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Abstract 

Many compiler analyses and optimizations require precise information about the 

behaviour of pointers in order to be effective. Points-to analysis is a technique for 

computing this information that has been studied extensively over the last decade. 

Most ofthis research has focused on points-to analyses for C. The behaviour of points

to analysis on higher-levellanguages such as Java appears very different than on C. 

Moreover, most proposed points-to analysis techniques were evaluated in disparate 

analysis systems and benchmarks, making it difficult to compare their effectiveness. 

To address these issues, this thesis introduces SPARK, a flexible framework for 

experimenting with points-to analyses for Java. SPARK is intended to be a universal 

framework within which different points-to analyses can be easily implemented and 

compared in a common context. Currently, SPARK supports equality- and subset

based analyses, variations in field sensitivity, respect for declared types, variations in 

call graph construction, off-line simplification, and several points-to set propagation 

algorithms. 

A substantial study of factors affecting precision and efficiency of points-to anal

yses has been performed as a demonstration of SPARK in action. The results show 

that SPARK is not only flexible and modular, but also very efficient compared to other 

points-to analysis implementations. 

Two client analyses that use the points-to information are described, calI graph 

construction and side-effect analysis. The side-effect information can be encoded 

in Java class file attributes, so that it can later be used for optimization by other 

compilers and virtual machines. 

SPARK has been demonstrated to be a flexible and efficient framework for Java 

points-to analysis. Several experiments that could be performed with it are suggested. 
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Résumé 

Afin d'être efficaces, beaucoup d'analyses et optimisations de compilateur exigent 

des informations précises sur le comportement des pointeurs. L'analyse dite points-ta 

(pointe sur) est une technique visant à calculer cette information qui a été étudiée 

intensivement au cours de la dernière décennie. La majeure partie de cette recherche 

s'est concentrée sur les analyses pour C. Le comportement de l'analyse points-ta 

appliquée à des langages de plus haut niveau tels que Java semble très différent de 

celui observé pour C. D'ailleurs, la plupart des techniques d'analyse points-ta qui ont 

été proposées ont été évaluées dans des systèmes d'analyse divers et sur les différents 

programmes d'évaluation, ce qui rend difficile la comparaison de leur efficacité. 

Pour répondre à ces problèmes, cette thèse présente SPARK, un cadre d'appli

cation flexible pour expérimenter avec des analyses points-ta pour Java. SPARK est 

destiné à être un cadre universel dans lequel peuvent être facilement implantées de 

différentes analyses points-ta, afin de pouvoir être comparées dans un contexte com

mun. Actuellement, SPARK supporte des analyses basées sur les contraintes d'égalité 

ainsi que de sous-ensemble, des variations en le traitement des champs, en le respect 

pour les types déclarés, et en la méthode de construction du graphe des appels, un 

algorithme de simplification des contraintes, et plusieurs algorithmes de propagation 

des ensembles points-ta. 

Une étude importante sur les facteurs influant la précision et l'efficacité des 

analyses points-ta a été effectuée comme démonstration de l'utilisation de SPARK. 

Les résultats démontrent que SPARK est non seulement flexible et modulaire, mais 

également très efficace comparé à d'autres réalisations d'analyse points-ta. 

Deux analyses clientes qui profitent de l'information points-ta sont décrites, la 
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construction du graphe d'appel et l'analyse d'effets secondaires. L'information sur les 

effets secondaires peut être codé en des attributs dans les fichiers de code objet Java, 

pour qu'elle puisse être employée à des fins d'optimisation par d'autres compilateurs 

et machines virtuelles. 

Il a été démontré que SPARK est un cadre flexible et efficace pour l'analyse 

points-ta de Java. Plusieurs expériences qui pourraient être efféctuées avec SPARK 

sont suggérées. 
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1.1 Motivation 

Chapter 1 

1 ntroduction 

Accurate information about the behaviour of pointers is a prerequisite for many anal

yses and optimizations of programs written in languages with pointers. The exact 

runtime values of each pointer in a program are, in general, uncomputable [Lan92]. 

Various approximation algorithms have therefore been the subject of active research 

for over a decade. Unfortunately, these variations were implemented within different 

compiler frameworks, making them difficult to compare. Moreover, pointer analysis 

researchers have not yet agreed on an objective metric of the precision of a pointer 

analysis. Although much work has been done, the problem of efficiently and accu

rately predicting the behaviour of pointers is far from solved. 

In recent years, Java, and other similar languages with dynamic dispatch and 

strong typing, have been growing in popularity. These language features make the 

development of software easier and less error-prone, but have significant costs in 

performance and compiler complexity. Pointer analyses must be adapted to deal 

with new features not present in simpler languages like C. On the other hand, the 

type-safety properties of these languages should be exploited to improve efficiency 

and accuracy of the analysis. 
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Introduction 

This thesis aims to address these problems by introducing SPARK, a flexible frame

work for points-to analysis of Java programs, and by reporting on an extensive study 

of Java points-to analysis variations that was performed using SPARK. 

An features of Java are considered by SPARK, making it an ideal framework for 

experimenting with different representations of these features in pointer analyses. 

SPARK is designed to be modular, in that different implementations of its various 

components can be interchanged. This allows experimentation with specifie imple

mentation details of pointer analysis algorithms, an area whieh has been largely ne

glected in reeent pointer analysis researeh. By setting various parameters within 

SPARK, and possibly by implementing additional SPARK modules, researehers ean 

easily instantiate efficient implementations of many of the variations of pointer anal

ysis that have been proposed, as weIl as new variations. This allows the different 

analyses to be eompared within the eontext of the same framework. 

SPARK is a eomponent of the Soot bytecode analysis and optimization frame

work [Soot, VRGH+OO]. The pointer information computed by SPARK can be used 

by various client analyses within Soot, or it can be encoded in attributes for use 

by other optimizers, virtual machines, or native compilers. This large collection of 

possible client analyses provides many different measures of the effectiveness of the 

pointer analysis. 

In addition to describing the SPARK framework itself, this thesis reports the re

sults of a substantial experimental study of Java points-to analyses and the tradeoffs 

between analysis efficiency and accuracy. These experiments reveal several variations 

appropriate for Java that provide both precise information and fast analysis times. 

Furthermore, the experimental results demonstrate that SPARK is not only modu

lar, but its efficiency is very competitive compared to other Java points-to systems 

described in previously published work. 

2 



1.2. Contributions 

1.2 Contributions 

The work reported in this the sis consists of the design of the SPARK pointer analysis 

framework, its implementation, and results of experiments performed with it. These 

three contributions are described in the following subsections. 

1. 2.1 Design 

Pointer Assignment Graph 

SPARK introduces the notion of a pointer assignment gmph (described in detail in 

Section 4.1), a single model in which very different pointer analyses can be expressed 

and efficiently implemented. This is in contrast to the many incomparable represen

tations typically used to present different pointer analyses in the literature. 

The pointer assignment graph allows the following variations of pointer analyses 

to be expressed: 

® subset-based [And94] or equality-based [Ste96b]; 

® varying levels of context-sensitivity;l 

® field and array references merged for an object instances (field-based analysis), 

or considered separately for each instance (field-sensitive analysis); 

® variables in SSA form [AVvZ88], split along UD-DU webs [Muc97, Section 8.10], 

or as in original source; 

® which declared types and casts (if any) are respected; 

® whether an initial approximation to the call graph is used, or whether the call 

graph is constructed as the pointer information is computed; and 

1 Although currently only context-insenstive analyses are implemented, SPARK is designed to 
facilitate experimentation with context-sensitivity. 
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Introduction 

@ if an initial caU graph is used, which approximation (such as class hierarchy anal

ysis [DGC9,s], rapid type analysis [BS96], or variable type analysis [SHR+OO]) 

is used to compute it. 

Staged Analysis 

The pointer analysis in SPARK proceeds in three stages. 

1. The pointer assignment graph is built based on the program being analyzed. 

2. The pointer assignment graph is simplified. 

3. The simplified pointer assignment graph is used to compute points-to informa

tion. 

This division into stages is key to the flexibility of SPARK. A large number of 

combinations of different implementations of each stage are possible, leading to many 

variations in the pointer analysis. The stages of SPARK are described in detail in 

Chapter 4. 

1.2.2 Implementation 

The current version of SPARK includes the foUowing implementations of its compo

nents. 

® A context-insensitive implementation of the pointer assignment graph builder 

with many parameters which determine how language features are represented. 

The pointer assignment graph builder is described in detail in Section 4.2. 

® Implementations of simplification algorithms to merge strongly connected com

ponents and single-entry subgraphs. Simplification of the pointer assignment 

graph is described in detail in Section 4.3. 

@ Five different implementations of points-to set propagation algorithms: a simple 

iterative algorithm, an efficient worklist-based algorithm, a new, space-efficient 

4 



1.2. Contributions 

alias edge algorithm, and incremental versions of the worklist and alias edge 

algorithms. These algorithms are presented in Section 4.4. 

@ Four different implementations of points-to sets: an implementation based on 

hash tables, an Implementation based on bit vectors, an implementation based 

on sorted arrays, and a hybrid implementation which represents the elements of 

small sets explicitly, but switches to bit vectors to represent larger sets. These 

implementations of points-to sets are described in more detail in Section 4.5. 

@ Two client analyses that use the results of SPARK have been implemented: a call 

graph trimmer, and a side-effect analysis. The results ofthese client analyses are 

further used by other analyses within Soot, or they can be encoded in attribut es 

for use by other optimizing compilers. These client analyses are described in 

Chapter 6. 

1.2.3 Experiments 

The SPARK framework was used for an extensive empirical study of factors affecting 

precision and efficiency of subset-based Java points-to algorithms. The following 

factors were studied: 

@ respecting declared types and casts during the analysis; 

@ constructing an initial caU graph prior to the analysis, or constructing it during 

the analysis as points-to sets become available; 

@ modelling of field dereference expressions in a field-sensitive or .field-based man-

ner; 

@ implementation of points-to set data structures; 

@ several points-to set propagation algorithms; and 

@ off-hne simplification of the pointer assignment graph prior to propagation. 

5 



Introduction 

From the results of these experiments, three analysis variations were selected as 

appropriate compromises between analysis precision and efficiency. The experiments 

showed the performance of SPARK on these variations to be very competitive com

pared to other Java points-to analyses that have been described in the literature. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. The next chapter is a survey of related 

work. Chapter 3 provides an overview of the overall design of SPARK, and of the 

Soot framework of which it is a part. Chapter 4 gives a detailed description of the 

design of the pointer analysis engine, the core of SPARK. A description of the pointer 

assignment graph is given first, followed by descriptions of the stages which SPARK 

uses to compute pointer information. Results of experiments conducted with SPARK 

are reported in Chapter 5. Client analyses that use the resuIts computed by SPARK 

are described in Chapter 6. Finally, Chapter 7 concludes this work, and provides 

many examples of research to which SPARK could be applied in the future. 

6 



Chapter 2 

Related Work 

This chapter presents previous work on points-to analysis. The first section covers 

early work leading to points-to analysis. The second section is an overview of the 

techniques that have been used in the past to improve the efficiency and precision 

of points-to analyses. The third section explains the work that has been done so far 

to adapt points-to analyses designed for C to Java. The fourth section discusses the 

applications for which points-to information has been used, concentrating primarily on 

applications related to Java. An extensive survey of points-to analysis research, with 

a particular focus on the problems that remain unsolved, is given by Hind [HinOl]. 

2.1 Early Work on Alias and Points-To Analysis 

The earliest work [Wei80, CR82, Cou86, LR92, CBC93] on estimating the sets of 

locations to which pointers could point used an alias set representation. This repre

sentation encodes the set of pairs of variables which could point to the same memory 

location. One such set of alias relationships can be computed for the pro gram as a 

whole, or a separate alias set can be computed for each program point. One difficulty 

with this representation is that its size can be quadratic in the number of variables in 

the program. Another drawback is that alias sets do not give information about the 

objects to which pointers point, such as their type; rather, they only specify which 

pairs of variables may point to the same objects. 

7 



Related Work 

To address these problems, Emami, Ghiya and Hendren [EGH94] introduced 

points-ta analysis. A points-to analysis divides memory into concrete locations. Then, 

for each variable, it computes the set of concrete locations to which that variable may 

point. Alias sets can be recovered from points-to sets: a pair of variables is aliased 

whenever their points-to sets have a non-empty intersection. However, for many ap

plications, it is more convenient to use points-to sets without first constructing alias 

sets. 

Emami, Ghiya and Hendren's implementation used a separate concrete location 

for each stack variable, and modelled the entire heap as a single concrete location. 

The analysis was context-sensitive and flow-sensitive. For stack-directed pointers, it 

computed not only may points-to information, but also must points-to information, 

and used it to improve the precision of the flow-sensitive analysis by removing old 

points-to relationships when a variable was known to be overwritten. \\Then analyz

ing C, function pointers present a challenge because they make it difficult to determine 

the targets of calls through them. The points-to analysis treated each function as a 

concrete location, so the set of possible tar'gets of a call through a function pointer 

was simply the points-to set. 

Andersen [And94] proposed a flow-insensitive, context-insensitive verSlOn of 

points-to analysis that did not compute must points-to information. However, his 

analysis modelled the heap more precisely, using a separate con crete location to rep

resent all memory allocated at a given dynamic allocation site. The implementation 

expressed the analysis using subset constraints, and then solved the constraints. 

Solving a system of set constraints such as those generated by Andersen's anal

ysis is equivalent to finding the transitive dosme of the constraint graph, and a 

typical implementation may therefore take time cubic in the size of the program. 

Steensgaard [Ste96b] proposed a more conservative analysis by replacing each subset 

constraint with a set equality constraint. The advantage of this approach is that it 

reduces the problem to one of finding connected components in the constraint graph, 

which can be done in almost linear time using a fast union-find algorithm [Tar75]. 

However, the st ronger constraints make the analysis much less precise. In fact, for 

Java programs, the constraint graph is fully connected, because every object is passed 
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2.2. Improving Analysis Efficiency 

to the initializer of java .lang. Obj ect, so an unmodified version of Steensgaard's al

gorithm would pro duce the worst-case assumption that every variable may point to 

every object. 

2.2 Improving Analysis Efficiency 

Since the introduction of subset-based and equality-based points-to analysis, re

searchers have worked on improving the efficiency of the former, and the precision of 

the latter. 

Wilson and Lam [WL95] implemented a flow-sensitive, context-sensitive subset

based analysis using partial tmnsfer functions to summarize the effect of each function 

on points-to sets. This meant that their analysis did not have to analyze each function 

for every calling context; rather, it only had to apply the partial transfer function 

in each calling context. The analysis could therefore be more efficient than the flow

sensitive, context-sensitive analysis of Emami, Ghiya, and Hendren. 

Ruf [Ruf95] advocated abandoning context-sensitivity altogether. He implemented 

both context-insensitive and maximally context-sensitive versions of a subset-based 

analysis. On his benchmark suite, the context-insensitive version produced only a 

small number of spurious points-to relationships compared to the context-sensitive 

version. Moreover, when he applied the points-to results to computing side-effect 

information, the few spurious points-to relationships introduced even fewer spurious 

side-eflects. 

Shapiro and Honvitz [SH97b] studied flow-insensitive, context-insensitive points

to analyses. They presented empirical results demonstrating that an equality-based 

analysis is considerably less precise than a subset-based analysis, but that the subset

based analysis is much slower on larger programs. In addition, they presented a 

points-to analysis algorithm with a parameter which could be adjusted to make the 

analysis faster at the expense of precision. The idea was to separate the variables in 

the program into k categories. \iVhen two variables were in the same category, con

straints between them were treated as equality constraints; only variables in different 

9 



Related Work 

categories could have subset constraints between them. Using a separate category for 

each variable resulted in a fully subset-based analysis, while assigning aIl variables to 

a single category resulted in a fully equality-based analysis. The analysis could be 

tuned between these two extremes by using an intermediate number of categories. 

Hasti and Horwitz [HH98] used static single assignment (SSA) form [AWZ88] to 

obtain precision comparable to a flow-sensitive points-to analysis from a much faster, 

flow-insensitive points-to analysis. The main benefit of a flow-sensitive analysis is 

strong update: when a variable is overwritten, the analysis can infer that after being 

overwritten, the variable no longer points to the objects it used to point to. A flow

insensitive analysis ignores the order in which assignments are executed; it has no 

way to distinguish between "before" and "after" the assignment. ';\,Then a program 

is converted into SSA form, its variables are split so that each variable is assigned 

at only one point in the program. This means that in SSA form, no variable is ever 

overwritten. A variable which is overwritten in the original program is represented 

by two or more separate variables in SSA form. In SPARK, aH analyses are flow

insensitive, but before starting the analysis, SPARK uses the Soot framework to split 

variables along UD-DU webs [Muc97, Section 8.10], a slight relaxation of SSA form. 

A Soot transformation to true SSA form has been written, and is expected to soon 

be merged into the publicly available version of Soot. 

Diwan, McKinley, and Moss [DMM98] applied points-t~ analysis to Modula-3, 

which enforces declared types, unlike C. They studied three simple alias analyses. 

The first analysis was to treat variables as possibly aliased whenever the type of 

one variable is a subtype of the other. The second analysis added the constraint 

that a field of an object may only be aliased to that same field of another object. 

Finally, the third was an equality-based analysis similar to Steensgaard's. The results 

of the alias analysis were used to compute side-effect information, which was used 

to remove redundant loads. Their analysis was able to remove between 37% and 

87% of the redundant loads in the program, resulting in a 1% to 8% speedup. The 

simplest analysis which considered only declared types managed to detect nearly aH 

of the redundant loads detected by the other two more precise analyses. Experiments 

conducted using SPARK show that information provided by declared types such as 

10 



2.2. Improving Analysis Efficiency 

that used by Diwan, McKinley, and Moss can significantly improve analysis precision 

and efficiency of more complicated analyses. 

Aiken, Falmdrich, Foster, and Su [AFFS98, FFSA98, SFAOO] developed a frame

work called BANE for solving general subset constraint problems. In particular, the 

framework can be used to solve points-to analysis problems that can be expressed 

using set constraints. Their framework is able to detect and collapse cycles in the 

constraint graph as it is solving it, improving the efficiency of subset-based analyses. 

Rountev and Chandra [RCOO] observed that the initial subset constraint graph 

may contain cycles or subgraphs with a single entry point, and that when analyzing 

C programs, the points-to sets of aH nodes in a cycle or in a single entry subgraph 

will be equa1. 1 They therefore proposed simplifying the graph by merging variables 

known to have equal points-to sets before starting to solve the constraints. On their C 

benchmarks, they found that simplifying the constraint graph before solving it im

proved the solution time and memory requirements by about 50%. SPARK includes a 

similar algorithm to simplify its pointer assignment graph, and empirical results from 

SPARK agree with those of Rountev and Chandra. 

