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ABSTRACT 

Ph. D. 

The present work is concerned with the the ory and applications of integral pulse 

frequency modulation (lPFM). it essentially comprises three parts. In the first part, 

IPFM is studied by means of a spectral analysis. Single-signed IPFM is shown to be 

equivalent to a well-known method of modulation. A general method for spectral 

analysis of IPFM is developed, and the spectral characteristics of the output pulse train 

for a class of modulating signais comprising one or more sinusoids are examined in detail. 

Useful criteria are derived for synthesizing the modulators. 

The second part is concerned with the application of IPFM to analogue computa

tion. A method for implementing multipliers using IPFM is formulated and studied. In 

addition, a method of pulse frequency modulation originally proposed by Goldberg can be 

represented approximately in terms of single-signed IPFM, and is utilized to implement a 

divider. 

ln the third part, single-signed IPFM is used to investigate neural communication 

in the afferent pathway of the monosynaptic spinal reflex (MSR) in physiological systems. 

The signal transmission system, comprising many sensory units and neural paths in parallel, 

is mode lied and statistically analyzed. The analysis takes into consideration the distribu

tion of the spindle stretch thresholds, the dispersion of conduction speeds in the afferents, 

the effects of spatial distribution of synaptic inputs, and the noise introduced by the sen

s~ry encoding process. The results of the analysis show that the multiplicity of similar 

sensory units and of neuralpaths with different properties, is essential for fidelity of 

information transmission. 
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ABSTRACT 

The present work is concerned with the the ory and applications of integral 

pulse frequency modulation (IPFM). It essentially comprises three parts. In the first 

part, IPFM is studied by means of a spectral analysis. Single-signed IPFM is shown 

to be equivalent to a well-known method of modulation. A general method for spectral 

analysis of IPFM is developed, and the spectral characteristics of the output pulse train 

for a class of modulating signais comprising one or more sinusoids are examined in detail . 

Useful criteria are derived for synthesizing the modulators. 

The second part is concerned with the application of IPFM to analogue 

computation. A method for implementing multipliers using IPFM is formulated and 

studied. In addition, a method of pulse frequency modulation originally proposed by 

Goldberg can be represented approximately in terms of single-signed IPFM, and is utili

zed to implement a divider . 

!n the third part, single-signed IPFM is used to investigate neural communi

cation in the afferent pathway of the monosynaptic spinal reflex (MSR) in physiological 

systems. The signal transmission system, comprising many sensory units and neural paths 

in parallel, is modelled and statistically analyzed. The analysis takes into consideration 

the distribution of the spindle stretch thresholds, the dispersion of conduction speeds in the 

afferents, the effects of spatial distribution of synaptic inputs, and the noise introduced by 

the sensory encoding process. The results of the analysis show that the multiplicity of 

similar sensory units and of neural paths with different properties, is essential for fidelity 

of information transmission. 
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o CHAPTER 1 

INTRODUCTION 

1. 1 General Background 

Signais in many communication and control systems are in the form of a 

pulse sequence. This form of the signal may either be used to gain technical and 

economical advantages, or arise as a result of the intrinsic properties of the system. 

Thus pulses of fixed size and shape have been employed to overcome the problem of noise 

accumulation in long distance commun;cations, while the neural pulses in biological 

systems constitute a naturally evolved intrinsic method of information transmission. 

() There cre numerous methods for representin!) I:! message by a pulse train.
1

, 2 

However, they can be grouped into two basic categories, depending on whether the pulses 

are synchronous or asynchronous. White synchronous methods are generally popular in 

engineering applications, asynchronous methods have been preferred in some specialized 

systems, and furthermore seem to have been generolly favoured by nature. In particular, 

one class of asynchronous methods called pulse frequency modulation has been applied to 

învestigations in teleme:try, automatic control, bïo-electronics, and physiology by an 

. • be f k 4-26 
1 ncreasl ng num r 0 wor ers. The present thesls is concerned with the theory and 

applications of one particular type of pulse frequency modulation. 

By pulse frequency modulation (PFM) , we mean the c1ass of methods 

which convert a message signal into a train of pulses having iden'"ical size and shape but 

o possibly different signs ; further, the pulse frequency which is defined as the inverse of 

the spac!ng between adjacent pulses, is varied as some function of the signal magnitude. 
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Several schemes of PFM have been proposed in the literature. In one 

of the earlier schemes, the pulse train is derived from a frequency modulated continuous 

carrier. The message signal first modulates a sinusoidal wave and then a standard pulse 

is generated for each comp lete oscillation of the modu lated carrier. This method has been 

known in the 1 iterature as "pu Ise frequency modu lotion" or "continuous pu Ise frequency 

1-3 
modulation". To avoid confusion with the term defined in the previous paragraph, we 

shall cali this particular scheme "continuous pulse frequency modulation" (CPFM). In 

CPFM, the deviation from the unmodulated carrier frequency is approximately proportional 

to the magnitude of the message signal. 

. 27 28 
Another scheme was proposed earller by Goldberg.' ln this method, 

the modulating signal is fiïst made positive by a fixed bias and then compared with a posi-

tive romp signal having a pre-specified slope. When the two signais are equal, a standard 

pulse is emitted and the ramp is reset to zero ot the same instant. Then the whole process 

is repeated. The pulse frequency of the train produced by this method is inversely pro-

portional to the sampled signal magnitude. 

Recently, a simple but interesting scheme called integral pulse frequency 

modulation (lPFM) was proposed by Li and Meyer.
8

,9 ln this method, a pulse is 

initiated at the instant t
1 

when the magnitude of the time integral of the modulating 

signal reaches a pre-specified threshold value. The sign of the pulse is the sign of the in-

tegral at t
1

• After the pulse has been initiated, the integrator is reset to zero and the 

whole process is repeated. The resulting pulse train is "in phase" with the modulating 

signal in the sense that both the pulse and the modulating signal have the same sign at the 

pulse emission time. Usually the pulse frequency is approximately proportional to the 

modulating signal magnitude. 
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The invention of 1 PFM has motivated the proposai of three other schemes 

of pulse frequency modulation (PFM). In Clark1s method, the interval berween pulses is 

determined by the instantaneous value of the modulating signal at the beginning of the pulse 

. " h" 1 cl "d· 13 lust pnor to t e lnterva un er consl eratlon. ln fact, the pulse frequency is made 

linearly proportional to the scmpled signal magnitude. The other two schemes are generali-

zations of IPFM. One of them was proposed by Pavlidis, and is cclled sigma pulse 

frequency modulation (tPFM). 16 ln one version of this scheme, the integrator in 1 PFM 

is replaced by a first order time-invariant low-pass filter so that a pulse is emitted when 

the output of the filter reaches a pre-specified threshold value. The third method, pro-

posed by Blanchard, is a further generalization ca\led functional pulse frequency 

modulation (FPFM).18 ln this method, the modulator emits a pulse when a functional of 

the modulating signal reaches the threshold value. The frequency of the pulse train pro-

duced by these latter two schemes is in general a nonlinear dynamic function of the modu-

lating signal. 

From among the schemes of PFM described above, integral pulse frequency 

modulation (lPFM) appears to possess the greatest number of valuable properties. Its 

modulator and demodulator are simple to implement. It has good immunity against both in-

put and channel noises. It combines some of the better features of pulse code modulation 

with the analogue features of frequency mociulation. It can easily encode both discrete 

and continuous input signaIs. It tends to reduce redundancy in the sense that a pulse is 

emitted only when thot is necessary. In addition to these properties which are valuable for 

engineering applications in communication and control systems, 1 PFM has other important 

characteristics which are useful for biological investigations: As a very important parti-
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cular case, single - "Signed IPFM is functionally similar to neural pulse modulation in 

neuro-physiological systems. In comparison with the other PFM schemes, IPFM is more 

versatile than both CPFM and the schemes proposed by Goldberg and Clark. In compari-

son with rPFM and FPFM, it is less sophisticated than these latter for modell ing neural 

elements, but is mathematically more tractable than the generalized schemes. Thus, 

IPFM is a simple but versatile method of asynchronous pulse modulation. Its importance 

for engineering and biological investigations is evidenced by the number of works reported 

in the literature. In the present thesis, IPFM is analyzed and applied to both engineer-

ing and neuro-physiological investigations. 

1 .2 Previous Works Related to Integral Pulse Fre9uency Modulation 

Integral pulse frequency modulation (1 PFM) was first defined in 1959 by 

Li and Meyer as a result of search for a suitable model of the pulse-generating mechanism 

in sensory receptors of the nervous system. 22 It was subsequently incorporated into linear 

feedback control systems. Li8
 

and recently Blanchard and Jury17,18 have analyzed the 

stability of such systems, while Meyer
9 

has established the existence and characteristics of 

various types of sustained oscillations in them. Farrenkopf et al have applied 1 PFM to 

attitude control of space craft and found it superior to certain other common on-off control 

10 
schemes. Ciscato and Moriani have used it to accomplish adoptive sampling, thereby 

. . . 1 1· ff·· 11 
Improvmg signa samp mg e IClency. 

IPFM has also been investigated as a method of information transmission. 

Li ha!. studied the lIapproximate frequency response Il (I.e. describing functions) of the 
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modulator and examined the effect of Gaussian channel noise on the output pulse train.
8 

1 BI h d 18 d Ba bO d Co 19 h 0 0 d th 0 0 Recent y, anc or, an m 1 an Iscato ove mvestlgate e mput nOise 

filtering properties of the modulator. For demodulation, li has proposed the use of a 

o 0 0 1 fOI 8 d BI h d h t d h ,. l 0 hme-mvanant ow-pass 1 ter, an anc or os sugges ete use or a agranglan 

o 1 0 h d 1 0 18 mterpo atlon met 0 as an a ternatl ve • 

ln addition to these engineering investigations, IPFM has been applied 

to the study of physiological systems. li and Jones have analyzed feedback systems 

which simulated the basic dynamic structure of reciprocal inn~rvation in neuro-muscular 

systems~,23 Partridge has studied the frequency response of the muscle by stimulating its 

efferent nerve with a pulse train from an integral pulse frequency moaulator. 25 Further-

more, assuming single-signed IPFM as the actual neural pulse generating mechani:;m, 

Partridge has also investigated signal distortion introduced by the neural encoding process, 24 

while more recently, Bayly has examined the spectral characteristics of pulse freqüeiicy 

d 1 0 0 h 26 mo u atlon ln t e nervous system. 

1.3 Outline of the Thesis 

ln Chapter Il, sorne of the fundamentals of integral pulse frequency (1 PFM) 

are reviewed and re-examined. IPFM is here precisely defined and the validity of a 

functional mode 1 of the modulator is established. Continuous pulse frequency modulation 

(CPFM) is then shown to be equivalent to single-signed integral pulse frequency modulation 

(S - S 1 PFM). A new and versatile method for hardware implementation of 1 PFM is pre-

sented. Then, demodulation using analogue and digital filters is discussed. 
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ln Chapter III, IPFM is studied by means of a spectral analysis. A general 

method for spectral analysis of S - S IPFM is developed. The spectral characteristics 

of pulse trains produced by modulating signais comprising one or more sinusoids are examined 

in detail. Then, by using the results obtained, useful criteria for synthesizing the 

modulator are derived. Finally, the spectral characte(istics of a pulse train produced by 

double-signed IPFM are examined in detail, and the results are utilized to derive a 

criterion for selecting the modulator threshold. 

Chapter IV is concerned with the application of IPFM to analogue com

putation. A method for implementing multipliers using IPFM is formulated and studied. 

The method of pulse frequency modulation originally proposed by Goldberg is shown to be 

representable byan S - S IPFM model, and is then used to formulate a method of analogue 

division. Lastly, the results of a computer simulation study are shown to verify the feasibility 

of the proposed methods. 

ln Chapter V, S - S IPFM is used to investigate the functional significance 

of the multiplicity of sensory units and neural paths employed in peripheral neural communi

cation in physiological systems. In particular, the transmission of signais in the afferent 

Iimb of the monosynaptic spinal reflex (MSR) of the neuro-muscular system is examined for 

the present purpose. The pertinent features of the MSR are first briefly reviewed. Then, 

the afferent limb of the MSR is modelled and statistically analyzed, taking into considera

tion the variations of properties in the multiplicity of neural elements and paths. Finally, 

the results of a computer simulation study are presented and discussed. 
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Lastly, Chapter VI concludes with a summary of the main results. Areas 

for further research are suggested and briefly discussed. 

l .4 Claim of Contributions 

ln the author's belief, the present work contributes knowledge to both 

engineering and physiology. The maior contributions claimed are : 

1. $ingle-signed integral pulse frequency modulation ($ - $ IPFM) 

is shown to be equivalent to continuous pulse frequency modula-

tion (CPFM). This demonstration eTfecfivelybroadens "the knowledge 

of IPFM in the sense that what is known about CPFM is appli

cable to $ - $ IPFM, and vice versa. (Chapter II). 

2. A general method for the spectral analysis of integral pulse fre

quency modulation (lPFM) is developed. In particular, the 

analysis presented in the present work makes possible a better 

understanding of the information transfer characteristics of 

1 PFM. Useful criteria are derived for synthesizing the modula

tors. (Chapter III). 

3. A method for implementing analogue multipliers is formulated 

using IPFM. Goldberg's method of pulse frequency modulation 



is shown to be approximate Iy representable in terms of S - S 1 PFM, 

and is utilized to implement an analogue divider. (Chapter IV). 

4. The functional significance of the multiplicity of sensory units 

and neural paths employed in peripheral neural communication 

in physiological systems is establ ished through, a statistical study 

of the afferent limb of the monosynaptic spinal reflex (MSR). In 

particular, it is shown that the variation in the transmission times 

of the afferent paths, plus subsequent summation of afferent pulse 

trains in the a - motoneuron, together constitute a low-pass filter 

whose characteristic is needed for accurate demodulation. In 

general, the multiplicity of similar sensory units and of neural paths 

with different properties is found to be essential for fidelity of in

formation transmission. (Chapter V) • 

8 
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CHAPTER Il 

FUNDAMENTALS OF INTEGRAL PULSE FREQUENCY MODULATION 

2. 1 Introduction 

The fundament(Jls of integral pulse frequency modulation (IPFM) essential for 

subsequent analyses are presented in this chapter. We shall define IPFM preciselyand 

state the assumptions. A functional model of the mQdulator will be described and then 

shown to be an exact representation of the modulator input - output re lations. This 

model will be used for subsequent analyses throughout the present work. We shall show 

next that continuous pulse frequency modulation (CPFM) is equivalent to a particular sub-

class of IPFM, namely, the single-signed IPFM. Although both IPFM and CPFM 

have been known for more than nine years, it appears that this equivalence has not been 

established before. A new and versatile method for implementing the integral pulse fre-

quency (IPF) modulator will then be described. This method is similar to the generation 

of neural pulses in the nervous system. Finally, demodu lation of 1 PFM using analogue 

and digital filters wi Il be discussed. 

2.2 Definitions and Assumptions 

Recently several types of modified integral pulse frequency modulation 

(IPFM) have been discussed in the Iiterature.
19

,24 However, the y appear to have rather 

restricted applications and are little different from the unmodified version originally de

fined by Li and Meyer .S, 
9 

Thus, these modified IPFM will not be considered in the 

present work. In the following, we shall be concerned only with the well-known unmodi-

fied version defined below. 



10 

IPFM is defined as the encoding process which converts a bounded integrable 

signal x (t) into a pulse train with the following properties : 

1 • If the pulses are numbered sequentially by the positive integers, 

2. 

3. 

i = l, 2, 3, ... , then the emission time t. of the ith pulse is 
1 

determined by the criterion 

t. 

1 1 (i-1, i) 1 == 1 l 1 x (t) dt 1 = a (2-1) 

t. 1 i=l, 2, 3, ••• 
1-

where to = 0 and "a" is a p~e-specifiedpositive constant called 

the modulator threshold. The input signal x (t) is assumed integrable 

for ail intervals (t. 1 ' t.) • 
1- 1 

The sign q. of the ith pulse is the sign of 1 (i-1, i) • 
1 

The ith pulse is completely characterized by q. p (t-tJ where p (t) 
1 1 

is a pre-specified function describing the pulse shape and size. For T > 0, 

p (t) fo 0, o ~ t '!:: T 

- 0, otherwise • 

If the pulse is an impulse of strength d, then p (t) = d • U (t) 
o 

where U (t) is the unit - impulse function. We will cali Il T .. 
o 

the pulse width and p (t) the IIpulse - shape function". 

4. The pulses do not overlap. This condition implies that the pulse width is 

less than the minimum possible (t. - t. 1) for ail i. The assumption 
1 1-

that the input signal is bounded makes it always possible to fulfill this 

condition. 
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The encoding process defined above is illustrated in Figure 2-1. The modu

lator has the input signal x (t) and the output pulse train x* (t). The output pulse has 

been assumed to be rectangular. The modulating signal x (t) is integrated, w ith the 

initial condition of the integrator set to zero at t = o. When the absolute value of the 

integral 1 (t) reaches the pre-specified threshold value a at time t1 ' the modulator 

emits at this time a pulse. The sign of the pulse is the sign of the integral at t 1 (which 

is positive in this example). At the instant when the pulse is initiated, the integrator is 

reset to zero. Then the whole cycle is repeated. 

When the output of the modulator consists of both positive and negative 

pulses as shown in Figure 2-1, the modulation is known as double-signed IPFM (D-5 IPFM). 

When the output contains pulses with one sign only, the modulation is called single-signed 

IPFM (5-5 IPFM). To achieve D-5 IPFM, the input x (t) of the modulator must have 

both positive and negative values. On the other hand, to achieve 5-5 IPFM, it is 

necessary that either 1 (i-l, i) = a or 1 0-1, i) = -a for 011 i. To satisfy this re

quirement, it is sufficient, although not necessary, that either x (t) :ë!: 0 or x (t) ~ 0 

for 011 t. Hence, a message signal with both positive and negative values con be en

coded by 5-5 IPFM provided a suitable biasing constant is added. 

ln defining integral pulse frequency modulation (IPFM) we have assumed 

that the modulating signal is bounded and integrable. in any finite interval. Thus signais 

containing impulse functions are not allowed. However, the modulating signal can be 

either continuous or piece-wise continuous. As an example, the input can be rectangular 

pulses, provided the modulator threshold a and the output pulse shape are so chosen that 

the output pulses do not overlap. 
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FIGURE 2-1. ILLUSTRATING THE PROCESS OF INTEGRAL PULSE FREQUENCY 
MODULATION. OPFM) • 
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Furthermore, we shou Id note that a Il output pu Ises have the same pre -specified 

shape and size described by a given function p (t). Hence, the output of the modulator 

is completely characterized by the sequence of pulse emission times t1 ' t2 ' ••• , t
i 

' ••• , 

and the sequence of pulse signs ql ' q2 ' ••• , qi ' ••• . In the next section, we shall 

use this fact to show that the modulator can be represented exactly by a functional model. 

2.3 A Functional Model of the Modulator 

ln order to facilitate analysis, it is desirable to represent the input - output 

relations of the integral pulse frequency (lPF) modulator by a model. We shall coll such 

a model a "functional model". 

A functiona 1 mode 1 of the 1 PF modu lator is shown in Figure 2-2. It is 

essentially Meyer's "equ ivalent network Il,9 and comprises an integrator, a uniform quon-

tizer with hysteresis, a dHferentiator, and a Iinear system described by a transfer function 

P (s). The transfer characteristic of the quantizer is shown in Figure 2-3. The quan-

Quantizer 

FIGURE 2-2. A FUNCTIONAl MODEl OF 

THE INTEGRAL PULSE FREQUENCY 

(lPF) MODUlATOR. 

1 

3d 

2d 

d 

·'-·-30· -20 -a 0 z 

a 20 30 

-cl 

-2d 

-3d 

FIGURE 2~3. TRANSFER CHARACTERISTIC 

OF THE QUANTIZER Q WITH 

HYSTERESIS. 
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tizing level a is equal to the modulator threshold. The arrows in the transfer charac-

teristic indicate the only paths olong which P2 con vary as z is changed. When z 

is increasing, P2 con increase from one discrete value to another only by following the 

upward arrows. When z is decreasing, P2 con iiecrease from one discre"te value to 

another only by following the downward arrows. Thus the quantizer converts z Ct} into 

a staircase function P2 Ct) with uniform step size d. When P2 (t) is differentiated 

by the differentiator, a train of impulses with equal strength cl is produced. Conse-

quently, the output of the modulator is a train of pulses with identical size and shape 

specified by the impulse response of the Iinear system P (s) and the impulse strength d. 

An example of the signais at various points in the block diagram of the model (Figure 2-2) 

is shown in Figure 2-4. Note that at any instant t. when an impulse is generated by 
1 

differentiating the step function, the integrator output z (t.) is necessarily equal to ma , 
1 

where m is an integer. 

Since the functional mode 1 will be used as a basic tool for analysis throughout 

the present work, we shall now show that the model exactly represents the input - output 

relations of the 1 PF modulator. We shall achieve this objective by proving that both the 

modulator and its model have exactly the sorne output for the same arbitrary bounded inte-

grable input signal. 

, 

It has been pointed out in the previous section that for a given pulse-shape 

function p (t) known a priori, the output of the modulator is completely charocrerized by 

the pulse emission times t. and their signs q. , i = 1, 2, 3, •••• Hence, ossuming that 
1 1 

the model's output pulse shape and size con be made identical to p (t) byappropriate 

choice of d and P (s), both the modulator and the model will have the some output,pro-
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vided they both emit pulses of the same polarity at the some instant of time. Thus, we 

proceed as fo Il ows • 

Let x (t) be an arbitrary bounded integrable modulating signal applied to the 

modulator and its model at t = o. Then, by definition,the modulator will emit its first 

pulse at t = t
1 

when 

1 (0, 1) 1 

t
1 

= 1 l x (t) dt 1 = a • 

o 

The pulse is positive if 1 (0, 1) = a , or negative if 1 (0, 1) = -a. Now, let the pulse 

emission time of the model be defined as the instant at which the impulse is applied to the 

1 inear system P (s). As specified by the transfer characteristic of the quantizer, P2 (t) 

will change bya step d when the integrator output z (t) reaches either the value a 

or the value -a from the zero initial value. An impulse is generated by the differen-

tiator at the instant when the step occurs. Hence, the model will emit its first impulse 

and thus its first pulse at ti when 

t l 

1 

1 z (t;) 1 = 1 l x (t) dt 1 = a. 

o 

Since the sign of the lmpuise is the sign of the step change, the output pulse is positive 

if z (t;) =a, or negative if z (ti) = -a. Clearly, z (t;) = 1 (0, 1) and thus t; =t1 

for both positive and negative pulses. Therefore, both the modulator and its model emit 

the first pulse with the same sign at the some instant of time. 

The coincidence' of ail subsequent pulses can be simi larly proven. Thus let 

us assume, for the present, that both the modulator and its model emit the (i-1)th pulse 
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at t. 1. By definition the ith pulse will be emitted by the modulator at t. when 
1-

1 

Equation (2-1) is satisfied. The pulse is positive if 1 (i-1, i) = a, or negative if 

1 (i -1, i) = ~ • Since the model also emits a pulse at t. 1 ' as pointed out above we 
1-

must have z (t
i
_1

) = ma, where m is an integer. Hence, P2 (t) will change bya 

step when z (t) reaches -either the value ma + a or the value ma - a. And th us the 

model will emit the ith pulse at t! when , 

i.e. 

z (t!) = ma ± a 
1 

1 z (ti) - z (t i -1) 1 = a 

t 
Since z (t) = J x (t) dt, Equation (2-2) can be re-written as 

o 

x (t) dt 1 = a 

t. 1 1-

(2-2) 

(2-3) 

The pulse is positive if the step change in P2 (t) is positive, that is, if z (t!) - z (t. 1) = a • 
1 1-

Otherwise, the pulse is negative. Keeping this point in mind and comparing Equation 

(2-3) with Equation (2-1), we have t! = t. for both the positive and the negative pulses. 
1 1 

Therefore, both the modulator and its model emit the ith pulse with the same polarity at 

the same instant t., provided that they have emitted the (a-l) th pulses coincide!"!t!y. 
1 

Since their first pulses have been shown to be coincident, the output pulse train of the 

model must coincide with that of the modulator. Therefore, the modulator and its model 

have identical output for any arbitrary bounded integrable input signal. That is, the 

functional model shown in Figure 2-2 represents exactly the input - output relations of 

the modu lator • 

1 
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We have assumed in the above proof that the output pulse shape and size can 

be matched exactly by appropriate choice of the parameter d and the linear system P (s) 

in the model. Clearly we can choose d and P (s) independently witTIùUt affecting the 

sign and emission time of the pulse. Hence, the above assumption is valid, provided 

the pulse-shape function p (t) can be considered as the impulse response of a linear 

system. 

The mode 1 shown in Figure 2-2 is applicable for both D - S IPFM and 5 - 5 

IPFM, but can be simplified if the modulation is single-signed. For this case, z (t) is a 

monotonic function of time because either x (t) ~ 0 or x Ct) ~ 0 for ail t ~ 0 • 

Hence z (t) traverses eii'her the upward or the downward path of the qucntizer transfer 

characteristic only. This simplified model for 5 .. 5 IPFM with positive pul~s is shown 

in Figure 2-5. 

x(t) ~O 

·1 
1 
s 

FIGURE 2-5. 

P2 

z(t) 2 p 2(t) 

·1 
y (t) .1 p(s) x*(t) 

S • 
d 

0 o 20 z 

A MaDEL FOR THE 5INGlE-5IGNED INTEGRAL PULSE FREQUENCY 

(5 - 5 IPF) MODULATOR. 

Concerning the block diagram of the mode 1 , we should emphasize tOOt the 

diagram is used only for analysis and it should not be confused with the actuol imp!ementation 

of IPFM. Clearly, it is not feasible to implement S - S IPFM using Figure 2-5 
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directly since both the integrator and the quantizer must theoretically have infinite 

dynamic range. Methods of implementation will be described in Section 2.5 after we 

establish the equivalence of continuous pulse frequency modulati~n to S - S IPFM in 

the next section. 

2.4 The Equivalence of Continuous Pulse Frequency Modulation (CPFM) to S - S IPFM 

It was pointed out in Section 2.2 that a necessary condition for achieving 

single-signed integral pulse frequency modulation (S - S IPFM) is that either 

t. 
1 r x (t) dt ~. 0 

u 

t. 1 1-

t. 
or 1 l x (t) dt ~ 0 

t. 1 1-

for ail i. This condition is sufficiently satisfied provided either x (t) ~ 0 or x (t) ~ 0 

for ail t ~ o. The input signal can be represented as a sum of two components. That is, 

for a modulator emitting positive output pulses, we have 

x (t) = X +.f (t) ~ 0 
o 

where X is a positive constant and f (t) is a function of tirne with both positive and 
o 

(2-4) 

negative values. WithO'.Jt loss of generality, we define X as a biasing constant added to 
o 

a message signal f (t). Substituting Equation (2-4) into Equation (2-1) and noting that 

in this case the integral is always non-negative, we have the following crfterion for pulse 
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emission in 5 - 5 IPFM: 

t. 

I
l 

(X 0 + f (t» dt = a. (2-5) 

t. 1 1-

The pulse emission times t. , i = l, 2, 3, ••• , determined from this relation completely 
1 

characterize the output of the modulator, since the output pulses are ail positive and the 

pulse-shape function is known à priori. 

We have stated earlier that a method of asynchronous pulse modulation known 

1-3 
as "continuous pulse frequency modulation Il (CPFM) or "pulse frequency modulation" 

can be shown to be equivalent to 5 - 5 IPFM. In CPFM, a pulse train is derived from 

a sinusoidal carrier which has been frequency modulated by the message signal. The 

pulse train is produced by generating a standard pulse for each complete oscillation of the 

modulated carrier. We now show the equivalence of CPFM to 5 - 5 1 PFM as follows. 

Let the message signal f (t) in 5 - 5 IPFM be the input to the analogue 

frequency modulator at t = o. Then, the modulated sinusoidal carrier is given by2 

t 
e (t) = E sin «(,J t + C 

·c 0 
+ b J f (t) dt) , (2-6) 

o 

where E, C ,ie,,) , and b are constants. E and C are respectively the amplitude 
o c 0 

and the initial phase angle of the carrier, while Ci) is the unmodulated carrier frequency. 
c 

Equation (2-6) can be re-written as 
t 

e (t) = E sin [J ~(.) c 
o 

+ bf (t» dt + C ] 
o 

t 
= E cos Co. sin [J «(,Jc + bf (t» dt ] 

o t 

+ E sin C • cos [ J ((,J + bf (t»' dt]. o ' c 
o 

(2-7) 
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If a standard pulse is generated when e (t) = E sin C for each complete oscillation of the 
o 

modulated carrier e (t), the ith pulse will be emitted at t. when 
i 

t. 
1 f (1.) + bf (t)) dt = i 2 'Ir , 

o C 

i = l, 2, 3, .•.• 

(2-8) 

Let t. 1 be the emission time of the (i-l)th pulse. Then, Equation (2-8) can be re-1-, 

written in the format of Equation (2-5) • 

t 
i f (lo) c + bf (t)) dt = i 2 'Ir 

t. 1 1-

Thus 

t. 1 1-

- f (Col . c + bf (t)) dt 
o 

= i 2 'Ir - (i - 1) 2 'Ir = 2 'Ir • 

t. 
i.e. 1 

f Wc 2 'Ir (r + f (t)) dt = b . 

t. 1 1-

Equation (2-9) is the criterion for pulse emission in CPFM. If 'Co) and b are 50 
c 

Wc 2 'Ir 
chosen such that b = X

o 
and b = a, Equations (2-9) and (2-5) become 

(2-9) 

identical. Therefore, for these values of the modulator parameters, the pulse emission 

times in CPFM are identical to those in S - S IPFM. Consequently, CPFM is equi-

valent to S - S IPFM. 

Although CPFM and lPFM have been known since the 194O's and 1959 

respectively, it appears that the equivalence of CPFM to· S - S IPFM has not been 

established before. This demonstration effectively broadens the knowledge on IPFM in the 

sense that what is known about CPFM is applicable to S - S IPFM and vice versa. 

Furthermore, knowledge of this equivalence will hopefully prevent repetition of past work 

occurring in future. 
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2.5 Implementation of IPFM 

Integral pulse frequency modulation (IPFM) can be implemented in a variety 

of ways. A method using analogue computer hardware has been described by Li. 
8 

Im-

plementation by electronic hardware can be accomplished using the method of continuous . 

pulse frequency modulation described in the previous section. In addition, Inose and 

Yasuda have proposed an electronic encoder which implements S - S IPFM approximately~9 

Another approach to implementing IPFM is to use incremental encoders. As an example, 

the shaft speed of a motor can be encoded into a train of identical pulses using an incre-

mental tachometer. Referring to Figure 2-2, the shaft speed is the modulating signal x (t), 

the shaft position is the output z (t) of the integrator, and the incremental encoder corres-

ponds to the remainder of the block diagram. In the following, we shall describe a new 

and versatile method which resembles neüïûl pulse generation. 

The feedback system shown in Figure 2-6 is proposed for implementing 

S - S IPFM. This system will be extended later to implement 0 - S IPFM. The modula-

tor can be constructed using common electronic hardware components. Il requires only 

two amplifiers, one integrator, one comparator such as the Schmitt trigger, and one pulse 

gen~rator such as the monostable multi-vibrator. 

