
INFORMAnON TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus. sorne thesis and

dissertation copies are in typewriter face. while others may be tram any type of

computer printer.

The qualKy of this reproduction is dependent upon the quallty of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages. these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g.. maps. drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in &quai sections with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI direcUy to order.

ProQuest Information and Leaming
300 North Zeeb Raad. Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

Labelled Markov processes

Jasée Desharnais

School of Computer Science

McGill University, Montréal

November 1999

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfilment of the requirements of the degree of Doctor of Philosophy

@Josée Desharnais, 1999

I~I
National Library
ofC8n&da

Acquisitions and
Bibliographie SeNïces
395w~Street
OtIawa ON K1A 0N4
Canada

Bibliothèque nationale
du canada
Acquisitions et
services bibliographiques

395. rue WelingtDn
0IIawa ON K1 A 0N4
canada

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, Ioan, distnbute or seU
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts ftom it
may he printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64546-0

Canadl

•

•

Résumé

Nous développons une théorie de systèmes continus probabilistes que nous prévoyons

intégrer à une théorie de systèmes concourants. Notre modèle est basé sur les systèmes

de transitions étiquettées. Les transitions non déterministes sont agrémentées de

probabilités et nous considérons l'espace des états comme étant possiblement continu.

Parmi nos principaux résultats, on compte:

• une notion de bisimulation et de simulation,

• une logique qui caractérise la bisimulation et la simulation,

• une construction permettant d'approximer les systèmes continus par des systè­

mes finis, et

• une métrique sur l'espace des systèmes.

Nous démontrons que la bisimulation est caractérisée par une logique très simple,

sans aucune forme de négation. Le fait que cette logique ne contienne pas de négation

nous permet d'obtenir une caractérisation logique de la simulation pour les systèmes

probabilistes discrets, ce qui n'est pas possible pour les systèmes non probabilistes.

Nous utilisons ensuite ces caractérisations pour définir deux algorithmes, l'un nous

permettant de dire si deux systèmes sont bisimilaires, l'autre pour déterminer si un

système simule un autre système.

Nous montrons comment approximer un système continu à l'aide de systèmes

finis et comment reconstruire le système à partir de ses approximations. Parmi ces

approximations, il en existe qui se trouvent aussi près que voulu du système original.

Nous définissons une métrique sur l'espace des systèmes continus qui reflète la

différence entre les systèmes. Des systèmes qui sont très différents se verront attribuer

i

•

•

une grande distance alors que deux systèmes bisimilaires auront une distance nulle. En

fait, une famille de métriques est définie et nous démontrons que les approximations

finies d'un système continu convergent vers ce système pour toutes ces métriques.

Finalement, nous démontrons que les systèmes dont le graphe de transition est

un arbre et dont les probabilités sont rationelles forment une base (dénombrable) de

l'espace des systèmes étudiés. Cet espace est donc un espace métrique séparable.

ii

•

•

SUlllmary

We develop a theory of probabilistic continuous processes that is meant ultimately to

be part of an interactive systems theory. Our model is a generalization of ordinary

labelled transition systems to which we add probabilistic transitions. The four main

contributions are

• a notion of bisimulation equivalence and simulation preorder,

• a logic for characterizing bisimulation and simulation,

• an approximation scheme and

• a metric on the collection of processes.

We prove that bisimulation is characterized by a very simple logic that neither in­

volves negation nor infinite conjunction. We have a similar result for simulation

between discrete processes. Moreover, these characterizations are used to construct

two algorithms, one that decides whether two finite-state probabilistic processes are

bisimilar, and another that decides whether astate simulates another.

We show how to approximate any continuous process with finite-state processes,

and that one can reconstruct the process from its approximations. These finite ap­

proximations can be as close as we want to the original process. Moreover, we define

a family of metrics that can tell how far apart or how close two processes are. The

metries also witness the fact that the approximations converge to the original process.

Finally, we prove that the processes where the transition graph is a tree and whose

transition probabilities are all rational forro a basis of the space of labelled Markov

processes; this means that labelled Markov processes form a separable metric space.

iii

•

•

Acknow-Iedgments

First 1 would like to warmly thank my thesis supervisor, Prakash Panangaden, for his

precious enthusiasm, for his invaluable support and patience, for having so strongly

believed in me and for his contïnuous help during the preparation and writing of this

thesis. 1 also want to thank him for having introduced me to the subject of this

thesis, for having given me the opportunity to travel and meet people by sending me

to many conferences in many beautiful countries.

1 would like to thank Abbas Edalat whose collaboration has been essential for the

theory of bisimulation to make sense, especially with the help of his semi-pullback

theorem. 1 want to thank Vineet Gupta, Radha Jagadeesan and again, Prakash

Panangaden for highly stimulating discussions that have Led to the discovery of many

results in this thesis. 1 also want to thank Rick Blute, Franck van Breugel, Martin

Escardo, Patrick Lam, François Laviolette, Ben Rich and Erik de Vink for helpful

discussions and comments and Falk Bartels for pointing out a mistake in an earlier

version of the finite approximation construction.

Je désire remercier tout spécialement mon compagnon, François, pour avoir tra­

vaillé patiemment sur ma confiance fragile, pour ID'avoir encouragée à tourner mon

intérêt vers l'informatique, pour son extraordinaire et inébranlable caractère et pour

avoir pris une foule de choses en charge dans les dernières semaines de la rédaction

de cette thèse.

Je remercie également ma famille, mes amis qui m'ont aidée de différentes façons,

entre autre par leur affection, leurs encouragements. Je voudrais remercier en partic­

ulier Claude Crépeau pour m'avoir permis de rencontrer le meilleur des directeurs de

thèse.

This work has been supported by NSERC.

iv

•

•

À ma mère, pour m'avoir donné toutes les chances

de choisir mon chemin.

v

•
Contents

Résumé

3 Labelled Markov processes

Acknowledgments

Summary

i

iii

iv

1

. . . . 1

. 4

7

9

10

13

15

15

19

22

24

25

28

31

34

38

vi

Markov processes

Probabilistic labelled transition systems .

Labelled Markov processes

The category LMP . .

Bisimulation relation

Simulation relation .

3.1

3.2

3.3

3.4

3.5

3.6

2 Background on non-probabilistic transition systems

2.1 Labelled transition systems .

2.2 Simulation and bisimulation: a game description .

2.3 Formai definitions of bisimulation and simulation

2.4 The categorical definition of bisimulation . .

2.5 Hennessy-Milner logic .

1 Introduction

1.1 Motivations

1.2 Contributions

1.3 Outline of thesis .

•

• 3.7 Examples of bisimulation and simulation

4 A modal logic for bisimulation and simulation

4.1 Modallogics.................

4.2 Logical characterization for bisimulation

4.3 Logical characterization of simulation ...

4.4 Algorïthms for bisimulation and simulation.

4.5 Further aspects of logical characterization

43

48

49

53

59

63

71

5 Approximations

5.1

5.2

Finite-state approximation and reconstruction

Example

75

76

82

6 Metrics and logic via real functions 86

6.1 Probabilistic logic via functions into [0, 1] 87

6.1.1 Functional expressions vs bisimulation and simulation . . 89

6.1.2 Finite approximations and functional expressions 93

6.2 Metrics and convergence of approximations 95

6.2.1 A countable basis for labelled Markov processes 97

VII•

7 A categorical definition of bisimulation and simulation

7.1 Bisimulation and simulation as spans

7.2 Bisimulation and logic

7.3 Discrete processes revisited ..

8 Conclusions

8.1 Summary

8.2 Related work

8.3 Future work .

A Relevant mathematical concepts

Bibliography

102

. . . . 103

109

113

120

120

121

125

128

131

•

•

Chapter 1

Introduction

This thesis is concerned with the analysis of probabilistic systems with a continuous

state space. The general goal is to make a step towards establishing formaI methods

for reasoning about such systems. Normally one associates formai methods with

logjc and discrete structures. In this thesis, we will explore how the ideas developed

for discrete probabilistic systems can be applied to systems with a continuous state

space. The mathematical techniques needed are very different from previous work in

concurrency theory; in particular, a significant role is played by measure theory in

some of the key results.

The systems we consider have a continuous state space in order to model physical

systems; they have labelled transitions that are quantified with probabilities; they are

reactive in the sense that we study them with respect to how they react to actions

taken by the environment, and hence they are meant to be concurrent; final1y, even if

the state space can be infinite, the transitions are discrete and hence time is discrete.

These concepts will be explained and motivated in the following section.

1.1 Motivations

In recent years, physical systems have become important in computer science. A

physical system is any system that evolves in a continuous state-space, by involving

continuous parameters such as distance, temperature, pressure. These systems arise

in hybrid systems theory (see for example [AHS96], [AKNS97]). A hybrid system is

1

•

•

a continuous physical system combined with a control process which is discrete and

most of the time finite. A typical example is a simple raiIroad crossing, consisting

of a train, a gate and a controller; the controller must ensure that the gate is down

whenever the train is in the intersection, and that it is not dosed unnecessarily. The

motion of the train is continuous but the states of the controller are discrete. Other

examples are trame controllers, heating systems, flight control systems, etc. Even if,

in practice, one always discretizes a system before using it or before reasoning about

it, a theory of continuous systems is necessary to he able to argue that a discretization

of a process is indeed a faithful model of the process. Moreover, it is essential ta have

a notion that tells if a discrete process is "doser" ta, or is a finer approximation of a

process than another discrete process.

The systems that we consider have a continuous state-space but make discrete

steps - in other words tirne is discrete. One motivation for studying these systems is

that this is a reasonable middle ground before studying the more general case of con­

tinuous state space and continuous tiLTle. Moreover, it has sorne practical applications

that we encounter in control systems. The following example is taken from (DEP99]

and abstracts from a practical investigation in collaboration with industry. We have

a physical system, like an airplane, and a controLler that takes reading at fixed in­

terval - say every one tenth of a second - of a numher of parameters. Depending on

the reading, it takes sorne actions to keep the physical system stable. The number of

possible states is really continuous, but the steps are discrete. Of course the dynamics

is occurring in continuous time but the sampling occurs in discrete time.

Ultimately, these systems are to be part of an interactive systems theory. Compo­

sitionality has been one way of dealing with the formidable problem of complexity of

systems. Complex processes are broken up into components that we study separately.

We do not study composition of systems in detail but we take a view that is cornmon

in concurrency theory. Processes are studied with respect to their interaction with the

environrnent. The environrnent can be a user or another process: we are interested

in what this external observer can observe about a process. Intuitively, a process

is a system that evolves in time by executing sorne actions in response to actions

•

•

taken by the environment. The system is in astate at a point in time and makes

transitions between states depending on which interaction with the environment is

taking place. The formalism used for describing the behaviour of processes is labelled

transition systems. A labelled transition system consists of a set of states, a set of la­

bels and a set of transitions which are labelled. The label indicates which interaction

the environment is requesting: a process makes an a-labelled transition only if the

environment also simultaneously makes an a-Iabelled transition. In non-deterministic

labelled transition systems, there may be more than one transition from a given state

having the same label.

In probabilistic processes, non-determinism is not only enumerated, it is quan­

tified. The fundamental work about discrete probabilistic transition systems is by

Larsen and Skou [LS91]. Like ordinary labelled transition systems, probabilistic tran­

sition systems consist of a set of states, a set of labels and a set of transitions. The

difference is that the state to which the process jumps is determined by a probabil­

ity function. The work that has been done until now restricts to processes having

a finite or countable number of states. We have generalized the theory to continu­

ous state-space systems (which we have called labelled Markov processes). Modeling

transitions in this context requîres notions of measure theory. Indeed, in uncount­

able spaces, the probability of jumping to a single state is often zero; therefore we

must consider instead the probability of jumping to a set of states. In this manner,

each state s and each action a will have an associated sub-probability measure which

describes the effect of action a when the process is in state s.

With the advent of computer controlled physical systems has come the need for

analyzing and reasoning about them; this is best done with the help of formaI meth­

ods. Formai methods are mathematically based languages, techniques and tools for

specifying (describing) and verifying systems. When designing a system, the ultimate

goal is to make it operate reliably, despite its complexity. Formai methods are used

more and more in industry, in particular in the last ten years. A good survey of their

use can be found in [CW96]. Even when we just use formai methods for specification,

they have been proven to greatly improve product quality and error detection time;

3

•

•

they often even reduce the development cast of systems because of the savings in test­

ing that they provide. At the verification level, formal methods allow one ta discover

subtle errors that could not be detected by humans because of the size of systems;

they also provide one with information that aids in debugging. There are examples of

existing and heavily used systems in which verification tools have found errors. One

famous such example is the Needham-Schroeder protocol [NS78], invented in 1978

and used since then. A bug was discovered in 1995 by Gavin Lowe with the help of

a model verification tool at Oxford [Low96].

Establishing formai methods for continuous state-space systems is not an easy

task. In our case, we have foundational work to do before we can think about the

use of logical formaI methods. It is not à priori obvious that logical formulas capture

anything interesting about a continuous state-space system. However there are results

in the theory of hybrid automata that give one sorne reason to hope. In particular,

the work on linear hybrid automata shows that in certain cases one can exploit the

structure of the system to construct an equivalent finite-state system [ACH+95] thus

making it amenable to algorithmic analysis. It has even been possible to construct

tools - ego HYTECH - for verifying hybrid systems [HHWT95]. Of course these

results are suggestive for our context but do not give any direct technical results that

we can use for probabilistic systems.

1.2 Contributions

In algebraic approaches to concurrency theory, the important issue is whether two

labelled transition systems are equivalent. In particular, two different descriptions

of processes could have the same behaviour and thus lead to the same process. But

what do we mean by "having the same behaviour"? There are in faet many notions of

equivalence. We are interested in an observational equivalence, called strong bisimu­

lation, introduced by Milner [Mil80]. This equivalence is based on what an external

observer (the environment) can say about the difference between two proeesses.

We define bisimulation for labelled Markov processes. Our definition is a general­

ization (to continuous state-space systems) of Larsen and Skou's probabilistic bisim-

4

•

•

ulation [LS91]. In continuous systems, one practical use of bisimulation is to evaluate

if a given process is in fact discrete despite the fact that it might be described as a

continuous system. More generally, we show how to construct the "simplest" process

bisimilar to a given process. For finite-state systems, this is astate minimization

construction.

Apart from knowing that two systems are equivalent, perhaps a more practical

issue is refinement, that is, can a given system "replace" another, or can it simulate

it in the sense that everything the second one can do can also be done by the first

one? Generalizing this concept to probabilistic processes, we will say that a process

simulates another if, from the user point of view, it cao make all the transitions the

second one can perform with higher probabilities.

The most important contribution of this thesis is a logical characterization of

bisimulation for Markov processes. That is, we define a logic which is the analogue

of Hennessy-Milner logic for non-probabilistic processes. Two processes are bisimilar

if and only if they satisfy the same formulas of the logic. A logic is useful for speci­

fying properties that we want our system to satisfy and for verification. By checking

that two processes satisfy the same formulas, we can decide if they are bisimilar, and

conversely, by ooly finding a formula that distinguishes them, we cao prove that two

processes are not bisimilar. This cao be done automatically. The logic we define is

surprisingly simple: in particular, it does not involve any kind of negation, nor is it

limited to processes having finite branching (Le., having a finite number of transitions

with the same label from any state) in order to characterize bisimulation. This was

a surprise because in the non-probabilistic case, infinite conjunction is necessary to

witness infinite branching and negation is aIso necessary even for finite branching

systems. In addition, we report five different logics - none of them being equivalent

- all characterizing bisimulation. The proofs are of entirely differeot character from

those required for the noo-probabilistic case and use technical results from measure

theory. A logic without negatioo carries a notion of simulation and indeed we prove

that our logic augmented with disjunction characterizes simulation for discrete sys­

tems: astate simulates another state if it satisfies aIl the formulas the other satisfies.

5

•

•

We give an application of the logical characterizations by defining algorithms, one

that can decide whether two finite-state probabilistic processes are bisimilar, and the

other that can decide whether astate simulates another. The algorithms exhibit a

formula that is satisfied by only one of the processes if they are not bisimilar or if this

process is not simulated by the other. The fact that the logic is simple is an advan­

tage for debugging, but for specification of properties, it is better to work with more

expressive logics. Moreover, the complexity of the logic has no impact on satisfiability

checking.

As we have already said, the analysis of a continuous system is greatly simplified

if we can prove that it is equivalent to a finite-state process. Of course, one cannot

hope that for every continuous process one can find a bisimilar finite-state process.

Nevertheless, we show how to approximate any continuous process with finite-state

processes that can be as close as we want to the original process. We show that

we can reconstruct a process from its finite-state approximations - more precisely a

bisimulation equivalent of the original process -, and prove that the approximations

capture all the logically definable properties that the original process satisfies. A

finite-state approximation allows one to reason more easily about the continuous

process it approximates. However, we should not discard the continuous process by

saying that it has become useless since we have the finite-state one. For different

purposes, we may need tiner approximations to our process.

Though it is a very useful notion, bisimulation has sorne limitations. Bisimulation

tells us when two processes are essentially behaviourally identical. If they differ

slightly in the probabilities, bisimulation says that they are not bisimilar. On the

other hand, simulation tells us a little more. Two processes, although not bisimilar,

can he related by a simulation relation; one can be greater than the other. But

simulation does not tell us how distant the processes are in a quantitative fashion and,

since it is not a total order, there are pairs of processes for which it tells us nothing

precise. Like bisimulation, it is not robust; a very small change in probabilities will

likely result in non-bisimilar and "non-similar" processes. We will introduce a metric

that will allow us to retine our view of processes. This metric will assign a number to

6

•

•

every pair of processes, giving 50 an indication of how far they are from each other.

If the metric distance is 0, then the two processes will turn out to he bisimilar, and

conversely. Proeesses that are very "close" will get smaller distance than processes

that are "far" apart. In order to define these metries, we will shift from the traditional

view of logical formulas to measurable functions into [0, 1]. These functions will play

the same role as the logic formulas we mentioned above, but in addition, they will

provide us with !lumbers that we will use to define the metrics.

The d€finition of bisimulation we work \Vith is given in terms of the existence of a

relation hetween states of processes. In fact, the original presentation of hisimulation

for labelled Markov processes was given in categorical terms and the relational view

evolved later. The categorical view of bisimulation for labelled Markov processes is

based on the ideas of Joya!, Nielsen and Winskel [JNW96].

1.3 Outline of thesis

In the next chapter, we recall well-known definitions and results on non-probabilistie

labelled transition systems. We define these terms and explain the notion of bisim­

ulation and simulation and the intuition behind them. We also show how they are

characterized by a modal logic due to Hennessy and Milner. In Chapter 3, we state

ail the basic definitions and motivations pertaining to our mode!. We explain what

labelled Markov processes are, the notions of bisimulation and simulation and how

these definitions are generalizations of their non-probabilistic analogues. We also

show how they are organized in a category and finally we give a fe\V examples to

illustrate the ideas.

In Chapter 4, we define a simple probabilistic variant of Hennessy-Milner logie,

written /:', as weIl as four other logics that are extensions of 1:" and we prove that

J:, characterizes bisimulation for labelled Markov processes. We also prove that by

adding disjunetion to /:, we can characterize simulation for diserete processes. We use

these charaeterizations to define two algorithms for finite-state systems, one that ean

decide whether two states of a process are bisimilar, and the other that can decide

whether astate simulates another. Finally, we prove that ail the logics we define

7

•

•

characterize hisimulation and discuss which one can characterize equivalence classes

of hisimilar states.

In Chapter 5, we show how ta construct a family of finite-state processes from

any continuous-state process that approximates the process and show that we can

reconstruct the original process from the finite approximations. The finite-state ap­

proximations will be shawn ta he simulated by the process 50 that, in some sense,

they really only capture properties of the original process; conversely, we show that

every definahle property that is satisfied by the process is satisfied hy some finite­

state approximation. In Chapter 6, we define metrics for labelled Markov processes

that will strengthen these results by showing that the approximations of a process

converge to it in the metrics. These metrics are defined with the help of measurable

functions into [0, 1]. The functions are shown to capture bisimulation in the sense

that they give equal value to, and only to, bisimilar states. A similar result is proven

for simulation in the case of discrete systems. We also show that the space of labeUed

Markov processes is a separable metric space.

In Chapter 7, we give the alternative definition of bisimulation in categorical terms

and prove that it is equivalent to the relational definition we give in Chapter 3. We

also focus on discrete or finite-state processes and give sorne proofs in these systems

that are simpler than the same results on arbitrary systems.

Chapter 8 contains a short summary of the contributions we made and discussions

on related and future work.

In the appendix, we give sorne definitions from measure theory and probability

theory that are useful in the reading of this thesis.

8

•

•

Chapter 2

Background on non-probabilistic
transition systems

This chapter is a review of well-known definitions and results on non-probabilistic

labelled transition systems. Our analysis of probabilistic systems is based on these

ideas. A reader familiar with process algebra can skip this chapter.

A process is a dynamical system: it evolves in time by executing some actions or

by reacting to events, performing transitions between states. These transitions could

be purely internai or could be the result of an interaction with the environment. The

word "process" is used to refer to such systems and the phrase "transition system" is

used to refer to the explicit presentation of the states and transitions of the system.

One can think of processes as being defined by sorne syntax and the transition systems

as representing their semantics. In this thesis we will view processes as transition

systems and not discuss syntactic descriptions of processes. We recall the definition

of Labelled transition systems in the next section. In Section 2, we give the intuition

behind bisimuLation and simulation by describing two..pLayer games that can be played

to determine if a system simulates another or if it is bisimilar to it. We then give the

formai definition of bisimulation and simulation which are in tenns of the existence

of a relation between the states of the systems. In Section 4, we recall an alternative

formulation of bisimulation and simulation, given in a categorical setting. Finally, we

state the well-known characterization of bisimulation by Hennessy-Milner logic. This

is the prototype of the logical characterization results that we prove.

9

• 2.1 Labelled transition systems

•

The processes that concem us interact with their environment by synchronizing on

labels in the manner familiar from process algebra. Thus we have a set of states, a

set of labels and, for each state and label, there can be a transition. Suppose the

system is in state s and the environment chooses a label, say a; then the system makes

the corresponding a-Iabelled transition to a new state if the action a is enabled in

state s. In traditional process algebra, the resulting state is chosen arbitrarily from

a set of possible result states. In our case the result state is chosen according to

sorne given probability distribution. It is assumed that a process makes an a-Iabelled

transition only if the environment also sirnultaneously makes an a-Iabelled transition.

Thus interaction is synchronous. In practice, processes can perform internaI moves

and change state between two given interactions with the environment but here we

are only interested in what the environment can really observe regarding the process,

therefore we do not use these internaI transitions. In fact, in this thesis, we will

not even consider that these unobservable transitions take place; we will consider aIl

transitions as arising from the environment.

Definition 2.1.1 A labelled transition system is a tuple (8, i, A, -+) where S is a

finite or countahle set of states, i E S is an initial state, A is a set of labels or actions,

and -te S x A x S is a set of transitions. When (s, a, s') E-+ we write s ~ s'.

We fix the label set to he sorne A once and for all; we frequently refer to a labelled

transition system by its set of states. A transition system is often represented as a

transition graph. The vertices of the graph represent states of the system and an

arrow with label a connecting astate s to another state s' represents an a-transition

from s to s', thus a triple (s, a, s') E-+.

Example 2.1.2 Here are two simple labelled transition systems with initial states So

and to respectively. The first one is detenninistic, whereas the second one has one

indeterminate transition from state to. If the environment asks for action a, this

10

• system can jump to either t i or t2 •

•

An important question in the theory of concurrency is the notion of process equiv­

alence: when do two labelled transition systems describe the same process? For ex­

ample, it could happen that a labelled transition system having an infinite number

of states behave like a very simple system with a finite number of states. Should we

consider the two processes of Example 2.1.2 equivalent? The notion of equivalence

between processes is commonly used to check if a given implementation matches its

specification. Typically, both the specification and the implementation are described

as labeIled transition systems, and then we check if the processes derived are equiv­

aIent. There are severa! different notions of equivalence. One of the most basic and

mathematically pleasing notions is strong bisimulation due to Milner [Mil80] and

Park [Par81]. Strong bisimulation cornes with a theory rich in results: the classical

characterization is in terms of the existence of a relation between states of the sys­

tems, but there are as weIl a two-player game and a logic that characterize strong

bisimulation. More interestingly for concurrency theory, strong bisimulation has a

pleasant algebraic theory: it is compositional and can be characterized as a fixed

point. Roughly speaking, two labelled transition systems are strongly bisimilar if

they are indistinguishable from the point of view of the user. At each point of inter­

action, every move that can be taken by any of them can be matched by the other.

The adjective "strong" refers to the fact that invisible moves are not considered in

analyzing systems, aIl moves are visible. Since this is the only kind of bisimulation

we are interested in, we will drop the word "strong" in the sequel. There is a notion

of weak bisimulation that distinguishes internaI actions from visible ones. Another

notion of equivalence that is widely used in language theory is trace-equivalence. This

notion is concerned with which sequences of actions are accepted by a process. Two

Il

•

•

processes are trace-equivalent if they accept the same sequences of actions. This will

be illustrated in Example 2.1.3. The main disadvantage of this equivalence from the

point of view of concurrency theory is that it is not compositional. If we compose

two processes that are trace-equivalent with a third process, the results may not be

trace-equivalent.

Sometimes equivalence relations like bisimulation may be too strong. They only

tell us if two processes are equivalent. We may be interested in knowing if a process,

though not equivalent to another one, can replace it. The preorder analogue of

bisimulation is simulation. It tells when a system is "better than" another. That is,

when - from the user's point of view - a system allows at least the same possibilities

as the other. We cao use simulation to check if an implementation simulates its

specifications, that is, it is able to do at least what it was required to do.

To see what simulation and bisimulation are, let us recall Milner's interpretation

of a process: it is a black box on the top of which there are buttons which are

labelled. We want to investigate the behaviour of the process by demanding it to

accept labels one at a time. If an a-transition is enabled, button a will be unlocked and

go down when pressed. If Dot, the button will be locked. This is what simulation and

bisimulation will witness: how systems interact with their environment, in particular,

it will record what transitions are or are not enabled. This is in contrast with trace­

equivalence where only enabled transitions are recorded.

Example 2.1.3 Consider the classical transition systems of Example 2.1.2. These

two systems are trace-equivalent: they accept the same language, namely the sequences

ab and ac. N ow if we study their interaction with their environment, they can be

distinguished easîly. The first system will always accept an attempt to press button

a followed by b, whereas the second may have its b-button locked after accepting a.

Renee they are not bisimilar. On the other hand, the former does simulate the latter.

On the other hand, if we restrict to deterministic labelled transition systems -that

is, we do not allow more than one transition with a given label out of astate, we

have that bisimulation is the same as trace-equivalence: two systems are bisimilar if

12

• they have the same trace set (see (Mil89]). Moreover, a system S simulates another,

say T, if the trace set of S contains the trace set of T. Hence in this case, we aIso

have that bisimulation is equivalent to two..way simulation. We say that two systems

are two-way similar if they simulate each other. For indeterminate processes, the

fol1owing example illustrates that the situation is different.

Example 2.1.4 The following two systems simulate each other but are not bisimilar.

•

After accepting action a when in state ta the second process may jump to state t2

where no action is enabled. On the contrary, the first process, in state sa, will always

accept action a followed by b. By pressing buttons on both processes, we may not get

the same answers; hence they are not bisimilar.

2.2 Simulation and bisimulation: a game descrip­
tion

Before stating the classical formaI definition of simulation and bisimulation, we de­

scribe a characterization in terms of games that is based on the idea of pressing

buttons we mentioned above. This gives a good intuitive feeling for the concepts.

We begin with simulation. Let S and S' be two labelled transition systems,

and assume we have two players, one of them, called Player, trying to show that

S is simulated by S', and the other one, Opponent, trying to show the contrary.

Informally, a play progresses as follows. Opponent starts out by choosing a transition

from the initial state of S with a label, say a; if Player cannat match the move with

a transition from the initial state of S' with the same label, he loses. Otherwise, he

chooses such a matching transition, and it is again Opponent's turn to move. He

chooses a transition leading out of the state arrived at in the previous pair of moves.

13

•

~.

Again Player is required to match with an equally labelled transition in S'. The

play continues like this forever, in which case Player wins, or until either Player or

Opponent is unable to move, in which case the other participant wins. S is simulated

by S'if and only if Player has a winning strategy. If there is sorne play where

Opponent can win, S is not simulated by S'.

Example 2.2.1 Let us go back to Example 2.1.2 and show that by playing this game,

Opponent can succeed in showing that the second one does not simulate the first one,

but that the converse is not true. Opponent starts up by choosing, from state so, the

transition a to state S1: to this, Player has no choice but to choose an a-transition

/rom to to t 1 or t2. In the first case, Opponent then chooses S3, in the second one, he

chooses S2: in either cases, Player won't be able to match the move, th'l./,S the process

to does not simulate So. On the other hand, So does simulate to, since no matter which

sequence of transitions on the second system Opponent picks, Player will be able to

match the move at each step.

