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Abstract 

Over the last several years advances in the field of mine planning have led to the development 

of cutting-edge simultaneous stochastic optimization frameworks for mining complexes. The 

latest methods consider mining operations as a resource-to-market integrated mineral value that 

transforms raw in-situ materials into sellable products, a mining complex. Simultaneous 

stochastic optimization frameworks make use of a paradigm shift that considers the value of the 

sellable products, as opposed to economic block values, to drive the optimization process and 

capitalize on the synergies between the central, interrelated components of a mining complex. 

These methods maximize the value of mining operations and manage technical risk by 

incorporating uncertainty directly into unified optimization formulations. This thesis studies the 

simultaneous stochastic optimization framework through two real-world case studies, applying 

the methods and assessing their characteristics and limitations.   

The second chapter of this thesis presents an application of a stochastic framework that 

simultaneously optimizes mining, destination and processing decisions for a multi-pit, multi-

processor gold mining complex with challenging geochemical processing constraints. The 

framework accounts for supply and market uncertainty via stochastic orebody and commodity 

price simulations as inputs to a unified optimization model. The case study notably assesses the 

impacts of integrating market uncertainty as input that influences all components of the 

production schedule. Additionally, cut-off grade decisions are determined by the simultaneous 

optimization process, considering material variability and operating constraints while reducing 

the number of a-priori decisions to be made. This approach generates solutions that capitalize 

on the synergies between extraction sequencing, cut-off grade optimization, blending and 

processing while managing and quantifying risk in strategic plans. Which ultimately leads to more 

metal production and higher NPVs than traditional methods.  

The third chapter applies an extension of the generalized simultaneous stochastic optimization 

formulation that considers capital expenditure (CapEx) options as part of the life-of-asset 

planning process.  Enabling the case study to consider environmental issues relating to tailings 

management and model a tailings facility expansion. The application at a multi-element open pit 
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mining complex simultaneously optimizes the extraction sequence, cut-off grades, and 

downstream decisions from two open-pits with a set of stockpiling options, an autoclave and a 

tailings storage facility. The project bottleneck is the tailings facility volume because it stores both 

process tails, and potentially acid-generating waste rock from the mines. Results show that, when 

given the option, the optimizer chooses to make a significant CapEx investment to expand the 

tailings storage facility 25% by volume. This expansion allows for a meaningful expansion of both 

pit limits, 40% by mass, resulting in an extended metal production and revenue generation 

horizon that yields 14% more gold ounces and a 4% improvement in NPV for the mining complex. 

The framework provides decision makers with a realistic evaluation of the investment’s impact 

on the mining complex. 
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Résumé 

Au cours des dernières années, les progrès réalisés dans le domaine de la planification minière 

ont conduit à l’élaboration de modèles d’optimisation stochastique simultanée de pointe pour 

les complexes miniers. Les méthodes les plus récentes considèrent les activités minières comme 

une chaîne de valeur allant des ressources minérales au marché financier, transformant les 

matières brutes in-situ en produits vendables. Les modèles d’optimisation stochastique 

simultanée utilisent ce paradigme qui prend en compte la valeur des produits, par opposition à 

la valeur économique d’un bloc seul, pour piloter le processus d’optimisation et capitaliser sur 

les synergies entre les composants centraux et interdépendants d’un complexe minier. Ces 

méthodes maximisent la valeur des opérations minières et contrôlent les risques techniques en 

incorporant directement l'incertitude dans des formulations d'optimisation unifiées. Cette thèse 

étudie un modèle d'optimisation stochastique simultanée à travers deux études de cas réels, 

appliquant des méthodes de résolution et en évaluant leurs caractéristiques et leurs limites.  

Le deuxième chapitre de cette thèse présente l’application d’un modèle stochastique qui 

optimise simultanément les décisions d’extraction, de destinations et de traitement pour un 

complexe aurifère à plusieurs fosses et à plusieurs processeurs soumis à des contraintes de 

traitement géochimique complexes. Le modèle d'optimisation unifié prend en compte les 

incertitudes de l'offre et du marché au moyen de simulations stochastiques du gisement et du 

prix de la marchandise comme données d'entrée. L’étude de cas évalue notamment les effets de 

l'intégration de l'incertitude du marché sur toutes les composantes du calendrier de production. 

De plus, les décisions concernant le niveau de la teneur limite sont déterminées par le processus 

d'optimisation simultanée, en tenant compte de la variabilité des matériaux et les contraintes de 

fonctionnement, tout en réduisant le nombre de décisions à prendre a-priori. Cette approche 

génère des solutions qui capitalisent sur les synergies entre la séquence d'extraction, 

l’optimisation du niveau de la teneur limite, le mélange et le traitement, tout en gérant et 

quantifiant les risques dans des plans stratégiques. Cela conduit finalement à une plus grande 

production de métal et à un NPV plus élevé par rapport aux résultats obtenus par des méthodes 

traditionnelles.  
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Le troisième chapitre considère une extension du modèle précédent mais qui inclue des options 

de dépenses en capital (CapEx) dans le processus de planification de la durée de vie des actifs. 

Cela permet à l’étude de cas de considérer les problèmes environnementaux liés à la gestion des 

résidus et de modéliser l’agrandissement d’un entrepôt à résidus. L'application à un complexe 

minier à ciel ouvert multi-éléments optimise simultanément la séquence d'extraction, le niveau 

de la teneur limite et le flux de matériau provenant de deux fosses avec un ensemble d'options 

de stockage, un autoclave et une pile de stockage de résidus. Le goulot du projet est le volume 

de l’entrepôt à résidus car il stocke à la fois les résidus et les résidus potentiellement acidogènes 

des mines. Les résultats montrent que, lorsqu'il en a la possibilité, l'optimiseur choisit de faire un 

investissement important en CapEx pour agrandir de 25% en volume le local de stockage des 

résidus miniers. Cet agrandissement permet une expansion significative des deux limites de la 

fosse, 40% en masse, ce qui entraîne une augmentation de la production de métal et un 

allongement de l’horizon de génération de revenus. Cela se traduit par une production de 14% 

d'onces d'or supplémentaires et une amélioration de 4% du NPV du complexe minier. Le système 

fournit aux décideurs une évaluation réaliste de l’impact de l’investissement sur le complexe 

minier.  
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Chapter 1 Introduction and Literature Review 

1.1 Introduction 

Strategic mine planning, also known as life-of-mine or life-of-asset planning, refers to a group of 

decisions that aim to promote an operation’s objective, typically, the maximization of net present 

value (NPV) and by extension shareholder value (King, 2009).  Optimization of strategic mine -

plans is a global problem that encompasses the interrelated components of a mining complex 

and generates life-of-asset production schedules that maximize discounted cash flows and meet 

production targets, subject to a series of operational constraints. A mining complex is defined as 

a resource to market integrated mineral value chain that transforms in-situ material into 

marketable products (Pimentel et al., 2010; Montiel and Dimitrakopoulos, 2015; Goodfellow and 

Dimitrakopoulos, 2016). Historically, this process has been divided into the step-wise 

optimization of local value chain components, such as delineation of ultimate pit limits, grouping 

pushbacks, extraction sequencing, cut-off grades, stockpiling, blending, processing and tailings 

management (Lerchs and Grossmann, 1965; Johnson, 1968; Gershon, 1983; Whittle, 1989; 

Dagdelen, 2001; Hochbaum, 2001; Hustrulid et al., 2013). This division of labour is a product of 

simplifications that were, in some cases, necessary to make strategic mine planning a feasible 

problem for mathematical modelling techniques such as mixed-integer-programming (MIP). 

However, the local optimization of individual value chain components, often with misaligned 

objectives and non-linear transfer functions, leads to suboptimal solutions whose deterioration 

is compounded by increasing complexity in the mineral value chain  (Gershon, 1983; Whittle, 

2007; Goodfellow, 2014; Montiel, 2014; Whittle, 2014). This observation establishes a need for 

strategic planning approaches that can incorporate the optimization of multiple, or ideally all, 

upstream and downstream components of a mining complex simultaneously. 

Mines and mineral deposits are also characterized by a great deal of uncertainty that often 

complicates the economic viability of mining projects. The most detrimental source of technical 

risk in mining projects arises from supply uncertainty which comes from mischaracterizing 

geological orebodies (Baker and Giacomo, 1998; Vallée, 2000; Dimitrakopoulos et al., 2002). 

Conventional mine planning uses estimated orebody models as inputs to the optimization 
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process, which have been shown to misrepresent the distributions of geological attributes such 

as grades and material types (David, 1988). The risks associated with using estimated orebody 

models to represent the in-situ local variability in mineral deposits are well understood in the 

technical literature (Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos et al., 2002). The field of 

geostatistics has developed advanced conditional simulation methods that reproduce geo-spatial 

statistics of available information and can be used to assess and integrate risk into the mine 

planning process via stochastic mine planning (Journel and Huijbregts, 1978; Isaaks and 

Srivastava, 1989; Goovaerts, 1997; Remy et al., 2009; Dimitrakopoulos, 2011; Rossi and Deutsch, 

2014). Recent advancements in the field have proposed simultaneous stochastic mine planning 

frameworks that integrate the related components of mining complexes such as extraction 

sequences, cut-off grades, processing streams, and transportation alternatives into unified 

formulations (Montiel and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016). 

These approaches capitalize on the synergies and non-linear interactions between various 

mechanisms in the value chain to generate high-quality solutions and improve project value. 

This chapter reviews the technical literature related to strategic mine planning and modelling 

uncertainty. Section 1.2 covers deterministic approaches to integrate the optimization of mining 

complexes. Section 1.3 explains of the risk associated with supply and market uncertainty, 

followed by a review of simulation methods for mineral deposits and commodity prices. Section 

1.4 reviews the methods for integrating risk into the mine planning process, initial stochastic 

mine planning formulations and finally the simultaneous optimization of mining complexes. 

Section 1.5 outlines the objectives and Section 1.6 outlines the remainder of this work.   

1.2 Deterministic approaches to optimizing the mineral value chain 

The research and development of ‘global optimization’ approaches began earnestly in the late 

1990s when Urbaez and Dagdelen (1999)  were commissioned by Newmont in the late 1990s to 

develop a simultaneous optimization method for the strategic planning of multiple mines and 

processing plants along the Carlin Trend. The authors propose a mixed-integer-programming 

formulation that optimizes the sequencing of material from multiple mines, stockpiles and 

processing destinations. However, there were issues when scaling the method to handle life-size 

problems. Hoerger et al. (1999) build on the previous work to develop an in-house MIP optimizer 
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that maximizes NPV by modelling the flow of material from mines to stockpiles and processors 

using pushback sequencing and plant start-ups/shut-downs. The tool is used to capitalize on 

existing synergies amongst Newmont’s vast Nevada operations, and exhibits increased 

profitability when applied to 50 material sources, eight stockpiles and 60 processing destinations 

(Hoerger et al., 1999). However, the formulation falls short of actually optimizing extraction 

sequences as it uses a set of fixed schedules to achieve its objective. There is also a loss of 

resolution when sequencing is aggregated to the pushback scale that can lead to issues with 

blending and processing targets. Nonetheless, this work marks an important step in approaching 

long-term mine planning with a more global view. 

Stone et al. (2007) outline BHP’s mine planning optimization tool, known as Blasor, which also 

uses a MIP formulation solved by a commercial solver to generate near-optimal ultimate-pit-

limits and phase designs for multiple open-pit mines. Blasor aggregates spatially connected and 

geologically similar blocks to reduce the size of the model and deliver tractable solutions. It starts 

by optimizing the aggregate extraction sequences and pit limits while accounting for operating 

constraints. The optimal aggregate extraction sequence is used to generate pushback designs 

and then finally a panel extraction sequence, where a panel is the intersection of a pushback and 

a mining bench. The tool is successfully applied at Yandi, BHP’s eleven-pit, blended iron-ore 

mining complex, where it generates feasible, long-term extraction sequences that maximize 

discounted cash flow (DCF). Zuckerberg et al. (2007) outline an extension for Blasor called Blasor-

InPitDumping that incorporates the optimization of waste handling.  The tool re-fills mined-out 

pit areas while respecting repose slope constraints and without sterilizing any ore. Zuckerberg et 

al. (2011) describe a deposit specific life-of-mine optimizer called Bodor, developed for BHP’s 

Boddington Bauxite mine in Western Australia. The tool uses a mixed-integer-linear-

programming formulation to minimize net present costs, meet blending targets, respect a 

complex set of environmental and operating constraints. It does so by optimizing the bauxite-

pod extraction sequence, fleet size and utilization, and crusher and conveyor infrastructure. A 

notable limitation is the assumption of homogeneous material within each bauxite pod. 

Nevertheless, Bodor outperforms a commercially available benchmark, XPAC scheduler (Caccetta 

and Hill, 2003), reducing the net present costs by 5%.  
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Chanda (2007) proposes a network linear programming model to optimize production planning 

from underground and open-pit mines and their associated metallurgical processing facilities. 

The method aims to find a minimum cost of production and distribution for material flowing from 

the mines to markets. While the method is successful in modelling material flow through the 

metallurgical network, the approach uses mine production as an input parameter and does not 

generate or optimize mining schedules.  Whooler (2007) provides an overview of COMET, a 

commercial strategic mine planning tool, that is not a ‘global optimizer’ but aims to 

simultaneously optimize mine production schedules, cut-off grades and mill throughput. COMET 

uses an iterative algorithm known as ‘successive approximation dynamic programming’ to 

optimize successive schedules and operating policies (cut-off grade, process route, throughput, 

and recovery) to maximize the value of the resource, but it does not guarantee convergence to 

the optimal schedule. One of COMET’s main limitations is the method’s suitability for blending 

operations because it cannot model minimum constraints required to maintain specific material 

quality ranges.   

Whittle (2010) outlines the third iteration of Whittle Consulting’s ‘Global Optimizer’ known as 

Prober C, building on their previous work in  (Whittle, 2007). The commercial tool is designed to 

globally optimize complex operations consisting of multiple mines, processing streams and 

blending requirements. Prober aggregates mining blocks into ‘parcels’ of similar grade and 

material type which are then further aggregated into ‘panels’ (typically represent a bench in a 

pushback). The aggregation reduces the model size by an order of magnitude allowing for more 

tractable solutions, however, when sequencing the extraction of a fraction of a panel in a period 

it assumes that the same fraction is extracted from each parcel. This is a reoccurring and notable 

limitation of methods which rely on the aggregation of material significantly larger than the 

selective mining unit referred to as a mining block. In order to ensure panel extraction sequences 

respect slope constraints, Prober only allows the mining of one panel at a time. If a panel 

represents a bench in a pushback, this implies that a mine can only extract one bench at a time, 

limiting the potential of the production schedule. Nonetheless, the software allows for a great 

deal of flexibility in modelling material flow, constraints, costs and revenues through a mining 

complex including non-linear expressions, cut-off-grades and stockpiling. The algorithm is 
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proprietary, but the solution approach is generally defined: after generating a set of nested pit 

shells for each mine using an implementation of Lerchs and Grossmann (1965), Prober randomly 

samples the set of feasible panel extraction sequences, defining the extraction of materials. The 

algorithm uses linear programming to optimize and evaluate the downstream components. It 

iteratively tries to improve this solution, searching for a local maximum, then randomly samples 

another feasible panel extraction sequence and repeats until the top 10 NPV’s are within 0.1% of 

each other. While Prober C is a global optimizer that incorporates many components of the 

mineral value chain into the framework, it is not a unified model that optimizes all components 

simultaneously. The Prober ‘series’ of programs includes several parts, including the nested pit 

implementation of Lerchs and Grossmann (1965), a local search heuristic, and a linear 

programming evaluation routine.  

Epstein et al. (2012) present a method for long-term mine planning for both underground and 

open-pit mines. The MIP model is a general capacitated multicommodity network flow 

formulation that aims to integrate several open-pit and underground mines that share multiple 

processing streams. The method generates a panel extraction sequence as well as a stope 

extraction sequence for block caving. It accounts for stockpiling and blending by assuming 

predefined average grades at relevant destinations in order to keep the model linear. The authors 

outline the application at Codelco’s North Division copper mining complex, where the model 

improves the NPV by 5% over the current benchmark by optimizing each mine individually and a 

further 3% by integrating both mines. The solution approach overcomes the combinatorial 

limitations of real-life instances by solving a tight linear relaxation and then using a rounding 

heuristic to generate an integer solution. Topal and Ramazan (2012) propose a network flow, 

linear programming model for strategic mine planning and apply it to a case study in Western 

Australia with more than 100 open- pits and 13 processing streams. The model optimizes 

extraction capacities, processing capacities, and determines material destination (stockpile or 

processing stream), improving the NPV by more than 10% over a commercial software 

benchmark. To ensure linearity in stockpiling components, the authors use a similar strategy to 

Epstein et al. (2012) by using grade bins at each destination to approximate the grade of exit 

material. While these two approaches (Epstein et al., 2012; Topal and Ramazan, 2012) are not 
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strictly ‘global optimizers’, they make an important effort to link several value chain components 

within the long-term mine planning framework. 

