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ABSTRACT

The first goal of this study was to develop experimental tools to estimate the blur
and nolise characteristics of X-ray CT systems. We evaluated the noise power spectrum
(NPS) using the averaged periodogram technique. As predicted by theory, varying the
image reconstruction filter produced a shiit in the frequency content while slice thickness
only affected the amplitude of the noise.

- In order to quantify the blur, we developed and evaluated two non-linear parametric
models of the point spread function (PSF): the Gaussian and damped cosine mode!s. We
fitted these modsls to images of spatially distributed point sources and thus quantified the
pattern of shift-variance. We found that the system produced a rotating blur and observed
aloss of PSF radial symmetry as the input point source moved away from the center of the
field of view. We validated the use of point sources by comparing non-parametric PSF
estimates obtained with this input to those found using a correlation-based technique
(Wiener-Hopf equation). We gained insight into the design of the input signal, which
consisted of pseudo-randomly iocated holes, through an exhaustive simulation.

The second goal was to investigate how this information could be used to process
CT images. We formulated and evaluated a coordinate transformation for shift-invariant
restoration of CT images. We developed a simple evaluation procedure which proved
beneficial in delimiting the usefulness and detecting limitations of the method. We also
formulated a number of recommendations regarding the use of the threshoid and

Laplacian of a Gaussian segmentation operators taking the shape of the PSF and of the
NPS into account.
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RESUME

Le premier objectif de ce travail était de développer des outils expérimentaux
permettant d’estimer les propriétés de flou et de bruit de tomographes a rayons-X. Nous
avons évalué le spectre de bruit en utilisant la technique du périodogramme moyen. Tel
que prédit théoriquement, la variation du filtre de reconstruction a engendré une
modification du contenu fréquentiel tandis que I'épalsseur des Images n'a influencé que
I'amplitude du bruit.

Afin de quantifier le flou, nous avons développé et évalué deux modeles
paramétriques non-linéaires de la réponse impulsionnelle (RI): les modéles Gaussien et
de cosinus amorti. Le patron d'anisotropie et de variation spatiale de la Rl furent quantifiés
en ajustant ces modéles a ['image de sources ponctuelles distribuées spatialernent. Nous
avons remarqué que le systéme produlsait un flou rotatif et avons observé une perte de
symmeétrie radiale de la Rl lorsque la source ponctuslle s'éloignait du centre du champ
d'observation. Nous avons validé I'emploi de sources ponctuelles en comparant les
estimés non-paramétriques obteniis avec ce type d’entrant & ceuxissus d'une technique
de corrélation (équation de Wiensr-Hopf). Une simulation exhaustive nous a permis de
concevoir un signal d'entré approprié qui consistait en une série de trous disposés
pseudo-aléatoirement.

Le second but se voulait une réflexion sur la fagon dont cette connaissance pourrait
étre utilisée pour traiter les images. Nous avons formulé une transformation de
coordonnées permettant la restaursticn d'images non-stationnaires. Une procédure
d'évaluation simple nous a permis de délimiter I'utilité et de détecter les limites de cette
méthode. Finalement, des conseils portant sur I'utilisation de deux opérateurs de
segmentation, le seuillage et le Laplacien d'une Gaussienne, ont é1é formulés en se basant
sur la morphologie de la Rl et du spectre de bruit.
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CHAPTER 1
INTRODUCTION

1.1 CONTEXT

The advent of computerized tomographic imaging opened a new window onto
human morphological and functional anatomy. Not content with these two dimensional
(2D) images, researchers soon began “stacking” these anatomical "slices” to form 3D
images. This process is known today as 3D reconstruction from serial images.

Three dimensional reconstruction approaches belong to one of two classes:
volume or surface rendering (Farrell and Zappulla, 1989, Udupa, 1990; Herman, 1880). In
volume rendering, no assumption s made as to the contents of the volume. Each voxei,
or volume element, Is assigned a color and opacity depending on some physical property.
The value of the pixel displayed on the computer screen is a function of the value and
opacity of the voxels encountered by rays traversing the volume. These 3D images are
qualitative in nature in the sense that a viewer can perceive the relative position of structures
with respect to one another, but their exact position cannot be quantified. Although they
can be quite impressive, they remain of limited use since capacities tor mensuration are
limited and interactive manipulation is difficult. They are helpful however when the surface
of the object to be visualized is not well defined or when it not clear which surfaces within
a body are of particular importance for the application at hand.

Applications such as radiation therapy, stereotactic and cranio-tacial surgery
planning as weil as the design of custom orthopaedic implants, which require quantitative
information, rely mostly on surface-based reconstruction. This method assumes that the
volume of data contains specific structures that can be represented by their surfaces.
Before being displayed, using depth-shading, hidden surface removal or other
techniques, these surfaces must be isolated from their surroundings, i.e. they must be
segmented. It is from this segmentation step that the quantitative structural information is
obtained: knowing the position of the pixels forming the contours (or that of the voxels
torming the surface) the position and size of the structures can be determined.

As the irend from qualitative to quantitative 2D reconstruction continues, the
demands on accuracy increase. However, like any CAD/CAM system or finite element
program, even the best reconstruction algorithm will give mediocre results if it is fed
inaccurate data. It is surprising that compared to the amount of effort expanded in devising
algorithms to three-dimenslonally integrate the structural information, relatively little effort
has been spent extracting the information from the series of 2D images. We share the



opinion of Stiehl (1890) and Robb and Barillot (1989) when they argue that segmentation
is one of the areas requiring more research if accurate and reliable models are to be
produced.

1.2 Objectives

Image processing tools are impressive in quantity and diversity. Nonstheless only
the simplest of these techniques have been applied to process and extractinformation from
medical images. More importantly, the iimitations of the imaging device, such as blurring
patterns, noise characteristics and artefact, have beeniargely ignored when applying these
general techniques to medical images. Certain researchers advocate the use of more
sophisticated tools (ses Stiehl (1990) for examplie). However, we believe that by gaining
a detailed knowledge of the characteristics of the imaging system, we will be in a better
position to determine the limits of the image processing algorithms, even the simplest, and
to improve their performance.

The first objective of this work was therefore to develop the experimental tools
needed to characterize the imaging system. This goal was realized in the framework of
linear systems theory. As such, the CT scanner was characterized in terms of its point
spread function {PSF) - or its frequency domain representation, the modulation transter
function (MTF) - and its noise power spectrum (NPS). The PSF typifies the blur prasent in
the images while the NPS describes the frequency distribution of the noise.

In the long term, we are interested in the design of custom-fitted resurfacing
articular implants such as the one fllustrated in figure 1.1. Because we will be required to
reconstruct the geometry of bony articular surfaces, and these structures are best dsfined
with x~-ray CT, we will concentrate our study on this type of system. From this pointon, when
we refer to CT systems, we implicitly imply an x-ray energy source.

The second goal was to investigate how knowledge of the characteristics could be
employed to process the images.

1.3 Outline

Principles underlying the formation of CT images are introduced in chapter 2 which
also contains a review of the CT system Identification literature.

_ The first goal of this work is realized in chapters 3 through 6. Results of NPS
measurements are presented in chapter 3. In chapter 4, we develop and evaluate two
parametric models of the PSF shape. Chapter 5 describes how these models were used
to quantify the shift-variance and rotational asymmetry of the PSF. In both these chapters,
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images of thin metallic wires provided non-parametric PSF estimates to which the models
were fitted. In order to validate these results, we compared these estimates with those
obtained with a correlation-based identification method, the subject of chapter 6.

The next two chapters are devoted to the second objective. In chapter 7, we
propose a coordinate transformation, based on the results of chapter 5, which can be used
for shift-variant image restoration. We examine the performance of the tnreshold and
Laplacian of a Gaussian segmentation operators based on the shape of the PSF and on
the noise properties in chapter 8.

Chapter 9 concludes the thesis with a statement of original contributions and a
discussion of topics considered for future work.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

tn order to limit the scope of this chapter, we will focus on the literature daaling with
identification of the blur and noise characteristics of CT imaging systems. Topics

concerning image restoration and segmentation will be reviewed in chapters 7 and 8
raspectively.

Knowing how images are formed is important to understand how an imaging
system behaves. We therefore felt justified in introducing the principles underlying the
related topics, rather than only reviewing the literature. This approach seems appropriate
since the field of 3D reconstruction attracts researchers from a number of different fislds
{medical physics, elactrical and mechanical engineering, computer graphics ...) each with
a strong comprehension of some aspect of the problem but with limited knowledge of
some other. Nongatheless, the author assumes that the reader has a working knowledge
of linear systems theory and Fourier analysis.

Consequently, this chapter serves a double purpose. The first goal is to introduce
principles and the second is to review the literature concerning the topics related to image
formation and system identification.

The ideal physical and mathematical principles of image formation are explained
in section 2.2. Section 2.3 examines how deviations from ideal conditions give rise to
artefacts. Sections 2.4 and 2.5 cover identification of blur and noise characteristics
respectively. Finally, section 2.6 concludes the chapter.

2.2 Image formation

This section is a short synopsis of the physical laws describing the interaction of
x-ray with matter under ideal conditions. It also describes the mathematical concepts
underlying the formation of CT images. For a comprehensive discussion on these topics,
the reader is invited to consult Kak and Slaney (1988) and chapter 7 of Barrett and Swindell
(1981).

Tissue differentiation is made possible by the variation of the linear x-ray
attenuation coefficient p with factors such as density, mineral content, material thickness,
and others. For a homogeneous medium of constant u, irradiated with a mono-energetic

x-ray beam, the relationship between emitted (lg) and detected (!) intensity is given by
Beer's law:
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where x, and y, form a rotating cartesian system with the y, axis pointing in the direction
of the incident x-ray beam. Vector r{x..y,) represents the position of a point P. Figure 2.1(a)
shows the orientation of the coordinate system.
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(@)

Figure 2.1 Data acquisition
(adapted from Barreft and Swindell, 1981; figures 7.1 and 7.2)

{a) Coordinata sysiems.The imege plane is represented by a fixed cantesian
cocrdinate system x-y. The Xx,-y, frame rotates with the source and detector
assembly, with y, polnting in the direction of the x-rays. Vecior r represents the
position of a point P. (b) With a firsi generation parallel-beam scanner, a single
projection |g(x) Is acquired by synchronously transiating the source and detector
assembly.The assembly Is rolated a number of times to obialn the required set of
projection data.

Unlike radiography which produces a two dimensional projection of volumetric
data, the goal of CT imaging is to estimate the two dimensional spatial distribution of the
linear attenuation coefficient n contained within a "slice” of tissue. This problem is solved
by techniques known as “image reconstruction from projections” (see also Herman, 1980
and Brooks and Di Chiro, 1971). The principle is lllustrated in figure 2.1 for a first generation
parallel beam scanner where a single detector moves synchronously with the source. The
source-detector complex first sweeps in a translational movement to form a projection. By
rotating the source and detector through an incremental angle and repeating the sweeping
motion, a large number of projections, all lying in the image plane, are collected. A
projection at given scan angle ¢ Is described by linearizing equation (2.1):
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A two-dimensional image is obtained by back-projecting the set of one
dimensional projections. Although a number of methods have been devised for this
purpose, most commercial scanners today (if not all) use a variation of back-projection.
The concept is quite simple and is shown in figure 2.2. It consists of smearing each
projection through the image plane along the y, axis as expressed by the following

expression:
kv ) = lglx) (2.3)
and contributions corresponding to the various scan angles are summed up:
T

[gqp(.r,-..v,-) d¢ @4
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. ]
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Figure 2.2 Backprojection
(adepted from Barrell and Swindel, 1981: figure 7.8)

The image is reconstructed by back-projecting or smearing the 10 projection back
1o the 2D Image plane and adding all the contributions. The original object consists
of two absorbing disks of ditferent sizes.



Back-projection inherently blurs the reconstructed image. Figure 2.3 illustrates the
image of a point source, or by definition, the point spread function. The increase in line
density toward the center of the pattern, which characterizes the blur, is described by:

hhp(r) = 'L (2.5}
Tr

To rid the image of this intrinsic blur, a simple sclution consists of convolving the
tmage with 7rr. Alternatively, the image could be "rho-filtered", i.e. the Fourier transform of
the image could be multiplied by p where p is spatial frequency. However, in order to limit
high frequency noise, it is not desirable to extend the filter to infinitely high frequencies with
ever increasing weight. Neither is it desirable to cut off the filter abruptly, a situation which
would lead to excessive ringing or Gibb's phenomenon, Therefore, an apodizing function,
a(r) is used to control the high frequency behavior of the rho-filter. The apodizing function
can take a number of forms, resulting in slightly different images. Modern scanners offer

a number of such filters: smoothing, normal, high resolution etc.

Therefore the final image is given by:

. yr) = alf)m r* *':?J'Q:p(xr-Yr)dQ" {2.6)
0

1
= r x * * * r
a{r)m ps u{r)

= &) * * u(r)

Equation (2.6) states that the ideal filtered back-projected image is equal to the
spatial distribution of x-ray attenuation coefficient convolved with the apodizing function.
However, a few comments are in order:

1) The equations presented so far represent the ideal continuous case. But CT
imaging is discrete and yields a two dimensional array of pixels or picture elements. This
implies that the projections must be interpotated to obtain values corresponding to a given
pixel. Interpolation, with its low pass fiitering effact (Parker et al., 1983), also influences the
blurring characteristics of the system. Furthermore, each pixel is assigned a CT number
which represents the attenuation coefficient relative to water. In Hounsfield units, the
relationship is:



Figure 2.3 Imaye of a point source
{(adapted from Barrett aria Swindell, 1981, figure 7.20)

The image of a point source is a collection of radial lines. The line danslity, which
characterizes the blur, is proportional to 1/r.

_ ultissue) - uiwater)
u(water)

H

1000 27

CT numbers are commonly quantitized to 12 bits, for a possibility ot 4096 integer values.

Air is at the low end of the scale with a typical value of -1000 H and bone at a higher leve!
with + 1000 H.

2)Modern scanners no longer rely on paraliel-beam geometry, but rather on the
fan-beam configuration. Figure 2.4 schematically describes the functioning of 3rd and 4!
generation tomographs. The presence of a tan-bsam permits many measurements to be
taken simultaneously thus simplifying the hardware and reducing scanning time. Data
collected with a fan-beam geometry are treated with special algorithms. Alternatively, data
are interpolated to obtain a parallel ray arrangement and the principles presented above

are applied, provided that the projections are collected over an angle of w + s, where \
is the fan angle.

3)So tar, the equations describing the formation of CT images are linear. However,
the reconstruction procedure is based on the assumption that the projection data are line
integrals of the attenuation coefficient along the x-ray beam path. In theory, this requires
monoenergetic and infinitesimally thin x-ray photon-beams (Muller et al. 1985).
Departures from this ideal situation, as well as other physical factors, will lead to artefacts.
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Figure 2.4 Fan-beam geometry

The translational movement of the source-detector assembly |s not required since
many measurements are taken simullaneously. (a) In third generation rctate-rotate
scanners, both the source and delectors synchronously. {(b) Fourth generation
rotate-fixed scannears are equipped with a fult ring of fixed detectors. In this design,
only the source is mobite.

2.3 Artefacts

Artefacts manifest themselves as srroneous CT numbers, streaks and/or cupping,
a phenomenon in which a homogeneous object appears darker in the middie than at the
periphery. in this section, we will examine the different phenomena which give rise to these
artefacts: partial volume and exponential edge-gradient effects caused by the finite beam
size, beam hardening, a direct consequence of beam polychromacy; scatter and finally
aliasing which results from improper sampling. Apart from their origin, we will discuss their
effects and how they can be corrected or attenuated.

2.3.1 rartial volume effect (PVE)

Although a tomogram is two-dimansional, it results from the interaction between
an x-ray beam of finite height and a three-dimensional object. Therefore the CT number
at a given pixel is an axial average of the structures in the corresponding voxel, or volume
element. During reconstruction, it is assumed that objects have constant attenuation
characteristics in the direction perpendicular to the image plane. In practice, this is not

always the case; there may be local variations in CT number within a given tissue or a voxel
may be occupied by more than one structure.

According to Glover and Pelc (1980), PVE gives rise to cupping, streaks, and
erroneous CT numbers especially at the boundary between two objects. Several
algorithmic attempts by the same authors to correct PVE failed even with very simple
models simulating the presence of two different tissues within the same pixel. They
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attributed this failure to the lack of information necessary to estimate variation of x-ray
attenuation in the axial direciion. The authors suggested reducing slice thickness as the
best way of correcting, or at least restraining, PVE.

nential -

Joseph and Spital (1981) studied the effects of attenuation vartations within the
image plane. Bacause of the finite width of the-detectors, discrete values representing the
average intensity across the detector face are measured. When the finite beam width Is
taken into account during back-projection, averaging of the line Integrals must also be
performed. These two averages are often different, espscially in the presence of strong
spatial gradients. The error arising from this phenomenon is always negative. A slight
cupping effect may be present but EEGE usually gives rise to the presence of streaks
originating from long and strong edge gradients such as bone-alr interfaces or straight
metallic objects. These situations are rarely encountered in routine clinical situations but
can become a problem with patients who have undergone reconstructive or corrective
surgery involving metallic implants.

According to the same authors, the EEGE is inherent to the CT technique and can
be present on all scanners. However, scanner geometry can reduce the extent of the

artefact by limiting the width of the beam. Corrective algorithms can also attenuate the
problem.

2.3.3 Beam hardening effect (BHE)

The attenuation capacities of tissues are strongly energy dependent since low
energy x-rays are more easily absorbed than high energy ones. In the presence of a
polychromatic source, the linear attenuation coefficient is not proportional to the thickness
of the material and equation (2.1) no longer holds. In CT, two situations lead to beam
hardening. The first is the presence of highly attenuating materfals such as bone, resulting
in depressed CT bone values and increased CT numbers in surrounding soft tissues. The
second factor is unequal path lengths which results in cupping. In clinical situations, the
two phenomena tend to cancel each other (Brooks and Di Chiro, 1976a).

These artefacts can be alleviated by increasing the homogeneity of the beam
through prefiltering, by applying correction algorithms (Stonestrom et al. ,1981) and/or
dual energy imaging (Coleman and Sinclair; 1985), Barrett and Swindell; 1981)).
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2.3.4 Scatter

Compton scatter is due to the inelastic collision between an x-ray photon and an
electron, which sends the photon off at a new angle with reduced energy. With the
fan-beam configuration, it is inevitable that some photons hitting the detector will have
been scattered one or more times. These photons are registered as false data. Scatter
affects the image quality in two ways: increased noise and presence of systematic artefacts
(Stonestrom and Macovski (1976). According to Kanamori et al. (1985) 3" generation
scanners exhibit cupping while edge round-off is emphasized for tomographs of the 41"
generation. Stonestrom and Macovski studied the nature of scatter with a simple statistical
model and showed that several schemes can be used for its correction.

235 Aliasi

Proper sampling requires that the sampling rate be at least twice the maximum
frequency contained in the function being sampled. If this condition is not satisfied,
frequencies above the Nyquist frequency are "folded back" and take on the identity of lower
frequencies. The Nyquist frequency, which is equal to halt the sampling frequency,
represents the maximum frequency represented in the sampied signal. In CT, aliasing can
arise from three different sources: insufficient number of projections, inadequate number
of rays per projection, and deficient reconstruction grid.

Number of projections. Kak and Slaney (1988) associated the minimum number of
projections My to the number of rays per projection N. They arrived at the conclusion that
Mminmust be approximately equalto 1.5N (aN/2) for an artefact free reconstruction. Intheir
1980 paper, Joseph and Shultz (1980) stated that N is not a relevant parameter to relate
to Miin. and that v, the maximum spatial frequency in the image should be used. In
relating Mpwin to vmay @nd to various machine parameters, they concluded that the number
of projections influences the size of the error free reconstruction region. If the number of
projections is smaller than M. Streak artefacts appear within a circle of radius R. However
aven if this condition is not met, objects must be small with sharp edges and high
attenuation to produce serious streaks. Even so, the streak intensity is small and narrow
viewing windows are required to visualize the streaks.

Number of rays per projsction: Joseph et al. (1980} studied the consequences of
reconstructing images in which the spacing betwsen ray samples is smaller that the width
of the scanning beam. To avoid aliasing, at least two samples per beam width must be
measured. if this requirement is not met, small narrow streaks appear, Furthermore,
aliasing makes the PSF position dependent. They suggested averaging the output of
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adjacent detectors to avoid aliasing artefacts. This is equivalent to expanding the detector
size while maintaining the original inter-sample distance. Aliasing can tnus be avoided at
the expense of reduced spatial resolution.

Third generation scanners, in which each detector is assoclated with one ray
measurement, are particularly susceptible to ray dependent aliasing since only one
measurement is gathered per beam width. Peters and Lewitt (1979) suggested displacing
the line between the center of the source and the center of rotation by 1/4 of the detector
width with respect to the canter of the detector face. This "queanter detector offset” geometry
leads to interleaving of opposing views (¢ and ¢+ 180°) when data is collected over 360°.
Although this simple stratagem may not quite double the sampling frequency, it
nonstheless greatly improvas aliasing related errors.

Beconstruction grid: The largest frequency to be represented by an N by N image is N/2
cycles per image width {or height). When the maximum frequency in the reconstructed
image Is larger than this number, Moire patterns appear. These artefacts can be reduced

by using a back-projection filter tailored to match the image grid size (Kak and Slanay,
1988).

2.3.6 Justification of I i

In theory, the principles of CT image formation are amenable to linear systems
analysis. In reality however, the hypotheses on which the theory is based are notrespected
and this leads to linear as well as non-linear artefacts. Fortunately, most artefacts can be
eliminated, or at least greatly attenuated, with appropriate corrective measures. Therefore,

keeping these caveats in mind, it is justified to use linear systems theory to study real CT
scanners.

CT systems are characterized by two properties: blur and noise. The following
sactions describe how these quantities can be estimated.

2.4 Identification of blur characteristics

We can qualify blur as aloss of sharpness associated with an attenuation of the high
frequency terms present in a signal. The function which describes the magnitude of this
attenuation as a function of frequency is the modulation transfer function (MTF}.

We also saw, in the paragraph preceding equation 2.5, that the image of a point
source, or the point spread function (PSF), characterizes the blur in the spatial domain.
These two ways of considering blur are fully compatible since the PSF and the MTF are
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related by the Fourier transform. Therefore, by measuring or identifying one of these
entities, the other is automatically defined.

The goal of this section is to review the different methods that have been used to
estimate either the PSF or the MTF, and to examine which factors affect blur.

> 4.1 Identification of T :

This summary is based on textbooks by Bendat and Piersol{ 1980) and Norton
(1986). as well as on the following articles: Rossman (1980), Metz and Doi (1979), Giger
and Dol (1984), Sawaragi et al. (1985).

In classical system identification, the system is considered as a "black box™ with
the characteristics an unknown. By comparing the input and output signals, these
characteristics can be deduced. The assumption of linearity allows onz to find the response
to any Input by breaking this input into simple components and adding the contribution of
each constituent. Therefore, by finding the response of the system to one of these simple
inputs, the system Is characterized. The appellation of various outputs, and thelr
correspondence in general system and imaging system identification are summarized in
Tabile 2.1.

GENERAL SYSTEMS IMAGING SYSTEMS DOMAIN
function name symbol function name symbol

impulse response IRF point spread PSF spatial
step response SRF edge response ERF spatial
Iine spread LSF spatial

frequency response FRF optical transfer OTF frequency

gain modulation transfer MTF | frequency

phase phase transfer PTF frequency

TABLE 2.1 Correspondencs of functions used in general and imaging system Identification

One of the simplest inputs is the impulse, whose associated output is called the
impulse response function (IRF) in the general system identification literature and point
spread function (PSF) when applied to Imaging systems. The advantage of this input is
that it directly describes the blurring characteristics. This must be weighted against the
difficulty of producing an impuise, which, in theory, has no duration or spatial extent, and
has Infinite magnitude. The large Input signal may also cause saturation and the’
appearance of non-linearities.
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Some of thase short-comings are alleviated with the use of a step function. The
derivative ofthe system's reaction to this stimulus, the step responsefunction (SRF), yields
the IRF. The equivalence of the SRF in 2D is the edge response function (ERF) whose
derivative ic the line spread function (LSF). By definition, the LSF is the response to a line
source of given orientation 0. [t can also be thought of as the sum of a series of shifted PSF.

LSFyix) = JPSF(X,. y:) dyr (2.8)

Marchand (1964, 1965) and Roa and Jain (1967) have extensively studied the
relationship between these two functions,

While a step function may, be easier to produce than animpulse, it sufiers from noise
amplification produced during differentiation. Furthermore, the power of a step function is
concentrated at low frequencies. With such an Input signal, the attenuation characteristics

at higher frequencies are not as reliable as if they had been obtained from a signal exhibiting
a flat frequency spectrum.

The use of correlation methods can counteract the first of these objections. The
methods are based on the Wiener-Hopf eguation, which states that the input-output
cross-correlation is equal to the convolution between the IRF and the input
auto-correlation function:

Cas(x.y) = hix.y) * * Caalx.y) (2.9)
where aand b: input and output signals
Caa: input auto-correlation
Cab: input-output cross-correlation

Correlation reduces the effects of noise through the summation of successively
shifted terms. Howaver, the method involves more computation than other methods since
the IRF must be deconvolved. The stability of the numerical solution depends on the
correlation properties of the input signal. Furthermore, the input must have sufficient power
over all frequencies for proper identification.

We now turn our attention to identification based vun frequency methods. Ii a 2D
system is finear and shift-invariant, the output to a sinusoid is also a sinusoid of the same
frequency and direction but with possibly a different amplituda and phase. The function
describing these changes is the transfer function or optical transfer function (OTF) when
applied to imaging systems. The magnitude of the OTF is the modulation transfer function
(MTF). This last function describes the ratio of output to input modulation as a function of
frequency, where modutationis defined as the ratio of amplitude to average value of a signal
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(Barrett and Swindell, 1981). The phase transfer function (PTF) represents the phase lag
as a function of frequency.

The OTF and PSF are Fourler transform pairs:
OTF (1, 1) = F|PSF(x.y)] (2.10)

PSF(x.y} = 5 |OTF(r, 1)}

wheare F: Fourler transform
Vx. Vy: Spatial frequency

When the PSF is symmetric, the PTF can only take on values 0 or 7w, and the MTF
completely characterizes the blur in the frequency domain.

The advantage of using periodic signals as input is that the MTF can be obtained
directly without Fourier transforming the data. However, measurements must be repeated
at different frequencies and only discrete values of the MTF are obtained.

In the following section, we will see how these concepts have been used to identify
the PSF or MTF of CT scanners.

2 4.2 Identificat ft iulation ¢ fer functi £ CT n

A few theoretical studies have been conducted to characterize the MTF (Glover and
Einsner, 1979,1980; Glick et al. ,1988). These investigations are useful in relating the MTF
to various design parameters such as detector size, sampling rate, focal spot size etc.
Howevaer, these theoretical tools cannot be used to measure the MTF of any given unit,

because the number of unknown parameters is too large. Therefore one must resort to
experimental techniques.

Three types of inputs have been used to identify the MTF of CT scanners
experimentally: impulses (or point sources) simulated by thin metallic wires, edges
obtained by placing a straight edged object in water, and periodic signals such as star or
bar patterns.

Impulse methods:. Bishoff and Ehrhardt (1977) estimated the MTF by Fourier transforming
theimage of a0.15 mm diameter steel wires placed in awa'er filled phantom. The estimates
were corracted for finite wire size, non-zero mean value of the surrounding water and’
region size. By comparing the MTF in three different directions (horizontal, vertical and
diagonal}, they concluded that MTF was radially symmetric. They also determined that the
system was shift-invariant, i.e. that the MTF {or PSF) was independent of position, by
Imaging the wires in three different positions.
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Ehrhardt (1986) argued that if the image is off-centered or offset by a distance d.,
symmetry can be employed to double the sampling frequency by mirroring data from one
side of the center line to the other. Simulations revealed that, in the presence of Poisson
distributed noise, the error in computing the MTF was within reasonable range if the signal
to noise ratio was high, the offset d in the range of 0.1-0.4 pixe! width and the error in
estimating the offset smaller than 2%-3% of pixe! width. An error of 10% pixel width in
estimating d leads to unacceptably large MTF errors (15% to 60%).

Nickoloff and Riley (1985) devised a simple identification technique appiicable to
most CT scanners via amodelling approach. Their analysis indicated that most PSFs could
be described by a Gaussian function whose shape is described by a single parameter o
related to the exponential rate of decay. This parameter is given by the slope of the linear
regression between the square root of the natural logarithm of (1/PSF) and the radial
distance from the point source. For all scanners tested, the linear correlation cosfficient was
greater than 0.99, indicating that the assumption of a Gaussian PSF was reasonable. The
authors pointed out however that the method could cause problems with edge
enhancement reconstruction filters. These apodizing functions introduce undershoots and
the PSF can no longer be modelied as a Gaussian function.

A common objection to the use of a thin wire as input is that few points are avallable.
This situation can lead to an ill-defined MTF due to aliasing (Ehrhardt, 1986; Nicholoff and
Riley, 1985; Schneiders and Bushong, 1978}. The method proposed by Ehrhardt (1986),
and presented above, and/or reducing the pixel size can alleviate this shortcoming.
Modelling can also be used to address this problem since the model can be digitized at
any desired sampling rate. If the analytical function describing the PSF is not too
complicated, the MTF can also be determined analytically.

The greatest advantage of this method Is that the PSF is obtained directly with little
or no data manipulation. Furthermore, a point source input provides a full two-dimensional

description of the PSF. Being limited in size, it constitutes a good signal for the study of
shift-variancs.

Edge meathods; The most popular method for measuring the MTF is via the edge response
function (ERF): '

MTF = | & d ERF(x)
dx

= | #{LSF(x)} | @2.11)

Judy (1976) imaged 14 water-plexiglass interfaces in different orientations. The
ERF demonstrated an undershoot on the side of the water and a consistently iarger

17



b

ovarshoot near the plexiglass resulting in a non-symmetric LSF. Three arguments were
offered to explain this phenomenon: scatter, a local change in the attenuation coefficient
at the surface of the plastic through increased density due to machining and noise, which
was identified as the primary source of variation in the estimates.

Logan and Hickey (1983) measured the LSF of a gamma camera in much the same
way as Judy. The authors compared three methods of differentiation: thres-point
difference, five-point difference, and analytically differentiating a cubic spline function
which had been previously fitted to the ERF. The third method proved to be the most
accurate. This rasult is not surprising since fitting the spline function smooths the data
thereby reducing the effects of noise.

To overcoms the amplification of high frequency noise due to differentiation,
Schneiders and Bushong (1978) proposed a method for obtaining the MTF directly from
the ERF by integrating equation (2.11) by parts. This method was compared to Judy's in
the presence of low and high noise. Both schemes were equivalent in the low noise case
but the one step procedure proved superior when higher noise levels were involved. In a
follow up article (Schneiders and Bushong (1980)), it was also compared to the impulse
method. Prlor to taking the Fourler transform, the PSF was manually smoothed (i.e. the
user traced a smooth curve through the data according to hisfher perception). The MTF
derived with the wire technique showed slightly depressed values when compared to the
other two. The authors offered two possible reasons. First, computation from the PSF was
based on 18 points as compared to the ERF which counted 500 samples. Secondly, the
wire was located further toward the periphery of the fieid of view, where it may actually be
different than where the interface was located. Our own work presented in Chapter 5
supports this explanation.

Cunningham and Fenster (1987) noted that numerical differentiation differs from
analytical differentiation and therefore introduces an error in the LSF and the MTF. The true
MTF can be recovered from the sampled case by multiplication with a filter representing
the frequency ratio of analytical versus finite element differentiation.

By placing an edge at a slight angle with the image raster, the sampling rate can
be greatly increased, thereby circumventing the major objection to the use of point
sources. Howevaer, this stratagem is valid only if the PSF is stationary or shitt~invariant.

