
ln compliance with the
Canadian Privacy Legislation

sorne supporting forms
may have been removed from

this dissertation.

hile these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

SPARK: A FLEXIBLE POINTS-TO ANALYSIS FRAMEWORK
FOR JAVA

by

Ondfej Lhotâk

School of Computer Science

McGill University, Montreal

December 2002

A THESIS SUBMITTED TO McGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2003 by Ondfej Lhotak

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88247-0
Our file Notre référence
ISBN: 0-612-88247-0

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Many compiler analyses and optimizations require precise information about the

behaviour of pointers in order to be effective. Points-to analysis is a technique for

computing this information that has been studied extensively over the last decade.

Most ofthis research has focused on points-to analyses for C. The behaviour of points

to analysis on higher-levellanguages such as Java appears very different than on C.

Moreover, most proposed points-to analysis techniques were evaluated in disparate

analysis systems and benchmarks, making it difficult to compare their effectiveness.

To address these issues, this thesis introduces SPARK, a flexible framework for

experimenting with points-to analyses for Java. SPARK is intended to be a universal

framework within which different points-to analyses can be easily implemented and

compared in a common context. Currently, SPARK supports equality- and subset

based analyses, variations in field sensitivity, respect for declared types, variations in

call graph construction, off-line simplification, and several points-to set propagation

algorithms.

A substantial study of factors affecting precision and efficiency of points-to anal

yses has been performed as a demonstration of SPARK in action. The results show

that SPARK is not only flexible and modular, but also very efficient compared to other

points-to analysis implementations.

Two client analyses that use the points-to information are described, calI graph

construction and side-effect analysis. The side-effect information can be encoded

in Java class file attributes, so that it can later be used for optimization by other

compilers and virtual machines.

SPARK has been demonstrated to be a flexible and efficient framework for Java

points-to analysis. Several experiments that could be performed with it are suggested.

Il

Résumé

Afin d'être efficaces, beaucoup d'analyses et optimisations de compilateur exigent

des informations précises sur le comportement des pointeurs. L'analyse dite points-ta

(pointe sur) est une technique visant à calculer cette information qui a été étudiée

intensivement au cours de la dernière décennie. La majeure partie de cette recherche

s'est concentrée sur les analyses pour C. Le comportement de l'analyse points-ta

appliquée à des langages de plus haut niveau tels que Java semble très différent de

celui observé pour C. D'ailleurs, la plupart des techniques d'analyse points-ta qui ont

été proposées ont été évaluées dans des systèmes d'analyse divers et sur les différents

programmes d'évaluation, ce qui rend difficile la comparaison de leur efficacité.

Pour répondre à ces problèmes, cette thèse présente SPARK, un cadre d'appli

cation flexible pour expérimenter avec des analyses points-ta pour Java. SPARK est

destiné à être un cadre universel dans lequel peuvent être facilement implantées de

différentes analyses points-ta, afin de pouvoir être comparées dans un contexte com

mun. Actuellement, SPARK supporte des analyses basées sur les contraintes d'égalité

ainsi que de sous-ensemble, des variations en le traitement des champs, en le respect

pour les types déclarés, et en la méthode de construction du graphe des appels, un

algorithme de simplification des contraintes, et plusieurs algorithmes de propagation

des ensembles points-ta.

Une étude importante sur les facteurs influant la précision et l'efficacité des

analyses points-ta a été effectuée comme démonstration de l'utilisation de SPARK.

Les résultats démontrent que SPARK est non seulement flexible et modulaire, mais

également très efficace comparé à d'autres réalisations d'analyse points-ta.

Deux analyses clientes qui profitent de l'information points-ta sont décrites, la

Hl

construction du graphe d'appel et l'analyse d'effets secondaires. L'information sur les

effets secondaires peut être codé en des attributs dans les fichiers de code objet Java,

pour qu'elle puisse être employée à des fins d'optimisation par d'autres compilateurs

et machines virtuelles.

Il a été démontré que SPARK est un cadre flexible et efficace pour l'analyse

points-ta de Java. Plusieurs expériences qui pourraient être efféctuées avec SPARK

sont suggérées.

lV

Acknowledgments

l âm very grateful to my advisor, Laurie Hendren, for leading the Sable research

group so weIl. Her suggestions for my work were plentiful, and al ways resulted in a

significant improvement. Her encouragement and enthusiasm kept me going.

The Sable group has been a pleasant environment in which to work, thanks to

aH its members. In particular, l want to thank the pointer group of Feng Qian,

John Jorgensen, Felix Kwok, Marc Berndl, and Navindra Umanee for the many dis

cussions, Sable group alumni Rhodes Brown, Patrick Lam, Etienne Gagnon, Jerome

Miecznikowski, and Derek Rayside for an the bits of advice, and Bruno Dufour for

al ways being eager to help with whatever needs to be done.

l learned a lot during my M.Sc. work, in my courses as weIl as in my research.

Thanks to Karel Driesen, Doina Precup, Laurie Hendren, Xiao-Wen Chang, and

Prakash Panangaden for teaching them.

This work was supported financially by the taxpayers of Canada through NSERC,

and by a Richard H. Tomlinson fellowship.

l cannot forget my time in Waterloo, where l gained the background to start this

work. l am thankful to everyone at U\V, in the CEMC, and at Watcom.

My family continues to be supportive, even though they are far away. l am

especially grateful to my wife Jennifer for coming with me to Montreal, and for her

constant friendship, patience, and love.

v

VI

Abstract

Résumé

Acknowledgments

Contents

List of Figures

List of Tables

1 Introduction

1.1 Motivation.

1.2 Contributions

1.2.1 Design

1.2.2 Implementation

1.2.3 Experiments.

1.3 Thesis Organization .

2 Related Work

Contents

2.1 Early Work on Alias and Points-To Analysis

2.2 Improving Analysis Efficiency

2.3 Points-To Analysis for Java .

2.4 Applications of Points-To Analysis

vu

1

Hi

v

vu

xi

xiii

1

1

3

3

4

5

6

7

7

9

12

14

2.4.1 Side-Effect Information . 15

2.4.2 Call Graph Construction 16

2.4.3 Escape Analysis . . . 16

3 Spark in the Context of Soot 19

3.1 Soot Overviev". . . 19

3.2 Spark within Soot . 23

4 Pointer Analysis Engine 27

4.1 Pointer Assignment Graph 29

4.1.1 Allocation Nodes 29

4.1.2 Variable Nodes 30

4.1.3 Field Reference N odes 30

4.1.4 Concrete Field N odes . 31

4.1.5 Allocation Edges 31

4.1.6 Assignment Edges . 31

4.1.7 Store Edges 32

4.1.8 Load Edges 32

4.1.9 Example .. 32

4.2 Building the Graph 35

4.2.1 Design ... 35

4.2.2 Parameters and Options 36

4.3 Simplifying the Graph 39

4.3.1 Merging N odes ~ 39

4.3.2 Strongly Connected Components 42

4.3.3 Single Entry Subgraphs 43

4.4 Flowing Points-to Sets 46

4.4.1 Iterative Propagation Aigorithm . 46

4.4.2 \iVorklist Propagation Aigorithm . 48

4.4.3 IncrementaI Worklist Propagation Aigorithm . 52

4.4.4 Alias Edge Propagation Algorithm 56

Vlll

4.4.5 IncrementaI Alias Edge Propagation Algorithm

4.5 Points-to Set Implementations

4.5.1 Hash Set

4.5.2 Sorted Array Set

4.5.3 Bit Set . . .

4.5.4 Hybrid Set.

5 Experimental Results

5.1 Benchmarks

5.2 Factors Affecting Precision .

5.2.1 Respecting Declared Types.

5.2.2 Call Graph Construction ..

5.2.3 Field Dereference Expressions

5.3 Factors Affecting Performance

5.3.1 Set Implementation

5.4

5.3.2 Points-To Set Propagation Algorithms

5.3.3 Graph Simplification

Overall Results

6 Client Analyses

6.1 CalI Graph Construction

6.2 Side-effect Analysis .. .

6.2.1 Background .. .

6.2.2 Representation of Side-Effect Information.

6.2.3 Implementation of Side-Effect Analysis

6.2.4 Attribute Encoding . .

Side-Effect Example .

Experimental Results .

6.2.5

6.2.6

6.2.7 Future Work on Side-Effect Analysis

7 Conclusions and Future Work

7.1 Conclusions

IX

61

66

66

67

67

67

69

69

71

71

74

74

74

74

76

79

81

83

83

85

85

87

89

90

92

96

99

101

101

7.2 Future \;York 103

7.2.1 Precision of Data Flow Analyses. 103

7.2.2 Using Side-Effect Information in Just-In-Time Compilers 103

7.2.3 Points-To Analysis Algorithms and Set Implementations 104

7.2.4 Context-Sensitivity.......... 104

7.2.5 Precision of Call Graph Construction 105

A Using Spark

A.1 Obtaining Spark

A.2 Spark Options . .

A.2.1 General Options.

A.2.2 Pointer Assignment Graph Building Options

A.2.3 Pointer Assignment Graph Simplification Options

A.2.4 Points-To Set Flowing Options

A.2.5 Output Options

Bibliography

x

107

107

108

108

109

111

112

114

115

List of Figures

3.1 How SPARK Interacts with Soot 24

4.1 SPARK Overview 28

4.2 Example to Illustrate Pointer Assignment Graphs 33

4.3 ExampIe Illustrating Merging of Field Reference Nodes 41

4.4 Algorithm for Reducing Single Entry Subgraphs 45

4.5 Iterative Propagation Algorithm 47

4.6 Worklist Propagation Algorithm (part 1 of 2) 50

4.7 Vvorklist Propagation Aigorithm (part 2 of 2) 51

4.8 IncrementaI Worklist Propagation Algorithm (part 1 of 2) 54

4.9 IncrementaI VVorklist Propagation Algorithm (part 2 of 2) 55

4.10 Field Representation in Standard (a) and Alias Edge (b) Aigorithms. 56

4.11 Alias Edge Propagation Algorithm (part 1 of 2) 58

4.12 Alias Edge Propagation Algorithm (part 2 of 2) 59

4.13 IncrementaI Alias Edge Propagation Algorithm (part 1 of 4) 62

4.14 IncrementaI Alias Edge Propagation Algorithm (part 2 of 4) 63

4.15 IncrementaI Alias Edge Propagation Algorithm (part 3 of 4) 64

4.16 IncrementaI Alias Edge Propagation Algorithm (part 4 of 4) 65

6.1 Code Example for Side-Effect Analysis

6.2 Optimized Version of Code Example

6.3 Java Code for Side-Effect Example

6.4 Jimple Code for Side-Effect Example

6.5 Bytecode for Side-Effect Example .

Xl

86

86

92

94

95

XlI

List of Tables

5.1 Benchmark Characteristics 70

5.2 Analysis Precision. . . . 72

5.3 Set Implementation . . . 75

5.4 Propagation Algorithms 77

5.5 Simplification 80

5.6 Overall Results 82

6.1 Call Graph Precision 85

6.2 Attribute Size as Percent age of Original Class File Size 97

6.3 Percent age of Dependences Ruled Out by Side-Effect Analysis 98

Xlll

XIV

1.1 Motivation

Chapter 1

1 ntroduction

Accurate information about the behaviour of pointers is a prerequisite for many anal

yses and optimizations of programs written in languages with pointers. The exact

runtime values of each pointer in a program are, in general, uncomputable [Lan92].

Various approximation algorithms have therefore been the subject of active research

for over a decade. Unfortunately, these variations were implemented within different

compiler frameworks, making them difficult to compare. Moreover, pointer analysis

researchers have not yet agreed on an objective metric of the precision of a pointer

analysis. Although much work has been done, the problem of efficiently and accu

rately predicting the behaviour of pointers is far from solved.

In recent years, Java, and other similar languages with dynamic dispatch and

strong typing, have been growing in popularity. These language features make the

development of software easier and less error-prone, but have significant costs in

performance and compiler complexity. Pointer analyses must be adapted to deal

with new features not present in simpler languages like C. On the other hand, the

type-safety properties of these languages should be exploited to improve efficiency

and accuracy of the analysis.

1

Introduction

This thesis aims to address these problems by introducing SPARK, a flexible frame

work for points-to analysis of Java programs, and by reporting on an extensive study

of Java points-to analysis variations that was performed using SPARK.

An features of Java are considered by SPARK, making it an ideal framework for

experimenting with different representations of these features in pointer analyses.

SPARK is designed to be modular, in that different implementations of its various

components can be interchanged. This allows experimentation with specifie imple

mentation details of pointer analysis algorithms, an area whieh has been largely ne

glected in reeent pointer analysis researeh. By setting various parameters within

SPARK, and possibly by implementing additional SPARK modules, researehers ean

easily instantiate efficient implementations of many of the variations of pointer anal

ysis that have been proposed, as weIl as new variations. This allows the different

analyses to be eompared within the eontext of the same framework.

SPARK is a eomponent of the Soot bytecode analysis and optimization frame

work [Soot, VRGH+OO]. The pointer information computed by SPARK can be used

by various client analyses within Soot, or it can be encoded in attributes for use

by other optimizers, virtual machines, or native compilers. This large collection of

possible client analyses provides many different measures of the effectiveness of the

pointer analysis.

In addition to describing the SPARK framework itself, this thesis reports the re

sults of a substantial experimental study of Java points-to analyses and the tradeoffs

between analysis efficiency and accuracy. These experiments reveal several variations

appropriate for Java that provide both precise information and fast analysis times.

Furthermore, the experimental results demonstrate that SPARK is not only modu

lar, but its efficiency is very competitive compared to other Java points-to systems

described in previously published work.

2

1.2. Contributions

1.2 Contributions

The work reported in this the sis consists of the design of the SPARK pointer analysis

framework, its implementation, and results of experiments performed with it. These

three contributions are described in the following subsections.

1. 2.1 Design

Pointer Assignment Graph

SPARK introduces the notion of a pointer assignment gmph (described in detail in

Section 4.1), a single model in which very different pointer analyses can be expressed

and efficiently implemented. This is in contrast to the many incomparable represen

tations typically used to present different pointer analyses in the literature.

The pointer assignment graph allows the following variations of pointer analyses

to be expressed:

® subset-based [And94] or equality-based [Ste96b];

® varying levels of context-sensitivity;l

® field and array references merged for an object instances (field-based analysis),

or considered separately for each instance (field-sensitive analysis);

® variables in SSA form [AVvZ88], split along UD-DU webs [Muc97, Section 8.10],

or as in original source;

® which declared types and casts (if any) are respected;

® whether an initial approximation to the call graph is used, or whether the call

graph is constructed as the pointer information is computed; and

1 Although currently only context-insenstive analyses are implemented, SPARK is designed to
facilitate experimentation with context-sensitivity.

3

Introduction

@ if an initial caU graph is used, which approximation (such as class hierarchy anal

ysis [DGC9,s], rapid type analysis [BS96], or variable type analysis [SHR+OO])

is used to compute it.

Staged Analysis

The pointer analysis in SPARK proceeds in three stages.

1. The pointer assignment graph is built based on the program being analyzed.

2. The pointer assignment graph is simplified.

3. The simplified pointer assignment graph is used to compute points-to informa

tion.

This division into stages is key to the flexibility of SPARK. A large number of

combinations of different implementations of each stage are possible, leading to many

variations in the pointer analysis. The stages of SPARK are described in detail in

Chapter 4.

1.2.2 Implementation

The current version of SPARK includes the foUowing implementations of its compo

nents.

® A context-insensitive implementation of the pointer assignment graph builder

with many parameters which determine how language features are represented.

The pointer assignment graph builder is described in detail in Section 4.2.

® Implementations of simplification algorithms to merge strongly connected com

ponents and single-entry subgraphs. Simplification of the pointer assignment

graph is described in detail in Section 4.3.

@ Five different implementations of points-to set propagation algorithms: a simple

iterative algorithm, an efficient worklist-based algorithm, a new, space-efficient

4

1.2. Contributions

alias edge algorithm, and incremental versions of the worklist and alias edge

algorithms. These algorithms are presented in Section 4.4.

@ Four different implementations of points-to sets: an implementation based on

hash tables, an Implementation based on bit vectors, an implementation based

on sorted arrays, and a hybrid implementation which represents the elements of

small sets explicitly, but switches to bit vectors to represent larger sets. These

implementations of points-to sets are described in more detail in Section 4.5.

@ Two client analyses that use the results of SPARK have been implemented: a call

graph trimmer, and a side-effect analysis. The results ofthese client analyses are

further used by other analyses within Soot, or they can be encoded in attribut es

for use by other optimizing compilers. These client analyses are described in

Chapter 6.

1.2.3 Experiments

The SPARK framework was used for an extensive empirical study of factors affecting

precision and efficiency of subset-based Java points-to algorithms. The following

factors were studied:

@ respecting declared types and casts during the analysis;

@ constructing an initial caU graph prior to the analysis, or constructing it during

the analysis as points-to sets become available;

@ modelling of field dereference expressions in a field-sensitive or .field-based man-

ner;

@ implementation of points-to set data structures;

@ several points-to set propagation algorithms; and

@ off-hne simplification of the pointer assignment graph prior to propagation.

5

Introduction

From the results of these experiments, three analysis variations were selected as

appropriate compromises between analysis precision and efficiency. The experiments

showed the performance of SPARK on these variations to be very competitive com

pared to other Java points-to analyses that have been described in the literature.

1.3 Thesis Organization

The rest of this thesis is organized as follows. The next chapter is a survey of related

work. Chapter 3 provides an overview of the overall design of SPARK, and of the

Soot framework of which it is a part. Chapter 4 gives a detailed description of the

design of the pointer analysis engine, the core of SPARK. A description of the pointer

assignment graph is given first, followed by descriptions of the stages which SPARK

uses to compute pointer information. Results of experiments conducted with SPARK

are reported in Chapter 5. Client analyses that use the resuIts computed by SPARK

are described in Chapter 6. Finally, Chapter 7 concludes this work, and provides

many examples of research to which SPARK could be applied in the future.

6

Chapter 2

Related Work

This chapter presents previous work on points-to analysis. The first section covers

early work leading to points-to analysis. The second section is an overview of the

techniques that have been used in the past to improve the efficiency and precision

of points-to analyses. The third section explains the work that has been done so far

to adapt points-to analyses designed for C to Java. The fourth section discusses the

applications for which points-to information has been used, concentrating primarily on

applications related to Java. An extensive survey of points-to analysis research, with

a particular focus on the problems that remain unsolved, is given by Hind [HinOl].

2.1 Early Work on Alias and Points-To Analysis

The earliest work [Wei80, CR82, Cou86, LR92, CBC93] on estimating the sets of

locations to which pointers could point used an alias set representation. This repre

sentation encodes the set of pairs of variables which could point to the same memory

location. One such set of alias relationships can be computed for the pro gram as a

whole, or a separate alias set can be computed for each program point. One difficulty

with this representation is that its size can be quadratic in the number of variables in

the program. Another drawback is that alias sets do not give information about the

objects to which pointers point, such as their type; rather, they only specify which

pairs of variables may point to the same objects.

7

Related Work

To address these problems, Emami, Ghiya and Hendren [EGH94] introduced

points-ta analysis. A points-to analysis divides memory into concrete locations. Then,

for each variable, it computes the set of concrete locations to which that variable may

point. Alias sets can be recovered from points-to sets: a pair of variables is aliased

whenever their points-to sets have a non-empty intersection. However, for many ap

plications, it is more convenient to use points-to sets without first constructing alias

sets.

Emami, Ghiya and Hendren's implementation used a separate concrete location

for each stack variable, and modelled the entire heap as a single concrete location.

The analysis was context-sensitive and flow-sensitive. For stack-directed pointers, it

computed not only may points-to information, but also must points-to information,

and used it to improve the precision of the flow-sensitive analysis by removing old

points-to relationships when a variable was known to be overwritten. \\Then analyz

ing C, function pointers present a challenge because they make it difficult to determine

the targets of calls through them. The points-to analysis treated each function as a

concrete location, so the set of possible tar'gets of a call through a function pointer

was simply the points-to set.

Andersen [And94] proposed a flow-insensitive, context-insensitive verSlOn of

points-to analysis that did not compute must points-to information. However, his

analysis modelled the heap more precisely, using a separate con crete location to rep

resent all memory allocated at a given dynamic allocation site. The implementation

expressed the analysis using subset constraints, and then solved the constraints.

Solving a system of set constraints such as those generated by Andersen's anal

ysis is equivalent to finding the transitive dosme of the constraint graph, and a

typical implementation may therefore take time cubic in the size of the program.

Steensgaard [Ste96b] proposed a more conservative analysis by replacing each subset

constraint with a set equality constraint. The advantage of this approach is that it

reduces the problem to one of finding connected components in the constraint graph,

which can be done in almost linear time using a fast union-find algorithm [Tar75].

