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ABSTRACT

Causal inference methods allow one to draw a conclusion about a causal connection

between the occurrence of an event and an outcome. When analyzing longitudinal data,

one must also take into consideration correlation within the same subject’s history and

the possibility of competing events. The former may be harder to achieve if the data is

anonymized because no subject identifier is available. Further, using a causal inference

framework, and adjusting for the two features mentioned can be a challenging task. For

example, in an anonymized birth registry data one may be interested in the causal effect

of a treatment on the gestational age of a live birth. Yet, the presence of competing events

(deliveries other than live birth) and relationship between deliveries from the same mother

are two factors that must be accounted for. In this thesis, we propose an algorithm to

create a subject identifier in an anonymized longitudinal data, and a new method to

simulate, and analyze longitudinal data under a causal framework in the presence of

competing events.
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Résumé

Les méthodes d’inférence causale permettent de tirer une conclusion sur un lien causal

entre l’occurrence d’un événement et un résultat. Lors de l’analyse des données longitudi-

nales, il faut également prendre en compte la corrélation dans l’histoire du même sujet et

la possibilité d’événements concurrents. Le premier peut être plus difficile à réaliser si les

données sont anonymisées, car aucun identificateur de sujet n’est disponible. En outre,

l’utilisation d’un cadre d’inférence causale, et l’ajustement pour les deux caractéristiques

mentionnées peuvent être une tâche difficile. Par exemple, dans une base anonymisée de

données sur les naissances, on peut s’intéresser à l’effet causal d’un traitement sur l’âge

gestationnel d’une naissance vivante. Pourtant, la présence d’événements concurrents

(accouchements autres que la naissance vivante) et la relation entre les accouchements

d’une même mère sont deux facteurs qui doivent être pris en compte. Dans cette thèse,

nous proposons un algorithme pour créer un identifiant de sujet dans une donnée longi-

tudinale anonymisée, une nouvelle méthode pour simuler et analyser ces données sous un

cadre de travail causal en présence d’événements concurrents.
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Chapter 1

Introduction

Following the development of a fetus is essential in order to ensure its well-being

and reduce the odds, or prepare for the occurrence, of any complications. On average,

gestation in singleton pregnancies lasts 40 weeks from the first day of the last menstrual

period to the estimated date of delivery [1]. Deliveries before certain weeks of gestation

are considered fatal for the fetus. Sometimes, the mother may not go into labour, yet

the child could be deceased e.g. stillbirths [17], or other complications may arise such

as a miscarriage or ectopic pregnancy. Studying the causal effect of factors such as

mother’s diet, exposure to harmful substances (e.g. tobacco smoke and/or alcohol),

genetic history, socioeconomic status, and many more can allow the development of more

effective prevention programs and better understanding of their impact on the gestation

period. A common factor across mothers is the access to prenatal care; “prenatal care

is widely accepted as an important public health intervention” [7]. Yet, its efficiency

and role are still vague and unclear. Nonetheless, existing studies suggest that access to

prenatal care is beneficial on many levels, including the outcome of the delivery [7] [31]

[28] [14].
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The National Survey of Family Growth (NSFG) has a longitudinal birth registry

database collected between 2006-2010 and 2011-2013 [13]. Information about the birth

history of 17,352 women was gathered, and we will consider three measurements in this

thesis: the delivery outcome, the pregnancy duration, and the number of weeks pregnant

at first prenatal care.

This thesis is concerned with estimating the causal effect of starting prenatal care on

the gestational age of a live birth in the presence of competing pregnancy events. Chapter

2 and 3 introduce basic terminology and useful quantities in survival analysis, competing

events, and causal inference. Chapter 4 discuses an approach to analyze longitudinal

data under a causal inference framework in the presence of competing events. Chapter

5 introduces a new technique for simulating longitudinal data using a Structural Nested

Accelerated Failure Time Model (SNAFTM) in the presence of competing events, shows

simulation results, discusses a clustering algorithm that may be applied to an anonymized

data, and establishes the finals results of the main analysis. Chapter 6 concludes with a

summary of the main results and some suggestions for further research.
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Chapter 2

Survival Analysis

In this chapter, we review the essential theory, notation, and definitions of survival

analysis. This chapter will be the basis for other sections.

2.1 What is Survival Analysis?

Survival analysis is a branch of statistics that focuses mainly on modeling time to event

or events [27]. An example of a time to event problem would be time to death from a

particular disease or the failure time of a mechanical system such as an engine. Another

commonly asked question in survival analysis is : how do particular circumstances or

characteristics increase or decrease the probability of survival?

2.2 Survival Time Distribution and Censoring

We are now ready to define a random variable, T , that will be the core of almost any

terminology and definitions to follow.
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Definition 2.2.1 T denotes a positive – T ≥ 0 – random variable representing time to

event of interest. T is often referred to as a failure time random variable [23].

In Definition 2.2.1, T can be either a continuous variable (T ∈ R+) or discrete in

which case

T = (t1, t2, ..., tn)

where t1 < t2 < · · · < tn. Note, for T to be useful it requires three ingredients: a well

defined time scale, a well defined event, and an origin or zero time in the study [10].

Whether it represents the start of the study or the age of individuals when they enter

the study, the time origin needs to be carefully set [12]. Using standard probabilistic

notation, T will stand for the random variable for a person’s survival time while t will

stand for a specific value of T .

Censoring is when the survival time is not known exactly [27]. The reasons why the

survival time is incomplete can be several, but generally the three main reasons are : (1)

a person does not experience the event before the end of the study, (2) a person is lost to

follow-up, and (3) individuals withdraw before the end of the study due to some reason

other than the event of interest. These three forms of censoring are what is known as

right-censoring.

We denote by C the time to the censoring event. Note, C is a non-negative random

variable.

An individual’s survival time is right-censored if the time to event is greater than or

equal to some censoring time C i.e. all we know is that the event has not happened

before the censoring time [27]. Let R be a right-censored failure time random variable
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such that, for individual i, R is defined by:

Ri ≡ min(Ti, Ci).

In other words, Ri is the observed response. In addition to Ri, we also define a failure

indicator which we will denote by δi. So that for individual i, let

δi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the event was observed, Ti ≤ Ci;

0 if the response was censored, Ti > Ci.

A right-censored individual can be of Type I, II, or III [26]. Type I is when the study is

pre-designed to end after K years of follow; hence, whoever did not experience the event

after K years of follow-up is censored. Type II, is similar to Type I in the sense that the

study ends after K years of follow up, but not all subjects have the same censoring time.

Type III is when the study ends after certain number of events has been reached.

Left censoring occurs more rarely than right censoring, nonetheless it is something

to be careful of. It is when the event of interest has already occurred before study

enrolment or before an observation period during the study. In this case, the definition

of δi changes. Similarly to the random variable Ri, we define a left-censored failure time

random variable, Li, such that

Li ≡ max(Ti, Ci)

and

δi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if the response was censored, Ci ≤ Ti;

1 if the event was observed, Ci > Ti.

Lastly, there is interval censoring. This occurs when the survival time is known to fall

into a particular interval, but its precise value is unknown. If L∗i and R∗i are two time
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points such that L∗ < R∗, then

Ti ∈ (L∗i , R
∗
i ).

Note, L∗i and R∗i have nothing in common with Li and Ri, respectively, even if we

used the same letter; the asterisk is used to distinguish them. Aside from having these 3

categories, censoring comes in two distinct types : (1) non-informative/independent and

(2) informative/dependent censoring. Non-informative censoring is when each subject has

a censoring time, Ci, that is statistically independent of their failure time, Ti, conditional

on values of covariates. On the other hand, informative censoring is when the probability

of censoring depends on the outcome the subject would have had in the absence of

censoring [35] . In survival analysis, censoring must generally be non-informative.

Using sections 2.1 and 2.2, we can illustrate a representative graph of a typical survival

study. Figure 2.1 demonstrates the 3 categories of censoring. A patient would be right-

censored if he is alive at the end the study, he decides to quit, or his record was lost

(subject 3,4, and 5). A subject would be left-censored if he enrolls and experiences the

event before the end of the study when measurements are taken (subject 2). Finally,

interval censoring would occur if the event of interest happened after the beginning of a

study, but before the end of the study (subject 6). It also tells the analyst if an individual

was censored or if he experienced the event (or not), and gives certain idea of the survival

time for an individual.
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× censored

known period
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Figure 2.1: Graphical Representation of a Survival Study

2.3 Common Functions in Survival Analysis

In sections 2.1 and 2.2, we established the basic principles of survival analysis, but

no analytic principles, as no forms of analyses have yet been introduced. We defined the

relevant quantities: events, survival times, and censoring times.

In this section, we define and derive important functions in survival analysis, and

establish relationships between them. The key point is that if you specify any of the

functions to be derived, you specify all of them. We focus mainly on continuous random

variables, but state some results for discrete quantities as well.

For a random variable T , the cumulative distribution function (CDF), FT (t), or just

7



F (T ), is the probability that T will take a value less than or equal to t, namely

F (t) = P (T ≤ t).

The primary object of interest in survival analysis is the survival function denoted by S

or S(t).

Definition 2.3.1 The survival function, S(t), gives the probability that a subject will

survive past time t.

We can easily define S(t) in terms of F (t) as

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t). (2.1)

Depending on the settings, some might define the survival function as P (T ≥ t) i.e.

bigger than or equal. We will use strictly bigger in this thesis. Note also that Definition

2.3.1 assumes that there is a single event at time t otherwise 2.1 will not hold. From

2.1 and using basic properties of any CDF, we can conclude that for a single event the

survival function satisfies the following properties:

(1) It is non-increasing;

(2) S(t = 0) = 1, i.e. the probability of surviving at time 0 is 1 since the subject is not

at risk yet;

(3) lim
t→∞

S(t) = 0 i.e. if we wait long enough, a subject will surely experience the event

in question.

If T is continuous, S(t) is a smooth function and resembles to what is shown in Figure

2.2. Howerever, if T is discrete we often obtain curves similar to Figure 2.3 i.e., a step

function [27].
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Figure 2.3: Discrete Survival Time Curve

From basic statistics, we know that for a continuous random variable, the derivative

of its CDF is equal to the probability density function (PDF), or in other words

f(t) =
d

dt
F (t). (2.2)

Furthermore, using 2.2 and 2.1, we have that

d

dt
S(t) =

d

dt
(1− F (t))

d

dt
S(t) = − d

dt
F (t)

9



− d

dt
S(t) = f(t). (2.3)

Note that another common definition of f(t) is

f(t) = lim
Δt→0

P (t ≤ T ≤ t+Δt)

Δt
. (2.4)

If f(t) is discrete such that T = (t1, t2, ..., tn), then

f(t) = P (T = t)

f(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fj if t = tj, j = 1, 2, ..., n

0 if t �= tj, j = 1, 2, ..., n.

We will mainly consider T to be a continuous random variable as stated earlier. Similarly

to 2.2, the CDF can be obtained from the PDF

F (t) =

∫ t

−∞
f(u) du. (2.5)

Since T is a positive random variable, we have that

F (t) =

∫ t

0

f(u) du. (2.6)

Using 2.1 and 2.6, we obtain that

S(t) = 1− F (t) = 1−
∫ t

0

f(u) du =

∫ ∞

t

f(u) du. (2.7)

In the discrete case, we would have

S(t) =
∑
u>t

f(u)

=
∑
tj>t

f(tj)

=
∑
tj>t

fj. (2.8)
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The second object of great importance in survival analysis is the hazard function: h(t).

“The hazard function, h(t), gives the instantaneous potential per unit time for the event

to occur, given that the individual has survived up to time t.” [27]

One way to understand the hazard function is to consider car’s speedometer. A

speedometer gives the driver’s instantaneous velocity. Likewise, the hazard function gives

the instantaneous potential of experiencing the event at time t given survival up to time

t.

Mathematically, the hazard function can be expressed as

h(t) = lim
Δt→0

P (t ≤ T ≤ Δt+ t |T ≥ t)

Δt
, (2.9)

where the numerator of 2.9 can be read as :

P (t ≤ T ≤ Δt+ t |T ≥ t) =

P (individual fails in time interval t,Δt+ t |︸︷︷︸
given

he survived until time t).

Looking at 2.7 and 2.9, a second distinction can be made between the survival and

hazard function. S(t) is a probability while h(t) is not. Although the numerator of 2.9

is a probability, the denominator affects the interpretation of h(t). Because Δt is in the

denominator, h(t) is not a probability, but rather a rate. Hence, while 0 ≤ S(t) ≤ 1, h(t)

can take any value between 0 and infinity. For this, the hazard function is sometimes

referred to as a conditional failure rate [27].