This method counts a number of disadvantages. Itinvolves more datamanipuiation
since the edge profiles must be differentiated to provide the LSF. Furthermore, the ERF
must be smoothed or fitted with an analytical function prior to differentiation in order to
attenuate the effects of noise. Alternatively, the method proposed by Schnsiders and
Bushong (1978) can be used for the same purpose. Another drawback is that the
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procedure must be repeated at a number of edge orientations if a bi-dimensionat
description of the MTF Is required. Furthermore, the energy of a step function is
concentrated at low frequencies. With such an input signal, the attenuation characteristics

at higher frequencies are notasreliable as if they had been obtained from a signal exhibiting
afiat frequency spectrum.

Frequency methods: The MTF can be evaluated directly by measuring the rasponse to
periodic signais of different frequencies. To do so, Mcintyre et al. ( 1976) used the sunburst
phantom. Concentric circles drawn from the point of intersection of nylon tapered wedges
placed in water create periodic signals whose frequency decreases with distance from the
center. The authors expressed the MTF in terms of the ratio of output to input modulation:

(CTnylon - CTwarer) / (CTnonn + CTwa!e.r)

MTF = (2.12)

where CTmin. CTmax: minimum and maximum values of CT numbers along the
circumference of a circle of given radius

CTryion: CTwater: average CT value of nylon and water measured in the buik
of the matertal

At high frequencies, near the center of the phantom, few points were available to
determine CTmin and CThae. As a consequence, the uncertainty in MTF estimates
increased with frequency. The authors placed little credence in MTF values less than 0.15.
Furthermore, because the input signal was a square wave as opposed to sine wave, and
therefore ccntains high frequency harmonics, the MTF was overestimated.

Based on the Fourler series expansion of a square wave, and on the argument that
the output of a square wave is a single sinusoid of the same frequency and reduced
amplitude for frequencies greater than a third of the cut-off frequency, Droege and Morin
(1982) derived a simple expression for the MTF. To circumvent the difficulty of estimating
the maximum and minimum amplitudes in the presence of noise, they expressed the
modulation in terms of signal variance, measured over a region within the image of bar
patterns of discrete frequencies. The method was compared to the Fourier transtorm of a
wire image. Both techniques yielded similar resuilts for the mid-frequency range. However,
the bar pattern method was not valid for very low frequencies since it is formulated for
frequencies larger than a third of the cut-off frequency. Furthermore, uncertainty inthe MTF
values at high spatial frequencies made the determination of the cutoff frequency difficult.
Advantages Include simplicity, speed, and insensitivity to image noise as well as immunity
to aliasing (Droege and Rzeszotarski (1985)).
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2.4.3 System shift-va

In the studies presented above, most authors assumed the system to be
shift-invarlant or isoplanatic, i.e. the shape and size of the PSF was invariant throughout
the image pliane. With real imaging systems, this hypothesis is a weak one (Goodenough
(1977), Schneiders and Bushong {1980), Rossman (1961), Barrett and Swindell (1981)).
Surprisingly only a few studies have been conducted on the subject. Bracewell (1877} and
Verly and Bracewell (1979, 1980) showed that CT scanners are shift-variant due to finite
x-ray beam width, Some of their conclusions regarding the change of PSF shape with
position are:

1) Based on an analytical exprassion of the PSF as a function of radial and angular
position, they determined that the PSF becomes progressively wider in both directions as
distance from the center of the field of view increased.

2) The rate of change being different in the two directions, the rotational symmetry
exhibited in the center is lost at the periphery of the field of view.

3) Scanners that collect data over 360° produce a rotating biur, i.e. the PSF is
independent of angular position when expressed in a rotating coordinate system.

Joseph (1980) and Joseph et al. (1980) determined that aliasing can cause the PSF
to change with position while Kijewski and Judy (1983) concluded that projection
misregistration can have the same effect. Scanners with continuous detectors are
particularly susceptible to registration errors.

2.4.4 Factors affecting blur
The PSF mathematically describes how the image is blurred. If a single meature
were used to summarize this function, it would be the spatial resolution.

There is some controversy in the literature concerning the definition of resolution
{Bassano, 1980; Boyd and Parker, 1983). Throughout this text, we refer to resolution as the
smallest distance between point sources such that their images can be distinguished.

Because resolution is intimately related to the PSF, any factors affecting one will
influence the other. The back-projecting procedure introduces a blur proportional to 1/r
where r is the radial distance from the point source position. This inherent blur Is corrected
by the apodized rho-filter in such a way that the resulting ideal PSF due to filtered back-
projection is the apodizing function, although the type of interpolation can also modify the
PSF. The apodizing function is often referred to as the algorithmic contribution to the PSF
as opposed to the hardware contributions which include: focal spot size, detector aperture
size, samplingrate, as well as pixel size (Glover and Eisner (1979) and (1980), Citrin (1986)).
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The focal spot and detectors are approximately rectangular. The Fourier transform
of such a shaps is a combination of sinc functions which lead to an attenuation of high
frequencies and therefore to increased biur. The sfiect of pixel size is minimal until the pixsl
width becomes larger than the resolution due to other factors. When this situation arises,
the resolution is said to be limited by pixel size. The sampling rate comes into etfect when
the signat is sub~sampled in which case aliasing can modify the PSF.

2.5 Noise in CT images

Noise limits the quantitative use of CT data as well as the capacity of an observer
to detect low contrast objects. it may originate from a number of sources, photon statistics
and electronic noise being the most important. Electronic noise arises in detector,
amplifiers, analog to digital converters etc. This type of noise is not treated explicitly in the
literature. However, Hanson {1979) notes that electronic noise is added to statistical noise
in the projections and is subjected to the same reconstruction process.

We will therefore start by detailing the photon statistics before concentrating on the
characteristics of the noise in CT images.

2.5.1 Phot isti

This section is based on chapters 3 and 10 of Barrett and Swindell (1981) and
chapter 5 of Kak and Slaney (1988), It first describes the amplitude structure of photon

noise then examines how It affects the projection data and how it is propagated through
the reconstruction process.

A photon must undergo a number of events before contributing to the projection
values. it mustbe emitted, traverse amedium, and then be detected. These events are best
described by a Poisson distribution:

A
Pr(N) = 'N—" e (2.13)
whore N is the mean number of photon counts in a given interval of time. The valus of the

measured projection at the i projection angte and " detector I, atfected by noise,
becomes a random variable whose expected value is:

N
< I," > o= -lﬂ'—q' 2.14
j Ny (2.14)

where N'“ is the mean number of detected photons and Ng the number of emitted photons.
The variance of the measured projection is equal to;
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ay, = TUI— (2.15)

With the assumption that all fluctuations ir.1 Nj; that have a significant probability of
occurrence are much less than the mean, the expected value of the measured projection
becomes the value of the noiseless projection (Kak and Slaney, 1988). Therefore, the
expected value of the reconstructed image is that obtained in the noiseless case. However,
its variance at point (x.,y,) ={r.0) is a rather complicated expression:

x
M 1 w2
o (. 0) = n J [ﬂbh’;) ! (x')}.r,-r co:tﬁ-¢3d¢ @18)
{
where a(x,); apodizing function,
M: number of projections,
no{x): linear count density or number of detected photons per unit projection

length.

Equation (2.16) demonstrates thatimage noise dépends onthe reconstruction filter
{the algorithmic portion of the MTF). Furthermore, the shape of the source and detector
have no bearing on the probability of emission or detection. This implies that noise is not
blurred by the scanner aperture function as a signal is, and that the non-algorithmic or
hardware portion of the MTF has no affect on noise (Kijewsky and Judy, 1987).

252 Vari tudi
A number of studies have related the noise variance to various physical and

geometrical factors. Brooks and Di Chiro (1976b) determined the following anaiytic
relationship:

Ty w? :1 D &1
where w: beam width,
h: beam height
D: dose,

The degree of beam collimation controls both the beam width and beam height, while the
dose varies proportionally to tube current,

The predicted dependence of noise on slice thickness and dose agread wall with
the experimental results of Goodenough at al. (1977). Similar relationships were reported
by a number of authors (McCullough (1976), Chesler et al. (1977), Riederer et al. (1978),
Hanson (1979)).



Equation (2.17) clearly brings out the relationship betwaen noise and beam width
which is intimately related to resolution. Anincreasein resolution will lead a cubicincrease
in noise. Furthermore, any attempt at reducing noise, by using a smoothing apcdizing
function as suggested by equation (2.16) for example, will lead to a deterioration in
resolution. The only means of improving resolution without affecting noise is to increase
the dose.

Goodenough et al. (1977) determined that the noise was stationary by measuring
the variance of a water bath phantom at five different locations. In images of composite
objects however, this conclusion does not hold because noise is signal dependent.
Photons traversing tissues with high attenuation cosfficients have a stronger probability of

being delayed than those penetrating low attenuation tissues. Therefore, bone will
generate more noise than soft tissue.

2.5.3 Frequency siructure studies

Simple statistical parameters such as the variance describe only the amplitude
structure of the noise. The noise power specirum (NPS) is a measure of the frequency
distribution of the mean square value of the data (Bendat and Piersol, 1980). !t is
mathematically defined as:

NI’-S‘(”\-'!'.‘.) = ‘/—L— < JJ "('t',“) (.':'..'!!(l'hl'.l d‘_r d:‘. 2 > (218)
A
where n(x,y): reconstructed image containing only noise,
A: area of this image,
< >: expected valus.

in order to estimate the NPS, a uniform object such as a water phantom is scanned.
The central portion of the image is Fourler transformed and estimates of the NPS obtained
by squaring the modulus of the transform (Hanson (1979), Borasi et al. (1984), Faulkner
and Moores (1984), Kijewski and Judy (1987)). Usually a large number of spectra are

averaged to obtain a smooth estimate. As many as 2000 images were used by Kijewski and
Judy.

Although equation (2.18) is useful to experimentally measure the NPS, it does not
reveal how the NPS is related to the image reconstruction process. To do so, a number of
authors {Barrett and Swindasli (1981), Faulker and Moores (1984), Kak and Slaney (1988).
Riederer et al. (1978)) have used the relationship between the NPS and the autocorrelation
function. Realizing that the autocorrelation function and NPS are Fourier transform pairs,
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one can obtain the form of the NPS through the analysis of the autocerrelation function.
This analysis leads to the following expression for the filtered back-projected NPS:

2
|

M
NPS(p) = — o |Ale) (2.19)
it
where M: number of projections,
n: average number of detected photons,
P radial frequency.,

A(p): apodizing function,

Here again the dependence of noise on the reconstruction filter is evident.
Comparison of equations (2.16) and {2.19) shows that the variance can be obtained by
integrating the NPS over frequency.

Equation {2.19) also shows that noise is spatially correlated and that the extent ot
correlation is governed by the apodisation function. The consequence of spatfal correlation
on the computation of the variance was invesugated by Riederer et al. (1978) who
concluded that the variance estimate computed over a region of given size, was a function
of the region shape. For example, the variance computed over long narrow strips should
be higher than for a sauare or circular region. This dependsence on region shape was tested
experimentally on a 4x64 and 16x16 pixe! area. The variance for the rectangular region was
50% larger than for the square.

In a discrete formulation analysis of the NPS, Faulkner and Moores (1984), arrived
at a formulation similar to equation (2.19). They pointed out, as did Wagner et al. (1979)
that the NPS reveals the algorithmic portion of the MTF. Therefore theé portion of the MTF
due to hardware can be obtained by dividing the total MTF by the algorithmic contribution
determined by the NPS.

Kijewski and Judy (1987, 1988) expanded Faulkner and Moores' study to consider
interpolation and 2D sampling. They argued that, although the projections are discrete,
thelr spectrum is continuous, with frequencies extending to Infinity. This is due to
interpolation: a continuous function must be formed for values to be available at the points
where they are required. Because noise is not affected by aperture smoothing, the only
mechanism for removing high frequencies, and thus limit aliasing, is interpolation, a low
pass operation.

They concluded that aliasing can destroy the rotational symmetry of the NPS, an
assumption which was used in the formulation of equation (2.19). They also showed that
aliasing induces an increase in the low frequency components and can cause the DC term
to be non-zero. Simulation studies demonstrated that aliasing effects were substantial for
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nearest neighbor interpolation but minimal for linear interpolation. The measured NPS of
a commercial scanner showed Iimproved rotational symmetry over simulations. This
discrepancy was explained by the use of stationary white noise and parallel-beam
geometry in the formulation of the model. While these hypotheses simplified the modal,
they are not valid for real systems. Indeed, the noise Is neither stationary, since It is
correlated with the input, not is it white (see squation (2.19)). Furthermore, modern
scanners are constructed according to a fan-beam geometry.

2.6 Conciusions

Although a great amount of research has been carried out to characterize X-ray
scanners, we feel that these studied are inadequate for our needs. The goal of most of these
studies was to provide a fast means of comparing different scanners or of monitoring a
given scanner over time. This is quite different from our objective which is to use this
nformation to process the images more effectively.

Theoretical studies are useful in establishing relationships between system
characteristics and scanning parameters such as the apodizing function, beam width,
beam height and so on. But they can only take a small number of factors into account.
Because of this limitation, we chose to measure the system characteristics experimentally.

Both the variance of the noise and its frequency distribution are important inimage
processing. However, noise variance studies fall to reveal how the image reconstruction
filter affects these characteristics. Furthermore, since each manufacturer implements
differently a number of these filters, noise properties vary accordingly. Therefore, to study
the influence of the image reconstruction filter on the amplitude as well as the frequency
content of tha noise, one must turn to frequency analysis techniques.

A number of comments can be made regarding the identification of blur:

1} Many of the non-parametric identification methods developed for general 1D
systems (impulses, steps, wave patterns) were adapted to identify the PSF of X-ray CT
scanners. Howsever, correlation based methods, which are very popular in other fields,
have never been usad for this purpose.

2) Itis generally assumed that CT scanners are shift-invariant. This hypothesis has
been challenged by a small number of researchers who theorstically investigated the affect
of aliasing, projection misregistration and finite beam width on the change of PSF shape
with position. However, we found no evidence of an experimental protocol to measure
shift-variance in the literature.

3) The absence of experimental shift-variant identification method may be
explained by the lack of adequate parametric models describing the shape of the PSF. The
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only efforts in this direction are due to Nickoloff and Riley (1985) who nonetheless assumed
radial symmetry and linearized the proposed Gaussian model.

The first part of this thesis (Chapter 3-R) is committed to overcoming these
deficiencies. in the following chapters (7 and 8) \. ; will examine how the experimentally
obtained system characteristics can be used in the context of image processing.
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CHAPTER 3
IDENTIFICATION OF NOISE CHARACTERISTICS

3.1 Introduction

It is very common in image processing to assume the presence of Gaussian white
noise with a given variance (Gonzalez and Wintz, 1987; Lunsher and Beddoes, 1986;
Nalwa, 1987; Canny, 1986). Yet the outcome of many algorithms is influenced by the
frequency structure of the noise, and deviation from the hypothesis of white noise can be
detrimental. Thersfore, before processing CT images, It is Important to gain some
knowledge of both the variance of the noise and its frequency distribution. Fortunately, the
noise power spectrum (NFS) encompasses information about both these entities.

The goal of this chapter is therefore to estimate the NPS of a CT scanner, and 1o
quantify the changes of noise properties due to image reconstruction filter and slice
thickness. Section 3.2 describes the materials and methods used to achisve this goal.

Results are presented and discussed in section 3.3 while section 3.4 concludes the
chapter.

3.2 Methods

All data in this and subsequent chapters were generated with a Philips, third
generation Tomoscan CX scanner. Scanning parameters included: 120 kV tube voltage.
200 mA current, and a 4.5 s scan time for 540 projections. A circular imaging field of view
(FOV) of 200 mm In diameter was reconstructed onto a 320x320 Image, providing square
pixels of 0.625 mm In side. Smaller pixels were obtained by interpolating the projections

prior to back-projection using the zoom option. This reduced the FOV by a factor equal
to the zoom factor.

Figure 3.1 contains an image of section D of the Philips performance phantom. It
consists of a plastic cylinder filled with water representing a homogeneous object. Images
of the phantom were reconstructed with three different apodizing functions: head
smoothing (0). head edge enhancement (1), and high resolution (4) in order to investigate
the effect of the filtered back-projection algorithm on the NPS. The images were also
produced with a slice thickness of 2, 5 and 10 mm.

A 128x128 pixel area in the center of tha images provided the data required to
estimate the NPS. The overlapped, averaged, periodogram technique was used for this
purpose (Oppenheim and Schafer, 1975, and equation 2.18). The 128x1<8 region was
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Figure 3.1 Image of section D of the Philips performance phantom

Section D of the phantom consists of a water filied plaslic cylinder. A 128x128
pixel region In the center of the Image was used for NPS computation.

subdividedinto 32x32 pixel subregions overlapping by 24 pixels in both the row and column
directions. The data in each subregion was Fourler transformed and averaged.

Dus tc the nature of the signal, it is very difficult to obtain a smooth estimate of the
2D NPS from a singlie image. One way of dealing with this problem is to average the
estimates obtained from a large number of images. Kijewski and Judy (1987) opted for this
alternative and used as many as 2000 images for a single estimate. We chose a second
option which consisted of smoothing the NPS by averaging the power contained in
concentric annull centered onthe DCterm. A single Image was necessary for each estimate
thereby greatly reducing processing time compared to the previous method.

This method is based on the hypothesis that the spectra are radially symmetrical.
We justify this assumption based on the results of Kijewski and Judy (1987, 1988). In a
serles of simulations, these authors determined that allasing could destroy the rotational
symmetry of the NPS. However, they observed that the degree of aliasing, which depends
on the interpolation method, was minimal for linear interpolation. According to the
information provided by the manufacturer (Philips, 1988), ihe Tomoscan CX uses such an
interpolation moce. Furthermore, Kijewskl and Judy observed that the NPS estimated with
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data obtained from commercial scanners showed improved symmaetry when compared to
the results of the simulations. Under these circumstances we therefors felt justified to
assume rotational symmetry.

The NPS was characterized in terms of total power, maximum power. the frequency

corresponding to the maximum power, fnax. and the frequency below which 890% of the
power was located, fgge, .

3.3 Results

Due to the NPS smoothing technique, our results are presented in the form of 10
spectra. Figure 3.2(a) shows the NPS obtained using the three filters and a slice thickness
of 10 mm. i is evident that there was substantially less noise at all frequencies with filter
0 than with filter 4, the smoothing and high resolution filters respectively. Table 3.1 shows
that the total noise power obtained with filter 4 (281 205) was more than five times that
exhibited by filter 0 (53 907). Furthermore, the noise was concentrated at lower spatial
frequencies with filter 0 (fmax = 0.25 cycles/mm and fgge, =0.60 cycles/mm) than with filter
4 (fmax = 0.50 cycles/mm and fggo, = 0.95 cycles/mm).

Figure 3.2(b) illustrates the NPS obtained with filter 0 and slice thickness of 2, 5 and
10 mm. The magnitude of the noise power decreased progressively with increasing slice
thickness but there was no significant changs in the frequency distribution, neither {5, nor
fage, changing. The other two filters behaved similarly.

Imaging mode and slice thickness both influence total noise power which is equal
to the integral of the NPS. For a constant slice thickness, images produced with the high
resolution filter (filter 4) were noisier than those created with the head edge enhancement
or smoaothing filters (filters 1 and 0 respectively). For any filter, noise power diminished with
increasing slice thickness as preaicted by equation 2,17 indicating that averaging Is
performed along the axis perpendicular to the piane of image formation.

Differant combinations of image reconstruction filter and slice thickness may yleld
similar noise power levels. For example, filter 4 with a slice thickness of 10 mm and filter
1 with 2 slice thickness of 2 mm both generate total power of about 250 000 (see table 3.1).
Howaver, this does not guarantee that the output of an image processing algorithm would
bethe same when presented with images produced under thesa conditions. Indeed, many
algorithms, as well as human perception, are sensitive to noise frequency distribution.
Edge detectors are particularly affected by high frequency noise since edge information

is present in the higher signal frequencies. This subject will be discussed at more length
in Chapter B.
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Figure 3.2 1D noise power specira

The spectra were computed by averaging the values of 2D spectra contained in
concentric rings centered on the DC term. (a) eftect of reconstruction filter, the slice
thickness for all filters was kept constant at 10 mm (b) effect of slice thickness for filter
0.
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filter thickness fmax power max power fo0% power fotlal power

(mm) {cycles/mm) (cycles/mm)

4 10 0.50 20 804 0.95 291 205
1 10 0.35 7 063 0.70 77 478
0 10 0.25 6 331 0.60 53 907
0 0.25 14 152 0.60 108 116
0 0.25 30148 0.60 239 110

TABLE 3.1 Estimates of NPS parameters

fmax power: frequency cofresponding to maximum power

% power: frequency below which 90% of the power s contained

total power: sum of power terms contained at each fraquency of full 20 NPS

3.4 Conclusions

The goal of this chapter was to quantitatively investigate the nolse present in x-ray
tomograms produced under different conditions of beam collimation, which defines the
slice thickness, and image reconstruction filters,

The noise power spectrum analysis showed that both thickness and filter influence
total noise power and hence the variance of the noise. The total power exhibited by the high
resolution filter (filter 4) combined with a thickness of 10 mm was approximately five times
greater than for the smoothing filter (filter 0). Furthermore, decreasing the slice thickness
from 10 mm to 2 mm resulted in an almost fivefold increase in noise leve!s for filter 0.

The frequency structure was independent of slice thickness but greatly influenced
by the reconstruction filter. The smoothing nature of filter 0 was emphasized not only by
lowsr levels of maximum and total power for a given beam collimation, but by a
concentration of power at lower frequencies as indicated by smaller values of fax and fgge,
when compared to the other filters.
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CHAPTER 4
PARAMETRIC MODELLING OF THE PSF

4.1 Introduction

One of the hypotheses underlying many image restoration algorithms is that
images are produced by a shift-invariant system. However, the theoretical work of Verly
and Bracewell (1977, 1979, 1980) indicated that this assumption does not hold for real CT
systems. Therefore, before restoring images from a given scanner, its shift-variance
should be estimated.

In order to experimentally quantify the change in PSF shape with position, one must
be able to parametrically describe this shape. However, a review of the CT system
identification literature revealed a scarceness of parametric models of the PSF.

The first goal of this chapter is therefore to develop and evaiuate non-linear,
anisotropic models of the PSF. The second goal aims at simplifying model interpretation
by relating the parameters to a simple physical quantity: resolution. The methodology is
described in section 4.2 while the results are presented in section 4.3 and discussed in
section 4.4, Finally section 4.5 concludes the chapter.

4.2 Methods

The use of a thin metallic wire as an input signal for non- paramedtric identification
of the PSF presents a number of advantages:

1) it is localized and therefore constitutes a good signal for the analysis of
shift-variance.

2)itis radially symmaetric. Symmetry properties can be deduced from a singleimage
as opposed to an edge whose orientation must be modified and many images analyzed
to obtain this information.

For these reasons, images of the wire in the resolution section of a commercial
phantom provided the data for the parametric models.

The Gaussian model has been suggested in the literature to describe the shape of
the PSF. To our knowledge however, this model has not been thoroughly tested.
Furthermore, certain features of the PSF produced with the high resolution fiter cannot be
represented by the Gaussian function. This encouraged us to generate a new model which
we called the damped cosine function. Both models inherently assume a background level
of 0 which is not always the case. A new parameter was therefore introduced to take this
tactor into account.
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The blurring characteristics are best appreciated in the frequency domain,
Parametric MTF were derived analytically for both models and compaied to
non-parametric estimates. The models also provided measures of resolution which ware
compared to non-parametric and subjective criteria.

+2 1 Naon- ic identificat

All data in this chapter were generated by imaging section B of the Philips
performance phantom shown in Figure 4.1. Scanning parameters included a tube voliage
of 120kV, acurrentof 200 mA, and ascan time of 4.5 s necessary to gather 540 projections

Figure 4.1 Image of seclion B of Philips perormance phantom

Section B of the phantom was used for PSF and resolution analysis. The arrow,

which has been added on the Image of the phantom, points 1o the metallic wire
simulating an Impulse.

The effect of the apodizing function on the blurring characteristics was investigated
by reconstructing the images with three filters: head smoothing (0), head edge
enhancement (1) and general high resolution (4). The effect of noise on the parametric

model fitting procedure was studied by producing images with a a slice thickness 0t 2. 5
and 10 mm.

Subjective measures of the system’s spatial resolution were determined from
images of periodic bar patterns found in the center of the phantom (see Figure 4.1). The
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inputfor the non-parametric Identification ofthe PSF consisted of a 0.35 mm diameter steel
wire positioned above the bar patterns.

4.2.2 Parametric models for the point spread function
Gaussian modsel: A first parametric model of the scanner PSF was obtained by fitting a 2D
Gaussian function to the data contained in a region surrounding the image of the wire.

Regions of 16x16 and 64x64 pixels were used for the 200 mm and 50 mm field of view (FOV)
respectively. The Gaussian model is given by:

“pix-1,P -piy-1.7?
ep( )ep( ) +

PSFgx.y) = N B (4.1)
where x row direction

y column direction

N maximum value of the function

ety  xandy coordinates of the maximum

PxpPy xandy direction shape parameter

B average background value.

The shape parameters, py and py, determine the rate of decay of the exponential.
The higher the value of p, the faster the PSF decays, and the greater the resolution. The
relationship between resolution and mode! parameters will be developed in mnre detail in
section 4.2.4,

An iterative Gauss-Newton, nonlinear least-square fitting algorithm (NAG (1)
svoroutine e04fde) was employed to determine the model parameters providing the best
fit to the wire image data. This algorithm required relatively good initial parameter
estimates. These were obtained as follows:

1) The maximum value of the data was used as an estimate of N and the
corresponding pixel jocation for t, and t,.

2) Model linearization and separation of variables then provided a means of
estimating the shape parameters. This was achleved by scanning the data independently
in the row and column direction passing through the maximum. Thus, when scanning in
the column direction with x=t,, the exponential term in x becomes 1 and equation (4.1}
simplifies to:

PSFtuy) = Ne P (4.2)

1- NAG FORTRAN Library Mark 13, Numerical Algotithm Group, NAG inc., 1101 31st Stres!, Suite 100, Downers Grove,
lil. 80515-1263, USA.
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Taking the square root of the natural logarithm of equation (4.2) gives:

N
l —_ = . 4
‘/ n STy Py} (4.3)

Thelnitial estimate of p, was obtained from the slope of this linear relationship (NAG
subroutine f04jge). Parameter p, was estimated by scanning in the row direction passing
through the maximum and applying a similar procedure.

The quality of fit was assessed in terms of the variance accounted for by the model:

M N
> S ( PSFandinf) - PSFudyiz) P

i=1j=1

VAF = 100 |1- — % (4.4)
2. 2. PSP i.j)
i=1)=1
where PSF,.G.)) observed CT value at pixel location i,

PSF (3 X) CT value at y;, x; predicted by parametric model
i pixel row index

J pixel column index
X) x coordinate of pixel column |
Vi y coordinate of pixel row i

Since the fitting procedure minimizes the residues, a large value of VAF is a sign of good
fit.

Behavior of Gaussian mods!l: Three tests were devised to establish how wsll the Gaussian
model behaved under controlled conditions.

1) The repeatability of the Gaussian parameter estimates was evaluated by Imaging

the wire 16 times without changing the imaging modality (filter 0, thickness of 10 mm) nor
the wire position.

2) The importance of parameter B and its influence on estimates of parameter N,

p and t was verified by renewing the repeatability test and omitting parameter B from the
Gaussian model.

Stmulations were also carried out to study the effects of varying levels of
background as well as the combined effect of non-zero background and varying region
size. A series of PSFs of different area (16x16, 32x32, 48x48 pixels) were generated using
results from the repeatability test as numerical values for N, p, and py. The PSF were
centered on the region thereby defining t, and t, according to region size. A background

- ™
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value equalto +=30%, +20%, *10% of N was added to the simulated PSF prior to fitting
the Gaussian model, with and without parameter B, to the data.

3) The accuracy of the estimates of t, and t,, the position of the maximum value of
the PSF (not to be confused with the maximum value in the data} was alsc assessed. A
precision micrometer attached to the phantom was employed to displace the steel wire in
16 different locations forming a 4 by 4 grid using an increment of 0.080 £ 0.005 mm in the
row and column directions.

Damped cosine modef: PSFs acquired with the high resolution filter (filter 4) exhitnad
negative tails which couid not be represented by a simple Gaussian model. A more
complex damped cosing model, however, does describe this feature;

-pix -1 -piy-ty
¢ 4

‘cm(c{.(.r-!_‘.)) + B
(4.5)

")SEI'I‘(xv )') = N Co"(d.l(-r = I\))

where N, p, t, and B have the same significance as for the Gaussian model, and
dy and d, are normalized spatial frequencies ( radians/mm).

The fitting procedure was the same as for the Gaussian model with the addition that
initial estimates of d, and d, were derived from the position of the first zero-crossing in the
row and column directions respectively. The first zero-crossing corresponds to 1/4 of the
cosine period.As with the Gaussian model, the VAF provided a measure of quality of fit.

4.2.3 Modulation trapsfer function
To provide further insight into the modsls, non-parametric estimates of the MTF
were compared to parametric expressions.

The Fourier transform of the PSFs reconstructed onto a 50 mm field of view (FOV)
provided non-parametric estimates of the MTF. These estimates were normalized with
raspect to maximum DC value since the volume under the curve of spatial distribution of
CT numbers for the wire deviated from the ideal value of 1.

Parametric expressions for the MTF were derived by computing the analytical
Fourier transform of the parametric models. For the Gaussian function, the expraession is:

MITTF(uv) = e Gerfpy e valpy (4.6)

and for the damped cosine model:
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(4.7)
where d'y, d'y  spatial frequency (cycles/mm) in x and y directions.
u,v spatial frequency variables (cycles/mm) in x ands y directions

The parameters py. Py, dx, and dy are the sarne as for the corresponding PSFs.

4.2.4 Resolution

We obtained and compared four different measures of resolution:
1. a subjective technique based on periodic bar patterns,
2. the {ull width at half maximum (FWHM) of the PSF,
3. the half width at first zero crossing (HWZC) of the PSF, and
4. the inverse of the MTF cut-off frequency (1/fc).

Subjective technique: The manufacturer suggests a subjective procedure using the sets
of periodic objects contained in Section B of the phantom. Each set consists of five pegs
having sides of length L and the same edge-to-edge separation L; six sets of pegs (L=
1.25, 1.00, 0.85, 0.75, 0.65, N.55 mm.) are scanned. The image is rendered binary by
manipulating the CT number to grey scale mapping. The viewing window width is set to
1 and the window level is varied until 5 distinct peaks appear. The edge to edge distance

of the most closely spaced set of pegs that can be resolved in this way provides a measure
of resolution.

EWHM. Whereas the previous method is based on square periodic objects, the FWHM
makes use of impulse like objects. The rationale is as follows. By definition, if the imaging
system Is linear, the output, or totalimage, will be the sum of the individual points or PSFs.
When two point sources are far apart, the sum is two distinct functions, e.g. Gaussian. As
the point sources are moved closer, the (Gaussian) functions imerge (are summed) and the
peaks become less distinct. When the distance separating the point sources is equal to
the FWHM, resolution becomes marginal.

The FWHM can be measured directly from the CT image or derived from the
Gaussian mode! parameter p. If the first option is chosen, a binary image of the wire is
formed by selecting a viewing window width of 1 and a window level equal to half of the
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ditference between maximum and minimum CT number within the data set. The total width
of the visible pixels constitutes the FWHM. When the FWHM is estimated from the Gaussian
model paramster f, the following relationship Is used:

A-tn 0.5)"
p

FWHM = (4.8)

HWZC: The argument behind the use of the HWZC as a measure of resolution is the same
as for the FWHM. The PSF must however exhibit a zero crossing, i.e. it must take on both
positive and negative values. It may be shown that for the damped cosine model, the
HWZC is given by:

2
PO = =
HWZ( o (4.9)

[nverse of the cut-off frequency: The inverse of the MTF cut-off frequency, 1/f.., provides
a frequency domain measure of resolution. In practice, f is defined as the frequency at
which the MTF decreases to some arbitrarily small value, MTF_, generally taken as 0.05
or 0.10. Estimates of f, can be obtained directly from the non-p-rametric MTF and from
the Gaussian model using the relationship:

_ pl=InMTF, yl/2
i

I (4.10)

4.3 Results

The Gaussian function described the shape of the PSF extremely well as the model
accounted for more than 99% of the variance in the data. The standard deviation of
parameter estimates were very small further increasing our confidence in this model.

