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Abstract

This thesis addresses the challenges associated with the estimation of the relative position
and attitude between robots, collectively the relative pose, using ultra-wideband (UWB) radio.
An accurate and precise relative pose estimate is essential for the coordination of robots
in a variety of applications, such as search and rescue missions, environmental monitoring,
surveillance, and collision avoidance. UWB transceivers, which are cheap and lightweight
devices, offer a means to obtain distance or range measurements between mobile robots and
fixed anchors in known locations. With fixed anchors, the localization of robots is generally
precise. In infrastructure-free, and unexplored environments, with no fixed anchors, robots
equipped with UWB transceivers can estimate their relative poses by exchanging range
measurements. However, in the infrastructure-free scenario, there are challenges associated
with the limited observability of the relative robot position and attitude states, which makes
the localization problem, as well as any subsequent path planning, difficult.

The thesis meets two core objectives in using range-aided systems for multi-robot coor-
dination in infrastructure-free environments. Firstly, this thesis addresses the problem of
relative pose estimation of a multi-robot system with limited observability. This is done by
using a Gaussian-sum filter (GSF) to estimate the relative pose between robots. The GSF is
designed to exploit the ambiguous states that arise from the limited observability properties
of the system in order to provide a consistent and accurate estimation of the relative pose
states. Secondly, this thesis addresses the problem of path planning for multi-robot systems in
formation with limited observability. This is done by minimizing a cost function that balances
the observability of the relative pose states and any user-defined formation configuration.
The thesis presents simulation and experimental results to demonstrate the effectiveness of
the proposed approaches for the relative pose estimation and formation planning problems.
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Résumé

Cette thèse explore les défis associés à l’estimation de la position et de l’orientation
relatives entre des robots, c’est-à-dire leur état relatif, en utilisant la radio à bande ultra-large
(UWB). Une estimation précise de leur position et orientation relative est essentielle pour la
coordination des robots dans une variété d’applications, telles que les missions de recherche
et de sauvetage, l’exploration de l’environnement, ainsi que la surveillance et l’évitement
des collisions. Les capteurs UWB, qui sont bons marchés et légers, permettent d’obtenir
des mesures de distance entre des robots mobiles et des ancrages fixes situés à des endroits
connus. Avec des ancrages fixes, la localisation des robots est généralement précise. Dans
les environnements inexplorés et sans infrastructure, sans ancrage fixe, les robots équipés
d’émetteurs-récepteurs UWB peuvent estimer leur position relative en échangeant des mesures
de distance. Cependant, dans le système sans infrastructure, des défis associés à l’observabilité
limitée de la position et de l’orientation relative du robot apparaissent, ce qui rend difficile le
problème de localisation et, par la suite, la planification de trajectoire.

Cette thèse répond à deux objectifs principaux de l’utilisation de systèmes employant des
capteurs UWB pour la coordination multi-robot dans des environnements sans infrastructure.
Premièrement, elle explore le problème de l’estimation de la position relative d’un système
multi-robot avec une observabilité limitée. Un filtre à somme Gaussienne (FSG) est utilisé
pour estimer la position relative entre les robots. Le FSG est conçu pour exploiter les états
ambigus qui découlent des propriétés d’observabilité limitées du système afin de fournir
une estimation cohérente et précise des états relatifs. Deuxièmement, cette thèse aborde le
problème de la planification des trajectoires de formation pour les systèmes multi-robots à
observabilité limitée. Cela se fait en minimisant une fonction qui équilibre l’observabilité des
états relatifs et toute configuration de formation définie par l’utilisateur. Cette thèse présente
des résultats de simulation et d’expérimentation afin de démontrer l’efficacité des approches
proposées pour résoudre des problèmes d’estimation d’états relative et de planification de
formations.
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Chapter 1

Introduction

The goal of the thesis is to develop estimation and planning algorithms that ensure the
range-based relative position and attitude estimation, referred to as relative pose estimation,
between a team of robots is accurate and precise. A popular choice for obtaining range
measurements is the use of ultra-wideband (UWB) radio transceivers, which are also referred
to as UWB tags. UWB tags are cheap, lightweight, and low-power sensor that are capable
of providing 10 cm accurate range measurements between a pair of transceivers at a high
frequency. UWB sensors are highly suitable for small robots with limited computational
power and payload capacity. UWB tags are also useful for localization in Global Position
System (GPS)-denied environments, where GPS signals are either unavailable or unreliable. A
high localization accuracy is vital for applications such as autonomous surveillance, coverage
and exploration, infrastructure and mine inspection, collaborative simultaneous localization
and mapping (SLAM), and formation control. UWB-aided robotic systems have only recently
been studied in academic research [1–4], and still requires further research to be able to
provide accurate localization in real-world scenarios.

UWB tags are oftentimes static anchors with known locations and are then used to localize
tags placed on mobile robots [5–10]. This research is a step forward towards improving
localization of robots in infrastructure-free setups, where the UWB tags are placed on the
mobile robots themselves. This would result in a fully self-contained localization system that
is not dependent on external infrastructure. However, in such systems the estimation task is
more difficult due to no information being available about the absolute position of the robots,
from fixed anchors or GPS.

A highly challenging issue in UWB-aided systems is the presence of ambiguous poses,
which result from observability limitations in the range-based relative pose estimation. For
instance, in a 3D scenario, the true pose of the robots is not uniquely determined by the range
measurements. This is because the range measurements only provide the distance between
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Figure 1.1: Concept diagram of a self-localizing formation of robots that use one UWB tag
per robot for range-based relative pose estimation.

the robots, and no information about the direction from which the range measurements are
taken. This results in multiple possible relative poses between robots that are consistent with
the range measurements, and the true pose is one of these possible poses. The presence of
ambiguous poses can lead to inaccurate and imprecise relative pose estimates, which in turn
can lead to inaccurate and imprecise formation planning and control. The thesis aims to
develop estimation and planning techniques that can mitigate the effects of ambiguous poses
and ensure that the relative pose estimates are accurate and precise.

1.1 Background and Related Work

UWB-based relative pose estimation in the absence of fixed UWB anchors at known
locations has many challenges. A concept diagram of a self-localizing formation of robots that
use one UWB tag per robot for range-based relative pose estimation is shown in Figure 1.1.
In this setup, with a range-based approach, there is an infinite number of relative positions
between the robots that result in the same range measurements [11]. In fact, if the entire team
rotates, flips, and if each robot rotates freely about its center, the range measurements will
remain the same. The multiple possible ambiguous poses may cause estimators to converge
to the wrong pose.

A common strategy used to obtain an observable system is by ensuring that the robots
are constantly moving relative to each other, which satisfies the persistency of excitation
condition [1–3, 12, 13]. This condition ensures that the range measurements are constantly
taken from different directions, which in turn ensures that the relative pose is observable.
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However, in practice, it is difficult to ensure that the robots are constantly moving relative to
each other, and the persistency of excitation condition is not always satisfied. For instance, if
a group of robots is going in formation from one point to another, or are not moving, there
is no relative motion between the robots. The authors in [14] propose a two-dimensional
solution, where the robots are collecting velocity measurements from an onboard optical flow
sensor and sharing this data among themselves to ensure that the relative pose is observable.
Furthermore, controllers are designed in [15] to ensure that the robots are constantly moving
relative to each other.

