INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Labelled Markov processes

Josée Desharnais

School of Computer Science

McGill University, Montréal

November 1999

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree of Doctor of Philosophy

©Josée Desharnais, 1999

il

National Lib Biblicthéque nationale
of Canzda ind du Canada
Acquisitions and isitions et
Bibliolgra%?lsic Services ::glllces bibliographiques
Otawa ON K1A ONA Otzwa ON' K14 ONA
Canada Canada
Your fe Votre rélérernce
Our fig Notre réfdcance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64546-0

Canada

Résumé

Nous développons une théorie de systéemes continus probabilistes que nous prévoyons
intégrer a une théorie de systémes concourants. Notre modele est basé sur les systéemes
de transitions étiquettées. Les transitions non déterministes sont agrémentées de
probabilités et nous considérons |’espace des états comme étant possiblement continu.

Parmi nos principaux résultats, on compte:

e une notion de bisimulation et de simulation,
e une logique qui caractérise la bisimulation et la simulation,

e une construction permettant d’approximer les systémes continus par des syste-

mes finis, et

e une métrique sur P’espace des systémes.

Nous démontrons que la bisimulation est caractérisée par une logique trés simple,
sans aucune forme de négation. Le fait que cette logique ne contienne pas de négation
nous permet d’obtenir une caractérisation logique de la simulation pour les systémes
probabilistes discrets, ce qui n’est pas possible pour les systemes non probabilistes.
Nous utilisons ensuite ces caractérisations pour définir deux algorithmes, I’'un nous
permettant de dire si deux systémes sont bisimilaires, ’autre pour déterminer si un
systéme simule un autre systéme.

Nous montrons comment approximer un systéme continu a l’aide de systémes
finis et comment reconstruire le systéme & partir de ses approximations. Parmi ces
approximations, il en existe qui se trouvent aussi prés que voulu du systeme original.

Nous définissons une métrique sur l'espace des systémes continus qui reflete la

différence entre les systémes. Des systémes qui sont trés différents se verront attribuer

une grande distance alors que deux systémes bisimilaires auront une distance nulle. En
fait, une famille de métriques est définie et nous démontrons que les approximations
finies d’un systéme continu convergent vers ce systéme pour toutes ces métriques.
Finalement, nous démontrons que les systemes dont le graphe de transition est
un arbre et dont les probabilités sont rationelles forment une base (dénombrable) de

I’espace des systémes étudiés. Cet espace est donc un espace métrique séparable.

il

Summary

We develop a theory of probabilistic continuous processes that is meant ultimately to
be part of an interactive systems theory. Our model is a generalization of ordinary
labelled transition systems to which we add probabilistic transitions. The four main

contributions are
e a notion of bisimulation equivalence and simulation preorder,
e a logic for characterizing bisimulation and simulation,
e an approximation scheme and
e a metric on the collection of processes.

We prove that bisimulation is characterized by a very simple logic that neither in-
volves negation nor infinite conjunction. We have a similar result for simulation
between discrete processes. Moreover, these characterizations are used to construct
two algorithms, one that decides whether two finite-state probabilistic processes are
bisimilar, and another that decides whether a state simulates another.

We show how to approximate any continuous process with finite-state processes,
and that one can reconstruct the process from its approximations. These finite ap-
proximations can be as close as we want to the original process. Moreover, we define
a family of metrics that can tell how far apart or how close two processes are. The
metrics also witness the fact that the approximations converge to the original process.

Finally, we prove that the processes where the transition graph is a tree and whose
transition probabilities are all rational form a basis of the space of labelled Markov

processes; this means that labelled Markov processes form a separable metric space.

iii

Acknowledgments

First I would like to warmly thank my thesis supervisor, Prakash Panangaden, for his
precious enthusiasm, for his invaluable support and patience, for having so strongly
believed in me and for his continuous help during the preparation and writing of this
thesis. I also want to thank him for having introduced me to the subject of this
thesis, for having given me the opportunity to travel and meet people by sending me
to many conferences in many beautiful countries.

I would like to thank Abbas Edalat whose collaboration has been essential for the
theory of bisimulation to make sense, especially with the help of his semi-pullback
theorem. I want to thank Vineet Gupta, Radha Jagadeesan and again, Prakash
Panangaden for highly stimulating discussions that have led to the discovery of many
results in this thesis. I also want to thank Rick Blute, Franck van Breugel, Martin
Escardo, Patrick Lam, Frangois Laviolette, Ben Rich and Erik de Vink for helpful
discussions and comments and Falk Bartels for pointing out a mistake in an earlier
version of the finite approximation construction.

Je désire remercier tout spécialement mon compagnon, Francois, pour avoir tra-
vaillé patiemment sur ma confiance fragile, pour m’avoir encouragée a tourner mon
intérét vers l'informatique, pour son extraordinaire et inébranlable caractére et pour
avoir pris une foule de choses en charge dans les derniéres semaines de la rédaction
de cette these.

Je remercie également ma famille, mes amis qui m'ont aidée de différentes fagons,
entre autre par leur affection, leurs encouragements. Je voudrais remercier en partic-
ulier Claude Crépeau pour m’avoir permis de rencontrer le meilleur des directeurs de
these.

This work has been supported by NSERC.

iv

A ma mére, pour m’avoir donné toutes les chances

de choisir mon chemin.

Contents

Résumé i
Summary iil
Acknowledgments iv
1 Introduction 1
1.1 Motivations L L e e e e 1
1.2 Contributions e 4
1.3 Outlineofthesis., 7
2 Background on non-probabilistic transition systems 9
2.1 Labelled transitionsystems 10
2.2 Simulation and bisimulation: a game description 13
2.3 Formal definitions of bisimulation and simulation 15
2.4 The categorical definition of bisimulation 15
2.5 Hennessy-Milnerlogic. o000, 19
3 Labelled Markov processes 22
3.1 Markov processes e e e e e e e e e e 24
3.2 Probabilistic labelled transition systems 25
3.3 Labelled Markov processes 28
34 Thecategory LMP o oL, 31
3.5 Bisimulationrelation oo, 34
3.6 Simulationrelation, 38

3.7 Examples of bisimulation and simulation

4 A modal logic for bisimulation and simulation
41 Modallogics oo
4.2 Logical characterization for bisimulation
4.3 Logical characterization of simulation
4.4 Algorithms for bisimulation and simulation

4.5 Further aspects of logical characterization

5 Approximations
5.1 Finite-state approximation and reconstruction

5.2 Example e e

6 Metrics and logic via real functions
6.1 Probabilistic logic via functions into {0,1]
6.1.1 Functional expressions vs bisimulation and simulation
6.1.2 Finite approximations and functional expressions
6.2 Metrics and convergence of approximations

6.2.1 A countable basis for labelled Markov processes

7 A categorical definition of bisimulation and simulation
7.1 Bisimulation and simulationasspans
7.2 Bisimulationandlogic

7.3 Discrete processes revisited

8 Conclusions

81 Summary e e e e e e
8.2 Related work e e e e e e
83 Futurework e e e e e

A Relevant mathematical concepts

Bibliography

48
49
53
59
63
71

75
76
82

102
103
109
113

120
120
121
125

128

131

Chapter 1

Introduction

This thesis is concerned with the analysis of probabilistic systems with a continuous
state space. The general goal is to make a step towards establishing formal methods
for reasoning about such systems. Normally one associates formal methods with
logic and discrete structures. In this thesis, we will explore how the ideas developed
for discrete probabilistic systems can be applied to systems with a continuous state
space. The mathematical techniques needed are very different from previous work in
concurrency theory; in particular, a significant role is played by measure theory in
some of the key results.

The systems we consider have a continuous state space in order to model physical
systems; they have labelled transitions that are quantified with probabilities; they are
reactive in the sense that we study them with respect to how they react to actions
taken by the environment, and hence they are meant to be concurrent; finally, even if
the state space can be infinite, the transitions are discrete and hence time is discrete.

These concepts will be explained and motivated in the following section.

1.1 Motivations

In recent years, physical systems have become important in computer science. A
physical system is any system that evolves in a continuous state-space, by involving
continuous parameters such as distance, temperature, pressure. These systems arise

in hybrid systems theory (see for example [AHS96], [AKNS97]). A hybrid system is

a continuous physical system combined with a control process which is discrete and
most of the time finite. A typical example is a simple railroad crossing, consisting
of a train, a gate and a controller; the controller must ensure that the gate is down
whenever the train is in the intersection, and that it is not closed unnecessarily. The
motion of the train is continuous but the states of the controller are discrete. Other
examples are traffic controllers, heating systems, flight control systems, etc. Even if,
in practice, one always discretizes a system before using it or before reasoning about
it, a theory of continuous systems is necessary to be able to argue that a discretization
of a process is indeed a faithful model of the process. Moreover, it is essential to have
a notion that tells if a discrete process is “closer” to, or is a finer approximation of a
process than another discrete process.

The systems that we consider have a continuous state-space but make discrete
steps — in other words time is discrete. One motivation for studying these systems is
that this is a reasonable middle ground before studying the more general case of con-
tinuous state space and continuous time. Moreover, it has some practical applications
that we encounter in control systems. The following example is taken from [DEP99]
and abstracts from a practical investigation in collaboration with industry. We have
a physical system, like an airplane, and a controller that takes reading at fixed in-
terval — say every one tenth of a second — of a number of parameters. Depending on
the reading, it takes some actions to keep the physical system stable. The number of
possible states is really continuous, but the steps are discrete. Of course the dynamics
is occurring in continuous time but the sampling occurs in discrete time.

Ultimately, these systems are to be part of an interactive systems theory. Compo-
sitionality has been one way of dealing with the formidable problem of complexity of
systems. Complex processes are broken up into components that we study separately.
We do not study composition of systems in detail but we take a view that is common
in concurrency theory. Processes are studied with respect to their interaction with the
environment. The environment can be a user or another process: we are interested
in what this external observer can observe about a process. Intuitively, a process

is a system that evolves in time by executing some actions in response to actions

L

taken by the environment. The system is in a state at a point in time and makes
transitions between states depending on which interaction with the environment is
taking place. The formalism used for describing the behaviour of processes is labelled
transition systems. A labelled transition system consists of a set of states, a set of la-
bels and a set of transitions which are labelled. The label indicates which interaction
the environment is requesting: a process makes an a-labelled transition only if the
environment also simultaneously makes an a-labelled transition. In non-deterministic
labelled transition systems, there may be more than one transition from a given state
having the same label.

In probabilistic processes, non-determinism is not only enumerated, it is quan-
tified. The fundamental work about discrete probabilistic transition systems is by
Larsen and Skou [LS91]. Like ordinary labelled transition systems, probabilistic tran-
sition systems consist of a set of states, a set of labels and a set of transitions. The
difference is that the state to which the process jumps is determined by a probabil-
ity function. The work that has been done until now restricts to processes having
a finite or countable number of states. We have generalized the theory to continu-
ous state-space systems (which we have called labelled Markov processes). Modeling
transitions in this context requires notions of measure theory. Indeed, in uncount-
able spaces, the probability of jumping to a single state is often zero; therefore we
must consider instead the probability of jumping to a set of states. In this manner,
each state s and each action a will have an associated sub-probability measure which
describes the effect of action a when the process is in state s.

With the advent of computer controlled physical systems has come the need for
analyzing and reasoning about them; this is best done with the help of formal meth-
ods. Formal methods are mathematically based languages, techniques and tools for
specifying (describing) and verifying systems. When designing a system, the ultimate
goal is to make it operate reliably, despite its complexity. Formal methods are used
more and more in industry, in particular in the last ten years. A good survey of their
use can be found in [CW96]. Even when we just use formal methods for specification,

they have been proven to greatly improve product quality and error detection time;

they often even reduce the development cost of systems because of the savings in test-
ing that they provide. At the verification level, formal methods allow one to discover
subtle errors that could not be detected by humans because of the size of systems;
they also provide one with information that aids in debugging. There are examples of
existing and heavily used systems in which verification tools have found errors. One
famous such example is the Needham-Schroeder protocol [NS78|, invented in 1978
and used since then. A bug was discovered in 1995 by Gavin Lowe with the help of
a model verification tool at Oxford [Low96].

Establishing formal methods for continuous state-space systems is not an easy
task. In our case, we have foundational work to do before we can think about the
use of logical formal methods. It is not a priori obvious that logical formulas capture
anything interesting about a continuous state-space system. However there are results
in the theory of hybrid automata that give one some reason to hope. In particular,
the work on linear hybrid automata shows that in certain cases one can exploit the
structure of the system to construct an equivalent finite-state system [ACH*95] thus
making it amenable to algorithmic analysis. It has even been possible to construct
tools - eg. HYTECH - for verifying hybrid systems [HHWT95|. Of course these
results are suggestive for our context but do not give any direct technical results that

we can use for probabilistic systems.

1.2 Contributions

In algebraic approaches to concurrency theory, the important issue is whether two
labelled transition systems are equivalent. In particular, two different descriptions
of processes could have the same behaviour and thus lead to the same process. But
what do we mean by “having the same behaviour”? There are in fact many notions of
equivalence. We are interested in an observational equivalence, called strong bisimu-
lation, introduced by Milner [Mil80]. This equivalence is based on what an external
observer (the environment) can say about the difference between two processes.

We define bisimulation for labelled Markov processes. Our definition is a general-

ization (to continuous state-space systems) of Larsen and Skou’s probabilistic bisim-

4

ulation [LS91]. In continuous systems, one practical use of bisimulation is to evaluate
if a given process is in fact discrete despite the fact that it might be described as a
continuous system. More generally, we show how to construct the “simplest” process
bisimilar to a given process. For finite-state systems, this is a state minimization
construction.

Apart from knowing that two systems are equivalent, perhaps a more practical
issue is refinement, that is, can a given system “replace” another, or can it simulate
it in the sense that everything the second one can do can also be done by the first
one? Generalizing this concept to probabilistic processes, we will say that a process
simulates another if, from the user point of view, it can make all the transitions the
second one can perform with higher probabilities.

The most important contribution of this thesis is a logical characterization of
bisimulation for Markov processes. That is, we define a logic which is the analogue
of Hennessy-Milner logic for non-probabilistic processes. Two processes are bisimilar
if and only if they satisfy the same formulas of the logic. A logic is useful for speci-
fying properties that we want our system to satisfy and for verification. By checking
that two processes satisfy the same formulas, we can decide if they are bisimilar, and
conversely, by only finding a formula that distinguishes them, we can prove that two
processes are not bisimilar. This can be done automatically. The logic we define is
surprisingly simple: in particular, it does not involve any kind of negation, nor is it
limited to processes having finite branching (i.e., having a finite number of transitions
with the same label from any state) in order to characterize bisimulation. This was
a surprise because in the non-probabilistic case, infinite conjunction is necessary to
witness infinite branching and negation is also necessary even for finite branching
systems. In addition, we report five different logics — none of them being equivalent
— all characterizing bisimulation. The proofs are of entirely different character from
those required for the non-probabilistic case and use technical results from measure
theory. A logic without negation carries a notion of simulation and indeed we prove
that our logic augmented with disjunction characterizes simulation for discrete sys-

tems: a state simulates another state if it satisfies all the formulas the other satisfies.

We give an application of the logical characterizations by defining algorithms, one
that can decide whether two finite-state probabilistic processes are bisimilar, and the
other that can decide whether a state simulates another. The algorithms exhibit a
formula that is satisfied by only one of the processes if they are not bisimilar or if this
process is not simulated by the other. The fact that the logic is simple is an advan-
tage for debugging, but for specification of properties, it is better to work with more
expressive logics. Moreover, the complexity of the logic has no impact on satisfiability
checking.

As we have already said, the analysis of a continuous system is greatly simplified
if we can prove that it is equivalent to a finite-state process. Of course, one cannot
hope that for every continuous process one can find a bisimilar finite-state process.
Nevertheless, we show how to approximate any continuous process with finite-state
processes that can be as close as we want to the original process. We show that
we can reconstruct a process from its finite-state approximations — more precisely a
bisimulation equivalent of the original process —, and prove that the approximations
capture all the logically definable properties that the original process satisfies. A
finite-state approximation allows one to reason more easily about the continuous
process it approximates. However, we should not discard the continuous process by
saying that it has become useless since we have the finite-state one. For different
purposes, we may need finer approximations to our process.

Though it is a very useful notion, bisimulation has some limitations. Bisimulation
tells us when two processes are essentially behaviourally identical. If they differ
slightly in the probabilities, bisimulation says that they are not bisimilar. On the
other hand, simulation tells us a little more. Two processes, although not bisimilar,
can be related by a simulation relation; one can be greater than the other. But
simulation does not tell us how distant the processes are in a quantitative fashion and,
since it is not a total order, there are pairs of processes for which it tells us nothing
precise. Like bisimulation, it is not robust; a very small change in probabilities will
likely result in non-bisimilar and “non-similar” processes. We will introduce a metric

that will allow us to refine our view of processes. This metric will assign a number to

every pair of processes, giving so an indication of how far they are from each other.
If the metric distance is 0, then the two processes will turn out to be bisimilar, and
conversely. Processes that are very “close” will get smaller distance than processes
that are “far” apart. In order to define these metrics, we will shift from the traditional
view of logical formulas to measurable functions into [0, 1]. These functions will play
the same role as the logic formulas we mentioned above, but in addition, they will
provide us with numbers that we will use to define the metrics.