However, the st ronger constraints make the analysis much less precise. In fact, for

Java programs, the constraint graph is fully connected, because every object is passed

8

2.2. Improving Analysis Efficiency

to the initializer of java .lang. Obj ect, so an unmodified version of Steensgaard's al

gorithm would pro duce the worst-case assumption that every variable may point to

every object.

2.2 Improving Analysis Efficiency

Since the introduction of subset-based and equality-based points-to analysis, re

searchers have worked on improving the efficiency of the former, and the precision of

the latter.

Wilson and Lam [WL95] implemented a flow-sensitive, context-sensitive subset

based analysis using partial tmnsfer functions to summarize the effect of each function

on points-to sets. This meant that their analysis did not have to analyze each function

for every calling context; rather, it only had to apply the partial transfer function

in each calling context. The analysis could therefore be more efficient than the flow

sensitive, context-sensitive analysis of Emami, Ghiya, and Hendren.

Ruf [Ruf95] advocated abandoning context-sensitivity altogether. He implemented

both context-insensitive and maximally context-sensitive versions of a subset-based

analysis. On his benchmark suite, the context-insensitive version produced only a

small number of spurious points-to relationships compared to the context-sensitive

version. Moreover, when he applied the points-to results to computing side-effect

information, the few spurious points-to relationships introduced even fewer spurious

side-eflects.

Shapiro and Honvitz [SH97b] studied flow-insensitive, context-insensitive points

to analyses. They presented empirical results demonstrating that an equality-based

analysis is considerably less precise than a subset-based analysis, but that the subset

based analysis is much slower on larger programs. In addition, they presented a

points-to analysis algorithm with a parameter which could be adjusted to make the

analysis faster at the expense of precision. The idea was to separate the variables in

the program into k categories. \iVhen two variables were in the same category, con

straints between them were treated as equality constraints; only variables in different

9

Related Work

categories could have subset constraints between them. Using a separate category for

each variable resulted in a fully subset-based analysis, while assigning aIl variables to

a single category resulted in a fully equality-based analysis. The analysis could be

tuned between these two extremes by using an intermediate number of categories.

Hasti and Horwitz [HH98] used static single assignment (SSA) form [AWZ88] to

obtain precision comparable to a flow-sensitive points-to analysis from a much faster,

flow-insensitive points-to analysis. The main benefit of a flow-sensitive analysis is

strong update: when a variable is overwritten, the analysis can infer that after being

overwritten, the variable no longer points to the objects it used to point to. A flow

insensitive analysis ignores the order in which assignments are executed; it has no

way to distinguish between "before" and "after" the assignment. ';\,Then a program

is converted into SSA form, its variables are split so that each variable is assigned

at only one point in the program. This means that in SSA form, no variable is ever

overwritten. A variable which is overwritten in the original program is represented

by two or more separate variables in SSA form. In SPARK, aH analyses are flow

insensitive, but before starting the analysis, SPARK uses the Soot framework to split

variables along UD-DU webs [Muc97, Section 8.10], a slight relaxation of SSA form.

A Soot transformation to true SSA form has been written, and is expected to soon

be merged into the publicly available version of Soot.

Diwan, McKinley, and Moss [DMM98] applied points-t~ analysis to Modula-3,

which enforces declared types, unlike C. They studied three simple alias analyses.

The first analysis was to treat variables as possibly aliased whenever the type of

one variable is a subtype of the other. The second analysis added the constraint

that a field of an object may only be aliased to that same field of another object.

Finally, the third was an equality-based analysis similar to Steensgaard's. The results

of the alias analysis were used to compute side-effect information, which was used

to remove redundant loads. Their analysis was able to remove between 37% and

87% of the redundant loads in the program, resulting in a 1% to 8% speedup. The

simplest analysis which considered only declared types managed to detect nearly aH

of the redundant loads detected by the other two more precise analyses. Experiments

conducted using SPARK show that information provided by declared types such as

10

2.2. Improving Analysis Efficiency

that used by Diwan, McKinley, and Moss can significantly improve analysis precision

and efficiency of more complicated analyses.

Aiken, Falmdrich, Foster, and Su [AFFS98, FFSA98, SFAOO] developed a frame

work called BANE for solving general subset constraint problems. In particular, the

framework can be used to solve points-to analysis problems that can be expressed

using set constraints. Their framework is able to detect and collapse cycles in the

constraint graph as it is solving it, improving the efficiency of subset-based analyses.

Rountev and Chandra [RCOO] observed that the initial subset constraint graph

may contain cycles or subgraphs with a single entry point, and that when analyzing

C programs, the points-to sets of aH nodes in a cycle or in a single entry subgraph

will be equa1. 1 They therefore proposed simplifying the graph by merging variables

known to have equal points-to sets before starting to solve the constraints. On their C

benchmarks, they found that simplifying the constraint graph before solving it im

proved the solution time and memory requirements by about 50%. SPARK includes a

similar algorithm to simplify its pointer assignment graph, and empirical results from

SPARK agree with those of Rountev and Chandra.

Das [DasOO] noticed that in C programs, many pointers are only used to implement

call-by-reference, and that it is relatively inexpensive to analyze these pointers with a

subset-based analysis. He therefore proposed an analysis that uses subset constraints

between stack variables that do not have their address taken, and equality constraints

between other variables. The pointers used to implement call-by-reference rarely

have their address taken, so they are analyzed quickly with great precision by a

subset-based analysis. The remaining pointers, which cou Id slow down a subset

based analysis, are analyzed using the imprecise but inexpensive equality constraints.

Using this analysis, Das was able to analyze a large program consisting of about two

million hnes of code.

Heintze and Tardieu [HTOla, HTOlb, Hei99] report analyzing huge programs with

a fully subset-based analysis. This efficiency appears to be due to three main factors.

First, their analysis is demand-driven, producing only those points-to sets needed by

1 In an analysis for Java, it is not necessarily true that the points-to sets of aU nodes in a cycle or
single entry subgraph will be equal if declared types are being respected. See Section 4.3 for details.

11

Related Work

a client of the analysis, rather than producing the entire solution at once. Second,

it uses an algorithm that detects and merges cycles in the constraint graph as the

analysis proceeds. Third, their representation of points-to sets has been carefully

tuned, and is very efficient. It is not clear which of these three factors contribute

most significantly to the speed of their system; however, their work shows that a

combination of the three makes it feasible to perform subset-based analyses for very

large programs.

2.3 Points-To Analysis for Java

With the exception of the work by Diwan, McKinley, and Moss, the points-to analyses

discussed so far were designed to analyze programs written in C. Java has several

features not present in C that affect points-to analysis. Specifically, Java disallows

only stack-directed pointers, it enforces declared types, and it uses virtual dispatch,

so a static caU graph is not immediately available, as it is in C in the absence of

function pointers. This is especially problematic because Java includes a very large

standard class library which cannot be 1eft out of the caIl graph, making even trivial

programs appear very large from the point of view of whole-program analysis. Several

researchers have tried to adapt points-to analyses to refiect these features specifie to

Java.

Liang, Pennings and Harrold [LPHOl] performed a comparison of several different

analyses adapted to Java. An of their analyses were fiow-insensitive and context

insensitive. Because their implementation could not scale to analyzing the complete

standard library of version 1.1.8 of the JDK, they used hand-coded summaries of

the pointer-related effects of the library. They studied both field-sensitive and field

based analysis of field expressions. In a field-sensitive approach, a separate points

to set is computed for each field of each concrete location, while in a field-based

approach, only a single points-to set is computed for each field. A field-sensitive

approach can distinguish between the same field of two different objects, while a

12

2.3. Points-To Analysis for Java

field-based approach cannot. They also compared both equality-based and subset

based analyses. After noticing that a completely equality-based analysis applied

to Java pro duces the worst-case information that every pointer may point to every

object, they modified the equality-based analysis to be subset-based in the areas

that degraded precision the most. Finally, they also compared using a calI graph

precomputed using class hierarchy analysis [DGC95] to constructing a caU graph on

the-fly from the points-to information as it was computed. The precision of these

analyses was measured by its impact on the precision of the caU graph that could be

constructed from the points-to information, and the precision of escape information

that could be computed. They found the subset-based analysis to be significantly

more precise than even their modified equality-based analysis, but they did not notice

a significant effect on precision from varying the modelling of field references or the

method of caU graph construction. In their Implementation, the field-based analysis

using the caU graph computed using CHA was considerably faster than the other

variations.

Rountev, Milanova and Ryder [RMROl] modified Soot [Soot, VRGH+OO] to out

put subset constraints to be used as input to BANE [AFFS981, which they used to

compute a flow-insensitive, context-insensitive, field-sensitive points-to analysis that

computed the call graph on-the-fly. They were unsuccessful in expressing an efficient

field-based analysis directly in BANE, so they modified BANE to allow each subset

constraint to be annotated with a field. Using these field annotations, their analysis

was efficient enough to be able to analyze benchmarks with the whole standard library

from version 1.1.8 of the JDK. During the analysis, the declared types of variables

were not considered; however, objects of incompatible type were removed from the fi

nal points-to sets after the analysis completed. They showed using experimental data

that their analysis computed precise side-effect information, a precise approximation

to the call graph, and precise escape information.

Whaley, Rinard and Vivien [WR99, VROl] used a demand-driven, subset-based,

context-sensitive, flow-sensitive, field-sensitive analysis to compute escape informa

tion for deciding which objects could be safely allocated on the stack rather than on

the heap. As soon as an object was determined to escape, the analysis for that object

13

Related Work

terminated. This made it possible for such a precise analysis to scale to reasonably

sized programs. Choi et al. [CGS+99] presented a very similar escape analysis. They

applied it to eliminating synchronization of thread-local objects, in addition to allo

cating objects on the stack. Bogda and H6lzle [BH99] also used a points-to analysis

to compute escape information for eliminating synchronization. The intra-procedural

part of their analysis was equality-based, while the inter-procedural part was subset

based, giving a good compromise between analysis efficiency and precision.

vVhaley and Lam [vVL02] adapted the demand-driven algorithm of Heintze and

Tardieu [HT01a, HTOlb] to Java by adding field-sensitivity, making it respect de

clared types, and computing the call graph on-the-fty. With this analysis, they

were able to analyze benchmarks using the standard library from version 1.3.1 of

the JDK, which is about three times larger than the library in version 1.1.8. How

ever, their implementation did not come close to matching the scalability of Heintze

and Tardieu's Implementation for C, suggesting that Implementation features other

than the demand-driven algorithm affect the efficiency of the analysis.

Recently, Milanova, Rountev and Ryder [MRR02a, MRR02b] proposed objeet

sensitivity, an adaptation of context-sensitivity designed to precisely model features

often present in object-oriented programs, such as encapsulation. They applied a

preliminary version of their analysis to eonstructing object relationship diagrams for

program understanding, an application for which a high level of precision is needed.

2.4 Applications of Points-To Analysis

This section describes sorne of the analyses that have been constructed to make use

of points-to information. Sorne of these clients, su ch as side-effect analysis, have been

studied for both C and Java, while others, such as caU graph construction and escape

analysis are particularly useful for dealing with features specifie to Java.

14

2.4. Applications of Points-To Analysis

2.4.1 Side-Effect Information

The purpose of a side-effect analysis is to approximate the set of memory locations

read and written by specifie instructions, and to summarize this information for larger

regions of the program. This information can th en be used to improve the effectiveness

of a wide variety of datafiow analyses and traditional compiler optimizations in the

presence of pointers. The side-effect analysis implemented using SPARK is described

in Section 6.2 of this thesis.

Ghiya and Hendren [GH98] used side-effect information to improve precision of

common subexpression elimination, loop-invariant hoisting, and redundant load elim

ination in a C compiler. On their benchmarks, these improvements translated into

up to 10% speedups. They also showed how to use side-effect information for array

dependence testing, in program understanding tools, and to automatically insert data

prefetching hints into code. A similar study was done for C programs by Hind and

Pioli [HPOO). They evaluated several points-to analyses by measuring their effects

on live variable analysis, reaching definitions, constant propagation, and dead code

elimination.

Clausen [Cla97] proposed a simple side-effect analysis for Java which did not

use a points-to analysis; it used only information about declared types, and made

worst-case assumptions about the possible targets of pointers. The resulting side

effect information was applied to dead code removal, loop invariant hoisting, constant

propagation, and common subexpression elimination. On early versions of Java, these

optimizations produced speedups of up to 25%.2

The precision of side-effect information that can be obtained has become a

common metric of the precision of points-to information. Both Shapiro and Hor

witz [SH97a], and Rountev, Milanova and Ryder [RMR01, MRR02b] used it as one

of their main metrics in comparing the precision of different points-to analyses.

2Early Java virtual machines did not have aggressive just-in-time compilers like they do today.
Modern just-in-time compilers can perform some of these optimizations based on intraprocedural
analysis.

15

Related Work

2.4.2 Cali Graph Construction

In Java, aIl instance methods are invoked using virtual caUs. This means that whole

program analyses require sorne approximation of the caU graph. Some points-to

analyses require such a calI graph to be constructed prior to the analysis. The output

of a points-to analysis can also be used to construct such a call graph, or to make an

existing calI graph more precise. The application of SPARK to caU graph construction

is covered in Section 6.1 of this thesis.

Several methods have been proposed for constructing call graphs without using

a complete points-to analysis. Dean, Grove, and Chambers [DGC95] proposed class

hierarchy analysis, which uses only the subclass relationships in the type hierarchy to

resolve method targets. Bacon and Sweeney [BS96] introduced rapid type analysis,

which restricts class hierarchy analysis to classes which appear in allocation sites in

the program. Sundaresan et al. [SHR+OO] proposed an even more precise method,

variable type analysis, a technique similar to subset-based points-to analysis in that

it uses subset constraints to express the possible sets of run-time types of objects

that each variable may hold. AU of these methods are available in SPARK. Tip and

Palsberg [TPOO] studies several other variations of caU graph construction algorithms

based on subset constraints.

A call graph can be constructed almost directly from precise points-to information.

It has become co mm on in studies of points-to analyses [LPHOl, RMR01, WL02] to

use the precision of the caU graph that can be constructed as one measure of the

precision of the points-to information.

2.4.3 Escape Analysis

The goal of an escape analysis is to determine which objects can be referenced by

pointers in methods or threads other than the method or thread in which they are

allocated. Research on escape analysis for Java has focused on two main applications,

stack allocation and synchronization elimination, which are discussed in the next two

paragraphs.

Java forces programmers to allocate aIl objects on the heap, rather than on the

16

2.4. Applications of Points-To Analysis

stack. This can have adverse effects on the performance of Java programs, because

these objects need to be freed by the garbage collector. Several researchers [WR99,

VR01, CGS+99] used escape analyses inside their compilers to detect which objects

could safely be allocated on the stack rather than on the heap.

It is very easy to add synchronization locks to Java programs, so many programs

and libraries use them extensively even when they are not necessary. Several ap

pro aches [BH99, RufOO, CGS+99] were independently developed to use escape infor

mation to reduce the overhead of these locks. An three approaches use escape analysis

to determine which objects cannot be referenced by threads other than the thread in

which the y are allocated. Any locks on such objects can be removed, because these

objects are only used by a single thread. Most modern implementations of Java use

thin locks [BKMS98], which are extremely efficient when there is no contention over

the lock (as is the case for thread-local objects), so it may appear that synchroniza

tion elimination is no longer necessary. However, even thin locks become expensive

on multi-processor architectures [KK002].

17

Related Work

18

Chapter 3

Spark in the Context of Soot

3.1 Soot Overview

SPARK is a component of the Soot framework [Soot, VRGH+OO] for analyzing, op

timizing, and annotating Java bytecode. The Soot framework defines four different

intermediate representations, and includes code to convert between them and Java

bytecode.

Baf is a stack-based representation similar to bytecode.

Jimple is a stack-less, three-address, typed intermediate representation suit able for

many analyses.

Grimp is a representation similar to Jimple, but with aggregated expressions (that

is, statements such as d = Ca + b) * c are allowed, whereas in Jimple, this

computation would be split into two statements, one to do the addition, and

the other to do the multiplication).

Dava AST is a high-level, structured representation used for decompilation.

The most common use of Soot is for optimizing and annotating bytecode. Soot

reads the bytecode (which may be produced by javac or any other compiler targetting

19

Spark in the Context of Soot

bytecode) either for a single class file, or a whole program. Soot successively converts

the bytecode to its various intermediate representations, and applies analyses, trans

formations, and annotation generators designed for each intermediate representation.

Soot provides a mechanism [PQVR+01] for attaching attributes with arbitrary anal

ysis results to classes, methods, or individual instructions. Finally, the intermediate

representation is translated back to bytecode, annotated with any of the attributes

that were attached, and written back to class files.

Of the intermediate representations defined by Soot, Jimple is the most suit able

for whole-program points-to analysis. SPARK is therefore based entirely on Jimple.

Jimple statements relevant to points-to analysis are explained below.

Assignment statement: An assignment statement has the form p = q, and assigns

the value of one variable to another. If the variables are of pointer type, a points

to analysis must consider that after this statement, the target of the assignment

may point to the object that the source of the assignment points to.

Identity statement: Jimple introduces virtual variables to represent the parame

ters of methods and the parameter of an exception handler. These variables are

present only implicitly in the original bytecode. An identity statement is an as

signment statement with one of these virtual variables as its source rather than

an ordinary variable. For example, every instance method contains a statement

like p : = ©this, which assigns the implicit parameter this to the variable p.

SPARK treats identity statements in the same way as other assignment state

ments.

Allocation statement: From the point of view of a points-to analysis, an allocation

statement is any statement that causes a variable to point to some newly

allocated location. In Jimple, this includes statements that allocate objects

and arrays (single and multi-dimensional), and that load string constants. In

Jimple, the caU to a constructor that is associated with an object being created

is not part of the allocation statement; it is represented as a separate invocation

statement. Some examples of allocation statements are:

20

3.1. Soot Overview

@ p = new java.lang.String,

@ q = newarray (int) [12], and

@ r = IIHello, World! Il.

Field store: A field store has the form p. f ::: q, and stores the value of the variable

q into the field f of the object pointed to by p.

Field load: A field load has the form p = q. f, and loads the value of the field f of

the object pointed to by q into the variable p.

Static field store: A static field store has the form Class. field = p, and stores

the value of a variable into a static field of a class. Static fields are the Java

equivalent of global variables. Each static field is associated with a class, and

there is a single instance of each static field in the whole program.

Static field load: A static field load has the form p = Class. field, and loads the

value of a static field into a variable.

Array store: An array store has the form p [i] = q, and stores the value of variable

q into the ith element of the array pointed to by the variable p. In SPARK,

arrays are treated like objects, with a single virtual field representing all the

elements of the array.

Array load: An array load has the form p = q [i], and loads the value of the i th

element of the array pointed to by q.

Cast statement: A cast statement has the form p = (T) q, and causes the pointer

stored in the variable q to be assigned to the variable P, provided that the type

of the target of the pointer is a subtype of T. If it is not, the assignment do es not

take place, and an exception is thrown. A points-to analysis can treat such a

cast statement like an assignment from q to p, but it can also take advantage of

knowing that the pointer that is assigned must be pointing to an object whose

type is a subtype of T.

21

Spark in the Context of Soot

Invocation statement: An invocation statement causes a method to be invoked.

If the method is static, the invocation statement contains a specification of the

method that will be invoked. Otherwise, the invocation statement contains a

signature of the method to be invoked, as weIl as a variable pointing to the

receiver object of the method. The actual method that will be invoked is re

solved from the run-time type of the receiver object and the method signature.

If the method accepts parameters, the invocation statement contains variables

whose values will be passed to the parameters of the method. If the method

returns a value, the invocation statement may optionally contain a target vari

able to which the return value will be assigned when the method returns. Any

of these variables may be of pointer type, so a points-to analysis must consider

the resulting flow of pointers. Sorne examples of invocation statements are:

® P = staticinvoke <java.lang.String: valueOf(int»(5),

® i = virtualinvoke s.<java.lang.String: length(»(),

® virtualinvoke p.<java.io.PrintStream: close(»(),

® specialinvoke this.<java.lang.Object: void <init>(»();, and

® i = interfaceinvoke c.<java.util.Collection: int size(»();.

Return statement: A return statement has the form return or return p, and

causes control to return from a method back to its caller, optionally passing

back a value. At the calI site, the returned value may be assigned to a variable,

or discarded if no target variable is specified. If the value being returned is

of pointer type, a points-to analysis should should take the pointer flow into

account.

