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Abstract 

 

Damping is a fundamental property of vibrating mechanical systems. To enhance the 

performance limits and refine the characteristics of resonant micromechanical sensors and 

actuators, the engineering of a low-damped system is ideal.  Despite efforts to measure damping 

mechanisms and processes, many open questions remain.  The thesis contributes to the practical 

knowledge of damping behavior and the experimental methods of damping measurement.  This 

thesis addresses two openings in the literature: (1) a calibrated measurement of the effect of 

temperature on the material damping of microcantilever beam resonators and (2) the 

characterization of the measurement of damping in microcantilever beams and thin film nano-

membranes using the thermomechanical noise (TMN).  Both of these objectives are 

accomplished by measuring the dynamics of the microresonator using laser Doppler vibrometry, 

a non-contact high precision interrogation tool.    

A methodology to calibrate measurements of material damping to the fundamental 

thermoelastic damping (TED) limit has been established in previous research and used to 

measure the effect of microstructure and operating frequency on the material damping of 

aluminum, gold, and silver using a single-crystal silicon microcantilever beam substrate.  In this 

thesis, that methodology is extended to elevated temperatures (20 ˚C to 150 ˚C) and implemented 

to study the temperature dependence of the material damping in single-crystal silicon and in ~48 

nm thick nanocrystalline aluminum films.  First, the temperature dependent material properties 

of single-crystal silicon are collected from the literature and are used to calibrate the measured 

damping of single-crystal silicon microcantilever beams to the TED limit.  The results reveal that 

the damping of single-crystal silicon increases proportionally to the TED limit from room 

temperature up to 150 ˚C.  Then, two specimens are coated with ~48 nm of aluminum by e-beam 

deposition.  The damping of the bi-layer beam is compared to the bare silicon beam to measure 

the material damping of the aluminum film.  As the temperature increases, the material damping 

of the aluminum increases, peaks at ~100 ˚C, and then starts to decrease. 

Next, the thesis characterizes the method by which the damping is measured from the 

TMN.  The use of TMN to measure the resonance frequency and stiffness of the microcantilever 

beams is well established, but the accuracy and precision of measurements of the damping from 



vii 

 

the noise has not been evaluated.  To address this open question, a systematic experimental and 

analysis protocol is presented to measure the TMN and extract the damping.  The methodology is 

applied to a set of silicon-based microcantilever beams and the results are compared to the 

damping measured by the established free-decay technique.  The comparison shows that the 

damping measured from the TMN suffers from precision errors as great as 25% for low-damped 

resonators (Q > 10
5
).  Finally, the established experimental protocols are extended to measure the 

damping of a 200 nm thick bi-layer membrane of aluminum and silicon-dioxide at room 

temperature and atmospheric pressure. This experiment demonstrates that the TMN can be used 

to measure the damping for the lower mode number resonance peaks of the nano-membrane 

resonator. 

 The contributions of this thesis establish practical guidelines to measure damping from 

the TMN at room temperature and up to 150 ˚C using the logarithmic decrement of free-decay.  

The thesis also contributes calibrated measurements of material damping in silicon and 

nanocrystalline aluminum thin films at elevated temperatures.  These methods and measurements 

are readily applied to further studies as they are based on well-characterized microcantilever 

beam resonators, a model resonator system with many commercial and research applications. 
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Sommaire 

 L’amortissement est une propriété fondamentale des systèmes vibratoires. Comme 

l’amortissement est lié aux limites de performances et aux caractéristiques des capteurs 

micromécaniques résonants et  des actuateurs, le développement de systèmes à faible 

amortissement est idéal. Malgré de vastes efforts pour mesurer les mécanismes et les procédés 

d’amortissement, de nombreuses questions restent ouvertes. La motivation principale de cette 

thèse est de contribuer à la connaissance pratique du comportement d'amortissement et les 

méthodes expérimentales de mesure d'amortissement. Cette thèse adresse deux ouvertures dans 

la littérature : (1) une mesure calibrée de d’effet de la température sur l’amortissement du 

matériau de résonateurs en poutre en porte-à-faux, et (2) la caractérisation de la mesure 

d’amortissement dans des poutres en porte-à-faux et dans des couches minces de membranes 

nanométriques, en utilisant le bruit thermomécanique (BTM). L’ensemble de ces objectifs sont 

réalisés en mesurant la dynamique de micro-résonateurs, grâce à la vibrométrie laser à Doppler, 

un équipement interrogatif sans contact de haute précision. 

 

 Dans des recherches précédentes, une méthodologie pour calibrer les mesures 

d'amortissement des matériaux à la limite fondamentale d'amortissement thermoélastique (ATE) 

a été mise en place, et est utilisée pour mesurer l'effet de la microstructure et de la fréquence de 

fonctionnement de matériaux d'amortissement tels que l'aluminium, l'or et l'argent en utilisant 

une micro-poutre en porte-à-faux avec un substrat en silicium monocristallin. Dans cette thèse, 

que la méthodologie est prolongée à des températures élevées (de 20 ° C à 150 ° C) et utilisée 

pour étudier la dépendance de la température des matériaux d'amortissement en silicium 

monocristallin et de films d'aluminium nanocristallin d’une épaisseur de ~ 48 nm. Tout d'abord, 

les propriétés du matériau dépendantes de la température du silicium monocristallin sont 

collectées de la littérature et sont utilisées pour calibrer la mesure d'amortissement de micro-

poutre en porte-à-faux en silicium monocristallin jusqu'à la limite d’ATE. Les résultats révèlent 

que l'amortissement du silicium monocristallin augmente proportionnellement à la limite d’ATE 

de la température ambiante jusqu'à 150 ° C. Ensuite, deux échantillons sont revêtus d’une couche 

mince de ~ 48 nm d'aluminium grâce à la déposition par faisceau d'électrons. L'amortissement de 

la poutre à deux couches est comparé à la poutre de silicium seul pour mesurer l'amortissement 



ix 

 

du film d'aluminium. Lorsque la température augmente, l'amortissement de l'aluminium croît, 

atteint un maximum à ~ 100 ˚C, puis on commence à diminuer. 

 

 Ensuite, la thèse caractérise la méthode par laquelle l'amortissement est mesuré à partir 

du BTM. L'utilisation du BTM pour mesurer la fréquence de résonance et la rigidité des micro-

poutres en porte-à-faux est bien établie, mais l’exactitude et la précision des mesures 

d'amortissement à partir du bruit n’ont pas été évalués. Pour répondre à cette question ouverte, 

un protocole expérimental et d’analyse systématique est présenté pour mesurer le BTM et 

extraire l'amortissement. Cette méthodologie est appliquée à un ensemble de micro-poutres en 

porte-à-faux à base de silicium et les résultats sont comparés à l'amortissement mesuré par la 

technique de décomposition libre déjà établie. La comparaison montre que l'amortissement 

mesuré à partir du BTM souffre d'erreurs de précision aussi grande que 25% pour des 

résonateurs à faible amortissement (Q > 10
5
). Enfin, les protocoles expérimentaux déjà établis 

sont étendus pour mesurer l'amortissement d'une membrane bicouche en aluminium et dioxyde 

de silicium d’une épaisseur de 200 nm à température et pression ambiante. Cette expérience 

démontre que le BTM peut être utilisé pour mesurer l'amortissement des pics de résonance pour 

le mode le plus faible du résonateur nano-membranaire. 

 

 Les contributions de cette thèse établissent des lignes directrices pratiques pour mesurer 

l'amortissement à partir du BTM de la température ambiante à 150 ° C en utilisant le décrément 

logarithmique de la méthode de décomposition-libre. Cette thèse contribue également à des 

mesures calibrées de matériaux d'amortissement en silicium et aluminium nanocristallin couches 

minces à hautes températures. Ces méthodes et ces mesures sont facilement applicables à d'autres 

études car elles sont basées sur  des résonateurs de micro-poutres en porte-à-faux bien définis, 

ces systèmes modèles de résonateurs ont de nombreuses applications commerciales et de 

recherche. 
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CHAPTER 1 

Introduction to damping in micro/nanomechanical resonators 

 This chapter introduces the role of damping in the performance of instruments based on 

micromechanical resonators and identifies open areas of research.  Then a review of damping 

mechanisms is followed with the measures and measurement methods of damping.  The chapter 

closes with an outline of the rest of the thesis. 

1.1 Introduction to micro/nanomechanical resonators and the role of damping 

Since the invention of the transistor and the rise of the computer, the drive to increase the 

density of electrical elements for computer chips has led to the rapid development of new micro 

and nano machining techniques.  The turnover of fabrication methods and tools for the 

production of integrated circuits has resulted in the migration of surplus technology from 

industrial micro/nano-fabrication facilities to university laboratories.  Access to state-of-the art 

microfabrication technologies is feeding a new industrial revolution.  The capacity for a small 

research group to develop new devices and concepts to exploit unique physical phenomena at the 

micro/nano scale is spurring scientific inquiry as well as industrial innovation [1, 2].   

Still in its nascence, the applications and functionality of micro/nano-electromechanical 

systems (MEMS) are expanding.  In particular, the use of resonant MEMS devices for sensing 

and detecting applications is receiving considerable attention and development [3, 4].  Their 

capacity to extend the perceptible range of forces to unprecedented levels are enabling new 

discoveries and capabilities in fields as diverse as biology, chemistry, quantum mechanics, and 

navigation [5-8].   

One of the most significant resonant MEMS based tools to-date is the atomic force 

microscope (AFM).  The AFM consists of a micromachined silicon cantilever with a sharp tip on 

the end, a laser, and a photodiode sensor.  The dynamics of the microcantilever beam are 

detected by the reflection of a laser aimed at the end of the cantilever and collected in the 

photodiode array. The microcantilever is driven at its fundamental resonance frequency and the 
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tip of the microcantilever is rastered over the surface of the specimen. The interaction between 

the surface and the sharp tip shifts the frequency of the vibration [9].  The frequency shift is then 

transduced into a topographic image of the surface.   

The AFM operates on the principle of force detection.  The ultimate performance limit is 

the signal-to-noise ratio that is determined by the mechanical noise floor and the detection signal 

noise [10-13].  The mechanical noise floor is defined by the thermomechanical noise (TMN), 

which is a stochastic vibration that is caused by ambient thermal energy and, paradoxically, the 

vibration energy dissipation [9, 14, 15]. The detection signal noise is generated in the optics 

configuration and may be caused by weak signal intensity or detection errors due to light 

scattering on an imperfect surface [16].  Unlike the mechanical noise, the optical noise can be 

easily improved; it is not uncommon to add a thin film of metal (aluminum, silver, gold, chrome) 

to improve reflectivity [17].  However, the addition of a metal coating increases the dissipation 

by as much as an order of magnitude [18-21].   The increase in energy dissipation affects the 

measurement resolution of the frequency shifts and also amplifies the TMN floor [9, 13, 22].   

Achieving a state of minimal dissipation, then, is critical for the basic performance of the tool.  

Energy dissipation is important from the perspective of precision measurements; the magnitude 

of the damping, a measurement of the dissipation, must be known in order to quote the accuracy 

and resolution of the measurement.   

However, an estimate of the damping goes beyond an initial calibration.  In many 

applications, resonators are operated in non-ideal conditions where temperature fluctuations are 

common.  For instance, the AFM has been re-engineered as a nanolithography tool where the 

cantilever stylus is heated and is used to burn nano lines into the lithography resist while 

simultaneously imaging the surface [22-25].  The changes in temperature alter the dissipation, 

which affects the cantilever amplitude response [26].  Furthermore, the resonance frequency is a 

function of the dissipation and the temperature [27, 28].  Thus it is not just the imaging 

resolution that is affected, but also the control of the dynamics [29].  Compensating for these 

deleterious effects can be achieved by in-situ measurement of the damping.  One simple method 

to achieve this measurement is to exploit the link between the dissipation and the TMN, a 

technique that is often used to calibrate the  damping and frequency of microcantilever beams for 

the AFM [30, 31].   
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Consequently, there are open questions that pertain not just to the damping mechanisms 

but to the techniques of damping measurement.  Specifically, two questions are brought to 

attention: (1) what is the temperature dependence on the mechanisms of material damping and 

(2) what is the accuracy and precision of the damping measured from the TMN.  These issues are 

also relevant for many other resonance based micromechanical systems such as radio frequency 

transducers and filters, accelerometers, and nano-scale mass balances where the measurement 

precision and temperature stability are important [5, 12, 32-34].   Answering the open questions 

will help refine and expand the capabilities and roles of resonant MEMS based sensors, 

detectors, actuators, and energy harvesters.  The aim of the thesis is to contribute practical 

knowledge of certain damping mechanisms and measurement techniques to the existing body of 

knowledge. 

Damping has been studied extensively for many decades with the goal of building a 

catalog of experimentally proven theoretical models and methods to control damping.  However, 

experts in this pursuit acknowledge that an all encompassing description of energy loss is not 

currently available [35-37].  Segregating the many damping mechanisms for a systematic 

experimental analysis is difficult [38].  Numerous variables, such as the operating frequency, 

vibration mode, and amplitude; the geometry, chemistry, material properties, and material 

defects; the operating environment and  structure of the device boundaries, are significant for 

multiple damping mechanisms [36].  Furthermore, the variability of resonator configurations, 

materials, vibration modes, and the experimental methods employed in the study of damping 

make it difficult to quantitatively compare reported results [38].  The study of damping calls for 

a systematic methodology where each of the mechanisms is minimized by careful design.  To 

implement this properly, a working knowledge of the various sources of damping is necessary.   

1.2 Mechanisms of damping  

The damping that affects MEMS resonators can be classified into three categories: 

material damping, fluid-structure interactions, and boundary damping.  Table 1-1 lists the 

mechanisms that apply to each category and the relevant literature that discuss each mechanism.   
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Table 1-1: Classification of damping mechanisms and relevant literature from Joshi et al. [36].   

Boundary damping 
Fluid-structure 

interactions 
Material damping 

Elastic wave 

radiation 
[39-58] 

Viscous 

damping 
[59-61] 

Thermoelastic 

damping 
[62-77] 

Microsliding [78-81] 
Squeeze-film 

damping 
[82, 83] 

Phonon-phonon 

interactions 
[84-86] 

Viscoelasticity [87] 

Acoustic 

radiation 
[88] 

Phonon-electron 

interactions 
[86, 89] 

Internal flow [90, 91] Internal friction [92-105] 

 

The most relevant mechanisms are discussed in the following sub-sections in terms of their 

effects on flexural beam resonators, though they apply to most configurations of flexural mode 

resonators. Then in Section 1.3, the methodology to measure the contribution of individual 

damping mechanisms is explained. 

1.2.1 Boundary damping 

Boundary damping is also known as anchor loss and, as the name implies, originates 

from the mounting conditions of the resonator.  The main contribution to damping from the 

boundary conditions of the microcantilever specimens has two sources:  support loss and 

microsliding [36].  Support loss has been well studied and theoretical models proposed [106].  

On the other hand, microsliding, more commonly referred to as clamping loss has not been well 

characterized. 

Clamping loss is a source of damping relevant for resonators that are attached to a 

supporting structure via a vice-like clamping arrangement, which is typically used for cantilever 

beams.  This type of loss is a combination of static and dynamic friction.  At the microscale, the 

surfaces of the beam and the clamp are rough.  The roughness coupled with the pressure applied 

by the clamp exerts an amount of static friction on the beam [79].  When the beam oscillates, the 

strain field at the clamped surfaces of the beam must overcome the adherence of the static 
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friction.  Once this adherence is broken, the tangential friction continues to sap energy and 

generate heat [79].  The two stages of the clamping loss give rise to the name “slip-stick” friction 

or microsliding.   A theoretical description of microsliding is elusive due to the variety of custom 

clamping arrangements [17].    

 The other mechanism of boundary damping, support loss, has been studied by numerical 

methods and simulations to develop analytical models.  Two phenomena have been identified 

that contribute to support loss: (1) the generation and radiation of elastic waves at the junction of 

the resonator to the larger supporting structure [39-42, 45, 106] and (2) the ballistic transport of 

phonons from the resonator into the support [56-58].  The damping due to the radiation of elastic 

waves is determined by the ratio of the thickness of the supporting structure and the length of the 

resonator to the width and the thickness of the resonator [106].  The damping of the latter 

mechanism is a function of the elastic modulus, density, and resonance frequency of the 

resonator and the stress generated at the junction to the support [57, 58]. 

From the description of these two avenues of anchor loss, the practical strategy to control 

boundary damping is evident.  To reduce the clamping loss, the movement of the resonator at the 

clamped surfaces should be minimized.  In the case of a cantilever, this involves moving the 

oscillating strain field away from the clamped portion of the beam [79].  Various geometries 

have been experimentally shown to accomplish this, including tuning fork cantilevers [78], 

notched beams [107], tapered beams [108], and featuring a filleted transition from the beam to 

the clamped portion [11, 109, 110].  To reduce the support loss, the approach is to maximize the 

size of the base with respect to the beam portion of the cantilever.  For a vice-like clamping 

arrangement, the clamp is considered to extend the area of the cantilever base and further reduces 

support loss.  Alternatively, a supporting arrangements that holds the beam at the nodes, called 

“free-free support,” significantly reduces the boundary damping [46, 58].  Other attachment 

configurations such as phononic crystal strips, [54, 55, 111], and abrupt junctions, [51], have 

been demonstrated to reduce the radiation of elastic waves to the support. 
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1.2.2 Fluid-structure interactions 

Fluid-structure interactions can be a significant source of damping for all flexural mode 

resonators [112].  The fluid medium damps the vibration in several ways.  Energy is lost to the 

environment when the elastic energy is converted to acoustic radiation [88, 113].  Another source 

of loss is the drag force exerted by the fluid medium on the resonator [59].  Finally, squeeze-film 

damping can affect flexural resonators that are operated within close proximity to a solid surface 

[112].  In this case, the film of air that is trapped between the resonator and the surface causes 

inertial and viscous forces to dampen the vibration [82].  Loss due to fluid-structure interactions 

can be eliminated by operating in a reduced pressure environment.   

1.2.3 Material damping 

Material damping sets the minimum energy dissipation levels for flexural mode 

resonators.  With regards to this, understanding the mechanisms is crucial so that appropriate 

designs can be implemented to minimize their impact.  The major sources are internal friction, 

thermoelastic damping (TED), and Akhiezer damping.  Each will be discussed in turn. 

Internal Friction 

Internal friction is a relaxation mechanism that originates within the microstructure of the 

material.  Most notably, the internal friction is induced by material defects, such as point defects 

and friction at microcrystal grain boundaries [94, 114, 115].  Internal friction may also be caused 

by doping, a common practice of adding interstitial atoms, usually boron or antimony, to alter the 

electrical properties of semi-conductor materials [116].  In thin metal films, internal friction has 

been shown to have an anelastic behavior [93]. In this case, the internal friction processes is 

temperature and frequency dependent [114].  Separating the specific mechanisms of internal 

friction has proved to be a difficult process. Reducing the impact of defect induced internal 

friction is accomplished by using high-purity single-crystal materials for the construction of low-

damping microresonators [17].   
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Thermoelastic damping 

 Thermoelastic damping is a specific form of internal friction that arises from the 

application of cyclical stress gradients [117].   When a beam is bent, the thermoelastic effect 

generates a temperature gradient across the thickness [65].  This temperature gradient will cause 

irreversible heat conduction, entropy generation, and energy dissipation [64, 67].  The magnitude 

of TED is frequency dependent and has a characteristic Debye peak defined by the relaxation 

time and resonance frequency of the resonator [63].  Poly-crystalline materials exhibit two TED 

damping peaks due to intracrystalline relaxation [72].  Thus, TED can be reduced by using high-

purity materials and appropriately designing the resonance frequency with respect to the 

relaxation time.  Another method to reduce the TED is to interrupt the transverse heat conduction 

with slots or channels [73, 74, 118]. 

Akhiezer damping 

Akhiezer damping is a fundamental damping mechanism originating in the transport of 

thermal energy via phonons.  The stress field of a transversely vibrating beam modulates the 

frequency of the thermal phonons, which is measured by the Grüneisen parameter, γ [84, 119].  

The temperature differences between different phonon modes then cause an intramode heat flow 

and entropy generation [85].  The frequency dependence of Akhiezer damping is of a similar 

form as TED, and thus can be reduced by engineering the dimensions of the microresonator 

appropriately [17, 67, 69, 74, 84].   

1.3 Measurement of damping 

 The process by which kinetic and potential mechanical energy is converted to disordered 

thermal energy in a structure that is subject to a vibration is referred to as dissipation.  

Dissipation is quantified by the specific damping capacity, Ψ = (ΔW/W), and the loss factor, η = 

(ΔW/2πW), where ΔW is the energy lost per cycle of vibration and W is the stored elastic 

energy.  However, dissipation cannot be measured directly.  The magnitude of the energy loss is 

quantified by the effect of dissipation on the dynamics; the damping of vibrations due to the 

dissipation is used to quantify the energy that is lost.  Various methods have been implemented 

to measure the damping and, thus, there are different measures of damping [120].  These 
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measures and measurement techniques for the analysis of damping are discussed in the following 

sub-sections. 

1.3.1 Measures of damping 

There are three models for linear damping: (1) the viscous damping model, (2) the 

complex spring model, and (3) the standard anelastic solid [36]. The viscous damping model 

assumes that the damping force is proportional to the velocity of the oscillation [121].  The 

complex spring model assumes that the damping has no frequency dependence and is determined 

by the material properties [122].  The standard anelastic solid has a linear stress-strain 

relationship where there exists an equilibrium strain for each stress state and the equilibrium 

response is delayed and exhibits a frequency dependence [94, 122].   

The parameter for the viscous damping is the damping ratio, ζ, and the complex spring 

and standard anelastic solid damping may be described by the loss angle, φ.  The experimental 

methods to obtain these measures of damping have introduced other measures of the energy loss 

that do not necessarily signify a particular form of damping.  For instance, the steady state 

response of an oscillating system is analyzed to measure the loss angle, the loss factor, and also 

the inverse quality factor, Q
-1

 , while the transient response yields the damping ratio and the 

logarithmic decrement, δ [121, 122].   

The relationship between these measures of damping is given by [121, 123] 

.
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This relationship is only approximate for linear damping and in the case of low-damping values 

with φ < 0.01 [94].  The equivalence of the damping terms allow the experimentally measured 

damping to be compared for a variety of measurement techniques.   
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1.3.2 Damping measurement techniques 

Damping is measured by closely monitoring the dynamics of the resonator in the 

frequency or time domain [36].  Frequency domain analysis is applied to a system under steady 

state harmonic conditions while time domain analysis is made from a measurement of the 

transient response.  From the harmonic response, the damping is measured by the hysteresis loop 

method, the magnification-factor method, and the bandwidth method [121].  The damping is 

measured from the transient response by the logarithmic decrement method and the step-

response method [121].  Each of these damping measurement techniques will be described in 

turn. 

Frequency domain analysis 

 The hysteresis loop is generated by the steady state response to an applied cyclic load 

[121].  The plot of the force against the response creates a characteristic elliptical shape which is 

analyzed to extract η.  The frequency of the applied load can be shifted to observe the change in 

damping that would occur for certain forms of damping [122]. 