Based on the VAF, the Gaussian model seemed a reasonable choice to describe
the high resolution PSF. However, a comparison of non- parametric and parametric MTF
showed that the damped cosine model was more appropriate.

Omitting parameter B from either model hardly affected results since the average
background value was close to the expected value of 0. Nonstheless, simulations showed
that this omission can be detrimental as the average CT value of the material surrounding
the wire differs from 0, especially in the presence of positive background values.
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Measures of resolution varied greatly with results of the subjective method

suggested by the manufactured clearly standing out. Variations within given methods
could also be observed.

4.3.1 Point spread function

Effect of scanning parameters: We will first examine how the reconstruction filter and slice
thickness aftect the shape of the PSF anad the model behavior.

Figure 4.2 depicts the non-parametric PSFs estimates obtained for the three fliters
with a slice thickness of 10 mmwhile table 4.1 summarizes the results of fitting the Gaussian
model to thess estimates and to those acquired with a slice thickness of 2 and 5 mm,

filter thickness N Px 1y Py ty VAF
{mm) (CT {pixel-) (mm-~1) - (pixel) |{pixel~!) (mm-1) (pixel) (%)
number)
0 2 1303 0.700 1.120 9.01 0.726 1.181 7.74 99.88
0 1325 | 0706 1430 903 | 0725 1159 7.75 | 89.91
0 10 1331 0.703 1.124 9.03 0.721 1.154 7.74 99.94
1 1810 0.805 1.2688 9.02 0.848 1.357 7.76 95.65
1 1828 0.808 1.292 8.03 0.845 1.352 7.75 98.71
1 10 1835 0.806 1.290 8.03 0.842 1.347 7.76 88.75
4 2932 0.956 1.530 8.03 1.042 1.667 7.76 88.16
4 5 2979 0.961 1.537 8.03 1.046 1.673 7.76 99.25
4 10 did not converge

TABLE 4.1 Gausslan modsl parameter estimates
(FOV=200mm, 16x16 region)

The following comments can be made:

1) The shape of the PSF changed significantly with the reconstruction filter but was
insensitive to the slice thickness. The PSF was broadest for the smoothing filter, filter O,
Indicating that the reduction in the noise, described in the previous chapter, was achieved
at the expense of increased blur.

2) Noise however, did seem to affect the quality of the fit. Indeed, the VAF obtained

for a given reconstruction filter increased with increasing slice thickness, i.e. decreasing
noise.
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measured data

————— Gaussian model

16 31
distance {pixels)

[T

Figure 4.2 Measured PSF

Non-parametric point spread function oblained by imaging a thin steel wire with :
{a} tilter 0, (b) filter 1, and () filter 4. (d) Filter 4 exhibits negative talls as shown inthe
cross sectional view through the maximum. This undershoot cannot be accounted for
by the Gaussian model.
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3) As clearly seen in the cross-sectional view of the PSF shown in figure 4.2 (d),
the Gaussian model failed to predict the negative values of the PSF obtained with the high
resolution filter. This is also reflected in the slightly worse values of VAF compared to the
other filters for a comparable slice thicknass.

4) The Gaussian model failed to converge for filter 4 with a slice thickness of 10mm
and a FOV of 200 mm. ltis possible that the undershoots were lost in noise for a thickness
of 2 and 5 mm. However, for 10 mm, when less noise is present, the oscillation could be
too strong and/or too few points are avallable for convergence to occur. This last
supposition is supported by the fact that convergence did occur when the number of pixels
was increased by a factor of 16 (reconstruction FOV =50 mmj}.

5) Because the Gaussian function is inherently positive, it cannot model
undershoots observed with the high resolution filter. In contrast, the damped cosine model
is able to predict these negative values due to the presence of the cosine term.

Table 4.2 compares the parameter estimates obtained by fitting both models to the
same high resolution PSF. Although the improvement ir fit was only marginal with regard

to the VAF (0.43%), it has very significant effects on estimates of the MTF and resolution,
as will be discussed below.

It is important to note that that estimates of p, and p , obtair.=: 3 with the damped
cosine model were lower than for the Gaussian model which Implies a slower decay rate.
This is due to the presence of the cosine term which acts concurrently with the exponential
term to dampen the PSF.

6) Both models predicted the same position of the maximum, represented by
parameters t, and t,. Furthermore, the results of the positional accuracy test, in which the
wire was imaged at different locations, indicate that for a 200 mm FOV (pixel size of 0.625
mm), the difference between the measured and estimated wire position was no greater
than 0.013 mm or about 2% of pixel width.

Repeatability of Gaussian parameters; Table 4.3 presents the results of the repeatabitity
test, in which the wire was imaged 16 times under the same conditions.The standard
deviations of all parameters were very small indicating that the parameter estimates were
reliable. it should be noted that the values of p, and p, differed by a small but statistically
significant amount {level of significance smalier that 0.01). This difference suggests that
the PSF was slightly wider in the row direction than in the column direction at the given
position of point source for which the data were collected, i.e. approximately 51.3 mm
above the center of the FOV (see figure 4.1)
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parameter units gaussian damped cosine

model model

N {CT number) 2990 2886
Px (pixel-1) 0.246 0.174
(mm-1) 1.577 1.116

1y (pixel) 16.09 16.09
dy {rad/pixel) - 0.213
(rad/mm) - 1.364

Py {plxet-1) 0.256 0.187
(mm-1) 1.638 1.197

ty (pixel) 16.05 16.05
dy (rad/pixel) - 0.216
(radfmm) - 1.384

VAF (%) 99.45 89.88

TABLE 4.2 Comparison of parameters for Geussian and damped cosine models
(filter 4, thickness = 10mm, FOV=50mm, 31x31 regicn)

WITHOUT
B

mean

standard
devlation

WITH B
mean

standard
deviation

N Px Py 1y B
(CT  (plxer™Y (mm-1) (pixel) (pixel™’) (mm-1) (pixel) (CT
number) number)

1319 0.7050 11280 8.2784 0.7178 1.1485 B8.1336 -
3 0.0010 0.0016 0.0598 0.0009 0.0014 0.0218 -
1318 0.7065 11304 82784 0.7186 1.1488 B.1335 1.
3 0.0010 0.0016 0.0598 0.0012 0.0019 0.0282 0.2

TABLE 4.3 Repeatablilty of Gausslan model parameters
(fiter 0, thickness = 10mm, FOV =200mm, 16x16 region)
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Parameter B: Table 4.3 also indicates that parameter B had little influence on the other
parameters, There was no influence on the positional parameters at all and the difference
in shape parameters was less than 0.2%. This behavior is not surprising since the average
background value, 1.4 CT units or about 0.1% of N, was very closs to 0.

However, simulations showed that parameter B becomes important as the average
background value drifts away from 0. To study this effect, PSFs were generated using the
average values of the repeatability test (parameter B included to the model).

Table 4.4 contains the estimates for the shape parameters in the case where B was
omitted from the model for a region size of 32x32 pixels. The estimates deviated more and
more strongly from actual figures as the average background value moved away from 0.

Background value N Px Py
{%N) (CT units) {CT units) {pixel-) {pixel- 1)
-30 -396 933 512 489
-20 -264 1065 474 .482
=10 -132 1197 405 410
+10 +132 482 .109 108
+20 +264 384 022 .022
+30 + 396 515 016 .108

TABLE 4.4 Parameler estimales obtained with Gaussian mode! in absence of B
and with non zero background level

(Gaussian model parameters: N=1318, p,=0.353 pixel-1, p, =0.359 pixel-1)
(FOV =100mm, region size = 32x32 pixels)

For a given absolute deviation from zero background, estimates were much worse
when the background was positive. This is also illustrated in figure 4.3 which illustrates a

cross-section through the central portion of the PSF with a background of 132 and -132
CT units.

Furthermore, estimates were much more sensitive to region size in the presence
of positive background as values in table 4.5 can attest. This table contains the shape
parameters estimated under the same conditions as those described in table 4.4 but the
absolute background deviation was kept constant and region size varied.

The reasons for greater sensitivity to positive background will be discussed in
section 4.4.1,
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Figure 4.3 Effect of non-zero background on Gaussian model without parameter B
8) posltive background level of 132 CT units b) negative background of -132 CT units



B =-132 CT units B=+132 CT units
size N Px Py N Px Py
{pixel?) (CT units) (pixel-) (pixel-1) {CT units) {pixel-1) (Pixel M)
16x16 1197 .409 416 1234 270 274
32x32 1197 .405 410 482 109 109
48x48 1197 405 410 464 014 015

TABLE 4.5 Effect of region size and non-zero background on Gaussian
parameler estimates in absence of B

4.3.2 Modulation transter function

The manner in which the reconstruction filter modifies an image is more easily
interpreted fromthe MTF than from the PSF. Figure 4.4(a) shows the non-parametric MTFs,
for positive frequencies in the row direction, corresponding to the PSFs in figure 4.2 . Filter
4, the high resolution filter, exhibited the highest cut-off frequency and will thus produce
images with the sharpest edges but at the cost of increased noise, as noted in the previous
chapter. In contrast, filter 0 had the lowest cut-off frequency and so will produce images

having the most blur but least noise. Filter 1 provides a compromise between these two
extremes.

The Gaussian parametric estimates of the MTF (equation (4.6)) for filters 0 and 1
were very similar to those obtained by Fourier transforming the PSF. The diftference
bstween parametric and non-parametric estimates was less than 0.01, or 1% offull scale.
Parametric estimates of the MTFs for filters 0 and 1 are not shown in figure 4.4 since they
cannot be distinguished from the nonparametric estimates.

The situation was somewhat different for filter 4. The parametric MTF obtained
using the Gaussian model {equation (4.6)) was quite different from the nonparametric
estimate as showninfigure 4.4(b); discrepancies as large as .12 (or 12% of full scale) were
observed. The MTF estimate provided by the damped cosine model (equation (4.7)) was

much closer to the nonparametric MTF with 2 maximum difference of 0.05 (or 5% of full
scale}.
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Figure 4.4 Modulation fransfer functions

Modulation transfer functions along the positive frequency axis in the row direction. (a) non-
parametric MTFs delermined by computing the 2D Fourier transform of the wire inaged by
all thrae filters (b} comparison of non-parametric MTF for filter 4 and analytically derived
MTF for both the Gausslan and damped cosine m :4els.
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4.3.3 Resolution

Tablz 4.6 presents estimates of the scanner resolution obtained using the four
methods described above and a varlety of measurement conditions. The first five rows are
based on the FWHM measured either directly from the image of the steel wire or by using
equation (4.8) and the parameters of the Gaussian fit in the row direction found in table
4.3. The inverse of the cut-off frequency was obtained either from equation (4.10) based
on the Gaussian model, or read directly off the non-parametric MTF. The HWZC was
estimatec or the high resolution filter with equation (4.9) derived from the damped cosing
model. The last estimates were obtained using the subjective method suggested by the
manufacturer. The wide discrepancies in estimatss are the subject of discussion in section

442,
RESOLUTION filter O filter 4
{mm) pPg=1.13 pg=160
gaussian model (equation {4.8)) 1.48 1.04
from Image FOV=200mm centered 1.88 0.63
FWHM (pixel ™ 0.63 mmy) off-centered 1.25 1.25
from image FOV=50mm centered i.42 1.09
{pixel ™~ 0.16mm) oft-centered 1.56 .94
gaussian model MTF mife=0.1 1.84 1.29
1/te (equation (4.10)) mif. =0.05 1.61 1.13
non parametric mit;=0.1 1.82 1.35
MTF mtf, = 0.05 1.62 1.21
d=1.36
HWF2Z damped cosine mode) (equation (4.9}) - 1.15
periodic objecls 0.75 0.60

TABLE 4.6 Comparison of resolution estimates
Pa: parameler p from Gaussian modsl (mm-1)

d: parameter d from damped cosine model (rad mm-1)
1Mfe:  reciprocal of cui-off frequency (mm)
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4.4 Discussion

The parametric models presented in this study differ from those proposed in the
literature in a number of ways: they are non-linear in their parameters, they do not assume
radial symmetry and they can account for non-zero background. Furthermore, our
damped cosine function can model the shape of the MTF due to the high frequency filter
throughout the whole frequency range better than the model proposed by Nickoloff and
Riley (1985).

Differences in object shape can explain the discrepancies in resolution estimates
obtained with the subjective method compared to the other criteria. The manner in which
a method Is implemented and its accuracy are also responsible for variations in the results.

4.4.1_Parametric models

We are not the first to propose parametric models to describe the shape of the PSF
or MTF. Indeed, Nickoloff and Riley (1985) also proposed the Gaussian function for this
purpose. However, our approach is novel in many aspects: it is non-linear in its
parameters, it does not assume radial symmetry, and finally, a parameter taking the

background value into account was added to the model. Furthermore, a new mode!, the
damped cosine function, was created. These points will now be discussed in more detail.

impontance of non-linear model: The shape of the PSF for the smoothing and edge
enhancement filters (filters 0 and 1), and that of the corresponding MTFs, is well described
by the Gaussian model. Nickoloff and Rilsy (1985) also formulated a Gaussian mods! but
they assumed radial symmetry and linearized their model, arguing that the shift parameter
only atfects the phase term of the Fourier transform and not its magnitude. Nickoloff and
Riley proved this claim for the continuous case (see appendix in Nickoloff and Riley). We
conducted a series of simulations to verify its validity for sampled data. We generated
various PSF usirg the Gaussian model and shifted the position of the PSF by varying
parameters 1, and t, (position of the function maximum) in increments of 10% pixe! width.
For filter 0 and a simulated FOV of 200 mm, we found that parameters p, and py were
under-estimated by 13% when the wire was displaced by half a pixal.

Basad on these simulations, we concluded that a linearized model can lead to
negative biases in shape parameter estimatss in the presence of sampled data. The bias
increases as the center of the wire is moved away from the center of a pixel. This artefact
is avoided by using a non-linear model formulation.
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High resolution filter: Even if the Gaussian model explains over 88% of the variance of the
PSF data obtained with the high resolution filter (filter 4). it fails to predict the negative
values. Furthermore, examination of the MTF revaals that this model only accounts for part
of its frequency response behavior. The shape of both the PSF and MTF produced by filter
4 are better represented by the damped cosine model.

The Increase in MTF at higher frequencies exhibited by the high resolution filter can
be explained as follows. Equation (4.7) tells us that the MTF is the sum of two shifted
Gaussilans which decay more rapidly than does the pure Gaussian model. Table 4.2
confirms this : values of the shape parameters p are smaller for the damped cosine modsl.
One must keep in mind that, contrary to the PSF, a decrease in shape parameter causes
a faster decay of the MTF (see equations (4.6) and {(4.7)). In the low frequency range, the
sum of the 2 Gaussians results in a larger MTF. However, the tail of the Gaussian centered
in the negative portion of the spectrum has littie effect on the sum in the high positive
frequencies (and vice versa). Because these Gaussians decay more rapidly, the MTF is
smaller at high frequencies.

The enhancement properties of the negative tails in the middle frequency range
and damping of high frequencies were also noticed by Nickoloff and Riley (1985), who
modelled the impulse response of the high resolution filter as a pure Gaussian PSF with
a damped harmonic oscillation at its edge. Although their model explained the increased
MTF in the mid frequency range, its high frequency behavior deviated from what could be
expected. Our damped cosine model explains the shape of the MTF throughout the whole
frequency range.

Radial asymmetry. We expected the PSF to demonstrate radial symmetry, or isotropy, and
thus anticipated equal values for py and py. Despite this we found values of p, to be
consistently greater than p,. in atheoretical study of the effect of finite X-ray beam size on
the shift-variant nature of CT scanners, Verly and Bracewell (1873) showed that the radial
symmeetry, or isotropy, exhibited by the PSF in the center of the FOV was lost as the point
source was moved outward. They also showed that the degree of anisotropy increased
with the distance from the center of the FOV. Moreover, the PSF was wider in the angular

than in the radial direction when the position of the point source was expressed in polar
coordinates.

We belisve our models to be sensitive enough to detect this anisotropy. In the tests
outlined previously, the point source was placed directly above the center ofthe FOV ( see
figure 4.1 ). In such a configuration, the y and x axes correspond to radial and anguilar
directions respectively. Thus a value of p, greater than p, indicates a PSF wider in the
angutlar than in the radial direction, results consistent with the theoretical predictions of
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Verly and Bracewell. Furthermore, one must bear in mind that anisotropy does not
preclude axial symmetry: profiles taken through the center of the PSF along a diameter are
symmetric about an axis located at the function's maximum, but these profiles change for
different diameters.

Effectof parameterB: By definition, the CT value of water is zero. Therefore, atleast in theory,
parameter B could be omitted from the models (equations (1) and (4)) since the wire is
surrounded by water. However, in third generation scanners, x-ray scatter produces
cupping. Therefore, the average background value surrounding the wire could change
depending on the position of the wire and the size of the FOV.

This situation can lead to erroneous MTF estimates as experienced by Bischof and
Ehrhardt (1977). Their nen-parametric MTF estimates rose significantly above the value
of 1.0 at low spatial frequencies before regaining their expected values at higher
frequencies. This was due to negative mean CT values for the water bath surrounding the
point sources. Furthermore, they found that the magnitude of the error increased with size
ofthe region surrounding the wire. Subtraction ofthe mean water bath CT level in the region
surrounding the input resulted in proper estimates. The proper background CT level was
chosen as the one which eliminated the dependency on array size. It was evaluated using
a statistical convergence method.

Our own results indicated that the average CT value of the water surrounding the
wire was 1.4 CT units based on estimates of paramster B. Belng so close to 0, it had very
little bearing on the other parameters. However, as with the experimental study by Bischof
and Ehrhardt (1877), our simulations showed that neglecting the average background
value can be detrimental and lead to meaningless results,

The simulations alsu showed that this trend is more sensitive to a positive than to
anegative background lsvel. inthe case of least square fitting, two factors can explain this
situation: firstly, all values of a Gaussian function are positive and secondly, the tails of the
function tend to zero. In the case of a negative background, the model concentrates on
the central, positive (and most significant) portion fo the data. Because the mode!
discounts the negative values, and is therefore relatively Insensitive to region size (see
Table 4.5), it is able to track relatively accurately the central portion, whiie allowing its tails
to fall to zero. However, the rate of decrease is greater for the modelled data. i.e. the
modelled PSF is thinner. As a consequence, values for p, and py raise as the background
becomes increasingly negative.

When the background is positive, the model must contend with the positive tails
which compete with the central portion. As aresult, the modelled PSF broadens, i.e. values
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of p decrease. This trend is accentuated not only with an increase in background level, but
also with an elongation of the tails.

442 Resolution

Observation of table 4.6 reveals that estimates of resolution vary widely depending
on how it is evaluated. Even with a given estimation method, FWHM based methods for
example, large variations can arise depending on how the method is applied. However, the
factor which seems to affect the results most is the shape of the objects on which the
measurements were performed. indeed, the first three methods (FWHM, HWZC, and 1/1;)
are based on the approximation of an ideal impulse while the subjective method requires
a set of periodic objects simulating square wave patterns. In the following paragraphs, we
will explain the intra- and inter-method differences as well as discuss the accuracy of the

different measurement approaches. However, we will start by discussing how object shape
can influence results.

Effect of object shape: Aithough estimates vary widely, it is clear that the values obtained
by imaging periodic patterns stand apart from the other measures derived from the point
object. This discrepancy resides both in the nature of the method and of the objects being
imaged. Figure 4.5 lllustrates one dimensional objects of different siza and separation
along with their frequency content and their image produced by a low pass system. The
square pegs of size L separated by L are represented by a square wave of period T=2L
(figure 4.5(a)). Thelr frequency spectrum presents a peak at a frequency of 2p/T = p/L and
every odd harmonic thereafter. As long as at least one of these peaks is located at a

frequency below the imaging system's cutoff frequency, the objects will be resolvabie in
the image.

In figure 4.5(b), the object size is reduced to a point and separation distance kept
at L=T/2. Because the frequency content is now shifted above the cut-off fraquancy. the
images of the points merge. However, if the distance L Is larger than the inverse of the
cut-oft frequency as in figure 4.5(c), they are resolvable.

A similar argument can be made in the space domain. Because theimaging system
is considered linear, the image of a square wave pattern can be represented as a sum of
point sources as illustrated in figure 4.6. An explanation of the object’s resolutior cannot
be provided by simply adding contributions of individual points. Because the point
corresponding to the falling edge of one period {point 3) and that of the leading edge of
the next (point 1') (Figure 4.6(a)) are separated by less than the FWHM (or HWZC), their
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Figure 4.5 Efiect of object size and separation on resolvabllity

As [ong as &l least one of the frequency components is below the cut-off fraquency f., the
objects will anpear separate when imaged. (a) Objects of size L separated by L forming a
periodic sional of perlod T (b) points separated by perlod T =L (c) points separated by peri-
odT=2L.
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Figure 4.6 Creating a square wava by summing point sources

A square wave pattern Is constructed by (a) adding pairs of points {(1-1', 2-2', 3-3') sepa-
rated by a distance equal to the period T (b) As long as the period is larger than the system
resolution, the polnts within each imaged pair are resolvable. (c) The image of the square
wave is the sum of Images of pairs of poirts in (b)
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Gaussian images would merge into a single peak. Therefore, the cyclic nature of the pattern
must be explicitly recognized by adding pairs of points (1-1°, 3-3") separated by period
T (Figure 4.6(b)). The total contribution, or image, Is then the sum of the contribution of
pairs of points (Figure 4.6(c)). If T is larger than the FWHM (or HWZC), the objects are
resolvable.

Differences between methods: Following this explanation, the estimates of resolution from
the FWHM or HWZC and those determined from the periodic objects can be reconciled.
Forfilter 0, FWHM is 1.48, approximately twice the manufactures claim of 0.75 mm. For filter
4, the measureg HWZC is equal to 1.15 mm whiie the cyclic object separation is 0.6 mm.
1t should be noted that these figures of FWHM and HWZC are valid for point sources located
51 mm above the center of the FOV, and aligned in the row direction. Based on the same
methods, the resolution in the column direction is 1.45 mm and 1.13 mm in the column
direction for filters 0 and 4.

There is some controversy as to whether resolution should be evaluated as the
reciprocal of the cut-off frequency or half of this value (Philips Medical Systems, 1988;
Bushong, 1988; Bassano, 1983). The previous example also shows that it can be
misleading to define resolution as halfthe inverse of the cut-off frequency determined from
a series of periodic objects since the abllity to distinguish the objects within the image
depends not only on their separation but also on their shape and size. Because animpulse
exhibits a fiat spectrum, i.e. it contains all possible frequencies, it should be used as the
reference. In this view, resolution should be defined as the minimum distance between
point sources whereby they can still be discriminated when imaged.

The inverse of the cut-off frequency ubtained from the Gaussian model, squation
(4.10) and non-parametric MTF are very similar for filter 0 (1.84 and 1.82 for MTF;=0.10
and 1.61 and 1.62 for MTF. =0.05). However, because the Gaussian mode! overestimates
the MTF in the high frequencies for filter 4 ( see figure 4.4(b)), the cut-off frequency will be
larger, hence the resolution poorer than if it were evaluated from the non-parametric MTF
(1.29 vs 1.35tor MTF,=0.10 and 1.13 vs 1.21 for MTF;=0.05).

Measures of resolution based on the Gaussian model, i.e. equations (4.8) and
(4.10) result in the lowest estimates for the high resolution filter (filter 4). The HWFZ,

~computed with equation (4.9) derived from the damped cosine model, and the entry from

table 4.2 in the row direction, is more conservative as well as being closer to the inverse
of the cut-off frequency evaluated with the non-parametric MTF. For these reasons, we
recommend the HWZC over the FWHM as a measure of resolution for filters exhibiting
negative tails.



Differences within the FWHM-based method,; There is a considerabie varlation among
values obtained with the FWHM methods although estimated from the Gaussian model fall
within extreme values measured from the image both for a FOV of 200 and 50 mm. This
results from problemns associated with measuring the FWHM directly from the image. If the
center of the wire is not aligned with the center of a pixel, the maximum CT number will not
correspond to the PSF's maximum value. Consequently, the threshold value chosen to
binarize the image will be incorrect, leading to an error in the estimate of the FWHM.
Simuiaions of this situation were carried uut by numerically generating several Gaussian
functions and varying the peak position within a pixel by adjusting parameters t, andt,. The
simulation showed that ihe FWHM could vary between 1.88 and 1.25 mnifor a FOV of 200

mm, and 1.41 and 1.56 for a FOV of 50 mm depending on whether the wire was centered
on a pixel or not.

Accuracy of measuyrement methods. The paramstric and non-parametric FWHM
approaches not only differ in the results they yield but also in accuracy. When the FWHM
is evaluated from ine image, accuracy is limited by pixel size since the measurement is
performec on a finite number of pixels. For FOVs of 200 and 50 mm, the accuracy is
therefore 0.625mm and 0.156 mm respectively. Therefore when using this method. it is
important to use the smallest FOV possible.

On the other hand, the measure of FWHM obtained witiy equation {4.8) is limited
by the precision with which parameter p can be determined and is thus more accurate.
For example, using entries in table 4.3, a value ¢. p=0.7065+0.0010 pixei ! (or
1.1304+0.0016 mm-') translates into a value of FWHM =2.3568 = 0.0034 pixels (or
1.4730%0.0021 mm). The sarmg ievel of accuracy is to be expected for the HWZC and the
inverse of the cut-off frequency when determined from model parameters.

For its part, the accuracy of the method based on the periodic objects is limited
by the discrete step between object size, 0.1 mm in this study.

4.5 Conclusions

This chapter represented efforts to develop and evaluate parametric models of the
PSF. Rotational symmetry was not assumed thereby permitting a full bi-dimensional
representation of the PSF. Non-linear numerical methods were used to estimate the
parameters and the average background value was included in the models. These three
aspects represent innovations compared to other models of the PSF presented in the

literature. A variety of figures indicate that the proposed models are appropriate and
adequate to represent the PSF.
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These models represent the basis of the work presented in subsequent chapters.
They will be used to:

- quantify shift-variance,

- compare non-parametric PSF estimates obtained with different identification
methods,

- formulate a coordinate transformation for the shift-invariant representation of the
PSF. and

-explain the behavior of the thresholding segmentation operator.
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CHAPTER 5
EXPERIMENTAL DETERMINATION OF CT POINT SPREAD
FUNCTION ANISOTROPICITY AND SHIFT-VARIANCE

5.1 Introduction

CT systems are neither strictly linear nor isoplanatic. Perhaps because the etfects
due to shift-variance are more subtie and less easily perceived than those arising from
non-linearities (see sections 2.3 and 2.4.3), the Issue of shifi-variance has received
comparatively little attention.

Nonetheless the variation of PSF shape with position has repercussions both on
image restoration and segmentation. These issues will be covered in later chapters, but
let us mention that most image restoration algorithms are duveloped for isopianatic
systems. Furthermore, the capability to distinguish, and properly segment neighboring
edges, depends on the distance separating them as well as the width of the PSF. It is

therefore important to identify trends in variation of PSF shape and to quantify these
changes.

To our knowledge, only two groups have studied the position dependent nature of
CT systems. Using a theoretical approach, Verly and Bracewell (1879) qualitatively
characterized the change of PSF shape with position. Kijewski and Judy (1983)
complemented an analytical analysis with a series of simulations using a method based
on the edge response function (Judy, 1976). This method is time consuming since both
the position and the orientation of the edge object must be modified to obtain a full
two-dimensional description of the PSF.

The goal of this chapter was to experimentally measure the shift-variant as well as
the PSF symmetry properties of a CT scanner. The experimental approach, which
distinguishes this study from those previously mentioned, enabled us to take a large
number of parameters, both hardware and software, into account. Furthermore. it
permitted us to quantify the variations encountered.

In section 5.2 we propose a method, developed .. chapter 4, based on the
parametric identification of the PSF using a thin wire as input point source. The use of a
wire directly supplies the two- dimensional infurmation necessary to analyze the symmetry
of the PSF, while the variation of mode! paraneters with position provide the cuantitative
information sought. Section 5.3 presents the results which are discussed in section 5.4 and
the conclusions are presented in section 5.5.

57



e

5.2 Method

The fabrication of a custom phantom was required since the phantom provided by
the manufacturer was not suitable for the evaluation of shift-variance. Two simple
measures characterizing the shape of the PSF were derived from the model parameters
obtained by fitting the parametric models to the Image of each wire in the phantom. These
measures of shape were expressed in two different coordinate systems: a fixed orientation
androtating frame, in order to establish if the system produced a rotating blur. Furthermore,
a number of statistical tests were performed on the data to verify if scanning variables
andfor astimation methods significantly affected results.

§.2.1 Hardware

Figure 5.1 shows the custom phantom. It consisted of a 200 mm inside/ 216 mm
outside diameter PVC tube and two plexiglass end plates. Enamel wires, 0.25 mm in
diameter, were threaded through holes drilled in the end plates. They were nut under
tension before being gluea with epoxy to the outside surface of the plates. The end plates
were fastened to the tube with screws and a layer of silicon between the PVC/plexiglass
surfaces assured a water tight seal. The phantom was suspended within the scanner gantry
with the help of the standard Philips phantom attachment set. To this effect, a female
adaptor was fastened to the end-plates of the custom phantom.

In order to avoid artefacts that could arise from an air/metal interface, the phantom
was fiiled with distilled water. The water was poured through a hole drilled in the side of the
tube while air was evacuatad through a neighboring hole. Corks were used to seal the
holes.

Sixty one wires, simulating impulses, were arranged in 5 concentric circles spaced
approximately 17 mm apart. Along a given circle, a 22.5 degree angular incremant
separated each wire. Some of the wires in the innermost region were omitzd in order to
avoid interference between neighboring PSFs.

Images were produced with a Philips Tomoscan CX third generation scanner.
Scanning parameters included a tubs current of 200 mA, voltage of 120 kV, and a slice
thickness of 2 mm.

Keeping these parameters constant, both the image reconstruction filter and the
scan time were varied. Images were acquired with scan time settings of 4.5s and 9.0 s
making it possible to determine how the number of views, 540 in the first case and 1080
in the second, affected the shift-variance. The phantom was also imaged with the
smoothing (filter 0) and high resolution (filter 4) filters.
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Figure 5.1 Custom shift-variant phantom

The phantom consists of a water filled PVC cytinder In which 61 wires arranged in
5 concenlric clrcles simulate Impulses.

The Iimaging field of view {(FOV) was set to 250 mm, the smallest diameter
containing the whole phantom. Each image was subdividedinto 9 regions, and each region
was reconstructed onto & 100 mm FOV with the zoom option. The reconstruction matrix
being 320x320 pixels, the pixel size was thereby reduced from 0.78125 mm for the 250 mm
FOV to 0.3125 mm.

5.2.2 PSF shape descriptors

The data contained in a21x21 pixel region surrounding the image of each wire wers
fitted to a parametric model. We have previously shown (see chapter 4) that the Gaussian
function and the damped cosine function are good madels of the PSF produced by the

smoothing (0) and high resolution (4) filters respectively. The models are repeated here tor
convenience. The Gaussian model is given by:

SO ¥ IV ? _pn 2y 2
PSF,ix.y) = Neg P w-t) ep"(y 5 + B (1)

while the expression for the damped cosine model is:

o 2yt N2 2t A2
PSFuity) = Ne P ® b cosa w-t.n e V¥V eosta, x- 1)) + 8
(@)
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where
X = positive row direction;
y negative column direction;,

N = maximum value of the function;
tv. ty = (x.y) coordinates of the maximum;
Px. Py = shape parameters in x and y direction;

dy, dy = normalized spatial frequencies in x and y direction (radians/mm)
B average background value.

f

From these two models, we extracted two simple measures characterizing the
shape ofthe PSF; gain and resolution. Gainwas computed by integrating the volume under
the PSF. Its expression for the Gaussian model is:

Na=x
= 3
© PPy @
and for the damped cosine model:
- 2 2
Gy = Na e 1/4 [(d/p)° + (0,/p,)) @)
Ps Py

Resolution was expressed in terms of the full width at half maximum (FWHM) for
the smoothing filter, and the half width at first zero crossing (HWZC) for the high resolution
imaging mode.