Throw statement: A throw statement has the form throw p, and transfers con

trol to an exception handler, passing it a pointer to an exception object (p, in

this case). Each exception handler contains an identity statement that retrieves

the exception object from the implicit parameter variable. A points-to anal

ysis should track the pointer flow from the throw statement to the parameter

22

3.2. Spark within Soot

of the exception handler. In SPARK, this lS currently done by representing aU

thrown exceptions as assignments to a single variable holding aIl thrown excep

tion objects, and by assignments from this variable to the parameters of each

exception handler. This method of handling exceptions is based on the conser

vative assumption that any exception thrown may be caught by any handler in

the program. Because exception handlers are usually very short, and because

very few objects are usually passed through thrown exceptions, this approxi

mation appears not to degrade the precision of the points-to information. Soot

could be extended to provide more precise information about which exception

handlers catch which exception, and this information cou Id then be used by

SPARK.

3.2 Spark within Soot

Figure 3.1 shows how SPARK interacts with other components within Soot. The core

component of SPARK is the pointer analysis engine, described in detail in Chapter 4.

It takes as its input the Jimple representation of the whole program, optionally a

conservative caU graph, and a simulated representation of any native methods used

by the program. The initial call graph may be created using class hierarchy anal y

sis [DGC95], rapid type analysis [BS96], or variable type analysis [SHR+OO]. SPARK

can also operate without an initial caU graph, and generate one on-the-fly based on

the points-to information that it computes. The output of the pointer analysis engine

is, for each variable of reference type in the program, an abstract set of locations to

which the variable may point.

The points-to information is used by client analyses, such as a caU graph trimmer,

which removes extraneous edges from the caU graph, and a side-effect analysis, which

computes the locations possibly read or written by the statements and methods of

the program. These two client analyses are presented in more detail in Chapter 6.

Other analyses, such as escape analysis, could be implemented.

23

Spark in the Context of Soot

Jimple

Code

Cali

Graph
1
1
1

t

Pointer Analysis Engine

Cali Graph

Trimmer

Trimmed

Cali Graph

Legend:

Side-Effect

Analysis

Side-effect

Information

/
Other Soot

Analyses

Optimized

Annotated

Jimple

o represents a pro cess

Native

Method

Simulator

Other Client

Analyses

Annotation

Generator

Optimized

Annotated

Bytecode

represents data

Figure 3.1: How SPARK Interacts with Soot

24

3.2. Spark within Soot

The results of the client analyses can be used by other analyses and transforma

tions within Soot. For example, the static method binder and static inliner use the

trimmed call graph, while the common subexpression eliminator and partial redun

dancy eliminator use the side-effect information.

The results of the client analyses can also be encoded as attribut es in the Jimple

code, which are transferred to class file attribut es when the Jimple is translated

back to Java bytecode. The information in these attribut es can be used by another

compiler or interpreter reading the resulting bytecode. For example, a just-in-time

compiler executing the bytecode could use the side-effect information computed by

Soot. This is an important use of SPARK because points-to analysis, and the analyses

that depend on it, are generally considered to be too time-consuming to be included

in just-in-time compilers.

25

Spark in the Context of Soot

26

Chapter 4

Pointer Analysis Engine

This chapter describes the pointer analysis engine, the core component of SPARK.

Figure 4.1 shows the overall organization of the pointer analysis engine. The analysis

consists of three stages: building the pointer assignment graph, simplifying it, and

then propagating the points-to sets along it to obtain the final solution. These stages

are described in more detail in the rest of this chapter. A pointer assignment graph

builder is first used to convert the input Jimple representation into the internaI repre

sentation used by SPARK, a pointer assignment graph. The graph builder determines

how features of the program, such as field references, array element references, and

parameters passed to methods are represented. It is described in more detail in Sec

tion 4.2. The pointer assignment graph may then be simplified by merging nodes that

are known to have the same points-to sets. This simplification reduces the amount

of processing required to compute the points-to sets. It is described in more detail in

Section 4.3. Finally, the points-to set propagator computes the points-to set for each

variable by propagating sets along assignments in the program (which are represented

by edges in the pointer assignment graph). The points-to set propagation algorithms

implemented in SPARK are described in detail in Section 4.4.

By tuning parameters of the builder, simplifier, and propagator (or by providing

alternative implementations), we can control the precision and efficiency of the points

to analysis. For example, to implement a merge-based analysis, we instruct the builder

to use bi-directional edges, and the simplifier to merge the nodes connected by these

27

Pointer Analysis Engine

Jimple

Code

legend:

Cali

Graph

Pointer Assignment

Graph Builder

Pointer

Assignment Graph

Pointer Assignment

Graph Simplifier

Simplified Pointer

Assignment Graph

Poi nts-T 0 Set

Propagator

Points-To

Analysis Result

o represents a pro cess

Figure 4.1: SPARK Overview

28

Native

Method

Simulator

represents data

4.1. Pointer Assignment Graph

edges, leaving a trivial amount of computation for the propagator. On the other hand,

a subset-based analysis would enable little merging in the simplifier, leaving most of

the computation to be done by the propagator. Integrating aU three components in

the SPARK framework makes it feasible to implement and compare analyses sharing

characteristics of the two extremes.

4.1 Pointer Assignment Graph

SPARK uses a pointer assignment graph as its internaI representation of the pro gram

being analyzed. The first stage of SPARK, the pointer assignment graph builder,

constructs the pointer assignment graph from the Jimple input. Depending on the

parameters to the builder, the pointer assignment graph for the same source code

can be very different, refiecting varying levels of precision desired of the points-to

analysis. For example, the builder may make assignments directed for a subset-based

analysis, or bi-direction al for an equality-based analysis. Separating the builder from

the sol ver makes it possible to use the same solution algorithms and implementations

to solve different variations of the points-to analysis problem.

The pointer assignment graph represents the memory locations used by the pro

gram using four different types of nodes, and assignments of pointers using four

different types of edges. These are presented in the following subsections.

4.1.1 Allocation Nodes

An allocation node represents a set of run-time objects to which a pointer could

point. The current design of SPARK requires the sets of run-time objects represented

by allocation nodes to be disjoint; that is, each object at run-time is represented

by exactly one allocation node. To satisfy this requirement, the builder may use an

allocation node to represent an objects allocated at a given allocation site (since every

object is allocated at exactly one allocation site), or to represent aU objects with a

given run-time type (since every object has exactly one run-time type).

29

Pointer Analysis Engine

Each allocation node has an associated type, and all objects that it represents are

expected to have exactly this type at run-time (not a subtype). For the case of an

allocation node representing a set of objects of multiple run-time types, or whose type

cannot be determined statically, SPARK introduces a special type AnyType. Allocation

nodes with this type can represent objects of any run-time type.

4.1.2 Variable Nades

A variable node represents a set of memory locations possibly holding pointers

to objects. SPARK eventually computes, for each variable node, a set of allocation

nodes representing the set of objects to which a member of the set of memory locations

represented by the variable node may point. The most common use of variable nodes is

to represent local variables and method parameters, but they are also used to represent

static fields, and they may be used to represent instance fields if the instances of a

field are being modelled together in a field-based analysis.

Depending on a parameter to the builder, each variable node may have a declared

type limiting the set of objects that it may point to to those of compatible run-time

type.

4.1.3 Field Reference Nades

A field reference node represents a pointer dereference. Each field reference node

has an associated variable node as Hs base, and an abstract field. The field reference

node represents aH memory locations used to store the given field of aH objects pointed

to by the base. The field may be an actual Java field, or the special elements field

used to represent elements of an array. Note that Java field references need not al ways

be modelled using field reference nodes; if instances are being modelled together, field

references are represented by variable nodes.

Like the variable node, each field reference node may have a declared type limiting

the set of objects to which it may point.

30

4.1. Pointer Assignment Graph

4.1.4 Concrete Field Nodes

new l.f

Later, during the propagation of points-to sets, a fourth type of node is created

to hold the points-to set of each field of objects created at each allocation site. These

nodes are parameterized by allocation site and field. However, the y are not part of

the initial pointer assignment graph.

4.1.5 Allocation Edges

An allocation edge is an edge from an allocation no de to a variable node, and rep

resents an assignment of pointers to the objects represented by the allocation node

to the location represented by the variable node. The presence of an allocation edge

constrains the points-to information to include the objects represented by the allo

cation no de in the points-to set of the locations represented by the variable node.

Examples of Jimple statements for which allocation edges are generated include allo

cation statements such as p = new Obj ect 0; and loads of string constants, such as

s = "Hello il
;.

4.1.6 Assignment Edges

An assignment edge is an edge from a variable node to another variable node, and

it represents an assignment from the location represented by the first variable no de to

the location represented by the second variable node. The presence of an assignment

edge from to constrains the points-to set of " to be a subset of the points-to

set of . In order to constrain two points-to sets to be equal (for an equality-based

analysis, for example), the builder can insert assignment edges in both directions

between two nodes. Assignment edges are inserted between nodes whenever the

pointers can flow from one variable to another. Examples include explicit assignment

statements such as q = p;, but also interprocedural flow of parameters to methods.

31

Pointer Analysis Engine

At each call site, assignment edges are added from the nodes representing the actual

arguments to the nodes representing the corresponding parameters of aIl methods

that may be targets of the call site, and an assignment edge is added from the return

no de of each of these methods to the node for the variable that receives the return

value (if any) at the caU site.

4.1.7 Store Edges

A store edge is an edge from a variable no de to a field reference node, and it rep

resents a store from the location represented by the variable node to the appropriate

field of sorne object pointed to by the base of the field reference node. Store edges

are added to the pointer assignment graph for store statements in the source, such as

q.f = p;.

4.1.8 load Edges

A load edge is an edge from a field reference node to a variable node, and it

represents a load from the appropriate field of sorne object pointed to by the base of

the field reference no de to the location represented by the variable node. Load edges

are added to the pointer assignment graph for load statements in the source, such as

q = p.f;.

4.1.9 Example

Figure 4.2 shows a small piece of code, and two examples of pointer assignment graphs

that could be used to represent it. The code is not intended to do anything specifie;

it is given only as an example to illustrate how pointer assignment graphs could be

built for it.

The first example graph in Figure 4.2(b) would be constructed for a subset-based

field-sensitive analysis with separate allocation nodes for objects allocated at each

32

4.1. Pointer Assignment Graph

static void fooO {

ai: p = new 00;
q = p;

a2: r = new 00;
p.f = r' ,
t = bar(q) ;

}

static a bare Os) {
return s.f;

}

(a) Example Code

(b) Pointer Assignmeilt Graph

for Subset-Based, Field-Sensitive

Analysis

Ir

JI
(c) Pointer Assignmenf

j

Graph

for Equality-Based, Field-Based

Analysis

Figure 4.2: Example to Illustrate Pointer Assignment Graphs

33

Pointer Analysis Engine

allocation site. The edges are therefore only present in the direction of the assignments

in the source code. For a field-sensitive analysis, the field references are represented

using field reference nodes. Objects allocated at each of the two allocation sites are

represented using distinct allocation nodes.

The allocation statements ai : p = new a 0 and a2: r = new a () cause the

allocation edges from to and from to respectively,

to be added. The simple assignment statement p = q is modelled by the assignment

edge from to 1" .. The interprocedural flow from q to the parameter s of the bar

method is represented by the assignment edge from to •. The store p. f = r; is

represented by the store edge from c to , and the flow from s . f returned to the

variable t is represented by the load edge from to

At this point, it is not yet known that p and s will be aliased, so there are

no edges between and . This flow through aliasing will be handled later,

during the points-to set propagation stage, by the propagation algorithms presented

in Section 4.4.

The second example graph in Figure 4.2(c) would be constructed by a less precise,

equality-based, field-based analysis, with allocation nodes representing aH objects of a

given run-time type. Because this is an equality-based analysis, all of the assignment

edges now go in both directions. Field-based analysis means that the field references

are represented by a single variable node not dependent on the base object (p or

s), rather than by field reference nodes and . In a field-based analysis, we

conservatively assume that aU objects could be aliased for the purpose of modelling

field references; this is reflected by the single variable node representing the field f

of aH objects. Because this analysis represents an objects of a given type by a single

node, the objects allocated at the two allocation sites are represented by a single no de

, since they are of the same type.

34

4.2. Building the Graph

4.2 Building the Graph

The pointer assignment graph builder takes as input Jimple intermediate code, a

caU graph, and simulations of native methods, and pro duces from them a pointer

assignment graph containing the same information in a form suit able for performing

pointer analysis. This section describes the design of the builder.

4.2.1 Design

The task of the builder can be decomposed into two steps.

1. Iterating through the Jimple input, and determining how the different Jimple

features relate to each other. This generaIly corresponds to determining which

edges will be present in the pointer assignment graph.

2. Creating the appropriate pointer assignment graph node to represent each fea

ture in the Jimple input. This is determined by sorne of the pointer analysis

parameters listed in Section 4.2.2, specified as Soot phase options to SPARK.

Each step is represented by an abstract class and its implementation. This makes

it possible to change the implementation of each step, without affecting the other.

While the current implementation of the first step constructs a graph representing

context-insensitive relationships in the Jimple source, SPARK is designed to allow

experimenting with context-sensitive implementations in the future. The second step

can also have different implementations, for example to change the set of options that

determine which types of nodes will be constructed for each feature, or to create an

entirely different representation of the pointer assignment graph. Of course, the entire

builder could be replaced, so that the pointer assignment graph could be created from

a different source representation (such as one based on a language other than Java

bytecode) , or read in from a file.

The current implementation of the builder constructs variable nodes for local vari

ables and static fields, and a single variable node representing aIl thrown exceptions.

Depending on options given to SPARK, instance fields, method parameters, and return

35

Pointer Analysis Engine

values are represented with either variable or field reference nodes. Array element

referenees are al ways represented with field referenee nodes. Allocation nodes are

created for allocation sites and string constants, including command-line parameters

to the main method.

Edges are created for aIl pointer-valued assignments including casts, for throw

and catch statements, and, unless the call graph is being constructed on the fiy, for

pointers passed to and returned from methods. In addition, special edges are added

for implicit fiow of pointers. If a class has a f inalize method, an edge is added

from the allocation node of each allocation site allocating an object of that class to

the variable no de representing the implicit this parameter to the finalize method.

This models the eventual fiow of the object from the allocation site to its finalize

method when it is garbage collected. Similarly, sinee the this pointer of the start

method of java .lang. Thread implicitly fiows to the this pointer of the run method

of any of its subclasses, assignment edges are added to refiect this.

4.2.2 Parameters and Options

Represel1til1g Fields

The following three SPARK options affect whether certain features are represented as

variable nodes or field referenee nodes.

ignoreBaseObjects: Wh en this option is set to true, each reference to an instance field

is represented by a variable node, regardless of the object that is the base of the

reference (a field-based analysis, as compared to a field-sensitive analysis). That

is, aH instances of a given field in aIl objects are grouped together. This allows

for a very fast analysis because pointers can be propagated to variable nodes

in a single pass, with no iteration. However, using variable nodes to represent

referenees to instance fields is less precise than using field reference nodes, be

cause it does not distinguish between fields of provably different objects. The

default value is faise.

36

4.2. Building the Graph

parmsAsFields, returnsAsFields: These two options control whether method parame

ters and return values are represented with variable nodes, or with field reference

nodes having the this pointer of the method as their base. In combination with

respecting declared types during propagation, representing parameters and re

turn values with field reference nodes gives some of the benefits of constructing

the caU graph on the fiy. Pointer fiow to and from the targets of a method calI

is restricted to methods declared in classes reaching the receiver of the caIl and

their superclasses, because the receiver of the calI can only be stored in the this

pointer of these methods. Constructing the call graph on the fiy would, in addi

tion, prevent pointer fiow to and from methods declared in proper superclasses

of classes reaching the receiver. Although these options improve precision, they

introduce very large numbers of field reference nodes into the pointer assign

ment graph, making the analysis very slow, and making it require unreasonable

amounts of memory. The default value for both options is false.

The next two options specify which allocation nodes are created to represent

allocation sites.

typesForSites: Normally, each allocation site appearing in the program is represented

by a unique allocation node. When this option is set to true, however, a single

allocation node is used to represent an allocation sites allocating objects with

the same type, as in Variable Type Analysis [SHR+OO]. This reduces the size of

the graph that SPARK has to process, and therefore speeds up the analysis, at

the expense of precision (since aIl objects in the program having a given type

are represented together). The default value of this option is faise.

mergeStringBuffer: Whenever strings are concatenated using the + operator ln

Java, the corresponding bytecode contains an allocation of a java. lang .

StringBuffer, and the required operations on it. These operations are im

plemented in a way that prevents a fiow- and context-insensitive analysis from

being able to show that the uses of these java .lang . StringBuffer objects are

not aliased, resulting in large numbers of variables with many aliases. These

37

Pointer Analysis Engine

take a long time to analyze, and also drastically increase the memory require

ments for the analysis. U sing a single allocation no de to represent aIl allo

cation sites of type java .lang. StringBuffer, like with the typesForSites op

tion, do es not affect precision, because the variables storing these objects would

an have equal points-to sets anyway. The mergeStringBuffer option has the

same effect as the typesForSites option, but only for allocation sites of type

java. lang. StringBuffer. Its default value is true.

The next option activates the native method simulator.

simulateNatives: Soot includes a framework for simulating the effect on whole-program

analyses of the native methods defined in the standard Java library classes.

When this option is set to true, SPARK uses this framework to model the effect

of these methods. The default value is true.

The next option determines how simple assignment edges are represented.

simpleEdgesBidirectional: Normally, wh en the Jimple source contains an assignment

of the form a = b, a directed edge is created from the no de representing b to the

node representing a, to reflect the pointer flow. However, a unification-based

analysis treats the assignment as bi-direction al. Wh en this option is set to true,

simple assignment edges are always created in both direction. In combination

with merging of strongly-connected components (see Section 4.3), this allows

SPARK to perform an analysis like that suggested by Steensgaard [Ste96a]. The

default value for this option is faIse.

The next option specifies whether the calI graph should be built on the fly.

onFlyCaliGraph: Normally, the builder inserts edges into the pointer assignment graph

to represent pointer flow through method parameters and return values, based

on the active caU graph found in the Soot Scene when SPARK is started. When

this option is set to true, these edges are not initially added. Instead, the

solver adds these edges during the analysis as it propagates points-to sets to

the receivers of method caUs. The solver accomplishes this by calling back into

the builder during solving time. The default value of this option is false.

38

4.3. Simplifying the Graph

4.3 Simplifying the Graph

Once the pointer assignment graph has been built, we can proceed directly to prop

agating the points-to sets. However, it may be possible to prove beforehand that

the points-to sets of certain variables will turn out to be equal. In this case, we can

simplify the graph by merging the nodes corresponding to variables known to have

equal points-to sets. This results in a smaller pointer assignment graph given as input

to the points-to set propagation algorithm, hopefully making the analysis run faster

and require less memory.

4.3.1 Merging Nodes

SPARK includes support for merging nodes using the fast union-find [Tar75] algorithm

at the core of its implementation of a pointer assignment graph. The algorithm is

based on successively combining pairs of nodes, and choosing one of the two orig

inal nodes as a unique representative for the pair. At any time, for each set of

nodes that have been combined, one of the nodes that were combined serves as the

unique representative node for the entire set of nodes. The Node class contains a

getReplacement 0 method, which returns the unique representative node for the set

containing the node, as weIl as a mergeWi th 0 method, which merges anode with

another.

Merging nodes in a pointer assignment graph is not as simple as applying the

union-find algorithm to them, however. \iVhenever two nodes are merged, the rest of

the pointer assignment graph must be updated. In particular, aIl edges to and from

the nodes must be replaced with edges to and from the unique representative of the

new combined node. In addition, because each field reference node has a variable

node as its base, whenever two variable nodes are merged, aH field reference nodes

having them as bases must be updated with the unique representative of the new

combined node as their base. When this creates multiple field reference nodes with

the same base and field, these must in turn be merged. Finally, whenever two nodes

are merged, their points-to sets must also be merged. The method used in SPARK to

39

Pointer Analysis Engine

perform this merging of nodes is described next.

Updating the Graph for Merged Nodes

Whenever two nodes are merged, an edges to and from the nodes must be replaced

with edges to and from the unique representative of the combined node. This is a

slow process, because not only do the adjacency sets of the merged nodes need to

be merged, but the adjacency sets of nodes adjacent ta the merged nodes must be

updated as well. Even worse, this must be repeated for each of the many pairs of

nodes that are merged.

After experimenting with several methods of updating the edges in the pointer as

signment graph to reflect merged nodes, a lazy approach was implemented in SPARK,

in keeping with the design of the union-find algorithm. Specifically, when two nodes

are merged, their adjacency sets are also merged, but the adjacency sets of nodes

adjacent to them are left alone. Instead, whenever the adjacency set of anode is

queried, it is checked to ensure that no no de in it has already been merged into

another node. When anode that has been merged Înto another node is found, it

is replaced with the unique representative of the combined node. This makes each

merge operation cheap, delaying the updating of adjacency sets until those sets are

iterated over. U pdates therefore need not be done to adjacency sets that will never

be read, and the updates due to many merges can be done all at once. Moreover,

since the updates are done when the adjacency set is being iterated over anyway, the

overhead of having to access each adjacency set to update it is avoided.