The operation of the modulator is illustrated in Figure 2-7. The modulating 

signal x (t) is applied at t = 0, with ail other signais in the system initially set to zero. 

Until the first pulse is emitted, the output of the integrator is 

t 

1 (t) = J Kl x (t) dt • 
o 
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FIGURE 2-6. A SINGLE-SIGNED INTEGRAL PULSE FREQUENCY (S - S IPF) MODULATOR. 
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24 

When 1 (t) = b at some time t = t 1 ' the input to the pulse generator is abruptly changed 

From m = 0 to m == c. Thus, the pulse generator is triggered to emit a standard pulse. 

Now this output pulse is fed bock negatively to the input to cause 1 (t) to decrease to-

wards zero. Thus, m is reset to zero and the trigger to the pulse generator is removed. 

Since the feedbock signal is non-zero only during the output pulse, 1 (t) will increase 

again to the value b to trigger the second pulse, and so on. 

ln order to show that the method under consideration implements S - S 1 PFM, 

let us examine the criterion by means of which the pulses are emitted. First, we define 

the pulse emission time as the instant at which the pulse generator receives the trigger. 

Thus, as shown above, the first pulse is emitted at t 1 when the following criterion is satis-

Fied. 

i.e. 

when 

t
1 

1 (t 1) == J R1 x (t) dt = b • 
o 

t
1 J x (t) dt == b / K1 • 

o 

As to the subsequent pulses, the ith pulse will be emitted at t. 
1 

t. 

J
I 

(x (t) - K
2 

x* (t» dt + 1 (t
i
_

1
) == b , 

i == 2, 3, 4, .•• 

(2-11) 

(2-12) 

where t. 1 is the emission time of the Q-1)th pulse. Since the (i-1)th pulse is emitted 
1-

at t. 1 ' 1 (t. 1) must be equa 1 to b. Hence, Equation (2 -12) becomes 
1- 1-
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1 1 

l x (t) dt = J K2 x* (t) dt. (2-13) 

t. 1 t. 1 
I- I-

Assuming that the output pulses do not overlap, then, in the interval (t. 1 ' t.), there 
1- 1 

is exactly one pulse in x* (t), namely, the (i-1)th pulse. Thus, if the area of the 

pulse is A, Equation (2-13) simplifies to, 

t. 
1 

l x (t) dt = K2 
A (2-14) 

t. 1 
1- i = 2, 3, 4, 

Equations (2-11) and (2-14) are the criteria used by the feedback system for pulse emis-

sion and can be made identical to Equation (2-1) which is the criterion for pulse emission 

in IPFM. Clearly, if we set K2 
A = ~ = a, Equations (2-11) and (2-14) com-

1 

bined together will be identical to Equation (2-1). Therefore, the system shown in Figure 

2-6 can implement S - S IPFM exactly. 

ln the above discussion, we have implicitly assumed that there is sufficient 

negative feedback to remove the trigger to the pulse generator in a small fraction of the 

duration of the output pulse. For rectangular output pulses, this condition implies that 

K
2

h > x (t) for ail t ~ 0, where K
2 

is the gain in the feedback pa th and h is the 

he ight of the pu Ise. In practi ce, the upper bound of the modulating signal will be less 

than K2 h because the components have inherent dynamics and thus do not exhibit the 

idea 1 transfer characteristi cs assumed. 

The above method of implementing S - S IPFM is versatile and has other 

potentially useful applications. The system of Figure 2-6 has four independent adjustable 

parameters, Kl' K2' b, and A. The parameters K1 and b control only the emission 
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of the first pulse, while K.2 and A control: ail subsequent pulse emissions. When the 

output pulse shape and size are pre-specified, the threshold of the modulator can be 

easily changed byadjusting K2 . Now, if the output pulse is rectangular and a sampling 

gate is inserted in the feedback path as shown in Figure 2-8, the threshold of the modu-

lator wi" vary linearly with the amplitude of the sampled signal y (t). This latter feature 

may prove to be valuable if IPFM is used in an adaptive control system. 12 ,30 It may 

also be useful for implementing optimized pulse frequency controls.
14 

Furthermore, the 

feedback system in Figure 2-6 can be considered as a reasonable model of the neural 

encoder. (See Chapter V). Thus, with the threshold easily controllable by a time-varying 

function, the system can be usefully applied to model neural elements with time-varying 

thresholds. 

x (t) ~O+ Kl 1 (t) 

i=1 
Pulse 

x* (t) m 
r Generator 

-

K2 
Sampling 

Gate 

y (t) > 0 

FIGURE 2-8. S - S IPF MODULATOR WITH TIME-VARYING THRESHOLD. 
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The feedback system of Figure 2-6 can be extended as in Figure 2-9 to 

implement D - S IPFM. The principle of operation of the resultant system is similar 

to that described above for S - S IPFM. When 1 (t) is positive and equal to b, Pulse 

Generator 1 is triggered to emit a positive standard pulse while Pulse Generator 2 has 

zero output. When 1 (t) = -b, Pulse Generator 2 emits a negative standard pulse while 

Pulse Generator 1 similarly has zero output. Following the procedure for analysing the 

single-signed modulator, it can be demonstrated that the system shown in Figure 2-9 can 

be represented by the model in Figure 2-2, provided that we set K
2 

A = b / Kl' where 

A is the area of the pulse. 

x(t)::?:o+ 

FIGURE 2-9. 

~r:l~ 1 H .... ~ _~_!_~_e_ra_t_o_r:1 --
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2 

IMPLEMENTATION OF 0 - S IPFM • 
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2.6 Demodulation 

There are two general methods for demodulating an integral pulse frequency 

(IPF) modulated pulse train. One method recently proposed by Blanchard is based on 

the lagrangian interpolation formula,'8 and is essentially a numerical method for com-

puting an approximation of the modulating signal. In its practical version, the computed 

approximation is simply the instantaneous pulse frequency multiplied by the modulator 

threshold a with the proper sign attached. Thus, if t. and q. are respectively the 
1 1 

emission time and the sign of the ith pulse, then the demodulated signal is 

X (t) = L q. 1 a 
1+ [U 1 (t-t.) - U 1 (t-t. 1)) 

t. 1 -te - 1 - 1+ 
1+ 1 

(2-15) 

i=l 

where a is the threshold of the modulator and U -1 (t) is the unit step function. The 

resulting signal is a staircase function of time. 

The other general method was proposed by li •
8 

Through a qualitative argu-

ment, he concluded that a linear time-invariant low-pass filter should be used for demodu-

lation. This method has proved effective when the pulse frequency is much higher thon the 

modulating signal frequency. However t the use of a low-pass filter to demodulate a single-

signed IPF modulated pulse train was actually establ ished long ago for continuous pulse 

frequency modulation, 32 which we have now shown to be equivalent to S - S IPFM. 

The detection of an analogue frequency modulated signal bya cycle counter is also based 

on this method. 33,34 Compared with Blanchard's method, lits method is simpler to imple-

ment and appears to be more effective in practice. In the foHowing we shall examine some 

aspects of this latter methéd of 'demodulation. 
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Consider the system shown in Figure 2-10. The pulse train from the modulator 

is to be demodulated by a linear low-pass filter described by the transfer function H (s). 

Let 9 (t) be the unit impulse response of P (s) H (s). Then, for zero initial conditions 

at .,. = 0 , the demodulated output of the system is 

.,. 
x (T) = l v (t) 9 (.,. - t) dt. 

o 

But v (t) is an impulse train given by 

v (t) = d \' q. U (t-t.) 
Llo 1 

i=l 

(2-16) 

(2-17) 

where U (t) is the unit impulse function ; d is the strength of the impulse; q. and t. 
011 

are respectively the sign and emission time of the ith pulse. Substituting Equation 

(2-17) into Equation (2-16) and simplifying, we have 

x (i) = d L q i . 9 (.,. - t i ) 

i=l 

(2-18) 

From Equation (l-18l we see that the demodulated output is a linear summation of pulse 

responses of the filter H (s) {or alternatively the impulse responses of P (s) • H (s». It 

is interesting to note that this characteristic is similar to both the temporal summation of 

postsynaptic potentials in the neuronal membrane and the summation of twitch responses 

in the muscle'. 
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x (T) 

~ H Q H S I~ x*<tl1 H (s) 
X (t) .. 

s (s) ~4O •• 

IPF Modulator Fiiter 
Demodu1 ator 

FIGURE 2-10. A COMMUNICATION SYSTEM USING IPFM. 

The unit impulse response 9 (t) of P (s)· H (s) can be approximated by a 

series of rectangular pulses as shown in Figure 2-11. Thus, 

where 

L< 

g(t) /:::S L [U_
1 

(t-T
k

_
1
)-U_

1 
(t-T

k
)] • gk - g*(t) , 

k=l 

9 (rk-1) + 9 (rk) 
, k = l, 2, 3, .•• K 

2 

and T k are .as def,ined in. the diagram. 

Substituting Equation (2-19) into Equation (2-18), we have 

K 

(2-19) 

x ('T) ~ L L d qi gk [U_1 (Mi -Tk- 1) - U_1 (7'-ti -Tk ) (2-20) 

i=l k=l 

When the IPF modulated pulse train is single-signed, Equation (2-20) can be 

automatically computed bya network consisting or pulse delay units and pulse generators
3S

,36 

as shown in Figure 2-12. The delay times are given by 
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FIGURE 2-11. APPROXIMATING THE PULSE RESPONSE BY A ST AIRCASE FUNCTION. 
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FIGURE 2-12. A NETWORK FOR IMPlEMENTlNG EQUATION (2-20) FOR 
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The pulse generators are triggered sequentic.ily by the input pulse as the latter propagates 

through the delay line. The kth· generatoi'.P .G:k emits a rectangular pulse with 'width ~k 

and height d9
k

• The outputs from the generators are added instantaneously to produce 

the output of the network. For a single pulse input, the network generates the approxi-

mate pulse response g* (t) given by Equation (2-19). When the input is a pulse train, 

the pulse responses are added together as in Equation (2-20) to produce an approximation 

of the modulating signal. 

The delay . times Dk have been assumed to be unequal for general ity, but to 

simplify construction, the y could weil be made ail equal. However, for the seme degree 

of approximation of the pulse response 9 (t), less network elements are needed if T
k 

and 

thus Dk are chosen optimally without this constraint. 

There is an upper bound for the delay times. A triggered pulse generator 

such as the monostable multivibrator cannot respond to a subsequent trigger before the out-

put pulse is completed. Since the generator must emit a pulse for each pulse input 1 

and since the. output pulse:width. of" th~kth geherator .is equal to the kth:· deley . 

time D"r the maximum delay time must be less than the minimum of ail the input pulse 

intervals, t. 1 - t .. 
1+ 1 

The network shown in Figure 2-12 can be extended to demodulate double-

signed IPF modulated pulse trains. As shown in Figure 2-13, two networks similar to 

that shown in Figure 2-12 are connected in parallel • The upper network is sensitive 

only to positive input pulses while the lower- network is sensitive only to negative input 

~pulses. Otherwise, the two networks are identical. 
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sensitive only to negative 

input pulses. 

FIGURE 2-13. A NETWORK FOR IMPLEMENTING EQUATION (2-20) 

FOR DOUBLE - SIGNED PULSE TRAINS. 
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X (t) 

The network shown in Figure 2-12 is a particular form of real-time digital 

fil ter .37 This particular form is possible because the IPF modulated pulse train com-

prises pulses of fixed size and shape. Although the network is more complex than the 

analogue filter for demodulating IPFM, it has the inherent advantageous properties of the 

digital filters. It offers a greater degree of accuracy and freedom in filter realization, 

since certain realization problems akin to negative elements do not arise. Furthermore, 

it may be more compact and economicC11 than the analogue filters in the low frequencies' 

where the size of analogue components becomes appreciable. 

ln the above discussion we have implicitly assumed that the IPF modulator 

has been properly designed 50 that a low-pass filter can recover the modulating signal 

with little error. In the next chapter, we shall examine through a spectral analysis the 

effects on the output pulse train due to both the modulator parameters and the characteris-

tics of the modulating signal. 
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CHAPTER III 

SPECTRAL ANALYSIS OF INTEGRAL PULSE FREQUENCY MODULATION 

3.1 Introduction 

Although integral pulse frequency modulation (lPFM) has been applied to 

• • nd h·'· 1· •. b b f k 8-11,17-19,22-26 
engineering a neurop ySlo oglca investigations y a num er 0 wor ers, 

its information transfer characteristics have not been adequately explored, apparently be-

cause of the difficulty in obtaining a mathematically tractable expression for the output 

pulse train.
18 

There are only a few repurted works in this area. Li has examined the 

"approximate frequency response" (i .e. describing functions) of the modulator.
8 

Blanchard}8 80mbi and Ciscato}
9 

have studied the input noise filtering properties. In 

addition to these, Fitch 32 and Panter 
1 have investigated the spectral characteristics of 

continuous pulse frequency modulation (which we have shown to be equivalent to single-

signed IPFM) with a sinusoidal modulating signal. More recently, during the final 

preparation of this thesis, Bayly 26 has reported a similar spectral analysis of singre-

signed 1 PFM in a study of pul~ frequency modulation in the nervous system. 

ln the present chapter a spectral analysis of IPFM will be developed and 

the results will be applied to derive some useful formulae for synthesizing the modulators. 

Although the spectral characteristics of S - S rPFM '. with, sinusoidal excitation have 

been investigated before, the method of analysis to be presented below is new and more 

general. The new approach may hopefully lead to better insight of the information trans-

fer characteristics of IPFM. 

ln the subsequent anolysis, a number of symbols is employed to shorten 

lengthy mathematical expressions. Therefore, the reader may find the abridged list 
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of symbols helpful in reading this chapter. 

3.2 Spectral Analysis of Single-Signed Integral Pulse Frequency Modulation 

3.2.1 Formulating the Approach 

We have shown in Chapter Il that the input - output relations of a single-

signed integral pulse frequency (S - S IPF) modulator con be exactly represented by a 

functional model. For convenience of analysis this model can be re-drawn as shown in 

Figure 3-1, in which the quantizer has been represented as the parallel combination of 

a linear gain and a nonlinear element N. 
2 

The Iinear gain is defined as the ratio of the 

output impulse magnitude d and the modulator threshold a, while the transfer charac-

teristic of N is specified by the periodic function Pl (z) shown in Figure 3-2. 

let the modulating signal x (t) in Figure 3-1 be bounded and integrable 

for any finite time t ~ o. Then, the output of the integrator is 

t 

z (t) = f x (t) dt, 

o 

and the quantizer output is 

d 
P2 (t) = a z (t) - Pl (z (t» . 

Thus, the impulse train is 

d dz (t) 
= a . ~-

dP1 (z) dz (t) 

dz dt 
, 

(3-1 ) 

(3-2) 

(3-3) 
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x(t) ~o z(t) x*(t) 
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d -a 

~+ ~(t) v(t) (t) ~O l 
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(-
N 

Z(t) Pl (z, 

FIGURE 3-1. EQUIVALENT REPRESENTATION OF THE SINGLE-SIGNED 

INTEGRAL PULSE FREQUENCY (S - S IPF) MODULATOR. 

Pl (z) 

x*(t) 
-

z 

FIGURE 3-2. THE TRANSFER CHARACTERISTIC OF THE NONLINEAR ELEMENT N • 
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provided that both z (t) and Pl (z) are differentiable. By Equation (3-1), z (t) is 

clearly differentiable, and 

dz (t) = x (t) • 
~ (3~) 

The function Pl (z) is also differentiable, since it can be represented by the Fourier 

series 

CD 

() __ d[~_\2. k J 
Pl z a L L J<c:; sm LlO Z , 

where LI 
o 

k=l 0 

2 1f --a 
, 

(3-5) 

and since, according to the the ory of distributions, 39 any Fourier series can be differen-

tiated term by term. Thus, 

dPl (z) 
CD 

d l 2 d 
sin kLl (3-6) = 

kLl dz 
z • 

dz a 0 
k=l 0 

Therefore, substituting Equations (3-4) and (3-6) into Equation (3-3) and simplifying, 

we have for the output impulse train, 

CD 

v (t) = : [x (t) + L 
k=l 

2 d 
kc; dt sin kLlO z (t)] (3-7) 

o 

which converges in the sense of distribution to a generalized function ; 39 name Iy, a 

time sequence of impulse functions, even though it does not converge in the classical 

sense. This expression for the output impulse train can be alternative Iy derived using 

another approach as shown in Appendix A. 
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The first term in Equation (3-7) is proportional to the modulating signal x (t) 

and is defined here as the signal compone nt of the output impulse train. The remaining 

terms are nonlinear functions of x (t) and represent the noise compone nt of the output 

impulse train since they are not wanted in demodulation. The noise compone nt is pro-

duced by the modulator internally in the encoding process. Specifically, it is generated 

by the nonlinear characteristic of the quantizer as iilustrated in Figure 3-3, which is de-

rived from Figure 3-1 • 

d Signal Component -a 

+ 
x (t) ~O v(t) x* (t) 

P(s) --

1 z(t) Ir l(z - - l- N 1-- S s Noise Compone nt 

FIGURE 3-3. AN EQUIVALENT REPRESENTATION OF THE S - S IPF MODULATOR 

SHOWING THE SIGNAL AND NOISE COMPONENTS. 

ln order to facilitate subsequent analysis, we define a function e
k 

(t) such that 

e
k 

(t) = ~ sin kCJ
o 

z (t) • 
o 

(3-8) 



Using this function we can re-write Equation (3-7) as 

cv 

v (t) = ~ r x (t) + L :t e k (t) J • 
k=1 

39 

(3-9) 

The function e
k 

(t) can be shown to be a frequency -modulated (FM) sinusoidai carrier. 

As noted in Section 2.4, the modulating signal x (t) for S - S IPFM with positive out-

put pulses is in general given by 

x (t) = x + f (t) ~ 0 , 
o 

t ~ 0 (3-10) 

where X is a biasing constant and f (t) is a message signal. Therefore, the output of 
a 

the integrator in Figure 3-1 is 

z (t) 
t 

= l x (t) dt = 
o 

t 
X

o 
t + l f (t) dt • 

o 

Substituting this into Equation (3-8), we have 

t 

e k (t) = ~ sin [k(.)o Xo t + k(.)o l f (t) dt J 
o 0 

(3-11) 

(3-12) 

which c1early shows that e
k 

(t) is a sinusoidal carrier frequency-modulated by f (t). 

ln the subsequent analysis, we shall utilize the fact that e
k 

(t) is an FM 

wave in order to take advantage of the well-developed theory of continuous carrier-

frequency modulation. We shall first express the FM wave e
k 

(t) in terms of its spec-

tral components ald then substitute the resulting expression into Equation (3-9) to derive 
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a spectral representation of v (t). Finally, we shall obtain an expression of the output 

pulse train x*(t) by considering the pulse-shaping element P (5) as a filter and modify-

ing the amplitude and phase of each spectral component of v (t) according to the ampli-

tude and phase characteristics of P (jw). This basic approach will be applied to investi-

gate the signal and noise spectral characteristics of the output pulse trains for the class of 

modulating signais consisting of one or more sinusoids. 

3.2.2 Single-Tone Modulation 

(a) Mathematical Expression for the Output Pulse Train 

Consider first the case in which the modulating signal is 

x (t) = X 0 + U cos (w1 t + 9) ~ 0, 

where U, w
1

, and 9 are constant l' Thus, the output of the integrator is 

z (t) = X t + Q. sin (w
1 

t + 9) - C , 
o w -

1 

where C = (U sin 9) / w
1 

Substituting this into Equation (3-8), we have 

e k (t) = k~ sin [kwo 
(Xo t - C) + ~ sin (w1 t + 9) ] 

o 

(3-13) 

(3 .. 14) 

(3-15) 

where the modulation index, ~ = kw
o 

U / w1
• It is weil known 

1 
that the FM carrier 

e
k 

(t) can be expanded in terms of Bessel functions. Thus, using the identity38 

we have 

i~ sin t 
e 

(J) 

= I 
n=-oo 

J ~) 
n 

jnt 
e , (3-16) 



e
k 

(t) 

where 

2 
= 1 J. jk(,,) (X t - C) j~ sin «(,,)1 t + 9)} 

mOle 0 o·· e k(,,) 
0 

2 
= ""kc:) 

0 

1 
{ 

jk(,,) (X t - C) ~ J jn «(,,)1 t + 9)} 
m e 0 0 L n «3) e 

n=-m 
CD 

= l D (k,n) sin ( \(1 t + ~1) , 

n=-m 

D (k,n) 
2 = -k- J $) , (,,) n 

o 

= k(,,) X + n(,,)l ' o 0 

= n9 - ~ sin 9, 

k(,,) U k2n 0 
= = 

(,,)1 (,,)1 

U -a 

a is the modulator threshold, and 

J is the nth order Bessel function of the first kind. 
n 
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(3-17) 

(3-18) 

(3-19) 

Substituting Equations (3-13) and (3-17) into Equation (3-9) and simplifying, we obtain 

the following expression for the output impulse train. 

d 
v (t) = a [X

o 
+ U cos (t.,1 t + 9)] + R (3-22) 

where 
CD CD 

R = ~ I l D (k, n) 't 1 cos ('1<1 t + cp 1) • (3-23) 

k=l n=-m 

Now let the output pulse shape be specified by the function p (t) whose Fourier transform 

is 

P = A ejQ(c.l) 
0(,,) (c.l) , (3-24) 
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where A (10) and Q (10) are real functions of 10), and A «(X) = Q (0) = O. Then, 

the amplitude and phase characteristics of the pulse-shaping element P (s) are given 

by A (10) and Q (10) respectively. Thus when v(t) is applied to 'p (s), the amplitude 

and phase of each sinusoidal component of v (t) will be modified according to A (10) 

and Q (10) respectively. Therefore, the output pulse train is 

(3-25) 

where 
(X) co 

N (t) = : 2: L E (k, n) cos [\'1 t + , 1 + Q ('(1) ] , (3-26) 

k=1 n=-c:o 

(3-27) 

o (k,n), "-(1' and ~1 are defined in Equations (3 -18) to (3-20). 

(b) Characteristics of the Signal and Noise Components 

The first two terms of Equation (3-25) constitute the signal compone nt of the 

output pulse train while the last term represents the noise component. The signal compo-

nent is proportional to the modulating signal x (t) filtered by the pulse-shaping element 

p (s). This latter observation is also valid for any ether admissible modulating signal, 

since the signal compone nt of the output impulse train, as we have shown in Section 3.2.1, 

is proportional to the modulating signal. Based on this observation, we con derive some 

of the necessary properties of the output pulse shape. 

a 
Consider a modulating signal comprising more thon one sinusoid, or more 

generally, a band of frequencies. The amplitude and phase of these frequency components 
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in the output pulse train are modified by P (jw)' and as a result, the signal compone nt 

of the output pulse train may be distorted if P (jw) is not appropriately chosen. For the 

case that no distortion has been introduced, the signal compone nt is 

S (t) = À
1 

x (t - a) , (3-28) 

where a ~ 0 and À
1 

> 0 are constants. Equation (3-28) implies that the system 

function of the pulse-shaping element is given by 

in the frequency band of the modulating signal. Therefore, it is necessary that the 

pulse shape be chosen to satisfy Equation (3-29) at least approximately in the frequency 

band of the modulating signal in order that the distortion introduced by it may be negli-

gible. One pulse shape which can satisfy this requirement is that of the commonly used 

rectangular pulse. For a rectangular pulse with height h and width T, 

P (jw) = h • 

When 0 < W T < 1 , 

sinwT/2 -jwT/2 
= h T. w Tf2 e 

-jw T /2 [ 2/ ' = h Tel - (w T) 24 + • • • J. 

P 
_o,w T/2 

~ h Te . 
(jw) 

with a maximum error of less than 6 % in the amplitude frequency characteristic. 

(3-30) 

(3-31) 

Hence, the distortion introduced by the rectangular pulse shape will be smalt, provided 
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that T < 1 / t.) where (0) is the maximum frequency of the modulating signal. 
max max 

ln subsequent discussions, we shall assume that the output pulse shape is properly chosen 

and has no significant detrimental effect on the signal component. 

Now, we turn to the noise compone nt of the output pulse train. As shown 

by Equation (3-26) its spectrum theoretically has an infinite band-width, and thus many 

of its frequencies lie in the frequency band of the modulating signal, contaminating the 

signal compone nt of the output pulse train. In particular, the noise frequencies, 

'i1= klo)o Xo + nlo)l' even coincide with the message signal frequency (0)1 whenever 

(0) X / (0)1 is an integer. In order that the modulating signal mey be recovered with 
o 0 

negligible error from the pulse train, the signal compone nt must be effectively separated 

from the noise component. Thus, in the following we shall examine the noise spectral 

characteristics with this particular point in mind. 

ln order to facilitate subsequent analysis, let the expression of the noise 

component be re-written as 

where 

and 

00 

N (t) = ~ L ~k (t) 

k=l 

(3-32) 

I-lk (t) = L E (k,n) cos [(klo) X + nlo)l)t + n9 -13 sin 9 + Q (klo) X + nlo)l) J , 
o 0 0 0 

n =-00 
(3-33) 

E (k,n) 

(3-34) 

Furthermore, without 1055 of generality, let d = a in Equation· (3-32) and the expression 
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of the output pulse train. Also, let J.1k (t) be called the kth constituent of the noise 

component. Then, Equation (3-33) shows that each constituent, J.1k (t), theoretically 

has a double infinity of spectral components, with one at the center frequency kw X r 
o 0 

infinitely many at the upper side frequencies kw X + nW
1 

' and infinitely many at the 
o 0 

lower side frequencies kw X - nW
1 

' where n == 1. 2, 3, •••• Thus, each constituent 
o 0 

of the noise compone nt has an infinite set of spectral components, while we see from 

Equation (3-32), that the spectrum of N (t) is composed of infinitely many such sets whose 

center frequencies are harmonically related. If the frequencies of ail spectral cbmponents 

from different sets are different, the amplitude or power spectrum of N (t) is simply the 

superposition of the corresponding spectra of ail J.1k (t) • However, if w X / w
1 

is a 
o 0 

rational number, some spectral components from different sets will have the same frequen-

cies. In particular, if kw X / w
1 

is an integer for ail values of k, the spectral 
o 0 

components from ail J.1k (t) will constitute an identical set of frequencies. For these 

latter cases, ail spectral components with common frequency contribute to the amplitude 

of the spectrum of N (t) at that frequency and the phase angles of these components must 

be taken into consideration when either the amplitude or power spectrum of N (t) is being 

determined. 

Although the noise compone nt N (t) of the output pulse train theoretically 

has infinitely many infinite sets of spectral components, the number of spectral components 

with sufficient power to be practically significant is in general finite. The average power 

w (k,n) of each noise spectral compone nt is equal to E
2
(k,n) /2 ,where E (k,n) is 

given by Equation (3-34). The output pulse shape is generally such that A (w) is bounded 
. K 
by __ for w large, where i ~ 1 and K is a positive constant. Thus for n and k 

(.dl 

sufficiently large, 



J (kw U / (
1
) • K 

[ n 0 
i-l 

kw· (kw X + n(
1
) 

o 0 0 
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~ 1 • (3-35) 

Since 1 J ((3)' ~ 1 and J (J3) approaches zero rapidly for ~ > n as ~ increases, 
n n 

it is c1ear from Equation (3-35) that when n and k are sufficiently large, the average 

power of these high frequency noise spectral components will then become negligibly small. 

Therefore, the "comp lete Il noise spectrum, in practi ce, can be p laced in a bounded fre-

quency band. This property is important for demodulating the pulse train because the 

signal compone nt will be effectively separated from N (t) if the "complete" noise spec-

trum can be re-Iocated outside the frequency band of the modulating signal. In the next 

sub-section, we shall consider the rectangular output pulse train as an example. 

(c) The Rectangular Output Pulse Train 

When the output pulse is rectangular with height h and width T., 

the system function, P (jw) , of the pulse-shaping element is given by Equation (3-30). 

Thus, its amplitude and phase characteristics are respectively given by 

A(w) = h T . sin w T /2 
w T/2 

(3-36) 

and 

Q(w) = -w T/2. (3-37) 

$ubstituting these into Equations (3-25) to (3-27) and setting d = a without loss of 

general ity, we obtain the following expression for the rectangular output pulse train. * 

* This expression differs slightly from the different expressions obtained by Panter, 
1 

Fitch,32 and Bayley. 40 The discrepancy is due to a small difference in defining 

the pu Ise train. 
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sin (,,)1 T /2 ] 

je * (t) = Xo h T + U h (.)1 T ~os «.)1 t + 9 - (,,)1 T / 2) + N (t) (3-38) 

ln this case, the noise component N (t) is given by 

N (t) = \' \1 L .... rk (t) , 
(3-39) 

k=l 

where 
CD 

~rk (t) = I Er (k,n) cos ("-6 1 t + Vi - \'1 T /2) , (3-40) 

n=-(X) 

E (k ) = 2 h . D (k, n) 
r ,n 

. sin \ T/2 , (3-41 ) 

D (k,n) , tpl ' and ~1 are as defined in Equations (3-18) to (3-20) • 

Assuming 0 < (.)1 T < 1, we have, for the signal compone nt , 

S (t) = h T [X 0 + U cos (.)1 (t - ." + 9 ) J (3-41 a) 

which is proportional to the delayed modulating signal. In the following, we shall 

examine the noise spectral characteristics in de ta il , with the objective to demonstrate that 

the noise bandwidth is in practice finite. 

Consider a spectral compone nt of the kth constituent, ~rk (t) of the 

noise compone nt • By Equation (3-41), the amplitude of a spectral compone nt with 

frequency 'xl = k (.)0 Xo + n (.)1 is 

l E 1 = 1 2h D sin \'1 T / 2' • 
r (k, n) (k, n) 

(3-42) 

As shown in Equation (3-17), 1 D (k,n) 1 is the amplitude of the spectral components of 
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the FM carrier e
k 

(t). Therefore, Equation (3-42) shows that, for any given k, the 

amplitude spectrum of fJrk (t) is equal to the amplitude spectrum of 2h e
k 

(t) multiplied 

by 1 sin)-l T /21 and furthermore, it is bounded by the spectrum of 2h e
k 

(t) since 

1 Er (k,n) 1 ~ 1 2h 0 (k,n)1 for ail k and n. Since the average power of the spectral 

component is E~ (k,n) /2 , the power spectrum of fJrk (t) is similarly bounded by the 

power spectrum of 2 h e
k 

(t) . 

ln order to facilitate subsequent analysis, we now introduce some definitions. 

ln the theory of carrier frequency modulation, a spectral compone nt is defined to be 

IIsignificant li if its amplitude is not less than some fraction of the amplitude of the unmodu

lated carrier. 1 Thus, the IIsignificant li spectral components of the FM wave 2h e
k 

(t) 

are those for which 

(3-43) 

where X is an appropriately chosen small positive constant which is usually equal to 0.01. 

ln addition, the frequencies of the IIsignificant li spectral components are said to be IIsigni-

ficant ll and the range between the maximum and the minimum significant frequencies is 

defined to be the IIsignificant li bandwidth of the FM signal. For the present analysis, 

it is reasonable to define the IIsignificant li spectral components of the kth constituent, 

fJrk (t) of the noiSe component similarly. Thus, a spectral component of fJrk (t) is defined 

to be significant if ~ 

l E X 4h 
r (k, n) ;;e kw 

o 
(3-44) 

or equivalently, if its average power 
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E
2 
r (k,n) 

"'2 (3-45) 

Furthermore, we define the significal'lt frequencies and bandwidth of jJrk (t) in the same 

way as for those of the FM signaIs. 