 The magnification factor is also a measure of the steady state harmonic response.  This 

damping measurement is made by plotting the frequency-response function of the system, which 

is the ratio of the frequency dependent response amplitude to the input force divided by the 

spring constant [121, 122].  The graph of the magnitude of the frequency response function 

plotted against the excitation frequency is analyzed to extract the damping in terms of the quality 

factor or damping ratio. 

 Similar to the magnification factor, the bandwidth method is a spectral analysis of the 

steady state response to a harmonic input.  The response amplitude is plotted as a function of the 

excitation frequency and the damping is calculated from the ratio of the resonance frequency to 

the half-power bandwidth [121]. The damping measured by this method is quantified in terms of 

the quality factor, Q. 
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Transient response analysis (time domain) 

The time domain analysis of damping is obtained from the response to an initial 

excitation.  The step-response method measures the lag of the system response to a unit step 

input [121].  The time at which the peak response occurs is used to calculate the damping ratio 

[112].  Another method is to excite the resonator to some initial amplitude and let the vibration 

freely decay.  The logarithmic decrement is measured from the rate of the decay [27, 123, 124]. 

1.3.3 Instrumentation 

The measurement of damping requires a method of actuation and detection.  Actuation 

may be applied by electrostatic excitation, dielectric excitation, piezoelectric excitation, 

magnetic excitation, or differential heating [24]. The vibration can be measured by capacitance, 

dielectric, magnetic, piezo, or optical detection [24].  The selection of the actuator and detection 

system is dependent on the method of damping measurement.   

It is more critical to have a precise actuation system for the harmonic analysis damping 

measurements than for the transient response measurements.   Applying a linear force over the 

broad range of operating frequencies that micromechanical resonators typically operate at can be 

challenging. Noise or non-linear excitation may cause systematic errors of the detection of the 

maximum response amplitude for harmonic analysis, especially for low-damping (Q > 10
3
) 

[125].  Time domain analysis generates more data than harmonic analysis, thus the impact of 

excitation and measurement noise is less critical and may be filtered out [125]. Additionally, the 

damping is measured from the raw time-series data and does not require any mathematical 

transformations that analysis in the frequency domain requires.   For these reason, the 

logarithmic decrement method is typically the method of choice for precision damping 

measurements of low-damped resonators. 

Since the logarithmic decrement is measured from the free-decay of the vibration 

amplitude, accuracy and precision is more critical for the interrogation system than it is for the 

excitation system.  Capacitance detection, dielectric detection, magnetic detection, and 

piezoelectric based detection are attractive because they can be manufactured in parallel with the 

resonator, thus reducing the size of the experimental system.  However, these detection methods 
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are sensitive to the configuration of the resonator and vibration amplitude and are prone to 

amplitude non-linearity [126].  Optical detection techniques such as interferometers or angular 

position determination can achieve sub-nanometer displacement resolution over a broad 

frequency and amplitude range [16].  Of particular utility for the metrology of MEMS devices is 

high-precision laser Doppler vibrometry (LDV). 

Laser Doppler vibrometry 

The LDV is used to measure vibrations, either in the frequency domain or in absolute 

units of displacement and velocity, and in its utmost limits, this tool is capable of highly accurate 

measurements of oscillations with sub picometer resolution over a vibration bandwidth of many 

megahertz [127].  Additionally, the time series measurements are available in real time.  

Compared to other vibration measurement techniques, such as accelerometers, fiber-optic 

sensors, or capacitance based detection, the LDV typically has a greater linear range, accuracy, 

and precision.   

Further distinguishing the LDV is the non-contact nature of the measurement.  This 

allows for the interrogation of isolated structures such as the tops of bridges and micro/nano 

resonators [128].  In fact, this feature of the LDV was one of the main reasons for its 

development by Yeh and Cummins in 1964, where the initial application of the LDV was to 

measure local velocities in fluid flow [16, 129].  The power of the tool was then recognized for 

making high-precision vibration measurements on small and fragile structures.  Since the 1980s, 

the demands of the ever evolving micro/nano industry have pushed the development of LDV 

technology to improve the resolution, accuracy, and capabilities.   

Due to its non-contact interrogation with microscopic laser spot sizes and the linear, large 

measurement bandwidth, the LDV is a proven interrogation instrument for the measurement of 

damping in micromechanical resonators.  The relevant literature can be categorized according to 

the measurement method and type of resonator.   

 Harmonic Analysis 

o Forced Excitation 

 Flexural mode resonators: [38, 41, 52, 58, 81, 130-136] 
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 Membrane resonators: [44, 137-139] 

o Thermomechanical Noise 

 Flexural mode resonators: [103, 134, 140, 141] 

 Free-decay analysis, flexural mode resonators 

o Room Temperature: [10, 58, 81, 102, 113, 131, 142-144] 

o Temperature Dependence: [21, 22, 96, 145] 

This thesis aims to use the LDV to study the dynamics of silicon based resonators and further, in 

Chapter 5, evaluate the use of the LDV as a standalone platform to directly measure the damping 

from measurements of the noise. In this application, the accuracy, precision, and low-noise of the 

LDV is essential. 

1.4 Open questions 

 Significant progress has been made over the past three decades on the measurement and 

analysis of damping in miniaturized mechanical resonators.  Nevertheless, many important and 

interesting questions remain largely unexplored.  In this thesis, the focus is on the following two 

questions: 

 What are the effects of temperature on material damping in micro/nano resonators? 

The measurement of material damping is challenging because all other sources of 

dissipation (boundary damping and fluid structure interactions) have to be eliminated.  In 

previous work by my colleagues at the Laboratory for Micro/Nano Systems at McGill 

University, an approach has been developed to tackle this problem by using the fundamental 

limit of TED to calibrate the measurement of material damping [18, 97, 98, 146, 147].  This 

methodology has been implemented to measure the frequency dependence of material damping 

in silicon, gold, aluminum, and silver at room temperature.  However, the extension of this 

approach to elevated temperatures (20 ˚C to 150 ˚C) has not yet been attained. 

 Can thermomechanical noise be used for precision measurement of damping in micro and 

nanomechanical resonators? 



13 

 

In the introduction, the importance of damping was illustrated in terms of the mechanical 

noise floor, which is defined by the TMN [148].  The link between the two may be exploited to 

measure the damping from an observation of the mechanical noise.  Thermomechanical noise has 

been explored experimentally [30, 31, 140, 149-156] and theoretically [9, 12, 14, 15, 157-161] 

for some decades.  Focus has been centered on creating working models for low-noise design in 

sensing applications and for finding the stiffness of microcantilever resonators by the thermal 

tuning method [30, 152-155, 160, 162, 163]. In the thermal tuning process, a model is fit to the 

experimentally measured TMN, and the area under the resonance peak is applied to calculate the 

cantilever stiffness [159].  While the damping is not the main interest for this application, it has 

been extracted from this methodology in the process [30, 31, 150, 151, 162, 164].  However, the 

accuracy and precision of the damping extracted from a measurement of the TMN has not yet 

been thoroughly characterized. 

1.5 Objectives of the thesis 

The study of material damping at elevated temperatures: 

 Establish experimental techniques and protocols for measuring the temperature 

dependence of material damping in microcantilever beam resonators. 

 Apply the techniques to measure material damping in two model systems (namely, 

single-crystal silicon and nanocrystalline aluminum thin films) at temperatures ranging 

from 20 ˚C to 150 ˚C. 

The measurement of damping from the thermomechanical noise: 

 Establish experimental techniques and protocols for measuring damping using 

thermomechanical noise. 

 Determine the accuracy and precision of this method of damping measurement with 

respect to an independent well-established technique. 

 Demonstrate the utility of the established methodology by measuring damping in single-

crystal silicon microcantilever beams in vacuum and silicon nitride nanomembranes at 

atmospheric pressure. 
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1.6 Organization of the thesis 

 This chapter introduced micromechanical resonators and the importance of damping in 

terms of device performance and dynamics.  Then the applicable damping mechanisms were 

discussed and the methods of measurement described.  Finally, the open questions and objectives 

of the thesis were introduced.  The next chapters describe the aspects of the damping 

measurement system and its implementation to measure damping in single-crystal silicon 

microcantilevers, the internal friction of thin aluminum films, and thin-film membrane 

resonators.  

In Chapter 2, the functions and characteristics of the LDV for the interrogation of the 

resonator specimens are discussed.  In Chapter 3, the instrumentation of the system to measure 

damping of microcantilever resonators by a measurement of the free-decay of vibration is 

presented.  The performance of this system is characterized and validated according to 

theoretical limits and measurements of damping obtained on a second, well-characterized 

damping measurement system.  In Chapter 4, this damping measurement system is used to study 

the effect of temperature on the material damping of single-crystal microcantilevers and the 

internal friction of thin aluminum films.  In Chapter 5, a subset of silicon-based microcantilevers 

is used to introduce and characterize the damping extracted from a measurement of the TMN.  In 

Chapter 6, the TMN analysis tools are extended to measure the damping of a thin-film membrane 

resonator.  Finally, in Chapter 7, the conclusions are framed and expanded to formulate 

suggested research opportunities based on the findings and observations of the thesis. 
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CHAPTER 2 

Review of laser Doppler vibrometry 

 The objective of this chapter is to introduce the concepts of laser Doppler vibrometry 

from the perspective of measurement accuracy and precision.  The detailed implementation of 

the interferometer and the signal decoder will be discussed in the following sections.  Then the 

theoretical performance will be compared to the experimentally measured resolution for two 

commercially sourced LDV units.  In terms of the actual performance of a commercially 

available LDV, its use for the measurement of noise and damping of resonant microcantilever 

beams will be demonstrated in the next chapters 

2.1 Principle of operation  

The basic configuration of a modern LDV system has two components: (1) the optics 

section and (2) the signal processing section.  The optics section has changed little since the 

advent of the heterodyne interferometer in the 1960s.  In this part of the LDV, a coherent light 

source is beamed at the target specimen and the reflection is imbued with a frequency shift (the 

Doppler effect), which is then combined with a reference beam.  The interference pattern of the 

two beams contains the frequency and phase information of the oscillation.  The Doppler signal 

is then demodulated in the signal processing chain to obtain the velocity or displacement in real 

time.  

2.2 Implementation of the LDV 

The LDV is comprised of an optics section and a signal processing section.  The optics 

section includes the interferometer, the interrogated object, and any intervening mediums.  The 

signal processing section is composed of the decoders and post-processing units. 

2.2.1 The interferometer 

The principle of the interferometer element of the LDV is to measure the vibration of 

some object using a focused laser beam.  The velocity and displacement, v(t) and y(t), of the 
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target imbues the reflected light with a frequency and phase modulation, Δf and Δϕ respectively, 

the Doppler effect, 
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where λ is the wave length of the light.  The signal cannot be demodulated directly because the 

frequency of light is very high with respect to the modulation [165].  Thus, the reflected wave 

front is combined with a reference beam of pure light and the interference reveals the Doppler 

signal.  This is why the technique is known as interferometry.   

Two types of interferometers are commonly used in vibrometry: the homodyne and the 

heterodyne interferometer.  The homodyne interferometer, advantageously, directly supplies the 

Doppler signal in a quadrature format, which is a pre-requisite for digital signal processing 

(DSP) [165].  However, it can suffer from off-set and amplitude errors due to imperfect target 

reflectivity and has no direct-current (DC) component, which affects the accuracy of the 

demodulation of the Doppler signal [165].  In the heterodyne interferometer, the information 

content is defined by the phase modulation and does not depend on the amplitude of the signal 

[165].  Thus, it is the preferred interferometer for modern LDVs.   

The laser source is the first component in the layout, in Figure 2.1, of the heterodyne 

interferometer.  The wavelength and intensity of the laser light is chosen according to the 

measurement conditions, such as the target’s scattering efficiency and the position and focal 

length of the optics [166]. The laser is passed through a polarized beam splitter (PBS1) and then 

takes two different paths.  The object beam (OB) continues towards the target passing through 

another polarized beam splitter (PBS2), the objective lens (L) and a quarter-wave plate (QWP) 

before impinging on the target.  The scattered light is then rotated 90 ˚ by the QWP and directed 

to the photo-detector (PD) by PBS2.   
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Figure 2.1: The layout of a Mach-Zehnder heterodyne interferometer.  PBS1 and PBS2 are 

polarized beam splitters.  The objective beam and reference beam are respectively labeled as OB 

and RB.  M is a mirror, BC is a Bragg cell, L is a lens, QWP is a quarter wave plate, BS1 is a 

beam splitter, PD is a photodetector, and CSO is a carrier signal oscillator supplying the carrier 

signal fc to the Bragg cell. Real implementations of this schema are varied [166]. 

 While the OB is completing this circuit, the reference beam (RB) has been directed to a 

Bragg cell (BC) by a mirror (M).  The BC is an acousto-optical component that shifts the initial 

frequency of the reference beam, fo, by fc, which is supplied by a digital carrier signal oscillator 

(CSO) [167].   The frequency shift is achieved by splitting the light with the acoustic waves in a 

crystal in a process analogous to using a rotating diffraction grating to split and shift the 

frequency of light by the Doppler effect [166].  The frequency of the BC must be greater than the 

bandwidth of the heterodyne signal, fvib + Δf.  Thus, the carrier frequency also determines the 

maximum measurable heterodyne frequency and the velocity range [168, 169].    

The shifted reference beam is then recombined with the measurement beam at a beam 

splitter (BS1) and collected by the photo detector.  The signal intensity is converted to voltage 

and the current of the photodetector output is expressed as  

                       (2.3) 
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where Uc is the magnitude of the current and ϕm is the modulated phase.  If there is no motion of 

the target, then the signal is purely the BC carrier frequency.  To extract the velocity and 

displacement of the target, the heterodyne signal is demodulated in the signal processing section 

of the LDV.  

2.2.2 Decoding and signal processing 

Analog decoding is achieved by phase locked loop, pulse density, or delay line 

demodulators to convert the Doppler frequency to a voltage that is proportional to the velocity 

[165]. The advantages of analog decoding are instantaneous readout and measurement bandwidth 

in the tens of megahertz and the disadvantages are the sensitivity to thermal drift, non-linearity, 

thermal noise, and ageing effects of the electrical circuitry [16]. These limitations and the 

availability of high-speed analog-to-digital converters have lead to the adoption of DSP. 

 The most simple DSP technique is fringe counting [167].  This technique obtains the 

displacement from the phase of the Doppler signal by counting the phase shift 2π periods, also 

known as zero crossings [165].  Fringe counting has been replaced by quadrature demodulation, 

a numerical method that is now feasible due to improvements in computational power [166, 

167].    

 

Figure 2.2: The DSP demodulation process of the analog heterodyne Doppler signal of the 

photodetector current, uc.  The in phase and quadrature signal pair are ui and uq, respectively. 
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The first step of the quadrature demodulation process, in Figure 2.2, is to convert the 

analog heterodyne voltage signal generated at the photodetector to a digital signal.   Then the 

signal is passed to the decoders.  Extracting the vibration velocity and displacement from the 

modulated signal has three parts [16]:  

1. The heterodyne signal is converted to a quadrature, sine/cosine signal pair. 

2. Phase calculation and unwrapping to determine the directionality of the 

displacement. 

3. Calculation of the velocity from the phase by numerical integration. 

The second and third part are independent of each other; the velocity may be calculated without 

unwrapping the phase.  The displacement may also be calculated without phase unwrapping, but 

the directionality would be unknown.   

 

Figure 2.3: The down conversion of the heterodyne signal, uc, to the quadrature signal pair ui 

and uq. 

The first step of the conversion of the heterodyne signal to the quadrature base band, 

Figure 2.3, is to split the signal and pass it to two multipliers.  There, the signal is mixed with the 

reference signal in quadrature format.  This reference signal has the same carrier frequency that 

is provided to the BC, thus the signal is superimposed by 2fc [165]. Then the pair is brought to 

the base-band by suppressing the carrier frequencies with a frequency filter [16]. Down-

conversion may be performed as an analog process before conversion to a digital signal or in the 

DSP decoder block.   
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An alternative method to down conversion of the heterodyne signal in the digital domain 

is to down-mix the heterodyne signal to an intermediate frequency (IF) signal before generation 

of the quadrature signal pair [165].  Down-mixing is achieved by mixing the heterodyne signal 

with a reference frequency, fR, that is less than the carrier frequency and then filtering to obtain a 

new signal with a frequency fDM = fc - fR [166].  The IF signal is then multiplied with a quadrature 

reference signal that is supplied by the CSO at the frequency fDM and then brought to the base-

band by filtering.   

By either method, the base-band quadrature signal pair consists of the in-phase, 

),(cos)( tUtu ii    (2.4) 

and quadrature, 

),(sin)( tUtu qq    (2.5) 

components [167].  The wrapped phase is then known from the relationship [165, 167, 169, 170]  
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At this point, as per Figure 2.2, the phase may be differentiated to obtain the frequency shift, and 

thus the velocity, but the displacement cannot be known because the phase has no directionality.   

The arctangent calculation is ambiguous at multiples of 2π, such that [16, 171] 

                (2.7) 

where the integer a represents multiples of λ/4.  Phase directionality is determined by “phase 

unwrapping”.   The phase is unwrapped by a polar co-ordinate transformation and an incremental 

period count by detecting the 2π phase jumps [167].  The displacement of the target is then 

known by [165] 
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The accuracy of the demodulation is determined from an experimental calibration of the 

measured displacement and velocity made with a highly linear oscillator [172].   However, the 

full measurement bandwidth of the LDV cannot be characterized because the frequency range of 

high-precision mechanical oscillators is low with respect to the ultimate measurement bandwidth 

[16]. Therefore, the calibration of the DSP is achieved by analyzing an electronically synthesized 

Doppler signal [170].  The reported accuracy of the DSP decoding of the displacement and 

velocity are in the 0.1 % range [170].   

Such measurements give an idea of the accuracy assuming that the heterodyne signal is 

itself error free.  In reality, the error for LDV measurements arises from multiple sources in the 

signal processing chain, in the optics section, and from spurious noises.  Noise and other factors 

affecting the LDV will be discussed in the next section. 

2.3 Resolution and accuracy 

 In terms of the performance limits and the sources of error, the configuration of the optics 

section sets the lower limit of the resolution of a vibration measurement.  This is mainly a 

function of the nature of light and the signal-to-noise ratio of the return beam, or rather the 

reflectivity of the target. In the case of an ideal optics section, the resolution limit is defined by 

the data acquisition and digital-to-analog data conversion.  Measurement accuracy is affected by 

the  signal preconditioning  in the signal processing chain [16].  The sources of noise and other 

errors in the optics, the signal processing, and the greater electrical system will be discussed. 

2.3.1 Noise and measurement errors in the optics section 

 The noise in the optical system arises from three-wave interference, high numerical 

aperture of optical focusing elements, target reflectivity and back-scattered light, and the speckle 

nature of light.  Each of these problems affects the signal-to-noise ratio, and thus the 

measurement resolution.  Some of them can be mitigated and some are intrinsic to the LDV. 



22 

 

Three-wave interference 

 Consider that the interrogated specimen may be in a vacuum chamber and the laser must 

pass through a glass lid.  The glass will reflect some light back to the photodetector.  The 

collection of an extra interference signal creates a ripple distortion in the measurement signal 

[170, 173].  The distortions become more significant with increasing power of the spurious 

reflections with respect to the object beam, which is inversely proportional to the distance from 

the glass to the target [173].  The problem is pronounced for vibrations where the amplitude is 

smaller than the laser wavelength and the power of the extra signal is comparable to the target 

signal intensity [174].  

Three-wave interference effects can be reduced by moving any reflective apertures closer 

to the interferometer, tilting them, and with anti-reflective coatings.  However, the three-wave 

interference effect can also be produced by the collection of back-scattered light from optically 

rough targets or light reflected from behind semi-transparent surfaces such as thin film 

nanomembranes or structures that are smaller than the laser spot size.  In this case, distortion can  

be reduced by amplitude locked loop filters or low-pass filters [173].  

Laser Speckle 

 Laser speckle causes a phase noise in the system.  The imperfections of the target surface 

de-phase the reflected laser beam and cause interference patterns that create a speckled intensity 

on the photodetector [175].  Furthermore, the motion of the target causes the speckle patterns to 

produce a multitude of spurious signals with the same frequency but random phase [16].  For 

optically rough surfaces where the RMS roughness is larger than half the wavelength of the light, 

the phase is not coherent over the entire surface and demodulation of the Doppler signal is not 

possible [16]. 

Error due to the numerical aperture of the optics 

 The fringe spacing of the phase shifted measurement beam increases as a function of the 

numerical aperture of the optic lenses that project the laser beam [170].  This causes an 

amplitude error through diffraction and oblique incidence of the light [174].  The error is not 
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more than 1% for objectives less than 20X, but can become significant for higher objectives 

[170]. 

Target reflectivity and back-scattered light 

Naturally, the optical reflectivity of the targeted specimen is important.  A poor reflection 

reduces the power of the measurement beam relative to the reference beam, reducing the signal-

to-noise ratio.  It also increases the overall noise because back-scattered light from other sources 

becomes significant [170]. 

2.3.2 Noise and errors in the signal processing chain  

The signal processing chain is subject to a variety of noise sources that affect resolution 

and errors that affect accuracy.  These include, shot noise and thermal noise in the photodetector, 

signal conditioning, and decoding errors.  Each will be discussed in turn.   

Shot noise 

Shot noise is an intrinsic white noise source that affects the photodetector current, uc 

[166].  The shot noise represents the fundamental physical resolution limit of the LDV [169].  It 

arises because the illumination of the light is not perfectly steady, thus the current of the 

photodetector pulses and fluctuates [16].  The magnitude is determined by the detection 

bandwidth, the quantum properties of light, and the total optical power incident on the 

photodetector [169].   

Thermal noise 

Thermal noise, also known as Johnson noise, is another intrinsic noise in the 

photodetector current.  The magnitude depends on the detector load resistance and bandwidth.  

This noise source can be controlled by tuning the bandwidth via the power of the reference beam 

and measurement beam [169].  However, the beam power also affects the shot noise and 

consequently the thermal noise is typically less than the shot noise. 
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Signal conditioning errors and decoding errors 

The conversion of the heterodyne signal into the digital domain introduces errors due to 

the discretization of an analog signal [169].   Non-ideal digital filtering may cause amplitude 

errors, also [170].  The DSP demodulation of the Doppler signal is subject to computational 

errors, which cause an uncertainty in the 0.1% range [170]. 

Spurious noise 

Finally, spurious noise peaks due to electrical cross-talk can affect any part of the LDV 

except the optics section [16].  Electromagnetic interference and electrical ground noises can also 

enter the system.  These two sources of spurious noise peaks can be avoided by careful set up of 

the experimental system and trial-and-error shielding of electrical components [176]. 

2.4 Commercial laser Doppler vibrometers 

 In this section, two commercially sourced LDVs, the OFV-5000 and the UHF-120, which 

are used in this thesis to interrogate microresonator systems, are described.  Both of the LDV 

systems are manufactured by Polytec Inc. 