Dagdelen and Traore (2014) take a global approach to determining the optimal transition depth 

from a set of open pit mines to an underground mine. They propose an iterative NPV 

maximization method that utilizes a MILP global production scheduling optimization approach. 

The method is applied at a case study with six open pits and one underground (long-hole open 

stope) mine. The iterative approach uses a combination of commercial and in-house software to: 

generating a series of ultimate pits from the existing mines, fixing a crown pillar design for the 

underground mine at the depth of the given ultimate pit, setting mining and processing rates, 

optimizing the LOM production schedules for the combined operations and performing a DCF 

and NPV analysis. Then the ultimate pit depths are strategically increased, and mining rates are 

adjusted to favour more open-pit mining, the schedules are reoptimized, and NPV is recalculated. 

The process repeats until an inflection point in the NPV is located, determining the optimal 

transition depth. The case study indicates that the approach delivers an economic advantage to 

independent optimization of the open pit and underground mines. 

1.3 Modelling uncertainty 

 The need for modelling uncertainty 

The methods described in Section 1.2 improve on traditional, piece-wise strategic mine planning 

approaches by incorporating more components into the optimization process. However, they all 

share a major limitation by failing to account for uncertainty in critical parameters. Deterministic 

optimizers assume perfect knowledge of input parameters which are inherently uncertainty, such 

as grades, tonnages, prices and costs. They do not understand uncertainty and therefore 

generate ‘optimal’ solutions which do not perform as expected given that they are only optimal 

or optimized under the assumption of a specific set of parameters. The disregard for uncertainty 

is a well-known problem in technical literature, many authors have studied and documented the 

associated risks (Ravenscroft, 1992; Dowd, 1994; Baker and Giacomo, 1998; Benning, 2000; 

Vallée, 2000; Dimitrakopoulos et al., 2002; Godoy, 2003).  
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Geological uncertainty is the largest risk for mining projects. (Baker and Giacomo, 1998); Vallée 

(2000) conducts a sizable survey and notes that over 60% of mines have an average rate of 

production less than 70% of capacity during their first year of operation when delivering results 

is critical to establishing investor confidence. Some shortfall can be attributed to production 

ramp-ups. However, the most significant contributor is a misunderstanding of grades and 

tonnages. Benning (2000) outlines project financing concerns from a banker’s perspective. He 

highlights “without a doubt [orebody risk] is the single most important characteristic of any 

resource project…” and that “The over-valuation of the orebody is the single most common cause 

for failure, or under performance of a mining project.” 

Conventional, deterministic optimizers use estimated orebody models derived by methods such 

as ordinary kriging (David et al., 1977; Journel and Huijbregts, 1978; Goovaerts, 1997). However, 

the field of geostatistics has known for decades that estimation methods do not reproduce 

geospatial characteristics of in-situ material and misrepresent proportions of metal 

concentrations within mineral deposits (David et al., 1977; Journel and Huijbregts, 1978; David, 

1988; Isaaks and Srivastava, 1989; Goovaerts, 1997; Rossi and Deutsch, 2014). This is due to what 

is known as the ‘smoothing effect’ of estimation methods which yields lower variability in 

histograms and variograms compared to available data (Goovaerts, 1997; Dimitrakopoulos, 

1998). Stochastic simulations are used to quantify the impact and then assess the risk of using 

estimated orebody models and deterministic optimizers, highlighting the unlikelihood of meeting 

production and cash flow forecasts (Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos, 1997; 

Dimitrakopoulos et al., 2002). These impacts are exacerbated by the non-linearity of the mining 

transfer function as described by Dimitrakopoulos et al. (2002). The case study highlights that the 

NPV forecasted by conventional, deterministic methods has a 5% chance of realization and the 

median NPV realized by the stochastic simulations is 25% less than forecasted. The conclusion is 

that average-type inputs do not generate average-type outputs, emphasizing the need for 

effective modelling of uncertainty and integration into the strategic mine planning process.  

 Modelling uncertainty in mineral deposits  

The importance of modelling geological uncertainty has been established and can not be 

understated. The inability to accurately estimate the relevant attributes of geological 
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phenomenon demands the use of simulations of reality to characterize the spatial uncertainty of 

mineral deposits (Journel, 1974). Stochastic simulation and random field models can be used to 

generate equi-probable realizations of a mineral deposit that respect the available geospatial 

information, providing a visual and quantitative measure of uncertainty of its attributes of 

interest (Journel and Huijbregts, 1978; David, 1988; Journel and Alabert, 1989; Goovaerts, 1997; 

Godoy, 2003; Remy et al., 2009; Rossi and Deutsch, 2014).  

Perhaps the most prevalent feature of these methods is the sequential simulation approach 

which is driven by the decomposition of a multivariate probability density function (pdf) of 

random fields into products of univariate posterior distributions (Journel and Alabert, 1989; 

Journel, 1994; Goovaerts, 1997). The most widely used and easily implemented method in mining 

applications is the sequential Gaussian simulation approach (Journel, 1994; Goovaerts, 1997). 

Although it is easy to implement the method is computationally expensive and can be time-

consuming when simulating deposits large deposits where the number of nodes is on the order 

of 108. Luo (1998) capitalizes on the Lower Upper (LU) decomposition method (Davis, 1987) to 

generalize the SGS (GSGS) method by simulating neighbourhoods of nodes simultaneously and 

reduces the computational cost from Ο(𝑁4) to Ο(𝑁𝑣𝑚𝑎𝑥
3 ) where N is the number of nodes and 

vmax is the size of a neighborhood. Dimitrakopoulos and Luo (2004) further improve the 

computational efficiency by sharing conditioning neighborhoods among a group of adjacent 

nodes on a grid and using screen effect approximation (SEA) to determine the optimal group and 

neighborhood sizes. 

Though there is a significant improvement in speed from SGS to GSGS, the method remains very 

costly in terms of memory as it is a point-scale approach. This also requires a change of support 

post-processing step to generate realizations on the selective mining unit (block) scale. Godoy 

(2003) provides a step forward from SGS and GSGS with Direct Block Simulation (DBSIM), the 

method leverages the benefits of both methods and improves memory considerations yielding 

an efficient and easy to implement algorithm. The method works as follows; the deposit is 

discretized into groups of nodes, generally by block size. A random path is defined for visiting 

each block and then each node within a block. Groups of nodes are simulated simultaneously 

using LU Decomposition and averaging the values of each node, storing only the average value 
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of each block and discarding the individual values. Each block is simulated sequentially, 

calculating point-point, point-block and block-block covariances. The major improvement in the 

method comes from discarding the individual simulated values of each node, resulting in 

substantial memory improvements. Furthermore, the method does not require any post-

processing step as the output is directly on the block scale. Benndorf and Dimitrakopoulos (2007) 

compare the practical aspects of GSGS and DBSIM in terms of accuracy and efficiency on a 

porphyry copper deposit. The method is extended to simulate multiple correlated variables on 

the block scale by (Boucher and Dimitrakopoulos, 2009) through the use of minimum and 

maximum autocorrelation factors (MAF) (Desbarats and Dimitrakopoulos, 2000). The de-

correlated variables are simulated independently using the DBSIM framework. Once the nodes 

within a block are simulated: (1) they are averaged for conditioning the next block, and (2) back-

transformed to the Gaussian and then the data space to obtain the average block value, these 

two processes occur in parallel. The method, known as DBMAFSIM, and its application are 

described in depth by (Boucher and Dimitrakopoulos, 2009, 2012). 

The methods described above are effective and efficient tools for simulating equally probable 

realizations of real-world mineral deposits that quantify uncertainty and respect univariate and 

bivariate statistics of the available data. However, they are limited to second-order measures of 

spatial continuity because they assume the underlying distribution is Gaussian. This assumption 

is convenient because the distribution can be described by very few parameters, specifically first-

order statistics (mean values) and second-order statistics (covariance and variograms). While 

convenient, it is exceedingly unlikely for natural geological phenomenon to ascribe to this notion, 

they are known to exhibit non-Gaussian characteristics and complex curvilinear spatial structures 

(Guardiano and Srivastava, 1993; Dimitrakopoulos et al., 2010), which can not be sufficiently 

described by second-order statistics. Second-order methods which rely on Gaussian distributions 

assume that multi-point statistics and connectivity are governed by the same algorithm that 

simulates the two-point relationships (Remy et al., 2009). Thus they are maximal entropy 

methods that maximize spatial disorder in higher-order structures and patterns, resulting in a 

‘salt and pepper’ effect amongst extreme values (Journel and Deutsch, 1993) The inability to 

reproduce these complex patterns connect of extreme values in mineral deposits adversely 
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impacts the optimization of processes made up of non-linear transfer functions such as mine 

production schedules.    

A class of simulation methods, known as multi-point statistic (MPS) methods (Guardiano and 

Srivastava, 1993; Strebelle, 2002; Journel, 2003, 2005; Toftaker and Tjelmeland, 2013) try to 

overcome these limitations by using information that is not present in the conditioning data. 

These methods depart from the random field model to the use of a training image (TI). Training 

images are used to describe spatial continuity and act as a geological analogue of the variable of 

interest. Multi-point methods use training images as templates representative of a complex 

spatial arrangement generally relying on some form of Monte-Carlo sampling of values from the 

TI to incorporate additional information about the attributes to be simulated. They measure the 

similarity of a neighbourhood of an unsampled location to that of the TI and assign the unsampled 

location being simulated the value of the node in the TI with the most similar neighbourhood. It 

is important to note that MPS methods do not use any spatial information from available hard 

data, resulting in simulations that are representative of the TI. When the TI and the hard data 

provide conflicting spatial statistics, MPS methods reproduce those of the TI exposing a limitation 

of the methods (Dimitrakopoulos et al., 2010). Moreover, it can be challenging to construct 

appropriate TI’s for in-situ mineral deposits when relying on exploration data such as diamond 

drill-holes, limiting the applicability of MPS methods for greenfield mining projects. 

More recently, simulation methods have been developed that extend spatial models beyond 

second-order statistics, calculating high-order spatial characteristics such as cumulants from 

hard-data to complement information sampled from the TI (Mustapha and Dimitrakopoulos, 

2010, 2011; Minniakhmetov and Dimitrakopoulos, 2017b; Minniakhmetov et al., 2018; Yao et al., 

2018). Cumulants can be understood as an higher-order extension to mean (first order) and 

variance(second order) spatial statistics, composed of moment statistical parameters. Mustapha 

and Dimitrakopoulos (2010) calculate high-order cumulants and use them to describe the 

complex geological structures and connectivity. The calculation of cumulants in a sequential 

framework is computationally expensive, Mustapha and Dimitrakopoulos (2011) improve 

efficiency by using Legendre polynomials to approximate the underlying conditional probability 

distribution (cpdf) instead of explicit calculation of the spatial cumulants. However, Legendre 



11 
 

polynomials are very unstable at higher-orders, Minniakhmetov et al. (2018) propose the use of 

lower order Legendre-like splines to circumvent stability issues.  Yao et al. (2018) significantly 

speeds up and improves the accuracy of High-order simulations by simplifying the approximation 

of the cpdf without needing to explicitly calculate any spatial moments or cumulants, instead 

relying on a unified empirical function based on spatial Legendre moments. These advanced 

simulation methods are incredibly powerful tools for simulating complex geological structures 

and the connectivity of patterns between extreme values. However they are still performed at 

the cumbersome point-scale which requires re-blocking to the SMU scale for use in mine 

scheduling applications. de Carvalho and Dimitrakopoulos (2019) introduces a DBSIM analogue 

to High-order simulations; the method extends Minniakhmetov and Dimitrakopoulos (2017b) to 

direct simulation at the block scale, improving computational efficiency. Although the HOSIM 

frameworks incorporate significant amounts of additional information from hard data, reducing 

the conflicts between TI and data statistics and improving reproduction of high-order statistics in 

simulated realizations, the reliance on TI’s remains a limiting factor in their overall utility. 

Minniakhmetov and Dimitrakopoulos (2017a) present a data-driven approach for categorical 

variables that does not require training images. They are able to obtain the spatial cumulants 

directly from the hard data by making use of boundary conditions and B-spline functions to 

calculate and approximate higher order cumulants. 

  Modelling uncertainty in commodity prices 

It is self-evident that commodity prices and the costs necessary to transform them from in-situ 

resources to sellable products define the economic viability of mining projects. While mining 

companies can generally exert some measures of control over project costs, it is rare for a mining 

company to influence metal prices over a long-term time horizon. This means that mining 

projects are inherently vulnerable to fluctuations in metal prices and that this uncertainty needs 

to be accounted for in strategic planning.  

Metal prices are generally governed by four main forces: supply and demand, regulation by 

cartels or commodity agreements, negotiation between producers and consumers, fixed prices 

by a monopoly or oligopoly (Gocht et al., 2012). Which force or combination of forces governs 

the price formation of a specific commodity depends on the existing marketplace and its 
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characters. However, it is typically accepted that base metal prices are heavily influenced by 

supply and demand, while precious metals tend to be influenced by investment factors such as 

interest rates and inflation (Kernot and West, 1991). It follows that specific commodities require 

different forecasting models.  

Despite the substantial amount of econometric research undertaken and a myriad of price 

forecasting methods available, reliable long-term forecasts remain elusive. Perhaps, for this 

reason, commodity price forecasting with econometric models is not a common practice within 

mining companies (Dooley and Lenihan, 2005). It is much more typical for a mining company to 

run sensitivity analyses with base, upside, and downside case prices than try to integrate metal 

price forecasts. While accurate and reliable forecasts may be futile in a deterministic sense, the 

integration and quantification of uncertainty via sets of stochastic price simulations has the 

potential to improve strategic mine plans. Albor and Dimitrakopoulos (2009) show that due to 

the volume-variance relationship between SMUs and grade in yearly extraction schedules, 15-20 

stochastic simulations of a mineral deposit sufficiently characterize the geological uncertainty in 

long-term mine plans. However, because commodity prices fluctuate in the temporal space, and 

require extrapolation instead of interpolation, it is postulated that significantly more stochastic 

price simulations are necessary (Briggs et al., 2012). Nonetheless, until very recently the 

incorporation of stochastic price simulations into mine planning has not been feasible. Recent 

advances in simultaneous stochastic optimization of mining complexes make research into this 

area a very interesting proposition as there may be a relationship similar to that outlined by 

(Albor and Dimitrakopoulos, 2009). 

Stochastic commodity price forecasts can be categorized as “reduced-form” stochastic models 

such as those presented by Schwartz (1997), or less parsimonious, structural models of price 

dynamics based on econometric theory proposed in Pirrong (2011). Reduced-form models are 

far more ubiquitous in applications due to their simplicity, whereas the structural models are 

very difficult to parametrize. Schwartz (1997) presents three models for use with different 

commodities: a one-factor Geometric Brownian Motion (GBM) model, a model that incorporates 

stochastic interest rates, and a Mean-Reversion (MR) model that accounts for convenience yield. 
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Castillo and Dimitrakopoulos (2014) incorporate copper price and geological uncertainty into 

determining ultimate pit limits. They use an MR model proposed by Deng (2000) that 

incorporates market shocks by random sampling of the Poisson distribution. Bernard et al. (2008) 

test different models including random walk models with generalized autoregressive conditional 

heteroscedasticity (GARCH), Poisson-based jump-diffusion models with GARCH effects and MR 

models that incorporate uncertain equilibrium prices. The models are applied to forecast 

aluminum prices over several time-horizons and find that different components dominate 

depending on the time-scale.  

While it's clear that the success of a forecasting method depends on the commodity and time-

scale of interest. The relevant literature indicates that MR GARCH Poisson diffusion models are 

well suited to base metals and GBR based models work well with precious metals (Kernot and 

West, 1991; Roche, 1995; Labys et al., 1998; Dooley and Lenihan, 2005; Bernard et al., 2008; 

Pirrong, 2011; Gocht et al., 2012). 

