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Abstract

We study the problem of classifying stop and nasal consonants in continuous speech in-
dependently of the speaker. We consider some acoustic parameters computed from the
auditory spectrogram, and other parameters computed from the speech waveform. The
classification algorithm uses a recurrent multi-layer perceptron (MLP) with localized con-
nections. The design of the classifier is motivated by knowledge in phonetics and in
pattern recogniticn. We report experiments for the TIMIT database, using 343 speakers
in the training set and 77 different speakers in the test set. Good performance is obtained
when many acoustic parameters are fed to the MLP, and when the MLP desired outputs
represent context-dependent articulatory features. Classification 1s performed by Princi-
pal Component Analysis of the MLP outputs. Refinement of the design parameters yield
increasingly better performance on the test set, ranging from 45% errors for a perceptron
to 23.3% errors for the best MLP.

Résumé

Nous étudions le probleme de la classification des consonnes plosives et nasales dans la
parole continue, indépendamment du locuteur. Nous étudions des parametres acous-
tiques calculés a partir du spectrogramme et d’autres parameétres calculés & partir du
signal. L’algorithme de classification utilise un réseau multi-couche (MLP) récurrent &
connections localisées. La conception du classificateur est guidée par des connaissances
de phonétique et de reconnaissance des formes. Nous faisons rapport de expériences sur la
base de données TIMIT, utilisant 343 locuteurs pour 'entrainement et 77 différents pour
le test. Une bonne performance est obtenue lorsque les entrées du MLP sont plusieurs
parameties et les sorties représentent des traits articulatoires qui dépendent du contexte.
La classification est faite pai analyse en composantes principales des sorties du MLP.
Des rafinements ont amené graduellement une meilleure performance sur le test, de 45 %
d’errents pour un réseau sans noeuds cachés & 23.3 % d’erreurs pour le meilleur MLP.
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Chapter 1

Introduction

1.1 The Acoustic Modeling Problem

Automatic speech recognition and speech synthesis are open to many challenging appli-
cations. Among other examples, one may suggest:

¢ Providing communication tools for hearing impaired persons.

o \Vriting of diagnosis and reports without using the typewriter keyboard.
e Translating words and sentences from one language to other.

e Controlling the operation of a mechanical tool by voice.

¢ Convenient accessing of large information systems.

¢ Providing a teaching tool for a language course.

On the other hand, a few applications are commercially available at present. In a
speaker-independent mode, current systems can recognize continuously spoken sentences
with a simple syntax and a small vocabulary! In a spcaker-dependent mode, current
systems ate able to recognize sentences with words belonging to a large vocabulary of a
certain domain?, provided that each word is separated by pauses. Continuous speech,
speaker independent systems for medium size specialized vocabularies® are under devel-

'A small vocabulary has between 10 and 100 words. For example: numbers, letters, keywords, and

commands
2A large vocabulary has at least 10,000 words. Some current applications reach more than 50,000

words  Domain examples medicine, business, adnumstration, naval resources
3of the order of 1000 words
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opment [DARPA]. In order to build better recognition systems, 1escarch faces two man
problems [Makhoul 90]:

The Acoustic Modeling Problem Today. machiner utihze an approximate knowledge
about the acoustic and phonological rules governing the spoken language Rescarch
is directed towards a more detailed representation of the acoustic signal m terms of
its phonetic relevance, and towards a significant integiation of phonetic and phono-
logical knowledge in computer models of speech.

The Language Modeling Problem Research should develop powerful tools for mod-
eling and integrating information about syntax, semantics, pragmatics and dialogue,
so that the machineis able to accept unconstrammed sentences fiom the user.

Although we witl not deal with the second problem 1n this thesis, it should be noted
that the acoustic signal per se should not be the only source of information processed by
the system when a sentence is spoken. The understanding of running speech requires an
integrated solution to both the above prot'ems, a solution in which each source influences
the other. [White 90, Young 90] However. the construction of a reliable baseline acoustie-
phonetic decoder is an important step towards the cication of 1obust recognition sy stems
In the following, we present a biief overview of the acoustic model g problem.

Given a sentence to be recognized, most of the current systems model the acoustic
signal as a sequence of linguistic units, usually phonemes. At this pomnt, one make the
assumption that a spoken sentence is a sequence of elementary sound units. by analogy
with a written sentence which is a sequence of letters or graphemes. The problem s
then to evaluate what is the most likely sequence of umits given the sequence of acous-
tic observations. The acoustic-to-phonetic decoding problem s difficult, for three mam
reasons:

Environment Variability Other signals might be recorded by the microphone of the
speech recognition system. They include backgiound noise and other speakers vorces
(the so called cocktail party effect). Also, the speaker might move with respect to
the position of the microphone.

Speaker Variability One may deal with many speakers fiom different geographical 1e-
gions, and with sentences spoken with different rates. The recognizer has to tahe
into account many sources of variability that influence the acoustic signal  phys-
iology (size and shape of the speech organs), culture (dialect, accent, education),
psychology (is the speaker nervous, is he bored?), and physical conditions (does the
speaker have a cold?). The pronounciation can also vary depending whether the
sentence is read aloud or spoken spontancously

Phonetic Variability Oncis trying to decode a confinuoussignal intoa dicerete sticam
of linguistic units. In paiticular. the acoustic realization of cachy sound 15 not discrete,
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and depends on the neighbor sounds and on the mtonation contour of the entire
sentence. This problem fall under the general term of coartzculation [Lindblom 82].

We will not discuss the fitst problem, which is an entire field of research in itself. The
seccond problem can be made more managable in two ways. The first approach is to
design a system that adapts its mternal acoustic parameters to one speaker at the time
(i.e. spcaker-dependent recognition). If the goal is speaker-independent recognition, the
approach is to utilize a very large multi-speaker database for training the acoustic com-
ponent of the system. These kind of databases are available to the research community
for the American-Enghsh language. For example, the TIMIT database that we use in
this thesis contains thousands of different sentences? read in a quiet room by more than
500 speakers belonging to 8 different regions in the United States [Seneff 88b, Zue 90]
Similar databases are being created for specialized vocabularies, for spontaneous speech
and in Europe and Japan for other languages. In general, the creation and the analysis
of large standardized databases is a key factor for improving knowledge about speech

communication.

The third problem, phonetic variability, is open and deserves attention. For any natu-
rally spoken sentence, we should expect strong coarticulatory effects in the pronunciation
of each sound. Consider the speech signal during two successive time instants ¢ and ¢+ 61.
The movements of the speech articulators® do not switch from the a priori target config-
uration representing phoneme p(t) to the following target p(t + 6t). Instead, the speaker
tries to minimize the effort by coarticulating successive sounds into a smooth melodic
movement, that may never reach ideal target configurations. As a result, the phoneme
p(t) may he realized in many different ways, depending on the preceding and the following
phonemes, and on the intonation contour of the entire sentence. A spoken sentence is
not a disciete sequence of idealized units, but rather a melody of articulatory gestures.
The goal of these gestures is not to convey an unambiguous acoustic signal, but rather
to communicate an unambiguous semantic and emotional message, that may have many
possible acoustic 1ealizations. For this reason, one may argue that the problem is li-posed.

In spite of its simplifying assumptions, the use of a lmited number of discrete units
is still attractive because it is a parsimonious mean of representing the spoken sentence
in a computer system. Spoken words and sentences can be represented by a sequence
of phonetic symbols belonging to a small alphabet. These symbols provide a practical
interface between the acoustic-phonetic decoder and the lexical access comporent of the
recogmition syvstem. At cach time interval, the acoustic-phonetic decoder computes a

*The TIMIT corpus 1s a collecion of sentences such that every speech scund of the language is
adequately represented By adequately represented we mean (1) some sentences were designed such that
the frequency of occurrence of each plioneme s equal to the a-prior, estimated frequency of that phoneme
i the spoken language, and (2) other sentences are such that each phoneme appears in many different
conteats, 1 order to represent signmficant acoustic reahizations of coarticulatory effects

Squch as the vocal folds, the velum |, the tongue, the lips and the jaw
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probability for the occurrence of cach phonetic symbol, given the acoustic evidence, These
probabilities can be integrated in the computation of probabilitics of occurrence for ol
the words of the sentence by the other components of the recogmtion svstem, For this
reason, in the technical literature, phonemes are now a standard unit for exaluating the
peiformance of different decoding algorithms  In order to model adequately aconstic
phonetic details and the effect of coarticulation, one may study the use of speech umts
that are longer than the phoneme Since the acoustic iealization of a phonenie may depend
on its left and right context, the use of units made by phonemes plus context, pans and
triplets of phonemes may be considered [Shwartz 85] [Lee 89, pages 91 97] The numbar
of English phonemes is about 40, and when we consider phonemes m context, phonetic
pairs, syllables and phonetic triplets the number of units mcreases exponentially, and
we face the problem of estimating reliable acoustic parameters from a hited database
However, phonemes may be defined by a limited set of distinctive articulatory features
describing the characteristics of the vocal tract duiing the production of cach sound
[Jakobson 61, Stevens 83]. There are about 25 such features for the Amencan-Enghsh
language. The problem can be studied by representing phonemes by distinctive featuies.
and by analyzing the relationship between these features and the acoustic signal, and
between these features and the word sequence.

1.2 Methodology and Objectives

This thesis explores some issues related to the acoustic modeling problem, and is devoted
to the subject of acoustic parameter selection and phonetic classification in the framewor k
of speaker-independent continuous speech recognition. To stait, we would like to make an
extensive use of the available knowledge in experimental Phonetics  The use of domain-
specific knowledge to solve the problem cf acoustic decoding has been advocated by many
researchers (among others, we refer to [Zue 85, Cole 86]) The underlying motivation for
such an appioach is that the integration of kunowledge about the phonetie details of the
speech communication process will it rove the performance of any 1ecogmtion system
There ai1e many possible ways to incoiporate phonetic and phonological kuowledge in
a speech recognition system. One approach is to define appropriate abstiact aconstic data
representations and to compile probabilistic or determmstic rules for decodimg suclvinfon -
mation in a Artificial Intelligence (Al) system (see. for example [Busl S3, De Mo 87])
This methodology is baserd on the use of phonetic knowledge, but s duficult to ap
ply to very laige tasks because of the complexity of the vequired AT system. Auother
approach is to embed knowledge m the structmre and the constiants of a statictical
decoder based on a hidden Markov model of the speech cgnal  [Shwartz 875, Lee 8
Bartkova 87. Deng 90. Deng 91 In this thesiso we embed mnphat Lnowledee o the
definition of acoustic parameters and in the modehing of phonetic dJaraficrs Lased on
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multilayer perceptions (MLP). This approach is inspired by recently pubhshed works
[Leung 88, Leung 90, Bengio 90. Bimbot 90. Meng 91]. MLP appear to be a very flexible
tool for sneech recognition tashs whete the distiibution of the many observed parameters
is difficult to be described by simple linear models, and when it is required to classify
sequences of statistically correlated observations rather than only one observation at the
time. The structute of MLP classifiets can be designed using domain specific knowledge.

In this thesis, we study some transformations of the speech signal into some acous-
tic patameters that should carrv useful information regarding its phonetic identity, and
some specific MLP topologies that should make the best use of these input parameters.
The parameters that we consider are inspired by studies in experimental Phonetics and
by signal processing strategics. Concerning the design of the MLP classifier, we take a
diide and conquer or modular approach. Different topologies, different input parameters,
and different MLP desired output encoding can be used depending on the features to be
1ecogmzed. It may be convenient to represent the cutput layer of the MLP by distine-
tive phonetic features describing the place and manner of articulation and the degree of
voicing rather than phonetic units. [t is also possible to encode different instances of one
distinctive featuic depending on the context in which each phoneme is pronounced. The
outputs of one or many MLP classifiers may be integrated in time at a higher stage in
order to recover the sequence of spoken phonemes. In this thesis. we use Linear Discrim-
inant Analysis and Puncipal Components to combine the network outputs. \Ve find this
a convenient way to interpiet the outputs of the MLP in a probabilistic framework. This
approach does not 1equite the MLP outputs to estimate probahihities. Instead, the NLP
are used to computea feature vector from the speech signal. The frame-by-frame sequence
of MLP outputs, o1 the compact representation given by the first principal components or
linear discrinunants can be ticated as a sequence of observations for popular recognition
algorithins based either on dynamic programming [Silverman 90] or on hidden Markov
models [Picone 90). The appeal of such methodology is twofold. First, one or many MLP
can be fed with several hetetogeneous acoustic parametets that span a tinie interval that
is longer than one analysis fiame Second, this acoustic information is processed in a non-
linear tashion m order to oxtiact 1elevant phonetic features, without making restiictive
assumptions about the undeilying distnbution of the observed parameters. In this thesis.
we will discuss i detail 1ssues relating with the choice of input parameters, the design of
the MLP architectuie and the appropriate encoding for the output vector of the MLP.

The speeific problem addressed by this thesis concerns the distinction between all
stop and nasal sounds m Amencan-Englhish. This pioblem represents a moderate size
discumnnation task (10 classes). At fitst sight. this may scem a limited goal with 1espect
to the problem of recognizing all phonemes 1 continuous speech  On the other hand.
1t is a sigmificant problem because speaker-independent automatic recognition of these
particular sounds m continuous speech is difficult.

Many words mav be distingmshed or confused by them. for example dry / try, more
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/ nore tower / power. Automatic 1ecogmtion systems tend to confuse them with othes
consonants with the same place of aiticulation, like afliicates (for unvoiced stops) and
liquids (for voiced stops and nasals). Also, voiced stops and unvoiced stops with the
same place of articulation are often confused (like /p/ and /b/ o1 /t/ and /d/). Problems
arise hecause stops may be shoit in dutation, and they may be skipped by the recosm e

Concerning nasals, there may be large differences in the shape of the nasal tradt hhom
one speaker to the other, and the acoustic realizations of nasals may vary greatly Often,
nasalization occurs (and is perceived) at the neighbor g vowel. It 1s also dithoult 1o
discriminate between nasal svunds with different places of articulation, like /in/ and /n/,
because the intensity uf a nasal is low, and the vocal tract articulators are relatively free
to move, depending on the place of articulation of the neighboring vowel. The spectiuni s
determined mostly by the nasal tract resonances and auntiresonances, independently fiom
the place of articulation. [Glass §6].

Such a problem allows one to complete an extensive compatative study of many ex-
periments in different conditions, with a parsimonious use of cowrputing resources  We
will also report some preliminary experiments concerming the mtegration of such MLP
based classifiers into an acoustic-phonetic decoder based on hidden Markov medels This
work should be seen as a pilot experimental study.

The thesis is organized as follows. The second chapter 1eviews some expernnmental Pho-
netic studies concerning stop and nasal consonants in Ametican-Enghish  The hogustic
concept of distinctive feature aad its relationship with the acoustic signal are esplained
In chapter 3 we define and justify the acoustic parameters that we take into considera-
tion. Chapter 4 reviews some important statistical preliminaries that are necessarv {or
the understanding of classifiers based on MLP. In particular, we focus our attention on
the properties of Principal Component Analysis, Linear Disctiminant Analysis and Lo-
gistic Regression. Chapter 5 describes how an MLP can be used as a phonetic classificer.
The presentation stresses (rather informally) some links between MLP and the statistical
procedures presented in the preceding chapter. Chapter 6 repotts the recogmtion expen-
ments on the TIMIT database. In particular, compaiative experiments have been run to
investigate the proper choice of the input parameters, of the output 1epresentation. and
of the integration of the network outputs conwidered as a vector of phonetic features, We
also repoit some other experiments that have been 1un at owr laboratory for estending
this woik to integrate such MLP classifiers i an acoustic-phonetic decoder for continu-
ous speech. The concluding chapter discusses the results and outhnes some of the open
problems that we would like to address in the futuie.
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Chapter 2

Phonetic Overview

When we want to represent the time-varying speech signal, we look for acoustic param-
eters that are relatively invariant between speakers, and that carry discriminant informa-
tion concerning the phonetic identity of the signal. If we represent phonemes by distinctive
articulatory features, we look for acoustic cues that discriminate between these features.
A promising approach is to use many parameters, based on signal processing strategies
and phonetic knowledge. This chapter reviews some important studies in Phonetics that
are relevant for the recognition problem that we wish to solve. The review describes
the articulatory features that we want to recognize and their acoustic correlates. Apart
from the papers referenced in the chapter, this review is based on the following books.
[Fant 70, Fant 73] provide a comprehensive analytical theory about the production and
the acoustic correlates of speech sounds. [Handel 89] is a study about auditory percep-
tion. [OShaughn 87] covers both Phonetics and automatic speech recognition. Last but
not least. [Borden 84] textbook provides a comprehensive introduction from the linguistic
and physiological points of view.

2.1 What is Experimental Phonetics?

Research in Phonetics is devoted to the study of speech sounds. Usually, the phonetician
designs and evaluates experiments involving the study of natural speech samples and
perceptual tests. From the point of view of speech articulation, research is carried out by
studying the spectrogram, the waveform and sometimes direct measurements of speech
articulator movements', muscle activity (EMG), and air pressure, volume and flow. These
measurcements arc recorded during the pronunciation by one or more speakers of different
words and sentences. From the point of view of auditory perception, the research usually

'Such as X-ray and Nuclear Magnetic Resorance pictures of the vocal tract

10
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involves listening experiments during which some subjects are asked to evaluate different
synthetic stimuli according to some criterion. In some experiments, the brain waveactivity
(EEG) may be recorded. The synthetic stimuli differ in some acoustic parameter such
as duration, intensity, phase or spectral quality (i.e., different formant transitions). In
general, the study of such experiments focuses on the identification of acoustic cues that
are relevant for the production and the perception of different speech sounds. In oider
to improve the performance of a recognition system, the engineer can design acoustic
parameters inspired by the work of the phonetician, aiming to prove that findings that
are relevant for the production and the perception of human speech aie also relevant
for such a technical application as automatic speech recognition. However, the acoustic
parameters that are designed by the engineer for a specific application are not meant to
be psychological or neuro-physiological plausible. Rather, they should be considered as
inspired artificial tools.

2.2 Distinctive Articulatery Features

Phoneticians classify speech sounds in space according to distinctive features [Jakobson 61,
Stevens 83]. In theory, each sound can be represented by a point in the space. In general,
the space is defined by three independent directions: manner of articulation, place of
articulation and voicing. An additional distinction is between vocalic and consonant.

The term vocalic refers to speech sounds that are always pronounced with the vibhiation
of the vocal folds towards an unconstricted vocal tract, while all the consonants involve
some kind of vocal tract constriction. The constriction makes consonant sounds transitoiy
and sometimes weaker than vocalic sounds. Vocalic sounds constitute the syllabic nucleus
in many languages, including American-English.

The manner of articulation relates to the degree of constriction of the airflow thiough
the vocal tract during the production of each sound. The airflow is stopped by an occlusion
in the pronunciation of stop sounds /p.t,k,.../ and in the initial portion of affiicates
/ch,jh/. For nasal sounds /m,n,ng,.../ , the airflow is directed through the nasal tract
by lowering the velum, and the vocal tract is occluded in a way that is similar to the stop
sounds. The degree of constriction of the airflow decreases gradually when we consider
stop, nasal and fricatives /f,v,z,s,.../, liquids /l,;r/, glides /y,w/ and vowels /a,in,.../.
For the vowels, the manner of articulation refers to the degree of openness of the vocal
tract, set by the general position of the jaw and the tongue. The manner 1anges from
close (or high) /i,u,.../ to mid /ae,er,a0, .../ to open (or low) /ah,aa,.../.

