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ABSTRACT ’ :

Birational morphisms f : X — Y of nonsingular surfaces are studied-first. Propert'iu of the surfaces
X and Y are shown to Be related to certain numerical data extracted from the configuration of *missing - o
curves” of f, that is, the curves in Y whose generic point is not in f(X). These results are then applied
Jo the problem of decomposing birational endomorphisms of 'the plane into a succession of irreducible
ones.

A graph-theoretic machinery is developed to keep track of the desingulu-iutign of the divisors at
infinity of the plane. That machinery is then used to'investigate the problem of classifying all birational
endomorphisms of the plane, and a complete classification is given in the case of two fundamental pointa.
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o On é&udie d’abord’ les morphmmea birationnels f X — Y de surfaces non singulidres, On montre
que le# propnétéa de X et Y sont liées & certains nombm et matrices extraits de la cdnﬁgnratxon des
- “courbes manquantes® de f, i.e., les courbes sur ¥ dont le point générique n’est pas dans f(X). Ces
résultats sont ensuite appliqués au probléme de décomposer les endomorphumu birationnels du plan en
K successions d'endomorphmmea u'réduchblu . . ’
‘e Une théorie des graphu est développée pour contréler la désingularisation ées diviseurs *3 l’inhni“— du
) ' plan affine. Ces outils sont alors exploités pour étudier le probléme de la classification des endomorphismes
L birationnels du plan et une classification complete est donnée dans le cas od il n'y a que deux npointa
) . fondamentaux. - ® j '
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INTRODUCTION.

o .o . The questions at the origin of this thesis arose in the early seventies in Abhy;nka:r’l seminar at
} ‘ ] Purdue University. The participants were ifiterested in several problems related to the geometry of the
. affine plane. One of those problems was the following: :
~ “—Iﬂ!t X,Y be algebraically independent over a field k. What are all field generators § € k[X,Y], .

ie., polynomials f such that there exists a rational fnnctlon 9 € k(X,Y) with k(f,9) = k(X Y)? Of
. particular interest are the good field generators, that i m, those for which the complementary function g
- s ~can be chosen to be a polynomial in k[X,Y]. (It turned out, though, that not all field generators are
" good Tr), [26].)
+ Clearly, the study-of good field generators is more or less equivalent to the study of birational

L]

. endomorphisms of A2, since these are just given by homomorphisms ¢ : k| X, Y| — k[X, Y| such that
k(¢(X), 8(Y)) = k(X,Y), i.e., ¢ can be viewed as a pau- of elements f, g of k[ X, Y| such that k(f, g) =
k(X,Y). A weltknown “non-trivial’ (not automorphic) birational endomorphism of A? is the “standard
affine contraction in A?" (see II1.2.1) given by ’

-, ‘ ¢:k[X,Y] — k|X,Y] ’

B - . X X

: ' ' S - Y — XY. S
oo L -4

¢ gives a quadratic transformation of P2, snd in view of the Noether-Castelnuovo factorisation theorem

for birational transformations of P? 11, theorem 6], {12], it, was natural to ask whether every birational

‘ ndomorphizm of A? is a composite of standard affine contractions and, of course, automorphisms.

here ‘was somie surpme when Russell, in conversations with A. Lascu, constructed a counterexample

’(.

is irreducible. (The degtees of f and g in this example are 7, which may well be the minimum possible,

6), namely a bu-atnonal eq\domorphum gb : A% — A% such that ¥ has three fundamental points and

or very close to it, for an irreducible birational endomorphism that is not a standard affine contraction.)

The methods by which the example was constructed, and its irreducibility proved, are as interesting

' _ a8 the example itself. They consist in a detailed analysis of the configuration of “missing curves” (I.1.3f)

of ¥, that is, the curves in the target A? whose generic point is not in ¥(A3). Thes¢e methods underlie

' large parts. of this thesis. Russell soon exhibited a whole %00 of irreducible endomorphisms, some of

. . then; having infinitely near fundamental points. Its diversity shows that to give a rsuonably complete
“.classification of all birational endomorphisms of A2 is likely to be interesting and difficult. The aim of

- N this thesis is to make some contributions to this problem.

: . ' In the first part of this thesis we study birational morphisms of nonsingular surfaces. This is partly

‘because we find it interesting to zee what is the contribution of various properties of A2 taken alone.

(We consider properties such as affineness, factoriality, the property of having trivial units, and othm.)'
But we also believe that it was psychologically necessary to adopt that general point of view, i.e., that
) ‘ our excursion helped us )}o prove things that we could not have understood by staying in the plane. The
o ) influence of Russell’s methods is most visible in sections 2 and 3. The material in these sections consists

essentially in generalizations of facts S.hat Russell knew in t!:e special case of ordinary fundamental points.

i
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In many cases, however, even the correct statement of the generalised tesult was not obvious. Section 4

is devoted to the theory of weighted graphs. References are given at the beginning of that section. Apart
from the last resuit (5.7), section 5 consists. of simple observations and of facts that the author learned
from his professor. The lemma (5.7), which is due to the’author, is not used within thu thesis; however,
we believe that it may become useful in future investigations.

Part 11 is due to the author. It contains the graph-theoretic machinery that is used in part III, ‘
namely, the ihepry of local trees. Without doubt, this is the technical heart of the thesis. Of particular 3
importance are the results numbered (3.8), (3.27), (3.28) and (3.32). In the author’s opinion, the methods
developed here are very appropriate for studying the divisors at infinity oi A3, -

Part 111 contains the material to wéuch the title of this thesis refers. Section 1 (the preliminaries)
contains several known facts, including the characterization of A2 ‘proved by Fujita [2] and Mxyamshx
and Sugie [8]. (1.4), (1.11) and (1.12) are due to the author. We don’t know, however, if (1.4) has been
noticed by other people. (1 11) will be used several times in part III, namely, whenever we prove that
some curve is a coordinate line (1. 9)./Ifu7torollary (1.12) is a characterisation of the coordinate lines in
terms of the multiplicity sequencg/h( finity. Section 2 describes the (rather.poor) state of our kpowledge

on the general problem of classifying the birational endomorphisms of A2. From the beginning to (2.5);” .

we gather the pieces of information obtained from part.I. (2.6) and (2.7) are examples that Russell found
several years ago. It might be a good idea if the reader looks at (2 6) before readm’g anything else in
this thesis. Whatever comes after (2.7) has been found by the author. (2.8) setiles the R *n=1" of
one fundamental point (including infinitely near ones); we don't know if that fact was known before we
proved it. (2.11) is the author’s contribution to the “s00” of examples constructed by Russell. It consists
in & family of irreducible endomorphisms exhibiting a pa.rtlcularly *nasty” behaviour with.respect to
infinitely near fundamental points. {In these examples we have *j > 0" and, in most cases, 5 > 0 see
(1.1.8) for definitions. Before we found '(2.11), all known'irreducible examples had *5 = 0" and a fortiori
%5 = Q" ) In the last section, which is due to the author, we give a complete clamﬁcatnon in the case

*n = 2” of two fundamental points (including 1.n. onies). That classification is given by theorems (3.1)

and (8.2). The proofs'make extensive use of the theory-of local trees developed in part II. Note that
some parts of the proofs generalise to the case “n > 2”. We hope to eventually nse these\méthods to get

. insighit into the general theory. ) . —_—

Prarequll)!t’u and language. For the language and theo;y of basic a.lgebraic’éeometry, we refer to
[5], and in particular to sections V.1, V.3 and V.5 Our groﬁnd field is a fixed algebraically closed
ﬁeld k, of arbitrary charactemtu: An algebraic variety is an mtegrkl separated schemq of finite type
over k (but only quasi-projective varieties will be considered). A surface (resp. a curve) is a variety of
dimension two (resp. one); in particular, curves and surfaces are irreducible and reduced. Alk
surfaces encountered in this thesis are nonsingular. All varieties have di;nension < 2, except at one or
two places where the dimension is arbitrary and where the extra generality is ix:eleva.ut to us anyway.
The words “complete” and *projective” are used interchangeably, and so are “blowing-up” and *monoidal
tnnlf(’mnlhon" (every blowing-up considered here is a blowing-up of a surface at a point). If X is a
surface md Y a subset of X, a point Q’is said to be infinstely near Y if it belongs to = 1(Y), for some
composition ¥ : X’ — X of monoidal transformations. “Infinitely near” is abbreviated “i.n.”.

i
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For a variety X, the statement “Xois factorial” means that it is tlge lpe;:?trum of a Q.F.D.
supp (D) denotes the support of a divisor D. When D is effective and reduced, we will sometimes
. write *D” for thé support of D. Div (X) is the group of divisors of a variety X and Cl(X) is the. divuor

class group, i.e., the group of divisors modulo‘linear equivalence.

Ox denotes the structure sheaf of a variety X and I'( X, Ox) the ring of global sections. For a ring
R (commutative, with 1), the group of units is R*.. We sy X has trivial units if (X, Ox)* = k*.

- A" denotes the affine n-space, P" the pmjective n-space.
The domain and codomain of a morphum f afe sometimes denoted dom (f) and codom (f) respec-

. . tively. .
N Z, Q, R, C denote respectively the set of positive integers, the ring of i integers, the field of rational

numbers, the field of real numbers and the field of complex numbers.

. The cardinality of a set SN denoted by |S|. The g.c.d. of two integers a and b is denoted (a,b). The

symbol (C, C')p stands for the Idcal intersoction number of curves C and C' at a point P.

-

\ The most important of all these comments is the following. Whenever possible, when we consider /
monoidal transformations, the same notation is used for a divisor D of a surface and for-the strict

transforms of D. ) -
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I. ' BIRATIONAL MORPHISMS8 OF NONSINGULAR S8URFACES

Throughout this thesis, we are going to consider birational meephisms f : X + ¥ of nonsingular
(algebraic) surfaces, over some fixed algebraically closed ground field k, the ch istic of k being
arbitrary. In this first part we will develop, to some extent, s general theory of such morphisms. However,
since our ultimate goal is to waderstand the birational endomorphisms of A2, we will be primarily
interested in those facts which are relevant to that special case. In particular, we will often consider the *
‘probkm of describing the nluionn betwoen the structurs of f and the properties of the surfaces X and  *
Y (propcrtlu such as affineness, factoriality, etc., i.c., properties that A2 has). BP' structure of f, we
mein certain configurations of curves and points determined by £, or certain nnm&u:d data which can
be axtracted from these configurations; these notions will be deﬁned in the first twd sections.

° 4

1. Basic Concepts. . "

t

'1.1. DEFINITIONS. Let X, Y bo nonsingular surfaces. A morphism f: X — Y is called a birational
“morphism if it is dominant and if the induced inclusion of function fields is an isomor;phism. Equivalently,
there are open subsets X', Y’ of X, Y respectively such that f restricts to an isomorphism f': X! — Y’
From now on, the domain and codomain of any birational morphinn m*der comlduation
wlll be tacitly assumed to be nonsingular surfaces. °
'__Two birational morphisms f; : X3 — Y;, fa : X — Y3 are egusvalent if thell'e are isomorphisms
2:X) — Xa,y: Y1 — Yasuch that f; = y~1 0 f; 0 z; we denote that relation by j"; ~ fa. Notice that -
it is not compatible with compoeition of morphisms, ie., if f; : X; = Y, s : ¥ - Z;, (i = 1,2) and

hi~ it may happen that g1 o f1 7% g3 © fa.

It is very well known (see for instance [, chap. \'A §5)) that. if X,Y are cbmplete nonamgular
Lmrfu‘.u, any birational morphism X — Y is s composition of monoidal ttmsflormutxo:lu and any biratidnal
transformation f : X~ Y can be written as f = hog~! where g and A are birational morphisms of
complete nonsingular surfaces. The following is an elementary consequence of these facts.

1.2, LEMMA. Let f: X — Y be a birational morphism. Then there is a commutative diagram

Y,

L l'” ) ) r* .
©od (n20) . . ‘

1=
x _.Y=Yo e
!

N, - 1 |
ncb that w; : Y(-OYg-;uthblowmg\-npon‘_l unmeclooodpomt(l<s<n), and X — Y, is an

open immmm
1.3. DEPINITIONS AND REMARKS. Let f:X — Y be a birational morphism. |
(») The smallest n > O such that there exists a di;gr;m as in (1.2)4{1 denoted’
f ~ 9 =n(f) =n(g).
(b) A fundamental point of f is a point P of Y such that f~1(P) contains more than one point. By
(1.3), there are at most n(f) fundamental points. -

\
.

by n(f). Clearly,

E";i; ;*'-"‘




Given a diagram as in (1.2) and+ >0, a fund;ment&l point of D C RSN Y; which I;glonga
to a curve that is contracted by 7y o -:- o x; is sometimes called an infinitely near fundamental paipt of
f; sach a point is not a fundamental paint of f, according to.definition (a). If f has no infinitely near
(abbrf:viated 1,n.) fundamental points we say f has ordinary fundamental points; that is the case iff f
has n{f) distinct fundamental points in its codomain.

|

_{c)} A contracting curve of f is a curve £ in X such that f(E) is a (fundamental) point. By (1.2), each

such curve is isomorphic to an open subset of the projective line. The number of contracting curves is
denoted by c(f); it is an invariant of ~ and we have ¢(f) < n(f). Notice that if P is a fundamental
point then f~!(P) is a union of contracting curves by (1.2); so f has at most ¢(f) fundamental

. points.

(d) f is an open immersion iff f is injective, iff c(f) =0, iff n(f) = 0. f will be said’to be trivial i
n{f) = 0, nontrivial if n(f) > 0. ) . .

(¢) Consider a diagram as in (1.2}, where n is not necessarily n(f). Fori = 1,...,n, let P; be the cen'ter
of x; and fori =0,...,n let f; : X — Y; be the composite

5

X'—"Yn""“‘-’}’i-
B

Then n=n(f)if P, is a fundamental point of f;—1,1<i < n,

(f) The one dimensional irreducible components of the closure (in Y) of Y \ f(X) are called the missing
curves of f. The number of missing curves is denoted by ¢( f); clearly, f ~g=> q(f) = qlg). Given
a curve C in Y, the following are equivalent: J .
o C is a missing curve
e CNnf (X ) is contained in the set of fundamental paints

— —

o for some diagram as in (1.2) (equivalently for every such dxagram) the strict transform of C in
Y, is disjoint from X. '

4

(8) Let go(f) denote the number of missing curves disjoint from f(X). Clearly go(f) is an invariant of
~ and go(f) < g(f). We will see later that go(f) = O whenever X has trivial units and Y has trivial
divisor class group. ‘ '

(h) A minimal decomposstion of f is a diagram as in (1.2), with n = n(f), tog'ether with an ordering™
of the set of missing curves (i.e., the missing curves are labelled C,...,C; where g = g(f) = 0)..
Minimal decompositions will be denoted by D, D', etc. Each time we choose a minimal decomposition
D, the following notations will be used:

Y _J"ox" the diagram, the notation is as in (1.2).

¢

e The center of #; is the point P; of ¥;—; and the corresponding exceptional curve is E; (1 < ¢ < n).
€@y, ¢ The missing curves are Cj,...,C, where ¢ = ¢(f).
(. Whenever possible, the same notation will be used for a curve ln some Y; and for
its strict transform fn ¥; (5 > ). :

e D determines a subset J = Jp of {1,...,n}, defined by

4 k

) J={i|BENnX=0inY,}.

'

) ' 2



- 3 B A = AT S " T T T Tedr TR T
h R - SN ":‘\'}“ AIELERE I A 4 . AU ‘fu Ty L ED IR - B T e i ‘ ) ~
- B .

Thus the curves of Y,, which are disjoint from X are precisely Cj, ..., C, and the E; withs € J.
On the other hand, the contracting curves of f are the E; N X such thats € {1,...,n}\ J. We
see that |J| +¢(f) = n(f), so |J| is an invariant of ~. That number will be denoted by ().

- . Hence

c(f) +3(f) = n(f).

e D determines a subset A = Ap of {1,...,n}, defined by
A={i|P.¢CU---UC, in ¥;_,}.

‘One séea that the cardinality of A depends only on f, i.e., is independent of the choice of a

minimal deconiposition. That number is denoted by §(f) and is, in fact, an invariant of ~
(i) If s € J then there is a 7 such that s < 7 < n and P; € E; (in Y;_,).
- ) (Indeed, if there .is no such j then the inverse image of P; in Y, is E,, which is disjoint from X.
¢ This means that P, ¢ f;_,(X), which is a contradiction (see part (e)) with the fact that P, is a

fundamental point of f;_,.)
59
o (§) At this level of generahty, i.e., when no further conditions are imposed ou X and Y, the philosophy

is that there exists an f having a given property whenever there is no.obvious reason that prevents
it from existing. The following (trivial) fact is an illustration of this principle:

4

. Given nonnegative integera n,c,q, qq, 7,6, there exists an f with n(f) = n, ¢(f) = ¢, q(f) =
- %0(f) = g0, 7(f) = and §(f) = § iff
) - c=0=>n=0

. 90<g 6<n jtc=n and (n=0=>g=g¢
. . Tt s |ge=gei=n

(k) ,if g : Y — Z is a birational morphism, we denote by Ac(f,g) the number of missing curves of f .
which are contracted by s ' . -

o

o——

. 1.4. LEMMA. Lét f: X =Y and g: Y — Z be birational morphisms.
— (8 clge f)=clf) +clg) ~ Ac(f,9) and glg o f) = alf) + glg) = Ac(f, 9)-
' (b) n{go 1) < n(f) +nlg) and j(go¥) <5(f) +35(0) + Aclfi0).
(c) I go(f) =0 then n(go f) = n(f) + n(g) and 5(go f).= 5(f) +j(g) + Ac(f, 9)-

Y

..-PROOF: Let h=go f: X o Z and let Ty,..., Len) be the conft:acting curves of h, labelled in such

a way that I'y,..,,[;(s) are the contracting curves of f. If T is a con;.racting curve of g, I' is not a

- " 'missing curve of f iff I is the closure in Y of some f(l";) with ¢(f) < ¢ < ¢(h). Hence the equation

' e(h) = c(f) = c(g) — Ac(f, g) is clear; an equally straightforward argument proves the second equation of
t e . (a), i.e., (a) is proved.

’ Choose a minimal decomposition of f and one of g, and consider the ;:omspopding corinutative
s - A .

-
7
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) 2,

4 1
! ~
Yais) Zn (o)
! l
: ! ! ‘
X —m Y = Yy — 2 = &
" f g

where < means open immersion and n = n(f) +n(g). By definition, n(go £) < n. The second inequality
of (b) follows from this and (a), so (b) is clear. To prove (c), denote the center of Z — Z;_, by P,
(1 < ¢ < n) and let h; be the composite X «s ¥, (5) < Z, -4 -+ — Z (0 < § < n). By (1.3¢), it’s enough
to check that P; is a fundamental point of h;—; (1 <3 < n). If n(g) <+ < n then that condition holds,
by (1.3¢) applied to the minimal decomposition of f. If 1 <4 < n(y) then by (1.3¢) P is a fundamental
point of Yo = Z () — -+ — Z;, s0 there is a curve T in Y which contracts to Pi. If go(f) = O then
f~1(T') contains a curve, so P, is a fundamental point of h;—;. Hence n(g o f) = a(f) + n(g), and the
second equation follows from that and (a). \% .

REMARK. From the proof of (1.4), we see thatif f: X — Y and g : Y — Z are birational morphisms
and go(f) = O then each pair (Py, D;) of minimal decompositions (of f, g respectively) determines a
minimal decomposition D of go f. More precisely, the commutative diagram is as in the proof and the
missing curves are labelled as follows: If C1,...,Cq(g) are the missing curves of g, and if I';,,..., T, are
(the images in Z of) those missing curves of f which are not contracted, where i; < - - < 1), then the
missing curves of go f are Cy,...,Cy(q), I, ..., I, in that order.

1.5 COROLLARY. Let f: X =Y and g:Y — Z be birational morphisms. Then

c(go f) —glgo f) = (c(£) - a(£)) + (c(9) - 4(9))s
i.e., the number ¢ — q is *sdditive”.

1.6. For a gwcn f : X'— Y, minimal decompositions can be obtained o from another by rela-
belling the missing curves and by changing the order of the blowings-up (hence by relabelling the points
P,,..., P,). More precisely, if § and D' are minimal decompositions of f (where the notation of (1.3h) is
“used for D, and P, E}, C}, etc. for D'), then there is & unique pair (o, r} = (¢?? ", 120’} of permutations
of {1,...,q} and {1,...,n} tespectively, such that

(a)C;=C',,for}$i_<_q. .
(b1) p(F:,T) = p(Py,T) for 1 < < nand for all curves Tin ¥
(b2) u(P:, E;) = p(Py, Ey;) for all§,5 €{1,...,n}

where p(F;,T) and p(P;, Ey) are defined as in (2.4), below, snd similarly for u(F},T) and p(P;, E)).
From (b2), we deduce that :
(b3) P, is i.n. Py iff Py is s.n. PY; S
(b4) % > 75 whenever F; is i.n. P; and ¢ # § -

(el
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where (b4) follows from (b3). A permutation of {1,...,n} which satisfies (b4) is called a D-allowable

0 permutation. Clearly, if 7 is D-allowable and o is any permutation of {1,.. ., ¢} then (o,7) = (¢?+?',r2:?")
for some D'. Moreover, we have the rules 0?:® =id and 0%?" 0 0”" = ¢?:?", and sinilarly for r.
We will often find ourselves in the situation where, given D and A C{1,...,n}, we want the

blowings-up at {P;|i € A} to be performed first, i.e., we want to find D’ such that if r = 0.0’
then r(A4) ={1,...,s}, where s = |A|. For which A is that possible? Say that A is D-closed if for
all4,5 €{1,...,n},1 € A and P, i.n. P, imply j € A. Notice that a topology on {1,...,n} is obtained,
and that if r = rP?', 4 is D-closed iff 7(A) is D'-closed. It is also clear that the existence of a D’ such
that 72:2'(A) ={1,..., s} is equivalent to the D-closedness of A.

For instance, the set Ap (see (1.3h)) is D-open, so we gan always find a minimal decomposition

satisfying A ={n—8+1,...,n}. .

R7Ad
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2. Affineness, Factoriality and Trivial Units.

We will now study the relations between the structure of a.<bi;@.tional morphism f : X — Y and
certain properties of X and Y. The first such property is affineness.

¢

2.1 PROPOSITION. Let f: X — Y be a birational morphism, with missing curves Cy,...,Cq (g 2 0).
Consider the Tollowing conditions:

(a) Y is affine, X is com;ected at infinity and no contracting curve of f is complete;

(b) X is affine; e .

(c) all fundamental points off are in C,U- - UC and the interior off(X) (int {(X) ) isY\(C1U---UC,)
and is affine. . .

Then (a)=>(b)=>(c).

»

The main ingred{ents of the proof are the following two facts. For the first one, see (3, theorem 2, p.
168] or [4, theorem 4.2, p. 69]; for the second, see [5, chap. V, theorem 1.10).

2.1.1 TBEOREM Let U be an open subset of a complete nonsingular surface S. Then U is affine iff
"8 \ U is the support of an effective ample divisor of S.

2.1.2 THEOREM (NAKA!-MOISHEZON CRITERION). A divisor D on a complete nonsingular surface
S'is ample iff D > 0 and D.C > 0 for all curves C in S. (In particular, if D is effective then it is ample
iff D.C > 0 for all curves C in S.) :

Before we prove the proposition, we find it convenient to define some terminologies and symbols, _
(J and to prove some lemmas about them. The definitions are local to this discussion and to the pfSof of
(2.1). These considerations are elementary and probably exist, in one form or another, in the literature.

2.1.3. DEPINITIONS.  Let S be a complete nonsingular surface. For D € Div(S), let the symbol
D > 0 mean that D is effective, D # 0 and every irreducible component C of D satisfies C.D > 0. Then
the set P(S) of divisors D such that D > 0 is a nonempty additive semigroup. Say that a subset Z of §
e is posstive (in S) if Z = supp (D) for some D > 0. Then the set of positive subsets of S is stable under

finite unions.
A
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2.1.4. LEMMA. Let S be a complete nonsingular surface ndlal:buc of S. Then the following are
equivalent: o

(a) Z is positive;

(b) Z is closed, Z # # and every connected component of Z is positive;
(c) Z is closed, 8 # Z # S and every connected component of Z contains & positive set.

Indeed;{a)¢>(b)=>(c) is trivial and to prove (c)=>(b) amounts to proving that if Z is a finite'union of
cnrves which is connected and which contains a positive set Z', then Z is positive. Now a straightforward
argument shows that if C is an irreducible component of Z such that $ £ CNZ' ¥ Cthen CUZ' s

itive; done.
positive; hence we are done \ 5.

2.1.5. LEMMA. Let x: § — S be the blowing-up of a nonsingular complete surface S at a closed
point P. Then:

(a) If Z is a positive subset of S then x(Z).is a positive subeet of S;
(b) If Z C S, then Z is positive in S iff x~1(Z) is positive in 5.

PROOP: (a) Let Z be positive in S; then Z is not the exceptional curve E, s0 Z = supp (D), D e P(8)
and D = Dy + nE (where * 0 " means strict transform) for some nonnegative mteger n and some
effective Do € Div(S), Do #0. If C is an irreducible component of Dy and & its strict transform, then

0<8.D=C.Do +nC.E=C.Do — u(P,C)" [u(P, Do) - n]

and 0 < E.D = u(P, Do) — n, i.e., C.Dg > 0. Hence x(2Z) = supp (Do) is positive in S.

(b) Let Z be positive in S. If P ¢ Z then the assertion is trivial. Assume P € Z and let C be the
set of irreducible components C of Z such that P € C. Let D, € P(S), such that Z = supp (Dp). For - -

each C €€ # 0 we have

C.Do Q

Hence we may choose positive integers &,5 such that

C.Do alCel

ulP, Do) > = > WP Do) - o, : ,

One checks that a5 + bE € P(8), i.e., x~1(Z) is positive. - , -
For the converse, observe that Z = x(x~1(Z))-and use (a). .

PROOF OF (2.1): Assume that (a) or (b) holds. Choose a minimal decomposition of f, with notation
as in (1.8h), imbed Yp i ina complete nonsingular surface ¥, and *complete the diagram®:

Y. —t Yu
| xn ! ?gl

e
.
- -

in #71
X — Y = Yo han d 0
f
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where #; is the blowing-up of Y;; at P; (1 <i < n). Then Y, \ X is connected and contains a curve,
hence is a nonempty union of curves. So Y, \ X is a (possibly empty) union of curves, i.e.,

Ya\X=Cu---ucu |J By
b J'GJ ¥

Ya\X=Ciu---uCu | JE;UuLiu---UL,
‘ jEJ
where, in the second equation, C; stands for the closure in Y, of the missing curve C; and L,,..., L, are
curves in ?,., distinct from C,,...,C, and from the E; with j € J. From noy on, in fact, C; will be t.hg
closure of the missing curve C; in any Y, under consideration. Let x =mj0---0x, and F=F10---07p
then ¥ does not contract L;, so I; C Y, is the strict transform of a curve L; C 70 (1<i<p) We
see that L),..., Ep in Yo (resp. in Y,) are the one-dimensional irfeducible components of ¥ \ Yo (resp.
Ya\Y,). Let

Ap=Liu---UL, inY,
Afi=Lu---UL, in¥, ?

ro=01U--°UCq in?o
Tp=CiU---UC, inY,

Zo=ToUAo m?o

Zn=ruu UE,'UAn in?n
JjeJ
r'Y
and denote by F the set of fundamental points of f. .

CLAIM. ) :
(1) Ya\X=2,1s conne:teduand Yo \ Yo = Ao U points
(2 FcToand ®~}(F)=EyU--.UE,

(8) ¥(Zn) =20

(4) *~2(Ao) =An

(8) int £(X) = Yo \To = Yo \ Zo

{8) Yo \int f(X) = Z. .