2.4.1 Polytec OFV-5000 laser Doppler vibrometer 

The OFV-5000 is an LDV demodulation unit that interacts with the OFV-534 fiber 

coupled sensor head.  The OFV-534 is a modified Mach-Zehnder heterodyne interferometer with 

a 633 nm HeNe laser and a built-in camera [177].  The laser is a class 2 with a power less than 1 

mW.  The focal length of the interferometer is ~30 cm with a 40 μm spot size and focusing lens 

attachments can bring the spot size down to 1.5 μm with a corresponding reduction in focal 

length.  This is a single-point measurement system where alignment and laser focusing are 

manually set. 

The OFV-5000 is equipped with a velocity (VD-09) and displacement decoder (DD-900).  

Both the digital decoders operate according to the theory outlined in Section 2.2.2; the velocity is 

measured from the un-wrapped phase of the heterodyne quadrature Doppler signal to save 
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calculation time and the unwrapped phase is passed to the displacement decoder [178]. The 

analog outputs can be post-processed with high-pass or low-pass filters.  

The VD-09 digital broadband decoder has a maximum frequency range of 2.5 MHz and 

low-frequency limit of 0 Hz with a maximum measureable velocity of 10 m/s [178].  The DD-

900 measurement capabilities depend on the selected measurement range of the VD-09 since it is 

passed the un-wrapped phase from the velocity decoder.  The measurement range is the same as 

the VD-09 with a displacement resolution of less than 1 pm [178].  The maximum measureable 

displacement is a function of the frequency of the interrogated oscillation and the maximum 

measureable velocity of the VD-09.   

At the best settings, the noise-limited resolution of the VD-09 increases from 0.01 

μm/s/Hz
1/2

 to 0.04 μm/s/Hz
1/2

  over the 100 kHz measurement bandwidth [178].  The reduction 

in the resolution is due to the frequency dependence of the velocity noise [169].    Noise limited 

resolution is determined by a measurement of the noise on 3M Scotchlite tape and is defined as 

the signal amplitude  at which the signal-to-noise ratio is 0dB with 1Hz spectral resolution [178].  

The calibration error due to temperature fluctuations is ±1 % and the linearity error is 0.5 %.  

Linearity error is determined from the amplitude-dependent deviation of the scaling factor when 

subjected to a 1 kHz sinusoidal vibration at an amplitude 70% of the full scale measurement 

range of the decoder [178]. 

The ultimate resolution of the DD-900 is defined by the 0.4 mV quantization of the 

analog output and is at best 0.015 nm [178].  The noise-limited resolution of the DD-900 is 0.5 

pm/Hz
1/2

 [178]. The phase noise is flat as a function of frequency [169].   

Due to the relationship between the velocity and displacement, the velocity decoder has a 

greater signal to noise ratio [178].  Thus, for low-frequency measurements, the displacement 

decoder has a low amplitude ceiling and can be overloaded easily.  To obtain high precision 

displacements of low-frequency vibrations, it is best to integrate the velocity data rather than use 

the displacement decoder directly [178].  
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2.4.2 Polytec UHF-120 laser Doppler vibrometer 

The UHF-120 is a scanning vibrometer where a field of measurements on the surface of a 

resonator can be referenced to the phase of a driving frequency to animate the mode shapes [16].  

Scanning is achieved by rastering the interrogated specimen underneath the interferometer 

objective lens with a precision nano-positioning stage.  The spatial resolution of the scanning 

measurement depends on the laser spot size, which is greater than the positioning stage 

resolution [168].  The laser spot size for a 5x, 10x, and 20x objective lens is 10 μm, 4.5 μm, and 

2.5 μm respectively.  This scanning feature is only applicable for stationary vibrations where the 

power spectrum does not change over time.  Each of the scanning points, though, is essentially a 

single point measurement and the principle of operation is the same as the OFV-5000 decoder.   

The UHF-I-120 interferometer measures the vibrations with a solid state 3R class laser 

with a power less than 5 mW and a 532 nm wavelength.  A Bragg cell carrier frequency of 620 

MHz allows for direct acquisition of velocities up to 150 m/s and vibration frequencies up to 600 

MHz [168].  Mathematical bandwidth extension brings the frequency range up to 1.2 GHz.   

The quadrature heterodyne Doppler signal is digitally demodulated and the displacement 

is calculated by the arctangent method. The displacement resolution is 2 picometers or 30 

fm/Hz
1/2

.  The displacement resolution defines the velocity measurement resolution because the 

velocity is calculated by differentiating the displacement [168]. 

2.5 Experimental measurement of LDV noise and resolution. 

 The practical resolution limits of the OFV-5000 and the UHF-120 LDVs are 

experimentally determined.  These measurements are made on 3M Scotchlite tape and 

representative microcantilever beams using acquisition settings that reflect typical measurement 

conditions. 

2.5.1 The experimentally measured noise of the OFV-5000 

 The resolution of the OFV-5000 LDV is experimentally determined by a measurement of 

the noise using five microcantilever specimens and 3M Scotchlite tape.  These specimens are 
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featured in Chapter 5 and the details regarding their dimensions and characteristics can be found 

there.  At this point, they are only considered to be representative of actual resonators that are 

used in the thesis.  

 

Figure 2.4: The PSD of the system noise using the VD-09 decoder with a sensitivity of 5 

mm/s/V and a 100 kHz sampling frequency.  The solid black line is the factory specified noise 

limited resolution and the other plots are the PSD of the velocity time series measured on the 

surface of silicon microcantilever beam specimens.  The brown is Specimen 1, the blue is 

Specimen 2, the orange is Specimen 3, the black is Specimen 4, and the green line is a 

measurement on 3M reflective tape. 

 The noise is measured using the VD-09 velocity decoder at the best sensitivity of 5 

mm/s/V for 90s at a sampling frequency of 100 kHz.  The power spectral density (PSD) of the 

velocity time series of the noise is calculated and plotted in Figure 2.4.  At 10 kHz, 20 kHz and 

30 kHz, one thousand data points are binned and averaged to define the mean noise.  The 

frequency dependence of the noise floor for the VD-09 velocity decoder is given in Table 2-1.   
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Table 2-1: The experimentally measured noise limited resolution at three frequencies in the 

measured frequency spectrum using the VD-09 velocity decoder.  The noise is measured on four 

silicon microcantilever beam specimens and 3M reflective tape. 

Specimen 
Noise floor (μm/s)/Hz

1/2
 

10 kHz 20 kHz 30 kHz 

1 0.038 0.039 0.038 

2 0.108 0.108 0.108 

3 0.107 0.108 0.109 

4 0.056 0.056 0.057 

3M tape 0.089 0.089 0.091 

 The experimentally measured noise floor shows that the measurement resolution is in 

reality greater than the factory specified mean resolution of 0.02 (μm/s)/Hz
1/2

.  The resolution 

floor is dependent on the interrogated specimen.  This suggests that optical noise from light 

scattering limits the system and highlights the importance of laser beam alignment, surface 

preparation, and sample reflectivity.   

2.5.2 The experimentally measured noise of the UHF-120 

 The resolution limit of the UHF-120 is obtained from a measurement of the noise 

measured on 3M reflective tape using a 5x objective lens.  The noise is recorded for 6.4 ms at a 4 

MHz sampling rate for a frequency resolution of 156.25 Hz.   The measured noise, plotted in 

Figure 2.5, has a 1/f component that decays to the optical noise floor at ~475 kHz. The 

experimentally measured noise floor is 84 pm for a single-shot measurement with no data 

averaging.  This noise floor is more than an order of magnitude greater than the minimum 

resolution according to factory specifications. 
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Figure 2.5: The PSD of the measured noise of the UHF-120 LDV on 3M reflective tape.  The 

recording of the noise was 6.4 ms in duration at a sampling rate of 4 MHz. 

2.6 Summary 

 This chapter has discussed the working principles of laser Doppler vibrometry and 

explained sources of error that arise from the interferometry and signal decoding.  The 

characteristics of two commercial LDVs (OFV-5000 and UHF-120) have been described and the 

noise limited measurement resolution has been experimentally determined.  The resolution of the 

OFV-5000 LDV is shown to be limited by the optical noise from the target reflectivity.  The next 

chapter describes the damping measurement system where the LDV is used to measure the 

dynamics of single-crystal silicon microcantilever beams. 
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CHAPTER 3 

Apparatus for measuring material damping as a function of 

temperature (20˚C to 150˚C) 

 This chapter describes schematics and protocols for the instrumentation (pumps, function 

generator, clamps and excitation elements) and the fabrication of the microcantilever beam 

specimens. Then the principles of electrostatic excitation and the method of controlling the 

resonator dynamics are discussed.  This is followed by the procedure to measure and analyze the 

logarithmic decrement of free-decay with a linearity and bias check.  The analysis methods are 

implemented to measure the damping in a set of microcantilever beams using a vice-like clamp 

and electrostatic actuator.  The damping measured with this system is calibrated to the damping 

measured using a well-documented clamp and base-excitation actuator.   

3.1 The experimental instrumentation for measuring the free-decay 

The measurement of damping in microcantilever beam resonators is performed using two 

experimental platforms:  (1) a system using base-excitation designed by Sosale [17] and (2) a 

system, capable of heating, using electrostatic excitation designed by Shalabi [124].  The former 

platform will be referred to as the base excitation system (BES) and the latter as the electrostatic 

excitation system (EES).  The performance of the BES has been well documented and used 

extensively to study the frequency dependence of the material damping of thin metal films and 

nano-wires  [17, 18, 97, 98, 146, 147].  On the other hand, the work in this thesis represents the 

debut of the EES.  Both of these platforms use the same microcantilever beam resonators, the 

same experimental infrastructure, and the experimental methodology is essentially the same.  

Thus, the performance characteristics and capabilities of the EES can be calibrated, at room 

temperature, to damping measurements made with the BES, in addition to calibration to the TED 

limit.    

The experimental platform has seven core components:   

1. A vacuum chamber and pumps. 

2. A clamp for the microcantilever resonator. 
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3. A function generator. 

4. An actuation system for the microcantilever resonator. 

5. A thermostat (relevant for the EES). 

6. A laser Doppler vibrometer to measure the vibration of the resonator. 

The components can be categorized as instrumentation (LDV), appliances (vacuum chamber and 

pumps), controllers (function generator, thermostat), and devices (clamp, actuator, 

microcantilever).  The configuration of these components, except the microcantilever, support 

and actuator, and the LDV decoder, are demonstrated in Figure 3.1.  The central element of the 

system is the microcantilever beam which is operated inside of a vacuum chamber.  The specific 

configuration and operation of each of the components will be presented in the following 

sections.   

 

Figure 3.1: The experimental platform to measure the damping consists of the turbo and 

roughing pump, the vacuum chamber, the function generator, and the LDV interferometer and 

sensor head.  The LDV decoder and the clamp are not pictured here. 
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3.1.1 The function generator 

 The function generator (33220A, Agilent Technologies, USA) is used to control the 

actuation of the microcantilever.   The function generator can supply up to a 10 V peak-to-peak 

AC signal with a maximum 10 V DC offset.  This instrument is capable of generating broadband 

white noise or signals carried on a pure frequency.  For a pure frequency, the resolution is 1×10
-5

 

Hz with a maximum frequency of 1 MHz.  This ceiling exceeds the maximum sampling rate, 125 

kHz, of the data-acquisition card (NI USB-6211, National Instruments Corp., USA) that is used 

to collect the analog voltage signal supplied by the LDV. 

3.1.2 The vacuum chamber and pumps 

The vacuum chamber shown in Figure 3.1 is custom manufactured (LACO Technologies, 

USA).  This stainless steel vacuum chamber is 10 inches tall and has an eight inch diameter.  In 

addition to the glass viewing port on the top of the vacuum chamber, there are six access ports 

that are sealed with KF kwik-flange connectors, viton rubber gaskets and Dow Corning high 

vacuum grease.  These ports allow for electrical feeds, evacuation, and pressure gauging.  The 

pressure is monitored with a Pirani Gauge (Alcatel Vacuum Inc, Canada). 

The vacuum chamber is connected to the pumping appliances by stainless steel bellows.  

A turbo-molecular pump (Adixen ATP80 turbo pump, Alcatel Vacuum Inc, Canada) and a low 

vacuum roughing pump (Alcatel Pascal 2005SD, Alcatel Vacuum Inc, Canada) provide enough 

power to reach a maximum low-pressure of 3 × 10
-6

 mbar.   

3.1.3 The clamp and actuator 

The use of a set of interchangeable beams with a dedicated clamp for the mechanical 

spectroscopy of damping is a historical precedent set by the work of Berry and Pritchet [93].  

The advantage of this method is that the anchor loss will be consistent for all tests and structures 

[17].  Another advantage is that the fabrication of the microcantilever beams can be simplified if 

the actuation and supporting arrangements do not need to be designed and fabricated in parallel. 

This also makes it simpler to post-process the resonators using standard microfabrication 

methods. 
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 Based on this concept, Sosale designed a vice-like clamp that is interfaced with a 

piezoelectric actuation element.  The detailed design process and schematics can be found in 

Sosale’s PhD thesis [17].  The excitation of the beam is achieved by vibrating the entire clamp.  

The arrangement of this system does not allow for the incorporation of extra features, such as 

heating and cooling elements due to excitation mechanics and the low weight loading limit of the 

piezoelectric actuator.  To extend the measurement of damping to higher temperatures, Shalabi 

designed a clamping system with an integrated heating element [124].  The actuation of the 

microcantilever is achieved with electrostatic excitation, which also increases the operating 

frequency range.  However, the electrostatic force is very sensitive to the distance between the 

resonator and the electrode [179].  The details of both of these clamps and actuator platforms are 

described in turn.   

The base-excitation system (BES) 

Piezoelectric actuators are widely employed for positioning specimens in microscopy and 

as a consequence are commercially available.  The BES uses the Nano-OP 65 (Mad City Labs, 

Wisconsin, USA), a single-axis piezoelectric nano-positioning stage with a capacitive 

displacement sensor (CDS) for feedback.  When supplied with a sinusoidal AC voltage, the 

positioning stage effectively becomes an oscillator.  This system, Figure 3.2, offers precise 

control of the excitation frequency and the beam vibration amplitude is maintained by in-situ 

monitoring and termination of the excitation force. The dynamics of the shaker measured with 

the CDS have been corroborated by the LDV and the displacement is linear for all normal 

excitation amplitudes [17].  The CDS shows that the response of the system stops instantly when 

the driving voltage is cut.  The CDS signal also indicates if the clamp has been excited by an 

external energy source, which would invalidate the recorded free-decay of the microcantilever 

beam. 

The piezoelectric shaker is powered by a 150 V amplifier (Nanodrive85).  The 

piezoelectric shaker has a 65 µm displacement range and an acceleration of up to 5 m/s
2
 with a 

1% precision.  A 175 g stainless steel clamp is bolted to the shaker face.  The clamp is precision 

machined for flatness and parallelism where the base of the microcantilever beam is in contact 

with the surfaces of the clamp.  The smoothness of the clamping surfaces and clamping pressure 
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are critical to prevent slip-stick friction [79].  The beam is held securely on the clamp by a plate 

that is guided by pins and tightened down with six screws.  The protocol for the operation of the 

BES is: 

1. The microcantilever specimen is centered in the clamp with the base of the beam slightly 

overhanging the edge. 

2. The top of the clamp is tightened with six screws.  They are tightened in a left-to-right 

pattern in 1.0 lb-in increments from 6.5 lb-in to 9.5 lb-in.   

3. The clamp is loaded onto the shaker backing plate and the four screws are tightened in a 

clockwise direction in 1.0 lb-in increments from 6.5 lb-in to 9.5 lb-in.   

4. The entire rig is placed into the vacuum chamber and pump down is initiated. When the 

pressure is less than 1 × 10
-4

 mbar, the beam may be actuated. 

5. A sinusoidal voltage signal (0.5 V) is sent to the shaker by the function generator at the 

beam’s resonance frequency 

6. When the amplitude of the microcantilever beam is maximized, the voltage to the shaker 

is terminated.  At this point, the free-decay of the microcantilever is recorded. 

 

Figure 3.2: The base-excitation system is pictured with the main components labeled.  Note that 

the piezoelectric shaker is attached to a much larger steel block, which serves as a handle and an 

inertial mass. 
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The electrostatic-excitation system (EES) 

  The EES, Figure 3.3,  is machined from stainless steel and a low conductive, zero out-

gassing Macor ceramic [180].  The EES has been designed to integrate an electrical resistance 

heater cartridge (CSS-20270/120, Omega Engineering Inc.) and thermocouples.  The clamping 

section of the EES is essentially a vice, precision machined for flatness and parallelism between 

the bottom and the clamping plate.  The screw on top of the vice clamp is tightened with a torque 

wrench to secure the beam.   The tightening routine is the same as the BES.  The clamped beam 

is shown in the inset of Figure 3.3 and the separation of the beam from the counterelectrode is 

perceptible as a slight shadow. The Macor ceramic that separates the clamping section from the 

counterelectrode is for electrical isolation.  The bottom of the EES is made of the Macor ceramic 

to minimize heat loss into the environment through conduction.   

 

Figure 3.3: The electrostatic excitation system is pictured with an inset showing the beam 

portion of the microcantilever emerging from the clamp. 

Not visible in Figure 3.3, the cartridge heater is located in the back of the rig where the 

power supply wires emerge and reaches under where the microcantilever beam is clamped.  The 

cartridge heater is approximately 2 inches long and 3/8 inches in diameter and has a maximum 

output of 70 W when supplied with 120 V and a maximum temperature of 677 ˚C.  A coiled 
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resister is wound through a ceramic core with a stainless steel sheath, giving it a 35 W/in
2
 watt 

density.  Thermal grease is used to improve the conduction to the housing. Experimental trials 

indicate that the thermal grease outgases significantly and hardens, preventing the removal of the 

cartridge heater and slowly changing the heating regime. 

 In vacuum, J-type thermocouples (XDH-30-R-12, Omega Engineering Inc.) are used to 

measure the temperature at the heater, at the base of the microcantilever beam, and at the 

clamping plate.  The thermocouples can measure temperatures up to 300 ˚C with an accuracy of 

±1 ˚C, calibrated with boiling water.  The thermocouples and the cartridge heater are connected 

to a thermal controller (CN616TC1, Omega Engineering Inc.) that provides a DC output to a 

solid state relay (SSR330DC10, Omega Engineering Inc.) to control the power supply with an 

on-off thermostat.  The power supplied to the heater is manually controlled with a variable 

transistor. 

The operational protocol to use the EES system is similar to the protocol for the BES.  The 

nuances of electrostatic excitation are described in Section 3.3 and the heating protocol is 

described in Chapter 4. 

3.2 The design and fabrication of microcantilever beams 

Two designs of microcantilever beams were developed by Sosale to cover different 

frequency ranges while preserving the resolution [17].  One design will be referred to as the low 

frequency beam (LFB) and the other will be referred to as the high frequency beam (HFB).  The 

LFB design covers a frequency range of 40 Hz – 2 kHz and the HFB design covers a range from 

1.5 kHz to 70 kHz.   Both of the microcantilever design types were manufactured in the McGill 

Nanotools Microfab using recipes developed by Sosale.  The specific steps and designs are 

described in the next sections 

3.2.1 Microfabrication process for the low-frequency microcantilever beam (LFB) 

The LFB microcantilever beams are constructed from a 6” single-side polished, 550 μm 

thick (100)-oriented commercial grade single-crystal silicon wafer.  The wafer has a low 

concentration (~10
15

 cm
-3

) of boron doping.  First the wafer is prepared with a solvent cleaning 
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step (isopropyl alcohol, Acetone, de-ionized (DI) water) and a Piranha etch (4:1, H2SO4 : H2O2).  

Then the wafers are oxidized at 1100 ˚C for 26 minutes to grow a 500 nm thick SiO2 film on 

both sides in a wet chemical vapor deposition (CVD) process in an oxidation furnace (Tylan).  

The oxide layer is patterned using a standard photolithographic process. The pattern is to 

delineate a section of the wafer with and without oxide.   

For the patterning step, a 1.4 µm thick layer of S1813 positive photoresist (Microposit) is 

spin-coated onto the surface, baked at 115 ˚C for 60 seconds, and exposed to ultraviolet (UV) 

light at a dose of 70 mJ/cm
2
 using the EVG620 photomask aligner (EV Group).  Then the 

exposed wafer is developed in MF-319 (Microposit) for 45 seconds, and rinsed in DI water.  

After this, the wafer is hard-baked at 90 ˚C for 90 seconds.  The patterned photoresist on the top 

side of the wafer is used as a masking layer to dry etch the oxide on the top side of the wafer.  

The dry etching of the exposed oxide is performed in a reactive ion etcher (RIE) (Applied 

Materials P5000).  The wafer is exposed to multi-gas plasma at 100 mTorr pressure for 100 

seconds.  The gas plasma is composed of CHF3, Ar, and CF4 at a flow rate of 45 sccm, 70 sccm, 

and 7 sccm, respectively. After the oxide layer is etched, any residue resist layer is removed 

using oxygen plasma for 300 seconds at 45 sccm and 150 mTorr of pressure.   

After both sides of the wafer have been patterned, the wafer is diced in the direction 

parallel to the [110] plane into 2.5 mm wide strips.  Then these strips are dipped in a buffered 

hydrofluoric acid bath to remove the native oxide and are then placed in a tetra methyl 

ammonium hydroxide (TMAH) bath.  The TMAH is heated to 90 ˚C and is diluted to 27 % with 

DI water for an average etch rate of 20 µm/hour for single-crystal silicon.  Since it is nearly 

impervious to the TMAH, the oxide layer serves as a mask to define the base section of the 

microcantilever beam.  The TMAH anisotropically etches the single-crystal silicon along 

preferential crystal planes, resulting in a 54.74˚ angle step from the base to the microcantilever 

beam.  The thickness of the microcantilever beams is defined by the etching time.  The length of 

the beam is defined by cutting the beam with a diamond scribe.   
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3.2.2 Microfabrication process for the high-frequency microcantilever beam (HFB) 

The HFB microcantilever beams are constructed from a 6” diameter double-side polished 

(100)-oriented commercial grade silicon-on-insulator (SOI) wafer with a low concentration 

(~10
15

 cm
-3

) of boron doping.  The SOI wafers have three layers: a thin device layer, a very thin 

oxide layer, and a thick handle layer.  The device layers that are available for these wafers are 

7.5-24 µm thick.  The buried oxide (BOX) layer is 600 nm and the handle layer is 530 µm thick.  

Using SOI wafers allows for the precise control of the microcantilever beam thickness because 

the BOX layer can be used as an etch stop for TMAH so the device layer defines the beam 

thickness. 

The first manufacturing step is a solvent clean and a Piranha etch.  Then the wafers are 

oxidized at 1100 ˚C for 26 minutes to grow a 500 nm thick SiO2 film on both sides in a wet 

thermal CVD process.  Then a standard photolithographic process is completed on the top side of 

the wafer to pattern the outline of the microcantilever beams.  The RIE etching of the exposed 

oxide uses the procedure established for the LDV construction.  