Another approach is installing more than one UWB tag on each robot [11, 16–20]. In [11],
the authors demonstrate the efficacy of utilizing two UWB tags per robot. This approach
enables precise and accurate estimation of the relative position among robots in 3D space
without persistency of excitation. However, the authors do not address global observability
issues, which can still occur in multi-robot systems with two UWB tags per robot. In [21],
the authors partially address this issue by proposing a cost function, the minimization of
which would provide optimal multi-robot formations that have good observability properties.
In these formations, it is shown that the relative pose estimates are accurate and precise.
However, the formations achievable by this method are restricted to a specific set of formations,
which are unsuitable for many applications such as coverage and exploration.

1.2 Objective and Outline

The work of [11] and [21] build strong foundation towards achieving reliable relative pose
estimation capability in multi-robot systems in real world scenarios. Inspired by [11] and
[21], each robot is equipped with two UWB tags throughout this thesis. This thesis gives a
detailed account of the observability issues in multi-robot systems with two UWB tags per
robot, and presents a solution to this problem. The solution consists of two main components:
1) the Gaussian-sum filter for range-based 3D relative pose estimation in the presence of
ambiguities, and 2) optimal robot formations that balance range-based observability and
user-defined configurations, and starts with a review of the mathematical tools and concepts
used in the thesis in Chapter 2.

Chapter 3 is dedicated to the derivation of the Bayesian filtering equations that are used
to estimate the relative pose between a team of robots. After introducing the Bayesian
filtering equations, Extended Kalman Filter (EKF) is derived. This derivation is carried
forward to the Gaussian-sum filter. Finally, the chapter introduces the Particle Filtering (PF)
algorithm.

Chapter 4 presents the Gaussian-sum filter suitable for range-based relative pose estimation.
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In this chapter, it is shown that, multi-robot systems with two UWB tags per robot can
have multiple possible relative poses that correspond to the same set of range measurements.
The chapter firstly determines the ambiguous poses using a least-squares estimator that is
initialized using a geometric method. The chapter then models these ambiguous poses as a
Gaussian mixture model, which is fed into a Gaussian-sum filter to estimate the relative pose
between the robots. The chapter also presents the simulation and experimental results that
show the effectiveness of the Gaussian-sum filter in estimating the relative pose between the
robots.

Chapter 5 presents the optimal robot formations that balance range-based observability
and user-defined formation configurations. In this chapter, a cost function is proposed, which
is then used to determine the optimal robot formations, designed to balance the observability
of the relative pose between the robots and any formation constraints that the user may have.
The chapter then presents the simulation and experimental results showing that user-sought
goals can be achieved much more effectively using the optimal robot formations that are
derived from the proposed cost function, while ensuring that the relative pose estimates
between the robots are accurate and precise.
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Chapter 2

Preliminaries

2.1 Summary

Before introducing the UWB-aided state estimation and planning problems, this chapter
presents the mathematical preliminaries required for the explanation, and derivation of the
majority of contributions presented in this thesis. Specific mathematical preliminaries relevant
to individual chapters will be described within the respective chapters. Therefore, an expert
reader familiar within basic probability, estimation, and matrix Lie groups can move ahead
to following chapters.

2.2 Notation

A column vector is denoted with a lower-case bolded y ∈ Rn, and a matrix is denoted with
an upper-case bolded Y ∈ Rm×n. An arbitrary reference frame ‘p’ is denoted Fp. Physical
vectors resolved in Fp are denoted vp. The same physical vector resolved in a different frame
Fq is denoted vq, and is related by a direction cosine matrix (DCM), Cpq ∈ SO(3), such that
vp = Cpqvq [22], where SO(3) is the Special Orthogonal group in 3D.

The special matrices 1 and 0 denote appropriately-sized identity and zero matrices,
respectively. Subscripts such as 12×2 and 02×1 may be used to explicitly indicate dimensions.

2.3 Probability Theory

Sensor data in real-world scenarios is noisy. Proper characterization of the noise from
sensors is crucial for tasks such as navigation, and mapping. Any estimate of the state of a
robot is typically conditioned on noisy sensor measurements, which result in uncertainty in
the estimate. Probability theory provides a framework to model this uncertainty and evaluate
the confidence in the estimate.
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2.4 Probability Density Functions

A continuous random variable x ∈ Rn is assumed to have a probability density function
(PDF) p(x) [22]. A continuous PDF is a function p : Rn → R ≥ 0 that satisfies the axiom of
total probability, ∫ b

a
p(x) dx = 1. (2.1)

If the random variable x ∈ [a,b] is distributed according to the PDF p(x), it is written as
x ∼ p(x).

A joint probability density can always be factored into a conditional and an unconditional
factor, such that

p(x, y) = p(y)p(x|y) = p(x)p(y|x). (2.2)

Rewriting the joint PDF in terms of the conditional PDF, the Bayes’ rule can be expressed as

p(x|y) =
p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
. (2.3)

The marginalization of a joint PDF p(x, y) with respect to some of the variables, such as x is
defined as ∫ ∞

−∞
p(x, y) dx =

∫ ∞
−∞

p(x|y)p(y) dx (2.4)

=

∫ ∞
−∞

p(y|x)p(x) dx (2.5)

= p(y)

∫ ∞
−∞

p(x|y) dx︸ ︷︷ ︸
=1

(2.6)

= p(y). (2.7)

Note that, the indefinite integral is taken to be from −∞ to ∞ throughout this thesis.
Subsequently,

p(x|y) =
p(y|x)p(x)

p(y)
(2.8)

=
p(y|x)p(x)∫
p(y|x)p(x) dx

(2.9)

,
1

η
p(y|x)p(x). (2.10)
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2.4.1 Gaussian Distributions

A special case of the PDF is the Gaussian distribution, and is widely used distribution in
estimation theory. The Gaussian distribution is unimodal, and it has mathematical properties
that allow for computationally efficient solutions to many estimation problems. The n-
dimensional Gaussian distribution is defined by the mean vector µ ∈ Rn and the covariance
matrix Σ ∈ Rn×n, and is denoted as N (x;µ,Σ). The covariance matrix is symmetric positive
definite, Σ = ΣT > 0, and therefore invertible. The PDF of the Gaussian distribution is
given by

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.11)

The expectation operator is defined as

E[x] =

∫
xp(x) dx = µ, (2.12)

where E[·] denotes the expectation operator.

2.4.2 Passing a Gaussian through a Nonlinearity

Let, g : Rn → Rm be a nonlinear function. Consider y = g(x) + η where x ∼ p(x), and
η ∼ N (0,R) represents sensor with the noisy output y corrupted by zero-mean Gaussian
noise with covariance R. The PDF of the output y is

p(y) =

∫
p(y|x)p(x) dx, (2.13)

where,

p(y|x) = N (y; g(x),R), (2.14)

p(x) = N (x;µx,Σxx). (2.15)

To approximately compute (2.13) various approaches can be taken, such as the use of
sigma points or linearization [22]. To approximately compute (2.13) via linearization, first
note that the linealization of g(·) about the mean µx is computed as,

g(x) ≈ g(µx) + G(x− µx), (2.16)

G =
∂g(x)

∂x

∣∣∣∣
x=µx

, [g1, . . . , gn], (2.17)

where gi is the i-th column vector of G. Let, gi =
[
∂g1
∂xi

. . . ∂gn
∂xi

]T
be the i-th column vector of
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G. This column vector is given as,

gi =
∂g(x)

∂xi

∣∣∣∣
x=µx

, lim
h→0

g(µx + h1i)− g(µx)

h
, (2.18)

where 1i is the i-th vector of the natural basis of Rn. The Gaussian approximation of the
output y is then given as,

p(y) = N (y;µy,Σyy) = N (g(µx),GΣxxGT + R), (2.19)

The detailed derivation of the above equations can be found in [22].