This approach makes it slightly more expensive to query the adjacency set of a

node, which could reduce performance if the sets are accessed frequently. However,

determining that an adjacency set does not require any updates is very fast. In

addition, SPARK has a global flag that is set whenever nodes are merged. Adjacency

sets are only checked when this flag is set, so no checks will be performed unless merges

have occurred. In addition, after a period of heavy merging, aU the adjacency sets can

be updated, and the flag reset, so that SPARK will not have to check for merged nodes

until another merge occurs. SPARK does this after the pointer assignment graph is

40

4.3. Simplifying the Graph

simplified and before propagation begins, so the adjacency sets are not checked unless

addition al merging occurs during propagation.

Updating field Reference Nodes When Variable Nodes Are Merged

The updating of field reference nodes wh en the variable nodes that serve as their

base are merged is also done lazily. Specifically, when the unique representative of

the combined node containing a field reference node is requested, the following

procedure is followed (it is illustrated in Figure 4.3, which shows the union-find point-

ers after node ..

into p.
has been merged into no de , and no de

,-----~

has been merged

Figure 4.3: Example Illustrating Merging of Field Reference Nodes

1. The union-find pointers are followed to find the unique representative for

Assume that this unique representative is

2. The base node i.· of the unique representative is examined. If

the unique representative of the combined no de containing it, then is the

correct unique representative for and is returned.

3. Otherwise, the unique representative for is found. Assume that this unique

representative is .. Then the unique representative for the original field ref-

erence node is the field reference node with the same field f and base (.

namely the node

41

Pointer Analysis Engine

After the unique representative has been found, the union-find pointers are up

dated as in the standard union-find algorithm, so that the next time the unique

representative of is requested, the pointer can be followed directly to

Updating Points-to Sets

vVhenever two nodes are merged, the points-to set of the node chosen as the repre

sentative for the combined no de becomes the union of the two points-to sets.

4.3.2 Strongly Connected Components

When a set of variable nodes forms a strongly connected component in the pointer as

signment graph, we have the constraints points-to(ni) ç points-to(nj) ç points-to(ni)

for any two nodes ni, nj in the set. The points-to graphs of aU the nodes in the

set are therefore equal, and the nodes can be merged without affecting the result

of the points-to analysis. Wh en the option simplifySCCs is set to true, SPARK per

forms this simplification of the graph before propagation begins. Strongly connected

components are found using the well-known, linear-time, depth-first-search-based al

gorithm described, for example, in [CLR90, Section 23.5J. The default value of the

simplifySCCs option is true.

If the declared types of variables are being respected during propagation, the

nodes of a strongly connected component may have different points-to sets if they

have different declared types. There are two possible ways to handle this case.

1. We can merge the nodes of the strongly connected component anyway, and give

the resulting node a declared type that is the nearest common supertype of the

declared types of aIl the nodes. This reduces precision, but allows us to simplify

the graph as much as if declared types were not being respected.

2. We can detect only strongly connected components in which the declared types

of all the nodes are equivalent. This is done with the normal algorithm for

finding strongly connected components, but considering only edges joining nodes

with the property that aH objects compatible with the declared type of the

42

4.3. Simplifying the Graph

source node are also compatible with the declared type of the destination node.

In other words, the declared type of the source is a subtype of the declared

type of the destination. By merging only the strongly connected components in

which the declared types are equivalent, we preserve all precision, but we may

simplify the graph less than we could if declared types were not being respected.

The value of the option ignore TypesForSCCs determines the alternative which is cho

sen. Because only a small percentage of nodes appear in strongly connected com

ponents [RCOO], and of those, only a small percent age appear in strongly connected

components with multiple declared types, the default value of this option is false.

4.3.3 Single Entry Subgraphs

It is quite common for subgraphs to contain chains of variable nodes, in which each

node except the first has only one predecessor. Since the points-to set of the first

node will flow to all the other nodes in the chain, the points-to sets of aIl the nodes

will be equal. Therefore, the nodes in the chain could an be merged into a single

node, and a single points-to set cou Id be used for an of them together. This idea can

be extended to any single entry subgraph: any subgraph for which there is a unique

"first" node such that the points-to relationships in the points-to sets of any no de in

the subgraph are also in the points-to set of the "first" node. The idea of merging

single entry subgraphs is very similar to the technique that Rountev and Chandra

propose for C [RCOO].

Definition 1 (Single Entry Subgraph) A single entry subgraph corresponding to

a given header node is a subgraph of the pointer assignment graph induced by a set

of variable nodes, with each node having the properties:

1. that every path to it from a field reference or allocation node passes through the

header node) and

2. that there exists at least one pa th from the header node to each node in the

subgraph.

43

Pointer Analysis Engine

The header node need not necessarily be a variable node. Every variable node is

itself a single entry subgraph, with itself as its header node.

Theorem 1 The points-to set of every nade n in a single entry su,bgraph is equ,al ta

the points-to set of the header node h.

Proof: By definition, there is a path from h to n, so we have the constraint

points-to(h) ç points-to(n). Now, let a be an allocation node in the points-to set

of n. This means that there is a path

with either no = a, or no being a field reference node with a in its points-to set, in

order to force

{a} ç points-to(no) ç points-to(nd ç ... ç points-to(nk) ç points-to(n)

Since no is a field reference or allocation node, there is at least one field reference

node or allocation node on the path of nodes no, nI, n2, ... ,nk. Let nl be the last

field reference or allocation node on this path. Then, by the definition of a header

node, h E {nl, nl+I,"" nk, n}. Therefore, {a} ç points-to(h). Because this argument

applies to any a E points-to(n) , we have points-to(n) ç points-to(h) ç points-to(n) ,

so the sets are equal, as required. 0

In order to simplify the pointer assignment graph as much as possible, we are

interested in fin ding maximal single entry subgraphs, and reducing each of them to a

single node. However, this is not a required condition; reducing single entry subgraphs

that are not maximal will still correctly simplify the pointer assignment graph to sorne

extent.

When the simplifyOffline option is set to true, SPARK uses the algorithm in Fig

ure 4.4 to find and reduce single entry subgraphs. This is a greedy algorithm which

repeatedly looks for nodes that are in a common single-entry subgraph and merges

them. Whenever a variable node has exactly one predecessor, and the predecessor

is a variable node, the two nodes form a single-entry subgraph, since every path to

44

4.3. Simplifying the Graph

the successor must pass through the predecessor. Therefore, the two nodes can be

merged. Similarly, whenever there is a pair of variable nodes with a common prede

cess or that is a field reference or allocation node, and this predecessor is their only

predecessor, then every path to each of the variable nodes passes through this prede

cessor, so the two variable nodes are in the same single-entry subgraph and can be

merged. In the absence of cycles and nodes unreachable from any field reference or

allocation node, the algorithm finds maximal single-entry subgraphs.

1: repeat

2: while there exists a variable node with exactly one predecessor and this pre-

decessor is a variable no de do

3: merge this variable node with its predecessor

4: end while

5: while these exists a pair of variable nodes, and a field reference or allocation

node such that the field reference or allocation node is the only predecessor

of each of the variable nodes do

6: merge the pair of variable nodes

7: end while

8: until no changes

Figure 4.4: Algorithm for Reducing Single Entry Subgraphs

As in the simplification of strongly connected components, edges where the type

of the source node of the edge is not a subtype of the type of the target node of the

edge are ignored when declared types are being respected, to prevent nodes which

cou Id have unequal points-to sets due to different declared types from being merged.

45

Pointer Analysis Engine

4.4 Flowing Points-ta Sets

The final step of points-to analysis is propagation of points-to sets along edges in

the pointer assignment graph to find a fixed point solution of the subset constraints

represented by those edges. SPARK currently contains five algorithms1 for such a

computation, and others can be easily added.

4.4.1 Iterative Propagation Algorithm

The algorithm2 presented in Figure 4.5 is the simplest propagation algorithm in

SPARK, used as a baseline, and for testing the correctness of the other, more compli

cated algorithms. It is a direct extension ofthe algorithm given by Andersen [And94],

extended to distinguish fields in pointer dereference expressions. The algorithrn be

gins by propagating an allocation nodes to the points-to sets of their successors. It

then repeatedly propagates points-to sets along the pointer assignment graph until

a fixed point is reached. An assignrnent edge of the form --+ 'indicates that

points-to(ç points-to(), so it is handled by adding the points-to set of . into

the points-to set of . Concrete field nodes are introduced to model the fields of

con crete heap objects. Suppose a store edge of the form is encountered.

This rneans that the field f of the object that q points to can now point to any object

that p pointed to. We do not know exactly which object q will point to at run-tirne;

we only know that it will be one of the objects in the points-to set of . So, for

each allocation no de in the points-to set of " we create a concrete field node aJ

to represent the field f of any object created at allocation site a. We then add the

points-to set of into the points-to set of a.f. In a sirnilar way, when we encounter

a field load of the form, we know that for sorne 1 in the points-to set of

pointers fiow from aJ . So, for each such l, we add the points-to set of

a.f into the points-to set of

1 For clarity, algorithms are presented here without support for on-the-fly caU graph construction.
This support is implemented in SPARK, however.

2In the algorithms presented in this thesis, the U= symbol is used to indicate set union and
assignment. That is, x U= y indicates that the set x U y is assigned to x.

46

1: pro cess allocations

2: repeat

3: process every assignment edge

4: process every store edge

5: pro cess every load edge

6: until no changes

procedure pro cess allocations 0
1: for each allocation edge do

2: points-to(·) U= {

3: end for

procedure pro cess assignment edge (

1: points-to('") U= points-toC)

procedure pro cess store edge (

1: for each allocation node E pOints-toCD do

2: points-to(a.f) U= points-to()

3: end for

procedure pro cess load edge (

1: for each allo~ation node Il E points-to('1) do

2: points-to() U= points-to(a.f)

3: end for

4.4. Flowing Points-to Sets

Figure 4.5: Iterative Propagation Algorithm

47

Pointer Analysis Engine

As has been widely noted, this algorithm runs slowIy and scales poorly. SPARK

includes a slight performance improvement: prior to starting the algorithm, a topolog

icai sort is performed on the variable nodes in the pointer assignment graph. 3 Then,

the Ioop between hnes 2 and 6 iterates over edges in topological order of their source

node. If the pointer assignment graph is cycle-free, this ensures that aH points-to sets

of variable nodes are propagated on each execution of this Ioop. Even when the graph

contains cycles, considering edges in this order maximizes the length of the path of

nodes to which each points-to relationship can fiow in each iteration, greatly reducing

the number of iterations required and the time to complete the analysis.

This algorithm is selected in SPARK by setting the option propagator to the value

iter.

4.4.2 Worklist Propagation Algorithm

For non-trivial benchmarks, the Iterative propagation algorithm is much too slow. A

better, but more complex soiver based on worklists is also provided as part of SPARK,

and is presented in Figures 4.6 and 4.7.

This worklist propagation algorithm maintains a worklist of variable nodes. Wh en

ever points-to relationships are added to the points-to set of a variable node, the node

is added to the worklist. In the inner Ioop of the algorithm, nodes are removed from

the worklist, and the edges associated with those nodes are processed. As before,

variable nodes are removed from the worklist in topologicai order. First (line 5),

any assignment edges originating at the node removed from the worklist (D are

processed, to fiow the changes in the points-to set to their successors. Next (Ene 6),

store edges originating at the node removed from the worklist () are processed.

jUter that (line 7), the algorithm pro cesses store edges i --+ whose destination

no de) has the no de removed from the worklist

the new points-to relationships in the points-to set of

as its base. This is because

require the points-to set

3If the graph contains cycles, the nodes that are part of cycles will obviously not be sorted
in topological order; however, aU nodes that are not in cycles will be ordered before any of their
successors.

48

4.4. Flowing Points-to Sets

of to be propagated to points-to sets of additional concrete field nodes, to which

they were not propagated in previous iterations when the points-to set of was

smaller. Finally (line 8), the algorithm proeesses any load edges corresponding to

fields of objects in the points-to set of " Sinee there are new points-to relationships

lU there are new concrete field nodes who se points-to sets need to be propagated

to refiect the loads.

This inner loop processing the worklist is not sufficient to obtain a complete so

lution. Whenever a variable node appears in the worklist (which means that its

points-to set has new nodes in it that need to be propagated), the algorithm propa

gates along edges that are likely to require propagation: assignment edges of the form

-+ i, and load and store edges involving This is not enough, however. For

example, suppose variable has already been processed with the allocation site

in its points-to set, so it is not in the worklist. Further suppose that is now added

to the points-to set of" and are possible aliases; that is, they may both point

to and stores to, may be loaded from . This means that after processing

any store into , we should proeess aU loads from . However, 1 • is not in the

worklist, and adding aU aliased nodes to the worklist after processing a store edge

would be prohibitively expensive. To ensure that stores to are propagated to

loads of its alias , the algorithm includes an outer loop. In each iteration of this

outer loop, all the load and store edges are considered, rather than just those associ

ated with nodes in the worklist, in order to propagate points-to relationships caused

by aliasing that may have been missed by the inner loop. To summarize, Hnes 10

and 11 in the outer loop are necessary for correctness; lines 6 to 8 could be removed,

but including them greatly reduces the number of iterations of the outer loop and

therefore the analysis time.

This algorithm is selected in SPARK by setting the option propagatol' to the value

worklist.

49

Pointer Analysis Engine

1: pro cess allocations

2: repeat

3: repeat

4: remove first node : from worklist

5: pro cess each assignment edge ',c~

6: pro cess each store edge

7: pro cess each store edge

8: pro cess each load edge

9: until worklist is empty

10: pro cess every store edge

11: pro cess every load edge

12: until worklist is empty

Figure 4.6: Worklist Propagation Algorithm (part 1 of 2)

50

procedure pro cess allocations ()

1: for each allocation edge do

2: points-to(... ~. U= {

3: worklist U= {

4: end for

proced ure process assignment edge (:.......,.

1: points-toC) U= points-toC.)

2: if points-to() was changed then

3: worklist U= { }

4: end if

proced ure pro cess store edge (

1: for each allocation no de E points-to(.i) do

2: points-to(a.f) U= points-to()
\,,"'

3: end for

procedure process load edge (..)

1: for each allocation node E points-tonew(~ do

2: points-to(. ') U= points-to(a.f)

3: if points-to() was changed then

4: worklist U= {

5: end if

6: end for

4.4. Flowing Points-to Sets

Figure 4.7: Worklist Propagation Algorithm (part 2 of 2)

51

Pointer Analysis Engine

4.4.3 Incrementai Worklist Propagation Algorithm

In certain implementations of sets (hash set and sorted array set), each set union op

eration takes time proportional to the number of elements in the sets being combined.

While iterating through an analysis, the contents of one set are repeatedly merged

into the contents of another set, often ad ding only a small number of new elements

in each iteration. We can improve the algorithm by noting that the elements that

have already been propagated will remain in the destination set in every subsequent

iteration, so they need not be propagated again. Instead, we can propagate only the

newly-added elements.

Thus, as an optional improvement, SPARK includes versions of the solvers that use

incremental sets. Each points-to set is divided into a "new" part and an "old" part.

During each iteration, elements are propagated only between the new parts, which are

likely to be small. At the end of each iteration, an the new parts are flushed into their

corresponding old part. An addition al advantage of this is that when constructing

the calI graph on-the-fly, only the smaller, new part of the points-to set ofthe receiver

of each caU site needs to be considered in each iteration.

The worklist propagation algorithm using incremental sets is presented in Fig

ures 4.8 and 4.9. The points-to sets have been replaced by points-tonew and

points-to old' The procedures for processing assignment, store, and load edges have

been changed. In general, every propagation between points-to sets has been re

placed by a propagation between the new portions of points-to sets. Any elements

that already appear in the old points-to set of the destination node are excluded

from the propagation, so that the new points-to set of the destination node truly gets

only the elements that the node did not have before. For example, occurrences of

points-to(') U= points-to(.) in the non-incremental algorithm have been replaced

with points-tonew(.i) U= points-tonew(\ points-to oli~). This ensures that only

new parts of points-to sets are propagated.

There are now two different methods used to pro cess store edges such as c; -t

depending on whether it is the source node (or the base (D of the destination

node) which was removed from the worklist (so its points-to set is known to have

52

4.4. Flowing Points-to Sets

new elements). When the points-to set of the source node > is known to have new

elements, only its new points-to set is propagated to fields of objects in both portions

of the points-to set of, since these new objects in have not yet been propagated

to the field of of any objects pointed to by > new or old. On the other hand,

when it is the points-to set of the base of the destination node that lS known to have

new elements, both parts of the points-to set of the source node are propagated

to the fields of only the newly added objects of : (that is, to fields of objects in

points-tonew(')).

Another difference compared to the original worklist propagation algorithm is the

addition of lines 9, 10, 15, and 16, which flush the new portions of points-to sets into

the old portions.

As in the non-incremental version of the algorithm, an outer loop is required to

process aH stores and loads, to account for flow due to aliasing that may have been

missed by the inner loop. In the outer loop, both parts of each points-to set are

propagated to ensure a complete propagation.

The incremental worklist propagation algorithm is selected in SPARK by setting

the option propagator to the value worklist, and the option setlmpl to the value double.

53

Pointer Analysis Engine

1: incrementally pro cess allocations

2: repeat

3: repeat

4: remove first node . from worklist

5: incrementally pro cess each assignment edge !.--l>-

6: incrementally pro cess each store edge :: for source

7: incrementally pro cess each store edge for destination base

8: incrementally pro cess each load edge

9: points-toold() u= points-tonew(._w)

10: points-tonew() +- {}

l1: until worklist is empty

12: fully pro cess every store edge

13: fully process every Ioad edge

14: for each concrete field no de a.f do

15: points-toold(a.f) U= points-tonew(a.f)

16: points-tonew(a.f) +- {}

17: end for

18: until worklist is empty

procedure incrementally pro cess allocations 0
1: for each allocation edge do

2: points-tonewC) U=

3: worklist U= {. }

4: end for

procedure incrementally process assignment edge (.)

1: points-tonew(... D U= points-tonew() \ points-to oli

2: if points-tonew(.) was changed then

3: worklist U= { }

4: end if

Figure 4.8: IncrementaI Worklist Propagation Algorithm (part 1 of 2)

54

4.4. Flowing Points-to Sets

procedure incrementally pro cess store edge for source ()

1: for each allocation node D E (points-t~T/,ewC]) U points-to old(~)) do

2: points-tonew(aJ) U= points-tonewC i) \ points-to old(a.f)
3: end for

procedure incrementally pro cess store edge for destination base (,)

1: for each allocation node E points-tonew() do
, , '", .. ,.~) '" ",

2: points-tonew(a.f) U= (points-tonew() U points-ta oli,)) \points-to old(a.f)

3: end for

procedure incrementally process load edge (

1: for each allocation node E points-tonew(F~') do
",~,>,_ .. t/

2: pOints-tonew(:i) U= (points-tonew(aJ) U points-to old(a.f)) \points-to old()

3: if points-tonewC was changed then

4: worklist U= (~I}
5: end if

6: end for

procedure fully pro cess store edge ('

1: for each allocation node E (points-tonew(.~D U points-to old(:,j)) do

2: points-tonew(a.f) U= (points-tonew('D U points-ta old(D) \points-to old(a.f)
3: end for

procedure full pro cess load edge (

1: for each allocation node Il E (points-tonew(':'!) U points-to oli:]j)) do

2: points-tonew(,) U= (points-tonew(a.f) U points-to old(a.f)) \points-to old(,)

3: if points-tonewC"'Î) was changed then

4: worklist U= {}

5: end if

6: end for

Figure 4.9: IncrementaI Worklist Propagation Aigorithm (part 2 of 2)

55

Pointer Analysis Engine

4.4.4 Alias Edge Propagation Algorithm

Andersen's [And94] algorithm for C uses a separate points-to set for each allocation

site to represent pointers stored into objects created at that allocation site. Accord

ingly, the standard extension [LPH01, RMR01] to Java handles field-sensitivity using

a separate points-to set for each field of the objects created at each allocation site.

This ensures that aliased field references and are correctly handled, since if

and ... both have allocation site in their points-to sets, stores into them and

loads out of them will fiow into and out of, respectively, the points-to set for aJ.