In fact, (1) is trivial. If a € F then x~!(a) can't contain Z, (indeed, suppose Z, C x~!(a) then
2n = Ujes E; and p = ¢ = 0; in particular Yo \ Yo contains no curve, so Y, is not affine; since (a) or
(b) holds by assumption, X must be affine, s0 Z, is positive by (2.1.1) and (2.1.2), so is x(Z,) = {a} by
(2-1.5) and this is absurd) and Z, Nx~1(a) # @ because no contracting curve of [ is complete. Thus there
is an irreducible component C of Z, such that § # C Nx~1(a) # C, by connectedness of Z,. Clearly,
C CTa,80a €Tl and F C To. From (1.3¢), we see that x~}(F) = E; U---U Ey, 20 (2) holds. Now (3)
follows immediately, (4) is trivial, (6) is an immediate consequence of (5) and (5) is proved by obeerving
that . ‘

int f(X) S Yo\To S Yo\ 2% S Yo\ % € f(X),




where the only non obvious fact (if any) is the last inclusion. Now let y € Y \ Zo; since F C I's by (2),
o we have ¥ (%) 2 Z,, so
Y EYa\FH2)CYn\Zu =X by (),
hence y € f(X) and the claim is proved. '
Proof of (a)=>(b). If (a) holds then Yo \Yo = Ao and Aq i# positive, by (1), (2.1.1) and (2.1.2). Herice A,
&
is positive, by (4) and (2.1.5b), and Z, is positive by connectedness of Z, and (2.1.4). Let D € P(Y,)
be such that Z, = supp (D); since a straightforward argument shows that Z, meets every curve in Y,
- D is ample by (2.1.2) and X is affine by (1) and (2.1.1). Hence (b) holds, . —
Proof of (b)=>(c). Statements (2) and (6) show that f restricts to an isomorphism

7 (int f(X)) — int f(X),

and that f~!(int f(X)) = X\ 7 ~*(Zp), whicli is just the open set obtained by removing the contracting
curves from X. But if (b) holds then X is affine, thus so is X minus the contracting curves, since removing

a curve from an affine nonsingular surface yields an affine surface (by, say, a straightforward nrgungent

using (2:1:1) and (2.1.2)). Hence we are done. y r

2.2. COROLLARY. Let f: X — Y be a birational morphism and suppose that Y is affine. Then the
following are equivalent:
" - (a) X is affine,

R (b) X is connected at infinity and no contracting curve of f is complete.

The next properties (for a surface S) that will interest us are (1) the property of having a trivial
divisor class group, i.e., C1(S) = 0, and (2) the property of having trivial units, i.e., I'(S, 0s)* = k*. To

-—

begin with, we recall a wellknown fact: '

2.3. PROPOSITION. Let V be a complete nonsingular algebraic variety and U # @ an open subset of
V. Among the irreducible componepts of V\ U, let I'y,..., T, (r > 0f be those of codimension one in V,
and let Ty,..., T, be their images i} CI(V). ’

(a) CI{U) =0 «=>T,,...,T, generate CI(V).

(b) T(U,0p)* = k" <= Ty,...,T, are linearly iz'zdependent. ‘

2.4. PRELIMINARIES. Since we will be dealing with minimal decompositions, it will be necessary
to keep track of the divisors in the various blown up surfaces. Let Y, be any nonsingular surface and

consider
Tn 1
Yo — You — -+ — Y (" >.1)

where x; : ¥; — Y;_, is the blowing-up of Y;_; at some point P; and let E; = #;}(P;) £ Div(Y;)
(1 < i € n). Given integers i,v such that 1 < ¢ < n and 0 £ v-< n and given D € Div(Y,) we define
p(F;, D) to be the multiplicity of P; on the appropriate strict transform of D if { — 1 > v/, and we define
it to be sero if 1 — 1 < v, Then we define

, I‘(Ph D) *
o sp)=| :° |ez
o #(Pa, D):

N




R

‘and we have the following n X n matrix: :
i ' M . 3

: =) =B e p(E)

where, of course, ¢;; = 0 whenever § < j. Let D* € Div(Y,) be the total transform of D € Div (¥.).
Then D* = D +a,E; + -+ an Ep for some integers ay,...,an; let us calculate these integers. If R; is
the i*h row of the identity matrix I,, define an n X n matrix € = (¢;5) by \

1

l

(éu Cm) =R

- (en1 - ern) =R+ (err -+ exr—1)(€is)1<ick (1 <k<n)
1<5<n

N\
So ¢ is completely determined by £, is a low'er triangular matrix with ¢; = 1 (1 £ ¢ £ n) and has
det(e) = 1. For 1 < ¢ < n, define .o

&:2" — Z \K

3 z
L . N P (TRRRRN 0 I B I
i
/ Ty Zp

?
Then a strughtforward argument (descending induction on v) shows that, 1f we deﬁne (D) = (u(D)) €
Z, then , y
|
: D*=D+ Ze.-(D) E; (inY,).
izl

Next, oneft‘lieclu that

6:Cl(Yo)eZ* — CI(Y,)

I a3 n .
| (D-! : ) — D* + Z ai E‘ o
Gn [£3

is an mﬁomhm (where D* € Div(Y,) is the total transform of D € Div(Yp) and E; is the strict
truufoni\ in Y, of E; € Div(Y;)). By the above calculation, one sees that if D € va (Yo) and if the
strict tnnlform of D in Y, is also denoted by D, then .

0=1(D) = (D,—eu(D). .-

Clearly, ~*(E;) = (0, K:), 1 < s < n, where K; denotes the i*® column of the identity matrix I,,.

2.5. DEFINITIONS. Let f : X — Y be a birational morphism and write n = n(f), ¢ = ¢(f) and
g = g(f). Let D be a minimal decomposition for f, with notation as in (1.3h). Then we define the
following matrices:

i p=pp = (p(C1) - w(Cy)) (nx4q)
E=6 = (ulE) - u(Ea)  (nxn)
e=¢€p=(¢;) (nxn)  defined asin (2.4),

9
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. (8) the columns of 'y are linearly independent »

and we let ¢ = ¢}, be the ¢ X n sub-matrix of ¢ obtained by deleting the i*® row whenever s € J.
Obeerve that the product ¢’y is a ¢ X ¢ matrix; its ¢ columns will be regarded as elements of 2°,

even if ¢ = 0 or ¢ = 0. To make sense out of these extreme cases, lot us agres that (1) the columns of
a 0 x g matrix generate Z°, and- are linearly independent iff g = 0; (2) the columns of a ¢ X O matrix
are linearly independcn't, and generate Z° iff c = 0; and (8) the O x 0 matrix has determinant equal to
1. Without tl(ue conwntiom: we would have to restrict the coming bunch of results to the special case
where ¢ and g are positive; ip the proofs, however, these integers will be tacitly assumed to be positive
and verification of the remaining cases will be left to the reader.

2.6 PROPOSITION. Let f: X — Y be a birational morphism and D a minimal decompouition; let the
notation be as in (2.5) and let & = 5(f). - R

(s) If CI(X) = 0, then the columns of ¢'u gonerate Z°, Cl(int {(X))'=0, ¢ c and 6 < 5.

(b) If CI{(Y) = O and the columns of €p generate Z°, then CI(X) = 0.

Oun the other hand, consider €he statements: :

(1) T(X,02) =% _ ' .

(2) T(Y, Oy): =K1 ’

(4) cI(Y)'=o0. ‘ .
Then (1)A(4) => (2)A(3) = (1) => (2), and (3) implies g <cand § <n—g. }
PROOF: Consider the minimal decomposition D, with notation as usual. Imbed Y; in a complete non-

singular surface ¥ and “complete the diagram”:
Y, — ¥

” v
1'0 _,"I-in -
CO : :
: im i™
; f X —- Y=Y — Y
’ f

Let the closures (in Yo) of the missing curves be denoted by Cj, ..., Cy; let the one-dimensional irreducible
components of ¥p \ Yo be denoted by Ly,..., L, (then the one-dimensional irreducible components of
Y \Y: ave Ly,..., Ly as well—recall that we use same notations for curves and their strict transforms).

We have .

. ‘ i
'Vq\Yo=L1U~-UL,U points
Yo\int f(X)=C1U---UCUL U » UL, U points

Yo\X=|JE; uGU---UCUL U---U L,V points.
i jeJ — -
Given D € Div(¥;), let D be its image in C1(¥;). Let 8 : C1(V) @ Z" — C1{V,) be the isomorphism .
given in (2.4). Then ’
, 7MLy = (L -enll)) = @10)
#72(C;) = (Cy,—enl(0y))
r1(Ey) = (0, Ky).

! ' 10
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In view of that, and by (2.3), we-find ‘ .
B N . s f
(2) C1(Y) = O (resp. Y has trivial units) iff L,,..., L, generate (vesp. ave linearly independent in)
Cﬂ’(?o); ‘ , . ot P )
(8) Cl(int f(X)) =0iff L;,...,Lp,Cy,...,C, generate C1(Yo); S
(7) C1{X) =0 (resp. X has trivial units) iff the pet

<

- generates (resp, is linearly mdependent m) the group Cl (Yq) e zn. . ’ —~

On’the other hand, it is clear that

- 4 ? .

'

.« - of e'p generate (reep. are lmearly independent in) Z°.

- ﬁ Now the reader can verify that, except for the inequalities § < 5 ’and'é <n-—1q, every assertion 4 the ’
4 proposition is an 'immediate consequence of (a)-(5). To'proye the two meqnalmes, observe that § xs the

number of sero rows in u. Let U be the n — § x ¢ sub-matrix-of s obtamed by deleting the gero rows,
let V be the ¢ X n. — & sub-matrix of ¢’ obtained by deletmg the §th column whenever the gth row of s is
gero. Clearly, VU = ¢ p The matrices U, V and VU=¢ b determme a commutahve dxagram of Z-linear

’

B “ ' L. "
B A - w ' .
1 ~
.. S Wf - -

If the columna of ey generate Z", iel, wis onto, then y is onto and § L n—c = J If t.he columns of n

a.re lmearly mdependenﬁn e.; uuechve, then u is mjectxve and § <n-g. o ~
—3F COROLLARY Let f : X —~Y bea btrauonal morplusm and suppose tbat Cl (Y) =49 and
I'(Y,0v)*.=Xk". Then ; : . .
() ci(x ) = 0 iff the columns of €p geneute z°
(b) I‘(X, Ox)* =Xk* iff the columns of €' are linearly independent”

. (c) CI(X) =0 and D(X, Ox)* =k* iff e is a square matrix with determinant 1.

2.8. REMARKS. ' v ' ‘
o If the domain and codomain of f have trivial divisor class groups and trivial units then ¢(f) = (/).

o If we restrict ourselves to the case j(f) = 0 then ¢ = ¢ and consequently (2.6) and (2.7) are still
true when all “¢'u” are replaced by “u”.

2.9. COROLLARY Let f X —+ Y bea bu'atwnal morphism and supose that I'(X, Ox) =k* and

CI(Y) = 0. Then go(f) = N

"

PROOF: go(f) is the number of sero columns in u. Since the columns of € i are linearly independent by
+ (2.8), o(f) =0. .

11

{(o.K,-)lfeJ}u{@.—ep(o,-)'nrsjsq}“u{(f,-p)u_s:'sé) Co

(6) {KjlieJYu{-en(C;)|1<]5 < < q} generates (resp. is linearly mdependent m) Z" iff the columns

, -5, ' ,
' B o s ’ . * zn . A . . e . k]
) e o uw N . ., .
. - VAL — Z°, ' .

1
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2.10. COROLLARY. Let f: X -+ Y and g:Y — Z be birational morphisms and suppose that X,
Y and Z have trivial divisor class groups and trivial units. Then n(g9f) = n{f) + n(g) and j(gf) =

3(f) + 3(g) + Ac(f,9)- , .

PROOF: Immediate from (2.9) and (1.4).

. 2.11. COROLLARY. Let f: X - Y be a birational morphism and suppose that CI(X) = 0 and"

A -

I'(X, Ox)* =k". Then I‘(Y,?y)‘ =Kk* and the following are equivalent:

(aJ CI(Y) =0
(b) c=gq
(c) 9+isn. o .

PRroOOF: By (2.6), Y has trivial units and (a)=>(b); kb)#(c) is trivial, so let’s prove (c)=>(a). Refer to '

the proof of (2.8) for the notation. Let G = Cl1(Y,o) C CI(Yo) @ Z" amd ¢, = (L;,0) € G (1 S i < p).
By the proof of (2.6), and since n = g + #, there are elements ¢,,...,e, in C1(Yo) ® Z" such that
(91s---19pr€15++-,¢n) is a basis of C1(Y;) @ Z". By elementary algebra, it follows that (gy,...,gp) is 8
basis of G, i.e., (Ly,..., Lp) is a basis of CI{Y,), so C1(Y) = 0.

8. Factorisations.

-

Let f: X —Y be a birational morphism. A factorization of f is a pair (9, h) of birational morphisms

"such that f = hog; two factorisations (g, h) and (¢’, h') of f are equsvalent if there is an isomorphism u

such that ¢’ = ug and h = h'u. '

Let (g, h) be a factorisation of f, write W = dom (h) = codom (g) and consider h= (W — Yy —
-++ =+ ¥y = Y) determined by some minimal decomposition of h. We say that (g, h) is good if qo(g) = 0
and if the complement of W in Y,x) is a union of curves (then n(f) = n(g) + n(k)’bir (1.4)); (g,h)
is connected if it is good and if every connected component of Y, 4) \W conta.ins a missing curve of f

(equivalently, of h). Hence, if Y is affine and (g, h) is connected then W is connected at infinity. We may _

also consider other types of factorisations by requiring that the surface dom (h) = codom (g) have some

- -

predetermined property. v \

In the preceding sections we considered some numbers and matrices that give some description

of a birational morphism f. All these numbers and matrices can be recovered if, for some minimal

decomposition Do of f, the triple (Jp,, £p,, p,) is known. In this regard, the reader should figure out

an algorithm that lists all triples (J, £, ) determined by minimal decompositions of f, assuming that -

(Yo €0y 1D, ) is known (indeed, one can decide whether a permutation r of {1,...,n} is Do-allowable by
looking at £p,—see (1.6)). We will now investigate the relations between the data (J, £, u) and the various
types of factorisations of f. From what will be said, it will be clear that the problem of enumerating
all equivalence classes of certain types of factorisations, for a given f: X — Y, can be solved by simple
algorithms, as long as one triple (J, £, s) is known.

4

3.1. DEFINITIONS. Let f: X — Y be a birational morphism and 0 a minimal decomposition of f,
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‘ ‘respechvely, D'is the minimal decompoaxtxon of § determined by D, and Dy as in (1.4) and r =7

-with Aotatién as usual. Given a D-closed (see (1.6)) subset A of {1,...,n}, define

- . - . v AR e . A * . 31 s
- K P - ! ' P B TN BEAE
. . - . , N e

- “ N . . ¥
. . ‘ ' .
. . N

»
. . L
1

Q(D,A) = {¢|#(P,.C') 0, all:¢A}
< J(0,A) =€ J|u(P E)=0,allj¢ A} © . .
#(0,4) = 1Q(0, 4)| + IJ(D.'A)I- I ’ .

‘* The next proposition says that to gwe an eqmvalence class of good faCtomatxons of f is ]ust the

same thing as to give a D-closed set. . r

P

3.2. PROPOSITION. Let f : X — Y 'be a birational morplusm and D a mmxmal decomposxtxon of f

Then there is a umque bijection from the set of D-closed subsets of {1,..4n(f)} to the aet of equivalence

classes of good factorisations of f, which satisfies the following condition: if {D, Al is the equivalence

class assigned to the D-closed set A, (9, ) € [0, A}, Dy and Dy, are minimal decompositions of g and h

0,0’ is

the permnuuon defined in (1.6), then r{A4) ={1,...,n(h)}, Jp,‘ =-r(J(D, A)) and the missing curves of

h are the C; withi € Q(D A). That bijection will be denpted by [P, |. Moreover, if D" is any mmxmalr '
decomposition of f and 4" = 17 b "(A), tben [0, A} = [D" A"l ' oo

PROOF For D, let the notation be as usual. Let A be D-closed. By (1. 6), we can choose a minimal

decompoamon D' of f such that ifr= r” ?' then r(A) ={1,...,8}, where s = |A], Use the notations .
P, .E}, &, etc. for p. , Let 'W. be the open subset of Y' obtained by removing C;, s € Q(D, A) and
E,ied (P, A), and let h ; W — Y be the resulting birational morplusm We claim that n(h) = ».

e

" To see this, we use (1.3¢). Indeed let £ €{1,..., 8} and consider the center P of x} : Y, = Y;_,. The

inverse image of Fj in Y] contains an E with self-mteraectxon number equal to —1 (m Y)). K E; nW #
then by definition of W ] er(J(D, A)), so E; has self-intersection number —~1 in Y/; on the other hand
J € r(J(D, A)) € r(J) Jp: and this contradicts" (1 8i). Hence E; NW # 9, and F] is a fundamental )

point of W <+ ¥! — ... — Y!_.. Son(h),= s by (1.3¢) and a minimal decomposition Dy of h is given by
We Y —.om Y’ =Y, together with some ordering of the det of mmsmg ourves'C; (i € Q(D, 4)) of
h. By definition of W, the i image of X < Y] — ... — Y/ is contained i in W. Thus we get g: X o W

such that f = hg. We have go(g) = 0 by definition of W, so (g, h) is a good factorisation of f. We define
|D, A] to be the equivalence clasa of (g, h); one can check that {D, A] is independent of the choice of 9’

. that [D, ] is bijective and that any (g,h) €'[D, A] satisfies the asserted conditions. The uniqueness of
such a bijection is then trivial, and so is the last assertion: [0, A] = [D", 4”|. ;

'3.3. PROPOSITION. Let g: X — W and h: W — Y.he birational morphisms and suppose that X and

Y have trivial divisor class groups and trivial units. Then W has trivial units and g(h) + j(h) < n(h),

. with equality iff CI(W) = 0.

PROOF: Since X has trivial units, W has trivial units by (2.6). Thus g(h) < c(h) by (2.6), 80 g(h)+3(h) <
c(h) + j(h) = n(h), with equality whenever C1(W) = 0. Conversely, if equality holds then c(h) = g(h)

. and t(hg) = q(hg); by additivity of the number ¢ — ¢ (i.e., by (1.5)) ¢(g) = g(g). Thus C1(W) =0 by

(2.11) applied to g.

7
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/3.4, COROLLARY. Let f: X — Y be a birational morphism and suppose that X and Y have trivial

B divisor class groups and trivial units. Let D be a minimal decomposition of f, A a D-closed set and

(9,h) € [D A] (see (3. 2)) IfW = dom(h) = codom(g), then W has trivial units and #(D, A) < |A|,
with equality iff CI(W) =

PROOF |A] = n(h) by (3.2) and #(D,A) = q(h) +J(h) by (3.2) and definition (3.1). Apply (3.3).

- The above fact is interesting because it suggests an _algorithm. Indeed, one can decide whether
p Cc {1 .,n} is D-closed by inspecting £p; so all D- closed sets can be enumerated. Moreover, the
number #(D, A) can be computed from the data (Jp, Ep,up).

The next result relates affineness of our surfaces X, W and Y to the notion of connected factorisations.
Therefore, it becomes relevant to ask whether one can distinguish those D-closed sets A that determine
" connected factorisations from all other D-closed sets. We claim that it can be done. In fact, let (J, &, u)

be the triple determined by D and fix a D-closed set A. Firsf.,.observe that J(D, A) and Q(D, A) can be
obtained from (J,€,u) and A. Second, it is clear that A determin;s)connected factorizsations iff every
1 € J(D, A) satisfies: ’

* There exist €g,...,1x € J(?,A) such that. k 2 0, tp = 1 and such that the following intersection

numbers in Y, are positive: E,,.E;,, ..., E;,_,.E;,, E,. Z-eo(o 4) Cis

where Y, comes from D, i.e., f=(X =Y, = .- = Yy = ¥). One can check.that, if I, isthe n x n
identity matrix and if £* is the transposed of £, then the (i, 7)'" entry of (In— &%) p is E;.C; in Y, and

if § > 7 then the (1, 7)*" entry of (I, — £*)£'is E,.E, in Y,. Hence the data (J, £,1) allow one to decide '

whether A determines connected factorizations.

3.5. PROPOSITION, Let f: X — Y be a birational morphism and suppose that X and Y are factorial
and have trivial units. Let (g, h) be a factorisation of f and write W = dom (h) = codom (g). Then W
has trivial units, g(h) + j(h) < n(h) and the following are equivalent:

(a) W is factorial,
= (b) q(h) + 3(h) = n(h) and (9, h) is a connected factorisation.
REMARK. To be factonal means to be the spectrum of a U.E;D .

PROOF: Only (a)<(b) requires explanations. Let usLadopt the notation we used in the definition of
factorisations—write W < Y, () — -+ — Yo = Y. If W is factorial, then the equality holds by (3.3},

go(g) = O by (2.9) and Y,(a) \ W is a union of curves, since W is affine. So (g,h)is good. If Bisa”

connected component of Yy, () \ W which doesn’t contain a missing curve, then B is a nonempty union
of curves E; with 7 € J, i.e,, B is a union of_complete curves. Since Yy, (y) itself is not complete (for Y
affine), it follows that W is not connected at infinity, which is absurd. Hence such a B doesn’t exist, and
(9,h) is connected.

Conversely, if (b) holds then Cl (W) = 0 by (3.3); since (g, h) connected and Y affine, we see that W

' js connected at infinity. By (2.2), it's enough to show that no contracting curve of h is complete. In fact,

that follows from Cl (W) = 0 : suppose that h has a complete contracting curve; then that curve is one of
the E; (= strict transform in Y, (4 of the exceptxonal curve of : Y; — Y;_;) and consequently has negative
self-intersection number, i.e., W contains a complete curve E with nonsero self-intersection number. On

o
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(b) implies the following (apparently) utronger statement:

1
|

the other hand, imbed Y;,(s) in a complete nonsingular surface S and apply (2.3) to W cs Lthen Eis
linearly equivalent to a divisor D supported at infinity of W, so that E? = E.D = 0, contraidiction.

3.6.1. REMARK. (3.5) continues to hold if we replace condition (b) by: !
(b)) g(h) + 7(h) = n(h) and W is connected at infinity. i
In fact,{a)/\(b)#(b’) is trivial and (b’)=>(a) is precisely what the above argument proves. ]J

Because of its relative simplicity, the case where f has ordinary fundamental points (i.e'., f has n(f)
distinct fundamental points in its codomain) was studied first—see the introduction. Let us now consider
the slightly more general case where j{f) = O (it is more general by (1.3i)). If the domain and codomain
of such an f have trivial divisor class groups and trivial units then g(f) = n(f), det 4 = £1 by (2.8), and

all good factorisations of f are connected.

36 COROLLARY. Let f: X — Y be a birational morphism with J(f) = 0, and suppose that X and

Y are factorial and have trivial units. Let D be any minimal decomposition of f, let 4 = pp and let r,s

be positive integers such thatr + s =n = n(f). Then the’following are equivalent: )

(3) f = hg for some birational morphisms g: X — W and h: W — Y such that W is factorial and has '
' trivial units, n(g) = r and n(h) = s. .

(b) Modulo a permutation of the tolumns and a permutation of the rows, ;2 has the form
H .B
o qG)’
where H is an s X s matrix agl O is the r X s sero matrix (hence G is an r x r matrix and B an

& X r matrix).

PROOF: Write s = (u;;). (a)=>(b) is clear and, (b)=>(a) is almost clear; what has to be checked is that

4

(v') Modulo a permutation of the columns and an allowable (see(1.6)) permutatlon of the rows, u has
sthe form described in (b).
Observe that if 1 <1 < n and 1 < 5 < n are such that y;; = 0 and py415 # 0, thén it is allowable to
interchange rows ¢ and ¢ + 1. Whence (b)=>(b’), and (b’)=>(a) is clear by (8.5).
To conclude this section, we give a result that says that if 5(f) is the largest possible, then f factors

in a nice way

.7. PROPOSITION. Let f: X — Y be a birational morphism and auj;poce that X and Y are futorfal
and have trivial units. Then §(f) < j(f), with equality iff f = hg for some birational morphisms
9:X = Wand h:W — Y such that W is factorial and has trivial units, n(h) = g(h) = ¢(f) and
nlg) = §(f) = 8(£) (and of course 5(#) =0). .

PROOF: Let n = n(f), ¢ = ¢(f), ¢ = ¢(f), 7 = 7(f) and 6 = 6(f). Then 6 <j by (2.6) and we have to
prove that § = 5 iff f factors as specified. -

Suppoes f = hg as specified; choose minimal decompositions D, Dy, of g, h mpectwely, and consider
the minimal decomposition Dy of f obtained from D, and Dy as in the proof of (1.4). Since each missing
curve of h is a missing curve of f and q(h) ¢, f and h have the same missing curves. Clearly, the n(g)

L3
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blowings-up of J; which come from D; have centers i.n. W, i.e., away from the ¢.missing curves of f.
Hence § > n(g) = n — n(h) =n—q=n‘-—c=j, ie,6=3.

Conversely, suppose that § = 5. By (1.6), there exists a minimal decomposition D of f such that
Av={n—§+1,...,n}. Since § =7 and by (28) c =¢, A ¥{q +1,...,n}. With notation as usual for
D,let W =Y, \(CrU-- UC,) and let h: W — Y be the corresponding birational morphism; then
n(h) = g(h) = ¢(h) = ¢. Since the blowings-up ¥;, — --- — Y, have centers away from C,U---UCy (i.e.,
the.centers are i.n. WY, f = hg for some g : X-W. By (3.5), we conclude that W has trivial units and
is factorial by (3.5.1). '

REMARK.  (3.7) continues to hold if every ‘factorial’ is replaced by ‘trivjal divisor class group’. The
proof is the same except that, at the end, we use (3.3) instead of (3.5.1).

4. Weighted Graphs. - .o

%

Because the rest of this thesis depends heavily on weighted graphs and l:elated aph-theoretic
machineries, we feel fhat if is appropriate to give the basic definitions and facts of the theory of weighted
graplis, even jf-miiany algebraic’ geometers have some knowledge of it. This will help e;t"abliahing our
language and notations. In addition to that, we believe that not so many people are familiar with the
kind of “mechanics” which is relévant to us, here. So we include the proofs of the elementary observations ,
(4.12) an& (4.13). These proofs Bhow how one can deduce that “some branch must contract” in certain
situations. Such contraction processes will be crucial‘in many arguments from now. on. Notice that the
corollaries (4.‘16)‘ and (4.18) of (4.15) will be used many times in part III. '

The material covered before (4.11) is approximatively what the author learned from other people
(namely, from,[13], from the beginning of (18] and from discussions with Russell). Everything that comes
after (4.11) has been figured out by the author. However, some of these facts are simple observations
that may have been noticed by many people. Seé also the remark after (4.15).

/ "Graphs. Every graph that we will consider ‘consists of finitely many Jer’t:icea, some of them being con.

nected by lini:s, such that the links are not oriented and at most one can exist between two given vertices.
So let us say that a graph is a pair § = (G, R) where G is a finite set and R is a set of subsets of G, such
that every a € R contains ezactly two elements. The elements of G are called the vertices of § and those
of R are the links of §. Two vertices u, v of § are said to be linked if {u,v} € R; we also say that u is
a neighbour of v, and vice-versa. The set-of neighbours of v is denoted by Ng(v). A vertex v of § is free
(resp. linear, a branch point) if it has at most one (resp. at most two, at least three) neighbour(s). |g|
will denote the number of vertices of . -~

Given vertices u, v, a chain from u to v is a sequence (zg, .. .; z4) of vertices such that ¢ > 0, u = z,
v = g and {z;, %41} € R for 0 < § < g. The chain is simple if the links {70, 21}, ..., {Zg-1,%¢} ave
distinict.- It is a loop if it is simple and if xo = z,. The connected components of G are defined in the
obvious way. A treeis a connected graph without loops. A linear tree is a tree without branch points.

If v is a vertex of a graph §, §\ {v} is the graph (G', R') where G' = G\ {v} and R"'= R\ {a €.
R|v €a). If §is a tree then the connected components of § \ {v} are called the branches of § at v;
clearly, the tree § has | Ng(v)| branches at v.

