calibration constant, M, from ASE-based measurements tend to 

underestimate M relative to hypercapnic calibration [27,185]. This was confirmed using detailed 

simulations and in vivo human experiments. The underestimation was attributed to the irreversible 

loss of phase coherence from diffusion surrounding the microvasculature. A method was proposed 

to correct the underestimation whereby the decay of the SE and ASE signals was described by a 

quadratic-exponential, with a rate constant (R2,diff)2. This manifested as a linear decay of the ratio, 

ln(SSE/SASE), such that if this ratio at a single echo time was used as an estimate of M, it would 

underestimate the true value. This linear decay was observed in vivo and the mean (R2,diff)2 values 

across subjects were consistent with the values predicted by simulations. 
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A limitation of the proposed quadratic-ASE model is that the decay transitions into a linear-

exponential decay, where the SE attenuation becomes unrecoverable under the proposed method, 

limiting the range of echo times that can be used to measure (R2,diff)2. This may explain why the 

increases in M were smaller when the ASE data from the longest echo time (70 ms) were used as 

compared to when only echo times up to 60 ms were used. In typical BOLD imaging experiments, 

SNR is optimized by setting the echo time to match the approximate T2
* of tissue [186]. Similarly, 

it has been shown that the SNR of R2′ quantification is optimized when the echo time and ASE 

offset are approximately equal to the lesser of T2
′ or T2 [157]. Given T2

′ ~300 ms [157] and T2 ~100 

ms [187] for grey matter, the SNR optimization of R2′ quantification would be improved at later 

echo times (~100 ms). This conflicts with the early echo time requirement to capture (R2,diff)2 decay 

such that a compromise between each estimate’s bias and precision must be made. 

After the q-ASE correction, Mq-ASE was generally still less than the hypercapnic M, MHC. 

This could be the result of uncorrected SE attenuation from water surrounding capillary vessels 

and intravascular water. In reality, both estimates of M will have their own mutual bias relative to 

the “true” M. MHC is influenced by the choice of calibration parameters, α and β [18,177]. α and β 

of 0.2 and 1.3, respectively, were used in this study, whereas Griffeth and Buxton [18] have 

suggested the use of empirically optimized values for 3 T of 0.14 and 0.91. Using these optimized 

values would increase MHC, further widening the gap between MHC and Mq-ASE. Conversely, an 

increasing number of studies suggest that hypercapnia results in a slight reduction of CMRO2 

[149,150,177,188], violating a fundamental assumption of standard fMRI calibration. In this case, 

estimates of M that ignore this decrease could overestimate M by up to 50% for ΔPETCO2 = 8 mm 

Hg [177]. This magnitude of overestimation could easily account for nearly all the discrepancy 

between MHC and Mq-ASE, if not more. 
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The aim of this study was to provide an alternative means to calibrate the BOLD signal 

that was accurate and did not require any respiratory challenges or monitoring. The aim was not 

to replace the use of gases in all fMRI studies. The use of gases in fMRI provides valuable 

information on cerebrovascular health in a way that is relatively non-invasive and has high 

specificity to deoxyHb. R2′ alone can give us information related to blood oxygenation and blood 

volume but it lacks specificity and, unlike a CO2 challenge, it does not measure vascular reactivity, 

a critical element of neurovascular coupling. Thus, gases in fMRI are likely to continue playing a 

valuable role in studying brain physiology. 

7.2 Future Work 

Regarding the impact of dissolved oxygen on the BOLD signal, this issue was carefully addressed 

both here and in our other study from Ma et al. [181]. Since those papers, the authors who proposed 

that dissolved oxygen in arteries would significantly impact the BOLD signal [23], have released 

a new study with similar simulations that have properly considered the susceptibility of dissolved 

oxygen [189]. Their new results show a negligible signal change from arteries, as we predicted.  