Unfortunately, as points-to sets grow large, this representation becomes pro-

hibitively inefficient. If points-to(= { , ... , }, then any stores to

must be propagated to each of the n sets points-to(ad) (see Figure 4.10(a)). The

space and time requirements are quadratic in the size of the sets, sinee n possibly

large sets must be ereated, where n is the size of the set for p.

a1.f a2J

(a) (b)

Figure 4.10: Field Representation in Standard (a) and Alias Edge (b) Algorithms

Points-to sets were originally proposed as a compact representation of alias rela

tionships [EGH94]. If the average points-to set is of size n, and there are v variables,

a points-to set representation takes O(nv) spaee, while an alias set representation

may take 8(v2
) spaee, sin ce eaeh variable eould be aliased to eaeh other variable.

\Vhen n is mueh smaller than v, as is usually true when analyzing C, points-to sets

56

4.4. Flowing Points-to Sets

are more efficient. However, in handling aliases in Java, we are only interested in

aliased variables dereferenced "vith the same field, because a field in Java can only be

accessed by a field expression specifying that field. This is in contrast to C, where

one can take the address of a field of an object, use unsafe casts, or even use pointer

arithmetic to create other aliases to the field of an object. Most fields in Java are

dereferenced few times, and therefore with few variables. Therefore, in Java, for any

given field, our n is much greater th an v, so the 8 (v 2) representation based on alias

sets can be more efficient.

One way to implement such a representation is to eliminate the concrete field

nodes, and add edges directly between field reference nodes that are determined to

be aliased. However, the may-alias relationship is not transitive. If and are

aliased (that is, the intersection oftheir points-to sets is not empty) , we cannot simply

add pointer assignment edges in both directions between and' , because these

two field references may not have the same points-to sets. For example, suppose

points-to(i. 1) = { } and points-to(D = { }. Then .. and . are possibly

aliased, but; may point to objects in points-to(a2.f) that may not point to.

To get around this difficulty, we split an field reference nodes into two halves, an in

haH used as the destination of field stores, and an out half used as the source of field

loads, and add edges only from the in half of anode to the out half of other nodes,

as shown in Figure 4.10(b). This allows us to represent the alias relationship without

making it transitive, while ensuring that anything stored into

and vice-versa.

can be loaded from

The alias edge propagation algorithm is presented in Figures 4.11 and 4.12. This

algorithm uses three worklists:

worklist stores variable nodes whose points-to sets have changed and must be prop

agated along assignment and store edges, like in the worklist propagation algo

rithm.

alias Worklist stores variable nodes after their points-to sets have been propagated

so that they can be considered for possible aliasing with other nodes, and the

corresponding alias edges can be added.

57

Pointer Analysis Engine

1: process allocations

2: repeat

3: pro cess worklist

4: pro cess alias W orklist

5: pro cess ,fieldRefW orklist

6: until worklist is empty

procedure pro cess allocations 0
1: for each allocation edge do

2: points-to(}) u= {
3: worklist u= {
4: end for

procedure pro cess worklist ()

1: while worklist is not empty do

2: remove first node from worklist

3: alias W orklist u= { }
4: for each assignment edge - do

5: points-to() u= points-toC D
6: if points-to() was changed then

7: worklist U= {

8: end if

9: end for

10: for each store edge' do

11: points-to(u= points-toC,;)

12: if points-to() was changed then

13: fieldRefWorklist U= { }

14: end if

15: end for

16: end while

Figure 4.11: Alias Edge Propagation Algorithm (part 1 of 2)

58

4.4. Flowing Points-to Sets

procedure process alias Worklist 0
1: while alias Worklist is not empty do

2: remove first no de from alias Worklist

3: for each with as its base do

4: for each which is dereferenced with field f as do

5: if points-toC") n points-toC

6:

7:

aliasEdges u= {
fieldRefWorklist u= {

8: end if

9: end for

10: end for

11: end while

procedure process fieldRefWorklist ()

1: while fieldRefWorklist is not empty do

2: from fieldRefWorklist

3: for each edge E aliasEdges do

4: points-to()

5: end for

6: end while

do

8: for each load edge

9: points-to(. u= points-toC

10: if points-to(was changed then

11: worklist u= { :}
12: end if

13: end for

14: end for

}

Figure 4.12: Alias Edge Propagation Algorithm (part 2 of 2)

59

Pointer Analysis Engine

fieldRefWorklist stores field reference nodes whose points-to sets have changed and

must be propagated along alias edges.

The points-to sets of nodes removed from worklist are propagated along assignment

and store edges originating at those nodes. Whenever a points-to relationship is

added to the points-to set of a variable node or field reference node, that no de is

added to the worklist or the .fieldRefWorklist, respectively, so that the new points

to relationship will be propagated further along edges originating at that node. In

addition, each node that is removed from the worklist is added to the alias Worklist,

so that it will later be processed for any new aliasing relationships that may have

arisen from the new elements in its points-to set. To find these relationships (in

the "pro cess alias Worklist" procedure), for each node we find all the fields with

which it is dereferenced, and for each such field, we find aIl other nodes that are

dereferenced with the same field. If the points-to sets of and have a non-

empty intersection, then their fields are aliased, so we add the appropriate edges

between them (-+ and -+ , and add the nodes to the

,fieldRefWorklist, so that points-to sets will be propagated along these new edges.

The fieldRefWorklist keeps track of in field reference nodes whose points-to sets have

new elements that must be propagated. When it is processed, these points-to sets are

propagated to the points-to sets of out field reference nodes along alias edges. Finally,

allioad edges are processed, propagating points-to sets of out field reference nodes to

the points-to sets of the corresponding variable nodes.

The alias edge propagation algorithm is selected in SPARK by setting the option

propagator to the value alias.

60

4.4. Flowing Points-to Sets

4.4.5 Incrementai Alias Edge Propagation Algorithm

Like the worklist propagation algorithm, the alias edge propagation algorithm can be

made incremental. The incremental version is presented in Figures 4.13 through 4.16.

Overall, this algorithm is very similar to the non-incremental version. The main

difference is that points-to sets are again divided into two parts, and only the new

parts are propagated. After each variable node from the worklist has been processed,

its new part is flushed into the old part. Similarly, after each in field reference no de

from the fieldRefWorklist is processed, its new points-to set is flushed into its old

points-to set. The points-to sets for the out field reference nodes are flushed wh en aH

the loads are processed (in the "incrementally process fieldRefWorklise' procedure).

The incremental alias edge propagation algorithm is selected in SPARK by setting

the option propagator to the value alias, and the option setlmpl to the value double.

61

Pointer Analysis Engine

1: incrementally pro cess allocations

2: repeat

3: incrementally pro cess worklist

4: incrementally pro cess alias Worklist

5: incrementally pro cess fieldRefWorklist

6: until worklist is empty

procedure incrementally pro cess allocations ()

1: for each allocation edge do

2: pOints-tonew(;) U=

3: worklist U= {)

4: end for

Figure 4.13: Incrementai Alias Edge Propagation Algorithm (part 1 of 4)

62

procedure incrementally process worklist 0
1: while worklîst is not empty do

2: remove first node . from worklist

3: alias W orklist u= { }
4: for each assignment edge·· .- .,. do

4.4. Fiowing Points-to Sets

5: points-tonew(·i) u= points-tonew(D \ points-to oli,)

6: if points-tonew() was changed then

7: worklist u= { :}
8: end if

9: end for

10: do

u= points-tonew(r) \ points-to old(
.. '

11: points-tonew(

12: if points-tonew() was changed then

13: fieldRefWorklist U= { }

14: end if

15: end for

16: points-to olde) u= points-tonew("

17: points-tonew(i) +- {}
18: end while

Figure 4.14: IncrementaI Alias Edge Propagation Algorithm (part 2 of 4)

63

Pointer Analysis Engine

procedure incrementally pro cess alias Worklist 0
1: while alias Worklist is not empty do

2: remove first node

3: for each with

from alias W orklist

as its base do

4: for each vvhich is dereferenced with field f as

5: if points-to(

6:

7:

8:

9:

10:

aliasEdges u= {
,fieldRefW orklist u= {
points- tonew(

points-tonew(

end if

Il: end for

12: end for

13: end while

u= points-to old

do

}

\ points- to old(

\ points-to old

Figure 4.15: IncrementaI Alias Edge Propagation Algorithm (part 3 of 4)

64

procedure incrementally pro cess fieldRefWorklist ()

1: while fieldRefWorklist is not empty do

2: from fieldRefWorklist

3: for each edge E aliasEdges do

4: points-tonew
5: end for

6: points-to oli) U= points-tonew(

7: +-{}
8: end while

do

10: for each load edge

4.4. Flowing Points-to Sets

) \ points-to old(

11:

12:

13:

points-tonewC U= points-tonew() \ points-to old('J)
if points-tonewC) was changed then

worklist U= { .. }

14: end if

15: end for

16: points-to old(U= points-tonew(

17: points-tonew +- {}
18: end for

Figure 4.16: IncrementaI Alias Edge Propagation Aigorithm (part 4 of 4)

65

Pointer Analysis Engine

4.5 Points-ta Set Implementations

One purpose of SPARK is to enable experimentation with different implementations of

points-to sets. There are currently four implementations of points-to sets, and more

can be added by implementing a subclass ofthe PointsToSetlnternal abstract class.

This class contains default implementations of the required set operations in terms

of three basic operations:

add adds an element to the set.

forall executes a given method once for each element, passing the element as a

parameter.

contains returns a boolean value indicating wh ether a given element is in the set.

This makes it very easy to try out new set representations, sinee only these three

functions must be implemented. However, the set implementations currently included

in SPARK implement custom versions of the other set operations for efficiency. These

other operations are:

addAll adds all elements of one set iuto another.

hasNonEmptylntersection returns a boolean value indicating whether the intersec

tion of the set with another given set is empty.

possibleTypes returns a set of the types of aU objects contained in the set.

Each set may optionally have a declared type. In this case, the set ignores inser

tions of allocation nodes with a type that is not a subtype of the declared type.

4.5.1 Hash Set

The hash set is a simple wrapper around java. util. HashSet from the standard class

library. It is provided as a baseline against which other set implementations can be

compared, and for testing of more complicated implementations.

66

4.5. Points-to Set Implementations

4.5.2 Sorted Array Set

The sorted array set is a representation of a points-to set using an array which is

always kept in sorted order. Membership testing is implemented using a binary

search, which executes in time logarithmic in the number of elements in the set.

Element insertion takes time linear in the number of elements in the set, because the

elements that come after the element being inserted must be shifted to make room

for the new element. However, using the merge step of the well-known merge sort

algorithm, the very common operation of computing the union of two sets takes time

linear in the size of the sets. Wh en the array becomes full, it is copied to a new array

twice as large as the original. Merging two sets is always done into a new array large

enough to hold both sets, to avoid having to resize the array during this very common

operation.

4.5.3 Bit Set

The bit set represents a points-to set as a bit vector. An of the allocation nodes in the

pointer assignment graph are numbered sequentially. To insert the node numbered i

into the set, we set the ith bit. Both testing membership and inserting an element

take constant time. Merging a pair of sets takes time linear in the total number

of allocation nodes, rather than the number of elements in the sets. However, the

proportionality constant is very smaU, because the sets are merged 32 bits at a time.

In addition, when the set is large, each element takes only a single bit, compared to

32 bits in the sorted array set. The drawback is that sets with few elements use as

much memory as sets with many elements.

4.5.4 Hybrid Set

The hybrid set is a hybrid representation of a points-to set. It uses explicit pointers to

the set elements in arbitrary order when the set contains 16 elements or fewer. When

the set grows larger, this implementation switches to the bit vector representation.

The hybrid set implementation was introduced to reduce memory requirements. In

67

Pointer Analysis Engine

early experiments on large benchmarks, the analysis encountered very large numbers

of small sets, along with significant numbers of very large sets. Using the sorted array

set implementation, the very large sets used more memory than was available. On

the other hand, with the bit set implementation, each of the small sets required as

much memory as a large set, and there were so many small sets that, once again, all

available memory was exhausted. As we will see from the experimental results, the

hybrid sets turned out to be most efficient not only in terms of memory requirements,

but also in terms of analysis time.

68

Chapter 5

Experimental Results

This chapter reports on an extensive empirical study of a variety of subset-based

points-to analyses. This study demonstrates that SPARK provides a general and

effective means to express different points-to analyses. Many different variations were

expressed within the same framework, making it possible to compare both precision

and co st of the analyses.

5.1 Benchmarks

SPARK was evaluated on benchmarks from the SPECjvm [Spec] suite, along with

sablecc and soot from the Ashes [Ashe] suite, and jedit [Jedi], a full-featured

editor written in Java. The last three were selected because they are non-trivial

Java applications used in the real world, and they were also used in other points-to

analysis studies [RMR01, vVL02, LPH01]. AH benchmarks were analyzed with the

Sun JDK 1.3.L01 standard class library, on a 1.67 GHz AMD Athlon with 2GB of

memory running Linux 2.4.18. In addition, the javac benchmark was also evaluated

with the Sun JDK 1.1.8 standard class library for comparison with other studies.

The complete list of benchmarks appears in the summary in Table 5.1. The first

column gives the benchmark name (javac is listed twice: once with the 1.3.L01 JDK

class library, and once with the 1.1.8 JDK class library). The next two columns

69

Experimental Results

give the number of methods deterrnined to be reachable, and the number of Jimple1

statements in these methods. Note that because of the large class library, these are

the largest Java benchrnarks for which a subtype-based points-to analysis has so far

been reported. The fourth column gives the number of distinct types encountered by

the subtype tester.

Detailed experiments on individu al factors affecting precision and efficiency of

points-to analysis were performed on a selection of four of the benchmarks. compress

(Lempel-Ziv compression) was chosen as a small SPECjvm benchmark, javac (Java

compiler) as a large SPECjvm benchmark, and sablecc (parser generator) and j edi t

(text edit or) as large non-SPECjvrn benchrnarks written by distinct groups of people.

The other benchmarks exhibited similar trends.

methods stmts types

Benchmark (CHA) (CHA)

compress 15183 278902 2770

db 15185 278954 2763

jack 15441 288142 2816

javac (1.1.8) 4602 86454 874

javac (1.3.1) 16307 301801 2940

jess 15794 288831 2917

mpegaudio 15385 283482 2782

raytrace 15312 281587 2789

sablecc 16977 300504 3070

soot 17498 310935 3435

jedit 19621 367317 3395

Table 5.1: Benchmark Characteristics

1 Jimple is the three-address typed intermediate representation used by Soot.

70

5.2. Factors Affecting Precision

5.2 Factors AfFecting Precision

This section analyzes three factors that affect not only the efficiency of the analysis,

but also the precision of its result. These factors are: (1) how types are used in

the analysis, (2) whether the analysis uses a CHA-based call graph or builds the calI

graph on the fiy, and (3) whether the analysis is field-based or field-sensitive.

Table 5.2 gives the results. Each analysis is named by a triple of the form xx-yyy

zz which specifies the setting for each of the three factors (a complete explanation

of each factor is gi ven in the su bsections below). For each benchmar k and points-to

analysis combination, the table gives a summary of the precision for dereference sites

and call sites.

For dereference sites, the table gives the percentage of field dereference sites of the

form p. f with 0, 1, 2, 3-10, 11-100, 101-1000 and more than 1000 elements in their

points-to sets. Dereference sites with 0 items in the set correspond to statements

that cannot be reached (i.e. the CHA call graph conservatively indicates that the

dereference was in a reachable method, but no allocation ever fiows to the statement).

For calI sites, the table reports the percentage of aIl invokevirtual and

invokeinterface call sites with 0, 1, 2, and more than two target methods, where

the target methods are found using the types of the allocation sites pointed to by the

receiver of the method calI. For example, for a call of the form o. mO, the types of

allocation sites pointed to by 0 would be used to find the target methods. Calls with

o targets correspond to unreachable calls, and calls with 1 target are guaranteed to

be monomorphic at run-time.

5.2.1 Respecting Dedared Types

Unlike in C, variables in Java are strongly-typed, limiting the possible set of objects

to which a pointer could point. However, many points-to analyses adapted from C do

not take advantage of this. For example, the analyses described in [RMR01, SHR+OO]

ignore declared types as the analysis proceeds; however, objects of incompatible type

are removed after the analysis completes.

71

Experimental Results

Dereference Sites (% of total) CalI Sites (% of total)

Benchmark 3- 11- 101-

Analysis 0 1 2 10 100 1000 1001+ 0 1 2 3+

eompress

nt-otf-fs 35.2 23.4 6.3 14.1 5.9 0.1 14.9 53.8 42.6 1.6 1.9

at-otf-fs 35.3 32.7 8.0 17.4 4.3 2.2 0.0 53.8 42.6 1.6 1.9

ot-otf-fs 36.9 32.1 7.8 17.0 4.3 1.8 0.0 54.6 42.3 1.3 1.8

ot-cha-fs 20.5 39.6 10.1 21.8 6.0 2.1 0.0 40.8 51.7 2.6 4.9

ot-otf-fb 26.3 38.1 9.4 19.2 5.1 1.9 0.0 48.0 47.4 2.0 2.6

ot-cha-fb 16.0 41.6 10.9 22.9 6.4 2.2 0.0 37.5 54.3 2.9 5.2

javae

nt-otf-fs 31.4 22.2 6.0 12.9 5.8 6.4 15.2 50.1 45.3 1.9 2.7

at-otf-fs 31.6 33.9 8.7 17.7 5.7 2.4 0.0 50.1 45.3 1.9 2.7

ot-otf-fs 33.0 33.3 8.6 17.3 5.7 2.0 0.0 50.8 45.2 1.5 2.5

ot-cha-fs 18.4 40.0 10.5 21.5 7.2 2.3 0.0 38.0 53.9 2.6 5.5

ot-otf-fb 23.6 38.6 10.0 19.2 6.5 2.1 0.0 44.6 49.9 2.1 3.3

ot-cha-fb 14.5 41.7 11.3 22.5 7.6 2.4 0.0 34.9 56.3 3.0 5.8

sableee

nt-otf-fs 31.6 24.2 5.9 12.7 9.5 0.2 15.8 49.9 45.8 2.1 2.2

at-otf-fs 31.7 37.9 7.4 16.2 4.9 2.0 0.0 49.9 45.8 2.1 2.2

ot-otf-fs 33.1 37.4 7.3 15.7 4.9 1.6 0.0 50.8 45.5 1.6 2.0

ot-cha-fs 18.4 44.1 9.2 20.1 6.4 1.9 0.0 37.9 54.2 2.9 5.0

ot-otf-fb 23.6 42.6 8.7 17.7 5.7 1.7 0.0 44.7 50.3 2.2 2.8

ot-cha-fb 14.4 45.8 10.0 21.0 6.8 1.9 0.0 34.9 56.6 3.3 5.2

jedit

nt-otf-fs ·25.6 29.6 6.6 12.7 3.8 1.5 20.2 43.8 52.0 1.9 2.2

at-otf-fs 25.7 42.4 9.0 16.3 4.7 2.0 0.0 43.8 52.0 1.9 2.2

ot-otf-fs 27.1 42.0 8.9 15.9 4.3 1.9 0.0 44.6 51.9 1.4 2.1

ot-cha-fs 14.5 47.9 10.7 19.4 5.5 2.1 0.0 33.2 59.3 2.3 5.1

ot-otf-fb 18.9 46.7 10.0 17.6 4.8 2.0 0.0 38.6 56.7 1.9 2.8

ot-cha-fb 12.1 49.0 11.0 20.1 5.7 2.1 0.0 30.7 61.5 2.5 5.3

Table 5.2: Analysis Precision

72

5.2. Factors Affecting Precision

The first three lines for each benchmark in Table 5.2 show the effect of declared

types. The first hne shows the precision of an analysis in which declared types are

ignored, notypes (abbreviated nt). The second line shows the results of the same

analysis after objects of incompatible type have been removed after completion of

the analysis, aftertypes (abbreviated at). This is the method studied in [SHR+OO,

RMR01]. The third hne shows the precision of an analysis in which declared types

are respected throughout the analysis, on-the-fiy types (abbreviated ot).

We see that removing objects based on declared type after completion of the

analysis (at) achieves almost the same precision as enforcing the types during the

analysis (ot). However, notice that during the analysis (nt), between 15% and 20%

of the points-to sets at dereference sites are over 1000 elements in size. These large

sets increase memory requirements prohibitively, and slow the analysis considerably.

These numbers show that enforcing declared types as the analysis proceeds eliminates

almost aU of these large sets. Based on this observation, the rest of this chapter focuses

on analyses that respect declared types.

Enforcing declared types during the analysis requires fast subtype testing. For

this purpose, SPARK precomputes and stores the subtype relationships in a two

dimensional bit array. Although this requires space quadratic in the number of types,

for the benchmarks used in this study, the number of types was around 3000 (see

Table 5.1), so this table takes slightly over 1MB of memory, which is small compared

to all the information that Soot keeps about a 600KLOC program. In addition, other

parts of Soot can take advantage of fast subtype testing. More complicated, fast,

space-efficient subtype testing mechanisms are evaluated in [VHK97].