Both the Gaussian and damped cosine functions are separable, i.e. they are the
product of functions of independent variables, x or y. Resolution can therefore be defined
in two orthogonal directions. The FWHM along the x axis is obtained from the Gaussian
parameter p, as follows:

1,2
FWHM, = 2An 08 (5)

Px

while the HWZC,, expressed in terms of parameter d, is given by:

2

HWZC, =
c 44,

6

and similarly in the y direction.
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5.2.3 Coordinate systems

We previously mentioned that mode! parameters were expressed in two different
coordinate systems. Two other frames were necessaiy to complete the analysis, one to
express the position of a pixel and the other the position of the input point sources. Figure
5.2 illustrates the relationships between these coordinate systems.

1} The position of a pixel in image space was given by its row and column indices

(L.j}. The origin lies in the upper left hand corner of the image with i increasing downwards
and j +1 the right.

2) The position of the wires could have been obtained in the i -j frame, but because
the acquisition system rotates about the center of the FOV, it was more natural to express
wire position in a fixed polar coordinate system (R,8). The origin of this reference frame
coincides with the center of the imaging FOV.

3) Modsl paramsters were presented in a local, fixed orientation cartesian system
{x.y). The x axis cofresponds to a constant row (j) while y points in the negative constant
column direction (-1} Thare exist one local coordinate system for each input point source.

4) The model parameters were also expressed in a local, rotating cartesian frame
s-t, where s is o’lented in the radial direction and t, tangentially. As we will see in sections
5.3.1and 5.3.2, the comparison of parameter behavior in the x-y and s-t frames enabled

us to verify if the system produced a rotating blur, as predicted by Verly and Bracewell
(19753,

While computing the rnodel parameters in the x-y system was trivial since the axes
align with the row and column directions, determining their values in the s-t system

required more effort. Three methods were used to determine the modal parameters in the
s-t coordinate system:

1) Ellipse method. If the PSF exhibits radial symmetry, its cross-section is circular
and the resolution along the x, y, s and t axes is equal. However, if the PSF possesses an
axis of symmetry without baing isotropic, the PSF cross-section Is elliptical with the minor
and major axes corresponding to the s and t axes respectively. The length of these axes
can be deduced from the length of an arbitrary set of axes. Therefore, given FWHM,,
FWHM, and the angle between x-y and s-t coordinate systems, FWtiivig and FWHM, (or
HWZC) can easily be determined. Figure 5.3 illustrates the principle.

The length of the axis p, rotated from the major axis a by angle o is given by:

£ &
2 = 7
2sintn + s?costa 4

o
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Figure 5.2 Relationship between coordinale systems

The position of an Input point source is defined in polar coordinates (R,8) whose ori-
gin is fixed in the center (C) of the image. Model parameters are given either in a local
rolating (s-t) or local fixed orientation frame (x-y). Row and column indices (1-J) de-
fine the pasition of a pixel in Image space.

By definition, the angie betwesn the x and s axes is 8, the angular position of the
input point source. Thersfore, the angle between the t and x axes is  ox=n/2-6 , and
between t and y, «y=n-6. Replacing these values in equation (7), and making use of the
reduction formulae for circular functions, gives:

2 2
FWHM, ® FWHM
FWHM, = : ,
FWHM, T8I0l ) + FWHM, 2 coci(A ) (®)
2 2
2 FWHM, ® FWHM
FWHM, ® = s '
Y FWHM, 2cos?(f! } + FWHM,?sin¥(# ) ©
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FWHMx=p}

Figure 5.3 Estimating the Gaussian shape parameters in the 3- t coordinate system from values
defined in the x-y sysiem

The shape of an ellipse is defined by the length of minor and major axes (FWHMs,
FWHMt). Given these dimensions, the length of a set of normal axes (FWHMx,

FWHMy) can be determined, and vice versa, if the orleniation (8) between them is
known,

From these two equations, FWHM_ and FWHM, are isolated:

FWHM,  FPWHA,  [cos (8 ) sin (@ ) |

FWHM, = . -
FWHM, *sin 2 (# ) - FWHM, Pcos’o) )

(10)

AVHM, D FWHA,  sin 20 )

VKM, =
M, M T~ FIWEM, Tood )

(1)

This approach is not valid for points with an angular position 8=(2n+ 1)n/4,
n=0,1,2,... NrtiLing that sin2((2n + 1)n/4) = cos2({2n + 1)w/4), equations (8) and (9) clearly
show that the length of the axes in the x and y directions are equial. Therefore the solution
collapses since the denominator of equation (10} becomes 0.

2) Image rotation. By rotating the image, the s and t axes can be made to coincide
with the column and row directions respectively. However, if the rotation angle 6 is not a
multiple of n/2 radians, the image must be resampled since the new coordinates along the
s-t axes do not necessarlly fall on the original x-y pixel grid (Parker et al., 1983). Aithough
implemeanted in one step, resampling involves two processes: interpolation (to form a
continuous image from the discrete one) and samaling (the continuous image to obtain
a new discrete repraesentation). Two interpolation functions were evaluated: nearest
nelghbor and high resolution cubic splines. Spline interpolation was implemented using
the algorithm in Keys (1981).
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3) Change of model coordinates. This method consists of replacing the x and y
variables in equations (1) and (2) by s and t. This requires that the pixel position be

recomputed along the s-t coordinate system according to:
§= ({-j,) cos® + {,-1) sin@ (12)
t=-(-J)sing + {i,-Hcosd

where (ip.jp) are tha row and column coordinates of the upper left hand corner of the 21x21
region surrounding the image of the wire.

524 Statistical test

A statistical test was performed to determine if the methods of estimating the modsel
parameters in the s-t coordinate system were equivalent. The same approach was taken
to verity if variables such as scan time and reconstruction filter significantly affected the
shape of the PSF,

A t-test was performed when values were compared two by two. If the quantities
were posttively correlated, the data were paired, thereby increasing the effectiveness of the
experimental design. When the experiment involved more than two samples, a one-way
layout F-test, or analysis of variance, was used.

In all cases, the assumption that a given treatment or variable had no effect on the
quantity tested constituted the null hypothesis Ho. Depending on whether it was assumed
that the treatment yielded different, smaller or larger results, a two-sided test, in the first
case, or one-sided test, as with the last two alternatives, was required. Unless indicated,
the level of significance o was set at 0.01, which means that the probabllity of rejecting H,
even though it was true is equal to 0.01.

Except for the paired test, data were assumed independent. Furthermore, the
random errors corrupting the data were expected 10 be normally distributed, with zero
mean and constant variance. The assumption of normality can be relaxed without strongly
affecting the test. For more details, the reader is invited to consult Fréund (1981) and Rice
(1988).

5.3 Results

Our results show that the pattern of shift-variance is greatly simplified when
expressed in the rotating s-t comparad to the fixed orientation x-y coordinate system. They
also demonstrats; that the system does produce a rotating blur. Furthermore, a comparison
of the resolution along the radial and tangential axes of the rotating frame indicate that the
PSF is not radially symmetric throughout most of the FOV. Table 5.1, to which we will refer
throughout this section, summarizes the results of the statistical tests.
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quantity tested variable

type of test

atemative hypothesis

conclusion

direclion
(resolulion along
$ axis .vs. 1 axis)

radial symmetry

two sided t-test

FWHMS(Ri) =FWHM(R))
similarly for HWZC

51 <R <68 mm (1-3)
34 <R, <51 mm @
17<R.<34 mm ¥

methods to cbtain model
parameters in s-1 systemn

presence of absence of
parameter B

resolution scan time

Tiker

two-sided F-tesl across
methods

unpaired one-sided
i-1est

paired two-sided t-1esi
for s direclion

paired one-sided t-test
tor t direction

unpaired one sided t-
test

methods yield different resulis

FWHM , g(R) <FWHM_g(R)

FWHM_ 4 5{R) = FWHM; 9 o(R})
FWHM, 4 5{R)) > FWHM g o{R)

similarty for HWZC

FWHM(R) > HWZC{R))

all methods are equivalent

68 <R, <85 mm (1
51 <R, <68 mm 2}

no effect in s direclion

51<R.<68 mm int direction

Ho rejected throughout
most of the FOV

TABLE 5.1 Summary of stalislical tests



s’y pitabing A
quantily tested variable type of test alternalive hypothesis conclusion
presence of absence of unpaired one-sided Gain, g{R)} < Gain.g(R;) 51 <R, <68 mm (1.2}
parameter B i-test
scan time unpaired two-sided Gainy 5(R;) = Gaing g(R;) n) clear pattem
Gain i-test
fiter unpaired one-sided Gaing(Ri} < Gaina(R;) Ho reject throughout

radial distance

t-test

two-sided F-test
across radial distance

Gain(Ri) = Gain(Rj)

the field ol view

no definitive trend

Rg: crilical distance; for R <Rc, accept Ho, for R> Rc, reject Ho

TABLE 5.1 Summary of statistical tests (continued)

(1) filter 0, scan time of 4.5 s; {2) filter 0, scaniime of 9.0 s
(3) filler 4, scan time 4.5 s; (4) filter 4, scan time 01 9.0 s
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5.3.1 X-Y coordinate system

Figure 5.4 illustrates the variation of FWHM in the row direction within the FOV.
These curves are valid for the smoothing filter, a scan time of 4.5 s and parameter B absent
from the Gaussian mocal. Moving from the caenter outward, resolution, which is inversely
proportional to the rWidM, decreases. One can also distinguish an Increasing fluctuation
with angular position as the radial distance increases.

The relationship between FWHM along rows and columns for points located on the
outermost circle Is presented in Figure 5§.5. The scanning and modelling conditions are the
same as those for the data shown in the pravious figure. These quantities are 180 degrees
out of phase, indiczing that resolution is different in the row and column directions in most
of the image. Furthermore, it demonstrates that the PSF Is radially asymmetric, since
isotropy requires that p, andJ p,, hence FWHM, and FWHM,. be equal.

Based on the previous argument, it would seem that the PSF is radially symmaetric
for 8=(2n+1)n/4, n=0,1,2... since the two curves intersect at these points. It was
previously shown however, that if the cross-section of the PSF is elliptical, the iength of
orthogonal axes angularly displaced by (2n+ 1}n/4 with respect to the major-minor axes
are always squal, givan any ratio of minor to major axis length.

- inat

The values of resolution in Figure 5.5 were used as data to evaluate the different
transformation methods: ellipse geometry, image rotation with nearest neighbor and high
resolution spline interpolation, and change of model coordinates. As shown in figure 5.6
(a) and (b), the methods appear similar on a qualitative basis. A two-sided F-test,
presented in table 5.1 under the topic of resolution, contfirms this claim. Although these
methods are statistically equivalent, the ease of implementation and the time required to
perform the transformation varies greatly. The method based on the change of model
coordinates, being the simplest and quickest, was applied to all further analysis.

Figure 5.6 (c) lllustrates the FWHM in the s-t coordinate system obtained using
the change of model coordinates method. The cyclic dependance of the FWHM onangular
position is no longsr observable, suggesting that the imaging system does produce a
rotating blur. To further verify this possibility, the basic statistics (mean and standard
variation) of 16 wires arranged in a circle were compared to those obtained by imaging a
wire in a constant position 16 times. The single wire in section B of the Philips performance
phantom (see figure 3.1) provided the data for the former test. Since this wire was located
51.3 mm directly above the center of the FOV, the 16 wires located at a radial distance of
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B R=8mm &51mMmm A 17mm

1.8

1.7

FWHM {mm)
1

1.4 i\‘\\/

1.3 —
0 90 180 270 360

angular position (degrees)

rigure 5.4 Variation of resolution along the x axis
(titer 0, 4.5 s, parameter B absent from Gaussian model)

The resolution in the row direction varies sinusoidally with angular position. As the
posltion of the Input point moves cioser to the center of the field of view, the ampli-
ude nf the varialion decreases.

A FWHM ¢ FWHM,
1.8
1.7
= 16
1.5
1.4
0 90 180 270 360
angular position (degrees)

Figure 5.5 Resolution along the (a) x and y axis and (b) s and t axis for points located at a radial
distance R=85 mm (filter 0, 4.5 s, parameter B absent from Gaussian mode)

The resolution In the row and column directions are both sinusoidal, coupled and
180° out of phase.
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Figure 5,6 Comparison of methods to oblain shape descriptors is s-1 coordinate system
{filter 0, 4.5 s, parameter B absent from Gaussian model)

The four niethods used to oblain the model parameters inthe local rotaling frame are
slatistically equivalent for (a) radial direction (s axis). and (b) tarigential direction (1
axls). (c) results for change of coordinates method, Expressing tha mods! parame-
ters in a iocal rolaling coordinate system decouples the resolulion estimated intwo
perpendicular directions. Furthermore, resolution is no longer a function of angutar
position.
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51 mm in the shift-variance phantom were used in the other case. The results are com-
pared in table 5.2. Although there Is more variation for the data coming from the shift-vari-
ant phantom an unpaired two-sided t-test concluded that there is no statistical difference
in the mean values between the two experimental designs.

test radial direction tangential direction
mean standard mean standard
deviation deviation
same wire imaged 16 times 1.451 0.002 1.476 0.002
16 wires arranged In a circle in 1.439 0.7 1.478 0.028
same Image

Table 5.2 Stalislics for points localed at a radial distance of 51 mm

5.3.3 Effect of parameter B

Because the wires were placed in water, the CT number of the pixels surrounding
the PSF should average 0. However, the cupping artefact due to x-ray scatter, causes a
depression of CT values in the center of the FOV, while inflating values at its periphery.

InFigure 5.7, the average background value surrounding the points forming a circle
is plotted against radial distance. The four curves represent different combinations of
image reconstruction filter and scan time. In all cases, the background values increases
slightly moving from the center of the FOV outward.

Figure 5.8 (a) compares the FWHM obtained when adding or omitting parameter
B from the Gaussian model for a scan time of 4.5 s. Parameter B seems to have no effect
in the center of the field of view, but as radial distance increases, the values obtained with
parameter B appear lower.

In a paired t-test, the null hypothesis, which states that the expected value of FWHM
computed in the presence or absence of B are equivalent, was tested against the alternative
hypothesis of the FWHM computed in presence of parameter B being smaller. The results
reveal that values of FWHM computed with parameter B added to the model are indeed
lower but only for points located beyond a critical distance R.. At the 0.01 level of
significance, the critical distance s located between §1 and 68 mm for a scan time of 9.0,
and betwesn 68 and 85 mm when the number of views is halved. However, if the level of
significance is relaxed to 0.03, 51 <Rc = 85 mm irrespective of scan time.
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The effect of paramseter B on gain is illustrated in figure 5.8 (h}. The omission of
parameter B results in an increase of the gain estimates with radial dist~r..c nast Rc,
51 <Rc < 85 mm, confirmed by a one-way layout F-test across the rauial distance (level
of significance=0.01). This statement is valid both for a scan time of 4. 5and 9.0 5.

+ filter 0 —————  scaniime = 45s
x fiterd 0 6—e——— 90s

12

Background (CT units)

0 17 34 51 68 85
Radial distance (mm)

Figure 5,7 average background as a function of radial distance

in third generation scanners, X-ray scatlter produces an arlefact known as cupping.
The CT values in the center of the FOV are dapressed, while those In the outlying
regions are overestimated.
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Figure 5.8 Effecl of omitting parameier B from Gaussian model on (a) resolution and (b} gain
eslimates (filter 0, scen time of 4.5 s, parameter B added i2 inodel)

Past a critical ¢iii.~ce Rc, estimates of gain and FWHM both increase as a resull
ofomittingperar - - B fromthe Gaussianmodel. For & level of significance « =0.03,
51 <Rc<68.
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4 Ef f n tim

Figure 5.9 (a) illustrates the effect 0! doubling the sca tine on the estimates of
resolution. The estimates of FWHM and HWZC are barely affected in the radial direction,

but increasing the number of views results in a large improvement in resolution in the
tangential direction.

These qualitative observations are confirmed by a paired t-test performed at
discrete values of radial distance. In the case of resolution estimated along the s axis
(radial), the null hypothesis is tested against the values being different. However, for the
t axis (tangential), the alternative hypothesis consists of verifying if values of FWHM or
HWZC are greater for a scan time of 4.5. The level of significance is again set at 0.01. The
statistical tests show that changing the scan time has r.2 bearing on resolution in the radial
direction sither for the smoothing nor the high resolution filter. However, as shownin Figure
5.9 (a). theresolution inthe tangential direction improves with alarger number of views past
a certain critical radius R, locatad between 34 and 51 mm (R >FR. .34 <R, = 51 mm).
The increase is as large as 0.21 and 0.28 mm for the smoothing and high resolution filters
respactively for a radial distance of 85 mm.

No clear pattern emerges when gain is considered. Estimates of gain for both filters
and the two scan times are compared in Figure 5.9 (b). A t-test reveals that, for the
smoothing filter, the estimates of gain are significantly different only for distances of 68 and
85 mm, while for the high resolution filter, only the values at 68 mm are affected.

flect of i reconstryction filter

Of all the factors examined so far, the image raconstruction filter has the strongest
influence on resolution. Figure 5.10 shows the estimates of resolution as a function of radial
distance for both filters considered. The trends are similar irrespective of the filter used to
create the image. However, the values of FWHM obtained with the smoothing filter are
substantially larger than those of HWZC obtained with the high resolution filter, confirmed
by a t-test with level of significance of 0.01.

Theinfluence of ornitting parameter B from the models and of scan time are felt past
a given radial distance. However, when the reconstruction filter is considered, the
difference in mean values between the two filiars remains constant throughout the range
of distance examined. For ascantime 0t4.5s, the difference in resolution averaged over
radial distance is about .31 mm both for radial and tangential directions. However, for a
scan time of 9.0, the difference is larger in the tangential than in the radial direction with
values of .35 mm ~nd .29 mm respectively.
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Figure 5.8 Effect of scan time on (a) resolution (filter ) and (b) gain estimales (filters 0 and 4)

Doubling the number of views significantly improves the resolution in the 1angential
resolution past a critical radial distance Re, 51 <Rc <68. Resolution In the radial di-
rection Is not atiectad by this parameter. No clear pattem emerges for the gain,
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Figure 5.10 Etfect of image reconstruction fitter o (a) resolution and {b) gain
{scan time of 4.5 s}

While the Image reconstruction filter is the parameter which attects the amount of blur
the most, It has no bearing on shifl-variance,
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Figure 5.10 {b} compares estimates of gain for the two filters. As with resolution,
changing the reconstruction filter significantly affects the gain. A one-sided t-test, where
the null hypothesis s tested against the gain of filter 4 being larger than that of fiiter 0,
reveals that the gain produced by the high resolution filter is indeed significantly larger over
the whole FOV (o= 0.01). However, reserve must be expressed for data obtained with a
scan time of 4.5 and In the vicinity of 85 mm, since the level of significance must be
increased to 0.25 to arrive at the same conclusion.

ial t

A PSF produced by the smoothing filter and modelled by a Gaussian function is
radially symmetric if the parameters p measured along two perpendicular axes are equal,
Because the FWHM is directly related to parameter p, equal values of FWHM in the radial
and tangential directions indicate the presence of a radially symmetric PSF. The same
argument is valid for the high resolution filter based on the HWZC.

Observing figures 5.9 (a) and 5.10 (a), one notices that estimates of resolution
along the s and t axis are similar in the center of the FOV. However, past a critical radial
distance, the values diverge. Based on a t-test with a level of significance 0 0.01, Rc varies
largely with the filter and number of views used to create the image:

1 < R. < 68 forfilters 0 and 4 and a scan time of 4.5 s,
34 < R. < 51torfilter 0 and a scan time of 9.0 s,
17 < R, =< 34 for filter 4 and a scan time 01 9.0 s.

However, if the level of significanceis relaxed to 0.05, we observed avalue of 34 < R, < 51
for a scan time of 4.5 s irrespective of the filter used.

5.4 Discussion

We will open the discussion by explaining the origin of shift-variance and of the
rotating blur. This wiii bring us to compare our rasults with those of the theoretical studies.
The effects of scanning variables and of the model parameter B will close the section.

(] . .

Various authors have identified a number of factors which can cause the PSF to
become shift-variant: projection misregistration, aliasing and x-ray beam serisitivity.

Kijewski and Judy (1983) determined that the misregistration of projectiuns leads
to anisotropy and position dependence of the PSF. They mentioned that scanners most
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susceptible to this type of error weare thosz with continuous detectors, SPECT scanners
with gamma cameras as detactors for example. in such systems, the positional information
is determined by electronic means. X-ray CT scanners on the other hand depend on the

physical positions of discrete detectors and are theretore much less prone fo
misregistration.

Joseph et al. (1980) considered the effect of varying the number of samples per
beam width on the shape of the PSF. They showed that the PSF would be isoplanatic it it
were possible to image structures with infinitely thin x-rays. However, projections being
acquired with detectors of finite width and due to the digital nature o\ the data. projections
must be resampled. This can lead to the introduction of supra-Nyquist frequencies (Parker
et al., (1983)) and to aliasing.

One of the effects of aliasing. apart from systematic artefacts. is to make the PSF
shift-variant. The extent of aliasing depends on the distance between ray samples:
decreasing the distance, or increasing the number of rays per beam width, reduces
aliasing. Unless designed with a 1/4 detector offset, Josej,h (1980) warns that third
generation scanners are particularly susceptible to aliasing since they collect only one
sample per detector.

Although not mentioned by the authors, the type of interpolation function can also
control the exient of aliasing. Using a function with smaller side-iobes, for example linear
interpolation rather than nearest neighbor, limits the amount of aliasing.

Unfortunately, Joseph et al. did not investigate how aliasing affects the variation of
PSF shape with position. From two illustrated simulations carried out by Joseph (1980},
it appears that aliasing destroys the radial and axial symmetry of the PSF. The presence
of "streaming tails” can also be observed.

An important consequence of a finite beam width which was not taken into account
in the previous study is that projections can no longer be represented as line integrals of
the linear attenuation coefficients. Instead, projections should be reprasented by strip
integrals defined by the source and detector collimators. Bracewell {(1977) and Verly and
Bracewsll (1979) showed that the detector response to a point s~urce depends on the
position of that source within the strip. They characterized the variation by a strip integral
kernel Kg(x,y.R.¢), also known as the spatial response or the pronie of the x~ray beam.
Figure 5.11 illustrates the beam spatial response in the case of non-zero eccentricity, i.a.
when the midpoint of the strip does not coincide with center of the FOV. The PSF of a point
located at (xg,yg) is given by the integral over rotation angle ¢ of Kqg(xg.yo.R.¢) convolved
by the apnropriate apodized rho-filter.
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Numerical integration of the strip integral kernel for the condition of equal source
and detector width and of rectangular shape revealed that the PSF, expressed in a rotating

frame s-t, exhibited the following features:
1) the presence of a cratered cone radially symmetric PSF in the center of the FOV.

This Is also known as the volcano effect (Joseph et al. (1980)).
2) the emergence of infinite peaks along the t axis whose separation is proportional
to radial distance. In the presence of non-zero eccentricity, the infinite peaks are

transformed into depressions.
3) the rasponse was strictly limited to a circle of radius equal to haifthe beam width.

Although the authors did not discuss the issue of radial symmetry, this simulation
clearly showed that the increasing separation of the peaks along the t-axis destroyed the
radial symmestry that the PSF exhibited in the center of the FOV.

Verly and Bracewell also mentioned that the cross section of Kp(x.y.R.¢)
perpendicular to the y axis is composed of trapezoids of equal area. Since the PSF is built
up from a large number of these cross-sections, their constant weight assures that the

volume, or gain, of the PSF is the same at every point, even if the PSF is shift-variant.

anode
(source)

(b)

(a)
Flgure 5.11 Strip integral kemel (a) perspective plot for non-zero eccentricity (Verly and Brace-
well (1979} , (b) beam profile in x-y plane
Two polnts A and B equidistant from the center of the tield of view C will create difer-
ent responses due to beam profile inhomogenelty. For a 360 acquisition moge the
responses average out since both points are Imaged once nea: ing source and once
near the detector, thus resulting In rotating blur.
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To understand the origin of rotating blur for a 360° reconstruction, let us consider
two points A and B In figure 5.11 (b). These points are equidistant from the center C of the
FOV. For a szan angle of 0 degrees, A is located closer to the detector and B near the
source. These ‘wo points generate different dete.  “responses due to the inhomogensity
of the beam profile. If data are acquiredin a 180° mode, points A and B are measured only
once for a given (R.¢$), and the resulting PSFs will be different. However, with a 360°
acquisition mode, each point is measured twice, once near the source and once near the
detector. Because the responses are averaged, the image of the two points, and of all
points located at the same radial distance, will be the same.

Our experimental results confirm many theoretical findings. They lead to the same
conclusions regarding rotating blur, radial symmetry and the general shape of the PSF.

1) Several experimental results lead to the conclusion that the CT system produces
a rotating blur. Firstly, the sinusoidal dependance of FWHM on angular position when
exprassed in alocal fixed orientation (x-y) coordinate system disappears when the shape
of the PSF is descriL.d in a local rotating frame (s-t).

Secondly, the mean value of resolution for 16 wires arranged in a concentric circle
is statistically equivalent to imaging a single wire in a constant position 16 times , as shown
in Table 5.2. The larger variance for the former case can be explained as follows. Due to
variations in radial and angular wire positions in the shift-variance phantom, it is
improbable that the input point sources occupy the same position within the beam profiles.
Because of beam non-homogensity, small changes in position lead to slightly different
responses. This also explains why the variance in the tangentiat direction is larger than for
the radial orientation. As seen infigure 5.10, the slope of the FWHM as a function of radial
distance is larger in the tangential direction for a scan time of 4.5 s. Hence, for a given
change in position, the variation in FWHM will be greater. On the other hand, unless the
scanner does not realign itself properly, the position of the single wire with respect to the

beam profile should remain constant. The variance sean in this case is largely due to noise
in the data.

2)The PSF looses Its radially symmetry as the excitation moves away from the
center of the FOV. A direct consequence of anisotropicity is that resolution not only
depends on position, due to the shift-variance of the PSF, but it is also a function of
orientation. Fortunately, this effect becomes significant only at a certain critical distance
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from the center of the image. The largest difference in resolution along perpendicular axes
is estimated at 0.15 mm. This figure is valid for structures located at a radial distance of 85
mm in an image reconstructed with the smoothing filter and produced with a scan time of
4.5s.

3)The stretching of the PSF along the t axis predicted by Verly and Bracewell is also
coserved for data acquired over 4.5 s.

5.4.4 Discrepancies with theoretical studies

Despite the similarities described above, our results differ from those cf the
theoratical studies in a number of points, principally where discontinuities in the PSF and
its extent are concerned.

The theoretical studies and the experimental approach presented above share
many similar restiits

1) Incontrast to Verly and Bracewell, we observed no discontinuitiesinthe PSF (see
Figure 4.2). Several factors can explain this discrepancy. These authors attribute the
presence of discontinuities tc the breakpoints in the trapezoidal profiles along the beam
spatial response. The cross-sectional shape of Kg(x,y.R,$) largely depends on the focal
spot, or source, intensity distribution and the detection sensitivity distribution. While it is
reasonavle to assume a uniform distribution for the detector, the hypothesis of uniform
photon emission has been challenged by a number of authors (Prasad (1979), Joseph et
al. (1980), Verly (1980)), There is no doubt that a Gaussian source distribution (Rathee et
al. (1990)) would lead to a smoother PSF. Bracewell (1977) also concedes that features
such as the volcano effect may not be revealed due to limited pixel size or because of the
computing procedure. Furthermore, Joseph et al. showed that afinite sampling rate across
the beam width tends to fill the central depression and produce a smoother PSF.

2) Verly and Bracewsll pointed out that the PSF was limited to a circle of radius equal
to half the beam width, a feature that we did not observe. Finite ray sampling is certainly
akey factor in explaining this discrepancy. Apart from lessening the volcano effect, Joseph
et al. showed that finite ray sampling also extends the range of the PSF beyond the beam
width. Furthermore, In their formulation, Verly and Bracewall did not consider the effact of
the apodizing function. This factor is known to greaty affact the shape ofthe PSF and could
also be at play here.
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By considering the angular position ¢ as a continuous variable, Verly nd Bracewell
and Joseph et al. greatly simplified their analysis. However, by doing so, they neglected
to cunsider the effect of finite view sampling. Joseph et al. justified their choice by arguing
that the effects of ray sampling and view sampling are entirsly distinct. Firite view sampling

affects the radius of an error free reconstruction for a given spatial resolution (Joseph and
Schultz (1980)).

Our results showed that the shape of the PSF along the s axis was not affected by
increasing the number of views. However, the resolution in the tangential direction
significantly improved past a critical radial distance. The critical distance was estimated
to lie between 51 mm and §8 mm. For points in the outlying regions, changing the scan

time produced a change in resolution almost as large as that produced by reconstructing
the image with a different filter,

It is tempting to argue that increasing the number of views improves sampling in
the angular or tangential direction only, and it is thereiore normal to see an improvement
only along the t axis. This argument would be valid for a parallel ray geometry but does not
hold for a fan-beam configuration. The effect of scanner geometry is best appreciated in
sinogram space as illustrated in figure 5.12. For botir constructions, the sinogram is filled
up by a series of parallel lines, each line representing a view or projection. For a parallel
veam scanner, views are parallel to the line ¢ = 0 and an increase in view density only
decreases intersample distance in the angular direction.

However, for a fan-beam geometry, the views fill up the sinogram as a series of
parallel lines orlented at an angle y, where ¥ is the fan angle. Because the position of a point
in a given projection Is now a funciion of both scan angle and radial position, increasing
the sampling rate of either one of these variables decreases the intarsampie distance of
the other. Hence, for a fan-beam geometry, one could improve the radial, as well as the
tangential resolution by doubling the scan time. However, taking advantage of the new data
requires an increase in processing time and storage space. It is possible that the
manufactirer, satisfiad with the relatively littie variation of resolution in the radial direction
compared !0 the angular orientation, chose only to improve the latter. Despite repeated
raquests addressed to the manufacturer, we were unable to confirm this hypothesis.

5.4.6 Effect of image reconstruction filter

The theoretical studies failed to take the apodizing function into account in their
formulation. Verly and Bracewell argued that its action can be considered and added at
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(b)

Figure 5.12 Sinogram for parallel- and fan-beam geometry

(a) A projection, orview, Is composed of a series of line integrals of attenuation coeffi-
clent in the direction of the x-ray beam. For parallel-beam scanners, projections
show up &s {ines paralle! 10 ¢ =0. The Introduction of new views Increases the num-
ber of samples In the angular direction but does not atfect radtal inter-sample dis-
tance. Projeclions are orlented at &n angle  for tan-beam geometry. As a result, in-
creasing the number of views also increases the sampling rate radially.
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anytime on the basis of linearity, but that its effect can be neglected without loss of general-
ity.

Our experimental results show that their approach was justified. Changing the
reconstruction filter did not affect patterns of shift-variance. The difference in resolution
remained constant as radial distance was increased and estimates of gain were
consistently larger for the high resolution filter. This is not to say that the effect of the
apodizing filter Is negligible. Of all the parameters considered in this study, reconstruction
filter is the one that affected the amount of blur the most. However, this sffect did not depend
upon the position of the input point source.

5.4.7 Effect of parameter B

Simulations have shown (see section 4.4.2) that a positive background introduces
a negative bias to the shape parameters p, and p,, of the Gaussian model while a negative
background produces a positively biased estimate. In both cases, the normalizing
parameter N is underestimated.

Experimental results show thatthe effect of omitting parameter B is felt past a critical
radial distance R.. For the smoothing filter, the critical distance is estimated to be located
between 51 and 68 mm. At this point, the average background is about 3 CT units.

One could be tempted to use the variation of parameter B with radial distance to
quantify the cupping artefact. However, one must keep in mind that the aiiicunt of scatter,
and the extent of cupping, depends on the object composition ard its size, or more
specifically on the portion ofthe imaging FOV occupied by the object. Thersfore, the results
presentad in this work should only be used for similar scanning conditions.

5.5 Conclusions

Using a parametric system Identification approach, we -have successfully
characterized and quantified the shift-variant as well as anisotropic properties of an x-ray
CT scanner. We also investigated the effect of image reconstruction filter and finite number
of views, parameters which had not been considered in previous studies.

