
· 1 
;L 

{ 
1 

Speaker-Independent Consonant 

Classification with Distinctive Features 

Giovanni Flammia 

School of Computer Science 

:McGill University, Montréal 

revised version September 1991 

A thesis su bmi tted to 

the Faculty of Graduate Studies and Research 

in partial fulfillment of the requÏrements 

for the degree of !vIaster of Science 

@Gioval1ni Flammia 1991 



Abstract 

\~'e study the problem of classifying stop and nasal consonants in continuous speech in­
dcpenden~Jy of the speaker. '\le consider sorne acoustic parameters cornputed from the 
auditory spectrogram, and other parameters computed from the speech waveform. The 
cldSSlfication algorithm uses a recurrent multi-Iayer perceptron (MLP) with localized con­
nections. The design of the classifier is motlVated by knowledge in phonetics and in 
pattern recogniti\ 'no We report experirnentr for the TIMIT database, using 343 speakers 
in the training set .md 77 different speakers in the test set. Cood performance is obtained 
when manyacoustic parameters are (ed to the MLP, and when the MLP desired outputs 
represent context-dependent articulatory features. Classification IS perforrned by Princi­
pal Component Analysis of the MLP outputs. Refinement of the design parameters yield 
increasingly bettcr performance on the test set, ranging from 45% en'ors for a perceptron 
to 23.3% errors for the best MLP. 

Résumé 

Nous étudions le problème de la classification des consonnes plosives et nasales dans la 
parole continue, indépendamment du locuteur. Nou:, étudions des paramètres acous­
tiques calculés à partir du spectrogramme et d'autres paramètres calculés à partir du 

i signal. L'algorithme de classification utilise un réseau multi-couche (MLP) récurrent à 
connections localisées. La conception du classificateur est guidée par des connaissances 
de phonétique et de reconnaissance des formes. Nous faisons rapport de expériences sur la 
base de données TIMIT, utili5ant 343 locuteurs pour l'entraînement et 77 différents pour 
le test. Une bonne performance est obtenue lorsque les entrées du MLP sont plusieurs 
param<:tlCs et les sorties représentent des traits articulatoires qui dépendent du contexte. 
La classification est faite pa~ analyse en composantes principales des sorties du )lLP. 
Des rafincments ont amené graduellement une meilleure performance sur le test, de 45 % 
d'ClTCUIS pour un réseau sans nœuds cachés à 23.3 % d'erreurs pour le meilleur MLP. 
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Chapter 1 

Introduction 

1.1 The Acoustic Modeling Problem 

Automatic speech recognition and speech synthesis are open to many challenging appli­
cations. Among other examples, one may suggest: 

• Providing communication tools for hearing impaired persons. 
• \Vriting of diagnosis and reports without using the typewriter keyboard. 
• Translating \"'ords and sentences from one language to other. 
• Controllillg the operation of a mechanical tool by voice. 
• COJ1\"enient acccssing of large information systems. 
• Providing a teaching tool for a language course. 

Oii the other hand, a few Rpplications are commercially available at present. In a 
speakcr-indcpcndent mode. current systems can fecognize continuously spoken sentences 
\\'ith a simple syntax and a small vocabularyl In a speaker-dependent mode, current 
systems ale able to reeognize sentences \Vith words belonging to a large vocabulary of a 
certain domain2, providcd that caeh word is scparatcd by pauses. Continuous speech, 
speaker indepcndent systems for medium size spccialized vocabularies3 are under devel-

1 A slIl.ll1 \'ocabulary has bc!\\cCII 10 and 100 words. For cxamplc: numbers, leUers, keywords, and 
cOlllma lld~ 

2:\ largl' ,"oc a hul,u)' has at Icast 1 D,DaO words. Somc currellt applications reach more than 50,000 
1\ ord!- [)ollJ.lin exa III pIes mcdlclllC, bUSlllCSS, ad 1l1Jl1lSt ra tian, na val rcsources 

\,f tilt' nrdn of 1000 wonl~ 
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opment [DARPA]. In order to build bcttcr recognition sy!-tems, J('search faces two tIl.11I1 

ptoblems [l\lakhoul 90J: 

The Acoustic 1\1odeling Problem Today. m.1clll1\(':' utlllll'.lll .tPPIOxilllatt' hlll)\\'h'd!!.(' 
about the acoustic and phonological rnle,,> gO\'C'tl1ing; tl\\' sJ>okt'1l I.\nguap;c He!->('.}J( lt 
is directed towards a more dctailcd reptl'scntatlon of the acon:-.tic ~ignalill !t'IIl1'. nI 
its phonetic relcyance, and towards a significallt Illtcgr.\tlOl1 of phol1c>tk dlld pho\lo, 
logical knowlcdgc in computer model!:> of speech. 

The Language Modeling Problem flcscarch should de"clop 1'0\\'<'1 fuI tool" for mod­
eling and integrating information about syntax, scmantics, pragllliltics and diilJO).',IIt" 
so that the machine is able to acccpt lLl1constl'omcd S<'IÜeI10'<; flom t Il(' 1I<;('r. 

Although we will not deal with the ~econd problcl11 111 tl1ls thcsis, il shoul(! }w llo!,('d 
that the acoustic signal per se should not be the ollly somce of information ptoc(.'~!.;('d hy 
the system when a sentence is spoken. The undcrstanding uf running speech [('quil('" <Ill 

integrateà solution to both the above prot lems, a solution ill whlch ('.teh SOlllC<' inf1I1<'llc(,s 
the other. [\Vhite 90, Young 90] Howe\"cr, the constructiül1 of il rehal>!P \)(\,,('1111<' aCOll!>tJc­

pholletic decoder is an important stcp to\\"ards the ctcatlon of IObnst I<'cogllllI011 !:» S\'('III!> 

In the following, wc present a blier o\'en-ie\\' of the dCOllC,tic model,· g plO\I!('IIl. 

Gi'-en a sentence to be recognizcd, 1110st of th(' current sy!:>tt'lll':> modd t!l<' iWOW,tIC 

signal as a sequenC(3 of linguistic units, usually phoncmcs. At, t Ills pomt, 01)(' makp the 
assumption that a spoken sentence is a sequence of clcment<u)' sOUlld ullits. 1>)' atlcllogy 
with a written sentence which is a sequence of letters or graphcmes, The prohklll IS 

th en to evaluate what is t,he 11105t likely sequence of UIllt~ gi\"(~11 the scql1f,'!1«! d at ou",­
tic observations. The acoustic-to-phonetic dccoding probl<'lll 15 difflclIlt, for thrc(' III il III 

reasons: 

Environment Variability Ot,her signaIs might be record cd by tbe Illinoplwlw of t111' 
speech recognition system. They Il1clude backglound 1l0i'3C ;1Il<! ot!wr ~p('(lkel!-, VOH (." 

(the 50 called cocktad parly effect). AIso, the sp('ak('r lIlight Il 10\'(' ",it Il I<' .... ,)I'( t to 
the position of the microphone. 

Speaker Variability One may deal \\'ith man)' speaket" [10\11 ddfel('llt gc>ogl,tphic;t! 11'­

gions, and with sentences spoken with Jiffcrent lale",. Tite recogniz<,r II<\', tn tak(' 
into account many sources of \'ariability that influcJl("(! the aCO\l<,tlc slgllal phy~· 

iology (size and shape of the speech olgan.,), cult1lre (di.ded, ;1('('lIt, (·dIHrltJ<JII). 

psychology (is the speaker ner\'ous, is he bo[(~d'?), and pllY'>lCid CÙ1JdJlioll'> (r!(W" tlll: 
speaker have a cold?). The prollounciation can al<;o \'aly c!('!WIH!lIIg w!l<'tl}('r III(' 

sentence is read aloud or spokcn ,-pontancollc,!y 

Phonetic Variability One is trymg to aecode il COT/fl1l1J()1J<; c,1~Il.d Jill (> d Ih<.rn Ir ..,1 If ',1 III 

oflinguistic unils. In pallÎcular. tlwa,ollc,tic rCilliz,tll(11l of(,,\( Il c,olllld l', Ilot <1,'-0( Il't('. 
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and dt'pcnds on the neighbor soundf and 011 the IIItoIlation contour of the entirc 
s('n1,PIlCc. 'l'hi., plOblcm fall undcr the gencral tCTm of coarflc7Ilaf70n [Lindhlom S~l· 

\\le will Ilot dISCll'>S the filst problem. which is an ent:re field of research in itself. The 
SCCOJld prolJlem (all be made more managable in t\\O ways. The first approach is to 
design ,t system thal éH~ilptS ils mternal acoustlc parameters to one speaker at the time 
(i.e. S]J«d'Cl·-dcpclIdc111 recognition). If the goal i" spcaJ. ... cr-11ldepC11dcnt recognition, the 
approach is to utdize a very large multi-speaker data base for training the acollstic com­
ponent of the system. These kind of databases arc avaJlable to the research community 
for the l\mcrican-EnglIsh language. For example, the TIMIT database that wc use in 
this thC!:>IS contains thousands of different sentences4 read in a quiet room by more than 
500 speakers bclonging to S different regions in the United States [Seneff 88b, Zue 90] 
Slmilar data bases are being created for specialized vocabularies, for spontaneous speech 
and in Europe and Japan for other languages. In general, the creation and the analysis 
of large slandanlized databases is a key factor for improving knowledge about speech 
communication. 

The third problem, phonetic variability, is open and deserves attention. For any natu­
rally spoken sentence, we should expect strong coarticulatory effects in the pronunciation 
of each sound. Consider the speech signal during t",o successive time instants t and t + at. 
The mo\'cments (lf the speech articulatorsS do not switch from the a p,'iori target config­
uration rcpresenting phoneme pet) to the following target p(t + lit), Instead, the speaker 
trics to minimize the effort by coarticulating successÎ\'e sounds into a smooth melodic 
movcrncnt, that may never reach jdeal target configurations. As a result, the phoneme 
p( t) may be realizcd in many different ways, depending on the preceding and the following 
phonernes, and on the intonation contour of the entire sentence. A spoken sentence is 
uot a disClete sequence of idealized units, but rather a melody of articulatory gestures, 
The goal of thcse gcsturcs is not tü convey an unambiguous acoustic signal, but rather 
to communica te an unambiguous semantic and emotionaI message, that may have many 
possible acoustic Icalizations. For this reason, one may argue that the problem is lil-posed, 

In spite of its simplifying assumptions, the use of a limited number of discrete units 
is still attractiw> bccause it is a parsimonious mean of representing the spoken sentence 
in a computer S.'stCIll. Spoken \\"ords and sentences can be represented by a sequence 
of pl!oll<:'tir: symhols bclonging to a small alphabet. Thcse symbols provide a practicaI 
mtcrfacc bel \\('en t h(' acoll"tic-phonetic decodcr and the lexical access comporent of the 
rccoglllt ion ~p,t(>lll. At each time inter\"al, the acoustic-phonetic decoder computes a 

41'11<' Tnll'1' corpll~ I~ a collection of sentcllces such that C\CQ' speech "c,und of the language is 
adequatdy r('prt'senh'd Ily adfq1lalcly represwted we rnealJ (1) some sentences were deslgned snch that 
the frequt'Ilcy of OCCïlrrrnce of ('ad. pholJcme 15 l':}ual ta the a-pnor. estllnated frequency of that phaneme 
III the "pukt'II 1,IIlp;u,Ige, and (2) other sentences arc such that each ph"neme appears III many dlfferent 
coutt').!". III ordl'f 10 ft'prc"t'Ilt !<lgnJficallt acoll,>tic reallzatlOlIs ofcaarticulatorv cffecls 

5 .. uc h .\" tht' ,,)c.d f{)ld~. tht' "t'IIIIII, the tonglle. the hp'> and tlle .law • 
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pl oba bility for the occurrencc of cac 11 phonC't Je S~'J1l bol. .l!,1 \ ('1\ t Ill' dCOlI"t Il l'V idclll't', '1'111'''(' 
pl'obabi!itlCs can be intcgr.lt('d in the computa! IOll of p\()h.\hilit H· ... of (l( CI 1\ I('l\( (' f'll .dl 
the \\'ords of the sentence by the othel COlllpOIlcnts of titI' Il'CO~lIltlull ~\~klll. FUI thh 
reason, in the tcchnical h!cJaturc, phoIJClllc,;; éllC 1I0W il ~tallcl.lld llllll for ,,\.dU.tlllll', th,· 
peIformancc of dl!Telent dccoding algonthms ln oltler (0 lIlot!(·! d<!('qll.t!e!y dIOII"tt< 

phonetic dctails and the effcet of eoartic1l1,ttioll. Ollt' Ill.t) "ttltly t!ll' tI'.I· (lf "[H"'( li 111111" 
that are longer than the phoneme Since the aeoustic leahl.ltltlll of;1 ph llH'IlI(' Illd) dt'(lI'lId 

on its left and right eontext, the use of units made by phollcme-. plus cOIltext, 1'.111" dlld 
triplets of phonemes may be considered [Slmartz 85] [Lee 80, p,lg,l"" ~l\ ~)ÎJ 'l'Ill' Illlllllll'l 
of English phonemes Îs about 40, and whcn we cOilsidcr phOIH'Il1<''-; III (\)\\1\':"'\., pl 10111't je 

pairs, syllables and phonetic triplets the numJ)Cr of UllIts IIlCICd~(,,, ('\!Hlll('llt.i,dly, .1lI1! 

we face the problem of estimating reliable acoustic paraJl1CÜ'ls ftom à llllllkd da(.\!J.l'"e 

However, phonemes ma)' be defincd by a li llllted set ;.f d i~ t Illet l \'C' Mt leu].! Un y [",d tll ('" 

àescl'ibing the characteristics of the vocal tract d UI ing the pl od Ile! lOll uf ('cil h ,,()Illld 
[Jakobson 61, Stevens 83]. There arc about 25 sueh fcal ures fOI t.h(' AIIWllCillI- ElIglhh 
language. The problem can be studied by reprcsent1l1~ phollemc5 hy Ji"tincl ]\'(' fCiI III 1 (''", 

and by analyzing the relationship betwecn thesc fcatures c\lId the aCOll ... t ie !>Ignal, illld 
bet",een these features and the word sequence, 

1.2 Methodology al1d Objectives 

This thesis explores some issues related ta the acoustic modehng prohlern, and is d('\,oled 
to the subject of acoustic parameter selection and phonctic cla~sifiedtion in the fr.\Illewol k 
of speaker-independent continuous speech recognition. 1'0 stalt, \\'(' \\'ould !rl:e 10 ma\;!' an 
extensive use of the available knowledge in cxperimcntal Phonctic" Thl' tI<.,(' of dOIll.tin­
specific knowledge to solve the problcm cf acollstic dccoùlI1g lias be(,11 advor.ttcd hy 1I1dUy 
researchers (among others, we refer to [Zue 8.5. Cole SGj) The 11l1dl'd.vlll~ Ill(,t J\·.LI IUII [(JI 

su-:h an apPlOach is that the integratJon of kllO\\ledgc ,t!JOllt tlw plt()JlI'l!(' dl'LIJI" of 1111' 
speech communication proecss wtll il IIO\C th(' p<'lfollll,llI«' of ,IllY J('{0i-\1I11HJlI 0.,)',1"111 

There ale many possJble WéljS ta inCOlpOlatc phonctlC dllt! p!tOIlU!'Jgli.t! IdJ()\\ll'd!!,,' III 

a speech recogl1l tion S) stem. One a pproac Il is to defi 1Jt~ rl ppWpl ia t (' ,1 he., t 1 .Ir t, ,If ()1J<,1 JI d,li ,1 
represcl1tatiol1'> and to compile Plobabdl'"Uc or d<:teIJI1lJII~11e 1111(·..., [<II d('1 ()dlll~ "111 li 111["1-
mat/on in a Altificlal Intelligcllce (AI) Sy.,tclll ("{·C. for (·xi!lllpl(· [Blbll i-;L 1)(· \1011 :-\ï]} 
This methodology i~ based 011 the use of plWl1f'IIC knowl('dgf', 1111t. h rilt/i{ IIlt II) "P 
ply to \'cry lalgc tas\;:" hecallSc of tl\(' cOlllplexily of Ilj(' H'qllll/'d :\ l ',,} "'1'111. Al11l111l'1 
approach is to cml)('d knowll.'dgc III thl'! strtlctlll(' ilnd Ih(' «('ll"tldllll', lif d ... t,tll<,t)l.d 

decoder bascd on a hiddclI ;"larko\' model of tlw ~p(,l·dl '-lgll,d [Sh\l',tJtz ~-), 1,1'1' .,11, 
BartkO\'a S7. Deng !IO. Deng; 91] III thl., t!tc·w.,. \\p ('IJI\)('d I1l1plll Il 1.11 1)\\)' dl'," III tlw 
dcfinitioll of aCOtlstlC paldlllctels and 111 tlle lIIod(·!tIl).!; of },l!olwlll Ild,,',dll'I<, 1,.1"1''\ (JI) 

; 
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11111ltilayci perc('ptlOn~ (~lLP), This approach is JI15pired by rccenLly pubhshccl wOlks 
!LClIIlg SS, Leung 90, Bcnglo 90. Bimbot 90. Meng 91], \1LP appear to be a ,'cry flexible 
too! for ~~)cech lccogmtioll trl"L w!tC!C the distlibution of tbe many obser"ed palameters 
is diffictllt to be dcscribcd by simple linear models, and when it is required to classify 
~equellcc5 of &tatl~ti('alJy cOllelatcd ol)scf\'atiol1s rather than only one observation at the 
time, The structule of !\ILP classifiels can be designcd using domain specifie knowledge, 

ln this thcsis, wc st udy some transformations of the speech signal jnto some acous­
tic palameters that should carry useful information regarding its phonetic identity, and 
some specifie MLP topologies that should make the best use of these input parameters, 
The paramcters that wc consider are inspired by sturlies in experimental Phonetics and 
by signal ploccssing strategies, Concerning the design of the MLP classifier, we take a 
dlVlde and eonquer or modular J.pproach, Different topologies, different input parameters, 
and diffcrent r,,1LP dcsircd output encodmg can be used depending on the features to be 
lecogmzed, It may be convcnient to repre~ent the 0utpUt layer of the MLP by distmc­
tivc phonetic [eatUles describmg the place and manner of articulâtion and the degree of 
voicing rather thal1 phonetic units. It is also possible to encode different instances of one 
distincti\Oe fcatmc depending on the context m \\'hich each phüneme is pronounced. The 
outputs of one or many :'ILP classifiers may be integrated in time at a higher stage in 
ordcl to rccover thc scqucllce of spoken phonemc5, In this thesis. "OC use Linear Discrim­
inant Anal,)sis and PlIncipal Compün(~nts to combine the net\\"ork outputs, \Ve find this 
a con\'cnicllt way ta intel ])let tlw outputs of the '\ILP in a probabilistic frame,,"ùrk. This 

approach does Bot lequJ!c the I\lLP outputs to estimate probabIllties. Instead, the MLP 
arc lIscd tü LOmpute a fca t ure \'cetor from the ~peech signal. The frame-by-frame sequence 
of l\lLP outputs, 01 the compact representation gi\'en by I.he first principal components al' 

lincar ùisCl Îllllnants can be tIeated as a sequence of observatIOns for popular recognition 
algol itilll1S bas(>d cither on dynamic j)logramming [Sll\'erman gO} or on hidden ~la!'ko\' 
lllodcls [l'icone 90J, The ap!)('al of such methoàology is t\\'ofold, First, one or man)' ~fLP 
Can 1)(' fcd \\ ith se\'('ut! llC'tcLOgcneous acoustic parametels that span a time intenal that 
is !OllgPJ" t hall 01)(' àllillYSIS fIilllH' Second, this aCûustlC information is processed in il. non­
li 1 H'iI 1 !,IS!1l0!l III Ol(/('! to L'\:tlilct J('le\illlt phonetJc fcatUles, \\'lthout making rcstrictl\'C 

aSf:>\In:ptioll'i rlbout the ul1cled~ mg dlstllbutlOll of the obscr\'ed paramctels, In thls thesis. 
wc wIll dl!:>CU~" III dctaIl lSSlWS !cla.ting \\'lth the choice of input parameters, tlle design of 
the ~lLP aldlJtectulc and the 1PP10j)11ate encoding for the output veetor of the ~ILP. 

The specifie problcIll (Hldlc~sed by thls thcsis concclI1s the distinctIOn bet\\'een al! 
stop aIld lld:--al sound" III :\mrllcan-EnglI~h, This pJOhlem represents a ll''lOdc!ate size 
di"Clllllllli\tlOlI lilSk (JO clél"'~("')' .\t fil~1 5lght. thi., ma}' ~cem a limitcd goal with lcspect 
to (1)(' plOhlclll of Il'COgIlIllUg all phoncmes 111 continuo\l<; speech On the othel hand, 
It i.' ,1 ~1~IlI1il ant plOblt'lll lll'Cilll~(, sj>eakel-Jllclepcnùent automalic recogllitlOn of tbese 
partlClII,l! "'olllld ... III lOlltllll!Oll'i :-pc('cb i~ (lJfficlllt. 

\I.\lly \\ llld ... III ,n' \H' dbt 'llg1l1~hed or COllfll<;rd by thcm. fOI cxamplc dry / I,.y, mort 
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/ nore fou'cr / powcr, Automatic Iccop,nItioIl 'i~stCIl1S 1cnd 10 cOIlfll~C Ihcm \\'Ith UI\II'1 

consonants \\"ith the same place of dlticulatioll, like dfflicatc" (fol' UIl\'oHt'd "t()p..,) ,tIld 
liquids (for \oiccd stops élnd lJascll,,), A\so. yoicc<! stop'i illld IIJl\'oi\('d ..,top'" \\'IIl! III<' 

same place of articulation are oft011 conl\ls(~d (He /p/ tlnd /b/ ()] /t/ alld /d/). PI\J1Ikltl" 
arise bccause stops may be shOlt in dlllatlOlI, and t 1\\,,)' 1l1<l~ \)(' "klppn! h)' 1 hl' H'( \I~lll"('1 

Concerning nasals, there may be large dtfrcrcnce~ in the ~h'lJw of !Il(' Il.l,,,d fldll ItUlIl 

one speaker to the ûtller, and the acoustic reallzatIOlIs of na~:,<d" may val) ~~II'dtl.\' <HI"Il, 
nasalization occurs (and is pcrcelvcd) aL the I1cighho' ,g VO\\(·!. Il. lS ,d~o .Idl\( Id! tll 

discriminate between nasal ~uunds \Vith different places of articula tioll, He /Ill/ .I\ld /11/, 
because the intensity vÎ do nitsal is low, and the \ond tract articulatOls ,\lC 1('].111\'('1\ [!t·C 

to move, depending on the place of articulation of the l1elghborin~ \'owe1. 'l'Il(' '1)('( ! t 1I111 i~ 

determined mostly by the nasal tract resonances and êtltt'rcsonallcco.;, IIldcp('lId('llt ly fI Dltl 

the place of articulation. [Glass 86J. 

Such a prob1em allows one to complete an extensi\'c compalidl\'C ~tlldy of 111,[IIY ('\.­

periments in different conditions, \VIth a parsimonious lise of cOIJ1put.illg /('.,UI1H ('~ \V(, 
will also report sorne preliminary experiments conccrnmg t.he integra1.Jon of SIH li \1Ll' 
based c1assifiers into an acoustic-phonetk dccoder bascd Oll hiddcl1 ~1a rkov modl'l.., 'l'Ill" 
work should be seen as a pilot exp('rimclltal study, 

The thesis is organized as follows, The second ehapt.cr le")c\\·,, f,omc CXPtTlJlH'Illal P!ro­
netic studies concerning stop and nasal consonants !Il Amel iean- Ellgllsh T!Je hllglllSt ie 
concept of distinctive feature a_1d its relationship \Vith the acoltstic sIgnaI al<' c'.pldilll'd 
In chapter 3 we define and justify thc acoustic parameters that wc take illto (OlhidCI,t­

tion. Chapter ,1 reviews some important statistical preliminallcs that dlC 11<'( /'<'<',ll v fOI 

the understanding of classifiers based on MLP. In partlcular, wc focus OUI attentIoll (Iii 

the properties of Principal Component Analysis, Linear DiscIlmillant Allal,),,·>!,,> dlld Lu­
gis tic Regression. Chaptcr 5 describes how an l\H,P can he lJsed as a phOllctrc clêl~:,.J!i(,l. 

The presentation stresses (rather informaIly) some links bct,wecn ! ... 1LP and Uw :ot;ill,,1.1C,d 
procedures presented in the preccding chapter. Chapter G lepOI h the IC(O)!;lllt lOB ('\])('11-
ments on t!lC TII\IIT database. In particular, compalilti\'c cxpclinwllt<; hin'(' IW('11 llltt to 
in\'cstigate the proper choice of the input. parametel <', of the 0111 p11t 1 ('PI ,",('111 dtlOIi. ,tIld 
of the intcgration of thc net,,"ork outputs cono..,Hlcled CI,> CI \ cetor I)f phone! 1C f(,iI! 11((",. \V(· 

a1so repOIt some other expenmcnts t11at Ila\'e \)('CI1 1\l1l aL 0111 J.t!j()r,t1oIY fOI ('\t('Jldjll~l, 

this \\'ülk ta integrate such MLP clas5ifiels III ail aeCJustlc-phCJllctie dccod!'l for CfJlJl11lll' 
ous speech. The concluding chartcr discl1<;~cs the !csllIb alld outllllC.., <'Olll<' of 1 lw Il])/'11 

problems that wc \\'ould like tü adùress ill the [utule. 



Chapter 2 

Phonetic Overview 

\i\'hen we want to represent the time-varying speech signal, we look for acoustic param­
eters that are reJatively invariant between speakers, and that carry discriminant informa­
tion concerning thc=:. phonetic identity of the signal. If we represent phonemes by distincth'e 
articulatory features, we look for aeoustic eues that discriminate between these features. 
A promising approach is to use many parameters, based on signal processing strategies 
and phonetic knowledge. This chapter reviews sorne important studies in Phonetics that 
are relevant for the recognition problem that we wish to solve. The review describes 
the articulatory features that we \Vant to recognize and their acoustic correlates. Apart 
from the papers referenced in the chapter, this review is based on the following books. 
[Fant 70, Fant 73] provide a comprehenshoe analytical theory about the production and 
the acoustic correlates of speech sounds. [Hande189J is a study about auditory percep­
tion. [OShaughn 87] co'oers both Phonetics and automatic speech recognition. Last but 
not least. [Borden 84J textbook provides a comprehensive introduction from the linguistic 
and physiological points of view. 

2.1 Wllat is Experhnental Phonetics? 

Hcsearch in Phonctics is devoted to the study of speech sounds. Usually, the phonetician 
designs and evaluatcs experiments involving the study of natural speech samples and 
pcrceptual tests. From the point of view of speech articulation, research is carried out by 
studying the spcctrogram, the wa\'cform and sornctimes direct rncasurements of speech 
articulator movcments1

• muscle activity (EMG), and air pressure, volume and flo\\'o These 
measuremcnts arc ICcorded during the pronunciation by one or more speakers of different 
words and scntences. From the point of ,oiew of auditory perception, the research usually 

lSucfl a~ X-ra~ and Nudl'ar ~Iagnctic Rcsof'ance picturcc; of the vocal tract 

10 



CHAPTER 2. PHONETIC OVEHV1E\V 11 

invol\'es listening experiments during which some subjects are asked to cvalllatc diffcrclIl. 
synthetic stimuli according to sorne criterion. In some experiments, the brain \\'a\'(' ad iVlty 
(EEG) may be recorded. The synthetic stimuli differ in sorne acoust.ic paramctcr such 
as duration, intensity, phase or spectral quality (i.e., diffe:-ent formant trdllsitions). In 
generaI, the study of such experiments focuses on the identification of acoust.ic eues t.hat 
are relevant for the production and the perception of different speech sounds. III 01 dei 

to improve the performance of a recognition system, the engineer can design acollstlC 
parameters inspired by the work of the phonetician, aiming ta prove that findings th,,!. 
are relevant for the production and the perception of human speech ale also relevant 
for such a technical application as automatic speech recognition. Ho\Ve'Jer, the acoustÎl 
parameters that are designed by the engineer for a specifie application are not mcant t.o 
be psychological or neuro-physiological plausible. Rather, they should be considcrcd as 
inspired artificial tool5. 

2.2 Distinctive Articulatory Features 

Phoneticians classify speech sounds in space accûrding to distinctive feature5 [Jakobson 61, 
Stevens 83]. In theory, each sound can be represented by a point in the spa ce. In general, 
the space is defined by three independent directions: manner of articulation, place of 
articulation and voicing. An additional distinction is between vocalic and consonant. 