1.4 Strategic mine planning under uncertainty  

 Incorporating risk in long-term mine planning 

The previous sections establish both the need for risk-based mine planning processes that can 

consider multiple stochastic orebody simulations to value mining projects by managing and 

minimizing risk appropriately. The first approach proposed by Dimitrakopoulos et al. (2007) uses 

multiple simulated orebody realizations to generate a conventional LOM plan for each simulated 

realization using Whittle software. The authors quantify the maximum-upside and minimum 

downside for each design by carrying out a risk analysis using a set of simulations and select a 

final design that performs best over a set of key project indicators. This is a straight forward 

approach that improves risk quantification and can be implemented using commercial software 

tools. However, optimizing a mine plan for one simulation is not ideal because it does not account 

for the full range of possibilities. The same authors propose another approach, using multiple 

simulations to build a probabilistic orebody model and a MIP formulation to incorporate 

geological uncertainty (Ramazan and Dimitrakopoulos, 2004). The simulations are used to 

encode each block with the probability of specific certain characteristics, such as the desired 
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grade. The concept of ‘geological risk discounting’ is introduced and the MIP is formulated to 

maximize the probability of meeting ore tonnage and grade targets and defers blocks with a 

lower probability of having the desired property to later periods. The formulation also includes 

schedule smoothing terms which penalize blocks that belong to a pre-defined neighbourhood 

and are not extracted in the same period. This helps overcome extraction feasibility issues which 

are typical limitations of other MIP approaches. The method is applied to a nickel-cobalt laterite 

deposit and generates a feasible schedule that shows an improvement in risk management over 

a traditional method by scheduling blocks with higher probabilities of having desirable properties 

earlier in the LOM. Dimitrakopoulos and Grieco (2009) apply a similar probabilistic method to 

incorporate grade uncertainty and quantify risk, optimize size, location and number of stopes at 

an underground copper mine in Kidd Creek, Ontario. The limitation of this and other probabilistic 

methods is that the use of individual block or stope probabilities instead of scenario-based 

approaches that can incorporate the joint-local uncertainty of combinations of blocks.  

Godoy and Dimitrakopoulos (2004) propose the first method that incorporates the joint-local 

uncertainty using a sequential approach and the simulated annealing algorithm (Kirkpatrick et 

al., 1983; Geman and Geman, 1984). The multi-step approach uses a combination of techniques 

to minimize deviation from ore and waste production targets accounting for geological 

uncertainty. The steps involved are: (1) calculate a stable solution domain of ore and waste 

extraction over all simulations, (2) calculate optimal mining rates using a mathematical 

programming formulation, (3) generate an extraction sequence for each simulation using a 

conventional scheduler and the rates from Step 2,  (4) combine the extraction sequences from 

Step 3 to a single production schedule using the simulated annealing algorithm. Simulated 

annealing is a combinatorial optimization metaheuristic that iteratively perturbs an initial 

solution until a stopping criterion is met. In this case, the perturbations involve swapping the 

period of extraction for a set of mining blocks and evaluating the impact on the deviations from 

production targets for each scenario. Perturbations are accepted according to the decision rule 

described by (Metropolis et al., 1953): if they improve the objective function, otherwise, they are 

accepted or rejected based on a probability function and the annealing temperature. The 

intermittent acceptance of unfavourable perturbations helps the solution escape local optima 
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while a cooling factor decreases the annealing temperature, allowing the solution to converge. 

The method is applied to a gold mine in Western Australia, substantially improving the NPV (28%) 

and reducing the likelihood of deviating from targets (9%) compared to a production schedule 

generated by a conventional optimizer. Leite and Dimitrakopoulos (2007)  apply the same 

method to a low-grade disseminated copper deposit, reporting similar results concerning 

improvements in NPV and production targets. Albor and Dimitrakopoulos (2009) study several 

aspects of the method through a case study on the same copper deposit. Namely the method’s 

sensitivity to the initial extraction sequence, number of extraction sequences and number of 

simulated orebody realizations. The authors find that after ten extraction sequences the method 

is not particularly sensitive to the initial sequence or increasing the number of input sequences. 

Similarly, the method generates a stable solution using approximately 15 simulated realizations 

of the orebody. This result is attributed to what is known as the volume-variance relationship or 

support-scale effects. The authors also determine that the deterministic nature of the 

conventional algorithm for defining pit limits (Lerchs and Grossmann, 1965) cannot provide 

optimal pit limits in the presence of uncertainty. They propose an alternative approach using the 

simulated annealing-based method which delineates a 17% larger ultimate pit and improves the 

project NPV. The method provides an improvement in risk-based approaches but has several 

limitations: it does not defer risk to later periods, it does not consider material blending 

constraints, and it only optimizes one component of a mining complex, the extraction sequence. 

 Stochastic optimization of long-term mine production planning 

Stochastic integer programming (Birge and Louveaux, 2011) is a branch of mathematical 

optimization where at least one variable is uncertain, providing a set of suitable tools for strategic 

mine planning to incorporate various forms of uncertainty directly. Two-stage stochastic 

optimization models with recourse are the most prevalent in the technical literature (Ramazan 

and Dimitrakopoulos, 2007; Dimitrakopoulos, 2011; Benndorf and Dimitrakopoulos, 2013; 

Ramazan and Dimitrakopoulos, 2013; Rimélé et al., 2018). Where first stage decisions are taken 

before the revelation of uncertainty and second stage decisions (recourse decisions), which are 

a function of the outcomes of uncertainty, are taken after. These can also be referred to as 

scenario-independent (first stage) and scenario-dependent (recourse) decisions. Within the mine 
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planning context, these models allow for a structure that maximizes (or minimizes) an objective 

while managing technical risk by minimizing deviations from related targets. Risk management is 

emphasized with the use of geological risk discounting applied to recourse variables which helps 

to defer risk to later periods as explained in (Dimitrakopoulos and Ramazan, 2004). 

The first application of stochastic integer programming (SIP) to the mining context was proposed 

by Ramazan and Dimitrakopoulos (2007). The formulation aims to maximize the project NPV and 

minimize deviation from ore, waste, and metal production targets, where the first stage variables 

are binary extraction variables and the second stage variables are used to measure deviations in 

each scenario. The method is applied on a two-dimensional test data set with a 3-year LOM and 

solved with commercial linear optimization software. Ramazan and Dimitrakopoulos (2013) 

extend the model to include stockpiling and apply a geological risk discount rate to improve 

technical risk management. The authors test the method on gold deposit, however, to overcome 

computational limitations they split problem over two-time horizons, first optimizing years 1-4, 

and then considering years 4-6. Their results indicate a 10% improvement in NPV and substantial 

reductions in ore target deviations compared with a conventional method. Benndorf and 

Dimitrakopoulos (2013) propose a similar two-stage SIP model but expand the approach to 

incorporate blending constraints that allow for ore quality targets in a multi-element deposit and 

also implement schedule smoothing constraints similar to (Ramazan and Dimitrakopoulos, 2004). 

They apply the method at the Yandi Central 1 iron ore deposit in Western Australia using 20 

simulated orebody models that account for joint-local uncertainty in iron, silica, alumina, 

phosphorus, and loss on ignition. The group of elements are influential iron ore properties and 

have a direct impact on performance and beneficiation. Thus a model which can effectively 

manage and quantify risk relating to their blending targets adds significant project value. The 

case study experiments with the size of deviation penalties and their effects on schedule 

dispersion and blending targets, finding that medium penalties ($10 per unit deviation, as 

opposed to $100 – high, and $1 – low) produced the best results. Rimélé et al. (2018) proposes a 

similar two-stage SIP and expands the model to integrate in-pit waste dumping and applies it at 

Canadian multi-element iron ore mine. The successful incorporation of in-pit waste disposal 

improves the environmental performance of the mine, reducing the ex-pit footprint and 
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associated rehabilitation costs while managing risks in blending and ore production targets. The 

model is too complex to solve simply with commercial optimization software. The authors 

overcome this by implementing a sliding time window heuristic (Dimitrakopoulos and Ramazan, 

2008; Benndorf and Dimitrakopoulos, 2013), iteratively relaxing the binary variables in all but a 

few consecutive periods, solving and then fixing the solution before repeating over the next ‘time 

window.’  

Boland et al. (2008) take a different approach to the above, proposing multi-stage SIP without 

recourse that considers geological uncertainty. The formulation uses posterior-stage variables to 

consider processing block aggregates and allows both mining and processing decisions to change 

as uncertainty is revealed. Processing decisions can change in real-time, while mining decisions 

are subject to a one-year lag in reacting to new information. The most notable difference in the 

method from other stochastic approaches is that it provides a set of plans for each scenario 

according to information revealed through advanced extraction. This is achieved by using 

aggregates with significantly different grade bins and many non-anticaptivity constraints. The 

former allows for distinction between different scenarios, and the latter ensures that decisions 

are identical in all scenarios until a point in time that they can be distinguished. The authors test 

the method against a deterministic equivalent base-case and find that the proposed approach 

increases the NPV by 3%. The method is an interesting theoretical approach but has several 

practical limitations. The method aggregates large groups of mining blocks to deal with 

computational challenges. However, it assumes uniform extraction of aggregates which can lead 

to misleading processing outputs and it allows partial block extraction which can lead to slope 

constraint violations. Further, the branching approach that provides a production schedule for 

each distinguishable scenario assumes that one of the input scenarios will represent reality; this 

is extremely unlikely. In other words, instead of providing one risk resilient output (a LOM 

schedule) that performs well over a set of scenarios that characterize uncertainty, it provides 

multiple outputs that each overfit one of the inputs.   

Approaches built on two-stage SIP with recourse models have significantly advanced strategic 

mine planning practices. Dimitrakopoulos (2011)  reviews the methods, advancements and 

provides additional examples to those listed above. Specifically, the major benefits include the 
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ability to simultaneously maximize NPV while minimizing deviations from production targets, the 

explicit integration of joint-local uncertainty via simulated orebody realizations, risk management 

and deferment using geological risk discounting. Nonetheless, there are still limitations to 

overcome: life-size SIP models with multiple orebody realizations become massive combinatorial 

optimization problems which are difficult to solve with commercial optimizers, linearizing non-

linear functions such as stockpiles and recovery functions to keep models linear and convex is a 

piecemeal solution that can mislead results, economic block values continue to drive the 

optimization process limiting the accurate characterization of downstream processes such as 

blending.  

Metaheuristic solution approaches help overcome issues relating to problem size and the need 

for linear convexity, Section 1.4.3 reviews advancements in simultaneous optimization of mining 

complexes which addresses limitations relating to downstream processes. Metaheuristic 

algorithms provide effective strategies to search for solutions where deterministic solution 

approaches are ineffective, either because the problem is too difficult (NP-hard) or the solution 

space is too large. They typically combine randomization and local search techniques, 

characterized by diversification and intensification components. A balanced approach ensures 

optimality is achievable by a wide exploration of the solution space and eventual convergence 

on the best solution (Yang, 2010). Although they do not provide certificates of optimality, they 

often find high-quality solutions in a reasonable amount of time. Godoy and Dimitrakopoulos 

(2004) introduce the simulated annealing algorithm to stochastic mine planning, the trajectory-

based algorithm adapts very well to mine production scheduling problems and is used in several 

other studies (Leite and Dimitrakopoulos, 2007; Albor and Dimitrakopoulos, 2009; Goodfellow 

and Dimitrakopoulos, 2013; Montiel and Dimitrakopoulos, 2013). Lamghari and Dimitrakopoulos 

(2012) propose a diversified Tabu search approach to solve a two-stage SIP formulation for an 

open pit mine scheduling problem with grade uncertainty. The algorithm generates solutions 

within 4% of optimality in a fraction of the time taken by commercial optimization software. The 

authors improve their results over a variety of test cases by applying a Variable Neighborhood 

Descent metaheuristic to mine production scheduling (Lamghari et al., 2014). 
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 Simultaneous stochastic optimization of mining complexes  

The two-stage stochastic integer program (SIP) with fixed recourse (Birge and Louveaux, 2011) 

addresses limitations associated with conventional mine planning by providing a framework that 

explicitly accounts of geological uncertainty and manages related technical risk. The adoption of 

metaheuristic solution approaches meaningfully improves its utility to large-scale applications. 

Nonetheless, it has been established that the strategic and long-term planning of both operating 

and new mining projects requires a global approach. One that simultaneously optimizes the 

interconnected components of mining complexes to capitalize on synergies and maximize project 

value. The evolution of stochastic mine planning yields simultaneous stochastic optimization of 

mining complexes (Goodfellow and Dimitrakopoulos, 2015; Montiel and Dimitrakopoulos, 2015; 

Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 2016; Goodfellow and Dimitrakopoulos, 

2017; Montiel and Dimitrakopoulos, 2017; Zhang and Dimitrakopoulos, 2017; Montiel and 

Dimitrakopoulos, 2018; Del Castillo and Dimitakopoulos, 2019 ). The state-of-the-art methods 

address these requirements and overcome many limitations described in the previous sections. 

By abandoning the practice of characterizing optimization processes via the economic value of 

blocks, the latest methods connect components and effectively model non-linear interactions 

across mineral value chains. They allow the value of products generated by the mining complex 

to dictate the optimization process, considering simulated attributes at the block scale which 

flow through intermediate destinations and transform into marketable products. This paradigm 

shift is essential because the concept of a mining block along with its economic value is lost after 

extraction.  There are numerous post-extraction material interactions (blending, stockpiling, 

processing, transportation) which affect the value of final products. Simultaneous stochastic 

optimization frameworks explicitly account for various sources of uncertainty and optimize 

upstream (extraction sequences, destination policies) and downstream (processing, tailings, 

transportation options) in unified formulations.  

Montiel and Dimitrakopoulos (2013) present an initial approach; they model but do not 

simultaneously optimize a whole mining complex. The method, applied to the Escondida Norte 

copper mining complex in Chile, considers simulated grades and material types and optimizes 

part of the mining complex, namely, the extraction sequence while modelling the flow of material 
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through multiple processes. A simulated annealing-based solution approach generates a high-

quality solution that compares favourably with a deterministic benchmark. The principal 

objective is to minimize deviations from specific production and ore quality targets; the solution 

reduces deviations to 5% compared with 20% in the benchmark. The formulation does not 

explicitly maximize NPV in the objective function, and it still results in a 4% improvement 

compared to the benchmark. However, there are misclassification issues with the block-based 

destination policy because certain processing facilities can only accept specific materials, and as 

the material type of a block can vary from one simulation to another. Another limitation is that 

the case study does not include stockpiling options or other downstream components 

Montiel and Dimitrakopoulos (2015, 2017, 2018) and Montiel et al. (2016) overcome the 

limitations of the previous model. They propose a framework that optimizes the extraction 

sequence, destination policy, processing stream decisions as well as operating modes and 

transportation options (Montiel and Dimitrakopoulos, 2015) and supply from an underground 

operation (Montiel et al., 2016). The new formulation explicitly maximizes project NPV and 

minimizes deviations from production targets in the objective function. The simulated annealing-

based solution approach iteratively perturbs three decision neighbourhoods: blocks, operating 

alternatives and transportation systems. The block-based perturbations define the extraction 

and destination decisions for each block. The destination policy evaluates the overall profitability 

for each block at each destination considering all scenarios, and then the optimizer chooses the 

destination as a knapsack problem (Dantzig, 2003). As the optimizer perturbs the solution, it 

sends the most profitable blocks to their preferred destination, it considers the non-linear 

interactions with other blocks at each destination and attempts to choose a solution that yields 

the most overall benefit in the objective function. Operating-based perturbations randomly 

modify operating modes at processing facilities for a given period; these operating alternatives 

can impact processing costs, recoveries and capacities due to changes in the grinding circuit. 

Transportation system perturbations randomly modify the proportions of output material 

transported from each processing facility a period through each system (e.g. truck or pipeline) 

and aim to minimize transportation costs and deviation penalties. The algorithm performs a user-

defined number of perturbations at leach level, accepting or rejecting changes based on the 
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(Metropolis et al., 1953) decision rule, lowering the temperature and then cycling through the 

decision neighbourhoods. The method improves adherence to blending targets, increases the 

NPV and accounts for existing infrastructure, such as pit-access ramps, at one of the world’s most 

complicated mining complexes, Newmont’s Twin Creeks in Nevada (Montiel and 

Dimitrakopoulos, 2018). The formulation uses a scenario independent, block-based variable to 

define both extraction and destination decisions which helps reduce the number of integer 

variables in the problem. However, it can result in material misclassification and does not account 

for the operational flexibility of mine operators to react to short-term grade control information.  

