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Abstract

The object of this thesis is to present various applications of the theory of cos-
mological perturbations. Within are contained a number of manuscripts, each
concerned with a separate aspect of the theory. The thesis itself begins with a
general overview of cosmological perturbation theory designed to be accessible
to the non-specialist. Both the classical and quantum first order theory are
considered. Back-reaction, via the formalism of the Effective Energy Momen-
tum Tensor (EEMT) is reviewed. Subsequent chapters are more specialized
dealing with various applications of the theory. At first order, topics discussed
include the classicalization of cosmological perturbations (chapter 2), and the
effects of including the dilaton and its fluctuations on a novel mechanism
for the production of inhomogeneities in string gas cosmology (chapter 3).
At second order, an original solution to the Dark Energy problem is proposed
(chapter 4), and the effects of back-reaction on the power spectrum, including
the spectral index and the gaussianity, are examined (chapter 5).
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Résumé

Cette theése vise a présenter diverses applications de la théorie des perturba-
tions cosmologiques. En ce but, plusieurs manuscripts, traitant de différents
aspects de cette theéorie, seront introduits. La thése elle-méme débute par un
survol de la théorie des perturbations cosmologiques, se voulant accessible auz
non-initiés. Les formalismes classique et quantique sont tous deux abordés,
ainsi que la méthode du Effective Energy Momentum Tensor (EEMT). Les
chapitres suivants se concentrent sur diverses applications de la théorie. En
premier lieu, les sujets discutés comprennent une classification des perturba-
tions cosmologiques (deuziéme chapitre), ainsi que les effets de lajout du
dilaton & un nouwveau mécanisme de production d’inhomogénéités dans la
cosmologie des cordes (troisiéme chapitre). FEnsuite, le quatriéme chapitre
présente une solution originale au probléme de [’énergie manguante, et les
effets de la ”backreaction” sur le spectre de puissance, y compris ['index spec-

tral et la gaussianité, sont examinés au cinquieme chapitre.
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Chapter 1
Introductioh

Modern cosmology is a field dominated by a relatively small number of ex-
traordinary challenges. These problems run the gamut of cosmological epochs
ranging from the very early universe (What was the mechanism for inflation?
What set the initial conditions?) to current times (What is the source of Dark
Energy? What sets the scale of Dark Energy?). One of the most exciting
things about cosmology is that it serves as a testing ground for fundamental
theories, many of which would be hard to connect to reality except through
their impact on the universe on a large scale. Many attempts to resolve
the above-mentioned problems draw on physical theories which are radical
departures from conventional cosmology. By this, we have in mind string
theory in its various guises, ranging from String Gas Cosmology [1] to Brane
World models [2], as well as slightly less exotic models such as Loop Quantum
Cosmology [3], and Causal Set Quantum Gravity [4]. Despite the author’s
own acquaintance with string-motivated model-building (see, for example,
[51,[6],[7],[8]), the aim of this thesis is not (for the most part) to introduce
new theories on the origins of the universe or to posit entirely new theoretical
frameworks but rather to examine the effects of more conventional physics
and to explore their ramifications more fully. The unifying theme of this

thesis is the theory of primordial fluctuations, and the aim is to show that



the theory is rich and can be used to explain a variety of phenomena.
The aim of the current chapter is to provide the reader with a comprehen-

!, The approach

sive overview of the theory of cosmological perturbations
mimics that of [9] and particularly that of [10] which we’ve shamelessly pil-
fered for stylistic touches. The approach is conventional and follows the
standard treatment: we begin by motivating and developing the Newtonian
theory, we extend the results to the relativistic theory, and then review the
quantum formulation. Due to the importance of back-reaction to this thesis,
the classical theory is considered up to second-order and the formalism of
the Effective Energy-Momentum Tensor (EEMT) [11],[12] is presented. It
is hoped that this provides an accessible introduction to the basic tenets of
the theory of cosmological fluctuations but it should by no means be seen as
a complete overview: numerous important topics are only briefly mentioned
(for example, issues of gauge) while some are omitted entirely (for example,
the theory of CMB anisotropies). Nonetheless, the topics presented in the
introduction should provide a basis to understand the salient features of the
overall thesis and it is hoped that the reader will find the presentation clear.
This author has no intention of rivaling the excellent presentations already
extant in the literature - we have in mind [9],[10],[13],[14], for example - and
the reader who finds our explanation of a certain point lacking is encouraged

to refer to those sources.

1.1 Motivation

Before embarking on our exposition of the theory, some motivation for its
existence would be fitting.

The field of experimental cosmology concerns itself with observing a num-
ber of phenomena: many of these, such as the anisotropies in the cosmic mi-
crowave background (CMB) or the statistical properties of clusters of galaxies
would, at first glance, appear to be completely unrelated. However, the the-
ory of cosmological perturbations unifies these effects and shows them to
be a consequence of a single physical principle operating over an enormously
large range of scales. Using a minimal set of parameters, the theory of cosmo-

logical perturbations proves able to predict and explain many of the results

!Throughout, the terms cosmological perturbations and primordial fluctuations are
used interchangeably. By both, we mean small amplitude perturbations of both the back-
ground metric and matter.



experimentalists obtain from their observations of the cosmos.
Out of the basic 11 cosmological parameters [15], 3 are directly pertaining

2 while attempts have been made to explain

to cosmological fluctuations
others in terms of the fluctuations themselves (see, for example, chapter
4). Clearly, the ability to predict and reduce the number of cosmological
parameters is a great boon for the theory - not to mention a benefit to
cosmology in general.

In addition to this, the theory can be used, indirectly, to obtain accurate
values of many of the remaining cosmological parameters 3. An important
result of experimental cosmology is the observed spectrum of anisotropies
in the cosmic microwave background. The anisotropies are themselves pre-
dicted to exist and their subsequent behaviour falls within the realm of the
theory. Matching theory and experiment leads to strict bounds on the value
of cosmological parameters.

Another use of the theory is in distinguishing between different models
of the early universe. The standard interpretation of cosmology - where a
period of inflation is assumed to have taken place - leads to the requirement
that cosmological fluctuations were created in the epoch that preceded re-
heating. Again, requiring agreement between theory and observation limits
the theories pertaining to the very early universe to that class which predicts
a nearly scale-invariant (n & 1) spectrum of perturbations. In this way,
not only do fluctuations limit the parameter space of cosmology as explained
above, they also help constrain the “theory space” available to researchers.

Having briefly motivated the importance of the role played by fluctua-

tions, we now turn to their study.

2 A% (k,), the density perturbation amplitude, n, the density perturbation spectral

index, and r, the tensor to scalar ratio
3By remaining, we mean those parameters that are neither directly related to the

fluctuations themselves nor those can be explained in terms of them, such as H, par, 7,
ete.



1.2 The Classical Theory

1.2.1 The Basics - Newtonian Gravity

Despite Newtonian gravity being of limited practicality in cosmology 4, it is
useful in helping to develop an intuition for the properties and behaviours of
gravitational perturbations. Since General Relativity reduces to the Newto-
nian theory, we expect the results obtained here to be valid in the context of
cosmology proper, (at least in the Newtonian limit of small masses and large
distances).

Consider a flat, non-expanding background permeated by homogeneous
matter, the latter characterized by the single parameter p, representing the
energy density of the matter. In the limit of pure homogeneity, no non-trivial
dynamics are possible and the theory is hardly more interesting than the case
of empty space.

Introducing inhomogeneities, dp, - specifically, a local excess of energy
density - results in the creation of attractive gravitational forces distributed
in concordance with the inhomogeneities throughout the background. In
accord with Newtonian dynamics, the magnitude of the attractive force is
proportional to the local matter excess, which leads to the following form for

the equation of motion:

§p ~ Gép, (1.1)

where we’ve introduced G, the gravitational constant, and the overdot de-
notes a time derivative. As this is an attractive force, we see that the in-
troduction of fluctuations in a static background leads directly to runaway,
exponential instabilities. The severity of the stability can be attenuated by
considering a dynamical background, as we will see later. Without specifying
the properties of the matter, there is little else that can be said about this
model aside from emphasizing its drastic instability. For this reason, we turn
to the next simplest scenario, namely the case where our matter is a perfect

fluid.

4By this, we mean that the theory can’t adequately take into account the case of an

expanding universe. In other words, it can only be used in the study of sub-Hubble scale
phenomenoa. For example, Newtonian gravity does provide a satisfactory explanation of

non-relativistic phenomena i.e. structure formation



1.2.2 One Step Up - The Perfect Fluid

We now focus our attention on a more sophisticated type of matter, the
perfect fluid °.
In this case, the dynamics of the fluid are governed by the equation of

state as well as the basic hydrodynamical equations,

p+V-(pv) = 0
V+(V-V)V+%Vp+Vg0 = 0

Vi = 4rGp (1.2)
S+(v-V)§ = 0
p = p(p,S).

The variables are identified as follows: p is the pressure, p the energy
density, S the entropy density, v the fluid velocity, and ¢ is the Newtonian
potential. The derivative with respect to time is indicated by the over-dot.

As before, the case of a homogeneous and isotropic (with respect to v)
distribution is of no physical interest. In order to make use of this model, we

introduce perturbations in our fluid variables of the form

= po+dp
v = v
p = po+op (L.3)
¢ = o+ 0y
S = Sp+48S,

where it is understood the that background quantities (denoted by the sub-
script o) comply with the requirement of strict homogeneity and isotropy.
Introducing these new variables in (1.3) and linearizing immediately

yields,

0p+ V- (0pv+piv) = 0

5The reader is reminded that a perfect fluid is completely characterized by its energy
density p, and pressure p as measured in its rest frame. Furthermore, perfect fluids
experience no shear stresses, viscosity or heat conduction. Clearly, this has the advantage
of minimizing the amount of phenomenological parameters while still maintaining a certain

level of realism.



(5\'f+(6v~V)v+(v-V)5v+%V5p—-§§Vp+V(5<p = 0
V3o = 4rGép (1.4)

88+ (0v-V)S+(v-V)§S = 0
ép = 0p(p,S,dp,05),

which, when combined, lead to the dynamical equation

6p — 2V2%6p — AnGpodp = V68, (1.5)

and the constraint equation

68 = 0. (1.6)

In the above, we’ve introduced the speed of sound, ¢;, defined by

2:@|
s dpS)

and ¢ is a quantity which appears in the equation of state and can be defined

C

(1.7)

through the relation

068 = dp — c2dp. (1.8)

(1.5) is our first non-trivial result. It tells us that there exist two distinct
types of fluctuations: entropy fluctuations, 4.5, and density fluctuations, dp.
Furthermore, we see that entropy fluctuations act as a source for density fluc-
tuations. As we’ve identified the dynamics of the system, we are in position
to make some general statements about adiabatic and entropy fluctuations.
The first, and least interesting, is that the 45 are necessarily static. Sec-
ondly, if follows from the above that adiabatic perturbations are generally
time dependent. Finally, although the presence of 65 implies the presence
of dp, it is important to realize that the reverse does not necessarily follow.

Having pointed out the existence of two distinct types of fluctuations,
we now introduce some jargon. In the case of a vanishing §S (as occurs
when one considers a fluid with only a single component), the fluctuations
are referred to as adiabatic. Otherwise, the non-vanishing 4.5 is, to no great
surprise, termed an entropy fluctuation.

We've discussed entropy perturbations for the sake of completeness but

the results of this thesis are concerned exclusively with the effects of adiabatic



fluctuations. As a consequence, we ignore the effects of entropy perturbations
in the discussion that follows.

An intuitive physical interpretation of (1.5) is readily available. Ignoring
entropy perturbations, our dynamics are identical to those in the previous
section save for the presence of fluid pressure (denoted by the gradient term).
We find that the dynamics of adiabatic perturbations are governed by the
competing effects of fluid pressure, which act to smooth out the perturbation,
and gravitational attraction, which acts to amplify it.

An important point to mention is that (1.5) implies the existence of an

intrinsic scale Ay, denoted the Jeans length, given by

™
Ay = 03(5[)—0)1/2. (1.9)

The Jeans length is important in that it serves to distinguish between
two distinct qualitative behaviours of the solutions to (1.5). For modes with
wavelengths far longer than the Jeans length, the equation of motion reduces

to

0p — AnGpodp =~ 0, (1.10)

whose solutions grow exponentially, while those with wavelength less than

As obey the equation

§p—c2V%p ~ 0 (1.11)

with oscillatory solution. ’

In this model, the presence of the Jeans length tells us that there are two
different forms of solutions. For those solutions of large spatial extent, we see
that the pressure is incapable of keeping the gravitational attraction in check
with the result that the amplitude of these modes face unrestrained growth.
Meanwhile, small-scale perturbations experience an interminable cycle of al-
ternating pressure domination followed by gravity domination which serves
to limit the strength of these fluctuations.

As the theory increases in complexity, we will find that the presence of
a homolog to the Jeans scale persists, although the particular behaviour
experienced by modes on both sides of the scale are markedly different than

in this specific case.



1.2.3 The Effects of a Dynamical Spacetime

We are now able to consider the effects of embedding our simple hydrody-
namical model within an expanding spacetime. In order to accommodate
this new level of complexity, we introduce physical, x, and co-moving, q,

coordinates related through

z(t) = a(t)q(d), (1.12)
with a(t) playing the role of the scale factor.

Following the same procedure as in the previous section, our new dynam-

ical equation takes the form

. a,.. ¢ oV?
0p + 2(5)5/) - §V§5p — 4w Gpedp =

a?po

58, (1.13)

and

68 = 0. (1.14)

The novelty of a dynamical background has led to the introduction of a
new term within the equation of motion (proportional to the expansion rate,
a) which acts to dampen the perturbation - clearly, an expanding spacetime
acts to diffuse the amplitude of the fluctuations.

As before, the presence of the Jeans scale separates our solution space
into two distinct regions. An approximate solution valid on small scales has
the form

t dt’

1 :
Ox(t) ~ mexp(:l:zcsk/ m), (1.15)

while, on larger scales, and if p = 0, our solutions take on the form of power

laws such as

Sp(t) ~ crt?® 4 ot (1.16)

As we can see, the inclusion of cosmological expansion has significantly
changed the qualitative behaviour of the fluctuations. It has, to a certain
extent, tamed the instabilities present on large scales as well as ensured that
perturbations on small scales are not free to persist indefinitely; rather, we

see that they must eventually dampen out.



Having built up a certain level of intuition about the behaviour of our
solutions, we now turn an eye to the general relativistic theory, which we will
make exclusive use of in this thesis. We will see that the results on small
scales will correspond to those of the present section, but that large scale
effects will be different yet again.

1.2.4 The General Relativistic Theory

So far, the theory presented is perfectly adequate for describing perturba-
tions on scales much smaller than the Hubble length. However, for large
scale fluctuations - in a cosmological context, the separation between large
and small is naturally effected by the Hubble scale - we’d expect general
relativistic corrections to be important. General arguments in inflationary
cosmology suggest (see, [11]) that the phase space of fluctuations is domi-
nated by the infra-red sector. As well, promoting the metric to a dynamical
degree of freedom allows for the possibility of metric fluctuations in addition
to matter perturbations. This detail is crucial in determining the effects of
super-Hubble modes on the CMB (see, for example, [16]). For these reasons,
we now consider the fully relativistic theory.

Our approach is to consider the spacetime given by

G = 9 + 69, (1.17)

where gl(f,’) denotes a FLRW metric - homogeneous and isotropic so that

99 = g9, (1.18)

while dg,, remains a completely general (albeit, small by assumption) per-

turbation

5g;w = 5guu(X, t)~ (119)

In general, the above expression will be decomposed in terms of scalars,
vectors, and tensors. Below, we examine the contributions to dg,, arising
from each type of fluctuation. If we decompose the components of dg,,

entirely in terms of scalar quantities, we find that we can write °

6 About notation: commas denote partial derivatives, semicolons indicate covariant
derivatives, and d;; is the Kronecker symbol



2 ~B,
gy = @ ¢ ! , (1.20)
—B; 2(di; — E4j)

where we’ve identified our four separate degrees of freedom - one for each
spacetime dimension. We will see below that constraints arising from the
need for gauge invariance will reduce the number of degrees of freedom.
The presence of a? is conventional and serves to reduce the complexity of
the resulting equations of motion. Its presence is perfectly natural as the

background can be written (in conformal coordinates)

gl“’ = a27)w/, (121)

where 7, represents Minkowski space.

The vector contributions to the perturbation take the form

0 —S;
ag,w=a2( L ) (1.22)
=i Fig Ly

where S; and F; are divergenceless vectors. The requirement that they be
divergenceless arises from the following reason: if S; or F; weren’t diver-
genceless, these vector perturbations would contain a hidden, scalar degree
of freedom of the form ® = 6S;.

Finally, the contribution to the fluctuation in terms of tensors gives

0 0
(59,“, = —a,2 ( O h ) , (123)
%

where h;; is trace-free (again, to avoid the presence of a scalar perturbation)
and divergenceless (to eliminate any vectors). It can be shown, (see, for ex-
ample [17]) that the number of independent degrees of freedom in the tensor
case is 2 - in other words, gravitational waves have two distinct polarization
states.

In summary, the most general expression for a perturbed spacetime is

59/.w — 6g;(icalar) +5gl(;1)/ector) +5gl(LtUensor). (124)

This potentially imposing expression gets simplified in two important
ways: requiring gauge invariance substantially reduces the number of inde-
pendent degrees of freedom, and some very general properties allows us to

ignore other variables.

10



It can be shown by examining the equations of motion that the amplitude
of the vector perturbations decay rapidly in time. Furthermore, their pres-
ence at recombination would lead to an important B-mode component in the
CMB polarization, which has not been observed. As a result, we can safely
ignore any vector contributions to dg,,. Furthermore, tensor contributions
to dg,, can also be disregarded on the basis that gravitational waves don’t
couple to matter (at least, scalar matter) at first order due to the impossi-
bility of writing a fully covariant term in the stress-energy tensor linear in
hij. The result is that dg,, is well approximated by its expansion in terms of
scalars alone. Therefore, we are left to consider a perturbed line of element

of the form

d82 = Ct?] [(1 =+ 2¢)dt2 — B,zdl'zdt + ((513 + 2(1/)5” - E,ij))dﬂ?id.’l}j], (125)

which acts as an excellent approximation to our physical spacetime ”

We must now turn to issues of gauge transformations and determine the

corresponding effects on dg,, .

1.2.5 Gauge Transformations

In line with the philosophy of General Relativity, the spacetime labels (x,t)
carry no intrinsic physical meaning. As our theory must apply in all co-
ordinate systems, it follows that our scalar variables ¢,1, B and E, being
components of a tensor, should not be expected to represent physical (ob-
servable) degrees of freedom. The observables we seek must be true scalars
i.e. they must be invariant under coordinate transformations. Although we
can’t anticipate ¢,%, B and E as having this property, we can expect (or, at
least, hope) that certain linear combinations of these variables will be gauge
invariant. Our present goal is to show precisely what these combinations are
and to express dg,, in terms of new, gauge independent variables.

In a four dimensional spacetime, we have four independent gauge degrees
of freedom: these correspond to the four infinitesimal coordinate transfor-
mations

at — =gt & (1.26)

"The fact that this is a successful approximation is confirmed by the accuracy with
which the observed CMB anisotropies can be predicted by the theory using this form of
the line element.
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We impose a space and time separation on our gauge transformations so
that they have the form

g = ¢, (1.27)
& =& +9"BJ. (1.28)
£i is transverse and g¥ represents the spatial components of the background
metric. Note that by this separation, we’'ve introduced two independent
scalar functions, £ and 3. The three components of £, reduce to two inde-
pendent components due to the constraint imposed by transverseness. Thus,
overall, we find that our four independent gauge transformations are param-
eterized by 2 scalars (£°,3) and 2 vector components (the two independent
components of &,.). Had we included tensor modes, we would have found
that the combined requirements of symmetry, tracelessness, and transversal-
ity lead immediately to gauge covariance - our two tensor degrees of freedom
would correspond directly to two physical, tensor degrees of freedom. Again,
we have two linearly independent tensor degrees of freedom. For reasons
noted above, we disregard all but the scalars and determine the transforma-
tion properties of our set of (¢,v,E,B) in terms of (£°,3).
It can be shown that [9]

A )
B = B+¢ -4 (1.29)
E = E-3
b o= v+le,
a

where we’ve used conformal time, 1, and / = 0,).