The term vocalic refers to speech sounds that are always pronounced \Vith the vibl ation 
of the vocal roids towards an unconstricted vocal tract, while aIl the consonants invoJ"c 
sorne kind of vocal tract constriction. The constriction makes consonant sounds tranf:>i tOI y 
and sometimes weaker than vocalic sounds. Vocalic sounds constitute the syllabic nucleus 
in many languages, including American-English. 

The manner of articulation relates to the dcgree of constriction of the airflow t1l1ouglJ 
the vocal tract during the production of each sound. The airflow is stoppcd by an occlusioll 

in the pronunciation of stop sounds Ip,t,k, .. .f ann in the initial portion of alrl irate,r., 
/ch,jh/. For nasal sounds /m,n,ng, ... / , the airftow is directcd through the nélsill tract 
by lowering the velum, and the vocal tract is occ1uded in a way that is similar to the ~tor 
sounds. The degree of constriction of the airfiow decreases gradually when wc 101l"idel 

stop, nasal and fricatives /f,v,z,s, ... /, Iiquids /I,r/, glidcs /y,w/ and vowels /a,i,lI, ... f. 
For the vowels, the manner of articulation refers to the degrce of opennes,; of the vocal 
tract, set by the general position of the jaw and the tongue. The Inarl/wr ulIIger., from 
close (or high) /i,u, ... / to mid /ae,er,ao, ... / to open (or lo\\') /ah,aa,,,. f. 

The place of articulation is the location of the more constrictcd pal t of tllc "ocal 
tract, where the upper wall of the vocal tlact is doser to the Ilpp(~r pal t of tllc lOllgue. 
Concerning American-English consonants, the following SIX categolÎes (lfC (m]f!fNj from 
a fomard place of articulation (closer to the lips and the teetlJ) f(J Cl lliIcI:w,tld plare 
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(do,>cr to thc velum and the back of the palate): labial /p,b,mj; labio-dental If,"/; dental 
/th.dh/; alvpolar js,z,t,d,n:l/; velar-palatal jk,g,sh,jhj; glottal jhh~hv/. The liquid /r/ 
lli15 a lctroflex place of articulation, and is similar to the central vowels jer,axrj. The 
glides or scmi-vowels /y, w / have a front and back place of articulation, respectively. The 
pInce of artIculation of the vowels ranges from front li,ae,eh, ... 1 to central 1er, ... 1 to 
bael-; ju,élil,ao, ... j. 

Voicing Iders to the absence or presence of vocal foids vibration. Table 2.1 sum­
malizes the articulatory features that we take into consideration for consonant sounds 
in Amcrican-English. The reader shouid be aware that many distinctive features may 
he defined by diffcrent linguistic theories and by the desired detail in the description of 
speech sounds. In defining distinctive features for speech recognition, one kecps in mind 
two motivations: (1) choosing the minimum number offeatures that are necessary to dis­
tinguish the application vocabulary [Vernooij 89J; (2) choosing those features for which 
c1ear acoustic eues can be deteded in the speech signal, taking into account the eurrent 
state of research in Acoustic-Phonetics. 

For each phoneme, the table reports its two most common symbols, as well as an 
example word and the features d~ scribing the place and the manner of articulation and 
the degree of voicing. The allophonic variations defined in the TIMIT acoustic-phonetic 
corpus are aIso reported. 

In the following sections, we begin our review by considering the production of stop 
and nasal sounds. Then we consider the acoustic eues related to the manner and the place 
of articulation of these sounds. 

2.3 Production of Nasal Consonants 

In this section we refer to [Fujimura 62, Fant 70]. During nasal clŒ~ures the soft palate 
(velum) is Iowered, the airflow passes mostly through the nasal tract, and the oral cavity is 
occluded at the lips or by the ton gue against the palate. The vocal rolds provide a periodic 
excitation to the nasal a'ld the vocal tract. The nasal tract is a large and long resonator 
of fixcd dimensions with a large surface area compared to its volume. Therefore, it 
con t Il butes ta the acotlstic spectrum with a single weB dampened low frequency resonancc. 
The constricted oral cavity and the large nasal ca\'ity surface absorb much of t.he energy 
produccd by the \ ibration of the \'ocal foIds, and crrate antiresonanœs in certain freqllcncy 
ranges. In gcnt'J'al, the rcsonator made by the parallel oral and nasal cavities results in a 
spectrul11 with broad band low frcquency reson:tnces followed by antiresonances2 • The 

"The ret-o n ,III 1 freqllf'IIClrS of an acoustlc t lIbe are in\'erscly proportional to Its lell&th, \\ IlIle the energy 
losses and the bandwldth of the resonallces depelld on the fraction between the air and the walls of the 
tube and on the heat conductIOn through the walls, therefore they are proporllonal to the surface of the 
\\'alls that IS l'xposed to the aIr f10w AnllCesonances appear ",hen the aIr flows from the source to more 
fhan Ollt' path. and tllls Iwppells for ail consonants 
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Ascii IPA Example A.fanner Place Vartation lIoicing -
p p pop stop labial no 
t t tie stop alvcolar no 
k k kick stop "elar no --
b b buy stop labial yes 
d d did stop alvcolar ycs 

g g guy stop velar ycs 
dx ( ladder stop alveolar fiappcd ycs 

m m my nasal labial ycs 

n n none nasal alveolar ycs 
ng TJ king nasal velar ycs 

nx ( wmner nasal alvcolar flappcd ycs 
em m bottom nasal velar sylla bic yes 
en n button nasal alveolar sylla bic yes 
eng TJ washington nasal vclar syllabic yes 

- .-
ch é church affl'icate alveo-palatal no 
jh il; judgp. affricate alveo-palatal yes 
hh h hay! fricative glottal aspiration no 
hv il he fricative glottal aspiration yes 
s s sister fricative ah'colar no 
Z Z zoo fricative al';eolar yes 

.. th 0 thief fricative dental no 

dh b them fricative dental j'PS 

f f fire fricative la bio-dental 110 

v v very fricative la bio-den tal yes 

Table 2.1: Articulatory classification of Amcrican-8nglish con'3onallts. 
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® 

SToP 500"'1:> /t/ 

Figure 2.1: A: Schematic X-ray tracings of nasal and stop sounds. Adapted from [Fant 
70]. B: Position of the place of constriction in the vocal tract for labial, alveolar and velar 
sounds. Adapted from [Borden 84]. 

place of constriction in the oral cavity differs for the three nasal sounds. For the labial 
lm/ the lips are touching, for the alveolar /n/ the tip of the tongue touches the front of 
the palate close to the teeth, and for the velar /ng/ the back of the tongue touches the 
back of the palate close to the velum. Therefore, the length of the oral cavity resonator 
decreases progressively for /m,n,ng/ and the frequency ranges for the resonances and the 
antiresondnces increase accordingly (see figure 2.4). Nasal production is characterized by 
low pressure in the vocal tract ab ove the glottis and behind the clos ure, and articulators 
that are 110t required hy the nasal sound are free t.o move. For ex ample, the jaw is free 
to moye to or stay in the position required for the pronunciation of a neighboring :"ound. 
AIso, if the \'elum does Ilot contrast for the pronounciation of a neighboring vowel, it can 
he lowered during the pronounciation of the vowel. 

2.4 Production of Stop Consonants 

ln this section wc refcr to [Fant 70, Fant 73]. Stops consist of three events: the closure, 
the burst relcase and sometimes the aspiration. During the closure the glottis is open. 
The air coming from the lungs increases the pressure in the oral cavity above in the vocal 
tract the glottis. Sincc the oral cavity is occluded completely at the place of articulation, 
it expands unt.il it suddenly opens, releasing the air at the constliction. No air flows 
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through the nasal tract. During the relcase, the \'ocal tract is {'xnted plll1liln'h .11 tll\' 
constriction which contributes \\'Ith il turbulent noise SOlllC<'. TIlC' cOll,tli{ lion (lf ~tup 
(and nasal) sounds is at the lips for labial Ip,bl , at. the heml pal.de fOi ,du'ul;11 It.dl . 
and at the back of the palate for ,dar jk.gf. 

Seen from the glottis, the production of stop soumis is (t complex C\TIII. 1>1111!l).!, tll\' 
initial part of the closurc, the \'ocal folds may or ma)" not Ylhl'atC'. If the pr(·('(·ding ~olllld 
1S voiced, and the stop is also \'oiccd, the vocal folds \·ibratc. 111 such a CM·(" '0111<' Jo\\' 
frequency energy is dissipated through the walls of the \'oeal ha( l, ",llIle t he orll\1~ioJl 
causes the build up of a certain amount of air plCSSUlC (a 10\\'<:'1' pr(' ... sun' t hall for ,\Il 

unvoiced stop). If the preceding sound is \'oiced, and t.he stop IS t111vol('ed, the \'o(',d 
foids may continue to vibrate at the beginning of the closure, but they do Ilot \'dJl.lt(' 
immediately before the release of the burst, allowing the pressure a bov(' the g;lott 1<; to 
increase significantly. 

Right after the release of an Ul1\'oiced stop, the vocal foids adduct (without. \·ibl.tI,il1g) 
creating a turbulent noise source, The resulting sound is callen aspiration, DII/ing the 
release of a voiced stop, either the vocal folds were already vibrating, or the)' will stad 
vibrating sooner than during an unvoiced stop release (\Vith a shorter or l1ull d.spiratioll 
phase), In general, in American-English there is a significant delay hctW('Cll fIl(' hUI'sL 

release and the voicillg onset, if we consider an un\'oiced stop follo\\'cd bya \'()\\'(·I ('0111 pd 1 cd 
to a voiced stop. 

It should be notec:l that the distance between burst release and voicc 0115(", (VOT) abo 
depends on the context. For example, when a unvoiced stop is preceded by a fI icati"e 
(like in spin vs. pin), this distance is shorter and is similar to the distancc for the voiced 
cognate lb/. 

The frequency location of the high frequency broad band lesonallces during the bUlst 
release depend on the place of the constriction of the vocal t raet, i.e, the place of al ticu­
lat ion deterrnined by the position of the lips or the position of the ton<', .~. 

Labial resonances are associated with one long back cavity that ie, Opf'l! Oll 01l1' PJlrl 

(the glottis) and c10sed on the other end (the lips). The l11étll1 re'>Ollilncc 1'> il 1{']rl11\'(·ly 
low second formant. 

Alyeolar resonances depend on t \\'0 diITerent \élvitic'S. (t J)(tck Citvity :-,1101 tC'r 11lill! the 
labial one and constricted bet\\ecl1 the pillatc and the tedlt. and il. short flOnt \ilvity t hat 
is open at the lips. The main rcsonances depend on the Iength of t.he lw k C <t vit y As 
the length of the back ca\'ity decrcases flOl1l the lal)ial to the alvPl)l.tr {'(JIIfip;lIl;dIlJII, the' 
second formant peak increases. 

Velar resonances arc influcnccd by the place of dl tlClll<ltlUIl of t1w 1H'1g;1"1{Jlll1~ "0\\'(,1, 
because the place of the eon~tl:ction \<; fOI\\'é11d in thf~ p;datp If t.h(· \0\\(·1 i" flollt. ,Inti 
towards the back if the vo\\'ell'> non frùnt Thel dore tlle fi 011 t and Ilack f ;1\ Ity J (·r:.,fJllilIICl· ... 
mayvary. If the ,'owcI is flOllt (theocclt.'iion is fOl\\'illd) ther:.,(·('()\!d ~()IJllrllll (d(·t(·IIllllH'd 

• 
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Figure 2.2: Simplified acoustic tube models. A: Nasal sounds. The nasal and the vocal 
tract are coupled. B: Labial, alveolar and velar configurations of the vocai tract. Adapted 
from [Fant 70). 

by the longer back cavity) is close to the third formant peak ( determined by the shorter 
front cavity). If the vowel is back ( the occlusion is bad'·vards) the second formant is 
dctermined by the front cavity and is further away from the third formant determined by 
the back cavit,v. 

2.5 Acoustic Correlates of Stop and Nasal Sounds 

2.5.1 Perceptual Cues 

Absolute spectral properties such as formant peak locations, their transitions from or 
to the consonant and the relative duration of acoustic events are the main eues for the 
perception of stop and nasal sounds, although it is a matter of current research how these 
eues are integratcd or alternated by our perceptual system, depending on the context in 
which the consonant Îs perceivcd [Handel 89}. 

PClccption of nasality depends on the detection of the low frequency murmur and on 
the d('(,[,t'i\se in intensit} with respect to the neighboling vowcl. Stop perception clepends 
mainly on dtllation and cnergy CliCS. A "ilence followcd by a short spectral transition 
towards a steady sta te \'owel is percei ved as a stop rather than another consonant with 
t hl' sallie plél( (' of al Liculation. The distance in time bet\\'eell the end of the silence and 
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Figure 2.3: Examples of spectra at the release of stop and nasal sounds. The spcctra are 
smoothed by a linear prediction algorithm. From [Stevens 80). 

the voice onset (VOT) is a strong perceptual eue for vOlcmg, although depcnding on 
the context, the detection of voicing during the preccding dosure, as weil as the burst 
amplitude, may integrate or ::,ubstitute VOT in voicing perception. 

The perception of the place of articulation depends on the frequcncy location of the 
major peaks in the spectrum, but also or. the difference between these location,> and the 
resonant frequencies of the neighboring vowel. Several aeoustic cuc~ might be intcgrclterl 
over time in order to perceive the exact place of articulation. 

In general, different acoustic stimuli might be perceived as bclonging ta thl sarne cat­

egory, as long as sorne fundamental fcatures are maintaincd, cither in the :>pectral or in 
the time domain. For vowels, these featllres might be the cl lstance::, bctWeCIl SUCCf'~..,i 'vC 

perceived formant peak locations [Chistovich 79J, and for consonants bke stops it IIlight 
be the gross shape of the spcctrum [Blumstein 80]. Since the glosS shape of the spectlulll 
depends from the distance between formant peaks, consonant and vowcl perceptllal the­
ories are consistent. This effect is known as categorlcal perception and i::, 1I111ch dchétted 
(Handel 89]. 

2.5.2 Outline of the Acoustic Cues 

ln the following wc outlillC the acollstic cotrclatcs for the 10 stop alld rm<;al !->(JlIllds. 



( 

CllAJ>TEIl 2. J>/JONETIC OVEHVIEH' 18 

Mannel' of Articulation The acoustic CUCq corrclated \Vith the 7nmwcr of art!culatwn 

are: 

• Stops are represcnted by a sequence of distinct acoustic c\'ents visible in the ~peech 
signal (dosme, burst, aspiration). As a consequence, there arc abrupt changes 
in the spectrum and in the amplitude of speech wa\'eform. These changes arc 
not so abrupt in the production and the perception of other consonants sharing 
the same place of articulation, such as the nasals, the liquids and the fricatives 
[Stevens 75, Stevens 81], 

• The spectrum of a nasal murmur shows a low broad band first formant peak. The 
spectrum changes slowly compared to other consonants, \vhile the speech waveform 
bas low energy, The nasal resonance may appear during the pronunciation of the 
neigh boring vowel. 
(Fujimura 62, Mcrmelstein 77, Glass 86] 

Voicing for Stop Phonemes The acoustic cues for voicing of stop phonemes are mul­
tiple, and each can be present or not depending on the voicing manner of the contextual 
sounds. [Stevens 74] The acoustic eues for the distinction of t'oicing are: 

• The movement of the first formant peak between the consonant and the neighboring 
vowel tend to be more pronounced for voiced sounds. 

• The presence of sorne energv in the low frequency h.nds, visible during the closure, 
if the vocal folds do not stop vibrating during the closure. 

• The distance between the burst release and the voice onset (VOT) is usually shorter 
for voiced stop than for unvoiced stop. 

• The burst amplitude is usually greater for um'oiced stops. 

Place of Articulation for Stop Phonemes Thele are two main acoustic cues for the 
distinction of the place of arllculaflOTl of stop consonants. 

• The gcn<>ral shape of the spectrum during the burst relrase. which is determined by 
t!H' relati\'l' (iislallcc bet",cen the frequencÎes of lesonance of the tubes cOllstituting 

thr vocal tract [l3lumstcin ï9, Blumstein 80, Stevens 81J. 

• TIlt' mO\'l'I1lt'nt of t he second formant pcak3 be! \\'ccn t he consona Il t a nel the' neigh­
bOI'Îng \'0\\'1.'1. This elle i., dcpt'ndent on the place of articulation of the ncig,hbouring 

.11:rthN rI'ln~ or f,\lhng III frcqucncy durtug a short IIlterval of tlnle 
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Figure 2.4: Spectral templates for labial, alveolar and velar bursts, Adapted from [J3lum­
stein 81). 

vowel. It is not clear what is the exact perceptual relationspip beLwcen Lili.., eue 
and the above one. [KewleyP 82, I<ewleyP 83, Kuro'3ki 84, Suomi 83]. Hecent/y, 
[Nathan 91) dassified stops in VC syllables in a !:lFd F2 featurc space, wlw(p Fl l'i 

the 2nd formant measured at the dosme of the glottis prior to rcleas0 anrl b. ri refN 
to the 2nd formant transition from the vowel to the dos ure. 

Place of Articulation for Nasal Sounds The aeOllstJe eues for th(' place of ,II li( IIlit­
tion of nasal sounds are: 

• The second formant transitions bct\\'ecll the consonant and the \'o\\'d, in analo,gy 
\Vith the stop sounds. This one appf'éH to be the primary acotlslic clle . 

• The position of the first formant peak Îucrcascs gl'adually from the labial /m/ 1.0 t!t(' 
velar /ng/. This one secms to bc a sccondary eue (it IS less cvident whclI cOII.,irl('riTl~ 
several differcnt speakers). 

2.5.3 Details about the Acoustic eues 

Considel' now in detail the acou!>tic eOllelates fOl tlw 111I\"oiced !>top /1',L,J:/ [F,1ll1. 7:~, 
Blumstein 70, Stevens 81, l\ewleyP 82, [~(·\\"lcyP 8.3]. The ~pCctll111l of the labi,tl /p/ h 
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1°_ ........ 11 -~J,~~~~lj 
k0-t.,\ ~-I,J_"""' _________ J~ 

Figure 2.5: Examples of wa\'eforms and spectra at the release of stop sounds. The spectra 
are smoothed by a linear prediction algorithm. From [Blumstein 79J. 

spread out or diffuse at the burst, with a falling or fiat slope towards higher frequencies. 
The burst amplitude is generally smaller than thp. high frequencies amplitude of the 
neighboring vowel. The second formant peak is a resonance of the long back cavity 
of the vocal tract and is lower (in frequency) than the second formant peak of the vowel, 
and therefore it riscs from the burst to the vowelonset if the stop precedes the vowel, and 
falls if t.he stop fo11ows the \·owel. 

The spectrum of the alveolar IV is diffuse and rising at the burst. The amplitude 
of the burst is as high or higher than the amplitude in the following vowel, The second 
fOl/11dllt pl:'ak is a reSOl1ance of the back cavity of the vocal tract. Since the back cavity is 
shorter than for thc labial /p/, this resonance lS at a higher frequency, and it rises (falls) 
modera tel)' flOI11 the burst to the foIlo\\'ing front (non front) vo\\'el. These mo\'ements will 
Iw inveI!ed if the stop follo\\'s the \'o\\'el. 

The spcctI U111 of the "clar Ik/ depends on the place of al'ticu lation of the following 
\,0\\,(,1. If the yowel is front, the spectrum is concentrated or compact around a high 
fH'C]uf'I!(Y broad band peak dctcrmincd by two close resonances of the back and front 
ca\'itie); of the \'ocal tract. Thi<; peak is locatcd at a frcquency close to and higher than 
t he second fOIl11a Il t of the ncighboUi ing \'o\\'c1. If the \'owcl is non front, the constriction 
is oack",ards, al!d the second formant. peak is at. a lowcr flcquencYl more distant from the 
thild fOllnant )wak. The second fOlmant. is gcncutlly falling (rising) from the Inllst to the 
follll\\'ing (pl'!'Cc(hng) \'0\\'('1. The hurst and the aspiration of "elM stops are often longer 
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in duration than for the other stops, and the spectrulI1 changes 1Il ,1 slo\\'('r I"d,hioll 

The time-varying spech um of the voiced stops /b,d,g/ and t he )JasaIs /711,11, 1I!J/ o!Jc'\'S 
the same formant transition mIes discnminating labials jb, ml, al\'{'olals Id, III .\1[(1 \'('1.11\ 

/g,ng/ [Bordcn 84J. However, the \'oiced burst is sllortcr and witl! !css CIH'\"!!,Y th.lll tilt' 

burst of unvoiced stops, and the aspiration is ab~ent, while na..,al III III III urs cO!II",polld 10 

energy dips. 

It is important to note that these findings always rder to phOnCllll'S CélI('flllly 1'11)­

nounced in iso/ated words. In this r'.;search we are addressing the problcm of ('ou'nlt/ou" 
speech. Therefore, Wc expect strong coarticulatory cffects bct",cCll the conSùl1,wt and 

the neighboring vowe!, and a great variability in the duration and the amplit.ndC' of carl! 
sound. 

2.5.4 Allophonic Variations in AUlerical1-English 

We have to consider severa! allophonic "ariations that ha,\'c ])('('n lal)(')('d 011 t.h!' TI:\11T 
database. The voiced a!veo!ar flapped .. 'ariation /dx/is conSIderee! hele as a distill< t ~Iop 
phoneme. Indeed, the acoustic realization of this sound is differcnt. from <,itlH'r III or /dl 
when pronounced bet\\"een t\\'o vo,,"ds ,due to the contact bctw(,cll the longl\(' tif) ilnd tlH' 
alveolar ridge during the dosure. This contact produccs cnei gy )o,>scs ilnrl ill( «'<1')('.., t)\<, 

bandwidth of the formant peaks. The spectrogram of the flapp<,d /d'r/ look" 'Ulll('wl!;d, 

like a short and weak voiced fricative [Zue 79]. NasaIs Ciln a)"o h(: llapppd (Il. 1<> !)I(' (;1<"(' 

for Inx/), but the most common yariation is the syllabic fonn /C1II,fll,[llg/ Wltc'IC' th('I(' 

is no evidence of a boundary bet",een vowel and nasal on th(' ~p('ct,I()}!,I.Ul1, tll(' \ 1'111111 

being lowered during the vo\\'d pronunciation. In thi" case the ~p('ct.rull1 lo"b, )Ik(~ .\ 
very long '1 as al. For classification purposes, we merge the fc\\' syllahic nasal .tllopltol1f'S 
with their respective non-syllabic la bels. Wc alsa Ilwrgc (he nil'>étl fla p Wlth /111 \)('( iIIJ~(' 
there is not as much differcnce bet\\'ecn the two acomtic ICdllzation:-.., CO/lljJcln'c! (rJ flJ(' 

difference bet",ccn flapped and non fJappcd stop IealJZcttlollS, l'hi" (011\'('1111011 1<) n<,,('d I,} 
other published work on the TIi\lIT databasc [Lee SfJ). 

2.6 S lunlnary 

In summary, in Older to distinguish stop and Ilasal COIlSOnitnt~, wC! cali tahe illt.o CiJII'>lr!('j­
ation the temporal evolution of se\cral nCOU'itic euc,>, ranglllg from the fine S()(,( l.J,d d"',l1l 
(e.g. formant peak trajcctorics, distance bct",ccIl ICSO/litllt p(~ak~) Lu Illc Ilload "I)('c t I.ti 

shape (e,g. slope of the high flcqllcncy bUlst, major lw.d,,, and vallc·y,> lot.l1lu/1 011 I}w 

frequeney axis, lo\\' and high frequcncy cnei gy ",li ial ionc., CJ!l 1 he 1 ilJJe axi,,), TIJ""c' il( 01lst Il 

eues arc dcpendcnt on the Icft and 1 ight contcxt, III pal tl( 1I1.lr (JII t)1(' pl.lu· (If ;111 j('III,I1)(jJl 

of the ncighbol"mg vo\\"el ,llld the \'oicillg lI1itlllWr of (1)(' pl('('('dilJg ~()Illld, C"'!" (J,dh flJI 
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fCitturcs such as velar, nasal, and voicing. In particular, nasal and "elar articulations 
put loose constraints on the position of some speech articula t0fS. It is then appropriate 
to aS5umc different acoustic rcalizations and different allophonic labels for each phonetic 
c1ass. In the next chapter we will define analytically sorne acoustic parameters that will 
be used for the recognition of stop and nasal sounds. 



Chapter 3 

Acoustic Parameters 

In the past years, research has been devoted to the scarch of adequatc pariUnetels in 
order ta improve recognition scores. Usually, the input parameters for speech recognition 
systems are sequences of feature \'ectors representing the spectrum and the ('nel/!:Y of the 
speech signal in successive short-term analysis windows. For hlddpll Markov IllodeJ ha!'.ed 
algorithms, performance has been shown to improve when timc differential palarnC't('rs ilre 
added to the standard spectrum based parameters[Lee 89J. For this thcsis, \\'(~ i)]v('~t,ig.tle 
the use of sorne other parameters in conjunction \Vith the spcctro~ralll. This J('S('ill,1! 

i5 motivated by two reasons. First, the neural net\Vorks that we wdl \Jse ctS phondir 
classifiers are able ta handle a rather large number of hetereogeIlC'ous and/or cOfle!aü'd 
input parameters without trouble, sa we are not seriously limitcd hy the 11111l1!Jcr rllld 

the nature of input features to choose. Second, wc look for acoustic paJamders t1léJ t ilIe 

inspired by knowledge in experimental phonetics, and we wonder w!wther llSinl; mOle of 
these parameters will impro\"e the recognition performance. 

In the following sections we reV1CW the acoustic pararnctC'rs that will be med ,Il tlli" 
thesis. We will not consider any parame ter that rely explici tely on il (l prion ~('glllf'!.1 f" IOll 

of the speee h signal. In other words, no effoi t is made to det.~c t alltolllatically .., pc,.fic 
acoustic events, such as the burst or the vowel onset. Sorne palarncter<, ,ue deriv('rJ [J(Jlll 

the auditory spectrogram, and other are directly computed [rom the '5pC'cch Wi\,VC'[Olll1. 

Chapter 6 will report about comparative experimcnts using difrClcnt sc1." (jf iI(jll<,1ir 
parameters. 

• 
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3.1 Review of Spectral Analysis for Speech Recog­
nition 

First of ail, wc neecl a spectral estimation of the speech signal. For speech processing, 
popular spectral estimation methods are based on the Discrete Fourier Trans~orm (DFT), 
homomorphie or cepstral analysis, linear prediction, and time-domain filteri 19 according 
to an analytical model of the ear. l While time-domain filtering is perform~d sam pIe by 
sam pIe, aU the other methods require the application of a short-term analysis window to 
the speech signal. The analysis step can be either fixed or adapted to the measured pitch 
of the acoustic signal. 

Linear prediction [Makhoul 75] models the speech signal as the output of an aU-pole 
fiHer excited bya sequence of pulses of short duration. These pulses are either periodic 
(fol' voiced sounds) or randomly distrihuted (for unvoiced ones). This technique is used 
widely in coding and synthesis of speech, and in sorne recognition systems. We have seen 
in the preceding chapter that consonant sounds, in particular nasals, are represented by 
resonances (poles) as weIl as anti-resonances (zeros), 50 at first sight we would not use an 
ali-pole model. On the other hand, it is weU known that any transfer function \Vith poles 
and zeros can be rnodeled with a high enough number of poles. The problem is then to set 
the approp.-iate number of poles before the acoustic analysis is performed. However, the 
location of sorne formant peaks might not correspond with the pole location estimated 
by linear prediction[Makhoul 75]. To solve this problem, a more accurate type of aIl-pole 
modeling has been proposed [ElJaroudi 91]. Another problem is that the sirr,ple source­
fil ter model is inapproriate when the vocal tract configuration changes r; pidly from a 
stop consonant to a vowel. To solve this other problem [Nathan 90) uses a short-t~rrn 
pitch synchronous analysis to estimate the parameters of the alI-pole filter. Recently, in 
[Hermansky 90] linear prediction has heen applied to approximate the auditory spectrurn 
rather than the standard spectrum. 'Ve decided not to investigate fmther the use of linear 
prediction in this thesis, considering also that it requires many more computations than 
the DFT based mcthod. 