After the oxide has been patterned on the top side of the wafer a monolayer of 

hexamethyldisilazane (HMDS) is applied to improve the adhesion of photoresist and prolong its 

life in the next dry etching step.  Next, a 10 µm layer of positive AZ9245 photoresist (AZ 

Electronic Materials) is spin coated on the top-side of the wafer and is soft-baked at 115 ˚C for 

150 seconds.  The mask used in the previous photolithographic step is used again to expose the 

AZ9245 layer with four doses of 250 mJ/cm
2
 UV light.  Then the exposed AZ9245 is developed 

in a 4:1 solution of DI water and AZ400 developer (AZ Electronic Materials).  Finally, the wafer 

is post-baked at 115 ˚C for 150 seconds. 

The next part of the process is to etch through the device layer using deep reactive ion 

etching (DRIE).  The patterned oxide and AZ9245 act as hard masks for this DRIE etching.  The 

DRIE (Tegal SDE110) uses a gas mixture of C4F8, O2, and SF6 with respective flow rates of 300 

sccm, 200 sccm, and 700 sccm.  The distance from the wafer to the source is 170 mm and the 

source power is 2700 W.  Residual resist is removed with oxygen plasma. 
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Now that the outline shape of the microcantilevers has been patterned, the back side of 

the wafer is patterned.  First 100 nm of oxide is thermally grown on the wafer.  This oxide layer 

is to protect the etched silicon on the top side during future etching steps.  A 1.4 µm thick layer 

of S1813 is spin coated on the backside and patterned in the shape of the base portion of the 

microcantilever using the same recipes as before.  This pattern is aligned with the patterns on the 

front side of the wafer.  Then the exposed oxide is etched in the RIE.  Next a monolayer of 

HMDS and 10 µm of AZ9245 are deposited on the backside of the wafer.  This resist layer is 

also patterned to outline the base portion of the microcantilever beams.  The exposed silicon is 

etched all the way to the device layer in a DRIE step.  However, due to non-uniform gas 

distribution, the DRIE does not etch all the way through the handle layer.  Therefore, a TMAH 

etch is used to release the beams.  The final step in the process is a hydrofluoric acid dip to 

remove the oxide layers from the beam. 

3.2.3 Comparison of the LFB and HFB 

 

Figure 3.4: A comparison of the LFB and HFB designs.  (a) A photograph shows the relative 

size difference between the two classes of microcantilever beams.  The LFB has been coated 

with an aluminum film, thus increasing its reflectivity compared to the pure single-crystal silicon 

HFB. (b) An SEM image shows the angled step transition from the microcantilever beam to the 

base portion of the LFB.  (c) An SEM image shows how the top surface is planar at the junction 

of the cantilever and base of the HFB. (d) The frequency range and profile of the two designs are 

compared.  
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Both the LFB and the HFB have been designed to reduce the clamping loss by 

incorporation of a filet at the junction between the beam and the base.  The size of the base 

section is the same for both types, thus anchor loss is assumed to be approximately the same for 

both designs [17, 106].  As illustrated in Figure 3.4, the main difference is that the cross-section 

of the microcantilever beam specimens is slightly different, though functionally the same.  Due 

to the overhanging edge of the top clamping plate, the EES cannot be used with the HFB 

microcantilevers.   

3.3 Principles of electrostatic actuation 

Electrostatic actuation is coupled to the dynamics of the microcantilever beam; the 

electrostatic force is a function of the distance between the beam and a grounded 

counterelectrode [181, 182].  For a bending beam, the intensity of the electrostatic force is not 

evenly distributed and, when coupled to the elastic restoring force and damping, a pull-in force 

instability occurs [179, 183].  Thus, the response of the beam may not be linear at higher beam 

deflections [124].  Understanding the principle of operation is essential for the implementation 

and operation of the EES.  

 

Figure 3.5: A cartoon of the electrostatic excitation system.  The blue dashed line represents the 

vacuum environment and the red dotted line represents the laser.  The cantilever displacement is 

denoted as Yt and the coordinate system defines the direction of positive displacement. 

To explain the principles of electrostatic excitation, consider the illustration, Figure 3.5, 

of the relationship of the EES to the other parts of the damping measurement system.  The 

microcantilever beam is in a vacuum environment, represented by the blue dashed lines.  The 
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LDV is shown outside of the vacuum chamber with the interrogation beam (red dotted line) 

focused on the end of the microcantilever.  The microcantilever is electrically grounded and 

isolated from the counterelectrode.  The base of the microcantilever is securely clamped, 

ensuring that the beam portion has a single degree of freedom. 

The microcantilever beam has dimensions defined such that L, w, and h, are the length, 

width, and thickness respectively. The displacement is an oscillation about the neutral axis of the 

microcantilever beam, such that positive displacement is towards the counterelectrode plate. 

When the beam is at rest, the distance between the counterelectrode plate and the beam is 

defined as d = do.  Since the beam is a continuous system, when the beam bends, the distance d is 

a function of the axial position along the length, 0 < x < L.  In terms of the maximum deflection 

at the end of the beam, Yx=L, the deflection at position x is defined by [27] 
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Ignoring fringe fields around the beam, the grounded beam and the charged 

counterelectrode form an ideal capacitor [124].  The beam is pulled towards the counterelectrode 

by an electrostatic force, P, generated by charging the counterelectrode plate with a sinusoidal 

AC voltage, [124] 
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).2sin( ftVVAC   (3.4) 

The excitation frequency is half of the microcantilever resonance frequency because of the 

nature of the electrostatic excitation.  The electrostatic force pulls the beam towards the 

electrode; the electrostatic force does not push the beam.  Therefore a difference between the 

actuation frequency and the resonance frequency of the beam will result in the restorative elastic 

energy in the beam being countered by the electrostatic force. 

  The magnitude of the electrostatic force acting on the beam is a function of the applied 

VAC, the relative dielectric constant of the medium between the beam and the counterelectrode, 

εr, the vacuum permittivity, εo, and the distance between the counterelectrode and the beam. The 

electrostatic force is distributed along the length of the beam.  The force per unit length is [184] 
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The displacement due to this force is found by solving the bending equation [121] 
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where E is the Young’s modulus and I is the area moment of inertia.   

The problem is simplified by approximating the electrostatic force as a point load on the 

beam at a position x. Then, the deflection at the tip of the beam is given as [185] 
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Taking into account the distribution of the force along the entire length of the beam, Equation 3.7 

is integrated, 
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Lx dxxPx
EI

xL
Y  

(3.8) 

The beam deflection at any point x along the length is approximated by assuming a square law 

curvature so that [185] 
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(3.9) 

The integral in Equation 3.8 is then solved for a normalized electrostatic load, Η, [185] 
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where Δ = (Yx=L / d ) is the normalized deflection at the tip and [185] 
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Equations 3.10 and 3.11 can be combined to solve for the voltage,  
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that is necessary to excite the beam to a desired amplitude, Yx=L.   

  When applying an excitation voltage, three limiting criteria are taken into account to 

achieve a stable, linear vibration that satisfies the Euler-Bernoulli beam theory assumption of 

low amplitude, low strain displacements: 

1. The applied voltage should not exceed the pull-in voltage of the electrostatic actuation. 

2. The amplitude of the beam should be in the linear regime; the amplitude at the end of the 

beam should not exceed the thickness of the beam. 

3. The strain at the root of the beam should not exceed εxx,max = 10
-5

. 

For the possible dimensions of the microcantilever beams, The pull-in voltage, [186] 

,
5

18
4

3

o

PI
wL

EId
V


  

(3.13) 

is greater than the maximum voltage that the function generator can supply.  The maximum 

strain in the microcantilever exceeds the defined tolerance before the amplitude at the end of the 

beam is greater than the thickness.  Therefore, the excitation voltage is controlled to limit the 

strain in the beam. 

 The maximum strain occurs at the root of the cantilever so that [121] 

,
22

02

0

2

max, 

 



 xn

x

xx

h
B

x

Yh
   

(3.14) 

where 
2

0 2 nx  
 . For a defined εxx,max, Equation 3.14 can be rearranged to define the maximum 

amplitude at the end of the microcantilever beam, 
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Theoretically, Equation 3.15 can be combined with Equation 3.12 to precisely control the 

applied voltage and achieve a deflection according to a given maximum strain.  However, the 

lack of cross-section symmetry and difficulty of measuring d for each specimen makes this a 

cumbersome strategy.  Instead, the dynamics of the microcantilever beam are monitored in real 

time with the LDV and the excitation voltage is terminated before the vibration amplitude 

reaches the strain limit defined in Equation 3.14.   

The OFV-5000 LDV measures the velocity of the vibration in units of volts, VLDV, where 

[178] 
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and Θ is a conversion factor of 5 mm/s/V.  In Equation 3.16, the natural frequency ωn is defined 

as [123] 
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where ρ is the density and A is the cross-section area.  Placing Equation 3.16 into Equation 3.15, 

the maximum tolerable voltage of the LDV is 
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(3.18) 
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The actuation voltage can then be terminated when the amplitude of the beam, as measured at the 

LDV, approaches the limit defined in Equation 3.18.  This formulation is also applicable to the 

operation of the BES as well.   The limitation of this method is that the measurement location is 

assumed to be the approximate end of the microcantilever beam.  If the interrogation spot is 

further from the end, the strain will be underestimated. 

3.4 Measuring the damping by the logarithmic decrement of free-decay 

The logarithmic decrement is calculated from the relative amplitude of consecutive peaks 

in a sinusoidal oscillation that is allowed to freely decay.  To understand this consider the 

equation of motion of a simple harmonic oscillator,  

,02 2  yyy n  (3.19) 

where y(t) is the displacement as a function of time. Consider that the oscillator is given an initial 

displacement that is allowed to freely decay.  The displacement of this free decay follows the 

form of  

   ttyty dnt  sinexp)( 0    (3.20) 

where the damped natural frequency is  

.1 2  nd  (3.21) 

Now if the decay is described in terms of vibration cycles, the time advances according to r 

cycles by  
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Substituting this into Equation 3.21, the amplitude per cycle becomes 
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The logarithmic decrement is defined as [27] 
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Substituting Equation 3.24 into Equation 3.23 and solving for δ, the logarithmic decrement can 

be calculated according to  
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3.4.1 Calculation of the logarithmic decrement from experimental data 

For the experimentally collected data, the measurement of the logarithmic decrement 

from the free-decay data has several steps.  First, the voltage time series data is selected from the 

point where the actuation is cut to when the vibration approaches the noise floor, as seen in 

Figure 3.6.  Including the noise floor will skew the logarithmic decrement and resonance 

frequency measurements that are extracted from this data.   Next, a custom peak picking 

algorithm searches the free-decay time series for data points that are greater than their ten nearest 

neighboring peaks.  Finally, the isolated peaks are analyzed to extract the resonance frequency 

and logarithmic decrement. 
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Figure 3.6: The characteristic velocity time series of the free-decay is shown for a 

microcantilever resonator. The vertical line through the data indicates the position of the inset. 

Theoretically, only two cycles of vibration are needed to calculate the logarithmic 

decrement.  In practice, many cycles of vibration are taken into account to improve the accuracy 

of this method.  Noise and the finite sampling rate add uncertainty to both the amplitude and the 

time stamp of each peak.  Therefore, the amplitude of each peak relative to every other peak in 

the free-decay data set should be evaluated and averaged.  For large data sets, the evaluation of 

rC2 number of calculations is cumbersome.  Instead, the relative amplitude of every peak is 

evaluated in one approximation.   

Assuming an exponential decay, the log of the peak data should have a linear slope.  A 

linear best fit line is fit to log of the peak data. Then the logarithmic decrement for the entire 

free-decay data set is  

  
   

 
 

(3.26) 
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where J is the slope of the best fit line.   

The free-decay peak data is also analyzed to measure the resonance frequency.  As a 

consistency check, the resonance frequency is measured by two independent methods.  The PSD 

of the time series is computed and analyzed to find the frequency of the resonance peak, 

distinguished from noise peaks by its characteristic Lorentzian curve and high amplitude [187].  

The second method is to measure the time between consecutive peaks.  However, the discrete 

time sampling and noise cause a fluctuation so the time must be averaged by 

.
1

r

tt

f

rmm 
  

(3.27) 

Noise, recording duration, and finite sampling frequency also affect the measurement of 

the logarithmic decrement.  A simple check on the quality of the data is to visually inspect the fit 

of the free-decay data and check that the “goodness of fit” R
2
 residual is at least 0.98.  Non-linear 

damping would easily be detected if the best fit line strayed from the center of the extracted peak 

data.  However, the presence of noise can cause artificially high R
2
 and mislead the 

experimenter.  For instance, the variance of the selected peaks in Figure 3.7 is wide enough that a 

poor fit may go undetected. 

 

Figure 3.7: The extracted peaks from a free-decay are fit with a line by a linear regression 

method.  The δ = 1.26 × 10
-5

 and R
2
 = 0.99 for this fit. 
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Thus, an analysis to determine the effect of the experimental variables on the error of a 

measurement of the logarithmic decrement is necessary and discussed in the following sections 

and a strategy to check the quality of the collected free-decay data is outlined. 

3.4.2 The effect of the recording duration of the free-decay time series on the calculated 

logarithmic decrement 

  According to Equation 3.26, the length of the free-decay time series directly effects the 

measurement of the logarithmic decrement.  To determine the effect, a long recording of the 

free-decay time series is segmented into pieces and then incrementally reassembled.  Each 

segment is progressively longer than the previous segment.  The smallest piece is 10 cycles and 

the longest is 86000 cycles. From 10 cycles to 20000 cycles, 10 cycles are added to each 

consecutive segment.  From 20000 cycles to 86000 cycles, the incremental addition to each 

segment is 100 cycles.  For each segment, the logarithmic decrement and resonance frequency 

are measured and the results are displayed in Figure 3.8.   

 

Figure 3.8: The logarithmic decrement (black squares) and resonance frequency (blue 

diamonds) as a function of the number of cycles in the free-decay data.  The inset shows the R
2
 

of the linear regression as a function of the number of cycles. 
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At a segment length of 2000 cycles, the logarithmic decrement measured for each 

segment converges to within 0.1% of the logarithmic decrement measured for the entire data 

length of 86000 cycles.  Above 9000 cycles, the measured resonance frequency is stable.  For 

segments greater than 9000 cycles, the difference between the resonance frequency for each 

segment and the resonance frequency measured for the full data does not fluctuate more than 

0.0001%.  From the analysis of the parameters, 9000 would be the minimum number of cycles 

necessary to accurately measure the frequency and damping from the free-decay time series.   

While the calculated logarithmic decrement is considered stable at 2000 cycles, the R
2 

is 

0.53, which indicates the fit is not representative of the data.  The fitting residual reaches the 

0.98 threshold at 12000 cycles and 0.99 at 16000 cycles.  Thus, the convergence of the R
2
 is used 

to define the minimum necessary number of cycles because it determines when the number of 

data points overcomes the variance of the selected peak data.  Based on this analysis, 12000 

cycles is determined to be the minimum required length of the recorded free-decay data.  This 

criterion can be used to calculate the minimum recording time based on the resonance frequency 

of a given microcantilever specimen.   

3.4.3 The effect of the sampling frequency on the measured logarithmic decrement and 

resonance frequency 

The sampling rate affects the clarity of time series; the completeness of the depiction of a 

continuous sinusoidal wave form by discrete sampling is a function of the sampling rate.  For 

calculating the logarithmic decrement, the accuracy of the amplitude and time information 

contained in the waveform is important.  Ideally, a maximum sampling rate would provide the 

most detail of the time series.  Practical issues, such as data size, computing power, and 

computational analysis time, limit the maximum sampling rate.  Accordingly, the optimal 

sampling rate is defined according to the required minimum.  To find this minimum sampling 

rate, a simple experiment is conducted. 

For a series of increasing data sampling rates, the logarithmic decrement is measured five 

times and averaged.  The measured frequency and logarithmic decrement at each sampling rate 

are listed in Table 3-1. 
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Table 3-1: The effect of the sampling rate on the measured resonance frequency and logarithmic 

decrement is summarized.  The given values of the resonance frequency and logarithmic 

decrement at each sampling rate are extracted from five independent measurements of the free-

decay. 

Sampling 

rate 
f [Hz] δ 

10 kHz 790.6 2.56 × 10
-4

 

20 kHz 3069.8 6.60 × 10
-5

 

30 kHz 3066.7 6.58 × 10
-5

 

40 kHz 3069.8 6.64 × 10
-5

 

50 kHz 3069.8 6.66 × 10
-5

 

 

Accordingly, a 10 kHz sampling rate does not capture enough information of the time series to 

accurately measure the resonance frequency or the logarithmic decrement, despite being great 

enough to satisfy the Nyquist theorem.  From this study, it is determined that the sampling rate 

needs to be at least seven times greater than the resonance frequency of the microcantilever beam 

resonator. 

3.4.4 Method to evaluate the quality of the free-decay data and calculated logarithmic 

decrement 

In Sections 3.4.2 and 3.4.3, the effect of the recording time and sampling frequency is 

experimentally determined and strategies to minimize the deleterious effects are introduced.  

However, these strategies do not address the effect that noise may have on the measured 

logarithmic decrement.  Noise here includes the thermal noise floor, spurious electrical noises, 

and mechanical disturbances.  These noises are inherently random, thus there is no strategy to 

specifically eliminate them beyond working in a quiet atmosphere with adequate electromagnetic 

shielding.  Instead, an active approach is taken to check the quality of the measured free-decay 

data based its consistency.  That is, the data is examined to determine whether the free-decay is 

being corrupted in some manner.  Corrupted data could come in the form of non-linear damping, 

amplitude excitation, or frequency shifting during the length of a recording.   
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Checking for an amplitude excitation is performed when optically inspecting the best fit 

line in comparison to the log of the peak data.  A check for non-linear damping and frequency 

shifting is accomplished by segmenting the data into segments of 12000 cycles.  Then the 

logarithmic decrement and resonance frequency are evaluated for each segment.  The mean value 

of the damping, Figure 3.9, and resonance frequency, Figure 3.10, measured for each segment 

are checked for convergence to the values measured from the complete data set.  For the 

logarithmic decrement, a 2% standard deviation is the maximum acceptable variance.  

 

Figure 3.9: A free-decay data set is segmented into sections that are 12000 cycles long and the δ 

extracted from each segment is compared to the δ measured from the full data set.  The variance 

of the δ measured from the segmented data is 1.1% and the mean is equivalent to the damping 

measured from the full data set.   
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Figure 3.10: The free decay is segmented into lengths of 12000 cycles and the resonance 

frequency is measured by the time interval between consecutive cycles for each segment.  The 

average frequency for each segment is 448.997 Hz. The standard deviation of the six segment 

frequencies is 0.0001%.  

3.4.5 Summary of the experimental measurement of the logarithmic decrement 

 In Section 3.4, the method to calculate the logarithmic decrement from the free-decay of 

vibration is presented.  Then the influence of the recording time and sampling frequency on the 

measured damping is experimentally determined.  This study is then extended to propose a 

method to check the free-decay data for aberrations based on the consistency of the logarithmic 

decrement and resonance frequency.  Based on these results, the procedure for measuring the 

logarithmic decrement of damping is: 

1. A measurement of the free-decay is obtained using a sampling frequency at least 7 times 

greater than the resonance frequency. 
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2. The recording time of the measurement is at least 36000 cycles long. The maximum 

recording time is defined such that the recording is terminated well before the amplitude 

of the vibration is approaching the thermal noise floor. 

3. The collected data is segmented into lengths of 12000 cycles and the logarithmic 

decrement and resonance frequency are calculated for each segment.  The standard 

deviation for the damping from the segmented data must be less than 2%.   

4. Steps 1-4 are repeated to generate 5 measurements of the damping and resonance 

frequency.   

5. The five measurements of the damping and resonance frequency are averaged.  The 

standard deviation should be less than 2%, following the protocol of Sosale [17].  

This procedure is employed in the next section to measure the damping of a set of single-crystal 

silicon microcantilever beams using the EES and BES. 

3.5 Experimental measurements of damping and frequency at room temperature 

In this section, the instruments and experimental protocols described in the previous 

sections are implemented to measure the damping in a set of microcantilever beams using the 

BES and EES. The experimental measurements are compared between each platform in the 

discussion section.  Then the magnitude of the damping is compared to theoretical descriptions 

of the relevant damping mechanisms.  The TED limit is then used to calibrate the measurements 

according to the residual damping. The residual damping is a measure of all the other damping 

mechanisms subject to the microcantilever and thus defines the resolution of the damping 

measurement.  The final evaluation is the damping measurement repeatability of the EES.  

3.5.1 Results 

The damping of a set of 17 single-crystal silicon microcantilever beams at the first and 

second mode resonance frequency has been measured using the EES and BES.  For this set of 

LFB specimens, the base is ~550 µm thick, 1.5 mm wide and ~5 cm long.  The thickness of the 

beam is measured at three different positions along the length to ensure that the taper is less than 

10%.  The dimensions of the beam portion range from 24 µm < h < 90 µm thick and from 10 mm 

< L < 29 mm in length.  The width of the beam averages w = 700 µm.  The beam dimensions, 
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listed in Table 3-2, are used to predict the resonance frequencies.  The damping measured using 

the EES and BES platforms are listed in Table 3-3.  

Table 3-2: The predicted first and second mode resonance frequency compared to the measured 

values, f1,δ and f2,δ, respectively, using the EES and BES.  The reported error is the standard error 

for five measurements.  *The error for the EES measured frequency of Specimens 1, 2, and 3 is 

0.28%, 0.26%, and 0.1% respectively. †The error for the measured frequency of Specimens 4, 

13, and 16 is 0.006%, 0.002%, and 0.011% respectively. 

ID 

# 

 

L 

[mm] 

h 

[µm] 

Theory BES EES 

f1 

[Hz] 

f2 

[Hz] 

f1,δ  [Hz] 

(±.001%) 

f1,δ [Hz] 

(±.02%) 

f2,δ [Hz] 

(±.01%) 
f2,δ/f1,δ 

1 17.0 24.0 115.0 732 113.5 113.2* 791.8 7.0 

2 29.2 91.9 149.0 949 143.1 143.5* 948.8 6.6 

3 18.1 42.1 178.3 1135 147.3 147.1* 1216.9 8.3 

4 26.5 83.6 164.0 1046 155.0 † 155.1 1065.8 6.9 

5 20.8 62.52 199.7 1271 198.8 198.8 1322.5 6.7 

6 18.0 58.1 247.8 1577 235.5 235.7 1676.1 7.1 

7 16.9 62.51 302.3 1924 276.4 276.4 1878.0 6.8 

8 15.3 52.63 312.0 1986 281.6 281.6 1965.4 7.0 

9 13.0 40.3 327.9 2087 290.6 290.5 2402.1 8.3 

10 16.4 61.8 317.8 2023 301.2 301.2 1995.4 6.6 

11 10.0 25.0 360.0 2291 353.4 353.2 2985.9 8.5 

12 14.5 57.8 380.7 2423 357.6 357.6 2393.5 6.7 

13 10.5 35.1 441.1 2807 387.3 † 387.3 3081.4 8.0 

14 13.0 57.5 470.0 2995 420.4 420.4 2812.8 6.7 

15 12.5 54.2 478.0 3042 432.6 432.6 2920.7 6.8 

16 12.7 56.8 491.1 3125 448.8 † 449.2 3069.8 6.8 

17 10.2 54.7 730.0 4646 664.8 664.7 4574.2 6.9 
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Table 3-3: The measured logarithmic decrement using the BES and EES with the reported 

standard error. The numeral subscripts denote the damping measured at the first and second 

mode resonance frequency.  