The above completely characterizes the transformations properties of our
metric variables in terms of our gauge parameters. As we only have two
independent scalar gauge parameters, we must have only two independent
scalar observables. At this point, we can pick one of two ways to resolve the
gauge ambiguity 8. The cleanest approach is to form a pair of gauge-invariant

metric variables. By inspection, we see that

®:=¢+a@~E%f (1.30)

8By gauge ambiguity, we mean the existence of four metric variables but only two gauge

variables.
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v o= w—%’(B~E’). (1.31)

satisfy this requirement. Therefore, any effect calculated in terms of & and
U must be observable in virtue of their gauge invariance.

The other option open to us is to fix the gauge by hand. This has the
drawback (or, in certain cases, the advantage) or presenting us with a large
number of equivalent choices. The transformation equations do not suggest a
preferred gauge but a few gauge choices prevail in the literature. Synchronous
gauge, defined by dgg; = 0, or,

A2y nen, = a2 (M)[—(1 4+ 20)dn* + (855 + 2(6i; — E5))datda’].  (1.32)

is a popular choice with an important drawback - it is not, properly speaking,
a gauge choice as it leaves three degrees of freedom °, while another popular
choice is longitudinal gauge (B = E = 0).

Longitudinal gauge has the interesting property that the gauge-fixed vari-
ables v, ¢ coincide exactly with the gauge-invariant variables ¥, ®, as can
be seen from 1.31.

In this thesis, we will exclusively make use of longitudinal gauge (or,

equivalently we only employ gauge-invariant variables).

1.2.6 The Fully Relativistic Equations of Motion

Our starting point is, naturally, the Einstein equations

G, = 87GT,,. (1.33)

A note on the stress-energy tensor, T),,: in order to maintain generality
but still benefit from simplicity, we model all matter in terms of a general

scalar field, ¢. As discussed above, in addition to our matter fluctuations

given by

o(Z,m) = @o(n) + d(Z,n), (1.34)
(in the above, ¢ is the matter field which leads to the background con-
figuration ggl’,) we must consider the presence of a perturbation about a

homogeneous and isotropic metric which we write as

9Corresponding to four degrees of freedom with only one constraint.
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guw (@) = gl () + 89, (T, n). (1.35)

In order to determine the dynamics of the fluctuations, we expand the
Einstein equations in terms of the amplitude of the fluctuations (which, by
assumption, is small) and linearize.

A complication arises when we realize that the components of 6G¥ and
0T# are not gauge-invariant: this difficulty can be circumvented by employing
the gauge-invariant quantities defined above.

Our gauge-invariant metric ansatz is

ds? = a*()[(1 + 2¢)dn?® — (1 — 2¢)6;;dz*dz], (1.36)

and the perturbed Einstein equations take the form

~3HHp+¢') + V3 = 4nGa’sTy

(Ho+4"); = 4nGa*sTy, (1.37)
and
[(2H +H?)¢p + H¢ + ¢ + 2HY'|0% +
VD95~ g (G- vl = ~AnGa¥T,, (139
where y
H=-— (1.39)

Our first useful result is immediate: in the absence of anisotropic stress
(i.e. 6T; = 0), (1.38) implies that ¢ = .

We can simplify our equations further by making an ansatz for the form
of the matter Lagrangian. If we take

s = [day=aleea -V, (1.40)

we obtain

V2 —3H¢ — (H +2HY)¢ = 4nG(pydp + V' a26p)
¢ +Hp = 4nGyydy (1.41)
¢ +3HY +(H +2HY) = 4nG(pdyp — V' a®dyp),
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Our system of two degrees of freedom with one constraint can be reduced
even further to

¢”+2< —%)d—v%m(%—?{%ﬁ;)qs:o. (1.42)

As we could have expected, our equation of motion shows many features
in common with the Newtonian EOM. As before, the dynamics are essentially
those of a damped harmonic oscillator. The cosmological expansion again
plays a role in the damping with an additional contribution arising from the
matter field.

On small scales (« H™!), our solutions are again represented by damped
oscillations - as they must be as this corresponds to the Newtonian limit.
We again note the presence of an intrinsic scale in the EOM. In this case,
the Jeans length is replaced by the Hubble scale (H = a(n)H™!). For
solutions on scales greater than H~!, we find that the amplitude “freezes
out” - in other words, the amplitude becomes static. This result is crucial in
understanding the observable effects of the fluctuations and serves to greatly
simplify calculations.

Properties of the Solutions

Having discussed the behaviour of the individual modes of 1.2.6, we now
consider the characteristics of the spectrum as a whole.

The standard lore is that fluctuations originated during an early period of
inflation. These were spontaneously produced from quantum vacuum pertur-
bations. Rapid cosmological expansion stretched the vast majority of modes
out to scales far larger than the Hubble scale As was discussed above, modes
on scales larger than H freeze out. .

Rapid expansion had the effect of obliterating any features present in
the spectrum and any indication of a preferred scale. The result is a scale-

invariant (or Harrison-Z’eldovich) power spectrum P, (k) defined by

Py(k) = k°|dp(k)[*, (1.43)

such that

P,(k) ~ k"1, (1.44)
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with n = 1, where n is the spectral index.
A more intuitive quantity is the density profile, § = éf and this can be

related to the above quantity via the Poisson equation to yield:

[8el* ~ K*|0g (k). (1.45)

The position space quantity of relevance is the mass fluctuation contained

within a sphere of radius r, which we take to be of the form
(5M

M

Having assumed a reasonably long period of inflation - which is substan-

(r,te(r))* ~ri7m, (1.46)

tiated by a number of observations i.e. the measured flatness of the universe,
the paucity of topological defects, etc. - has led to a theoretical prediction for
the spectral index, n. The experimentally determined value of nis 0.951%9915
[15], which lends weight to our naive explanation of the form of the power

spectrum of fluctuations.

1.3 Quantum Theory

In the previous section, we made allusion to the mechanism of production
of primordial fluctuations and we pointed out that the characteristic scale
of production corresponds to the scale of inflation. The magnitude of H
during inflation is generally considered to be a few orders of magnitude below
the Planck scale, Mp;. Observational constraints from gravitational wave
spectrum suggest that the scale of inflation would have been < 10'7GeV
[157] while the usual value is taken to be H ~ 10'*GeV which follows from
COBE. Any processes occurring on such minute length scales are expected
to be quantum mechanical in nature - clearly, our classical theory should
not be used to describe the behaviour of perturbations during the earliest
cosmological epoch. With this in mind, we now turn to the quantum theory
of cosmological perturbations.

In the absence of a quantum theory of gravity, we find ourselves in a
bit of a quandary: how are we to reconcile quantum mechanics with general
relativity in order to produce a sensible, renormalizable theory? Luckily, the
theory is saved by an experimental fact - the amplitudes of fluctuations on
scales of interest are much smaller than unity. This immediately suggests

that a perturbative, semi-classical approach might bear fruit.
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Our starting point is the Einstein-Hilbert action coupled to scalar field

matter:
S = /d4x\/—_g[_—R + laugoa“go —V(p)]- (1.47)
l6rG 2

Our approach will consist of introducing fluctuations in our physical de-
grees of freedom and expanding our action about the background up to second
order in the fluctuation amplitude - correction terms will be negligible since
the amplitude of the fluctuations is measured to be of order 107°. So far,
the treatment seems identical to our approach in the classical case. The dif-
ference arises when, after having expanded, we quantize our action '° which
leaves us with a semi-classical theory - a quantum field propagating in a
classical spacetime.

We take as our ansatz an FLRW background in conformal coordinates
and a spatially homogeneous background scalar field, ¢o(7):

ds” = a’(n)[(1 + 2¢)dn* — (1 — 2¢)dz?, (1.48)

@(n,%) = po(n) + dp(n, T). (1.49)

Note that we’ve dispensed with issues of gauge by choosing gauge-
invariant quantities. If we assume an anisotropic background, the Einstein
equations impose the constraint ¢ = .

The next step is trivial but considerably long - expressing our action in
terms of the relevant degrees of freedom. We spare the reader the tedious

algebra and simply quote the result from [9]:

- 1—6%6 /d4x(a2[—6(1//)2 - 2¢,i(2¢,i - V,Z),z) + 87rG(5g0’2 — 590,21' — V:W,az&oz)
+ 167G(¢o(¢ + 34)'0p — 2V,0%00) + —(167Ga’ 00 (¢ + 39))
(1.50)

We are now forced to introduce a change of variable in order to reduce the
above action to canonical form. For this purpose, we introduce the so-called
Mukhanov variable,

v=ﬂ@+%d (151)

In terms of v, our action becomes

10The action is renormalizable since no terms are of order great than 2
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1 4 1 12 i 2
S = —/d v — vt 4+ —v, (1.52)
2 Z
with
N
a/
H = = (1.54)
and
d

Quite generally, direct calculation shows that z(n) ~ a(n) in slow-roll
and power law inflation. This follows immediately from that fact that H =
constant and thus H ~ @~ 1/a

We recognize (1.52) as the action for a harmonic oscillator (not surprising
as we’ve expanded to second order) with a negative, time-dependent mass.
In fact,

Z”

—~ a(n). (1.56)

This result is quite clear. By placing the field v in our dynamical back-
ground, the mass of each mode varies as the scale factor. We can easily
interpret this result using a particle interpretation - as the spacetime in-
flates, the number of particles in each mode grows in step with the scale
factor.

Quantizing (1.52) is straightforward and can be accomplished in a number
of ways [20] as it describes a field with time-dependent mass propagating in
a flat, static spacetime.

The initial conditions for our field are taken to be vacuum - we don’t
trouble ourselves with the lack of an unique vacuum in de Sitter space -
usually taken to be the Bunch-Davies vacuum.
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1.3.1 The Quantum Hamiltonian and Squeezed States

The Hamiltonian corresponding to the above action can be written down in

second quantized form:

- .z'
H = / *Elk (afag +a' pa_g +1) =i (aga_g - he)]. (1.57)

f

Here, az

and aj correspond to creation and annihilation operators, respec-
tively.

The first term in the brackets represents back-to-back harmonic oscilla-
tors, in phase such that the system has no net momentum. The second term
leads to the “squeezing” of the oscillators on scales larger than the Hubble
radius H~1(t) (on these scales the second term in (1.57) dominates over the
spatial gradient terms coming from the first term in the equation of motion
for v). On these scales, the squeezing results in an increase in the mode

amplitude
wk(n) ~ 2(n) ~ a(n), (1.58)

where the second proportionality holds if the equation of state of the back-
ground geometry does not change in time. We take this to be the case in our
analysis.

This Hamiltonian leads immediately to a particular set of states known
as squeezed quantum states as we will see below.

There exists an extensive literature on squeezed states. We refer the
reader to [99] and [100] for the mathematical properties of squeezed states.
For their physical interest, we direct the reader to [101]. |

The evolution of a state of a system governed by the Hamiltonian (1.57)
can be described by the following evolution operator:

U = S(re, o) R(k), (1.59)
where
S]—c'(’r’) = exp[rkg’?) (e—Qi‘P}E(n)a_EaE —_ h.C.)], (160)
and
R(6) = exp[—ife(afar + al ya_y)], (1.61)

where S(rk, k) is the two-mode squeeze operator, R(6y) is the rotation op-

erator, the real number 4 is known as the squeeze factor, ¢y, is the squeezing
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phase, and 6y is the rotation angle.. The rotation operator and the phase 6,
play no important role in what follows hence we ignore them from now on.
The action of the squeezing operator on the vacuum results in squeezed

vacuum states

Sg(m0) = |k) = (1.62)
0 spreogyy (€™ tanh(ry(m)" In, k;n, —k > .

The behaviour of the squeezing parameter 7, is completely determined
by the background geometry. The evolution of the squeezing parameters is
typically very complicated, but an exact solution is known in the case of a
de Sitter background [86]:

= sinh }(—— 1.

ry = sinh (an)’ (1.63)
m 1 1
= __ _Z — 1.64
Ok 173 arctan(%n), (1.64)
1
_ -1

0 = kn -+ tan (_an)’ (1.65)

where the vacuum state being operated upon corresponds, again, to the
Bunch-Davies vacuum.
The squeezing operator has the property of being a unitary operator

acting on a normalizable vacuum state, so that
(klk) = 1. (1.66)

Although squeezed states do not provide a basis (as they are overcomplete),

they do form an orthogonal set of states:
(l|k) = &L. (1.67)

This follows from the properties of many particle states.

An important property of squeezed states of which we will make use is
the fact that the number of particles in such a state can be expressed entirely
in terms of the squeezing parameter via

(k| Ny|k) = sinh?(ry), (1.68)

where N.is the number operator for the k-mode. Physically, squeezed states
represent states which have minimal uncertainty in one variable (high squeez-

ing) of a pair of canonically conjugate variables - the uncertainty in the
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other is fixed by the requirement that the state saturates the Heisenberg
uncertainty bound. For those states of cosmological interest, we take the
squeezing to be in momentum.

For our applications, the squeezing parameter will be quite large. As
shown in [102],

a(ts)
CL(tl)
where a(t;) (a(t2)) is the scale factor at first (second) Hubble crossing. For

Ty ~ In(——=), (1.69)

current cosmological scales, 7, ~ 102.

1.4 Considering the Next Order - Backreac-
tion
In all previous sections, we limited our analysis to the linear theory. It can

be expected that the inclusion of higher order terms - interactions between
different perturbations modes - will lead to interesting effects.

1.4.1 The Effective Energy Momentum Tensor

The approach we follow is that of the effective Energy Momentum Tensor
(EEMT) [11]. Generally speaking, the EEMT can be used to determine the
effects of backreaction on the background quantities.

We proceed as follows. Consider the Einstein equations

Gy = 81T, (1.70)
[0 I

We expand both sides in powers of the amplitude of the perturbations

GO +GY +G@ +.. =8n(TO+TH + TP +...). (1.71)

We now define the linear fluctuations to be those quantities that satisfy
the first order equations, G/(}l,) = 87rTlﬂ,), so that the above reduces to (we

tacitly assume that backreaction has no effect on the linear fluctuations):

GO+ G2 = 8n(T) +TD). (1.72)

The next step consists of rewriting the above equation in the suggestive

form
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G = 8rT9) +8xT(2) — GQ). (1.73)

We now have an equation with which we can determine the effects of the
perturbations on the background through the second order terms.The above
equation provides us with the means of determining the effect of backreaction
on the homogeneous background. As such, solving (1.73) provides us with
a metric tensor - different from the original metric tensor which solved the
zeroth order part of (1.71) - which incorporates the effects of the fluctuations
on the background.

An important point that needs to be addressed is that (1.73) isn’t valid
in the form presented. The background metric is a strictly spatially homo-
geneous function - as a result, it cannot be sourced by local functions. We
circumvent this problem by averaging over large scales (large compared to
H~') which results in

GO = 8T + (8T) — GQ) > . (1.74)

We identify the new term with an effective contribution to the stress-

energy tensor:

G2)
T =< T — <+ > (1.75)
so that
G = 81Ty + 7] (1.76)

We don’t consider issues related to gauge transformation here (for that,
the reader is referred to [12] and [11]) - suffice it to say, it has been shown
that expressing 7, in terms of our first-order gauge invariant variables leads
to a first order gauge-invariant quantity.

In order to have a concrete expression for the EEMT, we adopt our usual

metric ansatz, namely

ds? = (14 2¢)dt? — a*(t)(1 — 24)d;;dz’da?, (1.77)

and assume that the spacetime is filled with scalar field matter,
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1
Ematter = Eau(Paugo - V(SD) (1'78)

This leads to

o = g [FI2H{99) — 3()) + 947 X(Ve))]

((59)%) +a(Vog))
5V (90) (56 + 2V () (80¢) (1.79)

+ +

and

Tij

a25ij{
{0+ 4068) - 507V + 4626)
(69)°) = a™*(V56)") = 460(059)

- §V”(<Po)<5s0 )+ 2V (po)(g60) | (1.80

e |(24H? + 16 H)(¢") + 24H ($¢)

OO

v

This expression is quite general and we will make good use of it chapter 4.

1.4.2 The Infrared Sector

Expanding in the amplitude of the fluctuations would appear to provide us
with a rapidly converging perturbative series - this follows from the fact
that subsequent terms in the series are at least five orders of magnitude
smaller than those at leading order. Although we can claim that cosmology
is experiencing its golden age and that the accuracy with which observations
are made has vastly improved compared to just a few years ago, we do not
yet have the ability to accurately detect effects to five significant figures. In
light of this, we could question the utility of developing the theory to second
order - at least, at this point in time.

At first glance, 7, would be expected to provide a negligible contribution
to the overall energy momentum tensor. However, a crucial observation needs
to be made. Having averaged over small scales, we are left to consider the
effects of the infrared sector of the theory.

A typical term in 7, has the form
dk
2 — et 2
(¢")ir = /IR L |Gk d]*. (1.81)

23



At all times, the ultraviolet sector is bounded above by the scale of in-
flation and below by the Hubble scale. On the other hand, the infrared is
bounded above by the Hubble scale but it is unbounded from below. Further-
more, during a period of inflation, the number of modes populating the IR
phase space grows exponentially due to cosmological redshifting. If we postu-
late an extended period of inflation it should be expected that the effects 7,
has on the background, despite initially being negligible, will rapidly grow in
importance. In [12], it was found that during an epoch of inflation, 7, acts
as a growing, negative contribution to the cosmological constant. Because of
this, backreaction was initially postulated as a mechanism which could serve
as a graceful exit mechanism for inflation.

Subsequent to a period of inflation, the UV phase space grows at the
expense of the IR - this follows from the fact that, as inflation ends, the
Hubble scale gets redshifted and the separation between the IR and UV
starts to migrate into the IR. As a result, the importance of backreaction
diminishes.

In light of this behaviour, and the fact that 7,, acts as a negative con-
tribution to the cosmological constant, it was postulated [12] that spacetime
could undergo an endless cycle of periods of exponential inflation punctuated
by periods of power law expansion (when the contribution from the IR sec-
tor was substantial) - this was to contingent on having a large, positive, bare
cosmological constant.

The phenomenology of this model was investigated and the results are

included in chapter 4.

1.5 Preface to the rest of the Thesis

This introduction should serve as sufficient background to understand the
thesis in its entirety.

The chapters that follow are, effectively, reprints of articles or, as in the
case of chapter 3, collections of notes which have led to an article (in this
case, the article is reprinted as an appendix).

The chapters are organized as follows: results pertaining to the theory at
linear order are presented first (chapters 2 and 3). Backreaction (2nd order)
results follow (chapters 4 and 5). Despite this, all of the following chapters
can be read independently of each other. Each chapter is self-contained and
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relies in no way on any other chapter except for the current introductory
chapter.

Chapter two is concerned with an important theoretical point that has
received relatively little attention in the literature. The quantum and clas-
sical theories are both independently understood: what hasn’t been as well
studied is how to make contact between the two - a necessary consequence
of the theory of inflation. This chapter contains a comprehensive review of
classicalization and decoherence, along with an original model detailing the
quantum-to-classical transition that would have occurred concomitantly with
inflation. This work originally appeared as a preprint as astro-ph/0601134.

The aim of the next chapter is to map out the effects of the dilaton
and its fluctuations on an innovative mechanism to produce a scale-invariant
spectrum of fluctuations in the context of string gas cosmology. This is the
only contact this thesis makes with string theory. Specifically, the viability
of the mechanism is examined when taking the dilaton into consideration.

