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Abstract

The proliferation of mobile and wireless technologies has resulted in an increasing number
of wireless interfaces and protocols that facilitate the transmission of data in the context
of sensor interfaces and controllers for the implementation of Digital Musical Instruments
(DMIs). Despite the large number of wireless devices and controllers available, there has
been little systematic evaluation of these design choices from the perspective of DMI de-
sign. The diversity of choice creates potential confusion when selecting interfaces, made
up of a combination of a physical interface (hardware), and messaging protocol (software).
Specifically, the latency performance (of how responsive an instrument is, and how that
might scale when additional devices are present in an ensemble setting), and usability (how
easy it is to integrate with the user application) are often unspecified. This thesis presents
answers to these questions by looking at two main issues: An empirical analysis of latency
in wireless interfaces and the definition of tools to increase the usability of DMIs. A system
for measuring end-to-end latency, where a sensor interface configuration is integrated into
a system that responds to test trigger input and synthesizes audio output, is implemented
to measure the latency performance of different wireless sensor interface configurations.
Wi-Fi, Bluetooth, and LoRa are compared against wired USB/serial interfaces, with Open
Sound Control (OSC) and MIDI as messaging protocols. Based on the findings of the
work, Wi-Fi-based physical interfaces provide the most scalability in terms of number of
concurrent devices, overall bandwidth, as well as minimal latency, although care must be
taken when scaling beyond 5 concurrent devices operating within a single wireless channel.
The interoperability of the interface will be dependent on the messaging protocol, and here
there is a trade-off between flexibility of representation offered by a more open standard
such as OSC on the one hand, and compatibility with existing standards such as MIDI on
the other. The second part of this thesis then further explores the concept of interoperabil-
ity and usability of sensor interfaces from the perspective of mapping frameworks, tools,
and environments, including the recommendation for the incorporation of sensor interface
characteristics as part of visual mapping utilities.
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Résumé

La prolifération des technologies mobiles et sans fil a considérablement accru le nom-
bre d’interfaces et de protocoles sans fil qui facilitent la transmission de données dans
le cadre d’interfaces de capteurs et de contrôleurs pour la mise en œuvre d’Instruments de
Musique Numériques (IMN). Malgré le grand nombre d’appareils et de contrôleurs sans fil
disponibles, il y a eu peu d’évaluations systématiques de ces choix, lors de la conception
d’IMN. La diversité de choix peut créer de la confusion lors de la sélection des interfaces.
Ces interfaces résultent de la combinaison de périphériques physiques (matériel) et de pro-
tocoles de transfert de données (logiciel). Plus précisément, les performances en termes
de latence (la réactivité d’un instrument et son évolution, lorsque des périphériques sont
ajoutés dans un ensemble) et d’utilisabilité (la facilité d’intégration avec l’application de
l’utilisateur et de l’utilisatrice) ne sont pas souvent spécifiées. Cette thèse présente des
réponses à ces questions, en examinant deux problématiques principales : une analyse em-
pirique de la latence dans les interfaces sans fil et la définition d’outils pour augmenter
l’utilisabilité des IMN. Un système de mesure de latence de bout en bout est mis en œuvre
pour mesurer les performances de différentes configurations d’interfaces de capteur sans fil.
Ce système comporte une configuration d’interface de capteur, intégrée dans un système qui
répond à une entrée d’activation de test et synthétise une sortie audio. Le Wi-Fi, le Blue-
tooth et le LoRa sont comparés aux interfaces filaires USB/série, avec Open Sound Control
(OSC) et MIDI comme protocoles de transfert de données. Sur la base des résultats des
travaux, les interfaces physiques fondées sur le Wi-Fi offrent la plus grande adaptabilité, en
termes de nombre d’appareils simultanés, de bande passante globale, ainsi que de latence
minimale, bien qu’il faille faire attention lors de l’appariement simultané de plus de cinq
appareils. L’interopérabilité de l’interface dépendra du protocole de transfert de données:
il y a un compromis à faire entre le besoin de flexibilité de représentation offerte par un
standard plus ouvert comme OSC et le besoin de compatibilité avec les standards existants
comme MIDI. La deuxième partie de cette thèse approfondit le concept d’interopérabilité
et d’utilisabilité des interfaces de capteurs, du point de vue des cadres, outils et environ-
nements d’appariement. Des recommandations sont proposées pour l’incorporation des
interfaces de capteurs caractéristiques des utilitaires d’appariement visuel.
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Preface

The inspiration for this work started in 2014 when supporting a project involving 10 iPod
Touch devices that were used by the audience to control virtual avatars projected on the side
of a building as part of a digital interactive artistic installation. While we were frantically
trying to work through various technical and logistical challenges often associated with such
projects to get something that “just works”, I was quite interested in trying to figure out
exactly how many devices a particular channel could practically support in such a situation,
and how fast each device could transmit. Given the time constraints of the project, I was
unable to further explore the issue after we established a functional network configuration
for the event. Since then, I have been exposed to various other projects that make use
of wireless sensor interfaces including many designed by colleagues at the Input Devices
and Music Interaction Laboratory at McGill such as the T-Stick (Malloch and Wanderley
2007), Vibropixels (Hattwick, Franco, and Wanderley 2017), GuitarAMI (Meneses, Freire,
and Wanderley 2018), Prynth (Franco and Wanderley 2016a) and Probatio (Calegario et
al. 2017). Speaking with the creators of these devices and systems, and studying related
literature in the New Interfaces for Musical Expression (NIME) community, it appears
that generally in most cases a similar approach of “it works adequately for our application”
is applied, and often any extended questions such as “could we support a T-Stick duo
or quartet at the current sensor transmission rates and message sizes?” remain as an
exercise for the future. Often, these unforeseen limits can lead to significant design changes
and unexpected additional development. Moreover, while we see an increasing number of
wireless interfaces in the academic and commercial realm, the actual performance metrics
are often not specified, and there is little work to provide a standardized testing and
comparison of these interfaces. In this work, I hope to achieve a better understanding of
the practical limits of wireless interfaces that can lead to more informed decisions when
building these systems or selecting devices. While the work described pertains mostly
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to interfaces used for musical interaction, the results are applicable to general interactive
systems where distributed, wireless connections between sensors and receiving devices are
used, and the overall methodology applies to sensor and device networks in the Internet of
Things community as well.

The work in this PhD thesis is motivated by my background in classical musical per-
formance combined with formal education in electrical and computer engineering, leading
towards a number of interdisciplinary projects in the field of new media. The work per-
formed in the PhD thesis continues through the building of tools and platforms to support
the process of developing novel ways of interacting with music and media. Part of the work
was performed in collaboration with an industrial partner, Infusion Systems, as part of an
NSERC Industrial Innovation Scholarship for the first three years of the research.
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The work described in this thesis lead to a number of peer reviewed (first author) publica-
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in the context of Digital Musical Instrument (DMI) design. The evaluation system is also
used in a number of collaborative context (second author), and the overall experience is also
applied in larger projects to inform the general process of DMI and framework development.

During the PhD the author also supported a number of artistic works involving the
development of connectivity and mapping tools, specifically in the context of pipe organ
interfacing. Additionally, as part of an industrial collaboration, commercial products were
also conceived, prototyped, and evaluated, and prepared for manufacturing.
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Industrial Collaboration

I-CubeX Pi-Shield

During the exploratory phase of the industrial collaboration, the author lead in the design
and manufacture of an add-on sensor interface shield for the Raspberry Pi1 family of em-
bedded computers (Figure 1). This allowed the extensive catalogue of I-CubeX sensors to
be used with the large RPi community. Along with hardware design, the author also built
various software interface drivers and example applications for a variety of programming
environments on the Raspberry Pi, and created supporting documentation, promotional
materials, and managed the marketing for a successful international crowd-sourcing cam-
paign2.

Fig. 1 The I-CubeX PiShield. Fig. 2 The I-CubeX WiDig.

I-CubeX Wi-Dig

A new Bluetooth Low Energy / Wi-Fi addon board was designed to add wireless connectiv-
ity to the existing I-CubeX Universal Serial Bus (USB) digitizers, resulting in the world’s
first customizable, MIDI over Bluetooth Low Energy (BLE-MIDI) capable sensor interface
with built-in sensor input to Musical Instrument Digital Interface (MIDI) message mapping
(Figure 2). The author was responsible for the hardware and firmware design, prototype
production, testing, preparation for manufacturing, and user documentation.

1https://www.raspberrypi.org/
2https://www.kickstarter.com/projects/infusion/pishield-sensor-interface-board-for-raspberry-pi

https://www.raspberrypi.org/
https://www.kickstarter.com/projects/infusion/pishield-sensor-interface-board-for-raspberry-pi
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Chapter 1

Introduction

This introductory chapter establishes the overall context of the thesis by first

presenting an overview of DMIs wherein the work is situated. Then, the concep-

tual components that make up a DMI are presented to reveal the relevance of

the core contributions of the thesis that focus on sensor interface protocols for

wireless interfaces. The lack of performance and usability evaluation in existing

literature regarding wireless interfaces in the context of DMIs is introduced, fol-

lowed by the presentation of a specific series of questions along with a proposed

approach for answering them through empirical evaluations.

1.1 Digital Musical Instruments

Using computer and digital input devices, new musical interfaces can be produced to con-

trol sound parameters in many different ways, and allow new ways of interacting with the

production of sound and musical output ranging from the real-time control of audio parame-

ters, to the manipulation of higher-level compositional structures (Rowe 1992). Collectively



1 Introduction 3

known as DMIs (Miranda and Wanderley 2006), the study, development, and usage of these

devices and systems open up novel avenues of interdisciplinary research that leads to new

technological developments, tools for research, artistic works, and commercial products.

More generally, such devices and systems fall within the realm of interactive digital

media, where some kind of sensor input is used to facilitate user manipulation of processes

that control the production or manipulation of media on a computer (Pennycook 1985).

The sensors could be any kind of input device that captures and translates some aspect of

a physical phenomenon in the real world into electrical signals that are then digitized for

computation (Fraden 2010). Some examples of such systems, beyond musical instruments,

include user-influenced visual art installations, and interactive digital environments that

respond according to any kind of sensor input. One key feature of such devices and systems

is that, unlike acoustic instruments or physical media, the relationship between input and

output are no longer constrained by the nature of physical mechanisms alone. Computer

algorithms can arbitrarily associate an input and output parameter, and provide limitless

relationships between the two (Bongers 2000). For the remainder of this thesis, we will

refer to DMIs specifically given the context of the research, but with an understanding

that the concepts can be generalized to any digital interactive system that requires sensor

input, where the output of interest is not limited to the control of musical parameters.

One conceptual representation of a DMI is the “three-layer” model (Hunt and Wander-

ley 2002), shown in Figure 1.1. Here, the input consists of sensors and sensor interface

that transduce a signal relating to a physical phenomenon, in this case, a musical gesture

of interest, into numerical data. It is then fed through a mapping layer that translates the

input signals into synthesis parameters, that finally feeds into a synthesis system that pro-

duces digital audio which can be played back using a Digital-to-Analog Converter (DAC).

Some examples of DMIs developed at IDMIL and CIRMMT are shown in Figure 1.2.
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Fig. 1.1 The “three-layer” conceptual model of DMIs.

(a) Franco’s “The Mitt”. (b) Sullivan’s “NoiseBoxes”.

(c) Meneses’ “GuitarAMI”.
(d) Malloch’s “T-Stick” (Photo by E. Mene-
ses).

Fig. 1.2 Some examples of DMIs, images by respective authors unless oth-
erwise noted, and reproduced with permission.
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During implementation, the flexibility of digital systems allows these components to be

distributed or integrated accordingly with either internal or external connections, depend-

ing on the design constraints and physical limits of the components selected. In our modern

digital age, increasingly capable yet affordable and accessible electronics and sensing tech-

nologies, computational platforms, and software ecosystems provide limitless options to

realize the design and implementation of DMIs.

1.2 Controllers vs. Instruments

To further clarify scope of the presented work in this thesis, it is necessary to make the

distinction between a controller and an instrument. Since modern general computing de-

vices can take many physical forms with different levels of core and peripheral configu-

rations (e.g. desktop computers with detached input/output devices compared to laptops

and tablets), so can a DMI. Figure 1.3 shows four devices, a keyboard MIDI controller,

a T-Stick (Malloch and Wanderley 2007), The Mitt (Franco and Wanderley 2016b), and

keyboard synthesizer. The MIDI controller, as well as the T-Stick, do not possess the

ability to generate sound but instead send control signals to an external synthesizer. The

Mitt, like the keyboard synthesizer, on the other hand, contains the mapping and synthesis

components, and is consequently able to produce sound from within. At the same time,

these instruments can also send control signals as well, and function as controllers to be

operated with another synthesis system, if desired. The process by which the T-Stick as an

interface or controller was developed into a musical instrument through stages of mapping

and synthesis design (Malloch and Wanderley 2007) provides an exemplary process for the

realization of a DMI. Various physical updates to the T-Stick has been made over the years

(Nieva et al. 2018), the device has supported research on mapping (West et al. 2021), and
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the creation of various compositions (Stewart 2009; Fukuda et al. 2021).

Some examples from the commercial realm include the wind-instrument-inspired inter-

faces such as the Sylpho1, Akai EWI2, Yamaha WX-series3 controllers, compared with the

Casio Digital Horn or Roland Aerophone4 instruments. The former are controllers that

transmit button presses and breath pressure, musical gestures, to another synthesis device

but do not produce sound by themselves, while the latter contain sound synthesis and

production components on-board.

In this work, we will focus the attention to controllers while acknowledging the fact that

certain standalone instruments exist. The controllers, from a technical implementation

perspective, can be considered more generally as sensor interfaces where the sensors are

selected to capture specific signals of interest associated with gestures for musical input.

1.3 Wireless Musical Controllers and Latency

A key development with the growth of mobile computing devices, is the near ubiquitous

nature of wireless technology (Bi, Zysman, and Menkes 2001). Supported by improved

power efficiency and robust battery solutions demanded by increasingly powerful devices in

the mobile phone and portable computing market, most computational devices have some

mode of wireless operation. Wireless is appealing for musical controllers as it allows the

implementation of untethered devices, in the same manner that most traditional acoustic

instruments are not confined by wiring.

Traditionally, wireless interfaces have been deemed as unreliable, due partially to the

limitations of battery reliability and wires were often recommended where possible in mu-
1https://www.aodyo.com/presentation-sylphyo-page-en-3.html
2https://www.akaipro.com/products/ewi-series
3https://usa.yamaha.com/products/music_production/midi_controllers/wx5/index.html
4https://www.roland.com/ca/products/aerophone_ae-10/

https://www.aodyo.com/presentation-sylphyo-page-en-3.html
https://www.akaipro.com/products/ewi-series
https://usa.yamaha.com/products/music_production/midi_controllers/wx5/index.html
https://www.roland.com/ca/products/aerophone_ae-10/
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MIDI Keyboard Controller

T-Stick

Hardware Synthesizer

Software Synthesizer

Audio Out

The Mitt

Digital Synthesizer

synthesizer

synthesizer

Controllers

Instruments

Control Signal
Audio Signal

Fig. 1.3 Controllers rely on another components for the synthesis and pro-
duction of sound, while digital instruments can synthesize sound as well as
emit control signals, depending on mode of operation.
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sical instrument contexts (Cook 2001), where performance reliability is deemed a critical

factor (Buxton 1997). However, the improvements in wireless and battery technology have

made their use more feasible for DMIs (Cook 2009). In addition to reliability, latency is yet

another issue introduced by wireless interfaces. The notion of latency in this context per-

tains to how quickly a sensor signal associated with a physical event, such as a musical input

gesture, is transmitted by the sensor interface into the system, and subsequently translated

into output sound. This affects the responsiveness of the instrument, and wireless interfaces

introduce additional latency in the transmission process.

Acoustic instruments, for example, have nearly instantaneous physical response from

the moment of actuation. One exception is the low register of large wind instruments such

as the tuba or pipe organ where some time is needed before the initial source excitation

and the effective movement of the air mass that lead to audible sound waves. Beyond

such initial delays, the main source of delay is due to acoustic propagation caused by the

distance between the sounding mechanism and the listener position. For instruments where

the sound producing mechanism is within a metre or so from the ear, this delay is a few

milliseconds at most or a few tens of milliseconds in a chamber music setting. However, an

extreme case is that of a pipe organ in a church, where the distances between the console,

near, and far pipes can be tens of metres or more. In this situation the propagation latency

can be over 100ms and requires unique adaptations by the organist to synchronize the

sound from different sets of pipes and other musicians in the space. Finally, when dealing

with networks and the potential for remote collaboration in the context of Telematic Music

(Oliveros et al. 2009), at global distances even the speed of light becomes a factor, and

tens of milliseconds can be added even assuming a direct wire connection between two end

points across the globe (Carôt and Werner 2009). In real life networking implementations,

various routing and switching hardware will contribute to much larger latency values (Jiang
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et al. 2018).

Unlike in the general field of Human Computer Interaction for contexts such as web

browsers and productivity applications where a latency of about 100ms have been consid-

ered as “real-time responsive” (Nielsen 1994), for the context of real-time musical interac-

tion, the “gold-standard” value is an order of magnitude less, at 10ms (Moog 1986; Wessel

and M. Wright 2002). However, the exact value of what is considered as acceptable latency

often depends on the musical context. Latency requirements in various musical contexts

revealed a range of a few milliseconds up to around 200ms (Rottondi et al. 2016). In a

live-monitoring situation, the acceptable latencies were found to be anywhere between 1.2

and 42 milliseconds (Lester and Boley 2007). For a non-haptic instrument, the Theremin, a

study showed a just-noticeable-difference of 20-30 milliseconds (Mäki-Patola and Hämäläi-

nen 2004). Strategies for coping with different amounts of latency using various adaptive

musical collaboration methods are presented by (Carôt and Werner 2009). In the context of

sensor interfaces, we focus on the individual response of an individual device as it provides

the baseline signal transmission pipeline that may be used for any of these above settings.

The responsiveness of an instrument is important for the expressive potential, or “Con-

trol Intimacy” of a musical interface (Moore 1988). The three main problems associated to

“Control Intimacy” are: performance capture, or how well the system is able to sample the

input gesture of interest, synthesis control, or how the control signals can be used to cause

immediate and appropriate responses in the produced sound, and control transmission,

which relates to how effectively medium between the sensing mechanisms and the synthe-

sizer is able to transport the necessary data in real-time. The work surrounding latency

measurements in this thesis focuses on a portion of the third problem in the context of

wireless sensor interfaces.