Looking beyond the susceptibility of oxygen, a related topic of interest is the absolute 

susceptibility difference between arterial blood and parenchyma and how this may vary across 

tissue types and regionally. In BOLD imaging, it is generally assumed that the susceptibilities of 

blood and parenchyma are equal when blood is fully oxygenated (SO2 = 100%). However, myelin 

and iron have been shown to vary across the cortex [190,191], and depending on the balance of 

water, lipid, iron, and calcium content, net tissue susceptibility could vary significantly. If one 

considers at what SO2 the susceptibilities of blood and tissue are matched, it is conventionally 
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assumed to be at ~100% [17,52,192], others have estimated this value at 95% [138,193,194], while 

yet others have cited tissue susceptibility estimates that, based on our calculations, would result in 

a match at ~90% [23,195] or even ~115% [196] (i.e., tissue would be more diamagnetic than fully 

saturated blood, ignoring dissolved oxygen). Altogether, the quoted SO2 offset estimates range 

from ~90–115%. Knowing this offset has important implications for quantitative techniques such 

as susceptibility-based SO2 estimation methods and gas-free fMRI calibration but also for 

explaining – at least in part – regional differences in the BOLD signal itself. One promising way 

of exploring this issue is to perform quantitative susceptibility mapping (QSM) under conditions 

that can tease apart the susceptibility contributions to a voxel from blood and from parenchyma 

[197]. Since QSM acquisition protocols are on the order of 5 minutes for high resolution, whole 

brain coverage, using an endogenous contrast agent such as deoxyHb with a hyperoxic challenge 

could be ideal for this since levels of hyperoxia can easily be maintained over this duration of time. 

Obvious next steps for the closed-form solution to the weak field approximation are to test 

its validity for fitting transverse signal decay experimentally and incorporate it into simulations as 

a model for intravascular signal decay. The former could be accomplished by fitting CPMG data 

from ex vivo blood samples to the closed-form solution and comparing the model fits to those 

obtained from fitting the relaxation rates to the WFA model of ΔR2. The model’s performance 

could then be examined when fitting data from non-CPMG sequences, which potentially could be 

used to decrease scan time. Beyond that, some of the predictions made by the simulations should 

be experimentally studied. This includes the prediction that rc will decrease as the volume fraction 

of perturbers is increased, which could be evaluated on the umbilical cord blood data from Portnoy 

et al. [82]. Finally, the CFS could be incorporated into simulations as a model for intravascular 

signal by substituting the fitted values for G0 and rc from ex vivo blood data. These fits have 
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already been made at 1.0 T, 1.5 T, and 3 T at room temperature [76,80,81] and at 2.35 T and 7 T 

at 37° C [78]. 

Eliminating the gas challenge from calibrated fMRI is far from a settled matter. The 

contribution to this effort, described here, has perhaps raised more questions than it originally 

intended to answer. In particular, the quadratic decay term, (R2,diff)2, needs to be more thoroughly 

studied experimentally. Like the measurement of T1, T2, or susceptibility, this should be done in a 

controlled manner using phantoms. By using phantoms with susceptibility inclusions, such as 

suspensions of polystyrene microbeads in doped water and by using beads of different radii and 

different concentrations of contrast agent, the magnitude of (R2,diff)2 could be probed more 

systematically. If the sensitivity of the measurement technique can be made high enough, 

measurements of (R2,diff)2 should be repeated in vivo under different conditions, such as under 

hyperoxia or hypercapnia. This would tell us how much of the (R2,diff)2 that is measured is the result 

of deoxyHb in blood vs. other non-deoxyHb sources of susceptibility, and likewise for R2′.  

Besides these “new” questions, some of the original complications surrounding gas-free 

calibration remain. Of concern is the contribution of the other non-deoxyHb sources of 

susceptibility to R2′ and M (and (R2,diff)2, perhaps). In healthy aging, the concentration of non-heme 

iron is known to increase in many brain regions up to early adulthood, with a much higher 

concentration in deep grey matter structures and relatively low concentrations in cortical GM and 

in white matter [198]. These trends have been corroborated in vivo using different MR-based 

measures such as R2, R2
*, R2′ and susceptibility [179,199-201], all showing varying degrees of 

correlation with the average iron concentrations from Hallgren and Sourander [198]. Somewhat 

reassuring was that the R2′ values in cortical GM from [199] were not in agreement with the linear 
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regression performed on the subcortical GM R2′ values vs. the literature iron concentrations of 

[198]. This may suggest that the R2′ of cortical GM is less affected by iron deposition over the 

course of healthy aging. However, this still precludes gas-free calibration studies in subcortical 

structures or patient groups, such as hemorrhagic stroke or neurodegenerative disorders with 

increased iron deposition [202].  