When the position of the input point source is represented in polar coordinates, the
shape of the identified PSF, expressed in a local fixed-orientation coordinate system x-v,
Is a function of both angular and radial coordinates. The variation with angle is sinusoidal
and the amplitude increases with radial dissance. However, because the system produces
arotating blur, the positional dependence ts only a function of radial distance when the PSF
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is represented in a local rotating frame s-t. The s and t axes correspond to the radial and
tangential directions respectively.

Increasing the number of views greatly improves the resolution In the tangential
direction in the outer regions of the FOV. The only other parameter considered in this study
to have a greater effectis the image reconstruction filter. This result is not surprising since
the apodizing function completely modifies the characteristics of the PSF. Howaever,
because the changes are constant throughout the FOV, the apodizing function does not
affect patterns of shift-variance.

The radial symmetry that the PSF exhibits in the center of the FOV is progressively
lost as the input source moves toward the periphery. As a consequence, the capacity to
distinguish closely spaced objects is not only a function of their position but also of their
orlentation. This is particularly true of low scan times where the difference in resolution in
the radial and tangential axes of the rotating frame are greater than for the case where a
large number of projections are collected.
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CHAPTER 6
CORRELATION BASED
NON-PARAMETRIC PSF IDENTIFICATION

6.1 Introduction

The use of a thin wire as input for the non-parametric identification of the PSF has
often been criticized in the literature (Judy, 1976, Droege and Morin, 1882; Nickolofi and
Riley, 1985; Ehrhadt, 1986). Since the results of the previous chapters are based on this
input, it became important to verify if these estimates were valid.

One possibility would have been to estimate the PSF with the edge method (Judy,
1976). However, a large number of edge orientations would be necessary to generate a
two-dimensional estimate. Furthermore, to take advantage of the method, the edge must
be relatively long and the issue of shift-variance can become a problem.

For these reasons, we preferred the correlation-based method. Furthermore, this
method has never been applied to medical imaging systems. This study presents a good
opportunity to introduce this tool to the imaging community.

The first goal of this chapter was therefore to estimate the PSF from the input/output
correlation relationship known as the Wiener-Hopf equation. The second objective was to
compare the non-parametric PSF estimates obtained with this method with those
generated with the wire input.

The following section is devoted to the origin of the Wiener-Hopf equation and to
its implementation in two dimensions. Section 6.3 contains a detailed description of the
design of the input signal. Section 6.4 explores how a number of factors affect the
identification quality through a series of simulations. Knowledge gained from these
simulations is then applied to the experimental identification in section 6.5, followed by a
discussion in section 6.6. Section 6.7 finally concludes the chapter.

6.2 Background

Correlation methods have been successfully used to identify the system
characteristics In a wide variety of engineering fields ranging from nuclear power plants
(Godtrey, 1969) to linear (Hunter and Kearney, 1983; Kearney and Hunter, 1990) and
non-linear physiological structures (Marmarelis and Marmarelis, 1978). The underlying
principles are explained in a concise manner by Godfrey (1980) while a more detailed
account can befound in Bendat and Piersol (1986) and Marmarelis and Marmarelis (1978).
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In this se:ction. we will introduce the reader unfamiliar with this approach to the
Wiener-Hopt equation. We will also elaborate on how the equation is solved using a matrix

formulation. Throughout the text, special emphasis is placed on the 2D discrete nature of
the CT imaging device.

6.2.1 Theory

In absence of noise, the relationship between the output and the input for a linear,
stationary, shift-invariant system is given by the convolution integral:

b = | [ nt stz y-) i o 6
whera x, ¥, X, Y: independent and continuous spatial variables,

h(x,y): system impulse response or point spread function (PSF},

a(x.y): input and

b(x.y): output.

In terms of an imaging system, h(x,y) represents the point spread function (PSF), while
a(x.y) and b(x,y) are the object under ocbservation and its image respectively. In a two sided,
discrete version, equation (6.1) becomes:

i J
b(u,v) = AuAv Z Z h{u,v) alu=-u,v-1) 6.2)
pm=fym-J
where u, v,, i1, v are independent, discrete, spatial variable. The object and image are of
size K by L pixels and the PSF is assurmed to be of finite size M by N pixels where M =21 + 1
and N=2J+1. Changing the variable u to u+i and v to v+j, muitiplying both sides by
a(u,v} and summing yields:

i

! J
2 Za(U.V)b(u‘+i,v+j)=A,uAvZ Zh(ﬂ 1)2 za(UV)a(u+i—;cv+;-v)

Umaf ym<J el ye- ym-lyvme-J
{6.3)
A biased estimator for the autocorrelation and cross-correlation functions for zero-~-mean
input and output signals is:

CaslU. V) = —— Z z a(u.v) alu + u.v+ 1) (6.4)
Nu--l v =J
;L
CaslU,v) = N :): > alu,v) blu+ mv+1) (6.5)
Ue-f ve-J
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incorporating equations (6.4) and (6.5} into (6.3) yields:

1
Canli ) = AUAV D > h{u,v) Caali - pt.j =) (6.6)
jim={ vm-/
where | : independent discrete spatial variables,
Cab: input-output cross-correlation function, and
Caa: input auto-correlation function.

Equation (6.6) is known as the Wiener-Hopf equation. It states that the
cross-correlation function (CCF) between the object and its image is equal to the
convolution of the PSF with the object auto-correlation function (ACF). To avoid edge
effects during convolution, ca;(i,J) must be twice the size of the PSF, which implies that:

i=-M+1,-M+2...0.. M-2, M-1=-2|, -2[+1 ...0... 2I-1, 2
j=-N+1,-N+2...0.. N-2 N-1=-2J,-2J+1...0...2J-1, 2J

whereas ¢, and h are arrays of size M by N and therefore:
i=-l,-1+1 ... 0... I-1,}
=-J,-J+1..0..J-1,J

6.2.2 Implementation
Unless the input signal has an extremely simple ACF, a subject which will be
discussed later, the estimate of the PSF must be obtained through deconvolution of

equation (6.6) {(Sawaragi et al., 1985). This can be done by expressing this equation in
matrix form:

Cag = Caa H (6.7)

where Capg: vector containing elements of the cross-correlation function
Cap(l.j)

H: vector containing elements of the point spread function h (i )

Caa: square matrix containing elements of the auto-correlation

function Caafij)

In the equations above, the terms AuAv were incorporated into matrix Caa The
solution for H Is readily obtained by pre-multiplying both sides of (6.7) by the inverse of
Caa.

H=Ca ™' Cae (6.8)

The main difficulty in estimating the filter is computing the inverse of the matrix
containing elements of the auto-correlation function. The size and contents of the vectors
H, Cap and matrix C,a depend on the method chosen to do so.
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The system of equation (6.7) can be set up so that Ca, is a symmetric Toeplitz
matrix. The methods of solution using this property are fast and require modest amounts
of memory but are unstable (Doukoglou, 1988). Because of its robustness, we adopted
singular value decomposition (SVD) as a mean of inverting Caa. Using this approach, the
arrays H, Cap. and Ca, are built up as follows:

1. H. and C,p are (one-dimensional) vectors MxN elements long constructed by
reading the rows of h(i.j) and cap(i.j) sequentially.

H=[h(-1.=0), A(=1,=1+ 1) ... h(=1,0) ... A(=L.0, A=t + 1,~0) ... ht.1- 1), h{.1) ]

(6.9)
and similarly for Cap.
2. Caals a (MxN) by (MxN) square matrix of the form:
Can® Can' ... CaaM’
Can = | Can . Can? .. CaaM? (6.10)
CM”-MM CM"-'M+2 C;‘;o

where the element Cpy!is itself a N by N square matrix formed with elements of the
ith row of the auto-correlation function c,;(i.j):

Caali. 0) Caali. 1) ... Caall.N-1)
Con' = | o078l @ BTEL e
Caall, =N + 1} cCeali,-N +2) ... Casli, Q)

The proof that this matrix arrangement corresponds to the convolution of equation
{6.6) can be found in Doukoglou (1989).

6.3 Design of input signal

The quality of the estimation and the robustness of the numaerical solution method
largely depend on the input signal auto-correlation function. ideally, the ACF should be as
simple as possible. However classical signals proved to difficult to generate. We therefore
had to design a new signal as well as an algorithm to obtain its digital representation.

5.3.1 Choi ]

The first signal to consider as a choice for the input signal is white noise. Indeed.
the auto-correlation function for this type of signal is equal to 0 except for element ¢,,(0.0)
which is equal to the mean square value of the signal 2. Inspection of equation (6.6) shows
that the PSF is simply the cross-correlation function ¢,y itself divided by 2.
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It white noise cannot be generated, a suitable alternative is the pseudo-random
binary (PRB) sequence. This sequence assumes one of two values, and the switch from
one level to the other occurs only at particular, pseudo-random, intervals. There exists two
major differences between the PRB sequence and white noise. In the former, the
occurrence of change Is predetermined and therefore true randomness is not achieved.
Secondly, the PRB sequence is periodic. For example. a PRB sequence generated with
an n-stage shift register, has a length equal to N=2"-1 and a period of NAd (Godfrey,
1969). The digit interval Ad is the physica! distance separating two events within the
sequence. Nonetheless, the ACF of the PRB sequence closely resembles that of white
noise since it consists of triangular spikes of width 2Ad repeated at every period T.

Making a phantom based on either of these signals would have proven aformidable
task. A white noise phantom required a large number of materials exhibiting different x-ray
attenuation properties. Furthermore, the exact spatial variation of attenuation would have
had to be known in order to compute the correlation functions.

Only two materials were necessary for the PRB sequence, thereby simplifying the
construction of the phantom. However, the neighboring cells, each cell representing an
event, were required to be square and with an area equal to the image pixel size. Indeed,
to preserve the binary character of the signal, every pixel had to contain only one type of
material. If this condition was notrespected, averaging occurred with a corresponding pixel
CT value anywhere between the two extremes representing a purely binary signal.

These difficulties prompted us to design our own input signal, based on a PRB
sequence. It consists of a series of pseudo-randomly located holes (PRLH) drilled in
radiopaque material. The position of the holes correspond to 0's in atwo-dimensional (2D)
PRB sequence. This 2D sequence was formed by stacking NROW groups of NCOL
consecutive elements of a 1D sequence as ilustrated in figure 6.1. The 1D sequence was
itself generated by the NEXUS operator PRBS based on the n-stage shift-register
algorithm.

6.3.2 Digitization of inout

In order to compute the input-cutput cross-correlation function, the input signal
had to be digitized since the output image was available only in this form. A digital
representation of the PRLH signal is obtained by laying a digitizing grid of square pixels
upon the sequence of holes of known size and position.
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NCOL NCOL' NCOL
(a) 011..101|001..110{..|100..010
|
NROW Na e
001 110 L
011.. .101 __C_ﬁ“!“-
NCOL '

(b)

represent holes drilled in a radiopaque material

The digitization procezs is conceptually simple: it requires computing the area of
a pixel covered by a hole, or a portion of it. The object being binary, the remaining pixel
surface is occupied by the solid radiopaque material. The digitized cbjact fits into a grid
of K rows and L colurmns where each grid element, or pixel, Is assumed square and of user
defined area A. The upper limit on the diameter of the hole is set to twice the pixel width

or Zv‘g .

The digitization process counts 6 steps, described in the rectangular boxes infigure
6.2. Figure 6.3 defines the geometry «iid the symbols used in the subsecuent equations.

1- [nitiglization, The object is assumed to be a homogensous block of
plastic. Therefore, the pixel area covered by a hole Ay is initialized to 0 for

every grid element:

Auli.) = 0,

i=0K-1 j=0L-1
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Figure 6.1 Creation of input

{a) Elements of a 1D PRB sequence are assembled into NROW groups of NCOL
elements to form a 2D seguence shown in (b). (¢} The zeros in the sequence




initiatialize An(i,]} for every pixel

'

| for every hole In the sequence

!

- find the row and colunn indices of the hole’s center (ig,jc)
- assign area of hole to pixel {ic.)¢)
- determine if the hole inersects the boundary of pixel {i..Jc)

|

no
——<Iniersecllon with horizontal bourndary? >
‘ yes

- add Ag 1o pixel above (Or below)
- subfract Ag from Aq(ic.jc)

>

<|mersacﬂon with vartical boundary’.> An: hole area
Ag: segment area

; yes Ac: corner area

- add Ag 10 pixel to the right (or left)
- subtracl Ag from Ayl(ic.)c)

i

no
-——<nlersec1lon with horizontal and vertical boundary>
¢ yes

- add A¢ to diagonally located pixel
- sublfract A from adjacent segments

- add Az to Aplic.je)
no
last hole?
+ yes

compute average CT number for every pixel

Figure 6.2 Inpul sequence dlgitization algorithm
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Figure 6.3 Geomelry for input sequence digitization

(a) the algorithm first determines the plxel containing the center of a hole and deter-
mines which pixels within a possible 9 contain a portion of the hole. {b} it then com-
putes the intersection points (if any) between the grid lines and the hole, (¢) the area
of the segment Ag beyond the horlzontal and vertical (not shown) grid lines. (d) and
the comer area Ac if the hole intersects both a horizontal and vertical line.
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2- Pasition of holg and intersection with pixel boundaries, The second step
Is depicted in figure 6.3 (). It consists of finding the row and column indices
(ic.jc) of the pixel over which a given hole is centered. The equation of the
grid lines defining the boundaries of pixel (i;.j.) are expressad in a local
coordinate system (x,y) whose origin coincides with the center of the hole.

When the diameter of the hole is limited to twice the width of a pixel, a
maximum of 4 neighboring pixels are affected by a given hole. However,
depending on the subpixel location of the hole’s center within pixel (ic.jc).
any of its 8 neighbors can contain a portion of it. Not knowing at this stage
how many pixels areinvolved, thetotal area ofthe hole is assigned to central
pixel:

Aulic. o) = & R?

At this stage, the algorithm also deterinines if the hole intersects the
boundaries of pixel (ic.]c) (see figure 6.3 (b)). In the general case, a line
y=ax+b intersects a circle x2+y2=R2if D iz 0 (Tuma, 1987) where D:

D = R? + R%a® - b?
More specifically, if D> 0, the line intersects the circle at two points the
coordinates of which are:

. -ab + /D

T T e
_b ia.@

Yi2 1 + &2

If D=0, the line is tangent to the circle and x4 =xp, y1=y2. Finally, when
D <0, the line and circle do not intersect. For a horizontal line, equations
(6.14) to (5.16) simplifies to:

y1=yo=k D=R-k? x,=%/D
and for a vertical line:

X3 = Xg =1 D=R-1 y3.4=:i:f5

3- Iptersection with horizontal boundary. f the hole has been found to
intersect a horizontal boundary, the arza of the sector As located above or
below pixel (ic.Jc) is computed. This surface is shown as the shaded area
in figure 6.3 (c), and is given by:
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RZ
As = E—(ﬂ -sina ) (6.19)

where « is the angle sub-tending the sector:

a=2 tan"(—i—) =2 tan"(-lxz—h?-l-/-%) {6.20}

Having been assigned to pixel (ic.lc) in step 2, As must be subtracted from
Aylic.jo) and assigned iu the pixel above (i.-1.lc) or below (ic + 1.jc).

4- [ntersection with veptical boundary. |f the hole intersects a vertical
boundary, the segmerit area Ag located to the right or lefi of pixel (ic.jc) Is
computed. Equation {6.19) still applies but ¢ Is now given by:

a=2 tan"(lﬁ_—;ﬁ"lﬁ) 6.21)

As in step 3, Ag is subtracted from Agfic.jo) but added to Aylic.je-1) or
Anliclc +1).

5- Intersection with horizontal and vertical boundary, A corner, covering the
surface A, is formed when the hole intersects both a vertical and horizontal

boundary. In general terms, A, depicted as the shaded area in figure 6.3
(d). is given by:

A, = J J dx dy {6.22)
y x

The integration limits vary depending on where the corner is located. For the
upper right pixe! (i;-1.jc+ 1) the limits are:

k < X< v lez-."z (623}
[ < y<nm
and
/ Y3
As = /R2 Y+ — s:n"\;) -1y (6.24)

/

A. is added to the proper diagonally located pixel (ic*1.j.%=1) and
subtracted from the pixels affected in steps 3 and 4. Finally, it must be added
tO AH(,C'JC)'
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6- Average pixelvalug, After steps 2through 5have been repeated for every
hole in ths sequence, the CT number of each pixel is computed by weighing
the CT number of the radiopaque and the material filling the holes with the
area they respectively occupy:

Tradiopaquell. /) (A - Auli, ) + CTHUL ) Auli.))

) C
CTh.) = A

(6.25)

6.4 Simulations

A series of simulations were carried out to fine tune the design of the phantom and
to investigate the effect of different imaging situations. More specifically, we examined the
influence of the following factors on identification quality: the size of the holes and their
separation, the length of the PRB sequence, misregistration in the form of relative shift and
rotation between the Input and output signals and cupping. in the last simulation, the
performance of our input signal was compared to a white noise input.

6.4.1 Method

Figure 6.4 schematically describes how the simulations were performed. The
object a{i.]) was generated using the method presented in section 6.3. In all cases, the CT
number of the radiopaque material was set to 200 and the material filling the holes was
assumed to be air with a CT number of -1000. The PSF to be identified h{i,j) was modelled
as a Gaussian function (see equation 3.1). The parameters N, p, and p, were taken from
table 3.2 thersby simulating images reconstructed with the smoothing filter (filter 0). In the
remainder of the section, h(i j) is called the actual PSF. Convolution of the object with the
actual PSF yielded a simulated image b{l.j). Using the identification method outiined in
section 6.2, with a(l.)) as input and b{i.j) as output, an estimate of the actual PSF Q(i,j) was
obtained. Finally, the input a(i.j) was convolved with Q(i.J) to generate an estimated image
R(L)).

The quality of the identificaticn procedure was established using three quantitative
measures. Tha firstIs based on the variance accounted for (VAF) between the output b(i.J)
and the estimated output b(i.j):

I J
> > (bl - bli.j) )2
imat e
1 J
> > b

fm-l Je=-d

VAFou = |1 -

x 100
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Figure 6.4 Schematic diagram of simulation scheme

Three measures of identification quality are based on a comparison between the
actual PSF h(lj} and its estimated non-parametric version h(l.}) (VAFpe), between

the image b(i.j) and its estimate R{l.J} (VAF o4}, @and between the non-parametric h(l,})
and parametric estimate of the PSF bm(i.j) (VAFg) .

The second measure accounts for variations between the actual PSF h(i.j) and its
gstimate h(i ).

i J
> 2 (hp - a6 P
VAFpy = |1 - 21— x 100
> > hD
fm-f jm-J
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Finally, the Gaussian model was fitted to h{i.j) using the procedure outlined in
section 3.2.2, resulting in an estimated modelled filter hy,(l.j) and the following measure:

J

!
> 2 (b6 - i P

VAFg = |1 - = ITJ - x 100
> > hm26h
==t Jm-d
6.4.2 Effect of hole size and separation

For the PSF to be accurately identified, the input object must contain power over
the range of frequencies covered by the system’s modulation transfer function. This is
controlied by the size of the holes drilled in the solid material as well as the distance
separating the holes. For example, the larger the holes and the greater the gap between
them, the more the power is concentrated in the lower end of the spectrum.

During this simulation, a diameter range from 0.2 mm to 0.8 mmin steps of 0.2 mm
was investigated. The holes were not allowed to overlap and the minimum separation was
set to 100% of the diameter. This limit reflacts a practical consideration: the drill bit must
be surrounded by a thin wall of material. Without this support the drill wobbles and can
easily break.

All 2D sequences were formed from the same 1D sequence and digitized onto a
49x49 pixel grid. With a pixel width of 0.4 mm, the signals covered a 19.6 mm x19.6 mm
reglon.

Table 6.1 contains the results of this simulation. With values greater than 899% over
therange studied, VAF, 4 was not a good discriminator in this case and the choice of a hole
size must be based on the other two measures. The insensitivity of VAF 44 was probably
due to relatively small error betwesen the output and the simulated output when compared
to the overall signal intensity. Vaiues of VAF,g and VAFy, were at their worst for a hole
diameter of 0.2 mm and peaked for objects created with a hole size of 0.6 mm. Table 6.1
also shows that for this diameter, identification quality was relatively insensitive to the
separation between the holes. However, over the range studied, the best identification
occurred when the inter-hole distance was about 150% of the diameter.

For this reason, a #73 drill bit with a diamster of 0.61 mm, the closest to 0.6 mm,
was selected to generate the holes. Although table 6.1 indicates optimal results for a hole
separation of 1.0 mm, we nonetheless chose a value of 0.9 mm, creating a signal with a
slightly higher frequency content. We theraby hoped to generate a single input signal
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dlameter  separation VAF g VAF pgt VAF,
{mm) (mm)

0.2 99.52 63.02 83.00

0.2 0.3 99.65 89.64 93.53
0.4 99.43 75.27 89.61

0.5 99.43 75.27 89.61

0.4 59.63 83.16 90.26

0.5 89.88 99.55 99.73

04 0.8 99.71 98.45 99.56
0.7 99.42 98.51 99.55

0.8 99.93 95.50 95.63

0.7 89.85 89.07 99.25

0.8 99.58 89.46 899.17

0.6 0.9 99.40 99.24 99.74
1.0 99.22 99.88 99.76

1.1 99.65 98.99 99.48

1.0 99.77 98.93 99.28

1.1 99.56 98.65 99.13

08 1.2 89.45 97.99 89.18
1.3 09.73 98.94 99.18

1.4 99.58 98.31 98.75

TABLE 6.1 Effect of hole size and separation on dentification quallty

adequate to identify the PSF of the smoothing and high resolution image reconstruction

filters, the latter exhibiting a slightly higher cut-off frequency.

A hole size of 0.61 mm and separation of 0.9 mm were used in all of the following

simulations.

6.4.3 Effect of sequence length

The length of the PRB sequence, or the number of holes, regulates the size of the
object. It must be larger than the settling distance of the PSF but, on the other hand, it must
be contained within a region where the hypothesis of shift-variance remains plausible.
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The performance of object created from a sequence length of 8x8 to 64x64
elements, covering a region of 8.8x8.8 to 59.5x59.2 mm? is found in table 6.2. In all
cases,the pixel width was equal to 0.4 mm. Results show that increasing input size lead
to an improved estimate.

sequence length  object size

{elements?) VAFo VAF et VAFg
(mm?)

8x8 8.8x8.8 80.10 87.83 96.84

16x16 16.0x16.0 90.76 89.69 98.90

24x24 23.2x23.2 96.56 085.91 99.33

32x32 30.4x30.4 98.89 98.47 99.59

64x64 59.2x59.2 899.60 99.37 99.75

TABLE 6.2 Effect of sequence length on Identification quatlity

However, as figure 6.5 depicts, this improvement was due to a reduction in the
amplitude of the ripples surrounding the central peak as the object grew in size. The central
portion was not affected by sequence length. These ripples strongly affected the blurring
pattern, explaining the the large improvements in VAF,,; with sequence length. On the
other hand these ripples had little influence when the Gaussian model was fitted to the PSF,
hence the large values of VAFy,;. Their effect appeared moderate when the estimated PSF
was compared to the actual PSF as the variation of VAF . attest. Nonetheless, these three
measures show that it became increasingly difficuit to improve the quality of identification
as the object size became larger.

We established in the previous chapter that the PSF was isotropic and
shift-invariant within a circular region centered within the field of view. The critical radius
Rc was evaluated at 34 <Rg < 51 mm for the smoothing apodizing function and
17 <Rg s 34 mm for the high resolution filter. These figures are valid for a scan time of 9.0
s. A signal based on a 32x32 sequence, even ofi-centered, therefore fits within a region
whaere shift-variance is respected. And with all measures of identification quality greater
than 88%, such a sequence is adequate for our purposes.
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VAF ,1=90.76
VAF g1 = 89.69
VAFm = 9890

VAF,=98.89 VAF 1= 99.60
VAF 5¢1=98.47 VAF o1 =99.37
VAFm =99.59 VAFm =089.75

Figure 6.5 Effect of sequence length

{a) PSF to be identified; estimated PSF when the obeject is created from a (b) 16x16,
{c) 32¢x32, and (d) 64x64 pseudo-random binary sequence
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6.4.4 Effect of pixel si

During experimental identification, the image can easily be reconstructed with
pixels of different sizes using the scanner's zoom option. To simulate the effect of this
Iimaging parameter, the object created from a 32x32 sequence with hcles of 0.61 mm in
diameter separated by 0.9 mm was digitized onto a series of grids with a pixel width varying
between 0.305 mm and 0.5 mm (0.305 mm represents the smallest pixel size that the
digitization algorithm can handle for a hole diameter of 0.61 mm).

As shown in figure 6.6, increasing the pixel size had a smoothing effect: the
amplitude as well as the frequency of the ripples surrounding the central peak of the PSF
dacreased as the pixel was larger.

In principle, this should guarantee an improvement in identification quality.
Howaever, the PSF Is also increasingly blurred and small details can be lost. Furthermore,
the PSF is represented by an ever decreasing number of pixels. As a result of these
conflicting effects, the measures of identification quality found in table 6.3 reveal no pattern.
Fortunately, with all values greater than 98.5%, it can be said that pixel size is not a critical
parameter.

pixel width VAFo4 VAF pet VAFgy
(mm)
305 99.80 99.27 99.47
350 99.53 99.13 99.58
400 99.68 99.44 99.73
450 99.17 99.15 99.77
500 98.99 98.66 99.67

TABLE 6.3 Effect of pixel size on Identification quality

6.4.5_Eftect of sub-pixel translation

Proper identification procedure requires that the input and output be aligned. Both
translation and rotation can be responsible for misregistration. In this simulation, we
investigated how the shape of the estimated PSF is affected by subpixel shift between the
object and its image.
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VAF 50 =99.80
VAF g =99.27
VAFy=99.47

VAF o =99.69
VAFm =99.73

VAF = 98.99
VAF 5 = 98.66
VAF; =99.67

Flgure 6.6 Effect of pixel size

The PSF in the right hand column are estimates of those in the left when both the

object and the image are digitized into a grid with a pixel width of (a) 0.305 mm, (b)
0.400 mm and (¢} 0.500 mm
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A reference object, used as input, was created by digitizing a 32x32 sequence onto
a 0.4 mm pixel grid. As with the previous simulations, the diarneter of the holes was setto
0.61 mm and their separation to 0.9 mm. Various amounts of shift were introduced
independeantly in the x and y direction to this reference object which was then convolved
with h(i j) to create the shifted images.

According to the values in table 6.4, the identification appeared to be at its worst
when the image was shifted by half a pixe! in one diraction and 30% in another. The resulting
astimated PSF is compared in figure 6.7 to the actual PSF and the one identified when the
signals were properly registered.

shift VAFou VAFpg  VAFy Px Py " t

(% of pixel width) {pixel-1) (pixel-1} (pixel) (pixel)
0.0 0.0 99.68 99.44 89.73 0.4596 0.4721 7.9993 7.9997
041 0.1 99.64 99.00 99.72 04591 04725 7.8988 B8.0947

0.2 0.2 9957 97.70 9973 0.4589 04739 7.7984 7.1919
03 0.3 9918 87.08 85.66 0.4611 04713 7.6996 7.3310
0.4 0.4 99.23 8850 9968 04596 0.4740 7.6035 7.4281
0.5 05 99.28 89.09 8969 04587 04762 7.5080 7.5249
0.5 0.4 99.18 8665 98.67 0.4587 04752 7.5084 7.4279
0.5 0.3 89.08 83.80 9963 04591 04741 75085 7.3307
05 0.2 99.44 93.41 98.71 0.4557 04782 7.5094 B8.1905
0.5 c.1 99.48 9403 99.70 04553 04783 75089 8.0935
05 0.0 99.51 9403 9970 04553 04783 7.5083 7.9994

meaan 0.4583 0.4749
standard 0.0019 0.0025
deaviation

TABLE 6.4 Effect of subpixel shift on Identification quality

Values varying betwesn 99.68 and 99.08 establish the relative insensitivity of VAF 5
to subpixel misregistration. This can be explained by the fact that, with a resociution of about
1.5 mm, or 3.75 pixels, structures were blurred over a large distance compared to the
amount of shift. Small shifts did not affect the average CT value of a pixel.
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VAFm =99.73

VAF,,=99.08
VAF 51 =83.80
VAF;;, =99.63

Figure 6.7 Effect of sub-pixel shift

(a) PSF to be identified {b) estimated PSF under ideal conditions (c) estimated PSF
with 50% pixel shift in x (column) and 30% in y (row) direction
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With values between 99.€3 and 99.73, VAFy, Is even less sensitive. This resulted
from the ability of the Gaussian model to estimate the position of the peak value even at
subpixel level (see section 4.3.2). Table 6.4 also shows that the amount of shift can be
estimated to within 3% of pixel width. The small variations of >arameter p, and p, indicate
that the shape of the underlying Gaussian function was not modified. The apparent loss
of symmetry shown in figure 6.7(c) was simply due to a shift of the estimated PSF with
respect to its own grid by the same amount between the input and output. As a
consequence, when the true and estimated PSF are compared, values of VAF . fall off with
the amount of shift.

6.4.6 Effect of rotation
The second factor responsible for misregistration is rotation. To investigate this
parameter, various amounts of rotation v. ere substituted in the procedure described above.

The rotation was applied about the upper left corner of the object and ranged from 0.5 to
5.0 degreses.

Even modest amounts of rotations have a much more severe effect than sub-pixel
misregistration as a comparison of tables 6.4 ard 6.5 discloses. The diminishing values
of py and py with increasing amounts of rotation indicate that the estimated PSF
progressively broadened. Furthermore, only the upper left corner of the object and image
was properly aligned. All the other points were translated by an increasing amount as the
distance from that corner and the amount of rotation increased. The variation of parameters
t, and t, reflects this translation which can also be observed in figure 6.8. Rotation also
introduced 1ipples of increasing amplitude. These ripples decrease the ability of the fitting
procedure to recognize a Gaussian function and explain the decrease in VAFy;. This factor,
compounded by the previous two, is also responsible for the rapid fall of VAF o4 and VAF gy,

6.4.7 Effect of cupping
Cupping invalidates the assumption of stationarity necessary for the application
of equation (6.6). The effect of cupping was simulated by adding the equation of a plane

to the output. In table 6.6, the plane is represented by values added to the lower left (LL),
lower right (LR) and upper left (UL) corner of the image.

Adding a certain amount of drift in the image while it is absent from its estimated
version will caused a drop in VAFq, proportional to the severity of the cupping. A slight
decrease in the other two measures of identification quality can also be observed. However
with all values of VAF greater than 98%, this artefact did not have a large effect on
identification quality.
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VAF o, =99.59
VAF s = 88.38
VAFm =09 87

VAF o4 =98.67 VAF . = 95.50
VAFm =99.64 VAFm =98.99

Figure 6.8 Effect of rotalion

(a) PSF to be identltied, eslimated PSF when the object and lis image are rotated by
()05 °, {c) 1°, and (d) 2° with respect to one another
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rotation  VAFo, VAFLg  VAFg Py Py 1, ty
(degrees) (pixel™) (pixel-1} (pixel) (pixel

0.0 89.68 99.44 99.73 .4596 4721 7.89993 7.9997

0.5 89.59 BB.34 80.87 4458 4499 76979 B.6741

1.0 98.67 59.64 99.64 4373 4400 7.4020 9.3502
20 95.50 36.64 98.99 4006 4034 68217 9.7332
3.0 91.54 21.11 98.09 .3515 3588  6.2439 10.0906
4.0 87.52 14.36 Q7 a7 .3079 3157  5.6872 10.4417
5.0 83.94 11.42 85.77 .2584 2745  5.0408 10.8054

TABLE 6.5 Effect of rotation on identification qualily

CT number added to corner

LL LR uL VAFou VAF st VAFg
0 5 0 99.94 99.88 90.99
0 5 10 99.67 99.87 99.98
0 5 20 99.12 99.83 99.97
0 5 30 98.28 99.76 99.96

TABLE 6.6 Effect of cupping on identification quality

6.4.8 Random .vs. PRLH sequence input

In this simulation, we wished to compare the performance of our input design
strategy with awhite noise input. Two objects were generated, the first from a 32x32 PRB
sequence, with holes 0.61 mm In diameter spaced 0.9 mm apart, and the other consisting
of zero-mean Gaussian white noise with a standard deviation of 1 CT number. Both objects
were represented with pixels 0.4 mm in width and covered an area of 75x75 pixels.