The definition of bisimulation we work with is given in terms of the existence of a
relation between states of processes. In fact, the original presentation of bisimulation
for labelled Markov processes was given in categorical terms and the relational view
evolved later. The categorical view of bisimulation for labelled Markov processes is
based on the ideas of Joyal, Nielsen and Winskel [JNW96].

1.3 Outline of thesis

In the next chapter, we recall well-known definitions and results on non-probabilistic
labelled transition systems. We define these terms and explain the notion of bisim-
ulation and simulation and the intuition behind them. We also show how they are
characterized by a modal logic due to Hennessy and Milner. In Chapter 3, we state
all the basic definitions and motivations pertaining to our model. We explain what
labelled Markov processes are, the notions of bisimulation and simulation and how
these definitions are generalizations of their non-probabilistic analogues. We also
show how they are organized in a category and finally we give a few examples to
illustrate the ideas.

In Chapter 4, we define a simple probabilistic variant of Hennessy-Milner logic,
written £, as well as four other logics that are extensions of £, and we prove that
L characterizes bisimulation for labelled Markov processes. We also prove that by
adding disjunction to £ we can characterize simulation for discrete processes. We use
these characterizations to define two algorithms for finite-state systems, one that can
decide whether two states of a process are bisimilar, and the other that can decide

whether a state simulates another. Finally, we prove that all the logics we define

7

characterize bisimulation and discuss which one can characterize equivalence classes
of bisimilar states.

In Chapter 5, we show how to construct a family of finite-state processes from
any continuous-state process that approximates the process and show that we can
reconstruct the original process from the finite approximations. The finite-state ap-
proximations will be shown to be simulated by the process so that, in some sense,
they really only capture properties of the original process; conversely, we show that
every definable property that is satisfied by the process is satisfied by some finite-
state approximation. In Chapter 6, we define metrics for labelled Markov processes
that will strengthen these results by showing that the approximations of a process
converge to it in the metrics. These metrics are defined with the help of measurable
functions into {0,1]. The functions are shown to capture bisimulation in the sense
that they give equal value to, and only to, bisimilar states. A similar result is proven
for simulation in the case of discrete systems. We also show that the space of labelled
Markov processes is a separable metric space.

In Chapter 7, we give the alternative definition of bisimulation in categorical terms
and prove that it is equivalent to the relational definition we give in Chapter 3. We
also focus on discrete or finite-state processes and give some proofs in these systems
that are simpler than the same results on arbitrary systems.

Chapter 8 contains a short summary of the contributions we made and discussions
on related and future work.

In the appendix, we give some definitions from measure theory and probability

theory that are useful in the reading of this thesis.

Chapter 2

Background on non-probabilistic
transition systems

This chapter is a review of well-known definitions and results on non-probabilistic
labelled transition systems. Our analysis of probabilistic systems is based on these
ideas. A reader familiar with process algebra can skip this chapter.

A process is a dynamical system: it evolves in time by executing some actions or
by reacting to events, performing transitions between states. These transitions could
be purely internal or could be the result of an interaction with the environment. The
word “process” is used to refer to such systems and the phrase “transition system” is
used to refer to the explicit presentation of the states and transitions of the system.
One can think of processes as being defined by some syntax and the transition systems
as representing their semantics. In this thesis we will view processes as transition
systems and not discuss syntactic descriptions of processes. We recall the definition
of labelled transition systems in the next section. In Section 2, we give the intuition
behind bisimulation and simulation by describing two-player games that can be played
to determine if a system simulates another or if it is bisimilar to it. We then give the
formal definition of bisimulation and simulation which are in terms of the existence
of a relation between the states of the systems. In Section 4, we recall an alternative
formulation of bisimulation and simulation, given in a categorical setting. Finally, we
state the well-known characterization of bisimulation by Hennessy-Milner logic. This

is the prototype of the logical characterization results that we prove.

2.1 Labelled transition systems

The processes that concern us interact with their environment by synchronizing on
labels in the manner familiar from process algebra. Thus we have a set of states, a
set of labels and, for each state and label, there can be a transition. Suppose the
system is in state s and the environment chooses a label, say a; then the system makes
the corresponding a-labelled transition to a new state if the action a is enabled in
state s. In traditional process algebra, the resulting state is chosen arbitrarily from
a set of possible result states. In our case the result state is chosen according to
some given probability distribution. It is assumed that a process makes an a-labelled
transition only if the environment also simultaneously makes an a-labelled transition.
Thus interaction is synchronous. In practice, processes can perform internal moves
and change state between two given interactions with the environment but here we
are only interested in what the environment can really observe regarding the process,
therefore we do not use these internal transitions. In fact, in this thesis, we will
not even consider that these unobservable transitions take place; we will consider all

transitions as arising from the environment.

Definition 2.1.1 A labelled transition system is a tuple (S,i, A, —) where S is a
finite or countable set of states, ¢ € S is an initial state, A is a set of labels or actions,

and +C S x A x S is a set of transitions. When (s,a,s’) €— we write s = s'.

We fix the label set to be some A once and for all; we frequently refer to a labelled
transition system by its set of states. A transition system is often represented as a
transition graph. The vertices of the graph represent states of the system and an
arrow with label a connecting a state s to another state s’ represents an a-transition

from s to &', thus a triple (s, a,s’) € —>.

Example 2.1.2 Here are two simple labelled transition systems with initial states sg
and ty respectively. The first one is deterministic, whereas the second one has one

indeterminate transition from state ty. If the environment asks for action a, this

10

system can jump to either t; or t,.

So to
& N
S t1 tz
N | i
S2 S3 i3 ta

An important question in the theory of concurrency is the notion of process equiv-
alence: when do two labelled transition systems describe the same process? For ex-
ample, it could happen that a labelled transition system having an infinite number
of states behave like a very simple system with a finite number of states. Should we
consider the two processes of Example 2.1.2 equivalent? The notion of equivalence
between processes is commonly used to check if a given implementation matches its
specification. Typically, both the specification and the implementation are described
as labelled transition systems, and then we check if the processes derived are equiv-
alent. There are several different notions of equivalence. One of the most basic and
mathematically pleasing notions is strong bisimulation due to Milner [Mil80] and
Park [Par81]. Strong bisimulation comes with a theory rich in results: the classical
characterization is in terms of the existence of a relation between states of the sys-
tems, but there are as well a two-player game and a logic that characterize strong
bisimulation. More interestingly for concurrency theory, strong bisimulation has a
pleasant algebraic theory: it is compositional and can be characterized as a fixed
point. Roughly speaking, two labelled transition systems are strongly bisimilar if
they are indistinguishable from the point of view of the user. At each point of inter-
action, every move that can be taken by any of them can be matched by the other.
The adjective “strong” refers to the fact that invisible moves are not considered in
analyzing systems, all moves are visible. Since this is the only kind of bisimulation
we are interested in, we will drop the word “strong” in the sequel. There is a notion
of weak bistimulation that distinguishes internal actions from visible ones. Another
notion of equivalence that is widely used in language theory is trace-equivalence. This

notion is concerned with which sequences of actions are accepted by a process. Two

11

processes are trace-equivalent if they accept the same sequences of actions. This will
be illustrated in Example 2.1.3. The main disadvantage of this equivalence from the
point of view of concurrency theory is that it is not compositional. If we compose
two processes that are trace-equivalent with a third process, the results may not be
trace-equivalent.

Sometimes equivalence relations like bisimulation may be too strong. They only
tell us if two processes are equivalent. We may be interested in knowing if a process,
though not equivalent to another one, can replace it. The preorder analogue of
bisimulation is simulation. It tells when a system is “better than” another. That is,
when — from the user’s point of view — a system allows at least the same possibilities
as the other. We can use simulation to check if an implementation simulates its
specifications, that is, it is able to do at least what it was required to do.

To see what simulation and bisimulation are, let us recall Milner’s interpretation
of a process: it is a black box on the top of which there are buttons which are
labelled. We want to investigate the behaviour of the process by demanding it to
accept labels one at a time. If an a-transition is enabled, button a will be unlocked and
go down when pressed. If not, the button will be locked. This is what simulation and
bisimulation will witness: how systems interact with their environment, in particular,
it will record what transitions are or are not enabled. This is in contrast with trace-

equivalence where only enabled transitions are recorded.

Example 2.1.3 Consider the classical transition systems of Ezample 2.1.2. These
two systems are trace-equivalent: they accept the same language, namely the sequences
ab and ac. Now if we study their interaction with their environment, they can be
distinguished easily. The first system will always accept an attempt to press button
a followed by b, whereas the second may have its b-button locked after accepting a.

Hence they are not bisimilar. On the other hand, the former does simulate the latter.

On the other hand, if we restrict to deterministic labelled transition systems —that
is, we do not allow more than one transition with a given label out of a state, we

have that bisimulation is the same as trace-equivalence: two systems are bisimilar if

12

they have the same trace set (see [Mil89]). Moreover, a system S simulates another,
say T, if the trace set of S contains the trace set of T. Hence in this case, we also
have that bisimulation is equivalent to two-way simulation. We say that two systems
are two-way stmilar if they simulate each other. For indeterminate processes, the

following example illustrates that the situation is different.

Example 2.1.4 The following two systems simulate each other but are not bisimilar.

So to
l« N
S tl t2
RN N
52 S3 t3 t4

After accepting action a when in state ty the second process may jump to state t,
where no action is enabled. On the contrary, the first process, in state sg, will always
accept action a followed by b. By pressing buttons on both processes, we may not get

the same answers; hence they are not bisimilar.

2.2 Simulation and bisimulation: a game descrip-
tion

Before stating the classical formal definition of simulation and bisimulation, we de-
scribe a characterization in terms of games that is based on the idea of pressing
buttons we mentioned above. This gives a good intuitive feeling for the concepts.
We begin with simulation. Let S and S’ be two labelled transition systems,
and assume we have two players, one of them, called Player, trying to show that
S is simulated by S’, and the other one, Opponent, trying to show the contrary.
Informally, a play progresses as follows. Opponent starts out by choosing a transition
from the initial state of S with a label, say a; if Player cannot match the move with
a transition from the initial state of S’ with the same label, he loses. Otherwise, he
chooses such a matching transition, and it is again Opponent’s turn to move. He

chooses a transition leading out of the state arrived at in the previous pair of moves.

13

Again Player is required to match with an equally labelled transition in S’. The
play continues like this forever, in which case Player wins, or until either Player or
Opponent is unable to move, in which case the other participant wins. S is simulated
by S’ if and only if Player has a winning strategy. If there is some play where

Opponent can win, S is not simulated by S’.

Example 2.2.1 Let us go back to Ezample 2.1.2 and show that by playing this game,
Opponent can succeed in showing that the second one does not simulate the first one,
but that the converse is not true. Opponent starts up by choosing, from state sq, the
transition a to state s,: to this, Player has no choice but to choose an a-transition
from tg to t, or ta. In the first case, Opponent then chooses s3, in the second one, he
chooses so: in either cases, Player won’t be able to match the move, thus the process
to does not simulate so. On the other hand, sq does simulate ty, since no matter which
sequence of transitions on the second system Opponent picks, Player will be able to

match the move at each step.

The game for bisimulation is a variation of the previous one. However, the dif-
ference is crucial and it makes bisimulation much stronger than simulation and also
much stronger than simulation in both directions. The difference in the rules of the
game is that Opponent is not required to play in the same system all the time. When
he chooses a transition at the beginning, he can choose it from the initial state of
either system, forcing Player to play in the other one, and when he chooses a transi-
tion from a state at any point in the game, he can do it from any of the two states
arrived at in the previous pair of moves, that is, he can change machine at will. The
fact that Opponent is allowed to change machine captures the notion of equivalence
needed for bisimulation: if two states are equivalent, it should not matter from which
state Opponent performs its move for Player to be able to match it. The winner is
determined in the same way, and two systems are bisimilar if and only if Player has

a winning strategy.

Example 2.2.2 To illustrate bisimulation, let us go back to Ezample 2.1.4. Since sg

and ty simulate each other, Opponent will have to change process during the play to

14

show that they are not bisimilar. He starts up by choosing ty and the a-transition to
t,. Player must choose sy and jump to s,. But then, Opponent switches processes and
chooses the b-transition from s, to s,. Player cannot play, and looses. Therefore, the

two systems are not bisimilar.

2.3 Formal definitions of bisimulation and
simulation

The definition of bisimulation was formulated by Milner [Mil80] and described as a
fixed point by Park [Par81].

Definition 2.3.1 Let (S,i,—) and (S',7', ') be two labelled transition systems. A
relation R C S x S’ is a stmulation if (s,s’) € R implies that for alla € A,

a
e if s > t, then there exists t' € S' such that s' —' ¢’ and (t,t') € R.

A state s is simulated by s’ if there exists a simulation R such that (s,s’) € R; S is
stmulated by S' if i is simulated by . A relation R C S x S’ is a bisimulation if

(s,s') € R implies that for alla € A,
e if s = t, then there exists t' € S’ such that s’ —a>' t' and (t,t') € R; and
® if s S t', then there exists t € S such that s =t and (t,t') € R.
Two states s, s’ are bisimilar if there exists a bisimulation R such that (s,s’) € R. S

s bisimilar to S’ if i is bisimilar to 7'.

2.4 The categorical definition of bisimulation

In [JNW96], Joyal, Nielsen and Winskel gave a categorical formulation of bisimulation
for ordinary labelled transition systems. We will give a similar formulation of bisim-
ulation for labelled Markov processes. See [BW90, Mac71] for definitions relating to
category theory.

Simulation is easily formulated in terms of morphisms between processes. Indeed,

a system S is simulated by S’ if there is a function f : § — S’ that sends the initial

15

state of S to the initial state of S’ and preserves transitions, that is, every move that
can be done by a state s in S can be imitated by f(s) in S’; moreover, if a move
from s leads to say, state t € S, then f(s) can match this move by jumping to a state
which again simulates £, namely f(¢). At first sight, the direction of the arrow (from
the simulated to the simulating process) may appear wrong, but one must keep in
mind that we want every state of S to have a corresponding simulating state in S’.
Hence it is natural to use a map that gives an image in S’ to every state of S.

Formulating bisimulation in this context is done by using spans which are the
analogue of relations in a categorical setting. A span between two objects S; and S,
of a category is a third object T together with morphisms from T to both S; and
Sz. Consider Sets, the category having sets as objects and functions between sets as
morphisms. One can think of a relation as a span. For any relation R between two
sets 51 and Sy, the set of ordered pairs {(s;, s2) € S; x S3 | s1Rs,} together with the
projection morphisms is a span between S, and S, in Sets; conversely, given a span
T,fi: T — S;, i =1,2, we can define the relation R C S| x S, as s; Rs» if there is a
t € T such that f;(t) = s; and fo(¢) = s».

The categorical definition of bisimulation will be in terms of the existence of
a span of special morphisms, encoding in this manner the equivalence relation of
Definition 2.3.1. These special morphisms will relate in particular bisimilar processes;
hence, they must satisfy a condition that captures the notion of Definition 2.3.1, and

thus not only preserve (as simulation morphisms do) but also “reflect” transitions.

Definition 2.4.1 Let (S,7,—) and (5',7, —’) be two transition systems with the
same labeling set A. A simulation morphism from S to S’ is a function f: S — 5’
such that f(i) =7 and

s B s = fs) ' F(s).

The morphism f is called zigzag if and only if for all states s of S
a
if f(s) =»'s'in S’, then s = u in S and f(u) = §', for some state u of S.

It is easy to check that morphisms with labelled transition systems form a category.

16

Theorem 2.4.2 S is simulated by S’ if and only if there is a simulation morphism

from S to S'.

Theorem 2.4.3 Two labelled transition systems T', T' are bisimilar if and only if

there is a span of zigzag morphisms f and f' between them.
S
2 N
T T

The following example illustrates why bisimulation has to be defined in terms of

a span of zigzag morphisms instead of just a zigzag morphism.

Example 2.4.4 The two following processes are bistmilar but there is no zigzag mor-

phism between them in either direction.

SN N
g o)

If we want to really work in a categorical setting, we can use the statement of
Theorem 2.4.3 as the definition of bisimulation. In that case, we have to check that
bisimulation is an equivalence relation.

Since the identity morphism is a zigzag morphism, any system is bisimilar to itself
and hence bisimulation is reflexive; it is also clearly symmetric. Transitivity of bisim-
ulation is equivalent to the following property: for every pair of zigzag morphisms

f1 and f> having domain S; and S, respectively and a common codomain S, we can

always complete the square with zigzag morphisms as in the following diagram.