Goodfellow and Dimitrakopoulos (2015, 2016, 2017) propose a generalized, unified simultaneous 

stochastic optimization framework that provides the basis for the research discussed herein. The 

formulation is built around a novel two-stage SIP where first-stage decisions optimize extraction 

sequences and destination policies, and second-stage recourse decisions optimize processing 

streams. The solution approach comprises a combination of high-level metaheuristics, allowing 

the framework to tackle large, non-linear problems and include non-additive geo-metallurgical 

interactions. The framework uses three decision variables to optimize a mining complex: binary 

extraction sequence variables to define whether a block is extracted in a certain period, binary 

destination policy variables to define whether a sub-grouping of material is sent to a destination 

in a certain period, continuous processing stream variables to define the proportion of material 

sent from one destination to another. Note that the first-stage variables (extraction sequence 

and destination policy) are scenario-independent while the processing stream variables are 

adaptive to uncertainty. The model uses attributes to characterize relevant information such as 

metal quantities or costs, which can quantify uncertainty through joint scenarios (simulation or 

sampling for various sources of uncertainty) for each attribute. For modelling purposes, 

attributes are classified as either primary – essential additive variables of interest which can flow 

through the mining complex such as mass, or quantities of elements; or hereditary – variables 

which are not necessarily passed from one location to another but are relevant to the 

optimization model and may be expressed as functions of primary attributes, such as grades, 

processing costs, revenue from sales. These notions allow for flexible modelling complex (non-) 

linear interactions across a variety of value chain configurations. The authors propose a new 
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destination policy using scenario-independent variables that avoids misclassification under 

uncertainty. They extend the robust cut-off grade optimization proposed by Menabde et al. 

(2007) to handle multivariate cases. The destination policy defines where material clusters (sub-

groupings based on multivariate distributions of specified attributes) are sent in each period. This 

approach does not require a destination decision for individual blocks, reducing the number of 

integer variables. Blocks are classified into clusters using the k-means++ algorithm (Arthur and 

Vassilvitskii, 2007) which requires a pre-defined number of cluster centroids. The algorithm 

defines block-membership to a cluster based on the Euclidean distance between a block’s 

simulated attributes and the closest centroid, meaning a block can belong to different clusters in 

different scenarios. A major advantage of this destination policy is the focus on multivariate 

attribute distributions, allowing for consideration of deleterious elements, blending and 

stockpiling and their impacts on the mining complex. However, a drawback is that the number of 

clusters is user-defined and must be determined empirically. The metaheuristic solution 

approach combines a modified adaptive multi-neighbourhood simulated annealing-based 

algorithm with a Particle Swarm Optimization (PSO) (Kennedy, 1995) that is better suited for 

dealing with continuous variables such as those in the processing stream. The authors apply the 

method to several case studies (Goodfellow and Dimitrakopoulos, 2016, 2017), a multi-pit, multi-

process copper-gold mining complex and a multi-pit, multi-process nickel-laterite operation. Case 

studies show substantial improvement (>20%) in NPV while satisfying production targets over 

industry-standard benchmarks. Goodfellow and Dimitrakopoulos (2015) include capital 

expenditure (CapEx) options into the modelling framework, showcasing the method’s flexibility 

in modelling concepts such as truck and shovel hours to integrate load and haul fleet purchases 

into the simultaneous optimization process.  

Farmer (2017) exploits the generalized nature of the framework to incorporate mining and 

processing capacity expansion options through the capital expenditure term introduced by 

(Goodfellow and Dimitrakopoulos, 2015). The adaptation also includes complex revenue 

calculations such as royalties, metal streams and offtake agreements for a copper-gold mining 

complex. The author integrates market uncertainty via commodity price simulations in a multi-

step process, first, optimizing all components of the mining complex under geological 
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uncertainty, then freezing the first stage decisions and re-optimizing the recourse variables under 

joint market and geological uncertainty scenarios. Kumar and Dimitrakopoulos (2017) utilize the 

framework to incorporate non-additive, geo-metallurgical variables at the Escondida mining 

complex. These attributes are difficult to model in traditional linear formulations, but they have 

a significant influence on throughput, recovery and processing costs, and their incorporation is 

important to realistic modelling of mining complexes. 

Zhang and Dimitrakopoulos (2017) propose a decomposition method that optimizes production 

schedules for multiple mines and downstream material flow while accounting for both geological 

and market uncertainty. The dynamic-material-value-based method optimizes upstream under 

geological uncertainty and downstream components under market uncertainty. The upstream 

and downstream optimization is separate, but each component iteratively interacts with the 

other, providing information feedback until a solution converges. The method utilizes shadow 

prices in the processing stream to show that ignoring market uncertainty leads to over-

investment in strategic assets and underutilized capacities, leading to optimistic long-term 

profitability forecasts. Zhang and Dimitrakopoulos (2018) propose a two-stage non-linear SIP to 

integrate forward sales contracts into the optimization framework under market and supply 

uncertainty. The method highlights the importance of considering dynamic recovery rates when 

a hedging contract is included.  

Del Castillo and Dimitakopoulos (2019 ) extend the mathematical formulation of a simultaneous 

stochastic optimization framework (Goodfellow and Dimitrakopoulos, 2016, 2017) to include a 

dynamic optimization of strategic planning options such as CapEx alternatives and different 

operating modes. The multi-stage model evaluates the profitability of feasible strategic mine 

planning options by generating parallel solutions that consider the flexibility of an operation to 

adapt to new information over the life on a mining complex. A branching mechanism uses a 

probabilistic decision tree to consider if new investment decisions are profitable over a threshold 

number of geological scenarios. Thus it maintains design flexibility, resilience to uncertainty and 

avoids overfitting issues. The formulation employs non-anticaptivity constraints to ensure that 

decisions are equal in all scenarios until branching is allowed. An application shows that the 
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flexible method improves the NPV of a large mining complex by 10% over the method proposed 

by (Goodfellow and Dimitrakopoulos, 2016, 2017). 

1.5 Goal and Objectives 

The goal of the research presented in this thesis is to advance the use of simultaneous stochastic 

optimization frameworks in strategic mine planning of mining complexes by incorporating more 

realistic modelling aspects and various sources of uncertainty present in real-world mining 

complexes. The following objectives are set to meet this goal:  

• Review the technical literature related to strategic mine planning, deterministic and 

stochastic approaches for the optimization of mines and mining complexes. Review the 

methods developed to simulate mineral deposits and characterize the technical risk 

associated with geological uncertainty, and review the methods used for commodity price 

forecasting. 

• Incorporate joint market and supply uncertainty directly into the optimization of 

extraction, destination and processing stream decisions and analyze its effects on 

production schedules and forecasts. Further, assess the efficacy of the cut-off grade 

optimization proposed by Goodfellow and Dimitrakopoulos (2016) through application at 

a case study with challenging blending constraints. 

• Incorporate tailings management under environmental constraints as part of the 

simultaneous stochastic optimization framework with CapEx investment options to 

evaluate the potential for life-of-asset growth. 

• Summarize the main contributions and conclusions of the conducted research and 

provide suggestions for future study.  

1.6 Thesis Outline  

The remainder of this dissertation is organized as follows: 

• Chapter 2 – Presents an application at a large open-pit mining complex with strict 

blending constraints that integrates joint uncertainty scenarios and analyzes destination 

policy and cut-off grade optimization. 
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• Chapter 3 – Presents an application that incorporates a CapEx investment option that 

helps manage environmental constraints which bottleneck the multi-element mining 

complex. 

• Chapter 4 – Summarizes the contributions of each paper and overall conclusions, followed 

by suggestions for future work. 
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Chapter 2 Simultaneous Stochastic Optimization of an 

Open Pit Gold Mining Complex with Supply and Market 

Uncertainty 

2.1 Introduction 

A mining complex is a resource to market mineral value chain that transforms in-situ materials 

into valuable products such as concentrate, pellets, bars of precious metals, and others (Montiel 

and Dimitrakopoulos, 2015). The main components of a mineral value chain are generally: mines, 

stockpiles, waste dumps, mineral processing facilities, and logistics hubs (ports and railways for 

example) (Pimentel et al., 2010). Traditionally, components of the mineral value chain are 

optimized independently, leading to suboptimal solutions which deteriorate substantially as the 

complexity of the chain increases (Goodfellow and Dimitrakopoulos, 2016, 2017). Simultaneous 

optimization of a mining complex is an integrated approach where all the components of the 

chain are optimized simultaneously, leveraging existing synergies towards maximizing the value 

of an operation (Pimentel et al., 2010; Whittle, 2010).  

Development of frameworks that incorporate multiple components of the mineral value chain 

into the optimization process began in the mid-1990s. Newmont Mining Corporation recognized 

the opportunity to leverage synergies present in their expansive Nevada operations. This led to 

the development of an in-house optimizer based on a mixed integer programming (MIP) 

formulation to maximize discounted cash flows by simultaneously optimizing material movement 

from a set of open pit and underground mines to multiple destinations (Hoerger et al., 1999). 

BHP Billiton followed by developing the Blasor mine planning software, which simultaneously 

optimizes pushback sequences from multiple pits (Stone et al., 2007). The authors present an 

application at BHP’s Yandi mining complex, an eleven pit, blended iron ore joint venture where 

Blasor is used to maximize the net present value (NPV) while ensuring market tonnage and 

material quality targets were respected. Blasor can provide tractable solutions by aggregating 

spatially connected blocks with similar attributes then sequentially generating near-optimal 

extraction sequences, ultimate pit, phase designs and finally panel (intersections of benches and 
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phases) extraction sequences (Stone et al., 2007). Zuckerberg et al. (2007) extend the framework 

to Blasor-InPitDumping, which incorporates optimized waste handling by utilizing sterile mined-

out areas. Whittle (2010) describes a global optimizer, designed to incorporate mining, 

processing and blending components into the optimization process.  

While the methods described above improve past approaches, they all have one or more of the 

following major limitations: aggregation, which misrepresents mining selectivity, stepwise local 

optimization of value chain components, and failure to account for the effects of uncertainty 

present in critical parameters. The main sources of risk in a mining project arise from technical, 

financial and environmental uncertainty (Dimitrakopoulos et al., 2002; Rendu, 2017). 

Furthermore, it has been observed that uncertainty in grades and material types is a significant 

source of technical risk, referred to as supply uncertainty (also geological). The impact of supply 

uncertainty on a mining project’s ability to meet production forecasts is now a well-studied issue 

(Ravenscroft, 1992; Dowd, 1994). Conventional mine planning methods are deterministic, 

meaning they use a single estimated orebody model as an input to the optimization process; 

Hustrulid et al. (2013) provide a comprehensive review of conventional open pit mine planning 

practices. Estimated models are incorrectly assumed to be accurate representations of grades 

and materials in the ground. Instead, they provide overly smoothed representations of attributes 

of interest (Goovaerts, 1997). Uncertainty in mineral deposits is incorporated into the 

optimization process by stochastic optimization frameworks that use sets of equi-probable 

stochastic simulations (Goovaerts, 1997; Minniakhmetov and Dimitrakopoulos, 2017b; 

Minniakhmetov et al., 2018) as inputs to stochastic integer programming (SIP) formulations 

(Ramazan and Dimitrakopoulos, 2007; Birge and Louveaux, 2011; Ramazan and Dimitrakopoulos, 

2013). Dimitrakopoulos (2011) provides a review of applications of stochastic optimization in 

mine planning, noting significant improvements in NPV and metal recovered while managing and 

reducing technical risk.  

Despite the significant influence that market uncertainty, specifically, fluctuations in commodity 

prices, has on project risk, conventional planning practices assume constant and certain prices. 

Attempts to overcome this simplification by sensitivity testing different price scenarios a-

posteriori are limited in that decisions such as destination policies (cut-off grades), life-of-mine 
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(LOM), capacities and others are fixed. Past efforts at incorporating the joint supply and market 

uncertainty into the planning process allow some of these decisions to be made while accounting 

for the uncertainty. Examples of such efforts include assessing the impacts on phase and ultimate 

pit designs as well as determining cut-off grade strategies, mining rates and capacities (Asad and 

Dimitrakopoulos, 2013a; Asad and Dimitrakopoulos, 2013b; Castillo and Dimitrakopoulos, 2014; 

Kizilkale and Dimitrakopoulos, 2014; Farmer, 2017). Cut-off grade optimization is one of the most 

important elements in any mining operation, defining the supply of ore and waste material to 

various destinations throughout the mineral value chain based on economic and technical 

parameters. It characterizes an operation’s destination policy decisions (where to send what 

material and when). Asad et al. (2016) provide a thorough review of cut-off grade optimization 

(deterministic and stochastic) methods developed for open-pit mining operations. Cut-off grade 

optimization is conventionally based on Lane’s theory on the economic definition of ore (Lane, 

1988; Rendu, 2014) which predefines cut-off grades to be used for life-of-mine production 

scheduling optimization. This is a limited approach based on the consideration of grade-tonnage 

distributions and capacities while attempting to maximize net present value. However, cut-off 

grades determined before production scheduling do not account for fluctuations in material 

availability and quality from one mining period to another and are required because the 

technologies used to date for production scheduling optimization are unable to generate the 

optimal cut-off grades as an output of the truly optimal life-of-mine production schedule. This 

has been the case for several decades and is a limitation addressed by the new digital 

technologies and simultaneous optimization of cut-off grade policies in conjunction with 

extraction sequencing and processing stream decisions, proposed in this work and along the 

resource-to-market mineral value chain. 

Recent developments have extended the two-stage SIP models reviewed by Dimitrakopoulos 

(2011) to the simultaneous stochastic optimization of mining complexes (Montiel and 

Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 2016; Goodfellow 

and Dimitrakopoulos, 2017; Montiel and Dimitrakopoulos, 2017, 2018). These state-of-the-art 

frameworks integrate the optimization of extraction sequences, destination policies, processing 

streams, operating modes and transportation alternatives for multiple sources and processors 
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simultaneously in a single mathematical formulation. The contributions above move away from 

linear optimization models to incorporate more realistic stockpiling decisions and non-linear 

interactions in processing streams. These are enabled by a significant departure from 

conventional mine optimization practices, such as the economic value of blocks as a driving force 

in optimization. The practice of valuing material by calculating the economic value of mining 

blocks pre-extraction, assumes that the concept of independent blocks remains intact as the 

material is transformed throughout the value chain and is not able to consider changes in the 

value of material due to blending or other downstream non-linear interactions (Goodfellow and 

Dimitrakopoulos, 2016). Thus, simultaneous stochastic optimization shifts the focus from 

optimization with the economic value of blocks to the economic value of products sold at the end 

of the mineral value chain, removing the need for a-priori cut-off grade optimization. A major 

benefit of Goodfellow and Dimitrakopoulos (2016) is that the model is highly generalized, 

allowing for extensions to a large variety of applications. However, it does not incorporate 

specific transportation alternatives or operating modes as Montiel and Dimitrakopoulos (2015) 

or supply from an underground mine as Montiel et al. (2016). Farmer (2017) extends the 

generalized model to include capital expenditure (CapEx) and mining capacity decisions in an 

application with complex revenue streams such as offtake and streaming agreements. It also aims 

to integrate market uncertainty but does so in a two-step process that fixes the extraction 

sequence and optimizes the downstream variables. Del Castillo and Dimitakopoulos (2019 ) use 

a dynamic approach to integrate CapEx decisions on the mid-term time horizon. Kumar and 

Dimitrakopoulos (2019) present another application of Goodfellow and Dimitrakopoulos (2016) 

with complex geo-metallurgical decisions incorporated into the destination policy at a large 

copper-gold mining complex.  

This work presents an application of the simultaneous stochastic optimization framework from 

Goodfellow and Dimitrakopoulos (2016) at an intricate Nevada type gold mining complex with 

strict geochemical blending constraints. Notably, this work explores the effects of joint market 

and supply uncertainty scenarios by using commodity price simulations as inputs to the 

optimization model, allowing the simultaneous stochastic optimizer to integrate market 

uncertainty into all three decision variables. Additionally, this study examines the effectiveness 
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of the simultaneous stochastic optimization framework’s cut-off grade decisions by considering 

the value of downstream products, non-linear blending interactions and the extraction sequence. 

