I * National Library
of Canada

BibEsihéque nationale
du Canada

Direction des acquisitions et

Yous bie Voire réldeence

Our My Noire 1élérence

Acquisitions and
Bibliographic Services Branch des services bibliographiques
295 Wellington Street 395, rue Wellngton
Ottawa, Ontano Ottawa (Ontano)
K1A ONg K1A ONd
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c¢. C-30, and
subsequent amendments.

Lol

- ada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A Database for an Intensive Care Unit

Emile Saab

Department of Electrical Engineering
McGill University
Montréal
October, 1995

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Engineering

© Emile Saab, 1995

l* l National Library Bibiiot
ot Canada C

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Qttawa, Ontaric
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welington
Ottawa (Ontano)

Your fin Voire réfdrence

Owr e Noire nttdrence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui proteége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12136-4

Canada

Abstract

The rapid growth of medical sciences and technologies created the need to manage data
generated by sophisticated medical equipment (e.g. lab results, vital signs, etc.). This class
of equipment, especially in the modern Intensive Care Unit (ICU), emits large quantities of

paticnt data which medical staff usually records on log sheets.

This thesis presents a database design that allows abstract definition of data types, and
offers a unified view of data during the development phase, distinct levels of data
management and a higher degree of system flexibility. This database model is an
implementation of a database for a Patient Data Management System (PDMS) developed
for usc in the ICU of the Montreal Children's Hospital. The PDMS has a variety of
application modules that handle and process various types of data according to

functionality requirements.

Sommaire

Le développement de la technologic appliquée dans les unités de soins intensifs a permit
une surveillance médicale constante ct l'affichage graphique des données physiologiques
des patients, Par contre, I'équipement utilisé dans cette surveillance génére une grande et

vaste quantité d'information qui est typiquement enregistrée manucllement sur papier,

Cette dissertation présente un modeéle de basc de données qui permet l'abstraction des
données et qui en l'appliquant offre une vue uniforme des données durant la phase de
conception du systéme, de différents niveaux de gérance d'information et un plus grand

degré de flexibilité du systéme.

Cette base de données est appliquée dans la réalisation d'un Systéme de Gestion de
Données Médicales (SGDM) pour les unités de soins intensifs de 'Hopital pour Entants de
Montréal. L'intégration des données des différents modules du SGDM permettra de gerer
les données médicales telles que les paramétres physiologiques, les équilibres liquidiens et

les données administratives des patients.

Acknowledgments

I thank my thesis supervisor Dr. Alfred Malowany for his encouragement, guidance during
my rescarch and for the confidence he had in me in carrying out my research. I also wish

to thank him for the oppertunity he provided me to discover and develop many interests.

Thanks also go to my PDMS colleagues who started this interesting and rewarding

project and for all the advice and help they provided me.

I wish to thank Gilles for encouraging me throughout the pursuit of my Master's degree

and Wassim for convincing me to pursue a Master's degree in the first place.

My deepest thanks to Elaine for her support, encouragement, help and patience, and to

her family for their gratefully appreciated support.

Finally, my thoughts go out to my parents, for their confidence in me, sacrifices,

patience, and “long distance” encouragement,

. Table of Contents

CHAPTER 1 INTRODUCTION

1.1 HISTORICAL ASPECTS OF ICUS ...t 3
L2 INFORMATION INICUS. ...ttt ettt 4
1.2.1 Physiological MONItOFING SYSICNISc.covurveeeiorresinieireereseseessessesesssseseseessesns 7
1.2.2 Drugs, 1V, Blood Gas, and QbServations.............ucivvcveevceeiiiieeseereesisnisnesininnns 8
1.3 MEDICAL INFORMATICSooiiieiiierieniseer s ettt e es it et ettt eese s et eeae e e e asenn s eeeaaneen 9
1.3.1 Medical Information SYStems.............ecvnniinvninisnne i, 10
1.4 DATA MANAGEMENT SYSTEMS INICUS ..o it
LA d SIMUIGE WWOTK «..cevirereveres crererersseecsentesissts st st et s s rrest s s ssnerasasbessans 12
1.4.2 The PDMS Qpproach.........eeccevvveereinnnssinscnicsississcienssssescssesessesnerossesessssans 13
CHAPTER 2 THE PDMS 16
2.1 PDMS HARDWARE AND SOFTWARE PLATFORMSco..oooiiiiiiiiiiireiiiieeiinreeiieiiaes e 16
2.2 THE PDMS FUNCTIONS AND MODULESccoevvimveciemeiiien et seecs e ceneie e 17
o 2.2.1 Patient AGQMISSION........vcoueeueeirsrsarssssrevssssinsessisssniesissssssasestsssessessassessessssssssassons 18
2.2.2 Cardiovascular MORMHOTINGiimssiisssnississss i 19
2.2.3 Fluid Balance MONILOrINGcoersnsinviinreresinrisrsnssisiissssisionssnsssssons 20
2.2.4 Measurements of mursing Workloadovvveeeriivsiriinseininsniiisrenonn 21
CHAPTER 3 DESIGN APPROACH 22
3.1 DATA MODELLING APPROACHESc.ceueereecrmeneremmsittaesnss s sises e iessss s esens e 23
3.1, 1 Rule-Based SCROOL..............cueeurcreiirenssirisesseneanesiisissessssisssessssssssssssssssssnsssesnes 23
3.1.2 Fact-Based SCROOL..............oceresvsssisisssssnirisssissinssissssnsssessssessssessessnersesens 24
3.1.3 Rule-Based vs. Fact-Based Approaches..........ureeeveeecsenerescneeesnessnensseensnans 26
3.1.4 Fact-Based Database Models..........oveevvnssreccsisnsnsnsescisiscsscnissecsissesennens 27
3.2 HISTORICAL ASPECT OF DATABASE TECHNOLOGYcocovvvieenmeesemverneecreinneecesies e 28
3.3 THE RELATIONAL DATA MODEL.....cooreoeiiiiicitiinmnicis e e es e s 29
3.3.1 INtrinsic StrUCHUPAL PATL..........cveerrircersinsenssressnssisssssssssssrssssssrsessssssossonsnsonnisns 30
. 3.3.2 Intrinsic ManipulQtive Part.............eeveeesesssssensnessessssssssssssessessssssssssesassses 31

3.3.3 Integrity & Normal FOormsooivvvevomnicniiniininienisnsnssesionnnne 32

3.4 SEMANTIC DATAMODELS ... e 34
348 THE FER MOononnoaeeriieecrrrsrere ettt e st st sa e 35
3.4.2 Ixtended ERMOURIS ..ottt is st 38

3.5 OBJECT ORIENTED METHODSooiiiiiiiiiiiresccescne s st vesrs s e bsas s nenens s 40
3.5.1 Object-Oriented Modelling.............oeocevcivcriniisiiniii s 41
3.5.2 The OMG Abstract Object Modeloecevveiniinercicsssrcnnne, 42

3.6 OBIECT MODELLING VS. ER MODELLINGoooiiiiiiiiiiiice e eer e e e s setre e 44
3.6.1 Current EIER Gnd OR.......covvevieeieieceeeiirseceisiststtim s e s ssssassssssnssssbsssns 44
3.6.2 The PDMS Database Modelling Approachcvccnvvienseeniinisssanessesseciinnes 46

3.7 OBJECT-ORIENTED ANALYSIS METHODSccoiiiiriiiiiiie i siiinnnes s 47
3.7.1 Shiacr/Mellor QOSAvenirriisnirinisissniecsensisssssssinisssssisssssssssssassseses 47
3.7.2 COOAYOUPONcnneoaeervecrerearerranasansasenassasssssssessssnasssnsssranssssssstensosirentass 49
BT B3 OMT i st ssse st st st s e s e st ba bt 50
3.7.4 OMT in the PDMS Database DeSigrn........vevieeerernienereiecsniissssneseseressnanns 53

CHAPTER 4 DESIGN 54

4.1 THE PDMS DATABASE OBJECT MODEL........covvcimrerrciiesininecrennee et ncsseses s 55

4.2 THE PDMS DATABASE TABLE MODELc.corviririerinsisinereesrene e e sessss e sissnens 58
4.2.1 Mapping Object Classes 10 TABIES.......ueecrecerererecoriseciresssessniessresscereassesssens 59
4.2.2 Mapping Binary Associations 10 TQBIEs............eeeiieeecinersrsssirsssressirenssiseans 61

4.3 TESTING FOR3INF ANDBCNFccociiiiiiirrrnciicnit e seeseesasssnsssnesons 63
4.3.1 Referential Integrity CONSIPQINTocveceeeeereeresieistioisnisneanienecsssssssssssssessssssanes 64
4.3.2 FUNCLiONA] DEPENACNCIES........eeeeeevererrrereersssessnssesnecaesacssssssssssssssssssasssasmssssnres 64
4.3.3 Normal Forms Based on Primary Keys.........ueeierecaniesssiecrsieccneseesncrassass 65
4.3.4 Normal Form Testing AlGOPitAM..............ceiecviriiniinniieeeecsiseasesesressessssens 66

4.4 REGISTRATION TABLEScoiiiiieeieeeeeeceeesieseerseeseerasesesennsassssnsnsssesssessnssnsrnsenass 6%
4.4.1 Registration Tables NIF TESUNE ...cvvevierecssssersssssssssisisiscssissssnsssssssssssisssssasasans 71

4.5 FLUID BALANCE TABLESoiieiceeirircce et sennrnesssressesseeasetasstrt e sessssnansesemeserenses 73
4.5.1 Fluid Balance Tables NF [ESHRG.....ov.coouuuerieserssmserincssnesesisscsssssssssssrsssmssenssanss 79

it

4.6 NURSING CARE PLAN

.. 84
4.6.1 Nursing Care Plan Table NI TCSUNE ..o srssnessinns A
4.7 DATALINK CONTROLLER0oveviitieeies e iiriie ittt ee et ettt st eeee e e e ereeee e tr v 89
4.7.1 Data Link Controller Table NF TESHNEvovecovoeeiiireeiieceenivinssieeearesannenns 9t
4.7.2 Levels of Parameter Data Management...............ooeveeecvineninncisisnacesrnesiannns 9!

CHAPTER S IMPLEMENTATION, RESULTS AND FUTURE EXTENSIONS. 95

5.1 IMPLEMENTATION PLATFORM.......otiiiiiiiitirininnetis i ree e 95
5.2 NETWORK DATABASE ARCHITECTUREooiiiiiiieiier et 96
S RESULTS .ttt ettt et 97
S.30 0 DLC caurreeniesiesessneincsnesssesisssereseressstossssensessesesnsstenessesssussnsatasseseesennssassnssssones 08
5.3.2 REGISIPQUOMN.c..cccviitvirierivircnnrrsncnrsenn st sssssesassesossssassssesnsessteress A
5.3.3 Fluid Balance - INGeSIQ ...u.vvvevcnniererivvirsisrrnscinensrssonicsesssiostessssiosissssissnesssesees 99
5.3.4 Fluid Balance « EXCretQu......ouecoriniriisvinnneeiivorsnsssssssesssiossssnssnssssssssssanens 100
5.3.5 NUPSING CaP@ PlaN..........uonoenirirereiiciniinieeeneresisssssssissssisssssissbsen e csssonssansaen 101
5.3.6 The Application Level...........oiiiniciitnnisissssrissssiiissse s ssesnesssnnes 103
5.4 DATAINTEGRITY ..eeoeeiiieiiciets e iieaeteesiie vaiiaraceeeeastntessessnaneesasnsesae erataaseasenereessnaas 105
S5 d DALA TYPES .nnonerieietiriinsinrirniiccrcssssicrissssisstsnsssssssnsse st s e ssnsessnsrsenseness 105
5.4.2 Datad CONSITAINLS c..uneremneeviriarmnrrireseisississsencameemesssssssissssssossssssssesssasonsossosssnses 105
5.4.3 Other Data INEGTIY ISSUCS..covveuivsiraeereraeereeeiesessoenanestrstsenssssnesmesmsseseanessasns 106
5.5 DATA RECOVERYcovtiimriinctiirvesisserreriasinesaesnasstassassessraninsesseanesaesssaassansssomesesssens 107
5.6 PERFORMANCE AND SAMPLE RESULTSc.cooiiiiiiimiinrccn e 108
5.7 FUTURE EXTENSIONScoouvviiiieeernrenneteeeerereiarteteaiaesasssrssnsseassaesassseeaassaesenerseenaeinee 113
CHAPTER 6 CONCLUSION 115
REFERENCES 116
APPENDIX A OMG TERMINOLOGY 127

il

Table of Figures

FIGURE 1.1; TCU CHART COMPLEXITY. ..ottt -
FIGURE 1.2 ICU CHART USE. Lo SEUUPTRURI 6
FIGURE 2.1 PDMS NETWORK CONFIGURATICN (.ot cie s e 17
FIGURIE 3.1 RELATIONAL MODEL.......oooiiii et e .31
FIGURIE 3.2: THE HIERARCHY OF NORMAL FORMS. ... 33
FIGURE 3.4; AN EER DATA MODEL SHOWING BINARY, TERNARY RELATIONSIIPS AND

INHERITANCE (THE THICK ARROWS). ... eoitiiiiiiiiiies i ibeeee e acaeesis s bbaess e raesiens 39
FIGURE 3.5: THE OMG REFERENCE MODEL. ...ovovviiieriii e e assesiessae e e s 43
FIGURE 3.6: SHI.AER/MELLOR NOTATION - TERNARY CONDITIONAL RELATIONSHIP. 48
FIGURE 3.7 INHERITANCE AND COMPOSITION HIERARCHY IN COAD/Y OURDON

NOTATION. AKO= A KIND OF, APO = A PART OF . ..cccoeivie e 49
FIGURE 3.8: CLASSES AND INSTANCES INOMT ... 50
FIGURE 3.9; ASSOCIATIONS INOMTcooiii ettt enas 51
FIGURE 3.10: TERNARY ASSOCIATIONS AND ASSOCIATIONS WITH ATTRIBUTES IN OMT. .. 51
FIGURE3.11: CLASSIFICATION INOMTt re s e 52
FIGURE 3.12: AGGREGATION (COMPOSITION) INOMT . ..o 52
FIGURE 4.1; ANSI/SPARC THREE SCHEMA ARCHITECTURE.coveettrrernerireenrrnnrernreesesrees 54
FIGURE 4.2: DESIGN LEVELS. ..ottt et er st a e ebeasseeesbesbespaneas 55
FIGURE 4.3: THE PDMS OBJECTMODEL.coviieveiieieeenice et resneseseseanae s sae e aaeees 56
FIGURE 4.6; BLOOD & URINE CLASSES........ccovoieireirrereciesectinnenesneesrnareeseesessaesseseeassnenes 76
FIGURE 4.7: STOOL & EXGASTRIC CLASSES.oooutiiiitiiriiececrieecsne s e sieess et sneassranasas 78
FIGURE4.8; NCP & TASK CLASSES.cuiieieictrrteeereneccieseeseeteseanasesresssnsassessensansasens 84
FIGURE 4.9: MEDICATION CLASS.......coemiuieriteeieeiitsaceesesesrassssnasssesasssassssesssssssesasesssas 87
FIGURE 4.10; SOLUTIONS CLASS.ooiiiiiciieiiieesireentceteae e eae e eserarsneressessnssessssassasssns 88
FIGURE 4.11: PARAMETERS CLASS.oviiiieiieiiieeeeie s trs e ser e sesecsesassesesasasesesasaesassanes 90
FIGURE 5.1: PDMS NETWORK.cootriereteeecereerernensassssestonsressessasassesmsrasssessersnsssrsenns 96
FIGURE 5.2: PARAMETERS CLASS - PHYSICAL CREATION STATEMENT.corerrveieererrurienns o8
FIGURE 5.3; PATIENT CLASS - PHYSICAL CREATION STATEMENT. rerrenearrans 99
FIGURE 5.4: ADMITTANCE CLASS - PHYSICAL CREATION STATEMENT........cccoeieneenrnnonne 99

v

FIGURE 5.5: TV CLASS - PHYSICAL CREATION STATEMENT. oo 100

FIGURE 5.6: INGASTRIC CLASS - PHYSICAL CREATION STATEMENT. ... 100
FIGURE 5.7: BLOOD CLASS - PHYSICAL CREATION STATEMENT. ., 100
FIGURE 5.8: URINE CLASS - PHYSICAL CREATION STATEMENT ..., Ha
FIGURE 5.9: STOOL CLASS - PHYSICAL CREATION STATEMENT. ... 101
FIGURE 5.10: EXGASTRIC CLASS - PHYSICAL CREATION STATEMENT. ... o
FIGURE 5.11: NCP CLASS - PHYSICAL CREATION STATEMENT. ... 102
FIGURE 5.12: TASK CLASS - PEYSICAL CREATION STATEMENT., UURTOTR 102
FIGURE 5.13: MEDICATION CLASS - PIYSICAL CREATION STATEMENT ... 102
FIGURE 5.14:; SOLUTIONS CLASS - PHYSICAL CREATION STATEMENT. ... 103

FIGURE 5.16; SAMPLE ADMITTANCE DATA RETRIEVAL

Table of Tables

TABLE S, 17 RESPONSE TIMES ..ottt s ey ine s 109

Chapter 1 Introduction

In the past two decades computer technology has impacted the practice of medicine in
dramatic ways. The application of this technology may range from the molecular level to
the individual patient or clinical level and ultimately to a complete health care delivery
system. It is now being recognised that computer systems constitute a powerful tool for

the management of the patient record and the surveillance of paticent data.

The advance in technology allowed the introduction of sophisticated monitoring
equipment in the ICU, which led to more detailed and larger amounts of paticnt data. The
equipment encountered in a typical ICU is capable of monitoring the vital signs of all the
patients in the ward around the clock. The bedside monitoring equipment usually displays
the data on small screens and does not provide a history of the paticnt's status. Thus, it
lacks data management capabilities. In a typical non-computerised ICU the medical stafl’
samples the data from the bedside monitors every half hour and records it manually on log
sheets. Later, the log sheets are used to manually chart or plot the data into graphs. The

log sheets and the charts are used as analysis tools for the paticnt's status and arc

eventually archived in file cabinets.

Managing such large amounts of data manually can pose a heavy burden on the health
care staff, and requires long work hours. This system can become inadequate when urgent

and precise action is required, Furthermore, the manual system s prone to human error

and data omission.

A computerised, automated data management system can employ all the benefits of the
sophisticated medical equipment. What is needed is an integral data management system
that is capable of processing data and information flow in ICUs such as data acquisition,
data storage and archiving, data analysis and monitoring, and communication of critical
data. Moreover, such a system should assist the medical staff in the administrative and
scheduling tasks, for example patient registration, patient medication timetable and
dosage, nursing task planning, scheduling and the like.

1. Introduction

There are many factors that contribute to the development of a successful patient data
management system, The system must satisfy the functional requirements identified at its
inception, and be developed according to some formal system specifications. Any
application system should have a set of application programs that interact with a database,
in order to be defined as complete [Brown, 1991]. Moreover, the success of database
implementations relies on a formal definition of the precise semantics of the database
commands, the design methodology, and the data model [Lynngbaek and Kent, 1991]
{Korth and Silberschatz, 1991].

Intensive care unit management is dependent on the hospital and the “culture” of its
administrators. Every hospital operates its intensive care ward in a specific, if not unique,
manner. Hence, the context and the data representation in a patient data management
system vary from one ward to another. It sometimes varies within the same ward, for
instance a physician could ask for the vital signs data of a patient to be plotted (in a certain
colour) over a period of time, while another medical staff reviewing the patient’s history

could ask for a listing of such information.

Thus, the design and development of a database for an intensive care unit data
management system will be confronted with the following issues: Which database design
method and database model should be employed in the design of the system in order to
accommodate the diverse and complex data types, satisfy the functional requirements,
reduce the cost of the database maintainability and promote the system’s flexibility, all

while producing a portable and reusable database design?

The following sections will present a historical overview of ICUs and will delineate the
various types of data that constitute the information administered in an ICU. Finally, the
last section of this chapter will give an overview of this thesis, which presents the design

and implementation of a database for an ICU patient data management system.

o

1. Introduction

1.1 Histarical aspects of ICUs

Intensive care units which provide a higher degrec of patient care than the rest of the
departments in a regular hospital have witnessed evolutionary changes associated with the
medical and technological progress. The intensive carc unit represents a development of
the concept of progressive care where the facilitics, equipment, and stafl’ are grouped
according to the intensity and naturc of care that should be provided to a patient, rather

than according to any other classification, such as onc that relates to a discasc entity.

As early precursors of the intensive care unit, some would credit Florence Nightingale
for the recovery areas (“recesses™) in an carlier military conflict more than 100 years ago
[Nightingale, 1963]. Although the origin of intensive care units is somehow indistinct, it is
clear that they have been conceived as an extension of existing post-anaesthesia recovery

rooms in order to provide an adequate 24 hour surveillance [Hilberman, 1975].

In 1923 the earliest post-operational neurosurgical recovery unit was developed at the
John Hopkins Hospital, soon afterwards in the late 1920s Kirschner designed a post-
operational area for recovery and care of surgical patients [Kirschner, 1930]. During
World War II the battle field hospitals of the U. S. Armed Forces introduced pre-
operation and post-operation units, as well as post anaesthesia recovery arcas. After
World War II community hospitals were left with an inadequate supply of expert nurses to
keep up with the demands of the individual care of critically ill patients, To alleviate this
problem and to deploy resources efficiently, seriously ill patients were grouped together in
rooms specially organised for the purpose. The advantages observed were rapidly

emulated in larger institutions [Hilberman, 1975].

It was not until the early 1950s that respiratory care units became prominent. They
emerged as a result of spontaneous efforts, some to cope with problems of tetanus and
others to manage the large number of polio patients. At that time respiratory units began
to emerge in different parts of the world, one by Reuben Cherniak in Winnipeg, onc in
Oxford at the Churchill Hospital by Campton-Smith and Spandeling, another in
Minneapolis by Frederick Van Bergen. Due to their efforts and those of many others, like

1. Introduction

Eric Nilsson, the older Drinker-type tank respirators were replaced by positive pressure

mechanical ventilating devices [Morris, 1977).

A considerable contribution to the evolution of intensive care areas came as the result
of the special needs of post-operative cardiac surgery. The growth of coronary care units
is also believed to be a result of experiences gained in post-operative cardiac surgery care.
Onec of the first coronary care units in a teaching centre was at the University of Toronto.
Toronto also received international acclaim for its acute respiratory care unit developed in
1958 as a group cffort between anaesthesia, medicine, and otolaryngology, which is still

an important asset at the Toronto General Hospital [Fairley, 1961].

Indeed, the need for efficiency has always been the motivation for the concentration of
patients and equipment in one area. These areas are conceived in accordance with the
need to centralise equipment, services, talented people, and to conserve the energies of a
limited number of personnel dedicated to a particular type of care. Consequently, we now
have units oriented towards explicit fields of care such as paediatric, neonatal, surgical,

trauma or shock, etc. [Morris, 1977].

1.2 Information in ICUs
Blum [Blum, 1984] identifies three processing elements in medical computing;

1. Data. These are individual elements that can be quantified.

(S

Information. This consists of elements derived from data through analysis.
3. Knowledge. This is the set of rules which defines the relationships among information

(and, by extension, data).

In the ICU, medical personnel collect a large amount of data through continuous
monitoring, data sampling, testing, observing and recording the information. In addition,
high demands are placed on the medical staff in the intensive care environment. Unique
skills are required, along with accurate and prompt treatment decisions. In his Textbook
of Critical Care, Weil [Weil ef al., 1989] defines critically-ill patients as patients who

require complex and time-critical therapies.

I. Introduction

Thus, in order to present all the important facts about a patient's condition and to
facilitate the decision making of the physician, this data should be conveyed in a compact,
organised form, where important events or trends could not be missed. Paticnts requiring
treatment decisions to be made within minutes are the norm rather than the exception.
Under such conditions physicians nced rapid access to all relevant information concerning
the patient. In practice, unfortunately, the medical record is often not available, not up to

date, or in the case of newly admitted patients, non-existent.

Weekly Summary ~——ji- alfl— Special reports
Legal Records
#2)
Round reports —J tll—t Shift report
ICU L Mun::;)mem
Clinical Review Computer Chart
*1) and
Archives
[Patient Billing
* (#0)
Remote Access
Research Files Cemmunication
(H6) F(Other Depty.)
(#5)

Figure 1.1: ICU Chart Complexity.

A patient chart, also called the patient's record, has regularly constituted the main
repository for a patient's medical data. Thc Textbook of Critical Care [Gardner et al.,
1989b] discusses the major issues involved in ICU charting such as data display and
presentation, data acquisition, and data storage. Figure 1.1 illustrates the complexity
involved with each of these issues. The patient record must contain all relevant patient
data as well as the action undertaken by the medical personnel. After having been
acquired, this data should be organised for medical and legal requirements (Figure 1.1, #1
and #2), for use in the administration (Figure 1.1, #3) and billing purposes (Figure 1.1,
#4). Interdepartmental communications within a hospital are mandatory (Figure 1.1, #5).

1. Introduction

The chart data is then properly archived to fulfil the legal requirements, the archived data

is also essential for use in research (Figure 1.1, #6).

Thus, the patient's medical record is the main instrument for patient care. A study by
Whitinh-O'Keefe shows that the conventional medical chart does not offer the adequate
support for proper patient management [Whitinh-O’Keefe er g/, 1985]. Bradshaw
[Bradshaw er al., 1984] suggests that this lack of adequate support is espectally evident in
the ICU where advanced techniques of patient monitoring produce large volumes of data
for evaluation and where decisions have to be quickly undertaken, usually at a time when

data are incompletely understood.

Observation
Drugs, IV 21% Blood Gas
9%

Monitor
13%

Other

Figurc 1.2; ICU Chart Usc.

Figure 1.2 illustrates the different types of data employed in an ICU, as well as their
percentages of use in an ICU Chart, according to a study conducted by Bradshaw
[Bradshaw er al., 1989]. This study showed that 33% of the physician's treatment
decision weight relies on laboratory data, 22% on fluids balance data, 21% on clinical
observations and finally 13% on bedside physiological monitor readings.

1. Introduction

In the following subsections we will examine some of the data types that constitute the
ICU information and the patient medical record, a comparison will be also drawn between

handling each data type manually or via computerisation.

1.2.1 Physiological Monitoring Systems

In many cases the patient's parameters monitored by the bedside physiological monitors
are not automatically recorded in the patient's chart. The nurse takes readings at one hour
or half hour intervals and enters them into the paper chart [Collet ¢r al, 1989].
Transcription errors occur or scraps of paper that are used to temporarily hold information
are misplaced or forgotten [Hendrickson ef al., 1991}, [Nolan-Avila and Shabot, 1987],
[Soontit, 1987], [Staggers, 1988]. Hammond ef al. [Hammond ¢f al., 1991a] report that
nearly one third of all errors in an ICU involve mistakes in charting or relaying information
between shifts. Furthermore, relevant data of events that could occur in an interval
between two readings is lost. Therefore the automatic acquisition of physiological data is
seen as a primary goal. When McDonald ef al. [McDonald et al., 1988] developed their
Regenstreif Medical Records System they started with laboratory results and vital signs,
in their opinion the easiest type of data to capture. Mitholland [Mitholland, 1988]

references many of these computer-based monitoring systems.