Chapter four, the first of the two chapters which discuss backreaction,
looks at the late-time phenomenology of the EEMT. What is found is that
backreaction can provide a natural solution to the Dark Energy problem
without the need to introduce new physics. In fact, it is found that Dark
Energy is a natural consequence of the universe having undergone a period
of inflation. These results were first presented in astro-ph/0510523.

Chapter five again examines the effects of backreaction. However, instead
of looking at the effects on the background, the effects of the backreaction
on the perturbation themselves is determined.

The appendix contains a reproduction for an article entitled More on the
spectrum of perturbations in string gas cosmology. The author’s contribution
to this publication came about as a result of the work first presented in
chapter 3. The reference for this work is JCAP 0611:009,2006.
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Chapter 2

First Order - The Quantum to
Classical Transition of Linear

Perturbations

2.1 Foreword

The introductory chapter presented both the classical and quantum theory of
perturbations. Modern cosmology requires that fluctuations originated in the
quantum realm and cosmological evolution necessitated a progression to the
classical stage. A quantum-to-classical transition is a natural consequence of
inflation.

The current chapter presents the results of the author’s investigations
on the quantum-to-classical transition of cosmological perturbations begun
under the supervision of C.P. Burgess and R.H. Brandenberger. This work
first appeared as astro-ph/0601134.

2.2 Introduction

As is well known, temperature fluctuations in the CMB and the inhomo-
geneities that seed structure formation in the universe share a common ori-
gin. Both are a result of the scalar metric perturbations produced during
inflation. However, these perturbations are of a purely quantum mechanical
nature while no cosmological systems of interest (CMB anisotropies, clus-
ters etc.) display any quantal signatures. Presumably, for this to be the

case, the primordial density perturbations underwent a quantum-to-classical
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transition some time between generation during inflation and recombination,
when structure first became apparent.

Decoherence is a much studied process (see [82] for a comprehensive re-
view). Although not all conceptual issues have been resolved, it is understood
that it can occur whenever a quantum system interacts with an ”environ-
ment”. In other words, this effect can be said to pervade open systems due
to the difficulty of creating a truly closed, macroscopic quantum system.
Along with its ubiquity, it is also known to be a practically irreversible pro-
cess, since the loss of quantum correlations in the system is accompanied by
an increase in entropy.

Early studies of the classicalization of primordial perturbations focussed
on intrinsic properties of the system (see, for example [83],[84]). This was
made possible by the application of ideas of quantum optics to the theory of
cosmological perturbations. Primordial density fluctuations (the scalars as
well as the tensors) evolve into a peculiar quantum state - a squeezed vacuum
state [85],[86]. By studying the large squeezing limit of these states, it was
found that quantum perturbations become indistinguishable from a classical
stochastic process. In other words, quantum expectation values in a highly
squeezed state are identical to classical averages calculated from a stochastic
distribution, up to corrections which vanish in the limit of infinite squeezing.
The authors of [84] refer to this as ”decoherence without decoherence” while
[87] endows the phenomenon with the more technical epithet ”quantum non-
demolition measurement”. We emphasize that these works focussed on the
classical properties of the states and not on the coherence properties of the
system.

As is well understood, in order to study true classicalization, one must
consider two distinct aspects of a system. First the quantum states must
evolve, in some limit, into a set of states analogous to classical configura-
tions. The second is that these resultant states interfere with each other in a
negligible fashion. This last property constitutes decoherence and is equiva-
lent to the vanishing of the off-diagonal elements of the density matrix.

A truly closed gravitational system is a practical impossibility (unless
one considers the totality of the universe to constitute the system as in,
for example, quantum cosmology). Since the gravitational interaction has
infinite range and couples to all sources of energy, interactions with some
sort of environment are an inevitability. As such, environmentally induced

decoherence must also be present and would play an important role in the
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classicalization of primordial density fluctuations.

The purpose of the present chapter is to determine precisely the ef-
fects by the ”inflationary environment” (we will elucidate this notion be-
low) on cosmological perturbations and to study the resultant decoher-
ence. Other authors have also examined this problem (see, for example
[87],(88],[89],[90],[91]) - however, we are the first to present an exact ana-
lytic expression for the density matrix with a realistic environment-system
interaction.

The chapter is organized as follows: in the next section, we review some
basic properties of decoherence of which we will make use. After reviewing
the quantum theory of cosmological perturbations in section III, we make
clear our concept of the environment and motivate some realistic interactions
in section IV. Subsequently, we develop necessary formalism which, in section
VI, we make use of to demonstrate the classical nature of the system and

calculate the decoherence time scale.

2.3 Decoherence

In the present section, we intend to present an extremely (but, hopefully,
not exceedingly) terse account of the theory of decoherence. The physics of
classicalization is elegant and subtle and a thorough exposition of its finer
points would bring us too far afield from the purpose of this chapter. We
confine our attention solely to the cardinal features and disregard any pe-
ripheral aspects. The reader unsatisfied by our presentation is encouraged
to consult any of a number of excellent reviews of which we mention but a
few [92],[93],[82].

From an operational perspective, the process of decoherence usually refers
to the disappearance of off-diagonal elements of the density matrix. These
elements (phase relations) represent the interference of states inherent in
any quantum system. Evidently, their disappearance is an integral part of a
quantum-to-classical transition.

Having mathematically defined decoherence, we now turn to the physical
processes responsible for it. At the heart lies the concept of the open system
and the near impossibility of forming a macroscopic closed state. Virtually
all realistic systems must interact with an environment of some sort where,

by environment, we refer to degrees of freedom which interact with degrees
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of freedom in our system but which are not witnessed by some observer
intent only on the evolution of the system. This leads to the first important
characteristic of decoherence - its ubiquity.

Next, we come upon the concept of entangled states. Initially, if we
disregard all correlations between system and environment, our composite
wave function (system + environment) can be expressed as the outer prod-
uct of the system and environment states (more generally, it will be the
outer product of ensembles of states, as is the case when one makes use of
density matrices). Though initially factorizable, interactions between the

environment-system pair rapidly change this: the total state evolves from

the form
|lII> = (Z ai|¢;?y8tem)> ® (Z ﬂj|q)§nvironment), (21)
é J
to
|T) = Z’Yij| ¢«i9ystem>|q)§nvironment>’ (2.2)
1,

where (2.2) represents an entangled state and, as such, is non-factorizable in
this basis. Entanglement is key to the whole process for the following reason
- an entangled state produces a density matrix which is non-factorizable.
The operational equivalent of an observer ignoring the environmental degrees
of freedom is to trace out (partial trace) these degrees of freedom. Due
to the orthogonality of the environment states, the observer is left with a
density matrix which diagonalizes as the states entangle (the fact that the
decoherence rate is related to the rate of entanglement has been used to
estimate decoherence times. See, for example, [87],[94]). An interesting
property of classicalization follows from this - the interference terms are still
present, but are unobservable by a ”local” observer (local in the sense that
he only observes the system).

These "hidden” interference terms lead us to our next point. By tracing
out the environmental degrees of freedom, an observer throws away all the
correlation terms, leading to a decrease in the amount of information available
in the system - hence, this leads to an increase in the entropy from which we
can conclude that decoherence is a practically irreversible process.

The system being decohered, it can only be found in a much smaller
subset of the states that were previously allowed - this is what prevents us,

in part, from seeing ” Schroedinger’s Cat” states at a macroscopic level. The
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states that diagonalize the density matrix of the system are referred to as
pointer states [95], and these states remain in the subset of physical states
after decoherence. If the evolution of the system is dominated by the self-
Hamiltonian of the system, the pointer basis is composed of the eigenstates of
the self-Hamiltonian while, if the interaction dominates, the eigenstates of the
interaction form the basis [96]. Pointer states are also those states for which
the production of entropy during decoherence is minimized (predictability
sieve)[97].

Finally, we conclude with a heuristic view of decoherence. Neglecting
certain interacting degrees of freedom in a theory will generally lead to an
apparent loss of unitarity. Thus, one should expect a flow of probability
out of the system which, in turn, manifests itself as a vanishing of certain

elements of the density matrix.

2.4 Quantum Perturbations in an Inflation-

ary Universe

2.4.1 The Action for Quantum Perturbations

We provide in this section an overview of the quantum theory of cosmological
perturbations in an inflationary background. For a more in-depth treatment,
the reader is referred to [9] or [10].

The classical action for an inflationary model is given by (in this and in
what follows, we set G =h = 1)

§ = [ yTa(se R 50,60% — V(8)). (2.3)

If the potential V(¢) for the matter scalar field ¢ is sufficiently flat and
if, in addition, initial conditions are chosen for which the kinetic and spatial
gradient terms in the energy density are negligible, this action leads to a
period of inflation during which the space-time background is close to de
Sitter

A = () (~dif + (da')), (2.4)

where 71 is conformal time.
During the course of inflation, any pre-existing classical fluctuations are
diluted exponentially. However, quantum fluctuations are present at all times

in the vacuum state of the matter and metric fluctuations about the classical
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background space-time. Their wavelengths are stretched exponentially, be-
come larger than the Hubble radius H~!(¢) and re-enter the Hubble radius
after inflation ends. These fluctuations are hypothesized to be the source of
the currently observed density inhomogeneities and microwave background
anisotropies. In order for this hypothesis to be correct, the fluctuations must
decohere.

The quantum theory of linear fluctuations about a classical background
space-time is a well-established subject (see e.g. the reviews [9] or [10]). If
the matter has no anisotropic stress (which is the case if matter is described
by a collection of scalar fields), then a gauge (coordinate system) can be
chosen in which the metric including its (scalar metric) fluctuations * (3)

can be written as

(07

ds* = (;)2(—(1 +2¢(z,m) dn® + (1 = 2(z,n)) (dz*)),  (25)
and the matter including its perturbation (d¢) is

¢ — ¢+ 6o(z, ). (2.6)

The quantum theory of cosmological perturbations is based on the canon-
ical quantization of the metric and matter fluctuations about the classical
background given by a(n) and ¢(n). Since the metric and matter fluctu-
ations are coupled via the Einstein constraint equations, the scalar metric
fluctuations contain only one independent degree of freedom. To identify this
degree of freedom, we expand the action (2.3) to second order in d¢ and ¢,
and combine the terms by making use of the so-called Mukhanov variable
[98, 24]

v = ofm) 59 + 2], )

in terms of which the perturbed action S, takes on a canonical form (the
kinetic term is canonical) and the perturbations can hence readily be quan-
tized: '

"

1
Sy = §/d4a: [0 — v, + %vz], (2.8)

where z = %‘3—', and a prime indicates a derivative with respect to n. This

action contains no interaction terms: it represents the evolution of a free

IWe are not considering the vector and tensor metric fluctuations. In an expanding
background, the vector perturbations decay, and the tensor fluctuations are less important

than the scalar metric modes.
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scalar field with a time-dependent square mass

" '
2 _ _ %
m” == —, (2.9)

propagating in a flat, static spacetime. This action leads directly to a well-
defined quantum theory via the canonical commutation relations.

The Hamiltonian corresponding to the above action S; can be written
down in second quantized form:

!

H= /d%[k(a% ag+al pag+1) - i= (aga_g — he)l (2.10)

The first term in the brackets represents back-to-back harmonic oscillators,
in phase such that the system has no net momentum. The second term leads
to the “squeezing” of the oscillators on scales larger than the Hubble radius
H=(t) (on these scales the second term in (2.4.1) dominates over the spatial
gradient terms coming from the first term in the equation of motion for v).

On these scales, the squeezing leads to an increase in the mode amplitude

vg(n) ~ z(n) ~ a(n), (2.11)

where the second proportionality holds if the equation of state of the back-
ground geometry does not change in time. We take this to be the case in our

subsequent analysis.

2.4.2 Properties of Squeezed States

There exists an extensive literature on squeezed states. We refer the reader
to [99] and [100] for the mathematical properties of squeezed states. For their
physical interest, we direct the reader to [101].

The evolution of a state of a system governed by the Hamiltonian (2.4.1)

can be described by the following evolution operator:

where
Si(n) = eXp[@(e*Wﬁ(")a_,;aE — h.c)l, (2.13)
and
R(6y) = exp[—ifi(afar + alya_y)], (2.14)
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where S(74, k) is the two-mode squeeze operator, R(f) is the rotation
operator, and the real number r is known as the squeeze factor. The rotation
operator and the phase 8, play no important role in what follows hence we
ignore them from now on.

The action of the squeezing operator on the vacuum results in squeezed

vacuum states

SemI0) = [k) = (215)
S0 sty (—€o anh(ry(n)))" I, ki, —k >

The behaviour of the squeezing parameter 7 is completely determined
by the background geometry. The evolution of the squeezing parameters is
typically very complicated, but an exact solution is known in the case of a
de Sitter background [86]:

1

T = sinh_l(%), (2.16)
=T ~1-arctan(—) (2.17)
PEE YT S 2%kn’ '
1
_ -1
O = kn+ tan (2k7])’ (2.18)

where the vacuum state being operated upon corresponds to the Bunch-
Davies vacuum.

The squeezing operator has the property of being unitary so that
(k|k) = 1. (2.19)

Although squeezed states do not provide a basis (as they are overcomplete),

they do form an orthogonal set of states:
(l|k) = 6} (2.20)

This follows from the properties of many particle states.
An important property of squeezed states of which we will make use is
the fact that the number of particles in such a state can be expressed entirely

in terms of the squeezing parameter via

(k| Ng|k) = sinh®(r), (2.21)

where Niis the number operator for the k-mode. Physically, squeezed

states represent states which have minimal uncertainty in one variable (high
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Figure 2.1: The Penrose diagram for de Sitter space in planar coordinates.
Note that these coordinates only cover half the spacetime. Blue lines indicate
lines of constant t, red lines constant r, and the solid black line represents

the horizon.

squeezing) of a pair of canonically conjugate variables - the uncertainty in
the other is fixed by the requirement that the state saturates the Heisenberg
uncertainty bound. For those states of cosmological interest, we take the
squeezing to be in momentum.

For our application, the squeezing parameter will be quite large. As
shown in [102],

a(ts)
a(t1)
where a(t1) (a(t2)) is the scale factor at first (second) Hubble crossing. For

i & In(——=7), (2.22)

current cosmological scales, r, ~ 102.

2.4.3 The Hidden Sector

An essential ingredient in the theory of decoherence is the presence of un-
observed, ”"hidden” degrees of freedom: their interaction with our system
degrees of freedom causes the delocalization of the phase relations. In this
section, we show that de Sitter space naturally provides us with a hidden
sector and that the borderline between the visible and invisible in our theory

is naturally given by the Hubble scale.
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Although de Sitter space is geodesically complete, a geodesic observer will
be subject to the effects from both a particle horizon and an event horizon
[103],(104]. That the latter constitutes a true event horizon can best be seen
by examining the behaviour of null geodesics in Painleve-de Sitter coordinates
(see, for example [105]), which remain finite across the horizon, in contrast

to static coordinates. Specifically, we have

ds? = —(1— :—z) dt? — 2% dt dr + dr? + r? dQ. (2.23)

Here, (= 1/H) denotes the de Sitter radius. Clearly, setting r = [ causes
our timelike coordinate to become spacelike (the characteristic feature of an
event horizon). Timelike observers that cross from r — |e| to r + |¢| find
themselves incapable of getting back, trapped outside of a sphere of radius 1.

Now, if one transforms to the coordinates typically used when discussing
inflation (the so-called planar coordinates) and examines the behaviour of
timelike geodesics, one finds that all timelike observers originating within
the horizon must eventually cross.

The zero-point fluctuations induced by the horizon [18] can be thought
of as the seeds for metric perturbations [106], [107]. Heuristically, the hori-
zon can be thought of as a source of thermal radiation with a temperature
H/2n (in complete analogy with the black hole case). This radiation then
produces gravitational metric perturbations, with the same spectrum, which
are stretched out by subsequent cosmological evolution and ultimately lead
to the formation of structure in the post-inflationary universe.

Note, however, that this naive picture is not quite correct - the equation of
state of the produced radiation is not thermal [19], and including the effects
of gravitational back-reaction leads to corrections to the thermal spectrum
(this is also true in the black hole case [108]). However, our ensuing discussion
in no way relies on strict thermality.

We consider our observer to be to the left of the horizon in fig.1. In
accord with our discussion above, we take our radiation to be produced at
the horizon with a continuous distribution such that a non-vanishing subset
of our modes have wavelengths less than 1 (or H~!). It follows that our ob-
server in planar coordinates, due to the event horizon, will be prevented from
observing certain radiation modes. We conclude that those modes which are
unobservable are those associated with physical wavelengths less than the

horizon scale. Of course, gravitational redshifting will cause these modes to
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stretch and eventually cross the horizon. The point is that particle produc-
tion is a continuous process and we expect that, at all times, a certain set of
modes will be unobservable, and these modes will be associated with physical
wavelengths less than H~!. As aresult of this, decoherence is an inevitability
and we define our environment to be a set of modes whose physical momenta
are greater than the Hubble scale.

Having identified the modes of the theory which we must trace out, we ask
what happens if we trace out additional modes. For example, if an observer
was only interested in very low energy modes (k <« H) he could ignore
(or trace out) modes with (k < H, but not £ < H) - surely this would
provide an additional source of decoherence as it increases the environment.
However, compare this to the case of an observer who is interested in all
super-Hubble modes. The second observer would see less decoherence than
the first. Decoherence is, after all, an observer dependent effect - an observer
who could monitor every degree of freedom in the universe wouldn’t expect
to see any decoherence. However, our goal is to determine a lower bound on
the amount of decoherence as measured by any observer in the ”out” region
of our Penrose diagram. In this case, we trace out only those modes which
we must (i.e. all modes on sub-horizon scales) and take our system to be

composed of the rest.

2.5 Interactions with the Environment

Key to our investigation of decoherence is the notion of the environment.
Such an environment can take on many different guises. As was stated
above, we define ours in the following fashion: expanding the background
fields (gravity and the inflaton) in terms of fluctuations, we identify our en-
vironment with the fluctuations whose wavelengths are less than some cut-off,
while our system consists of those wavelengths greater than this cutoff. As
explained above, since we are operating in a de Sitter background, the natural
scale to pick for the cutoff is the Hubble scale.

In order to determine the precise form of interactions inherent to a system
of cosmological perturbations, we expand (2.8) to the next order (recall that
expanding to second order is what led to a free field theory) in the fluctua-
tions, and express the result in terms of v(z,n). Interactions can either be

purely gravitational in nature (backreaction), or they can arise in the matter
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sector through V(¢), the inflaton potential.

2.5.1 Gravitational Backreaction

To focus on the interactions due to gravitational backreaction, we must ex-
pand the gravitational action to third order in the amplitude of the pertur-
bations and write down the potential in terms of the Mukhanov variable v.
Expanding to higher order simply introduces more complicated interactions.
For our purposes, we restrict our attention to the simplest terms that arise.

In the case where the metric, including its fluctuation field 9, is given by
ds® = a’(n)[~(1 +2¢)dn’ + (1 — 2¢)(dz*)?], (2.24)
we can expand the Ricci scalar in powers of ¢ to obtain

6a() _ _ jaln)"

O )

(where terms with derivatives either temporal or spatial of the 1) have

(1 — 24p + 49p? — 8¢°...) (2.25)

been ignored as they are sub-dominant) from which we can extract our term
of interest, R®,
1"

R® = —482§—7(’7)7)¢3, (2.26)

which is the leading order gravitational self-interaction term. Recalling the
definition (2.7) of the Mukhanov variable in a slow-roll inflationary back-
ground, our potential, expressed in terms of v, becomes (neglecting d¢ when
substituting v for ¢ and we use the fact that, for our inflationary back-

ground, a(n) = 1/(Hn))

1 3 3)
_ — 2.2
1 16WM1%l/dx\/——gR (2.27)
I S i W éa”(ﬂ) Hv 3
= 3/ 0 T e e
3 s, H° a(n) s
_ H 2.2
7o | i g (2.28)
so that
V = /d3:c)\v3, (2.29)
with
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3 H? 1

A= Ton (26)3/2a(?7) = a(n) Mo, (2.30)
and where we've used the slow roll conditions
H* = V(¢)/(3M}), 3H¢ = =V, (2.31)
and
_ Mp V',
e=—-(37)% (2.32)

is one of the slow-roll parameters. Our dimensionful coupling is explicitly
time-dependent - this is to be expected since it is associated with a fixed
physical scale and our theory (2.8) is written entirely in terms of co-moving

quantities.