The cepstrum is a linear transformation of the spectrum. More precisely, cepstral 
coefficients can obtained by projecting the spectral coefficients on a set of orthogonal 
cosine functions. The first cepstral coefficients are related to the global shape of the 
spcctrul1l, likc the tilt.s towards higher or lower frequencies. Cepstral coefficients with 
a higlH'r index are relatcd to dctails of the spedrum, and ha\'c a s111a11 variance. For 
speech ll'cognition, it is possible to drop the coefficient.s \Vith the smallest variance without 
dcgrading the petformance [Davis SOl. Thercfore, cepstral coefficients provide a compact 
set of ullcorrelatcd parametcrs. For this reason, the use of cepstral coefficients is popular 

1 The IIlletl'sh,d Tc.lller shollld refcr 10 1 he tutorial by [Rabmcr ï8] cOllcerning digital representatlons 
of !>p(wh l-lglltIls, and the Jourl/al of PIIOI/drcs special issue dedlcated to the sulJject of computatlonal 
l1lode!., of \\udltory ~pl'l'ch processlIlg [Grcl>llbcrg 88] 
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for statistical phonetic decoders, bccause the complexity of slich algol'ithms i, l\(,~ilti\'('ly 
affected by the number and the correlation bet,,"cen the input pal'amctcrs. For Sp('('(h 

recognition applications based on artificial neuralnctworks, !eccnt pllbli~hed \\'01 h., ~ hl)\\ cd 
that the performance did not change significantly in going from the FFT ha<;('d s(H'ctlal 

representation to the cepstral representation [Robinson 90b, Meng 911. 

In general, we pre fer spectral analysis to cepstral analysis, becausc the latt('1 IIll'! huI! 
provide pararneters that are difficult ta interpret visually, cxccpt for the first two. COIll­

paring different spectral estimations, we find the method bas cd on timc-domain tilt(,llIIg 
attractive because the signal processing does not suifer from loss of information due lo 
the fixed windowing of the speech signal independcntly from the variation" of th(' flll1-

damental period and of the duration of acoustic cvents. Usually, a bank of band-pa:-ls 
FIR (fini te impulse response) filters is applied to the speech signal sample by samplc, 
and no windowing is required. In addition, non linear computations can he applred to 
the outputs of the filters in order to represent adequately relevant spectral variations in 
time and frequency. This non linear behavior is inspired by neurophysiological studlCS 

[Greenberg 8S]. [Meng 911 showed that a particular model [Seneff 8Sa] outperformed FFT 
based spectral and cepstral analysis, especially in a noisy environrnent, in a vowcl r<,cog­
nition task. Another comparative study [Robinson 90b] based on another ear mode\. dic! 
not show mu ch improvement by using this last method. It should be lIoted that fOI thi ... 
latter study a very large analysis window length and analysis step (32 msec. and 16 rnscc. 
respectively) has been applied to the speech signal for aIl the expcriments, zncLud/T1g for 
the filter bank spectral analysis. This fact might have biased the results towards the same 
average performance rate. 

A method based on an ear model Îs computationally very expcnsive unless dll(·ctly 
irnplemented on digital signal processors. This is why in this thet,is wc scttlc(l for Cl. simple 
and computationally inexpensive rnethod based on the DFT, thal will be desCi ibcd in t 1\1' 
next section. 

3.2 FFT Based Spectral Analysis 

E\'ery 5 msec a Fast Fourier Transform of 20 mscc l{!ngth l~ computed from t.he l/all1millg 
windowed and pre·emphasized (\Vith a factor of O. (JS) speech signid. A sllIootllPd \\ iudo\\' 
of 20 msec. represents a compromise valuc, allowing fOl' ellol\~h 1(~'>(Jl\ltioll ill the· h('qt!"111 y 
domain to track formant peaks In a lalge range of the fund(lI11cllt<l1 pe!lod [(JI m;dl' Mid 
female speakers, and enough resolu tion in the ti me dOlllal Il tu il void III j..,)jll,~ :-, hOI t. <II 1)1 t<., t 1(, 

cvents. In a few casei'> , such a window ma}' colltajn t\IO aCOIl..,tlC ('\'('/11,<" ~Ill!t a<., ,[ \'('I) 

short plosi\'e burst followcd by the ÎI1Itial portion of <l \ O\\('] ln t]w..,c (".,(H,. t IJ(' ~I)I'I t 1 11111 

will contain somc information l'egardll1g both ('""elll..,, aud cOillticlIl.d 1011 ('ff{·( h 1.ld~ lH! 
emphasized. Sorne other times, the average amplltllde of t}J(' .., peeL 1 tllll rA 1,\\0 'dl( (( .... ..,j\(. 

, 
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Figure 3.1: Top: signal. spoken word: 'recuperate'. Middle: linear scale spectrogram, 
Bottom : Bark scaled spectrogram 

frames will vary because the analysis step is not synchronous to the fundamental period 
of the analyzed speech segment. For these limitations, we regard the FFT hased spectrum 
as a haseline acoustic analysis that can he certainly improved at the expenses of a higher 
computationalload. 

The power spectrum is then smoothed by 32 overlapping triangular filters equally 
spaced on the auditory (Bark) scale from 100 to 7000 Hz. This scale compresses logarith­
mically the frequencies above 1200 Hz, accorcling to the following fùrmulae [Zwicker 80, 
Seneff 88aJ: 

f < 500Hz 
f<1220Hz 

f ~ 1220H= 

BU) = O.Olf 

B(f) = D.OOi f + 1.5 

BU) :.~ Glog f - 32.6 

(3.1) 

From the formulae we see that spectral information at lo\\" frequencies has a higher res­
olution than at high frcquellcies. The sequence of 32 smoothed spectral coefficients X 
(i.e. the spcctrogram computcd on the auditory scalc) is the basic and most important 
input parametcl' set fOI the phonetic clas&ific[ usee! in this thesis. Figun~ 3.1 illustrates 
the diffcrf'l1ccs bcl\\,('cli tlt(' linpal' scalc FFT and the nark scalcd spcctrograrn. 
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3.3 Spectrogranl Based Paranleters 

In the following, wc descnbe some othcr paramdcls dl'l'l\'l'd f10111 the spt'ctrogl.11II \VI' 
bope that these parameters will impro\'e the performance of the classifier, ('()lI1p.llfit i\ (' 
experimenls will be reported in Chapter 6. 

Before introducir.g some differential parametcrs derivcd from the spect l'ogr,\lll .\ (f, f) 
it is useful to remind the definition of the lincar regrcsslon coefficient R, COIl!'.ldcr il 

function f(n) measured at sorne discrele samples around point n, For examplc, f l1l<ty 

be the spectrum X and n can be either in the frequency domain or in the time domain. 
The variations of the function J over the interval (n - ~n,n + ~71) can be exprC'ssed by 
the coefficient R: 

~2A.n . f( 6 + ') l ,\,,2t.n' ~2l:1.n J( ~ + ) q[f( _ A, ) J( + 6 )] _ L..,=o Z. n - n l - Bri+T L",::::O 1 L....::::o n - n l 
, n u,l, n n - ~:Üin J2( A ') l ",2l:1... ~2ll.n 

L...,=O ft - un + 1 - l~n+1 L...,=O 1. W]=O ) 

(3,2) 
\\Te can apply this coefficient to the computation of a frequene)' slope of the Sp<.'ctl'llll1, "OS 
follows: 

~~;' t) = R[X(J - 6f, t), X(f + Ill, t)] 

This parameter measUles the variations of the spcdrum S along the frcqucncy axis, W<' 
have chosen an interval ~J = 4 frequency samples, while the paramctcr is compllt.ed <:\'('1')' 

other 4 samples. This way, we represent global rather t han de1.ailcd spectral val iationr,. 
This parameter describe the spectral shape of the spcctrum, and thcleforc should discrilll­
inate such featurcs as compact vs. diffuse, and rising \"8. fiat vs. falling, Remillcl t.h,lt 
labial, alveolar and velar burst are diffuse-rising, diffuse-falling and compact, respC'cti\cly 
[Blumstein 79]. Figure 3.2 illustratcs this paramctcr. 

\Vhen wc look at the spectrum .YU, t) in the time domain, \\c ale in1.('[(':-,1.('c! ill t.he 
pattern followed by the peaks. For examplc, wc would like to dctf'ct a rising \'S, a f,dlill~ 

second formant during the transition bet\\'ecn a consonallt (lnd il \(J\\,c!. Thi~ ÎlIfollll<ltlCiIl 
is implicit in the sequence of spectral frames, provided thdt \\ c ('XilIllÎnc tlH' Spf'(t.lo~lilln 
over a time window of adequate duration. An applOach to the [>IOblcl/1 (Jf Il](,((:-'111 ill!!; 

formant transitions is the following, dircctly inspircd by ct Phonet ie study by [SI ('Vl'm 7,) J 

\\Te concentrate our attention on the pattern followcd by tbe enclgy in diff('!('llt !Jillld., 
during a short time interval. ~tore precisely, a grrIClient opclator IS thc followillg: 

G (.f, t) = X cr - l, t - 1) + X (f + l, t + 1) - X (f + l. t - 1) - X U - ], t + )) (:J..1 ) 

If the first order derivati\'es of the fUl1ction -,(f,l) éllC d(·fJncd l,y diff('!('!H('s 1)('1\\'('('1/ 
values one Întcr\'al apaIt, rather than by il. l'cg){'s,,ioll coefficiellt: 

flX V(J ) 'T(f bX \:T r '( r 7J = .'1. + 1, l -.'\ ,l); Tt = - C ,t -+ ) ) -.\ , f) 

, 
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Figure 3.2: Top: signal. Spoken word: .cartoons Bottom: Frequency derivative of the 
spectrogram, or slopes. 

then G(f,t) as in equation 3.4 apploximates a second order derivative of X(f,t) in both 
the time and frequency domain. 

(3.6) 

If we compute this gradient for aIl the fllters of the spectrogram, wc get a picturc that 
is difficult to cvaluate. We define a smoother gradient operator that integrates the infor­
mation in a larger window, and is computed only for the spectral peaks between 300 and 
4000 Hz. First, a1l the local peaks are located in that frequency band, and the gradient 
is computed as foHows: 

{ 

X(f -l,t -- 2) + X(f -l,t -1) + X(j + l,t + 1) + X(! + 1, t + 2) 
G t _ -X(!+1,t-2)-X(!+1,t-l)-X(j·-l,t+l)-X(f-l,t+2) 

(f, ) - if E(t) > thresold and X(f, t) is a spectral peak 
o othcrwise 

(3.7) 
E(t) is the total encrgy of the signal in the window t, and the threshold discriminates 
bet",ccll speech souncls and silence. Second, the gradient G(J, t) is ~moothed byaveraging 
over the nine neighbours of the point (J, t) in the spectrogram. Figures 3.3 and 3.4 
illustratcs this pararnetcr. Note the activity of the gradient at the hounclary between 
consonants and \"owels, and for the liquid Ir f. 

During thc lime inlcl'\'al of 5 frames around frame t, if the energy is rising frorn filter 
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Figure 3.3: Top: a signal frorn the TIMIT continuous speech database. Sampling ratc: 
16 kHz. Spoken word: recuperate. Middle: second order time/frcqucncy derivativc, or 
gradient (24 values). \"hen a rormant is rising (fpf), the gradient is posit.ive (darkcr) and 
when a formant is falling the gradient is negative (Iightcr) (fk/). Boltom: Bark scalcd 
spectrogram (32 filters). 
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Figure 3.4: Top: a signal from the TI connected digit database. Sarnpling rate: 10 kHz. 
Spoken words: four three. Middle: second order time/frequency derivative, or gradient 
(18 values). Bottom: Bark scaled spectrogram (24 filters). 

f -1 to filter f + l, then the gradient G(f, t) is positive. If there is a falling frequency shift, 
the gradient is negative. In order to track tp p rapid spectral changes occuring between a 
closure anJ a vowel, we have set the frequency interval to 2 filters and the time inter val to 
5 frames. These intervals represent about 1.5 Bark on the frequency scale, and 20 m:;e~ 
on the time scale. 

Finally, we review a spectral dissimilarity rneasure, inspired by [Fant 73] that should 
track spectral discontinuities in the speech signal. Given the sP.loothed spectrum X(i) 
and X(j) at frames i and j, a distance can be defined from the dot product of this two 
spectral frames: 

(3.8) 

This distance is 0 for spectra that are identical and is close to 1 for spectra that are very 
dissimilar. In this thesis we use the folJowing symmetric measure of dissimilarity, that 
spans over an interval of 60 msec: 

D(i) = dei + 3, i - 3) + d(i + 6, i - 6) (3.9) . 

In generaJ, the detector D shows a broad peak during the rcleasc of a ull\'oiced plosive and 
a sm aller amplitude variation for nasal l11urmul'S and voiccd plosives. Figure 3.5 ilIustrates 
t.his paramctcr. 
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Figure 3.5: Top: signal. Spoken word: became. anty mcasurc betwccll 
neighbour spectral frames. Bottom: Bark scalcd spectrogram. 

3.4 Waveform based parameters 

Relevant phonetic information can be extracted directly from the waveform oC the speech 
signal at a low computation al cost (see [OShaughn 87J for an overvicw). For example, 
energy and zero-crossing measurements can contribute to the dctcction of short stop and 
nasal sounds, and to the discrimination between voiced and unvoiced speech samplcs. In 
the following we review a set of parameters that should emphasizc the changes in the 
energy of the waveform from a consonant to the neighbouring vowel. 

Consider a sinusoidal signal at frequency Fz. The zero-crossing rate ZCR(t) of t.hdL 
signal (defined as the number of zero crossings per sam pie esti mateG from a lime window 
long enough to include a few periods) is relatcd to the fUlldamental frcquency Fz , sinee iL 

sinusoid has two zero cl'ossings per period. In particular, if l~ is the salllpling rate, thcn: 

Fz(t) = (ZCR(t) * F,,)/2 (3.10) 

Speech is not a sinusoidal signal, and Pz roughly corrclatcs with a flcquency location of 
major energy concentration, provided that there i .. no noise added to the spcech ~igllal 
and that the speech signal has zero mcan. For voi<.cd speech sarnples, l'~ corre/ates with 
a multiple of the glottal pulse frequency, and somelimcs with the fir~t formant. resonancc 
of the vocal tract, and for ul1\oiccd speech sarnp)c~ in gellera) l'~ will be at fi !Jighcr 
frequency. For cxample, during the pronounciation of rlll Ilrlvoir.('d plo,>ivc follow('<1 hy a 
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Figure 3.6: Top: signal. Spoken word: became. Middle: zerocrossing rate, Bottom: time 
derivative of the zero crossing rate. 

vowel, the zero-crossing rate varies from a higher value during the closure to a lower value 
at the vowel onset. Since the absolute values of F~ may vary depending on the phonetic 
context, it is appropriate to consider also its time derivative computed as follows: 

(3.11) 

setting Ât = 4 framE's, if we consider a rather long time interval of 2~t + 1 = 9 frames. 
Voiced closures and nasal murmurs usually do not show a high Fz. Therefore, when 
there is no noise added to the speech signal, we consider both parameters F~ and âFz as 
robust correlates for voicing discrimination and for detecting voiced/unvoiced transitions. 
Figure 3.6 illustrates these t\\'o parameters . 

In order to track rapid releases of energy, we use the energy of the pre-emphasized 
and windowed signal s(i) centered at frame t and updated every 5 msec: 

E(t) = 1OIog(Ls(i?) (3.12) 
i 

and its time derivative approximated by the linear regression of 9 successive time samples: 

6!~t) = R[E(t __ Ât), E(t + Ât)] (3.13) 

This time illtcrval of 2~t + 1 = 9 frames represents 45 msec. The time derivative of the 
energy spanning approximatdy 50 msec has been found to be relevant in the distinction 
bet",ccll plosivcs and fricatives [Weigcit 90J. Plosive bursts show a distinct peak in ~E(t), 
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Figure 3.7: 1op: signal. Spoken word: became. Middle: Energy. Bottom: tirne dcrivativt' 
of the energy. 

while fricatives do not. Considering the application to the recognition of plosivc and 
nasal sounds, it is possible to discriminate, at least visualJy, unvoiccd vclar stops and 
nasals. Indeed, unvoiced velar stops show a. slow change in the cnergy function, while 
nasals are represented by long valleys that are visible both in the energy f\lndion and 
in its derivative. Figure 3.7 iIlustrates these two pararnetcrs. Another useful parameter 
is the voicing energy V(t), derived from the energy of the input signal )irnitcd in the 
60-500 Hz band, and its time-derivative fj. V( t)j fj.t defined as in the abovc equatioll for 
fj.E(t)j6.t. In this thcsis we measure V(t) from the speech signal filtercd in the timc 
domain by a fast IIR (infini te impulse rcsponse) band-pa.'5s Butterwol th filter. Wc expect 
these last two parameters to help in the discrimination and the segmentation of ullvoio'd 
plosives in vocalic context. Indeed, V(t) should vary from ID\\' to high vailles and ~\I(t) 
should show a broad peak at the vowel onset. 

3.5 Summary 

We have reviewed a collection of acoustic parameters that descrioe the speech signal in 
terms of its phonetic relevance. Sorne parametcrs are expccled to contriblltc tü the dis­
crimination of the place of articulation and voicing manner of <-fop con~onants, ol.hers 
are expected to be useful for the task of segmenting the speech :-I·~ttéll, and cli~crimillat­
ing stops from other consonants. The propertics of ail of the pr"I'" "d par.1llleter~ ille 

, 
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llammcler Sl::e definition 's related to ... 

X(J, t) 32 FFT-Bark spcctrogram A uditory Spectrogram 
!:>.X/~/ 7 frequency regression global spectral shape 
PX/5/ht 24 time/frequency derivative peak trajectories 
D(t) 1 spectral dissimilarity rapid changes in the spectrum 
l~(t) 1 Frequcncy of the zero-crossing voiced speech 
ÂFz(t) l time regression of F~ voiccd/unvoict:d transitions 
E(t) 1 signal energy syllable onset and offset 
!:>.E(t) 1 time regression of E energy peaks and valleys 
V(t) l energy in 60-500 Hz band voiced speech 
ÂV(t) 1 time regression of V voicedfunvoiced transitions 

Table 3.1: Summary of the acoustic parameters 

summarized in Table 1. These parameters are obviously highly correlated, and most of 
them are computed from the smoothed spectrogram X. The temporal evolution of these 
parameters is expected to represent sufficient information for the discrimination of stop 
and nasal sounds in continous speech, independetly from the speaker. In Chapter 6 wc 
will report comparative experiments using the spectrogram in combination with the other 
parameters. 
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Chapter 4 

Linear and Logistic Models 

The previous chapters introduced the problem of c1assifying stop and nasal SOI\I1(\S 

frorn the point of view of experimental phonetics and acoustic analysis. In the Ilcxl 
two chapters, we present the algorithms that will be used for solving the probJem, fIOm 
the point of view of statistical pattern recognition. Consider a population .:r tram of N 
samples of a p-dimensional vcetor of rcal values. Each sam pIc is a vcetor of obs('1 va tiom 
or rneasurements that has been previously labcled as belonging ta one out of M cla~scs 
Ci. The general pattern recognition problem is ta design a classification a/gonthm that 
is able to label a new population X test with enough accuracy, i.e. with a minimulll 
number of classification errors. The algorithrns presented in the next two chaptcls mode! 
the observation "eetors by several parameters. The parametcrs of the classificr will he 
optimized based on the labeled population .l'tram. In our case, wc extract the population 
X = .l'tram U xte"t from the TIMIT database, the observation "cet ors arc the acoustlc 
parameters discussed in the preceding chapter, and the Al classes to hc discriminatC'd are 
the 10 stop and nasal sounds . 

In this chapter we will rcview sorne popular fineal' and /oghncar modds used in pattent 
recognition. This term refer to algorithms that rnake sorne important assumption'i abOlit 
the distribution of the input data in each class. Thcsc assumptions allow the de"ign (Jf 
simple classifiers with a few free parametcrs to he estimatcd. lIowe\"C'r, If the inpllt data 
violate the assumptions, these classifiers will not minimize the Cf/ors. 

In speech recognition tasks, and in particular for the acoustic pal amelerr" that wc 
described in the preceding chaptcr, the class distributions are latller complcx. A 1 III ()!>t 

certainly, the)' will vioJate the assumptions made by lincélr élnd logllllcitr c1it~.,ificf'i Aho, 
it Îs required to c1assify sequences of statistically COllclélted ob"f'rvatJoll:-'. Theil, thl'I(~ Î" 

the need for non linem' classifiers that are fed by mOle tlJan olle Oh.,elvdtiolJ Vf~( to/ <it 
the tirnc. Thcrefore, A particular class of non lincar c1assificatlOlI techlli(Jll<', mllit ila)(·r 
perccptrons (MLP) will be prcfcrrcd. That technique, d(~"clIl)(>d III , h(~ 11(>'\1. cha pIpI , (aIl 

, 
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bc con~idcr('d as a very powcrful extension to the loglinear regression model explained at 
the end of tlllS chapter. Of course, the number of parameters to be estimated in the non 
lincar case will fiSC considerably. 

Singula r V,tIuc Dccom position, Linear Discriminant Analysis and Logistic Regression 
will be discllsscd in SOnIe detail in the next sections. The ideas and the algorithrns 
presentcd in this chapter constitute the necessary background for understanding ho\\' our 
phonetic classifier based on !vILP "wrks, and what are the advantages and the limitations 
of using lincar and loglinear models of the observation parameters, with respect to non 
linear models snch as MLP. Wc begin by discussing the Singular Value Decomposition, 
an important tool that will be used for solving the eigenvalue equation involved by Linear 
Discriminant Analysis. 

4.1 Singular Value Decomposition 

We begin by describing the Singula.r Value Decomposition (SVD). This wellknown method 
provides a compact description of the underlying structure of any data matrix. The 
propelties of the SVD method are discussed in many matrix computations textbooks and 
iniorials (among others, [Stewart ï3, Klema 80]).1 Remind the SVD theorem: 

SVD Theorem Given any (n x p) matrix X, it is possible to write 

X = U D liT (4.1) 
(n x p) (n x r)(. x r)(r X p) 

D = diag(wl, W2, ••. , wr ) 

w, > W'+l > 0 

where r $ p is the rank of matrix X, i.e. the effective number of its linear indepen­
dent columns, D is a diagonal matrix filled \Vith r positive singular values w" and 
the ,. columns of V (the ro\\'s of VT) are ca lIed the (right) singular vectors of X, 
and U is another orthogonal matrix of (lcft) singular vectors. Each of the r columns 
(IOWS) of V (U) has unit. lcngth. 

Suppose the matrix X is filled with n samples of p- dimensional data. The SVD theorern 
tells us that earh sample (or ro\\') x: of X can he expressed as the linear combination 
of ,. orthogonal "cetOlS v)' Thesc l' vectors can he considered as an aIternati,"c set of 
orthogonal coordinate axes, that statisticians calI principal components. The covariance 
ma trix of the' data in t his new space is D, that is diagonal. This mCdns that in this ne\\" 

1 The C Ilst ing of a general SVD program can be round in [Press 88] Programs for SVD-based 
applications are a\'aIl,lbJe on dectrollic mati, through the address ncll,b@rcseal'c" att com 
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coordinate space two different variables are not statislically cow'lated. ~lor('o\'\'l, ~11l( t' 

in the new coordinatc system the variance of each \'ariablc j is HI;, the spn'<l<l of tll<' d.II,1 
X projectcd on each singuldf "cctor V J is propollional to ils a::,:,ociatcd :>ill/!,ulill" \',dllc. 

Let's formalize how \"c can obtain the singular veclors from the estim,!ted CO\',llla:lI t' 

matrix lV of the data sam pIe X. 

Assume that X has been normalizcd such that each (estimatcd) mean valuc < :l't > Îs 
zero. The variance of the projection of the sam pie X onto any vcctor v is vTWv. We are 
looking for the unit length vector(s) that maximize w 2

: 

\Ve take the partial derivative of the right part of the ab ove equation with resped lo li 
and we set it to zero. We find the eigenvalue equation: 

(1.4 ) 

Since IV = XT X, the right singular vectors of X are the eigellvectors of Hf alld t.he 
eigenvalues of W are the singular values of X squared. Therefore the singular vcetor with 
the largest singular value accounts for the greatest variance of the data, and the v<,dors 
with the smallest singular values account for the smallest variance. In Figure 4.1 the two 
singular vectors are plotted for limple two dimensional data distribution. In practicc, 
the rank r of the data matrix À ... unknown, and the SVD algoritlllll will return p vcdors 
as weHas p sillgular values. It is the care of the user to choose how many vectors to rctaill, 
based for example on the relative magnitude of the singular values or on oLller cilteria. 

When the number 11, of rows in X is small, the SVD algorithm can be applied dill'cUy 
to the matrix X. \Vhen n is too large with respect to the computing rc'3ource'i, th~ SV)) 
algorithm can be applied to the estimated covariance matxix IV, since the "illglllcli Vf'ctOl!"> 

of a symmetric positive definite matrix are also its eigen\'cctors. ~1o\{'ovcr, the 'iylIlI1H't1 il' 
nature of 111 reduces the complexity of the algorithm. 

Since statistical analysis algorithms are often bascd on the l'\édllat lUlI of <lll 111\'('r,,(~ 

matrix computcd from HI, it is desirable to evaluate how close i'i \il to !,f' :-'1ll)!,111 11. A 
crîterion to evaluate the condition of IV with respect to ill\'(~rSlCln i" tlle littj(J (J[ tlll' 2-
norms of Hl and W-I. If Hl is ill-conditiol1cd its detcllnillant js small (Uld th(~ 2-I10111l of , 
W-I is large with respect to the Euclidean norm of W. Applyillg SV)) to boUl IIl;dli((~" 

allow us to cvaluate the condition numbcr of thc rnalrix HI: 

II Wll2 
I/W-llb (·1 .'j) 

, 
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v, 
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't, 

Figure 4.1: Plot of a two dimension al cloud of data X and of the singular vectors of XT X, 
or principal components. 

Therefore SVD provides a very useful tool for evaluating the condition of a matrix with 
respect to inversion. It should be noted that SVD can be applied to any matrix, either 
well or ill conditioned, since it is a numerically stable algorithm that involves only matrix 
rotations and no matrix inversions. 

SVD and principal component analysis (PCA) has already been applied to speech 
processing. In speech enhancement from noise [Bakamidis 90] suggests that it is possible 
to discriminate speech from noise by SVD because the speech signal is responsible for 
the singular vectors \Vith the largest singular values (largest vdriance), while the noise is 
responsible for the singular vectors with the smaller singular values (smaller variance). 
In speech coding, [AtaI89] shows how the excitation of the linear prediction filter can be 
expressed as the tincar combination of singular vectors of the autocorrelation matr~x of 
the filter impulse respOllse. The number of singular components of the exitation to retain, 
and thc p::ecision of their coding is a compromise between a lower transmission rate and 
thc pcrceived speech quality. In automatic speech recognition, the transformation of 
many correlated acoustic fcatures (such as the spectrum and the energy of few successive 
.rames) iuto fewcr uncorrelated and normalized features has been proved to be useful 
either for a dynamic programming approach [Bocchieri 86} or for a continuous densities 
h:ddcn l\farkov model methodology [Brown 87J. 

In this thesis, SVD will not he app]ied directly to the data. Instead, it will he app]ied 
to the output \'cctor of a non !incar classifier. The principal components will be used to 
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Figure 4.2: A case in which the classes overlap when they are projected on the first 
principal component. Adapted from Brown 87. 

represent the output distribution of the training set with a compact set of uncorrelated 
parameters. This will be useful when the output of the classifier will he processed hy 
another statistical algorithm, i.e. a hidden Markov mode!. 

The reduction of p possibly correlated features into r uncorrelated ones is advantagcous 
when we have to estimate many statistical parameters from a finite size training set, and 
we want to reduce the number of features without loosing relevant information, but it is 
not clear if the use of principal components will be of any advantagc in a c1a<;sification 
task. It is possible that the directions of greater variance (the principal components) are 
also the directions of maximum overlapping between the classes. Figure 4.2 illustrtltes 
this unfortunate case. 

4.2 Lhlear Discriminant Analysis 

In his PhD thesis [Brown 871 suggests the use of linear discriminallt vcctors as a promh,ill)!; 
alternative to principal components, \Vhen the task is not data compression hllt patt.er Il 
recognition by statistical methods. In the next section, wc will report on the use of Iirlf'ilr 
discriminant analysis, based on the thesis hy Brown and on the textbook by [Dillon 81). 