The place of articulation is the location of the more constricted pait of the vocal
tract, where the upper wall of the vocal tiact is closer to the upper pait of the tongue.
Concerning American-English consonants, the following six categotics are ordered from
a forward place of articulation (closer to the lips and the teeth) to a backward place
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(closer to the velum and the back of the palate): labial /p,b,m/; labio-dental /f,v/; dental
/th.dh/; alveolar [s,z,t,d,nl/; velar-palatal /k,g,sh.jh/; glottal /hh,hv/. The liquid /r/
has a 1etroflex place of articulation, and is similar to the central vowels /er,axr/. The
glides or semi-vowels /y,w/ have a front and back place of articulation, respectively. The
place of articulation of the vowels ranges from front /iae,eh,.../ to central /er,.../ to
back /u,aa,a0,... /.

Voicing 1efers to the absence or presence of vocal folds vibration. Table 2.1 sum-
matizes the articulatory features that we take into consideration for consonant sounds
in American-English. The reader should be aware that many distinctive features may
be defined by different linguistic theories and by the desired detail in the description of
speech sounds. In defining distinctive features for speech recognition, one keeps in mind
two motivations: (1) choosing the minimum number of features that are necessary to dis-
tinguish the application vocabulary [Vernooij 89}; (2) choosing those features for which
clear acoustic cues can be deterted in the speech signal, taking into account the current
state of research in Acoustic-Phonetics.

For each phoneme, the table reports its two most common symbols, as well as an
example word and the features duscribing the place and the manner of articulation and
the degree of voicing. The allophonic variations defined in the TIMIT acoustic-phonetic
corpus are also reported.

In the following sections, we begin our review by considering the production of stop
and nasal sounds. Then we consider the acoustic cues related to the manner and the place
of articulation of these sounds.

2.3 Production of Nasal Consonants

In this section we refer to [Fujimura 62, Fant 70]. During nasal closures the soft palate
{velum) is lowered, the airflow passes mostly through the nasal tract, and the oral cavity is
occluded at the lips or by the tongue against the palate. The vocal folds provide a periodic
excitation to the nasal and the vocal tract. The nasal tract is a large and long resonator
of fixed dimensions with a large surface area compared to its volume. Therefore, it
contributes to the acoustic spectrum with a single well dampened low frequency resonance.
The constricted oral cavity and the large nasal cavity surface absorb much of the energy
produced by the vibration of the vocal folds, and create antiresonances in certain frequency
ranges. In general, the resonator made by the parallel oral and nasal cavities results in a
spectrum with broad band low frequency rescnances followed by antiresonances?. The

?The resonant frequencies of an acoustic tube are inversely proportional to its length, wiile the energy
losses and the bandwidth of the resonances depend on the friction between the air and the walls of the
tube and on the heat conduction through the walls, therefore they are proportional to the surface of the
walls that 15 exposed to the air flow Antiresonances appear when the air flows from the source to more
than one path, and tlus happens for all consonants




[

%

CHAPTER 2.

PHONETIC OVERVIEW

Ascii | IPA'| Ezample | Manner | Place Variation | Voicing
p P pop stop labial no
t t tie stop alveolar no
k k kick stop velar no
b b buy stop labial yes
d d did stop alveolar yes
g g guy stop velar yes
dx ¢ ladder stop alveolar flapped yes
m m my nasal labial yes
n n none nasal alveolar yes
ng n king nasal velar yes
nx ¢ winner | nasal alveolar flapped yes
em m bottom | nasal velar syllabic yes
en n button | nasal alveolar syllabic yes
eng |7 washington | nasal velar syllabic yes
ch ¢ church affricate | alveo-palatal no
jh z judge affricate | alveo-palatal yes
hh h hay! fricative | glottal aspiration | no
hv h he fricative | glottal aspiration | yes
$ s sister fricative | alveolar no
/ z Z00 fricative | alveolar yes
th 0 thief fricative | dental no
dh ) them fricative | dental yos
f f fire fricative | labio-dental no
v v very fricative | labio-dental yes

Table 2.1: Articulatory classification of American-English consonants.

13
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LABIAL Ammgﬁ

SToP souwd  /t/ NASAL SoOMD /m/

Figure 2.1: A: Schematic X-ray tracings of nasal and stop sounds. Adapted from [Fant
70]. B: Position of the place of constriction in the vocal tract for labial, alveolar and velar

sounds. Adapted from [Borden 84].

place of constriction in the oral cavity differs for the three nasal sounds. For the labial
/m/ the lips are touching, for the alveolar /n/ the tip of the tongue touches the front of
the palate close to the teeth, and for the velar /ng/ the back of the tongue touches the
back of the palate close to the velum. Therefore, the length of the oral cavity resonator
decreases progressively for /m,n,ng/ and the frequency ranges for the resonances and the
antiresonances increase accordingly (see figure 2.4). Nasal production is characterized by
low pressure in the vocal tract above the glottis and behind the closure, and articulators
that are not required by the nasal sound are free to move. For example, the jaw is free
to move to or stay in the position required for the pronunciation of a neighboring sound.
Also, if the velum does not contrast for the pronounciation of a neighboring vowel, it can
be lowered during the pronounciation of the vowel.

2.4 Production of Stop Consonants

In this section we refer to [Fant 70, Fant 73). Stops consist of three events: the closure,
the burst relcase and sometimes the aspiration. During the closure the glottis is open.
The air coming from the lungs increases the pressure in the oral cavity above in the vocal
tract the glottis. Since the oral cavity is occluded completely at the place of articulation,
it expands until it suddenly opens, releasing the air at the constiiction. No air flows
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through the nasal tract. During the relecase, the vocal tract is excited prmarely at the
constriction which contributes with a turbulent noise soutce. The constriction of stop
(and nasal) sounds is at the lips for labial /p,b/ , at the hard palate for alveolar /td/ |
and at the back of the palate for velar /k.g/.

Seen from the glottis, the production of stop sounds is a complex event. Duning the
initial part of the closure, the vocal folds may or may not vibrate. If the preceding sound
15 voiced, and the stop is also voiced, the vocal folds vibrate. In such a case, some low
frequency energy 1s dissipated through the walls of the vocal tiact, while the occlusion
causes the build up of a certain amount of air pressuie (a lower pressure than for an
unvoiced stop). If thie preceding sound is voiced, and the stop 1s unvaiced, the vocal
folds may continue to vibrate at the beginning of the closure, but they do not vibiate
immediately before the release of the burst, allowing the pressure above the glottis to
increase significantly.

Right after the release of an unvoiced stop, the vocal folds adduct (without vibiating)
creating a turbulent noise source. The resulting sound is called aspiration. During the
release of a voiced stop, either the vocal folds were already vibrating, or they will start
vibrating sooner than during an unvoiced stop release (with a shorter or null aspiration
phase). In general, in American-English there is a significant delay between the burst
release and the voicing onset, if we consider an unvoiced stop followed by a vowel compared
to a voiced stop.

It should be noted that the distance between burst release and voice onse’, (VOT) also
depends on the context. For example, when a unvoiced stop is preceded by a fiicative
(like in spin vs. pin), this distance is shorter and is similar to the distance for the voiced
cognate /b/.

The frequency location of the high frequency broad band 1esonances during the buist,
release depend on the place of the constriction of the vocal tract, i.e. the place of articu-
lation determined by the position of the lips or the position of the tone -«

Labial resonances are associated with one long back cavity that is open on one end
(the glottis) and closed on the other end (the lips). The main resonance 15 a relatively
low second formant.

Alveolar resonances depend on two different cavities. a back cavity shoiter than the
labial one and constricted between the palate and the teeth. and a short front cavity that
is open at the lips. The main resonances depend on the length of the back cavity  As
the length of the back cavity decreases fiom the labial to the alveolar configuration, the
second formant peak increases.

Velar resonances are influenced by the place of aiticulation of the nerghbonne vowel,
because the place of the constiiction 1s forwaid in the palate if the vowel is front. and
towards the back if the vowel is non front Thetefore the front and bhack cavity 1esonances
may vary. If the vowel is fiont ( the occlusion is forward) the second Tormant ( deternmed
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Figure 2.2: Simplified acoustic tube models. A: Nasal sounds. The nasal and the vocal
tract are coupled. B: Labial, alveolar and velar configurations of the vocal tract. Adapted

from [Fant 70).

by the longer back cavity) is close to the third formant peak { determined by the shorter
front cavity). If the vowel is back ( the occlusion is backwards) the second formant is
determined by the front cavity and is further away from the third formant determined by

the back cavity.

2.5 Acoustic Correlates of Stop and Nasal Sounds

2.5.1 Perceptual Cues

Absolute spectral properties such as formant peak locations, their transitions from or
to the consonant and the relative duration of acoustic events are the main cues for the
perception of stop and nasal sounds, although it is a matter of current research how these
cues are integrated or alternated by our perceptual system, depending on the context in
which the consonant is perceived [Handel 89].

Peiception of nasality depends on the detection of the low frequency murmur and on
the decrease in intensity with respect to the neighboring vowel. Stop perception depends
mainly on duration and cnergy cues. A silence followed by a short spectral transition
towards a steady state vowel is perceived as a stop rather than another consonant with
the same place of ariiculation. The distance in time between the end of the silence and
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Figure 2.3: Examples of spectra at the release of stop and nasal sounds. The spectra are
smoothed by a linear prediction algorithm. From [Stevens 80].

the voice onset (VOT) is a strong perceptual cue for voicing, although depending on
the context, the detection of voicing during the preceding closure, as well as the burst
amplitude, may integrate or substitute VOT in voicing perception.

The perception of the place of articulation depends on the frequency location of the
major peaks in the spectrum, but also on the difference between these locations and the
resonant frequencies of the neighboring vowel. Several acoustic cues might be integrated
over time in order to perceive the exact place of articulation.

In general, different acoustic stimuli might be perceived as belonging to the same cat-
egory, as long as some fundamental features are maintained, either in the spectral or in
the time domain. For vowels, these features might be the distances between successive
perceived formant peak locations [Chistovich 79], and for consonants like stops it might
be the gross shape of the spectrum [Blumstein 80]. Since the gross shape of the spectium
depends from the distance between formant peaks, consonant and vowel perceptual the-
ories are consistent. This effect is known as calegorical perception and is much debated
[Handel 89].

2.5.2 Outline of the Acoustic Cues

In the following we outline the acoustic correlates for the 10 stop and nasal sounds.
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Manner of Articulation The acoustic cues correlated with the manncr of articulation

are:

e Staps are represented by a sequence of distinct acoustic events visible in the speech
signal (closure, burst, aspiration). As a consequence, there are abrupt changes
in the spectrum and in the amplitude of speech waveform. These changes are
not so abrupt in the production and the perception of other consonants sharing
the same place of articulation, such as the nasals, the liquids and the fricatives

[Stevens 75, Stevens 81].

o The spectrum of a nasal murmur shows a low broad band first formant peak. The
spectrum changes slowly compared to other consonants, while the speech waveform
. has low energy. The nasal resonance may appear during the pronunciation of the
. neighboring vowel.
[Fujimura 62, Mermelstein 77, Glass 86]

Voicing for Stop Phonemes The acoustic cues for voicing of stop phonemes are mul-
tiple, and each can be present or not depending on the voicing manner of the contextual
sounds. [Stevens 74] The acoustic cues for the distinction of voicing are:

o The movement of the first formant peak between the consonant and the neighboring
vowel tend to be more pronounced for voiced sounds.

e The presence of some energy in the low frequency tands, visible during the closure,
if the vocal folds do not stop vibrating during the closure.

e The distance between the burst release and the voice onset (VOT) is usually shorter
for voiced stop than for unvoiced stop.

My
[ J

The burst amplitude is usually greater for unvoiced stops.

Place of Articulation for Stop Phonemes Theie are two main acoustic cues for the
distinction of the place of articulation of stop consonants.

e The general shape of the spectrum during the burst release. which is determined by
the relative distance between the frequencies of 1esorance of the tubes constituting
the vocal tract [Blumstein 79, Blumstein 80, Stevens 81].

¢ The movement of the second formant peak® between the consonant and the neigh-
boring vowel. This cue is dependent on the place of articulation of the neighbouring

YEither nsing or falling i frequency during a short interval of time
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Figure 2.4: Spectral templates for labial, alveolar and velar bursts. Adapted from [Blum-
stein 81).

vowel. It is not clear what is the exact perceptual relationship between this cue
and the above one. [KewleyP 82, KewleyP 83, Kuroski 84, Suomi 83). Recently,
[Nathan 91] classified stops in VC syllables in a AF3/F; feature space, whete Fy s
the 2nd formant measured at the closure of the glottis prior to release and AF, refer
to the 2nd formant transition from the vowel to the closure.

Place of Articulation for Nasal Sounds The acoustic cues for the place of articula-
tion of nasal sounds are:

e The second formant transitions between the consonant and the vowel, in analogy
with the stop sounds. This one appear to be the primary acoustic cue.

o The position of the first formant peak increases gradually from the labial /m/ to the

velar /ng/. This one seems to be a secondary cue (it 1s less evident when considering
several different speakers).

2.5.3 Details about the Acoustic Cues

Consider now in detail the acoustic correlates for the unvoiced stop /p,tk/ [Fant 73,
Blumstein 79, Stevens 81, KewleyP 82, KewleyP 83]. The spectiam of the labial /p/ s
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Figure 2.5: Examples of waveforms and spectra at the release of stop sounds. The spectra
are smoothed by a linear prediction algorithm. From [Blumstein 79).

spread out or diffuse at the burst, with a falling or flat slope towards higher frequencies.
The burst amplitude is generally smaller than the high frequencies amplitude of the
neighboring vowel. The second formant peak is a resonance of the long back cavity
of the vocal tract and is lower (in frequency) than the second formant peak of the vowel,
and therefore it rises from the burst to the vowel onset if the stop precedes the vowel, and
falls if the stop follows the vowel.

The spectrum of the alveolar /t/is diffuse and rising at the burst. The amplitude
of the burst is as high or higher than the amplitude in the following vowel, The second
formant peak is a resonance of the back cavity of the vocal tract. Since the back cavity is
shorter than for the labial /p/, this resonance 1s at a higher frequency, and it rises (falls)
moderately fiom the burst to the following front (non front) vowel. These movements will
be inverted if the stop follows the vowel.

The spectium of the velar /&/ depends on the place of articulation of the following
vowel. I the vowel is front, the spectrum is concentrated or compact around a high
fiequency broad band peak determined by two close resonances of the back and front
cavities of the vocal tract. This peak is located at a frequency close to and higher than
the sccond formant of the neighbouring vowel. If the vowel is non front, the constriction
is backwards, and the second formant peak is at a lower fiequency, more distant from the
thitd formant peak. The second formant is generally falling (rising) from the buist to the
following (preceding) vowel. The burst and the aspiration of velar stops are often longer
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in duration than for the other stops, and the spectrum changes in a slower fashion

The time-varying spectium of the voiced stops /b,d,g/ and the nasals /m.n,ng/ obevs
the same formant transition rules discriminating labials /b, m/, alveolats /d,n/ aud velars
/g,ng/ [Borden 84]. However, the voiced burst is shorter and with less energy than the
burst of unvoiced stops, and the aspirauion is absent, while nasal murmurs conespond to
energy dips.

It is important to note that these findings always refer to phonemes carefully pro-
nounced in isolated words. In this rcsearch we are addressing the problem of continuous
speech. Therefore, we expect strong coarticulatory effects between the consonant and
the neighboring vowel, and a great variability in the duration and the amplitude of each
sound.

2.5.4 Allophonic Variations in American-English

We have to consider several allophonic variations that have been labeled on the TIMIT
database. The voiced alveolar flapped variation /dz/ is considered here as a distinct stop
phoneme. Indeed, the acoustic realization of this sound is different from cither /t/or /d/
when pronounced between two vowels , due to the contact between the tongue tip and the
alveolar ridge during the closure. This contact produces energy losses and increases the
bandwidth of the formant peaks. The spectrogram of the flapped /dz/looks comewhat
like a short and weak voiced fricative [Zue 79). Nasals can also be flapped (st 1s the cace
for /nz/), but the most common variation is the syllabic form Jem,en.cng/ where there
is no evidence of a boundary between vowel and nasal on the spectiogiam, the velun
being lowered during the vowel pronunciation. In this case the spectrum looks hke a
very long nasal. For classification purposes, we merge the few syllabic nasal allophones
with their respective non-syllabic labels. We also merge the nasal flap with /n/ because
there is not as much difference between the two acoustic 1cahzations, compared to the
difference between flapped and non flapped stop realizations. his convention 1s nsed 1y
other published work on the TIMIT database [Lee 89].

2.6 Summary

In summary, in oider to distinguish stop and nasal consonants, we can tahe into consider-
ation the temporal evolution of several acoustic cues, ranging from the fine spectial detail
(e.g. formant peak trajectories, distance between 1esonant peaks) to the broad spectial
shape (e.g. slope of the high fiequency buist, major peaks and valleys location on the
frequency axis, low and high frequency energy vaiiations on the time axis). These aconstic
cues are dependent on the left and 1ight context, in particular on the place of articulation
of the neighboring vowel and the voicing manner of the preceding sonnd, especiallv for
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features such as velar, nasal, and voicing. In particular, nasal and velar articulations
put loose constraints on the position of some speech articulators. It is then appropriate
to assume different acoustic realizations and different allophonic labels for each phonetic
class. In the next chapter we will define analytically some acoustic parameters that will
be used for the recognition of stop and nasal sounds.



Chapter 3

A coustic Parameters

In the past years, research has been devoted te the search of adequate parameters in
order to improve recognition scores. Usually, the input parameters for speech recognition
systems are sequences of feature vectors representing the spectrum and the energy of the
speech signal in successive short-term analysis windows. For hidden Markov mode] hased
algorithms, performance has been shown to improve when time differential parameters are
added to the standard spectrum based parameters{Lee 89]. For this thesis, we investigate
the use of some other parameters in conjunction with the spectrogram. This 1eseaich
is motivated by two reasons. First, the neural networks that we will use as phonetic
classifiers are able to handle a rather large number of hetercogeneous and/or corielated
input parameters without trouble, so we are not seriously limited by the number and
the nature of input features to choose. Second, we look for acoustic pariameters that are
inspired by knowledge in experimental phonetics, and we wonder whether using more of
these parameters will improve the recognition performance.

In the following sections we review the acoustic pararneters that will be used i this
thesis. We will not consider any parameter that rely explicitely on a a priors segmerntation
of the speech signal. In other words, no effort is made to detect automatically spec.fic
acoustic events, such as the burst or the vowel onset. Some patarneters a1e derived from
the auditory spectrogram, and other are directly computed from the speech waveform,
Chapter 6 will report about comparative experiments using different sets of acoustic
parameters,

23
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3.1 Review of Spectral Analysis for Speech Recog-
nition

First of all, we need a spectral estimation of the speech signal. For speech processing,
popular spectral estimation methods are based on the Discrete Fourier Transiorm (DFT),
homomorphic or cepstral analysis, linear prediction, and time-domain filteri1g according
to an analytical model of the ear.! While time-domain filtering is perform=d sample by
sample, all the other methods require the application of a short-term analysis window to
the speech signal. The analysis step can be either fixed or adapted to the measured pitch
of the acoustic signal.