2.5.2 Inflaton Interactions

In addition to the gravitational backreaction terms, there are also interactions
due to non-linearities in the matter evolution equation. Consider a model of
chaotic inflation with a potential of the form

V= [dv=guet, (2.33)

where p is a dimensionless coupling constant. The perturbations produced
during inflation are joint matter and metric fluctuations. The matter part of
the fluctuation, denoted by d¢, give rise to a cubic term in the interaction
potential of the form

Vo~ / &z 4/ Zgue(56)°, (2.34)

where, in the case of slow-roll inflation, we can treat ¢ as a constant. Now,
writing the potential in terms of the Mukhanov variable (and this time ne-

glecting 1 in the process of substitution), we have

Vo~ [drtatmudCF = [dzaln) use®, (2.35)

so that
A = duga(n). (2.36)
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How do the coupling strengths of the two potentials compare? Taking

the ratio of the two, we find

)\in f _ 4ﬂ¢a(77)
n H2
Agrav % ]\l/LII_m (26;3/2 a(n)

42
3r
42
T

(26)3/2?{—€Mpl

(26)3/2%. (2.37)
(2.38)

Since the observationally allowed value for ¢ at times when fluctuations
relevant to current observations are generated is of the order 1073M,, we
find that the gravitational coupling could conceivably dominate depending
on the value of €. Since we are only interested in obtaining a lower bound
on the decoherence rate, and due to the fact that the exact form of the
inflaton potential (along with the initial conditions that determine €) is model
dependent, we consider gravitational backreaction to be the main source
of decoherence in what follows. Nonetheless, the above demonstrates that
inflaton interactions have the potential to be important.

We couple our system to the environment by writing

V= / Brx® = / B, (2.39)

where v now refers only to the expansion of the Mukhanov variable in mo-
menta greater than some cutoff and ¢ is the same field but expanded in

terms of the environment modes.

2.6 The Density Matrix

Having determined a candidate interaction between our system and the en-
vironment, we now face the task of deriving an appropriate master equation
in order to determine the time dependence of our density matrix. Several
approaches exist (for example, [109],{110]) which have been used by a number
of authors - rather, we follow the method of [111] which we now review.

We assume that our system of interest is weakly interacting with some
environment. The Von Neumann equation for the full density matrix (p)
reads (note that we make use of conformal time. This is due to the fact that

our action (2.8) is expressed in terms of conformal time)
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dp .
— = —i[H :

where H is the total Hamiltonian of the system and can be written as

H = Hy+V, (2.41)

where Hj is the self-Hamiltonian and V couples the system to the environ-
ment. Note that (p) denotes the full density matrix for the system and the
environment.

Switching to the interaction representation (2.40) takes on the form

dp 7
L i) 2.42
gy = V7l (2.42)
where
7 = exp(iHon) p exp(—iHon), (2.43)

with a similar expression for V.
A perturbative solution of (2.42) is found to be given by the following:

Po= m—if a0l (2.44)
(—1)? /0" ar, /OTz dri[V(r2), [V(m1), pol] + ...

Our ultimate goal is to derive an equation of motion for the reduced
density matrix (ps = Trpp, where A denotes the system quantities while B
refers to the environment. We use this notation throughout the rest of the
chapter). To this end, we trace out the environmental degree of freedoms to
obtain

7i = ph— /0 " dry ]0 " 4 Tre[V (), [V(11), po]] + -~ (2.45)

Note that the first order term has vanished - this is due to the specific
form of our system-environment coupling. Had we used a potential in which
an even power of the environment field had appeared, we would have obtained
a non-vanishing contribution at this order. Had this been the case, the first
order term could have been neglected on the grounds that it would lead to
unitary evolution of the system - since our goal is to study the decoherence
of the system (a non-unitary process), we can safely ignore such terms.

We find that (see the appendix)
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Ty (Vs m) Vanm)e) = S s, —miter —22). (249

In light of the fact that this equation was derived in the limit of small
time intervals, we can approximate the integral in (2.45) by the product of
the integrand with the time interval, 1. Bringing (po) to the left-hand side
and dividing both sides by time allows us to write

P—po _ dp
n dn’

(2.47)

in the limit of small 7.
As the initial time (7 = 0) is arbitrary, we conclude that our equation

for the reduced density matrix may be written as (in terms of physical time)

dp(t) 87r2)\2 370?
L —alt) T2 D [ @i, 2 70 (2.48)

where the details have been relegated to the appendix. V is a normalization
volume, H = a(t)H, with H the physical Hubble scale, and we note that in
order to obtain the condition (2.46), it was necessary to eliminate non-local
terms by coarse-graining over scales of order H in both time and space.

The differential equation (2.48) is the master equation for our system. In
order to proceed, we obtain a matrix representation in the basis of squeezed
states. Again, we point out that these do not form a true basis for the Hilbert
space (note, however that the use of an overcomplete basis poses no difficul-
ties when it comes to obtaining representations of the density matrix [92]).
However, in the limit of large squeezing, squeezed states become orthogonal
to other states in the system. Since squeezed states are the "natural” states
of the system, we view all other states as being spurious and truncate our
Hilbert space so that it contains only the former. Furthermore, as our inter-
actions are small compared to (1.57), we identify the squeezed states as our
pointer basis [112].

Finding a matrix representation of eq.(2.48) is a relatively simple affair
- due to the nature of the squeezed states, the expectation value of the
operator v?" with n an integer, must be diagonal in this (discrete) basis of
states. This, along with the identities [99]:

S(k, k) axk ST(Th, k) = @ik cosh(rg) (2.49)

+ al e®#* sinh(ry),
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and
ST rkypx) = S(rw, 06) = S(=7, 8), (2.50)
renders the calculation relatively straightforward. Note that (k|Nglk) =

sinh?(ry,), where Ny is the number operator [99]. With this in mind, we find
that (2.48) reduces to

By o g BT bl sl
s h2(r ) cinh2 (.
B 2smh (r;) sinh (TJ))pij, (2.51)
kik;

where, for simplicity, we’ve replace the cosh?(r) terms with sinh®(r) since
we are interested in the limit of large r.

The combination % = n;(t) = a*(t)n;(0) is to be interpreted as
the particle density, a quantity which is finite in the thermodynamic limit.
Clearly, the decoherence rate increases as the difference between the two
momenta increases. For this reason, we take our states of interest to have
approximately the same momenta, and the above reduces to

Aon2(0) (ki — k)2

dp;
ZER TRk
ifvj

dt

~  —1287%a%(t) (2.52)

in terms of physical time and co-moving momenta and volume.

A few things are immediately obvious:

1) The diagonal elements suffer no loss of coherence. This actually could
have been surmised much earlier from eq.(2.45) by noticing that the trace
over the system degrees of freedom must vanish.

2) The rate of decoherence grows extremely rapidly. In fact, in order to
decohere the system within 60 e-foldings (approximately the minimal time
permissible for the duration of inflation), the initial particle density (no) can
be as low as 10™25 particles per Hubble volume. 2

3) The particular time ¢ = 0 for a pair of modes should be taken to
correspond to the the time that the shortest of the pair (the higher energy
mode) crosses the horizon.

So far, we've argued that a certain sector of the theory is unobservable

(thus justifying a minimal amount of tracing), determined an interaction

In arriving at this estimate, we have considered the case where k; ~ k;, k; = H,
H~10"3%Mp;, e ~ 1072,
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between our visible and invisible sectors, and obtained a lower bound on
the parameters of the theory such that decoherence takes place within 60
e-foldings of inflation. The question remains: in a realistic cosmological
model, are the parameters of the theory such that decoherence can take
place during the inflationary period, and be caused by the leading order
gravitational back-reaction term? In other words, is the bound we found
satisfied in conventional models?

In order to answer that question, we must obtain the number density of
particles in a typical super-Hubble mode at first Hubble crossing.

Consider the square of the substitution we used to obtain our potential

in terms of the Mukhanov variable:

v = a2 (259)

To determine the number of particles of the v field in terms of physically
meaningful quantities, we must first quantize the Mukhanov field. However,
once the theory is quantized, the expression (2.53) is meaningless - the left-
hand side is an operator, while the right is a classical field. In light of this,
we follow the usual route [20] in semi-classical gravity and replace v with it’s

vacuum expectation value:

/

W) = o) (E)H (2.54)
In the limit of large squeezing, we have that
9 1 d®k
(v%) = 373 _k‘“Nk(t): (2.55)

where Ni(t) is the number of particles in the k-mode at time t, which scales

in time as

Ne(t) o ai(t), (2.56)

where we now consider only physical (as opposed to co-moving as in the pre-
vious discussions) quantities. The extra factors of a(t) in the particle number
appear because we are now considering the red-shifting of the momenta (see
(2.16)). We expect the spectrum to be exponentially suppressed at high (sub-
Hubble) momenta: therefore, to a good approximation, the integral in (2.55)
can be taken to be over the infrared sector only. Furthermore, rather than

performing the integral over the modes, we reparameterize and integrate over
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the times which these particular modes first crossed the horizon. In other

words, we let

H
k = @)’ (2.57)
and
Ni(t) = a*(t) Nu(0), (2.58)

where, as above, ¢t = 0 denotes first Hubble crossing for a particular mode.
We now have,

(W2 ~ 2 N(0)H / " dta(t) = f—;NH(O)aQ(tr), (2.59)

2
with ¢, denoting the time of reheating and where we’ve ignored the time-
dependence of the Hubble scale.

During reheating, the inflaton will undergo periods when it’s total energy
is dominated by it’s kinetic term. So, during reheating, we can make the
substitution ¢ ~ p, to obtain

2 2
M;?H—wﬁ(tr) ~ a2(tr)%.

We identify Ny H? = ng(0) with the number of particles of momentum

(2.60)

H per Hubble volume and taking the reheating temperature as H so that
pr =~ H*. We can now make use of the fact that, observationally, 12 ~ 1079,
to deduce that ng(0) =~ 1078 particles/Hubble volume. This is well above
the lower bound we found. In this case, we find that the modes will decohere

approximately 20 e-foldings after crossing the horizon.

2.7 Conclusion

In this chapter, we have studied the decoherence of cosmological fluctuations
during a period of cosmological inflation, taking the effects of squeezing into
account. We have determined realistic interactions for our system of pertur-
bations and have found that, at the same order, gravitational interactions
and matter (inflaton) interactions are comparable, depending on the scale of
inflation and the slow-roll parameter ¢. Furthermore, we have justified the

use of Hubble scale as a cutoff.
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Having considered the leading order gravitational correction to the action
of quantized cosmological perturbations, we find that super-Hubble modes
decohere long before the end of inflation. Of course, we have only obtained
a lower bound on the decoherence rate - interactions more complicated than
the ones considered here will generally lead to much faster decoherence times
[94].

2.8 Appendix: Tracing out the Environment

In this appendix, we explicitly calculate the partial trace of eq.(2.45).
The expansion of the Mukhanov variable in a spatially flat background

takes the form

—ikx

+ ale*®), (2.61)

1 - 1
v = ——r [ &’k (are
(27r)3/2/ Sk

and we restrict our attention to modes within a sphere of radius H in mo-
mentum space. Since our calculation will be performed in terms of comoving
quantities and we take our cutoff to correspond to a fixed physical scale, our

cutoff acquires a time dependence of the form

H = a(n)H. (2.62)

Our normalization conventions are as follows:

k) = 2Ball0), (klK) = 2m)2B® (k- k), (263)
[k, al] = (27) 6@ (k — k). (2.64)

The identity operator has the form
dk 1
(27‘(’ )3 2Ek '

For simplicity, we ignore the effects of squeezing until the very last. As our

1= (2.65)

initial conditions, we do not take the environment to be in the vacuum - this
would be contrary to the basic idea of the generation of inhomogeneities. We
take our states to be 2 particle zero-momentum states. Were we to explicitly
include the effects of squeezing, we would find that our scattering amplitude

(i|¢™|7) would scales as a™(n). Our approach is as follows: we calculate
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the scattering amplitude for a fixed particle number (2) and, at the last
step, include the additional factors of a(n) in order to embody the effects
of particle production (squeezing). Note that we must take into account
squeezing since (2.16) tells us that all modes in de Sitter space get squeezed.

We take these states to be populated according to a distribution which

falls off exponentially in the UV, with temperature parameter T' = 37! = %
In other words
Peny = Cexp(—GH), (2.66)

where this H refers to the Hamiltonian. The precise form of the distribution
is immaterial - after tracing, the only information that the systems retains
about the environment is it’s ”size” (the cutoff scale). As another simplifica-
tion, we take the energy of the state to be dominated by it’s momentum. Due
to the nature of squeezing and in view of our comments about the distribu-
tion, this is a perfectly justifiable assumption. C is a normalization constant
which we determine by the condition that the trace of the left hand side of

the equation be pgys i.e. TTenyp = Poys-

Bk 1 (k,—k|plk, —k)
(2n)2 2E;, (k, —k|k, —k)

C S E;
= S3Pus |, Ak exp(<20E,)

o 1 o
= ﬁpsys(zﬁ—ﬁ’ﬂze & (1 +47T)) = psys-

Therefore, we set C' ~ 163" /H?.

The terms on the right hand side will all have the basic form (aside from

TTepy p (2.67)

the trace of pg, which is the same as the above):

B Bk 1 (k,—klv(z)v(a')plk, —k)

RES = | Go@aE kKl —k) (268)
_ 8 R sin[k(x—l‘/)] —iwg (n—n')\ ,—26Ex
_ 5(0)7{4/71 dkw(e (1=n')) =288k

where the delta function arises from the normalization of the states. Since we
are only interested in physics on scales much greater than H, we coarse-grain

over time and use the relation

!
(eixm=y 5.(____77H " ) (2.69)
Thus, we find that
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8 n [® . sin[k(z —z')] —208E.
RHS = 500 =) /H == ¢ (2.70)
Again, as our interest lies in scales such that H(z — z/) > 1, we perform

the substitution

sinfk(z — z')]
THa-o)

Finally, we obtain

= mé(H(z — z)). (2.71)

82 8(n—n')o(x —2') ,

RHS = 5o i a2(n). (2.72)

Note that we identify §(0) with the volume of space and we’ve included

the additional factors of a(n) as dicussed above.
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Chapter 3

First Order - Including the
Effects of the Dilaton in the
NBYV Mechanism

3.1 Foreword

String Gas Cosmology began with the seminal paper by Brandenberger and
Vaffa [1] which served to usher in an era where string-based cosmological
models have become commonplace. This early work, pre-dating the appear-
ance of branes, dispensed with the complexities of string theory, and treated
the system as a gas of strings embedded in a universe where the extra di-
mensions were toroidally compactified. Despite the model’s appearance in
1989, it wasn’t until 2005 [133] that a mechanism was proposed which could
account for the presence of density fluctuations.

The mechanism as presented made no reference to the dilaton other than
to state that it was fixed. In this chapter, the author’s work on the role

played by the dilaton is discussed.

3.2 Introduction

The purpose of the following it to explore the robustness of the mechanism
to produce a scale-invariant spectrum in string gas cosmology as presented
in [133].

Assuming that a spectrum with the correct power can be produced during

the Hagedorn phase, scale-invariance can be broken in at least two indepedent
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ways:

1. The presence of fluctuations in the dilaton could lead to non-trivial
dynamics for the metric perturbation causing deviations from an n =1
spectrum in either the Hagedorn phase or the subsequent radiation

epoch.

2. During the Hagedorn phase, a dilaton evolving non-trivially would lead
to modes exiting the Hubble radius with amplitudes that differ from
the predictions of scale-invariance - this follows immediately from the
result that the amplitude of the fluctuation modes is set by the dilaton
as can be seen below.

We begin by examining the effects of introducing fluctuations in the dila-

ton.

3.3 Basic setup

We take the basic action of dilaton cosmology to be given by [28]

47Ta'/deV ge 2¢(R+4(V<P) "‘——H2 ‘I'/de\/ £ matter) (3 1)

where Laiter is the Lagrangian for a string gas which we treat as a perfect

S =

fluid. In what follows, we make a number of simplifying assumptions. We
turn off all fluxes (H = 0), and consider the case D = 4, without concerning
ourselves with the effects of the scalars that arise from the compactification.
We trust that the simplifying assumptions retain the essence of the scenario
while dispensing with extraneous complications.

Defining our full, higher-dimensional background as [29]

ds? = 20 ((142¢)dn*— (1—20)6;;da’da? ) — e/ (1-26)Snda™da", (3.2)

the perturbed equations of motion read (here, T' = T} is the trace and x

is the dilaton fluctuation, é—f. Here and below, repeated latin indices imply

summation over space only)

V2 + 3V — 9HE — 3HY — 3H?¢ = 2¢+2A (2xT9 + 0T8) — 6Hpe'
-3V —6¢'¢ — vﬁx + 3HY' + 200 — 2/ ¢ (3.3)
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6i¢’ + 3816, + H61¢ — 37‘{315 - %62¢+2)‘5Tg + @(bqﬁ’ - aiX, + H(?,-X, (34)
0.0;,(¢—v—66—2x) =0 i#], (3.5)

(87 = V) (¢ — ¥ — 6¢) — 20" — 66" — 4HY — 6HE — 2H’¢ — 4H'p — 20'H
= &P (T} + OT) + 208 — 499" — 20'¢/ — AMpg — 4V'D' — 12¢'¢)
+2x" — 2V + 2HX' + 4dp? — 4X'¢/(3.6)

—V2¢ + B5V2E — 5" + 2V — 3¢ — 10HE — 3®'H — OHY — 6H2p — 6H'¢
— 6290+2A(2XTT'ZL + 5T$) _ 4¢¢Il _ 2CI)'¢' _ 8H¢¢I - 6¢I¢I . 10€l¢l 4+ 2Xl/
—oV2x + 4Hy' + 4gp? — 4y D(3.7)

/.1 /! / 1 !/ / 3 Iy Y ]‘ 1"
—200"” +2¢'X' + ¢¢" — 6YHY + S —2Hee - §¢¢ —38¢ —5X
+%Y72X —Hx = %eg‘p”’\ (2xT + 5T) (3.8)

As stated above, we are interested in the 4 dimensional scenario with fixed
dilaton. In this case, the above equations simplify considerably to (taking
¥ = ¢ and the Newtonian limit)

— 1 =3
V) = 562%’ (2xT9 + 0T3) — V2, (3.9)
@-W = %ez‘péTé — 81)(,, (310)
Bdix =0 i#j, (3.11)

__2,¢l/ _ e2<p (2XTZ + 5T;) + ZX”?

Lo lge, 1 e
x5 Vi =ge (2xT +6T), (3.12)

As in the standard case, our physical degree of freedom is a linear com-
bination of the metric and scalar perturbations - something not taken into

consideration in [133]. A gauge invariant quantity would be

v =vY+x (3.13)

In order to determine the power spectrum, we make use of (3.9) and write

it as
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; 1
Viy = e (2xT3 + 6T7). (3.14)

There is an important difference with the results of [133] in that the overall
amplitude of the fluctuations is set by the dilaton - this result will be impor-
tant later. This result could not have been obtained by the authors of [133]
as they disregarded the effects of the dilaton throughout - it was assumed

that it was fixed and ignored its dynamics.