This replaces the need for a-priori cut-off grade optimization using conventional methods and 

addresses limitations related to determining cut-off grades before production scheduling. Due to 

the blending requirements in the case study, the proposed approach has the additional benefit 

of reducing the level of operational complexity in the mining complex by significantly cutting 

down on the number of material types and stockpiles the operation needs to manage. 

The next sections provide a brief description of the optimization model, constraints, and solution 

approach. Then, a detailed description of the case study, presentation of the results and analysis. 

Conclusions and future work follow.  

2.2 Method 

This section describes the adaptation of Goodfellow and Dimitrakopoulos (2016)’s simultaneous 

stochastic optimization model to the specific application at a large gold mining complex. The 

general model is configured to accommodate strict geochemical blending constraints related to 

autoclaving, mineability constraints and market uncertainty.  

 Definitions and notation 

The material in mining complex, 𝒞, is extracted from a set of sources (mines), 𝑚 ∈ 𝕄. Mines are 

discretized into selective mining units (SMU) known as mining blocks, 𝒷 ∈ 𝔹𝑚, where 𝔹𝑚 

denotes the set of mining blocks for a specific mine. The mining cost, 𝑀𝐶𝒷,𝑡, represents the cost 

of mining any block, 𝒷 ∈ 𝔹𝑚, in period 𝑡 ∈ 𝕋. Each block has a set of simulated properties, 𝑎 ∈

𝔸, mineralogical (grade) and geochemical (deleterious elements). 𝕊, denotes a set of scenarios 

that quantify the joint uncertainty in grade, geochemical properties, and commodity prices 

(when applicable). Material is only available for extraction if all predecessors, 𝕆(𝒷), of a block  𝒷 

are extracted. After extraction, material can be sent from locations 𝑖 ∈ 𝒞 to several destinations 

such as stockpiles (𝒮), processors (𝒫), or waste dumps (𝒟). The cost of transporting material 

property 𝑎 from a location 𝑖 in period 𝑡 is denoted 𝑇𝐶𝑖,𝑎,𝑡. The amount of a material property 𝑎 

at location 𝑖 in period 𝑡 and scenario 𝑠 is 𝑣𝑎,𝑖,𝑡,𝑠. Material properties that can be sent from one 

destination to another and accumulated, such as ounces, belong to the set 𝑝 ∈ ℙ, while 
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properties that are calculated such as ounces recovered, or element concentrations belong to 

the set ℎ ∈ ℍ. Production targets associated with capacities belong to the set ℙ𝑐 and those 

associated with geochemistry belong to ℍ𝑔.  𝑃𝐶𝑖,𝑎,𝑡 represents the cost of processing material 

property 𝑎 at location 𝑖 in period 𝑡 (including refinery charges). 𝑃ℎ,𝑡,𝑠 Represents the unit selling 

price of material property ℎ in period 𝑡 and scenario 𝑠. Deviations from a production target 

associated with property 𝑎 at location 𝑖 in period 𝑡 and scenario 𝑠 are measured by 𝑑𝑖,𝑎,𝑡,𝑠
± , while 

𝑐𝑖,𝑎,𝑡
±  represents the unit surplus and shortage costs associated with their respective deviations. 

Mineability targets, enabled by a set of scheduling constraints, ensure the production schedule 

is feasible in practice. Blocks that lie within a horizontal ‘window’ around block 𝒷  belong to the 

set 𝕎𝒷, blocks that lie vertically above a block 𝒷 are denoted 𝑣 ∈ 𝕍𝒷 . 𝑑𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ Represents the 

number of blocks in the window 𝕎𝒷 that are mined in a different period from block 𝒷 while 

𝑑𝒷,𝑡
𝑠𝑖𝑛𝑘  represents the number of blocks in the set 𝕍𝒷that are mined in the same period as block 

𝒷. The penalty costs used to enforce the mineability targets on a per block basis in each period 

are denoted by 𝑐𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ and 𝑐𝒷,𝑡

𝑠𝑖𝑛𝑘. 

 Decision variables 

There are three types of decision variables that the simultaneous stochastic optimizer can modify 

to impact the mining complex. Extraction sequence decisions (𝑥𝒷,𝑡 ∈ {0,1}) define whether a 

block 𝒷 ∈ 𝔹𝑚, is extracted from mine 𝑚 in period 𝑡. Destination policy decisions (𝑧𝑔,𝑗,𝑡 ∈ {0,1}) 

define whether material of grade g is sent to destination 𝑗 in period 𝑡. Processing stream 

decisions (𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1]) define what proportion of material is sent from location 𝑖 ∈  𝑆 ∪ 𝒫 to 

destination 𝑗 in period 𝑡 and scenario 𝑠. The destination policy decisions are derived from the 

robust cut-off grade policies from (Menabde et al., 2018), where a grade distribution is 

discretized into bins and the optimizer determines the minimum grade bin from which all bins 

above are sent to a processor. This policy preserves short-term operational flexibility because a 

block may fall into a different grade bin from one simulation to another, however, the destination 

decisions governing a group of bins remain scenario independent and delivers outputs that 

include optimized cut-off grades. 
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 Objective function 

The objective function in (Eq. 1) maximizes the value of the products sold from the mining 

complex and manages risk by minimizing deviations from targets in the value chain.  

 

max
1

‖𝕊‖
{∑ ∑ {∑ ∑ 𝑃ℎ,𝑡,𝑠 ∙

ℎ∈ℍ𝑖∈𝒫

𝑣ℎ,𝑖,𝑡,𝑠 − ∑ ∑  (𝑃𝐶𝑖,𝑝,𝑡 + 𝑇𝐶𝑖,𝑝,𝑡) ∙ 𝑣𝑝,𝑖,𝑡,𝑠

𝑝∈ℙ𝑖∈𝒫𝑡∈𝕋𝑠∈𝕊

 

− ∑ ∑ (𝑐𝑖,𝑝,𝑡
+ ∙ 𝑑𝑖,𝑝,𝑡,𝑠

+ + 𝑐𝑖,𝑝,𝑡
− ∙ 𝑑𝑖,𝑝,𝑡,𝑠

− )

𝑝∈ℙ𝑐𝑖∈𝒫

− ∑ ∑ (𝑐𝑖,ℎ,𝑡
+ ∙ 𝑑𝑖,ℎ,𝑡,𝑠

+ + 𝑐𝑖,ℎ,𝑡
− ∙ 𝑑𝑖,ℎ,𝑡,𝑠

− )

ℎ∈ℍ𝑔𝑖∈𝒫

 

− ∑ ∑ (𝑐𝑖,𝑝,𝑡
+ ∙ 𝑑𝑖,𝑝,𝑡,𝑠

+ + 𝑐𝑖,𝑝,𝑡
− ∙ 𝑑𝑖,𝑝,𝑡,𝑠

− )

𝑝∈ℙ𝑐𝑚∈𝕄

}} − ∑ ∑ ∑ (𝑀𝐶𝒷,𝑡 ∙ 𝑥𝒷,𝑡 + 𝑐𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ∙ 𝑑𝒷,𝑡

𝑠𝑚𝑜𝑜𝑡ℎ)

𝒷∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋

 

                 − ∑ ∑ ∑ ∑ 𝑐𝒷,𝑡
𝑠𝑖𝑛𝑘 ∙ 𝑑𝒷,𝑡,𝑣

𝑠𝑖𝑛𝑘

𝑣∈𝕍𝒷𝒷∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋

 

 

(1) 

 

Part I from Eq. 1 represents the discounted cash flow derived from products sold. Part II 

represents the processing costs at the various processors and the transportation costs from each 

location to the destination. Part’s III, IV, and V represent the cost of deviating from processing 

capacity, geochemical, and mining capacity targets, respectively. Part VI represents the mining 

cost and the cost of deviating from the schedule smoothness constraints. Part VII represents the 

cost of deviating from schedule sink rate constraints. All penalty costs for deviating from targets 

are time varied using a geological discount rate, meaning 𝑐𝑖,𝑎,𝑡
+ =  

𝑐𝑖,𝑎,𝑡
+

(1+𝑟)𝑡 , where 𝑟 is the geological 

risk discount rate, similar to an economic discount rate used in net present value calculations 

(Dimitrakopoulos and Ramazan, 2004). Penalties are set by a user-based empirical approach that 

generally relies on the order of magnitude for unit cost violations. For a more discussions on the 

Part VII 

Part I Part II 

Part III Part IV 

Part V Part VI 
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determination and impacts of penalty costs the reader is directed to (Dimitrakopoulos and 

Ramazan, 2008; Benndorf and Dimitrakopoulos, 2013; Ramazan and Dimitrakopoulos, 2013). 

 Constraints 

The transformation of sulphide ore material into gold products in a mining complex is a 

complicated process that can require pressure oxidation as a pre-treatment to conventional gold 

recovery circuits. This treatment requires the addition of an autoclave to the process flowsheet. 

An autoclave is a horizontal cylindrical pressure vessel with multiple compartments that require 

specific physical and metallurgical controls to ensure effective operation (Cole and Rust, 2002). 

Blending ore material to maintain a feed that respects the autoclaves optimal operating targets 

is critical to its performance. This requires a set of constraints to measure deviations from the 

geochemical targets of the autoclave feed which are then penalized in Part IV of the objective 

function in Eq. 1. The concentrations of sulphide sulphur and carbonate in the feed are carefully 

monitored for the autoclaving treatment as well as the total amount of acid added. Acidic slurry 

is often added to help achieve the necessary pH requirements by reducing the carbonate content 

of the feed. The recovery of gold from the sulphide ore material is dependent on the organic 

carbon concentrations. Consequently, the organic carbon content is also carefully monitored, 

and a target concentration is included in the objective function. Eq. 2 and 3 calculate the 

deviations from upper and lower targets on feed geochemistry which are penalized in the 

objective function.  

𝑣ℎ,𝑖,𝑡,𝑠 −  𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡 ∀ ℎ ∈ ℍ, 𝑖 ∈ ℙ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (2) 

𝑣ℎ,𝑖,𝑡,𝑠 +  𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡 ∀ ℎ ∈ ℍ, 𝑖 ∈ ℙ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (3) 

Equations 4 and 5 define the scheduling constraints (smoothing and sink rate) enabling the 

optimizer to penalize deviations from mineability targets in parts VI and VII in the objective 

function. 

|𝕎𝒷|  ∙ 𝑥𝒷,𝑡 − ∑ 𝑥𝑤,𝑡 ≤

𝑤∈𝕎𝒷

𝑑𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ∀ 𝑚 ∈ 𝕄, 𝒷 ∈ 𝔹𝑚, 𝑡 ∈ 𝕋 

(4) 

𝑥𝒷,𝑡 + 𝑥𝑣,𝑡 −  𝑑𝒷,𝑡,𝑣
𝑠𝑖𝑛𝑘 ≤ 1 ∀ 𝑚 ∈ 𝕄, 𝒷 ∈ 𝔹𝑚, 𝑣 ∈ 𝕍𝒷 ⊆ 𝕆𝑏 , 𝑡 ∈ 𝕋 (5) 
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Recall that the smoothing window 𝕎𝒷 is centered around 𝒷 ∈ 𝔹𝑚 in the same units as block 

dimensions and that 𝑑𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ is used to count the number of blocks scheduled in different periods 

from 𝒷. If a block is mined in period 𝑡 and it is a member of the smoothing window for its adjacent 

blocks, who are not also scheduled for extraction, then a penalty is incurred in Part VI of the 

objective function. The sink rate constraints allow the optimizer to control the number of blocks 

mining can advance vertically in any period. Recall that the set 𝕍𝒷  contains the block that overlie 

𝒷, this set can contain at most one block, 𝑣, where if block 𝒷 = (𝒷𝑖, 𝒷𝑗 , 𝒷𝑘) then block 𝑣 =

(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘+𝑆𝑅(𝒷)+1) and 𝑆𝑅(𝒷) is the sink rate of 𝒷. If 𝑥𝒷,𝑡 + 𝑥𝑣,𝑡 = 1, meaning both blocks 𝒷 and 

𝑣 are mined in the same period, then 𝑑𝒷,𝑡,𝑣
𝑠𝑖𝑛𝑘 = 1, otherwise 𝑑𝒷,𝑡,𝑣

𝑠𝑖𝑛𝑘 = 0, satisfying Eq. 5. It follows 

that the sum of all 𝑑𝒷,𝑡,𝑣
𝑠𝑖𝑛𝑘  variables represents the number of sink rate constraint violations in the 

extraction sequence and incurs a penalty Part VII of the objective function. The model is also 

subject to:  capacity, reserve, slope, destination policy, and processing stream flow constraints 

detailed in Goodfellow and Dimitrakopoulos (2016). 

 Solution method 

Stochastic modelling allows for integrating various sources of uncertainty into the optimization 

process; however, this also considerably increases the size and complexity of what is already a 

challenging combinatorial optimization problem.  Solution approaches that involve commercial 

MIP solvers are often not feasible.  Metaheuristics provide a practical alternative for solving these 

models, and many existing metaheuristics have been successfully adapted to the stochastic 

optimization of mines and mining complexes (Lamghari and Dimitrakopoulos, 2016). The solution 

approach uses a combination of metaheuristic algorithms to solve the model and is described by 

(Goodfellow and Dimitrakopoulos, 2016, 2017).  

2.3 Case Study 

This section describes and examines the application of the method described herein at a large 

Nevada style gold mining complex. The results are reported as a probabilistic risk analysis on 

several key performance indicators (KPIs). In Section 2.4 the cut-off grade optimization 

component of the simultaneous stochastic optimizer is compared to a base case cut-off grade 
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policy provided by industry partners. In Section 2.5 market uncertainty is integrated into the 

model and the results are analyzed. 

 Overview of the mining complex 

The material in the mining complex is extracted from two open-pit mines and delivered from a 

set of nearby operations (referred to as external sources). The material can flow through the 

mineral value chain to three processing destinations (an autoclave, oxide mill, and oxide leach 

pad), a waste dump, and a set of stockpiles for each material type. Figure 1 shows the 

components of the mining complex. Supply uncertainty is incorporated by using a set of 

multivariate geostatistical simulations provided for each mine. A set of simulations is also 

generated to capture uncertainty in the delivery of material from external sources. The model 

comprises several million integer variables and several thousand scenarios for evaluation and 

optimization. 

Pits A and B share a mining fleet which defines an upper bound on their joint mining capacity in 

each period. The simultaneous optimizer defines the allocation of capacity between the two pits 

in conjunction with other factors such as material supply and needs of related processing streams 

in order to maximize project value and minimize deviations from operating targets. However, the 

mining capacity is not a project bottleneck, meaning it does not materially impact processes such 

as cut-off grade optimization and as such is not included in the discussion of results.  High-grade 

oxide ore extracted from Pit B is processed at the oxide mill, while a heap leach facility processes 

lower grade oxide ore material. An autoclave processes sulphide ore extracted from Pit A and 

delivered from external sources. A non-linear recovery function models gold recovery at each of 

the processing destinations. At the oxide mill and heap leach pad, the recovery function is 

dependent only on gold grade in the feed. Recovery at the autoclave is governed by gold grade 

and organic carbon (OC) content. The autoclave has a strict set of operating requirements for 

feed geochemistry to effectively treat the sulphide ore material as mentioned in Section 2.2.4. 

The operating efficacy is dependent on several physical and chemical controls to treat the feed 

for the next phase of metallurgical gold recovery. The geochemical blending and acid 

consumption necessitated by the process are of particular interest to this study, especially the 

ratio of sulphide sulphur (SS) to carbonate (CO3) concentrations in the feed. 
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Figure 1: Diagram of the mineral value chain 

The sulphide ore material from Pit A is classified into eleven geochemically distinct material types 

a-priori based on SS, CO3, and OC concentrations. Each material type has its stockpile. The 

optimizer determines the gold cut-off grade boundaries for each material type, deciding which 

grade bins are sent to the stockpiles, the autoclave or the waste dump. The material from Pit B 

is not concerned with the deleterious elements because they do not affect the metallurgical 

recovery process that governs oxide ore at the mill or the leach pad. The optimizer determines 

the gold cut-off grade boundaries for sending material to the waste dump, stockpile, leach pad, 

or mill. Cut-off grade decisions are optimized simultaneously to maximize the net present value 

considering the extraction sequence, downstream processing and blending decisions and related 

constraints. This configuration of the mining complex is referred to hereafter as the 

‘simultaneous case.’ 