It is weil known that the significant bandwidth of a sinusoidal carrier which 

is frequency modulated by an amplitude-bounded signal is finite.
1 

Since the amplitude 

spectrum of jJrk (t) is bounded by that of the FM wave 2h e k (t), the signifi cant band

width of jJrk (t) must 0150 be finite. Furthermore, for (,,)1 t 0, there is only a finite 

number of significant spectral components in each jJrk (t). 

Now consider the total average power W1k of each jJrk (t). By Parseval's 

theorem, 
2 

E 
r (k, n) 

"2 
n=-oo 

Using Equations (3-18) and (3-41), we obtain from this expression, 

But 

Hence, 

= 

~ 

CD 

l J2 
n 

n=>-oo 

1 
2" 

(X) 

4h 2 \' J2 
(~) L n 

o n;-oo 
(X) 

_1 (4h)2 l J2 
2 1<(0) n 

o n'=-cn 

((3) = 

((3) 

W ~ 1 (4h) 2 = 2 (~2 , 
1k ""2 ~ kw' 

o 

(3-46) 

(3-47) 

(3-48) 

(3-49) 
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since 1..)0 = 2 1T / a. Thus, the total average power of each '"'rk (t) is bounded from above 

by an upper bound which varies as (.!fz)2, where h is the pulse height and a is the 

modulator threshold. 

Finally, we apply the results obtained above to demonstrate that the noise band-

width is practically finite. By Equation (3-45), each of the "insignificant" spectral 

components of the first constituent, '"'rl (t) of the noise compone nt has an average power 

less than } ( 41..)h À.)2. Clearly, if k > 1 / À in Equation (3-49) , 
o 

(3-50) 

Thus, the total average power of '"'rk (t) for k > 1 / À is less than the average power 

of a significant spectral compone nt of '"'rl (t)' Hence, it is reasonable to neglect those 

'"'rk (t)'s for which k > 1 / À. In other words, if K1 is the greatest integer not exceed

ing l / À, only the first K1 '"'rk (t)'s of the noise component have sufficient power to be 

practically significant. 

Based on the results obtained above, the noise compone nt N(t) can be 

accurately represented by the following approximate re lations • 

where 

...., 

N (t) ""-1 L '"'rk (t) 
k=l 

'"'rk (t) E cos (\1 t + "1 -~l 'T / 2) r (k, n) 
n=-N

k 

(3-51 ) 

where Nk is the largest integer for which the spectral frequencies of '"'rk (t) remain signi-



,.. 
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ficant. Therefore, the significant bandwidth of N (t) is practically finite. In subsequent 

discüssions, the frequencies '1s-
1 

= k W
o 

X
o 

+ n 1..)1 ' where 1 n 1 ~ N
k 

and 1 ~ k ~ K
1 

' 

will be referred to as the "significant" noise frequencies. 

3.2.3 Multitone Modulation 

ln practical problems, the message signal usually consists of more than one 

frequency. Thus, a more common modulating signal is 

u cos (w t + 9 ), 
m m m 

(3-52) 

where X ,U ,w and 9 are constant; and M is any positive integer. Assuming 
omm m 

x(t) ~ 0 , the analysis presented above for single-tone modulation can be directly extended 

to cover this more general case. Bya development similar to that used for single-tone 

modulation, a series expansion of the FM wave e
k 

(t) can be shown to be 

ex> ex> ex> 

l D .sin 
(k,n

1 
,n

2
, ••• , n

M
) : 

n =-00 
M 

n .:::-00 n =-00 
1 2 

where M 

D 
2 TI J (f3m) = 
~ (k,n 1 ' 

••• , n
M

) n , 
0 m=l 

m 

~M 
M 

= kw X + l n t.) 
0 0 m m , 

m=l 

(yM t + 'PM) , 

(3-53) 

(3-54) 

(3-55) 
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M 

tf M == l (n 9 - ~ sin 9 ) , 
m m m m 

(3-56) 

m==l 

~m == kt.) U / t.) • 
0 m m 

(3-57) 

Then, following the steps used for deriving Equations (3-25) to (3-27), we can obtain an 

expression of the output pulse train in terms of its spectral components. Thus, 
M 

x *(t) == ~ [X A (0) + \' U A (t.) ) "cos (t.) t + 9 + Q (t.) )) J + N ( ) a 0 Lm m mm m t 1 

m==l (3-58) 

where the noise component of the output pulse train is now given by 
CD 

N (t) == t L "'M k (t) , 
k==l 

CD CD 

== l . 
n "-=-00 

1 

cind ail oth.er symbols are as defir:-ed previously. 

(3-59) 

···'"M}· cos [\Mt+'fJM +Q ('leM) ], 

(3-60) 

(3-61 ) 

The spectral characteristics of the output pulse train for this general case 

are qualitatively similar to those discussed previously for single-tone modulation. In 

particular, as shown by Equations (3-58) to (3-60), the spectra of the signal and noise 

components overlap as they do in single-tone modulation. The noise spectrum" similàrly has 

a theoretically infinite bandwidth, but its significant bandwidth can be shown to be finite 
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by the same argument used in Sub-section 3.2.2 (b). For this general case, if we assume 

'K. 
as before A (w) ~ -. for w large, where i ~ 1 ; then the average power of each 

1 
w 

noise spectral component will be bounded by 
M 

2 r 
M 

when the frequency ~~ ... \ = k W
o 

X
o 

+ I. n m w m is sufficiently high. Clearly, those 

noise spectral components corresponding"l~l sufficiently large values of k 1 n
1 

1 ••• 1 n
M 

have negligible average power and thus con be neglected in practice. 

When the output pulses are rectangular with height h and width "., 

an expression of the output pulse train can be readily obtained by substituting Equations 

(3-36) and (3-37) into Equations (3-58)' to (3-61). Thus, 

M 

x*(t) = dah ". [Xo + l Um 
m=l 

sinw "'/2 
'i mi' cos (w t + 9 - w ". 1.2) ] + N (t) 
(,,)m ". 2 m m m 

(3-62) 

where now the noise compone nt N (t) is given by 

d 
N(t) = a 

~r M k (t) 

00 

L ~r M k (t) 
k=l 

00 00 

=I 

(3-63) 

••• , "Ml cos [YMt + 'PM -~ T/2 l 

(3-64) 

(3-65) 
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As in the case of single-tone modulation, the signal compone nt is essentially proportional 

to the delayed modulating signal if 0 < Cal T < 1, where Cal is the maximum 
max max 

sinusoidal frequency of the modulating signal. The spectral characteristics of the noise 

component N (t) can be examined using the procedure developed in the previous section. 

As an example, we shall show below that the significant amplitude spectrum of each con-

stituent, fJrMk (t) of N (t) is bounded. 

ConsideMa spectral compone nt of fJrMk (t) with the frequency 

= k Cal X + \' n Cal From Equation (3 -65), its amplitude is 
o 0 L m m 

m=l 

... , (3-66) 

where 1 D(k ) t is, as shown by Equation (3-53), the amplitude of the , nr , ... , n
M 

corresponding spectral compone nt of the FM wave e
k 

(t) . Since th is re lation holds for 

ail values of k, n1 ' ••. , and n
M

, the amplitude spectrum of fJrMk (t) must be bounded 

by the ampl itude spectrum of e
k 

(t)' Furthermore, as noted previously, a sinusoidal 

carrier which is frequency-modulated by an amplitude-bounded signal has a significant 

spectrum with finite bandwidth. Hence, the significant spectrum of the constituent 

fJrMk (t) of the noise compone nt also has a finite bandwidth. 

3.2.4 Recapitulation 

ln the present section, we have developed a new and general method for the 

spectral analysis of single-signed integral pulse frequency modulation. This method is appli-
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2 
cable to any modu:ating signal x (t) ~ 0 for which the FM wave e k (t) = ~ sin k Co)OZ(t)' 

where Z (t) ~ J x (t) dt, can be expressed in terms of its spectral components. A spec-
o 

tral representation of the output impulse train v (t) is derived by substituting the expression 

for e
k 

(t) into Equation (3-9) which is repeated here for convenience. 

CX> 

v (t) = : [x (t) + L 
k=l 

d 
ëit e k (t) ] (3-9) 

The expression for the output pulse train is then obtained by considering the linear pulse-

shaping element P (s) as a filter whose input is the impulse train v (t)' The spectral 

characteristics of the output pulse train for a class of modulating signais comprising one or 

more different sinusoids have been examined. The main characteristics are : 

1. The pulse train contains a signal component and a noise component 

whose spectra in general overlap each other. 

2. The signal compone nt is proportional to the modulating signal 

modified by the frequency characteristics of the pulse-shaping 

element. 

3. The noise component is produced internally by the modulator. 

Its spectrum theoretically has an infinite bandwidth j however, 

in practice, its significant bandwidth is finite. 

4. The noise compone nt may be considered as a sum of constituents 

fJMk (t) each of which theoretically comprises an infinite number 

of spectral components distributed about the center frequency 

k Co) X = k 2 tr X / a , where X is the biasing constant of 
o 0 0 0 

the modulating signal, a is the modulator threshold, and k is 

a positive integer. When the output pulses are rectangular with 



height h and width T, the amplitude and power spectra of 

J.lrMk (t) are bounded respectively by the amplitude and power 

spectra of the FM wave 2 h e k (t) • 

3.3 Synthesis Criteria for S - S IPFM 

3.3.1 The Approach 

56 

We have shown above that the spectra of the signal and noise components 

of the output pulse train generally overlap. Therefore, if the noise power in the signal 

frequency band is high compared to the power of the signal compone nt , it may be difficult 

to recover the modulating signal with negligible error. Fortunately, however, the band-

width of the noise component in practice is finite, and furthermore, the center frequencies 

k Wo Xo of the constituents J.lk (t) of the noise compoilent, can be shifted by changing the 

value of w X = 2 1f X / a , since a is the modulator threshold and X is the biasing 
o 0 0, 0 

constant of the modulattng signal. Thus the noise spectrum can be re-Iocated outside the 

signal frequency band to separate the signal component from the noise compone nt so that 

the modulating signal can be recovered by filtering. This latter situation is iIIustrated in 

Figure 3-4 for an output impulse train. In this example, the noise spectral power is less 

th an 1 % of the average power of the signal compone nt when the frequency is less than 4. 

Clearly, in this case, the modulating signal can be recovered by filtering the impulse train 

with a low"ass filter having a cut-off frequency equal to 3. In the present section, we 

shall develop some criteria for selecting w X so that the pulse train can be demodulated 
o 0 

with an acceptable noise content. Our attention will be focused mainly on the rectangular 

pulse train since it is most commonly used in engineering systems. 
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Since the significant bandwidth of the noise component is finite, one reasonable 

way to effectively separate the signal and noise spectra is to choose such values of w X 
o 0 

that the minimum significant frequency of the noise compone nt is greater than the maximum 

significant frequency in the modulating signal. However, this minimum significant noise 

frequency is difficult to determine. Instead, we shall achieve the above objective by 

using a lower bound of the significant noise frequencies. 

For a rectangular pulse train, we have shown that the amplitude spectrum of 

its noise compone nt is composed of the spectra of ~rk (t)' and that the amplitude spectrum 

of each ~rk (t) is bounded by that of the FM wave 2 h e k (t) , if the modulating signal 

consists of one or more sinusoids. Thus, the minimum significant frequency of ~rk (t) is 

not less than the minimum significant frequency of the corresponding FM wave 2 h e
k 

(t) , 

and the absolute minimum significant frequency for ail ~rk (t)'s is necessari Iy not less 

than i ts counterpart for a 1\ the correspond i ng FM waves. Therefore, a usefu 1 cri teri on 

for choosing w X can be derived from the stipulation that the absolute minimum signi
o 0 

ficant frequency for ail the related FM waves be greater than the maximum frequency of 

the modulating signal. 

3.3.2 A Synthesis Criterion for Single-tone Modulation 

(a) Derivation 

Consider, for the present, the case in which the modulating" signal consists of 

only one sinusoid with amplitude U and frequency w1
• Let the output pulses be rec

tangular with height h and width T. Then, for this case, the significant frequencies 

of the related FM wave 2 h ek 
(t) are given by k W

o 
Xo 

+ n w1 
' where the integers 
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k and n' take on those values for which the following inequality is satisfied. 

1 2 h • D (k, ~) 1 ~ À. t: (3-67) 
o 

where D (k,n) is defined by Equation (3-18) and À is a positive constant usually set 

arbitrarily equal to 0.01. Using the definition of D(k,n) , we can simplify Equation 

(3-67) to obtain the relation 

(3-68) 

where ~ == k (.)0 U / (.)1 • 

ln order to find ,the minimum significant frequency of the FM wave 

2 h e
k 

(t) , we must find a minimum value of n such that Equation (3-68) is satisfied 

for the given k and À. There are two possible situations: 

l • k is sufficiently large 50 that Equation (3-68) is not 

satisfied for any value of n j and 

2. k is sufficiently small so that Equation (3-68) is 

satisfied for at least one value of n. 

ln the first situation, . 2 h e
k 

(t) has no significant frequency and thus the corresponding 

noise spectral components bounded by its spectrum are negligible ~ Hence, this situation 

has no significant consequence on our criterion for choosing (.) X. In the second 
o 0 

situation, we can find the minimum significant frequency of 2 h e
k 

(t) as follows. 

Consider the variation of J
n 

(j3) when n is varied while ~ is treated as 

an independent parameter. For n ~ ~, J
n 

(j3) will .decreasemonotonically 
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towards zero at a rate which increases rapidly with ~ .41 Therefore, for each value of !3, 

there exists a smallest positive value Nk • of n such that 1 J (~) 1 < À for ail 
mm n \t-' 

n 38 
1 ni> Nk min' since J -n $) = (-1) J n $) . Consequently, in accordance with 

Equation (3-68), the minimum significant frequency of 2 h e
k 

(t) for a given value of 

k is 

Wk . 
mm 

= k W X - Nk • w1 • 
o 0 mm (3-69) 

The number N
k 

• depends on both ~ and À, and can be determined for 
mm 

any admissible values of ~ and À by computing J
n 

$) with n increasing from n ~ !3 • 

If À is considered as an independent parameter, the relation between N
k 

• and ~ is 
mm 

given by 

N
k 

. mm = [1 + ~ $) 1 ~ (3-70) 

where ~ ((3) is given graphically in Figure 3-5 as a function of ~ for À = 0.01, 0.001, 

and 0.0001. Note thât ~ $) represents change in 't~e significant bandwidth of 2h e
k 

(t) 

as !3 is varied, since 2 N
k 

• w1 = 2 k (,,) U [ 1 + ~ (~) ] • 
. " mm 0 \t-' 

We now search for the absolute minimum significant frequency w. of 011 
mm 

re lated FM waves 2 h e
k 

(t)' where k takes on ail admissible values. Substituting 

Equation (3-70) into Equation (3-69), we have 

Wk • = k (,,) X - [1 + ~ (~) 1 ~ w1 ' min 0 0 \t-' 

and since 

Wk . = k (,,) [X - (1 + ~ I~» U J • 
min 0 0 \t-' 

(3-71 ) 
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Since our objective is to find a proper value of Co) X 50 that Co)k • > Co) 1 > 0 for o 0 mm 

ail admissible values of k and since k is a positive integer, we must have, in Equation 

(3-71), the inequality, 

X 
o - [1 + ~(13) J u > 0 (3-72) 

At. shown in Figure 3-5, ~(13) decreases monotonically as 13 increases.· Thus, X
o 

- [ 1 + ~ (13) lu 

increases monotonically with 13 and hence with k. It is clear, therefore, from Equation 

(3-71) that Co)k • increases monotoni ca Il y with k, and the absolute minimum significant 
mm 

frequency, Co). of ail FM waves 2 h e
k 

() occurs when k = 1. Thus, 
mm t 

(3-73) 

or from Equation (3-69) , 

(3-74) 

where N is determined using Equation (3-70) and graphs such as those shown in 
1 min 

Figure 3-5 for 13 = 131 = Co) U / • 
o Co)l 

Therefore, when Co). > Co)l ' the spectra of the signal and noise com
mm 

ponents of the pulse train are practically separated. However, if a lowj>ass filter with 

a cut-off frequency Co) is to be the demodulator, it is desirable to have Co). > Co) • 
c mm c 

Thus, from Equation (3-74), we have 

Co) X - N 1 • Co) 1 > Co) • o 0 mm c 
(3-75) 



And, for t.) c = m t.)1 ' this inequality can be re-written as 

where m > 1 • 

. + m , 
mm 
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(3-76) 

Equation (3-76) is our criterion for choosing the value oft.) X = 2 'Ir X / a, 
o 0 ,0 

where a is the modulator threshold and X is the biasing constant for the modulating 
o 

signal. It should be noted that this criterion is valid only if the inequality given in 

Equation (3-72) is satisfied for ~ = ~1 = t.)o U / t.)1 • 

The left hand side of Equation (3-76) can be shown to be equal to the 

number of output pulses per period T of the modulating signal x (t). Recall that the 

criterion for pulse emission in S - S IPFM is 
F-

t 

l dt = x (t) 
f. 1 1-

a • (3-77) 

This indicates that the area under the curve x(t) between two consecutive pulse-emission 

times is a. Since the total area under the curve x (t) in one period l' = 2 1f / t.)1 is 
t. + T ti + T 
l , 

l X(t) d t = X T 
o t l 

t f· 

the number of pulses per period is 

X T 
o 
a 

X T , 
o 

(3-78) 

(3-79) 
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Therefore, Equation (3-76) simply states that (.) X should be 50 selected that the number 
o 0 

of pulses per modulating signal period is greater thon N
1 

• + m • 
min 

The number N 1 min con be recidily determined if ~1 is known, because 

N
1 

min can then be found directly using Equation (3-70) and graphs such as those shown 

in Figure 3-5. However, the assumption that ~1 is known implies that (.)0 has been 

pre-specified, since ~1 = (.)0 U /(.)1· In this case, the modulator threshold a is given, 

and hence we can only choose X to satisfy the criterion for separating the signal and 
o 

noise spectra. Thus, from Equa~ion (3-76) we must have 

X > (N1 • + m) (.)1 / (.) • 
o min 0 

(3-80) 

The values of X satisfying this relation will also automatically satisfy the requirement 
o 

given by Equation (3-72), since by Equation (3-80), 

wh i ch can be simplified to yie Id 

where the right-hand side is clearly greater than zero. 

When the modulator threshold, a, is to be determined with the modulating 

signal biasing constant X given, the problem must be solved in a different way. Sub
o 

stituting Equation (3-70) with k = 1 into Equation (3-76) and simplifying, we have 
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x o m 
U - 1 - ~ > ~ $1) . (3-81 ) 

80th the left-hand side and the right-hand side of this inequality are functions of ~1 . 

Hence we can plot them on the same graph and then read from the graph the values of ~1 

for which this inequality is satisfied. The appropriate modulator threshold, a, can then 

be determined using the definition, ~1 = W
o 

U /w1 = 2 1f U / a w
1

• The values of a 

determined this way will also satisfy the requirement given by Equation (3-72), since 

Equation (3-81) can be re-written as 

(3-82) 

where the right-hand side is obviously positive. 

As an example, let the modulating signal be x(t) = 2 + cos t and let the 

demodulator be an ideal low-pass filter with cutoff frequency w = 3. Then, the left
c 

hand side of Equation (3-81) becomes 1 - 3 / ~1 which is plotted in Figure 3-5, where 

the graphs for t$) are now interpreted with ~ = ~1. Clearly, for the case that X = 0.01, 

Equation (3-81) is satisfied provided ~1 ~ 7. Therefore, the modulator threshold 

necessary for separating the signal and noise components must be not greater than 2 1f /7 • 

(b) The Residual Noise Power 

We have established above a criterion for selecting w X so that the signi
o 0 

ficant noise frequencies are above the cutoff frequency of the demodulator. Since the 
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bondwidth of the noise component is theoretically infinite, it is impossible to completely 

isolate the signal spectrum from the noise spectrum. Thus there is a certain amount of 

residual noise power within the signal frequency band due to the "insignificant" spectral 

components of the noise. It is desirable that this residual noise power be known. At 

any frequency w
N

' the noise power is equol to the sum of contributions from the spectral 

components of ail ~rk (t) with the seme frequency j that is, the average noise power is 

Q) Q) 

(3-83) 

where Ek and 71
k 

are respectively the amplitude and phase of the spectral components 

with frequency w
N

• Although W
t 

can be evaluated approximately by truncating the 

series ot k::: Kl where Kl is the greatest integer not exceeding 1 / À, it is unwieldy 

for analysis. As an alternative, a useful meosure of the maximum residual noise power at 

any frequency within the pass band of the democlulator will be derived in the following. 

We have shown in Section 3.2.2 that the power spectrum of the constituent 

~rk (t) of the noise component is bouncled by that of the related FM wave 2 h e k (t) . 

As noted there, the amp titudes of the significont spectral components of 2 h e
k 

(t) are 

not less than 4 h À / kw. Therefore, the average power of any "Uinsignificant" spectral 
o 

compone nt of ~rk (t) is bounded from above by 

W
bk 

::: 1 (4 h À~2 
2' kw 

(3-84) 
o 

Thus, if w X has been selected to satisfy the criterion given by Equation (3-76), a 
o 0 
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reasonable measure of the maximum possible noise power at any frequency c.J
N 

less th an 

the cutoff frequency c.J of the demodulator is 
c 

since 31 

<X> 

Wb = L Wbk 
k=l 

<X> 
2 

L 1 'Ir 

k"2 = "6 
k=l 

(3-85) 

(3-86) 

It should be noted that Wb is a conservative measure of the residual noise power especially 

at lower values of c.J
N 

' since the actual residual noise power at those frequencies may be 

much iess than Wb. This latter observation is based on the fact that the average power 

of the insignificant spectral components of 2 h e
k 

(t) decreases monotonically with frequency 

for the frequencies less than c.J
k 

. • 
mm 

Using the measure of residual noise power obtained above, we can obtain an 

estimate of the signal - to - noise ratio of the demodulated signais at the modulating signal 

frequency c.J
1

. As shown in Equation (3-42), the signal amplitude is essentially U h T , 

provided the pulse width T is such that 0 < c.J
1

" T < 1. Thus, the average power of 

the signal is ~ (U h T)2. Assuming that the demodulator is an ideal low-pass filter with 

cutoff frequency c.J and that the noise power is constant in the pass-band of the filter, we 
c 

obtain the following estimate of the signal - to - noise ratio 

3 c.Jo U T 2 
S/N= ( ) 

~ 'Ir À 
(3-87) 

c. 
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Letting T := a 1(,,)1 whei'e 0 < ci < 1 , and ·sl!bstituting (,,) := 2 .. / a, we have 
o 

SiN 3 
:= rc:;-

C 

( aU )2, 
aÀ(,,) 

l 
(3-88) 

where a is the modulator threshold, À is a small positive constant used in determining 

the significant frequencies, U and (,,)1 are respectively ·the amplitude and frequency of 

the modulating sinusoid. It is interesting to note that this signal - to - noise ratio is 

independent of the biasing constant, X of the modulating signal, provided X (,,) 
000 

satisfies the criterion given in Equation (3-76). This result is reasonabl~,because the 

amplitude of the signal frequency is independent of X while the amplitudes of the 
o 

noise spectral components depend on X only through sin. [(k (,,) X + n (,,)1) TI 2 J. wnioh 
o 0 0 

is bounded by unity. It is also interesting to note that the signal - to - noise ratio is 

proportional to the square of the amplitude - frequency ratio, U 1 (,,)1 of the modulating 

signal, but is inversely proportional to the square of the modulator threshold. 

3.3.3 A Synthesis Criterion for Multitone Modulation 

ln the last sub-section, we have derived a synthesis criterion for single-

tone modulation, which can be expressed in terms of the minimum number of pulses per 

modulating signal period. This criterion, Equation (3-76), was derived by first establishing 

that the significant frequencies of the noise component in the output rectangular pulse 

train are bounded from below by the minimum significant frequency of the corresponding 

FM wave 2 h el (t) , where el (t) is defined by Equation (3-17) with k:: 1. In a 

similar way, we can also now derive a simi lar criterion for multitone modulation. 
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Let us assume, for the present, that the significant frequencies of the noise 

component in multitone modulation are bounded from below by the minimum significant 

frequency !.i)ll min of the corresponding FM wave 2 h el (t) , where el (t) is here de

fined by Equation (3-53) for k = 1. Then in analogy with Equation (3-74) this minimum 

significant frequency can be expressed as 

Ca) Il • = Ca) X 
min 0 0 

- NI Ca) 
1 min max 

(3-89) 

where Ca) is the maximum significant frequency of the message signal, and NI is 
max 1 min 

a positive number. k in the case of single-tone modulation, we require that Ca)ll be 
min 

greater than the cu~ff frequency Ca) of the demodulating low-pass filter. Thus, for 
c 

Ca) = m Ca) where m > 1 , we require 
c max 

Ca) X - N.' Ca) >mCa) 
o 0 - l min max max ' 

which can be re-written as 

Ca) X 
o 0 

Ca) 
max 

> NI + m • 
1 min 

This expression is our synthesis criterion for multitone modulation. This criterion is 

(3-90) 

similar to the criterion for single-tone modulation, Equation (3-76), and states that the 

paràmeters Ca) and X should be 50 selected that the number of pulses per period of the 
o 0 

maximum significant frequency in the message signal is greater than N
l
i 

• + m • 
- min 
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Now, with the criterion so obtained, it remains for us to show that (a) 

the significant frequencies of the noise compone nt are, as assumed above, bounded from 

below by the minimum frequency, (0)11 • ,of 2 h el (t), and (b) the number N.1 
• 

min . l min 

can be determined. In order to establish these points, we only need to prove that the 

minimum significant frequency, w: . of 2 h e
k 

(t) is greater than (0)11 • for ail 
K min min 

k > 1, since the significant amplitude spectrum of the noise constituent, ~rMk (t), is 

bounded by that of 2 h e
k 

(t), as we have shown in Sub-section 3.2.3. We shall first 

demonstrate the validity of this for a specifie multitone signal, and then generalize the 

result • 

Consider the periodic message signal f (t) shown in Figure 3-6. The 

modulating signal; X + f (t) ~ 0, is of the form given by Equation (3-52) , since 
o 

f (t) can be expïessed in a Fourier series. Thus, as we have shown in Sub-section 

3.2.3, the amplitude spectrum of the kth constituent of the noise compone nt in the out-

put rectangular pulse train is bounded by the amplitude spectrum of the corresponding FM 

wave 2 h e
k 

(t). By Equations (3-10) to (3-12), 

where 

4h 
2 h e

k 
(t) - k (0) • sin [k (0) X t + C (t) ] , 

o 0 o 

t 

C (t) = klo) 
o 

S f (t) dt. 

o 

(3-91 ) 

This frequency-modulated (FM) wave can be expressed in terms of its spectral components. 

Using the result from Reference 42, we obtain 



al 

== 4 h \' 
2 h e k (t) ~ L 

o 
n==-oo 

(31 • sin [ 'Ir a $1 - n) ] 

'Ir $' - n) $' a - n a + n) 
• sin (k Co) X + n Il) t , 

o 0 
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where Il and D are respective Iy the repetition frequency and the maximum amplitude 

of the signal f (t) shown in Figure 3-6. Further, ~ 1 = k Co) D / Il is the modulation 
o 

(3-92) 

index, a is a parameter of the given f (t), whose value 1 ies between zero and one, and 

aIl other symbols are as defined previously. 

Equation (3-92) can be utilized to determine the minimum significant fre-

quency and the significant bandwidth of 2 h e
k 

(t) as a function of ~I. The significant 

frequencies of the present signal are those for which 

1 
(31 • sin [11 a ((31 - n)] l '\ 

~ 1\ , 
(3-93) 

1f (131 - n) $1 a - n a + n) 

where À is a small positive constant. When a == 0.5 , i.e. when the modulating 

signal for e
k 

(t) is a square wave, the variation of bandwidth as a function of modulation 

index ~ 1 for À == 0.01 and 0.001 , is as shown in Figure 3-7, wherein the ordinate 

is defined as 

bandwidth - 2 k Co) D 

~I (1) == 
o (3-94) 

2 k Co) D 
o 

Defining the minimum significant frequency of 2 h e
k 

(t) as 

1 
Co)k • mm 

== k Co) X - N
k'
 • Co) , 

o 0 mm max 
(3-95) 
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where Co) is the maximum significant frequency of the message signal f (t), and 
max 

N I
k 

• is a positive constant, then we ccn re -wri te Equation (3-94) as 
mm 

~I (131) = 
N

k
l 

• Co) - k Co) D 
mm max 0 

k Co) D 
o 

, 
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(3-96) 

since the amplitude spectrum of the FM wave produced by a symmetrical modulating 

signal is symmetrical. 43 Hence, from Equations (3-95) and (3-96), we have 

(3-97) 

This equation is of the same form as Equation (3-71) which has been used 

in deriving the synthesis criterion which has been used in deriving the synthesis criterion 

for single-tone modulation. Therefore, using the argument which follows Equation (3-71), 

we can show that Co) Il • < Co) 1 for ail k > 1. Further, as in the case of single-
mm k min 

tone modulation, the number NI can be determined by using the graph of ~I (~I) • 
1 min "" 

Thus, from Equation (3-96) , 

Co) D 
NI = _0 __ 

1 min Co) 

where p; 

max 

= Co) 0/11. 
o 

ln the preceding paragraphs we have demonstrated that the synthesis 

(3-98) 

criterion, given in Equation (3-90), for multi-tone modulation is applicable to one parti-

cular modulating signal. We shall now show that this criterion is applicable to some 
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more general modulating signaIs of the form given by Equation (3-52). Thus, consider 

the following approximate formula which is commonly used to estimate the significant band

width of an FM signal.
1 

Bandwidth ~ 2 (~F + 2 c.J ), (3-99) 
max 

where ~F is the maximum deviation of frequency, and c.J is as defined above. For 
max 

the FM wave 2 h e
k 

(t), ~F = k c.J D , where D is the maximum ampl itude of the 
omm 

message signal. Thus, assuming the amplitude spectrum of 2 h e
k 

(t) to be symmetrical, 

we can express its minimum significant frequency as 

1 
c.J
k 

• 
mm 

~ k c.J 
o 

[x 
o 

(3-100) 

where ~ = k c.J D / c.J • By comparing this expression with Equation (3-97) and 
m 0 m max 

noting that 2 / ~ also decreases monotonically with f3 ' it is cleor that c.Jll • < ~ . 
m m min k "'In 

for ail k > 1 0 Therefore, the criterion given by Equation (3-90) is also applicable for 

a general signal, provided the amplitude spectrum of 2 h ek 
(t) is symmetrical. In th!s 

case, the number NIl • can be determined by comparing Equation (3-89) with Equation 
mm 

(3-100) for k = 1 0 Thus, 

c.J D 
o m 
c.J max 

+ 2 • (3-101 ) 

ln summary, we have derived above a synthesis criterion for S - S IPFM 

with multitone modulation. This criterion,given in Equation (3"90), states that the modu-

lator threshold a = 2 'If / c.J and the biasing constant X should have such values to 
o 0 
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yield more than Nil • + m pulses per period of the highest significant frequency 
mm 
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Co) in the message signal. The number Nil • can be determined using Equation 
max mm 

(3-98) and graphs such as the one in Figure 3-7, if the modulating signal is a biased 

square wave. For a general modulating signal which produces a symmetrical amplitude 

spectrum in 2 h e
k 

(t) , NI· . is giver; by the approximate relation in Equation (3-101). 
1mm 

The number, m, is given by m = Co) / Co) ,where· Co) is the cutoff frequency of 
c max c 

the demodu lating fi 1 ter, and Co) is the highest significant frequency of the message 
max 

signal. 