Going back to the expression in 2.9, let us expand it further. Notice that the top

expression is a conditional probability, so

h(t) = lim
Δt→0

1

Δt
P (t ≤ T ≤ Δt+ t |T ≥ t)

= lim
Δt→0

1

Δt

P (t ≤ T ≤ Δt+ t , T ≥ t)

P (T ≥ t)
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= lim
Δt→0

1

Δt

P (t ≤ T ≤ Δt+ t)

P (T ≥ t)
,

using 2.4 and 2.1,

=
f(t)

S(t)
. (2.10)

The jump from the second to third equality i.e.,

P (t ≤ T ≤ Δt+ t ∩ T ≥ t) = P (t ≤ T ≤ Δt+ t),

can be easily seen by drawing a time-line (see Figure 2.4).

time
t

t ≤ T ≤ t+Δt

T ≥ t

Figure 2.4: Visualization of Probability Event

Clearly, the part where the events intersect is the green segment of the time-line which

is equivalent to P (t ≤ T ≤ t+Δt). If T were discrete, then the hazard function is

h(tj) = P (T = tj |T ≥ tj)

=
P (T = tj)

P (T ≥ tj)
,

but using 2.8 and the definition of T (look below 2.4) we have

=
f(tj)

S(tj−1)

=
f(tj)∑

m : tm>tj

f(tm)
. (2.11)

Using the expression in 2.11 (or the one above it which is equivalent), we can obtain

a relation between the hazard and survival function:

h(tj) =
f(tj)

S(tj−1)

12



=
S(tj)− S(tj−1)

S(tj)

= 1− S(tj−1)
S(tj)

(2.12)

so that

1− h(tj) =
S(tj−1)
S(tj)

. (2.13)

In fact, we can derive an even more concrete relation between the hazard and the survival

function. Using 2.13, the fact that S(t1) = 1, and S(tj) = S(t), we have

S(tj) = S(t) =
S(t2)

S(t1)
× S(t3)

S(t2)
× · · · × S(tj)

S(tj−1)

= [1− h(t1)]× [1− h(t2)]× · · · × [1− h(tj)]

=

j∏
i=1

[1− h(ti)]. (2.14)

In simple words, this result states that in order to survive to time tj+1 one must first

survive t1, then one must survive t2 given that one survived t1, and so on, finally surviving

tj given survival up to that point.

Note that since S(T ) = 1 − F (T ), we have that 1 − F (tj) =
j∏
i=1

[1− h(ti)]. Using

2.14 and the definition of the hazard, we have the following relation between the hazard

function and the probability mass function :

h(tj) =
f(tj)

S(tj−1)

S(tj−1)× h(tj) = f(tj)

h(tj)×
j−1∏
i=1

[1− h(ti)] = f(tj) (2.15)

Returning to the case where T is continuous, we can establish similar relationships

between the survival and hazard function, and the probability density function. Taking
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2.3 and 2.10, we obtain:

h(t) =
f(t)

S(t)

= −S
′(t)
S(t)

= − d

dt
(lnS(t)) (2.16)

Using the above, we can find the survival function from the hazard via :

d

dt
(lnS(t)) = −h(t)∫ t

0

d

dt
(lnS(t)) = −

∫ t

0

h(u) du

lnS(t)− lnS(0) = −
∫ t

0

h(u) du

lnS(t)− ln(1) = −
∫ t

0

h(u) du

lnS(t) = −
∫ t

0

h(u) du

S(t) = exp

{
−
∫ t

0

h(u) du

}
(2.17)

Earlier, we showed that

h(t) =
f(t)

S(t)

From this equality, we can obtain 3 other results. First,

h(t) =
f(t)

S(t)
=

F ′(t)
1− F (t)

(2.18)

Second, using 2.17 :

f(t) = h(t)× S(t)

= h(t)× exp

{
−
∫ t

0

h(u) du

}
(2.19)

Third,

h(t) =
f(t)

S(t)

14



=
f(t)∫∞

t
f(u) du

(2.20)

Using 2.17 and the fact that F (t) = 1− S(t), we see that

F (t) = 1− exp

{
−
∫ t

0

h(u) du

}
. (2.21)

As stated above, the hazard function provides an instantaneous risk of experiencing the

event at some time t. If we wish to know the cumulative hazard from time 0 to time t,

then we need to sum or integrate over all the hazards.

The cumulative hazard, H(t), represents the sum of risks between time 0 and some

time t. The mathematical definition of the cumulative hazard is

H(t) =

∫ t

0

h(u) du (2.22)

where h(u) stands for the hazard function. The term in 2.22 was encountered in the

derivations of 2.21. Above, we assumed that T is continuous. If T is discrete, then H(t)

is defined as

H(t) =
∑
j : tj<t

ln(1− h(tj)). (2.23)

Using 2.21, we can establish several relationships between H(t) and f(t), F (t), h(t), and

S(t). From 2.17, we immediately see that

S(t) = exp {−H(t)}

so,

− lnS(t) = H(t). (2.24)

From 2.21, namely,

F (t) = 1− exp {−H(t)}
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we have that

− ln {1− F (t)} = H(t). (2.25)

From the above it follows that

− ln

{
1−

∫ t

0

f(u) du

}
= H(t)

− ln

{∫ ∞

t

f(u) du

}
= H(t), (2.26)

and

F (t) = 1− exp {−H(t)}

f(t) =
d

dt
F (t) =

d

dt
{− exp (−H(t))} . (2.27)

From 2.22, we obtain

d

dt
H(t) =

d

dt

∫ t

0

h(u) du = h(t)− h(0) = h(t). (2.28)

A quantity of importance in survival analysis or statistics in general is often the mean

of the random variable. Recall, that T represents the time to event so its mean is the

expected mean time for the event to happen. Mathematically, that is

μ = E[T ]

=

∫ ∞

0

tf(t) dt,

using 2.3

= −
∫ ∞

0

tS ′(t) dt.

Using integration by parts with u = t and dv = S ′(t) dt, we have that

= −tS(t)
∣∣∣∣∞
0

+

∫ ∞

0

S(t) dt
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E[T ] = − lim
t→∞

tS(t) +

∫ ∞

0

S(t) dt

=

∫ ∞

0

S(t) dt. (2.29)

The limit term equals to 0 since

0 ≤ lim
t→∞

tS(t) = lim
t→∞

t

∫ ∞

t

f(u) du ≤ lim
t→∞

∫ ∞

t

uf(u) du = 0

therefore,

lim
t→∞

tS(t) = 0.

So from 2.29, we can obtain the mean life time by integrating the survival function.

2.4 Proportional & Accelerated Models

Cox proportional hazards and accelerated failure time models are perhaps the first

type of models an analyst will fit when given survival data. In the next two sections, we

briefly introduce each type of model and some basic facts about them.

2.4.1 Proportional Hazards (PH) Model

The most commonly used Proportional Hazard (PH) model is the Cox Proportional

Hazards models, proposed by Cox himself [9]; hence, we will interchangeably use the

terms PH and Cox model.

The Cox Proportional Hazards model, h(t |x), for subject i is given by

hi(t |xi) = h0(t) exp(β
′xi) (2.30)

where ′ stands for the transpose, h0(t) is referred to as the baseline hazard function,

which is the hazard function for an individual for whom all the variables included in the
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model are zero, xi is a p × 1 vector of explanatory variables, and β is a p × 1 vector of

of regression coefficients.

Note that h(t |x) is dependent on the form of h0(t); hence, h0(t) determines the

structure of the model i.e., parametric or semi-parametric [26]. If no assumptions are

made about the form of h0(t), then the Cox model is semi-parametric; otherwise, it is

parametric. Note that, for now, we are assuming the covariates are time independent.

Also, for the Cox model to be adequate for inference, the proportional hazard assumption

needs to hold, at least approximately. Let us formulate this mathematically. First, a more

general form of 2.30 is

hi(t |x) = h0(t)Ψ(xi)

where Ψ(·) is some link function [35]. The choice of log-linear link function – Ψ(xi) =

exp(β′xi) – is useful for several reasons, but most importantly for the interpretation of

βj for j = 1, ..., p. Suppose we fix time, t, and we are looking at two subjects i and j

with explanatory vectors xi and xj, respectively, then observe that

hi(t |xi)
hj(t |xj) = exp [β′(xi − xj)] ,

i.e., the right-hand side of these expressions does not depend on t. If subjects i and j are

identical on all but the k-th characteristic, then the above becomes

hi(t |xi)
hj(t |xj) = exp [β′(xi − xj)] = exp [βk(xik − xjk)] ,

moreover if xik − xjk = 1 i.e., there is a unit change in xk, then

hi(t |xi)
hj(t |xj) = exp [β′(xi − xj)] = exp [βk(xik − xjk)] = exp(βk),

and this is known as the hazard ratio for covariate k which we observe is time-independent.

The interpretation of βk is now straightforward: each regression coefficient summarizes
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the proportional effect on the hazard of absolute changes in the corresponding covariate.

Observe also that the effect of covariates is multiplicative with respect to the hazard.

Unfortunately, for estimation the typical MLE approach will not be suitable without

assumptions about the baseline hazard function. Instead, a partial likelihood approach is

used to obtain L(β) which will be some function of exp[β′xi] and hence the score equations

can be calculated, without making any distributional assumptions about h0(t).

The parametric Cox PH model is somewhat simpler as it specifies a specific distri-

bution for the baseline hazard function. Common choices of distributions are the Expo-

nential, Weibull, Logistic, Normal, and Gamma distribution. In this setting, using full

likelihood approach to make inference about the β’s can typically be done in the usual

fashion.

For brevity, we have not discussed any model diagnostics e.g. residuals or validation

rules for the PH assumptions or what happens when the covariates are time dependent,

but these are aspects the analyst must consider. We now proceed with a brief introduction

to Accelerated Failure Time (AFT) Models.

2.4.2 Accelerated Failure Time (AFT) Models

Cox PH models measure the effect of covariates on the hazard. It may also be inter-

esting to measure the effect of certain variable(s) on the survival time. In such case an

Accelerated Failure Time (AFT) model should be used [26] [38].

The Accelerated Failure Time model for subject i is given by

log(Ti) = β0 + β′xi + σεi (2.31)

where Ti is the survival time (as defined in Definition 2.2.1) for subject i, σ is a scale
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parameter, β0 is the intercept, xi is a p × 1 vector of explanatory variables, and β is a

p× 1 vector of regression coefficients.

Similarly to the Cox PHmodel, the model in 2.31 can be parametric or semi-parametric

depending on the assumptions about the error term, εi. Common parametric distribu-

tions for εi are the same typically used as in the Cox PH.

Interpretation of the coefficients under AFT models is somewhat simpler than PH

models. They capture the direct effect of explanatory variables on the survival time. In

other words, “AFT models describe [a] ’stretching out’ (lengthen) or contraction (shorten)

of survival time as a function of [the magnitude of the] predictor variables” [27]. Math-

ematically speaking, the above is explained by taking a similar approach as in the PH

context i.e., by looking at the ratio of survival times for two subjects. First , from 2.31,

we have that

Ti = eβ0eβ
′xieσεi .

Then, if subject i and j are similar with respect to all other covariates, but the k-th, and

xik − xjk = 1, we have that

Ti
Tj

= exp [βk(xik − xjk)] = exp(βk)

exp(βk) is known as the time ratio or acceleration factor. It tells the analyst how “fast”

a subject moves down the survival curve for a unit change in the predictor variable.

In the current context, the parameters of interest are β0, β, and σ, so that

L(β0,β, σ) =
n∏
i=1

f(ti)
δi [1− F (ti)]

1−δi

=
n∏
i=1

f(ti)
δi [S(ti)]

1−δi

Recall, δi is an indicator of whether the event occurred or not. f(ti) is the density of εi.
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Now, we need to specify S(ti) in terms of εi. We have

S(ti) = P (Ti ≥ t)

= P (log(Ti) ≥ log(t))

= P (β0 + β′xi + σεi ≥ log(t))

= P

(
εi ≥ log(t)− β0 − β′xi

σ

)
= Sεi

(
log(t)− β0 − β′xi

σ

)
.

Hence, using the above, L(β0,β, σ) becomes

L(β0,β, σ) =
n∏
i=1

fεi(θi)
δi [Sεi(θi)]

1−δi

where

θi =
log(ti)− β0 − β′xi

σ
.

Once the distribution of εi is specified a more concrete form for the likelihood can be

obtained. Again, we shall not comment on model diagnostics, but there exist several

methods to verify the goodness of fit of an AFT model.

