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ABSTRAC:r 

Birational morphisme 1 : X - Y of nOllsingular, surfaces are s'udied -fin,. Propeni .. of th •• urfac .. 
1 .. ",. _ 

X and. Y are eho~ to be related ta eertain numerleal da~a utraded !rom the configuration of -miaing 

eurves- of l, that is, the curvel! in Y whoae generie poin, is not 1n I(X). Theae reluIt. are then appHed '0 the problem of decomposing birational endomotphisms of ,the plane into a aucceaioQ of imducible 

ones: 

. A graph.-theoretic machinery is developed tQ keep track of the desingularil .. ti~n of the divisore at 

infi.nity of the pl~e: That machinery is then used ~o' investigate the problem of c:laaaüying aU birational 

endomorphÎstqs of the plane, and a complete classification ia given in the cue of two fundamental pointa. 
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RESUME 

On 4tudie d'abOrd' ies morphièmes hirationnels 1 : X - Y de aurfaces non eingulMrea. On mo .. tre 

que lel-propri". de X et Y sont lUeS à certains no~bres, et lriatric. ext~aite de la config~ation des 
o l , 

·courbes manquant" de l, i.e., les courbee sur Y dont'le point g~nwque n'est pas dane I(X). C~ 

rûultau IOnt en.uite appliquM au pro~l~me de d~ompoàer les endomorphismes birationnels du plan en . . . 
eucceaiolls d'endomorphismes irr~uctibleâ. . . 

\a'" , .~' ~ 
Une th~rie des graphes est d',,~lop~ pour contrôler la désingularisation des diviseurs ·à 1'Ü)fini--du , , 

plan affine. Ces outils IOnt alOft exploi~ pour 'tudier le p~bl~me de la cr&llification des ~ndomorphismes 

birationnels du plan et une clauification cQmpl~te est d~nnée dans le è~ où' il n'y a que d~7[Pointe 
, q! 

fondamentaux, , . , . . -- . 

,-

1 

/ 
/ 

;-

. . 
\ 
\ 

ÎIIIiI ____________________ ..:... ___ :, __ • ___ .;!.-_.:...'·~~~*;i;.. .. rai~· ... 



o· 
, " 

. . -
, , ' 

'. 
, , 

o· 

1 -
b 

", 

.. • 
'~ 

, ACKNOWLEDGEMENTS' 

·1 wiah to expreu m)' gratitude to aU those, who h$ve tontributed to thil th.iI, upec:iaU)': , 
" . 

R. ,Çanong, wJlo kindly eXplained to rqe sollle computational methoda, in cqnnec:t.ion with que.tiona 
\ ·~·~ere., tre,at~ , ~ alld who'dexamined e~ly version~ of this theais and made many co~meiUa a~ut them; 

A. ft.ùcu, for"hia enc?ura~ement, and for his h~lp ,:,ith soore problem. re~ated to this reaearch; , 

H. Kurke, for his interest in my woFkj 

to t.hoae who made it possible for me to use the computer:eq~ipméit\sl at 'th« d~partment of Mathematica, 

for typing my theaia. fu thie regard, Many thanks go to Profeuor M .. B'alT. 

, ri ' 
1 owe very special thanka to my prof~S8or, K. P. Russell, for the help ud encouragement he provided, 

ooC:riJ' .... " 

both peraonally and professionally, during the several yeara it too.Jc to co~plete this project. 1 alto wlnt 

to thank him for' having introduced .. me to the very nice ,problem. treat.ed in th~ t.hesi., ~d for hie 

enthusiaam to diacullS them and to share his valuable ideAl. . 

~inally, 1 ~ant to th'ank my tamily an~ eapeciall)' my wife, Anne-Marie, 'Wit.h~t wh0r' it wouldn't have 

been possible to make iL happen. 1 

/ 

' . 

) 

-
", 

i 

.. 

, " . - . 
." 

'If 

l' 



o .. 

'f 

: . 

..,-.1' -;, ~"""f~ 1""'- ~-~~"'~tt'-1-r",r4'o/f'''''''f'''('lft -t(.'V" ~f"V :"'.:. ~~""~ ;J (1'1~·''''' .", ~ l1t.':-.:-r;,\Ï' i~ -,' :~W~~::_;[fr~"I..}''''~-:#~ i1~"~~~1 ~-.7,',"~~~ "'~J~~~f'-"'"fII:,~<~-~"" '''~''1''?'~ 
~ .. ' j. _\ • ~- f"'~ "... -"" • '.... • ... , \. ~_ .... ~ ~ ç _ .. ..,. 

• t ~ 

, , 

~.~-:~ ~ 

ABSTRACT 1 

ACKNOWLEDG~S 

INTROOUC'TION 

.. 

> \ , ., 

. ~ ,. .. 
~ , 

, CONtENTS 
~ { 

.' 

1 •. BlRAT;ONÀL ENDOMORPHISMS OF NONSmGULAR SURFACES' 
... 

1. ,Basic Concepts 
.. 

Âffineness, 'Factoriality and Trivial Units 

3. Factorizations 
,'. 
1 

4. Weighted Graphs 

5. Other Conditions on and'Codomain 

, 
II. LOCAL TREE~ 

-""" 
1. Basic-Concepts, .. 
2. Relàt1on- to Geometry 

3. Contraètion of' Local Trees 
-. 

III. "BlRATIONAL ENDOMORPHISMS OF THE AFFINE PLANE 

1. Preliminariea on the Affine Plane 

2. Some Resulta in the General Case 

3. The Case n(f)-2 

--( 
BI~LIOGRAPHY , , - < 

.' 

'. , 
., 

- . .. . " 

, < 

i . " 

1 

5 

, 12 
" 

,16 
., 

25 

,28' 

56 '. 

, 
62 

71 

.' 
79 

" 

.. • Tf~ 

; . 
\ " 
, , 

~ 

-.;:;:;:...:..:....._-~~--_._~_._- -

. : ... 



o 

• 

." " 

, .. 

----

o 

" 

" 

INTRODUCTION. 

The qu~stiona at t)te origin of this theaia &l'Ose in the early seventiea in Abhyanbr', nminar al 

Purdto~ University. The participants were 'interested in several probleme related to ~he geometry 9f the 

affine plane. One of those probl~ma was tbe foUowing: 

~oo X, y be algebraicaIly independent over a field k. What ue all fûltl generaCorl 1 E klX, YI, 
i.e., polyn,omiala / such that there existe a rati?nal function g' E k(X, Y) with kU, g) = k(X, Y)? Of 

particular interest are the good field generatora, that ~, thoee for which the complementarY func:tioa 9 

: ,can he chosen to be a polynomial in klX, YI. (It tumed out, though, that 'not ail field generatoft are 

good 111,,1161.) . . 
• Clearly, the study· of good field generators is more or lees equivalent to the etudy of birational 

endomorphisme of A?, since theae are just given by ~omomorphisme 4J : klX, YI .... klX, Yisuch that 

k(4J(X).4J(Y)) = k(X, Y), i.e., if! can be viewed as a pair of elementa /, g of klX"Ylsuch that k(f, g) = 
k(X, Y). A !t'eU known -non-trivial- (not autornorphic) birational endomorphism of A 2 is the -standard 

affine contraction in A:I· (see III.2.1) gi'Ven by ---
t/J : klX, YI -+ klX, YI 

X.-X 

Y.-XY. 
. 1 

; gives a quadJ:i'tic transformation of p:l, IIld in view of the Noether-Castelnuovo factoriution theorem 

lor birational transformations of p:l (11, theorern 61, (121, it,wu naturaI to ask whether every bir":,tional 

~<1()m()rph18lm of A 2 is a composite oÎstandard affine contractions and, of course, automorphisn,-. 

was sorne su.rprise when RUMeU, in convenationa with A. Lucu, construded a counterexamplé 

• namely a bh-ational e~dOJ1lOrphism ~ : A:I .... A 2 such that '" has three fundamental pointa and 

ia iIreducible. (The degtees of / and 9 in this example are 7, which rnay well be the minimum pouible, 

or very close to it, for ~ irreducible birational endomorphiam that ia not a standard affine contraction.) 

~he methods by which the example Wall constructed, and i,ts irreducibility proved, are as intereating 

as,~he example itself. They conaist in a detailed analysis of the configuration of -misaing curv~s- (I.LSf) 

of ", that ~, the cUrVes in the target A:I whose generic point is not in t/I(A:I). Thelle methods underlie 

large paris, of th~ thesis. Russell soon exhibited a whole 100 of irreducible endomorphisms, some of 

the~ having infinitely near fundamental points. Its diveraity shows that to give il reaaonably coml>lete ., 
'.elu,ifictdion of ail birational endomorphisms of A:I is likely to he intereating and difficult. The aim of 

t~is theais is to make some contributions to this problem. 

In the first part of this thesis we study birational morphisma of nonaing~lar surfaces. This ÎI partly 

'because :!lie find it interesting to lIee what u' the contribution' of various propertiea of A 2 taken &lone. 

(We consider properties lIuch as affineness, factoriality, the property of havins trivial units, and othen.) 

But we also believe that it was psychologically neceasary to adopt that genual point of view, i.e., that 

our excursion helped ~s ~ prove tbings that we êould not have understood by staying in the plane. The 
~ 1 ".;~ ~ 

in8uence of Ruaaell's Methode is most visible in sections 2 and 3. The material in theae section. conailt. 

.entially in generalisations of facts that Ruuell knew in the special case of ordinary fundamenlal point.. 
" -
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In many CUfll, however, even the correct atatement of the generalisecÙ'esult wu not obvioWl. Section" 

il devoted ta the thèory of weighted graphl. References u!! givm at the beginning of that section. Apan 

trom the lut renÎt (S.7), *tion 5 con,ista. of simple observations and of fads that the aufl\or lèarned 

from hia profeaor. The lemma (5.7), which is due .to thflauthor, is not uaed within this thesis; however, 

we believ. that it may heco)lle useful in future investigations. 

Part II is due to the. author. It containa the graph-theoretic machinery that is uaed in pari III, 

nflDely, the thec)ry of local trees. Without doubt, this). the technical heart of the thesis. Of pariicular ~ 

importance are the results numbered (3.8), (3.27), (3.28) and (3.32). In the ,author'a opinion,' the 'methoda 

developed here are very appropriate for atudying the divisora at infinity o( A 2 • 

Part III con tains the mater1al io wjich the title of tbis thesis refera. Section 1 {the preliminariesj 

contam. eeveral known (acta, including the characteriaation o( A2 °proved by Fujita 121 and l41yaniahi 
~ 

and Bugie Isl. (1.4), (1.11) and (1.12) are due ta the author. We don't know, however, if (1.4) has been 

noticed by other people. (1.11) will he uaed several timea in part m, namely, whenever we prove that 
• , ..> 

.ome curve il a coordinate line (1.9)d~'Corollary (1.12) ia a charactèrisation of the coordinate lines in 

tenn. o,f the m1l1tiplicity aequenc~;).(i{finity. Section 2 èlescribea the (rather. poor) atate of our k~owledge _­

on the leneral problem o( duaifyinl th-e b'irational endomorphisJll8 of A2. From the heginning ~2.5);­
we gather the pieces of infonnation obtain~ from part.!. (2.6) and (2.7) are examples that ~Ruaèll found 

Mural yean ago. It might he a good idea if the ,eader looks at (2.6) be(ore readmg anything else in 

tliis tJiesis. Whatever cornes aCter (2.7) has b~en (ound by the author. (2,a) S;Ules the c~ ,-n=l" o( 

one fundamental point (including in6nitely near onea); we don't know if that fad W88 known before we 

proved it. (2.11) is the author'a contribution to the -100- of examplea conatructed by Russell. It consista . . 
in a family of irreducible endomorphisma exhibiting a particul~ly Cnaaty» behaviour with_reaped to 

infinitely near fundam,ental pointa. (In theae eJtamplea we.have -,. > 0- and, in most ,cases, cS > ~'; aee 

(1.1.3) for,de6nitions. Be(ore we (ound'(2.1l),' all knowu'irreducible,examplea had -,.:::; 0- and a fortiori 

c6 = 0-:) ln the last section, which is due to the author, we give a complete claaai6~ation in the cÙe 
- 1 

-n - 2" o( two Cundamental pGinta (including i.n. ones). That c1àaaification is given J>y theorem:~ (S.l) " . '., 

and (3.2). The proo(~' ~akè extensive use ~f the theoryc of local trees developed in part ri. Note that 

.ome p,arts o( the proo(s generalise to the case c n ;::: 2-. We ,hope ta event~ally use theaeÇméthodâ t6 get 

o _ in~ inta the general theory. '. _' _' 
1 " 

Prerequl.ltea and language. For the langtl1lge and theory of basic algebraic geome'try, we Jïefer to, 

Ill, and in particular 'to sectiona V.I, V.S and V:5. Our' ~und field is' a ~ed algebraicaUy closed 

field k, of arbitrary charactériatic:. An a1gebraic variety Us an integrlli aéparated echem~ of 'finîte type 
" \ , -

over k (b'ut only quasi-projective varieties will he conaîd~d). A surface (reap. a curvel- is a varietrof 

dimension two (resp. one); in part.icular, curves and surfacéS are ~~\ldbl~ and reduced. Ail­

.urface. encountered in this thesis ~ nonaingular. All varieties have dimension ~ 2, except at one or 
'" two places where the dimension ÙI arbitrary and where the extra generality is irrelevant to ua, anyway. 

The ~0I'da -complete- pd -projective- are uaed interchangeably, and 80 are -bl()Wing-up· and -monoidal 

\rUllf0t:mation" (every blowing-up considered here ÙI a blowing-up of a sudace at a point). H X is a 
\ 

.urface and Y a subeet o( X, a point Qïa aaid to be infi"itely near Y if it belonga ta ",-I(Y), for sorne 

composition",: X' - X of monoidal transformations. -In6.nitely neal" ~ abbreviated ci.",". 

ü 

c' . , 

m 
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For a variety X, the statement -Mis factorial- meana th.t it is the .p~'rum of a U.F.D. 
, 'J. • 

supp (D) denotes the support of & divieor D. When D ia effedi .. and red~ted, we will aome'im. 
e 

write -D- for thé support of D. Div (X) ia the group of diviaon of a variety X and, Cl (X) ia '~.diviaor 

clau group" i.e., the group of diviaon ~oduio·lin.ar equivalent •. 

Ox denotes the structure sheae of a variety X and r(X, Ox) the ring of global "dion •• For & ring 

R (commutative, with 1), th' group of unite ia R~ •. We I.y X IatU trivial un'" if r(X, Ox)- = lE-. . . . 
An denotes the affine ""Ipaée, pn the proj~iv!, ""Ipace. 

The domain and codom~ ~f a moq,hiam f .ie IOmetimes denoted dom (1) and codom (1) reapec-

tively . 

N, Z, Q, R, C denote reapectively the set of positive mtegens, the ring of integera, the field of rational 
l , • 

numbera, the fiéld of real num~ and the field of complex numbers. 

: The car~inality of a set . denoted by ISI. The g.c.d. of two integeri a and b is denoted (a, b). The 

symbol (C,O')p stands for the al intersection number of corves C and C'at a point P. , 

Th~ most important of aU thelle commenta ia the followmg. Whenever pollllible, when we consider 1 
, . 

monoidal transfonnatioDII, the same notation is used for a divisor D of a surface and for-the ,'nce 
transf~rms of D. 
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1 .. B1RATIONAL llORPBISMS or NONSINGULAR SURrAOES 

TIarotapoa' lWI &MIll, w. u:' ... to couidtr ~ DM?hiIma 1 : x :... y of DOuiaplû 

( .... InIe) nrf..., 0ftI' ... Iacl .... )nicaIIr cIoted II'OU~ l.w ~, Ua. ch • -. of JE heing 

arb1t.iei7. la tlUI ... put -, wiUcltYeIop, to ~ __ ~, 'a .-eraJ th..,. of nch orphiama. However, 

.~ O'U aJ,tÛIIaH pal .. &0 uct .. tâacI dl. biratioDai acl9m~ of A', • will b. primarily 

ha&tnl&ed ID 'hON fadl w~ an nleYam to thu tpedal ~. ID partic"uJu.. we often collJider the ' 

fprobltm cl dllCribial Ua, nJaUou bttwea &he ,er.e,.,. cl 1 ud , •• prop,~, 0 , •• nrfacea X ~d 

Y (proptnlel nda .. afIln .. _, fllCtoriaIit)', ••• , Le., properii .. 'hu A' .u). Br 'lb'udure of f, we 

m •• c:tri.m c:Odpniiou 01 cami ad po~ta determined br 1, or certain D~eal data which un 

b. iifracted hm th .. coDflpra&ioui th. DoUaU will he debecl iD 'he &nt twq HCtioDl. 
1 

1. BuSc Ccmcept8. 
? 1 

1.1. DD'~Olf'. ~ )C, y he DOlLIÎDplar nnac:et. A morphilm 1 : X - Y lia ealled a nf'Gnon4l 

~rpl"m if lt il domiput ud 11 the iDdllceèl iDd1llÏoD blfundioD fieldt ia &Il iaomozi,hiam. Equivalently, 

tben .... OpeD I1Ibeeta X', y' of X, Y nlpec&ively 111~ tbai 1 re,iric&a to &Il iaomog,hiam /' : X' - Y'. 
l':rom ~ow~' the domalD Qd codomaln otaqr b~.tlonal m~,,_ eonalderatlon 

wW he beltl)' aaumed to he nommgular 81U'fac:.. ~. . l ' 

~..Two birational morphiama/1 : X l -Ytt f2:X2 -y.are .... _4I .... ifthJeareÎlomorpm.ml 

::a: : Xl - X2, SI : YI - Y2 I1Ich 'ha' Il = ~-l '0/2 0 Si we dao" tha~ nIation by Il #v 12. Notice that. -

l~ ia Dot compa'ible with co~poeition ~ morphiama, ~e., if 1. : X, - }'4, " : }'4 t z., (i = 1,2) and 

/l ,... /2, III .... 112, it may happen th-' 111 0 ft '" 112 0 l,· . . " 

I& il VFY weU Down (He (or inJ&~ce (S-, chap. V, 161) that, if X, Y ar.e c6mplete DQuingular 

'nrf'acel, aD)' b,ira&ioDal morphilm X - Y ia. compOlUioD of mbnoidal trauf'ormatio~ and any bir~tional 
trauf'ormation 1 : X~ y CaD be mU .. u 1 = la 0 11-1 when Il ud la 'are bir+ODaI morphiaDl4 of 

complete Douinaalar nrfacea. Th, folJowiD. ÎI &Il eJem~tary coDHqllace of 'heteJ&cb. 
·1.2. LBMMA. lAt 1: X - Y he. biratio.aalmorpbimJ. Tlum &1Iere;'. commae Uve diall'aIIJ 

(ra ~ 0) 

. , 
1.S. DBPINITIOHI AND RDlAllKS. Let 1: X - Y he a birational morphism. 

(a) Th. aman. " ~ 0 I1Ich that there tXÎI~ a diagr~ u in (1.2) -~. deno&ed 1 br ,,(/). Cleuly. 

1 .... Il .. n(1) = "(11). 

(h) A 1--"..,".1 poila' ofl ia a poiD' P of Y I1Icb that l-l(P) coDtaiu mon thaa one poÏDt. By 

(1.2), &ben are ai moH nU) fv.ndamental ~iD&8. 4 , 

, .. 
. , 
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Given a diagram u in (1.2) and i > 0, a fundamen\al poin~·o(X ...... Yn -'" -Yi whieh ~lonl' 
to a curve that ia contracted by 11'1 0 - •• 0 lfi is 80metimes ct.lled an '''fi"itdy "e4r ",,~damentcal ~t of 

fj allch a point ~ not a fundamentai pOint of /, according to,definition (a). If f hu no infinitely nev 

(abbre'viated i.n.) fundamental pointe w, aay f hu ordmary fundamental pointai th;lt ÏI the case itt'f 

has n(J) distinct. fundamental pointa in it,lI codomain. • 

-4-) A contracting curlle of , ÏI a curve ë in X auch that f(E~ ÎA a (fundamental) .point. By (1.2), eac.h 

such curve is isomorphic to an open aubeet of the projective line. The number of cQntrpcting curve. ia 
.... 

denoted by c{/); it ia an invariant of ~ and we have c(t) ~ n(l). Notice that. ü P ia a fundamental 

point then ,-lep) ia a union of contracting curves by (1.2); so f haa at most' cU) fundamental 

points. . , 
, (d) -1 if an open immersion if 1 is injective, if c(O ~ 0, if nU) = O. f will be aaid°t.o be trivial,U-

n(l) = 0, nontrivial ü -n(l) > O. • 

(e) Conaider a diagram aa in (1.2), where nia not necessarily n(f). For i = 1, ... , n, let Pl be the center 

of 'If. and for i = 0, ••• ;n let ft : X - Yi be the composite 

~ 

Then n = n(l) if ~ is a fundalJl.~ntal point of li-l, 1 ~ i ~ n~ .. 
(f)' The one dimenaionai irreducible componenta of t,he cloaure (in Y) of Y \ I(X) are called the mû •• ", 

.cur\ua Qf J. The number of miaaing curves is denot.ed by q(f)i 'clearly, 1'" g"* q(J) = q(g). Given 

a cuive a in y 1 the following are equivalent: 

• a is a missing curve ". 
) 

• On J(X) is contained in the aet of fttndamental pointa , 

• for ao~e diagram aa in (1.2) (equivalently for every au ch diagram) the atrict tranaform oi C in . " 
Yn is disjoint from X. '\ 

(g) Let qo(f) denote the nnÎn:ber of miaaing curves disjoint' from I(X). Clearly qo(f) ÎI ~ invariant of 

,:.. and qo(f) S q(f). We will Bee later that qo{/) = 0 whene~er X has ~rivial unite and Y hu trivial ; .. 

diviaor claae group. 
" 

(h) ~ minimal decompo,iCion of f is a diagram as in (1.2), with n = ne!), together wi'h an orderiJrg 

of the set of miaaing curves (i.e., t.he miaaing c~es are labellecl 0 1, ••• ,09 where '1 = q(f) ~ 0)., 

M~~al d~mpoeiti~ will he deno~ by D, D', etc. E~h time we chooee a minimal decompœition 

1), the' lfllowing notationa will he uaed: g 

~,:For the diagram, the not!-tion iau in (1.2). .. ..' 
• The center of 'If, isthe point ~ Ofl't-l ahd the correIponding exceptionalcurve ia E, (1 S i ~ n). 

~. The rniuing curves an 01, ••• , Cf whm q = q(f). • 
\. Wh~ever poaIble, the aame notation ~W he WIed for a curVe ID 1IOID8 Yl aDd lor 

lt. .trlct trandmn ID YJ Ci > il. 
• f) determines a nheeli J = JD of {l, .•• , n}, defined by 

, 

J 

J = {ilE,nX =. in Y,.}. 

2 ,. 
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Thus the curves of y" which are disjoint from X are preciaely 0 1, ... , Oq and the E, with i E J. ''. 

O~ the other hand, the contracting curves o~ 1 are the Ei n X such that i e {l, ... 1 n} \ J. We 

Bee that IJI + e(J) = n(J), ISO IJI is an invariant of ""'. That num~r will be denoted by ;(J). 

Bence 

c(l) + i(J) = n(J). 

• f) detennines a subset !:l = AD of {l, ... , n}, detined by 

'One ~es that the cardinali~ of A dependa only on l, i.e" is independent of the choice of a 

minimal decQmposition. That numbu, is denoted by 6(J) and ia, in fact, an invariant of ...... 

(i) «i E J then there ia a; such that i < i ~ n and P; E El (in Y;-d. 

(Indeea, if ~there.is no such i thcn the inverse image of ~ in y" ia Et. which is disjoint from X. 

This me ans tbat Pi r;. ft-l (X), which is a contradiction (Bee part (e)) with the fact that Pi is a 

fundamental point of li-l') 
"'fl 

.' 0) At ~his level of generality, i.e., when no further conditions are imposed on X and Y, the philosophy 

. ~ 

. , 

0' 

is that there exists an 1 having ~ given property whenever there is no.obvious reason that prevents 

it from existing. The following (trivial) !act is an illustration of this principlel " 

Given nonnegative integera n, c, q, qQ';, 6, there exista an 1 with nU) = n, cU) = c, q(J) = q, . 

qo{/} = 90, j{/) = i and 6(f) = 6 iff 

90' ~ 9, 6 ~ n, ; + e = n and 
{ 

e = 0 =* n ='0 

n=0~qo=9 

qo = q <=> 6 = n. 

n(Je);« 9 : Y : Z is a birational morphism, -Ne denote by I1c(J, g) the numher of missing curves of 1 . 
which aie contraded by g. 

-1.4. IiBMMA.'~, 1: X - Y and g: Y - ~ be ,bir.tional1!Jorpbisms. 

fa) c(g 01) = e(/) + e(g) - Ac(J, g) -and q(g 0 /) = q(J} + q(g) -;;"'-Ae(f, g). , 
(b) n(g 0 f) ~ n(l) + ,((g) and ;(g 0 ï) s ;(1) + ;(g) +. Aç(f, g). 

(e) U 90(1) = 0 '~eJl n(g 0 f) = n(J) + n(g) and ;(g 01): = i(l) + i(g) + !:leU, g) . 

. ,.PROO': Let h = go/ : X - Z and let rI, ... ;rc(h) he the coni~act~g curves of h, labell~d in such 

a w-.y that rh .. "rc(J) &;re the contracting curves of 1. If'r ia .. cont.racting curve of g, ris' not a 

'milaing curve of 1 iff r is the clOlure in Y of IODle /(rd with c(/) <: i ~ c(h). aence the equation 

c(h) - c(1) = c(g) - Ac(/,g) is cleU'; an equallyatraight.{œward argument. provea t.he secona equation of 

(a), i.e., (a) is proved. 

/ Cllooee a m~al decompoeition of / and one of g, and cdJlsider ~he ~oITe8POJ.lding co~utative 
.... / 

3 
., 

= 

1\ 
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. YII(/) ZlIh,) 

/l/l 
X-Y= Y" -z= Zo 

. / g 

where ..... meuus Open immemon and n = n(f) + n(g). By'definition, n(go /) S n. The Heond inequality 

of (b) followl from tbis and (a), ao (b) il deU'. To prove (c), denok the center of Zi -+ Z.-1 Gy Pi 

(1 SiS n) and let'" he the composite X ..... Y,,(/) .... Zr. ....... - z. (0 SiS n). By (l.Se), it'. enough 

to check that ~ ÎI a fundamental point of "'-1 (1 S i ~ n). If n(g) < i S n then that conditioJ) hold., 

by (l.Se) applied to the minimal dec:ompoeitioD of /. If 1 S, S n(Jlthen by (1.Se) ~ ÎI a fundamental 

point of Yo ..... ~ra(lI) -+ ••• -+ Zi, 10 there ia .. (orve r in y which contracta tu~. JI qo(f) = 0 then 

r1(r) containa a curve, ~ ~ ÎI a fundamental point of "'-1. Rence n(g 01) = n(l) + n{g), and the 

second equation foUow. from that and (a). ~ ~ 

REMARK. From the proof of (1.4), we seo that if /: X ~ Y and g: Y - Z are birationaI morphisme 

and qo(l) = 0 then e&ch pair (0/,0,) of minimal deeompOiitioJUI (of /, 9 reapKtively) determinel a 

minimal dec:ompoeition D of go /. More prec:iaely, the commutative diagram ia u in tlie proof and the 

miaaÎllg corves an l .. ~lled aa follawa: If Cl,' •• , C.(II) an the miuing corvee of g, and if ril"" , ri. are 

(the images in Z of) thoee mieaing corvee of / wbjch are Dot contracted, where il < ... < i,,,' then the . " 
mÏJaÎllI corves of go 1 are C1"",C'(II),ri" ... ,r •• , in that order . 

• 
1.5 COROLLARY. I;et / : X -+ Y and 9 : Y - Z he bua&ioDal morplliam.. Theil 

c(g 0 /) - q(g 0 f) = (c(1) - q(f)) + (c(g) - q(g», 

i.e., tlae Damber c - q ia -addmw·. 

1.6. For a liven 1 : X' - Y, minimal decompoeitiona can he obtained on'e &on:»- another by rela­

bëlling the miaaing corves aud by changing the oNer of the blowings-up (~ence by telabelling the point. 

Pl"'" Pra). More prec:iaely, ü 0 and D' are'min;mal decompoeitioJUI of 1 (where the Dotation of CI.Sh) ÎI 

• '~for 1), and pt, Et, C:!-etc. fQf D'), 'hen there ia & unique pair (U,T) = (~.D',f'".D') of permutationl 

of {l;o .. ,q} and {l, .... ,"} mpec:\ively, IUch that 

(a) C. = Cft for 1 S , S q, 
~ 

(bl) ,,(~, r) == ,,(?n,r) for 1 S, ~ " and fo! aU corves r in y 

(b2) ,,(Pi,E;) = "CP:;,E!.,) for all i,; ~{1, ... ,,,} 

";h.-e p(~,r) ud ,,(~,Ei) are de6necl u ~ (2 •• ), belcnr,"aucl aimilar17 for ,,(pt,r) &Dd ,,(I1,Ej)· 
Ptom (b2), we dedacè th~ 

(b3) ~ ia i .•. Pi ur P'n ÏI .... 1';, 
(M) t'i > 'i whmever ~ ià i .•. PI ùU1 i ri: ; 

.. - .-

,. 
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~ere (M) follows frorn (bS). A permutation of {l, ... , n} which satisfies (M) is called a D-allowable . , , 
pénnutation. Clearly, if ds D-allowable and q is any permutation of {l, ... , q} then (q,r) = (qD,D ,rD,D ) 

for sorne f)'. Moreover, wè have the rules qDlD =,'il and qD',D" 0 qD,D' = qD.D", ~nd similarly for r. 

We will often find ourselves in the situation where, given f) and A Ç{l, ... ,n}, we want the 

blowinga-up at {Pi 1 i E A} to he performed first, i.e., we want to find f)' such that if r = rD•D' 

then r(A) ={ l, ... , a}, where a = lAI. For which A is that possible'? Say that A is f)-closed if for 

ail i,; E{l, ... , n}, i E A and Pa i.n. P, irnply ; e A. Notice that a topology on {l, ... , n} is obtained, 

and that if r = r D•D', A is f)-closed iff 'T(A) is f)'-closed. It is also clear that the existence of a f)' snch 

that r D•D' (A) ={1, ... , a} is equivalent to the f)·closedness of A. 

~or instance, the set I:l.D (see (1.3h)) is f)-open, so we Gan always find a minimal decornposition 

satisfying Il ={n - 6'+ l, ... , n}. 

2. ~ene88, Factoriality and Trivial Units. 

We will now study the relations between the structure of a ~ÏJ1.tional morphism f : X --+ Y and' 

certain properties of X and Y. The first such property is affineness . 
• 1 

2.1 PROPOSITION. Let f: X -+ Y be a l?irational morphism, with missingcurves C1, ... ,09 (q ~ 0). 

ConlJder the fol1owing conditions: 

(a) y is affine, X is connected at inlinity and no contracting curve of f is complete; 

(b) X is alline; 
• 0 

(c) aU fundamental points of f are in Cl U· .. u09 and the interior of f(X) (int !(X)) is Y\ (01 U·· .U09 ) 

and is affine. .. 
Theo (a)=> (b)=* (c). 

The main in~ents of the proof are the following two facts. For the first one, see 13, theorem 2, p. 

168] or [4, theorem 4.2, p. 691; for the second, see 15, chap. V, theorem 1.101. 

2.1. 1 THEOREM. Let U he an open lubset of a complete nonsingular surface S. Then U is affine i/F 

S \ U is the support of an effective ample divisor of S. 

2.1.2 THEOREM (N AKAI- M OISHEZON CRlTEMON). A divisor D on a complete nonsingular surface 

S-is ampl~ i/F D2 > 0 and D.C > 0 for all curves 0 in S. (In particular, if Dis effective then it 18 ample 

i6 D.C > 0 for aU curves 0 in S.) 

Before we prove the prowaition, we find it convenient to define sorne terminologies and symbols, 0 

.,.,; and to prove lIorne lemmu about them. The definitioDa are local to this discu8llion and to the plOof of 

(2.1). These conaiderationa are elementary and probably exjg, in one fonn Ilr another, in the'literature. 

2.1. 3. DEFINITIONS. Let S he a complete nonaingular lIurface. For D E Div (S), let the symbol 

D > 0 mean that D is effective, D oF 0 and every hTeducible component C of D satisfies O.D > O. Then 

\be aet PtS) of diVlsoI'II D IUch 'hat D> 0 ia a n.onempty addi.tive semigroup. S~y that a subset Z of S 

il porin., (in S) if Z = supp (D) for .ome D > O. Then the set of positive 8ubsets of S is stable under 

finit. uniou. 

s 

= 
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2.1.4. LDOlA. Let S be a c:ompJele ao.uÏJl6alar ndae. ud % a nIaNt 018. TA .. &lelollofriq are 

eqainlea,: 

(a) Z ;. p_&ive; 

(b) Z iI~, Z rF' aDd fIVery COJUIeded compouut 01 Z ;. po.;&iYe; 
. . 

(e) Z. doeed, • rF Z rF S pd every COJUIeded CODIPOU8.D' of Z coa,am.. pwltift .. ,. 