Table 6.7 compares the quality of identification for both inputs and contains the
parameters of the Gaussian fit to the identified PSF as well as those of the actual PSF we
are trying to identify. All values of VAF were lower for the PRLH object than for the white
noise input. With larger values for parameters p, and py,. the PSF identified with the PRLH
object estimated a narrower PSF, or overestimated the modulation transfer function (MTF).
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Input VAFqut VAF st VAFy Px Py
{pixel-1} {pixel-1)

actual 4522 4595
PRLH signal 99,68 99.44 99.73 4596 4721
white 99.97 99.96 99.98 4568 4593

TABLE 8.7 Identification quality for PRLH sequence and white inpul

Figure 6.9 shows the non-parametric MTF, obtained by Fourier transforming the
non-parametric PSF. The largest difference between the actual MTF and the one estimated
from the PRLH object in 2.4% and 3.7 % in the row and column directions respectively. For
the white input, the values drop to 1.5% and -1.9%. As a consequence of overestimaling
the MTF, the resolution evaluated with this method will be slightly lower than if they had been
estimated from a white noise input. The small peaks observed near the frequency of 1
cycle/mm are due to a large increase of power in the PRLH signal at a frequency of 1.1
cycles/mm, the reciprocal of the distance separating the hole

6.5 Experimental identification

The previous simulations provided useful insight into the design of the input signal
and into the results we can expect from this technique. In this section we will sge how this

knowledge was used to fabricate the phantom and to maximize, in the informal sense, the
identification.

8.5.1 Description of the phantom

Figure 6.10 shows the image of the 150 mm diameter phantom. Ease of
machinability and homogensity motivated the choice of delrin as the plastic support for the
phantom. The position of the holes, totalling 501 in number, was generated with a 32 by
32 element PRB sequence using a 10 stage shift register algorithm {(NEXUS operator
PRBS). A #73 drill was used to produce holes 0.61 mm in diameter to a depth of
approximately 6 mm. A center to center separation of 0.9 mm between holes guarameed
structural support to the drill bit while providing an adequate signal for identification
purposes. The input signal covered aregion of 28.2 mm x 28.2 mm with the lower left hand
corner corrasponding to the center of the phantom.
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frequency {cycles/mm)

actual mff to be identiiiad
—r——-—  mif estimated with PRLH input

(b)

0 0.2 0.4 0.6 08 1 1.2
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Figure 6.9 influence of type of input on MTF

Cross-secllons taken through the center of non-parametric MTFs (a) in the row and
(b) calumn directlons. Non-paramefric MTFs are obtalned by computing the Fourler
transform of the non-parametric PSFs. The signal based on the PRB sequence slight-
ly overestimates the actual MTF we are trying to identify. Estimates obtained with the
while noise input are Indistinguishable from the actual MTF and Is therefore not

shown.
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Figure 6.10 Image of PRLH sequence phantom

Apart from the signal itself, the phantom contains a sel of alignment axes crealed by
drilling a series of holes parallel to the top and to one of the sides of the signal. The
phantom coupled to the scanner attachment set via a custom adaptar. This adaptor

is mounted onto the phantom with 5§ nylon screws Inserted through the [arge holes
seen at the botiom,

A serles of seven holes, also 0.61 mm in diameter but spaced 12.7 mm apart were
drilled parallel to the top edge of the signal. These l.oles together with a second series,
paraliel to one of the sides, formed a set of perpendicular axes providing a mean of
rotationally aligning the object with its image.

The holes forming the signal itself as well as the alignment axes were drilled with
an Excello numerically controlled milling machine with a positional accuracy of 0.001 in or
25 microns.

Finally, the phantom was mounted onto a custom adaptor with the use of 5 nylon
screws passing through holes located below the signal.
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6.5.2 Scanning parameters

The phantom was mounted to the scanner phantom attachment set via the custom
adaptor and was centered within the gantry. The scanning parameters included a tube
current and voltage of 200mA and 120 kV. In order to minimize noise, the slice thickness
should be as large as possible. However, because of the shallowness of the holes, this

parameter was set to 2 mm. Shift- variance was minimized by using a scan time of 9.0 s
corresponding to 1080 views per image.

Keeping the above parameters constant, the image of the phantom was
reconstructed with the smoothing (filter 0} and high resoiution (filter 4) reconstruction filters.
The phantom was imaged with the smallest FOV compatible with its size, namely 160 mm.
A pixel wicth of 0.334375 mm was obtained by reconstructing the image onto a 107 mm
FOV using the zoom option.

6.5.3 Results

Figure 6.11 shows the PSF estimated without any processing of the outputimages.
Values of VAF, 4 equal to 96.77 and 93.93 and VAFy, of 99.15 and 98.97 were obtained for
images reconstructed with the smoothing and high resolution filters respectively.

VAF,t was computed by comparing the real CT images on a pixel by pixel basis
to the simulated version generated by convolving the input with the estimated PSF.
Similarly, the appropriate model, either Gaussian for the smoothing filter and damped
cosine in the case of the high resolution filter, was fitted to the estimated PSF resulting in
VAFy;. However because the PSF was not known “a priori”, VAF . could not be evaluated.

Simulations showed that better results could be achieved by removing cupping and
by properly aligning the image with the input object. Due to the restricted area within which
the signal was concentrated, cupping was modelled as abi-linear variationin CT numbers.
The equation of a plane, estimated from the CT numbers of the plastic material surrounding
the output signal was added to the input, thereby cancelling this artefact.

The amount of rotation was evaluated as follows. The Gaussian model was fitted
to the image of each hole forming the alignment axes thereby providing their subpixel
location. Theinverse tangent of the slope of these lines, obtained through linear regression,
provided an estimate of the angle between the lines and the digitization grid. A value of 0.58
and 0.68 for the horizontal and vertical directions respectively averaged 0.63.
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VAFm =99.15 VAFﬁt =98.97

Figure 6.11 Experimentally identifiad PSF without preprocessing

Experimentally astimated PSF for (a) smoothirg and (b) high resclution tiller. These
estimates were obtained without properly registering the input and output signals

and neglecting the cupping arefact.

Fitting the Gaussian model to the PSF produced with the smoothing filter (figure
6.11 (a)). revealed that the output was shifted by 28% and 30% of pixel width in the x and
y directions respectively with respect to the input.

Figure 6.12 shows the identified PSF obtained after the images had been properly
processed. Table 6.8 contains measures of identification quality as well as model shape
parameters. The values of VAF yincreased to 98.79 and 97.95 for filters 0 and 4 while VAFy;,
rose to 89.29 and 99.39.

filter VAF ot VAFg Px dy Py dy
(%) (%) mm-1 cycle mm-? mm-1 cycle mm-?
smoothing 98.79 99.29 1.1867 - 1.2025 -
high resclution 97.95 99.39 1.2650 0.2344 1.2495 0.2430

TABLE 6.8 Quality of experimental idertification
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(a)

VAF 4 =98.79
VAFm =00.29

(b) (©)

VAF,4=97.95
VAFm =09.39

2 4 6 8B 10 12 14

Figure 6.12 Experimantally identified PSFs with preprocessing

PSF obtained for (a) smoothing and (b) high resolution image reconstruction fllter.
{c) cross section In the column direction taken through the center of the PSF in (b}
showing negative tails characterlstics of thig filter. The input signal was processed
to match the cuppling characteristics of the image, as well as its orientation and sub-
pixsl location,
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6.6 Discussion

Many factors influence the quality of identification. In this section we will consider
the influence of the design of the input signal, noise, non-stationarity and misregistration.
We will also discuss how PSFs estimated with the correlation method compare with those
evaluated from the wire input.

6.6.1 Design of the |

When white noise cannot be employed as an input, many authors suggest using
a PRB sequence. If the fabrication of a white noise phantom seemed insurmountable. the
creation of a pure PRB signal would also have proven very Jifficult. We therefore chose
to build a phantom by drilling holes, the position of which was based on a PRB sequence.

When designing a PRB sequence, three parameters must be fixed: the signal
amplitude, the digit interval and the period (Godfrey, 1969). To complete the design of our
input signal, two additional factors had to be considered: the size of the holes and of the
pixels.

Signal amplitude The amplitude is governed by the choice of materials composing the
phantom. The radiopaque material was chosen for its ease of machinability and
homogeneity. Delrin, whose CT number averaged 200, fulfilled both requirements. In order
to avoid x-ray scatter, test signals are usually imaged in water. However we feared the
formation of air bubbles within the holes if the phantom had been immersed. We therefore
simply imaged the phantom in air whose CT number Is very low with a value of -1000.

Digit intarval The digit interval, or the distance betwesn adjacent sequence elements was
set to 0.9 mm, the minimum distance between neighboring holes. The period was equal
to the product of the digit interval and the sequence length N =2"-1 where n is the number
of stages in the shift register. The signai represented a full cycle of a 32x32 slerment
sequence generated with 10 stages. With a digit interval of 0.9 mm, the period was
therefore equal to 28.8 mm,

Period Norton {(1985) and Godfrey (1969) suggest using several short sequences, each
with a perlod slightly larger than the settling time of the PSF, rather than one long sequence.
In the former case, several estimates can be averaged since the computation of the
correlation functions in done over one period. Using this strategy, useful estimates can still
be obtained in the advent of a breakdown ot the experiment.

We were not concerned with this type of problem: if a portion of the image is
unusable, the scanner must be serviced. Furthermore, a foreseeable problem with the
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approach is that the correlation estimates corresponding to each period must be properly
registered prior to averaging. For the estimates to occupy the same location within the pixel
grid, the period must be an integer multiple of the pixel size. Our simulations (section6.4.3)
showed that excellent results could be obtained with one large sequence. The determining
factor in this case was tha overall size of the object. For these reasons, we preferred using
one large period.

Hole size For proper identification, it is important that the input signal contain sufficient
power at the frequencies over which the system operates. The size of the holes and the
distance between them control the frequency content of the signal. Simulations in section
6.4.2 showed that the best identification for the smoothing filter occurred when the holes
were approximatsly 0.6 mm in diameter. Within the range studied, the separation between
the holes did not have much influence for this size of hole.

Pixelsiza The most serious drawback with our input design s that the signal was not binary.
The CT value of a given pixel varied depending on the portion occupied by holes, which
in turn was a function of the positior: of the holes and of the size of the pixel relative to the
holes. If the pixe! width was smaller than ¢/ /2 where ¢ is the hole diameter, the surface
occupled by the hole ranged from 0% if the pixel fell between holes, to 100 % since the
pixel may be inscribed within a hole. When the pixel size increased past ¢/ 72, the upper

limit decreased and the probability distribution more closely approximate the distribution
of areal PRB sequence. As shown in figure 6.13, with a decrease of the ripples with respect
to the central peak, the ACF also became closer to that of a PRB sequence. Identification
should therefore improve by increasing the pixel size. But this must be weighted against
the fact that the PSF will be represented by an ever decreasing number of pixels as
illustrated in figure 6.6. Unfortunately, there is no clear rute governing the choice of pixel
size.

6.6.2 Noise
One of the factors explaining the better results obtained for the smoothing filter is

that the phantom was tuned to maximize results for this apodizing function. The second
factor is noise.

Supposing that both the input and output are corrupted with additive noise (the pixel
coordinates have been dropped for ease of notation):

an=a+m (6.26)

bh=b+n {6.27)
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Figure 6.13 Effecl of pixel slze on ACF of input signal

ACF of signal conslsting of holes 0.61 mm In diameter separated by 0.9 mm for pixel
width of (a) 0.305 mm, (b) 0.4 mm, {c) 0.5 mm and (d) 0.6 mm. The position of the

holes |s based on a 32x32 PRB sequence. (e) ACF of areal PRB sequence for a pixel
slze of 0.4 mm.
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where ap,: noisy input
m; input noise
bn: noise output
n: output noise.

the auto- and cross-correlation functions become;
Coman = Caa + Cam + Cma + Cmm (6.28)

Canb, = Cab + Can + Com + Cmn {6.29)

it is usually assumed that there is no noise at the input of the system. However in
our case, such noise will arise from errors in digitizing the input. The derivation of analytical
expressions for computing the portion of a pixe! occupied by holes and the use of an N/C
machine to fabricate the phantom have contributed to keeping input noise low. Input ncise
being so Intimately related to the design of the input signal, the terms to the right of ca5 in
equation (6.26), although small, are not equal to 0.

Output noise is due to a variety of factors resulting from the interaction of x-ray
photons with matter as well as electronic noise at the detectors, analog-to-digital
converters etc. Section 2.3 covers this topic in more depth. K is generally assumed that
output noise is uncorrelated to the input signal, but this is not true of x-ray CT. As a general
rule, the larger the x-ray attenuation of a tissue, the higher the leve! of noise. Furthermore,
with input noise related to the input signal, and output a function of the input, the input noise
should also be correlated to the output signal. Therefore, the only term in equation (6.29)
equal to 0is ¢n, Inasmuch as it reasonable to assume that the input and output noise are
unrelated, arising from completely different phenomena.

Input noise is very critical to the deconvolution of the PSF. Errors inthe input, along
with the complicated fonin of the ACF, bring about difficulties during the Inversion of matrix
Caa. requiring a robust matrix inversion technique. Furthermore, input noise also appears
in the cross-correlation matrix. On the other hand, output noise only shows up in matrix
Cag. which is multiplied by the inverse of Caa to provide the PSF. As a consequence, the
method can tolerate higher levels of cutput noise more easily than input noise.

Godfrey (1969) suggests two methods to reduce the effect of output nolse. the first
is to increase the amplitude of the signal. Neglecting input nolse and assuming that the
output noise is uncerrelated to the Input, he argues that an increase of the input signal by
a factor o increases the terms ¢y, and ¢,y in equation (6.29) by o and o respectively,
thereby resulting in a relative decrease of noise with respect to the signal. Unfortunately
this manner of reducing noise cannot be transposed directly to x-ray CT since output noise
is correlated to the Input. Consequently, for a given signal amplitude, it is best to use
materials at the low end of the x-ray attenuation scale than ‘nose at the high end.
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The second means by which noise can be reduced is by increasing the length of
the input signal. The correlation evaluated at lag (i,j) is the sum, over a given length, of the
product of two functions, one of which has been delayed by (i.j). The summing portion of
this operation amounts to averaging. By increasing the length over which the correlation
is computed, more noise is averaged out of the correlation function being computed. This
is the main reason why deconvolution of equation (6.6) yields much better results than if
the PSF had been evaluated from equation (6.1) directly.

Itis interesting to note that only output noise is influenced by the choice of image
raconstruction filter. For a given slice thickness, the level of noise inimages produced with
the high resolution apodizing function is approximately 5 times larger than in images
reconstructed with the smoothing filter. This higher output noise level incurred when
imaging the input with the former filter accounts, together with the design of the input, for
the lower identification quality. The fact that a fivefold increase in noise produces only

modest changes in identification quality demonstrates the method's relative immunity to
output noise.

ion |
A considerable amount of cupping was present in the images. Two factors
contributed to this artefact. Firstly, the phantom could not be immersed in water for fear
of air bubble formation within the holes. It was therefore imaged in air. Secondly. the
shallowness of the holes required that the images be taken very close (about 2 mm) to the

surface of the phantom. Both factors were responsible for an unusual amount of x-ray
scatter leading to cupping.

Godfrey (1969) defined drift as a slow change of the cutput of a process from its
desired operating point. In x-ray CT, cupping preduces such a variation in mean value with
position. This type of non-stationarity can be modelled by adding a deterministic function
d(i,j) to the output. If the variation of d{l.]) is slow , ‘enit can be separated from the signal.
Bendat and Piersol (1986) propose 3 methods to do so:

1- digital low pass filtering
2- polynomial curve fitting and trend removal
3- short averaging operations.

We chose the second option. Cupping was modelled as a bi-linear variation of CT
numbers with position. Its effect was reduced by subtracting the equation of a plane from
the output image. The parameters of this equation were estimated from the CT numbers
of the plastic material surrounding the signal. However, our simulations showed that even
in the presence of quite severe cupping. the implication on identification was minimal.
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Much more important than cupping is the effect of input-output signa!
misregistration. Incorrect alignment between the two signals can be due to relative shift
and/or rotation. Of these two causes, relative shift is the most benign. The amount of shift
can easily be estimated since the identified PSF is shifted by the same amount with respect
to its own digitization grid. Furthermors, its shape is undistorted.

The effect of rotation Is much more severe. Not only does the estimate of the PSF
broaden with increasing rotation, but it is also progressively shifted. Furthermore, it
introduces side lobes of growing amplitude. Unfortunately the amount of rotation cannot
be easily evaluated from the identified PSF itself as is the case with pure translation. When
the output is shifted with respect to the input, all points within the signal move by the same
amount and therefore affect the identification in the same way. However, when rotation
occurs, the relative displacement changes from point to point and influences the estimation
procedure differently. it is therefore important to provide a means exterior to the signel to
assess how much the image is rotated with respect to the object. We did so by drilling a
saries of holes parallel to the top and one of the sides of the signal thus forming a set of
perpendicular alignment axes.

5.6.4 O , ith wire input

Up until now, we have dwelt on issues concerning the correlation method itself and
have completed the first goal stated at the beginning of this chapter. The high values of
identification quality are encouraging indicators as to the success of the method. However,
before making such a statement, results obtained with the PRLH must be compared with
those of the wire input.

We thersfore fitted the parametric models (chapter 4) to the non-parametric
estimates obtained in this chapter and those of the wire input. The estimates for the wire
input are those corresponding to points located at 17 mm from the center of the
shift-variant phantom (see section 5.4.1). These wires are the closest to the center of the
PRLH signal which was located at a radial distance of 20 mm from the center of the field
of view.

Instead of basing the comparison on the model shape parameters, we decided to
usa a more easily interpreted physical quantity: resolution. Estimates for the smoothing
filter were based on the full width at half maximum (FWHM) of the Gaussian modsl
(equation 4.8} while the damped cosine model's half width at first zero crossing (HWZC)
(equation 4.9) was used for the high resolution filter. Both these estimates are derived from
model parameters. These parameters were taken from table 6.8 for the PRLH phantom.
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Although not tabulated, measures of resolution for the wire input are illustrated in figures
5.9 and 5.10.

Table 6.9 shows that the estimates derived from the PRLH signal are lower than
those of the wire.

smoothing high resolution
X ¥ X y
PRLH signal 1.403 1.385 1.067 1.029
wire 1.407+0.004 13950011 1,099+0036 1.048:+0.019

TABLE 8.9 Estimates of resoltion for PRLH sequence and wire input

It should be noted that the estimates derived from the PRLH signal are lower than
those ofthe wire. This is compatible withthe fact that the PRLH object slightly overestimates
the MTF of the system (see section 6.4.8) or that the PSF derived from this input is narrower
that the actual system filter.

Nonetheless, all estimates for the PRLH signal fall within a two-sided confidence
interval of at least 90 % built around the mean values obtained forthe wire input. Thisimplies
that the two methods are equivalent at a level of significance o of 5%, or that the probability
of rejecting this hypothesis even if it is true is 5%. (As a general :ule, the narrower the
interval, or the higher the level of confidence, the imoure poweriul the test, i.e. the lower the
probability of accepting the hypothesis when it is false.)

Therefore, either both type of inputs identify a narrower PSF or the difference
between the actual PSF and the one estimated with the PRLH sequence input falls within
experimental error encountered with the wire input. The first explanation is highly
improbable. A wire of finite size Is only an approximation of animpulse and [arger estimates
of resolution should be expected. Whie the fraquency spectrum of an impulse is flat, that
of a circular object is equal to 2J4(mvd)/mvd where d is the diameter of the wire, J; the first
order Bessel function and v radial frequency. As the diameter increases, the signal is
progressively deprived of power at higher frequencies. As a consequence, the MTF
obtained from a wire can only be underestimated, and the PSF derived from this input is
wider than the true PSF.

It the estimates produced by these two inputs are blased in different directions, but
that they are statistically equivalent, we must conciude that these biases are very small and
fall within experimental error. The estimates obtained from the correlation based method
therefore validate the results ylelded from the wire input.
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6.7 Cenclusions

We have successfully appiied the Wiener-Hopf equation to identify the PSF of an
x-ray CT scanner. The Input consisted of a series of holes 0.61 mmin diameter and spaced
at least 0.9 mm apart. The position of the holes was based on a 32x32 element PRB
sequence generated with a 10 stage shift-register algorithm. Once the design of the signal
was finalized, the single most important factor affecting the identification quality was the
proper rotational alignment of the object and its image.

Identification was slightly better for the smoothing image reconstruction filter
compared to the high resolution filter. Two factor are responsible for this difference. Firstly,
the frequency content of the input was tuned for the former apodizing function, and
secondly the output noise was five times lowerfor this filter. Inputnoise, which complicates
the inversion of the auto-correlation matrix, was the same in both cases.

Measures of resolution were obtained by fitting appropriate models to the
non-parametric PSF estimated with the PRLH and wire input. The two sets of estimates
were found to be statistically equivaient at a 95% confidence interval thereby validating the
resuits of the previous chapters.

The correlation based method is more computationally involved than other
non-parametric estimation methods. It also requires a more complicated input. However,
once the algorithm is programmed, and an appropriate phantom built, the estimation
procedure Is very simple.

Like the wire input, and in contrast to the edge method, a bi-dimensional estimate
is acquired from a single image. To get the same information, an edge would have to be
positioned in a number of different orientations, with one image to process per orientation,
thereby Increasing the processing time.

Another advantage of the method is its relative immunity to output noise. While this
may not appear a great benefit for X-ray CT scanners, it could prove helptul for nuclear
medicine imaging techniques (SPECT, PET) for which the signal to noise ratio is much
lower. |
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CHAPTER 7

COORDINATE TRANSFORMATION FOR ISOPLANATIC
REPRESENTATION OF SHIFT-VARIANT
CT POINT SPREAD FUNCTION

7.1 Introduction

The imaging process introduces noise, biur and arlefacts which limit the precision
with which edges can be localized. Some of these effects can be counteracted through
image restoration whose goal is to estimate the underlying object from its image. Image
restoration could therefore be used as a pre-processing step prior to segmentation.

The vast majority of linear as well as non-linear restoration schemes are designed
for isoplanatic imaging systems. We have shown however, that CT systems, like most real
systemns, are shift-variant. A number of strategles have been developed for dealing with
this issue. The most common approach has been to simply ignore the problem. Others
discount its importance, using the hypothesis that the change in PSF properties are small
enough to be ignored or by arguing that the region of interest is small. These arguments
are often put forward without even measuring the spatial variation of the PSF.

Yet there exist methods for handling shift-vartance explicitly. Of these methods, a
technique known as coordinate transformation restoration is quite promising and will be
investigated herein. Therefore the first goal of this chapter was 1o develop a coordinate
transformation suited to the behavior of a CT scanner presented in chapter § while the
second was to evaluate this method.

The chapter is organized as follows. In section 7.2, different methods for dealing
with shift-varlance are reviewed. Section 7.3 presents the proposed change of coordinates
both conceptually and in detail. The method Is evaluated in section 7.4, which is followed
by a short discussion and a conclusion In sections 7.5 and 7.6 respectively.

7.2 Restoration of shift-variant images

The fact that most real imaging systems are shift-varlant is rarely acknowledged
when restoring images thus violating one ofthe hypothesis on which most of the restoration
schemes are based. Two notable exceptions in the medical imaging literature are Peters
(1980) and Hon et al. (1988) who recognized the shift-variant nature of the imaging system.
Nonetheless, in order to simplify the restoration task, they assumed that the region of
interest was relatively small compared to the image and that shift-invariance could be
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assumed within that region. However, there are a number of methods for dealing with
shift-variance explicitly and we now present four different methods.

1~ The first method is called mosaic formation by Bates and McDonnell (1989).
It consists of dividing the image into zones and considering the image shift-
invariant within each zone. The zones are usually rectangular in shape and their
area Is determined by the size of the error one is willing to tolerate and how fast the
PSF changes.

2- Andrew proposed a matrix formulation of the type:

lumin = Hueemee Omars 7.1)

where |, H and O are matrices composed of elements of the in:age, point spread
function and object respectively. The image (and object) are considered to be of
size M by N pixels. Shift-variance can easily be taken into account since the matrix
H is composed of sub-matrices describing the local blurring structure for every
pointintheimage. This method requires huge amounts of memory: matrix H counts
65536 rows and columns or over 4295 million elements for a 256 by 256 irmage.

3- Kalman filtering Is also a candidate for shift-variant restoration provided that
changes in PSF shape are relatively slow. The Kaiman filter, like the Wisner filter,
is also a solution to the minimum mean square error problem. It'is formulated as
a recursive spatial domain algorithm which is applied point by point or at best row
by row. It requires a priori knowledge of the image in the form of an autoregrassive
model, and of the blurring characteristics of the imaging system (Biemond, 1990).
Though it has been successfully applied to 1D problems, its extension to 2D is not
trivial. One of the major problems associated with this method is the difficulty of
formulating a suitable 2D recursive model compatible with reasonable
computational load. Computation time Is generally 10 to 20 times greater than with
other linsar methods using quadratic disiances (Demoment, 1989).

4- The fourth method is referred to as rectification by Bates and McDonnell (1989)
and coordinate transformation restoration by Sawchuk (1874). Compared to the
methods presented above, this technique requires only a limited amount of
memory and is fast. The approach, illustrated in Figure 7.1 , consists of
transforming the x-y image into a shift- invariant ons represented in a coordinate
system u-v through a change of variables u=u(xy}, v=v{xy). Classic
shift-invariant restoration methods, such as Wiener filtering (Peters, 1980; Dhawan,
1985; Hon et al. 1989; Madsen, 1990; Penney etal. 1990), are then used to estimate
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shift-variant imaging

object(x,y)

image(u,v) €————— u=u(x,y)

— system [—-——b image(x,y)

h{x.y)

coordinate transformation

V=v(x.y)

)I shift-invariant restorationf-—Jpestimated object(u,v)

estimated object(x,y)¢—

inverse coordinate transformation

x=x(u,v}
y=y(uv)

Figure 7.1

Principle of coordinate transformation restoration

An Image produced with a shift-variant system, Is made shift-invariant by an
appropriate coordinate fransformation. A classic linear shift-invariant restoration
method is used to obtain an estimate of the cbject in the fransformed space. The
Inverse coordinate transformation is applied, ylelding the estimated object in the
original coordinate system,

the objectin the transformed coordinate system u-v. The deblurred image is finally
returried to the original image coordinates by applying the inverse coordinate

transformation.

This method has been used to restore optical images distorted by shift-variant
degradations such as coma aberration (Robbins, 1970; Robbins and Huang, 1972}, linear
and rotational motion blur (Sawchuk, 1972 and 1974) along with astigmatism and curvature
of field (Sawchuk and Peyrovian, 1975).

The shift-variance due to these optical degradations can be expressed as relatively
simple equations. The coordinate transformation can therefore be handled with elegant
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analytical tools such as the Mellin transform, a close relative of the Fourier transform
(Sawchuk, 1974; Robbins and Huang, 1972; Bracewell, 1986).

For CT systems, the spatial variation in PSF shape is very similar to the changes
seen with a combination of astigmatism and curvature of field. Both exhibit a rotating blur,
and in both cases, the isotropicity of the PSF is destroyed as.the distance from the center
of the field of view increases since the FSF stretches more rapldly along the tangential than
the radial axis. Consequently, coordinate transformation, which has been successfully
applied to these optical degradations, seems very promising for shitt-variant restoration
of CT imagss.

However, the analytical coordinate transformations developed for the optical
degradations cannot be transposed directly to CT for two reasons. Firstly, the analytical
expression for the shift-variant CT PSF is so complex it must be evaluated numerically
(Verly and Bracewell, 1979). Secondly, this expression does not take sampling, which
strongly affects the pattern of shift-variance, into account. Both these difficulties prompted
us to develop a new algorithm, presented in the next section.

7.3 Proposed change of coordinates

The proper change of variables Is dictated by the nature of the shift-variance. In this
section, we will propose a coordinate transformation based on the experimental rasuits
obtained in chapter 5. We will then state the conditions that must be respected for a proper
mapping from one image space to the other.

7.31 Goordinate transf .

Before going into the mathematical detalls of the transformation, it is worthwhile
explaining the concepts. The PSF maintains the sams basic shape throughout the FOV but
this shape is progressively stretched at a different rate along two perpendicular axes as the
distance from the FOV Increases. The basic principle underlying the coordinate
transformation Is that the cross-section at some non-zero value of the PSF, say half its
maximum, should be represented by the same number of samples irrespective of the
position of the input point source.

We will now show thatthe PSF is represented by an equal number of samples when
itis represented in a variably sampled polar coordinate system. The upper left hand portion
of figure 7.2 represents a cross-section taken through the PSF measured at different
positions within the FOV in the original (x,y) image plane. The position of the input source
is defined in a polar coordinate system (r,.0) whose origin corresponds to the center of
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Figure 7.2 Coordinate transformation for CT images

(a)-(c) The rotating biur exhiblted by CT scanners suggests a transformation from a
Carteslan to polar coordinates. The variation in PSF widih thus becomes a function
of a single variable: the radial distance. By varying the sampling increment in the
angular and radial directions as a function of radial distance, the PSF can be
represented by an equal number of samples, thus obtaining a shifi-invarlant
represeniation. (d) Relative orlentation of coordinate systems.
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the FOV. The shape of the PSF Is given either in a fixed orientation (X.Y) or a local rotating
frame (s,t). The unit vectors s and t pointin the radial and tangential directions respectively.
As shown in chapter 5, the shape of the PSF varles both with radial and angular position
of the input polnt when expressed in the (X,Y) coordinate system. More specifically, this
variation is sinusocidal with angular position for input sources located at a fixed radial
distance (see figures 5.4, and 5.5). However, because the system exhibits a rotating blur,
the dependence on the angular position disappears when the PSF is expressed in the s-t
rotating frame (figure 5.6). From radially symmetric in the center of the FOV, the PSF
becomes progressively wider in both the radial (s) and tangential (t) directions. However,
because the rate of change in the two directions is different, the cross-section changes
from circular In the center of the FOV, to elliptical as the input source moves outward.

The rotating blur suggests that the relationship between shape and position would
be simplified by a polar coordinate transformation as shown in Figure 7.2 (b). The shape
of the PSF Is now a function of radial distance only. The final transformation plane (u,v),
shown In Figure 7.2 (c), is obtained by varying the sampling increment in the angular and
radial directions as afunction of radial distance r. The PSF is thus represented by an equal
number of samples in the (u,v) coordinate system satisfying the requirement for
{soplanicity. Itis clearly seen from this explanation thatthe (u,v) planeis a variably sampled
polar coordinate system with the u axis corresponding to the radial direction and and v to
the angular orientation.

Conceptually, the process is therefore divided in three steps:

1) The first step consists of describing the shape of the PSF in the local rotating
frame s-t. As in previous chapters, we summarize the shape of the PSF by using
measures of resolution. For example, a PSF modelled by a 2D Gaussian function
is fully characterized by the full width at half maximum (FWHM) in two orthogonal
directions. In Chapter 5, we experimentally estimated the relationship of FWHM(r)
and FWHM;(r) for a varfety of imaging conditions. Typical curves, obtained with the
smoothing Image reconstruction filter and a scan time of 4.5 s, are shown in Figure
7.3 (a) and (b).

2) To take advantage of the rotating blur, the relationship between shape and
position must now be expressed in polar coordinates. Since the s axis corresponds
to the r axis (both 8 and e, represent distances and have the same orientation):

FWHM,{r) = FWHM,(") 7.2)

The correspondence between angular (eg) and tangential (t) variables is not as
simple. Even if the axes have the same orientation, the former reprasents angular
Increments while the later measures distances. However, the expression for the
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Figure 7.3 PSF shape in rotating cartesian {s-1) and polar {r-8) coordinate frames

(a) Since the s and e, axes are equivalent, the relationships FWHM,(r) and FWHM(r)
are the sams. However, even if the t and e¢ axes have the same orlentation, the
difference in unlis requires that (b) FWHM,(r) be manipulated o obtain (c) FWHMg(r}
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FWHM in the angular direction corresponds to the angle subtending the PSF in the
tangential direction. From simple geometry, we deduce:

FWHM;(r)
2r

FWHM(r) = 2 tan'1 (7.3}

Figure 7.3 (c) illustrates this new relationship. The decrease of FWHMa(r) simply
indicates that the angle subtending the width of the PSF in the tangential direction
decreases with radial distance even though the linear width increases.