One other issue related to timing is not only the extent of the delay (latency), but the
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differences in delay between successive events (jitter). Existing literature have suggested

jitter values of around 1 to 1.5ms to be acceptable, and further research on varying the

amount of jitter (Jack et al. 2018) confirm that the perception of audio quality can be

impacted with even small amounts of jitter but may also be context dependent. Therefore,

any kind of evaluation of the latency in these systems should be accompanied by an aware-

ness of jitter as well, including the absolute amount of deviation between maximum and

minimum values, as well as the spread. It is possible to compensate for jitter by adding a

timing buffer up to the maximum amount of expected difference (Brandt and Dannenberg

1998). Of course, this compromise will increase the amount of overall latency, and would

not cover exceptional cases where the jitter exceeds the expected value. In general, because

wireless mediums have the possibility to drop packets or experience long delays, it may

be necessary to implement a timeout where values beyond a certain latency are simply

ignored, or a negative acknowledgment be sent which may trigger retransmission, such as

the case implemented by certain networking protocols such as Transmission Control Pro-

tocol (TCP) (Stevens 1997). Regardless of the specific mechanism implemented to handle

these situations, the important consideration is that an analysis of the latency in such sys-

tems should be accompanied by an awareness of associated jitter values, and presented as

part of a device’s performance metrics in the documentation.

Having established the overall context, we approach the remainder of the work with the

overall goal that DMIs and musical controllers should exhibit as little latency as possible,

and the final section in this introductory chapter describes in more detail the primary in-

vestigations that are performed in the work to investigate the responsiveness of wireless

interfaces. In addition to the primary evaluation of latency performance, the latter portion

of the work will explore the sensor interfaces from the perspective of usability and com-

patibility perspective, and present the findings within the context of mapping tools and



1 Introduction 11

frameworks in the context of DMI design.

1.4 Method and Scope of Contributions

Despite the growing number of wireless devices and controllers used for DMIs, there is

little systematic evaluation of their performance. Specifically, the delays introduced by the

wireless interface impacts responsiveness of the system, often significantly more than their

wired counterparts (McPherson, Jack, and Moro 2016). Additionally, there are multiple

potential protocols that could be used, and it is not always obvious which protocol may

be suitable for a given application. In this work, after reviewing the literature on existing

implementations of wireless musical controllers and the evaluations performed on them

as described in existing literature in Chapter 2, we perform a number of evaluations on

wireless sensor interfaces that attempt to answer the following questions:

• What are the minimal possible latencies provided by a particular wireless interface?

This is a useful quantity as an interface that exceeds a certain threshold may deem it

unsuitable for a specific application that requires a certain degree of responsiveness.

• How fast/often can a given wireless interface transmit? This metric is useful as

certain gestures of interest may need to be sampled and transmitted at a certain rate

to capture and translate the appropriate level of control for a particular application.

• How many wireless interfaces can operate for a given network configuration? For

collaborative context where multiple devices are used, this determines the number of

instruments that can be used at the same time.

• What is the most suitable protocol for a given DMI configuration, and how can we

incorporate our findings into existing tools? This is a more general question that can
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inform DMI design activities.

We select protocols and configurations to be tested among a much larger list of possible

solutions, after explaining the selection criteria while considering their appropriateness

in the context of musical applications. When approaching these choices, we focus on a

wireless interface from the perspective of both the physical hardware interface along with

the communication protocol, which will be introduced in more detail in Chapter 2. We then

present the system that was implemented to evaluate and compare protocols in Chapter

3, by building sensor interface prototypes that minimally implement and thus represent

each protocol of interest to be tested. In Chapter 4 a number of case studies where the

evaluation technique is applied for a specific application as well as the relevance of the

contribution to the particular context is presented, including the effects of device scaling

for Wi-Fi (Chapter 4.1), comparison between MIDI over BLE, OSC and MIDI over Wi-

Fi (Chapter 4.2), a three-way comparison between Wi-Fi, BLE, and LoRa (Chapter 4.3),

and BLE-scaling (Chapter 4.4). Some collaborative projects are presented in Chapter 4.5

(resulting in second author publications) where the test methodology was adapted for other

settings including embedded Linux platforms, and motion capture systems. In Chapter 5,

we investigate the usability aspects of sensor interface protocols from the perspective of

compatibility and present the relevance of our evaluation on the work involving mapping

tools and frameworks, and apply the findings of the thesis on an existing instrument.

Finally, in Chapter 6 we summarize findings from the evaluations presented in previous

chapters and provide discussion on the implications, limitations and extensibility of the

work presented.

The work described in this thesis takes place within the field of Music Technology,

where creative processes and results in addition to or alongside scientific research. Two
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specific approaches, practice-led and practice-based are common methods in which such

research takes place (Candy 2006). The work presented in this thesis can be considered

as practice-led, as it involves the development of tools and approaches to aid a particular

artistic process, rather than the artistic products themselves. While the main contribution

of the work as demonstrated by the case studies target DMIs and musical controllers, the

overall process of evaluating devices can be generalized to other applications. Of course,

such applications may require less or more stringent demands on performance depending

on the context. For example, an interactive installation that responds to high-level user

activity or presence may reply on slower time-varying signals and may not require as strict

latency specifications, while others such as Virtual Reality (VR) or Augmented Reality

(AR) applications (Maier et al. 2016), can be even more demanding than some musical

applications.

The process and outcomes described in this thesis include work performed at the

IDMIL and CIRMMT at McGill, along with the outcomes of a 3-year collaboration with

Infusion Systems as part of an Natural Sciences and Engineering Research Council of

Canada (NSERC) Industrial Innovation Scholarship. Infusion Systems have been providing

sensor interfacing solutions for digital interactive arts for the past 20 years, and one of the

main goals of this collaboration is to further refine their existing wireless interfaces as was

thus a fitting partner for this research. Sections of Chapter 4.2 describe the outcomes of

this collaboration.
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Chapter 2

Related Work

In this chapter, we present existing work in the literature relevant to our subse-

quent analysis. First, we present a brief overview of the nature of the signals in

the context of DMIs. Then, we break down sensor interfaces with a granularity

relevant to our subsequent evaluations, identified by two main components: the

physical hardware interface and communications protocol. From there, exam-

ple interfaces in the literature are presented in the context of these two aspects.

Then, we describe previous attempts to evaluate the latency behaviour of DMIs.

Finally, we present the metrics that are considered by this thesis in the context

of their potential application for DMIs.

2.1 Overview of Signals for DMIs Applications

Signals specific to the context of DMIs are associated from physical events arising from

input gestures. Ways of selecting the appropriate input sensor for a particular gesture is an

interesting problem that overlaps the field of Human Computer Interaction (HCI) (Card,
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Mackinlay, and Robertson 1991), and many tools and approaches there can be applied to

DMI research (Wanderley and Orio 2002). There are many potential interaction paradigms

for DMIs (Birnbaum et al. 2005) that will dictate what kind of signals may be captured

for a particular application, and whether exact time-synchronization is required or not,

and whether the signal is discrete (made up of individually separate events in time) or

continuous (constantly evolving over time) is sufficient from the perspective of sampling

and transmission. From our perspective of latency performance and analysis, we are more

interested in the latter. Table 2.1 shows the characterization of signals both in time and

value, that are relevant to sensor interfaces from a DMI context. Note that for completeness,

we also show a third column of whether the actual signal values are discrete or continuous

as well in addition to how they occur in time. A final, perhaps obvious note should be

made here that, at the end of the day, for digital systems everything will be discretized for

actual storage and retrieval.

Event Time Value
Note on (key) Discrete Discrete

Slider Continuous Continuous
Breath pressure Continuous Continuous

Table 2.1 A non-exhaustive list of different types of events and gestures in
the context of DMIs.

The consequence of this distinction, is that sensor interfaces may operate either by

transmitting a message only when a specific event has occurred, or constantly in “streaming”

mode depending on the application (Moore 1988).
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2.2 Wireless Sensor Interfaces

The data transmission component of a sensor interface is facilitated by a communications

system involving many layers from the physical transmission of electrical or Radio Fre-

quency (RF) signals through a medium (such as cables or the air, respectively), to various

supporting protocols that support the packaging and delivery of the data. Both the re-

ceiver and transmitter must employ the matching system in order to inter-operate. The

Open Systems Interconnection (OSI) Model for networking is a widely used method to

characterise modern digital networks (Zimmermann 1980). In the context of DMIs imple-

mentations, it is often neither necessary nor practical to delve into low level details of the

networking stacks involved, and in our analysis we present a simpler layered model consist-

ing of fewer layers, as shown in Figure 2.1 which contains both the original OSI model and

the simplified version with just two layers used in our subsequent analysis and discussion.

Fig. 2.1 A simple layered model showing the relevant components of a sen-
sor interface (centre) alongside the OSI model (left), with an example sensor
interface implementation (right).
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In the reference OSI model there are seven layers that describe the underlying structure

of the networking stack, starting from the physical layer at the bottom that defines how the

signals are physically propagated, to various supporting protocols above that provide the

transmission and delivery mechanisms. From the perspective of a DMI designer, however,

it is often not the goal to develop or optimize a particular networking stack but rather

select the most appropriate configuration from a selection of potential candidates.

From an application perspective, where DMIs are implemented using commodity hard-

ware (i.e., consumer computing devices such as desktop/laptop computers, smartphones

and tablets), there may also be practical limits in terms of the physical hardware interfaces

supported due to the availability of built-in radio hardware and drivers. In the context

of this research, these limits then provide an opportunity to narrow down the selection

criteria for our evaluations and focus on specific interfaces due to their existing support

within systems that are used by the DMI community. However, it does not preclude the

possibility of adding new hardware to provide support for physical interfaces that are not

natively supported by commodity computing devices, and some of our subsequent examples

presented show less widely supported RF interfaces being employed in some DMI contexts

as well.

Moving on, the two relevant layers distinguished here serve two crucial and related roles.

First, the hardware interface layer provides the necessary support including antennae, RF

electronics, and radio control firmware to physically transmit the signals over the air. Then,

the messaging protocol defines the software specifications that determines how the data is

presented and transmitted. Following we present examples of some hardware interfaces and

messaging protocols that are evaluated in the remainder of this work.
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2.2.1 Hardware Wireless Interfaces

There are two relatively ubiquitous hardware wireless interfaces on modern computing

devices: Wi-Fi and Bluetooth. Nearly every mobile computing device on the market today

will support these two wireless protocols, and as such they are the most obvious starting

choices for the implementation of a sensor interface since it requires the least amount of

additional hardware and system drivers required for the host operating system. Following

is a brief overview of these two technologies. In general, Wi-Fi has higher transmission

speeds and bandwidth compared with Bluetooth.

Wi-Fi

Wi-Fi is a number of related wireless protocol standards defined under the umbrella of

IEEE 802.11 (Gast 2005). These standards define physical transmission protocols that are

implemented on devices that are designed to communicate with each other, and include

consumer-grade computational devices within the home and office environments. For many

desktop and laptop workstations, Wi-Fi is the default interface for network connectivity as

an alternative to wired Ethernet connections, and as such provides relatively fast transmis-

sion speeds and high bandwidth. It operates in both the 2.4GHz and 5.8GHz Industrial,

Scientific and Medical (ISM) bands, which is a portion of the radio frequency spectrum

designed for devices that can be operated by users without professional radio operating

licenses, which make up most consumer grade electronic devices.

Wi-Fi operates at a wide variety of bandwidths depending on the version of the imple-

mentation, but the tested versions make use of the 802.11G operating at 54 MBps.
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Bluetooth and BLE

Bluetooth is a short range RF protocol designed to connect low-power mobile devices as

part of Wireless Personal Area Networks (PANs) operating in the 2.4GHz ISM band. It

is defined by the Institute of Electrical and Electronics Engineers (IEEE) 802.15.1 specifi-

cation, and has undergone a number of revisions since the first version in 2001 (Bhagwat

2001). Designed for low power wireless devices and accessories, Bluetooth is used to enable

wireless connection of audio headsets, input devices, and even file transfer between mobile

devices.

In this work we primarily focus on Bluetooth Low Energy, which was released part of

version 4.0 of the Bluetooth protocol (Gomez, Oller, and Paradells 2012), as it is supported

by most devices on the market today and a number of commercial musical interfaces make

use of MIDI over BLE for connectivity.

BLE has a physical bandwidth of 2 MBps, but it has relatively long connection interval

which are windows in which transmissions can take place, and this interval will determine

the lowest possible period between successive samples. Based on the standard, the minimum

connection interval is 7.5ms for BLE, which is theoretically within the 10ms limit required

for musical applications (Wessel and M. Wright 2002) but may not leave much room for the

rest of the signal processing and synthesis chain. The BLE-MIDI spec requires the interval

to be at most 15ms (MMA 2015). Later in practical measurements we see the connection

interval, as tested on the Mac Operating System, is in fact fixed at the higher interval of

11.25ms. The consequence of this is that if incoming data cannot be transmitted within

the current connection interval, it must wait until the next one with a relatively large gap

between transmissions.
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Other RF Interfaces

While Bluetooth and Wi-Fi enjoy nearly ubiquitious hardware support by most modern

computing platforms, the same cannot be said of other wireless interfaces. However, a

number of existing protocols including ZigBee, nRF2401, and LoRa have been employed

for wireless sensor interface applications as well. However, the main limitation with these

interfaces is the need for additional hardware as they are not normally supported by com-

modity computing devices. Of course, hardware adapters that provide compatible interfaces

could be used, but they add another layer of complexity to the system and as a result, are

not the primary focus of our evaluation. However, they can be evaluated in the same way

assuming compatible interfaces or bridging adapters are available.

2.2.2 Messaging Protocols

In this section we describe two messaging protocols that are used in subsequent evaluations

in this work. In general there are many potential options when a system is built from

scratch, but to remain within the general context of DMI design, we choose protocols that

are widely supported by existing applications. In this regard, MIDI and OSC are the

primary two candidates of interest.

Musical Instrument Digital Interface

MIDI is one of the most widely accepted standards for interconnecting musical devices and

controllers (Loy 1985). Consisting both of a physical wired interface specification as well

as software protocol, MIDI compatible devices can inter-operate across a wide variety of

hardware controllers, synthesizers, as well as software applications that implement Digital

Audio Workstations (DAWs), synthesizers, and programming environments. On desktop
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platforms, drivers associated with a MIDI device will present a specific sets of MIDI input

and output ports to the operating system, and software can make use of the API provided

by the operating system to access and send/receive data through the MIDI ports.

While the MIDI standard defines the communication protocol, the wired physical in-

terface (and even the connectors used), in our analysis we mainly look at MIDI from the

first definition. In this regard we could, for example, transmit MIDI over other physical

interfaces (and especially wireless ones, in the context of our work).

MIDI is defined by a series of event-based messages that contain a status byte followed

by data bytes (Lehrman and Tully 1993, Chapter 1). Table 2.2 shows some commonly

used MIDI messages. The status byte encapsulate the type of message and the one of 16

channels the messages applies to (defined by the four cccc bits), while the data bytes

contain the actual value of the message. The status and data bytes are differentiated via

the starting bit of ’1’ and ’0’, respectively. This also has the consequence of limiting the

data byte to 7 bits.

Status Data Data Message
tttt cccc 0ddd dddd none generic message T with single 7-bit data D
tttt cccc 0ddd dddd 0ddd dddd generic message T with two 7-bit data D
1001 cccc 0nnn nnnn 0vvv vvvv note N on with velocity V
1000 cccc 0nnn nnnn 0vvv vvvv note off with velocity V
1100 cccc 0ppp pppp none program change P

Table 2.2 Examples of 2 and 3-byte MIDI messages.

One main feature, as well as limitation of MIDI is the strict standards with which

messages are defined and represented. By using integer representations of 4 bits to represent

the message type, channel number, and either 7-or 14-bit integer values provide a rather

limited range of possible values (Moog 1986). While it is possible to encapsulate custom

data in the form of a raw byte stream using System Exclusive (SysEx) messages, it requires
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a parser on the other end to make sense of this raw data. While limiting, the stringent

standard of MIDI means that any “MIDI compatible” device is capable of responding to

a particular message, and devices can interoperate without any additional translation or

mapping. By conforming to even more specific standards such as General MIDI (Lehrman

and Tully 1993, Chapter 9), a standard program bank of instruments will allow devices to

follow the same instrument list and know exactly what an instrument is referred to via a

particular Program Change value.

However, the trade-off is that there is little flexibility in representation beyond the fixed

resolution format and relatively low transmission rates based on the 1980’s technology at the

time. The limitations of MIDI were noted early on (Moore 1988), and these limits have been

reiterated over time (Rowe 2005) despite its widespread uptake by the community (Igoudin

1997), supported by nearly universal adoption by hardware and software manufacturers.

The new MIDI 2.0 standard attempts to address these issues through features like increased

resolution, faster transmission rates, and additional flexibility of representation (Lehrman

2020). One key feature is that to maintain the interoperability of the original standard,

MIDI 2.0 is also designed to be backward compatible and will revert to the old standard

when needed. However, currently there are few devices that support this emerging standard

that can make advantage of these new features. From the perspective of DMI design, while

it is not necessary to conform to the limiting standards of MIDI, it is still often useful (or

necessary) to interface with commercial software and hardware that use MIDI exclusively

as the communications interface.

Open Sound Control

Open Sound Control is a messaging format designed to carry real-time control data over

general-purpose networks (M. Wright 2005). Developed with the availability of higher speed
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Ethernet, OSC attempts to address some of the limitations of the MIDI protocol in interac-

tive media settings. Unlike MIDI that was designed for a specific physical interface (31500

baud serial connection), OSC was designed to be “transport-agnostic” and can operate at

the speed of the networking interface used and can be on the order of gigabits per second

or more on modern wired networking devices. To send and receive OSC, a User Datagram

Protocol (UDP) server socket is opened on the receiver end and the transmitter then sends

to this destination Internet Protocol (IP) address and port via standard UDP messages.

The increase in expected bandwidth allows for a less constrained messaging specification

that allows symbolic, human readable names to be used for parameters along with longer

numerical representations. Essentially, beyond the basic messaging specification that dic-

tates a base address in the form of a string and another string for each value name, the

actual data can be either a number of higher width numerical values (32 and 64 bit inte-

gers and floating point values), strings, or even raw bytes. The format is described in more

detail by (Freed 1997), and Figure 2.3 shows some example OSC messages.

address ‘/addr’ and one Int32 value (1000) Notes
0x2F (/) 0x61 (a) 0x64 (d) 0x64 (d)
0x72 (r) 0x00 ( ) 0x2C (,) 0x69 (i) ‘i’ suggests single int type
0x00 ( ) 0x00 ( ) 0x03 ( ) 0xE8 (è) 0x0000 03E8 is 1000 as Int32

address ‘/foo’ with an int (1001) and float (440.0) Notes
0x2F (/) 0x66 (f) 0x6f (o) 0x6F (o)
0x00 ( ) 0x2C (,) 0x69 (i) 0x66 (f) 0x69 ‘i’ and 0x66 ‘f’ for types
0x00 ( ) 0x00 ( ) 0x03 ( ) 0xE9 (è) 0x0000 03E9 is 1001 as Int32
0x43 (C) 0xDC (Ü) 0x00 ( ) 0x00 ( ) 0x43dc 0000 is 440.0 as a float

Table 2.3 Examples of two simple OSC messages.

Each OSC message starts with a string containing its “address”, encoded via American

Standard Code for Information Interchange (ASCII) characters (1 byte each) and termi-

nated by a null character. All data frames are encapsulated using 4-byte boundaries. This
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means that anything less than 4 bytes will be zero padded to the full length. This flexibility

of representation, afforded by the higher speeds of Ethernet and subsequent Wi-Fi enabled

devices have made OSC relatively popular in the DMI community. More advanced utiliza-

tion of the format include the implementation of recursive hierarchies and wildcards within

the address parameter, and the encapsulation of groups of values through “bundles” (Freed

1997), and the main distinguishing feature of OSC, as its name implies, is the openness

and relative lack of constraints of the standard compared to MIDI.