Das [DasOO] noticed that in C programs, many pointers are only used to implement 

call-by-reference, and that it is relatively inexpensive to analyze these pointers with a 

subset-based analysis. He therefore proposed an analysis that uses subset constraints 

between stack variables that do not have their address taken, and equality constraints 

between other variables. The pointers used to implement call-by-reference rarely 

have their address taken, so they are analyzed quickly with great precision by a 

subset-based analysis. The remaining pointers, which cou Id slow down a subset

based analysis, are analyzed using the imprecise but inexpensive equality constraints. 

Using this analysis, Das was able to analyze a large program consisting of about two 

million hnes of code. 

Heintze and Tardieu [HTOla, HTOlb, Hei99] report analyzing huge programs with 

a fully subset-based analysis. This efficiency appears to be due to three main factors. 

First, their analysis is demand-driven, producing only those points-to sets needed by 

1 In an analysis for Java, it is not necessarily true that the points-to sets of aU nodes in a cycle or 
single entry subgraph will be equal if declared types are being respected. See Section 4.3 for details. 
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a client of the analysis, rather than producing the entire solution at once. Second, 

it uses an algorithm that detects and merges cycles in the constraint graph as the 

analysis proceeds. Third, their representation of points-to sets has been carefully 

tuned, and is very efficient. It is not clear which of these three factors contribute 

most significantly to the speed of their system; however, their work shows that a 

combination of the three makes it feasible to perform subset-based analyses for very 

large programs. 

2.3 Points-To Analysis for Java 

With the exception of the work by Diwan, McKinley, and Moss, the points-to analyses 

discussed so far were designed to analyze programs written in C. Java has several 

features not present in C that affect points-to analysis. Specifically, Java disallows 

only stack-directed pointers, it enforces declared types, and it uses virtual dispatch, 

so a static caU graph is not immediately available, as it is in C in the absence of 

function pointers. This is especially problematic because Java includes a very large 

standard class library which cannot be 1eft out of the caIl graph, making even trivial 

programs appear very large from the point of view of whole-program analysis. Several 

researchers have tried to adapt points-to analyses to refiect these features specifie to 

Java. 

Liang, Pennings and Harrold [LPHOl] performed a comparison of several different 

analyses adapted to Java. An of their analyses were fiow-insensitive and context

insensitive. Because their implementation could not scale to analyzing the complete 

standard library of version 1.1.8 of the JDK, they used hand-coded summaries of 

the pointer-related effects of the library. They studied both field-sensitive and field

based analysis of field expressions. In a field-sensitive approach, a separate points

to set is computed for each field of each concrete location, while in a field-based 

approach, only a single points-to set is computed for each field. A field-sensitive 

approach can distinguish between the same field of two different objects, while a 
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field-based approach cannot. They also compared both equality-based and subset

based analyses. After noticing that a completely equality-based analysis applied 

to Java pro duces the worst-case information that every pointer may point to every 

object, they modified the equality-based analysis to be subset-based in the areas 

that degraded precision the most. Finally, they also compared using a calI graph 

precomputed using class hierarchy analysis [DGC95] to constructing a caU graph on

the-fly from the points-to information as it was computed. The precision of these 

analyses was measured by its impact on the precision of the caU graph that could be 

constructed from the points-to information, and the precision of escape information 

that could be computed. They found the subset-based analysis to be significantly 

more precise than even their modified equality-based analysis, but they did not notice 

a significant effect on precision from varying the modelling of field references or the 

method of caU graph construction. In their Implementation, the field-based analysis 

using the caU graph computed using CHA was considerably faster than the other 

variations. 

Rountev, Milanova and Ryder [RMROl] modified Soot [Soot, VRGH+OO] to out

put subset constraints to be used as input to BANE [AFFS981, which they used to 

compute a flow-insensitive, context-insensitive, field-sensitive points-to analysis that 

computed the call graph on-the-fly. They were unsuccessful in expressing an efficient 

field-based analysis directly in BANE, so they modified BANE to allow each subset 

constraint to be annotated with a field. Using these field annotations, their analysis 

was efficient enough to be able to analyze benchmarks with the whole standard library 

from version 1.1.8 of the JDK. During the analysis, the declared types of variables 

were not considered; however, objects of incompatible type were removed from the fi

nal points-to sets after the analysis completed. They showed using experimental data 

that their analysis computed precise side-effect information, a precise approximation 

to the call graph, and precise escape information. 

Whaley, Rinard and Vivien [WR99, VROl] used a demand-driven, subset-based, 

context-sensitive, flow-sensitive, field-sensitive analysis to compute escape informa

tion for deciding which objects could be safely allocated on the stack rather than on 

the heap. As soon as an object was determined to escape, the analysis for that object 
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terminated. This made it possible for such a precise analysis to scale to reasonably

sized programs. Choi et al. [CGS+99] presented a very similar escape analysis. They 

applied it to eliminating synchronization of thread-local objects, in addition to allo

cating objects on the stack. Bogda and H6lzle [BH99] also used a points-to analysis 

to compute escape information for eliminating synchronization. The intra-procedural 

part of their analysis was equality-based, while the inter-procedural part was subset

based, giving a good compromise between analysis efficiency and precision. 

vVhaley and Lam [vVL02] adapted the demand-driven algorithm of Heintze and 

Tardieu [HT01a, HTOlb] to Java by adding field-sensitivity, making it respect de

clared types, and computing the call graph on-the-fty. With this analysis, they 

were able to analyze benchmarks using the standard library from version 1.3.1 of 

the JDK, which is about three times larger than the library in version 1.1.8. How

ever, their implementation did not come close to matching the scalability of Heintze 

and Tardieu's Implementation for C, suggesting that Implementation features other 

than the demand-driven algorithm affect the efficiency of the analysis. 

Recently, Milanova, Rountev and Ryder [MRR02a, MRR02b] proposed objeet

sensitivity, an adaptation of context-sensitivity designed to precisely model features 

often present in object-oriented programs, such as encapsulation. They applied a 

preliminary version of their analysis to eonstructing object relationship diagrams for 

program understanding, an application for which a high level of precision is needed. 

2.4 Applications of Points-To Analysis 

This section describes sorne of the analyses that have been constructed to make use 

of points-to information. Sorne of these clients, su ch as side-effect analysis, have been 

studied for both C and Java, while others, such as caU graph construction and escape 

analysis are particularly useful for dealing with features specifie to Java. 
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2.4.1 Side-Effect Information 

The purpose of a side-effect analysis is to approximate the set of memory locations 

read and written by specifie instructions, and to summarize this information for larger 

regions of the program. This information can th en be used to improve the effectiveness 

of a wide variety of datafiow analyses and traditional compiler optimizations in the 

presence of pointers. The side-effect analysis implemented using SPARK is described 

in Section 6.2 of this thesis. 

Ghiya and Hendren [GH98] used side-effect information to improve precision of 

common subexpression elimination, loop-invariant hoisting, and redundant load elim

ination in a C compiler. On their benchmarks, these improvements translated into 

up to 10% speedups. They also showed how to use side-effect information for array 

dependence testing, in program understanding tools, and to automatically insert data 

prefetching hints into code. A similar study was done for C programs by Hind and 

Pioli [HPOO). They evaluated several points-to analyses by measuring their effects 

on live variable analysis, reaching definitions, constant propagation, and dead code 

elimination. 

Clausen [Cla97] proposed a simple side-effect analysis for Java which did not 

use a points-to analysis; it used only information about declared types, and made 

worst-case assumptions about the possible targets of pointers. The resulting side

effect information was applied to dead code removal, loop invariant hoisting, constant 

propagation, and common subexpression elimination. On early versions of Java, these 

optimizations produced speedups of up to 25%.2 

The precision of side-effect information that can be obtained has become a 

common metric of the precision of points-to information. Both Shapiro and Hor

witz [SH97a], and Rountev, Milanova and Ryder [RMR01, MRR02b] used it as one 

of their main metrics in comparing the precision of different points-to analyses. 

2Early Java virtual machines did not have aggressive just-in-time compilers like they do today. 
Modern just-in-time compilers can perform some of these optimizations based on intraprocedural 
analysis. 
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2.4.2 Cali Graph Construction 

In Java, aIl instance methods are invoked using virtual caUs. This means that whole

program analyses require sorne approximation of the caU graph. Some points-to 

analyses require such a calI graph to be constructed prior to the analysis. The output 

of a points-to analysis can also be used to construct such a call graph, or to make an 

existing calI graph more precise. The application of SPARK to caU graph construction 

is covered in Section 6.1 of this thesis. 

Several methods have been proposed for constructing call graphs without using 

a complete points-to analysis. Dean, Grove, and Chambers [DGC95] proposed class 

hierarchy analysis, which uses only the subclass relationships in the type hierarchy to 

resolve method targets. Bacon and Sweeney [BS96] introduced rapid type analysis, 

which restricts class hierarchy analysis to classes which appear in allocation sites in 

the program. Sundaresan et al. [SHR+OO] proposed an even more precise method, 

variable type analysis, a technique similar to subset-based points-to analysis in that 

it uses subset constraints to express the possible sets of run-time types of objects 

that each variable may hold. AU of these methods are available in SPARK. Tip and 

Palsberg [TPOO] studies several other variations of caU graph construction algorithms 

based on subset constraints. 

A call graph can be constructed almost directly from precise points-to information. 

It has become co mm on in studies of points-to analyses [LPHOl, RMR01, WL02] to 

use the precision of the caU graph that can be constructed as one measure of the 

precision of the points-to information. 

2.4.3 Escape Analysis 

The goal of an escape analysis is to determine which objects can be referenced by 

pointers in methods or threads other than the method or thread in which they are 

allocated. Research on escape analysis for Java has focused on two main applications, 

stack allocation and synchronization elimination, which are discussed in the next two 

paragraphs. 

Java forces programmers to allocate aIl objects on the heap, rather than on the 
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stack. This can have adverse effects on the performance of Java programs, because 

these objects need to be freed by the garbage collector. Several researchers [WR99, 

VR01, CGS+99] used escape analyses inside their compilers to detect which objects 

could safely be allocated on the stack rather than on the heap. 

It is very easy to add synchronization locks to Java programs, so many programs 

and libraries use them extensively even when they are not necessary. Several ap

pro aches [BH99, RufOO, CGS+99] were independently developed to use escape infor

mation to reduce the overhead of these locks. An three approaches use escape analysis 

to determine which objects cannot be referenced by threads other than the thread in 

which the y are allocated. Any locks on such objects can be removed, because these 

objects are only used by a single thread. Most modern implementations of Java use 

thin locks [BKMS98], which are extremely efficient when there is no contention over 

the lock (as is the case for thread-local objects), so it may appear that synchroniza

tion elimination is no longer necessary. However, even thin locks become expensive 

on multi-processor architectures [KK002]. 
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Chapter 3 

Spark in the Context of Soot 

3.1 Soot Overview 

SPARK is a component of the Soot framework [Soot, VRGH+OO] for analyzing, op

timizing, and annotating Java bytecode. The Soot framework defines four different 

intermediate representations, and includes code to convert between them and Java 

bytecode. 

Baf is a stack-based representation similar to bytecode. 

Jimple is a stack-less, three-address, typed intermediate representation suit able for 

many analyses. 

Grimp is a representation similar to Jimple, but with aggregated expressions (that 

is, statements such as d = Ca + b) * c are allowed, whereas in Jimple, this 

computation would be split into two statements, one to do the addition, and 

the other to do the multiplication). 

Dava AST is a high-level, structured representation used for decompilation. 

The most common use of Soot is for optimizing and annotating bytecode. Soot 

reads the bytecode (which may be produced by javac or any other compiler targetting 
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bytecode) either for a single class file, or a whole program. Soot successively converts 

the bytecode to its various intermediate representations, and applies analyses, trans

formations, and annotation generators designed for each intermediate representation. 

Soot provides a mechanism [PQVR+01] for attaching attributes with arbitrary anal

ysis results to classes, methods, or individual instructions. Finally, the intermediate 

representation is translated back to bytecode, annotated with any of the attributes 

that were attached, and written back to class files. 

Of the intermediate representations defined by Soot, Jimple is the most suit able 

for whole-program points-to analysis. SPARK is therefore based entirely on Jimple. 

Jimple statements relevant to points-to analysis are explained below. 

Assignment statement: An assignment statement has the form p = q, and assigns 

the value of one variable to another. If the variables are of pointer type, a points

to analysis must consider that after this statement, the target of the assignment 

may point to the object that the source of the assignment points to. 

Identity statement: Jimple introduces virtual variables to represent the parame

ters of methods and the parameter of an exception handler. These variables are 

present only implicitly in the original bytecode. An identity statement is an as

signment statement with one of these virtual variables as its source rather than 

an ordinary variable. For example, every instance method contains a statement 

like p : = ©this, which assigns the implicit parameter this to the variable p. 

SPARK treats identity statements in the same way as other assignment state

ments. 

Allocation statement: From the point of view of a points-to analysis, an allocation 

statement is any statement that causes a variable to point to some newly

allocated location. In Jimple, this includes statements that allocate objects 

and arrays (single and multi-dimensional), and that load string constants. In 

Jimple, the caU to a constructor that is associated with an object being created 

is not part of the allocation statement; it is represented as a separate invocation 

statement. Some examples of allocation statements are: 
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@ p = new java.lang.String, 

@ q = newarray (int) [12], and 

@ r = IIHello, World! Il. 

Field store: A field store has the form p. f ::: q, and stores the value of the variable 

q into the field f of the object pointed to by p. 

Field load: A field load has the form p = q. f, and loads the value of the field f of 

the object pointed to by q into the variable p. 

Static field store: A static field store has the form Class. field = p, and stores 

the value of a variable into a static field of a class. Static fields are the Java 

equivalent of global variables. Each static field is associated with a class, and 

there is a single instance of each static field in the whole program. 

Static field load: A static field load has the form p = Class. field, and loads the 

value of a static field into a variable. 

Array store: An array store has the form p [i] = q, and stores the value of variable 

q into the ith element of the array pointed to by the variable p. In SPARK, 

arrays are treated like objects, with a single virtual field representing all the 

elements of the array. 

Array load: An array load has the form p = q [i], and loads the value of the i th 

element of the array pointed to by q. 

Cast statement: A cast statement has the form p = (T) q, and causes the pointer 

stored in the variable q to be assigned to the variable P, provided that the type 

of the target of the pointer is a subtype of T. If it is not, the assignment do es not 

take place, and an exception is thrown. A points-to analysis can treat such a 

cast statement like an assignment from q to p, but it can also take advantage of 

knowing that the pointer that is assigned must be pointing to an object whose 

type is a subtype of T. 
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Invocation statement: An invocation statement causes a method to be invoked. 

If the method is static, the invocation statement contains a specification of the 

method that will be invoked. Otherwise, the invocation statement contains a 

signature of the method to be invoked, as weIl as a variable pointing to the 

receiver object of the method. The actual method that will be invoked is re

solved from the run-time type of the receiver object and the method signature. 

If the method accepts parameters, the invocation statement contains variables 

whose values will be passed to the parameters of the method. If the method 

returns a value, the invocation statement may optionally contain a target vari

able to which the return value will be assigned when the method returns. Any 

of these variables may be of pointer type, so a points-to analysis must consider 

the resulting flow of pointers. Sorne examples of invocation statements are: 

® P = staticinvoke <java.lang.String: valueOf(int»(5), 

® i = virtualinvoke s.<java.lang.String: length(»(), 

® virtualinvoke p.<java.io.PrintStream: close(»(), 

® specialinvoke this.<java.lang.Object: void <init>(»();, and 

® i = interfaceinvoke c.<java.util.Collection: int size(»();. 

Return statement: A return statement has the form return or return p, and 

causes control to return from a method back to its caller, optionally passing 

back a value. At the calI site, the returned value may be assigned to a variable, 

or discarded if no target variable is specified. If the value being returned is 

of pointer type, a points-to analysis should should take the pointer flow into 

account. 

Throw statement: A throw statement has the form throw p, and transfers con

trol to an exception handler, passing it a pointer to an exception object (p, in 

this case). Each exception handler contains an identity statement that retrieves 

the exception object from the implicit parameter variable. A points-to anal

ysis should track the pointer flow from the throw statement to the parameter 
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of the exception handler. In SPARK, this lS currently done by representing aU 

thrown exceptions as assignments to a single variable holding aIl thrown excep

tion objects, and by assignments from this variable to the parameters of each 

exception handler. This method of handling exceptions is based on the conser

vative assumption that any exception thrown may be caught by any handler in 

the program. Because exception handlers are usually very short, and because 

very few objects are usually passed through thrown exceptions, this approxi

mation appears not to degrade the precision of the points-to information. Soot 

could be extended to provide more precise information about which exception 

handlers catch which exception, and this information cou Id then be used by 

SPARK. 

3.2 Spark within Soot 

Figure 3.1 shows how SPARK interacts with other components within Soot. The core 

component of SPARK is the pointer analysis engine, described in detail in Chapter 4. 

It takes as its input the Jimple representation of the whole program, optionally a 

conservative caU graph, and a simulated representation of any native methods used 

by the program. The initial call graph may be created using class hierarchy anal y

sis [DGC95], rapid type analysis [BS96], or variable type analysis [SHR+OO]. SPARK 

can also operate without an initial caU graph, and generate one on-the-fly based on 

the points-to information that it computes. The output of the pointer analysis engine 

is, for each variable of reference type in the program, an abstract set of locations to 

which the variable may point. 

The points-to information is used by client analyses, such as a caU graph trimmer, 

which removes extraneous edges from the caU graph, and a side-effect analysis, which 

computes the locations possibly read or written by the statements and methods of 

the program. These two client analyses are presented in more detail in Chapter 6. 

Other analyses, such as escape analysis, could be implemented. 
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The results of the client analyses can be used by other analyses and transforma

tions within Soot. For example, the static method binder and static inliner use the 

trimmed call graph, while the common subexpression eliminator and partial redun

dancy eliminator use the side-effect information. 

The results of the client analyses can also be encoded as attribut es in the Jimple 

code, which are transferred to class file attribut es when the Jimple is translated 

back to Java bytecode. The information in these attribut es can be used by another 

compiler or interpreter reading the resulting bytecode. For example, a just-in-time 

compiler executing the bytecode could use the side-effect information computed by 

Soot. This is an important use of SPARK because points-to analysis, and the analyses 

that depend on it, are generally considered to be too time-consuming to be included 

in just-in-time compilers. 
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Chapter 4 

Pointer Analysis Engine 

This chapter describes the pointer analysis engine, the core component of SPARK. 