3.4 Effects of y

In order to quantify the effects of the dilaton (and it’s fluctuation, x) on the
setup, we need to solve the equations presented in the previous section. The

system of equations we’re concerned with is the following:

2¢
V3 +x) = 67(2XT(? +0Tp),
2¢

G +x) = - (xT +3T)),
2¢
_O+ V) = S (2xT + 7). (3.15
¢ 2

In the case of a radiation equation of state, the dilaton is fixed, and we

conclude that

T = 0,6T = 0, (3.16)

and (in 3+1 dimensions)

Y = 3T}, 6Ty = 36T;. (3.17)
Combining the equations leads to the following:

Cd
(V2 =)y = ?57}?, (3.18)

during radiation domination while, in the case of matter domination, the

above reduces to

(V2 =87y = 0. (3.19)

We’ve made an important simplifying assumption in order to obtain the

above - we’ve thrown away all terms propotional to the anisotropic stress
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tensor. This is justified since we expect terms proportional to x to be sub-
dominant due to supression by factors of the Planck mass. As a result of this
assumption, we find that x can play no role in the dynamics of ¥ during
the radiation era since p = 0 during the Hagedorn phase. In other words,

we find that the mechanism is impervious to fluctuations in the dilaton.

3.5 Effects of ¢

We now turn to the case where ¢ is allowed to run. The dilaton freezes
in the case of radiation domination so we need only concern ourselves with
its dynamics during the Hagedorn phase. We begin with the Tseytlin-Vafa
equations [28]:

X, dy .o 0
_ (22 Y2 _PE = 2
NP+ () —erB o, (3.20)
PN dpdh
@ aa Cr=0 (3:21)
d2(p dSD 2 [

In the case of interest, P = 0, N = 4, and the equations reduce to a

coupled, first-order, non-linear system:

dd

—4A? 4 90 — 2— =0, (3.23)
dA
DA = 3.24
2 0, (3.24)
via the change of variables

dA dy
A= — = = 3.25
dt Y dt 3 ( )

in anticipation of the fact that the relevant quantity is not the amplitude of
the dilaton but its rate of change - in order to obtain scale-invariant spec-
trum, the rolling of the dilaton (®) would have to be slow compared to the
expansion rate of the background (A). Deviations from scale-invariance due
to the rolling of the dilaton can be quantified in terms of the parameter

a = — (3.26)

which we require to be < 1.
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Figure 3.2: Initial conditions are such that ®/A=0.01

The reason we require o < 1 is as follows: in order to obtain perfect
scale-invariance, we require that ¢ be constant. Short of that, we can expect
approximate scale-invariance if the rate at which the amplitude evolves is
much slower than the rate at which modes cross the horizon. In other words,
we require fi_i =ak 1.

The res{ﬁts of solving the TV equations numerically are presented in
figure 3.1 and the phase portait is figure 3.2.

According to fig.3.1, for an initially small o (= 0.01), the system evolves
to a configuration with o ~ 1 with the phase portrait showing us that this
is a stable solution in the Hagedorn phase.

At the transition between the Hagedorn phase and the radiation era, the
equation of state varies in a continuous way - we model it as the following:

with T being the characteristic time scale associated with the transition.
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3.6 Conclusion

In conclusion, we find the following

1. The overall amplitude of the perturbations are set by the value of the

dilaton.

2. The mechanism is robust to fluctuations in the dilaton. Such per-
turbations do not seem to affect the scale-invariance of the produced

spectrum.

3. As long as the dilaton remains fixed, the spectrum is scale-invariant.
However, when ¢ is allowed to run, corrections to the spectrum rapidly
become important - this is analogous to the case of inflation, when the

inflaton begins to roll before reheating.
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Chapter 4

Backreaction - Effects on the

Background

4.1 Foreword

We begin our examination of backreaction by making use of the EEMT. Our
goal in initiating this study was to determine the late-time behaviour of the
effective energy momentum tensor. What was discovered was that it provides

a natural explanation to the Dark Energy problem.

4.2 Introduction

The nature and origin of dark energy stand out as two of the great unsolved
mysteries of cosmology. Two of the more popular explanations are either a
cosmological constant A, or a new, slowly rolling scalar field (a quintessence
field). If the solution of the dark energy problem proved to be a cosmological
constant, one would have to explain why it is not 120 orders of magnitude
larger (as would be expected in a non-supersymmetric field theory), nor
exactly zero (as it would be if some hidden symmetry were responsible for
the solution of the cosmological constant problem), and why it has become
dominant only recently in the history of the universe. These are the “old”
and “new” cosmological constant problems in the parlance of [57]. To date,
this has not been accomplished satisfactorily, despite intensive efforts. If,
instead of A, the solution rested on quintessence, one would need to justify
the existence of the new scalar fields with the finely tuned properties required
of a quintessence field (e.g. a tiny mass of about 10733eV if the field is a
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standard scalar field). Clearly, both of the above approaches to explaining
dark energy lead directly to serious, new cosmological problems. In this
chapter, we will explore an approach to explaining dark energy which does
not require us to postulate any new matter fields.

There exist tight constraints on A from various sources - Big Bang Nu-
cleosynthesis (BBN) [58], cosmic microwave background (CMB) anisotropies
[59], cosmological structure formation [60] - which rule out models where the
vacuum energy density is comparable to the matter/radiation energy density
at the relevant cosmological times in the past. However, it could still be
hoped that a variable A model might be compatible with observation since
the value of p, is constrained only for certain redshifts. In fact, the above
constraints taken together with the results from recent supernovae observa-
tions [61],[62] leads one to posit that the vacuum energy density might be
evolving in time.

This leads directly to the proposal of tracking quintessence [63]. However,
some of the drawbacks of quintessence were mentioned above. A preferable
solution would combine the better features of both quintessence and a cos-
mological constant: a tracking cosmological “constant”.

In this chapter, we discuss the possibility that the energy-momentum
tensor of long wavelength cosmological perturbations might provide an ex-
planation of dark energy. The role of such perturbations in terminating
inflation and relaxing the bare cosmological constant was investigated some
time ago in [11, 12] (see also [64]). However, this mechanism can only set in if
the number of e-foldings of inflation is many orders of magnitude larger than
the number required in order to solve the horizon and flatness problems of
Standard Big Bang cosmology. Here, we are interested in inflationary models
with a more modest number of e-foldings. We discover that, in this context,
the EMT of long wavelength cosmological perturbations results in a tracking
cosmological “constant” of purely gravitational origin and can be used to
solve the “new” cosmological constant problem.

We begin by reviewing the formalism of the effective EMT of cosmological
perturbations in Section 2. We recall how, in the context of slow-roll inflation,
it could solve the graceful exit problem of certain inflationary models. We
then extend these results beyond the context of slow-roll inflation in Section
3. In Section 4, we investigate the behaviour of the EMT during the radiation
era and show that the associated energy density is sub-dominant and tracks

the cosmic fluid. We examine the case of the matter era and show how the
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EMT can solve the dark energy problem in section 5. In Section 6 we consider
the effects of back-reaction on the scalar field dynamics. We then summarize
our results and comment on other attempts to use the gravitational back-
reaction of long wavelength fluctuations to explain dark energy.

4.3 The EMT

The study of effective energy-momentum tensors for gravitational perturba-
tions is not new [65, 66]. The interests of these early authors revolved around
the effects of high-frequency gravitational waves. More recently, these meth-
ods were applied [11, 12] to the study of the effects of long-wavelength scalar
metric perturbations and its application to inflationary cosmology.

The starting point was the Einstein equations in a background defined
by

ds* = a*(n)((1+2®(z,n))dn’
— (1 —2%(z,n))(bidz'dz’)) (4.1)

where 7 is conformal time, a(n) is the cosmological scale factor, and ®(z,7)
represents the scalar perturbations (in a model without anisotropic stress).
We are using longitudinal gauge (see e.g. [9] for a review of the theory of
cosmological fluctuations, and [10] for a pedagogical overview). Matter is,
for simplicity, treated as a scalar field ¢.

The modus operandi of [11] consisted of expanding both the Einstein and
energy-momentum tensor in metric (®) and matter (dyp) perturbations up
to second order. The linear equations were assumed to be satisfied, and the
remnants were spatially averaged, providing the equation for a new back-
ground metric which takes into account the back-reaction effect of linear

fluctuations computed up to quadratic order
G = 81G [Ty + Tw), (4.2)

where 7,, (consisting of terms quadratic in metric and matter fluctuations)
is called the effective EMT.

The effective energy momentum tensor, 7, , was found to be

o [F12H(99) — 3((8)?) + 9a7(Ve)?)

+  ((60)*) +a"2((Vop)?)
+ V(o) (69%) + 2V (00){pde) (4.3)

|

Too

1
2
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and

1
o= az(sij{&r

+{(P) +4(0) - 507V + 4676
+{(89)%) — aH(VEe)) — 4ol009)
¥o

5 (24 + 1617)(¢%) + 24H (9)

1
= SV p0) 06h) + 2V (90)(dbe) b (44)
where H is the Hubble expansion rate and the () denote spatial averaging.
Specializing to the case of slow-roll inflation (with ¢ as the inflaton)
and focusing on the effects of long wavelength or IR modes (modes with
wavelength larger than the Hubble radius), the EMT simplifies to

A% 1.
O~ (0 "~ 25> gt i
To ( v 4V> < ¢ > 57T (4.5)
and )
p = —57'1 > 79, (4.6)

so that pe;; < 0 with the equation of state p = —p.

The factor (¢?) is proportional to the IR phase space so that, given a
sufficiently long period of inflation (in which the phase space of super-Hubble
modes grows continuously), 70 can become important and act to cancel any
positive energy density (i.e. as associated with the inflaton, or a cosmological
constant) and bring inflation to an end - a natural graceful exit, applicable
to any model in which inflation proceeds for a sufficiently long time.

Due to this behaviour during inflation, it was speculated [67] that this
could also be used as a mechanism to relax the cosmological constant, post-
reheating - a potential solution to the old cosmological constant problem.
However, this mechanism works (if at all - see this discussion in the conclud-
ing section) only if inflation lasts for a very long time (if the potential of ¢
is quadratic, the condition is that the initial value of ¢ is larger than m~%/3

in Planck units).

4.4 Beyond Slow-Roll

Here, we will ask the question what role back-reaction of IR modes can play
in those models of inflation in which inflation ends naturally (through the

reheating dynamics of ¢) before the phase space of long wavelength modes
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has time to build up to a dominant value. In order to answer this question,
we require an expression for 7, unfettered by the slow-roll approximation.
Doing this provides us with an expression for the EMT which is valid dur-
ing preheating and, more importantly, throughout the remaining course of
cosmological evolution.

In the long wavelength limit, we have !,

T = V(o)) + 2V (00 (85 (47)
and
r = by {gro [(AH? + 16H) ()] + 460% ()
V089 + 2V (90) (0500 . 49
As in the case of slow-roll, we can simplify these expressions by making
use of the constraint equations which relate metric and matter fluctuations

[9], namely
—(H +3H*¢ ~ 4nGV 6y . (4.9)

Then, (4.7) and (4.8) read

"

100 = (2K (V,)Q(H-l-BH ) —4k(H + 3H?)){¢*), (4.10)
Ty = a28;(126(H + H?) + dgo(t)’ (4.11)
— W T+ ),

with k = %%L.

The above results are valid for all cosmological eras. With this in mind,
we now turn an eye to the post-inflation universe and see what the above
implies about its subsequent evolution.

In what follows, we take the scalar field potential to be Ap*. As was
shown in [68], the equation of state of the inflaton after reheating is that of

radiation, which implies ¢(t) ~ 1/a(t).

1We’ve ignored terms proportional to ¢ on the basis that such terms are only important
during times when the equation of state changes. Such changes could lead to large transient
effects during reheating but would be negligible during the subsequent history of the

universe.

59



4.5 The Radiation Epoch

The radiation epoch followed on the heels of inflation. The EMT in this case
reads

1 V' 1
Too = ('1_6'”2(177)'2‘21 - g)(qs?), (4.12)
2 V//
s = @3 HI0P - R @) (1)

The first thing we notice is that, if the time dependence of {¢?) is negli-
gible, the EMT acts as a tracker with every term scaling as 1/a*(t) (except
for the ¢ which scales faster and which we ignore from now on).

We now determine the time dependence of {¢?), where
2 - N o
(¢*) = 1/’7 / d*F d*ky ks f (k1) f(ko)eFrTha) 2, (4.14)

with k
JR) = V()3 3/ei®, (4.15)

mn

Here, 1 represents the amplitude of the perturbations (which is constant in
time), £ represents the deviation from a Harrison-Zel’dovich spectrum, a(k)
is a random variable, and k,, is a normalization scale.

Taking 51(35 as a time-dependent, infra-red cutoff and the Hubble scale as
our ultra-violet cutoff, and focusing on the case of a nearly scale-invariant

spectrum, the above simplifies to

H 1
<¢2> = 47['1/)2]{:;2& /A dklﬂ (4-16)
a® 1
(4.17)
In the limit of small £, the above reduces to
a(t)H
(¢%) = 4myp? m%). (4.18)

The time variation of the above quantity is only logarithmic in time and
hence not important for our purposes. As well, given the small amplitude
of the perturbations, (¢?) < 1. Note that this condition is opposite to
what needs to happen in the scenario when gravitational back-reaction ends
inflation.

Now that we have established that the EMT acts as a tracker in this
epoch, we still have to determine the magnitude of 799 and the correspond-

ing equation of state. In order to do this, as in [68], we assume that the
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preheating temperature is T' = 10'>GeV, the quartic coupling A = 1072,
and the inflaton amplitude following preheating is o = 10~*Mp;. Making
use of

a(t) = (=——5-)"%t""*, 4.19
( ) ( 3M2Pl ) ( )

where pg is the initial energy density of radiation, we find

o = -zl ~ O = 3R, ()
= () 3+ ) = (). (42

We find that, as in the case of an inflationary background, the energy
density is negative. However, unlike during inflation, the equation of state is
no longer that of a cosmological constant. Rather, w = 3. Clearly, due to
the presence of (¢?), this energy density is sub-dominant. Using the value of
¥ in (4.16) determined by the normalization of the power spectrum of linear
fluctuations from CMB experiments [69], we can estimate the magnitude to
be approximately four orders of magnitude below that of the cosmic fluid.
Any observational constraints that could arise during the radiation era (e.g.
from primordial nucleosynthesis, or the CMB) will hence be satisfied.

4.6 Matter Domination

During the period of matter domination, we find that the EMT reduces to

k% a*(t) 1

1
Aottt

t2

7’00=(

){(#%). (4.22)

Wl N
w1 oo

2k%at(t)1 81
Tij = (*53\— T §t_2)<¢2>'

(4.23)

In arriving at these equations, we are assuming that the matter fluctuations
are carried by the same field ¢ (possibly the inflaton) as in the radiation
epoch, a field which scales in time as a~!(¢) 2. This result is quite different
from what was obtained in the radiation era for the following reason: previ-
ously, we found that both terms in 7g9 scaled in time the same way. Now,

2Even if we were to add a second scalar field to represent the dominant matter and
add a corresponding second matter term in the constraint equation (4.9), it can be seen
that the extra terms in the equations for the effective EMT decrease in time faster than
the dominant term discussed here.
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we find (schematically)

K)Q K

Too X W ke Eg—(‘{)‘ (424)

The consequences of this are clear: the first term will rapidly come to
dominate over the second, which is of approximately the same magnitude at
matter-radiation equality. This will engender a change of sign for the energy
density and cause it to eventually overtake that of the cosmic fluid. The
same scaling behaviour is present in 7;; and so the equation of state of the
EMT will rapidly converge to that of a cosmological constant, but this time
one corresponding to a positive energy density.

Matter-radiation equality occurred at a redshift of about z ~ 10* and we
find that

100(2 =0) ~ pu(z2=0), w >~ —1, (4.25)

and thus we are naturally led to a resolution of the both aspects of the dark
energy problem. We have an explanation for the presence of a source of late-
time acceleration, and a natural solution of the “coincidence” problem: the
fact that dark energy is rearing its head at the present time is directly tied to
the observationally determined normalization of the spectrum of cosmological

perturbations.

4.7 Dark Energy Domination and Inflaton

Back-reaction

Does this model predict that, after an initial stage of matter domination, the
universe becomes perpetually dominated by dark energy? To answer this
question, one needs to examine the effects of back-reaction on the late time
scalar field dynamics.

The EMT predicts an effective potential for ¢ that differs from the simple

form we have been considering so far. During slow-roll, we have that
Ve = V+15. (4.26)

One might expect that this would lead to a change in the spectral index of
the power spectrum or the amplitude of the fluctuations. To show that this
is not the case, we can explicitly calculate the form of V¢ for the case of an
arbitrary polynomial potential and see that, neglecting any ¢ dependence
of {¢?), (4.26) implies an (a priori small) renormalization of the scalar field
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coupling. We find that the inclusion of back-reaction does not lead to any
change in the spectral index (in agreement with [70]) or to any significant
change in the amplitude of the perturbations.

During radiation domination, we find that the ratio of I“,(i is fixed and
small, so that scalar field back-reaction does not play a significant role in this
epoch. In fact, back-reaction on the scalar field does not become important
until back-reaction begins to dominate the cosmic energy budget. In that
case,

Vers ~ %, (4.27)
causing the ¢ to “roll up” it’s potential. Once ¢ comes to dominate, the

form of the effective potential changes to
Vess ~ ¢4 (4.28)

and ¢ immediately rolls down it’s potential, without the benefit of a large
damping term (given by the Hubble scale).

Thus, this model predicts alternating periods of dark energy/matter dom-
ination, which recalls the ideas put forth in [67].

From the point of view of perturbation theory, we see that in the regime
where the higher-order terms begin to dominate and the series would be
expected to diverge, these corrections are then suppressed and become sub-

dominant again.

4.8 Discussion and Conclusions

To recap, we find that, in the context of inflationary cosmology, the EMT of
long wavelength cosmological perturbations can provide a candidate for dark
energy which resolves the “new cosmological constant” (or “coincidence”
problem in a natural way. Key to the success of the mechanism is the fact
that the EMT acts as a tracker during the period of radiation domination, but
redshifts less rapidly than matter in the matter era. The fact that our dark
energy candidate is beginning to dominate today, at a redshift 10* later than
at the time of equal matter and radiation is related to the observed amplitude
of the spectrum of cosmological perturbations. ‘

We wish to conclude by putting our work in the context of other recent
work on the gravitational back-reaction of cosmological perturbations. We

are making use of non-gradient terms in the EMT (as was done in [11, 12]). As
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was first realized by Unruh [32] and then confirmed in more detail in [33, 71],
in the absence of entropy fluctuations, the effects of these terms are not
locally measurable (they can be undone by a local time reparametrization).
It is important to calculate the effects of back-reaction on local observables
measuring the expansion history. It was then shown [31] (see also [72]) that
in the presence of entropy fluctuations, back-reaction of the non-gradient
terms is physically measurable, in contrast to the statements recently made
in [73] 3. In our case, we are making use of fluctuations of the scalar field ¢
at late times. As long as this fluctuation is associated with an isocurvature
mode, the effects computed in this chapter using the EMT approach should
also be seen by local observers.

Our approach of explaining dark energy in terms of back-reaction is dif-
ferent from the proposal of [75]. In that approach, use is made of the leading
gradient terms in the EMT. However, it has subsequently been shown [76]
that these terms act as spatial curvature and that hence their magnitude is
tightly constrained by observations. Other criticism was raised in [51] where
it was claimed that, in the absence of a bare cosmological constant, it is
not possible to obtain a cosmology which changes from deceleration to ac-
celeration by means of back-reaction. This criticism is also relevant for our
work. However, as pointed out in [78], there are subtleties when dealing with
spatially averaged quantities, even if the spatial averaging is over a limited
domain, and that the conclusions of [51] may not apply to the quantities we
are interested in.

There have also been attempts to obtain dark energy from the back-
reaction of short wavelength modes [42, 79, 80]. In these approaches, however,
nonlinear effects are invoked to provide the required magnitude of the back-
reaction effects.

We now consider some general objections which have been raised regard-
ing the issue of whether super-Hubble-scale fluctuations can induce locally
measurable back-reaction effects. The first, and easiest to refute, is the issue
of causality. Our formalism is based entirely on the equations of general rela-
tivity, which are generally covariant and thus have causality built into them.