Indeed,{a}#(b)=*(c) ia trivial ud ~ prove (c) .. (b) amounta ~ provin. \hat if Z là a tlni\e'union of 

C,QI'Vea whicb ia conneded ud which containJ a poeitive Mt Z', tien Z ia po.itive. Nowa .uailhtforward 

argument Ihowi that ü 0 ia an irreduClole component of Z lUc:h that • oF C n Z' ..; C then 0 u Z' il 

pOIIitivej henee we are done. r 
2.1. 5. LEMJ.U. Let '" : § - S be elae blowiDg.up 'of • DouiDgular cOlDple&e ludace S at a cloaed 

pomt P. Thea: 

(a) If Z is a poaie.ive ,ùœet of S tlaeD ",(Z).is • poaieive .ub8et 01 S; 

(b) If Z ç; S, &laeD Z je p08itive in S Hf ",-l(Z) il p08ieive in S. 
, 

PROOP: (a) Let Z he poaitive in Sj then Zia not the exception al cnrve E,IO Z = IUpp (D), D.e P(S) 
N ...... .. 

and D = Do + nE (where • ~ • meana Itrict tranafohn) for IOme nonnelative integer n and IOme 

effective Do e Div (S), Do :;: O. H a i.e aD irreducible com~Den' of Do aDd ë itl Itriet tr~.ronn, then 

0< ë.D = ë.Do +në.E= O.Do - p(P,O)·· (p(P,Do) - ni 

and 0 S E.D = pep, Do} - ", i.e., a.Do > O. BenCe ",(Z) = IUpp (Do) ÏI poeitive in S. 

(b) Let Z be poeitive in S. H P ~ Z then the aueRioD ÏI trivial. Auume P e Z ud let C he the 

.. t of irreducible component. C of Z luch that Pee. Let Do e P(S), luch t.hal Z = .upp (Do). For 

eac:h 0 e C :F • we have 

p(P, Do} > p(P, Do) - pf::~). 
Bence W'e may chooee poeitive integen à,b luch that 

11 O.Do 
p(P, Po) ~; > p(P, Do) - pep. C)' ail deC. 

ODe ehec:lo that 0150 + hE e P(S), i.e., ",-l(Z) ÏI pa.itive. 

For the convene, oblerve t.hat Z i::: .. (",-l(Z»-ud ue (a). , _ 

Paoop or (2.1): Alaume that (a) or (b) holda. Ohooee a mbdmû decompÔait.ion of f. with DotatioD 

as in (I.Sh), imbed 1'0 iD a comt»lete n~uinplar nrface Vo and ·cOmplete the cJiacram-: 

Y,. «-+ YIt 

/ l "'" l 'W .. 
': . 
1"1 t:1 

X - Y - Yo «-+ 

f 

e 

.. ~ --
« 

" '. 
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where ;r4 la the blowing-up of Yi.l at ~ (1 ~ i ~ n). Then Y" \ X is conneded and contama a curve, 

hence ia a nonempty union of curves. 80 Y" \ X is a (possibly empty) union of curves, i.e., 

Yn \ X = é. u ... U Cf U U Ei 
o iEJ , 

Y n \ X = Cl U ... U Cq U U Ei U LI U ... U L" 
iEJ 

where, in the second equation, C, stands for the cloBure in Y n of the mwing curve Ci and LI, •.. ,LI' are 

curves in Fn, distinct !rom Cl," .,Cf and from the Ei with i E J. From nOl on, in fact, Ci will be th~ 
clOlure of the misaing turve Ci in any Yi under consiQeration. Let", = "'1 o· .. 0 "'" and ;r = ;rIO' • ·0 j' n 

then j' doea not contract Li, 80 Li ç;; Y" ia the strict tranaform of a curve L. ç;; Vo (1 ~ i ~ pl. We 

aee tliat LI,' .. ,1:" in 170. (resp. in Y n) are the one-dimensional ufèducible components of Vo \ Yo (resp. 

Y" \ Yn ). Let 

~ 

Ao = LI U ... U L" in Y 0 

An = L. U ... U L" in Y" 

ro = Cl U··· U Cq in Yo 

r n = Cl U ... U Cq in y n, 

.zo = rO U Ao in YO 

Zn = r n U U E,. U An in Y ft 

;jEJ 

and denote by F the set of fundarnental points of f. 

CLAIN. - ;. - -
(11 Y n \ X = Zn la connected and Y 0 \ Yo = Ao U points 

(2) Fe ro and ;r=l(F) = El U " yU En 

(S) J'(Z,,) = .zo 
(4) j"l(Ao) = An 

(5) int/(x) = Yo \ ro = Yo \.zo 
(6) Y 0 \ int I(X) = ;O. 

1 
(' 

In rad, (1) is trivial If (1 e F then ",.l(a) can't contain Zn (indeed, IUppoee Z" ç ",-1 (a). then 

Z" ;= UiEJ Ei and p = q = Oi in particùlar Yo \ Yo contains no curve, 80 Yo ia not affinei lince (a> or 

(b) holda by Ulûmption, X mUit be affine, 10 Z~ is positive by (2.1.1) and (2.1.2),10 is 'II'(Z,,) = la} by 

(2.1.5) ~d thia ia abaurd) and Znn",-l(~) ::;. because no contrading curve of t ia complete. ThUi there 

ia &il1rreducible component C of Z" luch that • '1: en 'II"l(a) ::; C, by connectedneaa of Zn' Cleuly, 

C ç r ft, 10 (1 E ro and F c ro. From (l.Selt-we He that ",'l(F) = El U ... u E", 80 (2) holda. Now (8) 

follinn immediateiy, (<Il ia trivial, (6) ia an immediate conaequence of (5) and (5) ia proved by obeerving 

'hat 

m/(X) ç Yo \ro ç Yo \.zo ç Yo \~ ç I(X), 

., 

. ft • 
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where the only non obvious rad (if any) ia the lut inclusion. Now le~ y E Y 0 \~; ainee F ~ ro by (2), 

we have ;r-l(Zo) 2 Zn, so " 

hence y E teX) and the daim is proved. 

Proof of (a):::>(b). H (a) holds the~ Yo \ Yo = Ao and Ao ia positive, by (1), (2.1.1) and (2.1.2). Her\:ee An~ 
is positive, by (4) and (2.1.5b), and Zn ia positive by cannedednelS or Zn and (2.1.4). L~ D ~ PlY n) 

he such that Zn = supp (D); since a straightforward argument shows that Zn m~ets every curve in Y n, 

D is ;u:nple by (2.1.2) and X ia affine by (1) and (2.1.1). Hence (h) holds. _ -

Proof of (b):::>(c). Statements (2) and (6) show that / restrida ta an isomorphism 

r 1(int teX)) -,-+ int !(X), 

and that ri (int ! (X)) = X \ 7i' -1 (Zo), whiclr ia just the open set obtained by removing the cont.rac\ing 

corves from X. But if (b) holds then X is affine, thus so ia X minus the cont.racting curves, since removing 

a éorve from an affine nonsingular surface yields an affine surface (by, say, a straightrorward argument 

using (2:1':-1.) and (2.1.2)). Hence we are done.., r- l 

2.2. COROLLARY. Let f : X -t Y he a birational morphÎ6m and suppose that Y i8 aRine. Then the 

foHowing are equivalent: 

(a) X Î6 aRine, 

(b) X Î6 connected at infinity and no contrac::&ing curve of! Ï8 complete. 

The next properties (for a surface S) that will intere.et us are (1) the property of having à trivial 

divoor class group, i.~., Cl (S) = 0, and (2) the property of having trivial unite, i.e., r(S, Os l,· = k· .• To 

< begin with; we recall a well-known fact: __ 

2.3. PROPOSITION. Let V be a complete nOlUingular algebraic l'aI'iety and U:F e ân open IU'-' of 

V. Amo~g che ~educible compoJtejt8 of V \ U 1 let r 1 •••• , r,. (r ~ 01 ~ thoR of codimensiolJ olJe in V, 
and let r 1, ... , r,. be 'heir imagell lJ 01 (V). 

(a) CI(U) = 0 <==> Ï\, ... ,l',. generate CI(V). 

(b) r(U, Ou)"' = k* <==> Ï'l,,,. ,r,. are linearly independene. 
• , " t 

2.4. PRELIMINARIES. SUtce we will be dealing with minimal deeompOiitioDl, it will he neceanry 

to keep t_rack of the divÎlors in the various blown up surfaces. Let Yo be any nonsingular .unau and 

consider 

"'1 
Y" -+ Yn-l -+ .. . -+ Yo (n ~-1) 

~ere "'i : "Yi -. Yi-l ia the blowing-up of Yi-l at JOme point P, and let E, = "'i'1(~) .F Div(}'.) 

(1 S i :S n). Given integers i,JI 8uch tbat 1 :S i :S n and 0 S; JI·S n and given DE Div (YII ) we d.6ne 

",(Pi, D) to he the multiplieity of ~ on the appropriate .trict tran.lorm of D if i - 1 ~ JI, and we d.6ne 

it to he lera if i - 1 < JI. Then we de&ne 

[

P(Pl'D)] 
p(D) = :' E Z" 

",(Pn,D)' 

\. " 
8 

" • 
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'and we have the lollowing ~ X n ~atrix: 
~ 

_- 1 

where, of C01U'8e, tii = 0 whenever • S;. Let D* E Div (Yn ) be the total transform of D E Div (YII ). 

b Then D* = D + alEI + .:. + an~rL for some inte~ ~l,"" ani let us cal~ulate theae integera. H Rt is 

the ,lh row of the identi~ matrix In' define an n X t' matrix E = (Ei/) by , 

(E"l ... EJcn) = RJc + (eu ... eU-I)(Ei/h:Si<Jc 

l:Si~n 

(1 < k Sn). 

\ 
80 E ia completely detennined by t, ia a law,er triangular matrix with Eii = 1 (1 S , Sn) and has 

det(E)'= 1. For 1 S, 5 n, define 

, 
f 

Ei :zn - Z 

J , 
l ' 

Then a str~ghtlorward argument (deacending induction on Il) shows that, ifwe define E,(D) = Ei(I'(D)) E 

Z, then .. 
D* = D + LEi(D) Ei 

'=1 
Nat, one:"l1ïecb that 

, ; Cl (Yo) e zn 
" (D·[H 

ia an ÏIomorphiam (wher~ D* E' Qiv (Yn ) ia the total tranafonn of D E Div (Yo) and E, ÎI the strict 

trUllfonh in Y" of E, E Div (Yi))' By the above calculation, one sees that ü D E Div (Yo) and if the 

.biet tr~onn of D in y .. ia alao denoted by D, then ,.. 
i - -

Olearly, ~-1(1'.) = (0, Ki), 1 SiS n, "here Ki denotet the .lb column of the identi&y matrix 1". 

2.5. DBFlHttlONS. Let f : X - Y be a birationai morphiam and write n = n(f), c = c(l) and 

t .. t(f). Let f) ~ a minimal decomp08ition for l, with notation u in (I.Sh). Theo we de6ne the 

foUowinC mame.: 

• 1 

l' 
1 

l' = l'D ::: (l'(C1 ) ... ",(C.)) 

t ::: tD = (l'(EI ) ..• l'(En)) 

(n X n) 

9 

• 

(n X q) 

(n,x n) 

de6ned u in (2 •• ), 

j 
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" ad .... , - 4 he ~. ex" nb-.at.rix œ • olMbaed br dtlnlq Ua, ..... l'OW .JaUIYW i E J. 

OhM", UW Ua. prodad '" .. a c )( f lDurlxt U. f co1111DU wU! bt .... udld u "Ulg r4 l' 1 

f ftUl if c - 0 or f - O. TG Ill ...... 0'11' œ ~- abuae cu.. le, 111 .".. ,Jau (1) Q. cobmuli 91' 
a 0 x f ma&rix pn" ZO, ud· an liaurlr md.p .... d .. ' if ., - Oi (2) lh. col1UllDJ of .. c x 0 maUix 

are nnearly independlllt. &Dd lenerUe l' if c - Oi and (a) Ua. 0 x 0 iDabix h .. delerminllll equ~ '0 
1. \Vithou' ,heM conWlltiou: .e would haw &0 l''IImd 'he COIlÙllI bunc:h of hlulta &0 'he .pecial cue 

wh .... c ad 9 an pOlitiw; qa the proot., howewl', 'hile intetG'l will he 'acitly uaumed &0 he pOlit.lve 

ad verification of 'h~ mnainilla tueI will he left lo 'he nader. 

2.6 PaOposmON. Let / : X - Y be a bir~joDal morpbiml ud D a miDimal decompo.i&;oDi 1.& de 

D~C.UOD be .. bJ (J.6) ud let 6 II: 6(1). ... 

(a) H C1(X) = 0, &bu &.he colDll1lY of t!p paer.t. ze, Cl (iat/(X»'= 0, 9 ~ c ud 6 S j. 
il. r - ~ 

(b) H Cl (Y) = 0 &ad tJae coJUDUIJ 01 'p pneraC. ze, cbeu 01 (X) = O. 

OD &.he o&.her bud, couder tl •• &a&emeu&.: 

(1) r(X, Ox)· = k· __ 

(2) r(Y, Dy)~ :- k~ 
(S) &.he colWD.D8 of' Il are linearly iadepeildea& 

~ 

(4) Cl (Y) = O. 

Tbea (1)A(4) => (2)1\(8) => (1) => (J), ud (a) impl;. 9 :S c ud 6 S " ~ 9. 

Paoop: Colllider the minimal decompoeitiob D, with notation U UlUal. Imbed Yu in a com.])I.,. non­

eingular nrface Yo and -complete the diagram-: 

/
r~Wft 

'f, . 
. i Wl 

X-y= 1'0 
,J / 

...... -, Yi. 
-~l ;rft 

! ;rI 
...... Yo 

I..' the donne (in Yo) of the roiuiDr curvea he denoted by Cl ••..• C.; Jet the oDe-dim'Il8Îonal in'educible 

componenta of Yo \ Yo he deDot.ed bl-Ll"; .. , LI' (then the oDe-dimeuional irreducibl~ componeat. oC 

~ ,1'4 are LI, ..•• Lp u well-ncall that we use .ame notatiou Cor cm. an~ th.ir .tri~t tranafomu). 

Wehaw 

'Yo \ Yo = LI u· "uL" U point. 

Yo \ mt'/(X) = Cl u,· 'U Cf U LI u 'r u LI' U poinY 

y ft \ x = U Ej U CI U • , • U Cf U LI U ' .. U LI' \j pointa. 
iEl _ 

GiveD D e Div (Y.), let 15 be iY image in CI (V,). Let 8: C1(Yo) 6) Zft - Cl{Yft) he th. iIomorphÎlm. 

aïwn in (2.4). Tha 

, \ 

,-1(li) = (t,,-tp(Li» = (Z"O) 

,-1(CYi) = (Ci" -tp(e,» 

r 1 (Ei) .= (0, Ki)' 

10 

-

.. . ~ - -
... t ',.!; ~ 



'). ': 

o 

,e 

, . , 

In view of tbat, and by (2.3), we,find . ~ . ' 

(o.) CI (Y) = 0 (r.p. Y has trivial unite) Hf Ll' ... ,I" generate (reap. are linearly i~dependent in) 
cr(Vo); . , .' 

(P) CI.(bltf(X» =·Oif1Li .... ,L",C1, ... ,Cq gener.te Cl ('Yo)j· 

b) Cl (X) = 0 (râp. X has trivial units) iff the ~t 

, ~ '" ~ 't ~ ~ • 

. genérat. (rap. ia linearly independent in) the group Cl (Yo) œ zn. 
On' the other hand, it ia clear that 

" , 

> 1 _ , ~ ~ 

(6) {Ki li E J} U {-'fP(Ci) Il ~ i S q} generatea (resp .. ià lineaHy independent in) zn iff the eolùmna 

, of t'p g~nerate ·(r~ap. are linearly independent inrZe • .' • . '. ' .. 

Now the reader eâ'n y,eruy th~t, ~eePt for the inequ&lltiea 6 ~. i an(6 ~ n -'q, e~e~ assertion tt~e ' 

proposition ia an' immediat!l conaequen~e o( (a)-(6). To'proye the two inequalitiea, obsery-e that 5 ia the 

number of ~ero rowa in p. Let'U be the n - 6 x q aub-matrix'or Ji. obtained by deleting the sero t~WSj 
let ~ be tlie é x fi. - 6 aub-matrix of t obtained by deleting the ;th colu'mn whenevet: th~ i th r~w br l' ia 

.ero. Clearl" vu = fi p. The matri~ea tJ, V and VU ~ e' p deteÎ1nin~ a commutative aiagram' of Z-linear 

• zn-6. 
u/' '\,11 zq --+ ze. . . 

J ,1 W ~ 
.. .. ~ ~ .. \ r ... '1. ~ 

H the columna of t p. generate ze. i.~;. w ~ outo. then y ia onto and ~ ~ n - c == i. If the eo~u~m8 oi fi p. 

are lin~arly indePeuden~ i.e.; tb injective, then u ia injedive an~ 5 5 n - q. "c 
" .. ..... '" }t ~ 1 7'. " 

• T . 

3.7 •. COROLLARY. Le~ f :, X'-+ y be a .. b~aeio;al mor.phÏ6m ~d IJUppose eh,at CI(Y) =1> and 

r(Y,Oy)*.=t-. Then : " . , : - . . 
• 1 

(a) Cl (X) = 0 i/1 ehe columlJlJ of fi p. leneraee zo 
" . . . 

(b) f(X, Ox)· = k- if tbe colplJlIJIJ of ~}' ~ Jinearly independeii-

, , (e) Cl (X) = 0 and r(X, Ox)- = k- i/1 t p. Ï6 a lIquare maUix wieh de&ermÎlJane ±l. 
• ?, 

2.8. REMARKS. 

~ If the domain and codom,~ of 1 have trivial diviaor clua groupe and trivial unit~ then q(!) = c(l). . -
• If we, restrid ounelvea to the eue i~/) == 0 then t ;:;:: E and conaequently (2.6) and (2.7) are still 

h'Ue wheu ail -1 p. are rep.laced by .p •. 

2.9. c'OROLLARY. Lee 1 : X -+ }'. be a biradonal morphiMn and lJupœe ehae f(X, Ox)- = k- and 

'Cl (Y) = O. Tben qo (1) = o. 
'\. 

PROOP: 90( 1) ia the number of IUO columna in p.. Sinee the col1UDDJl of fi p. are linearly independent by 

(2.G), ClOU) = O. 
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2. 10. COROLLARY. Le& 1 : X -+ Y and 9 : Y ..... Z be bira&ional morphisms and suppo8e tha& X, 

Y ~d Z bave &rivial divÎ80r clau groups and trivial uni&s. Theo n(g/) = n(l) + n(g) and ;(gl) = 
j(f) + ;(g) + Ac(l,g). 

PROOF: Immediate from (2.9) and (1.4) • 

. 
2.11. COROLLARY. Let 1 : X -+ Y be a biration/Ù morphÏ3m and suppose that CI (X) = 0 and' 

r{X, Ox)" = k". Then r{Y, ~y)- = k" anôthe [ollC?wing are equivalent: 

~aJ CI(Y) = 0 

(b) c:::: q 

(e) q+i =,..n. 
. . 

PRoor: By (2.6), Y has trivial units and (a)~('b)j (b)#(c) il! trivial, so let'. prove (c)~(a). Reler to ' 

the proof of (2.6) for the notation. Let G = CI (ro) S; Cl (Y 0) œ zn aml 9, = (Li, 0) E G (1 $ i S l').' 
By the proof of (2.6), and since n = q + i, there are elements el,'''" en in Cl (Y 0) e zn such that 

(91' " ·,9", el, .•. , en) is a basis of Cl (Yo) œ zn. By elementary algebra, it Collows that (9IJ, ••• ', g,,) ia a 
basis of G, i.e., (Lit ... ,Lp ) is a basis of CT(Yo), 80 Cl (Y) = o. 

S. Factorisations. . . ' 

Let 1 : X -+ Y ~ a birational morphism. A factorftation of 1 is a p~ir (g, h) of birational morphisll!' 

such ~hat 1 = ho 9j two factorisat~ons (g, h) and (g', h') of 1 are equivalent if there is an isomorphisl!1 u 

. , 

s~eh that g' = U9 and h = h'u. 0 • • ~ 

Let (9, h) be a factorisation of l, write W = dom (h) = codom (g) and consiCler h = (W ..... Ynih) -+ 

... - Yo = Y) determined by some minimal decomposition of h. We say that (g, h) is good if qo(g) = 0 

and if the, complement of W in Yn(h) is °a union of curves (then n(l) '= n(g).+ n~hrby (lA»); (g, h) 

is connected if it is gQOd and if every connected component of Yn(h) \ W cont&Îns a miuing curve of f 
(equivalently, of hl. Hence, if Y is &fti.ne and (g, h) is Gonnec~ed then W is connect~ al; ·infinity. We may . 

alao conaider other types of factorisations by requirin~ that the ~urface dom ~h) = codom (g) have !Orne 

- "'p;determined propmy. u \ ',_ 

In the pFeceding sections we conllidered sorne numberll and matrices tbat give sorne description 

of a birational n\orphism 1. Ali these numbera and matrices can be recovered if, for sorne < ~inima1 

decor,nposition 1)0 of l, ~he triple (Joo, '00,1'00) ie known. In this regard, the reader .hould figun! out 

an algorithm that lists ail triples (J", l') determined ,by minimal decompositiona of /, auuming that 

(Joo' tDo,JJDo) is knoyrn (indeed, one can decide wbdher a permutation.,. of {l, ... ,n} ia Oo-allo,rable by 
~ 

looking at too -Bee (1.6)). We will now investigate the relations hetween th,e data (J, t, l') and the var10Ul 

types of factorisatio~ of 1. From what will be said, it will he clear that the problem of enumerating 

ail equivalence classes of certain types of factorisations, for a given / : X - Y, caD' he 801ved by.imple 

algorithms, as long as one triple (J, (, l') is lmown . 

3.1. DEFINITIONS. Let f: X ...... Y be a birational morphiam and 1) a minima1 deeolDPotition of /, 
~ u 
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_ 'with J\ot~t~n u ~ual. ,~ive~ a O-d~ed (see '<1.6» subset A of {i, ... ,n}, define 

Q(O,A} = {i 1J.&(~j, C.} = 0, an " ~ A} 

" J(O,A),= {i e J II'(Pi;Ei~ = 0, al!; ~ A} 

#(O,A) = IQ(O,A)I + IJ(O,A)/ .. 

. ' 
The nut proposition says th'at to give an equivalence cIMS of gOQd faaorilations of l'is just the 

" , 
sa~e thing as to give A D-~losed sët:- (" 

3.2. PROPOSITION. Le& f : X -+ Y'he a birational morphism and D a minÎmaÏ decompositIon oil. . ~ , , . -. ~ 

Tben ebere is a unique bijedion !rom tbe se& of D-cl()Bed slJbsets of {l, •. ~, nU)} to tbe set of eqlJivalence 

d~ of good fadoruations of. l, wbicb satisties tbe foHowÎng cond~tion: if ID,AI'~ tbe equivalence 

clau U8ig~ed ta tbe D-c1,osed set A, (!?, h) , e 10; AI, ,l'" ~d Dh are minimal decomp08itions of g and h 

'respedively, O'is tbe minimal decomposition of j determined by Dg ~d Oh as in (1.4) and.,. = .,.D.D' is 
J j > • 

the permutation detined in (1.6), then .,.(A) ={l, .•• , n(h)}, Jo,. ='.,.(J(D, A» and tbe mwing corves of 
• ~ 1 ) 

h are the Ci witb i e Q(D,A). Tb~t bijection will he denpted by ID, 1. Moreover, if D" is any minimal, 

decompœition of 1 and 4" = .,.D.O"(A), tben ID,A} = ,ID",A"I. ' 

Paoo,: For D., let the notation he as usual. Let A I;»e D-closed. By (1.6), we ,can choose a minimal 
1 .,..,' 

decompaaition D'of 1 lIuch that i(,·'= .,.0.0' 'hen .,.(A) ={l,: .. ,s}, where li = lAI. Use the notations 

, PlI El, C1, etc. for j,":Let'W . .be th., open,subeet of y: obtaine~ by removing Ci, i e Q(D,A) and 

~i" i fi J(D,A), and let h : W' ~ y he the reaulting birational morphis~. We "claim that n(h) = 6. 

To lee thla, we use (1.3e). Indeed, let i e{l,., .. ,a} ,and ~onsider the center pt of,7r; : 1";' - Yi'.l' The 

inverse lmage of PI in y: contam. an' N,. with self-intersection number equal to -1 (in Y:). H Ej n W = e 
th~n by definiti~n of W i e .,.(J(D,A)), 80 Ej'has ~lf-intersection number -'1 in Y~; on the other hand 

i e' ~(J(D, A)) ç; r(J) = Jo' and ~his contradicte"(1.8i). Hencê Ej n W 't' ., ~d pt is a fundamental 

point of W ~ y: 4 '" - Yi'.~. So n(h),= 6 by (1.3e) and a minim8J decomposition Ph of h is given by 

W ';-+ Y;- - . " - Y& = Y,. tagether ~ith IIOlbe ordering of the set of mwing oury .. 'C. (i e Q(D .. A)) of. 

la. By definition of W, ,the imagé of X ~ Y~ -+ .. , - y: is contained iÎ1 W. Thui we get g : X - W 

such that 1 = hg., yve have 9o(gr:= 0 by definition of W, 110 (g, h) is a good factorisation of 1. We define 

{D, AI ta he the equivalenc:e ,clau. of (g, 'hl; one can check· that "D, AI is independent of the choice of D', 

tbat ID, ] is bijedive and th" any (g,h) e'lD, A] lIatisfies'the asaerted conditions. The uniqueneu of 

,Inch a bijection ia then trivial, &Bd 10 is the lut assertion: 1 D , A} = 1 D" , A"I. 

3.3. PROPOSITION. Le& g: X - W and h: W - Y.be ~ira&ional morphisms and lIuppose that X and 

y .have, trivial divisor cl .. groUp" and tririallUÙU. Then W .has trivial uni" and q(h) + i(h) S n(h), 
• ' wi&.h eq.,ali&y ill Cl (W) = o. 

, PROO': Since X hu irtvial uniu, W hu trivial unite by (2.6). Thus q(h) S c(h) by (2.6), ~ q(h)+i(h) S 

c(h) + ;(h) = n(h), with equality whenever Cl(W) = O. Conversely, ü equality holda then eth) = q(h) 

and b(hg) = q(hg); by additivi'Y of thé nomber c - q (i.e., by (1.5)) e(g) = q(g). Thus Cl (W) = 0 by 

(2.11) applied ta fi. 

. r 
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,-' 3.4. COR;OLLARY. Let f : X -+ Y he a birational morphùm and euppose &ha& X and Y have trivial 

'. diviaor, clau groups and trivial units. Let 0 he a minimal dec:ompoaJ~iol1 01 f, A a D·dOled set Uld 

Jg,4) e (O,AI.(see (9.2)). IfW = dom(h) = codom(g), then W hu trivial üni&a and 7f'(D,A) ~ lAI, 
with equ~ty iii Cl (W) = o. 

" 

Paoop: lAI = n(h) by (3.2) and #(O,A) = q(h) +;(h) by (3.2) and definition (3.1). Apply (3.S). . -
, The above fact is interesting because it suggests an algorithm. Indeed, one can dec:ide whether _ 11 • 

A ç {1,'- .. , n} is D·closed by inspecting CD i Sa ail D-closed sets can be enumerated. Moreover 1 the 

number #(D, A) can be computed from the data (JD,tD,I-'D). 
The next result relates affineness of our surfac~~ X, W and Y to the notion of connected factorisations. 

Therefore, it becomes relevant to ask whether one can diatinguish those D-closed sets A that determine 

C connected factorisations from all other D-closed sets. We daim that it can be done. In fact, let (J,l, 1-') 

be the triple det.ermined by 0 and fix a D-closed ~et A. First,'observe that. J(O,Â) and q{O,A) cao he 

obtained from (J, t, 1-') and A. Second, it ia elear tha~ A determines~ connected fact.orisat.ions iff every 

'E J(O,A) satisfies: 

. There exiat. io,. ",'k E J(O,A) such that k ~ 0, io = i and such that. the foUowing intersection 

numbera iD Yn are positive: E.o .Eiu • :., Eill_I·Ei" Ei.' E.EQ(D.À) Ci, 

where Yn cornes from D, i.e., f = (X <-+ Yn -+ ... -+ Yo = Y): One can check,that, if In is the n X n 

identity matrix and if é is the transposed of t, tben the (i,j)tb ent~ of (In - tC) 1-' ia Ei.Cj in Yn , and 

ifi > j then the (i,i)tb entry of (1 .. - tt) t'is E •. E, in y ... Hence the data (J, t,'",) allow one to decide 

whether A detennines connected faétorÎlations. 

3.5. PROPOSITION. Let f : X -+ Y he a birational morphism and suppose that X and Y are [adorial 

and have mvial units. Let (g, h) be a factoriution of f and write W = dom (h) == codom (g). Tben W , , 
has trivial unite, q(h) + ;(h) ~ n(~) and the lollowing are equivalent: 

(a) W Ï8 factoriaJ, 

- (b) q(h) + ;(h) = n(h} and (g, h) ù a connected factori.ation. 

REMARK. To he factorial means to be the spedrum of a U.i.P .. 

PROOP: Onl)' (a)<=>(b) requiree e"iplanationl!. Let UI! adopt the notation we uaed in the definition of 
L.. 

factorisat.ions-wn1e W '-+ Yn(h) -+ •• , -+ Yo = Y. If W is fadorial, then t.h. equality holde by (3.3), 

qo(g) = 0 b)' (2.9) and Yn(h' \ W ia a union of corves, "ince W is ·affine. So (g,h)'is good. If B ÎJ-a­

eonnected component of Yn(h) \ W which doean't contain a mwing curve, th.n B ÎJ a nonempty union 

ofcurvee Ei with i e J" i.e., Bisa union o( complete curves. Since Yn (,,) itJelf is not. complete (for Y 

af6ne), it. follows that W is not connected at infinity, which is abeurd. Benee 8.ch a B doean'& exist, and 

(g, h) is connected. . 

Converaely, if (b) holde then Cl (W) = 0 by (S.S); since (g, h) connect.ed and Y affine, we lee t.bat W 

is connected at. infinit.y. By (2.2), it'. enough t.O .how that no cont.r.ding curv. of h ÎJ complete. ln fad, 

that. fonan from CI (W) = 0 : .uppœe t.hat h hu a complete contracting eurv.; then that corve il one of 

the Ei (= strict tranaform in Yn(h' of the exceptionalcurve of: Yi - Yi-l) and C:OnHqoent.lyhu negativ., 

ae1f.inteneétion n1unber, i.e., W contaiu ~ complete curve E with DOnsero Jelf·imeneet.ion number. On 
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tbe other hand, imbed Yn(h) in a complete nonsingular surface S and apply (2.8) to W ~ $ ~ then E is 

linearly equivalenÙo a divisor D supported at infinity of W, 80 that FfJ = E.D = 0, contraWction. 
• • • 1 

1 

3.5.1. REMARK. (8.5) continues to hold if we replace condition (b) by: : 

(h') q(h) + j{h} = n(h) and W is connected at infinity. 1 

, 1 

In fact,1a)A{b)=*(b') is trivial and (b')::}(a) is precisely what the above argument proves. 1 

1 
Beeause of its relative simplicity, the case wbere f bas ordinarv fundamento.l pain" (i.e., 1 bas n(l) 

distinct fundamental points in itll c~omain) was atudied ~t-see the introduètion. Let UII now consider 

the slightly more general case where i(l) = 0 (it is more general by (1.8i)). H the domain and codomain 

of 8uch an f have trivial divisor claas groups and trivial units then q(J) = nU), det IJ == ±1 by (2.8), and 

aU good factorilations of f are connected. 

3.6. COROLLARY. Let f: X - Y he a birationÏll morphism with i(l) = 0, and suppose that X and 

y are (ac&orial and, have trivial units. Le~ /) be any mn:imal decomposition of 1, let IJ = IJD and let r," 
be positive integertl Buck that r + s = n = n(l). Then theqfollowing are equivalent: 

(al 1 = ft,g for Borne biraJional morphis~ g: X - W and h: W - y such th!,' W is factorial and has 

'. . trivial units, n(g) = r and n(h) = i. 

(b) Modulo a permutation of the columns and a permutation of the rows, Il has the form 

[~ '~], 
where H is an & X " matrix afJ1 0 is 'the r x " .ero matrix (hence G is an r X ~ mairix and B an 

, x r matrix). 
.. 

PROOP: Write IJ = (/Jij)' (a)::}(b) is clear and, (b)::}(a) is almost dearj what has to he checked is that 

. (b) implies ,the foUowj.ng (app&rently) stronger .statement: " 

(b') Modulo a permutation of th.e columnll and an allowable (see(1.6)) permutation of the rOWlI, #J has 

,the fOl"D\ described in (b). 
~ , 

Obeerve that if 1 S i < n and 1 SiS n are lIuch,that /Jij = 0 and /Ji+lj :/: 0, th~n it is allowable to 

interchange rows i and i + 1. Whence (b)::}(b'), and (b')=*(a) is clear by (3.5). 

To conclude th~ section, we give a result that lIayll that if 6(1) is the largest possible, then f factors .... 
. ' in a mce way. 

};

. 7. PROPOSITION. Lee f : X -+ Y he a biraeional morphism and ,uppœe thae X and Y are ~acwria1 

ud h."" trivial ani". Tb~ 6(1) S j(l), wieh equali~ i6 1 = hg for JSOme birational morpJUsm, 

, : X -+ W and h : W -+ Y such ebac W is (acCoriai and hu bivial unite, n{h) =. q(hl = q(f) and 

nt,) = ;(1) = 6(1) (and of course ;(h) = 0). ... 

Paoop: Let Il == nU), c = et!), q = q(f),,, = ;(1) ~d 6 = 6(1). Then 6 S,. by (2.6) and we have to 

prO'Ve that 6 = i ift' 1 factors as IIpecified. 
. , 

,,. 
Suppoee f = hg as apecifiedj chOOIIe minimal decompoeitiona f)g, f)h of g, h reapectively, and conaider 

the minimù decomposition /)/ of 1 obtained from f)g and /)h al in the pro of of (1.4). Binee each misaing 

curve of ~ ÎII a misaine cuve of 1 and q(h) = q, 1 and h have the IIUDe IDÎll8ing carves. Clearly, the n(g) 
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blowinga-up of 1)/ which come fram Dg ,have c:entera i.n. W, i.e., away from the q.miaaing curvel of f.· 
Hence 6 ~ n(g) = n - n(h) = n - q = n - c = i, i.e., 5 = i. 

