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ABSTRACT

The present work is concerned with the theory and applications of integral pulse
frequency modulation (IPFM). it essentially comprises three parts. In the first part,
IPEM is studied by means of a spectral analysis. Single-signed IPFM is shown to be
equivalent to a well-known method of modulation. A general method for spectral
analysis of IPFM is developed, and the spectral characteristics of the output pulse train
for a class of modulating signals comprising one or more sinusoids are examined in detail .

Useful criteria are derived for synthesizing the modulators.

The second part is concerned with the application of IPFM to analogue computa-
tion. A method for implementing multipliers using IPFM is formulated and studied. In
addition, a method of pulse frequency modulation originally proposed by Goldberg can be
represented approximately in terms of single-signed IPFM, and is utilized to implement a

divider.

In the third part, single-signed IPFM is used to investigate neural communication
in the afferent pathway of the monosynaptic spinal reflex (MSR) in physiological systems.
The signal transmission system, comprising many sensory units and neural paths in parallel,
is modelled and statistically analyzed. The analysis takes into consideration the distribu-
tion of the spindle stretch thresholds, the dispersion of conduction speeds in the afferents,
the effects of spatial distribution of synaptic inputs, and the noise introduced by the sen-
sory encoding process. The results of the analysis show that the multiplicity of similar
sensory units and of neural paths with different properties, is essential for fidelity of

information transmission.
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ABSTRACT

The present work is concerned with the theory and applications of integral
pulse frequency modulation (I PFM). It essentially comprises three parts. In the first
part, IPFM is studied by means of a spectral analysis. Single-signed [PFM is shown
to be equivalent to a well-known method of modulation. A general method for spectral
analysis of IPFM is developed, and the spectral characteristics of the output pulse train
for a class of modulating signals comprising one or more sinusoids are examined in detail.

Useful criteria are derived for synthesizing the modulators.

The second part is concerned with the application of IPFM to analogue
computation. A method for implementing multipliers using IPFM is formulated and
studied. In addition, a method of pulse frequency modulation originally proposed by
Goldberg can be represented approximately in terms of single-signed IPFM, and is utili-

zed to implement a divider.

In the third part, single-signed [PFM is used to investigate neural communi-
cation in the afferent pathway of the monosynaptic spinal reflex (MSR) in physiological
systems. The signal transmission system, comprising many sensory units and neural paths
in parallel, is modelled and statistically analyzed. The analysis takes into consideration
the distribution of the spindle stretch thresholds, the dispersion of conduction speeds in the
offerents, the effects of spatial distribution of synaptic inputs, and the noise introduced by
the sensory encoding process. The results of the unél;sis show that the multiplicity of
similar sensory units and of neural paths with different properties, is essential for fidelity

of information transmission.
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Threshold of the integral pulse frequency modulator.

Amplitude characteristic of the linear element whose impulse
responses represent the pulses in the integral pulse frequency

modulated pulse train.

A positive constant representing the size of the quantal exci-

tatory postsynaptic potential at the output of the ith path.
A random variable corresponding to bi

The dynamic gain of C i (s) at the frequency v, of the

sinusoidal component of the change in muscle length.
A random variable corresponding to c.

The transfer function representing the linearized dynamics
which relate the change in muscle length to the resulting
change of summated generator current in the primary nerve

endings of the spindle in the ifh path.
The static gain of Ci (s) .

A random variable corresponding to ¢ °
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vii
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component in the frequency-modulated sinusoidal carrier
e (t) with single-tone modulation ; D(k, Nyresss nM)

is that with M-tone modulation,
Double-signed integral pulse frequency.
Double-signed integral pulse frequency modulation.

A frequency modulated sinusoidal carrier whose derivative
. . th . .

is proportional to the k  constituent of the noise compo-
nent in the integral pulse frequency modulated impulse

train. See Equations (3-8) to (3-12).

E (k, n) is the amplitude of a spectral component in the kth
constituent p, (1) of the noise component in the output
pulse train of single-signed integral pulse frequency modu-
lation with single-tone modulation ; E(k, Nyreees nM)

is that with M-tone modulation.
Excitatory postsynaptic potential.

E(k, n) for rectangular output pulses.
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Ratio of the cutoff frequency w of the low-pass filter and
the maximum significant frequency w ax of the modulating
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quency of the sinusoidal component of the modulating signal.
Monosynaptic spinal reflex.

Motoneuron.

Noise component.

1 min is a positive number related to the minimum signi-

ficant frequency of the noise component for single-tone
modulation in single-signed IPFM. It is given by Equation (3-70)

for k=1. N!' . isthat for multitone modulation.
1 min
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primary nerve endings of the spindle in the ith path. 0 is

the corresponding random variable.

A constituent of the noise component in the output pulse

train.
Pulse width ; dummy variable .

The transmission time from spindle to the pulse generating
. .th .
site of the a-motoneuron ; for the i’ path ; s is the cor-

responding random variable.
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CHAPTER |

INTRODUCTION

1.1 General Background

Signals in many communicetion and control systems are in the form of a
pulse sequence. This form of the signal may either be used to gain technical and
economical advantages, or arise as a result of the intrinsic properties of the system,

Thus pulses of fixed size and shape have been employed to overcome the problem of noise
accumulation in fong distance communications, while the neural pulses in biological

systems constitute a naturally evolved intrinsic method of information transmission.

There cre numerous methods for representing o message by a pulse train. !
However, they can be grouped into two basic categories, depending on whether the pulses
are synchronous or asynchronous. While synchronous methods are generally popular in
engineering applications, asynchronous methods have been preferred in some specialized
systems, and furthermore seem to have been generally favoured by nature. In particular,
one class of asynchronous methods called pulse frequency modulation has been applied to
investigations in telemetry, automatic control, bio—electronics, and physiology by an
increasing number of workers.4_26 The present thesis is concerned with the theory and

applications of one particular e of nulse frequency modulation.
[ Y

By pulse frequency modulation (PEFM), we mean the class of methods
which convert a message signal into a train of pulses having iden*ical size and shape but
possibly differentsigns ; further, the pulse frequency which is defined as the inverse of

H

the spacing between adjacent pulses, is varied as some function of the signal magnitude.
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Several schemes of PFM have been proposed in the literature. In one
of the earlier schemes, the pulse train is derived from a frequency modulated continuous
carrier. The message signal first modulates a sinusoidal wave and then a standard pulse
is generated for each complete cscillation of the modulated carrier. This method has been
known in the literature as "pulse frequency modulation™ or “continuous pulse frequency
modulcfion".] -3 To avoid confusion with the term defined in the previous paragraph, we
shall call this particular scheme "continuous pulse frequency modulation" (CPFM). In
CPFM, the deviation from the unmodulated carrier frequency is approximately proportional
to the magnitude of the message signal .

Another scheme was proposed earlier by Goldberg.27'28

In this method,
the modulating signal is first made positive by a fixed bias and then compared with a posi-
tive ramp signal having a pre-specified slope. When the two signals are equal, a standard
pulse is emitted and the ramp is reset to zero at the same instant. Then the whole process

is repeated. The pulse frequency of the train produced by this method is inversely pro-

portional to the sampled signal magnitude.

Recently, a simple but interesting scheme called integral pulse frequency

’

modulation (IPFM) was proposed by Li and Meyer. In this method, a pulse is
initiated at the instant H when the magnitude of the time integral of the modulating
signal reaches a pre -specified threshold value. The sign of the pulse is the sign of the in-
tegral at ty After the pulse has been initiated, the integrator is reset to zero and the
whole process is repeated. The resulting pulse train is "in phase" with the modulating
signal in the sense that both the pulse and the modulating signal have the same sign at the

pulse emission time. Usually the pulse frequency is approximately proportional to the

modulating signal magnitude.
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The invention of IPFM has motivated the proposal of three other schemes
of pulse frequency modulation (PFM). In Clark's method, the interval berween pulses is
determined by the instantaneous vaiue of the modulating signal at the beginning of the pulse
just prior to the interval under considercﬁon.]3 In fact, the pulse frequency is made
linearly proportional to the sampled signal magnitude. The other two schemes are generali-
sations of IPFM. One of them was proposed by Pavlidis, and is called sigma pulse
frequency modulation (ZPFM).lé In one version of this scheme, the integrator in IPFM
is replaced by a first order time-invariant low-pass filter so that a pulse is emitted when
the output of the filter reaches a pre-specified threshold value. The third method, pro-
posed by Blanchard, is a further generalization called functional pulse frequency
modulation (FPFM).]8 In this method, the modulator emits a pulse when a functional of
the modulating signal reaches the threshold value. The frequency of the pulse train pro-
duced by these latter two schemes is in general a nonlinear dynamic function of the modu-

lating signal.

From among the schemes of PFM described above, integral pulse frequency
modulation (IPFM) appears to possess the greatest number of valuable properties. Its
modulator and demodulator are simple to implement. It has good immunity against both in-
put and channel noises. It combines some of the better features of pulse code modulation
with the analogue features of frequency moaculation. It can easily encode both discrete
and continuous input signals. It tends to reduce redundancy in the sense that a pulse is
emitted only when that is necessary. In addition to these properties which are valuable for
engineering applications in communication and control systems, IPFM has other important

characteristics which are useful for biological investigations : As a very important parti-



cular case, single~signed IPFM is functionally similar to neural pulse modulation in
neuro-physiological systems. In comparison with the other PFM schemes, IPFM is more
versatile than both CPEM and the schemes proposed by Goldberg and Clark. In compari=
son with TPFM and FPFM, it is less sophisticated than these latter for modelling neural
elements, but is mathematically more tractable than the generalized schemes. Thus,

IPEM is a simple but versatile method of asynchronous pulse modulation. Its importance
for engineering and biological investigations is evidenced by the number of works reported
in the literature. In the present thesis, IPFM is analyzed and applied to both engineer-

ing and neuro-physiological investigations.

1.2 Previous Works Related to Integral Pulse Frequency Modulation

Integral pulse frequency modulation (| PFM) was first defined in 1959 by
Li and Meyer as a result of search for a suitable mode! of the pulse-generating mechanism
] 22 . . .
in sensory receptors of the nervous system. It was subsequently incorporated into linear

17,18 have analyzed the

feedback control systems. Li8 and recently Blanchard and Jury
stability of such systems, while Meyer9 has established the existence and characteristics of
various types of sustained oscillations in them. Farrenkopf et al have applied 1PFM to

attitude control of space craft and found it superior to certain other common on-off control

10
schemes. Ciscato and Mariani have used it to accomplish adaptive sampling, thereby

improving signal sampling efficiency.

IPEM has also been investigated as a method of information transmission.

Li has studied the “approximate frequency response” (i.e. describing functions) of the



modulator and examined the effect of Gaussian channel noise on the output pulse train,
Recently, Blanchord,]8 and Bombi and Ciscc:tfo19 have investigated the input noise
filtering properties of the modulator.  For demodulation, Li has proposed the use of a
time-invariant low-pass Filfer,8 and Blanchard has suggested the use of a Lagrangian

. . . 1
interpolation method as an alternative.

In addition to these engineering investigations, IPFM has been applied
to the study of physiological systems. Li and Jones have analyzed feedback systems
which simulated the basic dynamic structure of reciprocal innarvation in neuro-muscular

8,23 . . . ..
systems. Partridge has studied the frequency response of the muscle by stimulating its

. . . 2
efferent nerve with a pulse train from an integral pulse frequency modulator. > Further-
more, assuming single-signed IPFM as the actual neural pulse generating mechanism,

. . . . . . . 24
Partridge has also investigated signal distortion introduced by the neural encoding process,

while more recently, Bayly has examined the spectral characteristics of puise frequency

modulation in the nervous system.

1.3 Outline of the Thesis

In Chapter 1, some of the fundamentals of integral pulse frequency (IPFM)
are reviewed and re-examined. |PFM is here precisely defined and the validity of a
functional model of the modulator is established. Continuous pulse frequency modulation
(CPFM) is then shown to be equivalent to single~signed integral pulse frequency modulation
(S-S IPFM) . A new and versatile method for hardware implementation of IPFM is pre=

sented. Then, demodulation using analogue and digital filters is discussed.



in Chapter 11l, IPFM is studied by means of a spectral analysis. A general
method for spectral analysis of S =S IPFM is developed. The spectral characteristics
of pulse trains produced by modulating signals comprising one or more sinusoids are examined
in detail. Then, by using the results obtained, useful criteria for synthesizing the
modulator are derived. Finally, the spectral characteristics of a pulse train produced by
double—=signed IPFM are examined in detail, and the results are utilized to derive a

criterion for selecting the modulator threshold.

Chapter IV is concerned with the application of IPFM to analogue com-
putation. A method for implementing multipliers using IPFM is formulated and studied.
The method of pulse frequency modulation originally proposed by Goldberg is shown to be
representable by an S - S IPFM model, and is then used to formulate a method of analogue
division. Lastly, the results of a computer simulation study are shown to verify the feasibility

of the proposed methods.

In Chapter V, S =S IPFM is used to investigate the functional significance
of the multiplicity of sensory units and neural paths employed in peripheral neural communi-
cation in physiological systems. In particular, the transmission of signals in the afferent
limb of the monosynaptic spinal reflex (MSR) of the neuro-muscular system is examined for
the present purpose. The pertinent features of the MSR are first briefly reviewed. Then,
the afferent limb of the MSR is modelled and statistically analyzed, taking into considera-
tion the variations of properties in the multiplicity of neural elements and paths. Finally,

the results of a computer simulation study are presented and discussed.



Lastly, Chapter VI concludes with a summary of the main results.  Areas

for further research are suggested and briefly discussed.

1.4 Claim of Contributions

In the author's belief, the present work contributes knowledge to both

engineering and physiology. The major contributions claimed are :

].

Single-signed integral pulse frequency modulation (S - S IPFM)
is shown to be equivalent to continuous pulse frequency modula-
tion (CPFM). This demonstration effecfively broadens the knowledge
of IPFM in the sense that what is known about CPFM is appli-

cable to S - S IPFM, and vice versa. (Chapter I).

A general method for the spectral analysis of integral pulse fre-
quency modulation (IPFM) is developed. In particular, the
analysis presented in the present work makes possible a better
understanding of the information transfer characteristics of
IPEM. Useful criteria are derived for synthesizing the modula-

tors. (Chapter IIf).

A method for implementing analogue multipliers is formulated

using IPFM. Goldberg's method of pulse frequency modulation



is shown to be approximately representable in terms of S-S IPFM,

and is utilized to implement an analogue divider. (Chapter V).

The functional significance of the multiplicity of sensory units

and neural paths employed in peripheral neural communication

in physiological systems is established through- a statistical study

of the afferent limb of the monosynaptic spinal reflex (MSR). In
particular, it is shown that the variation in the transmission times
of the afferent paths, plus subsequent summation of afferent pulse
trains in the a - motoneuron, together constitute a low-pass filter
whose characteristic is needed for accurate demodulation. In
general, the multiplicity of similar sensory units and of neural paths
with different properties is found to be essential for fidelity of in-

formation transmission. (Chapter V) .



CHAPTER I

FUNDAMENTALS OF INTEGRAL PULSE FREQUENCY MODULATION

2.1 Introduction

The fundamentals of integral pulse frequency modulation (IPFM) essential for
subsequent analyses are presented in this chapter. We shall define IPFM precisely and
state the assumptions. A functional model of the modulator will be described and then
shown to be an exact representation of the modulator input - output relations.  This
mode! will be used for subsequent analyses throughout the present work. We shall show
next that continuous pulse frequency modulation (CPFM) is equivalent to a particular sub-
class of IPFM, namely, the single-signed IPFM . Although both IPFM and CPFM
have been known for more than nine years, it appears that this equivalence has not been
established before. A new and versatile method for implementing the integral pulse fre-
quency (IPF) modulator will then be described. This method is similar to the generation
of neural pulses in the nervous system. Finally, demodulation of IPFM using analogue

and digital filters will be discussed.

2.2 Definitions and Assumptions

Recently several types of modified integral pulse frequency modulation
(IPFM) have been discussed in the |iferoture.]9'24 However, they appear to have rather
restricted applications and are little different from the unmodified version originally de-
fined by Li and Meyer.8'9 Thus, these modified IPFM will not be considered in the
present work. In the following, we shall be concerned only with the well-known unmodi-

fied version defined below.
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IPEM is defined as the encoding process which converts a bounded integrable

signal x () into a pulse train with the following properties :

1.  If the pulses are numbered sequentially by the positive integers,
i=1,2,3, ..., then the emission time ti of the ith pulse is

determined by the criterion

t.
||(i-1,i)|s|j x@) dt | = a @-1)

ti-l i=1,2,3, ...

where = 0 and “a" is a pre-specified positive constant called
the modulator threshold. The input signal x (t) is assumed integrable

for all intervals (fi_l ’ fi) .

2.  The sign q; of the ith pulse is the signof I (i-1, i) .

3. The ith pulse is completely characterized by q; P (f-ti) where p (t)

is a pre-specified function describing the pulse shape and size. For 7> 0,
p® £ O 0 <t <7

= 0, otherwise .
If the pulse is an impulse of strength d, then p (t) =d - Uo ®
where U° (t) is the unit - impulse function. We will call "T"

the pulse width and p (1) the "pulse - shape function".

4. The pulses do not overlap. This condition implies that the pulse width is
less than the minimum possible (’ri - ti_]) for all i . The assumption

that the input signal is bounded makes it always possible to fulfill this

condition.
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The encoding process defined above is illustrated in Figure 2-1. The modu-
lator has the input signal x (t) and the output pulse train x* (t) . The output pulse has
been assumed to be rectangular. The modulating signal x (t) is integrated, with the
initial condition of the integrator set to zero at t =o. When the absolute value of the
integral | (t) reaches the pre=-specified threshold value a at time s the modulator
emits at this time a pulse. The sign of the pulse is the sign of the integral ot H (which
is positive in this example). At the instant when the pulse is initiated, the integrator is

reset to zero. Then the whole cycle is repeated.

When the output of the modulator consists of both positive and negative
pulses as shown in Figure 2-1, the modulation is known as double-signed IPFM (D-S IPFM).
When the output contains pulses with one sign only, the modulation is called single -signed
IPFM (S-S IPFM). To achieve D=S IPFM, the input x (t) of the modulator must have
both positive and negative values. On the other hand, to achieve 5-5 IPFM, it is
necessary that either | (i1, i)=a or | (i-1, i)= -a for all i . To satisfy thisre-
quirement, it is sufficient, although not necessary, that either x () 2 0 or x () < O
forall t. Hence, a message signal with both positive and negative values can be en-

coded by S-S IPFM provided a suitable biasing constant is added.

In defining integral pulse frequency modulation (IPFM) we have assumed

that the modulating signal is bounded and integrable in any finite interval. Thus signals

containing impulse functions are not allowed. However, the modulating signal can be
either continuous or piece-wise continuous. As an example, the input can be rectangular
pulses, provided the modulator threshold a and the output pulse shape are so chosen that

the output pulses do not overlap.
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£ .o """ 3
t -39 * (t
@ x (1) T :_’-Jl- x* (1)
Modulating Signal L= 4 Output Pulse Train
Modulator

x ()

o 1

FIGURE 2-1. ILLUSTRATING THE PROCESS OF INTEGRAL PULSE FREQUENCY
MODULATION. (IPFM) .
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Furthermore , we should note that all output pulses have the same pre -specified
shape and size described by a given function p (). Hence, the output of the modulator
is completely characterized by the sequence of pulse emission times ) , o, cco s b s coen
and the sequence of pulse signs Gy rGprcee s Gyrooe In the next section, we shall

use this fact to show that the modulator can be represented exactly by a functional model.

2.3 A Functional Model of the Modulator

In order to facilitate analysis, it is desirable to represent the input - output
relations of the integral pulse frequency (IPF) modulator by a model. We shall call such

a model a "functional model".

A functional mode! of the IPF modulator is shown in Figure 2-2. ltis
. . 9 . . .
essentially Meyer's "equivalent network”, and comprises an integrator, a uniform quan=-
tizer with hysteresis, a differentiator, and a linear system described by a transfer function

P () . The transfer characteristic of the quantizer is shown in Figure 2-3. The quan-

ul
] A
Quantizer 24 |
y A
x(f) 1 z(t) P?(f) (f) * (i’) d
LiEOS g2 ds M 120 ode 2 e o 1, 2
'y a 20 3a
-d
y |
- -2d
' | -3d
FIGURE 2-2. A FUNCTIONAL MODEL OF

THE INTEGRAL PULSE FREQUENCY
(IPF) MODULATOR. FIGURE 2-3. TRANSFER CHARACTERISTIC
‘ OF THE QUANTIZER Q WITH

HYSTERESIS.
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tizing level @ is equal to the modulator threshold. The arrows in the transfer charac-
teristic indicate the only paths along which p, canvaryas z is changed. When z

is increasing, Pp, can sncrease from one discrete value to another only by following the
vpward arrows. When z is decreasing, p, can decrease from one discrete value to
another only by following the downward arrows. Thus the quantizer converts z (t) into
a staircase function Py () with uniform step size d . When Py (t) is differentiated
by the differentiator, a train of impulses with equal strength  d s produced. Conse-
quently, the output of the modulator is a train of pulses with identical size and shape
specified by the impulse response of the linear system P (s) and the impulse strength d .
An example of the signals at various points in the block diagram of the model (Figure 2-2)
is shown in Figure 2-4 . Note that at any instant t. when an impulse is generated by
differentiating the step function, the integrator output z (fi) is necessarily equal to ma ,

where m is an integer.

Since the functional model will be used as a basic tool for analysis throughout
the present work, we shall now show that the model exactly represents the input - output
relations of the IPF modulator. We shall achieve this objective by proving that both the
modulator and its mode!l have exactly the same output for the same arbitrary bounded inte-

grable input signal.

It has been pointed out in the previous section that for a given pulse-shape
function p (t) known a priori, the output of the modulator is completely characterized by
the pulse emission times fi and their signs q; i=1,2,3, ... . Hence, assuming that
the model's output pulse shape and size can be made identical to p (t) by appropriate

choice of d and P (s), both the modulator and the model will have the same output,pro-
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N
R AR

FIGURE 2-4. SIGNALS AT VARIOUS POINTS IN THE FUNCTIONAL MODEL
OF THE MODULATOR.
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vided they both emit pulses of the same polarity at the same instant of time. Thus, we

proceed as follows.

Let x () be an arbitrary bounded integrable modulating signal applied to the
modulator and its model at t+ =0 . Then, by definition,the modulator will emit its first

pulse at t = H when

i
||(0,1)|=‘fx(t)dt|=
[o]

The pulse is positive if 1 0, 1) =a, or negative if 1 (0, 1)= -a . Now, let the pulse
emission time of the model be defined as the instant at which the impulse is applied to the
linear system P (s) . As specified by the transfer characteristic of the quantizer, p, ®)
will change by astep d when the integrator output 2z (t) reaches either the valve a
or the value —a from the zero initial value. An impulse is generated by the differen=
tiator at the instant when the step occurs. Hence, the model will emit its first impulse

and thus its first pulse at t]' when

z(f)| |I x () dt|

Since the sign of the impuise is the sign of the step change, the output pulse is positive
if z (t']) =a , or negative if z (f]') = -a., Clearly, z (f']) =1 (0, 1) and thus t'] =t
for both positive and negative pulses. Therefore, both the modulator and its model emit

the first pulse with the same sign at the same instant of time.

The coincidence of all subsequent pulses can be similarly proven. Thus let

us assume, for the present, that both the modulator and its model emit the (i-1)th pulse
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at t_; - By definition the ith pulse will be emitted by the modulator at t. when
Equation (2-1) is satisfied. The pulse is positive if 1 (-1, i) = a, or negative if

| -1, i) = =a . Since the model also emits a pulse at by O pointed out above we
must have z (i'i_]) =ma, where m isan integer. Hence, p, ) will change by a
step when z (f) reaches either the value ma +a or the value ma -a . And thus the

model will emit the ith pulse at t; when

z(f;)=maia

i.e. z (t;) -z (fi_]) | =a (2-2)
t
Since z (t) = I x () dt, Equation (2-2) can be re-written as
o '
i
\J' x () dt\=a 2-3)
t

i-1

The pulse is positive if the step change in py @) is positive, that is, if z (f;) -z (fi_]) =a.
Otherwise, the pulse is negative. Keeping this point in mind and comparing Equation

(2-3) with Equation 2-1), we have t; =t for both the positive and the negative pulses.
Therefore, both the modulator and its model emit the ith pulse with the same polarity at

the same instant t. , provided that they have emitted the (i-)th pulses coincidently.
Since their first pulses have been shown to be coincident, the output pulse train of the

model| must coincide with that of the modulator. Therefore, the modulator and its model
have identical output for any arbitrary bounded integrable input signal. That is, the
functional model shown in Figure 2-2 represents exactly the input - output relations of

the modulator.
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We have assumed in the above proof that the output pulse shape and size can

be matched exactly by appropriate choice of the parameter d and the linear system P )

in the model. Clearly we can choose d and P (s) independently without affecting the

sign and emission time of the pulse. Hence, the above assumption is valid, provided

the pulse —shape function p (t) can be considered as the impulse response of a linear

system.

The model shown in Figure 2-2 is applicable for both D -5 IPFM and S -5

IPFM, but can be simplified if the modulation is single-signed.

For this case, z (t) isa

monotonic function of time because either x ) 20 or x () =0 forall t 2 0.

Hence z (f) traverses either the upward or the downward path of the quentizer transfer

characteristic only. This simplified model for S - S IPFM with positive pulses is shown

in Figure 2-5.

P2
x(t) 20 . z) |p " P, @)
s
d
0! 61:20: z

v()

©)

x* ()

FIGURE 2-5. A MODEL FOR THE SINGLE-SIGNED INTEGRAL PULSE FREQUENCY

(S - S IPF) MODULATOR .

Concerning the block diagram of the model, we should emphasize that the

diagram is used only for analysis and it should not be confused with the actual implementation

of IPFM . Clearly, it is not feasible to implement S-S IPFM using Figure 2-5
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directly since both the integrator and the quantizer must theoretically have infinite
dynamic range. Methods of implementation will be described in Section 2.5 after we
establish the equivalence of continuous pulse frequency modulation to S - S IPFM in

the next section.

2.4 The Equivalence of Continuous Pulse Frequency Modulation (CPFM) to S =S IPFM

It was pointed out in Section 2.2 that a necessary condition for achieving

single~signed integral pulse frequency modulation (5 -5 IPFM) is that either

t.
i

[ x@) dt 20
Ut.
i~1

N
['x® a <o

or
t
i-1

for all i . This condition is sufficiently satisfied provided either x ) 20 or x () <0
forall + = 0. The input signal can be represented as a sum of two components. That is,

for a modulator emitting positive output pulses, we have

x{#) = xo +f@) =0 (2-4)

where Xo is a positive constant and f (t) is a function of time with both positive and
negative values. Without loss of generality, we define Xo as a biasing constant added to
a message signal f (t). Substituting Equation (2—4) into Equation (2-1) and noting that

in this case the integral is always non-negative, we have the following criterion for pulse
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emissionin S-S [PFM:

t

[ &, v @) dr=a. 2-5)

tia1

The pulse emission times t. , i=1,2,3, ...,determined from this relation completely
characterize the output of the modulator, since the output pulses are all positive and the

- - N - L]
pulse-shape function is known a priori.