Figure 4.1 shows the overall organization of the pointer analysis engine. The analysis 

consists of three stages: building the pointer assignment graph, simplifying it, and 

then propagating the points-to sets along it to obtain the final solution. These stages 

are described in more detail in the rest of this chapter. A pointer assignment graph 

builder is first used to convert the input Jimple representation into the internaI repre

sentation used by SPARK, a pointer assignment graph. The graph builder determines 

how features of the program, such as field references, array element references, and 

parameters passed to methods are represented. It is described in more detail in Sec

tion 4.2. The pointer assignment graph may then be simplified by merging nodes that 

are known to have the same points-to sets. This simplification reduces the amount 

of processing required to compute the points-to sets. It is described in more detail in 

Section 4.3. Finally, the points-to set propagator computes the points-to set for each 

variable by propagating sets along assignments in the program (which are represented 

by edges in the pointer assignment graph). The points-to set propagation algorithms 

implemented in SPARK are described in detail in Section 4.4. 

By tuning parameters of the builder, simplifier, and propagator (or by providing 

alternative implementations), we can control the precision and efficiency of the points

to analysis. For example, to implement a merge-based analysis, we instruct the builder 

to use bi-directional edges, and the simplifier to merge the nodes connected by these 

27 



Pointer Analysis Engine 

Jimple 

Code 

legend: 

Cali 

Graph 

Pointer Assignment 

Graph Builder 

Pointer 

Assignment Graph 

Pointer Assignment 

Graph Simplifier 

Simplified Pointer 

Assignment Graph 

Poi nts-T 0 Set 

Propagator 

Points-To 

Analysis Result 

o represents a pro cess 

Figure 4.1: SPARK Overview 

28 

Native 

Method 

Simulator 

represents data 



4.1. Pointer Assignment Graph 

edges, leaving a trivial amount of computation for the propagator. On the other hand, 

a subset-based analysis would enable little merging in the simplifier, leaving most of 

the computation to be done by the propagator. Integrating aU three components in 

the SPARK framework makes it feasible to implement and compare analyses sharing 

characteristics of the two extremes. 

4.1 Pointer Assignment Graph 

SPARK uses a pointer assignment graph as its internaI representation of the pro gram 

being analyzed. The first stage of SPARK, the pointer assignment graph builder, 

constructs the pointer assignment graph from the Jimple input. Depending on the 

parameters to the builder, the pointer assignment graph for the same source code 

can be very different, refiecting varying levels of precision desired of the points-to 

analysis. For example, the builder may make assignments directed for a subset-based 

analysis, or bi-direction al for an equality-based analysis. Separating the builder from 

the sol ver makes it possible to use the same solution algorithms and implementations 

to solve different variations of the points-to analysis problem. 

The pointer assignment graph represents the memory locations used by the pro

gram using four different types of nodes, and assignments of pointers using four 

different types of edges. These are presented in the following subsections. 

4.1.1 Allocation Nodes 

An allocation node represents a set of run-time objects to which a pointer could 

point. The current design of SPARK requires the sets of run-time objects represented 

by allocation nodes to be disjoint; that is, each object at run-time is represented 

by exactly one allocation node. To satisfy this requirement, the builder may use an 

allocation node to represent an objects allocated at a given allocation site (since every 

object is allocated at exactly one allocation site), or to represent aU objects with a 

given run-time type (since every object has exactly one run-time type). 
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Each allocation node has an associated type, and all objects that it represents are 

expected to have exactly this type at run-time (not a subtype). For the case of an 

allocation node representing a set of objects of multiple run-time types, or whose type 

cannot be determined statically, SPARK introduces a special type AnyType. Allocation 

nodes with this type can represent objects of any run-time type. 

4.1.2 Variable Nades 

A variable node represents a set of memory locations possibly holding pointers 

to objects. SPARK eventually computes, for each variable node, a set of allocation 

nodes representing the set of objects to which a member of the set of memory locations 

represented by the variable node may point. The most common use of variable nodes is 

to represent local variables and method parameters, but they are also used to represent 

static fields, and they may be used to represent instance fields if the instances of a 

field are being modelled together in a field-based analysis. 

Depending on a parameter to the builder, each variable node may have a declared 

type limiting the set of objects that it may point to to those of compatible run-time 

type. 

4.1.3 Field Reference Nades 

A field reference node represents a pointer dereference. Each field reference node 

has an associated variable node as Hs base, and an abstract field. The field reference 

node represents aH memory locations used to store the given field of aH objects pointed 

to by the base. The field may be an actual Java field, or the special elements field 

used to represent elements of an array. Note that Java field references need not al ways 

be modelled using field reference nodes; if instances are being modelled together, field 

references are represented by variable nodes. 

Like the variable node, each field reference node may have a declared type limiting 

the set of objects to which it may point. 
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4.1.4 Concrete Field Nodes 

new l.f 

Later, during the propagation of points-to sets, a fourth type of node is created 

to hold the points-to set of each field of objects created at each allocation site. These 

nodes are parameterized by allocation site and field. However, the y are not part of 

the initial pointer assignment graph. 

4.1.5 Allocation Edges 

An allocation edge is an edge from an allocation no de to a variable node, and rep

resents an assignment of pointers to the objects represented by the allocation node 

to the location represented by the variable node. The presence of an allocation edge 

constrains the points-to information to include the objects represented by the allo

cation no de in the points-to set of the locations represented by the variable node. 

Examples of Jimple statements for which allocation edges are generated include allo

cation statements such as p = new Obj ect 0; and loads of string constants, such as 

s = "Hello il
;. 

4.1.6 Assignment Edges 

An assignment edge is an edge from a variable node to another variable node, and 

it represents an assignment from the location represented by the first variable no de to 

the location represented by the second variable node. The presence of an assignment 

edge from to constrains the points-to set of " to be a subset of the points-to 

set of . In order to constrain two points-to sets to be equal (for an equality-based 

analysis, for example), the builder can insert assignment edges in both directions 

between two nodes. Assignment edges are inserted between nodes whenever the 

pointers can flow from one variable to another. Examples include explicit assignment 

statements such as q = p;, but also interprocedural flow of parameters to methods. 
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At each call site, assignment edges are added from the nodes representing the actual 

arguments to the nodes representing the corresponding parameters of aIl methods 

that may be targets of the call site, and an assignment edge is added from the return 

no de of each of these methods to the node for the variable that receives the return 

value (if any) at the caU site. 

4.1.7 Store Edges 

A store edge is an edge from a variable no de to a field reference node, and it rep

resents a store from the location represented by the variable node to the appropriate 

field of sorne object pointed to by the base of the field reference node. Store edges 

are added to the pointer assignment graph for store statements in the source, such as 

q.f = p;. 

4.1.8 load Edges 

A load edge is an edge from a field reference node to a variable node, and it 

represents a load from the appropriate field of sorne object pointed to by the base of 

the field reference no de to the location represented by the variable node. Load edges 

are added to the pointer assignment graph for load statements in the source, such as 

q = p.f;. 

4.1.9 Example 

Figure 4.2 shows a small piece of code, and two examples of pointer assignment graphs 

that could be used to represent it. The code is not intended to do anything specifie; 

it is given only as an example to illustrate how pointer assignment graphs could be 

built for it. 

The first example graph in Figure 4.2(b) would be constructed for a subset-based 

field-sensitive analysis with separate allocation nodes for objects allocated at each 
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static void fooO { 

ai: p = new 00; 
q = p; 

a2: r = new 00; 
p.f = r' , 
t = bar( q ) ; 

} 

static a bare Os) { 
return s.f; 

} 

(a) Example Code 

(b) Pointer Assignmeilt Graph 

for Subset-Based, Field-Sensitive 

Analysis 

Ir 

JI 
(c) Pointer Assignmenf

j 

Graph 

for Equality-Based, Field-Based 

Analysis 

Figure 4.2: Example to Illustrate Pointer Assignment Graphs 
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allocation site. The edges are therefore only present in the direction of the assignments 

in the source code. For a field-sensitive analysis, the field references are represented 

using field reference nodes. Objects allocated at each of the two allocation sites are 

represented using distinct allocation nodes. 

The allocation statements ai : p = new a 0 and a2: r = new a () cause the 

allocation edges from to and from to respectively, 

to be added. The simple assignment statement p = q is modelled by the assignment 

edge from to 1" .. The interprocedural flow from q to the parameter s of the bar 

method is represented by the assignment edge from to •. The store p. f = r; is 

represented by the store edge from c to , and the flow from s . f returned to the 

variable t is represented by the load edge from to 

At this point, it is not yet known that p and s will be aliased, so there are 

no edges between and . This flow through aliasing will be handled later, 

during the points-to set propagation stage, by the propagation algorithms presented 

in Section 4.4. 

The second example graph in Figure 4.2(c) would be constructed by a less precise, 

equality-based, field-based analysis, with allocation nodes representing aH objects of a 

given run-time type. Because this is an equality-based analysis, all of the assignment 

edges now go in both directions. Field-based analysis means that the field references 

are represented by a single variable node not dependent on the base object (p or 

s), rather than by field reference nodes and . In a field-based analysis, we 

conservatively assume that aU objects could be aliased for the purpose of modelling 

field references; this is reflected by the single variable node representing the field f 

of aH objects. Because this analysis represents an objects of a given type by a single 

node, the objects allocated at the two allocation sites are represented by a single no de 

, since they are of the same type. 
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4.2 Building the Graph 

The pointer assignment graph builder takes as input Jimple intermediate code, a 

caU graph, and simulations of native methods, and pro duces from them a pointer 

assignment graph containing the same information in a form suit able for performing 

pointer analysis. This section describes the design of the builder. 

4.2.1 Design 

The task of the builder can be decomposed into two steps. 

1. Iterating through the Jimple input, and determining how the different Jimple 

features relate to each other. This generaIly corresponds to determining which 

edges will be present in the pointer assignment graph. 

2. Creating the appropriate pointer assignment graph node to represent each fea

ture in the Jimple input. This is determined by sorne of the pointer analysis 

parameters listed in Section 4.2.2, specified as Soot phase options to SPARK. 

Each step is represented by an abstract class and its implementation. This makes 

it possible to change the implementation of each step, without affecting the other. 

While the current implementation of the first step constructs a graph representing 

context-insensitive relationships in the Jimple source, SPARK is designed to allow 

experimenting with context-sensitive implementations in the future. The second step 

can also have different implementations, for example to change the set of options that 

determine which types of nodes will be constructed for each feature, or to create an 

entirely different representation of the pointer assignment graph. Of course, the entire 

builder could be replaced, so that the pointer assignment graph could be created from 

a different source representation (such as one based on a language other than Java 

bytecode) , or read in from a file. 

The current implementation of the builder constructs variable nodes for local vari

ables and static fields, and a single variable node representing aIl thrown exceptions. 

Depending on options given to SPARK, instance fields, method parameters, and return 
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values are represented with either variable or field reference nodes. Array element 

referenees are al ways represented with field referenee nodes. Allocation nodes are 

created for allocation sites and string constants, including command-line parameters 

to the main method. 

Edges are created for aIl pointer-valued assignments including casts, for throw 

and catch statements, and, unless the call graph is being constructed on the fiy, for 

pointers passed to and returned from methods. In addition, special edges are added 

for implicit fiow of pointers. If a class has a f inalize method, an edge is added 

from the allocation node of each allocation site allocating an object of that class to 

the variable no de representing the implicit this parameter to the finalize method. 

This models the eventual fiow of the object from the allocation site to its finalize 

method when it is garbage collected. Similarly, sinee the this pointer of the start 

method of java .lang. Thread implicitly fiows to the this pointer of the run method 

of any of its subclasses, assignment edges are added to refiect this. 

4.2.2 Parameters and Options 

Represel1til1g Fields 

The following three SPARK options affect whether certain features are represented as 

variable nodes or field referenee nodes. 

ignoreBaseObjects: Wh en this option is set to true, each reference to an instance field 

is represented by a variable node, regardless of the object that is the base of the 

reference (a field-based analysis, as compared to a field-sensitive analysis). That 

is, aH instances of a given field in aIl objects are grouped together. This allows 

for a very fast analysis because pointers can be propagated to variable nodes 

in a single pass, with no iteration. However, using variable nodes to represent 

referenees to instance fields is less precise than using field reference nodes, be

cause it does not distinguish between fields of provably different objects. The 

default value is faise. 
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parmsAsFields, returnsAsFields: These two options control whether method parame

ters and return values are represented with variable nodes, or with field reference 

nodes having the this pointer of the method as their base. In combination with 

respecting declared types during propagation, representing parameters and re

turn values with field reference nodes gives some of the benefits of constructing 

the caU graph on the fiy. Pointer fiow to and from the targets of a method calI 

is restricted to methods declared in classes reaching the receiver of the caIl and 

their superclasses, because the receiver of the calI can only be stored in the this 

pointer of these methods. Constructing the call graph on the fiy would, in addi

tion, prevent pointer fiow to and from methods declared in proper superclasses 

of classes reaching the receiver. Although these options improve precision, they 

introduce very large numbers of field reference nodes into the pointer assign

ment graph, making the analysis very slow, and making it require unreasonable 

amounts of memory. The default value for both options is false. 

The next two options specify which allocation nodes are created to represent 

allocation sites. 

typesForSites: Normally, each allocation site appearing in the program is represented 

by a unique allocation node. When this option is set to true, however, a single 

allocation node is used to represent an allocation sites allocating objects with 

the same type, as in Variable Type Analysis [SHR+OO]. This reduces the size of 

the graph that SPARK has to process, and therefore speeds up the analysis, at 

the expense of precision (since aIl objects in the program having a given type 

are represented together). The default value of this option is faise. 

mergeStringBuffer: Whenever strings are concatenated using the + operator ln 

Java, the corresponding bytecode contains an allocation of a java. lang . 

StringBuffer, and the required operations on it. These operations are im

plemented in a way that prevents a fiow- and context-insensitive analysis from 

being able to show that the uses of these java .lang . StringBuffer objects are 

not aliased, resulting in large numbers of variables with many aliases. These 
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take a long time to analyze, and also drastically increase the memory require

ments for the analysis. U sing a single allocation no de to represent aIl allo

cation sites of type java .lang. StringBuffer, like with the typesForSites op

tion, do es not affect precision, because the variables storing these objects would 

an have equal points-to sets anyway. The mergeStringBuffer option has the 

same effect as the typesForSites option, but only for allocation sites of type 

java. lang. StringBuffer. Its default value is true. 

The next option activates the native method simulator. 

simulateNatives: Soot includes a framework for simulating the effect on whole-program 

analyses of the native methods defined in the standard Java library classes. 

When this option is set to true, SPARK uses this framework to model the effect 

of these methods. The default value is true. 

The next option determines how simple assignment edges are represented. 

simpleEdgesBidirectional: Normally, wh en the Jimple source contains an assignment 

of the form a = b, a directed edge is created from the no de representing b to the 

node representing a, to reflect the pointer flow. However, a unification-based 

analysis treats the assignment as bi-direction al. Wh en this option is set to true, 

simple assignment edges are always created in both direction. In combination 

with merging of strongly-connected components (see Section 4.3), this allows 

SPARK to perform an analysis like that suggested by Steensgaard [Ste96a]. The 

default value for this option is faIse. 

The next option specifies whether the calI graph should be built on the fly. 

onFlyCaliGraph: Normally, the builder inserts edges into the pointer assignment graph 

to represent pointer flow through method parameters and return values, based 

on the active caU graph found in the Soot Scene when SPARK is started. When 

this option is set to true, these edges are not initially added. Instead, the 

solver adds these edges during the analysis as it propagates points-to sets to 

the receivers of method caUs. The solver accomplishes this by calling back into 

the builder during solving time. The default value of this option is false. 
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4.3 Simplifying the Graph 

Once the pointer assignment graph has been built, we can proceed directly to prop

agating the points-to sets. However, it may be possible to prove beforehand that 

the points-to sets of certain variables will turn out to be equal. In this case, we can 

simplify the graph by merging the nodes corresponding to variables known to have 

equal points-to sets. This results in a smaller pointer assignment graph given as input 

to the points-to set propagation algorithm, hopefully making the analysis run faster 

and require less memory. 

4.3.1 Merging Nodes 

SPARK includes support for merging nodes using the fast union-find [Tar75] algorithm 

at the core of its implementation of a pointer assignment graph. The algorithm is 

based on successively combining pairs of nodes, and choosing one of the two orig

inal nodes as a unique representative for the pair. At any time, for each set of 

nodes that have been combined, one of the nodes that were combined serves as the 

unique representative node for the entire set of nodes. The Node class contains a 

getReplacement 0 method, which returns the unique representative node for the set 

containing the node, as weIl as a mergeWi th 0 method, which merges anode with 

another. 

Merging nodes in a pointer assignment graph is not as simple as applying the 

union-find algorithm to them, however. \iVhenever two nodes are merged, the rest of 

the pointer assignment graph must be updated. In particular, aIl edges to and from 

the nodes must be replaced with edges to and from the unique representative of the 

new combined node. In addition, because each field reference node has a variable 

node as its base, whenever two variable nodes are merged, aH field reference nodes 

having them as bases must be updated with the unique representative of the new 

combined node as their base. When this creates multiple field reference nodes with 

the same base and field, these must in turn be merged. Finally, whenever two nodes 

are merged, their points-to sets must also be merged. The method used in SPARK to 
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perform this merging of nodes is described next. 

Updating the Graph for Merged Nodes 

Whenever two nodes are merged, an edges to and from the nodes must be replaced 

with edges to and from the unique representative of the combined node. This is a 

slow process, because not only do the adjacency sets of the merged nodes need to 

be merged, but the adjacency sets of nodes adjacent ta the merged nodes must be 

updated as well. Even worse, this must be repeated for each of the many pairs of 

nodes that are merged. 

After experimenting with several methods of updating the edges in the pointer as

signment graph to reflect merged nodes, a lazy approach was implemented in SPARK, 

in keeping with the design of the union-find algorithm. Specifically, when two nodes 

are merged, their adjacency sets are also merged, but the adjacency sets of nodes 

adjacent to them are left alone. Instead, whenever the adjacency set of anode is 

queried, it is checked to ensure that no no de in it has already been merged into 

another node. When anode that has been merged Înto another node is found, it 

is replaced with the unique representative of the combined node. This makes each 

merge operation cheap, delaying the updating of adjacency sets until those sets are 

iterated over. U pdates therefore need not be done to adjacency sets that will never 

be read, and the updates due to many merges can be done all at once. Moreover, 

since the updates are done when the adjacency set is being iterated over anyway, the 

overhead of having to access each adjacency set to update it is avoided. 

This approach makes it slightly more expensive to query the adjacency set of a 

node, which could reduce performance if the sets are accessed frequently. However, 

determining that an adjacency set does not require any updates is very fast. In 

addition, SPARK has a global flag that is set whenever nodes are merged. Adjacency 

sets are only checked when this flag is set, so no checks will be performed unless merges 

have occurred. In addition, after a period of heavy merging, aU the adjacency sets can 

be updated, and the flag reset, so that SPARK will not have to check for merged nodes 

until another merge occurs. SPARK does this after the pointer assignment graph is 
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simplified and before propagation begins, so the adjacency sets are not checked unless 

addition al merging occurs during propagation. 