“
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Weighted Graphs. These are graphs with a weight (i.e., an integer) assigned to each vertex. The

G : connection to Geometry will be explained after the basic definitions.
. 4.1. DEPINITION. A weighted graph is a triple § =‘(G, R, 1) where (G, R) is & graph and {3 is some

set map G — Z. If ve G, }(v) is called the weight of v.
A weighted graph cam be blown up at a link or at a vertex:
! 4.2. DEPINITION. Let §.= (G, R, Q) be a weighted graph and let z be either a link or a vertex of
§. A blowing-up of 9' at z is a weighted graph §' = (G’, R, (1) together with an injective map G — G’,
‘such that if G is identified with its image in G’ then G’ = G U {e} for some ¢ ¢ G and the following
conditions are satisfied}?
(a) if z= {u,v} € R then R' = (R\ {{n,v}}) U {{e,u}, {¢,v}} and
' Q(w) if wé {e,u,v}
Q(w)=4 Bw) -1 ifwe {u,v}
. I3
i ) | : -1 fw=e;

(b) if € G then R'= RU {{i’ z}} and bE

. 0(w) if wé¢ {e,z}
Mw)= 4 Aw)-1 fu=2z
N 1 . ifw=e.

» A blowing-up of G at z exists and is unique, up to isomorphism (define isome;rphiam the obvious way,
.. e, a bijection which preserves links and weights). So we can spea.k‘ of the blowing-up of § at z, and
“blowing-up” can be understood as a process, or an operg.tion\. Notice that we sometimes refer to ¢ as

the vertez which 18 created in the blowing-up; thatvertex is clearly a superfluous vertex of §' :

4.3. DEFINITION. Let § be a weighted graph. A superfluous vertez of G is a linear vertex e of weight
—1 such that if u,v € Ng(e) then u and v are not linked. o

4.4. DEFINITIONS. Let § = (G,R,0) be a weighted graph and ¢ a superfluous vertex of §. A
blowing-down of G at e is a weighted graph G' = (G', R', (V') together with an injective map G’ — G
such that g is a blowing-up of g' at some vertex or link and e is the vertex which is created in that
" blowing-up. A blowing-down of § at ¢ exists and is unique, up to isomorphism; thus we can speak of the
L blowing down of § at ¢ and *blowing-down” can be understood as an operation. We sometimes refer to
e as the vertex which disappears sn the blowsng-down. T ’
P We say that G contracts to G" if either G is isomorphic to § or if §” can be obtained from § by
performing finitely many blowings-down. A weighted graph is said to be minimal if it has no superfluous
vertgx. ° , '

} Two weighted graphs are equivalent if one can be obtained from the other by a finite sequence of
blowings-up and blowings-down; that relation will be indig}ated by G ~ §'. Clearly, if § and §’ are

equivalent then § is connected (resp. has no loops, is a tree) iff G' has the same property.

. Connection to Geometry. Let S be a nonsingular projective surface andlet D € Div(S). If D
e satisfies a strong version of the “normal crossings® condition, a weighted graph can be associated to the

pair (S, D).
17 )

— ’




7
-

3 . P
4.5. DEFINITION; Let S and D be as above. We say that D has strong normal crossings (s.n.c.) if

o - D is effective, reduced, and if the following conditions held: .
- (a) every irreducible component of D is a nonsingular curve;
A (b) if C and C' are distinct irreducible components of D such that C N C' # @, then CNC' = {P} and

<

(cce = 1, for some point P;
(¢) if C, C" and C" are distinct irreducible components of D then CNC' N C" = 6.

w Observe that the s.n.c. condition makes sense even if S is not complete:
4 : '
4.6. DEFINITION. Let S be a nonsingular projective surface and let D be a divisor of S with s.n.c..
The dual graph G(S, D) associated to the pair (S, D) is the weighted graph which has the irreducible
components of [ as vertfces, two of them linked iff they intersect in S, and such that each vertex C has

weight C? (self-intersection number in §).. S
s

Let (S, D) be as above. A

(1) Ifr:5 — S is the blowing-up of S at some P € supp (D), E = x~1(P), D is the strict transform
of D and D' = D + E € Div(8) then D’ has a.n.c. and §(S, D') is a blowing-up of §(S,D) in a natural
‘way. If P belongs to two components of D then G(S, D) is blown up at the corresponding link; if P
belongs to only one component of D then (S, D) is blown up at the corresponding vertex. Clearly, E is
a superfluous vertex of (S, D’) and §(S, D) is the blowing-down of §(S, D') at E.

(2) If F is a superfluous vertex of (S, D) then the blowing-down of (S, D) at F (which always exists)
corresponds to?blowing-up morphism (§ — -) as explained in (1), above, if and only if F! is a rational

curve (by Castelnuovo’s criterion for contracting a curve). ¢

When the divisor D does not have s.n.c. we can use the following fact:

-

-

4.7. LEMMA. Let S be a completé nonsingular surface and suppose that D € Div(S) is reduced,
effective and does not have s.n.c.. Then there existh a sequence S,, — -+ — Sy = S of monoidal

transformations such that, if E; is the éxceptional curve created in S, — S;_, and

{ D® = D € Div(Sp)
D* = (strict transform of D'~ ) + E, € Div(S,), " 1<i<m,

then D™ € Div(S,,) has s.n.c.. Moreover, if m is minimal with respect to these properties then all
+ centers are i.n. D, S,, \ supp (D™) 2 S \ supp (D) and, if S\ supp (D) has no loops at infinity, every E;
such that E? = -1 in S, is a branch point of §(Sm, D™).

Most of the facts contained in this lemma are wéll-ﬂown, and the reader can easily figure out the
last assertions—see (5.1) for the “loops at infinity”.

4.8. DEPINITIONS. Let X be a nonsingular surface. A smooth completion of X is an open immersion
X <+ S such that S is a nonsingular projective surface and S \ X = supp (D) for some D € Div (S) with
s.n.c. (this D is then unique). The weighted graph (5, D) is therefore determined by X « §; by u—sing
the two facta mentioned immediately before (1.2), one sees that the equivalence class of §(S, D) depends
o only on X. That equivalence class will be.}denoted by §{X]. Hotice that smooth completions exist for

any X. %\

[

\ 5 18 _—




o Tr Tt

[ . —_—

1Y *

We now return to pure graph theory and give a few defipitions.

4.9. DEFINITIONS. An arbitrary weighted graph § = (G,R,‘('N determines a bilinear form B(§), n
the real vector space RC which has G as a basis, defined by '

v = 0(v), alt 1,
1 if {vi,y;,}ER
uev = {O if £ #7 and {v;,v;} ¢ R,
Mw, .}. The discrim¥nant of B(g) is denoted by d(9) (i.e., d(§) is the determinant of
the |g|'x | 6] matrix (v;.vy)). One can check that if §’ is a blowing-up of § then d(§') = —d(§). Thus
the ngmber

(—15'9"’d(9)

depends only on the equivalence class of . We define the nonnegative integer (§) = maxdimW, where
W runs in the set of linear subspaces W C RC such that B(§)(z,z) > 0, all z € W. One can check that
(§) depends only on the equivalence class of §. The following (elementary) fact is mentioned in [13, p.
78]:

If (G) <1 then there can be at most two vertices with nonnegative weights, and if there are two of

them then these two vertices are linked and one of the weights is actually sero.

. 4.10. DEFINITION Let § = (G,R,Ql) be a welghted tree. The fundamental group of §, denoted

x(9), is the free grbup on the set G, divided by the relations

(a) wv; = vju;, if {v;,v,} € R,
(b) for each vertex v, if Ng(v) = {vi,,..-,v,} and §; < -+ <ij then v;, - v;, = v~ 0(%),
where G = {v;,v3,...}. One can prove that, up to isomorphism, #(§) is independent of the ordering of

G ; moreover, the isomorphism class of x(J) depends only on the equivalence class of §.

REMARKS.
(a) The fact that x(g) is well defined, i.e., that it is independent of the ordering of G, up to isomorphism,

is clearly true in cases where it comes from topology, as is well known [10]. In the purely graph-
theoretic situation, it doesn’t seem completely) trivial to us. That fact is claimed in [18], without

proof; we don’t know if there exists a published\proof.
(b) The notion of fundamental group is used only once ih this thesis, in the proof of (4.15.1). Moreover,
only the fundamental group of a linear {ree is considered, which is a somewhat trivial case. It is then

clear that we could have avoided considering these groups.

4.11. DEFINITION. Given n € Z, the symbol [n] will denote any weighted tree which has one vertex,
say v, and such that v has weight n.

Now that we are done with the definitions and notations we will cénlider those problems, in the
theory of weighted graplu that we need to understand in order to study birational endomorphisms of
A2, There are two such problema, as far as this thesis is concerned. The first one is to understand
the behavior of the weighted trees which afe equivalent to a linear tree; the second one is to find which
weighted trees are equivalent to [1). So the following considerations belong to pure graph-theory. (Notice

19 = - - -
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. underlying graph is a linear tree.)

~

that a weighted graph is called a (weighted) tree if the underlying graph is a tr;e; it is a linear tree if the

o

Weighted Trees Equivalent to a Linear Tree. ) —_

4.12. LEMMA. Let G be a weighted g;'apb and v a vertex.of G. Suppose that Go,..., Gx is a sequence
of weighted graphs such that Go = §, |Gx| = 1, G: is either a blowing-up or a blowing-down of §;_.,
(1 <1 < k) and none of the blowings-down is a blowing-down at v (so the vertex of Gy is v). Then G

A

contracts to G.

Before we prove that lemma, let us state an elementary fact about contractions of weighted graphs.
This fact will be used in the proof of (4.12) and at scvakab other places without even mentioning it. Its

proof is an easy inductive argument which is left to the reader. v

4.12.1. LEMMA. Let Go,..., Gx be a sequence of weighted graphs such that G, is a blowing-down
of Gi—1 (1 £ ¢ < k). Suppose that ¢ is a superfluous vertex of Go' which disappears in one of these
blowings-down. Then there is a sequence Gy, ..., §i such that §5 = Go, G = Gk, G. is a blowing-down
of Gz= (1< 1 < k) and G is the blowing-down of Gy, at e.

PROOF OF (4.12): If g; is a blowing-down of §,_, for 1 <i < k, we are done. So supposé that §; is
a blowing-up of §,~; and that 1 is maximal with respect to that property. Let ¢ be the vertex created
in that Jast blowing-up. Since ¢ is distinct from v, ¢ must disappear in a blowing-down, say from §,_
to gy (some 7 > ). By-(4.12.1),we may assume that 7 =¢ + 1. Then ;-1 = Gi41, i.e,, we can delete
Gi—1 and G; from the sequence Go,..., gk, and get a shorter sequence with the same properties—and
the same last term gI. The conclusion follows by induction.

4.13. COROLLARY. Every minimal weigjm:d tree equivalent to a linear tree is linear.

PROOF; We will show that if G is equivalent to a linear tree and is not linear, then § is not minimal. Let

Go, - - -, 9 be a sequence of weighted trees such that Go = §, Gx is linear and §; is either a blowing-up
"or a blowing-down of G;—1 (1 <1 < k). Bet v be a branch point of §. For some s, visa linear vertex in

Gi ; consequently, there is a branch B of § at v such that all vertices of B disappear when we go from
Go to §;. Therefore one sees that the lemma (4.12) can be applied to the sub-weighted-tree {v} U B of
G, and we conclude that {v} U B contracts to {v}; in particular, G contains a superfluous vertex.

The following is an immediate consequence of (4.12) and (4 13). It will be used many times whitout
mentioning it. '

4.13.1. COROLLARY. Let § be a weighted tree equivalent to a linear tree, and let b be a brancl{ point
of §. Then for some branch B of § af'b', *b can absorb B”, i.e., we can contract § to a weighted tree §'
such that: ’ AR

(a) §'=9\B asgraphs, . e y

(b)) '\ {8} = 6\ ({6} U B) as weighted graphs.

Moreover, §' (i.e., tba,weigb‘t of b) is completely determined by G and B.

) Giyen a weighted graph §, let t‘he symbol § < ~1 be an abbreviation for the statement “every
vertex of J has weight less than ~1”. The next fact has nothing to do with hneu'w but we include
it here because its proof, which we leave to the reader, is somewhat similar to the proof of (4.12).

e

20




.

4.14, .FacT. If§ < -1, then G is the um'queﬂsgu'mal element of its equivalence class. In part‘icular,
if §'~ G then |§'| 2 |§].
Weighted Trees Equivalent to [1). We ﬁ,ould like to have an algohthm that decides whether a given

. wexghted tree § is e‘uwalent to [1]. Smce\aﬂ is easy to contract 9 to a minimal weighted tree, we can
*  restrict onrselves to the case where § is mmitmml. Before we state the solution of this problem, we need

to introduge some notations:

(a) Given integers wy,...,wn, let [wy,...,wn] be the linear weighted tree
- 8

Wy—wg— "+ —Wp,

r

where the numbers w;, ... ,w, are the weights. If 3,,...,s; are finite sequences of integers, let js;,...,8x]
be the linear weighted tree obtained by regarding “sy,...,3x” as one (long) sequence of inteEers. More-
over, if & has only one term, say s; = (w), we allow ourselves to write [...,8;—4,w, 8;41,...] instead of
[oeeyic1y 80y 8igny.c ) or ooy 8imn, (W), 851, )
(b) Given p, g € Z with p > 0 let R be the p+ 1-tuple (—g—2,-2,...,—2), and let .L{ be the p+ 1-tu1;le
(-2,...,-2,-¢-2). ’
For instance, the tree [L};0,2, R3] is just the same as [—2,—2, —3,0,2, —4] which is, by the way,
4’“"&\\ equivalent to [1). To see this, observe that if A, B are (possibly empty)finite sequences of integers and

}bEZthen ' - .
|A,a,0,b,B] ~ [A,a+4,0,b~ 1, B]

>

" for anyi € Z%our case,
[-2,-2,-8,0,2,-4] ~ [-2,-2,~-1,0,0,~4] ~ [3,0,—4] ~ [0,0,—1] ~ [0,1]

" which is equivalent to [1]; indeed, if n € Z then [0,n] ~ [~1,—1,n] ~ [0,n + 1] and consequently
[0,n] ~ [0,-1] ~ [1].
4.15. PROPOSITION. The following is a list of all minimal weighted trees equivalent to [1).

(a) 1] ' .
. (b) 0], a€Z\{-1} [ 2 | o
(c) ..., Lgs+t, Loat? L:‘;,O ao+1 R, R, R“'“ ...] where ap, ay, ..., is a finite sequence of

nonnegative integers, with k > 1.

[

REMARK When the writer found the above list, he was unaware of the fact that it had appeared

in |9, thporem 9] several years before. However, geometry (over C) is very much involved in Morrow’s
result (i.e., in both the assertion and its proof) while our proposition is purely graph-theoretic so that,
strictly speaking, the two results don’t say the same ihing. For that reason, we include a proof of (4.15).
To begin with, we prove a leamma wh;ch is probably the most dliﬂicult part of the proof.

4.15.1. LEMMA. Let § = |wy,...,wqqa] be such that ¢ > O and wy < -2 (1 <1< g). IFx(9)is
trivial and (G) =1 then § ~ [1] and one of the following holds:

(a) ¢=0and 0 € {w), w3}
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(b) > 0and G = [-2,...,~2,wq,0,~wg — 1]
(c) g>0and § = [wy,-2,...,~2,—1,—g]. -

~

PROOF: The verfices of § will be denoted by :;:1! +++yZq4+2, Where the subscripts correspond to those of
Whye oo yWqtan

Suppose that ¢ =0, i.e., § = [w),w3]. ) > ,

Let F(z;,z3) denote the free group on the set {z1,z3}, let {a,b,...) mean “normal subgroup generated
by a,b,...” and let [a,b] be the commutator of a,b. By definition of x(§),

(9) = F(z1,23) /(|21 22), 1237, 222}") & F(1, 22) /{21237 223]")

-+ since the latter group is abelian; one checks that this is isomorphic to F(z;) / (zl"""”’) Since 1(9) =1,
‘we get 1 —wywg = +1. N

If 1 - wwg = ~1 then wyw; = 2; smce {G) =1, w; <0 orw;y <0 by the fact. stated at the end of
(4.9), 8o (w1,w3) = (~1,-2) or (-2,-—1) => G ~[-1] and {G) = 0, contradiction.

Hence 1 - w w3 =1, 0 € {w;,w3} and (a) holds. \
Suppose that ¢ > 0.
‘Write a; = —w;, l(l <1 < q). The group x(g) is the free group F(zy,...,2¢43) divided by the relations
z3 = zP* and 7,49 = N ] 1) 1 <1< g (for this is already abelian, s0 it’s not necessary to impose
the relations z;%;41 = Zi41%i, 1<t < g+1). fwedefine f:{1,...,q+2} = 2Zby f(1) =1, f(2) = a;
and f(:+2) aiv1f(5+1)— f(s), - 1 <1< g, then z; = z”') 1 € 4 < ¢+2. On the other hand, one
can cl‘xeck that x(G) = F(z,) /(z{“'*’”"‘“'*’”"“’), and since x(§)= 1, f(g+ 1)+ wy4af(q+2) =

From the definition of f, we then obtain . »
» ‘ B

(1) flg+1) — wgsalwgs1f(g+ 1) + f(g)] = %1

() (1~ wosa(wet1 + l)lf\(q + 1) + wera|flg +1) ~ £(g)] = 1.

By assumption, we have a;,...,6, > 2. Using the definition of f and a straightforward inductiv_e

argument, one gets

(9 . 1= f(1) < f(2) < - <-f(g) < flg+1)

(4) 0<f(2)-f() << fla+1)~flg) and ‘,
fE+1) - fE) > f() - fE-Y<¢=>a>2 (25i<q)

In particular, f(¢ + 1) > 1 so (1) implies that wg43 # 0.

Case 1. wg42>0.

Since () = 1, the fact stated at the end of (4.9) implies that wgyy < 0. On the other hand, f(g + 1) -
f(g) > 0 by (4) s0 1 — Weya(wes1 + 1) < 0 by (2) and consequently wy4y = 0. From (1), we find

(6) - Fla+1) —wesaflg) =

If ¢ > 1then f(g+ 1) = aqf(g) — f(g—1) and (5) becomes (a; — we+2) /() - flg — 1) +1. By
(3) and (4), we see that 0 < 6'~ we42 < 1. Thus ay — wes3 = 1 (otherwise 0f(q) - flg—1)=%1 =

- X
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flg—1)=1= g =2 and § = |[wy,ws,0, —w3] ~ |w1,0,0,0] = (G) > 1 by (4.9), contradiction) and
() = f(g = 1) = 1. By (4), we conclude that a; = --- = aq_1 = 2, i.e., (b), holds.

If g=1then § =[-a,,0,ws) ~ [0,0,ws — a;] 80 w3 — a; < 0 by (4.9) (for (§) = 1). On the other ‘

hand, (5) reads a; — wg = +1. Hence 6, — w3 = 1,i.e., § = [w},0,~wy — 1], i.e., (b} holds.
Hence (b) holds whenever wg43 > 0. Since we know that wgy; 5 0, there remains to look at

Case 2. wg42 < 0.
By (2), we see that 1 — wy4g(weyy + 1) 20, whence

‘

(6) weps 2 =1+ > =2,

We+2

On the other hand, write (1) in the form

[£(g+1) — w42 f(q)] - worawgs1flg+1) =£1. -

’

Since f(g+1) 2 ¢+ 1 and f(q) > g by (3), [g+ 1 — qwgi2] —wgpawgs1f(g+ 1) £ 1. Whence wgyy <0,
i.e, —2 Swe41 < —1 by (6).

If g1 = —2 then weya = ~1 by (6), so’(l) becomes f(g+ 1) — f(g) = 1. By (4), it follows that
m==ag=2and g = £(2) = (1) +(£(2) = 7)) = 2 i § = [<2..0, ~2,-1] ~ 1] > (§) =0,
contradiction. Hence wg4; = —1 and we proved:

(1) : Ifq >0 and wetg <0 then wgyy = —1.,
Thus we have
(8) ‘ if g > 0 and wgy3 < 0 then (c) holds

by induction on g. Indeed, the case g = 1 is proved by applying the case “g = 0*'to the blowing-down of
’ G at xg m\d, similarly, the inductive step is done by considering the blowing-down of § at z44;. One has
* {0 observe that the weight of ZTq+32 is still negative after the blowing-down; this is because we found, just

before case 1, that ¢ > 0 => wg43 # 0. Thus the inductive hypothesis can be applied to the blowing-down

{B*!Of g' A . i

PROOF OF (4.15): First, notice that every member of the list is minimal and equivalent to [1]. Indeed,
this is trivial for (a) and (b). That every tree in (c) is equivalent to [1] can be proved by induction on
k and by using the observation just before (4.15)—but this will be rather obvious once the rest of the

proof is understood.

* Let G be a minimal tree equivalent to [1]. To prove: G is in the list. If |G| = 1 then § = [1] (indeed, .

by considering the invariant (—1)l91+1d(§), one sees that [m] ~ [n] = m = n). If |§| = 2 then § = [0, q]
by (4.15.1), since {[1])’= 1 and x((1]) is trivial. ' '

From now on, we suppose that |G| > 2.

Clearly, § is linear by (4.13). Let n be the number of vertices with nonnegative weight, in G. Since
(6) = 1, we have n < 2 by (4.9); we now show that n = 2. If n = 0 then § < —1 and by (4.14)
G#(1);son>0 Ifn =1 then write § = [A,w, B] where A =‘(;1,...,aa) and B = (by,...,bs) are
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sequences of integers less than —1,0 < a < 5 and w 2> 0, We prove that this is absurd, by induction
on a. If « = 0 then (4.15.1‘)&3 violated. Suppose o > 0. Since we assumed a < 8, wehave § > 0. A
tree §' is then obtained from § by performing w blowings-up at appropriate links: §' = |A, 0, B'| where
B' = (t),...,b,,) is just Bif w = 0, and if w > O then B' = (~1,-2,...,~2,b; — 1,b,...,bp). By

using the trick given just before (4.15) we see that G’ is, in any caa;e, equivalent to

¥

g” = [ah"-yaa—lx"lvox bll +aa+ lib'ﬂ""’b('-'+ﬁ]' A

Now §” contracts to a minimal tree " = [A",w"’, B'"], where w'” > 0, A" and B' are sequences of
integers less than —1, B is nof empty and A" has less than & terms. In particular |§"] > 2 (19“'] 22
if clear, and the equality would violate the case |G| = 2 already proved). By the inductive hypothesis
applied to G'”, this is absurd. ' 1 (

Hence n = 2, as claimed. By (4.9), the two vertices with nonnegaﬁ\{;eights are linkea, a;ld one
of them has weight zero. Thus we can write § = {A, 0,w, B such that w >*0; and A = (24,...,2,) and
B = (y,. :Ty.) are sequences of integers less than —1. We proceed by induction on |§|.

If |G| = 3, or more generally if min{r, s) = 0, then by (4.15.1) § = [Lf‘;ﬁ,o, ag + 1] where apg =w — 1
and a; = |G| — 3 are nonnegative. Thus § occurs in the list. »

Suppose |G] > 3. By above, we may assume min(r,s) > 0. Since § = |[...,z,0,w,y1,...] ~
[...;zr +®,0,0,y;,...] we have z, +w < —1 by (4.9). We claim that eqt:qlfty holds. If not, § ~

[..._, g +w,—1,-1,—Ly1,...]~ [...,Zpe1,Zr +w + 1,1,y1 + 1, y3,...], which contracts to a minimal

tree §' = [A’,u', B'] such that w’ > 1, and A’ and B’ are sequences of integers less than —1. If A’ and
B’ are empty then w’ > I and §' = |w'] # [1], which is absurd. If |§’| = 2 then v’ > ll and (4.15.1) is
violated. So |§’| > 2 and, by an earlier part of this proof, §' must have two vertices with nonnegative
weights i.e., contradiction. .

Hence z, + w'= —1 and consequently § is equivalentto [z,...,%,-1, —1,0,0, B}, which contracts
to a minimal tree §’ = [A4’',0',0, B] where o' > 0 and where A’ is a sequence of r’ integers less than
-1, 0 < v < r. Moreover, ' is just the number of blowings-down in that contraction process, i.e.,
(et tayeerze) = L5573 and (if ¥ > 0) z0 < —2. Since we assumed that min(gs) > 0, |§'] =

' 4+ 2-+'s > 3. On the other hand |G’| < |G| so, by the inductive h);pothesis, G’ has the form specified in |

(4.15¢). 1t easily follows that § also has that form, i.e., G occurs in the list:

4.16. COROLLARY. Let § be a minimal weighted tree equivalent to [1]. Then § is linear and:

(a) If|9] =1 then G = [1]. ‘ .

(b) If|G|=2 then G = [0,q], some.a € Z \ {-1}. v o

(c) If |G| > 2 then G has e;accly two vertices with nonnegative weights, these vertices are linked and

exactly one of them, say u, has weight sero. Moreover,.u has two neighbours, say z and y, and
(=) + Q(y) = -1.
4.17. DEFINITION. Let § be a weighted tree and v a vertex of G. We say that v is a special vertez
if the number of branches B-of § at v such that B < —1 (see before (4.14)) is at least two.

4.18. QOROLLARY. Let G ~ (1] and suppose that v is a special vertex of G. Then
%
A3

N(v) + [ Ng(v)| < 1.
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PROOF: Let n = |Ng(v)| u\;l let B,, By be branches of § at v such that By < —1 and B; < -1. By °
(4.18), we can contract § to a linear tree G¥such that v doesn’t disappear in that process. Clearly, the
branches of §' at v are just By, B; (with same weights as in §), and the weight 13'(v) of v in 9" satisfies
0¥'(v) 2 f}(v) + n~ 2, since n— 2 branches of § at v disappeared in the contraction. By (4.16), §' is not
minimal, i.e., 0'(v) = —1 and we get the desired inequality.

5. Other Conditions on the Domain and Codomain.

In section 2 we saw that imposing conditions on the domain and/or codomain of & birational mor-
phism may have consequences on the structure of that morphism. We now return to such considerations,
but the conditions that will be studied have a different flavor: they deal with the graph-theoretic structure

at infinity of our surfaces.

5.1. DEFINITIONS. Let U be a nonsingular surface. We say that U is connected at infinity (resp. has
no loops at infinity, is a tree ot snfinity, is linear at nfinsty) if, in the equivalence class G[U] of weighted
graphs (see (4.8)), all graphs are cﬁkcted (resp. no graph has loops, all graphs are trees, some graph is
a linear tree). Of course, the new definition of “connectedness at infinity® is equivalent to the usual one.

Let us also say tl;at U is rational at infinity if for some (equivalently, for every) open immersion
U — U such that U is a complete nonsingular surface, all curves in U \ U are rational.

" 5.2, FACTS. Let f: X —Y be a birational morphism.

(a) If X is rational at infinity then sois Y.
(b) If X has no loops at infinity then Y has no loops at infinity. < "

These facts are easily proved if f is either an open immersion or a monoidal transformation. The

general case follows immediately by making use of a minimal decomposition.

5:3. FAEQ‘ Let f: X —°Y be a birational morphism. If X is rational at infinity, then all mmmg

curves are ntxonal

5.4. DEFINITION. Let I' be a (not necessarely complete) curve. Let T be the complete nonsingular
model of T (i.e., the set of valuation rings of the function fie}d of ' over the ground field) and let r : f-r
be the canonical birational transformation. Then T\ dom (r) is a finite set of closed points, called the
places of T' at infinity. Let the cardinality of f‘\ dom (r) be dendfed by P, (['). We say that I' kas
Poo (T) places at infinsty. Notice that if T is any complete curve which contains I', then r extends to an
epimorphism 7 : ' — T and 7!(T \ T) is just the set of places of T at infinity.