Linear prediction [Makhoul 75] models the speech signal as the output of an all-pole
filter excited by a sequence of pulses of short duration. These pulses are either periodic
(for voiced sounds) or randomly distributed (for unvoiced ones). This technique is used
widely in coding and synthesis of speech, and in some recognition systems. We have seen
in the preceding chapter that consonant sounds, in particular nasals, are represented by
resonances (poles) as well as anti-resonances (zeros), so at first sight we would not use an
all-pole model. On the other hand, it is well known that any transfer function with poles
and zeros can be modeled with a high enough number of poles. The problem is then to set
the approp-iate number of poles before the acoustic analysis is performed. However, the
location of some formant peaks might not correspond with the pole location estimated
by linear prediction[Makhoul 75]. To solve this problem, a more accurate type of all-pole
modeling has been proposed [ElJaroudi 91]. Another problem is that the siriple source-
filter model is inapproriate when the vocal tract configuration changes rzpidly from a
stop consonant to a vowel. To solve this other problem [Nathan 90] uses a short-term
pitch synchronous analysis to estimate the parameters of the all-pole filter. Recently, in
[Hermansky 90] linear prediction has been applied to approximate the auditory spectrum
rather than the standard spectrum. We decided not to investigate further the use of linear
prediction in this thesis, considering also that it requires many more computations than

the DFT based method.

The cepstrum is a linear transformation of the spectrum. More precisely, cepstral
cocflicients can obtained by projecting the spectral coefficients on a set of orthogonal
cosine functions. The first cepstral coefficients are related to the global shape of the
spectrum, like the tilts towards higher or lower frequencies. Cepstral coefficients with
a higher index are related to details of the spectrum, and have a small variance. For
speech 1ecognition, it is possible to drop the coefficients with the smallest variance without
degrading the performance [Davis §0]. Thercfore, cepstral coefficients provide a compact
sct of uncorrelated parameters. For this reason, the use of cepstral coefficients is popular

PThe mterested reader should refer to the tutorial by [Rabmer 78] concerning digital representations
of speech signals, and the Jeurnal of Phonetrcs special issue dedicated to the subject of computational
models of auditory speech processing [Greenberg 8§]
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for statistical phonetic decoders, because the complexity of such algorithmns is negatively
affected by the number and the corrclation between the input parameters. Fov specch
recognition applications based on artificial ncural networks, 1ecent published works showed
that the performance did not change significantly in going from the FFT based spectial
representation to the cepstral representation [Robinson 90b, Meng 91].

In general, we prefer spectral analysis to cepstral analysis, because the latter method
provide parameters that are difficult to interpret visually, except for the first two. Com-
paring different spectral estimations, we find the method based on time-domain filtening
attractive because the signal processing does not sufler from loss of information due to
the fixed windowing of the speech signal independently from the variations of the fun-
damental period and of the duration of acoustic events. Usually, a bank of band-pass
FIR (finite impulse response) filters is applied to the speech signal sample by sample,
and no windowing is required. In addition, non linear computations can be applhied to
the outputs of the filters in order to represent adequately relevant spectral variations in
time and frequency. This non linear behavior is inspired by neurophysiological studics
[Greenberg 883]. [Meng 91] showed that a particular model [Seneff 8§8a] outperformed FFT
based snectral and cepstral analysis, especially in a noisy environment, in a vowel recog-
nition task. Another comparative study [Robinson 90b} based on another ear model. did
not show much improvement by using this last method. It should be noted that for this
latter study a very large analysis window length and analysis step (32 msec. and 16 mscc.
respectively) has been applied to the speech signal for all the experiments, including for
the filter bank spectral analysis. This fact might have biased the results towards the same
average performance rate.

A method based on an ear model is computationally very expensive unless directly
implemented on digital signal processors. This is why in this thesis we settled {or a simple
and computationally inexpensive method based on the DFT, that will be desciibed in the
next section.

3.2 FFT Based Spectral Analysis

Every 5 msec a Fast Fourier Transform of 20 msec length 15 computed from the Hamming
windowed and pre-emphasized (with a factor of 0.98) speech signal. A smoothed window
of 20 msec. represents a compromuse value, allowing for enough tesolution in the frequency
domain to track formant peaks 1n a laige range of the fundamental penod for male and
female speakers, and enough resolution in the time domain to avoid missing shott acoustic
events. In a few cases, such a window may contain two acoustic events, such as « very
short plosive burst followed by the instial portion of a vowel In these cases, the spectium
will contain some information regarding both events, and coarticulation effects 1y be
emphasized. Some other times, the average amplitude of the spectinm of two successive
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Figure 3.1: Top: signal. spoken word: ‘recuperate’. Middle: linear scale spectrogram,
Bottom : Bark scaled spectrogram

frames will vary because the analysis step is not synchronous to the fundamental period
of the analyzed speech segment. For these limitations, we regard the FFT based spectrum
as a baseline acoustic analysis that can be certainly improved at the expenses of a higher
computational load.

The power spectrum is then smoothed by 32 overlapping triangular filters equally
spaced on the auditory (Bark) scale from 100 to 7000 Hz. This scale compresses logarith-
mically the frequencies above 1200 Hz, according to the following formulae [Zwicker 80,

Seneff 88a):

f < 500Hz B(f) = 0.01f
f <1220Hz B(f) =0.007f +1.5 (3.1)
f 2 1220Hz B(f) = 6log f — 32.6

From the formulae we sce that spectral information at low frequencies has a higher res-
olution than at high frequencies. The sequence of 32 smoothed spectral coefficients X
(i.e. the spectrogram computed on the auditory scale) is the basic and most important
input parameter set for the phonetic classifier used in this thesis. Figure 3.1 illustrates
the differences between the linear scale FFT and the Bark scaled spectrogram.
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3.3 Spectrogram Based Parameters

In the following, we describe some other parameters denved from the spectrogram  We
hope that these parameters will improve the performance of the classifier. Comparative
experiments will be reported in Chapter 6.

Before introducing some differential parameters derived from the spectrogram X(f, 1)
it is useful to remind the definition of the linear regression coeflicient K. Cousider a
function f(n) measured at some discrete samples around point n. IFor example, f may
be the spectrum X and n can be either in the frequency domain or in the time domain.
The variations of the function f over the interval (n — An,n + An) can be expressed by
the coefficient R:

o if(n— An+1) — sk T (TIS f(n— An+t)
24 . 241 24
T fHn = An 1) ~ sy LIS 1 520 )

Rf(n — An), f(n + An)] =

(3.2)

We can apply this coefficient to the computation of a frequency slope of the spectrum, as
follows: AX(f.t

AL RN - 8,0.X( 4 810) (33)

This parameter measuies the variations of the spectrum .\ along the frequency axis. We
have chosen an interval Af = 4 frequency samples, while the parameter is computed every
other 4 samples. This way, we represent global rather than detailed spectral variations.
This parameter describe the spectral shape of the spectrum, and thetefore should discrim-
inate such features as compact vs. diffuse, and rising vs. flat vs. falling. Remind that
labial, alveolar and velar burst are diffuse-rising, diffuse-falling and compact, respectively
[Blumstein 79]. Figure 3.2 illustrates this parameter.

When we look at the spectrum X(f,t) in the time domain, we are interested in the
pattern followed by the peaks. For example, we would like to detect a rising vs. a falling
second formant during the transition between a consonant and a vowel. This information
is implicit in the sequence of spectral frames, provided that we examine the spectiogram
over a time window of adequate duration. An approach to the problem of measuring
formant transitions is the following, directly inspired by a Phonetic study by [Stevens 73]
We concentrate our attention on the pattern followed by the energy in different hands
during a short time interval. More precisely, a gradient operator 1s the following:

Gfit)y=X(f-1,t-D+ X(f+1,t+ D)= X(f+1.0-1) =N/ =1,t+1) (34)
If the first order derivatives of the function XN(f,t) aic defined by differences hetween
values one interval apart, rather than by a regiession coeflicient:

06X 6.X

5= X(f+1,0)-X(/,1); —&— =X(f,141)=X(].1) (3.5)
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Figure 3.2: Top: signal. Spoken word: cartoons Bottom : Frequency derivative of the
spectrogram, or slopes.

then G(f,t) as in equation 3.4 approximates a second order derivative of X(f,t) in both
the time and frequency domain.

82X

G(f,t) ~ 575t (3.6)
If we compute this gradient for all the filters of the spectrogram, we get a picture that
is difficult to evaluate. We define a smoother gradient operator that integrates the infor-
mation in a larger window, and is computed only for the spectral peaks between 300 and
4000 Hz. First, all the local peaks are located in that frequency band, and the gradient

is computed as follows:

X(f-1t=-2)+X(f-1,t -1+ X(f+1,t+ 1)+ X(f+1,t+2)
G(f t)““ _X(f+11t_2)-X(f+1’t'—l)—X(f" 11t+1)—X(f—13t+2)
T if E(t) > thresold and X(f,t) is a spectral peak
0 otherwise

(3.7)

E(t) is the total energy of the signal in the window ¢, and the threshold discriminates

between speech sounds and silence. Second, the gradient G(f,t) is smoothed by averaging

over the nine neighbours of the point (f,t) in the spectrogram. Figures 3.3 and 3.4

illustrates this parameter. Note the activity of the gradient at the boundary between
consonants and vowels, and for the liquid /r/.

During the time interval of 5 frames around frame ¢, if the energy is rising from filter
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Figure 3.3: Top: a signal frorn the TIMIT continuous speech database. Sampling rate:
15 kHz. Spoken word: recuperate. Middle: second order time/frequency derivative, or
gradient (24 values). When a “ormant is rising (/p/), the gradient is positive (darker) and
when a formant is falling the gradient is negative (lighter) (/k/). Bottom: Bark scaled

spectrogram (32 filters).
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Figure 3.4: Top: a signal from the TI connected digit database. Sampling rate: 10 kHz.
Spoken words: four three. Middle: second order time/frequency derivative, or gradient
(18 values). Bottom: Bark scaled spectrogram (24 filters).

f—1tofilter f+1, then the gradient G(f, t) is positive. If thereis a falling frequency shift,
the gradient is negative. In order to track the rapid spectral changes occuring between a
closure and a vowel, we have set the frequency interval to 2 filters and the time interval to
5 frames. These intervals represent about 1.5 Bark on the frequency scale, and 20 msec
on the time scale.

Finally, we review a spectral dissimilarity measure, inspired by [Fant 73] that should
track spectral discontinuities in the speech signal. Given the smoothed spectrum X(i)
and X(j) at frames ¢ and j, a distance can be defined from the dot product of this two

spectral frames:
. Ly Xp()Xy(y
d(i,j) =1~ A .’() A ) 7 (3.8)
(Ej A/(Z)Zf ~\f(J))
This distance is 0 for spectra that are identical and is close to 1 for spectra that are very
dissimilar. In this thesis we use the following symmetric measure of dissimilarity, that
spans over an interval of 60 msec:

D(i) = d(i + 3,i —3) + d(i + 6,i — 6) (39) -

In general, the detector D shows a broad peak during the release of a unvoiced plosive and
a smaller amplitude variation for nasal murmurs and voiced plosives. Figure 3.5 illustrates

this parameter.
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neighbour spectral frames. Bottom: Bark scaled spectrogram.

3.4 Waveform based parameters

Relevant phonetic information can be extracted directly from the waveform of the speech
signal at a low computational cost (see [OShaughn 87] for an overview). For example,
energy and zero-crossing measurements can contribute to the detection of short stop and
nasal sounds, and to the discrimination between voiced and unvoiced speech samples. In
the following we review a set of parameters that should emphasize the changes in the
energy of the waveform from a consonant to the neighbouring vowel.

Consider a sinusoidal signal at frequency F,. The zero-crossing rate ZC R(t) of that
signal (defined as the number of zero crossings per sample estimated from a time window
long enough to include a few periods) is related to the fundamental frequency [, since a
sinusoid has two zero crossings per period. In patticular, if Fy is the sampling rate, then:

F.(t) = (ZCR(t) « F.)/2 (3.10)

Speech is not a sinusoidal signal, and F; roughly correlates with a ftequency location of
major energy concentration, provided that there is no noise added to the speech signal
and that the speech signal has zero mean. For voiced speech samples, [/, correlates with
a multiple of the glottal pulse frequency, and sometimes with the first formant resonance
of the vocal tract, and for umoiced speech samples in general F, will be at a higher
frequency. For example, during the pronounciation of an unvoiced plosive followed by &
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Figure 3.6: Top: signal. Spoken word: became. Middle: zerocrossing rate, Bottom : time
derivative of the zero crossing rate.
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vowel, the zero-crossing rate varies from a higher value during the closure to a lower value
at the vowel onset. Since the absolute values of F, may vary depending on the phonetic
context, it is appropriate to consider also its time derivative computed as follows:

AF(t

—Kzt(—) = R[F,(t — At), F,(t + At)] (3.11)
setting At = 4 frames, if we consider a rather long time interval of 2At + 1 = 9 frames.
Voiced closures and nasal murmurs usually do not show a high F,. Therefore, when
there is no noise added to the speech signal, we consider both parameters F, and AF; as
robust correlates for voicing discrimination and for detecting voiced/unvoiced transitions.
Figure 3.6 illustrates these two parameters.

In order to track rapid releases of energy, we use the energy of the pre-emphasized

and windowed signal s(i) centered at frame ¢ and updated every 5 msec:

E(t) = 10]og(2 5(2)%) (3.12)

and its time derivative approximated by the linear regression of 9 successive time samples:
AE(t)

At
This time interval of 2A¢ + 1 = 9 frames represents 45 msec. The time derivative of the

energy spanning approximately 50 msec has been found to be relevant in the distinction
between plosives and fricatives [Weigeit 90]. Plosive bursts show a distinct peak in AE(t),

= RE(t - At), E(t + At)] (3.13)
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Figure 3.7: Top: signal. Spoken word: became. Middle: Energy. Bottom : time derivative
of the energy.

while fricatives do not. Considering the application to the recognition of plosive and
nasal sounds, it is possible to discriminate, at least visually, unvoiced velar stops and
nasals. Indeed, unvoiced velar stops show a slow change in the energy function, while
nasals are represented by long valleys that are visible both in the energy function and
in its derivative. Figure 3.7 illustrates these two parameters. Another useful parameter
is the voicing energy V(t), derived from the energy of the input signal limited in the
60-500 Hz band, and its time-derivative AV/(t)/At defined as in the above equation for
AE(t)/At. In this thesis we measure V(t) from the speech signal filtered in the time
domain by a fast IIR (infinite impulse response) band-pass Butterworth filter. We expect
these last two parameters to help in the discrimination and the segmentation of unvoiced
plosives in vocalic context. Indeed, V(t) should vary from low to high values and AV/(t)
should show a broad peak at the vowel onset.

3.5 Summary

We have reviewed a collection of acoustic parameters that describe the speech signal in
terms of its phonetic relevance. Some parameters are expected to contribute to the dis-
crimination of the place of articulation and voicing manner of <top consonants, others
are expected to be uscful for the task of segmenting the speech si:ual, and discriminat-
ing stops from other consonants. The properties of all of the prop. ed parameters are
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parameler | size | definition 1s related to . . .

X(/f,t) 32 | FFT-Bark spectrogram Auditory Spectrogram
AX/ASf 7 | frequency regression global spectral shape
&X/65f6t | 24 | time/frequency derivative peak trajectories

D(t) 1 | spectral dissimilarity rapid changes in the spectrum
I(t) 1 | Frequency of the zero-crossing | voiced speech

AF(1) 1 | time regression of F, voiced/unvoiced transitions
E(t) 1 | signal energy syllable onset and offset
AE(t) 1 | time regression of £ energy peaks and valleys
V(t) 1 | energy in 60-500 Hz band voiced speech

AV(t) 1 | time regression of V voiced/unvoiced transitions

Table 3.1: Summary of the acoustic parameters

summarized in Table 1. These parameters are obviously highly correlated, and most of
them are computed from the smoothed spectrogram X. The temporal evolution of these
parameters is expected to represent sufficient information for the discrimination of stop
and nasal sounds in continous speech, independetly from the speaker. In Chapter 6 we
will report comparative experiments using the spectrogram in combination with the other

parameters.




Chapter 4

Linear and Logistic Models

The previous chapters introduced the problem of classifying stop and nasal sounds
from the point of view of experimental phonetics and acoustic analysis. In the next
two chapters, we present the algorithms that will be used for solving the problem, fiom
the point of view of statistical pattern recognition. Consider a population A" of N
samples of a p-dimensional vector of real values. Each sample is a vector of observations
or measurements that has been previously labeled as belonging to one out of M classes
C;. The general pattern recognition problem is to design a classification algorithm that
is able to label a new population X't with enough accuracy, i.e. with a minimum
number of classification errors. The algorithms presented in the next two chapters model
the observation vectors by several parameters. The parameters of the classifier will be
optimized based on the labeled population X'*"*", In our case, we extract the population
X = xtram gy Xtest from the TIMIT database, the observation vectors are the acoustic
parameters discussed in the preceding chapter, and the M classes to be discriminated are
the 10 stop and nasal sounds.

In this chapter we will review some popular lincar and loghnear models used in pattern
recognition. This term refer to algorithms that make some important assumptions about
the distribution of the input data in each class. These assumptions allow the design of
simple classifiers with a few free parameters to be estimated. However, If the input data
violate the assumptions, these classifiers will not minimize the errors.

In speech recognition tasks, and in particular for the acoustic paramecters that we
described in the preceding chapter, the class distributions are 1ather complex. Almost
certainly, they will violate the assumptions inade by lincar and loglinear classifiers Also,
it is required to classify sequences of statistically coielated observations. Then, there is
the need for non linear classifiers that are fed by moie than one observation vector at
the time. Therefore, A particular class of non linear classification technique, multilayer
perceptrons (MLP) will be preferred. That technique, desenbed in the next chapter, can

35
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be considered as a very powerful extension to the loglinear regression model explained at
the end of tlus chapter. Of course, the number of parameters to be estimated in the non
lincar case will rise considerably.

Singular Value Decomposition, Linear Discriminant Analysis and Logistic Regression
will be discussed in some detail in the next sections. The ideas and the algorithms
presented in this chapter constitute the necessary background for understanding how our
phonetic classifier based on MLP works, and what are the advantages and the limitations
of using lincar and loglinear models of the observation parameters, with respect to non
linear models such as MLP. We begin by discussing the Singular Value Decomposition,
an important tool that will be used for solving the eigenvalue equation involved by Linear

Discriminant Analysis.

4.1 Singular Value Decomposition

We begin by describing the Singular Value Decomposition (SVD). This well known method
provides a compact description of the underlying structure of any data matrix. The
properties of the SVD method are discussed in many matrix computations textbooks and
tutorials (among others, [Stewart 73, Klema 80}).! Remind the SVD theorem:

SVD Theorem Given any (n x p) matrix X, it is possible to write

X = UDV?T (4.1)
(nxp)  (nxr)(rx7)(rxp)
D = diag(w,wz,...,w,)
W, Z Wi .>_ 0

where r < p is the rank of matrix X, i.e. the effective number of its linear indepen-
dent columns, D is a diagonal matrix filled with r positive singular values w,, and
the r columns of V (the rows of VT) are called the (right) singular vectors of X,
and U is another orthogonal matrix of (left) singular vectors. Each of the r columns
(1ows) of V (U) has unit length.