However, the consequence of this flexibility is that while it is relatively trivial to build a

physically compatible OSC interface using any device that supports the networking stack,

there is no standardized way to respond to OSC messages in a normalized way as in the case

of MIDI. Indeed, “bridges” that implement specific mappings between system-specific OSC

messages and standard MIDI devices often needs to be built to interact with multimedia

software or commercially produced devices such as controllers and synthesizers.

2.2.3 Examples of Wireless Sensor Interfaces

Having defined and exemplified a number of possible messaging protocols and physical

interfaces that a sensor interface could employ, in this section we present some examples

of existing sensor interfaces in the literature as well as some that have been developed into

commercial products.

The WiSe Box (Fléty 2005) and x-OSC (Madgewick and Mitchell 2013) are two ex-

amples of Wi-Fi based general purpose sensor acquisition systems that employ OSC for

transmitting sensor data to a host computer. The former did not report specific results,

while the latter exhibited measured latencies of around 10ms and throughput of 400kbps.

The I-CubeX Wi-microDig is a Bluetooth 2.0 based sensor interface that transmits

MIDI formatted messages over a Bluetooth 2.0 Serial Port Profile as it was the only feasible
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method of transmitting data over a Bluetooth link when the Wi-microDig was developed

(late 2000’s). A custom MIDI mapper running on the host computer bridged the virtual

serial port created by the Bluetooth link to emulate a virtual MIDI port.

Name Physical Interface Communication Protocol
x-OSC Wi-Fi OSC (direct)

WiSe Box Wi-Fi OSC (direct)
Kroonde Gamma Proprietary ISM OSC (ethernet via adapter)

I-CubeX Wi-MicroDig Bluetooth 2.0 Custom MIDI mapper
Sense/Stage Zigbee Serial Line Internet Protocol (SLIP)

(via USB-serial adapter)

Table 2.4 Examples of wireless sensor interfaces.

The Kroonde Gamma is a wireless sensor interface where the sensor communicates via

a proprietary protocol on the ISM band with the base box that transmits OSC messages

via a wired Ethernet interface or MIDI output port (Kitchen 2016). The wireless latency is

specified as 1ms while the total UDP transmission is as low as 5ms for OSC. However, the

5ms value did not appear to come from actual measurements, but rather a computation

based on the 200 Hz sampling and transmission rate (Coduys, Henry, and Cont 2004).

The configuration of this interface is interesting however, in that it breaks down the sensor

interface into two separate modules and relies on a wired interface connected to the host

receiving device. While the RF protocol for the Gamma was not specified, a number of

other sensor interfaces make use of similar connection topologies, such as the ZigBee based

system presented by (Fléty and Maestracci 2011). Here, two matching microcontroller

based units are used on the sensor interface and host ends to provide wireless connection,

and the receiver interface is connected via wired Ethernet and transmits OSC messages.

Table 2.4 presents a list of the aforementioned sensor interfaces along with their physical

interface and communication protocol.
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Summary

It should also be noted that, at the time of writing of this thesis, only the X-OSC and

the I-CubeX companies are available in providing the interfaces. It is pertinent to note

that many “emerging” interfaces as described by (Baalman et al. 2010) such as the µParts,

EcoMote, and Tyndall Motes have never actually reached the market, or have since been

discontinued. This perhaps speak to the powerful forces behind planned obsolescence (Bu-

low 1986) as well as the general challenge facing the longevity of DMIs (Morreale et al.

2017). On the other hand, increasingly accessible wireless microcontroller and embedded

Linux platforms such as the Raspberry Pi (Severance 2013) provide increasingly accessible

platforms for implementing sensor interfaces. Regardless of a commercially available solu-

tion is used or not, many novel DMIs make use of custom built sensor interfaces as part of

the implementation, and it is often not the focus of the work being documented to provide

performance evaluations or facilitate reproduction. In such cases the overall description of

the sensor interface configuration along with the application itself is often the main way of

discerning whether the sensor interface may be adequate for a new context.

2.3 Latency Measurement in DMIs

Since an in-depth analysis of latency often requires breaking down the entire transmission

system, it is often not feasible for end-users or application developers due to closed propri-

etary systems, or the extensive profiling tools required. However, since the measurement

of latency involves the recording of the initial time a signal is presented to a system, and

the elapsed time until an output is produced, there are empirical methods using relatively

accessible audio and general purpose computing tools. These can work especially well for

comparative situations where it is more important to obtain the relative difference between
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systems or components that can be swapped out and compared against each other. In this

section we present three general approaches for measuring latency and they include the

“Stereo Tape Recorder”, roundtrip delay, and end-to-end measurement systems.

Stereo Tape Recorder

The “Stereo Tape Recorder” method is one of the earliest and most commonly employed

method for determining the overall latency of a system. This method exploits the high

sampling rates and timing accuracy of commercially available digital audio recording equip-

ment. Since audio recording equipment must be performed with strict timing requirements

across both channels, any small amount of latency present in the capture process will also

be synchronized between the two channels so that the relative timing difference between

the two channels can be observed. Figure 2.2 presents a block diagram of this technique.

Fig. 2.2 The “Stereo Tape Recorder” model for measuring the timing differ-
ence T between two signals.

Equation 2.1 shows, as an example, the measurement resolution using a 44 100Hz digital

recording system, and results in a timing resolution of 22 µs microseconds.
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Ts =
1

Fs

=
1

44 100Hz

= 0.022ms

(2.1)

One of the earliest documentation of this process was presented in (Kostek and Czyżewski

1993) where a Digital Audio Tape (DAT) recorder was used to concurrently record the elec-

trical signal associated with the actuation of a pipe organ along with the produced sound

captured via a microphone to characterize the timing difference between the two signals.

A later analysis by (MacMillan, Droettboom, and Fujinaga 2001) compared the latencies

under various conditions and a number of available operating systems at the time, and

the results ranged from 2.74ms in the best case scenario (Linux, unloaded) to hundreds

of milliseconds using less optimal driver configurations. Overall, Linux performed the best

followed by MacOS, and Windows. The choice of drivers also played a crucial role for

all operating systems, favoring Advanced Linux Sound Architecture (ALSA) and Audio

Stream Input/Output (ASIO) for Linux and Windows, respectively, while CoreAudio, the

only available and universal choice for MacOS provided the best default configuration.

The author concludes that the Mac operating system appears to be geared towards audio

processing out of the box, compared to the other operating systems.

Beyond the performance of the audio system, it is of interest in the context of DMIs to

measure the system latency involving control messages via protocols such as MIDI. Building

upon the “Stereo Tape Recorder” paradigm, a translation device, the Event Transducer was

presented in (Freed, Chaudhary, and Davila 1997) that converted a MIDI or similar digital

signal on a wire into an audio-level pulse so that a messages carried via MIDI can be
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recorded and subjected to the same analysis based on timing differences between recorded

audio channels. While the particular publication did not present any results of its use, this

technique was applied by (Nelson and Thom 2004) to measuring the timing accuracy of

computer MIDI interfaces where the difference between the raw input MIDI message, and

when the operating system has received and re-transmitted the message via the output

(MIDI-thru). The measurements revealed that a SBLive on a Windows XP computer

(perhaps surprisingly) exhibited the best MIDI performance of around 1 ms average and

relatively low jitter. However, one should note here that this is simply the measurement

of the MIDI interface performance, and does not provide any indication of audio synthesis

performance. Figure 2.3 shows the measurement system, where the measurement system

contains both the “tape recorder” functionality via its on-board sound card, as well as

providing the test MIDI output triggers.

Fig. 2.3 The MIDI performance measurement system by (Nelson and Thom
2004) measuring the timing difference T between a MIDI signal and the same
signal passed through a computer’s MIDI I/O.
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A series of tests were presented by (M. Wright, Cassidy, and Zbyszy 2004) that char-

acterized system audio latency as well as “gesture-to-audio” latency. The system audio

latency employed the same “tape recorder” measurements that transmitted audio directly

and through the computer’s processing system to obtain the audio latency. To obtain the

“gesture-to-audio” latency measurements, a microphone was used to record the physical

sound of a key press on the laptop keyboard that was then used to trigger the generation of

a sine wave in Max/MSP. By evaluating the timing difference between the physical sound

emitted when the physical key was struck and the subsequent synthesized sound, the total

system delay of this keyboard driven system could be characterized.

One particular challenge introduced by the basic “Stereo Tape Recorder” method, is

that for repeated test triggers to be made over time, potentially large audio files need to

be recorded and analyzed1. A solution to address this was implemented in by adding a

real-time analysis component that measured and recorded the histogram of values on the

fly in a live buffer (Nelson and Thom 2004), instead of storing the entire audio data itself

over time for later analysis, which can result in very large audio recordings.

A variation of this technique makes use of a two-channel signal analysis tool such as an

oscilloscope, and (Fléty and Maestracci 2011) employ this method to evaluate a ZigBee-

based sensor interface. One limitation of this technique is that it is not as convenient

to automate repeated measurements without recording and analyzing the waveforms, and

the cost of such specialized analysis tools is also a potential challenge as noted by (Freed,

Chaudhary, and Davila 1997). It is also interesting to note that this general concept can

even be applied to other mediums where both the source and the resultant output can

be captured concurrently, such as the use of a 1000 fps capture to provide 1ms resolution

latency measurements of a video system (Wu 2011).
1In fact, had the recordings been made on a real tape recorder, the analysis would be even more difficult!
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Roundtrip Latency

Using the idea similar to the ping/echo response for network testing, the roundtrip latency

of a messaging system can be measured using a matching sender/receiver pair where the

receiver will listen for and immediately transmit back a reply as soon as a message is

received. The sender records the time the initial message is transmitted, and then measures

the amount of time until the echo response is received. Figure 2.4 shows the block diagram

of a roundtrip measurement.

Fig. 2.4 Block diagram of a roundtrip latency measurement.

A performance evaluation of a commercial Wi-Fi OSC interface measured the effect of

device scaling and overall bandwidth on roundtrip latency of the X-OSC interface (Mitchell

et al. 2014), resulting in a latency of 5.3ms and 8.09ms under ideal and loaded conditions.

The roundtrip message passing of MIDI messages over BLE between two Linux computers

was presented by (Ljungström and Panikian 2016), and revealed that a roundtrip latency

of under 10ms was possible for configurations where the connection interval and latency

parameters were set to the minimum possible values.

The roundtrip latency is a good technique for measuring the messaging protocol if

bi-directional communication is the expected mode of operation, and the uni-directional

latency can be considered as half if the system is symmetrical. However, in the case of sensor
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interfaces, this is often not the case as the sensor interface may be transmission-only devices

that are unable to receive data, or may not process messages at the same rate due to resource

constraints. For example, it would be impossible to measure the latency of a keyboard MIDI

controller via this method. Also, in the context of DMIs it is often of more significance to

measure the end-to-end latency which governs the overall responsiveness of the instrument.

Nevertheless, assuming the symmetrical sender/receiver can be configured, the roundtrip

latency measurement is a potentially useful tool for isolating the communication protocol

alone, and especially useful if the sensor interface may have output/actuation capabilities,

such as the case of the X-OSC interface (Madgewick and Mitchell 2013).

End-to-End Measurement Jigs

More recently, an end-to-end latency test system was used to measure the total event

to audio output system latency of a number of sensor interfaces and synthesis platforms

(McPherson, Jack, and Moro 2016). In this system a microcontroller-based hardware jig

emitted a test trigger signal that results in a sensor interface to transmit the message to

the host synthesis platform that responds to the trigger message by emitting an audio

trigger. The test jig starts a microsecond-accurate timer that then measures the time until

an audio output is emitted by the system. Figure 2.5 shows a block diagram of this end-to-

end measurement configuration, where the sensor interface and connected synthesis device

are contained within the “system under test” block. In some ways, the signal flow from

the perspective of the measurement jig is similar to the roundtrip measurement scheme

described in the previous section.

Since the system used for the remainder of this work is based on the end-to-end config-

uration, the implementation will be presented with further detail in Chapter 3.
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Fig. 2.5 Block diagram of an end-to-end latency measurement system.

2.4 Summary

Having presented an overview of existing sensor interfaces and evaluation techniques that

were employed in the context of DMI design, we can now revisit the questions posed at the

end of the introductory chapter with a focus on latency as the primary metric of interest.

Following are the questions presented in the introductory chapter, along with a description

of the method in which we will attempt to address them.

What are the minimal possible latencies provided by a particular wireless inter-

face?

In theory the bandwidth of the physical interface will determine its lowest possible

latency, but in practice the protocol (combination of the physical interface and messaging

protocol) and implementation will affect its real-life performance. By employing a system

that measures end-to-end latency performance along with prototype implementations of

particular sensor interfaces for each protocol, we can implement and test the minimum

latency performance of each wireless interface configuration that are representative of a

real DMI settings.
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How fast/often can a particular wireless interface transmit?

As each protocol has specific and limited bandwidth available, this value will affect how

fast and how often an interface can transmit. While the transmission rates may be specified

by a protocol’s specifications, it would be more realistic to provide actual measurements

to identify the actual limits under practical situations. By implementing sensor interfaces

that can vary the transmission rates, we can empirically establish the point at which the

physical limit of the communication channel is reached, resulting in the measured latency

exceeding a certain value or messages are dropped completely.

How many wireless interfaces can operate for a particular network configura-

tion?

Similar to the transmission rate scaling situation above, we can increase the number

of concurrently operating devices until the latency performance or transmission reliability

drops beyond a certain point.

What is the most suitable protocol for a given DMI configuration?

This more general question will involve an integrated view of the findings above, in ad-

dition to practical implementation details such as compatibility and interoperability issues

that may be relevant in a DMI design context.

Overall, in the light of existing work presented in this chapter on wireless protocols,

sensor interfaces, and various measurement techniques used to quantify the performance of

various aspects of DMIs, our proposed work will provide an integration of this knowledge

into specific conclusions that can guide the design and selection of protocols for DMI design.

Additionally, the overall evaluation methodology implemented and utilized by this work can

then be applied to cover additional protocols or metrics not presented in this particular

thesis.
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Chapter 3

Latency Measurement System

This chapter presents the latency measurement system used for the subsequent

evaluations presented in the thesis, including a description of the hardware and

software implementation of the latency testing jig. Additionally, the charac-

teristics of the signals expected to be transmitted by the tested interface is

described to cover the representative situations of trigger and streaming based

sampling and transmission schemes.

The test system is built upon the configuration described in previous work (McPherson,

Jack, and Moro 2016) with various modifications and improvements in terms of usability

and scalability through hardware and wiring interfaces that make it easier to reproduce.

The test system consists of a hardware test jig that emits input triggers to a system under

test that attempts to synthesize an audio output response, and the time delay between input

and output are recorded by the jig. In a DMI consisting of a sensor interface connected to

a host synthesis computer, this process reveals the minimal end-to-end latency of the entire

system from the moment an electrical input is measured by the sensor interface to the final

production of audio by the DAC of the sound card of the system. Functional blocks of each
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sub-process in the system is shown in Figure 3.1.
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Computer
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OS USB 
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Dig. 
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Fig. 3.1 Operational diagram of latency measurement system from (McPher-
son, Jack, and Moro 2016) (Used with permission).

One key limitation of this procedure is that it measures the total system latency as

opposed to the latency of the sensor interface itself. However, if the remainder of the system

is kept identical between tests, the differences in measurement then be can attributed to the

interface itself. Therefore, in the context of comparing the relative performance of different

protocols, this approach can be used to isolate the impact of each protocol. Similarly,

this strategy can also be employed to measure different synthesis applications, processing

algorithms, or even system audio configurations by changing the variable of interest while

holding the others constant.

The measurement jig as presented in the previous work operates in a continuous loop

with a fixed 250ms delay after the completion of each test cycle, henceforth referred to as

the trigger delay interval. This allows multiple successive measurements to be initiated and

logged automatically for further analysis. Figure 3.2 shows the flow diagram of the test jig.

In the original work the experiments were performed using 1000 measurements for each

device, or around 250 seconds of data assuming the 250ms (4Hz) delay interval between
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measurements. However, the actual total duration for the total test is slightly longer since

each complete cycle duration is made up of the sum of the trigger delay interval and the

actual measured latency response of the system as well, which is typically up to a few

tens of milliseconds based on the presented results (McPherson, Jack, and Moro 2016).

For example, if the average measured latency of the system was 50ms, then the total loop

time for each measurement would be 300 ms, leading to about 300 seconds for the 1000

measurements.

start trigger

wait for input

delay

●disable interrupts
●trigger output
●record t0

●calculate time elapsed
(t1 - t0)

●enable interrupts
●transmit delay value to 

logging console

●sleep for fixed interval

Fig. 3.2 Flow diagram of test jig.

3.1 Hardware

The test jig hardware, as depicted by the “Tester” in Fig 3.1, is a microcontroller that

emits a test trigger signal that goes through the system under test, and measures the

duration until a response is received. The measured delay value is sent back to a host

terminal for logging purposes via a serial port attached to a USB serial adaptor built into
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the development board. The particular implementation makes use of an Arduino Uno

board, which contains a 16MHz AVR ATmega328 as the central processor and is one of

the most widely used boards within the Arduino (Kushner 2011) Ecosystem. While this

board is relatively simple and lacks additional features like wireless capability, faster/multi

core processing, or built-in peripherals like battery charging, its simplicity, low cost, and

large user base make it a very accessible platform. Additionally, for the kind of latency

measurements in question, the main requirement is to have sufficiently high resolution and

deterministic timings, rather than processing power or other peripheral features.

As described in previous literature, the timing critical section of the measurement phase

performs a series of functions to disable external interrupts and other firmware features

so that the time difference being measured is deterministic and clock-accurate at 1/16 µs

intervals for a 16MHz clock (McPherson, Jack, and Moro 2016). Therefore, we can proceed

with any subsequent analysis that the system will provide relevant measurement resolutions

based upon this value. Considering that most of the relevant measurements surrounding

musical interactions are typically performed at the millisecond scale (Rottondi et al. 2016),

(Jack et al. 2018), this three orders of magnitude resolution is sufficient for our application.

While no specific instruction was provided in the original literature describing this

hardware (McPherson, Jack, and Moro 2016), we were able to reproduce it based on the

description from the original publication. The main hardware addition of the latency

measurement jig, beyond the microcontroller board itself, is a comparator circuit that

translates the resultant audio output signal into a digital trigger for the return signal timing

measurement. This circuit effectively allows the conversion of the synthesized analog audio

output into a trigger for the accurate timing detection of the final system output. The first

version of the hardware was prototyped on a through-hole perfboard, as shown in Figure

3.3. The core of the comparator hardware is implemented using the LM393 IC (Texas
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Instruments 2020). Once the prototype was verified to operate as intended, a more robust

and modular PCB version was designed to aid in the usability and reproducibility of the

test system.

Fig. 3.3 The comparator circuit implemented on a protoboard.