2.5 Competing Events

Competing risk models are used when there are at least two possible events that a

subject can experience, but only one such event type can actually occur. In other words,

if a study focuses on investigating some outcome/event, then other events may prohibit

the main event from occurring. For example, a patient can die from lung cancer or from

a stroke, but not both so the events compete with each other.

An important assumption throughout this chapter was that the censoring mechanism

was independent of the outcome mechanism i.e, we have non-informative censoring. When
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the event of interest is considered to be censored by the occurrence of another event, the

former assumption is potentially violated and we would have informative censoring.

One common way to model competing events is to study one event type at a time

[27]. Hence, other (competing) failure types are treated as censored in addition to those

who are lost to follow-up and/or withdrawal.

Analysis is typically done using a Cox model i.e., studying the cause specific hazard

for each failure type. We therefore define the Cause-Specific Hazard Function.

Definition 2.5.1 Suppose that we have F distinct failure types, then the Cause-Specific

Hazard Function is defined as

hf (t) = lim
Δt→0

P (t ≤ Tf < t+Δt |Tf > t)

Δt

where f = 1, ...,F and the random variable Tf denotes the time-to failure from event type

f .

Following Definition 2.5.1 and the standard definition of the hazard function, hf (t) gives

the instantaneous failure rate at time t for event type f , given not failing from event f

by time t [27]. Consequently, we can define the Cox Proportional Hazard-Specific model.

Definition 2.5.2 Assuming we have F distinct failure types, the Cox Proportional Haz-

ard - Specific model, hf (t |x), for subject i is given by

h i, f (t |xi) = h0, f (t) exp(β
′
fxi)

where f = 1, ...,F , h 0, f (t) is the baseline cause-specific hazard, xi is a p × 1 vector of

explanatory variables, and βf is a p× 1 vector of of regression coefficients subscripted by

f to indicate the effects of the predictors for the f -th event-type [24].
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In the end, F distinct analyses must be performed, one for each failure type, and

accordingly F model validations. Another approach to study competing events is by

generalizing the Kaplan Meier (KM) estimator to include competing risks [24]. Let

tf1 < tf2 < ... < tfkf

denote the kf distinct failure times for failures of type f , nfi denote the number of

subjects at risk just before tfi and let dfi denote the number of deaths due to cause f at

time tfi. Then, the cause specific KM estimator is given by

Ŝf (t) =
∏

i : tfi<t

(
1− dfi

nfi

)
.

In a similar fashion, most of the quantities defined and derived in this chapter can be

formulated to a cause specific setting. But there are some drawbacks to this method,

first and most obvious, if F is large, say F ≥ 10, then 10 analyses need to be performed.

As already mentioned, we require the assumption of independent competing events to

ensure non-informative censoring, but with large F this assumption may not hold.

2.6 Summary

In this chapter we defined basic terminology in survival analysis and introduced com-

monly encountered functions, e.g., the survival, hazard, and cumulative hazard functions.

We established several relationships between them when we have a continuous random

variable, and then briefly discussed two models to analysis a time to event data that

is to say the Cox proportional hazards and the accelerate failure time models. Lastly,

we introduced what competing risks are and some very fundamental methods to analyze

them. We now jump to a new topic that will be connected with elements seen in this

chapter.
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Chapter 3

Causal Inference

In this chapter, we introduce the basics of causal inference. We start by establishing

a notation widely used in the context of causal inference, we then introduce certain

conditions that will be needed later, and then review three methods of estimating what

is known as the average causal effect.

3.1 What is Causal Inference?

In most studies, the main interest is some outcome, measured by a random variable Y ,

and how a certain set of predictors affect that outcome. In the context of survival analysis,

we often subject some individuals, the population of interest, to a certain treatment or

exposure which we will refer to as A. The aim of causal inference is to identify the impact

of exposure/treatment on some outcome. For instance, suppose a patient can go under

two different kinds of heart transplants, measured by a random variable, A. Assume we

are interested in the outcome of time to death, measured by Y . The question of interest

could be: does the specific heart transplant received cause a patient to die sooner or later?
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Note, when we say “treatment”, we do not necessarily mean a medical prescription,

but rather a general ”action” or intervention taken upon an individual. For instance, if

we are interested in the effect of quitting smoking on body weight, than the “treatment”

is quit smoking (A = 1) and not quit smoking (A = 0).

3.2 Notation

We now introduce a notation that will be used throughout the coming sections. Only

a dichotomous treatment will be considered as the analysis with continuous or multi

level treatment is beyond the scope of this thesis. A may have more than two levels,

but causal inference aims mainly at the contrast between two levels as discussed below.

Hence, we let A be a binary variable (1: treated, 0: untreated). We also let the outcome,

Y , be a dichotomous outcome variable (1: death, 0: survival); Y could be continuous,

but for convenience we will use a dichotomous outcome. We let Y a=1 (read Y under

treatment a = 1) be the outcome variable that would have been observed if the subject

had received the treatment value a = 1. Likewise, Y a=0 (read Y under treatment a = 0) is

the outcome variable that would have been observed when receiving the treatment value

a = 0. Y a=1 and Y a=0 are referred to as counterfactual outcomes [19]. Note that Y a is not

the same as Y |A = a. The latter is the outcome given treatment a was observed while

the former reads, as explained, the outcome that would have been observed if treatment

a was assigned.
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3.2.1 Individual and Average Causal Effects

With the above in hand, we can now define the “quantity,” we want to essentially

measure. Suppose we are interested in whether a specific heart transplant is effective.

Let A = 1 denote that an individual received the specific heart transplant and A = 0, he

did not. Following the surgery, an individual may or may not die. So does the surgery

cause death or, in other words, does going under the surgery have a causal effect on the

outcome? Suppose that we have two individuals, call them P1 and P2 and suppose that

P1 had the specific heart transplant and died after some time t. While if he had not

received the transplant, he would have lived; therefore, the treatment had a causal effect.

On the other hand, P2 also had the transplant, but did not die. Assume that P2 would

have lived even if he had not received the transplant i.e., no causal effect. Hence, the

causal effect for an individual is present when the treatment A has a causal effect on an

individual’s outcome Y , namely Y a=1
i − Y a=0

i �= 0 [19].

In our example, the treatment has a cause effect on P1 while it does not on P2. We

are less interested in the individual causal effect, but more on the average causal effect

in the population.

We can define the average causal effect of treatment A on outcome Y as E[Y a=1 −

Y a=0] where E[ · ] stands for expectation or the average over a population.

We can view the average causal effect as an averaged contrast of receiving a heart

transplant and not receiving one. If the treatment were not dichotomous, then we need

to specify the particular contrast of interest. Note also that, depending on the nature of

the outcome (continuous or discrete, respective computation of E[Y a] must be taken i.e.,

one involving summation or integration.
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One can define different measures of causal effect, depending on the problem. For

instance, below we have three examples

(i) P [Y a=1 = 1]− P [Y a=0 = 1],

(ii)
P [Y a=1 = 1]

P [Y a=0 = 1]
, and

(iii)
P [Y a=1 = 1]/P [Y a=1 = 0]

P [Y a=0 = 1]/P [Y a=0 = 0]

which are referred to as the causal risk difference, risk ratio, and odds ratio, respectively.

Before, we proceed any further, we want to establish a clearer distinction between

E[Y a] and E[Y |A]. Causal inference focuses on the counterfactual outcomes, Y a, and at

finding the average causal effect. But observe that, we never know fully what is Y a so

what one might be able to model P [Y |A = 1] and P [Y |A = 0] or the outcome under the

true treatment which is observable within our data. Figure 3.1 (reproduced from Hernán

and Robins, Causal Inference [19]) illustrates graphically the difference the counterfactual

and actual outcomes.

Population of Interest

Treated Untreated

E[Y a=1]

vs.

E[Y a=0] E[Y |A = 1]

vs.

E[Y |A = 0]

Figure 3.1: Distinction between E[Y a] and E[Y |A = a] [19]
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3.2.2 Conditions

In this section, we will introduce conditions that will be needed and assumed to hold

in order for the models that will be discussed later to be reliable. One can view these

conditions as the assumptions one makes when fitting a model.

3.2.2.1 Well-defined interventions

Before any analysis is being performed, we need to be sure that the treatment or

intervention in question are well-defined, where well-defined means that any differences

in treatment are ignorable with respect to expectation in the outcome. Consider the heart

transplant question introduced earlier. Suppose that the question we aim to answer is:

“Does heart transplant increase the risk of death?” Although this seems a straight-forward

question, the challenge is that there is more than one way to perform a heart transplant

(e.g. different surgical approaches, warm versus cold heart transplants). In order to

consider this intervention well-defined, one must assume the differences in the transplant

method used in the study were restricted to methods that do not affect the expectation

of the outcome.

So the important message to bear is that well-defined intervention is crucial and must

not be simply put aside.

3.2.2.2 Exchangeability

Definition 3.2.1 Exchangeability is defined as when the counterfactual outcome risk un-

der every exposure value a is the same in the exposed and in the unexposed [19].
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Mathematically, Definition 3.2.1 is equivalent to

P [Y a = 1|A = 1] = P [Y a = 1|A = 0]

A consequence of these conditional risks being equal in all subsets defined by treatment

status in the population is that they must be equal to the marginal risk under treatment

value a in the whole population, or in other words

P [Y a=1 = 1|A = 1] = P [Y a=1 = 1|A = 0] = P [Y a = 1].

Because the counterfactual risk under treatment value a is the same in both groups

A = 1 and A = 0, we say that the actual treatment A does not predict the counterfactual

outcome Y a. So an equivalent definition of exchangeability is :

Definition 3.2.2 Exchangeability is when the counterfactual outcome and actual treat-

ment are independent [19].

Definition 3.2.2 will be mathematically expressed as

Y a |= A ∀a

Note, it is important to notice that Y a |= A and Y |= A are two different things. The

former was already defined above. The second expression, Y |= A, claims independence

between observed outcome and treatment. Note also that one does not imply the other.

3.2.2.2.1 Conditional Exchangeability

Observe that so far no predictor(s) have been discussed or included in any definition or

topic discussed. For instance, if we go back to the heart transplant example, considering

the age of individuals, smoking status, their sport life, or other health factors will be
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essential for the analysis. Ideally, we are including variables in our data. We will denote

the set of variables by L and l would define a specific stratum of L. In relation to the

previous section, we have the following defintion

Definition 3.2.3 Conditional Exchangeability is defined as [19].

Y a |= A|L

Note that in the above expression, we assume independence holds within each level

of L, but this may not be the case. In such situations, we would write

Y a |= A|L = l

which is conditional exchangeability within a specific level of L = l.

A natural question to ask now is: when does exchangeability or conditional exchange-

ability actually hold? From Definition 3.2.3, one must verify that

P [Y a = 1|A = a, L = l] = P [Y a = 1|A �= a, L = l],

but for individuals who did not receive the treatment the value of Y a is unknown, so the

right hand side is unknown. So does this mean we can never guarantee exchangeability?

Realistically speaking, yes. Nonetheless, at least conditional exchangeability must be

assumed to be true in order to identify parameters from observed data.

In fact, if one performs a randomized experiment, exchangeability would indeed hold.

Moreover, under such an experiment with A dichotomous,

P [Y a=1 = 1] = P [Y = 1|A = 1] and

P [Y a=0 = 1] = P [Y = 1|A = 0];
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hence, we can compute the counterfactuals which were previously unknown. Note, A

does not necessarily need to be dichotomous, it can have more than 2 levels, but we then

need to specify the contrast that will be considered as mentioned previously in Individual

and Average Causal Effects.

3.2.2.3 Positivity

Suppose that we perform a study with two treatments, and we assign all subjects to

either A = 1 or A = 0. It should be clear that under such study, it will be impossible

to compute any average causal effect or test in general if the treatment is effective since

we lack subjects in one of the treatment levels. So, in order to be able to estimate any

effect, we need to ensure that subjects are assigned to each level of the treatment groups.

In other words, we must ensure that there is a probability greater than zero – a positive

probability for each subject to be assigned to each of the treatment levels. This is referred

to as positivity.

Definition 3.2.4 Given a vector, L, of covariates, positivity defined as [19]:

P [A = a|L = l] > 0 ∀l with P [L = l] �= 0

As with exchangeability, we cannot generally test if positivity holds in our study. Pos-

itivity is often violated in clinical data unless some restrictions are applied to the data.