We have stated earlier that a method of asynchronous pulse modulation known
as "continuous pulse frequency modulation” (CPFM) or "pulse frequency modulation" -
can be shown to be equivalent to S-S IPFM . In CPFM, a pulse train is derived from
a sinusoidal carrier which has been frequency modulated by the message signal. The
pulse train is produced by generating a standard pulse for each complete oscillation of the

modulated carrier. We now show the equivalence of CPFM to S =S IPFM as follows.

Let the message signal f () in S =S IPFM be the input to the analogue

frequency modulator at t=0 . Then, the modulated sinusoidal carrier is given by
t
e(t)=Esin('(_oct+C°+bJof(f) dt) , 2-5)

where E, Co ’ ‘.-uc, and b are constants. E and Co are respectively the amplitude
and the initial phase angle of the carrier, while @, is the unmodulated carrier frequency.

Equation (2-6) can be re-written as
t

E sin [jocuc +bF () dt + C_ ]

e (t)

t
E cos Co.sin [J;('wc + bf () dt ]

¥
+ Esin C_.cos [ J; Ca_ + b () dr .



21
If a standard pulse is generated when e (t) = E sin Co for each complete oscillation of the

modulated carrier e (), the ith pulse will be emitted at . when

t.
1
f (uc + bf ))dt = i2«, 2-8)
o
i=1,2,38, ... .

Let ., be the emission time of the (i-1)th pulse. Then, Equation (2-8) can be re-

written in the format of Equation 2-5) . Thus

t
i fiat

1
[ o, +bE@d =02 - [ (o + BEE) o

ti-l o

=i2a =({-V2x%x=2n.

t,

i.e. "
J =t e = CLEp 2-9)
t

i-1

Equation (2-9) is the criterion for pulse emission in CPFM. If . and b are so
W
c _ 2w _ . _ _
chosen such that v = X° and 5 =9 Equations (2-9) and (2-5) become
identical. Therefore, for these values of the modulator parameters, the pulse emission

times in CPFM are identical to those in S =S IPFM. Consequently, CPFM is equi-

valentto S-S IPFM.

Although CPFM and iPFM have been known since the 1940's and 1959
respectively, it appears that the equivalence of CPFM to -5 - S IPFM has not been
established before. This demonstration effectively broadens the knowledge on IPFM in the
sense that what is known about CPFM is applicable to S =S IPFM and vice versa.
Furthermore, knowledge of this equivalence will hopefully prevent repetition of past work

occurring in future.
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2.5 Implementation of IPFM

Integral pulse frequency modulation (IPFM) can be implemented in a variety
of ways. A method using analogue computer hardware has been described by Li .8 Im-
plementation by electronic hardware can be accomplished using the method of continuous = -
pulse frequency modulation described in the previous section. In addition, Inose and
Yasuda have proposed an electronic encoder which implements S =S IPFM c:pproximofelyf'2
Another approach to implementing IPFM is to use incremental encoders. As an example,
the shaft speed of a motor can be encoded into a train of identical pulses using an incre-
mental tachometer. Referring to Figure 2-2, the shaft speed is the modulating signal x (t),
the shaft position is the output z () of the integrator, and the incremental encoder corres-
ponds to the remainder of the block diagram. In the following, we shall describe a new

and versatile method which resembles neural pulse generation.

The feedback system shown in Figure 2-6 is proposed for implementing
S-S IPFM. This system will be extended later to implement D -5 IPFM. The modula-
tor can be constructed using common electronic hardware components. it requires only
two amplifiers, one integrator, one comparator such as the Schmitt trigger, and one pulse

generator such as the monostable multi-vibrator.

The operation of the modulator is illustrated in Figure 2-7 . The modulating
signal x () is applied at t =0, with all other signals in the system initially set to zero.

Until the first pulse is emitted, the output of the integrator is

t
|(f)=_[K]x(f) dt .
(o]
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Comparator
m
0 c — m (t) Pulse
T Generator
0 b |

FIGURE 2-6. A SINGLE-SIGNED INTEGRAL PULSE FREQUENCY (S - S IPF) MODULATOR.

L
A

FIGURE 2-7.

ILLUSTRATING THE OPERATION OF THE S - S IPF MODULATOR.

Modulator Parameters : K1 = K2 =1, b=a=15; Pulse Width, 7=0.25.
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When | () =b at some time t=t,, the input to the pulse generator is abruptly changed
fron m=0 to m=c. Thus, the pulse generator is triggered to emit a standard pulse.
Now this output pulse is fed back negatively to the input to cause | (t) to decrease to-
wards zero. Thus, m is reset to zero and the trigger to the pulse generator is removed.
Since the feedback signal is non-zero only during the output pulse, | ) will increase

again to the value b to trigger the second pulse, and so on.

in order to show that the method under consideration implements S -5 IPFM,
let us examine the criterion by means of which the pulses are emitted. First, we define
the pulse emission time as the instant ot which the pulse generator receives the trigger.

Thus, as shown above, the first pulse is emitted at f] when the following criterion is satis=

fied.
t
1
1) = [ Ky x @ dr=b.
o
t
1
e, [ x® at =b/K, . @-11)
o
As to the subsequent pulses, the ith pulse will be emitted at t.
when ‘_i
16) =K [ e K @ d ) = b @-12)
t

i-1

i=2,3,4, ...

where b is the emission time of the (i-1)th pulse. Since the (i-1)th pulse is emitted

at t I (fi_]) must be equal to b . Hence, Equation (2-12) becomes

i-1'
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t, t,

1 1
_[ x () dt = I K2 x* (t) dt. 2-13)
t t

i-1 i-1

Assuming that the output pulses do not overlap, then, in the interval (ti_] ’ ti) , there
is exactly one pulse in x* (t), namely, the (i-=1)th pulse. Thus, if the area of the

pulse is A, Equation (2-13) simplifies to,

t.

{

[ x®)at=x, A 2-14)
IR i=2,3,4, ...

Equations (2-11) and (2-14) are the criteria used by the feedback system for pulse emis-
sion and can be made identical to Equation (2-1) which is the criterion for pulse emission
in IPFM. Clearly, if we set K2 A = s - a, Equations (2-11) and (2-14) com-

Ky

bined together will be identical to Equation (2-1). Therefore, the system shown in Figure

2-6 can implement S-S IPFM exactly.

In the above discussion, we have implicitly assumed that there is sufficient
negative feedback to remove the trigger to the pulse generator in a small fraction of the
duration of the output pulse. For rectangular output pulses, this condition implies that
th > x () forall + 2 0, where K2 is the gain in the feedback path and h is the
height of the pulse. In practice, the upper bound of the modulating signal will be less

than K, h because the components have inherent dynamics and thus do not exhibit the

ideal transfer characteristics assumed.

The above method of implementing S =S IPFM is versatile and has other
potentially useful applications. The system of Figure 2-6 has four independent adjustable

parameters, K, K2, b, and A . The parameters K, and b control only the emission
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of the first pulse, while Ky and A control: all subsequent pulse emissions. When the
output pulse shape and size are pre-specified, the threshold of the modulator can be

easily changed by adjusting K.2 . Now, if the output pulse is rectangular and a sampling
gate is inserted in the feedback path as shown in Figure 2-8, the threshold of the modu-
lator will vary linearly with the amplitude of the sampled signal y (). This latter feature
may prove to be valuable if IPFM is used in an adaptive control sysfem.]z'30 It may
also be useful for implementing optimized pulse frequency coni’rols.]4 Furthermore, the
feedback system in Figure 2-6 can be considered as a reasonable model of the neural
encoder. (See Chapter V). Thus, with the threshold easily controllable by a time-varying

function, the system can be usefully applied to model neural elements with time-varying

thresholds.

m
«@) =0 Ky Ve | m | PUbe x* (F)
v - Generator
i 1 R
Samplin
% pling
Gate
Y(t) >0 T

FIGURE 2-8. S-S IPF MODULATOR WITH TIME-VARYING THRESHOLD:



27

The feedback system of Figure 2-6 can be extended as in Figure 2-9 to
implement D =S IPFM. The principle of operation of the resultant system is similar
to that described above for S =S IPFM. When | () is positive and equal to b, Pulse
Generator 1 is triggered to emit a positive standard pulse while Pulse Generator 2 has
zero output. When | () = -b, Pulse Generator 2 emits a negative standard pulse while
Pulse Generator 1 similarly has zero output. Following the procedure for analysing the
single =signed modulator, it can be demonstrated that the system shown in Figure 2-9 can
be represented by the model in Figure 2-2, provided that we set K2A =b/ K] , where

A is the area of the pulse.

< Generator ———

x(t) 204 K] - x* (1)
S s

— —

-b 4712 moy Pulse '

— I 51 Generator —
'T—-c 2

FIGURE 2-9. IMPLEMENTATION OF D =S IPFM .
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2.6 Demodulation

There are two general methods for demodulating an integral pulse frequency
(IPF) modulated pulse train. One method recently proposed by Blanchard is based on
the Lagrangian interpolation formu|<:,'l8 and is essentially a numerical method for com-
pufing an approximation of the modulating signal. In its practical version, the computed
approximation is simply the instantaneous pulse frequency multiplied by the modulator
threshold a with the proper sign attached. Thus, if t. and q, ore respectively the

emission time and the sign of the ith pulse, then the demodulated signal is

q.., @
20 = ) U (-r) = U o] @-15)

i i+
i=1
where a is the threshold of the modulator and U_‘ (t) is the unit step function. The

resulting signal is a staircase function of time.

The other general method was proposed by Li .8 Through a qualitative argu-
ment, he concluded that a linear time-invariant low-pass filter should be used for demodu-
lation. This method has proved effective when the pulse frequency is much higher than the
modulating signal frequency. However, the use of a low -pass filter to demodulate a single-
signed IPF modulated pulse train was actually established long ago for continuous pulse
frequency modulcifion,32 which we have now shown to be equivalent to S =S [PFM.

The detection of an analogue frequency modulated signal by a cycle counter is also based
on this method .33'34 Compared with Blanchard's method, Li's method is simpler to imple-

ment and appears to be more effective in practice. In the following we shall examine some

aspects of this latter method of demodulation.
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Consider the system shown in Figure 2-10. The pulse train from the modulator
is to be demodulated by a linear low-pass filter described by the transfer function H (s)-
Let g (t) be the unit impulse response of P ) H ). Then, for zero initial conditions

at T=o , the demodulated output of the system is
T

g o= [ ve g(r-n dr 2-16)

(o]

But v () is an impulse train given by

v =d ) au, ) @-17)

i=1

where Uo (t) is the unit impulse function 3 d is the strength of the impulse ; q; and t

are respectively the sign and emission time of the ith pulse. Substituting Equation

(2-17) into Equation (2-16) and simplifying, we have

x(7)=4d z q, - 9 (7 -fi) (2-18)
i=1

From Equation (2-18) we see that the demodulated output is a linear summation of pulse
tesponses of the filter H (s) (or alternatively the impulse responses of P ) .HEG). It
is interesting to note that this characteristic is similar to both the temporal summation of

postsynapfic potentials in the neuronal membrane and the summation of twitch responses

in the muscle'.




x (1) 1 s v{t) . x* (t) H x (t)

— T ¢ ® = "o

IFF Meodulator Fiiter
Demodulator

FIGURE 2-10. A COMMUNICATION SYSTEM USING IPFM .

The unit impulse response g () of P {s)-H (s) can be approximated by a

series of rectangular pulses as shown in Figure 2-11. Thus,

K
g® ~ Y [U_ ¢-T _N-U_¢TY]. g =g, @-19)
k=1
g@ ) +9()
where g, = k-1 k , k=1,2,3, ... K ;
k 2
and Tk are as defined in'fhe diagram.

Substituting Equation (2-19) into Equation (2-18), we have

K
(=) ) dag [U_(m =T ) - U (r4-T) @20
=1 k=l

When the IPF modulated pulse train is single~signed, Equation (2-20) can be

automatically computed by a network consisting of pulse delay units and pulse generators ™’

as shown in Figure 2-12. The delay times are given by
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FIGURE 2-11. APPROXIMATING THE PULSE RESPONSE BY A STAIRCASE FUNCTION.
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L2 L] P.G. - - - - . L ]
Generators 1 2 K
.G.)

x ()

FIGURE 2-12. A NETWORK FOR IMPLEMENTING EQUATION (2-20) FOR
SINGLE-SIGNED PULSE TRAINS.
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The pulse generators are triggered sequentiaily by the input pulse as the latter propagates
through the delay line. The kth generator .P.G‘.k emits a rectangular pulse with ‘width Pk
and height dgk . The outputs from the generators are added instantaneously to produce
the output of the network. For a single pulse input, the network generates the approxi-
mate pulse response g* () given by Equation 2-19) . When the input is a pulse train,
the pulse responses are added together as in Equation (2-20) to produce an approximation

of the modulating signal.

The delay ‘times D, have been assumed to be unequal for generality, but to
simplify construction, they could well be made all equal. However, for the same degree
of approximation of the pulse response g (1), less network elements are needed if Tk and

thus D, are chosen optimally without this constraint.

There is an upper bound for the delay times. A triggered pulse generator
such as the monostable multivibrator cannot respond to a subsequent trigger before the out-
put pulse is completed. Since the generator must emit a pulse for each pulse input «
and since the output pulsé width.of the kth generator is equal to the kth' delay
time Dgv the maximum delay time must be less than the minimum of all the input pulse

intervals, t. -t .
i+1 i

The network shown in Figure 2-12 can be extended to demodulate double -
signed IPF modulated pulse trains. As shown in Figure 2-13, two networks similar to
that shown in Figure 2-12 are connected in parallel. The upper network is sensitive
only to positive input pulses while the lower network is sensitive only to negative input

.pulses. Otherwise, the two networks are identical.




Network of Figure 2-12 T
sensitive only to positive :
input pulses.

<* () ‘ +

x (1)

Network of Figure 2-12

sensitive only to negative —
input pulses.

i

FIGURE 2-13. A NETWORK FOR IMPLEMENTING EQUATION (2-20)
FOR DOUBLE - SIGNED PULSE TRAINS . '

The network shown in Figure 2-12 isa particular form of real-time digital
filter.37 This particular form is possible because the |PF modulated pulse train com=
prises pulses of fixed size and shape. Although the network is more complex than the
analogue filter for demodulating IPEM, it has the inherent advantageous properties of the
digital filters. It offers a greater degree of accuracy and freedom in filter realization,
since certain realization problems akin to negative elements do not arise. Furthermore,
it may be more compact and economical than the analogue filters in the low frequencies®

where the size of analogue components becomes appreciable .

In the above discussion we have implicitly assumed that the [PF modulator
has been properly designed so that a low-pass filter can recover the modulating signal
with little error. In the next chapter, we shall examine through a spectral analysis the
effects on the output pulse train due to both the modulator parameters and the characteris-

tics of the modulating signal.




CHAPTER Il

SPECTRAL ANALYSIS OF INTEGRAL PULSE FREQUENCY MODULATION

3.1 Introduction

Although integral pulse frequency modulation (IPFM) has been applied to
engineering and neurophysiological investigations by a number of workers,s-” /17-19,22-26
its information transfer characteristics have not been adequately explored, apparently be-
cause of the difficulty in obtaining a mathematically tractable expression for the output
pulse |'rc:in.]8 There are only a few repurted works in this area. Li has examined the
"approximate frequency response” (i.e. describing functions) of the modulator.
Blanchmd,‘8 Bombi and Ciscoto,‘q have studied the input noise filtering properties. In
addition to these, Fifch32 and Panter] have investigated the spectral characteristics of
continuous pulse frequency modulation (which we have shown to be equivalent to single-
signed IPFM) with a sinusoidal modulating signal. More recently, during the final

preparation of this thesis, Bayly 26 has reported a similar spectral analysis of single-

signed IPFM in a study of pulse frequency modulation in the nervous system.

In the present chapter a spectral analysis of IPFM will be developed and
the results will be applied to derive some useful formulae for synthesizing the modulators.
Although the spectral characteristics of S-S IPFM . with: sinusoidal excitation have
been investigated before, the method of analysis to be presented below is new and more
general . The new approach may hopefully lead to better insight of the information trans=

fer characteristics of IPFM.

In the subsequent anclysis, a number of symbols is employed to shorten

lengthy mathematical expressions. Therefore, the reader may find the abridged list
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of symbols helpful in reading this chapter.

3.2 Spectral Analysis of Single-Signed Integral Pulse Frequency Modulation

3.2.1 Formulating the Approach

We have shown in Chapter Il that the input - output relations of a single~-
signed integral pulse frequency (S-S IPF) modulator can be exactly represented by a
functional model. For convenience of analysis this model can be re~drawn as shown in
Figure 3-1, in which the quantizer has been represented as the parallel combination of
a linear gain and a nonlinear element N.2 The linear gain is defined as the ratio of the
output impulse magnitude d and the modulator threshold a , while the transfer charac-

teristic of N is specified by the periodic function Py (z) shown in Figure 3-2.

Let the modulating signal x (t) in Figure 3-1 be bounded and integrable
for any finite time t 2 0 . Then, the output of the integrator is

t

z() = | x () ar, 3-1)

(o]

and the quantizer output is

P, ) =S z®-p, (z0) - 3-2)

Thus, the impulse train is

dy®) 4 gy 1@ 4z
vt) =5— =g @ &z a '

(3-3)
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FIGURE 3-1.  EQUIVALENT REPRESENTATION OF THE SINGLE-SIGNED
INTEGRAL PULSE FREQUENCY (S - S IPF) MODULATOR.

P, @)

FIGURE 3-2.  THE TRANSFER CHARACTERISTIC OF THE NONLINEAR ELEMENT N .
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provided that both z (t) and P (z) are differentiable. By Equation @-1), z @) is

clearly differentiable, and

Z0-x0. (3-4)

The function Py (z) is also differentiable, since it can be represented by the Fourier

series
@
d ra 2
P @ =3 [5-) 5sinkaz 1, (3-5)
k=1 ©°
where o =-2—£ ’
o a

and since, according to the theory of disl’ributions,39 any Fourier series can ke differen-

tiated term by term.  Thus,

dp, @) -
1 _ _d 2 d .
= - "9 kZ] l-“’—o 3z Sin kuo z. (3-6)

Therefore, substituting Equations (3-4) and (3-6) into Equation (3-3) and simplifying,

we have for the output impulse train,

@
vh = lx®+ ) B F osinkez®)] @-7)
k=1 °

which converges in the sense of distribution to a generalized function ;39 namely, a
time sequence of impulse functions, even though it does not converge in the classical
sense. This expression for the output impulse train can be alternatively derived using

another approach as shown in Appendix A.
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The first term in Equation (3-7) is proportional to the modulating signal x (t)
and is defined here as the signal component of the output impulse train. The remaining
terms are nonlinear functions of x (t) and represent the noise component of the output
impulse train since they are not wanted in demodulation. The noise component is pro=
duced by the modulator internally in the encoding process. Specifically, it is generated
by the nonlinear characteristic of the quantizer as iilustrated in Figure 3-3, which is de-

rived from Figure 3-1 .

Signal Component

oo

x@) =20 vt) x* ()

PGE) |—

z(h) P](z l

Noise Component

w|—
z
\
w

FIGURE 3-3. AN EQUIVALENT REPRESENTATION OF THE S - S IPF MODULATOR
SHOWING THE SIGNAL AND NOISE COMPONENTS.

In order to facilitate subsequent analysis, we define a function e () such that

ey t = 1%- sin kuo z (). (3-8)
o
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Using this function we can re-write Equation 3-7) as

()
_d d
v =S Tx0 + ) Fe®]. (3-9)
k=1
The function € () can be shown to be a frequency -modulated (FM) sinusoidai carrier.
As noted in Section 2.4, the modulating signal x (1) for S-S IPFM with positive out-

put pulses is in general given by

x(t)=x°+f(r)zo, t =20 (3-10)

where Xo is o biasing constant and f (1) is a message signal. Therefore, the output of
the integrator in Figure 3-1 is
t t

2 = | x®) dt =Xt + [ fer e, 3-11)

o (o]

Substituting this into Equation (3-8), we have

t

e () = f—%sin [ko Xt + ko, fof ® dt ] 3-12)

which clearly shows that e (t) is a sinusoidal carrier frequency-modulated by f ().

In the subsequent analysis, we shall utilize the fact that e, () isan FM
wave in order to take advantage of the well-developed theory of continuous carrier-
frequency modulation.  We shall first express the FM wave e, (t) in terms of its spec-

tral components and then substitute the resulting expression into Equation (3-9) to derive

v
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a spectral representation of v (t). Finally, we shall obtain an expression of the output

pulse train x*(t) by considering the pulse=shaping element P (s) asa filter and modify-
ing the amplitude and phase of each spectral component of v () according to the ampli-
tude and phase characteristics of P (ju). This basic approach will be applied to investi-
gate the signal and noise spectral characteristics of the output pulse trains for the class of

modulating signals consisting of one or more sinusoids.

3.2.2 Single-Tone Modulation

(@) Mathematical Expression for the Output Pulse Train

Consider first the case in which the modulating signal is
x (1) = X°+Ucos (u]t+9) = 0, (3-13)
where U, Wy s and O are constant, Thus, the output of the integrator is
_ u .
z () = X t+ —sin (@, t+0) -C, (3-14)
o W 1

where C = (U sin 6) /u] . Substituting this into Equation (3-8), we have
e ® = -Ei:sin [ka, (Xt = C) +Bsin (o) t+9) ] (3-15)

where the modulation index, B = kUOU /u] . Itiswell known] that the FM carrier
e, () can be expanded in terms of Bessel functions. Thus, using the idenﬁfy38

- m .
e|B sint _ z Jn ®) e|nt ) 3-16)

=00

we have
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2.
ek(f)—T(:’— Im .<{e
o

{ ikuo (Xot - C) eiB sin ((4.:.l t + 9)}
. ©
2 ik t-C i t+0©
o Im {el w, (X, ) z ) ® Q" (w] + )}

o
n=-co
®
= Y Dln)sin (Xt Py 3-17)
n=-o
h D k,n) = 2 J @) -18)
where ,n) = kwo n ®) K]
\(] = kuo Xo +nwy s - 3-19)
P4 = nO - Bsin®, (3-20)
ko U
_ o _ k2w U -
B - e 3-21)
a is the modulator threshold, and
Jn is the nth order Bessel function of the first kind.

Substituting Equations (3-13) and (3-17) into Equation (3-9) and simplifying, we obtain

the following expression for the output impulse train.

v (t) =;i|:Xo+Ucos(m]t+9)] + R (3-22)
where o
R=g-z 2 D(k,n)\(] cos(\51f+¢P]). 3-23)
k=1 n=-

Now let the output pulse shape be specified by the function p (t) whose Fourier transform
is

b= A . el QW@ (3-24)

(jv) @)



®

42
where A () and Q (w) are real functions of w, and A (@) = Q (©) =0 . Then,
the amplitude and phase characteristics of the pulse-shaping element P (s) are given
by A (@ and Q (w) respectively. Thus when v(t) is applied to P (s), the amplitude
and phase of each sinusoidal component of v () will be modified according to A ()

and Q (w) respectively. Therefore, the output pulse train is

x* () = ‘ci{on ©) + UA fo) cos o)+ +8+Q (u) ]}+N ® (3-25)

where
® o
d
N(t) -y z z E (k,n) cos [\{]t+¢]+ Q(Yl) 1, (3-26)
k=1 n=-co
Ekm) =D (kln)\‘] A (\6]) ’ (3-27)

D k,n), \(] , and ¢, are defined in Equations 3-18) to (3-20).

() Characteristics of the Signal and Noise Components

The first two terms of Equation (3-25) constitute the signal component of the
output pulse train while the last term represents the noise component. The signal compo-
nent is proportional to the modulating signal x @t) filtered by the pulse—shaping element
P (). This latter observation is also valid for any other admissible modulating signal,
since the signal component of the output impulse train, as we have shown in Section 3.2.1,
is proportional to the modulating signal. Based on this observation, we can derive some

of the necessary properties of the output pulse shape.

Consider a modulating signal comprising more than one sinusoid, or more

generally, a band of frequencies. The amplitude and phase of these frequency components
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in the output pulse train are modified by P(iu) , and as a result, the signal component
of the output pulse train may be distorted if P(iu) is not appropriately chosen. For the

case that no distortion has been introduced, the signal component is
S = x] x(t-a), (3-28)

where a 20 ond A, > 0 are constants. Equation (3-28) implies that the system

function of the pulse-shaping element is given by

Peoy = M g0 (3-29)

in the frequency band of the modulating signal . Therefore, it is necessary that the

pulse shape be chosen to satisfy Equation (3-29) at least approximately in the frequency
band of the modulating signal in order that the distortion introduced by it may be negli-
gible. One pulse shape which can satisfy this requirement is that of the commonly used

rectangular pulse. For a rectangular pulse with height h and width T,

]_e-iu‘r
P..=h. ——
(jw) jw
- hT. sir;uTT/2e"|u1’/2 (3-30)
= h-re'i“""/2 [1—(07)2/24+. R I
When 0 <wT <1,
P mhre 1@T/2 (3-31)

(iw)

with a maximum error of less than 6 % in the amplitude frequency characteristic.

Hence, the distortion introduced by the rectangular pulse shape will be small, provided
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that T <1/0w where is the maximum frequency of the modulating signal.
max max
In subsequent discussions, we shall assume that the output pulse shape is properly chosen

and has no significant detrimental effect on the signal component.

Now, we turn to the noise component of the output pulse train. As shown
by Equation (3-26) its spectrum theoretically has an infinite band-width, and thus many
of its frequencies lie in the frequency band of the modulating signal, contaminating the
signal component of the output pulse train. In particular, the noise frequencies,

\é]= kuo Xo +nw, , even coincide with the message signal frequency w, whenever
W X° / Wy is an integer. In order that the modulating signal may be recovered with
negligible error from the pulse train, the signal component must be effectively separated

from the noise component. Thus, in the following we shall examine the noise spectral

characteristics with this particular point in mind.