Dasta [Dasta, 1990] mentions the importance of computerised data acquisition in ICU
wards, where a computer-based system can interface directly with the instruments and the
data can be collected and stored in its native electronic form. This is bound to eliminate

the burden and errors in data transcription.

Collet et al. [Collet er al., 1990] describes a Trend Analysis module in a PDMS which
analyses cardio-vascular data from physiological monitors in order to generate an carly
warning alarm. Trend patterns are recognised and analysed by a2 multilevel expert system.
This Trend Analysis System recognises and considers relationships among the different
parameters. Andreoli and Musser [Andreoli and Musser, 1985] criticise many monitoring

systems for their inability to comprehend such relationships.

1. Introduction

Subramanian [Subramanian, 1989] describes 2 microcomputer-based obstetrics
information management system that monitors an cight-bed unit continuously. Analogue
information from a fetal monitor is digitised and stored in an IBM personal computer.
Waveform information can be displayed on a central monitor for all eight beds
simultancously, The University of Louisville Medical School [Strickland Jr., 1991] has
developed an information management system to assist in the monitoring of patients with
severe head injuries. It supplements the monitoring done by the ICU nurses and
concentrates on the recording of the brain functions. Several other examples of
computer-based medical systems can be found in the literature, Nagel and Smith [EMBS,
1991] in the IEEE Engineering in Medicine and Biology Society Annual Conference,
Bankman and Tsitlik in the IEEE Symposium on Computer-Based Medical Systems, and
other conferences have sessions dedicated to automatic medical data acquisition. Alesch
[Alesch et al., 1991] describes a system based on a PC/AT which controls 64 parallel data
acquisition channels for recording data readings from neurological monitors. Aukburg et
al. implemented a system for automating alarm data acquisition in a post anaesthesia care
unit [Aukburg et al., 1989].

Tachakra er al. [Tachakra et al., 1990] and Kari et al, [Kari ef al., 1990] presented, in
two of their articles, an evaluation and comparison of computerised systems versus manual
data management systems. In these articles, studies demonstrated that the computerised
procedure of data acquisition and storage generates significant savings in time and

personnel workload, and also enhances the data accuracy.

1.2.2 Drugs, IV, Blood Gas, and Observations

In an ICU the fluid balance of the patients must be constantly monitored. Fluid balance
accounts for the patient’s fluid intake (ingesta) and fluid output (excreta). The nurse takes
periodic measurements from infusion pumps, urine bags, blood gas, injected or lost blood,
as well as other gastric or fluid measurements and enters these numbers into the fluid
balance chart. Medications are also entered here. Running totals must be calculated and
abnormalities noted. Fluid balance sheets are often difficult to read; in many cases they

1. Introduction

contain cumbersome erased and re-recorded values and calculations. The calculation of
running totals is prone to human error, and constitutes further tedious staff’ workload.
Observations and tasks required to care for the patient are scheduled and planned in a
“nursing workload measurement scoring sheet”. These sheets contain tasks such as the
initial assessment of the patient and reassessment, mecting the patient's care needs, and the
planning and carrying out of interventions to meet those needs. The aforementioned tasks
are divided into eight categories: respiration, nutrition and hydration, elimination, personal
care, ambulation, combination, treatments and diagnostic procedures [Roger ¢f al., 1992].
Creating a nursing care plan is one of the activities of a nurse in the ICU, an activity that

requires a considerable amount of time for preparation and follow-up.

The fluid balance measurements and the generation of the care plans as well as the
measurement of nursing workload are all suited for computerisation. Computer-assisted
care plans have the potential to decrease the time spent creating care plans and mcasuring
nursing workloads. They improve the quality of the care plan, institutionalise standards of

intensive care and perform the role of a reminder process for critical tasks [Allen, 1991],

In a study of data management systems conducted by Hammond ef a/. [Hammond et
al., 19912, Hammond er al., 1991b], results showed that the use of ccmputerised systems
in care units not only reduced non-nursing related work, but also improved the quality of
the clinical information and the information recall by the medical or administrative staff.
Indeed, this leads to a significant improvement in documentation flowsheets both in terms

of quantity and accuracy which in turn have quality assurance impacts, as well as

enhancing patient care.

1.3 Medical Informatics

This section presents a definition of a Database Management System and then extends it
to a Medical-Based Data Management System. It will also describe medical-based

systems in the context of intensive care units.

1. Introduction

1.3.1 Medical Information Systems

Many different definitions of a Data Management System (DMS) could be found in the
literature; nonctheless, they all agree that data management consists of everything that
occurs to data from the process of defining what is to be collected up to its analysis. A
Data Base Management System (DBMS) is defined by King [King e¢r al., 1984] to

generally include the following functions;

1. Define and restrict the data objects to be stored and organised according to a

predefined database structure.

2. Check the consistency of entered values with the object definition and the contents of
the database.

Edit previously-recorded values.

Create subsets of the data objects characterised by a query.

Control access to the data.

o » AW

Allow data retrieval in different types of forms.

Kriewall and Long [Kriewall and Long, 1991] identify three categories of computer-
based medical systems; controllers such as drug infusion systems or artificial hearts,
diagnostic tools such as blood pressure monitors or ICU monitors, and information
managers that handle networks or interfaces. Andreoli and Musser [Andreoli and Musser,
1985] distinguish three types of computer applications for patient care: patient monitoring

computer systems, medical information systems and computer assisted diagnostic systems.

Over the past sixteen years, a large number of Patient Data Management Systems have
been developed and installed in hospitals. Many of these installations have been in the
Intensive Care Unit (ICU). Gardner [Gardner et al., 1989a] identifies four functions of

computers in an ICU setting:

1. Physiological monitoring
2. Computers that facilitate the timely and accurate communication of data among

multiple hospital locations and departments.

10

1. Introduction

3. Management of medical records.

4. Expert computer systems to aid in patient care decision making,

The following section will present an overview of patient data management systems in

ICUs, the challenges that such systems encounter and the rescarch orientation of this

specific field.

1.4 Data Management Systems in ICUs

In an intensive care unit integral and comprehensive documentation of diagnostic and
therapeutic patient data is a crucial prerequisite for assessing the patient’s physiological
condition as well as deciding on treatment regimes.

Furthermore, in an ICU more variables such as vital signs and events must be observed,
documented and evaluated. A study conducted by [Thull e al., 1993] shows that a nurse
spends up to 30 percent of his time keeping documentation up-to-date and that during a
visit a physician typically spends up to 50 percent of his time evaluating and updating
documentation.

A computerized data management system for such an environment is an adequate
solution for reducing the time spent on managing ICU documentation and for helping the
ICU medical staff focus on other important patient care tasks. However, the work in
computerised ICU information management systems has just begun, model-based
monitoring and management systems are in their infancy and no clinical systems yet exist
[Mora et al., 1993]. “Off-the-shelf” clinical or hospital management software packages
ignore the data management aspect of an ICU because the information management
requirements of such an environment differ from one hospital to another. Thus, the
development of 2 common software package that aids in managing ICU information scems

almost impossible and very expensive, from an industry point of view.

Therefore, most patient information systems similar to the PDMS resorted to design

research and custom development for implementing computerised data management

11

1. Introduction

systems in ICUs. An important aspect in any research undertaking is to identify the

fundamental questions to be answered.

Considerable cfforts are still expected in the acquisition of on-line data, not only in the
form of signals, but also the registration of actions, change of settings in the monitoring
devices, etc. [Mora ef al, 1993]. Work is being focused on the feature extraction and
trend analysis blocks in order to deal with noise and unreliable patient information. Most
intelligent patient monitoring systems assume that this block is somehow solved, but
practical implementations show a different story [Collet et al., 1990, Moret-Bonillo et a/.,
1993, Dawant ¢ al., 1993, Watt et al., 1993].

Another direction is the design of generic prototypes, such that 2 monitoring and
management system can be customised for specific applications such as anaesthesia or
neonatal surveillance [Mora et al., 1993]. This research deals with the identification of
domain-independent concepts for databases that can be restructured in an adaptable

architecture [Sukuvaara et al., 1993, Dawant et al., 1993].

The next section will describe projects that are similar to the PDMS and discuss some
of the challenges they have encountered. It will also delineate the functional differences
between these projects and the PDMS.

1.4.1 Similar Work

The PATRICIA project at the La Coruna university, in Spain, used a semantic-based
methodology to implement an intelligent monitoring system in the ICU [Moret-Bonillo er
al., 1993]. The PATRICIA system has been designed to provide the following functions:
(1) monitoring and data acquisition, (2) interpretation of that information, (3)
establishment of diagnosis accerding to the patient’s condition and (4) prescription of
therapeutic guidelines.

[Moret-Bonillo ez al., 1993] describes the following main challenges encountered
during the design and development of the PATRICIA system:

12

1. Introduction

1. diversity of information sources, as clinical information and data usually come from

different sources.

2. handling of raw clectronic data, as parameters are obtained trom clectronic equipment

connected to the patient,

The SIMON project [Dawant ef al., 1993] employed a Model-Based design in order to
acquire, analyse and interpret monitoring signals data as part of an intelligent patient
monitoring system. On top of the aforementioned issucs encountered during the
development of the PATRICIA system, developers of the SIMON system identified the
following challenges:

1. the dynamic nature of the design and implementation processes.

2. the limitation in computing resources.

The Patient Data Management System (PDMS) project, under way at McGill
university, offers functionality that is similar to the PATRICIA and SIMON projects in the
domain of patient data monitoring. However, the PDMS offers database management of
signal data, such as look-up, patient history review and patient data archive. Morcover,
the PDMS offers a2 more integral ICU information management system that handles

nursing care plans, patient fluids balances and patient admittance records.

The database aspect of the PDMS renders the system useful not only in the ICU
environment but also outside of that context. The query management facility of the
PDMS can help detect any common patterns in patient diagnoses such as epidemics; it can
also produce ad hoc statistics reports. Furthermore, the data stored or archived in the

PDMS database can be used in case-study simulations.

1.4.2 The PDMS approach

The direction of the PDMS project is to design, as much as possible, a generic integral
prototype for patient data management systems in ICUs. The PDMS also addresses the
issue of on-line electronic data acquisition.

13

1. Introduction

The PDMS database is only one aspect of the PDMS project, nonetheless an.important
onc. This thesis addresses the problem of designing and developing a database for the

PDMS as well as the methodology used in that process.

Using a clear and concise method in the design of a database for a patient data
management system we can avoid many of the software development problems, such as
the expensive cost of coping with changes in the system, high cost of maintenance and the
difficulty in expressing the design. Employing a software engineering approach in the

design of the database has the following advantages:

e Using a modcl-based design, the problem is tackled at an abstract level that renders the

solution domain-independent and adaptable to more than one environment.

s With such a database design model, we can test the database for faults and

accommodate changes in the system before actually building the database.

¢ The design model can be used as a communication tools that effectively conveys the

database design between designers and programmers.

e Such an approach is highly recommended in large or complex systems, database design
models reduce complexity by separating out a small number of important things to deal

with at a time.

e Such a model serves as the blue print of the database, it reduces significantly the time
that a database administrator or maintainer spends in understanding the cause of the

problem and amending it.

As we can conclude from this chapter, managing information in the Intensive Care Unit
(ICU) is a complex and difficult process, yet also delicate and essential to the survival of
patients. The information generated or handled in the ICU is characterised by its diversity
and large quantity. In a typical intensive care environment, information varies among the
administrative, the pharmaceutical, medical records, patient parameter data, scheduling,
and many other types.

14

1. Introduction

The success of building a database for a PDMS in an ICU relies particularly on the
database design. This thesis presents the design and implementation of such a database.
Chapter Two describes the patient Data Management System (PDMS) for which the
database is built. Chapter Three attempts to answer the following question: Which
database design methodology is best suitable for the PDMS? Furthermore, which data
modelling technique better ensures the domain abstraction and portability of that database
design? It also presents an overview of two schools of thought for data modclling, as well
as a survey of current database modelling techniques. Chapter Four applies the chosen
technique in the design of the PDMS database. Finally, chapter Five discusses the results

of the database design implementation.

15

Chapter 2 The PDMS

This chapter describes the Patient Data Management System (PDMS), a research project
being developed at the McGill Research Centre for Intelligent Machines (CIM) in
conjunction with the Paediatric Intensive Care Unit of the Montreal Children's Hospital.
The first section of this chapter will outline the hardware and software platforms of the
PDMS. The following section will discuss the functionality of the PDMS by presenting an

overview of the different modules of the system.

2.1 PDMS Hardware and Software Platforms

In the paediatric intensive care units of the Montreal Children's Hospital, physiological
bedside monitoring is based on a Hewlett-Packard CareNet system. The CareNet system is
composed of fourteen HP 78534A physiological bedside monitors. The monitors are
capable of smoothing measured parameters, real-time display of measured data and alarm
generation. These monitors are linked in a star configuration local area network to a
HP78581A Network System Communications Controller. One of the monitors Network
Controller branches is connected to an HP78588A Careport. This unit provides a
programmable interface between the network controller and a host computer system. The
function of the Careport Network Interface is to translate the proprietary network
messages and signal formats to the standard RS-232C messages which can be understood

by the host computer (Figure 2.1).

The host computer system at the hospital presently consists of a 486 IBM PC clone
with 16 Megabytes of RAM memory, and a 300 Megabyte hard disk. The display consists
of a high resolution 8514/A adapter which has 2 resolution of 1024x768 pixels. A colour
printer, the EPSON LQ-2550, provides the colour printout of the PDMS screens in
addition to printing out the required forms and reports for the nurses. Soon, it is envisaged
to extend the number of computers by linking them in a Token-Ring Local Area Network.

16

2. The PDMS

—— e - - S DGR e = D SN EE SR A el wm mm e e GE AR SR G Gm en Em am e

Colour N

HPTASI4A
Monltor Bed 14
Careport Interface

|
I
!
1
1
l
. IIP7RARRA :
‘» e ! rs.2n2e
t Nerial Line

] 1

IIPTRS34A 1 ek
Monltor Bed #z | 1IP7H581A I
i Network Communication |

Controller : PC - 486 CPU

Al 1PTRSIAA "
Monitor Bed #1 1

Iewlett-Packard CareNet

Figure 2.1: PDMS Network Configuration.

The PDMS is being developed for an IBM PS/2 network of computers running the
0S/2 multitasking operating system version 1.3 and 2.0. OS/2’s Presentation Manager is
used to develop a window-based consistent user-friendly interface. The window interface
together with a high resolution screen (1024x768x256 colours) enhance the multitasking
feature of OS/2™, where multiple modules of the PDMS can be invoked concurrently.
For example, several trends can be displayed on one workstation for analysis while
another workstation or window could be reviewing fluid balance data sheets. The database
is designed to be spread over different sites on the computer network. Files are
distributed according to the location of their most frequent use and the type of data
contained in them. The IBM Communication Manager provides remote file access,
ensuring the database distributivity, Due to the multitasking facilities in OS/2, the PDMS
is developed in a2 modular fashion.

22 The PDMS Functions and Modules

There are eight general categories of functions carried out in an ICU: patient admission,
cardiovascular monitoring, fluid balance monitoring, the preparation of nursing care plans,

the measurement of nursing workload, the request of laboratory tests and entry of

17

2. The PDMS

laboratory results, and the request of pharmaceuticals. Each functional category will be

described along with the corresponding PDMS module,

The PDMS is build in 2 modular software architecture. The modules which are

currently implemented under the present version of the PDMS are:

The Data Link Controller (DLC) acquires and stores the vital signs data transmitted by
the network of bedside monitors in real-time mode. Data acquisition is done through 2

serial RS-232C link to the Careport [Fumai e al., 1991].

The Trend Display Module interactively displays patient vital signs data and alarm data
in graphical trends on a CRT, using combinations of colours and symbols [Fumai er
al., 1991].

The Fluid Balance Module saves and computes all substances taken in (ingesta) or put
out (excreta) by a patient, in a spread-sheet format. A user speech interface for the

fluid balance module has been developed [Petroni er al., 1991].

The Patient Registration Module manages the administrative information such as the

address of a patient, previous diagnostics, hospital identification number, and the like.

The Trend Analysis Module is a multilevel expert system. This module performs
appropriate analysis on the real-time data, scanning the trends for critical combinations

and transmitting messages in case of triggering [Collet e al., 1990].

The Nursing Workload Scheduler Module focuses on improving the process of nursing

care plan generation, workioad measurement and workload scheduling [Roger er al.,
1992].

2.2.1 Patient Admission

The Registration Module manages the administrative information of the patients upon
their reception to the ICU. This information consists of the admission date and the
discharge date. The patient registration module handles also general information about a
patient such as: name, age, sex, address, telephone number, hospital identification number,

18

2. The PDMS

ICU bed number, treating physician, diagnosis, etc. This module gives the user control

over network activities such as collection of data of a bed from the network,

2.2.2 Cardiovascular Monitoring

The Data Link Controller (DLC) module is responsible for interfacing the PDMS with the
CareNet bedside monitors through the Careport interface, The DLC manages the gathered
data for easy access by other modules, and it stores the information in the PDMS database

for future consultation and archiving purposes.

The main tasks of the DLC are to acquire the physiological parameter values from the
bedside monitors every two seconds and to store them into circular queues. The seconds
data is averaged every minute, and these values are inserted in minute queues. The
minute values are in turn averaged every half hour and stored into the half hour queucs.
All the queues are located in shared memory. These values can then be accessed by the

Trends module for graphical trend display.

The sampling rate of the DLC data acquisition from the Careport interface (every two
seconds) is chosen because it appears to be adequate for present needs and lies within the
operational constraints of the equipment available at this time. Moreover, alarm messages
may be transmitted by the Careport to the DLC as they occur (asynchronously). The
different functions of the DLC such as parameter values averaging, acquisition and

transmission of data are implemented as distinct processes or threads.

The vital signs of the patient are monitored in the ICU through both, the Hewlett-
Packard CareNet System (for example, blood pressure) and the nursing observation (for
example, pupil size). The Trend Display mosdule displays the vital signs monitored by the
CareNet System on the 8514/A colour monitor of the personal computer. The user can
interactively select which types of parameter to display at the same time on the screen, and
thus be able to observe the correlation among these parameters. Vital signs data can be
displayed in real-time for a remote site, or can be retrieved from the database. Since only

19

2, The PDMS

a limited quantity of data can be viewed on the screen, the screen appears as a sliding

window which can be used to display any part of the trend data.

A Vital Sign Monitoring System is developed to complement the Trend Display
Module. This system performs appropriate real-time analysis by scanning the trends for
critical combinations. It generates warnings about slowly varying trends or short interval
disturbances [Collet e al., 1990].

2.2.3 Fluid Balance Monitoring

Patients must be monitored for their fluid balance. Fluid balance accounts for the patient's
fluid intake (ingesta) and fluid output (excreta). This has to be monitored because of the
effect the balance has on blood pressure, dehydration, pooling, drowning or thrombosts.
The nurse periodically reads measurements from infusion pumps or urine bags, and record
these figures onto the fluid balance sheet. Running totals must be calculated and

abnormalities noted.

The Fluid Balance module enables the entry, calculation and correction of the volumes
of all the fluid intake and output of a given patient. The user interface of the Fluid
Balance module replicates the paper fluid balance chart used in the ICU. The
computerised chart is set up as a spreadsheet and key combinations are used to navigate

through the chart. The interface was developed using OS/2's Presentation Manager.

In order to avoid the cumbersome manual navigation and data entry in the Fluid
Balance module, a speech interface has been developed. The interface uses both speech
recognition, for data entry and module operation, and speech generation, for feedback,
verification of spoken commands, and audic prompting that provides an “eyes-free” and
“hands-free” means of directly entering fluid balance data at the bedside and at a distance
from the PDMS console [Petroni er al., 1991].

20

2. The PDMS
2.2.4 Measurements of nursing workload

Regularly, the nurse prepares a nursing care plan for a patient upon admission to the ICU,
and updates it as the patient's state requires. Once the care plan has been filled out the

nurse must assign a score to the plan,

The Nursing Workload Manager also called the Nursing Care Plan module focuses on
improving the process of nursing care plan generation, workload measurement and
workload scheduling. The Nursing Workload Manager will generate nursing care plans,
automate PRN workload measurement scoring, schedule nursing activities and set up fluid
balance charts by integrating with the Fluid Balance module described Section 2.2.3
[Roger et al., 1992].

21

Chapter 3 Design Approach

The conventional wisdom in software engineering holds it as self-evident that a system
design must be described in three dimensions: those of process, control (or dynamics) and
data. The process models are usually described by dataflow diagrams (DFDs), such a
diagram depicts all the processes found in the system and the data types or elements that
are transferred among them. The controi models are described by an entity life notation or
state diagrams, such a diagram depicts the life cycle or the transformation phases that the
system’s entities undergo during runtime. Finally, the data domain corresponds to logical
data models which depicts the data elements managed at different levels or parts of the
designed system [DeMarco, 1978][Yourdon and Constantine, 1979][Gane and Sarson,
1979].

Data-centered approaches to software engineering begin with the data model. Data is
more stable than process or control functions and so data-centered approaches are to be
preferred in most cases, since they intend to produce coherent system designs and highly
integrated systems [Rumbaugh, 1991].

A data model is a set of concepts that can be used to describe the structure of a
database. The structure of a database can include definition of data types, relationships
and constraints that should hold for the data.

Why data modelling as a tool to database design? Determining correct, consistent and
complete information is a difficult and challenging task [Kim and March, 1995]. A

database model serves two main purposes during the design process:

1. Build a conceptual (representation) of the enterprise reality. This model serves as a

communication vehicle between the database designers and the users.

2. Design validation before implementation. Before concluding that the model is
correct, consistent and complete, it must be validated. Validation of 2 data model has

two aspects: comprehension and discrepancy checking. Users must understand the

3. Design Approach

meaning of the model and they should also be able to identify any discrepancies

between the model and their comprehension of reality.

Hence, the data model has a large impact on the design, implementation, and the effort
required to develop the PDMS database, This chapter will present an overview of the
approaches available for constructing the data model of the PDMS database. The second
section will discuss the current data modelling practices. Finally, this chapter will compare

the most currently applied data modelling techniques and choose a method for developing
the PDMS database,

3.1 Data Modelling Approaches

Data modelling approaches can be categorised into two main schools. The first school,
called the rule-based school, considers that the problem domain cannot be solved
independently from the user and therefore promotes subjectivity in data modelling. The
rule-based approach to data modelling analyses and models the organisational rules that
govern the real world rather than the facts about the real world. The second school,
called the fact-based school, promotes objectivity in data modelling and solves the

problem domain by concentrating on facts only.

In the following sections we will present a brief overview of both schools and explain
how a rule is percetved by the rule-based school and how a fact is perceived by the fact-

based school of data modelling.

3.1.1 Rule-Based School

The rule-based approach to data modelling is derived from a combination of foundation
concepts found in disciplines such as the philosophy of natural speaking, the hermeumitical
philosophy and pragmatics [Goldkhul and Lyytinen, 1982].

The basic view of the rule-based school is that the information system interpretation of
the data must be consistent with the meaning that this data conveys when interpreted
according to certain human rules which apply in real world situations. This view regards

23

3. Design Approach

information modelling in terms of social actions or behaviour where language is the
mediating force. Since social actions are perceived in terms of communication [Goldkhul
and Lyytinen, 1982], this view revolves around the need to model the social interaction or
activity that occurs in an organization. In particular, the information model should model

the rules that govern this social interaction.

Therefore, language is studied as an important category of human action and becomes 2
social artifact whose primary function is to support human interaction. In this case, data
modelling is concerned with interpreting meanings from the user’s business language into
a formal language [Hirschheim, 1985]. An information system is, therefore, considered to
be a “formal linguistic system for communication between people which support their
actions” [Goldkhul and Lyytinen, 1982, p. 14]. Hence, the linguistic view or language
action view of the rule-based school sees an information system as a technical
implementation of a social organization or a social system where a formal language is
maintained, handled and transmitted using information technology [Goldkuhl and
Lyytinen, 1984]. Since information has limited capabilities in modelling human behaviour,
according to this belief, data modelling is regarded as a study of message meaning

expressed in speech acts [Lyytinen and Lehtinen, 1984].

Another view in the rule-based approach to data modelling is the social organization
view. This view models information systems after a social or business institution. It
identifies classifications and types of acts and actors which compose the system. The
issue, here, becomes decision-taking; what decisions are made, by whom and for what
reason [Huber, 1983]. This belief extends the language action view to the social
institution where information modelling forms an activity by which a communication

organization is created and maintained [Zmud, 1979].

3.1.2 Fact-Based School

The fact-based approach to data modelling is widely adopted in the database design
industry. It has been extenstvely researched over the past two decades. This implies that

24

3. Design Approach

the database design and modelling community has a better understanding of the strength
and limitations of this school.

Data modelling in the fact-based school employs methods and tools derived from
analytical philosophy and logic concepts. The fact-based approach is based on concepts
which are related to a given fact. These concepts mainly assign a specific attribute or

relationship to an entity that exists in the real world [Kent, 1983).

In the fact-based school, a fact is considered to be a state of affairs of an entity. Hence,
it is possible to assert or deny that fact. Facts can concern an cntity as well as a group of
entities and entity-types such as the employees of a company and car-manufacturers. In
current data modelling techniques, the entity groups and entity-types are referred to as
entity class or object class. The fact-based school denotes prevailing facts as information.
General facts that describe what is acceptable and what is necessary in the problem domain

are denoted as constraints.

The fact-based school attempts to model objects found in the real world as inter-related
data entities. These data entities along with their relationships constitute the information
system. This is the main reason why most current fact-based data modelling methods refer

to these entities as objects [Shlaer and Mellor, 1992].

There are two types of entities used in the fact-based approach, concrete and abstract.
Concrete entities are physical objects mapped from the real world such as a car or this
table. On the other hand, abstract entities are not tangible objects, yet they could be

concepts or ideas that exist in the real world such as a car-ownership.

In this case, a data model is a conceptual schema that represents the solution of the
domain problem or the information system. The model defines the entities of that domain
and which facts hold for each entity. Therefore, the data model represents these entitics
and facts in constructs of formal language or linguistic objects known as sentences or
assertions [Bacman, 1960] [Chen, 1976]. An example of such assertions would be a car

is owned by a person or a person must have a first and last name.

25

3, Design Approach

3.1.3 Rule-Based vs. Fact-Based Approaches

In the rule-based approach, the focus is on reconstructing or modelling a set of rules that
promotes understanding of the social world, Data modelling in the rule-based approach is
regarded as a means to understand communication in the information system and
reconstruct rules that govern it. These aspects make rule-based data modelling a complex

and difficult approach [Lyytinen and Lehtinen, 1984).