Fig. 3.4 PCB layout of latency rig.
Fig. 3.5 The assembled latency jig
PCB installed on an Arduino Uno.

An Arduino Uno-compatible “Shield”1, depicted in Figure 3.4 was created to house

the additional circuitry including the comparator IC as well as supporting headers for
1A common term used in the Arduino community to describe add-on boards that have the same form

factor and pinout as the base Arduino board in question
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connections from the resultant audio output jack and to the trigger input of the device

under test.

The shield design allows easy construction, installation, and removal from the main

development board for modularity as it matches the shape and pinout of the base board.

Through hole components for the entire design was selected as there was plenty of area

for placement, and while they are marginally more expensive, the cost is negligible and

makes the assembly process considerably easier than surface mount components, which

further encourages reproducibility when miniaturization is not required (Franco and Wan-

derley 2016a). The design files and bill of materials have been archived on public Github

repositories so that they can be easily modified, or sent to PCB manufacturing services for

production, and are also included in Appendix B.

3.2 Software

We employ the same software environment for receiving and synthesizing audio that was

implemented in the Max/MSP framework, using the same synthesis components (McPher-

son, Jack, and Moro 2016). The synthesizer consists of a simple patch that receives the

incoming trigger from the sensor interface under test, and immediately emits a decreasing

ramp with a period of 50ms. Figure 3.6 shows an example of the patch, with the input

being triggered by a notein object for the case of MIDI input triggers. For tests involving

OSC, a udpreceive object is used instead. The audio output is sent to the return input on

the latency measurement jig via the system’s sound card.

The computer used for the majority of tests described in this thesis was a 2015 Mac-

Book Pro with a 2.5GHz i7 processor, 16 GB Random Access Memory (RAM) running

Max/MSP 7.3.6 using the on-board audio at 44.1 kHz, 32 I/O and signal vector sizes and
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Fig. 3.6 The basic synthesizer patch that creates a decreasing ramp of 50ms

“scheduler in overdrive”, consistent with the configuration used in for best latency perfor-

mance (McPherson, Jack, and Moro 2016). While certain specialized configurations, as

described in (Y. Wang 2018) could potentially yield better audio performance from a host

system perspective, in our comparative analysis it is more important to keep the system

constant as well as representative of potential user application settings (which suggests

a commodity off the shelf system, such as a Mac workstation). It should be noted here

that, with a I/O and signal vector sizes of 32, the duration of each audio block that is

discretely processed by the system and transmitted to the sound card is the duration of

the 32 samples at 44.1k samples per second, or 0.73ms.

The duration of this block will define the minimum timing resolution that the system

is capable of achieving, as an event that arrives between buffers can only be represented in

a subsequent block. Additionally, some audio systems may include multiple buffers, which

will then add to the overall latency of the system. However, in the situation of making

relative comparisons, as long as this setting is unchanged between measurements, this value

will be constant.
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3.3 Sensor Interface and Test Signal Characteristics

It is difficult to describe the performance of sensor interfaces without some understanding of

the nature of the signals of interest. In this section, we describe some basic characteristics

of the signals that the sensor interface will capture and transmit, along with how the test

jig will operate in relation to it.

3.3.1 Sensor Interface Signal Characteristics

While sensors themselves may require processing time depending on their characteristics,

the minimal delay of a digital input is a good way to isolate the latency introduced by

the sensor interface. Any sensor that may require additional pre-processing time to would

of course add to the overall latency. An example could be a peak detection algorithm

(Palshikar et al. 2009) that takes a continuous signal and generates a single trigger event

when a peak in the signal occurs. In this case, the detection of the trigger will likely

require additional samples to be captured after the peak to accurately identify it. In our

evaluations, we focus on the effects due to the sensor interface (rather than the sensor

themselves) and as such, do not measure the sensor processing or sampling time that may

be present for physical signals and specific to particular sensors. In real life these delays will

of course depend on the physical characteristics of the sensor itself as well as any processing

of the signal that might be required.

What is relevant, however, is how a sensor interface samples and transmits the mes-

sages. As mentioned in Chapter 2.1, the interface may operate in a trigger/event-based,

or continuous streaming mode. The first can be used for sporadic, discrete events such

as note on/offs, or toggles and buttons on a MIDI controller. In such cases, an interrupt-

driven system can be used to trigger the transmission of a signal as soon as it is received,
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and the main delay of this process will be attributed to the transmission delay alone. For

continuously varying data such as knobs and sliders or streaming sensor data from Inertial

Measurement Units (IMUs), it is more suitable to constantly sample and transmit the data

at a rate that captures the relevant changes in the signal. In this situation, since the

sampling must be done at finite intervals, this process will add a delay depending on this

sampling interval. This exact frequency would depend on the characteristics of a particular

signal that needs to be captured, and the sampling theorem dictates that double the maxi-

mum frequency of interest be used. These two transmission schemes are depicted in Figure

3.7. If we assume the sensor to have negligible processing delay for the purpose of our

analysis, then the trigger-based sampling and transmission scheme will add no additional

latency while the streaming configuration will, on average, exhibit an additional delay of

half the sampling period. This consideration is important as for an example sampling rate

of 100Hz (Tl = 10ms), the additional latency due to sampling is 5ms, and exceeds the

entire end-to-end latency of the fastest wired interfaces of 5.1ms in (McPherson, Jack, and

Moro 2016).

The other consequence of the streaming transmission is that continuously sampled data

must be transmitted by the sensor interface, regardless of whether specific triggers or events

occur. This leads to a larger amount of data and can have an impact on the scaling

behaviour as the bandwidth of the transmission channel is saturated, and is a metric of

interest for our subsequent evaluations.

3.3.2 Test Signal Characteristics

The input provided by the measurement jig is step-wise signal that is nominally low and

switches high to indicate the start of the test trigger, and held until the jig receives the

produced audio output from the system. In real life settings such an event would warrant a
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Fig. 3.7 Trigger and streaming transmission.

trigger-based message transmission strategy, but since we would like to test the behaviour

of the sensor interface under both continuously streaming situation as well, we can also

repeatedly sample and transmit the input value for the streaming transmission mode. In

the latter situation, the system will be constantly receiving the same input signal, but the

synthesized result will only be generated upon reception of the trigger event. The test

is repeated for multiple measurements over time where the delay is much longer than the

duration of the synthesized audio. In the work described in subsequent chapters, we employ

the trigger or streaming version of the test depending on the needs of the specific evaluation.

In general, when attempting to determine the minimum latency of the system, the trigger-

based transmission scheme is employed while the streaming-based scheme provides an idea

of the maximum real-time sampling rate that can be used.
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3.3.3 Model of Latency Behaviour and Test Triggers

Based on the block diagram from (McPherson, Jack, and Moro 2016) in Figure 3.1, we break

down our test system in a similar way when considering the measurements relating to the

wireless protocols being tested in this work. Since many processes occur at extremely small

time intervals on the host computer, especially when considering the microsecond resolution

of the latency measurement jig, it is not feasible nor relevant in this analysis to “zoom in”

at such levels of detail. Instead, in Figure 3.8 we present the components of interest that

are directly associated with each wireless protocols of interest.

Fig. 3.8 Block diagram of measurement system highlighting the components
under test.

The overall latency can be expressed as LT =
∑N

n=1 Ln where Ln is the latency of each

sub block/component in the system. In general, the expected behaviour of each component

would follow a distribution depending on the underlying mechanisms involved.

For example, the synthesis system is subject to the computer operating system’s context

switching, but the audio output has very distinct buffers that are processed at relatively

large block sizes. Empirically, given the microsecond resolution of the latency jig described

previously, there are three main discernible processing intervals due to the following:
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• Wireless Interface: This is the primary metric of interest, and internally can be

relatively small in the case of Wi-Fi (sub-millisecond transmission windows), or larger

in the case of the connection interval for Bluetooth (minimum 7.5ms).

• Audio Block Size: Most sound cards on general purpose operating systems transfer

an entire block of samples at a time, and the size of this block has a direct conse-

quence in how quickly. This is referred to as the “I/O Vector” size in Max/MSP. The

specialized embedded Linux environment (McPherson and Zappi 2015), provides the

possibility for single sample delays between sensor input and audio output.

• Signal Vector Size: In environments such as Max/MSP, this controls how many

samples are computed by the synthesis environment at a time.

The latency introduced by the wireless interface will depend on a number of factors, but

the most basic parameters consist of how much bandwidth the channel has, and the length

of the message. It logically follows that the larger the message, the longer it would take to

transmit over the air for a given data rate. As a rough approximation, the time (in seconds)

that a message requires for transmission is given by M
B

where M is the number of bits in

the message, and B is the bandwidth (in bits per second). Of course, the actual protocol,

and various supporting layers in the stack as described in Chapter 2.2 will add additional

overhead to this minimal value. Additionally, a protocol such as BLE may only transmit

within specific, synchronized windows which then impose further limits, as an imminent

event may have to wait until the next interval in the same way that sampling intervals may

introduce latency as described in Section 3.3. However, since our analysis takes place at

the user application level, where we select and compare existing messaging protocols, we

are subject to the minimal implementation standards defined by the protocol.
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3.4 Preliminary Tests

In this section we describe some preliminary tests that verifies various aspects of the test

system. First we evaluated the behaviour of the hardware comparator of the test jig,

followed by the use of the system in a basic end-to-end measurement of a wired USB-MIDI

interface to compare with previously published results.

3.4.1 Hardware Comparator Operation

To ensure that the produced audio output interacts correctly with the hardware compara-

tor circuit, the audio output and comparator outputs were measured with an oscilloscope.

Figure 3.9 presents the scope measurements of the synthesized output ramp single, along

with the comparator circuit’s output trigger that will be received by the latency measure-

ment jig. The closeup (200µs horizontal grid size) reading shows the immediacy of the

comparator output response associated with the ramp input, while the zoomed out version

(10ms grid size) shows the entire ramp that spans 50ms.

200µs grid size 10ms grid size

Fig. 3.9 Oscilloscope plots showing the emitted audio (yellow) and compara-
tor circuit (green) outputs.
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3.4.2 USB-MIDI Test

To ensure that the system produced will generate comparable results from previous studies

and verify that we have accurately reproduced the test system, we re-implemented the

wired sensor interface consisting of a Teensy microcontroller operating as a wired USB-

MIDI interface as a “sanity check”. This is one of the fastest tested configurations according

to previous literature (J. L. Wright and Brandt 2001; McPherson, Jack, and Moro 2016).

Figure 3.10 shows a block diagram of this test setup. The results from this test, using as

close to the original specifications as we were able to reproduce, yielded an average latency

of 4.1ms, which is slightly lower than the value of 5.1ms presented in (McPherson, Jack,

and Moro 2016). This difference could be attributed to the slightly newer hardware and

software configurations (2015 vs. 2014 MacBook, OSX 10.14 vs. 10.10, Max/MSP 7.x vs.

6.x).

Fig. 3.10 Block diagram of the USB-MIDI test.

3.5 Summary

In this chapter we presented the measurement system in detail, and described the imple-

mentation details of the main latency measurement jig used for the remainder of the work.
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In the subsequent chapters, we will present a number of evaluations that were performed

using variations of this particular configuration.
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Chapter 4

Performance Evaluations

In this chapter we present three sets of evaluations of latency from various

perspectives. Section 4.1 presents the scaling performance of OSC over Wi-

Fi, while Section 4.2 focuses on BLE and comparison with some alternatives

from the perspective of designing a new commercial wireless sensor interface.

Finally, Section 4.3 performs the comparison of three protocols from the per-

spective of the Internet of Things. Section 4.4 presents the scaling evaluation of

BLE. Combined, they address from different perspectives the questions posed

in the introductory chapters of the minimal latencies, maximum transmission

rates and number of concurrent devices in operation for a given transmission

rate, leading towards the subsequent concluding chapter that presents some

more holistic views on wireless protocol choice in the context of DMI design.

Finally, in Section 4.5 we present two adaptations of the evaluation system in

collaborative works where the performance of embedded Linux systems used to

implement DMIs, and a hybrid motion capture system.
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4.1 Wi-Fi Scaling

In this section we look at the scaling performance of one wireless sensor protocol: the

transmission of OSC packets over Wi-Fi. In particular, the number of devices and send

rates were altered while the end-to-end latency of the entire system was measured according

to the procedure described in Chapter 3. The findings of this work was published in (J.

Wang, Meneses, and Wanderley 2020).

One of the key benefits of wireless sensor technology in the DMI context is that it is pos-

sible to create a network of multiple, untethered devices to facilitate ensemble performance

settings where the performers are not necessarily constrained to fixed locations. Motivated

partially by the increasing number of wireless devices and platforms used at IDMIL, in this

work we investigated the scaling behaviour of a commonly used protocol, OSC (M. Wright

2005) implemented on a wireless microcontroller platform, the ESP32. The ESP32 is a

system-on-chip microcontroller that provides single and dual core processor configurations

running at up to 240MHz, with an integrated radio that supports both Bluetooth Low

Energy (BLE) and Wi-Fi1. As a low-cost embedded solution with development boards

readily available for around $10, the ESP32 is an ideal solution for the construction of

sensor interfaces and controllers that need wireless connectivity, including the GuitarAMI

(Meneses, Freire, and Wanderley 2018) and new iterations of the T-Stick2. OSC was chosen

for this analysis as it is widely used as well in existing projects, and Wi-Fi has considerably

more bandwidth than BLE. Besides being one of the first evaluations of this nature for the

ESP32, this work is also the first time that such scaling behaviour is evaluated for similar

sensor interfaces in the literature.
1https://www.espressif.com/en/products/socs/esp32
2The first wireless implementation of the T-Stick (Nieva et al. 2018) employed the related ESP8266

microcontroller.

https://www.espressif.com/en/products/socs/esp32
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The two main metrics of interest in this work include the number of devices, and the

transmission rate per device. Under an initial assumption, it would seem reasonable that N

devices transmitting at rate M is equivalent to a single device transmitting at N ×M from

a bandwidth perspective, but in practice there are overheads associated with switching

between each device in through a common shared wireless channel. Therefore, the exact

relationship is not as straight forward and one method to obtain the scaling behaviour is

through empirical measurements.

4.1.1 Overview

The overall setup of the latency measurement is described in Chapter 3, and Figure 4.1

presents a block diagram of the test setup. A D-Link DIR-601 Router running LEDE

17.01 was used to provide the Wi-Fi access point. The host computer was a quad core i7

2.5Ghz MacBook Pro running OSX 10.14 and Max 7.0.1 was used for the OSC receiving

and synthesis environment that received the input triggers and produced the audio output.

The OSC message consists of a very short message with an address of ‘/a’, and a single

integer value. Due to the 4-byte boundaries and zero padding of the OSC specification

(Freed 1997), the size of this message will be the same as the first example in Table 2.3

despite the slightly shorter address, and is 12 bytes in length3.

Since we are primarily interested in the scaling behaviour with a controlled increase in

send rates, but also want to avoid the latency due to the sampling/send rate as described

in Chapter 3.3.3, the test firmware was set to continuously send 0’s corresponding to a note

off at the configured send rate unless the trigger input was detected, in which case a 1 was

emitted immediately. This method allowed us to test both the minimal transmission latency
3In this analysis we look at our application level payload sizes, while acknowledging that the lower levels

of the networking stack will add additional headers and termination bytes beyond our control
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that is not subject to sampling delays, while at the same time increase the “streaming” rate

to observe the effects of network saturation as more devices are transmitting. Figure 4.1

shows the test setup, where the final end-to-end latency is calculated by the time difference

between the trigger output and audio input.

Fig. 4.1 Device and send rate scaling test configuration.

The majority of the tests presented above were performed in an office environment on

a weekend, where there was little traffic. A single test was also carried out during a work

day to compare the difference in performance when more potential network congestion was

encountered.

We employed a wireless access point with no encryption (as suggested for higher perfor-

mance (Mitchell et al. 2014)), and selected a channel that had the least amount of frequency
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usage measured by a MikroTik4 router. This router provided some basic channel utiliza-

tion tools (Figure 4.2) that allowed us to select the least busy channel, and we operated

this device as a separate scanning tool alongside the system being tested. The tests were

performed in an office environment on a weekend where there was relatively little network

traffic.

Fig. 4.2 Screen capture of the MikroTik’s “Frequency Usage” tool, showing
activity in each Wi-Fi channel. “Usage” is a measurement in percent, while the
Noise Floor is specified in dB.

4.1.2 Single Device Send Rate Scaling

In this test, a single device was used to transmit at increasingly higher intervals. Figure 4.3

shows the measured latency as the transmission rate was increased, up to a maximum limit

that was obtained through empirical measurements. The transmission rate was controlled

using a loop timer that determined the time elapsed between successful sampling and

transmissions and set to operate at the desired rate. The maximum limit of 2300Hz was
4https://www.mikrotik.com

https://www.mikrotik.com
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obtained when the sensor interface was configured to operate as quickly as possible with

no additional delay. From here we see that we are able to achieve below the 10ms latency

value at 1000Hz. At this rate, the bandwidth is 1000× 12 = 12000 bytes/second. Despite

the generally increasing trend between latency and transmission rates, we notice a slight

decrease in measured latency when increasing the transmission rate from 100 to 200 Hz,

and this suggests that there is a certain amount of variability between measurements.

Fig. 4.3 Latency as a function of transmission rate. Error bars indicate
standard deviation.

Another presentation of the data that can reveal interesting characteristics of the distri-

bution is the Empirical Cumulative Distribution Function (ECDF), as presented in Figure

4.4. This probabilistic function plots the latency values on the X-axis, and the cumulative

probability of that particular latency value on the Y-axis. By looking at the value on the

vertical axis for a given threshold (e.g., 10ms, as represented by the dotted vertical line),

one can easily identify the percentage of measurements that meet a particular threshold.

For example, at 1000 Hz, or the highest tested transmission rate that had an average of

below 10ms, 75% of the values were within this threshold. At the maximum possible trans-
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mission rate of 2300Hz, only about 55% of the latency values were below 10ms. Even at

the lowest transmission rate of 50Hz, there were 10% of values above the 10ms threshold.

The other pattern observed as the transmission increased is the reduction of the slope of

the ECDF, which signifies a wider variance (jitter) of the measured values.

Fig. 4.4 The Empirical Cumulative Distribution Function of latency val-
ues for a single transmission device operating at transmission rates from 50 -
2300Hz.

Given the maximum transmission rate of 2300Hz and 12 bytes per message, we can

then calculate the maximum bandwidth of 2300× 12 = 27600 bytes/s, or 220800 bits/s.

4.1.3 Multiple Device Scaling

We next measured the effect of adding multiple concurrent devices that are transmitting at

the same time. Here, while only a single sensor interface was used to measure the latency

through the jig, the other devices were set to continuously transmit concurrently without

being triggered. Figure 4.5 shows the average measured latency as additional devices were
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added, starting from 0 (which is just the single triggered device operating) to a total of

13 devices, which were the maximum number of hardware boards we had available for

testing at the time. Here, we see that it was possible to maintain an average of below 10ms

for up to 6 devices. At this point, given the 100Hz transmission rate, the bandwidth is

6×10×12 = 7200bytes/second, which is considerably lower than the 12000 bytes / second

achieved in the single device case.