The proof that bisimulation defined as a span is an equivalence can be found in
[JINW96] for transition systems with independence!: it is proved that in this category
we have pullbacks, which implies the result. Technically, the span U needs not be a
pullback, and indeed, in the category of labelled Markov processes that we will define,
the square can be completed but we do not have pullbacks.

In the following, we give an example of how bisimulation can be used to check if

an implementation matches its specifications.

Example 2.4.5 Suppose we have a cell:

put
cell, cells
get

where cell, and celly are understood to be respectively the empty and the full cell. Now

suppose we want to implement a bag of size 2 using this cell. Here is our bag of size

two:
put put
— onr—
bagy __ bag; __ bag,
get get

where the indez attached to bag represents the number of messages present in the bag.
We ezpect that we can implement this bag by putting two cells in parallel cell.|cell..
Without gotng into the details of how two processes are put in parallel, just note that
the states are now pairs of states and transitions happen from one state if either one
or the other coordinate of the pair can perform the action to the same coordinate of

the arriving state. This is easily understood in the next picture.

cell.|cell.
get get)
cellg|cell, cell.|celly

‘\Imt yt/
get * get

celly|celly

Lo

1 Transition systems with independence are labelled transition systems with an additional relation
on transitions that tells us when two transitions are independent, that is, they can be performed in
any order.

18

In order to show that cell;|cell. is a good tmplementation of bag,, we can verify that
they are bisimilar by constructing a zigzag morphism from the former to the latter.
The morphism which sends cell.|cell, to bag,, cellf|cell; to bag, and the two other
states where exactly one cell is full to bag, is easily proved to be zigzag. Thus we can

conclude that our implementation is correct.

2.5 Hennessy-Milner logic

Bisimulation between states of labelled transition systems is characterized by a modal
logic due to Hennessy and Milner [HM85]. Two states are bisimilar if and only if they
satisfy the same formulas of the logic. What is interesting about this fact is that if
we want to verify that two systems are not bisimilar, we only have to find a formula
that distinguishes them. Moreover, the witnessing formula gives information about
why the states are not bisimilar.

A logic can also be used to describe properties that we want our system to satisfy.

Hennessy-Milner logic has the following syntax:

HML:=T|-¢]| A ¢[(a)¢
ieN
The interpretation of the formulas is as follows. Formula T is satisfied by every
state and the modal formula (a)¢ is satisfied by a state if this state can make an

a-transition to a state that satisfies ¢. Negation and conjunction are defined in the

obvious way.

This logic characterizes bisimulation for labelled transition systems.

Example 2.5.1 As we saw in a previous example, the two following processes are

: N
N T

19

not bisimzilar

and hence we can distinguish them using Hennessy-Milner logic: s satisfies the for-
mula (a)((b)T A (c)T) but t does not. This formulas is satisfied by states that can

jump with label a to a state that can perform both actions b and c.

If we remove negation from this logic and restrict to finite conjunction, it is not
hard to prove that we obtain a logic (henceforth HML™) that characterizes simulation
for finitely branching systems. A state simulates another if it satisfies all the formulas
the other satisfies. We have not seen this result proven explicitly in the literature. The
proof is as follows. The non-trivial direction is to show that the relation R defined as
sRs' if all the formulas of HML* satisfied by s are also satisfied by s’ is a simulation
relation between (5,7, —) and (S',7, ') (for s € S, s’ € S’). Let sRs’ and assume
that s = t. Let {¢1, #2,...} be the formulas satisfied by £. Then s |= (a)¢; for all
¢ > 1, and hence s’ = (a)¢; for ali i > 1. Consider the formula (a) A%, ¢;. This
formula is satisfied by both s and s’ for all n > 1. Then for all n > 1, there is some
¢’ such that s’ 3 ¢’ and ¢’ |= A% ¢;. Now since S’ is finitely branching, there is some
t' such that ¢’ = A%_,¢; for all n > 1, and hence ¢ satisfies all the formulas that ¢
satisfies, i.e., tRt/, as wanted.

It is not known if any logic characterizes simulation for non-probabilistic processes
with infinite branching. However, even for finitely branching systems, there is no logic
that characterizes both simulation and bisimulation. The reason is that negation is
necessary in HML to characterize bisimulation; on the other hand, no logic containing
negation can characterize simulation, for a state that satisfies all the formulas another
state satisfies would then satisfy exactly the same formulas as the other. This corre-
sponds to the fact that bisimulation is not equivalent to two-way simulation. We gave
examples of processes that are two-way similar but not bisimilar in Example 2.1.4.

Recall that if we restrict to deterministic labelled transition systems, it is known
that traces completely determine the systems [Mil89]. Hence, both simulation and
bisimulation for deterministic processes are characterized by the logic: T | (a)¢, where
a is a label.

We will see that for labelled Markov processes, the situation is the same as in the

deterministic case. The same logic can characterize both simulation —for countable

20

processes, possibly infinitely branching— and bisimulation —for arbitrary processes,
and hence bisimulation is equivalent to two-way simulation. This suggests that prob-

abilistic processes are closer to deterministic processes than to indeterminate pro-

Cesses.

21

Chapter 3

Labelled Markov processes

This chapter is central to the thesis. It contains all the basic definitions and motiva-
tions about our model. We explain what labelled Markov processes are, the notions
of bisimulation and simulation and how these definitions are generalizations of their
non-probabilistic analogues.

A Markov process —as described more formally below— is a transition system with
the property that the transitions depend only on the current state and not on the
past history of the system. Moreover, the transitions are indeterminate and are gov-
erned by a probabilistic law. The labelled transition systems introduced in the last
chapter also have transitions (though not probabilistic) that do not depend on the
past history of the process. Transitions depend on the current state and the environ-
ment; the interaction with the environment is described by a set of labels. Labelled
Markov processes combine the properties of both labelled transition systems and tra-
ditional Markov processes. Transitions are labelled to model the interaction with the
environment: for each label and each state, there is one transition possible. This
transition is indeterminate and the indeterminacy is quantified with a probability
distribution that does not depend on the past history of the process. The most sig-
nificant innovation is that we allow the state-space to be continuous in order to model
physical systems. A discrete version of these processes —called probabilistic labelled
transition systems— was introduced by Larsen and Skou in [LS91]. In this model,
there is no indeterminacy beyond the probabilistically quantified internal choice. In

any process algebra based with parallel composition and hiding, pure (unquantified)

22

indeterminacy will arise. How this will be incorporated is the subject of ongoing
research. See [DGJP99b] for an example of a process algebra with parallel composi-
tion but no hiding. In [GJP99], a probabilistic concurrent constraint programming
is presented with parallel composition and hiding but the treatment there exploits
special features of constraint programming and does not generalize in any simple way
to process algebra.

In traditional Markov processes, the probability distributions always sum up to
1. In labelled Markov processes we will allow this sum to be less than 1. If the sum
is 0, we will interpret this as meaning that a transition with this label cannot be
performed. What is often done in traditional probability theory is that a state with
no possibility of making a transition is modeled by having a transition back to itself.
For questions concerning which states will eventually be reached (the bulk of the
analysis in the traditional literature) this is convenient. If, however, we are modeling
the interactions that the system has with its environment, it is essential that we make
a distinction between a state that can make a transition and one that cannot. This is
the same situation as in the non-probabilistic case. In a given state, some actions are
enabled and some are not. What is usually studied is the corresponding probabilistic
situation where the sum is either 0 or 1. We interpret the fact that the sum can be
strictly between 0 and 1 with the notion of underspecification. If this sum is at some
state, say, 3/4, for some action, it means that part of the behaviour is unknown. More
precisely, the probability is 1/4 that the action is not accepted. An example of such
a process is a button that “sometimes” rings a bell when pressed. Let us suppose
that with probability 3/4 the action “ring” is accepted (i.e., the button goes down)
and the bell rings, and with probability 1/4 the bell does not ring. We really want
to model this as a one-state system having a transition labelled ring of probability
3/4 back to itself. It makes no sense to model the missing probability with another
ring-transition from the state to itself having probability 1/4. There would be no
difference between this system and the one that has probability one of accepting action
ring. (One could be tempted to add a transition of probability 1/4 from the state to

itself or to some other state labelled by no-ring, but this is another action; moreover,

23

it does not represent a possible interaction with the environment.) The notion of
simulation that we will also define for labelled Markov processes gives us another
motivation for underspecifying the transition probabilities. Roughly speaking, we say
that a process simulates another one if it can perform the same actions with equal or
higher probability. So if the bell above can be activated by another button of higher
reliability than the one we considered earlier, for example one having probability 7/8
of ringing, we would like to say that the new one simulates the old one. The only
transitions that have to be matched in the simulation relation are the ones that are
defined. If the process is underspecified, the part of the transition that is missing will
simply not be simulated as it represents unwanted behaviour.

We first describe what traditional Markov processes are, mainly to justify the ter-
minology. A knowledgeable reader can safely skip this section and jump directly to
the next one where we recall the definition of probabilistic labelled transition systems
introduced by Larsen and Skou. We then define labelled Markov processes which
are the generalization to continuous state-space of probabilistic labelled transition
systems. We show how these processes are organized in a category by defining sim-
ulation morphisms and zigzag morphisms and give the definition of the bisimulation
relation we will adopt as well as the simulation relation. We end the chapter with a

few examples of bisimulation and simulation.

3.1 Markov processes

Stochastic processes are dynamical systems where the evolution is governed by a
probabilistic law. Most of the missing definitions can be found in Appendix A which
recalls basic mathematical definitions that will be useful throughout the thesis. We
review the standard definition of stochastic processes and relate it to the transition

system view.

Definition 3.1.1 Let (Q, F, P) be a probability space. A stochastic process is an
indezed family of random variables X, : Q — (S, X), where t comes from an indezing

set T and (S,X) is a measurable space. If T is countable, then it is called a discrete-

24

time stochastic process.

The index ¢ often represents time, and hence if w € 2, X;(w) represents the value of
w at time £. In this sense, Q is the path space. We rarely use it. The actual state
space of the transition system we have in mind is S.

For every t € T, we have a probability distribution P, : ¥ — [0,1] defined as
P,(A) = P(X;!(A)); this is often written P(X; € A). One can think of this prob-
ability distribution as representing the state of a transition system. P;(A) is the
probability that at time ¢, the system is in a state in the set A. If the indexing set is
N, the passage from P; to P,;; can be interpreted as a transition of the system. A
Markov process is a stochastic process with the property that the transitions depend

only on the current state and not on the past history of the process.

Definition 3.1.2 Let (2, F, P) be a probability space. A discrete-time Markov pro-

cess is a stochastic process with N as indez set that satisfies
P(Xp41 € AlXy =x31,..., X0 = z5) = P(Xa+1 € AlXn = za)-
A Markov process is time-independent if
P(Xp41 € AlX,, = 1,) = P(Xp+it1 € Al Xnpi = Znti),
for alli > 1.

If a Markov process is time-independent, it can be described with just two consec-
utive random variables, for example X; and X5. A time-independent Markov process
can be viewed as a (probabilistic) transition system in the following way. The state
space is the codomain of the Markov process (S, X), there is only one label and the
transitions are as follows. The probability that the state z makes a transition to the
set A is P(X; € A|X, =zx).

3.2 Probabilistic labelled transition systems

We recall the definitions of probabilistic labelled transition systems and probabilistic

bisimulation as introduced by Larsen and Skou in [LS91].

25

We saw in the last chapter that labelled transition systems can have non-determi-
nistic transitions, that is, from one state there may be more than one transition
with the same label pointing to different states. In a probabilistic labelled transition
system, this indeterminacy is quantified. The process evolves following a probabilistic
law: if it interacts with the environment by synchronizing on a label, it makes a
transition to a new state according to a transition probability distribution. The
transitions are specified by giving, for each label, a probability for going from one

state to another.

Definition 3.2.1 A probabilistic labelled transition system is a tuple (S, A, P),
where S is a countable set of states (or processes), A is a set of labels (or actions),
and for each a € A, we have a function,
P,:S xS —[0,1]
satisfying the property
Vac A,s€S,) Puis,s)=0 or 1
s'€S
Notice that there is no initial state in these systems. In fact, every state s in S
determines a process having s as its initial state.

We interpret the equation } ycg P,(s,s’) = 0 as the fact that state s cannot
perform action a. If it can, the sum is 1. Note that there is no probability distribution
associated to the external choice. This means that the choice between an action and
another is entirely governed by the environment and we do not attach probabilities to
it. This is the so-called reactive model (see for example [vGSST90] for a comparison
of different models).

We will represent probabilistic labelled transition systems as transition graphs
whose edges are labelled with an action and a probability. If the label of the transition
is a and the probability p, we will label the arrow of the graph as a[p]. We will
often drop the probability when p = 1 and just write a; on the other hand, in
examples where there is only one action enabled, the arrows will be labeled only by

the probability.

26

As we had for non-probabilistic processes, we would like a notion of equivalence
between processes. An important first observation is that one cannot treat the prob-
ability like another label. To do so would mean that a relation is a bisimulation if
whenever two state are related then they can match each other’s moves to bisimi-
lar states, where by matching we mean the the label and the probability are both

matched. For example, consider the next picture.

s t

o N
51 t1 th
l"m bm[[bm
S2

5] t,

If we just try to match the label and the probabilities, then s and ¢ are not bisimilar
because s can jump to s; with probability 1 whereas ¢ cannot jump to any state with
probability 1. However, we expect s and ¢ to be bisimilar because both can jump with
probability one to respectively the state s; and the states ¢;,¢,, which are obviously
all bisimilar. This tells us that we need to add the probabilities in some specific way.
The definition of bisimulation will capture this; it says intuitively that two states are
probabilistically bisimilar if, for every label, they can jump with equal probability
to “maximal” sets of bisimilar states, i.e., sets that are closed under the equivalence
relation.

In what follows we assume a fixed label set given once and for all and we will

frequently suppress explicit mention of the labels.

Definition 3.2.2 Let S = (S, P) be a probabilistic labelled transition system. Then a
probabilistic bisimulation =,, is an equivalence on S such that, whenever s =, t,
we have that for all a € A and for every equivalence class A € S/ =,

Y Pu(s,s') = Y PRuft,s).

s'€L s'€A
Two states s and t are said to be probabilistically bisimilar (s ~ps t) in case (s,t)

is contained in some probabilistic bisimulation.

27

We can interpret this as saying that two states are bisimilar if we get the same prob-
ability when we add up the transition probabilities to all the states in an equivalence
class of bisimilar states. The addition is crucial — the probabilities are not just an-
other label. The subtlety in the definition is that one has to somehow know what
states are probabilistically bisimilar in order to know what the equivalence classes
are, which in turn one needs in order to compute the probabilities to match them
appropriately.

As an example of probabilistic bisimulation, we illustrate two processes which are

a small variation of the previous example.

So

to
la N
Sl t tl
by w\%] [1
b [b
S2 sh

128 t,

The equivalence relation that relates states having the same index is a probabilistic
bisimulation (for example, s, ¢; and ¢] all have probability 1 of jumping to the

equivalence class {s2, 5, %2, 5}).

3.3 Labelled Markov processes

Labelled Markov Processes extend both Markov processes and probabilistic labelled
transition systems. They are Markov processes to which we add interaction with
the environment by use of labelled transitions. For every state and every label, the
probability that a transition be performed depends only on the current state and not
on the past history of the process.

Labelled Markov processes also generalize the notion of probabilistic labelled tran-
sition systems to continuous state spaces. When the state space is countable, we can
specify transitions by giving, for each label, a probability for going from one state to
another. In the case of a continuous state space like the reals, however, one cannot

just specify transition probabilities from one state to another because in many inter-

28

esting systems all such transition probabilities would be zero. More importantly, one
cannot determine the probability of any set by adding the probabilities of the points.
One can only add the probabilities of countably many disjoint sets. Instead, we must
talk about the probability of going from a state s to a set of states A. Therefore
we must work with probability measures and equip our state space with a o-field of
measurable sets. A review of the pertinent definitions appears in the appendix.
Transitions in labelled Markov processes will be modeled with transition sub-

probability functions.

Definition 3.3.1 A transition sub-probability function on a measurable space
(X,X) is a function 7 : X XX — [0, 1] such that for each fired z € X, the set function
7(z,) : ¥ — [0,1] is a sub-probability measure, and for each fired A € ¥ the function

7(-, A) : X — [0,1] ¢s a measurable function.

7(z, A) represents the probability of the system, starting in state z, of making a tran-
sition into one of the states in A. The transition probability is really a conditional
probability of the kind we encounter in traditional Markov processes; it gives the prob-
ability of the system being in one of the states of the set A after the transition, given
that it was in the state = before the transition. In general the transition probabilities
could depend on time, in the sense that the transition probability could be different at
every step (but still independent of past history); we consider the time-independent
case.

The key mathematical construction, as we shall see later, requires an analytic
space structure on the set of states. Thus instead of imposing an arbitrary o-field
structure on the set of states, we require that the set of states be an analytic space

and the o-field be the Borel algebra generated by the topology.