The simultaneous case is compared to the ‘base case’ configuration of the mining complex. The 

base case is also a simultaneous stochastic optimization; however, it is constrained by the 

destination policy and material type configuration provided by the mining complex’s 

conventional cut-off grade optimization procedure. Each of eleven sulphide material types from 

Pit A is further divided into a maximum of five subgroupings based on gold grades, resulting in 

forty-five sulphide ore material classifications. Eight of these material types are sent to the 
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autoclave directly, while thirty-seven are sent to distinct stockpiles for future reclamation. Oxide 

material from Pit B is classified as either waste (<0.0088 Au Oz/ton), low-grade (0.0088 – 0.022 

Au Oz/ton), or high-grade (>0.022 Au Oz/Ton). Low-grade material is sent to the leach pad, high-

grade material is sent to the oxide mill or stockpiled on an ad-hoc basis.  

2.4 Results and comparisons 

Figure 2 (a) – (d) presents the risk profiles for discounted cash flow, and ounces of gold recovered, 

the base case is in blue, and the simultaneous case is in black. The relevant values have been 

scaled for confidentiality. Figure 2 (a) shows that over the ten years there is a negligible difference 

in NPV between the two cases (0.16% difference in p50 values). Furthermore, the risk profiles 

are particularly tight over the first five periods, projecting confident forecasts. Figure 2 (b) shows 

that both cases deliver stable discounted cash flows (200+ million USD) throughout the life of the 

operation. Cash flows are comparable in most periods except for period three, where the 

simultaneous case forecast is significantly higher. Figure 2 (c) and (d) depict gold ounces 

recovered; they closely mirror the cash flow forecasts. Both optimized plans forecast stable 

ounce profiles throughout the life of the operation, never delivering less than 300 thousand 

ounces a year.  
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Figure 2: Base case (blue) and simultaneous case (black) cash flow and gold recovered risk 

profiles 

Figure 3 (a) – (c) provides the risk profiles throughput at each processing facility in the mining 

complex. The base case forecast under delivers autoclave throughput in period 1. Otherwise, 

both cases respect the capacity targets through the life of the operation. The oxides provide more 

contrasting differences between the two cases. The flexibility afforded to the optimizer in the 

simultaneous case enables it to adjust the destination policy decisions to deliver a consistent 

throughput to the oxide mill. The base case struggles to respect the oxide mill’s capacity targets 

in periods 1, 3-8. It is important to note that the oxide mill capacity violations would negatively 

impact the base case NPV forecast, meaning the real difference is more pronounced than the 
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0.16% shown in Fig. 2 (a). Examining the oxide cut off grades and the leach pad throughput 

provides some insight into these results. 

Figure 3: Base case (blue) and simultaneous case (black) throughput forecasts at each 

processing facility 

Figure 4 presents the oxide cut-off grades and Fig. 5 presents the feed grades to both oxide 

processing facilities. Recall, the base case uses predetermined cut-off grade decisions. The 

simultaneous case optimizes the cut-off grades in conjunction with the extraction sequence and 

processing stream decisions. Figure 4 highlights the adjustments made to keep the mill well fed. 

Cut-offs are raised when there are large quantities of high-grade material available, such as in 

period 3, and lowered when high-grade materials are scarce such as in period 1. Figure 5 (b) 

confirms these observations as the trend in feed grade to the oxide mill mirrors the cut-off grade 

adjustments. It is important to note that just because there is high grade being mined in period 
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3 of the simultaneous case, it does not mean that the same high-grade material is being mined 

in the base case, the extraction sequences are not the same. Figure 6 shows that they are very 

different; in fact, not even the final pit limits are the same. The simultaneous case mines 3% more 

material than the base case over the ten years.  

 

Figure 4: Base case and simultaneous case oxide material cut-off grades 

Figure 5: Base case (blue) and simultaneous case (black) oxide mill and leach pad feed grades 
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Figure 6: Pit B extraction sequence cross-section: simultaneous case (left) base case (right) 

Figure 7 (a) – (e) presents the risk profiles for the blending constraints. Recall the autoclave 

requires certain levels of acidity in the feed slurry for efficient operation. The most critical 

blending target is the SS:CO3 ratio, shown in Fig. 7 (b). When the SS or CO3 levels fall too low or 

too high, acid is added to the feed slurry to control the pH. However, acid consumption capacity 

is strictly limited by regulation. It is evident that other than the SS targets, both cases satisfy the 

blending constraints in most periods. Although the SS levels do not consistently respect the 

blending targets, the violations are on the order of fractions of a percentile. The potentially 

negative impacts are mitigated by the very well controlled SS:CO3 ratio. 

In summary, allowing the simultaneous stochastic optimizer to determine cut-off grade decisions 

in conjunction with extraction sequence and processing decisions yields several key 

improvements. The simultaneously optimized cut off decisions perturb the extraction sequence 

to deliver stable material flows that respect the capacities of the processing facilities. The pre-

determined cut-off grades in the base case configuration yield production forecasts that struggle 

to respect processing capacity targets. While the NPVs of both configurations appear similar, the 

base case forecasts may be misleading due to these violations. Furthermore, the configuration 

of the simultaneous case significantly reduces the number of necessary stockpiles on site. Thus, 

reducing the operational complexity in managing the mineral value chain. 
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Figure 7: Base case (blue) and simultaneous case (black) blending results 
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2.5 Incorporating Market Uncertainty  

Incorporating market uncertainty through the use of commodity price simulations as inputs to 

the simultaneous stochastic optimization framework generates a long-term plan that manages 

and quantifies risk derived from volatile spot markets. Gold prices are simulated using an 

established model for precious metals, geometric Brownian motion with Poisson jump diffusion 

(Schwartz, 1997), described by Eq. 6, where St is the metal price at time t, W is a Weiner process, 

β is the size of Poisson jump P. Average annual price drift, η, is the trend component often used 

in price models where the price is correlated with inflation, σ2, is average annual price volatility. 

Figure 8 presents the simulated gold price scenarios used in this case study, the mean of the 

simulate prices and the constant price used in the comparative case. It is typically accepted that 

the number of simulations necessary to accurately quantify metal price uncertainty can be on 

the order of hundreds (Farmer, 2017). Such a number makes the problem intractable as the 

number of variables is already in the order of 106, and the number of joint uncertainty scenarios 

is in the thousands. However, the sensitivity of long-term production scheduling for mineral value 

chains to the number of price scenarios has not been sufficiently explored. For example, Albor 

and Dimitrakopoulos (2009) show that due to support-scale effects (also known as a volume-

variance relationship), fifteen to twenty stochastic orebody simulations are enough to quantify 

geological uncertainty in long-term mine production scheduling applications. This implies that 

using more than fifteen simulations as inputs does not change the solution. This application 

should be considered as a proof-of-concept that it is possible to consider market uncertainty in 

the simultaneous stochastic optimization framework and that has material differences to the 

outputs of the process. Further studies must determine the number of commodity price 

simulations necessary to generate stable solutions and provide accurate quantifications of 

uncertainty in this context. 

𝑆𝑡 = 𝑆𝑡−1 × (𝜂 × 𝑡 − 𝜎2 ×
𝑡

2
+ 𝑊 + 𝛽 × 𝑃) 

(6) 
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Figure 8: Gold price simulations (grey), mean of simulated prices (red dotted), constant gold 

price (black dotted) 

 Risk analysis considering market uncertainty 

This section examines the risk profiles of the case study considering joint market and supply 

uncertainty scenarios. The simultaneous case from Section 2.4, which uses the constant gold 

price (shown in Figure 8) is included and referred to as the ‘supply uncertainty’ case to provide a 

comparison. Figures 9 (a) – (d) present the discounted cash flow and gold recovered risk profiles. 

The effect of the joint uncertainty scenarios becomes quite evident in the p10 and p90 values 

after period 4 in Figs. 9 (a) and (b). In all periods, the cash flows are less certain than the case that 

only considers supply uncertainty. However, through the first four periods the optimizer 

forecasts cash flows with a reasonable amount of confidence. Examining the gold price scenarios 

in Fig. 8 provides a reasonable explanation; the fluctuations in gold price simulations begin to 

vary significantly more as time progresses beyond period 4. However, the forecasts beyond 

period 4 provide a quantification of risk in projected cash flows. Despite the fluctuating price 

scenarios in the later periods, the forecasts remain positive throughout the life of the operation, 

with the p10 value never dropping below 100 million USD and the p50 never dropping below 200 

million USD. The joint uncertainty case delivers stable ounce profiles (Fig. 9 (d)) throughout the 

life of the operation while remaining profitable. In fact, despite the significant exposure to the 
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downside in gold prices, the ounce profile remains comparable to the case that does not consider 

market uncertainty.  

Figure 9: Supply uncertainty (black) and joint uncertainty (green) cash flow and gold recovered 

risk profiles 

Figure 10 (a) – (c) provide the risk profiles for throughput at each processing facility; it is evident 

that optimizer provides a long-term plan that respects the capacity targets of each processing 

facility. In Fig. 10 (b) and (c) period five highlights one of the benefits of incorporating market 

uncertainty into this process. First, note that several price scenarios enjoy an upswing in period 

5. The optimizer can take advantage of this upswing and mine more high-grade material, but it 

does not violate the maximum capacity of the oxide mill. Instead, it utilizes the leach pad to 
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process significantly more tons. This leads to higher cash flows and a larger number of ounces 

recovered in period 5. Note the relative increase in cut-off grade in period five shown in Fig. 11.  

Figure 10: Supply uncertainty (black) and joint uncertainty (green) throughput risk profiles at each processor 
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Figure 11: Figure 5: Supply and joint uncertainty oxide material cut off grades 

Figure 12 presents the same cross-section of both pit B extraction sequences; the difference in 

material scheduled for extraction in period 5 is visually clear. Recall, that the extraction sequence 

is scenario independent. This provides some insight into the differences in material scheduled for 

extraction in periods 9 and 10 when the downside exposure to price uncertainty becomes more 

pronounced. Beyond the visual differences in the extraction sequences, the incorporation of joint 

uncertainty scenarios also leads to differences in the physical boundaries of the open pit mines. 

The total extracted material mass in the joint uncertainty case is approximately 119 million tons. 

In the supply uncertainty case, the extracted mass is approximately 174 million tons. Despite the 

32% difference in total extracted material, there is only an 8% difference in the p50 values for 

total recovered ounces. However, this does not translate to an improvement in p50 for the net 

present value; the joint uncertainty case has a 3% higher p50 net present value. This highlights 

the ability of the simultaneous stochastic optimizer to capitalize on extra production in elevated 

price scenarios while managing the impact of risk throughout the life of the operation.  
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Figure 12: Pit B extraction sequence cross-section. Joint uncertainty (left) and supply 

uncertainty (right) 

2.6 Conclusions 

This paper presents an application of the simultaneous stochastic optimization framework at a 

multi-pit, multi-processor Nevada-type gold mining complex and its strategic mine planning; 

including extraction sequences, destination policies, and processing stream decisions. The 

contributions are highlighted by the case study at the mining complex composed of two open pit 

mines, three external sources of ore delivery, three processing facilities and a series of distinct 

stockpiles. The mining complex is subject to numerous operating constraints related to capacities 

and geochemical blending requirements. The application documents the effectiveness of the 

framework’s cut-off grade optimization component by comparing results with a base case model 

that uses cut-off grades determined a-priori by conventional methods derived from Lane’s theory 

(Lane, 1988). It also explores the incorporation of market uncertainty into the simultaneous 

optimization of a mining complex and effects on all its major aspects.  The results show that the 

proposed approach improves the operation’s ability to respect operating capacity targets by 

optimizing cut-off grades in conjunction with material availability and processing requirements. 

The approach also allows for a reduction in operating complexity as the simultaneous case utilizes 

only twelve stockpiles compared to thirty-eight in the base case. 



49 
 

Additionally, the integration of commodity price fluctuations and optimization of the mining 

complex under joint market and supply uncertainty underscores the flexibility of the framework. 

The results demonstrate the optimizer’s ability to adapt the schedule to mine and process more 

material during periods of elevated price environments while being more conservative when the 

downside exposure to prices becomes more pronounced. This highlights the ability of 

simultaneous stochastic optimizers to generate long-term schedules that manage exposure to 

commodity price fluctuations and provide accurate quantifications of risk to an operation’s 

strategic decision makers.   

As research into more efficient solution approaches develops, the framework will be able to 

consider larger numbers of joint uncertainty scenarios in reasonable amounts of time. Such 

advancements would allow for more in-depth sensitivity analyses on the number of commodity 

price simulations necessary to generate stable and resilient outputs. Future extensions of the 

method should include the ability to optimize mining capacity and processing rates. Another area 

of particular interest is the extension of the destination policy to consider multiple attributes into 

cut-off grade decisions.  
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Chapter 3 An Application of Simultaneous Stochastic 

Optimization of an Open-Pit Mining Complex with 

Tailings Management 

3.1 Introduction 

Simultaneous stochastic optimization of mining complexes takes an integrated value chain 

approach to the production scheduling of mining operations. Where a mining complex can 

include multiple pits or underground mines, stockpiles, processors, waste dumps and tailings 

facilities that transform in-situ material into economic products across the chain (Pimentel et al., 

2010; Montiel and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016). Traditional 

optimization of mining projects typically features step-wise approaches that independently 

optimize various components of the mineral value chain, leading to suboptimal solutions which 

deteriorate as the complexity of the chain increases (Gershon, 1983; Goodfellow and 

Dimitrakopoulos, 2016, 2017). Simultaneous optimization capitalizes on the synergies inherent 

to the interdependent components of a mining complex by optimizing all of them simultaneously 

to maximize the net present value of a project (Pimentel et al., 2010; Whittle, 2010). This can 

include capital expenditure (CapEx) investments related to various components in the mining 

complex which have significant impacts on critical factors such as capacities, operating costs and 

life of mine. As such, it is necessary to integrate the simultaneous optimization of these 

components into the evaluation of major strategic decisions to maximize the profitability of a 

mining venture and manage the risk related to its operation (Montiel and Dimitrakopoulos, 2015; 

Goodfellow and Dimitrakopoulos, 2016). Previous work on integrating various components of the 

mineral value chain into the strategic mine planning and optimization framework includes 

(Hoerger et al., 1999; Chanda, 2007; Stone et al., 2007; Whooler, 2007; Zuckerberg et al., 2007; 

Whittle, 2010; Zuckerberg et al., 2011) 

The methods listed above represent incremental improvements to past approaches. However, 

they share at least one of several following significant limitations. Aggregation of selective mining 

units (SMUs) to allow for more tractable solutions which leads to issues with mining selectivity 
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that misrepresent the solution, stepwise and independent optimization of several value chain 

components, linearization of non-linear transfer functions and or the use of fixed production 

schedules. Most importantly, the approaches above do not account for uncertainty in critical 

project parameters such as material supply and variability. They are all deterministic optimization 

frameworks which use a single, estimated representation of a mineral deposit as an input 

(Hustrulid et al., 2013). Estimated orebody models provide overly smooth distribution of grades, 

misrepresenting local variability inherent to geological phenomena (Goovaerts, 1997; Journel, 

2005) which ultimately lead to misleading operating forecasts that do not accurately reflect 

technical risk to mining operations (Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos et al., 

2002).  

The value of incorporating supply uncertainty into mine design and production scheduling has 

been established through many studies on stochastic mine planning (Godoy, 2003; Menabde et 

al., 2007; Ramazan and Dimitrakopoulos, 2007; Dimitrakopoulos and Ramazan, 2008; 

Dimitrakopoulos, 2011; Asad and Dimitrakopoulos, 2013b; Benndorf and Dimitrakopoulos, 2013; 

Ramazan and Dimitrakopoulos, 2013; Groeneveld et al., 2018). Although initial research in 

stochastic mine planning focused on single open-pit mines recent advances have shifted the 

focus to mining complexes and address many of the limitations of previous methods. The 

considerable challenge that previous methods face in effectively tying together the optimization 

process of upstream and downstream components in the mineral value chain is rooted in the 

economic valuation of mining blocks. This process assigns block values before optimization of 

production schedules. However, most mine optimization methods, including those described 

above, are linear processes that cannot properly account for non-linear interactions that occur 

after material extraction. The recent paradigm shift that enables the simultaneous stochastic 

optimization of mining complexes uses the value of sellable products to drive the optimization 

process (Montiel and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; Montiel et 

al., 2016; Goodfellow and Dimitrakopoulos, 2017; Montiel and Dimitrakopoulos, 2017, 2018). 