Suppose the matrix X is filled with n samples of p—dimensional data. The SVD theorem
tells us that each sample (or row) z7 of X can be expressed as the linear combination
of r orthogonal vectors v,. These r vectors can be considered as an alternative set of
orthogonal coordinate axes, that statisticians call principal components. The covariance

matrix of the data in this new space is D, that is diagonal. This means that in this new

"The C listing of a general SVD program can be found in [Press 88] Programs for SVD-based
applications are available on electronic mail, through the address netitb@research aft com
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coordinate space two different variables are not statistically cottelated. Morcover, since
in the new coordinate system the variance of each variable j is w,, the spread of the data
X projected on each singular vector v, 1s proportional to its associated singular value.

Let’s formalize how we can obtain the singular vectors from the estimated covanance
matrix 1 of the data sample .X.

Wi, = %Z(m‘v" <z, >N xp— < T, >) (4.2)
k=1

Assume that X has been normalized such that each (estimated) mean value < z, > is
zero. The variance of the projection of the sample X onto any vector v is vTWv. We are
looking for the unit length vector(s) that maximize w?:

w? = oTWoy (1.3)

We take the partial derivative of the right part of the above equation with respect to v
and we set it to zero. We find the eigenvalue equation:

Wo = w? (4.4)

Since W = XTX, the right singular vectors of X are the eigenvectors of W and the
eigenvalues of W are the singular values of X squared. Therefore the singular vector with
the largest singular value accounts for the greatest variance of the data, and the vectors
with the smallest singular values account for the smallest variance. In Figure 4.1 the two
singular vectors are plotted for simple two dimensional data distribution. In practice,
the rank r of the data matrix A . unknown, and the SVD algorithm will 1eturn p vectors
as well as p singular values. It is the care of the user to choose how many vectors to retain,
based for example on the relative magnitude of the singular values or on other cniteria.

When the number n of rows in X is small, the SVD algorithm can be applied directly
to the matrix X. When n is too large with respect to the computing resources, the SV
algorithm can be applied to the estimated covariance matiix I, since the singula1 vectors
of a symmetric positive definite matrix are also its eigenvectors. Motcover, the symmetiic
nature of W reduces the complexity of the algorithm.

Since statistical analysis algorithms are often based on the evaluation of an inverse
matrix computed from 1V, it is desirable to evaluate how close is W to be singula, A
criterion to evaluate the condition of 1V with respect to inversion is the 1atio of the 2-
norms of 1V and W=, If W is ill-conditioned its determinant is small and the 2-norm of
W=1 is large with respect to the Euclidean norm of W. Applying SVD to both matiices
allow us to evaluate the condition number of the matrix W:

11, _w

W=~ w,

(45)
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n 2

Figure 4.1: Plot of a two dimensional cloud of data X and of the singular vectors of X7 X,
or principal components.

Therefore SVD provides a very useful tool for evaluating the condition of a matrix with
respect to inversion. It should be noted that SVD can be applied to any matrix, either
well or ill conditioned, since it is a numerically stable algorithm that involves only matrix
rotations and no matrix inversions.

SVD and principal component analysis (PCA) has already been applied to speech
processing. In speech enhancement from noise [Bakamidis 90] suggests that it is possible
to discriminate speech from noise by SVD because the speech signal is responsible for
the singular vectors with the largest singular values (largest variance), while the noise is
responsible for the singular vectors with the smaller singular values (smaller variance).
In speech coding, [Atal 89] shows how the excitation of the linear prediction filter can be
expressed as the linear combination of singular vectors of the autocorrelation matrix of
the filter impulse response. The number of singular components of the exitation to retain,
and the p:ecision of their coding is a compromise between a lower transmission rate and
the perceived speech quality. In automatic speech recognition, the transformation of
many correlated acoustic features (such as the spectrum and the energy of few successive
.rames) into fewer uncorrelated and normalized features has been proved to be useful
either for a dynamic programming approach [Bocchieri 86] or for a continuous densities
h:dden Markov model methodology [Brown 87).

In this thesis, SVD will not be applied directly to the data. Instead, it will be applied
to the output vector of a non linear classifier. The principal components will be used to
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Figure 4.2: A case in which the classes overlap when they are projected on the first
principal component. Adapted from Brown 87.

represent the output distribution of the training set with a compact set of uncorrelated
parameters. This will be useful when the output of the classifier will be processed by
another statistical algorithm, i.e. a hidden Markov model.

The reduction of p possibly correlated features into r uncorrelated ones is advantageous
when we have to estimate many statistical parameters from a finite size training set, and
we want to reduce the number of features without loosing relevant information, but it is
not clear if the use of principal components will be of any advantage in a classification
task. It is possible that the directions of greater variance (the principal components) are
also the directions of maximum overlapping between the classes. Figure 4.2 illustrates
this unfortunate case.

4.2 Linear Discriminant Analysis

In his PhD thesis [Brown 87] suggests the use of linear discriminant vectors as a promising
alternative to principal components, when the task is not data compression but pattern
recognition by statistical methods. In the next section, we will report on the use of linear
discriminant analysis, based on the thesis by Brown and on the texthook by [Dillon 84}.

The goal of PCA is to account for the greatest variability of the whole data sample

with a smaller set of uncorrelated features. Linear discriminant anal. +» (LDA) looks for
the directions in the feature space that account for the greatest di~cinnination hetween
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the classes. Ideally, when we project the data sample on a discriminant direction, we
would like to sce the elements of one class clustered around a certain average value with
a small variance, and the elements of all the other classes scattered far away from the
average of that particular class. In other words, when projected onto the discriminant
vector, one class should have a small variance, while the entire sample (i.e. all the classes
i) should have a large variance. Define S as the average within-class covariance matrix,

that can be estimated from: 1
S= = Z nWt (4.6)

We try to maximize the ratio of the total projected variance to the average within-class
projected variance, defined as:

_ vTWo
~ vTSv
Setting the gradient of A with respect to v to zero yields this time the generalized eigen-

value equation:

(4.7)

Wv = A\Sv (4.8)

The SVD method can be applied for the solution to this eigen problem. Since S and W are
(estimated) covariance matrices, they are symmetric and (almost always) positive definite
and can be decomposed into the product of a lower triangular and an upper triangular
matrix, via the Cholesky decomposition algorithm [Stewart 73). The eigenvalue equation

becomes:

LiLTv = AL, LIv (4.9)

Introduce the vector z = LIv. In terms of 2, the equation is:
L3LLTL;T2 = )z (4.10)
Define A = (L;'L;)7. The transformed equation is now a standard eigenvalue equation:
ATAz = )z (4.11)

and the eigenvectors of A7A are the right singular vectors of A. In summary, provided
that L, is non singular, that is S is full rank, the following algorithm will find the linear
discriminant vectors:

1. Decompose W into L, LT and S into L;LT via the Cholesky decomposition.

2. Invert L, by columns, solving the linea system LyL;! = 1.

(]

. Apply the SVD algorithm to (L;'L;)7.

. Transform the right singular vectors z intov = L; 7z,

o
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In practise, we would like to avoid computing the Cholesky decomposition of an ill-
conditioned matrix S, and we can take advantage from the fact that an analogous algo-
rithm can be applied by defining z = LTv and inverting from the Cholesky decomposition
of W. Before applying the algorithm, it is indced appropriate to evaluate the condition
number of both W and S by SVD as in the equation 4.5, and to apply the decomposition
to the covariance matrix with the smallest condition number.

The linear discriminant vectors are expected to account for the the greatest discrin-
ination between the classes. However, there are sor.:e important conditions under which
LDA is an optimal procedure for producing the smallest classification error rate of the
data sample X. In particular, we must assume:

e The distribution of the p initial features in each class is a unitnodal Gaussian Mul-
tivariate.

e Each one of the considered classes has the same expected covariance matrix.

To clarify this point, we consider how classification is performed by LDA. When an un-
known test pattern is presented to the classifier, it is projected onto the space described
by the discriminant directions with the largest eigenvalues, and the Euclidean distance
from each projected class average is computed. The pattern is labeled with the closest
average class label. If the classes are not Gaussian unimodal, projecting the data onto
linear discriminant vectors is theoretically unjustified, since the data distributions can-
not be modeled faithfully by the mean vectors and the covariance matrices used in the
generalised eigenvalue equation.

If the classes are Gaussian multivariate, the optimal classifier is the one which com-
putes the Mahalanobis distances between a pattern and each class average, and then pick
the class with the minimum distance [Duda 73](pp. 22-31). The Mahalanobis distance
bet.ween two classes, or between one pattern and one class is a quadiatic distance weighted
by the inverse of the within-class covariance matrix, therefore it takes into account the
spreading of the data in the original feature space. At a given Euclidean distance between
two class averages, if the spread of each class is laige the two classes tend to overlap and
the diagonal terms of the covariance matrix are large. This will be teflected by a small
Mahalanobis distance. Formally, this distance is directly derived by modeling each class
distribution with a Gaussian multivariate. More precisely, it is twice the exponent of the
Gaussian:

Da(X,C) = (X = p)TW X = 1) = XTX + XTW ' X — 2,7 W X 4 P!y,

(1.12)
It can be proven [Duda 73} (pp. 152-153) that computing the Euclidean distance onto
the discriminant space is equivalent to computing the Mahalanobis distance, only f we
assume the same covariance matrix V' = W for cach class and different class averages
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/t.. Indeed, the quadratic term XTW X that appears in the Mahalanobis distance can
be dropped when we compare two such distances if it is the same for each class, and the
linear factors can be expressed in terms of the linear discriminant vectors [Duda 73] (pp.
152-153).

When the two assumptions are not satisfied, the procedure will not be optimal, and we
are not expected to minimize the misclassification error rate of the sample X by projecting
the data on the linear discriminant vectors.

Coming back to the comparison between LDA and PCA with respect to a classification
problem, it is possible that in practise the two methods may perform similarly. This
may happen when the directions of greater variance of the data sample are close to
the directions of maximum discrimination, or when the average within-class covariance
matrix is almost diagonal, or when the assumptions underlying LDA are not matched by
the training data, or when both estimated covariance matrices are ill-conditioned, giving
poor results in the estimation of the LDA eigenvectors.

4.3 Logistic Regression

We conclude this chapter by presenting a variation to Linear Discriminant Analysis that
is closcly related to Artificial Neural Networks. Consider the two class problem, in which
we are asked to assign a vector X to one of two classes C;, with i = 1,2. According to
Bayes' theorem, the posterior probability ct X being a member of class C,, depends on
the conditional joint probabilities Pr(X|C,).

Pr(X|C,)Pr(Cy)

Pr(X|Cy)Pr(Cy) + Pr(X|C2)Pr(Cy) (4.13)

PT(C”X) =

Assuming equal prior probabilities Pr(C;), and dividing numerator and denominator of
the right-hand side of the above equation by Pr(X|C}) we obtain:

1

Pr(X|C2)
1+ Pr(X t‘%

Pr(Ci|X) = (4.14)

If the class-conditional probabilities are Gaussian multivariate with different means p;
and common covariance matrix ¥, the above equation becomes:

1

TTx exp—(Vo + VTX) (4.15)

Pr(C1]X) = f(X,0)

where the parameter vector @ = (Vp, VT) can be obtained by Linear Discriminant Analysis.
Applying the algorithm outlined in the previous section for the 2 class problem, we find
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Figure 4.3: The sigmoid function is an estimate of a posterior class probability in the
loglinear regression model.

one discriminant direction corresponding to the greatest eigenvalue and one separation
point:

Vo= Wl (- p) (4.16)
1
o = —5(m+ #2) W (g — pra)

The function f(X,8) is called a logistic or sigmoid function. It is S-shaped and has
an inflection occurring at -;- Changes of amplitude in the threshold or separation point
Vo shift the surface laterally, while changes in the vector V affect its dispersion (sce
figure 4.3).

This approach can be extended to the problem of classifying a pattern into one of
M > 2classes, in which case for each class C, the factor in the exponential can be expressed
in terms of the Mahalanobis distance between the pattern X and the class average p,,
disregarding the quadratic term XTW-1X that appears in all of the A distances.

Vo= Wy (4.17)
Vi = —%[l,Tl/V—l[l,‘
Therefore, the logistic regression model is formally equivalent to Lirear Discriminant

Analysis if the classes are distributed as Gaussian multivariates with different mean vee-
tors and the same within-class covariance matrix. However, there are strong theoretical
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arguments in favor of logistic regression over Linear Discriminant Analysis. [Cox 70,
Anderson 72, Press 78]. Indeed, logistic regression can model more families of class con-
ditional distributions than LDA. In particular, it can be proven that this model works if
the distributions of the data X are [Anderson 72]:

1. Gaussian multivariates with equal covariance matrices;

2. independent Binary multivariate;

3. Binary multivariate following the logistic model with equal quadratic and higher
order terms for each class;

4. a combination of (1) and (3).

In fact, logistic regression has been initially formulated for the analysis of binary data
[Cox 70]. Another advantage of logistic regression is its relative robustness with respect to
data that do not fit the assumptions [Press 78]. Since logistic regression can model more
families of probability distributions than linear discriminant analysis, it can be suitable
for many more classification problems.

It should be noted that there are some problems and some distributions that neither
linear discriminant analysis nor logistic regression can model accurately. In particular,
both cannot model multi-modal distributions, in which each class is represented by more
than one non connected and possibly non convex cloud of points in the original feature
space. A classical example of such a problem is the classification of binary data according
to the exclusive-or (XOR) rule.

If the class conditional distribution do not satisfy the LDA assumptions we should not
estimate the logistic regression parameters by LDA. Consider the M class problem in a
feature space of p dimensions. We wish to model the probabilities Pr(C,|X) with sigmoid
functions that depend on the unknown matrix of (p 4+ 1)M parameters § = (6,,...,8x).
Instead of using Linear Discriminant Analysis which require the estimates of M class
means and of the within-class and sample covariance matrices, we can try to estimate
directly the parameters @ from the available sample X'*™ of n labeled training data.

Atram (‘\’1 €C, X, € C_,, oo Xa € CL) L, ,k=1,...M (418)

Two approaches can then be applied: mazimum likelihood estimation or Least AMean
Square estimation. All approaches lead to an iterative algorithm, in which we define a
differentiable analytical criterion £(@) that has to be optimized by the estimated value of
0. Westart fiom an initial, possibly random set of parameters 0° and then we iteratively
correct the cstimates 0! from the precedent values 0 until the criterion has been met.
Since the same estimation problem has to be solved for the class of Artificial Neural
Networks that we take in consideration for this thesis [Gish 90], we postpone the discussion
to the next chapter.




Chapter 5

Non Linear Models

Multilayer perceptrons (MLP) are distributed networks of many elementary units
called artificial neurons. Each unit performs simple computations on its input vector,
but the sytem has a complex overall behavior. In the past five ycars, these networks
have found many applications, including adaptive equalization, signal modeling, control
systems, pattern recognition and machine learning.

Considering a pattern recognition problem, the parameters governing the computa-
tions for each unit can be optimized by an iterative algorithm in order to classify patterns
from examples, like a logistic regression machine. Unlike a logistic regression machine,
these units can be activated either by the observation vector or by other such units. In
a linear or logistic model any unit computes a function of the input parameters only.
One advantage of using MLP instead of linear discriminant analysis or logistic regicssion
is that sufficiently complex MLP do not make any restrictive assumption about the un-
derlying distribution of the input data, and therefore thev can model more families of
statistical distributions. Other advantages are that one can build complex classificis that
look at sequences of heterogenous real-valued and binary inputs, and that the classification
algorithm can be readily implemented on parallel hardwate.

This chapter reviews the basic properties of MLP and the associated optimization al-
gorithm. Some links between linear discriminant analysis, logistic regression and MLP are
presented. Finally, the issues related to our particular classification problem are discussed.
The presentation stresses links between MLP and other statistical and optimization algo-
rithms. The presentation is based on the textbook by {Duda 73], the fundamental paper
by [Rumelhart 86] and on three tutorial papers [Hinton 87, Lippmann 87, Lippmann 89].
A complete report on this field goes beyond the scope of this thesis, and the interested
reader should refer to the books by Duda and Iart [Duda 73], the one by the Parallel Dis-
tributed Processing Research Group [Rumelhart 86] and the up-to-date book by Hertz,
Krogh and Palmer [Hertz 91].
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Figure 5.1: A single layer perceptron.

5.1 Multilayer Perceptrons

A Simple Loglinear Perceptron We begin our review by describing a simple network,
the perceptron, that implements a logistic classifier. A perceptron is a layer of K nodes.
Each node is connected to the input vector via a set of adjustable weights. The weighted
sum of the inputs is passed through a continous non-linear function in order to produce
the output of the node. A perceptron is illustrated in figure 5.1. For example, the output
node j performs the following operation on the input vector X7 = (zg = 1,24, 23,..., )
(the weight wo; being an adjustable threshold):

9 = f(i;wuxt) (5.1)
f(Z)roe = m%p—_‘; (5.2)
f(z)s)fMM = tanh(z) = 2f(.‘l:)[,oa -1 (5.3)

For the symmetric case, the output spans the range —1.0 to +1.0, while for the logistic
case, the output spans the range 0.0 to +1.0. Inboth cases, the function f is differentiable
with respect to each of the p + 1 connecting weigths w,,. Following [Rumelhart 86] we
introduce the variable net, = ¥; w,,z, that represents the network activation sent to node
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7, and wecan write:

8 f(net,)

Snl = f(netyjroc(1.0 ~ f(net))roc)r, (H.4)
dwy  roc

1
2 duw, SY MM

The output function f(z) has opposite values with respect to its mid-range, whether the
scalar product between the input vector and the weight vector is greater or lower than
the threshold we,. Close to the mid-range value, f(r) is almost a lincar function and its
derivative is maximum. This function can be interpreted as an estimate of the a posterioni
class probability Pr(C,|X). If we want to separate two classes with one of these units, we
may select the weights w,, by LDA with the matrix computation algorithm described m
the previous chapter. This technique will be optimal only if the two classes are distributed
as Gaussian multivariates with different average values and the same covariance matnx.
If we do not estimate the connecting weights by LDA the perceptron is equivalent to
a logistic regression machine and more types of distributions, like mixtures of Gaussian
multivariates and dichotomous variables, can be optimally discriminated this way. In
general, it has been proven that

If the classes can be separated by a linear combination of the input variables,
then a stngle-layer loglinear perceptron can be designed to insure the minimum
number of classification errors. (Hertz 91} (pp. 102-108)

We shall present the algorithm for selecting the weights of a perceptron in the more
general case of networks with hidden nodes.

Multilayer Perceptrons Consider the case of multi-modal distributions, when the
classes are represented by non-connected convex regions. If the modes of the distributions
are known it is possible to design a complex perceptron topology to solve that problem.
In general, the topology is such that there exists hidden nodes connected to the input
vector, and the output nodes may be connected to the input feature ve tor or to some of
the hidden nodes. By distributing the information on the correlated activation of several
b.dden nodes, multi-layer perceptrons can out-perform a simple loglinear perception by
computing complex non-linear functions of the input vectois. Such is the case for the
XOR problem, for which it has been shown that one hidden node is sufficient to model
the two modes of the observable distribution [Rumethart 8G]. A simple perceptron with
one hidden layer is illustrated in figure 5.2.

The problem is how to optimize all the weights of complex networks with many lndden
nodes. An optimization algorithm exists for the class of MLP in which the nodes are
divided into three or more layers: one input layer (the obscervation vector) at the bhottom
level, one or more hidden layeis, and one output layer at the top level. A node inany layer
is activated by other nodes belonging to layers underneath, but never by nodes helonging
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Figure 5.2: A multi-layer pzrceptron that solves the XOR classification problem. Adapted
from Rumelhart 86.

to layers above it. The algorithm is called generalized delta rule or back-propagation
[Rumelhart 86] and is a very powerful extension to the classical gradient descent algorithm
existing for a class of adaptive filters [Widrow €0]. The algorithm is outlined in the next

section.