2.5 Matrix Lie Groups

Matrix Lie groups are used to represent the state robotic systems in the literature. As
such, in this thesis, the state of the robot will also be represented using matrix Lie groups.
The state of a robot is represented as an element of a matrix Lie group because the state
of a robot is often constrained to a manifold, and matrix Lie groups are a natural way to
represent such a constrained state [23]. Additionally, there are kinematic singularities and
ambiguities that result from Euler angle parametrization of attitude, which makes matrix Lie
groups a more suitable representation for attitude [24]. In Matrix Lie groups, the elements are
represented as square, invertible matrices, and the group operation is matrix multiplication.

2.5.1 Definitions and Identities

Consider the elements X,Y ∈ G, where G ⊂ Rn×n is a matrix Lie group. Any matrix Lie
group is closed under matrix multiplication, which means, XY ∈ G. Furthermore, the inverse
of an element X ∈ G is also in G, such that X−1 ∈ G. The identity element of dimension n,
1 ∈ G satisfies X1 = 1X = X for all X ∈ G.

The matrix Lie algebra g, associated with the matrix Lie group G, is the tangent space of
G at the identity element 1. The elements of the matrix Lie algebra are denoted as Ξ ∈ g,
and are represented as skew-symmetric matrices, such that Ξ = −ΞT. The linear map,
(·)∧ : Rm → g, maps the elements of the vector space to the matrix Lie algebra, such that,

Ξ = ξ∧, ξ ∈ Rm. (2.20)

Similarly, the inverse map (·)∨ : g→ Rm maps the elements of the matrix Lie algebra to the
vector space, such that,

ξ = Ξ∨, Ξ ∈ g. (2.21)

The exponential map exp : g→ G maps the elements of the matrix Lie algebra to the matrix
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Lie group, such that,

X = exp(ξ∧) , Exp(ξ), ξ ∈ Rm. (2.22)

The logarithmic map log : G→ g maps the elements of the matrix Lie group to the matrix
Lie algebra, such that,

ξ = log(X)∨ , Log(X), X ∈ G. (2.23)

Both, Exp(·) : Rm → G and Log(·) : G→ Rm are defined for conciseness. The exponential
map and logarithmic map are the same as the matrix exponential and matrix logarithm,
respectively, for matrix Lie groups.

An important definition that primarily appears in the derivation of Jacobians of a function
involving matrix Lie group elements is the adjoint operator, AdX : g→ g, such that

AdX(ξ∧) = Xξ∧X−1. (2.24)

Since the adjoint operator is a linear map, there exists a corresponding matrix representation
of the adjoint operator, denoted Ad : G→ Rm×m, such that

Ad(X)ξ = (Xξ∧X−1)∨. (2.25)

Finally, another identity that is used often used in the derivation of the Jacobians is

p�ξ , ξ∧p, p ∈ Rn. (2.26)

More details on the definitions and identities can be found in [25].

2.5.2 Perturbation of Matrix Lie Group Elements

Matrix Lie group elements can be perturbed in two ways due to the non-commutativity of
matrix multiplication. A generalized “addition” operator ⊕ : G× Rm → G and “subtraction”
operator ⊕ : G×G→ Rm are defined for matrix Lie groups, to perturb the group elements.
From the left,

X̄ ⊕ δξ = exp(δξ∧) X̄ (addition), (2.27)

X̄ 	 Y = log(X̄Y−1)∨ (subtraction), (2.28)

and from the right,

X̄ ⊕ δξ = X̄ exp(δξ∧) (addition), (2.29)

X̄ 	 Y = log(Y−1X̄)∨ (subtraction), (2.30)

where X̄ is the nominal matrix Lie group elements, and δξ is the perturbation vector.
The previous addition and subtraction definitions can be used to model the perturbation
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of the matrix Lie group elements. For example, the perturbation of the matrix Lie group
element X̄ ∈ G can be modelled as X̄ ⊕ δξ, where δξ ∼ N (0,Σ) is a zero-mean Gaussian
random variable with covariance Σ.

2.5.3 Linearization

For an element of a matrix Lie group, X = exp(δξ∧) ∈ G, the matrix exponential can be
written using the Taylor series expansion as

exp(δξ∧) =
∞∑
k=0

1

k!
(δξ∧)k. (2.31)

For a small perturbation δξ, the second and higher order terms can be neglected, and the
first order approximation of the matrix exponential is

X = exp(δξ∧) ≈ 1 + δξ∧, (2.32)

which is commonly used to linearize nonlinear models.

2.5.4 Derivatives of Matrix Lie Group Elements

As stated in [25], the Jacobian of a function f : G→ G, with respect to the matrix Lie
group element X is defined as

Df(X)

DX

∣∣∣∣∣
X̄

,
∂f(X̄⊕ δx)	 f(X̄)

∂δx

∣∣∣∣∣
δx=0

, (2.33)

where the function ∂f(X̄⊕ δx)	 f(X̄) for δx has Rm as both its domain and codomain, and
therefore can be differentiated using any standard technique.

Using the generalized definition above, the Group Jacobian of G is simply,

J(x) ,
DExp(x)

D x
, (2.34)

where left and right Jacobians are obtained using the left or right definition of the ⊕ and
	 operators, respectively. In this thesis, Jl and Jr are used to denote the left and right
Jacobians, respectively. Further details on the Jacobians of matrix Lie group elements can be
found in [25].

2.5.5 Matrix Lie Groups Useful for Robotics

Now that the basic definitions and identities of matrix Lie groups have been introduced,
the following are the matrix Lie groups that are commonly used in robotics, when the state
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of a robot is an attitude and a position in either a two-dimensional (2D) or three-dimensional
space (3D). Only the formal definitions are provided here, and the exact expression of the
operators on the different groups can be found in [22].

2.5.5.1 Special Orthogonal Group

Attitude of a robot is often represented by a direction cosine matrix, which is an element
of the special orthogonal group SO(2), in 2D and SO(3) in 3D. These groups in 2D and 3D
are defined as

SO(n) , {C ∈ Rn×n | CTC = 1, det(C) = +1}, n = 2, 3, (2.35)

respectively.

2.5.5.2 Special Euclidean Group

The pose, which collectively represents the position and attitude of a robot is often
represented by a pose transformation matrix, which is an element of the special Euclidean
group SE(2) in 2D and SE(3) in 3D. Considering that the relative attitude and position
between one robot and another is (C, r), the special Euclidean groups in 2D and 3D are
defined as

SE(2) ,

{
T ∈ R3×3 | T =

[
C r
0 1

]
, C ∈ SO(2), r ∈ R2

}
, (2.36)

SE(3) ,

{
T ∈ R4×4 | T =

[
C r
0 1

]
, C ∈ SO(3), r ∈ R3

}
, (2.37)

respectively.

2.5.6 Composite Groups

In this thesis, a composite group is a tuple of N matrix Lie groups G1, . . . , GN [26], with
elements of the form

X = (X1, . . . ,XN) ∈ G1 × . . .×GN . (2.38)

These elements form a matrix Lie group where the group operation, inverse, identity, expo-
nential map, and logarithmic map are defined elementwise. For instance, the ⊕ operator for
this group is defined as

X⊕ δx = (X1 ⊕ δx1, . . . ,XN ⊕ δxN), (2.39)
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Figure 2.1: Problem setup for formation control.

where δx =
[
δxT

1 . . . δxT
N

]T
.