3.4 Double-Signed Integral Pulse Frequency MOdulàtion 

3.4.1 An Approximate Model of the Modulator 

As we have shown in Chapter Il, a double-signed integral pulse frequency 

(D - S IPF) modulator can be represented by the model shown in Figure 2-2. This model 

contains a uniform quantizer with hysteresis. Because of the functional complexity intro-

duced by the hysteresis in the quantizer, the spectral characteristics of the output pulse 

train from this modulator can not be mathematically analyzed at present. However, such 

an analysis becomes possible if an approxtmate representation of the modulator is utilïzed. 

We believe the results thus obtained will give a reasonably good description of the spectral 

characteristics of double-signed integral pulse frequency modulation (D - S IPFM) , 

provided that the number of output pulses is approximately equal to the number of pulses in 

the D - S IPF modulated pulse train, as we shall show in the next paragraphe 
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For the present purpose, we represent the D - S IPF modulator approximately 

as shown in Figure 3-8. In this approximate representation, the only change is that the 

quantizer is considered to be without hysteresis ; the other components and quantizer 

characteristics are identical with those of the model shown in Figure 2-2. A typical out

put pulse train from this approximate mode 1 , together with the pulse train from the 

corresponding D - S 1 PF modulator with the some input, are shown in Figure 3-9. The 

two pulse trains are very similar, and in fact, if the pulses marked A and B are removed 

from the pulse train, x (t), generated by the approximate mode 1 , then the two trains are 

identical. Pulses A and B are generated after the derivative of z (t), or equivalently, 

after the modulating signal x (t), has changed its signe In general, the approximate 

mode 1 generates one additional pulse each time after x (t) changes sign and then retains 

the same sign until the threshold of the modulator is reached. As an example, a sinusoi

dal signal with sufficient amplitude to produce more than 4 pulses per cycle in the 

D - S 1 PF modulated pulse train will produce 2 additional pulses per cycle in the out

put of the approximate model. Thus, provided the number of additional pulses is small 

compared with the total number of pulses in the pulse train, the approximate mode 1 shown 

in Figure 3-9 can be used with negligible error for analyzing D - S 1 PFM. 

3.4.2 Spectra"1 Analysis 

Now, we proceed to obtain a spectral representation for the output pulse 

trains of this approximate model of the D - S IPF modulator. Since this approximate 

mode 1 is identical with the model for a S - S IPF modulator {Figure 3-1)1 the method 
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of analysis developed in Section 3.2 for S - S IPFM is applicable to the present problem. 

ln fact, if the biasing constant, X , is set equal to zero in the equations describing the 
o 

S - S IPF modulated pulse trains, the resulting expressions will represent the output of the 

approximate model for the 0 - S IPF modulator. Hence, for single-tone modulation with 

the modulating signal, 

x (t) == U cos «(0)1 t + 9) , (3-102) 

an expression for the output pulse train x (t) can be readily obtained from Equations 

(3-25) to (3-27). Thus, 

x (t) d 
== a· U. A «(0)1) cos [(0)1 t + 9 + Q «(0)1) ] + N (t) , (3-103) 

where 
ex> ex> 

,. 
N (t) 

d I l ~ . Jn $) • n (0)1 • A (n (0)1) . --a 
k== 1 n==-oo 0 

cos [n (0)1 t + n 9 + Q (n (0)1) - 13 sin Q ] , (3-104) 

'and other symbols are 'as ~fined prèviously. 

Similarly, expressions for the output pulse trains produced by multitone modulation càn 

be obtained using Equations (3-5i) to (3-61) • 

Equations (3-103) and (3-104) represent the output pulse train in terms 

of its spectral components. It is c1ear, from Equation (3-103), that the pulse train contains 

a signal compone nt which is proportional to the modulating signal modified by the frequency 
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characteristics of the pulse-shaping element, P (s). Further, the pulse train contains a 

noise component, N (t), which, as shown by Equation (3-104), has a theoretically in

finite bandwidth with its spectral frequencies located at n Coll ' where 1 n 1 = 1,2,3, 

Note that the noise spectral component at zero frequency has zero amplitude j and 

note further, that the remaining noise spectral components are the fundamental and higher 

harmonics of the modulating signal. The noise component has the following additional 

characteristics : 

1. The amplitude spectrum depends on the phase angle 9 of the 

modulating signal. In particular, the spectrum contains only 

the even harmonics of the modulating signal whenever 

-1 Coll 
9 = sin [~U. (2 m + 1) ;- ] , 

o 

and it contains only the odd harmonics whenever 

-1 
9 = sin m'Ir] 

where m is any integer. 

(3-105) 

(3-106) 

ln order to establish this result, we re-write Equation (3-104) to re-

present N (t) in terms of positive frequencies only. Thus, 

N (t) 

CD 

d 
a 

k=1 

2 
"J(;:;-

o 

+ n 9 + Q (n (,)1) - l3 sin 9 ] + 
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n+1 
1 

(-1) . Jn $). nW1 • A (nw1) • cos[nw1t-+n9 +-Q(nw1)+l3sin9JJ' 

(3-107) 

since J $) = (_l)n J $) and since A (-w) = A (w) and Q (-c.,) = - Q (w) for a 
-n n 

real pulse-shaping element, P (s). By using the identities, 

cos x + cos y = 2 cos (x ; y) • cos ( ; y) 

and 

cos x - cos y = 2 sin (x ; y ~ sin (y ; x ~ , 

Equation (3-107) can be simplified to yield 

CD 

N (t) 

n=l 

+ B2 n-1 cos [ (2 n-1) w1 
t + (2 n-1) 9 + Q (2 n w1 

- (
1
) ] , (3-108) 

where 

2 n w
1 

CD 
J2 n $) 

B = 4d A (2 n (
1
) L sin <13 sin 9) (3-109) - . . , 

2-n a w 
0 k=l 

k 

B 2 n-1 
4d J2 n-1 $) 

k • cos (j3 sin 9) • --a 
(3-110) 

Now, by noting that 13 = k w
o 

U / w
1

, it is clear from Equation (3-110) that whenever 

Equation (3-105) is satisfied, B
2 

n-1 = 0 and thus N (t) contains only the even harmoniC$ 

of the modulating signal. Similarly, whenever Equation (3-106) is satisfied, B
2n 

= 0 

A 

and N (t) contains only the odd harmonies of the modulating signal. 



2. The amplitude spectrum of the noise compone nt is bounded by 

a curve which is proportional to the amplitude characteristic 

of the cascade of the last two elements in the model of the 

o - S IPF modulator. 

ln order to establish this result, let us consider the series 

al 

F2n = l 
k=l 

J
2 

((3) 
k sin ((3 sin 9) 

which is in the expressïon for B
2n 

given in Equation (3-109). 

It is known that 44 

2 1~ 'If 'If 

J n ((3) ~ ('If ~ ). cos $ -"4 - n '2), 

for ~ large. Hence, 

al 

1 F2n 1 ~ l 
k=l 

and substitutingj3 = k W
o 

U / w
1 

' we have 

1 F2n 1 ~ ~2~.rÏ 
o k=l 

1 

k37ï 
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(3-111) 

(3-112) 

(3-113) 

(3-114) 

By using Cauchy's integral test, 40 the sum in Equation (3-114) can be shown to be bounded 

as follows • 



Therefore, 

CD 

2 < I 
k=l 

1 

~ 

1 F2n 1 < 3 • 

< 3 

Using this result, we have from Equation (3-109), 

1 B
2n 

1 < 1 ~ d 

n = 1, 2, 3, 

Bya similar development, we derive from Equation (3-110) , 

1~ 

1 B2n-1 1 < 
1 2 d [ 2 "'1 J' (2n-l) "1 

a w U w 
o 0 

n = l, 2, 3, ... 
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(3-115) 

(3-116) 

(3-117) 

• A (2n '""1 - ( 1) 

(3-118) 

Now, Equations (3-117) and (3-118) can be combined into one expression. Thus, de-
... 

fining 1 8 1 as the amplitude of the spectral compone nt of N (t) for n = l, 2, 3, ••• , 
n 

we have 

B 1 < 1 2 d 
n aw o 

[~Jl~ 1r w U n w1 • A (n ( 1) • 
o 

(3-119) 

... 
This relation shows that the amplitude spectrum of N (t) is bounded by a curve which is 

proportional to the amplitude characteristic of a system whose transfer funetion is s P (s) • 

Therefore, this proves the result initially stated above. 
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3.4.3 Choice of Modulator Threshold 

We have noted above that the spectral frequencies of the noise component 

in a 0 - S IPF modulated pulse train are the fundamental and higher harmonies of the 

modulating signal. It is clear, from this observation, that for a modulating signal com-

prising more than one frequency, the noise spectrum always significantly overlaps the signal 

spectrum. Hence, it is impossible to recover the modulating signal without distortion from 

the attending noise frequencies, if a low-pass filter is to be the demodulotor. Fortunately, 

this distortion can be reduced to an acceptable level by proper choice of the modulator thres-

hold· à·, as we shall now demonstrate for the case of a rectangular output pulse train. 

When the output pulses are rectangular with height h and width T, A ("') 

and Q ("') in the expressions related to the output pulse train are given by Equations 

(3-36) and (3-37) respectively. Hence, from Equation (3-103) the signal compone nt 

of the pulse train is 

d 
S (t) s:::$ a . h T • U cos ("'1 t + 9 - "'1 T /2 ) , (3-120) 

if 0 < "'1 T < 1 • Further, from Equation (3-119) we obtain the following inequality 

for the amplitude of the noise spectral compone nt at the frequency n "'1 • 

B 1 < 1 2 d 
n a", 

o 

2 1;2 

[ 
"'1 1. 2 h • sin (n "'1 T /2) • 

11 '" uJ o 

Now, consider the ratio of average power 

(3-121) 



average power of noise at frequency n c.J
1 

average power of signal compone nt 

By Equations (3-120) and (3-121), 

B 
2 

=,~ 1 
S (t) 

< [ 2 .4 
Co) UT 

o 

2 2 "'1 
• sin (n "'1 TI 2 )] • 'Ir '" U 

o 

83 

(3-122) 

(3-123) 

Let "'1 T = a where 0 < a < l , and substitute 

Then, after simplification, we have 

'" = 2 'Ir 1 a into Equation (3-123) • 
o 

1 
< -2 [ 

1 2 2 "'1 a 3 
-~2~] . [ ]. (1 - cos na) • 
a 'If U 

(3-124) 

This relation shows that the noise-to-signal power ratio Pn is b.,unded by a curve which 

varies with frequency as 1 - cos na, where n = l, 2, 3, . .. . ln particular, note 

that this ratio at the modulating signal frequency is given by Pl. Further, it is dear 

from Equation (3-124) that p can be made arbitrarily small by choosing an appropriately 
n 

small value for the modulator threshold a • 

Equation (3-124) can be uti li zed to establish a criterion for choosing the 

modulator threshold a. Let the demodulator be an ideal low-pass filter with cutoff fre-

quency Co) 
c 

signal is 

= m '" 1 where m > 1 • 

N 

SiN = [ l 
n=l 

Then, the signal-to-noise ratio of the demodulated 

(3-125) 

where N is the largest integer not greater than m • 



Using Equation (3-124) in this equation, we obtain 

where 

S/N>-l. 
E ' 

12
2 

2 ] 
aw 

(0)1 a 
[ U 

3 
] 
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(3-126) 

N 

. [N -L cos na] • (3-127) 

n=l 

Therefore, for a given desired lower bound on the 5/ N of the demodulator output, the 

required value of the modulator threshold a can be determined by using Equation (3-127). 

The criterion that we have just derived is for the case of single-tone 

modulation. A similar criterion for multitone modulation, cannot be derived at present. 

However, the criterion given by Equations (3-126) and (3-127) can be profitably used 

to choase the modulator threshold for a general modulating signal by considering (0)1 as 

the highest significant frequency in the l'Y.odulating signal. 

3.5 Discussion and Conclusions 

ln the present chapter, we have developed a general method for spectral 

analysis of integral pulse frequency modulation (lPFM). In this method, the modulating 

signal x (t) is first incorporated into a function described by Equation (3~), since this 

provides a systematic approach to derive a spectral description of the output pu Ise train. 

Then, this function is represented in terms of its spectral components and the resulting ex-
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pression is substituted into Equation (3-9) to yield an expression for the output impulse 

train. Finally, the spectral representation of the output pulse train of the moc:lulator 

is derived by considering the linear pulse-shaping e Iement P (s) as a filter which modifies 

the spectral components of the impulse train. 

Using this method, we have examined in detail the spectral characteristics 

of IPFM for a class of modulating signais comprising one or more sinusoids. Severa 1 useful 

results have been derived from this analysis. In particular, we have shown that the modu-

lating process introduces a noise compone nt in the output pulse train, whose amplitude 

spectrum always overlaps that of the signal compone nt • Further, we have derived criteria 

for selëcting the modulator threshold a and the biasing constant X • For single-signed 
o 

(S - S) IPFM, the criterion con be expressed in terms of the number of pulses per period 

of the highest significant frequency component in the message signal. 

ln the analysis of double-signed (0 - S) IPFM, we have assuOled that the 

modulator con be represented sufficiently accurately bya model involving a quantizer with-

out hysteresis. This satisfactory agreement has been demonstrated by means of an example 

in Section 3.4.1, wherein the output pulse train from this approximate representation is 

very similor to a D - S IPF modulated train, provided the two trains have about the same 

number of pulses. However, it is desirable that this approximation be quantitatively 

evaluated in further investigations. 

The synthesis criteria that we have derived in the present analysis are useful 

for the design of an integral pulse frequency modulator. They con be useful aise for the 
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design of the averaging type FM discriminators, since this type of discriminator demodulates 

a continuous FM wave by first converting it into a S - S IPF rnodulated pulse train and 

then filtering the result with a lowoopass network. 33,34 
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CHAPTER IV 

APPLICATION OF INTEGRAL PULSE FREQUENCY MODULATION 

TO ANALOGUE MULTIPLICATION AND DIVISION 

4.1 Introduction 

ln some control and industrial systems, it is desirable to multiply a contint;l-

ous~signal by a frequency-modulated pulse train. For example, the amount of material 

per unit time moving on a feeder conveyor can be computed if the weight of the material 

is multiplied by the velocity of the conveyor, where the former signal is measured by ana-

logue load sensors while the latter can be conveniently represented by a frequency-

modulated pulse train originating from an incremental encoder. As another example, the 

power of a rotating shaft can be similarly determined, since the torque of the shaft is 

usually measured by an analogue torque transducer, and the shaft speed can be readily 

encoded into an integral pulse frequency modulated train as we have noted in Section 2.5. 

Hence, in view of the potential usefulness, it is of interest to investigate the feasibility 

of implementing analogue multiplication by means or integral pulse frequency modulation 

(IPFM). 

Numerous analogue multiplication methods have been reported in the 

Iiterature. 3,45,46 Some multipliers, such as the Hall - effect multiplier, directly imple-

ment a physical law, while some others, such as the logarithmic or quarter-square multipliers, 

utilize nonlinear circuit elements and/or special function generators. Of particular in-

terest is the class of multipliers which ope ra te by a combination of modulation methods. In 

this c1ass of multipliers, various dual modulation schemes involving pulse width modulation 

as weil as amplitude, phase, and frequency modulation of sinusoidal carriers or 
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. h be . 3 pulse trains ave en used. However, up to this time, IPFM apparently has 

not beeri' applied' to implement analogue multiplication. 

ln this chapter, methods for implementing analogue multipliers and dividers 

using pulse frequency modulation are formulated and studied. 5ingle -signed IPFM 

(5 - 5 IPFM) is employed to formulate a method of analogue multiplication. A method 

of pulse frequency modulation originally proposed by Goldberg
27

,28 is then represented 

approximately by an 5 - 5 IPFM moclel, and further this method is utilized ta formulate 

a method of analogue division. Finally, the results of a computer simulation study are 

shown to verify the feasibility of the proposed methods. 

4.2 Multipliers Using 1 PFM 

4.2.1 Theory 

It is weil known from sempled data the ory that the process of sampling a 

signal y (t) is the seme as multiplying it by a train x * (t) of identical rectangular 

pulses of unit height.
47 

Thus, the output of the sampler, which we denote by y * (t), 

may be expressed mathematically as 

y * (t) = y (t) • x * (t) • (4-1) 

Now, consider the situation in which the sempling pulse train x * (t) is 

produced by a single-signed integral pulse frequency (5 - 5 IPF) modulator. 8ased on 

the results obtained in Chapter III, x * (t) can be represented as the sum of a signal com-
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ponent S (t) and a noise compone nt N (t). Thus, Equation (4-1) can be re-written as 

y * (t) = y (t) • S (t) + y (t) • N (t) • (4-2) 

When the sampling pulses are sufficiently narrow, S (t) is almost linearly proportional 

to the input x (t) of the S - S IPF modulator. Indeed, if the sampling pulses become 

impulses, then S (t) = a x (t), where a is a proportionality constant, and the output 

of the sampler contains a compone nt which is proportional to the product x (t) y (t). 

Therefore, multiplication of two signaIs, x (t) and y (t), can be accomplished by the 

arrangement shown in Figure 4-1 , provided that the signal component, y (t) S (t) of 

y * (t) can be recovered with negligible error by the fil ter • 

y (t) Sampler y*(t) Filter a x (t) y (t) 

x (t) ~ 0 S - S IPF x * (t) 

Modulator 

FIGURE 4-1. A METHOD OF ANALOGUE MULTIPLICATION USING IPFM . 
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We shall now show that the signal component of y * (t) can, in fact, 

be recovered with negligible error by a low-pass filter. Consider first the simpler cases 

in which either x (t) or y (t) is constant. When x (t) is constant, say x (t) = X , 

the sampling pulse train x * (t) from the S - S IPF modulator can be readily shown to 

be periodic with period a / X ,where a is the modulator threshold. Hence, by the 

sampling theorem, the signal X.y (t) can, in principle, be recovered completely bya 

low-pass filter with cutoff frequency Co) , provided tnat the power spectrum of y (t) is 
c 

zero for frequencies greater than Co) ,and provided that the modulator threshold a is 
c 

selected to yield the sampling frequency 2 .. X > 2 Co) • For the other case in which 
a c 

y (t) is constant, the output of the sampler is simply a S - S IPF modulated pulse train. 

At, we have shown in Chapter III, the signal component of this pulse train can be recovered 

with negligible e."ror bya low-pass filter also, provided that the S - S IPF modulator 

threshold and the biasing constant in x (t) are properly selected. Therefore, for both of 

these simpler cases, the proposed method for multiplication is feasible. 

Now, consider the more general situation in which x (t) is a multitone 

signal as described by Equation (3-52), and y (t) is a sinusoid given by 

y (t) = U cos vt 
y 

For this case, the sampling pulse train x * (t) is described by Equations (3-62) to 

(3-64) with h d = 1 • Substituting these equations and Equation (4-3) into 

Equation (4-1) and simplifying, we have 

T 
Y * (t) = a U cos V t 

Y 
[X 

o 
U 

m 
m=l 

sin Co) T /2 
m 

Co) T/2 
m 

(4-3) 

cos (Co) t + 9 - Co) T / 2) ] + NI (t) , (4-4) 
m m m 



e 
where 

U 
NI (t) = L 

2ah 

CD CD 
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Q) 

L Er (k, n1 ' ••• , nM) • 

n =-c:o 
M 

(4-5) 

{cos [(\ M - Il) t + "'M -~ .,. /2] + cos [~ + Il)t + "'M ~ "'/2)J~. 

and ail other symbols are as defined previously. 

The first bracketed term of Equation (4-4) is the signal compone nt of y * (t) and is almost 

linearly proportional to the product x (t) y (t) for a sufficiently small pulse width T. 

The noise component, as represented by NI (t), has spectral characteristics similar to those 

of the noise component N (t) in x * (t). Indeed, the amplitude spectrum of NI (t) is 

a composition of two individual spectra : 

u 
(i) the spectrum of N (t) multiplied by + and shifted 

downward in frequency by Il , and 

U 

(ii) the spectrum of N (t) multiplied by + and shifted 

upward in frequency by Il. 

Sinc.! the significant bandwidth of N (t) is finite, the significant bandwidth of NI (t) 

is also finite, and thus the signal and noise spectra of y * (t) can be practically separated 

by proper choice of the modulator threshold a and the biasing constant X in x (t) • 
o 

Therefore, the product, x (t) y (t), can be recovered with negligible error by lowt>ass 

fi ltering y * (t) • 



92 

The above analysis can be immediately extended to demonstrate the 

feasibility of the proposed rnethod of analogue multiplication for the case in which both 

x (t) and y (t) are multitone signais of the form given by Equation (3-52). Since an 

arbitrary signal can be c10sely approxhnated' by a' mUltifone signal, the arrangement 

shown in Figure 4-1 can be used to implement multiplication of arbitrary signais, pro-

vided that the parameters a and X of the S - S IPF modulator have properly chosen 
o 

values. The synthesis criteria derived in Section 3.3 mey be profitably used here for 

the selection of a and X • It should be noted, ho't\e ver, that the bandwidth of the 
o 

signal and noise components of y * (t) depend on both x (t) and y (t). The maximum 

significant frequency of the signal compone nt is equal to the sum of the maximum signi-

ficant frequencies of x (t) and y (t), while the minimum significant frequency of NI (t) 

is smaller than that of N (t). Hence, the se lection of the parameters a and X of 
o 

the modulator must take these points into consideration. 

4.2.2 1 mp lementation 

Analogue multipliers based on the theory presented above can be reodily 

implemented using commonly avaitable electronic hardware. The block diagram of a 

two-quadrant multiplier is shown in Figure 4-2. In this diagram, f (t) and g (t) are 

the signais to be multiplied, white X is a biasing constant'in the input, x (t), of the 
o 

S - S IPF modulator. Sampling is pe~formed by the electronic switch. Because the 

sampling pulse train x * (t) contains a signal compone nt which is proportional to X , 
o 



g(t) ~ 0 

f(t) 

g(t) + 
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the attenuator K must be adjusted 50 that the unwanted product X 9 (t) is zero at the 
y 0 

output of the multiplier. The output block contains an amplifier to compensate for the 

attenuation introduced by pulse frequency modulation and amplitude sampling. The 

s - S IPF modulator can be implemented as described in Section 2.5 , and for the other 

components of the multiplier, weil known electronic circuits or building blocks can be 

3 
used. 

The two-quadrant multiplier can be extended as shown in Figure 4-3 to 

accomplish four-quadrant multiplication. ln this case, a biasing constant Y is added to 
o 

the signal 9 (t) which may now have both positive and negative values. The attenuators 

K and K are to be adjusted 50 that the additional unwanted products Y X and 
x 0 0 0 

y f (t) are zero at- the output of the multiplier. 
o 

4.3 Dividers Using Goldberg1s PFM 

One of the earlier methods of pulse frequency modulation (PFM) was pro-

27,28 
posed by Goldberg. (See also Section 1 .1). In Goldbergls method, the pulse train 

is generated by the process shown in Figure 4-4. The modulating signal u (t) contains a 

biasing constant 50 that either u (t) > 0 or u (t) < 0 for ail t. The ramp signal, r (t), 

is generated internally in the modulator and has a constant slope m whose sign is the same 

as that of u (t). The signais u (t) and r (t) are compared. Whenever u (t) = r (t), a 

standard pulse is emitted by the modulator and the ramp is reset to zero at the same instant. 

Goldberg1s method of PFM can be util ized to implement analogue dividers. As a first 
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step to establish this result, we shall now show that this method can be approximately re-

presented in terms of S - S IPFM . 

4.3.1 Representation of Goldbergls PFM in Terms of S - S IPFM 

L-et t! 1 and t! be respectively the pulse-emission times of the (i-1) th 
1- 1 

and the ith pulses from Goldbergls modulator. Further, without loss of generality, let 

m > 0 and u (t) > 0 for ail t. Then, for t! 1 < t ~ t! where i = 1, 2, 3, ••. , 
1- 1 

the ramp signal given by 

r (t) = m (t - t! 1) . 
1-

(4-6) 

Since r (t!) = u (t!) , we have from Equation (4-6) 
1 1 

t l = t l + 
i i-1 

Ù (t!) 
1 (4-7) 

m 

This relation shows that the pulse interval is Iinearly proportional to the sampled amplitude 

of the modulating signal u (t) . 

E 
t' = t l + ~ 
i i-1 m 

ln parti cu lar, if u (t) = E = constant, 
o 

(4-8) 

1 
Now, consider a S - S 1 PF modulator whose input is 7{t) From 

Equation (2-1) we have 
t. 

1 

J dt 
u (t) 

t. 1 1-

= a (4-9) 

where t. 1 and t. are the. pulse-emission times of the (i-1) th and the ith pulses 
1- 1 



respectively, and a is the modulator threshold. For the particular case in which 

u (t) = E , we have from Equation (4-9) , 
o 

t. = t. 1 + a E 
1 1- 0 
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(4-10) 

Comparing this result with Equation (4-8), we see that the pulse train from an S - S IPF 

modulator :can be made identical to that generated by Goldberg's method if we set the 

1 
S - S IPF modulator threshold a equal to - Hence, for this particular case of 

m 

u (t) = constant, Goldberg's modulator con be represented byan S - S IPF modulator 

with the threshold a = ~ and input u ~t) as shown in Figure 4-5. We shall now show 

that this representation is approximately valid for a general signal, provided that the slope 

m of the romp signal in Goldberg's modulator is sufficiently large. 

Let the block diagram in Figure 4-5 be called the approximate mode 1 of 

Goldberg's modulator, and let the emission time of its ith pulse be t.. Then, applying 
1 

40 
the mean-value theorem to the integral in Equation(4-9) and setting a = 

m 
, we 

have 

t. = t. 1 + 
1 1-

u (q.) 
1 

m 
(4-11) 

where t. 1 ~ q. ~ t. • Now, byassuming t. 1 = t! 1 ' the error introduced by the 
1- 1 1 1- 1-

approximate model into the emission time of the ith pulse is 

e. = t l 

1 i 
t. = 

1 

u (t!) - u (q.) 
1 1 

m 
(4-12) 

This result shows that the error is negl igible, provided that 1 u (t!) - u (q.) , < < m • 
1 1 

Therefore, for m sufficiently large, Goldberg's modulator con be represented by the 

approximate model with negligible error. 
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ln utilizing the approximate model for analysis of Goldberg's PFM, it 

is desirable to know an upper bound of the error for a given modulating signal u (t) and 

a given value of m. Hence, we shall now derive su ch an upper bound in terms of m 

and the maximum slope of u (t) • 

Let u (t) be expanded in a Taylor series about t! l' Then successively 
1-

substituting t = t! and t = q. in the expansion, and utilizing the resulting IWo series in 
1 1 

Equation (4-12), we obtain 

e. = _1_ {t! - q.) u l (t! 1) + 
1 mil 1-

.. 

1 1 2 1 2 un (ti_1) } 
[ (t. - t. 1) - (q. - t. 1) ] + ..• 

1 1- 1 1- 2 ! 

where u l denotes the first derivative of u (t) , u" the second derivative, and 50 on. 

Now, we assume that 

(i) the second and higher order derivatives of u (t) at t = t! 1 
1-

are negligible for ail i, and 

(ii) 1 ul (t) 1 :s: K for ail t, where K is a positive constant. 

(4-13) 

Then, by noting that 1 t! - q. 1 ~ 1 t! - t! 1 1 , Equation (4-13) can be simpli-
1 1 1 1-

fied to yield the relation 

e. K 1 :s: (4-14) 

t! - tl. 1 
m 

1 1-

for ail i . 
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The left-hand side of Equation (4-14) is the magnitude of the error 

normalized with respect te- the pulse interval. Equation (4-14) shows that this normalized 

error of pulse emission times introduced by the approximate model is bounded bya constant 

which is linearly proportional to the maximum slope of the modulating signal u (t), but 

inversely proportional to the slope of the ramp signal. Therefore, if u (t) is given and 

thus K can be estimated, then an upper bound of the normalized error can be determined 

for a given value of m , the slope of the ramp signal in Goldberg's modulator. Further, 

Equation (4-14) can be utilized to choose a value of m for which the approximate model 

of Goldberg's modulator can be meaningfully utilized. Forexample, if 

u (t) = E + U sin (Co) t + G > 0 and a maximum normalized error of 0.01 is desired, then 

m = 100 Co) U • 

It should be noted that Equation (4-14) has been derived with the assumption 

that the second and higher order derivatives are negligible at the initial point of each pulse 

interval. This assumption implies that u (t) in ail pulse intervals can be closely represented 

by a 1 inear function. This latter approximation can be made if the bound 

4.3.2 !heoryand Implementation of the Divider 

K issmall. 
m 

Consider the system shown in Figure 4-6. As we have just shown above, 

Goldberg's modulator can be closely represented byan S - S IPF modulator provided that 

the slope m of the ramp signal il' Goldberg's modulator is sufficiently large. Thus, the 

system in Figure 4-6 is practically equivalent to that shown in Figure 4-7 when m is 

sufficiently large. Now, bosed on the theory presented in Sub-section 4.2.1, the output 
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of the low-pass filter in Figure 4-7 is proportional to the quotient ~ ~;~. Since the 

systems in Figures 4-6 and 4-7 are practically equïvalent, the system in Figure 4-6, 

therefore, can be utilized to implement analogue division. 

The block diagram of a one-quadrant divider using Goldberg's PFM is 

shown in Figure 4-8. In this figure, the signal g (t) ~ 0 is to be divided by u (t) > 0 • 

The electronics switch performs sampling and the output amplifier compensates for the attenua-

tion introduced by pulse frequency modulation and sampling. 

The one quadrant divider can be extended as shown in Figure 4-9 to 

achieve two-quadrant division. Here, the signel g (t) is biased by a constant Y 50 
o 

that y (t) == Y + g (t) ~ o. Because the output of the sampler contains a compone nt 
o y 

which is proportional to the unwanted quotient u{t).':' the attenuator Ky is included and 

is to be adjusted so that this unwanted quotient is zero at the output of the divider. It 

should be noted that the output of K , after passing through the output amplifier and filter, 
y 

becomes a signal which is proportional to u~t) ,since Goldberg's modulator can be closely 

represented by the S - S IPF mode 1 shown in Figure 4-5 • 

The various blocks of the proposed dividers can be implemented using well-

known electronic circuits and / or commonly available building blocks. 
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4.4 Results of a Computer Simulation Study 

A digital computer simulation study has been performed with the objective 

to verify the feasibility of the proposed methods of analogue multiplication and division. 

The typical results are shown in Figures 4-10 and 4-11. In Figure 4-10, the output of 

the multiplier is compared with the true value of the product. The multiplier output 

follows the true value closely, but lags the latter bya considerable amount. The lag is 

introduced by the output filter which, for this case, is a slightly under-damped second order 

system with the break frequency equal to 6 rad / sec and the damp ing ratio equal to 009 0 

This break frequency is only about twice the frequency of one of the two sinusoidal com-

ponents in the product and thus the phase lag introduced into this sinusoidal compone nt is 

o 
about 45 • The amount of lag can be reduced by increasing the break frequency of the 

filter ; however, if the cutoff characteristic of the filter is not changed, the average pulse 

frequency of the train from the S - S IPF modulator must be increased in order that the 

output noise content may be kept at the same low level. 