The goal of PCA is to account for the grcatest variability of th,. ",hole dat.l sample 
with a smaller set of uncorrelatcd featurcs. Lincar discriminant iln .. l, r, (LDA) looh for 
the directions in t,he fcature space that account for the grcale~t dl" Illllinatio/l \Jct\\'/'/'/1 
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the c1asses. Ideally, when we project the data sam pie on a discriminant direction, we 
would like to sec the clements of one c1ass clustered around a certain average value with 
a small variance, and the elements of aIl the other classes scattered far away from the 
average of that particular c1ass. In other words, when projected onto the discriminant 
vector, one c1ass should have a smaU variance, while the entire sam pIe (i.e. aU the classes 
i) should have a large variance. Define S as the average within-class covariance matrix, 
that can be estimated from: 

1 " . S = - L.J nilV' (4.6) 
n i 

We try to maximize the ratio of the total projected variance ta the average within-dass 
projected variance, defined as: 

(4.7) 

Setting the gradient of À \Vith respect to u to zero yields this time the generalized eigen­
value eq uation: 

rvu = >,su (4.8) 

The SVD method can be applied for the solution to this eigen problem. Since S and ~V are 
(estimated) covariance matrices, they are symmetric and (aimost always) positive definite 
and can be decomposed into the product of a lower triangular and an upper triangular 
matrix, via the Cholesky decomposition algorithm IStewart 73]. The eigenvalue equation 
becomes: 

LlLi u = ÀL2 Lfv 

Introduce the vector z = Lf v. In terms of z, the equation is: 

( 4.9) 

( 4.10) 

Deline A = \L;l L1f. The transformed equation is now a standard eigenvalue equation: 

AT Az = ,\Z ( 4.11) 

and the eigen\'ectors of AT A are the right singular vectors of A. In summary, provided 
that L2 is non singular, that is S is full rank, the following algorithm will find the lincar 
discriminant vcetors: 

1. Decompose lV into LI Lr and S iuto L2 Lf via the Cholesky decomposition. 

2. In\'el't L2 by columns, solving the lineal system L2L;1 = J. 

3. Apply the SVD algorithm to (LïlLd T • 

4. Transfol'll1 the 1'ight singulal' ,"cet ors z into v = LiTz. 



d 

CHAPTER 4. LINEAR AND LOGISTIC 1\10DELS ·11 

In practise, wc would like to avoid computing tlte Cholcsky dccompositioll of ail ill­
conditioned matrix 5, and we can take advantage from the faet. that. an éllMlopPllS algn­
rithm can be applied by defining z = Li v and iu\'crting [rom the Cholcsky d(,c()lIlpo~it lOI! 
of lV. Before applying the algorithm, it is indccd appropriate to e\'aluat<, the condition 
number of both lV and 5 by SVD as in the equation 4.5, and to apply the dC'composlt iOIl 

to the covariance matrix with the smaIlcst condition number. 

The linear discriminant vectors are expected to account for the the glcatcst disCi im­
ination between the classes. However, there are sor.:e important conditions und(>r \\'hich 
LDA is an optimal procedure for producing the smallest classification error rate of li\(' 
data sample X. In particular, we must assume: 

• The distribution of the p initial features in each dass is a unimodal Gaussian M ul­
tivariate. 

• Each one of the considered classes has the same expected covariance matrix. 

To darify this point, we consider how classification is performed by LDA. When an UI1-

known test pattern is presented to the classifier, it is projected onto the space describcd 
by the discriminant directions with the largest eigenvalues, and the Euclideall distallce 
from each projected class a\"erage is computed. The pattern is labeled wit.h the close ... t. 
average class label. If the classes are not Gaussian unimodal, projecting the data onto 
linear discriminant vectors is theoretically unjustified, since the data distributions can­
nat be modeled faithfully by the mean vectors and the covariance matrices used in the 
generalised eigenvalue equation. 

If the classes are Gaussian multivariate, the optimal classifier is the one which com­

putes the Mahalanobis distances between a pattern and each class avcrage, and thclI pick 
the class with the minimum distance [Duda 73](pp. 22-31). The Mahalanobis distance 
bef.ween two classes, or between one pattern and one class is a quadlatic distance weightcd 
by the inverse of the within-class covariance matl'ix, therefore it takcs into account the 
spreading of the data in the original feature space. At a given Euclidcan distance betwcf'n 
t\\'o class ayerages, jf the spread of each c1ass is laige the two classes tend to oVel Jap and 
the diagonal terms of the covariance matrix are large. This will be Icfiedcd by a, small 
Mahalanobis distanc.~. Formally, this distance is dircctly deri\'Cd by modcling each das" 
distribution with a Gaussian multivariatc. More prcciscly, it is twicc the (,xpollent of the 
Gaussian: 

DM(X, GI ) = (X - /11)TW,-l (X -Ill) = XTX + .. Y'[IV I
-

1 X - 2/l?'WI- I X -1- /1; lVI-l,l, 
( '1.12) 

It can he pro\'en [Ouda i3] (pp. 152-153) that computiug the ElIclid('an r11:-.titwe (JIIto 
the discriminant space is cquivalcnt to computing tlle ~.Jahalrtllobis di.-.,titllC(', ouly If wC! 

assume the same covariance matrix HII = IV for ('ac!t cla:-.:-. ,Ille! diff(!f('/lt c1a.,.., ltVC'/itW'S 

, 
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/l •. Indccd, the quadratic term XTIV·- 1 X that appears in the Mahalanobis distance can 
he dropped \Vhen wc compare two such distances if it is the same for each class, and the 
iinear factors can be expressed in terms of the lincar discriminant vectors [Duda 73] (pp. 
152-153). 

When the t\\'o assumptions are not satisfied, the procedure will not be optimal, and wc 
are Ilot cxpcded to minimize the misclassification error rate of the sam pie X by projecting 
the data on the linear discriminant vectors. 

Coming back to the comparison between LDA and PCA with respect to a classification 
problem, it is possible that in practise the two methods may perform similarly. This 
may happen when the directions of greater variance of the data sample are close to 
the directions of maximum discrimination, or when the average within-class covariance 
matrix is almost diagonal, or when the assumptions underlying LDA are not matched by 
t.he training data, or when both estimated covariance matrices are ill-conditioned, giving 
poor results in the estimation of the LDA eigenvectors. 

4.3 Logistic Regression 

\\Te conclude this chapter by presenting a variation to Linear Discriminant Analysis that 
is c10scly related to Artificial Neural Networks. Consider the t\Vo class problem, in which 
we are asked to assign a vector X to one of t\Vo classes Ci, \Vith i = 1,2. According to 
Bayes' theorem, the posterior probability ct X being a member of class Cl' depends on 
the conditional joint pcobabilities Pr(XIC,). 

(4.13) 

Assuming equal prior probabilities Pre Ci), and dividing numerator and dtmominator of 
the right-hand side of the above equation by Pr(XIC1 ) wc obtain: 

Pr( Cd.\') = P~(XIC2) 
1 + Pr(XICd 

(4.14) 

If the class-conditional probabilities are Gaussian multivariatc with different mcans Pi 
and common cO\'ariance matrix IV, the abo\'e equation becomes: 

PI'(CIIX) = {(X 0) = 1 
. , 1 + exp - (110 + VT X) ( 4.15) 

whcrc the pa ramctcr "cdor 0 = (lIo, \/T) can be obtained by Linear Discriminant Analysis. 
Applying the algorithm outllllcd in the pre'/ious section fol' the 2 class problem, wc find 
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Figure 4.3: The sigmoid function is an estimate of a posterior class probability in the 
loglinear regression model. 

one discriminant direction corresponding to the greatest eigenvalue and one separation 
point: 

v - W-1(Jll - 1l2) (4.lG) 

1 T 1 Va - -ï(llt + Il?.) w- (Pl - Jl2) 

The function f(X,O) is called a logistic or sigmoid function. It is S-shapcd and has 
an inflection occurring at ~. Changes of amplitude in the threshold or separation point 
Va shift the surface laterally, while changes in the vector V affect ils dispersion (sPc 
figure 4.3). 

This approach can be extended to the problcm of classifying a pattern into Ol/C of 
Al > 2 classes, in which case for each class C. the fador in the exponential can he exprcs,>cd 
in terms of the Mahalanobis distance hetween thc pattern X and the class average /1., 
disregarding the quadratic term XTW-l X that appears in ail of the Id distanccs. 

\l' - W-1Jlj (4. J 7) 

V~ l T 1 - --Il lV- 11' 
2 1 • 

Therefore, the logistic regression model is formally equivalent to LiJ1Car Dhcriminallt 
Analysis if the classes are distributed as Gaussian multivarialcs with different mcan w'c­
tors and the same within-class covariance matrix. However, thcrc are strong theorctical 
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arguments in favor of logistic regression over Lineal' Discriminant Analysis. [Cox 70, 
Anderson 72, Press 78}. Indeed, logistic regression can model more families of class con­
ditional distributions than LDA. In particular, it can be proven that this mode! works if 
the distributions of the data X are (Anderson 72]: 

1. Gaussian multivariates with equal covariance matrices; 

2. independent Binary multivariatej 

3. Binary multivariate following the logis tic model \Vith equal quadratic and higher 
order terms for each classj 

4. a combinationof (1) and (3). 

In fact, logistic regression has been initially formulated for the analysis of binary data 
[Cox 70]. Another 8dvantage of logistic regression is its relative robustness with respect to 
data that do not fit the assumptions [Press 78]. Since logistic regression can model more 
families of probability distributions than linear discriminant analysis, it ca n be suitable 
for many more classification problerns. 

ft should be noted that there are sorne problems and sorne distributions that neither 
linear discriminant analysis nor logistic regression can model accurately. In partkular, 
both cannot model multi-modal distributions, in which each class is represented by more 
than one non conneded and possibly non convex cloud of points in the original feature 
space. A classical example of sueh a prohlem is the classification of binary data according 
to the exclusive-or (XOR) rule. 

If the class eonditional distribution do not satisfy the LDA assumptions we should not 
estimate the logistie regression parameters by LDA. Consider the Al class problem in a 
fcatme space of p dimensions. We wish to mode! the prohabilities Pr( CIIX) with sigmoid 
functions that depend on the unknown matrix of (p + 1).M parameters 0 == (01, ••• , OM). 
Iust.ead of using Linear Discriminant Analysis which require the cstimates of AI class 
means and of the within-class and sam pIe covariance matrices, we can try to est.imate 
direct!y the parameters 0 from the available sample .t'train of n labeled training data. 

(4.18) 

T",o approaches can then he applied: maximum likelihood estimation or Least Mean 
Square estimation. AIl approaches lead to an iterative algorithm, in which we define a 
diffcl'cnt ia bIc analytical criterion ê( 0) that has to he optimized by the estimated value of 
O. Wc start flOlll an initia], possibly random set of parameters 0° and then we iterati\"e1y 
correct the cstimates O'+I from the precedent values 0' until the criterion has been met. 
Sincc the sarne estimation pl'oblem has to be solved for the c1ass of Artificial Neural 
Nclworks that wc take in consideration for this thesis [Gish 90], we postpone the discussion 
to the Ilt'xt. chapter. 
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Chapter 5 

Non Linear Models 

Multilayer perceptrons (MLP) are distributed networks of many clcmcntary units 
called artificial neurons. Each unit performs simple computations on it.s input vcdor, 
but the sytem has a complex overall behavior. In the past five ycars, thcse nctworks 
have found many applications, including adaptive equalizél.tion, signal modcling, control 
systems, pattern recognition and machine learning. 

Considering a pattern recognition problem, the parameters governing the computa­
tions for each unit can be optimized byan iterative algorithm in order to c1assify pattel'Ils 
from examples, like a logis tic regression machine. U nlike a logistic rcgression machine, 
these units can be activated either by the observation vector or by other such units. In 
a !inear or logistic model any unit computes a function of the input parameters only. 
One advantage of using MLP instead of linear discriminant analysis or logistic rcglcs"iion 
is that sufficiently complex MLP do not make any restrictive a"isumption about the U/l­

derlying distribution of the input data, and therefore they can modcl more familics of 
statistical distributions. Other advantages are that one can bUlld complex clasr-,ificls tlliÜ 
look at sequences of heterogenous real-valued and binary inputs, and tllat the c1it<,..,ifJ( al.IO/1 

algorithm can be readily implemented on parallel hardwillc. 

This chapter reviews the basic properties of l\1LP and the aS"iociatcd optimizatioll al­
gorithm. Sorne links between linear discriminant analysis, logistic regressioll and MLP circ 

presented. Finally, t.he issues related to our particular classification problem arc di<;c1J~~ed. 
The presentation stresse') links between MLP and other statiqtical alld optimi~atioll algo· 
rithms. The presentation is based on the textbook by [Duda 73], the fUTJ(..Idmelltal papcI 

by [Rumelhart 861 and on three tutorial papers [Ilinton 87, Llppmanll 87, LippmitllTl 89]. 
A complete report on this field goes beyond the scope of this the~js, <i/ld the illt('n~<;ted 
reader should refer to the books by Duda and Hart [Duda ï3], the one by the Pal aIle! J)is­
tributed Processing Research Group [Rumelhart 86J anri the IIp-to-date book by !ff'/lz\ 
I<rogh and Palmer [Hertz 91 J. 

, 
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OUTPUT LAiE~ 

~ W!j CONNECTIONS 

INPuT LAYER, 

Figure 5.1: A single layer perceptron. 

5.1 Multilayer Perceptrons 

A Simple Loglinear Perceptron We begin our review by describing a simple network, 
the perceptron, that implements a logistic classifier. A perceptron is a layer of [( nodes. 
Each node is connected to the input vector via a set of adjustable weights. The weighted 
sum oC the inputs is passed through a continous non-linear function in order to produce 
the output of the node. A perceptron is iIlustrated in figure 5.l. For example, the output 
no de j performs the following operation on the input vector XT = (xo = l, XI, X2, ••• , xI') 
(the weight WOj being an adjustable threshold): 

p 

OJ - fCLw'J x,) (5.1 ) 
Î=O 

f(X)LOG 
1 

(5.2) - 1 +exp-x 
f(X)Sl'AfM - ta71h(x) = 2f(x)LOG - 1 (5.3) 

For the symmetric case, the output spans the range -1.0 to +1.0, while for the logistic 
case, the output spans the range 0.0 to + 1.0. In both cases, the function f is differentiable 
\Vith respect to each of the p + 1 connecting weigths wiJ ' Following [Rumelhart 86) we 
introducc the variable net 1 = Li W'lX, that represents the network activation sent to no de 



CHAPTER 5. NON LINEAR MODELS ·17 

j, and wc can write: 

The output function f(x) has opposite values \Vith respect t.o its mid-rangf', ",het )l<'1' tilt' 
scalar product between the input vector and the weight \'cdor is grentcr 01' )0\\,('1' (,11<\1\ 

the threshold wo,. Close ta the mid-range value, f(:r) is almost a lillCéll' flll1ctiolJ and ils 
derivative is maximum. This function can be interpretcd as an cstimatc of the a po~t(,l'iOl i 
class probability Pr(CJ/X). If we want to separate two classes \Vith one of thcsc ullits, "'t' 

may select the weights W'J by LDA \Vith the matrix computation algorithlll <l('scn])('d III 

the previous chapter. This technique will be optimal only if the two classes are dislributed 
as Gaussian multivariates \Vith different average values and the sa me co\'ariance matnx. 
If we do not estimate the connecting weights by LDA the perceptron is equivalcut 1,0 

a logistic regression machine and more types of distributions, like mixtures of Gall,>sl:J1l 
multivariates and dichotomous variables, can be optimally discriminated this way, ln 
general, it has been proven that 

If the classes can be separated by a linear combinat ion of the mput variables, 
then a single-layer /oglinear perceptron can be designed to msure the ml1li11lulIl 
number of classification errors. [Hertz 91] (pp. 102-108) 

We shaH present the algorithm for selecting the weights of a perceptron 111 the mOle 
general case of networks \'dth hidden nodes. 

Multilayer Perceptrons Consider the case of multi·modal distrihutions, ",hen the 
classes are represented by non-connected convex regions. If the modes of the distributioll" 
are known it is possible to design a complex perceptron topology to soh'c that problcm. 
In general, the topology is such that there exists hidden nodcs connectcd to the input 
vector, and the output nodes may be connected to the input feature ve. tOI' or t.o f>ome of 
the hidden nodes. By distributing the information on the cOIre)akd nc!.I\'ttion of sP\,(·/.!1 

r.dden nodes, multi-layer perceptrons can out-perform a simple )oglilwdr perceptIon hy 
computing complex non-linear funetions of the input veetm s, Such i., tlw (;I~e fOI Uw 
XOR problem, for whieh it has bcen shown that one hiddcll node is sllfficWllt to Illodel 
the t\\'o m.:>des of the observable distribution [Rumelhart SG], A simple p'~lceptroll \Vith 
one hidden layer is illustrated in figure 5.2. 

The problem is how to optimizc ail the weights of complcx IlctWOl k" \\ lth Ill<llly llldd"Jl 
nodes. An optimization algorithm exists for the c)ass of ;\1 LI' ill wlw:h th(~ Ilod,,<, ;lle 

divided into three or more Jayers: one input layer (the ob"en'atloll \,('dOI) al tl](' b<Jllolll 

level, one or more hidden layels, and one output layer aL the top k\'(·J. A rio,],' ill ally Irl)"'1 

is activated by other Hodes belonging to laycls undcrncath, l)llt lIe\'('1 IJ}' lI(jd(~<; l}('loll~ill~ 
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olJTPI1l' UNIT 

HIDDEN UNIT 

IMPur LAY~R, 

Figure ':>.2: A multi-Iayer p(:t'\:!"ptron that solves the XOR classification problem. Adapted 
from Rumelhart 86. 

to layers above it. Tbe algorithm is called generalized delta rule or back-propagation 
[Rumelhart 86) and is a very powerfuI extension to the classicaI gradient descent algorithm 
existing for a class of adaptive filters (Widrow 60). The algorithm is outlined in the next 
section. 

5.2 Optimization of the network parameters 

In general, we have to set beforehand a different desired configuration for the output 
vector of [( nodes, depending on each class. The common practice is to set J( = 111 
output nodes, and to set a desired output di = 1.0 - v when the input vector belongs to 
class Ci, and d. = -1.0 + v or d. = 0.0 + v otherwise1 • Then, we define an error criterion 
E( 0) for evaluating the performance of a particular set () of Q weights. For the case of a 
single-layer perceptroll Q = K(p+ 1) = IIf(p+ 1). For the case of a fully connected three­
layer perceptrolr \Vith H hidden nodes Q = 1I1(H + 1) + H(p+ 1). It is necessary for the 
error criterion t.:> be a differentiable function with respect to a!l the nctwork outputs 0). 

In general, the ellor criterion J' a monotonic function of difference terms (dJ - oJ)' Since 
cach output function depends on the parameters W.J , the error criterion is ultimately a 

IV is a small positive collstant that 15 set to prevent the network operating in the saturating region of 
the output function . 
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function of W')' or O. 

E(O) = E( ... , dJ - 0), ... ) = E( ... , w,], ... ) (5.!')) 

The following algorithm will optimize the weights with respect t.o the given efror critt'riol\. 
Starting frorn an initial set of randorn weights 0° w,e can iteratively ll1ilke sma!l adjust.llwnts 
tl,) aIl the weights until the criterion is optimized. Let 0 be a point in the Q-dimensional 
real space mQ • If we make a srnall adjustement to aIl the weights wc move from t.he point 
o to the point 0 + !l.O, and we can express the changes in the criterion function as a. Taylor 
expansion around the initial point O. 

(5.6) 

If we stop the Taylor expansion at the first terrn, we have to estimate the gradient vcctor 
\7E(O) of Q first-order derivatives. If we want a more accurate estimate of the changes in 
the error criterion, we have take into account the second term and wc have to cstimatc 
sorne or aU the tenns of the Hessian mairix ,,2E of Q2 second-order dcrivatives. 

VEn = 8E 
8lOt ) 

\72Enm = 8
2
& 

8w'J8wkl 

(.5.7) 

(05.8) 

The first-order approximation leads to the back-propagation algorithm, while the second 
order approximation leads to the class of conjugate gradient and approximate New/on 
algorithms [Becker 89, McDon.lld 90]. We consider here the first-order approximation. III 
order to minimize the approximate error criterion, at each iteration t the adjustnwnts flle 

proportional to the negatjve of the gradient of t: with respect. to the weights (77 bCII1ë; a 
small proportionality constant called the learning rat.e). 

~o = -1]\1î(0) 

This adaptation rule can be computed for each onc of tlle Q weights w') as a product of 
two independent terms, as follows: 

(JEt (J[t oot 
w tH - lOt = -77-- = -T/-_J-

1) IJ (Jw:] oo~ DW:
J 

UU 0) 

'\Te assume that the real error criterion beha\'cs likc the approxilllate onc, alld that it 
should decrease by a small amount after each adjustmellt of tbe weights, until it /('ar!ws 
a minimum value. Indeed, when we substitute the computed value of f10 iuto the Taylor 
expansion of E(O) we obtain: 

(;j Il) 

, 
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From the abovc equatioll, we notice t\\'o important aspects of the algorithm. First, the 
lcarning rate 71 plays a key role for the convergence of the adaptation alg0rithm. If Tl is too 
small the convergence rate can be very slow, and if it is too big, the weight adjustments 
computed hy the first-order approximations are too big to follow the real shape of the 
crror critcrion surface. Second, the convergence is slow if the amplitude of the gradient 
of the error criterion is small. 

In gcneral, there are several important issues to be concerned with such a gradient 
desccnt adaptation rule. If the network does not have hidden nodes and the classes are 
linearly separable, the error criterion has only one minim11m with respect to the weight 
space, and the first-order approximation will be adequate [Sontag 91). This adaptation 
rule will find the minimum of the error surface eventually (in a fini te number of itera­
tions), depending on the in,tial weights 0° and on the learning rate Tl. If the network 
has hidden nodes the error criterion surface is no longer convexwhether or no* the classes 
are Iincarly separable, and the adaptation algorithm is not guaranteed to converge to the 
global minimum and may converge instead to one of the man y local minima [Sontag 91]. 
(see for example, the experiments reported by [Kolen 90] on the XOR problem). 

Depending on the relationship between the difficulty of the problem and the net",ork 
topology, both the convergence rate and the final value of the enor criterion may vary 
cOl1siderably. In practice, the application of the back-propagation algorithm to percep­
trons with hidden units has been shown to solve many non linear pattern recognition 
problems that. are Ilot soh'ed optimally by standard !inear and Iogistic models, and the 
most important issue remains the number of iterations required for the convergence of the 
algorithm, and not t ',e presence of local minima [Hinton 87}. In the following, we derive 
the adaptation fuIe for a particular type of criterion: Least l\fean Square (LMS). 

Least Mean Square Error Criterion We define the following criterion for evaluating 
the performance of a particular set of weights: 

K 

&(0) = 2)2)d) - o))D) (5.12) 
.-t' J=I 

The expression (d) - o))D, where D is an il1teger, defines a distance measure between 
the desircd outputs and t.he network outputs. X is either the complete set or a subset of 
training patterns. Different values of D imply different metrics and different assumptions 
about the distribution of the output \'alues D} [Burrascano 91). In particular, D = 1 is 
the LI City-Block metric, that assumes that the output distIibution decay exponetially 
from the an'rage. D = 2 is the L2 Euclidean metric, that assumes that the distributions 
arc Gamsian. D = 00 is the Loo Chebyshev metric2 that assumes that the distribution 

"'l'Ill' Illost popular metrlc 1<: the Euclidean one, although there are sOllle thcoretlcal JustificatIOns for 
rhoo"'lIlf; the Cht'h)shl.'v metnc, at Ieast at the beginning of the adaptation and for smalllearning rates 
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is box-car shapcd (uniform). \Ve deri\"c hcre the adaptation rn)p fol' the ca~t' J) = '2, 
The partial derivati\"es of the error criterion can he rccursivc\y compllted from the top to 
the boUom layer in an efficient manner. If the node J is an outp\lt node "nd W(' \Ise the 
logistic function, the der~\'ati\"es are 3: 

BE 
-(dJ - oJ) (5.1:l) 

ôOJ 
= 

âOJ = (1.0 - OJ )0,0, (5.1'1) 
Bw,) 
âE 

-(d, - 0))(1.0 - 0))0)01 (5.15) 
âw" 

= 

If the node Îs not an output node the derivativcs can be computcd by summing the 

derivatives already computed for aU the nodes k in the layers ab ove J to which the node 

sends its output 0,. 

BE BE 
80) 

- L WJk 8(1.0 - Ok)Ok (5.16 ) 
k Ok 

8E BE 
ôW1J 

- (1.0 - Oj)o)ol L W)k a (1.0 - OdOk (.j.17) 
k Ok 

It has been proven that if we use J( = ,M output nodes, we set the desireo outputs 00 
and 1.0 and we adjust the parameters of the network according tü this cIÏteriol1, we .tIC 

minimizing the mean square error between the network output and the a posteriori c1a.,s 

probability Pr(CJIX) [Gish 90, Shoemaker 91]. 

K 

ELAIS {:::=} L)P7'(CJX') - o})2 (5.18) 
):::1 

How small this mean square error can become depends on how complex the nctworJ.: i~ 

with respect to the l'Cal input data distributions. If wc allow the nct\\'üJk to 1)(' iubitr<uily 
complex, the mean square error should theoretically converge to zero and the net\\ork 
output will approach to the a posteriori class probability [BoU! Jaul SSJ, 1 n prilct JrP, tilc 
convergence of the network will depend on the behavior of the cHlaptdtJOn algollthm. 

An interesting point is that wc are not limited to encode the ()Id put I,,)'el' with IlOc!C'S 

that are meant to approxima te a postel iori class probabditJe5 lllstearl, \\'(~ ('[1/1 1I<;l' t.lti" 
criterion for any particular desired output encoding. In particul,i1', IL C,lll 1)(' (iH)\'('Jl rll.!! 

Indeed, at the beginning of the adaptation aigonthlll, the dl .. tnbutioll IS ld.;('ly tü he Il III for III , .tilt! il\ 

we get closer to convergence, the distribution l'i Ilkely to be GalJ"~I,1Il III th(~ 1'<i1'i'T by Bllrra\c.t/lfl, t/lt. 
adaptation rule for D = (')(1 is l'resented and dlscussed 

3For the sake of simplicity, wc do not mdlcate III the CfjUaIIOIl'i the l>UlIlInatir)!l O\'t'f ail the tr,llllllll\ 

pattern patterns L,t" 

, 
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a pClceptroll with cnough hidden nodes can approxima te in a Mean Square sense an 
arbitrary bOllnded and non-constant function of the input parameters [Hornik 91]. 

1 n t.he expeliments reported for this thesis, we try to adapt the net",ork in order to 
compute a nOIl-lincar transformation from an input feature space of dimension p to an 
output featurc spacc in Ar dimensions (/( does not have to be equal to the number of 
classes). If the classes are not linearly separable in the input space ]J, we bope that 
the transfol mation results in linearly separable classes, in which case wc can apply a 
lincar rnethod to classify the output sample, assuming that the output distributions after 
convergence of the adaptation algorithm are, for example, Gaussian. 

5 .. 3 Recurrent MLPs 

So far, we have discussed feedforward networks. In a recurrent network, a unit i at time 
t - d can be connected to a unit i at time t (d is a. delay, and j might be i). Recur­
rent connections allow the network to capture important information from the temporal 
variations in the input parameters [Rumelhart 86, BourIard 89}. 

Given a network with recurrent connections, the propagation algorithm can be gen­
eralized to incorporate time [Rumelhart 86] (pp. 354-361). In general, The LMS error 
critel'Ïon for a training sequence p of T patterns becomes: 

T K 
&t.us(O) = I)2:)dJ - QJ?) (5.19) 

t=1 J=l 

The adaptation of the netU'ork parameters is as follows (see figure 5.3). In a forward pass 
the outputs of aIl the nodes in the network and the error criterion for the output nodes are 
computed and saved for each time frame of the sequence, starting from the first frame to 
the last frame. Then, in a backward pass, the gradient for each connection is accumulated 
from the output layer to the input layer starting from the fast frame to the first frame. In 
other \rolds, equations 5.15 and 5.17 are extended to the entire sequence of frames starting 
[rom the last frame. This way, the changes in each of the weights w') take into account the 
fact that the acti\'ity of the network at time t might affect its activity at anj' successive 
time. Whell the backwal'd pass l'caches the first frame, the changes in the weights can 
he cithcr applicd directly (on-line learning) or saved in order to be applied after the 
prt.'sentdtion of the complete training set (off-line or batch learning). If the training data 
is large enough, on-line lcaming will assure faster convergence [LcCun 89]. The major 
problcm \\'ith this procedurc is the l11emory lequirements [Rumclhart 861. Indeed, as we 
IInfold the nct\\'ork in lime for the forward phase, wc necd to saxc the successive activities 
for a1l the no<l('.::;_ and in the bad,ward phasc we ha\'c t.o sayc ail thc partial gradient 
COllljHltdtions. Th<> hClldit is that thcre are no constraints on the netwol'k connections. 
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t=3 

t::O 

Figure 5.3: Back-propagation in time. (a) A recurrent network. (b) The sarne network is 
unfolded in time. Adapted from Rumelhart 86. 

5.4 Design of Recurrent MLPs for Speech Recogni­
tion 

There are sorne important factors that have to be carefully studicd for the sucœssful appli­
cation of recurrent networks to speech recogni tion. One of thcrn is the design of topologies 
that integrate information over time and frequency. Several researchers are studying this 
problem [Bourlard 88, Waibel 89, Jordan 89, \Vatrous 90, Bengio 901 . Other factors arc 
the selection of the input pararneters and the choice of the desired output cncoding. In 
the fallowing we review sorne issues that have becn addressed in the experirncnts reportcd 
in the next chapter. 