However, data modelling in the rule-based approach is an important tool for
organizations. It helps to understand and learn about the organization’s communication
practices, and to discover and resolve any discrepancies in the organization
communication system. This approach also emphasizes the study of the mechanism by
which the use of language initiates, empowers and controls organizational behaviour
[Goldkhul and Lyytinen, 1984].

On the other hand, the main focus of the fact-based school is designing a data
modelling method which would clearly and most important objectively describe the states

(denial or assertion) of a reality or a real fact.

In the design of the PDMS database we adopted a fact-based data modelling technique

because of the following reasons:

o The rule-based approach to data modelling is complex and difficult to apply fact-based
information. Therefore, the time and effort required to design and implement the

database would be colossal.

e The rule-based approach is not widely used by the database design community. This
means that there is more to iearn about the limitations and the technical capabilities of

the rule-based school, whereas in the fact-based school, the opposite is true.

* Literature about rule-based modelling methods, tools and techniques is scarce. The
major emphasis in the information systems research community has been on fact-based
approaches. This explains why the majority of the data modelling methods and tools
used in the industry belong to the fact-based school.

26

3. Design Approach

Another point to constder is the design or model portability. A rule-based model is
dependent on the rules, the human social interaction and the “business cufture™ adopted
in the modelled organization. This renders the model very specific and almost non-
reusable by similar organisations. On the other hand, a fact-based model models only
the business facts managed by an organization, Hence, a fact-based model could be

adopted by organizations that manage similar business facts.

Finally, the modelling and storage of concrete fact-based data as is generated in an

ICU environment is clearly, even at the intuitive level, more suited to implementation

using fact-based methods.

In order to render the database design model of the PDMS reusable and more flexible,

we need to carefully consider the aforementioned issues. Using a fact-based database

modelling technique ensures that the designed PDMS database model could be used for

another ICU, or extended by another development group. Although a rule-based model is

can also be extended, the resources capable of extending a rule-based model are scarce

due to the industry’s lack of expertise in this domain.

Moreover, the aim of the PDMS database is not to model the social behaviour of an

ICU but mainly to manage its daily data.

3.1.4 Fact-Based Database Models

Fact-based data models can be classified into four categories [Brodie, 1984]:

1.
2.

Primitive data models, which are essentially sequential files.

Classical data models, such as the network, the hierarchical and the relational data
models.

Semantic data models, which are designed to provide more expressive concepts in
order to capture more facts than the classical data models; for example, the entity-
relationship (ER) data model.

27

3. Design Approach

4, Special purpose data models, which are more application-oriented. They present an
cvaluation of the semantic data models applied to particular software applications such
as VLSI and CAD/CAM,; for instance, object-oriented methods.

The classical and semantic data models apply to databases, thus they are also referred
to as database models [Lxarra and Zodnik, 1987]. In the following sections we will first
overview cach of these categories. Then, we will explain the selection of the database

modelling technique best suited for the design and implementation of the PDMS database.

3.2 Historical Aspect of Database Technology

If we can skip the plug board programming period, the beginning of data storage was the
sequential file. A search program had to read through 2 file from the beginning until the
required record was matched and then the tape had to be rewound in preparation for the
next file access. As more sophisticated data storage devices such as drums and disks
emerged, programming languages were extended to include statements enabling direct
access - called random access, in contrast to the sequential access required of magnetic
tapes. This soon led to the realisation that access speed could be enhanced by hashing or

storing index files.

The existence of indexed files made it possible to conceptualise a structural relationship
among these files that would capture some of the application or the real world structures.
Since most of the real world’s organisational models are structured on the basis of the
class membership notion, the world’s first database products imposed a hierarchical
structure among their files. Hierarchical databases such as IBM’s Information
Management System (IMS) were both popular and efficient. However, many business
relationships did not fit into neat hierarchies and more general networks often emerged
from the investigations of systems analysts. Few early documents which describe IMS
exist, however, Date [Date, 1986] presents IMS as an example of hierarchical systems.
Network systems were nearly as popular and nearly as efficient as their hierarchical
ancestors. Both types of databases depended on fixed pointers and were very difficult to
change and extend in response to business reorganisation. All the aforementioned

28

3. Destgn Approach

database products were developed in response to practical needs without the benefit of
formal theories such as the hicrarchical data model or the nerwork data model. 1t was
not until 1969 that the Bachman diagram [Bachman, 1969] was introduced by Charles
Bachman, one of the originators of the network model of information. In 1971, the
network model structures and language constructs were defined by the Conference on
Data Systems Languages committee (CODASYL), hence it is often referred to as the
CODASYL network model. The CODASYL network data model was revised in 1978
and 198]1 to incorporate more recent concepts. In this respect, object-oriented

programming seems to be repeating a part of the history of databases as an ad hoc

technique lacking a formal theory.

The next significant development was the introduction of the first formal data modcl,
Ted Codd’s relational model of data [Codd, 1970]. It was based on the first-order
predicate calculus (FOPC) and, equipped with this theoretical basis, it supported a
relationally complete, non-procedural enquiry language. The de facto standard now
established in the industry for relational data definition and manipulation, SQL, is looscly

based on the relational calculus.

It was soon realised that that the relational model was not the only possible formal

model, and that other models might retain certain advantages.

33 The Relational Data Model

Since the implementation platform provided for the PDMS employs a relational database
manager and since relational databases form a large part of the current database practice,

we will briefly review the main ideas of the relational model.

As we have already mentioned, the relational model was motivated by many aims,
among them the desire to use formal methods in database design, enquiry and update, and
the desire to be able to prove the correctness of programs based on non-procedural
descriptions.

29

3. Design Approach

The relational model consists of two intrinsic and two extrinsic parts. The first intrinsic
part is a structural part which uses the notions of domains, n-ary relations, attributes,
tuples and primary and foreign keys. The second intrinsic part is 2 manipulative
component whose main tools are relational algebra and/or calculus and relational
assignments, The first extrinsic part deals with integrity with respect to both entities and
references. The second extrinsic part is the design component consisting of the theory of
Normal Forms [Date, 1981][Ullman, 1981][Elasmri and Navathe, 1989]. These following

sections will briefly overview the aforementioned relational model concepts.

3.3.1 lIntrinsic Structural Part

Mathematically defined, a relation is any subset of the Cartesian product of all lists of sets.
Given a list of sets A, ... ,An, their Cartesian product is the set of all lists or bags' of n
elements of the Ai where there can be only one element in the bag from each Ai. Such a
bag is called an ordered n-tuple, or just a fuple. The relation is sometimes called n-ary if
there are » attributes (Figure 3.1 (2)). Each A is called a domain when viewed as a set of
elements from which an attribute may take its values and an atfribute when viewed as a
label for that set (Figure 3.1 (c)). An equivalent notion is that of a table, and it is the most
commonly used in the context of computers because of its strong physical analogy. A table
is composed of rows and columns, where the columns represent the attributes of the table,

and a row, called a fuple, represents the relationship among the attributes (Figure 3.1 (b)).

The next level of structure in a database deals with the relationships between relations.
Chen [Chen, 1976] uses the terminology entity-relations and relationship-relations to
distinguish the two types of relations, both of which must conform to certain integrity
constraints. Furthermore, the relation must be in first Normal Form,; that is, the attribute
values must not be complex structures such as repeating groups or lists, but must be
atomic data types such as integers and strings. The relationships-relations have two
properties, multiplicity and modality. This level of structure is added to the relational

' A bag is a list whercin clements may be repeated, as opposed to a sef where repetition is prohibited

30

3. Design Approach

model and is not strictly a part of it. Integrity, multiplicity and modality constraints arc
normally coded in the application and usually in an exogenous procedural language. This

part of the theory is often referred to as the extended relational analysis (ERA).

Patient(Name, Sex, Birth_Date, Bed_Number)

Primécy \

Foreign Key
(a) A 4-ray rclation with its four attributes,
one primary key and onc forcign key.

Name Sex | Birth_Date| Bed_Number
John Doce M [22/10/94 5
S. Bloe F 27/06/93 9

(b) Somc tuples from the Patient relation.

- Birth_Date
- Bed_Number

(c) The domains of the four attributes.

Figure 3.1: Relational Model.

3.3.2 Intrinsic Manipulative Part

The relational model has two essential manipulative methods. These two methods are
known as the relational algebra and the relational calculus. A manipulation language is
said to be relationally complete if any possible operation over the database may be

prescribed within a single statement of the language. A language permitting all feasible

31

3. Design Approach

operations over a database, but in more than one statement, hence a procedural language,

is operationally defined as a relational algebra.

The first method to emerge with Codd’s original paper was the relational calculus,
which is a retricval and update language based on a subset of the first-order predicate
calculus. The alternative approach to a single statement of predicate calculus is to regard
enquiries and updates as a sequence of algebraic operations. Relational algebra is based
on four primitive operations: selection, projection, join and union, The selection operation
yields those tuples (rows) that satisfy the predicate or the selection condition. For
example, we might wish to select all patients that are born before a certain date (Figure
3.1 (b)). On the other hand, the projection operation selects columns from that table and
discards the rest. The join of two relations A and B over a relational operator “p” is
obtained by building all the tuples that are the concatenation of a tuple from relation A and
a tuple from relation B such that “p” holds for the attribute specified without duplication.
If two tables have the same attribute, their union may be formed by appending them
together and removing any duplicates in the primary key. This account of relational
algebra has been simplified for brevity; for greater detail one may consult [Elmasri and
Navathe, 1989] and [Date, 1981].

Several hybrid languages based partly on relational algebra exist, the most notable
being those based on the IBM System-R language, Structured Query Language (SQL).
SQL was initiaily derived from the motivation to produce a “structured” language. Later,
it was found convenient to add into it most of the power of algebra and calculus. SQL is
highly redundant and an inelegant language. However it has become the de facro industry

standard, mainly because of its simple and convenient structure,

3.3.3 Integrity & Normal Forms

Before we turn to the design component of the relational mode, we need to define the
concept of keys. A primary key is a set of one more attributes of a relation, whose value
uniquely identifies tuple instances of that relation. A foreign key is an attribute which is
the primary key of some other relation. The integrity rule specifies what happens to

32

3. Design Approach

relations related through foreign keys when a table is subject to delete or update
operations.

Sth or Projection-Join Normal Form (SNF)
|
4th Normal Form (4NF)
I

Boyce-Codd 3rd Normal Form (BCNF)

—

3rd Normal Form (3NF)

I
2nd Normal Form (2NF)
1

1st Normal Form (INF)

Figure 3.2: The hicrarchy of Normal Forms.

Normal Forms are rules developed to avoid logical inconsistencies in table update
operations. Each Normal Form prohibits a form of redundancy in table organisation that
could yield inconsistent results if one table is updated independently of others. There are
multiple levels of Normal Forms, with each higher level Normal Form adding a constraint

to the Norma! Form directly below it(Figure 3.2).

We mentioned earlier that relations must be in first Normal Form. In fact, this
condition lies at the bottom of a the hierarchy of Normal Forms as shown in Figure 3.2, of
which the most important are the Third or Boyce-Codd Normal Forms. The theory of
Normal Forms is merely a way of formalising the common-sense notion of “good design™.
The notion of a good normalised database design will be explained in Section 4.3 (Testing
for 3NF and BCNF).

To facilitate the definition of the various Normal Forms we will first definec what is
meant by one attribute being functionally dependent on another. An attribute is
Sunctionally dependent on another attribute if and only if each value of the second one
uniquely determines the value of the first. Functional dependencies express concrete

33

3. Design Approach

relationships in the real world and require an understanding of the application. Functional
dependencies generally cannot be discovered by an automatic process, only by a skilled

systems analyst.

The First Normal Form, or INF, insists that the attribute value entries are “atomic”;
that is, there are no “repeating groups” or lists, and values must be primitive data types
rather than pointers. The Second Normal Form, or 2NF, says that tuples are uniquely
defined by a primary key. The most useful form of 3NF, the Boyce-Codd NF, says that
every determinant is a candidate key. In other words, every string of attributes that
uniquely identifies a tuple could be the key. 4NF helps to avoid redundancy and SNF
prevents what are called lossy joins; that is, if two (or more) relations are joined and

decomposed to the original form no data are lost [Ullman, 1981].

The theory of Normal Forms is an aspect of “bottom-up” design and is complementary
to top-down design methods. It is not, necessarily, a part of the relational model. The
whole theory of integrity is also not part of the model. This theory, as well as the

relational Normal Forms will be used and discussed in more detail in Chapter 4.

34 Semantic Data Models

Semantic data models started with Abrail’s [Abrail, 1974] binary relational model. The
schemata of the binary model are essentially semantic networks restricted to classes.
Chen’s notation [Chen, 1976] was introduced originally as a notation for design. It had
quite different goals than the relational model, which attempts to separate the physical and
logical description of data and develop powerful non-procedural enquiry languages.
Semantic data models were intended to allow the modelling of relationships and integrity.
Modern semantic models intend to introduce very sophisticated means of handling
inheritance, instantiation and subtyping. The general idea is to be able to model data at

high and low levels of abstraction and to capture as much meaning as possible.

3. Design Approach
3.4.1 The ER Model

The Entity-Relationship (ER) model was first described by Peter Chen in 1976, The Chen
basic ER model uses rectangles to specify entities, which are somchow analogous to
records. It also uses diamond-shaped objects to represent the various types of
relationships, which are differentiated by numbers of letters placed on the lines connecting

the diamonds to the rectangle (Figure 3.3). Figure 3.3 models the following facts:
Assertion [: Every patient has one or more admittance records into the ICU.

Assertion 2; A patient is characterised by a name and a gender.

.\m Patient Admittance
e

Figure 3.3:A paticnt (entity) has (relationship) many admittance records (catitics) in an ICU.

ER models have two goals, to enforce business rules like referential integrity and to
classify relations into types. The ER model has proven very useful in the ficld of databasc
design. It represents the structure of the database in a simplistic and intuitively appealing
fashion. The ER model plays a significant role in the construction of abstract and logical
database designs, it also provides a suitable basis for enabling database designers to get an
intuitive grasp of the real world. Since the original definition of entitics and relationships,

the ER model has undergone a variety of changes and extensions [Teorey et al, 1986].

The basic ER model consists of three basic constructs or classes of objects: cnfities,

attributes and relationships.
Entities

Entities are the principal data object about which information is to be collected. An entity
usually denotes a concrete or abstract object found in the domain we are modelling (or the
real world), such as a patient (a person) or an admittance sheet. A particular occurrence

of an entity is called an entify instance or simply an instance.

35

3. Design Approach

Attributes

Attributes are characteristics of entities or relationships; they provide details about them,
A particular occurrence of an attribute within an entity or relationship is called an attribute
value. The attribute construct for the ER model is an ellipse with the attribute name

inside, as shown in Figure 3.3,

There are two types of attributes: identifiers or descriptors. An identifier (or key) is
used to uniquely determine an instance of an entity. This often referred to as the
identification concept. For instance, an entity name uniquely identifies the class or entity
group. This means that the database system must have a mechanism that distinguishes
entity instances by their identifiers. Therefore, every entity, relationship or any other type

of construct in an ER model must have a unique and distinct name.

A descriptor (or nonkey attribute) is used to specify an nonunique characteristic of a

particular entity instance.
Relationships

Relationships represent real-world associations among one or more entities. A particular
occurrence of a relationship is called a relationship instance. Relationships are described

in terms of degrer, connectivity, cardinality, attributes and existence.
Degree of a Relationship

The degree of a relationship is the number of entities associated in the relationship. For
instance, a binary relationship is a special case where the degree of the relationshipis 2. A
ternary relationship is of degree 3. Consequently, an n-ary relationship is the general form
for any degree n relationship.

36

3. Design Approach

Connectivity and Cardinality of a Relationship

The connectivity of a relationship describes the mapping of the associated entity
occurrences in the relationship. The values for connectivity are either one or many. The
actual number associated with the connectivity is called the cardinality of the relationship
connectivity. Cardinality describes the constraints on the number of entity instances that
are related by a relationship. The most common cardinalities are one-ro-one, one-to-many
and many-to-many. Figure 3.3 shows a one-to-many binary relationship, the number |
indicates the one side of the relationship and the letter M indicates the many side. M is
sometimes replaced by N or P or it could simply indicate a number such as 2 or 3; in this

case the cardinality of the relationship would a 1-to-3,
Attributes of a Relationship

Attributes can be assigned to entities as well as relationships, as shown in Figure 3.3.
However, unlike what is shown in Figure 3.3 where at least one side of the relationship is
a single entity, attributes are seldom assigned to one-to-one or one-to-many binary and

ternary relationships because. Therefore, attributes are mainly assigned to many-to-many

relationships.
Existence of a Relationship

In some cases, the existence of an entity may depend on the existence of another. This is
called existence dependency, or simply existence. Existence of an entity as part of a
relationship can be either optional or mandatory. If an instance of the one or many side
entity must always exist in order for the entity to be included in the relationship, thenitis a
mandatory existence. When the instance of entity does not need to exist, the existences is
considered optional. The representation of optional and mandatory existence vary from
one notation to another. For example, in Chen’s notation an optional existence is

represented by 2 0 on the relationship line.

37

3. Design Approach

3.4.2 Extended ER Models

As computers, programming and database implementation techniques advanced, the first
ER model introduced by Chen failed to capture the intent of database designers during
complex applications development, It lacked substructure presentation for entities and
relationships. Smith and Smith [Smith and Smith, 1977] showed that the relational model
was insufficiently expressive to capture the comprehensiveness of an Entity-Relationship
(ER) model, This claim is evident from research that supports the extension and the
replacement of the ER model. This research provided several semantically richer
extensions to the basic ER model, some of them with similar names. The extended entity-
relationship model, EER, introduced by Teorey ef al. [Teorey ef al., 1986] includes new
constructs to the ER model or notions which differentiate generalisation and subset
hierarchies (supertype/subtype). The enhanced entity-relationship model, also EER, was
introduced by Elmasri and Navathe [Elmasri and Navathe, 1989] with the aim of being a
superset of most other ER proposals. It introduced the concepts of swbclass and
superclass, and the related concepts of specialisation and generalisation

(aggregation/association), as well as the mechanism of attribute inheritance.

In order to achieve their goals, Teorey et al. and Elmasri and Navathe especially, were
forced to introduce classes or abstract classes into their EER models much in the manner
of object-orientation. It is instructive that these authors seem driven inexorably towards
this introduction of classes. Possibly this indicates that the notion of abstract classes with
inheritance is canonical; i.e. a “best” way of handling higher-order notions about entities

and concepts in a data modelling context [Graham, 1994].

Hence, the most important concepts or constructs that were introduced as
enhancements or extensions to the ER model are: classification, instantiation,

specialisation, generalisation, aggregation and association. These are discussed below,

Classification and Instantiation
The process of classification involves grouping similar objects into object classes. In

many cases, groups of objects share the same types of attributes and constraints,

38

3. Design Approach

classifying objects helps in defining their properties. /nstantiation is the inverse of

classification and refers to the generation of an object of a certain class.

In the EER model, entities are classified into entity types according to their structure
and basic attributes. Moreover, entities are classified into subclasses and categories based
on additional similarities or differences among them. Objects that arc relationship
instances are classified into relationship types. Hence, entities, subclasses, categories and
relationships are the different types of classes in the EER model [Elmasri and Navathe,
1989).

Generalisation and Specification
Spectalisation refers to the concept of classifying a class of objects into more specialised
subclasses. Generalisation is the opposite; it refers to generalising several object classes

into a higher level of abstraction which includes the objects in all these classes.

Skill
: Employce Work
Project Assigned Station
to
Has_
Location Allocated
Manager Technician Engincer

Figure 3.4: An EER data modcl showing binary, ternary relationships and inheritance (the thick arrows).

The EER models use the concepts of subclasses and object classes categorisation in
order to model specialisation and generalisation. For example, Elmasri and Navathe
[Elmasri and Navathe, 1989] use a relationship called /S-4-SUBCLASS-OF between a
subclass and its super class in order to model generalisation and specialisation. Moreover,
some EER models employ the subclass and superclass concepts in order to model attribute

inheritance between object classes. For example, the typical EER model shown in Figure

39

3. Design Approach

3.4 uses thick arrows to indicate that Technician, Manager and Engineer are subclasses of

the superclass Zmployee.

Aggregation and Association

Aggregation is an abstraction concept used for building objects from their component
objects. It is the part-whole or part-of relationship in which objects representing the
components of something are associated with an object representing the entire assembly.
This type of relationship between the primitive object and its aggregate objects is often
referred to, in an EER model, as the /S-A-PART-OF or /S-A-COMPONENT-OF. One

common example is the bili-of-materials or parts explosion tree.

On the other hand, association is used to associate several independent classes. In an
EER model this relationship is often referred as /S-ASSOCIATED-WITH. For example, a
company is not an aggregation of its employees, since company and person are
independent object classes of equal structure and therefore a person is associated with a
company. Arguably, an aggregation is a special from of an association, not an

independent class.

3.5 Object Oriented methods

The earliest work in computing goes back the late 1940s and it was exclusively concerned
with what we now think of as programming. Only later did a conscious need for design
and analysis tools arise. Similarly, it is object-oriented programming that first attracted
attention and only recently have object-oriented analysis and design become major areas of

interest.

Dyke and Kunz {Dyke and Kunz, 1989] claim that the designers of the Minutem missile
used rudimentary object-oriented techniques as early as 1957. The history of object-
oriented programming seems to start with the development of the discrete event
simulation language Simula in Norway in 1967 and continues with the development of a
language that almost makes a fetish of the notion of an object, called Smalltalk, in the
1970s. Samlitak was largely developed at the Xerox Research Centre in Palo Alto.

40

3. Design Approach

The 1980s showed an explosion of interest in the user interface (Ul), which became the
next phase of object-oriented programming [Larson, 1992]. Object-oriented programming
supported the development of such user interfaces. Also, from the mid-1970s onwards,
there was considerable cross-fertilisation between object-oriented programming and
artificial intelligence (AI) research and development, leading to several uscful extensions

of Al languages, especiaily LISP [Winston, 1984].

As object-oriented programming began to mature, interest shifted to object-oriented
design and analysis methods where researchers discovered that reusability and extensibility
can be applied to designs and specifications as well as code. Prieto-Diaz and Freeman
[Prieto-Diaz and Freeman, 1987) and Sommerville [Sommerville, 1989, 1992] have

argued, in more general software engineering terms, that the higher level of reuse, the

greater the benefit.

3.5.1 Object-Oriented Modelling

Object-oriented programming and database design incorporated many new ideas as well as
well-established concepts such as information hiding into a coherent set of rules for data
structure and data operations, including data abstraction, object communication through
messaging, encapsulation of data structure and behaviour into the same object and sharing

of data structure and code.

Object-oriented modelling and design methods inherited the aforementioned concepts
from object-ortented databases and programming [Won, 1990, 1995]. Moreover, the
object-oriented approach is characterized by the following four concepts: identity,
classification, polymorphism and inheritance [Rumbaugh et al., 1991]. The following is a

presentation of these ideas and concepts:

o QObjects. The basic unit of construction, be it conceptualisation, design or
programming, is an abstraction of the real-world entities, much in the manner of ER
modelling. Objects that exhibit common attributes, instances or behaviour are
organised into classes.

41

3. Design Approach

Object Identity. The object is uniquely identified in the system by an object identifier
which is independent from its attribute values. Hence, any attribute of the object can
be updated without destroying its identity.

Incapsulation. The data structures and methods that manipulate the data of the
object are hidden from the outside world and do not have to be known in order to
access the object’s data values or to invoke its methods. The methods associated with
an object arc a predefined set of procedures that manipulate the data of the object,
they are also referred to as the stafe or the behaviour of the object. The only way to
access the object’s state is to send a message that causes one of the methods to
execute.

Messages. Objects, classes and their instances communicate by message passing. This
climinates data duplication and ensures that changes to data structures encapsulated
within an object do not propagate their effect to other parts of the system. Messages
are often implemented as function calls.

Inheritance. Instances are capable of inheriting the features of the classes they belong
to. This concept is also extended to classes, and known as class hierarchy, where
classes are arranged in a hierarchy in which each class inherits all of the attributes and
methods of its ancestors. Moreover, this concept allows object-oriented methods to
construct complex objects, which is the ability to define new composite objects from
previously defined objects in a nested or hierarchical manner.

Polymorphism. The ability to use the same expression to denote different operations
is referred to as polymorphism. For example, when the message “add 1” is sent both
to a bank account and to a list of reminder notes, the same message should produce
different results. Inheritance is a special kind of polymorphism that characterises
object-oriented systems.

5.2 The OMG Abstract Object Model

The Object Management Group [OMG, 1993}, 2 consortium of object technology vendors
and interested parties, have defined a high-level reference model for object-oriented
analysis and design. The OMG abstract data model is not a method, rather a framework

42

3. Design Approach

within which object-oriented software engineering methods can be evaluated. Figure 3.5

illustrates that reference model.

The OMG special interest group (SIG) who developed the reference model considered
over 30 methods and none of them were excluded by the result. The need for the object
model arose because of large variation in meaning given to terms like “object™ and
“method” in the literature. Does “object”™ mean an instance of an object or a class of
objects? The object model now declares that ehject fype shall be the correct term for
class. Methods are defined as the implementation of operations. Appendix A contains a
table which summarises the terminology of the object model and the various specialisation
relationships between terms. However, designers will continue to say “object™ for short,

just as data modellers say “entity” for entity type.

Life Cycle

'

T Strategic modelling

Object T— Analysis modelling
modelling

S Design modelling .

- Implementation modelling —

Figurce 3.5: The OMG reference model.

Object modelling provides a set of terms and concepts for respecting everything within
the scope of analysis and design as an object. It defines standard terms. Strafegic
modelling covers enterprise and b.:‘ness modelling, requirements capture and
development planning. Analysis modelling covers the process of obtaining a description
of the problem domain. Design modelling consists of adding non-public information to
class specification and producing a solution to some particular problem including system
objects. /mplementation modelling consists of the physical design and involves designing
modules, the distribution strategy and consideration of the software and hardware to be

used.

43

3. Design Approach

3.6 Object Modelling vs. ER Modelling

After comparing 11 sermantic data models, Biller and Neuhold [Biller and Neuhold, 1977]
conclude that there are essentially two types of data modelling formalism, entity-attribute-
relationship (EAR) and ohject-relationship (OR) models. Proponents of each claim that

their mode! generates “better” design representations than the other [Everest, 1988].

Kim and March [Kim and March, 1995] presented an empirical study that compares
two popular semantic fact-based data models: the EER model and the Nijseen information
analysis methodology (NIAM) an object model. The NIAM model [Nijssen, 1977] is
based on the early binary modelling work by Abrail [Abrail, 1974] and Senko [Senko,
1976]. It is widely used in Europe and Australia and is considered, along with the ER

approach to be among the major approaches used internationally [Kim and March, 1995].

The study conducted by Kim and March was more of a context-sensitive empirical
research in the data modelling area, with strong emphasis on external validity. In other
words, the study examined the effects of EER and OR modelling on designer’s
performance in developing data models and, more importantly, on user’s performance in

validating data modzsls.