2.6 Formation Control

Formation control is a subfield of multi-robot systems, where the objective is to control
the relative positions and orientations of a group of robots to achieve a desired formation.
The formation control is divided into two major parts: the formation shape control and the
formation motion control. The formation shape control is responsible for maintaining the

Figure 2.2: Formation control for a square formation with one robot in the middle.
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desired relative positions and orientations of the robots, while the formation motion control
is responsible for controlling the motion of the robots to reach a desired target location. The
formation control problem is challenging due to the nonlinear dynamics of the robots, and
the constraints imposed by the formation shape.

Consider N robots, an example of which is shown in Fig. 2.1. The set P , {1, . . . , N}
denotes the Robot IDs. The position of point i affixed to Robot i relative to a static point
w, resolved in the global reference frame Fg, is denoted as riwg . The attitude of Fi, a frame
affixed to Robot i, relative to the global reference frame Fg, is denoted as Cgi. The position
of point i affixed to Robot i, relative to point j affixed to Robot j, resolved in Fi, is denoted
as riji , and the attitude of Fi relative to Fj is denoted as Cij. These relative positions and
attitudes are related as

riji = CT
gi(riwg − rjwg ), (2.40)

Cij = CigC
T
jg. (2.41)

Control inputs to a robot can consist of acceleration or velocity inputs. In this thesis,
velocity control inputs are used for the formation control. The velocity control responsible
for maintaining the desired formation is defined as

uformation/g
i (t) =

∑
j∈P,
j 6=i

−ku||riji − rij
∗

i ||riji (t), (2.42)

where ku > 0, and rij
∗

i is the desired relative position of point i affixed to Robot i with respect
to point j affixed to Robot j. For instance, for 5 robots, if the desired formation is a square,
with one robot in the middle, the formation controller produces the path shown in Figure 2.2.

Reaching a desired target location is another important aspect of formation control. In
this task, the formation is assigned an arbitrary leader and the rest of the robots are followers.
The leader is required to reach a desired target location, while the followers maintain the
desired formation. The velocity control law for the formation to reach a desired target location
is different for the leader and the followers. The velocity control law for the leader is defined
as

ureach target/g
1 (t) = uformation/g

1 (t) + kvC
T
g1(r1w

g − r1w∗

g ), (2.43)

where kv > 0, and r1w∗
g is the desired position of the leader, with respect to the global

reference frame Fg. The velocity control law for the followers is defined as

ureach target/g
i (t) = uformation/g

i (t)− Ci1uformation/g
1 (t) + kvC

T
gi(r1w

g − r1w∗

g ), (2.44)
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Figure 2.3: Formation control for a square formation with one robot in the middle, and the
leader reaching a desired target location.

where i ∈ P , and i 6= 1. Now, if a square formation similar to the one shown in Figure 2.2 is
required to reach a desired target location, the path produced by the formation controller
is shown in Figure 2.3. Here, the leader, Robot 1, is required to reach the target location
r1w∗
g = [5 − 5]T starting from its initial position r1w

g = [0 0]T, while the followers maintain
the desired formation. Attitude control between the robots is not presented because it is not
applicable to the thesis. More information on formation control can be found in [27].
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Chapter 3

Bayesian Filtering

3.1 Overview

Bayesian inference helps make optimal decisions in the presence of uncertainty. For state
estimation of robots, Bayesian filters are used to find the optimal state given noisy, uncertain
sensor data. A probabilistic state-space model, composed of the process model and the
measurement model, is used to estimate the state of the robot.

• Process model: The process model encodes the prior beliefs of how the state evolves
over time. Using the Markov assumption [22, 28], the state at time k is dependent only
on the state at time k − 1, which is denoted as

xk ∼ p(xk|xk−1,uk−1), (3.1)

where xk is the state at time k, uk−1 is the process model input at time k − 1. The
input is typically an interoceptive sensor reading, such as accelerometer or gyroscope
data.

• Measurement model: The measurement model encodes distribution of the measurement
given the state, and is denoted as

yk ∼ p(yk|xk), (3.2)

where yk is the measurement at time k. The measurement is typically an exteroceptive
sensor reading, such as camera or UWB range data.

The goal of the Bayesian estimation is to estimate the posterior distribution of the current
state given the entire history of inputs and measurements, which is denoted as

p(xk|y1:k,u1:k, x̌0). (3.3)

The Bayesian filter consists of a prediction step and correction step. The filter is initialized
with a prior guess p(x̌0). Then the filter is run iteratively for each time-step k to estimate
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the posterior distribution of the state. The filter is run in two steps,
• Prediction step: For interoceptive sensor data, the state’s distribution is predicted using

the process model, which is denoted as

p(xk|y1:k−1,u1:k−1, x̌0) =

∫
p(xk|xk−1,uk−1)p(xk−1|y1:k−1,u1:k−1, x̌0) dxk−1. (3.4)

• Correction step: For exteroceptive sensor data, the state’s distribution is corrected
using the measurement model, which is denoted as

p(xk|y1:k,u1:k−1, x̌0) =
1

η
p(yk|xk)p(xk|y1:k−1,u1:k−1, x̌0), (3.5)

where η is a normalization constant, given as,

η =

∫
p(yk|xk)p(xk|y1:k−1,u1:k−1, x̌0) dxk. (3.6)

3.2 Discrete-time Process and Measurement Models

The process and measurement models of a filter are typically posed as discrete-time
nonlinear state-space models instead of the probabilistic state space models given in (3.1)
and (3.2). They are given as,

xk = f(xk−1,uk−1) + wk−1, wk−1 ∼ N (0,Qk−1), (3.7)

yk = g(xk) + vk, vk ∼ N (0,Rk), (3.8)

where wk and vk are zero-mean Gaussian noise, and Qk−1 and Rk are the process and
measurement noise covariance matrices, respectively.

3.3 Extended Kalman Filter

A Gaussian filter assumes that the state distribution is Gaussian,

p(xk|y1:k,u1:k, x̌0) ≈ N (xk|x̂k, P̂k), (3.9)

since that whole distribution p(xk|y1:k,u1:k, x̌0) is difficult to compute. The filter only computes
the mean x̂k and covariance P̂k of the Gaussian distribution and uses it to approximate the
distribution. The extended Kalman filter (EKF) is a Gaussian filter that linearizes the process
and measurement models about the current state estimate. The linearized models are,

f(xk−1,uk−1) ≈ x̌k + Ak−1(xk−1 − x̂k−1) (3.10)

g(xk) ≈ y̌k + Hk(xk − x̌k), (3.11)
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where

x̌k = f(x̂k−1,uk−1), (3.12)

Ak−1 =
∂f(xk−1,uk−1)

∂xk−1

∣∣∣∣
x̂k−1,uk−1

, (3.13)

and

y̌k = g(x̌k), (3.14)

Hk =
∂g(xk)
∂xk

∣∣∣∣
x̌k

. (3.15)

Using basic statistical properties, and the formula for passing a Gaussian through a stochastic
nonlinearity in (2.19), as derived in [22, Chap. 4, Pg. 116], it can be shown that,

p(xk|xk−1,uk−1) = N (f(xk−1,uk−1),Qk−1) (3.16)