5.2 Optimization of the network parameters

In general, we have to set beforehand a different desired configuration for the output
vector of K nodes, depending on each class. The common practice is to set X = M
output nodes, and to set a desired output d; = 1.0 — v when the input vector belongs to
class C;,and d, = —~1.04vor d, = 0.0+ v otherwise!. Then, we define an error criterion
£(0) for evaluating the performance of a particular set § of @ weights. For the case of a
single-layer perceptron Q@ = K(p+1) = M(p+1). For the case of a fully connected three-
layer perceptron with H hidden nodes Q@ = M(H +1) + H(p+ 1). It is necessary for the
error criterion to be a differentiable function with respect to all the network outputs o,.
In general, the et1or criterion :* a monotonic function of difference terms (d, — o,). Since
cach output function depends on the parameters w,;, the error criterion is ultimately a

v is a small positive constant that is set to prevent the network operating in the saturating region of
the output function.
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function of w;,, or 0.
EW)=¢&(...,dj~—0,,..)=E(..,wy,...) (5.5)

The following algorithm will optimize the weights with respect to the given error criterion.
Starting from an initial set of random weights 8° we can iteratively make small adjustments
to all the weights until the criterion is optimized. Let ¢ be a point in the -dimensional
real space R9. If we make a small adjustement to all the weights we move from the point
0 to the point 0 4+ Af, and we can express the changes in the criterion function as a Taylor
expansion around the initial point 4.

1
E(0 +A6) = £(8) + VE(0)TAO + SAITVE0)AI + ... (5.6)
If we stop the Taylor expansion at the first term, we have to estimate the gradient vector
VE(0) of Q first-order derivatives. If we want a mcre accurate estimate of the changes in
the error criterion, we have take into account the second term and we have to estimate

some or all the terms of the Hessian matriz V2E of (? second-order derivatives.

€
Vén = 50 (5.7)
13
9%
20 _ _O& .
Veum = TP (5.8)

The first-order approximation leads to the back-propagation algorithm, while the second
order approximation leads to the class of conjugate gradient and approximate Newton
algorithms [Becker 89, McDonald 90]. We consider here the first-order approximation. In
order to minimize the epprozimate error criterion, at each iteration ¢ the adjustments are
proportional to the negative of the gradient of £ with respect to the weights ( bemng a
small proportionality constant called the learning rate).

A = —VE() (5.9)

This adaptation rule can be computed for each one of the Q weights w,, as a product of
two independent terms, as follows:

dE! agt !

t+1 —
— _.n____. = =7} —— —n
dwt, = " act du,

¥

w wy, = (5.10)
We assume that the real error criterion behaves like the approximate one, and that it
should decrease by a small amount after each adjustment of the weights, until it reaches
a minimum value. Indeed, when we substitute the computed value of Al into the Taylor

expansion of £(f) we obtain:

E(0+A0) % £(0) — 1| VEQ)|? (11
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From the above equation, we notice two important aspects of the algorithm. First, the
learning rate 7 plays a key role for the convergence of the adaptation algorithm. If 7 is too
small the convergence rate can be very slow, and if it is too big, the weight adjustments
computed by the first-order approximations are too big to follow the real shape of the
error criterion surface. Second, the convergence is slow if the amplitude of the gradient
of the error criterion is small.

In general, there are several important issues to be concerned with such a gradient
descent adaptation rule. If the network does not have hidden nodes and the classes are
linearly separable, the error criterion has only one mininmm with respect to the weight
space, and the first-order approximation will be adequate [Sontag 91]). This adaptation
rule will find the minimum of the error surface eventually (in a finite number of itera-
tions), depending on the initial weights 6 and on the learning rate n. If the network
has hidden nodes the error criterion surface is no longer convexwhether or not the classes
are linearly separable, and the adaptation aigorithm is not guaranteed to converge to the
global minimum and may converge instead to one of the many local minima [Sontag 91].
(see for example, the experiments reported by [Kolen 90] on the XOR problem).

Depending on the relationship between the difficulty of the problem and the network
topology, both the convergence rate and the final value of the error criterion may vary
considerably. In practice, the application of the back-propagation algorithm to percep-
trons with hidden units has been shown to solve many non linear pattern recognition
problems that are not solved optimally by standard linear and logistic models, and the
most important issue remains the number of iterations required for the convergence of the
algorithm, and not t e presence of local minima [Hinton 87]. In the following, we derive
the adaptation rule for a particular type of criterion: Least Mean Square (LMS).

Least Mean Square Error Criterion We define the following criterion for evaluating
the performance of a particular set of weights:

£0) = A3 (d, ~ 0,)?) (5.12)

X =1

The expression (d, — 0,)P, where D is an integer, defines a distance measure between
the desired outputs and the network outputs. X is either the complete set or a subset of
training patterns. Different values of D imply different metrics and different assumptions
about the distribution of the output values o, [Burrascano 91]. In particular, D = 1 is
the L, City-Block metric, that assumes that the output distiibution decay exponetially
from the average. D = 2 is the L; Euclidean metric, that assumes that the distributions
are Gaussian. D = co is the Ly, Chebyshev metric? that assumes that the distribution

*The most popular metric 1< the Euclidean one, although there are some theoretical justifications for
choosing the Chebyshev metric, at least at the beginning of the adaptation and for small learning rates
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is box-car shaped (uniform). We derive here the adaptation rule for the case D =2

The partial derivatives of the error criterion can be recursively computed {rom the top to
the bottom layer in an eflicient manner. If the node 3 is an output node and we use the
logistic function, the derivatives are 3:

o€

50 = ~(di-0) (5.13)

J

do,

.3—1._0_:]— = (1.0 = 0,)0,0, (5.14)

€

S —(d, - 0,)(1.0 — 0,)0,0, (5.15)
LX)

If the node is not an output node the derivatives can be computed by summing the
derivatives already computed for all the nodes & in the layers above j to which the node
sends its output o,.

o€ 5 o€ )
-3-0—;- —_ - ka -0"‘0—;;’(1-0 - ok)ok (‘)'16)
o0& o€ .
T, = (1.0 - 0;)o,0, ; Wk ———BOk(l.O — 01 )0k (5.17)

It has been proven that if we use K = M output nodes, we set the desired outputs 00
and 1.0 and we adjust the parameters of the network according to this criterion, we aie
minimizing the mean square error between the network output and the a posteriori class
probability Pr(C,|X) [Gish 90, Shoemaker 91].
K
Erps = Z(PT(C_,L\') - 01)2 (5.18)

=1

How small this mean square error can become depends on how complex the network is
with respect to the real input data distributions. If we allow the netwoik to be arbitrarily
complex, the mean square error should theorctically converge to zero and the network
output will approach to the a posteriori class probability [Boutlaid 88]. In practice, the
convergence of the network will depend on the behavior of the adaptation algonthm.
An interesting point is that we are not limited to encode the output layer with nodes
that are meant to approximate a postetiori class probabilitics Instead, we can use this
criterion for any particular desired output encoding. In particular, it can be proven that

Indeed, at the beginning of the adaptation algonthm, the distnbution 1s likely to be umforim, and as
we get closer to convergence, the distribution 1s likely to be Gausaan In the paper by Burrascano, the
adaptation rule for D = o0 i5 presented and discussed

3For the sake of simplicity, we do not indicate in the equations the summation over all the traimng

pattern patterns ) ,..
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a perceptron with enough hidden nodes can approximate in a Mean Square sense an
arbitrary bounded and non-constant function of the input parameters [Hornik 91).

In the experiments reported for this thesis, we try to adapt the network in order to
compute a non-linear transformation from an input feature space of dimension p to an
output feature space in i dimensions (K does not have to be equal to the number of
classes). If the classes are not linearly separable in the input space p, we hope that
the transformation results in linearly separable classes, in which case we can apply a
linear method to classify the output sample, assuming that the output distributions after
convergence of the adaptation algorithm are, for example, Gaussian.

5.3 Recurrent MLPs

So far, we have discussed feedforward networks. In a recurrent network, a unit ¢ at time
t — d can be connected to a unit 7 at time ¢ (d is a delay, and j might be ¢). Recur-
rent connections allow the network to capture important information from the temporal
variations in the input parameters [Rumelhart 86, Bourlard §9].

Given a network with recurrent connections, the propagation algorithm can be gen-
eralized to incorporate time [Rumelhart 86] (pp. 354-361). In general, The LMS error
criterion for a training sequence p of T' patterns becomes:

T K

Eims(0) = Z(Z(d.v - 01)2) (5.19)

=1 y=1

The adaptation of the network parameters is as follows (see figure 5.3). In a forward pass
the outputs of all the nodes in the network and the error criterion for the output nodes are
computed and saved for each time frame of the sequence, starting from the first frame to
the last frame. Then, in a backward pass, the gradient for each connection is accumulated
from the output layer to the input layer starting from the last frame to the first frame. In
other woids, equations 5.15 and 5.17 are extended to the entire sequence of frames starting
{from the last frame. This way, the changes in each of the weights w,, take into account the
fact that the activity of the network at time ¢ might affect its activity at any successive
time. When the backward pass reaches the first frame, the changes in the weights can
be either applied directly (on-line learning) or saved in order to be applied after the
presentation of the complete training set (off-line or batch learning). If the training data
is large enough, on-line learning will assure faster convergence [LeCun 89). The major
problem with this proccdute is the memory 1equirements [Rumelhart 86). Indeed, as we
unfold the network in time for the forward phase, we necd to save the successive activities
for all the nodes, and in the bachward phase we have to save all the partial gradient
computations. The benefit is that there are no constraints on the network connections.




CHAPTER 5. NON LINEAR MODELS 53
E=3
A
t=21
Oz wel o,
Wae (\’ﬂ)/———\ W, w
M s
“"‘a F t = ﬁ-
t=0
EN e Y uT Oy

NETWORK UNITS o
7

Ls

Figure 5.3: Back-propagation in time. (a) A recurrent network. (b) The same network is
unfolded in time. Adapted from Rumelhart 86.

5.4 Design of Recurrent MLPs for Speech Recogni-
tion

There are some important factors that have to be carefully studied for the successful appli-
cation of recurrent networks to speech recognition. One of them is the design of topologics
that integrate information over time and frequency. Several researchers are studying this
problem [Bourlard 88, Waibel 89, Jordan 89, Watrous 90, Bengio 90] . Other factors are
the selection of the input parameters and the choice of the desired output encoding. In
the following we review some issues that have been addressed in the experiments reported

in the next chapter.

Tapped Delay Lines [Waibel 89, Bengio 90, Hertz 91} One assume that the output of
the newtwork at time ¢ depends on the input sequence at time t + At ...t ~ At. The
simplest idea is to consider a sequence of delayed vectors as the input to the network! as
in figure 5.4. In particular, in this thesis we want to classify stop and nasal phonemes
in a /CV/ context. Following the phonetic review of Chapter 2, it scems 1easonable
to take a decision based on a sequence of input parameters centered on the consonant,
including the preceding closure and the following vowel onset. Duting the closure, the

“Interestingly, this structure is analogous to an adaptive equalizer.




-

CHAPTER 5. NON LINEAR MODELS 54

outpuT LAYER: (£} O 00O
CONNECTIONS  Wjj—x

(t+at) 0000
INPUT AYER  (¢) 0000 &

(e-a8) O0O00O0
~—y
FREQUENCY

Figure 5.4: A simple time-delay neural network is similar in structure to an adaptive
equalizer. Adapted from Hertz 91.

signal contains information about the presence of voicing. At vowel onset the spectrogram
and the time/frequency gradient determine the direction of the second formant trajectory.

In general, tapped delays can be inserted between any two layers. This is a simple and
very effective idea that solves the problem of integrating conteztual acoustic information
in the classification process. However, it does not solve the problem of time wearping.
When we deal with many speakers and many different speaking rates, the duration of
acoustic events, like formant transitions, is extremely variable. The introduction of many
tapped delay lines does not allow modelling this variability adequately.

The solution to this problem might be not to expect the MLP to perform time
warping. Instead, the MLP can be integrated with a Dynamic Programming (DP)
module [Silverman 90}, and in particular with a hidden Markov model (HMM) based
algorithm [Picone 90]). This methodology is under investigation by many researchers
(Robinson 90a, Bridle 90, Bourlard 88, Franzini 90, Bengio 91a). The dynamic program-
ming module allows for explicit non-linear time warps of the input sequence. At the end of
the next chapter we will describe a preliminary experiment that has been run for coupling
MLP classifiers with hidden Markov models.

Recurrent Connections [Jordan 89, Bengio 90, Watrous 90, Hertz 91) Feedforward
networks with tapped delay lines can be enriched with some feedback connections. These
connections allow the network to remember its state at preceding instant in time. There-
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Figure 5.5: A simple recurrent architecture that includes some time delays.

fore, the output of the network at time ¢ does not depend only on the input sequence,
but also on the past state(s) of the network®. In this thesis, we use some specialized hid-
den units that, at any time ¢, are activated by the output units and/or the other hidden
units at time ¢t — 1 [Jordan 89], as in figure 5.5. Considering the problem of consonant
classification, it is possible that relevant acoustic cues appear in the speech signal at dif-
ferent times. Suppose, for example, that the very first frame of the burst of a /k/ is
clearly compact around a high frequency peak, and that during the following aspiration
the spectrogram is fuzzy. If the network outputs are firing correctly on that first frame,
then feedback units corresponding to the feature velar will be activated, and they will
contribute to sustain the state of the network, until some other acoustic cues, like the fall
of the 2nd formant, will reinforce the firing of all the nodes representing phoneme /k/.

Localized Connectivity Constraints [Lecung S8, LeCun 89, Watrous 90] Fully con-
nected networks with time delays and recurrent connections might be very hard to opti-
mize, due to the very high number of free parameters, especially if the amount of training
data is not sufficient. On the other hand, it is possible to design the structure of the
network as a function of the features to be recognized, and at the same time, limit the
number of free parameters. For the case of consonant sounds, suppose that the mput
parameter vector is the spectrogram. The first hidden layer can be designed to capture
different features from different frequency bands. In this thesis, we divide the auditory

5This behavior is similar to systems used in control theory,
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Figure 5.6: A simple network structure with localized connectivity constraints.

scale from 100 to 7900 Hz into 4 regions. Three small groups of hidden nodes are con-
nected to two overlapping regions of the spectrogram each, with time delays (see figure
5.6). Therefore, the first group of hidden nodes computes features related to the low
frequencies, the second group computes features related to the mid range, and the third
group computes features related to the high frequencies of the spectrogram. If the input
vector contains other parameters, such as the time/frequency gradient and other time
domain parameters, then other groups of hidden nodes can be allocated to process these
new parameters. A second hidden layer will have the role of integrating the information
coming fron: different frequency bands and from different types of input parameters.

Choice of the Input Acoustic Parameters Another important aspect to be studied
is the choice of the input parameters [Leung 88, Leung 90, Robinson 90b, Bengio 90,
Mecng 91].  Usually, the input to an MLP used for speech recognition is the auditory
spectrogram. An adequate size of the input window should contain enough information
regarding the acoustic cues of the features to be recognized. However, as long as the
number of connecting weights do not get out of hand, other paramecters, such as the
one described in Chapter 3, can be added to the spectrogram. The parameters that are
computed from the spectrogram are correlated to it, and could theoretically be computed
by the nodes of the firs: hidden layer. If we provide more inputs to the network, it might
be that the convergence rate of the adaptation algorithm is faster, or that the classification

performance improves.
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The Search For an Optimal Desired Output Encoding [Bengio 90, Bimbot 90,
Meng 91] Usually, each class is represented by one node of the output layer. We have
seen 1z Chapter 2 that stop and nasal sounds share several articulatory features, and
therefore they share the acoustic cues that are related to theses articulatory featuies, for
example, second formant transitions. Setting onc output node per class implies that we
teach the network to discriminate all the classes, in spite of the fact that we know that
soimne of the classes share some acoustic cues, and are potentially more confusable Then,
it might be advantageous to encode the desited outputs with binary articulatory features
Moreover, the desired output encoding can be extended to represent phonetic context,
simply by multiplying the number of output nodes by the number of relevant contexts.
This way, the network can specialize to learn the relationship between different acoustic
cues and different articulatory features. Also, the structure of the network can be guided
by the choice of the desired output encoding. For example, the second hidden layer can
be divided into two groups. One group sends its outputs to the nodes describing the place
of articulation, and another group sends its outputs to the nodes describing the manner
of articulation and the degree of voicing.

5.5 Summary

MLP are non linear networks that seem well suited to perform difficult pattein classifi-
cation tasks, such as speaker independent consonant classification in continuous speech.
They represent a theoretical improvement with respect to linear statistical models, be-
cause networks with hidden nodes can be adapted to classify data that do not fit the
assumptions of either LDA or Logistic Regression. We have reviewed the LMS error cri-
terion and the back-propagation algorithm. They allow optimizing the parameters of all
MLP, as well as of a Logistic Regression machine. For a network with hidden nodes,
this adaptive algorithm is not guaranteed to converge to a global optimal value of the
parameters, but it is very flexible. It allows the design of a MLP with unconstiamed
time delays and recurrent links. \We have addressed some of the problems that have to
be solved when applying MLPs to a speech recognition task. The next chapter reports
the experiments that have beeen run on the TIMIT database i order to dlarify thiee key
factors in the design of MLP based phonetic classifiers: the choice of the desired output
encoding, the selection of the network topology and of the input parameters.
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Chapter 6

Experiments

After having reviewed the techniques that we used in this thesis, we proceed in de-
scribing in detail the experiments that have been run on the TIMIT database. In the last
section of this chapter, we will also report some preliminary experiments that have been
carried out at our laboratory in order to recognize phonemes in continuous speech.

For the task of classifying tke 10 stop and nasal sounds, we have tried to answer
the following questions: which desired output encoding, which input acoustic parameter
and which network topology give the best performance? Let’s discuss in more details the
problems that have been addressed:

Varying the Desired Output Encoding Usually, the outpnt layer of a MLP has one
node per class. As discussed in the preceding clapter, it is possible to encode the output
layer so that each node represents a relevant feature, and each phoneme is represented by
the activation of several nodes. This distributed representation can then be processed at a
higher level of a phonetic decoder. Will this distributed encoding improve the classification

capabilities of the MLP?

Using Different Input Parameters Is the spectrogram alone sufficient to solve our
recognition problem? Will any of the spectrogram based parameters and waveform based
parameters presented in chapter 3 be of any help in our classification task?

Selecting the Network Topology What is the appropriate topology of the MLP,
taking into account the way input parameters and output encoding relate to each other,
and the fact that we wish to avoid the problem of optimizing a large number of connecting

weights?

[<]]
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[ Speakers | Male | Female | Total |
Train | 240 103 343
Test 50 27 T

Table 6.1: Speaker composition for the 1988 version of the TIMIT database.The speakers
whose name starts with a letter between ‘a’ and ‘t’ are in the training set

| Tokens [ /p/ | /t/| /k/| /b/ | /d/]/g/]/dx/]
Train | 1182 | 1926 | 1399 | 1212 | 1216 | 517 | 1247
Test | 273 | 413 | 347 | 204 | 285 | 122 | 295

Tokens | /m/ | /n/|/ng/ ] /nx/ ]| [em/] [en] | [eng/ | Tota! |
Train | 1608 | 1359 | 113 | 476 291 80 2 112371
Test | 383 326 29 1 123 2 14 1 2007

Table 6.2: Frequency of occurrence for each phone considered in the database. Some nasal
allophones are very rare.