Fig. 4.5 Latency as additional devices are added (0 implies only the single
device being measured is present).

The ECDF of the latency values are presented in Figure 4.6, and shows that while for

6 devices the average latency may be within the 10ms threshold, only around 70% of the
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Fig. 4.6 Empirical Cumulative Density Function (ECDF) of the multiple
devices latency test.

values are below this value.
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4.1.4 Network Environment Effects

Finally, while we attempted to make most of our measurements on an uncongested network

by working on a weekend, we also wanted to see if a busier networking environment had any

effects on the latency measurements. Figure 4.7 shows the 100Hz test taken from 25, and

26 January, 2020, as well as the 30th. The results show significant difference between the

first two days that were on a weekend and the third, which was a weekday. Even though

the router was used exclusively for the experiment and no other wireless devices were active

on the local network, this result suggests that background wireless activity from nearby

access points on the same channel can have a significant impact on the performance.

Fig. 4.7 Mean values of the 100Hz single-device latency test across different
days.

4.1.5 Summary

In the Wi-Fi OSC send rate and scaling tests implemented on an ESP32 microcontroller as a

sensor interface, we obtained end to end latency measurements for 1 to 13 concurrent devices

operating on a single Wi-Fi channel. In general a trend of increasing latency is observed

as more devices or higher transmission rates are used, although there is a small amount of
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variation between tests as evident by the non-monotonically increasing results presented

between 100 and 200Hz transmission rate in the single device test, increasing between one

and two additional devices in the device scaling test, and the between-day measurements.

More significantly, the background activity that may be beyond one’s control can have

a significant impact on the performance of a Wi-Fi system, as evident from the tests

performed on different days of the week in an office environment.

4.2 I-CubeX WiDig and BLE Implementation Considerations

4.2.1 Overview

In this section we present the work that was done with Infusion Systems in the investiga-

tion and subsequent development of a new Bluetooth-based wireless sensor interface, with

a focus on the use of BLE as a wireless interface and its performance and usability charac-

teristics. The main findings were published in a conference paper at NIME 2019 (J. Wang,

Mulder, and Wanderley 2019).

The I-CubeX WiDig is a wireless sensor interface that was developed as part of an

industrial collaboration with Infusion Systems, creator of the I-CubeX sensor platform

(Mulder 1995). As one of the earliest commercially available sensor interface ecosystems

that was widely available to the artistic community, the I-CubeX platform has been used

by thousands of customers around the world ranging from interactive installations, theatre

exhibits, musical performances, and university laboratories. In this section we present

an overview of the existing I-CubeX sensor interfaces, the motivation to develop the new

WiDig and subsequent evaluations performed.



4 Performance Evaluations 61

4.2.2 Previous Interfaces: USB-microDig and Wi-microDig

The sensor interfaces prior to the development of the WiDig were the USB-microDig and

the Wi-microDig. Both of these are 8-bit microcontroller based sensor interfaces that

support 8 channels of analog or digital i2c sensor input, and up to 8 channels of Pulse

Width Modulation (PWM) or digital output (when digital inputs are not used). The

USB-microDig (Figure 4.8) interfaced with the computer via a virtual USB serial port

implemented with a SiLabs USB-serial IC, while the Wi-microDig employed a Roving

Networks Bluetooth 2.0 Serial adapter implementing the Bluetooth 2.0 Serial Port Profile

(SPP). Both of these devices appeared to the host operating system as a virtual serial

COM port device.

Fig. 4.8 I-CubeX USB-microDig. Fig. 4.9 I-CubeX Wi-microDig.

One unique feature of the I-CubeX sensor interfaces was their ability to perform a

number of configurable mapping tasks. Raw sensor input can be configured to undergo a

series of processing include scaling, thresholding, and conversion to MIDI messages which

can be sent directly to synthesizers. However, in both cases, due to the virtual COM ports

implementation (via USB or Bluetooth) for communication with the host it was necessary

to operate a bridging application to implement a virtual MIDI port on the host computer.
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In terms of latency performance, prior informal testing at Infusion estimated the USB

wired interface capable of sub-10ms latency, while the Bluetooth Serial version of the Wi-

microDig exhibited latencies above 30ms.

The development of the WiDig attempts to address two objectives highlighted by the

long-term plans of Infusion Systems: First, to achieve an under-10ms end-to-end latency

between a wireless sensor input and audio output, and second, to increase the compatibil-

ity and usability of the sensor ecosystem. As wireless interfaces became more accessible

along with the growth of increasingly powerful mobile devices, sensor interfaces that can

connect directly to smartphones, tablets, and other embedded wireless devices without a

intermediate host would increase the convenience and usability of the I-CubeX ecosystem.

For the WiDig, both MIDI and OSC messaging protocols were of interest since the existing

I-CubeX tools and configuration environment made heavy use of MIDI messages, while

OSC was an increasingly popular standard.

4.2.3 WiDig Development

After investigating the current sensor solutions, an ESP32-based interface was added to the

existing wired USB-microDig interface since it provided USB, Wi-Fi and BLE interfacing

options while reducing the amount of modifications required for the core sensor processing

hardware and firmware. To further reduce development time, the base USB-microDig PCB

was modified to interface with a pre-manufactured ESP32 board, the Lolin D32.

The resulting WiDig design consists of a very similar production process compared

to the existing USB-microDig, but with an additional integrated and cheaply available

ESP32 add-on board that provides the USB and wireless interfaces supporting both Wi-Fi

and BLE. Due to the additional computation and storage capabilities of the ESP32, this

platform also allows future expansion in terms of supporting additional sensor processing,
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and even self-contained configuration and control applications such as web interfaces that

can be completely embedded within the device.

Fig. 4.10 WiDig PCB assembly at
IDMIL.

Fig. 4.11 The completed I-CubeX
WiDig.

The WiDig was first assembled in small quantities in the lab so the design can be tested

before being sent for mass production. Figure 4.10 shows a PCB being assembled at IDMIL,

and 4.11 shows the final completed product, with the Lolin D32 board attached on top of

the base PCB. Since it was a single layer board, it was possible to perform Surface Mount

Technology (SMT) manual assembly by hand and a hotplate reflow process. A batch of 10

boards were assembled and tested this way before larger-scale production commenced in

early 2018.

4.2.4 Evaluation of the WiDig

The initial design work involved implementation of test firmware to ascertain the perfor-

mance and compatibility with I-CubeX’s existing suite of interfacing software, and once

minimally functional versions were prototyped, a series of performance tests were performed

to verify the latency characteristics of the interface. Alongside the performance evaluation,

we also investigated the different protocols from a compatibility and usability perspective.
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4.2.5 Latency Measurements

Since the ESP32 supports both Wi-Fi and BLE, it was possible to implement a variety of

different protocols on the device to reveal any potential differences between them. Figure

4.12 shows the block diagram of the various test configurations. The USB MIDI test,

implemented on the Teensy microcontroller, was used as a baseline as it presented the

lowest measured latency values in previous literature. Tests labeled as “min” were situations

where the ESP32 operated with the shortest possible path between a digital input trigger,

and emission of the wireless message to the host. The “WiDig” configurations made use of

the dual microcontroller setup, with the ESP32 performing the role of wireless and USB

communication while the sensor acquisition was performed on the AtMega328.

Fig. 4.12 WiDig end-to-end latency configurations.

Table 4.1 shows the measured end-to-end latencies for different test configurations, com-

pared with some existing measurements from previous literature (McPherson, Jack, and

Moro 2016). Based on the results, we see that it is possible to achieve the sub-10ms la-
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Table 4.1 End-to-end latency measurements. The WiDig and the product
it replaces, the Wi-microDig, are presented in bold.

Connection Latency Std Dev
USB-MIDI (Teensy) 4.1 ms 0.4 ms
USB-MIDI (Teensy)* 5.1 ms 0.4 ms
USB-Serial (WiDig) 6.2 ms 0.35 ms

ESP32 BLE-MIDI (min) 7.5 ms 1.8 ms
ESP32 BLE-MIDI (WiDig) 19.1 ms 2.7 ms

ESP32 Wi-Fi RTP-MIDI 8.5 ms 8.0 ms
ESP32 Wi-Fi OSC (min) 7.6 ms 2.9 ms

Wi-Fi OSC* 6.7 ms 1.5 ms
Bluetooth 2.0-Serial (Wi-microDig) 30 ms 14.6 ms

BLE* 139 ms 21.9 ms
* indicates results from previous study (McPherson, Jack, and Moro 2016)

tency value for wireless interfaces using Wi-Fi and BLE, and is considerably faster than

the previous I-CubeX wireless solution, the Wi-microDig operating via Bluetooth 2.0. The

WiDig transmitting BLE-MIDI exhibited close to 20ms of latency, which is improved from

the 30ms value of the Wi-microDig along with a significantly reduced jitter. The “mini-

mal” BLE configuration was even faster and obtained an average latency of under 10ms.

This suggests that optimizations in the sensor acquisition and processing architecture can

reduce the latency further. For example, the tested WiDig configuration involved pass-

ing the sensor data between two microcontrollers before transmission due to the existing

sensor processing performed by the AtMega328. This eliminated the need to port the

existing sensor processing code, but at the cost of running the processing on the slower

AtMega328 compared to the ESP32. These additional processing steps could potentially

be bypassed in a “low latency” mode of operation, or both the sensor processing and trans-

mission could be implemented on the faster ESP32 in the future, potentially eliminating

the two-microcontroller architecture altogether.

Another interesting finding is that the Wi-Fi implementations of OSC and Real-Time



4 Performance Evaluations 66

Protocol (RTP)-MIDI were relatively close to each other. This is an expected result since

both protocols make use of UDP as the transport layer, so whether protocol is used can be

based solely on considerations for software compatibility.

Bandwidth Considerations

Since the saturation point of a wireless channel depends on many changing environmental

factors, we attempted to perform a rudimentary test using the BLE devices available on

hand to obtain a general idea of the overall bandwidth of a BLE-MIDI connection, and

compare that with Wi-Fi links where possible. A test BLE application was implemented

on the ESP32 and nRF518225 microcontrollers that emits increasing amounts of synthetic

data via MIDI System Exclusive messages. Using Apple’s BLE PacketLogger application

on the receiving computer, we found that both radios, when using the BLE-MIDI interface,

were able to transmit up to around 40kbps before packets were no longer being received at

the nominal transmission intervals. This is significantly lower than the theoretical values

described in Section 2.2.1. Running a similar test on the ESP32 operating as an Wi-Fi

OSC sender instead, the total bandwidth was considerably higher as seen in Chapter 4.1

that yielded around 220kbps for a single device.

Retrofitting MIDI Devices with BLE

There are a number of commercially available BLE-MIDI controllers that operate as BLE-

MIDI peripheral devices. A non-exhaustive list appears in Appendix A. Two interesting

adapter devices, the Yamaha MD-BT01 and CME Widi Bud, allow BLE-MIDI capability

to be added to existing systems. The Yamaha device is a “BLE bridge” adapter that allows

a wired MIDI port to send and receive BLE-MIDI messages. Conveniently powered by the
5In the form of an RFDuino board running the same firmware via the supported Arduino libraries
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small amount of power available on a MIDI Output port, the Yamaha adapter provides an

easy way to turn any MIDI device into a BLE-MIDI peripheral and communicate with a

host receiving application. The CME device allows any host device with a USB port to

operate with other BLE-MIDI peripherals.

Fig. 4.13 The Yahamha MD-BT01 connected to a M-Audio MIDISport 2x2
USB-MIDI interface.

To test the implication of retrofitting an existing device with a BLE-MIDI connection,

we created a test configuration consisting of concurrent wired USB and BLE-MIDI connec-

tions between two computers. An M-Audio MIDISport 2x2 was used on Computer 1 (2010

Mac Pro Tower, Quad-core Xeon 2.8G hz) with Port A connected to a Roland UM-One 1x1

on Computer 2 (2014 Macbook Pro, 2.5 Ghz i5). The Yamaha MD-BT01 was connected to

Port B of the MIDISport and a BLE-MIDI link established with the built in BLE interface

of Computer 2. By measuring the timing of messages sent through these two links, we can

observe the effect of replacing the wired USB-MIDI port on the second computer with a

BLE link, as shown in Figure 4.14.

A simple MIDI timing application was written in C using the RtMidi library (Scavone
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Fig. 4.14 Wired and BLE-MIDI test configuration.

and Cook 2004) in MacOS. The application opens a MIDI input and output port, and

performs one of two roles:

• Sender: Emits a note-on message and measures the interval until a message is re-

ceived and outputs to screen. Performs this operation in a loop with a preset delay

between the next test.

• Receiver: Emits a note-on message whenever a message is received.

A flow diagram of the application is presented in Figure 4.15 showing the operation of

the sender and receiver modes.

When the sender and receiver’s MIDI input and output ports are connected to each

other, the sender will effectively measure the round-trip delay of the MIDI channel. We

took measurements of 1000 samples with an inter-message delay of 500ms, and the results

are presented in Table 4.2, with Computers 1 and 2 taking turns being sender and receiver,

respectively. The results show that the addition of the BLE-MIDI link resulted in nearly

26ms of additional delay for the roundtrip, or about 13ms for one way.

The roundtrip result, as shown in Table 4.2, shows a significant increase in latency

when using the BLE-MIDI adapter compared to the wired interface of 29.9ms and 4.3ms,
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Fig. 4.15 Flow diagram of MIDI roundtrip latency measurement.
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respectively. This suggests that these adapters may not be an ideal choice unless the

wireless retrofitting is absolutely necessary and the increased latency is acceptable for a

particular application.

Table 4.2 Round-trip latency of wired and BLE interface.
Connection Round-trip Std Dev

Wired Computer 1 to 2 4.3 ms 2.2 ms
BLE Computer 1 to 2 29.9 ms 15.0 ms

4.2.6 Summary

In this work we have described the testing of a number of sensor interface configurations

with a focus on MIDI over BLE in the context of building a new wireless sensor interface

for Infusion Systems. MIDI over BLE, MIDI and OSC over Wi-Fi, MIDI over USB, and

a legacy Bluetooth 2.0 connection were tested for end-to-end latency. We also evaluated

the performance of BLE-MIDI adapters. Overall, Wi-Fi exhibited the best latency per-

formance for wireless interfaces with consistently below 10ms average end-to-end latencies

for both MIDI and OSC implementations, while BLE-MIDI performed slightly worse but

was capable of sub-10ms performance. Having established the performance characteristics

of BLE-MIDI as capable of significantly reducing the latency compared to the previous

Bluetooth 2.0 implementation of the Wi-microDig, we proceeded with the production and

manufacturing of the new WiDig sensor interface. An added benefit of using the ESP32

platform for this design was the possibility to support Wi-Fi implementations as well.
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4.3 Internet of Musical Things: Comparison of LoRa vs. BLE and

Wi-Fi on the ESP32

4.3.1 Overview

The growth of mobile computational and sensing technologies along with the widespread

availability of connection infrastructure of the internet has led to an increase to the number

of sensor interfaces and devices that make up the Internet of Things (IoT) (Atzori, Iera,

and Morabito 2010) on a global scale. Of particular interest, is how DMIs (Miranda and

Wanderley 2006) contribute to this landscape through the use of such technologies for

artistic expression and creative applications. By leveraging network connectivity DMIs

can readily become a part of the Internet of Musical Things (IoMT) (Turchet et al. 2018)

and easily span across the planet include the Global String (Tanaka and Bongers 2002),

or concepts embodied by the Global Hyperorgan (Harlow 2018). At the same time, DMIs

have specific requirements and are often not evaluated within its own context, and this

work attempts to address the specific issue of protocol selection when implementing DMIs.

Rapidly growing and accessible open-source hardware and software ecosystems such as

the Arduino (Kushner 2011) make it increasingly easier to implement sensor-based systems,

and there is a growing number of such devices both in the research and commercial domains.

Of particular interest are wireless interfaces, as they allow the implementation of portable

and untethered controllers and open up the possibility of compact handheld devices and

wearables. Advancements in wireless and battery technology (Cook 2009) make the re-

placement of wired solutions faster and more reliable, ameliorating some of the challenges

faced previously (Cook 2001).

Like previous evaluations described thus far, the ESP32 was the base platform for the

sensor interface in this investigation. A large number of development boards are available,
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including many with additional LoRa hardware that provides support for an emerging

standard that shows promise for IoT applications (Augustin et al. 2016). Figure 4.16

shows a ESP32 development board used for the evaluation described in this section.

The three protocols chosen for the evaluation are: MIDI messages over BLE, LoRa over

a custom protocol (since no standards yet exist in this context), and OSC (M. Wright 2005)

over Wi-Fi. The BLE- and Wi-Fi-based protocols were chosen due to their compatibility

with commodity hardware, as most DMI designers use general-purpose computing systems

and off-the-shelf operating systems. LoRa, as an emerging IoT protocol, is of interest in this

context since it has yet to be applied in the context of DMIs, and looking at the underlying

LoRa protocol itself provides an idea of the maximum performance before being subject to

constraints of the stricter access and bandwidth limitations of LoRaWAN which builds on

top of LoRa (Adelantado et al. 2017).

The three protocols chosen for evaluation in this work are not intended to be compre-

hensive, but serve to demonstrate the usage of the test system to reveal factors that may

affect protocol selection in the context of a DMI. Additionally, the multi-protocol ESP32

development board allows the same underlying hardware to be used to eliminate differences

between hardware implementation and isolates the protocols themselves for comparison.

The TTGO ESP32 LoRa development board (Figure 4.16) was used to implement

the test sensor interface for this evaluation. This development board not only supports

the native wireless capabilities of the ESP32 (BLE and Wi-Fi), but also adds a Semtech

SX1276 IC that provides the LoRa radio. The ability to implement all three protocols on

the same board provided a unique opportunity to test the three protocols using the same

underlying microcontroller platform, and rules out potential differences due to underlying

hardware.

In addition to the latency measurements similar to the investigations performed in



4 Performance Evaluations 73

Fig. 4.16 The TTGO ESP32 LoRa development board.

Sections 4.1 and 4.2, we also added power measurements to observe the differences between

each protocol and transmission configurations.

4.3.2 Evaluation Setup

Overall, the latency measurement configuration remains identical compared with the con-

figuration described in Chapter 3. Figure 4.17 shows the system diagram of the test con-

figuration. From previous tests described in literature as well as our own evaluations, there

are no user configurable BLE or Wi-Fi settings to adjust for latency performance, but for

LoRa a number of transmission parameters can be adjusted.

For LoRa transmissions there is a trade-off between airtime (which affects latency),

range, and power (Adelantado et al. 2017). Increasing the Spreading Factor will increase

the time on air and the power consumption as well as latency value, but improve the range

and reliability of the transmission for a given bandwidth value. Conversely, increasing the
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bandwidth will reduce airtime and power consumption, at the cost of range. Since in our

evaluation we are not looking at range specifically but the minimal latency performance,

we empirically found the value of 500 kHz bandwidth and Spreading Factor of 7 yielded

the lowest latency by measuring different combinations of these values and observing the

resultant latencies, and employed this configuration for the remainder of the tests.

Fig. 4.17 Test system block diagram showing the power/latency measure-
ment rigs and the sensor interface under test.