≈ N (x̌k + Ak−1(xk−1 − x̂k−1),Qk−1), (3.17)

p(yk|xk) = N (g(xk),Rk) (3.18)

≈ N (y̌k + Hk(xk − x̌k),Rk), (3.19)

where wk−1 and vk are additive noise terms to the process and measurement models, respec-
tively. Now, the above expressions lead to the prior and posterior distributions,

p(xk|y1:k−1,u1:k−1, x̌0) =

∫
N (f(xk−1,uk−1),Qk−1)N (x̂k−1, P̂k−1) dxk−1 (3.20)

⇒ N (x̌k, P̌k) = N (x̌k,Ak−1P̂k−1AT
k−1 + Qk−1). (3.21)

p(xk|y1:k,u1:k−1, x̌0) =
1

η
N (g(xk),Rk)N (x̌k, P̌k) (3.22)

⇒ N (x̂k, P̂k) =
1

η
N (g(x̌k),Vk)N (x̌k + Kk(yk − y̌k), (1−KkHk)P̌k), (3.23)

where Kk is the Kalman gain, and Vk = HkP̌kHT
k + Rk is the covariance of the predicted

measurement from the measurement model. Note that, (3.21) is derived using the steps for
passing a Gaussian through a stochastic nonlinearity given in Section 2.19. The detailed
derivation of (3.23) is given in [22, Chap. 4, Pg. 116]. Following (3.23), the normalization
constant, η, is given as,

η =

∫
N (g(xk),Rk)N (x̌k, P̌k) dxk (3.24)

=

∫
N (g(x̌k),Vk)N (x̌k + Kk(yk − y̌k), (1−KkHk)P̌k) dxk. (3.25)
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Figure 3.1: Structure of the Extended Kalman Filter

Inside the integral, the first factor is independent of xk, and the second factor is a Gaussian
distribution that sums to 1. Therefore,

η = N (g(x̌k),Vk), (3.26)

and the posterior distribution is simply,

N (x̂k, P̂k) = N (x̌k + Kk(yk − y̌k), (1−KkHk)P̌k). (3.27)

The EKF algorithm is given as,
• Prediction step:

x̌k = f(x̂k−1,uk−1), (3.28)

P̌k = Ak−1P̂k−1AT
k−1 + Qk−1. (3.29)

• Correction step:

Vk = HkP̌kHT
k + Rk, (3.30)

Kk = P̌kHT
kV−1

k , (3.31)

x̂k = x̌k + Kk(yk − y̌k), (3.32)

P̂k = (1−KkHk)P̌k. (3.33)

The structure of the EKF is shown in Fig. 3.1. A detailed derivation of the EKF can be
found in [22].

3.4 Gaussian-Sum Filter Derivation

The Gaussian sum filter (GSF) is a Gaussian filter that approximates the posterior
distribution as a sum of Gaussians. As such, it is assumed that, the PDF of the state is a
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mixture of Gaussians, and is given as,

p(xk−1|y1:k−1,u1:k−1, x̌0) ≈
N∑
i=1

w
(i)
k−1N (x̂(i)

k−1, P̂
(i)
k−1). (3.34)

The GSF algorithm can be derived by inserting the Gaussian sum approximation into the
prediction and correction steps of the EKF. It follows that,

• Prediction step: In the density p(xk−1|y1:k−1,u1:k−1, x̌0), a dependence on xk−1 can be
inserted through marginalization that gives,

p(xk|y1:k−1,u1:k−1, x̌0) =

∫
p(xk|xk−1,uk−1)p(xk−1|y1:k−1,u1:k−1, x̌0) dxk−1, (3.35)

where it is known that,

p(xk|xk−1,uk−1) = N
(
f(xk−1,uk−1),Qk−1

)
, (3.36)

which results in,

p(xk|y1:k−1,u1:k−1, x̌0)

=
N∑
i=1

w
(i)
k−1

∫
N
(
f(xk−1,uk−1),Qk−1

)
N (x̂(i)

k−1, P̂
(i)
k−1) dxk−1︸ ︷︷ ︸

EKF prediction step

(3.37)

=
N∑
i=1

w
(i)
k−1N (x̌(i)

k , P̌
(i)
k ), (3.38)

where,

x̌(i)
k = f(x̂(i)

k−1,uk−1), (3.39)

P̌(i)
k = A(i)

k−1P̂(i)
k−1A(i)

k−1 + Qk−1. (3.40)

• Correction step: Using Bayes’ rule, the posterior distribution is given as,

p(xk|y1:k,u1:k−1, x̌0) =
p(yk|xk)p(xk|y1:k−1,u1:k−1, x̌0)

p(yk|y1:k−1,u1:k−1, x̌0)
, (3.41)

where, it is known that,

p(yk|xk) = N (g(xk),Rk). (3.42)
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Now, the posterior distribution is

p(xk|y1:k,u1:k−1, x̌0) =
1

η

N∑
i=1

w
(i)
k−1N (g(xk),Rk)N (x̌(i)

k , P̌
(i)
k ) (3.43)

=
1

η

N∑
i=1

w
(i)
k−1N (g(x̌(i)

k ),V(i)
k )N (x̂(i)

k , P̂
(i)
k )︸ ︷︷ ︸

Refer to Eq. (3.23)

, (3.44)

where the normalization constant η is

η =
N∑
i=1

w
(i)
k−1N (g(x̌(i)

k ),V(i)
k ), (3.45)

as derived in (3.26). Therefore, the weights of the Gaussian sum filter at timestep k
are given as

w
(i)
k =

w
(i)
k−1N (g(x̌(i)

k ),V(i)
k )∑N

i=1w
(i)
k−1N (g(x̌(i)

k ),V(i)
k )

. (3.46)

In summary, the GSF algorithm is given as,
• Prediction step:

x̌(i)
k = f(x̂(i)

k−1,uk−1), (3.47)

P̌(i)
k = A(i)

k−1P̂(i)
k−1A(i)

k−1 + Qk−1. (3.48)

• Correction step:

V(i)
k = H(i)

k P̌(i)
k H(i)T

k + Rk, (3.49)

K(i)
k = P̌(i)

k H(i)T
k V(i)−1

k , (3.50)

x̂(i)
k = x̌(i)

k + K(i)
k (yk − y̌(i)

k ), (3.51)

P̂(i)
k = (1−K(i)

k H(i)
k )P̌(i)

k , (3.52)

w
(i)
k =

w
(i)
k−1N (g(x̌(i)

k ),V(i)
k )∑N

i=1 w
(i)
k−1N (g(x̌(i)

k ),V(i)
k )

. (3.53)

• State estimate:

x̂k =
N∑
i=1

w
(i)
k x̂(i)

k , (3.54)

P̂k =
N∑
i=1

w
(i)
k

(
P̌(i)
k + (x̂(i)

k − x̂k)(x̂(i)
k − x̂k)

T
)
. (3.55)

The structure of the GSF is shown in Fig. 3.2.
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At timestep k :

Figure 3.2: Structure of the Gaussian-sum filter (GSF) with N modes. The EKFs are run
in parallel and the posterior density at time-step k is represented as a Gaussian sum of M
modes, with the ith mode weighted using w(i)

k .