In order to facilitate subsequent analysis, let the expression of the noise

component be re-written as

©
NGO =T ) O @-32
k=1
©
where My ® = Z E (k,n) cos [ (kuo Xo + nu])t +n0-Bsin®+Q (kuo Xo + nu]) 1,
n=-o0
and (3-33)

E k,n) = T(%; . Jn (kuOU/u.l) . (ku°X°+nu]) . A (ku°X°+nu]) .
(3-34)

Furthermore , without loss of generality, let d =a in Equation (3-32) and the expression
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of the output pulse train. Also, let My (t) be called the kth constituent of the noise
component. Then, Equation (3-33) shows that each constituent, My (t) , theoretically
has a double infinity of spectral components, with one at the center frequency kmo Xo ;
infinitely many at the upper side frequencies kuo X, +no, and infinitely many at the
lower side frequencies kuo Xo - no, where n=1.2,3, ... . Thus, each constituent
of the noise component has an infinite set of spectral components, while we see from
Equation (3-32). that the spectrum of N () is composed of infinitely many such sets whose
center frequencies are harmonically related. If the frequencies of all spectral components
from different sets are different, the amplitude or power spectrum of N (t) is simply the
superposition of the corresponding spectra of all Py () . However, if w, X° /m] isa
rational number, some spectral components from different sets will have the same frequen-
cies. In particular, if kuo Xo /u] is an integer for all values of k, the spectral
components from all My () will constitute an identical set of frequencies. For these
latter cases, all spectral components with common frequency contribute to the amplitude

of the spectrum of N (1) at that frequency and the phase angles of these components must

be taken into consideration when either the amplitude or power spectrum of N (t) fis being

determined.

Although the noise component N (t) of the output pulse train theoretically
has infinitely many infinite sets of spectral components, the number of spectral components
with sufficient power to be practically significant is in general finite. The average power
w (k,n) of each noise spectral component is equal to E2(k,n) /2, where E (,n) is
given by Equation (3-34). The output pulse shape is generally such that A (w) is bounded
By -5:- for w large, where i 2 1 and K is a positive constant. Thus for n and k

W

sufficiently large,
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J ke U/w).K
wims2 [ 22— T 2, =21, (3-35)
ko ko X +nm])I
o o O

Since l J ®) | =1 ond Jn B) approaches zero rapidly for 8 > n as B increases,
it is clear from Equation (3-35) that when n and k are sufficiently large, the average
power of these high frequency noise spectral components will then become negligibly small.
Therefore, the "complete" noise spectrum, in practice, can be placed in a bounded fre-
quency band. This property is important for demodulating the pulse train because the
signal component will be effectively separated from N (f) if the "complete" noise spec-
trum can be re-located outside the frequency band of the modulating signal. In the next

sub-section, we shall consider the rectangular output pulse train as an example.

() The Rectangular Output Pulse Train

When the output pulse is rectangular with height h and width T,
the system function, P (jw) , of the pulse—shaping element is given by Equation (3-30).

Thus, its amplitude and phase characteristics are respectively given by

Ag =hT- 1’%"712_2 (3-36)
and
Q= "o /2. (3-37)

Substituting these into Equations (3-25) to (3-27) and setting d =a without loss of

generality, we obtain the following expression for the rectangular output pulse train.*®

* This expression differs slightly from the different expressions obtained by Pan}er,]
Fitch,32 and Bayley.40 The discrepancy is due to a small difference in defining

the pulse train.
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sin w; T/2
® = XohT + Uh‘l‘l Wy T/2 Jcos (¢.)]1'+9-¢.)1 T/2)+N(f) (3-38)

x*

in this case, the noise component N () is given by

a0
NGO =) ® "’ (3-39)
k=1
where -
b = L gem) Nyt - Y T/ (3-40)
n=-=
Er(k'n)=2h.D(k,n).sin\é1 /2, -41)

D k.n) * P and\é] are as defined in Equations (3-18) to (3-20) .
Assuming O < w0y T < 1, we have, for the signal componenf,

S.=hTt [X°+Ucos(m] (f-n+9)] (3-410)

)
which is proportional to the delayed modulating signal. In the following, we shall
examine the noise spectral characteristics in detail, with the objective to demonstrate that

the noise bandwidth is in practice finite.

Consider a spectral component of the kth constituent, p ., t) of the
noise component. By Equation (3-41), the amplitude of a spectral component with

frequency \(] =k W, X, +nw is

‘Er | = |2h 1oy 5 X, r/2\ . (3-42)

As shown in Equation (3-17), ‘ D & n)‘ is the amplitude of the spectral components of
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the FM carrier e, (). Therefore, Equation (3-42) shows that, for any given k, the
amplitude spectrum of Mg (t) is equal to the amplitude spectrum of 2h e (t) multiplied

by | sin \1{] T/2 | and furthermore, it is bounded by the spectrum of 2h e () since

forall k and n . Since the average power of the spectral

E < | 2h D
r (kln) (kln)
component is Ef &, n) /2, the power spectrum of Mk () is similarly bounded by the

power spectrum of 2h e, ) .

In order to facilitate subsequent analysis, we now introduce some definitions.
In the theory of carrier frequency modulation, a spectral component is defined to be
"significant" if its amplitude is not less than some fraction of the amplitude of the unmodu-
lated corrier..| Thus, the "“significant" spectral components of the FM wave 2h e, ®

are those for which

x —h (3-43)

P
|20, )

where A is an appropriately chosen small positive constant which is usually equal to 0.01.
In addition, the frequencies of the “significant” spectral components are said to be "signi-
ficant" and the range between the maximum and the minimum significant frequencies is
defined to be the "significant" bandwidth of the FM signal. For the present analysis,

it is reasonable to define the "significant" spectral components of the kth constituent,

Mg (t) of the noise component similarly. Thus, a spectral component of Mk (t) is defined

to be significant if

Er (k,n)| 2 A R—- (3-44)

or equivalently, if its average power
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2

E

r k,n) 1 ,4h )2

— 2 5 (—_)k . . (3-45)

Furthermore, we define the significant frequencies and bandwidth of M () in the same

way as for those of the FM signals.

It is well known that the significant bandwidth of a sinusoidal carrier which
is frequency modulated by an amplitude-bounded signal is finite .] Since the amplitude
spectrum of Moy (t) is bounded by that of the FM wave 2h e, (t), the significant band~
width of Moy (t) must also be finite. Furthermore, for W # 0, there is only a finite

number of significant spectral components in each B M.

Now consider the total avercge power W]k of each Mo (t) . By Parseval's

theorem,

o 2
L o4

Using Equations (3?1 8) and (3-41), we obtain from this expression,

2 (e 0]
2 .2
W, = 7‘- (1"'—';-) Y L@ sin \6] T/2 (3-47)
(o] n=-o
(e o)
1 4h 2 2
<T@ ) @
nN==-mo
a0
2
But z e = (3-48)
N==00
Hence,
1, 4h 2 ha,2

Wi < 7 %) T209 (349)
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since w, = 2w /a. Thus, the total average power of each Mk ® is bounded from above

by an upper bound which varies as (%)2 , where h is the pulse height and a s the

modulator threshold.

Finally, we apply the results obtained above to demonstrate that the noise band-
width is practically finite. By Equation (3-45), each of the "insignificant” spectral
components of the first constituent, K ® of the noise component has an average power

less than -]2- ( 4h )\)2 . Clearly, if k > 1 /X in Equation (3-49) ,

)
o
1 4h )2
W'lk < 7( W, ) - (3-50)

Thus, the total average power of Bk @) for k > 1 /X is less than the average power

of a significant spectral component of B 0 Hence, it is reasonable to neglect those
Mo (f)'s for which k > 1 /X . In other words, if K.I is the greatest integer not exceed-
ing 1 /X, only the first K1 Mo (f)'s of the noise component have sufficient power to be

practically significant.

Based on the results obtained above, the noise component N(t) can be

accurately represented by the following approximate relations.

Ky
Ny ® L H@ (3-51)
k=1
where Nk
Py ™ ), E &,y € (\1 t+ e, '\‘1 /2)
n=-Nk

where Nk is the largest integer for which the spectral frequencies of P ® remain signi-
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ficant. Therefore, the significant bandwidth of N(f) is practically finite. In subsequent

discussions, the frequencies \6

=kw X +nw, , where In!l =N, and 1 =k =K, ,
1 o’o 1 k 1

will be referred to as the "significant” noise frequencies.

3.2.3 Multitone Modulation

In practical problems, the message signal usually consists of more than one
frequency. Thus, a more common modulating signal is

M
xg = %o * 5 U_cosfw t +8 ), (3-52)
m=1]
where Xo ’ Um’ w and 9m are constant ; and M is any positive integer. Assuming
X i) 2 0, the analysis presented above for single-tone modulation can be directly extended
to cover this more general case. By a development similar to that used for single -tone

modulation, a series expansion of the FM wave e, ) can be shown to be

©

[0 0] [e o]
K 1) EDIEEEE) Cinyimy s cnrm

n,==w Nn,==-w n,=-00

jein (\'\(Mf P
M

! 2 M (3-53)

where M

o
D = J B) (3-54)

(k,nl, ceey nM) o, |1 n, m 7
m=1
N M

Mo T ke, Xt ) ° %, (3-55)
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M

P = ) (0 8 =B sinG), (3-56)
m=1

B = ko U /u_ - (3-57)

Then, following the steps used for deriving Equations (3-25) to (3-27), we can obtain an

expression of the output pulse train in terms of its spectral components. Thus,

M
_d
= 5 [X AE ) Up A o) c0s @ #40, +Q (0 )) T+ N,
m=1 (3-58)
where the noise component of the output pulse train is now given by
®©
_ d
Ny = & Lk ) ’ (3-59)
k=1
© ©
H = . E \o,
Mk () Z z_ (k,n], ...,nM).cos[ Mf+¢M+.Q(\{M)]'
n="® n, =
(3-60)
E =D \( . A
Conpseeerny) ~ Dlongs ) C¥M AN, @D

and all other symbols are as defined previously.

The spectral characteristics of the output pulse train for this general case
are qualitatively similar to those discussed previously for single-tone modulation. In
particular, as shown by Equations (3-58) to (3-60), the spectra of the signal and noise

components overlap as they do in single-tone modulation. The noise spectrum similarly has

a theoretically infinite bandwidth, but its significant bandwidth can be shown to be finite



53

by the same argument used in Sub-section 3.2.2 b). For this general case, if we assume
as before A (W) < _KT for w large, where i 21 ; then the average power of each

[A)
noise spectral component will be bounded by
M

2
T %, €
m=1

i-1
kuo\éM

M

when the frequency \‘M = k w Xo + z M Oy S sufficiently high. Clearly, those

. .om=l
noise spectral components correspondmg"?o sufficiently large values of k;, Rysocees D

M
have negligible average power and thus can be neglected in practice.

When the output pulses are rectangular with height h and width T,
an expression of the output pulse train can be readily obtained by substituting Equations

(3-36) and (3-37) into Equations (3-58)" to (3-61). Thus,

M .
_dhr sin o, T/2
(f) a [ X +ZU .W.COS(umf'i'gm-mmT/z)]-l-N(t)
m=]
(3-62)
where now the noise component N(t) is given by
_d ,.
Ngy = & z PeMk @ ° (3-63)
k=1

Hemk (1) Z z Er KNy, oo cos [\‘M”‘PM \‘M /2

1= N (3-64)



54

As in the case of single-tone modulation, the signal component is essentially proportional

to the delayed modulating signal if 0 < w T <1, where o is the maximum
max max

sinusoidal frequency of the modulating signal. The spectral characteristics of the noise

component N () can be examined using the procedure developed in the previous section.

As an example, we shall show below that the significant amplitude spectrum of each con=

stituent, M\ ) of N(t) is bounded.

Conside&\a spectral component of MMk (1) with the frequency

\(M =k ) Xo + Z nowo - From Equation (3-65), its amplitude is

m=1

s|2h.D

e,
r (k, n],...,nM) &, n],...,nM) , (3-66)

where

D ' is, as shown by Equation (3-53), the amplitude of the
(k, nl., cery nM)

corresponding spectral component of the FM wave e 0 Since this relation holds for
all values of k, Ny cens and TA the amplitude spectrum of oMK ® must be bounded
by the amplitude spectrum of L M) Furthermore, as noted previously, a sinusoidal
carrier which is frequency-modulated by an amplitude-bounded signal has a significant
spectrum with finite bandwidth. Hence, the significant spectrum of the constituent

MMk () of the noise component also has a finite bandwidth.

3.2.4 Recapitulation

In the present section, we have developed a new and general method for the

spectral analysis of single-signed integral pulse frequency modulation. This method is appli-
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.. . _ 2 .
cable to any moduflatmg signal x (1) 2 0 for which the FM wave e, . Hc: sin k“'oz(f)‘
where z ) = j x ) dt , can be expressed in terms of its spectral components. A spec-

o

tral representation of the output impulse train V) is derived by substituting the expression

for e @) into Equation (3-9) which is repeated here for convenience.

d
v =
(o]

QQ
d
0 [xgy * ) % ) 3-9)

k=1

The expression for the output pulse train is then obtained by considering the linear pulse-
shaping element P (s) as a filter whose input is the impulse train Vi) * The spectral
characteristics of the output pulse train for a class of modulating signals comprising one or

more different sinusoids have been examined. The main characteristics are :

1. The pulse train contains a signal component and a noise component

whose spectra in gereral overlap each other.

2. The signal component is proportional to the modulating signal
modified by the frequency characteristics of the pulse-shaping

element.

3. The noise component is produced internally by the modulator.
Its spectrum theoretically has an infinite bandwidth ; however,

in practice, its significant bandwidth is finite.

4. The noise component may be considered as a sum of constituents
MMk @) each of which theoretically comprises an infinite number
of spectral components distributed about the center frequency
k w X, = k2w Xo/a , where X, s the biasing constant of
the modulating signal, a is the modulator threshold, and k is

a positive integer. When the output pulses are rectangular with



height h and width T, the amplitude and power spectra of
MMk (1) are bounded respectively by the amplitude and power
spectra of the FM wave 2 h € e

3.3 Synthesis Criteria for S-S IPFM

3.3.1 The Approach

We have shown above that the spectra of the signal and noise components
of the output pulse train generally overlap. Therefore, if the noise power in the signal
frequency band is high compared to the power of the signal component, it may be difficult
to recover the modulating signal with negligible error.  Fortunately, h<->Wever, the band-
width of the noise component in practice is finite, and furthermore, the center frequencies
k , Xo of the constituents My ) of the noise component, can be shifted by changing the
value of w, X0 =2 Xo l/a , since a is the modulator threshold and Xo is the biasing
constant of the modulating signal. Thus the noise spectrum can be re-located outside the
signal frequency band to separate the signal component from the noise component so that
the modulating signal can be recovered by filtering. This latter situation is illustrated in
Figure 3-4 for an output impulse train. In this example, the noise spectral power is less
than 1% of the average power of the signal component when the frequency is less than 4.
Clearly, in this case, the modulating signal can be recovered by filtering the impulse train
with a low-pass filter having a cut-off frequency equal to 3. In the present section, we
shall develop some criteria for selecting w, Xo so that the pulse train can be demodulated
with an acceptable noise content. Our attention will be focused mainly on the rectangular

pulse train since it is most commonly used in engineering systems.
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Since the significant bandwidth of the noise component is finite, one reasonable
way to effectively separate the signal and noise spectra is to choose such values of w, Xo
that the minimum significant frequency of the noise component is greater than the maximum
significant frequency in the modulating signal. However, this minimum significant noise
frequency is difficult to determine. Instead, we shall achieve the above objective by

using a lower bound of the significant noise frequencies.

For a rectangular pulse train, we have shown that the amplitude spectrum of
its noise component is composed of the spectra of Mo K and that the amplitude spectrum
of each p ) is bounded by that of the FM wave 2h L )’ if the modulating signal
consists of one or more sinusoids. Thus, the minimum significant frequency of Mol ) is
not less than the minimum significant frequency of the corresponding FM wave 2h €L o,
and the absolute minimum significant frequency for all p, ©)'s is necessarily not less
than its counterpart for all the corresponding FM waves. Therefore, a useful criterion
for choosing w Xo can be derived from the stipulation that the absolute minimum signi-
ficant frequency for all the related FM waves be greater than the maximum frequency of

the modulating signal .

3.3.2 A Synthesis Criterion for Single-tone Modulation

(@) Derivation

Consider, for the present, the case in which the modulating signal consists of
only one sinusoid with amplitude U and frequency w, - Let the output pulses be rec-
tangular with height h and width T. Then, for this case, the significant frequencies

of the related FM wave 2 h ° 1) are given by k g Xo + nug where the integers
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k and n take on those values for which the following inequality is satisfied.

: 4 h
|2h'D(l<,n)|Z>\'T<_(.;o (3-67)
where D(k n) is defined by Equation (3-18) and X\ is a positive constant usually set
arbitrarily equal to 0.01. Using the definition of D(k n)’ we can simplify Equation

(3-67) to obtain the relation

IJn(ﬁ) I =2\ (3-68)

where B = kuoU/w] .

In order to find the minimum significant frequency of the FM wave

2he , we must find a minimum value of n such that Equation (3-68) is satisfied

k )

for the given k and A . There are two possible situations :

1.  k is sufficiently large so that Equation (3-68) is not

satisfied for any value of n ; and

2.  k is sufficiently small so that Equation (3-68) is

satisfied for at least one value of n.

In the first situation, 2 h e ") has no significant frequency and thus the corresponding
noise spectral components bounded by its spectrum are negligible. Hence, this situation
has no significant consequence on our criterion for choosing @ Xo. In the second

situation, we can find the minimum significant frequency of 2 h °k (1) as follows.

Consider the variation of Jn ®) when n is varied while B is treated as

an independent parameter. For n 2 8, Jn @) will decrease monotonically
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towards zero at a rate which increases rapidly with B .4] Therefore, for each value of B,
there exists a smallest positive value Ny mi of n such that | J | <X\ forall
min n ()

Inl >N i,sinceJ

k min

= (-l)n Jn Consequently, in accordance with

38
- @) ®

Equation (3-68), the minimum significant frequency of 2h L ) for a given value of

k is

“k min =k “o xo - Nk min ©1 ° (3-69)
The number Nk min depends on both B and XA, and can be determined for
any admissible values of B and A\ by computing J_ ®) with n increasing from n =~ .

If N is considered as an independent parameter, the relation between Nk min and B is

given by

= (1 +¢ (3-70)

@ P

k min

where £ ®) is given graphically in Figure 3-5 as a function of B for A=0.01, 0.001,
and 0.0001. Note that £ ®) represents change in the significant bandwidth of 2h e‘k ®)

as B is varied, since ..2..Nk min©1 " 2k w uli1+¢ @) ].

We now search for the absolute minimum significant frequency . of all
related FM waves 2 h e 0’ where k takes on all admissible values. Substituting

Equation (3-70) into Equation (3-69), we have

Y% min = ko X - (1+ E(B)] Buy s
and since B = k(.)oU/u],
O min = kuo [xo-a + e@))u]. (3-71)
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. e e s . S >
Since our objective is to find a proper value of W Xo so that O min o ¥ 0 for

all admissible values of k and since k is a positive integer, we must have, in Equation

(3-71), the inequality,
x =11 Tu >0 3-72
o TN T B Y @-72)

As shown in Figure 3-5, E(ﬁ) decreases monotonically as B increases.” Thus, Xo -1+ E(B)'_] U
increases monotonically with B and hence with k . It is clear, therefore, from Equation
(3-71) that U min increases monotonically with k, and the absolute minimum significant

frequency, @ o of all FM waves 2hek ® occurs when k =1. Thus,
© . =uo[X°-'(1+ 5(81)u], (3-73)

or from Equation (3-69) ,

“min % Xo = N} min “1 (3-74)
where N is determined using Equation (3-70) and graphs such as those shown in

1 min

Figure 3-5 for B = B; = UoU/u]

Therefore, when 0o > wy the spectra of the signal and noise com-
ponents of the pulse train are practically separated. However, if a low=pass filter with

a cut-off frequency o_ is to be the demodulator, it is desirable to have © o > w .

Thus, from Equation (3-74) , we have
w X =N >w_ - (3-795)
oo c

1 min “1
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And, for W = mo this inequality can be re-written as

w X
o o

> N + m, (3-76)

w 1 min

where m > 1.

Equation (3-76) is our criterion for choosing the value of _'wo Xo =2 Xo/o,
where a is the modulator threshold and XO is the biasing constant for the modulating
signal. It should be noted that this criterion is valid only if the inequality given in

Equation (3-72) is satisfied for B = B, = w_ U/w] .

The left hand side of Equation (3-76) can be shown to be equal to the
number of output pulses per period T of the modulating signal x (t). Recall that the

criterion for pulse emission in S - S IPFM is

] x . dt=a. (3-77)

This indicates that the area under the curve X ) between two consecutive pulse-emission

times is a . Since the total area under the curve x() in one period T' = 2« /u] is
b +T o+ T
i !

f x(t) dt = xoT + _r U cos (u] t+8)dt = XoT p (3-78)

t t,
1 ]

the number of pulses per period is

X T X 2« w X
o

(o] o O

= = . (3-79)

a OU.I W
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Therefore, Equation (3-76) simply states that W, Xo should be so selected that the number

of pulses per modulating signal period is greater than N] mint M

The number Nl min €N be readily determined if B] is known, because
N] min AN then be found directly using Equation (3-70) and graphs such as those shown
in Figure 3-5. However, the assumption that [3] is known implies that w, has been

pre -specified, since B] = w U /.,,] . In this case, the modulator threshold a is given,

and hence we can only choose Xo to satisfy the criterion for separating the signal and

noise spectra. Thus, from Equation (3-76) we must have

X, >N L rme S (3-80)

o

The values of Xo satisfying this relation will also automatically satisfy the requirement

given by Equation (3-72), since by Equation (3-80),
-0+ £ > -+ & Ju
Xo 01+ '(B])]U (N]min+m)m]/¢.)o [ (13])
which can be simplified to yield
Tu>m W /uo ’
where the right-hand side is clearly greater than zero.

When the modulator threshold, a, is to be determined with the modulating
signal biasing constant Xo given, the problem must be solved in a different way. Sub-

stituting Equation (3-70) with k =1 into Equation (3-76) and simplifying, we have



X
o m
T 1 B—] > 5@]) (3-81)

Both the left-hand side and the right-hand side of this inequality are functions of By -
Hence we can plot them on the same graph and then read from the graph the values of B]
for which this inequality is satisfied. The appropriate modulator threshold, a, can then
be determined using the definition, By = w U /w] =21U/a 0y - The values of a
determined this way will also satisfy the requirement given by Equation (3-72), since

Equation (3-81) can be re-written as

Ju >"'—U, (3-82)

XO -0+ g(B]) »

where the right-hand side is obviously positive.

As an example, let the modulating signal be x(f) = 2+ cost and let the
demodulator be an ideal low-pass filter with cutoff frequency w_ = 3 . Then, the left-
hand side of Equation (3-81) becomes 1 -3 /[3] which is plotted in Figure 3-5, where

the graphs for € . are now interpreted with B = ﬁ] . Clearly, for the case that A =0.01,

®
Equation (3-81) is satisfied provided B] 2 7 . Therefore, the modulator threshold

necessary for separating the signal and noise components must be not greater than 2w /7 .

) The Residual Noise Power

We have established above a criterion for selecting ) Xo so that the signi-

ficant noise frequencies are above the cutoff frequency of the demodulator. Since the



65

bandwidth of the noise component is theoretically infinite, it is impossible to completely
isolate the signal spectrum from the noise spectrum. Thus there is a certain amount of
residual noise power within the signal frequency band due to the "insignificant" spectral
components of the noise. It is desirable that this residual noise power be known. At
any frequency wy s the noise power is equal to the sum of contributions from the spectral

components of all Mok ) with the same frequency ; that is, the average noise power is

© ©
1 2 1 2
= _ E = i
W =5 () Eocosn) + 5 () E sinm) (3-83)
k=1 k=1
where Ek and n, are respectively the amplitude and phase of the spectral components
with frequency O Although Wt can be evaluated approximately by truncating the
series at k = K] where K] is the greatest integer not exceeding 1 / N\, itisunwieldy

for analysis. As an alternative, a useful measure of the maximum residual noise power at

any frequency within the pass band of the demodulator will be derived in the following.

We have shown in Section 3.2.2 that the power spectrum of the constituent
Mok ) of the noise component is bounded by that of the related FM wave 2h @)
As noted there, the amplitudes of the significant spectral components of 2h e ® are

not less than 4 h X\ /k w - Therefore, the average power of any “insignificant" spectral

component of Mok @) is bounded from above by

_ 1 ,4h 2
ka = 7( ku) . (3-84)

o

Thus, if w, X has been selected to satisfy the criterion given by Equation (3-76), a
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reasonable measure of the maximum possible noise power at any frequency N less than

the cutoff frequency w_ of the demodulator is

[0 ]
_ _ 4 th X2
W= ) Wy s 3 () (3-85)
k=1 °
. 31
since o ] “2
k=1

It should be noted that Wb is a conservative measure of the residual noise power especially
at lower values of Opy ‘since the actual residual noise power at those frequencies may be
much iess than Wb . This latter observation is based on the fact that the average power

of the insignificant spectral components of 2 h e, ) decreases monotonically with frequency

for the frequencies less than w, . .
k min

Using the measure of residual noise power obtained above, we can obtain an
estimate of the signal - to - noise ratio of the demodulated signals at the modulating signal
frequency , - As shown in Equation (3-42), the signal amplitude is essentially U hr,
provided the pulse width 7 is such that 0 < w0 T < 1. Thus, the average power of
the signal is 12- (Uh T)2 . Assuming that the demodulator is an ideal low-pass filter with
cutoff frequency w_ and that the noise power is constant in the pass-band of the filter, we
obtain the following estimate of the signal - to - noise ratio

3 w UrT 2

_ o
S/N= 8w ( ™A ) 6-87)

c.
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»

Letting T = a /wj where 0 < d <1, and-sybstituting w, = 2% /a, we have

3 al 2
S/N.”zuc .(OM]) , (3-88)

where a is the modulator threshold, A is a small positive constant used in determining
the significant frequencies, U and w, are respectively the amplitude and frequency of
the modulating sinusoid. It is interesting to note that this signal - to - noise ratio is
independent of the biasing constant, Xo of the modulating signal, provided Xo W
satisfies the criterion given in Equation (3-76). This result is reasonable,because the
amplitude of the signal frequency is independent of X° while the amplitudes of the
noise spectral components depend on Xo only through sin.[k , X, +n ul) T/ 2} which
is bounded by unity. It is also interesting to note that the signai - fo - noise ratio is
proportional to the square of the amplitude - frequency ratio, U /m1 of the modulating

signal, but is inversely proportional to the square of the modulator threshold.