The challenge then is to design a heme specific measure of R2′ or, alternatively and of its 

own utility, a measure of non-heme iron that can be incorporated into a correction factor for M. 

Heme specificity may be aided by an analysis of the BOLD signal changes that arise from natural 

fluctuations in PETCO2 – without using any respiratory challenge or monitoring – which may 

provide subtle measures of vessel reactivity [203,204]. Non-heme specificity may be feasible with 

a series of diffusion-weighted acquisitions that estimate the apparent diffusion coefficient with and 

without accounting for local field inhomogeneities, which is claimed to be sensitive to iron 

deposition and not to deoxyHb [205]. 

7.3 Concluding Remarks 

Calibrated fMRI, which was originally proposed nearly 20 years ago, is the combined result of 

theoretical modelling, simulations, and experimental manipulations of the BOLD signal. Over that 

time, it has helped shed new insights on cerebral physiology in basic neuroscience research 

[14,15,31,176,206-210] and in cohorts of development and aging, neurovascular and neurological 

disorders, and pharmacology studies [175,211-215]. At the same time, subsequent experiments 

and simulations have refined the model parameters with the aim of improved quantitation accuracy 

[13,18,20,36,67,68,177,216]. 
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This thesis has examined multiple aspects of the underlying theories that contribute to our 

understanding of the biophysics of the BOLD signal. While this may have seemed like a disparate 

selection of topics, they are all closely connected: the susceptibility of blood is a cornerstone of 

BOLD imaging; transverse relaxation of blood is fundamentally dependent on the susceptibility 

difference between red blood cells and plasma; diffusion of water molecules around red blood cells 

and around blood vessels impact the signal decay observed from tissue; and calibrating the BOLD 

signal to obtain quantitative estimates of oxygen metabolism is dependent on all these, whether 

with hypercapnia, hyperoxia, or without gases. The developed biophysical signal tools and their 

corresponding measurements will provide improved accuracy for quantitative signal modelling 

with broad applications in microvascular and intravascular imaging and with specific applications 

in basic and clinical cerebrovascular physiology. 
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Appendix A 

Macroscopic Inhomogeneity-Induced 

Dephasing 

HIS chapter describes the efforts to make the asymmetric spin echo (ASE) based 

measurements of the fMRI calibration constant less sensitive to macroscopic field 

inhomogeneities. This included using a simulated slice profile to calculate the signal attenuation 

from through-plane inhomogeneities and determining a threshold for in-plane field gradients. 

A.1 Through-Plane Dephasing 

In the presence of macroscopic field inhomogeneities, the MR signal will generally be scaled by 

an attenuation factor, F, that is dependent on the magnitude of the inhomogeneities and the total 

time of dephasing, τ. The measured signal magnitude, Smeas, will be related to the true signal, S, by 

T 
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 (A.1) 

such that the magnitude of S can be recovered from Smeas if F is known. In the case of asymmetric 

spin echo imaging, this τ and the asymmetric spin echo offset correspond to the same value. 

F is frequently estimated by assuming that the field inhomogeneities can be described by 

linear gradients across the voxel and that only the gradient across the slice-direction, Gs, need be 

considered [1]. It is often further assumed that the slice profile along the slice direction is a boxcar 

function with a width Δz. In this case, F is given by 

 (A.2) 

 In practice, an ideal square slice profile is difficult to achieve. If the slice profile is instead 

described by the complex function h(z), then F can be modelled by 

 (A.3) 

Eq. (A.3) can be applied to measured or simulated slice profiles if we assume that h(z) is constant 

over discrete intervals of width δz, each centred on zi and denoted by , in which case 

 (A.4) 

Solving the integral in Eq. (A.4) and normalizing it such that F = 1 when Gs = 0 or τ = 0 gives 

 (A.5) 
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where δω = γGszi and Δf = γGsδz/2π. The approximation sinc(Δf τ) ≈ 1 that was applied holds if 

the discretization size, δz, is sufficiently small. In the end, Eq. (A.5) is precisely what one might 

expect the normalized and discretized version of Eq. (A.3) to be. 