Conversely, suppose that 5 =;. By (1.6), there exia~8.a minimal decompoaition 1) of J Iuch that 

&=~n - ô + 1, ... , n}. Since 6 = i ~d by (2.8) c = q, A ={q + l, ... , n}. With notation as UIUaI for 

~, let W = Yq \ (Cl U ., U Cq ) and let h : W - y he the corresponding birational morphiam; then 

n(h) = q(h) = c(h) = q. ~inc:e the blowings-up Yn - .,. - Yq ha.ve centera away from Cl U·· ·UC, (i.e., 

thè,c:enters are i.n. W'), f = hg for lome g: X --. W. By (3.5'), we conclude that W has trivial unite and 

is fa.ctorial by (3.5.1). 

REMARK. (S.7) continuel! to hold if every 'factorial' is réplaced by Itriv!al diviaor chw group'. The 

proof is the, same except that, at thë end, we use (S.S) inatead of (S.5.1)., i 

4. Welghted Grapb8~ "-

Because the rest of this thesis dep~nds heavily on weiJhted ~aphe and ~elated )rap~-theo~tie 
machineries, we fee!jhat 4 is appropria~e ta give the basic definiti~~s and facts of the .th~~ of weigfu'ed 

graplïs, even pany algebraie geometera have sorne knowledge of it. This will help estAblishing our 

language and nota.tions. In addition to that, we believe that not so many people are famUiar with the 

kind o( Kmechanics" which is r~lévant to us, here. So we include the pro of. of the elem.entary obeeriationi, 

(4.12) arièl (4.1S). These proofs1kow how one can deduce that -some bra,.nch must contrAd" in certain 

situations. Such contraction processes will he crucial'Ïn many arguments from now. on. Notice that the 

corollaries (4.'16)' and (4..tS) of (4.15) will be used many times in part III. 

The materiaJ covere~ before (4.11) is approximatively what the author learned from o'her people 

(namely, fr0lllt.[13!, from the beginning of 1181 and from diecu~ions'with Russell). Everything that cornu 
. ~ 

after (4.11f haS heen figured out by the author. However, sorne of these facts are limpl~ observationl 

that may have been noticed by many people. Seé also the remark after (4.15). 

-Graphs. Every grâ}>h that we will consider ·consista of finitely many ;erÏices, some of them heing con .. 

~ected by links, such that the links are not ()riented and At most one can exist hetween two given vertic:a. 

So let us say that a grllph is a pair 9 = (G, R) ~herè Gis à finite set and Ris a set of IUbteti of G, JUch 

that every Il ~ R contains e%GeUy two elements. The element. of G are c~led the tlcrti", of 9 and thON 

of R are t}/eF /ink$ of g. Two vertices u, v of B are said ta he ljwd if {u, v} E R j we also 8ay that u il' 

a ncighbour of v, and vice-v~a. The set -of neighboura of v is deboted by JI 9 (,,). A vertex v of B ÏJ /,." 

(resp. lin"r, Il hmne" point) if it hu At ~~t one (reep. at moet two, at leut, three) neishbour(.). 191 
will denote the number of vertices of 9. ~-

• 
Given venices u, v, a cAtlin (rom u ta v ÎI A Jequence (zo, ... ; z.) of verticea luch that. q > 0, u = zo, 

u = z, and {z" ZH1} e R for 0 ~ i < q. ~e chain ÏJ .imple if the Unks {~, Zl}, ... , {Z._h:a:.} are 

diatifict.- It ÎI a loop if it ÎI simple and if :a:o = :&:f' The COA"cUd componen" o~ 9 are de6ned iD the 

obvi.ou way. A e,.,c is a co~ected graph without loopl. A li,,"r t,.,e ia a tree without Mach pqintl. 

If" is a vertex of a graph B, B \ {v} ia the IRph (G',R') where G' = G \ {u} and R' '. R \ {II e. 
RI U E,/J}. ,If 9 is A tree then the connectea componentl of 9 \ {u} are ca1led the 6~IaCAc, of 9 a* Vi 

clearly,·the tree 9 hu IJI~(tI)1 br&n~es at u. 
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WeJghted Graphs. Thelle are graphs with a weight (i.e., an ÜlteJer) assigned to each vertex. The 

"'" eonnedion to Geometry will he explained after the basic definitions. 
oC!' • } .. 

4.1. DEFINITION. A weighted graph is a triple 9 = '(G, R,O) where (G,R) is lf graph and Ois sorne 

set map G - Z. If ~ E G, ~(v) is called the weight of v. 

A weighted graph c&1ïbe blown up at a link or at a vertex: 

4.2. DEFINITION. Let 9.= (G, R, 0) he a weighted graph and let z he either. a link or a vertex of 

9. A blowing-up of 9' at :z: is a weighted graph 9' = (G', Ir, n') together with an injective map G <-t G', 

8uch that if G is identified with i~8 image in G' then G' ::::;. G U {e} for sorne e ri. il and the following 

c,?nditions are lIatisfied~1 

(a) if z = tu, v} e R then R' = (R \ {{u, v}}) U {{e, u}, {e,v}} and 

{ 

O(w) 

O'(wJ. = O(w) - 1 

. -1 . 

if w ri. {e,u,v} 

if w E tu, v} 
if w = ei 

(b) if z E G then R' = R u { {~, z}} and r 

{

O(W) ifw,{e,z} 

O'(w) = ,.~(w) - 1 if w = z 
""11. ifw=e. 

, A blowing-up of 9 at z exists and is unique, up to isomorphism (de6ne i6om;rphüm the obvious wat, 

i.e., ~ bijection which preserves links and weights). So we can speak' of the blowing-up of 9 at z, and 

-blowing-up" can he understood as a process, or an oper~tion\. Notice that we Bometimes refer to e as 

the tlerte: 'which il created in the blowing-upj that.vertex is clearly a superfluou8 vertex of 9' : 

4.3. DE>F!NITION. Let 9 he a weight~ graph. A 6uperfiuou6 tlutes Qf 9 is a linear vertex e of weig'bt 

-1 su~h that if Ut t) E )19 (e) then u and v are not linked. 

4.4. DEFINITIONS. Let 9 = (G,R,O) he a weighted graph and e a ~uperfluous vertex of g. A 

, .< 

blowin,.down of 9 at e is a weighted graph 9' = (G', R', 0') together with an injective map G' <-t G .' 

iuch that 9 is a blowing-up of $' at sorne vertex or link and e is the vertex which is created in tbat 

, blowing-up. A blowing-down of 9 fot e exista and is unique, up to isomorphismj thus we can speak of the 

blowing down of 9 at e and -blowing-dçwn" can he understood as an operation. We some~imes refer to 

e u CAe vertes tl/hich dùappea" in the blowing-down. 

We say that 9 contracu to 9" if either 9" is isomorphic to 9 or if 9" can he obtained from 9 by 

performing finitely many blowings-down. A weight~ graph is said to be minimal if<it has'no superfluou8 

vertp. ' 

~o weighted grapha are equivalen' if one can he' obtainèd from the other by a finite sequence of 

blowinp-up and blowings-downj that relawon will be indicated by 9 IV 9'. Clearly, if 9 and 9' are .. 
equivalent then 9 is connec:ted (reap. has no loops, is a tree) ifl' 9' hu the same property. 

Comaectlon ta Geometry. Let S be a nonsin~ar projective surface ancPIet D E Div (S). H D 

",iafi. a lUoDS venion of the -normal C1'OIIIIinga~ coBdition, a weighted graph can he associated to the 

pair (S,D). 
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4.5. DEFINITION: Let S and D he as above. We say that D has dron.g n.ormal croSlihg, ( •. n..c.) if 

D is effective, reduced, and if the foUowing conditions hold: 

(a) every irreducible component of Disa nonsingular curve; 

(b) if C an4 C'are distinct irreducible components of D such that C n ct :f: e, t~en C n C' = {Pl and 

(dC')p ==_~ for sorne point Pi 

(c) if C, ct and C" are distinct irreducible components of D then C n C' n C" = 0. 

"" Observe that the '.n.c. condition makes sense even if S is not. complete: 

4.6. DEFINITION. Let S be a nonsingular projective surface and let D be a divisor of S with •• h.~ .. 

The dual graph 9(8, D) associated to the pair (S, D) is the weighted graph which has the irreducible 

components of D as verti~es, two of them linked iff they intersect in 8, and such that each vertex C has 

weight 0 2 (self-intersection number in 8).~, " .. , 
",tt 

Let (8,D) ~e as above. ~ ,..,', 

(1) H'Ir; S -+ S is the blowing-up of 8 at sorne P E supp (D), E = 71'-l(P), D is the strict tranaform 

• of D and D' = D + E E Div (8) then D' has '.n.c. and 9(8, D') is a blowing-up of 9{S, p) in a natural 

'way. H P belongs to two components of D then ,9(8, D) is blown up at the corresponding linkj if P 

belongs to onlyone component of D then 9{S, D) is blown up at. the corr~sponding vertex. Clearly, E is 

a superfluous vertex of 9(8, D') and 9(8, D) is the blowing-down of 9(8, D') at E. 
(2) HF is a superftuou8 vertex of 9(8, D) then the blowing-down of 9(8, D) at F (which always existl) 

corresponds to? blowing-up morphism ( S. -+ . ) as ex~lained in (1), above, if and only if F b a rational 

curve (by Castelnuovo's criterion for contracting a curve). 

When the divisor D does not have '.n.c. we can use the following f~t: 
. 

4.7. LEMMA. Let S be a comple~ nonsingular sudace and suppose that D E Div(S) Ï6 reduced, 

effective and does not have '.n.c.. Then there eXisB a sequence Sm -+ '" -+ So == S of monoidal 

transformations such ~hat, if Ei is th~ceptional c'urve created in S, -+ Si-l and 

{
DO = DE Div(So) 

Di == (strict transform of D'-l) + E, E Div(S,),' 1 ~ i ~ m, 
. 

tben Dm E Div(Sm) bas '.n.c.. Moreover, if m is minûnal with respect to the6e ,propedietJ then aU 
centers are i.n. D, Sm \ supp (Dm) ~ 8 \ Bupp(D) and, if 8 \ supp (D) hu no 100p8 at'infinity, every El 

such tbat El = -1 in Sm is a branch poin! of 9(Srn, Dm). 
~ . 

Most of the facts contained in this lemm'a aie wéll-known, and the reader can easily figlm! out the 

last assertioDtl-see (5.1) for the -loops at infinity·. 

4.8. DEFINITIONS. Let X he a nonaingular surface. A ,mooth completion. of X is an open immersion 

X <-+ S such that 8 is a nonaingular projective surface and S \ X = IUpp (D) for some D e Div (9) with 

I.n.c. (this D is then unique). The weighted gr.aph ,9 (S, D) ia thereforè determined by X,-+ Si by uing 0 

the two factl mentioned immediate1y hefore (1.2), one ~ that the equivalence clau of 9(8, D) dependa 

only on X. That equivalence clau will he~denoted by 91XI .. ~otice that smooth completioDl exiat for 

~X ~. . 
\\ . 
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We now return to pure graph theory and give a few defi~t~s. ' 

4.9. DEFINITIQNS. An arbitrary weighted grapb 9 = (O,R',~determines a bilinear form B(9), '!Sn 
the real vedor space RG which'has 0 as a basis, defined by 

Vi' Vi = O(Vi), aU i, 

, , _ {1 Ü {ViJ vi} E R 
v •• vJ - ••. o ü':f: 3 and {tli, Vi} rf= R, 

. 
lÙere G - {tIJ, "2, ... }. The diacrimmant of B(9) is denoted by d(9) (i.e., d(9) is the determinant of . 
the 19/ >< 191 matrix (tli • tli»' One can check that if 9' is a blowing-up of 9 then d(9') = -d(9). Thus 

the number 
;:, 

(-1)191- l d(9) 

depends onlyon the equivalence clasa of 9. We define the nonnegative integer (9) = maxdimW, where 

W runs in the set of linear subspaces W ç R G such that B(9)(z, x) ~ 0, all x E W. One can check that 

(9) depends only pn the equivalen'Ce class of 9. The following (elementary) fact is mentioned in [13, p. 

181: 
U (9) ~ 1 then t4,ere can be at most two vertices with nonnegative weights, and if there are two of 

them then these two vertices are linked and one of the weights is actually Jero. 
,1 

4.10. DEFINITION. Let 9 = (0, R, 0) he a weighted tree. The fu.ndamental group of 9, denoted 

""(9), is the free ~p on the set 0, divided by th~ relations 

(a) ViUi = ViVi, ü {tli, v,} E R, 
(b) for eachvertex tI, if .N'D(tI) = {Vil,,,.,Vi.} and il < ... <il; then "Ï!"·u,., = v-OCtI), 

where G = {Vl! "2, ... }. One can prove that, up to isomorpbism, "'(9) is independent of the ordering of 

Oi moreover, the isomorphism class of "'(9) depends only on the equivalence class of 9. 

REMARKS. 

(a) The fad that "'(9) is well defined, i.e., that i~ is independent of the ordering of G, up to isomorphisIh, 

is clearly true in cases where it comes from topology, as is well known [IOJ. In the purely graph­

theoretic lituati.?n, it doesn't seem completel trivial to UI. That fact is claimed in (lSJ, without 

proofj we don't know ü there exitts a published roof. 

(b) T~e_ll~t!~1!_of f~!ldament&l group is uaed only once tbis thesis, in the proof of (4.15.1). Moreover, 

only the fundamental group of a linear tree ia conlidered, which is a lomewhat trivial case. It is then 

clear that we cou~d have avoided considering these groups. 

4.11. DE~INITION. Given ta e Z, the aymbol (n] will denote any weighted tree which has one vertex, 

lay V, and suoh ~hat tI hu weight n. 

Now th.t we are done ,,;,th the definitions and notations we will càJider thole problems, in the 

theory of weighted, graphe, that we need ta undentand in order ta study birational endomorphisms of 

A2. Then are t~ s~ch problem., ~f~ -;; tbia thesis ia concerned. The tint one is to understand 

the behavior of the weighted Ueea which ale equi~ent ta a linear treei the second one ia to find which 

weighted treea are equivalent io Il]. 50 the following coneideratioDl belong to pure graph-theory. (Notice 

ur - -

•• 
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that a wei~hted graph is called a (weig~ted) tree if the underlying graph is a t.ree; it. il "linear t.ree if t.he 

underlying graph is a lineu tree.) 

Welghted 'bees Equivalent to a Linear Tree. - . 
4. 12. LEMMA. Let 9 be a weighted g;&ph and v a vertex..of 9. SuppOlJe thae 90,' .. ,9" ;. A 8equence 

of weigheed graphs sueh that Bo = ~, IBkl = l, 9. iJJ eieher a blowing-up or a blowing.down of 9i-l 
(1 :S i $ k) and, none of the blowings-down is a blowing-{lown at v (so the vertex of 91r js v). Then 9 
contracta to 9k. . . 

Befdre we prove that lemma, let us st.ate an elementary fact about contractions of weight.ed graphe. , , 
This fact will be used in the proof of (4:12) and at sev~other places without. even ment.ioning it. lta 

proof is an easy inductive argument which is left to the reàder . ../ 

4'.12.1. LEMMA. Let 90,"" 91r be a sequence of wejghted graphs such that 9. 'js a blowing-down 

of 9'-1 (1 :S i $ k). Suppose that e is Il superBuous vertex of 90' which djsapp~ars in one of the6e 

blowings-down. Then there is a sequence 9~, ... ,B~ Bueh that §~ = Bo, 9~ = Bir, 9: is a blowing.down 

of ~ (1 :S i :S k) and 9~ is the blowing-down of 9~ at e. 

PROOF OF (4.12): H 9. is a blowing-down of B.-l for 1 $ i :S k, we are dOJl(t._ So supposé that Bi ie 

a blowing-up of 9'-1 and that i is maximal with respect to that property. Let e b'è th.e vertex created 

in that lut blowing-up. Since e is distindfrom v, e must disappear in a blowing-down, say (rom 9,-1 
to 9; (sorne i > il. By·(4.12.1),we May assume that i = i + 1. Then 9'-1 = B.+1, i.e., we can delet.e 

9i-l and 9, from the sequence 90t ... , B,,, and get a shorter sequence with t.he lame propertiea-and 

the same lut term 9:. The conclusion follows by induct.ion. 
, . 

4.13: .COROLLARY. Every minimal weightN1 Cree equivalent to a linear 'ree i8linear. . ~ , . 
PROOF~ We will show t.hat if 9 is equivalent. to a linear t.ree and is not linear, then 9 is not minimal. Let 

~ 90, : .. : B,; be a sequence of weighted trees' such that 90 = B, 9k is Iinear and 9i ia either a blowing-up 

'or a'blowing-down of 9'-1 (1 $ i :S k). bd t1 be a branch point. of 9. For some i, t1 is a 'Hneu vertex in 

9. ; consequently, there is a 'branch B or 9 at v luch t.hat. all verticea of B disappear when we go from 

90 t.o Bi. Therefore one seel that t.he lemma (4.12) can be applied to the sub-weighted-tree {v} uB of 

9, and we conclude ~hat {t1} U B con tracts to {v}j in part.icular, 9 contams a SUperflUOUI vertex. 

The rollowing is an immediate consequence of (4.12) and (4.13). It will be uaed-many times whitout 

ment.ionmg it. 

4.13.1. COROLLARY. Let B he a weighted tne equiva1ent to a Jinear tree, and le& 6 he a branch poillt 

01 B. Then lor JJOme bran ch B of 9 a1'6: ." ean ab$orb B", i.e., M'e C&II con 'rad 9 to a weighted iree 9' , . 
, .uch that: 

(a) 9: = 9 ~ B a8 grapha,' 
; 

(b) B' \ {h} = 9 \ {{6} u B) u weighted graph •. 

J.t!oreover, 9' (i.e., the,weigh& oU) ü comple&ely de~mined by 9 and 8. 

G~n a weighted graph 9, let. the aymbol 9 < ~ 1 be an abbreviation f9,r t.he .tatement. -every 

vertex of 9 bu weight less than -1": The nut. rad hu not.hing ~ do wit.h line~! but. wè include 

Î' here becaue ita proof, which we leave to t.he reacler, ia IOmew~at IimUar ta t.he proof of (4.12). 

20 

• 



o 
\ 

• 

(~ 

... ,. 

4. 14J,.:,Ji'ACT. U 9 < -l, ~bên 9 ,Î6 ~he unjque~jmal eJemen& of it~ equiva1ence c1ass. In parÙculàr, 

if 9'...., 9 then 19'1 ~ 1.91· . , 
, : 

Welghted ~ees Equivalent to (1). 'W.e ~puld lib to have an algorithm that decides whether a given 

weighted tree 9 ia ~ivalent to Il). Sinc~â' ia easy to con trad 9 ~o a minimal weighted tree, we can 

reatrid o~raelvea to the eue where 9 ia mih1mal. Before we state the solution of this problem, we n-eed 
• 

to introduçe sorne notat,ion.: 

(a) Given integera Wl,' .. , W," let IWh" ., wnl be the linear weighted tree 
~ 

where the numbers wh'" ,Wn an the w~ights. H aIJ ... , a. are finite sequences of integers, let ial,' .. ,a.1 ,,,. 
be t.he linear weighted tree ol5tained by regarding -al"", Sk" al! one (long) sequence of integers. More-

over, if 8i has only one term,.say ai = (w), we allow ouraelves to write 1,,,,si-i .. w,Si+1"") instead of 

1 ... ,si-l,ai,aHl"") or 1, .. ,Si-l' (w)'''HIJ· .. I· 
-

(b) Given p, (E Z with p ~ 0"let R'f, he the p+ 1-tuple (-q-2,-2, ... , -2), and let,L~ he the p+l-tuple 

(-2, ... ,-2,-q-2). - • 

For instance, the tree II:à;.O,2,~) ia just the same as 1-2,-2,-3,0,2,-41 which is, by the way, 

··'''.l~~ equivalent to 11J. To see thia, observe that if: A, B are (possibly empty)finite sequences of integere and , ' 
a, b E Z then . , 

IA,a,O,b,BI"" IA,a+i,O,b,- i,BI 

, for any i E Z-)'!our c&Se, 

1-2,-2,-8,0,2,-41 N [-2,-2,-1,0,0,-41-13,0,-4] -10,0,-1] ..... 10,1] 

which w equivalent to [l)i indeed, if nEZ then 10, ni ,.,. [-1, -1, ni - [0, n + 11 and consequently 
• 

(O,nl-IO,-ll"" (11. 

4. 15. PROPOSITION. Tbe folJowing Î6 a m& of all minimal weighted trees equiva1en& to Il]. 

(a) 111 

(b) (O,a), .a E Z\ {-1} . / ~ , ~ 
(e) 1 .. : IL::+l,L::+1,L:~,O,Qo+ l, R:~, R::+1, R::+1, ... ) where ao, al, ... ,a. Î6 a tinite sequence of 

nonnegaeive in&egel'll, "i&1J li: ~ 1. 

RENARK. . When the writer found the above liat, he W88 unawan of the fad that it had a~ 

in 19, thJQrem 9] severa! yean 'before. However, geometry (over C) ia very much inwlved in Morrow'a 

rUult (I.e., in both the aaertion and ib proof) while our proposition ia purely Il'aph-thèoretic 10 that, 

.trictly lpeakinlJ, the t~ raulb don:' say the lame thing. For that reasoD, we include a proof of ((.15). 

Tp begin wi&h, w. prove a lenuna which ia probably the most difficult part of the proof. 
, 

4.16.1. LBNMA. Lee 9 = IW1,. "",lIIf +2) be .uc:IJ &bu q ~ 0 and Wi S -2 (1 S , S q). H ,..(9) Î6 

bivialllld (9) = 1 ~ben 9 .... 11] and Olle of ClJe foHowÏIJglJolda: 
• 

(a) q = 0 aud 0 e {Wl''''2} 
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(b) q>Oand y = [-2, ... ,-2,w"O,-w,-1\ 

(e) q > 0 and y = IWh -2, ... ,-2, -l, -qJ. 
PaOOF: The vertices of y will be denoted by ;1! ... , Z.,+2' where the subseripts correspond to théae of . 
Suppose tbat q = 0, i.e., y, = [Whw2j. 
Let F(ZI,Z2) denote the free group on the set {Zl,Z2}, let (a, 6, ... ) mea.n -normal subgroup generated 

by a, 6, ... 1) and let [a,61 be the commutator of a, b. By definition of ft'(9), 
.' 

, .sinee the latter group is abelianj one checks that this is isomorphic to F(zl) I(Z~-WIW,). Sin ce 71'(9).= 1, 

. we get 1-wlw2 = ±1. ~ 

If 1- wlw2 = -1 then WIW2 = 2; sin ce (y) :;: 1, Wl ~ 0 or W2 ~ 0 by the fad stated nt the end of 

(4.9), so (Wl,W2) = (-1, -2) or (-2; -il ~ y -1-11 and (y) == 0, contradiction. ~ 
Henee 1- WIW2 = 1, 0 E {Wl,W2} and (a) holds. \ 

Suppose tbat q > O. 

Write 4i = -Wi, '(1 ~ i ~ q). The group 1I'(y) is the free group F(ZI"" ,Z'H) divided by the relations 

X2 = Z~l and Z,+2 = zn).l z;l, 1:5 i ~ q (for this is already abelian, so it's not neeessary to impose 

-. therelationsz,zHl = X'HZi, l~ i ~ q+l). Ifwedefine 1: {1, ... ,q+2} - Z by 1(1) = 1,/(2) = al 

and I(i + 2) = Gi+1/(i + 1) - I(i),. 1 ~ i ~ q, then x, = z{(i), 1 ~ i.S q + 2. On the other hand, one 

c~ c~~k that 1I'(g) ~ F(z1) / (:r:{(,+1)+w,+,/(QH), and sinee 11'(9)·= l, {(q + 1) + wfI+'l/(q + 2) = ±1. 

1 From the definition of {, we- then obtain 

(1) 

(2) 

I(q + 1) - w"+2Iw,+t!(q + 1) + I(q)\ = ±1 

Il - Wq+2(W,+l + l)J{(q + 1) + w.,+2[/(q + 1) - l(q)l = ±1. 

, 

By assnmption, we. have al, ... , a, ~ 2. Using the definitioll of 1 and a straightforward inductive 

argument, one gets 

(s) . 

(4) 
) 

. 
1 = 1(1) < {(2) < .. <-J(q) < {(q + 1) 

0< 1(2) - J(l) :5 ... S I(q + 1) - J(g) and 

I(i + 1) - I(i) > I(i) - I(i - 1) <===> Gi > 2 

In particulatr/(ci + 1) > 1 sa (1) impliet that WqH ::f: O. 

~. W.,+2>0. 

·Sinee (9) = 1, the fact stated at the end of (4.9) implies that w.,+1 S'O. On the other hand, I(q + 1) -

I(q) > 0 by (4) sa 1-w.,+'l(w.,+1 + 1) S 0 by (2) and couequen41y "',+! = o. From (1), we ind 

(6) 
, , 

If q > 1 tlaen J(q + 1) = af/(q) - J(q - 1) and (6) becomea (af - "'f+2)/(q) - I(q - 1) = ±1., By' 

(s) and (4), we He. that 0 S af '- "'f+~ ~ 1. Thu af - "'.+2 = l, (otherwi.te O/(q) - I(q - 1) .. :1:1 .... 

22· 
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I{q - 1) = 1 => q = 2, and 9 = 11.111,1.112,0, -1.112/ '" 11.111,0,0,0/ => (9) > 1 by (4.9), contradiction) and 

I{q) - I{q - ~) = 1. By (4), we conclude that al = '" = aq-l = 2, i.e., (b),,holds. 

)l q = 1 then 9 ='I-aIl0,w3) l'V [0,0,1.113 - al/So 1.113 - al < 0 by (4.9) (for (9) = 1). On the other 

hand, (5) nads al - ws = ±1. Hence al - 1.113 = 1, i.e., 9 = 11.111, O,-Wl - II, i.e., (b) holds. 

Hence (b) holds whenever 1.11.,+2 > O. Since we know that 1.11,,+2 =1= 0, there remains to'look at 

Qm..2. 1.11.,+2 < O. 

By (2), we see that 1 - 1.11.,+2 {W.,+1 + 1) ~ 0, whence 

(6), 

\ . 
On the other hand, write (1) in the form 

, 
Since Irq + 1) 2: q + 1 and I(q) 2: q by (3), (q + 1 - qw.,+2] - wq+2wq+l/(q + 1) :5 1. Whence w.,+l < 0, 

• 
i.e., -2 S wt +1 S -1 br (6). 

If Wq+1 = -2 then 1.11.,+2 = -1 by (6); BO (1) becolMs I(q + 1) - J(q) = 1. By (4), it Collaws that 

42 = ... = a., = 2 and a~' = I(~) = 1(1) + (1(2) - J(I)) = 2 i.e., 9 = (-2, ... , -2, -1) ,.., 1-1/ => (9) = 0, 

contradiction. Hence 1.11.,+1 = -1 and we proved: 

. 
(7) 11 q > 0 and W q+2 < 0 tIJen w.,+1 = -1. , 

Thus we have 

(8) il q > 0 and W.,+2 < 0 tben (e) bolds 

by indùc:flion on q. Indeed, the case q = 1 is proved by applying t~e case -q = O·'to the blowing-down of 

.9 at %2 and, .imilarly, the inductive .tep is done by considering the blowing-dawn oC .9 at %.,+1' One ,has 

" to observe that the weight of ~;+2 is still, negative after the blowing-downj this is because we found" just 

before case 1, that q > 0 => 1.11.,+2 =1 O. Thus the inductive hypothesis ean he applied to the blowing-down 

'-)of 9. 
PROOF OF (4. 15): Fint, noUce that every member oC the list is minimal and equivalent to 11/. Indeed, 

this is trivial (or (a) and (b). That every tree in (c) is equivalent to (1/ can be proved by induction on 

II: and by usin~ the observation just befon (4.15)-but this will he rather obvious once the rest of the 

pro of is underatood • . 
, Let 9 he a minimal tree equivalent to (11. To plove: 9 is in the list. If 191 = 1 then 9 = Il) (indeed, _ 

by considering the invariant (-1)~91+1d(9), one sees that [m] -(ni => m = n). If 191 = 2 then.9 = [0,0/ 
.\ 

by (4.16.1), sinee «(1Ir = 1 and ",((lI) is trivial. 

From DOW OD, we suppose that 191 > 2. 

Clearly, 9 is linear by (4.1S). Let n he the number of vertices with Donnegative weight, in 9. Since 

(9) = l, we have ra S 2 by (4.9)j we now.show that n = 2. If ra = 0 then 9 < -1 aniby (4.14) 

91-11); 10 n > O. If ra = 1 then write 9 = IA,w,B) where A = (al," .,aa) and B = (bl , ... ,b~) are , . 
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sequences of integera lep than -1, ° ~ a ~ fJ and w ~ 0, We prow that. t.hit ia abaurd, by indudion 

on a. Ha = 0 then (4.l5.l\ ia violated. Suppose a > O. Since We auumed a ~ !J, we haVe fJ > o. A 

tree 9' is then obtained from 9 by performing ",'blowinga-up at. appropriat.e links: 9' = [A, o. B') whue 

'B' = (bL ... ,6~+IJ) ia just B ü w = 0', and ü w > 0 then B' ~ (-1,-2, .. . ,-2,b1 - l,b2,'" ,b,). By 

using the trick. given just. belore (4.15) we see that 9' ÏB, in any c~ei equivalent to 
\ 

Now B" contracts to a minimal tree B/II = IA"',w"', B"'I, where WIll > 0, A'" and Bill are sequences of 
1) " 

integen less tha.n -1. Bill ia noL ernpty and Alli has less than a terme. ln particular 19/111 > 2 09/111 ~ 2 

il dear, and' the equality would violate the 'case 191 = 2 already proved). By the inductive hypothelia 

a.pplied to 9"', thia ia absurdo 1 1 
, \ 

Hence n = 2, as daimed. By (4.9), the two vertices with nonnegaU:re weighta are linked, and one 

oft)lem has weight zero. Thus we can write 9 = IA.O,w, BI such that w ~ and Â = (.2:1'" ',~r) and 

B = (Yll' .~y.) are sequences of integera less than -1. We proceed by induction on 1.91. 

II 1.91 = 3, or more generally if min{r, s) = 0, then by (4.15.1) 9 = IL:i. O. 00 + 1/ where 010 = w -1 

and al = 191- 3 are nonnegative. Thus 9 occura in the list. 

Suppose 191 > 3. By above, we may ~8ume min(r,s) > O. Since 9 = [ .... :l:r,O,w,yl, ... 1 ,.., 

1 .... Xr + w,O,O'YI, ... J we have Zr + W ~ -1 by (4.9). We daim that equalfty holds. II not, 9 ,.., 
" [ .... xr +w,-l,-l,.-l,yl, ... I-I ... ,2:r -I'Xr +w + l,l,YI + 1,Y2,., .. I, whichcontracts to a minimal 

, . ' 

tree 9' ;= lA', w', B'I such that w' ~ l, and A' and B' are sequences of integen lesa than -1. II A' and 
1 

B' are empty then w' > f and 9' = Iw'l 1- [II, which is absurdo H 1.9'1 = 2 then ",' > l, and (4.15.1) ÎI 

violated. So 19'1 > 2 and, byan earlier part of this proof, 9' must have two vertices with nonnegative -

weights i.e .• contradiction. 

Hence xr, + W'= -1 and consequently 9 is equivaJentoto IX1"'" :l:r -l, -1,0,0, BI, which contracta 

to a minimal tree .9' = (j4',w',O,BI where w' > 0 an~ where A' is a sequence of r' integera leu than 

-l, ° .$ r' < r. Moreover, w' is just the number of blowings-down in that contraction procea, i.e., 

, .. ' (xr'+1' .... xrl .. L;;,z'=ï2 and (if r' > 0) Zr' < -2. Since- ~e .a88umed that minw,4) ~ 0, 1.9'1 = 
r' + 2 +'4 ~ 3. On the other hand 19'1 <.1.9lso, by the inductive hypothesis, 9' hu the Conn apec:ified in 

(4.15c). It easily followa that 9 also has that form, .i.e., 9 occura in the lisr. 

4.16. COROLLARY. Let.9 he a minimal wei,h&ed tree equiv.alent to [II. Then.9 il Hnear and: 

la) U 191:= 1 then 9 d [11. 

lb) u 1.91 = 2 then 9 = [P, al, .someua e Z \ {-l}. • 
~ . 

le) U 191 > 2 then 9 bu exacdy two vertices Wml Donnegative wèights, these vertj~ are Jinied ud 

exactly one of them, say u, hu weight .~. Moreover,. u bu two neighbouFS. .ay te and Il, ud 

0(:.:) + O(y) = -1. 

4.17. DEFINITION. Let .9 he a weighted tree and t1 a vertex of g. Wé aay that t1 ÎI a 'pet:i4l "rles 

if the number of branches B-of 9 at t1 anch that B < -1 (see berOte (4.14)) ia at leut two. 

4.18. COROLLARY. Let.9"" [II and ,uppose that t.I Ï5 a .pecial vertex. of 9. Then 
""\ ")~ 

O(u) + lJ/g(u)l.$ 1. 
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PROO': Let n = /.N'D(tI)1 ,d let BI, lJ.:a he branch~ of 9 ~ tlluch that Bl < -~ and B'J < -1. By . 

(4.13), we can contrad 9 to n\ linear tree 9"'such that tJ doean't diaapPtar in that proceaa. Clearly, the 

branches of 9' at \1 are jUlt B~, B2 (with lame weights as in 9), and the weight n'( \1) of tI in 9' satis6es 

n'(tJ) ~ n(tI) + n - 2, sin ce n -\ 2 branches of 9 at tI disappeared in the contraction. By (4.16), 9' is not 

minimal, i.e., O'(tJ) = -1 and_~e get the deaired inequality. 