3.3.3 A Synthesis Criterion for Multitone Modulation

In the last sub-section, we have derived a synthesis criterion for single-
tone modulation, which can be expressed in terms of the minimum number of pulses per
modulating signal period. This criterion, Equation (3-76), was derived by first establishing
that the significant frequencies of the noise component in the output rectangular pulse
train are bounded from below by the minimum significant frequency of the corresponding
FM wave 2h e t) , where 2 (t) is defined by Equation (3-17) with k=1. Ina

similar way, we can also now derive a similar criterion for multitone modulation.
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Let us assume, for the present, that the significant frequencies of the noise
component in multitone modulation are bounded from below by the minimum significant
frequency w'] min of the corresponding FM wave 2 h ey () , where e (#) is here de-
fined by Equation (3-53) for k=1 . Then in analogy with Equation (3-74) this minimum

significant frequency can be expressed as

' — - 1
“1 min “o xo Nl min “max (3-89)
where O ax 1S the maximum significant frequency of the message signal, and N] min 1S

a positive number. As in the case of single-tone modulation, we require that u'] min be

greater than the cutroff frequency w_ of the demodulating low -pass filter. Thus, for

w = muw where m > 1, we require

c max
w X - N . ow >mu p
oo min max max

which can be re=written as

W

o o ' -
W >Nlmin+m' (3-%0)
max

This expression is our synthesis criterion for multitone modulation. This criterion is
similar to the criterion for single-tone modulation, Equation (3-76), and states that the
parameters w_ and X° should be so selected that the number of pulses per period of the

maximum significant frequency in the message signal is greater than Nj +m.

1 min
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Now, with the criterion so obtained, it remains for us to show that (a)

the significant frequencies of the noise component are, as assumed above, bounded from

below by the minimum frequency, ©) min’ of 2h ey () , and (b) the number min

can be determined. In order to establish these points, we only need to prove that the

minimum significant frequency, uL min of 2h e, (t) is greater than ', ; for all

1 min
k > 1, since the significant amplitude spectrum of the noise constituent, M ik ®, is
bounded by that of 2 h e (), as we have shown in Sub=section 3.2.3. We shall first

demonstrate the validity of this for a specific multitone signal, and then generalize the

result.

Consider the periodic message signal f (t) shown in Figure 3-6 . The
modulating signal, Xo +f (#) 2 0, isof the form given by Equation (3-52) , since
f (t) can be expiessed in a Fourier series. Thus, as we have shown in Sub-section
3.2.3, the amplitude spectrum of the kth constituent of the noise component in the out-

put rectangular pulse train is bounded by the amplitude spectrum of the corresponding FM

wave 2 h €L (t) . By Equations (3-10) to (3-12),

.4
2hek('r)=k'—(:,.sin[kwoxof+ cwl, (3-91)
where '
E = ka [ fo dar.
[o]

This frequency-modulated (FM) wave can be expressed in terms of its spectral components.

Using the result from Reference 42, we obtain



70

[ o)
_ 4h ' Lsin [ ' -n) ] ]
2he, O = g 3 E‘(ﬁ.‘fn)“@".‘f_n“n) sinka X +av)t,  (B-92)
n==-

where V and D are respectively the repetition frequency and the maximum amplitude
of the signal f (t) shown in Figure 3-6. Further, B'= k W D / v is the modulation
index, a isa parameter of the given f (), whose value lies between zero and one, and

all other symbols are as defined previously.

Equation (3-92) can be utilized to determine the minimum significant fre-
quency and the significant bandwidth of 2 h e () as a function of B' . The significant

frequencies of the present signal are those for which

lﬁ'.sin[-n a(B'-n)] l >\, (3-93)
@ -n) @ a-na+n)

where A is a small positive constant. When a = 0.5, i.e. when the modulating
signal for e, ) is a square wave, the variation of bandwidth as a function of modulation

index B' for A = 0.01 and 0.001, isas shown in Figure 37, wherein the ordinate

is defined as

bandwidth - 2 k w, D

£ .= (3-94)
¢ 2k o D
o
Defining the minimum significant frequency of 2h © t) as
W . o =ke X - N ’ (3-95)

. W
k min o' o k min  max
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where O ax is the maximum significant frequency of the message signal f (1), and

N'k min is a positive constant, then we ccn re-write Equation (3-94) as

N|'< min umax -k uo D
EI (Bl) = ’ (3"96)
k @ D

since the amplitude spectrum of the FM wave produced by a symmetrical modulating

signal is symmei'riccll.‘t3 Hence, from Equations (3-95) and (3-96), we have
' =k“’o [xo-D(l+g(ﬁ.))J. (3-97)

This equation is of the same form as Equation (3-71) which has been used
in deriving the synthesis criterion which has been used in deriving the synthesis criterion
for single-tone modulation. Therefore, using the argument which follows Equation (3-71),
we canshow that w' . <w'! . forall k > 1. Further, asin the case of single-

1 min k min
tone modulation, the number N'] i AN be determined by using the graph of & 6"

Thus, from Equation (3-96) ,

] (3-98)

where B'] = woD/V .

In the preceding paragraphs we have demonstrated that the synthesis
criterion, given in Equation (3-90), for multi-tone modulation is applicable to one parti-

cular modulating signal . We shall now show that this criterion is applicable to some
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more general modulating signals of the form given by Equation 3-52). Thus, consider
the following approximate formula which is commonly used to estimate the significant band-

width of an FM signal.]

Bandwidth ~ 2 (AF + 24 ), (3-99)

where AF is the maximum deviation of frequency, and @ ox is as defined above. For
the FM wave 2h e, t), AOF =k w, Drn , where D, is the maximum amplitude of the
message signal. Thus, assuming the amplitude spectrum of 2 h e, () to be symmetrical,

we can express its minimum significant frequency as

2

B )y 1, (3-100)

W . ~kw [X -D (} +
k min o o m m

where By = k R Dm /umax . By comparing this expression with Equation (3-97) and

- . . o, @ ] < ]
noting that 2 /Bm also decreases monotonically with B+ itis clear that O min <Y min
forall k > 1. Therefore, the criterion given by Equation (3-90) is also applicable for

a general signal, provided the amplitude spectrum of 2 h e {t) is symmetrical. In this

1 min
(3-100) for k=1 . Thus,

case, the number N can be determined by comparing Equation (3-89) with Equation

wO Dm
Ny L + 2. (3-101)
max

In summary, we have derived above a synthesis criterion for S -5 IPFM
with multitone modulation. This criterion,given in Equation (3-90), states that the modu-

lator threshold @ = 2« /uo and the biasing constant Xo should have such values to
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yield more than N min

+ m pulses per period of the highest significant frequency
w in the message signal. The number N . can be determined using Equation
max 1 min

(3-98) and graphs such as the one in Figure 3-7, if the modulating signal is a biased
square wave. For a general modulating signal which produces a symmetrical amplitude
spectrum in 2 h e, ® ., N']' . is giver by the approximate relation in Equation (3-101).
min

The number, m, isgivenby m = mc/umax , where ‘w_ is the cutoff frequency of

the demodulating filter, and O o is the highest significant frequency of the message

signal.

3.4 Double=Signed Integral Pulse Frequency Modulation

3.4.1 An Approximate Mode! of the Modulator

As we have shown in Chapter 11, a double-signed integral pulse frequency
(D - S IPF) modulator can be represented by the model shown in Figure 2-2. This model
contains a uniferm quantizer with hysteresis. Because of the functional complexity intro-
duced by the hysteresis in the quantizer, the spectral characteristics of the output pulse
train from this modulator can not be mathematically analyzed at present. However, such
an analysis becomes possible if an approximate representation of the modulator is utilized.
We believe the results thus obtained will give a reasonably good description of the spectral
characteristics of double-signed integral pulse frequency modulation (D -5 IPFM) ,
provided that the number of output pulses is approximately equal to the number of pulses in

the D - S IPF modulated pulse train, as we shall show in the next paragraph.
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For the present purpose, we represent the D - S IPF modulator approximately
as shown in Figure 3-8 . In this approximate representation, the only change is that the
quantizer is considered to be without hysteresis ; the other components and quantizer
characteristics are identical with those of the model shown in Figure 2-2. A typical out-
put pulse train from this approximate model, together with the pulse train from the
corresponding D =S IPF modulator with the same input, are shown in Figure 3-9. The
two pulse trains are very similar, and in fact, if the pulses marked A and B are removed
from the pulse train, X (t), generated by the approximate model, then the two trains are
identical. Pulses A and B are generated after the derivative of z (t), or equivalently,
after the modulating signal x (), has changed its sign. In general, the approximate
mode| generates one additional pulse each time after x (t) changes sign and then retains
the same sign until the threshold of the modulator Is reached. As an example, a sinusoi-
dal signal with sufficient amplitude to produce more than 4 pulses per cycle in the
D - S IPF modulated pulse train will produce 2 additional pulses per cycle in the out-
put of the approximate model. Thus, provided the number of additional pulses is small
compared with the total number of pulses in the pulse train, the approximate mode| shown

in Figure 3-9 can be used with negligible error for analyzing D - S IPFM.

3.4.2 Spectral Analysis

Now, we proceed to obtain a speciral representation for the output pulse
trains of this approximate model of the D -5 IPF modulator. Since this approximate

model is identical with the model for a S =S |PF modulator (Figure 3-1), the method
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of analysis developed in Section 3.2 for S =5 IPFM is applicable to the present problem.
In fact, if the biasing constant, X is set equal to zero in the equations describing the

S-S IPF modulated pulse trains, the resulting expressions will represent the output of the
approximate model for the D - S IPF modulator. Hence, for single-tone modulation with

the modulating signal,

x ) = Ucos (u] t + 0), (3-102)

an expression for the output pulse train x (t) can be readily obtained from Equations

(3-25) to (3-27) . Thus,

x({#) = g—.U.A(u]) cos[ml t+91—Q(u]) 1+ I:l(f) ’ (3-103)
where . ©
I:I(t)=%- z Z o .Jn(ﬁ).nu].A(nu]).
k=l n=—0 °
cos[nu]t+n9+Q(nu])-ﬁsinO], (3-104)

‘and other symbols are ‘as defined previously.

Similarly, expressions for the output pulse trains produced by multitone modulation can

be obtained using Equations (3-58) to (3-61) .

Equations (3-103) and (3-104) represent the output pulse train in terms
of its spectral components. It is clear, from Equation (3-103), that the pulse train contains

a signal component which is proportional to the modulating signal modified by the frequency
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characteristics of the pulse=shaping element, P (s). Further, the pulse train contains a
noise component, I:l (), which, as shown by Equation (3-104), has a theoretically in-
finite bandwidth with its spectral frequencies located at n ) - where |n | =1,2,3, ...,
Note that the noise spectral component at zero frequency has zero amplitude ; and

note further, that the remaining noise spectral components are the fundamental and higher

harmonics of the modulating signal. The noise component has the following additional

characteristics :

1. The amplitude spectrum depends on the phase angle © of the
modulating signal. In particular, the spectrum contains only

the even harmonics of the modulating signal whenever

0 = sin @ [—,. (2m+])-;—], (3-105)

and it contains only the odd harmonics whenever

-] w

8 = sin [—,. m =] (3-106)

w U
o
where m is any integer.

In order to establish this result, we re-write Equation (3-104) tore-

N

present N (1) in terms of positive frequencies only. Thus,

® ©
NG)z;"Z T - Z ,Jn(ﬁ).nu].A(nul).cos[nu]t
k=1 ° =l

.

+n9+Q(nu]) - B sin 8]+
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(_])n+l . Jn ® . n wy - A u]) . cos [n Wy t-+n6 +Q (nu])+Bsin 9]},
(3-107)
since J_ﬂ ®) = (-1)n Jn @) andsince A (~w) = A (@ ond Q(-w) = - Q (w) fora

real pulse-shaping element, P (s) . By using the identities,

cos x + cosy = 2 cos(x;y) .cos(xz-y)
and
cos x =cosy = 2sin (x;y) sin(L%—x—) ,

Equation (3-107) can be simplified to yield

a
N@® =y B, sin[2not+2n0+ Q@naup)]
n=1
+ By 4 cos[(2n-])w]f+(2n-l)9+Q(2nu]-u])], (3-108)
where
2nw ® ), @)
_ 4d 1 2
By = = - CA@ne) . ) ZD—sin @sin®) , @3-109)
o -1 k
Q@
44 @ No Jgn-1 ® :
an_] == - o . A(2nw]—u]) . —-rlk———.cos(BsmG),
k=1

3-110)

Now, by noting that B = k o ) /u] , it is clear from Equation (3-110) that whenever

~

Equation (3-105) is satisfied, 82 a1 - 0 and thus N () contains only the even harmonics

of the modulating signal. Similarly, whenever Equation (3-106) is satisfied, an =0

and N (1) contains only the odd harmonics of the modulating signal.
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2, The amplitude spectrum of the noise component is bounded by

a curve which is proportional to the amplitude characteristic

of the cascade of the last two elements in the model of the

D -S IPF modulator.

In order to establish this result, let us consider the series

© ®)
F2n = Z ﬁzr:—— sin (B sin ©)
k=1

which is in the expression for an given in Equation (3-109).

It is known that

1/2

2 w
NN (;-5). cos @ -~ =" ’11;')'

for B large. Hence,

®
ey 1= ) (L)‘/Z ]
| T
and substituting™® = k o U / vy » we have
1 @
e e [y ]
2n w Ug’ k37§
° k=1

By using Cauchy's integral fesf,40 the sum in Equation (3-114)

as follows .

@-111)

(3-112)

3-113)

(3-114)

can be shown to be bounded



81

< 3 3-115)

Therefore,

24.:1 1/2
| Fp I < 3 ;-U?] @-116)
o

Using this result, we have from Equation (3-109),

20
124d 1 1
lB2n | < — - [u Un] - = « A@n u]) ) (3-117)
() o
n=1, 2,3, ...
By a similar development, we derive from Equation (3-110) ,

1/2

20 @2n-1) o
12d 1 1
| B,y | < . [ UJ- . A@nwymu)
a Uo Uo
n=1,2 3 ... (3-118)

Equations (3-117) and (3-118) can be combined into one expression. Thus, de-

Now,
fining |Bn | as the amplitude of the spectral component of N@) for n=1, 2, 3, .0y
we have
s | < 129 2..,1‘/2 A w,) 3-119)
n aw, 1ru°U LR T s Ll

de spectrum of N (1) is bounded by a curve which is
sP(@) .

This relation shows that the amplitu

proportional to the amplitude characteristic of a system whose transfer function is

Therefore, this proves the result initially stated above.
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3.4.3 Choice of Modulator Threshold

We have noted above that the spectral frequencies of the noise component
ina D -S IPF modulated pulse train are the fundamental and higher harmonics of the
modulating signal. It is clear, from this observation, that for a modulating signal com-
prising more than one frequency, the noise spectrum always significantly overlaps the signal
spectrum. Hence, it is impossible to recover the modulating signal without distortion from
the attending noise frequencies, if a low-pass filter is to be the demodulator.  Fortunately,
this distortion can be reduced to an acceptable level by proper choice of the modulator thres-

hold" @, as we shall now demonstrate for the case of a rectangular output pulse train.

When the output pulses are rectangular with height h and width 7, A (w)
and Q (w) in the expressions related to the output pulse train are given by Equations
(3-36) and (3-37) respectively. Hence, from Equation (3-103) the signal component

of the pulse train is

sM ~3 . hT. Ucost+0-u 7/2), (3-120)
a 1 1

if 0 < w T < 1 . Further, from Equation (3-119) we obtain the following inequality

for the amplitude of the noise spectral component at the frequency n W -

1/2
2
I8 | < 12d [ i ].Zh.sin(nu] r/2). 3-121)

Tw U
o

Now, consider the ratio of average power
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. 2
average power of noise at frequency n o) B
e, = == 1 (3-122)
average power of signal component 'S (1)
By Equations (3-120) and (3-121) ,
2
2 4 . 2 1
e‘ <[-QOT.—- .sm(nu]T/Z)] .;-a-o—u—. (3-123)

Let ©) T = a where 0 < a < 1, and substitute W, = 2% /a into Equation (3-123) .

Then, after simplification, we have

.(1 - cosna). (3-124)

This relation shows that the noise -to-signal power ratio P. is bounded by a curve which
varies with frequency as 1 =cosna, where n=1, 2, 3, ... . Inparticular, note
that this ratio at the modulating signal frequency is given by Py - Further, it is clear
from Equation (3-124) that p, can be made arbitrarily small by choosing an appropriately

small value for the modulator threshold a .

Equation (3-124) can be utilized to establish a criterion for choosing the
modulator threshold a . Let the demodulator be an ideal low-pass filter with cutoff fre-

quency w_ = Mo, where m > 1. Then, the signal-to-noise ratio of the demodulated

signal is
N
s/N=C) p 17 (3-125)
n=1

where N is the largest integer not greater than m .
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Using Equation (3-124) in this equation, we obtain

1

S/N >T' (3-126)
where
N
2 w, a 3
e=-]2-[a]—“-22—] .[]U ] .[N-Zcosna]. (3-127)
n=1

Therefore, for a given desired lower bound on the S / N of the demodulator output, the

required value of the modulator threshold a can be determined by using Equation (3-127).

The criterion that we have just derived is for the case of single-tone
modulation. A similar criterion for multitone modulation, cannot be derived at present.
However, the criterion given by Equations (3-126) and (3-1 27) can be profitably used
to choose the modulator threshold for a general modulating signal by considering w as

the highest significant frequency in the modulating signal .

3.5 Discussion and Conclusions

In the present chapter, we have developed a general method for spectral
analysis of integral pulse frequency modulation (IPFM). In this method, the modulating
signal x (t) is first incorporated into a function described by Equation (3-8), since this
provides a systematic approach to derive a spectral description of the output pulse train.

Then, this function is represented in terms of its spectral components and the resulting ex-
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pression is substituted into Equation (3-9) to yield an expression for the output impulse
train. Finally, the spectral representation of the output pulse train of the modulator
is derived by considering the linear pulse-shaping element P (s) asa filter which modifies

the spectral components of the impulse train.

Using this method, we have examined in detail the spectral characteristics
of IPEM for a class of modulating signals comprising one or more sinusoids. Several useful
results have been derived from this analysis. In particular, we have shown that the modu-
lating process introduces a noise component in the output pulse train, whose amplitude
spectrum always overlaps that of the signal component. Further, we have derived criteria
for selecting the modulator threshold a and the biasing constant Xo . For single=signed
(S - S) IPFM, the criterion can be expressed in terms of the number of pulses per period

of the highest significant frequency component in the message signal.

In the analysis of double-signed (D - S) IPFM, we have assumed that the
modulator can be represented sufficiently accurately by a model involving a quantizer with-
out hysteresis. This satisfactory ogreement has been demonstrated by means of an example
in Section 3.4.1, wherein the output pulse train from this approximate representation is
very similar to a D - S IPF modulated train, provided the two trains have about the same
number of pulses. However, it is desirable that this approximation be quantitatively

evaluated in further investigations.

The synthesis criteria that we have derived in the present analysis are useful

for the design of an integral pulse frequency modulator. They can be useful also for the
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design of the averaging type FM discriminators, since this type of discriminator demodulates

M wave by first converting it into a S - S IPF modulated pulse train and

then filtering the result with a low-pass network. 3,34

a continuous F
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CHAPTER IV

APPLICATION OF INTEGRAL PULSE FREQUENCY MODULATION

TO ANALOGUE MULTIPLICATION AND DIVISION

4,1 introduction

In some control and industrial systems, it is desirable to multiply a continu-
ous signal by a frequency-modulated pulse train. For example, the amount of material
per unit time moving on a feeder conveyor can be computed if the weight of the material
is multiplied by the velocity of the conveyor, where the former signal is measured by ana-
logue load sensors while the latter can be conveniently represented by a frequency-
modulated pulse train originating from an incremental encoder. As another example, the
power of a rotating shaft can be similarly determined, since the torque of the shaft is
usually measured by an analogue torque transducer, and the shaft speed can be readily
encoded into an integral pulse frequency modulated train as we have noted in Section 2.5.
Hence, in view of the potential usefulness, it is of interest to investigate the feasibility

of implementing analogue multiplication by means of integrai pulse frequency modulation

(IPFM).

Numerous analogue multiplication methods have been reported in the

Iitermure.3'45"4'6

Some multipliers, such as the Hall - effect multiplier, directly imple-
ment a physical law, while some others, such as the logarithmic or quarter-square multipliers,
utilize nonlinear circuit elements and /or special function generators. Of particular in-
terest is the class of multipliers which operate by a combination of modulation methods. In

this class of multipliers, various dual modulation schemes involving pulse width modulation

as well as amplitude, phase, and frequency modulation of sinusoidal carriers or
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pulse trains have been u‘sed.s However, up to this time, IPFM apparently has

not been - applied to implement analogue multiplication.

In this chapter, methods for implementing analogue multipliers and dividers
using pulse frequency modulation are formulated and studied. Single —signed IPFM
(S - S IPFM) is employed to formulate a method of analogue multiplication. A method

of pulse frequency modulation originally proposed by Goldber927’ 2

is then represented
approximately by an S - S IPFM model, and further this method is utilized to formulate

a method of analogue division. Finally, the results of a computer simulation study are

shown to verify the feasibility of the proposed methods.

4.2  Mvltipliers Using |PFM

4.2.1 Theory

It is well known from sampled data theory that the process of sampling a
signal y () is the same as multiplying it by a train x * (t) of identical rectangular
pulses of unit height.47 Thus, the output of the sampler, which we denote by y* (1),

may be expressed mathematically as

y*® =y® . x*0 . @-1)

Now, consider the situation in which the sampling pulse train x * (t) is
produced by a single-signed integral pulse frequency (S -S IPF) modulator. Based on

the results obtained in Chapter 11l, x * () can be represented as the sum of a signal com-
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ponent S (t) and a noise component N (). Thus, Equation (4-1) can be re-written as

y*@® =y@® . SO +y® - NG . 4-2)

When the sampling pulses are sufficiently narrow, S (t) is almost linearly proportional
to the input x () of the S =S IPF modulator. Indeed, if the sampling pulses become
impulses, then S () = a x (), where a is a proportionality constant, and the output
of the sampler contains a component which is proportional to the product x () y ().
Therefore, multiplication of two signals, x (t) and y {(t), can be accomplished by the
arrangement shown in Figure 4-1 , provided that the signal component, y (1) S (1) of

y * (t) can be recovered with negligible error by the filter.

y () Sampler y* (t) Filter ax )y ()
x{t =20 S-S IPF x* (1)
———
Modulator

FIGURE 4-1. A METHOD OF ANALOGUE MULTIPLICATION USING IPFM .
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We shall now show that the signal component of y * (t) can, in fact,
be recovered with negligible error by a low-pass filter. Consider first the simpler cases
in which either x (t) or y (t) is constant. When x (t) is constant, say x (t) = X,
the sampling pulse train x * (t) from the S - S IPF modulator can be readily shown to
be periodic with period a /X , where a is the modulator threshold. Hence, by the
sampling theorem, the signal X.y (t) can, in principle, be recovered completely by a
low —pass filter with cutoff frequency w_ s provided that the power spectrum of y () is

zero for frequencies greater than w_ s and provided that the modulator threshold a is

= X

selected to yield the sampling frequency 2 >2 w_ - For the other case in which

y (t) is constant, the output of the sampler is simply @ S - S IPF modulated pulse frain.
As we have shown in Chapter 11, the signal component of this pulse train can be recovered
with negligible e:ror by a low-pass filter also, provided that the S - S IPF modulator

threshold and the biasing constant in x (1) are properly selected. Therefore, for both of

these simpler cases, the proposed method for multiplication is feasible.
Now, consider the more general situation in which x (t) is a multitone
signal as described by Equation (3-52), and y (t) is a sinusoid given by

y ) = UY cos Vt . 4-3)

For this case, the sampling pulse train x * (t) is described by Equations (3-62) to
(3-64) with hd = 1 . Substituting these equations and Equation 4-3) into

Equation (4-1) and simplifying, we have

T M sin 0 T/2
* = - L u ® .
y * () p Uy cos Vt [Xo + Z Um ﬁ_z—um T
m=]

cos(umt+9m-um"'/z)]'*'N'(f): 4-4)



N

where
U @ o ®
N'(t)=—y—. z z z Er(k,n],...,nM).
2ah _ _
K:] n]—-m nM--co

4-5)
TN
{cos E(\‘M- V)t + o, -\6M T/27 +cos [(\&A+u)t+¢M¥6M T/2)] -
J

and all other symbols are as defined previously.

The first bracketed term of Equation (4-4) is the signal component of y * (t) and is almost
linearly proportional to the product x ® y @) fora sufficiently small pulse width 7.

The noise component, as represented by N' (), has spectral characteristics similar to those
of the noise component N () in x* (). Indeed, the amplitude spectrum of N' () is

a composition of two individual spectra :

U
() the spectrumof N () multiplied by -—2-L and shifted

downward in frequency by v , and

U
(i)  the spectrumof N () multiplied by —-ZX- and shifted

upward in frequency by V.

Since the significant bandwidth of N () is finite, the significant bandwidth of N' (1)

is also finite, and thus the signal and noise spectra of y * (t) can be practically separated
by proper choice of the modulator threshold a and the biasing constant X | in x () .
Therefore, the product, x () y (), can be recovered with negligible error by low-pass

filtering y * (t) .
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The above analysis can be immediately extended to demonstrate the
feasibility of the proposed method of analogue multiplication for the case in which both
x (1) and y (f) are multitone signals of the form given by Equation (3-52). Since an
arbitrary signal can be closely approximated by a° multifone signal , the arrangement
shown in Figure 4=1 can be used to implement multiplication of arbitrary signals, pro-
vided that the parameters a and Xo of the S-S IPF modulator have properly chosen
values. The synthesis criferia derived in Section 3.3 may be profitably used here for
the selection of a and Xo . 1t should be noted, howe ver, that the bandwidth of the
signal and noise components of y * (t) depend on both x (t) and y (t) . The maximum
significant frequency of the signal component is equal to the sum of the maximum signi-
ficant frequencies of x (t) and y ) , while the minimum significant frequency of N' ()
is smaller than that of N (). Hence, the selection of the parameters a and Xo of

the modulator must take these points into consideration.

4,2.2 Implementation

Analogue multipliers based on the theory presented above can be readily
implemented using commonly available electronic hardware. The block diagram of a
two—quadrant multiplier is shown in Figure 4-2 . In this diagram, f (t) and g (t) are
the signals to be multiplied, while X, isa biasing constant in the input, x (t), of the
S - S IPF modulator. Sampling is performed by the electronic switch. Because the

sampling pulse train x * (f) contains a signal component which is proportional to Xo '



g(t)

£(t)
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FIG. 4-2. BLOCK DIAGRAM OF A TWO-QUADRANT MULTIPLIER
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x*(t)

x(t)>0 S-S IPF

MODULATOR

EL

R

" ]

SWITCH

A

MODULATOR

S-S IPF

OuTPLT
AMPLIFIER &
FILTER

—
f(t)g(t)

f:t)g(t)

FIG: 4-3. BLOCK DIAGRAM OF A FOUR-QUADRANT MULTIPLIER.
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the attenuator Ky must be adjusted so that the unwanted product Xo g (t) is zero at the
output of the multiplier. The output block contains an amplifier to compensate for the
attenuation introduced by pulse frequency modulation and amplitude sampling. The

$ - S IPF modulator can be implemented as described in Section 2.5, and for the other
components of the multiplier, well known electronic circuits or building blocks can be

3

used.