Tapped Delay Lines [Waibel 89, 8engio 90, Hertz 91] One assume that the output of 
the newtwork at time t depends on the input sequence at time t + t:.t '" t - t:.t. 'l'Ile 
sirnplest idea is ta consider a sequence of delayed vectors as the input to the lIetwork~ il'; 

in figure 5.4. In particular, in this thesis wc want to cla'5sify stop and na<;al phOnCIIH!S 
in a lev 1 context. Following the phonetic rcview of Chapler 2, il ~eeml> leasollrlblt· 

to take a decision bascd on a sequence of input parameters cenlcrcd 011 lhe colI~onallt, 
including the preceding c10surc and the following vowcl onsct. Dtllillg the t'lo!>1Ife, th(~ 

4Interestingly, this structure is analogous to ail adaptivc cqualilcr. 

• 
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OlITPOT LA'fEftI (t) 0000 

COritlEc.TION5 w··~ f\ 
(ttl.:l ~ooo/ 

INPUT LAYER.. ( t ) 000 0 'J(~.(,,: 

(t-AI:) 00000 

Figure 5.4: A simple time-delay neural network is similar in structure to an adaptive 
equalizer. Adapted from Hertz 91. 

signal contains information about the presence of voicing. At vowelonset the spectrogram 
and the time/frequency gradient determine the direction of the second formant trajectory. 

In general, tapped delays can be inserted between any two layers. This is a simple and 
very effective idea that solves the problem of integrating contextual acoustic information 
in the classification process. Howew:!r, it docs not solve the problem of time warping. 
When we deal with many speakers and many different speaking rates, the duration of 
acoustic events, like formant transitions, is extremely variable. The introduction of many 
tapped delay lines does not allow modelling this variability adequately. 

The solution to this problem might be not to expect the MLP to perform time 
warping. Instead, the MLP can be integrated with aDynamie Programming (DP) 
module [Silverman 90}, and in particular with a hidden Markov mode} (HMM) based 
algorithm [Picone 90J. This methodology is under investigation by many researchers 
[Robinson gOa, BridIe 90, Bourlard SS, Franzini 90, Sengio 91a]. The dynamic program­
ming module aJlows for cxplicit non-Iinear time warps of the input sequence. At the end of 
the next chapter wc will describe a preliminary cxperiment that has been run for coupling 
MLP classifiers with hidden Markov models. 

Recurrent Connections [Jordan 89, Bengio 90, Watrous 90, Hertz 91] Feedforward 
nctwol'ks \Vith tapped dclay lines can be enriched with sorne feedback connections. These 
connections aJlow the nctwork to remember its state at preceding instant in time. There-
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O\HPuT LAiE~ 00000 

r 
HIDDEN LAYER, 00000 00000 

t -tôt: 

INPUT LAYER, 

00000 t-6t 

Figure 5.5: A simple reeurrent architecture that includes sorne time delays. 

fore, the output of the network at time t does not depend only on the input sequenœ, 
but a/so on the past state(s) of the network5

• In this thesis, wc use saille specialized hid­
den units that, at any time t, are activated by the output units and/or the other hiddcn 
units at time t - 1 [.Jordan 89), as in figure 5.5. Considering the problern of consonant 
classification, it is possible that relevant acoustic eues appear in the speech signal at dif­
ferent times. Suppose, for example, that the very first frame of the burst of a /k/ i:; 
clearly compact around a high frequency peak, and that during the following aspirat.ion 
the spectrogram is fuzzy. If the network outputs are firing correctly Oll that fir!>t fralJw, 
then feedback units corresponding ta the fcaturc velar will be activated, and t.hcy will 
contribute to sustain the state of the network, until sorne other acoustic CUCS, likc the fall 
of the 2nd formant, will reinforce the firing of al! the nodcs rcprt'senting phoneme jk/ . 

Localized Connectivity Constraints [Lcung 88, LcCun 89, Watrolls 90J Fully con­
nected networks with time delays and recurrcnt connections wight he very hard tn opti­
mize, due to the very high number of free parameters, esprcially if the êllIIollnt of trainlllg 
data is not sufficient. On the other hand, it is possible to design the strudure of the 
network as a function of the features ta be rccognized, and al the ~aJJle tillH', lilllit tJlt~ 

number of free parameters. For the case of consonaIlt sounds, ~\lppO~C that tlJ(! IIIpllt. 
parameter -,redor is the spectrograrn. The first hiddcn layer cali be de!>igned to (aptm(' 
dilferent features from different frequency band". III thi!> thesi!>, w<! divide th(! allditory 
----------------------------

5This behavior is sinlllar Lo systems used in control lilcory. 

, 
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Figure 5.6: A simple network structure with localized connectivity constraints. 
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scale from 100 to 7900 Hz into 4 regions. Three smaU groups of hidden nodes are con­
nected to two overlapping regions of the spcctrogram each, \Vith time delays (see figure 
5.6). Therefore, the first group of hidden nodes computes features related to the low 
frequencies, the second group computes features related to the mid range, and the third 
group computes featurcs related to the high frequencies of the spectrogram. If the input 
vector contains other parameters, 5uch as the time/frequency gradient and other time 
domain parameters, tben other groups of hidden nodes can be allocated to process these 
new parameters. A second hidden layer will have the role of integrating the information 
corning Cron! different frequency bands and from different types of input pararneters. 

Choice oC the Input Acoustic Parameters Another important aspect to be studied 
is the choice of the input parameters [Lcung 88, Leung 90, Robinson 90b, Bengio 90, 
Meng 91}. Usually, the input to an MLP used for speech recognition is the auditory 
spedrogram. An adequate size of the input window should eontain enough information 
regarding the acoustic eues of the features to be recognized. However, as long as the 
number of connccting weights do not get out of hand, other pararncters, 5ueh as the 
one dcscribcd in Chaptcr 3, can be added to the spectrogram. The pararneters that are 
computed from the spectrogram are correlated to it, and could theorctically be computed 
by the nodes of the firs'~ hidden layer. If we provide more inputs to the network, it rnight 
he that the convergence rate of the adaptation algorithm is faster, or that the classification 
performance impro\'es. 
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CHAPTER 5. NON LINEAR MO DELS 

The Search For an Optimal Desired Output Encoding [Bellgio 90, Billl!>ot !)(). 
M~ng 91] Usually, each class is reprcsented by one lIodc of th(' output. lay(·r. Wc Il,1\ (' 

seen ln Chapter 2 that stop and nélsal sounds shaH> ~I'\'('rill articulatory f('al 111l'~, .11111 

therefore they share the acoustic eues that arc rclated to t hcs(':,; art jcul"tory f(,dt \1]( .... , fOI 
example, second formant transitions. Setting one output Bode pcr da~s ill1pli('~ th.11 \\(' 
teaeh the network to discrimina te aIl the classes, in spite of the faet. that \\'(' 1,1lo\\' Ih.11 
some of tl-:e classes share some acoustie eues, and arc potcntially more (onfusahll' '1'11<'11, 
it might be advantageous to encode the dcsilcd outputs with binary dl ticul,tt,ory [('.lt I!I('~ 

Moreo\'er, the desired output encoding can be extendcù ta lcprest"IIt phonetic ('ontext, 
simply by multiplying the number of output nodes by the number of rele\'ant C4l1l1(· .... t.s. 
This way, the network can specialize to lcarn the relationship bctwccn differ(,lIt. lCOI!:-.t IC 

eues and different artieulatory features. AIso, the structure of the nctwork can be guidp<! 
by the choice of the desired output encoding. For example, the second hidd"J) layl'r can 
be divided into two groups. One group sends its outputs to the Hodes dcscribing the pIaf(' 
of articulation, and another group sends its outputs to the nodes describing the 1ll<\I1IJ('r 

of articulation and the degree of \'oicing. 

5.5 SUlumary 

MLP are non linear networks that seem weIl suited to pcrform diilicult p<itteln c1ao;sifi­
cation tasks, such as speaker independent consonant classification in continuons speech. 
They represent a theoretical improvement \Vith respect to linear statistical modcls, be­
cause networks with hidden nodes can be adapted to classify data that do 110t fit thl" 
assumptions of either LDA or Logistic Regression. 'vVe have revicwcd the LMS error cr i­
terion and the back-propagation algorithm. They allo\\' optimizing the paramctels of ail 
MLP, as weIl as of a Logistic Regression machine. For a netw0rk \Vith hiddpll 1l0(1I"~, 
this adaptive algorithm is not guaranteed to con\'crge to a global optimal valllc of the 
parametel's, but it is very flexible. It allows the design of a MLP with UllcolI".tlallwd 

time delays and recurrent links. \Ve have addresscd sOllle of the problelll'> tllilt 11.1\'1' to 
be sol\'ed when applying MLPs to a speech recognition task. The /I('xt dlapt,,/ /l'pOl .... 

the experiments that have beeen run on the TI~llT datah,,<,c 111 ordl'r Lü 1 lai if y tlIH'(' kl'Y 
factors in the design of l\'ILP based phol1ctie clas~ificr~: the choie<! of t1lP d(,~lf'(d ou/put 
encoding, the selection of the 71ctu:ol'k top%gy and of the tn]Jllt J)(IJ·amril'J's . 
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Chapter 6 

Experiments 

After having reviewed the techniques that we used in this thesis, we proceed in de­
sr.ribing in detail the experirnents that have been run on the TIMIT database. In the last 
section of this chapter, we will also report sorne preliminary experiments that have been 
carried out at our litboratory in order to recognize phonemes in continuous speech. 

For the task of classifying Ü,e 10 stop and nasal sounds, we have tried to answer 
the following questions: which desired output encoding, which input acoustic parameter 
and which network topology give the best performance? Let's discuss in more details the 
problems that have been addressed: 

Varying the Desired Output Encoding Usually, the output layer of a MLP has one 
node per class. As discussed in the preceding dld.pter, it is possible to encode the output 
layer 50 that each node represents a releva ... t feature, and each phoneme is represented by 
the activation of several nodes. This distributed representation can then be processed at a 
highcr lc"cl of a phonetic decoder. \\Till this distributed encoding improvethe classification 
capabilities of the MLP? 

Using Diffel'ent Input Parameters Is the spectrogram alone sufficient to solve our 
recognition problcm? Will any of the spectrogram bascd parameters and waveform based 
paramcters presented in chapter 3 be of any help in our classification task? 

Selectil1g the Network Topology What is the appropriate topology of the MLP, 
taking inlo iKcouut the Wd)" input parameters and output encoding relate to each other, 
and the fad that wc wish to a\'oid the pl'oblem of optimizing a large number of connecting 
wcights'? 

58 
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Train 
Test 

Table 6.1: Speaker composition for the 1988 version of the 'fl1\IlT databasc.Thc sp('.t1œls 
whose name starts with a letter between 'a' and 'l" are in the training "el 

1 Tokens 1 Ipl 1 Itl 1 Ikl 1 Ibl 1 Idl 1 Ig/ I/dxl 1 

Train 1182 1926 1399 1212 1216 517 1247 
Test 273 413 347 294 285 122 295 

1 Tokens 1 /ml 1 In/ 1 Ingl 1 Inxl Ileml 1 /enl 1 lengf 1 Tota! 1 
Train 11608 1 1359 118 1 476 29j 80 1 21 12371 j 
Test 1 383 1 326 291 123 2J 14 1 Il 2907 J 

Table 6.2: Frequency of occurrence for each phone considered in the database. Saille Ilasal 
allophones are very rare. 

Interpretation of the Network Outputs If there is only one desired output Ilode 
per class, the classification rule is straightforward. If each c1ass is reprcscntcd hy the 
activation of several nodes that are meant to be features rather than class pl'ohabiliti(''', 
we can perform classification by interpreting the disiIibution of the output actjv.ttioll~. 
\\That are the advantages of using Linear Discriminant Analysis (LDA) fol' this pll/ po<,C', 
compared to a simple rule based on the minimum Euclidean distance het\\'('('11 Ilw nl't 
output vector and the desired output vector for cach cla&s? \VhaL happeus ill />1.1 1 fju· jf 
we base our classification decision by projecting the net output vectol's 011 the pl 1 Il\lp,1l 
components (PCA) instead of the linear discriminant dilections? 

6.1 ExperÏlnental Setup 

The TIMIT Database The database used for al! the expelill1eIlt~ j.., extl,\c1,('d fI 1l1li tlw 
1988 version of the TIMIT multi-speaker continuotli> :.pccch clat il )él~e [Sclldf 88b, Z1JI: (JO]. 
For each of the S si and sx type sentence rcad aloud by ·120 diffcl(,lIt ~/)('.tk(·IS \\'(' b"v(' 
considered ail the occunences of the 10 stop and na~itl sr)unr!s f()IIO\\'(·d I)y .tIIy of t)J(' ).") 
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pammclu' dcfi7l11lOTt min value max value 
X*(f, t) auditory spcctrogram 20 dB 80 dB 
~Xjôf frcquency regression -5.0 +5.0 
~Xjôt timc Icgrcssion -3.5 4.5 
62 Xj6f6t timejfrequency derivative -1.0 +1.0 
D(t) spectral dissimilarity 0.002 0.300 
f~(t) Frequency of the zero-crossing 1000 Hz 7500 Hz 
~Fz(t) time regression of F% -350 +450 
E(t) signal energy 20 dB 50 dB 
ÂE(t) time regression of E -3.5 +4.5 
V(t) energy in 60-500 Hz band 20 dB 50 dB 
Ll V(t) time regression of V -3.5 +4.5 

Table 6.3: Range for aH the normalized input acoustic parameters. 

vocalic labels (including vowels and diphtongs)l Since the 1988 release of the database 
contaim speakers that should be used for training purposes, we had to split them according 
to a non standard rule. We have decided to put aH the speakers whose name started \Vith 
a letter between 'a' and 'l" in the training set, and aU the remaining speakers in the test 
set. The composition of the trallling set and of the test set is summarized in table 6.1. 
The test set consisted of 2,907 tokens \Vith stop and nasal phonemes extracted from 612 
sentences spoken br 77 speakers, and represents 23.5% of the data with respect to the 
training sct. The frequency of occurrence of each phoneme is consistent bet",een the 
training and the test set. Some phonemic labels are very rare. 

Acoustic Analysis For ail the experiments, each token consisted of a sequence of 
fcature \'cetors eomputcd evcry .j mscc starting 30 msec before the target phonetic label 
and ending 30 I11sec after the label. In other words, the final part of closure and sometimes 
sOl11e oUler consonant (may be another stop or nasal) or vowel preceding the phonemeand 
the initial pal t of the following \'owel wele included in the analysis of the speech signal. 
Each computed fcatule was normaIized in order to span the range between -0 .. 5 and +0.5. 
The appI'llpriate lo\\'er and upper bounds wcre set after analyzing the histograms and the 
graphie di .. play for cach fcature computed for a dozcn sentence,> randomly extracted From 
the training !:let. Values outsidc the choscn range Wcre clipped. The selected range for 

IConcer/llng the s) lIablc and the \ clar nasals, the\' follow \'ocaltc segment,>, when thev arc pronounced 
in iholatcd \\onls 11011'('\ cr. In conlllluous speech, wc round some syllablc and "clar nasals· that are followed 
hy \owds ln gellt'r,tI. thl'> h;lPlwns al the boundary hctw~'en 1\\'0 words Thercfore, we included these 
li'w tnk(,l1~ III th!' ~·'p\'rJIl1l'IIt." dal.I/1.I<\.· 
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locali:ed groups s]Jccil'um l11ne domal1l gl'acllt'Ilt -j input (6:3) 4 by 8 ï ·1 hy 6 
hidden 1 (86) 3 by 18 ï 3 by 6 

connectwns frames mscc type 

input (63) to hidden 1(86) t - 3, t, t + 3 30 sma II o\'cIla ppi IIg ~1-~I'ïP; 
-

hidden 1 to hidden 2a(20) t 0 fully conncctcd 
- -

hidden 1 to hidden 2b(30) t 0 fully con IICct cd 
-

hidden 2a to output pl(6) t, t - 1 5 fully conllectcd 
---. -

hidden 2b to output maC 4) t, t - 1 .5 fully cOllllcclcd 
output pl to hidden recpl(6) t - 1 5 fu lIy conneclcd 
output ma to hi dden recma( 4) t - 1 5 fully conllcctcd 
hidden recpl to output pl t 0 fully conneclcd 

---

hidden recma to output ma t 0 fully connecled 

Table 6.4: Number of nodes in each group, time delays anJ type of connections lH't\\'(,('J\ 
each layer in the default topology. 

each one of the computed feature is gi\'en in table 6.3. 

Default Network Topology \Ve describe here the nclwork topology that gdW' Ille 
best performance among the one that we tried. This topology has bcell used fol' rno.,t of 
the experiments. Other types of topologies will be discusscd in a latel' section. FI)1;IIlP 

6.1 illustrates this topology and table 6.4 summarizes the t.irne delays hct\V('cn ('at-h layf'] 
The input to the net\\'ork at frame t is the sequence of input feature frame,> t -- :L t .111<1 
t + 3. Therefore, at time t the network looks at a time intcITal of :30 Ill.,c,c c('lItpf('d illOlInrl 

t. The desired output encoding is based on the TIi\'IlT phonctlc IdlJ('1 of flitllH' l. '1'))(' 

default topology consists of two hidden layers and an output layel:? 

The first hidden layer is cOl1nected to the 3 input feature frallle:" alld IS 01 ~étlllZed illto 

localized groups of a dozen nodes. Each group is connected to a. slIlall porlIolI of the j;Jplll 

features. For cxample, the spectrum is dividcd into -1 legiolJs of 8 lIode,>, alld tllf':i gJOll(l'> 

of t.he first hidden laycr are connected to 2 rcgions cach. The fil:,t hidd(,ll la)('] llode,> 
compute discriminant fcatures that arc localizcd in the inp1lt f(·tltllle <;pij(·. 'l'II(' '>('('()JJt! 

hidden layer is conncctcd to aIl the Hodes of the fi.st hiddell layer and i" orgall1/.l·d iuto 
t"'Q groups. The first group scnds its outputs to ail the ou1put nod",> dc· ... cllbing 1111' II/arr 

:?The performance of dlffcrent net works \\'lth Pit her one or 110 III<1dl'lI Iayeri> 1'> pr(·"(·lIl(·d .llId d l"rlJ<.,,>(·rJ 

in a latcr section 
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FREQUENt)' ,. 

T'HE 
OELA'lS 

Figure 6.1: The default lletwork topology. It is a recurrent network \Vith time delays and 
loca!ized connections. 

of articulation at frames t and t + 1. The second group is connected to aU the output 
nodes describing the manner of articulation and v02cing at frame t and t + 1. A third 
group of hidden nodes provides a recurrent link output layer at frame t 3 • by receiving 
as input the output layer at frame t - 1 and sending back its outputs to the output layer 
at frame t. 

For ail the experiments involving networks with hidden nodes we tried to keep the 
total number of connections of the same order of ma0nitude. Ail the networks with hidden 
lIodes had about 7500 connections. This complexity was justified because a large amount 
of training data coming from hundreds of different speakers was available. Networks with 
less connections pcrformed poorly on the test set, and networks with more than 7500 
cOIIIJ('d ions were too slow ta train. Ail the IIodes user! the symmetflc output function, 
exccpl for the output layer nodes which used tlte logistic function. 

Adaptation Parameters For this thesis, wc did not search for an optimal adaptation 
algOl it hlll, Illst.C'ad, we \\'ele illterested in sett.ing similar experimental conditions for each 
lIl't\\'Ol k. The initiai weights were assigned landomly III the range -0.20 to +0.20 wlth 
" lI11iforlll distribution, and then itrulti\'('ly adapt.f'd at Llw end of tlte presentcition of 
l'.tcll tokell (011 /lIlf' upd,ülI\g) Une epoch collsist,('d in tlH' presentatlOlI of a.1l the 12,731 
ddklt'Ilt tl,\illlll/!, tokt'ns III 1.llIdolll ()ld('r (,tlJOllt :WO,OOO flrl"j('~). A dtf1'erellt OId('1' "ft'" 
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scleded for cach cpoc.h FOl .lll nctworks, thc Icarnlllg rat,e \\'.IS "et, 10 () Oï f(ll 1 II!' tirsl 
epoch (e = 1) and thcn ~lIloothly dccreascd ta 0.0000] il« ord i II~ 10 tllI' folio\\' III~ h(·I1II:'!.\( 

rulc. ] + expO.25 
7J{C) = 0 07 (O' (j'l)) + 0 O()OO] 1 + exp .2!l Xc, 

((i 1) 

A problem arase bccausc of t.he unc\'cn ftame-by-frallH' lhstrilHlthlll of 1 hl' plrorH'1 j( ( LI},s('s 

in the training set. Longer and more fIcqucnt phonclllcs (most/y jp,t,h.,Ill,II() COHt.Ilhllt(·" 
in a larger part to the erraI' criterioll than shortcr and I('ss frc<}lIent. orl\'~ TIlt' ~~r.\(lwJ\t. 
descent adaptation rule tends to minimizc the error criicrioIl (Jllly fOI tJ)(' cI.lS~(':' UI,d, 

accounted for the majority of the framcs. TherefOl<', the ICtlllllllg Illt.,· \\'é\!'> :,1'\ (,0 a 

differcnt value for each class J, dcpending on the rclati \le Huml)!,1 of fI,ulle:, ./, i Il t.\\(. 
training set 4 • , r 

( ) ( 
nl1n, ,. 

1}J c)=1}(e x J)' +cJ ) (6 ~) 

The small constants f., are introduced for the most frcqllcnt clil~f,('s ill olclcr 1.0 .t void 
setting too small learning rates when therc is a large differcncc ill c1aHs freqllcllcy. 

AlI classification tables rcported in the next sections !'(,rCI lo d ('('rLtill ('»0('11 Tllis 
epoch is the epoch for which the netwolk prodl1ces the best p(~rforIl1,lllc(, 011 t.J\(' It',,1 S(·1. 

It is a measure of the convergence rate of the ad.1PI.,ttioll ,tlgolJlllllI II. b,ll" ho\\' IIldlly 
epochs were necessary for the nctwork to gcneralizc adcqual.('ly SI.l rctly S 1)I'.d\ Il l/!;, !.III' 
correct pattern recogniLion term for the test set used l1l tllls w.\y I~ eva{,lI/llOlI .'>( 1 11. 
should be noted that if the adaptation continues artcl thai CPO( h, 1I~lIitlly t!w ('1101 (1) 

the training set will decrease (slowly), but the error on the te!>t :',('1. j~ stilbl(" /)1 il\( 1('"..,(,::, 

Most of the experiments were run on a MIPSjRISComputer. Olle t./itlllillP; epo( li (1 ('. 
12,731 forward passes and backward passes OVCI an dvcl'dge of ]() !) fI ,,/1)1''' 1'('1' t.ok('II) look 
approximately 1~0 minutes. 

Classification Rules and Errors Classification pel fOIIll,IIlCC!> W('I(' ('\,idll,lt.('r1 (111)' fOI 
the stop and nasal phollcmes, ,lIld Ilot [01 the cOlltexl plI<JIl('IlW,) TII(~ 111,,1. (1 .......... dl(.iI 1011 

lUle is based Oll the Euclldcan di:,tancc hetwccll the (,alg,t'I. O\ll.put::, f(JI "d( h (1.1',:-, t111d LIli' 

actual outputs of thc MLP. If the high(':-,1. Olll.pllt 1" 1('::,., l!ldll ,l 11l'1I1!"ti( LlI!(,.,I!()I" ',1'1, 

a prioli ta 0.3, ail thc output!-> arc a<;<;ull)(·d tu IJ{~ 10\\', and the: frllllJ<' ('1 !.II!' pllOlil'lllI') 
is put in the lcjcct.ion c1dsf,5 The ll'jcrtlOll cla.,.., l~ lep/{':-'(!lItr'd by .dl t.!JI' !lIIII ',I,IJjI 

dnd non naséll 'l'lMlT l"bd., t.!r,d, pn'cccl(' 01 follow" t<l 1 P,<,!, phOlll'llIl' III d fokl'II 1,',,1 
phoncllle c1asslficatioll ('<H.h output WiI:' aV('I.Ig;(·d fOl Il\(' dlll,!f,io/) ()f tl)f' '1'1\'11'1 l.tlw! 

'1 Ralf l\olUpc, Pt;c<;ol\,tl (OIl\I\\\lIllf,Ü\OII 

::;Slrghtly dlfrcrl'Ilt valllt:, of tlw thw-,hold (1)('1\\'('''11 () t ,tIId IJ:I) dld Il'JI .dl" 1 III' 1 LI' ,dl' ,tll'JII 

pcrforll1,\l\ce 
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More prcciscly, the classification rule is the following. Chose the class j* such that: 

• = { argmiIlJ 'Lddf - ad'Z if max" Ok > 0.3 
J l'e)cct otherwise 

(6.3) 

Most of the experimcnts use the firsl classification rule. The second classification rule 
is bascd cithcl' on PCA or LDA of thc nctwork outputs considcrcd as a feature vector. 
More prcciscly, the c1ass averages, the sample covariance matrix Hf and the within-class 
covariance matrix Sare cstimated from the network outputs of the training set. Then, 
the SVD based algorithm described in chapter 4 finds either the PC or the LD directions, 
and the claf:iS dvcragcs projected on thcse directions are computcd from the training set. 
For eath test token, the out.puts are projected on the estimated PC or LD directions and 
the c1assifica.tion 1 nIe is the foUowing. Choose the class j* such that: 

.* = { argminJ(L:, J, - Ii) x (L:k(vk - uk)2) if max" Ok > 0.3 
) reJcct otherwise 

(6.4) 

In the formula, JJ is the frame frequency of class j in the training set, vl is the projection 
of the j class average on the kth PC or LD direction, and Uk is the projection of the 
test token outputs. The factor that depends on the class frequencies is introduced for 
balancing tne Ul1cven c1ass distribution that might have affected the computation of the 
eigcl1vectors [Dillon 84]. 

Finally, errors are counted for cach stop and nasal frame (and phoneme) that has 
bcen incorrcctly classificd. In some experiments, errors are reported separately for the 
prcccding closurc and the following vowel In general, aIl the l1etworks were "weil behaved" 
collcerning theil temporal evolutlOll. This means tha.t the output. nodes represel1ting stop 
a 1\<1 lIas,,1 50unds \Vcre low d UI ing th(' prcccding clos ure alld shortly after the bcginning 
of t lte following vowel. It should be noted that the effective learnmg rate \Va..'> set to a 
\'CI,\' low \'dlu(' !Jeron? and after the target phol1('mc, accolding, to the frequency dependent 
1\111' gi\'cll clbove,:-.o !'hal the Iwt\\'orks \\'cr(' tlaincd 1.0 di~(,lllllinate the 10 :-.top and nasal 
phOI]('Il1<'~. l'cÏt.!H'r t.hilll dl~cr IllllniÜC bet\\'('('[1 targe!' alld context.. 

6.2 C0111parative ExperÎtuents 

G.2.1 Varying The Desired Output Encoding 

.\11 Ill!' ('\I>t'l'jlllents .. dei lo the ,1('f,lIllt. (H't.\\'ork topolop,). The input. to the IIdwork 

IUlhl~kd u! 1 !lI' B,trk ~(',d{'d Sp('ctlOg,l,\lll (:l~ fpc\\ul'<'s). Four ('xjwliIl1Cllts étlC ll'portcd 
('1',1 hll' h ,j) 
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O.A One Node Pel' Phoneme The- out.put lcl,ycr 1'<'I)I('I;(,lIls Uw 10 phOlH't 1(' CI.I': .... I", 

/p,t,k, b,d,g,dx, m,n,Hg/ with one /lode per phOIlCIlIC. The d('slI('d OUt.pllt. IS sd tu (1 !Ir. 
when the TIl\lIT label corresponds to the Bode label ,tilt! tn o.();) ot.lWI wi:--(', 11\ p,lrt 1. 111.11 

bcfore and after the targct phoneme. It Look 46 cpoch~ Lü thl' IJ('L",OI k 1.0 IC.\C!t :W.rl 
% phoneme errors on the training set and 37.7 % phollellle ('1 rol~ 011 t.ht' t.('st. ~1'1,. 'l'II<' 
performance on the nasal phonemcs was JM,rticularly dCC<'IVlIlg. '1'1)(' t.I,tillillt!, phUII('II\I''' 

that wereincorrcctly dassified werc44 % for /m/, 62 % for /11/, ,lIId 51 % fOI jll!!,j (,111)(,11. 
less frequent). Also, alveolal' phoncmcs \Vere incorrcdly classlfied PI1011<'1I)(' ('1101 S \\'1'1 (' 

33 % for jtj and 42 % for jd/ on the training set. The samc typc 01 COllrI\SIOII~ O( ( llllCd 

for the test set. 