5.5. LEMMA. Let f : X — Y be a birational morphism where X has no loops at infinity. If Y has
k > 0 connected components at infinity (i.e., an arbitrary member of §|Y| has k connected components),
then ’ ' ’

q
zf’m(Cs)\Skﬁ-q—l, ,

i=1
where C,...,C, are the missing curves of f. In particular, if Y is connected at infinity (resp. if Y is
affine) then each missing curve has at most (resp. exactly) one place at infinity.
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. PROOF: ChmammhmthYMYdYndwnddcthmhg (G,R)glvonby
; @ w {Cy...,Coyhry..., A}, where C; is the closure oi C; in ¥ and 4;,..., 4y are the connected

components °fY\ Y, and R = {{C;, A;) | CinA; % 9). Since X has no loops at infinity we see that §
doesn’t have loops and that each C; belongs to exactly Poo(Cy) links..Thus |R| = T4, Peo(C;). On the
other hand, it is a general fact that a graph § with no loops has at most |G| - 1 lmh (exactly |9] - 1iff
G is a tree). Hence we get the desired meqnl.hty T4

J
5.6, FACT. Let f: X — Y be a birational morphism where X has no loops at infinity and consider a
minimal decomposition of f, with notation as in (1.8h). Let C be the strict transform in Y,, of a missing
curve, let ¢ be the complete nonsingular model of C and let r : & — C be the canonical birational
transformation. Then the set map r : dom(r) — C is bijective. ‘

5.7. LEMMA. Let f: X — Y be a birational morphism, where X is linear at in%ﬁ affine.
Consider a minimal decomposition of f, with notation as in (1.3h). Then Y,,\ X has g = q(f) connected
components, each one of the form

’ Ci—E;,—Es—---—E;,
where {31,...,%} CJ and Ci + Ej, + - -+ E,-,}hu s.nc.in¥,.
PROOF: Since each C; has one place at infinity of Yo =Y by (5.5), we can choose a smooth completion
Yo < ¥ of Yp such that, if L is the divisor of Y with s.n.c. and which satisfies ¥\ Y5 = supp (L), and

if Cy,... , Cq are the closures (in ¥o) of the missing curves, then Ci,...,C, meet L at dutmct pomu
and G'¢ L=1 (1 €1 < q). As in the proof of (2.1}, let us “complete the diagram”:

Yn - Y,
1=, 1%,
1™ 17
0 ) X — Y =-Y “ Yo

I -

Then ¥, \ Yo = m;pp(L), and (in ¥,) C,...,C, meet L at distinct points and C.L=1 (1< i< 9).
Since X has no loops at infinity and L is connected, C}, ..., C, belong to distinct connected components
of ¥, \ X. On the other hand, if W is a connected component of ¥,, \ X and W is its closure in ¥,,, then
W meets L, since X is connected at infinity; hence W contains a C;, and there are exactly g connected
components of Y, \ X. We now show (by contradiction) that each one of these connected components

-has the desired properties. Let
\

. L] ‘ ) .
) D=) Ci+) Ei+LeDiv(Y,)

[T} i€

First, suppose that D does not have s.n.c.. By (4.7), we u\mcomidcr a sequence of monoidal transfor-

- mations Yo = - = ¥y (m>p),mchthatifE;istheemptiondcurvemludbyﬂ — Y

and ' -
{D"::DEDiv(Y,) "

D = (strict transform of D'*) + E; € Div(Yy), __n<i S m,
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.

then D™ € Div (Y n) has s.n.c., all centers are i.n. supp (D) Y, ¥, \supp (D™) & X andifn <i <m

s

then’ . ¢

*) ' E? = ~-1inY,, = E; is a branch point of G = §(Ym, D™).
. - L ]

Let G, be the connected subtree of G, which has Cy,...,C, and the irreducible components of L as
vertices. Let £ be the set of branch points v of G, such that v is not in 4. By (*), E,€Es0 D #£ 4.
If v € I, then let B, be the branch of §,, at v such that B, contains ;. Since G, is a‘finite tree,
we can find v € I such that, if B,, B;,..., By are the distinct branches of G, at v (= k > 2) then
EN(BiU---UBy)=9. By (*) and (1.8i), B; < -1 1 <1< k (see just before (4.14)). Since X is
linear at infinity, g, contracts to a linear tree; since B, Bj can’t disappear in that contraction, B, must

disappear. Thus we see that B, ~ [~1]. Clearly, { ).is a *nondecreasing” function, so
(6(Ym,L)) < (By) = (|-1)) = 0.

On the other hand, (§(Yo, L)) > 0 since Y, is affine—in the terminology of (2.1.3), supp (L) is a positive
subset of Yo. Moreover, §(¥o, L) is just the same as §(¥m, L), since no blowing-up has center s.n. L. -

N

Hence
" - - -
contradiction. So D € Div(Y,) has s.n.c..
Next, suppose that some connected compo"nent W of Y,.‘\X does not have the desired form; it means 3 i

that either the dual tree §(¥n, F) is not linear or C, is not a free vertex of it, where
F=Ci+Ej+-+Ej, €Div(¥,) -—

is the divisor (with s.n.c.) whose support is the closure W of W in ¥,,. In the first case, let v be a
branch point of §(Yn, F); in the second case, let v = C;. Let B,, By,..., By be the distinct branches
of § = §(Yn, ) at v, where B, is the one that contains the components of L. By (1.3i) we see that
B; < -1 (1<1i<k). As above, we see that v *absorbs” B, and a contradiction follows. :

-y
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II. LOCAL TREES

"

As was seen in part I, if S is a projective nonsingular surface and D € Div (S) has s.n.c. (i.e.,
strong normal crossings, see (I.4.5)) then the pair (S, D) determines a weighted graph which carries some
information about the surface S \ supp (D). In many cases, however, the divisor D with which we have to
cope doesn’t have s.n.c.. When that happens, one usually blows-up S at some points of supp (D), until
a dnnsor with s.n.c. is obtained; then one can cbnsxdgr a weighted graph. .

In this second part of our thesis, we present a graph theory that gives some control on the desingu-
larisation process. To give a rough picture, let us say that a local tree is a graph theoretic device that
is assigned to a singular point of an effective divisor on a surface, and that follows its desingularisation,
keeping track of certain arithmetic aspects of the process. When that process terminates: we obtain a
" local tree from which the desired weighted tree can be recovered.

" We refer the reader to the beginning of {1.4) for the terminologies and notations of graph-theory

1. Basic Concepts. py

1.1. DEFINITIONS. A local tree is a 4-tuple T = (T, zo, R, Q1) where:

(a) T is a finite set and zo € T o

(b) R is a collection of subsets of T such that every a € R contains exactly two elements, and (T, R) is
a tree;

(c) Qisaset map T\ {20} — Z. ,

The elements of T are called the vertices, and those of R the links; zo is called the root of T. Given

z € T\ {20}, 0(z) is the weight of z. Write R° = {a € R | zo € a} and call the elements.of R® the
’ principal links of T. The neighbours of the root will be called the princspal vertices.

/ Although it is not clear what a morphism of local trees should be, it certainly makes good ense to

define an isomorphism of local trees to be a bijective map between their seta of vertices, prea“:ém
root, the links and the weights.

1.2. DerINITIONS. I T = (T, zo,R, ﬂs is a local tree, a multiplicity map for T is a set map

. p:RU{x} — N

»

(where N is the set of positive integers) such that u(a) > p(zo) for every a € R°.

A multiplied local tree is a pair (T, ) where T is a local tree and u is a multiplicity map for T
We will always write “m-tree” instead of “multiplied local tree”. Given an m-tree (T ,p), if x
is either the root or a principal link the number u(z) is called its multsphcsty, denote by N(T, u) the set
{z € Nr(20) | p({z,0}) = 1(z0) }-

An isomorphism of m-trees is an isomorphism of local trees which preserves the multiplicities.
1.3. DEFINITIONS (BLOWING-UP)“. Let (T,u) be an m-tree, T = (T, zo, R, ). We are going to
define three notions of blowing-up of (T, u). . .
(1) _A blowing-up of the first kind of (T, ) is an m-tree (T, 4}, where T’ = (T", g, R',)'), together
with a root-preserving injective set map 8 : T — T', such that if we identify T' with its image in 7", then
the following conditions hold::

: 3
28 ‘ : “
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(;) T= TU{c}, forsomee ¢ T" -

(b) There is a set A such that N(T,u) C A C Nt (o), W‘r(zo)\Al <1and:
(b1) R’ = {{e,z0}} U (R\ {{z,20} | = € A}) U {{z,¢} | z € A}
(so that the set A is nothing else than {z € Nr(zo0) | z ¢ N-r:(zo)}l
(b2) 4 ({=,20}) =b({z,20}) — n(xo), if z € Nr(z0)\ 4
(c) #'({zo,e}) < n(zo) '
-1, fz=e
(d) f¥'(z) = { (=), if £ & {zo} U N1 (z0)
0E)-1, ifze M) | - E
A blowing-up of the first kind of (T, s) will be denoted by the symbol (T, u') 2(T, a) or l;y )
(Typ) — (T',4). Notice that the arrow goes from (T',p’) to (T, ) while 8 goqs! from T to T'. One
should keep in mind that the symbol (T, ) ~ (7', s') means, in particular, that a map f has been

chosen. R

(2) A blowing-up of the second kind of (T ,pu) is a blowing-up of the first kind (T, u) — (T',4') such®
that the set A of (1b) is N(T,u). That situation will be 'indicated either by (T’ u') — (T, p) or by
(Tyu) = (T',4):

(3) A blowsng-up of the third kind of (T ,p), or simply a blowing-iip of (T,u), is a blowing-up of the
second kind (T,p) « (T, ') such that equality holds in (1c). That situation will be indicated either by
(T ') = (T, u) or by (T, ) <= (T", ). ' "

1.4. LEMMA. Let T, T’ be local trees and suppose that f : T — T” is such that there exist multiplicity
maps pg, pg such that (T, po) = (T, up) with P as the underlying set map. Then, if i’ is any multiplicity
map for T', there is a unique p such that (T,p) <= (T',4') with p as the underlying set map.

PROOF: T, T'and £ determine the set A of (1.3, 1b). We must have: .

(o) = #'({e,20}) .-

[ ({erzo) + ({5, 20))s 2 € Nr(z0)\ A
"“"“””{w({e,zo}). : e A,

and this is, indeed, a multiplicity map-for T satisfying the desired condition.

’T\.

REMARK. hew of mulhplxcxty maps for a given local tree is an additive (nonempty) semigroup.
The map 4’ =+ p given by (1.4) is a homomorphism of semigroups; denote it by 8*. In general B*is
neither injective nor surjective. In particular, §*(p1) = f*(42) ¢ p1(a) = pa(a), for all pmncipal links-s

of T'.
¢

1.5. COROLLARY. Let T, T' be local trees and B : T — T? a root-preserving injective set map Then
the folbwmg are equivalent: .

(s) 3(u, i) such that (T,p) — (T', ") with B as the underlying map.
(b) 3(p,u') such that (T, ) + (T',p') with B as the underlying map. . T

Y ° A Y
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(c) 3 (;\z, u') such that (T , ) %‘(T', ') with § as the underlying map. -

1.6. DEFINITION. Let T, T' be local trees. An identification map is a root-preserving injective set
map 8 T ~ T, such that the equivalent conditions of (1.5) are met. The symbol T + T’ (or T/ — T)

. will be an abbreviation of,the following statement:

Ther:? exists at least one identification map T — T, and a choice of such a map has been made.
_Moreover, T will be regarded as a subset of T' via that identification map (whenever possible).
Thé situation * T «— T’ * will be called a blowing-up of local trees. .

1.7. REMARKS.

(a) If T « T’ then T’ has either one or two principal link(s). 1

(b) I (T,p) — (T',4') then, in the notation of (1.3), u(ze) > u'({e, z0}) 2 4'(20).

(c) Any local 3? T can be blown up, i.e., there exists T’ and an identification map such that

™

If |T| > 1, then there are several non-isomorphic T’ satisfying (*) (the identification map-is not_
fixed)., If T, T’ ate fixed, there may exist several identification maps such that (*); that's why we

T~T.

insist that there is a choice involved.

(d) A blowing-up of the second (or third) kind can be performed on an m-tree (T, ) iff .
|Nr (zo) \ N (T, )] < 1. If this is the case, then there is exactly one diagram (*) (up to isomorphism

commuting with identification maps) such that - -

~

(‘*) \ (T) j <« (T':I")) for some “"

Moreéover, the restriction to R™ of the p' of (**) is unique, and the possible values for u'(zo) are

. L.eey min p'(a) ' *

1.8." If T§,..., Tx are local trees (k > 1), the symbol Tp « --- «= T; will stand for “Tp «~ T} and -
and Th—y ~ Ti”. When this is the case, k applications of (1.4) show that each multiplicity map sy for
Ti determines (uniquely) (po, ..., x—1) such that (To, o) < -+ <= (T, ps). Moreov;r, if (phy ... ) .
is such that-(To, uh) < - -- < (Tk, k) and for some ¢ € Q we have gui(a) = p}(a), all a € RY, then
(B0s- -y k1) = (KO- - s Bio—y)-

1.9. DEPINITION. Given an infinite sequence § : (To,po) — (T1, 1) *—-”\D}there existsani 2 0
such that

T; has at most one principal link, and if it has one then its multiplicity is p;(zo);

Vi>i, Tj has exactly one principal link, say a5, and p;(a;) = pi(2o).
The least such § will b2-denoted by k = k(S). Observe that (T, px) <= (Tht1, phs1) = -+ -2 ‘
1.10. REMARKS. % ‘

(a) It is easy to construct an infinite sequence

(t) - Toe—=Ti & - - - _

-‘ %"*’m 30
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, where, say, all trees have two principal links. By (1.9), such a sequence does not admit multiplicity
o . maps o, B1,. .. such that )

1

(**) (Tos o) — (Ta 1) — -+

'y

- [}
(b) If an infinite sequence (*) admits multiplicity maps such that (**), then it admits multiplicity maps
#0y By - .- such that . P
(Tm#()) < (Tup)e=---. o

-

o~

Indeed, define p! = p; for + > k and uae st and (1.8) to determine (uf,...,m)_,). Notice thag,
by (1.8), such an infinite sequence of multiplicity maps is unique, up to multiplication by a rational

number.

Arithmetic of Blowings-Up. Before we end this section, we want to give some basic facts that relate
sequences of blowings-up of m-trees with the euclidean algorithm. All mathematicians who have studied
TG gl blowmgs—up of curves are aware of such relationships; for that reason, and also because these obgervations

are easily verified, we will omit the proofs.

REMARK. Although this is the logical place for this material to be, the reader might prefer, to skip it

and come back once section 2 is understood.

1.11. DEFINITIONS. Consider a sequence of local trees

G -

: §: Toe-e=T (k20
(k2

(a) Define Mul(S) to be the set of k + 1-tuples p = (po, ..., ux) of multiplicity maps such that

\
1

‘ : . (Toymo) = -+ = (Tu, pre)-
’ Then Mul(§) is a (nonempty, atiditive) semigroup and (1.4) says that the projection map
Mul (§) — Mul (Ti) is an isomorphism.
(b) f k> 1and 'IB has one principal link a, consider the following two statements about an arbitrary
element u = (po, +~+ y i) of Mul (§) (and notice that  P(u) implies Q(u)).

- P(u) Let r—y = po(a) and r, = p,(z0) (0 v <’k ~ 1) and let the euclidean algorithm of (r-y, ro)

be written as

r-y = agpo + P1 (where pp = ro) ©
fo=oayp1+ pa
Pes—1 = Qyp,.

e : Then (ro,...,7h~1) = (P0y +<1P0y P13+ ++1Ps=1s Puy+ -+, Pa) Where each p; occurs exactly m,\tima.

31




Q(u) Letr—1 = po(a) and r, = py(=0) (0 < v < k—1) and, given any v < k—1such thatr, > 4y,
let the euclidean algorithm of (r,,ry41) be written as

Ty = appo + p1 (where po = ru41)

po = a1p; + pa

Po—1 = Qup4- ¢

Thenv+ao+: +a, < k—1 and (rv+1|- sy Totaot: +a.) = (Po» <+ 3 POYPLY -+ 1 Pa—1) Parr e ),’l)
where each pi occurs exactly a; times.

1.12. LEMMA. Let S: To+—---«— T ' be a sequence of local trees such ygat k 2 1 and such that
To has one principal link.
(a3) The following conditions are equivalent:

(a1) F)Lor allv, T, has one pfincipal link iff v € {0,k},

(a2) P(p) holds, for all 4 € Mul(S§),

(a8) P(p) holds, for some pu € Mul ($).

(b) The following conditions are equivalent:
(b1} T has one principal link,
(b2) Q(u) holds, for all 1 € Mul(S), , , L
(b3) Q(p) holds, for some i € Mul (S). -
REMARKS. '
o If the conditions of (a) are met, 4 € Mul($) and if the principal links of Tp and T are o and a'
respectively, then ux(a’) is the g.c.d. of uo(a) and po(zo). -

e If-k > 1 and the conditions of (a) are met then the principal vertex of Ty is a branch point (for Ti—;
has two principal links, while T, has only one). So a branch point is created each time an euclidean

-

algorithm terminates.

1.13. DEFINITIONS. .
(a) Given § : To + ---Tp -~ such that k > 1 and both Tp and T have one principal link, define

J(§) = {7 | 0< 7 <k, T; has one principal link and T;;, has two}, g
P4
X(8)= {7 19< 3 <k, T;~1 has two principal links and T; has one}
and | = (# of branch points of Ti) — (# of branch point: of To).

-~

We see that |J(S)| = [¥(S)| =1

Write J(S) = {jo,-..,5i-1}, 0< jo < - < ji-yy’

mdx($)={h1,...,h(}, O<h <---<h £k "
then0<fo<hi << - Sj1 <h <k ‘

We denote by e, the branch point created in Th,—3 «— Tp, (1 < » < ). Hence ¢, can be regarded '

°

as a vertex of Thys Thyd1y-vvy (ke




i

O
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3. .Relation to Geometry. ’ )

U ~

(W) Ifp = (po, ..., px) € Mul(§) then the pair (§, u) determines the following numbers (where z is the
root of any T; and a; is the principal link of T;, whenever 1 is such that T; has one principal link):

0 = by, (ajo)
sv = pn, (an,) = 15, (0;,), 0<v<l
$1 = pn, (an,)
{mu=m,(=o), 0<v<l
m=m(S,p)=rio + -+ my_1.

Then to > mp 2> 3.1 >SMm 2 281> My 2 4 and (i.,_l, m,,...l) = i,,, 1<v< l, by (1.12).
REMARK. These notations and facts allow us to break a sequence o

S: Toe— T ' .

into parts that we understand. Explicitly, if 4 = (o, - . ., px) € Mul(§), if notations are as in (1.13) and
if r; = pi(%0), 0 < ¢ < k, then: «
(T(')’I‘O) S k= (T)'o""io) has ("0) -")r:'o-l) J 0y ...,io),

o

\ ('rhu!“’lv) = (‘ij’“jv) has (Th,,...,f,’,-l) = (iu,-..,i.,), 1 S-fg’ <,

(T;uu“)u) A (n) “k) has (rhn . ')"k-l) = (‘.h . -)il);
andif 1< v <UL, (T ssBjpn) <= <= (Th, pbn,) has (rj,_,,. . .,h,~1) given by the euclidean algorithm
of ($,-1,m, 1), as described by the condition P(u) of (1.11) (this follows from {1.12a) and proves the

assertion (3,_1, my—1) =1, of (1.13)).

2.1. DEFINITIONS. We consider a triple (P, D, S) where

e § is a nonsingular Projective s;xrface
e D €Div(S) has s.n.c.’and (S, D) (1.4.8) is a (possibly empty) tree
e Pesupp(D)if D #0.

The local tree of (P, D, S)is T = (T, %0, R, ) where: '

(3) 20 =P, T = {P}uU{Dy,..., Dy}, where Dy,..., D, are the distinct irreducible components of D
(b) R={{D;,D;} |i#jand P¢ D;nD; #98}u{{P,D;} | Pe D;}
(c) O(D:) = D} (self-intersection number in S).

The local tree of (P, D, S) is denoted by T (P, D, S).

If C is a nonsero effective divisor of S such that

]

e P e supp (C)

e C and D have no irreducible component in common,
we define the m-tree of (P, C,D,S) to be (T,u), where T = T(P,D,S) and p: ROU {20} — N is as
follows: S
(d) also) = u(P,C) (mubipliciéy of P on C)

. (@) s({zo,D:}) = (C.D:)p (local intersection mubktiplicity at P), if {zo, Di}e R, i.e.,if P € D;.

[
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REMARK. If we fix a triple (P, D, S) satisfying the first three conditions of (2.1), the set C = C(P, D, S)
of divisors C satisfying the two other conditions is a semigroup, and the map C + u determined by the
definition (2.1) is a homomorphism of semigroups ¢ —+ Mul(T). -

2.2. BLOWING-Up. Let (P,C, D, S) be as in (2.1) and let (T, p) be its m-tree. L
be the blowing-up of S at P, E = x~}(P) € Div(§), let “ mean “*strict transform of ... *
D'=D+ E € Div (5).

If P e supp (C) is i.n. P, then we may consider the m-tree (T, ') of (P, 5 D', S) We let the

reader convince himself that ) L

(Typ) = (T 4),

where the identification map is the obvious one, and that the following claims are true.

(a) We have (T, p) — (T, 4') iff every irreducible cov%}yment T of D satisfies
supp (¥') N supp (E) N supp (€) < {P'}.

(b) We have (T, u) < (T*, ') iff supp (E) N supp (€) C{LP’}

2.3. DEFleON. Let S,D and C be as in (2.1). If P is a place of C, i.c., a closed point -of the
nonsingular model of some irreducible component of C, then the triple (1'5, C, S) determines an infinite

sequence of monoidal transformations

] Xy LYY
S — S +— 8 —

where Sp = §, P, =image of Pin S-'..l and =; is the blowing-up of ,S;.-_l at P ’ \
Let us assume that P; € supp(D) or D =0. . 7.
Let C) be the strict transform of C(®) = C in S; and let E; = x;}(P); given F.€ Diy (Si-1)let.
F™ = E;+ strict transform of F in.S;, and define D° = D, D* = (D'~})™ (s > 1).

Then, for i > 0, (P41, C¥), D*, S;) satisfies the conditions listed in (2.1) and we can consider its

m-tree (T;,1s,). By (2.2), we have
(76.% —(Tim) = )

which will be called the infinste sequence o} m-trees of (}7', C,D,S). The number k defined in (1.9) will
be denoted by k = (ﬁ C, D,S). Observe that (Tx,ux) <= (Tk41, Mr41) <= -+ and that, as far as the

' place Pis concerned, the desmgulansatlon process ends thh Sk-1 +— Sx. What we mean, here, is that

k is the least integer s > 0 which satisfies: .
(a) P..H belongs to exactly one irreducible component of CY",
(b) 3B € Div(S;) with s.n.c. in a neighbourhood of Pi4y, such that supp (B) = supp (C'*) + DF).
For t_hese reagsons, the finite sequence
(To,pro) = -+ — (Ths isx)
- Q i
will be given special consideration; we wxll call it the sequence of m-trees of (P C,D,S), and denote it

by u(B,c, D, 5).
*




2.4. LEMMA. Let (P,C,D,S) be as in (2.3) and consider .
b

”(1'5, C,D,S): (Tbvl‘o) e (T pir).
‘ . &

Assume k > 0.
(a) If supp(C®) + D*) = supp (B) for some B € Div(Si) with s.n.c., then

) ‘ (To, o) & -+ += (Tas pix)-

(b) If C is the disjoint union of the nonsingular models of the irreducible components of C, and if
r:C— supp (C) is the canonical surjective set map, then the following are equivalent:
e (To,p0) <=+ <= (Tiey ix)
e r~Y(R) = {P}. |
(c) If supp(C) is irreducible and S \ supp (C -+ D) is a tree at infinity (1.5.1), then

(Toy o) <= -+ <= (T, o)

PROOF: Immediatefrom (2.2). N
: 8. Contraction of Local Trees. ‘\
3.1. INTROD_I{C‘I‘XON. Given w € Z, the symbpl (w) will denote any local tree which has two vertices
and such that-the principal vertex has weight w. In this section, we will study sequences

~ | @ =To= =T

of local trees such that Ti contracts to some simple local tree, such as (w) or a linear iocal tree. First,

we define the necessary notions. .

3.2. DEFINITION ' Let T = (T, zo, R, ) be a local tret.. We say that T is a linear local tree if it has
exactly one principal lmk and if the tree (T, R) is linear.

3.3. DEFINITIONS. Let T = (T,zo,R, () be alocal tree.

(a) A’ superfluous vertez of T is a vertex ¢ € T'\ ({zo} U Nt (o)) which is linear and which has weight
-1. : .

(b) If ¢ is a superfluous veriex of T then an clementary contraction of T at ¢ is a local tree T' =
(T, =4, R, 0Y') together with a root-preserving injective set map £ : TV — T such that, if we identify
TY with its image in T, the following conditions hold:

T' =T\ {e}
R’ {(R\ {{e.s} |z € Mr()}) u{Nr ()}, if N (e)l =
, R\ {{e,a} |z € Nrlo)}, lfIJ«/r(e)I— 1,
A () = {n(=)+1, if € Nr(e) W
o ) 0(z), ifzeT\ ({zo,. e} U Nt (e))- N
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) In other words, an elementary contraction of T at e can be obtained as follows: first, forget that zg
o ‘ is the root and assign an arbitrary weight to that vertex; then T becomes a weighted tree and ¢ is &
superfluous vertex of that tree; blow-down T at ¢; forget the weight of zp and remember that z; is
the root. The local tree so obtained (together with the set map which came with the blowing-down)
is an elementary contraction of T at e. Notice that the elementary contraction of T at e is unique,
up to isomorphism commuting with the *underlying set maps”.

(c) A contraction of T is a local tree T/ = (T', z5, R',}') together with a set map f: TV — T, such
that either 8 is an isomorphism or the following condition holds:

There exist local trees Tp,..., T and maps 8,,...,0k (k > 1) such that To = T, T =T,
v (Ti, B:) is an elementary contraction of T;—, at some superfluous vertex (1 £ 4 < k), and

B=pro: 0Pk
In particular, we see that 8 is a root-preserving injective map and that g restricts to a bijection of the
sets of principal vertices (we say that the two trees have the same principal vertices and principal
links). A contraction as above will be denoted by 7' < T or T 2 T', and we will say that T

‘ contracts to T’.

"~ ' Observe that the set map 7' — T determined by a contraction T’ < T allows us to identify {z}} u R’

with {zp} U R%. Thus we can compar: multiplicity maps for the two trees: \

(d) For m-trees (T, u) and (T’, u'), we definé (T, ) > (T',4') <= T2T'andp=y"

3.3.1. REMARK: We deliberately avoided the term *blowing-down™ for local trees, to emphasise

that the contraction is not the inverse operation of blowing-up (for blowings-up happen at the root, while

contractions occur away from the root). Contractions should be thou'ght as phenomenons that do not

affect thmgs which are local to the root, such as multiplicity maps. Indeed, if we let the notation be as in
@( 2.1) and if E is an irreducible component of D which is a rational curve and a superfluous vertex of T,

then (by Castelnud¥o’s criterion for contracting a curve) the elementary contraction of T at E corresponds

to the contraction of the curve £. More precisely, there is a monoidal transformation p : § — S’, where
< S’ is a nonsingular projective surface and p(E) is a point P’ of S'. Now let p, : Div (S) — Div (5') be the
homomorphism defined by p.(E) = 0 and p.(I') = p(I‘) (any curve I other than E). Let C' = p.(C) and
D= p+(D), then (P',C', D', S') satisfies the conditions of (2.1} and determines an m-tree (7', u') such
that (T,p) > (T',4). Indeed, by definition of superfluous vertex, p is an isomorphism in a neighbourhood
of P and the multiplicities are not affected by the contraction of E. .

The next fact i is an easy consequence of the definitions; we omit its proof

. 3.4. LEMMA. Let T = (T,zo0, R, 0), T =(T,z}, R,{¥) and T" = (T",z5, R",0)") be local trees
’ such that T' < T and T" < T. {Then the foHowmg are equivalent:

(3) The mapsT' - T and T —+ T have ebe same image. i .
(b) There exists an isomorphism T' oW tbat commutes with TV — T and T” — T, i.e., the two

-~ -

contractions are essentially the same.

o

o REMARK. By (3.4), we see that it is legitimate to refer to a contraction process by specifying which
vertices disappear and which survive. In view of that, let us adopt the following language:
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Let T be a local tree, v a vertex of T other than the root and B a branch of T at v, not containing

" the root. Suppose that T > T’ = (T”, zh, R',0)'), where T¢ = T \ B (after identification of T' with its
image in T'). We refer to that situation by saying that B is absorbed by v'or that v absorbs B.

A lemma analogous to (3.4) can be proved for weighted graphs. So we can use that language for

weighted graphs as well.