Updating field Reference Nodes When Variable Nodes Are Merged 

The updating of field reference nodes wh en the variable nodes that serve as their 

base are merged is also done lazily. Specifically, when the unique representative of 

the combined node containing a field reference node is requested, the following 

procedure is followed (it is illustrated in Figure 4.3, which shows the union-find point-

ers after node .. 

into p. 
has been merged into no de , and no de 

,-----~ 

has been merged 

Figure 4.3: Example Illustrating Merging of Field Reference Nodes 

1. The union-find pointers are followed to find the unique representative for 

Assume that this unique representative is 

2. The base node i.· of the unique representative is examined. If 

the unique representative of the combined no de containing it, then is the 

correct unique representative for and is returned. 

3. Otherwise, the unique representative for is found. Assume that this unique 

representative is .. Then the unique representative for the original field ref-

erence node is the field reference node with the same field f and base (. 

namely the node 
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After the unique representative has been found, the union-find pointers are up

dated as in the standard union-find algorithm, so that the next time the unique 

representative of is requested, the pointer can be followed directly to 

Updating Points-to Sets 

vVhenever two nodes are merged, the points-to set of the node chosen as the repre

sentative for the combined no de becomes the union of the two points-to sets. 

4.3.2 Strongly Connected Components 

When a set of variable nodes forms a strongly connected component in the pointer as

signment graph, we have the constraints points-to( ni) ç points-to( nj) ç points-to( ni) 

for any two nodes ni, nj in the set. The points-to graphs of aU the nodes in the 

set are therefore equal, and the nodes can be merged without affecting the result 

of the points-to analysis. Wh en the option simplifySCCs is set to true, SPARK per

forms this simplification of the graph before propagation begins. Strongly connected 

components are found using the well-known, linear-time, depth-first-search-based al

gorithm described, for example, in [CLR90, Section 23.5J. The default value of the 

simplifySCCs option is true. 

If the declared types of variables are being respected during propagation, the 

nodes of a strongly connected component may have different points-to sets if they 

have different declared types. There are two possible ways to handle this case. 

1. We can merge the nodes of the strongly connected component anyway, and give 

the resulting node a declared type that is the nearest common supertype of the 

declared types of aIl the nodes. This reduces precision, but allows us to simplify 

the graph as much as if declared types were not being respected. 

2. We can detect only strongly connected components in which the declared types 

of all the nodes are equivalent. This is done with the normal algorithm for 

finding strongly connected components, but considering only edges joining nodes 

with the property that aH objects compatible with the declared type of the 
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source node are also compatible with the declared type of the destination node. 

In other words, the declared type of the source is a subtype of the declared 

type of the destination. By merging only the strongly connected components in 

which the declared types are equivalent, we preserve all precision, but we may 

simplify the graph less than we could if declared types were not being respected. 

The value of the option ignore TypesForSCCs determines the alternative which is cho

sen. Because only a small percentage of nodes appear in strongly connected com

ponents [RCOO], and of those, only a small percent age appear in strongly connected 

components with multiple declared types, the default value of this option is false. 

4.3.3 Single Entry Subgraphs 

It is quite common for subgraphs to contain chains of variable nodes, in which each 

node except the first has only one predecessor. Since the points-to set of the first 

node will flow to all the other nodes in the chain, the points-to sets of aIl the nodes 

will be equal. Therefore, the nodes in the chain could an be merged into a single 

node, and a single points-to set cou Id be used for an of them together. This idea can 

be extended to any single entry subgraph: any subgraph for which there is a unique 

"first" node such that the points-to relationships in the points-to sets of any no de in 

the subgraph are also in the points-to set of the "first" node. The idea of merging 

single entry subgraphs is very similar to the technique that Rountev and Chandra 

propose for C [RCOO]. 

Definition 1 (Single Entry Subgraph) A single entry subgraph corresponding to 

a given header node is a subgraph of the pointer assignment graph induced by a set 

of variable nodes, with each node having the properties: 

1. that every path to it from a field reference or allocation node passes through the 

header node) and 

2. that there exists at least one pa th from the header node to each node in the 

subgraph. 
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The header node need not necessarily be a variable node. Every variable node is 

itself a single entry subgraph, with itself as its header node. 

Theorem 1 The points-to set of every nade n in a single entry su,bgraph is equ,al ta 

the points-to set of the header node h. 

Proof: By definition, there is a path from h to n, so we have the constraint 

points-to(h) ç points-to(n). Now, let a be an allocation node in the points-to set 

of n. This means that there is a path 

with either no = a, or no being a field reference node with a in its points-to set, in 

order to force 

{a} ç points-to(no) ç points-to(nd ç ... ç points-to(nk) ç points-to(n) 

Since no is a field reference or allocation node, there is at least one field reference 

node or allocation node on the path of nodes no, nI, n2, ... ,nk. Let nl be the last 

field reference or allocation node on this path. Then, by the definition of a header 

node, h E {nl, nl+I,"" nk, n}. Therefore, {a} ç points-to(h). Because this argument 

applies to any a E points-to(n) , we have points-to(n) ç points-to(h) ç points-to(n) , 

so the sets are equal, as required. 0 

In order to simplify the pointer assignment graph as much as possible, we are 

interested in fin ding maximal single entry subgraphs, and reducing each of them to a 

single node. However, this is not a required condition; reducing single entry subgraphs 

that are not maximal will still correctly simplify the pointer assignment graph to sorne 

extent. 

When the simplifyOffline option is set to true, SPARK uses the algorithm in Fig

ure 4.4 to find and reduce single entry subgraphs. This is a greedy algorithm which 

repeatedly looks for nodes that are in a common single-entry subgraph and merges 

them. Whenever a variable node has exactly one predecessor, and the predecessor 

is a variable node, the two nodes form a single-entry subgraph, since every path to 
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the successor must pass through the predecessor. Therefore, the two nodes can be 

merged. Similarly, whenever there is a pair of variable nodes with a common prede

cess or that is a field reference or allocation node, and this predecessor is their only 

predecessor, then every path to each of the variable nodes passes through this prede

cessor, so the two variable nodes are in the same single-entry subgraph and can be 

merged. In the absence of cycles and nodes unreachable from any field reference or 

allocation node, the algorithm finds maximal single-entry subgraphs. 

1: repeat 

2: while there exists a variable node with exactly one predecessor and this pre-

decessor is a variable no de do 

3: merge this variable node with its predecessor 

4: end while 

5: while these exists a pair of variable nodes, and a field reference or allocation 

node such that the field reference or allocation node is the only predecessor 

of each of the variable nodes do 

6: merge the pair of variable nodes 

7: end while 

8: until no changes 

Figure 4.4: Algorithm for Reducing Single Entry Subgraphs 

As in the simplification of strongly connected components, edges where the type 

of the source node of the edge is not a subtype of the type of the target node of the 

edge are ignored when declared types are being respected, to prevent nodes which 

cou Id have unequal points-to sets due to different declared types from being merged. 
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4.4 Flowing Points-ta Sets 

The final step of points-to analysis is propagation of points-to sets along edges in 

the pointer assignment graph to find a fixed point solution of the subset constraints 

represented by those edges. SPARK currently contains five algorithms1 for such a 

computation, and others can be easily added. 

4.4.1 Iterative Propagation Algorithm 

The algorithm2 presented in Figure 4.5 is the simplest propagation algorithm in 

SPARK, used as a baseline, and for testing the correctness of the other, more compli

cated algorithms. It is a direct extension ofthe algorithm given by Andersen [And94], 

extended to distinguish fields in pointer dereference expressions. The algorithrn be

gins by propagating an allocation nodes to the points-to sets of their successors. It 

then repeatedly propagates points-to sets along the pointer assignment graph until 

a fixed point is reached. An assignrnent edge of the form --+ 'indicates that 

points-to( ç points-to( ), so it is handled by adding the points-to set of . into 

the points-to set of . Concrete field nodes are introduced to model the fields of 

con crete heap objects. Suppose a store edge of the form is encountered. 

This rneans that the field f of the object that q points to can now point to any object 

that p pointed to. We do not know exactly which object q will point to at run-tirne; 

we only know that it will be one of the objects in the points-to set of . So, for 

each allocation no de in the points-to set of " we create a concrete field node aJ 

to represent the field f of any object created at allocation site a. We then add the 

points-to set of into the points-to set of a.f. In a sirnilar way, when we encounter 

a field load of the form, we know that for sorne 1 in the points-to set of 

pointers fiow from aJ . So, for each such l, we add the points-to set of 

a.f into the points-to set of 

1 For clarity, algorithms are presented here without support for on-the-fly caU graph construction. 
This support is implemented in SPARK, however. 

2In the algorithms presented in this thesis, the U= symbol is used to indicate set union and 
assignment. That is, x U= y indicates that the set x U y is assigned to x. 
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1: pro cess allocations 

2: repeat 

3: process every assignment edge 

4: process every store edge 

5: pro cess every load edge 

6: until no changes 

procedure pro cess allocations 0 
1: for each allocation edge do 

2: points-to(· ) U= { 

3: end for 

procedure pro cess assignment edge ( 

1: points-to( '" ) U= points-toC ) 

procedure pro cess store edge ( 

1: for each allocation node E pOints-toCD do 

2: points-to( a.f) U= points-to( ) 

3: end for 

procedure pro cess load edge ( 

1: for each allo~ation node Il E points-to( '1) do 

2: points-to( ) U= points-to( a.f) 

3: end for 

4.4. Flowing Points-to Sets 

Figure 4.5: Iterative Propagation Algorithm 
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As has been widely noted, this algorithm runs slowIy and scales poorly. SPARK 

includes a slight performance improvement: prior to starting the algorithm, a topolog

icai sort is performed on the variable nodes in the pointer assignment graph. 3 Then, 

the Ioop between hnes 2 and 6 iterates over edges in topological order of their source 

node. If the pointer assignment graph is cycle-free, this ensures that aH points-to sets 

of variable nodes are propagated on each execution of this Ioop. Even when the graph 

contains cycles, considering edges in this order maximizes the length of the path of 

nodes to which each points-to relationship can fiow in each iteration, greatly reducing 

the number of iterations required and the time to complete the analysis. 

This algorithm is selected in SPARK by setting the option propagator to the value 

iter. 

4.4.2 Worklist Propagation Algorithm 

For non-trivial benchmarks, the Iterative propagation algorithm is much too slow. A 

better, but more complex soiver based on worklists is also provided as part of SPARK, 

and is presented in Figures 4.6 and 4.7. 

This worklist propagation algorithm maintains a worklist of variable nodes. Wh en

ever points-to relationships are added to the points-to set of a variable node, the node 

is added to the worklist. In the inner Ioop of the algorithm, nodes are removed from 

the worklist, and the edges associated with those nodes are processed. As before, 

variable nodes are removed from the worklist in topologicai order. First (line 5), 

any assignment edges originating at the node removed from the worklist ( D are 

processed, to fiow the changes in the points-to set to their successors. Next (Ene 6), 

store edges originating at the node removed from the worklist ( ) are processed. 

jUter that (line 7), the algorithm pro cesses store edges ...... i --+ whose destination 

no de ) has the no de removed from the worklist 

the new points-to relationships in the points-to set of 

as its base. This is because 

require the points-to set 

3If the graph contains cycles, the nodes that are part of cycles will obviously not be sorted 
in topological order; however, aU nodes that are not in cycles will be ordered before any of their 
successors. 
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of .... to be propagated to points-to sets of additional concrete field nodes, to which 

they were not propagated in previous iterations when the points-to set of was 

smaller. Finally (line 8), the algorithm proeesses any load edges corresponding to 

fields of objects in the points-to set of " Sinee there are new points-to relationships 

lU there are new concrete field nodes who se points-to sets need to be propagated 

to refiect the loads. 

This inner loop processing the worklist is not sufficient to obtain a complete so

lution. Whenever a variable node appears in the worklist (which means that its 

points-to set has new nodes in it that need to be propagated), the algorithm propa

gates along edges that are likely to require propagation: assignment edges of the form 

-+ i, and load and store edges involving This is not enough, however. For 

example, suppose variable has already been processed with the allocation site 

in its points-to set, so it is not in the worklist. Further suppose that is now added 

to the points-to set of" and are possible aliases; that is, they may both point 

to and stores to, may be loaded from . This means that after processing 

any store into , we should proeess aU loads from . However, 1 • is not in the 

worklist, and adding aU aliased nodes to the worklist after processing a store edge 

would be prohibitively expensive. To ensure that stores to are propagated to 

loads of its alias , the algorithm includes an outer loop. In each iteration of this 

outer loop, all the load and store edges are considered, rather than just those associ

ated with nodes in the worklist, in order to propagate points-to relationships caused 

by aliasing that may have been missed by the inner loop. To summarize, Hnes 10 

and 11 in the outer loop are necessary for correctness; lines 6 to 8 could be removed, 

but including them greatly reduces the number of iterations of the outer loop and 

therefore the analysis time. 

This algorithm is selected in SPARK by setting the option propagatol' to the value 

worklist. 
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1: pro cess allocations 

2: repeat 

3: repeat 

4: remove first node : from worklist 

5: pro cess each assignment edge ',c~ 

6: pro cess each store edge 

7: pro cess each store edge 

8: pro cess each load edge 

9: until worklist is empty 

10: pro cess every store edge 

11: pro cess every load edge 

12: until worklist is empty 

Figure 4.6: Worklist Propagation Algorithm (part 1 of 2) 
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procedure pro cess allocations () 

1: for each allocation edge do 

2: points-to( ... ~. U= { 

3: worklist U= { 

4: end for 

proced ure process assignment edge ( :.......,. 

1: points-toC ) U= points-toC. ) 

2: if points-to( ) was changed then 

3: worklist U= { } 

4: end if 

proced ure pro cess store edge ( 

1: for each allocation no de E points-to( .i) do 

2: points-to( a.f) U= points-to( ) 
\,,"' 

3: end for 

procedure process load edge ( .. ) 

1: for each allocation node E points-tonew( ~ do 

2: points-to(. ') U= points-to( a.f ) 

3: if points-to( ) was changed then 

4: worklist U= { 

5: end if 

6: end for 

4.4. Flowing Points-to Sets 

Figure 4.7: Worklist Propagation Algorithm (part 2 of 2) 
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4.4.3 Incrementai Worklist Propagation Algorithm 

In certain implementations of sets (hash set and sorted array set), each set union op

eration takes time proportional to the number of elements in the sets being combined. 

While iterating through an analysis, the contents of one set are repeatedly merged 

into the contents of another set, often ad ding only a small number of new elements 

in each iteration. We can improve the algorithm by noting that the elements that 

have already been propagated will remain in the destination set in every subsequent 

iteration, so they need not be propagated again. Instead, we can propagate only the 

newly-added elements. 

Thus, as an optional improvement, SPARK includes versions of the solvers that use 

incremental sets. Each points-to set is divided into a "new" part and an "old" part. 

During each iteration, elements are propagated only between the new parts, which are 

likely to be small. At the end of each iteration, an the new parts are flushed into their 

corresponding old part. An addition al advantage of this is that when constructing 

the calI graph on-the-fly, only the smaller, new part of the points-to set ofthe receiver 

of each caU site needs to be considered in each iteration. 

The worklist propagation algorithm using incremental sets is presented in Fig

ures 4.8 and 4.9. The points-to sets have been replaced by points-tonew and 

points-to old' The procedures for processing assignment, store, and load edges have 

been changed. In general, every propagation between points-to sets has been re

placed by a propagation between the new portions of points-to sets. Any elements 

that already appear in the old points-to set of the destination node are excluded 

from the propagation, so that the new points-to set of the destination node truly gets 

only the elements that the node did not have before. For example, occurrences of 

points-to( ') U= points-to( . ) in the non-incremental algorithm have been replaced 

with points-tonew( .i) U= points-tonew( \ points-to oli~). This ensures that only 

new parts of points-to sets are propagated. 

There are now two different methods used to pro cess store edges such as c; -t 

depending on whether it is the source node ( or the base ( D of the destination 

node ) which was removed from the worklist (so its points-to set is known to have 
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new elements). When the points-to set of the source node > is known to have new 

elements, only its new points-to set is propagated to fields of objects in both portions 

of the points-to set of, since these new objects in have not yet been propagated 

to the field of of any objects pointed to by > new or old. On the other hand, 

when it is the points-to set of the base of the destination node that lS known to have 

new elements, both parts of the points-to set of the source node are propagated 

to the fields of only the newly added objects of : (that is, to fields of objects in 

points-tonew( ')). 

Another difference compared to the original worklist propagation algorithm is the 

addition of lines 9, 10, 15, and 16, which flush the new portions of points-to sets into 

the old portions. 

As in the non-incremental version of the algorithm, an outer loop is required to 

process aH stores and loads, to account for flow due to aliasing that may have been 

missed by the inner loop. In the outer loop, both parts of each points-to set are 

propagated to ensure a complete propagation. 

The incremental worklist propagation algorithm is selected in SPARK by setting 

the option propagator to the value worklist, and the option setlmpl to the value double. 
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1: incrementally pro cess allocations 

2: repeat 

3: repeat 

4: remove first node . from worklist 

5: incrementally pro cess each assignment edge !.--l>-

6: incrementally pro cess each store edge :: for source 

7: incrementally pro cess each store edge for destination base 

8: incrementally pro cess each load edge 

9: points-toold( ) u= points-tonew(._w) 

10: points-tonew() +- {} 

l1: until worklist is empty 

12: fully pro cess every store edge 

13: fully process every Ioad edge 

14: for each concrete field no de a.f do 

15: points-toold( a.f) U= points-tonew( a.f) 

16: points-tonew( a.f) +- {} 

17: end for 

18: until worklist is empty 

procedure incrementally pro cess allocations 0 
1: for each allocation edge do 

2: points-tonewC) U= 

3: worklist U= {. } 

4: end for 

procedure incrementally process assignment edge ( . ) 

1: points-tonew( ... D U= points-tonew() \ points-to oli 

2: if points-tonew( .) was changed then 

3: worklist U= { } 

4: end if 

Figure 4.8: IncrementaI Worklist Propagation Algorithm (part 1 of 2) 
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procedure incrementally pro cess store edge for source ( ) 

1: for each allocation node D E (points-t~T/,ewC]) U points-to old(~)) do 

2: points-tonew( aJ) U= points-tonewC i) \ points-to old( a.f ) 
3: end for 

procedure incrementally pro cess store edge for destination base ( , ) 

1: for each allocation node E points-tonew( ) do 
, , '", .. ,.~) '" ", 

2: points-tonew( a.f ) U= (points-tonew() U points-ta oli, )) \points-to old( a.f ) 

3: end for 

procedure incrementally process load edge ( 

1: for each allocation node E points-tonew(F~') do 
",~,>,_ .. t/ 

2: pOints-tonew(:i) U= (points-tonew( aJ ) U points-to old( a.f)) \points-to old( ) 

3: if points-tonewC was changed then 

4: worklist U= (~I} 
5: end if 

6: end for 

procedure fully pro cess store edge (' 

1: for each allocation node E (points-tonew(.~D U points-to old(:,j)) do 

2: points-tonew( a.f ) U= (points-tonew('D U points-ta old( D) \points-to old( a.f ) 
3: end for 

procedure full pro cess load edge ( 

1: for each allocation node Il E (points-tonew(':'!) U points-to oli:]j)) do 

2: points-tonew(,) U= (points-tonew( a.f ) U points-to old( a.f )) \points-to old(, ) 

3: if points-tonewC"'Î) was changed then 

4: worklist U= {} 

5: end if 

6: end for 

Figure 4.9: IncrementaI Worklist Propagation Aigorithm (part 2 of 2) 
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4.4.4 Alias Edge Propagation Algorithm 

Andersen's [And94] algorithm for C uses a separate points-to set for each allocation 

site to represent pointers stored into objects created at that allocation site. Accord

ingly, the standard extension [LPH01, RMR01] to Java handles field-sensitivity using 

a separate points-to set for each field of the objects created at each allocation site. 