Referring back to the heart transplant scenario, suppose we have a single variable, L, that

takes value 1 if a person is in critical condition and 0 if he is not, then P [A = 1|L = 0] is

likely to be 0 since a person who is not in critical condition would almost certainly not

receive a heart transplant.
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3.2.2.4 Confounding

Confounding is present in many areas of statistics and it has an important role in

causal inference. It can be viewed from the perspective of Directed Acyclic Graphs, but

in the following section confounding will be very briefly introduced from both theoretical

and graphical view.

L A Y�� �� ��

Figure 3.2: Example of a backdoor path

Confounding is the bias that arises when the treatment and the outcome share a cause

[19]. Figure 3.2 is a graphical illustration of confounding. The diagram shows two sources

of association between treatment and outcome: (1) the path A → Y that represents the

causal effect of A on Y , and (2) the path A← L→ Y between A and Y that is induced

by the common cause L. This is known as a backdoor path [19]. Figure 3.2 is called a

Directed Acyclic Graph (DAG). DAG’s help the analyst to visualize the relation between

all the variables and identify backdoor paths and other characteristics. A full discussion

of Directed Acyclic Graphs and confounding is beyond the scope of this thesis, so we will

very briefly introduce the topic and its use.

Suppose, we are interested on the effect of some drug, A, on the risk of some heart

related issue (say stroke), Y . The effect will be confounded if the drug is more likely to

be prescribed to individuals with a certain condition L (say, heart disease).

Hence, eliminating confounding is essential. Under what conditions can confounding

be eliminated? A result from graph theory known as the backdoor criterion guarantees

that the causal effect of A on Y is identifiable if all backdoor paths between them can
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be blocked by conditioning on variables that are not affected by non-descendants of

treatment A [19]. More simply, we will assume to have measured enough variables, L, so

that when we condition on L, we will be sure to have blocked all backdoor paths. The

backdoor criterion aims at 3 questions:

1. Does confounding exist?

2. Can confounding be eliminated?

3. What variables are necessary to eliminate confounding?

The moral from the above is that in order to remove all confounding, one simply condi-

tions on L. Unfortunately, sometimes conditioning on a variable(s) may cause additional

problems as shown in Figure 3.3:

U1

U2

L A Y
��

����

��
��

Figure 3.3: Opening of backdoor by conditioning on L

If we do not condition on L, there is no confounding at all, but if we condition on L,

we will open backdoor paths via U1 and U2; this is known as collider stratification bias.

The objective here is to illustrate that conditioning on a variable is not always necessary.

Hence, drawing a DAG can help deciding whether conditioning on a variable is required

or not.

For further theory and propertieson DAGs, the reader may refer to Chapter 6 and 7

of Causal Inference by Miguel A. Hernán and James M.Robins [19].
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3.3 G-methods preview

In section 3.2.2.4, confounding was introduced and we discussed broadly how one ad-

justs for confounding. In the coming sections, we answer the latter problem more formally

by introducing the class of G-methods which includes standardization, IP weighting, and

g-estimation. These are methods that exploit conditional exchangeability in subsets de-

fined by L to estimate the causal effect of A on Y in the entire population or in any

subset of the population [19].

G-methods require conditional exchageability given the measured covariates L in or-

der to produce consistent parameter estimates. Furthermore, Inverse Probability (IP)

weighting and standardization require positivity and well-defined interventions. Recall,

we defined the average causal effect as

E[Y a=1]− E[Y a=0]

where E[Y a=1] is the mean outcome that would have been observed if all individuals in

the population had received the treatment and E[Y a=0] is the mean outcome that would

have been observed if all individuals in the population had not received the treatment.

In the coming sections, we establish how the G-methods estimate the above difference.

3.3.1 IP Weighting and Estimating IP Weights

IP weighting adjusts for confounding by creating what is known as a pseudo-population.

By creating such a population, the goal is remove the arrow from L to A in Figure 3.2.

Thus, if we measure enough confounders, L, we should be able to block all the back-

door paths from A to Y , and consequently remove all the confounding in the pseudo-

population. That is, the association between A and Y in the pseudo-population consis-
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tently estimates the causal effect of A on Y .

A pseudo-population is twice as big as our original population where we simulate the

outcome of each individual if he is assumed to have been and not have been treated [19].

Below, we make a visualization of a pseudo-population. Figure 3.4 represents a hypo-

thetical population of 20 individuals where for simplicity Y , A, and L are dichotomous

variables. Y = 1 means the outcome was observed while Y = 0 it was not. A = 1 means

a subject received the treatment and A = 0 he did not. L has two levels for some con-

founder. The numbers represent the number of individuals within each group while the

numbers in parentheses are the probability of being in that specific strata. For example,

P [Y = 1|A = 0, L = 0] =
1

4

The pseudo-population would be created by assuming that everybody had received the

treatment and had not as mentioned above. So Figure 3.4 transforms to Figure 3.5.

If one looks carefully, the outcomes in the pseudo-population can be obtained by

weighting each individual by the inverse of the conditional probability of receiving the

treatment level that he indeed received.

For example, take again the branch where L = 0, A = 0, and Y = 1, in the pseudo-

population we have 2 individuals for whom the outcome was observed given they did not

receive the treatment and L = 0.

From Figure 3.4, P [A = 0|L = 0] = 0.5 so we see that 1/0.5 = 2 where “1” really

represents the number of individuals for whom Y = 1 given A = 0 and L = 0, and “2” is

for the same branch (Y = 1 given A = 0 and L = 0) in Figure 3.5.
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population

20
L=1

12(0.6)
A=1

9(0.75)

Y=0

3(1/3)

Y=1

6(2/3)

A=0

3(0.25)

Y=1

2(2/3)

Y=0

1(1/3)

L=0

8(0.4)
A=1

4(0.5)

Y=1

1(1/4)

Y=0

3(3/4)

A=0

4(0.5)

Y=1

1(1/4)

Y=0

3(3/4)

Figure 3.4: Hypothetical population

Hence, we define the individual IP weights for treatment A as

WA =
1

f(A|L)

population

20
L=1

12(0.6)
A=1

12(1)

Y=0

4 (1/3)

Y=1

8(2/3)

A=0

12(1)

Y=1

8(2/3)

Y=0

4(1/3)

L=0

8(0.4)
A=1

8(1)

Y=1

2(1/4)

Y=0

6(3/4)

A=0

8(1)

Y=1

2(1/4)

Y=0

6(3/4)

Figure 3.5: pseudo-population

where f(A|L) is the probability of receiving a treatment level A conditional on the mea-

sured confounders, L i.e., P [A = 1|L] for treated. Likewise for untreated subjects, we
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would have P [A = 0|L]. Since A is a binary variable, P [A = a|L] can be estimated by

fitting a logistic model. f(A|L) is also referred to as the propensity score.

Next, we approximate E[Y |A = 1] − E[Y |A = 0] in the pseudo-population created

by using the estimated IP weights. By creating the pseudo-population, we remove the

confounding bias and E[Y |A = 1] − E[Y |A = 0] is a consistent estimator of E[Y a=1] −

E[Y a=0] [19].

To estimate E[Y |A = 1] − E[Y |A = 0], we fit the following model to the observed

data

E[Y |A] = β0 + β1A (3.1)

by weighted least squares, with individuals weighted by their estimated IP weights;

1/P̂ [A = 1|L] for subjects who received the treatment and 1/P̂ [A = 0|L] for subjects

who did not received the treatment. Under conditional exchangeability, the IP weighted

mean is equal to E[Y a] – see proof below.

Assuming no censoring, we have

E

[
I(A = a)Y

f [A|L]
]
= E

[
I(A = a)Y a

f [A|L]
]
, via consistency

= E

{
E

[
I(A = a)Y a

f [a|L]
∣∣∣∣L]} , via E[X] = E[E[X|L]]

= E

{
E

[
I(A = a)

f [a|L]
∣∣∣∣L]E[Y a|L]

]}
, via conditional exchangeability

= E {E[Y a|L]} , since E

[
I(A = a)

f [a|L]
∣∣∣∣L] = 1, so

= E[Y a].

The left hand side of the first line is the mean under the IP weighted model. Hence,

establishing the result.
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3.3.1.1 Stabilized IP Weights

In the above section, we introduced the notion of pseudo-population, and how it is

used to estimate the average causal effect. We created such population by weighting by

the probability of being treated and not treated conditional on the set of covariates L i.e,

weight by the IP weights given by

WA =
1

f(A|L) .

An issue with the above weights is that individuals with a propensity score close to

0 – those extremely unlikely to be treated – will have a very large weight; thus, making

the weighted estimator unstable. We can stabilize the weights by using a more general

form of WA, that being

WA =
f(A)

f(A|L) (3.2)

where f(A) is the probability of receiving the treatment or the marginal probability of

treatment i.e., P [A = 1]. If there is more than one treatment regime, then f(A) is just

P [A = a]. For binary treatment, P [A = a] is estimated by fitting a logistic model with

no predictors. The weights in 3.2 are usually referred to as stabilized weights which we

will denote by SWA [19]. WA are usually referred to as non-stabilized weights. Generally,

using SWA will result in a more efficient causal estimator than using WA [36, 37].

Previously, we established one method to estimate E[Y a=1]−E[Y a=0] that is by creat-

ing a pseudo-population, and using the fact that E[Y |A = 1]−E[Y |A = 0] is a consistent

estimator of the desired quantity. We estimated E[Y |A = 1] − E[Y |A = 0] by fitting

E[Y |A] = β0 + β1A via weighted least squares. What if we want to directly fit (or
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estimate) E[Y a=1]− E[Y a=0]? Let us propose the following model

E[Y a] = β0 + β1a. (3.3)

Note that this model is unique in the sense that its outcome is counterfactual; hence,

unobservable. Such models are referred to as structural mean models [19]. Observe that

the model in 3.3 does not include any covariates in which case we will call such model an

unconditional or marginal structural mean model. From 3.3, we see that

E[Y a=0] = β0

so

E[Y a=1] = β0 + β1 ⇒ E[Y a=1] = E[Y a=0] + β1 ⇒ E[Y a=1]− E[Y a=0] = β1;

hence, estimating β1 is equivalent to estimating the average causal effect.

In the previous subsection, we introduced marginal structural models. If we want to

estimate the average causal effect, the model in 3.3 will suffice. Yet, if we want to assess

a causal effect that depends on some covariate, then we need to include that covariate in

the model. By “effect,” we mean, for example, the fact of being man or woman or being

smoker versus not, etc. If we will symbolize our covariate by X, then one simple model

would be

E[Y a|X] = β0 + β1a+ β2Xa. (3.4)

Note that the expression in 3.4 is not general, but rather one possibility of a fit. We

would estimate βj (j = 0, 1, 2) in 3.4 by fitting a linear regression model [19] :

E[Y |A,X] = β̃0 + β̃1a+ β̃2Xa (3.5)

via weighted least squares using either the weights being WA or SWA.
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3.3.1.2 Censoring

Until now, we assumed that every subjects in our study remained in it until the

outcome could be measured. This may not be case necessarily, in other words, we have

censoring. In fact, all the analyses above were referring to the uncensored scenario because

those are the only ones with known outcome, Y . Letting C represent the censoring

indicator with C = 0 for being uncensored and C = 1 for being censored, then instead of

fitting 3.3, namely

E[Y |A] = β0 + β1A,

we can only fit

E[Y |A,C = 0] = β0 + β1A, (3.6)

to the observed data. The target average causal effect would then become

E[Y a=1,c=0]− E[Y a=0,c=0] (3.7)

where E[Y a=1,c=0] would be read as the average outcome if everybody had received the

treatment and nobody had been censored. Similar interpretation follows for E[Y a=0,c=0].

We can estimate 3.7 constitently still using IP weights, except that now we will need to

adjust for the effect of the censoring as well [19] which is done by using the weights

WA,C =
1

f(A,C = 0|L) = WA ×WC

where

f(A,C = 0|L) = f(A|L)× P [C = 0|L,A],

so it follows that

WC =
1

P [C = 0|L,A] .
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Note that one can also use the stabilized version which is SWA,C = SWA × SWC where

SWC =
P [C = 0|A]
P [C = 0|L,A] .

P [C = 0|L,A] is estimated the same way we did for P [A|L] e.g., we fit a logistic regression

model for the probability of being uncensored. Remember, the above would hold if we

have exchangeability; so in the presence of censoring, we must assure exchangeability for

the joint “exposure” (A,C) conditional on L i.e., Y a=1,c=0 |= (A,C)|L.

3.3.2 Standardization and g-formula

Using IP weights to estimate the average causal effect is one method, but it is not the

only one. In the following section, we introduce two alternative methods, standardization

and the g-formula. We also ended the last section by introducing censoring in our analysis

and specified that we are in fact estimating

E[Y a=1,c=0]− E[a=0,c=0]

rather than

E[Y a=1]− E[a=0].