ID # 
BES EES 

δs,1 δs,1 δs,2 

1 6.99 × 10
-6

 (± 10%) 6.94 × 10
-6

 (± 67%) 9.93 × 10
-6

 (± 5%) 

2 2.12 × 10
-5

 (± 0.8 %) 1.01 × 10
-5

 (± 23%) 4.88 × 10
-5

 (± 9%) 

3 6.21 × 10
-6

 (± 6%) 4.87 × 10
-6

 (± 11%) 2.30 × 10
-5

 (± 2%) 

4 1.81 × 10
-5

 (± 6%) 1.06 × 10
-5

 (± 8%) 4.92 × 10
-5

 (± 1%) 

5 8.16 × 10
-6

 (± 2%) 7.16 × 10
-6

 (± 6%) 3.13 × 10
-5

 (± 0.2%) 

6 9.10 × 10
-6

 (± 2%) 7.31 × 10
-6

 (± 5%) 4.06 × 10
-5

 (± 0.2%) 

7 1.02 × 10
-5

 (± 1%) 7.40 × 10
-5

 (± 3%) 4.24 × 10
-5

 (± 0.3%) 

8 7.87 × 10
-6

 (± 1%) 6.49 × 10
-6

 (± 3%) 3.47 × 10
-5

 (± 5%) 

9 5.68 × 10
-6

 (± 2%) 3.58 × 10
-6

 (± 3%) 3.68 × 10
-5

 (± 0.2%) 

10 1.28 × 10
-5

 (± 1%) 7.98 × 10
-6

 (± 2%) 4.70 × 10
-5

 (± 0.3%) 

11 5.50 × 10
-6

 (± 4%) 1.17 × 10
-5

 (± 0.4%) 2.59 × 10
-5

 (± 0.3%) 

12 1.29 × 10
-5

 (± 2%) 1.17 × 10
-5

 (± 0.6%) 4.95 × 10
-5

 (± 0.1%) 

13 7.70 × 10
-6

 (±1%) 6.65 × 10
-6

 (±6%) 3.33 × 10
-5

 (± 0.5%) 

14 9.70 × 10
-6 

(± 1%) 9.77 × 10
-6 

(± 1%) 5.18 × 10
-5

(± 0.3%) 

15 1.05 × 10
-5

 (± 1%) 1.06 × 10
-5

 (± 1%) 5.69 × 10
-5

 (± 0.5%) 

16 1.42 × 10
-5

 (± 1%) 1.11 × 10
-5

 (± 0.4%) 6.60 × 10
-5

 (± 1%) 

17 1.55 × 10
-5

 (± 0.5%) 1.57 × 10
-5

 (± 0.3%) 8.24 × 10
-5

 (± 0.1%) 

3.5.2 Discussion 

For both frequencies and for both systems, the measured frequencies do not match the 

estimated values and the difference can be as great as 13%.  Concerning the first mode 

frequency, for the whole set, the standard error of the frequency measured with the BES is lower.  

For the EES, the error of the measured frequency of Specimens 1, 2, and 3 are an order of 

magnitude greater than the average.  Excepting those three specimens and Specimen 16, the 

magnitude of the resonance frequency measured using both experimental platforms agree within 

0.1 Hz.   
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 Note that the second mode frequency is not increasing sequentially for the data set.  The 

measurement of the second mode frequency is evaluated with respect to the first mode 

frequency.  The ratio of the first and second mode is, theoretically, a constant given by [27, 121, 

123] 

.3642.6
875104.1
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(3.28) 

 

All of the specimens have a ratio greater than the theoretical ratio.  Four specimens have a 

frequency ratio that is greater than 10% of the mean frequency ratio (mean frequency ratio = 

7.1).  The reason for the trend and outliers is unclear, but are grounds to remove those specimens 

from future use.   

 For the specimens with resonance frequency below ~300 Hz, the standard error of the 

first mode damping is greater for measurements conducted with the EES but is otherwise 

comparable for both platforms.  The damping measured at the second mode and, in general, the 

magnitude of the damping is best evaluated in terms of the theoretical damping from TED, 

Akhiezer damping, internal friction, and support loss.   With the room temperature properties of 

single-crystal silicon, Table 3-4, the magnitude of theoretical damping can be estimated. 

Table 3-4: The material properties of single-crystal silicon at room temperature [106, 110, 188-

193].  The coefficient of linear expansion is α, the thermal conductivity is k, the specific heat per 

unit volume is Cv, the speed of sound is vs, the Grüneisen parameter is γ. 

E  

[N/m
2
] 

ρ  

[kg/m
3
] 

α 

 [K
-1

] 

k 

 [W/m/K] 

Cv 

 [J/m
3
/K] 

vs 

[m/s] 
γ  

169 × 10
9
  

± 1% 
2333 

2.67 × 10
-6

  

± 2.01% 

144.75  

± 3.12% 

1.6 × 10
6
  

± 2.75% 
8.3 × 10

3
 0.452 

   

For an isotropic, homogenous Euler-Bernoulli beam subjected to an oscillating stress 

field, the magnitude of TED is given by [63] 



59 

 

2

0

2

1 




v

TED
C

TE
  

(3.29) 

where To is the equilibrium temperature and Ω is the normalized frequency, 
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The Akhiezer damping is calculated from [84]  
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and is on the order of 10
-7

 for all of the specimens, about an order of magnitude less than the 

TED.   

The single-crystal silicon microcantilever beams are assumed to be free of defects such 

that the internal friction is caused by the boron doping. Internal friction is interpolated from  

experimental results tabulated in Hung [106] for the relationship between the resistivity, ion-

implantation, and internal friction. The boron doping is ~10
15

/cm
3
 for these single-crystal silicon 

microcantilevers and the internal friction damping is estimated to be ~10
-6

 [106, 116].   

The anchor loss is a combination of support loss and clamping loss.  The support loss is 

estimated from [41, 42] 
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where hb is the thickness of the support.  The thickness of the clamping vice in the EES is 25 mm 

and the support loss is estimated to be on the order of 10
-7

.  There is no model available to 

estimate the clamping loss, but it can be inferred based on the theoretical contributions of the 

support loss, TED, Akhiezer damping, and internal friction. 

 Thus, TED is the dominant damping mechanism for this set of microcantilever beams.  In 

Figure 3.11, the damping at the first and second mode using the EES is plotted against the TED 

limit. 

 

Figure 3.11: The measured damping at the first and second mode frequency using the EES are 

plotted against the TED limit for a set of 17 single-crystal silicon microcantilevers at room 

temperature.  The error bars denote the standard deviation of five measurements that have been 

averaged to make one data point. 

The difference between the measured damping and the TED limit is consistent for all specimens 

measured using the EES.  This difference has been termed the “residual damping” [17].  If the 

measured damping in a pure single-crystal silicon cantilever beam is δs, then the residual 

damping is   
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.TEDsresidual    (3.33) 

The residual damping measured for all specimens and modes for both the EES and BES are 

compared in Figure 3.12. 

 

Figure 3.12: The residual damping measured for a set of 17 single-crystal silicon 

microcantilever beams measured using the BES (squares) and EES (circles).  The residual 

damping for the second mode is plotted in open circles. 

Except for Specimen 11, the residual damping measured using the EES is lower than or 

equal to the BES values.  The residual damping for the second mode is greater in magnitude than 

the first mode.  For both modes and both platforms, the residual damping is within expected 

bounds.  Extensive experimental damping measurements on a set of 72 single-crystal silicon 

microcantilever beams by Sosale revealed that the residual damping is consistently measured at 

~10
-5 

[17, 98].   Further, the residual damping was shown to have no correlation to the specimen 

dimensions [106]. Slight variations that are observed over the specimen set are uncorrelated and 

random. Therefore, the O(10
-5

) residual damping level is assumed to be a result of clamping loss 

and its uniformity is due to the standardized clamping procedure.  This agreement indicates that 
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the design and method of the EES can measure damping to the same minimum level as the BES.  

However, one other metric of the performance of the EES is the ability to repeat damping 

measurements.  

3.5.3 Evaluating the repeatability of the damping measured with the EES 

The repeatability of the damping measurement is a measure of the systematic error.  

Here, an experimental measurement of the damping is defined as the average of five 

measurements where the beam has not been unclamped and none of the operating conditions 

have changed.  The standard error of the mean value of five measurements is representative of 

the effect of random noise on the measured parameters during an experimental session.  The 

repeatability, then, is the precision of an experimental measurement; the repeatability quantifies 

the effect of the measurement protocol on the damping measurement.   

The damping measurement repeatability is experimentally determined for the EES with a 

set of three specimens chosen at random and measured five times.  Each experimental 

measurement included venting the vacuum chamber and remounting the specimen on the EES.  

The repeatability for the EES, Table 3-5, is as great as 16% and low as 6%.   

Table 3-5: The room temperature repeatability of the EES for three specimens remounted five 

times on the EES. The error is the range reported as a percentage of the mean. 

# 

    Frequency [Hz] Logarithmic decrement, δs 

L 

 [mm] 
h [µm] min mean max error 

min 

(× 10
-6

) 

mean 

(× 10
-6

) 

max 

(× 10
-6

) 
error 

8 15.28 52.63 275.18 280.33 281.64 2.31 % 5.87 6.31 6.87 15.96 % 

16 12.65 56.75 449.12 449.16 449.20 0.02 % 10.9 11.4 11.9 8.82 % 

17 10.19 54.71 664.63 664.64 664.66 0.01 % 15.7 16.1 16.7 5.94 % 

 

Evaluating the repeatability using eight similar cantilever beam specimens, Sosale 

reported a precision error as high as 7.05% and as low as 1% for the BES [17].  With respect to 

this, the repeatability of the EES is poor.  However, it must be noted that the operating conditions 

are not identical.  Sosale performed all of the experiments on a vibration isolating optical table 
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(RP Reliance, Newport Corp, USA) and the experiments using the EES are conducted on a 

simple wooden table.   

Ambient energy from building vibrations and other sources is better able to reach the 

specimens through the wooden table, thus skewing the measured damping.  This effect would 

also be more pronounced for very high-Q and low frequency resonators because of their 

increased sensitivity, operating bandwidth, and the increased transmissibility of low-frequency 

waves.  For example, at rest, the high-Q specimens have been observed to be set in motion by 

noises, such as the door closing.  Any evidence of spurious excitation is grounds to eliminate 

data, but it is hard to detect for a single-shot measurement. 

3.6 Summary 

The aim of Chapter 3 is to introduce the EES for the measurement of damping and 

characterize its performance with respect to the well-characterized BES in addition to theoretical 

measures of damping. First the instrumentation and experimental specimens were explained.  

Then the method and experimental protocols of electrostatic excitation and the measurement of 

the logarithmic decrement of free-decay were discussed.  This discussion evaluated the effects 

that the experimental variables (recording time and sampling rate) have on the measurement of 

damping and introduced a systematic and objective protocol to judge the linearity and 

consistency of the free-decay data. 

The room temperature damping for a set of 17 single-crystal silicon microcantilever 

beams was measured using the BES and the EES system.  Additionally, the damping and 

resonance frequency was measured at the second mode using the EES.  The ratio of the 

measured first mode resonance frequency to the second mode is not consistent for all specimens.  

The presence of discrepancies suggests that this measurement can be implemented as a screening 

tool for damaged specimens or corrupted data. 

For the first mode damping, the EES measures a damping level comparable to the BES.  

Then, in comparison the theoretical TED limit, the residual damping is also proven to be 

consistent for the set of microcantilever beams.  Finally, a study of the measurement repeatability 

finds that the systematic error due to the clamping causes a precision error as low as 6% and as 
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high as 16% for the EES, which is greater than the precision error of the BES that is reported by 

Sosale. 

In conclusion, the experimental protocols and the EES instrumentation have been 

demonstrated to measure the damping with a minimum resolution that is slightly better than the 

BES system. However, the repeatability study indicates that the EES may suffer from a precision 

error as high as 16%.  Based on a set of three specimens, the precision improves with increasing 

fundamental resonance frequency.  Thus, the specimens that are selected for future studies 

should have as high a frequency as possible. 
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CHAPTER 4 

Measurement of the effects of temperature on the material damping 

in silicon based microcantilever resonators 

 The work in this chapter is an experimental study of the material damping in single-

crystal silicon and aluminum coated silicon microcantilevers. The instrumentation, specimens, 

and experimental protocols described in Chapter 3 are now used to measure the temperature 

dependence of the material damping.  The process starts by calibrating the performance of the 

EES to the TED limit from room temperature up to 225 ˚C using un-metalized beams.  Then a 48 

nm thick layer of aluminum is deposited on two different cantilever specimens and the damping 

is measured from room temperature up to 165 ˚C.  The difference between the two measurements 

is used to calculate the temperature dependence of the internal friction of the aluminum film. 

4.1 Measuring damping above room temperature  

 In this section, the material properties of single-crystal silicon are tabulated in order to 

estimate the temperature dependence of TED and other damping mechanisms.  Then the heating 

protocol of the clamp is experimentally determined and the damping of a set of single-crystal 

silicon microcantilever beams is measured and calibrated to the TED limit. 

4.1.1 The temperature dependence of the material properties of single-crystal silicon 

The mechanical spectroscopy of damping mechanisms is calibrated by using single-

crystal silicon microcantilever beam substrates that measure damping close to the TED limit.  In 

theory, for beams satisfying the Euler-Bernoulli beam theory, the accuracy of the theoretical 

calculation of TED is a few percent [67]. Compared to experimental results, the accuracy of the 

calibration is contingent on the accuracy of the measured dimensions and material properties.   

The literature has been mined for empirically derived formulas and experimental data of 

the temperature dependence of the material properties of single-crystal silicon. This information 
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is listed in Table 4-1.  When the model does not reflect the experimental measurements of the 

material properties, the model is re-fit to find new constants. 

Table 4-1: Mathematical models for the temperature dependence of the material properties of 

single-crystal silicon have been fit to experimental data to find optimal values of the constants. 

All of the constants are from the literature except for the model of Cv, which is from [194] and 

was independently fit to the data of [189, 194-196]. 

Model Constants Reference 

         
    

 
 
 

   

[W/m/K] 

A  = 1.093, B = 1.56 × 10
-3

 

ko = 144.19 W/m/K, To = 298.25 K 
[197] 

         
 

  
   

[J/m
3
/K] 

A  = 1.763 × 10
6
 

B = 1247.0, C = -8.425 × 10
7
 

[189, 194-196] 

     
    

       
  

      

    
  

[1/K] 

A  = -0.687 × 10
-6

 

B = 5.0 × 10
-6

 

C = 0.22 × 10
-6

 

D = 0.316, x = ΘE/T, y = Φo/T 

ΘE = 685 K, Φo = 395 K 

[198] 

                         

           
[kg/m

3
] 

             

             

              

              

[199] 

          
 

 
            

 

 
     

  

  

[N/m
2
] 

At To = 298 K 

s11 = 7.68 × 10
-12

 

s12 = -2.14 × 10
-12

 

s44 = 12.58 × 10
-12

 

[188, 200] 

                

           
      

 

   

  

Temperature Coefficient of Elasticity, TCE(sij) 

ij: 11 12 44 

[199] 
     

64.7 

× 10
-6

/˚C 

51.4 

× 10
-6

/˚C 

60.1 

× 10
-6

/˚C 

     52.4 × 10
-6

/˚C 44.0 × 10
-6

/˚C 29.4 × 10
-6

/˚C [201] 

     61.1 × 10
-6

/˚C 72.2 × 10
-6

/˚C 54.9 × 10
-6

/˚C [199] 
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The temperature dependent material properties are plotted in Figures 4.1 and 4.2 in relation to 

the experimental data.   

 

 

Figure 4.1: The temperature dependence of the specific heat (black line) is compared to 

experimental data (black squares) of [189, 194, 196] and corresponds to the left vertical axis.  

The temperature dependence of the thermal conductivity (dashed blue line) is compared to 

experimental data (blue circles) of [202-207] and corresponds to the right vertical axis. 
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Figure 4.2: The temperature dependence of the elastic modulus (solid black line) corresponds to 

the left vertical axis below the break.  The temperature dependence of the density (dotted black 

line) corresponds to the left vertical axis above the break.  The temperature dependence of the 

coefficient of thermal expansion (dashed blue line) is compared to experimental data (blue 

squares) of [189, 208-211] and corresponds to the right vertical axis. 

The material damping can now be estimated using the temperature dependent models of 

the material properties of single-crystal silicon.  For all of the specimens and from room 

temperature to 100 ˚C, the Akhiezer damping is on the order of 10
-7

 and is less than the TED. 

Theoretically, the support loss has no temperature dependence.   However, the thermal expansion 

of the clamp may affect the clamping loss. By building a library of the temperature dependence 

of the material properties of single-crystal silicon, the temperature dependence of the residual 

damping can be determined experimentally. 

4.1.2 Heating protocol for the EES 

Reaching a specific temperature with accuracy and maintaining stability is difficult.  In 

vacuum, due to large temperature gradients and non-uniform heat loss, automated control by PID 
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algorithms is not possible.  Hence, the heating protocol has been developed experimentally based 

on observations of heating and cooling behavior. 

When heated above 50 ˚C, the temperature measured by the thermocouples at the 

clamping surface and the clamping plate is offset from the heater temperature due to conduction 

time and a non-uniform rate of heat loss by radiation. The temperature offset increases linearly 

with the increasing temperature of the heater.  Thus, the EES is effectively separated into three 

zones (the heater, the base of the beam, and the clamping plate).  The control of the temperature 

at the base of the beam must take into account the offset.   

The temperature of the heater is controlled with an on-off thermostat and by matching the 

power supplied to the heater with the power lost to radiation and conduction.  The control of the 

heating power and thermostat for each temperature increment follows a certain protocol: 

1. The on-off thermostat is set at a +3 ˚C offset from the target beam temperature. Above 90 

˚C the heater thermostat set point offset needs to be increased by +1 ˚C for every 

additional 5 ˚C temperature increment. 

2. The heater is “soaked” at a power that is greater than the power necessary to equilibrate 

the system against the heat lost. 

3. The thermostat turns off the heater when the set-point temperature is reached. 

4. The power supply is dialed back to a “stabilize level.” 

5. The heat is allowed to conduct from the heater to the rest of the clamp. 

6. A measurement can begin when the temperature of the beam is at the target set-point. 

7. The on-off thermostat keeps the temperature stable while a damping measurement is 

made. 

The “soak” and “stabilize” power levels for every heating increment from room temperature up 

to a temperature of 225 ˚C are given in Figure 4.3.  This plot also shows how the measured 

temperature offset at each location increases as a function of the heating increment.   
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Figure 4.3: The temperature profile of the clamp and voltage settings are plotted as a function of 

the temperature at the base of the microcantilever beam.  The temperature profile of the clamp is 

measured at the clamping surface (black circles), the heater (black squares), and the top of the 

clamp (black triangles).  The temperature at the beam is determined by the temperature set-point 

(black stars) of the heater and the voltage supply (blue diamonds).  Approaching a given set-

point (stars), the heater is supplied with a soak voltage (blue closed diamonds) and is then dialed 

back to a stabilizing voltage (blue open diamonds) when the heater temperature surpasses the set-

point. 

Stabilizing the temperature becomes increasingly difficult at higher temperatures.  

Despite careful operation, the temperature has been observed to change while making five 

measurements of the damping at a particular temperature increment.  Thus, the checks for non-

linear damping introduced in Section 3.4.4 are essential to screen for experimental errors.  

Through the use of the established consistency check, at times, the damping has been observed to 

fluctuate despite the thermocouple indicating a stable temperature.  This indicates that there is an 

additional unknown heating lag between what the specimen feels and what the thermocouple at 

the base of the beam measures 
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4.1.3 The damping of single-crystal silicon microcantilevers above room temperature 

(25˚C to 225˚C)  

Using this heating protocol, the damping and resonance frequency of a pure, single-

crystal silicon microcantilever beam is measured from room temperature up to 225 ˚C in 10 ˚C 

increments. At each temperature increment, the damping is measured five times and then 

averaged.  Specimen 17 has been selected for this study due to its demonstrated low-damping 

and acceptable repeatability.  The measured damping is plotted in Figure 4.4 against the TED 

limit.   

 

Figure 4.4: The damping (black circles) and resonance frequency (blue squares) of Specimen 17 

is measured from room temperature to 225 ˚C in increments of 10 ˚C.  The measured damping is 

plotted against the TED limit (solid black line). 

The measured resonance frequency decreases linearly with increasing temperature and 

the damping increases.  The behavior of the measured damping is compared to the temperature 

dependence of the TED.  The residual damping plotted as a function of temperature (Figure 4.5) 

increases slowly up to 150˚C. Above 150˚C, the magnitude of the residual damping increases at 

a faster rate.   
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Figure 4.5: On the left vertical axis, the residual damping for Specimen 17 is plotted (black 

squares) against the temperature measured at the clamping surface.  On the right vertical axis, the 

temperature profile of the clamp is plotted for each temperature increment. The temperature 

measured at the heater is plotted as blue squares, the base of the beam is blue circles, and the 

clamping plate is blue triangles. 

Over the course of the experiment, the temperature gradient of the clamp is growing. The 

temperature gradient is assumed to be correlated to the increasing residual damping based on two 

other observations: 

1. The residual damping is sensitive to the clamping pressure [17]. 

2. The damping has been observed to fluctuate when the temperature shifts during the 

recording of the free-decay. 

This preliminary measurement shows that the resolution of the system erodes at high 

temperatures.  Up to 150˚C the residual damping is still δresidual < 1 × 10
-5

, which is within 

prescribed tolerances. The next step is to probe the repeatability of the measured damping as a 

function of temperature.  



73 

 

Specimens 16 and 17 are selected for this detailed study of the temperature dependence 

of damping in single-crystal silicon microcantilever beams.  The damping is measured over a 

range of temperatures in an unbroken series. This protocol was performed five times for both 

specimens and each experimental session consists of venting the chamber, cooling the system, 

and remounting the beam.  The temperature increment was reduced to 5 ˚C for two sessions to 

determine if the heating regime affects the damping trend.  The measured damping for Specimen 

17 and Specimen 16 are plotted against the TED limit in Figures 4.6 and 4.7 respectively. 

 

Figure 4.6: The damping of Specimen 17 is measured as a function of temperature in five 

separate experiments.  The error bars represent the standard deviation of five measurements of 

the damping at each temperature increment.  The solid line denotes the TED limit.  The solid 

black squares are the measurements of damping taken at room temperature from preliminary 

studies.   
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Figure 4.7: The damping of Specimen 16 is measured as a function of temperature in five 

separate experiments. The error bars represent the standard deviation of five measurements of the 

damping at each temperature increment. The solid line denotes the TED limit.  The solid black 

squares are the measurements of damping taken at room temperature from preliminary studies.   