Based on these results, respecting declared types during a Java points-to analy

sis is highly recommended because it improves precision while making the analysis

considerably more efficient.

73

Experimental Results

5.2.2 Cali Graph Construction

The call graph used for an inter-procedural points-to analysis can be constructed

ahead of time using, for example, CHA [DGC95], or on-the-fiy as the analysis pro

ceeds [RMR01], for greater precision. In Table 5.2, these variations are abbreviated

as cha and otf, respectively. As the third and fourth lines for each benchmark show,

computing the call graph on-the-fiy increases the number of points-t~ sets of size zero

(dereference sites determined to be unreachable), but has a smaller effect on the size

distribution of the remaining sets.

5.2.3 Field Dereference Expressions

A field-based (abbreviated fb) analysis ignores the base objects in field dereference

expressions, considering only the field, while a field-sensitive (abbreviated fs) param

eterizes each field dereference expression by its base object for greater precision.

Comparing rows 3 and 5 (on-the-fiy caU graph), and rows 4 and 6 (CHA call

graph), for each benchmark, we see that field-sensitive analysis is more precise than

the field-based analysis. Thus, it is probably worthwhile to do field-sensitive analysis

if the cost of the analysis is reasonable. Later, in Table 5.4, we will see that with the

appropriate solver, the field-sensitive analysis can be made to be quite competitive

with the field-based analysis.

5.3 Factors Affecting Performance

5.3.1 Set Implementation

This subsection compares the performance of analyses with the four different imple

mentations of points-to sets described in Section 4.5, namely hash sets, sorted array

sets, bit sets, and hybrid sets. Table 5.3 shows the efficiency of the implementa

tions using two of the propagation algorithms: the naïve, iterative algorithm, and

the incremental worklist algorithm. Both algorithms used a CHA call graph, and

the pointer assignment graph was simplified before propagation by collapsing cycles,

74

5.3. Factors Affecting Performance

as weIl as single-entry subgraphs as described in Section 4.3. Both algorithms re

spected declared types during the computation. The Graph space column shows the

space needed to store the original pointer assignment graph, and the remaining space

columns show the space needed to store the points-to sets. The data structure stor

ing the graph is designed for fiexibility rather than space efficiency; it could be made

smaller if necessary. In any case, its size is linear in the size of the program being

analyzed.

(time in seconds, space in MB)

Benchmark Graph Hash Array Bit Hybrid

Algorithm space time space time space time space time space

compress

Iterative 31 3448 311 1206 118 36 75 24 34

Iner. Worklist 31 219 319 62 57 14 155 9 53

javac

Iterative 34 3791 361 1114 139 50 88 33 41

Incr. Worklist 34 252 369 61 68 19 181 13 65

sablecc

Iterative 36 4158 334 1194 132 50 93 i 32 42

Incr. Worklist 36 244 342 54 62 17 1931 11 66

jedit

Iterative 42 6502 583 2233 229 91 168 59 77

Incr. Worklist 42 488 597 135 114 38 349 24 128

Table 5.3: Set Implementation

The terrible performance of the hash set implementation is disappointing, as this

is the implementation provided by the language. Clearly, anyone serious about imple

menting an efficient points-to analysis in Java must write a custom set representation.

The sorted array set implementation is prohibitively expensive using the iterative

algorithm, but becomes reasonable using the incremental worklist algorithm, which

is designed explicitly to limit the size of the sets that must be propagated. Notice

75

Experimental Results

that the memory requirements are also much smaller when the incremental worklist

algorithm is used. This is because the implementation of set union creates an array

large enough to hold both sets being combined. If these two sets are equal or almost

equal, the resulting array ends up being twice as large as it would need to be. In

the incremental algorithm, the sets being propagated are kept small, so most union

operations involve one large set, and one very small set.

The bit set implementation is mu ch faster still than the sorted array set imple

mentation. However, especially when used with the incremental worklist algorithm,

its memory usage is high, because even the many very small sets are represented using

the same size bit-vector as large sets. In addition, the incremental worklist algorithm

splits each points-t~ set into two halves, making the bit set use twice the memory.

Finally, the hybrid set implementation is even faster than the bit set implemen

tation, while maintaining modest memory requirements. The hybrid set implemen

taUon is consistently the most efficient over a wide variety of settings of the other

parameters, and it is therefore used in all the remaining experiments. It is strongly

recommended that implementations similar to the hybrid set implementations be used

in future points-to analysis research, because they are consistently more efficient than

the other implementations.

5.3.2 Points-To Set Propagation Algorithms

Table 5.4 shows the time and space requirements of the propagation algorithms in

cluded in SPARK. AlI measurements in this table were made using the hybrid set

implementation, and without any simplification of the pointer assignment graph. 2

Again, the Graph space column shows the space needed to store the original pointer

assignment graph, and the remaining space columns show the space needed to store

the points-to sets. For each analysis, the best time and space numbers are shown in

boldo

The iterative algorithm is consistently slowest, and is given as a baseline only. The

2The time and space reported for the hybrid set implementation in Table 5.3 are different than
in Table 5.4 because the former were measured with off-Hne pointer assignment graph simplification,
and the latter without.

76

5.3. Factors Affecting Performance

(time in seconds, space in MB)

Iner. Iner.

Benchmark Graph Iterative Worklist Worklist Alias Alias

Analysis space time space time space time space time space time spaee

compress

nt-otf-fs 32 1628 357 992 365 399 605 871 100 820 114

ot-otf-fs 37 133 52 58 51 52 69 62 47 58 61

ot-cha-fs 36 49 68 15 63 13 91 20 62 26 83

ot-otf-fb 35 158 54 86 52 66 66 93 53 73 67

ot-cha-fb 34 17 62 10 56 13 76 19 58 25 77

javac

nt-otf-fs 34 2316 502 1570 512 715 856 1225 142 1097 160

ot-otf-fs 40 201 69 103 66 90 90 103 65 97 83

ot-cha-fs 39 64 83 22 77 18 109 27 78 34 103

ot-otf-fb 37 218 70 123 66 102 84 142 68 111 85

ot-cha-fb 37 22 75 11 67 15 90 22 69 30 92

sablecc

nt-otf-fs 35 2190 462 1382 472 635 772 3020 145 3413 163

ot-otf-fs 41 274 72 104 70 95 94 114 69 107 87

ot-cha-fs 41 66 88 20 83 18 117 28 84 36 109

ot-otf-fb 38 255 74 138 72 114 90 158 73 125 92

ot-cha-fb 38 52 81 14 74 18 97 27 77 36 99

jedit

nt-otf-fs oom oom oom oom oom oom oom 2425 283 2042 307

ot-otf-fs 49 313 121 142 117 101 169 151 102 112 126

ot-cha-fs 48 107 141 59 131 38 196 44 117 56 150

ot-otf-fb 47 298 104 178 99 111 126 225 102 127 127

ot-cha-fb 45 28 109 21 98 27 128 36 100 49 129

Table 5.4: Propagation Algorithms

77

Experimental Results

worklist algorithm is usually about twice as fast as the Iterative aigorithm. For the

CHA-based, field-based analysis, this algorithm is consistently the fastest, faster even

than the incremental worklist algorithm. This is because the incrementai worklist

algorithm is designed to propagate only the newIy-added part of the points-to sets in

each Iteration, but the CHA-based, field-based analysis requires only a single Iteration.

Therefore, any benefit from its being incremental is outweighed by the overhead of

maintaining two parts of every set.

However, both field-sensitivity and on-the-fly call graph construction require it

eration, so for these, the incrementai worklist algorithm is consistently fastest. Note

that this speedup cornes with a cost in the memory required to maintain two parts

of every set.

Notice also that while the field-based analysis is faster than the field-sensitive

analysis with a CHA caU graph, it is slower when the caU graph is constructed on the

fly (with aIl propagation algorithms). This is because although a field-based analysis

with a CHA call graph completes in one Iteration, constructing the call graph on-the

fly requires iterating regardless of the field representation. The less precise field-based

representation causes more methods to be found reachable, increasing the number of

Iterations required.

The nt-otf-fs line shows how much ignoring declared types hurts space efficiency

(the "oom" for j edi t signifies that the analysis exceeded the 1700MB of memory

allotted). The alias edge algorithm is the only one that can handle the resulting

large sets with reasonable memory requirements. This algorithm spends a significant

amount of time building alias edges rather than propagating points-to sets, so the

benefit from the Incrementai version is much smaller. In fact, for the analyses requir

ing few iterations (ot-cha-fs and ot-cha-fb), the overhead of the incremental version

outweighs the reduction in the size of sets to be propagated, and is even slightly

slower than the non-incremental version.

In summary, Table 5.4 demonstrates the following key points about the tradeoff

between analysis time and space.

\ID The incremental worklist algorithm is the fastest for most analyses, except

78

5.3. Factors Affecting Performance

for the field-based analysis using a CHA-based caU graph, for which the non

incremental worklist algorithm is faster.

® The non-incremental algorithms require less memory th an their incremental

counterparts.

® For field-based analyses, the space requirements of the non-incremental versions

of the worklist and alias edge propagation algorithms are comparable; however,

for field-sensitive analyses, especially of the large j edi t benchmark, the alias

edge propagation algorithm requires significantly less memory.

® When declared types are not respected during the analysis, only the alias edge

algorithm can complete in a reasonable amount of memory.

5.3.3 Graph Simplification

Rountev and Chandra [Reaa] showed that simplifying the pointer assignment graph

by merging nodes known to have equal points-to sets speeds up the analysis. The

behaviour of SPARK agrees with their findings.

Wh en respecting declared types, a cycle can only be merged if an nodes in the

cycle have the same declared type, and a single-entry subgraph can only be merged

if all its nodes have declared types that are supertypes of the predecessor. Since

the experimental results presented earlier suggested that respecting declared types

makes the analysis mu ch faster, as weIl as more precise, it is useful to know how

mu ch respecting declared types reduces the opportunities for simplification. These

measurements are presented in Table 5.5. On the benchmarks in this study, between

6% and 7% of variable nodes were removed by collapsing cycles, compared to between

5% and 6% when declared types were respected. Between 59% and 62% of variable

nodes were removed by collapsing single-entry subgraphs, compared to between 55%

and 58% when declared types were respected. Thus, the effect of respecting declared

types on simplification is minor.

79

Experimental Results

1 Benchmark Il sec 1 SESG 1 Both 1

compress nt-cha-fs 6.7% 59.5% 60.7%

ot-cha-fs 5.3% 55.6% 56.4%

ot-otf-fs 1.1% 31.5% 31.6%

javac nt-cha-fs 7.1% 59.8% 61.4%

ot-cha-fs 5.7% 55.8% 57.0%

ot-otf-fs 1.1% 32.2% 32.3%

sablecc nt-cha-fs 6.4% 60.4% 61.6%

ot-cha-fs 5.0% 56.3% 57.0%

ot-otf-fs 1.0% 31.9% 32.0%

jedit nt-cha-fs 7.1% 61.7% 63.0%

ot-cha-fs 5.6% 57.8% 58.8%

ot-otf-fs 1.3% 33.3% 33.5%

Table 5.5: Simplification

On the other hand, when constructing the caU graph on-the-fly, no inter

procedural edges are present before the analysis begins. This means that any cy

cles spanning multiple methods are broken, and the corresponding nodes cannot be

merged. The 6%-7% of nodes removed by collapsing cycles dropped to 1%-1.5%

when the call graph was constructed on-the-fly. The 59%-62% of nodes removed by

collapsing single-entry subgraphs dropped to 31%-33%. When constructing the caU

graph on-the-fly, simplifying the pointer assignment graph before the analysis has

little effect, and on-the-fly cycle detection methods should be used instead.

80

5.4. Overall Results

5.4 Overall Results

Based on the experimental results reported up to this point, three analyses appear

to be good compromises between precision and speed, with reasonable space require

ments. Each of the three analyses should be implemented using the hybrid set im

plementation.

1. ot-otf-fs (declared types, on-the-fly caU graph, field-sensitive) is suitable for

applications requiring the highest precision. For this analysis, the incremental

worklist algorithm works best.

2. ot-cha-fs (declared types, CHA-based caU graph, field-sensitive) is much faster,

but with a drop in precision as compared to ot-otf-fs (mostly because it in

cludes significantly more caU edges). For this analysis, the incremental worklist

algorithm works best.

3. ot-cha-fb (declared types, CHA-based caU graph, field-based) is the fastest anal

ysis, completing in a single iteration, but it is also the least precise. For this

analysis, the non-incremental worklist algorithm works best.

Table 5.6 shows the results of these three analyses on the full set of benchmarks.

The first column gives the benchmark name (j avac is listed twice: once with the

1.3.LOI JDK class library, and once with the 1.1.8 JDK class library). The remain

ing columns give the analysis time, total space, and precision for each of the three

recommended analyses. The total space includes the space used to store the pointer

assignment graph as well as the points-to sets; these were reported separately in pre

vious tables. The precision is measured as the percentage of field dereference sites at

which the points-to set of the pointer being dereferenced has size 0 or 1; for a more

detailed measurement of precision, see Table 5.2.

81

Experimental Results

(time in seconds, space in MB, precision in precent)

ot-otf-fs ot-cha-fs ot-cha-fb

Benehmark time spaee pree. time space pree. time space pree.

cornpress 52 106 69.1 13 127 60.1 10 90 57.6

db 52 107 68.9 14 128 59.9 11 90 57.4

jack 54 112 68.7 14 132 60.1 11 94 57.6

javac (1.1.8) 8 27 63.6 3 24 57.4 1 16 55.1

javac (1.3.1) 89 131 66.3 18 148 58.4 11 104 56.2

jess 57 115 68.1 15 136 59.2 10 97 56.8

rnpegaudio 56 112 68.6 16 134 59.7 11 93 57.4

raytrace 53 107 68.5 13 129 59.6 11 91 57.1

sablecc 95 136 70.5 18 158 62.5 14 112 60.3

soot 88 143 68.3 19 162 60.4 18 116 58.4

jedit 100 218 69.1 38 244 62.3 21 143 61.1

Table 5.6: Overall Results

82

6.1 Cali Graph Construction

Chapter 6

Client Analyses

In an object-oriented polymorphic language such as Java, the method that is invoked

at a virtual call site depends on the run-time type of the receiver object. Any in

terprocedural program analysis therefore needs sorne way to approximate the set of

target methods that could possibly be invoked at each call site. That is, it needs an

approximation of the call gmph. Making the call graph precise is important because

it bath improves the precision, and reduces the cast, of subsequent analyses. Also,

for applications in embedded systems, where memory is scarce, a precise caU graph

in which fewer methods are determined ta be possibly reachable is useful for reducing

the memory footprint of the code.

Constructing a call graph is one natural application of points-ta information. The

points-ta analysis computes a set of objects ta which each variable may point. We

can deduce the run-time type of each of these abjects ta obtain a set of possible types

of abjects pointed-to by each variable. Using the set for the receiver variable at each

call site, for each type, the method that will be invoked is identified according ta the

method dispatch specification of the language. This yields a list of possible target

methods for each caU site, from which the caU graph is constructed.

83

Client Analyses

A caU graph builder has been implemented which uses the points-to sets computed

by SPARK to compute a caU graph. The rest of this section is a study of the effect of

the points-to analysis on the precision of the calI graph.

Table 6.1 shows measurements of the precision of the caU graph constructed using

five different analyses on the benchmarks described in Section 5.1. Class Hierarchy

Analysis [DGC95] and Variable Type Analysis [SHR+OO] are two previously-published

caU graph construction algorithms. The other three analyses are constructions of the

caU graph from the points-to information computed by SPARK. As before, ot-cha

fb indicates a field-based points-to analysis starting from a CHA-based caU graph,

ot-cha-fs indicates a field-sensitive points-to analysis starting from a CHA-based calI

graph, and ot-otf-fs indicates a field-sensitive points-to analysis in which the calI

graph is constructed during the analysis. For each analysis, the first column gives

the number of methods that were determined to be possibly reachable in the calI

graph, and the second column gives the percentage of caU sites in the CHA-reachable

methods that were determined to have receiver sets of zero or one methods. These

call sites are significant because their target method is uniquely determined, enabling

optimizations such as method inlining or call devirtualization.

The calI graph produced from the field-based points-to analysis is very similar to

the one produced by VTA, which is to be expected because the analyses are very

similar. VTA differs from the field-based points-to analysis only in that aIl objects

of a given run-time type are modelled together, rather than being distinguished by

their allocation site. That is, alI allocation sites allocating the same type of object

are modelled with a single allocation node, while SPARK uses a separate allocation

no de for every allocation site.

Making the points-to analysis field-sensitive pro duces a moderate improvement

in call graph precision, at the cost of sorne analysis time. A mu ch more dramatic

improvement is obtained by the call graph on-the-fly during the points-to analysis,

rather than starting with a CHA-based caU graph. Note, however, that such an

analysis is significantly more costly than the simpler analyses, like the field-based

analysis or VTA, as shown in Table 5.6. This suggests that further research should

be done into analyses that build the caU graph on-the-fly, to make them competitive

84

6.2. Side-effect Analysis

CHA VTA ot-cha-fb ot-cha-fs ot-otf-fs

Benchmark mthds sites mthds sites mthds sites mthds sites mthds sites

compress 15737 71.3 14042 90.2 14015 90.2 13237 90.6 10842 94.9

db 15739 71.3 14042 90.2 14015 90.2 13239 90.6 10844 95.0

jack 15995 69.8 14298 90.3 14271 90.3 13494 90.8 11099 95.0

javac 16872 71.5 15167 89.7 15140 89.7 14374 90.1 11982 94.1

jess 16348 71.8 14637 90.5 14610 90.5 13833 90.9 11450 95.1

mpegaudio 15947 71.3 14285 90.2 14258 90.2 13489 90.6 11072 94.9

raytrace 15866 71.7 14173 90.3 14146 90.3 13362 90.7 10968 95.0

sablecc 17530 71.7 15826 90.0 15799 90.0 15023 90.4 12700 94.5

soot 18053 71.4 16364 89.7 16337 89.7 15558 90.1 13104 94.1

jedit 20199 74.0 18614 90.7 18595 90.7 18456 90.9 16267 94.1

Table 6.1: Call Graph Precision

in efficiency with simpler analyses, and to improve their precision even further.

6.2 Side-effect Analysis

6.2.1 Background

Side-effect analysis is an application of points-to analysis that can aid a compiler

to pro duce more aggressively optimized code. The purpose of this analysis is to

approximate the sets of run-time objects which each instruction and each method of

the program may read or write. Having such an approximation may allow a compiler

to eliminate redundant loads and stores in the presence of method calls. It may also

improve precision of other intraprocedural analyses, which may in turn enable many

other optimizations.

As an example, consider the code fragment in Figure 6.1. If we knew that bar 0

does not write this. a, then we cou Id move the load of this. a out of the loop,

assuming no concurrent writes by any other threads. We could then recognize d as

85

Client Analyses

fooO {

}

this.a = 2;
b = 0;
fore int c = 0; c < 1000000; c++) {

d = this.a;

}

e = this.barO;
b = b + d;

System.out.println(lib = "+b);
System.out.println(lie = "+e);

Figure 6.1: Code Example for Side-Effect Analysis

a compile-time constant 2, and b as an induction variable not used inside the loop.

The additions could then be turned into a single multiplication 2 * 1000000 outside

the loop, which could be evaluated at compile-time. We could attempt an even more

ambitious optimization if we knew that bar 0 performs no writes or native method

caUs: we could move the caU out of the loop. The optimized code resulting from these

optimizations is shown in Figure 6.2. Note that aIl of these optimizations depend on

knowing that bar 0 has no side-effects.

fooO {

}

this.a = 2;
b = 2000000;
e = this. bar 0 ;
System.out.println("b = n+b);
System.out.println("e = "+e);

Figure 6.2: Optimized Version of Code Example

In order to approximate the sets of objects written at various points in the pro

gram, a side-effect analysis needs information about which variables point to which

86

6.2. Side-effect Analysis

objects. That is, a side-effect analysis depends on a points-to analysis. For this

reason, a side-effect analysis has been developed based on SPARK. The side-effect

analysis obtains the points-to information it requires from SPARK. Its output can

either be used directly by optimizations within Soot, or it can be encoded in class file

attributes, where it can be used by other systems, such a just-in-time compilers.

This section describes the Implementation of the side-effect analysis and the en

co ding of its results in attributes. It also gives experimental evidence that the analysis

pro duces precise approximations of side-effects compared to the simple heuristics typ

ically used in just-in-time compilers and in Soot, and that the encoding is a sufficiently

efficient representation of the side-effect information.