We are studying the effects of super-Hubble but sub-horizon fluctuations 4.

3There are a number of problems present in the arguments of [73], in addition to this
point. We are currently preparing a response that addresses the criticisms of these authors.
See [74].

4We remind the reader that it is exactly because inflation exponentially expands the
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Another issue is locality. As shown in [81], back-reaction effects such as
those discussed here can be viewed in terms of completely local cosmological
equations. For a more extensive discussion, the reader is referred to [74].

In conclusion, we have presented a model which can solve the dark energy
problem without resorting to new scalar fields, making use only of conven-
tional gravitational physics. The effect of the back-reaction of the super-
Hubble modes is summarized in the form of an effective energy-momentum

tensor which displays distinct behaviour during different cosmological epochs.

horizon compared to the Hubble radius that the inflationary paradigm can create a causal
mechanism for the origin of structure in the universe. In our back-reaction work, we are
using modes which, like those which we now observe in the CMB, were created inside the
Hubble radius during the early stages of inflation, but have not yet re-entered the Hubble
radius in the post-inflationary period.
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Chapter 5

Backreaction - Effects on the

Perturbations

5.1 Foreword

Forsaking the EEMT for a mores straightforward perturbative approach, we
now take a look at the extent of the effects of backreaction on the fluctuations.
Specifically, we examine the consequences of including higher-order terms on
the form of the power spectrum and make an estimate as to the extent of

the non-gaussianity induced by backreaction.

5.2 Introduction

The study of cosmological fluctuations is one of the cornerstones of modern
cosmology. In order for a cosmological model to be considered successful, it
must be able to reproduce, among other things, the power spectrum of the
perturbations. These perturbations leave their mark as anisotropies in the
cosmic microwave background (CMB) and go on to act as seeds for structure
formation. The theory of cosmological perturbations establishes the bridge
between observations (namely observations of fluctuations in the CMB and
in the distribution of structure in the universe) and the physics of the very
early universe which is responsible for providing the generation mechanism
for the fluctuations.

At the present time, however, inflationary cosmology does not quite have
the status of a theory. It is best thought of as a successful scenario that

resolves many of the problems that plague Big Bang cosmology. There are a
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large number of different models that result in accelerated (i.e. inflationary)
expansion. However, many models share a common feature in that they
involve a scalar field (the “inflaton”) which undergoes a period in which
it rolls slowly down it’s potential - leading to what is known as “slow-roll
inflation”. Our analysis will be in the context of a general slow roll inflation
model.

The theory of cosmological perturbations (see e.g. [9] for a comprehensive
review, and [10] for a recent abbreviated overview), a formalism crucial to
the understanding of CMB anisotropies, is usually studied within the frame-
work of linearized gravity. One writes down an ansatz for the form of the
perturbed metric about a homogeneous and isotropic background space-time,
linearizes the Einstein equations in the amplitude of the perturbations, and
solves the resulting equations. In this scheme, all Fourier modes of the fluc-
tuations evolve independently, as must be the case in a linear approximation.
The Einstein equations which govern the evolution of space-time and matter
are, however, nonlinear. Thus, retaining terms quadratic and higher in the
perturbation amplitude leads to interactions between different perturbation
modes. These interactions determine the “gravitational back-reaction”, the
difference between the full evolution of the space-time and what would be
obtained in linear theory, and will lead to potentially important modifica-
tions of the results obtained at linear order. In particular, they may effect
the key qualitative predictions of inflation, namely the scale invariance of the
spectrum and its Gaussianity.

The period of inflation in most scalar field-driven inflationary models is
very long (measured in units of the Hubble time during inflation). Thus,
the red-shifting of scales leads to the population of a large phase space of
long wavelength modes (modes with a wavelength larger than the Hubble
radius). The back-reaction of such long wavelength modes on the back-
ground space-time was first studied in [11, 12] (making use e of the concept
of an effective energy-momentum tensor of fluctuations first used in studies
of short wavelength gravitational waves [30]). It was found that this effective
energy-momentum tensor acts like a negative cosmological constant with a
magnitude which increases in time as the phase space of long wavelength
modes grows. A physical explanation of this effect in the quasi-homogeneous
approximation to the evolution equations was recently provided in [81]. The
effect can become non-perturbatively large [12] if the period of inflation is

sufficiently long and leads to a change in the Hubble expansion rate. This
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change is physically measurable in models with at least two matter fields [31].
In models with only one matter field, however, the leading infrared back-
reaction terms are not physically measurable by a local observer [32, 33, 34|
(see also [35], and see [36] for a review of previous work on gravitational
back-reaction in inflationary cosmology 1!).

Given that the back-reaction of first order cosmological perturbations on
the background cosmology can become large, it is important to determine
whether this gravitational back-reaction can also lead to large effects on the
fluctuations themselves, potentially changing their key characteristics like
almost scale-invariance and Gaussianity. It is the intent of this chapter to
solve the perturbed Einstein equations to quadratic order, and determine
the modifications to the results of the linear analysis, focusing on the ef-
fects on long-wavelength fluctuations. There has been a significant body
of previous work devoted to second order cosmological perturbations, see
e.g. [37, 38, 39, 40, 41, 43] and papers quoted therein. The effect of long-
wavelength modes has also been studied in the “separate universe” approach
[44, 45, 35], in which the effect of long-wavelength perturbations in encoded
as a change in the background geometry. Our approach is similar. In partic-
ular, we will neglect spatial gradients in the equations of motion, and thus
are focusing on the leading infrared contributions to back-reaction. What
differentiates our analysis from previous work is the emphasis on the fact
that, in an inflationary universe, modes continuously move into the infrared
sector (wavelengths greater than the Hubble radius), and that thus the in-
frared phase space grows. This leads to the concern that back-reaction effects
grow without limits, a concern which is the main motivation for our work.

The main result of our study, however, is that the leading infrared contri-
butions of back-reaction to the power spectrum of cosmological fluctuations
is very small. Assuming that the linear fluctuations have random phases,
as they do in the simplest inflationary models, the relative contribution of
our back-reaction terms to the power spectrum is suppressed by the product
of a dimensionless inflationary slow-roll parameter and the amplitude of the
linear density fluctuations.

We free ourselves of constraints imposed by any specific inflationary model

!There has been a lot of recent interest in the possibility that the leading gradient terms
of long-wavelength modes might back-react on local observables in a way that mimics
dark energy [47] (see also [48]). However, objections to this possibility have been raised
[49, 50, 77, 42, 52].
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by abstaining from picking a specific form of the inflaton potential. Rather,
we assume that the inflationary slow-roll conditions are satisfied and we em-
ploy a very general form of the potential, one that allows us to easily interpret
our results within the context of an explicit slow-roll realization. Thus, with
regards to cosmological models, our approach is extremely general, while still
retaining its ability to be specific.

Section 2 of this chapter is concerned with the general setup of the cal-
culation. Here, the background equations are solved to second order in the
slow-roll parameter (¢€), neglecting spatial gradients, and the corrections to
both the background scalar and the Hubble constant are determined, again,
to second order in €. Section 3 begins with a brief review of classical, relativis-
tic, cosmological perturbation theory. The linear perturbation equations are
solved using the background obtained in the previous section. The non-linear
equations make their appearance in Section 4, where the next-to-leading or-
der terms (those due to back-reaction) are solved for. Section 5 interprets
these results as modifications to the linear terms, and their effect on the spec-
trum of perturbations is determined. Finally, the effects of back-reaction on

the Gaussianity of the perturbations is investigated in Section 6.

5.3 Background

Before solving for the perturbations, we must determine the appropriate
background for our model. We confine our attention to a model consisting
of pure gravity (with vanishing cosmological constant) and a single, homo-
geneous, scalar field ¢, which we presumes satisfies the slow-roll conditions.

We write
P(x,t) = do +efi(t) + € fo(t), (5.1)

where ¢¢ is a constant and € is a dimensionless slow-roll parameter whose
value depends on the specific model in question. In consequence of (5.1), our

background space-time will be approximately de Sitter space,
a(t) = 1O (5.2)

Here, the Hubble rate H(t) is slowly time-dependent and can be expanded
as
H(t) = Hy + €hy (t) + €2 hy(t), (5.3)

where Hjy a constant.
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The dynamics of the scalar field is determined by its potential V(¢). In
order not to limit our results to any specific model, but, rather, to show them
to be a generic feature of slow-roll inflation, we use the following expansion
(related to a power series expansion of the potential about the field value
$o):

V($) = pdo + erd(t) + AP () = VO 4 v L v @) (5.4)

where superscripts indicate the order in € and

ppy = V(%)—¢0Vl(¢0)+%¢%vn(¢o)a (5.5)
ex = V'(go) — bV (¢0) (5.6)
EA = SV (go), (5.7)

the primes denoting a derivative with respect to the field. Thus, we see that
u,A, and A are dimensionful parameters depending entirely on the form
of the potential in the neighborhood of ¢o. In essence, this represents the
series expansion (in €) of any potential that can be used to generate slow-roll
inflation.

In light of this, we can use the Klein-Gordon

- a0V
3— — =0, 5.8
¢+3-d+ 3 (5.8)
and the Friedmann equations
34 + 4na®d? + 8ma®V = 0, (5.9)
.2 . .
L 422 an -8V = 0 (5.10)
a a

(solved order by order in €) to solve for the background, accurate to second

order in the slow roll parameter.

We find that
H = 8mrugy, (5.11)
70 = i — = ), (5.12)
70) = g (-2 3+ @R +2), (5.13)
ha(t) = A 33%, (5.14)
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and

1
129672 Hit
+16X\2 7% p%e Mot — 128 \2r?2e3Hot — 988 \2r? 2 Hyt + 11202717 2) .

ho(t) = (288 HIN 2 u? + 162H) N2t — 243N H(t (5.15)

Note that the corrections to the scalar field have the property that they
and their first temporal derivatives vanish at ¢ = 0, which coincides with the
onset of slow-rolling. Despite the overall factor of t™! preceding hy(t), this
term is not singular at the origin, as can be seen by expanding in a power

series about ¢ = 0.

5.4 Linearized Theory

The theory of cosmological perturbations is usually restricted to an analysis
of the linearized (in the amplitude of the perturbations) Einstein equations.
In this section, we review the salient results (see e.g. [9, 10] for comprehensive
reviews).

The most general perturbed line element can be written as

ds® = a®(n)[(1+2®)dn’—2(B;+8;)dz' dn—[(1-29) i +2Ej+(Fyj+ Fy) +hij)da’ da?)
(5.16)
where ®, ¥, B, E represent scalar, .S;, F; vector, and h;; tensor metric per-
turbations, respectively. These are distinguished by their transformation
properties under three dimensional rotations. For inflationary cosmology
and in linear perturbation theory, we can discard vector modes since they do
not grow, and tensor modes because they grow at a slower rate than scalar
metric fluctuations. Hence, we focus on the scalars. It is possible to choose a
gauge in which F = B = 0, the so-called ‘longitudinal’ or ‘conformal Newto-
nian’ gauge. This gauge is convenient for calculational purposes. For matter
without anisotropic stresses to linear order in the matter field perturbations,
it follows from the off-diagonal space-space Einstein equations that & = W.
Hence, for such matter the metric in longitudinal gauge takes the form

ds? = (14 26®(Z, t))dt* — a®(t)(1 — 2k®(Z, 1)) (dz® + dy® + d2?) . (5.17)

In the above, x is a dimensionless parameter which indicates the order of
the term in gravitational perturbation theory.
At second order, the perturbed metric is in general much more compli-

cated. In particular, there is mixing between scalar, vector and tensor modes,
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and an anisotropic stress in generated, leading to ® # ¥. However, it can
be seen explicitly that all of the complicating terms contain spatial gradients
and can hence be neglected in our study of the back-reaction effects of long
wavelength modes. Thus, if we work to leading order in the infrared terms,
we can neglect vector, tensor modes and anisotropic stress. Thus, we can
apply longitudinal gauge also at second order. We will use this gauge in the
following.
To incorporate effects due to slow-rolling, we expand ® in powers of € to
obtain
O (2,t) = Ui (F,t) + ear (1) + 26.(T, 1) . (5.18)

The subscript ; denotes the fact that the effects are linear in «.
In order to source our first order metric perturbations, matter perturba-

tions d1(Z,t) must be present, i.e.

where ¢(t) is the background matter solution given by (5.1)

At the linear level, perturbations decouple in Fourier space. It is thus
convenient to track the evolution of each Fourier mode individually. At
higher orders in perturbation theory, there will be mixing between the modes.
Typically, cosmological perturbations are classified into two distinct sec-
tors: sub-Hubble (UV) and super-Hubble (IR) modes. During inflation, the
phase space associated with super-Hubble modes grows exponentially, while
that of the sub-Hubble modes remains constant. In addition, the modes
which are important from the point of view of structure formation and CMB
anisotropies are super-Hubble during the last 50 e-foldings of inflation. It is
for these reasons that we focus our attention on these modes and ignore their
UV counterparts. This choice justifies our dropping of spatial derivatives in
the equations of motion.

Using the standard result for the energy-momentum tensor of a scalar

field g
Ty = buby — gu(E22 —V(8)), (5.20)

expanding the Einstein equations in a power series in «, and truncating after

first order leads to the equations of motion for scalar cosmological perturba-

tions, which read (see e.g. [9])

o2

= — 167, (¢)? (5.21)

a

(i4) : —-gclil + 8oy — 28, — 8%@1 — 4,
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—8rVW(¢) + 167V O (p)®; = 0,
(00) : 6@51% + 87661 + 87V (§) + 167V O () D, = 0,  (5.22)
where the overdot denotes a derivative with respect to cosmic time, and the

(¢¢) and (00) indicate the tensor indices of the Einstein equations in question.

These equations can be solved to yield

U(#1) = 0, (5.23)

a(@t) = / BEf(R)eFEeiory 12 (5.24)
— )2 o o e

Bi(E,t) = —wl'z‘g%—A(—l + e~ Hor) / &k f (k)™ #e = V/15.25)

5(Z,1) = —25"5—;@ [ R EeE ey, (5.26)

where 1, a constant representing the amplitude of the spectrum of linear
fluctuations, f(E) is the function describing the shape of the spectrum, aj
are the phases (assumed later on to be random), and V' is the cutoff volume
used in the definition of the Fourier transform. Note that & denotes the co-
moving momentum. We have introduced the cutoff volume in the definition
of the Fourier transform in order that the dimension of the Fourier transform
&(k) of (%) is k3/2, which in turn ensures that there is no volume arising
in the relation between the power spectrum Pp(k) and ®(k) (see Section 5).

Let us comment briefly on the interpretation of this solution. Note first
that the fact that ¥; vanishes is a consistency check on our analysis. In the
pure de Sitter limit (no rolling of the scalar field), there are no scalar metric
fluctuations to first order in perturbation theory (in k). Since the equation of
motion is second order, there are two fundamental solutions for each mode. In
the long wavelength (super-Hubble) limit, the dominant solution is constant
in time, and the sub-dominant solution is a decaying mode. We see that a;
is a the constant perturbation sourced by d;, while 3, is generated by the
rolling of the scalar field and is a combination of the constant and decaying

mode.

5.5 Back-Reaction

To second order in gravitational perturbation theory (expansion in k), there
are interactions between the Fourier modes of the fluctuation variables caused
by the non-linearities of the Einstein equations. In order to determine the ef-

fects of non-linearities, we make the substitutions for the metric perturbation
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variable
O(z,t) — D1(Z,t) + Do(, 1), (5.27)

where @9 can be in turn expanded in terms of the slow-roll parameter € as
Oy(Z,1) = Uo(F,t) + eaa(T, 1) + 255(T, 1), (5.28)

and for the matter field
H(Z, 1) — H(Z,t) + k269(T, 1) . (5.29)

Note that ®, and J; represent the effects of gravitational back-reaction.

In the following we will neglect spatial gradient terms in the equations of
motion, since we are interested in the infrared modes and in the coupling be-
tween different infrared modes 2. To order 2 in the perturbative expansion,

the Einstein equations then become
. . G a . a2 ..
(i4) : 20 + 8D,~ + 8<I>2(5 + 2m¢? + 57~ 21V @ (¢)) — 87 hd(5.30)
.. A 2 . ‘ a . .
= 49,(3, + 2@1% n 6@1% n 4@13 + 873,01 + AV ($) Dy,
(00) : mﬁ%+&@&-¢&wmx@@2 (5.31)
— 33, — 406, — 12@1@1% — 167V ($) B, — 87V ().

These equations can be solved to yield

Uy(Z,t) = O, (5.32)
a2(f7t) = 07 (533)
ma@n = BN g, s
5(Z,t) = 0, (5.35)

with
(%) = / PEf(R)eFTeioryl/2. (5.36)

Let us briefly comment on the physical interpretation of these results.
First, the vanishing of ¥, is a consistency check since there are no scalar
metric fluctuations in pure de Sitter space. Since the linear fluctuations are

first order in €, they will only contribute to the second order perturbations to

2Tt is also in this approximation that we can justify writing the perturbed metric in
the form (5.17) - see e.g. [35] for a discussion of this point.
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quadratic order, and hence the vanishing of as is another consistency check
on the algebra. From the expression for ®, it is manifest that the second
order perturbations are generated by the linear inhomogeneities ®; and &;
at quadratic order. The vanishing of &, is an interesting and unexpected
result. It says that, to this order, there are no back-reaction effects on the

evolution of the background scalar field.

5.6 Effects of Back-Reaction on the Power

Spectrum

Having now determined the form of the back-reaction terms, it is important
to estimate their amplitude. From observations of CMB anisotropies, we
know that the linear perturbations are of order xiye ~ 1075. The back-
reaction terms should be expected to be of order (ki1€)?. However, the
second order correction to a fixed Fourier mode receives contributions from all
linear Fourier modes to this order. Hence, one could expect the back-reaction
effect to be amplified by a phase space factor which measures the phase space
of Fourier modes which contribute. Since in inflationary cosmology, the phase
space of infrared modes is growing, and the linear fluctuations do not decrease
in amplitude on scales larger than the Hubble radius, the effects of back-
reaction could be expected to grow in time and become non-perturbatively
large. In this section we show that, provided that the linear fluctuations have
random phases, the leading infrared quadratic back-reaction effects of linear
fluctuations on the power spectrum of ® do not show any large phase-space
enhancement.

The total power spectrum Ptotal(ﬁ) of @, including the leading infrared

terms of second order in x, can be written as

Ptotal(];) = kB](I;EF = ’Pl(];;) +P2(E), (537)
= [®1(k) + B2(R) P,
where &;(k) are the Fourier transforms (using the definition of Fourier trans-

form including the cutoff volume as in Equation (5.24)) of ®,(Z). Making

use of the results of Sections 3 and 4 we have

Bi(F) = i f(R)es[L - B (D)
(F) = EE@hK), (5.38)
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where h(k) is the Fourier transform of g?(z) and where we have introduced
the symbol E(t) for the function

2Apgpy — N2 -
E(t) = )\—02(—1 + e Hot) (5.39)

The leading back-reaction correction to the power spectrum, denoted by
the function Ppr(k), comes from the cross term in (5.38) and is thus linear
in ®,(k):

Per(k) = 26| (k)D,(k)|K> . (5.40)

Thus, the fractional correction to the power spectrum due to the leading

back-reaction contributions is

Poer(k) _ 9k YL E(t)h(k)
Pl(k,‘) Gwlf(k') + 0(66)
~  2ke ——-—h(k)
~ Ireths, (5.41)

from which it follows that, modulo the ratio of h(k) over f(k), the back-
reaction terms are suppressed, as expected, by xei;. The ratio of h(k) over
f(k) is the possible large phase space enhancement factor.