Henceforth, we will assume the presence of censoring, unless specified otherwise. Also,

we will still assume the vector of variables, L, is sufficient to adjust for confounding.

Under exchangeability and positivity conditional on L, the standardized mean out-

come in the uncensored treated subjects is a consistent estimator of E[Y a=1,c=0] and

the same for E[Y a=0,c=0]; see proof below. To compute the standardized mean out-

come in the uncensored treated, we first need to compute the mean outcomes in the

uncensored treated in each stratum l of the confounders L, i.e., the conditional means
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E[Y |A = 1, C = 0, L = l]. We then weight the latter quantity by P [L = l]. The

standardized mean for uncensored observations who received treatment level a is

∑
l

E[Y |A = a, C = 0, L = l]× P [L = l]. (3.8)

We now describe how to estimate the conditional means in 3.8 and an alternative to

estimate the standardized means. Note that some of the variables in L may be continuous

in which case the sum becomes an integral.

Assuming we do not have censoring:

E[Y a] = E
[
E[Y a|L]], via E[X] = E[E[X|L]]

=
∑
l

E[Y a|L = l]P [L = l]

=
∑
l

E[Y a|A = a, L = l]P [L = l], via conditional exchangeability

=
∑
l

E[Y |A = a, L = l]P [L = l] , via consistency.

3.3.2.1 Estimating the Mean Outcome

We want to estimate : E[Y |A = a, C = 0, L = l]. In the case of IP weights, we fitted

logistic models, here to estimate E[Y |A = a, C = 0, L = l], we fit a linear regression

model for the mean outcome with treatment A and variables in L included as covariates

[19]. Note, the model can include n degree terms, or any other functional forms, if needed.

Lastly, we weight by P [L = l].

If, for simplicity, all variables in L are discrete, we can calculate the P [L = l] non-

parametrically – simply divide the number of subjects in the strata defined by L = l

by the total number of subjects in the population. However, this can be very tedious
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when L has variables with many levels and if L has higher dimension. What if L includes

continuous variable? Hence, we propose an alternative method [19] in estimating the

standardized means.

Assume a very simple data of 10 subjects (summarized in Table 3.1 where L is a

dichotomous variable, A and Y have two levels and there is no censoring. Recall under

censoring, we want to approximate

∑
l

E[Y |A = a, C = 0, L = l]× P [L = l],

under no censoring we are estimating

∑
l

E[Y |A = a, L = l]× P [L = l].

The process of estimating the standardized means is based on 4 steps. First, we create 2

copies of Table 3.1 as shown in Table 3.2.

In simple words, we created one copy where we set the value of A = 0 and another

where A = 1, and in both blocks we set Y to be unknown. Note that Block 0 is just our

initial data. As one might guess, we will use Block 1 to estimate the standardized mean

in the treated and Block 2 for the standardized mean in the untreated.

Second, we fit a regression model for the mean outcome given treatment A and the

confounder L as described above. Observe that only Block 0 will contribute to the

estimation as in Block 1 and 2, the outcome values are unknown. Third, we use the

parameter estimates to estimate the Y values in Block 1 and Block 2.

Lastly, we compute the average of all predicted values in Block 1 corresponding to the

standardized mean in the treated. We do the same for Block 2, obtaining estimate for

the standardized mean in the untreated. We then take the difference of the two averages

to obtain the estimate of the average causal effect.
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L A Y

P1 0 1 1

P2 0 1 1

P3 1 0 0

P4 1 1 1

P5 0 0 0

P6 0 1 0

P7 0 1 0

P8 1 0 1

P9 1 1 0

P10 0 0 1

Block 0

Table 3.1: Hypothetical Dataset

L A Y L A Y L A Y

P1 0 1 1 0 1 · 0 0 ·

P2 0 1 1 0 1 · 0 0 ·

P3 1 0 0 1 1 · 1 0 ·

P4 1 1 1 1 1 · 1 0 ·

P5 0 0 0 0 1 · 0 0 ·

P6 0 1 0 0 1 · 0 0 ·

P7 0 1 0 0 1 · 0 0 ·

P8 1 0 1 1 1 · 1 0 ·

P9 1 1 0 1 1 · 1 0 ·

P10 0 0 1 0 1 · 0 0 ·

Block 0 Block 1 Block 2

Table 3.2: Data Augmentation

3.3.3 IP Weighting or Standardization?

We have seen two methods to estimate the average causal effect : (1) IP weighting

and (2) standardization. One may ask should we use one method over the other? In turns

out that these two ways are equivalent under non-parametric model assumptions. From

sections 3.3.1 (IP Weighting and Estimating IP Weights) and 3.3.2 (Standardization and

g-formula), we know now that E

[
I(A = a)Y

f [A|L]
]
is the IP weighted mean of Y for treatment

level a and
∑
l

E[Y |A = a, L = l]P [L = l] is the standardized mean for treatment level

a, respectively. We will assume that f [a|l] is positive ∀l and omit censoring, then

E

[
I(A = a)Y

f [A|L]
]
= E

[
I(A = a)Y

f [A|L]
∣∣∣∣A = a, L = l

]
via the tower property,
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=
∑
l

1

f [a|l]E[Y |A = a, L = l]f [a|l]P [L = l] and

=
∑
l

E[Y |A = a, L = l]P [L = l].

Generally one should use both IP weights and standardization and compare the estimates.

A large difference would alarm the analyst of moderate model misspecification [19]. In

the example above, we were parametrically estimating conditional mean outcome via

standardization. This is a particular case of the parametric g-formula.

3.3.4 Required Conditions for IP Weighting and Standardization

We saw two methods of estimating the average causal effect. We then briefly said that,

one should not be preferred over the other, but rather both methods should be applied.

Once this is done, another natural question is: what is the validity of our estimates?

This boils down to, how well were the conditions required by each method met? These

conditions are: (1) exchangeability, (2) positivity, (3) well-defined interventions, (4) no

measurement error, and (5) no model misspecification.

The first three were already discussed. The 4th one is saying that no measurement

error should be present in the treatment A, the outcome Y , and the confounders L.

Otherwise, bias will be introduced. And model misspecification was mentioned in the

previous section. Realistically, we can rarely ensure that all these conditions hold; the

more we deviate from them, the more our estimate may be biased and less valid.
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3.3.5 G-estimation

In this section, we introduce the third and last method – g-estimation – for estimating

the average causal effect. G-estimation attempts to estimate

E[Y a=1|L]− E[Y a=0|L],

which is the average causal effect of treatment A on some outcome Y in each strata

defined by the covariates L. Models whose parameters are estimated via g-estimation

are known as structural nested models [19]. In the presence of censoring, the estimate of

interest is

E[Y a=1,c=0|L]− E[Y a=0,c=0|L]

Before continuing further, expressing conditional exchangeability in terms of the con-

ditional probability of treatment will be helpful when we describe g-estimation later.

Therefore, we propose the following model

logitP [A = 1|Y a=0, L] = α0 + α1Y
a=0 + α2L. (3.9)

3.3.5.1 Estimating the Mean Outcome

The goal of g-estimation is to estimate

E[Y a=1,c=0|L]− E[Y a=0,c=0|L].

For simplicity, let us omit censoring so that we are estimating

E[Y a=1|L]− E[Y a=0|L].

If L induces no effect modification, then we can assume that

E[Y a=1|L]− E[Y a=0|L] = β1,
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where β1 would be the average causal effect in each strata of L. We can rewrite the above

expression as

E[Y a|L]− E[Y a=0|L] = β1a

notice that for a = 1 we obtain the desired expression while for a = 0 we obtain 0. If L

induces some effect modification, we need to introduce it in our model so that we have

E[Y a|L]− E[Y a=0|L] = β1a+ β2aL,

then under exchangeability:

E[Y a|L]− E[Y a=0|A = a, L] = β1a+ β2aL. (3.10)

The model in 3.10 is referred to as a structural nested mean model [19]. In the presence

of censoring, one simply has

E[Y a=1,c=0|A,L]− E[Y a=0,c=0|A,L]

Estimating 3.10 requires adjusting for both confounding and bias, but we know that

IP weighting and standardization can adjust for both. So what one may do is first

use IP weights to create a pseudo-population and apply g-estimation to the pseudo-

population [19]. In section 3.3.1.1 (Stabilized IP Weights), we introduced the concept

when covariates are present in marginal structural models. Suppose we have the following

marginal structural model

E[Y a|X] = β0 + β1a+ β2Xa+ β3X (3.11)

where X is a covariate in L. Then,

E[Y a=1|X] = β0 + β1 + β2X + β3X (3.12)
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and

E[Y a=0|X] = β0 + β3X (3.13)

so that subtracting 3.13 from 3.12

E[Y a=1|X]− E[Y a=0|X] = β1 + β2X

E[Y a=1|X] = E[Y a=0|X] + β1 + β2X

⇒ E[Y a|X] = E[Y a=0|X] + β1a+ β2Xa. (3.14)

Hence, β1 + β2X is the average causal effect in the stratum X = x.

Marginalizing over X, 3.11 yields a marginal structural mean model. If we are not

interested at estimating E[Y a=0|X] and leave this term completely unspecified, then the

model in 3.14 is referred to as a semiparametric marginal structural mean model [19].

Looking at the expression in 3.14 and 3.10, we notice a similarity between them, so we

established a connection between marginal structure mean models and structural nested

models.

3.3.5.2 Rank Preservation

In general, we can rank our subjects according to their actual outcome, Y . What we

mean by this is to order individuals by decreasing order with respect to their outcome.

Similarly, we can do the same for the counterfactual outcomes Y a=1 and Y a=0 if they

were known. This will result into two lists; if the two lists are in identical order, that is

to say if in the i -th row for Y a=1 we find the same individual in the i -th row for Y a=0,

we then say that there is rank preservation [19].

If the effect of treatment A on the outcome Y is additive for all subjects in the

population, we say that additive rank preservation holds. When we say “additive”, we
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mean that for individual i we will have some outcome estimate for Y a=0 while the estimate

of Y a=1 for that same individual will be Y a=0 plus some constant, m, or simply shifted. If

we are interested in the invididual causal effect from a structural nested mean model, we

require additive rank preservation within levels of L. In other words, we have conditional

additive rank preservation which holds if the effect of treatment A on the outcome Y

is exactly the same for all individuals with the same values of L [19]. An example of

conditional additive rank-preserving structural model is

Y a
i − Y a=0

i = ϕ1a+ ϕ2aLi ∀i

where for a = 1, ϕ1+ϕ2Li is the constant causal effect for all subjects with covariate values

L = l. Unfortunately, the additive rank assumption will rarely hold. Yet for simplicity,

we will present g-estimation from the perspective of additive rank preservation. We now

proceed with formally presenting g-estimation.

3.3.5.3 g-estimation

Let us suppose that we want to estimate the parameter of the model in 3.10 with the

second term being zero i.e.,

E[Y a|L]− E[Y a=0|L] = β1a

in simple words, we assume that the average causal effect is constant across stata of L,

and we seek an estimate for β1. We will assume the additive rank-preserving model holds

i.e.,

Y a
i − Y a=0

i = ϕ1a, (3.15)

so that the individual causal effect ϕ1 is equal to the average causal effect β1 of which

we are interested at. Omitting the index i since we assume 3.15 is correctly specified and
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hence the model is the same for all individuals, we can rewrite 3.15 in the following form

Y a=0 = Y − ϕ1A (3.16)

where we used the consistency of Y a and Y . Consequently, we change the a in the struc-

tural model to A as written in 3.16. Why? Remember that by consistency the observed

outcome Y is the counterfactual Y a=0 if an individual did not receive the treatment

(A = 0) or Y a=1 if an individual received the the treatment (A = 1). Hence, we need to

fix a by the actual value of A – 1 or 0. Remember, our goal is estimating ϕ1. We propose

the following [19]. Let,

H(ϕ†) = Y − ϕ†A. (3.17)

If we can find ϕ† such that ϕ† = ϕ1, then H(ϕ†) = Y a=0. In other words, we want to find

the right H(ϕ†) so that it equals the true counterfactual. So how does one find H(ϕ†)?