The Wi-Fi OSC and BLE MIDI implementations were identical to evaluations described

in previous sections 4.1 and 4.2. However, for the LoRa configuration, because no host com-

puter has native LoRa radio support, a second ESP32 LoRa module was used to implement

a LoRa to USB-serial adapter operating at the standard rate of 115200 bits per second.

While the serial connection will add a small amount of latency, in this situation the LoRa

interface must go through this channel so it should be considered as part of the overall

interface. We implemented a separate test consisting of just the USB-serial receiver mod-

ule for reference, and triggered it directly similar to the wired serial tests described by

(McPherson, Jack, and Moro 2016), as shown in Figure 4.18. The average latency was
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measured to be 6.3ms with the ESP32 module in this situation.

Fig. 4.18 Baseline test (1) of using a wired ESP32 triggered directly, com-
pared with the wireless interface as tested for the remainder of the LoRa eval-
uations (2) where the wired ESP32 acts as the LoRa receiver for the host
synthesis system

The main addition to the previously described evaluation configuration is a power mea-

surement rig. Since the device under test is powered via a USB cable, we can measure

power consumption using an in-line power meter. A power measurement rig, consisting

of an ESP32 microcontroller and Texas Instruments i2c based INA219 power monitor IC

was used to sample and transmit power consumption data (Texas Instruments 2011). A

micro-USB cable was spliced so that the 5V USB line can be passed through the INA219

for high-side current monitoring (measuring the current between the positive power input

terminal and the device). The built-in power consumption computation of the INA219

simplifies the logging firmware, which simply performs i2c bus reads and outputs the power

values to the logging terminal via a USB serial interface. The power measurement jig was

implemented using a Lolin D32 Pro ESP32 development board, for the simple reason that

many were available in the lab for other projects. Figure 4.19 shows a block diagram of
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the power measurement jig.

Fig. 4.19 Block diagram of the power measurement jig.

We ran two main sets of tests for the three protocols. In both cases, we were interested

in the latency of single trigger events, but the sensor interfaces were set to operate either

in trigger or continuously sampling modes, as described in 3.3. The intention of these two

tests is to first see what the minimal latency is for the particular configuration, followed by

a measurement of what the maximum sampling rate can be supported.

4.3.3 Trigger Test Results

Using the same latency testing procedure as previous examples, the power consumption and

average latencies for each protocol, when the test triggers were sent at 4Hz, are presented in

Figures 4.20 and 4.21. From this particular configuration it appears that OSC over Wi-Fi

has the lowest latency, and the value of 5.9ms is comparable to other results obtained in

Sections 4.1 and 4.2. LoRa exhibited the second lowest latency values, and interestingly

enough, the lowest power consumption as well.

The distribution of the latency values are presented in Figure 4.22 via an ECDF and

indicate that the latency behaviour of BLE and LoRa are quite similar. In both cases, 90%
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Fig. 4.20 The average power consumption when transmitting at 4Hz vs.
idle.
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Fig. 4.21 The latency when transmitting at 4Hz.
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of latency values under 20ms. Wi-Fi was the only protocol that managed 90% of latency

values below the 10ms threshold.
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Fig. 4.22 ECDF of latency values, showing that Wi-Fi achieved over 90% of
latency values below the 10ms threshold compared with around 20% for BLE
and LoRa.

4.3.4 Streaming Test Results

Similar to the transmission rate scaling for a single device, as explored in 4.1, in this evalua-

tion we measure the latency behaviour of the protocols under test at different transmission

rates. This test considers a continuously streaming output from the sensor interface, and

allows us to identify the potential impact on latency performance as the transmission rate

increases, and also to observe the maximum transmission rate possible with the particular

hardware and protocol configuration.
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The sensor interface firmware was configured to gradually increase the send rate every

30 seconds, and the latency jig issued test triggers at the same intervals (of 4Hz). Table

4.3 shows the behaviour of the test firmware’s send rate over time.

Table 4.3 Increasing the transmission rate over time.
Time (s) Send Rate (Hz) Loop time (ms)

0-30 10 100
31-60 20 50
61-90 25 40
91-120 50 20
121-150 75 13.3
151-180 80 12.5
181-210 100 10
211-240 200 5
241-270 400 2.5
271-300 inf* minimal

* no additional delay in the loop means the system will attempt to transmit as quickly as
possible

The results are presented in Figure 4.23 which shows the packets received per second6,

measured latency, and power consumption of the three protocols over the duration of the

test.

From the measured results, both BLE and LoRa peaked at around 150 messages per

second (at time > 210 seconds in Figure 4.23a), while Wi-Fi was able to reach a ceiling of

around 1400 packets per second (beyond the extents of the graph). While both BLE and

LoRa achieved a maximum of around 150 messages per second, BLE experienced a severe

increase in measured latency that suggested packets were being dropped. Considering that

the minimal connection latency for BLE is 7.5ms as presented in Chapter 2.2.1, this would

correspond to a maximum rate of 133Hz and suggests that packets were being dropped.

LoRa, on the other hand, continued to transmit normally at this maximum speed and
6measured by a message counter in the synthesis patch that was polled at 1 second intervals
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Fig. 4.23 Incrementally increasing transmission rate test to empirically de-
termine the maximum continuous transmission rates.
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the difference in behaviour is likely attributed to how the transmission rate limiting is

performed in the radio firmware to throttle the transmission. While the LoRa to USB

adapter would have contributed to the latency (as presented in Figure 4.18, the available

bandwidth of the USB-Serial adapter (115.2 kbps) should not have impacted this rate.

Beyond 100 measured packets per second, BLE and LoRa did not see any improvements

and the former became unusable with latencies exceeding 200ms, likely due to network

overload issues. While we generally observe latency values in Figure 4.23b that behaves

according to the 1/2 sampling and transmission rate relationship as described in Section

3.3.3, the corresponding maximum transmission rates impose a minimum latency value for

each protocol. The maximum transmission rate of Wi-Fi was found to be around 1400Hz,

and at that rate, the measured latency was close to the triggering test of around 7ms which

was similar to the trigger test results described in Section 4.3.3.

In terms of power consumption, the measured values are plotted in Figure 4.23c. At the

maximum sending rate of 1400Hz for Wi-Fi and around 150Hz for BLE and LoRa, Wi-Fi

exhibited the highest power consumption at 732mW for all three sending rates while BLE

and LoRa were less at 675mW and 606mW, respectively. At the highest usable rate for

all three protocols of 100Hz, the power consumption was 557mW, 594mW, and 727mW

for BLE, LoRa, and Wi-Fi, respectively. Curiously, it was possible to attempt to transmit

LoRa messages at higher rates consuming more power, but without an effective increase in

transmission rate or reduce the measured latency. However, since this was not considered

as a usable configuration, this value is disregarded.

4.3.5 Summary

In this investigation the three protocols, MIDI over BLE, OSC over Wi-Fi and a custom,

minimal protocol over LoRa were implemented and evaluated. While Wi-Fi appeared to
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be the fastest measured solution and the only one to achieve end-to-end latency of below

10ms, it also has the highest power consumption. For continuous streaming applications,

BLE and LoRa exhibited an effective message rate of around 100Hz and 150Hz respectively

when considering both the measured latency values as well as maximum number of effective

packets received.

4.4 BLE Device and Transmission Rate Scaling

Having performed comparative tests of BLE performance in Sections 4.2 and 4.3, in this

section we present an evaluation of BLE device and transmission rate scaling similar to the

Wi-Fi tests of Section 4.1. Since the overall test configuration is similar to previous tests,

we will mention specific differences and proceed directly to the results.

4.4.1 Overview

From the single device scaling results observed in Section 4.3, we note the breakdown of

BLE performance somewhere between a transmission rate of 100 and 150Hz. Using the

theoretical 133Hz that corresponds to the BLE connection interval of 7.5ms, we acknowl-

edge this as a potential point of interest and varied our evaluations to observe the effects

on measured latency around this value.

4.4.2 Single Device Transmission Rate Scaling

Expecting that the theoretical breakdown point should be around 133Hz, we first performed

a single device transmission rate scaling test by varying the transmission rates across values

around this point to see when a significant increase in large latency values are observed.

Table 4.4 shows the inter-message times of the sensor interface firmware and the associated
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transmission rate that ranging from 100Hz to 140Hz, and the measured average latency

of 1000 triggers that were performed every 250ms.

loop time Send Rate Average Latency Std Dev.
10 000µs 100Hz 20.2ms 10.7ms
9000µs 111Hz 17.7ms 7.1ms
8333µs 120Hz 19.9ms 8.2ms
8000µs 125Hz 20.1ms 12.2ms
7800µs 128Hz 18.5ms 6.8ms
7500µs 133Hz 24.1ms 17.3ms
7000µs 143Hz 47.4ms 53.6ms
7500µs 167Hz 73.8ms 54.1ms

Table 4.4 Measured latency for increasing transmission rates of a single BLE
device.

A graph of the average latency plotted against the transmission rate for a single device

is presented in Figure 4.24, and shows a drastic increase around the 133Hz (7.5ms interval)

transmission rate. This finding, along with the measurements presented in the previous

section (4.3) is consistent with the theoretical value associated with the BLE connection

interval.

4.4.3 Multiple Device Scaling

Having established the upper limits of the send rate for a single device, we measured the la-

tency performance of one device while adding additional ones. The first test was performed

at a per-device transmission rate of 125Hz, and we observed a relatively similar measured

latency performance as the single device test when adding up to 4 devices, as presented in

Table 4.5. However, when the 5th device was added, we experienced a significant number

of timeouts which suggested the configuration was inoperable.

We then reduced the individual transmission rate to see if it would be possible to support
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Fig. 4.24 Measured BLE Latency as a function of transmission rate for a
single device.
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# devices Total Message Rate Average Latency Std Dev.
1 125Hz 24.2ms 17.0ms
2 250Hz 17.8ms 6.7ms
3 375Hz 18.1ms 7.5ms
4 500Hz 24.2ms 17.0ms

Table 4.5 Measured latency of device under test when adding devices oper-
ating at 125Hz.

more devices, and using a transmission rate of 75Hz, we observe the latencies presented in

Table 4.6.

# devices Total Message Rate Average Latency Std Dev.
1 75Hz 17.5ms 6.8ms
2 150Hz 19.7ms 7.7ms
3 225Hz 20.4ms 8.5ms
4 300Hz 23.5ms 10.5ms
5 375Hz 23.8ms 9.9ms

Table 4.6 Measured latency of device under test when adding devices oper-
ating at 75Hz.

While we did not reach a point where the measured latencies increased significantly,

we were unable to add more than 5 devices. Finally, in order to eliminate the possibility

of network congestion completely, we also attempted to reduce the transmission rate even

further to just 10Hz, and observed a similar outcome as shown in Table 4.7, where we were

unable to pair more than 5 devices successfully.

4.4.4 Summary

In this section we presented the scaling characteristics of BLE-MIDI by measuring the

latency of one device while altering the transmission rate as well as number of concurrent

devices. Based on the measurements, we have identified the maximum transmission rate
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# devices Total Message Rate Average Latency Std Dev.
1 10Hz 23.4ms 11.9ms
2 20Hz 16.4ms 6.1ms
3 30Hz 16.8ms 6.7ms
4 40Hz 17.5ms 9.1ms
5 50Hz 26.3ms 14.6ms

Table 4.7 Measured latency of device under test when adding devices oper-
ating at 10Hz.

of a single device at close to the minimal transmission interval of BLE-MIDI of 7.5ms or

133Hz. Transmission rates below this value will lead to nominal performance, but when

exceeded will lead to drastically increasing latencies and worse performance. However, it

is possible to operate multiple devices close to this rate as evident by the device scaling

tests, and here there were two constraints of either five concurrent devices or around 500

messages per second total. From the three sets of device scaling measurements performed

at 125Hz, 75Hz, and 10Hz per device, we are able to observe close to the optimal latency

performance as long as we remain below both of these limits.

4.5 Collaborative Projects

4.5.1 Embedded Linux Platform Comparison

In this section we present the evaluation of embedded Linux platforms for real-time audio

processing in the context of an augmented instrument, the GuitarAMI (Meneses, Freire,

and Wanderley 2018). During this investigation, we used the same testing methodology to

evaluate the end-to-end latencies of various system configurations to support the process

of platform selection. The work was presented as a conference paper (Meneses et al. 2019)

where the author of this thesis was second author. The contributions include the setting
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up of a similar evaluation system as presented throughout this thesis, as well as helping

with the collection and analysis of data.

Fig. 4.25 Three sets of the GuitarAMI consisting of the main module and
remote sensor (Reproduced with permission).

The physical reduction in size of more capable processing platforms such as the Rasp-

berry Pi and BeagleBone Black have resulted in open source platforms such as the Satellite

Center for Computer Research in Music and Acoustics (CCRMA) (Berdahl and Ju 2011),

Bela (McPherson 2017), or Prynth (Franco and Wanderley 2016a). These frameworks pro-

vide accessible hardware and software platforms that allow a complete instrument to be

programmed and implemented within a single, compact and standalone embedded device

and eliminates the need for an external processing computer.

The GuitarAMI, as shown in Figure 4.25, is an example of a DMI that makes use of

such an architecture. In the case of the GuitarAMI, the entire sensor mapping, audio

processing and synthesis system fits within a small “stomp-box” as shown by the larger

boxes in Figure 4.25. The embedded Linux processor is contained within the main module,

while the smaller wireless remote unit contains an IMU and ultrasonic distance sensor that
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is mounted on the neck of the guitar to track the motion of the instrument as well as hand

movements.

As an Augmented Musical Instrument (AMI) or hyperinstrument (Machover 1992),

the GuitarAMI processes both signals from gestural sensors placed on the instrument or

worn by the performer, as well as audio input from the acoustic instrument itself. In

the case of the GuitarAMI, the nylon string acoustic sound is picked up using contact

microphones mounted on the body of the instrument and connected to the Analog-to-

Digital Converter (ADC) input of the sound card on the embedded processing module. In

such a hyperinstrument, the resultant audio produced by the system could consist of purely

synthesized sounds, or a modified version of the acoustic sound, or some combination of

both.

One of the design decisions was to choose a specific open source embedded Linux plat-

form, and the latency performance was one metric of interest. Additionally, it was of

interest to compare the performance of both wired and wireless interfaces to identify any

potential differences between these two options.

Evaluation Setup and Results

In the evaluation, three candidate embedded Linux platforms, Bela (McPherson 2017),

Prynth (Franco and Wanderley 2016a), and a custom processing unit implemented from a

scratch using a stock Raspberry Pi (Raspbian) distribution, henceforth referred to as the

“SPU” were tested. For each of these platforms, three types of signal paths were tested

including audio-audio, signal-audio (via wired or built in sensor interface on the embedded

hardware), and signal-audio via a wireless microcontroller communicating using OSC over

Wi-Fi, as shown in Figure 4.26. Note that in the case of the audio only test, the test trigger

emitted by the latency jig is sent directly into the sound card input which then directly
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passes through the audio input, in a similar manner as previous literature that measured

audio processing latency (MacMillan, Droettboom, and Fujinaga 2001).

Fig. 4.26 Block diagram of test system.

The same latency measurement jig (Chapter 3) was used to measure both sensor input

latency (for wired and wireless sensors), as well as latency of the audio processing system.

The audio synthesis environment used was SuperCollider since the project had existing

software implementations within that environment, and the audio configuration was set to

128 block size at 44.1kHz. For the sensor to audio output test, the framework was set to

emit a reverse ramp signal via the audio output upon the recipient of the input trigger,

similar to the Max/MSP patch as described in Chapter 3.2.

For each platform, Bela, Prynth, and the SPU, there was a number of potential wired

interfacing options and they are presented in Table 4.8, along with the best performing

interface for that platform (Meneses et al. 2019).

The above configurations show that the Bela platform functions as intended, with very

fast direct access to the built-in input pins of the Beaglebone board that was used to



4 Performance Evaluations 90

Platform Wired Interface Fastest
Bela Analog Input pins* x
Bela USB-MIDI Input
Bela Onboard Universal Asynchronous Receiver-Transmitter (UART)
Bela USB UART

Prynth USB-MIDI Input
Prynth Onboard UART x
Prynth USB UART
SPU USB-MIDI Input
SPU Onboard UART x
SPU USB UART

Table 4.8 Wired sensor interfaces available on each platform. * Denotes the
use of the built-in analog input pins, while the remainder of the configura-
tions employed an external microcontroller connected to the associated ports
to facilitate communication.

implement the system (McPherson 2017). On the other Raspberry Pi based platforms, the

fastest wired input configurations make use of the on-board UART that bypasses the USB

bus, which can be the source of additional delays.

In Figure 4.27 the audio-in to audio out, and wired/wireless input to audio out latencies

are presented.

0 2 4 6 8 10 12

Time (ms)

Bela

Prynth

SPU

audio input
wired sensor input
wireless sensor input

Fig. 4.27 Average latency measurements for each test configuration. For the
wired sensor input values, the “Fastest” configurations as presented in Table
4.8 were used.
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In the ECDFs, presented in Figure 4.28 and 4.29, we note the step-wise behaviour

of the distribution, which are around 3 ms. This interval corresponds well to the 128

sample buffer at 44.1kHz, which yields a period of 2.9 ms per buffer. The consequence

of this is that while the overall system latency behaviour is likely a smooth distribution

when plotted against the measurement resolution, the discrete periods pertaining to the

duration of the audio buffer is revealed when the test triggers are initiated at a constant

interval between each measurement. While it appears that the majority of latency values

(around 90%) were within the 10 ms threshold for nearly all of the configurations, almost all

configurations exhibited latencies above 10 ms, especially in the case of wireless interfaces.

The other noticeable behaviour is the wired interface latency of Prynth which shows 10%

of the values greatly exceeding the 10 ms threshold, which may be due to the serial port

implementation of that particular platform and warrants further investigation.
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Fig. 4.28 ECDF of wired interface
test.
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Fig. 4.29 ECDF of wireless test.

Beyond the latency values, this work also investigated the CPU load of different configu-

rations and discussed some of the other implementation details such as the ease of software

configuration, and other system limitations (such as built-in vs. add-on hardware required,

and software limitations in the case of the Bela platform) (Meneses et al. 2019).
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Summary

In this work, we applied our end-to-end latency measurement system to aid in the plat-

form selection process for the continued development of an AMI, the GuitarAMI, and we

were able to quickly and consistently evaluate a wide variety of sensor interface and audio

configurations to characterize the performance of three embedded Linux-based systems for

implementing DMIs. Overall, while the evaluation made use of the ESP32 microcontroller

for the wireless sensor interface test for all platforms, the actual audio synthesis system

employed is quite different from the configuration in previous chapters so the measured

results are not directly comparable. However, the overall evaluation procedure and the

observed trends are consistent with previous results, and demonstrated the adaptability

and reuse of the measurement system.

4.5.2 Hybrid Latency Testing for Mocap Systems

In this section, we present the latency measurement of a hybrid Motion Capture (mocap)

system consisting of an optical camera based system and a wireless IMU interface. The

work was presented in a publication (Santos et al. 2021) where the author of this thesis

(2nd author) helped with the adaptation and design of the latency evaluation system and

subsequent analysis of the data.