6. Other Conditions on the Domain and Codomam. 

In section 2 we saw that,imposing conditions on the domain and/or codomain of k birational mor- \ 

phism may have co~equencea on the structure .of that morpbiam. We now ~~turn to such considerations, 

but the conditions that will be studied have a difl'erent tlavor: they deal with the graph·theoretic structure 
\ , 

at infinity of our surfaces. 

5.1. DEFINITIONS. Let U be a nonsingularsurface. We say that U is connected at infiniCy (resp. ha, 

no loop, Gt infinity, i, a tru al ln~ty, " linear at infinity) if, in the equivalence claaa 91UI of weigbted 

graphs (see (4.8)), all graphs are con.cted (reap. no graph has loops, all graphs are trees, sorne graph is 

a linear tree). Of course, the new definition of ·connectedness at infinity» is equivalent to the usual one. 

Let us also say that U is rational at infinit, if for sorne (equivalently, for every) open immersion 

U '-+ Ü such that Ü ÎII a complete nonsingular surface, all curves in U \ U are rational. 

5.2. FACTS., Let f : X -+ Y be a birational morphiam. 

(a) 11 X ü rational at in~njty then 80 ia Y. 

(b) 11 X bas no 1001'6 at inlinity then Y bas no loops at inlinity. ~ 

Theee facts are easily 'proved if f is either an open immersion or a. monoidal transformation, The 

ganerai cue follows immediately by making use of a minimal decomposition. 

5l3. FAk. Lee 1 : X -+1' he a bil-ational morphinn. 11 X ü radonal ae infinity, ehen all miuing 

carves are .f'atj~lJal, 

) 5.4. DEFINITIOri.. Let r be a (no~ neceesarely. complete) curve. Let r be the complete nonsingular 

model of r (i.e., the set of valuation rings of the function fie}d of r over the ground 6eld) and let r : r -+ r 
be the canonical birationai transformation. Then r \ dom (r) is a 6nite set of cloeeci points, called the 
piGee. 01 r at infi~it" Let the cardinality of r \ dom(r) be den~ed by poo(r). We say that r has 

poo(r) places at infinity. Notice that if ris any complete (vve which contaÏDs r, then r extenda to an 

epimorphiam';: : r -+ r and ;:-l(r \ r) is just the set of places of r at in6nity. 

5.6. LSMMA. Le& f : X -+ Y he a birational morphism wbere X hu no Ioops ai infinity. HY bu .. , 

k > 0 CO.DJlected componenû at infinity (i.e., an arbitrary member of 91Y) bas le conneded componentsl, 

tlaen 
f 

L.: Poo(Ctf ~ le + q - 1, 
1=1 

".6..., Cl, ... ,Cf are. &be mWing CDrVe6 of 1. In part~cular, if Y Ü cO.DJlec~d at infini", (re6p. if Y ü 

aIIùN) t1Jeu eacIJ mWing corve bu at mae& (resp. exactly) one place at i11li.aity. 
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Paoop: Chooee a lIDooUl complt\ioa Y ~ l' 01 Y .. cl couicl ...... p-a.ph 9 - (~,R) liWll by 

" Q. (l'l ..... (1 •• Al •..••• }; wb .... (1. Il &le donrt oi C. la Vaacl AI ..... A.. "" .... c:oanec\ecl 
compollellta ofF\ Y, uel R - {{'~it~/} Î 'lYi nAi rfa '). Sinee X hu 110 100.,. at iJlblt1W~'" that 9 
dOlIJl't have bpi and that each Oi belOllp to UlCtly p .. (Cd JiDb .. Thu IRI-D.l Poo(C4). OD 'he 

other hand, i' ia a pDeral lad that ap-apb 9 with 110 100.,. bu at mOit 191-1lbab (exlctly 191-1 ur 
9 ia a tree). Renee ft ,et the aMiNd ~equality. ~ 

} .' 

6.6. FACT. Le, f : X - Y b8 a birUioDaI morplù.m wbart X A .. .DO 1001'11 .c iIIB.aiey and co.alider a 

m.ilUmal decompoGdo.D 011. wiCb noC.tion .. iII (J.Sb). Le, 0 be 'b • • &lice Crau/onu iII Y" 61 am_in, 

carv., Je~ C be &Ja. complete Douill,.,l. model 01 0 and 1.t ,. : ~ ..... 0 be th. C&lJODical biratioDaI 

b'aufonù~ejoD. Tben 'be N' m.p": dom(r) -+ C ÎI bij~Cjv.. . ~ ( 

5.7. LEMMA. Let f: X - Y be a biratioDaI morpAiem, wbere X;. ime.,..c ÎD ~J Y .il alfilJ •• 

Couder a minimal decompo.;'ioD of l, Wi&.ll .DoC.Cio.D U in (J.Sb). TAu Y" 'X A .. q = q(fJ nn.ded 

c:ompoDe.Db, eacb one of 'Ae Iqrm 

wAere bi, ... "i.} ç; J and 0, + Ej, + ... + Ej" bu '.n.c. ÎD Y". , } 
Paoop: Sinee eacb Cà hu one place at inSnity of Yo = y by (5.5), we can choou I.mooth completion 

Yo .... y 0 of Yo auch that, if L i.e the diviaor of Y 0 with '.n'.C. and which .atiaSes Vo \ Yo = .upp (L), and 

if Cl,' ",0. are the clOlUJ'e!l (iD Yo) of tb. m.iDg turv .. , then 01, ... , Of mett Lat diatiDct point. 

and C,.L = 1 (1 S (~q). AI. iD the proof of (2.1), let ua ·complek the diasram-: -
/~A .. - Y" 

llf" 

~ tri l ;rI 
Q X --. Y = . Yo - Yo 

1 . 
r ~ 

Thea Y" , Y" = npp (L), and (iD Y ft) Oh"" Cf meet L at cliatinct poiDu ud C •• L = 1 (1 S , ~ q). 
SiDce X hu DO loopl at iDfinity and L la coanected, Oh .•• , Of belODE to diatQid coanecttd component. 

of Y" \X. On the other hand, if W ia .. COnllected component of Y" \ X and W ia iu cloeure iD y", then 

W meeta L, .iDee X ÎI connëcied at iDfiDityj beDce W coDtains a c" ua then are exactly q conDecte<! 

componenta of Y" \ X. Wo DOW Ibow (by contradictiOll) that each one of th_ coanected componeDta 

-la .. tbe desired propedi... Let 

f 

D= EC.+ E&+LeDiv(Y~). 
'.1 lEI 

Fin" nppoee Ulat D doe. Dot laave ' ••• c .. Dy (4.1), we ~er a NqueJlee of mOlloidal traufor­

matiollS y", ...... -+ F" Cm > !'), euch Chat if ~ ia lhe exeeptiollal cvve created ." Y. - V'- l 

ud 

{ 
Dtl = De Div (Y ft) q 

D' = (.met tranaform of Jj-l) + ~ e Div (l41_ " < i :s rra, 

2& 

,,' 
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then'Dm e Div (Y m) hu ..... c., allcentera are i .... supp (D) nY,u Y m \supp (Dm) ~ X and ifn < i ~ m 
then' 

(*) 
.. 

'- Let D+ he the eonnected subtree of Bm. which hu 0 1"" ,0" and the irredueible components of L as 

vertice8. Let E he the set of branch pointa tI of Dm IUch that CI is not in D+. By (.), Em e IJ 80 Il.,. e. 
JI tI e E, then let B. he t~e branch of Dm at CI such that B. con tains g+. Since gm is a"finite tree, 

we can find tI E IJ such that, ü B., BI, ... , Bic are the distind branches of Bm at CI (=> Je ~ 2) then 

En (B1 -u ... u Bk) = e. By (*) and (I.Si), Bi < -1 1 ~ i ~ k (see just before (4.14». Sinee X is 

linear at infin1tY. Dm contracta to aline,al treej since BI' ~ can't disappear in that contraction, Bv mUlt . 
diaappear. Thus we see that B. -1-11. Clearly, ( )-i.e a ,·nondecreasing" function,80 

On the other hand, (g(Yo, L)} > 0 since Yo ia affine-in the terminology of (2.1.S),luPP (L) ia a positive 

subset of l'o. Moreover, D(Yo, L) is just the same as B(Y m, L), since no blowing-up has center i",. L. 
,-

Hence 

(g(Y m, L) > 0, 
..; 

contradiction. So D E Div (Yn ) hu ..... c.... .,/, 
Nut, suppose that some connected compOnent W of Y" \ X does not have the deaired formj it means ~ 

that either the d~al tree B(Y n, F) ia not linear or 0, ia not a free vertex of it, where . . . 
F = 0, + Ei, + ... + Ej" E Div (Y Br -

it the diviaor (with •. ",.c.) whoae support is the dosUle W of W in y n' In the finst case, let tI he a 

branch point of B(Y n, F); in the second case, let tI = Oi. làt B., BI,. '" Bic he the distinct blTanch-ea 

of D = 9(Y Il' ~ at tI, where B. is the one that contains the components of L. By (I.Si) we Bee that -

1h < -1 (1 ~ i ~ /c). AJJ above, we Bee that tI cabeor'" B. and .. contradiction follows. 

/ 
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II. LOCAL TREES 

As was seen in pari 1, if S is a projective nonsingular surface and D E Div (9) hu , .... c. (i.e., 

strong nonnal Cfosaings, Bee (1.4.5)) then the pair (S, D) determines a weighted graph which caniet lome 

infonnation about the surface S \ IUpp (D). In Many cases, however, the divisor D with which wt bave to 

cope doesn't have '.n.c .• When that happens, one usually blowlI-up 9 at sorne pointe of IIUpp (D), until 

a div~or with ".n.c. is obtained; then one can cOll8i~~r a weighted graphe 

In this second part of our thesis, we present a graph theory that gives sorne control on the deaingu­

larisation procets. To give a rough picture, let us say that a local tree ia a graph theoretie device that 

is assigned to a singular point of an effective divisor on a surface, and that followa ita desingularisation, 

keeping track of certain arithmetic aspecte of the procel8. When that proce8a tennina~es, we obta.in • 

. local tree fro~ which the de8ired weighted tree Gan he recovered. . 

'. We refer the reader ta the beginning of {U) for the tenninologie8 and notations of graph-theory. 

1. Basic Concepts. 
~ 

1.1. DEFINITIONS. A local tree is a ... tuple T = (T, Xo, R, 0) where: 

(a) Tisa finite set a.nd Xo E Ti « 
(b) R is a collec~ion of s'!lbsets of T such that every a E R c~ntaina exactly two elements, and (T, R) ia 

a treej 

(c) 0 i8 a set map T \ {zo} - Z. 
, 

The elements of T are called the verticel, and thOle of R the linkl j Zo is called the root of T. Given 

z E T \ {xo}, O(x) is the weight of x. Write dl = {a E R 1 Zo E a} and call the elements.of ftJ the 

principallink6 of T. The neighboura of the root will be called the principal verticel. 

1 Although it is not clear what a morphism of loca.l trees IIhould be, it certainly makes good renl. to 

defi.ne an ûomorpM"m of local treea to he a bijecti:ve map between theïr seta of vertieell, pre~g the -" 

root, the links and the weightll. 

1.2. DEFINITIONS. If T = (T, Zo, R, n) is a lotal tree, a multiplicity map Jor T il a lIet map 

(where N is the set of pOllitive integers) luch that p(a) ~ p(zo) for every a E JfJ. 
A multiplied local tree is a pair (T,p) where T ia a local tree and p il a multiplicity map for T. 

We will alwaya write "m-tree" lnstead of "multlplled local tree". Given a.n rn-tree (T,l'), il x 

is either the root or a principallink the Bumber ",(s) is called its multiplieit'j den ote by JI(T, 10') th. Mt 

{zeA'T(XO) Ip({z,%o})=p(Zo)}. ' 
An Ï6omorpM,m of m-trees ia an isomorphism of local trees which preserves the multiplicitiel. 

, 
1.3. DEFINITIONS (BLOWING- Up). Let (T,JI) be an m-iree, r: = (T, :r:o, R, 0). We are loina to 

define three notiol1l of blowing-up of (T, p). 

(1) .... A blowing-up 0/ the ,,,,e nAd of (T ,p) ia an m-tree (T', P.'), where T' = (T', ro, R' 10'), tot_th .. 
with a root-preserving injective Mt map p !' T - T', such that if we identify T with ita imace in T', tha 

the followinc conditi~J18 h'old:· 
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(a) T' = Tu {e}, for some /l, T, 
:e-

(b) There if a Ht A 6uch that N (T ,,,) ç; A ç; JIT (~), INT (:zo) \ AI ~ 1 and: 

(bl) R' = {{,,:r:o}} U (R \ {{:r:,%o} 1 :r: e A}) U {{2:,e} 1 :r: E A} 
(10 tha' the set A ia nothing elaé than {% E Nr(%o) 1 % tF. NT'(~)}\ 

(b2) 1"( {2:, %a}) ::/p( {%, %o}) - ,,(Ira), if % E NT (%0) \ A 

(c) p'({~, e}) !; 1'(%0) 

(d) O'(s) = {~;~), : : ; ;:r:o} U NT (%0) 

0(%) - l, if: E NT (%0)' ~ " 
A blowing-up orthe fint kind of (T,l') will he denotèd by the aymbol (T', l") ~T,p) or by 

(T,.p) ..... (T',p'). Notice that the arrow gou t'rom (T',,,') tO'(T,I') while p go\àlfrom T to 7". One 

.hould keep in mind that the, symbol (T,l') ..... (T',p') means, in pariicular, that a map p Iru been 

chosen. 

(2) A 610win,·up of the 6/lcond kind of (T,l') ia a blowing-up of the fint kind (T,l') ..... (T',l) sûch'" 

that the set A of (lb) ia N(T,I'). That situation will be'indicated either by (T', l") - (T,p).or by 

(T ,1') +- (T' ,l"). 

(8) A 610wing·up of the tMrd lcind of (T, l'), or simply a blowirag.âp of (T, l'), is a blowing-up of the 

aecond kind (T,,,,) - (T',p') suc:h that equality holds ~ (le). That situation will he indicated either by 

(T', l") * (T,,,,) or by'(T,p) <= (T',p'). 

1. 4. LEMMA. Lee T, T' be local treu and lIup{108e thae p : T - T' ÎllIIUclJ that there exist multipHcity 

map8 Po. p~ lIud that (T ;1'0) -- (T',p~) with p 811 the underlyingHt map. Tho, if l" is Any muleiplicity 

map lor T', thue is a unique l' lIueh that (T ,l') <= (T',p') with P ail the underlyin, llet map. 

PaOOF: T, T'and p determine the sef; A of (1.3, lb). We must have: ~ 
Cl 

and thia il, indeed, a mulUplicity map-f<lr T satisfling the deaired condition. . ,.-

RBMARK. The ~ of multiplicity mapa for a given local ~ is an additive (nonempty) ~emigroup. 

Th, map l" ..... '" given by (1.4) is a homomorphiam of lIemigroupBj denote it by p •. In ge~eral, p. ia 

neither injective nor surjedive. In particular, P·("'l) = p.(P2) ~ 1'1(0) = P2(CJ), for ail princl],allinks-s 

~~ ! 
f 

1.6. COROLLARY. Let T, T' be lcx;al eree. and p : T -t T! a root-praaving injective llet ~ap. Then 
r 

&AelolJowÙl6 are equivalot: ~ 

(a) 3(1',1") .ad tbat (T,l') - (T',ilfwith P u &he underlyin, map. 

(b) 3 (l', l") .ad abat (T ,l') +- (T', l") "iU. fJ utile underlyin, map. 

1 

. 

'l. 



o 

r 

1 

ct, 

T 

\ . 
(c) 3 (l', p') such ehae (T, p) .. ' (T', l") wieh p u 'he. ~1Jderlying map. 

1.6. DEFINITION. Let 1, T' he local trees. A,n ide~fiqJ~" mG, ia a root-preH1'VÙla. injective te' 
map fJ T ..... 7", auch that the equivalent conditions of (1.5) are met. The symbol T 4- T' (or T' ..... T) 

, will he an abbreviation of{he following statement: ' 

Therê exista at least one identification map T ..... T', and a choice of such a map hu bem made. ,. 
_ Moreover, T will he regarded as a sublld of TI via that identification m~p (whenever poaible). 

Thé situation • T 4- T' - will be called a blowing-up ,o/local treu. " 
", 

1.7. REMARKS. 

(a) If T 4- T' then T' llas either one or two principallink(s). 

(b) If (T,p) "- (1',ll) then, in the notation of (1.3), p(%o) ~ p'({e,:r:o}) ~ J,I'(%o). 

~ (c) Any local tjeWT can be blown up, i.e., there exists T'and an identification map IUch that 

(.) , T 4- T'. 

If ITI > l, then there are several non-isomorphic T' sat~ing (*) (the identification map'u n~t_ 

fixe4). If T, T'are fixed, there may exiat several identifiéation rnaps such that (*)i that's wby we 

insist th." there is a choice involved. 

(d) A blowmg-up orthe second (or third) kind can be.performed on an m-tree (T,l') if 

1J1T (%0) \ JI (T, p)1 ~ 1. If this is the case, then there is exactly one diagram (*) (up to iaomorphilm 

commnting with identification maps) snch that 

(U) \ (T, p' <= (1', p'), fouome p.'. 

Morèover, the restriction to R,o of the p' of (U) is unique, and the posaible values for p'(ZO) are 

1, •.• , min p' (a). 
aER'O 

1. 8.· If-1fi, ... , 1k ~~ local treea (k ~ 1), the symbol 10 4- '" .,:::: 'lA: will stand for -10 4- Tt and ... 

and 'lA:-l - Tt-. Men this is the case, /c applications of (1.4) show that each multiplici'f map PlI for 
, . 

'lA: determines (uniquel;) (JJo, ••• ,Pk-d such that (10,1'0) <= ... <= (7ic,p,,). Moreover, if (P~,,,·,P~). 

ia ~uch that-(To,J.&~) <= .• : <= (1A"P~) and for sorne q E Q we have qpAo(a) = p~(a), all CI e ~, then 

q(JJo, ••• , pk-l) = (p~, .•• , P~-l)' 

1.9. DEFINITION. Given an infinite sequence S : 

such that 

'li has at moat one principallink, .and if it has one then its multiplici'f is l';(:o)i 

Vi>', T; hu exactly one principallink, say a;, and Pifai} = }At(:r:o). 

Tbe least luch i w~-denoted ~y k = /c(S). Observe that (7illplc) <= ('lA:+1,PH1) <= .... t 
1.10. REMARICS. ~ 

, 
(a) It is eU)' &0 construct an infinite sequence 

10-11-'·' 
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l 'where, say, all tTees have two principallinb. By (r.9), such a sequence does not admit multiplicity 

maps #JO,Pl,'" snch that 

o 
(b) II an infinite sequence (*) admits multiplic,ity maps such that (**), the~ it admits multiplicity maps 

p~, p~, ... such t~a~ , 

(io,~~) <= (Tl,P~) <= ., .. 

Indeed, define p~ == /Ji f~r i ~ 'k and U8~' ~k and (1.8) to determine '~~ .•. , Pk-l)~ Notice tlilf, 

by (1.8), su ch an infinite sequence of multiplicity maps is unique, up to multiplication by a rational 

number. 

Arlthmetle of Blowlngs-Up. Before we enèl this section, we want to give some basic facts that relate 

sequences of blowings-up of m-treea with the euclidean algorithm. An mathematicians who have studied 

blowings-up of curves are aware of such relationshipsj for that reason, and a1so because these obj!ervations .. 
are easily verified, we will omit the proofs. 

-, 

REMARK. Although this is the logical place for this material to be, the reader mi~ht prefer. to skip it 

~nd come back ~mce section 2 is understood. 

1.11. D'EFINITIONS. Consider a sequence of local trees 

S : io-"'-1i: (k ~ 0). ,-
(a) Deline Mul (S) to he the set of k + 1-tuples iJ = (J.'o, ••• , l'AI) of multiplicity mapi'such that 

l 

Then Mul(S) is a (nonempty, additive) semigroup and (1.4) says that the projection map 

M~l (S) - Mul (Tic) is an isomorphism. 

(b) II k ~ 1 and 10 has one prlncipallink a, consider the following two statements ~bout an arbitrary . 
element P = (#JO,. ~. ,Pli) of Mul (S) (and notice that pep) ÎI1\plies Q(p)). 

" , 
P(iJ) Lee !'-l = #JO(a) and rI' =' P,,(Zb) (0 s JI ~ k -1) and let the eucUdeàn algqrithm of (r-l' ro) 

be wriUen AS 

r-l = QoPo +Pl 

Po = (tIPI + P2 

(whère Po = ro) .c 

Thea (ro, ••• , rAl-I) = (Po, ••• ,Po,PI,'" ,P,-lI Pu'" ,P.) where eadt Pi OCCur6 exacely Oi.&imes. 
" \ 
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Q(J.') Let r-1 = 1'0(0) and r" = J.',,(%o) (O:s:; J,I 5 k-l) and, ,iven Any Il < .\:-l8uch chaC,,, ? rll+1, 

let tbe euclidean algoritbm of (r", r,,+tl be writeen- as 

r ll = QoPo + Pl 

Po = QIP1 + P2 

( 

Then II+ao+" ·+a. 5 k-l and (r"+1"'" r.,+cxo+· +a.) = (Po, ... ,Po, Pl,·' .,P.-I, Pu .... ,,,.) 
where e~ Pi OCCUfS exac&ly ai times. 

1.12. LEMMA. Let S : 
To has on'e principallink. 

Th 4- ••• +- TA: ' be a sequence of local treeB Bu~h fJat k ~ 1 and 8uch that 

(a) The f01lowin, conditions are equi~ent: 

(al) For al1 v, T" has one pnncipallink i(f J,I E {O, k}, 
"'" ' (a2) P(J.') hoMB, for al1 JI. E Mul(S), 

(aS) P(f.') hoMB, for sorne J.' E Mul (S). 

(b) The foUowin, conditions are equivalent: 

(bl) 7A, has one principallink, 

(b2) Q(f.') hoMB, for all J.' E Mul(S), 

(bS) Q(f.') holdB, for Borne f.' E Mul(S). , ' 

REMARKS • 

• If t.he co1ldit.ions of (a) are met, JI. E Mul(S) and if t.he principa1links of To and TA: are a and a' 

respectively, t.hen f.'",(a') is the g.c.d. of f.'o(a) and f.'o(:Z:o), .. 

• If-k> 1 and the conditions of (a) are met t.hen the principal vertex of r", is a branch point «(or 1k-l 
, ,-

has two principal links, whilë TA: has only one). So ~ branch point. is created each Ume an euclidean 

algorithm tenilinat.es. 

1.13'. DEFINITIONS. 

(a) Given S: To +- ••. Tk "8uch that k ~ 1 and bothJo and Tk have one principallink, de6ne 

J(S) = {i 105 i < k, 7; has one principallink and 7;+1 has two}, 
.; 

N(S) = {i 10< i :::; k, T;-l has two principallinka and i; has one} 

and 1 = (# of branch points of Tk) - (# of branch points of To). .. . 
We see that IJ(,S)I = IN(S)I = 1. 

Write J(S) = {io, ... ,il-l}' 0 S io < ... < i,-l,' 
and N(S) = {hl, ... ,h,}, 0 < hl < .. , < h,:s kj 

t~en O:S io < hl '5 il < .. , 5 i,-l < h, 5 k. 

We denote by ell the branch point created in Th.,-l +- ;"., (1 :::; J,I 5 1). Hence e., can be regarded 

as a vertex of Th.,. Th.,+1, ... , 7A,. 
<Jo 
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(hO If l' = (1'0, ••. ,plc) e Mul(S) then the pair (S,l') detenninea the following numbera (where:l:o is the 

/ root of any 7l and 4i ÎI the principallink of ?i, whenever S Îlsuch that ?i has one prinCipallink): 

{ 

So = pio(aio) 
~" = Ph .. (ah ll ) = l'i .. (a,..,), 0 <" < l 
" = Ph, (ah,) 

{ 
m., = l'i .. (:l:O), 0 ~ " < 1 
m = rr(S,I') = riio + ... + fnI-l· 

Then so > ma ~ '1 > ml ~ ... ~ S'-l > m'-l ~ S, and (Sv-l, mll-l) = Sil' 1::5 " ::5 " by (1.12). 

REMARK. Theae notations and facts allow us to break a sequence 

into parts that we undentand. Explicitly, if l' =~'" . ,l'le) E Mul (S), if notations are as in (1.1S) and 
~ 4 

if ri = p;(:l:0), 0::5 i < k, then: 

(70,1'0) <=: .. <= rlio,pio) has (ro, ... ,rio-l) j 0, ... ,io), ' 

(Thll,Phll ) <= ... <= (7j", l';.,) has (rhll,· .. ,rill-l) = (slI, ... ,i,,), 1::5-f < l, 
(Th"I'h,) <= ... <=(T""p,,) has (rh/l ... ,rlr-l) = (i" ... ,s,); 

and if 1 ::5 " ~ l, ('lill-l' l'ill-l) <= '" <= (7h .. ,I'hll ) has (rill_lI' •. , rhll-l) given by the euclidean algoritbm 

of (ill-l' mll-l), as deacribed by the condition P(I') of (1.1l) (thÎl follows from (1.12a) and proves the 

asaertion (ill-l, mll-l) = 'II of (1.1S)). 

_~. _.Relation to Geometry. 1 , 
2.1. DEFINITIONS. We conaider a triple (P, D, S) where 

• S is a nonsingulQ,J' projective surface 
... " 

• D e Div (S) has ,.n.c:.'-and 9(S, D) (1.4.6) ÎI a (possibly empty) tree 

• P e supp (D) if D oF O. 

The local Cree of (P, D, S) ÎI T = (T, :1:0, R, 0) where: 

(a) :to = P, T = {Pl U {D., ... , Dra}, where' Dl,"" Dn are the distinct ~educible components of D 

(b) R = {{Di, Di} l ' =F j and P ~ Di n Di ;l: e} u {{ P, Di} 1 P e Di} 

b:) O(Dâ) = I1f (self-intersection number in S). 

The local tree of (P, D, S)' is denoted by T(P,D,S). 

If a je a non.ero effective diviéor of S such that 

• PEsupp(a) 

• a and D have no irreducible component in common, 

we de6ne Me m.Cree.of (P,O,D,S) to he (T,l'), where T = T(P,D,S) and p': RO U {:l:o} -+ N is as 

follows: .-(d) peso) = p(P, a) (multiplicity of P OD 0) 

(e) ,,({sa,Dï}) = (O.Di)P (local intenectiOD multiplicity at P), if {:to, Dt} E]lO, i.e., if P E Di, 
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REMARK. Ifwe fi a triple (P, D, S) satiafying the firat three conditions of (2.1), the set C = C(P, D, S) 
of divÏllol'll ° satÏllfying the two other conditions is â semi8l'oup, and the map ° 1-+ P. determined by the 

definition (2.1) ÏII a homomorphism of semigroups C -+ Mul (T). 

2.2. BLOWING-UP. Let (P,O,D,S) he 88 in (2.1) and let (T,p.)'be its m-tree, L

3
: S -+ S 

be the blowing-up of S at P, E = ",-l(P) e Div(S), let N mean -strict transform of .... d define 

DI"" • (N = D,rt E e DIV S), 

If 1" e' supp (0) is i.n.. P, then we may consider the m-tree (T', p.') of (P',·C, D', 5). We le the 

reader convince himself that 

(T,p) '- (T', p.'), 

where the identificatlô'n map is the obvious one, and th~t the following daims are true. 

(a) We ha~e (T,~) .- (T~,p') i~every irreducibleco~nent r of D satis6es 

supp (f) nsupp (E) n 8Upp (0) ç {Pl. Al 
1 

(b) We have (T; p) <= (T', 1-") ift' supp (E) n supp (0) d!f'}. 

2.3. DEFINITION. Let S,D and 0 be as in (2.1), If P is a place of 0, i.e., a c10sed point "of the' 

nonsingular model of sorne irreducible compone nt of 0, ihen the triple (1',0, S) de termines an infinite 

sequence of monoidal transformations 

11'1 ,11'2 

80 -- SI' _+-- S~ -- . ',' , where So = S, Pa =inïage of l' in S;-l and 11', is the blowing-up of 8'-1 at. Pi' 

Let us assume tbat Pl E Sllpp(D) or D = O. . , 
LeL O(i) be the strict tranaform of 0(0) = 0 in S, and let E, = 1f;-l(~)i givtn F",e Diy(Si-l}r1et, 

Frrj = E,+ strict transform of F in,S" and de6ne DO = D, D' = (D'-l )rr j (i ~ 1). 

Then, for i ~ 0, (AH, 0('), va, S,) satis6es the conditions,listed in (2.1) and we can consider itl 

m-tree (1',jl,). By (2.2), we have 

• N 

which will be called the mfinite ,equence of m-treu of (P,O, D, S). The number k de6ned in (1.9) will 

be denoted by k '= k(p,O, D,S). Observe that (1'k,J.'k) <= (1'k+ltJ.'ki;1) <= ... and that, as far u the 

. place Pis concerned, the desin~ularisation process end. with Sk-1 +- Sk' What we mean, here, it that' 

'Je is the least integer i ~ 0' which satisfies: . ~ . 
(a) P,+! belongs to exactly one irreducible component of OX') , 

(b) 3 B e Div (Si) with '.n..c. in a neighbourhood of ~+1' such that supp (B) = supp (CU) + D'). 

For theae reasonB, the finite sequence . -

will he given special considerationj we will cali it tI&t 'efunce of m-treu of (PlO, DI S), and denok ft 

by p.(P,O, D, S). . 

• s.( 

lAt, 
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p(P, C, D, S) : (To, Po) 4.... ......... (Tr., l'AI). 
Jo. 

Aaume le > O • 

.fa) IlIJuPP(C(") +U) =IJupp(B) forlomeBEDiv(Str) wi&b •• n.c., then . 
(To,Po) +- .•• +- (7k,J.'tr). 

(b) Il 0 i6 the di6joint' union of the nonsingular modem of the irredueible edmponenu of C, and if 

1': C.-. tlUpp(O) i6 the eanonieal surjective set map, then the foHowÏDg are equivalent: 

• (To,Po) <= .. , <= (1k,J.'AI) 
• t'-l(po) = {Pl. 

(e) Il ,upp.(C) ÎtI irreducible and S \ supp (C + 1)) is a uee at inlinity (1.5.1), then 

, 

PROOF: Immediat/trom (2.2) . 

. a. Contraction of Local Treell. 
1 
: 

3.1. INTRODUCTION. 'GivlIn lA) E Z, the symb,Pl (w) will denote any local tree whieh hu two vertices 

&nd auch that-the principaÎ vertex has weight w. In tkia section, we willlltudy sequences 
, , 

" . (w) = To +- ... +- TAI 
.. 

. 
of local treea such that rI; contracta to sorne s~ple local tree, such as (w) or a linear local tree. First, 

we define the neèeasary notions. 

S.2. DEFINITION.' Let T = (T, :z:o, R, 0) be a local treè .. We say that Tisa linear l,ocal tree if it hu 

exactly'one principallink and if tht! tree (T, R) is linear. 

3.S: DEFINITIONS. Lêt T = (T,:Z:o,R,O) he a local tree. 

(a) A' •• "r/lvo", verte:z: of.T is a vertex cET \ ({:to} U NT (:z:o)) which is linear and which has weight 

-1. 

(b) If e ia. a superBuoUJ vertex of T then an clementarJ contmction of T ae e is a local tree T' = 

'(T' t s:" If, 0') tog,ther ,vith a,root-preaerving injective set map fJ : T' - T such that, if we identify 

'J'f with ita wage in T, the foUowing conditions hold: 

T' =cT\ {cl 

g ~ {(R\ {{c,:z:} I:Z:E A'T(C)}) Ur{NT(C)}, 
R\ {{c,:z:} 1 ~E NT(C)}, 

O'(:z:) = {O(~) + l, if:z: E NT(e) 
• O(~), if~ET\({soJ,}uNT(')). 
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In other words, an elementary contraction of T at Il can he obtained u foUows: fint, forget that Zo 

is the l'OOt and usigD an arbitrary weight to that vertex; then T heeomea .. weighted tree and • ia .. 

superfluous vertex of that treej blow-down T at ej forget the weight of :Co and remember that :Co ÙI 

the root. The local tree so obtained (togetber with the set map whic:h came witb the blcnving-dcnvn) 

is an elementary contraction of T at e. Notice that the elementary contraction of T at Il is unique, 

up to isomorphism commuting with the ·underlying set maps· . 

(c) A contraction of Tisa local tree T' = (T', %~,.R', 0') together with a set map P : T' ..... T, such 

that either pisan isomofphism or the following condition holds: 

There exist local trees To,: .. , 1k and maps Pl""'P" (A: ~ 1) such that To = T, Tic =, T', 
(T;,P;) is an elementary contraction df 1i-l at some super8uous vertex (1 =:; i S k), and 

P = PlO'" op". 
In particular, we see that P is a root-preserving injective map and that P restricts to a bijection of the 

sets of principal vertÏces (we say that the two treea have the aame principal vertices and principal 

links). A contraction as above will be denoted by T' =:; T or T ~ T', and we will say that T 
contracta to T'. 

Observe that the set map T' :-+ T determined by a contraction T' =:; T allows us to identüy {:c~} uR'o 

with {:co} U RO. Thus we can comparl multiplicity maps for the two trees: \ 

(d) Form-trees(T,p)and(T',p'),wedefi~e'(T,p)~(r',p') ~ T~T'andJJ=p'. 