The output of the divider is compared with the true value of the quotïent in 

Figure 4-11. The output of the dïvider also follows the true value closely, but lags the 

latter bya considerable amount for the some reason given above in the discussïon of the re-

suit for the multiplier. The output fïlter employed in this case is a second order system with 

a damping ratio of 0.9 and a break frequency of 12 rad / sec. The ramp signal in Gold-

bergls modulator has a slope of 100 units / sec. 
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4.5 Discussion and Conclusion 

ln this chapter, we have successfully appl ied 1 PFM to analogue computation. 

ln particular, we have formulated a method for implementing analogue multipl iers using 

IPFM. Further, we have shown that Goldberg's method of pulse frequency modulation 

(PFM) can be closely represented in terms of S -: S IPFM , provided that the slope of the 

ramp signal in the modulator is suHiciently large. This method of PFM is then util ized 

to implement analogue dividers. The feasibility of these methods of analogue multiplica-

tion and division has been studïed theoretically and by digital computer simulation. 

The multiplier using IPFM is similar to one of the commonly used multipliers, 

1 h If • d· -de 0 • 1 u 10 3,45 Th bo h b 1° d na me y,t e se -excite hme IVlslon mu tlp 1er. ey t operate yamp !tu e 

modulation of a pulse train which is generated by means of a feedback system. (See 

Section 2.5 of this the sis and Reference 3, Figure 7 - 14). However, both the pulse-

width and pulse frequency of the train in the self-excited time-division multiplier vary with 

one of its inputs, whereas the width of the pulses in the multiplier using IPFM remains 

constant. The multiplier using IPFM appears to have ail the advantages possessed by the 

time-division multiplier. Further, it may be more accurate and versatile than the latter, 

since it employs pulses of fixed width. Indeed, the multiplier using IPFM would offer 

more advantages if a number of signais located at widely separated places is to be multiplied 

byone common signal and the resulting products are to be utilized at the corresponding 

locations. It would be of interest to compare the performance of the multiplier using 

IPFM with the commonly used multipliers by constructing prototypes ; however, this pro-

posai would form a project by itself and is outside the scope of the present work. 
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The method of analogue division using Goldberg's PFM has sorne 

significant limitations. Firstly 1 it can only implement one-quadrant and two-quadrant 

division. Further, the input of Goldberg's modulator in the divider cannot contain any 

biasing constant and thus the performance of the divider is sensitive to the characteristic 

of the input signal. However, the proposed dividers are simple to implement and may be 

profitably employed for special purpose computation. 
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CHAPTER V 

APPLICATION OF INTEGRAL PULSE FREQUENCY MODULATION TO THE 

ANALYSIS OF A NEURAL COMMUNICATION SYSTEM 

5. 1 Introduction 

ln the peripheral nervous system of an animal, information is transmitted by 

trains of electrical pulses, called action potentials, via multitudes of nerve fibers. The 

pulses themselves in any single fiber are essentially identical, but their repetitive fre-

quency may vary. In particular, pulse frequencies in the individual afferent fibers of 

many se,1sory orgons have been found to vary as some function of stimulus intensity. Thus, 

it has been generally recognized that pulse frequency is one of the information carriers in 

the nervous system and that the corresponding neural pulse generating mechanism in a 

single fiber operates according to some form of pulse frequency modulation. 48 ,49 

Single-signed integral pulse frequency modulation (S - S IPFM) was pro

posed in 1959 as a mathematical model of the neural generating mechanism,22 and since 

then it has been applied to a number of neurophysiological studies. Li and Jones have 

analyzed S - S IPFM feedback control systems whose operation resembles that of the 

1 • h • 1 • •• d 8,23 P 'd h d' d neuro-muscu or system Wlt reclproca innervation Incorpora te • artn ge as stu le 

the frequency response of the muscle by stimulating its efferent nerve with a pulse train 

from an integral pulse frequency modulator, 25 Furthermore, byassuming S - S IPFM as the 

actual neural pulse generating mechanism, Partridge has also investigated signal distor

tion introduced by the neural encoding process,24 while more recently, Bayly has 

examined the spectral characteristics of pulse frequency modulation in the nervous system .26 
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ln the present chapter, we shall apply S ~ S IPFM to investigate the trans

mission of signais in a particular multi-unit .mulfipath. neural communication system, 

namely, the afferent limb of the monosynoptic spinal reflex (MSR). We shall start by 

briefly reviewing the pertinent features of the MSR. Then, the afferent 1 imb of the MSR 

will be mode lied and statistically analyzed, taking into consideration the variations of 

properties in the multiplicity of neural elements and pathways. 

We assume, in the subsequent presentation, that the reader has some basic 

knowledge of neurophysiology, in addition to his knowledge of analysis. Those not 

familiar with neurophysiology may acquire some of the required background by reading 

Chapters 2, 4, 6 and 7 in Reference 50 . 

50-52 
5.2 The Monosynaptic Spinal Reflex 

The monosynaptic spinal reflex (MSR) is a basic sub-system in most neuro

muscular control systems of an animal. Its principal features for a mammal are illustroted 

in the highly simplified and conventional representation shown in Figure 5-1, in which 

only one of each of the various main functional components is shown. In reality, however, 

the MSR consists of many similar elements acting more or less in parallel. 

One of the principal components of the MSR is the muscle spindle which 

is a few millimeters long and is located within the muscle itself. It comprises a bundle 

of from 2 to lOi ntrafusa 1 musc le fibers surrounded by a connecti ve tissue capsu le whose 

ends are attached to the sheaths of the surrounding regular or extrafusal muscle fi bers • 
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The long, slender ends of the intrafusal fibers are striated and contractile, whereas the 

central or equatorial region is unstriated and probably cannot contract, but instead be

come stretched whenever the spindle is stretched. 

The spindle is supplied by three main types of nerve fibers. It has up to 

fifteen ~ - efferent fibers, one Group 1 a afferent fiber , and from one to several 

Group Il afferent fi bers . The ~ - efferent fibers originate from the ~ - motoneurons in 

the spinal co rd and their branches innervate the contractile polar regions of the intrafusal 

muscle fibers. The peripheral end of the l, a afferent fiber branches inside the capsule 

of the spindle,andterminates as the so-called primary endings that encircle the equatorial 

region of the intrafusal muscle fibers. The 1 a afferent enters the spinal .cord via the 

dorsal root and sends branches directly to the a - motoneurons (a - MN's) that innervate 

the same muscle in which the spindle is located. The peripheral endings of the Group Il 

afferent fibers termi.nate on both sides of the equatorial region of the intrafusal muscle 

fibers, but their central endings in the spinal cord do not terminate on the a - MN's 

directly. Hence, these latter nerve fibers are not directly relevant to the MSR, and 

thus they are not shown in Figure 5-1 and will not be included in subsequent discussions. 

The muscle spindle is attached in parallel to the extrafusal fibers of the 

muscle. Therefore, stretching the muscle tends to increase the length of the spindle and 

th us to extend the equatorial region of the intrafusal fi bers • As a result, the primary nerve 

endings are distorted and then, as generally believed, produce electric currents called 

generator currents. These currents spread electrotonically into the adjacent regions of the 

parent axon and summate there to produce the so-called generator potential. Whenever 

the membrane potential at the pulse generating site of the 1 a axon reaches threshold value, 
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an action potential is generated in this afferent fiber which conducts it to the a - MN 

in the spinal cord. The spindle thus monitors the length of the muscle, encodes the 

information into a neural pulse train, and then transmits it via the 1 a afferent nerve 

fiber to the a - MN . 

ln addition to the mechanical input derived from the change in muscle length, 

the spindle has another input which is derived from the neural pulse trains in the ~ - ef-

ferents. These pulse trains cause contraction of the polar regions of the intrafusal fibers 

and tend to decrease the ovarall length of the spindle. Hence, if the surrounding muscle 

does not contra ct simultaneously, the equatorial region of the intrafusal fibers will be ex-

tended, producing the same series of subsequent events described above for the mechanical 

input. However, in this case the spindle does not operate as a feedback monitor; instead, 

it operates as a relay station and a summer, since it converts the ~ - efferent pulse trains 

into generator currents, summdtes these generatol' currents with . thoSe de'rived from the 

mechanical input ,and then converts the result into an afferent pulse train. 

The afferent pulse train from each spindle excites the a - MN directly 

through synaptic contacts and evokes voltage changes called quantal excitatory postsynap-

58 
tic potentials (EPSP's) in the postsynaptic membrane of the a - MN. These quantal 

EPSP's spread electrotonically into the adjacent regions of the neuronal membrane and 

summate thare with the quantal postsynaptic potentials (PSP's) caused by other synaptic 

inputs such as those from hi gher centers and other neurons. It shou Id be noted, however, 

that the other synaptic inputs may be excitatory or inhibitory. 

Whenever the summated PSP at the pulse generating site of the a - MN 

reaches the threshold value, an action potential is generated in the a - efferent axon 
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which conducts it to the muscle. The a - efferent axon branches in the muscle, making 

connections with a number of extrafusol fibers. Thus, a pulse in it activates a number of 

muscie fibers which then co nt ra ct in unison to produce a unit contractile response of the 

whole muscle. The a - MN together with its axon and the set of extrafusal fibers it 

innervates is known as a motor unit. 

We have noted earlier that the monosynaptic spinal reflex (MSR), in reality, 

consists of many similar elements acting more or less in parai lei. Let us now consider 

this aspect with particular reference to the representation of information. Consider first 

the efferent 1 imb of the MSR. The muscle, often comprising thousands of extrafusal 

fibers, receives information from a lesser number of a - motoneurons (a - MN's) via 

the a - efferent axons. The cat soleus, for example, consists of about 25,000 extra

fusai fibers grouped as about 150 motor units. However, the state of the muscle can be 

described in terms of its terminal force and length changes, and this state is produced as 

the net result of the motor unit contractions. Since the contractions of the motor units 

are dependent upon the efferent activities, information is thus represented in this case 

by the enserr.ble of pulse trains in the a - efferent axons. 

ln the afferent Iimb of the MSR, information is transmitted by the spindles 

to the a - MN 's in the spinal cord. 

throughout the belly of the muscle. 

There are many spindles distributed at random 

(k an example, the cat soleus has about 55 spindles). 

When the muscle is stretched, the spindles tend to generate pulse trains in ~heir afferent 

nerve fibers, and both the pulse frequency and the number of active nerve fibers tend to 

increase with the stretch amplitude. Since the muscle spindles are attached in parallel 
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to the extrafusal muscle fibers, it is reasonable to consider sorne dynamic function of the 

change in muscle length as the information transmitted to the a - MN's. Clearly, in 

this case also, information is represented by an ensemble of pulse trains. 

From the above description, we see that neural communication in both the 

efferent and afferent limbs of the MSR is mediated respectively by many motor units and 

by many sensory units, over many parallel paths. We cali this property of the communi-

cation systems the multi-unit multipath characteristic. This characteristic is not restricted 

to the monosynaptic spinal reflex (MSR) above, but is a property common to other sensory 

48,52 
and motor systems. 

We can usefully ask why the method of neural communication has evolved to 

this present form involving a multiplicity of units and pathways. Clearly the redundant 

structures provide reliability, sorne degree of which is essential for survival. However, 

does the multi-unit multipath characteristic have in addition any functional significance 

in the transfer of information? Recent experimental evidence indicates that the answer 

is affirmative ~3,54ln the following, we shall investigate this problem theoretically, by 

mathematical analysis and computer simulation. Our attention will be restricted to the 

transmission of information from the muscle to the a - motoneuron in the afferent Iimb of 

the MSR. Clearly, the MSR is a closed-loop feedback system. Since the effects of 

feedback unnecessarily compl icate the analysis of signal transmission, we shall assume in 

the present investigation that the ventral root is cut to open the loop, wh ile the efferent 

pulse trains may still be generated artificially by electrical stimulation. 
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5.3 Information Flow in the Afferent Limb of the Monosynaptic Spinal Reflex 

As noted above, in the afferent 1 imb of the MSR information is transmitted 

by the spïndles to the a - motoneurons (a - MN's) in the spinal cord. Let us now con

sider the flow of information and examine the pertinent characteristics of the transmission 

paths. 

Consider first the f10w of information to a single a - MN. It is weil known 

that an a - MN receives information from many sources (Ref .50;Chapter 6). However, 

for our analysis we are concerned only with the information conveyed to it by the mono

synaptic nerve fibers arising from the spindles in the muscle which it innervates. Thus, 

the a - MN in the present analysis con receive signais originating from only three 

possible sources, namely, the applied muscle stretch, the a - efferent pulse trains, and 

the '-i - efferent pulse trains. From the present viewpoint, the other inputs to it are ir

relevant and may be considered as noise if they are inc\uded in the analysis. 

The f10w of information to an a - MN via monosynaptic afferent fibers con 

be illustrated as shown in Figure 5-2. The applied stretch and the a - efferent pulse 

trains produce change of muscle length which is coupled mechanically to the spindles, 

while the~- efferent pulse trains stimulate the spindles directly. The information con

tained in these input signais is encoded by the spindles into pulse trains which are conducted 

to the a - MN by the afferent fibers. It should be noted that in the spinal cord a single 

1 a afferent axon breaks into many branches making synaptic contact with many post

synaptic cells and conversely many synaptic knobs on a single a - MN derive from many 

different parent afferent axons (Ref .:50,Chapter 6). This overlapping innervation is recently 
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found to be almost complete over the a - motoneuron pool and the homonymous muscle 

spindles for the cat gastrocnemius. 55 

The number of parallel paths for information transmission to the a - MN 

is equal to the number of monosynaptic knobs on the neuronal soma-dendritic complex. 

Each path in this multipath system has its own intrinsic properties different from its neigh-

bourSe The spindles are known to have different stretch-thresholds for pulse generation 

and this variation is believed to be caused partly by the variance in the intrinsic sensiti-

vit Y of the spindles, but mainly by their spatial distribution in the muscle so that some 

spindles are more readily excited by the appl ied stretch than the others (Ref .50,Chapter 4). 

Thus, output pulse trains of different spindles are generally different for a given change 

in muscle length. Furthermore, the pulse trains are conducted to the a - MN by 
80 

afferent fibers whose conduction velocities vary from one fiber to another. A final addi-

tional variation occurs at the neuronal membrane. A recent experimental finding indicates 

that the excita tory postsynaptic potential (EPSP), resulting from spatial and temporal 

. bl h f h MN· . f . •. 1 53 summatlon, presuma y at t e soma 0 t e a - IS an 10 ormatlon carrylOg signa. 

Thus if the soma, or preferably the pulse-generating site which is generally believed to 

be the axon hillock, is considered as the point where the quantal EPSp·s summate, then 

the quantal EPSp·s produced at this site by single synaptic inputs at different locations on 

the neuronal membrane will be different. Since there is evidence that the monosynaptic 

knobs are randomly distributed throughout the soma-dendritic complex of the 
56-58 

a - MN, the quantal EPSp·s produced at the pulse-generating site are differ~nt. In 

other words, the IIneuronal transfer dynamics ll relating a single presynaptic neural pulse 

to the resulting postsynaptic subthreshold neuronal response ot the pulse generating site 

varies from one path of information transmission to another. 
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Consider now the complete afferent Iimb of the MSR as a communication 

system. Clearly, the flow of information to any one of the a - MN in the motoneuron 

pool innervating the muscle can be represented as shown in Figure 5-2. Thus, if the 

subsystem shown in Figure 5-2 is defined as a communication link in the MSR, the 

afferent limb of the MSR can be considered as a system of such links in parallel. The 

number of links in the system is, of course, equol to the number of a - motoneurons 

(0 - MN) in the motoneuron pool. However, because of overlapping innervation in the 

pool, the number of "spindles" in different links may be different and furthermore the 

total number of spindles actually existing in the muscle is not equal to the sum of ail 

"sp indles" used in the representation of the MSR. It should be noted also that the change 

in muscle length is a signal common to ail communication links in the representation. 

Since the afferent limb of the MSR is cornposed of a number of similar 

communication links in parallel, the transmission properties of the whole system can be 

derived from the properties of a single link. Thus, in the following, we shall consider 

signal transmission in a single communication link only. 

5.4 Mode 1\ ing the Neura 1 Encoder 

ln our brief review of the MSR, we have noted that pulse initiation in the la 

afferent axon is preceded by the production of the so-called generator currents in the 

primary nerve endings, and that an afferent pulse is generated whenever the depolarization 

by these currents at the pulse generating site reaches threshold value. As d first step in 

obtaining a complete mathematical model of a communication Iink in the afferent 11mb of 
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the MSR, we now consider the problem of representing the neural pulse generatïng 

mechanism which converts the summated generator current into the afferent pulse train. In 

subsequent discussions, we shall cali this mechanism the "neural encoder", or more 

briefly, the "encoder ll
• 

At present the exact operating principle of the neural encoder is unknown. 

However, some characteristics of its method of pul$8 generatlon and its terminal relations 

are known qualitatively. We shall first present these characteristics and then show that 

most of these are alsa exhibited by single-signed integral: pulse frequency modulation. 

1. Method of Pulse Generation: The records shown in Figure 5.3 illustrate 

several features in the generation of afferent pulses. The lower traces in these records 

indicate extension of the spindle, while the upper traces iIIustrate the changes of potential 

which .is presulnàbly' proportional :t6' the membrane potential at the pulse-generating 

site of the afferent axon, when the spindle is stretched at a constant rate to different 

final amplitudes. In (a) the stretch is just over threshold for eliciting one single pul:;e. 

With somewhat greater extension in (b), a slight increQse in potential occurs in the 

aftermath of the pulse. With further increase in extension, the amplitude of this sa-called 

prepotential increases proportionally and at a specific amplitude of stretch, a second pulse 

is generated in (d). As the stretch is increased, the same sequence of events is repeated, 

producing an afferent pulse train such as the one shown in (i). From these records we can 

observe the following characteristics of pulse generation. 

(a) Each pulse is prececled by a prepotential which is dependent 

upon the applied stretch. 



• 

Upper traces: Changes of 
potential. 

Lower traces: Extension of 
spindle. 

-

JJlllJJlllJJ~ IOOIIIIIIII~lllilll~III~I~~ 
-'-

-

Horizontal bar : 20 m sec. 

Vertical bar : 2 m V • 

Horizontal bar 50 m sec. 

FIGURE 5-3. RECORDINGS ILLUSTRATING PULSE GENERATION IN THE 1 a AFFERENT OF THE FROG SPINDLE. 

(FROM REFERENCES 64 AND 65) • 

-' 
-' 
-0 



··".T-:":' .• -;' ..... ,(' .:.:j..~~!' .: •. ~ .. ~~;..~, ._ ... , .. , ... ~ ...... .' -" ........... . 

f~ 

Upper traces: Changes of 
potential. 

Lower traces: Extension of 
spindle. 

--

lillillJJll illllllllllllllllllljJllllllllllll~l 

,-:',:",;, , . .., ...,' ; .'~ - . ' '. '.", ' . .-;,.~ .. ; ... 7': .• ~,.;~ .... y ~!~~:'''-';.~i 
\ 

t'*'\ 
l , 

Horizontal bar : 20 m sec. 

Vertical bar 2 m V . 

Horizontal bar 50 m sec. 

FIGURE 5-3. RECORDINGS ILLUSTRATING PULSE GENERATION IN THE 1 a AFFERENT OF THE FROG SPINDLE. 

(FROM REFERENCE S 64 AN D 65) . 

-0 

~~"j:·.:~.:.û,~!'r~~j.~~~ .. :;.~.:..t~.~'!!Ît' .... l~::t;:...."'_:' • ... ':...:.. •.. ; ... :r ... ·.· ... ~ .• ~ ...... · •. ·,,-..!·_,_~ ,~--- '.' ...... -.". _ ...... ~. ". ' ...... _ .. ' •••..•• '. _". o.;~. .~--'~ 



120 

(b) A pulse is generated whenever the membrane potential 

reaches a threshold value. 

(c) After the pulse is generated, the membrane is repolarized 

and the potential is brought back to a certain value below 

the point at which the pulse arose. 

(d) As the stretch amplitude becomes greater, the repolarization 

phase between individual pulses becomes less complete, re-

sulting in a base line shift of membrane potentiol towards 

greater depolarization for the duration of the stretch. The 

prepotentials and the pulses appear superimposed upon a sustained 

potential. 

(e) The threshold for pulse generatlon appears to increase with this 

sustained potential. 

2. Terminal Relations: There is very Iittle known about the functional re lations 

between the output pulse train and the summated generator current at the input of the neural 

encoder. However, there are known relationships between output pulse frequency and 'stretch 

amplitude or generator potential, and from these we shall infer some terminal relations. 

(a) When the prirnary nerve endings are depolarized by an applied 

direct current (OC), the afferent pulse frequency is constant and 

appears to be proportional to the strength of the current over a 

° °fO I.d 61,62 slgn! Icant y WI e range. 



(b) Within normal physiological range, the static relation between 

afferent pulse frequency and generator potential is essential!, 
63,65 

linear. Generator potential in these cases was measured with 

one electrode on the nerve which was placed in oil, while the 

grounding electrode was placed near the spindle Iying in the 

Ringer's solution. Thus, the measured generator potential is 

1 inearly proportional to the current flowing along the nerve fiber. 

Therefore, afferent pulse frequency can reasonably be considered 

as linearly proportional to the summated generator current. 

(c) For the dynamic case of a ramp stretch of the spindle, both afferent 

pulse frequency and generator potential in the steady state are 

linearly proportional to the stretch ~,65 Thus, afferent pulse fre-

quency is linearly proportional to generator potential also when the 

generator potential follows a ramp function. As in the static case, 

because of the method for ne asuring generator potential, afferent 
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pulse frequency can also be considered to vary I!neariy with the sum-

mated generatN current in this dynamic case. 

Now, with these known characteristics which we have listed for the neural 

encoder, we consider the problem of modelling the encoder. Our obiective is to obtain 

a physiologically reasonable and yet mathematically tractable model. From among the 

various known methods of pulse frequency modulation, including those utilized in neuron 

models but not explicitly developed~l ,66,6~ingle-signed integral pulse frequency modu-
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lation (5 - 5 IPFM) appears to be the most suitable for our present purpose. We have 

shown in Chapter III a spectral representation of the output pulse train for 5 - 5 IPFM. 

ln the following, we shall show that 5 - 5 IPFM satisfies most of the known characteris

tics of the neural encoder listed above 

1. Method of Pulse Generation: A method for implementing 5 - 5 1 PFM 

exactly has been shown in ChCiptei Il. For convenience, the block diagram of this 

modulator and the diagram illustrating its operation are shown here again in Figure 5-4. 

We can easily see that the method of pulse generation in this feedback system is similar 

to that of the neural encoder if we make the following analogies: the input x (t) re

presents the summated generator current at the pulse generating site ; the summing point 

represents the membrane property known as temporal summation ; the integrator represents 

the subthreshold current-voltage characteristic of the membrane ; the integrator output 

1 (t) represents the membrane potential, excluding the action potentia 1 ; the threshold 

device represents the threshold mechanism of the nerve membrane ; the pulse generator 

represents the pulse generating mechanism in the first segment of the axon ; the output 

pulse train x* (t) represents the afferent axonal pulse train ; and finally the negatively 

fedback pulse represents the repolarizing ionic current. 

As shown in Figure 5-4(b), the output 1 (t) of the integrator is very similar 

to the record of neural potential shown in Figure 5-30) if the action potentials are re

moved frorn this latter diagram. In particular, the "prepotentials" appear superimposed 

upon a sustained "potential" which is proportional to the input x (t). We can show this 

feature mathematically as follows • 
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Let x (t) = C t for T ~ t ~ 0, where C and T are positive constants. 

Then, for t. ~ t ~ t. 1 ' where t. and t. 1 ' i = l, 2, ••. , denote the pulse emission 
1 1- 1 1-

times of the ith and (i-l)th pulses respectively, we have 

I
t It 1 (t) = KI [ x (t) d t -

t. 1 1-
t. 1 1-

K
2 

x* (t) dt] + b. (5-1 ) 

As shown in Chapter Il, in order that S - S IPFM be implemented exactly, we must have 

b 
K

2 
A = T' where A is the area of the output pulse. Hence, if T is the duration of 

1 
the pulse, then replacing t by t. 1 + T we have from Equation (5-1), 

1-

1 (t
i
_
1 

+ T) (5-2) 

Without loss of generality, if the output pulse is assumed rectangular, 1 (t. 1 + T) can be 
1-

easily seen to be the minimum value of each "prepotential". Clearly, Equation (5-2) 

shows that the minimum of the "propotential" increases 1 inearly with time, giving the 

appearance that the "prepotentials Il are superimposed upon a sustained potential • We can 

similarly show that this feature holds also for a constant input, x (t). 

ln our comparison of the membrane potential with 1 (t), we have found it 

necessary to remove the action potentials from the neural record. This should not be a 

cause for objection, since the depolarizing phase of the action potential only serves as a 

trigger for the axonal pulse while the repolarizing phase serves as resetting mechanism of 

the membrane, the effect of which we have represented by the negative feedback in the 

S - S IPFM implementation. 
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There are two important featuies of the neural encoder, which S - S IPFM 

does not possess. Firstly, we have compared the integrator with the subthreshold current-

voltage characteristic of nerve membrane at the pulse generating site. It is weil known 

that the subthreshold nerve membrane can be approximately represented by a "leaky in-

tegrator". Thus, for a sufficiently small constant current at the pulse generating site, the 

neural encoder will not generate any afferent pulse, while the integral pulse frequency 

(IPF) modulator will generate an output pulse train with low pulse frequency. We can 

make the modulator a more realistic model of the neural encoder by replacing the integrator 

with a "Ieaky integrator" or other linear system of higher order ; but then, the resulting 

mode 1 becomes mathematically unwieldly for our present purpose. It is interesting to note 

that a rather elaborate mathematical model of the neuron developed byRoberge 67 can be 

shown to be equivalent to the modified IPF modulator we have just suggested. (See 

Appendix B). 

The second feature of pulse generation not exhibited by the modulator shown 

in Figure 5-4(a) is the variation of threshold with the "sustained potential ll 
• However, os 

we have shown in Section 2.5, this feature can be incorporated into the modulator very 

simply by the arrangement shown in Figure 2-8. For our present purpose of analyzing signal 

transmission in the afferent limb of the MSR, we shall assume that the threshold of the neural 

encoder remains constant in order to obtain mathematical tractability. 

2. Terminal Relations: There are presently only two known re lations between the 

afferent pulse train and the summated generator current for the neural encoder in the 1 a 

afferent axon. These can be incorporated in one statement: the afferent pulse frequency 
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is linearly proportional to the amplitude of the input current if the current is either a step 

or a ramp. We can show that the output pulse frequency of the IPF modulator is constant 

and linearly proportional to the amplitude of the input step immediately from the criterion 

for pulse emission given by Equation (2-1). For S - S IPFM with positive pulses, 

Equation (2-1) can be re -written as 
t. 

1 

J x (t) d t = a 

t. 1 1-

(5-3) 

When the input x (t) = K for t > 0, where K is a positive constant, we have the 

pu Ise frequency 

t. t~ 1 
1 - 1-

K =-a 
i = 1,2,3, •.• , 

(5-4) 

which establishes the stated relation. When x (t) is a romp, the output pulse frequency 

of the IPF modulator is also approximately a ramp, provided we assume that pulse fre-

quency can be considered a continuous variable as neuro-physiologists normally do. Let 

x (t) = K t for t ~ 0 , where K is a positive constant. Then, From Equation (5-3) 

we have 

f. = ~[t. + t. 1 J/2. 
1 a 1 1-

(5-5) 

This result indicates that pulse frequency at time t. is linearly proportional to the average 
1 

of two consecutive pulse emission times t
i
_
1 

and ti" Clearly the relation between pulse 

frequency and the input is approximately linear. 
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We have shown above that S - S IPFM exhibits most of the known properties 

of the neural encoder. In addition, there is other evidence that S - S 1 PFM is a physio-

logically reasonable model. The "decoding" method used by the neuromuscular system is 

somewhat similar to that of IPFM. Since the subthreshold nerve membrane is generally 

considered linear, the quantal excitatory postsynaptic potentials produced by a single 

afferent pulse train summate linearly at the motoneuron membrane. Further, it is weil 

known that the tetanus response of the muscle is the temporal summation of the so-cal'ed 

twitch responses elicited by a - efferent stimulation. In analogy to these results, we have 

shown in Section 2.6, that demodulation of IPFM is a linear temporal summation of the 

pulse responses of the demodulating low-pass fil ter • It should be noted, however, that 

temporal summation occurring at the muscle is somewhat nonlinear,68 whereas temporal 

summation in demodulating IPFM is strictly linear. 

As final supporting evidence for choosing S - S IPFM as a model of the 

neural encoder, we cite the fact that neural pulse trains have been commonly processed . 

. h b 1 f·l· b b·· h·· 1 f • 53,69 • h elt er y OW-pass 1 terlng or y 0 talnlng t elr Instantaneous pu se requencles, Wlt 

the usual implicit assumption that neural signais can be meaningfully demodulated in these 

ways. These two methods are also employed to demodulate IPFM as we have described 

in Chapter Il. 

5.5 A Model of the Muscle-to-Motoneuron Communication Link 

From the discussion given in Section 5.3, we see that a typical path in the 

afferent limb of the monosynaptic spinal reflex (MSR) consists of the muscle, the coupling 
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between the muscle and the spindle, a spindle, an afferent nerve fiber, and the neuronal 

transfer dynamics relating presynaptic pulse to the resulting postsynaptic neuronal response 

at the pulse-generating site of the a - motoneuron (a - MN). We shall first obtain a 

model for this typical path and then formulate a multipath model for signal transmission 

from the musc le to the a - MN • 

Let us first model the muscle and the spindle. Although these components 
69-77 

have been extensively studied, there is no generally accepted mathematical model for 

them either individually or in combination, and in particular there is no available mode 1 

suitable for our' present : purpose ., Be.cause of their compl~x functional be-

haviour and the lack of knowledge 011 some important detcils, we are forced to take the 

following somewhat qualitative approoch. 

As noted previously, pulse initiation in the 1 a afferent of the spindle is 

preceded by production of the so-called generator currents which are believed to be caused 

by distortion of the primary nerve endings located in the equatorial region of the intrafusal 

muscle fibers.
51 

We also recall that the distortion of the primary nerve endings arises 

when the equatorial region is extended from the resting length either by stretching the spindle 

through an increase of muscle length, or by contracting the polar regions of the intrafusal 

muscle fibers through ~ - efferent stimulation. Based on these observations, we may re-

present the combination of the whole muscle and one of its spindles by a single unit as shown 

in Figure 5-5. In this diagram, block M represents the dynamics of the whole muscle 

when it is subjected to the applied stretch and / or a - efferent stimulation. The output 

of M then corresponds to the stretch applied to the spindle under consideration. Note, 

however, that M therefore contains a factor representing the muscle - to - spindle 
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mechanical coupling which varies from one pcth to another. G represents the mechanical 

dynamics of the intrafusal fibers of the spindle when they are stretched by the change in 

muscle length and / or stimulated by the" - efferent pulse trains. Its output corresponds 

to the distortion of primary nerve endings. L represents the transduction process by means 

of which the distortion of nerve endings is converted into the summated generator current 

at the pulse generating site of the afferent axon. Finally, the block entitled "encoder" 

represents the neural encoder which we have modelled with a single-signed integral pulse 

frequency (5 - 5 IPF) modulator in the previous section. 