The conclusion of that study showed that the EER and the OR models developed by
analysts were significantly different in terms of their semantic quality but were not
significantly different in terms of their syntactic quality. It also showed that the
performance of designers and of users was subjective, depending on whether designers
and users were familiar with a structured or object-oriented approach. However, this
study also implied that in the case of modelling a database schema an object model has
more to offer in terms of efficiency and design semantics than an EER model, and users

can learn and comprehend an object model just as well as an EER model.

3.6.1 Current EER and OR

The object model, currently looming, combines many of the features and benefits of the
relational and the EER models. Arguably, it is also the location of a convergence of ideas

44

3. Design Approach

from semantic data modelling, artificial intelligence and object-oriented programming,

design and analysis.

An attribute of an object, in an object-oriented design method, is a descriptive property
of an object in the same way an attribute describes an cntity in an ER model. An object
instance is a single occurrence of an object class, much like an entity instance. An
association between two object classes, in the object-oriented modelling approach, is an
abstraction of a link that exists in the recal world between these two objects. Similar to the
EER models, object-oriented models are expressive enough to capture the semantics of

classification, aggregation, association and class identification.

Associations in the object model are abstracted in the same manner as in the EER,
however the constructs used in depicting the model diagram are different. Associations in
the object model are usually shown by a straight line between the two object classes it

connects (Figure 3.9).

Object models use the concept of multiplicity, which is similar to the cardinality and
connectivity of entities in an ER model. Multiplicity allows the designer to specify an
association between an explicit number of any object instances with another object
instance, such as one-to-one, zero-to-many or 2-to-3 (Figure 3.9). Object models also
allow the naming of associations as well as the naming of roles of each object class in the

association (e.g. Figure 3.10).

However, the main difference between these two models lies in modelling the
behaviour of an object class. The ER or EER models are weak in capturing the
behavioural aspect of objects. The object-oriented approach views classes (or types in
EER) as a collection of methods. The EER model, on the other hand, is limited to
regarding classes (supertypes/subtypes) as relationships among objects (entitics), and
ignores the dynamic behaviour of the object.

Another difference between EER models and object-oriented models is the
representation of complex objects. Since object-oriented models emphasize behavioural
abstraction, the accent is on the inheritance of encapsulated methods. Conceptually, the

45

3. Design Approach

encapsulation concept allows an object, in an object-oriented model, to store both

attributes which themselves can be complex objects and methods together.

3.6.2 The PDMS Database Modelling Approach

For this initial design of the PDMS database, there is no considerable advantage in using
an EER database modelling over an object-oriented one. Both methodologies provide
casy constructs that convey the database schema in a clear and concise manner. They both
provide methods that detect inconsistencies and discrepancies in the design. Moreover,
both techniques allow classification and inheritance of data, which reduces data
redundancy, as well as mapping techniques from the semantic design model to relational

tablc model, since the PDMS database is being implemented on a relational platform.

However, if we consider the extension (future versions) and the reuse of the designed
database model, an object-oriented design methodology has more to offer than an EER
data modelling approach, The modelling and encapsulation of the object’s dynamic
behaviour, in an object-oriented method, do not only reduce data redundancy but also
reduce the amount of code that interacts with the database by promoting code reuse.
Morcover, encapsulation in the database design model yields code modules that are easy

to implement and less expensive to maintain.

Another aspect to consider is that object-oriented analysis and design methods offer a
more integral approach to system design. Most of these approaches contain three separate
notions for modeiling data, dynamics and process [Coad and Yourdon, 1991, 1991a]
[Rumbaugh, 1991]. Such a method can be used not only as a modelling technique for the
PDMS database, but as an integral method that can be used in the design of the entire

system, which results in 2 more coherent system.

Recently, several famous designers in software development methods have produced
object-oriented extensions to conventional systems analysis and design methods, the most
noticeably of these being; object-oriented analysis (OOA) and object-oriented design
(OOD) by [Shlaer and Mellor, 1988], by [Coad and Yourdon, 1991, 1991a] and by [Wiess

46

3. Design Approach

and Page-Jones, 1991], Object Modelling Technique (OMT) by Rumbaugh e al.
[Rumbaugh er al., 1991}, OOD by Booch [Booch, 1991], object-oriented structured
design (OOSD) by [Wasserman ¢/ al., 1989]. Many others have also contributed. It is
widely agreed that that these methods are all more or less incomplete and it should be
noted that they are not so much methods as suggestions for methods. A comparison of
object-oriented methods can be found in [Fichman and Kemerer, 1992] and [Graham,
1994).

In order to employ the most suitable object-oriented methods in the design of the
PDMS database, the next section examines some of these suggestions or methods, all
while focusing on the database design aspect of these mecthods. The methodology

required should be able to satisfy, among others, the following principal three

requirements:
1. To provide easy constructs for grouping, building and encapsulating object classes,
2. To provide mapping technique from an object model to a relational (table) model,

3. To, as closely as possible, result in a 3NF or higher relational modcl.

3.7 Object-Oriented Analysis Methods

In fact, there is a general problem in distinguishing object-oriented design methods from
object-oriented analysis methods which is not the case for conventional methods.
Therefore, we will present the database design aspect of these suggested methods rather
than discuss the entire system design approach and methodology.

3.7.1 Shlaer/Mellor OOSA

One of the early object-oriented analysis examples is due to Shiaer and Mellor {Shlaer and
Mellor, 1988], but this method could not really be considered as object-oriented for
several reasons, mainly due to the absence of any inheritance notation. However, in a later
book Shlaer and Mellor [Shlaer and Mellor, 1991] included inheritance in their data

47

3. Design Approach

modelling technique through entity subtyping as well as the idea that methods could be

discovered by modelling the life cycles of entities with state transition diagrams.

The first step in Shlacr and Mellor’s method is the definition of objects and their
attributes. The entity modelling notation descended from the Ward/Mellor notation. The

next step stresses the definition of object life histories by using Moore style state transition

diagrams.
LICENSE
*license_nbr .
«duration I-Mc:M)
MANUFACTURER| © SOFTWARE
*Mfr_Nbr *Name_Version
*{other attributes) «(other attributes)

Figure 3.6; Shlacr/Mellor notation - tcrnary conditional relationship.

Shlacr and Mellor employ the same n-ary entity-relationships used in any extension to
the ER model. However, they present another extension to the multiplicity and cardinality
of the ER model to include the notion of conditional relationship. In an unconditional
relationship every instance of each object participates; in 2 conditional relationship there
may be instances of the object which do not participate in the established entity-
relationship (Figure 3.6).

Shlaer and Mellor’s methods is simple and easy to implement, it is strong in capturing
the life cycle of an object. It is attractive to some designers because it introduced the idea
of defining reusable domains. However, this method does not encapsulate the behaviour
of the object in its data model; instead, the state of the object is defined in a life cycle
diagram which depicts the methods that access the object, such as “get object” or “put
ohject”. The method is strongly influenced by relational design: objects are in the first
Normal Form and object identity is not 2 natural feature of OOA. Shlaer and Mellor’s
data modelling technique can be viewed as an extension of the ER model and does not fit

the profile of a complete object-oriented data modelling method.

48

3. Design Approach
3.7.2 Coad/Yourdon

Coad and Yourdon [Coad and Yourdon, 1990, 1991, 1991a] introduced a less clumsy
notation than that found in Shlaer/Mellor or most of the object modeliing techniques.
They shifted the focus very much to analysis as opposed to design. In the sccond cdition
of their book, Coad and Yourdon responded to the criticism that they had failed to
distinguish classes and instances by drawing a grey outline around the class notation to

indicate its physical instance, if it has any instances (Figure 3.6) [Graham, 1994].

Defining object classes and attributes, in Coad/Yourdon’s method, has the same
consideration as any data modelling exercise. The databasc designer can take advantage
of inheritance, and multiple inheritance of attributes and methods is notationally allowed in
the second book edition. The second edition also made a distinction among three types of
aggregation: part-whole, container-contents and collection-members (Figure 3.7). Such a
specific relationship among classes may be confused with composite structures, there also
may be other important structures required in 2 specific application. For example, some

medical database might be concerned with a kinship relationship for inherited discasc.

Employee Group
APO: Group Type
Name Responsibility

e -

Engincer

AKO: Employee

Manager
AKO: Employee|

Figure 3.7: Inheritance and composition hicrarchy in Coad/Yourdon
notation. AKO= A Kind Of, APO = A Part Of.

Influenced by the relational model, the Coad/Yourdon approach insists that attributes

should be atomic, which is contradictory to a main object-oriented concept, modelling

49

3. Design Approach

complex objects. They also discuss normalisation and the use of keys rather that object

identity.

3.7.3 OMT

The Object Modelling Technique (OMT) is widely regarded as one of the most complete
object-oriented systems analysis method published to date [Graham, 1994]. OMT was
introduced by Rumbaugh and his colleagues at General Electric [Rumbaugh et a/., 1991].
It breaks down into threc main phases or activities: analysis, system design and object
design. OMT has strong roots in traditional structured methods and offers an extremely

rich and detailed but complicated notation.

As mentioned at the beginning of this section we will concentrate on the object
modelling aspect of the studied object-oreinted methods. The first step in OMT is to build
the object model (OM), which consists of diagrams similar to those of Coad/Yourdon but
contains a2 much richer notation. The notation is fundamentally that of an EER modelling

with methods (operations) and other annotations added into the entity icon (Figure 3.8).

Jass:
Class Instances:

Class Name

aftribute

attribute:data_type (Class Name)

attribute_name = value
operation attribute_name = valuc
operation(ar_list)=rctum_type

Fipure 3.8; Classcs and instances in OMT.

The basic data modelling notation of OMT is shown in Figures 3.8 to 3.12. Note in
Figure 3.8 that attributes are typed and operations given argument lists and return types,

and that instances have round corners and bracket names.

50

3. Design Approach

Multiplicity of associations:

Claxs Exactly one
—d_m:— Many (zero or more)
— Class Optional (zero or more)

el Class One or more
— 24T Class Numerically speeified

ordered

Figure 3.9: Associations in OMT.,

Figure 3.10 shows that trenay associations are allowed but associations with attributes
are often expanded into first-class objects. Associations are annotated with roles and may

have a qualifier. The latter is occasionally useful.

Classification structures are shown in Figure 3.11, from which it can be deduced that
the notation is richer than that of Coad/Yourdon in expressing exclusivity and optionality.

Association Name

role -1 P role -2

Class-B

Class-C

Class- A

Association Name

Class-B
\/

link attribute

Class- A

Figure 3,10: Ternary associations and associations with attributes in OMT.

51

3. Design Approach

Superclass

1 1 [
(1) [Subclass-A Subclass-B ces

Superclass | () Superclass | ©)
‘ Adiscriminntor
[=T [I
Subelass-A Subclass-B Subclass-A Subclass-B

Figure 3.11: Classification in OMT,
{a) Morc subclasses exist. (b) Subclasses have overlapping (non-disjoint) membership.,

(c) The discriminator is an attributc whose value discriminates between classes.

Assembly Class

y
1 A

Part-1-Class Part-2-Class

Figure 3.12: Aggregation (composition) in OMT.

Composition structures are shown in Figure 3.12. A particularly strong feature of

OMT is the ability to represent recursive composite structures.

Rumbaugh er al. [Rumbaugh er al., 1991] presents some heuristics for implementing
object-oriented designs in relational databases and in conventional languages. The

guidelines given for relational database implementation are as follows:

e Objects are identified using primary keys, preferably database engine-generated
surrogates.

¢ Classes are tables and instance tuples.

e Associations are tables.

¢ Inheritance links are shared with a secondary index.

52

3. Destgn Approach

Generally, third-generation relational databases such as Ingres and Sybase give better
facilities for object-oriented modelling; however, the above guidelines work for most

database products.

OMT covers more issues than most other methods but it remains incomplete in some
areas and it is very complex to learn and use the notations, The emphasis on state
transition diagrams in OMT reflects its real-time modelling background. On the other
hand, unlike some other methods that employ state transition diagrams such as
Shlaer/Mellor, OMT allows to model the methods (operations) within its basic class

notation according to the encapsulation concept.

3.7.4 OMT in the PDMS Database Design

Among the reviewed object-oriented analysis and design methods, OMT seems to satisfy
the requirements presented in Section 3.6.1. The Rumbaugh ¢f a/. approach (OMT) uses
two other types of models in addition to the object mode! in order to describe the design
of an information management system. The first one is the dynamic model, which
illustrates the dynamic and control aspect of the system such as the changing states of an
object, using a state transition diagram (STD). The second type of model is the functional
or process model which describes the transformation of values that occur during system
execution, using data flow diagrams (DFD).

Such types of models are not found in the extensions of the ER model. They are not
even found in some object-oriented system design methods. Triggering, or the
propagation of operations from one object to another, is also defined in this methodology

in the form of object messages.

Moreover, OMT was considered for the design of the PDMS database because it
offered object-oriented modelling techniques for relational database implementations.
This aspect renders the object model of the PDMS more flexible and extendible, while
providing 3NF or higher realizable relational data tables.

53

Chapter 4 Design

Figure 4.1 illustrates the architecture proposed by the ANSI/SPARC committee on DBMS
for a family of related database applications. The basic idea is that database design should
comprise three layers: the external, conceptual and internal schemas. The external schema
is an abstraction of the global conceptual model, it isolates applications from most changes
in the conceptual model. The conceptual schema is a database design that integrates
related applications and hides the peculiarities of the underlying DBMS. The conceptual
schema contains what is known as meta-data. Meta-data is data that describes other data.
For example, the definition of a class or a database table is meta-data. The internal schema
deals with the limitations and features of a specific DBMS, it consists of actual code

required to implement the conceptual schema or model.

Application | Application 2 Application n
1 | extemal
External External | . External 1 schema
schema 1 schema 2 scheman | | layer
|

]

'

]

Conceptual Schema 1
1

1

-t

internal

t

t schema
Internal | eccecmcccmenaaan Internal t layer
Schema |} Schema m, :

Figure 4.1: ANSUSPARC three schema architecture,

The PDMS database design uses Rumbaugh’s OMT for designing both the external and
conceptual schemas, and OS/2’s Database Manager specific code to create the internal
schema. When used for a relational database implementation, OMT refers to these three
layers of the database design as the high, middle and low levels. The initial high-level
object model is successively converted into relational tables and then into the low level
DBMS Data Definition Language (Figure 4.2).

54

4. Design

Iligh level Logicul Dutu
Model or Object Madel

Mapping of object structures to tables
Candidate and primary keyns

Identily non-null attributes
Frequently accessed attributes

Middle level (Ideal relation)
DBEMS.independent Table Model

Placement of tables within files
Length of names

Domain Definitions

Seccondary indexes

Low level DIEMS duta
definition language. t hysical
Model or structure,

Fipgure 4,2: Design Levels,

Employing the OMT to design the PDMS database guarantees that the tables of the
relational data model will be in the Third or Boyce-Codd Normal Form.

4.1 The PDMS Database Object Model

The first step in the design of the PDMS database is describing its high level object model.
This step is also used to analyse the information or data which requires processing in the
considered ICU. As suggested by the OMT, this phase will consist of grouping the similar
data elements types, managed in the ICU, under respective object classes and then
establishing the necessary or appropriate relationships types between these classes. For
this prototype version of the PDMS, the object model is mainly composed of binary
associations and aggregations between six different superclasses as illustrated in Figure
4.3, Patient, Parameters, Admittance, Ingesta, Excreta and NCP. The OMT graphical
notations used in Figure 4.3 to depict the PDMS object model have already been explained
in Section 3.7.3.

S5

4. Design

Patlemt
Firnt_Nama
Last Nama
Hurth Dute
Nex
Addrass
hone
| L
l l] l l
Purameters Admittance Ingesta Farrets NCP
Dyagnoss
Ty Dwte. Tima_In ThagMemo
Valus Had _Nbe Allergies
Time _Stamp Tactor Naotem
] l Dule_Tima_Out QOperstiona
Q o 0 o “Total_Pounts
Duie_Tithe
0 Salutiom
v - 1
IV _Nbr b Number
- Nathet
Ihdy_Prit Quangty Route
Comment Cumulstive Rate
Level Sugr TypeTas
Actual Inmk Ketone Tt
Demred Intk 5G
Dute_Time Dute_Time
J Medication
InCastric b—
J Staat Natte
Route
Type Dosage
Level Amount
Athoutit
PRNTag
Date_Time Dute_Tume Pounts
Mo B— Y rxcanm o T
Total_Lows Task_ID
Total_Intske Abd_Guh Potia
Totd_Balunce Freq_Type
Dute_Time Dute_Time \,::;,

Figure 4.3: The PDMS Object Modcl.

Upon admissior into the ICU of the Montreal Children’s Hospital, the patient is
registered into the system. The registration procedure consists of recording the name, sex,
birth date, address and phone number of the Patient. Then, an Admittance record is
created for that patient, which consists of the assigned bed number, the principal treating
physician, the time and date of admission and eventually the time and date of discharge.
Since a patient may be admitted more than once into the ICU an one-to-many association
exists between a single patient and the corresponding admittance records, depending on

the existence of the Patient.

During his or her stay in the ICU, the patient will be monitored by electronic
cquipment. This equipment generates electronic data such as the patient's heart beat rate

56

4. Design

and respiration rate. It also measures and generates data for about fifty other vital sign
parameters. The set of electronic data attributes is identified in the system by the
Parameters object class. The PDMS has a requirement for storing all this electronic data
in a real-time fashion, since this data needs to be plotted in real-time graphical charts. It
also needs to be analysed and monitored by an expert system module that detects and
warns about any alarming data value [Collet, 1990]. Since these may be up to onc
parameter recording per second related to the patient, there exists an one-to-many
association between the Patient and the Parameters object classes, depending on the

existence of the Patient,

Another set of data that is gathered manually in the ICU is the volume of all fluids
extracted or injected from and into the patient's body. This data set is identified in the
system as the Fluid Balance object class. Since the fluid balance is the recording of all
injected and extracted fluids, we have divided the fluid balance object class into two object
classes, /ngesta and Excreta. Since the patient may be associated with more than onc
Fluid Balance sheet, the relationship between the Patient and the /ngesta and Fxcreta

object classes is an one-to-many association, depending on the existence of the Patient.

The Ingesta class defines the volume data of all injected fluids and is composed of
many instances of two subclasses: /V (Intravenous) and /nGastric object classes. The /V
object class groups the data attributes of all the fluids injected into the patient's body in the
form of an IV. The InGastric object class groups the data attributes of all the medication
injected into the patient's body in the form of a gastric fluid. Hence, there exists a one-to-
many aggregation relationship between the /ngesta and the /V classes, as well as between

the Ingesta and InGastric classes.

The Excreta class defines the volume data of all fluids extracted from the patient’s body
and is composed of many instances of four subclasses: Blood, Urine, ExGastric and Stool
object classes. The Blood object class groups the data attributes of all the blood balance
in the patient's body. The Urine object class groups the data attributes of the quantity of
urine that was released from the patient’s body at a certain time and date as well as the
cumulative quantity to date and time. It also groups the attributes that define the

57

4, Design

characteristics of the urine such as the amounts of sugar and S.G. that were measured.
The FxGastric object class groups the data attributes of the measured abdominal girth of
the patient. The Stoo! object class groups the data attributes of the patient's stool. Hence,

there exists a onc-to-many aggregation between the Excrefa class and all its subclasses.

Each patient in the ICU is associated with a Nursing Care Plan. This plan may vary
according to the patient's condition and the treatment requirements. The data attributes
sct that compose the Nursing Care Plan is identified in the system as the Nursing Care
Plan (NCP) object class. Since the Nursing Care Plan varies over time, and since more
than one plan could exist for a single patient, there exists an one-to-many association

between the Putient and the NCP object class, depending on the existence of the Patient,

The NCP class is composed of many instances of the following sub-classes: 7ask,
Medication and Solutions. The Task object class represents the information about the
tasks that the nursing staff has to perform. Each task is identified by a Task Number or
Identifier and weighs 2 certain number of points. These points are used to measure the
global load or effort associated with a certain care plan, it is also used to measure the
individual nursing staff load. The Medication class represents the information about the
type of medication that should be administered with this care plan, as well as its frequency,
volume and means of administration. The Solutions class represents the information about
the solutions that should be administered with this care plan as well as their name, type,

frequency, volume and means of administration.

4.2 The PDMS Database Table Model

The middle level table model contains generic, DBMS-independent tables. The motivation
for the middle level is to decouple the general problem of mapping objects to tables from
the specifics of each DBMS. The middle level or the table model is wordier and less
cffective at conveying the overall structure of the database model than the high Ievel.
However, using the mapping notations suggested by Rumbaugh er al., the middle level
conveys more details, and facilitates the generation of the Data Definition Language in

58

4. Design

order to physically implement the database. This improves documentation and cases
design portability.

In order to map the object model to the table model, we can choose among several
mapping alternatives. For example, there are two ways to map an association to tables
and four ways to map a generalisation. However, since the refationships in the PDMS
object model are all associations or aggregations, Section 4.2.2 will concentrate on the

procedure which maps associations from the object model to the table model.

The middle level is one step closer to the physical implementation of the database than
the high level object model, it conveys more specific detail about the attributes of cach
class and the domains to which each attribute belongs. Such details aid the programmer to
develop code that creates the database tables, even without any understanding of the

global system model.

The low level is the data definition of the target DBMS. This level contains the actual
DBMS commands that create the tables, attributes, and indexes. The low-level considers
DBMS specifics such as location of the tables within the database, and choice of

performance tuning mechanisms. It deals with the arbitrary restrictions such as size

limitations.

The following two sections will present a general procedure or algorithm which is
employed in mapping the object model of the PDMS into the table model. The mapping
procedure will be detailed in a step-wise fashion. Morcover, these sections will also

explain the graphical representation of the middle level table model.

4.2.1 Mapping Object Classes to Tables

STEP 1: For each class C in the object model, we create a relation R which includes all
the attributes of C.

STEP 2: If the designer chose to identify the object by an ID, then the 1D must become a
non-null attribute of R and its primary key (for example, “Patient.Patient 1D"
in Figure 4.3). Otherwise, the key atiributes of C become the primary key for R.

59

4. Design

There arc benefits for using IDs. They are immutable and completely independent of
changes in the data value and physical location. The stability of object [Ds is particularly
important for associations since they refer to the object. This can be contrasted with the
referring of objects by name, where changing a name requires the update of many

associations. [IDs provide a uniform mechanism for referencing objccts.

On the other hand, IDs have disadvantages. Generating IDs is a nuisance, for which
RDBMSs provide no inherent support. Therefore, in the design of the PDMS object
model, we were careful as to which class should benefit of an object identifier. This
decision was based on the type of association between two classes, as will be described in
Scction 4.2.2.

Graphically, a class is usually portrayed by a table (Figure 4.4), whose title is the name
of the class which eventually will become the name of the database table. The table

contains five columns that list the following:

o The first column defines the name of each attribute defined in this class.

e The second column defines whether this attribute can contain a null value in the
database; i.e., is it mandatory for this attribute to contain a value when inserted in the
database?

e The third column indicates whe.her this value should be unigue in the database. This is
used in order to preserve the referential integrity (see Section 4.4.1) in the database.

e The fourth column defines the domain for which this attribute belongs; for example, an
attribute can be an integer, a character, etc.

e The last column indicates the size in bytes of that attribute. If the columns contains
the value “dflt”, this indicates that the programmer may use the default database
system type size for the considered attribute.

The table model also indicates, next to each table, the candidate keys and the selected
primary key of that table (see Section 4.4.1), as well as its frequently accessed attnbutes.
It is also suggested that table indexes should be defined at this design level. Irdexes are
typically used to speed up the access to a table. If an index is used by the Database

60

4. Design

Manager to process a query, specific rows can be located faster with an index scan than a

table scan. Index files generally are small and require less time to read than an entire table,

However, the use of indexes has disadvantages. The various access paths that the
Database Manager can choosc suggests that indexes reduce access time significantly.
Each index takes up a certain amount of storage depending on the size of the table and the
number of attributes included in the index. Hence, in the case of the PDMS database
model each insert operation performed on a table requires additional updating of each
index on that table. And since the PDMS databasc model requires intensive insert

operations, especially in the DLC module, the system performance can deteriorate.

A better solution would be to define primary keys wherever they apply. Since cach
primary key has a unique index it reduces the overhead of maintaining and managing cxtra
index tables or files. This solution proves to be ideal in the case of the PDMS database.
Since the candidate index on all the data model tables is the Patient I attribute, which is

also part of all the primary table keys. Therefore, we relied on primary keys to perform
the table indexing.

4.2.2 Mapping Binary Associations to Tables

In general, an association may, or may not, be mapped to a table. It depends on the type
and multiplicity of the association and the database designer’s preferences in terms of

extensibility, number of tables, and performance trade-offs.

A many-to-many association always maps to a distinct table. This schema satisfies
Third Normal Form. On the other hand, and since we are mainly concerned with one-to-
many associations, there are two options of mapping one-to-many associations to tables.
We may create a distinct table for each association or bury a foreign %ey in the table of the
many class. The advantages of merging an association into a class are:

» Fewer tables.
e Faster database performance due to the fact of navigating less tables.
The disadvantages to that approach are:

61

4, Design

e More complexity; an asymmetrical representation of the association complicates
scarch and updates.

e Less design rigor; associations are between independent objects of equal syntactic
weight. It seems inappropriate to contaminate objects with knowledge about other

ohjects.

However, since in our case real-time response is a crucial design element and since the
aforementioned disadvaniages can be carefully resolved in the application module
surrounding the database, in other words the behaviour of the object class, we opted for
mapping one-to-many associations as foreign keys in the table of the many class. Another
factor that played a role in that decision is the fact that all associations in the PDMS object
model are one-io-many. Hence, if we translate them all in the same manner, we promote
consistency throughout the database design and, in particular, in the modules that access
cach table, which reduces the complexity of search and updates. This was implemented by
making sure that the buried key should become a2 non-null attribute of the primary key of

the many class.

STEP 3: For each one-to-many association with existence dependency between a one
class Crand a many class Cm, the primary key K: of the relation R: (table of Ci)
should be added as an attribute of Rm (table of Cm).

STEP 3a: K: should not be null and should be an attribute of the primary key of Rm.
STEP 4: For each one-to-many aggregation repeat STEP 3 and STEP 3a.

STEP 4a: Make sure that no attributes of R: are replicated in Rm except the primary key
of Ru.

STEP 4b; Make sure that no attributes of Rm are replicated in R1.

As aforementioned an aggregation is a special type of association. But since in an
aggregation relationship the subclasses compose the abstract notion of the assembly object
class, and in order to ensure design integrity, the attributes between the superclass and the
subclass should not replicated, except when mapping the relationship from the object

62

4. Design

model to the table model (step 4a). In this context, an aggregation allows the inheritance

of attributes between the “super” and the “sub” classes. Hence, steps 4a and 4b enforce

these design guidelines.