3.3.1. REMARK: We deliberately avoided the term Cblowing-down· for local trees, to emphaaise 

that the contraction is not the inverse operation of blowing-up (for blowings-up happen at the foot, while 

contractions occur away from the root). Contractions should .be thought as phenomenons that do not 
"-

affect things which are local to the root, such as multiplicity maps. Indeed, ü we let the notation he as in , ( 

/2.1) and if E is an iITeducible comP.!lnent of D which is a rational curve an? a superfluous vertex of T, 
then (by Caatelnu~o's c:riterion for contracting a curve) the element.ary contraction of T at E corresponds 

to the contraction of the curve E. M?re precÎsely, there ia a monoidal transformation p : S ..... S', where 

S' is a nonsingular projective aurface and p(E) is a ~int P' of S'. Now let p. : Div (S) -+ Div (S') he the 

homomorphism defined by p.(E) = 0 and p.(r} = p{r) (any curve r other th an E). Let C' = P.(C) and 

D' = p.(D), then (P', 0 ' , D', S:> satisfies th_e conditions of (2.1) and determines an m-tree (T', 1-") such 

that (T,p) ~ (T',p'). Indeed, bY,définition ofsuperftuous vertex, pisan isomorphism in a neighbourhood 

of P and the multiplicities are not affeded by the contraction of E. 

The next fact je an easy consequence of the definitionsj we omit its proof. 
''-''~ , 1 

3.4. LEMMA:'.t;, T = (T,zo,R,'O), T' =.(T',z~J.R',O') and T" = (T",z'~,R",O") he local Cree. 

6UclJ eha' T' =:; T and T" $ T. tThen ehe foHowing are equivaJent: 
,/ r· 

(a) The maps T' ..... T and 7'" - T bave Che 6ame image. 

(b) Tbere exi6&IJ an iaomorpbism T' e! 't" thaC commutes with T' ..... T and T" - T, i .•. , cb. CM) 

contracCion6 are eMenCially che ,ame. 
-., 

REMARK. By (3.4), we Bee that it is legitimate to refer to 'a contraction proee .. by specifyÎDg which 

verticea disappear and which survive. In view of that, let us adopt the followÎDg language: 
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Le, T he a local, tree, v a vertex of T other than the roo,t and B a branch of T. at v, not containing 

, the root. Suppose that T ~ T' = (T',~,,RI, 0'), where T' = T \ B (after identification of T' -'ith ita 

image in T). We refer to that situation by saying that B ù ab,orbed 6, v (br that v' Gb,orbl B. 

~ lemma anaiogoull to (3.4) can be proved for weighted graphe. 50 we, can use that language for 

weighted graphs &8 well. 

3.5. DEFINITION. Let w,i,i' he positive integera. A 'equenc:e of t,pe (w,i,i') ia a finite sequence of 

positive integers, of the form 

where 1 ~ 1, 

fnv-l occon w times (1 ~ v ~ 1), ,~ 

i" OCCUJ'8 2n" timu: ~or some n" eN (1 ~ v ~ 1- 1), 

i, occun n, timell, for some "' e N, 

and such that the foUOwing èonditions hold (where we define io = il: 

(a) i, = i' 

~ (b) tTly-1 = n"i", 1 ~ v ~ 1 

(c) i"-1 = wm,,-l + i", 1 ~ !' ~ 1. 

REMARKS. ., 

1. Consider a aequènce of tyPe (w, i, i'), with notation &8 above. Then: 

(a) io > ma ~ i,1 > ml ~ '" ~ i'-1 > ,",-1 ~ i, 
(b) i,,-l = (won" -+ l)i", 1 ~ v ~ 1 

(c), (i"-I,mv-l) = i" (g.c.d.), 1 ~ v ~ 1. 

, 

2. Given a positive integer "', let wN + 1 he the set {w:J: + 11: EN}. Given any number : let 

Sw(:) he the seL of nonempty finite sequences. (:1, Z2," .) in wN + ll1uch that ni~l:i = z. Then 

Sw(:) :F e <=> z E wN + 1. Moreover, if we fix a triple (w,i,i') of positive, integen then: 

To give a sequence of type (w, i, i') is equiva1en' to giving an elemen' 01 Sw (i/i'). 

in fact, if, ÎII a sequence of type (w,i,i'), with Dotation as in the definitioR, then B determinea the 

foUowing element of Sw(i/i'): 

(wnl of: l,WR2 + l, ... ,wn, + Il.. 

and this ÎII a bijection. 

8.6. LSMMA. Let w he a pœi&iw in&epr ud let 

S:' 10 .- ... - ,. ,(A: ~ 0) 

be a teqUeJlce of local Uees, suell d.' 10 lau one principallink B. Tlaeo dIe lonowing are equivalen&: 

la), 3 l' = (#ÀO,' •• , l'JI) E Mul ($) (Ne (1.11)) lUch &laa&, if we ",rite i = po(B) and r" =" p,,(:o) (0 S v ~ 

~ -1), den (~o, ..• , ""-1) is & seqUeJlce of type (w,i,i'), lor tome i'. 
, " 
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(b) V Il - (po, ••. t~) E Mal ($), Il,,. wite i - Po(.) .. d r .. - ,..,(so) (0 :s If S • - 1), &A .. 
(ro, ••• ,r.-l) • a l8qaeac. 01 tn» (w, i, i'), for .... ,'. . ) 

MQl'8OWI', JI U., eqaivalUlt COJJdî&iou are meC &Au • ~ w + 1, Ta. Au 011. prbacipal .uu 0', 
Il.(0') 1: " (iD Ue aoCatioa of (a) OJ' (b)) ud ~. priacipal. Y8Iiex 01,. Il • IarucA poJa&. 

PllOOP: SÏJlC:e Mol (S) i:', (b)~(a) ia trivial. If (a) holcla, tho • ~ w + 1 b~J3.5)t ud the l .. t three 

auertioDl roll"" from (3.6) and (1.12). ThUi (b) holcù, by (1.8). ' 

3. '1. DBPINITION. lAt w be à poIitive inteter ud l.t $: 10 - ... - T. he. HqUeJlce of local 

tne •• We-IaY that S .. of 'r", w if 10 hu ODe principalliDk ud if the equiftleut coaditioD' of (s.e) are 

met. WheD that ia the eue, we'have iD particular le ~ w + 1, ,. hu ODe principal vertex ABd that vertex 

ia a brauch point of 7i.. 

REMAUS. 

(a) If S_ : , 10 _. . -, T. ia of type w, p e Mut ($) ad, if the notatioD of (l.ta) 11 uMd for the 

Dumben io, .. ,i" mo, ... , ""-1, then the MqU~Dc:e (P.(so» •• o •...•• -l loob exadly u iD (S.5). 

(b) If S • iD (a), then the numben nI, ... t RI of (3.5) are completely detenniDed by S. Indead, 

if p, l" e Mu! (S) then by (1.8) there ia al Îlonaero rational number fi aueh that 9(1'0, ... ,1'/1-1) -= 

We are DOW ready to IItate the fint .ipi6caut result, iD the theory of local treea. It cives the .olutiOn . \ 

~ the problem mentioned iD (S.l). ) 

3.8." TBEOREM. Let w and k he poIitive meegent Md le' ,$ 10 - ... - ,. be a ~nce of 

local trees sud cllat 10 ~. (w), r. lau one principal vertex ud &Aat venex ü a bruc:.h poÎD& 01 T •• Then 

ehe lollowÎllg are equivaJent: 
. 
" 

ta) T. contJ;acu &0 a l.inear local tree, 

-lb) S i.s of fype w. 

.... 

"Aere" ;. th poaeive iDupr n~ of delinieioD (S.6), tI;' C.he priIlcipal veJiex ofT. u~ B ila brucm tb., 
Il c:aa abJorb. MQl'8OWI', ... pu treigAe 0 aher ab.orp&ioD 01 B. ha co,.queace, U 

il &Ae (unique) Nquence.adJ Uae 1'it+i b., oae principal JiDi (0 S i :5 n), &110 r,+_ ~ (w). 

-RBMAlUC8. 
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• Belon going through the proof, it might be a gOod idea to read (m.l.11), which ia an application 

of (8.8) to Geometry . 

• Binee contractions do not change th~ number of priiic1pallinka of a local tree, it ceriainly makes sense 

to aaume, in (8.8), that j., hu one principal vertex. However, the aâaumption ~ha~ tha~ vertex is a 

branch point ia there only to make the conclusion simplerj when Wè do have}o cope with a sequence , 
S such that the principal ven~ of .,. ia not a branch point, (8.8) gives a descrip~ion of the nontrivial 

part .ol S, aay 10 - ... - 1k1: and Trr1 -"', - Trr ia trivial (i.e., every tree in' it has one principal 

link). '. 
- ( !#' i2 

Belore we can prove the theorem, we need to introduce some notions and -prove sonje facts. 

3.9. DEFINITION. If a e Z and j ia a local tree, let jlal he the weighted tree obtainti from j by 

aaïgning the weight ex to the root. We have the foUowing properties: 

(a) If j ~ j' then ilal contracta to j'lai, for alJ a e Z. 

(b) If j - jl and INT (%0)1 ~ IJlT,(xo)1 == 1 then Tlal"" j'la - 11, for alJ a e Z. 

3.10. DEFINITION. A local tree j ia minimal if it has no superfluoua vertex. 

3.11. LEMMA. Let T he a local 'ree that conuacu to a linear local tree. U.M i3 a minimal local uee 

IUch tbat .M ~ j, &ben .M Î6 linear. 
-, 

PROOF: Let e be a linearlocal tree luch that e ~ T; We regard e,'.M and j as having the'aame roOt 

%0 and the aame principal vertex v. 

Given i E Z, let Ta (resp. ei , .M,) be the local tree obtained from j (~p. e, M) by increasing by 

i tlïé weight of Il. Then clearly 7i ~ l" where ei ~ linear, and Ta ~ .Mi, where Mi is minimal; also, M 
ia linear iff M, ia linear, i.e., i\ is enough to prove that Mi ia linear. Whenc:e we may assume that, in T, 

the weight of Il is nonnegative .. That &8sumption being in force, conaider the weighted trees jlOI, elol 
and .Mloi. Then .MIOI ,..., llol by (3.9a), and llol ia a linear weighted tree. Hence MIOI contracts to a 

lin~ar weighted tree by (1.4.13): If the weighted treJ .MIOI has a superfluoUB vertex, th en it is ileither Zo 

(which has weight 0) nor Il (which must have nonne'ative weight, by our asaumption on nT (v»; thus it 

ia a auperfluous ve*x of the local tree .Mt which is impossible. Therefore .M[OI is a minimal weighted 
(J 

tree, so i~ is a linear weighted tree. We conclude that M ia a linear local tree. 

3/.12 . DEFINITION. A local tree T is unit/crlall, minimal (we will write aj is UM-) 'if for every 

sequence 

j = jo - .;>, - Trr (k ~ 0), 
, , 

r. la minimal. Observe that if T is univenally minimal then it ia minimal, and j' is ':lM whenever 

j - j', 

3.13. LEMMA. Lee T he a local tree. Then ehe tonawÎJJg are equivalent: 1 0 

(a) j Î6 UM 
'1 

(b) j i3 minimal and every linev principal ver&ex 01 T hu JJegaCive weigld. 

PROOF: Clearly, if j aatiafies (b) and j - jl then jl satisfies (b); ao (b)::>(a) is trivial. For the 

converse, We prove that -not (h)· implies aDot (a)!. So assume (b) does not hold7 If j is Dot minimal' 
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'hen we are done; so let's assume that T ia minimal. Then T hu a Uneu -principal vertex v with weiaht 

n ~ 0; let a he the corresponding principallink and deine a mul'iplicity map l' for T by 

{ 
,,(So) = 1 = p(G'-) (G' E ao \ {G}) 

,,(a) = n+ 1. ' 

Then we have (T,,,) $ (T',p') for sorne (uniquely determined) m-tree (T', l"); if n = 0 'hen v ia a 

super8uous vertex in T', 80 we are done. Suppose n ~ If T' ia not minbnal,-1re.-u'e done; if T' ia 

minimal then t1 is a linear principal vertex of T', with weight n - 1. So we are done by induction on n. 

3.'14. LEMMA., Suppoie tbat To +- .. :- TI; 

diagram . 
(k ~ 1) and clIa' To ~ TC:. Then 'here ia A unique , , 

To +- Ti +- +- r" 
VI VI VI 

TC: +- Tl' +- '4- T~ 1 • 

8ucb &ha& the underlying ~iagram 01 set maps ia com~uta&ive. (By ·u~jqJe·, -we Mean unique up to 

iaomorphiams commuting with all maplJ.) 

PROOF: Since aU maps are injective, we may assume k = 1. Let li (resp. Tt) he the set of vertices of 

Ti (resp. 7;') for i = 0, 1. ':. -Unlqueness. SUppos&;we have a diagram as in the statement (with k = 1). Conaider the underlying. 

diagram of se~ maps 
fJ 

To --+ Tl 
fJo t Pl t 

76 --+ 7': .,. 

fJ' 
and write Tl = fJ(To) U {e},Tf = P'(T~) U te'}. Since e ia a prmcipal vertex of Ti" e E P.l(Tl). On 

the other hand, {J'-l(pïl(e)) = Po1(fJ-l(e)) = Pol (') = e, so • '" Pil(e) ç 7i \ ,8'(T~) = {e'} and 

p1(e') = 'e. Hence fJl(Tf) = fJI(P'(To) u te'}) = fJ(fJo(To)) U {el, i.e., the image oC ,81 ia completely 

detennined by TC: ~ 10 - Ti. So uniquenesa foUows from (3.4). ' ,. 

Exiatenc:e. We may ~ume that TC: is the, element.ary cont.raction of To at some super8uous ver'ex v. 

Then, if P : To -+ Tl is the id~nt.ificat.ion map, ,8(v) is a lu~r8uous vertex of Tl; let Tt' he the elementary 

cQntraction of Tl at v. Regarding Tt as a lubset of Tt, let fJ' : ro - T; he defined 'by ,8'(:&) = P(~). One 

sees that .0' ia an identification map . 
... 

REMARK. Whenever we have a commutative diagram u in (3.14), where the fint row is de~oted by 

S and the second by S', we have Mul(S) = Mul(S') (see (1.11»). 

3.15. LEMMA. Let To +- .•. '- ~ (k ~ 1) be suda dl~ ~-l bu more ehan one principallink and T,. 

cdnkads to a llnear local tree. Hi < k t.ben 1j cu;, cODkace &0 a UM ttee (Bee (8.12)). 

PROOF: Let i < k he such that 7i ~ U, where U ia UM. Construd a commutative diagram as in (3.14): 

1j+- ... _r" 
VI Il 

U = UI +- +- U. 

8inc:e U. ia minimal, U1c ~ T. and ~ contracta ta a line8l' local t.ree, (3.11) implies t.hat U. wline8l'. Tben 

de8l'Iy U"-l ia linear, which ia abeuid .in~ T,.-l hu more 'hUI ODe priDcipallink and T"-l 2: U.- l . 
l 
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S.le. DIPDOTIOlf.. ""-, 
(a) A Jocü ..... T Il a comI fi u .,., wnu ., ........... moR two Jnach. &hu don'& contam the 

~, and u mOlt ODe œ &laem il ao& • Baur branch. (A liDear bnaeh ta..a h!anc:h which conhina 

lU) bnac.Ja poin& of Ti &IaIa m~ lIlon,"an ., liDlII' Il a ll'aph.) In partieular, the root ÎI a 

u. ... finex. 

(b) UT la a comb, & loofA of T ie a liDear'branch A,of T, U èither a bruch point or the root, lueh 

tW A do.n', coutaia th.lOO&. 80..,., bnach point hu at leut oue tooth (one brueh point hu 

&wo teeth~ and, if th .. 11"1 two principallinb, th~ IOOt hu At leut one tooth . 

(e) T il a co"'. ""Ua ""tlh" tu" if it ia a comb IUch thu 

(i) at..,.., branch point tla .. ÏI u!eut one tooth A IUch thu A < -1 (U.14)j 
(H) if T hu 'wo principal vertic:ea, then one of them, Dy tI, hu negative weight and belonga to a 

tooth A lOch that A \ {fi} < -1. 

RIYA.1lX. Every linear 10eal me. a comb with nega&ive teeth. 

S.11. LEMMA.. SUPJ'OA eba' .'ber T - T' or T 2: T'. Ù T, ÏIJ a comb (zwp ... c:omb with ne,ative 

",eb) da 10. T'. 

Proof omiUecl (.uy). 

S .18. DUlNmOH. We 11"1 now ,oin, ta eletine a no&ation that we will ue to ,avoid drawin, pidUl'el 

of lc.!cal &reëI'. W. do thÏI for pracûeal l'UIODI only, anel we IUgeat &laat the reader reconatruc:ta a1l 

pidanl whenever he Geaunten thue notationa. To give an example, 'he local tree 

Il 

T: 

" will be denotecl u T = (~, -1, -2, -2, (3,4, (5), (6,7», (8, 9, (IP, 11), (12»). To formalise the notation, 

le, The IÎther aJloc:al Uee or & weiahted &ne with a root (i.e., a diatinguished vertex), let p he the weignt 

~ the l'OOt (with p = • if T ÎI a local tree) and IUppoae thu, for each vertex u, the Nt of branches (of 

T u fi) that don't contam the root hu been totally ordered. In particular, let 81 , ... ,88 (n ~ 0) be· 

... bran~. of T at tlae root. Then the treé 'T will be denoted by the l)'JDbola (lT!), where [TJ is the 

lIqu.nce of 8JDlbola defined b)' 

{' -(TIs: ,lit) 
1((1t», ... , ((8.)) 

ifn=O 

ifn=1 

ifn> 1. 

, 
, . 

TJda maa. ..... , IÙlce each A ÏI itMlf a weiahted lree' with a IOOt (the root heing the neichboUf of 

lia. roœ œ T), wilb an orderin, for each appro~ aet of branch_, etc. Clearly, the Dotation (lT)) 

c1..tmn.iD. lb. iIomorphilm d .. of T, iDdepenele)ltly of the choicea of orderinp for the Nb of branches. 
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Now ~u .1 ha"" a weU-clebed aotaUon, w. win .b ... ~lwa a local Vte 

.A B 
1 

1: .hen A, S are branch. a& u, 

we will write 1 "'" (-,-l, (-2), (-2, -2, (lA)), (lS)) m.tead of -1 11 denohel by (-, -l, (-2), (-2, -2, 

(lA]), (lS))))-. Thie amounta te identify i and (Ii)); doiD, the .ame thin, with A and B, i .•. , .n'iD. , 
A = (lA)) and B = (lS]), we get \ 

1 = (.,-1,(-2), (-2, -2, A, 8». 

PROOF OF (3.8): 

B.eductiOD to the eue 10 = (w). Let Tf1 = (1.\1) and form the commutative diagram detènnined by the 

sequence S and T~ S To, u in (S.U): 

To +-.7i 
VI VI 

(w) = Tf1 +- Tl 
l , 

+- ,'" - 7i. 
VI 

+- ..• +- T': 
\ ' , 

---

Let u be the printipal vertex of 'T.; then v ia the principal vertex of T': u .. n. Sinee it il a bruch point 

of lie, 7i.-l (which exiats .inté le> 0) mut have U leut two princiPa!}inbj now 10 hu onl principal 

link'}=> O:F le - 1 ~ 'lk-2 exiata ~ 7i.-l hu exactly two principallinb, by (1.7a). Bence T':~l hu 

exactly two principal linka and (.ince T': hu,one) v mut be a bran ch point of T':i more preeiaely, T':~" 
, three 'branches at v (and the .ame it true for T,,). Moreover, u hu wei,ht -1 in T. (",po iD T':) .inee it 

wu created in T.-1 +- 1i. (reap. i':_l - T':). 
Let S' he the lIquenee T~ - ... +- T': ud conaider the foUowing conditioDl o~ S': 

(a') i,: contracta te a line&!' local mej 

(b') S' ia of type w. \ 

Then (a')~(~) ÎI trivial and (a)=:>(a') ÎI an immediate couequenCl of (3.11), .0 (a) .... (a'). By the 

remark which follow. (3.14), (b)~(b') it trivial and the NquenCl' $ and $' determine the lame inte,er 

RI. Next, ... ume that T': bu the form pretcribed by the theorem, i.e., Tt '"" (-,-l,A',S'), wher, 

A' = (-n - 1, -2, ... , -2) contam. w vertices (and ft = RI) and S' ÎI a brancb that v ean abtorb, the 

weight of v heing increued by OUe by that contraction. By the remua that w. ntade immediUely ifter 
JI the commutative diagram, r. = (.,-1,A,B), where A contam. 1.' and B cont.m. B' (u ..ta). Bence, 

( in T. J u ~an aœorb B and that proceu inc:re .... by 1 the weight of" (tm il beeaUN S mut contract te 

B~ when r. contracta to T~). On the other hand, the fad lhat 10 hu one prineiJ»a1liDk imp1iet that ODe 

of lhe two bruches of 7i.-t al ~ conaÎlta of vertiCII thu Wlfe created in 10 -: .. - T~-l. Whence, 

for IOme r E {A, B}, r < -1. _ Sinet! 8 can he abtorbed by v, l :F S. Thu l = A, 10 A < -1 and DO 

Tenu of A can dilappear in the coDtraction 7i. ~ T,:, which mQu. that A ÎI jut A' (even the w"lde 

are &.ft -e), i.e., r. hu the d~'form. Thit completea the proof of the redllction. ( 
~ l ' 

, / 
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So we aNUDl8 that-To = (w). W. will prove that Ca) implies both (b) and the other assertion (i.;., 
the dacription of T.). W. believ. t~at, aCter that proof, Cb)::>(a) will be obvioua. The aueriion ~bout 

,lie Hqlleac. or. - ... - T.+ .. , i .•. , that 1ir+n ~ (w), ie .uUy verified. 

SUPPOH thu Ca) holds, i .•. , T. contr~C8 to som. linear local tree. Uaing th. notation of (1.13), we 

write 
... 
_' J = J(S) = bo, ... "i-l} 

N = N(S) = {hlo ••• , h,} 

\ 

'\ 
'1 "where, cle.ly, 1 ~ lt(for 1 ie th. number of branch pointa of rit). We proceed by induction on l. 

Cue 1 == 1. Thea v ia the only branch point of r.. Let L denot. the principal vertex of 10. Since Lia a . , 

Cree vertex of 10 it ia a free vertex of T". Thua Til = (., -.1, A, B) wh~ A and B are linear branch~ at fi 

and L ia in B (.ay). Sinee r. contracta to a linear tree and aince, in t, every vertex other than %0, v, L 

hu weight 1 .. than -1 we muat have B = (-2, ... , -2, "':1); let n> 0 be the number of vertices of B. 
Then on. euily figures out that S begina as 

10 = (.,w) - (., (-l), (w - 1)) +- ••. - (., (-1, -2, .. _, -2), (0» = r.." 

and continues 
,,~ , 

, 

1';,+1 = (., (-2, ... , -2), (-1, -1)) _ ... - (., (-n, -2, ... , -2), (-1, -2,. __ , -2, -1» 
, , 

- (*,,-l,(-n-l,-2, ... ,-2),(-2, ... ,-2,-1)) = i w+n = 7i:. 

W. lea", it ta th. rer.der to check that S ia of type w and that Til hu the deaked form (with, in particular, 
" 

, 

IDductlve .tep. Aaaum. 1> 1. ~ in (1.13), let t" he the .branch POt'nt created in 1h .. -l - Th ... In-

panicular, "-1 ia the principal vertex of Th,_l = (., -1, A', B') where ' and B' are branches at e'-le 

We have Il, = k, 10 " ia the principal vertex of r. = (., -.-1, A, B), wh e~, B are branches at tl and 

8 = (61, ••• ,6., E, A', B') eontam. e'-1 (more precUely, , ~ 0, E ia the ~ight of 1:1-1 in 1i.. and the branches 

A', B' U '1-1 are identical ta what they were in TilH)' 
Obee"e thu, by (3.17) and the remark immediately before it, 'li ia a ,comb with negative tee th 

(0 ~ i S k). Sinee 8'i1not alin.ar branch of 1j., itfollowa that A ia alinear branch and j < -1. Moreover, 

IÙlce every vertex in the .imple ehain (e, .... , t'-I)' except e'-l, was created in Th,_l +- ... - TAI, the..... 

";eichU 61, ... ,6. are 1 .. 'han -1. 

Couider a Nquence of elementary contradioDl that realisèa the contraction of rA: to a linear local 

,",. BiDee A < -l, thu~ODtraction ia no~hing elae than the !beorption of 8 by t,_ Sinee 611 ••• , 6. are 

te. Ulan -1, one .... that e'-l muat diaap~U' Wore &DY other vertex of t.he simple chain (t" •.• , tf-~)' 
Btf'orrt'_l CU diaappeU', il h .. ta become a auper8uoua vertex, and iD pariicular a linear vertex. hua 

"-1 Dl_ abeorb either A' or B' before anything else happent. C1ear1y, t'-l can abaorb a branch in "1-1 

' .. ...n, .. cl 

" 
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Applying the inductive hypotheais to $'-1: 10"" ....... T"I_ll we conclude tha' it w a.equeuce of 

type w and that 'lia'_ l contracta to T,:,_ = (.,0, -m -~2,., .. '-2)' where --2" occural. - l 'ùnu . ~ -~ .. """ J ,; 
and m = n'-l' Construd the commutati~agram (aee (3. 4)), " 

. 7). _ ... -
. ""-1~ \ 

VI VI 

T.' _....... T..! 
"1-1 .. 

Let ct = 3;-1 - h'-l ~ O. H ct = 0 then T':'_I+1 ia UM by (3.13); aince h'-1 + 1 = ,i-1 + 1 < k (for 

7;i-l+1 hû two principal verticea by definition of ,i-l)' this contradicta (3.15). 

Bence ct > O. Notice that T,Ll+1 = (.,(-1),(-2, ... ,-2,-l,-m - 1,-2, ... ,-2)), where the 

firat"aequence of "-2" containa ct terms and the second has w - 1 tenna. That contracta to TJ.~,+l = 
(-,(-1), (-l,a - m-1,-2, ... ,-2» which can't he UM by (3.15). By (S.13), that tree ia not minimal, 

and we have a = m .. We condude that TLI ;:: (., -l, -~, ... ,-2, -1, -m -1,-2, ... ; -2), where thue 

are a-1 = m-l terma in the first sequence of "-2" , and w -1 in the second. Hence that tree contracta to , 
(w), and 80 does T,i-l' Applying the inductive hypothesis (or the case 1 = 1) to S,: '7i'-I ........... T", 
we see ttat it is of type w and that T" has the desired form. Since Cl = m = n'-l and S'-l ia of type w, -
one aees that S is of type w. This completes the proof of {3.S}. 

• 3.19. DEFINITION. Let T he a local tree, tJ a ver,tex of r. (other than the root) and ct E Z. Then 

Tu,a denotes the local ïree obtained Crom T by adding a Cree vertex of weight ?, linked to li (and to 

no other vertex). That extra vertex will sometimes be called "the ~tra vertex·. Clearly, we have the .., 
Collowing Cacts: • 

(a) H T 4- T' th~n Tu,a +- T'u,o 

(b) If T ~ T'and tJ is in T' then T"'o ~ T,o,a . 

( If cth'" ,ctp E Z (p ~ 0) we can define TU,OI""'O, = ( .. ·(TU,OI) ... )U,o" Then auertions (a) and (b), 

above, are true if we replace every -a" by -al,.'" ct/. 
o::f 

3.20. DEFINITION. Given local treea T, T', the aymbol T .:t. T' indicates ,that we have choaen a. 

map {J', from the set oC vertices of T to that of T', satiafying the following condition: 

There exi!t a local tree Tl and a blowing-up T ... :.'T1 8ueh that, if e ia the vertex created in that 

blowing-ul!. then T' = Tlc,ol'''''o, for sorne Cll, ... ,ctp E Z (p' ~ 1) and iJ'ia 'he composHion of th'e 

identilica'ion map of T - Tl wit]l the inclusion of Tl in T'. 

3.21. REMARK. The Collowing commenta explain how the res t of this aec tion ia relsted ta Geometry. 
",." t •• 

Suppôse (P, 0, D, 5) ÎII as in (2.3), with the foUowing additional assumptions: 

(i) 5 \ aùpp (0 + D) is lineU' at infinity (1.5.1) 

(ü) O(k) + Dk E Div (S,,) has '.".c ... 
(By (ÏU.l.4), if S\supp (0+ D) e! A2 and 0 wreduced then we can chooae P such tha~ these coaditiou 

hold.) Then by (2.4) every blowing-up in. the sequence ",(P,O,D,S): (To,I'o) - .. : - (T.,,,.) 

ia (at leaa) of the second kindj by, aay, (~) and (2.4), a11 blowinge-up are of the third Jcind if 0 ia 

irreducible. If 0 ia 110t irreducibl., write 0 = 0 1 + '" + On where th, labelliDg of th. imdacible 

components 0 1"", ~;iof 0 is IUch thu Pis a place of 0,.. To mab thing •• impler, we will ÙO lII1IJDe . . , 
that 

\ 
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Cill) AU componenta of 0 et, at~. 

'.rhit Ulumj)&ion ia really un ecess&ry, but it d()e4 simplify ~hia exposition. 

eventuaDy ·goes awaY' from , i.e., 3, S le such ila& 

~ e O!i-l) 

~+1 f. cti ) 
in S'-1 

in Si' 

,!,hen each 0", with v < n 

Then O!i) + Di E Div (Si) has •• n. (because of (ü)) and C~i) meets Ei and no other component of [j. 

Hence, ifwe don't want to loose C"" should consider 48
/,a instead of "li, where Q = (C~i!)2 ht Si' In 

other words T(pi+l, O!') + Di, Si) = r-
H " ,.,. JJ fro p"'" s. S. th . h~ t t 'd' '7"'8i,al .... ,o' '-''''1''''' VII, go away m m .-1 4- i, e ng .. ree 0 COnsl er 18 li • ;= 

T(~+1,CW + . .. q~:) + D', St), where ai = (C~!»2 in Si. 1'he passage from 1i-l to r-Ei,ol""'o, 

ia not a blowing.UPi it ia preciaely what we denote by • .±.- in (3.20). 

So we are led to consider a sequence 

$+ To +- Tt +- ... 

where, at appropriate places, we have·· . 4- 4-1 +!:. r.Bi.al ..... a, 4- 7i!ta1 , .... 0, +-. (i.e. there can he 

several • +!:." in that sequenc~ee the notion of weak .equence (3.26)). Notice that tWast tenn of that 

sequence, say T, is of the fortn 

- Bi a'I'" 0 1 B ,,-1 ,,-1 
T ( (T. , ••. ") ) 1" l,a, , ... ,a, , = ... " "', - ,,-

and satiafies TIPI E 9(S\supp (O+D)I (see (1.1.8», where {J = (01"»2 in S".,Notice that T is equivalent· • to a linear weighted tree, by (i). 

If'1 ia the leut integer such that some compo;;nts 0"", ... ,0"" of ego away from P in Sil-l +- S" 

then, for each 0", that goes away at that stage, C~il) n Ei! is some point of C~i;) and a place l'II of 

0", ia determined (for O!il) ia nonsingular by (ü): no further bl~ing.upo has cénter '.n. cti.). Then 

",(P", 0"" D, S) ia contai)Jed in 

for some multiplkity mapa 14, ... , "';,-1'''''' where T = T(P"', [jl, Si,). Notice that Ie(p"', 0", D, S) S 

'1' 
Generally speakin" the sequencé ",(P", 0"" D, S) carnes aome information about 0"" and 'le would 

lib to, underatand it beUer. If, for instance, 10 = (w) and T contracta to a linear local tree, then (3.8) 

can be u~ ,ta d~e. the sequence. Can we use the fact that T ia equivalent to a linear weighted tree 

ta deduce that T contracta to a linear local tree 1 We will ne later that it ia 80metimes possible. , 

Notice that the tree T doea not actually occur in the sequence $+, but ia related to it as foUows: 
:t' 

$+ 

T 

l 

E>it 
:~'.' ................ --------------------------~----~----------'" ~ 

" 
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The graph-theoretic situation described by the above diagram ia studied in (3.24-3.27), undu the as­

sumption that T does Dot con trad to ~ linear local tree. 

, Another fact that the reader should keep in mind ia that every _ vertex <?f T (other than the root) 

is a curve on S'lI and the same is true for 'lia. Furtber, Ü t1 is a vertex of T otber th&l\ the root t.hen, 

going back tSihe 'definitions, we see tbat ~ is actually a vertex of Tt" and bence of 1i~.,.Ql .... ,O,. !J'hia 

observation g rue to tbe following (purely grapb-tbë~retic) definit.ion, ' 

3.22. D~FINIT N. Let T :;:: (T,x, R, 0) and 'li = (li, Xi,~, 0,) (i = 0,1) be local trees and suppose 

that T bas _ one principallink and th al. T --+ To - Tl. Let e (resp. e') be tbe vertex created in Ta - 7i 
(resp. To - T). We define an injective set map T\ {x} - TI by 

{ 
e' 1-+ e 

" t 1-+ P;(P-l(t)), tE T\ {e',x}, 

where lit : To --. Tl and P : To --. T are the identification maps. That map sbould be thougbt of lUI a 

natural embedding of T in Ti (or in ~e,Ql •... ,Q, ,'for arbitrary QI"", Qp E Z). Observe that tbe root of 

ï is no~ embedded in tbese trees. 

3.23. LEMMA. Consider local trees T --+ To - Tl, where T has one principal link. Let é be the vertex 

'/created in Ta ;- Tl, let Q E Z and embed T in Tle,a as in (3:22). Let b be a vertex of T, other than the 

toot; then b has the Brune weight in Tle,o as in T. Let Bl~' .• , Bn (n ~ 0) be the branch~ of T at h, not 

containing the ro~t. Then the lollowing are true: \. ~ 
(a) If h is not the principal v.ertex of ï then the branches of Tle,Q at h, lJot containing the root, are 

BI,"" Bn-the same branches, as weighted graphs. ïle,Q has one more branch B. at b': B. contains 

the root, all principal vertices, the extra vertex [QI and p083ibly other vertices. 
~ 

(b) 1t h is the principal vertex of T then one of the branches of Tl
e
•

Q at b is (of course) (QI. Moreover: 
, 

(bl)--Îf 7i has one principal link then the other branches of r.tJ,Q at 6, not containing the root, are ,> 

'\ 

, Bl'"'' B"., and Tleo; has one more branch B. at b: B. is just the toot. 