Definition 3.3.2 A labelled Markov process with label set A is a structure S =
(S,i,Z, {1a | a € A}), where S is the set of states, which is assumed to be an enalytic

space, © € S 1is the initial state, and X is the Borel o-field on S, and
YVa€ A,7,: S x ¥ —[0,1]
is a transition sub-probability function.

29

We will fix the label set to be some A once and for all and write S = (S, 4, X, 7)
for labelled Markov processes, instead of the more precise (S,,L, {7, | ¢ € A}). The
technical reasons why we assume that the state space is analytic will be discussed
later when we will prove that bisimulation is characterized by a simple logic. Note
that any discrete space is analytic and all the familiar continuous spaces, for example
any of the Borel subsets of R", and their images by a measurable function (which are
not always Borel) are analytic as well.

One of the characteristics of an analytic space is that its Borel o-field must contain
all singletons. Consequently, when we consider a discrete process, that is, a process
whose state space is countable or finite, the o-field is always the powerset of S.
In that case we omit the o-field and simply write (S,7,7). It is easy to see that
probabilistic labelled transition systems are discrete labelled Markov processes. For
these processes, we use the phrase “labelled Markov chain” rather than “discrete,
labelled, Markov process” or “probabilistic labelled transition system”. Since the
transition probabilities are entirely determined by transitions to points, we often
describe transitions in labelled Markov chains by specifying only the probabilities of
transitions to singletons. In so doing, we usually omit the curly brackets around the
singletons.

As in the non-probabilistic case, not all processes should accept any action from
any state with probability one. Otherwise, they would all have the same observational
behaviour. In the non-probabilistic case, this is implicit in the definition of transitions,
which are triples (s, a, s’). An action a is not accepted in a state s if and only if there is
no s’ such that (s, a,s’) €—. In the probabilistic case, transitions are defined as sub-
probability measures. Thus an action is not enabled in a state if the corresponding
transition probability to jump from that state to the set of all states is 0. The next
example illustrates a trivial process from the point of view of interaction. It is a

process where all states always accept action a with probability 1.

Example 3.3.3 Consider the labelled Markov process (R,0, B, 7) having the reals as

set of states, 0 as initial state, the Borel sets as o-field, and 7, defined as
1 v
Ta(Zo, [u,v]) = 7_r/ exp(—(z — z0)?)dz,

30

where o, u,v € R (here A = {a}). This process appears complicated, but it is very
stmple if we consider its observed behaviour. Indeed, no matter what happens “inside”
the process, no matter what the internal states actually are, this process will always
accept label a with probability 1. Thus from the point of view of an ezternal observer,
it has an extremely simple behaviour: it is bisimilar to a one-state process which has

an a-labelled transition from the state to itself with probability 1.

This example allows us to clarify the discussion at the beginning of the chapter.
All of conventional stochastic process theory is concerned with systems like the one
above. From our point of view they are trivial. This is to be expected, as we are
modeling interaction and all such systems are indeed trivial from the point of view
of interaction. In order to get nontrivial examples, one has to consider systems with
richer label sets, and which are not always capable of making transitions with every
label. Recall that in our model, this is reflected in the fact that for each state and
action, the transition probability can sum up to less than 1 on the set of all states.
The example above also shows how bisimulation can be useful. We may have
different descriptions of processes that have equivalent behaviour. In particular, a
process with even an uncountable number of states may be bisimilar to a finite state
process. This information is very valuable because reasoning about finite processes is

much easier than reasoning about continuous ones.

3.4 The category LMP

We will organize the space of labelled Markov processes in a category. The motivation
is mainly in the study of bisimulation between processes. In the next section we for-
mulate bisimulation in a manner similar to the Larsen-Skou definition of probabilistic
bisimulation, using relations and transitions to equivalence classes. In Chapter 7 we
will give a categorical view of bisimulation for labelled Markov processes, following
the ideas of Joyal, Nielsen and Winskel [JNW96], that we have recalled in Chap-
ter 2 for non-probabilistic processes. It is convenient to have a functional version of

bisimulation, especially to define quotients; we will indeed use the morphisms of the

31

category defined below for this purpose in Section 4.2.

The objects of the category are labelled Markov processes and the morphisms will
be simulation morphisms, as for non-probabilistic processes. Intuitively a simulation
says that the simulating process can make all the transitions of the simulated process
with greater probability than in the process being simulated. A simulation morphism
will witness this fact. For example, consider the processes (that involve only one
label) in the next picture, and the function f that maps states of the first process to

states having the same index in the second process.

So tO
PN AN
3 _L_)
S1 S2 EA 131 t2
(] [f1] l l[ll

S3 t3 ta

The mapping is done in such a way that if s has probability a of jumping to a set
of states A, then f(s) has probability > a of jumping to f(A) (for example s; has
probability 1/2 of jumping to {s2, s5}, and f(so) = to has probability 2/3 of jumping
to {f(s2), f(s5)} = {t2}). The function f is an example of what we will define to be
a simulation morphism.

In this example, every set A that we can consider is countable, hence we can talk
about f(A) since it is obviously measurable. For uncountable processes, however,
we cannot assume f(A) to be measurable, and thus we must demand that f(s) have
probability > o of jumping to any measurable set containing f(A); this is equivalent
to the property given in the definition below. If a morphism furthermore satisfies the
converse, i.e., if f(s) has probability a of jumping to a set of states A’, then s has
probability > o« of jumping to f~!(A4’), it will be called zigzag. Processes related by

a zigzag morphism are intuitively expected to be bisimilar.

Definition 3.4.1 A simulation morphism f between two labelled Markov pro-
cesses, § = (5,:,2,7) and &' = (§',i,X',7') is a measurable function f : (S, X)
— (S',L') such that f(i) =17, and for alla € A, s € S and for every measurable set

32

ey,
7a(s, f71(0")) < 73(f(2),0%)-

f is a zigzag morphism if the preceding inequality is an equality.

We require the morphisms to be measurable! for the definition to make sense.
If f were not measurable we would not be guaranteed that f~!(¢’) is measurable.
In [BDEP97], we required the zigzag morphisms to be surjective; we have replaced this
requirement by initial states in the processes that must be preserved by morphisms.
The effect of this is intuitively that every state of S must be bisimilar to its image, but
we do not necessarily have that every state in &’ has a preimage. However, because
of the initial state preservation condition, we need to have so to speak “enough”
states in S’ for the initial states to be bisimilar. Hence, if a state in the image S’ is
“reachable” —whatever this means for continuous state-space systems—, then it will
turn out to have a preimage because the condition must be satisfied for every path
from the initial state.

Observe that if we are dealing with what is sometimes called a total process, that
is, a process where all the transitions to the whole space are equal to either 0 or 1,
then the inequality in the above definition is strict for some s, a and o’ if and only
if s cannot perform action a, i.e., 75(s,S) = 0. This means that if f : § — S" is a
simulation morphism and if S and S8’ are not bisimilar, then the difference between
them is entirely witnessed by the fact that there are states in & that cannot perform
actions that f(s) can perform.

It is easy to check that labelled Markov processes with simulation morphisms form

a category.

Definition 3.4.2 The objects of the category LMP are labelled Markov processes,

having a fized set A as the set of labels, with simulations as the morphisms.

'In older texts, such as Halmos [Hal74] or Rudin [Rud66] measurable is defined to mean that
the inverse image of an open set is measurable. This means that the composite of two measurable
functions need not be measurable. Our definitions are the current standard and, of course, with this
definition, the composite of two measurable functions is measurable.

33

Simulation and zigzag morphisms for labelled Markov processes extend the cor-
responding standard notions for labelled transition systems that we recalled in Sec-
tion 2.4. Given a labelled Markov chain (S,%,7), we can define a labelled transition
system (lts) with the same label set as follows. We take the same set of states S and we
define a labelled transition relation -C (S x.A x S) by (s,a,t) €— <= T7,(s,t) > 0.
Recall that given two labelled transition systems, (S, —) and (S’,—'), a function
f : S — 8 is a simulation morphism if for every states s,t € S;, s — ¢ implies
f(s) %' f (t). The morphism is zigzag if it also satisfies the converse: whenever
f(s) 3’ ¢, then there exists t € S such that f(t) = ¢ and s % t. We cannot
define simulation morphisms this way for labelled Markov processes because we can
easily have systems where all the point-to-point transition probabilities are zero but
the Markov process is nontrivial because the transition probabilities are nonzero to

“larger” sets.

Proposition 3.4.3 Given two labelled Markov chains, a simulation morphism (resp.
zigzag morphism) between them is also a simulation morphism (resp. zigzag mor-

phism) between the associated labelled transition systems.

Proof . Suppose that we have two labelled Markov chains (S, 7, 7) and (5’, ¢, 7') with
f a simulation morphism from S to S’. Now suppose that in the associated Its the
transition s; — s, is possible. This means that 7,(s;, {s2}) > 0. Since f is a
morphism we must have that 7.(f(s1), {f(s2)}) = 1a(s1, F7H(f(82))) = 7a(s1, {52}) >
0; hence in the Its f(s;) — f(s2) is possible. Now if f is zigzag, then for every s’ € S’
we have 7,(s;, f~1(s")) = 72(f(s1),{s'}). Soif in the associated lts the transition f(s;)
—» &' is possible, then 7,(s1, f~}(s')) > 0 and hence there is some s, € f~!(s') to

which s; can make an a-transition. [|

3.5 Bisimulation relation

The notion of bisimulation for labelled Markov processes is a generalization of the
definition of Larsen and Skou for discrete processes, which is a compelling, natural

notion. We saw earlier that they define bisimulation as an equivalence relation on the

34

states satisfying the condition that equivalent states have equal probability of making
an a-transition to any equivalence class of states. We will adapt this definition to the
continuous case, thus we now have to take measurability into consideration. We will
rather demand that equivalent states have equal probability of making an a-transition
to any measurable set of equivalence classes of states. The reason is that, as we said
before, in many continuous processes, transitions to singletons are all zero, and hence
so are transitions to countable sets. In these systems, if we used the definition of
Larsen and Skou unchanged, any equivalence relation whose equivalence classes are
countable would be a bisimulation relation; hence we could relate any two states we
want.

Instead of talking about sets of equivalence classes we will rather use the notion
of R-closed sets. Let R be a relation on a set S. We say a set X C S is R-closed if
R(X) = {t|3s € X, sRt} is a subset of X. If R is reflexive, this becomes R(X) = X.

If R is an equivalence relation, X is a union of equivalence classes.

Definition 3.5.1 A bisimulation relation between two labelled Markov processes
S =(5,4,%,7) and §' = (§',7,¥',7") is an equivalence relation R on S S’ such
that, for s € S and s' € S’, with sRs', for every R-closed set A C S S’ such that
ANSeX and ANS €Y, we have

Ta(s,ANS) = T.(s, AN S")

for every a € A. Two states are bisimilar if they are related by a bisimulation relation.

We say that S and 8’ are bisimilar if their initial states are.

Intuitively one is taking the bisimulation relation in “the direct sum” of the two
processes. Bisimulation is obviously reflexive and symmetric. It is also transitive but
we cannot see how to prove this directly from the definition. To prove transitivity,
we will use a result that appears in Section 4.2. We will delay the proof until then.

The following example illustrates how the two processes of Example 3.3.3 are
bisimilar.

Example 3.5.2 We let the label set be the one element set {a}. Consider a system
S = (8,4, X, 1) with S an arbitrarily complicated state space and ¥ a o-field generated

35

by some analytic space structure on S. For example, S could be R, the reals with
the Borel algebra. We define the transition function, 7,(s,A) in any manner we
please subject only to the conditions of the definition of a transition function and
to the condition that Vs € S.7,(s,S) = 1; t.e. for every s, the distribution 7,(s,-)
ts a probability measure. The process in Example 3.3.3 satisfies these conditions.
Now consider the single state system O, having one transition from its state o to
itself, labelled a. It is easy to see that the relation relating every state of S to o is
a bisimulation. The only R-closed set is S U {0}. The a-transition in O, from o to
itself has probability 1 and 7,(s,S) = 1 for any s € S. Hence these two systems are

bisimilar!

We mentioned in the last section that intuitively, zigzag morphisms should relate

bisimilar processes. The next proposition shows it is the case.

Proposition 3.5.3 If there is a zigzag morphism from S to §', then S and &' are

bisimilar.

Proof . Let f be a zigzag morphism from S to S’. Consider the equivalence relation
on S U S’ generated by the pairs (s, f(s)), for every s € §S. We prove that R is a
bisimulation relation. R obviously relates ¢ and . Now let s € S, so we have a pair
(s, f(s)) related by R, and let Y be an R-closed set of SU S’ such that Y NS € &
and Y NS €%¥. Then Y NS = f(YNS’). Since f is a zigzag morphism, we have
To(s, Y NS) =72(f(s), Y NS'). |

The converse is not necessarily true, but we will see in Chapter 7 that S and S’
are bisimilar if and only if there exists a span of zigzag morphisms between them.
This means that there is a third object ¢/ together with zigzag morphisms from U to
each of S and &', as in the following diagram.

u

PN

S S’
It is interesting to note that we can take a coalgebraic view of bisimulation [AM89,

Rut95, Rut96] as well. We can view a labelled Markov process as a coalgebra of

36

a suitable functor; in fact it is a functor introduced by Giry [Gir81] in order to
define a monad on Mes analogous to the powerset monad. From this point of view,
bisimulation is a span of coalgebra homomorphisms. But if one checks what this

means, these are precisely our zigzag morphisms in LMP.

Proposition 3.5.4 If two labelled Murkov chains are bisimilar then the associated

labelled transition systems are as well.

Proof . Suppose that we have two labelled Markov chains (S, 4,7) and (S’,#,7') and
a bisimulation R between them. Now suppose that sRs’ and that in the associated
Its the transition s — t is possible. This means that 7,(s, {t}) > 0. Let T be the
equivalence class in S U S’ containing t. We have 7,(s, TN S) = 7.(s’,T N S’); hence
in the lts s —=» T is possible so there is some ¢ € T, and hence s'Rt’, such that s’

25 ¢, as wanted. []

Note that the converse is not true, because different assignments of probabilities in a
labelled Markov chain can yield non bisimilar processes that have the same associated

Its. However, the following is true.

Proposition 3.5.5 If two labelled transition systems are bisimilar, there ezxist bisim-

ilar labelled Markov chains having them as their associated labelled transition systems.

Proof . Let R be a bisimulation relation between two labelled transition systems
(S, A,—) and (S’, A, —'). Let R* be the smallest equivalence relation containing R
on SUS’'. We will define (S, 1, 7) and (S’, 7, 7’) so that they have the former processes
as their associated lts and so that R* is a bisimulation between them. It is easy to

check that if sR*s’, then for every equivalence class C of R*, we have
sHCoesd -5 C

We define 7,(s,-) and 7.(s',-) in two steps. If s and s’ can jump to a finite number
of equivalence classes C},...,C, we set T,(s,C;} = 7.(s',C;) = 1/n. Otherwise, we

assign the number 1/2¢ to that transition. In fact, this step is only to help us define

37

transition probabilities to single states. The state s does not really jump to every
state in C;, because some of them are in S’.

Now let ¢t be a state such that s — ¢ in the Its. Then ¢ is in exactly one equivalence
class C of R*. Let B C C be the set of states in C N S to which s can jump with
action a. Note that B contains t. If B = {b;,---,b,} we set 75(s, {b;}) = 7a(s,C)/n.
If B={b;,b,,---} we assign the number 7,(s, C)/2? to that transition. It is not hard
to check that the labelled Markov chains so defined are bisimilar through the relation
R*.]

Remark 3.5.6 The construction in the previous proof allows us to obtain a proba-
bilistic process from a non-probabilistic process. Note that the proof is based on the
fact that labelled transition systems have a finite or countable set of states. If the
branching of the non-probabilistic process is finite, every indeterminate transition is
given the uniform distribution. (One only has to consider the identity as equivalence
relation on a single process and then apply the construction.) Thus somebody studying
finite branching systems whose indeterminate transitions are assumed to be of equal
probability could use their probabilistic translation instead, and hence benefit from
some results that we have. For ezample, the fact that bisimulation and simulation are

characterized by a simple logic that involves no negation.

3.6 Simulation relation

The intuition behind the definition of simulation is that a state simulates another if
it captures all the behaviour of the cther. In terms of probabilities, we require that
the simulated state has a smaller or equal probability of jumping to a set A with
some label than has the simulating state to the set of states that simulate A. Once
again, as in bisimulation, we somehow need to know in advance which state simulates
which state in order to check the inequality. In fact, we cannot talk about the set
of states that simulate A in general even if A is measurable because we cannot make
sure that this set is measurable. So we use the notion of closedness of relation that

was introduced in the last section for the definition of bisimulation. Recall that a

38

set is R-closed if it contains all states related by R to some state in it. It will also
be convenient to explicitly define the notion of direct sum of two labelled Markov

processes.