3.5 Particle Filter

The particle filter (PF) is a nonparametric filter that approximates the posterior distri-
bution as a set of weighted particles. Assume that there are x(i)

k−1, i = 1, . . . , N samples at
timestep k − 1, with weights w(i)

k−1, which together represent p(xk−1|y1:k−1,u1:k−2, x̌0). The
particle filter algorithm is given as,

• Prediction step:
1. Draw N samples w(i)

k from the noise distribution p(wk).
2. Compute the predicted particles with

x(i)
k = f(x(i)

k−1,uk−1) + w(i)
k , (3.56)

which now approximates p(xk|y1:k−1,u1:k−1, x̌0).
• Correction step:
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1. Compute the un-normalized importance weights as,

w
(i)
k = w

(i)
k−1p(yk|x(i)

k ) = w
(i)
k−1N (g(x(i)

k ),Rk) (3.57)

and normalize them to sum to 1.
2. Resampling step: Resample N particles with replacement from the set {x(i)

k , w
(i)
k },

where the probability of selecting a particle is proportional to its weight. More
information on resampling can be found in [29].

The particle filter is a powerful tool for state estimation in nonlinear, non-Gaussian
systems. However, it suffers from the curse of dimensionality, where the number of particles
required to represent the posterior distribution grows exponentially with the state dimension.
This makes the particle filter computationally expensive for high-dimensional state spaces. A
detailed derivation of the particle filter can be found in [28].

3.6 Consistency

The consistency of a filter is used to evaluate whether the statistics reported by the filter
matches the true statistics of the state x. Let the filter’s estimated mean and covariance be
x̂k and P̂k, respectively, at timestep k. Then, according to [30], the filter is consistent if

E [xk − x̂k] = 0, (3.58)

E
[
(xk − x̂k)(xk − x̂k)

T
]

= P̂k, (3.59)

where E[·] is the expectation operator. The first equation ensures that the filter is unbiased,
and the second equation ensures that the filter’s covariance is equal to the true covariance
of the state. The consistency of the filter can be evaluated using the normalized estimation
error squared (NEES) and normalized innovation squared (NIS) metrics. The NEES is given
as

εk = (xk − x̂k)
TP̂−1

k (xk − x̂k). (3.60)

If the filter is consistent, then εk ∼ χ2
n where χ2

n is the chi-squared distribution with n degrees
of freedom. For N Monte Carlo trials, the N-run average NEES is given as

ε̄k =
1

N

N∑
i=1

ε
(i)
k , (3.61)

where i is the Monte Carlo trial index. If the filter is consistent, then Nε̄k ∼ Nχ2
n. The

NEES test requires ground truth data, which is not available in real-time when a filter is
used. The NIS test, however, requires that the innovation zk = yk − y̌k should satisfy the
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measurement estimate covariance Vk. The NIS is given as,

νk = zTkV−1
k zk, (3.62)

and if the measurement is not an outlier, then νk ∼ χ2
m where m is the dimension of the

measurement. The NIS test is used as an outlier-rejection test, where if νk is greater than a
threshold, then the measurement is considered an outlier and is rejected from the estimator
correction step in real-time. Refer to [30] for more information on the NIS test.
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Chapter 4

Gaussian-Sum Filter for Range-based 3D
Relative Pose Estimation in the Presence

of Ambiguities

4.1 Summary

Three-dimensional relative pose estimation using range measurements oftentimes suffers
from a finite number of non-unique solutions, or ambiguities. This chapter: 1) identifies
and accurately estimates all possible ambiguities in 2D; 2) treats them as components of
a Gaussian mixture model; and 3) presents a computationally-efficient estimator, in the
form of a Gaussian-sum filter (GSF), to realize range-based relative pose estimation in an
infrastructure-free, 3D, setup. This estimator is evaluated in simulation and experiment and
is shown to avoid divergence to local minima induced by the ambiguous poses. Furthermore,
the proposed GSF outperforms an extended Kalman filter, demonstrates similar performance
to the computationally-demanding particle filter, and is shown to be consistent.

4.2 Introduction

The relative pose needs to be accurately estimated to realize autonomous multi-robot
tasks. Sensors such as cameras with object-detection ability [31] or LiDAR [32] can satisfy
the relative pose estimation requirement, but they are computationally expensive. For
infrastructure-free localization, it in shown [11] that placing two UWB tags per robot ensures
“local observability”. This setup combined with an interoceptive IMU or velocity readings
allow for infrastructure-free relative pose estimation in 3D. However, even with two tags per
robot, the range measurements yield multiple solutions for relative robot poses, referred to as

24



“discrete” ambiguities, which are not addressed in [11].
These ambiguities form a multi-modal distribution of relative poses that the estimator

must account for. Adding more UWB tags per robot reduces the number of ambiguities
at the cost of the tags not communicating at their highest data rate. In fact, even with
three strategically-positioned tags, only relative robot positions can be disambiguated, while
relative attitude still remains ambiguous. Therefore, for a range-based approach, designing
estimators that can handle these ambiguities is of great importance.

In the face of ambiguities, Gaussian-based filters, such as an EKF, can perform poorly
since they assume that the distribution is unimodal [33]. A particle filter (PF) can handle
a multi-modal distribution [34–36], but it is computationally expensive due to the need for
many particles to describe the multi-modality [37]. Range-based localization of the ambiguous
position of one robot with the help of three static anchors with known positions in 2D has been
addressed using a Gaussian-sum filter (GSF) in [38]. Additionally, signal map measurements
often exhibit multi-modality while tracking multiple targets [39], and a Gaussian mixture
model (GMM) helps isolate the “true” measurement for a particular target. In this chapter,
the ideas presented in [38, 39] are extended to design a localization solution involving a
Gaussian-sum filter (GSF) where the “true” relative pose between multiple robots is identified
among the ambiguous poses in 3D. Note that, [38] solves a single-robot localization problem,
where one robot has one range sensor affixed to it, which provides distance measurements
to three static anchors. Unlike [38], this chapter provides a complete anchor-free 3D pose
estimation solution for multi-robot systems. The solution only uses two UWB tags per robot
to ensure that the system is locally observable [11], and no static anchors are required.

As such, the key contributions of this chapter are as follows.
• Identification of all the possible ambiguous relative poses between N robots using a
geometric approach is presented. The geometric estimates are fed into a least-squares
estimator to form a GMM of ambiguous relative poses in 3D. These estimates are used
to initialize a GSF to identify the “true” relative pose. Since this GSF is only initialized
at the ambiguous poses, it contains the minimum number of Gaussian components
required to model the multi-modal state.

• To the best of the Author’s knowledge, this is the first work where a GSF is used for
anchor-free, range-based 3D relative pose estimation between robots in the presence
of ambiguities. Approaching this problem in 3D is non-trivial due to the increased
complexity of the state space and the number of ambiguities.

• In simulations and experiments, the proposed estimator involving the GSF is shown to
have a similar performance to the PF, while, as expected, being orders of magnitude
faster.
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The remainder of this chapter is organized as follows. The problem formulation is in
Section 4.4 and the GSF is discussed in Section 4.5. The ambiguous pose estimation procedure
for initializing the GSF is presented in Section 4.6. The estimator is validated in simulation
and experiment in Sections 4.7 and 4.8, respectively.

τ1 τ2
τ6

τ5 τ3

τ4

1

3 2

Figure 4.1: Problem setup for a two-tag multi-robot system. Without loss of generality, the
pink robot, defined as Robot 1, is considered to be the reference robot.