(b2) If 7i has two principal links then the other branch~ of 1'.",01 at b, not containing the root, 

are BlI"" Bn-l (if Bl"'" Bn ,are suitably labeUed); Tle,Q has one more branch B. at b: B. 

conm,ts of the root, together with Bn. 

PROOF: We use tbe nota~ion of (3.22). The map of (3.22) restricts to a bijection T\ {x, e'} 5'!! Tl \ {Xl' e} 

whicb Îs, in fact, an ispmorphism 'of weighted graphs T \ {x, t'} ~ 'Ti \ {Xl' el. To see tbat, factor the 

bijection as , 

and notice that ea<;h one of th~e bijections preserves links, i.e., ia an isomorphiam of graph., and that Ü 

tE To \ {2:o} then 

O(t) = Oo(t) = Ol(t), if t is not a principal vertex of To, 

O(t) = Oo(t) - 1 = 01 ft), , Ü t ia a principal vertex of To. , 

Sinee the principal -v;ertex e' of ï corresponds to the principal vertex e of Tl and .inee e (rap. e') wu 

treated in 7(; - 7i (resp. To - T), b = e' h~ ~he sam~ weight (= -1) in r,.".a al in T. Thil prova 

(more than) the lirit assertion. 
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This being nid, the rest of the proof has nothing to do with the weighta and, for the rest of this 

pro of; ,;e regard our treel as ordinary grapha, i.e., without weights. 

Proof of (a). Let UI travel via identmcation mapsj then 6 correspondl to a vertex of 10, other than the , 
root, and the branches of T at 6, not containing $he fOOt, are t'he bI:anches of 10 at 6, not containing the 

root, and these are just the branches of li at 6, not containing the root. 

Proof of (b). Here,6 = e'. The branches Bh'" 1 Bn of , at e', not containihg the root, are the branches 

of 10 at the root. Let A ç; Hro(:r:o} be the set detennined by 1'0 -- Tl' as in (1.3b)j then A contains n 

(resp. n - 1) vertices if 7i has one (resp. two-) principal links. In any case, we may label B .. .•. , Bn in 

such a way that A contaml one vertex from B~.1 ~ i ~ n - 1. We leave it to the reader to verify that 

aU assertions of (b) are troe. } 

3.24 PROPOSITION. Consider local trea , -4 10 +- ... ~ '''' (k ~ 1) BUcb that , and rI; have one 

principallink and T does Dot con tract to a linear local tree, and suppose that for some Q,P E Z 

T,;c,a [PJ is equivaJent to a linear weighted tree, 

.' 
where e is the vertex created in 10 +- li. Then: 

(a) Q =-1. 

(b) The principal vertex of r is a brancb point. 

l ,--\. (c) T contrads to a local tree whose only bra,ncb point is jtB principal VérteK. 

~)n:._ .. ",~' t~ Z, T[QJ Ï8 equivalent to a linear weighted,t~ee ifI ct = -1. 

0, , . 

PROOF: H , has a sUperflUOUI vert~'u that is not a neighbour of a principal v.ertex, then u is a 

luperfluouB vertex of 70. Let TJ be the elementary contraction of To at u and fonn the commutative 

diagram: . \ 'f". 

, -4 10 ~ 
VI VI VI 

" -4 TC: ~ ~ T': 
~ ~ 

Now T' doesn.contra.ct to a linear local tree and, as we saw in the proof of (3.14), th~ vert~x created in 

TC: +- Tl b just e. So e doesn't disappear in the contraction TI; ~ T': and by (3.19) we get _ Ttcc,a ~ T,:"a ; 
10 ~"al,8J ,s T,:"al,8J by (3.9a). Since\(S.9a) also lays that T'I-IJ .... TI-IJ, it'I enough to 8ho~ that 

(a)-(d) hold for T'. In other.words, we fuay assume that . 

(*) alllJuper8uous vertice8 01 T are neigbbours of principal verdces. 

Suppose the principal vertex of Ttc is nei~er a branc4 point nor e. Then k-l ~ l, TI;-l has one principal 

link and r.~~IP + 11- ~e,al,81 by (3.9b) (for we have ~~~ .... t e.a by (3.19», i.e., le can bepdecreued. , 
T~erefore we mp.y also assume that the principal vertex of TI; is either a branch point or e, 110 in any case 

- it'. a branch point of r"e,a 1 of weight -1. So: 
\. 

(**) Tlie principal vedex of r,..,a lJurvives to any contraction of Tlcfl,a 1,81 to a linear weigllted &Tee. 

Sinee T doesn't contract ta a linear local, tree, it is Dot a linear local trecj 80 , must have a branch 
\ 

point. Le~ 6 be a branch point of " and let B1' ••• , Bn (n ~ 2) be the branches of '.at 6, not containing 
• , , r 

the root. Embed T in T1·,G U in (3.22). ' 
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H b is not the principal ~ertex of T \hen by (3.23a) the branches of Tlc

e 
... at 6 are Bl~ ... , Bn and 

B., where B.' contains, in partiéular, ~he principal vertex and the root of T,,·'''. Since T.··"I~I contracte 

to a linear weighted tree (1.4.13), 6 must -absorb- (see the res;nark following (3.4)) n'- 1 of the n + 1 

branch,eI (of TI:,,·a[PI at b) so it must ~bsorb sorne Bi, This is iJ'lposaible, because by (t) Bi contains no 

superfluous vertices (for b is not the principal vertex of T). ,That meana that (b) and (cl are satiafiedj 

clearl»Ad) is an immediate consequence of {cl {and (3.9a)). 

~otice that, not only does T contract to a local tree whOie only ~ranch point is its principal vertex, 

but T itself is such a tree (this is because of asaumption (*». So if b is the principal vertex of T and 

Bl , ... ,Bn are the branches of T at at b, not containing the root, these bran~hes are linear branches. To 

prove (a), there are two cases to considere (Noti~e that, in Ti or 'li"'" (i > 0), bis the same as e.) 

Case 1. 7i has one principal llnk. 

By (3.23), the branches of Tic"'" at b are Bl \: •. , Bn' lai and B., where B. contains the root of TIc,,·a (but 

B. may not contain the principal vertex pt r,,"'" since '6 might te that ~ertex). For each i, if 6 can abaorb 

B, in Tt" th en b can absorb B, in T. Since T doesn 't con tract to a linear local tree, at least two B, 'a 

can't be absorbed (in T, hence in Tt"I,8J). Thus b must absorb every ot~er branch (in Tic"'" /,81) and, in 

- particular, lai. So a = -1. " 

~ Case 2. 1.i hal! two principal links. 

By (3.23), if Bl"'" Bn are suitably labelled then the branches of r,,"'" at b are Bt , ••. , Bn-l' lai and B. 

where, now, B. doea contain the principal vertex of TIc",a (because 1i has two l>rincipallinks ana Tic has 

only one ==> k > 1 and b is distinct from the principal vertex of r"fI'O). By (tt), 6 can't absorb B.IPI. 
Hence b must absorb n -1 branches in BI,"" Bn~l, [al. Since T doean't contract to a linear loCal tree, 

sorne B. (i < n) can't b~ absorbed, so b absorba lai and ex = -1: _____ " -- - 'j 
3.25. REMARK. "From the above proof, it is clear tha:J~24) rêm~; true if the condition "Tke'''IPl­
to a linear weighted tree" is replaced by "7i:"'''I~r~ to a linear weighted tr~e- and if conclusion (a) 

is replaced by "al = ... =.ap = -1~. However, we do need that p > 0 (if p =_q ... ~~ •• ) is not t.rue). 

So (3.24) generalizes as mentioned above, if p ~ 1. '---

3. 26. DÉF~NITION. A lI~quence To, ... , 7A: of local trees (with seta of vert.ices To,. :,~: TI; respectively) 

is called a weak 6equence if Je ~ 1, 7A: has one principal link and 'if there exist map~ ,8, : Tt-l - 7i 
(1 ~ i ~ Je) su ch that, for i = 1, ... , k, either 7;-1 - T; or 4-1 .±. Tt. The sequence is said to be weak 

t "P' if "P'- + T. r " " a l, Ij-1 - ,. 

1 
REMARK. The sequence S+ of (3.21) is weak. 

, , 

The word "weak" is supposed t.o suggest that. some information is 100t when t.here are ".:t-" inyolved. 

We don't xnow if information is act.ually lost but we observe that., generally speaking, cert.ain question. 

that can be answered for seque/ces of blowings-up Tl - .,. - Tk become puules when some - _JI ~e 
replaced by "+t.". However, (3.24), (3.25) and the rest of this section fonn an aUempt 10 recover control. 

'l, 

a. 27. PROPOSITION. Let 10, ... , Tk be a weak kquence oi local 'tree6, weak at Tl and po"ibly at 

o'ller plac~. Let To +- T he the blowing-up aud that T llu one principal Uni. Allume tlJat T ..!!.oe. 
Dot contcact to a linear local tcee and 'hai tAere exile. a linear weigllted tcee l .ùch tbat ' 

7A:1~1- e, 

.. "8 

IOmefJ EZ. 

_. 

J 
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Tben neT)' ex'ra verieK bu weigb'~1 in r., tbe principal ver'ex oiT Ï8 a brancb poÏD*, r conuada 

td a local tree WbOH only brancb poÏD' i.s i&6 principal vertex and, given a e Z, T[a) Ï8 equi'Valent to a 

linear weigbeed tree iJF a = -1. 

Moreover, ü (.e) S 1 tben 10 can', contrac' *0 a local 'ree containing a nonprincipal vertex of 

nonnegative weigbt. 

Paoop: Let.'s hegin with t.he last. aB6ertion. As in the praof of (3.24), we niay assume that the principal 

vertex of Tt. ia a branch point. Suppose To ~ T", for some local tree T"- having a nonprincipal vertex 

of nonnegati~e weight. Let. To = Tti +- .•. - T~ he such t~at r. ia obtaïned from T': by attachmg 

free verticea al. appropriate placeS, i.e., 7k = ( ... (Tt"al) ... )",,,0 •. Form the commutative diagram so 

determined (3.14): . 
10 
VI 

Til 

= TC: +­
VI 

= TC:' +-

+- T': 
VI 

+- T,:' 
Bl' (3.19b), 7k = ( ... (TI; l.a l ) •.• )",,,0,, ~ ( ... (T':/~l.al) .. . )",,,0., i.e., TI; contracts to :local tree, say 

T+, which has a vertex tI f nonnelt~tive weight, such that tI is not a neighbour of the principal vertex. 

Since the principal v x of TI; has been aasumed to be a branch point (of weight -1), the prj.ncipal 

vertex ôf T+ is either a br point of weight ~ -1 or a line~ vertex of weight ~ O. In any case, ~18 
a line~ weighted tree to whicli +[111 contracts (suth an l+ exists by (1.4.13), since T+[,8] ,... TAI[II) ..... .e), 

hold: 

• l+ contains vertices u, tI with positive weightsj 

• .e+ con tains vertices u, tI with nonnegative weights and not neighbours of each other. 

By (1.4.9), (l) = (.e+) > 1 and the last aB6ertion is proved. . , . 
The aB6ertion about T[a) ia an immediate consequence of the preceding one. L'et's now prove that 

the principal vertex of T ia a branch point, and that T con tracts as specified. 
1 

Let Tt.., ... , r.., 1 = kl < ... < kr Sk, he the trees at which the sequence ia weak. We proceed by . 
induction on r. 

Ca.e r .:: 1. Since T doea not contract to a linear local tree, w}~ay apply (3.25). So consider the 

sequence of blowings-up 

T -+ To - T; +- .• , - T~ 

luch that Tt = (7i')··a1 ..... ap (p ~ 1) and 1k = (T~Je.a ..... ,ap and apply (3.25). 

Inductive Step. Let r > 1 and let 7k,-1 +- T' be the blowing-~p such tha\ T' haS bne principallink. 

\ By inductive hypotheais applied to Tk,-l +- T'and the w,ù sequence TI;,-I, 1ku ... , TIt, we con'dude 

'that T'[-l) ia equivalent to a linear weighted tree. Then apply the inductive ~ypotheais to Ta +- i and 

the weak sequence 10, ... , TI;, -1, T'. 

3.28. THEOREM. Ld w, k he positive integenJ and let 

S: To\ ... ~7i. . . 

b • • aell &bat 10 ~ (w), 1ir Au one principal link and iu principal wr1e.x i.s a brancb point. Suppose tbae 

T. doee Dot contrace Co a linear )ocal tree (=* k ~ 1) and tbat, lor 80me a e Z, Trcla] ...., .e where .e. i.s 
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IIOme linear weigMed &ree. Fmally, s~ppoH eiUler &lIa& (l) ~ 1, ~r &hae T .. - 1 can'& conkad &0 • local 

&ree lIaving a nonprincipal vedex 01 noilnega&ive weigh& (and notice &lIa' the former condition impliee /" 

the JaUer, . by the praol t! (8.:17)). " 

Then a = -1 and TIt conkacu &0 a local &ree whoee only branell point ja ju principal veriex. Le& 

p. = (1-10, ••• ,p. .. ) be the unique e1emen' of Mul(S) suell tlla' lAJc(o,,) = 1, wh~ a~' ja the p,incip~ Uni 
of 'li whenever 'li hM ouly Qne prindpallink, and write, = p.o(ao) and ri = P.i(:&o), 0 ~ ; < k. Doline 

m'"'ers w and p by 
k-l 

w-E'I'l=a=-l 
i=O 

and 

Theo tlle 10Uow.ing conditions hold, whue we use the notations 01 (1.18), determined by S and p.: 

(1) Il (i, ro) = 1 (i.e. 1 = 1) then 

(i - l}(ro - 1) 
w=i,o -1, and P'= , 

2 
(2) Il (" ro) :F 1 (i.e., 1 > 1) then Sh: Ta __ ... 4- Th ~ of type w, where h = h'-li ehu. 

"'-1 = m,-2/i'-1 ~ a positive integer. Writing 6 = 3;-1 - b ~ 0, we have n'-1 ~ 6 and 
h-l 

,2 - tu = (w - 1) L r~ + Iwn'-l + 1- 61il:..1 - i'-lm'-1 + 1 
i=O ' J 

(1 -+;) i + 2p- w - 2 = [(n'-1 -6) +2/wli'_1 - ~'-l' 
,Moreover, ifw ~ 2 and e = (1) &hen "'-1 > 6. 

(81;11 ei&her lA! ~ 2 or e = Ill. and if (i, ro) ~, 1. thon __ 

.. 1 ~',..., (1 + ;) i + 2p":' w'- 2 > O. 

Before we prove (3.~8) we, ne~cl sorne numericallemmu. But finit, let us introduce the notation 

/(:&) = 2!(2!; 1), 2! E Z. -

We have the CollowÎDg obvioua proper~iea! 
/ 

• /(0. + b) = 1(0.) + /(b) + ab 

• /(à - 1) = /(0.) - 0. + 1 

• /((lb) = 0.2 /(6) + b/(a). 

,3.29. LEMMA. Let.i ~ Po ~ i' > 0 he in~gertl .ucll tbat (i,po) = i'. U the corre.ponding èuc1idean 
... -,..-

algori'hm i6 wriUen as 

i = Qopo + Pl, 

Po = alPl + P'J 

(where P. = i' J, 
then aop~ + ... + Q.sP, = iPo and ctoPo + ... + a.p. = i + Po - i'. 

Thil lemma il very eU)' ~ prove, by induction o~.. We lean it. proof ta the reader. Tog.~er wi&h 

(1.12a), thil gives '1 

60 
) -

~~ ____ ~ __ 1~--'_06----~--\~'~2----~-~ ~._ ... --



o 

• 

• 

" 

, 
J . 

'S.SO. COROLLAR.Y. Le,,{To,Po) <= , .. <= ('li.,,..) (le ~ 1) he sud tbat Tv bu one prÜJcipallink ill 

" e {O, le}. Le, a (JWp. a') be tbe principallink of 'ro (JWp.-7i,) and write' = Po(a), .' = l',(a'), Let 

rv = l'v(Zo), 0 ~c " ~ le - 1. Tben 

.-1 
L:", = 'ro, 
1.,.0 

11-1 0 11-1, , " L ri =, + ro - .' and E I('i) :::! .ro - , - ro + , , 
, 2 

i=O J=O ~ 

3.31. LZMMA. Le, w,'," be po6itive inte,!'" and let (ro, ••. , 7'Jr-l) be a Rquence of type (w,',"), 
with nota'ion u in (S.S). Tben, ü m = mo + ' , , + ,",-1, 

(a) '=wm+" 

(b) E;:~'i = (w + 2)m - 1711-1 

..... ' ='W"-tia 'i + WR,..., . ,,,) '2 1Z.- _2 ( • 1) ,,2 ' 

(d) I(i - 1 W E;:~ I(ri) + I(w)m + (WR, + 1)/(.') -.' + 1 

PROO,: 

(a) 

(b) 

• cio = wmO+il 

= wmo +wml +'2 

= wmo + ' , . + WI7II-l +'1 = wm + ". 
11-1 1 
L: ~i = wmo + 2R1'1 + ' " -+ Wm,-2 + 2R/-1'1-1 + Wm,-1 + n,i, 
1=0 

= (wmo + 2mo) + " , + (W':"'-2 + 2m,-2) + (Wm,-l + m.-l) 

= (w + 2)m - ,",-1' 
\. 

(c) By indudio~ on l, 

Hl = 1 then • = (Wr&l + 1).' and ma = RI'" 80 

,2 = w2R~.,2 + 2wR1.,2 + i,2 = w(wm~'+ R1i ,2) + (WRI + 1).,2 

.-1 . \ \' 
= w L rJ + (WRI + 1).,2, 
, J1:::0 

Hl> 1 then define integera a, 6 by 
\ 

(ro, ... ,ro-1) = (mo,." ,t'nj-2,'I-l, """-1)' 
(ra,. .. , rb-l) = (i'-l, ... , i'-l) (where "-1 OCc:ura n'-l times) 

o. 

L 

o 

(r., ... ,r.-1) = (m,-l," .",), The &nt sequence Ï80Uype (w,',i'-l)' the lut ia oftype (W,il-l"")' 
10 we May apply the inductive hypothesia: ,,"" 

\ 
0-1 0-1 6-1 

,2 = W L rJ + (Wr&'-l + l)i~_1 = W E r; + W L rJ + '~-l 
1=0 1=0 i=a 
0-1 6-1 .-1 

= w L~ +W Lr1 +w L r: + (~RI + 1),,2, 
11::0, ica i=6 
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(d) 
11-1 1 [ .-1 11-1 lI' 

dl .r; f(ri)\= 2' w t.; r~ - w ~ ri = 2' [i2 - (wn, + 1)i,2 - w«w + 2)m - nIf-1)] 

= i [i2 - (wn, + 1)i,2 ~ 3mw + wm'_l] - I(w)m 

= i [i2 - (w~, + 1)i,2 - 3(i - i') + wn,.'] - I(w)m 

= I(i> - i + ! [-(~n, + 1)i,2 + 3i' t wn,i'] - f(w)m 
. 2 .. , , 

= I(i) - i + i [-(wnl + 1)i,2 + (wnl + l)i' + 2i'] - I(w)m, 

= I(i) - i - (wn, + l)/(i') + i' -/(w)m f 

= I(i - 1) - 1- (wn, + l)/(i') + i' - f(w)m 

which ÏJ what we want. ' 

PROOF OF (k.-28): The tint thing we have to do is to reduce to the case 10 = (w). We leave that. part. 

to the reader. In {act, the argument is quite analogous to the corresponding reduction in the proof of 

(3.8). So: 

We 888ume that Ta = (w). Then Til is a comb with negativeateeth, 0 S 1/ :5 k,: by (3.17). LeL the 

notations of (1.13) he in force, Le., we consider J = Uo, ... , i,-ll, JI = {hl, .. " h, l, el,"" e" etc. By 

our assumptions, TA: = (t, -1, A, B) where A, B are the-brwhes at Il,, not containing l.~e roo~, and 

A < -1 is a linear branch. So the branches of 1kla] al. e, are A, 8\and [a] .. Now e, can't absorb A < -1, 

and Il, can't absorb B (for T. doesn't contract to a linear local tr~e). However, T",la] "'" t. so T",[a] 
contracts to a linear weighted tree (1.4.13) and e, must abs9rb sorne branch, in T",[a]. Hence e, absorbs 

[a] and a == -1. j 

If 1 = 1 then 7ic is already a local tree whose only branCI.POiJlt is its principal vertex. If 1 > 1, let's 

prove that 1k con tracts to such a local tree. T", has three anches at Il'_1r say A', B' and B! where 

A' < -1 and B! contains, in particular, Il,, which is a branc point of weight -lj hence Il'-l can ab80rb. 

neither A' nor B![-1J in 1k[-1]. Since T",[-ll contracta to a linear tree, e'-l must absorb one of the 

three branches. So il. absorbs B' and 1k c<?ntracta as specified. , 
BeCore we prove that conditions (1)-(3) hold, let us explain why 1 = 1 is equivalent t.o (i, ro) = 1, as 

aaserted in (1) and (2). We daim that. Tl has two principal links. If not, th en Ti = (., -l,w'::' i) hu 

a non principal ven.,c with nonnegative weight, and so do T2 , ••• , T"'-l, 80 one of the hypothesel of the 

theorem is violated. Hence: 

(1) Ti hu two principal ]jnb. 

Clearly, 1k-l has two principal links, since the princip~l vertex !, of T", is a bran~h point. Thui it ia cleu 

that 1 = 1 is equivalent t~: Til hu one principallinlc iff ve {a, k}, and by (1.12a), 1 = l ~ (i, ro) = . 

1'(0,,) = 1. 

Condition 1. Sinee 1 = 1 then, by above cemarks, we may apply (3:30). Hence E~:~ r1 = iro and 
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.-1 
W = L'" - 1 = iro - 1 and 

1-0 

\ _ ~ I( .) - (i ~ l)(ro - 1) . 
P - f;:o ,r, - 2" 

Condltlon~. Suppose 1 > 1. Con.ider the integer h ='':'1> Oi the braneh point ~'-l, which absorba 

the braneh 8' of r", wu ereated in T"-1 - 7hi in fact, Th = (.,-1, A', 8'), so B' can be abtorbed in 7h 
as weU. Henee 

(2) 
{ 

T" contract8 to a linear local tree. 

So we eonsider the sequence Sh: (w) = Ta - ... .- Th . By (S.8), 

(3) Sil Ï6 of type w, Th = (., -l, (-n - 1,-2, ... , -2), B..l..lvbere n = nt-l 

and where --2" oceura w - 1 timea, and the absorption of B' increaaes by 1 

the weight of e'-l' 

Obaerve that, br definition, 1'''(%0) = rh and 1',,(4,,) = i'-l. By (S), 

(4) (ro,.;., r"~I) Ï8 oHype (w, i,i,Li). 
'1 

q Applying (3.S1) to Sil, we deduce (where m = ma + ... + f'nI-2): 

l . 

(6) 

(6) 0~ 

(7) 

(8) 

"-1 
i 2 = W L rJ + [wn + IJi?_I' 

i=o 

, "-1 \ 
I(i -1) := W L I(ri) + I(w)m + [wn + IJ1(i'-l) - i'-1 + l, 

;=0 
,,-i 
L ri = (w + 2)m- m,-2, 

• i=o 

By definition of j'_yand h, 'T; has one prineipal"k whenever h S j Sil-l, so 

(9) 1 

If we define 6 = 1;-1 - ,h ~ 0, then r,'/-J = (., -1, -2, ... , -2, (-n.,.. 1, -2, ... , -2), B~), where the fint 

aequénce of -_2" con tain. 6 terma and the second w -1 terms. 50 7j,_~ contracta to the following linear 

local tree: 

~ 1:.,_. = (.,0,6 - n -1, -2, ... ,-2), 

where --2· oceurs w - 1 ~imea. We cl&im that 6 ~ n. In fact, if ô > n then lj'_l has a nonprincipal 

vertex with nonnegative weight. Sinee by definition "-1 < le, one can consider the commutative diagÎ'am 

5S 

Œ 

I~ 
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, \ 
" 

. 
"tII, .' ... ( 

(3:14) delermined br lii_'-S 1;1-1 +- ... - "lIt-1 and deduce '''~ r.-l conu-ae&.t lo a localu-ee which 

·eont&Ùl$ a nonprincipa'J. vmex wilh nonnegalive weight. ThiI'eonu-adicta ene of the Ulumptionl. So, 

" 
(10) 65n. 

On the other hand, we have PJi-1 (:1:0) = 7111-1 an~ l'il-l (11;1_1) = "-1 by definition, and ("-1,7111-1) = 1. 
By (S.SO), 

(n) 

(12) 

(13) 

, 

.-1 
2: ,., = i'-Im,-lt 

;=;1-1 
.-1 

, 2: rJ = i'-1 1= ;;;'-1 - 1, 
;=il-l 

E f(ri) = (i'-1 ..!: l)~m,-1 - 1). 

i=il-" ' 

We can now check that the two equationa of ·condition 2- hold • 

.;,2 _ U/ = i 2 _ (~~ _ 1) ~ (i2 _ ~~) _ ;1~1 r; - ,~. d + 1 
1=0 J::IIcr Jah "-'1-1 
'h-l ( 

= (141 - ,1) E r1 ~ (wn + l)i1_1 -6i'f-l - i'-lm,-1 +.1, 
i=O 

by (5),(9) and (11). So " \ 
(14) 

h-l 
, i2 - W = (w - 1) L: ~ + (wn + 1- 6)i1_1 - i'-lm'-1 + 1, 

;=0 

which is the fint equation, lIinee n = n'-1 by (S). For the second equation, obeerve that 

- -"(i -1) - p'= I(i -1) - L I(ri) = I(i -1) - L I(ri) - L I(r;) - L- I(ri) 
.-1 ( h-l) 'il-I-l 11-1 
J=O i=O i .. Ia ;-il-I 

" Ia-l " , 

( ~ () () ( ) (' )' cS (' ) ("-1- 1)(m,-1- 1) = 141 - 1) L., f ri + 1 w m + wn + 1 ! "-1 - "-1 + 1- 1 "-1 - 2' ' 
;=0 , ",. 

by (6),(9) and (13), 110 

, , ( ~ () ~l) ( ) (' )' (i'-1 - 1}(""-1 - 1) 1 i - 1) - P, = (w - 1) ~ f r; + ItJw m + wn + 1- cS f "-1 - "-1 + 1- 2 ' 
;=0 

and by multiplying that equatiOD by 2 we obtain 

"'-1. "-1 / , 
\ 0 

,2 _ Si + 2 - 2p = (w -1) E ~ - (w - 1) 2:>',. + 2/(w)m 
iso ;-0 

+ (wn + 1 - 6)(i1_1 - i'-l) -. 2i'_1 + 2 - i'-l'"l-1 + "-1 + '"I-~ - 1 
Ia-l , 

= (,2._1D) - (w - l),E ri + 2f(w)rh - (wn + 2 - 6)"-1 + ,",-1 
i=O 

• 
\ 
&" 
-~ 
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by (14). Theref9re, 
• 0 

11-1 
3; +2p- CD - 2 = (w -~) L rj - 2/(w)mf (wn~ 2 - 6)i'-1 - fnf-l 

j_O ' 

= (w - 1) I(w + 2)m - mt-21- w(w - l)m + (wn + 2 - 6)i,_1 - m,-1 

= 2(w " l)m - (lA.!, -1)m,-2 + (wn + 2 - 6);'-1 - fnf-l 

= 2(w - l)m - (w - l)m,~ (w - l)ni'_l + (n + 2 - 6)i,_1'-~ 
= 2(w -l)m+ (n+2 - 6);'-1- m,-1 , 

by (7) and the fàct that -m,-2 + ni'_l = O~ which foRoWI from (4). Since m = (i - i'-l)/W by (8), we 

&Del' 

from whieh the deaired equation followa. The next thing we do Us to prov.e that n'-1 > 6 whenever w $ 2 

, and .c = Ill. Suppose n'-l ~ .5 an4 l. = Ill: By the description of l.j'_l iiven abow, betwe-en (9) and 

(19), we eonclude that 7i'ml ~ 1!.i'-1 ~ (w). Conaider the local tree T defined by 

1i.ml 
VI 

(w) 

_ '" l_ 'li. 
" -VI 

- - T 
In th~ diagram, each tree iD the lower row h'U the lame number of prin~pallinb &1 the eorreaponding 

tree in the upper row; henee, in the lower row, only (w),and T have ~ne principallink (alI other have 

twO). ThUl T = (.,-l,A,(blt ... ,b",w')), where A < -1 ÎI a linear branch, w' < w ia the weight of 

the venex whi~ tl/CIl the principal vert1~ of (w), and JI ~ O. Moreover, b1 , ••• , 6" are weighta of vertieell 

which have beeb created in (w) - ... - T j 10 6i < '-1 for 1 ~ i $ JI. Since 1i. doesn't contrad to a 

linear tree, T doean 't contrad to a linear tree, i.e., ~ 

(15) w' .;. -1 or :ft h, < -2. 

On the oth, ... hand,' ainee 0 = -1, Tloi contractl to the linear tree 

9 = (A,O,b., ... ,b",w'l· 

Now 9 ,." Tioi ""; 1i.lo) ,." 111, eo 9 inUIt he minimal. Indeed, if 9 ia not minimal, then w' = -1 and 

by (15) it contracta to a minimal weighted tree 9' = IA,'O,61, •• • ,6'-1,6, + 11 which hu more than two 

Ji vertice. but only one nonnegative weight. Such a me can't be equivalent to III by (1.4.16). 

So 9 ÎI minimaL Since 191 > 2, (1.4.16) implies tbat JI = a and w' > O. By definition of T, we 

deduce tbat every vertex of A b&l weight -2, thui w' = 1 by (1.4.16) again. Now JI = 0 impüea that 

;'-1 Us a multiple of mt-l;-recall tbe relation between the eucüdean algorithm of (i'-l, m,-l) and the 

. Hquenee of multiplicitiea of the roota in (w) - ... - T. ThOl fnf-l = i, = 1 and 1 = w' = w - "-10 '1 
Sinee i'-l > m,-1 by definition, we get w = 1 + "-1> 2. This proves condition 2. 

Condltlon J. By condition 2, it Us enough to prove (n,-l - 5 + ! )i'-l - m,-1 > O. This ia certainly the 

eue il w S 2 (for "1-1 - 6 + ! ~ : ~ 1), or Ü n'-t > ô (for n'-l - 6 + : > n'-l - .5 ~ 1). So we may 
, 
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uaume that nl-l = 6, CI) > 2 JUld e. = [Il. The argument which ~rowd the lut uaenion ... of conditio'n 2 

wu bued on the aaaumptiona n'-l = 6 and e. = (1); 80 we can .. pply it here and conclude that ",,-1 ~ 1 

and i'-i = CI) -1. Consequently, 

. (nl-l - 6 + '!) "-1 - ,",-1 = !(CI) - 1) - 1 = 1- ! > O. 
J CIl ~ CA) fA} 

This co~pletes' the proof of the theorem. \. 

Theorem (3.28) will be uaed te:> prove that certain local treea ë" contrac:t to linear l~al tHelj we will 

do that by proving that the numerical relationa of the c:oncl~aion can not he IlLtisfied in t.he eue under 

consideration. More precisely, t.he stat.ement. thatrwe will use is the following. 

3.32. COROLLARY. Le~ S : saeialy ehe hypo&heaia of ~heorem (8.2.8) and UlJume, 
, , 

) 
CI) ~ 2 or e. = [1). 

in addieion, thae 

(i,ro) = 1 or 

Then no triple (d, u,~ real numben c:~ aatialy one of the following conditions: 

{ 

u + v ~ a, i = ai W = cP - u2 
- v2

, 

(a) and p = (d-l)(a- 2) _ u(u-l) _. \1(v - 1) __ 
222 

{ 

u + ~ + ro ~ a, i = cl + ro, w = tJ2 - u2 
- v2 + ~, ' , 

d _ (a - l)(a - 2) _ u(u - 1) _ tI(v - 1) ro(ro - 1) 
an p- 2 2 2 + 2 . 

(h) 

PROOF: Auume that. (i, ro) = 1. Then b~ (3.28), w = iro - 1 and p = (i-1)~ro-l). 
If (d, u, v) lat.isfies (a), t.hen cP _u2 - t? = aro -1 and tJ2 -3a+2- u2 - v2 + u+v = (a-l}(ro -1). Theae, ' 

two equationa imply that (a - u - v) + (a - ro) = 0, whence ro ~ a = i. ThUI ro = i and, = (i, ro) = l, 
which is absurdo (Note that whenever the hypotheeie of (3.28) is lat.iefied, we have i > 1. In fact., linee 

the principal vertex of 7i. is a bAnch point, we have 1 2! 1, 10 , > 1.) 
H (d,u,v) latisfies (b), then tJ2 _u2 - v2 + ~ = (a+ro)ro-l and tJ2 -3a+2- u2 +u- u2 +v+,.g - ro = 
(a + ro - l)(ro - 1). From'these two equationa, we find (a - u - v - ro) + a = 0, whence Il ~ 0 and 

i = Il + ra ~ ro. Thue ro = i and i = (i, ro) = 1, which is absurd. 

Th~ provea the eue (i,ro) = 1. Now aaaume t.hat (i,ro) i- 1. Then eit.her CI) ~ 2 or t. = (11,10 
condition 3 of theorem (3.28) laya t.hat B > 0, where we detine 

..4 = ,2 - W - 1, B = (1 + ;) i + 2p - w -,..2. 

Nowa !iule calculation gives 

{

,,2+V2 -1 
Â= ' 

,,2 + v~ + 2roa - 1, if (b) holda, 

if (a) holda, 

B= {(-2+ ~)d+u+v, if (a) holda, 
(-2 + ~) d+ ~ro + u+ v, if (b) hold •. , -

If CI) ~ 2 t.hen -2 + ~ ~ -1,10 

O
B < {-a + u + li ~ 0, " if (a) hold., 

< - -a + !ro + u + v ~ -cf + '0 + u + v ~ 0, if (br holda, 
and thie ie abtUrd (we used t.he fad thû cf ~ 0, if (a) or (b) holds). 