4.3 Testing for 3NF and BCNF

Normalisation of data can be viewed as a process in which unsatisfactory relation schemas
are decomposed by breaking up their attributes into smaller relation schemas that possess
desirable properties. Hence, Normal Forms can be considercd as tools that provide the
database designer with a series of tests that can be carried on individual schemas so that
the relational database can be normalised to a desired degree. When a test fails, the
relation violating that test must be decomposed into relations that mect the normalisation
test [Elmasri and Navathe, 1995]. Date [Date, 1986, pp. 390-391] has formulated the

successive decomposition process as a set of rules.

The higher levels of normalisation are important for database designers because they
make the structure of the database easier to understand and they reduce data anomalies.
Hence, a database schemx design in 3NF and higher is considered to be a “good design”.
Normalisation beyond 3NF is rarely done in practice. Although BCNF and 4NF are less
rare then 5NF, they are still highly theoretical in nature [Mittra, 1991]. Usually, a relation
in First and Second Normal Form exhibits certain anomalies with respect to insertion,
deletion or updates of tuples, whereas 2 relation in Third Normal Form does not have such

problems. Consequently, a relation in 3NF or higher is preferred.

The goal of the design algorithm presented in this section is to test whether cach
individual relation in the PDMS table mode! is in 3NF or BCNF. Otherwise, if a table fails
to be in 3NF or BCNF, we will discuss the alternative procedures available to amend this
situation as well as their design imsiications. Hcowever, before discussing the algorithm,
we should present some concepts «r terminology that will be extensively used throughout

this exercise.

43.1 Referential Integrity Constraint

63

4. Design

In general, a relation or a relation schema may have more than one key, and each of these
keys is referred to as a candidate key. It is common to designate one of the candidate
keys as the primary key. The entity integrity constraint dictates that a non-primary key
can be null, but a primary key value cannot. This is because the primary value is used to

identify individual tuples in a relation.

An attribute is called a prime attribute of a relation if it is a member of any candidate
key or the primary key of that relation. An attribute is called a nonprime attribute if is not
a prime attribute [Elmasri and Navathe, 1995].

The referential integrity constraint is specified between two relations and is used to
maintain the consistency among two tuples of two relations. For example, in Figure 4.4,
the attribute Patient_ID in the Admittance relation is used as a forcign key part of the
primary, in order to maintain a consistency between a tuple from the Patient relation and a

corresponding tuple in the Admittance relation,

4.3.2 Functional Dependencies

Consider two sets of attributes X and Y that are subsets of R, R being the single universal
relation which contains all the attributes in the database, R={A\, ..., An}. A functional
dependency between X and Y, often denoted X—Y, specifies 2 constraint on the possible
tuples that can form a relation instance r of R. That constraint states that for any two
tuples t1 and t2 in r such that t1 of X equals t2 of X, t1 of Y must also equal 2 of Y,
denoted t1{X]=t2[X] = t:[Y]=tz[Y]. This means that the values of the X component of a
tuple uniquely (or functionally) determine the values of the Y component. The term
Functional Dependency is often abbreviated by FD and the set X is referred to as the left-
hand side of the FD, while Y is the right-hand side [Elmasri and Navathe, 1995].

In other words, X is 2 candidate key of R, if there exists a constraint on R which states
that there cannot be more than one tuple with a given X value in any instance r of R,
which implies that X—Y for any subset of attributes Y of R. Note that if X—'Y, this does
not necessarily imply that Y->X.

4. Design
4.3.3 Normal Forms Based on Primary Keys

Since the table model of the PDMS is based on primary keys, as described in Section
4.2.1, the definitions of the Second and Third Normal Form presented here will be based
on the FD and primary keys of a relation,

As aforementioned in Section 3.3 a relation is in INF if the domains of all its attributes
include only atomic values. In the proposed database design, we begin testing for Normal

Forms by observing the fact that all the relations of the PDMS table model are in INF.

Elmasri and Navathe [Elmasri and Navathe, 1995] provide a definition of 2NF based on
the concept of full functional dependency. A FD X—Y is a full functional dependency if
the removal of any attribute A from X means that the dependency does not hold any more.
A FD XY is a partial dependency if for some attribute A € X, (X - {A})-Y. A

relation is 2NF if every nonprime attribute A is fully functionally dependent on the primary
key of that relation,

If a relation schema R is not in 2NF, R can be further normalised by decomposing it
into a number of 2NF relations where nonprime attributes are associated only with the part
of the primary key on which they are fully dependent. In any case, INF and 2NF arc not
considered good relational designs. As we mentioned in chapter 3, it is best to have

relation schemas in BCNF. However, if that is not possible, 3NF is acceptable.

[Elmasri and Navathe, 1995] also provides a definition of 3NF based on transitive
dependency. A FD X—Y in a relation is called transitive if there is a set of attributes Z
which is not a subset of the primary key or does not include the primary key of that
relation, and both X—Z and Z—Y hold. According to Codd’s original definition, a
relation is in 3NF if it is in 2NF and none of its attributes are transitively dependent on the
primary key.

Boyce-Codd normal from is stricter than 3NF, every relation that is in BCNF is already
in 3NF. However, the opposite is not necessarily true. A relation R is in BCNF if it is
already in 3NF and whenever a FD X—A holds in R, where A is an attribute of R, then X

65

4. Design

is a candidate key of R. Accordingly, if a FD X—A holds in R where X is not a candidate
key and A is a prime attribute, then R is 3NF rather than BCNF.

4.3.4 Normal Form Testing Algorithm

The testing algorithm for Normal Form presented in this section will be applied to the
table model of the PDMS described in Sections 4.4 through 4.11. However, in order to
reduce repetition, the details of applying the NF test algorithm will only be considered for
three sample tables, namely the Patiens, IV and Blood tables. For the remaining relations,

we will simply state the NF test algorithm outcome.

Assuming that the designer has already verified that all attribute domains of the PDMS

table model are atomic, the algorithm will not test for INF.

Testing for 2NF and 3NF;

STEP 1: If the primary key of the considered relation R is composed of a single attribute,
then R is in 2NF and jump to STEP 4, because every nonprime key is evidently
JSully functionally dependent on the primary key.

STEP 2: Otherwise, let B-{A, ..., A} be the set of nonprime attributes of R and let
X={A1,An} be the primary key of R. If there exits an A: € B such that the FD
(X-Ax)>A: holds, where Ax €X, then stop since R is not in 2NF. Otherwise
continue (STEP 3).

STEP 3: Do STEP 2 for every attribute Ai € B, if STEP 2 passes for every nonprime
attribute then R is in 2NF. At the end of STEP 3, if R is in 2NF then continue to
STEP 4 which tests_for 3NF.

STEP 4: Let G(Ay be the set of all the left-hand sides of all FDs Zi—A: in R, G(A)={Z1,
<.oiln}. If there exists a Z: such that Z: ¢ X and X @ Xi, and the FDs X—Z: and
Zi—A: hold, then R is not in 3NF. Otherwise, continue testing (STEP 5).

66

4. Design

STEP 5: Do STEP 4 for every nonprime attribute Ai € B, if STEP 4 fails for any di € B,
then R is not in 3NF and STOP. Otherwise, R is in 3NF and continue testing for
BCNF (STEP 6).

Testing for BCNF:

STEP 6: Let A: be an artribute of the relation R, A1 € R=[Ay, ... An}. Let G(A) be the set
of all the left-hand sides of all FD Zi—A: in R, G(A)~{Z1,Zn}. Ifevery Zi €
G(A4y is a candidate key of R continue (STEP 7), otherwise stop since R is not in
BCNF.

STEP 7: Do STEP 6 for every attribute A: € R, if STEP 6 fails for any A: € R, then R is
not in BCNF and STOP. Otherwise, R is in BCNF.

The following sections will describe the middle level table model of each of the PDMS
modules, using the aforementioned methodology and test the resulting table model for
BCNF and 3NF. The testing exercise is also an opportunity to verify that indecd
employing the OMT for the design of the PDMS database will result in 3NF, or above,
relation schemas. First, we will describe the tables managed in the registration module
and test them for Normal Forms. Then, we will follow the same presentation approach for
the fluid balance module, the nursing care plan module and the dara link controller

modules,

67

4, Design

4.4 Registration Tables

The registration module manages two types of information; the first class is general
information about the patient such as name, sex, date of birth, address, etc. The second
class of information describes admittance information about the patient such as the date
and time the patient was admitted into the ICU, the date and time the patient was released

from the ICU, the patient's bed number, etc.

The data represented in the first class Patient (general patient information) is used by
all the other modules of the PDMS. Therefore this class has been moved to the highest
level of hicrarchy in the object model, Figure 4.3. Hence, the data of this class which is
specific for each patient can be inherited by all the modules rather than being replicated

and copied throughout the tables of the PDMS modules.

Figure 4.4 shows the mapping between the high level information model and the middle

level information model of the Patient class:

e Patient.Patient_ID: indicates the ID number given to the patient. Domain: Serial
number. This object identifier should contain a unique not null value.

e Patient.First_Name: indicates the first name of the patient. Domain: Long name,
String of characters.

e Patient.Last_Name: indicates the iast name of the patient. Domain: Long name,
Strng of characters.

e Patient.Birth_Date: indicates the birth date of the patient. Domain: Date,
formatted as such “DD-MM-YYYY".

o Patient.Sex: indicates the sex of the patient. Domain: Set of two single characters
M, F).

e Patient.Address: indicates the address of the patient's residence and/or any other
addresses where the patient could be contacted. Domain: String of characters.

e Patient.Phone: indicates a telephone number where the patient can be reached.
Domain: Integer, Number, e.g. 5143989394,

68

High Level, Middle Level Patient
Patient : 2 Alteibute Name::- | Null:: | Unique | Domain | Bytes
— I Patient_ID N Y i 20
Flrsl_l\:nmc ' First_Name N N string | 30
l..x:ut_!\umc ! Last_Name N N sring 1 30
Birth_Date Birth_Date Yy | N | date | am
Sex Sex Y N string | 2
Addreas | Address Y N | wring | 132
Phone ' Phone Y N |integer) 10
'
! Candidate Keys: (Patient_ID), (Patient_ID,Last_Name)
: (First_Name Last_Name)
((Patient_ID,First_Nume)
' {Patient_[13,Fiest_Name,Last_Name)
! Primary Key: (Patient_1D)
! Frequently Accessed:(Patient_[D.Last_Name.Birth_Date)
|
'
® : - » Adlfaltlnncr
Admittance : + Attribute Name!'::|: Nulli | Unigue | - Domain | Bytos
' Patient_ID N N i 20
Date_Time_In : Date_Time_In Y N |TimeStamp | dtlt
Bed_Nbr Bed_Nbr N N integer 4
Doctor Doctor Y N xtring &4
Date_Time_Out Date_Time_Out Y N [TimeStamp| dmt

Primary Key: (Patient_IID, Date_Time_In)

]
'
]
) Candldate Keys: (Patient_ID, Date_Time_In)
;
: Frequently Accessed: (Patient_ID, Doctor)

Figure 4.4; Patient & Admittance Data Classcs.

The Patient class is accessed by application modules that can only perform insert,
update and retrieve data operations on it, based on its primary table key. Therefore, in the
case where the patient changes phone numbers the staff can update the patient’s record in

the Patient table.

The second class of data, Admittance, used in the Registration Module has
administrative as well as historical purposes. The data represented in this class reveals
information such as the date the patient was admitted into the ICU, the date the paticnt
was released from the ICU, the diagnosis, and the name of the treating physician. This
information serves as a patient history, and could also be used by the accounting
department.

Figure 4.4 shows the mapping between the high level information model and the middle
level information model of the Admittance class. Since there is a one-to-many association
between the Patient class and the Admittance, the key attribute of the Patient class,

FPatient_ID, has been inserted as a foreign key and used as a part of the primary key of the

69

4, Design

Admittance class when applying the mapping algorithm between the object model and the
1able model. This serves well in choosing the primary key of the Admittance relation.
Since a patient may be admitted more than once into the ICU, the primary key should be
able to identify which admittance is in question; the first, the second or the “Nth” one.
Therefore, the primary key of the Admittance relation is a combination of the Patient_ID

and time and date of admittance attributes (Figure 4.4);

o Admittance. Patient_ID: indicates the same value as Pavient.Paticnt_ID. The
purpose of duplicating this attribute in the Admittance class is to establish and
maintain the relationship as described in the database object model. Domain: Senal
number, not umigue in this table in order to allow multiple entries or records of
admittances for the same patient which satisfies the one-to-many association
relationship between the Parient and the Admittance class.

o Admittance.Date_Time In. indicates the time and date the patient was admitted
into the ICU. Domain: TimeStamp.

o Admittance.Bed Nbr: indicates the current bed number assigned to the patient in
the ICU upon admittance; this value may change if the patient is re-assigned to
another bed. Domain: Integer, Number.

e Admittance.Doctor: represents the name of the pnmary physician who is
responsible for the patient's treatment. Domain: String,

e Admittance.Date_Time Out: indicates the time and date the patient was discharged
from the ICU. Domain: TimeStamp,

The application modules using the Admittance table are designed to perform record

insertion, update and retrieval according to the primary key of the table. Thus, if the
patient’s physician changes, the staff can update that attribute in the patient admittance

record.

70

4. Design
4.4.1 Registration Tables NF Testing

Applying the NF testing algorithm of Section 4.3.4, we will begin with testing the Paticnr
relation schema for BCNF, Rr={Patient_ID, First_Name, Last_Name, Birth_Date, Sex,

Address, Phone}. The set Br of nonprime attributes of Rr is | Birth_Date, Sex, Address,
Phone}.

STEP |

Since the primary key of Rris composed of a single attribute, Rp is in 2NF. Next we
will verify whether Rp is in 3NF.,

STEPS 4 and 5

The attributes that belong to Bp are not functionally interdependent; that is, they arc all
functionally dependent on the patient. Moreover, we cannot say that any attribute in Bp is
functionally dependent on Last Name, First Name or the combination of both for the

following reasons:

o G(Birth_Date} = {Patient_ID, (Patient_ID, Last_Name), (Patient_ID, First_Namc),
(Patient_ID, First_Name, Last_Name)}.
More than one patient can have the same name but different birth dates. Similarly

two people bomn on the same date do not necessarily have the same name.

In both cases, t1[X]=t2[X] does not imply ti[Y]=tz[Y] (see Section 4.3.2), hence
we don't have functional dependencies between Rirth date and any other

attribute than the primary Key.

o GfSex) = G(Birth_Date),
More than one patient can have the same name (first and i2si or both) but
different sex, therefore t1{X]=tz[X] aoes not imply ti[Y]=t2[Y].

o G(Address) = G(Phone) = C(Birth_Date).
It is not rare that two people with the same name live under the same civic

address and use the same phonc number. This case is common with children that

71

4. Design

have similar names as their parents, such as Joe Doe and Joe Doe Jr. Hence, the
Address and Phone attributes cannot functionally depend on {Last_Name,
First_Name}. Similarly, we cannot be sure that {Address, Phone} —

{Last_Name, First_Name}.

Hence, Rp is 2NF and has no transitive dependencies. Thus it is in 3NF. Now, we

should continue with the algorithm and test Rp for BCNF.,

STEPS 6 and 7

o G(First_Name) = {Patient_ID, (Patient_ID, Last_Namej}}.
The patient’s first name is functionally dependent on the patient’s ID or on the
combination of the patient’s ID and the patient’s last name. The First_Name
cannot be functionally dependent on the Last_Name because we may have more

than one patient with the same last name.

Hence, in this case, t1i[X]=t2[X] does not imply t1[Y]=tz[Y], which contradicts the
concept of functional dependency (see Section 4.3.2). Similarly, the Last_Name

cannot be functionally dependent on the First_Name.

Examining the table model of the Patient table, we notice that every left-hand side
that belongs to G(First_Name) is a candidate key. Therefore we continue the
algorithm by building G(Last_Name).

o G(Last_Name) = {Patient_I[D, (Patient_ID, First_Name)}.
Since every Xt € G(Last_Name) is a candidate key we will continue.

o G(Birth_Date) = {Patient_ID, (Patient_ID, Last_Name), (Patient_ID, First_Name),
(Patient_ID, First_Name, Last Name)}.
The birth date is functionally dependent on the patient. Every Xi €

G(Birth_Date) is a candidate key, hence we will continue.

o G(Sex) = G(Address) = G(Phone) = G(Birth_Date).

72

4. Design

Obviously the sex, address and phone number are functionally dependent on the
patient, Since every Xi € G(Sex) € G(Address) e G(Phone) € G(Birth_Date) is
a candidate key, the algorithm finishes “successfully”. Therefore, ithe Paticnt

relation is in BCNF, and we will not test this relation schema for any other

Normal Form.

Applying the same algorithm on the Admirttance table, we can deduce thai it is also in
BCNF.

4.5 Fiuid Balance Tables

The Fluid Balance Module manages information concerned with the volumes of all fluids

injected into and extracted from the patient's body.

Data in the Fluid Balance Module is captured manually or through a voice activated
user interface [Petroni, 1991], in a spread-sheet like format. The Fluid Balance Module
spread-sheet management program calculates, balances and corrects all the entered

volumes data before it commits them to the database.

Data in the Fluid Balance Module is divided into two major classes, /ugesf: and
Excreta. Theses classes are considered abstract classes. An abstract class is a class that
has no direct instance but whose descendent classes have direct instances. On the
contrary, a concrete class is a class that is instantiable or one that can have direct
instances. Designs frequently use abstract classes in order to convey subordinate classes
that participate in the same association or aggregation. Some abstract classes appcar

naturally in the application, such as the /ngesta and the Fxcreta classes.

Being abstract classes, the /ngesfa and Excreta classes will not be mapped onto a
database table in the middle level layer of the design. Morcover, the association
relationship between the Patient classes and both the Excreta and Ingesta classes will be
translated onto, or inherited by, the descendent classes of the laters. Therefore, in the
middle level mapping, the aggregation between the /ngesta class and its descendent classes
will be converted into association relationships between the Patient class and those

73

4. Design

ingesta descendent classes. Similarly, the relationships between the Patiens class and the

Fxcreta class will be translated into assoctation relationships between the Patient class and

the descendent classes of the later,

Figures 4.5, 4.6, and 4.7.

High Level

Ingests

v

IV_Nhe
fludy_Part
Comment
Level
Actusl Inik
Desired_Intk
Unte_Time

InGasiric

Type
Level
Amount

Date_Tume

]
.
3
1
1
[
]
)
]
1
i
]
L)
)

High Level

Patient

Fimt_Name
Last_Name
iuth_Date

Date_Time

Those relationship translations are illustrated in

)

.. Middie Level v

' K})

) .- Altrsute Nama:: - | Null. [Unique | : Doman | Bytes

! Patient 1D N N w b

! IV Nw N N snteger | 4
Pody_Parl Yy | N suing | 25
Comment Y N string 80
Level Y N volume 18
Actual_Intk Y N volume 15
Desyred_Intk Y N valume 13
Date_Time N N |TimeStamp| dNt

Uandidate Keys: (Patient_ID, Date_Time, IV_Nbr)
Primury Key: (T'atlent_ID, Date_Time, JV_Nbr)
Frequently Accessed: {Actual_Intk, Desired_Intk,

Level, Payent ID)
InGastric

rAunbtste Nage:: - Null - | Unugue §: Damamn ;| Bytes
Patient_ID N N id 20
Type Y N shng s
Level Y N volume 15
Amount Y N vulume 1$
Date_Time N N |TineStamp| dlt

Candidate Keys: Pauert_ID, Dute_Tume, Type)
Primary Key: {(Patient_ID, Date_Time, Type)
Frequently Acceased: (Patiert 1D, Type, Level, Amount)

Figure 4.5: Ingesia - IV & InGastric Classes.

Figure 4.5 illustrates the application of the mapping algorithm between the object

mode! and the table model of the /} class:

o [V.Patient ID: indicates the same value as Patient.Patient_ID. The purpose of

duplicating this attribute in the /7 class is to establish and maintain the inheritance

relationship as described in the database object model. Domain: Serial number, this

attribute is not defined as unique in order to allow the insertion of multiple Ingesta-

IV records for the same patient. This satisfies the one-fo-many association

relationship between the Patient and the Fluid Balance object classes, since a single

patient can have many fluid balance sheets during his stay in intensive care.

e [V.JV_Nbr: indicates the number of the IV given to that patient on a certain day.

Domain: Integer.

74

4. Design

o [V.Body Part. indicates the part of the patient's body where the 1V is injected. For
example, left arm or left leg. Domain: String of characters.

o [V.Level: represents the level of the IV in millilitres at a given time. Domain:
Volume expressed as string of characters.

o V. Actual_Intk. indicates the actual volume of 1V injected in the patient's body.
Domaiii: Volume expressed as string of characters.

o [V.Desired Intk: indicates the desired volume of 1V thai is supposed to be injected
in the patient’s body. Domain: Volume expressed as string of characters.

e [V.Date_Time: indicates the time and date the injection and mcasurements

operations occurred, Domain: Time Stamp.

Applying the mapping algorithm between the object model and the table model, Figure

4.5 illustrates the middie level table mode! of the /nGastric class:

e InGastric.Patient_ID: indicates the same value as Patrient. Patient_ID. The purpose
of duplicating this attribute in the /nGastric class is to establish and maintain the
relationship as it was described in the database «2ject model. Domain: Serial
number, this attribute is not defined as unique in order to allow the insertion of
multiple Ingesta - InGastric records for the same patient. This respects the one-to-
many relationship between the Patient class and the /nGastric class.

e InGastric.Type: indicates the type of the gastric fluid injected into the patient’s
body. Domain: String of characters.

e InGastric.Level: indicates the level of all gastric fluids injected into the patient’s
body at a given time. Domain: Volume expressed as string of characters.

o InGastric./Amount: indicates the amount of gastric fluid injected into the paticnt’s
body at a given time. Domain: Volume expressed as string of characters.

e InGastric.Date_time: indicates the date and time the injection and measurcments

operations occurred. Domain: Time Stamp.

75

4, Design

High Level : Iigh Level

L)
[Middie Level
Ingeste ' Patient ! v
' First_Name . T ABribue Name 7] Nulb | Unige | Domun - | Bytes
! ". ! Patient_ID N N id 20
; h‘;‘,‘-"l;:: ' 1V _Nbr N] N | mteger | 4
, s; - Body_Put ' N sunng | 28
' Address Comment Y N sning L)
' ! Level Y N volume 15
(Y ! Phone ' Actual_Intk v | N | volume | 15
X X Desired_Intk Y | N | volume | 15
@ ' Date_Time N N |TumeStamp| dit
1
v : Cundidate Keys: (Patent_[D, Date_Time, [V_Nbr}
X X Primary Kry: (Patient_ID, Date_Time, IV_Nbr)
1V_Nbe , v ' Frequently Accessed: (Actusl_tntk, Dexired_Intk,

Loody _I'art ,) Level, Patent_ID)

Comment | IV Nbw |

Leve] ' Ho:!y art 1 InGastric

3:"‘:'" d”l'::k X Eomlﬁem X T ARGt Name] ol | Urigue | s Domwin:: | Bywes
- 1 vl]

Dute_Time V| Actustfn Patient_ID N | N d |
‘ || Desired tntk Type Y N string 15
_—_b_ Dute_Time Level Y N volume | 15

Gustric 3 '

InGustr I. —_L_ ' Amount Y N volume 15
Type [InGmstric ' Date_Time N N TimeSamp| dMt
Leve! : :

Amount ' Type ! Candidate Keys: (Patiens_ID, Dete_Time, Type)
Date_Time ! i::Lu : Primary Key: (Patlent_[D, Date_Time, Type)
: Date_Time : Frequently Accessed: (Patient_ID, Type, Level, Amount)
Figure 4.6: Blood & Urine Classcs.

Figure 4.6 illustrates the mapping between the high level information model and the

middle level information model of the Blood object class, again using the mapping

algorithm between these two levels of the database design:

Blood. Patient_ID: indicates the same value as Patient.Patient ID. This attribute is
also duplicated in the Blood object class in order to establish and maintain the
relationship between the Patient and the Blood classes, as it is described in the
daiabase object model. Domain: Serial number, this attribute is not defined as
unigue in this table, in order to allow multiple insertions of Excreta - Blood records
for the same patient. |

Blood.Total Loss:. indicates the total volume of the blood that has been lost from
the patient’s body at a certain time and date. Domain: Volume expressed as a string
of characters.

Blood. Toral Intake: indicates the total volume of blood that was injected into the
patient's body at a certain time and date. Domain: Volume expressed as a string of
characters.

76

4. Design

. ¢ Blood.Total_Balance: mainly represents the difference between the Total_Intake
and the Total_Loss attributes, and indicates the balance of blood in the patient's
body at a certain time and date. Domain: Volume expressed as a string of
characters.

¢ Blood.Date_Time: indicates the time and date the aforementioned blood volume

measurements took place. Domain: Time Stamp.

Figure 4.6 also illustrates the mapping batween the high level object model and the
middle level table model of the Urine object class:

o Urine.Patient_ID: indicates the same value as Patiens.Paticnt). Similar to the
other classes, this attribute establishes the relationship between the Urine class and
the Patient class as it is described in the database object model. Domain: Serial
number, this attribute is not defined as unique in this table in order to allow muitiple
insertions of records that pertain to the same patient.

o Urine.Quantity: indicates the quantity of the patient's urine at a certain time and

. date. Domain: Volume expressed as string.

o Urine.Cumulative: indicates the cumulative quantity of the patient's urine at the
particular time and date. Domain: Volume expressed as string.

e Urine.Sugar: indicates the quantity sugar found in the patient’s urine at a certain
time and date. Domain: Volume expressed as string,

e Urine.S_G: indicates the quantity of S.G. that was found in the patient's urine at a
certain time and date. Domain: Volume expressed as string.

e Urine.Ketone: indicates the volume of a ketone if found in the patient's unine at a
certain time and date. Domain: Volume expressed as string.

e [rine.Date_Time: indicates the time and date when all the above measurements

were recorded. Domain; Time Stamp.

The Stool object class groups the data attributes of the patient’s stool at a certain
time and date. The ExGastric object class groups the data attributes of the patient’s
abdominal girth at a certain time and date. Figure 4.7 illustrates the mapping between the

. high level data model and the middle level data model of these classes:

High Level

Mlddie Level

4, Design

! Stool

1

! - Attribute Name | Null| Unique: | Domain | Byws.

Stool : ,
. Patient_ID N N id 20
Amount N N velume 15

Amount Date_Time N | N |TimeStamp| am
Dute_Time Candldate Keys: (Patient_[D, Date_Time)

Primary Key: (Patient_ID, Date_Time)
Frequently Accessed: (Patient_ID, Date_Time,Amount)

ExGastric
srAttbute:Name 5 | 2Nult: | Unique: - Domain; ;| Bytes:
ExGastric
Patient_ID N N id 20
Abd_Girth Adb_Girth N | N | string 15
Date_Time N N [TimeStamp | dflt
Date_Time
Candidate Keys: (Patient_ID, Date_Time)

1

1

)

! Primary Key: (Patient_ID. Date_Time)

: Frequently Accessed: (Patient_ID,Date_Time, Abd_Ginth)
t

Figure 4.7: Stool & ExGastric Classcs,

Stool.Patient_ID: indicates the same value as Patient.Patient_ID. Similar to the
other classes this attribute establishes the relationship between the Stoo! class and
the Patient class as described in the database object model. Domain: Serial
number, this attribute is not described to be wnique in this table in order to allow
multiple insertions of tool records that pertain to the same patient.