3.5. DEFINITION. Let w, 4, be positive integers. A sequence of type (w,s,i') is a finite sequence of

positive integers, of the form
- MOy .y M)ty eeey Sty Miyee ey Mgy bimdyees, Smgy Mimdyeesy M1yl 00y Y

where [ > 1,

my -1 occurs w times (1< v < 1), Wi

i, occurs 2n, times, {or some n, EN (1< v<i— 1),
1} occurs my times, for some n; € N,

and such that the following conditions hold (where we define iy = 1):

=

(a) 61 =+'
" (b) my_y =myiy, 1SS . ‘ o,

(c) "y-‘ = WMy-} + iy, 1 _<_ 14 S ‘.

' REMAarfs. -

1. Consider a sequence of type (w,1,1'), with notation as above, Then:
(a) fo>mo281>m 2 2041 >m- 214
(b) $y-s = (wn, + )iy, 1<V <l
() (Sv-1,mp-1) =4y (g.cd), 1<v <L

2. Given a positive integer w, let WN + 1 be the set {wz + 1|z € N}. Given any number z let
Su(z) be the set of nonempty finite sequences (z,, z3,...) in wN + 1 such that II;>;z; = z. Then
Su(z) # 8 ¢ z € wN + 1. Moreover, if we fix a triple (w,,1’) of positive integers then:

To give a sequence of type (w,1,3') is equivalent to giving an e]emex;t of S, (ifs').

In fact, if s is a sequence of type (w,s,s’), with notation as in the definition, then s determines the

&

following element of S, (s/s): ‘
(wny + Lwng +1,...,wn +1),

and this is a bijection.

8.6. LEMMA. Let w be a positive integer and let \

hd °

§: Toe~-+T . (k20)

be a sequence of local trees, such that Ty has one principal link a. Then the following are equivalen_t:

<(')1 3p = (do,... i) € Mul(S) (see (1.11)) such that, if we write i = po(a) and r, = p,(zo) (0 S v <

k—1), then (ro,...,rx-1) is & sequence of type (w,3,'), for some +'.
? N . [}
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(b) Y = (po,...,m) € Mul(S), ifw:miho' = pofa) and r, = p,(;o) (0 < v S k-1) then .

(Y05« sTa~1) is & sequence of type (,s,1’), for some ' oA
Moreover, if these equivalent conditions are met then k > w + 1, 'ﬁ. has one principal link o',
px(a’) =+’ (in the notation of (a) or (b)) and the principal.vertex of T, is a branch point.

PROOF: Since Mul(S) # 8, (b)=>(a) is trivial. If (a) holds, then k 2 w -+ 1 by (3.5), and the last three
assertions follow from (3.5) and (1.12). Thus (b) holds, by (1.8). - ’

3.7. DEPINITION. Let w be a positive integerand let § :  Toe=--- «— T,  be a sequence of local
trees. Wesay that § &2 of type w if To has one principal link and if the equivalent conditions of (3.6) are
met. When that is the case, wechave in particular k > w + 1, Ty has one principal vertex and that vertex
is a branch point of Ta.

REMARKS.
(@ XS: Toe )+~ T isoftypew, p € Mul($) and if the notation of (1.13) is used for the
numbers sg, . .81, Mo, ..., M1, then the sequence (14.(20) )umo.,....s—1 looks exactly as in (3.5).

(b) If §i in (a), then the numbers n;,...,n of (3.5) are completely determined by §. Indeed,
if p, ' € Mul($) then by (1.8) there is a nonsero rational number g such that g{uo,...,ps-1) =

(I‘o» oy 1)

.
We are now ready to state the first significant result, in the theory of local trees. It gives the solutisn
B ) L

to the problem mentioned in (3.1).

local trees such that To >.(w), Tx has one principal vertex and that vertex is a branch point of Ty. Then
the following are equivalent: n

¥

(8) Ta contracts to a linear local tree,

——(b) § is of type w.

Moreover, if these conditions are satisfied then Ty bas the form

where n is the positive integer ny of definition (3.5), v is the principal vertex of T, and B is a branch that
v can absorb. Moreover, v gets weight O after absorption of B. As a consequence, if

T Topr oo = Tarn

%

is the (unique) sequence such that Tp4i bas one principal link (0 < § < n), then Tayn 2 (w).
s &

—_—

-REMARKS.
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8.8.7 THBEOREM. Let w and k be positive integers and let 'S : To e -« Ty bea ence of




o Before going through éhe proof, it might be a good idea to read (III.1.11), which is an application
of (3.8) to Geometry.

e Since contractions do not change the number of principal links of a local tree, it certainly makes sense
to assume, in (3.8), that Ty has one principal vertex. However, the assumption that that vertexis a
branch point is there only to make the conclusion simpler; when we do have to cope with a sequence
§ such that the principal vertex of Tx is not a branch point, (3.8) gives a description of the nontrivial
part of §, say To «— -+ — Tx,, and Ty, ¢ --++ T is trivial (i.e., every tree in it has one principal
link). *

- (‘ y
Before we can prove the theorem, we need to introduce some notions ‘and %rove son*e facts,

3.9. DEFINITION. Ifa€Zand T isa local tree, let T[a] be the weighted tree obtained from T by
assigning the weight a to the root. We have the following properties: ’

(a) If T > T’ then T [a] contracts to T'[a], for all a € Z.

(b) ¥ T — T’ and | N1 (20)] < | N7/(20)] = 1 then T[a] ~ T'[a~1],for all a € Z.

3.10. DEPINITION. A local tree T is minimal if it has no superfluous vertex.

3.11. LEMMA. Let T be alocal tree that contracts to a linear local tree. If M is a minimal local tree
such that M < T, then M is linear.

PROOF: Let £ be a linear local tree such that £ < T': We regard B,‘M and T as having the same root
7o and the same principal vertex v. ;

Given i € Z, let T, (resp. L;, M;) be the local tree obtained from T (resp. £, M) by increasing by
s the weight of v. Then clearly T; > £;, where [; is linear, and T, > M;, where M; is minimal; also, M
is linear iff M; is linear, i.e., i} is enough to prove that M, is linear. Whence we may assume that,in T,
the weight of v is nonnegative. That assumption being in force, consider the weighted trees T[0], £[0]
and M[0]. Then M[0] ~ L[0] by (3.9a), and L|0] is a linear weighted tree. Hence M[0] contracts to a
linear weighted tree by (1.4.13). If the weighted treé{ M[0] has a superfluous vertex, then it is ficither zo
(which has weight 0) nor v (which must have nonnegative weight, by our assumption on (1 (v)); thus it
is a superfluous vertex of the local tree M, which is impossible. Therefore M[0] is a minimal weighted

o
tree, 2o it is a linear weighted tree. We conclude that M is a linear local tree.

3.12. DEFINITION. A local tree T is universally minimal (we will write *T is UM”) if for every

sequence
T=T(')‘-')"'_-rk (k.>.0);

Th is minimal. Observe that if T is universally minimal then it is minimal, and T’ is UM whenever

T—T. ’

3.13. LEMMA. Let T be a local tree. Then the following are equivalent: §°

(a) TisUM ]

(b) T is minimal and every linear principal vertex of T has negative weight.

4

PROOF: Clearly, if T satisfies (b) and T + T’ then T’ satisfies (b); so (b)=>(a) is trivial. For the
converse, we prove that “not (b)* implies “not (a)”. So assume (b) does not hold. If T is not minimal -
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then we are done; so let’s assume that 7 is minimal. Then T has a linear -princip;l vertex v with weight
n 2 0; let a be the corresponding principal link and define a multiplicity map u for T by

{ pzo) =1=p(a") ('€ R’\{a})

pla) =n+1. . - -

Then we have (T, ) <= (T’,4') for some (uniquely determined) m-tree (T’, u'); if n = O then vis a
superflaous vertex in T’, so we are done, Suppose n >0. If T’ is not nrinimal, we are done; if T’ is
minimal then v is a linear principal vertex of T’, with weight n — 1. So we are done by induction on n.

3:14. LEMMA. Suppose that To « --- — Tx (k> 1) and that To > Ty'. Then there is a unique

dia'gram ’ |
Too— T o= - T
v v v o
T =T = o= T
such that the underlying diagram of set maps is commutative. (By “uniqufe', -we mean unique up to

isomorphisms commuting with all maps.)

PROOF: Since all maps are injective, we may assume k = 1. Let T; (resp. T) be the set of vertices of
T: (resp. T;') fori =0,1. , Y,

B

—
Uniqueness. Supposgwe have a diagram as in the statement (with k = 1). Consider the underlying,

diagram of set maps

B ,
To — Tl ‘-
Bot Bi1 :
L — T : N
ﬂl

and write T} = B(To) U {e}, T} = B'(Tg) U {¢'}. Since ¢ is a principal vertex of Ty, ¢ € f1(T}). On
the other hand, 8'~'(87*(¢)) = A5 (B~ "(e)) = Ao '(8) = B, %0 8 # T (c) € TY \ A'(T3) = {¢'} and
Bi(¢") =e. Hence B;1(T}) = Bi(B'(T3) U {¢'}) = B(Bo(T3)) U {e}, i.e., the image of §; is completely
determined by Ty < To «+ T;. So uniqueness follows from (3.4). - .

Existence. We may agsume that Ty is the elementary contraction of Tp at some superfluous vertex v.
Then, if 8 : To — T} is the identification map, B(v) is a superfluous vertex of Tj; let T be the elementary
contraction of T) at v. Regarding T} as a subset of T}, let ﬁ' : Ty — T} be defined by f'(z) = B(z). One

sees that B’ is an identification map.

REMARK.  Whenever we have a commautative diagram as in (3.14), where the first row is denoted by
S and the second by §’, we have Mul($) = Mul(§’) (see (1.11)). '

3.15. LEMMA. Let To «— -- -+ T (k 2 1) be such that Ty, has more than one principal link and Ty
contracts ¢o a linear local tree. Ifi < k then T; can’t contract to a UM tree (see (3.12)). -

PROOF: Let § < k be such that T; > U, where U is UM. Construct a commutative diagram as in (3.14):

T o= T

v ']

) U = U ~ - ~ U

Since Uy is minimal, Y < Ti and Ti contracts to a linear local tree, (3.11) implies that U is linear. Then
clearly Ux-, is linear, which is absurd since Ty..; has more than one principal link and T4y > Up-1.

7



?

3.16. DerouTions. ' «

(s) A local tree T is a comb if at every vertex v there are a} most two branches that don’t contain the
root, and at most one of them is not  linear branch. (A linear branch is.a branch which contains
no branch point of T; this means more than being linear as & graph.) In particular, the root is a
linear vertex. N

(b) X T is a comb, & tooth of T is a linear'branch £ of T, at ¢ither a branch point or the root, such
that A doesn’t contain the root. So every branch point has at lesst one tooth (one branch point has
two teeth) and, if there are two principal links, the root has at least one tooth.

(c) T is & comd with negative teeth if it is » comb such that
(i) at every branch point there is at least one tooth A such that A < —1 (I.4.14);
(ii) if 7 has two principal vertices, then one of them, say v, has negative wexght and belongs to a
tooth A such that A\ {v} < -1.

REMARK. Every linear local tree is a comb with negative teeth.

)

8.17. LEMMA. Suppose llut either T~ T'or T2 T'. ¥ T is a comb (mp a comb with negative
teeth) then so is T'. -
Proof omitted (easy).

3.18. DEFINITION. We are now going to define a notation that we will use to avoid drawing pictures
of Jocal trees. We do this for practical reasons only, and we suggest that the reader reconstructs all
pictures whenever he encounters these notations. To give an example, the local tree

* will be denoted as T = (t ~1,-2,-2,(3,4,(5), (6,7)),(8,9,(10,11), (12))) To formalise the notation,
let T be either alocal tree or a weighted tree with a root (i.e., a distinguished vatex), let p be the weight
of the root (with p = # if T is a local tree) and suppose that, for each vertex v, the set of branches (of

T at v) that don’t contain the root has been totally ordered. In particular, let 8;,...,8, (n > 0) be -

the branches of T at the root. Then the tree ‘T will be denoted by the symbols ([T]), where [T] is the
)” sequence of symbols defined by
. ‘ r__ fn=0
. (T]= < al81) fn=1
- 2 A ((Ba])s-- 1 ((Bn]) ifn> 1. .

This makes sense, since each B; is itself a weighted tree with a root (the root being the neighbour of
e , _ the root of T), with an ordering for each appropriite set of branches, etc. Clearly, the notation (|T})
determinés the isomorphism class of T, independently of the choices of orderings for the sets of branches.
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Now that we have a well-defined notation, we will abuse bGiven a local tree
. A B

/

k') '_2
where A, B are branches at v,

° we '"n'n“ T =(+-1, (-2),(~2,-2, (W): “81))) instead of *7T is denoted by (s, -1, ("2). (-2,-2,
(14), ({8))))". This amounts to identify T and (|T]); doing the same thing with A and 8, ie., writing
A = ([A)]) and B = ([B]), we get . \

T = (s, -1,(-2), (-2, -2, 4, 8)).

PROOF OF (3.8):
Reduction to the case Tp = (w). Let Tj = (w) and form the commutative diagram determined by the
sequence § and Ty < To, as in (3.14):

T ~.Ti —.o « &
v/ v/ v >

@W=% T - e

i.ei v be the principal vertex of Ta; then v is the principal vertex of T as well. Since it is a branch point
of Tk, Th—1 (which exists since k > 0) must have at least two principal lmh, now To has one principal
link}=> 0 # k—1 = Ti_3 exists = Ti—; has exactly two principal links, by (1.7a). Hence Ty, has
exactly two principal links and (since 7, has.one) v must be a branch point of T}'; more precisely, T} has
three branches at v (and the same is true for Ti). Moreover, v has weight —1 in Ty (resp. in T’) since it
was created in Tp—y «— T (resp. Ty — T¢).

Let §' be the sequence Ty + --- « T,/ and consider the follswing conditions on §':
(a’) Ty contracts to a linear local tree; ‘
(b’) §'is of type w. \
Then (a')=>(a) is trivial and (s)=>(s) is an immediate consequence of (3.11), 50 (s)é(s’). By the '
remark which follows (3.14), (b)<>(b’) is trivial and the sequences § and §’ determine the same intager
n;. Next, assume that T, has the form prescribed by the theorem, i.e., Ty = (»,-1,4’, 8'), where
A = (*n~1,-2,...,~2) contains w vertices (and n = n;) and B’ is a branch that v can absorb, the
weight of v being increased by one by that contraction. By the remarks that we made immediately after
the commutative diagram, T, = (+,—1, 4, B), where £ contains A’ and B contains B’ (as sets). Hence,
in Tk, v can absorb B and that process increases by 1 the weight of v (this is because B must contract to
B, when Tj contracts to T¢). On the other hand, the fact that Ty has one principal link implies that one
of the two branches of Tr—) at zo consists of vertices that were created m Tp — e Tu-1- Whence,
for some X € {A,8}, X < —1. Since B can be absorbed by v, X # B. Thus X = A, s0 A < —1 and no ’
vertex of A can disappear in the contraction Ty 2> T/, which means that A is just A’ (even the we{ghh
are tae same), i.e., Ty has the desirell form. This completes the proof of the reduction.

«
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S0 we assume that-Tp = (w). We will prove that (a) implies both (b) and the other assertion (i.e.,
the description of Ty). We believe that, after that proof, (b)=>(a) will be obvious. The assertion about
the sequence Tp « - «— Thyn, i.e., that Th+n 2 (w), is easily verified. '
Suppose that (a) holds, i.e., Ty contracts to some linear local tree. Using the notation of (1.13), we
write @ ﬁ N
- -
S =J(8) = {s0, -1 5t-1} '
X=X(8)={hr,....,hs}

“‘\“ Qwluu'e, clearly, I > P(for ! is the number of branch points of T3). We proceed by induction on {.
Case | = 1. Then v is the only branch point of Ti. Let L denote the principal verte'x of To. Since Lis a
free vertex of To it is a free vertex of Tx. Thus T = (s,—1, 4, 8) where A and B are linear branches at v
and Lisin B (say). Since Tj contracts to a linear tree and since, in T, every vertex other than zy,v, L
has weight less than —1 we must have B = (~2,...,~2, ~1); let n > 0 be the number of vertices of 8.
Then one easily ﬁgnren out that § begins as ’

.° ' " To=(*,w) = (s, (=1), (w = 1)) &=+ — (3, ("‘1\» -2,...,—2), (0)) = T

n

1
and continnes , -

N

Tor=(0(=2, =2, (-1,-1)) = - = (3,(~n, =2, ..., =2), (-1, -2,...,~2,~1))
. —(0=1,(~n=1,-2,...,~2), (=2,.., =2, =1)) = Topn = Ti-

We leave it to the reader to check that § is of type w and that T has the desired form (with, in particular,
f‘ ; n=n =ny). ‘ ®
/ Inductive step. Assume > 1. Asin (1.13), let e‘,, be the branch point created in Tp,—y « Tp,. In-

particular, ;. is the principal vertex of Tp,_, = (»,—1, 4’, B’) where H’ and B’ are branches at ¢;_;.
We have by = k, 50 ¢; is the principal vertex of Ty = (»,~1, 4, 8), where 4, B are branches at ¢; and
B = (b,...,b,,¢ A' B’) contains ¢;_, (more precilely, s > 0, ¢ is the weight of ¢;_; in Tx and the branches
A', B’ at ¢j—; are identical to what they were in T,_,). ' ‘

Observe that, by (3.17) and the remark immediately before it, 7; is a comb with negative teeth
(0 < s < k). Since 8isnot a linear branch of 7y, it follows that 4 is a linear branch and .4[ < ~1. Moreover,
since every vertex in the simple chain (e;,...,€1-1), except ej—y, was created in Tp,,_, + --- — T, the_

oy

% weights by,...,b, are less than —1. ‘
Consider a sequence of elementary cont.n]ctions that realixes the contraction of T to a linear local
tres. Since A < —1, that gontraction is nothing else than the absorption of 8 by ¢;. Since b, ... ,b. are
loss than =1, one sees that ¢;, must disappear before any other vertex of the simple chain (e, ..., ¢/-1).
Before¥;_; can disappear, it has to become a superfluous vertex, and in particular a linear vertex. Thus z
¢1~1 must absorb either A’ or B’ before anything else happens. Clearly, ¢;; can abeorb a branch in Tj,_,

. . as well, and
. . Th,., contracts to a linear local iree.
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Applying the inductive hypothesis to S;~y : To & -« Ts,_,, Wwe conclude that it is a sequence of

»—2), where *—2* occurs - 1 times

type w and that Ta,_, contracts to T, _ = (#,0, =2,...
.. "; .

and m = my—;. Construct the commutatMapm (see (3.14)).

Let @ = jio1 — hy—1 2 0. f a =0 then Ty ., is UM by (3.13); since hy_y +1=ji_3 +1 < k(for
Tii—s+1 has two principal vertices by definition of j_;), this contradicts (3.15).

Hence a > 0. Notice that T} ., = (+(-1),(-2,...,-2,-1,-m ~ 1,~2,...,-2)), where the
first 'sequence of “—~2” contains a terms and the second has w — 1 terms. That contracts to Tj' ., =
(*»,(-1),(-,a-m—1,-2,...,-2)) which can’t be UM by (3.15). By (3.13), that tree is not minimal,
and we have a = m. We conclude that T) = (% -1,-2,...,~2,~1,~-m—1,-2,...,~2), where there
are a—1 = m—1 terms in the first sequence of “—2",and w—1in the second. Hence that tree contracts to
(w), and s0 does T,,_,. Applying the inductive hypothesis (or the case I=1)to § : T;_, ~ -+~ Ty,
we see that it is of type w and that Tx has the desired form. Since @ = m = nj—; and §;; is of type w,
one sees that § is of type w. This completes the proof of (3.8).

3.19. DEFINITION. Let T be a local tree, v a vertex of T. (other than the root) and a € Z. Then
T2 denotes the local tree obtained from T by adding a free vertex of weight a, linked to v (and to
no other vertex). That extra vertex will sometimes be called “the extra vertex”. Clearly, we have the
following facts: . -

(a) ¥ T « T'then T"e « T/

(b) T >T'and visin T’ then T%® > T'™7%,

¥ay,...,a0p €Z (p 2 0) we can define T % = (... (T%@)...)"%, Then assertions (a) and (b),

above, are true if we replace every "a" by “ay,...,ap".

3.20. DEFINITION. Given local trees T, T’, the symbol T < T’ indicates that we have chosen a
map S, from the set of vertices of T to that of T, satisfying the following condition:
There exist a local tree Ty and a blowing-up T « T such that, if ¢ is the vertex created in that
blowing-up, then T' = T for some ay,...,a, € T (p’ > 1) and B'is the composition of the
identification map of T «— T, with the inclusion of Ty in T'.

3.21. REMARK. The followmg comments explain how the rest of thu section is related to Geometry.
Suppose (P,C, D, S) is as in (2.3), with the following additional aasumphons

(i) S\ supp (C+ D) is linear at infinity (1.5.1)

(ii) C(® 4 D* € Div (S) has s.n.c.. @
(By (III 1.4),if S \supp(C+ D) = A’ and C isreduced then we can choose P mch that these conditions
hold.) Then by (2.4) every blowing-up in the sequence u(P,C,D,S) : (To,m0) = ¢ + (Thsita)

is (at least) of the second kind; by, say, (ﬁ) and (2.4), all blowings-up are of the third kind iff C is
irreducible. If C is uot irreducible, write C = C; + -+ 4+ C,, where the labelling of the irreducible
components C},...,Cy%f C is such that Pisa place of C,,. To make things simpler, we will also ;nume
that
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AThis assumption is really unjecessary, but it does simplify this exposition. Then each C, withv<n
eventunlly goes away” from K, i.e., 31 < k such that

PectV s,
Pyr1¢CY) s ‘

Then CY + D’ € Div (S;) has s.n.\. (because of (ii)) and Cf) meets E; and no other component of I¥.

Hence, if we don’t want to loose C,,, Wg should consider T“"""l instead of 7;, where a = (Cy ct) )3 in S;. In
other words T (Piy1,CS) + D, 5;) = TE™ | -

Ifdc,,...,C, “go away” from P in Si_; «— S;, the right tree to consider is 7:-3""‘,""'“’ =
T(Pi41,Cv cl) + ---Cm + D', S;), where a; = (C'.(,';))2 in S;. The passage from Ti—; to T;E#@irwar
is not a blowing-up; it is precisely what we denote by *<* in (3.20).

So we are led to consider a sequence
S + . 76 — Tl -

where, at appropriate places, we have ... — T;_; & T Bomvmar o TE"""""“' +—+  (i.e. there can be
several * <-* in that sequence—*-see the notion of weak sequence (3 26)). Notice that thelast term of that
sequence, say T, is of the foﬁn

' Eyj.al..a}, -1 n-1

T= (- (T iy ,)&Ec__,.a;‘ a1 B

.

and satisfies 7 [8] € G[S\supp (C+ D)] (see (I.;f.s)), where = (C{¥)2 in Si., Notice that T is equivalent

to a linear weighted tree, by (i). _

If 1) is the least integer such that some components C,,,,...,C,, of C go away from P in Sii-1+S;,
then, for each C, that goes away at tlat stage, ol n E;, is some point of clf i) and a place PY of
C, is determined (for C£*) is nonsingular by (ii): no further blowing-up has center i.n. Cf l‘)) Then
u(P¥,C,,D, S) is contained in

-'T(’)al“:)) = (7;';-!4 l-‘:,-l) <~ (Tnl") ‘

for some multiplicity maps py, ..., 4}, ., 4', where T = T(P¥, DA, S; ). Notice that k(P¥,C,, D, S) <
. . .
' Generally speaking, the sequence u(P¥,C,,D,S) carries some information about C,, and we would
like to understand it better. If, for instance, To = (w) and T contracts to a linear local tree, then (3.8)
can be used to descfbe the sequence. Can we use the fact that T is equivalent to a linear weighted tree
to deduce that T contracts to a linear local tree? We will see later that it is sometimes possible.

Notice that the tree T does not actually occur in the sequence S, but is related to it as follows:

N
’ T - ¥ l
o o ‘
- st o e=Tiy & TEt,.ax. nap
‘l\* - 1=
3 . '
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The graph-theoretic situation described by the above diagram is studied in (3.24—3.27), under the as-
sumption that T does not contract to a linear local tree.

Another fact that the reader should keep in mind is that every vertex of T (other than the root)
is a curve on §,,, and the same is true for T;,. Further, if v is a vertex of T other than the root then,
going back to the definitions, we see that v is actually a vertex of Ti,, and hence of 7:-?"'"""""’ . JThis
observation glveg rise to the following (purely graph-theoretic) definition, »

" 8.22. DEFINITION. Let T = (T,z, R, ) and T; = (T;, 2, R;, ,) (3 = 0,1) be local trees and suppose

that T has one principal link and that T — To « T;. Let ¢ (resp. ¢’) be the vertex created in Ty +— T
(resp. To «~ T). We define an injective set map T \ {z} — T} by

. c e,
{t — p1(B71(t)), teT\{ =},
where fy : Ty —+ Ty and B : Top — T are the identification maps. That map should be thought of as a
natural embedding of T in T} (or in Tf'“"“"“’,‘for arbitrary ay,...,a, € Z). Observe that the root of
T is not embedded in these trees. '

3.23. LEMMA. Consider local trees T — Tp +— Ty, where T has one principal link. Let ¢ be the vertex

‘/created in To « Ty, let a € Z and embed T in T as in (3:22). Let b be a vertex of T, other than the

root; then b has t\he same weight in T asin T. Let By,..., By, (n = 0) be the branches of T at b, {:\ot

containing the root. Then the following are true: A

(a) If b is not the principal vertex of T then the branches of T*" at b, not containing the root, are
B,,..., B,—the same branches, as weighted graphs. T,"'* has one more branch B, at b: B, contains
the root, all principal vertices, the extra vertex ] and possibly other vertices.

(b) if' b is the principal vertex of T then one of the branches of T,"™ at b is (of course) |a]. Moreover
(bI)wI‘f Ty has one principal ;ink then the other branches of T™ at b, not containing thc root, are ,

_ Bi,...,Bn, and T 'w has one more branch B, at b: B, is just the root.

(b2) If Ty has two principal links then the other branches of T,* at b, not containing the root,
-* are By,..., B, (if Bl,..ﬁ.,B,, .are suitably Iabelled); " has one more branch B, at b: B,
( Eonsigts of the root, together with B,,.

PROOF: We use the notation of (3.22). The map of (3.22) restricts to a bijection T\ {z,¢'} = T1\{z1, ¢}
which is, in fact, an usomorp}usm of Wexghted graphs T \ {z,¢'} = T; \ {z1,¢}. To see that, factor the

bijection as -

T\ {x, } 2T\ {zo} =T\ {z1,¢},
and notice that each one of these bijections preserves links, i.e., is an isomorphism of graphs, and that 1f
t € To \ {zo} then

0(t) = No(t) = Oy(t), if ¢ is not a principal vertex of To,
Q(t) =0o(t) ~1=04(t),” iftis a principal vertex of Tp. ‘.

Since the prmclpal vertex ¢' of T corresponda to the prmcnpal vertex ¢ of Ty and since ¢ (resp. ¢') was
created in Ty + Ti (resp. To ~— T), b = ¢’ has the same weight (= —1) in T,%“ as in T. This proves
(more than) the first assertion.
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This being said, the rest of the proof has nothing to do with the weights and, for the rest of this
proof, we regard our trees as ordinary graphs, i.e., without weights.
Proof of (a). Let us travel via identification maps; then b corresponds to a vertex of To, other than the
root, and the branches of ‘;' at b, not containing the root, are the branches of Tg at b, not containing the
root, and these are just the branches of T; at b, not containing the root.
Proof of (b). Here, b = ¢'. The branches By,...,B, of T at ¢, not containing the root, are the branches
of To at the root. Let A C Nr,(zo) be the set determined by To «— Tj, as in {1.3b); then A contains n
(resp. n — 1) vertices if Ty has one (resp. t.;vo) principal links, In any case, we may label By,..., B, in
such a way that A contains one vertex from By, 1 <1 < n~—1. We leave it to the reader to verify that

all assertions of {b) are true.

3.24 PROPOSITION. Consider local trees T — To +— -+ «— Tx (k > 1) such that T and Ti have one

principal link and T does not contract to a linear local tree, and suppose that for some o, € Z

T.**(B] is equivalent to a linear weighted tree,

8

where ¢ is the vertex created in To +— Ty. Then:

(a) a=-1.

(b) The principal vertex of T is a branch point.