Interpretation of the Network Outputs If there is only one desired output node
per class, the classification rule is straightforward. If each class is represented by the
activation of several nodes that are meant to be features rather than class probabilities,
we can perform classification by interpreting the distribution of the output activations.
What are the advantages of using Linear Discriminant Analysis (LDA) for this puipose,
compared to a simple rule based on the minimum Euclidean distance between the net
output vector and the desired output vector for each class? What happens in practice if
we base our classification decision by projecting the net output vectors on the prneipal
components (PCA) instead of the linear discriminant directions?

6.1 Experimental Setup

The TIMIT Database The database used for all the experiments is extiacted from the
1988 version of the TIMIT multi-speaker continuous speech database [Senefl 88h, Zue 90].
For each of the § sz and sz type sentence read aloud by 420 diffeient speakers we have
considered all the occurrences of the 10 stop and nasal sounds followed by any of the 18
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60

parameler | definition min value | max value
X*(f,t) |auditory spectrogram 20 dB S0 dB
AX/Af |{requency regression -5.0 +5.0
AX/At time 1egression -3.5 4.5

62 X/6fbt | timeffrequency derivative -1.0 +1.0
D(t) spectral dissimilarity 0.002 0.300
F.(1) Frequency of the zero-crossing | 1000 Hz | 7500 Hz
AF(t) time regression of F, -350 +450
E(t) signal energy 20 dB 50 dB
AE(t) time regression of £ -3.5 +4.5
V(t) energy in 60-500 Hz band 20 dB 50 dB
AV(t) time regression of V -3.5 +4.5

Table 6.3: Range for all the normalized input acoustic parameters.

vocalic labels (including vowels and diphtongs)! Since the 1988 release of the database
contains speakers that should be used for training purposes, we had tosplit them according
to a non standard rule. We have decided to put all the speakers whose name started with
a letter between ‘a’ and ‘t’ in the training set, and all the remaining speakers in the test
set. The composition of the training set and of the test set is summarized in table 6.1.
The test set consisted of 2,907 tokens with stop and nasal phonemes extracted from 612
sentences spoken by 77 speakers, and represents 23.5% of the data with respect to the
training set. The frequency of occurrence of each phoneme is consistent between the
training and the test set. Some phonemic labels are very rare.

Acoustic Analysis Tor all the experiments, each token consisted of a sequence of
feature vectors computed every 5 msec starting 30 msec before the target phonetic label
and ending 30 msec after the label. In other words, the final part of closure and sometimes
some other consonant {may be another stop or nasal) or vowel preceding the phoneme and
the initial part of the following vowel weie included in the analysis of the speech signal.
Each computed feature was normalized in order to span the range between —0.5 and +0.5.
The appropriate lower and upper bounds were set after analyzing the histograms and the
graphic display for cach feature computed for a dozen sentences randomly extracted from
the training sct. Values outside the chosen range were clipped. The selected range for

'Concerning the syllabic and the velar nasals, they follow vocalic segments, when they are pronounced
inisolated w orﬁs Howes er, i continuous speech, we found some syllabic and velar nasals that are followed
by vowels In general, this happens at the boundary between two words Thercfore, we included these
few tokens in the expernimental database
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localized groups spectrum time domawm | gradient

input (63) 4by8 7 1 by 6 T
hidden 1 (86) 3 by 18 7 3byo

connections frames msec type ]
input (63) to hidden 1(86) t—3,t,t+3]30 small ovetlapping groups
hidden 1 to hidden 2a(20) t 0 fully connected )
hidden 1 to hidden 2b(30) t 0 fully connected )
hidden 2a to output pl(6) t,t—1 5 fully connected -
hidden 2b to output ma(4) t,t—1 5 fully connected )
output pl to hidden recpl(6) t—1 5 fully connected

output ma to hidden recma(4) | t — 1 3 fully connected

hidden recpl to output pl t 0 fully connected

hidden recma to output ma t 0 {fully connected

Table 6.4: Number of nodes in each group, time delays and type of connections between

each layer in the default topology.

each one of the computed feature is given in table 6.3.

Default Network Topology We describe here the network topology that gave the
best performance among the one that we tried. This topology has been used for most of

the experiments. QOther types of topologies will be discussed in a later section.

Figme

6.1 illustrates this topology and table 6.4 summarizes the time delays between each layer
The input to the network at frame t is the sequence of input feature frames ¢ — 3.t and
t 4+ 3. Therefore, at time t the network looks at a time interval of 30 msecc centered around
t. The desired output encoding is based on the TIMIT phonctic label of fiame t. The
default topology consists of two hidden layers and an output layei®.

The first hidden layer is connected to the 3 input feature frames, and 1s o1 gamzed into
localized groups of a dozen nodes. Each group is connected to a small portion of the input
features. For example, the spectrum is divided into 4 1egions of 8 nodes, and the 3 groups
of the first hidden layer are connected to 2 regions cach. The fitst hidden layer nodes
compute discriminant features that are localized in the input feature space. The second
hidden layer is connected to all the nodes of the first hidden layer and is orgamzed into
two groups. The first group sends its outputs to all the output nodes desenbing the place

2The performance of different networks with either one or no lndden layers 15 presented and disenssed

in a later section
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Figure 6.1: The default network topology. It is a recurrent network with time delays and

localized connections.

of articulation at frames ¢t and ¢ + 1. The second group is connected to all the output
nodes describing the manner of articulation and voicing at frame t and ¢t +1. A third
group of hidden nodes provides a recurrent link output layer at frame 3. by receiving
as input the output layer at frame ¢ — 1 and sending back its outputs to the output layer

at frame t.

For all the experiments involving networks with hidden nodes we tried to keep the
total number of connections of the same order of maznitude. All the networks with hidden
nodes had about 7500 connections. This complexity was justified because a large amount
of training data coming from hundreds of different speakers was available. Networks with
less connections performed poorly on the test set, and networks with more than 7500
connections were too slow to train. All the nodes used the symmetric output function,
except for the output layer nodes which used the logistic function.

Adaptation Parameters For this thesis, we did not search for an optimal adaptation
algorithm. Instead, we were interested in setting similar experimental conditions for each
network. The initial weights were assigned tandomly i the range —0.20 to +0.20 with
a uniform distribution, and then itetatively adapted at the end of the presentation of
cach token (on line updating) One epoch consisted in the presentation of all the 12,731
different traiming tokens m random order (about 200,000 fiames). A different order was

Stapeniments with and without thns recurrent connection will also be desc ribed
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sclected for each epoch  For all networks, the learming rate was set to 007 for the hest
epoch (e = 1) and then smoothly decreased to 0.00001 according to the following heuristi

rule. B
1 4+ exp0.25

1 + exp(0.25 x (¢/3))
A problem arose because of the uneven fiame-by-frame distribution of the phonetic classes
in the training set. Longer and more fiequent phonemes (mostly /p,t.k,m,n/) contiibuted
in a larger part to the error criterion than shorter and less frequent ones The pradient,
descent adaptation rule tends to minimize the error criterion only for the classes that
accounted for the majority of the frames. Therefore, the learning tate was set to a
different value for each class j, depending on the relative number of frames f, in the
training sett.

7(e) =007

+ 0 00001 on

min, f,

m(e) = nle) x ( 7, +¢) (62)

The small constants ¢, are introduced for the most ficquent classes in order to avoid
setting too small learning rates when there is a large difference in class frequency.

All classification tables reported in the next sections refer to a certain epoch This
epoch is the epoch for which the network produces the best performance on the tesf set
It is a measure of the convergence rate of the adaptation algonthm 1t tells how many
epochs were necessary for the network to generalize adequately  Strictly speaking, the
correct pattern recogmiion term for the test set used m this way s ecvaluation st I
should be noted that if the adaptation continues after that epoch; usually the ernor on
the training set will decrcase (slowly), but the error on the test set is stable, or increases

Most of the experiments were run on a MIPS/RISComputer. One traming epoch (1 e
12,731 forward passes and backward passes over an average of 16 5 frames per token) took
approximately 120 minutes.

Classification Rules and Errors Classification performances were evaluated only for
the stop and nasal phonemes, and not for the context phonemes ‘T'he fust classification
rule is based on the Euclidean distance between the taiget outputs for each class and the
actual outputs of the MLP. If the highest output s less than a heuristic threshold et
a prioti to 0.3, all the outputs are assumed to be low, and the frane (o the phoneme)
is put in the icjection class® The 1ejection class 1s 1epresented by all the non stop
and non nasal TIMIT labels that precede or follow a target phoneme i a token o
phoneme classification cach output was averaged for the duration of the TINTT Jabel

4Ralf Komipe, personal comuunication

5Shightly different values of the threshold (between 02 and 03) did uot affoct e das ahoation
performance
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More precisely, the classification rule is the following. Chose the class 7* such that:

. { argmin, 3y (di — ox)* if max; ox > 0.3 (6.3)

reject otherwisc

Most of the experiments use the first classification rule. The second classification rule
is based cither on PCA or LDA of the network outputs considered as a feature vector.
More precisely, the class averages, the sample covariance matrix W and the within-class
covariance matrix S are estimated from the network outputs of the training set. Then,
the SVD based algorithm described in chapter 4 finds either the PC or the LD directions,
and the class averages projected on these directions are computed from the training set.
FFor cach test token, the outputs are projected on the estimated PC or LD directions and
the classification 1ule is the following. Choose the class j* such that:

« ) argming (X, fi — ;) x (Te(vl — uk)?) if max;or > 0.3 (6.4)
| reject otherwise ’

In the formula, f, is the frame frequency of class j in the training set, v} is the projection
of the j class average on the kth PC or LD direction, and u; is the projection of the
test token outputs. The factor that depends on the class frequencies is introduced for
balancing tne uneven class distribution that might have affected the computation of the
cigenvectors [Dillon 84].

Finally, errors are counted for each stop and nasal frame (and phoneme) that has
been incorrectly classified. In some experiments, errors are reported separately for the
preceding closure and the following vowel In general, all the net works were “well behaved”
concerning their temporal evolution. This means that the output nodes representing stop
and nasal sounds were low duiing the preceding closure and shortly after the beginning
of the following vowel. 1t should be noted that the eflective learning rate was set to a
very low value before and after the target phoneme, according to the frequency dependent
mife given above, so that the networks were t1ained to discuminate the 10 stop and nasal
phonemes. rather than disciimmate between tavget and context.

6.2 Comparative Experiments

6.2.1 Varying The Desired Output Encoding

MEthe experiments refer to the default network topology. The input to the network
consisted of the Bark scaled spectiogram (32 features). Four experiments are 1eported
{(Table 0 9)
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0O.A One Node Per Phoneme The output layer represents the 10 phonetie classes
/p,t.k, bd,g,dx, m,n,ng/ with onc node per phoneme. The desued output 1s set to 0095
when the TIMIT label corresponds to the node label and to 0.05 otherwise, m partiuba
before and after the target phoneme. It took 46 cpochs to the network to reach 36 5
% phoneme errors on the training set and 37.7 % phoneme errots on the test set. The
performance on the nasal phonemes was particularly deceving. The training phonemes
that were incorrectly classified were 44 % for /in/, 62 % for /n/, and 51 % for [ng/ (albert
less frequent). Also, alveolar phonemes were incorrectly classified Phoneme ennors were
33 % for /t/ and 42 % for /d/ on the training set. The same type of confusions occuried
for the test set.

O.B Place Manner and Voicing The output layer is divided into two groups. One
group of 4 nodes represents the place of articulation and the flapped allophone and anothet
group of 3 nodes represents manner and voicing. The 7 nodes are labeled respectively
labial, alveolar, velar, flap, voiced, stop, and nasal. The voiced output node is set to high
for the voiced plosives, the nasals, and for all the voiced TIMIT labels to the left and
to the right of the target phoneme , including voiced closutcs. The flapped allophones
/dx,nx/ are represented by t{wo manner nodes: alveolar and flap. The output nodes
alveolar, velar, labial are set to high values for all the consonants that share the same
place of articulation, including plosives, nasals, {ricatives and liquids (that sometimes are
included in the right context of a target phoneme). Specialized nodes in the second hidden
layer send their activation either to the place nodes or to the manner and vorcing nodes
This way, the hidden nodes can be specialized to discriminate between a few binary and
ternary features, rather than discriminate between the ten phonemes  After 46 epochs,
the network reached 26.0 % phoneme errors on the tiammng sct and 27.9 % phoneme enors
on the test set. The breakdown of the performance for the traming set showed that there
was a significant improvement in the classification of nasal and alveolar phonemes o
/m/, phoneme errors decreased from 44 to 30 %, for /n/ from 62 10 40.5 % , for /ng/
from 51 to 24 %, for /t/ fiom 33 to 23.8 % and o1 /d/ ftom 42 to 276 %

0.C Place in Context, Manner and Voicing [ncouraged by the performance of
network O.B, we extended the idea of feature nodes to model the context i which cach
phoneme appecared. This extension s motivaied by the fact that the place of articnlation
of the following vowel influences the trajectory of the second formant in the transition
between the consonant and the vowel (sce Chapter 2). T'he output layer s simnlar 1o
experiment O.B; except that now cach place of articulation s 1epresented by two node,
instead of one, depending on the left vocalic context For example, ff the tolen s o [/
followed by any of the fiont vocalic segments fae,ehyey, thoaxiiv/ then the node feliial o
front is set to high and the node labial + non front s sct Lo an intermediate value (037)
The total number of output nodes is 10, with 7 nodes dese ribmg the place of articudaton
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Output Representation | Qutput | Epoch | Train % Errors Test % Efrrors
Nodes Frames | Phones | Frames | Phones
O.A 1 node/phone 10 36 35.0 36.5 36.4 31.7
0.B pl ma vo 7 36 26.1 26.0 28.7 27.9
0.C pl4-ctr ma vo 10 28 23.8 24.5 27.0 27.2
0.D pl+ctr ma vo el vw 14 28 25.7 25.6 27.4 27.6

Table 6.5: Comparing the same classifier with different desired output encoding. pl: place,

ma: manner, ve: voicing, ctr: front/non front context, ¢/ voiced/unvoiced closure, vu:

front/non front vowel.
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{remind that the flap is represented by one node). Confusions between contexts were not
counted. After 28 epochs, the network settled to 21.0 % phoneme errors on the traming,
set and 27.25 % phoneme errors on the test set

O.D Modeling the Context with More Output Nodes When we looked at the
frame-by-frame and phoneme confusion matrices for all the preceding netwotks (the ta

bles were similar to Tables 6.9 and 6.10, with more cirots), we noticed some petsistent
confusions. (1) Short unvoiced plosives fell into their voiced cognates and long voiced
plosives fell into the unvoiced ones. (2) The place of atticulation for nasals was ditfi-
cult to recognize, ecven though it improved significantly by using explicit place output
nodes. Frankly, we did not know how to improve the recognition on the nasals, and we
concentrated on the voiced/unvoiced discrimination and or the context. For this new ex

periment, the output layer is similar to experiment O.C, except that more output nodes
model explicitly voiced/unvoiced discrimination and the context of the phoneme to be
recognized. In particular, there are 7 contextual nodes for the place of articulation, and 7
other nodes labeled respectively nasal, voiced stop, unvoiced stop, sience, vorced closure,
front vocalic, non front vocalic. There are 14 output nodes in total  After 26 epochs,
the network settled to 25.6 % errors on the training phonemes and 27 6 % ertors on the
test phonemes. The network was able to disctiminate rowced vs unvorced closures and
front vs non front vowels roughly 70 % of the time® both m the training and i the
test set. However, in spite of the recurrent connections and the time delays that provided
some contextual information to the network, the paformance on the 10 target consonants
decreased slightly.

Summary The performance of the MLP classifier stiongly depended from the choice
of the desired output encoding. With respect to the [ node per phoncmne encoding the
errors on the test phonemes decreased of 26 % when dhfferent nodes are nsed for place.
manner and voicing  Taking into account the right context for cach different place of
articulation decreased the etiors of 28 %. On the other hand, no nmprovement was found
on the classification of stop and nasal sounds if the autput layer modeled ducetly the left
and right phonetic context with additional nodes, nsing the same network stiucture We
conclude that if the structure of the network remam the same; the dassifier do not take
advantage of the addition of different outpnt nodes for the left and nghit, contest

"ln a few cases, we noticed that the TINE labehng of the closures was not what we expected e
voicing label was probably set depending on the preceding context and o few timnes did not correspond
to what we saw on the waveform Sometimes, a vawed closure was Libeled whete we conld not <oe any
periodicity wn the stgnal, and other thanes a cmall but evident penodioty was classifted as s anvonecd
closure  We conjecture that these few errors did not afleet the teanmgy of the network althouyl they
mght have shightly aflected the resalts on the teaf <o
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6.2.2 Using Different Input Parameters

All the expenments reported in this section refer to the default topology and to the
output encoding described in the experiment O.C, that is 10 nodes describing distinctive
phonetic features, with two different nodes for each place of articulation, depending on the
place of articulation of the following vowel Four experiments are reported (Tahle 6.6).
They are different only with raspect to the input parameters. The baseline performance
that we tnied to nnprove was represented by network O.C that used as input the Bark
scaled spectrogram. When we added input features, we tried to keep the complexity of the
network around 7500 connections, by diverting some of the nodes of the first hidden layer
to look at the added features rather than at the spectiogram, using localized connectivity

constraints

LA Adding Temporal Features For this experiment, we added the following seven
parameters to the spectrogram: the energy, the energy in the 60-500 Hz band, the zero
crossing tate, their time derivatives, and the spectral dissimilarity function. Each input
frame had 39 parameters. Eighteen nodes of the first hidden layer were diverted to look at
the added parameters  After 25 cycles the phoneme error rate was 26.25 % on the test set
winle the ertors on the training set were 24.0 %. This improvement was contributed by a
small increase mn the disciimination of voiced vs. unvoiced plosives, in particular /d,g/ vs
Jt.k/. We did not analyze the single contribution of each one of the added features, and
we conjecture that the main contribution comes from the energy and its time derivative,
as well as from the spectral dissimilarity function. These three parameters have a different
behavior whether the changes in the structure of the specch signal are fast or slow (see
Chapter 3)

I.B Temporal Features and Frequency Slopes We added 7 other parameters to
the spectiogram and the 7 temporal parameters described above  The new parameters
were the spectrat slopes. computed on 7 equally spaced fiequencies of the spectium Each
mput frame had 16 parameters We were expecting these new parameters to help in
the discrmmmation between the thiee places of articulation. Instead, the petformance
degraded substantially - Indeed, the overall error 1ate on the test phonemes was almost

29 % after 295 epochs

1.C Temporal Features And Time/Frequency Gradient We diopped the 7 slope
coetlicients, and we added 21 gradient detectors to the 32 vk scaled filters and the 7
time parameters This way, each input featwe had 63 acoustic parameters. After 20
epochs, the ettor rate on the test phonemes decreased to 249 % \Vith respect to nsing
the spectiogram and the time patameters, the performance improved sigmificantly on the
phonemes /ptm/ that were very frequent, and degraded slightlv for /hid,g k/ On the
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Input Parameters | Input | Epoch | Tramn % Errors Test % FErrors
Nodes Irames | Phones | Frames | Phones
0.Csp 32 28| 238 W5 270|272
LA spti 39 25 24.6 24.0 27.0 26.2
1Bsp i df 46 25| 263 5] 294|289
1.C sp ti dfdt 63 20| 243 B3| w4 u|

()

Table 6.6: Comparing the same classifier with different input parameters  sp: Bark spec-
trogram, t: temporal parameters, df frequency derivatives (slopes), dfdl: time/fiequency

derivatives (gradient).
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other hand, we obtamed the fastest convergence rate of all the experiments that we tried.
FFor compatison, the network with the spectrogiam and the time parameters had an error

tate of 27.4 % on the test set after 20 epochs.