Under conditional exchangeability, we can fit a model as the one in 3.9 (the reason it was

introduced) where α1 should be 0 [19]. So we can connect H(ϕ†) to A via a model of the

form

logitP [A = 1|H(ϕ†), L] = α0 + α1H(ϕ†) + α2L. (3.18)

We need to assess candidates H(ϕ† = ϕ0) where ϕ0 is some pre-assumed value, we then

fit the model in 3.18 and the model for which we fail to reject the null hypothesis for

α1 = 0 is the one that returns an estimate, ϕ†, or the true value ϕ1. We ideally seek the

model that has the weakest evidence against the null i.e., the highest p-value.

What one might ask is: how do we find candidate values for ϕ†? Usually, we might

have some idea where the value of ϕ† should be given the context of the study (say

between [−1, 1]) and try different values in that interval – [−1, 1] – by increments of 0.01

or 0.001 for more precision.
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So far, we assumed that there is no effect modification by L. Generally, such as-

sumption would almost never hold. So we need to include some variables X ∈ L in our

model.

Note that conditioning on X, marginal structural nested models estimate the average

causal effect within levels of X. Whereas those that do not condition X, estimate the

latter in the whole population. By definition and how structural nested models were

defined (above sections), they estimate the average causal effect within levels of L, and

not in the whole population. Hence, omitting L (or subset X ∈ L) in the model leads to

misspecification and hence bias [19].

Fortunately, we do not need to redefine and re-derive all the above, as it can be simply

extended by adding covariates. For instance, suppose we have the structural nested model

of the form

E[Y a|A = a, L]− E[Y a=0|A = a, L] = β1a+ β2aX

so that the corresponding rank-preserving model is

Y a
i − Y a=0

i = ϕ1a+ ϕ2aX,

then the equivalent to 3.18 is

logitP [A = 1|H(ϕ†), L] = α0 + α1H(ϕ†) + α2H(ϕ†)X + α3L. (3.19)

So now, we need to find ϕ†1 and ϕ†2 that make both α1 and α2 equal to 0. This can be

extended to more than two ϕ†’s.
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3.4 Summary

In this chapter, we introduced the basics of causal inference; we then established

what a causal estimand is. We then saw some conditions that are necessary for the

analyses to hold; exchangeability being the main one. Finally, we covered 3 methods – IP

weights, standardization, and g-estimation which are subgroups of so called G-methods

– that allowed us to estimate the average causal effect. In the next Chapter, we combine

Chapters 2 and 3
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Chapter 4

Competing Events & Causal Inference

In the two previous chapters, we introduced causal inference and competing events as

two independent subjects. In the following chapter, we introduce an approach to analyze

a causal inference question in the presence of competing events.

Some common methods that are used to tackle the latter problem are Instrumental

Variables (IV) [34] [42], pseudo-observations [2], or both [25]. A less rigorous, yet more

intuitive approach was performed by Bolch, Charlotte A. et al. [6] which was to weight

the Cumulative Incidence Curve using inverse probability weights.

Another approach discussed by Egleston et al. [11], and Naimi and Tchetgen Tchetgen

[30] is to estimate a quantity known as the survivor average causal effect (SACE) which

is what we will focus on and estimate in our analysis.

4.1 SACE Estimation

We will follow the notation used by [30] as we discuss the SACE for competing risk

data.
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Naimi and Tchetgen Tchetgen propose to estimate the SACE using a structural nested

survival time model. Suppose we have a failure time outcome, Tδ, that may end in 1

of 2 possible events: death due to an outcome of interest (δ = 1) or death due to a

competing risk (δ = 2). Consider further a binary time-varying exposure, A(j), and a

set of confounders, W , that can take values for each possible time points until t where t

represents the largest integer value just before Tδ=1. The Structural Nested Accelerated

Failure Time (SNAFT) model can be defined as [30]

T 0̄ =

∫ Tδ=1

0

exp[ψA(u)] du

where T 0̄ is the outcome that would have been observed under no exposure and ψ is the

causal parameter for the time-varying exposure and the cause-specific failure-time, Tδ=1.

G-estimation of ψ from a structural nested failure time model can be implemented by

the following algorithm:

1. Choose a set of candidate values, ψ̂ for the true value of the structural nested model

parameter.

2. For each candidate from step 1, using the observed failure time, and observed

exposure history, we compute

H(ψ̂) =

∫ T

0

eψ̂·A(t) dt.

3. Perform a hypothesis test of a null hypothesis that, conditional on all measured

confounders, the exposure is independent of H(ψ̂).

For a binary exposure, step 3 is usually implemented via a pooled logistic regression

model, and the ψ̂ value for which the coefficient of H(ψ̂) is closest to 0 and its p-value is

maximized is used to estimate ψ. To adjust for the bias due to the presence of competing
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events, we use standard inverse probability of censoring weights. The following weights

are commonly used (weights version 1):

w1(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
int(t)∏
k=j

P [C(k) = 0 |C(k − 1) = Y (k − 1) = 0, Ā(k − 1)]

P [C(k) = 0 |C(k − 1) = Y (k − 1) = 0, Ā(k − 1),W (k − 1)]
, C(j) = 0

0 , C(j) = 1

(4.1)

The authors suggest to use a different version (weights version 2):

w2(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
int(t)∏
k=j

P [C(k) = 0 |C(k − 1) = Y (k − 1) = 0, Ā(k − 1) = 1̄,W (k − 1)]

P [C(k) = 0 |C(k − 1) = Y (k − 1) = 0, Ā(k − 1),W (k − 1)]
, C(j) = 0

0 , C(j) = 1

(4.2)

so that the ψ estimate obtained will not have the standard average causal interpretation,

but rather an exposure effect among a subgroup of the population i.e., the SACE. In both

forms of the weights, C(k) is an indicator that the competing event occurred (C(k)=1)

at time k or not (C(k) = 0), Y (k) is an indicator of the event of interest, and overbars

denote variable histories.

Once ψ was estimated, what is its interpretation? ψ is estimated from

T 0̄ =

∫ T

0

eψ·A(t) dt

where recall A(t) is the treatment, assumed to be binary, at time t. Suppose that a

subject is always treated so A(t) = 1 ∀t, and let T ā represent the failure time, then

T 0̄ =

∫ T

0

eψ·A(t) dt

T 0̄ =

∫ T ā

0

eψ dt

T 0̄ = T āeψ
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or

e−ψ = T ā

/
T 0̄.

If ψ > 0, then the right hand side ratio must be less than 1, or T ā < T 0̄. So if

the patient had not taken the treatment at all, his survival time would have been longer

compared to if he had taken the treatment (from time zero until event occurs). In simple

words the effect of the treatment is negative.

If ψ < 0, then the right hand side ratio must be bigger than 1, or T ā > T 0̄. So if

the patient had not taken the treatment at all, his survival time would have been shorter

compared to if he had taken the treatment (from time zero until event occurs). In simple

words the effect of the treatment is positive.

Lastly, if ψ = 0, then the ratio of T ā to T 0̄ would be 1, or T ā = T 0̄; hence, the

treatment has no effect. Overall, the sign of ψ determines whether there is a expansion

or contraction in the survival time, and its magnitude by how much (once exponentiated)

[18].

In the presence of competing events, the interpretation of ψ is the same, but the

estimate is biased due to informative censoring. Thus, as mentioned at the beginning of

this section we use the weights in 4.1 or 4.2. Depending which weight form is used, as

pointed out, the interpretation of ψ changes. Using 4.2 , ψ represents a SACE or “the

exposure effect among a subgroup of the population that would not have died from a

competing event irrespective of their exposure history” [30]. When we use the weights in

4.1 and view the competing event as “lost to follow-up” (standard censoring), the weights

really serve as an inverse probability weight for missing data, so ψ translates to a measure

of public health impact. Though if we view the competing event as lost to follow-up, we
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are not really solving the problem, but just mask it.

Using the weights in 4.1 and additional assumptions, the interpretation of ψ is a

mix of (1) the survivor average causal effect, and (2) “a function of population average

and survivor average causal effects of the exposure through intermediate time-varying

covariates” [30].
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Chapter 5

Data Simulation and Analysis

In the following chapter, we start by explaining a new data simulation procedure for

SNAFT models with competing risks. We then discuss an algorithm that we applied to

the real dataset, and lastly, we perform the analysis explained in the previous chapter.

5.1 Data Simulation

A common approach to simulate survival times and consequently survival data is

through the hazard function [3]. Namely, using the Cox proportional hazards model

introduced section 2.4.1 (Proportional Hazards (PH) Model)

h(t |x) = h0(t) exp(β
′x)

From the relations established in Chapter 2, the survival function of the Cox proportional

hazards model is

S(t | x) = exp(−H0(t) exp(β
′x)) (5.1)
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where H0(t) is the cumulative baseline hazard function. Thus, we have that

F (t | x) = 1− exp(−H0(t) exp(β
′x)). (5.2)

Appealing to the Inverse Transform Sampling method [3], we can generate random event

times. If Y is a random variable with continuous distribution function F , then U =

F (Y ) ∼ U(0, 1), and it is well know that 1−U ∼ U(0, 1). Hence, if T is the survival time

of the Cox model in 5.1, then from 5.2 we have that

U = exp(−H0(T ) exp(β
′x)) ∼ U(0, 1).

Under the assumption that h0(t) > 0 ∀t, then H0(t) can be inverted so that

exp(−H0(T ) exp(β
′x)) = U 1

−H0(T ) exp(β
′x) = ln(U)

H0(T ) =
− ln(U)

exp(β′x)

T = H−1
0

( − ln(U)

exp(β′x)

)

where U ∼ U(0, 1) [4].

Although this approach is very appealing, it may not always work. First, it relies on

the existence of the inverse of the cumulative baseline hazard, and second, it ignores the

possibility of competing events.

To simulate survival times under a competing events setting, instead of using just

the hazard and the cumulative hazard, we can use the cause specific hazard and the

cumulative all-cause hazard [4] [5]. Recall, the cause specific hazard is defined as:

h0j(t) =
P (t ≤ T < t+Δt, δT = j |T ≥ t)

Δt
, j = 1, ..., J

1 Since U ≡ 1− U ∼ U(0, 1), either U or 1− U can be used
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where δj is an indicator specifying which event occurred assuming we have J possible

events, and for simplicity, we denoted the hazard of event j by h0j(t). It then follows

that the cumulative all-cause hazard is

H0·(t) =
∫ t

0

J∑
j=1

h0j(u) du (5.3)

and we use it to generate the survival times i.e.

T = H−1
0· (− ln(U)) . (5.4)

Observe that we dropped the effect of covariates; if we have covariates, an extra factor of

exp
(−β′jx

)
will be present inside the inverse function where βj is a vector of coefficient

estimates for event j. We omit covariate effects for introductory purposes. Equation 5.4

will generate a vector of survival times given there are J competing events, but it does

not specify the type of event occurring. To determine which event occurs, notice that

P (δj = 1 | t ≤ T < t+Δt, T ≥ t) =
P (t ≤ T < t+Δt, δj = 1 |T ≥ t)

P (t ≤ T < t+Δt |T ≥ t)

=
h0j(t)
J∑
j=1

h0j(t)

. (5.5)

Hence, we can summarize the simulation steps in a simple algorithm [4] below:

1. Specify the cause specific hazards, and find the cumulative all-cause hazard.

2. Simulate failure times T by generating a random variable U ∼ U(0, 1), and then

use 5.4.

3. Run a multinomial experiment for a simulated failure time T , which determines

with probability, pj
∣∣
t=T

, given by 5.5 that cause j occurs, for j = 1, ..., J

4. Optionally, if desired, one may generate right-censoring times C and/or left-truncation

times.
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Note that the censoring and truncation times must be generated as random variables

independent of the competing events, if one requires independent censoring. Although

we accounted for the possibility of competing events, the equation in 5.4 depends strongly

on the existence of the inverse function. To avoid computing an inverse, we consider a

different approach [4]. 5.4 is equivalent to

H0·(t) = − ln(u) ⇒ H0·(t) + ln(u) = 0.

Hence, for a given u we seek the root, t, to the above equation. The previous algorithm

is then equivalent to:

1. Specify the cause specific hazards, and find the cumulative all-cause hazard.

2. Simulate failure times T by generating a random variable U ∼ U(0, 1), and then by

solving H0·(t) + ln(u) = 0.

3. Run a multinomial experiment for a simulated failure time T , which determines

with probability, pj
∣∣
t=T

, given by 5.5 that cause j occurs, for j = 1, ..., J

4. Optionally, if desired, one may generate right-censoring times C and/or left-truncation

times.

5.2 Approximating The Hazard of Gestational Age Data

In the previous section, we established an algorithm via which we can simulate survival

times and the event type, in practice, we need to set or predetermine what the cause

specific hazards are. For this thesis, we based our choice of hazard function on the

observed data.