This ensures that aliased field references and are correctly handled, since if 

and ... both have allocation site in their points-to sets, stores into them and 

loads out of them will fiow into and out of, respectively, the points-to set for aJ. 

Unfortunately, as points-to sets grow large, this representation becomes pro-

hibitively inefficient. If points-to( = { , ... , }, then any stores to 

must be propagated to each of the n sets points-to( ad) (see Figure 4.10(a)). The 

space and time requirements are quadratic in the size of the sets, sinee n possibly 

large sets must be ereated, where n is the size of the set for p. 

a1.f a2J 

(a) (b) 

Figure 4.10: Field Representation in Standard (a) and Alias Edge (b) Algorithms 

Points-to sets were originally proposed as a compact representation of alias rela

tionships [EGH94]. If the average points-to set is of size n, and there are v variables, 

a points-to set representation takes O(nv) spaee, while an alias set representation 

may take 8( v2
) spaee, sin ce eaeh variable eould be aliased to eaeh other variable. 

\Vhen n is mueh smaller than v, as is usually true when analyzing C, points-to sets 
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are more efficient. However, in handling aliases in Java, we are only interested in 

aliased variables dereferenced "vith the same field, because a field in Java can only be 

accessed by a field expression specifying that field. This is in contrast to C, where 

one can take the address of a field of an object, use unsafe casts, or even use pointer 

arithmetic to create other aliases to the field of an object. Most fields in Java are 

dereferenced few times, and therefore with few variables. Therefore, in Java, for any 

given field, our n is much greater th an v, so the 8 (v 2 ) representation based on alias 

sets can be more efficient. 

One way to implement such a representation is to eliminate the concrete field 

nodes, and add edges directly between field reference nodes that are determined to 

be aliased. However, the may-alias relationship is not transitive. If and are 

aliased (that is, the intersection oftheir points-to sets is not empty) , we cannot simply 

add pointer assignment edges in both directions between and' , because these 

two field references may not have the same points-to sets. For example, suppose 

points-to(i. 1) = { } and points-to( D = { }. Then .. and . are possibly 

aliased, but; may point to objects in points-to( a2.f) that may not point to. 

To get around this difficulty, we split an field reference nodes into two halves, an in 

haH used as the destination of field stores, and an out half used as the source of field 

loads, and add edges only from the in half of anode to the out half of other nodes, 

as shown in Figure 4.10(b). This allows us to represent the alias relationship without 

making it transitive, while ensuring that anything stored into 

and vice-versa. 

can be loaded from 

The alias edge propagation algorithm is presented in Figures 4.11 and 4.12. This 

algorithm uses three worklists: 

worklist stores variable nodes whose points-to sets have changed and must be prop

agated along assignment and store edges, like in the worklist propagation algo

rithm. 

alias Worklist stores variable nodes after their points-to sets have been propagated 

so that they can be considered for possible aliasing with other nodes, and the 

corresponding alias edges can be added. 
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1: process allocations 

2: repeat 

3: pro cess worklist 

4: pro cess alias W orklist 

5: pro cess ,fieldRefW orklist 

6: until worklist is empty 

procedure pro cess allocations 0 
1: for each allocation edge do 

2: points-to(}) u= { 
3: worklist u= { 
4: end for 

procedure pro cess worklist () 

1: while worklist is not empty do 

2: remove first node from worklist 

3: alias W orklist u= { } 
4: for each assignment edge .... - do 

5: points-to() u= points-toC D 
6: if points-to( ) was changed then 

7: worklist U= { 

8: end if 

9: end for 

10: for each store edge' do 

11: points-to( u= points-toC,;) 

12: if points-to( ) was changed then 

13: fieldRefWorklist U= { } 

14: end if 

15: end for 

16: end while 

Figure 4.11: Alias Edge Propagation Algorithm (part 1 of 2) 
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procedure process alias Worklist 0 
1: while alias Worklist is not empty do 

2: remove first no de from alias Worklist 

3: for each with as its base do 

4: for each which is dereferenced with field f as do 

5: if points-toC") n points-toC 

6: 

7: 

aliasEdges u= { 
fieldRefWorklist u= { 

8: end if 

9: end for 

10: end for 

11: end while 

procedure process fieldRefWorklist () 

1: while fieldRefWorklist is not empty do 

2: from fieldRefWorklist 

3: for each edge E aliasEdges do 

4: points-to( ) 

5: end for 

6: end while 

do 

8: for each load edge 

9: points-to( . u= points-toC 

10: if points-to( was changed then 

11: worklist u= { :} 
12: end if 

13: end for 

14: end for 

} 

Figure 4.12: Alias Edge Propagation Algorithm (part 2 of 2) 
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fieldRefWorklist stores field reference nodes whose points-to sets have changed and 

must be propagated along alias edges. 

The points-to sets of nodes removed from worklist are propagated along assignment 

and store edges originating at those nodes. Whenever a points-to relationship is 

added to the points-to set of a variable node or field reference node, that no de is 

added to the worklist or the .fieldRefWorklist, respectively, so that the new points

to relationship will be propagated further along edges originating at that node. In 

addition, each node that is removed from the worklist is added to the alias Worklist, 

so that it will later be processed for any new aliasing relationships that may have 

arisen from the new elements in its points-to set. To find these relationships (in 

the "pro cess alias Worklist" procedure), for each node we find all the fields with 

which it is dereferenced, and for each such field, we find aIl other nodes that are 

dereferenced with the same field. If the points-to sets of and have a non-

empty intersection, then their fields are aliased, so we add the appropriate edges 

between them ( -+ and -+ , and add the nodes to the 

,fieldRefWorklist, so that points-to sets will be propagated along these new edges. 

The fieldRefWorklist keeps track of in field reference nodes whose points-to sets have 

new elements that must be propagated. When it is processed, these points-to sets are 

propagated to the points-to sets of out field reference nodes along alias edges. Finally, 

allioad edges are processed, propagating points-to sets of out field reference nodes to 

the points-to sets of the corresponding variable nodes. 

The alias edge propagation algorithm is selected in SPARK by setting the option 

propagator to the value alias. 
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4.4.5 Incrementai Alias Edge Propagation Algorithm 

Like the worklist propagation algorithm, the alias edge propagation algorithm can be 

made incremental. The incremental version is presented in Figures 4.13 through 4.16. 

Overall, this algorithm is very similar to the non-incremental version. The main 

difference is that points-to sets are again divided into two parts, and only the new 

parts are propagated. After each variable node from the worklist has been processed, 

its new part is flushed into the old part. Similarly, after each in field reference no de 

from the fieldRefWorklist is processed, its new points-to set is flushed into its old 

points-to set. The points-to sets for the out field reference nodes are flushed wh en aH 

the loads are processed (in the "incrementally process fieldRefWorklise' procedure). 

The incremental alias edge propagation algorithm is selected in SPARK by setting 

the option propagator to the value alias, and the option setlmpl to the value double. 
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1: incrementally pro cess allocations 

2: repeat 

3: incrementally pro cess worklist 

4: incrementally pro cess alias Worklist 

5: incrementally pro cess fieldRefWorklist 

6: until worklist is empty 

procedure incrementally pro cess allocations () 

1: for each allocation edge do 

2: pOints-tonew(; ) U= 

3: worklist U= { ) 

4: end for 

Figure 4.13: Incrementai Alias Edge Propagation Algorithm (part 1 of 4) 
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procedure incrementally process worklist 0 
1: while worklîst is not empty do 

2: remove first node . from worklist 

3: alias W orklist u= { } 
4: for each assignment edge·· .- .,. do 

4.4. Fiowing Points-to Sets 

5: points-tonew(·i) u= points-tonew( D \ points-to oli,) 

6: if points-tonew( ) was changed then 

7: worklist u= { :} 
8: end if 

9: end for 

10: do 

u= points-tonew(r ) \ points-to old( 
.. ' 

11: points-tonew( 

12: if points-tonew( ) was changed then 

13: fieldRefWorklist U= { } 

14: end if 

15: end for 

16: points-to olde) u= points-tonew( " 

17: points-tonew( i) +- {} 
18: end while 

Figure 4.14: IncrementaI Alias Edge Propagation Algorithm (part 2 of 4) 
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procedure incrementally pro cess alias Worklist 0 
1: while alias Worklist is not empty do 

2: remove first node 

3: for each with 

from alias W orklist 

as its base do 

4: for each vvhich is dereferenced with field f as 

5: if points-to( 

6: 

7: 

8: 

9: 

10: 

aliasEdges u= { 
,fieldRefW orklist u= { 
points- tonew( 

points-tonew( 

end if 

Il: end for 

12: end for 

13: end while 

u= points-to old 

do 

} 

\ points- to old( 

\ points-to old 

Figure 4.15: IncrementaI Alias Edge Propagation Algorithm (part 3 of 4) 
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procedure incrementally pro cess fieldRefWorklist () 

1: while fieldRefWorklist is not empty do 

2: from fieldRefWorklist 

3: for each edge E aliasEdges do 

4: points-tonew 
5: end for 

6: points-to oli ) U= points-tonew( 

7: +-{} 
8: end while 

do 

10: for each load edge 

4.4. Flowing Points-to Sets 

) \ points-to old( 

11: 

12: 

13: 

points-tonewC U= points-tonew( ) \ points-to old( 'J) 
if points-tonewC ) was changed then 

worklist U= { .. } 

14: end if 

15: end for 

16: points-to old( U= points-tonew( 

17: points-tonew +- {} 
18: end for 

Figure 4.16: IncrementaI Alias Edge Propagation Aigorithm (part 4 of 4) 
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4.5 Points-ta Set Implementations 

One purpose of SPARK is to enable experimentation with different implementations of 

points-to sets. There are currently four implementations of points-to sets, and more 

can be added by implementing a subclass ofthe PointsToSetlnternal abstract class. 

This class contains default implementations of the required set operations in terms 

of three basic operations: 

add adds an element to the set. 

forall executes a given method once for each element, passing the element as a 

parameter. 

contains returns a boolean value indicating wh ether a given element is in the set. 

This makes it very easy to try out new set representations, sinee only these three 

functions must be implemented. However, the set implementations currently included 

in SPARK implement custom versions of the other set operations for efficiency. These 

other operations are: 

addAll adds all elements of one set iuto another. 

hasNonEmptylntersection returns a boolean value indicating whether the intersec

tion of the set with another given set is empty. 

possibleTypes returns a set of the types of aU objects contained in the set. 

Each set may optionally have a declared type. In this case, the set ignores inser

tions of allocation nodes with a type that is not a subtype of the declared type. 

4.5.1 Hash Set 

The hash set is a simple wrapper around java. util. HashSet from the standard class 

library. It is provided as a baseline against which other set implementations can be 

compared, and for testing of more complicated implementations. 
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4.5.2 Sorted Array Set 

The sorted array set is a representation of a points-to set using an array which is 

always kept in sorted order. Membership testing is implemented using a binary 

search, which executes in time logarithmic in the number of elements in the set. 

Element insertion takes time linear in the number of elements in the set, because the 

elements that come after the element being inserted must be shifted to make room 

for the new element. However, using the merge step of the well-known merge sort 

algorithm, the very common operation of computing the union of two sets takes time 

linear in the size of the sets. Wh en the array becomes full, it is copied to a new array 

twice as large as the original. Merging two sets is always done into a new array large 

enough to hold both sets, to avoid having to resize the array during this very common 

operation. 

4.5.3 Bit Set 

The bit set represents a points-to set as a bit vector. An of the allocation nodes in the 

pointer assignment graph are numbered sequentially. To insert the node numbered i 

into the set, we set the ith bit. Both testing membership and inserting an element 

take constant time. Merging a pair of sets takes time linear in the total number 

of allocation nodes, rather than the number of elements in the sets. However, the 

proportionality constant is very smaU, because the sets are merged 32 bits at a time. 

In addition, when the set is large, each element takes only a single bit, compared to 

32 bits in the sorted array set. The drawback is that sets with few elements use as 

much memory as sets with many elements. 

4.5.4 Hybrid Set 

The hybrid set is a hybrid representation of a points-to set. It uses explicit pointers to 

the set elements in arbitrary order when the set contains 16 elements or fewer. When 

the set grows larger, this implementation switches to the bit vector representation. 

The hybrid set implementation was introduced to reduce memory requirements. In 
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early experiments on large benchmarks, the analysis encountered very large numbers 

of small sets, along with significant numbers of very large sets. Using the sorted array 

set implementation, the very large sets used more memory than was available. On 

the other hand, with the bit set implementation, each of the small sets required as 

much memory as a large set, and there were so many small sets that, once again, all 

available memory was exhausted. As we will see from the experimental results, the 

hybrid sets turned out to be most efficient not only in terms of memory requirements, 

but also in terms of analysis time. 
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Experimental Results 

This chapter reports on an extensive empirical study of a variety of subset-based 

points-to analyses. This study demonstrates that SPARK provides a general and 

effective means to express different points-to analyses. Many different variations were 

expressed within the same framework, making it possible to compare both precision 

and co st of the analyses. 

5.1 Benchmarks 

SPARK was evaluated on benchmarks from the SPECjvm [Spec] suite, along with 

sablecc and soot from the Ashes [Ashe] suite, and jedit [Jedi], a full-featured 

editor written in Java. The last three were selected because they are non-trivial 

Java applications used in the real world, and they were also used in other points-to 

analysis studies [RMR01, vVL02, LPH01]. AH benchmarks were analyzed with the 

Sun JDK 1.3.L01 standard class library, on a 1.67 GHz AMD Athlon with 2GB of 

memory running Linux 2.4.18. In addition, the javac benchmark was also evaluated 

with the Sun JDK 1.1.8 standard class library for comparison with other studies. 

The complete list of benchmarks appears in the summary in Table 5.1. The first 

column gives the benchmark name (javac is listed twice: once with the 1.3.L01 JDK 

class library, and once with the 1.1.8 JDK class library). The next two columns 
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give the number of methods deterrnined to be reachable, and the number of Jimple1 

statements in these methods. Note that because of the large class library, these are 

the largest Java benchrnarks for which a subtype-based points-to analysis has so far 

been reported. The fourth column gives the number of distinct types encountered by 

the subtype tester. 

Detailed experiments on individu al factors affecting precision and efficiency of 

points-to analysis were performed on a selection of four of the benchmarks. compress 

(Lempel-Ziv compression) was chosen as a small SPECjvm benchmark, javac (Java 

compiler) as a large SPECjvm benchmark, and sablecc (parser generator) and j edi t 

(text edit or ) as large non-SPECjvrn benchrnarks written by distinct groups of people. 

The other benchmarks exhibited similar trends. 

methods stmts types 

Benchmark (CHA) (CHA) 

compress 15183 278902 2770 

db 15185 278954 2763 

jack 15441 288142 2816 

javac (1.1.8) 4602 86454 874 

javac (1.3.1) 16307 301801 2940 

jess 15794 288831 2917 

mpegaudio 15385 283482 2782 

raytrace 15312 281587 2789 

sablecc 16977 300504 3070 

soot 17498 310935 3435 

jedit 19621 367317 3395 

Table 5.1: Benchmark Characteristics 

1 Jimple is the three-address typed intermediate representation used by Soot. 
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5.2 Factors AfFecting Precision 

This section analyzes three factors that affect not only the efficiency of the analysis, 

but also the precision of its result. These factors are: (1) how types are used in 

the analysis, (2) whether the analysis uses a CHA-based call graph or builds the calI 

graph on the fiy, and (3) whether the analysis is field-based or field-sensitive. 

Table 5.2 gives the results. Each analysis is named by a triple of the form xx-yyy

zz which specifies the setting for each of the three factors (a complete explanation 

of each factor is gi ven in the su bsections below). For each benchmar k and points-to 

analysis combination, the table gives a summary of the precision for dereference sites 

and call sites. 

For dereference sites, the table gives the percentage of field dereference sites of the 

form p. f with 0, 1, 2, 3-10, 11-100, 101-1000 and more than 1000 elements in their 

points-to sets. Dereference sites with 0 items in the set correspond to statements 

that cannot be reached (i.e. the CHA call graph conservatively indicates that the 

dereference was in a reachable method, but no allocation ever fiows to the statement). 

For calI sites, the table reports the percentage of aIl invokevirtual and 

invokeinterface call sites with 0, 1, 2, and more than two target methods, where 

the target methods are found using the types of the allocation sites pointed to by the 

receiver of the method calI. For example, for a call of the form o. mO, the types of 

allocation sites pointed to by 0 would be used to find the target methods. Calls with 

o targets correspond to unreachable calls, and calls with 1 target are guaranteed to 

be monomorphic at run-time. 