Summary The performance of the MLP classifier depends also from the type of input
acoustic parameters With respect to using the FI'T based Bark scaled spectrogram alone,
the ertors on the test phonemes decreased of 3.6 % when we added some temporal features,
and of 8.4 % when we added some temporal featutes and the time/fiequency gradient that
mcasures formant tiansitions. Adding the temporal features and the 8 frequency slopes
did not improve the performance Further work is needed to refine the computation of the
slope parameters. IFor example, the values can be normalized with respect to an average
slope computed from a very long term spectrum of the speech signal. 1t is possible that
speaker-dependent tilts of the spectrum could be eliminated this way.

6.2.3 Selecting The Network Topology

The experiments 1eported so far refer to the default network topology, which includes two
hidden layers and recuirent connections at the level of the output layer. Before choosing
this one as the default architecture we have mvestigated a number of other topologies,
and we report here the most mteresting 1esults (Table 6.7 and Figure 6 2). For all the
expetiments reported in this section, the input to the network was the 43 dimension vector
with the Baik scaled spectrogiam and the 7 energies and time domain patameters, and
the output encoding was the same as for the expetiments with the input parameters, i.e.
it represented context dependent articulatory features (experiments O.C and L A to LB).

T.A Perceptron  This bascline expeniment is a perceptron without any ndden layers
or reanrent connections.  In other words, this is a regression machine that computes
senn-linear o1 logistic discrinnmant functions, as discussed at the end of Chapter 4. The
mput layer at frame £ ate the 3 input frames at time ¢ — 3,¢. ¢ + 3 (spanning 30 msec),
ditectly connedted to the output laver  Since thete are no hidden nodes, the number of
connections s reduced to 11800 All the adaptation parameters ate the same as for the
other experiments. The network 15 optimized with the wsual LMS critenon, and each
tranng epoch requites 1/8 th of the time requied for the most complex networks with
two hidden Tayers After 20 eydles, the perceptron stabilizes to 45 % phoneme errors on the
test set This poor petformance is due to fact that there are too many different, traming
and - test tohens with tespect to the complenity of the network  Most hikely, the mput
distuibutions are far from bemg ummodal Gaussan multivatiate and/or Bmary, that are
the only famhes of distubutions that can be optinally disctimmmnated by the pereeptron
However we did not perlorm am statastical test to confinm the non notmalits of the mput

data within the dilerent dasses
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Figure 6.2: Schematic description of the different network topologies that are reported in
the experiments T.A to T.F

T.B Perceptron with Recurrence The pereceptron T.A is added with a layer of 10
hidden nodes that provide a recurrent connection with respect to the output layer The
hidden nodes at frame t are fed by the output layer at frame t — 1. The complexity of this
simple recurrent network is 1290 connections. The performance on the test phonemes s
43 % errors after 24 epochs. It is interesting to note that when we added the recunent
connections, the frame errors on the test set decieased fiom 51 % to 47 6 %

T.C Larger Input Window We assumed that at least 3 inputl frames spannimg 30
msecc. were necessary to classify the 10 stop and nasal sounds, m order to take mto
account some contextual mformation coming from the closme and the vowel Wee dedided
to investigate if more context was uscful to perform classification. We took the sunple
network topology T.B, and we enlarged the mnput window  Tlns way, the mput to the
recurrent network at frame ¢ 1s augmented Lo accommodate ) Trames (45 msec) centered
atound frame £ The complexity of this networli was 3264 werghts, After 36 epochs, (he
performance on the test phonemes is 13.2 % errors. We conclinded that the use of o larpe
input window was not useful for the tash of classifving stop and nasal sounds with this
type of percetion. We suspect that the larger the window. the more vanable the mput
parameters ate, because different speaker. talk with different rates The perception doe,
not solve this tome warpig problem.
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‘I.D One Hidden Layer We proceeded by adding more and more hidden nodes to the
simple pereeptron T.A in order to model mere accurately the unknown complexity of the
class distributions. Iirst, we added one hidden layer between the input and the output.
‘T'his layer 1s fully connected to the input layer, an is divided into two gioups. The first
group (24 nodes) sends its activity to the 6 place of articulatzon output nodes. Thesecond
group (34 nodes) sends its activity to the 4 manner of articulation output nodes. This
nctwork had 7414 connections. After 36 cpochs, the errors on the test phonemes were 31

%

T.E One Hidden Layer and Recurrence The network T.D is added with a group
of 10 hidden nodes that provide the recurrent connections to the output layer, just like
for the perceptron T.B. After 46 epochs, the performance on the test phonemes is 30 %
cirors. We noticed again that adding the few hundred recurrent connections improved
the fiame-by-frame performance, from 35 % to 30.7 %. We conjecture that the recurrent
connections helped in sustaining a firing node for the duration of a phoneme, in the
case that the input is very informative at the phoneme boundary and then becomes less
informative, as it happens for a long aspiration or for a nasal.

T.F¥ One Hidden Layer and More Recurrence Encouraged by the results obtained
by the use of recurrent connections, we added more recurrent nodes. The network T.E
is added with two groups of hidden nodes that provide the recurrent connections to the
two groups of the fiot (and only) hidden layer. After 46 epochs, this topolog; vielded
32 % crrors on the test set. This performance is worse than using no recurrence at all.
We may explain this behavior by the following reflection. After just a few iterations, say
3 or 4, the 10 outputs for a network with at least one hidden layer is correct for more
than 50 % of the training frames. Therefore, the hidden nodes that are counnected to the
output layer 1~ceive an mformative input from just 10 input nodes. On the other hand,
the hidden nodes that are connected to the other hidden nodes, 1cceive a more complex
information from a higher dimensional input. vector. We conjecture that the adaptation
ol these recurtent connections is mote difficult with such a topology

T.(¢ Two Hidden Layers and Recurrence This 1s the default network topology.
[t has two Indden layers, local connectivity constiaints for the first layer, and recurient
connedctions between the output layer and some of the hidden nodes (Figure 6 1) It is
the network used mexperiment LA that we repeat here for providing a comparison. It
should be noted that the complexity of the network is THH weights. After 26 cxeles it
vielded 26,25 % phoneme errors on the test set.




CHAPTER 6. EXPERIMENTS

Selecting the Network Topology

50
- y perceptron
bl
g
]
* o]
o0
o
2
0 354/
F o
% thid orec twec
3
’—
30
25
TA
Experiments
Network Topology Weights | Epoch Trawm % Errors Test % Frrors
» 1000 Frames | Phones | Irames | Phones
T.A perceptron 1.2 20 50.5 43.5 51.0 44.9
T.B + orec 1.2 24 47.0 41.7 47.6 43.0
T.C + orec wind 3.6 30 46 5 40.9 48.1 43.2
T.D + 1hid 7.5 36 33.7 28.3 34.9 30.9 |
T.E + 1hid orec 7.5 46 28.6 27.5 071 300
T.F + 1hid orec hrec 7.5 46 30.6 303 | 326 32.0
T.G + 2hid orec 7.1 25 24.6 24.0 27.(L 26.2

Table 6.7: Comparing different topologies for the same input and the same desired output
of the classifier. All networks have time delays. hrec: recurrence at the hidden level, oree:
recurrence at output level, wind: larger input window, Ihd: one hidden layer (fully

connected to the input), 2hid: two hidden layers (local connectivity)
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Summary The classification performance of the MLP classifier strongly depend on the
topology of the network. Whth respect Lo a perceptron, by simply adding a layer of hidden
nodes the errors on the test phonemes decreased of 31.3 %, and adding some other hidden
nodes that provided recurrent connections to the output layer decreased the errors of 33.3
%. We noticed that adding the recurrent connection at the level of the output layer always
decreased the frame-by-frame error rate. With respect to using one hidden layer, the use
of two hidden layers (keeping a fixed total number of weights) with localized connectivity
constraints decreased the errors on the test phonemes of 12.5 %.

After all these experiments, we concluded that the main factor that improved the
performance both in terms of phonetic classification and convergence rate of the estima-
tion algorithm was the design of a multi-layered network with localized connections, as
suggested by [LeCun 89, Watrous 90]. On the other hand, this trial and error approach
to network design is extremely time consuming and completely experimental. It was im-
possible to figure out a priort or with less effort which topology would yield the best
performance. Also, these findings should net be applied blindly to other phonetic recog-
nition problems. For example, the type of local connectivity constraints as well as the size
of the input window and the number of time delays are all parameters that are well suited
for the classification of stop and nasal sounds, and we conjecture that they are also ade-
quate for other consonants. Other topologies might be tried for other sounds. It should
be noted that other topologies could have been tried also for our problem. For example,
topologies with local connectivity constraints with a smaller resolution, or other types of
recurtent connections. We just did not have enough computing resources to explore the
too many possibilities, and we decided to stop experimenting at a certain point.

6.2.4 Interpretation of the Network Outputs

In this section we report about different classification rules (Table 6.8). We considered
the network wineh yielded the best peiformance (experiment I.C), and we classified the
test set i three different ways First, we compared cach output vectot with the a prion
targets for cach class using the Budlidean distance metric This method yielded 24.9 %
phoneme errors on the test set. Second, we estimated the first 6 hnear discrimmnant vectons
and the 10 class targets from the trammg set statistics, and we compared the outputs
with the targets projecting them on the 6 fust hnear disctiminant vectors This method
vielded 237 % phoneme errors Thud, we estimated the fust 6 principal components
from the tranung set statistics, and this time the phoneme enors were 233 % Using
either 5 o 7 vectors vielded a slightly worse result for both methods  We see that botly
methods vielded a sightly better petformance than companug directly the net ontputs to
the desited outputs. In particular, the phoneme errors on the test set decreased by 4 8
Yo usimg LD A and by 6.4 50 using PCA We conjecture the followig, simple explanation
When we computed the hnear disctimmants and the prinaipal components, we adjnsted
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Test phoneme crrors | 24.9 23.3 | 23.7

Table 6.8: Performance rates of the same network with different classification tales MLIP-

Euclidean distance between targets and 10 ontput nodes MLPA4-PC. 6 prmapal compo
nents of the net outputs. MLP+4LD- G lincar disciinmant directions of the net ontpits
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p t k b d g dx m n ng
p | 81.84] 394] 1.79110.33 ] 0.67
t| 1.61 |78.44 | 7.48 10.25
k| 2.06] 5.24|81.91 1.25 ] 8.81
b| 6.25 85.42 | 4.96 1.49
d 7.17 549 | 73.42 | 388 | 371 | 143 ] 211
g 8§51 | 1.55| 8.8277.09 2.32
dx 5.10 90.16 3.85
m 1.63 6762 12394 | 5.55
n 1.51 480 | 16.11 | 68.13 | 8.37
ng 1.52 122 | 2.13 | 34.15 | 60.37

Table 6.9: IFrame-by-frame Confusion matrix for the best performing network. Classifica-
tion is based on the 6 principal components of the net outputs. rows: spoken, columns:
recognized. Errors that are less then 1.0 % are not indicated. Average error: 24.2 %.

the target outputs in order to match the average behavior of the network on the training
sct, tather than using some a priori idealistic values. These more realistic targets were
also closer to the average oulputs for the test set. Apart from slightly increasing the
classification performance, using LDA or PCA is convenient because the output of the
classifier 1s more compact, and produces statistically uncorrelated fcatures. This way, we
can integrate many network outputs and piovide a compact set of uncorrelated features to
a statistical phonetic decoder. The usc of PCA proved to be more accurate than LDA. The
teason can be that the linear discriminant directions are close to the principal components,
and the algorithm for finding the principal components was more precise because it did
not require the computation of an inverse from the input covariance matrices.

6.3 The Best Performing Network

After the description of all the expenments, we suminarize the successive steps that
took us to the design of the best petforming network (experiment I.C, classification
perfotmed by PCA). The frame-by-frame and phoneme confusion matrices ate given in
Fables 69 and 610, Table 6.11 lists the successive refinements that decreased the etior

tate on the test set.

Input Parameters Inaddition to the Bark scaled spectiogram computed fiom the FIPT
every donsee (32 tnangular filters), we used 7 acoustic parameters related to global
spectial and tempotal changes of the speech signal (such as the encrgy and its time
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P t k b d g dx m n ng,
p|73.91 | LS1 ] 1.09 [20.29 1.09 T
t 72.97 | 5.98 1722 ] 1.44 T
k| 1.68] 4.75 | 73.18 1.68 | 15.64 401
b| 4.38 89.90 | 2.69 1.01 -
d| 1.05] 4.18 52318014 348 244 105 139
g 4.00 8.80 | 82.40 ] 1 240

dx 2.03 91.93 3041
m 2.02 6914 [ 227371 180
n 7591 13.20 [ 69.80 | 723
ng 455 | 3364 | 56 82

Table 6.10: Phoneme confusion matrix for the best performing network. Phoneme classifi
cation is based on the 6 principal components of the net outputs. rows: spoken, columns:
recognized. Errors that are less then 1.0 % are not indicated. Average error. 23.3 %.

derivative and the spectral dissimilauity function) and 24 other patameters that
measure formant peak transitions between 300 and 4000 Hz (the time/frequency
gradient). With the same network complexity, adding these two types of parameters
decreased the errors by 8.4 %.

Network Topology The topology that yiclded the hest performance among the many
that we tried is essentially a network with two layers of hidden nodes, local connec-
tivity constraints, time-delays and recurient connections at the level of the output
layer.

Desired Output Encoding Rather than having 1 node per phoneme, the ontput Jayer
represent distinctive phonetic features. Each diflerent place of articulation s rep
resented by two nodes. depending on whether the following phoneme has o forward
o1 backward place of articulation. This encoding decteased the errors o the stop
and nasal phonemes by 28 %,

Classification Rather than comparing dircectly the net outputs with the dested autputs,
the output vector is first projected on the first few principal component duedtions,
and then compared to the class averages estimated from the tranmg data

This configutation yiclded 233 % phoneme enrors and 242 % frame errors on o test

set of 2907 stop and nasal phonetes pronounced i contrmmous speech by 57 diflerent
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Type of Network Test % Errors
Frames | Phones
output: 1 node/phone 36.4 37.7
oulpul: pl ma vo 28.7 27.9
output: pl+clz ma vo 27.0 27.2
wmpul: sp b 27.0 26.2
wpul: sp ti dfdt 25.4 24.9
class: 6 pc 24.2 23.3

Table 6.11: Comparing different types of networks for classifying stop and nasal phonemes.
The table refers to the test set of 77 different speakers and 2907 tokens. output : different
outputs, but the same input (the spectrogram). pl: place, ma: manner, vo: voicing, ctz:
front/non fiont context. wnput: same outputs (pl+ctz ma vo), but different inputs. sp:
spectrogram, fi: temporal features, dfdt: time/frequency gradient. class: 6 pc: classifica-
tion of the best net with PCA.

speakers The tramimg data was 12.731 tokens pronounced by 343 speakers. The tokens
were extiracted from /CV/ segments.

6.4 Error Analysis

In this section, we summarize and discuss some general trends that appeared in the
behavior of the MLP based classifiers. The figures that are reported in this section refer
to the network I.C, when classification is performed by projecting the output vector on
the principal component space.  Although this is the configuration that gave the best
petfotmance, the benavior of the other networks with two hidden layers was qualitatively
very sinmlar, but with more enors. The frame-by-frame and phoneme confusion matrices
are given in Tables 6.9 and 6 10, while figure 6 3 gives an idea about the performance for

cach phones

6.4.1 Plosive Classification

The MLEP classitiers petformed better in classifying plosives than in classifying nasals Lo
quantify this statement and to have an idea about the ertors on the plosives, we tested the
best performng network on the plosive tokens only The test set was composed of 2057
phonemes spoken by the 77 difterent speakets, with an average of 290 phonemes per class.
The frame be-frame errors were 18 % and the phoneme errots were 19 %. Compating the
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Phoneme Classification
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Figure 6.3: Breakdown of the classification performance for cach phone. This diagram
refers to the best network applied to the test set of 77 speakers. Compare the frame-by-
frame performance to the average phonetic performance for /ptk/ vs. /bdg/.

confusion tables for frames and phonemes, we noticed that short unvoiced plosives were
classified into their voiced cognates, and long voiced plosives were classified as unvoiced
(see also the diagram in figure 6.3). For example, an average of 10 % of the unvoiced
frames was classified as voiced, but this figure corresponded to 20 2, 17.2 and 15.6 % of
the phonemes /p,t,k/ respectively. We can explain this behavior in the following way.
It is possible that the recurrent connections and the time delays contributed to dassify
short bursts into voiced plosives. This result is encouraging, because it means that the
MLP was able to extract a temporal acoustic cue that 1s cortelated to the voiced/unvoiced
discrimination. On the other hand, in continuous speech phonemes are pronounced by
different speakers at different rates, depeading also on the phonetic context (Remind the
example of the longer /p/ in pnovs. the shorter /p/ i spn)  When the burst is short the
acoustic analysis using a fixed analysis window will merge spectial information comugp
from the burst and the vowel. The use of speaalized ontput nodes for voweed closur
and sience in combmation with the input patameters that we tnied did not improve the
performance. Pherefore, either we use a spectial analysis inethod with a higher resolution,
or we try to capture more information from acoustic cues of periodicity i the preceding
closure. A promisig approach is detecting penodicity from the normalized correlation of
neighbor segments of the speech signal®.

"Maurizio Omologo, pessonal communication
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Trames | labial [ alveolar | velar |[ Phones [ labial | alveolar | velar
labial 90 8 6.8 2.0 {| labial 93.4 4.4 1.6
“alveolar |22 918 | 5.8 || alveolar | 2.3 9271 48
velar 19 7.9 | 89.9 |[ velar 1.5 8.3 89.7

Table 6.12 Confusion matrices for the best network used for classyfing the place of artic-
ulation of stop phonemes. Classification is performed by selecting 2 linear diccriminant
directions from the 10 output nodes. Rows: spoken, Columns: recognized. The average
% crior is 9% f{rame by frame, and 7.8% per phoneme Results for the test set of 77

speakers.,

The 3 way classification of the places of articulation for plosives was very satisfying.
On the 77 speaker test set of 573 labials /p,b/, 1000 velars /t,d,dx/ and 484 alveolars
/k,g/ the best MLP yielded 9 % frame errors and 7.8 % phoneme errors (Table 6.12).
The biggest error was the confusion between the alveolar and the velar place. This good
petformance can be explained by the fact that on one hand there were thousands of
training tokens available for these features, and on the other hand the input acoustic
paraneters and the MLP input window size were appropiiate for capturing the acoustic
cues necessary for discriminating the place of articulation.

We were able to compare the petformance of this 3-way classifier with the performance
of two separate classifiers, one used for discriminating the unvoiced plosives only, and
another one used for diseniminating the voiced plosives only. These MLP classifiers had
the same structure as the best performing network. On a himited test set of 48 speakers
and 659 phonenies, the /p,tk/ classifier yielded 11.4 % phoneme errors Using the same
I8 speaker and 525 test phonemes, the /b,d,g/ classifier yielded 14.3 % phoneme errors.
We conclude that 1t s advantageous to use the same network for phonemes that share

the same place of athiculation.