Definition 3.6.1 Let S = (S,7,X,7) and S’ = (S',7,%',7") be two labelled Markov
processes. The direct sum S + S’ of these processes is a process U = (U, uq, §2, p)
with U = SWS'W{ug}, up is a new state, Q is the o-field generated by LUY', and the
transitions are as follows: Va € A, p,(uq, {i}) = pa(uo, {i'}) =}, and for all s € S,

s’ €S, pu(s, AW A") = 1,(s,A) and p,(s', AW A") = T.(s', A").

The choice of % as the transition probability is arbitrary. This construction is purely
formal and is only used in order to define a relation on the common state space. With
this definition we do not, for example, have an associative direct sum. However this
is of no importance for the use that we make of this definition.

In addition to simulation we define the notion of strict simulation which says
intuitively that a state is strictly simulated by another if whenever the state can make
a transition with probability p, the simulating state can make the same transition with
probability greater than p + €. Simulation and strict simulation are patterned on the

notion of less than or equal and way below from domain theory {Jon90].

Definition 3.6.2 Let S = (S,%,%,7) be a labelled Markov process. A reflerive and
transitive relation (a preorder) R on S is a simulation relation if whenever sRs’,

with s,s' € S, we have that for all a € A and every R-closed measurable set A € %,
7o(s, A) < 1.(s', A).

We then say that s is simulated by s'. R is a strict simulation if there is an € > 0
such that 7,(s, A) < 74(s', A) — € whenever 1,(s, A) > 0. We then call R an e-strict
simulation and we write R, instead of R.

Let § = (5,i,%,7) and §' = (S',7,¥',7') be a pair of labelled Markov process. S
is (strictly) simulated by 8' if there is a (strict) simulation relation on some process

U of which S and 8' are direct summands, relating i and ¢’ in U.

39

Note that we do not require U to be exactly S + &' but rather a direct sum of a
number of processes, including & and S’. The reason for this is that transitivity of
simulation would not follow in any obvious way with & being exactly the direct sum.
However, we will prove (see Corollary 4.3.6) that in the particular case where the
simulated process S is discrete, if a simulation exists between S and &', then there is
a simulation on 8§ + &'. It is clear from the definitions above that the choice of 1/2
in the definition of direct sum does not affect simulation. The fact that processes or
states are related or not by a simulation relation does not depend on this number.

The next two propositions are easy but important for the theory. They prove
that simulation and strict simulation are transitive and that every bisimulation is a

simulation.
Proposition 3.6.3 Simulation and strict simulation are transitive.

In fact we also have that if S strictly simulates S’ which is simulated in turn by S”,

then S is strictly simulated by S”".

Proof . We prove that simulation is transitive. First let us consider two simulations
R, and R, on a single process S = (S,7,X, 7). Let R be the transitive closure of
R, U R;. Then every measurable R-closed set is also R;-closed, i = 1,2, then it
follows easily that R is a simulation on S.

Now let R; be a simulation between S and &’ through process U; and R, a
simulation between S’ and S” through process #>. Then construct the direct sum
U of Uy and U, and consider R the reflexive and transitive closure of R, o Ry on U
as above. Then R is a simulation on Y that relates ¢ and ¢, and S, S” are direct
summands of U.

The proof for strict simulation is similar, just note that we must add the €’s to

obtain the composite relation. a

Proposition 3.6.4 Every bisimulation relation is a simulation relation.

Proof . Let R be a bisimulation relation between S and S’. We prove that it is a

simulation relation on the direct sum of & and S’'. Let sRs’ and let A be an R-closed

40

set of S+S8’. Then A is a subset of Sw.S’ and satisfies that ANS € £ and ANS’' € ¥'.
Hence we have 7,(s, AN S) =7.(s’, AN S’) and the required inequality is satisfied. il

The definition of “strong simulation” given by Segala and Lynch in [SL94] is
slightly stronger. It requires that if a simulating state can perform an action, then
so do the states it simulates. This would correspond to the additional condition that
if 7,(s’,S) > 0, then 7,(s,S) > 0. However, we have noted that their definition is
usually mentioned without this condition: in that case, the two definitions are the
same. This applies to systems which are the common denominator of our model of
systems and theirs: they consider only discrete systems and we do not allow different
transition probability from a single state with the same label. The proof that the
two definitions coincide uses the max-flow min-cut theorem by Ford and Fulkerson.
It is easy to modify the proof of Theorem 7.3.4 to get the result. We believe that
our definition can be easily extended to indeterminate processes and still coincide
with their definition of a simulation R which is in terms of the existence of a weight

function on S x S that must satisfy some properties with respect to the relation R.

Example 3.6.5 We illustrate a simulation on the following process:

So
“[%]/a[[N]
St S92 83
a a %‘]
/ lb a[%][\

S4 S5 S6 St
Sg Sg

Consider the reflezive closure of the relation defined as follows. NIL states - s,, Ss,
Se, Sg, Sg — are related to every state. s;, and s; are related to each other and to ss.
Finally, s3 is related to so and s;. The only closed sets with respect to this relation
are the whole set, {so}, {s2}, {s0, 52,53}, {S2, 84, 57} and unions of these sets. It is
easy to check that if s is related to t in this manner, then s has smaller probability

than t has of jumping to each of these sets, with any label.

41

Remark 3.6.6 In the definition of simulation we could have included the require-
ment that R(A) be measurable, but if we had, bisimulation could not be proved to
be a simulation, which is a basic requirement, of course. The reason why, in turn, we
did not demand that R(A) be measurable for every measurable set A in the definition
of bisimulation is that then we would have to prove that the logic (see Chapter 4)
does induce that property, that is, for every measurable set, the set of states that
satisfy the same formulas is measurable, which we cannot prove in general though it
may be true. Note however that if it was true, it would mean that the quotient map
from a process to its quotient under the equivalence induced by the logic would send

measurable sets to measurable sets.

The following proposition shows that a simulation morphism does relate a process

to a process that simulates it.

Proposition 3.6.7 If there is a simulation morphism from S to &', then S is simu-
lated by S'.

Proof . Let f be a simulation morphism from S to &’. Consider the reflexive relation
on S U S’ generated by the pairs (s, f(s)), for every s € S. We prove that R is a
simulation relation. R obviously relates i and 7. Now let Y be an R-closed set of
SUS'suchthat YNSe€ X andYNS' €¥. Then YNSC f-H(Y NS’'). Since f isa
simulation morphism, we have 7,(s,Y NS) < 7,(s, f7H(Y N S')) < 71(f(s),Y N S). 1A

The converse is not true in general, but we conjecture that if S is simulated by &’
then there exists a span of morphisms between them, one of these morphisms —from

U to S- being zigzag and the other one being a simulation morphism.

U

S s

We will give a proof of this for finite processes in Chapter 7.

42

3.7 Examples of bisimulation and simulation

The first two examples we give are of bisimilar pairs of labelled Markov processes.
The first one illustrates a bisimulation between two continuous systems that cannot
be reduced to discrete ones. The second one is an example of how bisimulation can

be used for verifying that an implementation matches its specifications.

Example 3.7.1 Consider the labelled Markov process S = (R, 1, B, 1), over the triv-
ial label set, defined as follows. The states are real numbers, the measurable sets are
Borel sets and the transition function is defined on intervals (and then extended to
arbitrary Borel sets) as follows:

A2 [2 e MN=—vldy if £ >0,
0 otherwise.

@) =

where the constant factor of A is chosen to make T be 1 on the whole space. Intuitively
this is a system where a particle makes random jumps with probability exponentially
distributed with the length. However, there is an “absorbing wall” at the point z =0
so that if the system jumps to the left of this point it gets stuck there. Note that every
positive state has a different probability density for jumping to a negative state. Now
consider the system U = (R?, (1,1), B?, p) defined as

p((z,y), [s] x [p, q]) = 7(z, [r, s]) P[P, q)),

where P is some arbitrary probability measure over R. This system should behave
“observably” just like the first system because, roughly speaking, the first coordinate
behaves just like the first system and the second has trivial dynamics, i.e. it is bisimilar
to the one-state, one-transition system. Indeed these two systems are bisimiler with

the relation on R U R? generated by pairs of the form (z,(z,y)).

As an application of probabilistic bisimulation, we give a probabilistic version of
Example 2.4.5. Recall that here we want to check if a given implementation matches
its specification. A specification and an implementation are defined, and then we

check if the processes derived are bisimilar.

43

In the next example, we use a parallel composition combinator. We have not,
as yet, carefully studied how processes could be combined, but we will use a similar
definition for composition as the one we recalled for non-probabilistic processes in
Chapter 2. Since we are dealing with “deterministic” probabilistic processes, we
must attach probabilities to a-transitions if an a-action is enabled on both sides of a
parallel composition. Let us assume that if this occurs, each action has probability

1/2 of being performed.

Example 3.7.2 Suppose we have a cell which is not totally reliable and so can lose
a message put into it with probability 1/4:

put[3/4]
cell, __ "~ celly
“get
put(1/4]
cell, and celly are understood to be respectively the empty and the full cell. Now
suppose we want to implement a bag of size two having the same reliability using this

cell. Here is our specification of a bag of size two:

putl3/sl putl3/4]
bago . get bag 1 bag2
et
put[1/4] put[1/4] !

where the index attached to bag represents the number of messages present in the bag.
We ezpect that we can implement this bag by putting two cells in parallel cell.|cell,.
As we noted above, we assume that if an action is enabled on both sides of a parallel
composition, each action has probability 1/2 of being performed. The states are now
pairs of states and a transition happens with probability 1/2 - p from one state if
either one or the other coordinate of the pair can perform the action to the same
coordinate of the arriving state with probability p. Hence, if the environment requires
a put action, process cellg|cell, has probability 1/2-3/4 of becoming process celle|celly
and the same probability of becoming cells|cell,. The resulting process is illustrated in
Figure 3.1. In order to show that cell.|cell, is a good implementation of bag,, we just
have to verify that they are bisimilar using the equivalence relation generated by the

pairs: (cell.|cell,, bagy), (cellf|celly, bag,) and the two other states where ezactly one

44

put(1/4]

7\
@/ ceHelceFle 13/8]
9/ ;K\
peell|cell, s cell.|cell;
4

AL/ N {3/4] put[3/4 A
put(1/4] \K / put[1/4]
get get

cellg|cell,

Figure 3.1: The composition of two cells

cell is full both paired with bag;. Thus we can conclude that our implementation is

correct.

Example 3.7.3 Let us reconsider Ezample 3.7.2. This ezample can illustrate the role
of stmulation and how it is linked with partial systems. The way we have specified the
processes in that ezample doesn’t allow us to simulate the bag using a more reliable
one. A simulating process would try to perform the same transitions with higher
probability, not considering the fact that the loss of messages, represented by a put-

transition from the process to itself, is not desired. Consider the following partial

specifications:
put[5/6] put[3/4] put[3/4]
cell, cellf bag, bag, bag,
" get “get “get

With these specifications, we can simulate our bag with a process that has a smaller
probability of losing the message. Of course, we do not have bag, bisimilar to cell,|cell,

but certainly cell.|cell, simulates bag,.

The following example illustrates how a continuous process can be simulated by

a finite one.

Example 3.7.4 Consider the following process. The state-space is S = [0,1|U{s, f}.
The initial state is ¢ and f is a NIL state, and there is one label, a. Transitions go

from i to [0,1)] and from states of [0,1] to f, and are generated by the following.
1a(%, [2,y]) =y — =; if z € [0,1], Ta(z, f) = z.

45

This process is really continuous because every two states z,y € [0, 1] have different
probabilities of jumping to the whole set S, which is closed with respect to any relation.
Indeed, if z € [0,1], 72(z, S) = z. This process can be simulated by a finite process P
consisting of three states po,p1 and p2. Transitions are from pg to p; and from p; to

p2 with probability 1. We informally illustrate these processes in the following picture.

] Po
lly—zl to [z.y] 1[11
{0,1] N
l[z] [[11
f p2

The simulation relation that relates (in S+P) i and po, every state of [0, 1] to p;, and
f to p2 is a simulation relation. This example could be easily extended to processes
where we allow only the transition probability function to be either 0 or 1 on the whole
space by introducing other states: f; to which every x € [0, 1] has probability 1 — = of
jumping, aend fo to which f; can jump with probability 1. Then we need to also add

one state p3 in P to which p, can jump with probability 1. These processes are as in

the following picture.

i Po
l[yﬂ:] to [z.y] 1]
[0, 1] D
y \1:11 (o
f f Fe
o .
f2 P

The simulation relation is extended in the obvious way.

The following is a paradigmatic example of applying controls to keep a system

stable or safe.

Example 3.7.5 We describe a finite specification that we will want to implement as a

continuous process. With this ezample, we want to illustrate the concept of simulation,

46

we do not claim that this is the specification and implementation paradigm for labelled
Markov processes. We have a continuous process S. The state-space is the real line,
the initial state is the origin. The process describes a particle that jumps randomly
with label a. States less than —1 or greater than 1 are dead states, thus no transition
is enabled in these states. When the state is in [—1,1], label a is enabled and the
transition is ezponentially distributed with the length and closeness of intervals (for
an example of such a distribution, see 3.7.1). We want to combine S with a controller
in such a way that at each step, the probability of jumping to a dead state is less than
0.1. Thas spectfication of the combined process can be modeled as a finite process P
that has one state, and one a-transition from that state to itself of probability 0.9. We
want our tmplementation of the controller combined with the process S to simulate
P. We describe a possible controller. There is a threshold value, t € (0,1). The
controller has the power of changing the a-transition of the particle. It leaves the
particle free to jump as it wants, as long as it stays inside the interval (—t,t). If the
particle crosses the walls —t or t, the a-transition is then to jump by 1/2 back into the
safe interval, i.e., label a is enabled, and then the jump is of length 1/2, to the right if
the state is in (—1, —t) or to the left if the state is in (t,1). We want to find a possible
value for t so that the implementation of S with the controller simulates P. Of course
we could take t very small, but it is likely that we want the number of adjustments
to be minimized. This example illustrates the underlying intuition in many feedback
control systems. The particle could be an aircraft whose height must stay within a

given range, a chemical plant inside which we want to control the pressure, etc.

47

Chapter 4

A modal logic for bisimulation and
simulation

We saw in Chapter 2 that in the case of non-probabilistic processes, bisimulation is
characterized by Hennessy-Milner logic. Two states are bisimilar if and only if they
satisfy the same formulas of that logic.

We will define a simple probabilistic variant to Hennessy-Milner logic, written L,
which will be proven to characterize bisimulation for labelled Markov processes. The
striking aspect of this logic is that it does not contain any form of negation. An-
other surprise is that even if we allow infinite branching (in fact we allow continuous
branching), we do not need infinite conjunction to characterize bisimulation. These
results are not what one expects from the non-probabilistic case. The point is that the
probabilistic systems we are considering —without explicit nondeterminism— resemble
deterministic systems quite closely, rather than nondeterministic systems. In the lat-
ter case —as is well-known [Mil90]- negation is necessary to characterize bisimulation
and if we allow infinite branching, we also need infinite conjunction.

In [LS91], Larsen and Skou proposed a logic that characterizes bisimulation for
discrete processes. Their logic contains a weak form of negation but more importantly
they work under an assumption slightly stronger than finiteness of branching, called
the minimal deviation assumption. Hence our result is an improvement over their
work even in the discrete case, because our logic does not contain negation. Moreover,

it characterizes bisimulation for arbitrary labelled Markov processes.

48

One advantage of the fact that bisimulation can be characterized by a negation-
free logic is that this opens the way to a notion of logical simulation between processes.
We say that a state logically simulates another state if it satisfies (at least) all the
formulas the other satisfies. Of course, if a logic contains negation and a state logically
simulates another state according to that logic, then the two states must satisfy
exactly the same formulas. Consequently, this logic cannot characterize simulation.
Thus this is not a notion that would have been considered with most Hennessy-Milner
type logics in the literature. We will prove that a simple extension of £ —-£ augmented
with disjunction— characterizes simulation (as well as bisimulation) between discrete
labelled Markov processes. In fact the two processes need not be discrete, it is enough
that one of them be discrete.

Thus, for probabilistic processes, the same logic can characterize both simulation
and bisimulation. This is because this logic doesn’t contain negation, and more
interestingly because two-way simulation is equivalent to bisimulation. This also
happens for non-probabilistic determinate processes but not for indeterminate ones.
Recall that for non-probabilistic processes with infinite branching, it is not even known
if any logic characterizes simulation. This shows that probabilistic systems as we
define them are very close to deterministic systems.

We first define five modal logics none of which are equivalent to any of the others
and then prove that the simplest one, £, characterize bisimulation. In the third
section, we prove that by adding disjunction to £, we can characterize simulation for
discrete processes. We use these characterizations to define two algorithms one that
can decide whether two states of a finite process are bisimilar, and the other that
can decide whether a state simulates another. Finally, we prove that all the logics we
define characterize bisimulation and discuss which one can characterize equivalence

classes of bisimilar states.