(c) T contracts to a local tree whose only branch point is its principal vertex.
Given /Z\,-'/TTa] is equivalent to a linear weighted.tree iff @ = 1.

PROOF: If T has a superfiuous vertex u that is not a —neighbour of a principal vertex, then u is a
superfluous vertex of To. Let Ty be the elementary contraction of Ty at u and form the commutative

. |

diagram:
v/ v/ v/
T = T ~ - = T

Now T'“doesnbcontract to a linear local tree and,‘;s we saw in the proof of (3.14), the vertex created in
T — T{ is just e. So ¢ doesn’t disappear in the contraction T > T,/ and by (3.19) we get T2 T
so T,2%[B] ~ T (6] by (3.9a). Since\(:;Qa) also says that T'[—1] ~ T[~1], it’s enough to show that
(a)—(d) hold for T". In other words, we may assume that

(*) all superfluous vertices of T are neighbours of principal vertices.

Suppose the principal vertex of Ty is neither a branch point nor e. Then k—1 > 1, Tx_, has one principal
link and T2%[8 + 1] ~ T,**|B] by (3.9b) (for we have T, «— T,”* by (3.19)), i.e., k can besdecreased.

’
Therefore we may also assume that the principal vertex of T is either a branch point or ¢, £o0 in any case

- it’s a branch point of T,™*, of weight —1. So:

A Y
(**) The principal vertex of T,*® survives to any contraction of T,”*"|f] to a linear weighted tree.

¢ Since T doesn't contract to a linear local tree, it is not a linear local trec; so T must have a branch
point. Pet b be a branch point of T, and let By, ..., Bi,. (n 2 2) be the branches of T .at b, not containing
the root. Embed T in T, as in (3.22). ' '

-
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Ifbis not the principal vertex of T then by (8. 28a) the branches of T, at b are Bx\, ,Bn and
o B., where B. contains, in particular, the principal vertex and the root of T,"*. Since T,"?(8| contracts
to a linear weighted tree (1.4.13), b must “absorb® (see the remark following (3.4)) n'—1of thep+1
branche# (of 7,"*(8] at b) so it must absorb some Bj. This is impossible, because by (*) B; contains no
superfluous vertices (for b is not the principal vertex of T). That means that (b) and (c) are satisfied;
@ clearly, 4) is an immediate consequence of (c) (and (3.9a)). ‘
otice that, not only does T contract to a local tree whose only branch point is its principal vertex,
“ but T itself is such a tree (this is because of assumption (*)). So if b is the principal vertex of T and
B,,..., B, are the branches of T at at b, not containing the root, these branches are linear branches. To
prove (a), there are two cases to consider. (Notice that, in T5 or T,® (3 > 0), b is the same as ¢.)
Case 1. T; has one principal link.
By (3.28), the branches of T,** at b are By,... B,.,[a] and B., where B. contains the root of T (but
B. may not contain the principal vertex of T," since b might ?)e that vertex) For each 1, if b can absorb
Bi in T, then b can absorb B; in T. Since T doesn’t contract to a linear local tree, at least two B;'s
can’t be absorbed (in T, hence in T,*[B]). Thus b must absorb every other branch (in T,”?|6]) and, in
—— particular, [a]. So @ = —1. . ’ .
& Case 2. T; has two principal links.
By (3.28), if By,..., B, are suitably labelled then the branches of 7,”'* at b are Bl, Bn-1,|a)and B, .
where, now, B, does contain the principal vertex of T,* (because T; has two pnnclpa.l links and T, has
only one == k > 1 and b is distinct from the prmcnpal vertex of T,”“). By (**), b can’t absorb B, [B].
Hence b must absorb n — 1 branches in By,..., By-1,|a]. Since T doesn’t contract to a linear lotal tree,
some B; (i < n) can’t be absorbed, so b absorbs [a] and a = -1. 7 ;

) U 3.25. REMARK. From the above proof, it is clear that (3.24) remains true if the condition ‘T8 ~
to a linear weighted tree” is replaced by “T,:'_‘"")'g’[ﬁo a linear weighted tree” and if conclusion (a)
.  is replaced by “a; = - -- = ap = —1”". However, we do need that p > 0 (if p =K&hm.(”) is not true).

—_ So (3.24) generalizes as mentioned above, if p > 1.

3.26. Déi’gNITION. A aéquence T0, - - - Tk of local trees (with sets of vertices Tp,. Tk respectively)
is called a weak sequence if k > 1, T has one principal link and if there exist maps ﬂ.— t Tiey — T
- (1 < { < k) such that, fori = 1,...,k, either T,_; « T; or Ti—; & T;. The sequence is said to be weak
at 7; if 7:..1 Yl 7:. °
)
REMARK. The sequence S* of (3.21) is weak.

The word “weak” is supposed to suggest that some information is lost when there are “ " involved.
We don’t know if information is actually lost but we observe that, generally speaking, certain questions
that can be answered for sequerices of blowings-up Ty «— :-- «— T become pussles when some “ " are

N

replaced by “ <". However, (3.24), (3.26) and the rest of this section form an attempt to recover control.
“

e d

< 3.27. PROPOSITION. Let Tp,..., Tx be a weak kequence of local ‘trees, weak at Ty and possibly at
other places. Let Ty +— T be the blowing-up such that T has one principal link. Assume that T_ioes

«

not contract to a linear local tree and that there exists a linear weighted tree L such that
o * TlB) ~ L, some € Z.
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Then every extra vertex has weight -\-1 in Tg, the principal vertex of T is a branch point, T contracts
td a local tree whose only branch point is its principal vertex and, given a € Z, T [a] is equivalent to a
linear weighted tree iff a = —1. ‘

Moreover, if (£) < 1 then Ty can’t contract to a local tree containing a nonprincipal vertex of

v

nonnegative weight. . - ‘
PROOF: Let's begin with the last assertion. As in the proof of (3.24), we nia;r assume that the principal
vertex of Ty is a branch point. Suppose Tp > T”, for some local tree T*- having a nonprincipal vertex
of nonnegativ‘e weight. Let To = Tj + -+ « T, be such that T, is obtained from T,/ by attaching
free vertices at Appropriate places, i.e., Tp = (--- (T/"**) - -)*~®=. Form the commutative diagram so

determined (3.14): . .
To = 76' — e e Tl'c'
v ] v
T" = ‘T(',” — e — k”
By (8.19b), T = (--- (TX ™) - )omeam 2 (.- (7;’"'_"&’) »o2)Uman je., Tk contracts to a local tree, say
T+, which has a vertex v\of nonnegative weight, such that v is not a neighbour of the principal vertex.

Since the principal ver\ex of T has been assumed to be a branch point {of weight —1), the principal
vertex of T is either a br. point of weight > —1 or a linear vertex of weight > 0. In any case, if £t is
a linear weighted tree to which\{ *[f] contracts (suth an £L* exists by (1.4.13), since T+ [8] ~ T[] ~ L),
hold:

e L7 contains vertices u, v with positive weights;

LY

\

then one of the following conditio

e L1 contains vertices u, v with nonnegative weights and not neighbours of each other.
By (1.4.9), (£) = (L*) > 1 and the last assertion is proved.
The assertion about T[a] is an immediate consequence of the preceding one. Let’s no'w prove that
the principal vertex of T is a branch point, and that T contracts as specified.
Let Tayy...y Thyy 1=k1 < -+- < ky Sk, be the trees at which the sequence is weak. We proceed by

induction on r.

Case r = 1. Since T does not contract to a linear local tree, w:“’r;my apply (3.25). So consider the

sequence of blowings-up

©

such that Ty = (TY)**»2 (p21) and Ty = (T/)***» and apply (3.25).

Inductive Step. Let r > 1 and let Ti,; « T’ be the blowing-up such that T’ has one principal link.

. By inductive hypothesis applied to Tg,—1 «~ T’ and the weak sequence T,—1, Tk,,.- ., Tk, We conclude
that T [—1] is equivalent to a linear weighted tree. Then apply the inductive hypothesis to 7o — T and
the weak sequence Tp,..., Tky—1, T". ‘

3.28. THEOREM. Let w, k be positive integers and let
$: Tod —T

be such that Ty > (w), Tx has one principal link and its principal vertex is a branch point. Suppose that
T does not contract to a linear Jocal tree (=> k > 1) and that, for some a € %, Tx|a] ~ L where L is ‘
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some linear weighted tree. Finally, ﬂ;ppose either that (L) < 1, or that Tj—; can’t contract to a Jocal
tree having a nonprincipal vertex of nonnegative weight {and notice that the former condition implies
the latter," by the proof of (3.27)). . )
Then a = ~1 and T,, contracits to a local tree whose only branch point is its pnncxpal vertex. Let
# = (po, ..., k) be the unique element of Mul(§) such that ux(ar) = 1, where a; is the principal link
of T; whenever T; has only one principal link, and write s = po{ao) and r; = us(2o), 0 € 5 < k. Define

integers w and p by
/ = r; (r - 1)
w—Zr,-2=a=—1 and p- }:

J=0 J=0 “
Then the following conditions hold, where we use the notations of (. 1.18), determined by § and u:

(1) If (s,r0) = 1 (i.e. | = 1) then

w=irp~1 and p= (-1) ro—l)é

. 2 -
(2) If (i,70) # 1 (ie. 1 > 1) then 8 : To & -+ «~ T, is of type w, where h = hj_y; thus

ni—1 = my_a/ti—y is a positive integer. Writing 6 = 51—, ~ b > 0, we have nj_; > § and
h-1
P—w=(w- l)z rd + junp—1 +1- 6]3,_ -u_.lmg_l + 1
§=0
2\ . R !
(1 + ;) t4+2p-w—-2= l(ﬂ[_x —6) +2/w];,_1 - Mmi-3.
‘Moreover, ifw < 2 and £ = [1] then nj_; > 6.
(3}31feimer w < 2or L = 1], and if (i,ro) # 1, then
i » '

»t (1+%)i+2p-‘-w‘—2>o. A

Before we prove (3.28) we, negd' some numerical lemmas. But first, let us introduce the n9tation

f()_ﬂ?——ll, z€ 2.

We have the following obvious propertm: -
o fla+bd) = f(a)+ f(b) +ab
« f6=1)=f(e)-a+1 | | -
o flab) = Pf () +bf(a). | , ‘
.3.29. LEMMA. Lets > po 24 >0 be integers such that (s, po) =4/, If the corresponding euclidean
algontbm is written as

i £ = agpo + p1.
po =ay1p1 + p3 ' o '
bR :
& ect=0ups  (where p, =4'), - !

then agpd + - - + ayf? =ipo andaopo+-~+a.p.=t‘+po—i'

This lemma is very easy to prove, by induction on 8. We leave its proof to the reader. Togeibcr with
(1.12a), this gives K L

(\
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'3.30. COROLLARY. Let [To,p0) <= -+ <= (T, psx) {k 2 1) be such that T,, has one principal link iff

v € {0,k}. Let a (resp. a') be the principal link of Ty (resp.-Ti) and write § = po(a), ' = pr(a’). Let
ry = piy(20), 0 S v < k — 1. Then

k-1 k=1 nd ‘ irg—t—ro+1¢
Smin, Srymitrd amd 3 flr)= mIizretd
=0 §=0 =0

3.31. LEMMA. Let w,i,i' be positive integers and let (ro,...,7x-1) be a sequence of type (w,3,i’),
with notation as in (3.5). Tizen, ifm=me+---+m_,,

(a) s=wm+14 . .-
(b) ;-0 (0) + 2)m m—i

fe) 12 =-wE- 3+ (wn4 1)i"?

(d) f(s - ,=o f(r,) + flw)m+ (wny + 1) f(s') 1" +1 ’ ]
PROOF: . , . ) .
(a) t=19 = wmp + 143
= wmyp -+ wm; +13
L1}
=wmg+- -+ +wm—y+5 =wm+t. )
l ‘ / k-1 . /
(b) Er,' = wmo + 21313 + - wMy_g + 2018y F WMy N
* =0 . )

= (wmo + 2mo) + -+ + ((df‘nl-a +2my_3) + (wmy—1 + my-1)
= (w +2)m — my_;.

\

(c) By induction on I. .
If { =1 then ¢ = (wn; + 1)s’ and mg = nyi’, so

= wn3i? + 2wn,é’ + 2 = w(wmd+ nyd'?) + (wny + 1

[J k-1 .
, =w Z 2+ (wny + 1)1’2.
N wrd
. \ . .

If I > 1 then define integers a, b by
(ro,. vy Ta-1) = (Mo, ..., Mi—g,81-1,.. Y i
(r.,. . ,75-1) = (t',..l, . ,i(..;) (where f1—1 occurs ny.y times)
(o)) Th=1) = (My~1,...,%). The first sequence is of type (w, 3,4;—1), the Jast is of type {w, 11— l,t ",

T

80 we may apply the inductive hypothesis: iy
a-l\ a—1 b—-1 -
2 =er? + (wng-y +1)57, =er§ +wz:r?- +i,
=0 y=0 J=a - '
a1l
—er’+er’+er’+(wm+1)a : =
. " ! =0 s=a §=b
51 N
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T k-1 [ k-1 k-1 :
@ &Y flr)= % wd -0 | = -;- [17 - (wni + 18 - of(w + 2)m - m_y)]
=0 | =0 =0

= -21- :i’ — (wmy + 1)1"2 ~ 3mw +wm,-1] - f(w)m
= -;- 2 - (wni + 1% - 3(—14)+ wnn'] - flw)m \ -
= f(i) -3+ % [—-(u{m +1)i% 4 34 -‘i’-wmi’] - f(w)m
=f@l)—i+ % [—-(wm + 187 4 (wm + )i+ 26'] — flw)m
= f(i) =i = (wm + DIE) +5' = f(w)m ‘
= fli—1) = 1= (wn + )f{') +i' = flw)m

which is what we want. ° R

4 4

PROOF OF (3:28): The first thing we have to do is to reduce to the case T = (w). We leave that part
to the reader. In fact, the argument is quite analogous to the corresponding reduction in the proof of
(3.8). So: ‘ '

We assume that Tp = (w). Then T, is a comb with negativesteeth, 0 < v < k, by (3.17). Let the
notations of (1.13) be in force, i.e., we consider J = {Jjo,...,ji-1}, X = {h1,..., i}, e1,...,e, etc. By
our assumptions, Tx = (%,—1, A, B) where A, B are the-branthes at ¢;, not containing the root, and
A < —1i8 a linear branch. So the branches of Ti[a] at ¢; are A, B\‘and [@] Now ¢; can’t absorb A < ~1,
and ¢ can’t absorb B (for Tk doesn’t contract to a linear local tree). However, Tila] ~ L so Ti[a]
contracts to a linear weighted tree (1.4.13) and ¢; must absorb some branch, in Tk|a]. Hence ¢; absorbs
[a) and a = -1. . -

If I =1 then Tj is already a local trée whose only branchfpoint is its principal vertex. If { > 1, let’s
prove that T contracts to such a local tree. T, has three Hranches at ¢;_;, say A’, B’ and 8! where
A’ < —1 and B! contains, in particular, ¢;, which is a branclyf point of weight —1; hence ¢;—; can absorb,
neither A’ nor B][—1] in Ty|~1]. Since Ti[—1] contracts to a linear tree, ¢;_; must absorb one of the
three branches. So it absorbs B’ and Ti contracts as specified.

' Before we prove that conditions (1)-(3) hold, let us explain why { = 1 is equivalent to (s,ro) = 1, as
asserted in (1) and (2). We claim that T; has two principal links. If not, then T; = (4, —1,w = 1) has
a nonprincipal vertex with nonnegative weight, and so do T3,..., Th—), 50 one of the hypotheses of the

’

. theorem is violated. Hence:

(1) Ti has two principal links.

Clearly, Ti—; has two principal links, since the princip;l vertex & of Ty, is a branch poi;xt. Thus it is clear
that | = 1 is equivalent to: T, has one principal link iff v € {0,k}, and by (1.12a), = 1 <= (i,70) =
plax) = 1.

Condition 1. Since { = 1 then, by above remarics, we may apply (3.30). Hence Z};é r} = iro and
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Condition 2. Suppose! > 1. Consider the integer h =‘.’. 1 > 0; the branch point ¢;_;, which absorbs
the branch 8’ of Ti, was created in Th—1 « Th; in fact, Tp = (+,~1, A’, '), 50 B’ can be absorbed in T

as well. Hence

(2)

So we consider the sequence Sj :

» ‘

Th contracts to a linear local tree.
W)y=Toe~---+~Th .By(38), - ¢

Sp is of type w, Th = (»,~1,(-n —1,-2,...,-2),8') where n =n;_;

and where “—2” occurs w — 1 times, and the absorption of B’ increases by 1

(3)

s

the weight of ¢;—;.

\
Observe that, by definition, pn(zo) = ran and pa(ap) =1-1. B} (3),
@ (rov-+sas) ds of type (wys,iil). .
Applying (3.31) to S, we deduce (where m =mg + -+ + my_3):

h-1 4
(5) 2 =w Z r? + [wn + 1]1‘?_1, . =

J=0 B

. h-1 \ \

0 7Y i zwY () + f@mton+ffieg) i+ 1,

J=0

h=1 .
(7) . Z ry = (w+2)m-my_,, ' \
» J'=o .

(8) f =wm+1-).
By definition of j‘_,’and h, T; has one principal link whenever h < 5 < i, 80 \
(9) h<ij<p-r1=ri=s1. *» | !

If we define 6 = 5;_; — h > 0, then T;,_, = (»,-1,-2,...,—2,(-n— 1,-2,..., —2), B), where the first
sequence of “-2* contains 6§ terms and the second w — 1 terms. So T;,_, contracts to the following linear
local tree: -

Q Ly, =(+06-n-1,-2,...,-2),
where *—2” occurs w — 1 (imes. We claim that § < n. In fact, if § > n then £;_, has a nonprincipal
vertex with nonnegative weight. Since by definition 7.; < k, one can consider the commutative diagram
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(3!'.'14) determined by L5 < T, + -+ «— Tk-1 and deduce Qh;g '6.:; contractq to a local tree which

o ) (conta.ins‘ a nonprincipal vertex with nonnegative weight. This contradicts one of the assumptions. So,
(1) §<n. ’
. S P
On the other hand, we have u;,_, (zo) = my~1 and py,_,(85_,) = 813 by definition, and (u b m‘_1) =1,
By (3 30), »
k=1 .
(11) : S A=domi,
N . j=’.‘—l
k-1 B
(12) Y =aaFmo -,
N F=i-1
- (-1 = 1)(my-2 — 1)
(13) Y )= > -
I=31-1 '

We can now check that the two equations of “condmon 2" hold.

- ’ k~1 h—-1 im2~1 -1
1'2~w=i’—(Zr? —1);(1'2-21'?) ’Z r - z + 1

=0 J=0 i=h Jmjiay
A1 <
= (w- 1) Z ";2 + (wn + )i, —5’l- —fmy-1 + 1,
=0 . .
‘ . by(5),(9) and (12). So h \
. i - ’.-
(14) - :2-—«)--(09--1)27'2 + (wn +1-6)sf 1—33_1mz-1+l

) . §=0
' which is the first equation, since n = n;_; by (3). For the second equation, observe that

h-1 *fter—1 ~1 :
T -1 -p=f6-1) - }:f(r,)— (f(i-l)—Zf(':)) 3 1) - Z £(r;)
\ =0 F=0 J=h I=fi-s

($1-1 = 1)(my-, — 1) ’

=(w-—l)2f(rj) + f(w)m+(wn+1)‘f(i|-1)-i;-x-il-l—ﬁf(i,_l)—- 3

=0

by (6),(9) and (13), s

h-1 .
16-1)-p= (=1 T flr) + ffuhm+ lon+ 1= B)ffiros) = ivoy + 1 - Gzt mma 21),

§=0

and by multiplying that equation by 2 we obtain

h-1 . A-1 /
’ , i2—3i+2—-2p=(w-1)27?—-(w—-l)z:rj + 2f(w)m
\ , . 3=0 j=0 “
+(wn+1 6)(:, 1~ Y- 1) ey + 2 — Gy 1+u..;+m| -1 -1
) A1 .
o ) =(?-v) - (w- I)Zr; +2f(w)h — (wn+2~ 6):;..1+m«- A
» \ ’=o
R A , 54
- - s .
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by (14). Therefore,

* '
1

h=-1
%+2p-w—-2=(w-— 1)2:', = 2f(w)m+ (wn + 2 — )iy — ™y
=0 -
= (w— 1) [(w+ 2)m - my_a] —w(w — 1)m+ (wn +2— )51 —my_,

. =2w g 1)m—-(w—1)my_a+ (wn+2~8)1 —my_, )

=2w—-1)m-(w~- I)WQ (w—1)nsi_y + (n+2— 68—y — W\—/M

= 2(w - 1)m+ (n+2 - 6)i[_1 - my.1

by (7) and the fact that —my_3 + nii— = 0, which follows from (4). Since m = (8 — §i-,)/w by~(8), we
find’ : - . )
s 3i'+2p—w— 2=2 (1" —) (t.,—l'l_l)'i' (‘13'1’2—5)1.1_.1 M.y,

from which the desired equatxon follows. The next thing we do is to prove that Ny > 6 wheneverw < 2
. . and £ = [1]. Suppose n;_; = = 5 and £ = (1) "By the description of Ly, given above, between (9) and
: (10), we conclude that T;,_, > L£;,_, 2 (). Consider the local tree T defined by

. ) < -
A B,

A

v/ -~ V
(w) o ses e T

In that diagram, each tree in the lower row kias the same number of principal links as the corresponding
tree in the upper row; hence, in the lower row, only (w).and T have one principal link (all other have
two). Thus T = (s,—1,4, (b1,...,by,w')), where 4 < —1is a linear branch, w’ < w is the weight of
the vertex which was the principal vert?x of (w), and ¥ > 0. Moreover, by,...,b, are weights of vertices
which have been created in (w) +— -+ T; 80 b; <-1for 1 <1 < v. Since Ti doesn’t contract to a

linear tree, T doesn’t contract to a linear tree, i.e., e
. . ]

(16) ' ' . w# -1 or 3 b <—-2. .

On the othir hand, since a = —1, T[a] contracts fo the linear tree

~

. 9——' [-4,0,51,...,6.,,40'].
- '

Now G ~ T[a] ~,Ta[a] ~ [1], 0 § must be minimal. Indeed, if § is not minimal, then v’ = ~1 and
by (15) it contracts to a minimal weighted tree G’ = [4,0,by,...,b;—1,b; + 1] which has more than two
vertices but only one nonnegative weight. Such a tree can’t be equivalent to [1] by (I.4.16).
) So g is minimak Since |§| > 2, (1.4.16) implies that ¥ = 0 and w’ > 0. By definition of T, we
deduce that every vertex of A has weight —2, thus ' = 1 by (1.4.16) again. Now » = 0 implies that
%j-4 is a multiple of my_;<—recall the relation between the euclidean algorithm of (f;_;,m;-;) and the »
.sequence of multiplicities of the roots in (w) « --- « T. Thus m_; =y = land 1 =o' =w —§j;.
Since %73 > my_, by definition, we get w = 1+ 1%,_; > 2. This proves condition 2.
e Conditionf. By condition 2, it is enough to prove (nj—; -6+ %)i[- 1—mmy_y > 0. This is certainly the
) emeifw<2(form_;—6+32>2>1),0rifm_y>6 (form_y —6+2 >n;_;—§ 2 1). So we may

<
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assume that n;_; = §, w > 2 and £ = [1]. The argument which proved the last assertionsof condition 2
o was based on the assumptions n;_, = § and £ = [1]; so we can apply it here and conclude that my.y = 1 4
andf—y =w-1 Consequently,

. 2\ . 2 2
. (m_l—5+;)t:-1-ml—{-;(w—l)—l—l—;>0.
This con:lpletes' the proof of the theorem. \
Theorem (3.28) will be used to prove that certain local trees T, contract to linear local trees; we will

" do that by proving that the numerical relations of the conclusion can not be satisfied in the case under
consideration. More precisely, the statement thatiwe will use is the following.

3.32. COROLLARY. Let § : Tope---+Th aatiaf)" the hypothesis of theorem (3.28) and assume,
in addition, that B}
(f,r0) =1 or w<2 oF L=) )
. Tben no triple (d, u, gj\of real numbers can satisfy one of the following conditions:
u+v<d, i=d; w=d?—u?-v3
. (2) (d=1){d-2) ufu-1) vp—1)

‘ - and p= 2 2 z T .

. utv+rg<d, i=d+ry, w=d-u?-0v?4+rd,

) @-1)(d-2) ulu-1) slp=1) rofro—=1) - -
and p= 2 2 2z ‘T 2

N
“

PROOF: Assume that (i,ro) = 1. Then by (3.28), w =iro— land p = "—"—’-!}9-’—’-9
If (d, u, v) satisfies (a), then d? —u?—v? = dro—1and d?~3d+2—u? ~v¥+u+v = (d-1)(ro~1). Thm‘
two equations imply that (d — u — v) + (d - ro) = O, whence ro > d =1. Thus ro =i and ¢ = (i,ro) = 1,
which is absurd. (Note that whenever the hypothesis of (3.28) is satisfied, we have i > 1. In fact, since
the principal vertex of Ty is a branch point, we have ! > 1,501 > 1.) .
If (d, u, v) satisfies (b), then d? —u? —v? + 13 = (d+ro)ro—~1and d? —3d+2—-u? +u~? +v+rd —ro =
(d+ro — 1)(ro — 1). From'these two equations, we find (d — u — v — rp) + d = 0, whence d < 0 and
i =d+ rg < ry. Thus ro =1 and ¢ = (¢, rp) = 1, which is absurd.

That proves the case (s,7o) = 1. Now assume that (i,ro) # 1. Then exther w<2orfl=1|1,s
condition 3 of theorem (3.28) says that B > 0, where we define

A= -w-—-1, B=(1+§)i+2p—w—,2.

- >
Now a little calculation gives ) .
- A {u’-!-v’—l, if (a) holds, - L
(%) u? + v? + 2rod ~ 1, if (b) holds,
B {(-—2+ d+utv, if (a) holds,
(-2+ 2)d+2ro+u+v, if(b) holds.
Kw>2t.hen—2+1<_1-o . :
0<B<{ —-d+u+v <0, . if (a) holds,
o “l-d+3rp+u+v<-d+ro+u+v<0, if (b)holds,
and this is absurd (we used the fact that d > 0, if (a) or (b) holds).

A - ) L, A 56 : S g




- - - v P T ) TRy R 4 - s 5. % O e o S A
LT v PRI WSt e my T Ty TEAN L DAL S SEMACRGPIO NS U SR I 0 TR
- - 0 " N

M -
If w = 1 then, by (3.23),

. A= (g + 1= 8y —siamyey = Gy ((mi-y + 1 = 8)iioy — my—y) = zy
B=(m-1—=8+2ey — mpoy =t11+ (M1 =5+ Wity —my_y =z +y

N—
where we define z = 1;\; and y = (ny—3 — 6+ 1)8j— 3 —my—;. Thus z and y are integers, z > 2and y > 1.
Whence B? —24 = z%/+ y? > 5. On the other hand, from (), above,

B zA_{Zw-—u’—v’+2=2—(u—v)252, if (a) holds, \
~ Udro(ro +u+v—d)~ (u—v)*+2 <2, if (b) holds. <

Since we have already established that B? — 24 > 5, (d, u, v) satisfies neither (a) nor (b).
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III. BIRATIONAL ENDOMORPHISMS OF THE AFFINE PLANE

1. Preliminaries on A3.

We will alwgays regard A? as being equipped with a fixed coordinate system. In particular, it makes
sense t6 speak of the degree of a curve in A%,

Embeddings of A? in complete nonsingular surfaces.

1.1. Two open immersions A% — P? are equivalent if they form a commutative diagram with some

automorphism of P2, One equivalence class is “better” than the others: it consists of those embeddings
that don't change the degrees of the curves. V‘/wﬂl refer to that equivalence class by saying "embed A2
in P? the standard way”. .

The following is a (trivial) consequence of the theory of relatwely muumal" ratxonal surfaces [11].

3

1.2. FacT. LetS be a rational nonamgula.r projective surface, D € Div(S) areduced effective divisor
and U = § \ supp (D). Then the following are equivalent: - :

(a) U = A2 . .
(b) Every irreducible component of D is a rational curve, [1] € G{U] and n(D) + K3 = 10, where n(D)
is the numbér of irreducible components of D and Kg is a canonical divisor of S.