The context of this evaluation was to compare the feasibility of using an inexpensive and

simpler wireless IMU sensor setup versus a full fledged optical multi-camera mocap system7

for the purpose of gait analysis by the first author of the aforementioned publication. The

motivation to use such a system not only reduces the cost, but also reduces the complexity

and requirements of the experiment deployment procedure that eliminates the mounting
7www.qualisys.com/

www.qualisys.com/
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of cameras and equipment, attachment of Infra-Red (IR)-reflective markers on the subject,

and dedicated processing hardware. A test configuration was constructed to capture data

from both the mocap processor and the wireless sensor to get an initial idea of the latency

introduced by each component.

Evaluation Setup and Results

To measure the latency of the mocap and wireless sensor, a “ground truth” signal was

implemented by the means of a mechanical clap-board that contained optical markers as

well as an electrical switch. This allowed to synchronization of two signals associated with

the physical event: the captured minimal position of the IR markers as detected by the

optical mocap system, along with the electrical contact between conductive surfaces of

the clap-board, functioning as a switch. The latter signal is then fed into the latency

measurement jig as the starting time and input to the wireless sensor interface, and the

subsequently processed result from the mocap system as well as the wireless sensor can

then be compared. Figure 4.30 shows a block diagram of the overall test system.

The general signal flow for either the mocap or wireless sensor interface configuration

involves the transmission of a signal corresponding to the physical event, either via the

position of the IR markers, or through the triggering of the wireless microcontroller, re-

spectively. The mocap system is connected via ethernet to the processing computer, while

the wireless sensor interface is connected via Wi-Fi and transmits OSC packets. Figure

4.31 shows the measured latency and distribution of the Wi-Fi sensor, while Figure 4.32

present the results of the mocap system.
One of the key findings of this evaluation was that in the tested configuration, the

wireless sensor interface and Qualisys mocap system exhibited a comparable amount of

latency, at around 23ms. However, there was a significant amount of variation in the Wi-
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Fig. 4.30 Block diagram of the mocap/wireless latency measurement system.

(a) Latency distribution of Wi-Fi communica-
tion.

(b) ECDF of Wi-Fi communication.

Fig. 4.31 Wi-Fi Sensor Interface Measurements.
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(a) Latency distribution of the latency testing of
the mocap system.

(b) ECDF of the latency testing of mocap sys-
tem.

Fig. 4.32 Mocap system latency measurements.

Fi measurements, and part of the issue is the networking environment where the experiment

took place (weekday, in an office environment)8. The latency distribution of the wireless

measurements appear to be more spread out compared to some of the other measurements

presented in previous sections.

Summary

In this collaborative project, we demonstrated the adaptation of the latency measurement

rig and general evaluation procedure applied to a hybrid system comprised of both a wired

mocap system as well as a wireless sensor interface to compare the processing latencies

of the two systems. We found the latencies between the two systems to be comparable,

although the wireless interface exhibited significantly larger variance compared to previous

measurements which suggests the effect of network activity can be significant on the latency

performance of wireless interfaces.
8Even though there were no other wireless devices on the local router, in such an environment there are

other access points operating on the same channels.
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4.6 Test Trigger Interval and Impact on Measurements

Through our usage of the test configuration as described in Section 3.1, we identified an

issue regarding the fixed test trigger delay intervals that introduced a potential phase

dependency between any discrete processing intervals described above and the measured

latency. Specifically, this issue has some impact on the accuracy of the measurements

for some of the tests, and also the design of streaming-based interfaces that make use of

protocols such as BLE with large connection intervals.

To illustrate this, we performed two trial measurements for BLE-MIDI where the con-

nection interval was known to be 11.25ms as configured in the BLE configuration of the

ESP32 firmware, and confirmed with Apple’s Bluetooth PacketLogger utility when the de-

vice was connected to the host. During the test, we repeated 100 test triggers for each

trigger interval that increased from 95ms to 130ms at 1ms intervals. In the first trial the

trigger intervals were fixed, so the total time between trials was exactly the fixed delay plus

the total system latency. In the second trail we introduced a +/- 25ms random variation

around the test trigger interval, which leads to the same average delay for the 100 triggers.

As an example, when the trigger interval was 95ms, every single test used the exactly

95ms for all 100 tests for the fixed case while in the randomized case, they varied from 70

to 120, but were 95 on average. For both test cases we see that the two overall averages

across all the points is around 14ms, but the fixed version or synchronized version has a

significantly larger variation between the largest and lowest measured latency values that

is periodic in nature and is dependent on the test trigger interval used. The period of the

variation also corresponds directly to the BLE connection interval of 11.25ms as confirmed

by Apple’s “PacketLogger” utility. This introduces a flaw in the test as how often the test

is run should not have an impact over the measurement result. This effect is presented in
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Figure 4.33 where each plotted data point shows the average latency over 100 test triggers

for a given trigger interval.
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Fig. 4.33 Effect of randomizing vs. fixed test trigger intervals. Each point
is the average of 100 samples at one particular test trigger interval.

This effect was not seen for Wi-Fi or LoRa during the measurements conducted in our

various tests, regardless of whether the trigger interval was randomized or not around the

average test trigger interval and show no periodicity as the test interval changed. Wi-Fi

has much smaller connection/transmission intervals that are likely below the threshold of

measurement, while LoRa does not impose transmission start times that synchronize the

transmission to fixed intervals, but rather start the transmission as soon as possible. This

observation implies that any previous measurements of protocols using this methodology

with large synchronized connection intervals such as BLE, as presented by (McPherson,

Jack, and Moro 2016) are slightly less accurate due to this phenomena not accounted

for. The exact error in this situation could be as high as half the connection interval of

the protocol. For example, in Figure 4.33 we can see that the average latency across all
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measurements should be slightly under 15ms, but without any variation in the synchronized

case, one could be measuring average latencies as low as under 10ms or as high as 20ms,

depending on what fixed delay interval was chosen. Similarly, for the results we presented

in (J. Wang, Mulder, and Wanderley 2019), the actual minimal BLE measurements may

in fact be slightly different from the true average value had the test triggers not been

synchronized with the transmission windows.

Overall, this situation is simply a limitation in the specific implementation of the test

jig, and the addition of a slight random value to the fixed delay interval between test triggers

can eliminate this situation, and also create a more realistic test situation as real-life signals

should not have any synchronization with the measurement device. Another potential way

of decoupling this synchronization is for the test jig to be either triggered externally via

an independent timer, or to use a time elapsed counter between each successive triggers to

provide a true fixed interval.
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Fig. 4.34 ECDF of BLE for fixed
(synchronized) and variable (unsyn-
chronized) test trigger intervals.
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Fig. 4.35 ECDF of Wi-Fi for fixed
(synchronized) and variable (unsyn-
chronized) test trigger intervals.

On the other hand, if the transmission protocol does not have the long connection

intervals similar to BLE, this effect does not exist even with this synchronization present

in the test jig. Additionally, one interesting feature when operating the test jig in this
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synchronized manner, is that it reveals any potential discrete blocks in the system (provided

that it is above the measurement resolution). Figure 4.34 shows the ECDF of two sets of

measurements of BLE-MIDI for a given test trigger interval, which can be thought of as pair

of data points presented in Figure 4.33. The synchronized (fixed) version reveals “steps”

in the distribution, where the smaller steps reveal the intervals corresponding to the audio

buffer vector size of 32 (around 0.7ms, similar to the blocks seen in the Wi-Fi scaling or

Embedded Linux platform measurements of Chapter 4.1 and Chapter 4.5.1, respectively).

We also see the much larger step of around 11ms corresponding to the BLE connection

interval. For Wi-Fi, we only observe the smaller steps of the audio buffer.

4.7 Summary of Findings

4.7.1 Minimal Latency

From our evaluations, Wi-Fi in general presented the lowest end-to-end latency for a wireless

sensor interface from the perspective of a physical interface, and the average value for the

best-case situations was around 7ms, and the results were comparable between MIDI and

OSC when transmitted through Wi-Fi as presented in Chapter 4.2. For BLE the measured

latencies varied from as low as 7.5ms in Chapter 4.2, to 15.8ms in Chapter 4.3.

4.7.2 Maximum Transmission Rate

From the evaluations presented in Chapters 4.1, 4.3, and 4.4 we observed a maximum

transmission rate of a little over 2300 Hz for Wi-Fi while still observing consistent and low

system latency values. For BLE the number of messages that can be transmitted is limited

by the connection interval, and while the lowest possible connection interval of 7.5ms yields

a theoretical transmission rate of 133.3Hz (MMA 2015), which was empirically found to
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be the upper limit in the evaluation presented in Chapter 4.4. Of course, for non real-time

streaming applications (such as the bulk transmission of data for later/off-line analysis), it

would be possible to bundle multiple messages up to 20 bytes in total length (MMA 2015)

within a connection interval so that the effective rate received is higher. Similar to BLE,

a protocol like LoRa, with it lower bandwidth and subsequent longer airtime, we observe

similar transmission rate issues although the measured packets per second was slightly

higher, at 150Hz.

4.7.3 Maximum Concurrent Devices

Regardless of the interface, a single wireless channel saturates relatively quickly once addi-

tional devices are using the network. A seen by the Wi-Fi scaling test presented in 4.1 even

with a few devices the latency increases significantly. For the 10ms total latency threshold,

with a single device transmitting at 100Hz 90% of values are below the threshold, and this

value drops about 10% for each two additional devices. This result suggests that multiple

concurrent wireless channels may be necessary if both low latency and high sampling rates

are required. In the case of BLE, where devices only have limited and relatively large con-

nection intervals to transmit, this limit is lower and also bound by the physical number of

devices that can be connected, which was observed to be five devices maximum regardless

of total message transmission rate. However, this limit may be specific to the operating

system and BLE implementation, and further investigation is needed to understand the

cause of this limit.
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Chapter 5

Usability of Sensor Interfaces and

Mapping Tools

In this chapter we describe the usability of sensor interfaces by looking at physi-

cal hardware and driver compatibility, as well as protocol implementations that

define how devices initiate connections. Then, we present work on mapping

tools and frameworks and how the findings of this thesis presented thus far

can be incorporated into such tools to provide useful features to support DMI

design. Finally, we present how these findings can be applied to the T-Stick

instrument that has seen on-going development at the Input Devices and Music

Interaction Laboratory (IDMIL) for over the past fifteen years.

5.1 Compatibility and Usability

In this section we present an overview of the process by which the data from a sensor

interface is delivered to the end user application.
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5.1.1 Platform Compatibility

From a hardware perspective, most modern mobile devices have Wi-Fi and BLE capa-

bilities, and desktop computers without built-in support for the wireless interfaces can

be upgraded with add-on cards or USB-based dongles, including LoRa interfaces, as we

have done in the system described in Chapter 4.3. However, for mobile devices, it is not

as straightforward to add LoRa or additional RF hardware receivers directly. If the de-

vices are meant to work with standard commodity computing hardware (desktops, laptops,

smartphones, and tablets) without any additional physical add-ons, BLE and Wi-Fi imple-

mentations are more suitable. If there are no constraints against the addition of hardware

adapters or bridges, then any potential wireless protocol could be added to a system. One

other potential solution is to make use of adapters that implement a non-native wireless

interface, and then bridge it to an existing physical interface such as USB, or the BLE-

MIDI adapters described in Chapter 4.2.5. Of course, the potential added latency of such

a setup would need to be verified.

In addition to the actual hardware, the associated device driver must be present as well.

On desktop platforms it is not usually an issue to install custom driver software, but the

process may not be as feasible for mobile platforms. Table 5.1 presents a list of interface

and protocol combinations evaluated in this thesis, along with the hardware and software

compatibility on current operating systems.

5.1.2 Connection Procedure and Software Integration

How devices start up and join a network (or re-join after a power loss) can also impact

the usability of an interface. As an example, BLE-MIDI device must first be “paired” with

the operating system, after which a virtual MIDI-compatible port will appear. Henceforth,
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Physical Interface Messaging Protocol iOS Android macOS Windows Linux
Wi-Fi OSC None None None None None
BLE MIDI None None None None* None

Bluetooth 2.0 MIDI N/A S S S S
LoRa custom H,S H,S H,S H,S H,S

Table 5.1 Operating system constraints of wireless sensor interfaces.
S/H: additional (S)oftware drivers/(H)ardware interfaces required. None:
native/built-in support. * While Windows supports BLE-MIDI ports by de-
fault, the ports themselves are not transparently exposed to software via the
same MIDI API so the concept of a “BLE-MIDI” port is not the same as a
traditional MIDI port, which means legacy software will not be able to use it.

any software that supports MIDI will be able to transparently make use of the device via

a standard MIDI port. The only exception is in the Windows Operating System which,

as of mid-2021, supports BLE-MIDI devices but exposes them via a separate API to user

applications compared with “classic” MIDI devices. The consequence is that a bridging

application is needed to interoperate with MIDI software (J. Wang, Mulder, and Wanderley

2019). For OSC over Wi-Fi, the device must be associated with a Wi-Fi network (via

configuration of login credentials), and after which, the destination IP and port specified.

In this situation, one potential issues is that the Dynamic Host Configuration Protocol

(DHCP) server operating on the router should always assign the same IP address to the

receiver host, to insure that the sender is able to transmit to the destination.

For LoRa, predefined LoRaWAN endpoints and gateways (Augustin et al. 2016) is a

common approach to managing devices that may power on and off as needed, depending

on power consumption requirements.

The implication of the connection/pairing procedure affects how devices can join/leave

the network. For example, with an explicit pairing process of BLE, additional tools may be

needed for management and automation, including the re-pairing and re-connection to the

MIDI port. On the other hand, a Wi-Fi or LoRa device can simply turn on, automatically
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join the associated network from previously stored settings and start transmission, since

the receiving end is operating as a server waiting for connections at all times.

Once the data from the sensor interface is available in the host system, it can be

consumed by the end-user application. Here, how the application makes use of the data is

dependent on the actual application. In our evaluation we used Max/MSP to receive and

process the data to synthesize a single trigger output (as described in Chapter 3), but in

real life the actual mapping may be more sophisticated. The subsequent section presents

the process of mapping and mapping tools in more detail.

5.2 Mapping Tools and Frameworks

For a DMI, where it is possible to make arbitrary associations between the input signals

and resultant output, mapping is a strong determinant of the behaviour of the instrument

(Rovan et al. 1997). Research on mapping has grown steadily over the last two decades,

with the proposition of tools and environments to facilitate the design of mapping strate-

gies for DMIs (Wanderley 2002), (Wanderley and Malloch 2014). At IDMIL we have been

developing mapping tools and frameworks for over a decade through collaborative interdis-

ciplinary projects, and in this section we present how some of the findings in the interface

evaluations described thus far in this thesis may apply in this context. In this section, we

first provide a brief overview of the libmapper framework that was developed to support

the design of mappings. Then, we describe some of the tools that were built to make use

of libmapper. Finally, we present some potential ways that the results of our evaluation

of sensor interfaces could be incorporated into the existing tools to further support the

mapping design process.
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Visual Mapping Tools and Environments

There are a number of tools and frameworks that support DMI design. Some, such as

MaxMSP1, Pd2, are full programming environments that can be used to define the struc-

ture of the entire instrument. There are also various toolboxes dedicated to mapping

specifically, and they include standalone applications such as OSCulator3 and junXion4,

or Wekinator (Fiebrink, Trueman, and Cook 2009), which provide mapping environments

that specifically receive input signals, apply a defined set of mapping operations, and finally

output the result to preset destinations. Other toolboxes are designed to work within a par-

ticular environment such as Max/MSP, and they provide objects representing mapping and

signal conditioning primitives (Steiner 2006), or matrix-based manipulations specifically for

mapping (Bevilacqua, Müller, and Schnell 2005).

Combinations of these tools allow visual representation of the connection and processing

of signals that make up part of the mapping process, as well as implementation of inter-

faces to hardware and software components including input devices and synthesis systems.

However, none of these offer the manipulation of mapping between devices and signals as

an individual entity. Additionally, through collaborative contexts such as working with

musicians and composers in various settings (Ferguson and Wanderley 2010), a number of

features absent from existing tools were identified (Malloch, Sinclair, and Wanderley 2014),

including:

• Providing free and re-configurable mappings to aid in experimentation and explo-

ration
1https://cycling74.com/products/max/
2https://puredata.info/
3https://osculator.net/
4http://steim.org/product/junxion/

https://cycling74.com/products/max/
https://puredata.info/
https://osculator.net/
http://steim.org/product/junxion/
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• Providing compatibility between devices and standards to avoid the need for manual

and explicit connection implementation

• Providing the ability to freely use interesting mapping layers between devices, includ-

ing some of the tools described above

In the following section, we present libmapper, a mapping framework and supporting

tools that implement these features. In general, libmapper and its associated applications

can be considered more generally within the realm of creativity support tools, and many

of the goals including the facilitation of exploration, experimentation, and collaboration in

open-ended activities that lead to creation of novel artifacts and outcomes (Shneiderman

et al. 2006).

libmapper

libmapper (Malloch, Sinclair, and Wanderley 2014) is a distributed software library to

support the creation of mappings between digital signals in an interactive context. Con-

ceived through needs arisen during a number of collaborative interdisciplinary projects

around DMIs design and implementation, libmapper was designed to support a network

of connected devices that capture and consume control data, and in generally can be used

for real-time interactive multimedia applications beyond musical instruments. The main

features of libmapper include:

• Automated discovery of devices and signals. Instead of explicitly identifying and

connecting devices and endpoints, a libmapper device will automatically advertise

itself on the network along with the signals it contains. This avoids the need to keep

track of IP addresses and ports as described for explicit OSC endpoints in Section

5.1.2.
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• Distributed and concurrent creation of connections and mappings. Connections and

maps between signals can be created and observed on the fly, from multiple users on

the network. This allows rapid changes to be made without having to re-code the

connections and mapping behaviour.

• Semantic labelling of signals. Signals can be defined according to human-readable

names, and the signal characteristics are exposed as metadata for easy identification.

• Signal processing and mapping within the connections. A connection between two sig-

nals in libmapper can be subject to internal processing, basic mathematical operations

like scaling, inversion, filtering, and combining for “many-to-one” (Hunt, Wanderley,

and Paradis 2003) mappings.

• Exposing mapping is a separate, modifiable entity. This allows mappings to be visually

represented and modified using internal tools, not necessarily subject to a single

interaction paradigm.

As a distributed connectivity framework and software library, libmapper is intended to

be incorporated into device drivers that emit information and synthesis applications that

receive them. Once a device is implemented with libmapper interfaces, the signals will

become available on the libmapper network and accessible via an “admin” bus. Tools that

interact on this bus will then be able to initiate point to point connections and mappings

between signals on the libmapper network.

Visual tools that access the “admin” bus allow interaction with all the devices and signals

on the network, and webmapper (J. Wang et al. 2019) is one of these tools. Webmapper pro-

vides a browser based visual interface for interacting with libmapper devices, and presents

multiple views of a mapping, as shown in 5.1.
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Going beyond the different visual representation of the mapping between devices and

signals, we also explored the ability to keep track of the mapping structure as they evolve

over time via a visual “Version Control” paradigm (J. Wang et al. 2017). This was identified

as a useful feature when attempting to restore or evaluate previous configurations of a

mapping during workshop settings.