4.1 Modal logics

We now describe five modal logics that will each be proven to characterize bisimula-

tion. Thus all these logics play the role of Hennessy-Milner logic for non-probabilistic

49

bisimulation [HM85].

We assume as before that there is a fixed set of “labels” or “actions”, we usually
use letters like a or b for actions. The simplest logic will be called £ and has as syntax
the following formulas:

T 1A]| (a)ed

where ¢ is an action from the fixed (countable) set of actions .A and ¢ is a rational
number. Given a labelled Markov process (5,7, X, 7) we write s |= ¢ to mean that the
state s satisfies the formula ¢. The definition of the relation |= is given by induction on
formulas. The definition is obvious for the propositional constant T and conjunction.
We say s |= (a),¢ if and only if there exists A € ¥ such that for all s’ € A, we have
s' = ¢ and 74(s, A) > ¢'. In other words, the system in state s can make an a-move
to a state, that satisfies ¢, with probability greater than q. We write [¢] for the set
{s € S|s = ¢}. We often omit the subscript when no confusion can arise.

Note that since we restrict to rationals in the logic, we have a countable number
of formulas. This fact is used in the proof that the logic characterizes bisimulation.
Of course expressiveness is affected by this choice, for there is no rational formula
that is equivalent to the formula (a), /4T‘ However, since the logic can distinguish
non-bisimilar states, it is expressive enough for practical purposes.

In the following table we define four additional logics. They are all syntactic

extensions of L.

Ly = L1V

EA = ﬁlAa

L. = L]|-¢

[,A = C-.l/\(ﬁ,
ieN

Given a labelled Markov process (S, i, X, 7) we write:
sk ¢1V¢s tomean that s = ¢; or s = ¢o;
sk A, to mean that 7,(s, S) = 0;
sk ¢ to mean that s - ¢;
s = Aien ¢: to mean that s = ¢; for all z € N.

1In [BDEP97], we used 7,(s, A) > q. The present choice fits better with the work in Chapter 5.

30

In Chapter 6 we will use a variation of £, where the disjunction can be countable.
This logic will be written £y,. Although they all characterize bisimulation, they do
not have the same expressive power. Clearly all of them are at least as expressive as
L,and L A is more expressive than all the others. Ly, La and L£_ are incomparable.
It is interesting to note that none of these differences will have any impact on the
characterization of bisimulation, as we have already said. However, we need at least
L, to characterize simulation.

The logic that Larsen and Skou used in [LS91] is the combination of £, and La.
They show that for finitely branching systems?, two states of the same system are
bisimilar if and only if they satisfy the same formulas of that logic.

Before proving that £ characterizes bisimulation, we give two examples to give an
idea why negation and finite branching are not needed for the logic to characterize

bisimulation between probabilistic processes.

Example 4.1.1 The two following non-probabilistic systems

SN y
.l" !

can be distinguished with the formula (a)—(b)T, which says that the process can per-
form an a-action and then be in a state where it cannot perform a b-action. The
process on the left satisfies this formula while the process on the right does not. How-
ever, it is well-known that they cannot be distinguished by a negation-free formula of
Hennessy-Milner logic. If we now consider probabilistic versions of these processes
we find that the situation is different. For no assignment of probabilities are the two
processes going to satisfy the same formulas of L. Suppose that the two a-labelled
branches of the left hand process are given probabilities p and q, assume that the b-

labelled transitions have probability 1. Now if the right hand process has its a-labelled

2They actually use a stronger property, the “minimum deviation condition” which uniformly
bounds the degree of branching everywhere.

a1

transition given a probability anything other than p+q, say r > p + q we can immedi-

ately distinguish the two processes by the formula {a) ., T which will not be satisfied

ptq
by the left hand process. If T = p+q then we can use the formula {a) (b),T. If the two
processes are not bisimilar, in which case p > 0, the left hand process cannot satisfy

this formula but the right hand one does.

This simple example shows that one can use the probabilities to finesse the need for
negation but one cannot actually encode negation with just £. Of course this example
does not constitute a proof but it makes it more plausible that indeed negation is not
needed. It is tempting to think that the ability to distinguish processes comes from
the power to encode negation and infinitary conjunction by manipulations of the
probability subscripts in the modal formulas of the form {a)¢. In fact this is not the
case. With negation we can write a formula which is only satisfied by NIL states
assuming that there are only finitely many distinct actions, namely

A ~@)T.

acA
It is not possible to write a formula that is only satisfied by NIL states using just
L. There is no paradox of course. Given two states one can write a £ formula
which distinguishes them but this formula may depend on both states and cannot
be constructed just by looking at one of them. For example, suppose that there is
a family of states s,, where n is a positive integer, such that the only transition is
an a-labelled transition to a NIL state with probability . Now no single formula of
L can distinguish all these states from the NIL state but given any s, the formula
(a) L T will work.

The next example shows why we do not need infinite conjunction even if we have

infinite branching.

Example 4.1.2 Consider the processes P and Q of Figure 4.1 and the formula
(@) (An (@)™ T) where the notation (a)™ means n nested (a) modalities. The con-
Jjunction is over all n > 1. This formula says that the process can jump to a state

from which arbitrarily many a-labelled transitions are possible. The process P does

52

P Q

PARNE A
-

©,

Figure 4.1: Infinite conjunction is necessary to distinguish P and Q.

not satisfy this formula but Q@ does. Now if we associate probabilities with these tran-
sitions we find that we can find distinguishing formulas that do not involve infinite
conjunction. To see this assume that both processes satisfy all the same L formulas.
We will show that the probability associated with the extra branch in Q) has to be 0,
i.e. it really cannot be present. Now the sum of the initial probabilities have to match
since they both satisfy all the same formulas of the form {(a),T. Now in both processes
the branch that takes the initial state to a dead state has to have the same probability
because they both satisfy all the same formulas of the form (a),(a),T. By induction
it follows that each branch in P must have the same probability as the corresponding
equal length branch in Q. Thus the branch to the looping state in QQ must have prob-
ability 0, because we proved that the sum of the initial probabilities have to match.
Consequently, if this probability is not 0, in which case the two systems are not bisimi-
lar, they cannot satisfy all the same formulas of L and hence a distinguishing formula

can be constructed which does not involve infinite conjunction.

4.2 Logical characterization for bisimulation

We prove that bisimulation is characterized by the logic £. The proof relies on various
properties of analytic spaces. To show that two bisimilar states satisfy all the same
formulas of £ is a relatively easy induction argument. To show the converse, one
defines an equivalence relation on states - two states are equivalent if they satisfy the

same formulas - and then form the quotient of a process. We need a general theorem

53

to assure us that the result is analytic. If we used Polish spaces, then we would not be
assured that the quotient remains Polish. We then define a transition probability on
this quotient system in such a way as to ensure that the morphism from the process
to its quotient is zigzag. This is the part of the construction where we need most of
the measure-theoretic machinery. We use a unique structure theorem to show that
the measurable sets defined by the formulas of the logic generate the o-field. Once
again, this theorem is only true for analytic spaces and hence is another motivation for
imposing an analytic space structure on our processes. We use a theorem on unique
extension of measure in order to show that the transition probability is well-defined.

The first proposition below says that sets of states definable by formulas in a

labelled Markov process are always measurable.

Proposition 4.2.1 Let (S,:,X,7) be an object of LMP. Then for all formulas ¢,
we have [¢] € X.

Proof . We proceed by structural induction on ¢. The base case corresponding to T
is trivial since S € ¥. Conjunction is trivial because, by definition, a o-field is closed
under intersection. Finally, we have [(a),¢] = 7 (-, [#])~'((g, 1]) € E. To justify this
first note that, by hypothesis, [¢] € X so 7.(s,[#]) is meaningful. Secondly, 7, is a

measurable function in its first argument and finally intervals are Borel. [

Theorem 4.2.2 Let S = (S,%,%,7) and §' = (S§',¢,X',7’) be labelled Markov pro-
cesses. If two states s,s' € SU S’ are bisimilar then they satisfy the same formulas

of L.

Proof . Let R be a bisimulation between S and S’. We prove by induction on the
structure of formulas that if sRs’ then s and s’ satisfy the same formulas. The cases of
T and conjunction are trivial. Now assume the claim is true for ¢, i.e., for every pair
of R-related states, either both satisfy ¢ or neither of them does. This means that
the set [¢]s U [¢]s is R-closed. Since R is a bisimulation, 7.(s, [¢]s) = 72(s', [¢]s:)
for all @ € A. So s and s’ satisfy the same formulas of the form (a) ¢.]

54

In order to show the logic gives a complete characterization of bisimulation, we
also want to show the converse. We write s = s’ to mean that s and s’ satisfy all the
same formulas.

We want to show that = is a bisimulation between every pair of processes, S and
S’. Thus we want to show that for every pair 5,8’ € SU S’, and every =~-closed
measurable set Y C SU S’, we have 7,(s,Y N S) = 7.(s’, Y N S’) for every a € A.
The following lemma is a first step in that direction. It says that the equality is true
for sets definable by formulas, i.e., that the transition probabilities to definable sets

are completely determined by the formulas, independently of the system.

Lemma 4.2.3 Let S = (5,¢,%,7) and &' = (5',¢,%',7") be two labelled Markov

processes. Then for all formulas ¢ and all pairs (s,s') such that s =~ s', we have

Ta(s, [8]s) = 7a(s', [8]s)-

Proof . Suppose that the equation does not hold. Then, say, for some ¢, 7,(s, [¢]s) <
T.(s’, [¢ls/).- We choose a rational number g between these values. Now it follows
that s’ = (a)q¢ but s [~ (a)q9, which contradicts the assumption that s and s’ satisfy

all the same formulas. []

The plan is then to prove that sets of the form [¢]s U [¢]s are ~-closed, which
is obvious, and that they generate all =~-closed measurable sets. Finally we want to
show that the fact that 7,(s,-) and 7.(s’,-) agree on the sets definable by formulas
implies that they agree on every =-closed set. To do so, we first show that there is a
zigzag morphism from any labelled Markov process to its quotient under =.

If (S,X) is a Borel space, the quotient (S/x, Xx) is defined as follows. S/, is the
set of all equivalence classes. Then the function fy : S — S/, which assigns to each
point of S the equivalence class containing it maps onto S/, and thus determines a
Borel structure on S/: by definition a subset E of S/ is a Borel set if fJ!(F) is a
Borel set in S.

The following theorem is a result of joint work [DEP98].

95

Theorem 4.2.4 Let (S,%,%,7) be an object of LMP. Then (S/x~,X) is an analytic
space and we can define p so that the canonical projection fy from (S,i,Z,71) to

(S/x» f~(i), Ex, p) is a zigzag morphism.

In order to prove this proposition we need a few lemmas. The first allows us to
work with direct images of fr. The next two are known results about analytic spaces

while the final lemma is a standard uniqueness theorem.
Lemma 4.2.5 Let S = (5,7, %, 1) be a labelled Markov process.
(i) Fach equivalence class in S is a Borel subset.

(ii) The equivalence classes in S refine [@] for each formula ¢ of the logic.
(iii) f3!fald] = [¢] for each formula ¢ of the logic.

Proof . (i): let t € S. Then it is easy to see that the equivalence class containing ¢
is equal to Nyy [6] \ Ueey [#]° which is obviously a Borel subset of S ([¢] denotes
the complement of [¢]). (ii): Clearly, [¢] = Uyy[t] where [t] is the equivalence class
containing ¢. (iii): The reversed inclusion is obvious and direct inclusion follows from
the fact that if 5, ¢t are mapped to the same state, they must satisfy the same formulas,
so if s € [¢] and t € fZ! fx[¢], then ¢t must be in [¢] as well. |

The next lemmas are Theorem 3.3.5 of [Arv76] and one of its corollaries. We omit

the proofs.

Lemma 4.2.6 Let X be an analytic Borel space and let ~ be an equivalence relation
in X. Assume there is a sequence fy, fa, ... of real valued Borel functions on X such
that for any pair of points z,y in X one has z ~ y if and only if f.(z) = fu(y) for

all n. Then X/.. is an analytic Borel space.

Lemma 4.2.7 Let (X, B) be an analytic Borel space and let By be a countably gen-
erated sub-o-field of B which separates points in X. Then By = B.

56

The final lemma that we need is a result which gives a condition under which
two measures are equal. It is Theorem 10.4 of Billingsley [Bil95] which relies on the
famous Ar-theorem of Dynkin.

Lemma 4.2.8 Let X be a set and F a family of subsets of X, closed under finite
intersections, and such that X is a countable union of sets in F. Let o(F) be the
o-field generated by F. Suppose that y,, po are finite measures on o(F). If they agree
on F then they agree on o(F).

Proof of Theorem 4.2.4: We first show that §/. is an analytic space. Let
{¢ili € N} be the set of all formulas. We know that [¢;]¢ is a Borel set for each
i. Therefore the characteristic functions x4, : S — {0, 1} are Borel measurable func-

tions. Moreover we have
zx=yiff (Vie N.z € [¢i]s <= y € [¢ils) iff (Vi € N. x4,(z) = x4.(¥))-

It now follows by Lemma 4.2.6 that S/~ is an analytic space.

Let B = {f~([#:]s) : i € N}. We show that o(B) = X.. We have B C T, since,
by Lemma 4.2.5 (iii), for any fo([di]s) € B, f5'f~([¢ils) = [¢i]s which is in &
by Proposition 4.2.1. Now o(B) separates points in S/, for if z and y are different
states of S/, take states s € fZ'(z) and t € fZ'(y). Then since s % t, there is a
formula ¢ such that s is in [¢]s and ¢ is not. By Lemma 4.2.5 (iii), it follows that
z is in fy[¢]ls, whereas y is not. Since o(B) is countably generated, it follows by
Lemma 4.2.7, that o(B) = £.

We are now ready to define p,(z,-) over ¥ for z € S/,. We would like to
define it so that fy : S — &/« turns out to be a zigzag morphism (recall that fy is

measurable). Hence, for any B € £, we put
pa(x’ B) = Ta(sa f;l(B))r

where s € fJl(z). Clearly, for a fixed state s, 7,(s, f<!(-)) is a sub-probability
measure on X.. We now show that the definition does not depend on the choice of

s in fZ(z) for if s,s' € fl(z), we know that 7,.(s, fS1(-)) and 7,(s’, fS1(-)) agree

~
~

57

over B again by the fact that fJ!f.([¢:i]s) = [¢:]s and by Lemma 4.2.3. So, since B
is closed under the formation of finite intersections we have, from Lemma 4.2.8, that
7a(8, fS1(-)) and 7,(s’, f5'(-)) agree on o(B) = ..

It remains to prove that for a fixed Borel set B of £, pa(-,B) : S/~ — [0,1]
is a Borel measurable function. Let A be a Borel set of [0,1]. It is easy to check
that pg(-, B)~"'(A) = q[7.(-, f2}(B))~1(A)], from the zigzag property applied to fx.
We know that C = 7,(-, f2'(B))!(A) is Borel since it is the inverse image of
A under a Borel measurable function. Now we claim that f.(C) € Z., since
f=!f~(C) = C. To see this, note that if s; € fZ! fo(C), there exists s, € C such that
f~(s1) = f~(s2). We have just proved above that then the 7,(s;, f<'(-))’s must agree,
so if 7,(s;, fS'(B)) € A for i = 2, then it is also true for i = 1, so s, € C as wanted.
Thus p,(-, B) is Borel measurable. This concludes the proof that S/, is a LMP and
f~ a zigzag morphism. [

We now state the main result on logical characterization of bisimulation.

Theorem 4.2.9 Let S and S’ be labelled Markov processes. Two states s,s' € SUS’

are bistmilar if and only if they satisfy the same formulas of L.

Proof . The left to right direction is given by Theorem 4.2.2. We prove the other
direction. Consider U = (U, ug, R, 7), the direct sum of S and &'. Note that every
state of either S or &' satisfies the same formulas in U as in its original process. By
using the quotient U/~ = (U/~, f~(uo), O, p), we show that the relation =~ defined
on the states of U is a bisimulation relation. Let A € Q be =~-closed (then ANS € £
and ANS’' € £'). Then we have A = fZ! fo(A) and hence f~(A) € Q. Now if s =~ &'
in U, then fi(s) = f«(s’), and since by Theorem 4.2.4 f, is a zigzag morphism, we

have 7,(s, A) = pa(fx(5), fx(A)) = 7a(s', A), as wanted. a

We can now prove an important result that we mentioned in the section where

bisimulation is defined and delayed until now.

Corollary 4.2.10 Bisimulation is an equivalence relation.