3) The final {u,v) plane is obtained by variably sampling the polar plane defined
above. We first start with the u axis which corresponds to a variably sampled e, axis.
The problem now becomes one of selecting the proper increments, and the
solution is contained in the relationship FWHM,(r} as shown in Figure 7.4. We wish
to represent the PSF with a constant number of samples k across FWHM;,. Because
the PSF is narrower in the central region than a the edges of the FOV, the
intersample distance Ar must increase with radial position if the PSF is to be
shift-invariant along the u axis. The increment Ar is given by:

FWHM,(r
Ar(r) = — () (7.4)
Given the initial conditions:
n=20 {7.5)
the function u(r) is constructed iteratively as follows:
Ar(up) = ——FM%(—L-’-’-Q 7.7}
Ups1 = Up + Ar{up) (7.8)

The relationship between the v, or variably sampled angular, axis and radial
distance is obtained directly from FWHMg(r). If the PSF is rapresented by an equal
number of samples | across FWHMg:

AB(UR) = -F-WM)- 7.9)

vm = m AB{up) {7.10)
subject to the initial conditions:

m=20 (7.11)

Vm =10 (7.12)
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Figure 7.4 Crealing values along the u axis

Values of u are found Iteratively by adding anincrement Ar{u,) - equal to the FWHM
in the radial direction divided by the number of samples k - to the previous value of
u.

7.3.2 Requi [ I .

The number of samples k and | across the width of the PSF influences the quality
of the transformation. For animage to be unaffected by the cascade of forward and inverse
transformations, every pixel of the (x,y} image must be mapped into the (u,v) plane.
Therefore, the maximum radial increment Ar must be no larger than 1 pixel. Since the
largest increment occurs at the outer edge of the region of interest, the value of k is found
by replacing Ar{r)= Ar(rmax) = 1 in equation (7.4):

k = FWHM,(rmax) (7.13)

The PSF is also at its widest in the tangential direction at r=r,.,. Therefore, the
value of lis found by equating the chord length at distance rr5, subtended by A8 to avalue
smaller or equal to 1. This implies that:

Af < 2 tan'(1/2rma) (7.14)
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Combining equations (7.3), (7.9) and (7.14):

tan™! FWHM (' max) /2 max)

2 7.15
tan~(1/2rmax) 719

If renax is much larger than FWHMy{rmay). the previous equation simplifies to:
! = FWHM(rmax) (7.16)

7.3.3_Algorithm

We now have all the equations to establish the algorithm which is described as a
flow-chart in figure 7.5. The user starts by selecting proper values for the number of
samples across the PSF, k and |, according to equations (7.13) and (7.16). He/she must
also fix the maximum radial distance, rmayx, thereby defining a circular region of interest

fitting within the original image. After initializing variables in the u direction, the program fills
the u-v plane column by column until the value ry;,y is reached.

Filling any given column proceeds as follows. The v variables are first initialized
according to equations (7.11) and (7.12}. The x~y coordinate corresponding to pixel
(Un.vm) Is then found, given the following relationship:

X = Up COSVp (7.17)

Y = Up SiNVy (7.18)

The CT number corresponding to this (x.y) pixel is assigned to the pixel (Un.vm).
Values are updated (equations (7.9) and (7.10)) until they reach a value of 27. Before
proceading tc the next column, the values of n and u,, are updated (equations (7.5) and
(7.8)).

The size of the transformed image is determined by the functions FWHM,(r) and
FWHMg(r) as well as the number of samples taken across the width of the PSF. Because
the relationship between the r and u axes Is iterative, the number of samples N, along the
u axis cannot be determined in closed form, Rather, it is found by adding the Ar terms until
Tmayx IS Obtained:

N-1

Tax = > Ari(r(up) (7.19)
i=0

N-1
Fex = Z——-——-FWHN:;('(“"” (7.20)
i=0

The total number of samples M along the 6 axis is given by:
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(7.13, 7.16)
initialize n, u,
(7.5, 7.6)
no e yes
u-v image plane initialize m, v
(7.11,7.12)
no
Vm<emax
yes

compute corresponding point
in x-y plane

(7.17, 7.18)

'

m=m+1

y

update v,
(7.8, 7.10)

Y

n=n+1

v

update u,
(7.7,7.8)

Figure 7.5 Flow chart of algorithm for coordinate transformation

(The numbers In parentheses comespond to equallons)
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M= 21
Af’r’mln (7 )
2nl
- 22
FWHMlr(un)) (7.22)

it should be mentioned that the functions FWHM,(r). FWHMg(r) and FWHM(r)
should be specified in pixels in equations (7.13) through (7.22).

7.4 Evaluation of propose:i transformation

This method has been applied to a variety of optically degraded images. Like most
image processing techniques, it was evaluated with images representing a real scene.
While these images give some information as to the usefulness of a given method, they
do not provide much insight into the method itself. Furthermore, the evaluation is often
qualitative: a method is judged azcording to the appearance and pleasantness of the
processed image.

We developed a rather different approach with the goal of quantifying the evaluation
as well as gaining a better understanding of the method. 1m.e evaluation was based on two
criteria:

1- the PSF must be shift-invariant in the (u,v) plane

2- the original image must not be affected by the forward-inverse transformation.

.41 Simulated data

Instead of working with real images, we synthesized the image found in figure 7.6
(a). It consisted of a number of Gaussian PSFs located along 3 radial spokes. The spokes
were oriented at 22.5°, 45° and 67.5° with respect to a horizontal (x) axis. Although the
pattern of shift-variance was similar to CT data, the changes in shape with radial distance
were much larger than those observed with the Philips Tomoscan CX unit {the ratio ofinner
to outer FWHM was about three times larger). The variation in shape is quantified in the left
hand portion of table 7.1. Because the system exhibits a rotating blur and the data are

expressed in a rotating frame, the values in Table 7.1 represent variations in PSF width with
radial distance along any given spoke.

We used such ‘arge variations for two reasons:

1- If the method can handle large changes in PSF shape, it will be applicable to
smaller variations.

2- Any error will be amplified and more easlly detected.
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Figure 7.6 Evaluation of coordinate transformation with simulated data

(8) original data in x-y frame , (b) after polar coordinate transformation, (c) in varlably
sampled polar coordinate u-v when FWHMg(r) Is piecewlse linear, {d} in u-v frame
when FWHM&(r) Is plecewlse constant (the origin of the polar and u-v planes ls the
upper left comer).
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(d)

Figure 7.6 (continued)
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simulated data CT data
(pixels) (mm) (pixels)

R FWHMg FWHM, R  FWHMg FWHM, R FWHMg; FWHM,
25 5 6 17.0 1396 1381 | 72.7 5.96 5.89
75 7 9 339 1407 1.412 (1445 6.00 6.02
125 10 13 50.8 1.8632 1.453 | 2133 6.11 6.20
175 15 18 67.4 1.456 1.832 | 287.5 6.21 6.54

84 .4 1.488 1.636 | 359.9 6.35 6.98

TABLE 7.1 Dala used for evaluation of coordinate transformation

We were able to quantify the evaluation criteria by fitting the Gaussian model (see
section 4.2.2) to the various PSFs in the original (x-y) and transformed (u-v) planes. As
in previous chapters, we derived the FWHM from the model parameters. By comparing
the variation of the PSF width with radial distance, we were able to verify if the PSF was
indeed shift-invariant in the u-v plane and thereby substantiate the first criterion. The
second standard.which states that the original image must not be affected by the
forward-inverse transformation, was quantified by comparing the change of FWHM of
every PSF within the (x-y) plane before and after the cascade of forward-inverse

transtormation.

The results are illustrated in figure 7.6. Section (b) shows the PSF in the polar (r-6)
coordinate plane and demonstrates the rotating blur very well: for a given radial distance,
the PSFs are independent of the angular variable. Figure 7.6(c) shows the image in the
(u-v) plane when the function FWHMg(r) is allowed to vary linearly with radial distance.
Even by visual inspection, it can be seen that the PSF are non isoplanatic, contrary to what
could be expected. This situation can be rectified, and the anticipated results obtained, by
allowing the function FWHMg(r) to vary in a piecewise constant manner. This situation is
shown In figure 7.6{d).

This phenomenon, which has never been reported in the literature, constitutes a
limitation of the method and will be discussed in more depth in section 7.5.

Table 7.2 presents quantitative resuits obtained with a plecewise constant
FWHMa(r). As with Table 7.1, these values are valld for any given spoke. Application of the
coordinate transformation for the simulated data resulted in a large improvement in
shift-variance. The FWHM varied by as much as 10 pixels and 13 pixels in the radial and
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tangential directions in the original (x-y) plane. These variations were reduced t¢ 0.24 and
1.18 pixels respectively. This Improvement shows that the first criteria is satisfied, and that
the proposed coordinate transformation does produce a shift-invariantimage. Differences
between the PSF width in the original plane, and aiter both forward and inverse
transformation were applied to the image, are no more than 0.08 and 0.12 pixel for the radial
and tangential directions respectively. These small numbers indicate that the method also
complies with the second criteria.

XY uv uv-1 criterion 2 2)
RADIAL 5.00 15.4 5.00 0.00
7.00 15.19 7.00 0.00
10.00 15.16 9.97 0.03
15.00 15.28 15.08 -0.08
criterion 1 '} 10.00 0.24
TANGENTIAL 6.00 19.32 6.00 0.00
9.00 18.54 9.00 0.00
13.00 18.34 13.00 0.00
18.00 18.14 17.88 r12
criterion 1 (1) 13.00 1.18

TABLE 7.2 Evaluation results for simulated data

Values In this table represent FWHM in the radial and tangential directlons for radial
distances given in Table 7.1. (1) maximum ditference within the column (2) column
XY - column UV-1,

74,2 CT data

Although the coordinate transformation has been proposed in the literature for the
restoration of nuclear medical images (Hon et al. , 1989) the technique has never been
evaluated either for this type of images nor for X-ray CT. We therefore evaluated the
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method, using the same procedure outlined above, on a second set of data representing
the variation in PSF for a real system. Tne values found In the right hand side of table 7.1
correspond to the changes observed withi the Philips Tomoscan CX for the smoothing filter
and a scan time of 4.5 s ( ses chapter 5). A pixel size corresponding to a FOV of 75 mm
(75 mm / 320 pixels) was used to transform distances and lengths from millimeter to pixel.

The results in Tabis 7.3 and figure 7.7 are valid for a piecewise constant FWHMag(r).
They show, for this particular case, that the improvement ir shift-invariance was quite
small. The change in PSF width with radial distance stayed approximately the same in the
(x-y) and (u-v) pianes for the radial direction with values of 0.38 and 0.37 pixel respectively.
Meanwhile, there was a slight improvement in the tangential direction: the maximum
variation in FWHM changed from 1.09 pixel in the (x-y) plana to 0.22 pixel inthe (u-v) plane.
As with the previous data set, the forward-inverse transformation did not affect the data.
Maximum deviations were evaluated at 0.08 pixels and 0.01 pixels in the radial and
tangential directions respectively.

7.5 Discussion

The quantitative evaluation procedure was helpful in two ways. We were able to find
a limitation of the courdinate irancformation method which had not been reported in the
literat: ;<. It also gave us the opportunity to establish the usefulness of the method without
having to perform an actual restoration. However, before discussing these subjects, we
would like to bring up the issue of interpolation.

7.5.1_Interpolation

Itis highly Improbable, during the forward transformation, that a given pixel in the
(u-v} plane corresponds to an integer pixel value along the x and/or y axes and vice versa
during the inverse transformation. Image vaiues must therefore be interpolated.

Interpolation has a low pass fil‘ering effect which can be explained as follows. When
interpolating, one conceptually produces a continuous version of the discrete signal in
order to be able to evaluate the function at any point. The frequency spectrum of the
(infinite) continuous function is band-umited. On the other hand, the spectrum of the
discrete signal Is repeated ai multiples of zts, where fgis the sampling frequency, and s
therefore non band-limited. In order to remove the replicates of the frequency spectrum
introduced by sampling, i.e. to reproduce a band-limited function from a set of samples,
tha interpolation function must have low pass filtering characteristics (Parker et al., 1983).
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(a)

(b)

Figure 7.7 Evaiuation of coordinate transformation with CT data

{a) orlginai data In x-y frame, (b} after polar coordinate transftormation, (c) in u-v
frame when FWHMS6(r) is plecewise constant,
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Figure 7.7 {continued)
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XY uv uy-1 criterion 2 @

RADIAL 5.96 6.69 5.96 0.00
6.00 7.01 5.98 0.02
6.11 7.01 6.14 -0.03
6.21 7.05 6.21 0.00
6.34 7.06 6.42 0.08
criterion 1 (1) 0.38 0.37
TANGENTIAL 5.89 B.23 5.81 0.00
6.02 8.01 6.02 0.00
6.20 8.23 6.21 -0.01
6.54 8.07 6.55 0.01
6.98 8.07 6.98 0.00
criterion 1 (1) 1.09 0.22

TABLE 7.3 Evaluation results for CT dala

Valuas in this table represent FWHM in the radial and tangentlial directions for radial
distances glven in Table 7.1. (1) maximum ditference within the column (2) column
XY - column Uv-1.

This low pass filtering effect will add to the blur already present in the image. In
theory thereiore, the PSF should be broader after the cascade of forward-inverse
transformation than in the original image plane. The simulation resuits helped us quantify
this effect. The last column in Tables 7.2 and 7.3 express the variation In FWHM before and
after the doubie transformation. These differences are very small even if a nearest neighbor
Interpolation scheme, the worst case possible as blur 1s Loncerned, had been adopted.
The values are even negative in some Instances whick; could, but should not, beinterpreted
as a narrowing of the PSF as a result of the transformation! These discrepancies are
probably due to numerical round-off and to residual errors in fitting the Gaussian model!.

The negligible blurring effect due to interpolation was possible because great care
was taken to inuke sure that every pixel in the original image was mapped at least once
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in the transformed image. In the evaluation procedure, we minimally satisfied this
requirement, governed by equations (7.13) and (7.16). by taking 15 and 18 samples across
the FWHM In the radial and tangential directions for the simulated data set and 6 and 7
samples for the CT data. indead these values characterize the shape of the PSF in the outer
limits of the region of interest. tisinterestingto note thatthese are thevaluesforthe FWHM
found in the u-v plane (see tables 7.2 and 7.3). Howaever, this is not be surprising, and only
confirms that the PSF is represented by an equal number of samples in the u-v plane.

Figure 7.8 demonstrates that failure to satisfy the mapping requirements leads to

the formation of artefacts. These show up as a roughening of the edges and a circular
blurring pattern.

7.5.2 Limitati
The evaluation with the simulated data showed that the proposed change of
variables can be used to transform a shift-variant rotating blur system into a isoplanatic

one. We saw however, that the function FWHMg(r), which describes the variation of the PSF

width in the angular or tangential direction, had to be defined as piecewise constant. Figure
7.9 explains why this is so.

Let us consider the position of the endpoints along an axis parallel 1o the radial
direction in the polar and (u-v) planes. These points are labelled a-d in Figure 7.9. Points
with a given value of r map into constant u as with points a-c or b-d. The position along
the v axis depends on the angular position of the point as well as the angular increment
associated with its radial position:

v = 8/AB(r) (7.23)

Since A#(r)) > A#(r;), the angular Increment decreases with radial distance (see

Figure 7.3 and equation (7.4)), and the distance between points a and ¢ along the v axis
will be smailer than the interval separating points b-d. Consequently, the PSF in the (u-v)
plane, which should be shift~invariant, is stretched towards the positive v axis. As can be
seen in figure 7.6(b), the phenomenon is worst near the origin of the (u-v) plane (or at the

center of the imaging FOV) since the variation of FWHMg(r) is gre atest in that region (see
figure 7.3).

However, if the increment A6 is kept constant over a certain region, or if the function
FWHMg(r) is piecewise constant, the method yields an isoplanatic transformation. This
corresponds to dividing the polar plane into strips parallel to the v axis. Within each strip,
the sampling increment is kept constant in the v direction but allowed to vary in the u

142



-

Figure 7.8 Effect of neglecting minimum mapping requirement

Simulaled image of a femur in (a) original x-y frame (b) afer {orward-inverss
transformation. Failure o meel the minimum mapping requirements resulls in a
rotational blurring patern. (Only the pixels within a circular region inscribed within the
image are manipulaled which explains why the image in (b) is clipped)
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Figure 7.9 Mapping of PSF from polar {r-9) to variably sampled polar (u-v} plane

The position of a point on the v axis Is inversely proportional to the angular
Increment A6 associated with a given radia! distance. Because A6try) > (rp)
when the function FWHMg(r) varies piecewise linearly, the distance between

polnts a~¢ Is smaller than points b-d. The PSF appear progressively sirelched in
the posllive v axis.

direction. It is also equivalent to dividing the original image plane (x-y) into concentric
circles. Within each circular band, the sampling increment is constant along the t axis but
can change in the s direction.

Under these circumstances, the method becomes very similar to the technique of
mosaic formation. With this last approach however, the image is usually divided into
rectangular patches and the PSF assumed constant within each sub-region. We saw in
Chapter 5 that the pattern of shift-variance is quite complex when expressed in a fixed
orien’ation cartesian coordinate system. By taking advantage of the rotating blur, and
dividing the Image into concentric circles, it becomes easier to model the change of PSF
shape with position. But most image processing algorithms are defined over rectangular
domains. One solution for overcoming this limitation is to represent the image in a polar
coordinate system since circular regions in the original image space are mapped into
rectangular ones. The shift-variance Is further reduced by adding variable sampling along
the radial (r or u) axis.

The size of the region within which A6 is kept constant depends largely on the error
in approximating the true PSF shape in the tangential direction that one is willing to accept.
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It is also a function of the rate of change in PSF shape. This method will run into serious
problems if the shape changes appreciably over the width of the PSF. The same comment
applies to mosaic formation.

The coordinate transformation is greatly simplified when the width of the PSF in the
tangential direction varies linearly with distance from the center of the FOV. Under such
conditions, the angle subtending the PSF along the t axis remains constant and the PSF
is automatically shift-invariant in the angular direction. Variable sampling is needed only
in the radial direction (r or u axes).

7.5.3 Usefulness of method

The usefulness of the method for real systems depends largely on the pixel size,
the amount of variation in shape over the distance covered and the application.

The evaluation with the CT data showed that not much improvement In shift-
variance Is to be expected with this method especially if the variation in resolution is in the
order of one pixel or less. However, as the pixels become smaller for a given region of
interest, the benefits become more apparent. We also showed that the spatial variation in
FWHM could be improved t0 a sub- pixel level. This may not be important if the application
does not require this level of precision. An example would be to consider the restoration
as a pre-processing step for a segmentation scheme with pixel accuracy, such as
thresholding (Weszka, 1973). However, it might prove useful with sub-pixel edge detectors
such as the Nalwa-Binford (i !alwa and Binford; 1987) or Laplacian of a Gaussian operators
(Huertas and Medioni, 1986).

We showed in chapter 5, that of the factors considered, scanning time, or the
number of projections, affected shift-variance the most. The proposed method might
therefore also prove useful for the restoration of images reconstructed with missing or a
limited number of views.

A limitation of the present study is that we did not demonstrate that the coordinate
transformation can improve the restoration itself. For example, the Wiener filter kernel is
a function of object and noise power spectra as well as the imaging system's modulation
transfer function. Application of the coordinate transformation will surely modify the
frequaency content of these entities. It is possible therefore that the performance of the
restoration operator could be affected accordingly. The manner in which the coordinate
transformation affects any given restoration procedure merits further attention and is
considered for future work. However, the study presented here showed that, under the
circumstances mentioned in the previous paragraphs, it is an endeavor worth pursuing.
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Furthermore, the fact that the method has been successfully applied to opticai
degradations is encouraging.

7.6 Conclusions

We adapted a coordinate transformation method, originally developed for optical
systems, for an isoplanatic representation of systems exhibiting a shift-variant pattern
similar to 3'd generation CT scanners. The technique calls for a variable sampling of the
original image In the angular and radial directions. The functions describing the variable
increment size were expressed in terms of the spatial variation of the system’s resolution,
a characteristic which can be easily estimated.

We also developed a new evaluation procedure capable of quantifying the
improvement in shift-variance. A substantial amelioration canr b& expected provided that
the change in angular increment be piecewise constant and the variation in PSF be larger
than the pixel size. The simulation also brought out a limitation of the method which had
never been reported in the literature. In order for the PSF to be isoplanatic in the

transformed plane, the sampling rate in the tangential direction must be defined in a
piecewise constant manner.

Another point which had not received any attention in the literature is the issue of
interpolation. We noticed that the blurring associated with interpolation can be kept very
small if a simple mapping reguirement is respected: every point in the original image must
be represented at least once in the transformed plane. We mathematically formulated this
requirement with two simple criteria. Fallure to mest these criteria results in a rotational
blurring pattern and a roughening of the edges.

The evaluation procedure was used on real CT data and showed that changes in
PSF width are small and improvements marginal if one wishes to manipulate the image only
at the pixel level. However, if sub- pixel image processing techniques are envisioned, this
method can be used to improve shift-variance from the order to the pixel to sub-pixel
levels. Nonetheless, the evaluation procedure outlined in this chapter allows the user to
quantify the improvement and assists him/her in deciding if it is worthwhile applying a
coordinate transformation to improve isoplanicity.

To simplify the restoration algorithm, it is common either to ignore the problem of
shift-variance, or to claim that the changes in PSF shape are small enough to be ignored.
Howsever, before making such a hypothesis, the user should quantitatively evaluate the

shift-variance and use a procedure such as the one presented here to substantiate his/her
claims.
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CHAPTER 8
RECOMMENDATIONS FOR SEGMENTATION

8.1 Introduction

Before a 3D surface model can be constructed, pertinent information must be
extracted from the images, 1.e. images must be segmented. Even though accurate
segmentationis paramountto the elaboration of agood 3D model, very little effort has been
devoted to this task. it is not uncommon to find articles on 3D reconstruction that do not
even mention how the geometric input inforrnation was obtained.

The threshold and Laplacian of a Gaussian (LOG) operators are two popular
segmentation schemas, used both inthe context of general and medicalimaging. The goal
of this chapter was to explore the limits of these techniques, based on the shape of the PSF
and on the noise properties of CT scanners. We also theoretically justified certain
experimental results obtained with the threshold operator.

General segmentation principles areintroduced in section 8.2. Sections 8.3and 8.4
are devoted to thresholding and LOG filtering respectively. The major results are
summarized in section 8.5.

8.2 Underlying principles

In mathematical terms, segmentation can be viewed as a procedure that divides
an image R into subregions Ry, ... R, such that (Fu and Mul, 1981):

n
1y |J R = R (segmertation must be complete)

i=1
2) R;is a connected region (aregion must be composed of contiguous points)
3) MR =0 Viji=; (regions mustbe disjoint)

4) P(R) = True i = 1.n (points within a region share a common property)

5) P(R; \UJ Rj) = Fulse i) (separate regions have different properties)

One can see from this definition that properties must be clearly defined if a
segmentation approach is to be successful. Thesz properties can have a purely
mathematical formulation but are often complemented by heuristic criteria. A priori
knowledge can also be used to assist the segmentation process.
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Underlying most segmentation schemes, although seldom mentioned, is a model
of the edge. A common mods! is the step edge: adjacent objects are characterized by an
abrupt change in grey level. This model is well suited to the study of the muscolo-skeletal

system with CT scanners since adjacent tissues are characterized by distinct x-ray
attenuation values.

8.3 Thresholding

According to Gonzalez and Wintz (1987), thresholding is one of the mostimportant
techniques of image segmentation in general. Its popularity has been transposed to
medicalimages. Indeed, this method is by far the most common to extract bony structures
from X- ray CT Images. Furthermore, many region growing (Rhodes, 1979) and region
splitting or octree encoding algorithms (Meagher, 1982; Koltal and Wood, 1986) rely on
binary images. This makes us believe that thresholding Is also used as a pre~-processing
step for these segmentation algorithms although the authors did not mention so explicitly.

The accuracy with which a dstected edge is localized is highly depended on the
value of the threshold, system’'s blurring characteristics and the spacing between
neighboring edjes. These Issues will be discussed after the principles underlying the
threshold operatci have been presented.

8.3.1 Background

Foundation; The method's appeal resides in its simplicity: all pixels with a grey level or CT
number above a certain threshold are assumed to belong to a given object. All the pixels
bslowthe thrashold are required to represent the background or another object. More often
than not, the resulting image is binary, i.e. the segmented pixels can only assume a value
of 1 if they are assigned to the object or 0 otherwise.

Most efforts have been directed to select thresholds in an unsupervised fashion
(Weszka, 1978; Cios and Sarigh, 1990). Most methods make use of the grey level
histogram or graph of the number of pixels versus grey level. Itis assumed that grey levels
related to different objects are concentrated about a mean value and form distinctive peaks
or modes. The problem thus becomes one cf choosing a threshold that will separate the
different modes. As a general rule, the threshold is chosen in the valleys, between the
peaks. This approach minimizes the probability of misclassifying a pixel since the grey
levels in these areas are relatively unpopulated (Fu and Mui. 1981).

Apartfromit's ease of implementation, once the threshold has been identified, the
greatest benefit of thresholding is its relative immunity to noise when compared to edge
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detectors. (As we will sae in section 8.4, edge dstectors rely on derivative operators. These
act as high pass filters and therefore amplify noise).

There are a number of disadvantages however. Assumptions must be made
regarding the statistical distribution of the grey level histogram as well as the number of
nodes. Secondly, no spatial information is used to select to threshold. As a result, there
is no guarantee that the segmented regions are contiguous. Furthermore, features other
than grey level are image dependent and can be difficult to identify. Finally, threshold
selection is difficult in the presence of flat broad valley. This situation is common in X-ray
CT images of the musculo-skaletal system since the X-ray attenuation coefficient of bone
is much larger than the surrounding tissues. Weszka et al. (1974, 1975) and Rosenfeld and
Davis {1977) proposed different methods to sharpen the valleys.

Thrasholds for bone segmentation: Different thresholds, either global or local, have been
proposed in the medical imaging literature to separate bone from othertissues. Athreshold
is globalifits selection depends on the grey lavel distribution of the entire image. However,
it some property in the neighborhood of the pixel is involved, the average for example, the
threshold is said to be local.

Vannier et al, (1983) and Artzy et al. (1981) selected a global threshold equal to the
average CT number of bene. This is equivalent to placing the threshold at the center of a
faal in the histogram (assuming the peaks are symmetric). We will show in section 8.3.2
that this leads to a bias in the true edge position and is therefore not recommended. More
recently, Toennies et al. (1990) claimed than any threshold less than the minimum
attenuztion coefficient of bone and higher than the coefficient of neighboring tissue is
acceptable. This is to say than the threshold can be selected anywhere within the valley.
While this is preferable to choosing the central peak value, the bias in edge position will
vary depending on where the threshold is chosen within the valley.

An alternative approach consists of defining a local relative threshold equal to a
percentage of the difference between the maximum and minirmum values in the local edge
profile. Based on a study by Rothuizen et al. (1987), which will be discussed in more depth
in the next two sections, Tammler et al. (1989) used a relative threshold of 50% to 55%.
For thelr part, Klotz et al. (1989) empirically chose a value of 60% because, according to
the authors, it best matched visual perception of the edge position.

Accuracy: Fu and Mui mentioned in 1981 that evaluating any segmentation algorithm is
difficult because of a lack of criteria for defining success apart from the percentage of
misclassified pixels. Not mucn progress has been made since then, but we have found two
studies cancentrating on the accuracy of the relative threshold operator.
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Using the high resolution algorithm on a Siemen Somaton DR3 scanner, Rothuizen
et al. (1987) assessed the accuracy of global and local relative thresholding methods. In
a phantom study, PVC tubes of known thickness were scanned in air. One of thetubes was
filled with calcium chloride to simulate trabercular bone. They encountered larger errors
in average tube diameter estimates with the global threshold especially when the
concentration of calcium chioride was varied. A 45 % relative criteria which the authors
found "approximately optimal"” for tubes with a wall thickness of 9 mm underestimated the
average tube diameter for a wall thickness 0! 2 mm. For thin walled tubes, a 60% criteria
provided better results.

In the same study, a proximal femur was imaged in a variety of media and later
sectioned at the corresponding locations. They found that the accuracy of the global
criterion was markedly affected by the bone environment, region of scanning and the type
of contour to be detected (inner or outer). Errors in outer diameter as large as 3.9 mm and
1.6 mm were encountered for the diaphysis (shatt) and metaphysis (wider part at the end
ofthe shaft) respectively and 3.6 mm and 5.8 mm for the inner diameter. The optimal relative
threshold level, i.e. the one for which the error was minimal, corresponded to 45% and 50%
for the diaphysis and metaphysis respectively. Relative thresholds resulted in better or
similar results when compared to the global criterion except for the inner contours in the
metaphyseal region where both approaches yielded disappointing resuits. The authors did
not provide any reasons to explain this observation nor did they theoretically justify their
results.

inamore recent but similar stizdy, Sumner et al. (1989) found that the optimum local
absolute threshold varied substarttially for the periosteal (outer) and endosteal (inner)
contours and depending on the ervironment surrounding the bone. The authors mention
that the absolute thresholds roughly correspondto a 50% criteria. They also estimated that
the use of an Incorrect thrashold for both surfaces can lead to errors of cortical bone
thickness in the order of 30%.

From this short literature review, we conclude that the value of a global threshold
changes depending on the material surrounding an object and that selecting an incorrect
threshold can lead to large errors in edge position. A relative threshold of about 50%
appears optimal but this criteria is affected by the size of the object.

These results are exclusively founded on experimental observations. In the next
section, we wili show why and under which circumstances the 50% relative threshold is
optimal. We will also interpret some of these experimental results in terms of the
characteristics of the PSF and the noise properties in section 8.3.3.
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8.3.2 Analysis

Iheoratical relative threshold: We will start by finding the optimal theoretical relative
threshold, i.e. the one corresponding to the edge position. Figure 8.1 illustrates the edge
profile of a 1D isolated step edge blur-ed by a Gaussian PSF. For a linear system and in

the absence of noise, the relationship is given by:

Ip(x) = Nx}* Glx)

where I(x}:  unit step edge located at xg=0
Ip(x): imaged and blurred step edge
G(x): Gaussian PSF of standard deviation o.

Expanding, we find:
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equation (8.3) simplifies to:

) = % [l + erf (;%)I

where erf(x}). error function of x.

(8.1

8.2)

(8.3)

(8.4}

(8.9

The right hand term of equation (8.5) is the expression for the cumulative
distribution function (CDF) of a Gaussian random variable of zero mean and standard
deviation o,i.e. ¢(x/0). In terms of parameter p or the FWHM used in the previous chapters

to define the Gaussian function, equation (8.5) becomes:
I
Ip(x) = 3 (1 + erf ()]

N C2/-In(l/2) x
Iy} = 2 [1+ erf( VM )|
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Figura 8.1 Blurring of an Isolated edge

An interface betwaen adjacent tissues is modelled by a step edge. The noiseless imagz is given
by the convolution of the step edge with the PSF as shown in (a) and (b}. The value of ihe edge
profile at a given position Is proportional 1o the area of the PSF under the step {c). The length £,
over which the edge Is blurred 10 one side is equal to half the width (W) of the PSF
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By consulting tables of the CDF for a Gaussian distribution, one easily verifies that
I5(0) = 0.5 and conclude that the optiral relative threshold is 50%.

This is readily visualized in Figure 8.1, The value of the blurred edge profile at a
given position x is proportional to the area of the PSF centered at x which falls under the
step. Atthe position x =0, halfthe PSF is under the step. This is true for any symmetric PSF.

From this analysis, we conclurls that the 50% relative threshold criterion is optimal
tor an isolated 1D step edge blurred by any axially symmetric PSF.