The game for bisimulation is a variation of the previous one. However, the dif­

ference is crucial and it makes bisimulation much stronger than simulation and also

much stronger than simulation in both directions. The difference in the rules of the

game is that Opponent is not required to play in the same system all the time. When

he chooses a transition at the begjnning, he can choose it from the initial state of

either system, forcing Player to play in the other one, and when he chooses a transi­

tion from astate at any point in the game, he cau do it from any of the two states

arrived at in the previous pair of moves, that is, he can change machine at will. The

fact that Opponent is allowed to change machine captures the notion of equivalence

needed for bisimulation: if two states are equivalent, it should not matter from which

state Opponent performs its move for Player to be able to match it. The winner is

determined in the same way, and two systems are bisimilar if and only if Player has

a winning strategy.

Example 2.2.2 To illustrate bisimulation, let us go back to Example 2.1.4· Since So

and to simulate each other, Opponent will have to change process during the play to

14

•

•

show that they are not bisimilar. He starts up by choosing to and the a-transition to

t2. Player must choose So and jump ta SI. But then, Opponent switches processes and

chooses the b-transition from SI ta S2. Player cannat play, and looses. Therefore, the

two systems are not bisimilar.

2.3 FormaI deflnitions of bisimulation and
simulation

The definition of bisimulation was fonnulated by l\ililner [MilSa] and described as a

fixed point by Park [ParSI].

Definition 2.3.1 Let (S, i, --+) and (S', i', --+') be two labelled transition systems. A

relation n. c S x S' is a simulation if (s, Si) E R implies that for ail a E A,
a

• if s ~ t, then there exists t' E S' such that s' --+' t'and (t, t') E R.

Astate s is simulated by Si if there exists a simulation 'R, such that (s, Si) E R; S is

simulated by S'if i is simulated by i'. A relation R C S x S' is a bisimulation if

(s, Si) E 'R, implies that for aIl a E A,
a

• if s ~ t, then there exists t' E S' such that Si --+' t ' and (t, t') E R; and

a
• if Si --+' t l

, then there exists tES such that s ~ t and (t, t') E R.

Twa states S, s'are bisimilar if there exists a bisimulation 'R. suck that (s, s') E 'R.. S

is bisimilar to S' if i is bisimilar to i'.

2.4 The categorical definition of bisimulation

In [JNW96], Joyal, Nielsen and Winskel gave a categorical formulation of bisimulation

for ordinary labelled transition systems. We will give a similar formulation of bisim­

ulation for labelled Markov processes. See [BW90, Mac71] for definitions relating to

category theory.

Simulation is easily formulated in terms of morphisms between processes. Indeed,

a system S is simulated by S'if there is a function f : S --+ S' that sends the initial

15

•

•

state of 8 to the initial state of S'and preserves transitions, that is, every move that

can be done by astate s in S can be imitated by f (s) in S'; moreover, if a move

from s leads to say, state t E 8, then f(s) can match this move by jumping to astate

which again simulates t, namely J(t). At first sight, the direction of the arrow (from

the simulated to the simulating process) may appear wrong, but one must keep in

mind that we want every state of S to have a corresponding simulating state in S'.

Hence it is natural to use a map that gives an image in S' to every state of S.

Formulating bisimulation in this context is done by using spans which are the

analogue of relations in a categorical setting. A span between two objects SI and S2

of a category is a third object T together with morphisms from T to both SI and

S2. Consider Sets, the category having sets as objects and functions between sets as

morphisms. One can think of a relation as a span. For any relation R between two

sets SI and 8 2, the set of ordered pairs {(Sb S2) E SI X S2 1 SIRs2} together with the

projection morphisms is a span between SI and S2 in Sets; conversely, given a span

T, fi : T -4 Si, i = 1,2, we can define the relation R ç SI X S2 as S1Rs2 if there is a

t E T such that /1 Ct) = SI and /2(t) = S2.

The categorical definition of bisimulation will be in terms of the existence of

a span of special morphisms, encoding in this manner the equivalence relation of

Definition 2.3.1. These special morphisms will relate in particular bisimilar processes;

hence, they must satisfy a condition that captures the notion of Definition 2.3.1, and

thus not only preserve (as simulation morphisms do) but also "reBect" transitions.

Definition 2.4.1 Let (S, i, -+) and (S', i', -+') be two transition systems with the

same labeling set A. A simulation morphism from 8 to S' is a function / : S -+ S'

such that / (i) = i' and
a

S ~ S' => f(s) -+' f(s').

The morphism f is called zigzag if and only if for all states S of S

a
if /(s) -+' s'in S', then s ~ u in S and feu) = s', for sorne state u of S.

It is easy to check that morphisms with labelled transition systems form a category.

16

• Theorem 2.4.2 S is simulated by S'if and only if there is a simulation morphism

/rom S to S'.

Theorem 2.4.3 Two labelled transition systems T, T'are bisimilar if and only if

there is a span of zigzag morphisms f and f' between them.

T

y
S

"Z
T'

The following example illustrates why bisimulation has to be defined in tenns of

a span of zigzag morphisms instead of just a zigzag morphism.

Example 2.4.4 The two following processes are bisimilar but there is no zigzag mor­

phism between them in either direction.

If we want to really work in a categorical setting, we Can use the statement of

Theorem 2.4.3 as the definition of bisimulation. In that case, we have to check that

bisimulation is an equivalence relation.

Since the identity morphism is a zigzag morphism, any system is bisimilar to itself

and hence bisimulation is reflexive; it is also clearly symmetric. Transitivity of bisim­

ulation is equivalent to the following property: for every pair of zigzag morphisms

fl and f2 having domain Sl and 8 2 respectively and a common codomain 5, we can

always complete the square with zigzag morphisms as in the following diagram.

u
... .

~. ·4

S1 82

~ Y

• 8

17

•

•

The proof that bisimulation defined as a span is an equivalence can be found in

[JNW96] for transition systems with independence1: it is proved that in this category

we have pullbacks, which implies the result. Technically, the span U needs not he a

pullback, and indeed, in the category of labelled Markov processes that we will define,

the square can he completed but we do not have pullhacks.

In the following, we give an example of how bisimulation can be used to check if

an implementation matches its specifications.

Example 2.4.5 Suppose we have a cell:

put

celle= cellf
get

where celle and cellf are understood to be respectively the empty and the full cell. Now

suppose we want to implement a bag of size 2 using this cell. Here is our bag of size

two:

where the index attached to bag represents the number of messages present in the bag.

We expect that we can implement this bag by putting two cells in paraUel celle Icelle.

Without going into the details of how two processes are put in paraUel, just note that

the states are now pairs of states and transitions happen from one state if either one

or the other coordinate of the pair can perfoTm the action to the same coordinate of

the arriving state. This is easily understood in the next picture.

celle 1celle

~/ "'"~
/~ ~~

cellf [celle celle 1ceUf

~~
ceU, 1cellf

1 Transition systems with independence are labelled transition systems with an additional relation
on transitions that tells us when two transitions are independent, that is, they can be performed in
any order.

18

•

•

In order to show that cellelcelle is a good implementation 01 bago, we can verify that

they are bisimilar by constructing a zigzag morphism /rom the former to the latter.

The morphism which sends celleicelle to bago, celljlcellj ta bag2 and the two other

states where exactly one cell is full to bag1 is easily proved to be zigzag. Thus we can

conclude that our implementation is correct.

2.5 Hennessy-Milner logic

Bisimulation between states of labelled transition systems is characterized by a modal

logic due to Hennessy and Milner [HM85]. Two states are bisimilar if and only if they

satisfy the same formulas of the logic. What is interesting about this fact is that if

we want to verify that two systems are not bisimilar, we only have to find a formula

that distinguishes them. Moreover, the witnessing formula gjves information about

why the states are not bisimilar.

A logic can also be used to describe properties that we want our system to satisfy.

Hennessy-Milner logic has the following syntax:

HML := T 1 -,4J 1 A t/J 1 (a)l/J
iEN

The interpretation of the formulas is as follows. Formula T is satisfied by every

state and the modal formula (a)l/J is satisfied by a state if this state can make an

a-transition to astate that satisfies l/J. Negation and conjunction are defined in the

obvions way.

This logic characterlzes bisimulation for labelled transition systems.

Example 2.5.1 As we saw in a previous example, the twa lollowing processes are

not bisimilar

19

•

•

and hence we can distinguish them using Hennessy-Milner logic: s satisfies the for­

mula (a) «b)T 1\ (c}T) but t does not. This formulas is satisfied by states that can

jump with label a to astate that can perform both actions band c.

If we remove negation from this logic and restrict to finite conjunction, it is not

hard to prove that we obtain a logic (henceforth HML+) that characterizes simulation

for finitely branching systems. Astate simulates another if it satisfies all the formulas

the other satisfies. We have not seen this result proven explicitly in the literature. The

proof is as follows. The non-trivial direction is to show that the relation R defined as

sRs' if aH the formulas of HML+ satisfied by s are also satisfied by s' is a simulation

relation between (S, i, -)0) and (S', i', ~') (for sES, s' E S'). Let sRs' and assume

that s ~ t. Let {t/>b 4>2, ...} be the formulas satisfied by t. Then s F (a)4>i for aIl

i > 1, and hence s' F (a) cPi for aIl i > 1. Consider the fonnula (a) I\f=1 cPi. This

formula is satisfied by both s and s' for all n > 1. Then for all n > 1, there is sorne

t' such that s' ~ t ' and t' F 1\'1:1 cPi. Now since S' is finitely branching, there is sorne

t' such that t' F I\~l rPi for all n > 1, and hence t' satisfies all the formulas that t

satisfies, i.e., tRt', as wanted.

It is not known if any logic characterizes simulation for non-probabilistic processes

with infinite branehing. However, even for finitely branehing systems, there is no logie

that eharacterizes both simulation and bisimulation. The reason is that negation is

necessary in HML to eharacterize bisimulation; on the other hand, no logie eontaining

negation ean characterize simulation, for astate that satisfies all the formulas another

state satisfies would then satisfy exactly the same formulas as the other. This corre­

sponds to the faet that bisimulation is not equivalent to two-way simulation. We gave

examples of processes that are two-way similar but not bisimilar in Example 2.1.4.

Recall that if we restriet to deterministic labelled transition systems, it is known

that traces completely determine the systems [Mil89]. Hence, both simulation and

bisimulation for deterministic proeesses are eharacterized by the logie: T 1 (a)t/>, where

a is a label.

We will see that for labelled Markov proeesses, the situation is the same as in the

deterministic case. The same logic ean eharaeterize both simulation -for countable

20

•

•

processes, possibly infinitely branching- and bisimulation -for arbitrary processes,

and hence bisimulation is equivalent to two-way simulation. This suggests that prob­

abilistic processes are doser to deterministic processes than to indeterminate pro­

cesses.

21

•

•

Chapter 3

Labelled Markov processes

This chapter is central to the thesis. It contains all the basic definitions and motiva­

tions about our model. vVe explain what labelled Markov processes are, the notions

of bisimulation and simulation and how these definitions are generalizations of their

non-probabilistic analogues.

A Markov process -as described more formally below- is a transition system with

the property that the transitions depend only on the CUITent state and not on the

past history of the system. Moreover, the transitions are indeterminate and are gov­

erned by a probabilistic law. The labelled transition systems introduced in the last

chapter also have transitions (though not probabilistic) that do not depend on the

past history of the process. Transitions depend on the CUITent state and the environ­

ment; the interaction with the environment is described by a set of labels. Labelled

Markov processes combine the properties of both labelled transition systems and tra­

ditional Markov processes. Transitions are labelled to model the interaction with the

environment: for each label and each state, there is one transition possible. This

transition is indeterminate and the indeterminacy is quantified with a probability

distribution that does not depend on the past history of the process. The most sig­

nificant innovation is that we allow the state-space to be continuous in order to model

physical systems. A discrete version of these processes -called probabilistic labelled

transition systems- was introduced by Larsen and Skou in (LS91]. In this model,

there is no indeterminacy beyond the probabilistically quantified internaI choice. In

any process algebra based with parallei composition and hiding, pure (unquantified)

22

•

•

indeterminacy will arise. How this will be incorporated is the subject of ongoing

research. See [DGJP99bJ for an example of a process algebra with parallel composi­

tion but no hiding. In [GJP99], a probabilistic concurrent constraint programming

is presented with parallel composition and hiding but the treatment there exploits

special features of constraint programming and does not generalize in any simple way

to process algebra.

In traditional Markov processes, the probability distributions always sum up to

1. In labelled Markov processes we will allow this sum to be less than 1. If the sum

is 0, we will interpret this as meaning that a transition with this label cannot be

performed. What is often done in traditional probability theory is that astate with

no possibility of making a transition is modeled by having a transition back to itself.

For questions conceming which states will eventually be reached (the bulk of the

analysis in the traditionalliterature) this is convenient. If, however, we are modeling

the interactions that the system has with its environment, it is essential that we make

a distinction between astate that can make a transition and one that cannot. This is

the same situation as in the non-probabilistic case. In a given state, some actions are

enabled and some are note What is usually studied is the corresponding probabilistic

situation where the sum is either 0 or 1. We interpret the fact that the SUffi can be

strictly between 0 and 1 with the notion of underspecification. If this sum is at sorne

state, say, 3/4, for some action, it means that part of the behaviour is unknown. More

precisely, the probability is 1/4 that the action is not accepted. An example of such

a process is a button that "sometimes" rings a bell when pressed. Let us suppose

that with probability 3/4 the action "rin~' is accepted (Le., the button goes down)

and the bell rings, and with probability 1/4 the bell does not ring. We really want

to model this as a one-state system having a transition labelled ring of probability

3/4 back to itself. It makes no sense to model the missing probability with another

ring-transition from the state to itself having probability 1/4. There would be no

difference between this system and the one that has probability one ofaccepting action

ring. (One could be tempted to add a transition of probability 1/4 from the state to

itself or to sorne other state labeUed by no-ring, but this is another action; moreover,

23

•

•

it does not represent a possible interaction with the environment.) The notion of

simulation that we will also define for labelled Markov processes gives us another

motivation for underspecifying the transition probabilities. Roughly speaking, we say

that a process simulates another one if it cao perform the same actions with equal or

higher probability. So if the beU above can be activated by another button of higher

reliability than the one we considered earlier, for example one having probability 7/8

of ringing, we would like to say that the new one simulates the old one. The only

transitions that have to be matched in the simulation relation are the ones that are

defined. If the process is underspecified, the part of the transition that is missing will

simply not be simulated as it represents unwanted behaviour.

We first describe what traditional Markov processes are, mainly to justify the ter­

minology. A knowledgeable reader can safely skip this section and jump directly to

the next one where we recall the definition of probabilistic labeUed transition systems

introduced by Larsen and Skou. We then define iabeUed Markov processes which

are the generalization to continuous state-space of probabilistic labelled transition

systems. We show how these processes are organized in a category by defining sim­

ulation morphisms and zigzag morphisms and give the definition of the bisimulation

relation we will adopt as weU as the simulation relation. We end the chapter with a

few examples of bisimulation and simulation.

3.1 Markov processes

Stochastic processes are dynamical systems where the evolution is governed by a

probabilistic law. Most of the missing definitions cao be found in Appendix A which

recalls basic mathematical definitions that will be useful throughout the thesis. We

review the standard definition of stochastic processes and relate it to the transition

system view.

Definition 3.1.1 Let (n, r, P) be a probability space. A stochastic process is an

indexed family of random variables X t : n ~ (S, E), where t cornes /rom an indexing

set T and (S, E) is a measurable space. 1fT is countable, then it is called a discrete-

24

•

•

time stochastic process.

The index t often represents time, and hence if w E n, Xt(w) represents the value of

W at time t. In this sense, n is the path space. We rarely use it. The actual state

space of the transition system we have in mind is S.

For every t E T, we have a probability distribution Pt : E -)0 [0,1] defined as

Pt(A) = P(Xt-1(A)); this is often written P(Xt E A). One can think of this prob­

ability distribution as representing the state of a transition system. Pt(A) is the

probability that at time t, the system is in a state in the set A. If the indexing set is

N, the passage frOID Pi to ~+l can be interpreted as a transition of the system. A

Markov process is a stochastic process with the property that the transitions depend

only on the CUITent state and not on the past history of the process.

Definition 3.1.2 Let (n, F, P) be a probability space. A discrete-time Markov pro­

cess is a stochastic process with N as index set that satisfies

A Markov process is time-independent if

for ail i > 1.

If a Markov process is time-independent, it can be described with just two consec­

utive random variables, for example Xl and X 2 • A time-independent Markov process

can he viewed as a (probabilistic) transition system in the following way. The state

space is the codomain of the Markov process (S, E), there is only one label and the

transitions are as follows. The probability that the state x makes a transition to the

set A is P(X2 E AIXl = x).

3.2 Probabilistic labelled transition systems

We recall the definitions of probabilistic labelled transition systems and probabilistic

bisimulation as introduced by Larsen and Skou in [LS91].

25

•

•

We saw in the last chapter that labelled transition systems cao have non-determi­

nistic transitions, that is, from one state there may he more than one transition

with the same label pointing to different states. In a probabilistic labelled transition

system, this indeterminacy is quantified. The process evolves following a probabilistic

law: if it interacts with the environment by synchronizing on a label, it makes a

transition to a new state according to a transition probability distribution. The

transitions are specified by giving, for each label, a probability for going from one

state to another.

Definition 3.2.1 A probabilistic labelled transition system is a tuple (S, A, P),

where S is a countable set of states (or processes), A is a set of labels (or actions),

and for each a E A, me have a function,

Po. : S x S ----? [0,1]

satisfying the property

\fa E A, s E 5, L Pa(s, s') = 0 or 1.
s'ES

Notice that there is no initial state in these systems. In fact, every state S in S

determines a process having s as its initial state.

We interpret the equation ES'Es Pa(s, s') = 0 as the fact that state s cannot

perform action a. If it can, the SUffi is 1. Note that there is no probability distribution

associated to the external choice. This means that the choice between an action and

another is entirely governed by the environment and we do not attach probabilities to

it. This is the so-called reactive model (see for example [vGSST90] for a comparison

of different models).

We will represent probabilistic labelled transition systems as transition graphs

whose edges are labelled with an action and a probability. If the label of the transition

is a and the probability p, we will label the arrow of the graph as a[p]. We will

often drop the probability when p = 1 and just write a; on the other hand, in

examples where there is ooly one action enabled, the arrows will be labeled only by

the probability.

26

• As we had for non-probabilistic processes, we would like a notion of equivalence

between processes. An important first observation is that one cannot treat the proh­

ability like another label. To do so would mean that a relation is a bisimulation if

whenever two state are related then they can match each other's moves to bisimi­

lar states, where by matching we mean the the label and the probability are both

matched. For example, consider the next picture.

S

!a(l]

SI

!b(l]

S2

•

If we just try to match the label and the probabilities, then s and tare not bisimilar

because S ean jump to S1 with probability 1 whereas t cannot jump to any state with

probability 1. However, we expect sand t to be bisimilar beeause both cao jump with

probability one to respectively the state SI and the states t1' t2' which are obviously

aIl bisimilar. This tells us that we need to add the probabilities in sorne specifie way.

The definition of bisimulation will capture this; it says intuitively that two states are

probabilistically bisimilar if, for every label, they can jump with equal probability

to "maximal" sets of bisimilar states, Le., sets that are closed under the equivalence

relation.

In what follows we assume a fixed label set given once and for all and we will

frequently suppress explicit mention of the labels.

Definition 3.2.2 Let S = (S, P) be a probabilistic labelled transition system. Then a

probabilistic bisimulation =1" is an equivalence on S such that, whenever S =1' t,

we have that for ail a E A and for every equivalence class A E S / =p

L Pa(s, s') = L Pa(t, s').
~E~ ~EA

Two states sand tare said to be probabilistically bisimilar (s f'VLS t) in case (s, t)

is contained in sorne probabilistic bisimulation.

27

• We can interpret this as saying that two states are bisimilar if we get the same prob­

ability when we add up the transition probabilities to all the states in an equivalence

class of bisimilar states. The addition is crucial - the probabilities are not just an­

other label. The subtlety in the definition is that one has to somehow know what

states are probabilistically bisimilar in order to lmow what the equivalence classes

are, which in tum one needs in order to compute the probabilities to match them

appropriately.

As an example of probabilistic bisimulation, we illustrate two processes which are

a small variation of the previous example.

•

The equivalence relation that relates states having the same index is a probabilistic

bisimulation (for example, SI, tl and t~ all have probability 1 of jumping to the

equivalence class {S2' s~, t2' t~}).

3.3 Labelled Markov processes

Labelled Markov Processes extend both Markov processes and probabilistic labelled

transition systems. They are Markov processes to which we add interaction with

the environment by use of labelled transitions. For every state and every label, the

probability that a transition be performed depends only on the current state and Dot

on the past history of the process.

Labelled Markov processes also generalize the notion of probabilistic labelled tran­

sition systems to continuous state spaces. When the state space is countable, we cao

specify transitions by giving, for each label, a probability for going from one state to

another. In the case of a continuous state space like the reals, however, one cannot

just specify transition probabilities from one state to another because in many inter-

28

•

•

esting systems aIl such transition probabilities would he zero. More importantly, one

cannot determine the probahility of any set hy adding the probabilities of the points.

One can only add the probahilities of countably many disjoint sets. Instead, we must

talk about the probability of going from astate s to a set of states A. Therefore

we must work with probability measures and equip our state space with a a-field of

measurable sets. A review of the pertinent definitions appears in the appendix.

Transitions in labelled Markov processes will be modeled with transition sub­

probability functions.

Definition 3.3.1 A transition sub-probability function on a measurable space

(X, E) is a function T : X x E ~ [0,1] such that for eachfixed x E X, the setfunction

T(X,·) : E ~ [0,1] is a sub-probability measure, and/or eachfixed A E E thefunction

T(·, A) : X -+ [0,1] is a measurable function.

T(X, A) represents the probability of the system, starting in state x, of making a tran­

sition into one of the states in A. The transition probability is really a conditional

probability of the kind we encounter in traditional Markov processes; it gives the proh­

ability of the system being in one of the states of the set A after the transition, given

that it was in the state x before the transition. In general the transition probabilities

could depend on time, in the sense that the transition probahility could he different at

every step (but still independent of past history); we consider the time-independent

case.

The key mathematical construction, as we shaH see later, requires an analytic

space structure on the set of states. Thus instead of imposing an arhitrary a-field

structure on the set of states, we require that the set of states he an analytic space

and the a-field be the Borel algebra generated by the topology.

Definition 3.3.2 A labelled Markov process with label set A is a structure S =
(S, i, E, {Ta 1 a E A}), where S is the set of states, which is assumed to be an analytic

space, i E S is the initial state, and E is the Borel a-field on S, and

'Va E A,Ta : S x E ---7 [0,1]

is a transition sub-probability function .

29

•

•

We will fix the label set to be sorne A once and for all and write S = (S, i, E, T)

for labelled Markov processes, instead of the more precise (S, i, E, {Ta 1 a E A}). The

technical reasons why we assume that the state space is analytic will be discussed

later when we will prove that bisimulation is characterized by a simple logic. Note

that any discrete space is analytic and aIl the familiar continuons spaces, for example

any of the Borel subsets of Rn, and their images by a measurable function (which are

not always Borel) are analytic as weil.

One of the characteristics of an analytic space is that its Borel a-field must contain

aIl singletons. Consequently, when we consider a discrete process, that is, a process

whose state space is countable or finite, the CT-field is always the powerset of S.

In that case we omit the a-field and simply write (S, i, T). It is easy to see that

probabilistic labelled transition systems are discrete labelled Markov processes. For

these processes, we use the phrase "labelled Markov chain" rather than "discrete,

labelled, Markov process" or "probabilistic labelled transition system". Sïnce the

transition probabilities are entirely determined by transitions to points, we often

describe transitions in labelled Markov chains by specifying only the probabilities of

transitions to singletons. In so doing, we usually omit the curly brackets around the

singletons.

As in the non-probabilistic case, not ail processes should accept any action from

any state with probability one. Otherwise, they would aIl have the same observational

behaviour. In the non-probabilistic case, this is implicit in the definition of transitions,

which are triples (s, a, s'). An action ais not accepted in astate s if and only if there is

no s' such that (s, a, s') E-4. In the probabilistic case, transitions are defined as sub­

probability measures. Thus an action is not enabled in a state if the corresponding

transition probability to jump from that state to the set of aIl states is o. The next

example illustrates a trivial process from the point of view of interaction. It is a

process where all states always accept action a with probability 1.

Example 3.3.3 Consider the labelled Markov process (R, 0, B, T) having the reals as

set of states, 0 as initial state, the Borel sets as a-field, and Ta defined as

I1V

Ta(XO' [u, v]) = - exp(-(x - xo)2)dx,
7r u

30

• where Xo, U, vER (here A = {a}). This process appears complicated, but it i.s very

simple if we consider its observed behaviour. Indeed, no matter what happens "inside"

the process, no matter what the internal states actually are, this process will always

accept label a with probability 1. Thus from the point of view of an external observer,

it has an extremely simple behaviour: it is bisimilar to a one-state process which has

an a-labelled transition from the state to itself with probability 1.

This example allows us to clarify the discussion at the beginning of the chapter.

AlI of conventional stochastic process theory is concemed with systems like the one

above. From our point of view they are trivial. This is to be expected, as we are

modeling interaction and all snch systems are indeed trivial from the point of view

of interaction. In order to get nontrivial examples, one has to consider systems with

richer label sets, and which are not always capable of making transitions with every

label. Recall that in our model, this is reflected in the fact that for each state and

action, the transition probability can sum up to less than 1 on the set of all states.

The example above also shows how bisimulation can be useful. We may have

different descriptions of processes that have eqnivalent behaviour. In particular, a

process with even an uncountable number of states may be bisimilar to a finite state

process. This information is very valuable because reasoning about finite processes is

much easier than reasoning about continuous ones.

3.4 The category LMP

•

We will organize the space of labelled Markov processes in a category. The motivation

is mainly in the study of bisimulation between processes. In the next section we for­

mulate bisimulation in a manner similar to the Larsen-Skou definition of probabilistic

bisimulatioD, using relations and transitions to equivalence classes. In Chapter 7 we

will give a categorical view of bisimulation for labelled Markov processes, following

the ideas of Joyal, Nieisen and Winskel [JNW96], that we have recalled in Chap­

ter 2 for non-probabilistic processes. It is convenient to have a functional version of

bisimulation, especially to define quotients; we will indeed use the morphisms of the

31

• category defined below for this purpose in Section 4.2.

The objects of the category are lahelled Markov processes and the morphisms will

he simulation morphisms, as for non-probabilistic processes. Intuitively a simulation

says that the simulating process can make all the transitions of the simulated process

with greater probability than in the process being simulated. A simulation morphism

will witness this facto For example, consider the processes (that involve only one

label) in the next picture, and the function f that maps states of the first process to

states having the same index in the second process.

•

The mapping is done in such a way that if s has probability Q of jumping to a set

of states A, then I(s) has probability > Q of jumping to I(A) (for example So has

probability 1/2 of jumping to {S2' s~}, and f(so) = to has probability 2/3 of jumping

to {f(S2), f(s~)} = {t2})' The function f is an example of what we will define to be

a simulation morphisme

In this example, every set A that we can consider is countable, hence we can talk

about f(A) since it is obviously measurable. For uncountable processes, however,

we cannot assume f (A) to be measurable, and thus we must demand that 1(s) have

probability > Q of jumping to any measurable set containing I(A); this is equivalent

to the property given in the definition below. If a morphism furthermore satisfies the

converse, Le., if f(s) has probability Q of jumping to a set of states A', then s has

probability > Q of jumping to 1-1(A'), it will be called zigzag. Processes related by

a zigzag morphism are intuitively expected to be bisimilar.

Definition 3.4.1 A simulation morphism f between two labelled Markov pro­

cesses, S = (S, i, E, 7") and S' = (S', i', E', r') is a measurable function f : (S, E)

----7 (S', E') such that f (i) = i', and for aU a E A, sES and for every measurable set

32

•

•

cr E E',

f is a zigzag morphism if the preceding inequality is an equality.

We require the morphisms to be measurable1 for the definition to make sense.

If f were not measurable we would not he guaranteed that f- 1 Ccr) is measurahle.

In [BDEP97], we required the zigzag morphisms to he surjective; we have replaced this

requirement hy initial states in the processes that must he preserved hy morphisms.

The effect of this is intuitively that every state of S must be bisimilar to its image, but

we do not necessarily have that every state in S' has a preimage. However, because

of the initial state preservation condition, we need to have so to speak "enough"

states in S' for the initial states to be bisimilar. Hence, if a state in the image S' is

"reachable" -whatever this means for continuous state-space systems-, then it will

tum out to have a preimage hecause the condition must he satisfied for every path

from the initial state.

Observe that if we are dealing with what is sometimes called a total process, that

is, a process where all the transitions to the whole space are equal to either 0 or 1,

then the inequality in the above definition is strict for some s, a and a' if and only

if s cannot perform action a, Le., TaCS, S) = o. This means that if f : S ~ S' is a

simulation morphism and if S and S'are not bisimilar, then the difference between

them is entirely witnessed by the fact that there are states in S that cannot perform

actions that f (s) can perform.

It is easy to check that labelled Markov processes with simulation morphisms form

a category.

Definition 3.4.2 The objects of the category LMP are labelled Markov processes,

having a fixed set A as the set of labels, with simulations as the morphisms.