 First, for both specimens, within an experimental session, certain data points depart from 

a smooth increase in damping as the temperature is increased.  These occurrences are random 

and are accompanied by a greater measurement standard deviation. Second, the standard 

deviation of five measurements can be great, even though the damping was not observed to 

change during the recorded free-decay and the temperature did not breach the ± 1 ˚C stability 

threshold for the measurement at a single temperature increment.  Third, the size of the 

temperature increment does not affect the trend of the residual damping.  Fourth, precisely 

replicating an experiment is difficult due to the manual heating control.   
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These observations suggest that each experimental session is unique because of the 

random fluctuation of the clamping loss and the manual heating protocol.  Then, to use the 

single-crystal silicon microcantilever beams as a substrate for the mechanical spectroscopy of 

material damping, multiple measurements need to be performed to generate an average base-line 

level for the temperature dependence of the material damping of single-crystal silicon. 

4.2 Measuring the material damping in aluminum coated silicon microcantilevers 

In the previous section, the temperature dependence of two single-crystal silicon 

microcantilever beams has been measured up to 160 ˚C.  Now Specimen 16 and 17 are coated 

with 47.8 nm and 47.9 nm of aluminum, respectively, deposited on the cantilever portion of the 

beam using an electron beam evaporator (Temescal BJD-1800). This is achieved by masking the 

base of the beam with a custom designed molybdenum clamp.  Prior to deposition, the specimen 

is cleaned using Piranha etchant and DI water.   The e-beam deposition is controlled with the 

electron gun voltage, sweep pattern and amplitude.  The deposition rate is automatically 

measured by the machine and the exposure time is adjusted to deposit the defined film thickness.  

The deposition rate of aluminum with the voltage at 9 kV, the pressure less than 2 × 10
-6

 Torr, 

and the sweep pattern in a figure-8 is 2 Ǻ/s.  The target film thickness was 38 nm but the final 

film thickness measured with a scanning profilometer (Tencor P1 Profilometer) was found to be 

thicker.  The discrepancy is likely caused by opening the crucible shutter for too long while 

aligning the e-beam.  Upon exposure to atmospheric conditions, the aluminum films become 

covered with a native oxide layer that ranges from 3 nm to 5 nm in thickness. 

The damping of the metalized beams is measured as a function of temperature in 5 ˚C 

increments and is plotted in Figures 4.8 and 4.9 for Specimens 16 and 17 respectively.  The 

addition aluminum on a single-crystal silicon microcantilever increases the damping relative to 

the bare beam and the TED limit.  The temperature dependence of the damping of the metalized 

beam does not increase at the same rate as the damping of the pure single-crystal silicon 

microcantilever.  This trend suggests that there is a temperature dependent internal friction peak.  

The next step is to condition the composite damping data. Removing outlier data points will 

improve the measurement of the material damping in the aluminum film.   
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Figure 4.8: The damping of a composite microcantilever beam, Specimen 16 coated with 47.8 

nm of aluminum (squares), bare single-crystal silicon beam (black circles), and the TED limit 

(black line) are plotted against the temperature. 

 

 

Figure 4.9: The damping of a composite microcantilever beam, Specimen 17 coated with 47.9 

nm of aluminum (squares), bare single-crystal silicon beam (black circles), and the TED limit 

(black line) are plotted against the temperature. 
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4.2.1 Identification and removal of outlier data points in the measurement series 

The damping of the composite microcantilever is assumed to gradually increase with 

increasing temperature.  Yet, contrary to this expectation, some data points measure lower 

damping values than the preceding points, suggesting that the preceding point is an outlier.  

These outlier points are more numerous for Specimen 16 between 50 ˚C and 80 ˚C.  For 

Specimen 17, there is an aberration around 110 °C.   This poses two questions: 

1. As each data point is the average of five measurements of the damping, are the points that 

deviate from the general trend influenced by outliers within the five measurements that 

are averaged? 

2. Can the points that deviate from the general trend be systematically identified as outliers? 

The first question is answered by plotting, in Figure 4.10, the entire damping data sets of the 

metalized Specimen 16.  The full data sets reveal that the averaged data points are displaced by 

extreme outlier points. 

 

Figure 4.10: The full data sets of the measured damping of Specimen 16 coated with 47.8 nm of 

aluminum.  In this plot, the full five measurements of the damping collected at each temperature 

increment are shown. 
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The next question calls for a systematic and objective protocol to identify and remove 

outlier data points from the data.  To begin, the terminology is defined.  The term “data set” is 

referring to all of the measurements of the damping in a single “experimental session”.  Each 

“experimental session” is a separate mounting and starts at room temperature and incrementally 

increases in temperature without interruption.    An “averaged data point” will be referring to the 

average of multiple damping measurements at one temperature increment.  Then, “data point” 

will refer to a single measurement of the logarithmic decrement within a given averaged data 

point.  The objective is to identify individual data points as outliers as opposed to averaged data 

points in a bid to preserve information. 

According to the NIST e-Handbook of Statistical Methods, an outlier is defined as “an 

observation that appears to deviate markedly from other observations in the sample” [212].  

Identifying outliers depends on the distribution of the data.  Commonly used data analysis tools, 

such as the Grubb’s test (for one outlier) and the Generalized Extreme Studentized Deviate test 

(for multiple outliers), assume a normal distribution.  Normally distributed data has a random 

orientation about the mean.  Such tests cannot be used to answer the first question because, 

collectively, the mean is a function of the temperature.  Alternatively, to analyze the variance of 

this population, the outliers may be identified based on their deviation from a best fit line to the 

scatter plot of the full data set.   This is a subjective test, though, because the presence of outliers 

themselves affects the best fit line.  To introduce an element of objectivity, a custom procedure 

based on exploratory data analysis (EDA) will be developed and implemented to identify and 

eliminate outlier data points. 

Exploratory data analysis is the combination of statistical and graphical methods to 

characterize data.  As opposed to purely statistical methods, EDA is not used for hypothesis 

based testing.  EDA is an approach to interpret data and can help expose the structure of the data, 

uncover biases, detect anomalies, identify proper data modeling functions, and ultimately 

improve one’s insight into the nature of experimental data [212].  From this perspective, EDA 

methods will be implemented to find the outlier data points in the damping data for the metalized 

microcantilever beams.   
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The aim is to develop an approach that can be applied to any data set to verify presence 

of random measurement errors.  The subjective tools of the EDA methods will be deployed in 

tandem with an objective systematic procedure to eliminate outlier data points.  The EDA will be 

applied to the full data sets instead of using the averaged data points in each data set.  Next, some 

assumptions regarding the nature of the underlying process must be made.  This is a necessary 

exercise because there is no empirically derived model to predict the damping in aluminized 

microcantilever beams as a function of temperature to which the experimental data can be 

compared.   

The damping of a bare single-crystal silicon microcantilever beam is a combination of 

several processes.  The most dominant damping mechanisms for the microcantilever beams, 

determined experimentally at room temperature, are TED and clamping losses.  According to the 

temperature dependence of the material properties, the TED increases as a function of 

temperature.  A model of the clamping loss contribution is not available, but it is experimentally 

determined , at room temperature, to be relatively constant at O(10
-5

) for the clamp that is used in 

this experiment [106].   

Initial studies of the damping of pure single-crystal silicon microcantilever beams 

revealed that the residual damping slowly increases with temperature up to 150˚C, suggesting 

that the clamping loss is weakly temperature dependent. This hypothesis is supported by the fact 

that the temperature gradients of the clamp become greater at higher temperatures, slowly 

changing the clamping pressure exerted on the base of the microcantilever. Further, it is assumed 

that the clamping loss is inherently random, the increase with temperature is slight, and the 

overall magnitude is small with respect to the TED and the material damping contribution of the 

bi-layer beam.   While the temperature dependant increase in the residual damping does factor in 

as a source of measurement inaccuracy, it is assumed not to contribute to outlier data points.  It is 

also assumed that, given a stable temperature at each measurement increment, the change in the 

clamping loss is small with respect to the previous temperature increment and proportional.  But 

if the temperature fluctuates and the clamping pressure is changing during one measurement, 

then the standard deviation of an averaged data point will be affected.  Then, based on the 

position of a single data point relative to the rest of the data set, an outlier can be identified. 
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This proposed outlier identification scheme relies on some key assumptions. The first 

assumption is that, for a perfect heating regime, the clamp is at a stable temperature for each 

temperature increment and the standard deviation for every averaged data point is 1%.  Thus, the 

damping of the composite microcantilever beam is assumed to have a gradual temperature 

dependency where the standard deviation of any averaged data point from the overall trend 

would ideally be 1% also.   That is, the damping at one temperature can be estimated from the 

damping measured at the previous temperatures.   

With the assumption that one data point depends on the other (strong autocorrelation) and 

the assumption that the errors are random (error ~1% for an experimental session), the data can 

be analyzed for outliers by applying a simple model to the data set.   Regression analysis will be 

used to evaluate the model in terms of the presence of outliers.  The quality of the fit and the 

identification of outliers are determined by the six-plot method, which is a graphical EDA 

method for process modeling.  The 6-plot is a collection of six graphical techniques that help one 

assess the fitting function by an examination of the residuals.  The graphs and their interpretation 

are explained as follows: 

1. The scatter plot of the data points with the overlay of the fitting function is a simple 

tool to visually assess the goodness of the fit. 

2. A plot of the residuals versus the independent variable can indicate if the residuals are 

random or correlated. 

3. The lag-lag plot of the residuals can reveal outliers as well as the randomness of the 

residuals. 

4. The histogram of the residuals can show outliers as well as whether the residuals 

distribution is normal. 

5. The normal probability plot shows the probability distribution of the residuals. 

The fit is determined to be good if the scatter plots of the residuals do not have a trend and the 

residuals are evenly distributed.  Further, the residuals should be randomly distributed in the lag-

lag plot and have a normal probability distribution.  At this point, the six-plot method is still a 

subjective tool.   To remove the element of interpretation, automation is introduced by 
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associating outlier points with their fitting residual.  The systematic regression analysis routine 

will follow these steps: 

1. Fit a polynomial function and use the 6-plot EDA technique to evaluate the residuals 

and identify the outliers.   

2. Eliminate the outliers and repeat. 

This routine is continued until the standard error of the residuals is less than one percent. The 

outliers of the first fit are eliminated if the fitting error exceeds 2%.  The error threshold for the 

second fit is 1.5% and all subsequent fits use a 1% fitting error threshold.  At each step, the 6-

plot results are used to ensure that the fitted function well represents the data. 

An example of the final 6-plot regression analysis, after four fitting iterations of a cubic 

polynomial, is plotted in Figure 4.11. The lag-lag plot shows a weak correlation and the 

distribution of the residuals is normal.  The application of this analysis removed some averaged 

data points entirely and left others with one or two data points.  The culled data set, S16HF5, is 

plotted in Figure 4.12 and the number of data points in each averaged data point is given if it is 

not five.  The culled data sets are then used to analyze the material damping of the composite 

specimens. 
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Figure 4.11: The 6-plot analysis of a cubic polynomial fit to the S16HF5 data set is graphed in 

the top six windows.  Clockwise from the top left corner is the scatter plot of the data with the 

fitted line, the residuals plotted against the independent variable, the residuals plotted against the 

dependent variable, the lag-lag plot of the residuals, and the histogram of the residuals.  The 

bottom plot is the standard error of the residuals where the horizontal solid blue lines are the ± 

1% threshold for the residuals that is used to cull outlier data points. 
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Figure 4.12: The data set S16HF5 of the composite microcantilever Specimen 16 has been 

culled of outliers.  The remaining data points for each averaged data point are labeled.  Averaged 

data points with no label have retained all five damping measurements. 

4.2.2 Material damping of the aluminum film 

The material damping in the aluminum film is a contribution of TED, Akhiezer damping, 

and internal friction.  For very thin films, it has been shown that the contribution of the first two 

mechanisms is negligible with respect to the internal friction [18, 98].  The internal friction of the 

aluminum film is calculated by comparing the damping of the bi-layer beam, δc, to the TED.  

When the film thickness, hf, is significantly less than the thickness of the microcantilever beam 

substrate, hs, (hf ≤ 0.01hs), the TED of the composite beam is essentially equal to the TED of the 

non-metalized beam [98].  Therefore, the internal friction is [17] 

 .
3

, residualTEDsc

fAl

sSi

IF
hE

hE
 

 

(4.2) 

Alternatively, the experimentally measured substrate damping, δs, can be used and the internal 

friction may be calculated by [97] 
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(4.3) 

The composite damping cannot be directly compared to the damping of the bare specimen due to 

the discrete temperature increments.  Therefore, the substrate damping is approximated with a 

model function to create seamless representations of the EES system level damping for 

Specimens 16 and 17 as a function of temperature.   

This is accomplished by fitting quadratic equations to the damping of the bare single-

crystal silicon microcantilever beams.  For Specimens 16 and 17, the data sets with the greatest 

temperature resolution are chosen.  Two temperature sets for Specimen 16 and three temperature 

sets for Specimen 17 are selected and fit in Figures 4.13 and 4.14 respectively.  Outlier data 

points in the data for Specimen 17 have been removed due to an anomalous peak in damping 

around 50 ˚C.   

 

Figure 4.13: The damping of the bare Specimen 17 is fit with a quadratic equation.   
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Figure 4.14: The damping of the bare Specimen 16 is fit with a quadratic equation.  The data 

points at 50 ˚C and 55 ˚C where identified as outliers and removed before the fitting. 

These quadratic functions are a better approximation than simply adding an offset to the 

TED limit to account for the clamping loss; the functions reflect the temperature dependence of 

the damping of single-crystal silicon substrate and also captures the temperature dependence of 

the clamping loss of the EES.  Using these functions and Equation 4.3, the internal friction of the 

aluminum films is extracted and plotted in Figure 4.15 and 4.16. 



86 

 

 

Figure 4.15: The temperature dependence of the internal friction of 47.8 nm of aluminum coated 

onto Specimen 16. 

 

 

Figure 4.16: The temperature dependence of the internal friction of 47.9 nm of aluminum coated 

on Specimen 17. 



87 

 

 The internal friction increases, peaks, and then decreases.  The temperature at which the 

peak occurs is not the same for both samples, but the magnitude is in good agreement.  Future 

work entails finding the mechanical origins of the internal friction peak by extending the 

frequency range of the microcantilever substrates. 

4.3 Summary 

The framework for measuring the damping of microcantilever beams, presented in 

Chapter 3, has been extended to measure the damping as a function of temperature.  Specimens 

16 and 17 are used to characterize the temperature dependence of damping for single-crystal 

silicon microcantilever beam resonators.  A literature survey and compilation of the temperature 

dependence of the material properties of silicon have been compiled in order to calibrate the 

damping measurements to the TED limit.  The comparison of the experimentally measured 

damping to the TED shows that the EES system exhibits a slight temperature dependent 

clamping loss.  The residual damping is still O(10
-5

) for temperatures up to 150˚C, which is 

within acceptable bounds.   

The next achievement was to measure the temperature dependence of the internal friction 

of thin films of aluminum. This is accomplished by coating Specimens 16 and 17 with ~48 nm of 

aluminum using e-beam evaporation.  Then the damping of the composite beam is measured 

from room temperature up to 150 ˚C.  A systematic and objective method is introduced to 

remove single data point outliers from the full data sets.  Then, by comparing the damping 

measured for the bare single-crystal silicon microcantilever beam to the composite beam, the 

internal friction of the aluminum film is calculated.  The internal friction of aluminum exhibits a 

temperature dependant peak.  Future work is necessary to understand the mechanisms that cause 

the internal friction peak. 
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CHAPTER 5 

Measuring the damping of microcantilever beams using the 

thermomechanical noise1 

This chapter evaluates the method by which the TMN is measured using a laser Doppler 

vibrometer and the damping is extracted.  First, the theoretical foundations of the TMN are 

presented.  Then the systematic methodology to measure the TMN and extract the damping is 

explained.  The measured damping by this method is compared to the damping measured using 

the free-decay technique.  The comparison allows for an objective critique of the accuracy and 

precision of this damping measurement method. 

5.1 Theoretical foundations of the thermomechanical noise 

The TMN can be understood by considering the process of energy dissipation.  When 

vibration energy is converted into heat due to dissipation, the thermal energy is transferred to the 

microscopic degrees-of-freedom of the thermal reservoir in order to maintain an equilibrium 

temperature.  Then, in the absence of perturbation, the thermal energy is randomly transferred 

into the resonator from the thermal reservoir.  The path of heat transfer is provided by the 

dissipative element of the resonator, which is a central tenant of the Fluctuation-Dissipation 

Theorem [15, 157, 158].  Despite the maintenance of an equilibrium temperature, the thermal 

energy is non-uniformly distributed [213]. The stochastic transfer and distribution of thermal 

energy drives the Brownian motion in the molecules of the resonator, which is felt as a white-

spectrum force by the aggregate.  This thermal noise force is manifest in the random 

displacement of the aggregate structure.  The kinetic energy of the displacement is described by 

the Equipartition Theorem, which states that each energy storage mode has a mean energy equal 

to ½kBTo [15].  The expression of the induced displacement, the thermomechanical noise, is 

stipulated by the form of damping [14].   

                                                 
1
 This chapter is an expanded version of the work published in the following article:  O. Kuter-Arnebeck, A. Labuda, 

S. Joshi, K. Das, and S. Vengallatore, "Estimating damping in microresonators by measuring thermomechanical 

noise using laser Doppler vibrometry," Journal of Micromechanical Systems, vol. 23, pp. 592-599, 2013. 
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There are several equivalent ways to express the displacement of a resonator due to TMN 

[187, 213].  For a derivation from first principles see Joshi [213].  Here, the approach of Saulson 

[14] and Levin [214] is followed.  The resonator is considered to be a cantilever that is well 

approximated as a simple harmonic oscillator with one degree of freedom.  The dynamics are 

described by the equation of motion  

               (5.1) 

where y(t) is the displacement at time t, K is the spring constant, M is the mass, c is the damping 

of the structure or medium, and Fth is the thermal force.  In this case, the damping is independent 

of frequency, a characteristic of viscous damping, so that                 [94].  The 

resonance frequency is related to the stiffness and the mass by                 

Alternatively, the second term can be removed from Equation 5.1 and the damping 

included as a complex spring with stiffness K
*
 = K[1+iφ(f)]. The real and imaginary parts of K* 

represent the elastic and dissipative response, respectively.  Accordingly, two cases are of 

particular interest for MEMS: (1) the Kimball-Lovell solid with φ independent of frequency [94], 

which is a good approximation over many decades of frequency for certain types of attachment 

losses, internal friction due to defect-induced anelasticity [87, 97]; and (2) the Zener solid (also 

called the standard anelastic solid) with a single relaxation peak of the form  [94]

 

 

      
    

         
 

(5.2) 

where Ξ and  are the characteristic relaxation strength and relaxation time, respectively. 

Examples of damping mechanisms that exhibit a relaxation peak include thermoelastic damping 

in monolithic beams [94], Akhiezer damping [84], and Gorsky damping [99]. 

The solution of Equation 5.1 for the displacement is characterized in the frequency 

domain using the power spectrum for mathematical convenience and because the thermal force is 

a stationary stochastic process [148].  Thus, the Fourier transform of y(t) to Y(f) is used to denote 

the one-sided PSD of the displacement as Sy(f) = 2|Y(f)|
2
 in units of m

2
/Hz.  The PSD of the TMN 

is  
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         , (5.3) 

where G(f) is the mechanical admittance and   denotes the real part of a complex function.  The 

admittance is obtained from Equation 5.1 converted to the frequency domain, so that  

         
    

   
  

(5.4) 

For the condition of viscous damping the solution of Equation 5.3 is  

      
    

    

     

         
 
  

  

(5.5) 

And for the complex spring model the solution is 

      
    

    

 
    
  

               
 

(5.6) 

Assuming that the damping is constant over the range where the non-dimensional frequency 

ratio, Ω = (f/fn), is Ω ≈ 1, then both forms of the PSD of the TMN reduce to simple Lorentzian 

functions and are given by 

      
   

  

 
  
   

     
  

 
  

  
   

  
   

  

 
   
  

     
  

 
  

   
  

  

(5.7) 

To illustrate this, consider the effects of damping on TMN for a representative 

microcantilever with a stiffness of 10 N/m and natural frequency of 20 kHz (Figure 5.1). The 

damping was set as Q = φ
-1

 = 3 10
4
 in Equations 5.5 and 5.6 for viscous damping and the 

Kimball-Lovell solid; for the Zener solid, the values of Ξ and  were chosen to obtain φ
-1

 = 3 

10
4
 at 20 kHz. Far from resonance, 1  (pre-resonance) and 1   (post-resonance), and the 

frequency dependence of the various mechanisms is significantly different. In the vicinity of the 
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resonance peak (Ω ≈ 1), however, all three curves reduce to the simple Lorentzian given by 

Equation 5.7   

 

Figure 5.1: Graph of the power spectral density of displacement noise as a function of the 

normalized frequency for a representative structure with stiffness of 10 N/m and natural 

frequency of 20 kHz. The three curves represent viscous damping (black); Kimball-Lovell solid 

(blue); and Zener solid (red). 

If the mechanism of damping is known, the appropriate form of the TMN PSD can be fit to 

the experimentally measured noise to extract the damping.  The reverse is true as well; a broad-band 

observation of the TMN PSD can reveal the form of damping.  In practice though, as will be shown, 

the amplitude of the TMN falls below the measureable threshold away from resonance.  The 

strategies to apply the theoretical descriptions to the measured TMN for a set of single-crystal 

silicon microcantilever specimens are presented in the next sections. 

5.2 Materials and microcantilever beam specimens  

A set of six microcantilever beams were selected for the measurement and analysis of 

TMN.  The specimens were manufactured by Das, who also obtained the raw free-decay data 

using the BES, and were featured in [97, 215].  This set of microcantilever specimens are 

manufactured according to the process described in Section 3.3.2 for the HFB microfabrication 

process. The dimensions, resonance frequency, and damping measured by the logarithmic 
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decrement for each specimen are listed in Table 5-1.  The logarithmic decrement has been re-

calculated using the improved analysis methods detailed in Chapter 3. 

Specimen 1 is a bare silicon microcantilever, and all other devices feature aluminum 

nanowires.  The nanowire array is patterned at the root of the microcantilever with the nanowires 

oriented along the axis of the silicon beam. The length of each nanowire is 20% that of the 

silicon beam. The thickness of the nanowires ranges from 50 to 100 nm, the width from 100 to 

400 nm, and the center-to-center spacing between adjacent nanowires is 1 m. The nanowires 

are constructed by first spray-coating the microcantilever with a 390 nm thick layer of a 

copolymer (MMA-MAA EL11 (Microchem, Inc.) that was diluted with methyl isobutyl ketone, 

and then baked at 150 
o
C for 90 seconds. Subsequently, the structures were spray coated with 

200 nm of electron beam resist (PMMA A2, Microchem, Inc.) and baked at 180 
o
C for 90 

seconds. The bilayer resist coated microcantilevers were patterned using electron beam 

lithography (Hitachi FEGSEM SU-70) operating at 30 kV with beam current of 357 pA and 

electron doses in the range of 6-8 nC/cm. After development, the lift-off process was 

implemented by depositing thin films of aluminum using electron-beam evaporation at a rate of 

0.2 nm/s.  

Table 5-1: Geometry, natural frequency, and damping of the microcantilever devices. Specimen 

1 is a bare silicon microcantilever. Specimens 2 to 4 are composite structures consisting of an 

array of aluminum nanowires patterned at the root of silicon microcantilevers. The dimensions of 

the nanowires are not shown in the table and for more details see [147]. 