O.B Place Manner and Voicing The output ldyel is divlded iuto two ).',IOllpS. Olle' 

group of 4 nodes represents the place of articulation and the flapped allophonl:' and .1Ilothel 
group of 3 nodes represents manner and voicing. The 7 nodes are l<tbeled !('Slwdlv('ly 
/abzal, a/veolar, velar, flap, voiced, stop, and nasal. The vmccd output. Bode is I->ct 1.0 IlIglt 
for the voiced plosives, the nasals, and for an the voiccd TIMIT labels 1.0 the lrft cille! 

to the right of the target phoneme , including voiccd dosUles. The fia.pp<,d .dlopholl(·s 
jdx,nxj are reprcsented by two manner nodes: alvcolm' ,Uld JIIlI'. 'l'Ile! output. /Iodes 
alveolaT', velm') lablal are set ta high values for aIl t.he COIlSOlldllh th.tf, .... hdl(· IliI' .... .1111(' 

place of articulation, including plosives, nasals, fricatives dlld l!q\lld~ (Lh,tt ~OJl\('t.lIll1''' ,11(' 

included in the right context of a targct phoneme). Specla lizcd Bodes III t.1H' ~('C()lId il idd('11 
layer send their activation either to the place nodcs or to the 1I1l11l1U'I' llud llO/CUI,! llnd('S 

This way, the hidden nodes can be speclalizcd ta discriminat.e bct.wCCIl el f(·w \)JJldIY dlld 

ternary features, rather than discriminate between the tell phonC'lllf's A fl.(·1 1fl ('PO( Ils, 

the network reached 26.0 % phonemc errors on the tl<tllllng set ,wd :n,~) % phoJ\t'\Iw ('IIIll'., 

on the lest set. The breakdown of the performance fOI thc tl,LlllÎllg I->!'I. I->h()\vf'd 1 !J,d, 1 )1('](' 

was a significant improvement in the classificat.ioll of Ilclbdl .wel alv('ol,L1 phOIl(·IlW'., FOI 

jm/, pltoneme errols dccrCitSeÙ from 111 lo :30 %, for /11/ fWIlI (Î2 1,0 ~o,.') ex) , fOI /II!!,/ 
from 51 to 24 %, for /t/ fJOrn :33 to 21.8 % alld fOl jdj fI nlll ·12 1.0 '27 (j (X, 

O.C Place in COl1text, Munner and Voicing 1':I1( umil!!,<,d hy t.!w !)('rfOl 111,11111' of 
nctwOl k O.B, wc cxtcndcd the idccl of f(>;üllJ e lIod('s 1.0 mode! 1I1(~ ('0111.(',1. III IV!J1f Il l'd('lJ 

phonernc appearccL This ext.CIl',icHl I~ lIIotlv.tt,'d by t.!w l'clet. t.I1,Ü t.he plel(,(' of ;111 I( 1I1;tf,loll 

of the following, \'owel inf!ll('n«'~ th(' l.Jétl('cl.OIY of the sPcolld forlllallt. ill !.IH! I.ldl) .... IIIO)1 

betwecll thc COnSOllitllt alld the VOlVe! (~ee Ch,lpl.CI 2), 'l'II<' OlJt.plll. I,ly(') 1:-' :.,1111",11 I.I} 

cxpenlllcllt O.D, exccpt tlt,tL 110\\' (W'l! pldU~ ur al LludatlOll IS 1(·pl(·'.,(·IlI,l'd hy 1\\0 111/dl", 

Înst.ead of Olle, dependlllg 011 the Idl \'O( ;dl( (Oille:.:!. FOI CXilllijJll', If!.l)(' I.II!.I·II 1'> d //11 
follo\\'cd by i1lly of t.he flOlIl. vocali(' 1>!'1!,1Il<'llh ja(""h,('y, dl,lx,iyj t.!WII t!w II/HII' I,·{)/('( 1 

front is sel to high .Uld lhe llode laInai + lIOn fronl 1:> :-.ct. t.r) <111 illt('IIlH'dl,ltr- \',dIJ(' (0 -)-1) 

'l'Ire total IIlJIIlI)('r of 011 I.P1l 1. !Iodes i.., JO, \\'11 Ir 7 !lod(·'., d('<'( 1 1 !Jill/!, t111' pl;!! (' (If dll Il Id,tllflii 

, 
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Varying The Desired Output Encoding 
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Expenments 

Output Representation Output Epoch Jrrain ~ Errors Test % Errors 
Nodes Frames Phones Frames Phones 

O.A 1 node/phone 10 36 35.0 36.5 36.4 37.7 
O.B pl ma vo 7 36 26.1 26.0 28.7 27.9 
O.C 1J1+ctx ma vo 10 28 23.8 24.5 27.0 27.2 
O.D pl+cfx ma vo cl vw 14 28 25.7 25.6 27.4 27.6 

Tabl(· G.5: Comparing the same classifier with different desired output encoding. pl: place, 
ma: 111 ail 11er, 1'0: VOICllIg, ctx: front/non front context, cl: voiced/unvoiced closure, vw: 

fWllt/noll fl'Ont \'0\\'('1. 
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(rcl1lind lltal lhc flap is rcprcscnted by Olh~ lIod(·). Conf US 10 liS lwt.w(·{·n cont(·xt.~ W('l'!' Iloi 

countcd. Aftcl 28 cpochs, thc nctwork :wt.t.lcd to ~.I.[) % phOIlCIIJ(' errors 011 t.he 1.1.tlnillg 

set and 27.25 % phoncme cuors on tlH' tf'st set 

O.D Modeling the Context with More Out.put Nodcs WlwlI \VI' look('d ,d th\' 
frame-by-frame and phoncmc confusion matrices for <lll the pl cn'd i IIg nl'twOIls (tilt' 1 a 
bIcs \Vere similar to Tables 6.9 and 6.10, \Vith more CIIO[:;), wc lIot.iccd sOll1e pCI!>is!'('lIt. 

confusions. (1) Short unvoiccd plosives feH into tlH'ir voiced cogll<tt.es élnd long \'()J('('d 
plosives fell into the unvoiced ones. (2) The place 01 lU bcuhtlOlI for nasals W<lS (hlli­
cult to recognize, evcn though it improvcd sigllllic,tIIUy by using explicii. l'/u("(: 0lltp1lt 

nodes. Frankly, we did not know how to improve the l('cognitioll 011 the n,I:.;a.hi, ,11\«1 wc' 

concentrated on the voiced/unvoiced discriminat.ion alld 01 t.he <--olll{'xt. FOI I.his IIl'W t'X 

periment, the output layer is simiJar to eXperillH'lIt O.C, cxcept Lltat mor(' oulput lIod('~ 
mode! explicitly voiced/unvoiced discrimination cLlld the contexL of the· pltollPIIH' 1.0 hl' 

recognizcd. In particular, thel'e are 7 contcxtuaJ lloc!('S for th(' place of arlicul,ltio/l, .tlld 7 
other nodcs labeled respectively nasal, vOfccd stol', unvo/fcd sto]', ,c;ÛC71CC, tl01CCI[ d()~111,(" 

front vocalzc, non front vocalzc. There arc 14 output llod('s 111 totill Art"l 26 ('porhs, 

the network settled to 25.6 % errors on the trai IlIng; p hOIlCIll('S and '27 (i % ('1'1 01 ~ 011 t Ill' 
test phonemes. The nctwork \Vas able to d I<,C 1 i III ill" (,(' l'OU'I,rI \'~ ILfl uOlad (1o" Il Il'', .\ lId 
front vs 11011 fto11t vowels roughly 70 % of lhe tilllcb botll III t!lI' tr<iÎ/li/l/!; illld III t 1 ... 
test set. However, in spite of the recurrent connectiolls ,IIH\ t.1H' tillll' d('!ay:-, I.h,t!. IlIovlt!"d 

some contextual informatIOn to the net wOl'k, the pCI fOl'lllotlll C O!l t1w 1 () tal'j!pt. t 011 ,,() "" IIh 

decrcased slightly. 

Sun1mary The performance of the l\'ILP c1i1:-,,,dif'1 :-,1 HIIIgl)' dt'IH'/l<!('d flOllI t.J1f' 1 /roil" 
of the dcsired output encoding. \Vith re~p('ct t.u I.h[~ 1 1/ot//; 1)('1' l'IIo//( 111" ('Ill mh,,).', t III' 
t'l'l'ors on the test phonemcs decrcased of 26 % wllf'1l dlf!Plf'llt Ilodl';, an' Il ... Pr! fOI IJlfI('(_ 

manne1' ilnd vuic71Ig Takllll!, iut.a accolln!. the 1 igllt COlrt(·,t. fOI .',Il Il ddrf'lI'llt. "l,,, l' "t 
éll'tÎculilti0:1 deC!Pélsed t)w ('1I0IS of:!S %. 011 tllI' otill'i h,lIld. 110 IlllpIO\'('lIl1'llt \\'"" fOlllld 
on the clcl,,;,ificilt.ioll of :-,lo(l <lIHI Il,1 ... ,d ;'01111<1 ... if t II(' fi Il 1 pllt 1.1\'('1 Illodl'I('t! <1/111'11,1} f III' II·fl 

illld right. pholletic cOlltex!. \VIth at!lhf.lollal !Iode ... , Il ... 111:.', t.Il1' ""I/J(' IlI'twork ·,tlill l'"I' \\". 

concluc\c that if t1w ~tlllctllre of 1.h(' Iletwork 1('/lldlll III<' ;'.11111',1111' 1 J;I;,:-,ifll'I dl) 1If11 I"LI' 
achôlltagc of t.he c\(ldit1011 of ddfc\('I,t 0111.1'111 110dl';' fOI t111' I(·fl ,nid IIgllf. (0,,1.1'\1 

';[n.\ fc\\' CdS!''>, \\'(~ lIotlccd Ih,lt th(' Tl~IIT I.tlJI'IrIl~ IJ! Il,,, Illhllr<'~ w",> "'JI 1\11011. 1\""\/"'1 I,,j 'Ih, 
IOIClllg l,tbel \Vas probahly ~ct !1rp"lIdlllg 011 tlJl' prl'r"dlllg cOllfl'.'.1. alld " f"I\' 1.111"''' dld Il

'
Jf "11 1"~JI,,"d 

to Il hat wc ~all' 011 the I\'<lveforlll SOlllctllll('", a ,'oH l'ri (11)"1111' Il.1'' 1.11",1(·<1 11'11"11' \v,' '1>1I1d 1101 '.' l' .111) 

prrrodlclly III th.' !olgll.ll, .llld oth.'r tlll"'''' ,1 "',,1.\11 hlll p\'ld"111 p"nl,dl' Ily \\'.1" d.I·,~i1Jl'd .1', .1/1 1'11\"1" d 
clo"l/le \VI' cOIl) .. dull' '\"IL tlll' .... · fl'\\' '·Iror-. dld 1101,,/1",-1 lit,· I,.tlllllll'. ,,1 11\f' ,,'I\\'f"", ,dll"'l/i',I, Il,, \ 
11I11;\'1 \'.I\'(':,lIg\"ly ,""·,-",d li\!' rr· ... IlIt-.. 0/1 tll" t('~1 ~ .. I 

, 
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6,2.2 Using Different Input Parameters 

Ail Ut(! ('xpellllH:llts Icportcd in this scction refer to the dcfallit topology and to the 
output ('IlCOdlllg de:.cribed in thc experimellt a.c, that is 10 nodes describing distinctive 
pho/J('t,I( featllr('~, wlth t,wo differcnt nodes for each place of articulation, dcpending on the 
place of iU tICIII;If.ion of the following vowel Four experiments are reportcd (TaJ,le 6,6), 
They <tIf' (hfferclll. ollly with r·,>.s!lf'ct to the input paramcters. The baseline performance 
thllt W(' tllcd to IInprove was represented by network O.C that used as input the Bark 
sl.itled spedrogram. \Vhen wc added input fcatures, we tried to kecp the complexity of the 
IIdwork fllOlllld 7.')00 connections, by divcrting sorne of the nodes of the first hidden layer 
1.0 look al. t.he added feal.ures rather than at the spectlogram, using localized connectivity 
COliS tr ai /1 ts 

LA Adding Temporal Features For this experirnent, wc added the following seven 
pMamctclh 1.0 the spectrogram: the energy, the energy in the 60-500 Hz band, the zero 
crossing tate, thclf time derivatives, and the spectral dissimilarity function. Each input 
fI alllc had :t9 parameters, Eighteen nodes of the first hidden layer \Vere diverted to look at 
the added pal'itmctcrs After 25 cycles the phoneme errûr rate \Vas 26.25 % on the test set 
whde tlw cllors on the training set \Vere 24.0 %. This implOvernent was contributed bya 
slIIall illl J(',,~(' III 1 hc dlsclIIninatJon of voiced vs. unvoiccd ploSJvcs, in particular /d,g/ vs 
ji,kj, \-\fe dJcl Ilot illlalyze the single contribution of each one of the added features, and 
wc cOllj('cllll(, t.hat the main contribution cornes from the eBerg)' and its time derivative, 
as w(·11 as flom the spectral dissimilarity fuuction. These tlHec pararnetcrs have a diffcrent 
b('llilvlor whct.lH'1 t1)(' change:, in the structme of the speech signal arc fa.st or slow (sec 
Ch,l pl ('1 :1) 

1. Il Tc 111 [>01"(\ 1 Feat.ur·cs and Frequency Slopes We added 7 other pararncters to 
tl)(' ~Jl('ctl()gr,"11 dlld tll<' ï klllporaJ paralI1del~ dcscrilwd <Ibo\'(.· The ne.\' parameters 
\\,('J(' tl)(' "()('( tloll "I()p('~, cOlllputcd 011 7 cqllilll,\ :'j>dccd f[(~<Jtl('llcJ('''' of the spcctlll/ll Each 
IlIJlIlt. fJ.tIlH' h,lIl iii (MldllIC'l('IS \\1(' \V('le ('''()('( 1 Illg th('sc IJe\\' p.1ld/lletcrs to help in 
th(' dl"CIIIlIIII,III1111 })('I.\\'('('/I the tlll('(' place:, of dIIIClr1,ttio/l, Instcad, the pclfOlll1ancc 

dq~I.ld(·d "t1I,,,ldllll.dl\' IIIc!c('(l. tll<' OV('I,t11 ('1101 lal(' 011 t.Il<' tc:,t, phOIlCIl1<:S \\'clS almost 
.~q (A' ,11'1 l 'J ~:) CPI}( Ir ... 

I.e Tl'Illpol"ai Ft'.ÜU1·CS And TimejFrequellcy Gl'adicnt Wc dIO(lJ>c'd t11C' 7 ~Iopc 
\ udli( 11'111-" <llId \\ (' ,Idd('d 21 gladlcllt. ddcrtols Ip t II<' :t~ L \1 k ~c(lled filt.el~ c1IHI I.lrc 7 
11111<' fl.lI.IIllt'tt·l" Thl~ \\'<1,\', ('c1ch input [(,élt.I1I(· Il,\(I (i,1 .1< Ollstll Pill,lllH'fclS, Aflcl :W 
t·POllt." 111<' 1'11\)1 1.1l<' 011 th(' ksI. phOIl('I"('~ <1(.( 1(·" ... ('<1 to ~·1 !) % \Vlth f'('spect {o ""lllg 

111(, :--I>t'( IlOgl""1 oIlId Ill<' 11111<' p.ll,lllwt(·I .... tl1t' 1)('1 [Oll1ldl)('(' illl(lIo\'('d ~ignlfi('a!llly 011 t.lre 

j lltl1Ilt'Il)c'" Ill,t Illi tl1011 "'('/(' \('1'\ 1'1('(1111'111 oIlHI d('fllcHlc-d sli .. hth' l'or Ih d "1,1 ()II Illc' 
1 ~ ,-' '.) 1 , ',-" 
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Usir:'g Different Input Parametcrs 
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2H 

Input Para met ers Input 
Nodes 

O.Csp 32 
LA sp ti 39 
I.B sp ti df 46 
I.e sp li dfdt 63 

O( lU 

Expcrllnûllls 

Epoch Tram % E""OI'S 
Frames Phones 

28 23.8 24.5 
25 24.6 24.0 
25 26.3 25.5 
20 24.~j 23.:l 

Test % [,,'1'7'Of'S 

Frames Pho"es 
27.0 27.2 
27.0 26.2 
29,1 28 !J 

-----
2!i 4 24.!1 

-------- --~-- -

Table 6.6: Comparing the same classifier with diffcrcnt input paramdel:î .'ip: B.lrk :îpec­
trogram, tl: temporal parametcrs, df. frcqucllcy dcrivativcs (slope~), (lfell: tilll<'/fll'<Jltellcy 
derivativcs (gradient). 

• 



-

Cil i\I''/ '[·;U (j J';X p/';n[ M J~NTS 70 

01.1)('1 halld, \\'1: obtallH'd tlH! fél')t.est. convergcnce rate of ail thc cxpcrirncnt.s that wc tried. 
FOI (0111 p;UI'>OIl, tlw lIetwOl k wlth the spectrogl1ull and the timc paralllctcrs had an error 
utf.(· of :a.·1 % 011 the l(,:-,t !>et .Ifter 20 epoch!>. 

SUlIllllary TIJ(! l>el fO/mallce of the MLP classifier depcnds also from thc type of input 
,lCOII,>tlC IMf.llllet.er:-. With le~ped to lIsing thc FF'T bascd Bark scalcd spcctrogram alone, 
tI/(' ('IIOI!'l 0[1 the: te:,t phoIlelllc!> decreased of 3.6 % when wc added SOITI(' temporal fcatures, 
éL/ld of 8.1 (;,{) whcll wc added !>OIl1C temporal featlllcs and the time/frequcncy gradient that 
(Jl<W,lIre:-. COllllant tlansitions. Adding the temporal features and the S frcqucncy slopes 
dHlnot implove the pClfonnallce Further work is necded to refine the computation of the 
:..Jope IMI <.LllletCI::". For exalllplc, the values can be normalizcd wlth respect Lo an average 
slopl~ (olllpul('d from a very long tcrm spectrum of the spcech signal. lt is possible that 
spf',ll,el-depcn<lent tilts of the spectrum could be eliminated this way. 

6.2.3 Selecting The Network Topology 

The experÎIlH'llts Icported so far refer to the dcfault network topology, which includes two 
Ilidde/l laycrs and rCCUlI'Cllt connections at the level of the output layer. Before choosing 
tllIS 011(' a" tilt' dpfault. architecture we havc IIlvcstigated a Humber of other topologies, 
(llld IIC' )('POII. h('lc the IIlmt IIItclcsting rcsults (Tablc 6.7 and Figurc 62). For ail the 
exp!'1 illwnts reportcd in this section, the input to thc network was the 43 dimension veetor 
with t.1U' Bhtl, !>calcd spectroglam and the 7 energies and time oomain palameters, and 
the output (,IlCOdlllg wab the sa me as for thc expcllments with the input parametcrs, i.e. 
Il rl'plt'~('nted (Ontext ocpendcnt articuJatory fcattlres (experiment5 D.C and l.A to lB). 

'LA Pcrccptl'Oll This basclinc cxpclllllent i" a perccptron wlthout an)' hldden layers 
DI IC( 111 )('11 t COIII/('ctIOIlf>. In other \\'ords. this is a regrC'ssion machine that computes 
:'WIIII-!IIlt',\1 01 loglstlC di'icrilllllldllt fUllctlOlls, :-ts discussed at the end of Chapter 4. The 
IlIplJ! 1.11'('1 ;11 fl(lIlW t are t 1)(' :J input frames al t.imc t - 1, t. t + 3 (spaIlnillg 30 mscc). 
dilc'c Ih C 0[\1\1'( t('d to tl\(' output l.t.ver Silice tl!C'IC cLre 110 hidden lIodes, tlle IlUmbel of 
1 011 Il 1'( 11011.., 1'" wdllCl'd 10 l ]~O, ,\11 the t1daptat.loll palalllel{'l'" éllC thc same as fOl th(' 
III 111'1 ('\pl'IIIIH'III~. TIJ(' IW( 1\'011. 1'"> optillll7.(·d \\'ith the 1\,>ual LMS rritcllol1, ilnd each 

11<11t1111~~ ('}HI( Il "'qIlÎ\('''' 1/'8. th nI' Ill<' tillH' lequllcd for the 1I10..,t complex IIctwork<; with 
Iwo Illdd<'11 lily(,l~ Afkl:!O cyl 1(',." t!\(' P:'lu'pl rOll ~Idbilize~ to 1') % phonenw ('1 rors 011 the 

te.., 1 ",'1 'l'hi" pOOl 1'<'1 fOI 111<\11«' 1" dl\c 10 Lwt th,1I Ilwlc .IH' too 111.111_" ddf('lcllt. trdillillg 
,ll1d 1.''>1 IlJ!-('Il:" wlth 1l',"pcct 10 Ih(' (olllplt':\Jf) of the nct.l\olk ~Io,>l Il''1,1)', the Illput 

.11'>11 dlIIIIOII" .11(' 1.11 flo!ll IWIII/!; 1I1l1l11Od,tl (;"11'>..,\,\11 II1l1ltl\'tlllétl(' '1IId/or BIII,\I~', 1.11,,1. .Ir<: 

IIt(· ,,1\/\ l.t Il Il Il<''' of dl<-;tllhlltioll" Ih.11 C.llI 1.(' ()plllll(t!I~ di.,c'lllllll1dkd 11-' Ilt"IH'rn'ptrcm 

111)\\('\('1, 1\l'dld Ilot p('lloIIII .111\ .,1.II,1'>II<.tI \c-...,t. tOlollfl/ll1 II/(' IlUllllolllla!Jl\ orthe Illput 

d.\I.\ \\lIltil1 th"difl('!t'l\t(I.I""'t'" 
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Figure 6.2: Schematic description of the different Ilctwork topologies that arc reportcd ; .. 
the experiments T.A to T.F 

T.B Perceptron with Recurrence The pClccptroll T.A i::. ,LdJed witl, il layt'I of JO 
hidden nodes that provide a reeurrent cOl1l1cction \Vith respcct 1.0 the output. laY/'1 '1'1\1' 
hidden nodes at frame tare {ed by the output layer al frame t - 1. The cOlllplexity of tllI" 
simple recurrcnt nctwork is 1290 connections. The pcrfolmance 011 the t(':,1, pllOl\('III(':' 1:-' 

43 % errors aftel' 24 epoehs. It is intere,ting to note tb,ü wh('1\ \\le élddc>c! th(' n'cllttl'Ilt 

connections, the frame errors on the tcst set dCCl Ctl!:>cd f'OI11 51 % lo ,17 (j % 

T.C Larger Input Window Wc asslIlllec! t.hat at I('.!',t J illPllt f',LIJ)('s :'IJ.I'IIl"I~~ :$11 

I11SCC. wcre ncccssary to cla'lsify tl)(' 10 ~top ,U1d nasal ""lIllId", III ordl'I t,() ta!-" l!It.o 
account sornc cOlltcxtuallllforlllatJoll cOlllill).', f, 0111 t h(, ( 10'-,111 l'il "ri !.lit' nJ\\,(·1 \V,' dl" id", 1 
to in\'cstlgatc If Illon' conkxt was Il,,('fllll.o PCllOlll1 cl"""dil dtIOll, "V,· look I.IIf' :,llIlpl.· 

llctwork topology T.B, ,llld \V(' enlarg,cd lIlC' II1p1lt willdo\\' 'l'Ill" Wdy, t Ill' Illput 1." 1 1 JI' 

rccuncllL lIet\\olk al fr,lInc t IS auglllcnted to ;1/ mlllIlJOdaL('~) r',IIIII':-' ('1:1 111:,1'1) n'IIII'/I'r! 

illound fJélll1c l, The complexll,y of tille, 111'1,\\,011; \Vtt', :t~(i/l 1\"'I,!!,llh, A ft,·t :Hi "P'}! Il''' Il,,, 
performance 011 the test phollemes is .t:s. ~ % CI 1 (JI~, \ V(, 1 0111 ll/dl,r! I.h.l L tl JI' Il''1' of " 1" 1 l'!' 
input ",indo\\' \\',\:, Ilot llscflll fol' the ta:," 01 ( 1"".,11\ Illg .,top ;I/It! Il,,..,;d :-'111111<1', \\'11/1 1111" 

tj p~ of pCI'CdlOll. \Ve sltspect th.l\' tll<' 10\1'1-',/'\ tilt' \\'lIldl/W, 1 Ill' 1l1f))I' Vd 1 I"LI.· t 1\1' IlIplll 

pétra/llctcl's .tlC, bccéluse ddferellt ~I)('a].;('l, f"dk \\1111 tllffl'll'JlI l,tI.", TI", 1)/'11/'1)1 l')IJ du,"> 
1J0t :-.ol"c t.hio.; 111111' /I1flrp/ll'f plObhll. 
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T.D Onc lliddcll Laycr Wc procceded Il)' rlddill~ morc and morc hiddcn nodes to the 
:-.illlple Jwrcf'ptron T.A in order to mode! Ul0l'C itccuratcly the unknown complcxity of the 
clil~" dl<,trihutions. Fust, wc added one hiclden layer between thc input and the output. 
'l'hl:' I.lyer IS fully cOllllccted lü thc input layer, an is dividcd into two glOups. The first 
grollp (~1 nodes) scnds its adivity to the 6 l)lacr of arliculatwn output nodes. The second 
gwup (:31 node ... ) sends ils activlty to thc 4 mrLn1lCl' of a7,ticulatwn output nodes. This 
udwork Ijad 7411 connections. After 36 cpochs, the crrors on the test phonemes were 31 

<;{,. 

T.E One Hidden Layer and Recurrence The nctwork T.n is added with a group 
of 10 hiddcn Bodes that provide the recurrent conncctions to the output layer, just like 
fOI the perccptron T.B. ACter 46 epochs, the performance on the test phonemes is 30 % 
CI J'ors. We lIoticed again that adding the few hundred recurrent connections improved 
the flame-by-frame performance, from 35 % to 30.7 %. We conjecture that the recurrent 
cOllllections helped in sustaining a firing node for the duration of a phoneme, in the 
case that the input is very informative at the phoneme boundary and then becomes less 
informative, as il happens Cor a long aspiration or for a nasal. 

T.F One Hidden Layer and More Recurrence Encouraged by the results obtained 
by the u~c of l'ccurrenL connections, wc added more reCUl'rent nodes. The network T.E 
is addcd with two groups of hidden nodes that provide the recurrent connections to the 
two glOups of the filA (and only) hidden layer. After 46 epochs, this topolog,l' vielded 
:32 % crl'ors on the test set. This performancc is worse than using no recurrence at aIl. 
\\Te /lM)' explain this bchavior by the following refiection. After just a few iterations, say 
:i or 'l, the 10 outputs for a ncLwork with at least one hidden layer is correct for more 
t.ha Il !lO % of t.he t.raining frames. Therefore, the hidden nodes that are conncctcd to the 
out.put l.lY('1' If'(cive an mfonnalwc input [JOrn just 10 input Bodes. On the other hand, 
t Il<' IlIddt'lI lIodf'S that arc COI1llf'ct.cd to the olha hiddcn IlOdes, leceive a more cOlllplex 
IlIf()llIl.d,ioll f, 0111 ct hif!,her dimensional input vpetor, \\Te conjcctmc that the adaptation 
ni t Il,,,,(' 1<'('111 leut COllll('( tlons is mOle difftc\llt with sucll " topology 

T.C 'l'wo Iliddcn Laycl's and Recurt'cnee '1'111" 1,', the dcfault Ilctwol'k topology. 
Il h.,,, t\\'o !wldl'Il I.\)'(·IS, loe.d COllllcctivlty tOIl,',tlrlll1tS fOI the firf>L layel, and IC'Clll'lCnt 

'01111('( tlOIl" bd\\'('('lI the olltput lr\ycl alld '>OIl1C of the hiddC'1l Iloc!e's (Figure' (j 1) Il is 
tlt,· IlI'll\'Olk IIs('(111I e:'1H'lilllt'nt LA t!Jal \\'(' 1 ('pe.1L here for providlllg a ('Oll1pilll"OIl. ft 
sllollld 1)(' IlOt('d th,1I t II<' compl",ity of th(· 11\'1 work i::-. 711·\ wC'ights. AftN ~(i (.\,·I('s il, 
\ i,·ld,·d 2~;.~r) % phOIlt'IIl<' ('rrol'S 011 (Il<' l('sl ~d, 
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Expcriments 

Network Topology Weights E1>och Tram % Erl"Ors '/'('sl % g""01'''; 
x 1000 Frames Phones F,'amcs Phone,'! 