98

Proof . Suppose that S and &' are bisimilar and that &’ and S” are bisimilar. This
means that we have bisimulation relations R between S and S’ and R between S’
and S”, satisfying iRi'R'i". Then, by the left to right direction of Theorem 4.2.9, i
and ¢’ satisfy the same formulas. Thus, by the other direction of the same theorem,
¢ and 7" are bisimilar, and hence there is a bisimulation relation between S and S”

relating them. B

Example 4.2.11 We come back to process S of Example 3.7.1. To show that every
pair of states are not bisimilar, we only have to find a formula that distinguishes
them. We can see that every positive state has a different probability for jumping to
a negative state, and hence to a positive state, since 7(s,R) =1 for all s > 0. Now,
every s > 0 has a different number 7(s, [{(a),T]), since [(a),T] is ezactly the set of
positive states. Hence for every pair of positive states, there is a rational q such that

the two states are distinguished by the formula (a) {(a),T.

4.3 Logical characterization of simulation

We just proved that bisimulation is characterized by a simple logic which does not
involve negation. One advantage of this feature is that this opens the way to a notion
of logical simulation between processes. Recall that a state logically simulates another
state if it satisfies (at least) all the formulas the other satisfies. A logic containing
negation cannot characterize simulation. We prove that Ly characterizes simulation
between discrete labelled Markov processes and arbitrary labelled Markov processes.

The notion of simulation accords well with the logic £y in the sense of the following

proposition.

Proposition 4.3.1 If s is simulated by s', then for all formulas ¢ € Ly, s E ¢
implies s’ = ¢.

Proof . Let R be a simulation on a single process S = (S,7,X,7). We prove by
induction on the structure of formulas that for every formula ¢, [¢] is R-closed,

which implies the result. It is obvious for T and conjunction. Now assume it is true

59

for ¢, and let sRs'. Then, since R is a simulation and [¢] is measurable and R-closed,
we have 7,(s, [¢]) < 7a(s', [4]), and hence [(a) 4] is R-closed for every rational g.
Now if s and s’ come from two different processes, observe that if S is a direct
summand of U, a state of S satisfies exactly the same formulas in S as in &/{. Hence
the result. |

In order to obtain that the logic £ characterizes simulation, we must prove the
converse. The following theorem shows that the logic does characterize simulation in

a special case where the simulated state comes from a discrete process.

Theorem 4.3.2 A state in a discrete process is simulated by a state in an arbitrary

process if and only if it is logically simulated by that state with respect to the logic L.

Proof . The “only if” direction is given by Proposition 4.3.1. For the “if” part,
consider the reflexive relation W induced by the logic on the direct sum of the discrete
process P = (P, po, 7) and an arbitrary process S, defined as follows. Let p € P be
W-related to s € S if s satisfies all the formulas that p satisfies. We show that W
is a simulation relation on P + 8. Let pW's and Y be a W-closed set in the direct
sum. We want to prove that 7,(p, Y N P) < 7,(s,Y NS). We prove that for every set
B C P (not necessarily W-closed), we have 7,(p, B) < 7,(s, W(B)NS) (we can write
W(B) N S because we will see that it is measurable, since B is countable). This will
give us the result since W(Y N P)NS C Y NS because Y is W-closed. Note that if

p' € B, then W(p') N P = Ny4[¢] . Taking the union over all p’ in B, we get
wB)nP={J (] [4]»)-
PEB p'E=¢
Now by definition of W we have
wB)ns= [(N [ls)-
p'EB p'k=¢

Note that this shows that W(B) N S is indeed measurable in X.
We now prove that W(B) N P and W (B) N S are limits of decreasing chains of

formulas. First assume that B is finite. Let By (resp. B) be the set of states in P

60

(resp. in S) which satisfy the formula Vyep(As=pcr.) Where Fy is the (finite) set of
formulas of depth < k that involves probabilities which are integer multiples of 1/j
for some 1 < j7 < k and only the first k£ actions of \A. Then (Bg)ren and (Bi)reN
are decreasing chains. We prove that NB, = W(B)NS. If s € W(B) N S, then
there is a b € B which is simulated by s, hence 5 = Ay=gcr, @ for all k. Conversely,
if s € W(B) NS, then for all b € B there is a formula ¢, such that b = ¢, but
s = ¢s. Let k be such that all ¢, are in Fy: this is possible because B is finite and all
formulas ¢, are finite and hence involve a finite number of probabilities. Then s ¢ B;,
because s & Vycpdy, and hence s € NB;. Thus NB, = W(B) N S and similarly
NB, = W(B)N P.

Now since pW's, s satisfies all the formulas of the form (@) ¢ that p satisfies.
By and B; being of the form [¢], we have m,(p, Bx) < 7o(s, Bi). This implies that
Ta(p, B) < ma(p, W(B)N P) = w,(p, NBi) < 7a(s,NBL) = 7u(s, W(B)NS), and hence
we have the result for B finite.

If B is countable, then let (B;);en be an increasing chain of finite sets whose union
is B. Since every B, is finite, we have m,(p, Bi)) < 7.(s, W(B;) N S). Now since the
By’s form an increasing chain that converges to B, and similarly the W (B;) N S’s

converge to W(B) N S, we have
7Tﬂ-(p'l B) = 7Ta(pv UB[) S Ta(s: UW(BI) N S) = Ta(S, W(B) N S)

as wanted. The result is valid in particular for B = Y NS and the theorem is proved.

Remark 4.3.3 An extension of this theorem to the uncountable case is not straight-
forward. The argument of the proof relies on the countability of Y N P (generalized
to B in the proof). However, we know that if S and &' are maximally collapsed (that
is, they contain no pair of distinct bisimilar states), then their o-field is generated
by the sets [@], where ¢ is a formula of £,. In the proof of the logical character-
ization of bisimulation, we use a theorem saying that if two measures agree on a
set of sets that generates the o-field, then they agree on the whole o-field. If we
want to mimic this proof, the first step is to note that for every formula ¢, we have
Ta(s, [@] N S) < 7(s', [¢] N S’) (where [¢] is taken in the direct sum S+ S'). As far

61

as we know, there is no theorem in the literature that could help us saying that this

would imply that 74(s,-) < 72(s’,-) on every R-closed set.

We previously made the comment that although £ is enough to characterize bisim-
ulation, characterization of simulation needs disjunction. We now give an example of
two simple finite processes, one satisfying all the formulas of £ that the other satisfies

but which does not simulate it.

Example 4.3.4 In the following picture, t satisfies all formulas of L that s satisfies

s t

a[%/ \\4?1 a(1] al3]
a(%] al3]

S1 52 - . . t
! ol N

Of course there is a formula of L that distinguishes s and t, namely the formula
(a)o({@)o T A(b)oT). This formula is satisfied by t but not by s. To see that t satisfies
all formulas of L that s satisfies, note that the only relevant formulas of L that are
satisfied by s are: (a), T, for 0 <r < 1, (@), (a)yT and {(a),(b),T, for 0 < r < 1/2.

All these formulas are also satisfied by t. To see that t does not simulate s, suppose

but t does not simulate s.

that there is a simulation relation R that relates s and t. Then the set of all states
is R-closed and hence s, and sy cannot be related to any NIL state (such as t;)
because a NIL state cannot perform any of a and b so we cannot have m,(s,,S5) <
7 (t1,T), similarly for label b and state s;. Hence the set A of non-NIL states is
R-closed but s has probability 1 of jumping to A whereas t has probability 8/4 of
making an a-transition to A. This shows that disjunction is indeed necessary for
characterizing simulation, because we can find a formula from the logic Ly, namely
(@)s;q((a)oT V (b)) that is satisfied by s but not by .

The next result will allow us to use a simpler definition of simulation when we

work with discrete processes.

62

Corollary 4.3.5 If a process simulates a discrete process, then it simulates it through

their direct sum.

Proof . Assume there is a simulation R between P and S. Consider the relation
W induced by the logic on the direct sum of P and S defined as above: p € P is
related to s € S if s satisfies all the formulas that p satisfies. Then W contains R by
Proposition 4.3.1. So W is a simulation (by Theorem 4.3.2) on P + & relating every
state R relates. |

We give a simpler definition of simulation that can be used when a discrete process
is involved. This definition has the advantage of not using direct sums. It is easy to
check that — in the mentioned particular case — the following definition of simulation

is equivalent to the one we have given previously.

Corollary 4.3.6 A simulation between a discrete process P = (P, po, p) and another
process S is a reflerive and transitive relation on P U S such that the restrictions of
R to P and S are simulations and pRs implies that for every R-closed set A C PUS
such that ANS € ¥, we have p,(p, AN P) < 7,(s,ANS).

It is easy to see that if there is such a simulation between two continuous processes,
there is a simulation according to definition 3.6.2. The reason why we did not use
the last definition directly for arbitrary labelled Markov processes is that we could
not prove that it yields a transitive relation; this remains an open problem. For
discrete processes, transitivity of simulation (as just defined) is given by the logical

characterization.

4.4 Algorithms for bisimulation and simulation

The logical characterizations of bisimulation and simulation given in the last section
allow us to use the logics instead of the formal definition of bisimulation and simu-
lation. In particular, if we want to check that two states are bisimilar we can prove

that they satisfy the same formulas of £. More interestingly, if we can find a formula

63

that is satisfied only by one of these states, we know that they are not bisimilar. This
is easier than proving that there is no bisimulation relation relating them. Moreover,
the witnessing formula gives information why the two states are not bisimilar. The
same remark applies for simulation. In particular, if we are checking whether an im-
plementation matches its specification and find a formula that is satisfied only by the
specification, the structure of the formula gives us a hint on a possible “computation”
that makes the implementation fail to be adequate for the specification. This way, it
can give us a hint in order to modify our incorrect implementation.

For that purpose, we describe two algorithms for bisimulation and simulation. The
algorithm for bisimulation produces a witnessing formula from the logic £ in case the
systems are not bisimilar. A small modification to it can be used to check if a state
is simulated by another. If it is not, the algorithm exhibits a formula of the logic
L that is satisfied by the state and not by the other. The algorithms were inspired
by an algorithm due to Cleaveland [Cle90] to decide bisimilarity of non-probabilistic
processes.

We first describe the algorithm for bisimulation. It operates in two steps. The
first step is to compute, given a finite labelled Markov chain, a family D of subsets of
states having the following properties. Every set of D is exactly the set of states that
satisfy some formula of £, and conversely, every formula of £ corresponds to a set
of D. At first sight, this last property may appear strange since there are infinitely
many formulas in the logic, but since there are only finitely many states in the process,
there are finitely many subsets of states. In order to decide whether two states are
bisimilar, we then check if they belong to exactly the same sets of D.

The first step is done with bisim, which has a running time of O(2"), where n is
the number of states. It is illustrated in Figure 4.2. Beginning with D containing
only the set S of all states, the algorithm constructs for each B in D and a € A,
nested subsets of S having probability greater than some number of jumping to B
with action a. We will prove that for every formula of L, the set of states satisfying
this formula is a member of D and conversely, every member of D corresponds to a

formula. Consequently, all states satisfying the same formulas will belong to exactly

64

bisim(S, A, , D) Input: S, A, T

D :={S} Result: D C P(S)
F(S):=T
for each B€ D and a € A do F:D—L,
[:={7n(s,B):s€ S8}
for each g € I" do I": set of numbers
C :={s € S:7(s,B)>q}
for each A € D, do ccs

F(C N A) := F(A) A (a),F(B)
D:=Du{Cn A}

Figure 4.2: An algorithm for deciding bisimulation

the same sets in D. This shows that the algorithm really relies on the characterization
of bisimulation by the logic.

More precisely, for each set B of D and a € A, bisim collects in I all possible
values of 7,(s, B) for s € S. Then, for every possible value in I", the subset C of
states that can jump into B with probability greater than this value are added to
the set D in a precise way. In fact, in order that D be closed under intersections, we
add to D all sets C N A such that A € D; the algorithm then assigns a formula to
the set and adds the set to D. The greatest value in ' could be removed since it will
always lead to an empty set. In an implementation of the algorithm, if a set has been
already assigned a formula, no new assignment should be made, for it would assign
to the set a longer formula than the one already computed. Of course, in that case,
the set needs not be added to D and the two last lines can just be skipped.

For deciding simulation between states of finite processes, the following modifica-
tion gives us a correct algorithm that we call sim. We must replace the last for-loop
of bisim by

for each A; € D, A, e DU® do

F((CN A) U A,) := (F(A1) A (a),F(B)) V F(Ay)
D:=DuU {(CﬂAl) UAg}

These lines correspond to the fact that we need disjunction in the logic to characterize
simulation. So when we add a new set C, we must make sure that its intersection

and union with every set in D is in D as well as the union and intersection of every

65

pair of sets in D. Instead of adding to D sets of the form C'N A, we add to D all sets
(CnNA,)U A; for A, A2 € D; we will prove in Proposition 4.4.2 that this is enough
to make sure that D is closed under intersections and unions. At the end of running
sim, a simulating state will belong to every set containing a state it simulates.

The second step of the algorithm is to decide whether or not a state is bisimilar
to another state and exhibit a formula if not; checkbisim does that when we give to it
as input the set D computed by bisim and two states, s and £. It simply goes through
every set in D and checks if s and ¢ are “distinguished” by that set.

checkbisim(s, t, D)
for each B € D do
if(seBandt¢g B) or (s B and t € B) then

return s “and” ¢ “are distinguished by the formula” F(B); exit
return s “and” t “are bisimilar”

We could look for the “first” set that distinguishes them, hoping to obtain a
shorter formula. The algorithm bisim itself does not record the order of creation on
the sets B, but it could be easily modified to do so. The formula obtained either way
is not guaranteed to be minimal and often it will not be minimal.

The checking algorithm for simulation is very similar. It goes through every set
in D and checks if ¢ is in every set that s belongs to.

checksim(s, t, D)
for each B € D do
if s€ Bandt¢ B then
return s “satisfies formula” F(B) “but” ¢t “does not.”; exit
return s “is simulated by” ¢
The following proposition shows that checkbisim really decides if two states are

bisimilar.

Proposition 4.4.1 Two states of a process S satisfy the same formulas if and only if
they belong to exactly the same sets in D at the end of ezecuting the algorithm bisim.
If the set B distinguishes them, then formula F(B) is satisfied by one state but not
by the other.

66

Proof . First note that the algorithm must terminate since 2!5! is finite.

We prove necessity by showing that in bisim, every element of D corresponds to
a formula, i.e., for every B € D, there exists a formula ¢ such that B = [¢]. We
will prove by induction on the number of iteration of the first for-loop that for every
B € D, F(B) is such a formula. The whole set S corresponds to the formula T.
Suppose that after n iterations of the first for-loop, every element of D corresponds
to a formula. Then we must show that all sets added to D in the last for-loop also
correspond to formulas. So we prove that for each B € D, each ¢ € " and each
A€ D,CnNA=[F(Cn A)], where C is defined from q and B. Since A = [F(A)]
and B = [F(B)] by induction hypothesis and C = [{(a},F(B)] by definition, then
CNA=[F(A)A(a), F(B)] = [F(Cn A)]. So each set in D at the end of executing
this algorithm corresponds to the set of states that satisfy some formula. This implies
that if two states satisfy the same formulas, they must be in the same sets of D.

For sufficiency, we want to show that if two states s,s’ do not satisfy the same
formulas they are not in the same sets of D. To do so, we will show by structural
induction on formulas that every formula corresponds to a set in D when the algorithm
is finished, i.e., for every formula ¢, [¢] € D. So assume the algorithm is finished
and hence that D is constructed. [T] =S € D. Now assume [¢] and [v] are in D.
To prove that [¢ A 9] € D, we will prove by induction on the number of iteration of
the first for-loop that every intersection of two sets of D is in D. So let D; and D, be
two consecutive status of D in the history of the algorithm, and assume the claim is
true for D,. We want to prove that D5 is closed under intersection. Obviously, if we
take two sets in D, that were already in D,, their intersection is in D,. So we only
have to check that D, is closed under intersection of new sets and under intersections
of new and old sets. We first want to prove that XN (ANC) € D,, where A, X € D,
and C defined from B € D, and q € T, as above. But this set is equal to (X NA)NC
which is also in D, because X N A € D, by induction hypothesis. Now we also have
(ANC)N (X NC) € D, because this set is again equal to (X N A) N C. This proves
that D, is closed under intersection, and hence [[¢ A ¥] € D.

Now we want to prove that if [¢] € D, then [(a),¢] € D. Then let r =

67

max,cs{7a(s, [¢]) < ¢q}. So since B = [¢] must have been considered in the algo-
rithm, and then at that time r € T, we have, for C = [(a),¢], C N S = [{a),¢] € D.
But this set is exactly [(a) 4] € D []

The following proposition shows that checksim really decides if a state simulates
another one. It shows that given two states, if the first state does not belong to every
set of D the other is in, witnessed by say, set B in D, we get a formula F'(B) satisfied
by the second state but not by the first one.

Propaosition 4.4.2 A state s logically simulates another state s’ in process S if and
only if at the end of running the algorithm sim on S, s belongs to every set of D that

s’ s in.

Proof . Note again that the algorithm must terminate since 2!°! is finite.