" 
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'" H 1/1 - l 'hen, by (8.23), 'J 

\ ---
when we de~s= i, 1 and 1/= ("'-1-6 +1)i,-I-""-I' Th~ sand 11 are integm, s ~ 2 and 1/ ~ 1. 
Whenee B2 - = :iJ + ,r ~ 5. On the other hand,!rom (*), above, 

, 

B2 _ 2A = {2UV - u2 
- v2 + 2 =-2 - (u - v}2 ~ 2, if (a) holda, 

4ro(ro + u + v - ci) - (u - tI)2 + 2 S 2, ,il (b) holda. 

Sinee' we ha" alreadyeatablilhed that JJ2 ..:. 2A ~ 5, (d, u, tI) eatiafies ~either (a) nor (b). 
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III. }:HR.ArrIONAL ENDOMORPHISMS OF THE AFFINE PLANE 

1. PreUm1narles on A2. 

We will al~ays regard A2 as heing equipped with a fixed coordinate system. In pariicular, it maku 

seue to apeak of the degree o~ a curYe in A 2. 

Embeddinga of A 2 ln complete nonalngular 8UJ'faces. 

1.1. Two open immersions A 2 ...... p2 are equivalent if they form a commutative diagram with .ome 

automorphiam of P2. One equivalenee clus is Cbetter" than the others: it conaistll of thoae embeddinga 

that don't eh~ge the degrees of the eurves. w( will refer to that equivalence clau by saying cembed A'}, 

in p2 the atand~ way" . 
, 

The foIJowing ia a (trivial) consequence of the theory of &relatively minimal- rationalaurfaces 1111. 

1. 2. FACT. Lee 8 he a rational nonaingular prbjec&ive surface, D E Div (8) areduced, elleceive diviaor 

and U = 8 \ 8upp(D). Then the foHowing are equivalent: l . 

(a) Tl e! A2. 

(b) Every irreducible component of D il a rational curve, 111 E 9/U1 an~ n(D) + K~ = 10, where n(D) 
Ï5 'he numb6r ofirreducible componenu of D and Ks il a canonical dlvisor of S. 

• 0 (. 

PaOOF: Firat, observe that the num'*' n(D) + K1 depends onlyon U. Ind~,'each blowing-up at a 

point at infinity of U decreaaea 1(2 by 1 and increaaell n by 1. Since one can obtain one embedding trom 

another by blowing-up and blowing-down at in&nity of U; n + J(2 ÎII an invariant of U. H U ~ A 2 then 

n + K2 = 1 + 9 = 10, ao (a)=*(b) (aince Il) E 91A21 and A2 ia rational at infinity (1.5.1)). Convenely, ü 

(b) is satiafied tb~n Il} E 9lUi meana that there ia a amooth completioD (IA.8) U -- U such that ü_ U 

ia a nonaingular curve r -of self-intersection 1. Sinee the number n(r) + ~ dependa only on U, it ia 10 

by aaaumptioD, ao ~ = 9 a'Ild U ~ p2' by the theory of relatively minimal rational surfaces. Hence r is 

a line and U e! A~. 
. . , ... 

1.3. COROLLARY. Le& U be an open 8ubset of a nODaÏngular complete Surfacé S. HUe! A2 and S \ U 

û irreducible &ben.8 9! p2. 

PROOF: Repeating a part of the preceding praof, 10 = n + [q = 1 + .Tq => Iq = 9 => S e! P2. 

The next fact ia a simple 0 tion that turns out to he very uaeful. 

1.4. LEMMA. Le& S be a noDain, ar projective surfatt,e, A2 -- 8 an open immersion and let D E 

Div(S) he the reduced elfecme divisor ch tbat \ A 2 = supp (D). Co1J6ider a lequence 

~l ~m 

S = So ... SI -"... - Sm (m 2! 0) 

01 monoidal traulormationa, wlaere tlae cenktr of ~j û a point ~ i.R. sapp(D) ud ",;l(~) := E., luda 

tlaat (iD tAe DotatÎàD 01 (H.J.S)) un E Div(Sm) la .. '.R.C .. Hm ÏI minimum wnh relped to u,at 

prop-v. tlaen Sm \aupp(Dm) 51!! A'J and: 

(~) H m ~ 2 tben ~ E ~-l (2 SiS ml. 
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(b) H m ~ 1 ehen Pl belonp ~o a' leu~ hva .irreducible components of D. 

(e) Hm ~ 1 and D = A+ B, where Ji and B' are effective divisors and B has 8.n.C. in S, tben Pi beloDgs 

to the ,trjd kanaform of A in S'-1 (1 ::s; i Sm). 

Paoo': Again, uae 'he samo no'ation for a curvo and for its strict transforpl in any blown up surface. 

Binee A2 hu no.loopl at infinity, it follows from (1.4.7). that (in the notation of (1.4.7)) 
\lt 

. e"e,., El such tAa' FfI = -1 in S", i8 a branc~ point o/9(S""D"'). 

H (a) doeln't hold then 9(S""D"') contains two branch points u,v o(weight -1 such that u,v are not 

neighboun of ~t\Ch other. Contract 9(5"" Dm) to a linear weighted tree e (1.4.13); then u and v are still 

in .e and one of the ioHowing holda: (-, 
• .e containa vertices u, v with positive weights; 

• .e containa vertices u, v with nonnegative weights and not neighbours of eaeh otber. 

Thua (l) > 1, by (1.4.9), and that ia absurdo Hence (a) holds. ~ 

We now prove (b). By the above, E", is a braneh point of g(Sm,D"') , of weight -1, and no other 

b', El hu weight ~ -1 (in Sm). If Pl belongs to only one component of D, all components of D are in'"the 

.ame braneh of g(S""Dm) at ErR' Thus Em is a "special "mex" (1.4.17) and we get a contradiction 

with (I..U8). 

Proof'of (c). Since Em ia a branch po~t of 9(Sm, .0:"), Pm belongs to at least three components of 

D",-l = A + B"'-l, where w~ deline BO = BE Div(S) and Bi+l = Bi + El+! E Div (SH1)' Since B 

hu '.n.c. in S, JJÏ hu '.n.c. in Si (0 ::s; i Sm) and Pm belongs to at most two eomponents of B"'-l. 

Thua P", belong. to (the strict transform of) Â and, 'by (a), 10 do Pl,"" Pm - l • . . 
The above observations yield the following (known) fact as a bypfoduct:,' / _ 

1.6. COROLLARY. Let U he an open ~ùb8e' of p2 ,ucb ehaC U ~ A 2• Then ~ U is a line. 

PROOF: We know that P2\U = 8Upp (D) for sorne red~ effective diviaor,D ofP2. By (1.2), n(D) = l, 
i.e., D ia a curve. By (1.4b) Dhu •. n:e. (i.e. ia non8~ ), thU8 À,2 ~ U,-+ p2 iS a sIDooth completion; 

the conelponding dual gr--aph 1.D31 must be ~uivalent to JII, BO D2 = 1 (for Inl- (ml'; n = m, u 

• explain~ at the beginning of the proof of (I.4.15», So D ia a fine. 

A charaderl.atlon of A 2 • The followinS ·powerful- theorem wu proved by FUjita (2\ and Miyanishi .' , 
and Sugie !81 in charàcteriatic 160, and generaliled by Russell Il.,] ta arbttrary characteristic. 

, 
1.6. TBEOREM. Lee V he a nonlÙngular, factorial, rationallJurface with trivial units, and wbœe 

Kodaira dimeuion,is -00. Then V ~ A'J. . ~ 

For the notion of Kodaira dimension, eee lG]; for the Ipetial case of 8urfacee, a simple exposition ia 
~ . , 

ciwn in (l'lI. From th_ lOUJ'CeB, we a\ào h&Ve . , 
1'.7. LEMMA. Lee,: V'· -+ V be a dolDÏnaue, Hpar'able morpl1itmJ of non6mgular' 6urfacetl. Then tbe 

Kodaira ~ùn~on of V ÛJ~ .. tbu or equal to thae of,V'. \~ 
. , 

From theee two racts. we immediately condude 1 
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1.8. COROLLARY. Le' / : A 2' -+ V be a birational morphiam, wbere V ia ladorial (and DOJl4Îngular, 

alf'a1ways). Tben V ~ A2. ' ~ 

(Indeed, V' has trivial units by (1.2.6». Notice thk~ the n~tion of Kodaira dimension does not occur 

in tbe s\atement of (1.8). Notice also that (1.6) and (1.7) won't be needed in the eequel. . . 

Lines in A 2 • Followint,everal people, we adopt the fol1owing terminology for lines in the affine plane. . . , 
1.9. DEFINITION. Let a he a curve in A 2. 

(a) C is a Unear lin.e if deg C = 1. 

(b) 0 is a coordinate Une if, modulo an automorphism of A:I, 0 ia a linear line. Equivalently, the 

polynomial F E k[X, YI determined by C satiafies the following condition: 3G E klX, Y) such that 

klF,G1 = k[X, Y). 

(c) 0 is a line if C ~ A l (abstractly). Equivalently, the polynomial F (as in (b)) ia 8uch that klX, Yl/{F) 

is a pol!110mial algebra in one intleterminate over k. 

As is very weil knoWD, the Epimorphism Th~orem of Abhyankar-Moh IIlsaye (in particular) that 

alllines are coordinate lines if cbar k = O. It is aIso known that, in positive characteristic, not aU lines 
\ 

are coordinate Unes. \ 1'./ 
; 

Let 0 he an affine plane curve with one place P at iBlinity (1.5.4). Embed A:I in p2 the standard 

way. As noted in (II.2.3), an infinite sequence of monoidal transformations is uniquely detennined, 

~l ~2 ~3 

. p2 = 80 +- 81 +- 82 +- ...• 

Let Pi denote the ceuter of 1I'i : Si -+ Si-1 and CCi) the strict transfong on Si of the cloàure in p2 of O. 

The sequence p(P1, 0(0), p(P2 , CCl)), ,,(P3 , 0(2), ... is called th.e multiplieity aequence of 0 0' infinitJl . 

That sequence is completely determined by the ·embedding" of 0 in A:I, i.e., is independent of the cboice 

of an embedding of A2 in p2_as long as tbat embedding is ·standard- (1.1). 

We will now charactwe tbe coordinate lines in terma of the multiplicity sequence at infinity. 

1.10. DEFINITION. Let r he a corve in A2 with one place at infinity. We say that ria graph.-

t'eoretically li~!._if there ia,an open immersi~n A2 '-+ p2 with the following property: 

If L = p2 \ A 2, P is 'he place of r at intinity and 

(To,~) <= ... <= (~,p,,), 

then T" conkada to a linear local kee. 

REMARKS. 

(al Notice that Ta = tl), in (1.10). 

(b) See (n..2.3) for the .cfefinition of ,,(P, r, L, P2). The fact that ail blowinp-up (in that Mquence of 

m-trees ~ are of the third kind ( <=) ia a ~naequeDee of (ll.2.4b). 

(c) lt can be shown that if r. is graph-theoretically linear then aU "po. immersion. A2 &..+ p:l .atiJfy 

the condition of (1.10). We leaw it to ~he mterested nader to Igon out the liU1e &rpmeDt 'which 

• ia needed here . 
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The- following proposition is a corollarr to (II.S.S). It will he WIed to show that eertain curves in A 2, 

with one place at in6nity, are coordinate lines • 

. 1.11. PROPOSITION. Let r he a corve in A2, witb one place at inlini'Y. Tben tbe foHowing are 

equivalent: 

(a) r ÏII grapb-tbeoreticaUy linear, 

(b)" r ÏII a coordinate line. 

" 

PROOF: We fint prove that (b}=>(â), which is the trivial part. Choose an open immersion A2 H p2 

luch that the closure in p3"J>f r is aj>rojective line. Then k(P, r, L, P2} = 0, i.e., '1iD = 70 = (1) which is 

already a linear local tree. Hence r la graph-theoretically linear. 

(a)~(b) Let r be graph-theoretically linear and let i: A2 ..... p2 he an open immersion latiafying the 

condition of (1.10). Let the notation he u in (1I.2.S) and ~onsider tlie infinite sequence of m-trees of 

(P, r, L, P2): .. 
(To, Po) <= ... <= (7k, PI;) <= ...• 

. -
By definition, TI; contracts to a linear local tree. If k = 0 then (r.L}p = 1 in p2, by de6nition of~ 

hence r.L = l, r is a line in p2 and we are done. Assume k > O. Then the hypothesis of (n.S.8) is 

latisfied and, by the lut assertion of (II.S.S), we see that '1iD+n ~ (1), for some positive integer n. Writing 

So = p2, etc., 
So - - .- -

• (70, Po) <= 

where ~+n ~ (1). Since all blowings-up have centers i.n. So \A2, A2 is naturally embedded in SIc+n and, 

in fact, S"+n \ A 2 = IUpp (LHn) (where the notation of (1I.2.S) is used) and (1ic+n, PHn) is the m-tree 

of (Plll+n+1, r(lII+n)', L,,+n, SHn)' By iterating the argument of (iI.8.s.1), we lee that the contraction 

1.+n ~ (1) corresponds to a birational morphism p : SHn - S' which contracts all components of LHn 

except E"+n' Let 1" = p(P"+n+1), r' == p.(r(lI+n» and L' = p.(EIc+n); then by (n.S.S.l) the m-tree of 

(P', r', L', S') is «l}.p'), where the multiplicity p.' orthe principallink of (1) is equal to the multiplicity 

P"+n of the principal link of 7;;+n, i.e., it is 1. Hence (r'.L')~, = 1 and since these two curves meet 

onlyat P', r'. L' = 1.- Now we have an eUlbedding 01 A 2 in the nonsingular projective.prface S', IUch 

that the complement of,A2 is one curve L'. Aa is weil known (l.S), S'·must he a projective plane. Sinee -

r'.L' = 1, r' is a line in S' = p2 and we are done. ~ 

1.12. COROLLARY. Let r he a curve of detrref! i in A 2, witb one place at ~8ni~ Let ('0, '1, ... ) he 

UJe multiplici'Y sequeDce ofr at inlinity. Tben tbe following are equivalenti 

(a) r ÏII a coordi.aate line. 

(b) EiUJer, = 1 or tbere ù a positiw integer le sud lbat (roI.'" 'Ic-l) ÏII a sequence of type (1, i, 1) 
(:::i:::> i > 1 and rj = 1 ü,. ~ k). 

PROOF: Clear hm remvlt (c) alter (1.10), together with (n.S.8). 

RIMARKS. .. 

Ca) (1.12) 11 Dot uaed in the Hquelj that'. why we didn't give a proofofremark (c), alter (1.10). 
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" (b) We mention without proof that, given any, > 1 and any sequence (ro, ... ,r,.-l) of type (1,.,1), 
there is a coordinate line having (ro, ... , r.-l, 1,1, ... ) as ita multiplicity sequence at infinit.y (nad 

the proof of (1.11) backwardl). 

2. Some Resulta in the General Case. 

T~ :t of birational elldomorphisms of A 2 is a monoid, under composition of morphiaml. An 

element f of that monoid is trivial if it is an automorphism of A2 (tbis is equi:valent to the delinition 

given in (1.1.3d) sinee any open ,immersion A2 ...... A2 is onto \)y, say, (1.2.9)); it is irreducible if it ia ' 

nontrivial and can't be written as ho 9 where 9 and h are nontrivial, 

, Two birat.ional endomorphisms f, 9 of A2 are tq"ivalent ü f = \1-1 0 9 0 u for Borne automorphilml 

u, u of A2; we denote that by f "" g. Trivialityand irredûcibllity are properties that depend only on the 

equivalence class of f. As in the generaI case (1.1.1), we point out that ,... i.s not compatible with the 

composition of morphisms. 

Clearly, to give a birational endomorphism of A 2 is equivalent to giving an endomorphism of k­

algebras 

4> : klX, Y] -+ klX, YJ 
sucb th'at k(;(X):;(Y)) = k(X, ~). 

To give an e.xample, deline 

';0 : klX, YJ -+ klX, YJ 
X .... X 

Y .... XY. 

The eorreaponding 10 : A2 -+ A'J has one missing eurve, the Y-axis, one contracting curve, the Y -axia, 
. -

and one fundamental point, the origin. We Ieave it to the reader to verify that.. nbo) = l, i.e., that o~ 

ean construet 10 by performing the following operations: 

1. Blow-up A 2 at the origin. 
~ -2. Reniove, from the blown-up surface A'J, the strict transform L of tb~ Y-axis L. 

3. Recognise that .A2 \ Z e!! A'J . , 

The 1ast step is to choose an' isomorphism A 2 -:+ .A2 \ Z and to obt~ a birational morphiam A2 -+ , 
,Â2 \ Z ..... .A2 -+ A 2 • Depending on which isomorphism we ,ChOOle, we get either 10 or sorne 'Y ,.,; 10. ' 

2.1. DEFINITION. A birational morp~m f : A'J -+ A 2 is called a ,tondc,rd affine cOB'~c'ion in A 2 

if the following equivalent eonditioJ\8 are 8a~isfied: . . 
(a). l "" 10 (see above); 

(b) n(l) = 1 and the miasing curve of f is a coordinate line. 

(Netice that, since nU) = 1 ~ c(f) = 1 => q(l) = 1 by (1.2.8), f bu one miuinC curve; the fundamtntal 

point of f belongs to that curve by (1.2.1), 80 it is. true th~~ (a){:}(b)). . 

-" Observe that the ·addi~ion ~ormula· n(g 0 J) =, n(J) + n(g) holde for birational endomorphillDl of 

A'J, by (1.2.10). In particuIar, if n(l) = 1 thon,! is irreducible. 

Many questions cati he asked. In particular, 
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• Il nCf) - 1, Il IIltCtIIU'ÏI)' a HUldard a8iD. COlltnctioD ha A 2. i.e., lI,laR ~. JDÏIIin, carv. of 1 he .. 

a coordiu&t Jiu? ' 

• Doe. d .... aiat u irredudble '1 with n(l) :> 11 

.. ~ What an 'he pOiaible values of n(!), c:(!), V(J), ;(1), 6(J) , todrreducible I? (We uow qo(1) = 0 

by (1.2.9).) , • 

(See th. introduct~OD for the hiatory of t~ese queatioDl.) 

In thia HdioD, w. auw .. the above queationa. Many other queatioDl can he ulted, but tom out 

$0 le VfIrY dimc~t inaeDeraI; .ameof th.m Will he annered in th. Dm IectioD, for the particular cue 

n(l) - 2. '-J 
Let 111 DOW conaider the main reaulta of part l, and point out what they aay about the apecial eue 

.X* y == A2-. 

. 2.2'. COROLLARY. Let 1 : A 2 -+ A 2 be a biratioDal morpm.m. 

(a) 90(1) == 0, q(!) == c(!) ad 6(1) S j(J) "itb equa1ity üI 1 fadon al 1 = hg, "here g and h are 

bir.eional endomorpbùmll of A' IIUel! ehae n(h) = q(h) = qU) and n(g) = j(1) = 6(1). 

~ " (b) qiven aay miDimaJ decompOlli&ion of l, ehe cori'e,pondiDg (tJquare) in.trix ~I' h., deeerminant ±l. 

(e) Every ID_iD, carve of 1 û ra&ional ad h., one place at iDiiDity. Embed A' in p2 the atandal-d 

"AYj Ü nvo mÎl8iD, carvel mee& the line .t mliDity at ~tmd pomu then one of them ÏI a linear line 

(J.9). 

(d) .AIl fundamentkl point. of 1 ve on the lDiumg carv •. 

(e' Let tb. miuiD, curvel of 1 be Cl, .. " Cf' Let A2 '-+ Y,,(J) -+ ... - Yo = A2 he fÏven by a mmÎll'JaJ 

decompOllWon of 1. Then Y,,(/) \ A 2 h .. q = J(l) ~coDDected compollentl, each one beiJJ, the ,upport 

of tOme Di e Div(Y,,(/» (1 SiS q) "ith '.,..c:. (in Y"(I))' fonniJJg .linear &Tee 

. '- t 
"h ... b1, ... ,j~,rÏl. (poaibly empt,,) lIabeet of J, Ci;" Ilot complete, but dJe Ei' are. Moreover, 

1 ~ 

EA < -1 iD Y,,(J)' 
. 

Paoo,: qo(l) = 0 by (1.2.9), q(l) = c(/) by (1.2.8) anel the reat of (a) by (I.S.7) and (1.8). (b) cornes . , 

from (1.2.7), (d) from (1.2.1), (e) from (1.5.7) and the &nt two uaertiona of (c) &am (1.5.3) and (1.5.5). 

We prove the reat of (c), i.e., the auertiOD about one of the miuing curvea being a linear line. Chooae a 

minimal decompOlitioD of l, with Dotation u'uaual, let A2 '-+ p2 he a atandard embedding (1.1), and 

write L = p2 \A2. Complete the diagram: 

~ " Y" ' &..+ Y" 

/~ .. ll'" 

• lW'l l i'l 
Yo &..+ Yo --
Il . J~ A2 _ A2 &..+ , 

1 

'&3 
. .,. 
J 

• .. • " 
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and conaid~ D = L+Ol "+·· ·'t0, + EtE/Et e Div (Y ft). Then Y ft \A2 = .upp(D) and, by (1.4), D 
has at most one ·~ad point-. Iti"particular if Ci meeta Lat Q, (in P2)" = 1,2, and if ql rF q2, then 

(Oi.L)Q, = i for so~e i e {1,2}, i.e., O,.L = 1 in p2 for sorne, E {1,2}. 

2.3. COROLLARY. Given bira~ional endomorplùmu I,g 01 A2, n(g/) = n(f) + n(g) and i(g/) = 

i(l} + i{g} + Ac(l, g}. 

PROOF: (1.2.10). 

2.4" COROLLARY. Let 1 he a birational endomorp1Jiam of A2, let (9, h) be any ladori.a&ion 01 J and 

wrlte W = dom (h) = codom (g). Tbeu q(h) + j(h) ~ nJh) and tbe lollowing are equivalene: 

(a) W ~ A2 

(b) q{h) + i(h) = n(h) and (g, h) Î6 ~ connected ladori .. tion. 

PROOF: (1.3.6) and (1.8). For the definitioll8, see the beginning of (1.3). 

2.5. COROLLARY. Let 1 : A2 - A2 he a birational endomorp1Jism wieh i(l) ~ 0, let D he any . . 
minimal decompolitio,n 01 l,let p. = PD and let r,' be p06itive integenJ luch that r+' = n = n(f). Then 

the following are equivalent: 

(a) f = hg, for .some birational endomorphisms g, h of A' luch that n(g) = r and n(h) = ,. 
(b) Modulo a permutation of '1Je columu and a permutation of t~e rOWI, p. has the form 

, where H is an a X a matra and 0 is th~ r X S lelO matrix. 

PROOF: (1.3.6) and (1.8). 

From (2.4) and the discussions of (1.3), it is clear that we have an~algorithm that enumeratea, for 

'- sorne given ,: A' ..... A', all equivalence classes offactoruatioJl8 A2 ..... A' -+ A' of ,: In particular, 

we have an algorithm that decides whether a given endomorphism is irred~le. Howevu, such an 

algorithm doean't help ua to answer general questioJl8like, say, -for J"hich values of n are there irreducible 

enCbnno.rphisms / of A' with nU) = n7-

r 

In fact, whether there exist irreducible birational ~ndomorphisme with n(l) > 1 is a problem that 

rema.ined open for some time when people began to investigate theae morphisma (see the introduction). 

The foUowing ex ample settled the question. ' 

2.6. EXAMPLE (RUSSELL). Let 0 1 be an irreducible curve of degree two in A2, with one place 

at infinity (a parabolli). Let Pl, P2, Ps be distinct pointa of 0 1' and let 0, (reap. Os) he the linear Une 

through Pl and Ps (resp. Pl and P,). Blow-up A' at Pl, P" P3 and' remove the strict traJl8fonDI of 

0 1,02 , C3 from the blown-up surface. Then the reaulting open set is iso~rphic to A2 and wC! obtain an 

irreducible birational morphism f : A:il ..... A' with nU) = 3. 

PROOP: First, we show that the Burface obtained is ~ A2. Embed A2 in p2 the .tandard wayand 

let L = p2 \ A'; let P he the place of al at infinity. Blow-up p2 at Pl ,P2 , P3, denote the blown-up ,..., ,...; 

.urface by p2 and coJl8ider (i.e., mw a picture of) the st!ict tranefonns of L, Cl, O2 , Os in p:il, with 
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-Mlf-iDteneetion nu..wera l, l, -l, -1 reapedively. To show': U 5!! A2, where U = p2 \ (LUO! U02 uOs) . 
By (1.2), '.ftough ta Ihow that (11 E g(ui. So we blow-up until we ,et a divisor with •• ".C.j mo~ preciaely, -IÎIlce (L.OI)p = L.OI = 2, we blow-up t'!ice at P E Cl C P2. Il the reader made the nec:elbl'y picturea, 

he will probably agree ,that the r~ulting diviaor, i.e., the reduced effective div~r at.. infinity of U, hu 

..... c. and determines the dual graph (1.4.6) ,'Si 

( 

r-l)-(-l)-(-'l) 

1 

(-t)-(-t}-(-l) , 
J 

/where the nUJbheri are the weighta. NdW that weighted me contracta to Il,0, -21, which is equiv&1ent to 

(11 by the obeervation j!l8t before (1.4.15). So U ê!! A2 .. To prove ~ucibility, conaider 

[
1 1 1] 

~ =, 1 0 1 
1 1 0 

1 

~and apply (2.5). 

REMARK. (1.8) Wal not available when RuaaeU conatructed the above example, 80 he ~ouldn't Ule 

(2.5). However, he proved the following atatement, which doean't require (1.8): r 
If J: A2 -+ A2 hal ordinary fundamen~al Points, ehen (a)=>(b), in (2.5). ~ 

So, when (1.6) Wal diacovered, Russell knew that (2.5) Wal true in the case of ordinary fundamental 

pointa. The generalisation to the c~ -i(f) = O· ia due to the writer. 

REMARK. In example (2.6), àn equivalence clau of birational endomorph~2 -+ A 2 j4 determined. 

One can Ihow that, if tEk \ {O, 1}, then . 
./ 

klX, YI- k[X, YI 
X .........t (~y2 - (t + I)XY - (t - 1)2y + t)(X"Y - eX - (t - 1)2) 

Y .- (~y2 - (t + I)XY - (t'- 1)2y + t)(X"Y - X - (t - 1)2) 
( { 

civa an element of that equivalence clau. 

2.7. EXAMPLE (RUSSELL). Let n ~ 3, let Cl he an ~ucible corve of de~ n - 1 in A 2; IUch 

that 
• 

(a) 01 h. one place at infinity 

(b) 01 hu a point Pl (in A2) of multiplicity n - 2. 

Cle~ly, luch a corve exista. Chooae distinct Iinear linea O2 , ••• , Cn luc;h that 

(c) 0, nOI = {Pl' ~}, lome ~ E A 2 \ {Pl} (2 ~ i ~ n). ( 
Blow-up A2 at Ph"" Pn and remove the atrict transforma of Cl,. .. , On. The resultiDg surface is 

iaomorphic to A 2 and we get an irreducible / : A 2 
-t A 2 with n(l) = n. 

Verification left to the reader . 

We He that ilTeducible endomorphisma / : A'.J - A2 with nU) = n exiat for aU n ~ 1. The cue 

n = 2, which ÎI not covered by the Aboye examplea, will he atudied in detail in section 3. 
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The case n(l) = 1. Le~ 1 he a birational endomorphiam with n(l) = 1. Then 1 ia irreduc.ible by (2.3). 

Since c(l) ia obvioualy l, we have q(l) = 1 by (2.2a). We have ;(1) = n(l) - F(f) = 0 and the rnatrix '" 

Q ia ~he l,Xl matrix (1) by (2.2b). So ",(Pl, C) = l, where C ia the tniaaing curve and Pl the fundlUllental 

point; by (2.2e), C is nonaingular arter the blowing-up of A2 at Pl (it. Ulay hav~ a eingularit.y at. in6nit.y), 

eo il. is already nonsingular in A2. Renee C ~ ~1 by (2.2c), i.e., C is a line (1.9). To conclud~ t.hat. / 

is a standard affine contraction (2.1), all there remaina to show ia t.hat. C ia a coordinate tine. G~nerally, 
1 

that 1I0rt. of problem can be very difficult (11. We willahow that C ia a coordinate line (hence that 1 ia 

a standard affine contraction) by IIhowing that il. ia graph-theoretically linear (1.10), (1.11). Thia meaD:' 

that a certain local tl'ee Tic contracta to a linear local tree; to prove that, we aaaume that Tic doea not 

contract, and we uae our knowledge of C to exhibit ~ triple (d, u, v) which violatee (11.8.82). Note that 

our argument is valid in arbitrary charaderiatic. 

2.8. THEOREM. Le, 1 be a biraeIoîlal endomorphism of A2, witb n(l) = 1. Then 1 il a standard 

afline contraction. 

PROOF: Embed A 2 in p2 the etandard way, let L = p2 \ A 2, let C he (the c10sure in p2 of) the mwing 

curve of 1 and let P be the place of C at infinity (of A2). Writing 50 = p2, etc., conaider 

50 +- t- Sic ' 

",(P, 0, L, p2) : (To,pg) <= 

If k = 0 t.h~n o.L = #JO({P, L}) = PIc({P, Ln = 1, 80 C is a line in p2, i.e., a linear Une in A2, and we 

are done. 

Assume k> O. 

Let d = deg 0, u = p(PI , C) (i.e:, u = l, but we don't need to know that) and 

,. .-1 
a = ~ - u2 

- 2:(Pj(.7:0»'. 
;=0 

In the notation of (II.2.S), T~laJ ~ 9(51;, Ollc) + LIc) "': IlJ. Clearly the principal vertex of ~ ~ a branch 

point. So, if Tic does not con tract to a linear local tree, the hypothesis of (II.3.32) ia satia6ed. T~ 
, ' 

(d, u,O) violates (II.3.S2), which ia abaurd. Conaequel).tly, T). doea contract to a linear local tree. Hence 

the misaing curve is graph-theoretically linear, i.e., it ia a coordinate line. 

We now return to the general~e, i.e., nU) ~ 1. The above theorem generaliJea as foUowe: 
r 

2.9. TBEOREM. Let 1 be a birational endomorphism of A 2 suchthat qU) = 1. Then 1 is a compo.sition 

,of nef) standard affine contractions in A 2 • In particular, the missing corve and the contracting curve 

are coordinate lines. 

PROOF: Let 0 denote the mwing curve' of 1. We proceed by induction on n = n(l). 

The case n = 1 is just (2.6), above. \ 

Let n > 1 be such that the theorem holds whenever nU) < n. Let f be Buch that n(l) = ,;. Choose a 

mininial decomposition of l, with notation as in (1.1.3h). Since jU) = nU) - c(!) = n(f) - q(f) = ta-l 

and n rt J by (Ij.Si), 

(1) J = {l, ... ,n-l}. '--, 
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f' 

Alain by (Ll:3ij, " ' . 
(2) 

Thu an elementary calculation .hoya that --

r 
(3) fli ~ ... ~ fnit 1 ~'i ~ n 

(He (1.2.5) and (1.2.4) for de6nitiona). Since Eij = 1, we deduce 

(4) Eni ~ 1, 1 ~ i ~ n. 
" 

., (1 X 1 matrix) 

10 by (2.2b) 

n 

(5) ~ Enip(e;, C) = 1. 
, i-l . 

By (') and (5) . 
n 

1 ~ E p(Pi' C) ~ p(PI, 0) = 1, 10 

(6) . 1'= [f] 
" .0 

.," 

~d couequently f"l = 1 by (5) and (6). If 1 Si < n then by (3) and (2) 

, ~ 

1 = f"l ~ E'+11 = E E"11'(PHlI E,,) 
.=1 ' 

~ rï: ~(~+1, E")] + p(~+1J Ei), ~ l'(~+1, Ei) ~ 1, 
lt=l' 

wbenet 

(Tl all ',j. 
• 0 

Dy (6) and (1), Pn '1. (C U El U··· U En - 2 ) in Y"-I' So the image of A2 
..... Yn -. Yn- l ia contained 

in W = Yn-l \ (CU El U··· U En-2): In other wonis, we have a factorisation (Q, h) of f (g : A2 - W 

and Ii.: W -. A2, aee (1.3». Now 9 hu one miasing curve, En_l' Sinee Pn E En-l, qo(l) = O. On the 

o~her hand, Yn \ W ia connected by (6) and (7), and containa C, 10 (g, h) ia a eonnected factorisation of 

f. Clearly, n(hl = n - 1, W ..... Yn - 1 - ••. - Yo giva a minimal decomposition of h and conaequent.ly 

i(h) = n - 2. Sinee 0 ia.a miuing eurve of h, q(h) + i(h) ~ n - 1 = n(h). Then W ~ A 2 by (2.4) and 

ye may apply t.he induct.ive hypot.hesis to h. 
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REMARIC. In the above argument, once (6) and (7) are prom WAI bow that the contractinl curve 

~n nA 2 of 1 hu ODe pl&Cë at in)iity. and hence ÎI a line (et A!). TheD we ooul9 invoke 11&. remark 

f.4) and coDdude immediately. However. that would not he a lignificant improvement. ainee the .... ntiù 

part of our proof ia to establiah (6) and (7). 
- . 
Until receDtly, DO 'example of an ÏITeducib)e 1 : A2 -+ A2 with ;(1) > 0 wu knOWDj Ruuell did 

coutrud examplea with infinitely near fundamental pointa, but they aU had ;(1) = O. Moreover. the 

above theprem laya that ü ;(i) hu the maximum pouible value, i.e., ;(1) = n(l) -l, theD 1 ÎI leducible 

(unlesa n(f) = l, of course). In fact, when the authol proved 'hat theorem, he wu hopmg that it wu the 

lirat atep in the proof that ;(1) > 0 => 1 reducible. HOWevef, his attempt. reaulted in the con~trudion 
of a family of examplee (2.11), IIhowing that he wu as wrong u he could posaibly be. To darify the 

situation, we have thé following IItatement. 
1 

- 2.10. TBEOREM. Let n, ,. and 6 he nODJlega&ive üdeg~. There exût" an irreducibJe bira&ionaJ 

morphillm f : A2 -+ A2 aatiMying n(/) :;: n, i(f) = j and S(/} = 6 Ü and only ü one of the followin, 

conditio~ holch: 

(a) 0:;: S;"',. < n 

" (b) 0 ~ S < i < n - 1. 