4.3 Notation and Preliminaries

Consider N robots with IDs, P = {1, . . . , N}. Each robot is equipped with two ranging
tags, resulting in a total of 2N tags collectively, as shown in Fig. 4.1. The physical points
τ1, . . . , τ2N denote the location of the tags on the robots. The set of tag IDs is denoted
as V = {1, . . . , 2N}. A measurement graph G = (V , E) denotes the inter-tag range
measurements. The nodes V = {1, . . . , 2N} are the set of tag IDs and the edges E denote
the set of inter-tag range measurements.

A 2-dimensional orthonormal reference frame Fp is attached to Robot p. A common
global reference frame and a static point are denoted by Fg and w, respectively. The position
of a chosen reference point in Robot p relative to point w, resolved in Fp is denoted rpwp ∈ Rn,
and the robot’s translational velocity with respect to another arbitrary reference frame Fc is
denoted vpw/cp ∈ Rn. Vectors resolved in different frames are related by the transformation,
rpwp = Cpqrpwq , where Cpq ∈ SO(n). The angular velocity of Fp relative to Fq resolved in Fc
is denoted ωpqc . For conciseness, Robot p is referred to as Rp in plot legends. The relative
pose between Robots p and q is

Tpq =

[
Cpq rqpp
0 1

]
∈ SE(n), (4.1)
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where SE(n) is the special Euclidean group in n dimensions.

4.4 Problem Formulation

The poses of all the robots are expressed relative to Robot 1, which is arbitrarily chosen
to be the reference robot. As such, the state of the system is

x = (T12, . . . ,T1N) ∈ SE(3)N−1. (4.2)

The position of Robot p relative to Robot q, resolved in F1, is

rpq1 = DT1pb− DT1qb, (4.3)

where D = [12×2 02×1], b = [01×2 1]T.
The range measurement of Tag i relative to Tag j in Robots p and q, respectively, is

modelled as

yij(x) =
∥∥DT1pr̃

τip
p − DT1qr̃

τjq
q

∥∥+ ηij, (4.4)

where r̃ = [rT 1]T, and ηij ∼ N (0, σ2
ij). Therefore, the augmented measurement vector of all

the range measurements is

y = g(x) + η =
[
· · · yij(x) · · ·

]T
+ η ∈ R|E|,

∀(i, j) ∈ E ,η ∼ N (0,R), R = diag(. . . , σ2
ij, . . .). (4.5)

The objective is to accurately estimate the state x. For this, the interoceptive measure-
ments are each robot’s angular and translational velocities as resolved in its body frame,
denoted as

up = [ωpgTp vpw/gTp ]T + wp ∈ Rm, wp ∼ N (0,Qp),

where wp is zero-mean Gaussian noise with covariance Qp. The relative pose between Robots
1 and p at time-step k is

T1pk
= T−1

g1k
Tgpk

=
(

exp(−∆tu∧1k−1
)T−1

g1k−1

)(
Tgpk−1

exp(∆tu∧pk−1
)
)

= exp(−∆tu∧1k−1
)T1pk−1

exp(∆tu∧pk−1
),

, f(T1pk−1
,u1k−1

,upk−1
), (4.6)

where ∆t = tk − tk−1 is the time interval. The relative poses T1pk
, p = 2, . . . , N, collectively

form the state xk. At timestep k, the range measurement between the UWB tags in Robots
p and q, and the measurement model are given in (4.4) and (4.5), respectively.
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Estimating the state x of a multi-robot system with two tags per robot is non-trivial. As
shown in Fig. 4.2, in this setup, there is a finite set of discrete relative poses or ambiguities
that correspond to the same range measurements. These ambiguities will be referred to
as modes in the chapter. In 2D, the two obvious ambiguities are modes 1 and 2 since the
range measurements are equal in both the modes. Given noisy range measurements, when
y1i ≈ y1j and y2i ≈ y2j , there is a likelihood of “flip” ambiguities occurring, where tags τi and
τj swap their positions, yielding modes 3 and 4. These modes present an issue for estimator
initialization when robots are static, as there is no motion to disambiguate the multiple
modes.

The multi-modal state representing this system can be estimated using a GSF. The GSF
is typically initialized by sampling from either a uniform distribution of all possible states or
a Gaussian distribution based on the prior knowledge. With limited prior knowledge, both
methods can require many Gaussian components in the GSF. In this chapter, a Gaussian
component is assigned per ambiguous pose in 2D, which are denoted as modes in Fig. 4.2,
to form a GMM that captures the state’s multi-modality effectively. This GMM is used to
initialize a GSF that isolates the “true” mode when the robots are in motion and avoids
divergence to new ambiguities in-flight, which allows accurate and efficient state estimation.
This novel initialization method minimizes the number of Gaussian components required in
the GSF, thus improving computational efficiency.

τ1 τ2

1

p

τ
(1)
i

τ
(3)
i

p mode 1mode 3

mode 2mode 4

p

p

y1i

y2i

τ
(4)
i

τ
(4)
j

y1j y2j Robot p

Robot 1

τ
(3)
j

τ
(1)
j

τ
(2)
j

τ
(2)
i

Figure 4.2: Visualization of all the possible ambiguous relative poses between robots 1 and p.
The relative pose in mode 1 is the “true” pose and modes 2, 3, and 4 are ambiguities. The
range measurements are y1i, y1j, y2i, and y2j.
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To initialize the GSF using the proposed GMM, given the challenge posed by measurement
noise, a two-step solution is undertaken. Firstly, analytical geometric derivations are used
to evaluate all ambiguous poses in 2D as a preliminary guess. Secondly, this guess is
refined through a nonlinear least-squares algorithm to get a more accurate estimate. These
methodologies are discussed in Section 4.6.

4.5 Gaussian-Sum Filter

The GSF as introduced in Chapter 3 consists of M EKFs, each initialized with an
equal weightage at a different initial state, x̌(i)

0 and covariance, P̌(i)
0 , i = 1, . . . ,M , such that∑M

i=1w
(i)
0 = 1. Each of these EKFs is referred to as a mode of the GSF in this chapter.

The process and measurement models require for the GSF prediction and correction
step are given in (4.6) and (4.5), respectively. The process model Jacobian, A(x), and the
measurement model Jacobian, H(x), are given in Section 4.5.1 and Section 4.5.3, respectively.

The primary feature of the GSF is that when a new measurement yk is received, the
weights are updated by comparing the measurement with the predicted measurement of each
mode, which is given by

y̌(i)
k = g(x̌(i)

k ), (4.7)

where, x̌(i)
k is the predicted states of the ith mode. If a mode’s predicted value y̌(i)

k closely
matches yk, it is more likely to be responsible for the observation and thus receives a higher
weight and vice versa. The weights quantify the probability of a measurement being associated
with each mode, and are updated using (3.53).

The mean estimate of the GSF is a weighted average of the estimates in all the modes,
while the covariance is assumed as the covariance of the max-weighted mode since the
objective is to detect the true Gaussian mode. According to [40], for matrix Lie groups, the
mean estimate is given by

ξ̂k =
M∑
i=1

w
(i)
k ξ̂

(i)
k , where, ξ̂

(i)
k = x(i)

k 	 x̂k−1, (4.8)

x̂k = x̂k−1 ⊕ ξ̂k, (4.9)

P̂k = P̂(i)
k , i = arg max

i
w

(i)
k , (4.10)

Note that, conventionally, the covariance of the GSF is computed as a weighted sum of
the covariance of all the modes as shown in (3.55). However, in this work, the covariance
of the max-weighted mode is used since it is the most likely mode to be the true mode. As
will be shown in Section 4.7, the GSF estimates almost instantaneously coverage to the true
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mode, and so does the covariance, which supports this assumption. A detailed derivation of
the GSF is given in Chapter 3.