Stool. Amount: indicates the amount of stool recorded at a certain time and date.
Domain: Volume expressed as string,

Stool.Date_Time: indicates the time and date te stool amount was recorded.

Domain: Time Stamp.

ExGastric.Patient_ID: indicates the same value as Patient.Patient ID. This
attribute establishes the relationship between the Stool class and the Patient class as
as it is described in the database object model. Domain: Serial number, not unique
in this table in order to allow multiple insertions of gastric abdominal girth records
that pertain to the same patient.

ExGastric.Adb_Girth: indicates the measured abdominal girth recorded at a certain
time and date. Domain: length expressed as string.

78

4. Design

e ExGastric.Date_Time: indicates the time and date the abdominal girth was

measured, Domain: Time Stamp.

The application modules accessing the Ffuid Balance tables are designed to perform
only insert and retrieve record operations on the tables, based on their primary keys. 1f a
fluid measurement needs to be corrected, then a new record with the current time stamp is
inserted in the table. Therefore, measurements traceability is assured. Morcover, when
first started or re-initialised, the application modules are designed to retricve the
measurements that occurred on the date specified by the user and store them in local

application space variables.

Currently, the application user interfaces of the Fluid Balance module do not allow
queries on measurements traceability, this has to be performed through the query manager

of the database management system. However, the database stores all the data required to

perform queries with various search critena.

4.5.1 Fluid Balance Tables NF testing

This section tests the tables in the Fluid Balance module for Normal Form using the NF
testing algorithm described in Section 4.3.4. First, we will consider testing the /} relation,
(Rwv), for Normal Forms. Ruv=(Patient_ID, IV_Nbr, Body Part, Comment, Level,
Actual_Intk, Desired_Intk, Date_Time) with a primary key, X={Patient_ID, IV_Nbr,
Date_Time}.

Since the primary key, X, of Riv is composed of more than ene attribute the algorithm
starts testing for 2NF at steps 2 and 3.

STEPS 2 and 3

Let Biv be the set of all nonprime keys of Riv. Biv = {Body_Part, Comment, Level,
Actual_Intk, Desired_Intk}.

e Body Part s fully functionally dependent on X.

79

4. Design

In some cases, up to five IVs may be simultaneously injected into the patient’s
body. Hence, The Bady Part where the 1V is injected depends not only on the
Fatient_ID but also on the date and time of that IV injectin and which IV number
is it. In other words, if we extract any attribute from X, Body_Part will no longer

functionally depend on X.

Comment is fully functionally dependent on X.
The comment made by the medical staff depends on the same functional

parameters of Body_Part, hence the full FD X—{Comment}.

Level is fully functionally dependent on X.
The level of IV measured by the medical staff depends on the same functional
parameters of Body_Part, hence the full FD X—{Level}.

Actual Intk is fully functionally dependent on X.
The level of actual IV intake measured by the medical staff depends on the same
functional parameters as Bedy Part or Level, hence the full FD
X—=>{Actual_Intk}.

Desired Intk is fully functionally dependent on X.
The level of desired IV that should have been ideally injected into the patient
depends on the same functional parameters a “Actual_Intk”, hence the full FD
X->{Desired_Intk}.

STEP 2 was “successfully” completed for every attribute in Biv. Therefore, Riv is in
2ZNF. Next, steps 4 and 5 will test Riv for 3NF.

STEPS4and 5

GiSody_Part} = “(Patient_ID, IV_Nbr, Date_Time_In)}.

There are no transitive dependencies in G(Body_Part), therefore we continue.

G(Comment) = {(Patient_ID, IV_Nbr, Date_Time_In)}.

There are no transitive dependencies in G(Comment), therefore we continue.

80

4. Design
* G(level) = {(Patient_ID, IV_Nbr, Date_Time_In)}.
There are no transitive dependencies in G(Level), therefore we continue.

o G(Actual Intk) = {(Patient_ID, IV_Nbr, Date_Time_In)}.

There are no transitive dependencies in G(Actual_Intk), therefore we continue.

o G(Desired Intk) = {(Patient_ID, IV_Nbr, Date_Time_In)}.

There are no transitive dependencies in G(Desired_Intk), end.

We can notice that there exists no transitive dependencies in Riv, therefore it is in 3NF.

Since Riv is in 3NF, in the following steps we will test for BCNF.

STEPS 6 and 7

s G(Patient_ID) = {Patient_ID}.

Every Xi € G(Patient_ID) is a candidate key, hence we continue.

e G(IV_Nbr) = {Patient_ID, (Patient_ID, Date_Time)}.
Every Xi € G(IV_Nbr) is a candidate key, hence we continue.

o G(Date_Time) = {Patient_ID, (Patient_ID, IV_Nbr)}.

Every Xi € G(Date_Time) is a candidate key, hence we continue,

Considering that, every Xi € G(Body_Part), every Xi € G(Comment), every Xi €
G(Level), every Xi € G(Actual_Intk) and every Xi € G(Desired_Intk) in steps 4 and 5,
are candidate keys, then Riv is in BCNF.

Next, we will consider testing the Blood relation, (Ruiesd), for Normal Forms.
Raioe=(Patient_ID, Total_Loss, Total_intake, Total_Balance, Date_Time) with a primary
key, X={Patient_ID, Date_Time}.

Since the primary key, X, of Rbid is composed of more than one attnbute the
algorithm starts testing for 2NF at steps 2 and 3.

81

4. Design

STEPS 2 and 3

Let Buood be the set all nonprime attributes of Ruiood, Bpioos={Total_Loss,

Total_Intake, Total_Balanace}.

o Total_Loss is fully functionally dependent on X.
The blood loss value depends on two attributes the Patient and Date_Time the value
was measured. Furthermore, if we extract any one attribute from the key X,

Total_loss will no longer be functionally dependent on X.

e Total Inake is fully functionally dependent on X.
Similar to Yotal_Loss, the blood iritake value depends on two attributes the Patient
. and Date_Time the value was measured. Hence, if we extract any one attribute from

the key X, Total_Intake will no longer be functionally dependent on X.

e Total Balance is also fully functionally dependent on X.
The blood loss value depends on both attributes of the key X, Patient and
Date_Time. Hence, if we extract any one attribute from the key X, Total_Balance
will no longer be functionally dependent on X.

STEP 2 was “successfully” completed for every attribute in Balood. Therefore, RBiowd is
in 2NF. Next, steps 4 and 5 will test Raicod for 3NF.

STEPS 4 and 5

o G(Total Loss) = {(Patient_ID, Date_Time)}.

There exists no transitive dependencies in G(7otal_Loss), therefore we continue.

o G(Total Intake) = {(Patient_ID, Date_Time)}.

There exists no transitive dependencies in G(Total_Intake), therefore we continue.

e G(Total Balance) = {(Patient_ID, Date_Time), (Total_Loss, Total_Intake)}.
In this case, there exists a transitive dependency. Total Balance is functionally
dependent on the total blood loss and total blood intake since it represents their

difference.

82

4. Design

Therefore, we have the following transitive dependency: X—>(Total_Loss),
X—>(Total_Loss) and (Total_Loss, Total_Intake)—>(Total_Balance). Since STEP 4

failed for this specific attribute of Buixd, the algorithm stops here and we deduce that
Rustood 15 not in 3NF.

The fact of having the Blood relation in 2NF only, requires us to analyse the options
available for solving any consequent database design problem. We have two options to
amend this situation. The first one is to further decompose the Blood relation schema
until it meets the 3NF or the BCNF requirements. The second option is to ensure that the
modules accessing or managing this table are aware of the aforementioned transitive

dependency and are programmed to resolve any database anomality.

Since the modules that access the Blood table don’t perform update and delete
operations, database update anomalies are less likely to occur. Analysing the database
design model, we can also note that the Total_Balance attribute is not required or used in
any other module of the PDMS than the Fluid Balance module. Furthermore, the

Total_Balance attribute does not have any kind of interdependency with other PDMS
tables.

Decomposing the Blood relation into two relations adds another tzble to the databasc
which affects the performance of the database manager. Therefore, we opted to resolve
this potential database inconsistency or integrity problem at the application level. We
ensured that the modules accessing the Blood table calculate the value of the
Total_Balance attribute from the difference of the other two attributes (7oral_f.oss and

Total Intake) rather than reading and inserting it into the database table.

Therefore, the Total_Ralance attribute wiil be dropped from the Blood relation schema
and will be managed at the application level when and where required. The modification
of the relation schema will be reflected in Chapter 5, upon the physical creation of the
Blood relational table (Figure 5.7).

83

4. Design

Finally, If we apply the NF testing algorithm presented in Scction 4.3 4 to the
remaining relation schemas of the Fluid Balance module, we will discover that they are
also in BCNF.

4.6 Nursing Care Plan

The Nursing Care Plan module of the PDMS manages the care plan required for a patient
based on the patient's age, diagnosis, medical procedures performed, allergics and
possibly other individual circumstances [Roger ¢r o/, 1992]. 1t also maintains and

schedules the nursing actions and tasks associated with each plan.

The data in the NCP module is entered manually, the module incorporates a scheduler
that will automatically schedule and assign the actions and tasks of the care plan to the
nurses based on the input data of staff availability and level of expertise. Figurc 4.8
illustrates the mapping between the high level model and the middic level model of the
NCP class.

I
High Level t Middle Level hied
]

NCP ' Zoatribite Name:» - |- Null -{ Unique | - Domain - | Bytes
Diagnosis : Patient_ID N N id 20
DiagMemo . NCP_ID Nl oy id 20
Allergics Diagnosis Y N string 40
Notes Diaghemo Y N string 120
Operations : Allergics Y N string, kit
Total_Points) Notes Y N strinp 2%6
Date Time) Operations Y N siring 120

- ' Total_Points N N integer 4

! Date_Time N N |TimeStamp | dflt
|
; Candidate Keys: (Patient_ID, NCP_ID) (NCP_1D)
' Primary Key: (Patlent_ID, NCP_II)
Task 1 Frequently Accessed: (Patient_ID, NCP_ID,Total_Points}
L]

Task_ID i Task

Points ! 2 Attribete Name'3: |:Null: | Unique | Domara ™ { Bytes

Freq_Type NCP_ID N | N id 20

Memo Task_ID N N id 20

Points N N integer 4
Freq_Type N N string 13
Memo Y N stng 30

Candidate Keys: (NCP_ID, Tk _ID)
Primary Key: (NCP_ID, Task_ID)
Frequently Accensed: (Patient_ID,Task_ID,Points)

Figure 4.8: NCP & Task Classcs.

4. Design

o NCP.JFatient 1D indicates the hospital ID number given to the patient and is meant
to establish the inheritance between the NCP class and the Patient class as
described in the object model. Domain: Serial number, this attribute is not defined
to be unigue in order to allow multiple insertions of NCP records that pertain to the
same patient.

o NCP.NCP_ID: is a sequentially-generated number which associates a unique object
identifier with an individual Nursing Care Plan, and it used to maintain the
aggregation relationship between the NCP class and its subordinate object classes.
Domain: Scrial number, must be a unigue value in this table.

e NCP.Diagnosis. represents the diagnosis of the patient. Domain: String.

o NCP.DiagMemo: holds a memo, if available, that is associated with the diagnosis of
the patient. Domain; String.

o NCP.Allergies: indicates whether the patient has any allergies; the NCP uses this
attribute to check for any medications or solutions that should not be given to a

patient with the indicated allergies. Domain: String.

e NCP.Notes: stores the physician and nursing staff notes, if any, about the patient's
care plan. Domain; String,

e NCP.Operations: represents the medical procedures that the patient has undergone
or is about to undergo. Domain: String.

e NCP.Total_Points. represents the sum of all the 7ask points found in this care
plan. This is the method used by the Montreal Children's Hospital to measure the
work load of a care plan. Domain: Integer.

e NCP.Date_Time: indicates the time and date the Nursing Care Plan was created.

Domain: Time Stamp.

Figure 4.8 also illustrates the mapping between the high level model and the middle
level model of the Task object class:

e Task NCP_ID: should be the same as the NCP.NCP_ID and it is duplicated in the
Task table in order to establish the aggregation relationship between the NCP class

85

4. Design

and one of its constituent subordinate classes, namely the 7usk object class.
Domain: Serial number, this number is not wnigue in this table.

Task.Task_ID: uniquely identifics cach of the tasks that are available in a Nursing
Care Plan; there are about 283 different tasks definced as part of the Hospital's care
ICU care system. A static code/decode table must be created in the database, this
table translates each 7ask_/D into a name along with an explanation of the nature
of that ICU care task. Domain: Integer.

Task.Points: a number of points associated with each task, used in order to evaluate
the effort required to execute a nursing care plan task, according to the PRN
system. Domain; Integer.

Task.I'req_Type: indicates the type of the Task(s) that is found in the NCP, the
yype of the task is always associated with its frequency. For instance, “IHQT”
means that the task of type “QT” should be performed hourly. Again, a static
code/decode table that maps the task types to their meaning nceds to be inserted in
the database. Domain: String.

Task.Memo: holds any memo that has been associated with the Task. Domain:

String,

Figure 4.9 illustrates the mapping between the high level model and the middle level
model of the Medication object class:

L

Medication. NCP_ID: should be the same as the NCP.NCP _ID), and it is duplicated
in the Medication table in order to establish the aggregation relationship between
the NCP class and the Medication object class. Domain: Serial number, this
attribute ts not defined as unique in this table.

Medication.Name: holds the name of the medication that should be administered as
part of the NCP. Domain: String.

Medication.Route: indicates the manner in which the medication should be

administered, orally, by injection, etc. Domain: String.

86

4. Design

High Level 1 Middle Level Medication

Candldate Keys: (NCP_ID, Name)
Primary Key: (NCP_ID, Name)
Frequently Accessed: (NCP_ID,Name, Points, Dosage, Frequency)

) - Aftribute Name | Nuli- { Unique:}. Domain:: [Rytes
)
Medication : NCP ID N \ id 20

) Name N N string 30
Nume Route Y N siring kl1}
Route Doxage Y N volume 15
Doxage | Frequency Y hi string 15
Frequency , PRNTag Y hi string 2
PRNTag) Points N N integer 4
Points '

!

i

1

i

Figure 4.9: Mcdication Class,

Medication.Dosage: indicates the dosage of medication that should be gtven to the
paticnt. Domain: Volume expressed as string,.

Medication.Frequency. indicates the frequency of administration of that
medication, hourly, every six hours, etc, Domain; String.

Medication.PRNTag: indicates whether the Progressive Research Nursing system
has been adopted by the hospital to evaluate the workload points of the medication
section of the care plan [Roger et al., 1992], or not. Domain: String or flag.
Medication. Points: indicates the number of points associated with administrating

this medication. Domain: Integer.

Figure 4.10 illustrates the mapping between the high level model and the middle level

model of the Solutions object class:

Solutions. NCP_ID: should be the same as the NCP.NCP_ID, and it is duplicated in
the Solutions table in order to establish the aggregation relationship between the
NCP class and the Solution object class. Domain: Integer, not unique in this table.
Solutions.Number: indicates the number of the solution that is being administered
to the patient, i.¢. the first, the second or the third. Domain: Integer, Numeric.
Solutions.Name: holds the name of the solution that should be administered to the

patient as part of the NCP. Domain: String.

87

4. Design

1
Iigh Level ! Middle Level Solutions

1

\ ~ Attribute Name © | Null: { Unique {| Domain | Bytes

i

Solutions ! NCP_ID N[N id 20

| Number N N nteper 4
Number Name Y !\ m?ng n
Name Route) N string, 0
Route Rate) N volume 15
Rate TypeTag h} N string 2
TypeTag Points N N inteper 4
Pointa

Candidate Keys: (NCP_{D Number,Name)

Primary Rey: (NCP_IDNumber,Name)
Frequently Accessed: (NCP 1D, Name,Number, Points, rate)

i
I
)
I
|
i
1
|
1

Figure 4.10: Solutions Class.

* Solutions.Route: indicates the manner by which the solution should be
administered, orally, by injection or through an IV injection. Domain: String.

o Solutions.Rate: indicates the rate of administration of this solution. For example,
two bags a day. Domain: String.

o Solutions.TypeTag: indicates which type of system has bcen used to evaluate the
workload points of the solutions section in the care plan. Domain: String,

e Solutions.Points: indicates the number of points associated with administrating this

solution. Domain: Integer.

Similar to the Fluid Balance application modules, the NCP application modules that
handle the NCP tables are designed to perform only insert and retrieve record operations
based on the table’s primary keys. This ensures records correction traceability.
Furthermore, when first started or re-initialised, the application modules are designed to
retrieve the plans that occurred on the date specified by the user and store them in locai

application space variables.

4,6.1 Nursing Care Plan Table NF Testing

This section tests the relation schemas of the Nursing Care Plan module for Normal
Form using the NF testing algorithm described in Section 4.3.4. If we apply the NF

83

4. Design

testing algorithm presented in Section 4.3.4 to the relation schemas of the NCP module,

we will discover that they are in BCNF.

4.7

Data Link Controller

The Data Link Controller (DLC) module acquires and stores the vital sign data

transmitted by the network of bedside monitors in real-time mode. This information is

automatically gathered without manual entry. The data acauired by the DLC is of two

major types:

1.

Parameter Data are monitored numerical data values which originate from the bedside
monitors, such as heart beat rate, blood pressure or respiration rate. Parameter data is
identified by a Medical Function Code (MFC), and its values are updated through the

bedside monitors every 1024 ms,

Wave Data is digitised information, sampled representation of the wave form

generated by the bedside monitors.

Figure 4.11 describes the mapping between the high level information model and the

middle level information model of the Parameters class:

Parameters.Patient ID. indicates the same value as Patient.Patient ID. The
purpose of duplicating this attribute between the Patient and the Parameters class
is to establish the relationship as described in the object data model. Domain; Serial
number, this attribute is not defined to be unique in this table.

Parameters. Type: indicates the type of recorded the vital sign parameter. Domain;
List of forty types of parameters; i.e., list of 40 MFCs.

Parameters.Value: indicates the vital sign parameter’s value recorded at an instance
in time. Domain: Bit data type.

Parameters.Time_Stamp: indicates the value of the time instance when the
parameter was measured. This stamp is generated by the bedside monitor, and

designates the time that value was recorded. Domain: Time Stamp.

89

4. Design

High Level | stiddie Level

l E Parnmetery

~Attribute Name . | Null | Unique | - Domain [Bytes
Parametery |
i Patient_ID N N id 20
Type W Type N N :.trin;: 10
Value Value N N hit data | dilt
“Time_Stamp Time_Stamp N N |TimeStamp| dth

Candidate Keys: (Patient 1, Time_Stamp, I'ype)
Primary Key: (Patlent_ID,Time_Stamp, Type}
Freguently Accessed: All attributes

Figure 4.11: Paramcters Class.

The application modules using the DLC Parameters tabic are designed to perform only
insert and retrieve record operations on the table based on the primary keys. However, in
this module, insertions are done only by a transfer process, which is described in the

following section.

4.7.1 Data Link Controller Table NF Testing

Applying the NF testing algorithm to identify the Normal Form of the Parient relation
seems excessive, three out of the four attributes that belong to that relation compose its
primary key. Thus, it is clear that this relation is in BCNF or higher.

However, one may argue as to why is the attribute 7ype part of the key. The bedside
monitors are capable of measuring a large number of vital signs, of which, only forty arc
required to be recorded in the PDMS database. Each of these parameters has a different
type of measuring unit such as beat/second or flow/minute. Since the valuc of the
measured parameter is inserted in bit data format, we need to know its type in order to
determine its measuring unit. That is achieved through a code/decode table which holds

the parameters types and their corresponding measurement unit.

This implies that the recorded “value” cannot functionally depend on the patient and

the time when it has been measured, it must also depend on its type.

90

4. Design

4.7.2 Levels of Parameter Data Management

In order to address the real-time quick response in data management required in the DLC
module, a muitilevel management of data storage has been adopted. In the current
implementation of the DLC module, the acquired parameters data are stored in main
memory resident queues [Fumai ef al,, 1991]. Then, in order to avoid disk access every
two seconds, data is transferred in blocks to disk in periodic intervals. Physical data block
transfer is an appealing technique because of its simplicity. However, it may have a few
inadequacies--for instance, it does not support an object representatior change when
moved between levels. On disk, objects are represented by unique identifiers, whereas in
main memory they are referenced by pointers. Another shortcoming is that conventional
rclational DBMSs support a main memory cache of system catalogue objects (e.g. create
table, open table, seek position, etc.) and objects must change representation when
transferred from: main memory to disk table format. Changing representation when
moving objects between levels constitutes a threat to data security and must be properly

managed using semaphores.

Main Memory

Mass Storage

Figurce 4.12: Multilevel Storage Scheme,

Assuming that storage systems consist of logical devices forming a rooted tree, where

the unique root node is the main memory and the rest of the storage levels are descendants

91

4. Design

[Stonebraker, 1991], a logical three-level storage management is considered in this design
(Figure 4.11).

The storage of parameter data is managed at three levels, the first level being main
memory. The second level of storage is the hard disk level, which at the same time could
be distributed across the computer network. The last level is the massive tape storage.
Therefore, an object may exist in any of the three levels of databases, In another sense,
the three logical databases coexist. Furthermore, in the logical model of multilevel data
management the same format of disk data is maintained in both main memory and archive.
In order to determine the criteria for object transfer between levels, we perceive a
background decision engine (Data Transfer Process) between each of the thrce levels, as
illustrated in Figure 4.12. The transfer engine can determine how and when the transfer
should take place according to the programmed conditions. A pseudo-code example for

one such set of criteria for Real_Time Parameters data could be:

¢ main memory representation: transfer Parameter data from RAM to disk every
Time seconds, where 7ime is a variable in seconds.

o disk representation: transfer Parameters data from disk to archive device where
Date in Time-Stamp is within a certain period of time.

e archive representation: archive Parameters data where Date in Time-Stamp 2 a

certain date.

What the example above suggests is that when the Real-Time data is acquired, it is kept
resident in main memory for thirty minutes (1800 seconds) and that within a certain period
during the year the data can still be kept on disk. After a certain given date, however, the
data should be moved to massive storage. The mentioned conditions are a sample case
and can easily be changed without introducing any modifications to the database system.
Moreover, a conditional statement could be added to the transfer engine where data is
transferred to hard disk every five minutes for security and data recovery purposes in case
of a system crash or any other unexpected malfunctioning event. The actual system keeps

the data on hard disk as long as the patient is still in the ICU, then moves it to mass

92

4, Design

storage upon the patient's discharge. Afterwards data is traditionally archived on off-line

tape storage, for access only when needed.

The Main Memory level of data management of the DLC module has been
implemented in a previous work [Fumai ¢ af,, 1991]. The second and third levels of the
Parameters data management has been implemented as described in Figure 4.12. The
code illustrated in Figure 4.11 has been used to create the database Paramefers table on

disk and in massive tape storage.

The main memory level stores data only for those patients currently in the ICU. Main
memory resident data is stored in three circular queues in the computer's RAM: a second
data queue, a minute data queue and a half~hour data queue. For each active patient,
Parameters data is received from the CarePort interface simulator every two seconds and
stored in the second data queue. After sixty seconds, data items in the second queue are
averaged over the minute and stored in the minufe data queue. Data items in the minute

queue are then averaged over thirty minutes and placed in the Aalf~hour queue.

Even though we were only required to permanently store the half-hour DLC data and
archive it, it seemed necessary to create three such Paramelers tables in the database at
the middle data management level; i.e, in disk space. The Parameters tables are exact
images of one another. One, Parameters_second, stores the second data. Another,

Parameters_minute, stores minute data, and finally the Parameters table itself contains
half-hour data.

The Parameters database table was replicated for the following reasons:

1. Keeping copies of the main memory resident data reduces the data lost due to an

application break or system shutdown.

X

Second and minute parameter data can be displayed from either main memory or from
disk storage depending on the urgency at hand. This reduces main memory operations

and enhances system performance.

93

4. Design

3. The Trend Analysis module could access data from the database rather than trom main
memory, enhancing the system performance and allowing the Trend Analysis module

to analyse historical cases when required.

4. Second and minute parameter data is only kept for a finite period of time in disk space
and is not archived to massive storage, i.c., the second and minute database tables

require no extra space.

94

Chapter S Implementation, Results and Future Extensions

This chapter describes the physical implementation of the PDMS database. It delineates
the derivation of the low level (physical) information model from the middle level model
presented in Chapter 4. The physical model will then be translated into actual database

tables according to the specifications of the implementation platform.

5.1 Implementation Platform

The databasc tables were implemented using the Relational Database Management
Services of the 0S/2 Extended Edition Database Manager®. The creation of the database
tables was carried out in 2 series of SQL statements grouped under a single script file.
The interaction with the database such as insertion, retrieval, sorting, viewing and
archiving of data instances was handled by a series of source modules, that access the

database, coded in the C programming language with embedded SQL statements.

The PDMS database prototype has been implemented in our CIM laboratory on a
Local Area Network (LAN) of IBM PS/2® computers, The computers were connected in
a Token-Ring mode and used the 0S/2 LAN Manager® services for network control and

communication protocols. Figure 5.1 illustrates the network topology of these computers.

The Extended Edition of Database Manager offers a database distributed feature
which consists of providing a client application program access to databases located on
Extended Services database servers. In order for a client application to access and
manipulate data on a server database, the database client application enabler must be

installed and configured on the client’s workstation.

In order to test the PDMS prototype and its database, a program that simuiates the HP
CarePort Network of the bedside monitors has been implemented. This simulator
transmits data similar to the data incoming from the CarePort and connects to the PDMS
LAN wvia a RS-232 serial link to one of its Persoral Computers (PC), named PC1. This

95

5. Implementation, Results and Future Extensions

simulator has been implemented as part of an carlicr work on the PDMS project [Fumai et
al., 1991].

DLC Tubles

Fluid Balan Repisteation
Tables NCP Tables

Figurc 5.1: PDMS Network.

The user interfaces of” the PDMS application modules were developed using the C

programming language and the Application Interface Calls of OS/2 Presentation Manager.

5.2 Network Database Architecture

Using the distributed database capabilities of the Extended Edition of OS/2 Databasc

Manager and the services of OS/2 LAN Manager, the database has been distributed as
shown in Figure 5.1.

PCI

The first computer of the LAN, PCl, is dedicated to collecting electronic data from the
network of bedside monitors. The DLC application module and the DLC database tables
resident on this station are configured as a server database to the remaining computers on

the LAN, and reciprocally PC1 is configured as a client to the databases located on PC2
and PC3.