PROOF: First, observe that the number n(D) + K3 depends only on U. Indeed ‘each blamng-up at a

‘ point at infinity of U decreases K? by 1 and increases n by 1. Since one can obtain one embedding from

another by blowing-up and blowing-down at infinity of U, n+ K? is an invariant of U. If U & A? then
n+ K? =149 =10, so (a)=>(b) (since [1] € §[A?) and A? is rational at infinity (1.5.1)). Conversely, if
(b) is satisfied then |1} € §{U) means that there is a smooth completion (1.4.8) U «+ U such that T\ U
is a nonsingular curve I'-of self-intersection 1. Since the number n(I') + K% depends only on U, it is 10
by assumption, so «K% = 9 ahd U 2 P¥ by the theory of relatively minimal rational surfaces. Hence I' is
a line and U = A2

1.3. COROLLARY. Let U be an open subset of a x;o;xaingular complete surface S. If U & A% and S\U
is irreducible then.S & P2, .

PROOF: Repeating a part of the preceding proof, 10=n+ K2 =1+ K3 = K3 =9=> S« P2,

The next fact is a simple o tion that turns out to be very useful.

1.4. LEMMA. Let S be a nonsingiar projective surfage, A2 «+ S an open immersion and let D €
Div(S) be the reduced effective divisor duch that S\ A? = supp (D). Consider a sequence

x1 Tm
S = S ~ & " - ~— S, (m = 0)
of monoidal transformations, where the center of ; is a point P; i.n. supp (D) and x; ! (P;) = E;, such
that (in the notation of (112.3)) D™ € Div(S,,) has s.n.c.. If m is minimum with respect to that
property, then Sy, \ supp (D™) & A2 and: .
(8) Ifm>2then P, € B4y (2<§ < m).
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(b) If m 2> 1 then Py belongs to at least twe irreducible components of D.

(c) fm>1and D= A+ B, where A and B sre effective divisors and B has s.n.c. in S, then F; beIongs
to the strict transform of A in S;_; (1 < s <m).

' p—
PROOF: Again, use the same notation for a curve and for its strict transform in any blown up surface.
Since A? has no. loops at infinity, it follows from (1.4.7). that (in the notation of (1.4.7))

. every Ky auch that E? = —11in S, i3 a branch point of G(Sp,, D™).

If (a) dossn’t hold then g(S,,,,D”‘) contains two branch points u, v of weight —1 such that u, v are not
neighbours of each other. Contract G(Sm, D™) to a linear weighted tree £ (1.4.13); then u and v are still
in £ and one Pf the following holds: -

e [ contains vertices u, v with positive weights; .

o [ contains vertices u, v with nonnegative weights and not neighbours of each other.
Thus (L) > 1, by (1.4.9), and that is absurd. Hence (a) holds.

We now prove (b). By the above, E,, is a branch point of §(Sm, D™) , of weight —1, and no other
E; has weight > —1 (in Sp). If P belongs to only one component of D, all components of D are in"the
same branch of G(Sp, D™) at E,,. Thus E,, is a “special vartex™ (1.4.17) and we get a contradiction
with (1.4.18). .

Proof of (c). Since E,, is a branch point of 9(Sm, D™), Pr, belongs to at least three components of
D™-1 = A+ B™"!, where we define B® = B € Div(S) and B*+! = B + E;y, € Div(Si41). Since B
has s.n.c. in S, B* has s.n.c.in S; (0 < i < m) and P, belongs to at most two components of B™~1,
Thus P,, belongs to (the strict transform of) A and, by (a), so do Py,..., Prm—1. ’

The above observations yield the following (known) fact as a byproduct: ,
1.5. COROLLARY. Let U be an open subset of P? such that U 2¢ A2, Then U is a line.

PROOF: We know that P?\U = supp (D) for some redyced effective divisor D of P2 By (1.2),n(D) =1,
i.e,, D is a curve. By (1. 4b) D has s.nc. (.. is nonsingfar), thus A2 & U < P? i5 a smooth completion;
the corresponding dual graph [D?] must be eqmvalent to {1}, 80 D? = 1 (for [n] ~ [m] 5 n = m, as
explained at the beginning of the proof of (1.4.15)): So D is a line.

A characterisation of A%, The following “powerful® theorem was proved by Fujita [2] and Miyanishi
and Sugie {8] in characteristic sero, and generalised by Russell [17] to a.rbffrary characteristic.

1.6. THEOREM. Let V bea nonsmgular, factorial, rational smface with trivial units, and whose

Kodaira dimension.is —co. Then V ¢ A3, .
1] <

For the notion of Kodaira dimension, see [6]; for the 8pecial case of surfaces, a simple exposition is
given in [17] From these saurces, we also have

¢

1.7. LEMMA. Let ¢ : V' —V be a dominant, separable morphism of nonsmgular surfaces. Then the
Kodura dunenaxon ofV is Ieu than or equal to that of V'. RS

From thess two facts, we lmmedxmly conclude / .
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1.8. COROLLARY. Let f: A% — % be a birational morphism, where V is factorial {and nonsingular,
as always). ThenV 2 A3,

(Indeed, V’ has trivial units by (1.2.8)). Notice thut the notion of Kodaira dimension does not occur
in the statement of (1.8). Notice also that (1.6) and (1.7) won’t be needed in the sequel.

Lines in A3, Followin&everal people, we adopt the following terminology for lines in the affine plane.

1.9. DEFINITION. Let C be & curve in A%,

(a) Cis a linear line if deg C = 1.

(b) Cis a coordinate line if, modulo an automorphism of A2, C is a linear lme Equivalently, the
polynomial F € k[X,Y| determined by C satisfies the following condition: 3G € k|X, Y] such that -
k|F,G] = k[X,Y].

(c) Cisalsneif C 2 Al (abstractly). Equivalently, the polynomial F' (as in (b)) is such that k| X, Y]/ (F)

is a polynomial algebra in one indeterminate over k.

As is very well known, the Epimorphism Theorem of Abhyankar-Moh [1] says (in particular) that
all lines are coordinate lines if chark = 0. It is aiso known that, 11‘1 positive characteristic, not all lines
are coordinate lines. \ ;,/

Let C be an affine plane curve with one place P at infinity (1.5.4). Embed A2 in P? the stanidard
way. As noted in (I1.2.3), an infinite sequence of monoidal transformations is uniquely determined,

1 Lp] 73

P2=So¢—51'—33‘—
Let P; denote the center of x; : S; — S;—; and C) the strict transform on S; of the closure in P? of C.
The sequence u(P;,C(), u(Py, C1V), u(Ps,CB3)), ... is called the multiplicity sequence of C at infinity.
That sequence is completely determined by the “embedding” of C in A2, i.e., is independent of the choice
of an embedding of A? in P?—as long as that embedding is *standard” (1.1). ‘

‘We will now characterise the coordinate lines in terms of the multiplicity sequence at infinity.

o

1.10. DEPINITION.  Let " be a curve in A? with one place at infinity. We say that I' is graph-
theoretically linggr if there is.an open immersion A? < P? with the following property:
IFL=P3? \A’, P is the place of ' at infinity and
"1‘{-\

s(PT,LP3):  (To,po) <= <= (Thy pir),

then Ti contracts to a linear local tree.

REMARKS.

(a) Notice that To = (1), in (1.10). * b

(b) See (IL.2.8) for the definition of u(P, T, L P3?). The fact that all blowings-up (in that sequence of
m-trees) are of the third kind (=) is a consequence of (IL.2.4b).

(c) It can be shown that if I' is graph-theoretically linear then all bperf immensions A2 — P’ utufy

the condition of (1.10). We leave it to the iiiterested reader to figure out the little argument which

N is needed here.
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The following proposition is a corollarsr to (I1.3.8). It will be used to show that certain curves in A2,
with one place at infinity, are coordinate lines.

*1.11. PROPOSITION. Let I' be a curve in A3, :vitb one place at infinity. Then the following are
equivalent:
(a) Tis grapb-tbeoretic;lly linear,
(b) T is a coordinate line. ‘

PROOF: We first prove that (b)==>(a), which is the trivial part. Choose an open immersion A3 — P32
such that the closure in P3 $f T is aymjmtlve line. Then k(P,T, L P’) =0, i.e,, Ty = To = (1) which is
already a linear local tree. Hence I' is graph-theoretically linear. \
(a)=>(b) Let I' be graph-theoretically linear and let 7 : A% < P2 be an open immersion satisfying the
condition of (1.10). Let the notation be as in (I1.2.3) and ¥onsider the infinite sequence of m-trees of
(P, T, L,P3): -

(To, o) <=+ <= (Tay i) <= -+ .

By definition, Tx contracts to a linear local tree. If k = O then (I‘.L);; = 1 in P3, by definition of)k;\
hence I'.L = 1, I" is a line in P? and we are done. Assume k > 0. Then the hypothesis of (I1.3.8) is
satisfied and, by the last assertion of (I1.3.8), we see that Tiin 2 (1), for some positive integer n. Writing
So = P’ etc,,
So + = S = e Sksn

‘ (76’1“0) = e = (Ticvpk) < e &= (n+nyl‘k+n)
where Ty+n > (1). Since all blowings-up have centers i.n. So\ A2, A? is naturally embedded in Sk and,
in fact, Sy+n \ A3 = supp (L**") (where the notation of (I1.2.3) is nsed) and (Tk4n, ftk+n) is the m-tree
of (Patn+1s I‘("""‘) L**" Si..). By iterating the argument of (II 3.3.1), we see that the contraction
Thtn 2 (1) corresponds to a birational morphism p : Skt — S’ which contracts all components of L*+"
except Epyn. Let P' = p(Piyni1), IV = po(T1*+7)) and L' = p.(Ex4n); then by (I1.3.3.1) the m-tree of
(P', I, L', 8') is ((1), #'), where the multiplicity 4' of the principal link of (1) is equal to the multiplicity
br+n of the principal link of Ti4n, i.e., it is 1. Hence (I'.L')p: = 1 and since these two curves meet
only at P, I".L' = 1. Now we have an embedding of A? in the nonsingular projective.gnrface S’, such
that the complement of A? is one curve L'. As is well known (1.3), $''must be a projective plane. Since
rML'=1, I' is a line in 5" = P? and we are done. Y

1.12. COROLLARY. Let I' be a curve of degree s in A3, with one place at infinity. Let (ro,r1,.. .) be

the multiplicity sequence of I' at infinity. Then the following are equivalent:

(a) T is a coordinate line.

(b) Either « = 1 or there is a positive integer k such that (ro,...,rx-1) is a sequence of type (1,3,1)
(=>i>1landr;=1ify2 k).

PROOF: Clear from remark (c) after (1.10), together with (I1.3.8).

REMARKS. ,
() (1.12) is riot used in the sequel; that’s why we didn’t give a proof of remark (c), after (1.10).
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* (b) We mention without proof that, given any § > 1 and any sequence (ro,...,rx_1) of type (1,5,1),

there is a coordinate line having (ro, ...,ra-1,1,1,...) as its multiplicity sequence at infinity (read
the proof of (1.11) backwardl). :

2. SomeAResults in the General Case.

The set of birational endomorphisms of A? is a monoid, under composition of morphisms. An

element f of that monoid is trivial if it is an automorphism of A? (this is equivalent to the definition

<

given in (I.1.3d) since any open immersion A? <+ A% is onto By, say, (1.29)); it is irreducible if it is
nontrivial and can’t be written as ho g where g and h are nontrivial,

*  Two birational endomorphisms f,g of A? are equivalent if f = v=! o go u for some automorphisms
u, v of A%; we denote that by f ~ g. Triviality and irredicibility are properties that depend only on the
equivalence class of f. As in the general case (1.1.1), we point out that ~ is not compatible with the
composition of morphisms.

Clearly, to give a birational endomorphism of A? is equivalent to giving an endomorphism of k-
algebras ]
j é: kX, Y] - k|X,Y]
such that k(¢(X), 4(Y)) = k(X, #). A .

To give an example, define
‘¢0 : k[X,Y] - k[X,Y]

XHX A ‘/
YHXY.‘

;.l‘he corresponding 7o : A2 —+ A2 has one missing curve, the Y- axis, one contracting curve, the Y.axis,

and one fundamental point, the origin. We leave it to the reader to verify that. r;('yo) =1, i.e: that ope

can construct 7o by performing the following operations:
1. Blow-up A? at the origin.
2. Remove, from the blown-up surface A2 the strict tranaform Iof the Y-axis L. ]
3. Recognise that A% \I Az ‘ : .

. The last atep is to choose an isomorphism A2 - A? \ I and to obtain a bmmonal morphism A% —

Al \ I <+ A% — A3, Depending on which lsomorplusm we choose, we get either g or some v ~ 7.
2.1. DEFINITION. A birational morphism f : A? — A? is called a standard affine contraction in Al
if the following equivalent conditions are sapisfied:

(a). £ ~ 70 (see above);

(b) n(f) = 1 and the missing curve of f is a coordinate line.

(Notnce that, since n{f) = 1= ¢(f) = 1=> ¢(f) = 1 by (1.2.8), f has one missing curve; the fundamental
pomt of f belongs to that curve by (I.2.1), o it is.true that (a)#(b))

»

-, Observe that the *addition formula® n{g o f) = n(f) + n(g) holds for birational endomorphisms of
A3, by (1.2.10). In particular, if n{f) =1 then f is irreducible.
Many questions cah be asked. In particular,
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o If n(f) = 1,is f necessarily & standard affine contraction in A2 Le.,mm thexmningcnrveoffbe
. & coordinate line? *

« Does thiere exist an irreducible f with n(f) > 1? -
" » What are the possible values of n(f), ¢(f), g(f), 7(f), 6(f), forirreducible £? (We know go(f) =0
oty (129))

(See the introduction for the history of these questions.)

In this section, we answer the above questions. Many other questions can be asked, but turn out
to be very difficylt in general; some of them will be answered in the next section, for the particular case
n(f)=2. \7]

Lot us now consider the main results of part I, and point out what they say about the special case
X =Y = A%,

"2.2. COROLLARY. Let f: A? — A2 be a birational morphism.

(a) o(f) =0, q(f) = c(f) and §(f) < 5(f) with equality iff f factors as f = hg, where g and h are
birational endomorpbisms of A? such that n(h) = g(h) = g(f) and n(g) = 5(f) = 6(f)-

Q - (b) Given any minimal decomposition of f, the corresponding (square) matrix ¢ has determinant +1.

4

(c) Every missing curve of f is rational and has one place at infinity. Embed A3 in P2 the standard
way; if two missing curves meet the line at infinity at distinct points then one of them is a linear line
(1.9).

(d) All fundamental points of f are on the missing curves. ) .

(e) Let the missing curves of f be Cy,..., Cq. Let A3 = Ypg) = --- — Yo = A? be given by a minimal
decomposition of f. Then Yn(7)\A? has g = g(f) connected components, each one being the support
of some D; € Div(Y,(s)) (1 <$< q) with s.n.c. iin Ya(s)): forming a linear tree

CimEy—Ey—-—Ey ,

N—
where {53,..., j,“‘ ¥ is a (poesibly empty) subset of J, C; is not compleate, but the Ej are. Moreover,
E,‘% < —liDYn(n. 4

PROOF: go(f) = 0 by (12.9), g(f) = ¢(f) by (12.8) and the rest of (a) by (3.7) and (1.8). (b) comes
from (1.2.7), (d) from (1.2.1}, (¢) from (1.5.7) and the first two assertions of (c) from (1.5.3) and (1.5.5).
We prove the rest of (c), i.e., the assertion about one of the missing curves being a linear line. Choose a
minimal decomposition of f, with notation as’ usual, let A3 < P? be a standard embedding (1.1), and
write L = P?\ A2 Complete the disgram:

L & Y""A — Y” \
i 7y 1%,
. :- .
im 1%

I {
Al — A3 - P?

LA

- Y R A S A
B X4 £ w8 T W q’,ﬂrﬁ
- N A W

*
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and consider D = L+Cy + -+ Cq + Yies Ei €Div(Yy). Then Yo\ A? = supp (D) and, by (1.4), D
has at most one *bad point”. Ix?’particular if C; meets L at Q; (in P3), ¢ = 1,2, and if Q; # Qa, then
(CiL)g; = 1 for some s € {1,2}, i.e., Ci.L = 1 in P? for some i € {1,2}.

2.3. COROLLARY. Given birational endomorphisms f,g of A2, n(gf) = n(f) + n(g) and j(gf) =
i) +3(9) + Aclf,9).

ProoF: (1.2.10).

°

24 COROLLARY. Let f be a birational endomorphism of A?, let (g, h) be any factorisation of f and
write W = dom (h) = codom (g). Then g(h) + 5(h) < n(h) and the following are equivalent:

() W A3 L

(b) q(h) + 7(h) = n(h) and (g, h) is a connected factorisation.

PROOF: (I.3.5)#and (1.8). For the definitions, see the beginning of (L.3).

2.5. COROLLARY. Let f : A% — A? be a birational endomorphism with j(f) = 0, let D be any
minimal decomposition of f, let p = pp and let r, s be positive integers such that r+s =n = n(f). Then
the following are equivalent:

’

(a) f = hg, for aon;e birational endomorphisms g, h of A? such that n(g) = r and n(h) = s.

(b) Modulo a permutation of the columns and a permutation of the rows, p has ihe form

H B
0 G

"where H is an s X s matrix and O is the r X s sero matrix.

Proor: (1.3.6) and (1.8).

\

From (2.4) and the discussions of (I.3), it is clear that we have an_algorithm that e/numbuocu, for
some given [ : A2 — A3, all equivalence classes of factorisations A2 — A? — A? of f. In particular,
we have an algorithm that decides whether a given endomorphism is irredMle. However, such an
algorithm doesn’t help us to answer general questions like, say, “for yhich values of n are there irreducible
endufnorphisms f of A? with n(f) = n?”

In fact, whether there exist irreducible birational endomorphisms with n(f) > 1 is a problem that
remained open for some time when people began to investigate these morphisms (see the introduction).

L]

The following example settled the gnestion,

2.6. EXAMPLE (RUSSELL). Let C; be an irreducible curve of degree two in A2, with one place
at infinity (a parabold). Let Py, P, P3 be distinct points of C; and let C; (resp. Cs) be the linear line
through P, and P (resp. P; and P;). Blow-up A2 at P, P;, P; and remove the strict transforms of
C1,C3, C3 from the blown-up surface. Then the resulting open set is isomorphic to A? and we obtain an
irreducible birational morphism f : A? — A? with n(f) = 3.

PROOP: First, we show that the surface obtained is & A3. Embed A2 in P? the standard way and
let L = P2\ A3; let P be the place of C; at infinity. Blow-up P? at P;, P;, Ps, denote the blown-up
surface by P3 and consider (i.e., make a picture of) the strict transforms of L,C;,C3, Cs in P3, with
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self-intersection numbers 1,1, —1, —1 respectively. To show: U & A2, where U = P?\ (LUC, UC,UGs).
By (1.2), enough to show that (1] € G[U]. So we blow-up until we get a divisor with s.n.c.; more precisely,
since (L.C1)p = L.C} = 2, we blow-up twie at P€C) C P3, If the reader made the necessary pictures,
he will probably agree that the resulting divisor, i.c., the reduced effective drmor at- infinity of U, has

s.n.c. and determines the dual graph (1.4.6)

‘ C )
¢ - ‘ S
(-B—(-0—(-1),

_~where the numbers are the weights. Now that weighted tree contracts to [1,0, —2], which is equivalent to

A3

(1] by the observation just before (I.4.15). So U & A2, To prove irreducibility, consider C -
111 -8
p=11 0 1 .
110
and apply (2.5). ' ’
REMARK.  (1.8) was not available when Russell constructed the above example, so he couldn’t use
(2.5). However, he proved the following statement, which doesn’t require (1.8): f'
If f : A3 — A3 has ordinary fundamental points, then (a)=>(b), in (2.5). =

So, when (1.8) was discovered, Russell knew that (2.5) was true in the case of ordinary fundamental

points. The generalisation to the case “j(f) = 0" is due to the writer.

REMARK. In example (2.6), an equivalence class of birational endomorph%’ — A3 js determmed
One can show that, if t € k \ {0, 1}, then

k|X,Y] — k[X,Y] s
P X —4 (X3Y2 - (t+1)XY — (¢t - 1)3Y +¢)(X%Y - tX — (¢t - 1)?)
Y — (XPY? — (t+ )XY - (t - 1)?Y + ) (XPY - X — (¢t - 1)3)
x l I

gives an element of that equivalence class. .

2.7. EXAMPLE (RUSSELL). Let n > 8, let C; be an irreducible curve of degree n — 1 in A?, such
that - '. -

(a) Ci has one place at infinity

(b) C, has a point P; (in A?) of multiplicity n — 2. . i

Clearly, such a curve exists. Choose distinct linear lines Cj,...,C, such that

(c) CinCy = {P,, P}, some P, € A?\{P} (2<i< n).

Blow-up A? at P,,..., P, and remove the strict tranaforms of Cj,...,Cn. The resulting surface is
isomorphic to A? and we get an irreducible f : A2 — A2 with n(f) =n.

Verification left to the reader.

We see that irreducible endomorphisms f : A? — A? with n(f) = n exist for all n > 1. The case
n = 2, which is not covered by the above examples, will be studied in detail in section 3.
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The case n(f) = 1. Let f be a birational endomorphism with n(f) = 1. Then f is irreducible by (2.3).
Since ¢(f) is obviously 1, we have g(f) = 1 by (2.2a). We have 5(f) = n(f) — £(f) =0 and the matrix u
is the 1 x 1 matrix (1) by (2.2b). So p(P;,C) = 1, where C is the niesing curve and P, the fundamental
point; by (2.2¢), C is nonsingular after the blowing-up of A2 at P; (it may have a singularity at infinity),
8o it is already nonsingular in A2. Hence C & A by (2.2¢), i.e., C is a line (1.9). To concluds that f
is a standard affine contraction (2.1), all there remains to show is that C is a coordinate line. Generally,
that sort of problem can be very difficult [1]. We will show that C is a coordinate line {(hence that f is
a standard affine contraction) by showing that it is graph-theoretically linear (1.10), (1.11). This meanr
that a certain local tree T contracts to a linear local tree; to prove that, we assume that T, does not
contract, and we use our knowledge of C to exhibit a triple (d, u,v) which violates (I1.3.32). Note that
our argument is v;_:lid in arbitrary characteristic. d

2.8. THEOREM. Let f be a birational endomorphism of A3, with n(f) = 1. Then f is a standard
affine contraction.

PROOP: Embed A? in P2 the standard way, let L = P?\ A2, let C be (the closure in P? of) the ;niuing

curve of f and let P be the place of C at infinity (of A2?). Writing Sy = P?, etc., consider

So Py v Sk - )
”(Ps 01 Lt Pz) : (Tb; “Q) R (-Gn ”‘l)-
If k= 0 then C.L = po{{P,L}) = me({P, L}) = 1, 50 C is a line in P?, i.c., a linear line in A%, and we
are done. o

f
v

Assume k > 0.
Let d = deg C, u = pu(P,,C) (i.e., u =1, but we don’t need to know that) and
\_/x.

@ k-1
a=d -~ 3 (usla0))-
. y=0 -

In the notation of (I1.2.8), Ti[a] & §(Sk, C™™ + L*) ~ [1). Clearly the principal vertex of Th ig a branch
point. So, if Ty does not contract to a linear local tree, the hypothesis of (II.3.32) is satisfied. Tken

‘(d, u,0) violates (I1.3.82), which is absurd. Consequently, Ti does contract to a linear local tree. Hence

the missing curve is graph-theoretically linear, i.e., it is a coordinate line.
We now return to the general®hse, i.e., n(f) > 1. The above theorem generalises as follows:
[ 4

2.9. THEOREM. Let f be a birational endomorphism of A? such that g(f) = 1. Then f is a composition

.of n(f) standard affine contractions in A3. In particular, the missing curve and the contracting curve

are coordinate lines.

PROOF: Let C denote the missing curve of f. We proceed by induction on n = n(f).

The case n = 1 is just (2.6), above. ¢

Let n > 1 be such that the theorem holds whenever n(f) < n. Let f be such that n(f) = n. Choose a
minimal decomposition of f, with notation as in (1.1.3h). Since j(f) = n(f) - c(f) =n(f)-q(f)=n-1
and n ¢ J by (L1.3i),

(1) J={1,...,n—1}. ~

N
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| Again by (L33, © - , | S
(2) P €EB 1<i<n. '
Thus an elementary calculation shows that —— .

(3) €17 <+ < ey, lrS'J' <n

(see (1.2.5) and (I.2.4) for definitions). Since ¢;; = 1, we deduce

- (4) , 21, 1<Sj<n
On ‘the other hand, _ - .
”n
' fu= (Z ensii( Pj, 0)) (1 x 1 matrix)

. J=1 )

so by (2.2b) . '
¥ . ’ . 7 '
(5) | > ensnl B, C) = 1.
. , 3=l ’ \d
By (4) and (5) - o ) ’ o
) ( . - - ] -
‘ IZZF(Pj;C)?:#(Pno)’-l. 80 1 ‘
J=1 . /
e ” 1 ' )
- R o /
(6) ‘ ' p=1. X
. e 0
and consequently ¢q; = 1 by (5) and (6). If 1 < < n then by (3) and (2)
N u “ '
L ) 1= a1 2 €411 = ) embi(Poss, Ey)
k=1

-1 : )
1 . 2 E#(Pi-f-h Ek)] +“(P‘+I)E‘) 2 l‘(Pi'+1)E|') = 19
=21 | '

° whence

(1) / P €E;inY; «<>j=4, allij. - —

1)

By (6) and (7), P, ¢ (C;UEl U---UE,_3) in Y,_;. So the image of A? Y, — Ya-1 is contained
inW=Y,1\(CUE U---UE,_3). In other words, we have a factorisation (g, h) of f (g : A? — W
and h: W — A3, see (1.3)). Now g has one missing curve, E,_.,. Since P, € En_1, go(f) = 0. On the
other hand, Y, \ W is connected by (6) and (7), and contains C, so (g, h) is a connected factorisation of
f. Clearly, n(h) =n -1, W < ¥,,_; — .- = Y, gives a minimal decomposition of h and consequently

. ’ J(h) =n — 2. Since C is.a missing curve of h, g(h) + 5(h) = n — 1 = n(h). Then W =2 A2 by (2.4) and
we may apply the inductive hypothesis to A.
S -
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REMARK. In the above argument, once (6) and (7) are proved we know that the contracting curve
f N A3 of f has one place at mﬁxty, and hence is a line (& A‘) Then we coul? invoke (15, remark

4] and conclude immediately. However, that would not be a significant improvement, since the essential
part of our proof is to establish (8) and (7).

Until recently, no‘example of an irreducible f : A3 — A2? with j(f) > 0 was known;. Russell did
construct examples with infinitely near fundamental points, but they all had j(f) = 0. Moreover, the
above theorem says that if j(f) has the maximum possible value, i.e., j(f) = n(f) — 1, then f is reducible
(unless n(f) = 1, of course). In fact, when the author proved that theorem, he was hoping that it was the
first step in the proof that 5(f) > 0 = f reducible. However, his attempts resulted in the construction
of a family of examples (2.11), showing that he was as wrong as he could possibly be. To clarify the
situation, we have the foll?wing statement,

" 2.10. THEOREM. Let n, j and § be nonnegative integers. There exists an irreducible birational

morphism f : A? — A? satisfying n(f) = n, 7(f) = j and 6(f) = § if and only if one of the following
conditions holds:

a) 0=6=7<n
(2) j
() 0<6<j<n—1

H

PROOF: Suppose there exists an irreducible f such that 'n(f) = n, j(f) = 5 and §{f) = 6. We have
0 <8 <j<nby(22a). If j =0 then (a) holds. If 5 > 0 then n > 1,305 <jsby(22a)andj<n~1
by (2.9), i.e., (b) holds.

Conversely, the case (a) with n = 1 is realised by the standard affine contractions; the case (a) with
n > 2 is realised by (2.7); and the case (a) with n = 2 is realised, as we will'see in section 3. If (n, 7, §)
satisfies (b), let m =j—6+12>2and g=n-352>2and choose §; 2 0, ..., §,—; 2 O such that
61 + - +6~1 = 6. Then example¥(2.11) realises these numbers.