The two-quadrant multiplier can be extended as shown in Figure 4-3 to
accomplish four-quadrant multiplication. In this case, a biasing constant Yo is added to
the signal g (t) which may now have both positive and negative values. The attenuators
K, and Ko are to be adjusted so that the additional unwanted products Y, X, and

Yo f (t) are zero at- the output of the multiplier.

4.3 Dividers Using Goldberg's PFM

One of the earlier methods of pulse frequency modulation (PFM) was pro-

posed by Goldberg.27'28

(See also Section 1.1). In Goldberg's method, the pulse train

is generated by the process shown in Figure 4-4. The modulating signal u () contains a
biasing constant so that either u (1) > O or u®) <O forall t. The ramp signal, r ®),
is generated internally in the modulator and has a constant slope m whose sign is the same
as that of u (). The signals u (t) and r (t) are compared. Whenever u (t) = r (), a

standard pulse is emitted by the modulator and the ramp is reset to zero at the same instant.

Goldberg's method of PFM can be utilized to implement analogue dividers. As a first



u(t), modulating signal —\

r(t), ramp with constant
slope, m.
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pulse train

FIGURE 4 - 4. ILLUSTRATING GOLDBERG'S METHOD OF PFM

>0
o) 1|z

1/m

f, s > P(s)

x*(1)

FIGURE 4 - 5. REPRESENTATION OF GOLDBERG'S MODULATOR

BY AN S-S IPF MODULATOR
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step to establish this result, we shall now show that this method can be approximately re -

presented in terms of S =S IPFM .

4.3.1 Representation of Goldberg's PFM in Terms of S - S IPFM

Let f;_] and t; be respectively the pulse—emission times of the (i-1) th
and the ith pulses from Goldberg's modulator. Further, without loss of generality, let
m >0 and u () > 0 forall t. Then, for t;_] <t < f; where i=1,2,3, ...,

the ramp signal given by
r@ =m@-t,). 4-6)

Since r (f;) = v (f;) , we have from Equation (4-6)

u(t;)
th =t .+

i i-1 m

@4-7)

This relation shows that the pulse interval is linearly proportional to the sampled amplitude
of the modulating signal u () . In particular, if u () = Eo = constant,

E

| I | O
t! = ¢! +-m—. 4-8)

i i-1

Now, consider a S - S IPF modulator whose input is U—]G)— . From

Equation (2-1) we have

t.
i

d
j U_Zi’) = a 4-9)
fia

where ti-l and fi are the pulse-emission times of the (i-1) th and the ith pulses
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respectively, and a is the modulator threshold. For the particular case in which

u) = Eo , we have from Equation (4-9) ,
t, =t , + ak 4-10)

Comparing this result with Equation (4-8), we see that the pulse train froman S-S IPF
modulator ‘can be made identical to that generated by Goldberg's method if we set the

S - S IPF modulator threshold a equal to :_n . Hence, for this particular case of

u () = constant, Goldberg's modulator can be represented by an S - S IPF modulator
with the threshold a = %— and input J_](f_)- as shown in Figure 4-5 . We shall now show
that this representation is approximately valid for a general signal, provided that the slope

m of the ramp signal in Goldberg's modulator is sufficiently large.

Let the block diagram in Figure 4-5 be called the approximate model of

Goldberg's modulator, and let the emission time of its ith pulse be k. Then, applying

the mean=-value fheorem4o to the integral in Equation(4-9) and setting a = —r]n— , we
have
v ()
HTha T Tm @-11)

where by <9 st . Now, by assuming by = f;_] , the error introduced by the
approximate model into the emission time of the ith pulse is

o ) - v @)
e, =t -t = . 4-12)

m

This result shows that the error is negligible, provided that | v (f;) -u (qi) | <<m.
Therefore, for m sufficiently large, Goldberg's modulator can be represented by the

approximate model with negligible error.
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In utilizing the approximate model for analysis of Goldberg's PFM, it
is desirable to know an upper bound of the error for a given modulating signal u () and
a given value of m . Hence, we shall now derive such an upper bound in terms of m
and the maximum slope of u (1) .

Let u (t) be expanded in a Taylor series about t;_] . Then successively
substituting t = t; and t = q; in the expansion, and utilizing the resulting two series in

Equation (4-12), we obtain

u" (I’:_
% = A G L '*5-1)2 - '*;-1)2] A

where u' denotes the first derivative of u ) , u" the second derivative, and so on.
Now, we assume that
M the second and higher order derivatives of u ® at t= f;_]
are negligible for all i, and
@iv) lo'@® | = K forall t, where K is a positive constant.

Then, by noting that |f: - q | = | t; - f;_] | , Equation (4-13) can be simpli-

fied to yield the relation

e,

i < X @-14)
U m .

i i-1
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The left-hand side of Equation (4-14) is the magnitude of the error
normalized with respect te the pulse interval. Equation (4-14) shows that this normalized
error of pulse emission times introduced by the approximate model is bounded by a constant
which is linearly proportional to the maximum slope of the modulating signal u () , but
inversely proportional to the slope of the ramp signal. Therefore, if v (t) is given and
thus K can be estimated, then an upper bound of the normalized error can be determined
for a given value of m , the slope of the ramp signal in Goldberg's modulator.  Further,
Equation (4-14) can be utilized to choose a value of m for which the approximate model
of Goldberg's modulator can be meaningfully utilized. For example, if
u@) = E+Usin @t+© > 0 and a maximum normalized error of 0.01 is desired, then

m=100wU.

It should be noted that Equation (4-14) has been derived with the assumption
that the second and higher order derivatives are negligible at the initial point of each pulse
interval. This assumption implies that u {t) in all pulse intervals can be closely represented

by a linear function. This latter approximation can be made if the bound -‘}‘- is small.

4.3.2 Theory and Implementation of the Divider

Consider the system shown in Figure 4-6. As we have just shown above,
Goldberg's modulator can be closely represented by an S -5 IPF modulator provided that
the slope m of the ramp signal in Goldberg's modulator is sufficiently large. Thus, the
system in Figure 4-6 is practically equivalent to that shown in Figure 4-7 when m is

sufficiently large. Now, based on the theory presented in Sub-section 4.2.1, the output
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of the low-pass filter in Figure 4-7 is proportional to the quotient %g—; . Since the

systems in Figures 4-6 and 4-7 are practically equivalent, the system in Figure 4-6,

therefore, can be utilized to implement analogue division.

The biock diagram of a one-quadrant divider using Goldberg's PFM is
shown in Figure 4-8. In this figure, the signal g 1) = 0 is to be divided by u@® >0.
The electronics switch performs sampling and the cutput amplifier compensates for the attenua-

tion introduced by pulse frequency modulation and sampling.

The one quadrant divider can be extended as shown in Figure 4-9 to
achieve two-quadrant division. Here, the signal g (1) is biased by a constant Y - so
that y () = Yo + g () = 0. Because the output of the sampler contains a Acomponenf
which is proportional to the unwanted quotient JFOY," the attenuator KY is included and
is to be adjusted so that this unwanted quotient is zero af the output of the divider. It
should be noted that the output of KY , after passing through the output amplifier and filter,

1

becomes a signal which is proportional to OBk since Goldberg's modulator can be closely

represented by the S - S IPF model shown in Figure 4-5 .

The various blocks of the proposed dividers can be implemented using well-

known electronic circuits and /or commonly available building blocks.
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4.4  Results of a Computer Simulation Study

A digital computer simulation study has been performed with the objective
to verify the feasibility of the proposed methods of analogue multiplication and division.
The typical results are shown in Figures 4-10 and 4-11. In Figure 4-10, the output of
the multiplier is compared with the true value of the product. The multiplier output
follows the true valve closely, but lags the latter by a considerable amount. The lag is
introduced by the output filter which, for this case, is a slightly under-damped second order
system with the break frequency equal to 6 rad /sec and the damping ratio equal to 0.9 .
Thi; break frequency is only about twice the frequency of one of the two sinusoidal com-
ponents in the product and thus the phase lag introduced into this sinusoidal component is
about 45° . The amount of lag can be reduced by increasing the break frequency of the
filter ; however, if the cutoff characteristic of the filter is not changed, the average pulse
frequency of the train from the S-S IPF modulator must be increased in order that the

output noise content may be kept at the same low level.

The output of the divider is compared with the true value of the quotient in
Figure 4-11. The output of the divider also follows the true value closely, but lags the
latter by a considerable amount for the same reason given above in the discussion of the re-
sult for the multiplier. The output filter employed in this case is a second order system with
a damping ratio of 0.9 and a break frequency of 12rad /sec . The ramp signal in Gold-

berg's modulator has a slope of 100 units / sec .
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4.5 Discussion and Conclusion

In this chapter, we have successfully applied IPFM to analogue computation.
In particular, we have formulated a method for implementing analogue multipliers using
IPFM. Further, we have shown that Goldberg's method of pulse frequency modulation
(PFM) can be closely represented in terms of 5 =S IPFM , provided that the slope of the
ramp signal in the modulator is sufficiently large. This method of PFM is then utilized
to implement analogue dividers. The feasibility of these methods of analogue multiplica-

tion and division has been studied theoretically and by digital computer simulation.

The multiplier using IPFM is similar to one of the commonly used multipliers,
namely, the self-excited time=division mulfi’plier.3'45 They both operate by amplitude
modulation of a pulse train which is generated by means of a feedback system. (See
Section 2.5 of this thesis and Reference 3, Figure 7 - 14). However, both the pulse-
width and pulse frequency of the train in the self-excited time-division multiplier vary with
one of its inputs, whereas the width of the pulses in the multiplier using IPFM remains
constant. The multiplier using IPFM appears to have all the advantages possessed by the
time~division multiplier. Further, it may be more accurate and versatile than the latter,
since it employs pulses of fixed width.  Indeed, the multiplier using IPFM would offer
more advantages if a number of signals located at widely separated places is to be multiplied
by one common signal and the resulting products are to be utilized at the corresponding
locations. It would be of interest to compare the performance of the multiplier using
IPEM with the commonly used multipliers by constructing prototypes ; however, this pro-

posal would form a project by itself and is outside the scope of the present work.
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The method of analogue division using Goldberg's PFM has some
significant limitations. Firstly, it can only implement one-quadrant and two-quadrant
division . Further, the input of Goldberg's modulator in the divider cannot contain any
biasing constant and thus the performance of the divider is sensitive to the characteristic
of the input signal. However, the proposed dividers are simple to implement and may be

profitably employed for special purpose computation.
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o CHAPTER V

APPLICATION OF INTEGRAL PULSE FREQUENCY MODULATION TO THE

ANALYSIS OF A NEURAL COMMUNICATION SYSTEM

5.1 Introduction

In the peripheral nervous system of an animal, information is transmitted by
trains of electrical pulses, called action potentials, via multitudes of nerve fibers. The
pulses themselves in any single fiber are essentially identical, but their repetitive fre-
quency may vary. In particular, pulse frequencies in the individual afferent fibers of
many seasory organs have been found to vary as some function of stimulus intensity. Thus,
it has been generally recognized that pulse frequency is one of the information carriers in

the nervous system and that the corresponding neural pulse generating mechanism in a

48,49

single fiber operates according to some form of pulse frequency modulation.

Single-signed integral pulse frequency modulation (S =S IPFM) was pro-
posed in 1959 asa mathemufica! model of the neural generating mechanism,22 and since
then it has been applied to a number of neurophysiological studies. Li and Jones have
analyzed S-S IPFM feedback control systems whose operation resembles that of the
neuro-muscular system with reciprocal innervation incorport::ted.s'23 Partridge has studied
the frequency response of the muscle by stimulating its efferent nerve with a pulse train
from an integral pulse frequency modulator.25 Furthermore,, by assuming S =S IPFM as the
actual neural pulse generating mechanism, Partridge has also investigated signal distor-
tion introduced by the neural encoding process,24 while more recently, Bayly has

‘ examined the spectral characteristics of pulse frequency modulation in the nervous system.
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" In the present chapter, we shall apply S-S IPFM to investigate the trans-
mission of signals in a particular multi-unit .mulfipafh. neural communication system,
namely, the afferent limb of the monosynaptic spinal reflex (MSR). We shall start by
briefly reviewing the pertinent features of the MSR. Then, the afferent limb of the MSR
will be modelled and statistically analyzed, taking into consideration the variations of

properties in the multiplicity of neural elements and pathways.

We assume, in the subsequent presentation, that the reader has some basic
knowledge of neurophysiology, in addition to his knowledge of analysis. Those not
familiar with neurophysiology may acquire some of the required background by reading

Chapters 2, 4, 6 and 7 in Reference 50 .

50-52
5.2 The Monosynaptic Spinal Reflex

The monosynaptic spinal reflex (MSR) is a basic sub=system in most neuro-
muscular control systems of an animal. lts principal features for a mammal are illustrated
in the highly simplified and conventional representation shown in Figure 5-1, in which
only one of each of the various main functional components is shown. In reality, however,

the MSR consists of many similar elements acting more or less in parallel.

One of the principal components of the MSR is the muscle spindle which
is a few millimeters long and is located within the muscle itself. [t comprises a bundle
of from 2 to 10 intrafusal muscle fibers surrounded by a connective tissue capsule whose

ends are attached to the sheaths of the surrounding regular or extrafusal muscle fibers.
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The long, slender ends of the intrafusal fibers are striated and contractile, whereas the
central or equatorial region is unstriated and probably cannot contract, but instead be-

come stretched whenever the spindle is stretched.

The spindle is supplied by three main types of nerve fibers. It has up to
fifteen X - efferent fibers, one Group | a afferent fiber , and from one to several
Group |1 afferent fibers. The X - efferent fibers originate from the ¥ - motoneurons in
the spinal cord and their branches innervate the contractile polar regions of the intrafusal
muscle fibers. The peripheral end of the | a afferent fiber branches inside the capsule
of the spindle:and terminates as the so-called primary endings that encircle the equatorial
region of the intrafusal muscle fibers. The la afferent enters the spinal cord via the
dorsal root and sends branches directly to the a - motoneurons (@ = MN's) that innervate
the same muscle in which the spindle is located. The peripheral endings of the Group 1l
afferent fibers ferminate on both sides of the equatorial region of the intrafusal muscle
fibers, but their central endings in the spinal cord do not terminate on the a - MN's
directly. Hence, these latter nerve fibers are not directly relevant to the MSR, and

thus they are not shown in Figure 5-1 and will not be included in subsequent discussions.

The muscle spindle is attached in parallel to the extrafusal fibers of the
muscle. Therefore, stretching the muscle tends to increase the length of the spindle and
thus to extend the equatorial region of the intrafusal fibers. As a result, the primary nerve
endings are distorted and then, as generally believed, produce electric currents called
generator currents. These currents spread electrotonically into the adjacent regions of the
parent axon and summate there to produce the so-called generator potential. Whenever

the membrane potential at the pulse generating site of the la axon reaches threshold value,
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an action potential is generated in this afferent fiber which conducts it to the a - MN
in the spinal cord. The spindle thus monitors the length of the muscle, encodes the
information into a neural pulse train, and then transmits it via the | a afferent nerve

fiber to the a - MN..

In addition to the mechanical input derived from the change in muscle length,
the spindle has another input which is derived from the neural pulse trains in the X - ef-
ferents. These pulse trains cause contraction of the polar regions of the intrafusal fibers
and tend to decrease the overall length of the spindle. Hence, if the surrounding muscle
does not contract simultaneously, the equatorial region of the intrafusal fibers will be ex-
tended, producing the same series of subsequent events described above for the mechanical
input. However, in this case the spindle does not operate as a feedback monitor ; instead,
it operates as a relay station and a summer, since it converts the X - efferent pulse trains
into generator currents, summates these generator currents with “those derived from the

mechanical input,and then converts the result into an afferent pulse train.

The afferent pulse train from each spindle excites the a - MN directly
through synaptic contacts and evokes voltage changes called quantal excitatory postsynap=
tic potentials (EPSP's) in the postsynaptic membrane of the a - MN .58 These quantal
EPSP's spread electrotonically into the adjacent regions of the neuronal membrane and
summate there with the quantal postsynaptic potentials (PSP's) caused by other synaptic
inputs such as those from higher centers and other neurons. It should be noted, however,

that the other synaptic inputs may be excitatory or inhibitory .

Whenever the summated PSP at the pulse generating site of the a - MN

reaches the threshold value, an action potential is generated in the a - efferent axon
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which conducts it to the muscle. The a - efferent axon branches in the muscle, making
connections with a number of extrafusal fibers. Thus, a pulse in it activates a number of
muscie fibers which then contract in unison to produce a unit contractile response of the
whole muscle. The a - MN together with its axon and the set of extrafusal fibers it

innervates is known as a motor unit.

We have noted earlier that the monosynaptic spinal reflex (MSR), in reality,
consists of many similar elements acting more or less in parallel. Let us now consider
this aspect with particular reference to the representation of information. Consider first
the efferent limb of the MSR. The muscle, often comprising thousands of extrafusal
fibers, receives information from a lesser number of a - motoneurons (a = MN's) via
the a - efferent axons. The cat soleus, for example, consists of about 25,000 extra-
fusal fibers grouped as about 150 motor units. However, the state of the muscle can be
described in terms of its terminal force and length changes, and this state is produced as
the net result of the motor unit contractions. Since the contractions of the motor units
are dependent upon the efferent activities, information is thus represented in this case

by the ensemble of pulse trains in the a - efferent axons.

In the afferent limb of the MSR, information is transmitted by the spindles
to the a - MN's in the spinal cord. There are many spindles distributed at random
throughout the belly of the muscle. (As an example, the cat soleus has about 55 spindles).
When the muscle is stretched, the spindles tend to generate pulse trains in their afferent
nerve fibers, and both the pulse frequency and the number of active nerve fibers tend to

increase with the stretch amplitude. Since the muscle spindles are attached in parallel
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to the extrafusal muscle fibers, it is reasonable to consider some dynamic function of the
change in muscle length as the information transmitted to the a - MN's. Clearly, in

this case also, information is represented by an ensemble of pulse trains.

From the above description, we see that neural communication in both the
efferent and afferent limbs of the MSR is mediated respectively by many motor units and
by many sensory units, over many parallel paths. We call this property of the communi-
cation systems the multi-unit multipath characteristic.  This characteristic is not restricted
to the monosynaptic spinal reflex (MSR) above, but is a property common to other sensory

48,52

and motor systems.

We can usefully ask why the method of neural communication has evolved to
this present form involving a multiplicity of units and éafhways. Clearly the redundant
structures provide reliability, some degree of which is essential for survival. However,
does the multi-unit multipath characteristic have in addition any functional significance
in the transfer of information ? Recent experimental evidence indicates that the answer
is affirmative .53'54|n the following, we shall investigate this problem theoretically, by
mathematical analysis and computer simulation.  Our attention will be restricted to the
transmission of information from the muscle to the a - motoneuron in the afferent limb of
the MSR. Clearly, the MSR is a closed-loop feedback system. Since the effects of
feedback unnecessarily complicate the analysis of signdl transmission, we shall assume in
the present investigation that the ventral root is cut to open the loop, while the efferent

pulse trains may still be generated artificially by electrical stimulation.
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5.3  Information Flow in the Afferent Limb of the Monosynaptic Spinal Reflex

As noted above, in the afferent limb of the MSR information is transmitted
by the spindles to the a - motoneurons (@ - MN's) in the spinal cord. Let us now con-
sider the flow of information und examine the pertinent characteristics of the transmission

paths.

Consider first the flow of information to a single a = MN. It is well known
that an a - MN receives information from many sources (Ref .50)Chapter 6). However,
for our analysis we are concerned only with the information conveyed to it by the mono-
synaptic nerve fibers arising from the spindles in the muscle which it innervates. Thus,
the a - MN in the present analysis can receive signals originating from only three
possible sources, namely, the applied muscle stretch, the a - efferent pulse trains, and
the % - efferent pulse trains. From the present viewpoint, the other inputs to it are ir-

relevant and may be considered as noise if they are included in the analysis.

The flow of information to an a - MN via monosynaptic afferent fibers can

be illustrated as shown in Figure 5-2. The applied stretch and the o - efferent pulse

trains produce change of muscle length which is coupled mechanically to the spindles,

while the “X - efferent pulse trains stimulate the spindles directly. The information con-
tained in these input signals is encoded by the spindles into pulse trains which are conducted
to the a - MN by the afferent fibers. It should be noted that in the spinal cord a single

| a offerent axon breaks into many branches making synaptic contact with many post-
synaptic cells and conversely many synaptic knobs on a single a = MN derive from many

different parent afferent axons (Ref .50,Chapter 6). This overlapping innervation is recently
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found to be almost complete over the a - motoneuron pool and the homonymous muscle

spindles for the cat gastrocnemius.55

The number of parallel paths for information transmission to the a - MN
is equal to the number of monosynaptic knobs on the neuronal soma-dendritic complex.
Each path in this multipath system has its own intrinsic properties different from its neigh-
bours. The spindles are known to have different stretch-thresholds for pulse generation
and this variation is believed to be caused partly by the variance in the intrinsic sensiti-
vity of the spindles, but mainly by their spatial distribution in the muscle so that some
spindles are more readily excited by the applied stretch than the others (Ref.50Chapter 4).
Thus, output pulse trains of different spindles are generally different for a given change
in muscle length. Furthermore, the pulse trains are conducted to the a - MN by
offerent fibers whose conduction velocities vary from one fiber to cmother.so A final addi-
tiona!l variation occurs at the neuronal membrane. A recent experimental finding indicates
that the excitatory postsynaptic potential (EPSP), resulting from spatial and temporal
summation, presumably at the soma of the a - MN is an information carrying signal .53
Thus if the soma, or preferably the pulse-generating site which is generally believed to
be the axon hillock, is considered as the point where the quantal EPSP's summate, then
the quantal EPSP's produced at this site by single synaptic inputs at different locations on
the neuronal membrane will be different. Since there is evidence that the monosynaptic
knobs are randomly distributed throughout the soma-dendritic complex of the

56-58 ,

o - MN, the quantal EPSP's produced at the pulse-generating site are different. In
other words, the "neuronal transfer dynamics" relating a single presynaptic neural pulse

to the resulting postsynaptic subthreshold neuronal response at the pulse generating site

varies from one path of information transmission to another.
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Consider now the complete afferent limb of the MSR as a communication
system. Clearly, the flow of information to any one of the a - MN in the motoneuron
pool innervating the muscle can be represented as shown in Figure 5-2. Thus, if the
subsystem shown in Figure 5-2 is defined as a communication link in the MSR, the
afferent limb of the MSR can be considered as a system of such links in parallel. The
number of links in the system is, of course, equal to the number of a - motoneurons
(@ = MN) in the motoneuron pool. However, because of overlapping innervation in the
pool, the number of "spindles” in different links may be different and furthermore the
total number of spindles actually existing in the muscle is not equal to the sum of all
"spindles” used in the representation of the MSR. It should be noted also that the change

in muscle length is a signal common to all communication links in the representation.

Since the afferent limb of the MSR is composed of a number of similar
communication links in parallel, the transmission properties of the whole system can be
derived from the properties of a single link. Thus, in the following, we shall consider

signal transmission in a single communication link only.

5.4 Modelling the Neural Encoder

In our brief review of the MSR, we have noted that pulse initiation in the la
afferent axon is preceded by the production of the so—called generator currents in the
primary nerve endings, and that an afferent pulse is generated whenever the depolarization
by these currents at the pulse generating site reaches threshold value. As a first step in

obtaining a complete mathematical model of a communication link in the afferent limb of
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the MSR, we now consider the problem of representing the neural pulse generating
mechanism which converts the summated generator current into the afferent pulse train. In
subsequent discussions, we shall call this mechanism the “"neural encoder”, or more

briefly, the "encoder®.

At present the exact operating principle of the neural encoder is unknown.
However, some characteristics of its method of pulse generation and its terminal relations
are known qualitatively. We shall first present these characteristics and then show that

most of these are also exhibited by single-signed integral: pulse frequency modulation.

1. Method of Pulse Generation : The records shown in Figure 5.3 illustrate

several features in the generation of afferent pulses. The lower traces in these records
indicate extension of the spindle, while the upper traces illustrate the changes of potential
which is presumably ' proportional ¢ the membrane potential at the pulse-generating
site of the afferent axon, when the spindle is stretched at a constant rate to different

final amplitudes. [n (a) the stretch is just over threshold for eliciting one single pulse.
With somewhat greater extension in (), o slight increase in potential occurs in the
aftermath of the pulse. With further increase in extension, the amplitude of this so-called
prepotential increases proportionally and at a specific amplifude of stretch, a second pulse
is generated in (d). As the stretch is increased, the same sequence of events is repeated,
producing an afferent pulse train such as the one shown in (i). From these records we can

observe the following characteristics of pulse generation.

@ Each pulse is preceded by a prepotential which is dependent

upon the applied stretch.



Upper traces : Changes of

potential. Horizontal bar : 20 m sec.

Vertical bar : 2m V.

Lower traces : Extension of
spindle.

(T

- Horizontal bar : 50 m sec.

FIGURE 5-3. RECORDINGS ILLUSTRATING PULSE GENERATION IN THE |a AFFERENT OF THE FROG SPINDLE.
(FROM REFERENCES 64 AND 65) .

611



Upper traces : Changes of

otential. .
P Horizontal bar : 20 m sec.

Vertical bar : 2mV.

Lower traces ; Extension of
spindle.

—_ - Horizontal bar : 50 m sec.

FIGURE 5-3. RECORDINGS ILLUSTRATING PULSE GENERATION IN THE la AFFERENT OF THE FROG SPINDLE.
(FROM REFERENCES 64 AND 65) .

6Ll

(R R T S e

R U P PPN R OS2
Wi 5 5ot e S A



120
b) A pulse is generated whenever the membrane potential

reaches a threshold value.

(c)  After the pulse is generated, the membrane is repolarized
and the potential is brought back to a certain value below

the point at which the pulse arose.

d)  As the stretch amplitude becomes greater, the repolarization
phase between individual pulses becomes less complete, re-
sulting in a base line shift of membrane potential towards
greater depolarization for the duration of the stretch. The
prepotentials and the pulses appear superimposed upon a sustained

potential.

() The threshold for pulse generation appears to increase with this

sustained potential.