20 edges: Until now, we have only considered 1D edges. We now ask ourselves if the
above statement is also valid for 2D edges? We could turn the question around and ask
if there are any situations where 2D edges behave like 1D edges? To answer this question,
Iet us consider a straight 2 adge e(x.y). Without loss of generality, let us also orient the
edge vertically, i.e. e(x,y) =e(x,0). Neglecting nois~, the image of the edge will be given by
the convolution of the edge with a (2D) PSF:

-

cx. )" *PSFy) = J J e(X.0) PSFe-Xyv-Y)dX dY (8.8)

- X

Since the limits of integration are independent:

7"; o
= e(X. 1) J PSFx-X.v=Y) dY JdX (8.9)
J
= J( (X ) LSF(x-X) dX (8.10)
= (v, () * LSI(y) (8.11)
= o(x)” LSF(x) (8.12)

Eguation (8.12) tells us that the image of the edge could also have been obtained
by convolving a 1D edge, having the same profile as the 2D edge. with the line spread
function (LSF). Or in other words, that a straight 2D edge behaves like a 1D edge.

Wa could also consider a straight 2D edge as one having an infinite radius of
curvature. It is therefore reasonable to assume that a curved 2D edge could also be
considered a 1D edge as long as its radius of curvature was (much) larger that the extent
of the PSF. More work is required to determine limits on edge curvature with respect to the
size of the PSF. Research in this direction could be guided by the work of Berzins (1984)
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who studied the interaction between the Laplacian of a Gaussian (LOG) operator and edge
peometry (see also section 8.4.1).

Edge interaction: As shownin figure 8.1 (c), the distance L. over which the edge s blurred
to one side is theoretically infinite since the area under the normalized Gaussian curve is
aqual to 1 only for infinite values of x. However, in a noisy and quantitized environment, the
cumulative distribution function rapidly reaches a value which can be considered equal to
1. The value of L. is found by locking up the argument of the CDF corresponding to a value
close to 1. For example, given a Gaussian PSF, if a 1% error in step sizé can be tolerated:

2./~n(1/2) L.
I = 2y = .99 8.13
If I FVHA ) {8.13)
2.1/ 1.
then 2272 T g (8.14)
FWHAM

For a FWHM of 1.20 mm and 1.50 mm. Lc is equal to 1.19 mn. and 1.48mm
respectively. Graphically, as showninfigure 8.1, we can see that L. is equalito half the width
ofthe PSF where the PSF width (W) is defined as the distance necessary for the area under
the PSF curve to be (almost) equal to 1. Inthe case of the Gaussian function, W/2 is almost
equal to FWHM | and to the HWZC for the damped cosine function. Therefore, as a rule
of thumb, we can conclude that the distance over which an isolated edge is blurred to one
side is close to the resolution of the imaging system. We defined resolution earlier as the
minimum distance separating two point sources such that they can be distinguished wihen
imaged.

Since edges are blurred over a certain (finite) distance. ciosely spaced edges will
interact with one another. We now ask ourselves how closelytwo step edges can belocated
before the 50% criteria fails. Figure 8.2 illustrates the graphic convolution between double
step edges of varyirg width D with a normalized symmetrical PSF of width W.

1) D<W: Inthe case where the PSF extert is larger or equal to the step width (see
figure 8.2 a and b), the whole PSF fits under the step, and the maximum in the
blurred edge profile is equal to the height H of the step edge. At the true edge
position (x=0; x=D), the value of the blurred edge is equal to half the step height
H/2. Because the maximum value in the blurred edge profile is a good estimator
of the {unblurred) step height, the 50% criteria is respected.
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I x=0 -l— W=T
Ip(0)=H/2 Ip(D/2)=H
(o) W=D
6(0) = H/2 In(D/2)=H
(C) W/2<D<W
/\| F=1-o(0/2/0) /\
/ A N
I6(0) =H/2 Ip(D/2) = H(1-2F)
(d) W/2 >D
JN\E= 1-$(D/o) f \ F=1-¢((D/2)/a) H
Ip{0) = H(1/2-E) (D/2) = H(1-2F)

Figure 8.2 Bluring of a double step edge

(a) and (b):When the extent of the PSF (W) is smaller than the doubla step width (D), the vaiue of
the blurec’ =dge profile al the irue edge position Is equal 1o half the step height (H). Furthermore,
the maxinium in the blurred adge profilc Is a good eslimator of H and the 50% relative threshold
criterior Is respectad. Wihien W > D, eilher the second (c) or both of these conditions {d) are Invali-
dated, and the 50% criterion no longer holds.
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2) W/2 <D <W: Figure 8.2 (c) illustrates the situation where the width of the step
edgeis larger than halfthe PSF width but smaller that its full width, as shownin figure
8.2 (c). The blurred edge profile at the true edge position is also equal to half the
(unblurred) step height. However, because the PSF no longer fits completely under
the step, the blurred profile maximum is smaller than the step height. Application
of the 50% criteria on the blurred edge will result in a wider step estimate since the
corresponding selected absolute threshold will be lower than H/2.

3) D>W: When the step width is smaller than half the PSF width (see figure 8.2
d), the situation degenerates even more since the value of the blurred edge profile
at the true edge position is no longer equal to half the step height.

8.3.3 Discussion

One of the implications of the 50% criteria is that the absolute threshold level will
vary depending on the objects in contact. For example, the absolute threshold for a
bone/fatinterface wili be differentthan abone/muscie interface: to respect the 50% relative
criteria, the absoiute threshold will be lower for the fat since the CT number of fat is lower
than muscle. This explains why the optimum absolute threshold varied depending on the
scanning environment in both experimental studies presented above. Furthermore, using
a global threshold will lead to erroneous edge location if a giving object is in contact with
more than one tissue type. Local variations in bone density, mineral content etc. could
further compound errors for a given interface.

Another consequence is that selecting the average CT value of bone as the global
threshold, a= suggested by Artzy et al. (1981) and Vannier et al. (1983), results in a detected
edge displaced towards to bone side of the interface by an amount comparable to the
systemn's rasolution. Furthermore, because the system is sh. t-variant, the bias willdepend
on the position and orientation of the edge.

We suspect that deviation from theory obtained by Rothuizen et al. (1989) in the
diaphyseal region (45%) might have been due to the choice of high resolution filter as a
means of forming the images. The higher noise values as well as the over- and
under-shoots produced by the negative tails usually associated with this type of filter both
hinder the estimation of the minimum and maximum values in the edge profile. A proper
choice of threshold combined with low noise levels such as those offered by the smoothing
filter, would likely outweigh the limited resolution gain of the high resolution filter, although
this remains to be verified.
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The phenomanon of edge interaction could explain why a relative threshold of 60%
was judged optimal by Rothuizen et al. for the thin walled phantom study. By selscting a
higher relative threshold, they approximated the absolute threshold corresponding to half
the unblurred step more closely.

8.4 Laplacian of a Gaussian operator

The Laplacian of a Gaussian (LOG) operatoi is a member of a class known as edge
detectors. These methods are based on the detection of discontinuities in the grey leve!
profiles found in the vicinity of edges. The formulation of the LOG operator combines a
differentiation step (the Laplacian) with (Gaussian) smoothing. An important issue to
consider when implementing the LOG operator, is selecting the Gaussian standard
deviation. This subject will be considered after having understood the principles underlying
edge detectors.

8.4.1 Background

Edge detectors, when based on the step edge model, state that the position of an
edge corresponds to extrerna of the first derivative or o the zero-crossing of the second
derivative in the direction the of gradient (De Michaeli et al., 1989; Clark, 1989; Luncher and
Beddoes, 1986; Torre and Poggio, 1986).

Regularization: Edge detectors are ill-defined in the presence of noise, i.e. the errors
(noise) in the edge profile are amplified, hindering the detection of maxima or
zaro-crossings. Since the true solution cannot be obtained from the impertect {(noisy) data,
the problem must be regularized. A common regularizing approach is to introduce a
compromise between fidelity to the data and fidelity to some a priori knowledge about the
solution (Pemoment, 1989). In this case, the a priori knowledge is that the solution should
be “smooth”. Torre and Poggio (1986) proposed two regularization schemes: functional
approximation and low pass filtering.

Low pass filtering can be performed by different type offilters. After a rather involved
analysis, Torre and Poggio (19886) concluded that bandpass filters, while good regularizers,
suffer from {theoretical) infinite support which can lead to implementation problems. On
the other hand, support limited filters are only marginally useful in reducing the effect of
noise. Minimal uncertainty filters, such as the Gaussian function, offer good regularization
and are optimal in the sense that they minimize the spread of the filter in both spatial and
frequency domain. Claims of optimality have also been made by Canny (1986) and
Shanmugan et al. (1979). However, Torre and Poggio point out that in both cases, the
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optimal filter can be approximated by a combination of Gaussian smoothing and
differentiation.

A very common approach to edge detection is therefore to smooth the the image

. with a Gaussian filter of given standard deviation o and then differentiate. We now turn our

attention to how differentiation can be carried out.

Gradient: The gradient V f{x,y) is a first order directional derivative given by:

i = [ V] = o] = 56+ 55 @9

Torre and Poggio (1986) mentioned that two direction dependent derivatives are
sufficient to detect all edges in an image, a condition satisfied by the gradient. Each
derivative, Ax and Ay requires a separate conveiution, thereby increasing processing
time. Furthermore, because Ax responds more strongly to vertical 2dges while horizontal
boundaries are detected by Ay, the application of each filter separately results in disjointed
glements of edgels. By combining the output of both filters, edges appear more complete
but are rarely closed. Detection must be followed by a linking procedure, either parallel or
sequential, to insure edge continuity. We have found no accounts o parallel linking
algorithms in the medical image literature but the work of Liu (1977), Herman and Liu
(1979), Artzy (1981) and Udupa (1982) are examples of the sequential boundary tracking.

Laplacian of 3 Gaussian: The simplest linear, isotropic second derivative operator is the
Laplacian:

V2Rvy) = O/On + &%/ (8.16)

Being isotropic, it produces closed curves, or curves that terminate at the boundary
ofthe image and therefore yields a partioned or segmented image in asingle step. a distinct
advantage over gradient based methods.

Furthermore, it commutes with the Gaussian smoothing filter, both operations
being linear. Both steps can even be combined in a single operation: the Laplacian of a
Gaussian filter. Its mathematical formulation is given by:

3 ) (e + )
. 1 X<+ - - 2 ?
LG(xy) = (—s -1} ¢ <O (8.17}
T0g6 Yo

Its other advantages include its ease of implementation, and its approximation by
the difference of two Gaussians (Hildreth, 1883; Bomans et al. 1990). It can also be
representad as a product of one dimensional functions, a property that can be used to
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decrease the number of operations necessary for convolution (Huertas and Medioni,
1986). Furthermore, by approximating the output of the LOG filter In the vicinity of an edge
with a proper function (even linear functions are adequate), the zero-crossing can be
localized with sub-pixel accuracy (Huertas and Medioni, 1986).

When implementing the LOG operator, the user should be aware of the following
limitations. 1t is only when edges are straight and (infinitely) long that the zero crossings
of the Laplacian and the second derivative in the direction of the gradient coincide. This
can be inferred from the following equation (Clark, 1989):

2 t’zf
Vi == + [Vl « (8.18)
on
where «: curvature
52 . o .
—g——f,- . second derivative in the direction of the gradient
on-

This last term is given by:

Ff _ B+ il + Bl
on? ﬁ + f":

It can be seen from equation (8.18) that the larger the curvature, the more the

(8.19)

Laplacian deviates from &%f/dn? and therefore the more the detected edge will be
displaced with respect to the true edge. Berzins (1984) theoretically studied the magnitude
of error due to deviation of edge models from the ideal infinite straight edge and concluded
that the edge displacement could be much less that the filter standard deviation 0 gg under
certain conditions. Concerning edge geometry, these conditions include:

1) the length of the edge and its radius of curvature must be large compared to

OLoa:

2) the distance to the nearest sharp corner must be large compared to 8/0 0g

where 8 is the angle of the corner in radians,

Just as a zero crossing of the Laplacian does not always correspond to that of
&*f/on* , a zero crossing of a second derlvative does not always coincide with an extrema

in the first derivative. Inflection points will be detected by a zero crossing schene but will
not affect the performance of extrema based methods. Therefore, more false edges are
to be expected by the former.

Medical imaging literature: The LOG operator was recently used on sets of 3D magnetic
resonance images (Kubler and Gerig, 1990; Bormans et al. 1990). Bumans et al. selected
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the “optimal” value for o1 og. i.e. one that sufficiently smooths noise without unduly
distorting the edges, on a visual basis. They also used a post-processing step
(morphological operators) to relocate edges more accurately.

Based on visual inspection, the authors of both studies concluded that this
segmentation methoc yielded 3D reconstructed images close to anatomical reality. Kibler
and Gerig further mentioned that the LOG operator showed significant differences when
compared to a region filling algorithm without mentioning which method yislded the most
accurate results. Nor did they specify the Gaussian stardard deviation of the LOG operator
nor the properties used to control the region growing algorithm.

8.4.2 Discussion

Canny (1986) and Bergholm (1987) noted that edge detectors face the conflicting
goal of producing low error rates, i.e. edges should not be missed ai & no false edgus
detected, while accurately locating the edges. The parameter controlling the balance
between detection and localization is filter size: the larger the operator, tha more noise is
smoothed but the more edges are distorted. This trade-oft is governed by the standard
deviation of the Gaussian filter.

Lunger and Beddoes (1986) described a procedure for selecting this parar ar
based on the type of edges, their intensity, the amount of blur and sampling considerations.
They also provided a means for estimating the expected error (standard deviation) of the
zero crossing about the true edge. However, this ctucly was based on the assumption of
white Gaussian noise which is not valid for X-ray CT images znd therefore their analysis
cannot be used for CT images.

We wish to point out that the choice of o gg should take into account not only the
amplitude of the noise but also its frequency distribution. Figure 8.3 shows the estimated
NPS for the smoothing, head edge enhancement and high resolution reconstruction filters
along with the frequency structure of the LOG operator generated for different values of
gdLog. One can only appreciate the similarity between the two entities. Choosing o og such
that the maximum of the LOG coincides with the maximum in the NPS, defeats the purpose
of smoothing prior to detection since the noise will not befiltered out of the signal (it could
even be amplified). With CT images, the problem of selecting a value for o gg must
therefore not only consider the balance between detection and localization but also take
the frequency structure of the noise into consideration. Unfortunately, more work is

required to evaluate the interaction between these factors since this problem has never
received any attention.
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Figure 8.3 Comparison of nolse povser spectrum and frequency characteristics of LOG operator

Both the NPS of a CT scanner {a) and the MTF of the Laplacian of a Gaussian edge detector (b)
exhiblis very similar bandpass characteristics. When selecting the smoothing factor of the LOG
operator {o o). it Is therejore important to take the rioise characteristics, which vary with the
Image reconstruction filter, into account.
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The phenomeanon of edge interaction, which can effect the performance of the
threshold operator, is even more imporiant for the Laplacian of a Gaussian filter. The
additional blurring action of the Gaussian low pass filter incorporated in the detection
scheme is superimposed on the blur already in the image thereby increasing edge
interaction. The user should also keep this limitation in mind when choosing a value of

CLoG.

8.5 Conclusions

Many of the segmentation methads found in the general literature have been used
to provide data for the reconstruction of 3D models of the human anatomy. However, when
implementing these methods, the characteristics of the imaging systemn are rarely, if ever,
considered. As a result, operator parameters are often chosen empirically, resulting in
sub-optimal use and/or misplaced edges.

We took a closer look at two popular segmentation methods, the threshold and
Laplacian of a Gaussian operators. In doing so. we explicitly took the shape of the point
spread function and noise properties into account. Throughout our analysis, we modetled
the interface between adjacent tissues as a step edge. This Is a reasonable assumption
for segmenting structures of the musculo-skeletal system since tissues are characterized
by distinct x~ray attenuation coefficients.

For a one-dimensional isolated edge, and symmetric PSF, we showed that the
optimal relative thrashold was 50%. This theoretical result substantiates the conclusion of

two experimental studies which placed the optimal relative threshold betwsen 45% and
60%.

It is reasonable to assume that the edge location will be preserved at the 50% leval
in two dimensions, provided that the PSF is axially symmaetric, and that the edge be straight
or its radius of curvature is (much) larger than the extent of the PSF.

One of the implications of this criterion is that the absolute threshold level will vary
depending on the tissues in contact. Therefore, using a single global threshold will lead to
erroneous edge location if an object is in contact with more than one tissue type.
Furthermore, because the system is shift-variant, the bias introduced by using a single
giobal threshold will depend on the position and orientation of the edge.

An edge can no longer be considered isolated, and the 50% criterion fails, when
it interacts with a neighboring edge. This occurs wiien the width of the double step edge
is smaller that the width of the PSF. This distance is approximately equal to twice the fuli
width at half maximum (FWHM) for the Gaussian PSF or twice the half width at first zero
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crossing (HWZC) for the damped cosine PSF (i.e. twice the resolution of the imaging
system). This distance varies with the filter used to reconstruct the image and with the
position and orientation of the edges due to shift-variance.

The size of the LOG operator, which is controlled by the standard deviation of the
Gaussian filter, determines the balance between the detaction and localization properties
of this segmentation method. This approach is valid in the presence of white noise.
tiowever, as we pointed out, the frequency structure of the LOG operator and of the noise
in CT images are very similar. Failing to recognize this similarity can result in noise
amplification, thereoy defeating the purpose of smoothing the signal prior to differentiation.
One must also kesp in mind that the blurring inherent to the imaging system is
compounded by the action of the Gaussian smoothing and that the edge interaction
distance increases accordingly.
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CHAPTER 9
CONCLUSION

9.1 Summary

Limitations of the Iimaging device, such as blurring patterns, noise characteristics
and artefacts, have been largely ignored when applying general image processing
techniques to medical images. We believe that by gaining a detailed knowledge of the
characteristics of the imaging system, we will be in a better position to determine the limits
of the image processing algorithms, and to improve their performance.

The first objective of this work was therefore to develop experimenta! tools to
characterize the imaging system. To realize this goal we:

- estimated the NPS in a variety of imaging conditions,

- developed and evaluated parametric models of the PSF,

- experimentaily quantified the shift-variance, using the parametric models and an
array of spatially distributed point sources,

- validated the use of point sources, by comparing the non- parametric PSF

estimates obtained with this input to those found using a correlation-based estimation
method.

The second goal was to investigate ways of using this information to process the
images. We:

~-developed and evaluated a coordinate transtormation for shift-variant image
restoration,

~explored the limits of the threshold and Laplacian of a Gaussian segmentation
operators, based on the shape of the PSF and the noise properties.
9.2 Original contributions

In the course of the project, we claim the following original contributions.

9.2.1 Parametric models (Chapter 4)
1) We extended the Gaussian model to incorporate three new features:

a) Itis non-linear In its parameters. The non-linear formulation minimizes
negative biases in shape parameter estimates (py. py) compared to a
linearized model. Furthermore, this approach gives us the opportunity to
track the position of an input with sub-pixe! accuracy.
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b) The mode! does not assume radial symmetry. The comparison of the
shape parameters in two orthogonal directions proved useful in quantifying
the anisotropic properties of the PSF.

c) The model takes the average background value into account. Omission
of this parameter can lead to positive biases in shape parameter estimates
for a negative background while negative biases can be expected when the
background is positive. We showed and explained why this effectis worstin
the case of positive background.

2) We formulated an entirely new model, the damped cosine function. This model
describes the negative tails observed in the PSF produced with the high resolution
reconstruction filter. It also explains the shape of the MTF throughout the whole frequency
range. We also incorporated the three original features of the Gaussian model to the
formulation of the damped cosine model.

9.2.2 Shift-variant study (Chapter 5)

1) We developed and tested a new experimental method to characterize and quantify the
shift-variant and anisotropic properties of the PSF.

a) We designed and built a custom phantom consisting of an array of
spatially distributed point sources as input.

b) We considered the effect of the image reconstruction filter. We thus
experimentaily verified the claim that the apodizing filter does not affect the
pattern of shift-variance.

c) We also considered the effect of scan time. For the particular scanner
used, we observed a large decrease in shift-variance in the tangential
direction while the shape of the PSF was not affected in the radia! direction.

2) We experimentally verified certain trends predicted by theory. In particular:
a) We confirmed the presence of a rotating blur.

b) We observed and quantified the loss of PSF radial symmetry with the
increase of radial distance from the center of the field of view.

c) We observed and quantified the widening of the PSF in the tangential and
radial directions.
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rrelation n-parametric identification (Chapter 6)

1) To our knowledge, we are the first to adapt this method for ine identification of X-ray CT
systems and even to medical imaging systems in general.

a) We designed an input whose auto-correlation function was suitable for
the method while being physically realizable. It consisted of a 2D array of
pseudo-randomly located holes drilied in radiopaque material.

b) We proceeded to an exhaustive simulation in order to determine the effect
of the following parameters:

- hole size

- hole separation

- overall size of input

- pixel size

- sub-pixel transtation between input and output images

- rotation between input and output images

- cupping

c) We designed and implemented an algorithm to digitize the input in such a
way as to minimize input noise.

2) We developed a procedure to properly regis:2r the input and output images in order to
optimize, in the informal sense, the identification process. The rotation was evaluated by
estimating the orientation of alignment axes with the image raster axes. The capacity of the
parametric models to position the input with sub- pixel accuracy was used to evaluate the
residual transiation.

3) We validated the use of point sources as input for non-parametric estimation by
comparing these estimates to those obtained with the correlation based methods.

8.2.4 Coordinate transformation (Chapter 7)

1) We developed and implemented a coordinate transformation for the shift-~invariant
restoration of CT images. The transformation is based on the experimental resuits of the
shift-variance study.

2) We formulated simple requirements to insure that the cascade of forward and inverse
transformation would not introduce artefacts into the image.
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3) We developed a quantitative evaluation procedure. This procedure was heneficial in:
a) delimiting the usefulness of the method,

b) detecting a limitation which had not been reported in the literature.
Indeed, for the PSF to be truly isotropic in the transformed plane, the
function which describes the variation in PSF width in the tangential or
angular direction must be constrained to vary in a piecewise constant
manner.

9.2.5 Segmentation (Chapter 8)

1) We theorstically showed that for a 1D isolated edge, the optimum reiative threshold is
50% . We believe that the notion of 1D edge is valid for 2D edges whose radius of curvature
is (much) larger than the width of the PSF.

2) Based on the interaction between neighboring edges, we determined that this 50%
criterion fails when the distance between two edges Is smaller than twice the resolution of
the system.

3) Using these results, we substantiated certain experimental results foundin the literature
(Rothuizen et al., 1986) but which had not been theorstically justified.

4) We observed that the smoothing parameter of the LOG operator should take the noise
frequency distribution as well as the problem of edge interaction into account.

9.2.6 General comments

It should be noted that the numerical values concerning resolution, the amount of
shift-variance and the noise characteristics are specific to the scanner on which the
experiments were performed. We did show however, that most of the trends were
compatible with theory, independently of scanner geometry. It is therefore reasonable to
assume that the trends we observed would also be valid for otiier models of X-ray scanner.
Furthermore, all the identification tools we developed are sufficiently general to be used
on any X-ray CT unit and even adapted to other medical imaging modalities.

The only restriction placed on the coordinate transformation for the isoplanatic
representation of the PSF is that the system exhibit a rotating blur. Most modern X-ray

systems, which acquire data over 360°, comply to this requirement. However systems with

slow acquisition times, e.g. SPECT scanners, often acquire data over 180° and may not
exhibit a rotating biur.
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The 50% r-ialve criterion for its part is valid provided that the PSF is axially
symmetric. Or. the other hand. the choice of the Laplacian of a Gaussian smoothing
parameter is very application and machine dependent. Indeed, the NPS, which is one of
the factors which should govern the choice of this parameter, is greatly influenced by the
p-filter apodizing function. Since each company designs its own filters, the shape of the
NPS, hence the smoothing parameter, will vary depending on the scanner with which the
data is acquired and the filtar used to reconstruct the image.

9.3 Future work

We mentioned in chapter 1 that we are interested in the design and fabrication of
custom-fitted articular resurfacing implants. A flow-chart of the entire project Is lliustrated
in figure 9.1. itis evidert from this diagram that the work presented in tnis thesis represents
only a small portion of the efforts required to produce an implant. Indeed, we have only
considered the relationship between the first two steps, imaging and segmentation. In the
remainder of this section, we will list subjects which are considered for future work.

9.3.1 Image processing

We presented a coordinate transformation permitting the isoplanatic
representation of shitt-variant images. We mentioned that this method could be used for
the restoration of shift-variant images. It still remains to be shown however, if the method
improves the restoration itself. it is conceivable tnat the coordinate transformation could
modify the outcome of a particular restoration method. Therefore, it would be important

to compare the results of a restoration method implemented with and without the
coordinate transformation.

It would also be interesting 10 evaluate the usefulness of image restoration as a
pre-processing step to segmentation. indeed, restoration decreases the amount of blur.
But this improvement is most often realized at the expense of increased noise which may
be detrimental to the segmentation operators, and more specifically to edge detectors.

We proposed a relative segmentation criterion based cn a 1D step edge modet, We
mentioned that this criterion was valid as long as the radius of curvature of the edge was
(much) larger than the extent of the PSF. The interaction between the 2D edge and PSF will
have to be examined more closely in order to specify this condition more accurately.

We also mentioned that the choice of the Laplacian of a Gaussian smec: - g
parameter should take the shape of the NPS into accnunt. However, morework is it . d
to determine the exact nature of the interaction between the noise characteristics and the
performance of the Laplacian of a Gaussian filtering operator.
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9.3.2 Reconstruction

The 3D geometric reconstruction approach must be adapted to the application.
Most algorithms have been devised to display the reconstructed objects on a graphic
screen. To increase the speed of display while limiting the amount of memory, surfaces are
often approximated by a set of triangular tiles (Batnitzsky, 1981) or the faces of cubic voxels
(Herman and Liu, 1977; Artzy et al., 1981). We will not only have tc display the geometric
information but also use it to generate tools paths for a numerically controlied machine.
(This machine will produca ths implant, a mold from which the implant will be cast or even
a positive for investment casting). New torms of interpolation, better suited to a computer

Figure 9.1 Synopsls of long term project

assisted machining environment must be adopted.
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An issue which has recsived little attention is that of the amount of data necessary
to build an accurate model. This also brings us to the problem of assessing the accuracy
of the model. The box labelled "precisicn necessary” in figure 9.1 refers 1o this topic.

Modelling approaches: Inherent to the geometric model is the interpolation method used
to represent the surfaca between sample points. We wish to investigats alternative
interpoiation functions in the context of kriging. With dual kriging, the interpolation function
is a sum of two terms. The choice of the first term, or drift, is arbitrary and represents the
expected value, or average behavior, of the variable. The second term retates to *the error.
It also refiects the spatial correlation that usually exists between the cata. Because of this
correfation property, kriging often yields superior results waen compared to other
interpolation techniques. Furthermore, by varying the form of the two terms, different
interpolation schemaes, such as linear or spline interpolation, can be generated within the
same mathematical framework.

Amoupt of data necessary. The accuracy of the geometric model is expected 1o increase
with the amount of data available. It is current practice in medical 3D reconstruction to scan
the joint with the highest axial resolution and sampling possible. But is all this data
necessary? Increasing the distance between each image would reduce the amount of data,
the examination time Is shortened, thus reducing the cost of the examination, the risk of
patient movement and total radiation in the case of X-ray CT. Furthermore, the image
processing time will also decrease. We are faced with an interesting optimization problem
which, to our knowledge, has never been treated.

Sampling theory offers an elegant soiution to the problem of determining the
minimum quantity of data to represent the bony surfaces since it guarantees that a properiy
sampled signal ("geometric” model) canbe interpolated to yield the continuous signal. The
sampling theorem states that a signal must be sampled at a rale greater than or equal to
twice the highest frequency contained in the signal. Fourier descriptors could be used to
uncover the frequency characteristics of the bone geometry.

Assessment of accuracy: The methods for assessing the accuracy of the reconstruction
are scarce and range from visual comparisons (Hemmy and Tessier, 1985), estimation of
surface area and object volume {Udupa, 1981), to comparing the distance between
anatomical landmarks on the object and a machined replica (Woolson et al., 1986). All
these methods are based on global measures and therefore give no information on jocal
variations between the actual and reconstructed surfaces. At the heart of local error
assessment is the problem of spatially registering two objects (the reconstructed model
and the physical object) in 3D space. Methods to do so include visual inspection (Pietzyk
et al., 1990), the use of markers and/or alignment frames, identification of landmarks on
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both surfaces matched with least-squared algorithms, and alignment of centroids and
principal axes (moment based method) (Vannier and Gayou, 1988). Precise application of
markers and frames can be difficult, while anatomical landmarks may not be identifiable
on both objects (espscially when dealing with simooth articular surfaces) and moment
based methods require a priori definition of corresponding subvolumes. Pellizari et al.
(1989) devised a general algorithm with the intention of circumventing these shortcomings.
However, the surface defined with the highest resolution must be represented in a special
format and the method is only applcable to closed surfaces. Methods used in part
inspection and robotics are most often defined in 2D or deal with depth projection maps
and are inadequate for this problem.

The first step in assessing the accuracy will be to scan limbs with the highest axial
sampling rate possible and with different image reconstruction algorithms. The bones will
then be stripped of all soft tissues and measured with a system having a better resolution
than that of the imaging device. A coordinate measuring machine (CMM) is envisioned for
this task. The result of these measurements will be known as the "physical model”. The
second step consists of developing a general 3D registration algorithm necessary to align
the "physical modei” and the resuits of segmentaiion. Local discrepancies (distance,
variations in curvature) can then be measured and used to compare the accuracy of
different pre-processing/segmentation/segmentation algorithms.

9.3.3 Fabrication

The choice of fabrication processes used to manufacture "off the shelf” implants
is largely motivated by the implant material(s) and desired mechanical properties. We will
limit our discussion to metals which offer special challenges where manufacturing
processes are concerned. Metals used in orthopaedics for long term applications are aither
cobalt- or titanium-based alloys. Hot isostatic pressing (HIP) (Chandok and Rizzo, 1981),
a derivative of sintering, and isothermal pressing, a forging technique where the metal
exhibits (near) superplastic properties (Shepp. 1989), are favoured fabrication techniques.

Howaever, a large number of parts must Le produced to write off the high costs associated
with producing the matrices.

Therefore, these methods could not be used to produce the customized implant
directly. Howesver, they could be employed to generate near-form blanks. Two options are
then available: either both surfaces (inner and outer) are customized, thereby increasing
the finishing time, or only the inner surface is personalized. This last option implies that the
blanks will have to be available in different sizes, increasing the cost of producing the
matrices.

171



Customizing the surfaces will involve machining. The shell-like nature of the
implant, the high forces and high temperatures associated with conventional (chip
removal) machining cobalt and titanium alloys (Wilson, 1984) create a challenging
problem. Customizing efforts found in the literature usually involve optimizing hip implant
stem geometry where the size and shape of the prosthesis does not create any special
machining problems of the sort. Another question to be considered is that of positioning
and clamping of the workpiece. Electro-discharge (erosion) machining (EDM) could solve
some of the problems foreseen with conventional machining and is considered as an
alternative. Howevel, the use of EDM will require additional surface finishing to remove the
redeposited layer of molten metal which is detrimental to fatigue properties.

A completely different option consists of investment casting the implant. The
problem in this case is producing the thin shelled positives. Stereolithography, which has
recently been used to produce patterns and/or prototypes (Jara-Almonte, 1990}, is an
interesting candidate especially since the data is already available in a siice by slice format
However, the problems associated with distortion and the iimited accuracy of the system

are geometry specific problems that will have to be dealt with. Alternatively, the positives
could be machined.

[uati

The precision with which the implant should be made to fit the bone (seefigure9 1,
box labelled "precision necessary”) must also be determined. Indeed. an imperect fit will
lead to undue stress in both the prosthesis and bone. This problem can be addressed
analytically with a finite element analysis. Issues such as material selection and fixation can
also be studied with this method. Furthermore, once a prototype has been produced. it can
be tested experimentally to uncover probiems which could not be simulated analytically
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