61



Recall, our focus is the length of gestational period of live births in the presence of

adverse outcomes. In the data set, a conception may result in a live, stillbirth, mis-

carriage, induced abortion, ectopic pregnancy, or current pregnancy. For simplicity, we

subsetted the data to only the four most common events, namely: live births, stillbirths,

miscarriages, and ectopic pregnancy.

Figure 5.1 summarizes the count of each possible outcome. From the middle left

panel, we notice that the mean gestational age among live births is roughly 39 weeks.

Figure 5.1: Histograms for Birth Outcomes
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Miscarriages and ectopic pregnancies are moderately skewed to the right with a rough

mean of around 10 weeks while stillbirths are just spread across the span of 15 to about

40 weeks.

The next two figures show estimates for the all-cause hazard, and the cause-specific

hazards. The estimates were based on the Nelson-Aalen estimator i.e.,

ĥ(ti) =
di
ni

where recall di is the number of events at time ti and ni is the total individuals at risk

at ti.

Figure 5.2: All-Cause Hazard For Gestational Ages
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The lower panel of Figure 5.2 illustrates the behavior of the all-cause hazard between

0 and 35 weeks as it is not clear from the overall plot (top panel).

Figure 5.3: Cause-Specific Hazards

Given the 4 figures above, we need to determine an adequate parametric curve that

summarizes well enough the behavior of the data. We tackled this problem by determining

a probability density function for each birth outcome. Consequently, this will allows us

to find the cause-specific hazards and therefore the all-cause hazard from which we can

find the cumulative all-cause hazard, see 5.3. For simplicity we assumed that each time
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for a particular event arises from the same distributional family, and that the competing

events are independent. In other words, the time to event for cause j is given by f(t ; θj)

where θj is a parameter vector.

Ideally, we should focus at determining a parametric form for the cause-specific haz-

ards, but recall from Chapter 2 that specifying one function determines all functions.

We chose to describe each time event by a log logistic distribution since its hazard is

very flexible depending on the value of the shape and scale parameter; the hazard reaches

a peak after some finite period and then slowly declines. The survival, hazard, and cu-

mulative hazard functions have closed form expressions in contrast to other distributions

such as the gamma or log normal densities.

A commonly used parameterization of the log-logistic density is

f(x ; μ, s) =
1

x
× 1

s
×

exp
(

ln(x)−μ
s

)
(
1 + exp

(
ln(x)−μ

s

))2 ≡ eμ/sx
1
s
−1

s(eμ/s + x1/s)2
. (5.6)

The above follows from letting Y ∼ Logisitic(μ, s) i.e, Y is distributed according to a

logistic distribution with location parameter μ and scale s, then letting X = exp(Y ),

and applying the Transformation of Random Variables Theorem. Hence, we assume that

each event time is distributed according to

f(t ; μj, sj) =
1

t
× 1

sj
×

exp
(

ln(t)−μj
sj

)
(
1 + exp

(
ln(t)−μj

sj

))2 (5.7)

where (μj, sj) = θj are the parameter for cause j, It follows that

F (t ; θj) = 1− eμj/sj

eμj/sj + x1/sj
,

S(t ; θj) =
eμj/sj

eμj/sj + x1/sj
,

h(t ; θj) =
x

1
s
−1

sj(e
μj/sj + x1/sj)

, and
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H(t ; θj) = ln(eμj/sj + x1/sj)− μj
sj
.

Parameter estimates for each time event were obtained via the function llogisMLE from

the STAR package in R [32]. Figure 5.4 shows the same histograms from Figure 5.1 with

the log logistic densities overlaid.

Figure 5.4: Density Curves For Time to Event

66



The curve in the top panel, or the overall density, was estimated by

f(t ; μ, s) =
4∑
j=1

f(t ; μj, sj) (5.8)

with f(t ; μj, sj) defined as in 5.7, μ = (μ1, μ2, μ3, μ4), and s = (s1, s2, s3, s4). Note that

this is not the true expression for the overall density. From 5.3, we have

H0·(t ; μ, s) =
∫ t

0

J∑
j=1

h0j(u ; μj, sj) du,

H0·(t ; μ, s) =
J∑
j=1

∫ t

0

h0j(u ; μj, sj) du,

H0·(t ; μ, s) =
J∑
j=1

H0j(t ; μj, sj),

exp[−H0·(t ; μ, s)] = exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
, and

S(t ; μ, s) = exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
.

S(t ; μ, s) is the overall survival curve and it is also equivalent to
J∏
j=1

Sj(t ; μj, sj) where

Sj(t ; μj, sj) are the cause-specific survival curves.

1− S(t ; μ, s) = 1− exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
,

F (t ; μ, s) = 1− exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
,

d

dt
F (t ; μ, s) =

d

dt

(
1− exp

[
−

J∑
j=1

H0j(t ; μj, sj)

])
,

f(t ; μ, s) = exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
× d

dt

J∑
j=1

H0j(t ; μj, sj),

= exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
×

J∑
j=1

d

dt
H0j(t ; μj, sj),

= exp

[
−

J∑
j=1

H0j(t ; μj, sj)

]
×

J∑
j=1

h0j(t ; μj, sj), and

≡ S(t ; μ, s)×
J∑
j=1

h0j(t ; μj, sj). (5.9)

67



Going back to Figure 5.4, we notice that the overall density curve overestimates the

probability densities. In order to stabilize the curve, we weighted each component by the

proportion of each birth outcome. The weighted versions of 5.8 and 5.9 are respectively

given by:

fw(t ; μ, s) =
4∑
j=1

wjf(t ; μj, sj);

fw(t ; μ, s) = exp

[
−

4∑
j=1

wjH0j(t ; μj, sj)

]
×

4∑
j=1

wjh0j(t ; μj, sj).

Figure 5.5 and Figure 5.6 show the fit for the density under equations 5.8 and 5.9,

respectively.

Figure 5.5: Density Curve For Length of Any Birth Outcome given by 5.8
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Figure 5.6: Density Curve For Length of Any Birth Outcome given by 5.9

Clearly, the weighted densities are a more accurate fit. Now that we have the density

of each outcome, we can obtain the cause-specific hazards and the all-cause hazard. The

cause specific hazards are give by

h0j(t ; θj) := h(t ; θj)

and the all-cause hazard is

h0·(t ; μ, s) :=
4∑
j=1

h(t ; θj).

The weighted versions are respectively given by

hw0j(t ; θj) := wjh(t ; θj)

69



hw0·(t ; μ, s) :=
4∑
j=1

wjh(t ; θj).

The next figure shows the all-cause and the cause-specific hazards. Although the weighted

hazard for stillbirths and ectopic pregnancy look flat, they are not; the hazard just spans

a very narrow range of values.

Figure 5.7: Cause-Specific and All-Cause Hazards

The next image shows the weighted and unweighted all-cause hazard superimposed

with the top panel of Figure 5.2.
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Figure 5.8: Parametric (weighted and unweighted) and Non-parametric Hazard

Now that we have the all-cause hazard, we can find the cumulative all-cause hazard:

h0·(t ; μ, s) =
4∑
j=1

wjh(t ; θj),

∫ t

0

h0·(t ; μ, s) =
∫ t

0

4∑
j=1

wjh(t ; θj),

H0·(t ; μ, s) =
4∑
j=1

wj

∫ t

0

h(t ; θj),

H0·(t ; μ, s) =
4∑
j=1

wjH(t ; θj), and

H0·(t ; μ, s) =
4∑
j=1

wj

(
ln(e μj/sj + t1/sj)− μj

sj

)
.
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As we mentioned in the previous section, if we want to account for the effect of covariates,

the all-cause hazard will be

H0·(t ; μ, s, x) =
4∑
j=1

wj

(
ln(e μj/sj + t1/sj)− μj

sj

)
exp(β′jx)

where βj is a vector of coefficient estimates for event j. Hence, we can simulate a design

matrix and a matrix of coefficients where say column j corresponds to event j, and apply

the algorithm described in the previous section to generate a data under a competing

events setting.

5.3 Data Simulation With Time Varying Treatment

In section 5.1 we described how to simulate data with baseline covariates using the

cause specific hazards. In order to simulate time-varying exposure under a SNAFT model

with competing events, we need a simulation approach that captures these three model

features.

We used the simulation algorithm described by Young et al. [41] which captures the

3 points mentioned above. The authors assume that past treatment, A, affects present

confounder(s), V , and allow for the failure time, T , to arise from a general SNAFTM i.e.,

T 0̄ =

∫ T

0

exp{γ(t, Āt, V t, ψ)} dt

where γ(t, Āt, V̄t, ψ) is some function, T 0̄ is the counterfactual failure time under no

treatment history, and ψ is the parameter of interest. The algorithm they propose is

briefly as follows. For each subject:

1. Simulate the counterfactual T 0̄ from a failure time distribution with hazard h0(t).

Then, for each observation time, m, do:
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2. Simulate Vm

3. Simulate Am

4. Given γ(t, Āt, V̄t, ψ), let T be the solution to

T 0̄ =

∫ T

0

exp{γ(t, Āt, V t, ψ)} dt.

Assuming that both Am and Vm are binary, then at time m the authors propose the

following models for step 2 and 3, respectively:

logit(Vm) = β0 + β1T
0̄ + β2Am−1 + β3Vm−1

logit(Am) = α0 + α1Vm + α2Vm−1 + α3Am−1.

The model for Vm must include T 0̄ to guarantee that Vm is a confounder and Am−1 so that

it is affected by prior treatment. On the other hand, the model for Am must exclude T 0̄ to

ensure conditional exchangeability. We adapted their algorithm to the case of competing

risks. First, we had only a time varying treatment with no time-varying confounders.

Second, for the model for Am we assumed a monotonically increasing intercept; hence,

logit(V ) = β0 + β1T
0̄

logit(Am) = α0m + α1V ++α2Am−1.

Notice that so far this simulation approach does not capture the presence of competing

events. To our best knowledge, we could not find a reference that explains how to simulate

data using SNAFT model and competing events. Therefore, we induced an association

between the confounder(s) and type of competing event as follows:

logit(V ) = β0 + β1T
0̄ + β2C

0̄ + β3

(
T 0̄ · C 0̄

)
︸ ︷︷ ︸
interaction
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where C 0̄ is the counterfactual event type under no treatment history. In our situation

we set C 0̄ to be a binary variable: 1 ( live delivery), and 0 (other delivery). T 0̄ and C 0̄

are generated as described in section 5.1.

5.4 Simulation Results

We performed a simulation study of 50 replications with 12,000 observations per

replication. The true value of ψ was set to be −0.03. For each replication, we fitted three

different models as per Chapter 4. More precisely, an unweighted model, a weighted

model using weights defined as in 4.1 which we will refer to as Weights Version 1, and a

weighted model using weights defined as in 4.2 which we will refer to as Weights Version

2.

We used a grid of ψ values to determine ψ̂, so in the end we had 50 estimates of ψ under

the unweighted and weighted models. The histograms shown in Figure 5.9 illustrate the

distribution of those estimates. We notice that in the first two histograms, the estimates

are mostly centered around the truth i.e. −0.03 while in the last histogram they are

grouped around −0.02.

Figure 5.10 shows the estimates of ψ from each simulation (black dots) along with

the 95% confidence bands under the respective model. To compute the 95% confidence

bands for a ψ estimate, we first computed the 95% confidence interval (CI) for H(ψ)

using the robust standard errors (given by the R output) from the model that returned

the best estimate for ψ. We then inverted the 95% CI of H(ψ) to give the 95% CI for

ψ. The dashed line cuts at the true value of ψ i.e., −0.03. Under the unweighted model,

90% (or 45 out of the 50) of the confidence intervals contain the true value of -0.03. On
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the other hand, under the weighted models, 88% (or 44 out of the 50) of the confidence

intervals capture the true value of ψ. Under the model weighted by 4.1, we obtained a

slightly less biased estimate compared to unweighted one, but the coverage probability is

not as good as the unweighted scenario due to the narrower interval bands. We notice a

larger bias when using weights give by 4.2 since we are estimating a different effect than

the first two scenarios.

Figure 5.11 shows the box plots for the estimates along with the mean in each group.

We observe that the under unweighted and Weights Version 1, we were able to

Figure 5.9: ψ Estimates From Each Sample Under The Respective Fitted Model
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recover very closely the true value of ψ while under Weights Version 2, we get a mean

estimate that differs substantially.

(a)

(b) (c)

Figure 5.10: 95% Confidence Intervals for ψ̂ Estimates Under Each Model

Table 5.1 summarizes the mean estimates from the simulations and standard errors,

and the average of the standard errors resulting from the constructed confidence intervals
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seen in Figure 5.10.