1In older texts, sucb as Halmos [Hal74) or Rudin (Rud66) measurable is defined to mean that
the inverse image of an open set is measurable. This means that the composite of two measurable
functions need not he measurable. Our definitions are the current standard and, of course, with this
definition, the composite of two measurable functions is measurable.

33

•

•

Simulation and zigzag morphisms for labelled Markov processes extend the cor­

responding standard notions for labelled transition systems that we recalled in Sec­

tion 2.4. Given a labelled Markov chain (S, i, r), we cao define a labelled transition

system (lts) with the same label set as follows. We take the same set ofstates S and we

define a labelled transition relation -»C (S x A x S) by (s, a, t) E-» <==> TaCS, t) > O.

Recall that gjven two labelled transition systems, (S, -») and (S', -+'), a function

1 : S ---+ S' is a simulation morphism if for every states s, t E Sr, s ~ t implies

1(s) ~' 1(t). The morphism is zigzag if it also satisfies the converse: whenever

I(s) !:t' t', then there exists tES such that I(t) = t'and s ~ t. We cannot

define simulation morphisms this way for labelled Markov processes because we can

easily have systems where all the point-to-point transition probabilities are zero but

the Markov process is nontrivial because the transition probabilities are nonzero to

:'larger" sets.

Proposition 3.4.3 Given two labelled Markov chains, a simulation morphism (resp.

zigzag morphism) between them is also a simulation morphism (resp. zigzag mor­

phism) between the associated labelled transition systems.

Proof. Suppose that we have two labelled Markov chains (S, i, T) and (S', i', r') with

1 a simulation morphism from S to S'. Now suppose that in the associated Its the

transition SI ~ s2 is possible. This means that 'Ta (SI , {S2}) > O. Since 1 is a

morphism we must have that T~(j(sd, {j(S2)}) > Ta(SI,j-1(j(S2») > Ta(SI, {S2}) >

0; hence in the lts j(sd~ j(S2) is possible. Now if j is zigzag, then for every s' E S'

we have Ta(Sr, j-l(S'» = 'T~(/(sd, {s'}). So ifin the associated Its the transition J(sd

~ s' is possible, then TaCSl, 1-1(s'» > 0 and hence there is sorne S2 E j-L(S') to

which SI can make an a-transition. •

3.5 Bisimulation relation

The notion of bisimulation for labelled Markov processes is a generalization of the

definition of Larsen and Skou for discrete processes, which is a compel1ing, natural

notion. We saw earlier that they define bisimulation as an equivalence relation on the

34

•

•

states satisfying the condition that equivalent states have equal probability of making

an a-transition to any equivalence class of states. We will adapt this definition to the

continuous case, thus we now have to take measurability into consideration. We will

rather demand that equivalent states have equal prohahility of making an a-transition

to any measurable set of equivalence classes of states. The reason is that, as we said

before, in many continuous processes, transitions to singletons are ail zero, and hence

so are transitions to countable sets. In these systems, if we used the definition of

Larsen and Skou unchanged, any equivalence relation whose equivalence classes are

countable would he a hisimulation relation; hence we could relate any two states we

want.

Instead of talking about sets of equivalence classes we will rather use the notion

of R-closed sets. Let R be a relation on a set S. We say a set X ç S is R-closed if

R(X) = {tl3s E X, sRt} is a subset of X. If Ris reHexive, this becomes R(X) = X.

If R is an equivalence relation, X is a union of equivalence classes.

Definition 3.5.1 A bisimulation relation between two labelled Markov processes

S = (S, i, E, T) and S' = (S', i', E', r) is an equivalence relation R on S l±I S' such

that, for sES and s' E S', with sRs', for every R-closed set A ç 8 I±l S' such that

AnS E E and A n S' E E', we have

Ta (S, AnS) = r~(s', A n S')

for every a E A. Two states are bisimilar if they are related by a bisimulation relation.

We say that S and S'are bisimilar if their initial states are.

Intuitively one is taking the bisimulation relation in "the direct sum" of the two

processes. Bisimulation is obviously reHexive and symmetric. It is also transitive but

we cannot see how to praye this directly from the definition. To prove transitivity,

we will use a result that appears in Section 4.2. We will delay the proof until then.

The following example illustrates how the two processes of Example 3.3.3 are

bisimilar.

Example 3.5.2 We let the label set be the one element set {a}. Consider a system

S = (8, i, E, r) with S an arbitrarily complicated state space and E a cr-field generated

35

•

•

by sorne analytic space structure on S. For example, S could be R, the reals with

the Borel algebra. We define the transition function, TaCS, A) in any manner we

please subject only to the conditions of the definition of a transition function and

to the condition that 'Vs E S.Ta(S, S) = 1; i.e. for every s, the distribution TaCS,·)

is a probability measure. The process in Example 3.3.:1 satisfies these conditions.

Now consider the single state system Oa having one transition from its state 0 to

itself, labelled a. It is easy to see that the relation relating every state of S to 0 is

a bisimulation. The only R-closed set is S U {o}. The a-transition in Oa from 0 to

itself has probability 1 and TaCS, S) = 1 for any sES. Hence these two systems are

bisimilar!

We mentioned in the last section that intuitively, zigzag morphisms should relate

bisimilar processes. The next proposition shows it is the case.

Proposition 3.5.3 If there is a zigzag morphism /rom S to S', then Sand 8' are

bisimilar.

Proof. Let f he a zigzag morphism from S to S'. Consider the equivalence relation

on SuS' generated hy the pairs (s, f(s)), for every sES. We prove that R is a

bisimulation relation. R obviously relates i and i'. Now let SES, so we have a pair

(s, f (s)) related by R, and let Y be an R-closed set of SuS' such that Y n S E E

and Y n S' E E'. Then Y n S = j-1 (Y n S'). Since f is a zigzag morphism, we have

Ta(S, y n S) = ~(f(s), y n S'). •

The converse is not necessarily true, but we will see in Chapter 7 that S and S'

are bisimilar if and only if there exists a span of zigzag morphisms between them.

This means that there is a third object U together with zigzag morphisms from U to

each of S and S', as in the following diagram.

U

/~
S S'

It is interesting to note that we can take a coalgebraic view of hisimulation [AM89,

Rut95, Rut96] as weil. We can view a labelled Markov process as a coalgebra of

36

•

•

a suitable functor; in fact it is a functor introduced by Giry [Gir8!] in order to

define a monad on Mes analogous to the powerset monade From this point of view,

bisimulation is a span of coalgehra homomorphisms. But if one checks what this

means, these are precisely our zigzag morphisms in LMP.

Proposition 3.5.4 If two labelled Markov chains are bisimilar then the associated

labelled transition systems are as welle

Proof. Suppose that we have two labelled Markov chains (S, i, T) and (S', i', T') and

a bisimulation R between them. Now suppose that sRs' and that in the associated

lts the transition s ~ t is possible. This means that Ta (S, {t}) > o. Let T he the

equivalence class in SuS' containing t. We have Ta(S, T n S) = T~(S', T n S'); hence

in the lts s' ~ T is possible so there is sorne t' E T, and hence s'Rt', such that s'

~ t', as wanted. •

Note that the converse is not true, because different assignments of probabilities in a

labelled Markov chain can yield non bisimilar processes that have the same associated

Its. However, the following is true.

Proposition 3.5.5 If two labelled transition systems are bisimilar, there exist bisim­

ilar labelled Markov chains having them as their associated labelled transition systems.

Praof. Let R he a hisimulation relation between two labelled transition systems

(S, A, ~) and (S', A, -+'). Let R* be the smallest equivalence relation containing R

on SuS'. We will define (S, i, T) and (S', i', r') 50 that they have the former processes

as their associated lts and sa that R* is a bisimulation between them. It is easy to

check that if sR*s', then for every equivalence class C of R*, we have

s ~ C {:::} s' ~' C.

We define Ta(S,·) and ~(s',·) in two steps. If sand s/ can jump to a finite number

of equivalence classes C17 ••• , Cn we set Ta(S, Ci) = ~(S', Ci) = lin. Otherwise, we

assign the number 1/2i ta that transition. In fact, this step is only to help us define

37

•

•

transition probabilities to single states. The state s does not really jump to every

state in Ci, because sorne of them are in S'.

Now let t be astate sucb that s~ t in the Its. Then t is in exactly one equivalence

class C of R·. Let BeC be the set of states in C n S to which s can j ump with

action a. Note that B contains t. If B = {br, ... , bn } we set Ta(S, {bi }) = TaCS, C)/n.

If B = {bl'~' ...} we assign the number Ta(S, C)/2 i to that transition. It is not hard

to check that the labelled Markov chains so defined are bisimilar through the relation

w. •

Remark 3.5.6 The construction in the previous proof allows us to obtain a proba­

bilistic process from a non-probabilistic process. Note that the proof is based on the

fact that labelled transition systems have a finite or countahle set of states. If the

branching of the non-probabilistic process is finite, every indeterminate transition is

given the unifoTm distribution. (One only has to consider the identity as equivalence

relation on a single process and then apply the construction.) Thus somebody studying

finite branching systems whose indeterminate transitions are assumed to he of equal

probability eould use their probabilistic translation instead, and henee benefit from

sorne results that we have. For example, the fact that bisimulation and simulation are

characterized by a simple logie that involves no negation.

3.6 Simulation relation

The intuition behind the definition of simulation is that astate simulates another if

it captures aIl the behaviour of the ether. In terms of probabilities, we require that

the simulated state has a srnaller or equal probability of jumping to a set A with

some label than has the simulating state to the set of states that simulate A. Once

again, as in bisimulation, we somehow need to know in advance which state simulates

which state in order to check the inequality. In fact, we cannot talk about the set

of states that simulate A in general even if A is measurable because we cannat make

sure that this set is measurable. So we use the notion of closedness of relation that

was introduced in the last section for the definition of bisimulation. Recall that a

38

•

•

set is R-closed if it contains all states related by R to sorne state in it. It will also

be convenient to explicitly define the notion of direct sum of two labelled Markov

processes.

Definition 3.6.1 Let S = (S, i, E, T) and S' = (S', i', E', 7') be two labelled Markov

processes. The direct S'l'm S + S'of these processes is a process U = (U, Ua, n, p)

with U = S ltJ S' ltJ { ua}, Ua is a new state, n is the cr-field generated by EUE', and the

transitions are as lollows: 'Va E A, Pa(ua, {i}) = Pa(ua, {i'}) = ~, and for ail sES,

s' E S', Pa (s, A ltJ A') = Ta (s, A) and Pa (s' , A l±J A') = ~(s', A') .

The choice of ~ as the transition probability is arbitrary. This construction is purely

formaI and is only used in arder to define a relation on the common state space. With

this definition we do not, for example, have an associative direct sumo However this

is of no importance for the use that we make of this definition.

In addition to simulation we define the notion of strict simulation which says

intuitively that astate is strictly simulated by another if whenever the state can make

a transition with probability p, the simulating state can make the same transition with

probability greater than p + t. Simulation and strict simulation are patterned on the

notion of less than or equal and way below from domain theory (Jon90].

Definition 3.6.2 Let S = (S, i, E, T) be a labelled Markov process. A reflexive and

transitive relation (a preorder) R on S is a simulation relation if whenever sRs' ,

with s, s' E S, we have that for all a E A and every R-closed measurable set A E E,

TaCS, A) < Ta (S', A).

We then say that s is simulated by s'. R is a strict simulation if there is an € > 0

such that Ta(S, A) < Ta (S', A) - € whenever Ta(S, A) > O. We then caLI R an €-strict

simulation and we write RE instead of R.

Let S = (S, i, E, T) and S' = (S', i', E', T') be a pair 01 labelled Markov process. S

is (strictly) simulated by S' if there is a (strict) simulation relation on some process

U of which S and S'are direct summands, relating i and i' in U .

39

•

•

Note that we do not require U to be exactly S + S' but rather a direct sum of a

number of processes, including S and S'. The reason for this is that transitivity of

simulation would not follow in anY obvious way with U being exactly the direct sumo

However, we will prove (see Corollary 4.3.6) that in the particular case where the

simulated process S is discrete, if a simulation exists between S and S' l then there is

a simulation on S + S'. It is clear from the definitions above that the choice of 1/2

in the definition of direct sum does not affect simulation. The fact that processes or

states are related or not by a simulation relation does not depend on this number.

The next two propositions are easy but important for the theory. They prove

that simulation and strict simulation are transitive and that every bisimulation is a

simulation.

Proposition 3.6.3 Simulation and strict simulation are transitive.

In fact we aIso have that if S strictly simulates S' which is simulated in turn by S",

then S is strictly simulated by S".

Proof. We prove that simulation is transitive. First let us consider two simulations

RI and R2 on a single process S = (S, i, E, r). Let R be the transitive closure of

RI U R 2 • Then every measurable R-closed set is also 14-closed, i = 1,2, then it

follows easily that R is a simulation on S.

Now let RI be a simulation hetween S and S' through process UI and R 2 a

simulation between S' and S" through process U2 • Then construct the direct SUffi

U of UI and U2 and consider R the refiexive and transitive closure of RI 0 R2 on U

as above. Then R is a simulation on U that relates i and i", and S l Sil are direct

summands of U.

The proof for strict simulation is similar, just note that we must add the €'s ta

obtain the composite relation. •

Proposition 3.6.4 Every bisimulation relation is a simulation relation.

Proof. Let R he a bisimulation relation between S and S'. We prove that it is a

simulation relation on the direct sum of S and S'. Let sRs' and let A he an R-closed

40

•

•

set of8+8'. Then A is a subset of S'd:JS' and satisfies that AnS E E and AnS' E E'.

Hence we have Ta (s, AnS) = ~Cs', A n S') and the required inequality is satisfied.•

The definition of "strong simulation" given by Segala and LYnch in [SL94] is

slightly stronger. It requires that if a simulating state can perform an action, then

so do the states it simulates. This would correspond to the additional condition that

if TaCS', S) > 0, then TaCS, S) > O. However, we have noted that their definition is

usually rnentioned without this condition: in that case, the two definitions are the

same. This applies to systems which are the cornmon denominator of our model of

systems and theirs: they consider only discrete systems and we do not allow different

transition probability from a single state with the same label. The proof that the

two definitions coincide uses the max-Dow min-cut theorem by Ford and Fulkerson.

It is easy to modify the proof of Theorem 7.3.4 to get the result. We believe that

our definition can be easily extended to indeterminate processes and still coincide

with their definition of a simulation R which is in terms of the existence of a weight

function on S x S that must satisfy sorne properties with respect to the relation R.

Example 3.6.5 We illustrate a simulation on the following process:

Consider the reflexive closure of the relation defined as follows. NIL states - S1, S5,

S6, S8, S9 - are related to every state. S4, and S7 are related to each other and to S2.

Finally, S3 is related to So and S2. The only closed sets with respect to this relation

are the whole set, {so}, {S2}, {so, S2, S3}, {S2' S4, S7} and unions of these sets. It is

easy to check that if s is related to t in this manner, then s has smaller probability

than t has of jumping to each of these sets, with any label.

41

•

•

Remark 3.6.6 In the definition of simulation we could have included the require­

ment that R(A) be measurable, but if we had, bisimulation could not he proved to

be a simulation, which is a basic requirement, of course. The reason why, in turn, we

did not demand that R(A) be measurable for every measurable set A in the definition

of bisimulation is that then we would have to prove that the logic (see Chapter 4)

does induce that property, that is, for every measurable set, the set of states that

satisfy the same formulas is measurable, which we cannot prove in general though it

may be true. Note however that if it was true, it would mean that the quotient map

from a process to its quotient under the equivalence induced by the logic would send

measurable sets to measurable sets.

The following proposition shows that a simulation morphism does relate a process

to a process that simulates it.

Proposition 3.6.7 Il there is a simulation morphism Irom S to S', then S is simu­

lated by S'.

Proof. Let 1 he a simulation morphism from S to S'. Consider the refiexive relation

on S U S' generated by the pairs (s,/(s», for every sES. We prove that R is a

simulation relation. R obviously relates i and i'. Now let Y be an R-closed set of

Su S' such that Y n S E ~ and Y n S' E E'. Then Y n S c 1-1(Y n S'). Since j is a

simulation morphism, we have Ta(S, Y n S) < Ta(S, j-1(y n S')) < ~(j(s), Y n S') .•

The converse is not true in general, but we conjecture that if S is simulated by S'

then there exists a span of morphisms between them, one of these morphisms -from

U to S- being zigzag and the other one being a simulation morphism.

U

~ag ~
S S'

We will give a proof of this for finite processes in Chapter 7.

42

• 3.7 Examples of bisimulation and simulation

The first two examples we give are of bisimilar pairs of labelled Markov processes.

The first one il1ustrates a bisimulation between two continuous systems that cannot

be reduced to discrete ones. The second one is an example of how bisimulation can

be used for verifying that an implementation matches its specifications.

Example 3.1.1 Consider the labelled Markov process S = (R, 1,8, r), over the triv­

ial label set, defined as follows. The states are real numbers, the measurable sets are

Borel sets and the transition function is defined on intervals (and then extended to

arbitrary Borel sets) as follows:

if x > 0,
otherwise.

•

where the constant factor of À is chosen to make T be 1 on the whole space. Intuitively

this is a system where a particle makes random jumps with probability exponentially

distributed with the length. However, there is an "absorbing wall" at the point x = 0

so that if the system jumps to the left of this point it gets stuck there. Note that every

positive state has a different probability density for jumping to a negative state. Now

consider the system U = (R2, (1, 1), 8 2 , p) defined as

p«x, y), [r, s] x [p, qJ) = T(X, [r, s])P([P, q]),

where P is some arbitrary probability measure over R. This system should behave

"observably" just like the first system because, roughly speaking, the first coordinate

behaves just like the first system and the second has trivial dynamics, i. e. it is bisimilar

to the one-state, one-transition system. Indeed these two systems are bisimilar with

the relation on R U R 2 generated by pairs of the form (x, (x, y)) .

As an application of probabilistic bisimulation, we give a probabilistic version of

Example 2.4.5. Recall that here we want to check if a given implementation matches

its specification. A specification and an implementation are defined, and then we

check if the processes derived are bisimilar.

43

•

•

In the next example, we use a parallel composition combinator. We have not,

as yet, carefully studied how processes could be combined, but we will use a similar

definition for composition as the one we recalled for non-probabilistic processes in

Chapter 2. Since we are dealing with "deterministic" probabilistic processes, we

must attach probabilities to a-transitions if an a-action is enabled on both sides of a

parallel composition. Let us assume that if this occurs, each action has probability

1/2 of being performed.

Example 3.7.2 Suppose we have a ceU which is not totally reliable and so can lose

a message put into it with probability 1/4:

put[3f4)

celle - cellf
V~

put[lf4)

celle and celif are understood to be respectively the empty and the full cel!. Now

suppose we want to implement a bag of size two having the same reliability using this

celle Here is our specification of a bag of size two:

put[3/4) put[3/4)

bago --g;t bag1 ----.. bag2
V~~

put[l/4) put[lf4)

where the index attached to bag represents the number of messages present in the bag.

We expect that we can implement this bag by putting two ceUs in paraUet celle1celle.

As we noted above, we assume that if an action is enabled on both sides of a paraUel

composition, each action has probability 1/2 of being performed. The states are now

pairs of states and a transition happens with probability 1/2 . P from one state if

either one or the other coordinate of the pair can per/oTm the action to the same

coordinate 0/ the arriving state with probability p. Hence, if the environment requires

a put action, process cellelcelle has probability 1/2·3/4 of becoming process cellelcellf

and the same probability of becoming ceUflcelle' The resulting process is il1ustrated in

Figure 3.1. In order to show that celle Icelle is a good implementation o/bago, we just

have to verify that they are bisimilar using the equivalence relation generated by the

pairs: (celle Icelle, baga), (cellflcellf' bag2) and the two other states where exactly one

44

• put[1/4]
1\

ceUelcelle
PUt[~./ '"~3/8)

/~ ~'"pcell, Icelle celle Icell,
'-/ ~~[3/4) ~t[3~4 \......Aput[1/4) put[1/4]

get get

cell,lceU,

Figure 3.1: The composition of two cells

ceU is full both paired with bag1 • Thus we can conclude that our implementation is

correct.

Example 3.7.3 Let us reconsider Example 3.7.2. This example can illustrate the role

of simulation and how it is linked with partial systems. The way we have specified the

processes in that example doesn't allow us to simulate the bag using a more reliable

one. A simulating process would try to perfoTm the same transitions with higher

probability, not considering the fact that the Loss of messages, represented by a put­

transition from the process to itseLf, is not desired. Consider the following partial

specifications:
put[5/6]

celle. . cell,
get

put[3/4] put[3/4]

baga=bag1 . . bag2
"get get

With these specifications, we can simulate our bag with a process that has a smaller

probability of losing the message. Of course, we do not have baga bisimilar to celle [celle

but certainly celle1celle simulates bago•

The following example illustrates how a continuous process can be simulated by

a finite one.

Example 3.7.4 Consider the following process. The state-space is S = [0, 1] U {i, f}.

The initial state is i and f is a NIL state, and there is one label, a. Transitions go

from i to [0, 1] and /rom states of [0, 1] to f, and are generated by the following.

• Ta(i, [x, y]) = y - x; if x E [0, 1], Ta(X, f) = x.

45

• This process is really continuous hecause every two states x, y E [0,1] have different

probabilities ofjumping to the whole set S, which is closed with respect to any relation.

lndeed, if x E [0,1], Ta (X, S) = x. This process can he simulated by a finite process 'P

consisting of three states Po, Pl and P2. Transitions are from Po to Pl and from Pl to

P2 with probability 1. We informally illustrate these processes in the following picture.

i

![y-x] to [x,y]

[0,1]

![x]

/
The simuLation relation that reLates (in S + 'P) i and Po, every state of [0,1] to Pl, and

f to P2 is a simulation relation. This example could he easily extended to processes

where we allow only the transition prohability function to be either°or 1 on the whole

space by introducing other states: /1 to which every x E [0, 1] has probability 1 - x of

jumping, and /2 to which /1 can jump with probahility 1. Then we need to also add

one state P3 in 'P to which P2 can jump with probability 1. These processes are as in

the following picture.

i

![y-x] to [x ,y]

[0, 1]

;/ ~~I

/ fI

![1]

/2

The simulation relation is extended in the ohvious way.

Po

![l}

Pl

![1)

P2

![1]

P3

•

The following is a paradigmatic example of applying contraIs to keep a system

stable or safe.

Example 3.7.5 We describe a finite specification that we will want to implement as a

continuous process. With this example, we want to illustrate the concept of simuLation;

46

•

•

we do not claim that this is the specification and implementation paradigm lor labelled

Markov processes. We have a continuous process S. The state-space is the realline,

the initial state is the origine The process describes a particle that jumps randomly

with label a. States less than -1 or greater than 1 are dead states, thus no transition

is enabled in these states. When the state is in [-1, 1], label a is enabled and the

transition is exponentially distributed with the length and closeness 01 intervais (for

an example of such a distribution, see 3.7.1). We want to combine S with a control/er

in such a way that at each step, the probability of jumping to a dead state is less than

0.1. This specification of the combined process can be modeled as a finite process P

that has one state, and one a-transition /rom that state to itself of probability 0.9. We

want our implementation of the controller combined with the process S to simulate

P. We describe a possible controller. There is a threshold value, t E (0,1). The

controller has the power 01 changing the a-transition of the particle. It Ieaves the

particle Iree to jump as it wants, as long as it stays inside the interval (-t, t). Il the

particle crosses the walls -t or t, the a-transition is then to jump by 1/2 back into the

sale interval, i.e., label a is enabled, and then the jump is ollength 1/2, to the right if

the state is in (-1, - t) or to the left if the state is in (t, 1). We want to find a possible

value for t so that the implementation 01 S with the control/er simulates P. Of course

we could take t very small, but it is likely that we want the number of adjustments

to be minimized. This example illustrates the underlying intuition in many leedback

control systems. The particle could be an aircraft whose height must stay within a

given range, a chemical plant inside which we want to control the pressure, etc.

47

•

•

Chapter 4

A lIlodal logic for bisilllulation and
simulation

We saw in Chapter 2 that in the case of non-probabilistic processes, bisimulation is

characterized by Hennessy-Milner logic. Two states are bisimilar if and only if they

satisfy the same fonnulas of that logic.

We will define a simple probabilistic variant to Hennessy-Milner logic, written L,

which will be proven to characterlze bisimulation for labelled Markov processes. The

strlking aspect of this logic is that it does not contain any form of negation. An­

other surprise is that even if we allow infinite branching (in fact we allow continuous

branching), we do not need infinite conjunction to characterize bisimulation. These

results are not what one expects from the non-probabilistic case. The point is that the

probabilistic systems we are considering -without explicit nondeterminism- resemble

deterministic systems quite c1osely, rather than nondeterministic systems. In the lat­

ter case -as is well-known [Mil90]- negation is necessary to characterize bisimulation

and if we allow infinite branching, we also need infinite conjunction.

In [LS91], Larsen and Skou proposed a logic that characterlzes bisimulation for

discrete processes. Their logic contains a weak fonn of negation but more importantly

they work under an assumption slightly stronger than finiteness of branching, called

the minimal deviation assumption. Rence our result is an improvement over their

work even in the discrete case, because our logic does not contain negation. Moreover,

it characterlzes bisimulation for arbitrary labelled Markov processes.

48

•

•

One advantage of the fact that bisimulation can he characterlzed by a negation­

free logic is that this opens the way to a notion of logical simulation between processes.

We say that astate logically simulates another state if it satisfies (at least) all the

formulas the other satisfies. Ofcourse, if a logic contains negation and astate logically

simulates another state according to that logic, then the two states must satisfy

exactly the same formulas. Consequently, this logic cannot characterize simulation.

Thus this is not a notion that would have been considered with most Hennessy-Milner

type logics in the literature. We will prove that a simple extension of 1:, -1:, augmented

with disjunction- characterizes simulation (as weIl as bisimulation) between discrete

labelled Markov processes. In fact the two processes need not he discrete, it is enough

that one of them be discrete.

Thus, for probabilistic processes, the same logic can characterize both simulation

and bisimulation. This is because this logie doesn't contain negation, and more

interestingly because two-way simulation is equivalent to bisimulation. This also

happens for non-probabilistic determinate processes but not for indeterminate ones.

Recall that for non-probabilistic processes with infinite branching, it is not even known

if any logic characterizes simulation. This shows that probabilistic systems as we

define them are very close to deterministic systems.

We first define five modallogics none of which are equivaient to any of the others

and then prove that the simplest one, /:', characterize bisimulation. In the third

section, we prove that by adding disjunction to /:', we can characterize simulation for

discrete processes. We use these characterizations to define two algorithms one that

can decide whether two states of a finite process are bisimiIar, and the other that

can decide whether astate simulates another. FinaIly, we prove that aIl the logics we

define characterize bisimulation and discuss which one can characterize equivalence

classes of bisimilar states.

4.1 Modal logics

We now describe five modallogics that will each be proven to characterize bisimula­

tion. Thus ail these logics play the role of Hennessy-Milner logic for non-probabilistic

49

•

•

bisimulation [HM85].

We assume as before that there is a fixed set of "labels" or "actions", we usually

use letters like a or b for actions. The simplest logic will be called L and has as syntax

the following formulas:

where a is an action from the fixed (countable) set of actions A and q is a rational

number. Given a labelled Markov process (S, i, E, T) we write s F 4> to mean that the

state s satisfies the formula~. The definition of the relation F is gÏven by induction on

formulas. The definition is obvious for the propositional constant T and conjunction.

We say s F (a)q4> if and only if there exists A E E such that for all s' E A, we have

s' F ~ and TaCS, A) > qi. In other words, the system in state s can make an a-move

to astate, that satisfies ~, with probability greater than q. We write [4>Ds for the set

{s E Sis F ~}. We often omit the subscript when no confusion can arise.

Note that since we restrict to rationals in the logic, we have a countable number

of formulas. This fact is used in the proof that the logÏc characterizes bisimulation.

Of course expressiveness is affeeted by this choice, for there is no rational formula

that is equivalent to the formula (a}1t"j4T. However, since the logic can distinguish

non-bisimilar states, it is expressive enough for practical purposes.

In the following table we define four additional logies. They are aIl syntactic

extensions of L.

LV .- .c 1 ~I V 4>2

.ca .- .c 1 ~a

L.... .- .c 1 -,4>

LA .- .c.... 1 1\ ~i
iEN

Given a labelled Markov process (S, i, E, T) we write:

s F 4>1 V 4>2 to mean that s F ~I or S F 4>2;
S F ~a to mean that Ta(S, S) = 0;
S F -,4> to mean that 8 ~ 4J;
8 F AiEN 4>i to mean that 8 F 4Ji for all i EN.

1In [BDEP97], we used Ta(S, A) ~ q. The present choice fits better with the work in Chapter 5.

50

• In Chapter 6 we will use a variation of Lv where the disjunction can he countable.

This logic will he written L.V. Although they all characterlze hisimulation, they do

not have the same expressive power. Clearly all of them are at least as expressive as

L, and CA is more expressive than all the others. Lv, Ca and L....., are incomparable.

It is interesting to note that none of these differences will have any impact on the

characterization of hisimulation, as we have already said. However, we need at least

Cv to characterlze simulation.

The logic that Larsen and Skou used in (LS91] is the combination of L.v and L.A.

They show that for finitely branching systems2 , two states of the same system are

bisimilar if and only if they satisfy the same formulas of that logic.