We prove necessity by showing that in sim, every element B of D is equal to
[F(B)]- This will be done by induction on the number of iteration of the first for-
loop in sim. Obviously, S = [T]. Suppose that after n iterations of the first for-loop,
the claim is true for every element of D. Then we must show that it is also true for all
sets added to D in the last for-loop. So we prove that for each B € D, each ¢ € I" and
each Ay € D, A, e DU, (CNA,)UAy) =[F((CNA,;)UA,y)], where C is defined
from g and B. Since A; = [F(A;)] (¢ = 1,2) and B = [F(B)] by induction hypothesis
and C = [(a),F(B)], then CN A = [F(A) A{a) F(B)] = [F((CN A1) U A)]. So
for each B € D at the end of executing sim we have B = [F(B)]. This implies that
if s € S satisfy all the formulas that s’ € S satisfies and if s’ € B € D at the end of
the execution of the algorithm, we have s’ = F/(B) and hence s also satisfies F'(B)
and hence is in B.

For sufficiency, we want to show that if two states s,s’ do not satisfy the same
formulas they are not in the same sets of D. To do so, we will show by structural
induction on formulas that every formula corresponds to a set in D when the algorithm
is finished, i.e., for every formula ¢, [¢] € D. So assume the algorithm is finished
and hence that D is constructed. The formula T =S € D. Now assume [[¢] and [¢]
are in D. To prove that [¢ A 9] and [[¢ V ¢] are in D, we will prove by induction

68

on the number of iterations of the first for-loop that D is closed under unions and
intersections. So let D, and D, be two consecutive status of D in the history of the
algorithm, and assume that D, is closed under unions and intersections. Obviously,
if we take two sets in D, that were already in D,, their intersection and union are
in D,. So we only have to check that D, is closed under intersection and unions of
new sets and of new and old sets. Let A, B, A;,B; € Dy, Ay, B, € DUO. Let C be
the set constructed from ¢ € I’ and B, which introduces new sets in D,. All possible

cases are considered in the following list.
1. AU(CNA))UA, =(CNA)U (AU Ay) is of the form (CN A;) U B* € Dy;
2. AN((CNA)UA,) = (CN(ANA;))U(ANA,) is of the form (CNA*)UB* € D,;

3. ((Cﬂ A]_) U A2) U ((C’ﬂ Bl) U Bg) = (Cn (Al U Bl)) U (A2 U Bg) is of the form
(CNA*)U B* € D,;

4. (CNANYUVA)IN((CNBYUB,y) =(CNAINB)U(CNANB)U(CNA2N
B,)U (A2 N By) is of the form (C N A*) U B* € Dy;

In each case, we have A*, B* are in D; by induction hypothesis. This prove that D,
is closed under intersections and unions, and hence [¢ A 9] and [¢ V ¥] are in D.

Now we want to prove that if [¢] € D, then [{a) ¢] € D. Then let r =
max,es{7.(s, [#]) < q}. Sosince B = [¢] must have been considered in the algorithm,
and then at that time r € T, we have, for C = [{(a),¢], (C N S)U B = [{a), 4] € D.
But this set is exactly [(a) 4] € D.

If a state s € S belongs to every set of D that s’ € S is in, and if s’ = ¢, then
there is some B € D such that B = [¢]. Then s’ € B and hence s € B and this
implies that s |= ¢. |

Example 4.4.3 We work out a simple example to illustrate how the algorithm oper-
ates. Consider the finite labelled Markov process of Figure 4.3. If we run the algorithm

sim on this process, the following sequence of steps will be obtained.

o Input is S = {so,...,59}, A = {a, b};

69

So

AN

s1 . Sa S3 .
B) B
Sy S5 Se S7
1,, |
S8 Sg

Figure 4.3: A finite process S.

D={S}, F(S)=T;

B =S, label is a: we get " = {0,3/4,1} and Cy = {s0, 2,53} & D, so
D = {8, {s0, 52,53}}, F({s0,52.53}) = (a)yT. Now C3/4 = {50,853} &€ D so
D= {S, {SU! 52, 53}1 {301 33}}1 F({so, 33}) = (a>3/4T’

B =S5, label is b: we get " = {0,1} and Cy = {s2, 84,57} & D, so
D = {8, {so, 52, 53}, {50, 53}, {52, 84, 87}, {52}, {50, 52, 83, 54, 57} },
F({s2,54,57}) = (0)oT, F({s2}) = (a)q T A (), T,

F({so, 52,53, 84, 57}) = (@) TV (b),T

B = {sg, 52, 53}, label is a: we get T' = {0,5/6} and Co = {so} & D, so
D = {S, {s0, 52, 53}, {0, 53}, {52, 84, 57}, {52},
{50, 52, 53, 54, 57}, {s0}, {se, s2}, {50, 52, 84,57} },
F({s0}) = (a)o(a)oT, F({s0,52}) = (a)o{a)oT V (@) T A (b}, T,
F({s0, 52,54, 57}) = (a)o(a)g T V (b),T;

B = {sq, 83, 53}, label is b: then T = {0} and hence D is not modified;

B = {s3, 54,57}, label is a: we get T = {0,2/3,1} and Cy = {so, 52,53} € D,
and Cyy3 = {s2} € D so D does not change; label b and the same B does not
modify D;

B = {9, 53}, {52}, {50}, {0, 52}, {50, 52, s3, 84, 57} or {sq, $2, 84, 57}, label is a

or b: then D does not change;

70

The set D = {S, {sq, 52, 83}, {50, 53}, {52, 84, 57}, {52}, {50, S2, 3, 54, 57}, {50}, {50, 52},
{s0, 52, 54, S7}} is returned. The algorithm ends at this stage because it has investigated
all possible B € D and all possible labels occuring in S. We see that all NIL states
are always in the same set S and hence are all bisimilar and all simulated by every
other state of S. The three states sq, s, s3 are not bisimilar to any other state of S,
and s; and s7 are bisimilar. Moreover, we see that s4 and sy are simulated by s, for
the latter occurs in every set sy and sy appear in. For the same reason, sq simulates
3.

Note that the set D generates all W-closed sets of S (where W is the logical
simulation) as seen in ezample 3.6.5. It is not easy to see from D what the simulation
relation is; one really has to check carefully, which motivates the need for checksim.

If we ran the algorithm bisim on S, the set
D= {S: {SOa S2, 53}1 {30’ 33}, {527 S4, 37}1 {30}7 {32}}

would be obtained.

4.5 Further aspects of logical characterization

Now we consider the other logics. The proof of the following proposition is very easy

and is only sketched here.

Proposition 4.5.1 All the logics defined in Section 4.1 characterize bisimulation.

Proof . There is no need to prove that if two systems satisfy all the same formulas
they are bisimilar because all the other logics extend L.

For the other direction we have to show two things just as in Proposition 4.2.1 and
Theorem 4.2.2. The first is that the sets definable by formulas are measurable. We
show that for all formulas ¢ of all our logics, we have [¢] € Z. [A.] = 7.(-, S)"'({0})
and hence is in . Now for £ and £, we only have to show that if 4] € £, then so
is [-¢] which is straightforward, and if Vi € N, [¢;] € X, then so is [A;en ¢:] which

is also straightforward since ¥ is a o-field. The results follow by structural induction.

71

The second is that bisimilar states satisfy the same formulas. Let R be a bisimu-
lation relation between (S, i, L, 7) and (S',7,X', '), and let sRs’. We have 7,(s,S) =
1,(f(s), S’) because S U S’ is R-closed, so s | A, if and only if s’ = A,. The result

is obvious by structural induction for the connectives A, V and —. a

Although these logics all characterize bisimulation, they do not all characterize
equivalence classes, in the sense that there does not necessarily exist a formula for each
equivalence class which is satisfied only by states in that class. The most powerful

logic does characterize equivalence classes.

Proposition 4.5.2 The logic £ A characterizes equivalence classes of arbitrary Mar-

kov processes.

Proof . Let © be an equivalence class of processes with respect to £ A» and F(©)
the set of finite formulas (i.e. formulas of £_) which are satisfied by one member ¢
(hence by all members) of ©; clearly, this set is countable. Then © = Nyepe) [¢] =
[[AdzeF'(e) ®]: indeed, s = t if and only if s satisfies all the same formulas of £ as ¢,

i.e., if and only if s satisfies Ayer (o) @- [|

For finite-state systems negation by itself is enough to characterize equivalence classes.

Proposition 4.5.3 The logic £, does not characterize equivalence classes of Markov
processes, but given a finite Markov chain, for every bisimulation equivalence class,
there ezists a formula of L, such that a state is in the equivalence class if and only

if it satisfies this formula.

Proof . The last fact of the statement is well known [Arn94]: using the same proof as
for the last proposition, we see that given a finite Markov chain, there exists a finite
set A C F(O) such that © = Nye4 [@] = [Ascad], where Aycad is a (finite) formula,
as wanted.

This argument does not work if we consider the problem of writing a formula
characterizing equivalence classes of arbitrary finite Markov chains and not just the

equivalence classes of states within a fixed Markov chain. This happens because there

72

are infinitely many finite Markov chains. We now prove that £_, does not characterize
equivalence classes of even finite Markov chains. To do so, consider the equivalence
class of the single-state process that can do action ¢ with probability 1 (and then
ends up in the same state); this process can do infinitely many a’s, call it S,,. Now
let S, be the process having n + 1 states that can do the action a n times and then

nothing. These processes are illustrated in the following picture.

a an—2 a

Soc - = Sp - —2=. .8 ..
O,

There is no finite formula that distinguishes S, from all the S,’s at the same time.

We prove this by showing that

if S = ¢, then SNVE > N, S, &= ¢, and
if Seo < &, then IN.VE > N, S; [~ ¢.

The base case corresponding to T is trivial. So assume the statement is true for
formulas ¢, ¢, and ¢o. Now assume S, |= @1 A ¢2. Then there exist Ny and N, such
that Vk > N;, Sk = ¢i, i = 1,2. For N = max (N, N;) we have Vk > N, Si. = ¢1 A .
If So & ¢é1 A ¢2. Then there exists ¢ € {1,2} such that Sy [~ ¢:. So there is N such
that Vk > N;, S £ ¢: so Vk > N, S, = ¢1 A ¢2. The induction step corresponding
to negation is obvious. Finally let S |= (b)q¢. Then b = a and S = ¢. By
induction hypothesis, there exists an N such that Vk > N, Sk |= ¢, so Sk = (a)q9,
i.e. Vk > N + 1, Sk = (a),9 as wanted. For So - (b)q9, there are two cases. Either
b # a or b = a. In the first case, no Si satisfies (b),¢, so take N = 0; in the second
case, we have S, [~ ¢, so there is an N such that V& > N, S, [~ ¢. Then for all
k > N S W (@)q®, and hence for all £ > N + 1 Si < (a)q¢, and the proof is

complete. [|

Note that the example given in the previous proof cannot be applied to states
inside a finite Markov chain, since it involves infinitely many states. Nevertheless, it
can be used to show that neither £_, nor £, can characterize equivalence classes inside

a discrete system satisfying the minimal deviation assumption defined by Larsen and

73

Skou. Consider the system containing all the S,’s whose initial states are attached

to a two-branching tree as in Figure 4.4. This system satisfies the minimal deviation

. a[1/2]

1 Sw
a1/2]
e o
a(1/2]

g o

a(1/2)

Figure 4.4: A finite-branching process containing S, and all the S;,’s

assumption but as argued in the proof, there is no formula that characterizes the
equivalence class containing the state of S..

We summarize the results about the different logics as follows. The logic £ charac-
terizes bisimulation of probabilistic processes, without any hypothesis of finite branch-
ing and for systems that may have continuous state spaces. The various stronger logics
also have this property. In the weak logic £ one cannot write a formula such that any
bisimulation equivalence class of states is described by this formula. This holds even
for simple finite state systems. On the other hand with just negation added to £ one
can characterize the bisimulation equivalence classes of states in a fixed finite state
Markov chain but not in countable discrete Markov chains. One cannot character-
ize equivalence classes of Markov chains with £.. One can characterize bisimulation
equivalence classes of states in an arbitrary Markov process using countable conjunc-
tion. The logics are not equivalent and we are not obtaining these results just by

encoding negation in some way.

74

Chapter 5

Approximations

We saw previously that one use of bisimulation for labelled Markov processes is to
check whether a process is equivalent to a discrete one. The analysis of its behaviour
is then greatly simplified. Of course, we cannot possibly expect that this will always
happen to any process that we are interested in analyzing. We now change our
perspective. Rather than looking for equivalence of a continuous process to a discrete
one, we expect to find a discrete process that is somehow “close to” our continuous
process. In fact, our goal is to be able to approximate the continuous process “within
any bound” that we fix, and hence we want a family of approximations for every
process that together contain all the information contained in the continuous one.

We construct such a family of finite-state processes and we show that one can re-
construct the original process —more precisely a bisimulation equivalent of the original
process— from the approximants. We do not reconstruct the original state space but
we reconstruct all the transition probability information, i.e., the dynamical aspects
of the process.

The finite-state approximations will be shown to be simulated by the process so
that in some sense they really only capture properties of the original process. This can
be useful to verify continuous processes. For example, if we want to check whether a
process satisfies some property described by a logical formula, we only have to check
that one of its approximations does. Conversely we will show that if a process satisfies
a formula, then one of its approximations does, so that the approximants capture all

the logically definable properties of the original process.

75

The construction can be viewed as a kind of “unfolding” construction. As the
approximation is refined there are more and more transitions possible. There are
two parameters to the approximation, one is a natural number n, and the other is a
positive rational £. The number n gives the number of successive transitions possible
from the start state. The number € measures the accuracy with which the proba-
bilities approximate the transition probabilities of the original process. Intuitively,
every transition in the approximation has probability within € of the corresponding
transition in S. We can play with these two parameters when approximating a con-
tinuous process. Depending on the intended use of the process, we can work with an
approximation or another, for example increasing the accuracy of the probabilities by
decreasing ¢ or alternatively increasing the number of possible transitions by letting
n be large.

We said earlier that we expect the approximants to be somehow “close to” our
continuous process. We make this idea more precise in the next chapter where we
introduce a metric between processes and prove that the approximants converge in

this metric to the process they approximate.

5.1 Finite-state approximation and reconstruction

Given a labelled Markov process § = (S,1,X,7), an integer n and a rational number
€ > 0, we construct a finite-state approximation S(n,¢) to §. The underlying tran-
sition system of this approximant forms a directed acyclic graph (DAG); thus a very
special kind of finite-state process.

S(n,€) is an n-step unfolding approximation of §. Its state-space is divided into
n + 1 levels which are numbered 0,1,...,n. A state is a pair (X,[) where X € ¥
and [€ {0,1,...,n}. At each level the sets that define states form a partition of S.
The initial state of S(n, €) is at level n and transitions only occur between a state of
one level to a state of one lower level. Thus, in particular, states of level 0 have no
outgoing transitions. In the following we omit the curly brackets around singletons.

This only happens in finite-state processes.

76

Definition 5.1.1 Let (S,i,X,7) be a labelled Markov process, n € N and € a positive
rational. We denote the finite-state approzimation by S(n,€) = (P, po,p) where P is
a subset of ¥ x {0,...,n}. It is defined as follows, for n € N and € > 0. S(n,¢€) has
n + 1 levels. States are inductively defined with respect to the level they are in. Level
0 has one state (S,0). Now, given the m sets from level |, we define states of level
[+ 1 as follows. Consider (Bj)jer the partition of [0, 1] into intervals of size €/m:
{{0}, (0, ¢/m}, (¢/m,2¢/m)],...}. States at level | + 1 are defined as follows. Let C be
a union of sets appearing at level | and a be a label in {a,,...,a,}. For every such
choice of C and a we get a partition of S by the sets 7,(-,C)~'(B;), j € I. We take
the least common refinement of these partitions obtained by varying over all C and a.
Thus if a set X is in this partition of S, (X,l+1) is a state of level [+ 1. Transitions
can happen from a state of level [+ 1 to a state of level l, and the transition probability
function is given by
(X, K). (B.I)) = { inf 7,(t, B)) ifk = l-+ 1,
0 otherwise.

The initial state pg of S(n,€) is the state (X,n) such that X contains ¢, the initial

state of S.

If B = U%_, Bj, where (Bj,l) is a state of level ! in S(n,¢) for all j =1,...,k, we
will often write (B,!) to mean {(Bi,!),(B2,1),...,(Bx,l)}. If s € S, we denote by
(X, 1) the unique state (at level) such that s € X,. The following lemma is a trivial

but useful result. It is true by construction.

Lemma 5.1.2 Let S be a labelled Markov process, and s € S. In S(n,€), if B is a
(finite and disjoint) union of sets appearing at level I, then 0 < 74(s, B) — p.((Xs,! +
1),(B,!)) < e

Proof . Let (X,l+1), (Bj,l), j=1,...,k be states of S(n,¢). Then for all s,t € X
we have
ITa(S, B.‘i) - Ta(t’ Bj)l < e/m,

because of the way S is partitioned on level [+ 1 (m is the number of states at level

l). Since <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>