Blocks M, Gand L in this general representation of the whole muscle 

and one of its spindles are nonlinear and at present cannot be determined. In order to 

simplify the problem, we consider the special case in which 

0) the 't - efferent pulse frequency is either zero or constant at 

a sufficiently high rate to produce a constant summated genera-

tor current ; and 
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(ii) the a - efferent pulse frequency is either zero or constant 

at a sufficiently high rate to produce a constant muscle 

contraction. 

(iii) The muscle length is made to vary sinusoidally about a suitable 

mean length 50 that the muscle spindle fires continuously. 

Given these constraints, the only time-varying input for the muscle and spindle assembly 

is the applied stretch, and the resulting afferent pulse frequency is known to vary almost 
71,72 

sinusoidally, if it is considered as a continuous variQble. The afferent pulse train 

is represented in our block diagram by the output of the block entitled "encoder" which 

we have modelled using a S - S IPF modulator. When the input of the modulator i.i a 

biased sinu5Oid, the output pulse frequency can be shown to VDry almost sinu50idally also. 

Thus, let the input be 

x (t) = X + U cos (1.0) t + 9) ~ 0 , 
o 

t ~ 0 

where X , U, 1.0) and 9 are constant. Then, using Equation (5-3) we have 
o 

(5-6) 

X • A. + ~ {Sin (1.0) t. + 9) - sin [1.0) (t. - ~ + 9 ] 't = a, (5-7) 
o 1 1.0) 1 1 J 

where !:J. = t. - t. 1. When ll. is small compared with the period of the input signal, 
1 1 1- 1 

Equation (5-7) can be simplified to yield the pulse frequency, 

f. = ~ ~ _1 [X + cos (I.o)t. + 9) ] 
1 /,J. a 0 1 

x (t.) 
1 (5-8) --a 

1 
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This result clearly verifies the stated relation given above. Therefore, for this special 

case under consideration, we can consider that, in our representation of the muscle and 

one of its spindles, block M, Gand L lumped together constitute a linear system. 

Consequently, we can model the muscle and one of its spindles as shown in Figure 5-6, 

wherein the S - S IPFM modulator represents the encoder, and C (s) represents the 

Iinearized dynamics relating the change in muscle length to the resulting change in sum

mated generator current. The efferent inputs are now represented by two constants, 9 

and q j where 9 represents the decrease in muscle length produced by the constant a -

efferent activities and q represents the increase in summated generator current produced 

by the constant ~- efferent activities. 

Now we consider the modelling of the remaining two components, namely, 

the efferent fiber and the neuronal transfer dynamics, of the path of information transmission. 

The afferent fiber conducts the pulses without affecting their size and shape, and thus can 

be mode lied bya pure time-delay whose delay time T is equal to the time required to con

duct a pulse from the spindle to the synapse at the motoneuron. The neuronal transfer 

dynamics relating the pre-synaptic pulse and the postsynaptic neuronal response at the axon 

hillock can be represented bya linear element whose pulse response has practically the sarne 

shape and size a~ the quantal EPSP. As an example, if the transfer function H (s) of the 

linear element is 

H (s) = 
b 

+ T s 
(5.9) 

then the Laplace transform of the pulse response is given by ~P·~)T s where P (s) is the 

Laplace transform of the presynaptic pulse. It should be noted that there is a small delay 
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time between the onset of the presynaptic pulse and the onset of the resulting quantal EPSP 

at the neuronal pulse -generating site. Fa>r the present analysis,: we conand 'shall lump this de:

lay timewith that of the afferent fiber without in'troducing error. Thus we shall henceforth 

represent the neuronal transfer dynamics by a Iinear element containing no time delay. 

The complete model for a typical afferent path in the MSR is shown in 

Figure 5-7. We have pointed out in Section 5.3 that the intrinsic properties of each 

afferent path differ from those of the others. These properties are represented in the model 

by C (s) , H (s), the delay time T, and the input q. Variation in the stretch-threshold 

of the spindles in the muscle is described by the variation in the gain of C (s), where a 

higher value of the gain implies a lower threshold and greater sensitivity. The distribution 

of conduction velocities ~f the afferent fibers is described by the distribution of delay time 

T, where a larger value of T denotes a smaller conduction velocity. Variation in the 

size and shape of quantal EPSP's at the axon hillock of the MN is represented by the 

varÎation in the pulse response of H (s). In addition to these, the phase characteristic of 

C (s) and the input q may vary from one path to another because of variations in the dyna

mics of mechanical coupling between the muscle and the spindle, the spindle properties, 

and the Y - efferent stimulation. 

One component and two inputs in the model are considered as invariant fOi 

ail paths. As we have pointed out in Section 5.3 , the change in muscle length is a 

signal common to ail paths. Hence, the applied stretch and the a - efferent input g, 

are invariant from one poth to another. The remaining invariant component is the 

S - S IPFM modulator which represents the neural encoder ln the spindle. In reality the 

encoder of different spindles may have different sensitivities. However, this possible varia-



134 

tion can equally weil be embedded in the stretch-threshold variation which has been des-

cribed by the variation in the gain of C (s). Hence it appears reasonable to assume that 

the S - S IPFM modulator is identical for ail paths. 

With the model of a typical pa th thus determined, we may now formulate 

a multipath model of the muscle-to-motoneuron communication link, as shown in Figure 

5-8. In this figure the change in muscle length is a signal common to ail paths as already 

noted. Then ot the end of these paths, the quantal EPSP's are assumed to summate 

linearly in the axon hillock of the motoneuron to produce the signal which is considered to 

carry the information in this communication 1 ink. Note that the S - S IPF modulator is 

now represented by its functional mode 1 (Figure 2-5) , and that its pulse-shaping element 

P. (s) has been lumped with the neuronal transfer dynamics H. (s) in the ith path. It 
1 

1 

should also be noted that the input of P. H. consists of impulses of magnitude d for ail 
1 1 

values of i. Thus, the quantal excitatory postsynaptic potential (EPSP) at the output of 

the ith path is given by the impulse response of P. H. , and consequently its Laplace trans-
I 1 

form is d • P. (s) • H. (s) • 
1 1 

5.6 Statistical Analysis of the Muscle-to-Motoneuron Communication System 

5.6.1 Statistical Formulation 

We now proceed to analyze the muscle-to-motoneuron communication link 

as represented by the model shown in Figure 5-8. Let us, for the present, make the simpiify-

ing assumption that the quantal EPSP's ail have the same temporal waveform, but may have 

different amplitudes. Thus, let the Laplace transform at the quantal EPSP in the ith path 
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be b. F (s) ,where F (s) is invariant for ail paths, but the constant b. may vary from 
1 

1 

one path to another. For the special situation described ir(th~ previous section, the 

change in muscle length from its resting length is 

x (t) = X 0 -+- U cos w, t - 9 , 

where X ,U, w, and 9 are constant. Thus, if 'co and 9. are respectively the 
011 

(5-10) 

gain and phase of C. (s) at the frequency w, ,and c • is the gain of C. (s) at zero 
1 . 01 1 

frequency, then in the steady state, the summated generator current developed in the 

primary endings of the ith spindle is 

v. (t) = (X - g) • c .+.U.c.:cos (w, t +9.) + q . 
1 0 01 1 i 

(5-11) 

Assuming that the inputs to the multipath system are such that v. (t) ~ 0 for ail i, we 
1 

can readi Iy obta in, by usi ng Equations (3-25) t'o (3-27) in lChapter III, an expression for 

the sequence x~ (t) of?superposed quantal EPSP at the output of the ith path. Thus, 
1 

defining 

a. = (X - g) c . , 
1 0 01 

(5-12) 

we then have, 

b.d 
x~ (t) = ~ [ (a. + q.) A (0) + U c. A{w, ) cos ~, t t 9. + Q(w, ) - w

1 
'T.) ] + N.(t) 

1 ail .. 1 1 1 1 

(5-13) 

where 



N. (t) 
1 

À. = 
1 

M = T. 
1 

R = t'. 
1 

n=-m 

k w (a. + q.) + n w1 ' 
o 1 1 

n 9. - ~. sin 9. 
1 1 1 

kw U c. / w
1 o 1 

A ~) cos (X. t + 'P. + Q (X.) - À. T'.) 
1 1 1 1 1 1 

A (w) and Q (w) are respectively the amplitude and phase characteristics 

ôf - F ° (sr °associated with~the -waveform of the ctuantal ;EPSP's 1 and 

ail other sytnbols are as previously defined. 

Therefore, the "spatially and temporally" summated EPSP is 

M M 

Y (t) = ~o xt(t) = M . [1.. 
M l x~ (t) ] 

1 

i=l i=l 
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(5-14) 

(5-15) 

(5-16) 

(5-17) 

(5-18) 

As we have noted in Section 5.3, the number of paths in the system is equal 

to the number of monosynaptic knobs connected to the afferent fibers arising From the spindles 

under consideration. Since this number is large and since the pcrameters a, c, b, 9, l' 

and q vary from path ta path, the arithmetic average in Equation (5-18) con be accurately 

• db •• 1 78 
approxlmate y a stahshca average. Thus, 

y (t) R$ M • E [x* (t) ] , (5-19) 

where x* (t) is a member function of the ensemble of pulse sequences 



{Xi (t)} E [ . ] denotes "the statisli ca 1 average of", and the 

average is taken with respect to a, c, b, 9 , ". and q, which are 

now considered as random variables. 
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Recall that the random variable q represents the increase in the summated 

generator current due to constant"( - efferent stimulation, ". corresponds to the transmission 

time between the spindle and the pulse-generating site of the a - motoneuron, and b des-

cribes the size of the quantal EPSP. There is no known data to indicate whether these 

three variables are statistically dependent, but we can reasonably assume that they are inde-

pendent. On the other hand, the variables, a, c and 9, being ail dependent on C (s), 

are likely to be correlated. Further, a recent report indicates that a and c mey be 

correlated with ". al"so?9 As a result, the statistical average in Equation (5-19) is 

extremely difficult, if not impossible, to evaluate analytically. In order, therefore, to 

facilitate the present analysis, we assume that these random variables are ail statistically 

independent. However, as we shall show in the computer simulation study, the main con-

c1usions to be deduced will not be grossI y affected by any such dependence described above. 

" .5.6.2 The Signal and Noise Components of the "Spatially and Temporally" 

Summated EPSP 

By dropping the subscript i in Equation (5"":"13) and substituting the result 

into Equation (5-19), we have the following expression for the "spatially and temporally" 

summated EPSP at the pulse generating site of the a - motoneuron. 
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E [b (0 + q) A (0) + b U c • A ~1} . cos (1.)1 t + 9 + Q (I.)r) - 1.)1 ." ] 

+ M . E [N (t) ] , (5-20) 

where N (t) is given by Equation (5-14) with the subscript omitted. 

The first term of this equation is proportional to the ensemble average of 

the signal components of the sequences of the quantal EPSP's, white the second term is 

proportional to the ensemble average of the corresponding noise components. Hence, we 

define as the signal component S (t) of the spatially and temporally summated EPSP, the 

first term of Equation (5-20), and as the noise compone nt Nt (t), the second term of that 

equation. It should be recalled here that the noise compone nt arises from the neural en-

coding process which converts the summated generator current into the afferent pulse train. 

let us first consider the signal component S (t). Since the random variables 

are assumed statistica lIy independent, we have from Equation (5-20) , 

Md r {- -S (t) = -a- . D. ( 0 + q) A (0) + U 

(5-21) 

.. 

where .. -" denotes the average value. But 
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where 4> T Gw) and 4>9 Ow) are respectively the didr:aèteristic functions of the °l?robabi"l'ily 

densities,p TO ( T) and Pg "(9) for T and 9 respectively. Let 

4> T Gw) BT (w) e 
i l/J T (w) 

, and = (5-23) 

i I/J 9 (w) 

4>9 Gw) = B9 (w) e (5-24) 

where BT , B9' I/J T and I/J 9' are real functions of w. Then from Equation (5-22) 

we have 

(5-25) 

Therefore, substituting this result into Equation (5-21), we have for the signal compone nt 

of the summated EPSP, 

(5-26) 

Equation (5-26) shows that the signal component of the summated EPSP at 

the a - motoneuron contains a constant and a sinusoid. The constant is linearly related to 

the average muscle length and '( - efferent stimulation, while the sinusoidal component is 

linearly proportional to the variation of muscle length. It should be noted that the amplitude 



and phase of the sinusoidal compone nt are respectively dependent on the amplitude and 

phase characteristics of F (s), ~ T(- j(.)' ,. and ~9 Û(.) • 

Now, consider the noise compone nt Nt (t) of the summated excitatory 

postsynaptic potential (EPSP). From Equation (5.20) we have 

Nt (t) = M . E [N (t) ] ., (5~27) 

where N (t) is described by Equation (5~14) with the subscript i omitted. As we have 

shown in Sub-section 3.2.2, the series representing N (t) may be truncated without intro-

ducing significant error, provided that a sufficiently large number of terms are retained. 

Thus K NI 

Nt (t) M • E [~ L L 2 
• J $). À • A (À) • = 

a k (.)0 n 
k=l n=-N 

1 

cos (À t + fP + Q (À) - À T) ] , (5-28) 

where À, cp, and ~ are related to the random variables a, q, 9 and c, and are 

defined by Equations (5-15) to (5-17) with the subscript i removed. Taking the average 

with respect to band interchanging the order of summation and averaging, we have 

K N
l 

Md \" L 2 
Nt (t) = - b L k;; a E [J $) . À • A (À) • 

n 
k=l n=-N 0 

1 

cos (À t + tp + Q (À) - À T) ] . (5-29) 
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Examining this expression in coniunction with Equation (5-26), we see that both the signal 

and noise components are attenuated by b. Therefore, statistical variation in the size of 

the numerous quantal EPSP's arising from the multiple paths does not affect the signal - to-

noise ratio of the summated EPSP. 

Next we take the average with respect to the transmission time T. Since 

À, f/J and ~ are not related to T, we may approach the problem as in the derivatFon of 

Equation (5-25) and obtain 

K N
1 

Nt 
Md - I I 2 

E [ Jn $) • À • A (À) • B ( - À) • =-.b k-;:;-a T 

k=l n=-N 0 

1 

cos (À t + f/J + Q (À) + l/J T (-À» ] , (5-30) 

where B T (1..) and l/J T (1..) are respectively the amplitude and "phase Il of the 

characteristic function ~ al..) defined in Equation (5-23). This equation shows that 
T 

the amplitude and phase of each spectral compone nt of Nt (t) is dependent on the ampli-

tude and phase characteristics of ." T' (- il..) respectively. The significance of thi.> result 

will be discussed in the next sub-section. 

We recall that Q represents the phase shift introduced into the sinusoïdal 

component of the summated generator current after the signal representing muscle length 

variation has passed through the dynamics of the whole muscle and the spindle under con-

sideration. It is reasonable to assume that the variation in Q is small. Hence, from 

Equati ûii (5 -16), we have 

tp ~ (n - (3) Q • (5.31 ) 
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Substituting this into Equation (5-30) and taking the average with respect to 9 by the 

method used is deriving Equation (5-26), we have 

Md 
~ -- . b . 

a 

K 

k=l n=-N 
1 

2 
-k - E [J ([3). X • A (X) • 

w n 
o 

(5-32) 

~T (-X) • Be (n -~) • cos (X t + Q (X) + 1jJ T (-X) + fÎJ e (n-~» ] , 

where Be (w) and ~ e (w) are respectively the amplitude and "phase" of the characterïs

tic function cf>e Ow) defined in Equation (5-24). Note that, as in the result of averaging 

with respect to T 1 the amplitude and phase of each sinusoidal component of N (t) are 
t 

dependent on the ampl itude and "phase" of ~9 Ow) respective Iy. 

Up to this point in our consideration of the noise compone nt , we have 

evaluated the statistical average with respect to three of the six random variables involved. 

The remaining random variables are q, a and c, which appear in the expressions for X 

and J3. (See Equations (5-15) and (5-17». Unfortunately, because of the functional 

complexities involved, it is not possible, at present, to evaluate the average in Equation 

(5-32) with respect to these variables. However 1 we shall examine this effect on the 

noise component in a computer simulation study which is presented in the next section. 

5.6.3 Significance of the Analytical Results 

ln order to examine the significance of the analytical results obtained above, 

we shall first obtain an expression of the "spatially and temporally" summated EPSP for the 
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hypothetical case in which ail paths of information transmission ore identical. For this 

case, the sequences of quantal EPSP's ore synchronous, and thus the resulting summated 

EPSP is simply the sequence of quantal EPSP's in a single path multiplied by the number 

of paths in the system. Let the signol and noise components of this summated EPSP be 

denoted by S (t) and N (t) respectively. Then, from Equations (5-13),. (5-14), 
o 0 

and (5-18), we have 

and 

S 0 (t) = ~ d . b. [(a + q) A (0) + U . c . A ("'1) . 

cos ("'1 t + Q ("'1) + e - "'1 T) ] , 

N (t) ~ Md. b 
o a 

k=l n=-N 
1 

2 
-k - • J (~) . À • A (À) • 

'" n o 

cos (À t + Q (À) + (n - ~) 9 - À T) 

where in the latter equatlon we have truncated the series and approximated rp by 

(n - ~) 9, os we have clone in the above analysis. 

(5-33) 

(5-34) 

Now, consider the more realistic case in which the parameters b, T , 

and 9 vary from path to path but the parameters c, a, and q remain invariant. For 

this case, the expressions for the signol and noise components con be readily derived from 

Equations (5-26) and (5-32) respectively. Thus, 

Md -
S (t) = -a- . b • [(a + q) • A (0) + U 0 c . A ("'1) • 

(5-35) 

+ ~ 9 (1» ] , 



145 

and 
K 

N
1 

Nt (t) 
Md b I l 2 

• J $) • À • A (À) --- . 
a k"" n 

k=l n=-N 1 
0 

(5-36) 

B (- À) . B9 (n -~) • cos (À t + Q (À) + 1Ji 9 (n-~) + ID (-À» • 
T T 

Synchronously sum
mated pulse trains, 

Asynchronously summated 

pulse trains,SI (tl7 

So (t) + No (t7 .I..!-II. .~ _1 Phase 

. D ~ 1eiWT<P~I------.ll Shifter ~~I \ 1 · 

L Effect of varia--.l Effect of -'- Effect of variation in 9 _1 
1 tion in b ~ariation in ~ 1 

FIGURE 5-9. ILLUSTRATING THE EFFECT OF VARIATIONS IN b, T, AND Q • 

(SEE TEXT FOR DETAILS OF INTERPRETATION) . 

Comparing S (t) and N (t) with S (t) and N (t) respectively, and 
o 0 t 

noting that ~T (0) = ~o) = 1 , we see that the effect of variations in b, Tond Q 

is equivalent to the effect of passing the synchronously summated sequences of quantal 

EPSP's through a system of fiiters as i IIustrated in Figure 5-9. The effect of varïa-

tion in the size b of the quantal EPSP's is simply that of a pure gain or attenuator, and 

does not affect the spectral characteristics of the summated EPSP. Further, as noted 
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previously, the variation in b does not affect the signal-to-noise ratio of the received 

signal at the a - motoneuron. 

The variation in the transmission time ". is equivalent to filtering the 

synchronously summated sequences by a filter whose system function is e
j 

(,,) ". cil ". (-j (,,) • 

The factor e
j w'" is included to compensate for the phase shift due to ". in S (t) and 

o 

N (t), since the phase shift ("),,. appearing in S (t) and N (t) does not appear in the 
o 0 0 

expression for S (t) and Nt (t) • The frequency characteristics of cil (-j (,,) then modify ". . 

the amplitude and phase of the spectral components of the resulting signal to yield the in-

put to the next phase shifter. 

Finally, the effect of variation in the phase shift 9 is similar but not 

identical to that of the variation in ".. In Figure 5-9, the block entitled IIphase 

shifter ll has such a characteristic that the phase shift due to 9 in S (t) and N (t) 
o 0 

becornes zero at its output j cil 9' on the other hand, further modifies the amplitude and 

phase of the spectral components of S (t) and N (t) to yield finally the asynchronously 
o 0 

summated sequences of quantal EPSP's, S (t) + Nt (t). It should be noted, however, that 

~9 is not a Iinear filter in the usual sense because while It modifies the spectral com-

ponents of its input,this is not done according to their frequencies. 

The equivalent filter ~ (-j (,,) tends to enhance the signal-to-noise ratio 
". 

of the IIspatially and ternporallyll summated EPSP. To justify this statemenr, note that 

the distribution of T con be c10sely approximated by a continuous probability density, and 

83 
hence 1 cil T (-j w) 1 decreases monotonically as 1 (,,) 1 increases. ihus, the noise 

component of the summated EPSP is attenuated, while the signal component, being at a 
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frequency lower than most of the spectral frequencies of the noise compone nt , is not as 

much attenuated. Consequently, the signal-to-noise ratio is generally improved. 

As an example, consider the eXperimentally-observed histograms of the 

transmission time shown in Figure 5-10. The distributions shown have been computed 

using experimental data fram Reference 80 for the medial gastrocnemius and soleus of the 

cat. The time axis indicates the time required for transmission from the muscle nerve to 

the dorsal root. Each of these histograms can be weil approximated by either a gamma 

or a chi-square probabili~y density with appropriate time shift.and parameters. However, 

in order to obtain the. total time T required to transmit a signal from the spindle to the 

pulse-generating site of ~e a-motomeuron, we must add the conduction time from the 

spindle to the muscle nerve, together with the so-called synaptic delay, to the transmis-

sion time from the muscle-nerve to the dorsal root. Theseadditional transmission times 

50 
are not negligible because the synaptic delay is from 0.5 to 0.9 msec. and the conduc-

tion time from the spindle to the muscle nerve is probably of at least the some magnitude. 

Actually there is a further point, that since the spindles are spatially distributed within 

the muscle and since the la fibers fram these spindles have different conduction velocities, 

the transmission times from the spindles to a point on the muscle nerve must also be dis-

tributed in some manner. Finally, as noted in Section 5.3, the monosynaptic knnbs are 

distributed more or less uniformly on the soma-dendritic complex of the a-MN. Thus, the 

synaptic delay must also vary fram path to path. At present, we do not know whether 

these portions of the total transmission time are correlated or not, but it is probably not 

unreasonable to assume that they are statistically independent. Therefore 1 by the centra 1 

78 
1 imit thearem , the total transmission times T from the spindles to the pu Ise - generating 
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site of the a-MN tend to be Gaussian distributed. In fcct, because the histograms in 

Figure 5. 10 are already foirly somewhat bell-shaped,(although one shows significont 

skewness), the distribution of., should be almost Gaussian;8~ Hence, we shall represent 

the distribution p. (.,) of l' by a truncated Gaussian density as shown in Figure 5-11. The 
~ 

characteristic. function of a truncated probobility is practically equaJ to the characteris-

tic function of the original probabil ity density, provided a sufficient portion of the den

sity curve is retained'~ 8~ Thus, if p.(.,) is truncated at two or more standard deviations, ., 
it can be shown that 

1 2 
'-'"2 (J 

41., (-il.) ~ e 

2 -il.) ., 

e (5-37) 

where (J is the standard deviation andT is the mean transmission time. Equation (5-37) 

shows that 41., (-il.) is approximotely a Gaussian filter ,:fhe ;treqoency response of which 

is shown in Figure 5-12 for;; = 3.2 msec. and (J= 0.5 msec. Clearly, the equivalent 

filter ~ (-il.) is a low-poss fi her with sharp cutoff characteristie; and Iinear phase~ in., 
deed, as we snall show. inthe.co~pU11er.:simulênion;·st\JçlYF" .thè:. freq4enc>, .. chOractèris~-

tics of ~ (-il.) do provide the essential filter in demodulatins the afferent pulse trains. 
T 

Finally, we consider the filtering effect of the equivalent filter ~9 

which is due to variation of the phase angle 9 in the summoted generator current, v(t). 

(See Equation (5-11». For the present, let US again postulate that the distribution of 9 

is Gaussian with standard deviation (J and mean ë. Then, o 

2 
(Jo 1.) 

2 
il.) 9 

e 
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Using this in Equation (5-35) and (5-36), the expressions for the asynchronously summated 

sequences of EPSP's become 

S (t) = Md 
a 

b . ( (a + q) A (0) + U. c . A (t.) 1 ) • B T (-t.) 1) • 

2 
- (1 /2 

o 
e (5-39) 

and 

K N 1 

Nt (t) = 
Md 

b l l 2 
. J (13). À • A (À) . B (-À). 

a -r;;- n T 

k=l n=-N 
0 

.1 

2 2/2 (5-40) 
- (n - p) 0'0 

e • cos (Àt+Q(À) + '1> (-À)+(n-p)ë). 
T 

Comparing these expressions with Equations (5-33) and (5-34) for the synchronously 

summated sequences of E PSP's , we see that a Gaussian distribution of 9 does not affect 

the phase relationship among the spectral components of the summated EPSP, and that 
2 

- 0' /2 
the sinusoid in the signal component is attenuated by the factor e 0 which is 

independent of frequency. 

ln order to examine the effect of ~g on the amplitude of the noise com

ponent, we recal! from Chapter 3, that this component can be considered as composed 

of constituents, each of which comprises a set of spectral components. For the: noise 
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compone nt N (t) in the present problem, there are K significant constituents, and the 
o 

k
th 

constituent has its spectral components ot the frequencies, 

(5-41) 

where 1 nI = 0, l, 2, ... , N
1 

• 

Now consider first the effect of «Ile on the k
th 

constituent. The ompl i-

tude chorocteristic of «Ile is maximum when 

(5-'42) 

that is, when n (.)1 = k(.)o U c. By Equation (5-41), this maximum is locoted at the fre-

quency, 

À = k(.) (a + q + U c) . 
o 

(5-43) 

Thus, without loss of generality, if the amplitude spectrum of the k
th 

constituent is assumed 

te be as shown in Figure 5-13 (a), then the resulting amplitude spectrum at the output of 

~g is as given in Figure 5-13 (b), if the standard deviation 0'0 of the ossumed Gaussian 

distribution for e is small; and as given in Figure 5-:- 13 (c) 1. if 0' is larger than the o 

previous value. From this illustration, we see that when 0' is small, the amplitude spec
o 

trum of the k
th 

noise constituent is essentiolly unaffected. Since the phase relotionship 

among the spectral compéments are also unaffected by ~e as we have noted previously, 

the noise component at the output of ~e remains practically the same os it was at the 

input of «Ile • Turning now to the signal component, we see that for this case of small 



152 

(0) 

~ l 1 1 1 1 1 

Assumed CJI11)litude spectrum of 0 

constituent of the noise campanent 

in the synchranously summated 
sequences of EPSP's • \ "'. an~lar freqltency 

! l k. ,. + q +< 0) 

(h) Amplitu:ie charocteristic of 419 with 
smal, a and the resulting amplitude 

Sf'<!cr-u~ of !!-Ie '\Oise component, 

Nt (t , • 

(c) """Plit" characteri!tic of 419 with 

:arge :J and the resulting amplitude 

specn,,~ vf the constituent of the noise 

component, Nt (t) • 

1 

1 

1 0 

1 

1 
1 1 1 1 

\ 

FIGURE 5 - 13. ILLUSTRATING THE EFFECT OF ~ ON THE AMPLITUDE SPECTRUM 

OF THE NOISE COMPONENT • 

'" 



o 
153 

cr , the signal component is not significantly attenuated. Hence, when the distribution 
o 

of 9 is Gaussian with a small standard deviation, the variation in 9 has no significant 

effect on the signal-to-noise ratio of the summated EPSP. 

On the other hand, when the standard deviation cr is sufficiently large 
o 

50 that the amplitude spectrum of the k
th 

noise constituent is significantly modified as the 

noise component is passed through 4>9' the sinusoid in the signal compone nt will also 

be significantly attenuated. In this case, whether the signal-to-noise ratio can be im-

proved by the variation in 9 depends on the relation between several parameters of the 

transmission system, but especially on cr and the system inputs. \t is conceivable that 
o 

the signal-to-noise ratio can even detedor:ateas cr becomes sufficiently large, since 
o 

the center frequencies of the noise constituents are not attenuated for any finite value of 

- cr 2 / 2 
cr 0' whereas the sinusoid of the signal component is attenuated according to e· 0 • 

However, it should be noted that no valid conclusion can be drawn if cr becomes so 
o 

large as to invalidate the assumption made in obtaining our analytical results. 

From the above discussion, we can conclude that small variations in 9 

does not significantly affect the signal-to-noise ratio of the summated EPSP, if the dis-

tribution of 9 is Gaussian. Further, this conclusion is applicable also for other con-

tinuous distribution of 9, since (f) 9 (0) = 1 and since 1 4>9 (jw) 1 decreases mono

tonicallyas w increases, as we have noted previously. 
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. 5.6.4 Variation in the Waveform of the Quantal EPSP 

ln the above analysis, we made the simplifying assumption that the quantal 

EPSP's 011 have identical pulse shape. We shall now remove this restriction and examine 

the resulting effects, if any, by allowing the pulse shape to vary from one path to another. 

For the present, let the neuronal tronsfer dynamics be represented by a first-order 1 inear 

system. Thus, let 

H. (s) = 
.1 

1 
1 + T . S 

1 

(5-44) 

for the i
th 

path. We have shown above that the distribution in the transmission time .,. 

of the afferent fibers plus subsequent summation in the neuron have the equivalent effect 

of filtering the synchronously summated sequences of quantal EPSP's, with a filter of 

frequency characteristic ~ (-jw). 5:ince the spectral characteristics of a single sequence .,. 
of q~antal EPSP's are identical with those of the synchronously summated sequenc~s, let us 

now consider that each aff~rent pulse train is filtered by the product Hj(jw) ~.,..(~iw). 

Further, let the probobility density of .,. be approximated by a Gaussian density with a 

mean of 3.2 msec. and a standard deviation of 0.5 msec. Then, the amplitude charac-

teristic of H. (jw) ~ (-jw) may be plotted as in Figure 5.14 for different values of T .. 
1 .,. 1 

Curves (1), (2), and (3) are the charocteristics for which T. = 2 msec., 4 msec., and 
1 

20 msec., respectively. Since the quantal EPSP produced bya synaptic input near the 

pulse generating site has a shorter delay time thon that produced bya synaptic input far

ther ClWay /~ we assume that the curve for T . = 2 msec. is associated with a synapse 
. 1 

located nearest to the pulse generating site, while T . = 20 msec. is associated with one 
1 

which is located farthest away but still producing a detectable EPSP at the pulse gen-
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erating site. Thus, the amplitude frequency responses of ail filters H. (je,,)) ~ (-je,,)) 
1 T 

are bounded by' curves (1) and (3), and curve (2) is representative of an intermediate 

condition with a mean time constant of 4 msec. In fact, recent evidence indicates 

that the majority of synapses is centered about 400 ~ away from the soma of the MN, 57 

and therefore it seems reasonable to assume that the amplitude frequency responses do 

cluster about the mean response of curve (2) in Figure 5-14. Since the quantal EPSP's 

produced by synaptic inputs located further away have smaller amplitudes, the contri-

bution to the summated EPSP by the pu Ise responses of the filters whose frequency . 

characteristics are bounded by curves (2) and (3) is relatively small compared to the 

contribution made by the others. From these results we may plausibly conclude that 

the realistic situation in which H. varies from path to path, can be analysed without 
1 

gross error by assuming that ail quantal EPSP's have the same shape. 