This configuration allows PC1 to access the tables maintained on PC2 and PC3. It also
allows PC2 and PC3 to access the database tables resident on PCl. PC! contains

9%

5. Implementation, Results and Future Extensions

cxccutable application images of the Fluid Balance module, the NCP module and the
Registration module. When exccuted as client applications from PC1, these applications
present the user with their own corresponding user interfaces, with embedded SQL

statements that allow access and manipulation of databasc tables stored on PC2 and PC3.

PC2

The second PC is dedicated to managing the Registration module data and the NCP
data; it also maintains the NCP and Registration application modules. The Registration
and the NCP database tables on this station are configured as a server database to PC1
and PC3, and reciprocally PC2 is configured as a client of the database tables located on
PCI and PC2,

In the same manner as that of PC1, PC2 contains executable application images of the
Fluid Balance module and the DLC module, so that when executed from PC2 these
images present the user with their own user interfaces accessing the remaining database
tables over the LAN.

PC3

The third PC is dedicated to managing Fluid Balance information; it maintains the Fiuid
Balance application module together with its database tables. Like the other PCs, the
Fluid Balance tables that reside on this station are configured as a server database, while at

the same time the station is configured as a client of the database tables of the other two
PCs.

As well, this PC contains executable client applications of the NCP module, the DLC
display and query modules (only) and the Registration module which facilitate access and
display of data stored on PC1 and PC2,

53 Results

This section will examine and evaluate the physical data mode!l derived from the middle
level table data model using the OMT data modelling method.

97

5. Implementation, Results and Future Extensions

5.3.1 DLC

Only the DLC module source code and the Data Transfer Engine (Process) contain the
required embedded SQL statements that insert and retnieve data from the Parameters

database tables.

All the database tables are created only once using a scripf file that contains all the SQL
statements for creating the tables. The SQL statements are specific to the OS/2 Database
Manager. Figure 5.2 illustrates how the Parameters table creation code has been derived
from the middle level presentation of the Parameters class. As described is Section 4.7.2,
similar code was used to create two other tables, namely the “Parameters_sccond™ and

“Parameters_minute” tables.

Middle Level | Low Level
Parameters \
o . e B o IR Fy . 1
.;;1:.::;Ambwc.Namc o Noll: Umquc = Domain: B’m , CREATE TABLE Parameters
.) ! (Patient_ID VARCIIAR(20) NOT NULL.,
.';""‘"‘—‘D :‘ : id fg ; Type CHAR(10) NOT NULL,
Virl,:c x N ;i:’:;fa ot Value VARCHAR FOR BIT DATA NOT NtLL,
: Stamp TIMESTAMP NOT NULL,
Time_Stamp N | N |TimeSamp| dfit Time_Stamp NoT

PRIMARY KEY (Patient_ID, Time_Stamp, Type)),
Candidate Keys: (Patient_ID, Time_Stamp,Type)
Primary Key: (Patient_ID,Time_Stamp,Type)
Frequently Accessed: All Attributes

Figure 5.2: Parameters Class - Physical Creation Statement.

5.3.2 Registration

Figures 5.3 and 5.4 illustrate how the SQL statements that create the Registration
database tables were derived from the middle level data model of the Patient and
Admittance object classes. Only the Registration module is responsible for handling data

in these database tables.

98

5. Implementation, Results and Future Extensions

Patlent Middle Level | Law bevel
i -~y e N
* Afteibite Name - | Null: | Unique | Domain | 8 SREATE TABLE Patient
— - i i yies : (Pateint_ID VARCIIAR(20) NOT NULL UNIQUE,
Paticrt _IDD Nl Y id 20 . Firt_Name VARCIIAR(30) NOT NULL,
Fiest_Name N N Mring Last_Name VARCHAR(30) NOT NULL,
last_Name N N siring Birth Date DATE
Birih_l)nlc Y N Date Sex c-l lAR(:).)
Sex Y I N string | 2 Address VARCHAR(132),
Phonc Y N integer 10 '

Candidate Keys: (Paticnt_ID), (Patient_ID,Last_Name) PRIMARY KEY (Patient_ID)),

(Firnt_Name,Last_Name)
{Patient_[D,First_Namc)
(Patient_ID,First_Namc,Last_Name)
Primary Key: (Patient_ID)
Frequently Accessed:(Patient_ID,Last_Name,Birth_Date)

Figure 5.3: Paticnt Class - Physical Creation Statement.

Middle Level ' Low Level
Admittance |
e y g v 5 B e : |
- Amntte Name' | Mull | Unigue |+ Domain:2 i Bytes} CREATE TABLE Admittance
Patient_ID N | N d 20) {Patient_ID VARCHAR(20) NOT NULL.
g Date_Time_In TIMESTAMP
Date_Time_In Y N |TimeStamp| dfit - | ,
Pod Nor N | N | integer il A Bed_Nbr INTEGER NOT NULL,
Doctor y | w wing | 6 Doctor VARCHAR(64)
Date_Time_Out Y N |TimeStamp| dfit Datc_Time_Out TIMESTAMP,

PRIMARY KEY (Pateint_ID, Date_Time_In));
Candidate Keys: (Patient_ID, Date_Time_In)
Primary Key: (Patient_ID, Date_Time_In)
Frequently Accessed: (Patient_ID, Doctor)

Figure 5.4: Admiuance Class - Physical Creation Statement.

5.3.3 Fluid Balance - Ingesta

Figures 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 illustrate how the SQL statements that create the
Fluid Balance database tables were derived from the middle level table model of the Fluid
Balance object classes. Only the Fluid Balance modules contain the embedded SQL

statements that manipulate the data instances of the Fluid Balance database tables.

99

5. Implementation, Results and Future Extensions

t
v Middle Level Low Level
1
iAtrbute Name | Null JUnigque | Domain - 1Bytes]| | CREATETABLEIV
. - . , {Patient_ID VARCHAR(20) NOT NULL,

Patient_ID N N id 20 \ IV_Nbr INTEGER NOT NULL,
IV_Nbr N N integer | 4 | Body_l'art VARCHAR(2S),
Body_Part Y | N string | 23 Comment VARCIIAR(H0),
Comment Y N string %0 Level VARCHAR(IS),
Level Y N volume | 13 Actual_Intk VARCHAR(1S),
Actual_Intk Y N volume | 13 Desired _Intk VARCHAR(15),
Desired_Intk ¥ N volume | 13 Date_Time TIMESTAMP NOT NULL,
Date_Time N N |TimeStamp | dfit -

PRIMARY KEY (Paticnt _UD, Date Time, IV_Nbe)),

Primary Key: (Patient_ID, Date_Time, IV_Nbr)
Frequently Accessed: (Actual_Intk, Desired_Intk,

]

)

1

I

'

Candldate Keys: (Patient_ID, Date_Time, IV_Nbr) l
)

|

Level, Patient_ID) :

Figurc 5.5: IV Class - Physical Creation Statement,

InGastric Middle Level : L.ow Level
Null:|Unigoe |- Domain s [Bytes) | CREATE TABLE InGastric
) ‘ : (Paticnt_ID VARCIIAR(20) NOT NULL,,

N | N i 20 ¢ Type CHAR(1S),

Y | N sting | 15 Level VARCHAR(15),

Y N volume | 15 Amount VARCIIAR(1S),

gﬂ:m_l'_‘ : \x T""g':; d‘ g‘ Date_Time TIMESTAMP NOT NULL,
ate_Time h h im p

Candidate Keys: (Patient_ID, Date_Time, Type)
Primary Key: (Patient_1D, Date_Time, Type)

1
I
| PRIMARY KEY (Patient_ID, Daic_Time, Type)),
)
'
Frequently Accessed: (Patient_ID, Type, Level, Amount) :

Figore 5.6: InGastric Class - Physical Crcation Statcment.

5.3.4 Fluid Balance - Excreta

This section presents the Excreta database tables of the Fluid Balance module, Figures 5.7
to 5.10.

Middle Level ! Low Level
| #:Domaini; | Bytes : CREATE TABLE Blood
, _ b (Paticnt_ID VARCHAR(20) NOT NULL,
Patient_ID y1 N id |20 Total_Loas VARCHAR(IS),
Total_Loss Y | N | volume |15 Total_Intake VARCHAR(IS),
Total_lntake Y | N | volume | IS Date_Time TIMESTAMP NOT NULL,
Datc_Time N N |TimcStamp| dflt

PRIMARY KEY (Paticnt_ID, Datc_Timc));
Candidate Keys: (Patient_ID, Date_Time)

Primary Key: (Patient_ID, Date_Time)
Frequently Accessed: (Patient_ID, Total_Balance)

L}
t
I
b
|
|
1

Figure 5.7: Blood Class - Physical Creation Statement.

100

5. Implementation, Results and Future Extensions

Urine
- Attributs Nama - - |:Null: f Unigue |- Domain | Bytes
f'atient I N N id 20
Quantity Y N volume 15
Cumulative Y N volume 18
Supar Y N volume 15
Ketong Y N volume 15
S G Y N volume 15
Date_Time N N |TimeStamp| dfit

Candidate Keyn: (Paticnt_ID, Date_Time)

Primury Key: (Patlent_ID, Date_Time)

Frequently Accessed: (Paticnt_ID, Date_Time,
Cumulative, Quantity)

Middle Level |

Low Level

CREATE TABLE Urine

(Patient_ID VARCHAR({20) NOT NULL,
Quantity VARCHAR(1S),

Cumulative VARCIIAR(1S),

Sugar VARCHAR(135),

Ketone VARCIIAR(1S),

S_G VARCIIAR(1S),

Date_Time TIMESTAMP NOT NULL,

PRIMARY KEY (Patient_ID, Date_Time));

Figure 5.8: Urinc Class - Physical Creation Statement.

Stool Middle Level

i Atteibute Name = LNull: | Unigue: 5 Domains | Bytes
Patient_ID N N id 20
Amount N N volume 15
Date_Time N N |TimeStamp| dfit

Candidate Keys: (Patient_ID, Date_Time)
Primary Key: (Patient_ID, Date_Time)
Frequently Accewsed: (Patient_ID, Date_Time.Amount)

1
i
!
'
«

I
I
I
i
1
1
]

Low Level

CREATE TABLE Stool
(Paticnt_ID VARCHAR(20) NOT NULL,
Amount VARCHAR(IS) NOT NULL,
Date_Time TIMESTAMP NOT NULL.,

PRIMARY KEY (Patient_ID, Datc_Timc)).

Figure 5,9: Stool Class - Physical Creation Statement.

Middle Level
| Domain ;| Bytes
Patient_ID N | N id
Adb_Girth N | N | string
Date_Time N N |TimcStamp| dflt

Candidate Kcys: (Patient_ID, Date_Time)
Primary Key: (Patient_ID, Date_Time)
Frequently Accessed: (Patient_ID,Date_Time, Abd_Girth)

Low Level

CREATE TABLE ExGastric

(Paticnt_ID VARCHAR(20) NOT NULL.
Abd_Girth VARCHAR(1S5) NOT NULL,
Datc_Time TIMESTAMP NOT NULL,

PRIMARY KEY (Patient_ID, Date_Time));

Figure 5.10; ExGastric Class - Physical Creation Statement.

5.3.5 Nursing Care Plan

Figures 5.11, 5.12, 5.13 and 5.14 illustrate how the SQL statements that create the

Nursing Care Plan (NCP) database tables were derived from the middle level data model
of the NCP object classes. Again, only the NCP modules contain the embedded SQL

101

5. Implementation, Results and Future Extensions

Candidate Keys: (Patient_[D, NCP_ID) (NCP_ID)
Primary Key: (Patient_1D, NCP_ID)
Frequently Accesaed: (Patient_[D, NCP_ID, Total_Pointa)

PRIMARY KEY (Patient TDNCP 1)),

. statements that perform the insertion and retrieval functions on the Nursing Care Plan
database tables.
]
Nep Middle Level E Low Level
CAltribute Name . [Null;| Unique.| - Domain . {Bytes | CREATE TABLE NCTP
- - ! (Patient_ID VARCHAR(20) NOT NULL,
Patient_ID N N id 20 ! NCP_ID VARCHAR(20) NOT NULL UNIQUE,
NCP_ID h id 20 ‘ Diagnosia VARCHAR($0),
Diagronis Yy [N sring | 40 DiagMemo VARCIAR(120),
DiagMemo Y N nring | 120 : Alfergies VARCHAR(30),
Allergics Y N sting | 30 ' Notex VARCHAR(256),
Notes Y N string [256 ! Operations VARCHAR(20,
Operations Y N string | 120 ! Total Points INTEGER NOT NULL,
Total_Points N N integer | 4 ! Date_Time TIMESTAMP NOT NULY.,
Date_Time N N }TimeStamp| dilt !
|
]
]
)

Figurc 5.11: NCP Class - Phystcal Creation Statement.

L]
Middle Level v Low Leve
1
“Anribute Name “Domain | Bytes ! CREATE TABLE Task
- — : (NCP_ID VARCIIAR(20) NOT NUI.
NCP_ID N h d 20 7

Task_[D VARCIIAR(20) NOT NULL,

Task_ID N N id 20 Points INTEGER NOT NULL,

Points \ \ integer 4 Freq_Type VARCHAR(IS) NOT NULL,
. Freq_Type N | N string | 1S Memo VARCIIAR(I0),
Memo Y N string 30

Candidate Keys: (NCP_ID, Task_ID)
Primary Key: (NCP_ID, Task_ID)
Frequently Accesaed: (Patient_ID,Task_[D,Points)

PRIMARY KEY (NCP_ID, Task 1D}).

Figure 5.12: Task Class - Physical Creation Statement.

t
Medication MiddleLevel 1 Low Level
1
#hANTbute Name = Domain:} Bytes)
' CREATE TABLE Medication
NCP_ID NN i 20 ' (NCP_ID VARCHAR(0) NOT NULL,
Name NN string | 30 ' Name VARCHAR(30) NOT NULL.,
Route Y | X sting | 30 Route VARCHAR(30),
Dosage Y| N | volume | 15 Dosage VARCHAR(1S),
Frequency Y| N string | 15 Frequency VARCHAR(1S),
PRNTag Y N string 2 PRNTag CHAR(2).
Poins NN | integer | 4 Points INTEGER,

Candidate Keys: (NCP_ID, Name)
Primary Key: (NCP_ID, Name)
Frequently Accessed: (NCP_ID, Name, Points,Dosage Frequency)

PRIMARY KEY (NCP_ID, Name)),

1
1
'
]
[}
*
t
i

Figure 5.13: Medication Class - Physical Creation Statement.

102

5. Implementation, Results and Future Extensions

A {
. Solutions Tiddle Leve
Attribute Nameo - - Nult-{ Unique | . Domain = | Bytes
NCP_ID N N id 20
Numbher N N inteper 4
Name Y N string 32
Route Y N string 30
Rate Y N volume 15
Type'Tag Y N string 2
Pointa N N integer 4

Candidate Keys: (NCP_ID,Number,Name)
Primary Key: (NCP_IDNumber.Name)

Frequently Accessed: (NCP_ID,Name,Number,Points rate)

|
t
(
]
t
i
'
I

1
I
|
'
3
t
I
I
I

Low Level

CREATE TABLE Solutions

(NCP_ID VARCHAR(20) NOT NULL,
Number INTEGER NOT NULL,
Name VARCHAR(32).

Rotte VARCHAR(30),

Rate VARCHAR(1S),

TypeTag CHAR(2).

Points INTEGER NOT NULL.,

PRIMARY KEY (NCP_ID,Number.Name));

Figure 5.14: Solutions Class - Physical Creation Statement.

§.3.6 The Application Level

The programs that access or handle the PDMS tables were coded in the C programming

language with embedded 4GL SQL statements. A sample program that inserts a tuple in

the /nGastric PDMS database table is described in this section. The example reads, from

’ the input user interface, the patient’s identification number, the gas type and level and the

date and time the measurements were recorded.

It then inserts these values into the

corresponding database table. Such program is composed of three sections:

I. The first section declares the host variables. Host variables are reserved by the

program to access the table attributes as they have been defines in the database table,

These variables should match with their corresponding database table attributes in type

and size. For example,

EXEC SQL BEGIN DECLARE SECTION;

char
char
char
char
char

EXEC SQL END DECLARE SECTION;

hst_PatientId[20];
hst_GasLevel[15];
hst_GasType[15];
hst_GasAmount[15]:
hst_DateTime[16]:

2. The second section handles the logic of the program and can be executed before and

. after the third section depending on the logical requirements of the program. For

103

5. Implementation, Results and Future Extensions

example, after having read the input variables from thc user interface into the
application’s local variables, this section of the application program inserts the values
of the patient’s id., the gas type, the gas level the gas amount and the date/time

variables into their respective host variables:

strcpy(hst_Pateintld, Pateint!d);

strepy(hst_GasType, GasType):

strepy(hst_GasLevel, GasLevel);

strcpy(hst_GasAmount, GasAmount);

strepy(hst_DateTime, DateTime);

. The third section executes the SQL statement which could be an insertion, deletion or
retrieval of one or more tuples in the database table. For instance, this section
executes the insertion of the aforementioned tuple into the database table. The first
step in executing the search SQL command is to prepare it. This is indicated by the
PREPARE STATEMENT command illustrated below. The second step executes the
prepared SQL statements and also indicates the variable valucs that should be
respectively used in the SQL statement. The “?” sign in the SQL statement indicates
that the values should be respectively read from the variables declared in the USING

statement,

EXEC SQL;
PREPARE STATEMENT: “INSERT INTO InGastric Patient_ID,

EXEC SQL:
EXECUTE STATEMENT USING: hst_Paticntld, :hst_GasType,
:hst_GasLevel, hst_GasAmount, :hst_DateTime;

104

5. Implementation, Results and Future Extensions

5.4 Data Integrity

This scction will discuss some of the data integrity issues that were addressed or

considered during the design and development of the PDMS database.

5.4.1 Data Types

Note that in the translation of the attribute domains from the middle level data model into
the low level code the VARCHAR data type was used to implement the object identifiers
such as the Patient_ID, the NCP_ID and the like. It was also used to implement the

volumes of fluids and solutions measured by the medical staff.

The VARCHAR FOR BIT DATA data type was used to implement the value
attribute of the Parameters object table which is stored in bit format in main memory.
The FOR BIT DATA data type allows the storing of data which may not have constant
length. When read from main memory the BIT DATA type is treated as a structure with

two fields: 2 data length indicator and a byte array which holds the values.

The TIMESTAMP, DATE, TIME and INTEGER data types are pre-defined by the
SQL of the OS/2 database manager.

The correct mapping of data types between the middle level data model and the low
level code as well as between the application module source code and the database
guarantees the integrity of the data values. Once inserted in the database the OS/2

Database Manager is responsible for maintaining that integrity.

5.4.2 Data Constraints

In order to maintain the referential integrity that has been defined by the High Level data
model as relationships among object classes, the middle level data model specifies which
attributes should never be inserted in the database with a NULL value and which should
contain a UNIQUE value in the database table as in the case of an object identifier type

(ID). This is translated in the low level model (code) as follows:

105

S. Implementation, Results and Future Extensions

1. First, by specifying that a certain attribute is NOT NULL UNIQUE in the SQL
statement that creates the object table indicates to the database manager that when
inserting a new instance of this attribute in the database it should first verify that the

value of the attribute is not null and unique in the table before allowing the insertion.

2. Second, indicating to the database manager that a referential constraint exists on an
attribute in a certain object table, will then require that the given value of that attributc
exist in some other table before insertion is allowed. For example, one of the
referential constraints that has been inserted in the database requires that cvery
Patient_ID in the NCP object table must first exist in the Patient object table and in
the Admittance object table. Hence, the database manager will not allow the insertion
of new Nursing Care Plan for a Patient that does not exist in the database and has not

been admitted to the ICU.

The referential constraints that has been introduced in the database are dircctly derived
from the High Level Inheritance Diagram. Any child class cannot cxist without the
existence of its parent class. In other words, if the instance of an object identifier of
parent object class, referred to as ID in the middle level Model, does not exist in the

database an instance of the child object class cannot be introduced in the database.

5.4.3 Other Data Integrity Issues

The database tables are fragmented in 2 manner that helps avoiding data access

concurrency. In any case, the OS/2 Database Manager is responsible for concurrency

control and record locking.

In order to protect the database and the table definitions, the OS/2 Database Manager
was configured to grant data read-only access for all the users that use the OS/2 query
manager, data write-access for certain users that use the PDMS Application Modules and
database administrator access to a single specific user. The database administrator has all
the privileges granted by the 0S/2 Database Manager such as altering the configuration of
the Database Manager, changing the definitions of the database tables and the like.

106

5. Implementation, Results and Future Extensions

5.5 Data Recovery

The design and implementation of the PDMS identifies three types of failure that can
result in data loss. This section presents these failure types and assesses the impact of data

loss in each casc as well as the procedures in place to recover the data:

Transaction Failure

This type of failure usually ends with an abort, and occurs when a transaction
terminates in a normal failure because inconsistencies in the database were detected, or the
PDMS application modules surrounding the database were not able to correctly process

the embedded SQL statement,

In this case only a single record is most likely to be lost from the database since the
each embedded SQL statement in the PDMS Application Modules surrounding the
database completes its operation with a COMMIT to database command, rather than
performing a set of database transactions and then committing them all to the database.
This procedure ensures that every transaction commits its data to the database before
concluding. However, loss of a single record may only be true in the DLC module since
the data acquisition is computerized. According to the PDMS requirements, the loss of a
single parameter value over a second is considered minor and no data recovery is required.

In the remaining PDMS modules the user would be prompted to repeat the transaction.

System Failure

This type of failure could be caused by anything that destroys the computer’s main
memory. The most common sources of such a failure are hardware failures in the CPU,
bugs in the Database Manager code, bugs in the operating system and the like. This type
of failure could also be caused by a power failure if the system is not connected to an

Uninterrupted Power Supply.

There OS/2 Database Manager offers two features that can be used in this case,
restore and roll-forward. The restore mechanism involves making copies of the database
at scheduled times. The roll-forward recovery method allows us to rebuild the database

to a specified point in time as well as to the end of the database log files.

107

5. Implementation, Results and Future Extensions

However, the data resident in main memory is unrccoverable in a system failure.
Assuming a transfer period of five minutes for the storing of parameter data from RAM
queues, the worst case data loss is five minutes worth of Parameters data. Also note that
during the down time of the system the DLC module cannot acquire data from the bedside

monitors and therefore data will not be stored in the PDMS database during that period.

Media Failure

This type of failure occurs when a secondary storage medium encounters a
malfunction, such as a head crash on the hard disk or a bug in the operating system 1/0

routines.

In order to prevent the media failure from destroying both the database and the log files
needed to rebuild it, the database logs should be kept on a media device different from the
database itself. In this manner, if the device that holds the database fails, it can be restored

from the log files kept on the other medium, and vice-versa.

5.6 Performance and Sample Results

This section presents some benchmark results obtained while operating the PDMS in the
development lab at McGill using the sample data generated by the CarcPort simulator
(Figure 5.1). The objective, in this case, was to evaluate the PDMS database

implementation from a network perspective.

Table 5.1 illustrates the response times of various test conditions performed on the
database. These times were measured, in our laboratory environment (Figure 5.1), on a
two PS/2s model 80 computers with an 80386 16 MHz CPU, 8 Mega Bytes (MB) RAM,
150 MB hard disk storage (20 ms access time, 800 KB/sev transfer rate), PC1 and PC2.
And on a PS/2 model 57 computer with an 80386 16 MHz CPU, 8 MB RAM, 150 MB
hard disk (20 ms access time, 800 KB/sec transfer rate), PC3. The PC running the
Careport simulator software was a PS/2 model 60 with an 80286 16MHz CPU, PC4. All
computers ran version 1.3 of OS/2 and the Extended Services of OS/2 Database Manager

version 2.2.

108

5. Implementation, Results and Future Extensions

The response times were measured by inserting code statements in the application
. modules that read the OS/2 system clock before and after each operation execution. And

the response time was calculated from the difference of these two time stamps.

The transaction response times were measured for three ICU patients registered with
the PDMS. Analyzing the response times under the test conditions described in Table 5.1
allows a determination of the load effect on the database performance. These conditions
were tested while PC1 collected parameters data for three patients simultaneously, during

a one-hour time period. The various test conditions are described below:

Test Condition Client Server | Response Time
Register new patient PC2 PCI 2010ms
Register new patient PCl PC2 2120ms
Update exsiting Patient PC2 PC2 1000ms
Update existing patient PC1 PC2 1500ms

. Retrieve Patient Data (three Patients) PC2 PC2 210ms
Retrieve Patient Data (three patients) PC3 PC2 450ms
Retrieve Admittances (three patients) PC2 PC2 200ms
Retrieve Admittances (three patients) PC3 PC2 460ms
Insert parameter_minute data, 1 patient PC1 PCI 200ms
Insert parameter_minute data,3patients PC1 PC1 500ms
Insert parameter(halfhour)data, 1 patient PCi PC1 200ms
Insert parameter(halfhour)data,3patients PCl PC1 480ms
Half hour data retrieval (3 patients) PC1 PC1 2055ms
Half hour data retrieval (3 patients) PC2 PC1 5050ms

Table 5.1: Responsce Times

1. Register new patient.

This test condition involves admitting a new patient into the ICU via the Registration

‘ module. This transaction requires adding an instance in the Patient object and another in

109

5. Implementation, Results and Future Extensions

the Admittance object table, as well as activating the DLC module to start collecting data

from the patient's bed.

This transaction was carricd out in two ways, the first locally in which data was
inserted into the Patient and Admittance tables on the same station (PC2), and the sccond
remotely over the LAN in which data was entered on PCl and inserted in the

corresponding tables located on PC2. The response times measured in both cases were

acceptable.
2. Update existing patient.

This test condition involves admitting a patient for the second time into the ICU. That
is, the patient's ID already exists in the system, via the Registration module. This
transaction requires updating the information in the Patient object such as the patient's
phone number or address as well as a new instance in the Admittance object table. Again

the DLC module is activated to start collecting data from the patient's bed.

This transaction was also carried out in two ways locally and remotely. The response

times measured in both cases were within favorable limits.

-

3. Retrieve Patient and Admittance Data.

These test conditions were carried out by querying the Patient and Admittance
database tables via the OS/2 Database Query Manager. The queries were executed in two
manners, on the same station that holds the data and the other remotely. In both cases the

response time recorded was acceptable.

The local query that was carried out on the Patient table requested the patient hospital
ID, last name, first name, birth date, sex and age of all patients in the ICU. This was
accomplished by the following SQL statement:

SELECT Patient_ID, First_Name, Last Name, Date_of Birth, Sex, FROM
Patient;

5. Implementation, Results and Future Extensions

Query Manager for PDMS e

Actions Display Exit | Hnw

Report -

//7C2/Patient B

Patient_ID First_Nanme Last_Name Date_of_Birth Sex [
1234567890 Joe Bloe 09-12-1990 "
0987654321 Gregory Devillage 07-06-1951 s
1212345670 Michelle Dellontagne 01-06-1930 r

*Rw m weR
B!
L3 B | Wi

Figure 5.15: Sample Paticnt data retrieval,

The remote query that was performed on the Patient database table requested the same
information, however the request was issued from a client station (PC3) to the
corresponding database server station (PC2). This was accomplished by the following
SQL statement:

SELECT Patient_ID, First_Name, Last_Name, Date_of Birth, Sex, FROM
/IPC2/Patient;

A sample of the remote query result is shown in Figure 5.15. Note that at that time

only three patients were registered and active in the PDMS testing environment.