2:11. EXAMPLE. Let m 22,422,620, ..., 61 2 o be‘integers. We will construct an
ucible birational morphism f : A’ — A’ with two fandamental points_ md satisfying

n(f)=m+q— 1+61+ +6_

9(f)=4q i
§(f)=b1+4 -+ 641 g
i(f)=m-1+6(f). ‘

_Choose Fy,...,Fy € k[X, Y] such that if C; is the affine plane curve F;(X,Y) =0 then

e C; is a nonsingular rational curve of degree m, with one plm at infinity, with‘multiplicity sequenco
at infinity: m—1,1,1,.... .
o There are distinct points P;, P; € A? such that ¥

bl

Vizs [C.' NC; = (P, P2}, (Ci.Cj)p, =1, (C"C")f3 =m- l].

(For instance, F, = a;Y™ (Y —1)+ X, where ay,. .., aq are distinct elements of k*; thcn P = (0, 1) -
and P; = (0,0).)
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We are going to embed A? in ¥ (one of the Nagata rational surfaces). First, embed A2 in P? the

standard way and write P?\ A? = L. Let C; also denote the closure in P? of the curve C; choaenabove
The curves Cj,...,Cq all meet L at the same point P. Notice that "

1) C,NL = {P}, u(P,C:) = m=—1, Ci.L =m, all.

2) O.Cy= m3, all 4, 7.

8) (Ci.Cy)p = m3 = m, all distinct s, 5. ) . (
Blow-up P? at 4; = P, lst D, be the exceptional curve, let A, be the point at which D; and L meet.
Then . .

4) CiNL={A3}=CinD,,Ci®% P, C? =2m—1,Ci.L =1,C;.Dy =m—1, foralls,

8) CinCy = {Py, P;, Az}, (C{.'C,')A, =m — 1,7l distinct s, 5.

Blow-up m — 1 times at the point of D; which is s.n. A3. Call the exceptional curves so obtained

Da,...,Dm. On the resulting surface, the divisor Dy + -+ + D + L:hu s.n.c., its dual graph is tlgg\

g

linear weighted tree .

Dy(~m)—Din(~1)—Dp-s(~2)— - —Da(~2)—E(~1)

where the numbers inside the *( )* are the weights, and the complement of that divisor is A?. Contract

L,D3,...,Dm-1 and let Sy denote the complete surface obtained. We get A? = Sy \ supp (D; + D),
where D) + Dy, € Div(So) has s.n.c. and has dual graph §(So, D1 + Dp) as follows:

Dy (~m)—Dp (0).

In fact, So = F,, (but we don’t really need to know that).

Now C},...,Cm meet Dy, at distinct points and

8) CiNnDy =0, Ci.Dm =1and C? =m, alls.

We now proceed to define an equivalence class of irreducible morphisms f : A? — A3, Blow-up
once at P;; blow-up m — 1 times at P; (more precisely, always blow-up at the intersection point of (the
strict transforms of) the Ci’s). The last of these blowings-up makes C;,...,C, pairwise disjoint. If
E), E3,..., Em are the exceptional curves so created, then on the blown up surface the divisor E3 +-- -+
Ep +Cy+--+Cq+ Dy + Dy, has s.n.c. and its dual graph is :

i

C (0)

E3(—2)— - —Emn-1(~2)—Em(~1)—C¢(0)—Dyp (0)—D; (—m).
Forgm1,...,¢4—1, let Q; be the intersection point of E, and C;. |

Blow-up §; + itimes at Q,,
then & + Itimes at @y,

and 6,3 + 1times at Qq.3;
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to show that §(Sn, D) ~ [1}. Now G(Sn,D) contracts to

. vlle:»f“}::“"?r““”' ®

more precisely, always blow-up the point of Ky, which is i.n. Q.
Denote by E},..., E} ,,, zg,...,s::_’;“.sr‘,..., ,..“.,,, the exceptional curves so created. On the
resulting surface, call it Sy, consider the divisor ~ -

. D=E,+---+E.,.+(E{+---+E},)+---+(E{“+---+1!-‘,'.‘_“)+C;+---+c,+1)...+D;,
whose dual graph §(S,, D) is

Bi - Byy -

Ei(~2)— -+ —Em-s(~2)—Em{-q — = -+ 64-1)—C4(0)—Dm(0)—D1 (-m)

where, fori=1,...,9-1, 5 IL/\
| GU-1)—Ei(-2)—-—E},(-2),

A
C; being linked to D,,. We claim that the complement of supp (D) is isomorphic to A2. By (1.2), enough

Y
"‘2s'--)"2)"'Q“61 - ""‘61—110:61 + "'+6¢—1 +4- li-ml
~ [‘20"'n"2: -1,0,0, "m] 4 [m = liol—m] ~ [—1,0, 0) ~ ‘llv

where we use the notation for linear weighted trees defined before (1.4.15) and the fact ‘pointed out just
after that definition.

8o we get an equivalence cliss of birational morphisms f : A2 — A3, We leave it to the reader to
convince himself that, if f = h o g with 0 < n(h) < n(f), then h gives rise to a sub weighted tree §' of
G = 9(Sn, D), such that §’ contains D;, D, and at least one more vertex, §’' #' ¢ and §' ~ [1]. We
claim that § dos not contain such a §'. To see that, suppose §' exists. Then C, is in &, otherwise §'
would contract to [p,—m] for some p > 0, and [p, —m] # [1] by (1.4.16). Next, E,, is in §', for otherwise
§' contracts to [0, p, —m] for some p > 0, and by (1.4.16) this is not equivalent to [1]. So g’ has the form

[ (]
B ... B,

B'—Epn(—q—8~--— 6,-;)——0.(0)a>>m(0)—01(-jm)
where each 8, B/ is either empty or a linear branch, and

B{X[-‘—l, -2,...,~2| if not empty,
B' = [-2,...,—2] ifnot empty.

Notice that, if B is not empty then the vertex of weight —1 is there and is the neighbour of Dy Hence
we soe that all (nonempty) B/ can be absorbed by Dy, and that the absorption of B/ increases the weight
of Dy, by the number |B]|. Let a = |8{]| + --- +|B;_,|. Thei~J’ contracts to the minimal waighted tree

B'—Em(~g~ b1 = - = -1 }—Cy{0)—Dum(e}—Di(-m).

M -—
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By (1.4.16),a—g—6; —--— 6,,_1\i~—1, so |Bi|+ -+ |By_y| = |Br| + - +|Bg-1), ie., Bf = B; for all . &
Let b= |8'|. Then . '
9’ ~ [—2!"‘I-29—q —b—---= q—lno'ar,—m]
~ =2, =2,-1,0,0,~m) ~ b+ 1,0,~m] _ k
where we used the observation just before (1.4.15). By (1.4.16) again, b+1~m = ~1, ie.,b=m—2 and
G’ = 8. Hence f is irreducible.
8. The Case n(f) = 2. : . : .

In this section, we cladsify irreducible birational endomorphisms f : A? — A2 such that n(f) =‘l.
Observe that 5(f) = §(f) = 0 by (2.10), so f has two missing curves. Moreover, it follows from (2.5)
that all entries of the matrix s (determined by any minimal decomposition of f) are nonsero.

3.1. THEOREM. Let f: A? — A? be an irreducible birational morphism with n(f) = 2.)Then there
! is & coordinate system on A3 such that, if A? is embedded in P? the standard way, then the closures of
4 the missing curves meet the line at infinity at distinct points.

Moreover that coordinate system is nmque, up to affine aﬁiomorpluam of A2, and has the foHowmg
property: if the missing carves C1,C3,and the fundamental points P,, P; are suitably labelled, then

- (3) C, is a rational curve of degree 2b + 1 (for some b € N, with one place at infinity;
' ) (b) p(P1,C1)=b+1 and p(P3, Cy) = b; '
' (c) C3 is the linear line through P; and P; (note that P; is allowed to be i.n. Py); B

(d) The mukiplicity sequence of C; at infinity begins with a sequence of type (2,2b+1,1) and continues
1L,1,.... :

3.2. TEEOREM. Let Cy,Cy, Py, P; satisfy the conditions (a)-(d) of (3.1). Then there exists an irre-
ducible birational morphism f : A? — A3, with n(f) = 2, having C; and C; as missing curves and P,
and P, as fundamental points.

3.3. REMARKS. The following comments required extensive computations that the anthor carried out
by using methods that R. Ganong explained to him. In this regard, the author would like to express his
. thanks to Ganong. '
(1) The condition (d) of (3.1) is not superfluous, i.e., there are curves C;, C; and points Py, P; satisfying
"\ . (a), (b), (c) but not (d)'. We have the following example:

4

Let chark = 3, .
- Ci: Y4+ XY'4+XWe-X¥=0
: Cy: Y=0
P, = (0,0) and P; is the unique point common to the strict transforms of C; and C; after blowing-up
L ¢ A? at P, (s0 P, is i.n. ).

. n

The reader can verify that (a), (b), (c) hold and that the multiplicity sequence of C} at infinity is

o | |
: o 3,...,3,1,1,...,
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where *3” occurs 14 times. So (&) does not hold. The question whether such an example exists if
chark = 0 is open. No example exists such that C;'has degree less than.18 (any characteristic).

(2) We have the following question. Given a positive integer b and a sequence (ro,...,rs_;) of type
(2,2b+1, 1), do there exist Cy, C3, Py, Fa satisfying (a), (b), (c) of (3.1) and such that the multiplicity
sequence of C; at infinity begins with ro,...,ra-1 (and continues with 1,1,...)? %« )

Now let I be as in (I1.3.5). The answer is yes if | = 1 or 2. Indeed, write (ro,...,r-) =
(mo, mo, 81, ...,51) as in (I.3.5), let C3, Py, P; be as in (1), above, and let C; be the curve
Xo 4 Ymotl =9 o ifl=1,

{ (xio/ﬁ + ym/h-n)‘l 4+ XYymotmi .0 if ['m 2.
Then the desired conditions are satisfied. ‘ -
The author’s opinion is that the answer is ycs in general. In fact, he also found some examples with
1 = 8 and was beginning to understand how to go from *1”® to */+ 1", when he ran out of time and
stopped tl;inking about that problem.

(3) From what has been said, we conclude that

(i) If f, C1, Ca, Py, P, are as in (3.1) then
- b+1 1

o s3]

(ii) Gi¥en b € N, the matrix displayed in (i) can be obtained from an irreducible f: A2 — A2 with
n(f) = 2. Further, if 2b + 1 is not a prime number then, by remark 2 following (I1.3.5), there
is a sequence of type (2,2 +1, 1) with ! = 2 (and there is always one with | = 1) so by (2),
above, together with (3.2), there are nonequivalent f’s realising the matrix considered above.
(The “nonequivalence” comes from the discussion preceding (1.10)). -

PROOF OF (8.1): We are going to construct an open immersion A% «— P? guch that the closures of

the missing curves meet the line at infinity at distinct points (that is clearly eq’uivnlent to the existence

of a coordinate system on A2 with the asserted property). All other assertions will be easily deduced
from that. :

Consider a minimal decomposition of f and the corresponding matrix ~p:

Yz
-
) ¢ _la ¢
‘ ! "“'-bd]
A2 — A? = Yo
f .

where we assume that a > b 2 1 (this is possible because no entry of 4 is sero and déty = =%1). As
usual, let C;, Cj be the missing curves and P, P; the fundamental poimts. Choose any open immersion
A3 <4 P2 and let L be the line at infinity; consider the diagram

s

. ’ ' & Yl b Zl
! l

) Yo «+ %

! : [

A2 — A2 o P32

i 3
(- ’ I
" ,
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- Then A% = Z, \ supp (C; + Oz + L). Consider a sequence

go (41 ON
2 = S — 8 +— - +— Sy (NZO)

where each o; is the blowing-up of S;; at a closed point &; at infinity of A3, such that if we write
= d‘ 1(8‘) and , : \

L = L& Div(So), : . '
L'=L'+F€eDiv(S) (1<i<N), .o

1
- . ~

then Gy + C + LV € Div(Sn) has s.n.c.. Assume that N is minimal with respect to thesé properties.
If N =0 then Cx + C3 4 L has s.n.c. in Sp and, in particular, C) and C; meet L at distinct points (in
Zy = P3?) and we are done. Let us assume that the missing curves meet the line at infinity at the same
point. Then N > 0 and, by (1.4c), the center a; of o belongs to the support of C; + Cg € Diy (S;-,) (all

!

3). So the following notation makes sense; \

o s
°

LJ : : {C,C'} = {C1,Ca}, where V; s, €C.

By (1.4b), &8, € C-N L in So. Moreover, the curve in Y, ;M\rr}é{onds to C has one place P at
infinity (2.2’::). So So +— - « Sy is the beginning of the inﬁniteq sequence of monoidal transformations
determined by the triple (P, C, Sp) (see (11.2.3)). To that infinite sequence, there corresponds the infinite
sequence of m-trees of (P, C, L, So); let : 3
. . (Tgnl‘O)": . "?<= (TN1 I‘N)

v . ‘ v
be the first N + 1 terms of that sequence. Then To = (1) and Ty has one principal link. On the other
!n.n’d, the curve in Y, whic}: comaponfla to C’ has one place P at infinity; define

k=max{;|1<j<Nand a,-EC'}.
- j( . R ‘ M .
Then Sp + -+ « Sy (where the morphisms are oy, .,0%) is the begmmng of the infinite sedyence
of monoidal transformations determined by the triple (P, C’, So); if we let (T; ,pJ) be the m-tree of
(P',6',L7,S,),0 £ j <k, then we have the sequence of m-trees

V(T e (T

T where (Tg &+ T_;) = (To « -+ +* Ti—1). Since oy is the last blowing-up which has cente1. on C",
) Ty must have one principal link o’ and p4(a') = 1; whence k > k(P',C", L,’Z;). We have the following

‘ «
. diagram: B 0 |
,. o . N - . . . . . ' \ ' : ‘ W‘ 1 .
t Tk -
. ' 2 , " "(l)ﬂnh..-Hn-l‘.i?;l.ﬂ‘__“‘_TNC,G ' ‘ ~
. . 5 . ~ - \ |
’ : A 78 , |
e~ . A o . ) ) ‘
' q
AN
\ A L] ‘J
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where ¢ is the vertex created in Ti—y « Ty and a = C'? in Sy (or in Sy, since these two numbers are

equal). If § = G2 in Sy, then Ty"*(B] = G(SN,C + C' + LN) ~ [1] since Sy \supp(C + C' + L) & A2,
If T, does not contract to a linear local tree then we may apply (I1.8.27) to T — Tj—; and the weak
sequence Te—1, Ty"%,..., Ty'®. The conclusion says that

satisfies the hypothesis of (I1.3.28), hence that of (II.3.32). On the other hand, if we let d be the degree of
C'in Z = P3, u = p(Py, C') and v = p(P3, C') then the triple (d, u, v) satisfies condition (a) of (I1.8.32),
which is absurd.

Hence T, does contract to a linear local tree. As observed above, k > k(P’,C', L, Z3); it follows that
all trees in

[ 1
Tk(P‘,C'.L.z,) —e Ty

have one principal link and, consequently, that Ty(p: or 1, 2,) contracts to a linear local tree. Since the
blowings-up Zy + Z; « Z have centers i.n. A% hence away from L, the sequences u(P',C’, L, %)
and p(P',C', L, Z;) are just the same. Hence the appropriate local tree contracts to a linear local tree
and C' Cc A? is graph-theoreticall; linear. By (1.11), C' is a coordinate line. Since we assumed, at the
beginning of this proof, that the entry a of 4 was greater than 1, ie., that C; was singular, C; is a

_ coordinate line.

Observe that, since C3 is nonsingular and det y = +1,

b+1 1 -
) #= [ b 1] '
Hence condltxon (b) holds, in the statement of the theorem (we will see that the number b of (a) is the
same as this one). - ’

We may assume that the open immersion A% < P2 has been chosen such that the.closure of C;
is a line. If C), C3 don’t meet at infinity, we are done (thh this part of the proof). So assume that
CiNCaNnL # 8. It then follows that L? < 0in Sy. Also, all that has been said, above, is still vahﬁa now,

Observe that the principal vertex of Ty'" is a branch point (otherwise the blowing-up Sy—; + Sy
is superfluous, i.e., N not minimal) and has weight ~1. ®n the other hand, Ty'*(f] ~ [1]. From these
facts, we deduce that L has negative weight in T5'®. To see that, suppose that L has nonnegative weight;
then that weight is 0, as noticed above. Then L must be a neighbour of the principal vertex in Ty'®
(otherwise, any linear weighted tree £* to which Tj;'”(8] contracts satisfies (L*) > 1, as explained in the
proof of (11.3.27)). This means that all blowings-up (01,...,0n5) have centers on L, so the final weight
is0=1- N and N =1. Consequently, k = 1, g ~2 and Ty'™ = (»,~1,(0),(~2)) in the notation of
(11.8.18). Since Tx'*[] must contract to a linear tree, § = ~1 and . Ty"*[f] ~ (0,0, ~2] # [1] (1.4.18),
contradiction. ’

Hence L has negative weight in Ty'®. Thus at least two blowings-up have center on L, i.e., C; and
L meet in S;. Since C3.L = 1in P2, hence in Sp, they can’t meet in 9;. So C; and C; are disjoint in
S1, 83 ¢ C3, k=1 and a = —2. Clearly, it follows that T;" = («, (~1,-2), (0)).

CLAIM. T = Ta~? contracts to a linear local tree.
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* since (M,-(a;o))

Let d be the degree of C; in Yp = P? and let r; = p;(zo), 0 < 5 < N. Define m-irees (Go, Mg) and
(61, M1) by
e Go =(2), Mo(zo) = ro and if ag denotes the link then Mpy(ag) = d + ro;
e G1 = (»(-1), (1)), M1(z0) = ro and if £ and ¢ are the links corresponding to the weights —1 aud 1
respectively, M;(¢) = ro and M;(¢) = d. -
Let also (G541, Mys1) = (Tros) LSTS N
Then Gn+1 = Ty'", 80 we have to prove that Gn 1 contracts to a linear local tree. Suppose it doesn’t.

Now,

* (o, Mo) <= -+ <= (GN+1, My+1)

- where o = (2) and §y+1[B] ~ [1]. Hence the sequence Go «— - « Gn,y satisfies the hypothesis

of (I1.3.28) (with w = 2), and hence that of (I1.3.32). ‘Now we claim that the triple (d,u,v) = (d, a,b) .
satisfies the second condition of (I.3.32), which is absurd. To see that, we calculate the numbers i, w

and p defined in (I1.3.28). First, i = Mp(ao) = d + ro. Also, _ .
. N-1 ' - . -
w=-1++ Y 1,
§=0
_rolro=1) X r(ri-1)
p=——— 7 2(:) 2

7m0 N = (royro,r1y...,rn~1). Now the very first assertion of (II.3.28) reads “;z = -1,

which means § = —1 in our case. So C? == —1 in Sy, and

“a

w="r+(~1+ 0+ +ryy) =1 +(C] in S) !

=r3+d—a% b
- =ra4+d—u? -0 )
Similarly, since C) is rational, ) .

- ro('o2 -1) + (arithmetic genus of C; in Sp)

. _rolro=1)  (d-1)(d-2) ala-1) bb-1)
’ 2 2 2 2

N

For the last condition, d— (u + v+ro) =d~ (a + b+ ro) = (C1.Ca)s, 20,80 u+ v+ro < d. Hence
(d,u,v) does satisfy the second condition of (I1.3.32), and this is a contradiction. This proves the &Fhim,

i.e., that Ty'" contracts to a lifiear local tree-
It follows from (I1.8.8) that Go « - -- « Gn+1 is of type 2 (see (I1.3.7)). In the notation of (I1.3.5),

(ro,ro,r1, 73y ..oy r—1) = (Mo, M0, 81,0, 80, My, g, 0L, 8).

We claim that ! > 2. Indeed? ifl = 1then ¢ = 2mgy +14; = 2rg + 1, 80 ro = d — 1, which is impossible
since C is singular “at finite!distance®. From'that, we deduce that
(*) The sequence (p,(:ro)),:o'__ N—1 begins with (mq,dy,...,41), where %" occurs 2n; times, and

continues with (m;,m,s3,...,3;), which is of type (2,13, 1). '
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This is really the piece of information that allows us to construct the open immersion we are after. It is

now easy to see that
T2n;+1 = (‘, -1,-2,,..,-2, ("'1 - nl)» (“2: vy 2, '_1)) @

where the first sequence of “~2* contains 5, terms, and the second ny — 1. Hence, T3n,41 2 (1).

Let Zy = Sy + --- +— S}, be the beginning of the inknite sequence of monoidal transformations
determined by (P, Cy, Zp) and let Fy, ..., FA\be the exceptiogal curves so created. Clearly, the beginning
of the infinite sequence of m-trees of (P,C), )

(To, o) <= -+ <= (T, n)-

Moreover, A? is naturally embedded in the surface S5, ,, its complement is the divisor D = L+ F, +
++ + F3p, 41, that divisor has s.n.c. and
(l) C1.D = C1.Fan,41 = Man,+1(82n,+1) = 11,
(i) C2.Fi0,41 =0, Y
where agp,, 41 denotes the principal link of T3,,4+1 and where the last assertion is a consequence of
k=1<2n; + 1.

Contracting the ciirves L, F3, ..., Fan,, Fy, we obtain P2, and the line at infinity of A? is now Fa,,.41.
Thus we have an open immersion A? — P2 such that C; and C; meet_the line at infinity at distinct
points, and this completes the first part of the proof.

It is well known that such a coordinate system on A” is unique, up to a linear automorphism (or
rather, an affine automorphism, since we allow translations). In fact, any automorphism which is not
affine contracts the line at infinity.

Now C; is a linear line by (2.2¢), or simply because C3.D = 1 in S3,,41 3nd that is still true after

" contraction. Hence {c) holds.

We have already noticed that (b) holds; since C; and C; don’t meet at infinity, C; N Ca Z 9 once
we have blown-up P? at P, and P; (for A2 has no loops at infinity, or because of (2.2¢)). Hence

0= (Cl.Cg)p: - ll(P],,Cl) - p(Pz,Cl) = deg C[ - (b + 1) - b,

* ie., degC, = 2b+1and (a) holds. From (i), we see that deg Cy = 1,, 80 1 = 2b + 1. Thus (d) holds,
since the multiplicity sequence of C; at infinity is just (m;,m;,s3,...) which begins with a sequence of -

type (2,41, 1) by (*). This completes the proof of theorem (3.1).
PROOF OF (3.2): Embed A? in P2 the standard way. Blow-up P? at P, and P;. Then C, and C; are

* disjoint and C; is an exceptional curve of the first kind. Contract C; and denote the resulting surface by

S. We have Cy + L € Div (S) and we have to prove that U & A?, where we define U = S\ supp (C; + L).
Then by (1.2), it’s enough to prove that [1] € G[{U] (1.4.8).

Recall that Cy C A? has one place P at infinity. Then C,, regarded as a curve on U, has one place at
infinity: the same place P. Asin (11.2.3), (P, C), L, S) determines a sequence of monoidal transformations
and a sequence u(P,Cy, L, S):

So- = o — S

(761/‘0) <« <« (Thpl‘k)
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where Sp = S. By definition of k = k(P,Cy, L, S), T has one principal link and the multiplicity of that_
o link is 1. In the notation of (11.2.3), this means that C{k).L" = C{”.Eh = 1, where Ey is the exceptional
‘ curve created by Si—; +—, Sy (note that k > 0 because (C;.L)s, = 20+ 1 > 1). Now U is naturally
embedded in S, and the complement of U is just the support of

-

D =c® + L* € Div(8y).

Let us check that D has s.n.c.. By the above comments, that amounts to prove that C) is notisingular.
Now condition (d) of (3.1) says that

[N

(Toy- e yrh-1) = ("5(’0))j=0.....k-—1 is of:type (2,26 + 1,1).

>

b
Let us-use the notation f(z) = 515...;‘-)-, z € Z, as in the numerical lemma (I1.3.31). Using parts (a) and
(d) of that lemma (with w = 2, = 2b+ 1, ¢’ = 1) we find that the arithmetic genus of C; in Sy is

k-1

(f(28) — f(b+1) - £(¥) - (Z f(":')) =b(b-1)-bs(b-1)=0, .
N y=0

80 D has s.n.c.. Therefore, the dual graph §(Sk, D) is just Ti[B], where § is the self-intersection number
of C, in Ss. By (I1.3.31c), we get B = n; where n; is determined by (rq,...,rx—;) as in (IL3.5).
On the other hand, the sequence Tp — e Ti is of type 2 (I1.3.7). So theorem (I1.3.8) says that
Ts 2 (#,0,—n; — 1,-2), where the notation is as in (I1.3.18). Hence

Pl

Q(U] 3 T)c[ﬂ] = Tic[nl] = [m,O,—n: - 1!_2] ~ [1]

! 7

-

" where we use the notation for linear weighted trees defined just before (1.4.15), and the observation which

comes just after that definition. This completes the proof.

We did not use the full power of (I1.3.27) in these proofs; what we used, in fact, is (I1.3.24). We
believe that some parts of these arguments can .%be generalized to n(f) 2 2, by using a slightly generalised -
versjon of (I1.8.27). In particular, it seems to us that the beginning of the proof of (3.1) actually shows
that if f: A2 — A7 has n(f) > 1 and if every column of y has at most two nonsero entries then some
missing curve of f is a coordinate line. However, we did not check the details, so this claim is only a
conjecture. The reason why we have to limit ourselves to two nonsero entries in each column of p is
that these entries corni.spond‘ko the numbers u and v of (I1.3.32). We don’t know how serious is that
limitation. To remedy this, we could for instance try to improve (I1.3.32), or to use (I1.3.28) itself. Also,
we haven't taken advantage of (2.2e), which is, in our op{txxon, an interesting and nontrivial piece of
information. ‘ N

On the other hand, it is not true that our arguments casily generalize to n(f) > 2. In particular we
have the following example of an irreducible f : A? — A? with n(,) = 4, all of whose missing curves
are singular. Note that each one of these curves contains the four fundamental points. That example is

9 ’ due to Russell. He has kindly accepted to carry out the calculations, in order that act'un] equations be

displayed here. ]
, A
; 7

B
Y
P -
i
- -
. .
- ' .




3.4. EXAMPLE. IP Az, let P, = (0,0), Py= (0, 1), Py = (—1,—1), Py = (1,2) and let ), C3, Cs and
C4 be the curves given by the polynomials ,

F=Y°+8X? —6XY - Y? \ -
F=Y*4+32X% - 48X%Y +20XY? - 2Y® 4+ 20X? — 20XY + Y3
"% Fy = Y4~ 32X% 4+ 48X?¥ — 20XY? ~ 2Y3 — 28X? 4 20XY + Y3 ' )

Fy=Y%4128X* - 288X°%Y +224X3Y? — 60XY3 — 2Y* + 96X° — 166 X?Y + 60XY? + Y?

respectively.” Blow-up Al at Py, P;, P; and P, and remove from the surface so obtained the strict
transforms of C;, Cz, Cs and Cy. The resulting open set is isomorphic to A?, so an equivalence class of
endomorphisms f : A? — A2 is determined. Notice that

& h=

80 the endomorphism is irreducible by (2.5). 5

-

——

[ S i ]
- N N
N = NN
[0 I -]

In some sense, our classification of irreducible birational endomorphisms with n(f) = 2 is complete.
However, there is a whole class of questions that we have not considered. For instance, if (ro,...,"4—1)
is a sequence of type (2,2b+ 1, 1) for some b € N, then what are all irreducible morphisms f : A? — A3
with n(f) = 2 such that, in the notation of (3.1), the multiplicity sequence of C; at infinity begins with
(ro,.+-,7k~1) 7 In the simplest case, i.e., when the number [ of (I11.3.5) is 1, the sequence (ro,...,rx-1) is
just (b,b,1,...,1). In that case, and if we restrict ourselves to the endomorphisms f with i.n. fundamental
points, then these morphisms are parametrised by the points of A%, two points (a;, .. .,as) and (a},...,a})

corresponding to equivalent morphisms iff

BOER‘ (a'l,...,a'b) = (ﬂall,ﬂzag,..‘.,ﬁbab).

1 a
° . 1
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