6.2.2 Representation of Side-Effect Information

Side-effect information expresses dependences between instructions. For example, a

client might want to know whether a write p. f = a; in one instruction may overwrite

the value written in another instruction q. f = b;. In Java class file attributes, it is

difficult to encode an expression such as p. f, because the local variable p appears

in the bytecode as an unlabeled stack location. Moreover, the set of heap locations

which an instruction may read or write can be very large. In this case, it could be

very costly for the client using the side-effect information to recover the dependences

between instructions from the read and write sets.

Instead of encoding the field expressions and read and write sets in attributes,

the Implementation directly encodes the dependences between instructions. For ex

ample, a write to p. f overwriting the value written to q. f would be encoded as a

Write-Write dependence between the two bytecode instructions writing p. f and q. f.

A client reading the attribute can convert this dependence into whatever internaI

representation it has for p. f and q. f. For each pair of statements, the attribute

specifies whether there is a Write-Write, Write-Read, Read-Write, or Read-Read de

pendence between them. Although the Read-Read dependences may not be useful to

a just-in-time compiler, they are included for completenessi they could be removed if

it were necessary to reduce the space required by the attributes.

87

Client Analyses

The size of this representation grows quadratically as the number of inter

dependent instructions in the method being analyzed. Most methods are short, and

even longer methods tend to have few instructions that are inter-dependent. How

ever, sorne methods are like the constructor of spec. io. TableOfExistingFiles, a

class contained in the harness of aIl the SPECjvm [Spec] benchmarks. This method

consists of 633 caUs to the put method of java. util.Hashtable. Since aH of these

calls read and write the same locations, they should an have dependences between

them encoded, leading to (6~3) = 200028 dependences of each type (Write-Write,

vVrite-Read, Read-\;Yrite, and Read-Read). Furthermore, the methods called from

each of these caU sites possibly caU a large number of other methods, so the calI sites

take a long time and a large amount of memory to analyze.

To limit the growth of the attribute size and amount of computation required,

the side-effect analysis uses the following method to reduce the size of the set of de

pendences as it is being computed. Each instruction is assigned a pair of numbers,

representing the sets of locations that the instruction can read and write. Depen

dences are then computed between these numbered read and write sets, rather than

the instructions themselves. The simplest such assignment of numbered locations

would assign distinct locations to each instruction, and the resulting dependence

graph would be as large as the dependence graph between instructions. However,

sorne sets of instructions can easily be determined to read or write the same loca

tions, and can therefore share the same numbered locations, reducing the effective

number of instructions to be considered. Specifically, aH method caUs with equal sets

of possible target methods share read and write locations. Also, aIl field reference

expressions having the same base pointer and the same field share the same location.

This reduces the 633 method caUs in spec. io . TableOfExistingFiles to a single

pair of numbered locations, drastically reducing the size of the attribute and the time

and memory needed to compute it. However, this approach makes it slightly more

difficult for the client to extract the information. In order to determine whether there

is a dependence between two instructions, it must look up the numbered locations

read and written by the instructions, and then look in the graph for dependences

between these locations. This reduced form of the dependence information still has

88

6.2. Side-effect Analysis

a worst-case size quadratic in the size of each method. However, as the experimental

results in Section 6.2.6 show, in practice, the size of this representation is acceptable.

In addition to the relationships between the locations read and written by state

ments, the side-effect attribute encodes, for each call site, whether a native method

may be called from the caU site, or transitively from any methods that may be called

from it. This information may be useful to clients of the side-effect analysis, and it

is trivial to compute while computing the side-effect information.

6.2.3 Implementation of Side-Effect Analysis

The points-to analysis pro duces, for each local variable of pointer type, an abstract set

of the possible locations to which it could point. From this information, the side-effect

analysis computes abstract sets of locations read and written by each instruction.

These locations include instance fields, static fields, and array elements. The abstract

sets for each instruction are combined into larger abstract sets for whole methods.

These sets contain an locations accessed within the method, but not those accessed

in other methods that it may cano FinaIly, the sets for each method are combined

into even larger sets that encode, for each caIl site, the set of locations accessed in aH

the methods possibly called from the call site, and other methods transitively called

from them. This yields a read and write set for every instruction, including method

invoke instructions. These read and write sets are then used to determine whether

dependences exist between them.

A naive implementation of this recursive definition of read and write sets of caU

sites would be intractable, because many caU sites have large numbers of transitive

targets, and the sets for each target would have to be recomputed at each caU site.

A natural optimization would be to use memoization to avoid computing points-to

sets of each method and of each caU site more than once. Unfortunately, such an

implementation has prohibitive memory requirements to store al! the read and write

sets, even for medium-sized programs. The current implementation therefore makes

a compromise between memory requirements and running time: it memoizes the read

and write sets accessed by each statement and method, but not the read and write

89

Client Analyses

sets accessed by each calI site.

6.2.4 Attribute Encoding

The side-effect information is encoded in Java class file attributes using the anno

tation framework included in Soot [PQVR+01]. This section describes in detail the

format of these attributes. The side-effect information for each method is encoded in

two attributes: a code attribute with the name SideEffectAttribute, and a method

attribute with the name DependenceGraph.

SideEffectAttribute

This attribute maps statements to abstract locations read and written, and also

indicates which invoke statements may transitively caU native methods.

o 1 1 01 1 21 3 41 5 6

record bytecode read write caUs

count offset set set native

The first two bytes of the attribute are a big-endian integer specifying the number

of records that follow.

Each record that follows consists of seven bytes:

@ The first two bytes are a big-endian integer specifying the bytecode offset of the

instruction that this record describes.

® The third and fourth bytes are the number of the numbered location read by

the instruction that this record describes.

@ The firth and sixth bytes are the number of the numbered location written by

the instruction that this record describes.

@ The least significant bit of the seventh byte is one if the instruction that this

record describes invokes a method that may be a native method, and zero

otherwise. The remaining bits are reserved for future use.

90

6.2. Side-effect Analysis

The special numbered location Oxffff indicates a non-existent location, and is

used to indicate that an instruction does not read or write anything. For example,

the record for a getfield bytecode instruction will specify the location that the

instruction reads, and Oxffff for the location that it writes, since this instruction

performs no writes.

Depel1del1ceGraph

This attribute specifies dependences between numbered locations.

set set

It consists of a number of records, each four bytes in length. The first two bytes

and the last two bytes of each record each specify a numbered location. If a numbered

location may overlap another numbered location, then the two locations will appear

as a record in this attribute. Note that each unordered pair of locations is encoded in

the attribute only once, with the lower-numbered location listed first, but the relation

is symmetric.

91

Client Analyses

6.2.5 Side-Effect Example

The format of the side-effect attributes will now be demonstrated using a more com

plete example than the one presented in the introduction to this section. First, the

Java code for the example is presented in Figure 6.3. Then, the computed side-effect

information is presented as comments in a Jimple version of the code for the main

method in Figure 6.4. Finally, a disassembled representation of the resulting bytecode

for the main method is presented in Figure 6.5.

class Exarnple {
int x = 0;

}

public void bare) {
this.x = 5;

}

public static final void maine String[] argv) {
Exarnple s1 = new Example();

}

Exarnple s2 = new Example();
Example s3 = s2;
int SUIn = 0;

s1.x = 1;

s3.x = 1;
fore int i = 0; i < 1000000; i++) {

SUIn += s1.x;
s2.x = 0;
s3.barO;

}

Figure 6.3: Java Code for Side-Effect Example

92

6.2. Side-effect Analysis

After each statement that may read or write to memory, the Jimple representation

in Figure 6.4 contains a comment of the form Il SEReads: 1. These indicate the

numbered locations that are read and written by the statement. The two calls to the

constructor <ini t> read and write the same locations, 0 and 1, respectively. The store

to field x of r2 writes location 2, which is then read by the load in the line immediately

after labelO:. At the beginning of the code, the dependence graph comment shows

which pairs of locations may overlap. The location 0, which represents the read set

of the constructor overlaps nothing, because the constructor does not read anything.

The location 1 representing the write set of the constructor overlaps locations 2,

3, 4, and 5, because these an refer to the field x of sorne object, and this field is

written by the constructor. Locations 2, 3, and 4 refer to the field x of sl, s3,

and 82, respectively, of the original Java program. The dependence graph shows that

locations 3 and 4 overlap, because s2 and s3 are aliased; however, location 2 does not

overlap with locations 3 or 4, because sl is not abased to either s3 or s2. Similarly,

location 5 representing the write set of the bar 0 method overlaps with locations 3

and 4 but not with 2, because the bar 0 method writes the field x ofthe object that

s3 and s2 point to, but not the object that sl points to.

In the bytecode presented in Figure 6.5, the side-effect information has been

encoded in two attributes: DependenceGraph at the top of the code, and

SideEffectAttribute at the bottom. The DependenceGraph attribute encodes the

pairs that appeared in the dependence graph comment in the Jimple code. The

SideEffectAttribute encodes the read and write sets of individual statements. The

first and second entries correspond to the caIls to the <ini t> method at bytecode

offsets 4 (00 04) and 12 (00 Oc). They show that each ofthese statements reads loca

tion 0 (00 00) and writes location 1 (00 01). The field stores (putfield) at bytecode

offsets 22 (00 16), 27 (00 lb), and 45 (00 2d) read nothing (ff ff), and write lo

cations 2 (00 02), 3 (00 03), and (00 04), respectively. The field load (getfield)

at bytecode offset 38 (00 26) reads location 2 (00 02) and writes nothing (ff ff).

Finally, the call to bar () at bytecode offset 49 (00 31) reads location 0 (00 00) and

writes location 5 (00 05).

93

Client Analyses

public static final void main(java.lang.String[]
/1 Dependence Graph
Il (1,2), (1,3), (1,4), 0,5), (3,4). (3,5), (4,5)

{

java.lang.String[] rO;
Example $rl, r2, r3, r4, $r5;
int iO, il, $i2;

rO := @parameterO: java.lang.String[];
$rl = new Example;
specialinvoke $rl.<Example: void <init>(»();

Il SEReads : 0
Il SEWrites: 1

r2 = $rl;
$r5 = new Example;
specialinvoke $r5.<Example: void <init>(»();

Il SEReads : 0
Il SEWrites: 1

r3 $r5;
r4 = r3;
iO = 0;
r2.<Example: int x> 1;

Il SEWrites: 2

r4.<Example: int x> 1;
Il SEWrites: 3

il = 0;
goto label1;

labelO:
$i2 = r2.<Example: int x>;

Il SEReads 2

iO iO + $i2;
r3.<Example: int x> 0;

Il SEWrites: 4

virtualinvoke r4.<Example: void bar(»();
Il SEReads : 0
Il SEWrites: 5

H=i1+1;

label1:
if il < 1000000 goto labelO;

return;
}

Figure 6.4: Jimple Code for Side-Effect Example

94

public static final void mainCString[] argO)
[Cattribute DependenceGraph:
00 01 00 02
00 01 00 03
00 01 00 04
00 01 00 05
00 03 00 04
00 03 00 05
00 04 00 05
)]
CodeCmax_stack
0: new

2, max_Ioca13 = 5, eode_length 63)
<Example> (21)

3: dup
4: invokespecial
7: astore_O
8: new
11: dup
12: invokespecial
15: astore_l
16: aload_l
17: astore_2
18: ieonst_O
19: istore_3
20: aload_O
21: ieonst_l
22: putfield
25: aload_2
26: ieonst_l
27: putfield
30: ieonst_O
31: istore
33: goto
36: iload_3
37: aload_O
38: getfield
41: iadd
42: istore_3
43: aload_l
44: iconst_O
45: putfield
48: aload_2
49: invokevirtual
52: iine
55: Hoad
57: Ide
59: iCiemplt
62: return

Attribute(s) .,

Example.<init> ()V (24)

<Example> (21)

Example.<init> ()V (24)

Example.x l (18)

Example.x l (18)

%4
#55

Example.x l (18)

Example.x l (18)

Example.bar ()V (20)
%4 1
%4
1000000 (23)
#36

(attribute SideEffectAttribute:
00 07 00 04 00 00 00 01 00

00 Oc 00 00 00 01 00
00 16 ff ff 00 02 00
00 lb ff ff 00 03 00
00 26 00 02 ff ff 00
00 2d ff ff 00 04 00
00 31 00 00 00 05 00

6.2. Side-effect Analysis

Figure 6.5: Bytecode for Side-Effect Example

95

Client Analyses

6.2.6 Experimental Results

The section reports results of experiments that were performed to determine the

effectiveness of the side-effect analysis and the attribute encoding. Specifically, the

following two quantities were measured:

1. The size of the attributes compared to the size of the original bytecode.

2. The percentage of dependences between instructions within a method ruled out

by the side-effect analysis.

These measurements were performed on the same benchmarks as described in

Section 5.1.

Attribute Size

Table 6.2 gives the size of the side-effect attributes as a percentage of the size of the

original class files. For most of the benchmarks, the attributes are between 25% and

50% of the original class file size, and in no case do they exceed the original size.

Considering that the attributes encode aU the information available to the side-effect

analysis, the size of the encoding is acceptable.

The attributes are very regular, and are therefore likely to be highly compressible

with standard compression algorithms. However, the purpose of SPARK is to facilitate

experimentation, and use of such an algorithm would increase the burden on the

client reading the attributes, which would have to decompress them. Therefore, no

such compression algorithm was applied. In a production system, compression would

almost certainly be desirable.

Dependences

Many ahead-of-time and just-in-time Java compilers make the following conservative

assumptions about the side-effects of instructions:

® Field accesses of the same field of any object may be aliased.

96

6.2. Side-effect Analysis

Size

Benchmark increase

eompress 24.5

db 30.1

jaek 46.0

javae 35.7

jess 41.2

mpegaudio 33.2

raytrace 41.0

sableee 96.4

soot 49.8

jedit 37.5

Table 6.2: Attribute Size as Percent age of Original Class File Size

e Methods other than the method being analyzed may read and write any fields

on the heap.

This means that in these systems, for each field, there are dependences between

aU reads and writes of it, and there are dependences between method invocation in

structions and aIl instructions that access the heap. Table 6.3 presents measurements

of the percentage of these dependences that are ruled out by the side-effect analysis.

That is, it shows how much precision the side-effect analysis adds to these common

conservative assumptions. As before, ot-cha-fb indicates a field-based points-to analy

sis starting from a CHA-based caU graph, ot-cha-fs indicates a field-sensitive points-to

analysis starting from a CHA-based call graph, and ot-otf-fs indicates a field-sensitive

points-to analysis in which the caU graph is constructed during the analysis.

The numbers refiect the relative complexity of the benchmarks. On the very simple

benchmarks, such as eompress and db, the conservative assumption is successful in

minimizing the number of dependences, leaving little room for the side-effect analysis

to show improvement. On the other hand, on the highly object-oriented benchmarks,

97

Client Analyses

ot-cha-fb ot-cha-fs ot-otf-fs

Benchmark

compress 2.5 2.6 2.6

db 2.8 2.9 2.9

jack 13.1 13.1 13.1

javac 19.4 19.4 19.4

jess 14.3 14.4 14.5

mpegaudio 5.9 5.9 6.0

raytrace 18.8 18.8 18.8

sablecc 56.1 56.2 56.2

soot 64.8 65.3 65.3

jedit 34.1 34.1 35.3

Table 6.3: Percent age of Dependences Ruled Out by Side-Effect Analysis

such as sablecc and soot, the side-effect analysis manages to rule out more than haif

of the dependences that the field-based assumption could not. The differences due

to varying the precision of the points-to analysis are very small; only for the j edi t

benchmark is the difference between the most precise, field-sensitive on-the-fly caU

graph analysis and the least precise, field-based CHA caU graph analysis more than

one percent of the dependences.

Note that the number of dependences ruled out do es not tell us whether those

dependences that were ruled out are important to optimizations. It is therefore

difficult to predict from this data the effect of side-effect analysis on the effectiveness

of optimizations. However, the high numbers of dependences ruled out suggest that

side-effect analysis could have a significant effect. AIso, it appears that the fast, field

based points-to analysis using a CHA-based call graph is precise enough to pro duce

this effect.

98

6.2. Side-effect Analysis

6.2.7 Future Work on Side-Effect Analysis

An effective side-effect analysis has been built on top of SPARK. Its output is en

coded in class file attributes, where it can be used by other systems. An obvious

area for further experimentation is modifying optimizing compilers to make use of

this side-effect information, and to study how different points-to analyses affect the

optimizations made possible by side-effect analysis.

99

Client Analyses

100

7.1 Conclusions

Chapter 7

Conclusions and Future Work

This thesis introduced SPARK, a flexible framework for experimenting with points-to

analyses of Java programs. It presented the modular design of SPARK, and details

of its implementation. SPARK was used to perform a substantial study of factors

affecting the precision and efficiency of points-to analyses for Java, and the results of

this study were reported. Based on these experiments, three variations of points-to

analyses were selected as particularly effective for Java, in light of the high precision

of their results combined with efficient execution of the analysis. Two implementa

tions of client analyses using the points-to information were presented: caU graph

construction and side-effect analysis. Other clients are planned in the future.

The flexibility of SPARK cornes from its modular design. Individual implementa

tions of its components are designed to be interchangeable, leading to large numbers

of possible combinations of variations. The division of SPARK into three stages,

connected using the pointer assignment graph, facilitates the creation of and experi

mentation with additional modules implementing new points-to algorithms.

SPARK includes several implementations ofits main components. A pointer assign

ment graph builder is used to create a representation of the program being analyzed,

to be processed by the rest of SPARK. SPARK includes two simplification algorithms

101

Conclusions and Future Work

to reduce the size of the pointer assignment graph. The current version of SPARK con

tains five points-to set propagation algorithms, each of which is particularly suited

to specifie variations of points-to analysis. Four different implementations of data

structures for representing points-to sets are included with SPARK.

The use of SPARK was demonstrated in an extensive study of the factors affecting

precision and efficiency of Java points-to analyses. Respect for declared types and

casts was shown to be extremely important for both analysis precision and efficiency.

Constructing a call graph during the points-to analysis improves precision with a

moderate cost in analysis time. The improvement in precision of a field-sensitive

analysis over a field-based analysis is moderate, and cornes at little addition al cost

wh en an efficient points-to set implementation and propagation algorithm is used.

The hybrid points-to set implementation was shown to be consistently more efficient

than aU other implementations studied; it is up to two orders of magnitude more

efficient than the implementation based on the HashSet class included in the Java

standard class library. The worklist-based propagation algorithm was shown to be

the most efficient in terms of time, while the alias edge propagation algorithm was

the most efficient in terms of space when the points-to sets were aUowed to grow very

large by not making use of declared type information. The incremental versions of the

algorithms were faster than the non-incremental versions when the analysis required

many iterations, while for the simpler analyses requiring litt le iteration, the overhead

of the incremental version outweighed the benefit. Off-hne simplification of the pointer

assignment graph was shown to be compatible with respect for declared types: that

is, respecting declared types does not significantly decrease the opportunities for

simplification. However, off-line simplification is nearly useless if the cal! graph is not

computed prior to the analysis. Because SPARK is already so efficient at analyses for

which the caU graph is computed ahead of time, it is not clear that simplifying the

pointer assignment graph ahead of time is worthwhile for Java.

SPARK has been used as the basis of two client analyses. The call graph con

struction based on SPARK is more general, more efficient and more precise than

VTA [SHR+OO], the analysis previously available in the Soot framework. SPARK is

also the basis of a side-effect analysis whose output is encoded in class file attributes.

102

7.2. Future Work

This side-effect analysis has been shown to provide significantly more information

than the conservative assumptions used in typical just-in-time compilers. It therefore

shows promise in improving the optimizations performed by such systems.

SPARK has been demonstrated to be a practical, flexible and efficient framework

on which further point-to analysis research can be based.

7.2 Future Work

The purpose of SPARK is to serve as a framework to facilitate experimentation with

points-to analyses for Java. This section describes sorne of the areas in which SPARK

could be used.

7.2.1 Precision of Data Flow Analyses

In the absence of accurate points-to information, traditional data flow analyses used

for optimization - such as constant propagation, constant subexpression elimination,

and partial redundancy elimination - are forced to make conservative assumptions.

This reduces the precision of the analyses and the opportunities for optimization.

Soot is a framework for implementing these data flow analyses and related opti

mizations. Since SPARK is a part of Soot, analyses implemented in Soot can now be

improved to take advantage of the points-to information provided by SPARK. The

effect of points-to information on these analyses can be the subject of future research.

7.2.2 Using Side-Effect Information in Just-In-Time Compilers

Section 6.2 described a side-effect analysis that has been implemented on top of

SPARK, whose results are stored in attributes for the use of other compilers, including

just-in-time compilers. An interesting area of future research would be to modify

existing just-in-time compilers to make use of this information, and to study the

effect that it can have on the effectiveness of their optimizations.