Now, :consider the effect of the variation in the filter characteristic. 

Thus in addition to the frequency responses already considered, we have included in 

Figure 5 .. 14 a frequency response curve (Curve 4) which describes a subthreshold model 

of electrotonic conduction in a motoneuron, 6~ in cascade with the filter ~ ( .... je,,)) • 
T 

We see that while .the. mid. -·frequency response varies somewhat, tille cutoff charac-

teristic is essentially unchanged from that provided by cil (-je,,)). In view of the ob
T 

serva~'ions made above and the fact that H. (jw) does not have an effective cutoff 
1 

characteristic, it is clear that the filtering of the neural pulse trains is mainly accom-

plished by ~ (-jw) , which is associated with the distribution of the transmission 
". 

time T of the afferent fibers. Consequently, variation in the subthreshold post-synaptic 

membrane characteristics, such as time constants, has comparatively little effect on the 
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signal-to-noise ratio of the summated EPSP. However, it should be noted that this con-

clusion does not preclude that this variation may be significant for the operotion of the 

overall reflex. 

5.7 Computer Simulation Study 

The muscie-to-motoneuron communication link, as represented by the model 

shown in Figure 5-8, has been studied by digital computer simulation. The purpose of 

this study is to verify the theoretically predicted results obtained in the last section, and 

further, to examine the effects of variations in those system parameters wh ich can not be 

ana Iytica Ily studied at present. 

5.7. 1 Method 

(a) Simulating the System 

When the change in muscle length From its resting length is a biased sinu

soid as described by Equation 5. 10, the i
th 

path of the communication link, in the steady 

state, can be represented as shown in Figure 5-15. In this diagram, ail symbols and sig-

nais are as defined previously. In particular, we recell that the first three blocks together 

represent the impulse generating mechanism of the neural encoder, the delay unit represents 

the afferent fiber, and the impulse response of P. H. represents the quantal excitatory post-
1 1 

synaptic potential (EPSP) at the pu!se generating site of the a-motoneuron (a-MN). 
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ln the present computer simulation study, the impulse generating mechanism 

is implemented using the following criterion for impulse emission. 

1. = 
1 

N. 
1 

L 
n=N. 1 

1-

v(n L\t + At) . At è!: a 

i = 1,2,3, ... j and N = 0 ; 
o 

(5-45) 

where a is a positive constant representing the threshold of the encoder; At is the time 

increment for computation; and N. 1 L\t and N· At are the emission times for. the (i - l)th 
1- 1 

and the i
th 

impulses respectively. It should be noted that this criterion is a numerical 

representation of the criterion given in Equation (5.3) for pulse emission in S-S IPFM. 

Whenever Equation (5.45) is satisfied for the smallest value of N., a rectangular pulse 
1 

of height h and width At is generated at the input of the time-delay unit, and at the 

sorne instant, 1. is reset to zero. Note that the impulse is approximated here bya nar-
1 

row rectangular pulse. The remaining two blocks in Figure 5-15 are simulated using 

standard digital computation techniques. The time-delay unit in the simulation has the 

transfer function, e - sk At, where k is a positive integer; while the input-output 

relation of P. H. is represented by the convolution summation, 
1 1 

k 

x . (k At) = 
1 L h . (n At) • U . (k At - n ôt) • Ô t 

1 1 
, (5-46) 

n=l 

where h . (t) is the unit-impulse response of P. H .• 
1 1 1 
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The simulated model of the complete communication link comprises a set 

of afferent paths each of which is simulated using the methods just described. Although 

the multiplicity of paths with different properties can be represented by simply incor -

porating hundreds of paths into the model and generating random numbers for the para-

meters that vary from path to path, this requires an excessive amount of computing time. 

An alternative method therefore has been used. In this alternative method, the communi-

cation link is represented by a model with N different classes of afferent paths, where 

each class contains only paths with identical properties. Thus, the communication link 

can be simulated with a model having only N different pathways whose outputs are 

we ighted according to the number of paths in the class. 

As an example, consider the hypothettcal case in which only the trans-

mission time T varies from one path to another. let there be M paths in the communi-

cation 1 ink and let there by m. paths with the transmission time, T. , where 
1 N 1 

i = 1, 2, ••• , N ; and M = '; m.. Then, ail pulse trains in the paths of the 
l...-J 1 

h i = 1 
i
t 

class are synchronous, and thus the sum of outputs From these paths is equal to the 

output of a single path in this class multiplied by m .• Using this result, and noting 
1 

that the other properties of the paths are assumed invariant, we can simulate the M-path 

system with a model having only N different pathways as shown in Figure 5- 16. 

It should be noted that in this alternative method, we treat the parameters 

of the communication link as discrete random variables. Thus, in the example that we 

have just presented, the probability density of T can be expressed as 

N 

PT (.n = )' 6( T - T~) 
. 1 

(5-47) 

i = 1 
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where PT i = mil M , and fi (1') is, the unif - ~mpulse function. Thus, in simulating 

the system for this case, we can equivalently weight the output of the i
th 

pathway with 

p . • 
TI 

(b) Statistics and Values of the System Parameters 

We recall that in the model of the muscle-to-motoneuron communication 

link (Figure 5.8) the quantities which vary from poth to path are: 

1. the ,tatic gain C". of C. Cs) which represents the linearized 
01 1 

dynamics relating the change in muscle length to the resulting 

change in summated generator current in the primary nerve 

endings of the spindle ; 

2. the dynamic gain c. of C .(s) at the frequency 10)1 of the 
1 1 

sinusoidal compone nt of the change of muscle length; 

3. the phase angle 9. of C .(s) at the frequency 10)1 ; 
1 1 

4. the constant q. which represents the increase in the summated 
1 

generator current produced by constant'6-efferent activity ; 

5. the time 1'. which represents the time required to transmit a 
1 

pulse from the muscle spindle to the pulse-generating site of 

the a-MN; and 
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6. the transfer function P. (s) H . (s) whose impulse r.esponse repre-
1 1 .. 

sents. the:quantal. EPSP .. at, the pulse generating site of the a~MN. 

ln order to simulate the communication link it is necessary to specify the 

statistics and the range of values for these quantities and other system parameters. Unfor-

tunately, with the exception of .,. and P (s) H (s), the requ ired information for the re-

moining parameters is completely unknown at present. Therefore, in the present simulation 

study, we can only choose the statistics and the range of values to fit relevant physiological 

data presently ava ilable in the 1 iterature. 

As we have shown in Sub-section 5.6.3, the probability density p (.r) 
'T 

of 'T can he reasonably represented bya truncated Gaussian density. In view of the dis-

cussion presented in that sub-section, it is reasonable to assume that the transmission time 

from a leg muscle such as the soleus of the cat to the homonymous a-MN has a mean of 

3.2 msec., a standard deviation of 0.5 msec., and a range of from 1.7 to 4.7 msec. In 

the present simulation study, this Gaussian density is area-sampled to yield a discrete 

probability density as shown in Figure 5-17 so that the method of simulation described 

above can he applied. The error introduced by this area-sampling is negligible for the 

quantizing size A used. 

ln order to obtain a reasonable description of the statistical variations in 

P (s) H (s) , let us first consider the distribution of mono-synaptic knobs on the surface of 

the a-motoneuron (a-MN). Recently Terzuolo and L1inds, using morphological data, 

have estimoted the distribution of the total synaptic input among different portions of the 

sama-dendritic complex of a model motoneuron possessing an average dendritic tree • 5~ 
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This distribution is described by the histogram shown in Figure ~ 18, wherein the hori-

zontal axis indicates the distance away from the axon hillock. It should be noted that 

the ordinate of the histogram can be interpreted as the fraction of the total number of 

synaptle: knobs, since it is reasonable to assume that statistical variation in the size of 

synaptic knob is the same for different portions of the neuronal membrane. There is 

evidence that the excitatory synaptic knobs are more or less uniformly scattered through-

out the soma-dendritic complex, and that the inh ibitory inputs are more local ized in, or 

near, the soma. ~ Thus, it is plausible that the distribution of excitatory synaptic knobs 

is adequately represented by Curve A in Figure 5-18. Since there is also evidence that 

the monosynaptic inputs are widely distributed over the motoneuronal surface,56,60 

therefore it seems not unreasonable to assume that Curve A in Figure 5-18 also describes 

the distribution of the synapses from the primary spindle afferents. 

With the distribution of the monosynaptic knobs thus postulated, we now 

tum to the problem of representing the statistical variation in the size and the shape of 

the quantal EPSP's. A quanta 1 EPSP can be adequately described by the function, 

- t/T 1 

h (t) = b [ e 

- t/T2 
el, t~O , (5-48) 

where b, Tl' and T 2 are com.tants dependent on the location of the synapse. For our 

present purpose, we postulate some empirical relations for b, Tl' and T 2 as functions 

of the distance ~ between the synaptic location and the pulse generating site as follows. 

b = 500 - o . 1591t ( 

(5-49) 

T 1 = 1/b "and', T2 = T1/16 

where ~ is in microns. 
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For these relations, the waveform of a quantal EPSP produced by a synaptic input which 

is located at the pulse generating site is as shown by Curve 1 in Figure 5-19, whereas 

the waveform of a quantal EPSP due to a synaptic input located at a site 900 microns 

away is as shown by Curve 3. Furthermore, if the distribution of monosynaptic inputs is 

assumed to be given by Curve A in Figure 5-18, then the waveform of the sum of ail 

quanta 1 EPSP's is described by Curve 2 in Figure 5-19. Sorne properties of these respon-

ses are given in Table 5-1. The properties of the sum of quanta 1 EPSP's agree closely 

with the physiological data for an EPSP evoked by a maximal Group I~ -volley, while 

the properties of the quantal EPSP's are similar to those reported in the literature . .58 . 

TABLE 5-1. COMPARISON OF EPSP'S . 

SYNAPTIC TIME TO IDECAY TIME RElATIVE 

TYPE LOCATION PEAK (msec) CONSTANT (msec) AMPLITUDE 

Pulse gene-

rating site 
0.37 2.0 1.0 

Quantal EPSP 

900 microns away 

from .the pulse 3.7 20.0 0.083 

generating site 

Sum of quantal 

EPSP's 
0.80 4.0 
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Therefore, in the present similation study, we assume that the quantal EPSP's are des-

cribed by Equations (5-48) and (5-49), and that the distribution of the synaptic inputs is 

given by Curve A in Figure 5-18. 

The statistics for the remaining parameters are neither available nor dedu-

cible from the physiological literature at present. Thus, in the present simulation study, 

we assume that the probabil ity densities for c , e, q and 9 are truncated Gaussian den
o 

sities. The range of values for ail system parameters including the input signal, are chosen 

in such a manner that the following conditions are not violated. 

5.7.2 

1. The summated generator current v.(t), as given by Equation (5-11), 
1 

is non-negative for ail t and ail i. 

2. The afferent pulse .fr.eq~encies lie within the range of from 0 

to 120 pulses/sec. 

Results and Discussions 

The results of the present computer simulation study can be separated into 

two groups: The first group shows the effects of variations in each parameter individually 

wh ile the second group shows the effect of simultaneous variations in two or more para-

meters. The present investigation is concerned only with the situation in which the change 

of muscle length is sinusoidal about a suitable mean length. Thus, in ail the simulation 

resu Its that we sha Il present be low, th is change of muscle length is given by 

x·(t) = 10+5 cos25t. (5-50) 
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Similarly, the threshold lia Il of the neural encoder is kept constant at the value, 0.2, for 

ail the cases studied. For convenience of comparison, the sinusoidal component of x(t) 

is plotted in each graph of the summated EPSP, with the curves appropriately scaled to 

give equal range of variation. The curve composed of points designated by the symbol 

"0" in Figures 5-20 to 5-29 is the sinusoidal component~ of x (t), while the other curve 

(symbol "X") represents the summated EPSP which is the output of the communication link. 

a. Effect of Variation in Each Parameter Individually 

ln this part of the simulation study, the waveforms of the quantal EPSP's 

are assumed invariant with respect to path, but their sizes may vary. Thus, the time 

constants Tl and T 2 in Equation (5-48) are set at 4.0 and 0.25 msec. respectively, 

whence the resulting waveform is as shown by Curve 2 in Figure 5-19. 

As a reference for the system's performance we first obtain the curve which 

resultswhen ail parameters in the communication link ore invariant with respect to path so 

that ail paths are identical. In this case the summated EPSP at the output of the link is 

as shown in Figure 5-20. Here, the noise power in the output is so great that the signal 

component is not even discern ible. In the following, we shall examine the effect of 

variation in each parameter individlJally, with ail other parameters held invariant. 
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(i) Variation in the Size of the Quantal EPSP's 

The size of a quantal EPSP is represented by the constant b in Equa

tion (5-48). This constant varies rrom path to path in the manner described by Equa

tion (5-49). Assuming that the distribution of Group la synaptic inputs on the soma

dendritic complex of the a-MN is given by Curve A in Figure 5-18, then the summated 

EPSP is as shown in Figure 5-21. Comparing this output with thaï shown in Figure 5-20, 

we see that variation in the size of the quantal EPSP's clone, has no discernible effect 

on the noise content of the summated EPSP. Th is observation agrees with the theoreti

t:ally predicted result given in Sub-section 5.6.2. 

(i i) Variation in the Transmission Time " 

When " alone varies from path to path and the probability density of " 

is as given in Figure 5-17{b), the summated EPSP is as shown in Figure 5-22. The noise 

content of this output is significantly ~ess than that for the case of identical transmission 

paths .. (Figure 5-20). In Sub-section 5.6.3, we have shown theoretically that this re

duction in noise content is accomplished by the equivalent filter, .,,{-jl.), which is 

due to the distribution in ". This conclusion can also be established as follows, by 

examining the block diagram in Figure 5-16 which has been used to simulate the com

munication link for the present case. 

Let the output of the differentiator in Figure 5-16 be v*{t) and let the 

input of the block PH be u{t). Then, the input-output relation for the system of parallel 
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paths between v*(t) and u(t) is given by 

where p . = 
TI 

m. 
1 

M 

u (t) = M 

N 

\' 
L 

i = 1 

p . v* (t - T. ) 
TI 1 

When p . is re-defined as given in Figure 5-17 and T. = 
TI 

1 

N 

u (t) ~ M L PT (i A) . v* (t - i A) . A , 

i = 1 

(5-51) 

i ~ , 

(5-52) 

where NA = 4.6 msec. For digital computation, we can set t = kA without loss of 

generality. Thus, Equation (5-52) becomes a numerical representation of the input-

output relation of a linear system whose unit-impulse response is M p (T). In other 
". 

words, the system of parallel paths is a lineor digital filter which approximates a linear 

continuous filter whose system function is 

CD 

M S p".(".) e-jc"T dT = M. ~ (-jc,,). 

-CD ". 

(5-53) 

On the basis of this obseiVation and of the cmglyticol result derived previously, we now 

note that the system of different afferent paths, which connect the muscle spindles to the 

pulse-generating site of the a-motoneuron, apparently operates in a manner similar to 

a delay-I ine synthesizer86 and a transversal filter .87. 
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(iii) Variation in the Phase Angle Q 

ln simulating the communication link for this case, the probability den-

sity of Q has been assumed to be a truncated Gaussian density. For the output shown 

in Figure 5-23(a), the mean, g, of Q is _100
, the standard deviation cr is 45

0
, o 

and the range of variation is from _1
0 

to _19
0

• For this case ofsmall variation, the 

noise content in the summated EPSP is essentially as large as that for the case of identi-

cal paths. This observation verifies the theoretical prediction given in Sub-section 5.6.3. 

When g, 0'0' and the range of variation are doubled, the resu Iting output is as shown 

in Figure 5-23(b). For this case, the noise content is reduced somewhat, but the signal 

compone nt is still not discernible. From these simulation results and the analytical re-

sults obtained previously, we mey conclude that the effect of variation in Q on the noise 

content of the summated EPSP is much less than the effect of variation in T'. 

(iv) Variation in the Static Gain Co 

The results, f.ogether wÎth the assumed distributions of c , are shown 
o 

in Figure 5-24. The mean value of Co yields a pulse frequency of 60 pulses/sec. or 

equivalently, about 15 pulses per period of the sinusoidal change in muscle length. The 

range of variation in c corresponds to the range of pulse frequencies from 10 to 
o 

110 pulses/sec. The graphs in Figure 5-24 show that the noise content of the summated 

EPSP can be significantly reduced by variation in c . This observation agrees with 
o 

the theoretical result recently reported by Bayly in a study of "neural" pulse frequency 
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modulation.
26 

It is interesting to note that the change in distribution of c , shown 
o 

in the graphs from (b) to (d), do es not significantly affect the noise content of the output. 

(v) Variation in the Dynamic Gain, c 

When c a lone varies from path to path, the noise content of the summated 

EPSP is also less than that for the case of identical paths, as shown by the simulation re-

sults in Figure 5-25. The distribution of c, shown beside each graph in the figure, yields 

a range of pulse frequencies from 0 to 100 pulses/sec. As in the case of variation in 

c , the change in the distribution of c apparently has 1 ittle effect on the noise content 
o 

of the output. 

(vi) Variation in the Constant q 

The effect of variation in q is identical with that due to variation in the 

static gain c , since both q and c affect only the constant compone nt of the sum-
o 0 

mated generator current. (Sce Equation (5-11». Indeed, ifwe define 10 c as q 
o 

in case (iv) presented above, the graphs in Figure 5-24 will illustrate the effect of varia-

tion in q. Thus, we can conclude that variation in q can al50 reduce the noise con-

tent of the summated EPSP., 



176 

1 n th is port of the computer simu lotion study, we have examined the effect 

of variation in each random porameter of the communication link. In porticular, we have 

demonstrated that individual variations in T, c , c, and q can significantly reduce 
o 

the noise content of the summated EPSP, and that,on the other hand, variations in band 

Q have littte or no su ch effect. In the next port, we shall examine the effect of simul-

taneous-variations in two or more porameters of the communication link. 

b. Effect of Simu Itaneous Variation in the Parameters 

As we have noted in Sub-section 5.6. l, the porameters c , c, and Q, 
o 

being ail dependent on the muscle-and-spindle dynamics, are correlated with one another. 

Further, we have pointed out there that there is physiological evidence that c and c 
o 

are also correlated with the transmission time T. However, in order to facilitate mathe-

matical analysis, we assumed that the parameters were ail statistically independent. 

Now, in this port of the computer simulation study we shall examine whether the noted 

correlations will significantly affect the conclusions, which we have drawn in the above 

analysis. We shall study first the case in which c , c, and Q are correlated, and 
o 

then the case in which c , c, and Tare correlated. Finally, in concluding the 
o 

present simulation study, we shall demonstrate that simultaneous variations in both the 

size and the shape of the quantal EPSP's has no significant effect on the noise content 

of the summated EPSP . 
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(i) co' c, and Q Deterministically Related 

When c = 0.9 Co and both of them vary from path to path according to 

the distribution of Co given in Figure 5-24(b), the resulting output of the communica

tion link is as shown in Figure 5-26. 1 f, in addition, we set Q = -0.3 c - O. 1 which 

yields a range of variation from -16.6
0 

to _32
0

, then the summated EPSP is as shown 

in Figure 5-27. Hence we see that the noise content in the output is significantly re-

duced by variations in the gains c and c of the muscle-and-spindle dynamics, while 
o 

additional variation in the phase angle Q does not produce any significont further re-

duction of the noise content. Thus, correlation among these parameters does not affect 

the conclusions that we have drawn concerning the effect of their variations. 

(ii) Simultaneous Variations in co' c, and.,. 

Recently, Carpenter and Hennaman reported that, out of 100 pairs of 

unselected primary spindle afferents of the cat examined, the unit with lower stretch 

threshold in 74 pairs had the more slowly conducting axon. 79 This experimental 

finding indicotes that, in our model of communication link, the path with larger trans-

mission time, .,., is more likely associated with larger values for the gains c and c. o 

ln other words, c and c are correlated with .,. with a positive correlation coeffj
o 

cient. The simulation result for the correlation coefficient, r = +0.7, is shown in 

Figure 5-28(a). The summated EPSP's for r = 0 and r = -0.7 are shown in Figure 5-28(b) 

and (c) respectively. The noise content in the output for these three different cases is 
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very much less than that for the case of identical paths. (Figure 5-20). Further, the 

results demonstrate that correlation between the transmission time and the gains MS little 

effect on the noise reduction property of the variations in c , c, and T. 
o 

(iii) Simultaneous Variations in co' c, 9, T, and the Quantal EPSP. 

ln simulating this more realistic situation, c , c, and 9 are assumed to 
o 

vary from poth to poth as described in (i) above, while T and the gains, c , and c, 
o 

are assumed correlated with a correlation coefficient of 0.7 as iIIustrated in Figure 5-28(a). 

Further, the size and the shape of the quantal EPSP are assumed to vary in the manner 

described by Equations (5-48) and (5-49), and by Curve A in Figure 5-18 which describes 

the distribution of synaptic inputs. The porameter q is set equal to zero since its effect 

is similar to that of c • The summated EPSP for this more realistic representation of the 
o 

communication link is shown in Figure 5-29. Comparing this output with that shown in 

Figure 5-28(a), we see that the noise content in this output is of essentially the some 

magnitude as the noise content for the case in which ail quantal EPSP's are assumed iden-

tical. Thus, the variations in the size and the shape of the quantal EPSP do not introduce 

any noticeable additional reduction in the noise content of the output. This result con-

firms our conclusion in Sub-section 5.6.4. 

ln the present computer simulation study, we have verified the theoretical 

predictions given in Section 5.6. In particular, we have confirmed that the distribution 
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in the transmission time T, plus the summation of pulse trains in the a-MN, constitute 

a fi !ter whose low-pass characteristic is essential for accu rate demodu lat ion • Further, 

we have shown that the noise content of the spatially and temporally summated EPSP 

can he significantly reduced by variations in the gains, c and c, of the muscle-and
o 

spindle dynamics, or by variation in the constant, q, which represents constant "{ -efferent 

activity. The combined effect of variations in c ,c, and T produces a summated EPSP 
o 

which is an excellent representation of the change in muscle length. 

5.8 Discussion and Conclusions 

ln the present chapter, we have investigated, analytically and by computer 

simulation, the transmission of a sinusoidal signal from the muscle to a single a-motoneuron 

(a-MN) in the monosynaptic spinal reflex (MSR). The transmission system examined con-

sists of many sensory units and paths whose properties vary from one path to another. In 

modelling the system, we have made the following major assumptions: 

(a) The summated generator current in the primary nerve endings 

is a precursor to neural pulse generatiQn, and is linearly 

related to sinusoidal change in muscle length, within the 

normal physiological range. 

(b) -The neural encoding mechanism in the primary afferent of 

the muscle spind1e is adequately represented by single-

signed integral pulse frequency modulation (S-S IPFM). 
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(c) The quantal excitatory postsynaptic potentials (EPSP's) 

summate Iinearly at the pu Ise generating site of the 

motoneuron (M N). 

(d) The "spatially and temporally" summated EPSP carries 

the intended information for the MN. 

Assumptions (a) and (d) are based on known physiological evidencl'1,72,53 

while assumptions (b) and (c) are simplifications made mainly to ensure a sufficiently 

tractable mathematical formulation that analytical results may be obtained. In any case, 

we believe that the mode 1 based on these assumptions retains the main features of the 

physiological system and thus is a reasonably good representation of the real situation. 

ln particular, as we have shown in Section 5.4, the present S-S IPFM model and the 

actual neural encoding mechanism of the spindle have many similar properties. Further, 

assumption (c) agrees quite closely with known physiological data: There is evidence 

that under certain relatively general situations, quantal EPSP's arising From different 
58,60 

synaptic inputs summate linearly in the soma of the a-MN. 

\n Sections 5.6 and 5.7, we have successfully analysed the multi-unit 

multipath mode 1 of the muscle-to-motoneuron communication link, and obtained a num-

ber of results concerning the functional significance of the variations in the properties 

of the transmission paths. In particular, we have shown that variation in the gain of 

the muscle-and-spindle dynamics tends to reduce the noise content in the output of the 

system. This result indicates that variation in the stretch threshold of the spindles in 
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the muscle can improve the signal-to-noise ratio of the "spotially and temporally" sum-

mated EPSP at the a-MN. In addition, we have also shown that the distribution in the 

transmission time "., plus subsequent summation of the afferent pulse trains in the a-MN, 

together constitute a filter whose impulse response is the probobility density of ".. This 

latter result agrees with the result recently reported by Williams in his theoretical study 

85 
of peripheral nerve bundles. The low-poss characteristic of this filter provides the 

essential filtering characteristic needed for accurate demodulation. The general picture 

which emerges from the results of the present study is that the combined effect of varia-

tions in ". and in the gain of the muscle-and-spindle dynamics provides the essential 

mechonism to achieve fidelity of signal transmission from the muscle to the a-MN. Re-

53 
cently, Poppele and Terzuolo reported that the changes in the summoted EPSP in the 

MN, evoked by sinusoidal stretches applied to the homonymous muscle, followed the 

sinusoidal input more closely than did signais derived from individual afferent pulse trains 

by low-poss filtering. This experimentol observation can be explained sotisfactorily on 

the bosis of neural filtering which we have just described. 

The present analysis hos been entirely concemed with the transmission of 

one sinusoid through the multi-unit multipoth system. However, while the results are 

strictly applicable only to this porticular class of signais, they mey be used as an indi-

cation of the transmission properties for signais of more general nature. In any case, the 

method presented above mey be directly extended to analyze the transmission of a signal 

comprising a number of sinusoids of different frequencies which mey approximete arbitrary 

input waveforms. A methemotical expression for a single sequence of superposed quanta 1 

EPSP's can be reodily obtained using the results that we have derived in Section 3.2.3. 
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Then, the expression for the "spotially and temporally" summated EPSP can be derived 

and analysed using the approach developed in Section 5.6. 

The analysis presented in this chapter can also be extended to investigate 

the transmission of signais from the"6 -efferents to the a-motoneuron (a-MN). Recently, 

Andersson, et. aL. have reported that the transfer characteristics between't -efferent 

pu Ise frequency and the spindle afferent pu Ise frequency is 1 inear, provided the ~ -ef-

ferent pulse frequencies lie within a certain range, and provided the muscle length is 
77 

kept constant. In their experiment, single 't-efferent fibers are stimulated byan 

electrical pulse train from a pulse-frequency modulator which is essentially a single-

signed integral pulse frequency (S-S IPF) modulator. Thus, if we stimulate the whole 

efferent nerve leading to the muscle bya pulse train from a S-S IPF modulator, and selec

tively block the a-fibers by compression 84 , while the muscle length is simultaneously 

kept constant, then the popu lation of spindles in the muscle will have only one time

varring common input, namely, the Y-efferent pulse train. Because the degree of 

't-efferent innervation varies from spindle to spindle 50 and because spindle dynamics 

mey also vary from one spindle to another, the dynamics relating the Y -efferent input 

to the summated generator current in the primary nerve endings are expected to vary From 

one poth of information transmission to another. Hence, the signal transmission system 

in this case can be represented bya mode 1 similar to that shown in Figure 5-8, and con-

sequently, this system can also be analysed using the method developed in Section 5.6. 

ln the present work, we have only considered the transmission of infor-

mation from the muscle to a single a-motoneuron. However, as noted in Section 5.3, 
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the afferent limb of the MSR consists of a number of these commmication links. Thus, 

in the homonymous a-motoneuron pool, each MN recieves similar information in the 

manner described in this analysis. Now if we treat ail the a-MN of the pool, in the 

same wr..y as we have treated the spindles in the muscle, it may be feasible to extend the 

present anolysis to include signal transmission in the efferent limb of the MSR. However, 

this extension could prove to be mathematically intractable because of the interaction 

arnong MN's provided by the feedback paths of the Renshaw cells, with their largely un

known synaptic connections. 

ln conclusion the present analysis damonstrates that the multi-unit multi

path characteristic is essential for fidelity of transmission of information in the afferent 

limb of the monosynaptic spinal reflex. The method of anolysis developed here can be 

applied to study other multi-unit multipath systems in the rnonosynaptic spinal reflex. 

ln particular the following conclusions can be drawn: 

1. The dispersion in conduction speeds of afferent nerve fibers, 

plus the summation of afferent pulse trains in the neuron, 

together constitute an effective low-pass filter which signi

ficantly reduces the noise content that would otherwise appear 

in the summated EPSP ) 

2. The dispersion in spindle stretch thresholds aise reduces the 

noise content of the summated EPSP; 



3. Variation in postsynaptic membrane characteristics, 

such as time constants, has comparatively little 

effect on the signal-to-noise ratio of the summated 

EPSP. 
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CHAPTER VI 

CONCLUSION 
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The present work is concerned with the theory and applications of integral 

pulse frequency modulation (IPFM). It comprises essentially three parts: The first part 

deals mainly with the spectral analysis of IPFM, while the second part is concerned with 

the application to analogue computation. In the third part, single-signed integral pulse 

frequenc)' modulation (5-5 IPFM) is utilized as a model of the neural encoding mechanism 

for investigating the multi-unit multipath characteristic of neural communication. 

The preHminary results of the first part are presented in Chapter Il.., where

in some of the fundamentals of IPFM are reviewed and re-examined. In particular, S-5 

IPFM is shown to be equivalent to a well-known method of pulse modulation, which has 

been generally referred to in the Iiterature as pulse frequency modulation, but has been 

called continuous pulse frequency modulation (CPFM) in the present work in order to 

differentiate it from the larger overall c1ass of modulation methods which includes CPFM. 

This equivalence of 5-S IPFM and CPFM, apparently not established before, effectively 

broadens the knowledge of IPFM in the sense that what is known about CPFM is applicable 

to 5-S IPFM, and vice verso. Another interesting result of the preliminary study is that 

1 PFM can be implemented exactly by means of a feedback system which operates in many 

ways similar to the neural pulse generating mechanism. Finally, demodulation of IPFM 

using analogue and digital filters is discussed and is shown to be a summat~on of pulses 

in the time domain. 
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The main results of the first part are presented in Chapter HI. Here, a 

general method for the spectral analysis of S-S IPFM is developed. In this method, the 

modulating signal is incorporated into a function e
k 

(t) which represents a frequency

modulated sinusoidal carrier. A spectral representation of the output pulse train can be 

readily derived by using this method, provided that the function e
k 

(t) can be expressed 

in terms of its spectral components. The spectral characteristics of the pulse train have 

been examined in detail for a class of modulating signais comprising one or more sinu-

soids. The output of the modulator contains a signal component and a noise component, 

where the latter is produced in the modulating process. The signal component is linearly 

proportional to the modulating signal as modified by the filtering effect associated with 

the pulse shape, while the noise compone nt has an amplitude spectrum of theoretically 

infinite bandwidth, which always overlaps the spectrum of the signal component. How-

ever, the significant bandwidth of the noise component is finite and can be shifted out-

side the signal band by proper choice of the modulator threshold a and of the biasing 

constant Xo in the modulating signal. Based on this result, criteria for selecting these 

parameters have been derived. These criteria can be expressed in terms of the number 

of pulses per period of the highest significant frequency in the message signal. 

1 n conc ludi ng the fi rst part of the present study, we represent double-

signed integral pulse frequency modulation (D-S IPFM) approximately bya simplified 

mode 1 , and then perform a spectral analysis using the method developed for S-S IPFM. 