PaOOF: Suppose there exists an irreducible / such that 'n(l) = n, j(l) = j, and S(J) = 6. We have 

o ~ 6 ~ i < n by (2.2a). H j = 0 then (a) holda. If; > 0 'hen n > l, 80 6 < i by (2.2a) and i < n - 1 

by (2.9), i.e., (b) hold!. 

Converaely, the case (a) with n = 1 ÎI reali.led by the standard affine contractionsj the case (a) with 

ra> 2 is realùed by (2.7); and che case (a) with n = 2 is realiled, u we will'aee in section 3. H (n,j, S) 

satisties (b), let m ,; ; - 6 + 1 ~ 2 and q = n -; ~ 2 and choose 61 ~ 0, .. " 6'1-1 ~ 0 luch that 

61 ..,. , .. + 6'1-1 = 6. Then example "(2.11) realises thelle numbera. 

2\ 11. EXAMPLE. Let m ~ 2, q ~ 2, 61 ~ 0, ... , 6'1-1 ~ ~ he 'in~egen. We will con.tr~t an 

~ueible birational morphiam f : A 2 -+ A 2 with two fundamental poin~.~ and aatiafying 
/ ' 

n(J) = m + q - 1 + 61 + ,. , + 6'1-1 
~ 

q(J)=q , 

6(/) = SI + , .. + 6'1-1 

i(J)=m-l+6{/). 1 

ChOO8e FI, ...• F., E klX, YI luch that if O. ia the affine plane torve Ji(X, Y) = 0 then 
, l ' 

• Oi ia a nouingular rational curve of degree m, with one place at intinity, withrmnkip1icity sequence 

at infinity: m - 1, l, 1, .... 

• There are distinct. pointa Pl, P2 e A 2 luch that. 

(For ÏDat.ance, e = Oïym-l(y -l)+X, where'41,""~ are cU.tinct elementtofk-; tben Pl = (0,1) 

and P2 = (0,0).) 
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w ..... pla, \0 embecl 1..2 la l' .. (OU of &la, N~a&a ra&ioDù nrfllCtl). l'im, embed 1..2 in p2 the 

I&aadard WII/f ad wrUe p2 \ A2 - L. lM C~ aIIo clu.ote &he donn la p~ of ~e ClII'Ve C, chOleJl .bave. 
Th. CVV. Cl' ... , C. ail m_t L at &la. aune point P. Notice that • 

1) C, n L - {Pl, ,..CP. Od SI: m -1, C,.L - m, ail i. 

2) O,.C/ - ,"', ail i,j. 
8) (C,.O,)p':a: ,"2 ~ m, ail diatinct i,i. 

Blow-up p2 at. Al 1: P, let Dl he the txceptional cune, let A2 he the poim at whieh D~ and L meet. 

Theil 
" 4) C, nL .. {A,} = C, nD1, C, st pl, Cl = 2m -l, C,.L = l, O,.Dl = m -l, for aU i. 

5) 01 nc, - {Pl' P:h A,}, (Ci-.C/)A. =.m -li'aU ctiltinct i,i. 
( 

l " 

BJow-up m - 1 tim .. at the point of Dl whieh ia t .•. ..42. Cali the exceptionaJ carves 10 obtained 

D2' •.• ,D".. On the raultinSI1U'fac:e, ihe diviaor Dl + ... + Dm + L)u '.fl.c., ib dual sraph ia t~ 
linear w.i,hted tne a 

, D.(-m)-D".(-1)-Dm_l(-2)-···-D,(-2)-L(-1), 
, 

where,the numhen iDaide the -( ). are the wtÎlhta, and the comple~umt of that divÏJOr ia A 7.. Contract 

L, D" .•• ,D"'-l and let 50 denote the complete aurfac:e obtained. We ,et A' = So \ BOpp (Dl + D".), 

where Dl + D". e Div (So) hu ' •• :c. and bu dual sraph 9(80, Dl + Dm) U foUOIrs: 

'Dl (-m)-D".(O). 

ID lact, So ... :r". Cbut we don't reaJly need &0 DOW ihat). 

Now Cl' ..• ,C". mett D". at diatinct pointa and , 
e) c, n Dl = f, C,.D". = 1 and Cft = m, ail i. 

We now proceed to deSne an equivalence elua of irredocible morphiama 1 : 1..2 - A2. Blow-up 

once at Pli blow-up m - 1 tima at P2 (more preeiHly, alwaya blow-up al the intersection point of (tbe 

Itrict trantforml of) tbe 0,'.). The lut of these blmrmp.up mùea 0 1"" ,C, pairwiae disjoint. fi 

El,~, ... ,_ Em are the exception al curv_ 10 Cl'eated, then on tbe blown up surface the diviaor ~ + ... + 
E". + Cl + ... + Cf + Dl + Dm bu ' .•. c. and itl dual 8J"&ph ia 

BIow-llp ~ + ltim .. at 01. 

'hen 6, + Uint .. at 02, 

e9 

= -0'_.-
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mon pneiMlr. al!rIfI blow-ap ~. poiat cl E.. wMet Il i •. Q,. ' 
Dea. bJ Bf •. • •• EJ.+l • .El.·· .• A'J;~+l.J:l-l,.·.;~;~+1 Ua. ucepUonal C1II'nI1O mû.d. On th. 
.... ultiD. nrface,' eall it 8". co~der Uae diYÏIor '--

• D = E:a + ... + E". + (E~ + ... + El.) + ... + (Er1 + ... + .&1;~) + Cl + ... + C. + D", + Dl, .. 
\,.' whoee dual gr.ph 9(S", D) ÎI 

where, for, = 1, ... , 9- 1. S. ~, 
~ 

C.(-l)-E1(-~)- ... -~.(-2). 
\ 

, Ci heing linked w D".. We daim that the complement of IUpp (D) g ÎIOmorphie to A 2• By (1.2). enough 

to show th_t 9(B",D) ,.., (1). Now 9(S",D) coauae~ to 

(-2 ..... -2. -q - 61 - ... - 6.-1,0,61 + ... + 6f - 1 + q - 1. -ml 
.... (-2, .. ·.-2.-1.0,O.-m] J.. [m-l,O,-m) -1-1,0.0]"" Il). 

where we 1111 the notation for lineU' weighted keeI de6ned befon (1.4.15) and the fact ~pointed out juat 

after that d.6nition. 

So we ,et an equiyalence cl'" of biratlonN morphûma f : A 2 - A 2 • W. leave it to th~ reacIer to 

conVÏDce himaelf that. ü f = la 0 9 with 0 C; ~(h) < nt!). then la pna rUe to .. lub weipt.d t~ 9' of 

9 = 9(8". D). nch that 9' contaioa Dl. D". &Il~ at leut one more venu. 9' 'f;' 9 and ~' ,... 111. W. 
daim that 9 dois Dot contain luch • 9'. To Me thu, nppote 9' au. Then Ct ÎI in 9', otherwiae 9' 
would con&raet to (p, -ml for tOme l' > 0, and (P. -ml ;'(1) by (1.4.16). Nw, E", ÎI in 9', for otherwÎle 

9' CQntrad. to (0,1', -ml for aome p ~ 0.1Ild"by (L4\16) thia ia Dot equivalent to 111. So 9' hu the form 

" . \ .. ~,l-, 
8'-E".(-q- 6J -'" - 6f - 1)-Gf (0),.:-b,,.(O)-Dl(-:m) 

where e&eh S', S: ia either unpty or a lin.Ar brl.nch, and 

8:\(~~,-2, ...• -2) ifnot empty, 

B' = .(-2, ... , -2} if not empty. 

Notice that. if B: ia not empty th. the .~ of weiaht -1 ia Ua., ad ÏI the DeichboV of 'Dm. Henee 

we lei that ail (nonempty) St C&D he abeorbed br D., and thM ~ ablorption of 81 ÏDcreueI the ~ht 

of D". by $he number IB:I. Let G Î:: ISH + ... + IS;-II. TIIiiï'9' contrac:w ta th. minimal wfich$td tree 

B'-E",(-f - 61 - '" - 6'_1)--c,(O)-D".(cr.)-Dl(-m). 
~ 
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o Dy (1.4.16),4- q-61 _ ..• - 6,_~ -1,80 IBII + ... + IB~-ll = IBII + .. t.+ IB,-ll, i.e., SI = Bi for alli. a 
Let ,,= IB'I· Then " 1 . 

B' - (-2, ..• , -2, -q - 61 - ., . - 6,_1,0, 4',-mJ 

-1-2, ... ,-2, -l,O,O~-mJ ,... [6 +- 1,0,-ml 

where we tued the obeervation just before (1.4.15). By (1.4.16) again, 6+ 1- m = -l, i.e., 6 = m - 2 and 

g' = g. Hence f is irreducible. 

a. The c .. ~ n(l) = 2. 

In thie section, we claüify irreducible birational endomorphiams f : A2 - A2 such that n(l) == \. , 
Obterve that i(l) = 6(/) :d 0 by (2.10), 80 f has two miasing curves. Moreover, it follows from (2.5) 

that all entJ'Ï. of the matrix Il (determined by Py minimal decomposition of i) ~ nonsero. 

3.1. TBEOREM. Let f : A2 - A2 be an irreducible birational ~orphism with n(l) = 2. )Then there 

Ü a coordinat. 'YI'~ on A2 auc4 tbaC, if A2 Î6 embedded in p2 tbe sCandard way, chen fie closures of 

tbe lI1Î86ÏDg cun. meeC tbe line aC inlinity aC d~cinc& pointa. 

Moreowr tbat coordinate 6Y8te:ln Î6 JJnique, up Co aJ1ine atAomorphism of A 2, and bu cbe followiJg 

plOpeny: if the mÏUÛJg carves 0 1,02, and the fundamental pointa Pl, P2 are suitably Jabelled, tben , 

(a) 0 1 • a rational cUrYe of degree 26 + 1 (for 60me 6 eN), wicb one place ât inlmityj 

(b) p(Pl, 0 1) = 6 + 1 and p(P2 , al) = 6; 
, 

(c) 0, • the Uneu Jine duough Pl ànd P2 (noCe Cbat P2 Î6 allowed Co be i.n. Pl); 
..Y 

(d) Tbe muhiplicity Nqu~ce of 0 1 a'& inlinity begina ",itb a 6equenée of type (2,26 + 1, 1) and contmu. 
'f 

1,1, .... 

3.2. TBBOREM. Le~ Olt C2,PlJP2 lIaCisfy Cbe condmoDII'(a)-(d) of (8.1). Then tbere exis&a.an irre­

dacible birational morpb.WrJ f : A2 - A2, witb n(l) = 2, baving Cl and O2 ullÛ6lJiDg curves and Pl 

and 1\ u fand ..... cal poinu. 

3.3., RBMARKS. The .foUowing comments required exten.sÎVe computations that the author carried out 

by _, method. that R. Ganong explained to him. In' thia regard, the author would lib ta express his 

thanb &0 GuoDg. 

(1) The condition (d) of (3.1) is Dot sUpérftuOUII, i.e., there are curv. Cl, O2 and points Ph P2 .~iafying 

(a), (b), (c) but Dot (d). We haw the fol1owing example: 
1 

Let chu-k = 3, 

Cl : yl2 + XY" + xsye - X u• = 0 

0,: y=O 

Pl = (0,0) and 1\ ÏI the unique point common ta the mict tran.sformJ of 0 1 and O2 alter blowing-up 

A2 • Pl (10 1\ ia i.ta. Pl)' 
~ 

Th. nader can yerify th. (a), (b), (c) hold and that the multiplicity sequence of Ci • infinity ia 
) 

3, ..• ,3,1,1, ••• , 
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. wh ... ·3- ocean 14 tim.. So (d) dou aot hold. 'nt "..uo. wlae\h .... da .. exampl. aIN If 
œark - 0 ia open. No tlWQple aida nda &hû Cillau d'" _ Ua".ll (IllY chvae~). 

, 
(2) We have the followinl qu..tioa. Giwn a poli"" lateter .J&ad a NqUgce (ro ..... r.-I) of type . 

(2,26+ 1, 1), do then exilt CI. 02, Pit 1\ wilfyia, (a), (b). (e) of (a.l) ... d nda t~a\ &he multipUc:ity 

Hquenee of Cl û' infinity beciu with ro, ... , "'-1 (and continua with 1,1, ... )1 '\6 . 
Now let 1 he as in (U.S.5). The answer ia ,el if , = 1 or 2. Indeed, write (ro, ... , r"-l) = 
(mo, mo, il, ... , i,) as ÎD (n.S.5), let 02, Ph ~ he u iD (1), above, and let Cl be the curve 

{

](IO + 1""0+1 = 0 . if , .. 1, 

(roI'. + ymoli a+1)'1 + xymo+"'l -= 0 if l'. 2. 

Thea the deaired conditiou are la\ia6ed. 

The author'i opinion ia thû the &D.IWer il re. in leneral. In fad, he alIo found .ome exampla witb . 
1 = 8 and wu beginnin, to 1Ulderatand how to 10 mm .,. to ., + 1-, when he ran out of tim. &ad 

atopped thownS about that problem. 

(8) F\oom what Jau been aaid, we conclade that 

(i) If l, Cl, C2, Pl, P2 are as in (3.1) then 

p=[6~1 !]. 
(ü) Gn,u. 6 E N, the m&trix diaplayed in (i) can he obtained!rom an imdaci~le 1: A2 - A2 with 

n(l) = 2. Fnrther! if r26 + 1 ia not a prime number then, by reDlark 2 followin, (u.s.a), then 

is a sequence of type (2',26 + 1,1) with 1 = 2 (and there ia alwaYI one with l = 1) 10 by (2), 

above, together with (8.2), there are nonequivalent 1'1 realising the m'atm conaidend above. 

(The ·Doneqaivalence- coma from the dise_on precediDg (1.10)). 4 

PROO' OP (S.l): We are going &0 conanet an open immenion A2 '-+ p2 ~ch that the clOluree of 

the misaing c:\U'V~ meet the~e al Ùlfinit)' al cliatinct pointa (th~t ÏI cleul)' eqaivalent to the exÏltence 

of a coordÎDate I)'lItem on A2 with the uaerted property). AIl other useniona'will he eull)' deduced 

from that. 

Couider a minimal dec:ompoeition of 1 and the corrapondinl matrix p: 

/

Y2 
.! 

, ~ p=-[:~] 
A.,2 _ A2 = Yo 

1 
"hen ft Ulame that CI > 6 ~ 1 (tlù.l ia poaible hecaue no entry of Il ÏI HI'O and d'etp -= :t:l). ÂI 

b 

ulual, let Ct, G2 he the miaing eurvea and PI, P:a the fundunental pouls. Chooee an)' open immeni9D 

A 2 .... p2 and let L he the line û infinity; conaider the cliaaram 

( 

j' ~:! ! ! 
Yo '-+ ~ 

r ,II Il A2 _ A.,2 _ p2 

1 "\ 
l.---) 12 

, ' 

-

•• 01'. ft. • 

" 



o 

, 
# 

'. 

, , 

.. 

,'1 . , 

\ 

-t -.... ,J."I;'!:I j;~-~,~ . , ("-" ,'"" V'"i!~"'" ," ~ (q \-'~!:}" i::~-~\")t~1' ~~"'H"" ,~; 

.. , 

" , 

Thon A'J = Z, \auPP(C1 +02 +L). Conaider a sequence 

(N~ 0) 

when each Ui i.e the blowing-up of Si-l at a cloaed point li -at iri1inity of A2, such that if we write 

li = ct;-I(Id and \ 

LO = L E ~iv (50)' 

Li = Li - l +Jii E,Div(Si) (1 ~ i 5 N), 

, \) '" • J 

then Cl + O2 + LN E Div (SN) hab ".R.C .. Assu~e that N ia minimal with respect ta theU propertiea. 

If N == 0 then Cl + 02 op L has ".n.c. in 50 and, in pariicular, Cl and O2 rneet L at ,distinct points (in 

Zo = P2) and 'we are done. Let' ua uaume that the miuing curvea meet the line at infinity at the same 

point. Thon N> 0 and, by (l.4c), the center li of (1', belongs to the support of Cl + C2 E Dj'r (Si-l) (alI 
il. So the fOÙaWing notation maltes sense; , :;t 

, ~ <l 

( {O, ct} = {Cl, 02}, where Vi li E O. 

By (1.4b); '1 E C~n L in 50. Moreover, the cnrve in ~O ~nda to 0 h~ one place P at 

infinity (2.tc). So 50 4- ••• - SN i.e the beginning of the infinite sequence of monoidal tranaformatioJl! 
~ 

dotermined by the ~riple (P, 0, So) (see (11.2.8)). To that infinite sequence, there corresponds the infinite 

sequence of m~t~ea of (P, 0, L, So); let 

(T;,Po)-<:: .. ~ <:: (TN,PN) 
~ 1 

be the &nt N + 1 terme of that sequence. Th~n 10 = (1) and TN has one principallink. On the other 

hand, the cnrve in Yo whlch cOmlsPQnda to ct has one place 1" at in&nity; deline , \, 

le = max{j Il 5 j 5 N and 'i E C'} • 
• 1 

Thon So - ... - SIG (where the morphisme are (1'~, ... ,(1'k) i.e the beginning o~ ,the infinite ~ence 

of monoid'J'tÎ'àn8f'ormatioDl determined by the triple (P,C',80); if we let (Tl,p~.) be the m-tree of 

(P', (,J', Li 1 Si), 0 ~ i 5 /C, then w~ have the sequence of m-trees 

wh .... (T.{ _ .. i_ T._l ) = (10 +- ... ...,:. ~-1)' Sinee u" is the l~t blowing.up which hu centel. on 0', 
T~ mut haw ODe principallink (J' and p~(CJ') = 1; wh~ee k ~ h(P',O',L,'z"'). We have the following 

diqr~~ 

.. 
~ 

... ().,. .,. '+ t'CI .... CI 1 • 10 +- ... ~ '''-1 ...... ,,' _ ... +- 'N'. . " 
~, 

_ t '1a 
" 
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.. 

, 
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where e ia the vertex created in Tk-l 4- TI; and ~,:= 0,2 in SN (or in S., since theae two numhen are 

equal). If fJ = 0 11 in SN, then TN,O[fJl = ,9(SN,O+C' + LN) ..... [l\since SN \aupp(C+C' + LN) ~ Ali. 

If T~ doea not contract to a linear local tree then we may apply (11.3.27) to T~ - TJr- l and the "oak 
1 

sequence rk~l, T"tI,o, ... , TN'o. The conclusion aaya that 

satiafiea the hypothesis of (n.8.28), hence that of (11.3.32). On the other hand, ifwo let d he the degree of 

C' in'Zo = pli, u:= /J(Pl , 0') and u = J.'(PII , C') then the triple (d; u, li) satiafiea condition (a) of (11.8.32); 
which is absurdo 

Hence T~ doea con tract to a linear local tree. Aa observed above, le ~ k(P' , C', L, Z:a); it followII that 

all trees in 

r~(pr,cr,L'Z2) 4-'" 4- i~ 

have one principallink and, consequently .. that T~(pr,cr,L'Z2) contracta to a linear local tree. Sine/the 

blowings-up Zo 4- Zl +- ZJ have centera i.n. Ali, hence ~way from L, the sequences J.'(Pt,C',L,Zo) 
and J.'(P', ct, L,~) are just the sarne. Hence the appropriate local tree con tracts to a linear local tree 

and 0' cAli is graph-theoreticanY'linear. By (1.11), ot ia a coordinate line. Since we aaaumed, at the 

~eginning of this proof, that the entry a of J.' waa greater than l, i.e., that Cl wu singular, 011 ÏI a 

coordinate line. '. 

Observe that, ainee Cil is nonaingular and det /J = ±1, 

_ [b + 1 1] 
/J- b l' 

Hence c~ndition (b) holds, in the statement of the theorem (we willeee that the numbe! b of (a) ÏI the 

aime as thia one). 

We mayassume that the open immersion Ali ..... pli has been chosen such th~t the,closure of Cil 

is a line. If 01, Cil don't meet at infinity, we are done (with thia part of the proof). So lUIIume that 

Cl nO:a nL:F e. It then foUowa that LII $ 0 in SN. Abo, dt that has been said, above, is still v~ now. 

Observe that the principal vertex of T;·o. is a branch point (otherwiae the blowing-up SN-l +- SN 

is SUperftuoUB, i.e., N not minimal) and has weight -1. ~n the other hand, T;·al~1 "" [II. From then 

facts, we deduce that L has negative weight in TN·a • +,0 see that, suppose that L has nonnegative weight.j 

then that weight is 0, as noticed above. Then L must be a neighbour of the principal vertex.. in r;'o 

(otherwiae, any linearweighted tree f,+ to which TN,a[fJ\ contracta satisfies (f,+) > 1, as expillined in the 

proof of (n.8.27)). This means that aU blowings-up (0'1,' •. ,UN) have centera on L, 80 the final weight 

is 0 = 1- N and N ''= 1. Consequently, k = 1, ~ -2 and r;'Ol = (., -l, (0), (-2)) in the notation of 

(n.S.IS). Sinee i,;,al.B\ must contract to a linear tree, fJ = -1 and.T;·alfJ! ,.., [0,0, -2}1- 11\ (1.4.16), 

contradiction. 

Hence L has negative weight in T';'o. Thus at least two blowinge-up have center on L, i.e., 0 1 and 

'L meet in 51. Since CII.L 1= 1 in pli, hencé in So, they can~t meet in SI. So 011 and 0 1 are diljoint in 

SI' 82 rt Cil' k = 1 and Q = -2. Clearly, it. foUow. t.hat Tl
e'1 = (., (-1,-2), (0)). 

CLAIM. T;"a = T;"-'J contracta to a linear local tree. 

l ,'" 
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\ 
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Let d be the degree of Cl in Yo = p2 and let r; = J.'j{Zo), 0 :S i ::; N. Define m-treea (Bo,Md) and 

(9l,M1 ) by 

• 090 ='(2), Mo(:to) = ro and ü Go denotes the link then Mo(ao) = d + roi 

• BI = (.,(-1), (1)), M1 (Zo) = ro &pd ü e and ~ are the links correaponding to the weights -1 and 1 

reapectively, MlW = ro and Ml(") = d. 

Let alao (9i+1', M;+1) = ('li,l'i), 1 :S i ::; N. \ . 
Then 9N+1 = r;·GI, 80 we have ta prow that BN+1 contracta to a linear local tree. Suppose it doean't. 

Now, 
• (90, Mo) {::: ... {::: (9N+1, MN+1) , 

, 'li. where 90 = (i) and 9N+d,8) "" (1). Hence ,the sequence 90 +- ••• +- BN+1 aatisfies the hypotbeais 

of (II.8.28),(with !'" = 2), and hence that of (Il.8.82). 'Now we daim that ~he triple (d, u, tI) = (d, a, 6); • 
aatisfié the second condition of (II.S.32), which is absurdo To Bee that, we calculate the numbers i, w 

and p defined in (1I.3jS). Fint, ,= Ma(ao) = d + ro. Alao, 1 .r<, 

/" 

N-l 

w= -1+~+ L r1, 
;=0 

ro(ro - 1) ~l rj(rj - 1) 
P=---+L.t -

2 j=O 2 

- Binee (Mi (.2:0») i=O, .••• N = (ro, ro, rI, ... , rN -1)' Now the very first assertion of (11.3.28) re!UÙ -0: = -1-, 
which meaJ\l fJ = -1 in our cue. So Cl = -1 in SN, and 

~ w = .. ~ + (-1 +,.g + ... + rïr-l) ==,.g + (Ol in Sol 
, li 

= ,.g + ,p _ 4 2 _ 62 

= ,.g + ,p _ u2 _ tl2• 

SimUarly~ aince 0 1 is rational, 

ro(ro - 1) (' . h' f O' C!) P = 2 + ant metlc g~nUl 0 1 ln "'0 

-. = ro(ro - 1) (d - l)(d - 2) _ 4(4 - 1) _ 6(b - 1) 
2 + 2 2 2' 

For the lut condition, d - (u + tI + ro) = d - (Cl + 6 + ro) = (°'-:02 )81 ~ 0, 80 U + tI + ra :S d. Hence 

(d, u, tI) does satiafy the second condition of (II.3.:l2), and tbis is a contradiction. This provea the c!um, 
i.e., that r;,Q contracta to a lilléar local trer. 

It followa ~m (II.8.S) that 090 +- ... +- 9N+1 ia of type 2 (see (II.3.7)). In the notation of (II.8.5), 

We claim that 1 ~ 2. Indeed, Ü 1 = 1 then , = 2mo + il = 2ro + 1, 80 ro = d - 1, which ia impollSible 

aince 01 ia singular -at finite\:Iistance-. From'that, we deduce that 

(.) T.he sequence ("'J(~O»J=O, .. ,N-I begina with (mo,il , .. "'1), where -il- occun 2ftl times, and 

cOD~inUes with (ml,ml,Î2'''' "1), which is of type (2,Îl,l). 
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This is really the piece of infonnation that allows us to cona~rud the ope~ immenion we are alLer. Il ia 
now euy to Bee that 

72"1+1 := (., -1, -2, ... , -2, (-1- nt), (-2, ... ,-2, -1)) 

where the first sequence of"a-2- contains 1'1 terme, and the second ni - 1. Hence, T2"1+1 ~ (1). 

of tbe infinite sequence of m-tr~es of (P, Oh , 

Moreover, A2 ia naturally embedded in the surface 5~"1+1' its complement ia the diviaor D = L + FI + 
... + F2n1+1, that diviaor has ".n.c. and 

(i) Ol.D = 01.F2nl+1 = P2"1+1(a:z"I+d = il' 
(ü) 02.F2nl+1 = 0, , 

where 42nl+1' denotes tbe principal link of '1;.n1+1 and where ~he lut assertion is a consequence of 

le = 1 < 2nl + 1. 

Contracting the c'\1rv.es L, F2' ••• , F2nll Fl, we obtain p2, and the line at infinity of A2 is now F2n1 +1' 

Thua we have an open immersion A 2 ...... p2 such that Cl and O2 meet. the line aL infinity at distinct 

points, and tbis completes the first part of the pro of. 

It is )'e11 known that such a coordinate system on A.J. is unique, up to a linear automorphism (or 

rather, an affine automorpbism, sinee we aUow translations), In fact, any automorphism wbieh is Dot 

affine con tracts the line at infinity. 

Now 02 is a linear line by (2.2c), or simply because C2.D = 1 in 82n1 +1 ~d th aL is still Lrue &fter 

contraction. Hencé (c) holds. 

We have already notic~d that (b) hold.s; sinee 0 1 and 02 don't meeL at infinity, 01 n 02 k e once 

we bave blown-up p2 at Pl and P2 (for A2 bas no loops at infinity, or because of (2.2e)). Hence 

" i.e., degOl = 26 + 1 and (a) hold~. From (i), we see that deg al = i h 80 Il = 2b + 1. Thus (d) hold., 

since the multiplicity SÇ(luence of 0 1 at infinity is just (ml' ml,I2,.") which begins with a sequence of' 

type (2, il, 1) by (*). This completes the proof of theorem (3.1). 

, PROOF OF (3.2): Embed A l in p2 the standard way. Blow-up p2 at Pl and P2• Then Cl and O2 are 

:.> disjoint and O2 i.8 an exceptional curve of the first kind. Contract C2 and denote the resulting surface by 

S. We have 0 1 +L E Div (5) and we have to prove that U ~ A2, where we define U = S\supp (01 + L). 

Then by (1.2), it's enough to prove that.111 E GlUI (1.4.8). 
Recall that Cl C A2 has one place Pat infinity. Then 0 1, regarded u a curve on U, has one place r.t 

infinity: the same plilCe P. As in (1l.2.3), (P, Cl, L, 8) determinell a sequence ofm'onoidr.l tran.fonnr.tion. 

aJid a sequence p(P, Cl, L, 5): 
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where So = S. By definition of k = k(f, 0 1, L, S), T~ has one prineipalllnk and the multiplicity oUhat , 

link ~ 1. In the notation of (11.2.8), thia meant that C~AI) .LAI = C~~) .E~ = 1, where E~ ia the exceptional 

corve aeated by S"-l -, S" (note $hat k > 0 becaue (Ol.L)so = 26 + 1 > 1). Now U ia naturally 

embedded in 8", and the complement of U ia just the support of 

Let us check that D has •. R.C .. By the above comments, th~ amounts to prove that 0 1 ia nOl18ingular. 

Now condition (d) of (8.1) says that 

(ro, ... , rAl-l) = (pj(:&o))j=o ..... ~-l is oUype (2,26 + 1,1). 

!1!.::.!l ,. . 
Let US11Je the notation /(:1:) = :1 :12-1, :1: e Z, as in the num~callemma (n.8.81). Using parts (a) ,and 

(d) ot that lemma (with w = 2, i = 26 + l, i' = 1) we find that the arithmetic genus of 0 1 in S" ia 

(!(2~) -/(1+ 1) - /(6)) - (~/(r;)) = 6(1. - 1) - 6(~ - 1) = 0, 

" 
80 D hu '.R.C .. Therefore, the dual graph B(SAI, D) is just TAl I,8I, where ,8 is the self-intersection number 

of 0 1 in 8~. By (II.8.S1c), we get ,8 = "n, where n, is determined by (ro, ... , '''-1) as in (11.8.5). 

On the other hand, the aèquence Ta - ....... 7k is of type 2 (11.8.7). So theorem (n.8.S) says that 

'li. ~ (.,O,-n, -1,-2), where the notation is as in (11.3.18). Hence 

91U13 7i:1,8) = TAllnd = ln" O,-n, - l, -2) AJ Il] 

-- where l'le use the notation for linear weighted trees de6ned'just belore (1.4.15), and the observation which 

cornee just &fter that definitioP-J. This completes the proof. 

We did not use the full power of (11.8.27) in theee proofs; what l'le used, in fact, is (n.8.24). We 

belleve that some parts of these arguments can\be generallised to n(l) ~ 2, by using a sllghtly generaliJed ' 

version of (11.3.27). In particular, it seems to us that the beginning of the proof of (8.1) aetually shows 

tbat if 1 : A'J - A'J has n(l) > 1 and if every column of p has at most two nonlero en tries then sorne 

miasing curve of f is a coordinate line. However, we did hot check the details, so this daim is only a 

conjecture. The reason why l'le have to limit ouraelves to two nonlero en tries in eaeh column of p is 

tbat these entries com;~pond'o the numbers u and v of (11.8.32). We don't know how serlous is that 

limitation. Th remedy this, we could for instance try to improve (11.3.82), or to use (11.3.28) itself. Also, 

we haven't taken advantage of (2.2e), which Ïs, in our opia10n, an interesting and non trivial piece of 

informa~ion. 

On the other hand, it is not true tbat our arguments tasily generallise to n(l) > 2. ln particular l'le 

have the following example of an irreducible f : A'J -+ A'J with n(J') = 4, all of whose missing curvee 

are aingular. Note that each one of ~~ese curves contains the four fundamental points. That example ia 

due ta RUllell. He hu kindly accept.ed to carry out the calculatioDS, in order that adual equationa he . 
di8pla~ bere. 
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3.4. EXA~PLE. ~ A2
, let Pl ~ (0,0), P:I = (0,1), Ps = (-1,-1), p. = (1,2) and let. 0 1 , 02,03 and 

O. he the corves given by the polynomials 

FI = yS + s,X"2 -6XY _ y 2 \ 
F2 = y. + S2Xs - 4SX"Y + 20xy2 - 2Ys + 20~ - 20XY + y2 

, ~ Fs = y4'_ 32XS + 4SX"Y. - 20Xy2 - 2Ys - 2S~ + 20XY + y2 

F. = y 6 + 12Sr - 288Xsy + 224,X2y2 
- 60xys - 2Y· + 96Xs - 156XJY + 60XY'J + yS 

reapec~ively: Blow-up A'l at Pli P'J, Ps and p., and remove !rom the sunace 110 obtained the st~d 

tranafonns of 01, O2 , Cs and C". The reaulting open set ia isomorphic to A2, so an equivalence cl ... of 

8ndomotphisms f : A2 -+ A:I ia determined. Notice that 

. [~ 
2 2 

~] , ' ' 2 2 

~ 1'= 1 2 1 
1 1 2 1 t;.. 

l' 
1 

80 tbe endomorphiam is irreducible by (2.5). 

In sorne sense, our cl8.8Bification of irreducible birational endomorphisme with n(J) = 2 is c0!Dplete. 

However, there ia a whole class of questions that we have not considered. For instance, if (ro, ... , rll-1) 

ia a sequence of type (2, 2b + 1, 1) for sorne bEN, then what are a11 irreducible morphisme f : A'J -+ A2 

with n(f) = 2 sucb tl)at, in tbe notation of (3.1), the multiplicity sequence of Cl at in finit y begins with 

(ro, ... , rk-l) 7 In the simplest case, i.e., when the number lof (11.3.5) is 1, the sequence (ro, ... , rle-1) is 

just (b, b, 1, •.. ,1). In that case, and if we restrict oUl1Ielves to the endomorphisms f with i.n. fundamental 

points, then these morphisms are parametrised by the points of Ab, two points (al, ... 1 ab) and (aL ... , a~) 

: corresponding to equivalent morphisms iff 
1 

/ 

... 
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