In Figure 5.2 we present a prototype libmapper-based application that displays a “List”

View (similar to webmapper), but with a user interface that allows states of the mapping

to be saved, browsed, and restored. This feature was motivated through prior experience

where exploration was hampered by the fear of losing prior states of an established mapping

during the workshop setting, which was similarly identified by (Shneiderman et al. 2006).

Fig. 5.2 Screenshot of the “Version Controlled” mapping editor showing
working version (left), and the visual highlighting that reveals differences be-
tween the current and previous versions when interactively browsing through
the history of previously stored versions.

The combination of these tools, supported by the underlying libmapper framework,

provide new ways of interacting with devices and signals in the context of mapping design.

webmapper has been used not only for the creation of mappings, but for research on how

mappings are created (West et al. 2021).
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5.2.1 Implication of Evaluation Findings on Mapping Tools

From the evaluations described in the earlier part of this thesis, we can identify some rela-

tionships between our findings and design considerations for mapping tools and frameworks.

First, we see that from a usability perspective, mapping frameworks such as libmapper

can provide useful features by creating quick connections which can then better expose the

features of flexible standards such as OSC without users having to keep track of explicit

connection endpoints (such as the IP address and ports of receivers, and expected data

ranges). To make use of the more advanced mapping features of libmapper, it would

also be possible to build bridging end-points to bring more standardized devices (such as

legacy MIDI controllers or synthesizers) into the mapping network. For platforms such as

the ESP32 that support the networking stack already, it would be possible to embed the

libmapper framework in the microcontroller firmware. There is on-going work to support

libmapper-compatible sensor interfaces directly5, so that embedded microcontroller-based

devices can appear as standalone libmapper devices without the need for a host system

running a bridging application.

In terms of visual mapping tools, we have described features of webmapper and the

prototype versioning system that provide alternative visual representations of mappings,

and the ability to iterate through previous mapping states in time. From the perspective

of sensor interface performance (such as bandwidth and latency measurements), it would

be interesting to be able to present the live sensor interface and network performance state

into these tools. Such insights will afford users a better awareness of the real-time state of

the devices and isolate potential performance issues. Additionally, the kind of evaluations

we described in the earlier parts of the thesis can also be applied to verify any performance
5https://github.com/mathiasbredholt/libmapper-arduino

https://github.com/mathiasbredholt/libmapper-arduino
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impacts when signals are routed through the libmapper network.

5.3 Application to the T-Stick

In this section we present how the findings presented in this thesis can be applied to an

example device implementation developed at IDMIL from both performance and usability

perspectives.

The author was involved in the redesign of the instrument and supported the construc-

tion of successive versions (Nieva et al. 2018). As the current version of the T-Stick makes

use of an ESP32 microcontroller, it would be possible to implement either BLE or Wi-Fi

based interfaces for communicating with a host system. Following is a presentation of how

the findings from previous sections of the thesis can apply in the context of the T-Stick

implementation.

5.3.1 Scaling Effects

The T-Stick sensor data includes Inertial Measurement Unit (IMU) (9×4-byte floats), pres-

sure (1×4-byte float), and touch data (4 bytes, or more for longer versions of the instru-

ment), and the slowest sensor on the device operates at 100Hz. Based on this information,

we can see that it would be difficult to scale beyond a few T-Sticks via BLE due to the

133Hz maximum per-device message rate and 500Hz total rate across up to five devices, as

observed in Chapter 4.4. On the other hand, Wi-Fi appears to be sufficient for a number of

concurrently operating devices on a single channel. However, as we discovered in Chapter

4.1, the latency increased as more devices were added.

While Wi-Fi has better observed scaling characteristics from both a per-device trans-

mission rate and device multiplicity perspective compared to BLE, we do notice that the
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Fig. 5.3 Two Wi-Fi configurations showing six devices operating on a single
channel versus two groups of three devices on two separate channels.

10ms threshold is exceed between 6 and 7 concurrent devices operating at 100Hz. How-

ever, an ensemble performance consisting of more than 7 wireless T-Sticks is still possible

if either the sampling rate is reduced or additional wireless channels are employed. The

former could be achieved either through the reduction of sampling rates or the exclusive

use of lower bandwidth, high-level performance gestures (Meneses, Fukuda, and Wander-

ley 2020) that are less frequent in duration compared to the raw signals that are used to

compute them. The latter configuration can be implemented using multiple wireless access

points on different channels (or multi-radio access points) connected to a single network,

as shown in Figure 5.3, which will increase the total network capacity. Since there will be

additional networking hardware in between, the actual latency performance will need to be

verified to see if the additional latency is acceptable. However, based on existing knowledge

regarding wired Ethernet performance, this extra latency should be extremely low, and in
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the sub-millisecond range (Loeser and Haertig 2004).

5.3.2 Usability and Connectivity

While Wi-Fi has an edge over BLE when it comes to raw performance, the potential

for BLE-MIDI to operate seamlessly with existing synthesis applications is interesting for

directly connecting to synthesis environments if on-board MIDI mappings, potentially con-

nected to any high-level input gestures (Meneses, Fukuda, and Wanderley 2020) are imple-

mented. This way, after pairing with the host device it would be possible to control any

commercial synthesizer using the T-Stick as an alternate controller, similar to how existing

commercially available keyboard or breath controlled MIDI input devices operate with syn-

thesizers. On the other hand, the Wi-Fi implementation of the T-Stick could potentially

be used with the ESP32 port of libmapper to make use of the auto discovery and mapping

features, and allow the device to be used with the visual mapping tools presented in Section

5.2.
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Chapter 6

Summary, Discussion, and Conclusion

In this concluding chapter, we first present a summary of the findings of the

thesis that addressed the first three primary questions of minimal latency, max-

imum transmission rate, device multiplicity scaling and general compatibility

concerns. We then present ways of extending the evaluations and potential

future directions of the work, followed by some final concluding remarks.

6.1 Summary

In this thesis, we provided an empirical evaluation of wireless sensor interfaces, focusing on

the performance and usability of protocols in the context of DMIs. We first presented the

overall context of the work, as well as related work in existing sensor interface implemen-

tations and latency evaluations.

In terms of evaluations we first focused on the issue of quantifying latency of wireless

interfaces by providing a methodology for, and carrying out, measurements on protocols

including BLE, LoRa, and Wi-Fi on the ESP32 as well as legacy devices to be compared,
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such as in the case of the industrial collaboration presented in Chapter 4.2. Results showed

that a minimum end-to-end latency of around 7ms is possible on Wi-Fi with a maximum

transmission rate of around 2300Hz, suggesting that the Wi-Fi protocol is the most suitable

choice for most of wireless musical applications, provided that designers take into account

its limitations with respect to the number of devices in use simultaneously, the maximum

transmission rate, and background wireless traffic.

We then discussed usability aspects in terms of compatibility and connectivity, starting

with how each tested protocol interoperates with existing platforms and environments.

From there we presented several developments aimed to improve tools in the context of DMI

design, focusing on the support for discovery, connectivity, and mapping. We concluded this

part by presenting an application of the latency measurements and usability considerations

to an existing instrument developed at IDMIL, the T-Stick, showing how our findings can

be applied in a practical example.

6.2 Discussion and Future Directions

In this section we discuss limitations of the presented series of evaluations, as well as ways

that the tests can be extended to include other relevant performance features regarding

wireless interfaces in general.

6.2.1 Limitations of Presented Evaluations

While we have presented a number of tests that provide hardware interface / messaging

protocol comparisons, transmission rate and device scaling, it would be possible to pro-

vide a more comprehensive coverage across these variables. While an exhaustive testing

across all parameters of interest may be unpractical from a time perspective, the following
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combinations may be of interest in the near future:

• Scaling Parameters. While we have experimented with a range of transmission rate

and device scaling, a larger number of configurations could be tested, especially for

Wi-Fi as the maximum available bandwidth is quite high. Additionally, a better

quantification of the total bandwidth from a message payload perspective could be

applied to provide a better understanding of the total carrying capacity of a network

from a practical perspective.

• Host Platform. The evaluations were found for MacOS as the message receiver as

well as synthesis host running Max/MSP. It would be interesting to see if there are

performance differences in terms of message parsing and processing on other platforms

as DMI implementation is not limited to the Apple desktop platform.

• Investigation into BLE Connection Interval. Since the maximum transmission rate

as well as minimum latency is affected by this value and it is relatively high at 7.5ms,

it is worth investigating whether configurations can be changed on the Operating

System (OS) and BLE stack level to yield better performance.

• Routing Hardware Performance. Since we made use of a Wi-Fi router for the tests,

the performance of the particular routing hardware could also be compared with

alternatives to see the impact that routers may have.

6.2.2 Generalized Hardware

In our work the majority of the wireless implementations were done on a single hardware

platform. While this has the benefits of facilitating a direct comparisons of a wireless inter-

face and messaging protocols, it limits our findings to the particular hardware in question,



6 Summary, Discussion, and Conclusion 117

the ESP32 microcontroller. Beyond testing with different hardware implementations, it

would also be interesting to perform tests on commercially available devices such as the

controllers presented in Appendix A. Strategies for triggering such devices, including the

clap-board mechanism described in Chapter 4.5.2, could be used to non-invasively trigger

a manufactured controller, for example.

6.2.3 Jitter, Time-Stamps, and Consistency

One relatively obvious metric that was revealed in our latency measurements was that most

of the interface configurations exhibited a noticeable amount of jitter, that often increased

as the latency values increased due to network traffic. This was evident by the trend

of flatter ECDF curves as the average latencies increased. Like latency, it is not always

clear what the acceptable amounts are for a given application, and thus far studies have

been done on relatively limited contexts such as (Jack et al. 2018), enabled by platforms

where the latency and jitter can be tightly controlled down to the individual sample level

(McPherson 2017). With the availability of such tools, further studies with specific musical

control contexts are possible and are interesting avenues of future research.

As mentioned previously, to counteract jitter it is always possible to add a variable delay

up to the maximum expected latency value, at the cost of increasing the overall latency by

this buffer length (Brandt and Dannenberg 1998). The BLE MIDI (MMA 2015) and OSC

(Freed 1997) specifications both provide built-in and optional times-tamping capability to

messages which can be employed to recover the exact timing behaviour of the messages.

This is especially relevant for strict timing requirements when the messages are passed

through a variable latency system such as a wireless channel.

Overall, the trade-offs between adding latency to eliminate jitter, the context-dependent

requirements for jitter, and the actual amount of jitter present for a given transmission
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channel are interdependent parameters that can be optimized for a particular application.

Finally, when it comes to transmission through a potentially unreliable medium, there is

always the potential for extremely large or completely dropped packets. How the protocol

handles transmission reliability. Dealing with timeouts, re-transmissions, and the general

issue of Quality of Service (QoS) in the context of DMI applications is a general concern

that is a part of the larger issue of reliable and consistent performance of these devices that

can be addressed from both the protocol and application level.

6.2.4 Test Jig, Connection Intervals, and Synchronization

As described in Chapter 4.6, the implementation of the test jig should be done with care to

avoid unintentional synchronization between the measurement device and the system under

test, while understanding that this synchronization may not have an impact and also be

useful under certain conditions. Perhaps another, potentially more important consequence

of this finding beyond the design of the measurement jig itself is on how the sensor inter-

face operates. The timing between successive sampling and transmission on the interface

should not contain any fixed delay loops for rate control to avoid this synchronization issue.

Instead, time-elapsed intervals can be used to control the actual transmission rate.

6.2.5 Power, Range, Reliability, and Other Parameters

While we have mentioned a basic measurement of power consumption as a function of trans-

mission rates for each tested protocol combination in Chapter 4.3, this is an interesting area

of investigation especially when portable battery powered devices are used. At the extreme

ends of the spectrum, finger-worn controllers such as the Spectro Ring 1 or Genkii Wave 2

1https://sphero.com/collections/all/family_specdrums
2https://genkiinstruments.com/

https://sphero.com/collections/all/family_specdrums
https://genkiinstruments.com/
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require extremely compact physical dimensions, and demand the use of small batteries.

Beyond the latency and power performance, another important metric for wireless de-

vice performance is range, and its subsequent effect on reliability as the distance between

transmitter and receiver increases. While not as crucial for tabletop use as the case of

a controller connected to a computer nearby, the range requirements can be greater for

ensemble and stage performance settings.

6.2.6 Additional RF Systems and Topologies

In our work we have primarily focused on RF systems with native compatibility on com-

modity systems (with the exception of LoRa for the one investigation described in Chapter

4.3). One immediate configuration is the newer version of Wi-Fi operating on the 5Ghz

band that has more bandwidth and less interference (Gast 2005). While it is readily avail-

able on some embedded platforms such as the current generation Raspberry Pi and various

mobile devices, it has yet to become accessible on microcontroller based devices. Even more

recent implementations such as 802.11ax (or Wi-Fi 6) (Bellalta 2016), as well as other po-

tentially interesting emerging technologies include Bluetooth Mesh (Baert et al. 2018) and

5G cellular (Turchet et al. 2018) are also of interest for future evaluation as they become

available.

Perhaps of further interest, is how these different networking solutions could offer better

connection topologies that could be more fitting for a particular application. In our inves-

tigations we have primarily dealt with the minimal latency measurements associated with

a sender transmitting to a single receiver, and the scaling of devices assume a single cen-

tralized synthesis system that processes all the data. While this is sufficient for obtaining

the performance of this connection topology, a different application may require a different

connection structure. Some examples of this is a one-to-many situation as presented in
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(D’Alessandro et al. 2012; Hattwick, Franco, and Wanderley 2017) where a single central

coordinator transmits control messages to a number of receivers that synthesize output

individually. Such a configuration would then be more suited to a broadcast configuration.

6.2.7 Towards an Evaluation Framework for Sensor Interfaces

One final, perhaps indirect contribution of this thesis is the establishment and on-going

development of the set of open-source tools for evaluations. Building upon the work first

presented by (McPherson, Jack, and Moro 2016), we hope to collaborate in building a

community of users around an accessible set of tools to verify the performance of sensor

interfaces and protocols used by the DMI community. All the source code, hardware

schematics, and circuit diagrams have been made available on a public repository3. One

potential avenue to publish a centralized database of findings is a public forum such as

SensorWiki (Wanderley et al. 2006) where the evaluation results can be disseminated across

the global community, in addition to the traditional avenues of conference and journal

publications.

6.3 Conclusion

In this thesis, we have presented the motivation and evaluation of wireless sensor interfaces

in the context of DMI design. Having presented the initial context and motivation for the

work, we described our evaluation system which was constructed from a user application

perspective that provides empirical measurements of protocol performance that resembles

specific deployment settings (i.e. using available software and hardware found on commodity

computational devices). While there were specific constraints on the choice of hardware
3https://github.com/IDMIL/interface-tests

https://github.com/IDMIL/interface-tests
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and protocols, they also resemble what would be realistic choices encountered from the

perspective of a DMI designer who is not necessarily interested in low-level implementation

details of custom RF hardware. At the same time, the presented system of evaluation can be

used for any system that contains the basic features of converting an input signal to output,

and we have demonstrated ways of adapting the system to work with audio-to-audio, and

in conjunction with other media systems such as a motion-capture device.

In terms of measured results, we clearly see a performance advantage of Wi-Fi based

interfaces that is consistent with prior research in the literature showing its relatively good

latency (McPherson, Jack, and Moro 2016) and bandwidth (Mitchell et al. 2014) perfor-

mance. However, we also acknowledge that in a potentially unreliable transmission medium,

there is always the chance of dropped packets due to network congestion or interference,

and such wireless channels are not always controllable in a performance setting.

Overall, despite the limits of wireless interfaces from a performance perspective as re-

vealed by the various evaluations presented in this thesis, its convenience and widespread

availability make it usable in DMI applications provided that the limitations are well under-

stood. As new and improved wireless technologies are released, we hope that the increased

adoption of the testing methodology presented in this thesis can be adapted towards pro-

ducing more readily available evaluation data on emerging devices.
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Appendix A

Examples of Commercially Available BLE-MIDI Devices

Manufacturer Model Device Type Details
ACPAD ACPAD Guitar Controller Buttons attached to guitar
Artiphon Orba Touch / tap Controller Touch and motion
Artiphon INSTRUMENT 1 Guitar-like Controller Strumming, fretting, pressing
CME X-Key Air Keyboard Controller MIDI Keyboard
CME WIDI Bud USB to BLE-MIDI Adapter Conversion adapter
Genki Wave Fingertip Motion Motion and touch
Isla KordBot Chord Controller Knobs, buttons, sliders
Livid Minim Control Interface Knobs, buttons, sliders
Korg micro/nanoKey Keyboard Controller MIDI Keyboard
Quicco mi.1 MIDI to BLE-MIDI Conversion adapter
Roland Aerophone Series Wind Controller Wind controller and synthesizer
Roland WM-01 BLE Adapter Conversion adapter
ROLI Blocks Control interfaces Reconfigurable control surfaces
ROLI Seaboard Keyboard Controller Multi touch membrane keyboard
Sensel Morph Reconfigurable Interface Multi-touch membrane surfaces
Sphero Specdrums Percussion Controller Colour sensing trigger ring
Yamaha SHS-500 Keytar Controller BLE and USB MIDI Controller
Yamaha MD-BT01 MIDI to BLE-MIDI Conversion adapter
Yamaha UD-BT01 USB-Host to BLE-MIDI Conversion adapter
Zivix jamstik Guitar Controller Guitar-like controller
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Appendix B

Latency Hardware

B.1 Latency Jig Schematic
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Fig. B.1 The schematic of the latency jig. Both channels of the comparator
are connected for future expansion, but only a single channel is used for the
evaluations described in this thesis.
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B.2 Latency Jig PCB Layout

Fig. B.2 The PCB board layout of the latency jig Arduino “Shield”. It is a
simple two-layer board that can be cheaply manufactured by most PCB board
houses, and the components are large for placement and soldering by people
with novice electronics skills.
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B.3 Latency Jig Bill of Materials

Table B.1 The Bill of Materials for the latency measurement jig, which
contains a single comparator IC along with supporting discrete components of
resistors, capacitors, and LEDs.

ID Name Designator Footprint Quantity
1 ARDUINO_R3_SHIELD J1 UNO_R3_SHIELD 1
2 TLED LED1 LED-3MM/2.54 1
3 RLED LED2 LED-3MM/2.54 1
4 T_5V P1 HDR-1X2/2.54 1
5 Aret P2 HDR-1X2/2.54 1
6 Dret P3 HDR-1X2/2.54 1
7 T_3V P4 HDR-1X2/2.54 1
8 Ain P5 HDR-1X2/2.54 1
9 Din P6 HDR-1X2/2.54 1
10 33k R1,R5 AXIAL-0.3 2
11 3.7k R2,R6 AXIAL-0.3 2
12 2.2k R3,R7 AXIAL-0.3 2
13 1k R4 AXIAL-0.3 1
14 330 R8,R9 AXIAL-0.3 2
15 TACT SWITCH 6MM S1 TACT6MM 1
16 LM393P U1 DIP-8 1
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