The spectral characteristics of a pulse train produced by single-tone modulation is exa-

mined in detail. As in S-S IPFM, the output pu Ise train contains a noise compone nt and 

a signal component, of which the latter is proportional to the modulating signal. 
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However, the noise compone nt produced by the present modulation comprises spectral 

frequencies which are the fundamental and higher harmonies of the modulating signal 

frequency. Its ampl itude spectrum is bounded bya curve which is proportional to the 

amplitude characteristic of the pulse-shaping element P (s) in cascade with a differen

tiator. By using this result, a criteion is derived for selecting the modulator threshold so 

that the demodulated signal has a signal-to-noise ratio greater than a pre-specified bound. 

The second part of the present study is concerned with the application of 

IPFM to analogue computation. The results are presented in Chapter IV.. A method 

for implementing multipliers using S - S IPFM is formulated and studied. In addition, 

the method of pulse frequency modulation originally proposed by Goldberg can be c10sely 

represented in terms of S - S IPFM. An upper bound for the error introduced by the re

presentation is derived. Finally, Goldberg's method of pulse frequency modulation is 

used to implement analogue dividers. 

ln the third and last part, S - S IPFM is used to investigate the functional 

significance of the multiplicity of sensory units and neural paths employed in peripheral 

neural communication in physiological systems. In particular, the signal transmission in 

the afferent Iimb of the monosynaptic spinal reflex (MSR) of the neuro-muscular system 

has been examined for the present purpose in Chapter V-

The afferent limb of the MSR is shown to comprise a set of similar com

munications links in parallel between the muscle and the homonymous motoneuronal 

pool. Each link connecting the muscle and a single a - motoneuron consists of numerous 



191 

paths whose transmission properties vary with respect to pa th . The typical 1 ink is re

presented bya multi-unit multipath model which takes into consideration, particularly, 

the distribution of spindle stretch thresholds, the dispersion of conduction speeds in the 

afferents, and the effect of spatial distribution of synaptic inputs. 

The neural encoding mechanism in the primary afferent endings is repre

sented by a single-signed integral pulse frequency modulator. Indeed, the neural en

coder and the modulator are shown to have many similar functional properties. The 

remaining components in the neural communication system are then modelled so that 

the main functional features of the biological system are retained. 

The transmission of a sinusoidal signal from the muscle to one homony

mous motoneuron through the typical communication link is investigated analytically 

and by computer simulation. A number of results conceming the functional significance 

of multi-unit multipath characteristic is obtained. In particular, the variation in the 

spindte thresholds can reduce the noise content of the "spatially and temporally" sum

mated excitatory postsynaptic potential (EPSP)" where this noise has been introduced 

into the afferent pulse trains by the sensory enc:oding process. Further, the distribution 

in transmission time of afferent paths, plus subsequent summation of the afferent pulse 

trains in the a-motoneuron, together constitute an effective low-pass fi!ter whose fre

quency characteristics are essential for accurate demodulation. The system function of 

this equivalent filter is the characteristic function of the probability density of the trans

mission timei or equivalently, its impulse response is the distribution of the number of 

afferent paths with respect to the transmission time. The general picture which emerges 

from the results of the present study is that the combined effect of variations in these 
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properties of the large number of paths provides the essential mechanism to achieve 

fidelity of signal transmission in the sinusoidal steady-state from the muscle to the 

motoneuron. 

Finolly, the spatial distribution of synaptic inputs is shown to have litte 

effect on the noise content of the sumrn.,ted 'EPSP. The noise reduction effect is a Iso 

negligible for variation in the characteristics of the sub-threshold neuronal membrane, 

such as time constants. 

6.2 Arecs for Further Research 

As a result of the present work, several areas are seen to need further 

research. These are now briefly described and discussed : 

1. Analysis of IPFM with f!3ndom Modulating Signais 

ln the present study, we have derived a number of useful results From 

the spectral anolysis of "lPFM. with message signais comprising one or more sinusoids. 

However, in reclity, informotion-carrying signais are random. Thus, it is desirable 

to determine the information transfer characteristics of IPFM for random modulating 

signais. With the modulators represented by the models utilized in the present work, 

the statisticol theary of amplitude quantizotion can be profitably employed for this 

88 89 purpose. ,. 
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2. Spectral Analysis of a Generalization of S-S IPFM 

ln Section 5.4, we have noted that the neural encoding rnechanism can 

be more rectlistically represented by replacing the integrator with a "leaky integrator" 

in the feedback implementation of S-S IPFM (Figure 2-6). The resulting system can be 

represented by a feedback system which contains the model of D-S IPF modulator given 

in Figure 2-2 9 It appears feasible to develop a method of spectral analysis for this 

type of modulation by using the approximate model for the D-S IPF modulator. The 

method can then be profitably applied to theoretical studies of neural communication. 

3. Evaluation of the Performance of Prototype Multipliers and Oividers 

ln the present work, we have formulated methods for implementing ana

logue multipliers and dividers using pulse frequency modulation; however, the: per-

formance of these devices has not been evaluated in comparison with the c.ommonly 

available multipliers and dividers. The multiplier using IPFM appears to have ail the 

advantages possessed by the time-division multiplier. Further, since the self-excited 

time-division multiplier utilizes bath pulse-width and pulse-frequency modulations, 

whereas the multiplier using IPFM uses only pulses of fixed width, the latter may be 

more versatile and more accurate. Hence, it would be of interest to compare their 

performance by constructing prototype devices. 
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4. Extension of the Analysis on Neural Communication 

As noted in Section 5.8, the method of statistical analysis of neural corn-

munication developed in Section 5.6 can be extended to include a more general input 

signal. Since the transfer dynamics from 't -efferent pulse trains to the spindle afferent 

signal have been shown to be 1 inear -,7~ it wou Id be interesting to investigate the trans

mission of a general signal from the'6 -efferents to the a-motoneuron. In addition to 

this, it is desirable to extend the analysis to include signal transmission in the efferent 

limb of the monosynaptic spinal reflex. Recently, Poppele and Terzuolo have reported 

an experimental finding that the averaged electromyograrn produced in a muscle bya 

motoneuron population is sinusoidal for sinusoidal input amplitudes greatly exceeding the 

1·· wh· h 1· b h . C· d· d . 1 -53 Imlts at IC mear e aVlour ceases Tor pnmary en mgs an slng e motoneurons. 

This physiological observation can probably be satisfactorily explained in terms of neural 

filtering. 

5. Experimental Verification of the Theoretical Results 

on Neural Communication 

We have noted in Section 5.8 that the the ory developed in Chapter 5 can 

satisfactorily explain the experimental observation that the summated EPSP' in the moto-

neuron, evoked by sinusoidal stretch es applied to the homonymous muscle, follows the 

sinusoidal input more closely thon do signais derived from individual afferent pulse trains 

53 
by low-pass filtering. . This experimental observation implicitly confirms the theory. 
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However, it is desiroble that this theory be verified by further physiological experiments 

specially designed to test the significonce of the multi-unit multipath charocteristic of 

neural comna,micotion. 



APPENDIX A 

AN ALTERNATIVE DERIVATION OF A MATHEMATICAL EXPRESSION 

OF THE OUTPUT IMPULSE TRAIN FOR SINGlE-SIGNED 

INTEGRAL PULSE FREQUENCY MODULATION CS - S IPFM) 
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Equation (3-?) is a mathematical expression of the output impulse train for 

S - S IPFM. However, in order to provide sorne physical insight, we derive this expres-

sion again using a more heuristic approach. Let the output pulses of the modulator in 

Figure 3-1 be rectangular with height hd and width T. Since v (t) consists of 

impulses of strength d, for this waveform of the output pulse, we must have 

P (s) = h • 
1 

";TS 
-e 

s 

Lumping the differentiator and P (s) together we obtain 

-T'~ s P (s) = h (1 - e . J • 

Based on this result, we con represent the modulator as shown in Figure A-1·. 

(A-1) 

(A-2) 

According 

to this representation, the staircase function P2 (t) at the output of the quantizer is de

layed by a time Tond then is subtracted from the sorne but undelayed signal to produce the 

rectangular output pulses as illustrated in Figure A-2. Thus, the output of the modulator 

is 

x * (t) = [P2 (t) - P2 (t - T) J h. (A-3) 

Now, substituting Equation (3-5) into Equation (3-2), we have 
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Q) 

= : [z (t) - i + \' 2 sin kw z (t) ] • 
L ~ 0 

(A-4) 

k=l 0 

40 
Since convergent series can be subtracted term by term, we may substitute this 

equation into Equation (A-3) and then simplify to obtain 

co 

= hd T [z (t) - zef - T) 
x * (t) a --'-----T--'----'- + L 

2 sin kw z (t) - sin kw z (t - T) 
_ 0 0 J. 
kw T 

k=l 
o 

(A-5) 

Now let T approach zero while keeping h T = 1. Then, in the 1 imit, the output pulses 

becorne impulses of magnitude "d", and in addition, using the definition of the deriva-

tive we have 

Q) 

e x .: (t) d [ dz 
+ l 2 d 

sin kw z (t) J = 
kw dt a dt 0 

k=l 0 

Q) 

d 
[x (t) +L 2 d 

sin kw z (t) (A-6) = 
~ dt . 

a 0 

k=1 0 

This expression represents the modulator output when P (s) = 1, since Equation (A-1) 

can be re-written as 

P (s) 
h (s T ) 2 (s T) 

3 

= s [s T - 'Z J + 3T - . •• J (A-7) 

whicli approaches· one as T approaclies zero while keeping h T = 1. Therefore, it 

aIse represents the impulse train v (t). Clearly,with x * (t) = v (t) in Equation (A-6) 

it is identical with Equation (3-7) . 



x(t)~ 
1 
S 

z (t) 

2d 

d 

o 

P 
2 

z 

FIGURE A-l. S - S IPFM WITH RECTANGULAR OUTPUT PULSES. 
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+ x* (t) 
h 

t 

t 

FIGURE A-2. ILLUSTRATING THE GENERATION OF A S-S IPF PULSE TRAIN. 
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APPENDIX B 

DERIVATION OF A MODEl FOR THE NEURAL ENCODER 

FROM A PARTICUlAR NEURON MODEl 

Recently 0 mothematicol model of the neuron has been developed by 

67 
Roberge for the study of smoll neuron networks. This functional mode 1 represents 

reolisticolly mony essentiol features of the spike-initiation and synaptic loci of the neurone 

ln a simplified version, these two loci are lumped together to yield a simpler· model which 

incorporotes essentiolly the spike-initiation locus and the subthreshold properties of the 

synoptic locus. The block diagrom of this simpler model is shown in Figure Bl. In this 

diogram, G 1 (5) describes the subthreshold current-voltage characteristics of the synaptic 

locus,with its input coming from the summing point in the forward path which represents 

the additive property known as temporal summation. The inputs to this summing point re-

present ionic currents, while the output of G 1 (5) represents the transmembrane potential 

of the synoptic locus. The .subsystem. in the feedbock path, comprising G 2, G 3 and the 

threshold device, corresponds to the lumped pulse-generating mechanism of both loci, 

and incorporotes into the model both absolute and relative refractoriness in addition to a 

fixed threshold. When the output of G.1(s) is sufficiently large to activiate the threshold 

device in the subsystem, a pulse is generated and fed bock positively to the input of G 1 (5). 

This pulse, ofter passing through G
1 

(s), becomes a replica of the neural action potential. 

ln onalogy to the neuronal mechanism, the fedbock pulse corresponds to the transmembrane 

ionic current at the synoptic locus during the action potential. 

ln Section 5.4, we have defined that the neural encoder is the mechansim 

which converts the summated generator current into an afferent pulse train. The neuron 
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model described above also converts current into a neural pulse train. 5ince it is reasonable 

to assume that the general characteristics of the nerve membrane are invariant for different 

types of neurons, the neuron model 50 described can very weil be considered as a model 

for the neural encoder. In the following, we shall show that this neuron model is indeed 

equivalent to a simple generalization of a single-signed integral pulse frequency (S-5 IPF) 

modulator. 

The block diagram of the neuron model (Figure Bl) can be re-drawn as shown 

in Figure B2(b) through the intermediate step shown in Figure B2(a). The transfer function 

G 4(s) in Figure B2(b) is given by 

- l 

= 0.458 + 1650(1 +5.32 x 10-
3

s) (1 +23.4 x 10-
3

5) 

. : $(1 + 50 x 10-~s) (1 + 1.2 x 10-3 s) 
(B-1) 

The frequency characteristics of the second term of G 4(s) is shown in Figure B3. 5ince 

most of the frequency components of the action potential are greater than 250 rads./sec 

(see Reference 67 Appendix 5), we have, as indicated in Figure B3, 

4. 14 
-3 

1+1.2x la s 
= 

-3 
4.6(1 +0. 12 x 10 5) 

-3 -
1+1.2x 10 5 

(B-2) 

The block diagram of Figure B2(b) shows that the action potential y(t) 

at the neuronal pulse generating site is the superposition of the subthreshold response of 
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the membrane and the propagated pulse itself. Since the output of the neural encoder is 

the afferent pulse train, the subthreshold response at the output of this mode 1 carries no 

information and thus can be neglected. Hence, the model of our neural encoder can be 

simplified, by eliminating the forward path containing G
1 

(s) Qlone, to that shown in 

Figure 84, wherein x(t) represents the ionic current due to distortion of the afferent nerve 

endings, while x*(t) represents the afferent pulse time. 

The model shown in Figure 84 is a simple generalization of the S-S IPF 

modulator given in Figures 2.6 and 5.4(a). In Figure 84, the signal fed bock to the in-

put is a pulse whose Laplace transform is 

where T is the time interval in which the threshold device remains activated. Thus, if 

the block G
1

(s) is replaced byan integrator, the resulting system will be a S-S IPF modu

lator. In other words, the mode 1 given in Figure 84 is a simple generalization of a 

S-S IPF modulator, and conversely, the S-S IPF modulator is an idealization of a realis

tic. model ôf the neural encoder. 
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FIGURE 8 - -4. A MODEL OF THE NEURAL ENCODER. 



$ 
~ 

204 

REFERENCES 

1. Ponter, P.F.; "Modulation, Noise, and Spectral Analysis", McGraw-Hill Book 

Company, 1965. 

2; Schwartz, M., Bennett, W.R. and Stein, S. "Communication Systems and 

3. 

4. 

5. 

Techniques", McGraw-Hill Book Company, 1966. 

Korn, G.A. and Korn, T .M. "Electronic Analogue and Hybrid Computers", 

McGraw-Hill Book Company, 1964. 

Rochelle, R. W. Pulse Frequency Modulation, IRE Trans. Space Electronics and 

Telemetry, pp. 107-111; 1962. 

Davidson, M., Joseph, H.,and Zucker, N. Using Markerless Pulse Trains to 

Communicate, Electronics, pp. 89-91 ; Novembe:r 21, 1958. 

6. Pshenichnikov, A.M. Choice of Frequency Range for Industrial Pulse Frequency 

Telemetry System Devices, Automatika i Telemekhanika, Vol. 21, No. 4, 

pp. 525-529, (English translation : pp. 361 -363) ; April, 1960. 

7. Pozin, N. V. Conceming the Noise Stability of Pulse Frequency Telemetry, 

Automatika i lelemekhanika, Vol. 19, p. 968, (English translation: 

pp. 948-956) ; October, 1958. 

8. Li, C.C. "Integral Pulse Frequency Modulated Control Systems". Ph.D. Disserta-

tion, Northwestem University, Illinois, U.S.A. ; 1961. 

9. Meyer, A.U. "Pulse Frequency Modulation and Its Effect in Feedback Systems", 

Ph.D. Dissertation, Northwestem University, Illinois, U.S.A. ; 1961. 

10. Farrenkopf, R.L., Sabroff, A.E. and Wheeler, P.C. Integral Pulse Frequency 

On-off Attitude Control, "Guidance and Control Il, Progress in Astronautics 

and Aeronautics Series", Vol. 13, pp. 185-230, R. C. Langford and C. J • Mundo 

(Ed • ), Academ i c Press, New York ; 1 964 • 



(),. . . .. 

11. 

205 

Ciscato, D. and Mariani, L. On Increasing Sampling Efficiency by Adoptive 

Sampling, IEEE Trans. Automatic Control, p. 318 ; June, 1967. 

12. Murphy, G. and West, K.l. The Use of Pulse Frequency Modulation for Adaptive 

Controi, Proc. of the N.E.C., Chicago, Illinois, Vol. 18, pp. 271-277 ; 

October 8! 1962. 

13. Clark, J.P.C. "An Analysis of Pulse Frequency Modulated Control Systems", 

Ph.D. Thesis, University of Washington, U.S.A., 1965. 

14. Onyshko, S. "Optimized Pulse Frequency Modulated Control Systems", Ph.D. 

Thesis, University of Washington, U.S.A. ; 1966 • 

15. Pavl idis, r. and Jury, E.1. Analysis of a New C lass of Pu Ise Frequency Modu lated 

16. 

Feedback System, IEEE Trans. Automatic Contro~, pp. 35-43; 1965. 

Pavlidis, T. "Analysis and Synthesis of Pulse Frequency Modulation Feedback 

System 11 , Ph. D. Thesis, University of California, Berkeley, California, 

U.S.A. ; 1964. 

17. Jury, E.I. and Blanchard, J.G. A Nonlinear Discrete System Equivalence of 

Integral Pulse Frequency Modulation Systems, IEEE Trans. Automatic Control, 

Vol. AC-12, pp. 415-422, August 1967. 

18. Blanchard, J.G., "The ory and Applications of Pulse Frequency Modulated Systenls", 

Ph.D. Thesis, University of California, Berkeley, California, U.S.A. j 1966. 

19. Bombi, F. and Ciscato, D. Noise Effects in Integral Pulse Frequency Modulators, 

Proc. IFAC Symposium on Pulse Rate and Pulse-Number Signais in Automatic 

Control, Budapest, Hungary ; April, 1968. 

20. Aida, S. Theory and Applications of Imictron : A Control Element having Mechanisms 

of a living Neuron, Report of the Institute of Industrial Science 1 University of 

Tokyo, Japan , Vol. 17, No. 5 (Seriai No. 112) ; March, 1967. 



1 
1 

206 

21. Pavlidis, T. A New Model for Simple Neural Nets and its Application in the 

22. 

Design of a Neural Oscillator, Bull. Math. Biophysics, 27 : 215-229 j 1966. 

Jones, R. Vi., li, C.C ., Meyer, A. U. and Pinter, R. B. Pulse Modulations 

in Physiological Systems, Fhenomenological Aspects, I.R.E. Trans. Bio-Med. 

Electron i cs, pp. 56-67; January 1961 • 

23. li, C.C. and Jones, R. W. Integral Pulse Frequency Modulated Control System, 

Proc. 2nd. Congress of International Federation of Autornotic Control, 

Basle, Switzerland ; 1963. 

24. Partridge, l. D. A Possible Source of Nerve Signol Distortion Arising in Pulse 

Rate Encoding of Signal, J. Theoret. Biol., 11 : 257-281 ; 1966. 

25. Partridge, l.D. Modification of Neural Output Signais by Muscles: A Fre-

quency Response Study, J. App. Physiol., 20: 150-156; 1965. 

26. Bayly, E.J. Spectral Analysis of Pulse Frequency Modulation in the Nervous 

System, IEEE Trans. Bio-Med. Eng., Vol. BME-15, No. 4, pp.257-265 r ; 

October, 1968. 

27.· Goldberg, Harold. Report on Pulse Modulation, an unpublished Stromberg

Carlson Report, December 27, 1944. (See Reference 28). 

28. Ross, A.E. Theoretical Studyof Pulse Frequency Modulation, Proc. I.R.E. 

37: 12n -86; November ,1949. 

29. Inose, H. and Yasuda, Y. A Unity Bit Coding Method by Negative Feedback, 

Proc. 1 E EE, pp. 1524-1535 ; November 1963. 

30. Mishkin, E. and Braun, L.,Jr. "Adaptive Control Systems". McGraw-Hill j 1961. 

31. C:R.C .. Standord Mathematical Tables, 13th Ed., The Chemical Rubber Cc . .; 1964. 



207 

32. Fitch, E. The Spectrum of Modulated Pulses, J. IEE, London, Vol. 94, Pt. 3A, 

pp. 556-564 ; 1947. 

33. Seeley, S. W., Kimboll, C. N. and Borgo, A.A. Generation and Detection of 

Frequency Modulated Waves, RCA Review, Vol. 6, pp. 269-286 ; 1941-1942. 

34. Scroggie, M. G. Low Distortion FM Discriminator, Wireless World, pp. 158-162 ; 

April,. 1956. 

35. Millman, J. and Taub, H. IIPulse, Digital, and Switching Wave-forms~', 

McGraw Hill Book Co. ; 1965. 

36: Landee, R.W., Davis, D.C. and Albrecht, A.P. "Electronic Designers 1 

Hondbook ", Mc Graw Hill Book Co. ; 1957. 

37. Rader, C.M. and Gold, B. Digital Filter Design Techniques in the Frequency 

Domain, Proc. IEEE, pp. 149-171 j February, 1967. 

38. Wylie, C. R., Jr. "Advanced Engineering Mathematics;' ;2nd, E~. McGraw:~Hill 

Book Co. ; 1960. 

39. Erdelyi, A. From delta function to distributions, in "Modem Mathematics for 

Engineers ll , 2nd Series, E.F. Beckenback (Ed.), Cha pte l, p. 36, 

McGrawHiII Book Co. ; 1961. 

40. Sokolnickoff, I.S. and Redheffer, R.M. "Mathematics of Physics and Modem 

Engineering", McGraw Hill Book Co. ; 1958. 

41. Baghdady, E.J. Analog Modulation Systems, in IILectures on Communication 

System Theoryll, E. J. Baghdady (Ed.), McGraw Hill Book Co. j 1961. 

42. Corrington, M.S. Variation of Bandwidth with Modulation Index in Frequency 

Modulation, Proc. IRE, pp. 1013-1020 j 1947. 



208 

43. Giacoletto, L. J. Generalized Theory of Multitone Amplitude and Frequency 

Modulation, Proc. IRE, pp. 680-693 ; July, 1947. 

44. Salvadori, M. G. and Schwarz, R. J. Il Differentiai Equations in Engineering 

Proplems ll
, p. 304, Prentice Hall Book Co. ; 1954. 

45. Morriil, C. D. Electronic Multipliers and Related Topics, in .H. D. Hùskey. and 

G.A. Korn , IIComputer Handbook ll
, McGraw Hill, New York; 1962. 

46. Maslav, A.A. Survey and Classification of Multiplying Devices, Automatika i 

Telemekhanika, VI. 21 ; October, 1960. 

47. Monroe, A.J., Il Digital Processes for Sampled Data Systems", John Wiley and 

48. 

Sons, Inc. ; 1962. 

Mountcastle, V. B. The problem of sensing and the neural coding of sensory 

events, in IIThe Neurosciences ll
• Ed. by G .;C. Qutmton, ·.et al •. :The Rockefeller 

Univ. Press, New York; 1967. 

49. Perkel, D.H. and Bullock, T.H. Neural Coding. Neurosciences Research 

Program Bulletin, Vol. 6, No. 3, pp. 227-348;; December, 1968. 

50. Ruch, T. C. and Patton, H. D. IIPhysiology and B iophysics ", 19th Ed., 

W.B. Saunders Co. ; 1965. 

51. Matthews, P. B. C. Muscle Spindles and Their Motor Control. ·P,hysiol. Re>.'. 

44:: 219-288 . .196A, . , 

52. Guyton, A. C. IIMedical Physiology~', 3rd .. Ed"W. B. Saunders Co. ; 1966. 

53. Poppele, R. E. and Terzuolo, C.A. Myotatic Reflex:: Its Input-output Relations-

Science 159:743-745 ; February 1968. 

54. Maffei, L. Spatial and Temporal Averages in Retinal Channels, J. Neurophysiol, 

31: 283-287 ; March, 1968. 



209 

55. Mendell, L. M. and Hennemon, E. Terminais of Single la Fibers: Distribution 

with a Pool of 300 Homonymous Motor Neurons, Science 160: 96-98 j 

April, 1968. 

56. Rail, W. Branching Dendritic Trees and Motoneuron Membrane Sensitivity, 

Exp. Neurol. 1: 491-527; 1959. 

57. Terzuolo, C.A. and Llinas, R. Distribution of Synoptic Inputs in the Spinal 

Motoneurone and Its Functional Significance. "Nobel Symp. l, Muscular 

Afferents and Motor Control Il , R. Granit (Ed.), John Wiley and Sons, 

N. Y., pp. 373-384 ; ï966. 

58. Burke, R. E. Composite Nature of the MonosynaptÎc Excitatory Postsynaptic 

59. 

Potential, J. Neurophysiol. 30: 1114-1137 j September 1 1967. 

Rail, W. Theoretical Significance of Dendritic Trees for Neuronal Input-output 

Relations, "Neural Theory and Modeling", R. F. Reiss, (Ed.), Stanford 

University Press; 1964. 

60. Rail, W., Burke, R.E., Smith, T.G., Nelson, P.G. and Frank, K. Dendritic 

Location of Synapses and Possible Mechanisms for the Mono~ynaptic EPSP 

in Motoneurons, J. Neurophysiol. 30: 1169-1193 j September, 1967. 

61. Lippold, c.C.J., Nichols, J.G. and Redfeam, J.W.T. Electrical and 

Mechanical Factors in the Adaptation of a Mammal ian Muscle Spindle, 

J. Physiol. 153: 209-217 ; 1960. 

62. Edwards, C. Changes in the Discharge from a Muscle Spindle Produced by 

63. 

Electrotonus in the Sensory Nerve, J. Physiol. 127: 636-640. 

Katz, B. Depolarization of Sensory Terminais and the Initiation of Impulses 

in the Muscle Spindle, J. Physiol. 111 :261-282; 1950. 



210 

64. Shepherd, G.M. and Ottoson, D. Response of the Isolated Muscle Spindle to 

Different Rates of Stretching, "Sensory Receptors", Cold Spring Harbor 

Symp. on Quantitative Biology, Vol. 30 j 1965. 

65. Ottoson, D. and Shepherd, G.M. Receptor Potentials and Impulse Generation 

in Isolated Spindle during Controlled Extension, "Sensory Receptors", Cold 

Spring Harbor Symp. on Quantitative Biology, Vol. 30 j 1965. 

66. Harmon, l. D. and Lewis, E.R. Neural Modeling, Physiol. Rev. 46: 513-591 

1966. 

67. Roberge, F.A. liA Neuron Model for t~e Study of Small Neuron Pools.U,. Ph.O.::ThëlitS, 

68. 

69. 

70. 

71. 

Department of Electrical Engineering, McGill University, Canada j 1964. 

Devanandan, M. S. and Eccles, R.M. Single Motor Units of Mammalian Muscle, 

J. Physiol. 178: 359-367 j 1965. 

Granit, R. (Ed.), "Nobel Symposium l, Musclar Afferents and Motor Control", 

John Wiley and Sons, New York; 1966. 

Pringle, J. W. S. Models of Muscle, inl:~lModels and. AnaLogués:in Biology'~. 

Symp. Soc. Exp. Biol. 14: 41-68 ; 1960. 

Houk, J. C., Sanchez, V. and Wells, B. F. Frequency Response of a Spindle 

Receptor, Quarterly Progress Report No. 67, Res. Lab. of Electronics, 

M . 1. T., pp. 223- 227 j 1962. 

72. Lennerstrand, G. and Thoden, U. Dynamic Anolysis of Muscle Spindle Endings 

in the Cat Using Length Changes of Different Length-time Relations, 

Acta Physiol. Scand. 73, pp. 234-250 ; 1968. 

73. Lennerstrand, G. Position and Velocity Sensitivity of Muscle Spindles in the 

Cat.l, Primary and Secondary Engings Depdved of Fusimotor Activation, 

Acta Physiol. Scand. 73, pp. 281-299 j 1968. 



e 

211 

74. Lennerstrand, G. and Thoden, U. Position and Velocity Sensitivity of Muscle 

Spindles in the Cat. Il. Dynamic Fusimotor Single-fibre Activation of 

Primary Endings, Acta Physiol. Scand. 74, pp. 16-29 ; 1968. 

75. Lennerstrand, G. and Thoden, U. Position and Velocity Sensitivity of Muscle 

Spindles in the Cat. III. Static Fusimotor Single-fibre Activation of 

Primary and Secondary Engings, Acta Physiol. Scand. 74, pp. 30-49 j 1968. 

76. Lennerstrand, G. Position and Velocity Sensitivity of Muscle Spindles in the 

Cat. IV. Interaction Between Two Fusimotor Fibres Converging on the Sorne 

Spindle Ending, Acta Physiol. Scand. 74, .pp. 257-273 j 1968. 

77. Andersson, B. F., Lennerstarnd, G. and Thoden, U. Response Characteristics 

78. 

of Muscle Spindle Endings at Constant Length to Variations in Fusimotor 

Activation, Acta Physiol. Scand. 74, pp. 301-318 ; 1968. 

Papou lis, A. "Probability, Random Variables, and Stochastic Processes", 

McGraw Hill Book Co. j 1965. 

79. Carpenter, D.O. and Henneman, E. A Relation Between the Threshold of 

Stretch Receptor in Stretched Muscle and the Diameter of Their Axons, 

J. Neurophysiol. 29: 353-368 ; 1966. 

80. Hunt, C. C. Relation of Function to Diameter in Afferent Fibers of Muscle 

Nerves, J. Gen. Phys io 1. 38: 117- 131 j 1955. 

81. Bennett, C.A. and Franklin, N. L. "Statistical Analysis in Chemistry and the 

Chemical Industry", p. 90, John WiJey and Sons j 1954. 

82. Papoulis, A. "The Fourier Integral and Its Application", McGraw Hill Book 

Co. j 1962. 



212 

83. Paynter, H.M. On an Analogy Between Stochastic Processes and Monotone 

Dynamic Systems, Proc. Conf. on Control Technology, Heidelberg, 

Germany ; September, 1956. 

84. Leksell, L. The Action Potential and Excitatory Effects of the Small Ventral 

Root Fibres to Skeletal Muscle, Acta Physiol. Scand. 10, Suppl. 31 ; 1965. 

85. Williams, W. J. Bio- cybernatic Aspects of Latency Dispersion in Peripheral 

Nerve Bundles, Record of the 1968 IEEE Systems Science and Cybernetics 

Conf., San Francisco; 1968. 

86. Goodman, T. P. Theory and Application of a Tapered Electronic Delay-line 

87. 

Synthesizer, in "Automatic and Remote Control Il , Proc. 1st 1 FAC, 

Moscow, 1960 ; Ed. J.F. Coales, et.al. Butterworths, London, Vol. III, 

pp. 102- 108 ; 1961. 

Zadeh, L. A. and Desoer, C. A. "Linear System Theory", McGraw Hill Book 

Co., p. 447 j 1963. 

88. Widrow, B. "Statistical Analysis of Amplitude Quantized Sampled-data Sy.stems:, 

Tech. Report No. 2103-1, Stanford Electronics Lob. ,: Stanford Ul')iv., 

California, U.S.A. j Moy., 1960. 

89. Kosyakin, A. A. The Statistica 1 Theory of Ampl itude Quantization, Automation 

and Remote Control, (Avtomatika i Telemekhanika) Vol. 22, No. 6, 

pp. 624-630 j June, 1961. 