Before proving that L characterizes bisimulation, we give two examples to give an

idea why negation and finite branching are not needed for the logic to characterize

bisimulation between probabilistic processes.

Example 4.1.1 The two following non-probabilistic systems

•

can be distinguished with the formula (a)ï(b)T, which says that the process can per­

form an a-action and then be in astate where it cannot perform a b-action. The

process on the left satisfies this formula while the process on the right does not. How­

ever, it is well-known that they cannot be distinguished by a negation-free formula of

Hennessy-Milner logic. If we now consider probabilistic versions of these processes

we find that the situation is different. For no assignment of probabilities are the two

processes going to satisfy the same formulas of L.. Suppose that the two a-Iabelled

branches of the left hand process are given probabilities p and q, assume that the b­

labelled transitions have probability 1. Now if the right hand process has its a-labeLled

2They actually use a stronger property, the "minimum deviation condition" which uniformly
bounds the degree of branching everywhere.

51

•

•

transition given a probability anything other than p +q, say r > p + q we can immedi­

ately distinguish the two processes by the formula (a}p+qT which will not be satisfied

by the left hand process. Ifr = p+q then we can use the formula {a}q(b)oT. If the two

processes are not bisimilar, in which case p > 0, the left hand process cannot satisfy

this formula but the right hand one does.

This simple example shows that one cao use the probabilities to finesse the need for

negation but one cannot actually encode negation with just C. Of course this example

does not constitute a proof but it makes it more plausible that indeed negation is not

needed. It is tempting to think that the ability to distinguish processes cornes from

the power to encode negation and infinitary conjunction by manipulations of the

probability subscripts in the modal fonnulas of the fonn (a)c/J. In fact this is not the

case. With negation we can write a fonnula which is only satisfied by NIL states

assuming that there are only finitely many distinct actions, namely

Â .(a)T.
aEA

It is not possible to write a formula that is only satisfied by NIL states using just

C. There is no paradox of course. Given two states one can write a C formula

which distinguishes them but this fonnula may depend on both states and cannot

be constructed just by looking at one of them. For example, suppose that there is

a family of states Sn, where n is a positive integer, such that the only transition is

an a-Iabelled transition to a NIL state with probability ~. Now no single fonnula of

J:, can distinguish an these states from the NIL state but gjven any Sn the formula

(a}_I_T will work.
11.+1

The next example shows why we do not need infinite conjunction even if we have

infinite branching.

Example 4.1.2 Consider the processes P and Q of Figure 4.1 and the formula

(a)(An (a)(n)T) where the notation (a}(n) means n nested (a) modalities. The con­

junction is over aU n > 1. This formula says that the process can jump to astate

/rom which arbitrarily many a-labeUed transitions are possible. The process P does

52

•

•

Figure 4.1: Infinite conjunction is necessary to distinguish P and Q.

not satisfy this formula but Q does. Now if we associate probabilities with these tran­

sitions we find that we can find distinguishing formulas that do not involve infinite

conjunction. To see this assume that both processes satisfy ail the same C formulas.

We will show that the probability associated with the extra branch in Q has to be 0,

i.e. it really cannot be present. Now the sum of the initial probabilities have to match

since they both satisfy all the same formulas of the form (a)pT. Now in both processes

the branch that takes the initial state to a dead state has to have the same probability

because they both satisJy ail the same formulas of the form (a)p(a)oT. By induction

it follows that each branch in P must have the same probability as the c01Tesponding

equal length branch in Q. Thus the branch to the looping state in Q must have prob­

ability 0, because we proved that the sum of the initial probabilities have to match.

Consequently, if this probability is not 0, in which case the two systems are not bisimi­

lar, they cannot satisfy aU the same formulas of C and hence a distinguishing formula

can be constructed which does not involve infinite conjunction.

4.2 Logical characterization for bisimulation

We prove that bisimulation is eharaeterlzed by the logie C. The proof relies on various

properties of analytie spaees. Ta show that two bisimilar states satisfy aIl the same

fonnulas of C is a relatively easy induction argument. To show the converse, one

defines an equivalence relation on states - two states are equivalent if they satisfy the

same fonnulas - and then forro the quotient of a proeess. We need a general theorem

53

•

•

to assure us that the result is analytic. H we used Polish spaces, then we would not be

assured that the quotient remains Polish. We then define a transition probability on

this quotient system in sucb a way as to ensure that the morphism from the process

to its quotient is zigzag. This is the part of the construction where we need most of

the measure-theoretic machinery. We use a unique structure theorem to show that

the measurable sets defined by the fonnulas of the logic generate the u-field. Once

again, this theorem is only true for analytic spaces and hence is another motivation for

imposing an analytic space structure on our processes. We use a theorem on unique

extension of measure in order to show that the transition probability is well-defined.

The first proposition helow says that sets of states definahle by formulas in a

labelled NIarkov process are always measurable.

Proposition 4.2.1 Let (S, i, E, T) be an object of LMP. Then for aIl formulas 4J,

we have [4JD E E.

Proof. We proceed by structural induction on 4J. The base case corresponding to T

is trivial since S E E. Conjunction is trivial because, by definition, au-field is closed

under intersection. Finally, we have [(a)q4JD = Ta (·, [tPD)-l(q, 1]) E E. Ta justify this

first note that, by hypothesis, [4JD E E so Ta(S, [tPD) is meaningful. Secondly, Ta is a

measurable function in its first argument and finally intervals are Borel. •

Theorem 4.2.2 Let S = (S, i, E, T) and S' = (S', i', E', 7') be labelled Markov pro­

cesses. If two states s, s' E SuS' are bisimilar then they satisfy the same formulas

of L,.

Proof. Let R be a bisimulation between S and S'. We prove by induction on the

structure of formulas that if sRs' then s and s' satisfy the same formulas. The cases of

T and conjunction are trivial. Now assume the claim is true for tP, i.e., for every pair

of R-related states, either both satisfy 4J or neither of them does. This means that

the set [4JDs U [4JDS' is R-closed. Since Ris a bisimulation, Ta(S, [4JDs) = T~(S', [4Jlls')

for all a E A. Sa s and s' satisfy the same formulas of the form (a)q4J. •

54

•

•

In order to show the logic gives a complete characterization of bisimulation, we

also want to show the converse. We write s ~ s' to mean that s and s' satisfy all the

same formulas.

We want to show that ~ is a bisimulation between every pair of processes, S and

S' . Thus we want to show that for every pair s, s' E suS', and every ~-closed

measurable set Y C SuS', we have Ta(S, y n S) = ~(s', Y n S') for every a E A.

The following lemma is a first step in that direction. It says that the equality is true

for sets definahle by formulas, Le., that the transition probabilities to definable sets

are completely determined by the formulas, independently of the system.

Lemma 4.2.3 Let S = (S, i, E, T) and S' = (S', i', E', r') be two labelled Markov

processes. Then for aU formulas if> and aU pairs (s, s') such that s ~ s', we have

Ta(S, [4>lls) = ~(s', [4>lls')·

Proof. Suppose that the equation does not hold. Theo, say, for sorne if>, Ta(S, [if>Bs) <

~(s', [tlJll s'). We choose a rational number q between these values. Now it follows

that s' F (a}qif> but s ~ (a}qif>, which contradicts the assumption that s and s' satisfy

all the same formulas. •

The plan is then to prove that sets of the form [if>Hs U [if>Hs' are ~-closed, which

is obvious, and that they generate ail ~-closed measurable sets. Finally we want to

show that the fact that Ta (S, .) and T~ (s', .) agree on the sets definable by formulas

implies that they agree on every ~-closed set. To do so, we first show that there is a

zigzag morphism from any labelled Markov process to its quotient under ~.

If (S, E) is a Borel space, the quotient (S/~, E~) is defined as follows. S/~ is the

set of aIl equivalence classes. Then the function f ~ : S --* SI~ which assigns to each

point of S the equivalence class containing it maps onto S/~, and thus determines a

Borel structure on S/~: hy definition a subset E of S/~ is a Borel set if f~l(E) is a

Borel set in S.

The following theorem is a result of joint work [DEP98] .

55

• Theorem 4.2.4 Let (S, i, E, T) be an object of LMP. Then (S/ ~, E~) is an analytic

space and we can define p so that the eanonical projection f~ /rom (S, i, E, r) to

(S/~, f~(i), E~, p) is a zigzag morphism.

In order to prove this proposition we need a few lemmas. The first allows us to

work with direct images of f~. The next two are known results about analytic spaces

while the final lemma is a standard uniqueness theorem.

Lemma 4.2.5 Let S = (S, i, E, T) be a labelled Markov process.

(i) Each equivalenee class in S is a Borel subset.

(ii) The equivalence classes in S refine [4>] for eaeh formula rP of the logie.

(iii) f~lf~[4JD = [rP] for each formula 4> of the logie.

Proof. Ci): let tES. Then it is easy to see that the equivalence class containing t

is equal to ntFf/> [4>] \ Utp=4' [4>]C which is obviously a Borel subset of S ([4>]C denotes

the complement of [4>]). (ii): Clearly, [4>] = UtFtP[t] where [t] is the equivalence class

containing t. (Hi): The reversed inclusion is obvious and direct inclusion follows from

the fact that if s, tare mapped to the same state, they must satisfy the same formulas,

so if s E [4JD and t E f~lf~[4>], then t must be in [4>] as weIl. •

•

The next lemmas are Theorem 3.3.5 of [Arv76) and one of its corollaries. We omit

the proofs.

Lemma 4.2.6 Let X be an analytic Borel space and let f"'J be an equivalenee relation

in X. Assume there is a sequence fl' 12, ... of real valued Borel funetions on X such

that for any pair of points x, y in X one has x f"'J y if and only if fn(x) = fn(Y) for

aU n. Then X / is an analytie Borel spaee.

Lemma 4.2.7 Let (X, B) be an analytic Borel space and let 8 0 be a eountably gen­

erated sub-lr-field of 8 which separates points in X. Then 8 0 = 8 .

56

•

•

The final lemma that we need is a result which gives a condition under which

two measures are equal. It is Theorem 10.4 of Billingsley (Bil95] which relies on the

famous À1r-theorem of Dynkin.

Lemma 4.2.8 Let X be a set and F a family of subsets of X, closed under finite

intersections, and such that X is a countable union of sets in F. Let u(F) be the

u-field generated by F. Suppose that J1.1, J1.2 are finite measures on u(F). If they agree

on F then they agree on u(F) .

Proof of Theorem 4.2.4: We first show that S/~ is an analytic space. Let

{tPili E N} be the set of all formulas. We know that [<piDs is a Borel set for each

i. Therefore the characteristic functions XcPi : S --4- {O, 1} are Borel measurable func­

tions. Moreover we have

It now follows by Lemma 4.2.6 that S / ~ is an analytic space.

Let 8 = {f~([tPiDs) : i EN}. We show that u(8) = E~. We have 8 C E~, since,

by Lemma 4.2.5 (Hi), for any f~([cPiDs) E 8, /;1 f~([cPiDs) = [cPiDs which is in E

by Proposition 4.2.1. Now u(8) separates points in S/~, for if x and y are different

states of S/~, take states s E /;;1(X) and t E f;;l(y). Then since s ~ t, there is a

formula cP such that s is in [cPDs and t is not. By Lemma 4.2.5 (Hi), it follows that

x is in f~[tPDs' whereas y is not. Since u(8) is countably generated, it follows by

Lemma 4.2.7, that u(8) = E~.

We are DOW ready to define Pa(x,·) over E~ for x E S/~. We would like ta

define it sa that /~ : S -t S/~ turns out to he a zigzag morphism (recall that 1~ is

measurahle). Hence, for any B E E~ we put

where s E t;l(X). Clearly, for a fixed state s, Ta Cs,l;l(.)) is a sub-prohability

measure on E~. We DOW show that the definition does not depend on the choice of

s in /;1(X) for if s, s' E /;;1(X), we know that Ta (S,/;l(.)) and Ta(S', /;;1(.)) agree

57

• over 8 again by the fact that f~lf~([tPi]S) = [tPiDs and by Lemma 4.2.3. So, since 8

is closed under the formation of finite intersections we have, from Lemma 4.2.8, that

Ta(S, f~l(.» and TaCS', f~lC·» agree on u(8) = ~~.

It remains to prove that for a fixed Borel set B of ~~, Pa (., B) : S / R:: -4- [0, 1]

is a Borel measurable function. Let A be a Borel set of [0, 1]. It is easy to check

that PaC·, B)-l(A) = q['Ta(·, f~l(B»-l(A)], from the zigzag property applied to f~.

We know that C = 'TaC·, f~l(B»-l(A) is Borel since it is the inverse image of

A under a Borel measurable function. Now we daim that f~(C) E E~, since

f~lf~(C) = C. To see this, note that if SI E f;;l f~(C), there exists S2 E C such that

f~(sd = f~(s2). We have just proved above that then the 'Ta(Si, f~l(·»'S must agree,

so if Ta (Si, f;;l(B» E A for i = 2, then it is aIso true for i = 1, SO SI E C as wanted.

Thus Pa C., B) is Borel measurable. This concludes the proof that S/ ~ is a LMP and

f~ a zigzag morphism. •

We now state the main result on logical characterization of bisimulation.

Theorem 4.2.9 Let S and S' be labelled Markov processes. Two states S, s' E SuS'

are bisimilar if and only if they satisfy the same formulas 01 /:'.

Proof. The left to right direction is given by Theorem 4.2.2. We prove the other

direction. Consider U = (U, ua, f2, T), the direct SUffi of S and S'. Note that every

state of either S or S' satisfies the same fonnulas in U as in its original process. By

using the quotient U / ~ = (U/ R::, f ~Cua), f2~, p), we show that the relation ~ defined

on the states of U is a bisimulation relation. Let A E n be ~-closed (then AnS E E

and AnS' E E'). Then we have A = 1~1f~(A) and hence I~(A) E n~. Now if s ~ s'

in U, then fR::(s) = f~Cs'), and since by Theorem 4.2.4 I~ is a zigzag morphism, we

have Ta(S, A) = PaCf~(s), f~(A» = 'Ta(s', A), as wanted. •

We can now prove an important result that we mentioned in the section where

bisimulation is defined and delayed until now.

• Corollary 4.2.10 Bisimulation is an equivalence relation.

58

•

•

Proof. Suppose that S and S' are bisimilar and that S' and S" are bisimilar. This

means that we have bisimulation relations R between S and S' and R between S'

and S", satisfying iRi'R'i". Then, by the left to right direction of Theorem 4.2.9, i

and i" satisfy the same formulas. Thus, by the other direction of the same theorem,

i and i" are bisimilar, and hence there is a bisimulation relation between S and S"

relating them. •

Example 4.2.11 We come back to process S of Example 9.7.1. To show that every

pair of states are not bisimilar, we only have to find a formula that distinguishes

them. We can see that every positive state has a different probability for jumping to

a negative state, and hence to a positive state, since T(S, R) = 1 for ail s > O. Now,

every s > 0 has a different number r(s, [(a)oTD)' since [(a)oTD is exactly the set of

positive states. Renee for every pair of positive states, there is a rational q such that

the two states are distinguished by the formula (a)q(a)oT.

4.3 Logical characterization of simulation

We just proved that bisimulation is characterized by a simple logic which does not

involve negation. One advantage of this feature is that this opens the way to a notion

of logical simulation between processes. Recall that astate logically simulates another

state if it satisfies (at least) aU the formulas the other satisfies. A logic containing

negation cannot characterize simulation. We prove that Lv characterizes simulation

between discrete labelled Markov processes and arbitrary labelled Markov processes.

The notion of simulation accords well with the logic Lv in the sense of the fol1owing

proposition.

Proposition 4.3.1 If s is simulated by s', then for aU formulas ifJ E Lv, s F ifJ

implies s' F </J.

Proof. Let R be a simulation on a single process S = (S, i, E, r). We prove by

induction on the structure of formulas that for every formula </J, [tI>D is R-c1osed,

which implies the result. 1t is obvious for T and conjunction. Now assume it is true

59

•

•

for 4>, and let sRs'. Then, since R is a simulation and [4>D is measurable and R-closed,

we have Ta(S, [4>D) < Ta(S', [4>D), and hence [(a)q4>D is R-closed for every rational q.

Now if S and s' come from two different processes, observe that if S is a direct

summand of U, a state of S satisfies exactly the same formulas in S as in U. Rence

the result. •

In order to obtain that the logic Lv characterizes simulation, we must prove the

converse. The following theorem shows that the logic does characterlze simulation in

a special case where the simulated state cornes from a discrete process.

Theorem 4.3.2 A state in a discrete process is simulated by a state in an arbitrary

process if and only if it is logically simulated by that state with respect to the Logic Lv.

Proof . The "only iP' direction is given by Proposition 4.3.1. For the "iP' part,

consider the refiexive relation W induced by the logic on the direct SUffi of the discrete

process P = (P, Po, 1r) and an arbitrary process S, defined as follows. Let pEP be

W-related to sES if s satisfies all the formulas that p satisfies. We show that W

is a simulation relation on P + S. Let pWs and Y be a W-closed set in the direct

sumo We want to prove that 1ra (P, y n P) < Ta (s, Y n S). We prove that for every set

B ç P (not necessarily W-closed), we have 1ra (P, B) < Ta(S, WeB) n S) (we can write

WeB) n S because we will see that it is measurable, since B is countable). This will

give us the result since W(Y n P) n S ç y n S because Y is W-closed. Note that if

p' E B, then W(P') n P = npFtP[iPDp . Taking the union over aU p' in B, we get

WeB) n P = U (n [~llp)·
p'EB p'FtP

Now by definition of W we have

WeB) n S = U(n [iPDs)·
p'EB plFtP

Note that this shows that WeB) n S is indeed measurable in E.

We now prove that WeB) n P and WeB) n Sare limits of decreasing chains of

formulas. First assume that B is finite. Let Bk (resp. B~) be the set of states in P

60

•

•

(resp. in S) which satisfy the formula VbEB(Ab'FtPEFtctP) where Fk is the (finite) set of

formulas of depth < k that involves probabilities which are integer multiples of 1/j

for some 1 < j < k and only the first k actions of A. Then (Bk)kEN and (B~)kEN

are decreasing chains. We prove that nB~ = WeB) n S. If s E WeB) n S, then

there is a b E B which is simulated by s, hence s F /\b'FtPEFA: 4J for all k. Conversely,

if S ~ WeB) n S, then for all b E B there is a formula 4Jb snch that b F 4Jb but

s ~ rPb. Let k he such that ail f/Jb are in Fk: this is possible because B is finite and aU

formulas 4Jb are finite and hence involve a finite number of probabilities. Then s ~ B~

because S ~ VbEB4Jb, and hence s ~ nB~. Thus nB~ = WeB) n S and similarly

nBk = WeB) n P.

No\v since pWs, s satisfies aIl the fonnulas of the form (a) qtP that p satisfies.

Bk and B~ being of the fonn [.,pD, we have 1ra (P, Bk) < Ta(S, B~). This implies that

1ra (p, B) < 1ra (p, WeB) np) = 1ra (p, nBk) < TaCS, nB~) = Ta(S, WeB) ns), and hence

we have the result for B finite.

If B is countable, then let (B')'EN be an increasing chain offinite sets whose union

is B. Since every B, is finite, we have 1ra (p, B,» < Ta(S, W(B,) n S). Now since the

B,'s form an increasing chain that converges to B, and similarly the W(B,) n S's

converge to WeB) n 5, we have

1ra (p, B) = 1ra (P, UB,) < Ta(S, UW(B,) n S) = TaCS, WeB) n S)

as wanted. The result is valid in particular for B = Y n S and the theorem is proved.•

Remark 4.3.3 An extension of this theorem to the uncountable case is not straight­

forward. The argument of the proof relies on the countability of Y n P (generalized

to B in the proof). However, we know that if S and S'are maximally collapsed (that

is, they contain no pair of distinct bisimilar states), then their a-field is generated

by the sets [4J], where f/J is a formula of L.v. In the proof of the logicaI character­

ization of hisimulation, we use a theorem saying that if two measures agree on a

set of sets that generates the a-field, then they agree on the whole a-field. If we

want to mimic this proof, the first step is to note that for every formula tP, we have

Ta(S, [tPll n S) < T~(S', [4»ll n S') (where [cP] is taken in the direct sum S + S'). As far

61

• as we know, there is no theorem in the literature that could help us saying that this

would imply that 'TaCs,·) < ~(s', -) on every R-closed set.

We previously made the comment that although r, is enough to characterize bisim­

ulation, characterlzation of simulation needs disjunction. We now give an example of

two simple finite processes, one satisfying all the formulas of r, that the other satisfies

but which does not simulate it.

Example 4.3.4 In the following picture, t satisfies ail formulas of r, that s satisfies

but t does not simulate s.

•

Of course there is a formula of .c that distinguishes s and t, namely the formula

(a) 0 C(a) 0T A (b) 0T) . This formula is satisfied by t but not by s. To see that t satisfies

aU formulas of r, that s satisfies, note that the only relevant formulas of .c that are

satisfied by sare: (a)rT, for 0 < r < 1, (a)r(a)oT and (a)r{b)OT, for 0 < r < 1/2.

AU these formulas are also satisfied by t. To see that t does not simulate s, suppose

that there is a simulation relation R that relates sand t. Then the set of aU states

is R-closed and hence SI and S2 cannot be related to any NIL state (such as t l)

because a NIL state cannot perform any of a and b so we cannot have 7ra (SI, S) ::;

7r~(tl, T), similarly for label band state S2. Hence the set A of non-NIL states is

R-closed but s has probability 1 of jumping to A whereas t has probability 3/4 of

making an a-transition to A. This shows that disjunction is indeed necessary for

characterizing simulation, because we can find a formula from the logie .cv, namely

{a)3/4 (a)oTv (b)oT) that is satisfied by s but not by t.

The next result will allow us to use a simpler definition of simulation when we

work with discrete processes.

62

•

•

CoroUary 4.3.5 If a process simulates a di3crete process, then it simulates it through

their direct sumo

Proof. Assume there is a simulation R between P and S. Consider the relation

W induced by the logie on the direct SUIn of P and S defined as above: pEP is

related to sES if s satisfies all the formulas that p satisfies. Then W contains R by

Proposition 4.3.1. So W is a simulation (by Theorem 4.3.2) on P + S relating every

state R relates. •

We give a simpler definition of simulation that can be used when a discrete process

is involved. This definition has the advantage of not using direct sums. It is easy ta

check that - in the mentioned particular case - the following definition of simulation

is equivalent to the one we have given previously.

CoroUary 4.3.6 A simulation between a discrete process P = (P,Po, p) and another

process S is a reflexive and transitive relation on PuS such that the restrictions of

R to P and S are simulations and pRs implies that for every R-closed set A C PuS

such that AnS E E, we have Pa(P, A n P) < Ta(S, AnS).

It is easy to see that if there is such a simulation hetween two continuous processes,

there is a simulation according to definition 3.6.2. The reason why we did not use

the last definition directly for arbitrary labelled Markov processes is that we could

not prove that it yields a transitive relation; this remains an open problem. For

discrete processes, transitivity of simulation (as just defined) is given by the logical

characterization.

4.4 Aigorithms for bisimulation and simulation

The logical characterizations of bisimulation and simulation given in the last section

allow us ta use the logics instead of the formai definition of bisimulation and simu­

lation. In particular, if we want to check that two states are bisimilar we can prove

that they satisfy the same formulas of /:'. More interestingly, if we can find a formula

63

•

•

that is satisfied only by one of these states, we know that they are not bisimilar. This

is easier than proving that there is no bisimulation relation relating them. Moreover,

the witnessing formula gjves information why the two states are not bisimilar. The

same remark applies for simulation. In particular, if we are checking whether an im­

plementation matches its specification and find a fonnula that is satisfied only by the

specification, the structure of the formula gives us a hint on a possible "computation"

that makes the implementation fail to be adequate for the specification. This way, it

can give us a hint in order to modify our incorrect implementation.

For that purpose, we describe two algorithms for bisimulation and simulation. The

algorithm for bisirnulation produces a witnessing formula from the logic J:, in case the

systems are not bisirnilar. A small modification to it cao be used to check if astate

is simulated by another. If it is not, the algorithm exhibits a fonnula of the logic

L,v that is satisfied by the state and not by the other. The algorithms were inspired

by an algorithm due to Cleaveland (Cle90] to decide bisimilarity of non-probabilistic

processes.

We first describe the algorithm for bisimulation. It operates in two steps. The

first step is to compute, gjven a finite labelled Markov chain, a family D of subsets of

states having the following properties. Every set of D is exactly the set of states that

satisfy sorne formula of L" and conversely, every formula of L, corresponds to a set

of D. At first sight, this last property may appear strange since there are infinitely

many formulas in the logic, but since there are only finitely many states in the process,

there are finitely many subsets of states. In order to decide whether two states are

bisirnilar, we theo check if they belong to exactly the same sets of D.

The first step is done with bisim, which has a running time of O(2n), where n is

the nurnber of states. It is illustrated in Figure 4.2. Beginning with D containing

ooly the set S of aIl states, the algorithm constructs for each B in D and a E A,

oested subsets of S having probability greater thao sorne nurnber of jumping to B

with action a. We will prove that for every formula of 1:" the set of states satisfying

this formula is a member of D and conversely, every member of D corresponds to a

formula. Consequently, all states satisfying the same fonnulas will belong to exactly

64

• bisim(S, A, T, D)
D:= {S}
F(S):= T
for each B E D and a E A do

r:= {Ta(s,B): 5 E S}
for each q E r do

C := {5 ES: 'la (5, B) > q}
for each A E D, do
F(C nA) := F(A) /\ (a)qF(B)
D:=Du{CnA}

Input: S, A, '1

Result: D C P(S)

F:D~L,v

r: set of numbers

ces

•

Figure 4.2: An algorithm for deciding bisimulation

the same sets in D. This shows that the algorithm really relies on the characterization

of bisimulation by the logic.

More precisely, for each set B of D and a E A, bisim collects in r all possible

values of Ta(S, B) for 5 E S. Then, for every possible value in r, the subset C of

states that can jump into B with probability greater than this value are added to

the set D in a precise way. In fact, in order that D be closed under intersections, we

add to D all sets C n A such that A E D; the algorithm then assigns a formula to

the set and adds the set to D. The greatest value in r could be removed since it will

always lead to an empty set. In an implementation of the algorithm, if a set has been

already assigned a formula, no new assignment should be made, for it would assign

to the set a longer formula than the one already computed. Of course, in that case,

the set needs not he added to D and the two last lines can just he skipped.

For deciding simulation between states of finite processes, the following modifica­

tion gives us a correct algorithm that we cali sim. We must replace the last for-Ioop

of bisim by

for each Al E D, A2 E Du 0 do
F«C nAd u A2) := (F(Ad 1\ (a)qF(B» V F(A2)

D:= Du {(en Al) u A2 }

These lines correspond to the fact that we need disjunction in the logic to characterize

simulation. So when we add a new set C, we must make sure that its intersection

and union with every set in D is in D as weIl as the union and intersection of every

65

•

•

pair of sets in D. Instead of adding to D sets of the form en A, we add to D al! sets

(C n Al) U A 2 for Al, A2 E D; we will prove in Proposition 4.4.2 that this is enough

to make sure that D is closed under intersections and unions. At the end of running

sim, a simulating state will belong to every set containing astate it simulates.

The second step of the algorithm is to decide whether or not astate is bisimilar

to another state and exhibit a formula if not; checkbisim does that when we give to it

as input the set D computed by bisim and two states, 8 and t. It simply goes through

every set in D and checks if 8 and t are "distinguished" by that set.

checkbisim(s, t, D)
for each B EDda

if (s E Band t fi. B) or (8 fi. B and t E B) then
return s "and" t "are distinguished by the formula" F(B); exit

retum 8 "and" t "are bisimilar"

We could look for the "first" set that distinguishes them, hoping to obtain a

shorter formula. The algorithm bisim itself does not record the order of creation on

the sets B, but it could be easily modified to do so. The formula ohtained either way

is Dot guaranteed ta be minimal and often it will not he minimal.

The checking algorithm for simulation is very similar. It goes through every set

in D and checks if t is in every set that 8 belongs to.

checksim(s, t, D)
for each B E D do

if s E Band t fi. B then
return s "satisfies formula" F(B) "but" t "does not."; exit

return s "is simulated by" t

The following proposition shows that checkbisim really decides if two states are

bisimilar.

Proposition 4.4.1 Two states of a proce8S S satisfy the same formulas if and only if

they belong to exactly the same sets in D at the end of executing the algorithm bisim.

If the set B distinguishes them, then formula F(B) is satisfied by one state but not

by the other.

66

•

•

Proof. First note that the algorithm must terminate since 2151 is finite.

We prove necessity by showing that in bisim, every element of D corresponds ta

a formula, Le., for every B E D, there exists a formula tP such that B = [4>]. We

will prove by induction on the number of iteration of the first for-Ioop that for every

B E D, F(B) is such a formula. The whole set S corresponds ta the fonnula T.

Suppose that after n iterations of the first for-Ioop, every element of D corresponds

to a formula. Then we must show that ail sets added ta D in the last for-Ioop also

correspond ta formulas. So we prove that for each B E D, each q E r and each

A E D, en A = [F(e nA)], where e is defined from q and B. Since A = [F(A)]

and B = [F(B)] by induction hypothesis and C = [(a}qF(B)] by definition, then

en A = [F(A) A (a}qF(BH = [F(C n A)]. Sa each set in D at the end of executing

this algorithm corresponds ta the set of states that satisfy some formula. This implies

that if two states satisfy the same formulas, they must he in the same sets of D.