T.A perceptron 1.2 20 50.5 43.5 51.0 H.9 
-

T.B + oree 1.2 24 47.0 41.7 47.6 1:1.0 
T.C + oree wind 3.6 30 465 40.9 48.1 4:l.2 
T.D + Ihid 7.5 36 3:3.7 28.a :!4.!) :30.9 
T.E + Ihid oree 7.5 46 28.6 27.5 :W 7 :1O() 

-------
T.r + Ihid orcc hrcc 7.5 46 :10.6 :W.:I :l'.U; :t~.O 

--
T.G + 2hzd Ol'CC 7.1 25 ~'1.6 2,1.0 :no 26.2 

- ----

Table 6.7: Comparing Jiffcrcnt topologi('~ fOl the ~;lI11e illput .Uld 1,/11' S.LIIH' desill:d Ol/tput 
of the classifier. Ali networks havc time dcl,ty~. hl'(,(,: rc:CUIT('IICI' at. tilt' hidd(,11 1('w'l, 011;(': 

recurrencc at output lcvcl, wmd: larger illpllt Willdow, Ihul: O!ll' hidd(,11 l'ly''r (fully 
cOllllcctcd to the input), 2hid: two hiddc!l lay<% (local COlllwctivlty) 

• 
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SUl11l11ary The classification performance of the MLP classifier strongly depend on the 
topology of the IIdwork. Wlth respect tü a perceptron, by simply adding a layer of hidden 
Ilodcs the ellOIS on the test phoncmcs decreased of 31.3 %, and addillg sorne othcr hidden 
nad!!:; that plOvidcd rccurrent connections to the output layer decreased the errors of 33.3 
%. We lIoticcd th,!t adding the recurrent connection at the levcl of the output layer always 
dccreased the frame-by-frame error rate. With respect to using one hidden layer, the use 
of two hidden layers (keeping a fixed total number of weights) with localized connectivity 
constraints decreased the errors on the test phonemes of 12.5 %. 

Artel' ail thcsc cxpcrimcnts, we concluded that the main factor that irnproved the 
performallce hoth in terms of phonetic classification and convergence rate of the estima­
tion algonthm \Vas the deSign of a multi-layered network with localized connections, as 
suggcstcd by [LcCun 89, Watrous 90]. On the other hand, this trial and error approach 
1.0 network design is extrcmcly time consuming and completelyexperimental. Il was im­
possiblC' to figure out a 1Jriol't or with less effort which topology would yield the best 
performance. Also, these findings should not be applied blindly to other phonetic recog­
nition problcms. For example, the type of local connectivity constraints as well as the size 
of the input window a.nd the number of time delays arc aU parameters that are weil suited 
fol' the classification of stop and nasal sounds, and we conjecture that they are al~o ~.<le­
quitte fol' othel' consonants. Other topologies might be tried fOl other sounds. It should 
be Ilotl'd th,ü othcr topologies couIc! have been tried also for OUI problem. For exarnple, 
topologies with local conncctivity constraints with a sma.ller resolution, or other types of 
l'ccune!!t connectlOllS. \'Ve just did Ilot have enough computing rcsources to explore the 
Loo many posslbilitics, and wc decided lo stop experimenting at a certain point. 

6.2.4 Interpretation of the Network Outputs 

III tllIS ~('dIOlI wc r('port about diffclcnt classification rules (Table 6.S). We considcred 
tll<' ne! \\'01 k wlllch yielded tlH' bcsl pctformancc (cxpcnlllcnt I.e), and wc c1assificd the 
t.('st 1->t'I III thl't,(, dilf('lt'lIt. \\',lYS FII'st, wc comparcd cach output \'cctOl wit.h the a prwn 

Llrpph fOi ('.Iclt cl.\~f, lt~lllg the Eu( lideélll dist<ll1cc mctlic Tlll~ /lIdhod J'leldecl 2·1.9 % 
pltnlH'lIl1' ('ri un .. 011 t!}(' t('~t ~t'I. Second. wc estimatcd the filst G Itllcdl dlSUïllllll(tltt \'cctOl~ 
.tlld IIt(' 10 cLI"" t.lq.!,t'b fl,ml 1.It<' t.l<lllllllg sel statlstlr~, and \\'t~ COlllIMIC'd the out.put" 
\\'Ith tilt' lalgt't~ PH)ll'( tlltg tllt'Ill 011 tlte 6 filst 1 lit C'él 1 dl"C1I1J1l1lélll! \·('ctOI~ T!ti~ methocl 
.\')l'ldl'd :2:{ ï lj;, p!tOII('lIlt' ('IIO!!> Tbllt!, \\c cstilllat"d the filst G pllltClpal componcllb 

frlll!l 1 ht' t 1,IIltlltg ~d ~t(1t I~tl( s, ,\Ild t 11I~ tin1\' tilt' phnlH'lllt' C'IIOI~ \\'c'Ie:n:3 % lJsing 

t'It ht'I :) OI ï \'('( t.OI:- \')('I<I('d 01 :..Iigllt Iy \\'01 <';C' J('sult fOI bot It lIH'tllOd" WC S('(' tlt,t!, IJotl! 
1Ilt'lltot!., \!t'Id('d ,\ :-I!!,lttly hdt!'1 p('IfOlIll.tltcc tlt,Ul COIllIMlllIgdllt'rtly llw net output., to 

1 Ill' d(,.,tl,'d \)\11,]>111:-. lit p,lIti( 111,\1, tilt' 1'11011('11](' ('IIOI'i 011 the ((,.,t .,d decrc~d'i('d by.l ~ 
% 1I~llIg LI)·\ ,lIttl h,\ (i. J t,;, \I~illp, P( '.\ \V(' (,Olt]t'( t ur (' tllf' follo\\'lltg "illlpl(' ("pl,\II,II.IOII 

\Vht,1t \\t' «()llIllIllt'd tlll' hlt!',11 di.,( Illltlll,\Ith oInd tlw prln(,]),ll COlllj)OIlC'lIb, \\C' .Hlpl'-.kd 
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Table 6.8: Performance rates of tll(' :>a li le Ild work with <hfrc'wlIl. ( liI~si licil I.jr J/I III Ir ", ML p. 
Euclidean distance bet\\'cCIl tatget<; alld 10 ollLpllt !lori"" MLP+PC. fi 1'"111 Ip.t! r IJIJlplJ 

nents of the net outputs. MLP+LD' (j lill<'iU <11"CI illllllilllt dlJ C'( 1 IOII~ ul t!J(' 111'1 finI pl 1 1. .... 
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P t k b cl g dx m Il ng 
1-

81.8~ 3.9~ 1.79 10.33 0.67 Il 
t 1.61 78.44 7.48 10.25 -
k 2.06 5.24 81.91 1.25 8.81 
b 6.25 85.42 4.96 1.49 
d 7.17 5.49 73.42 3.88 3.71 1.43 2.11 

g 8.51 1.55 8.82 77.09 2.32 
dx 5.10 90.16 3.85 
JI) 1.63 67.62 23.94 5.55 
JI 1.51 4.80 16.11 68.13 8.37 

ng 1.52 1.22 2.13 34.15 60.37 

Table 6.9: Frame-hy-frame Confusion matrix for the bcst performing network. Classifica­
tion is based on the 6 principal components of the net outputs. rows: spoken, columns: 
rccognized. Errors that are less then 1.0 % are not indicated.Average error: 24.2 %. 

the !.,lfg('t outputs in order to match the average behavior of the network on the training 
set, Ia.tl\('r thall llsing sorne a priori idealistic values. These more realistic targets \Vere 

<llso closer to the average outputs for the test set. Apart from slightly increasing the 
c1assificdtlOll performancc, using LDA or PCA is convenient hecause the output of the 
c1üssifil'1 i8 mort:' compact, and produces slatistically uncorrclated fl'atures. This way, wc 
(',m integrtltc many nctwork outputs and plOvide a compact set of uncorrelated features 1.0 
.l statisticdl phondic dccodcl'. The use of PCA provcd to bc more accurate than LDA. The 
1('''~OIl C<tll hl' t.hat thc lincar discriminant directions arc close to the principal componcnts, 
alld 1.11(' ,t1/!,orithm for filtding the princip,tl componcnts was more precise bccause it did 
Ilot rpqlllJ"(' the compu tation of an in vers(' from the in pu t cova riance matriccs. 

ü.3 The Best Perforu1ing Network 

Aill'I tht' dl'scriptiol1 of aIl t!H' CXpClll1lenb, wc :,ummarizc the successive stcp~ that 
look t1~ 10 tlll' dl'slgn of (1)(' bc~t pClforllling network (expcrimcnt Le, cla.ssifi(ation 
!l(,1'[01l1\('<I hy PCA). The flillllc-hy-fJ'ctlllc ilnd phonell1c confusion matrices ale glven III 

l'dhk:. li ~) ,lIId Ci 10. 'J'.thl(, (), 11 lisl~ t 1)(' !-ollcccs"j\'(' 1 <,flncmCIILS tlwt dccrcd~cd the ('llOr 
1.111' Olt Ihl' 1 (h.,1 :.d. 

Inpllt. P .. rnll1('t.l'l"s III .tddltioll to Ill(' BcII'k !'icalcd ~p('ctlo/!,I'i\m comput<,d flOlll tllC FFT 
('\l'I\' fI I\I!-o('{' (:t~ Illtlllgulal tilt('ls), \\'(' lIscd 7 .\(oll.;tic pdl"allletCI!; rcl.ttcd 1,0 glohill 

"(ll'( Il.t! .Illcl tl'IlIPOI,d r!t.lllge:. Ilf t II<' ~r)('I'c11 slglial (~lIch cl$ th" ('nclg\' .llld ib I.Îme 
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k b P t tl )!, 

fÛ!l p 73.91 1.81 1.09 20.29 

t ï2.97 5.98 17.22 1.11 
k 1.68 4.75 73.18 l.68 15.0,t 

-
b 4.38 89.90 2.69 
d 1.05 4.18 5.23 80.14 :3 48 
g 4.00 8.80 82.40 

dx 2.03 

m 2.02 
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Table 6.10: Phoneme confusion matrix for the best pcrfonning lJet.work. Pho!lPlIlc cI.tl'slli 
cation is based on the 6 principal components of the net outputs. rows: SPOkClI, COIUIllIIS: 

recognizcd. Errors that are less then 1.0 % arc Ilot indicatcd.A ver.tgc CI roI. 2:3.~~ %. 

derivative and the spectral dissilllilill iL)' fllllctiolI) (tnd :N ot hel pitl.lllj('t.(~1 s th.d, 
measure formant peak transitions bctwccII 300 .LIld 4000 IIz (the LÎIIH'jfr('q1tt'lIcy 

gradient). With the same network complcxity, dddill,!!, thesc two I.YI>(·s of pdlolllldt'I!> 

decrcascd the errors by S.4 %. 

Network Topology The topology thdt yicldcd tll<' be<;L perfOlllliL!H'C <I1l1011f!; t 1 If' 1I1dll)' 

that we tried is esscntially il nclwork with lwo layer:, of hiddclI lIode~, l(H ,,1 «(J/HW( -

tlvity constraints, timc-dclays and rCCUI'IPllt COllIl<'ctiollS al LIli' kw'l of tl!!' olltpllt 
laye!. 

Desired Output Encoding Hather tl!àll having 1 lIode pel' phOIl<'/lIC, t1H' (JII! /lIJl 1;1j'<'1 

l't'present distinctive phonctic fcature:,. EilCh dlff('II'lJt pl'L!:!' of ,uticuldtjrJ/1 10., 1('/1 

reselltcd br two /Iodes. depcndlllp; 011 wlletlwl t11<' foIlO\\'llIp, pIIO!lPIII!' hd" " fUI \\,,11 d 
01 backward place of articulation. 'l'hi., ('!l( oll!llg d('Cl{'oI!>cd t11<' ('1101:' UII 1 hl' ~tl)p 
and Ilasal phOIH.'IllC:' b~ 2B %. 

Classification n.ühcr tltall COlllpal ing dilcctly Ut(' nd outpllt!> wlth th(! d(·:'II(·d 0111 I>"h, 

th(' output YcetOI' i,> first projectcd 011 the' fi, 'il, frw prilJ('ifHd < OmpOII('II! dlll'( 1.101/'" 

and thell cOlllpilled to the c1nss avelilW'S e"! 1I11,lIed flo/ll t.Iw tl'lllllllP; d,lfrl 

Thi!-. cOllfigu!cltlOll Ylcld('d 2:~.:~ %1 phOIl('llll' 1'110/" .llId 1,1.'2 %1 f/rllllI' l'/JOI', IJII " Il,,,1 

set of ~qOï "top alld l\~~itl plloll('Il\<':-' !)I01l01!!lI (·cI III 1 (}1l1111llIJll0., "1)/'/'1 Il IJy ïï ddll'fI'lIl 

• 
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Type of NctUJork Test % Errors 
Frames Phones 

output: 1 node/phone 36.4 37.7 
output: pl ma vo 28.7 27.9 
outpul: pl+clx ma vo 27.0 27.2 
mpuf: sp ti 27.0 26.2 

mput: sp ti dfdt 25.4 24.9 
class: 6 pc 24.2 23.3 

Tablc 6.1 ]: Comparing diffcrent types of networks for classifying stop and nasal phonemes. 
The table rcfers to the test set of 77 different speakers and 2907 tokens. output: different 
outputs, but thc same input (the spectrogram). pl: place, ma: manner, vo: voicing, ctx: 
flOut/non flOnt context. mput: same outputs (pl+clx ma vo), but different inputs. sp: 
spcctrogram, il: temporal features, dfdt: time/frequency gradient. class: 6 pc: classifica­
tioll of the hcst net with PCA. 

spe'lken; The tl allllllg data \Vas 12.731 lokens pronounced by 343 speakers. The tokens 
weI'<> ext.l,lcled from ICV / segments. 

6.4 Error Analysis 

III this Sl'ct.lOn, WI' summal'ize and discuss some general trends that appeared in the 
bcllitVlor of the M LP bascd c1dSsiflCrs. The figures that are reported in this section refer 
to the net\\'OI k Le, whcn classification is pcrformed by projecting the output vector on 
t.ht' pl inClpitt comp ment spacc. Although this is the conflguration that gave the hest 
p<'1 fOllll<tllC<" 1 hl' Iwll,lV10I of the othcr nct.\\'01 ks with two hiddcn laycrs was qualitativcly 
V('l)' ~illltlal, but \VIth Illon' (~IIOIS. The fralllc-by-fl(unc and phoncmc confusion matrices 
,III' gi\'('11 in 'l'.Ibl(·s G.!l ,llld G 10, while figure G:-l gIV('s ail idea about. the pcrfollnance for 
(\H li pht>llt's 

(iA.l Plosivc Classification 

Th(· l\IIY ('Id~stli('r~ JH'I fortl\t'd bet 1<'1 ill c1a~sifying plosl\'e~ th ail III cla.ssifyillg nasals '1'0 

(11101111 if,' t hi:-. ~t.d(,lll(,llt. .\l1d to hd\ (' <Ill Ide,l abollt. t1w ('nOI~ O!l thc: plosivc:'i, wc t(,~t('d the 
1)(':-.1 (>1'1 rOlll11llg lit'! \\'01 k on the' plo'il\,(' t.okc·!I~ only The test. set \\'as compose'd of 2057 
pll\IIl(·l1l(· ... "IH)k('ll h\' Ill<' 77 diflc'rellt "p(',lk('IS, wiLh ;\11 tl \'C'I age of2!)0 phOIlC'IlW~ PC'1 cl,His. 

Ttll' 1'/,11111' 1)\'-1'1"11111' ('IIOIS \\'('1(' 1 ~ l,i;, <llItI t tlt' phOIWlll1' ('1 l'OIS \\'<'IC' 19 %, COIIl[)'U illg t.he 
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Figure 6.3: Breakdown of the classification pcrformance for cach phonc. This diagram 
refers to the best network applied to the test set of 77 speakers. Compare the frame-by­
frame performance to the average phonctic performance for /ptkj vs. /bdgj. 

confusion tables for frames and phonemes, wc notlCcd that SltOI t Il Il voiced plosiv('s weI C 

classified into their voiccd cognat es , and long vOlced plosivcs W('IC c\.lssified as ullvoiced 
(see also the diagram in figure 6.3). For examplc, an average of 10 % of t.he IIl1voic(·d 
frames was classified as voiced, but this figure corrcspondcd ta '20 2, ]7.2 and 15.(j % of 

the phonemes /p,t,k/ respectively. We can explain thi:> bchilViol in the followlII!-'; W,ty. 
It is possible that thc rCCUfrent connections and the tllne d(·ltly!-> C ollt.ribll1.(·(\ 1,0 (Lls~,ify 

short bursts into voiccd plosives. This rcsult is clllollmglllg, 1){'(dl1<H! Il Illcall!-> th.d. t.l1I' 
MLP was able ta extract a temporal acolIst.ic CliC that IS COI 1 ('Ici tee! 1,0 t.hc! vOlCed/lIl\vOlC t'd 
discrimination. On the other hand, III cOlltillllO!l~ !->pC'C'clr phOIJ('IlJ('~ alc pIOIlOIlIl( (·d hy 
different speakers al. different. rat.es, dcpc:ldinp, ,tlso on t.Jtc· pllOlIdll (Olllc·xl. (Helllilld 1 hl' 
example of the longer /r/ III pm vs. t.he shortt'l' jpj III Spl1l) WI)('lI tllC' bllfsf. is :--IrOlI., f.ll/' 

acoustic analysls llsing a fixcd analysi!:> window wIll mcrge S!H'c!.I,t! illfolllldtioli (0/111111', 
from the burst élnd the vowe\. The use of SPC( Id.lr:r.ed outp1lt IIlJdc''-j fOI /lOu;r't! d().~IL1( 

and szlcncc in cOlllolllation with the illpllt. palillllekrh t.hat. wc' tllC'd dit! 1l0!. illlpro\'(' f.li(' 
pClformitItcc. rhcrcfolc, clth('1 wc lise il slwctl,tl.lII.dyhIS Il)('t.lrO<! wlth .l jllg,llI'r IP~Olllti(lll, 
or wc try 1,0 captuI(, IIlOle illrOI fIlcltioll !tOIll d('Oll:>tl< Ctl<'h of p('l'Iodii Il,y III 1.11<' pli'( l'dill!', 

dosurc, A plOll1isIllg approach is detedillg pel lodl( IL)' flOlll 1.1\1' IIOIIII.dizl·d (OII(·I.Il,ll)ll 0/ 
neig,hhol sep,ments of t1w "Jwcch ~lgll.d7. 

7Mallrl~10 OI\\()logo, pcr:-,ollal r.OIllIl11lIlic,ttI011 
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velar Phones labial alvcolar vclar 
2.0 labial 93.4 4.4 1.6 
5.8 alveolar 2.3 92.7 4.8 

89.9 velar 1..5 8.3 
0--

Sv.7 

Table fi.) ~ COllfuf>IOn matrices for the best network used for classyfing the place of artic­
ulatiolJ of stop pll0nemes. Classification is performcd by selecting 2 linear dircriminant 
dilectiol\s flom tIlC 10 output nodes. Rows: spoken, Columns: recognized. The average 
(Kl cnor is !)% frame by frame, and 7.8% per phoneme Ilesults for the test set of 77 
speakels. 

The :J way c1a.<,sificatioll of the places of articulation for plosives was very satisfying. 
On the 77 speaker test set of 573 labials /p,h/, 1000 velars /t,d,dxj and 484 alveolars 
(Ir.,gj the bcst MLP yicldcd 9 % frame errors and 7.8 % phoneme errors (Table 6.12). 
The biggest error was the confusion between the alveolar and the velar place. This good 
pt'I fOI IWill< t~ C.1I1 )(' cxplaÎned by the fad that on one hand there were thousands of 
training tokcl1" available for these features, and on the other hand the input acoustic 
par,Lllleters .lIId the M LP input window size \Vere appropl iate for capturing the acoustic 
eue:-. I1CU~ . .,S.lIy fOl dlscriminating the place of articulation. 

Wc' W('le ahl{· to compare the pCI formance of this 3-way classifier with the performance 
of Iwo S<'[>;lldt,(' c1asslfiers, onc used for discriminating the unvoiced plosives only, and 
:\IIO(\lI'l 011<' Il'>('d fOI (h"C1lll1mating the voiccd plosivcs only. These MLP classdiers had 
tilt' S,lIll(, :-.11Ucl.lll(' a:-. the I)('st pcrforrning ncL\\'ork. On a hmitcd test set of 48 spcakcrs 
,lIld (i.~() pllllllt'!JW}., (he j p,t,kj classifier yiclded 11 A % phoncmc erro!'s U~ing the same 
I~ :'/1(,.11';:('1' dlHI :)~;) t(':-,t phOJ1CIllC:-', thc jh,d,g( classifier Ylclded 14.:1 % phoncmc CIrO!'S . 
\Vt' (Oll( Il)(1(, t !tdt It 1:' ;t(hallt.agcou" to use t\w samc nct-work for phoncmes lhat sh<ll'c 
tl\(' ",1111\' pl.\«· of dl 1 lClIl.ltlOl1. 

1·:\.lIlIÎIIIIli!, }.()Illt' 1 \ plc.d ('IIOIS committed by the bcst. performlllg li ct, WOI k (table G. 1:3), 
Wt' Ilt)( it \'d t \)(' follO\\'lllg tll'lId" 1"11 st, vcry sliol t plosives \Vere "cry frcC{ uen t III the ('!TOI 

li:-,! St'cond, 1.11<' lip,ht cOllt('\1 th.lI appealC'd with SOI1lC regulatity wcre tlH' vélridtlolb of 
tht' ('('11(1.11 \'tl\\·('I(IX"I'\.<l"\r(. COllcc1'Ilillg the crfect of phoncmc duratloll. wc belic\(~ t!t'lL 
tu soh'(' t hi:, plo!JI('lll it i~ Il<'('(':-'~dl Y to U!>(' .Ill acoust.ic dnaly:-.is wit.h d hlglH'! telllpOl,d 
n'solut'O!l. ('Oll( t'llIlI'~ tht' ('frt'( t. ut cOlltext, 1,1<; pos"ibl{' tlldt the Oll<;<.'t "pectllllll of the 
\ t'l1l,." \0\\,\,1,,, ('\Ilt'lllt'I~ \,llldbl\' bt't\\'('('lllll.1I1Y diffelellt ~p(,ilk('Ui. 'l'hl.., [,u:! 11I1)!,ht ha\(~ 
C.lll:-I'd .\ jlUUl dl'>t 111l1111d! IUl\ of tilt' lH(,('('dillg COII~OIl.lllt, h(~CèlmC the Clil,>:-.Jfi(,1 \\'cI~ ,1I\\'<lY'" 
I\~ill)', t\)lI(I·\tlldllldOlllldtlll11, ,'Id tll11<' d,'l".\'" ,\lit! tlt(' t.lI11(~/fl'<'qIlCllCy ~I<1dJ('l1t • 
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Left Spoken RighL Rccog. Dur. Examplc Fil(, 
vcl b iy p 6 <11'8/ ln tcsO/sx:l5'T 
vcl cl IX t 9 <h6/ III tj uO/sx10 
sil cl IX b 3 dr2/mtatlJsi779 
sil k ax g 6 dI5/fskpOJ'liI] 098 
sil k IX g 6 d13/ rnsfvO/sl()32 
ax lU IX Il 9 dr7/fvkbO/sx'19 
sil lU ah Il 16 dr2/fscnO/sx:W6 
iy n axr ng 9 dl SI mslhO/sx~'):J 
sil n ow lU 8 dl 51 fsùcO/:'122:JtJ 
sil p axr b 3 dr] Illlsjs] /sx279 
sil p IX b 3 clrll mtll'O;Sla 18 
sil t ux d G dr5/fsjgO/sx~0 
sil t axr k 10 dr4/mtcbO/sx11 :! 
sil t Iy cl G d r:l/m t pgO/sl20 1:1 
IX nx IX dx .5 dl ,5/ rnsit!>O;sl J :J{G 

------~ 

''" 
Table 6.13: Typical errors of any classifier. For ('(tell ('l'I'O/', W(~ Îndj(',t1,!' tl\l' 110ft. ,llId Il);111 

contcxt, as weil as the phoncmc dnratioll in f) 1Il~('(' frélllH'S .~d \lW,IIl'" ~t1f'IH'(, or lIlJ\'ul( (·d 
clOSUfC, 't'cl means voiccd clo~lIrc. 

--- --~ - - -- - -
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Frames labial alveolar Phones labial alveolar 

labial 70.5 29.5 lahial 72.0 28.0 

al Vl!olar WU 84.0 alveolar 12.0 88.0 

Tal)lc 6.14: COllfusioll matrices for the hest network used for classifying the place of 
articulatioll of nasal phonernes /m,n/ only. The velar phoncme /ng/ is ignored bccausl.. it 
was Loo l'am to be statistically significant. Classification is performed by selecting 1 linear 
discriminant direction Crom the 14 output nodes. Rows: spoken, Columns: recognized. 
Tiu! average % error is 23% frame by frame, and 18.7% per phonen:e. ResuILs for the test 
!>el of 77 sp('(Lkels. 

6.4.2 Nasal Classification 

We do not examine hcre the errors on /ngl because this phoneme was too rare with 
respect ta the other phonernes ta be statistically significant. The performance on the 
na.sal phoncrncs was Ilot as good as for the plosives (sec table 6.14). In particular, ail 
t.he netwOl ks had somc problems in recognizing the place of articulation for Iml and 
/11/, regardless of the [ad that a large amount of trainmg data was available. The bcst 
nct",ork pctformcd almost 70 % recognition for Iml and In/. Tills figure should be 
compared wilh about 80 % classification rates for the 7 plosives. It should be noted that 
lIsing the Hllme output Bodes for the stop and the nasal phonemes with the same place of 
al ticu\at.ion significantly improved the performance on the nasal phonernes. Evidcntly, at 
th!' bOlllldal ics )('!.wcen the consonant and its context, the acoustic eues for the place of 
.11 1 iculat.ioll arc ~lIll1la.r bctwc(,11 the plo~ive and the Basais, This is not surpris mg, sincc 
tilt' \'ocal t.lilct ('onfigur,üioll is the saIlle for plOSlVCS and nasals \Vith the sarne place of 
.II t.inrl.ülOn, and thclcforc the rcsonanl fl'cqucncies cuntributcd by the voca.l tract must. he 
Ut<· ~alll('. Tll<'rdol(~ \\'(' douht. t lM!. ,1 separaI {' 8]Jcc1all::cd nct\\'ork for the J1<1sal phoncrnc:, 
\l'()lIld j)('1 1'01111 l)('t.I.('1 tlJtln 0111' 10 plIOIH'IIH' c1itssificI. 

\\'IH'II Wt' d,I".,di(·d th!' net ollt.pllh taklllg inta aCCollllt only the a~)G /ml .lncl 5:):3/n/ 
t('~1 pIHlIJt'I\H''', \\'(' obI rtill<'c! IcS.G::> % confuslolI!> bct\\'C'CIl the t \\'0 places of articulation, 
(\'!>, 7.s % fOI the:1 plo~iv(' plr\cc!» t\1l<! 229 % flarne Cll'Ol!:> (vs. 9 % for the plo'>i"cs) 

HI'~\Ilb ,U<' Il'pnrtC'd ill 'l',thl(' (j 1/1. Th('se Cl ron, dic! l10L sCC'1l1 Lü depend on the I('ft 
01 ri~ht pllOlwtlt u>IlI{'xt. (:'('(' T,tille G..!.l), 'l'llIs pClfol'l1l.\l1cC can be explilllled by tlH' 
1'.1('1. th,\!, t.!\(' ,1\ UIl!>t.Jt t'w's rDI' 1I<1:-.. ilty (He stl'Ollgly ('vident. 011 the !>p('ct rogrélJlI. (HIc! t!Jcj' 

t.('I1<1 10 hlllt' tIlt' acollsl il ('11(''\ fOI 1 II(' place of élrt.iculcll ron 'l'hi" pl'obl<'lll is (tddl'<'s'icd ill 
[Z\l(, '19]. 
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6.5 Integrating MLP Classifiers in a Phonetic ])e­
coder 

In this last section, wc report sorne prelllnillilry l'xpC'l'imcnts t.hat have ),('('11 ('(\1'1 i('d Ollt. 

at our laboratory in order to intcgrate this type of MLP c1assifiers ill ,ln ,lCOIISt.1< -phOIlC't.I( 

decoder for continuous speech recognition. The cxperimcnts I(,pol"t('d III this l'I'( t.IOII ,11"1' 

the result of a team effort. They have been carried out by Yoshua B<'ngio, ILtif 1\01111'(' 

and myself. 