5.2.1 Respecting Dedared Types 

Unlike in C, variables in Java are strongly-typed, limiting the possible set of objects 

to which a pointer could point. However, many points-to analyses adapted from C do 

not take advantage of this. For example, the analyses described in [RMR01, SHR+OO] 

ignore declared types as the analysis proceeds; however, objects of incompatible type 

are removed after the analysis completes. 
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Dereference Sites (% of total) CalI Sites (% of total) 

Benchmark 3- 11- 101-

Analysis 0 1 2 10 100 1000 1001+ 0 1 2 3+ 

eompress 

nt-otf-fs 35.2 23.4 6.3 14.1 5.9 0.1 14.9 53.8 42.6 1.6 1.9 

at-otf-fs 35.3 32.7 8.0 17.4 4.3 2.2 0.0 53.8 42.6 1.6 1.9 

ot-otf-fs 36.9 32.1 7.8 17.0 4.3 1.8 0.0 54.6 42.3 1.3 1.8 

ot-cha-fs 20.5 39.6 10.1 21.8 6.0 2.1 0.0 40.8 51.7 2.6 4.9 

ot-otf-fb 26.3 38.1 9.4 19.2 5.1 1.9 0.0 48.0 47.4 2.0 2.6 

ot-cha-fb 16.0 41.6 10.9 22.9 6.4 2.2 0.0 37.5 54.3 2.9 5.2 

javae 

nt-otf-fs 31.4 22.2 6.0 12.9 5.8 6.4 15.2 50.1 45.3 1.9 2.7 

at-otf-fs 31.6 33.9 8.7 17.7 5.7 2.4 0.0 50.1 45.3 1.9 2.7 

ot-otf-fs 33.0 33.3 8.6 17.3 5.7 2.0 0.0 50.8 45.2 1.5 2.5 

ot-cha-fs 18.4 40.0 10.5 21.5 7.2 2.3 0.0 38.0 53.9 2.6 5.5 

ot-otf-fb 23.6 38.6 10.0 19.2 6.5 2.1 0.0 44.6 49.9 2.1 3.3 

ot-cha-fb 14.5 41.7 11.3 22.5 7.6 2.4 0.0 34.9 56.3 3.0 5.8 

sableee 

nt-otf-fs 31.6 24.2 5.9 12.7 9.5 0.2 15.8 49.9 45.8 2.1 2.2 

at-otf-fs 31.7 37.9 7.4 16.2 4.9 2.0 0.0 49.9 45.8 2.1 2.2 

ot-otf-fs 33.1 37.4 7.3 15.7 4.9 1.6 0.0 50.8 45.5 1.6 2.0 

ot-cha-fs 18.4 44.1 9.2 20.1 6.4 1.9 0.0 37.9 54.2 2.9 5.0 

ot-otf-fb 23.6 42.6 8.7 17.7 5.7 1.7 0.0 44.7 50.3 2.2 2.8 

ot-cha-fb 14.4 45.8 10.0 21.0 6.8 1.9 0.0 34.9 56.6 3.3 5.2 

jedit 

nt-otf-fs ·25.6 29.6 6.6 12.7 3.8 1.5 20.2 43.8 52.0 1.9 2.2 

at-otf-fs 25.7 42.4 9.0 16.3 4.7 2.0 0.0 43.8 52.0 1.9 2.2 

ot-otf-fs 27.1 42.0 8.9 15.9 4.3 1.9 0.0 44.6 51.9 1.4 2.1 

ot-cha-fs 14.5 47.9 10.7 19.4 5.5 2.1 0.0 33.2 59.3 2.3 5.1 

ot-otf-fb 18.9 46.7 10.0 17.6 4.8 2.0 0.0 38.6 56.7 1.9 2.8 

ot-cha-fb 12.1 49.0 11.0 20.1 5.7 2.1 0.0 30.7 61.5 2.5 5.3 

Table 5.2: Analysis Precision 
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The first three lines for each benchmark in Table 5.2 show the effect of declared 

types. The first hne shows the precision of an analysis in which declared types are 

ignored, notypes (abbreviated nt). The second line shows the results of the same 

analysis after objects of incompatible type have been removed after completion of 

the analysis, aftertypes (abbreviated at). This is the method studied in [SHR+OO, 

RMR01]. The third hne shows the precision of an analysis in which declared types 

are respected throughout the analysis, on-the-fiy types (abbreviated ot). 

We see that removing objects based on declared type after completion of the 

analysis (at) achieves almost the same precision as enforcing the types during the 

analysis (ot). However, notice that during the analysis (nt), between 15% and 20% 

of the points-to sets at dereference sites are over 1000 elements in size. These large 

sets increase memory requirements prohibitively, and slow the analysis considerably. 

These numbers show that enforcing declared types as the analysis proceeds eliminates 

almost aU of these large sets. Based on this observation, the rest of this chapter focuses 

on analyses that respect declared types. 

Enforcing declared types during the analysis requires fast subtype testing. For 

this purpose, SPARK precomputes and stores the subtype relationships in a two

dimensional bit array. Although this requires space quadratic in the number of types, 

for the benchmarks used in this study, the number of types was around 3000 (see 

Table 5.1), so this table takes slightly over 1MB of memory, which is small compared 

to all the information that Soot keeps about a 600KLOC program. In addition, other 

parts of Soot can take advantage of fast subtype testing. More complicated, fast, 

space-efficient subtype testing mechanisms are evaluated in [VHK97]. 

Based on these results, respecting declared types during a Java points-to analy

sis is highly recommended because it improves precision while making the analysis 

considerably more efficient. 
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5.2.2 Cali Graph Construction 

The call graph used for an inter-procedural points-to analysis can be constructed 

ahead of time using, for example, CHA [DGC95], or on-the-fiy as the analysis pro

ceeds [RMR01], for greater precision. In Table 5.2, these variations are abbreviated 

as cha and otf, respectively. As the third and fourth lines for each benchmark show, 

computing the call graph on-the-fiy increases the number of points-t~ sets of size zero 

(dereference sites determined to be unreachable), but has a smaller effect on the size 

distribution of the remaining sets. 

5.2.3 Field Dereference Expressions 

A field-based (abbreviated fb) analysis ignores the base objects in field dereference 

expressions, considering only the field, while a field-sensitive (abbreviated fs) param

eterizes each field dereference expression by its base object for greater precision. 

Comparing rows 3 and 5 (on-the-fiy caU graph), and rows 4 and 6 (CHA call 

graph), for each benchmark, we see that field-sensitive analysis is more precise than 

the field-based analysis. Thus, it is probably worthwhile to do field-sensitive analysis 

if the cost of the analysis is reasonable. Later, in Table 5.4, we will see that with the 

appropriate solver, the field-sensitive analysis can be made to be quite competitive 

with the field-based analysis. 

5.3 Factors Affecting Performance 

5.3.1 Set Implementation 

This subsection compares the performance of analyses with the four different imple

mentations of points-to sets described in Section 4.5, namely hash sets, sorted array 

sets, bit sets, and hybrid sets. Table 5.3 shows the efficiency of the implementa

tions using two of the propagation algorithms: the naïve, iterative algorithm, and 

the incremental worklist algorithm. Both algorithms used a CHA call graph, and 

the pointer assignment graph was simplified before propagation by collapsing cycles, 
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as weIl as single-entry subgraphs as described in Section 4.3. Both algorithms re

spected declared types during the computation. The Graph space column shows the 

space needed to store the original pointer assignment graph, and the remaining space 

columns show the space needed to store the points-to sets. The data structure stor

ing the graph is designed for fiexibility rather than space efficiency; it could be made 

smaller if necessary. In any case, its size is linear in the size of the program being 

analyzed. 

(time in seconds, space in MB) 

Benchmark Graph Hash Array Bit Hybrid 

Algorithm space time space time space time space time space 

compress 

Iterative 31 3448 311 1206 118 36 75 24 34 

Iner. Worklist 31 219 319 62 57 14 155 9 53 

javac 

Iterative 34 3791 361 1114 139 50 88 33 41 

Incr. Worklist 34 252 369 61 68 19 181 13 65 

sablecc 

Iterative 36 4158 334 1194 132 50 93 i 32 42 

Incr. Worklist 36 244 342 54 62 17 1931 11 66 

jedit 

Iterative 42 6502 583 2233 229 91 168 59 77 

Incr. Worklist 42 488 597 135 114 38 349 24 128 

Table 5.3: Set Implementation 

The terrible performance of the hash set implementation is disappointing, as this 

is the implementation provided by the language. Clearly, anyone serious about imple

menting an efficient points-to analysis in Java must write a custom set representation. 

The sorted array set implementation is prohibitively expensive using the iterative 

algorithm, but becomes reasonable using the incremental worklist algorithm, which 

is designed explicitly to limit the size of the sets that must be propagated. Notice 
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that the memory requirements are also much smaller when the incremental worklist 

algorithm is used. This is because the implementation of set union creates an array 

large enough to hold both sets being combined. If these two sets are equal or almost 

equal, the resulting array ends up being twice as large as it would need to be. In 

the incremental algorithm, the sets being propagated are kept small, so most union 

operations involve one large set, and one very small set. 

The bit set implementation is mu ch faster still than the sorted array set imple

mentation. However, especially when used with the incremental worklist algorithm, 

its memory usage is high, because even the many very small sets are represented using 

the same size bit-vector as large sets. In addition, the incremental worklist algorithm 

splits each points-t~ set into two halves, making the bit set use twice the memory. 

Finally, the hybrid set implementation is even faster than the bit set implemen

tation, while maintaining modest memory requirements. The hybrid set implemen

taUon is consistently the most efficient over a wide variety of settings of the other 

parameters, and it is therefore used in all the remaining experiments. It is strongly 

recommended that implementations similar to the hybrid set implementations be used 

in future points-to analysis research, because they are consistently more efficient than 

the other implementations. 

5.3.2 Points-To Set Propagation Algorithms 

Table 5.4 shows the time and space requirements of the propagation algorithms in

cluded in SPARK. AlI measurements in this table were made using the hybrid set 

implementation, and without any simplification of the pointer assignment graph. 2 

Again, the Graph space column shows the space needed to store the original pointer 

assignment graph, and the remaining space columns show the space needed to store 

the points-to sets. For each analysis, the best time and space numbers are shown in 

boldo 

The iterative algorithm is consistently slowest, and is given as a baseline only. The 

2The time and space reported for the hybrid set implementation in Table 5.3 are different than 
in Table 5.4 because the former were measured with off-Hne pointer assignment graph simplification, 
and the latter without. 
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(time in seconds, space in MB) 

Iner. Iner. 

Benchmark Graph Iterative Worklist Worklist Alias Alias 

Analysis space time space time space time space time space time spaee 

compress 

nt-otf-fs 32 1628 357 992 365 399 605 871 100 820 114 

ot-otf-fs 37 133 52 58 51 52 69 62 47 58 61 

ot-cha-fs 36 49 68 15 63 13 91 20 62 26 83 

ot-otf-fb 35 158 54 86 52 66 66 93 53 73 67 

ot-cha-fb 34 17 62 10 56 13 76 19 58 25 77 

javac 

nt-otf-fs 34 2316 502 1570 512 715 856 1225 142 1097 160 

ot-otf-fs 40 201 69 103 66 90 90 103 65 97 83 

ot-cha-fs 39 64 83 22 77 18 109 27 78 34 103 

ot-otf-fb 37 218 70 123 66 102 84 142 68 111 85 

ot-cha-fb 37 22 75 11 67 15 90 22 69 30 92 

sablecc 

nt-otf-fs 35 2190 462 1382 472 635 772 3020 145 3413 163 

ot-otf-fs 41 274 72 104 70 95 94 114 69 107 87 

ot-cha-fs 41 66 88 20 83 18 117 28 84 36 109 

ot-otf-fb 38 255 74 138 72 114 90 158 73 125 92 

ot-cha-fb 38 52 81 14 74 18 97 27 77 36 99 

jedit 

nt-otf-fs oom oom oom oom oom oom oom 2425 283 2042 307 

ot-otf-fs 49 313 121 142 117 101 169 151 102 112 126 

ot-cha-fs 48 107 141 59 131 38 196 44 117 56 150 

ot-otf-fb 47 298 104 178 99 111 126 225 102 127 127 

ot-cha-fb 45 28 109 21 98 27 128 36 100 49 129 

Table 5.4: Propagation Algorithms 
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worklist algorithm is usually about twice as fast as the Iterative aigorithm. For the 

CHA-based, field-based analysis, this algorithm is consistently the fastest, faster even 

than the incremental worklist algorithm. This is because the incrementai worklist 

algorithm is designed to propagate only the newIy-added part of the points-to sets in 

each Iteration, but the CHA-based, field-based analysis requires only a single Iteration. 

Therefore, any benefit from its being incremental is outweighed by the overhead of 

maintaining two parts of every set. 

However, both field-sensitivity and on-the-fly call graph construction require it

eration, so for these, the incrementai worklist algorithm is consistently fastest. Note 

that this speedup cornes with a cost in the memory required to maintain two parts 

of every set. 

Notice also that while the field-based analysis is faster than the field-sensitive 

analysis with a CHA caU graph, it is slower when the caU graph is constructed on the 

fly (with aIl propagation algorithms). This is because although a field-based analysis 

with a CHA call graph completes in one Iteration, constructing the call graph on-the

fly requires iterating regardless of the field representation. The less precise field-based 

representation causes more methods to be found reachable, increasing the number of 

Iterations required. 

The nt-otf-fs line shows how much ignoring declared types hurts space efficiency 

(the "oom" for j edi t signifies that the analysis exceeded the 1700MB of memory 

allotted). The alias edge algorithm is the only one that can handle the resulting 

large sets with reasonable memory requirements. This algorithm spends a significant 

amount of time building alias edges rather than propagating points-to sets, so the 

benefit from the Incrementai version is much smaller. In fact, for the analyses requir

ing few iterations (ot-cha-fs and ot-cha-fb), the overhead of the incremental version 

outweighs the reduction in the size of sets to be propagated, and is even slightly 

slower than the non-incremental version. 

In summary, Table 5.4 demonstrates the following key points about the tradeoff 

between analysis time and space. 

\ID The incremental worklist algorithm is the fastest for most analyses, except 
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for the field-based analysis using a CHA-based caU graph, for which the non

incremental worklist algorithm is faster. 

® The non-incremental algorithms require less memory th an their incremental 

counterparts. 

® For field-based analyses, the space requirements of the non-incremental versions 

of the worklist and alias edge propagation algorithms are comparable; however, 

for field-sensitive analyses, especially of the large j edi t benchmark, the alias 

edge propagation algorithm requires significantly less memory. 

® When declared types are not respected during the analysis, only the alias edge 

algorithm can complete in a reasonable amount of memory. 

5.3.3 Graph Simplification 

Rountev and Chandra [Reaa] showed that simplifying the pointer assignment graph 

by merging nodes known to have equal points-to sets speeds up the analysis. The 

behaviour of SPARK agrees with their findings. 

Wh en respecting declared types, a cycle can only be merged if an nodes in the 

cycle have the same declared type, and a single-entry subgraph can only be merged 

if all its nodes have declared types that are supertypes of the predecessor. Since 

the experimental results presented earlier suggested that respecting declared types 

makes the analysis mu ch faster, as weIl as more precise, it is useful to know how 

mu ch respecting declared types reduces the opportunities for simplification. These 

measurements are presented in Table 5.5. On the benchmarks in this study, between 

6% and 7% of variable nodes were removed by collapsing cycles, compared to between 

5% and 6% when declared types were respected. Between 59% and 62% of variable 

nodes were removed by collapsing single-entry subgraphs, compared to between 55% 

and 58% when declared types were respected. Thus, the effect of respecting declared 

types on simplification is minor. 
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1 Benchmark Il sec 1 SESG 1 Both 1 

compress nt-cha-fs 6.7% 59.5% 60.7% 

ot-cha-fs 5.3% 55.6% 56.4% 

ot-otf-fs 1.1% 31.5% 31.6% 

javac nt-cha-fs 7.1% 59.8% 61.4% 

ot-cha-fs 5.7% 55.8% 57.0% 

ot-otf-fs 1.1% 32.2% 32.3% 

sablecc nt-cha-fs 6.4% 60.4% 61.6% 

ot-cha-fs 5.0% 56.3% 57.0% 

ot-otf-fs 1.0% 31.9% 32.0% 

jedit nt-cha-fs 7.1% 61.7% 63.0% 

ot-cha-fs 5.6% 57.8% 58.8% 

ot-otf-fs 1.3% 33.3% 33.5% 

Table 5.5: Simplification 

On the other hand, when constructing the caU graph on-the-fly, no inter

procedural edges are present before the analysis begins. This means that any cy

cles spanning multiple methods are broken, and the corresponding nodes cannot be 

merged. The 6%-7% of nodes removed by collapsing cycles dropped to 1%-1.5% 

when the call graph was constructed on-the-fly. The 59%-62% of nodes removed by 

collapsing single-entry subgraphs dropped to 31%-33%. When constructing the caU 

graph on-the-fly, simplifying the pointer assignment graph before the analysis has 

little effect, and on-the-fly cycle detection methods should be used instead. 
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5.4 Overall Results 

Based on the experimental results reported up to this point, three analyses appear 

to be good compromises between precision and speed, with reasonable space require

ments. Each of the three analyses should be implemented using the hybrid set im

plementation. 

1. ot-otf-fs (declared types, on-the-fly caU graph, field-sensitive) is suitable for 

applications requiring the highest precision. For this analysis, the incremental 

worklist algorithm works best. 

2. ot-cha-fs (declared types, CHA-based caU graph, field-sensitive) is much faster, 

but with a drop in precision as compared to ot-otf-fs (mostly because it in

cludes significantly more caU edges). For this analysis, the incremental worklist 

algorithm works best. 

3. ot-cha-fb (declared types, CHA-based caU graph, field-based) is the fastest anal

ysis, completing in a single iteration, but it is also the least precise. For this 

analysis, the non-incremental worklist algorithm works best. 

Table 5.6 shows the results of these three analyses on the full set of benchmarks. 

The first column gives the benchmark name (j avac is listed twice: once with the 

1.3.LOI JDK class library, and once with the 1.1.8 JDK class library). The remain

ing columns give the analysis time, total space, and precision for each of the three 

recommended analyses. The total space includes the space used to store the pointer 

assignment graph as well as the points-to sets; these were reported separately in pre

vious tables. The precision is measured as the percentage of field dereference sites at 

which the points-to set of the pointer being dereferenced has size 0 or 1; for a more 

detailed measurement of precision, see Table 5.2. 
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(time in seconds, space in MB, precision in precent) 

ot-otf-fs ot-cha-fs ot-cha-fb 

Benehmark time spaee pree. time space pree. time space pree. 

cornpress 52 106 69.1 13 127 60.1 10 90 57.6 

db 52 107 68.9 14 128 59.9 11 90 57.4 

jack 54 112 68.7 14 132 60.1 11 94 57.6 

javac (1.1.8) 8 27 63.6 3 24 57.4 1 16 55.1 

javac (1.3.1) 89 131 66.3 18 148 58.4 11 104 56.2 

jess 57 115 68.1 15 136 59.2 10 97 56.8 

rnpegaudio 56 112 68.6 16 134 59.7 11 93 57.4 

raytrace 53 107 68.5 13 129 59.6 11 91 57.1 

sablecc 95 136 70.5 18 158 62.5 14 112 60.3 

soot 88 143 68.3 19 162 60.4 18 116 58.4 

jedit 100 218 69.1 38 244 62.3 21 143 61.1 

Table 5.6: Overall Results 
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Chapter 6 

Client Analyses 

In an object-oriented polymorphic language such as Java, the method that is invoked 

at a virtual call site depends on the run-time type of the receiver object. Any in

terprocedural program analysis therefore needs sorne way to approximate the set of 

target methods that could possibly be invoked at each call site. That is, it needs an 

approximation of the call gmph. Making the call graph precise is important because 

it bath improves the precision, and reduces the cast, of subsequent analyses. Also, 

for applications in embedded systems, where memory is scarce, a precise caU graph 

in which fewer methods are determined ta be possibly reachable is useful for reducing 

the memory footprint of the code. 