For sufficiency, we want ta show that if two states s, s' do not satisfy the same

formulas they are not in the same sets of D. Ta do so, we wiil show by structural

induction on formulas that every formula corresponds to a set in D when the algorithm

is finished, i.e., for every formula 4>, [4>] E D. Sa assume the algorithm is finished

and hence that D is constructed. [TB = S E D. Now assume [tPTI and [1/JBare in D.

To prove that [4> /\.,pD E D, we will praye by induction on the number of iteration of

the first for-Ioop that every intersection of two sets of D is in D. So let Dl and D 2 be

two consecutive status of D in the history of the algorithm, and assume the daim is

true for Dl. We want ta prove that D2 is closed under intersection. Obviously, if we

take two sets in D2 that were already in Db their intersection is in D 2 • So we only

have to check that D2 is closed under intersection of new sets and under intersections

of new and old sets. We first want to prove that X n (A n C) E D 2 , where A, X E Dl

and e defined from B E Dl and q Er, as above. But this set is equal ta (X nA) n C

which is also in D2 hecause X n A E Dl by induction hypothesis. Now we also have

(A n C) n (X n C) E D2 because this set is again equal ta (X nA) n C. This proves

that D2 is closed under intersection, and hence [tIJ /\ .,pD E D.

Now we want to prove that if [4>] E D, then [(a)qtP] E D. Then let r =

67

•

•

maxsES{-ra(s, [q,B) < q}. So sinee B = [4>B must have been eonsidered in the algo­

rithm, and then at that time r E r, we have, for C = [(a)r4>ll, C n S = [(a)r<P] E D.

But this set is exaetly [(a) q<pll E D •

The following proposition shows that checksim really decides if astate simulates

another one. It shows that given two states, if the first state does not belong to every

set of D the other is in, witnessed by say, set B in D, we get a formula F(B) satisfied

by the second state but not by the first one.

Proposition 4.4.2 Astate s logically simulates another state s' in process S if and

only if at the end of running the algorithm sim on S, s belongs to every set of D that

s' is in.

Proof. Note again that the algorithm must terminate sinee 2151 is finite.

We prove necessity by showing that in sim, every element B of D is equal to

[F(B)l This will be done by induction on the number of iteration of the first for­

loop in sim. Obviously, S = [T]. Suppose that after n iterations of the first for-Ioop,

the daim is true for every element of D. Then we must show that it is also true for all

sets added to D in the last for-loop. So we prove that for eaeh B E D, each q E r and

eaeh Al E D, A 2 E Du 0, (C nAd U A2) = [F«C n Ad u A2 H, where C is defined

from q and B. Sinee Ai = [F(Ai)ll (i = 1,2) and B = [F(B)] by induction hypothesis

and C = [(a)qF(B)ll, then C nA = [F(A) 1\ (a)qF(B)] = [F«C n Ad U A 2)E. So

for eaeh B E D at the end of executing sim we have B = [F(B)ll. This implies that

if sES satisfy aIl the formulas that s' E S satisfies and if s' E B E D at the end of

the execution of the algorithm, we have s' F F(B) and hence s also satisfies F(B)

and hence is in B.

For sufficiency, we want to show that if two states s, s' do not satisfy the same

formulas they are not in the same sets of D. To do 50, we will show by structural

induction on formulas that every formula corresponds to a set in D when the algorithm

is finished, i.e., for every formula 4>, [4>] E D. So assume the aIgorithm is finished

and hence that D is eonstructed. The formula T = SE D. Nowassume [4>] and [.,pD

are in D. To prove that [4> I\.,pB and [4> V wB are in D, we will prove by induction

68

•

•

on the number of iterations of the first for-Ioop that D is closed under unions and

intersections. So let Dl and D2 be two consecutive status of D in the history of the

algorithrn, and assume that Dl is closed under unions and intersections. Obviously,

if we take two sets in D 2 that were already in Dl, their intersection and union are

in D 2 • So we only have to check that D 2 is closed under intersection and unions of

new sets and of new and old sets. Let A, B, Ab BI E Dl, A2 , B2 E Du 0. Let C be

the set constructed from q E r and B, wmch introduces new sets in D 2 • AIl possible

cases are considered in the following lista

1. Au (C nAd U A2 = (C nAd u (A u A2) is of the fonn (C nAd u B* E D2 ;

2. An«CnAduA2) = (Cn(AnAd)u(AnA2) is of the Conn (CnA*)UB* E D2 ;

3. «C nAd U A2) U «C n BI) U B2) = (C n (Al u Bd) U (A2 U B2) is of the form

(C n A *) u B* E D2 ;

4. «CnAduA2)n«CnBr)uB2) = (CnA l nBr)U(CnA1 nB2)U(CnA2 n

Bd u (A2 n B2) is of the fonn (C n A*) u B* E D2 ;

In each case, we have A* ,B* are in Dl by induction hypothesis. This prove that D 2

is closed under intersections and unions, and hence [<p 1\ 'rPD and [tIJ V 1f;ll are in D.

Now we want to prove that if [iP] E D, then [(a)qtIJll E D. Then let r =

maxsES{Ta (S, [<PD) < q}. So since B = [iPD must have been considered in the algorithm,

and then at that time r E r, we have, for C = [(a)riPD, (C n S) u 0 = [(a)riP] E D.

But this set is exactly [(a)q<pD E D.

If astate sES belongs to every set of D that s' E S is in, and if s' 1= iP, then

there is sorne B E D such that B = [<PD. Then s' E B and hence s E B and this

implies that s 1= iP· •

Example 4.4.3 We work out a simple example ta illustrate how the algorithm oper­

ates. Consider the finite labelled Markov process of Figure 4.3. If we run the algorithm

sim on this process, the following sequence of steps will be obtained.

• Input is S = {so, ... , S9}, A = {a, b};

69

•
S8 S9

•

Figure 4.3: A finite process S.

• D = {S}, F(S) = T;

• B = S, label is a: we get r = {D, 3/4, I} and Co = {so, S2: S3} fi. D, so

D = {S, {SO,S2,S3}}, F({so,s2,s3}) = (a)oT. Now C3/4 = {SO,S3} fi. D so

D = {5, {so, S2, S3}: {so, S3}}, F({so, S3}) = (a)3/4T.

• B = S: label is b: we get r = {D,I} and Co = {S2, S4, S7} ~ D, so

D = {5, {so, S2, S3}, {so, S3}, {S2' S4, S7}, {82}, {so, 82, 83, 84, S7}},

F({S2, S4, S7}) = (b)oT, F({S2}) = (a)oT 1\ (b)oT,

F({so, S2, S3, S4, S7}) = (a)oTv (b)oT

• B = {SO,S2,S3}, label is a: we get r = {O,5/6} and Co = {sol fi. D, so

D = {5, {8o, S2, 83}, {80, S3}: {S2, S4, S7}, {S2},

{SO,S2,S3,S4,S7},{SO},{SOI82},{SO,S2,S4,S7}},

F({so}) = (a)o(a)oT, F({so, S2}) = (a)o{a)oTv {a)oT 1\ {b)oT,

F({sa, S2, S4, S7}) = (a)o(a)oTv (b)oT;

• B = {so, S2, S3}, label is b: then r = {O} and hence D is not modified;

• B = {S2, S4, S7}, label is a: we get r = {O: 2/3, I} and Co = {sa, S2: S3} E D,

and C2/3 = {S2} E D so D does not change; label b and the same B does not

modify D;

• B = {SO,S3}, {S2}, {so}, {SO:S2}, {SO,S2,S3,S4:S7} or {SO,S2,S4,S7}, label is a

or b: then D does not change;

70

•

•

The set D = {S, {sa, 52, 53}, {50, S3}, {S2, S4, S1}, {S2}, {sa, S2, S3, S4, S7}, {sa}, {sa, S2},

{sa, 82, S4, S7}} is returned. The algorithm ends at this stage because it has investigated

aU possible B E D and aU possible labels occuring in S. We see that ail NIL states

are always in the same set Sand hence are ail bisimilar and aIl simulated by every

other state of S. The three states so, S2, 83 are not bisimilar to any other state of S,

and S4 and S1 are bisimilar. Moreover, we see that S4 and S1 are simulated by S2 for

the latter occurs in every set S4 and S7 appear in. For the same reason, So simulates

S3·

Note that the set D generates ail W -closed sets of S (where W is the logical

simulation) as seen in example 3.6.5. It is not easy to see from D what the simulation

relation is; one really has to check carefully, which motivates the need for checksim.

If we ran the algorithm bisim on S, the set

would be obtained.

4.5 Further aspects of logical characterization

Now we consider the other logics. The proof of the following proposition is very easy

and is only sketched here.

Proposition 4.5.1 AU the logics defined in Section 4.1 characterize bisimulation.

Proof. There is no need to prove that if two systems satisfy all the same formulas

they are bisimilar because all the other logics extend 1:,.

For the other direction we have to show two things just as in Proposition 4.2.1 and

Theorem 4.2.2. The first is that the sets definahle hy formulas are measurable. We

show that for aIl formulas 4> of all our logics, we have [<PD E~. [~a] = TaC·, S)-l({O})

and hence is in L. Now for LA and /:,..., we only have to show that if [et>] E E, then so

is [--,4>] which is straightforward, and if \fi E N, [4Ji] E L, then so is [AiEN <Pi] which

is also straightforward since E is a cr-field. The results follow by structural induction.

71

•

•

The second is that bisimilar states satisfy the same formulas. Let R be a bisimu­

lation relation between (S, i, E, T) and (S', i', E', r'), and let sRs' . We have Ta(S, S) =

~(f (s), S') because S U S' is R-closed, so s ~ Â a if and only if s' ~ Â a • The result

is obvious by structural induction for the connectives A, V and ...,. •

Although these logics ail characterize bisimulation, they do not all characterize

equivalence classes, in the sense that there does not necessarily exist a formula for each

equivalence class which is satisfied only by states in that class. The most powerful

logic does characterize equivalence classes.

Proposition 4.5.2 The logic LA characterizes equivalence classes of arbitrary Mar­

kov processes.

Proof. Let 8 be an equivaIence class of processes with respect to LA' and F(e)

the set of finite formulas (i.e. formulas of .c...,) which are satisfied by one member t

Chenee by all members) of 8; clearly, this set is countable. Then e = n41EF(e) [t/Jll =
[Atf>EF(s) t/Jll: indeed, s ~ t if and only if s satisfies aIl the same formulas of L as t,

Le., if and only if s satisfies Atf>EF(s) t/J. •

For finite-state systems negation by itself is enough to characterize equivalence classes.

Proposition 4.5.3 The logic.c..... does not characterize equivalence classes of Markov

processes, but given a finïte Markov chain, for every bisimulation equivalence class,

there exists a formula of L such that astate is in the equivalence class if and only

if it satisfies this formula.

Proof. The last fact of the statement is weIl known [Arn94]: using the same proof as

for the last proposition, we see that gjven a finite Markov chain, there exists a finite

set A C F(e) such that e = nq,EA [t/Jll = [1\tf>EAt/Jll, where I\tf>EAt/J is a (finite) formula,

as wanted.

This argument does not work if we eonsider the problem of writing a formula

characterizing equivalence classes of arbitrary finite Markov chaios and not just the

equivalence classes of states within a fixed Markov chain. This happens because there

72

• are infinitely many finite Markov chains. We now prove that /:,..., does not characterize

equivalence classes of even finite Markov chains. To do so, consider the equivalence

class of the singie-state process that can do action a with probability 1 (and then

ends up in the same state); this process can do infinitely many a 's, calI it Soo. Now

let Sn be the process having n + 1 states that cao do the action a n times and then

nothing. These processes are illustrated in the following picture.

a an - 2 aSn .--..... --.

•

There is no finite fonnula that distinguishes Soo from an the Sn 's at the same time.

We prove this by showing that

if Soo F cP, then 31V.'Vk > N, Sn 1= cP, and

if Soo ~ cP, then 3N.'Vk > N, Sk ~ cP.

The base case corresponding to T is trivial. So assume the statement is true for

fonnulas cP, cPl and cP2· Now assume Soo F cPl A cP2. Then there exist Nt and N2 such

that 'Vk > Ni, Sk 1= tPi' i = 1,2. For N = max (Nb N2) we have Vk > N, Sk 1= cP11\cP2.
If Soo ~ cPl 1\ cP2' Then there exists i E {l, 2} such that Soo ~ 4>i. So there is N such

that Vk > Ni, Sk ~ 4>i so 'Vk > N, Sk ~ cPl 1\ cP2. The induction step corresponding

to negation is obvious. Finally let Soo 1= (b)qcP. Then b = a and Soo 1= (j). By

induction hypothesis, there exists an N such that Vk > N, Sk F 4>, so Sk+1 1= (a)q(j),

Le. 'Vk > N + 1, Sk F (a)q4> as wanted. For Soo ~ (b)q4>, there are two cases. Either

b =1= a or b = a. In the first case, no Sk satisfies (b)qcP, so take N = 0; in the second

case, we have Soo ~ cP, so there is an lV such that Vk > N, Sk ~ 4>. Then for aIl

k > N Sk+1 ~ (a)q4>, and hence for aIl k > N + 1 Sk ~ (a)q(j), and the proof is

complete. •

Note that the example given in the previous proof cannot be applied ta states

inside a finite Markov chain, since it involves infinitely many states. Nevertheless, it

can be used to show that neither 1:,..., nor 1:,6, cao characterize equivalence classes inside

a discrete system satisfying the minimal deviation assumption defined by Larsen and

73

•

•

Skou. Consider the system containing all the Sn 's whose initial states are attached

to a two-branching tree as in Figure 4.4. This system satisfies the minimal deviation

• a[I/2]S
t- (X)

a[I/21!
• a[l/~l SI

a[l/2)1
a[I/2) S
.- 2

0[1/21 1

Figure 4.4: A tinite-branching process containing Soo and all the Sn 's

assumption but as argued in the proof, there is no formula that characterizes the

equivalence class containing the state of Soo.

We summarize the results about the different logics as follows. The logic L, charac­

terizes bisimulation of probabilistic processes, without any hypothesis of finite branch­

ing and for systems that may have continuous state spaces. The various stronger logics

also have this property. In the weak logic 1:, one cannot write a formula such that any

bisimulation equivalence class of states is described by this formula. This holds even

for simple finite state systems. On the other hand with just negation added to L, one

can characterize the bisimulation equivalence classes of states in a fixed finite state

Markov chain but not in countable discrete Markov chains. One cannot character­

ize equivalence classes of Markov chains with 1:,-,. One can characterize bisimulation

equivalence classes of states in an arbitrary Markov process using countable conjunc­

tion. The logics are not equivalent and we are not obtaining these results just by

encoding negation in some way.

74

•

•

Chapter 5

Approxilllations

We saw previously that one use of bisimulation for labelled Markov processes is to

check whether a process is equivalent ta a discrete one. The analysis of its behaviour

is then greatly simplified. Of course, we cannot possiblyexpect that this will always

happen to any process that we are interested in analyzing. We now change our

perspective. Rather than looking for equivalence of a continuous process to a discrete

one, we expect to find a discrete process that is somehow "close to" our continuous

process. In fact, our goal is to be able ta approximate the continuous process "within

any bound" that we fix, and hence we want a family of approximations for every

process that together contain all the information contained in the continuous one.

We construct such a family of finite-state processes and we show that one can re­

construct the original process -more precisely a bisimulation equivalent of the original

process- from the approximants. We da not reconstruct the original state space but

we reconstruct all the transition probability information, Le., the dynamical aspects

of the process.

The finite-state approximations will be shown to be simulated by the process so

that in some sense they really only capture properties of the original process. This can

be useful to verify continuons processes. For example, if we want to check whether a

process satisfies sorne property described by a logical formula, we only have to check

that one of its approximations does. Conversely we will show that if a process satisfies

a formula, then one of its approximations does, so that the approximants capture all

the logically definable properties of the original process.

75

•

•

The construction cao he viewed as a kind of "unfolding" construction. As the

approximation is refined there are more and more transitions possible. There are

two parameters to the approximation, one is a natural number n, and the other is a

positive rational €. The number n gives the number of successive transitions possible

from the start state. The number € measures the accuracy with which the proba­

bilities approximate the transition probabilities of the original process. Intuitively,

every transition in the approximation has probability within € of the corresponding

transition in S. We can play with these two parameters when approximating a con­

tinuous process. Depending on the intended use of the process, we can work with an

approximation or another, for example increasing the accuracy of the probabilities by

decreasing f or altematively increasing the number of possible transitions by letting

n be large.

We said earlier that we expect the approximants to be somehow "close to" our

continuons process. We make this idea more precise in the next chapter where we

introduce a metric between processes and prove that the approximants converge in

this metric to the process they approximate.

5.1 Finite-state approximation and reconstruction

Given a labelled Markov process S = (8, i, E, r), an integer n and a rational number

€ > 0, we construct a finite-state approximation S(n, €) to S. The underlying tran­

sition system of this approximant forms a directed acyclic graph (DAG); thus a very

special kind of finite-state process.

S(n, f) is an n-step unfolding approximation of S. Its state-space is divided into

n + 1 levels which are numbered 0,1, ... , n. Astate is a pair (..X, l) where X E E

and l E {O, 1, ... , n}. At each level the sets that define states forro a partition of 8.

The initial state of S(n, €) is at level n and transitions only occur between a state of

one level to a state of one lower level. Thus, in particular, states of level °have no

outgoing transitions. In the following we omit the curly brackets around singletons.

This only happens in finite-state processes.

76

•

•

Definition 5.1.1 Let (S, i, E, T) he a lahelled Markov process, n E N and E a positive

rational. We denote the finite-state approximation hy Sen, €) = (P,Po,p) where P is

a subset of E x {D, ... , n}. It is defined as follows, for n E N and € > o. Sen, f) has

n + 1 levels. States are inductively defined with respect to the level they are in. Level

o has one state (S, 0). Now, given the m sets /rom levell, we define states of level

l + 1 as follows. Consider (Bj)jEI the partition of [0, Il into intervals of size E/m:

{{O}, (0, f/m) , Cf/m, 2€/m), .. .}. States at levell + 1 are defined as follows. Let C be

a union of sets appearing at levell and a be a label in {ait ... , an}. For every such

choice of C and a we get a partition of S by the sets Ta (·, C)-l(B;), j E 1. We take

the least common refinement of these partitions obtained by varying over aIl C and a.

Thus if a set X is in this partition of S, (X, l + 1) is a state of levell + 1. Transitions

can happen from a state of levell + 1 to a state of levell, and the transition probability

function is given by

{
inf Ta(t, B» if k = l + 1,

Pa«X, k), (B, l» = tEX .
o otherw~se.

The initial state Po of Sen, f) is the state (X, n) such that X contains i, the initial

state of S.

If B = Uj=lBj , where (Bit l) is a state of levell in Sen, f) for all j = 1, ... , k, we

will often write (B, l) to mean {(B l , l), (B2 , l), ... , (Bk, l)}. If sES, we denote by

(Xs , l) the unique state (at levell) such that sE X s • The following lemma is a trivial

but useful result. It is true by construction.

Lemma 5.1.2 Let S be a labelled Markov process, and sES. In Sen, f), if B is a

(finite and disjoint) union of sets appearing at level l, then 0 < Ta(S, B) - Pa«Xs, l +
1), (B, l» < f.

Proof. Let (X, l + 1), (B;, l), j = l, ... , k he states of Sen, €). Then for all s, tEX

we have

because of the way S is partitioned on level l + 1 (m is the number of states at level

l). Since k < m, the result follows trivially. •

77

• It turns out that every state (X, l) of S(n, €) is simulated by every state s E X

from S.

Proposition 5.1.3 Every labelled Markov process S simulates aU its approximations

of the form Sen, €). More precisely, every state (X, l) of sen, €) (l < n) is simulated

by every s EX from S.

Proof. Let Sen, €) = (P, Po, p) and U = (U, uo, n, p) be the direct sum of Sen, €) and

S. Now let R be the refiexive relation on U relating a state (X, l) from Sen, €) to

every state sE X from S. We prove that R is a simulation. Let X E n be R-closed,

that is, X n SEL and R(X n P) C X n S. Now consider two related states, (X, l)

and s E X. The only positive transition from (X, l) are to states of the forro (B, l-1)

so we can assume that X n P is a union B of states of levell - 1. Now observe that

R((B, l - 1)) = Band by the preceding lemma we have:

Po«X, l), (B, l - 1) U B) - Pa«X, l), (B, l - 1)

< Ta(S, B)

- p(s, (E, l - 1) U B),

and hence the result. •

•

The following lemma shows how the interpretation of logical formulas of I:, inter­

acts with the approximation. We use the notation depth(t/J) to stand for the maximum

depth of nesting of the modal operator in the formula f/J.

Lemma 5.1.4 Let (S, i, E, r) be a labelled Markov process. For every formula if> E I:,

we have

[t/Jlls = UiCi with (Ci, l) E Sen, €) and Ci C [t/Jlls '

where n > l ~ depth(4)) and aU the probabilities occumng in 4> are integer multiples

of €.

Proof. The proofis by induction on the structure of formulas. It is trivial for T. Now

assume it is true for ifJ and 1/;. Suppose that ail the probabilities occurring in t/J 1\ 'lj; are

78

•

•

multiples of €; then this statement is true for both tP and 1/J. Now let l > depth (tP /\ 1/J) ;

then l > depth(tP) and l > depth(1/J). Consequently, we have [tPDs = ujCi where the

index j mns over aIl the states (subsets of S) occurring at levell, Le. (Ci' l) E Sen, €)

and Cj ç [tPDs and similarly for 1/J. Now, since sets involved in one level are all

disjoint, it is easy to see that the lemma is also true for tP /\ 1/J. Now assume it is true

for tP and consider the formula (a)qtP. Let l and € he as above for this formula. Then

by the induction hypothesis, we have that [tPDs is a union of sets appearing at level

l-l in Sen, €) (because depth(tP) < n -1). Therefore, sets of levell are partitions of

the sets Ci = Ta (', [tPlls)-l«j€/m, (j + l)€/m]) and since q is an integer multiple of

€/m, there is sorne k such that kt:./m = q and hence the sets partitioning an Ci for

j > k form a partition of [{a)qtPlls and we have the result. •

The next theorem is the main result of this section. It shows how the original

process can be reconstructed from the approximants.

Theorem 5.1.5 Let (S, i, E, T) be a labelled Markov process that is maximally col­

lapsed, that is, S = S/~. If we are given aU finite-state approximations Sen, €), we

can recover (S, i, E, T).

Proof. We can recover the state space trivially by taking the union of states at any

level of any approximation. We know from the fact that S is maximally collapsed

that E is generated by the sets of the form [tPll, by Theorem 4.2.4. Thus Lemma 5.1.4

implies that

8 := {B : (B, n) E Sen, €) for sorne n E N and sorne € > O}

generates E (obviously, B CE).

The main difficulty is that we have to recover the transition probability function.

Ta do 50, let :F(B) be the set containing finite unions of sets in B. We first argue that

:F(B) forms a field, then we define Pa(s, .) on it and we show that Pa(s, .) and Ta (s, .)

agree on it for aH sES. It will imply that Pa(s,·) is finitely additive on :F(B) and

hence that it can he extended uniquely to a measure on E, and hence that Pa and Ta

agree on S x E, as desired.

79

• We show that :F(B) forms a field. It is obviously closed under finite unions.

To see that it is also closed under intersection and complementation, note that if

CC, n) E Sen, E), then for aIl m > n and all cS such that E is an integer multiple of &,

C is a union of a family of sets Ci such that (Ci, m) E SCm, cS).

Now let C E :F(B), sE 5, a E A and let

Pa(S, C) := sup
n,E

BÇC
(B,n-L)ES(n,E)

Pa«Xs, n), (B, n - 1».

We prove that Pa(s,·) and Ta(S,·) agree on :F(B) for all sES. Obviously, Pa(s, C) <
Ta(S, C) for C E :F(B). The reverse inequality follows from Lemma 5.1.2:

sup
n,E

BÇC
(B,n-l)ES(n,E)

Pa«Xs , n), (B, n - 1» = sUPPa«Xs , n), (UB, n - 1»
n,E

> sup(ra(s, UB) - E)
niE

> sup (Ta(S, C) - E)
(n,E)E/

- TaCS, C),

•

where 1 is the set of pairs (n, E) such that in Sen, E), level n contains a partition of

C (note that there are arbitrary small E'S that are involved in 1). This concludes the

proof that P and T agree and we are done. •

The next result shows that if one is interested in logical reasoning about processes

then any fonnula is satisfied by one of the finite-state approximants.

Theorem 5.1.6 If astate sES satisfies a formula 4J E /:', then there is sorne

approximation Sen, E) such that (Xs , n) F fj).

Proof. The proof is by induction on the structure of formulas. However a direct

induction proof does not work in any obvious way. We need to prove a significantly

stronger result in order to use a stronger induction hypothesis. We prove that for an

formula lj;J and every l > depth(lj;J) there is an increasing sequence (Xn)n~l of sets in

E which satisfy:

80

•

•

(ü) 3(Cj , l) E S(n, Ij2n), j =1, ... , m, sucb that Xn = U~1Cj, n > l;

(iü) the states (Cj , l) satisfy 4> in Sen, Ij2n).

It is obvious for T for which you choose Xn = S for ail n. We fix €n = Ij2n . Note

that every non-trivial formula ifJ is of the form 1\1=1 (aj)Qj4>j, so assume the daim is

true for 4>;, j = 1, ... , k and let l > depth(l\';:l (aj)qjifJj). Then 1 - 1 > depth(4)i) for

all j = 1, ... , k. Let (X~)n~I-1 be the sequence for 4>j at level l - 1. Now define for

n > l, the sequence

Note that this is an increasing sequence of sets in E. We first prove Ci), that is, for

all s F tP, there is sorne n such that s E Bn • So assume 'Taj (s, [ifJill) > qj for aU

j = 1, ... , k. Then, since 'Tai (S, .) is a rneasure and X~ is an increasing sequence which

converges ta [4>iD, there is sorne n such that Taj (s, X~) > Qi' j = 1, ... ,k. Moreover,

there is sorne n such that 'Taj (s, X~) > qj + €n, j = 1, ... , k, because X~ is increasing

and €n is decreasing ta O. Thus s E Bn and (i) is proved. We DOW prove (ii) and (iii).

Let s E B n , for a fixed n > l. Then because all states (X, l - 1), where X C X~,

satisfy 4> and by Lemma 5.1.2, we have

Paj«Cs ,l),([4>illS(n,E)'l-I» > Paj«Cs,l),(X~,l-l»

> Taj (s, X~) - €n

and hence, (Cs, l) l= 4>. This means that Bm is a union of sets of level l which satisfy

4>, as wanted in (H) and (iii). So the proof is complete. •

The next proposition shows how the partitions produced in the construction define

equivalence relations which give "in the limit" the bisimulation relation.

Proposition 5.1.7 Let S = (S, i, E, 'T) he a process. Then states s, tES are bisim­

ilar if and only if they are in the same partition in aU finite-state approximations to

S .

81

• Praof. It is not hard to show by induction that every union of states (B;hik at

some level of an approximation corresponds (in S) to a formula of .c to which we

add disjunction and negation; this formula is satisfied in S by and only by the states

that belong to UjB; in S. So if two states don't belong to the same state of an

approximation, they are distinguishable by a formula of that logic and hence are not

bisimilar by Proposition 4.5.1.

If s and tare not bisimilar, then there is a formula r/J E .c that distinguishes them.

So assume S F r/J and t ~ r/J. Then by Theorem 5.1.6, there is an approximation

Sen, €) such that (Xs , n) F r/J. The state t cannot be in X s because it would then

satisfy tP, by Theorem 5.1.3, which is not true. •

This last result justifies working with the approximants if one is interested in

reasoning about bisimulation.

5.2 Example

We compute a few approximations of a simple continuous process. States are from

the set {s, t} U [0, 3], the initial state is 1 and transitions are as follows:

• if x E [0,1], Pa (x, [0, y) = x;u, where 0 < y < 1.
Pa(x, {l}) = 14x

,

Pa(x, (1, 1 + yn = ~,

Pa(x, (2,2 + yn = 1'-,
• if x E (1,2], Pa(x, s) = 1.

• if x E (2,3], Pb(X, t) = 1.

We draw this process in an informai way in Figure 5.1, where we label the transitions

with expressions that should be interpreted as above.

Let us compute the approximation S(2, 1/2). At level 0, we have state (S, D). At

level 1, we partition S according to the partition of [D, 1] into intervals of size 1/2:

{{O}, (0, 1/2], (1/2, l]). Note that if x E [0,1], then Pa(x, S) = xt1 + l~X +~+i = 3~X.

Rence

• {
-D

Pa(x, S) E (1/2, 1]
if x ft [0,2]
if x E [D, 2]

82

if x ~ (2,3]
if xE (2,3].

•

Figure 5.1: A simple continuous process

This yields, for level 1, the sets [0,2], (2,3) and {s, t}. The transitions are as in the

following picture which represents the approximation S(l, 1/2).