 

Dimensions of microcantilevers 

Natural frequency 

Log 

decrement, 

  ( 7% ) 

1Q   

 7%  Length Width Thickness 

Specimen 1 630 m 300 m 8.0m 26,749 Hz 51.63 10  419.3 10  

Specimen 2 750 m 300 m 8.5m 21,046 Hz 55.8 10  45.40 10  

Specimen 3 765 m 300 m 8.0m 19,160 Hz 52.7 10  411.6 10  

Specimen 4 750 m 300 m 7.5 m 17,664 Hz 41.3 10  42.40 10  

5.3 Experimental methodology 

The procedure to measure the damping from the TMN has two parts: (1) the 

measurement and (2) the analysis of the noise.  The protocol is designed to reduce the impact of 
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random noise and remove any element of subjectivity that may be introduced in the analysis.  

Both parts of this process are discussed in turn. 

5.3.1 Measuring the noise 

Essentially, the experimental procedures used to measure the noise follow the established 

protocols used to measure the free-decay.  The clamp that is used to hold the microcantilever 

specimens is the same clamp that is used with the BES but now it is removed from the 

piezoelectric shaker and is placed on a large stainless steel block in the vacuum chamber.  The 

vacuum chamber is bolted to an optical table with pneumatic suspension to isolate the system 

from ground vibrations.  However, the vacuum pumping elements remain on the floor and act as 

a conduit for building vibrations to reach the specimen. To reduce the impact of environmental 

noises, all experiments are conducted during building quiet hours from the late evening to early 

morning hours.   

The noise measurement is made using the OFV-5000 LDV and VD09 velocity decoder 

and a 100 Hz high pass analog filter is applied. The laser spot is aimed onto the approximate end 

of the microcantilever beam and the ambient vibration is recorded at a sampling rate of 100 kHz.  

The sampling rate is chosen so that the Nyquist frequency is sufficiently greater than the first 

mode resonance frequency and the frequency spectrum is de-cluttered of spurious noises. 

The recording time is determined based on the following trade-off. The recording time is 

directly proportional to the frequency resolution of the computed PSD.  Hence, the longer the 

recording time, the larger the number of data points that are available for fitting the resonance 

peak. However, as the recording time increases, the measurement becomes more susceptible to 

sporadic extrinsic noise and temperature fluctuations and the data set becomes computationally 

unwieldy. By conducting several full cycles of measurement and analysis, a recording time of 90 

seconds was determined to be optimal. Five measurements of the noise are performed on each 

specimen. In addition, for one device (Specimen 5), noise was acquired for 100, 110, 120 and 

130 seconds to study the effects of recording time on the estimate of damping. 
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5.3.2 Analysis of the noise spectrum 

The velocity time series data is imported into MATLAB and is conditioned to remove 

any offset and drift and scaled to units of velocity using the decoder sensitivity.  The data is also 

numerically integrated using MATLAB to obtain the displacement time series. The next step is 

to obtain the PSD of the displacement time series.  

Two popular methods for the computation of the PSD are Bartlett’s method [216] and 

Welch’s method [217]. Both methods segment the time series, compute the Fourier transform of 

each segment, and then appropriately reassembling the transforms, but Welch’s method applies a 

windowing function to each segment.  The window function serves to reduce, but not eliminate, 

the time-segment edge discontinuities [148]. These approaches are computationally efficient but 

suffer from spectral leakage due to the segmentation, biasing the estimation of the quality factor 

[218, 219]. The latter effect, in particular, is a major concern because the bias increases as 

damping decreases. Therefore, the PSD is calculated by a direct method (also called the Daniell 

method) that eliminates spectral leakage by avoiding segmenting the time series and re-

assembling in the frequency domain. The underlying statistical concepts and numerical 

implementation of the Daniell method are discussed in detail in [218]. Briefly, a single Fourier 

transform of the entire time series is performed using a Hanning windowing function; then, the 

squared magnitude is computed and, to reduce variance, the PSD is averaged by grouping 

adjacent frequency bins [220].  The number of adjacent frequency bins that are averaged together 

is henceforth referred to as the averaging factor (.     
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Figure 5.2: The PSD of the noise measured at atmospheric pressure is shown for each specimen.  

An offset has been applied to improve the clarity of the information.  The first mode resonance 

frequencies are noted by the arrows for Specimen 1 (black), Specimen 2 (red), Specimens 3 

(blue), Specimen 4 (brown). 

A representative example of the power spectrum of the displacement noise is shown in 

Figure 5.2.  The graph exhibits sharp peaks that are associated with very high Q electrical noises 

and broad peaks associated with a damped mechanical vibration.  Thus, a measurement of the 

noise when the system is at atmospheric pressure is instrumental to differentiate the 

thermomechanical noise from spurious system noises.  However, more than one 

thermomechanical noise peak is identified.  The question, then, is:  which peak is the first mode?  

 The first mode resonance may be found with respect to an estimation using standard 

Euler-Bernoulli beam theory and the measured beam dimensions.  Supposing that the dimensions 

are unknown, the modes may be distinguished by their respective amplitude.  For a simply 

supported beam undergoing flexural vibrations, the damping increases with increasing mode 

number, so it follows, then, that the first mode thermomechanical noise response has the highest 

amplitude.   
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 Another method to distinguish the modes is to use the aliasing effect.  A frequency source 

above the Nyquist frequency is folded over to a lower frequency according to the relation  

  ,salias NffNf    (5.8) 

where fs is the sampling frequency and N is an integer.  Due to the nature of the aliasing effect, 

there are in fact an infinite number of frequencies above the Nyquist frequency that can be folded 

down.  The sampling frequency may be continually reduced until all but one of the observed 

TMN peaks moves.  By comparing the location of the translated peaks, the frequency of origin 

can be backtracked using Equation 5.8 assuming N = 1.  The movement of the second and third 

mode TMN peaks according to the sampling frequency is demonstrated in Figure 5.3. 

 

Figure 5.3: The power spectral density of the thermomechanical noise of Specimen 3 measured 

at two different sampling frequencies that have been plotted with the indicated offset.  The upper 

plot shows the noise measured at a sampling rate of 100 kHz and the lower plot was measured at 

90 kHz.  The location of the second and third mode resonance frequencies are noted with arrows.  

The actual frequencies for the second and third mode occur at 118 kHz and 332 kHz, 

respectively.  Note that some of the very sharp peaks associated with electronic noises have also 

moved due to the aliasing effect. 
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After applying this strategy to all of the microcantilever beam specimens, aliased peaks 

are found at the following frequencies in Figure 5.2: 12.8 kHz and 19.8 kHz for Specimen 1; 3.7 

kHz and 30.9 kHz for Specimen 2; 25.9 kHz and 41.6 kHz for Specimen 3; 9.9 kHz and 11.5 

kHz for Specimen 4.  The instrument noise peaks are also observed to translate, which 

demonstrates that the aliasing effect can be utilized to remove extrinsic noises should they 

interfere with the on-resonance response of the TMN. However, for a low damped resonator 

operating in a vacuum condition, the PSD of the TMN response features a very sharp peak and it 

is unlikely that other noises overlap.  The PSD of the measured noise in vacuum for all the 

specimens is plotted in Figure 5.4. 

 

Figure 5.4: The velocity PSD of the measured noise for each specimen is plotted with an offset 

for clarity.  The first mode resonance frequencies are noted by the arrows for Specimen 1 

(black), Specimen 2 (red), Specimens 3 (blue), Specimen 4 (brown). 

For the low damped resonators, the resonance peaks are narrow (full width at half 

maximum ~ 3 Hz) and separated by more than 750 Hz from any other noise peak.  If the 

dominant mechanism of dissipation is known, then damping can be estimated by fitting the 

appropriate form of Equation 5.5 or 5.6 to the first mode resonance peak.  In most cases, though, 
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damping is a sum of several mechanisms.  Furthermore, other sources of noise may be present in 

the measurement and obscure the features of the TMN away from resonance.  Away from 

resonance, the amplitude of the TMN is lower than the measurement resolution of the LDV.  

Some have proposed that the background noise that is due to the instrumentation can be 

subtracted to reveal the broad spectrum characteristics of the mechanical noise [103].  This 

strategy is not implemented here because it depends on the assumption that the background noise 

is constant, which is not the case due to the unique reflectivity of each specimen.  All of these 

problems are circumvented by only analyzing the TMN response on resonance with a model that 

is not necessarily damping specific.  For the displacement PSD or the velocity PSD of the noise, 

the resonance peak is fit with a Lorentzian curve, respectively, 

           

 
  
  

   
     

 
  

     

   
            

 
  
    

   
     

 
  

     

   
 

(5.9) 

where the parameters capture the white-noise baseline (A1, B1) and peak amplitude (A2, B2).   

At this point, the two key decisions that must be made are the selection and treatment of 

the data.  Choosing the averaging factor that is used to condition the PSD data introduces an 

element of subjectivity that may affect the measurement. The application of an averaging factor 

inherently influences the measured Q and resonance frequency because it alters the amplitude 

and the frequency resolution of the data [218].  Thus, a systematic protocol is introduced to 

reduce the influence of human subjectivity on the analysis.  

Unless there is interfering signals, the noise PSD data that comprises the resonance peak 

is manually selected at the shoulders, where the Lorentzian curve meets the baseline. Then the 

PSD is re-calculated for this selected data using a series of averaging factors ( = 5:31).  

Notably, there is no systematic bias in the estimate of the Q over this range, which is the primary 

motivation for using the Daniell method to estimate the PSD of the noise.  For each , Equation 

5.9 is fit using the Levenberg-Marquardt weighted least-squares method [221].   The fitted curve 

is plotted over the data to visually check that the fit captures the baseline, the peak shape, the 

peak height, and that the residuals are uncorrelated [219, 222, 223].  Figure 5.5 shows the 
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resonance peak and fitted Lorentzian curves for one representative measurement of the noise of 

Specimen 4. 

 

Figure 5.5: The velocity PSD (in units of (μm/s)
2
/Hz) and the displacement PSD (in units of 

nm
2
/Hz) of the resonance peak of Specimen 4 is fit with a Lorentzian function (solid line).   

The fitting results for each  are examined and the extracted properties are binned if the fitting 

conditions are met.  Thus, for a single-shot measurement of the noise, there may be a range of Q 

values extracted.  Ultimately just one of the binned measurements of the Q is selected according 

to an objective metric: the Q that falls within one standard deviation of the mean with the lowest 

 is selected as the final value.  

5.4 Results 

The fitting routine is repeated for five independent measurements of the noise each of 90 

seconds in duration, measured in vacuum for each specimen and the average is taken to be the 

final value of the damping.  The number of measurements of the noise is chosen for consistency 

with respect to the measurement of the logarithmic decrement of decay.  Table 5-2 presents the 

main results of the study. The relative uncertainty of the mean Q is the standard deviation taken 
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as a percentage of the mean.  The relative error of the natural frequency is less than 1 Hz (one 

part in 10
5
).  

Table 5-2: Estimates for natural frequency and quality factor obtained by analyzing the velocity 

PSD,Sv(f), and displacement PSD, Sy(f). 

 
Velocity PSD Displacement PSD 

f1 [Hz] Q f1 [Hz] Q 

Specimen 1 26,743  420.3 10 ( 6%)   26,743  424.5 10 ( 18%)   

Specimen 2 21,045  46.0 10 ( 18%)   21,045  45.8 10 ( 19%)   

Specimen 3 19,150  410.9 10 ( 26%)   19,150  49.5 10 ( 15%)   

Specimen 4 17,660  41.8 10 ( 6%)   17,660  41.8 10 ( 8%)   

 

The values in Table 5-2 can be compared with those from the method of free decay in Table 5-1 

because the same specimens and experimental infrastructure were used for both sets of 

measurements. The noise-based measurements are as accurate, but less precise, than the 

logarithmic decrement of the free decay for these high-Q microcantilever beam resonators.    

5.5 Analysis of limitations 

The precision of the measurements of damping extracted from the TMN is influenced by 

errors inherent in the estimation of the PSD of a finite length time-series measurement of 

stochastic fluctuations and their effects on uncertainties associated with fit parameters obtained 

using a least-squares analysis [148, 219, 221, 224].   Indeed, it has been noted that the goodness-

of-fit of a single measurement may not provide an estimate of the uncertainty of the extracted 

parameters even when the analysis results in an excellent fit, so multiple independent 

measurements are required [219].  Accordingly, the precision of the measurements presented in 

Table 5-2 is defined by the estimate of the relative uncertainty, which ranges from 6% to 26 % 

for five measurements of the TMN.   
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Errors for noise-based estimates of damping arise from five factors of measurement and 

analysis:  

(1) The finite recording time. 

(2) The estimation of the PSD. 

(3) The treatment of the PSD by averaging. 

(4) The sharpness of the resonance peak for high-Q resonators.  

(5) The random noise. 

Each of these factors will be discussed in turn. 

5.5.1 Effects of the recording time 

The first source of error, the finite recording time is unavoidable.  As noted earlier, the 

recording time of 90 seconds is chosen so that a sufficient number (100 to 200) of data points 

could be collected for fitting the resonance peak while avoiding errors due to random excitations 

and thermal drift. To check the effect of the recording time, the noise of Specimen 3 was 

measured at recording times of 90 seconds up to 130 seconds.  Table 5-3 shows the effect of the 

recording time, where each measurement is the average of five noise measurements. Over this 

range of recording times, the mean value of Q varied by about 4% and the measured frequency 

varied by less than one percent.  The standard error of the measured Q does not show any 

dependence on the recording time.   

Table 5-3: The effect of the recording time on the measured resonance frequency and quality 

factor of Specimen 3. Five measurements of the noise are made for each recording length, and 

then the parameters are extracted and averaged. 

Recording 

time 

[s] 

f1 [Hz] 
Quality factor 

Mean Error 

90 19150 10.8 × 104 28 % 

100 19150 10.3 × 104 24 % 

110 19150 11.0 × 104 26 % 

120 19150 10.3 × 104 14 % 

130 19150 11.1 × 104 25 % 
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5.5.2 Effect of the PSD estimation 

The estimation of the PSD inherently affects measurement of the quality factor and the 

Daniell method was chosen to reduce the effects of spectral leakage that may occur for other 

PSD calculations such as Bartlett’s or Welch’s method.  The Daniell method is now evaluated in 

comparison to Welch’s method in Table 5-4.  Welch’s method is calculated using a Hanning 

window and the appropriate segment re-combination to achieve the same averaging and number 

of points in the resonance peak as the PSD calculated using the Daniell method.   

The comparative analysis was performed on five measurements of the noise, using 

Specimens 1 and 4, with the same fitting bounds of the TMN peak.  The measured Q and f1 using 

Welch’s method are given in Table 5-4. The resonance frequency measured from the Welch’s PSD 

agrees with the results in Table 5-2.  The measured Q from Welch’s PSD of the TMN has a precision 

that is comparable to the range of precisions for the damping measured from the PSD estimated using 

Daniell’s method.  This analysis demonstrates that the method of PSD estimation does not affect the 

precision or accuracy, at least for these specimens.     

Table 5-4: Measurements of the frequency and quality factor obtained by analyzing the 

displacement PSD, Sy(f), estimated using Welch’s method. The reported value is the average of 

five measurements of the TMN. 

 Displacement PSD 

f1 [Hz] Q 

Specimen 1 26743 20.3  104 ( 25%) 

Specimen 4 17660 19.4  104 ( 7%) 

 

 Another factor that influences the data is the inherent noise that is introduced by the PSD of a 

finite time series.  The noise has been demonstrated by Sader et. al. to affect the fitting parameters of 

a least-squares analysis [219]. Their analysis of the uncertainty resulted in a close-form expression 

for the standard deviation of the Q,
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and resonance frequency,

 

 

      
  
  

 
   

     
 

(5.11) 

where fT and QT are the “true” values and   is the duration of the measurement of the noise.  To 

use these equations, the true values are taken to be the parameters measured from the logarithmic 

decrement of free decay.  The theoretical standard deviation of the measurements from the TMN 

is listed in Table 5-5, reported as the standard error. 

Table 5-5: The theoretical estimate of the standard error for the resonance frequency and 

damping measured from the TMN. 

 f1 error Q error 

Specimen 1 3  10-5 % 17 % 

Specimen 2 7  10-5 % 10 % 

Specimen 3 5  10-5 % 16 % 

Specimen 4 12  10-5 % 8 % 

 

This analysis demonstrates that the inherent variance of the PSD causes a large error for the 

measured Q for these specimens.  The values listed in Table 5-5 are comparable to the errors reported 

in Table 5-2.  However, in some instances, such as those reported in Table 5-3, the measured Q has a 

greater error.  This indicates that it is not simply the calculation of the PSD that is the cause of the 

poor precision. 

5.5.3 Effects of the PSD averaging 

The third factor that affects the measured resonance frequency and quality factor is the 

averaging factor. While the PSD contains more than 10
6
 data points, between 100 and 300 points 

comprise the resonance peak.  When fitting Equation 5.9, the estimate of Q is most influenced by 

~10 points that lie between the half-power points and the peak.  The treatment of the PSD with 

the averaging factor reduces the number of data points by more than half and also skews the 

amplitude of the peak data points.   
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Table 5-6 shows the effect of  for one measurement performed on Specimen 5. For  < 

9, the peak is not sufficiently smooth to achieve a good fit of Equation 5.9 using the weighted 

least-squares method.  As  increases from 9 to 17, the number of fit points and frequency 

resolution reduce in proportion and the quality factor varies by ~7%.    

Table 5-6: Effects of the averaging factor () on fitting and estimation of the quality factor for 

Specimen 5. 


# of fit 

points 

Frequency 

resolution 
Q 

9 234 0.10 Hz 9.50 × 104 

11 191 0.12 Hz 8.87 × 104 

13 163 0.14 Hz 9.43 × 104 

15 141 0.17 Hz 8.95 × 104 

17 124 0.19 Hz 9.07 × 104 

5.5.4 Effect of the sharpness of the resonance peak 

The third factor that influences the measurements is the sharpness of the TMN resonance 

peak.   For a low-loss device with Q > 10
5
, the sharpness and magnitude of the peak  above the 

noise floor makes the fitting dependent on only a small fraction of the points;  the higher the Q, 

the sharper the resonance peak and the fewer the number of data points that influence the fit 

parameters.  The finite frequency resolution of the PSD also distorts the shape of the resonance 

peak [224]. 

To quantify these effects, then, the results obtained by fitting the displacement PSD and 

the velocity PSD are compared in Table 5-2.  Since the displacement data is derived from the 

velocity data, both time series have the same contribution from extrinsic noise and the overall 

impact of the sharpness of the peak can be judged independently.  For Specimens 2 to 4, the 

estimate of the Q is in good agreement, suggesting that it is sufficient to fit either the velocity 

PSD or the displacement PSD for resonators with Q < 10
5
.  However, for Specimen 1, the fitting 

to the velocity PSD required higher averaging factors than the displacement PSD, resulting in a 

degraded frequency resolution and different fit parameters.   Thus, when reporting a definitive 
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quality factor, the estimate obtained from the velocity PSD and displacement PSD should be 

averaged. 

5.5.5 Effect of random noise on the fitting 

A high Q resonator is sensitive to disturbances in the environment.  Excitation by 

extrinsic noise elevates the magnitude of the resonance peak, an event that, when subtle, is 

difficult to distinguish or separate from the TMN.  The increase in amplitude and sharpness of 

the resonance peak translates to the measurement of higher Q. The tendency to measure quality 

factors that are greater than the “true” value of the damping measured by the logarithmic 

decrement, Qδ, of the free-decay is demonstrated in Figure 5.6.   

 

Figure 5.6: Fifty-two measurements of the Q from independent measurements of the TMN for 

Specimen 1 with an average value of 23.3  10
4
 (24%).  The dashed line is the damping 

measured by the logarithmic decrement of free-decay.   

5.6 Summary 

This chapter qualitatively asses the damping of silicon based microcantilever beam 

resonators measured from the TMN.  This represents one of the first detailed comparisons of 



106 

 

damping in well-characterized resonators using two different measurement techniques.  The 

comparison is possible because the two sets of measurements use the same specimens, 

experimental environment, instrumentation, and the measurement with the same LDV.   

A systematic methodology for measuring and analyzing the TMN has been presented and 

implemented for a set of four single-crystal silicon based microcantilever beam resonators.  The 

specimens have resonance frequencies ranging from 17.6 kHz to 26.7 kHz and quality factors 

ranging from 2 × 10
4
 to 2 × 10

5
.  The accuracy of the values of the quality factor measured from 

the TMN is evaluated relative to the well-established logarithmic decrement of the free-decay.  

The damping extracted from the TMN overestimates the logarithmic decrement by 16% for 

Specimen 1 and 7% for Specimen 2, and underestimates by 18% for Specimens 3 and 25% for 

Specimen 4.  With respect to the logarithmic decrement, the noise-based measurements of the 

damping suffer a greater systematic error and relative error.    

The uncertainties are primarily due to (1) the estimation of the power spectral density of 

the TMN from a finite time series of stochastic fluctuations and (2) the fitting of a resonance 

peak. For Q > 10
5
, the fit is sensitive to the number and distribution of data points in the vicinity 

of the peak, which is defined by the recording time, averaging, and the estimation of the PSD.  

Variations in experimental conditions, such as the clamping and influence of mechanical noise, 

can also account for the discrepancy, but measurements over a larger set of materials, structures, 

frequencies, and quality factors are required to establish whether there are fundamental limits to 

the accuracy of noise-based estimates of the damping.  Regardless, approaches for quantifying 

the absolute accuracy of the damping of high-Q microresonators is not yet available [187]. 

Using the TMN, however, has certain advantages over the measurement of the 

logarithmic decrement.  TMN is ubiquitous in resonators and can be measured with a 

commercially available LDV and analyzed with a computer and does not require the precision 

actuators and controllers for measuring the free-decay or other force-excitation methods.  

Measuring the damping from the TMN is especially ideal for fragile or geometrically intricate 

resonators.   
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CHAPTER 6 

Measuring the damping of a thin film membrane resonator using 

thermomechanical noise 

Thin film membrane resonators are receiving attention due to their commercial 

availability, ease of manufacture, high quality factors, ultra-high frequency range, and interesting 

properties [139, 225].  Such devices have measured damping with quality factors approaching 

10
7
, however, the damping has been demonstrated to be sensitive to boundary conditions, mode 

number, material properties, stress state, and interaction with the environment [226, 227]. 

Consequentially, there is a growing body of literature dedicated to investigating the dependence 

of damping on these variables.  To date, the experimental methods used to study the damping of 

thin film membrane resonators include harmonic forced-excitation [100, 138, 139, 227-234] and 

free-decay techniques [139, 230].  