Figure 5.11: Box plots For ψ Estimates Under The Respective Fitted Model
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Method Mean(ψ̂) Emp. SE(ψ̂) Ave ŜE(ψ̂)

Unweighted -0.03072 0.01220 0.01070

Weighted 1 -0.03024 0.01102 0.00955

Weighted 2 -0.02372 0.01184 0.01015

Table 5.1: Summary Statistics From Simulation Study for 50 Replications Under Each

of The Three Weighting Methods: Unweighted, Weighted 1, and Weighted 2

5.5 Clustering Code

In the following section, we discuss an algorithm that we created; its purpose was to

cluster the births from a given mother, when there is no unique identifier. We explain

the mechanics of the algorithm, and evaluate its efficiency by comparing the output from

the algorithm to the truth which was known.

With the increasing usage of computerized record linkage in epidemiological studies

[29], and given the nature of our data, we believed that dedicating a section to this

topic will be worth. Many papers have analyzed perinatal data, yet some have not

considered identifying births from the same mother [33] [20] while others have [40] [39]

[16] [21]. Aside from clustering births from the same mother, some authors have focused

at hospitalization records linkage such as neonatal readmission [29], congenital anomalies

[8], or other type of hospitalization records [15].
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5.5.1 Methods

The algorithm was applied to data collected by the 2006-2010 and 2011-2013 National

Survey of Family Growth (NSFG) [13]. A total of 17,352 women answered a question-

naire about their birth history and relevant factors during each birth. Hence, the birth

history of each mother was known. Some factors, were prior and post smoking status

to conception, where was birth given, birth weight, pregnancy outcome, marital status,

mother’s birth date, pregnancy order, and other.

Prior to applying the algorithm, minor data manipulations were performed. First,

for a current birth, we added an extra variable which indicated the date of the previous

child’s birth. Second, two variables were created called “ID” and “uniqueid;” initially,

they take the same values i.e. the observation’s position in the dataset, but later they

will be used to identify identical mothers as per our algorithm. Third, the data was

sorted by mother’s birth date and each date was assigned to a unique number (variable

we called “mom”) e.g. all women born on 01/01/1960 were assigned to “mom=1,” women

born on 01/02/1960 could be assigned to “mom=2” and so on. Lastly, important dates

were transformed from century-month format to yyyy/mm format. We then applied the

algorithm.

We start by splitting the data into two subsets, one where the date of birth of a mother

occurs once (17,330 observations), and another where the date of birth occurs at least

twice (22 observations). The first dataset consisted of all the mothers with a plausible

birth history. It was further split into mini datasets by using the “mom” variable. In

other words, we had smaller datasets where within each dataset we have all women born

on the same date. Each dataset was then sorted by descending order of child’s date
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of birth and pregnancy order. Finally, taking each mini dataset one at the time, the

clustering was done within each set and potential matches were identified by using the

following variables: ID, uniqueid, date of birth, date of previous birth, and pregnancy

order. The procedure is summarized in Figure 5.12.

Data

Multiple mother’s
date of birth

Unique mother’s
date of birth

Split

Sort each dataset

Apply code
to each dataset

Validate

Combine each dataset

Combine

Output data

Figure 5.12: Algorithm

5.5.2 Results

Given we knew the true birth history of each mother, we grouped the observations

by what we called sibling sizes. In other words, observations from women with exactly

two, or three, or four, or in general n children were referred to as sibling size 2, 3, 4, and

n, respectively. Table 5.2 summarizes the number of observations per sibling size once

we removed all the observations where the mother’s date of of birth appears once (22
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observations).

Sibling size Number of Observations

1 3841

2 5768

3 4032

4 1956

5 920

6 366

7 189

8 120

9 63

10 40

11 11

12 24

Total 17,330

Table 5.2: Number of Observations per Sibling Size n

We knew how many observations belong to each sibling size. So after running our

code, their will be a discrepancy between the true and estimated count. Furthermore,

children belonging to a specific sibling size could be associated to another sibling size, so

we illustrate this via Figure 5.13.
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Figure 5.13: Error Allocation Per Sibling Size

An equivalent representation is a heat map which we show in Figure 5.14. Note that

we scaled the numbers between 0 and 1.
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Figure 5.14: Heat Map for Error Allocation Per Sibling Size

To obtain a more accurate measure of efficiency of our algorithm, Table 5.3 shows the

true number of observations per sibling size, how many of them were correctly identified,

and the percentage.
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Sibling Size True Estimated Percentage

1 3841 3730 97.11

2 5768 4414 76.52

3 4032 2835 70.31

4 1956 1300 66.46

5 920 575 62.5

6 366 210 57.38

7 189 98 51.85

8 120 104 86.67

9 63 36 57.14

10 40 40 100

11 11 0 0

12 24 12 0.5

Total 17,330 13,354 77.06

Table 5.3: Number of Correctly Identified Observation Per Sibling Size

5.6 Final Results

Using data from the NSFG, among women with at least two children, we estimated the

causal parameter of taking prenatal care during the second birth on the gestational age

under no weights, and weights defined by 4.1 and 4.2. Figure 5.15 shows the distribution

of the weights under each data type.
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Figure 5.15: Distribution of Weights

We used the mother’s age and outcome during the first birth as confounders. Note,

mothers already had an identifier variable so the birth history of a woman was known.

We then repeated the analysis, but we first applied the algorithm described in section

5.5.1 (Methods) i.e., as if the data was anonymized. Table 5.4 summarizes the estimates
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for ψ along with the 95% confidence intervals, and the grid used in each case.

Data Model ψ̂ (95% CI) Grid used (From, To, By)

Unweighted -0.292 (-0.596, 0.004) (-0.900, 0.900, 0.004)

True Data Weighted 1 0.120 (-0.240, 0.992) (-0.288, 1.040, 0.008)

Weighted 2 0.088 (-0.244, 0.900) (-0.900, 0.900, 0.004)

Unweighted -0.322 (-0.670, 0.050) (-0.670, 0.902, 0.006)

Algorithm Weighted 1 0.264 (-0.088, 1.016) (-0.288,1.040, 0.008)

Weighted 2 0.014 (-0.352, 0.902) (-0.670, 0.902, 0.006)

Table 5.4: Summary of Main Analysis

We see that the unweighted estimate is -0.292 (95% CI: -0.596, 0.004). Thus, a mother

that would have started prenatal care earlier would have had a longer gestational age by

a factor of 1.339 than if she had not. Given the 95% confidence interval, we conclude that

the estimate is not significant. The estimate is incorrect since it was obtained by treating

competing events as random censoring. The survivor average causal effect was estimated

to be 0.088 (95% CI: -0.244, 0.900), and not to be significant. Thus, we conclude that

starting prenatal care earlier does not have a causal effect on the length of the second

delivery. More precisely, regardless whether a mother took prenatal care or not, there is

no evidence of an effect of the exposure among mothers who would have had a live birth

on their second delivery. We arrive at the same conclusion when we estimate the survivor

average causal effect by using the date obtained through the algorithm; survivor average
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causal effect was estimated to be 0.014 (95% CI: -0.352, 0.902).

Under both data formats, since the weights under equation 4.1 were very unstable (see

bottom panel of Figure 5.15), which causes the causal parameter estimate to be unstable

and doubtful, we truncated the weights at the 95% quantile (see Figure 5.16). Thus, the

estimates under row “Weighted 1” shown in Table 5.4 are obtained using the truncated

weights. Under the true data and after applying the algorithm, the estimates were 0.120

(95% CI: -0.240, 0.992) and 0.264 (95% CI: -0.-88, 1.016), respectively. In either case,

the estimate is positive so taking prenatal care earlier does not cause a lengthening of the

gestational age of the second pregnancy. Notice that from the estimated 95% confidence

intervals, both estimates are not significant.

Figure 5.16: Distribution of Truncated Weights Given by Equation 4.1

We see that both weighting methods correct for the presence of competing risks by

attenuating the estimate of the casual effect, as well as widening the confidence intervals

which indicates that we have more uncertainty about the point estimate. This is an

indication that the censoring by competing risks is not random. One possible reason

could be that with more advanced prenatal care, babies that otherwise would not have
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survived, now will, but those babies have shorter gestational ages, either due to pre-

emptive Cesarean sections or earlier induction.
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Chapter 6

Discussion and Conclusions

The goal of this thesis was to analyze an anonymized clustered data using causal

inference in the presence of competing events.

In Chapter 1, we established the question of main interest, namely the causal effect

of prenatal care on the gestational age of live births in the presence adversary deliveries

that was answered using data collected by the The National Survey of Family Growth.

In Chapter 2, we summarized the basic methodology of survival analysis and common

quantities, methods used to analyze a time to event random variable, and briefly discussed

competing events. In Chapter 3, we introduced what causal inference is and the class of

G-methods – Inverse Probability Weighting, Standardization/g-formula, and g-estimation

– that is often used to find the causal effect of certain exposure on some outcome.

In Chapter 4, we reviewed an approach suggested by Naimi and Tchetgen Tchetgen to

estimate a causal parameter in the presence of competing events. Instead of estimating a

standard average causal effect, using g-estimation, we estimate an average causal effect in

a subgroup of the population, in other words, the survivor average causal effect (SACE).
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In Chapter 5, we presented the main results of this thesis. section 5.1 explained an

approach to simulate survival data in the presence of competing events by using the

cause specific hazards. Using an algorithm proposed by G. Young, A. Hernán, Picciotto,

and M. Robins [41], section 5.2 expanded the simulation process by allowing for time

varying treatment and a causal framework using the model in section 4.1. In section 5.4,

we performed a simulation to support the theory established in Chapter 4. In section

5.5, we proposed an algorithm that allows the researcher to find similar observations in a

longitudinal data if the latter is anonymized. Lastly, section 5.6 showed the final results

and the SACE estimates using data from the NSFG.

Among women with at least two children, we found that at the second birth the

unweighted estimate of the causal effect of prenatal care on the gestational age when

using the true data was -0.292. The 95% confidence interval from Table 5.4 suggests that

the estimate is not significant. The estimate is biased since the presence of competing

events was omitted. We then compute the survivor average causal to be 0.088 so that

among women who would have had a live birth in the presence of other type of deliveries,

regardless of their exposure history, taking prenatal care would be harmful. Similar (or

not) results were obtained when the data was assumed to be anonymized; hence, the

algorithm in section 5.5 was applied prior to the analysis.

Aside from these results, we used a new simulation approach (inspired by G. Young,

A. Hernán, Picciotto, and M. Robins) to generate a longitudinal data using a causal

framework in the presence of competing events. Our simulation results agreed with the

theory with an exception when the SACE was estimated (see Figure 5.11). We also

proposed a clustering algorithm, and to our best knowledge, this was not done before.

The estimates for the effect of prenatal care should not be regarded or reported as
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public health factor; they served only to illustrate the methods introduced in this thesis.

To improve the results shown, first more confounders should be considered; we only used

two. Adjusting for the mother’s education level, socioeconomic and smoking status, and

other factors should be considered when performing the g-estimation and computing the

weights. A finer grid should be used ideally one that has increments of 0.01 or even

0.001, not only to obtain a more accurate estimate, but to also obtain a more precise

confidence interval. We tested different grids, and with bigger increments, the 95% CI

would sometimes capture 0 and sometimes not. Notice that we did not perform any

diagnostics or verified if required assumptions hold. For instance, in order to use 4.2 to

estimate the SACE, we need to assume that sequential monotonicity and the concordant

survivorship assumption for time-varying exposures hold [30]. We also assumed that

the exposure has indeed an effect on the outcome so the SACE bears it interpretation.

Unfortunately, if the exposure has no overall effect on the outcome, the SACE can be

misleading [22]. Possible future work will be to repeat section 5.4 and use a latent failure

time approach to simulate the data, reapply the causal models, and compare the results.

Improving the algorithm in section 5.5 by increasing the percentage of correctly matched

observations should also be considered. We also ignored possible data entry errors such as

the pregnancy orders do not follow increments of 1 or the date of a previous birth does not

precede the date of a current birth. Therefore, prior to applying the algorithm, the data

should be cleaned. Note that the data was not collected by us, so we did not have access

to the original patient records. The data was collected by the National Survey of Family

Growth so any validations or modifications done on the data had to be confirmed or

approved by them. Therefore, due to time limitations and inaccessibility to the original

data, we could not afford to clean it. Lastly, we focused only at second deliveries, so
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repeating this analysis by considering the entire birth history of a mother is a question

to be investigated.
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