2. Terminal Relations :  There is very little known about the functional relations

between the output pulse train and the summated generator current at the input of the neural
encoder. However, there are known relationships between output pulse frequency and stretch

amplitude or generator potential, and from these we shall infer some terminal relations.

(@  When the primary nerve endings are depolarized by an applied
direct current (DC), the afferent pulse frequency is constant and
appears to be proportional to the strength of the current over a

significantly wide range. 61,62
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()  Within normal physiological range, the static relation between
afferent pulse frequency and generator potential is essentially
63,65

linear. Generator potential in these cases was measured with
one electrode on the nerve which was placed in oil, while the
grounding electrode was placed near the spindle lying in the
Ringer's solution. Thus, the measured generator potential is
linearly proportional to the current flowing along the nerve fiber.

Therefore, afferent pulse frequency can reasonably be considered

as linearly proportional to the summated generator current.

€) For the dynamic case of a ramp stretch of the spindle, both afferent
pulse frequency and generator potential in the steady state are
. . 64,65
linearly proportional to the stretch. Thus, offerent pulse fre-
quency is linearly proportional to generator potential also when the
generator potential follows a ramp function. As in the static case,
because of the method for me asuring generator potential, afferent

ge po

pulse frequency can also be considered to vary linearly with the sum-

mated generatcr current in this dynamic case.

Now, with these known characteristics which we have listed for the neural
encoder, we consider the problem of modelling the encoder. Our objective is to obtain
a physiologically reasonable and yet mathematically tractable model. From among the
various known methods of pulse frequency modulation, including those utilized in neuron

21,66,67

models but not explicitly developed ’“single-signed integral pulse frequency modu-
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lation (S - S IPFM) appears to be the most suitable for our present purpose. We have
shown in Chapter Il a spectral representation of the output pulse train for S =S IPFM .
In the following, we shall show that S =S [IPFM satisfies most of the known characteris-

tics of the neural encoder listed above .

1. Method of Pulse Generation: A method for implementing S =S IPFM

exactly has been shown in Chapter {l. For convenience, the block diagram of this
modulator and the diagram illustrating its operation are shown here again in Figure 5-4.
We can easily see that the method of pulse generation in this feedback system is similar
to that of the neural encoder if we make the following analogies : the input x (t) re-
presents the summated generator current at the pulse generating site ; the summing point
represents the membrane property known as temporal summation ; the integrator represents
the subthreshold current-voltage characteristic of the membrane ; the integrator output

| ) represents the membrane potential, excluding the action potential ; the threshold
device represents the threshold mechanism of the nerve membrane ; the pulse generator
represents the pulse generating mechanism in the first segment of the axon ; the output
pulse train x* (f) represents the afferent axonal pulse train ; and finally the negatively

fedback pulse represents the repolarizing ionic current.

As shown in Figure 5-4(b), the output | (t) of the integrator is very similar
to the record of neural potential shown in Figure 5-3 (i) if the action potentials are re-
moved from this latter diagram. In particular, the "prepotentials" appear superimposed
upon a sustained “potential" which is proportional to the input x (t). We can show this

feature mathematically as follows .
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let x () = Ct for T 2t 2 0, where C and T are positive constants.
Then, for fi 2t 2 ti-] , where fi and fi—] , i=1,2, ..., denote the pulse emission

times of the ith and (i-1)th pulses respectively, we have

t t
10 =Kk 0] x®dr-[ K x@drlb. (5-1)

b b

As shown in Chapter II, in order that S =S IPFM be implemented exactly, we must have
b

K, A= < - where A is the area of the output pulse. Hence, if T is the duration of
1

the pulse, then replacing t by byt T we have from Equation (5-1),

2

+1) =K, C Oy 7+ - ] (5-2)

I, )

i=-1

Without loss of generality, if the output pulse is assumed rectangular, | (ti-l + T) can be
easily seen to be the minimum value of each "prepotential". Clearly, Equation (5-2)
shows that the minimum of the "propotential" increases linearly with time, giving the
appearance that the "prepotentials" are superimposed upon a sustained potential. We can

similarly show that this feature holds also for a constant input, x ().

In our comparison of the membrane potential with | (t), we have found it
necessary to remove the action potentials from the neural record, This should not be a
cause for objection, since the depolarizing phase of the action potential only serves as a
trigger for the axonal pulse while the repolarizing phase serves as resetting mechanism of
the membrane, the effect of which we have represented by the negative feedback in the

S-S IPFM implementation.



125

There are two important features of the neural encoder, which S =S [PFM
does not possess.  Firstly, we have compared the integrator with the subthreshold current-
voltage characteristic of nerve membrane at the pulse generating site. It is well known
that the subthreshold nerve membrane can be approximately represented by a "leaky in-
tegrator”. Thus, for a sufficiently small constant current at the pulse generating site, the
neural encoder will not generate any afferent pulse, while the integral pulse frequency
(IPF) modulator will generate an output pulse train with low pulse frequency. We can
make the modulator a more realistic model of the neural encoder by replacing the integrator
with a "leaky integrator" or other linear system of higher order ; but then, the resulting
mode! becomes mathematically unwieldly for our present purpose. |t is interesting to note
that a rather elaborate mathematical model of the neuron developed by Roberge & can be

shown to be equivalent to the modified IPF modulator we have just suggested. (See

Appendix B).

The second feature of pulse generation not exhibited by the modulator shown
in Figure 5-4(a) is the variation of threshold with the "sustained potential". However, cs
we have shown in Section 2.5, this feature can be incorporated into the modulator very
simply by the arrangement shown in Figure 2-8. For our present purpose of analyzing signal
transmission in the afferent limb of the MSR, we shall assume that the threshold of the neural

encoder remains constant in order to obtain mathematical tractability.

2. Terminal Relations : There are presently only two known relations between the

afferent pulse train and the summated generator current for the neural encoder in the la

afferent axon. These can be incorporated in one statement : the afferent pulse frequency
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is linearly proportional to the amplitude of the input current if the current is either a step
or aramp. We can show that the output pulse frequency of the IPF modulator is constant
and linearly proportional to the amplitude of the input step immediately from the criterion
for pulse emission given by Equation (2-1). For S-S IPFM with positive pulses,

Equation (2-1) can be re-written as

t.
i

[ x@® dt =a (5-3)

hia

When the input x (t) K for t > 0, where K isa positive constant, we have the

pulse frequency

1
fi(ir) Tt

i-i-

- K , t. <t <t
a i+

: i=],2,3, )

1’
(5-4)
which establishes the stated relation. When x (t) is a ramp, the output pulse frequency
of the IPF modulator is also approximately a ramp, provided we assume that pulse fre-
quency can be considered a continuous variable as neuro-physiologists normally do. Let
x () = Kt for t =2 0, where K is a positive constant. Then, from Equation (5-3)

we have

fo= = 1/2. (5-5)

This result indicates that pulse frequency at time t. is linearly proportional to the average
of two consecutive pulse emission times b and b Clearly the relation between pulse

frequency and the input is approximately linear.
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We have shown above that S =S IPFM exhibits most of the known properties
of the neural encoder. In addition, there is other evidence that S - S IPFM is a physio-
logically reasonable model. The "decoding” method used by the neuromuscular system is
somewhat similar to that of IPFM. Since the subthfeshold nerve membrane is generally
considered linear, the quantal excitatory postsynaptic potentials produced by a single
afferent pulse train summate linearly at the motoneuron membrane. Further, it is well
known that the tetanus response of the muscle is the temporal summation of the so-called
twitch responses elicited by a - efferent stimulation. In analogy to these results, we have
shown in Section 2.6, that demodulation of IPFM is a linear temporal summation of the
pulse responses of the demodulating low=pass filter. It should be noted, however, that
temporal summation occurring at the muscle is somewhat nonlinear,68 whereas temporal

summation in demodulating IPFM is strictly linear.

As final supporting evidence for choosing S =S IPFM as a model of the
neural encoder, we cite the fact that neural pulse trains have been commonly processed -

either by low-pass filtering or by obtaining their instantaneous pulse frequencies,53'69

with
the usual implicit assumption that neural signals can be meaningfully demodulated in these

ways. These two methods are also employed to demodulate IPFM as we have described

in Chapter Il.

5.5 A Model of the Muscle-to-Motoneuron Communication Link

From the discussion given in Section 5.3, we see that a typical path in the

afferent limb of the monosynaptic spinal reflex (MSR) consists of the muscle, the coupling
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between the muscle and the spindle, a spindle, an afferent nerve fiber, and the neuronal
transfer dynamics relating presynaptic pulse to the resulting postsynaptic neuronal response
at the pulse-generating site of the a - motoneuron (a - MN). We shall first obtain a
model for this typical path and then formulate a multipath model for signal transmission

from the muscle to the a - MN .

Let us first mode!l the muscle and the spindle. Although these components
69-77
have been extensively studied, " there is no generally accepted mathematical model for
them either individually or in combination, and in particular there is no available model
suitable for our present purpose .. Because of their complex functional be-

haviour and the lack of knowledge on some important details, we are forced to take the

following somewhat qualitative approoch.

As noted previously, pulse initiation in the lo afferent of the spindle is
preceded by production of the so-called generator currents which are believed to be caused
by distortion of the primary nerve endings located in the equatorial region of the intrafusal
muscle fibers .5] We also recall that the distortion of the primary nerve endings arises
when the equatorial region is extended from the resting length either by stretching the spindle
through an increase of muscle length, or by contracting the polar regions of the intrafusal
muscle fibers through X— efferent stimulation. Based on these observations, we may re-
present the combination of the whole muscle and one of its spindles by a single unit as shown
in Figure 5-5. In this diagram, block M represents the dynamics of the whole muscle
when it is subjected to the applied stretch and /or a - efferent stimulation. The output
of M then corresponds to the stretch applied to the spindle under consideration. Note,

however, that M therefore contains a factor representing the muscle - to - spindle
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mechanical coupling which varies from one path to another, G represents the mechanical
dynamics of the intrafusal fibers of the spindle when they are stretched by the change in
muscle length and /or stimulated by the “X - efferent pulse trains. Its output corresponds
to the distortion of primary nerve endings. L represents the transduction process by means
of which the distortion of nerve endings is converted into the summated generator current
at the pulse generating site of the afferent axon. Finally, the block entitled "encoder”
represents the neural encoder which we have modelled with a single~signed integral pulse

frequency (S =S IPF) modulator in the previous section.

Blocks M, G and L in this general representation of the whole muscle
and one of its spindles are nonlinear and at present cannot be determined. In order to

simplify the problem, we consider the special case in which

@) the Y- efferent pulse frequency is either zero or constant at
a sufficiently high rate to produce a constant summated genera-

tor current ; and
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(i) the a - efferent pulse frequency is ejther zero or constant
at a sufficiently high rate to produce a constant muscle

contraction.

(iii)  The muscle length is made to vary sinusoidally about a suitable

mean length so that the muscle spindle fires continuously.

Given these constraints, the only time-varying input for the muscle and spindle assembly
is the applied stretch, and the resulting afferent pulse frequency is known to vary almost
sinusoidally?] 72 if it is considered as a continuous variable. The afferent pulse train
is represented in our block diog'rum by the output of the block entitled "encoder" which
we have modelled usinga S =S IPF modulator. When the input of the modulator is a

biased sinusoid, the output pulse frequency can be shown to vary almost sinusoidally also.

Thus, let the input be
x(f)=X°+Ucos(ut+9) 20, t+ =20 x (5-6)

where Xo, U, w and © are constant. Then, using Equation (5-3) we have

X . A+ iJ-{sin Wt +0) -sin (o (f.-A)+G]}= a, (5-7)
o i w i i
where Ai =t -ty When Ai is small compared with the period of the input signal,

Equation (5-7) can be simplified to yield the pulse frequency,

x (fi)

a

f, = ]]— ~ %[Xo+cos (uti+9)J =

(5-8)
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This result clearly verifies the stated relatien given above. Therefore, for this special
case under consideration, we can consider that, in our representation of the muscle and
one of its spindles, block M, G and L lumped together constitute a linear system.
Consequently, we can model the muscle and one of its spindles as shown in Figure 5-6,
wherein the S =S IPFM modulator represents the encoder, and C () represents the
linearized dynamics relating the change in muscle length to the resulting change in sum-
mated generator current. The efferent inputs are now represented by two constants, g
and q ; where g represents the decrease in muscle length produced by the constant o -
efferent activities and q represents the increase in summated generator current produced

by the constant Y— efferent activities.

Now we consider the modelling of the remaining two components, namely,
the offerent fiber and the neuronal transfer dynamics, of the path of information transmission.
The afferent fiber conducts the pulses without affecting their size and shape, and thus can
be modelled by a pure time-delay whose delay time T is equal to the time required to con-
duct a pulse from the spindle to the synapse at the motoneuron. The neuronal transfer
dynamics relating the pre=-synaptic pulse and the postsynaptic neuronal response at the axon
hillock can be represented by a linear element whose pulse response has practically the same
shape and size as the quantal EPSP. As an example, if the transfer function H (s) of the

linear element is

b

HE) = ——
¢ 1 + Ts (5-9)

bp
then the Laplace transform of the pulse response is given by T'i-(:‘L'I'S where P (s) is the

Laplace transform of the presynaptic pulse. It should be noted that there is a small delay
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time between the onset of the presynaptic pulse and the onset of the resulting quantal EPSP
at the neuronal pulse -generating site. For the present analysis, we can and shall lump this de-
lay time with that of the afferent fiber without introducing error. Thus we shall henceforth

represent the neuronal transfer dynamics by a linear element containing no time delay.

The complete model for a typical afferent path in the MSR is shown in
Figure 5-7. We have pointed out in Section 5.3 that the intrinsic properties of each
afferent path differ from those of the others. These properties are represented in the model
by C (), H (s), the delay time T, and the input q . Variation in the stretch-threshold
of the spindles in the muscle is described by the variation in the gain of C (s) , where a
higher value of the gain implies a lower threshold and greater sensitivity. The distribution
of conduction velocities of the afferent fibers is described by the distribution of delay time
T, where a larger value of T denotes a smaller conduction velocity. Variation in the
size and shape of quantal EPSP's at the axon hillock of the MN is represented by the
variation in the pulse response of H (s) . In addition to these, the phase characteristic of
C () and the input q may vary from one path to another because of variations in the dyna-
mics of mechanical coupling between the muscle and the spindle, the spindle properties,

and the Y— efferent stimulation.

One component and two inputs in the model are considered as invariant for
all paths. As we have pointed out in Section 5.3 , the change in muscle length is a
signal common to all paths. Hence, the applied stretch and the a - efferent input g,
are invariant from one path to another. The remaining invariant component is the
S - S IPFM modulator which represents the neural encoder in the spindle. In reality the

encoder of different spindles may have different sensitivities. However, this possible varia-
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tion can equally well be embedded in the stretch~threshold variation which has been des-
cribed by the variation in the gain of C () . Hence it appears reasonable to assume that

the S -5 IPFM modulator is identical for all paths.

With the model of a typical path thus determined, we may now formulate
a multipath model of the muscle-to-motoneuron communication link, as shown in Figure
5-8. In this figure the change in muscle length is a signal common to all paths as already
noted. Then at the end of these paths, the quantal EPSP's are assumed to summate
linearly in the axon hillock of the motoneuron to produce the signal which is considered to
carry the information in this communication link. Note that the S =S IPF modulator is
now represented by its functional model (Figure 2-5) , and that its pulse-éhaping element
P. (s) has been lumped with the neuronal transfer dynamics H, (s) in the ith path. It
should also be noted that the input of P, H, consists of impulses of magnitude d for all
values of i . Thus, the quantal excitatory postsynaptic potential (EPSP) at the output of
the ith path is given by the impulse response of Pi Hi , and consequently its Laplace trans-

formis d . Pi (s) - Hi ) -

5.6  Statistical Analysis of the Muscle -to-Motoneuron Communication System

5.6.1 Statistical Formulation

We now proceed to analyze the muscle-to-motoneuron communication link
as represented by the model shown in Figure 5-8. Let us, for the present, make the simpiify-

ing assumption that the quantal EPSP's all have the same temporal waveform, but may have

different amplitudes. Thus, let the Laplace transform at the quantal EPSP in the ith path
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be bi F () , where F (s) is invariant for all paths, but the constant bi may vary from
one path to another. For the special situation described in‘the previous section, the

change in muscle length from its resting length is

x () = Xo + U cos w, t - g, (5-10)

where Xo . U, Wy and g are constant. Thus, if < and Gi are respectively the
gain and phase of Ci (s) at the frequency w, ,and o is the gain of Ci (s) at zero
frequency, then in the steady state, the summated generator current developed in the

primary endings of the ith spindle is

v, 1) = (X -g) . co+U.ccas (0, t+8) *q, - (5-11)

Assuming that the inputs to the multipath system are such that vi t) =20 forall i, we
can readily obtain, by using Equations (3-25) to (3-27) imiChapter Ill, an expression for
the sequence x*; {t) of" superposed quantal EPSP at fhe output of the ith path. Thus,

defining
% = (xo -9 Coi * (5-12)

we then have,

b.d
x:* ® = -c"-'- L (;;;i +qi) A @) +U < A(u]) cos (l.._).l ﬁ—Gi + Q(u].) - u]'ri)]+ Ni(t)

(6-13)

where
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b.d T o 2J BN
Ni (f)=—a-z z —F;:-—A()\i)°°50‘if+¢i+QO\i)-)\i Ti); (5-14)

k=1 n=-0
)‘i = kuo (°i+qi) +nw (5-15)
?. = n® - B, sin 0. | (5-16)
B, = ku Ue oy s (5-17)

A(w) and Q (u) are respectively the amplitude and phase characteristics ..

of  F’(s) "associated with-the waveform of the duantal. :EPSP's , and
all other symbols are as previously defined.

Therefore, the "spatially and temporally" summated EPSP is

1
M

M2

= 'xi*(f) =M. [ )7 . (5-18)

1

As we have noted in Section 5.3, the number of paths in the system is equal
to the number of monosynaptic knobs connected to the afferent fibers arising from the spindles
under consideration. Since this number is large and since the parameters a, c, b, 8, T
and q vary from path to path, the a.rithmetic average in Equation (5-18) can be accurately

approximated by a statistical average .78 Thus,

Yy S M- E [x*@®1, (5-19)

where x* () is a member function of the ensemble of pulse sequences
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{x? (t)}; E [ - ] denotes "the statistical average of" , and the

average is taken with respect to a, ¢, b, ©, T and q, which are

now considered as random variables.

Recall that the random variable q represents the increase in the summated
generator current due to constant X - efferent stimulation, T cbrresponds to the transmission
time between the spindle and the pulse -generating site of the a - motoneuron, and b des-
cribes the size of the quantal EPSP. There is no known data to indicate whether these
three variables are statistically dependent, but we can reasonably assume that they are inde-
pendent. On the other hand, the variables, a, ¢ and @ , being all dependent on C ©),
are likely to be correlated. Further, a recent report indicates that a and ¢ may be
correlated with T c::l.so.79 As a result, the statistical average in Equation (5-19) is
extremely difficult, if not impossible, to evaluate analytically. In order, therefore, to
facilitate the present analysis, we assume that these random variables are all statistically
independent. However, as we shall show in the computer simulation study, the main con-

clusions to be deduced will not be grossly affected by any such dependence described above.

.5.6.2 The Signal and Noise Components of the "Spatially and Temporally™
Summated EPSP

By dropping the subscript i in Equation (5-13) and substituting the result
into Equation (5-19), we have the following expression for the "spatially and temporally”

summated EPSP at the pulse generating site of the a - motoneuron.
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o ™ Md  Elb@+QA@+bUc . Al) - cos (o t+0+Qlu)-a ]

+M . EIN®OT, (5-20)
where N (t) is given by Equation (5-14) with the subscript i omitted.

The first term of this equation is proportional to the ensemble average of
the signal components of the sequences of the quantal EPSP's, while the second term is
proportional to the ensemble average of the corresponding noise components. Hence, we
define as the signal component S (f) of the spatially and temporally summated EPSP, the
first term of Equation (5-20), and as the noise component Nf (t), the second term of that
equation. It should be recalled here that the noise component arises from the neural en-

coding process which converts the summated generator current into the afferent pulse train.

Let us first consider the signal component S (). Since the random variables

are assumed statistically independent, we have from Equation (5-20) ,

s =Md B L(@+P A FU . T Al

(5-21)

E[cos(m]f + Q(u])+9 - o) T 1p,

where " =" denotes the average value. But

i+ Q) i0 tieT
E[cos(u]t+Q(u1)+9-u]‘l‘)]=Re Ele . € . e ]
ie

i ("’] f+Q(“’])) "i w‘f
=Re{e .Efle J.Ele ]}

i(u] t+ Q(U])) Y
= Re {e L& 0 - 2, (-iu])}
(5-22)
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where @ T (jw) and 4’9 (jw) are respectively the characteristic functions of the probability.
densities, 'pT'("r) and Po (8) for T and © respectively. Let

i ¥,

& () =B _@e , and (5-23)

.
TINE
8, (o) = By () e , (5-24)

where BT , B9 , ¥ _ and Y g’ Gre real functions of w . Then from Equation (5-22)

T

we have

E [ cos (u] t+ QO (u])+9-w] )] = BT(-w]) . B9 (1) . cos (w]f

® +Q @)+ ¥ o)+ P gM) . (5-25)

Therefore, substituting this result into Equation (5-21), we have for the signal component

of the summated EPSP ,

S =Mcd—.5. [(a+a).A(o)+U.Z.A(u]).BT(-w]).Be(l)

. €Os (u] t+Q (u]) + P T(—u]) + gbg(l) )] (5-26)

Equation (5-26) shows that the signal component of the summated EPSP at
the o - motoneuron contains a constant and a sinusoid. The constant is linearly related to
the average muscle length and N - efferent stimulation, while the sinusoidal component is

. linearly proportional to the variation of muscle length. It should be noted that the amplitude
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and phase of the sinusoidal component are respectively dependent on the amplitude and

phase characteristics of F (s), @ ‘i'(— jw) ,- and Qg (jw) .

Now, consider the noise component Nf (t) of the summated excitatory

postsynaptic potential (EPSP). From Equation (5.20) we have
NG =M.EIN®DI, (5-27)

where N (t) is described by Equation (5-14) with the subscript i omitted. As we have
shown in Sub-section 3.2.2, the series representing N (t) may be truncated without intro-

ducing significant error, provided that a sufficiently large number of terms are retained.

Thus K N]
_ bd 2
N'(t)—M.E[—a—Z ) k—%.Jn(p).x.A(x).
k=1 n=-N]
cos()\t+so+AQO\)-)\T)], (5-28)

where A\, ¢, and B are related to the random variables a, q, ® and c, and are
defined by Equations (5-15) to (5-17) with the subscript i removed. Taking the average

with respect to b and interchanging the order of summation and averaging, we have

K N
Nf(t)=Mad.E.E ) R%)—.E[Jn(s).A.A()\).
k=1n=-N] ©

cos A\t + 0+ QM - AT)]. (5-29)
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Examining this expression in conjunction with Equation (5-26), we see that both the signal
and noise components are attenuated by b . Therefore, statistical variation in the size of
the numerous quantal EPSP's arising from the multiple paths does not affect the signal - to-

noise ratio of the summated EPSP.

Next we take the average with respect to the transmission time T . Since
A, © and B are not related to T, we may approach the problem as in the derivation of

Equation (5-25) and obtain

N =ML B Y Y B ELL @ A AR BN

cos At + @+ QO + d)T(-x))J, (5-30)

where B‘r (w) and l,’JT () are respectively the amplitude and "ohase" of the
characteristic function @T (ju) defined in Equation (5-23) . This equation shows that
the amplitude and phase of each spectral component of Nt (t) is dependent on the ampli-
tude and phase characteristics of @T (- ju) respectively. The significance of this result

will be discussed in the next sub-section.

We recall that © represents the phase shift introduced into the sinusoidal
component of the summated generator current after the signal representing muscle length
variation has passed through the dynamics of the whole muscle and the spindle under con-

sideration. It is reasonable to assume that the variation in © is small. Hence, from

Equation (5-16), we have

@ ~ (h-po. (5.31)
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Substituting this into Equation (5-30) and taking the average with respect to © by the

method used is deriving Equation (5-26), we have

K N]
d 2
ka’——d—.b. z ZL——{E[Jn(ﬁ).A.AO\).
k=1 n=-N] (5-32)

Bp(-N) - By (n -B) . cos At+Q M+ N+ *f'g(n-B)) 1,

where B9 W and ¥ 0 (w) are respectively the amplitude and “phase" of the characteris-
tic function Qe (ju) defined in Equation (5-24). Note that, as in the result of averaging
with respect to T, the amplitude and phase of each sinusoidal component of Nf () are

dependent on the amplitude and "phase" of QG (jw) respectively.

Up to this point in our consideration of the noise component, we have
evaluated the statistical average with respect to three of the six random variables involved.
The remaining random variables are g, a and ¢, which appear in the expressions for A
and B . (See Equations (5-15) and (5-17) ) . Unfortunately, because of the functional
complexities involved, it is not possible, at present, to evaluate the average in Equation
(5-32) with respect to these variables. However, we shall examine this effect on the

noise component in a computer simulation study which is presented in the next secticn.

5.6.3 Significance of the Analytical Results

In order to examine the significance of the analytical results obtained above,

we shall first obtain an expression of the "spatially and temporally" summated EPSP for the
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hypothetical case in which all paths of information transmission are identical. For this
case, the sequences of quantal EPSP's are synchronous, and thus the resulting summated
EPSP is simply the sequence of quantal EPSP's ina single path multiplied by the number
of paths in the system. Let the signal and noise components of this summated EPSP be
denoted by So () and No (t) respectively. Then, from Equations (5-13), . (5-14),

and (5-18), we have

So(i') =—A-Aag.b. [(@a+q) Afo) + U.c.A(u])
(5-33)
cos(w1t+Q(u])+9-w]T)],
and
N(t)sv—— b . z Z ki LB N A
k=1 n=-N °
1
cos (At + Q@) + m-B)6 - AT) (5-34)

where in the latter equation we have truncated the series and approximated ¢ by

(n -B) 6, as we have done in the above analysis.

Now, consider the more realistic case in which the parameters b, T,
and © vary from path to path but the parameters ¢ , a, and q remain invariant. For
this case, the expressions for the signal and noise components can be readily derived from

Equations (5-26) and (5-32) respectively. Thus,

S ) = N;d E.[@+q)-A@ +U.c.A@w)
B (u) - Bg() - cos oy 1+ Q (o) + ¥ o) (5-35)
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and
N,

Md 2
N, () = = LB . ) ) y L3 @ N A

k=1 n=-N, (5-36)

B.(-N . By (h-P) .cos At+Q N+ e.bg (n-B) + wT(-x)).