6.5.1 Methodology 

At the same time that wc were expcrimcnting diffcrcnt IVI LP cJassifiers for stop ,md Il.1l',tl 

sounds, a preliminary expcriment hc\,S bcen pCI formed using a. prototype syst(~111 h,I:-'I·1\ 011 

the integration of MLP classificrs wiLl! lIl\H..,ls. 
The methodology that wc applicd is thc following. Statc of the ;uL acoustic- pholldrc 

decoders for speaker independent continuous speech recognition arc haspd on I}vlI.llIlic 
Programming [Silverman 901, and in partlCular on fi stat.i:,tlcill rllo(kl of tlll' Hpl'I'( Il ~ig 
nal. For a first order hidden Markov Illode) (1I~'Il\t), (',lcl1 COIlH(Clltivl' ;tIO\J:-,II( flolllW 1\ 

considered as the independent outcoJlle 01 an UllO!>.,('1 vable prolJ<L!>ilrstir prol (':,:-, (:-""', lOI 
examplc [Picone 90]). To limit the 1Il11ll1)('r of bLülsticct! Pill<LIll('I,I'I,'> lo Ill' 1·:,t.illl.tI(·d, :-'11111 

systems require a constraÎncd set of input l>.trilmet,('I:-' As Ct COII~I'q1\('I1( l' 11111'01'1..1111, phil 

nctic information may be Jost in the aCOllSl1C fronl-elld uf ,L recognitioll sy:-'!'I"" H('c ('IIUy, 

there have been several approaches for inU>gratlllg M LP classifil'fs \VII,1i Il M l\L (01 "\llIIl', 

others, wc refer to [Austin 91, Bridie 90, JJo,,!I;trd SS, Fli\llZ11Ii !JO]) 

\Vc advocatc hcrc the WiC of il flY/JI Id cH':()l1~ti('-pltolwtJ( deI odl'I, III wliic II (JIll' 01 

many MLPs c1assify the incoming sp('ccll Slglléd III tenm of 1c!('VcLllt ,tlt.ic IIlid.Oly f,·.d,IIII", 

descri bing the place and lll<LnnCr of ,II tielll" t iOIl al1d ,t dl'gll'e of v 0)(" ing. 'l'III' 1 fi Il JI" IIr'd 

MLP outputs provide a sequence of ol>:-,('r\,(\LIOI1 \ ('dol:-' for ét pllol\('1 il dl'('od"1 l)oI,>c·1\ Ill! 

a wlltinuous densitie::, hiddcli ]\·Idl kov /IIode! [l'ir-olll' !jO]. 

6.5.2 Experinlental Setup 

'1'0 liJllit the cOJllputatlOll(tI cOlllplcxif.y of II\(' (·~,I)(·t IltWlll \ trI cl II·il\0I1.t!111' Il!',III1' Il)1' 

following 8 ditS:' problcm ha:-, br'CII COIISIc!C!I'd' Ip,O.:, b,r/,'1,rh. al! ol/U'I JlII()/11 II/r ~I FOI 

t.hi:-, plOblcll181 and s.rselltCJlCP~ flOl1l IC'gioJl') 2,:J dlld (, of 1111' J!JKK \,('/:,1011 (Jf 1 1 If' TI \,11'1 
daL<tbase WCl<' u,>cd, \VIth 101)0 tl;linill).!, ')(:111.('11('(', 0111<1 2~/l Ic',1 ~t·III.('II""', )'l~l Il .. ,IIIIli', 

speakers ilnd 28 tc::,t ~pcak<'r" lespectivdy. TIlt' Il'lin/1 1',1. '>plill.ilJ~~ IlrI,· \\'01', 1.1\1" ' .. 1111" d', 

for the other C'xperilllcllt.s. 

, 
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6.5.3 MLP Perform Feature Extraction 

The (!X/)(!, illlc/lt'ti system was the following, Rather than having a single MLP that 
(O/llpute!l the vedor of acoustic parameters, wc have two nctworks, MLPl and MLP2. 
'l'1H!y MC lIIitially trained to perform broad classification (MLP!) and plosive classification 
(MLP2) respcdivc1y The input acoustic paramcters, the topology, and the desired output 
('IICOdill~~ of thc!l(, nctworks are similar to the MLP for stop and nasal classification, and 
tllcir outputs dcscribe articulatory features such as the place and manner of articulation 
amI d. degrcc of vOlcing. 

The blOad das lilcation network (MLPl) has becn developcd by Ralf Kompe and 
has :) outputs corrcsponding to live broad categories: non-nasal sonorant, nasal, plosive, 
fllCrt.tivc, alld silence. Details about this classifier can be found in [Bengio 9lh] 

The plosive recognition network (MLP2) was developed by mysclf and had an output 
Ia.yer with ] 6 lIodcs describillg the place and manner of articulation of plosives with 
two IIlstdlltiations of cach place nodes depending on whet.her the following phoneme has 
a forward or backward place of articulation. The desired output encoding was sirnilar 
to the one described for the stop and nasal expel'iment D.D. In particular, the output 
I\odes wCle \abeled as follows. For this ex periment, we considered four different places 
of .lrticulatioll (1.1.bial, alvcolar, velat, and fl;>pped alveolar) \Vith two different nodes fol' 
('<leh pl,lce, The lell1dllling eight nodes were labeled' unvoiced plosive, voiccd plosive, 
vocallc flont, vocalic non-front, liquid, fricative, nasal, silence. The network topology 
was silllliar to the default topology for the stop and nasal classifiers, with two hidden 
layels, loutll2cd connectivity, and recurrent connections at the output layer. The input 
p<tliunef,cls fOI each frame \Vere the Bark scaled spcctrogram, the 7 temporal parameters, 
the gr,HI ieut detcdors and the slope coefficients. At that time, this was assumcd to be 
the b{'~t /)('1 fOI/ni IIg COli figlll ation. 

PCA \\',t!> applicd to the outputs of the combillcd l'vU,P. Tills transformation \Va,> 
/)('1 fOIIJl('d hy lI1ultiplyillg the combinccl MLP output "cetOl' br a lectangular matnx Each 
\'011111111 of tll\' III.ttIÎX was olle of the plillClp,1I com»ollcnts. This matnx multiplication 
h,,~ 1)('('11 illlpl('llIel!tl'd a~ a slllgie-Iaycr llllear pClccptlO/l, cali ccl SLP, The SLP outputs a 
\'('clOI 01 K 1'.11 illlH'(1'1 5 (the l\ILP outputs projcct.ed on thc filst S plincipal compollcnts). 
l'II<' (J\(·I.tll.,(11I< 1,111(' MLPl+MLP2+SLP i:, cqulwdent 1,0 a cùlllplcx time dt>lay ll1ulti-

1.1 \'('1 IH'ICl'pIIOIl \\llh thrc(' llldd(,11 l.t}'(·rs of loglincar ullits alld lin('ar output Ul1lts. 

(i.5A Hl\1IVl perfOrlll phouetic decoding 

FUI ('il( il S('lIt('II(,(' \0 1)(' d('('od('d, II/(' ~ pill,UlldcI \e( tOI is the ~C'qIJCllce of Oh~('J'\'édioJl 
\1'( IOI~ Inl ,1 ('()IlIIlIlIUll~ J)l'II'>It.I(,~ 1 1 i\li'vl , \vlth Il Icft-to-light lIIodt'I!'l. III OIdcI 1.0 illl­
pl\l\'I' III<' IIlol/t·IIng of tht' ),CJ('c\1011 cI.1~s four ddrCIC1I1. llIodcl" welC con<;ldcled: Ilil'>éils, 
fIIC.lli"(·,,, I\()I\-I\.\s.tl SOIlOI,lllh, <llId SJ\('IlCl' 'l'Il<' J('cogIlÎLÎol1 n·stIlt ... é11C' oht..tillC'd by IIlClg-
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ing thcse fOlll' subclasscs, such lltat thc lOL,d Illllllhe(' of (I,\~'w" tu 1('( O)!,lll'l.(' I.,:-i KI( Il 
phonctic modcl had 14 states, 28 transitions, :J s('lf 100p5, \\'11 hout ("phcitly 1I10d('lllIg Il,,, 
state duration, and licd output probability dist.l ihutiùm, wit.h :~ h.\SH difl'('lt'lI1. dl:,1 1 tllll 
tions charadcl'izing the begi nning, midd le and fill.ll p.lIl of ('.1(' Il M'/',Il\l'Ilt. l':.tt'h 01 t.Ilt'~(, 

distributions was modclcd by a Gaussian llllxlUle wlth [) <!t'Ilsitws The (;"Il~SI"1l (0",111 

ance matrices were assumed to be diagonal sincc the pi1I,\I1I<'tt'l~ \\'('Il' lIlit.lîllly plllwip.d 
components, 

6.5.5 'fraining of the hybrid MLP-HMM syStcll1 

First, the parametcrs of the two !\1LP classificl's were opt.imized M'1J1lml d!J, u:-.i/l).!, M'III.('IIC(' 

tokens for MLPI and phoncmc tokcns for MLP2, '1'1\('11, t.wo it,t'I.tt.iolls of t.h(, [<'Ol'W(1/'({­

Backward optimization algorithm [Picone 90) \Vere run 11\ ordl'I 1.0 ('S\'I 111;11.(' 1IH' sl.al.e 
transition probabilitics and thc paramctcls of the tied output. dis!.ltll1Itioll!', fol' (';1( It sl..lI(', 

using aU the training sentences, This is a maXl1ltU1/l ltkehllOod f',"(l1HILfwn 1>1'0('('<111)(', III 

which one tries to cstimate the HMM paramctcls III ardel to fllil,iIllÎ;r,(' t}J(' lik,'liltood 
of the observed sequence of vectors given the constrainb of the llIod('1. L.u; 1. , t.Wt) Il('I­

ations of a global optlmization procedure \Vcre l'lin \Ising the trttilllll).!, !',(',Il,"lIt ('!', 0'11' li)' 
one, This procedurc has bccll dcvcloped hy YO,,!JUd B"Ilglo ,lIld 1" d.'~c ,ilwd III dl'! d'''' III 

[Bengio 91a, Bengio 91c]. Vcry briefly, il allows d, jOlllt optlllllZd.t.10Il of tll(' p,lI.lIll .. t."l!', 01 
the continuous densitJes IIMM and of ail tl\(· ,onncdlllg w('lght" of t.hC' COlllhllH'd St.II/C­
ture MLPl+MLP2+SLP For (;3,ch one of the SLP uutpl/ts ,1Ilel (,d( li 011(' of t.\I!' f.1.lllli'lg 
sentences, it is possible to compute a gradIent derived flOIll t.!w likelihood of tlH' corr('( 1 

sequence of phonetic models. This gradiellt replaces the cl ~rivtltivc of the LMS ('1101 ('/1-

terion with rcspect to each SLP output unit. ThclI, the gradif'lIt (,III hl' tl,\Il~IIIItt.('d 10 
ail the connecting welght.s using the back-prolMgrtl,ioll il Igol it.h III, F'gl'J(' Il ~ Illll"f.,.JI (", 
the outputs of the cornbll1cd MLP and the output phOIlClIl1! ~t,.i/lp, ol,l:tilll'd l,y Vit .. ,IJI 
decoding of th(' UMM for a short. segment. of ,\ test. St'lllC'Il('{', 

6.5.6 PrclÎluinary Evaluation 

The pClfollnance of the hybl'id systelll was cOlllp,u('d with Ih,II, 01 ,\ IO'lp,h po"t, PlO' {,,,.,1I1 
ètpplicd lo tbe outpllt:-. of the l'vtL!>!', A sill\ple algOl ,tllIlI iI<;"').!,'J('r! .l "yllllHlII Il ('d( li Olll.plil 

frallle' of the l\'ILPs by cOlllpilrillg fJ'ilnl<' hy fldlW' t.lre t.dlgl'! olll.pllt. V('( tOI \\'11 I, d' 1.1(,1\ 

output V('( t.OI, It tll<'11 slIloothed tilt' 1 (':-'I\It.ill)!; .,t.li/ll!; 10 1I'IIIIJ\'{' vP'y é>\Jo, 1 .,q~lr\l'lJh ,I/ld 
IIlcIgcd con!',eClIt.I\'c sq~llI(,lIts tlt"t h .. d t!w S,I/I)(' "Yll/bol. 1" ()ldc', 1.1) l'v.tllI,lI,c' l,III' .ldv,11I 
Lages of U.,lllg fvlLPs ,\., seqllence!' of OhS('\'V,It.jOIl'> rOI tIlt' IIM~I, t.lll' :-'.11111' 11i\1i\1 l/lodc'I-, 
\Verc u,>('(J to p('lfoJ'IlI recogllition, bllt lI~illg ,1 st.\llddl'cI :-,{'I 1)1' dr,o".,tIC Pdldll/l'II'I', .1) CC'P 

sllal coeffiClellts cOlllput.ed frol11 tlte Bal'k :-.( ,.ted ~PC'('I.IOI',I .. III, x «'1",11 . .1 t 1/1\(' cl", I\'.tt IV("" 
the sigllell ('1I('lgy a.lld its ti\ll(~ d('livrit ive (I~ illf)llh), 

E 
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Figure 6.'1: Top: signal. Ward spoken: "became", Middle: MLP outputs related to 
distinctive phonctic features, Bottom: Output string è,..~coded by the Viterbi algorithm 
from the trcllis of JIMMs, 

'l'Il(' comparùtive results Ï<'r t hf> t hree systems are summarized in Table 6.15, Perfor­
IIUtllCC Iiltcs \VeiC cvaluatcd for the 8 classes, including plosives and the rejection class, It 
should he lIotcd that fOI the majority of the frames of any sentence the correct phoneme 
bdongf'd to the rcjertlOn class, Fol' this reason, rather than looking at the absolllte values, 
il is inLcn.>;-,tlllg lo compare' bel \Veen different configurations of the hylmd systems, 

Tite 0\'('1'<111 r('cogllitioll latf' (100% - %delctlOl1S - %substltutions) for the Sciasses 
wlt.h t.llt' hyblid :-'j':-.l('1Il artel two trdilling it.('rrltions is 90% on a lotal of 7214 phoncmcs, 
,lllcl it'i ;\le1lr,u'.\' (IOO%. - %d('ld.ion~ - %suhslit.lltions - %;nscrtlOll<") is SG% Notc thal 
(III~ i:-. ,Ill illlprm'(,llll'Ilt 0\('1 t.he 1><'1 fOI mall«' obl<tillcd witlr cl Il:\lM tlil.ll1ed witlrout 
)!.Ioh.d optlllllZ,dlOll (~(;% !('m)!,ni1.101l alld 81% ilCClllitCy), 'l'II(' J\tlLl\, aJollc Ylcld('d S.5% 
1'('co!-'.lIit 1011 hllt. oilly 5:~% ,\l CIII (ley, !)('caus(' of the IlIgh lIumber of II1Sel t iOlls of pJoSI\'C' 

~q~Il!(,llb (;l:~%). The Ilto.1M elillllllaLl's 1ll0~t of thcsl' illSl'rtlOlls I)(,Cit1l~C Il optimizf's ils 
[ldl,lIllckrs O\'l'[ (,Iltil(, :·iI'nt.('llc('~, rat.Ir('1 thtln ove!' sholt segment" of sp('ech. In éHldltlon 
tIlt' III\1i'd jlll)\'Idl's Ilwr<' <Ippro(llidtl' talp,d \',du('s fOI t.he oulput" of the ?vlLP. Il ,,!toul 
Ill' lIo!.('d Ih,lt III\' tl~(' of.t h.rhlid sysl('1ll d(·ctl',\~('d t.!\(' 1>(,l'fol'l11;\lI('(' Oll the plosi\'('", t.hat 
\\'l'I(' !('SS fl('(III<'II1. Ihelll tlr(' otlll'I' cl(\~~(·~ 

'l'hi~ pll'lilllilltll'.1 (':-"P('I'III\(,I1( \\d~ \l'IY ('IJ{OIlI,lg,IIIg,. II, dCllloll'itraleJ iL "('l')' prolllis­
III~ \l'ay ln 11I1<'I:"I.lIl' 01\(' 01 1ll.IIlY ~'ILP (!"s"ifi<'l's int.o a sl.d.istical plrolleti(' d('coder, 
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Phollcllc Decoder % l'CC 

111LPs a/one 85 
llMMs a/one 76 
MLPs+ lIMM 87 
MLPs+HMM+globa/opl. 90 

% 1118 9{d;:l 
:32 () 0·1 
().;J 22 

6.8 -1- ~~-
3 ~~ 1 A 

--

~2.;~ lm 
---- ------

l '2 ~ 1 

.. '~ 

.. ' 1 

Table 6.15: Performance evaJuation: MLPs aJonc, lllVIlVls \Vith stalldard C('pstllllll, ddt.\ 
cepstrum, cncrgy and delta cncrgy input fcatmes, ML]>:; \VIth IIMMs, éllld with glu!.." 
optimization. The task \Vas tû rccognizc S classes Ill,I,k, !J,d.y. dr, (j!htT 111101I1'l1If'S/ III 

eontinuous specch. The table l'cfels to the test set of 28 Iipe.l!\Crs .1Ild 22·[ ,,('IIICII( ('0. 

based on specifie knowlcdge in cxpenmcntal phùnctics. For.\ COl\lp!('!.{' ev,dltal iOIl 01 1 hi ... 
methodology, one has to complctcan cxpcrimcnt involving the full set of A llIericall' EIl~lIsh 
phonemes. Future work will he devütcd tü this problcm. 



Chapter 7 

Conclusion and Open Problems 

A main advantage of MLPs is the possibility to classify sequences of many input 
paralllctcrs with much flexibility. No statistical assumption is made about the nature 
of the inputs, and sufficiently complex MLPs perform well on difiicult pattern recogni­
tioll plOb)('/lls such as speaker independent phoneme classification in eontinuous speech. 
Sp<,ci,dlzed ANNs (",m he integrated into a statistical phonetlc dccoder which mode! the 
temporal structurcs of the speech signal. As a first step lowards the design of sueh a 
bybrid phonctic decodcr. wc studied the prob!em of classifying stop and nasal sounds, 
The comparative experiments reported in this thesis showed that key factors for rmprov­
illg the performance of sueh classifiers arc the proper choice of the mput parameters, of 
lite l1ltc7'lwl tOTJologyand of the desired output representatlOll, These parameters strongly 
dqH'lld on the dcoustic correlates of the phoncmes to bc recogl1lzed and are insplred by 
('XP('llIlI('l1t<l1 stlldics in Phonetics and by signal processing strategies, In general, different 
pa l "1I\(·tNS WIll be applied to different classes of phonemes, From the results of the many 
('XJH'lllIlI'lIb rcported in this thcsis, wc c,m draw a numbcr of conc~uding remarks that 
,,!tould 1)(' lI"dul f(H fllt.IIIC research, 

V;I\'ying t.he input. paralnet.Cl'S ~[LP are clblc t.o cope \\'Ith sc\'clal inputs pel' frame, 
.tilt! !lU ,l..,SlIlIlpllOIl nccd.., to be ma(le abOlit th('ir statistical cllstllbutlOn, t.hercfore one 
1'" 1 t'I,t! i\'('ly 1'11'(' 10 choose acoustic palamct.crs, hased on pllonetic and signal processing 
kno\\'kdg". FOI t lu' I>lOhl(,111 of cléls~ifyillg stop ,tIId 1I_I"rtl sOllmls, with rcspect to lIsing 

t Ir(· ~P('( 1,1 ogr,llll él!OIIl', t II(' addltioll or ~Oll)(' glolMI t.empolal and spectral p,\Iamctel's dnt! 

dl' .\ !-',r.ldi(·lll d(·t.(·('I.O\' t.bat I1wa..,\l\'('s fOlmant tr,lIlSIt.IOIlS d('cl('r\<,C'c\ t.he ('l'roI "d(' by 8.4 
(';, 011 tIlt' t (',,1 s<'l, \\'11 Ir ({""JH'( 1 ln t1~llIg Ill<' SP('( Il ogl d 111 <t/C)II(', 

{\III(t'l'llll\g Ill!' B.l\\.-~(',d(· ~p('ct.rogJ(t1l1, \\'(' h,lVC' Il.,('1\ ft COlllputcltiollally IIICXPCIl,,i\'(' 
dllt! ~tl"lgltllul\\'.tld 11I('lhod hdSt'd 011 Ih(~ F,hf. FOUII('!' 'l'r<III",[oIlII (FFT). \V(' bell('\'(, 
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there are intrinsic limitations WhlCh lHl( Il a Illt't.hod, dllt' \'0 t.ht' li:\t'd wllldo\\' of 1111' 
speech signal. At the expClls(:~ of a sOll\cwhat II<'.\\·\('I {Olllpllt..\\ 1011<11 IO,HI, 011«' (,\Il .1('\'1,«' 

the following simple modifications to the Ilscd .dp,orilhlll Fil~t.,.\ IIwre .H'( 1\I.l\t· fl.llllt' 

hy-frame analysis can hc pcrformcd hy avcraglllg tht' FFT colllput.(·d fOI SOIlIt' (~.Iy :q 
slightly shifted windows, This way, one cali III1Iit !.Ill' clr('('I~ of Il\ovillg tlH' .11I,t!y~l .... 

window asynchronously from the pitch period. Seu)[Jd 1 wu (01 IllOI (') dlll('1 t'lit. .\ Il.t!y .... h 

window kngth can he uscd, a. shorter (about 10 IIls('c) ,llId ,l Inllg('1 011(' (II011l L:I 10 :1:) 

msee). The resulting speet.rogram can Întcgratc hoth (tII.dy~l~ 1('lIgths [( :h('IIII1-', !))] Tlrl'> 

way, the analysis would be more informative reg,trding bot.h ~hol't. (wHle !J.lIlt!) .11ld long 
(nanow band) acoustic cvents, like high fl('quelle)' 1)\IlSL::, ,\I\d fUlIll,lIlt. t.r<lllSI\.IOIl~, Hot Il 
these modifications would be casy to implcnwnl ilnd should lli' 1I1\'t'~Lig,\L('d, ~III( \' t.he)' 
would Ilot rcquire specifie hardware configuration:,. AIf.(·ll\atl\(·h·, 01l(~ (.U\ \1 .... (. (·It.!H'\ ,t 

pitch-synchronous analysis step aud wiudow ICllgth, 01 a bail\.; of 11011111\(',11 1.11ll<· dOlll,lltI 

passband filtcrs, provid~cl that tlte mOlC COlllp!CX cOlllplltatioll .... ,lI(' (;111 wc! Ollt. il! ,III 

efficient manner. 

Also, other time doma,in parameters can be addcd to the spectlOglillll, "kt' t.!w lIortllill­
ized correlation betwccn neighboring segments of speech [M('dnll 91]11101.1('1 1,0 C,lptlll(' 

some acoustic details thaL cannot he found in the Bark scal .. d "))('( tlOl!,1 il 111 Sill h IJolld"'­

etefs will certainly hclp in the voiccdjllI\voi(,f'd distl Illlin,tI !Oll. 

The search for an adequate topology SOIllC ('xpcrilllcllb hdV(' IW~;IJ \1111 CO III pal Ill).', 

different network topologies, with or witbout reCllrrellce alld with or wil.!lol11. hidd('11 
layers. Two hiddcn layers and some recuflent cOllllect.ions bctween tlt(' hidd('11 lay('\ éllld 
the output layer \Vere found to be neccssary for illlprovin)!, the d<t~~ificatioll ))l'rfOlïll,III<''' 

on the stop and Basal sounds In Oldcl Lo 1 cp rC:-'('nt .tcOI\slIC pltolldl( dd,dil" lt \V.I'" 

necessary to cOllsider some contex!. in the illJ>ut, hut. d, large «)tlt.(·;..t W,\:-- fOHI\e! 1.0 1)(' 
impracticdl for the type of Ilctwork lltat \Ve 115('<1, The MLP th,lt \V('II~I'd \\'('11'1101. allll' t(, 
dca.l with the greatcr vari.tbility 111 the IIlput that. Wd:-' 1I1t.lOd\l('(·d ll'y il 1"11.!,(·1 WIIlt!O\V III 

oUler \\'01'<15, Il. \\'(\S 1\01. pos:-.ible fOI a iVI LP with I.illlt' d(·I .. ,\':-- <tlld <1 Idl!!;(' ill)JIIL \\'llIdfl\\' t" 
pcrform time warplllg ,Uld g(~IWlidiz(' adcqll'It('lyl 011 .1 Illldl.i- .... p(·<lL(·1 1.1 .... 1- Tu :-, .. 1\'(· Ihl' 

problC'll1, wC' i\ch'ocal.e t.he 1I~(, of é\. hybl id phOIH'tic dec{)t!t'I III ",!Ji( II tilt' 1.11111' \\'ill')I ...... "' 

managcd by a slatist.iccli <t1g,01 ithlll. 

The tI~e of a dlllulc Cllld ('OIH/1/fT or 11/odulnl' apploilc!t is Iwlt(·\'I·t! tu 1)1' dd\'.l/ll.d~}·f)I1', 
for the clas.,ilicatioll pClforlllùl\tc .U1d fOI tilt' \t~dl!t t.\01\ of t1I1' 1I1111t!){'1 or !t(.(, )Jdr.Jllll'I,'/'-; 

of tlte classifier. ThIS apploiu:h GUI he éljlpli!'d III t.(·IIIll-. of lOI ,tliz('d (01111('11 i\'il,' Iwl\\'('I'11 

tlte input laye\ ilild t!)(. hidd"fl Llj'CI, <tud III t.e\lll~ of .... IIIJdIVldlllg" H'( Ol-',lItll(lll t.a .... !. 111\11 

severa!. hopeflllly ('al-;i(~1 sllbplOlJl('IlI ..... III ~pil.f· of tl)(' Silllplifll,!lIIIII" illtltldll(·d l,y t.11" 

modula/' approacll, the cOlllplexlty 01 t!lI: cot\sid(!t(,d rd LI> !<; ;-,1 dl illljll(",'.r\·,' III ~!'<'I)f'I.d 

1 Yo,>h\!il BPllgl0. p('f.:;cmal COIIIIII1J111CallOIl 
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about 7 100 C()lIllectlOll~ W<'IC IIcccssary to discrimmatc adcquatcly the 10 stop and nasal 
SOllllf!s on <1 t(·~t ~d of 77 spc,tk<'ls. 

The ~(',uclt for iL 1ll00C aucqu.üc and 1ll00C compact topology for speakcI independent 
phOIlCIlH' recognitioll III continuolls speech is still an open problem. llescarch should bc 
dilcded tOWéilds IIOll lJ11ml ncLworks that modcl the temporal organization of the speech 
rOlllmlllliratioll proce:,s \Vith ~pccid.lized architectures. Thesc archItectures will capture 
11101<: infolmatioll than a few cOlllextual input frames. 

What AI'e 'l'he Best Target Outputs O? The classification performance on stop 
and nasal :,ounds improvcs slgnrficantly when the output of the ANN arc distinctive 
phollctic fcatures, ratller titan phonetic labels (28 % decrease of the error rate). This 
output leplesentation has occn cxtended to mode! the effects of coarticulation by simply 
lIIultiplying the number of output nodes for the place of articulation, depending on the 
Ilgh t COll text. 

ln addition, Principal Component Analysis of the output vector provides a small 
Humber of statistically uncorrelated output features, as weil as a set of target values 
that match the bchc\,vlor of the network for the training data more realistically than sorne 
il ]J1'101'1 dC~lrcd values 'l'Ids srnall set of uncorrclated features can be processed by a 
1>t.ltisticill phonctlC (!<'COJCI (1 e. continuous densities hiddcn Mal kov models). 

In gCllcral, MLP can cffcctivcly compute sorne non linear features from the speech 
signal. In thc input fcalme spacc, the classes are not linearly separable: since a simple 
pelceptlOll (I.e. a logl~t.ic Icglcssion machine) is able to classify correctl)' only 55% of 
the test sit11lples. Titus, wc can look at the MLP as a non linear transformation of the 
illput f<-'.ttule space t hat yiclds another fcature space in which the classes ale more likely 
lo Ill' lirl<"lIly sepalil hIe '1'0 .trhlcv(' lincar separability, it \\'ould Ilot be nCC('S'iary to set 
t!\(' Ild\\'UI k 1.0 the salll<' d('sitt~J output for ail the training lokcns belonging to the sa,me 
rla~s. H.ltl\l·r, olle could try to adapt the targets to thc training data. 

Alon).!, this dpplOdCh, the r<'port<,d plosi\'c recogllitlon CXI)('limcnt coupled the MLP 
Olll.pllt,~ 10 Il)(, ohS('1 \',ltlOlI sequellce of a COIlt.11lUOIIS densities hiddel1 r-..farko\' mode'\' The 
~Ioh,d optilllizatlOll of ail the p,l1éllll/'tclS of tllC sy~te1l1 pClmiUcd t.o ad)ust III<' targcts 
011.111' !\lLP in old('1 t.o bdt.er I<'prcscnt. the ncLwolk output disllibutions for the training 
d.da. ;\ dilr('rl'llt applu.lCh Cdn 1)(' to SCéil'Clt for a ne\\' analytical form of the Cl l'OL (,fltcrion, 
b"spd 011 illfol'lll,üioll t 1 1('0 l'y !(;ish 90], but wlthout constré1l11ing the outputs to estllllatc 
,l post ('1 inl i l Idss (lW!>.1 hi li t\('~. 
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