Constructing a call graph is one natural application of points-ta information. The 

points-ta analysis computes a set of objects ta which each variable may point. We 

can deduce the run-time type of each of these abjects ta obtain a set of possible types 

of abjects pointed-to by each variable. Using the set for the receiver variable at each 

call site, for each type, the method that will be invoked is identified according ta the 

method dispatch specification of the language. This yields a list of possible target 

methods for each caU site, from which the caU graph is constructed. 
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A caU graph builder has been implemented which uses the points-to sets computed 

by SPARK to compute a caU graph. The rest of this section is a study of the effect of 

the points-to analysis on the precision of the calI graph. 

Table 6.1 shows measurements of the precision of the caU graph constructed using 

five different analyses on the benchmarks described in Section 5.1. Class Hierarchy 

Analysis [DGC95] and Variable Type Analysis [SHR+OO] are two previously-published 

caU graph construction algorithms. The other three analyses are constructions of the 

caU graph from the points-to information computed by SPARK. As before, ot-cha

fb indicates a field-based points-to analysis starting from a CHA-based caU graph, 

ot-cha-fs indicates a field-sensitive points-to analysis starting from a CHA-based calI 

graph, and ot-otf-fs indicates a field-sensitive points-to analysis in which the calI 

graph is constructed during the analysis. For each analysis, the first column gives 

the number of methods that were determined to be possibly reachable in the calI 

graph, and the second column gives the percentage of caU sites in the CHA-reachable 

methods that were determined to have receiver sets of zero or one methods. These 

call sites are significant because their target method is uniquely determined, enabling 

optimizations such as method inlining or call devirtualization. 

The calI graph produced from the field-based points-to analysis is very similar to 

the one produced by VTA, which is to be expected because the analyses are very 

similar. VTA differs from the field-based points-to analysis only in that aIl objects 

of a given run-time type are modelled together, rather than being distinguished by 

their allocation site. That is, alI allocation sites allocating the same type of object 

are modelled with a single allocation node, while SPARK uses a separate allocation 

no de for every allocation site. 

Making the points-to analysis field-sensitive pro duces a moderate improvement 

in call graph precision, at the cost of sorne analysis time. A mu ch more dramatic 

improvement is obtained by the call graph on-the-fly during the points-to analysis, 

rather than starting with a CHA-based caU graph. Note, however, that such an 

analysis is significantly more costly than the simpler analyses, like the field-based 

analysis or VTA, as shown in Table 5.6. This suggests that further research should 

be done into analyses that build the caU graph on-the-fly, to make them competitive 
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CHA VTA ot-cha-fb ot-cha-fs ot-otf-fs 

Benchmark mthds sites mthds sites mthds sites mthds sites mthds sites 

compress 15737 71.3 14042 90.2 14015 90.2 13237 90.6 10842 94.9 

db 15739 71.3 14042 90.2 14015 90.2 13239 90.6 10844 95.0 

jack 15995 69.8 14298 90.3 14271 90.3 13494 90.8 11099 95.0 

javac 16872 71.5 15167 89.7 15140 89.7 14374 90.1 11982 94.1 

jess 16348 71.8 14637 90.5 14610 90.5 13833 90.9 11450 95.1 

mpegaudio 15947 71.3 14285 90.2 14258 90.2 13489 90.6 11072 94.9 

raytrace 15866 71.7 14173 90.3 14146 90.3 13362 90.7 10968 95.0 

sablecc 17530 71.7 15826 90.0 15799 90.0 15023 90.4 12700 94.5 

soot 18053 71.4 16364 89.7 16337 89.7 15558 90.1 13104 94.1 

jedit 20199 74.0 18614 90.7 18595 90.7 18456 90.9 16267 94.1 

Table 6.1: Call Graph Precision 

in efficiency with simpler analyses, and to improve their precision even further. 

6.2 Side-effect Analysis 

6.2.1 Background 

Side-effect analysis is an application of points-to analysis that can aid a compiler 

to pro duce more aggressively optimized code. The purpose of this analysis is to 

approximate the sets of run-time objects which each instruction and each method of 

the program may read or write. Having such an approximation may allow a compiler 

to eliminate redundant loads and stores in the presence of method calls. It may also 

improve precision of other intraprocedural analyses, which may in turn enable many 

other optimizations. 

As an example, consider the code fragment in Figure 6.1. If we knew that bar 0 

does not write this. a, then we cou Id move the load of this. a out of the loop, 

assuming no concurrent writes by any other threads. We could then recognize d as 
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fooO { 

} 

this.a = 2; 
b = 0; 
fore int c = 0; c < 1000000; c++ ) { 

d = this.a; 

} 

e = this.barO; 
b = b + d; 

System.out.println( lib = "+b ); 
System.out.println( lie = "+e ); 

Figure 6.1: Code Example for Side-Effect Analysis 

a compile-time constant 2, and b as an induction variable not used inside the loop. 

The additions could then be turned into a single multiplication 2 * 1000000 outside 

the loop, which could be evaluated at compile-time. We could attempt an even more 

ambitious optimization if we knew that bar 0 performs no writes or native method 

caUs: we could move the caU out of the loop. The optimized code resulting from these 

optimizations is shown in Figure 6.2. Note that aIl of these optimizations depend on 

knowing that bar 0 has no side-effects. 

fooO { 

} 

this.a = 2; 
b = 2000000; 
e = this. bar 0 ; 
System.out.println( "b = n+b ); 
System.out.println( "e = "+e ); 

Figure 6.2: Optimized Version of Code Example 

In order to approximate the sets of objects written at various points in the pro

gram, a side-effect analysis needs information about which variables point to which 
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objects. That is, a side-effect analysis depends on a points-to analysis. For this 

reason, a side-effect analysis has been developed based on SPARK. The side-effect 

analysis obtains the points-to information it requires from SPARK. Its output can 

either be used directly by optimizations within Soot, or it can be encoded in class file 

attributes, where it can be used by other systems, such a just-in-time compilers. 

This section describes the Implementation of the side-effect analysis and the en

co ding of its results in attributes. It also gives experimental evidence that the analysis 

pro duces precise approximations of side-effects compared to the simple heuristics typ

ically used in just-in-time compilers and in Soot, and that the encoding is a sufficiently 

efficient representation of the side-effect information. 

6.2.2 Representation of Side-Effect Information 

Side-effect information expresses dependences between instructions. For example, a 

client might want to know whether a write p. f = a; in one instruction may overwrite 

the value written in another instruction q. f = b;. In Java class file attributes, it is 

difficult to encode an expression such as p. f, because the local variable p appears 

in the bytecode as an unlabeled stack location. Moreover, the set of heap locations 

which an instruction may read or write can be very large. In this case, it could be 

very costly for the client using the side-effect information to recover the dependences 

between instructions from the read and write sets. 

Instead of encoding the field expressions and read and write sets in attributes, 

the Implementation directly encodes the dependences between instructions. For ex

ample, a write to p. f overwriting the value written to q. f would be encoded as a 

Write-Write dependence between the two bytecode instructions writing p. f and q. f. 

A client reading the attribute can convert this dependence into whatever internaI 

representation it has for p. f and q. f. For each pair of statements, the attribute 

specifies whether there is a Write-Write, Write-Read, Read-Write, or Read-Read de

pendence between them. Although the Read-Read dependences may not be useful to 

a just-in-time compiler, they are included for completenessi they could be removed if 

it were necessary to reduce the space required by the attributes. 
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The size of this representation grows quadratically as the number of inter

dependent instructions in the method being analyzed. Most methods are short, and 

even longer methods tend to have few instructions that are inter-dependent. How

ever, sorne methods are like the constructor of spec. io. TableOfExistingFiles, a 

class contained in the harness of aIl the SPECjvm [Spec] benchmarks. This method 

consists of 633 caUs to the put method of java. util.Hashtable. Since aH of these 

calls read and write the same locations, they should an have dependences between 

them encoded, leading to (6~3) = 200028 dependences of each type (Write-Write, 

vVrite-Read, Read-\;Yrite, and Read-Read). Furthermore, the methods called from 

each of these caU sites possibly caU a large number of other methods, so the calI sites 

take a long time and a large amount of memory to analyze. 

To limit the growth of the attribute size and amount of computation required, 

the side-effect analysis uses the following method to reduce the size of the set of de

pendences as it is being computed. Each instruction is assigned a pair of numbers, 

representing the sets of locations that the instruction can read and write. Depen

dences are then computed between these numbered read and write sets, rather than 

the instructions themselves. The simplest such assignment of numbered locations 

would assign distinct locations to each instruction, and the resulting dependence 

graph would be as large as the dependence graph between instructions. However, 

sorne sets of instructions can easily be determined to read or write the same loca

tions, and can therefore share the same numbered locations, reducing the effective 

number of instructions to be considered. Specifically, aH method caUs with equal sets 

of possible target methods share read and write locations. Also, aIl field reference 

expressions having the same base pointer and the same field share the same location. 

This reduces the 633 method caUs in spec. io . TableOfExistingFiles to a single 

pair of numbered locations, drastically reducing the size of the attribute and the time 

and memory needed to compute it. However, this approach makes it slightly more 

difficult for the client to extract the information. In order to determine whether there 

is a dependence between two instructions, it must look up the numbered locations 

read and written by the instructions, and then look in the graph for dependences 

between these locations. This reduced form of the dependence information still has 
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a worst-case size quadratic in the size of each method. However, as the experimental 

results in Section 6.2.6 show, in practice, the size of this representation is acceptable. 

In addition to the relationships between the locations read and written by state

ments, the side-effect attribute encodes, for each call site, whether a native method 

may be called from the caU site, or transitively from any methods that may be called 

from it. This information may be useful to clients of the side-effect analysis, and it 

is trivial to compute while computing the side-effect information. 

6.2.3 Implementation of Side-Effect Analysis 

The points-to analysis pro duces, for each local variable of pointer type, an abstract set 

of the possible locations to which it could point. From this information, the side-effect 

analysis computes abstract sets of locations read and written by each instruction. 

These locations include instance fields, static fields, and array elements. The abstract 

sets for each instruction are combined into larger abstract sets for whole methods. 

These sets contain an locations accessed within the method, but not those accessed 

in other methods that it may cano FinaIly, the sets for each method are combined 

into even larger sets that encode, for each caIl site, the set of locations accessed in aH 

the methods possibly called from the call site, and other methods transitively called 

from them. This yields a read and write set for every instruction, including method 

invoke instructions. These read and write sets are then used to determine whether 

dependences exist between them. 

A naive implementation of this recursive definition of read and write sets of caU 

sites would be intractable, because many caU sites have large numbers of transitive 

targets, and the sets for each target would have to be recomputed at each caU site. 

A natural optimization would be to use memoization to avoid computing points-to 

sets of each method and of each caU site more than once. Unfortunately, such an 

implementation has prohibitive memory requirements to store al! the read and write 

sets, even for medium-sized programs. The current implementation therefore makes 

a compromise between memory requirements and running time: it memoizes the read 

and write sets accessed by each statement and method, but not the read and write 
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sets accessed by each calI site. 

6.2.4 Attribute Encoding 

The side-effect information is encoded in Java class file attributes using the anno

tation framework included in Soot [PQVR+01]. This section describes in detail the 

format of these attributes. The side-effect information for each method is encoded in 

two attributes: a code attribute with the name SideEffectAttribute, and a method 

attribute with the name DependenceGraph. 

SideEffectAttribute 

This attribute maps statements to abstract locations read and written, and also 

indicates which invoke statements may transitively caU native methods. 

o 1 1 01 1 21 3 41 5 6 

record bytecode read write caUs 

count offset set set native 

The first two bytes of the attribute are a big-endian integer specifying the number 

of records that follow. 

Each record that follows consists of seven bytes: 

@ The first two bytes are a big-endian integer specifying the bytecode offset of the 

instruction that this record describes. 

® The third and fourth bytes are the number of the numbered location read by 

the instruction that this record describes. 

@ The firth and sixth bytes are the number of the numbered location written by 

the instruction that this record describes. 

@ The least significant bit of the seventh byte is one if the instruction that this 

record describes invokes a method that may be a native method, and zero 

otherwise. The remaining bits are reserved for future use. 
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The special numbered location Oxffff indicates a non-existent location, and is 

used to indicate that an instruction does not read or write anything. For example, 

the record for a getfield bytecode instruction will specify the location that the 

instruction reads, and Oxffff for the location that it writes, since this instruction 

performs no writes. 

Depel1del1ceGraph 

This attribute specifies dependences between numbered locations. 

set set 

It consists of a number of records, each four bytes in length. The first two bytes 

and the last two bytes of each record each specify a numbered location. If a numbered 

location may overlap another numbered location, then the two locations will appear 

as a record in this attribute. Note that each unordered pair of locations is encoded in 

the attribute only once, with the lower-numbered location listed first, but the relation 

is symmetric. 
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6.2.5 Side-Effect Example 

The format of the side-effect attributes will now be demonstrated using a more com

plete example than the one presented in the introduction to this section. First, the 

Java code for the example is presented in Figure 6.3. Then, the computed side-effect 

information is presented as comments in a Jimple version of the code for the main 

method in Figure 6.4. Finally, a disassembled representation of the resulting bytecode 

for the main method is presented in Figure 6.5. 

class Exarnple { 
int x = 0; 

} 

public void bare) { 
this.x = 5; 

} 

public static final void maine String[] argv ) { 
Exarnple s1 = new Example(); 

} 

Exarnple s2 = new Example(); 
Example s3 = s2; 
int SUIn = 0; 

s1.x = 1; 

s3.x = 1; 
fore int i = 0; i < 1000000; i++ ) { 

SUIn += s1.x; 
s2.x = 0; 
s3.barO; 

} 

Figure 6.3: Java Code for Side-Effect Example 
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After each statement that may read or write to memory, the Jimple representation 

in Figure 6.4 contains a comment of the form Il SEReads: 1. These indicate the 

numbered locations that are read and written by the statement. The two calls to the 

constructor <ini t> read and write the same locations, 0 and 1, respectively. The store 

to field x of r2 writes location 2, which is then read by the load in the line immediately 

after labelO:. At the beginning of the code, the dependence graph comment shows 

which pairs of locations may overlap. The location 0, which represents the read set 

of the constructor overlaps nothing, because the constructor does not read anything. 

The location 1 representing the write set of the constructor overlaps locations 2, 

3, 4, and 5, because these an refer to the field x of sorne object, and this field is 

written by the constructor. Locations 2, 3, and 4 refer to the field x of sl, s3, 

and 82, respectively, of the original Java program. The dependence graph shows that 

locations 3 and 4 overlap, because s2 and s3 are aliased; however, location 2 does not 

overlap with locations 3 or 4, because sl is not abased to either s3 or s2. Similarly, 

location 5 representing the write set of the bar 0 method overlaps with locations 3 

and 4 but not with 2, because the bar 0 method writes the field x ofthe object that 

s3 and s2 point to, but not the object that sl points to. 

In the bytecode presented in Figure 6.5, the side-effect information has been 

encoded in two attributes: DependenceGraph at the top of the code, and 

SideEffectAttribute at the bottom. The DependenceGraph attribute encodes the 

pairs that appeared in the dependence graph comment in the Jimple code. The 

SideEffectAttribute encodes the read and write sets of individual statements. The 

first and second entries correspond to the caIls to the <ini t> method at bytecode 

offsets 4 (00 04) and 12 (00 Oc). They show that each ofthese statements reads loca

tion 0 (00 00) and writes location 1 (00 01). The field stores (putfield) at bytecode 

offsets 22 (00 16), 27 (00 lb), and 45 (00 2d) read nothing (ff ff), and write lo

cations 2 (00 02), 3 (00 03), and (00 04), respectively. The field load (getfield) 

at bytecode offset 38 (00 26) reads location 2 (00 02) and writes nothing (ff ff). 

Finally, the call to bar () at bytecode offset 49 (00 31) reads location 0 (00 00) and 

writes location 5 (00 05). 
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public static final void main(java.lang.String[] 
/1 Dependence Graph 
Il (1,2), (1,3), (1,4), 0,5), (3,4). (3,5), (4,5) 

{ 

java.lang.String[] rO; 
Example $rl, r2, r3, r4, $r5; 
int iO, il, $i2; 

rO := @parameterO: java.lang.String[]; 
$rl = new Example; 
specialinvoke $rl.<Example: void <init>(»(); 

Il SEReads : 0 
Il SEWrites: 1 

r2 = $rl; 
$r5 = new Example; 
specialinvoke $r5.<Example: void <init>(»(); 

Il SEReads : 0 
Il SEWrites: 1 

r3 $r5; 
r4 = r3; 
iO = 0; 
r2.<Example: int x> 1; 

Il SEWrites: 2 

r4.<Example: int x> 1; 
Il SEWrites: 3 

il = 0; 
goto label1; 

labelO: 
$i2 = r2.<Example: int x>; 

Il SEReads 2 

iO iO + $i2; 
r3.<Example: int x> 0; 

Il SEWrites: 4 

virtualinvoke r4.<Example: void bar(»(); 
Il SEReads : 0 
Il SEWrites: 5 

H=i1+1; 

label1: 
if il < 1000000 goto labelO; 

return; 
} 

Figure 6.4: Jimple Code for Side-Effect Example 
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public static final void mainCString[] argO) 
[Cattribute DependenceGraph: 
00 01 00 02 
00 01 00 03 
00 01 00 04 
00 01 00 05 
00 03 00 04 
00 03 00 05 
00 04 00 05 
)] 
CodeCmax_stack 
0: new 

2, max_Ioca13 = 5, eode_length 63) 
<Example> (21) 

3: dup 
4: invokespecial 
7: astore_O 
8: new 
11: dup 
12: invokespecial 
15: astore_l 
16: aload_l 
17: astore_2 
18: ieonst_O 
19: istore_3 
20: aload_O 
21: ieonst_l 
22: putfield 
25: aload_2 
26: ieonst_l 
27: putfield 
30: ieonst_O 
31: istore 
33: goto 
36: iload_3 
37: aload_O 
38: getfield 
41: iadd 
42: istore_3 
43: aload_l 
44: iconst_O 
45: putfield 
48: aload_2 
49: invokevirtual 
52: iine 
55: Hoad 
57: Ide 
59: iCiemplt 
62: return 

Attribute(s) ., 

Example.<init> ()V (24) 

<Example> (21) 

Example.<init> ()V (24) 

Example.x l (18) 

Example.x l (18) 

%4 
#55 

Example.x l (18) 

Example.x l (18) 

Example.bar ()V (20) 
%4 1 
%4 
1000000 (23) 
#36 

(attribute SideEffectAttribute: 
00 07 00 04 00 00 00 01 00 

00 Oc 00 00 00 01 00 
00 16 ff ff 00 02 00 
00 lb ff ff 00 03 00 
00 26 00 02 ff ff 00 
00 2d ff ff 00 04 00 
00 31 00 00 00 05 00 

6.2. Side-effect Analysis 

Figure 6.5: Bytecode for Side-Effect Example 
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6.2.6 Experimental Results 

The section reports results of experiments that were performed to determine the 

effectiveness of the side-effect analysis and the attribute encoding. Specifically, the 

following two quantities were measured: 

1. The size of the attributes compared to the size of the original bytecode. 

2. The percentage of dependences between instructions within a method ruled out 

by the side-effect analysis. 