Before continuing, we specify the linear power spectrum. We choose a
normalization wavenumber k, and choose %? to be the amplitude of the
power spectrum at k = k,. The function f(k) describes the spectral shape.
We choose a power law with a tilt ( away from scale-invariance, i.e. we write

k32, (5.42)

n

k >—3/2—C

f(k) = (",;;

It can easily be checked that P;(k,) = 2.
We now evaluate the magnitude of h(k), assuming that the phases aj

are random:

P ! - ~ik&
W) = G 1/2 / Prg?(z)e
= [ @R R FE - R atesnlyy, (5.43)

Given that we are considering the effects of long-wavelength fluctuations,
we must restrict the above integral over k1 to run only over super-Hubble
modes, i.e.

k| < H. (5.44)
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To estimate the magnitude of h(k), we insert the spectrum (5.42) into (5.43).
If we consider the effects of back-reaction on modes k which are sub-Hubble

now, we can apply the approximation

k—ky k
( i )_ % (5.45)

in which case the integral simplifies.

Assuming constant phases for the moment, the integral (5.43) can be

easily estimated
h(k) ~ k=32 SEX E32=Cy12 (5.46)

Note in particular from (5.46) that the k-dependence of Ppr(k) is the same
as that of the linear power spectrum. The leading effect of back-reaction thus
does not change the power index of the spectrum. However, for wavelengths
close to the Hubble radius, the approximation (5.45) is no longer good, and
the correction terms will yield changes to the index of the power spectrum.
The second fact to notice about the result (5.46) is the cutoff volume di-
vergence. This stems from the fact that as V increases, more and more
infrared modes are contributing to the back-reaction. For constant phases,
the effect is additive. The volume divergence thus represents the phase space
enhancement which is the focus of this investigation.

Let us now consider the more realistic situation - realized in typical infla-
tionary models - in which the phases are random. A simple way to estimate
the effects of the random phases in (5.43) is to add up the amplitudes of the
back-reaction contributions of all infrared modes El as a random walk. This
means dividing the amplitude obtained previously by N(V)/2, where N(V)
is the number of modes. Since for a finite volume V the wavenumbers are
quantized in units of Ak ~ V13, the number N (V) becomes

H i3
~ 4
NV) ~ (4) (5.47)
in which case the result (5.43) becomes
h(k) ~ k=3/2=Ck2XH=¢. (5.48)
Inserting this into (5.41), we obtain our final result
PBR(k) (kn)c
—_— ~ — ] . 5.49
PLlk) 2ke Vi (5.49)

The main conclusion we draw from (5.49) is that there is no phase space

enhancement of the back-reaction of long wavelength modes on the spectrum
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of cosmological perturbations, in contrast to the positive enhancement found
for the back-reaction on the background metric. Given the absence of such
a phase space enhancement, we find - as expected - that the back-reaction
terms in the power spectrum are suppressed compared to the terms coming
from the linear perturbations by ke;. Thus, they are completely negligible
in the case of a COBE-normalized spectrum of almost scale-invariant linear
fluctuations. In addition, we find that the leading back-reaction terms do

not change the spectral index.

5.7 Non-Gaussianity of the Spectrum Due to

Back-Reaction

Having established that the back-reaction of infrared modes cannot substan-
tially modify the amplitude and spectral tilt of the power spectrum of per-
turbations, we make some comments regarding the effects of back-reaction
on the Gaussianity of the spectrum.

The inclusion of higher-order terms implies correlations between different
modes, thus breaking strict Gaussianity. However, the question remains: how
badly broken is it? To estimate this, we turn our attention to the bispectrum
(three-point function).

In the case of purely Gaussian distribution, all odd moments are identi-
cally zero. Therefore, the non-vanishing of the bispectrum indicates that the
distribution cannot be Gaussian.

We take it for granted that the bispectrum does not vanish (for examples
of the three-point function see [46, 43]. In the context of higher order pertur-
bation theory (see e.g. [38]), however, its amplitude is exceedingly small. We
estimate it to be no larger than of order x*¢, thus making it quite unlikely to
be detected experimentally. Thus, we conclude that, although back-reaction

modifies the distribution, Gaussianity remains an excellent approximation.

5.8 Conclusions

In this chapter, we have studied the back-reaction of long wavelength linear
fluctuations on the power spectrum, produced by the mode mixing which
occurs as a consequence of the non-linearity of the Einstein equations. We

find that, assuming that the phases of the linear fluctuations are random,
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there is no phase space enhancement of the back-reaction effect. The leading
infrared back-reaction contributions are suppressed by keiy; compared to
the contribution of the linear fluctuations, where ki), is a measure of the
amplitude of the linearized metric fluctuations, and € is an inflationary slow-
roll parameter. These leading back-reaction terms do not modify the tilt of
the power spectrum on scales substantially smaller than the Hubble radius.
Note that in the case of correlated phases of the linear fluctuations, a much
larger back-reaction effect is possible.

We have also seen that the modifications to the Gaussianity of the lead-
ing order perturbations are negligible. The small size of these modifications
goes a long way towards justifying the linear approximation to cosmological
perturbation theory. However, our results do not exclude the possibility that
large amplitude local fluctuations can effect the measured fluctuations, as
very recently suggested in [53] (based on the second order formalism devel-
oped in [54]) 3.

Our work differs from previous work on second order fluctuations in that
it emphasizes the fact that, in an accelerating universe, the phase space of
super-Hubble modes is increasing in time. In contrast to what occurs in the
case of the back-reaction on the homogeneous mode, the back-reaction on the
fluctuating modes themselves does not increase without limits as a function
of time. Compared to previous analyses, our work also gives an easier way to
derive the leading-order effects of long-wavelength cosmological fluctuations.
Our results have been derived in the context of an arbitrary slow-roll infla-

tionary model and are thus valid for a wide range of cosmological scenarios.

3The possibility that local fluctuations can have a measurable effect on background
quantities such as the deceleration parameter has recently been suggested in [55, 56].
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Chapter 6
Summary

The previous four chapters represent the bulk of the author’s contribution to
the theory of cosmological perturbation. This has included results at both
the linear and second order, on the background and on the perturbations
themselves.

Problems addressed have ranged from the purely theoretical - for example,
the classicalization process described in chapter two, whose exact details
have virtually no impact on the late time universe, to the potentially crucial
phenomenological implications of the effects of backreaction - here, we have
in mind the results discussed in chapters four and five.

In conclusion, the author hopes he’s conveyed something of the impor-
tance of cosmological perturbations as well as the potential utility of gravi-

tational backreaction.

80



Chapter 7

Appendix: More on the
spectrum of perturbations in

string gas cosmology

7.1 Foreword

This appendix contains a reproduction of the article More on the spectrum
of perturbations in string gas cosmology. The work presented in chapter 3

forms the basis of the author’s contribution to this report.

7.2 Introduction

String gas cosmology is a model of superstring cosmology which is based on
coupling to a classical dilaton gravity background a gas of classical strings
with a mass spectrum corresponding to one of the consistent perturbative
superstring theories [1, 113] (see also [114] for early work, and [115, 36, 116]
for reviews). String gas cosmology has been developed in some detail in recent
years [117, 118, 119]. In particular, it was shown [120, 121, 122, 123, 124,
125, 126] that string modes which become massless at enhanced symmetry
points lead to a stabilization of the volume and shape moduli of the six extra
spatial dimensions (see [1, 127] for arguments in the context of string gas
cosmology on how to naturally obtain the separation between three large

and six string-scale dimensions !) .

1See, however, [128, 129] for some caveats.

31



String gas cosmology is usually formulated in the string frame, the frame
in which stringy matter couples canonically to the background dilaton space-
time. The existence of a maximal temperature [130] of a gas of weakly in-
teracting strings in thermal equilibrium has crucial consequences for string
cosmology. As discussed in [1], as we follow our universe back in time through
the radiation phase of standard cosmology, then when the temperature ap-
proaches its limiting value, the energy shifts from the radiative modes to the
string oscillatory and winding modes. Thus, the pressure approaches zero.
In the string frame, and for zero pressure, as follows from the equations de-
rived in [113, 131], the universe is quasi-static. There is an attractive fixed
point of the dynamics in which the scale factor of our large three dimen-
sions is constant, but the dilaton is dynamical (we consider the branch of
solutions in which the dilaton is a decreasing function of time). We call this
phase the quasi-static Hagedorn phase. Since the string frame Hubble ra-
dius is extremely large in the Hagedorn phase (infinite in the limiting case
that the scale factor is exactly constant), but decreases dramatically during
the transition to the radiation phase of standard cosmology, all comoving
scales of interest in cosmology today are sub-Hubble initially, propagate on
super-Hubble scales for a long time after the transition to the radiation phase
before re-entering the Hubble radius at late times. Thus, it appears in prin-
ciple possible to imagine a structure formation mechanism driven by local
physics.

As was recently suggested [133], string thermodynamic fluctuations in the
Hagedorn phase may lead to a nearly scale-invariant spectrum of cosmological
perturbations. There would be a slight red tilt for the spectrum of scalar
metric perturbations. A key signature of this scenario would be a slight
blue tilt for the spectrum of gravitational waves [134] (see also [135, 136]
for more detailed treatments). Since this result is surprising from the point
of view of particle cosmology, and since the analyses of [133, 134] contained
approximations, it is an interesting challenge to analyze the cosmology from
the point of view of the Einstein frame, the frame in which cosmologists have
a better physical intuition.

In this chapter, we analyze both the background dynamics of string gas
cosmology and the generation and evolution of cosmological perturbations in
the Einstein frame. A naive extrapolation of the background solutions of [113]
into the past would yield a cosmological singularity. Such an extrapolation

is clearly not justified once the dilaton reaches values for which we enter the
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strong coupling regime of string theory. Rather, at early times one must
have a new phase of the theory in which the dynamics is consistent with the
qualitative picture which emerges from string thermodynamics. This phase
is meta-stable and will decay into a phase with rolling dilaton. The modified
background evolution can solve the horizon and singularity problems in the
context of string gas cosmology.

An improved analysis of generation of fluctuations in the string frame
shows that the conclusions of [133, 134] concerning the spectra of cosmologi-
cal perturbations and gravitational waves (we are considering the case where
our three large dimensions are toroidal) are only obtained if the dilaton ve-

locity can be neglected.

7.3 Background Dynamics in the Einstein

Frame

String gas cosmology is based on T-duality symmetry and on string thermo-
dynamics. String thermodynamics yields the existence of a maximal temper-
ature of a gas of strings in thermal equilibrium, the Hagedorn temperature
[130]. If we consider [1] adiabatic evolution of a gas of strings in thermal
equilibrium as a function of the radius of space R, T-duality [137] yields a
temperature-radius curve (see Fig. 1) which is symmetric about the self-dual
radius. Being at the self-dual radius must be a fixed point of the dynamics.
The higher the entropy of the string gas is at a fixed radius, the larger is the
flat region of the curve, the region where the temperature remains close to
the Hagedorn temperature. This implies that the duration of the Hagedorn
phase will increase the larger the energy density is.

In a regime in which it is justified to consider the dynamics in terms
of a gas of strings coupled to background dilaton gravity, the string frame
action for the background fields, the metric and the dilaton (we will set the

antisymmetric tensor field to zero) is

S =— / Vg Tge PR + 49" 8,40, , (7.1)

where R is the string frame Ricci scalar, ¢ is the determinant of the string
frame metric, N is the number of spatial dimensions, and ¢ is the dilaton
field. Note that we are working in units in which the dimensionful pre-factor
appearing in front of the action is set to 1.
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Figure 7.1: Sketch (based on the analysis of [1] of the evolution of temperature T°
as a function of the radius R of space of a gas of strings in thermal equilibrium.
The top curve is characterized by an entropy higher than the bottom curve, and

leads to a longer region of Hagedorn behaviour.

The background is sourced by a thermal gas of strings. Its action Sy, is
given by the string gas free energy density f (which depends on the string
frame metric) via

Sy = / & e/ =gf . (7.2)
The total action is the sum of S and S,,. Note that the factor e~2¢ gives
the value of Newton’s gravitational constant.

In the case of a spatially flat, homogeneous and isotropic background
given by

ds® = dt* — a(t)*dx?, (7.3)

the three resulting equations of motion of dilaton-gravity (the generalization
of the two Friedmann equations plus the equation for the dilaton) in the
string frame are [113] (see also [131])

N\ +¢? = e’E (7.4)
A—ph = %ewp (7.5)
$— NI = —;—e“’E, (7.6)

where F and P denote the total energy and pressure, respectively, and we

have introduced the logarithm of the scale factor

At) = log(a(t)) (7.7)
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and the rescaled dilaton
@ =2¢p—NX. (7.8)

where N is the number of spatial dimensions (in the following, the case of
N = 3 will be considered).

The Hagedorn phase is characterized by vanishing P and, therefore, con-
stant total energy E. Thus, combining (7.4) and (7.6) to eliminate the
dependence on X, yields a second order differential equation for v with the
solution

Ey

e~ — —4—t2 — Gpe POt 4 7?0 (7.9)

subject to the initial condition constraint
Go? = eMEg+ NXo (7.10)

which follows immediately from (7.4). In the above, the subscripts stand for
the initial values at the time ¢t = 0.

In the Hagedorn phase, the second order differential equation (7.5) for A
can easily be solved. If the initial conditions require non-vanishing Xo, the
solution is

1 . V/NX—6
AMt) = Ao+ In - , 7.11
where G is an abbreviation which stands for
g = %6#’0 — QO'() . (712)

For vanishing initial value of the derivative of the scale factor, the solution
is simply

i.e. a static metric. In the static case, the result (7.9) simplifies to

o) — e-wo(%’t —1)2, (7.14)

These solutions are slight generalizations of the solutions given in the ap-
pendix of [113]. These solutions have also very recently been discussed in
[132]. We are interested in the branch of solutions with $<0.

One important lesson which follows from the above solution is that, al-
though the metric is static in the Hagedorn phase, a dilaton singularity de-

velops at a time ¢, given by

2

ts = el
’ ol

(7.15)
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In fact, already at a slightly larger time t., the dilaton has reached the
critical value ¢ = 0, beyond which string perturbation theory breaks down.
The times |t;] and |t are typically of string scale. Thus, unless the current
value of the dilaton is extremely small, the duration of the phase in which
the above solution is applicable will be short.

Note, however, that the solution (7.14) is not consistent with the qual-
itative picture which emerges from string thermodynamics [1] (see Fig. 1)
according to which the evolution of all fields close to the Hagedorn tem-
perature should be almost static. We know that the dilaton gravity action
ceases to be justified in the region in which the theory is strongly coupled.
This leads to the conclusion that the phase during which (7.14) is applicable
must be preceded by another phase of Hagedorn density, a phase in which
the dynamics reflects the qualitative picture which emerges from Fig. 1, and
corresponds to fixed scale factor and fixed dilaton. We call this phase the
strong coupling Hagedorn phase > Note that the Einstein action is not in-
variant under T-duality. Hence, we expect that intuition based on Einstein
gravity will give very misleading conclusions when applied to the strong cou-
pling Hagedorn phase. In particular, constant energy density should not
lead to a tendency to expansion. The strong coupling phase is long-lived but
meta-stable and decays into a solution in which the dilaton is free to roll, a
phase described by the equations (7.4 - 7.6).

If the equation of state is that of radiation, namely P = 1/NE, then
a solution with static dilaton is an attractor. For static dilaton, the equa-
tions (7.5) and (7.6) then reduce to the usual Friedmann-Robertson-Walker-
Lemaitre equations.

Figure 2 shows a space-time sketch from the perspective of string frame
coordinates. The Hagedorn phase lasts until the time ¢ (the time interval
from ¢, to close to tg being describable by the equations of motion of dilaton
gravity) when a smooth transition to the radiation phase of standard cos-
mology takes place. This transition is governed by the annihilation of string
winding modes into oscillatory modes and is described by Boltzmann-type

2Another argument supporting the assumption that in the strong coupling Hagedorn
phase the dilaton is fixed can be given making use of S-duality. Under S-duality, the dilaton
¢ is mapped to —¢. It is reasonable to assume that close to the maximal temperature,
the system is in a configuration which is self S-dual, and in which the dilaton is hence fixed
- we thank C. Vafa for stressing this point. Note that we are assuming that the existence

of the maximal temperature remains true at strong coupling.

86



gt

16k

o
10k}~

Figure 7.2: Space-time diagram (sketch) showing the evolution of fixed comoving
scales in string gas cosmology. The vertical axis is string frame time, the hori-
zontal axis is comoving distance. The Hagedorn phase ends at the time ¢tz and
is followed by the radiation-dominated phase of standard cosmology. The solid
curve represents the Hubble radius H~! which is cosmological during the quasi-
static Hagedorn phase, shrinks abruptly to a micro-physical scale at tg and then
increases linearly in time for ¢ > tg. Fixed comoving scales (the dotted lines la-
beled by k; and k) which are currently probed in cosmological observations have
wavelengths which are smaller than the Hubble radius during the Hagedorn phase.
They exit the Hubble radius at times ¢;(k) just prior to tg, and propagate with a
wavelength larger than the Hubble radius until they reenter the Hubble radius at
times t¢(k). Blindly extrapolating the solutions (7.13, 7.14) into the past would
yield a dilaton singularity at a finite string time distance in the past of tgr, at a
time denoted t;. However, before this time is reached (namely at time ¢.) a tran-
sition to a strong coupling Hagedorn phase with static dilaton is reached. Taking
the initial time in the Hagedorn phase to be tg, the forward light cone from that
time on is shown as a dashed line. The shaded region corresponds to the strong

coupling Hagedorn phase.

equations [118] (with corrections pointed out in [128, 129]). These Boltzmann
equations are analogs of the equations used in the cosmic string literature
(see [138] for reviews) to describe the transfer of energy between “long” (i.e.
super-Hubble) strings and string loops. Note that the decay of string winding
modes into radiation is the process that “reheats” the universe.

Close to the time ts, we reach the strong coupling Hagedorn phase, the
phase responsible for generating a large horizon.

In order that the cosmological background of Figure 2 match with our
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present cosmological background, the radius of space at the end of the Hage-
dorn phase needs to be of the order of 1mm, the size that expands into
our currently observed universe making use of standard cosmology evolution
beginning at a temperature of about 10*® GeV. This is many orders of magni-
tude larger than the string size. Thus, without further assumptions, there is
a cosmological “horizon” and “entropy” problem, similar to the one present
in Standard Big Bang (SBB) cosmology. Provided that the strong coupling
Hagedorn phase is long-lived (and, based on Fig. 2 this is more likely the
higher the initial energy density is chosen), string gas cosmology will be able
to resolve these problems. In particular, there will be enough time to estab-
lish thermal equilibrium over the entire spatial section, a necessary condition
for the structure formation scenario outlined in [133] to work.

The above issues become more manifest when the cosmological back-
ground is rewritten in the Einstein frame. It is to this subject to which we
now turn.

The conformal transformation of the metric to the Einstein frame is given
by

Gu = e /WDy = e¥g,, (7.16)

where quantities with a tilde refer to those in the Einstein frame, and in the

final expression we have set N = 3. The dilaton transforms as (for N = 3)

¢ =29 (7.17)

Under this transformation, the action (7.1) becomes

~o~ 1_ = e =
Sp = — / da\[-g(R - 53VubV.9). (7.18)
The matter action in the Einstein frame becomes

S = / dze® f(5,41y/7, (7.19)

from which we see that the factor e2® plays the role of the gravitational
constant.

We apply the conformal transformation for the metric (7.3) of a homo-
geneous and isotropic universe. To put the resulting Einstein frame metric
into the FRWL form, we have to re-scale the time coordinate, defining a new
Einstein frame time £ via

dt = e %dt. (7.20)
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The resulting scale factor @ in the Einstein frame then is given by
a=e’a. (7.21)

The comoving spatial coordinates are unchanged.
The Hubble parameters H and H in the Einstein and string frames,

respectively, are related via
H = e*(H - ¢). (7.22)

It is important to note that they denote very different lengths.

Let us now calculate the evolution of the Einstein frame scale factor.
Making use of the solution for the string frame dilaton (7.14), it follows from
(7.21) that

i = eMe (1 — dot). (7.23)

By integrating (7.20) we find that the physical time in the Einstein frame is
given by

- 1.

t = e Pl - §¢0t) : (7.24)

It is important to keep in mind that ¢ <0.