Figure A.1 shows a comparison of the attenuation factor from Eq. (A.5) with the sinc 

attenuation factor when h(z) is a boxcar function of width 2 mm. h(z) was discretized in steps δz = 

2 μm and the agreement between to two attenuation factors is excellent. 

 

Figure A.1: Sinc attenuation factor vs. discretized attenuation factor.  

The attenuation factor from Eq. (A.5) (circle markers) compared to the sinc attenuation factor of 
Eq. (A.2) (solid lines) for a 2.0-mm square slice profile. Each colour represents a different through-
plane gradient magnitude, γGs/2π. These through-plane gradients are on the extreme end of what 
is observed in areas of significant field inhomogeneity, such as the frontal sinus region. 

Next, we calculated the actual spin echo EPI slice profile in MATLAB by running a 

discretized Bloch simulation using the RF and gradient waveforms exported from the GE pulse 

programming environment. We validated the simulations against other slice profile simulations 

using SpinBench (www.spinbench.com) and against measurements in a uniform phantom. To 

measure the slice profiles in the phantom, the slice select gradient was moved from the slice select 
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z-gradient board to the readout x-gradient board. The two simulators and the measured slice 

profiles were all in excellent agreement (results not shown). 

Finally, Figure A.2 shows a comparison of the attenuation factor from Eq. (A.5) with the 

sinc attenuation factor when h(z) is the simulated 2.0-mm slice profile discretized in 2-μm steps. 

Both positive and negative polarities of through-plane gradients were tested and gave slightly 

different results due to slice profile asymmetry. The attenuation factors from both polarities were 

in excellent agreement with the sinc attenuation factor up to the first zero. For this reason and for 

simplicity, we opted to use the sinc attenuation factor to correct for through-plane dephasing. 

Beyond the first zero, the attenuation factors from the two polarities did diverge; however, this 

was not of major significance for this study since only voxels where the sinc attenuation factor 

was ≥ 0.5 were retained for analysis and this threshold is not met beyond the first zero of the sinc 

function. This same result was used for the FLAIR-ASE images based on the simulated inversion 

pulse slice profile, which was reasonably flat across the slice width. 
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Figure A.2: The attenuation factors for the simulated slice profile. 

The attenuation factor from Eq. (A.5) compared to the sinc attenuation factor of Eq. (A.2) for the 
simulated 2.0-mm slice profile. The discretized attenuation factors were calculated using through-
plane gradients that were positive (‘+’ markers) or negative (‘o’ markers). The magnitudes of the 
gradients are 8 Hz/mm (a), 16 Hz/mm (b), 24 Hz/mm (c), and 32 Hz/mm (d). The sinc function is 
shown with the solid line. 

A.2 In-Plane Dephasing 

An effect of macroscopic in-plane gradients is to push the EPI echoes further away from the centre 

of k-space; beyond a critical gradient level, the echoes will be pushed out of the k-space acquisition 

window, resulting in an abrupt loss of signal. The critical gradient in the readout direction, Gr,c, is 

given by [174] 

 (A.6) 

where Δx = 2.33 mm is the resolution along the readout direction. The critical gradient in the phase 

encode direction, Gp,c, is given by [173] 
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 (A.7) 

where Δy = 2.33 mm is the resolution along the phase encode direction, Δt = 310 μs is the spacing 

between EPI echoes (accounting for parallel acceleration), and FOVy = 224 mm is the field of view 

across the phase encode direction. Only voxels whose absolute in-plane gradients were less than 

50% of Gr,c and Gp,c along the respective directions were included for analysis (i.e. |Gr| < 84 μT 

m-1 and |Gp| < 56 μT m-1) .
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Appendix B 

Ethics Approval for Human Studies 

The human studies in this project were approved by the Conjoint Health Research Ethics Board of 

the University of Calgary. The following document is the notice of approval. 
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