The queries that were performed on the Admittance table asked for all the information

found in that table, and are presented below:

local query:
SELECT * FROM Admittance;

remote query.
SELECT * FROM //PC2/Admittance;

The asterisk “*"indicates that all the columns in that table are required. A sample of
the local query result is shown in Figure 5.16.

111

®

5. Implementation, Results and Future Extensions

| Quory Managor for PDMS To i)l
| Actions Display __ Exlt { Help
Report »
Admitcance

Patient ID Date_In Time_In Bed Docor Date_Out Time_Out

234567890 02-03-1993 L2:00 1 Dr. Ronould 03-04-1993 12:00

0987654321 03-04-1853 16:00 4 D, Jerry

1212345678 03-04-1593 16:34 < Dr. Ronald

Rw m "Ew

4]

5 B 3

Figure 5.16; Samplc Admittance data retricval.

4. Insert parameter data.

The insertion transactions of parameters data were performed automatically by the data
transfer process of the DLC module. These data insertions can only be performed locally,

as currently intended by the design, in order to enhance the performance of the real-time
DLC module.

The response times recorded by the DLC module for a single patient active in the ICU
were acceptable. But for three or more active patients the results were somewhat slow
due to the limited capability of PC1, an 80386 16MHz computer. However, with a 80486
66MHz CPU and a minimum of 16MB RAM computer the response time of the DLC

module can be improved by an estimated factor of 3.

5. Half hour data retrieval.

These test conditions were carried out by querying the Parameters tables via the OS/2
Database Query Manager, The queries were executed in two ways, the first locally on

PC1 and the other remotely. In both cases the response time recorded was acceptable.

112

5. Implementation, Results and Future Extensions

The queries that were performed on the Parameters table asked for all the information

stored in that table within a certain two-second period, and are presented below:

local query:
SELECT * FROM Parameters WHERE Time_Stamp <= “19983-03-04-
12:02:02" AND WHERE Time_Stamp <= “1993-03-04-12:02:04",

remote query.

SELECT * FROM //PC1/Parameters WHERE Time_Stamp <= “1993-03-04-
12:02:02" AND WHERE Time_Stamp <= “1993-03-04-12:02:04",

The 5 seconds response time of the remote query, in this case, is found to be somewhat
slow since remote queries over large database tables are relatively slow. Moreover, the
network communication time, over the LAN, is also a considerable factor. On the other

hand, the 2 seconds response time of the local query is acceptable.

5.7 Future Extensions

The PDMS database currently operates on the 1.3 version of OS/2 under the Extended
Edition of the OS/2 Database Manager Services. Migrating the PDMS to the 32 bit 0S/2
2.1 can enhance its performance. Moreover, upgrading the hardware platform of the
PDMS from 386 CPU computer to the 486 66MHz or 100MHz series can enhance its
real-timc capabilities by an estimated factor of 3 to 5 times.

Although we employed an Object-Oriented method to design the database of the
PDMS, we had little choice over the implementation platform. Another research direction
for the PDMS could be investigating the advantages of an Object-Oriented implementation

versus a relational implementation.

Another interesting future extension to the design of the database is to encapsulate the
procedures that manipulate the PDMS database in the object model. For example,
displaying certain Parameters information or data insert and update operation. In fact,

113

5. Implementation, Results and Future Extensions

this is one of the main reasons why OMT was chosen over an EER database design

approach. This provides the database design with more flexibility, portability and
reusability.

These initial tests focus on the performance of the database implementation, More
extensive tests should also address other issues of a distributed implementation namely

computing network traffic and anticipated workstation loading,

114

Chapter 6 Conclusion

This thesis identified the need of data management computerization in the ICU through a
survey of types of data required and managed in an ICU and discussed the advantages that
such a step could present. It also descnibed some of the difficulties encountered in
building a medical system software, namely, the high cost of software development and

databasc maintenance due to design inadequacy and requirements misunderstanding,

The manuscript suggested modelling the database in the design phase of the medical
software as a solution that reduces the cost of database maintenance and promotes
understanding of the design and its requirements. Modelling also promotes the portability
and reusability of the design across different hardware and software platforms as well as
across similar intesive care organizations. It presented a literature survey and evaluation of
data modelling techniques and applied one of them in the implementation of the database.
It also evaluated the design produced by using this object-oriented database design
technique, as well as the actual test results obtained after implementing this methodology
on the Patient Data Management System for an Intensive Care Unit. Suggestions for

future work are also proposed.

The rule-based school of data modelling is rarely applied in the current software
industry. Moreover, there is scarce literature to be found on that subject. Therefore, in
order to ensure the extension and reusability of the PDMS database model we employed a

data modeling technique that belongs to the fact-based school of data modeling.

Both, an EER and object-oriented fact-based modeling methods serves us well in the
design of the PDMS database, they both provide a coherent easy to commuricate design
schema as well as 2 “mechanized” mapping between a “clean” high level database design
and a physical realizable data model. However, an object-oriented database model offers a
more flexible data model which is less expensive to extend in the future, in terms of data

processing (operations) and additional system functionality.

115

References

[Abrail, 1974] J. R. Abrail, “Data Semantics”, in Data Base Management (Klimbie and
Koffeman, eds). Amsterdam: North-Holland, 1974, pp. 1-61.

[Allen, 1991] S. K. Allen, “Selection and implementation of an automated care planning
system for a health care institution”, Compuiters in Nursing, vol. 9, pp. 61-68, March-
April 1991,

[Andreoli and Musser, 1985] K. Andreoli and L. A. Musser, “Computers in nursing care:
The state of the art”, Nursing Outlook, vol. 33, pp. 16-21, January-February 1985,

[Aukburg er al., 1989] S. J. Aukburg, P. H. Ketikidis, D. S. Kits, and B. B. Matschinsky,
“Automation of physiological data presentation and alarms in the post anacsthesia care
unit”, in Proceedings of the [3th Annual Symposium on Computer Applications in
Medical Care (SCAMC) (L. C. Kingsland, ed.), (Washington, D.C.), IEEE Press, 1989.

[Bachman, 1969] C. Bachman, “Data Structure Diagrams”™, Communications of the ACM
SIGBDP, Database, vol. 1, No. 2, 1969,

[Bachman, 1977] C. Bachman, “The role concept in data models”, in forc. 3rd
International Conference on very Large Databases, IEEE, New York, pp. 464-476,
1977.

[Biller and Neuhold, 1977] H. Biller and E. Neuhold, “Concepts for the conceptual
schema”, In Architecture and Models in Database Management Systems, G. Nijssen, Ed.,
North-Holland, Amsterdam, 1977, pp.1-30.

[Blum, 1984] B. 1. Blum, “Information systems for patient care”, in Information Systems
for Patient Care (B. 1. Blum, ed.), pp. 1-19, New York:Springer-Verlag, 1984.

[Booch, 1991] G. Booch, Object-Oriented Design with Applications. Redwood City,
CA: Benjamin Cummings, 1991.

116

References

[Bradshaw ¢t al., 1984] K. Bradshaw, R. Gardner, and T. C., “Physician decision-making-
evaluation of data used in a computerized ICU”, /ntl J Cin Monitoring Comp, vol, 1, pp.
81-91, 1984,

[Bradshaw er al., 1989] K. E. Bradshaw, D. F. Sittig, R, M. Gardner, T. A. Pryor, and M.
Budd, “Computer-based data entry for nurses in the ICU”, M.D. Computing, vol. 6, p.
274.280, September-October 1989,

[Brodie, 1984] M.L. Brodie, “On the Development of Data Models”, Topics of
Information Systems, on Conceptual Modelling (Perspectives from Artificial Intelligence,
Databases, and Programming Languages). New York: Springer-Verlag, pp. 1947, 1984,

[Brown, 1991] A. W. Brown, Object-Oriented Databases, Application in Software
Engineering. London: McGraw-Hill, 1991,

[Chen, 1976] Peter Chen, “The entity-relationship model: toward 2 unified view of data”,
in ACM Trans. on Database Systems. Vol. 1 N.1, pp. 9-36, 1976.

[Coad and Yourdon, 1990] P. Coad and E. Yourdon, Object-Oriented Analysis, New
York: Englewood Cliffs, Yourdon Press/Prentice Hall, 1990.

[Coad and Yourdon, 1991] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd.
edn., New York: Englewood Cliffs, Yourdon Press/Prentice Hall, 1991,

[Coad and Yourdon, 1991a] P. Coad and E. Yourdon, Object-Oriented Design, New
York: Englewood Cliffs, Yourdon Press/Prentice Hall, 1991.

[Codd, 1970] E. Codd, “A relational model of data for large shared data banks”, in
Communications of the ACM, vol. 13, pp. 377-387, June 1970.

[Collet et al., 1989] C. Collet, N. Fumai, M. Petroni, S. Malowany, J. Panisset, A
Malowany, F. Carnevale, R. Gottesman, and A. Rousseau, “A patient data management

system for an intensive care unit”, in Proceedings of the IEEE Pacific Rim Conference on

117

References

Communications, Computers, and Signal Processing, (Victoria, B.C., Canada), pp. 594-
597, June 1989,

[Collet er al., 1990] C. Collet, L. Martini, M., Lovin, E. Masson, N. Fumai, M. Petroni, A.
Malowany, F. Carnevale, R. Gottesman, and A. Rousseau, “Real-time trend analysis for an
intensive care unit patient data management system”, in Proceedings of the IEEE
Symposium on Computer-Based Medical Systems, (North Carolina), pp. 337-344, Junc
1990.

[Dasta, 1990] J. Dasta, “Computers in critical care: opportunities and challenges”, DICP,
vol. 24, no. 11, pp. 1084-1092, 1990.

[Date, 1981] C. J. Date, An Introduction to Database Systems 3rd. edn. Reading MA:
Addison-Wesley, 1981.

[Date, 1986] C. J. Date, An Introduction to Database Systems, Vol. 1, 4th. edn. MA:
Addison-Wesley, 1986.

[Dawant et al., 1993] B. M. Dawant, S. Uckun, E. J. Manders and D. P. Lindstrom, “The
SIMON Project: A Model-Based Signal Acquisition, Analysis and Interpretation in
Intelligent Patient Monitoring”, in JEEE Engineering in Medicine and Biology, vol. 12,
no. 4, pp. 82-91, December 1993.

[DeMarco, 1978] T. DeMarco, Structured Analysis and System Specification, Englewood
Cliffs, N.1.: Prentice-Hall, 1978.

[Dyke and Kunz, 1989] R.P Ten Dyke and J C. Kunz, Object-Oriented Programming,
IBM Systems Journal, vol. 28 no. 3, 1989.

[Ellis, 1987] D. Ellis, Medical Computing and Applications, Chichester, England: Ellis
Horwood Ltd., 1987,

[Elmasr: and Navathe, 1989] R. Elmasri and S.B. Navathe, Fundamentals of Database
Systems. Reading, MA: Benjamin Cummings, 1989.

118

References

[Elmasri and Navathe, 1995] R. Elmasri and S.B. Navathe, Fundamentals of Database

Systems, 2nd. edn. Reading, MA: Benjamin Cummings, 1989.

[EMBS, 1991] “Proceedings of the 13th annual international conference of the IEEE
engineering in medicine and biology society (EMBS)”, vol. 13, (Orlando, FL), IEEE,
IEEE Press, November 1991,

[Everest, 1988] G.C. Everest, “ER Modelling versus Binary Modelling”, In Proceedings
of the 16th. Intl. Conf. on ER Approach, S.T. March, Ed., North-Holland, Amsterdam,
1988, pp. 63-78.

[Fairley, 1961] B. H. Fairely, “The Toronto general hospital respiratory unit”,
Anaesthesia, vol. 16, pp. 266-269, 1961.

[Fichman and Kemerer, 1992] R.G. Fichman and C.F. Kemerer, “Object-Oriented and
Conventional Analysis and Design Methodologies”, in JEEE Computer, vol. 25, no. 10,
pp. 22-39, October 1992,

[Fumai er al., 1991] N. Fumai, C. Collet, M. Petroni, K. Roger, A. Lam, E. Saab, A
Malowany, F. Carmr.evale, and R, Gottesman, “Database design for an intensive care
unit”, in Proceedings of the Fourth Annual IEEE Symposium on Computer-Based
Medical Systems, (Baltimore, MD), pp. 78-85, May 1991.

[Gane and Sarson, 1979] C. Gane and T. Sarson, Structured Systems Analysis: Tools and
Techniques. Englewood Cliffs, N.J.: Prentice-Hall, 1979.

[Gardner et al., 1989a)] R. Gardner, K. Bradshaw, and K. Hollongsworth, “Computerizing
the intensive care unit: current status and future opportunities”, Journal of

Cardiovascular Nurse, vol. 4, pp. 69-78, 1989.

[Gardner er al.,198%b] R. M. Gardner, D. F. Sitting, and M. C. Budd, “Computers in the
intensive care unit: match or mismatch?”, in Textbook of Critical Care (W. C. Shoemaker,
S. Ayres, A. grenvik, P. R. Holbrook, and W. L. Thompson, eds.), Ch. 26, Philadelphia:
W. B. Saundres Co., 1989,

119

References

[Goldkhul and Lyytinen, 1982] G. Goldkhul and K. Lyytinen, “A language action view on
information systems”, in Proc. 3rd. International Conference on Information Systems,
Ann Arbor, December 1982,

[Goldkuh! and Lyytinen, 1984] G. Goldkhu! and K. Lyytinen, “Information System
Specification as Rule Construction”, in Beyond Productivity: Information Systems for

Organisational Effectiveness. T. Bemelmans (ed.), Amsterdam, Holland, pp. 79-94,
1984,

[Graham, 1994] Ian Graham, Object-Oriented Methods, 2nd. edn. Addison-Wesley, 1994,

[Hammond ef al., 1991a] J. Hammond, H. M. Johnson, C. G. Ward, R. Varas, R.
Dembicki, and E. Marcial, “Clinical evaluation of a computer-based patient monitoring

and data management system”, Heart and Lung, vol, 20, pp. 119-124, March 1991.

[Hammond, e a/,, 1991b] J. Hammond, H. M. Johnson, R. Varas, and C. G. Ward, “A
qualitative comparison of paper flowsheets vs. a computer-based clinical information

system”, Chest, vol. 99, pp. 155-157, January 1991.

[Hendrickson ef al., 1991] G. Hendrickson, J. B. Kelly, and L. Citrin, “Computers in
oncology nursing: Present use and fitture potential”, Oncology Nursing Forum, vol. 18,
pp. 715-723, May-June 1991.

[Hilberman, 1975] M. Hilberman, “The evolution of intensive care units”, Critical Care
Medicine, vol. 3. pp. 159-165, 1975.

[Hirschhein, 1985] R. A. Hirschheim, Office Automation: a social and organizational
perspective, Chichester Sussex; New York ; Wiley, 1985.

[Huber, 1983] G. Huber, “Cognitive style as a basis for MIS and DSS design: much to do
about nothing?”, Management Science, vol. 29, No. 5, May 1983.

120

References

[Kari ef al., 1990] A. Kari, E. Ruokonen, and J. Takala, “Comparison of acceptance and
performance of automated and manual data management systems in intensive care units”,

Intl J Clin Monit Comput, vol, 7, no, 3, pp. 157-162, 1990.

[Kent, 1983] W. Kent, “Fact-based data analysis and design”, in Entity-Relationship
Approach to Software Engineering, C. Davis et al., Eds., North-Holland, 1983, pp. 3-53.

[Kim and March, 1995] Y.G. Kim and S.T. March, “Comparing Data Modelling
Formalisms”, In Communications of the ACM, vol. 38, no. 6, June 1995, pp. 103-114,

[King er al, 1984] C. King, L. Manire, R. M. Strong, and L. Goldstein, “Data
management systems in clinical research”, in Information Systems for Patient Care (B. L.
Blum, ed.), pp. 404-415, New York: Springer-Verlag, 1984.

[Korth and Silberschatz, 1991] HF. Korth and A. Silberschatz, Database System
Concepts. New York: McGraw-Hill, 1986.

[Kriewall and Long, 1991] T. J. Krntewall and J. M. Long, “Computer-based medical
systems”, [ELE Computer Magazine, vol. 24, pp. 9-12, March 1991.

{Larson, 1992] james A. Larson, /ntercative Software: Tools for Building User Interfaces.
Englewood Cliffs, NJ: Yourdon Press, Prentice-Hall, 1992.

[Lynngbaek and Kent, 1991] P. Lyngbaek and W. kent, “A data modelling methodology
for the design and implementation of information systems”, in On Object-Oriented
Database Systems. (K. Dittrich, U Dayal and A. Buchman, eds.), Ch. 14, New York:
Springer-Verlag, 1991.

[Lyytinen and Lehtinen, 1984] K. Lyytinen and E. Lehtinen, “On information modelling
through illocutionary logic™, in Proc. 3rd Annual Research Seminar on Information

Modelling and Database Management. Tamepre, 1984,

121

Refercnces

[McDonald ef al., 1988] C. J. McDonald, L. Blevins, W. M. Tierney, and D. K. Martin,

“The regenstrief medical records”, M.D. Computing, vol. 5, pp. 34-45, September-
October 1988.

[Milholland, 1988] K. Millohand, “Patient data management systems: Computer
technology for critical care nurses”, Computers in Nursing, vol. 6, pp. 237-242,

November - December, 1988.

[Mittra, 1991] Sintansu S. Mittra, Principles of Relational Database Systems, Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[Mora et al., 1993] F Mora, G. Passariello, G. Carrault and J.P. Le Pichon, “Inteiligent
Patient Monitoring and Management Systems: A Review”, in [EEE Engineering in

Medicine and Biology, vol. 12, no. 4, pp. 23-32, December 1993.

[Morret-Bonillo et al., 1993] V. Morret-Bonillo, A. Alonso-Betanzos E. G. Martin, M. C.
Canosa and B. G. Berdinas, “The PATRICIA Project: A Semantic-Based Methodology
for Intelligent Monitoring in the ICU”, in JEEE Enginecring in Medicine and Biology.,
vol. 12, no. 4, pp. 59-68, December 1993.

[Morris, 1977] L. E. Moris, “History and ethical aspects of intensive care”, in The
management of the acutely ill (J. P. Wayne and D. W. Hill, eds.), pp. 2-3, England: Peter
Peregrinus Ltd., 1977.

[Nightingale, 1963] F. Nightingale, Notes on a Hospital. London: Longman, third ed.,
1963.

[Nijssen, 1977] G. Nijssen, “Current issues in conceptual schema concepts”, In
Architecture and Models in Database Management Systems, G. Nijssen, Ed., North-
Holland, Amsterdam, 1977, pp.1-30.

[Nolan-Avila and Shabot, 1987] L. Nolan-Avila and M. Shabot, “Life without computers
in the ICU, Critical Care Nurse, vol. 7, pp. 80-83, May-June 1987.

122

References

[OMG, 1993] Object Management Group, Comnton Qbject Request Broker Architecture.
Framington, MA: Object Management Group, 1993.

[Petroni ¢f el., 1991] M. Petroni, C. Collet, N. Fumai, K. Roger, F. Groleau, C. Yien, A.
Malowany, F. Carnevale, and R. Gottesman, “An automatic speech recognition system for
bedside data entry in an intensive care unit”, in Proceedings of the Fourth Annual IEEE
Symposium on Computer-Based Medical Systems, (Baltimore, MD), pp. 358-365, May
1991.

[Pricto-Diaz and Freeman, 1987] R. Prieto-Diaz and P. Freeman, Classifying software for
reusability, /EEE Software, Vol. 4, No, 1, pp. 6-16, 1987,

[Roger et al, 1992] K. Roger, C. Collet, N, Fumai, M. Petroni, A. Malowany, F.
Carnevale, and R. Gottesman, “Nursing workload management for a patient data
management system”, in Proceedings of the Fifth Anmual IEEE Symposium on Computer-
Based Medical Systems, (Durham, North Carolina), pp. 216-223, IEEE Computer Society
Press, June 14-17 1992,

[Rumaugh ef al., 1991] J. Rumbaugh, M. Blaha, W. Premmerlani, S. Eddy and W.
Loresen, Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall,
1991,

[Shlaer and Mellor, 1988] S. Shlaer and S.J. Mellor, Object-Oriented Analysis: Modeling
the World in Dara. Englewood Cliffs NJ: Prentice-Hali, 1988.

[Shlaer and Mellor, 1991] S. Shlaer and S.J. Mellor, Object Lifecycles: Modeling the
World in States. Englewood Cliffs NJ: Yourdon Press, 1991.

[Skarra and Zodnik, 1987] A. H. Sakarra and S. B. Zodnik, “Type Evolution in an Object-
Oriented Database”, Research Directions in Object-Oriented Programming. B. Sriver and
P. Wegner (eds.), The MIT Press, Cambridge, Massachusetts. London, England, pp. 393-
415, 1987.

123

References

[Smith and Smith, 1977) JM Smith and D.C.P. Smith, Databasc abstractions -

aggregation and generalization. ACM Trans. on Database Systems, vol. 2, pp. 105-133,
1977.

[Sommerville, 1989) 1. Sommerville, Software fngineering, 3rd. cdn. New York:
Addison-Wesley, 1989,

[Sommerville, 1992] 1. Sommerville, Software lingineering, 4th. edn. New York:
Addison-Wesley, 1992,

[Soontit, 1987] E. Soontit, “Installing the first operational bedside nursing computer

system”, Nursing Management, vol. 18, pp. 23-25, July 1987.

[Staggers, 1988] N. Staggers, “Using computers in nursing: Documented bencfits and
needed studies”, Computers in Nursing, vol. 6, pp. 164-169, July-August 1988.

[Stonebraker, 1991], M. Stonebraker, “Managing persistent objects in a multilevel store™,
Electronic Research Laboratory, University of California, Technical Report M91/16,
March 1991.

[Strickland Jr., 1991] T. J. Strickland Jr., “Development of an information system to assist
management of critically ill patients”, in Proceedings of the Fourth Annual IEEE
Symposium on Computer-Based Medical Systems, (Baltimore, MD), pp. 70-77, May
1991.

[Subramanian, 1989] S. Subramanian, “OB information management system: A
microcomputer solution”, in Proceedings in the IEEFE Engineering in Medicine and

Biology Society, (Seattle, WA), pp. 2005-2006, November 1989,

[Suko, 1976] M.E. Suko, “NIAM as a detailed example of the ANSI SPARC
architecture”, In Modelling in Database Management Systems, G. Nijssen, Ed., North-
Holland, Amsterdam, 1976, pp. 73-94.

124

References

[Sukuvaara ef af., 1993] T. Sukuvaara, M. Sydanmaa, H. Nieminen, A. Heikela and E.
M.J. Koski, “Object-Oriented Implementation of an Architecture for Patient Monitoring”,

in IELF Engineering in Medicine and Biology, vol. 12, no. 4, pp. 69-81, December 1993,

[Tachakra e¢r al., 1990] S. Tachakra, D. Potts, and A. Idowu, “Evaluation of a
computerized system for medical records in at. accident and emergency departments”, fnt/
J Clin Monit Comput, vol. 7, no. 3, pp. 187-191, 1990,

[Teorey ¢t al., 1986] T.J. Teorey and J.P. Fry, “A logical design methodology for
relational databascs using the extended entity-relationship model”, ACM Computing

Surveys, vol. 28, June 1986.

[Thull et al., 1993] B. Thull, H.J. Popp and G. Rau, “Man-Machine Intercation in Critical
Care Settings”, in J/EEE Engineering in Medicine and Biology, vol. 12, no. 4, pp. 42-49,
December 1993,

[Ullman, 1981] J.D. Ullman, Principles of Database Systems. Maryland: Computer

Science Press, 1981.

[Wasserman ef al., 1989] A.l. Wasserman, Pircher, P.A. and R.J. Muller, “An Object-
Oriented Structured Design Method for Code Generation™, Software Engineering Notices,
Vol. 4, No. 1, pp. 32-55, January 1989.

[Watt er al., 1993] R. Watt, E. S. Maslana and K. C. Mylreza, “Alarm and Anesthesia:
Challenges in the Design of Intelligent Systems for Patient Monitoring”, in JEEE
Engineering in Medicine and Biology, vol. 12, no. 4, pp. 34-40, December 1993.

[Weil er al., 1989] M. H. Weil, M. V. Planta, and E.C. Rackow, “Critical care medicine:
Introduction and historical perspective” in Texthook of Critical Care. (W.C. Shomemaker,
S. Ayres, A. Grenvik, P.R. Holbrook and W.L. Thompson, eds.), Ch. 1 , pp. 1-5,
Philadelphia: W.B. Saundres Co., 1989.

[Weiss and Page-Jones] S. Wiess and M. Page-Jones, Synthesis: An Object-Oriented
Analysis and Design Method. London: Macmillan, 1991.

125

References

[Whitinh-O’Keefe ¢f al.,, 1985] Q. Whitinh-O’Keefe, D. Simborg and W. Epstein, “A
computerized summary medical record systems can provide more information than the

standard medical record”, JAMA, vol. 254, pp. 1185, 1985.
[Winston, 1984] P.H. Winston, Artificial Intelligence, 2nd. edn.. Addison-Weslcy, 1984,

{Won, 1990] Kim Won, /ntroduction to Object-Oriented Databases. Cambridge, Mass.:
MIT Press, 1990.

[Won, 1995] Kim Won, Modern Database Systems: The object-model, interoprality, and
beyond. New York, N.Y.: ACM Press: Addison-Wesley, 1995.

[Yourdon and Constantine, 1979] E. Yourdon and L L. Constantine, Structurcd Design:
Fundamentals of a Discipline of Computer Program and System Design. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[Zumd, 1979] R. Zmud, “Individual differences and MIS success: a review of the

empirical literature”, Management Science, No. 25, October 1979.

126

Appendix A OMG Terminology
Term Specialisations
Value Object
Non-Object
Concept
Non-object Relationship
Concept Modelling concept
Object model concept
Modelling concept

Object model concept

Rule concept

Object behavioural concept

Strategic modelling concept
Analysis modelling concept
Implementation modelling concept
Deliverable

Activity type

Technique

Rule concept
Objet behavioural concept
Group and view concept

Object structure concept

Constraint

Assertion

Operation

Event

127

Message

Group and view concepts

Object structure concept

Object type

Relationship type

OMG Technology

State
Transition

Message

Request

Diagram

Schema

Quality concept

Strategic model G&V concepts
Analysts mod.l G&V concepts
Design model G&V concepts
Implementation mode G&V

Concepts

Attribute type
Object type
Relationship type

Strategic model object type
Analysis model object type
Design model object type

Implementation model object type

Association
Aggregation
Specialisation
Instantiation

Usage

128