Synchronously sum= Asynchronously summated

mated pulse trains, pulse trains,S] (t)+N] (t)
s, +N_¢ :
7 b jwT Phase Qg

b e é‘r('i Shifter
‘* Effect of vcric+ Effect of ——\k Effect of variation in 2] ,‘-‘
tion in b variation in T

FIGURE 5-9. ILLUSTRATING THE EFFECT OF VARIATIONS IN b, T, AND 6 .

(SEE TEXT FOR DETAILS OF INTERPRETATION) .

Comparing So(t) and No (t) with S (@) and N ‘ (t) respectively, and
noting that Q'r ©) =Q‘o) = 1, we see that the effect of variations in b, T and ©
is equivalent to the effect of passing the synchronously summated sequences of quantal
EPSP's through a system of fiiters as illustrated in Figure 5-9. The effect of varia-
tion in the size b of the quantal EPSP's is simply that of a pure gain or attenuator, and

. does not affect the spectral characteristics of the summated EPSP. Further, as noted
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previously, the variation in b does not affect the signal ~to-noise ratio of the received

signal at the a - motoneuron.

The variation in the transmission time T is equivalent to filtering the

synchronously summated sequences by a filter whose system function is el©7 ¢‘_r (-] w) -

The factor eI ©7

is included to compensate for the phase shift due to T in So () and
No {t) , since the phase shift w 7 appearing in So t) and No (t) does not appear in the
expression for S (f) and Nt () . The frequency characteristics of ¢T (-i w) then modify
the amplitude and phase of the spectral components of the resulting signal to yield the in-

put to the next phase shifter.

Finally, the effect of variation in the phase shift 0 is similar but not
identical to that of the variation in T. In Figure 5-9, the block entitled "phase
shifter" has such a characteristic that the phase shift due to © in So t) and No ®
becomes zero at its output ; 4’9 , on the other hand, further modifies the amplitude and
phase of the spectral components of So t) and No t) to yie.ld finally the asynchronously
summated sequences of quantal EPSP's, S (t) + Nt @) . It should be noted, however, that
Qe is not a linear filter in the usual sense because while it modifies the spectral com-

ponents of its input, this is not done according to their frequencies.

The equivalent filter ¢1_ (-} w) tends to enhance the signal-to-noise ratio
of the “spatially and temporally" summated EPSP . To justify this statement, note that
the distribution of T can be closely approximated by a continuous probability density, and
hence | °‘r (=i w) | decreases monotonically as | o | increases.  Thus, the noise

component of the summated EPSP is attenuated, while the signal component, being at a
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frequency lower than most of the spectral frequencies of the noise component, is not as

much attenvated. Consequently, the signal-to-noise ratio is generally improved.

As an example, consider the experimentally-observed histograms of the
transmission time shown in Figure 5-10. The distributions shown have been computed
using experimental data from Reference 80 for the medial gastrocnemius and soleus of the
cat. The time axis indicates the time required for transmission from the muscle nerve to
the dorsal root. Each of these histograms can be well approximated by either a gamma
or a chi-square probability density  with appropriate time shift and parameters. However,
in order to obtain the. total time r required to transmit a signal from the spindle to the
pulse-generating site of the a-motormneuron, we must add the conduction time from the
spindle to the muscle ner;/e, together with the so-called synaptic delay, to the transmis-
sion time from the muscle-nerve to the dorsal root. These additional transmission times
are not negligible because the synaptic delay is from 0.5 to 0.9 msec .50 and the conduc-
tion time from the spindle to the muscle nerve is probably of at least the same magnitude.
Actua‘lly there is a further point, that since the spindles are spatially distributed within
the muscle and since the la fibers from these spind!es have different conduction velocities,
the transmission times from the spindles to a point on the muscle nerve must also be dis-
tributed in some manner. Finally, as noted in Section 5.3, the monosynaptic knobs are
distributed more or less uniformly onthe soma-dendritic complex ofthe a-MN. Thus, the
synaptic delay must also vary from path to path. At present, we do not know whether
these portions of the total transmission time are correlated or not, but it is probably not
unreasonable to assume that they are statistically independent. Therefore, by the central

limit theorem , the total transmission times + from the spindles to the pulse - generating
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site of the a-MN tend to be Gaussian distributed. In fact, because the histograms in
Figure 5.10 are already fairly somewhat bell-shaped,(although one shows significant
skewness), the distribution of + should be almost Gaussian '8] Hence, we shall represent
the distribution p_1__(1-) of r by a truncated Gaussian density as shown in Figure 5-11. The
characteristic. function of a truncated probability is practically equal to the characteris-
tic function of the original probability density, provided a sufficient portion of the den-
sity curve is retained .'.8.2 Thus, if p?rf(T) is truncated at two or more standard deviations,

it can be shown that

1 2 .=
-? (3 [A) W T

@T (-jw) = e e (5-37)

where ¢ is the standard deviation and 7 is the mean transmission time. Equation (5-37)
shows that 4’1_ (~jw) is approximately a Gaussian filter , the frequency response of which
is shown in Figure 5-12 for 7 =3.2 msec. and ¢ =0.5 msec. Clearly, the equivalent
filter QT (-jw) is a low-pass filter with sharp cutoff characteristic.and linear phase; in-
deed, as we shall show. in the. computer  simulation: sfydy, .the . frequency ‘characteris'-

tics of th (-jw) do provide the essential filter in demodulating the afferent pulse trains.

Finally, we consider the filtering effect of the equivalent filter 24
which is due to variation of the phase angle @ in the summated generator current, v(t).
(See Equation (5-11)). For the present, let us again postulate that the distribution of 8

is Gaussian with standard deviation 0, and mean 6. Then,

1 2 2 . =
~5 O, W jwo

@ () = e e . (5-38)
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Using this in Equation (5-35) and (5-36), the expressions for the asynchronously summated

sequences of EPSP's become

s = ML B ((arq) AEU.c Ae) B (u.
_002/2
e cos(u]t+Q(u)+ 4)7(-u])+5)], (5-39)
and
K N
_ Md ¢ 2
N )= == . b. z z kUO.Jn(ﬁ).)\.A()\).BT(-A).
k=1 n=—N]
~-B 02/2 (5-40)
e L cos A+ QM) * (N + (- ) O).

Comparing these expressions with Equations (5-33) and (5-34) for the synchronously
summated sequences of EPSP's , we see that a Gaussian distribution of © does not affect
the phase relationship among the spectral components of the summated EPSP, and that

2
% /2

the sinusoid in the signal component is attenuated by the factor e which is

independent of frequency.

In order to examine the effect of ®_ on the amplitude of the noise com-

e

ponent, we recall from Chapter 3, that this component can be considered as composed

of constituents, each of which comprises a set of spectral components. For the:noise
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component No (t) in the present problem, there are K significant constituents, and the

kth constituent has its spectral components at the frequencies,

)\=ku° (a +q)+nu] ’ (5-41)
where |n|=0,1,2, ..., N] .
Now consider first the effect of QO on the kth constituent. The ampli-

tude characteristic of °g is maximum when

n—B=n-konc/u]=0, (5-42)

that is, when n wy = kuo U c . By Equation (5-41), this maximum is located at the fre-

quency,

N = ka_(atq+Uc) . (5-43)

Thus, without loss of generality, if the amplitude spectrum of the kfh constituent is assumed
to be as shown in Figure 5-13(a), then the resulting amplitude spectrum at the output of
Qe' is as given in Figure 5-13 (b), if the standard deviation (5 of the assumed Gaussian
distribution for © is small; and as given in Figure 5-13 (c) , if o, is larger than the
previous value. From this illustration, we see that when o, is small, the amplitude spec-
trum of the kth noise constituent is essentially unaffected. Since the phase relationship
among the spectral components are also unaffected by @ os we have noted previously,
the noise component at the output of o9 remains practically the same as it was at the

input of Qe . Turning now to the signal component, we see that for this case of small
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Oy the signal component is not significantly attenuated. Hence, when the distribution
of 8 is Gaussian with a small standard deviation, the variation in 8 has no significant

effect on the signal-to-noise ratio of the summated EPSP.

On the other hand, when the standard deviation o, is sufficiently large
so that the amplitude spectrum of the kfh noise constituent is significantly modified as the
noise component is passed through &, , the sinusoid in the signal component will also
be significantly attenuated. In this case, whether the signal-to-noise ratio can be im-
proved by the variation in © depends on the relation between several parameters of the
transmission system, but especially on O and the system inputs. It is conceivable that
the signal-to-noise ratio can evendeteriorate as o becomes sufficiently Ic;rge, since
the center frequencies of the noise constituents are not attenuated for any finite value of

-02/2
O, whereas the sinusoid of the signal component is attenuated according to e .

However, it should be noted that no valid conclusion can be drawn if o, becomes so

large as to invalidate the assumption made in obtaining our analytical results.

From the above discussion, we can conclude that small variations in ©
does not significantly affect the signal-to-noise ratio of the summated EPSP, if the dis-
tribution of © is Gaussian. Further, this conclusion is applicable also for other con-
tinuous distribution of @, since Qe (0) = 1 and since | d:e (jw) | decreases mono-

tonically as w increases, as we have noied previously.
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5.6.4 Variation in the Waveform of the Quantal EPSP

In the above analysis, we made the simplifying assumption that the quantal
EPSP's all have identical pulse shape. We shall now remove this restriction and examine
the resulting effects, if any, by allowing the pulse shape to vary from one path to another.
For the present, let the neuronal transfer dynamics be represented by a first-order linear

system. Thus, let

H. ) = -T_:_Tl_; (5-44)
for the ith path. We have shown above that the distribution in the transmission time r
of the afferent fibers plus subsequent summation in the neuron have the equivalent effect
of filtering the synchronously summated sequences of quantal EPSP's, with a filter of
frequency characteristic Q‘r (-jw) . Since the spectral characteristics of a single sequence
of quantal EPSP's are identical with those of the synchronously summated sequences, let us
now consider that each afferent pulse train is filtered by the product Hi:(iw) Q,T.(i-iu) .
Further, let the probability density of T be approximated by a Gaussian density with a
mean of 3.2 msec. and a standard deviation of 0.5 msec. Then, the amplitude charac-
teristic of Hi (jw) Q’T (-jw) may be plotted as in Figure 5.14 for different values of T, .
Curves (1), (2), and (3) are the characteristics for which Ti = 2 msec., 4 msec., and
20 msec., respectively. Since the quantal EPSP produced by a synaptic input near the
pulse generating site has a shorter delay time than that produced by a synaptic input far-
ther qway,éfowe assume that the curve for Ti = 2 msec. is associated with a synapse
located nearest to the pulse generating site, while T P = 20 msec. is associated with one

which is located farthest away but still producing a detectable EPSP at the pulse gen-
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erating site. Thus, the amplitude frequency responses of all filters Hi (jw) 4’1_ (~jw)
are bounded by’ curves (1) and (3), and curve (2) is representative of an intermediate
condition with a mean time constant of 4 msec. In fact, recent evidence indicates
that the majority of synapses is centered about 400 p away from the soma of the MN ,y_
and therefore it seems reasonable to assume that the amplitude frequency responses do
cluster about the mean response of curve (2) in Figure 5-14. Since the quantal EPSP's
produced by synaptic inputs located further away have smaller amplitudes, the contri-
bution to the summated EPSP by the pulse responses of the filters whose frequency -
characteristics are bounded by curves (2) and (3) is relatively small compared to the
contribution made by the others. From these results we may plausibly conclude that

the realistic situation in which Hi varies from path to path, can be analysed without

gross error by assuming that all quantal EPSP's have the same shape.

Now, :consider the effect of the variation in the filter characteristic.
Thus in addition to the frequency responses already considered, we have included in
Figure 5-14 a frequency response curve (Curve 4) which describes a subthreshold model
of electrotonic conduction in a motoneuron, . in cascade with the filter ¢‘r (-jw) -
We see that while the. mid. --frequency response varies somewhat, the cutoff charac-
teristic is essentially unchanged from that provided by 4’7 (-jw) . In view of the ob-
serva’ions made above and the fact that Hi (jw) does not have an effective cutoff
characteristic, it is clear that the filtering of the neural pulse trains is mainly accom-
plished by QT (-jw) , which is associated with the distribution of the transmission
time 7 of the afferent fibers. Consequently, variation in the subthreshold post-synaptic

membrane characteristics, such as time constants, has comparatively little effect on the
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signal-to-noise ratio of the summated EPSP. However, it should be noted that this con-
clusion does not preclude that this variation may be significant for the operation of the

overall reflex.

5.7 Computer Simulation Study

The muscie-fo-motoneuron communication link, asrepresented by the model
shown in Figure 5-8, has been studied by digital computer simulation. The purpose of
this study is to verify the theoretically predicted results obtained in the last section, and
further, to examine the effects of variations in those system parameters which can not be

analytically studied at present.

5.7.1 Method

(@) Simulating the System

When the change in muscle length from its resting length is a biased sinu-
soid as described by Equation 5.10, the ith path of the communication link, in the steady
state, can be represented as shown in Figure 5-15. In this diagram, all symbols and sig-
nals are as defined previously. In particular, we recall that the first three blocks together
represent the impulse generating mechanism of the neural encoder, the delay unit represents
the afferent fiber, and the impulse response of Pi Hi represents the quantal excitatory post-

synaptic potential (EPSP) at the pulse generating site of the a-motoneuron (a-MN).
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In the present computer simulation study, the impulse generating mechanism

is implemented using the following criterion for impulse emission.

N

I, = z vinAt + At) . At 2 a ; (5-45)

n=N;

i=1,2,3,..; and No =0 ;

where a is a positive constant representing the threshold of the encoder; At is the time
increment for computation; and Ni -1 At and N; At are the emission times for. the (i- ])th
and the irh impulses respectively. |t should be noted that this criterion is a numerical
representation of the criterion given in Equation (5.3) for pulse emission in S-S5 IPFM.
Whenever Equation (5.45) is satisfied for the smallest value of Ni , a rectangular pulse
of height h and width At is generated at the input of the time-delay unit, and at the
same instant, |i is reset to zero. Note that the impulse is approximated here by a nar-
row rectangular pulse. The remaining two blocks in Figure 5-15 are simulated using
standard digital computation techniques. The time-delay unit in the simulation has the

-skAt

transfer function, e , where k is a positive integer; while the input-output

relation of P. H, is represented by the convolution summation,

k
X, (kan= Y h (an.U,(kat-nan.at , (5-46)

n=1

where h . (t) is the unit-impulse response of P, H. .



160

The simulated model of the complete communication link comprises a set
of afferent paths each of which is simulated using the methods just described. Although
the multiplicity of paths with different properties can be represented by simply incor -
porating hundreds of paths into the model and generating random numbers for the para-
meters that vary from path to path, this requires an excessive amount of computing time.
An alternative method therefore has been used. In this alternative method, the communi-
cation link is represented by a model with N different classes of afferent paths, where
each class contains only paths with identical properties. Thus, the communication link
can be simulated with a model having only N different pathways whose outputs are

weighted according to the number of paths in the class.

As an example, consider the hypothetical case in which only the trans-
mission time T varies from one path to another. Let there be M paths in the communi-
cation link and let there by m : paths with the transmission time, = . , where

N
i=1,2,...,N; and M = N m. . Then, all pulse trains in the paths of the
2 ‘ P pa

‘21
N X .

i'" class are synchronous, and thus the sum of outputs from these paths is equal to the
output of a single path in this class multiplied by m. . Using this result, and noting

that the other properties of the paths are assumed invariant, we can simulate the M-path

system with a model having only N different pathways as shown in Figure 5-16.

It should be noted that in this alternative method, we treat the parameters
of the communication link as discrete random variables. Thus, in the example that we
have just presented, the probability density of T can be expressed as

N
p.@= Y P 8(T-T) (5-47)

i=1
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where Pri = mi/M , and §(r) is .the unit-impulse function. Thus, in simulating

the system for this case, we can equivalently weight the output of the ith pathway with

Pri

(b) Statistics and Values of the System Parameters

We recall that in the model of the muscle-to~motoneuron communication

link (Figure 5.8) the quantities which vary from path to path are:

1.

the static gain c of Ci (s) which represents the linearized
dynamics relating the change in muscle length to the resulting
change in summated generator current in the primary nerve

endings of the spindle ;

the dynamic gain c. of C i(s) at the frequency ©, of the

sinusoidal component of the change of muscle length;
the phase angle Qi of Ci(s) at the frequency wy i

the constant q. which represents the increase in the summated

generator current produced by constant ¥-efferent activity ;

the time T, which represents the time required to transmit a
pulse from the muscle spindle to the pulse-generating site of

the a-MN ; and
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6. the transfer function Pi (s)H ; (s) whose impulse response repre-

sents the quantal. EPSP.at the pulse generating site of the a=MN.

In order to simulate the communication link it is necessary to specify the
statistics and the range of values for these quantities and other system parameters. Unfor-
tunately, with the exception of T and P (s) H (s), the required information for the re-
maining parameters is completely unknown at present. Therefore, in the present simulation
study, we can only choose the statistics and the range of values to fit relevant physiological

data presently available in the literature.

As we have shown in Sub-section 5.6.3, the probability density pT('r)
of 7 can be reasonably represented by a truncated Gaussian density. In view of the dis-
cussion presented in that sub-section, it is reasonable to assume that the transmission time
from a leg muscle such as the soleus of the cat to the homonymous a-MN has a mean of
3.2 msec., a standard deviation of 0.5 msec., and a range of from 1.7 to 4.7 msec. In
the present simulation study, this Gaussian density is area-sampled to yield a discrete
probability density as shown in Figure 5-17 so that the method of simulation described
above can be applied. The error introduced by this area-sampling is negligible for the

quantizing size A used.

In order fo obtain a reasonable description of the statistical variations in
P(s) H(s) , let us first consider the distribution of mono-synaptic knobs on the surface of
the a-motoneuron (a-MN). Recently Terzuolo and Llinds, using morphological data,
have estimated the distribution of the total synaptic input among different portions of the

soma-dendritic complex of a model motoneuron possessing an average dendritic tree .
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This distribution is described by the histogram shown in Figure 518, wherein the hori-
zontal axis indicates the distance away from the axon hillock. It should be noted that
the ordinate of the histogram can be interpreted as the fraction of the total number of
synaptic knobs, since it is reasonable to assume that statistical variation in the size of
synaptic knob is the same for different portions of the neuronal membrane. There is
evidence that the excitatory synaptic knobs are more or less uniformly scattered through-
out the soma-dendritic complex, and that the inhibitory inputs are more localized in, or
near, the soma.57 Thus, it is plausible that the distribution of excitatory synaptic knobs
is adequately represented by Curve A in Figure 5-18. Since there is also evidence that
the monosynaptic inputs are widely distributed over the motoneuronal surfoce,56'6°

therefore it seems not unreasonable to assume that Curve A in Figure 5-18 also describes

the distribution of the synapses from the primary spindle afferents.

With the distribution of the monosynaptic knobs thus postulated, we now
turn to the problem of representing the statistical variation in the size and the shape of

the quantal EPSP's. A quantal EPSP can be adequately described by the function,

- /T, - /T,
h(t) = bfle - e 1, t=0 , (5-48)

where b, Ty, and T, are constants dependent on the location of the synapse. For our
present purpose, we postulate some empirical relations for b, T] , and T2 as functions

of the distance £ between the synaptic location and the pulse generating site as follows.

b

500 - 0.159x &
(5-49)

T'I 1/b ..cmd'.” T2 = T]/lé

where & is in microns.
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For these relations, the waveform of a quantal EPSP produced by a synaptic input which
is located at the pulse generating site is as shown by Curve 1 in Figure 5-19, whereas
the waveform of a quantal EPSP due to a synaptic input located at a site 200 microns
away is as shown by Curve 3. Furthermore, if the distribution of monosynaptic inputs is
assumed to be given by Curve A in Figure 5-18, then the waveform of the sum of all
quantal EPSP's is described by Curve 2 in Figure 5-19. Some properties of these respon-
ses are given in Table 5-1. The properties of the sum of quantal EPSP's agree closely
with the physiological data for an EPSP evoked by a maximal Group la volley, while

the properties of the quantal EPSP's are similar to those reported in the literature .

TABLE 5-1. COMPARISON OF EPSP'S |
SYNAPTIC TIME TO | IDECAY TIME RELATIVE
TYPE LOCATION PEAK (msec) | CONSTANT (msec) AMPLITUDE

Pulse gene-

. . 0.37 2.0 1.0
rating site
Quantal EPSP
900 microns away
from .the pulse 3.7 20.0 0.083
generating site
Sum of quantal
0.80 4.0

EPSP's
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Therefore, in the present similation study, we assume that the quantal EPSP's are des-
cribed by Equations (5-48) and (5-49), and that the distribution of the synaptic inputs is

given by Curve A in Figure 5-18.

The statistics for the remaining parameters are neither available nor dedu-
cible from the physiological literature at present. Thus, in the present simulation study,
we assume that the probability densities for €_, e, q and O are truncated Gaussian den-
sities. The range of values for all system parameters including the input signal, are chosen

in such a manner that the following conditions are not violated.

1. The summated generator current vi(t), as given by Equation (5-11),

is non-negative forall t andall i.

2. The afferent pulse frequencies lie within the range of from 0

to 120 pulses/sec.

5.7.2 Results and Discussions

The results of the present computer simulation study can be separated into
two groups: The first group shows the effects of variations in each parameter individually
while the second group shows the effect of simultaneous variations in two or more para-
meters. The present investigation is concerned only with the situation in which the change
of muscle length is sinusoidal about a suitable mean length. Thus, in all the simulation

results that we shall present below, this change of muscle length is given by

x({t) = 10+5 cos 25t . (5-50)
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Similarly, the threshold "a" of the neural encoder is kept constant at the value, 0.2, for
all the cases studied. For convenience of comparison, the sinusoidal component of x(t)
is plotted in each graph of the summated EPSP, with the curves appropriately scaled to
give equal range of variation. The curve composed of points designated by the symbol
"0" in Figures 5-20 to 5-29 is the sinusoidal component: of x (t), while the other curve

(symbol "x") represents the summated EPSP which is the output of the communication link.

a. Effect of Variation in Each Parameter Individually

In this part of the simulation study, the waveforms of the quantal EPSP's
are assumed invariant with respect to path, but their sizes may vary. Thus, the time
constants T] and T2 in Equation (5-48) are set at 4.0 and 0.25 msec. respectively,

whence the resulting waveform is as shown by Curve 2 in Figure 5-19.

As a reference for the system's performance we first obtain the curve which
resultswhen all parameters in the communication link are invariant with respect to path so
that all paths are identical. In this case the summated EPSP at the output of the link is
as shown in Figure 5-20. Here, the noise power in the output is so great that the signal
component is not even discernible. In the following, we shall examine the effect of

variation in each parameter individually, with all other parameters held invariant.
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0) Variation in the Size of the Quantal EPSP's

The size of a quantal EPSP is represented by the constant b in Equa-
tion (5-48). This constant varies from path to path in the manner described by Equa-
tion (5-49). Assuming that the distribution of Group 1 synaptic inputs on the soma-
dendritic complex of the a-MN is given by Curve A in Figure 5-18, then the summated
EPSP is as shown in Figure 5-21. Comparing this output with thai shown in Figure 5-20,
we see that variation in the size of the quantal EPSP's alone, has no discernible effect
on the noise content of the summated EPSP. This observation agrees with the theoreti-

cally predicted result given in Sub-section 5.6.2.

(ii)  Variation in the Transmission Time T

When r alone varies from path to path and the probability density of T
is as given in Figure 5-17(b), the summated EPSP is as shown in Figure 5-22. The noise
content of this output is significantly less than that for the case of identical transmission
paths, (Figure 5-20). In Sub-section 5.6.3, we have shown theoretically that this re-
duction in noise content is accomplished by the equivalent filter, QT(-iu), which is
due to the distribution in T . This conclusion can also be established as follows, by
examining the block diagram in Figure 5-16 which has been used to simulate the com-

munication link for the present case.

Let the output of the differentiator in Figure 5-16 be v*(t) and let the

input of the block PH be u(t). Then, the input-output relation for the system of parallel
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paths between v*(t) and u(t) is given by

N
=M Y p. v (t-T) (5-51)

—

i=1

m,
|

where Pri = When Pri is re-defined as given in Figure 5-17 and T, = iA,

N

-

oW~ M T e (). v (1-i8). A, (5-52)
i=1

where NA = 4.6 msec. For digital computation, we can set t= k A without loss of
generality. Thus, Equation (5-52) becomes a numerical representation of the input-
output relation of a linear system whose unit-impulse response is M Py () . Inother
words, the system of parallel paths is a linear digital filter which approximates a linear

continuous filter whose system function is

@© .
M J" p (1) e WTar =M. & . (5-53)

=Q0

On the basis of this observation and of the analytical result derived previously, we now
note that the system of different afferent paths, which connect the muscle spindles to the
pulse-generating site of the a-mofoneuron, apparently operates in a manner similar to

87

a delay-line synthesizer86 and a transversal filter .
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(iii) Variation in the Phase Angle 6

In simulating the communication link for this case, the probability den-
sity of @ has been assumed to be a truncated Gaussian density. For the output shown
in Figure 5-23(a), the mean, 9, of 8 is -100, the standard deviation g, is 450,
and the range of variation is from -1°to0 -19° . For this case of small variation, the
noise content in the summated EPSP is essentially as large as that for the case of identi-
cal paths. This observation verifies the theoretical prediction given in Sub-section 5.6.3.
When 8, o, » and the range of variation are doubled, the resulting output is as shown
in Figure 5-23(b). For this case, the noise content is reduced somewhat, but the signal
component is still not discernible. From these simulation results and the analytical re-
sults obtained previously, we may conclude that the effect of variation in 6 on the noise

content of the summated EPSP is much less than the effect of variation in 7.

(iv) Variation in the Static Gain _cg

The results, together with the assumed distributions of c, » are shown
in Figure 5-24. The mean value of c_ yieldsa pulse frequency of 60 pulses/sec. or
equivalently, about 15 pulses per periodiof the sinusoidal change in muscle length. The
range of variation in <, corresponds to the range of pulse frequencies from 10 to
110 pulses/sec. The graphs in Figure 5-24 show that the noise content of the summated
EPSP can be significantly reduced by variation in c . This observation agrees with

the theoretical result recently reported by Bayly in a study of "neural” pulse frequency
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modulution.26 It is interesting to note that the change in distribution of Cy s shown

in the graphs from (b) to (d), does not significantly affect the noise content of the output.

(v)  Variation in the Dynamic Gain,c

When c alone varies from path to path, the noise content of the summated
EPSP is also less than that for the case of identical paths, as shown by the simulation re-
sults in Figure 5-25. The distribution of ¢, shown beside each graph in the figure, yields
a range of pulse frequencies from 0 to 100 pulses/sec. As in the case of variation in

€y the change in the distribution of ¢ apparently has little effect on the noise content

of the output.