(S, 0)

.[3/ 41]~
([0,2], 1) ((2,3], 1) ({s,t},l)

The initial state is ([0,2],1) and from the picture, one ean see that this state satisfies

the formula (a)3/4-ET, for all € > O.

Now for level two of S(2, 1/2), the partition of S will be obtained using all tran­

sitions to any union of sets that appear at level 1. We must eonsider the partition of

[0, 1] into intervals of size 1/2 x 1/3 sinee there are 3 states at level 1.

P.(x, {s, t}) = { ~

Now for x E [0,1], we have

if x ~ (1,2]
if x E (1,2] Pb(X, {s, t}) = { ~ if x ~ (2,3]

if x E (2,3]

•

{
(4/6,5/6] if x E [0, 1/3]

Pa(x, [0,3]) = (3 + x)/4 E (5/6,1] if x E (1/3,1]

Pb(X, [0,3]) = 0
x+1 l-x 1

Pa(x, [0,2]) = -4- + -4- + 4 = 3/4

{
(0, 1/6] if x E (0,2/3]

Pa(x, (2,3]) = x/4 E (1/6,2/6] if x E (2/3,1],

83

• It is easy to see that the sets we have not cODsidered would not he useful for the

partition of S, so we ignore them; these sets are formed by unions of the set {s, t}

with other sets of level one.

Thus we get the following sets constituting the partition of S at level 2: {O},

(0, 1/3], (1/3,2/3], (2/3, 1], (1,2], (2,3], {5, t}. Transitions are illustrated in the fol­

lowing picture, where we omit the levels. In order not to clutter up the picture, we

have not labelled the dotted lines. Dotted Hnes represent a-transitions with proba­

bility 3/4, so should be labelled aa].

{O}

{s,t}

/Ib
(1, 2] (2,3] {s, t}

This picture represents the approximation 8(2, 1/2). The initial state is «2/3,1],2)

and from the picture, it is easy to see that this state satisfies the following formulas

where f > o.

•

This implies that in the original process, the initial state also satisfies these formulas.

We can obtain more complex fonnulas by studying approximation 8(3, 1/2). The

partition of S that is generated isolates state 1 of the original process. We draw part

of this approximation in Figure 5.2, keeping only the initial state at level 3. Here

again, dotted Hnes represent a-transitions with probability 3/4. Transitions from the

initial state ({1}, 3) are all a-transitions.

In this picture we see that the initial state satisfies in particular the following

formulas, where f > 0:

(a) 1/2-~ (a)o (a)oT,

These formulas are also satisfied by the initial state of the original process.

84

•
{s,t}

/1 6

(1,2] (2,3]

Figure 5.2: Approximation 8(3, 1/2)

{s, t}

•

Note that the set (1,2] will never he split in any approximations, for it contains

only hisimilar states. By changing the probability of state x E (1,2] of jumping with

label a to state s to the value x-l, one can get a more complex process.

85

•

•

Chapter 6

Metrics and logic via real functions

To compare processes, we now have two notions. The first one is bisimulation which

tells us when two processes are essentially equal. If they differ slightly, bisimulation

only tells us that they are not bisimilar. The second notion we introduced is simulation

which tells us a Little more, being a preorder. Two processes, although not bisimilar,

can be related by a simulation relation; one can be greater than the other. But

simulation does Dot tell us how far the processes are in a quantitative fashion and,

since it is not a total order, there are pairs of processes for which it tells us nothing

precise. Like bisimulation, it is not robust; a very small change in probabilities will

likely result in non-bisimilar and "non-similar" processes. We will now introduce a

metric that will allow us to refine our view of processes. This metric will assign a

number ta every pair of processes, gjving so an indication of how far they are from

each other. If the metric distance is 0, then the two processes will turn out to be

bisimilar, and conversely. Processes that are very "close" to being bisimilar will get

smaller distance than processes that are "far" from heing bisimilar. The number itself

will not be of great importance, as is usually the case with metrics. It is the relative

distance that will he of interest, in particular the notion of convergence of processes it

engenders. In fact, we will introduce a family of metrics that assign different weights

to the difference between processes that appear deeper in the execution or history of

the processes.

In order ta define these metrics, we need to shift from the traditional view of logjcaI

formulas to measurable functions into [0, 1]. Working with measurahle functions one

86

•

•

has the right setting to talk about convergence. These functions will play the same

role as the logic fonnulas frOID Chapter 4, but in addition, they will provide us with

numbers that we will use to define the metrics. Our technical development is based

on a key idea by Kozen [Koz85] to generalize logic to handle probabilistic phenomena.

What Kozen suggested is that instead of logical formulas we use measurable functions,

instead of truth values, we have values in [0, 1] and instead of satisfaction, we have

integration. This idea was based on states being distributions on the state space; in

our case, states are just ordinary states and hence we use evaluation of the measurable

function at astate instead of integration.

In the preceding chapter, we introduced approximations to labelled Markov pro­

cesses. The metric that we define here witnesses the fact that the approximations are

as close as we want to the continuous process they approximate.

We first give the alternate presentation of probabilistic logic using functions into

the reals and show that these functions accord weIl with simulation and bisimulation.

We then show that the value of each of these functions on a labelled Markov process

is the limit of its value at the approximations to that process. Finally, we define the

metrics on processes and show that the approximations to a process converge to that

process and that the processes form a separable metric space.

The notion of metric was developed in joint work [DGJP99b]. The results from

6.1.12 onwards are mine alone.

6.1 Probabilistic logic via functions into [0,1]

We define a set of functional expressions by giving an explicit syntax. It is worth

clarifying our terminology here. A functional expression becomes a function when we

interpret it in a process. Sometimes we may loosely say "the same function" when

we move from one process to another. What we reaUy mean is the "same functional

expression"; obviously it cannot be the same function when the domains are different.

This is no different from having syntactically defined formulas of some logic which

become boolean-valued functions when they are interpreted on a structure.

87

• Definition 6.1.1 For each c E (0,1], we consider a /amily :Fc of functional expres­

sions generated by the following gmmmar.

where q is a rational. The interpretation is as follows. Let S = (S, i, L, T) be a labelled

Markov process. We write fs : S ---+ [0,1] for the interpretation of fC on S and drop

the subscript when no confusion can arise. Let sES. Then

l(s) = 1,

(a)fC(s) = c~ fC(t)Ta(S, dt),

min(ff, f~)(s) = min(ff(s), f~(s))

fC e- q(s) = max(/C(s) - q, 0),

r/clq(s) = min(/C(s), q).

When working with functionals, we will always consider functionals of a single family,

that is, we always fix cE (0,1]: thus we will often drop the exponent that is attached

to the functionals and write les) instead of fC(s). We will use (a)n / to represent

(a) ... (a) / where (a) appears n times.

Definition 6.1.2 :F~ is the family :Fe to which we add the /unctional maxe/l, /2).

Example 6.1.3 Consider the first two processes 0/ figure 6.1. Ail transitions are

•
Figure 6.1:

labelled a. The functional expression «a)1) E :Fc evaluates to c at states having

indices °or 2; it evaluates to 0 at states 8r, 83, t3 , t41 and it evaluates to c/2 at state

88

•

•

t i . Thefu,nctional expression (a) (a) 1» E FC evaluates to 3è-/4 at So andto and to 0

elsewhere. The functional expression (a) (((a) 1) e- ~) E FC evaluates to 3è-/8 at state

So and to è-/ 4 at state to•

Example 6.1.4 Consider the processes u and v of figure 6.1. AIl transitions are

labelled a. A functional expression of the form «a)nl» E Fc evaluates ta cn at state

u. On state v the same functional expression evaluates ta (c/4)n.

6.1.1 Functional expressions vs bisimulation and simulation

We show that the functional viewpoint is sound and complete for bisimulation and,

in the discrete case, for simulation. We do so by relating the logical formulas of Lv

to the functionals we have introduced.

The two first results say that functionals reflect bisimulation and simulation. Func­

tionals will assign smaller values to a simulated state than to one that simulates it.

This will imply that if two states are bisimilar, then every functional will assign the

same value ta each of them.

The following lemma is the functional analogue of Proposition 4.3.1.

Lemma 6.1.5 If R is a simulation relation between processes S and S', and if sES

is R-related to s' E S', then for aIl f E F~, we have f s(s) < f S' (s').

Proof. We prove the lemma for R a simulation on a single process S. For the general

case, observe that for every state of a process, the value of a functional is the same

in the process as in any direct sum of which it is a summand. The proof proceeds hy

well-founded induction on the construction of the functional expression 1. The key

case is g = (a)/. By the inductive assumption on f, we have s' R t' => I(s') < f(t').

Let s R t. We will prove that g(s) < g(t).

Let J.L(A) = Ta(S, A), and v(A) = Ta (t, A). Consider simple functions l h derived

from 1 as follows: let VI < ... < V n he finitely many values of f. Define h(s) =
max{vi 1 Vi < I(s)}. This satisfies f(x) < f(y) => h(x) < h(y) and ('Ix) h(x) < f(x).

1 A function is simple if its range is finite.

89

•

•

We have

1fdJ.L = s~p1hdJ1.

where the sup ranges over all simple functions h that satisfy the above conditions.

Renee, it suffices to prove that for any sucb simple function h, f hdj.t < f hdv.

Consider one such h with range {VI ... V n }. Then, for each 1 < i < n, the

set Si = h- I
{ Vi·· . Vn } is measurable. It is also R-closed, as if s E Si and sRt

then I(s) < I(t), so t E Si. Thus, for each Si, p,(Si) < V(Si). Now, we have

f hdJ.L = Li(Vi - vi-dJ1.(Si) < Li(Vi - Vi-l)V(Si) = f hdv and the result is proved.•

Since every bisimulation is a simulation, this last result allows us to prove the

following functional analogue of Theorem 4.2.2.

CoroUary 6.1.6 Let S, S' be labelled Markov processes and sES, s' E S' be bisim­

ilar states. Then for ail c E (0,1] and for ail f E :Fe or :F~, we have fs(s) = fs'(s').

We would like to prove the converse of the two previous lemmas: we want it to be

the case that if the value of any functional is the same on a pair of states, then the

states are bisimilar. We also would like that if the value of any functional is always

smaller for astate s than for another state s', then s is simulated by s'. This last

result will he proven in the case where the simulated state cornes from a discrete

process, similarly to the characterization of simulation by the logic .cv. In order to

use the results we have that the logic Lv characterizes bisimulation and simulation,

we would like to associate to every formula of L,v, a functional in :F~ that assigns a

positive value to states that satisfy the fonnula and value zero to states that do not.

The following two results will prove only part of this but will be enough to prove

the characterizations we are looking for.

Lemma 6.1.7 Given l/J E Lv, any finite labelled Markov process P, and any c E

(0, 1], there exists f E :F~ such that

1. \/p E P, 1'P(p) > 0 if and only if P F l/J.

2. for any other labelled Markov process S, \::Is E S, Is(s) > 0 => s F </J .

90

• For the 1:, subfragment 0/ the logie, the resulting function is in Fe.

Praof. Let P = (P,Po, p) he a finite-state process. The proof is by induction on

the structure of l/J. If l/J = T, the functional expression 1 suffices. If 4J = ?/J1 A?j;2'

let /1 and /2 he the functional expressions corresponding to ?/J1 and ?/J2. Then the

functional expression mine/leS), /2(8)) satisfies the conditions. If 4J = l/Jl V 4J2, let

fi he the functional expression corresponding to l/Ji, i = 1,2. Then the functional

expression max(/1 '/2) satisfies the conditions.

If 4J = (a) q?/J, let 9 be the functional expression corresponding ta 'lj; yielded by

induction. Let x = min{g(p) 1 P E [1/JDp}. By induction hypothesis, x > O. Consider

the functional expression f given by «a) fglX) e- cxq. For all t E [?j;]-p, (fglX)(t) = x.

For any state pEP,

«a)fglX)(P) =cx L Pa(P,t) =cxPa(P,[1/Jll-p)·
tE[?/Jll

Note that since there are finitely many states, the integral becomes a summation.

Now for each state p E [4JD-p, Pa(P, [.,pD-p) > q. Thus f satisfies the first condition.

The second condition holds because for any state s in S, we have

sa if Ta(S, [?j;lls) < q then «a) r9 lX) e- cxq(s) = o. •

•

The results of the earlier sections about approximations enable us ta extend the

previous lemma to any state of any labelled Markov process. Note that in the fol1owing

statement, the functional for l/J also depends on the state s.

Corollary 6.1.8 Given l/J E .cv, any labelled Markov process S, astate sES and

any c E (0, 1], if s F l/J, there exists / E F~ such that

1. /s(s) > 0;

2. for any other labelled Markov process S', 'Vs' ES', Is'(s') > 0 ~ s' F 4J.

If 4> is in .c, then the resulting function is in Fe .

91

•

•

Proof. Let S he an arhitrary process and l/J E L,v. Let s he a state in S sncb that

S F l/J. By Theorem 5.1.6, there is a finite approximation Sen, €) of S snch that

(Xs , n) F l/J. By Lemma 6.1.7, 3f E F~ sncb that IS(n,E) «Xs , n» > 0 and for any

process S', Vs' E S'.s' ~ cf> ~ Is'(s') = o. It remains to show the first condition,

Le., that Is(s) > O. By Proposition 5.1.3, we have that s simulates (Xs , n). Thus by

Lemma 6.1.5, Is(s) > fS(n,E) «Xs , n» > 0, so 1 satisfies the conditions required. •

Example 6.1.9 Given a formula l/J of L,v, the functional It/) that is computed lor the

previous two results satisfies: fT = 1; ItPl\7/J = min(ftP, If/J); lf/Jv7/J = max(If/J' f7/J); for

any state s in process P, f(a) T(S) = « (a).I) & q)(s) = max(ra(s, P) - q, 0).
q

The next result says that functions are sound and complete for bisimulation.

Theorem 6.1.10 For any labelled Markov process Sand any c E (0,1], if two states

of Sare assigned the same value for every functional of FC or F~, then they are

bisimilar.

Proof. We prove that two states that do not satisfy the same formulas of L, will

get different values for sorne f E FC. Let l/J he snch that s F l/J and s' ~ 4>. By

Lemma 6.1.8, there is a functional expression f E FC such that 1s (s) > 0 and

1s(s') = o. The result follows hy Theorem 4.2.9. •

Example 6.1.11 Consider the two first processes of figure 6.1. The caleulations

01 example 6.1.9 show that So and to are distinguishable. However, the states are

indistinguishable if we use only the functionals 1, (a)f, and minC/l, f2). Thus, ex­

ample 6.1.9 shows that additional funetional expressions are necessary. Note that

the faet that f & q and rfl q are defined from min and max does not contradict this

daim. To define these functionals we need that the constant function which returns q

to every state be definable, and moreover, 1~ q needs that the difference f - q be also

definable; these functionals are not definable /rom the three functionals we enumerate

above not even if we add max(fl, f2) to this list.

We now show the completeness result for simulation.

92

•

•

Proposition 6.1.12 Astate p /rom a finite process l' is simulated by astate s of

another process S if and only if for every functional / E F~, we have /p(P) < /5(S).

Proof. Let p be a state of P = (P, Po, p) and s a state of S = (S, i, E, r). Necessity

is given by Lemrna 6.1.5. For sufficiency, assume that for every functional / E F~,

we have Ip(P) < /5(S). We prove that p is logically simulated by s. Let rP E ~v such

that p t= ifJ· Then by Lemma 6.1.7, there exists 1 E F!j such that fp(P) > 0 and for

all sES, fs(s) > 0 => s F ifJ. But by hypothesis fp(p) < fs(s) which implies that

s t= ifJ. Now by Theorem 4.3.2, p is simulated by s. •

6.1.2 Finite approximations and functional expressions

In the last chapter, we proved that every formula satisfied by a process was satisfied

by one of its approximants and conversely. Hence the formulas that are satisfied by

a process are exactly those that are satisfied by its approximants. We now show the

corresponding result for functionals, that is, the value of a functional on sorne state

of a process is the limit of its values on the approximants.

Define the depth of f E FC inductively as follows:

depth(l) = 0

depth((a) f) = depth(f) + 1

depth(min(fb 12» = max(depth(fd, depth(f2»

depth(f & q) = depth(rfl q) = depth(f)·

The following result will be essential for proving that the approximants converge

in the metric to the process they approximate.

Lemma 6.1.13 Let (S, i, E, r) be a labelled Markov process, Sen, €) one of its ap­

proximations, and f a functional expression in FC of depth < n involving only labels

al, ... ,Cln. Then

Proof. By Proposition 5.1.3, we have that s simulates (X,,, n); thus by Lemma 6.1.5,

fs(s) - fS(n.€) > 0 for aIl 8, n, €. Now let depth(f) = d < n, we prove that for every

93

• state sES and for every Lwith d < l < n, Ils(s) - fn«X", L))I < LE (we write ln for

the evaluation of f in Sen, E)). This will be proved by induction on the structure of

f. Of course, the inequality is true if 1 is 1. Now assume that the inequality is true

for f, Le.,

Is(t) - In(Bt, l) < lf, for d < 1 ~ n, tES.

It is easy to verify that the constructors min, f Er q and rfl q satisfy the inequaHty.

Now for (a}.1 we have

(a).fs(s) - (a).ln«X", 1+ 1»
- c Is fs(t)Ta(S, dt) - c L In«B, l))Pa«Xs,1+ 1), (B, l))

(B,l)eS(n,t:)

- c L [1 fs(t)Ta(S, dt) - 1In«B, L))'Ta(s, dt)]
(B,l)eS(n,t:) B B

+ C L [is fn«B, l))'Ta(s, dt) - fn«B, l»Pa«X", 1+ 1), (B, L))]
(B,l)eS(n,t:)

- C L !s[fs(t) - fn«B, l))]Ta(S, dt)
(B,l)eS(n,t:)

+ C L fn«B,l))[Ta(S, B) - Pa«Xs,L + 1), (B, l))]
(B,l)ES(n,t:)

< C L lETa(S, B) + C L Ta(S, B) - Pa «X"' 1+ 1), (B, l))
(B,l)eS(n,t:) (B,l)ES(n,t:)

< clE + C(Ta(S, S) - Pa«Xs , 1+ 1), (S, l)))

< clf + Cf < (l + I)E.

The first inequality follows by induction hypothesis and from the fact that fn is

less than 1, and hence is true for all d < l < n. The last inequality follows from

Lemma 5.1.2. So we proved that for (a}.f, which is of depth d + 1,

(a).f(s) - (a}.fn«X", ml) < mf

for aIl (XS , m), where d + 1 < m < n, as wanted. •

•

Corollary 6.1.14 Let (S, i, E, 'T) be a labelled Markov process and 1 a functional

expression of Fe involving labels al, ... , aN. Then for aU n > max(depth(f) , N) and

for every s E S,

!s(S) = Hmfs(n t:)«X", n)).
t:-+O '

94

• 6.2 Metrics and convergence of approximations

•

We introduce the notion of metric between arbitrary processes and show how the ap­

proximants of a process converge to the original process under this metric. Intuitively

the metrics measure how "visibly" different the processes are. In terms of logic one

can say that two processes are very close if the formulas that tell them apart are

very long or complexa To capture this intuition quantitatively we use the functionals

introduced in the last section. There is now a second notion of how far apart pro­

cesses are; the distinguishing functions could have values which are very different or

only slightly different. We actually study a family of definitions which assign different

weights to these differences2 .

Definition 6.2.1 The collections of functional expressions :Fc and :F~ induce dis­

tance functions as follows:

We show that each dC, cE (0,1] is a metric. In particular, processes at 0 distance

are bisimilar.

Theorem 6.2.2 For each of the families of functional expressions :Fc , :F~, and for

every c E (0, 1], dC is a metric.

Proof. By definition, dC is symmetric and the triangle inequality is an easy exercise.

The only non-trivial condition to verify is that it gives distance 0 to a pair of processes

if and only if they are bisimilar. This is given by Lemma 6.1.6 and Theorem 6.1.10.1

We will now prove that the approximations converge in the metric which strength­

ens the results of Section 5.1 significantly. We are not just saying that the approxi­

mations somehow encode the information present in the process being approximated

but that they come close in a behavioural sense.

2 There are also other interesting notions of metric that we do not address here.

95

•

•

Corollary 6.2.3 If S involves a finite number of labels, Sen, lf& ln) converges to S

in the metric dc, if c < 1 with the family of functionals FC.

Proof. Assume there is a finite number lV of labeis involved in S, that is, for every

other label a E A, 'Ta (s, S) = 0 for all sES. Then for every n > N, Theorem 6.1.13

will be satisfied for every functional expression of depth < n, Le., Ifs(i) - fn(Po) 1< cn .

Now, since f E :Fe, then it is easy to check that for any state s of any process S,

I(s) < &epth(f). Henee, if depth(f) > n, we have 0 ~ f < c!". This implies that

dc (S(n, cn), S) < en. Since e < 1, we have that when n increases, S(n, enln) gets

arbitrarily close to S. •

The following result shows that the metrie behaves as expeeted with respect to

the preorder defined by simulation. More precisely, "in-betweenness" in the order

implies in-betweenness in the metric. It is a eorollary to Lemma 6.1.5.

Proposition 6.2.4 If s is simulated by S' which is simulated in turn by Sil then

dC(s, s') < dC(s, Sil) and dC(S', Sil) < dC(s, Sil).

We now give a few examples of processes and their distance, and study the family

of metries {dC 1 C E (O,I]}. These metrics support the spectrum of possibilities of rel­

ative weighting of the two factors that contribute to the distance between processes:

the length of the funetions distinguishing them versus the amount by which each

function distinguishes them. dl captures only the differences in the probability num­

bers; probability differences at the first transition are treated on par with probability

differences that arise very deep in the evolution of the process. In contrast, dC for

c < 1 give more weight to the probability differences that arise earlier in the evolution

of the process, Le. differences identified by simpler funetions. As c approaches 0, the

future gets discounted more.

As is usuaI with metrics, the actuaI numerical values of the metric are less im­

portant than the notions of convergence that they engender. Thus, we take the

uniformity view of metrics3 , ego see [Ger85], and will view the metric via properties

3Intuitively, a uniformity captures relative distances, ego x is doser to z than Yi it does not tell
us what the actual distances are. For example, a uniformity on a metric space M is induced by the
collection of all €-balls {{y 1 d(x, y) < €} 1 x E M}} .

96

•

•

like the significance of zero distance, relative distance of processes and the notion of

convergence rather than a detailed justification of the exact numerical values.

Example 6.2.5 The analysis of example 6.1.9 yields dC(sa, ta) = il /8.

Example 6.2.6 Example 6.1.4 shows the fundamental difference between the metrics

dC,c < 1 and dl. Forc< 1, dC(u,v) is witnessed by a fun ctional, «a)nl) andis given

by dC(u, v) = cR(1- (1/4)R) for that n. In contrast, for c = 1, the distance is given by

a limit: dl(U, v) = sup{1 - (1/4)n 1 n = 0,1, ...} = 1; no single functional witnesses

this.

Example 6.2.7 Let Q be a process and consider the family of processes {Pl!: 1 0 ~

f < r} where Pl!: is the process that makes an a with probability f and then behaves

like Q. The functional expression «a)1) evaluates ta Cf at Pl!:. This functional ex­

pression witnesses the distance between any two P's (other functions will give smaller

distances). Thus, we get d(Pl!:l' Pl!:2) = ciEL - f21. This furthermore ensures that Pl!:

converges to Pr as f tends ta r.

Example 6.2.8 Consider the processes P and Q of example 4.1.2. Let us attach

probability numbers to these processes. We use Po, Pb . .. for the branches of process

P and qo, qI, . .. for the finite ones of process Q. We assign probability qoo to the

branch that leads to the state which then has an a-labeUed transition back ta itself. If

both processes have the same values on aU functional expressions we will show that

qoo = 0, Le. it really cannot be present. The functional expression «a) 1) yields

C(Ei~O Pi) on P and c(qoo + Ei~O Qi) on Q. The functional expression «a) (a)l) yields

c2(Ei~1 Pi) on P and c2(qoo + Ei~l Qi) on Q. Thus, we deduce that Po = qo. Similarly,

considering functional expressions «a)(a)(a)1) etc, we deduce that Pn = qn. Thus,

qco = O.

6.2.1 A countable basis for labelled Markov processes

The space of all labelled Markov processes appears too large to he used in a compu­

tational way. In fact this space has a countable subset - the rational trees defined

97

•

•

below - which serves to approximate all labelled Markov processes. This is the main

result of the present subsection and ultimately it gives a computational handle on the

theory.

In the construction of approximations of Section 5.1, the finite processes we con­

struct have the fallowing special structure. The transition graph is a DAG and the

states are partitioned inta levels. The transitions always go from one level to the next

and never go to greater depths. We showed that for every process, there is a sequence

of such finite processes that converge ta it.

In fact one can just use processes where the transition graph is a tree and with the

states partitioned into levels as above. Such finite processes with rational transition

probabilities play a special role. We examine their properties below. For brevity

we will just say "rational tree" when we mean a finite-state process with a tree-like

transition graph and rational transition probabilities.

In the present discussion we need to work with the strict simulation relation rather

than plain simulation because the results are not correct with ordinary simulation

for technical reasons having to do with strict inequalities providing more "room to

maneuver." The notion of strict simulation is inspired by the notion of "way-below"

in domain theory. The reader will notice many similarities between the development

here and the development in Claire Jones' thesis. The actual mathematical details

are somewhat different - her results are domain theoretic and topological rather than

measure theoretic.

Lemma 6.2.9 Let r be a rational tree that is strictly simulated by a labelled Markov

process S. Then there is a finite approximation Sen, e) strictly simulating T.

Proof. Let RE be the strict simulation between r = (T, to, 8) and S. Here we use

the definition of simulation from 4.3.6. Consider Sen, e/4), where n is the height of

T. We assume that r only involves labels al, ... , lln, but the proof can he adapted

easily if it is not the case, because for sure T only involves a finite number of labels.

We first extend RE to R' in the following way. Let t E T be at level l, and let sES.

Let R' he the transitive closure of the relation that relates t and s if there is sorne

98

• s' E B sucb that (B, l) is a state of Sen, ej4) and t~s'. We prove that R' is a strict

simulation between T and S. Observe that R' coincides with ~ on bath T and S.

Let sR't and let Y ç TUS be an R'-closed set such that Y n S E E. Then it is also

RE-closed and Y n S is a union of sets at levell - 1 of Sen, e/4). Hence we have the

following:

Ba(t, y n T) < TaCS', y n S) - e

< TaCS, y n S) + e/4 - e

- TaCS, y n S) - 3e/4

because s and s' belong to the same set of level l. We have proved that R' is a

3e/4-strict simulation between T and S.

We now define the relation W between T and Sen, e/4). Let W be the transitive

closure of the reHexive relation which contains the restriction of R' ta T and relates

t and (X, l) if t is at levell in T and tR's for sorne s E X. Observe that W coincides

with R' on T and is the identity relation on Sen, ej4). Now take two W-related states

t E T and (X, l) E Sen, e/4). Let Y C Tu P be W-closed. Let (B, l- 1) be the "set"

formed by taking the union of sets of the states of Y n Sen, e/4) restricted to level

l - 1 in S(n, e/4). Then B is obviously measurable in S and (Y n T) u B is R'-cIosed.

Then if s is the state in X such that tR's,

8a Ct, y n T) < TaCS, B) - 3e/4

< Pa«X, 1), (B, l - 1» + e/4 - 3e/4

< Pa«X, l), Y n Sen, e/4» - e/2

by Lemma 5.1.2. Thus we are done. •

•

The following theorem shows that rational trees that are strictly simulated by a

process form a directed set.

Theorem 6.2.10 Let T and T' be two rational trees that are strictly simulated by a

labelled Markov process S. Then there is a rational tree which is strictly simulated by

Sand also strictly simulates both rand r .
99

•

•

Proof. Let T = (T, ta, 0) and T = (T',~, 0') be strictly simulated by S by relations

R and R'. Then by Lemma 6.2.9, there are n,n' EN and d,8',e,É > 0 snch that T

is 8-strictly simulated by Sen, e) = (P,Po, pep), p), and simiIarly for T'. We choose

e* < 8,8' such that both e and e' are integral multiples of e* and let n* = max(n, n').

We show that T and T are strictly simulated by S(n*, e*). Since e is an integral

multiple of e*, the partition at any levell of S(n*, e*) is a refinement of the partition

at levell of Sen, e). Let W be the reHexive relation on Tu P* which coincides with

R on T and relates t and (X, l) if tR(B, l) for sorne (E, l) E P such that X ç B.

Let Y ç T u P* he W -closed. Then (Y n T) u R(Y n T) is R-closed and R(Y n T)

is measnrable in S when considered as a set in S. We now prove that R(Y n T) is

included in Y n P* when they are considered as sets in S. H (B, l) E R(Y nT), then

there is sorne t E YnT snch that tR(B, l) which implies that for all (X, l) E S(n*, e*)

such that X C B, (X, i) E Y n P*. Since sets of levell in S(n*, e*) forro a refinernent

of sets of levell in Sen, e), we have B ç Y n p. (Y n P* considered as a set in S).

Now let s E X ç B.

Oa(t, Y n T) < Pa«B, l), R(Y n T» - 8

< Ta(S, R(Y n T» - c5

< Ta (s, Y n P*) - 8

< p:«X, l), Y n P*) + e* - 8

< p:«X, l), Y n P*),

as wanted. A similar proof shows that T' is strictly simulated by S(n*, e*).