This framework explicitly accounts for supply uncertainty, the time value of money and non-

linear material interactions across the value chain thereby maximizing value and managing 

technical risk. Goodfellow and Dimitrakopoulos (2016) proposes a  highly generalized unified 
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formulation allowing for easy adaptation and extension (Farmer, 2017; Goodfellow and 

Dimitrakopoulos, 2017; Kumar and Dimitrakopoulos, 2019; Del Castillo and Dimitakopoulos, 2019 

) Goodfellow and Dimitrakopoulos (2015) expands the initial unified model to incorporate CapEx 

investment decisions and presents a case study where the optimizer can dynamically alter the 

mining capacity by buying additional load and haul equipment.  

This paper presents an application of Goodfellow and Dimitrakopoulos (2015) to evaluate the 

potential expansion of a tailings storage facility (TSF) within the context of the simultaneous 

stochastic optimization of a real world, operating open-pit, multi-element-gold mining complex 

in Central America. The mining complex sources material from two mines and a significant 

amount of existing stockpile inventory. Gold is extracted from the sulfide ore with copper and 

silver byproducts. Processing the refractory ore requires an autoclave pretreatment to oxidize 

sulfide sulfur in the feed to maintain the effectiveness of the recovery circuit. The oxidization 

precedes a thickening process which makes it possible to remove sulfuric acid and separate the 

copper-rich base metal liquors from the slurry. Lime is added to oxidized slurry making it possible 

to recovery silver as well gold during the typical cyanidation and carbon-in-leaching (CIL) process. 

Throughput at the complex processing plant is highly dependent on the levels of sulfide sulfur in 

the feed, placing sulfur content of the ore on par with gold grade in terms of importance. The 

metallurgical recovery and processing costs are highly dependent on a consistently constrained 

sulfur content.  
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Figure 13: Mineral value chain configuration. 

Figure 13 illustrates the configuration of the mining complex. Material is sourced from the mines, 

comprising two open-pits, and six existing stockpiles with significant inventory. Material can be 

sent to the ore processing facility, eight stockpiles, a mineralized waste pile, a non-acid 

generating (NAG) dump or the TSF where PAG waste is handled along with process tails. Roughly 

23% of material initially classified as NAG waste in the reserve model is determined to be PAG by 

short term lab testing and is sent to the TSF; this is accounted for in the model as indicated by 

the dotted red line in Fig. 13. Material is classified into eight types based on gold and sulfur 

grades. Supply uncertainty is accounted for via a set of conditionally simulated stochastic 

realizations (Goovaerts, 1997; Boucher and Dimitrakopoulos, 2009; Remy et al., 2009) of the 

mineral deposit as inputs to the optimization model. Simulated attributes include gold, copper, 

silver and sulfur grades. Attributes of the existing stockpile inventory are deterministic figures 

distributed onto homogenous block models for each stockpile. Studies show that material 

variability in stockpiles is much higher than what may be expected and that stockpile supply 

uncertainty can be a significant risk factor (Dirkx and Dimitrakopoulos, 2018). However, the data 

required for generating simulated stockpile realizations was not available for this case study. 

Other inputs include economic, operating and geotechnical parameters and constraints, all of 

which are provided by an industry partner and not specified for confidentiality. 
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The treatment of potentially acid generating (PAG) waste and process tails generated by the 

mining operation is a critical bottleneck due to environmental constraints. The mining company 

believes there is a potential for growth beyond the current mine plan that would require extra 

tailings capacity. However, given the significant capital expenditure associated with either 

expansion or development of a new TSF; it is necessary to evaluate the economic feasibility of 

the option while accounting for supply uncertainty within the simultaneous optimization 

framework of the current mining complex. The current life-of-mine (LOM) plan, optimized with 

conventional mine planning software, is focused on the early processing of high-grade ore and 

disciplined stockpiling of low-grade ore, subject to sulfur blending requirements, to maximize 

project economics. This plan projects the remaining mine life will last for seven years and that 

the processing plant will continue to mill stockpiled inventory for eleven years after end-of-mine 

production. A significant portion of the rock extracted from the mines is PAG and is deposited at 

the TSF and submerged by tailings to minimize acid rock drainage. However, the volume of the 

project’s remaining reserves significantly exceeds the available TSF capacity, constraining the size 

of the ultimate pit and the life of the operation.  

The remainder of this paper is structured as follows. Section 3.2 summarizes the optimization 

model and solution approach. Section 3.3 describes the generalities of the case study, prefacing 

the presentation of the results and describing the different cases under examination. The results 

include a simultaneous stochastic optimization (SSO) case, a simultaneous stochastic expansion 

(SSE) case and a comparison to mining complex’s current forecasts – referred to as the base case. 

Conclusions and future work follow. 

3.2 Method 

This section summarizes the approach of Goodfellow and Dimitrakopoulos (2015) simultaneous 

stochastic optimization with capital expenditures to the specific application at a large multi-

element gold mining complex. The general two-stage stochastic integer programming model is 

configured to the technical operating constraints and parameters of the case study. 
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 Definitions and notation 

A mining complex, 𝒞, is composed of mines, 𝑚 ∈ 𝕄, stockpiles 𝑠 ∈ 𝒮, and processors, 𝑝 ∈ 𝒫. For 

modelling purposes, mines are considered the only sources of material for extraction. Stockpiles 

can be used to blend, homogenize or store material over time. Generically, a processor is any 

other destination in the mining complex, typically used to describe locations that transform 

(mills, leach pads, crushers etc.) or treat material in some manner, but not necessarily. Waste 

dumps or transportation hubs, for example, are termed processors in the modelling sense. 

Material is discretized at the mine level into selective mining units (SMUs, also known as mining 

blocks), 𝒷 ∈ 𝔹𝑚, where 𝔹𝑚 denotes the set of blocks in a mine 𝑚. A block has a set of properties 

of interest, described as attributes. Attributes that are essential material properties, often inputs 

to the optimization model and can be sent from one location to another in an additive manner 

(mass, element content) are belong to the set 𝑝 ∈ ℙ. Attributes which are properties of interest 

that can be defined as functions of additive properties (recoveries, grades, pH, etc.)  belong to 

the set ℎ ∈ ℍ. Simulated properties for each block are sampled from a set 𝕊 of equi-probable 

scenarios which quantify uncertainty in the model. A block is available for extraction if it’s 

predecessors 𝕆(𝒷) are all extracted. After extraction, the concept of a block is discarded, 

material can be sent to a set of locations 𝑖 ∈ 𝑆 ∪ 𝑃 within the mining complex. State variables 

are used to keep track of material properties flowing through the various locations. Let 𝑣𝑝,𝑖,𝑡,𝑠 

represent the value of attribute 𝑝 ∈ ℙ at location 𝑖 in period 𝑡 ∈ 𝕋 in scenario 𝑠 and likewise, let 

𝑣ℎ,𝑡,𝑠 represent the value of attribute ℎ ∈ ℍ. While mining, re-handling, processing, and tailings 

treatment costs are attributes that belong to the set ℍ, they are explicitly referenced for clarity. 

Let 𝑀𝐶𝒷,𝑡, represent the cost of extracting a block, 𝒷 ∈ 𝔹𝑚, in period 𝑡 ∈ 𝕋. Let 𝑅𝐻𝑖,𝑝,𝑡 , 𝑃𝐶𝑖,𝑝,𝑡 

, 𝑇𝐶𝑖,𝑝,𝑡 represent the costs associated with re-handling, processing and treating tailings attribute 

𝑝, at location 𝑖, and in period 𝑡,  respectively. Let 𝑝ℎ,𝑡 denote the unit selling price of attribute ℎ 

in period 𝑡.  There are several parameters related to capital expenditure options, in this case only 

one-time CapEx options are considered, 𝑘 ∈ 𝕂1 ⊆ 𝕂. Let 𝑝𝑘,𝑡 represent the discounted purchase 

price for CapEx option 𝑘, in period 𝑡. Let 𝓀𝑘,ℎ denote the per-unit change for a constraint that 

CapEx option 𝑘 has on attribute ℎ. Let 𝜆𝑘 and 𝜏𝑘 denote the life and lead time associated with a 

CapEx option 𝑘. The optimization model uses ‘soft’ constraints to minimize deviations from 
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operating targets. State variables 𝑑ℎ,𝑡,𝑠
±  measure deviations from a target for attribute ℎ, at 

location 𝑖, in period 𝑡 and in scenario 𝑠, similar variables measure deviations for 𝑝 attributes. 

Deviations from targets are penalized in the objective function by monotonically decreasing time 

discounted penalty costs, 𝑐ℎ,𝑡
± , for unit surplus or shortage of attribute ℎ, in period 𝑡. The time 

varied discounting is known as the geological risk discount (GRD) rate (Dimitrakopoulos and 

Ramazan, 2004). 

 Decision variables 

There are four types of decision variables defined in the optimization model: extraction 

sequence, destination policy, processing stream, and capital expenditure decisions. 

• 𝑥𝒷,𝑡 ∈ {0,1} – define whether block 𝒷 ∈ 𝔹𝑚, is extracted in period 𝑡 ∈ 𝕋 

• 𝑧𝑔,𝑗,𝑡 ∈ {0,1} – define whether material in grade bin 𝑔 ∈ 𝒢 is sent to destination 𝑗 ∈ 𝑆 ∪

𝑃  in period 𝑡 ∈ 𝕋 

• 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1] – define the proportions of material sent from location 𝑖 ∈  𝑆 ∪ 𝒫 to 

destination 𝑗 ∈  𝑆 ∪ 𝒫  in period 𝑡 ∈ 𝕋 and scenario 𝑠 ∈ 𝕊 

• 𝑤𝑘,𝑡 ∈ {0,1} – define whether one-time capital expenditure option 𝑘 ∈ 𝕂1 is exercised in 

period 𝑡 ∈ 𝕋 

The extraction sequence, destination policy, and capital expenditure decisions are first-stage 

decisions that must be made before uncertainty is revealed. The destination policy is a 

generalized version of the robust binning approach explored by (Menabde et al., 2007). 

Processing stream decisions and penalties associated with deviation from operating targets are 

recourse variables, designed to adapt to information as uncertainty is revealed through the 

optimization process. 

 Objective function 

Equation 7 presents the objective function of the optimization model which maximizes the 

discounted cash flows from products of the mining complex and minimizes deviations of 

operating targets.  
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max
1

‖𝕊‖
{∑ ∑ {∑ 𝑝ℎ,𝑡

ℎ∈ℍ

∙ 𝑣ℎ,𝑡,𝑠 − ∑ {∑  (𝑃𝐶𝑖,𝑝,𝑡 + 𝑅𝐻𝑖,𝑝,𝑡 + 𝑇𝐶𝑖,𝑝,𝑡) ∙ 𝑣𝑝,𝑖,𝑡,𝑠

𝑝∈ℙ

−

𝑖∈𝒫𝑡∈𝕋𝑠∈𝕊

 

(𝑐𝑝,𝑡
+ ∙ 𝑑𝑝,𝑡,𝑠

+ + 𝑐𝑝,𝑡
− ∙ 𝑑𝑝,𝑡,𝑠

− ) − ∑(𝑐ℎ,𝑡
+ ∙ 𝑑ℎ,𝑡,𝑠

+ + 𝑐ℎ,𝑡
− ∙ 𝑑ℎ,𝑡,𝑠

− )

ℎ∈ℍ

}}} − 

 

∑ { ∑ {(𝑀𝐶𝒷,𝑡 ∙ 𝑥𝒷,𝑡 + 𝑐𝒷,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ∙ 𝑑𝒷,𝑡

𝑠𝑚𝑜𝑜𝑡ℎ) − ∑ 𝑐𝒷,𝑡
𝑠𝑖𝑛𝑘 ∙ 𝑑𝒷,𝑡,𝑣

𝑠𝑖𝑛𝑘

𝑣∈𝕍𝒷

}

𝒷∈𝔹𝑚𝑡∈𝕋

− ∑ 𝑝𝑘,𝑡 ⋅ 𝑤
𝑘,𝑡

𝑘∈𝕜

} 

(7) 

 

Part I represents the discounted revenues from the products sold. Part II represents the cost of 

the processing, re-handling and treating the tailings of extracted material. Parts III and IV 

represent the penalty costs for deviating from operating targets related to mining, processing, 

and tailings treatment activities. Part V represents the cost of mining and the penalties associated 

with deviating from smoothing and sink rate targets. Part VI represents the costs associated with 

capital expenditure options. 

 Constraints 

The objective function is subject to a large set of constraints, namely: material flow, mine level 

attribute calculation, recovery definition, end of year stockpile calculations, one-time CapEx, 

mine reserve and slope, destination policy, and scheduling constraints. Only select constraints 

relevant to the case study are described in this work as the rest are thoroughly detailed in 

(Goodfellow, 2014; Goodfellow and Dimitrakopoulos, 2015). Equations 8-10 define non-additive 

attribute (ℎ ∈ ℍ) calculations and deviation constraints. 

𝑣ℎ,𝑡,𝑠 =  𝑓ℎ(𝑣𝑝,𝑖,𝑡,𝑠, 𝑤𝑘,𝑡) ∀ ℎ ∈ ℍ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (8) 

𝑣ℎ,𝑡,𝑠 −  𝑑ℎ,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡 ∀ ℎ ∈ ℍ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (9) 

𝑣ℎ,𝑡,𝑠 +  𝑑ℎ,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡 ∀ ℎ ∈ ℍ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (10) 

Equation 11 is the one-time CapEx option constraint. Equation 12 models the end-of-year 

stockpile constraint. The most critical operating constraint in the case study below is related to 

the maximum capacity of the TSF meaning that it is necessary to account for the accumulating 

Part II 

Part VI 

Part III 

Part I 

Part IV 

Part V 
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tailings volume year by year. The TSF is modelled as a stockpile to exploit the structure of Eq. 12 

which allows 𝑣ℎ,𝑡,𝑠 to calculate the cumulative tailings volume. 

∑ 𝑤𝑘,𝑡 ≤

𝑡∈𝕋

1 ∀ 𝑘 ∈ 𝕂1  (11) 

𝑣ℎ,𝑡,𝑠 = 𝑣𝑝,𝑖,𝑡,𝑠 ∙ (1 − ∑ 𝑦𝑖,𝑗,𝑡,𝑠

𝑗∈𝒪𝑖

) ∀ 𝑖 ∈  𝑆, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊  

(12) 

 Solution method 

The simultaneous stochastic optimization model is solved using a combination of metaheuristic 

algorithms. While metaheuristics do not guarantee the discovery of optimal solutions, they have 

been proven to generate high-quality solutions to mining optimization problems (Godoy and 

Dimitrakopoulos, 2004; Lamghari and Dimitrakopoulos, 2012; Goodfellow and Dimitrakopoulos, 

2016; Lamghari and Dimitrakopoulos, 2016; Montiel and Dimitrakopoulos, 2017). The solution 

approach used in this application uses both simulated annealing and particle swarm optimization 

(Kirkpatrick et al., 1983; Kennedy, 1995). Perturbing CapEx decision neighborhoods that can 

modify capacities and production targets can make the search for an optimum solution akin to 

chasing a moving target. To mitigate this effect, once a CapEx decision neighborhood 

perturbation is accepted it cannot be perturbed again for a specified number of iterations (Del 

Castillo and Dimitakopoulos, 2019 ). In the case study below the number is empirically 

determined and set to twenty-five thousand iterations. 

3.3 Case Study  

This section describes the application and results of the method at a real-world multi-pit, multi-

product gold mining complex. The results are reported as a probabilistic risk analysis on key 

project indicators which are compared to the project’s operating forecasts (base case) where 

appropriate comparable data is available. Sections 3.3.2.1 and 3.3.2.2 present and discuss the 

results of the simultaneous stochastic optimization (SSO) case and the simultaneous stochastic 

expansion (SSE) case, respectively. 
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 Generalities of the case study  

In Section 3.3.2.1 the SSO case considers the mining complex as depicted in Fig. 13 and described 

thereafter. The base case used for comparison is simply the project’s current operating forecasts, 

generated by a conventional mine planning process with deterministic inputs. This comparison is 

meant to provide the reader with outputs from two different planning approaches and have a 

base case that reflects the decision-making reality of mining companies. However, it is important 

to remember that numerous studies (Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos et al., 

2002) have highlighted the technical risk associated with conventional mine planning forecasts. 

A major reason for this comes from the ‘smoothing’ aspect of estimated methods which leads to 

misrepresented of proportions of high and low-grades in a mineral deposit. The grade-tonnage 

curves in Fig. 14 of the simulated realizations compared to their averaged model reflects the 

different representation of grades in the inputs to the stochastic and conventional mine planning 

approaches. 