There are several factors that make the study of damping difficult:  membrane resonators 

typically have resonance frequencies in the hundreds of kHz to MHz range; the vibration modes 

are closely spaced; the frequency is sensitive to the stress state and thermal effects; the damping 

is sensitive to the boundary conditions [139, 225, 235].  Therefore, the experimental methods 

require actuators and detectors that are linear and accurate over MHz bandwidths with fine 

frequency resolution.  Further complicating experiments, the vibration of the membrane can be 

measured in the frame and vice-versa [138, 139, 233]. The use of TMN noise to measure the 

damping has the potential to reduce complications of the mechanical spectroscopy of damping in 

nanomembrane resonators.  Specifically, the ability to measure all of the vibration modes in a 

one shot measurement simplifies the process and initial knowledge of the stress state to estimate 

the resonance frequency is not required.  

Chakram et. al. used the TMN to measure the damping of a membrane resonator and 

reported good agreement with the free-decay approach [227].  However, the details published on 

their methods and results are minimal.  Therefore, the aim of this chapter is to initiate an 

evaluation of the applicability of the TMN for measuring the damping of membrane resonators.  
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This work uses the TMN to measure the damping at room temperature and atmospheric pressure 

of a bi-layer thin film membrane resonator using the UHF-120 LDV.   

6.1 Introduction to membrane resonators 

Thin film membrane resonators are typically commercially sourced and are used as-is or 

modified.  These batch fabricated structures are referred to as TEM “windows” and are 

constructed to form a thin SiN film membrane (50nm < h < 200 nm) on a single-crystal silicon 

substrate.  The membrane is made by depositing a SiN film on one side of a single-crystal silicon 

substrate [236].  Then the other side of the substrate is selectively and anisotropically etched to 

form a depression that reaches the SiN layer on the reverse surface. Thus the SiN film is 

suspended over a hole. For future clarification, the patterned side of the single-crystal silicon 

substrate will be referred to as the B-side.  The A-side is planar and materially homogonous.  In 

Figure 6.1, the membrane can be seen as a dark square in the middle of the frame on the A-side.  

The coloration is an artifact of the SEM imaging; a pure SiN window is semi-transparent to light 

in the visible spectrum [230].  This effect can be used to locate the membrane on the A-side.   

Though when metalized, the surface becomes more uniformly reflective which makes it difficult 

to optically differentiate the membrane from the frame.  

 

Figure 6.1: A scanning electron microscope image of a commercially produced silicon nitride 

nanomembrane on a single-crystal silicon frame [236].   

For a simply supported thin film, the dynamics may be plate-like or membrane-like.  The 

behavior of the former is a function of the stiffness and the latter is a function of the stress [237].  

The threshold for the stress-governed regime is determined when the flexural rigidity satisfies 

the relation [138, 237] 
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(6.1) 

where ν is the Poisson ratio.  Most commercially available thin film membranes have a stress 

that is greater than 250 MPa and dimensions which satisfy the condition for membrane-like 

behavior [236].  The resonance frequency of a stress-governed square membrane may be 

predicted by [227]  

     
 

  
 

 

 
         

(6.2) 

where the mode shape indices, m and n, are positive integers.  The membrane has symmetric (m 

~ n) and asymmetric modes and some mode shapes are demonstrated in Figure 6.2 [138].  

 

Figure 6.2: Predicted mode shapes of a square membrane resonator.  The shading indicates 

positive and negative displacement [138]. 

6.2 Materials and experimental methodology 

The particular membrane resonator used in this study is commercially sourced from 2SPI 

and then modified with an additional aluminum layer deposited on the A-side.  It is a composite 

structure with a 100 nm aluminum layer e-beam evaporation deposited onto a 100 nm thick SiN 

film.  The silicon nitride film was grown by CVD at 700 ˚C resulting in a low-stress (σ ~ 250 

MPa) SiN film [227, 236, 238].  The stress of the Al film is unknown, but is assumed to be low.  

The material properties of the SiN and Al are listed in Table 1. The frame is 200 µm thick and 

2.5 mm square, with a side length, L, of 500 µm.   
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Table 6-1: The material properties of SiN and Al at room temperature [100, 239]. 

Material Properties SiN Al 

Density, ρ 2700 kg/m
3 

3000 kg/m
3 

Poisson ratio, ν 0.25 0.33 

Young’s Modulus, E 126 GPa 75 GPa 

 

According to Equation 6.1, based on the dimensions and material properties, the 

dynamics of the membrane will be governed by the stress.  Interchanging the properties of Al 

and SiN in Equation 6.2 gives a possible first mode frequency range of 408 kHz to 433 kHz.  If 

we consider that a stoichiometric Si3N4 represents the highest stressed commercially available 

membrane (σ ~ 900 MPa), the maximum possible (1, 1) frequency for the membrane is 822.15 

kHz.  This estimation of the resonance frequency provides a range to experimentally study in 

detail. 

The process to find the resonance frequencies and measure the damping in the thin film 

membrane resonator has two parts: first the membrane is located on the A-side surface and then a 

set of locations are interrogated via a series of single point time-series measurements. The 

location of the membrane can be found because the response to actuation is greater in the 

compliant membrane than in the rigid frame [138].  The first step of this process is to mount the 

resonator on a large stainless steel block with double sided tape (3M), as shown in Figure 6.3.  

The block has been precision machined for flatness and the mass of the block (~500g) ensures 

that the membrane does not move when the nano-positioning stage translates.  A piezoelectric 

bending actuator is placed into contact with the block.  It is used to locate the edges of the 

membrane and is removed for subsequent measurements of the noise. 
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Figure 6.3: The TEM window is mounted on a stainless steel block with double sided tape 

adhesive.  The green dot of the LDV beam is barely visible in the center of the frame where the 

membrane is located.  A second, broken resonator is shown as a reference for the approximate 

location of the window in the frame.  The mounting block is significantly massive compared to 

the resonator and ensures that the position does not change when the piezo is actuated or the 

nano-positioning stage is translated.   

The piezoelectric actuator is driven at a constant frequency of 100 kHz and the A-side 

surface is scanned over an area much larger than the membrane dimensions with a scanning grid 

density of 50 µm.  The scanning measurement is made using a 1 MHz bandwidth, with a 6.4 ms 

sampling time, for a frequency resolution of 156 Hz.  The measured amplitudes in the membrane 

relative to the frame reveal the location of the membrane, as shown in Figure 6.4.  This 

procedure is repeated with a smaller but denser (15 µm) grid at the corners of the membrane.   

 

Figure 6.4: The amplitude of the scanned area of the membrane resonator is highlighted relative 

to the camera image of the resonator frame.  The membrane has a higher displacement response 

than the frame at the 100 kHz actuation frequency. 
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Having found the approximate location of the membrane, the UH-120 LDV is used to 

interrogate nine locations on the membrane.  Figure 6.5 shows these locations relative to the 

approximate edges of the membrane.  Two points on the frame, away from the membrane, are 

also interrogated.  Measuring the ambient noise on the frame provides a PSD spectrum to cross 

reference with and find extrinsic and electronic sources of noise in the system. 

 

Figure 6.5: The surface of the membrane resonator is interrogated by laser Doppler vibrometry 

in a number of locations, P1 - P9.  The black line represents the approximate edge of the 

membrane where it meets the frame.  The points F1 and F2 are measurement locations on the 

frame, about 100 µm from the edge of the membrane. 

Each point is measured 91 consecutive times at a sampling rate of 5 MHz and a recording 

time of 6.4 ms.  The PSD of each time series is computed in the Polytec data acquisition software 

and the magnitudes are averaged at each frequency line, in a technique known as ‘magnitude 

averaging,’ to reduce the variance without reducing the frequency resolution [168].  An aliasing 

check is also performed on P1 and P6 by measuring at a 10 MHz sampling rate and a recording 

time of 5 ms.  Finally, the PSD of the noise is computed using the Polytec analysis software.  

The resonances are identified by comparing the noise measured on the membrane surface to 

noise measured on the frame.  Then the resonance peaks are fit with a generic Lorentzian 

function using a weighted least-squares Levenberg-Marquardt algorithm.  
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6.3 Results 

Figure 6.6 shows the PSD of the TMN measured at the two locations on the frame.  

Figure 6.7 and Figure 6.8 are the PSD of the TMN measured at the points P1 and P6 on the 

membrane.  Finally, Figure 6.9 and Figure 6.10 are the aliasing checks for P1 and P6, 

respectively.   

 

Figure 6.6: The PSD of the displacement noise measured in the frame.  The lower and upper 

plots are the measurements at F1 and F2, respectively. 
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Figure 6.7: The PSD of the displacement noise measured at location P1 on the membrane. 

 

Figure 6.8: The PSD of the displacement noise measured at location P6 on the membrane. 
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Figure 6.9: Aliasing check for the noise measured at location P1. 

 

 

Figure 6.10: Aliasing check of the noise measured at location P6.  
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 A comparison of noise measured at location P1 and P6, Figures 6.7 and 6.8 respectively, 

shows that not all of the resonance peaks are observed at each measurement location.  Therefore, 

the first five most prominent TMN peaks are fit to extract the Q and the results are listed in Table 

6-2.  Each measurement in Table 6-2 is the average of the damping values extracted from the 

TMN observed at five different locations on the membrane.  The measured damping and 

resonance frequency are discussed in the next section. 

Table 6-2: The estimate of the resonance frequency and Q obtained from a measurement of the 

TMN of a nanomembrane resonator.  Each measurement is the average of five values where each 

value corresponds to a unique interrogated location, which is noted.  The error is the standard 

deviation as a percentage of the mean. 

Interrogated 

location 
P5-P9 P2-P6, P8 P1,P2,P4,P6,P8 P2-P6 P1-P4, P6 

Frequency 346 kHz 

(0.3%) 

451.3 kHz 

(3%) 

503 kHz 

(0.5%) 

575.5 kHz 

(0.2%) 

688.5 kHz 

(0.2%) 

Q 27 (38%) 38 (15 %) 33 (7%) 45 (9%) 63 (9%) 

6.4 Discussion 

The magnitude of the damping for this specimen is in agreement with damping values 

reported in [138] for a similar thin-film nanomembrane resonator measured in air.  In that 

reference, there is no quote for the precision of the damping measurements.  Therefore, the 

precision is evaluated with respect to the damping extracted from the TMN of a microcantilever 

beam resonator, Specimen 4, measured at atmospheric pressure.  The PSD of the analyzed TMN 

resonance peaks for both resonators have comparable numbers of data points.  However, the 

frequency resolution of the measured noise for the microcantilever beam is significantly greater, 

allowing for more data averaging.   

The damping measured from the TMN of microcantilever Specimen 4 is Q = 327 ( 2%).  

The better precision can be attributed to the reduced variance of the noise due to high averaging 

factors and, also, to the low magnitude of the LDV noise floor with respect to the TMN.  For the 

nanomembrane, the 346 kHz resonance peak occurs where the 1/f noise is still dominant and the 

Lorentzian function does not include a fitting term for the 1/f noise floor.  This noise is still 

present up to ~475 kHz.  The Q measured at the higher frequency peaks, where the 1/f noise is 
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absent, has a better precision.  Still, the noise data that is analyzed for the nanomembrane has a 

greater variance than the noise of the microcantilever beam.  The variance of the noise affects the 

precision of the estimate of the Q.   

An analysis of the measured resonance frequencies suggests that the conditions of the 

membrane are not ideal.  The first mode resonance frequency is assigned to the lowest frequency 

resonance peak, at 213 kHz.  For this resonance frequency, the higher modes are estimated using 

Equation 6.2 and are listed in Table 6-3 up to the (4, 4) mode. 

Table 6-3: The estimated resonance frequencies of the nanomembrane resonator based on 213 

kHz as the (1, 1) mode. 

Resonance 

frequencies 

[kHz] 

m 

1 2 3 4 

n 

1 213 337 476 621 

2 337 426 543 674 

3 476 543 639 753 

4 621 674 753 852 

 The estimated higher mode resonances do not match any of the TMN resonance peaks at 

the interrogated locations. There are also a greater number of expected resonance peaks in the 

measurement bandwidth than what is experimentally measured.  The latter observation may be 

an artifact of the number of interrogated spots.  The laser spot may fall at or near nodes where 

the amplitude of certain vibration modes is below the noise floor.  Additionally, the preferential 

damping of certain modes is caused by the coupling of radiative losses to the frame [44, 139, 

226].   

No comment can be made on the mismatch between the calculated and measured 

resonances because the measured frequencies cannot be associated with a certain mode number.  

This is one of the draw-backs of using the TMN.  The definitive method to identify certain 

modes is typically accomplished by an observation of the mode shape [138, 227, 233].  The 

TMN is a white-noise and contains no phase information, thus the scanning feature of the UHF-
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120 will not reveal a mode shape [168].  That being so, the mismatch between the estimated and 

measured frequencies is consistent with the behavior of nanomembrane resonators reported in 

the literature. 

 Additionally, the coupling of closely spaced modes distorts and shifts the resonance 

peaks [138, 227, 240].  Also, states of anisotropic stress disrupt the normal sequence of 

resonances [241].  This effect has been linked to the absorption of laser light from the LDV and 

local heating that changes the stress state and thus the damping and resonance frequencies [139, 

230].   

6.4 Summary 

The UHF-120 LDV has been used to measure the noise of a composite thin film 

membrane resonator. The magnitude of the damping values, O(10), agrees with reports in the 

literature. However, the variance is as high as 38% and as low as 7%, which is greater than the 

precision of the Q measured for a microcantilever beam at atmospheric pressure. The comparison 

between these two experiments suggests that the variance of the noise PSD and presence of 1/f 

noise cause a greater error for the estimate of damping from the TMN of the nanomembrane 

resonator.  

The analysis of the resonance frequencies suggests that the behaviour of the 

nanomembrane is not ideal. The (1, 1) resonance frequency is assigned to the TMN peak at 213 

kHz and is used to predict the expected higher modes.  However, the estimated higher mode 

resonances do not match the measured TMN noise peaks.  

This mismatch of the theoretical and measured frequencies also highlights the challenges 

of using an LDV to measure the TMN and extract the damping.  The laser spot size of the LDV 

is small with respect to the surface of the resonator and it is possible for measurement locations 

to fall at the nodes for lower mode resonances.  Therefore, many single-point measurements are 

required to generate a complete picture of the TMN spectrum.  A survey of the literature 

suggests that local laser heating also has the potential to bias the measured damping and 

resonance frequencies based on the interrogated location.  Further work is necessary to determine 
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the impact of measurement location on the accuracy and precision of the damping and resonance 

frequencies measured from the TMN of nanomembrane resonators.  
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CHAPTER 7 

Conclusions and future work 

 The thesis started with an introduction to MEMS based sensors and detectors.  It 

demonstrated that damping is important for measurement sensitivity and resolution.  Not only 

does damping contribute directly to the sensitivity, but it contributes to the characteristics of the 

noise floor.  The large number of variables that control damping (frequency, amplitude, mode 

shape, etc) translates into many open areas of research.  These open questions also concern the 

evaluation of the spectroscopic tools and methods.  With respect to the host of previous work, 

this thesis presents an effort to objectively evaluate certain techniques that are used to measure 

the damping and resonance frequency and also contribute to the understanding of certain 

damping mechanisms.   

 The work in this thesis is a continuation of the work of my predecessors, Sosale and Das.  

Some of their materials, structures, methods, tools, and even damping measurement data have 

been re-cycled, improved, and extended.  Based on their findings, new studies and analysis of 

damping mechanisms and measurement techniques are developed and introduced in this thesis.  

Specifically, the temperature dependence of material damping in single-crystal silicon 

microcantilever beams and thin aluminum films was studied and a method whereby the damping 

is measured from a measurement of the intrinsic thermomechanical noise was characterized.  

Naturally, the scope of the thesis is limited by time and resources.  The accomplishments and 

conclusions that merit future study are detailed in the next sections 

7.1 Original contributions 

 The thesis describes new and refined experimental methods for the measurement of 

damping of microresonator devices. The details are useful for precision damping measurement.  

The more important findings are now listed: 
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7.1.1 Measurement of the temperature dependence of the material damping of single-

crystal silicon 

 A clamp and actuator that are capable of heating microcantilever beam resonators have 

been used to measure the temperature dependence of the damping in a set of two well 

characterized single-crystal silicon microcantilever beam resonators.  The damping was 

measured at 5 ˚C increments from 20 ˚C up to 150 ˚C and calibrated with respect to the TED 

limit.  This measured damping increased proportionally to the TED with a consistent O(10
5
) 

level of residual damping.  The magnitude of the residual damping is consistent with the 

established clamping loss for this system.  Therefore, the experiment indicates that material 

damping of single-crystal silicon is dominated by TED over the measured temperature range. 

7.1.2 Measurement of the temperature dependence of the material damping of thin 

aluminum films 

 The two microcantilever beam specimens used to measure the temperature dependence of 

the material damping of single-crystal silicon were coated in ~48 nm of aluminum by e-beam 

evaporation.  The damping of the bi-layer specimens measured at 5 ˚C increments from 20 ˚C up 

to 150 ˚C increased non-linearly as a function of temperature.  The damping of the single-crystal 

silicon substrate that was previously calibrated to the TED limit was then used to calculate the 

internal friction of the aluminum film from the damping of the bi-layer beam.  The temperature 

dependence of the internal friction is non-monotonic with a temperature dependent peak 

damping.  The respective aluminum internal friction peaks are measured at 80 ˚C and 100 ˚C and 

the magnitude is δIF = 0.027 for each specimen. 

7.1.3 Characterization of the method by which damping is measured from the 

thermomechanical noise 

 A systematic routine to measure and analyze the noise of silicon based microcantilever 

beam resonators and to extract the damping from the TMN resonance peak has been developed.  

The accuracy and precision of this damping measurement technique are evaluated by comparison 

to the well-established logarithmic decrement of free-decay. This analysis is the first comparison 

of the damping of a set of well-characterized microresonators measured using two different 
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methods.  Comparatively, measurements of damping from the TMN are as accurate but the 

precision is as much as 25% error.  An analysis of the measurement protocols on the sources of 

error indicates that the estimate of the Q is sensitive to the number of data points in the resonance 

peak.  Therefore, precision is lost for measurements of very low damped resonators (Q > 10
5
) 

that have sharp TMN resonance peaks.   

7.1.4 The measurement of the damping of a nanomembrane resonator using 

thermomechanical noise 

 The noise of a bi-layer, SiN and Al, thin-film membrane resonator has been measured 

using a scanning LDV.  The most prominent TMN noise peaks measured at nine locations on the 

surface are selected and fit with a Lorentzian function to extract the damping and resonance 

frequency.  The magnitude of the measured damping, O(10), agrees with damping values at 

atmospheric pressure in the literature.  However, the standard error for the TMN based 

measurement is as low as 7% and as high 38% for five measurements at unique locations on the 

surface of the membrane.  

7.2 Future work 

 Based on the work presented in this thesis, many opportunities to extend and strengthen 

the key findings are within reach.  Accordingly, the most interesting work is described in the 

following sub-sections. 

7.2.1 Extending the mechanical spectroscopy of the material damping of aluminum films 

 The temperature dependence of the material damping of ~48 nm thick nanocrystalline 

aluminum films was measured using two different microcantilever beam substrates.  The 

operating frequencies of the microcantilever substrates are ~200 Hz different.  Even so, the 

internal friction of the aluminum film coated on each beam peaked at slightly different 

frequencies, suggesting a temperature and frequency dependence.  Extending the measurements 

over a greater range of substrate frequencies, metal film grain sizes, and film thicknesses can 

help reveal the nature of the mechanisms that are responsible for the internal friction. 
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7.2.2 Improving the measurement of damping from the thermomechanical noise 

 The factors that influence the precision of the damping measured from the TMN needs to 

be better understood.  The systematic effects on the estimate of the Q due to the measurement 

protocols and analysis of the TMN were investigated, but did not show a particular bias for any 

specific resonator.  The one major factor left unstudied is the interaction of the specimens with 

the environment. The specimens that are used in this study operate in a frequency range that is 

acoustically cluttered.  During experiments, it was noted that high-Q resonators can be excited by 

the noise of a conversation across the room.  However, the transmission of noise through solids 

decreases with increasing frequency [242]. A larger set of resonators spanning a greater 

frequency range can be used to reveal a frequency bias for the estimate of the Q from the TMN.   

Additionally, the influence that the interrogated location on the microcantilever has on 

the measurement of the Q from the TMN is unknown.  Measurements of the stiffness from the 

TMN for AFM cantilevers have demonstrated a strong dependence on the location of the 

measurement [155].  As the measurement location moves further from the end of the cantilever, 

the amplitude decreases and more of the noise floor will be included in the resonance peak and 

the impact that this has on the estimate of the Q is yet to be systematically studied. 

7.2.3 Systematic study of the limitations of using thermomechanical noise to measure the 

damping in nanomembrane resonators 

 The measurement of the damping of a nanomembrane at atmospheric pressure from the 

TMN has a poor precision compared to a microcantilever beam.  It is suggested that 1/f noise and 

the greater variance of the data contribute to the error.  Repeating this experiment for a higher 

frequency membrane where the first mode resonance is away from the 1/f noise can provide 

further insights.  

Additionally, the measured resonance frequencies do not match the expected frequencies.  

A review of the literature finds reports that the absorption of laser light causes local states of 

anisotropic stress that skew the sequence of resonance frequencies and changes the damping.  

This effect could be studied by systematically applying a spectrum of laser powers.  Observing a 



124 

 

shift in the measured resonance frequencies would confirm some departure of an ideal stress 

state due to the absorption of the laser light. 

7.3 Conclusion 

 This thesis continues a long history of the study of damping in micromachined structures 

and materials.  It contributes a data set showing the temperature dependence of damping in 

aluminum and single-crystal silicon.  The data is noteworthy because it was obtained using well-

characterized instrumentation, measurement methods, and crucially, silicon microcantilever 

beam substrates that are calibrated to the TED limit.  Thus, the magnitude of the damping values 

can be directly compared to other experimental data that is also calibrated to TED.  The data has 

practical value to help engineer resonant MEMS devices away from the material damping peak.   

 The other objective of the thesis, to characterize the accuracy and precision of the 

damping measured from the TMN, is valuable for the experimentalist.  This method of damping 

measurement is attractive because the analysis routine is simple, there is no actuator, and the 

measurement is non-contact. The evaluation of this method suggests that its use comes with 

certain trade-offs. The precision is sensitive to the sharpness of the TMN resonance peak and the 

number of data points available for fitting the Lorentzian function, which is problematic for 

high-Q resonators.  Data can be “added” by increasing the recording time, but this increases the 

likelihood of perturbation from mechanical noises in the environment for sensitive, low damped 

resonators. 

 The results obtained for these two areas of focus provide simple guidelines for the 

experimental and industrial applications of resonant MEMS devices.  Despite its limited focus, 

the thesis contains practical methods to further amend or investigate the measures and 

measurements of damping.  The description of the experimental methods and analysis 

procedures were written with the researcher in mind.  For instance, the impact of the 

measurement and analysis protocols was systematically determined for the damping measured by 

the logarithmic of free-decay and from the TMN.  Often, the nuanced but significant details of 

experimental practice and analysis are left out of published works.   
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At its most conceptual, the thesis presents the methods that are used to obtain 

measurements of damping. At its most tangible, the thesis presents calibrated measurements of 

the temperature dependence of the material damping of single-crystal silicon and thin films of 

nanocrystalline aluminum.  Both of these aspects of the thesis can be applied by the engineer to 

advance the applications and performance of resonant MEMS devices. 
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