We now construct a rational tree, call it r*, from S(n·, e·). The initial state tô is

Po, which is astate at level n in S(n·, e*). In order to obtain a tree we have to ensure

that every state of T* has only one incoming transition. For every level strictly below

n, in S(n*, e*), we duplicate the states in such a way that no two transitions arrive

in the same state and we take the resulting set T* to be the set of states of T*. We

define 0*, the transition function of T*, by decreasing every probability associated

with a transition of S(n·, e*) to a rational number below it in such a way that r* will

be strictly simulated by S(n*, e*) and will still strictly simulate T and T. •

100

•

•

For every approximation of a process, there exists a monotonie sequence of rational

trees that converges to the approximation in the metric dC
•

Lemma 6.2.11 Given any process of the fOTm Sen, f) we can constnJ.ct a sequence of

rational trees Ti such that Ti is strictly simulated by 7i+l and aU of them are strictly

simulated by Sen, €) and with IÏmï-+oo dC(Ti, Sen, f» = o.

Proof. By duplicating states of Sen, €) as in the previous proof, and keeping only

the initial state from level n, we get a tree T which is bisimilar to Sen, f). Now

consider a family of trees with the same shape as T and with the probabilities chosen

to be rational and to converge to the probabilities occurring in T. We can always

choose these numbers to be strictly increasing. Thus we get immediately that the

strict simulation relation holds. It is easy to see that the family of rational trees

converge in the metric to Sen, f). •

The main fact about rational trees is that they form a basis in the sense that every

process is the limit of a family of rational trees. This is pleasing because there are

only countably many rational trees and it makes the whole space of processes itself

into a separable metric space.

Theorem 6.2.12 For aU c E (0,1], the metric dC yields a separable metric space.

Proof. We show that the rational trees form a countable dense subset. Given any

process S we can consider the countable family of finite approximations S(n,2-n)

to S. For each such finite process we have a countable sequence of rational trees

{Tjn} 1 j, n EN}, as in lernma 6.2.11. Now, since the rational trees form a directed

set with the strict simulation order we can construct a sequence of rational trees as

follows. We choose Ti to be ~1). For 7i+l we compare ~~tl) with Ti; because we

have a directed set we have sorne rational tree strictly above both, we designate one

sucb to be 7i+l. Thus we have a sequence of rational trees ordered by strict simulation

and which converge to S in the metric. •

101

•

•

Chapter 7

A categorical definition of
bisilllulation and simulation

In Section 2.4 we saw that Joya!, Nielsen and Winskel formulated bisimulation for

non-probabilistic processes in a categorical setting [JNW96]. In this chapter we study

a categorical view of bisimulation and simulation for labelled Markov processes that

is based on the same ideas. The original presentation of bisimulation (see [BDEP97])

was given in these terms and the relationa! view evolved later. The two definitions of

bisimulation are equivalent as they are both characterized by the logic L.. Using the

same argument we will prove that the two definitions of simulation are also the same.

The categorical formulation of bisimulation and simulation is given in the next

section. We then give a few examples of how the definition of bisimulation can

be checked. In the third section we prove that this view of bisimulation is also

characterized by the logic L,. We also prove that if two processes S and S'are bisinülar

(with either definitions of bisimulation) and if every state of S is bisimilar to astate

of S', then there is a unique zigzag morphism from S to the quotient of S' under the

10gic. In particular, this says that for finite processes, the quotient construction gives

the smallest system bisimilar to a given one. The last section is devoted to discrete

processes: we give separate proofs of sorne results that appear simpler in that case

and we prove that the categorical definition of simulation is characterized by the logic

L,v for finite processes.

102

• 7.1 Bisimulation and simulation as spans

•

For the categorical view, we want to mimic the relation that is used for traditional for­

mulation of bisimulation. As we have seen for nonprobabilistic processes, one can talk

about relations by talking about spans. Recall that a span in any category between

an object S1 and another object 8 2 is a third object T together with morphisms from

T to both 8 1 and 8 2 • Given a category of systems, the plan is to say that bisimula­

tion holds between two systems if they are connected by a span of special morphisms.

These morphisms should capture bisimulation.

The original idea of Joyal, Nielsen and Winskel was to identify a class of special

systems called "observations" or "observable paths" or better still "observable path

shapes" , and to define the special morphisms as satisfying a kind of path-lifting prop­

erty, the so..called "open map" property. What one can prove for ordinary labelled

transition systems is that if we take paths to be labelled paths in the usual sense,

then the open maps are the zigzag morphisms we recalled in Section 2.4.

In the case of labelled Markov processes, the zigzag condition for the morphisms

is easy to state and it is easy to see that it corresponds to Larsen-Skou bisimulation

in the case of labelled Markov chains. We have introduced the category LMP of

labelled Markov processes and zigzag morphisms in this category in Section 3.4. We

proved that they relate processes that we expect ta be bisimilar (with respect to our

relational definition of bisimulation).

Following Joyal, Nielsen and Winskel, we define bisimulation as the existence of

a span of zigzag morphisms. However, in order to prove that bisimulation is an

equivalence relation, we need to go beyond the category LMP. One cannot prove

transitivity just working with the category LMP, we need to introduce another ­

closely related - category defined below. To prove that bisimulation is a transitive

relation, we will use the results of [Eda99]. Unless one is interested in going into

aIl details of the proofs and in reading [Eda99], one can safely skip those parts of

the discussion pertaining to what we caU generalized labelled Markov processes. We

use the concept of universally measurable sets and functions which are defined in the

appendix.

103

• Definition 7.1.1 A generalized labelled Markov process is a labelled Markov

process except that the transition sub-probability function needs only be universally

measurable, that is, for all a E A, we have that Ta (·, A) is a universally measurable

function for A E E, and for sES, Ta(S,·) is a sub-probability measure on (S, E).

Most of our definitions for labelled Markov processes will be used unchanged and

without special comments for generalized labelled Markov processes. For simplicity,

we will not define "generalized simulation morphisms" explicitly. Simulation mor­

phisms for generalized Iabelled Markov processes are defined in exactly the same way

as already defined for labelled Markov processes.

Definition 7.1.2 The objects of the category LMF are generalized labelled Markov

processes, having a fixed set A as the set of labels, with simulations as the morphisms.

Every labelled Markov process is a generalized labelled Markov proeess and hence

LMP is a full subcategory of LMP*.

We now define bisimulation for labelled Markov processes. We will use the ex­

pression "generalized span" between LMP objects ta mean that we have a span in

LMP* between the objects. The precise definition is:

Definition 7.1.3 Let SI and S2 be two labelled Markov processes. SI is probabilis­

tically bisimilar to 82 (written SI "V ~) if there is a generalized span of zigzag

morphisms between them, i. e. there exists a generalized labelled Markov process U in

LMP* and zigzag morphisms fI and 12 such that

•
Notice that ifthere is a zigzag morphism between two systems, they are bisimilar since

the identity is a zigzag morphism and because LMP is a subcategory of LMP*. The

last faet aiso implies that if there is a span in LMP between two processes, they are

bisimilar.

104

•

•

The difficulty in showing that bisimulation is an equivalence is to prove transitivity

of the existence of span, since it is obviously refiexive and symmetric. Transitivity

relies on the following theorem.

Theorem 7.1.4 ([Eda99]) Let S, SI and ~ be three objects of LM? and fl and

/2 be zigzag morphisms from Si to S, i = 1,2. Then we can find an object U in

LM? and zigzag morphisms gl and g2 such that the lollowing diagram commutes:

U
9.1.9.2.. .-.

SI S2

~ y
S

This is not a pullback because it does not have the universal property, it is not even

a weak pullback. We refer to it as the semi-pullback construction. The construc­

tion heavily relies on properties that are not true for measure spaces in general. In

fact, it probably is not true for probabilistic transition systems without sorne further

assumption.

Note that this theorem was proven with zigzag morphisms defined in a slightly

different manner as we define them in this thesis. As we recalled after Definition 3.4.1,

we DOW consider systems with initial states, and this allowed us to replace the sur­

jectivity condition in the definition of zigzag morphisms by the condition that the

morphisms preserve initial states. It is easy to check that the above theorem is still

true in that setting.

There are two important consequences of Theorem 7.1.4.

Corollary 7.1.5 Bisimulation is an equivalence.

Corollary 7.1.6 The categorical definition 01 bisimulation 7.1.9 and the relational

definition 3.5.1 are equivalent.

Proof. If two processes are bisimilar with respect to definition 7.1.3, then by Propo­

sition 3.5.3 and by the fact that the relational definition of bisimulation is transitive,

105

• we have that the two processes are bisimilar with respect to definition 3.5.1. Con­

versely, if two processes are bisimilar with respect to definition 3.5.1, then by taking

the quotient of their direct sum as in Theorem 4.2.9, we can prove that the morphisms

that send the states of the processes to the their equivalence classes in the quotient

are zigzag morphisms. We then apply Theorem 7.1.4 to conclude that there exists a

generalized span between the two processes and hence that they are bisimilar with

respect to definition 7.1.3. •

In Section 2.4, we saw that for non-probabilistic labelled transition systems, a

state s simulates another state s'if and only if there is a simulation morphism that

sends s to s'. In the probabilistic case, we cannot say that because then simulation

would not compose with bisimulation (and hence would not correspond to the non­

categorical definition of simulation). More precisely, if S is simulated by r which in

turn is bisimilar to U, then it would not follow that S is simulated by U. Indeed,

consider the following picture.

t--

u

a~ll~1
. . .

lb lb lb

•

There is a simulation morphism from the first process to the second one sending s to

t, and a zigzag morphism from the third process to the second one sending u to t,

hence s is simnlated by t, and u and tare bisimilar. However, there is no simulation

morphism from s to u, though we intuitively see that u should simulate s.

This motivates the need for a span relation in the categorical definition of simu­

lation.

Definition 7.1.7 We say that SI is simulated by 8 2 if there is a span of morphisms

U

Y""'z
SI ~

where fI is a zigzag morphism and /2 is a simulation morphism.

106

• This categorical definition relates processes that are related by a simulation rela­

tion as defined in Chapter 3.

Proposition 7.1.8 Let S and S' be labelled Markov processes. IfS is simulated by S'

according to Definition 7.1. 7, then S is simulated by S' according to Definition 3.6.2.

Proof. The result follows easily from Propositions 3.5.3 and 3.6.7. •

S

!Y:zag

•

We conjecture that the converse is true but we have not proven it yet. However we

do have such a proof in the finite case. We will show this in the next section when we

will prove that the categorical definition of simulation is characterized by the logic Lv

in the case of finite processes. This will allow us to conclude also that the categorical

definition of simulation is transitive for finite processes. We strongly believe that

it is also transitive for arbitrary processes. The proof of such a result should be of

the same flavor as the semi-pullback theorem we use to prove that bisimulation is

transitive. In fact, by following the proof and adapting it to the simulation case, we

should be able to prove the result.

The categorical definition of simulation is obviously reflexive. To show it is also

transitive, we need that if we have two spans connecting Sl and S3 then we can

complete the square

U

9t···· ···92
~.. zigzag ..~

r
"'" '2 /3/' "'" '4~ /zigzag ~

Sl S2 S3

where the condition that /3 is zigzag can be lifted through the square to 91, so that

we have a span U between Sl and S3 where the morphism /1 0gl is a zigzag morphism

and /4 0 92 is a simulation morphism.

We end this section with a few examples of how the categorical definition of

bisimulation can be used between processes. The first example justifies the need for

spans of zigzag morphisms and the others illustrate how processes we have seen before

are bisimilar with respect to the span definition of bisimulation.

107

• Example 7.1.9 Thefirst example we give is a discrete one. Consider the two simple

discrete labelled Markov processes below

•

It is easy to see that even if, intuitively, these two systems seem to have the same

behaviour under interaction, there is no zigzag morphism between them in either di­

rection. Nevertheless, they are bisimilar because there indeed exists a span of zigzag

morphism between them. This span is given by a process consisting of 6 transitions

from the same state, aU with probability 1/6.

Example 7.1.10 We recall Example :J.3.3. We let the label set be the one element set

{a}. Consider a system S = CS, E, T) with S, an arbitrarily complicated state space,

and E, a a-field generated by sorne analytic space structure on S. For example,

S could be R, the reals with the Borel algebra. We define the transition function,

TaCS, A) in any manner we please subject only to the conditions of the definition of a

transition function and to the condition that Vs E S.Ta(S, S) = 1; i.e. for every s, the

distribution Ta(S, .) is a probability measure. Example :J.3.3 satisfies those conditions.

It is easy to see that there is a zigzag morphism from S to the single state system 0 a

with action a. The morphism sends every state to 0 E Oa. Now since {a} is the only

non-trivial measurable set in Oa we only have to check that the a-transition in Oa

frorn 0 to itself has probability Ta (S, S) = 1 for any SES, whieh is given. These two

systems are bisimilar.

Example 7.1.11 The two systems of Example:J. 7.1 are bisimilar sinee the projection

from U to S is easily checked to be a zigzag morphism.

Example 7.1.12 We come back to Example 3.7.2. We can verify that the implemen­

tation celle Icelle is bisimilar to its specification bago by constructing a zigzag morphism

from the former to the latter. The morphism which sends celle Icelle to bago, celljlcellj

to bag2 and the two other states where exactly one cell is full to bag1 is easily proved

to be zigzag.

108

• 7.2 Bisimulation and logic

•

We prove that the categorical view of bisimulation is also characterized by the logic.

The next proposition links zigzag morphisms with fonnulas in the logic. Recall

that LMP is a full subcategory of LMP$. Thus whenever we talk about morphisms

between labelled Markov processes it makes no difference which category we are

talking about. The only place to be careful is when we have an object that is not a

labelled Markov process but is a generalized labelled Markov process.

Proposition 7.2.1 If1 is a zigzag morphismfrom S in LM? to S' in LMP, then

lor aU state sES and ail formulas 4J E 1:"

s F 4J <=> I(s) F 4J.

Proof. We show that 1-1([4Jll s,) = [4Jll s by structural induction on 4J, which implies

the result. Notice that by Proposition 4.2.1, [4Jlls' E E' since S' is in LMP, and

hence f-l([4Jll s') E E, because f is measurable. (This will imply in particular that

[4Jll s is measurable in S.) The only nontrivial case corresponds to the modal formula

s 1= (a)q4J. Observe that by the induction hypothesis and because f is a zigzag

morphism, we have

Consequently, s and I(s) satisfy the same formulas of the fonn (a)q4J, and hence

f- 1
([(a}q4JllS') = [(a)Q4>llsl as wanted. •

From this we get the immediate coroUary below1 but first we need to say what it

means for two systems to satisfy the same formulas. Suppose that (S, i, E, T) and

(S', i', E', T') are two systems. We say that they satisfy aIl the same formulas if i and

i' satisfy aU the same formulas. We write s ~ Si if states s and Si satisfy all the same

formulas. Clearly, ~ is an equivalence relation.

CoroUary 7.2.2 If two labelled Markov processes are bisimilar then they satisfy the

same formulas of L .

109

•

•

To show the converse, the general plan is to construct a cospan using logical

equivalence and then to use the semi-pullhack construction [Eda99] to obtain a span.

Theorem 7.2.3 Two lahelled Markov proeesses are hisimilar if and only if they ohey

the same formulas of our logie.

Proof. One direction has already been shown; what remains is to prove that two

systems obeying all the same formulas are bisimilar. Suppose that (S, i, E, T) and

(S', i, E', T') satisfy the same formulas. Instead of defining a span of zigzag morphisms

directly, we can define a cospan and use the semi-pullhack property to infer that S

and S'are bisimilar. We first construct (T, to, ET, j), the direct SUffi of S and S'.

There are the evident canonical injections /" t' which are not zigzag because they do

not send initial states to initial states. We know from Theorem 4.2.4 that the quotient

system (T/~, t, E~, h) is a LMP and that the canonical projection g~ from r to T / ~

is a zigzag morphisme Here we need to make a small change to the quotient. We will

set its initial state to be the equivaience class containing i and i' instead of the initial

state of T. Then g~ still satisfies the zigzag property even if it does not senrl the initial

state to the initial state. Thus we have the diagram of figure 7.1. The composites

S S'

~TYl
1\1/1'

T/~

Figure 7.1: Constructing a cospan.

g~ 0 /, and g~ 0 L'are measurabIe, henceforth we calI them f and J' respectiveIy. It

remains to prove the zigzag property for f and f'. So take a set B in E~ and sES.

Then

Pa(J(s), B)) - ia(L(S), g~I(B») by Theorem 4.2.4

- Ta(S, g;I(B) n S) by definition of ja and because sES

110

•

•

This proves that f and similarly fi are zigzag morphisms. Thus we have defined a

cospan of zigzag morphisms and using the semi-pullback theorem there is a corre­

sponding span, hence S and Si are bisimilar. •

Definition 7.2.4 Given two labelled Markov processes S and S' that are bisimilar,

we say that two states sES and Si E S' are bisimilar, denoted s "" s', if there is a

generalized span f :U -+ S, 9 : U -+ S' such that for sorne u E U we have f (u) = s

and g(u) = s'.

It follows from Corollary 7.1.5 that "" is an equivalence relation and we have a corollary

to Theorem 7.2.3:

Corollary 7.2.5 Let S and S' be two labelled Markov processes that are bisimilar

and let sES and Si E S' 1 then s "" Si if and only if S ~ Si.

Note that in the semi-pullback construction, the states of U are exactly the pairs

(SI, S2) E SI X S2 that have the same image. Hence, we have the following corollary.

Corollary 7.2.6 Let SI and~ be two labelled Markov processes, and let U be defined

as in the semi-pullback construction in the following diagram.

Then for Si E Si, i = 1,2, SI '" S2 <==> 3u E U such that 1ri(U) = sÏ7 i = 1,2.

The quotient construction has the following couniversal property. In the case of

finite state systems this says that the quotienting construction gives the minimal finite

state system bisimilar ta the given one.

111

•

•

Proposition 7.2.7 Let Sand T be two labelled Markov processes. If S ,...., T, and

every state ofS is bisimilar to astate ofT, then there exists a unique zigzag morphism

r from S to T/~.

Proof. If (S, i, E, T) rv (T, ET, l), there is a span (U, Eu,j) with zigzag morphisms

f : U --+ S and 9 : U --+ T. Assume that U relates every pair of states of S x T

that are bisimilar. This is possible by Corollary 7.2.6. Let sES. Since f, 9 and

h~ : T --+ T / ~ are zigzag morphisms, for every formula <p we have,

s F t/J <=> Vu E f-l(S).U F t/J

<=> Vu E f-I(S).g(u) F t/J

<==> Vu E f-l(S).h~g(u) t= ri>

This implies that aIl u E f-l(S) are mapped by h~g to the same state t E T/~

and that we can set r(s) = t. This makes the diagram commute. To see r is Borel

measurable, let A E E~. Then r-1(A) = f(g-lh;/ A), BI := g-lh;;1A is obviously

Borel in U and so is B 2 := g-lh~lAC. Now we have not only that BI and B 2 are

disjoint, but their images under f are aIso disjoint. To see this, suppose the contrary.

Then there exist Ui E Bi such that fUI = fU2; but since the diagram commutes, it

implies that h~g(UI) = h~g(u2), which is a contradiction to the definition of the Bï's.

Thus we have that f BI and 1B 2 are disjoint analytic sets of S; since analytic sets are

separable by Borel sets and since f BI U f B2 = S, 1BI and f B2 must be Borel sets

of S, concluding the proof that r is Borel measurable. We now show that r is zigzag;

let sES, A E E~ and u E f-l(S). Then

Pa(r(s), A) - la(g(u), h;/A)

. (-lh- 1A)- Ja u,g ~

. (1-1 -lA)- Ja U, r

- Ta(S, r-1A)

Finally, r is unique because every state s is mapped in T / ~ to the only state that

satisfies the same formulas as it does (since in T / ~ there is no pair of distinct states

satisfying the same formulas). •

112

• 7.3 Discrete processes revisited

•

We collect here results that we have for discrete or finite processes in the categorical

setting. In previous sections, we have proven facts about generaIlabelled lVlarkov pro..

cesses. Sorne of these results required quite complicated praofs that can be obtained

more easily if we restrict ourselves to discrete processes. It is the case for the logical

characterization of bisimulation for which we give an independent proof in the case

of discrete processes. This proof tums out ta aIso give us transitivity of bisimulation

for free, without refering to the semi-pullback construction which we needed in the

general case in order to prove that bisimulation is a transitive relation.

We proved that if astate is simulated by another state, then all the formulas

from the logic L,v it satisfies are aIso satisfied by the other state. We did not, as yet,

succeed in proving the converse for arbitrary processes, but we do have such a proof

for finite processes.

We begin this section with a proof that the categorical definition of bisimulation

for general labelled Markov processes is indeed a generalization of the definition of

Larsen & Skou in [LS91], that is, the two definitions agree on discrete processes.

Hence we reconsider discrete systems (Markov chains) from the point of view of the

bisimulation notion that we have defined for labelled Markov processes and show that

the Larsen-Skou definition coïncides with the "span of zigzags" definition.

First, we have to say what it means for two Markov chains to be Larsen-Skou

bisimilar, since the Larsen-Skou definition involves states of a single process rather

than states of two different processes, and so does not apply without an appropriate

interpretation. We say that two Markov chains are Larsen-Skou bisimilar (written

""LS) if and anly if, in their direct sum, their initial states are Larsen-Skou bisimilar.

Proposition 7.3.1 Let P = (P, i, tr) and 1" = (P', i', trI) be two labelled Markov

chains. l' ""LS P' if and only if there exists a span of zigzag morphisms f and f'
between them: u

j/"'Z
P P'

113

•

•

Proof. {=: We first show that if 'P -4 'P', where f is a zigzag morphism, then

p l".JLS P'. Let U = (U, uo, p) he the direct sum of P and P'. Now f defines the

following equivalence relation, R, on U:

uRv {::::::::} (u = v) V (f(u) = v) V (f(u) = f(v»;

R depends on which sets u and v are in. The equivaience classes are of the fonn

{p'}Uf-l(P') for each p' E P'; thus each equivalence cIass can be represented uniquely

by an element of P'. Let a E A, u, v E U such that uRv, and choose any p' E P'

that represents an equivalence c1ass, namely {p'} U f-l(P'). We want ta show that

Pa(u, -) and Pa(v, -) agree on {p'} U f-1(P').

First assume u EPand v E P', meaning that f (u) = v. Then

Pa(U, {p'} U f-l(p'» - 7ra(u, f-1(p'» since U E P

- 7r~(f(u),p') since f is a zigzag morphism

- Pa(v, {p'} U f-1(p'»,

which is precisely the condition for Larsen-Skou bisimulation. Now if u and v are bath

in P (and still R-related), they have the same image, so uRfCu) and feu) = f(v)

and f(v) Rv and we can simply apply the above calculation. Finally we have the

trivial case where u and v are both in P'. They are then equal and we are done sinee,

f being a surjective function, every state of P is R-equivaient ta a state of P' and

vice versa. Since we know that Larsen-Skou bisimulation is an equivalence relation

it follows that whenever we have a span of zigzags conneeting two labelled Markov

chains they are Larsen-Skou bisimilar.

=>: Assume 'P l".JLS pl, and denote by =the probabilistic bisimulation over U =
CU, ua, p), the disjoint union of 'P and P'. We need ta construct a span of zigzag

morphisms
u

y"'Z
'P P'

To do this, let T = (T, 8) where T = {(p, p') E P x P' : p = p' in U} and where the

114

• transition function is given by, for a E A,

(J CC ') C') - 1fa(p, q) 1r~(P', q')
a p, P , q, q - (p [])Pa ,q:

where [q]: denotes the equivalence class containing q in U. Since p =p' and q =q',

we have by definition of = that Pa(P, [q]:) = Pa(P', [q]:) = Pa(P', [Q']:).

To prove that T is a labelled Markov chain, we need that for any (P, p') ET,

L (Ja«P, p'), (q, q'» < l.
(q,q')ET

This will follow from the proof that we have zigzag morphisms from T to P and P'. As

morphisms f : r ~ P and f' : T ~ pl, we simply take the left and right projections

which send initial states to initial states by definition of Larsen-Skou probabilistic

bisimulation. We prove that they are zigzag morphisms. First note that

Vq E P.f-l(q) = {q} X (Pl n [q]:).

For any a E A, (P,p') ET, q E P, we have

L (Ja«P, p'), (q, q'»
qlEP'n[q]=

_ L 1ra (P,q) ~(p',q')

qlEP'n[q1= Pa(p, [q]=)

1ra (p, q) L 1f~(P', Q')
Pa(P', [q]=) q'EP'n[q]=

1ra (p,q) (p [] P)
- 1r~(P', [q]= n Pl) 1ra ,q =n
- 1ra (p, q) = 1ra(fCp, p'), q).

and f is thus a zigzag morphism. The same argument applies to f'· •

•

The result of Section 7.2 gives for arbitrary labelled Markov processes a charac­

terization of bisimulation in terms of the logic J:, which does not contain negation

and is unexpectedly weak. The proof uses machinery that is unconventional in con­

currency theory. We show here that for discrete systems we can prove a completely

constructive version of the characterization result .

115

•

•

The fol1owing theorem is a special case of the general theorem but is proved

without the powerful tools invoked for the general theorem. Of course it already

follows from the general theorem but it is of interest to see what types of arguments

are needed to prove the purely finite state case. In the proof below a result from

measure theory is used but one does not need all the machinery that is needed for

the general theorem. This gives some indication that one is unlikely ta have thought

of the finite-state version using only ideas from concurrency theory; it is unlikely

that one would have thought of theorem 3.2 of Billingsley's book [Bil95] on purely

combinatorial grounds.

Theorem 7.3.2 Two finite Markov chains satisfying the same fonnulas of r, are

bisimilar.

Proof. Let P = (P, i, 1r) and P' = (P', i', 1r') be two Markov chains satisfying all

the same formulas. We will show that we cao construct a new Markov chain U and

zigzag morphisms f : U ~ P aod f' : U ~ P'.

Let U = {(P,p') E P x P' 1 p ~ p'}, the initial state Ua be (i, i) E U and let

f : U --70 P and f' : U --70 P' be the projection maps. We define Pa : U x U --70 [0, 1] as

follows:

«(p ') ('» = 1ra (p, q)1r~(p', q')
Pa ,P, q, q ([]) ,1ra p, q p

where [q]p is the ~-equivalencedass in P containing q.

Claim: for aU a E A, for aU (p,p'), (q,q') EU, we have 1ra (P, [q]p) = 1r~(P', [q']p,).

To prove the daim, let r = (T, ta, ja) he the direct sum ofP and P'. Of course we have

that for aIl formulas t/J, 1ra(P, [4>Dp) = 1r~(P', [4>]p,), which implies that ia(P, [4>Dr) =
ia(P', [4>]r)' Now we know that the set J= of formulas is closed under intersections,

sa it is a 1r-system as defined by Billingsley in [Bil95]. Let C he the class of subsets

C of T satisfying

ja(P, C) = ia(P', C).

Then C contains J= and is a À-system, that is

L TEe;

116

• 2. C E C implies Cc E C; and

3. Ch C2 , ••• , E C and en n Cm = 0 for n # m imply UnCn E C.

So by Theorem 3.2 of [Bil95], C contains the O"-field generated by:F. This means

that, since the equivalence classes [q], are in this O"-field, we have

1ra(p, [q]p) = ia(P, [q]T) = ia(P', [q'],) = 1r~(p', [q']p,)

and the claim is proved.

It remains to prove that the projections are zigzag morphisms. So let a E A,

(P, p') E U, and q' E P'. We have

Pa«p, p'), f'-l(q')) - Pa«P,p'), [q']p X {q'})
E 1ra (p, q)1r~(P', q')

qE(q')p 1ra(P, [q],,)

_ E 1ra (P, q)1r~(P', q')
qE(q')p 1r~(ri, [q']",)

, (P' ')
1ra ,q ~ (P)
, (p' [']) LJ 1ra , q

1ra ,q P' qE(q')p

1r' (P' q')
- 1r~(~, [~']p,) 1ra (P, [q']p)

- 1r~(p', q').

To show that f is a zigzag morphism is even more straightforward. •

•

CoroUary 1.3.3 Probabilistic bisimuLation defined as a span between LabeLLed Markov

ehains is an equivalenee relation.

In fact, for discrete processes, it is not hard to prove this result directly with a proof

that is independent of the logic and also from the semi-pullback theorem.

We DOW turn to simulation. We have the same correspondence between the cate­

gorical definition of simulation and the logic .cv as we had for the relational definition.

Theorem 1.3.4 In finite processes, astate simulates another state if and onLy if it

logieaLly simulates it using the Logie .cv.

117

•

•

Proof. The first direction is given hy Proposition 7.1.8 and Theorem 4.3.2. For the

other direction, let P = (P, i, 'Ir) and Q = (Q, i', r) he such that i is logically simulated

by i'. We want to construct a span U, l, 9 where 1 : U -4- 'P is zigzag and 9 : U

-+ Q is a simulation morphism. Let U = {(P, q) : p is logically simulated by q},

Ua = (i, i'). Let 1 and 9 he respectively the left and right projections; they send initial

states to initial states. The transition sub-probability function of U will be given by

Pa «(P, q), (p', q'» = w (P' , q'), where w : P X Q is defined as follows.