(vi) Variation in the Constant q

The effect of variation in q is identical with that due to variation in the
static gain ¢_, since both q and <, affect only the constant component of the sum-
mated generator current. (Sce Equation (5-11)). Indeed, if we define 10 c, o q
in case (iv) presented above, the graphs in Figure 5-24 will illustrate the effect of varia-

tion in q . Thus, we can conclude that variation in q can also reduce the noise con-

tent of the summated EPSP..
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In this part of the computer simulation study, we have examined the effect
of variation in each random parameter of the communication link. In particular, we have
demonstrated that individual variations in 1, ¢ _, ¢, and q can significantly reduce
the noise content of the summated EPSP, and that,on the other hand, variations in b and
0 have little or no such effect. In the next part, we shall examine the effect of simul~

taneous-variations in two or more parameters of the communication link.

b. Effect of Simultaneous Variation in the Parameters

As we have noted in Sub-section 5.6.1, the parameters € r € and O,
being all dependent on the muscle-and-spindle dynamics, are correlated with one another.
Further, we have pointed out there that there is physiological evidence that <, and ¢
are also correlated with the transmission time . However, in order to facilitate mathe-
matical analysis, we assumed that the parameters were all statistically independent.
Now, in this part of the computer simulation study we shall examine whether the noted
correlations will significantly affect the conclusions, which we have drawn in the above
analysis. We shall study first the case in which Cyr C1 and O are correlated, and
then the case in which € r € and T are correlated. Finally, in concluding the
present simulation study, we shall demonstrate that simultaneous variations in both the
size and the shape of the quantal EPSP's has no significant effect on the noise content

of the summated EPSP .,
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(i) Cor €, and 8 Deterministically Related

When ¢ =0.9c_ and both of them vary from path to path according to
the distribution of ¢ given in Figure 5-24(b), the resulting output of the communica-
tion link is as shown in Figure 5-26. If, in addition, we set 8 =-0.3c - 0.1 which
yields a range of variation from -16.6° to -32°, then the summated EPSP is as shown
in Figure 5-27. Hence we see that the noise content in the output is significantly re-
duced by variations in the gains s and c of the muscle-and-spindle dynamics, while
additional variation in the phase angle 8 does not produce any significant further re-
duction of the noise content. Thus, correlation among these parameters does not affect

the conclusions that we have drawn concerning the effect of their variations.

(ii)  Simultaneous Variations in ¢, ¢, and T

Recently, Carpenter and Hennaman reported that, out of 100 pairs of
unselected primary spindle afferents of the cat examined, the unit with lower stretch
threshold in 74 pairs had the more slowly conducting axon 77 This experimental
finding indicates that, in our model of communication link, the path with larger trans-
mission time, T, is more likely associated with larger values for the gains , and c.
In other words, <, and c are correlated with T with a positive correlation coeffi-
cient. The simulation result for the correlation coefficient, r = 0.7, is shown in
Figure 5-28(c}. The summated EPSP's for r =0 and r = -0.7 are shown in Figure 5-28(b)

and (c) respectively. The noise content in the output for these three different cases is
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FIGURE 5-26. SUMMATED EPSP WHEN BOTH THE DYNAMIC AND STATIC
GAINS VARY SIMULTANEQOUSLY.

FIGURE 5-27. SUMMATED EPSP WHEN THE GAINS AND THE PHASE
ANGLE VARY SIMULTANECUSLY.
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ASSUMED JOINT DISTRIBUTIONS SUMMATED EPSP
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very much less than that for the case of identical paths. (Figure 5-20). Further, the
results demonstrate that correlation between the transmission time and the gains has little

effect on the noise reduction property of the variations in €, s € and T.

(iii) Simultaneous Variations in ¢, €, 0, r, and the Quantal EPSP.

In simulating this more realistic situation, Sy and O are assumed to
vary from path to path as described in (i) above, while T and the gains, Cy and ¢,
are assumed correlated with a correlation coefficient of 0.7 as illustrated in Figure 5-28(a).
Further, the size and the shape of the quantal EPSP are assumed to vary in the manner
described by Equations (5-48) and (5-49), and by Curve A in Figure 5-18 which describes
the distribution of synaptic inputs. The parameter q is set equal to zero since its effect
is similar to that of c, - The summated EPSP for this more realistic representation of the
communication link is shown in Figure 5-29. Comparing this output with that shown in
Figure 5-28(a), we see that the noise content in this output is of essentially the same
magnitude as the noise content for the case in which all quantal EPSP's are assumed iden-
tical. Thus, the variations in the size and the shape of the quantal EPSP do not introduce
any noticeable additional reduction in the noise content of the output. This result con-

firms our conclusion in Sub-section 5.6.4.

In the present computer simulation study, we have verified the theoretical

predictions given in Section 5.6. In particular, we have confirmed that the distribution
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in the transmission time T, plus the summation of pulse trains in the a-MN, constitute

a filter whose low-pass characteristic is essential for accurate demodulation. Further,

we have shown that the noise content of the spatially and temporally summated EPSP

can be significantly reduced by variations in the gains, <, and ¢, of the muscle-and-
spindle dynamics, or by variation in the constant, q, which represents constanfy-efferenf
activity. The combined effect of variations in €y s s and T produces a summated EPSP

which is an excellent representation of the change in muscle length.

5.8 Discussion and Conclusions

In the present chapter, we have investigated, analytically and by computer
simulation, the transmission of a sinusoidal signal from the muscle to a single a-motoneuron
(@=-MN) in the monosynaptic spinal reflex (MSR). The transmission system examined con-
sists of many sensory units and paths whose properties vary from one path to another. In

modelling the system, we have made the following major assumptions:

(@) The summated generator current in the primary nerve endings
is a precursor to neural pulse generation, and is linearly
related to sinusoidal change in muscle length, within the

normal physiological range.

(b) The neural encoding mechanism in the primary afferent of
the muscle spindle is adequately represented by single-

signed integral pulse frequency modulation (S-S IPFM).
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() The quantal excitatory postsynaptic potentials (EPSP's)
summate linearly at the pulse generating site of the

motoneuron (MN).

(d) The "spatially and temporally" summated EPSP carries

the intended information for the MN.

Assumptions (a) and (d) are based on known physiological evidence’ | /72,53

while assumptions (b) and (c) are simplifications made mainly to ensure a sufficiently
tractable mathematical formulation that analytical results may be obtained. In any case,
we believe that the model based on these assumptions retains the main features of the
physiological system and thus is a reasonably good representation of the real situation.

In particular, as we have shown in Section 5.4, the present S-S IPFM model and the
actual neural encoding mechanism of the spindle have many similar properties. Further,
assumption (c) agrees quite closely with known physiological data: There is evidence
that under certain relatively general situations, quantal EPSP's arising from different

58,60
synaptic inputs summate linearly in the soma of the a~-MN.

In Sections 5.6 and 5.7, we have successfully analysed the multi-unit
multipath model of the muscle-to-motoneuron communication link, and obtained a num~
ber of results concerning the functional significance of the variations in the properties
of the transmission paths. In particular, we have shown that variation in the gain of
the muscle-and-spindle dynamics tends to reduce the noise content in the output of the

system. This result indicates that variation in the stretch threshold of the spindles in
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the muscle can improve the signal-to-noise ratio of the “spatially and temporally” sum-
mated EPSP at the a-MN. In addition, we have also shown that the distribution in the
transmission time T, plus subsequent summation of the afferent pulse trains in the a-MN,
together constitute a filter whose impulse response is the probability density of 7. This
latter result agrees with the result recently reported by Williams in his theoretical study
of peripheral nerve bundles. > The low-pass characteristic of this filter provides the
essential filtering characteristic needed for accurate demodulation. The general picture
which emerges from the results of the present study is that the combined effect of varia-
tions in T and in the gain of the muscle-and-spindle dynamics provides the essential
mechanism to achieve fidelity of signal transmission from the muscle to the a-MN. Re-
cently, Poppele and Terzuo|053 reported that the changes in the summated EPSP in the
MN, evoked by sinusoidal stretches applied to the homonymous muscle, followed the
sinusoidal input more closely than did signals derived from individual afferent pulse trains

by low-pass filtering. This experimental observation can be explained satisfactorily on

the basis of neural filtering which we have just described.

The present analysis has been entirely concemed with the transmission of
one sinusoid through the multi-unit multipath system. However, while the results are
strictly applicable only to this particular class of signals, they may be used as an indi-
cation of the transmission properties for signals of more general nature. In any case, the
method presented above may be directly extended to analyze the transmission of a signal
comprising @ number of sinusoids of different frequencies which may approximate arbitrary
input waveforms. A mathematical expression for a single sequence of superposed quantal

EPSP's can be readily obtained using the results that we have derived in Section 3.2.3.
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Then, the expression for the "spatially and temporally" summated EPSP can be derived

and analysed using the approach developed in Section 5.6.

The analysis presented in this chapter can also be extended to investigate
the transmission of signals from the\6 -efferents to the a-motoneuron (a-MN). Recently,
Andersson, et.al. have reported that the transfer characteristics befween\l -efferent
pulse frequency and the spindle afferent pulse frequency is linear, provided the X-ef-
ferent pulse frequencies lie within a certain range, and provided the muscle length is

77
kept constant. in their experiment, single \(-efferent fibers are stimulated by an
electrical pulse train from a pulse-frequency modulator which is essentially a single-
signed integral pulse frequency (S-S IPF) modulator. Thus, if we stimulate the whole
efferent nerve leading to the muscle by a pulse train from a S-S IPF modulator, and selec-
tively block the a-fibers by compression 84 , while the muscle length is simultaneously
kept constant, then the population of spindles in the muscle will have only one time-
varying common input, namely, the \/-efferenf pulse train. Because the degree of
\é-efferenf innervation varies from spindle to spindle 50¢:.md because spindle dynamics
may also vary from one spindle to another, the dynamics relating the “Y -efferent input
to the summated generator current in the primary nerve endings are expected to vary from
one path of information transmission to another. Hence, the signal transmission system

in this case can be represented by a model similar to that shown in Figure 5-8, and con-

sequently, this system can also be analysed using the method developed in Section 5.6.

In the present work, we have only considered the transmission of infor-

mation from the muscle to a single a-motoneuron. However, as noted in Section 5.3,
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the afferent limb of the MSR consists of a number of these communication links. Thus,

in the homonymous a-motoneuron pool, each MN recieves similar information in the
manner described in this analysis. Now if we treat all the a-MN of the pool, in the
same wey as we have treated the spindles in the muscle, it may be feasible to extend the
present anclysis to include signal transmission in the efferent limb of the MSR. However,
this extension could prove to be mathematically intractable because of the interaction
among MN's provided by the feedback paths of the Renshaw cells, with their largely un-

known synaptic connections.

In conclusion the present analysis demonstrates that the multi-unit multi-
path characteristic is essential for fidelity of transmission of information in the afferent
limb of the monosynaptic spinal reflex. The method of analysis developed here can be
applied to study other multi-unit multipath systems in the monosynaptic spinal reflex.

In particular the following conclusions can be drawn:

1.  The dispersion in conduction speeds of afferent nerve fibers,
plus the summation of afferent pulse trains in the neuron,
together constitute an effective low-pass filter which signi-
ficantly reduces the noise content that would otherwise appear

in the summated EPSP ;

2. The dispersion in spindle stretch thresholds also reduces the

noise content of the summated EPSP;
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Variation in postsynaptic membrane characteristics,
such as time constants, has comparatively little
effect on the signal-to-noise ratio of the summated

EPSP.
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CHAPTER Vi

CONCLUSION

6.1 Summary of Results

The present work is concerned with the theory and applications of integral
pulse frequency modulation (IPFM). [t comprises essentially three parts: The first part
deals mainly with the spectral analysis of IPFM, while the second part is concerned with
the application to analogue computation. In the third part, single-signed integral pulse
frequency modulation (S-S IPFM) is utilized as o model of the neural encoding mechanism

for investigating the multi-unit multipath characteristic of neural communication.

The preliminary results of the first part are presented in Chapter 11, where-
in some of the fundamentals of IPFM are reviewed and re-examined. In particular, 5-5
IPFM is shown fo be equivalent to a well-known method of pulse modulation, which has
been generally referred to in the literature as pulse frequency modulation, but has been
colled continuous pulse frequency modulation (CPFM) in the present work in order to
differentiate it from the larger overall class of modulation methods which includes CPFM.
This equivalence of S-S IPFM and CPFM, apparently not established before, effectively
broadens the knowledge of IPFM in the sense that what is known about CPFM is applicable
to S-S IPEM, and vice versa. Another interesting result of the preliminary study is that
IPFM can be implemented exactly by means of a feedback system which operates in many
ways similar to the neural pulse generating mechanism. Finally, demodulation of IPFM
using analogue and digital filters is discussed and is shown to be a summation of pulses

in the time domain.
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The main results of the first part are presented in Chapter 1l1. Here, a
general method for the spectral analysis of S-S IPFM is developed. In this method, the
modulating signal is incorporated into a function e (t) which represents a frequency-
modulated sinusoidal carrier. A spectral representation of the output pulse train can be
readily derived by using this method, provided that the function e (t) can be expressed
in terms of its spectral components. The spectral characteristics of the pulse train have
been examined in detail for a class of modulating signals comprising one or more sinu-
soids. The output of the modulator contains a signal component and a noise component,
where the latter is produced in the modulating process. The signal component is linearly
proportional to the modulating signal as modified by the filtering effect associated with
the pulse shape, while the noise component has an amplitude spectrum of theoretically
infinite bandwidth, which always overlaps the spectrum of the signal component. How-
ever, the significant bandwidth of the noise component is finite and can be shifted out-
side the signal band by proper choice of the modulator threshold a and of the biasing
constant X in the modulating signal. Based on this result, criteria for selecting these
parameters have been derived. These criteria can be expressed in terms of the number

of pulses per period of the highest significant frequency in the message signal.

In concluding the first part of the present study, we represent double-
signed integral pulse frequency modulation (D-S IPFM) approximately by a simplified
model, and then perform a spectral analysis using the method developed for 5-5 IPFM.
The spectral characteristics of a pulse train produced by single-tone modulation is exa-
mined in detail. As in S-S IPFM, the output pulse train contains a noise component and

a signal component, of which the latter is proportional to the modulating signal.
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However, the noise component produced by the present modulation comprises spectral
frequencies which are the fundamental and higher harmonics of the modulating signal
frequency. lts amplitude spectrum is bounded by a curve which is proportional to the
amplitude characteristic of the pulse-shaping element P () in cascade with a differen-
tiator. By using this result, a criteion is derived for selecting the modulator threshold so

that the demodulated signal has a signal-to-noise ratio greater than a pre-specified bound.

The second part of the present study is concerned with the application of
IPEM to analogue computation. The results are presented in Chapter V. A method
for implementing multipliers using S = S IPFM is formulated and studied. In addition,
the method of pulse frequency modulation originally proposed by Goldberg can be closely
represented in terms of S =S IPFM. An upper bound for the error introduced by the re-
presentation is derived. Finally, Goldberg's method of pulse frequency modulation is

used to implement analogue dividers.

In the third and last part, S - S IPFM is used to investigate the functional
significance of the multiplicity of sensory units and neural paths employed in peripheral
neural communication in physiological systems. In particular, the signal transmission in
the afferent limb of the monosynaptic spinal reflex (MSR) of the neuro-muscular system

has been examined for the present purpose in Chapter V.

The afferent limb of the MSR is shown to comprise a sef of similar com=-
munications links in parallel between the muscle and the homonymous motoneuronal

pool. Each link connecting the muscle and a single a - motoneuron consists of numerous
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paths whose transmission properties vary with respect to path. The typical link is re-
presented by @ multi-unit multipath model which takes into consideration, particularly,
the distribution of spindle stretch thresholds, the dispersion of conduction speeds in the

afferents, and the effect of spatial distribution of synaptic inputs.

The neural encoding mechanism in the primary afferent endings is repre-
sented by a single-signed integral pulse frequency modulator. Indeed, the neural en-
coder and the modulator are shown to have many similar functional properties. The
remaining components in the neural communication system are then modelled so that

the main functional features of the biological system are retained.

The transmission of a sinusoidal signal from the muscle to one homony~
mous motoneuron through the typical communication link is investigated analytically
and by computer simulation. A number of results conceming the functional significance
of multi-unit multipath characteristic is obtained. In particular, the variation in the
spindle thresholds can reduce the noise content of the "spatially and temporally” sum-
mated excitatory postsynaptic potential (EPSP), where this noise has been introduced
into the afferent pulse trains by the sensory encoding process. Further, the distribution
in transmission time of afferent paths, plus subsequent summation of the afferent pulse
trains in the a-motoneuron, together constitute an effective low-pass filter whose fre-
quency characteristics are essential for accurate demodulation. The system function of
this equivalent filter is the characteristic function of the probability density of the trans-
mission time; or equivalently, its impulse response is the distribution of the number of
afferent paths with respect to the transmission time. The general picture which emerges

from the results of the present study is that the combined effect of variations in these
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properties of the large number of paths provides the essential mechanism to achieve
fidelity of signal transmission in the sinusoidal steady-state from the muscle to the

motoneuron.

Finally, the spatial distribution of synaptic inputs is shown to have litte
effect on the noise content of the summated ‘EPSP. The noise reduction effect is alsc
negligible for variation in the characteristics of the sub-threshold neuronal membrane,

such as time constants.

6.2 Areas for Further Research

As a result of the present work, several areas are seen to need further

research. These are now briefly described and discussed :

1. Analysis of IPFM with Random Modulating Signals

In the present study, we have derived a number of useful results from
the spectral analysis of 1PFM. with message signals comprising one or more sinusoids.
However, in reality, information-carrying signals are random. Thus, it is desirable
to determine the information transfer characteristics of IPFM for random modulating
signals. With the modulators represented by the models utilized in the present work,

the statistical theory of amplitude quantization can be profitably employed for this

88,89
purpose.
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2, Spectral Analysis of a Generalization of 5-5 IPFM

In Section 5.4, we have noted that the neural encoding mechanism can
be more redlistically represented by replacing the integrator with a "leaky integrator"
in the feedback implementation of S-S IPFM (Figure 2-6). The resulting system can be
represented by a feedback system which contains the model of D-S IPF modulator given
in Figure 2-2 ? . |t appears feasible to develop a method of spectral analysis for this
type of modulation by using the approximate model for the D-S IPF modulator. The -

method can then be profitably applied to theoretical studies of neural communication.

3. Evaluation of the Performance of Prototype Multipliers and Dividers

In the present work, we have formulated methods for implementing ana-
logue multipliers and dividers using pulse frequency modulation; however, the: per-
formance of these devices has not been evaluated in comparison with the commonly
available multipliers and dividers. The multiplier using IPFM appears to have all the
advantages possessed by the time-division multiplier. Further, since the self-excited
time-division multiplier utilizes both pulse-width and pulse-frequency modulations,
whereas the multiplier using IPFM uses only pulses of fixed width, the latter may be
more versatile and more accurate. Hence, it would be of interest to compare their

performance by constructing prototype devices.
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4, Extension of the Analysis on Neural Communication

As noted in Section 5.8, the method of statistical analysis of neural com-
munication developed in Section 5.6 can be extended to include a more general input
signal. Since the transfer dynamics from \J-efferenf pulse trains to the spindle afferent
signal have been shown to be linear',7? it would be interesting to investigate the trans-
mission of a general signal from the\‘ -efferents to the a-motoneuron. In addition to
this, it is desirable to extend the analysis to include signal transmission in the efferent
limb of the monosynaptic spinal reflex. Recently, Poppele and Terzuolo have reported
an experimental finding that the averaged electromyogram produced in a muscle by a
motoneuron population is sinusoidal for sinusoidal input amplitudes greatly exceeding the
53

limits at which linear behaviour ceases for primary endings and single motoneurons.

This physiological observation can probably be satisfactorily explained in terms of neural

filtering.

5. Experimental Verification of the Theoretical Results

on Neural Communication

We have noted in Section 5.8 that the theory developed in Chapter 5 can
satisfactorily explain the experimental observation that the summated EPSP' in the moto-
neuron, evoked by sinusoidal stretches applied to the homonymous muscle, follows the
sinusoidal input more closely than do signals derived from individual offerent pulse trains

53
by low-pass filtering-~ . This experimental observation implicitly confirms the theory.
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However, it is desirable that this theory be verified by further physiological experiments

specially designed fo test the significance of the multi-unit multipath characteristic of

neural communication.
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APPENDIX A

AN ALTERNATIVE DERIVATION OF A MATHEMATICAL EXPRESSION
OF THE OUTPUT IMPULSE TRAIN FOR SINGLE-SIGNED
INTEGRAL PULSE FREQUENCY MODULATION (S - S IPFM)

Equation (3-7) is a mathematical expression of the output impulse train for
S-S IPFM. However, in order to provide some physical insight, we derive this expres-
sion again using a more heuristic approach. Let the output pulses of the modulator in
Figure 3-1 be rectangular with height hd and width T . Since v (t) consists of
impulses of strength d, for this waveform of the output pulse, we must have

1 - e--Ts

PG =h. - . (A-1)

Lumping the differentiator and P (s) together we obtain
sPE) = h( -e‘rs) . (A-2)

Based on this result, we can represent the modulator as shown in Figure A-1 . According
to this representation, the staircase function Py () at the output of the quantizer is de-
layed by a time T and then is subtracted from the same but undelayed signal to produce the
rectangular output pulses as illustrated in Figure A-2. Thus, the output of the modulator

is

x* () = [p2 {t) -p, - 7)1 h. (A-3)

Now, substituting Equation (3-5) into Equation (3-2), we have
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®
2
P, () = 5 [z(f)- ) o, sinka_z () J. (A-4)
k=1
40
Since convergent series can be subtracted term by term, we may substitute this

equation into Equation (A-3) and then simplify to obtain

th sin ko z(t)-sinkuoz(t-‘r)

x* () = [z(t)—z(f-‘r) Z k o N

(A-5)
Now let T approach zero while keeping hT=1 . Then, in the limit, the output pulses

become impulses of magnitude "d", and in addition, using the definition of the deriva-

tive we have

™
**:(f)=g[g%+z E%—-grsinkuoz(f)]
k=1 °
©
_d 2 d .
= [x @ + Z e & S0 kuo z(® . (A-6)
k=1 °

This expression represents the modulator output when P (s) =1, since Equation (A-1)

can be re-written as

PE) =

2 3
lsl r (s‘r) + (S T) ] (A'7)

LST‘—Z.—!- T!-- cee

which approaches” one as T approaches zero while keeping h7 =1. Therefore, it
also represents the impulse train v (t). Clearly,with x* (t) =v (1) in Equation (A-6)

it is identical with Equation (3-7) .
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x(t) 20 z () x* (t)

FIGURE A-1. S =S IPFM WITH RECTANGULAR OUTPUT PULSES.
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FIGURE A-2. ILLUSTRATING THE GENERATION OF A S-S IPF  PULSE TRAIN .
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APPENDIX B

DERIVATION OF A MODEL FOR THE NEURAL ENCODER

FROM A PARTICULAR NEURON MODEL

Recently a mathematical model of the neuron has been developed by
Roberge for the study of small neuron nefworks.67 . This functional model represents
realistically many essential features of the spike-initiation and synaptic loci of the neuron.
In a simplified version, these two loci are lumped together to yield a simpler- model which
incorporates essentially the spike-initiation locus and the subthreshold properties of the
synaptic locus. The block diagram of this simpler model is shown in Figure B1. In this
diagram, Gy(s) describes the subthreshold current-voltage characteristics of the synaptic -
locus,with its input coming from the summing point in the forward path which represents
the additive property known as temporal summation. The inputs to this summing point re-
present ionic currents, while the output of G(s) represents the transmembrane potential
of the synaptic locus. The subsystem. in the feedback path, comprising G5, G4 and the
threshold device, corresponds to the lumped pulse-generating mechanism of both loci,
and incorporates into the model both absolute and relative refractoriness in addition to a
fixed threshold. When the output of G.](s) is sufficiently large to activiate the threshold
device in the subsystem, a pulse is generated and fed back positively to the input of G](s).
This pulse, after passing through G](s), becomes a replica of the neural action potential.
In analogy to the neuronal mechanism, the fedback pulse corresponds to the transmembrane

ionic current at the synaptic locus during the action potential.

In Section 5.4, we have defined that the neural encoder is the mechansim

which converts the summated generator current into an afferent pulse train. The neuron
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model described above also converts current into a neural pulse train. Since it is reasonable
to assume that the general characteristics of the nerve membrane are invariant for different
types of neurons, the neuron model so described can very well be considered as a model

for the neural encoder. In the following, we shall show that this neuron model is indeed
equivalent to a simple generalization of a single-signed integral pulse frequency (S-S iPF)

modulator.

The block diagram of the neuron model (Figure B1) can be re-drawn as shown
in Figure B2(b) through the intermediate step shown in Figure B2(a). The transfer function

G4(s) in Figure B2(b) is given by

[G46)

G 46) = G__']_(s)—Gz(s_) -

1650(1 +5.32 x 1075) (1+23.4 x 10°5)

= 0.458 + —
51450 % 1073y (1+1.2x 1073 5)

(B-1)

The frequency characteristics of the second term of G4(s) is shown in Figure B3. Since
most of the frequency components of the action potential are greater than 250 rads. /sec

(see Reference 67 Appendix 5), we have, as indicated in Figure B3,

4.14 _ _4.6(1+0.12x 10735)

1+1.2 x 10755 1+1.2x 10”55

(8-2)

G4(s) ~ 0.458 +

The block diagram of Figure B2(b) shows that the action potential y(t)

at the neuronal pulse generating site is the superposition of the subthreshold response of
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the membrane and the propagated pulse itself. Since the output of the neural encoder is
the afferent pulse train, the subthreshold response at the output of this model carries no
information and thus can be neglected. Hence, the model of our neural encoder can be
simplified, by eliminating the forward path containing G](s) alone, to that shown in
Figure B4, wherein x(t) represents the ionic current due to distortion of the afferent nerve

endings, while x*(t) represents the afferent pulse time.

The model shown in Figure B4 is a simple generalization of the 5-5S IPF
modulator given in Figures 2.6 and 5.4(a). In Figure B4, the signal fed back to the in-

put is a pulse whose Laplace transform is

GZ(S) G 4(5)

S

[ 1- e-s‘r] ’

where T is the time interval in which the threshold device reinains activated. Thus, if
the block G](s) is replaced by an integrator, the resulting system will be a S-S IPF modu-
lator. In other words, the model given in Figure B4 is a simple generalization of a

S-S IPF modulator, and conversely, the S-S IPF modulator is an idealization of a realis-

tic : model of the neural encoder.
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