103

Conclusions and Future Work

7.2.3 Points-To Analysis Aigorithms and Set Implementations

This thesis included a study of the points-to analysis algorithms and points-to set

implementations included in SPARK, and they were found to be very effective. How

ever, programs are becoming larger, and points-to information is being used in new

areas, such as program understanding and verification. Because of these changes,

more efficient and more precise points-to analyses will continue to be needed. The

flexibility of SPARK makes it a natural platform on which to experiment with and

compare future points-to analysis algorithms.

In particular, implementing a demand-driven analysis like the one designed for

C by Heintze and Tardieu [HTOl b, HT01a] may further improve the performance

of SPARK. Another interesting area to be explored is the use of binary decision

diagrams [Bry92] to represent the large points-to relation that must be manipu

lated [BLQ+02, BLQ+03].

7.2.4 Context-Sensitivity

Context-sensitive points-to analyses can pro duce much more precise information than

context-insensitive ones. In an object-oriented language that encourages encapsula

tion, such as Java, the information lost due to context-insensitivity is especially sig

nificant. Unfortunately, context-sensitive analyses are prohibitively costly to compute

for moderately large programs, and, due to the large class library, even trivial Java

programs are moderately large.

However, the excellent performance of SPARK may make sorne context-sensitive al

gorithms feasible. In addition, SPARK can be used to experiment with new algorithms

with only a limited degree of context-sensitivity, specifically designed for analyzing

object-oriented languages. For example, SPARK would be an ideal framework in which

to implement the abject-sensitive points-to analysis[MRR02b] proposed by Milanova,

Rountev and Ryder.

104

7.2. Future Work

7.2.5 Precision of Cali Graph Construction

The Java language specifies l'ules with subtle effects on the control fiow of a program

that must be taken into account by whole-pl'ogram analyses such as points-to analysis.

The following are several examples.

@ The first reference to a class causes its static initializer method to execute.

@ Finalizer methods are executed automatically by the system without any ex

plicit calls to them.

@ Methods related to thread creation can be executed without being explicitly

invoked.

® Reflection can be used to create arbitrary objects and execute arbitrary methods

that cannot be identified statically.

Most whole-program analyses handle these issues either using very conservative

assumptions, leading to large caU graphs, or by ignoring them, leading to possibly

incorrect analysis results. Although SPARK is already able to pro duce precise call

graphs, even more precise methods of modelling these effects could further improve

both the precision and efficiency of SPARK.

105

Conclusions and Future Work

106

A.I Obtaining Spark

Appendix A

Using Spark

SPARK is a part of the Soot bytecode analysis and transformation framework. Soot is

maintained by the Sable Research Group at McGill University, and is freely available

under the Lesser General Public Licence.

Soot can be downloaded from the Soot homepage:

@ http://www.sabIe.mcgiII.ca/soot/

J avadoc documentation for the Soot source is available from:

@ http://www.sabIe.mcgiII.ca/soot/doc/

This includes documentation for SPARK, which lS found lU the package

soot . j impIe. spark and its subpackages.

Tutorials on using Soot are available at:

@ http://www.sabIe.mcgiII.ca/soot/tutorial

Questions, discussions, and comments about Soot and SPARK should be directed to

the Soot mailing list. Instructions about subscribing to the Est are found on the Soot

homepage. Archives of the list are found at:

@ http://www.sabIe.mcgiII.ca/Iistarchives/soot-list/

107

Using Spark

A.2 Spark Options

This section describes the command-line options to SPARK. Values for options are

specified on the Soot command-line, following the switch -p wj tp. Spark. For exam

pie:

java soot.Main -a --app -p wjtp.Spark disabled:false,verbose:true Hello

For the most current, automatically generated documentation of SPARK options,

please see the file sre! soot! j impIe! spark! opts . ps in the Soot distribution.

A.2.1 General Options

Option verbose

@ Allowed values: true false

@ Default value: false

When this option is set to true, SPARK prints detailed information.

Option ignoreTypesEntirely

@ Allowed values: true false

@ Default value: false

When this option is set to true, all parts of SPARK completely ignore declared types

of variables and casts.

Option foreeGCs

@ Allowed values: true false

@ Default value: false

\;Vhen this option is set to true, caUs to System. ge 0 will be made at various points

to allow memory usage to be measured.

108

A.2. Spark Options

A.2.2 Pointer Assignment Graph Building Options

Option VTA

® Allowed values: true false

® Default value: false

Setting VTA to true has the effect of setting ignoreBaseObj ects, typesForSi tes,

and simpIifySCCs to true to simulate Variable Type Analysis [SHR+OO]. Note

that the algorithm differs from the original VTA in that it handles array elements

more precisely. To use the results of the analysis to trim the invoke graph, set the

trimlnvokeGraph option to true as weIl.

Option RTA

® Allowed values: true false

® Default value: false

Setting RTA to true sets typesForSites to true, and causes SPARK to use a single

points-to set for aH variables, giving pessimistic Rapid Type Analysis [BS96]. To use

the results of the analysis to trim the invoke graph, set the trimlnvokeGraph option

to true as weIl.

Option ignoreBaseObjects

® Allowed values: true false

® Default value: false

vVhen this option is set to true, fields are represented by variable nodes, and the

object that the field belongs to is ignored (aH objects are lumped together). This is

also referred to as a field-based analysis. Otherwise, fields are represented by field

reference nodes, and theobjectsthat they belong to are distinguished, giving a field

sensitive analysis.

109

Using Spark

Option typesForSi tes

® Allowed values: true false

® Default value: false

Wh en this option is set to true, types rather than allocation sites are used as the

elements of the points-to sets.

Option mergeStringBuffer

® Allowed values: true false

® Default value: true

When this option is set to true, all allocation sites creating objects of type

java. Iang . StringBuff er are grouped together as a single allocation site.

Option simuIateNati ves

® Allowed values: true false

® Default value: true

Wh en this option is set to true, effects of native methods are simulated.

Option simpIeEdgesBidirectional

® Allowed values: true false

® Default value: false

When this option is set to true, aH edges connecting variable nodes are made bidi

rectional, as in Steensgaard's analysis [Ste96b].

110

A.2. Spark Options

Option onFlyCallGraph

@ Allowed values: true false

@ Default value: false

When this option is set to true, the call graph is computed on-the-fly as points-to

information is computed. Otherwise, an initial approximation to the caU graph is

used.

Option parmsAsFieIds

@ Allowed values: true false

@ Default value: false

When this option is set to true, parameters to methods are represented as fields of

the this object; otherwise, parameters are represented as variable nodes.

Option returnsAsFieIds

@ Allowed values: true false

@ Default value: false

When this option is set to true, return values from methods are represented as fields

of the this object; otherwise, return values are represented as variable nodes.

A.2.3 Pointer Assignment Graph Simplification Options

Option simpIifyOffIine

@ Allowed values: true false

@ Default value: false

When this option is set to true, variable nodes in the same single-entry subgraph are
- -- --- - - --

merged together (since they must have equal points-to sets).

111

Using Spark

Option simplifySCCs

® Allowed values: true false

® Default value: false

When this option is set to true, variable nodes which form strongly-connected com

ponents are merged together (sinee they must have the same points-to set).

Option ignoreTypesForSCCs

® Allowed values: true false

@ Default value: false

\tVhen this option is set to true, when collapsing strongly-connected components,

nodes forming secs are collapsed regardless of their type. The collapsed sec is

given the most general type of an the nodes in the component.

When this option is set to false, onIy edges connecting nodes of the same type

are considered wh en detecting secs.

This option has no effect unless simplifySCCs is true.

A.2.4 Points-To Set Flowing Options

Option propagator

@ Allowed values: i ter worklist alias none

@ Default value: worklist

This option tells SPARK which propagation algorithm to use.

i ter is a simple, iterative algorithm, which propagates everything until the graph

does not change.

worklist is a worklist-based algorithm that tries to do as little work as possible.

This is currently the fastest algorithm.

112

A.2. Spark Options

alias is an alias-edge based algorithm. This algorithm tends to require the small

est amount of memory for very large problems, because it does not represent explicitly

points-to sets of fields of heap objects.

none means that propagation is not done; the pointer assignment graph is only

built and simplified. This is useful if an external propagator is to be used later on

the pointer assignment graph.

Option setlmpl

® Allowed values: hash bit hybrid array double

® Default value: double

Selects an implementation of a points-to set that SPARK should use.

hash is an implementation based on Java's built-in hash-set.

bi t is an implementation using a bit vector.

hybrid is an implementation that keeps an explicit list of up to 16 elements, and

switches to using a bit-vector when the set gets larger than this.

array is an implementation that keeps the elements of the points-to set in an

array that is always maintained in sorted order. Set membership is tested using

binary search, and set union and intersection are computed using an algorithm based

on the merge step from merge sort.

double is an implementation that itself uses a pair of sets for each points-to set.

The first set in the pair stores new pointed-to objects that have not yet been propa

gated, while the second set stores old pointed-to objects that have been propagated

and need not be reconsidered. This allows the propagation algorithms to be incre

mental, often speeding them up significantly.

Option doubleSetOld

® Allowed values: hash bit hybrid array

® Default value: hybrid

113

Using Spark

Selects an implementation for the new points-to sets in the double points-to set im

plementation.

This option has no effect unless setlmpl is set to double.

Option doubleSetNew

® Allowed values: hash bit hybrid array

® Default value: hybrid

Selects an implementation for the oid points-to sets in the double points-to set im

plementation.

This option has no effect unless setlmpl is set to double.

A.2.5 Output Options

Option dumpHTML

® Allowed values: true false

® Default value: false

Wh en this option is set to true, a browseable HTML representation of the pointer

assignment graph is output after the analysis completes. Note that this representation

is typically very large.

Option trimlnvokeGraph

® Allowed values: true false

® Default value: false

vVhen this option is set to true, the results of the points-to analysis are used to make

the invoke graph more precise after the analysis completes.

114

Bibliography

[AFFS98] Alexander Aiken, Manuel Fiihndrich, Jeffrey S. Foster, and Zhendong

Su. A toolkit for constructing type- and constraint-based program anal

yses. In Types in Compilation, Second International Workshop, TIC '98,

volume 1473 of Lecture Notes in Computer Science, pages 78-96, 1998.

[And94]

[Ashe]

[AWZ88]

[BH99]

L. O. Andersen. Progmm Analysis and Specialization for the C Pro

gmmming Language. PhD thesis, DIKU, University of Copenhagen, May

1994. (DIKU report 94/19).

Ashes Suite Collection.

URL: <http://www.sable.mcgill.ca/software/>.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari

ables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT

symposium on Principles of progmmming languages, pages 1-11, 1988.

Jeff Bogda and Urs H61z1e. Removing unnecessary synchronization in

Java. In Proceedings of the 1999 ACM SIGPLAN Conference on Object

Oriented Progmmming, Systems, Languages, and Applications, pages

35-46, 1999.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano.

Thin locks: featherweight synchronization for Java. In Proceedings of

115

Bibliography

the ACM SIGPLAN '98 Conference on Progmmming Language Design

and Inplementation, pages 258-268. 1998.

[BLQ+02] Marc Berndl, Ondfej Lhotak, Feng Qian, Laurie Hendren, and Navindra

Umanee. Points-to analysis using BDDs. Technical Report 2002-10,

McGill University, Sable Research Group, 2002.

URL: <http://www.sable.mcgill.ca/publications/techreports>.

[BLQ+03] Marc Berndl, Ondfej Lhotak, Feng Qian, Laurie Hendren, and Navin

dra Umanee. Points-to analysis using BDDs. In Proceedings of the ACM

SIGPLAN 2003 Conference on Progmmming Language Design and In

plementation. 2003.

[Bry92]

[BS96]

[CBC93]

Randal E. Bryant. Symbolic boolean manipulation with ordered binary

decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

David F. Bacon and Peter F. Sweeney. Fast static analysis of C++

virtual function caUs. In OOPSLA '96 Conference Proceedings: Object

Oriented Progmmming Systems, Languages, and Applications, pages

324-341. 1996.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive

interprocedural computation of pointer-induced aliases and side effects.

In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on

Principles of Progmmming Languages, pages 232-245. 1993.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreed

har, and Sam Midkiff. Escape analysis for Java. In Proceedings of the

1999 ACM SIGPLAN Conference on Object-Oriented Pmgmmming Sys

tems, Languages, and Applications, pages 1-19. 1999.

[Cla97] Lars R. Clausen. A Java bytecode optimizer using side-effect analy

sis. Concurrency: Pmctice and Experience, 9(11):1031-1045, November

1997.

116

[CLR90]

[Cou86]

[CR82]

[DasOO]

[DGC95]

Bibliography

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro

duction to Algorithms. MIT Press, Cambridge, Mass., 1990.

Deborah S. Coutant. Retargetable high-level alias analysis. In Proceed

ings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 110-118. 1986.

Anita L. Chow and Andres Rudmik. The design of a data fiow analyzer.

In Proceedings of the SIGPLAN 182 Symposi'u,m on Compiler construc

tion, pages 106-113, 1982.

Manuvir Das. Unification-based pointer analysis with directional as

signments. In Proceedings of the ACM SIGPLAN 'DO Conference on

Programming Langnage Design and Inplementation, pages 35-46. 2000.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of

object-oriented programs using static class hierarchy analysis. In

ECOOP'95-0bject-Oriented Programming, 9th Enropean Conference,

volume 952 of Lecture Notes in Computer Science, pages 77-101, 7-

11 August 1995.

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based

alias analysis. In Proceedings of the ACM SIGPLAN '98 Conference

on Programming Langnage Design and Inplementation, pages 106-117.

1998.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context

sensitive interprocedural points-to analysis in the presence of function

pointers. In Proceedings of the ACM SIGPLAN '94 Conference on Pro-

9ramming Language Design and Implementation, pages 242-256, 1994.

[FFSA98] Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken.

Partial online cycle elimination in inclusion constraint graphs. In Pro

ceedings of the ACM SIGPLAN '98 Conference on Programming Lan-

9nage Design and Inplementation, pages 85-96. 1998.

117

Bibliography

[GH98]

[Hei99]

[HH98]

[HinOl]

[HPOO]

[HTOla]

[HTOlb]

[Jedi]

[KK002]

Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work.

In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 121-133. 1998.

Nevin Heintze. Analysis of large code bases: the compile-link-analyze

model, 1999.

URL: <http://cm.bell-labs.com/cm/cs/who/nch/cla. ps>.

Rebecca Hasti and Susan Horwitz. Using static single assignment form

to improve flow-Însensitive pointer analysis. In Proceedings of the ACM

SIGPLAN '98 Conference on Programming Language Design and Inple

mentation, pages 97-105. 1998.

Michael Hind. Pointer analysis: haven't we solved this problem yet? In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro

gram Analysis for Software Tools and Engineering, pages 54-61. 2001.

Michael Hind and Anthony Pioli. \Vhich pointer analysis should l use?

In Proceedings of the International Symposium on Software Testing and

Analysis, pages 113-123, 2000.

Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.

In Proceedings of the ACM SIGPLAN'Ol Conference on Programming

Language Design and Inplementation, pages 24-34. 2001.

Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using

CLA: a million hnes of C code in a second. In Proceedings of the ACM

SIGPLAN J01 Conference on Programming Language Design and Inple

mentation, pages 254-263. 2001.

jEdit: Open Source programmer's text edit or.

URL: <http://www . j edit. org/>.

Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock reserva

tion: Java locks can mostly do without atomic operations. In Proceedings

118

[Lan92]

[LPH01]

[LR92]

Bibliography

of the 17th ACM Conference on Object-oriented progmmming, systems,

languages, and applications, pages 130-141. 2002.

William Landi. Undecidability of static analysis. ACM Letters on Pro

gmmming Languages and Systems (LOPLAS), 1(4):323-337, 1992.

Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and

evaluating flow-insenstitive and context-insensitive points-to analyses for

Java. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Progmm Analysis for Software Tools and Engineering, pages 73-79.

2001.

William Landi and Barbara G. Ryder. A safe approximate algorithm for

interprocedural aliasing. In Proceedings of the 5th ACM SIGPLAN Con

ference on Programming Language Design and Inplementation, pages

235-248. 1992.

[MRR02a] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Constructing

precise object relation diagrams. In IEEE International Conference on

Software Maintenance (ICSM'02). October 2002.

[MRR02b] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized

object sensitivity for points-to and side-effect analyses for Java. In ACM

SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA '02). July 2002.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers, 1997.

[PQVR+01] Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie Hendren, and

Clark Verbrugge. A Framework for Optimizing Java Using Attributes.

In Compiler Construction, 10th International Conference (CC 2001),

volume 2027 of Lecture Notes in Computer Science, pages 334-554, 2001.

119

Bibliography

[RCOO]

[RMR01]

[Ruf95]

[RufOO]

[SFAOO]

[SH97a]

[SH97b]

Atanas Rountev and Satish Chandra. Off-Hne variable substitution

for scaling points-to analysis. In Proceedings of the ACM SIGPLAN

'00 Conference on Programming Language Design and Inplementation,

pages 47-56. 2000.

Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analy

sis for Java using annotated constraints. In Proceedings of the OOPSLA

'01 Conference on Object-Oriented Programming Systems Languages and

Applications, pages 43-55. 2001.

Erik Ruf. Context-insensitive alias analysis reconsidered. In Proceedings

of the Conference on Programming Language Design and Inplementa

tion, pages 13-22. 1995.

Erik Ruf. Effective synchronization removal for Java. In Proceedings of

the ACM SIGPLAN '00 Conference on Programming Language Design

and Inplementation, pages 208-218. 2000.

Zhendong Su, Manuel Fahndrich, and Alexander Aiken. Projection

merging: reducing redundancies in inclusion constraint graphs. In Pro

ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principle.s

of Programming Languages, pages 81-95, 2000.

M. Shapiro and S. Horwitz. The effects of the precision of pointer anal

ysis. In Proceed'ings of the Fourth International Symposium on Static

Analysis (SAS'97), volume 1302 of Lecture Note.s in Computer Science,

pages 16-34, 1997.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive

points-to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 1-14. 1997.

[SHR+OO] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual

120

[Soot]

[Spec]

[Ste96a]

[Ste96b]

[Tar75]

[TPOO]

[VHK97]

[VROI]

Bibliography

method caU resolution for Java. In Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

pages 264-280, 2000.

Soot: a Java Optimization Framework.

URL: <http://www.sable.rncgill.ca/soot/>.

SPEC JVM98 Benchmarks.

URL: <http://www . spec. org/osg/ jvrn98/>.

Bjarne Steensgaard. Points-to analysis by type inference of programs

with structures and unions. In Compiler Construction, 6th International

Conference, volume 1060 of Lecture Notes in Computer Science, pages

136-150, 24-26 April 1996.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed

ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 32-41. 1996.

Robert Endre Tarjan. Efficiency of a good but not linear set umon

algorithm. Journal of the ACM (JACM), 22(2):215-225, 1975.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph

construction algorithms. In Proceedings of the Conference on Object

Oriented Programming Systems, Languages, and Applications, pages

281-293. 2000.

Jan Vitek, R. Nigel Horspool, and Andreas Krall. Efficient type inclusion

tests. In Proceedings of the 1997 ACM SIGPLAN Conference on Object

Oriented Programming Systems, Languages and Applications, pages 142-

157. 1997.

Frédéric Vivien and Martin Rinard. Incrementalized pointer and es

cape analysis. In Proceedings of the ACM SIGPLAN'01 Conference on

Programming Language Design and Inplementation, pages 35-46. 2001.

121

Bibliography

[VRGH+OO] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,

Patrice Pominville, and Vijay Sundaresan. Optimizing Java bytecode

using the Soot framework: is it feasible? In Compiler Construction, 9th

International Conference (CC 2000), volume 1781 of Lecture Notes in

Computer Science, pages 18-34, 2000.

[Wei80]

[\iVL95]

[WL02]

[VvR99]

William E. Weihl. Interprocedural data fiow analysis in the presence of

pointers, procedure variables, and label variables. In Proceedings of the

7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 83-94. 1980.

Robert P. \Vilson and Monica S. Lam. Efficient context-sensitive pointer

analysis for C programs. In Proceedings of the Conference on Program

ming Language Design and Inplementation, pages 1-12. 1995.

John Whaley and Monica Lam. An efficient inclusion-based points-to

analysis for strictly-typed languages. In Static Analysis 9th International

Symposium, SAS 2002, volume 2477 of Lecture Notes in Computer Sci

ence, pages 180-195, 2002.

John Whaley and Martin Rinard. Compositional pointer and escape

analysis for Java programs. In Proceedings of the 1999 ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 187-206. 1999.

122