The plan is to use the max-flow min-cut theorem by Ford and Fulkerson to define

w, that will be given the value of the Dow (see [BoI79] for a proof of this theorem).

Thus we construct a network having a source and a sink. The nodes of the network

are states P U Q. There are two additional nodes, the source p* and the sink q*.

There is an arrow from p* to p' E P having capacity c if 'Ira (P, p') = c. Similarly, there

is an arrow from q' E Q to q* having capacity c if Ta(q, Q') = c. Finally, there are

arrows of capacity one between p' EPand q' E Q if p' is logically simulated by q'.

The network is illustrated in the following picture.

".(P,p,v
PI

~l :~
p.~: ~ql/q.

• •
The max-fiow min-cut theorem says that the maximal flow through the network is

equal to the minimal cut. We show that {p*} is a minimal cut. Recall that C is a

cut if p* E C and q* rt C; the weight of the cut is the total capacity of the arrows

coming out of the norles that are in C. If a cut C of our network involves an edge of

capacity one -that is, there is sorne p' E P logically simulated by some q' E Q such

that p' E C and q' rt C, then {p*} is a cut of smaller or equal weight, since it is of

weight < 1. So we can assume that if C f:. {p*} is a minimal cut, then if p' E C n P,

then W (p') n Q CC, where W is the relation induced by the logic.

Now let C be a minimal cut Dot containing an edge of capacity one and B = CnP.

Then WeB) nQ is included in C. Then the weight of C is 'lra(P, P\B) + Ta(q, W(B» .

118

•

•

Now from the proof of Theorem 4.3.2, we know that 1ra {P, B) < Ta(S, W(B) n Q) and

henee the eut {p.} is of smaller than or equal weight to C.

Observe that the maximum flow w through the network satisfies the following

properties:

1. \lp' E P, L w(p', q') = 1ra (p,p'),
p'Wq'

beeause {p.} is a minimal eut, and henee the eapacity of the edge [p*, p'] is fully used;

and

2. \lq' E Q, L w(p', q') < Ta(q, q'),
p'Wq'

beeause w is a flow and henee the flow that get in the node q' eannot exceed the

capaeity of the edge out of q'.

We now prove that f is zigzag. Let (p' q) E U and A c P. Then 1. above implies

Pa((P, q), f-L(A)) = LP'EA Lp'Wq' w(p', q') = LP'EA 1ra{p,p') = 1ra(P, A) and henee f is

zigzag. Now 9 is a simulation morphism, beeause if A C Q, then Pa(P, q), g-L(A» =
Lq'EA Lp'Wq' w(p', q') < Lq'EA Ta(q, q') = Ta(q, A). •

Corollary 7.3.5 For finite processes, the categorical definition of simulation is tran­

sitive and corresponds to the relational definition of simulation.

119

•

•

Chapter 8

Conelusions

8.1 Summary

The main point of this thesis is that one can use the same logical principles developed

for discrete probabilistic processes to reason about continuous-state Nlarkov proeesses.

The fundamental results are

• a notion of bisimulation equivalence and simulation preorder,

• a logie for characterizing bisimulation and simulation,

• an approximation scheme and

• a metrie on the collection of processes.

The bisimulation relation actually closely corresponds to the classical notion of ;;lum­

pability" in queuing theory (KS60]. We proved that bisimulation is characterized

by a very simple logic that neither involves negation nor infinite conjunction. The

logical characterlzation suggests that if one can model a system in terms of labeLIed

Markov processes, one may obtain more information than by modeling the system

with non-probabilistic processes. Moreover we have two algorithms, one that can

decide whether two finite-state probabilistic processes are bisimilar, the other that

can decide whether astate simulates another. \Ve show how ta approximate any con­

tinuous process with finite-state processes, and that one can reconstruct the process

from its approximations. These approximations can be as close as we want to the

120

•

•

original process. Indeed, we define a family of metrics that witness the fact that the

approximations converge to the original process. Finally, we proved that the space of

labelled Markov processes is a separable metric space.

8.2 Related work

There has been a significant growth of activity in the general area of probabilistic

systems with several papers on equivaIences, simulation and testing (vGSST90, JS90,

LS91, JL91, CSZ92, SL94, JY95] , on model checking [HK96] and reasoning about

average behaviour [dA98].

The fundamental work on probabilistic processes is by Larsen and Skou [LS91].

They study bisimulation as weIl as testing, in the context of discrete processes. We

extend their results in the sense that we work with continuous state-spaces, but also

because the logic that we prove to characterize bisimulation does not involve negation.

Moreover, in their characterization of bisimulation, they restricted to not only discrete

systems, but to finitely branching systems. The extension of the results to continuous

state-spaces required new techniques and new types of arguments.

In [SL94], Segala and Lynch aIso proposed definitions of simulation, bisimulation

and their weak versions, for discrete probabilistic systems. Their strong bisimula­

tion is the same as our bisimulation and their strong simulation slightly stronger

than the simulation relation we defined. We have pointed out the difference in Sec­

tion 3.6. However, they consider non-deterministic probabilistic systems, that is, they

allow different transitions from a single state with the same label. Their definition

of simulation in our notation for non-deterministic total discrete processes can be

fonnulated as foIlows (here we remove the additional condition that makes their def­

inition stronger than ours). A relation Ris a simulation if whenever sRt, then for aIl

a E A, either TaCS, S) = 0 or there exists a weight function 8 : S x S ~ [0,1] such

that

\Ix E S:E 5(x, y) = Ta(S, x) and 'Vy E S L c5(x, y) = Ta (t, y).
yES xES

We believe that our formulation of simulation can be extended to a generaIization of

121

•

•

labelled Markov processes to non-deterministic continuous processes in such a way

that it would naturally coincide with strong simulation of Segala and Lynch in the

discrete case. Our formulation of simulation is in our point of view more natural

and intuitive and it seems that the logic is more easily handled with it. However,

there is an advantage to using the definition in terms of the existence of a weight

function. This is seen, for example, in the algorithm developed by Baier in [Bai96]

to decide simulation between finite processes in polynomial time. The existence of

the weight function is determined with the use of the well-known polynomial-time

algorithm to compute the maximum flow in a network. This way, the condition that

our simulation must satisfy for every closed subset of the state-space is checked in

one step. However, Baier's algorithm does not produce a witnessing formula when a

state is not simulated by another state. We do not see how that algorithm can be

modified to construct a formula. It is likely that, since we cannot use negation in the

logic as for bisimulation, we really need nested sets to witness formulas.

Norman [Nor97] has notions of preorders for non-deterministic discrete probabilis­

tic processes that are defined through the use of tests. Ali these preorders are weaker

than our notion of simulation, for as he points out, they give rise to equivalences on

processes that are weaker than Larsen and Skou's bisimulation.

We have already mentioned that one can take a coalgebraic view of bisimula­

tion [AM89, Rut95, Rut96] as weIl. One can view a labelled Markov process as a

coalgebra of a suitable functor; this functor was introduced by Giry [Gir81] in order

to define a monad on Mes analogous to the powerset monad. From this point of

view, bisimulation is a span of coalgebra homomorphisms. In fact, these coalgebra

homomorphisms are precisely our zigzag morphisms in LMP, and hence their bisim­

ulation is the same as ours. The work of de Vink and Rutten [dVR97] is the only one

we know that studies systems with continuous state-spaces. However, they work with

ultrametric spaces which are not as general as our analytic spaces. While interesting,

their work is not likely to adapt easily to real-life examples. For example, the reals

do not fonn an ultrametric space. Nevertheless the coalgebraic view could perhaps

give useful insights into logic.

122

•

•

In [Hil94], Hillston made interesting progress toward applications. She developed

a compositional approach to performance evaluation through a process algebra. The

setting is not the same as ours since she works with discrete Markov chains with tem­

poral delay which capture the notion of continuous time. There is a rate associated to

each type of action and indeterminacy between transitions is resolved by races between

events executing at dinerent rates. She aIso defines a bisimulation based on matching

the transition rates instead of the transition probabilities. Other areas of applica­

tion where probabilistic systems are important are telecommunication [AJKv097],

real-time systems [BFGL95] and modeling physical systems [GSS95).

Kozen developed a probabilistic dynamic logic [Koz85). He discovered a Stone­

type duality in the context of probabilistic semantics and pioneered the use of Markov

kernels. In particular, he made the key suggestion that measurahle functions should

he thought of as the analogue of formulas - an idea which we use in our work on

metrics.

In timed-automata theory [AD94], a notion of bisimulation appears in the so­

called region construction for quotienting the state space, which is continuous, into

finite pieces in particular situations. The basic framework is ordinary automata the­

ory to which we add real-time clocks, hence modeling sorne kind of continuity. The

same kind of idea is used in linear hybrid automata. The restrictions on the models

- essentially linearity and limitations on the ahility to compare docks - are what

guarantee that there are finitely many regions. We also are interested in reducing

continuous systems to finite-states systems whenever possible. However, instead of

limiting the description of systems, we work with a notion of approximation. Thus

while general systems cannot be collapsed to finite-state systems, they can he approx­

imated arhitrarily closely hy finite-state systems. How this could he used in practice

remains to he seen.

We have used the work of Joyal, Nielsen and Winskel (JNW96) for giving cate­

gorical formulations of hisimulation and simulation. In their work they have a notion

of P-open morphisms as a general notion of functional bisimulation. They define

bisimulation as a span of 'J'-open morphisms. We have not succeeded in expressing

123

•

•

our zigzag morphisms as P-open morphisms in an appropriate sense. They show

that for ordinary labelled transition systems, P-open morphisms correspond to non­

probabilistic zigzag morphisms and it is this analogy which guided us in the early

stages of this work. In their examples, they use the existence of pullhacks to show

that bisimulation is transitive. In our case, the corresponding pullbacks do not exist

and we had to use Edalat 's semi-pullback construction instead.

The metric that we have defined bears a formal resemblance ta the Hutchinson

metric [Hut8!]. The resemblance consists of the fact that the metric is defined as

d(p., v) := sup rjfdJ.t -jfdvl
JEF

for an appropriate class of functions. For the Hutchinson metric, F is the class of

Lipschitz functions whereas for us it is the class of functions defined by our functional

expressions, Le., the class :Fe. The fundamental difference between these classes is

the functional (a)f that refiects the fact that we are working with transition systems

and provides us with a way of reasoning about transitions.

Our algorithms for bisimulation and simulation have been inspired by an algo­

rithm due to Cleaveland [Cle90] to decide bisimilarity of non-probabilistic processes.

Since the logic considered in this paper contains negation, the algorithm is based on

partitioning the state-space. We used instead nested families of subsets that corre­

spond to the modal formula. These algorithms are oriented towards finding a formula

that witnesses non-bisimilarity or non-similarity of states. This is why the complex­

ity is worse than the one obtained from the algorithms of Baier [Bai96] mentioned

above \vhich can decide bisimilarityand similarity in polynomial time. However we

have discovered recently that by using /:,-" we cao slightly modify our algorithm for

bisimulation and obtain a polynomial time algorithm that constructs a distinguishing

formula when two processes are not bisimilar. This is done by partitioning the state­

space as in Cleaveland's algorithm. Of course, this cannot he applied to simulation

since negation cannot be part of a logjc characterizing simulation.

124

• 8.3 Future work

•

There are two directions to pursue: the extension of the basic theory and the devel­

opment of applications.

Extension of the basic theory

We proved that two processes are bisimilar if and only if they satisfy the same

formulas of the logic; we also have a similar result for simulation between processes.

A process simulates another one if it satisfies aIl the formula of J:,v that the other

satisfies. The result holds for discrete systems or even pairs of systems one of which

is discrete and the other is not. An obvious goal is to extend the work to cover the

case of two continuons state space systems.

The results of Chapter 6 suggest that there ought to be a domain-theoretic inter­

pretation of the space of labelled Markov processes. We proved that for every process

S, there is an increasing chain of rational trees (with respect to the simulation pre­

order) that converge in the metric to S. We would like that S is indeed the least

upper bound of this chain. Note that proving this result is equivalent to showing that

simulation is characterlzed by the logic for arbitrary labelled Markov processes. If we

can prove these results and that we have a complete partial order (cpo), we would

then have an algebraic cpo. Linking these results with Jones-Plotkin's powerdomain

theory [JP89, Jon90] is an interesting subject of investigation. The Plotkin powerdo­

main is a functor that constructs a domain from another domain. Jones and Plotkin

have defined a probabilistic analogue of this functor [JP89]. We can write equations

like D ~ A --t :rCD) where :r is the Jones-Plotkin powerdomain functor. An inter­

esting question is whether our category LMP is this domain D where rational trees

are exactly finite elements of D.

Another very interesting subject of investigation is the extension of the theory to

continuous time. In this case we cannot talk about transitions as steps. We must

adapt the formalism, maybe by using the notion of transition rates [BHK99, KNSS99].

When one combines two systems, one must be able to work with the composite

system as if it was a single one. In particular, if the two systems communicate by

125

•

•

synchronizing on an action, the observer should not notice this move because it is not

associated with any interaction with the environment. Such a move should be silent

even if it happens. AlI the observer can notice is that there may be different actions

enabled because of that silent move. Our notion of bisimulation does not distinguish

silent actions and hence treat them on par with other actions. Every transition that a

process performs must be matched exactly by a bisimilar process. Roughly speaking,

a weak version of bisimulation would not require silent actions to be matched.

In order to use any of our results for verification, we need to define a calculus or

programming language for describing continuous probabilistic systems. This involves

inventing syntax for the language which would be a non-trivial effort. We have to

somehow specify physical systems in a syntactic way. A process algebra is defined

for finite probabilistic processes in [DGJP99a]. In [GJP99], a concurrent constraint

language was defined for the description and programming of concurrent probabilistic

systems. They use recursion to encode continuous distributions and show how many

distributions can he expressed.

Once we have a syntax we can define contexts. A context is an expression of the

language containing variables. For example, in Milner's calculus for communicating

processes [Mil80] (called CeS), we write C[X] := a.X for the expression representing

the process that can do an a-action and then behaves like X (the dot preceded by a

label is an operator of ces and represents prefixing). Now suppose two systems A,

B are equivalent (whatever the equivalence may be) and we place them in a common

context C[X], we can ask if C[A] and C[B] are equivalent. If it is always the case, we

caU the equivalence a congruence. Without a language to define contexts, this makes

no sense. This type of question is fundamental in process algebra. In [DGJP99b],

a process algebra is defined for discrete probabilistic processes and it is proved that

bisimulation is a congruence with respect to the operations of this process algebra.

Moreover, it is shown that process combinators do not increase distance in any of the

metrics we have defined.

Development of applications

For a continuous process, a finite bisimulation quotient may exist, hence existing

126

•

•

model checking [BCGH+97] techniques can be used. Unlike in timed automata or

hybrid systems, we do not provide conditions that guarantee that there is a finite

quotient.

Perhaps the approximations cao be used for approximate verification. This is un­

der investigation. Unfortunately it seems unlikely that logical approximation results

would hold for richer logics. Thus approximate reasonïng would take a different form

from the verification formalisms we see used now.

We gave an algorithm that decides if a finite-state process simulates another finite­

state process, and if it does not, it constructs a formula that witnesses this facto

These results open the way to using simulation in verification and other applications

rather than bisimulation. Exactly how this might be used is one of the issues we are

exploring.

127

•

•

Appendix A

Relevant matheDlatical concepts

For completeness, we give the relevant definitions from measure theory and probability

theory in this appendix. The reader can find more complete explanations in the

following references: "Probability and Measure" by Billingsley [Bil95], "Real Analysis

and Probability" by Ash [Ash72], the book with the same title by Dudley [Dud89)

and "Introduction to Measure and Probability" by Kingman and Taylor [KT66].

Definition A.l A u-field on a set S is a family of subsets of S which includes S it­

self and which is closed under complementation and countable unions. A measurable

space is a pair (S, E) where S is a set and Eisa u-field on S.

We use the expression "measurable sets" for members of the u-field. Given a

topological space (S,T), we can define the (T-field, often written B, generated by the

open sets (or, equivalently, by the closed sets). This is usually called the Borel a-field.

Definition A.2 Given a measurable space (S, E), a subprobability measure on

S is a [0, l]-valued set function, p" defined on E such that

• p,(0) = 0,

• if {Aili E N} is a pairwise disjoint collection of sets in E, then P,(UiEN Ai) =

EiEN p,(Ai).

p, is a probability measure if p,(S) = 1. A probability space (S, E, p,) is a measurable

space equipped with a probability measure.

128

•

•

Definition A.3 A set A in a measurable space (S, E) is said to be unil1ersall1/

measurable if for every finite measure J.L there exist Band C in E such that B C

A C C and J.L(B) = J.L(C).

It is easy to check that universally measurable sets form a O"-field.

Definition A.4 A function f : (S, E) ---+ (S', E') between measurable spaces is said

to be measurable if for ail B' E E', f- 1(B') E E. A measurable function is called

simple if its range is finite.

Theorem A.5 The supremum of any countable family of simple functions is a mea­

surable function.

In probability theory, a measurable function from a probability space to a measure

space is called a random variable and is typically written with capital letters X, Y.

If X is a random variable on a probability space (0, F, P) to the measurable space

(S, E) and A E E, we write P(X E A) ta mean P(X-1(A)).

Definition A.6 A function f : (S, E) ---+ (S', E') between measurable spaces is said

to be universally measurable if for ail B' E E', f-1(B') is universally measurable.

The next several definiticns and results pertain to analytic spaces.

Definition A.7 A Polish space is the topological space underlying a complete, sep­

arable metric spacej i. e. it has a countable dense subset.

Definition A.8 An analytic set is the image of a Polish space under a continuous

function /rom one Polish space to another. An analytic space is an analytic set with

the topology induced by the Polish space that contains it.

Analytic sets do not form a O"-field. In fact, if an analytic set has a complement

which is also analytic, then it is a Borel set, and its complement is Borel as weIl.

Theorem A.9 Analytic sets are universally measurable.

129

•

•

We use the following result to infer that labelled Markov chains aIl have the

powerset as tT-field.

Proposition A.IO ln an analytic space, singletons are measurable.

The following proposition (Dud89] gives equivalent definitions of analytic set.

Proposition A.II Suppose that S and S'are Polish spaces and f is a function from

S to S'. Then A is an analytic set if and only if A is the image of B under f, where

f is either measurable or continuous and B is either the whole space S or a Borel

subset of it.

Analytic spaces are more general than Polish spaces but they also have the basic

property that regular conditional probability distributions can be defined on them.

These regular conditional probability distributions are the basic building blocks for

proving transitivity of bisimulation in the categorical view of the theory - see Chap­

ter 7. The sub..probability transition functions that need to be constructed in Edalat's

work [Eda99] are based on regular conditional probability distributions. However, we

abstract from them in this thesis.

130

•
Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,

x. Nicollin, A. o livero, J. Sifakis, and S. Yovine. The algorithrnic anal­

ysis of hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[AD94] R. Alur and D. DilI. A theory oftimed automata. Theoretical Computer

Science, 126:183-235, 1994.

[AHS96] R. Alur, T. Henzinger, and E. Sontag, editoIS. Hybrid Systems III,

number 1066 in Lecture Notes in Computer Science. Springer-Verlag,

1996.

[AJKv097] R. Alur, L. Jagadeesan, J. J. Kott, and J. E. von Olnhausen. Model­

checking of real-time systems: A telecommunications application. In

Proceedings of the 19th International Conference on Software Engineer­

ing, 1997.

[AKNS97] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems

I~ volume 1273 of Lecture Notes In Computer Science. Springer-Verlag,

1997.

•

[AM89]

[Am94]

[Arv76]

[Ash72]

P. Aczel and N. Mendier. A final-coalgebra theorem. In Category Theory

and Computer Science, Lecture Notes In Computer Science, pages 357­

365, 1989.

A. Arnold. Finite Transition Systems. Prentice-Hall, 1994.

w. Arveson. An Invitation to C· -Algebra. Springer-Verlag, 1976.

R. B. Ash. Real Analysis and Probability. Academie Press, 1972.

131

• [Bai96] c. Baier. Polynomial time algorithms for testing probabilistic bisimu­

lation and simulation. In Proceedings of the 8th International Confer­

ence on Computer Aided Verification (CAV'96), number 1102 in Lecture

Notes in Computer Science, pages 38-49, 1996.

[BCGH+97] C. Baier, E. Clarke, V. Garmhausen-Hartonas, M. Kwiatkowska, and

M. Ryan. Symbolic model checking for probabilistic processes. In

ICALP'97, volume 1256 of Lecture notes in computer science, 1997.

[BDEP97] R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation

for labelled Markov processes. In Proceedings of the Twelfth IEEE Sym­

posium On Logic In Computer Science, Warsaw, Poland, 1997.

[BFGL95] A. Benveniste, E. Fabre, P. Le Guemic, and B. C. Levy. A calculus

of stochastic systems for the specification, simulation and hidden state

estimation of rnixed stochasticjnonstochastic systems. Theoretical Com­

puter Science, 152(2):171-217, 1995.

[BHK99] C. Baier, H. Hermanns, and J.-P. Katoen. Approximative symbolic

model checking of continuous-time markov chains. In Proceedings of

CONCUR 99, Lecture Notes In Computer Science. Springer-Verlag,

1999.

[Bil95] P. Billingsley. Probability and Measure. Wiley-Interscience, 1995.

[BoI79] B. Bollobas. Graph theory, an introductory course. Springer-Verlag,

1979.

•

[BW90]

[Cle90]

M. Barr and C. Wells. Category Theory for Computing Science. prentice­

Hall, 1990.

R. Cleaveland. On automatically explaining bisimulation inequivalence.

In E.M. Clarke and R.P. Kurshan, editors, Computer-Aided Verification

CA V 90, number 531 in Lecture Notes in Computer Science, pages 364­

372, 1990.

132

• [CSZ92)

[CW96)

[dA98)

[DEP98]

[DEP99)

R. Cleaveland, S. Smolka, and A. Zwarico. Testing preorders for proh­

abilistic processes. In Proceedings of the International Colloquium On

Automata Languages And Programming 1992, number 623 in Lecture

Notes In Computer Science. Springer-Verlag, 1992.

E. M. Clarke and J. M. Winge FormaI methods: state of the art and

future directions. ACM computing surveys, 28A(4):626-643, 1996.

L. de AIfaro. How to specify and verify the long-run average behavior of

probabilistic systems. In Proceedings of the 13th IEEE Symposium On

Logic In Computer Science, Indianapolis, pages 454-465. IEEE Press,

June 1998.

J. Desharnais, A. Edalat, and P. Panangaden. A logical characterization

of bisimulation for labeled Markov processes. In Proceedings of the 13th

IEEE Symposium On Logic In Computer Science, Indianapolis, pages

478-489. IEEE Press, June 1998.

J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled

Markov processes. Information and Computation, 1999.

[DGJP99a] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approxi­

mating continuous Markov processes. Submitted for publication. Avail­

able from vww. sable .mcgill. ca/-prakash, 1999.

[DGJP99b) J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics

for labeled Markov processes. In Proceedings of CONCUR99, Lecture

Notes in Computer Science. Springer-Verlag, 1999.

•

[Dud89]

[dVR97)

R. M. Dudley. Real Analysis and Probability. Wadsworth and

Brookes/Cole, 1989.

E. de Vink and J. J. M. M. Rutten. Bisimulation for probabilistic transi­

tion systems: A coalgebraic approach. In Proceedings of the 24th Inter­

national Colloquium On Automata Languages And Programming, 1997.

133

• [Eda99]

[Ger85]

[Gir81]

[GJP99]

[GSS95)

[Hal74]

A. Edalat. Semi-pullbacks and bisimulation in categories of Markov

processes. Mathematical Structures in Computer Science, 1999.

Robert Geroch. Mathematical Physics. Chicago Lectures in Physics.

University of Chicago Press, 1985.

M. Giry. A categorieal approach to probability theory. In B. Ba­

naschewski, editor, Categorical Aspects of Topology and Analysis, num­

ber 915 in Lecture Notes In Mathematics, pages 68-85. Springer-Verlag,

1981.

v. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic processes as

concurrent constraint programs. In Proceedings of the 26th Proceedings

Of The Annual A CM Symposium On Principles Of Programming Lan­

guages, 1999.

V. Gupta, V. Saraswat, and P. Struss. A model of a photocopier pa­

per path. In Proceedings of the 2nd IJCAI Workshop on Engineering

Problems for Qualitative Reasoning, 1995.

P. Halmos. Measure Theory. Number 18 in Graduate Texts in Mathe­

maties. Springer-Verlag, 1974. Originally puhlished in 1950.

[HHWT95] T. Henzinger, P.-H. Ho, and H. Wang-Toi. Hytech: the next generation.

In Proceedings of the 16th AnnuaI Real-time Systems Symposium, pages

55-65. IEEE Computer Society Press, 1995.

•

[Hil94]

[HK96]

[HM85]

J. Hillston. A Compositional Approach to Performance Modelling. PhD

thesis, University of Edinburgh, 1994. Ta he published as a Distinguished

Dissertation by Cambridge University Press.

M. Huth and M. Kwiatkowska. On probahilistic model checking. Techni­

cal Report CSR-96-15, University of Birmingham, 1996. Available from

http://www.cs.bham.ac.uk/ rnzk/.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and

concurrency. Journal of the ACM, 32(1):137-162, 1985.

134

• [Hut81]

[JL91]

[JNW96]

[Jon90]

J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J.,

30:713-747, 1981.

B. Jonsson and K. Larsen. Specification and refinement of probabilistic

processes. In Proceedings of the 6th Annual IEEE Symposium On Logic

In Computer Science, 1991.

A. Joyal, M. Nielsen, and G. Winskel. Bisimulation frOID open maps.

Information and Computation, 127(2):164-185, 1996.

C. Jones. Probabilistic Non-determinism. PhD thesis, University of

Edinburgh, 1990. CST-63-90.

[JP89] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evalua­

tions. In Proceedings of the Fourth Annual IEEE Symposium On Logic

In Computer Science, pages 186-195, 1989.

[JS90] C.-C. Jou and S. A. Smolka. Equivalences, congruences, and complete

axiomatizations for probabilistic processes. In J.C.M. Baeten and J.W.

Klop, editors, CONCUR 90 First International Conference on Con­

currency Theory, number 458 in Lecture Notes In Computer Science.

Springer-Verlag, 1990.

[JY95] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic

processes. In Proceedings of the 10th Annual IEEE Symposium On Logic

In Computer Science, pages 431-441, 1995.

[KNSS99] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic

verification of real-time systems with discrete probability distributions.

In Proceedings of ARTS99, Lecture Notes in Computer Science. Springer­

Verlag, 1999.

[Koz85] D. Kozen. A probabilistic PDL. Journal of Computer and Systems

Sciences, 30(2):162-178, 1985.

•
[KS60] Kemeny and Snell. Finite Markov Chains. van Nostrand, Princeton,

New Jersey, 1960.

135

•

•

[KT66]

[Low96]

[LS91]

[Mac71]

[lVIi180]

[Mil89]

[Mil90]

[Nor97]

[NS78]

[Par81]

[Rud66]

J. F. C. Kingman and S. J. Taylor. Introduction to Measure and Proba­

bility. Cambridge University Press, 1966.

G. Lowe. Breaking and fixing the needham-schroeder public-key protocol

using fdr. In Tools and algorithms for the construction and analysis of

systems, Lecture Notes in Computer Science. Springer-Verlag, 1996.

K. G. Larsen and A. Skou. Bisimulation through probablistic testing.

Information and Computation, 94:1-28, 1991.

Saunders Mac Lane. Categories for the Working Mathematician, vol­

ume 5 of Graduate texts in M athematics. Springer-Verlag, New York,

1971.

R. Milner. A Calculus for Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer-Verlag, 1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner. Handbook of Theoretical Computer Science: Volume B,

chapter Operational and Aigebraic Senmantics of Concurrent Processes,

pages 1201-1242. MIT Press, 1990.

Gethin Norman. Metric Semantics for Reactive Probabilistic Processes.

PhD thesis, University of Birmingham, 1997. Technical Report CRS-98­

03.

R. Needham and M. Schroeder. Using encryption for authentication in

large networks of computers. Communications of the ACM, 21:393-399,

1978.

D. Park. Concurrency and automata on infinite sequences. In Proceedings

of the Fifth GI Conference, number 154 in Lecture Notes in Computer

Science, pages 561-572. Springer-Verlag, 1981.

w. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

136

• [Rut95]

[Rut96]

[SL94]

J. J. M. M. Rutten. A calculus of transition systems (towards universal

coalgebra). In A. Ponse, M. de Rijke, and Y. Venema, editors, Modal

Logic and Process Aigebra, a bisimulation perspective, number 53 in CSLI

Lecture Notes, 1995. Available electronically from www.cwi.nl/-janr.

J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Tech­

nical Report CS-R9652, CWI AMsterdam, 1996. Available from URL

www.cwi.nl/-janr/papers/.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic pro­

cesses. In B. Jonsson and J. Parrow, editors, Proceedings of CONCUR94,

number 836 in Lecture Notes In Computer Science, pages 481-496.

Springer-Verlag, 1994.

•

[vGSST90] R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive generative

and stratified models for probabilistic processes. In Proceedings of the

5th Annual IEEE Symposium On Lagic ln Computer Science, 1990.

137