In Section 3.3.2.2 the SSE case gives the optimizer the flexibility to make a one-time CapEx 

investment to expand the tailings storage facility capacity by 25% for 200 million USD. There is a 

two-year lead time between the investment and the realization of extra capacity. The results are 

compared with the SSO case to evaluate the growth potential of the project. 
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 Results and comparisons 

3.3.2.1 Simultaneous stochastic optimization case 

Figure 15 presents the SSO and the base case mine tonnage forecasts on an annual and 

cumulative basis. Mine tonnage is the same in all scenarios because the extraction sequence is 

scenario independent and density is not a simulated attribute. The SSO plan forecasts a stark 

divergence from the base case strategy of aggressively mining for the next six years and then 

reclaiming stockpiles until the tailings storage facility reaches maximum capacity. Conversely, the 

SSO plan produces a reasonably stable mining rate through the first fifteen years, utilizing both 

stockpiled inventory and material from the pits to satisfy processing needs. The total tonnage 

extracted over the life of mine is nine percent less than in the base case, suggesting a more 

efficient use of resources, particularly, coveted tailings storage facility volume. 

 

  

Figure 14: Gold grade tonnage curves of simulations and 

the average model of the deposit 
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Figure 15: Production forecasts for SSO and base case (a) mine tonnage and (b) cumulative 

mine tonnage. 

Figure 16 shows the SSO case mill throughput forecasts and the P50 values for the proportion of 

material source in each period, either directly from the two open pits or stockpiled inventory. 

The mill capacity is almost fully satisfied through the next nineteen periods. The throughput is 

balanced between mined and stockpiled material through the first seventeen periods. This 

composition depends on economic and operating factors, such as the quality of material available 

in the stockpiles, cost, and quality of material available in the pits during those periods. It is 

important to note the conventional modelling of existing stockpile inventory hinders the effective 

quantification and management of risk in the throughput forecasts. Forty-five percent of the total 

processed material comes from the existing stockpile inventory, although the data was not 

available for this project, simulating existing stockpile inventory would provide more robust 

forecasts and should be considered in future work.   
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Figure 16: SSO case mill throughput forecasts (black) and material source proportions from the 

mines (blue bar) and the stockpiles (orange bar) 

Figure 17 presents the SSO and base case production forecasts for the project’s primary (gold) 

and secondary (copper and silver) products. Figure 17 (a) illuminates the mine’s current strategy, 

known as ‘high-grading.’ Where the aggressive mining rate is used to extract and recover as many 

ounces as possible over first several years by processing high-grade ore and stockpiling medium 

and low-grade ore for later. The SSO plan also forecasts higher ounce recoveries in the first six 

years. However, this is not an explicitly stated goal but a consequence of the holistic, 

simultaneous optimization plan to maximize value over the life of the mining complex. The drastic 

differences in mining rates over the first six years explain the differences in forecasted ounces 

over that time horizon. However, as previously noted, the base case forecasts do not account for 

supply uncertainty and whether they are achievable remains undetermined. The stochastic plan 

more delivers a stable and consistent ounce profile until the twenty-first year, resulting in a 

twelve percent cumulative improvement in ounces recovered compared to the base case, shown 

in Fig. 17 (b).  
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Figure 17: Metal production forecasts. Dotted lines represent P10/P90 of the SSO plan values; 

solid lines represent P50. 

Figure 17 (c) and (d) shows significant differences in secondary metal forecasts, with the SSO plan 

projecting thirty-eight and thirty-two percent higher copper and silver production than the base 

case forecast, respectively. Similarly, to the gold production forecasts, the production profiles are 

stable and resilient throughout the twenty-one years. Figure 18 (a) highlights the mine’s early 

period high-grading strategy. However the SSO plan delivers higher gold grades from year five 

onwards, mirroring Fig. 17 (a). Figure 18 (b) and (c) show that SSO plan forecasts consistently 

higher feed grades for the secondary metals. All three feed grade forecasts are consistent with 

the representations of the grade-tonnage curves, although only the gold grade-tonnage curve is 

shown in Fig. 14. The feed grade forecasts of all three metals for periods eighteen, nineteen and 

twenty, where the feed is composed solely of stockpile inventory, reaffirm the need for 

simulations to quantify the risk associated with this material supply. The feed grades of the 
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secondary metals fluctuate more drastically than the primary metal; it is suggested that this is a 

consequence of a single-element cut-off grade policy, optimized for gold grades.  

 

Figure 18: Metal feed grade and sulfur throughput forecasts. Dotted (black) lines represent 

P10/P90 of the SSO plan values, solid (black) lines represent P50 

Figure 18 (d) reports the tons of sulfur processed in each year of the SSO and base case forecasts. 

Respecting the sulfur processing capacity critical to the metal recovery circuit. Figure 19 presents 

the cumulative tailings volume and tailings storage facility capacity which is the bottleneck of the 

system. The impact of the aggressive mining rate forecasted by the base case during the first six 

years of production on the rate of tailings deposition is evident. The base case forecasts that it 

will run out of capacity in the tailings storage facility in year 17, whereas the SSO plan runs out in 

year 19. The more balanced mining and reclamation rates in the SSO plan delays the need for 

significant CapEx investment to expand the tailings storage facility capacity by two years.  
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Figure 19: Cumulative tailings volume forecasts. Dotted lines represent P10/P90 of the SSO case 

values; solid lines represent P50 

3.3.2.2 Simultaneous stochastic expansion case 

This section examines selected results from the SSE case that highlight the comparison to the SSO 

case presented in Section 3.3.2.1. Figure 20 provides the tailings volume forecasts for both the 

SSO and SSE cases. In the SSE case, the extra capacity (25% increase) becomes available in year 

19 which is approximately when the SSO case reaches the maximum tailings storage capacity. 

The rate of deposition increases slightly from years 19 through 22, and the expansion is fully 

utilized by period 24. As previously mentioned, the expansion has a two-year lead time, meaning 

the optimizer must exercise the CapEx option in year 17 to realize the extra capacity in year 19. 

The impact of the investment decision on year 17 discounted cash flow is clear in Fig. 21 (a). 

Despite the significant investment, the operation remains cashflow positive in all periods of the 

SSE forecasts, including year 17. Moreover, the expansion allows for significantly higher 

discounted cash flow forecasts in years 19 – 24, leading to 4% higher P50 values for cumulative 

discounted cash flow. The financial impact of the expansion is somewhat muted due to 

discounting over the time horizon. However, the upside effect on gold production, mining, and 

processing tonnages is substantial.  
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Figure 20: Cumulative tailings volume forecasts. Dotted lines represent P10/P90 of forecasts 

and the expanded capacity (dotted red) 

 

Figure 21: Discounted cash flow forecasts. Dotted lines represent P10/P90, solid lines represent 

the P50 

The impact of the expansion on the gold production profile in Fig. 22 (a) is extremely positive, 

extending ounce production until year 25 with a significant uptick in years 21 and 22. The 
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expansion allows for a 14% cumulative increase in gold production over the SSO case. Figure 22 

(b) shows the increased mining rate over the last years due to the expansion. There are several 

reasons related to the mill throughput and stockpile inventories and tailings storage capacity, 

shown in Fig. 23, that explain the significant increase in mining rate after the expansion in year 

19. When the tailings storage facility is close to reaching its maximum capacity, the optimizer is 

discouraged from mining and processing material from the pit because of PAG waste rock, along 

with process tails fills the little remaining volume. Processing stockpiled inventory only generates 

process tails, making it more volume efficient in the tailings storage facility; this is evident looking 

at the mining rate and composition of the mill throughput in years 18 and 19. From year 20 

onwards, 44% of processed material comes from stockpiles, compared to only 22% before year 

20. The quality of material mined from the pit in the post-expansion periods blends with material 

from the stockpile to raise feed grades, improving the ounce profile. Figure 24 shows a plan view 

comparison of both extraction sequences. Note the expanded footprint in the central areas 

between the two pits which allows the SSE case to access higher quality material at depth in later 

periods. Thus, the method demonstrates the tailings storage facility expansion yields favorable 

results: the extra capacity is fully utilized, there is a significant increase in metal production and 

the operation continues to generate positive cash flows until the end of the time horizon.    

 

Figure 22: Gold production and mine tonnage forecasts. Dotted lines represent P10/P90 
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Figure 23: SSE case mill throughput forecasts (black) and material source proportions from the 

mines (blue bar) and the stockpiles (orange bar) 

 

Figure 24: Plan view comparison of the extraction sequences. SSE case (left), SSO case (right) 

3.4 Conclusions 

This paper presents an application of a simultaneous stochastic optimization framework that 

manages tailings, acid generating waste rock deposition and evaluates the use of a CapEx option 
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to expand the mining complex’s main bottleneck to extend its life. The case study presents the 

successful optimization central, interrelated components for the long-term production planning 

of a mining complex via a unified simultaneous optimization model. The method generates an 

extraction sequence, destination policy, downstream material flows and CapEx investment 

decisions. The case study is based on a real world-class gold mining complex with copper and 

silver by-products that comprises multiple pits, an autoclave processing facility to recover metal 

from the sulfide ore, and a critical tailings storage facility (TSF) to handle the PAG waste products. 

The environmental constraints surrounding the TSF act as the main bottleneck limiting the 

potential growth of the mining complex. A TSF expansion (or construction of a new facility) is an 

extremely capital-intensive undertaking that will cost several hundred million dollars.  

This work critically evaluates this potential option while managing technical risk by accounting 

for supply uncertainty and its effects on each component of the mineral value chain. The results 

demonstrate that a 25% expansion of the TSF capacity is fully utilized by a significantly enlarged 

mine footprint, generating 14% more gold ounces and a 4% higher NPV than the simultaneous 

stochastic (SSO) plan without the expansion. Furthermore, the TSF capacity appears to still be 

the bottleneck even after the expansion, signalling the potential for the construction of a larger 

facility and a longer mine life.  

The study presented herein also highlights major differences from the mine’s current mining and 

reclamation plan, underscoring the need for risk evaluation testing and offering alternatives to 

the current, conventional plan. The SSO plan shows real upside in terms of gold, copper and silver 

production as well as a more efficient use of in-pit and ex-pit resources including the existing TSF. 

This upside is a result of the framework capitalizing on synergies within the mining complex and 

management of in-situ supply uncertainty. However, the study identifies the existing stockpile 

inventory, which makes up 45% of the material processed in the base case plan, as a significant 

source of supply risk. Stockpile sampling and simulation programs in other studies (Dirkx and 

Dimitrakopoulos, 2018) show the real extent of material variability in large stockpile inventories, 

and the grade-tonnage curves in Fig. 14 show the different representations of material 

proportions in this deposit. These point to a potential misrepresentation of material quality 

within the existing stockpile inventory and vulnerabilities in the current mine plan which aims to 
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spend 18 years feeding the processing facilities exclusively through stockpile reclamation.  Future 

work should include sampling and simulating existing stockpiles to generate a truly risk-resilient 

LOM plan. The extensions should consider a larger expansion of the TSF and by extension the 

mine life as well as the incorporation of the limestone quarrying which provides lime that is 

critical for the mineral processing circuit.   
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Chapter 4 Conclusion 

4.1 General Conclusions 

Advancements in the fields of mine planning, geostatistics and digital computation over the last 

several decades culminate in simultaneous stochastic optimization frameworks for mining 

complexes (Montiel and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; Montiel 

et al., 2016; Goodfellow and Dimitrakopoulos, 2017; Del Castillo and Dimitakopoulos, 2019 ). 

These methods represent a substantial step-change, address many limitations of previous 

methods as described in Chapter 1, and further contribute to a paradigm shift in strategic mine 

planning under uncertainty. This thesis presents research that advances use of these state-of-

the-art approaches through two applications at case studies comprising large multi-pit mining 

complexes. The case studies are designed to explore how various aspects of the framework 

presented in (Goodfellow and Dimitrakopoulos, 2016, 2017) perform under real-world 

complexities such as joint-uncertainty scenarios, non-linear blending constraints, multiple non-

linear processing streams, stockpiling, tailings management, and CapEx investment options.  

The first case study assesses the efficacy of a dynamic cut-off grade optimization strategy that 

works by conjunction with the simultaneous optimization of extraction sequence and processing 

stream decisions. The case study results show improvements over traditional approaches (Lane, 

1988; Rendu, 2014) in meeting capacity and non-linear blending requirements of multiple 

processors from several sources of uncertain and highly variable material. Moreover, the 

simultaneous optimization approach allows for a significant reduction in the number of stockpiles 

that need to be maintained leading to improvements in operating efficiencies. This case study 

also incorporates market uncertainty as an input to the mine planning framework that considers 

joint geological and commodity price uncertainty scenarios. This is the first attempt in technical 

literature to simultaneously optimize extraction sequence, destination policy and processing 

stream decisions under both sources of uncertainty. The results highlight the flexibility of the 

framework to adapt the production schedule to periods of higher and lower commodity prices. 

Although the solution can be sensitive to the set of price simulations, the framework establishes 
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an approach to effectively quantify the risk to various key project indicators across a set of non-

linear transfer functions comprising the mineral value chain. 

The highly generalized nature of the simultaneous stochastic optimization framework 

(Goodfellow and Dimitrakopoulos, 2015, 2016) allows for the modelling of several downstream 

value chain components. The formulation’s flexibility along with the introduction of a CapEx 

investment option enables the second case study of this thesis to consider environmental issues 

relating to tailings management and model a tailings facility expansion. The application at a multi-

element open pit mining complex in Central America simultaneously optimizes the extraction 

sequence, cut-off grades, and downstream decisions from two open-pits with a set of stockpiling 

options, an autoclave and a tailings storage facility. The project bottleneck is the tailings facility 

volume because it stores both process tails, and potentially acid-generating waste rock from the 

mines. Results show that, when given the option, the optimizer chooses to make a significant 

CapEx investment to expand the tailings storage facility 25% by volume. This expansion allows 

for a meaningful expansion of both pit limits, 40% by mass, resulting in an extended metal 

production and revenue generation horizon that yields 14% more gold ounces and a 4% 

improvement in NPV for the mining complex. The framework provides decision makers with a 

realistic evaluation of the investment’s impact on the mining complex. Moreover, comparing the 

deposit’s estimated and simulated grade-tonnage curves as well as stochastic and deterministic 

forecasts stresses the need for a thorough risk analysis of the existing long-term mine plan. 

4.2 Recommendations and Future Work 

More intelligent and efficient solution approaches are critical to advancing research in this field. 

Today’s simultaneous stochastic optimization formulations are flexible enough to incorporate 

various sources of uncertainty and complex interrelated components across mineral value chains. 

As models become more and more granular, modelling detailed interactions under thousands of 

joint-uncertainty scenarios with millions of integer variables, solution times can stretch beyond 

what is practical and feasible for both industrial and research purposes. Moreover, a limitation 

of the metaheuristic solution algorithms used in this work is the requirement of several user-

defined parameters. These parameters are empirically determined for each case, but fine tuning 

can be a time consuming and subjective process.  This drives a need for solution approaches that 
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intelligently explore the exhaustive solution spaces in a more efficient manner such as (Lamghari 

and Dimitrakopoulos, 2018) which combines machine learning and combinatorial optimization 

techniques and requires significantly less user-defined parameters. As solution algorithms 

improve and leverage technological advances such as GPU computing, it will become more viable 

to generate stable and robust global solutions under various sources of uncertainty such as 

supply, demand and cost.  

Destination policies remain an area of particular interest because single element cut-off grade 

optimization can be misleading in multi-metal mining complexes with deleterious elements, 

stockpiles and strict blending demands. Multi-element destination policies such that utilize forms 

of intelligent material classification such as clustering (Arthur and Vassilvitskii, 2007; Del Castillo 

and Dimitrakopoulos, 2016) have the potential to add significant value to the optimization 

framework. In a similar vein, the connection between long-term strategic plans and short-term 

operating plans is an important area of study to ensure that the notable effort spent to generate 

optimal long-term mine plans is actualized on an operating basis. More specifically through the 

use of advanced digital sensors to provide real-time monitoring capabilities and feedback within 

the system of the mining complex. The incorporation of new data to update reserve models, long-

term plans and adapt short term plans (Paduraru and Dimitrakopoulos, 2018; Yüksel et al., 2018; 

Paduraru and Dimitrakopoulos, 2019) has the potential to unlock meaningful value for operating 

mining complexes.  
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