These measurements were performed on the same benchmarks as described in 

Section 5.1. 

Attribute Size 

Table 6.2 gives the size of the side-effect attributes as a percentage of the size of the 

original class files. For most of the benchmarks, the attributes are between 25% and 

50% of the original class file size, and in no case do they exceed the original size. 

Considering that the attributes encode aU the information available to the side-effect 

analysis, the size of the encoding is acceptable. 

The attributes are very regular, and are therefore likely to be highly compressible 

with standard compression algorithms. However, the purpose of SPARK is to facilitate 

experimentation, and use of such an algorithm would increase the burden on the 

client reading the attributes, which would have to decompress them. Therefore, no 

such compression algorithm was applied. In a production system, compression would 

almost certainly be desirable. 

Dependences 

Many ahead-of-time and just-in-time Java compilers make the following conservative 

assumptions about the side-effects of instructions: 

® Field accesses of the same field of any object may be aliased. 
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Size 

Benchmark increase 

eompress 24.5 

db 30.1 

jaek 46.0 

javae 35.7 

jess 41.2 

mpegaudio 33.2 

raytrace 41.0 

sableee 96.4 

soot 49.8 

jedit 37.5 

Table 6.2: Attribute Size as Percent age of Original Class File Size 

e Methods other than the method being analyzed may read and write any fields 

on the heap. 

This means that in these systems, for each field, there are dependences between 

aU reads and writes of it, and there are dependences between method invocation in

structions and aIl instructions that access the heap. Table 6.3 presents measurements 

of the percentage of these dependences that are ruled out by the side-effect analysis. 

That is, it shows how much precision the side-effect analysis adds to these common 

conservative assumptions. As before, ot-cha-fb indicates a field-based points-to analy

sis starting from a CHA-based caU graph, ot-cha-fs indicates a field-sensitive points-to 

analysis starting from a CHA-based call graph, and ot-otf-fs indicates a field-sensitive 

points-to analysis in which the caU graph is constructed during the analysis. 

The numbers refiect the relative complexity of the benchmarks. On the very simple 

benchmarks, such as eompress and db, the conservative assumption is successful in 

minimizing the number of dependences, leaving little room for the side-effect analysis 

to show improvement. On the other hand, on the highly object-oriented benchmarks, 
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ot-cha-fb ot-cha-fs ot-otf-fs 

Benchmark 

compress 2.5 2.6 2.6 

db 2.8 2.9 2.9 

jack 13.1 13.1 13.1 

javac 19.4 19.4 19.4 

jess 14.3 14.4 14.5 

mpegaudio 5.9 5.9 6.0 

raytrace 18.8 18.8 18.8 

sablecc 56.1 56.2 56.2 

soot 64.8 65.3 65.3 

jedit 34.1 34.1 35.3 

Table 6.3: Percent age of Dependences Ruled Out by Side-Effect Analysis 

such as sablecc and soot, the side-effect analysis manages to rule out more than haif 

of the dependences that the field-based assumption could not. The differences due 

to varying the precision of the points-to analysis are very small; only for the j edi t 

benchmark is the difference between the most precise, field-sensitive on-the-fly caU 

graph analysis and the least precise, field-based CHA caU graph analysis more than 

one percent of the dependences. 

Note that the number of dependences ruled out do es not tell us whether those 

dependences that were ruled out are important to optimizations. It is therefore 

difficult to predict from this data the effect of side-effect analysis on the effectiveness 

of optimizations. However, the high numbers of dependences ruled out suggest that 

side-effect analysis could have a significant effect. AIso, it appears that the fast, field

based points-to analysis using a CHA-based call graph is precise enough to pro duce 

this effect. 
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6.2.7 Future Work on Side-Effect Analysis 

An effective side-effect analysis has been built on top of SPARK. Its output is en

coded in class file attributes, where it can be used by other systems. An obvious 

area for further experimentation is modifying optimizing compilers to make use of 

this side-effect information, and to study how different points-to analyses affect the 

optimizations made possible by side-effect analysis. 
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Chapter 7 

Conclusions and Future Work 

This thesis introduced SPARK, a flexible framework for experimenting with points-to 

analyses of Java programs. It presented the modular design of SPARK, and details 

of its implementation. SPARK was used to perform a substantial study of factors 

affecting the precision and efficiency of points-to analyses for Java, and the results of 

this study were reported. Based on these experiments, three variations of points-to 

analyses were selected as particularly effective for Java, in light of the high precision 

of their results combined with efficient execution of the analysis. Two implementa

tions of client analyses using the points-to information were presented: caU graph 

construction and side-effect analysis. Other clients are planned in the future. 

The flexibility of SPARK cornes from its modular design. Individual implementa

tions of its components are designed to be interchangeable, leading to large numbers 

of possible combinations of variations. The division of SPARK into three stages, 

connected using the pointer assignment graph, facilitates the creation of and experi

mentation with additional modules implementing new points-to algorithms. 

SPARK includes several implementations ofits main components. A pointer assign

ment graph builder is used to create a representation of the program being analyzed, 

to be processed by the rest of SPARK. SPARK includes two simplification algorithms 
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to reduce the size of the pointer assignment graph. The current version of SPARK con

tains five points-to set propagation algorithms, each of which is particularly suited 

to specifie variations of points-to analysis. Four different implementations of data 

structures for representing points-to sets are included with SPARK. 

The use of SPARK was demonstrated in an extensive study of the factors affecting 

precision and efficiency of Java points-to analyses. Respect for declared types and 

casts was shown to be extremely important for both analysis precision and efficiency. 

Constructing a call graph during the points-to analysis improves precision with a 

moderate cost in analysis time. The improvement in precision of a field-sensitive 

analysis over a field-based analysis is moderate, and cornes at little addition al cost 

wh en an efficient points-to set implementation and propagation algorithm is used. 

The hybrid points-to set implementation was shown to be consistently more efficient 

than aU other implementations studied; it is up to two orders of magnitude more 

efficient than the implementation based on the HashSet class included in the Java 

standard class library. The worklist-based propagation algorithm was shown to be 

the most efficient in terms of time, while the alias edge propagation algorithm was 

the most efficient in terms of space when the points-to sets were aUowed to grow very 

large by not making use of declared type information. The incremental versions of the 

algorithms were faster than the non-incremental versions when the analysis required 

many iterations, while for the simpler analyses requiring litt le iteration, the overhead 

of the incremental version outweighed the benefit. Off-hne simplification of the pointer 

assignment graph was shown to be compatible with respect for declared types: that 

is, respecting declared types does not significantly decrease the opportunities for 

simplification. However, off-line simplification is nearly useless if the cal! graph is not 

computed prior to the analysis. Because SPARK is already so efficient at analyses for 

which the caU graph is computed ahead of time, it is not clear that simplifying the 

pointer assignment graph ahead of time is worthwhile for Java. 

SPARK has been used as the basis of two client analyses. The call graph con

struction based on SPARK is more general, more efficient and more precise than 

VTA [SHR+OO], the analysis previously available in the Soot framework. SPARK is 

also the basis of a side-effect analysis whose output is encoded in class file attributes. 
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This side-effect analysis has been shown to provide significantly more information 

than the conservative assumptions used in typical just-in-time compilers. It therefore 

shows promise in improving the optimizations performed by such systems. 

SPARK has been demonstrated to be a practical, flexible and efficient framework 

on which further point-to analysis research can be based. 

7.2 Future Work 

The purpose of SPARK is to serve as a framework to facilitate experimentation with 

points-to analyses for Java. This section describes sorne of the areas in which SPARK 

could be used. 

7.2.1 Precision of Data Flow Analyses 

In the absence of accurate points-to information, traditional data flow analyses used 

for optimization - such as constant propagation, constant subexpression elimination, 

and partial redundancy elimination - are forced to make conservative assumptions. 

This reduces the precision of the analyses and the opportunities for optimization. 

Soot is a framework for implementing these data flow analyses and related opti

mizations. Since SPARK is a part of Soot, analyses implemented in Soot can now be 

improved to take advantage of the points-to information provided by SPARK. The 

effect of points-to information on these analyses can be the subject of future research. 

7.2.2 Using Side-Effect Information in Just-In-Time Compilers 

Section 6.2 described a side-effect analysis that has been implemented on top of 

SPARK, whose results are stored in attributes for the use of other compilers, including 

just-in-time compilers. An interesting area of future research would be to modify 

existing just-in-time compilers to make use of this information, and to study the 

effect that it can have on the effectiveness of their optimizations. 

103 



Conclusions and Future Work 

7.2.3 Points-To Analysis Aigorithms and Set Implementations 

This thesis included a study of the points-to analysis algorithms and points-to set 

implementations included in SPARK, and they were found to be very effective. How

ever, programs are becoming larger, and points-to information is being used in new 

areas, such as program understanding and verification. Because of these changes, 

more efficient and more precise points-to analyses will continue to be needed. The 

flexibility of SPARK makes it a natural platform on which to experiment with and 

compare future points-to analysis algorithms. 

In particular, implementing a demand-driven analysis like the one designed for 

C by Heintze and Tardieu [HTOl b, HT01a] may further improve the performance 

of SPARK. Another interesting area to be explored is the use of binary decision 

diagrams [Bry92] to represent the large points-to relation that must be manipu

lated [BLQ+02, BLQ+03]. 

7.2.4 Context-Sensitivity 

Context-sensitive points-to analyses can pro duce much more precise information than 

context-insensitive ones. In an object-oriented language that encourages encapsula

tion, such as Java, the information lost due to context-insensitivity is especially sig

nificant. Unfortunately, context-sensitive analyses are prohibitively costly to compute 

for moderately large programs, and, due to the large class library, even trivial Java 

programs are moderately large. 

However, the excellent performance of SPARK may make sorne context-sensitive al

gorithms feasible. In addition, SPARK can be used to experiment with new algorithms 

with only a limited degree of context-sensitivity, specifically designed for analyzing 

object-oriented languages. For example, SPARK would be an ideal framework in which 

to implement the abject-sensitive points-to analysis[MRR02b] proposed by Milanova, 

Rountev and Ryder. 
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7.2.5 Precision of Cali Graph Construction 

The Java language specifies l'ules with subtle effects on the control fiow of a program 

that must be taken into account by whole-pl'ogram analyses such as points-to analysis. 

The following are several examples. 

@ The first reference to a class causes its static initializer method to execute. 

@ Finalizer methods are executed automatically by the system without any ex

plicit calls to them. 

@ Methods related to thread creation can be executed without being explicitly 

invoked. 

® Reflection can be used to create arbitrary objects and execute arbitrary methods 

that cannot be identified statically. 

Most whole-program analyses handle these issues either using very conservative 

assumptions, leading to large caU graphs, or by ignoring them, leading to possibly 

incorrect analysis results. Although SPARK is already able to pro duce precise call 

graphs, even more precise methods of modelling these effects could further improve 

both the precision and efficiency of SPARK. 
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Appendix A 

Using Spark 

SPARK is a part of the Soot bytecode analysis and transformation framework. Soot is 

maintained by the Sable Research Group at McGill University, and is freely available 

under the Lesser General Public Licence. 

Soot can be downloaded from the Soot homepage: 

@ http://www.sabIe.mcgiII.ca/soot/ 

J avadoc documentation for the Soot source is available from: 

@ http://www.sabIe.mcgiII.ca/soot/doc/ 

This includes documentation for SPARK, which lS found lU the package 

soot . j impIe. spark and its subpackages. 

Tutorials on using Soot are available at: 

@ http://www.sabIe.mcgiII.ca/soot/tutorial 

Questions, discussions, and comments about Soot and SPARK should be directed to 

the Soot mailing list. Instructions about subscribing to the Est are found on the Soot 

homepage. Archives of the list are found at: 

@ http://www.sabIe.mcgiII.ca/Iistarchives/soot-list/ 
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A.2 Spark Options 

This section describes the command-line options to SPARK. Values for options are 

specified on the Soot command-line, following the switch -p wj tp. Spark. For exam

pie: 

java soot.Main -a --app -p wjtp.Spark disabled:false,verbose:true Hello 

For the most current, automatically generated documentation of SPARK options, 

please see the file sre! soot! j impIe! spark! opts . ps in the Soot distribution. 

A.2.1 General Options 

Option verbose 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, SPARK prints detailed information. 

Option ignoreTypesEntirely 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, all parts of SPARK completely ignore declared types 

of variables and casts. 

Option foreeGCs 

@ Allowed values: true false 

@ Default value: false 

\;Vhen this option is set to true, caUs to System. ge 0 will be made at various points 

to allow memory usage to be measured. 
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A.2.2 Pointer Assignment Graph Building Options 

Option VTA 

® Allowed values: true false 

® Default value: false 

Setting VTA to true has the effect of setting ignoreBaseObj ects, typesForSi tes, 

and simpIifySCCs to true to simulate Variable Type Analysis [SHR+OO]. Note 

that the algorithm differs from the original VTA in that it handles array elements 

more precisely. To use the results of the analysis to trim the invoke graph, set the 

trimlnvokeGraph option to true as weIl. 

Option RTA 

® Allowed values: true false 

® Default value: false 

Setting RTA to true sets typesForSites to true, and causes SPARK to use a single 

points-to set for aH variables, giving pessimistic Rapid Type Analysis [BS96]. To use 

the results of the analysis to trim the invoke graph, set the trimlnvokeGraph option 

to true as weIl. 

Option ignoreBaseObjects 

® Allowed values: true false 

® Default value: false 

vVhen this option is set to true, fields are represented by variable nodes, and the 

object that the field belongs to is ignored (aH objects are lumped together). This is 

also referred to as a field-based analysis. Otherwise, fields are represented by field 

reference nodes, and theobjectsthat they belong to are distinguished, giving a field

sensitive analysis. 
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Option typesForSi tes 

® Allowed values: true false 

® Default value: false 

Wh en this option is set to true, types rather than allocation sites are used as the 

elements of the points-to sets. 

Option mergeStringBuffer 

® Allowed values: true false 

® Default value: true 

When this option is set to true, all allocation sites creating objects of type 

java. Iang . StringBuff er are grouped together as a single allocation site. 

Option simuIateNati ves 

® Allowed values: true false 

® Default value: true 

Wh en this option is set to true, effects of native methods are simulated. 

Option simpIeEdgesBidirectional 

® Allowed values: true false 

® Default value: false 

When this option is set to true, aH edges connecting variable nodes are made bidi

rectional, as in Steensgaard's analysis [Ste96b]. 
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Option onFlyCallGraph 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, the call graph is computed on-the-fly as points-to 

information is computed. Otherwise, an initial approximation to the caU graph is 

used. 

Option parmsAsFieIds 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, parameters to methods are represented as fields of 

the this object; otherwise, parameters are represented as variable nodes. 

Option returnsAsFieIds 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, return values from methods are represented as fields 

of the this object; otherwise, return values are represented as variable nodes. 

A.2.3 Pointer Assignment Graph Simplification Options 

Option simpIifyOffIine 

@ Allowed values: true false 

@ Default value: false 

When this option is set to true, variable nodes in the same single-entry subgraph are 
- -- --- - - --

merged together (since they must have equal points-to sets). 
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Option simplifySCCs 

® Allowed values: true false 

® Default value: false 

When this option is set to true, variable nodes which form strongly-connected com

ponents are merged together (sinee they must have the same points-to set). 

Option ignoreTypesForSCCs 

® Allowed values: true false 

@ Default value: false 

\tVhen this option is set to true, when collapsing strongly-connected components, 

nodes forming secs are collapsed regardless of their type. The collapsed sec is 

given the most general type of an the nodes in the component. 

When this option is set to false, onIy edges connecting nodes of the same type 

are considered wh en detecting secs. 

This option has no effect unless simplifySCCs is true. 

A.2.4 Points-To Set Flowing Options 

Option propagator 

@ Allowed values: i ter worklist alias none 

@ Default value: worklist 

This option tells SPARK which propagation algorithm to use. 

i ter is a simple, iterative algorithm, which propagates everything until the graph 

does not change. 

worklist is a worklist-based algorithm that tries to do as little work as possible. 

This is currently the fastest algorithm. 
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alias is an alias-edge based algorithm. This algorithm tends to require the small

est amount of memory for very large problems, because it does not represent explicitly 

points-to sets of fields of heap objects. 

none means that propagation is not done; the pointer assignment graph is only 

built and simplified. This is useful if an external propagator is to be used later on 

the pointer assignment graph. 

Option setlmpl 

® Allowed values: hash bit hybrid array double 

® Default value: double 

Selects an implementation of a points-to set that SPARK should use. 

hash is an implementation based on Java's built-in hash-set. 

bi t is an implementation using a bit vector. 

hybrid is an implementation that keeps an explicit list of up to 16 elements, and 

switches to using a bit-vector when the set gets larger than this. 

array is an implementation that keeps the elements of the points-to set in an 

array that is always maintained in sorted order. Set membership is tested using 

binary search, and set union and intersection are computed using an algorithm based 

on the merge step from merge sort. 

double is an implementation that itself uses a pair of sets for each points-to set. 

The first set in the pair stores new pointed-to objects that have not yet been propa

gated, while the second set stores old pointed-to objects that have been propagated 

and need not be reconsidered. This allows the propagation algorithms to be incre

mental, often speeding them up significantly. 

Option doubleSetOld 

® Allowed values: hash bit hybrid array 

® Default value: hybrid 
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Selects an implementation for the new points-to sets in the double points-to set im

plementation. 

This option has no effect unless setlmpl is set to double. 

Option doubleSetNew 

® Allowed values: hash bit hybrid array 

® Default value: hybrid 

Selects an implementation for the oid points-to sets in the double points-to set im

plementation. 

This option has no effect unless setlmpl is set to double. 

A.2.5 Output Options 

Option dumpHTML 

® Allowed values: true false 

® Default value: false 

Wh en this option is set to true, a browseable HTML representation of the pointer 

assignment graph is output after the analysis completes. Note that this representation 

is typically very large. 

Option trimlnvokeGraph 

® Allowed values: true false 

® Default value: false 

vVhen this option is set to true, the results of the points-to analysis are used to make 

the invoke graph more precise after the analysis completes. 
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