It follows that, in the Einstein frame, the evolution looks like that of a
universe dominated by radiation. This is easy to verify for large times, when
the factors of —1 within the parentheses in (7.23) and (7.24) are negligible,
and it thus it follows that

a(t) ~ /2. (7.25)

The same conclusion can also be reached for times close to the singularity,
by explicitly inverting (7.24) and inserting into (7.23).

We thus see that the expansion is non-accelerated and the Hubble radius
is expanding linearly. The dilaton singularity in the string frame is translated
into a curvature singularity in the Einstein frame, a singularity which occurs
at the Einstein frame time

A (7.26)
From the constraint equation (7.10) it follows that this of the order of the
string scale.

As stressed earlier, these solutions cannot be applied when the value
of the dilaton is larger than 0 (when the string theory enters the strong

coupling regime). Instead, we will have a strong coupling Hagedorn phase
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Figure 7.3: Space-time diagram (sketch) showing the evolution of fixed comoving
scales in string gas cosmology. The vertical axis is Einstein frame time, the hor-
izontal axis is comoving distance. The solid curve represents the Einstein frame
Hubble radius H~! which is linearly increasing after f,. Fixed comoving scales
(the dotted lines labeled by k; and ko) which are currently probed in cosmological
observations have wavelengths which are larger than the Einstein frame Hubble
radius during the part of the Hagedorn phase in which the dilaton is rolling. How-
ever, due to the presence of the initial strong coupling Hagedorn phase, the horizon
becomes much larger than the Hubble radius. The shaded region corresponds to

the strong coupling Hagedorn phase.

characterized by constant dilaton, and hence also almost constant Einstein
frame scale factor.

The space-time sketch of our cosmology in the Einstein frame is sketched
in Figure 3. In the absence of the strong coupling Hagedorn phase, the
horizon (forward light cone beginning at #,) would follow the Einstein frame
Hubble radius (up to an irrelevant factor of order unity), thus yielding a
horizon problem. However, during the strong coupling Hagedorn phase and,
in particular, during the transition between the strong coupling Hagedorn
phase and the phase described by the rolling dilaton, the horizon expands to
lengths far greater than the Einstein frame Hubble radius. This phase can,
in particular, establish thermal equilibrium on scales which are super-Hubble
in the rolling dilaton phase. In the last section of this chapter we will come
back to a discussion of how to model the strong coupling Hagedorn phase.

We will close this section with some general comments about the rela-
tionship between the string and the Einstein frames. Obviously, since the

causal structure is unchanged by the conformal transformation, the comov-
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ing horizon is frame-independent. The Hubble radius, on the other hand,
is a concept which depends on the frame. The string frame and the Ein-
stein frame Hubble radii are two very different length scales. Both can be
calculated in any frame, but they have different meanings.

7.4 Cosmological Perturbations in the String

Frame

From the point of view of the string frame, the scale of cosmological fluc-
tuations is sub-Hubble during the Hagedorn phase. In [133] it was assumed
that thermal equilibrium in the Hagedorn phase exists on scales of the order
of 1mm. It was proposed to follow the string thermodynamical matter fluc-
tuations on a scale k until that scale exits the string frame Hubble radius at
the end of the Hagedorn phase, to determine the induced metric fluctuations
at that time, and to follow the latter until the present.

To study cosmological perturbations, we make use of a particular gauge
choice, longitudinal gauge (see [9] for an in depth review article on the theory
of cosmological perturbations and [10] for a pedagogical introduction), in

which the metric takes the form
ds? = 20 ((1+20)dn® — (1 — 2¥)dydz'da’) , (7.27)

where 7 is conformal time, and where ¥ and @ are the fluctuation variables
which depend on space and time. In Einstein gravity, and for matter with-
out anisotropic stress, the two potentials ® and ¥ coincide, and ® is the
relativistic generalization of the Newtonian gravitational potential. In the
case of dilaton gravity, the two potentials are related via the fluctuation of
the dilaton field.

According to the proposal of [133], the cosmological perturbations are
sourced in the Hagedorn phase by string thermodynamical fluctuations, in
analogy to how in inflationary cosmology the quantum matter fluctuations
source metric inhomogeneities 3. On sub-Hubble scales, the matter fluctu-

ations dominate. Hence it was suggested in [133, 135] to track the matter

3In spite of this analogy, there is a key difference, a difference which is in fact more
important: In inflationary cosmology, the fluctuations are quantum vacuum perturbations,
whereas in our scenario they are classical thermal fluctuations.
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fluctuations on a fixed comoving scale k£ until the wavelength exits the Hub-
ble radius at time ¢;(k) (see Fig. 2). At that time, the induced metric
fluctuations are calculated making use of the Poisson equation

V20 = 47Ga’sTy . (7.28)

The key feature of string thermodynamics used in [133] (and discussed
in more detail in [136, 135]) is the fact that the specific heat Cy scales as
R? | where R is the size of the region in which we are calculating the fluctu-
ations. This result was derived in [139] and holds in the case of three large
dimensions with topology of a torus. The specific heat, in turn, determines

the fluctuations in the energy density. The scaling
Cy ~ R? (7.29)
leads to a Poisson spectrum
Ps,(k) ~ k* (7.30)

for the energy density fluctuations, and a similar spectrum for the pressure
fluctuations [134, 135]. Making use of the Poisson equation (7.28), this leads
to a scale-invariant spectrum for the gravitational potential @ .

However, in the context of a relativistic theory of gravity, what should be
used to relate the matter and metric fluctuations is the time-time component
of the perturbed Einstein equation, or - more specifically - its generalization
to dilaton gravity, and not simply the Poisson equation. There are correction
terms compared to (7.28) coming from the expansion of the cosmological
background and from the dynamics of the dilaton. The analysis of [133, 134]
was done in the string frame. In this frame, during the Hagedorn phase the
correction terms coming from the expansion of space are not present, but the
dilaton velocity is important. The important concern is whether the resulting
correction terms will change the conclusions of the previous work.

The perturbation equations in the string frame were discussed in [140].

Denoting the fluctuation of the dilaton field by x, the equations read
V20 — 3HU - 3H%® (7.31)
= %e%’w (2XT¢ + 0T¢) — 6HDY'
—30'¢/ — VX + 3HX +28¢” — 2x'¢,

4Note that thermal particle fluctuations would not give rise to a scale-invariant spec-

trum - see [155] for an interesting study of the role of thermal particle fluctuations in
cosmological structure formation.
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&Y + HHO = (7.32)
%62¢+2)‘(5Tg + E)A)(z)’ - 81‘)(/ + HaZX

0:0;(®- TV —2x) =0 i#j, (7.33)

—2U" — 4HU' — 2H?*® — 4H'® — 29'17.34)
— e2¢+2/\ (QXI_Z';'I, + 5]112) _ 4@¢// ; 2®l¢l _ 4H@¢I _ 4\11’@5’ + 2X” + 2HXI + 4®¢I2 . 4Xl¢l7

and

_2®¢/2 + 2¢/Xl __+_ @(bl/ + %@l¢l + 2H@¢/

3 1 1
+ '2—‘1’/¢, — X'+ §V2X — Hy'
_ 1 2042
= e (2xT +4T), (7.35)

where T'= T is the trace. The first equation is the time-time equation, the
second the space-time equation, the next two the off-diagonal and diagonal
space-space equations, respectively, and the last one is the matter equation.

The times ¢;(k) when the metric perturbations were computed are in the
transition period between the Hagedorn phase and the radiation phase of
standard cosmology. Space is beginning to expand. In this case, neither the
terms containing the Hubble expansion rate nor those containing the dilaton
velocity vanish.

We will first consider the case when the dilaton velocity is negligible (we
will come back to a discussion of when this is a reasonable approximation),
and then the case when the dilaton velocity is important.

If the dilaton velocity is negligible, then the equations simplify dramati-
cally. We first note that at the time ¢;(k), the comoving Hubble constant H
is of the same order of magnitude as k. Consider now, specifically, the time-
time equation of motion (7.31). The terms containing H and its derivative
on the left-hand side of this equation are of the same order of magnitude as
the first term. We will, therefore, neglect all terms containing H. Hence,

the equation simplifies to
— ]_ -
VI = e (2xT9 + 0T9) - V.. (7.36)

Similarly, the perturbed dilaton equation simplifies to

1 " 1"’2 - 1 2p+22
X'+ 5V = e (2xT +0T), (7.37)
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From the latter equation, it follows that the Poisson spectrum of §7" induces
a Poisson spectrum of the dilaton fluctuation x. Subtracting (7.37) from
(7.36) and keeping in mind that the background pressure vanishes in the
Hagedorn phase yields

- 1
V20 = §e2¢+2)‘ (678 - oT) — X (7.38)
from which it follows that the induced spectrum of ¥ will be scale-invariant
Py ~ K°. (7.39)

It is easy to check that the other equations of motion are consistent with this
scaling.

If the Hagedorn phase is modeled by the equations (7.4 - 7.6), then the
dilaton velocity is not negligible, since it is related to the energy density via
the constraint equation (7.4):

P = le-ewE. (7.40)
Thus, the terms containing the dilaton velocity are as important as the other
terms in the Hagedorn phase. Now, the prescription of [133, 135] was to use
the constraint equation at the time ¢;(k) when the scale k exits the Hubble
radius. This time is towards the end of the Hagedorn phase. However, in the
context of our action, Eq. (7.4) always holds. The right-hand side of this
equation must be large since it gives the (square of the) Hubble expansion
rate at the beginning of the radiation phase. At the time #;(k), then, for
scales which are large compared to the Hubble radius at the beginning of the
radiation phase, the value of the terms containing A in (7.4) are negligible,
and hence the dilaton velocity term is non-negligible.

Let us now compute the induced metric fluctuations in the Hagedorn
phase taking into account the terms depending on the dilaton velocity. The
time-dependence of the dilaton introduces a critical length scale into the
problem, namely the inverse time scale of the variation of the dilaton. Trans-
lated to the Einstein frame, this length is the Einstein frame Hubble radius
(this radius is, up to a numerical constant, identical to the forward light cone
computed beginning at the time of the dilaton singularity). On smaller scales,
the dilaton-dependent terms in the time-time Einstein constraint equation
(7.31) are negligible, Eq. (7.31) reduces to the Poisson equation (7.28) and
we conclude that the Poisson spectrum of the stringy matter induces a flat

spectrum for the metric potential .
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On larger scales, however, it is the dilaton-dependent terms in (7.31)
which dominate. If we insist on the view that it is the string gas matter
fluctuations which seed all metric fluctuations, then we must take all terms
independent of the string sources to the left-hand side of the equations of
motion. If we do this and keep the terms on the left-hand side of the equa-
tions which dominate in a gradient expansion, then the time-time equation
becomes

3V ¢ — 20472 + 2x/' ¢ = %e2¢+2>‘ (2xT9 + 013, (7.41)

and the analogous approximation scheme applied to the dilaton equation

yields
_ 2 N 1" 1 Yy § / /_l 1"
204" + 2¢'x + P9 +2<I>¢+2\I!¢ X
1 2¢+2X
1€ (2xT +6T) . (7.42)

Inspection of (7.42) shows that a Poisson spectrum of §7" will induce
a Poisson spectrum of x. Subtracting two times (7.42) from (7.41) shows
that, given a Poisson spectrum of y, the resulting equation is no longer
consistent with a scale-invariant spectrum for ¥ and &, since terms which
have a scale-invariant spectrum would remain on the left-hand side of the
equation. Hence, we conclude that the induced spectrum of & and ¥ will
also be Poisson:
Py ~ k. (7.43)

The above conclusion is consistent with the Traschen Integral constraints
[141] which state that in the absence of initial curvature fluctuations, motion
of matter cannot produce perturbations with a spectrum which is less red
than Poisson on scales larger than the horizon. This view is consistent with
the fact that on small scales, the spectrum is scale-invariant: on small scales
it is possible to move around matter by thermal fluctuations to produce new
curvature perturbations.

As we have stressed earlier, however, the equations (7.4 - 7.6) are def-
initely not applicable early in the Hagedorn phase, namely in the strong
coupling Hagedorn phase. In that phase, the dilaton is fixed, and thus the
arguments of [133] imply the presence of scale-invariant metric fluctuations

seeded by the string gas perturbations 5. These fluctuations will persist in

SHowever, in this phase one must reconsider the computation of the string thermody-
namic fluctuations, since our analysis implicitly assumes weak string coupling.
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the phase in which the dilaton is rolling (the fluctuations cannot suddenly
decrease in magnitude). Hence, we believe that the conclusions of [133] are

robust.

7.5 Cosmological Perturbations in the Ein-

stein Frame

From the point of view of the Einstein frame, the scales are super-Hubble
during the phase of dilaton rolling. How is this consistent with their sub-
Hubble nature from the point of view of the string frame? The answer
is that, whereas the causal structure of space-time (and thus concepts like
horizons) are frame-independent, the Hubble radius depends on the frame.
The physical meaning of the Hubble radius is that it separates scales on which
matter oscillates (sub-Hubble) from scales where the matter oscillations are
frozen in (super-Hubble). Matter which is coupled minimally to gravity in

the string frame feels the string frame Hubble radius ©

, matter which is
minimally coupled to gravity in the Einstein frame feels the Einstein frame
Hubble radius. Strings couple minimally to gravity in the string frame and
hence feel the string frame Hubble radius.

If we take into account the presence of the strong coupling Hagedorn
phase, then it becomes possible, also in the Einstein frame, to study the
generation of fluctuations. During the strong coupling Hagedorn phase, the
dilaton is fixed and hence the fluctuation equations are those of Einstein
gravity. Since scales of cosmological interest today are sub-Hubble during
this phase, a scale-invariant spectrum of metric fluctuations is induced by
the string gas fluctuations, as discussed in the previous section. If the strong
coupling Hagedorn phase is long in duration, then a scale-invariant spectrum
can be induced consistent with the Traschen integral constraints. Note that
the a long duration of the strong coupling phase is required in order to justify
the assumption of thermal equilibrium on the scales we are interested in.

We can also obtain the Einstein frame initial conditions by conformally
transforming the initial conditions obtained in the string frame. The trans-

formation of the perturbation variables in straightforward:

T = (T+x) (7.44)

6Note, however, that the dilaton coupling to stringy matter can produce friction effects

which are similar to Hubble friction.

96



d = (@-x) (7.45)

X = 2x, (7.46)

where, as before, tilde signs indicate quantities in the Einstein frame.
Note, in passing, that the string frame off-diagonal spatial equation of
motion (7.33) immediately implies that

¥ =9, (7.47)

which is the well-known result for Einstein frame fluctuations in the absence
of matter with anisotropic stress.

Given the transformation properties (7.44 - 7.46) of the fluctuation vari-
ables, it is obvious that the conclusions about the initial power spectra of
the fluctuations variables are the same as in the string frame: if the dilaton
velocity can be neglected, the spectrum of ® and V¥ is scale-invariant, if the
dilaton velocity is important, the spectra of these variables are Poisson.

Whereas setting the initial conditions for the fluctuations may look more
ad hoc in the Einstein frame, the evolution of the perturbations is easier
to analyze since we can use all of the intuition and results developed in
the context of fluctuations in general relativity. In particular, we can use
the Deruelle-Mukhanov [142] matching conditions to determine the fluctua-
tions in the post-Hagedorn radiation phase of standard cosmology from those
at the end of the Hagedorn phase. The Deruelle-Mukhanov conditions are
generalization to space-like hyper-surfaces of the Israel matching conditions
[143] which state that the induced metric and the extrinsic curvature need
to be the same on both sides of the matching surface. Applied to the case of
cosmological perturbations, the result [142] is that (in terms of longitudinal
gauge variables) both ® and ¢ need to be continuous 7 where ¢ is defined
as [147, 148, 149]

5 H . 5
C = o+ m(@, -+ H(I)) , (748)

where here H the Einstein frame Hubble expansion rate with respect to
conformal time.
In the Einstein frame, the universe is radiation-dominated both before

and after the transition. Hence, in both phases the dominant mode of the

"Note that the application of Israel matching conditions is, in our case, well justified.
The concerns raised in [144] regarding the application of the matching conditions in the
base of the Pre-Big-Bang [145] and Ekpyrotic/Cyclic [146] scenarios do not apply since in
our case the matching conditions are satisfied at the level of the background solution.
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equation of motion for ® is a constant. The constant mode in the phase
t < tg couples dominantly to the constant mode in the phase £ > fgz. The
initial value of the spectrum of @ will seed both the constant and the decaying
mode of ® with comparable strengths and with the same spectrum. Hence,
the late-time value of @ is given, up to a factor of order unity, by the initial
value of ® at the time #;(k)

Py(k,t) ~ Py(k,t;(k)) ~ k° >>1g. (7.49)

7.6 Discussion and Conclusions

In this chapter, we have recast string gas cosmology in the Einstein frame
rather than in the string frame in which the analysis usually takes place. Our
analysis sheds new light on several important cosmological issues.

At the level of the background evolution, it becomes clear that solutions
of the dilaton gravity equations (7.4 - 7.6) with decreasing dilaton contain an
initial singularity. From the point of view of the Einstein frame, there is an
initial curvature singularity which follows from the presence of a singularity
in the dilaton field in the string frame. Obviously, however, these solutions
are not applicable at very early times since they correspond to times when
the string theory is strongly coupled. Hence, there must be, prior to the
phase of rolling dilaton, a strong coupling Hagedorn phase in which both the
size of space and the dilaton must be quasi-static. Provided that this phase
lasts sufficiently long, thermal equilibrium over all scales relevant to current
observations can be established.

Note that during the period when the solutions of (7.4 - 7.6) have a rolling
dilaton, then in the Einstein frame the expansion of space never accelerates.
The evolution corresponds to that of a radiation-dominated universe. The
Einstein frame Hubble radius increases linearly in time throughout. How-
ever, the presence of the strong coupling Hagedorn phase can solve the hori-
zon problem in the sense of making the comoving horizon larger than the
comoving scale corresponding to our currently observed universe.

How to model the strong coupling Hagedorn phase now becomes a cru-
cial question for string gas cosmology 8. Since the singularity of string gas
cosmology is (from the point of view of the string frame) associated with

the dilaton becoming large, and thus with string theory entering a strongly

8See also [156] for an interesting discussion of these issues.
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coupled phase, it is interesting to conjecture that a process like tachyon con-
densation [151] will occur and resolve the singularity (like in the work of
[152]). If this phase lasts for a long time, it will produce a large space in
thermal equilibrium.

There are other possible scenarios in which there is a precursor phase
of the rolling dilaton period which establishes thermal equilibrium on large
scales. One such possibility was discussed in [150] and makes use of a pre-
Hagedorn phase in which the extra spatial dimensions initially expand, driven
by a gas of bulk branes. The resulting increase in the energy stored in the
branes leads to the increase in size and entropy which solves both the horizon
and entropy problems. Once the extra spatial dimensions have contracted
again to the string scale, the size of our three spatial dimensions can be
macroscopic while the temperature of matter is of string scale.

Another possibility to obtain a solution to the horizon problem and to jus-
tify thermal equilibrium over large scales is to invoke a bouncing cosmology
such as obtained in the context of higher derivative gravity models in [153]
(see also [154] for an earlier construction). The phase of contraction could
produce the high densities required to form a string gas with the necessary
requirements.

We have also studied the mechanism for the generation of fluctuations
proposed in [133, 135] in more detail, both from the point of view of the
string frame and the Einstein frame. We have shown that a small value of
the dilaton velocity in the Hagedorn phase is required in order that the string
thermodynamic fluctuations are able to generate a scale-invariant spectrum
of cosmological fluctuations. If dilaton velocity terms are important, then
a Poisson spectrum is produced. If the dilaton velocity is negligible, and if
thermal equilibrium on the scales of interest can be justified, then a scale-

invariant spectrum of metric fluctuations is induced.
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