Exanmimng sowe ty preal ettors committed by the best performing netwoik (table 6.13),
we noticed the followmg trends Fust, very short plosives were very frequent i the error
list Scecond, the vight contet that appeared with some regularity were the variations of
the cential vowel /ix,ax.anr/. Concerning the effect of phoneme duration. we believe that
tosolve this problem it is necessary to use an acoustic analysis with a higher tempotal
resolution. Concernimg the effect of context, 1015 possible that the onset spectium of the
cential vowelis extreniely vanable between many different speakers. This fact night have
caused a poor discinunation of the preceding consonant, because the classifier was always
using contestual mformation, via time delays and the time/frequency gradient
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Left Spoken Right Recog. Dur. Example File

vel b iy p 6 dr8/ntcs0/sx352 |
vel d ix t 9 d16/mtjul/sx40
sil d ix b 3 dr2/mtatl /si779
sit  k ax g 6 d15/{skp0/s11098
sil  k ix g 6 d13/msfv0/s1632
ax m ix n 9 de7/fvkb0/sx79
sit  m ah n 16 dr2/fscn0/sx266
iy n axr ng 9 d18/mslb0/sx293
sii  n ow m 8 d15/fsdc0/s12234
sil  p axr b 3 drl/msjsl [sx279
sil  p ix b 3 drl/mt1r0/1918
sil t ux d 6 drs/fsjg0/sx40

sil t axr k 10 drd/mteb0/sx413
sil t iy d 6 dr3/mtpg0/s12013
ix nx ix dx 5 di5/msas0/s11376

Table 6.13: Typical errors of any classifier. FFor cach error, we indicate the left and nght
context, as well as the phoneme duration in 5 msee frames sif means silence or unvorced
closure. vel means voiced closure.
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Frames | labial | alveolar || Phones | labial | alveolar
labial 70.5 29.5 {1 labial 72.0 28.0
alveolar 16 0 84.0 |] alveolar | 12.0 8S.0

Table 6.14: Confusion matrices for the best network used for classifying the place of
articulation of nasal phonemes /m,n/ only. The velar phoneme /ng/ is ignored becausc it
was too rare to be statistically significant. Classification is performed by selecting 1 linear
disciiminant direction from the 14 output nodes. Rows: spoken, Columns: recognized.
The average % crror is 23% frame by frame, and 18.7% per phoneme. Results for the test

set of 77 speakess.

6.4.2 Nasal Classification

We do not examine here the errors on /ng/ because this phoneme was too rare with
respect to the other phonemes to be statistically significant. The performance on the
nasal phonemes was not as good as for the plosives (see table 6.14). In particular, all
the networks had some problems in recognizing the place of articulation for /m/ and
/n/, regardless of the fact that a large amount of training data was available. The best
network petformed almost 70 % recognition for /m/ and /n/. This figure should be
compared with about 80 % classification rates for the 7 plosives. It should be noted that
using the same output nodes for the stop and the nasal phonemes with the same place of
articulation significantly improved the performance on the nasal phonemes. Evidently, at
the boundaries hetween the consonant and its context, the acoustic cues for the place of
atticulation are simular between the plosive and the nasals. This is not surprising, since
the vocal tiact configuration is the same for plosives and nasals with the same place of
articulation, and therefore the resonant frequencies contributed by the vocal tract must he
the samie. Therelore we doubt that a separate specralized network for the nasal phonemes
would perform better than our 10 phoneme classificr.

When we classilied the net outputs takimg into account only the 396 /m/ and 553 /n/
test phonemes, we obtained 18.65 % confusions between the two places of articulation,
(vs. 78 % for the 3 plosive places) and 229 % fiame errors (vs. 9 % for the plosives)
Results aie 1eported in Table 6 14, These etiors did not seem to depend on the left
o right phonetic context (see Table 6.4.1). Tlis petformance can be explamed by the
fact that the acoustic cues for nasaity are strongly evident on the spectrogram. and they
lend to hude the acoustic cues for the place of articulation This problem is addressed in
[Zue 79,
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6.5 Integrating MILP Classifiers in a Phonetic De-
coder

In this last section, we report some preliminary experiments that have been cartied out
at our laboratory in order to integrate this type of MLP classifiers in an acoustic-phonetic
decoder for continuous speech recognition. The experiments reported in this section are
the result of a team effort. They have been carried out by Yoshua Bengio, Ralf Kompe
and myself.

6.5.1 Methodology

At the same time that we were experimenting different ML classifiers for stop and nasal
sounds, a preliminary experiment has been petformed using a prototype system based on
the integration of MLP classifiers with HMMs.

The methodology that we applied is the following. State of the art acoustic-phonetic
decoders for speaker independent continuous speech recognition are based on Dynamic
Programming [Silverman 90], and in particular on a statistical model of the speech sip
nal. For a first order hidden Maikov model (HMM), cach conscentive aconustic frame 1y
considered as the independent outcome of an unobservable probabilistic process (see, tor
example [Picone 90]). To limit the numher of statistical parameters to be estimated, such
systems require a constrained set of input parameters As a consequence important pho
netic information may be lost in the acoustic front-end of a recognition system Recently,
there have been several approaches for integrating MLP classifiers with MM (among,
others, we refer to [Austin 91, Bridle 90, Boutlard 88, Franzini 90})

We advocate here the use of a hybiid aconstic-phonetic decoder, i which one ot
many MLPs classify the incoming speech signal in terms of 1elevant, articulatory featunes
describing the place and manner of aiticulation and a degiee of voicing. The cominned
MLP outputs provide a sequence of observation vectors for a phonetic decoder based on
a continuous densitics hidden Markov model [Picone 90].

6.5.2 Experimental Setup

To limit the computational complexity of the expetnnents to a reasonable figure the
following 8 class problein has been considered /p ik, bd g, dr, all other plioncmes/ 1o
this problem s and srsentences from regions 2, 3 and 6 of the 1988 version of the TV
database were used, with 1080 training sentences and 224 test sentences, 135 tramng
speakers and 28 test speakers respectively. The train/test splitting vole was the same as
for the other experiments.
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6.5.3 MULP Perform Feature Extraction

The experimental system was the following. Rather than having a single MLP that
computes the vector of acoustic parameters, we have two networks, MLP1 and MLP2.
"They are mitially trained to perform broad classification (MLP1) and plosive classification
(MLP2) respectively The input acoustic parameters, the topology, and the desired output
encoding of these networks are similar to the MLP for stop and nasal classification, and
their outputs describe articulatory features such as the place and manner of articulation

and a degree of voicing.

The broad clas ;ucation network (MLP1) has been developed by Ralf Kompe and
has b outputs corresponding to five broad categories: non-nasal sonorant, nasal, plosive,
fuicative, and silence. Details about this classifier can be found in [Bengio 91b)

The plosive recognition network (MLP2) was developed by myself and had an output
layer with 16 nodes describing the place and manner of articulation of plosives with
two instantiations of ecach place nodes depending on whether the following phoneme has
a forward or backward place of articulation. The desired output encoding was similar
to the one described for the stop and nasal experiment O.D. In particular, the output
nodes weie labeled as follows. For this experiment, we considered four different places
of articulation (labial, alveolar, velar, and flapped alveolar) with two different nodes for
cach place, The rtemaining eight nodes were labeled: unvoiced plosive, voiced plosive,
vocalic front, vocalic non-front, liquid, fricative, nasal, silence. The network topology
was similar to the default topology for the stop and nasal classifiers, with two hidden
layets, localized connectivity, and recurrent connections at the output layer. The input
patameters for each frame were the Bark scaled spectrogram, the 7 temporal parameters,
the gradient detectors and the slope coefficients. At that time, this was assumed to be
the best petforming configuration.

PCA was applied to the outputs of the combined MLP. This transformation was
petformed by multiplying the combined MLP output vector by a 1ectangular matrix Each
column of the matrix was one of the principal components. This matrix multiplication
has been implemented as a smgle-layer linear perception, called SLP. The SLP outputs a
veetor of 8 patameters (the MLP outputs projected on the first 8§ principal components).
Phe overall structure MLPT+MLP24-SLP s equivalent to a complex time delay multi-
Llaver pereeptron with three hidden layers of loglincar units and linear output umts.

6.5.4 HMM perform phonetic decoding

For each sentence to he decoded, the 8 parameter vector is the sequence of observation
vedtons o a Continuous Densities HHMM, with 11 left-to-1ight models. In order to im-
prove the modehing of the rejection class four different models were considered: nasals,
fricatives, non-nasal sonotants, and silence “The tecognition results are obtained by merg-
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ing thesc four subclasses, such that the total number of classes to tecogmize 12 8 Fach
phonetic model had 14 states, 28 transitions, 3 self loops, without exphieitly modeling, the
state duration, and tied output probability distiibutions with 3 basic different distubu
tions characterizing the beginning, middle and final pait of cach sepment Fach of these
distributions was modeled by a Gaussian mixtuie with 5 densities The Gaussian covang
ance matrices were assumed to be diagonal since the patametets were mitially prneipal
components.

6.5.5 Training of the hybrid MLP-HMM systecin

First, the parameters of the two MLP classifiers were optimized separately, using sentence
tokens for MLP1 and phoneme tokens for MLP2. Then, two iterations of the Forward-
Backward optimization algorithm [Picone 90] were run m order to estimate the state
transition probabilities and the parameters of the tied output distithutions for each state,
using all the training sentences. This is a mazumum hkelthood estunafrion procedure,
which one tries to estimate the HMM parameters i order to maximize the likelihood
of the observed sequence of vectors given the constraints of the model. Last, two iter-
ations of a global optimization procedure were run using the trainmg sentences one by
one. This procedure has been developed by Yoshua Bengio and s described i details i
[Bengio 91a, Bengio 91¢]. Very briefly, it allows a joint optiumzation of the parameters of
the continuous densities HMM aad of all the connecting weights of the combined stiuc-
ture MLP1+4+MLP2+4SLP For cach one of the SLP outputs and cach one of the truning
sentences, it is possible to compute a gradient derived fiom the likelihood of the correct
sequence of phonetic models. This gradient replaces the d :rivative of the LMS erior cni-
terion with respect to each SLP output unit. Then, the gradient can be transputted to
all the connecting weights using the back-propagation algorithm. Figure 6 4 lustiates,
the outputs of the combined MLP and the output phoneme string obtained by Viterhn
decoding of the HMM for a short segment of a test sentence,

6.5.6 Preliminary Evaluation

The petformance of the hybrid system was compared with that of 4 1ongh post processor
applied to the outputs of the MLPs. A simple algonithi assigned o symbol to cach output
frame of the MLPs by comparing frame by frame the target ontput vectar witly actual
output vector. It then smoothed the resulting string to 1emove very short segments and
merged consecutive segments that had the same symbol, I order to evalnate the advan
tages of using MLPs as sequences of observations for the HMM. the same NN models
were used to petform recognition, but using a standard set of acoustic parameters S cep
stral coelficients computed from the Bark scaled spectiograny, 8 cepstial tine depivatives,
the signal energy and its time derivative (18 inputs).
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Iigure 6.4: ‘Top: signal. Word spoken: "became”. Middle: MLP outputs related to
distinctive phonetic features. Bottom: Output string d-2coded by the Viterbi algorithm
from the trellis of IIMMs.

The comparative results for the three systems are summarized in Table 6.15. Perfor-
mance 1ates wete evaluated for the 8 classes, including plosives and the rejection class. It
should be noted that for the majority of the frames of any sentence the correct phoneme
belonged to the rejection class. For this reason, rather than looking at the absolute values,
it is interesting to compare between different configurations of the hybnd systems.

The overall tecognition rate (100% - %deletions - %substitutions) for the 8 classes
with the hybrid system after two training iterations is 90% on a total of 7214 phonemes,
and its accuracy (100% - %deletions - %substitutions - %insertions) is 6% Note that
this is an improvement over the performance obtained with a HMM trained without
global optinmization (8(&% recognition and 81% accuracy), The MLPs alone yielded 85%
recognition but only 53% accuracy, because of the ligh number of mseitions of plosive
segmients (32%). The HMM elinunates most of these insertions because 1t optimizes its
patameters over entite sentences, rather than ever shoit segments of speech. In addition
the HMN provides more appropriate target values for the outputs of the MLP. It shoul
be noted that the use of a hybiid system decteased the performance on the plosives. that
were less frequent than the other classes

This preliminary expernnent was very encoutaging. 1t demonstrated a very promis-
g way to mtegrate one ot many MLP classifiers into a statistical phonetic decoder,
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Phonetic Decoder %ree | s | Wdel |5 SU’J;—IN?’—(;";{'(:
MLPs alone 85 32 004 15 53
HMMs alone 76 6.3 22 23 169
MLPs+ITMM 87 6.8 0.9 12| s
MLPs+HMM+global opt. 90 3o 4 | 90 | %6

-~
A
-~1

Table 6.15: Performance evaluation: MLPs alone, HMMs with standard cepstinm, delta
cepstrum, encrgy and delta energy input features, MLPs with HMMs, and with glohal
optimization. The task was to recognize 8 classes /p, bk, b,d.g, dr, other phonemes/ i
continuous speech. The table refers to the test set of 28 speakers and 224 sentences,

based on specific knowledge in experimental phonetics. For a complete evaluation of this
methodology, one has to completean experiment involving the full set of American-inghsh
phonemes. Future work will be devoted to this problem.
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Chapter 7

Conclusion and Open Problems

A main advantage of MLPs is the possibility to classify sequences of many input
parameters with much flexibility. No statistical assumption is made about the nature
of the inputs, and sufficiently complex MLPs perform well on difficult pattern recogni-
tion problems such as speaker independent phoneme classification in continuous speech.
Speciahized ANNs can be integrated into a statistical phonetic decoder which model the
temporal structures of the speech signal. As a first step towards the design of such a
Lybrid phonetic decoder. we studied the problem of classifying stop and nasal sounds.
The comparative experiments reported in this thesis showed that key factors for improv-
ing the performance of such classifiers are the proper choice of the inputl parameters, of
the wternal topology and of the desired output representation. These parameters strongly
depend on the acoustic correlates of the phonemes to be recognized and are inspired by
expenmiental studies in Phonetics and by signal processing strategies. In general, different
patameters will be applied to different classes of phonemes. From the results of the many
expenments reported in this thesis, we can draw a number of concluding remarks that

should be useful for future research.

Varying the input parameters  MLP are able to cope with several inputs per frame,
and no assumption needs to be made about their statistical distitbution, therefore one
15 relatively fiee to choose acoustic parameters, based on phonetic and signal processing
knowledge. For the problem of classifying stop and nasal sounds, with respect to using
the spectrogran alone, the addition of some glohal tempotal and spectral patameters and
of a gradicut detector that measures formant transitions decieased the error 1ate by 8.4
“ooon the test set, with tespect to ustng the spectiogram alone.

Concernimg the Bath-scale spectrogiam, we llave used a computationally mcexpensive
and stimghtiorward method based on the Fast Founer Transform (FFT). \We beheve
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CHAPTER 7. CONCLUSION AND OPEN PROBLIEMS 80

there are intrinstc lmitations which such a method, due to the fixed window of the
specch signal. At the expenses of a somewhat heavier computational load, one can devise
the following simple modifications to the used algorithm Fist, o more accutate fiame
by-frame analysis can be performed by averaging the FIFT computed for some (say 3)
slightly shifted windows. This way, one can hmitl the effects of moving the analysis
window asynchronously from the pitch period. Second two (o1 more) diflerent analysis
window length can be used, a shorter (about 10 msec) and a longer one (hom 25 to 35
msec). The resulting spectrogram can integrate both analysts lengths [Chenng 917 This
way, the analysis would be more informative regarding both short (wide band) and long
(nariow band) acoustic events, like high fiecquency buists and formant transitions. Both
these modifications would be casy to implemient and should be mvestigated, since they
would not require specific hardware configurations. Altetnatively, one can use cither a
pitch-synchronous analysis step and window length, o1 a bank of nonlimear tume domam
passband filters, provided that the mote complex computations are carned out in an
efficient manner.

Also, other time domain parameters can be added to the spectiogram, ke the normal-
ized correlation between neighboring segments of speech [Medan 91] in order Lo capture
some acoustic details that cannot be found in the Bark scaled spectiogiam Such param-
eters will certainly help in the voiced /unvoiced discnimination.

The search for an adequate topology Somec experiments have heca run compating,
different network topologies, with or without recurrence and with or without hidden
layers. Two hidden layers and some recurient connections between the hidden layer and
the output layer were found to be necessary for improving the classification performance
on the stop and nasal sounds In oider to 1epresent acoustic phonetic details 1t was
necessary to consider some context in the input, but a large conteat was found to be
impractical for the type of network that we used. The MLP that we used were not able to
deal with the greater variability in the mput that was mtroduced by a larger window In
other words, 1t was not possible for a MLP with time delays and a laige input window to
perform time warping and gencialize adequately! on o multi-speaker task To solve thos
problem, we advocate the use of a hybrid phonetic decoder i which the time warps are
managed by a statistical algorithi.

The use of a divide and conguer or modular approach is beheved to he advantageons
for the classification petformance and for the teduction of the numbear of free parameters
of the classificr. This approach can be applied 1 terins of localized connectivity hetween
the input layer and the hidden layer, and w tetms of subdividing a recogmtion tash mto
several, hopefully casier subpioblems. In spite of the sttplilications introduced Ly the
modular approach, the complexity of the considered MLEP a5 shll impresaave T general

"Woshua Bengio, personal cotmmneation
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about 7100 connections wete necessary to discriminate adequately the 10 stop and nasal
sounds on a test set of 77 speakers.

The search for a mote adequate and mote compact topology for speaker independent
phoneme recognition m continuous speech is still an open problem. Rescarch should be
ditected towards non hinear networks that model the temporal organization of the speech
communication process with specialized architectures. These architectures will capture
mote information than a few contextual input frames.

What Are The Best Target Outputs ? The classification performance on stop
and nasal sounds improves significantly when the output of the ANN are distinctive
phonetic features, rather than phonetic labels (28 % decrease of the error rate). This
oulput 1epresentation has been extended to model the eflects of coarticulation by simply
multiplying the number of output nodes for the place of articulation, depending on the
nght context.

In addition, Principal Component Analysis of the output vector provides a small
number of statistically uncorrelated output features, as well as a set of target values
that match the behavior of the network for the training data more realistically than some
a priort desired values  This small set of uncorrelated features can be processed by a
statistical phonetic decoder (1 e. continuous densities hidden Matkov models).

In general, MLP can effectively compute some non linear features from the speech
signal. In the input feature space, the classes are not linearly separable, since a simple
peiception (1.e. a logistic 1egression machine) is able to classily correctly only 55% of
the test samples. Thus, we can look at the MLP as a non linear transformation of the
imput feature space that vields another feature space in which the classes aie more likely
to be lineatly sepatable To aclieve linear separability, it would not be necessary to set
the networkh to the same desited output for all the training tokens belonging to the same
class. Rather; one could try to adapt the targets to the training data.

Along this approach, the reported plosive recognition experiment coupled the MLP
outputs to the observation sequence of a continuous densities hidden Markov model. The
global optimization of all the patameters of the system permitied to adjust the targets
of the ML in order to better represent the network output distiibutions for the training
data. A different approach can be to search for a new analytical form of the etror criterion,
based on information theory [Gish 90], but without constramning the outputs to estimate
a posterion «lass probabilities,
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