4.5.1 Process Model Jacobian

Let T1p = T̄1p exp(δξ∧), where T̄1p ∈ SE(n), and δξ ∈ Rm is small. Replacing T1pk
and

T1pk−1
by this approximation into (4.6) and left-multiplying both sides by T̄−1

1pk
yields

T̄1pk
exp(δξ∧k ) = exp(−∆tu∧1k−1

)T̄1pk−1
exp(δξ∧k−1) exp(∆tu∧pk−1

) (4.11)

⇒ exp(δξ∧k ) = T̄−1
1pk

exp(−∆tu∧1k−1
)T̄1pk−1

exp(δξ∧k−1) exp(∆tu∧pk−1
) (4.12)

Now, replacing T̄1pk
= exp(−∆tu∧1k−1

)T̄1pk−1
exp(∆tu∧pk−1

) into (4.12) it follows that

⇒ exp(δξ∧k ) = exp(−∆tu∧pk−1
) exp(δξ∧k−1) exp(∆tu∧pk−1

).

Using the adjoint operator given in (2.24), it follows that

δξk = Ad(exp(−∆tu∧pk−1
))δξk−1. (4.13)

Based on [25],

D f(T1pk−1
,u1k−1

,upk−1)

DT1pk−1

= Ad(exp(−∆tu∧pk−1
)). (4.14)

Thus, Ak−1(x) a block-diagonal matrix in R(m×m)(N−1), where the (p− 1)th block is given by
(4.14), for p = 2, . . . , N .

4.5.2 Process Model Noise Covariance

The process noise covariance is a block-diagonal matrix in R(m×m)(N−1), where the (p−1)th

block is given by

Q1pk−1
= L1Q1LT

1 + LpQpL
T
p , where, (4.15)

L1 = ∆tAd(T1pk−1
exp(∆tu∧pk−1

))Jl(∆tu1k−1
),

Lp = ∆t Jl(−∆tupk−1
), (4.16)

and are formulated based on [41]. The Jl(·) operator is the left Jacobian of the exponential
map, and Q1 and Qp are the covariance matrices for the velocity inputs u1k−1

and upk−1
,

respectively.
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4.5.3 Measurement Model Jacobian

The measurement model Jacobian is given by

H(x) =


...

Hij(x)T

...

 , (4.17)

where,

Hij(x) =
[

0 · · · Hij
p (x) · · · Hij

q (x) · · · 0
]

∈ R1×m(N−1),

Hij
p (x) = ρijDT̄1pr̃

τip�
p ∈ R1×m, (4.18)

Hij
q (x) = −ρijDT̄1qr̃

τjq�
q ∈ R1×m, (4.19)

ρij =
DT1pr̃τipp − DT1qr̃

τjq
q

||DT1pr̃
τip
p − DT1qr̃

τjq
q ||

. (4.20)

The pth and qth block columns of Hij(x) are populated by (4.18) and (4.19), respectively. A
detailed derivation of the measurement model Jacobian is given in [21].

4.6 GSF Initialization Process

4.6.1 Pose Evaluation using Geometry

The estimation of the four possible solutions for relative poses between Robot 1 and
Robot p in 2D, as shown in Fig. 4.2, is a challenging problem. They are first computed using
a geometric method. These solutions form a combination of all ambiguous relative poses
between Robots 1 to N . Since the robots only have two ranging tags each, to ensure a finite
number of solutions, the problem is addressed in 2D, assuming zero relative roll, and pitch
between the robots. Assuming, that the robots can be at different heights, to project the
range measurements into a 2D plane, the relative height between the robots is taken from
the laser-range finders mounted on the robots, and then a 2D projection is performed on
the range measurements. This method assumes that the robots are static or hovering over a
common flat surface, which is a reasonable assumption for indoor environments.

The notational preliminaries are as follows. The Tags 1 and 2 are in Robot 1 and Tags i
and j are in Robot p. The range measurements between Robots 1 and p are y1i, y1j , y2i, and
y2j. The unit vector between tags τ1 and τ2 is,

n1 =
1

d
rτ2τ11 , d = ||rτ2τ11 ||, and n1⊥ =

[
0 −1
1 0

]
n1, (4.21)

is its dextral orthonormal counterpart. Additionally, note that, any attitude Cpq ∈ SO(2)
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between the frames Fp and Fq is a function of the heading φqp between the frames, and is
denoted as Cpq , Cpq(φqp) [22].

In Fig. 4.3a, the two possible position vectors between Tags τ1 and τµ, µ ∈ {i, j}, and
subsequently, the possible position vectors between Tags τi and τj are,

eµ =
1

2d
(y2

1µ − y2
2µ + d2), hµ =

√
(y2

1µ − e2
µ), µ ∈ {i, j},

rτµτ1(1)
1 = eµn1 + hµn1⊥, µ ∈ {i, j}, (4.22)

rτµτ1(2)
1 = eµn1 − hµn1⊥, µ ∈ {i, j}, (4.23)

rτiτj(α)
1 = rτiτ1(α)

1 − rτjτ1(α)
1 , α = 1, 2, (4.24)

where α is the mode number of the ambiguity.

τ1 τ2

τ (1)µ
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n1⊥
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(a) Geometry between tags
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(b) Geometry between frames

Figure 4.3:(a) Visualization of the geometric relation between tags τ1, τ2 of Robot 1 and
τµ, µ ∈ {i, j} of Robot p resolved in F1. The range measurements consist of y1µ and y2µ,
µ ∈ {i, j}. The reference point in Robot 1, 1, and the frame F1 are arbitrarily defined. (b)
Visualization of the relation between frames F1, Fp, and Fr. Tags τi and τj are mounted on
Robot p. In both figures, the superscript (·) represents the mode number.

A right-handed frame denoted as F (α)
r whose x-axis is aligned with the physical vector

r−→
τiτj(α) is shown in Fig. 4.3b in blue. The heading of Fr relative to Fp and F1, and

subsequently the attitude, C(α)
1p , in modes 1 and 2 are,

φrp = tan−1(yp/xp), s.t. rτiτjp = [xp yp]
T,

φ
(α)
r1 = tan−1(y

(α)
1 /x

(α)
1 ), s.t. rτiτj(α)

1 = [x
(α)
1 y

(α)
1 ]T,

C(α)
1p = C(α)

1r CT
pr, α = 1, 2. (4.25)
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Thus, the relative robot positions in modes 1 and 2 are,

rp1(α)
1 = C(α)

1p rpτip + rτiτ1(α)
1 + rτ11

1 , α = 1, 2. (4.26)

The flip ambiguities in modes 3 and 4 are reflections of the modes 1 and 2 about the axis
joining the Tags τi and τj relative to F1, given by [42, Eq. (8)],

rp1(α+2)
1 =

[
dα −2aαbα

−2aαbα −dα

]
rp1(α)

1 − 2cα

[
aα

bα

]
a2
α + b2

α

,

where, dα = b2
α− a2

α, cα = diag(−aα, bα) rτi1(α)
1 , and rτjτi(α)

1 = [bα aα]T, α = 1, 2. As shown in
Fig. 4.2, the respective attitudes in these modes have a heading of π relative to the attitudes
in modes 1 and 2, given by,

C(α+2)
1p = C(π)C(α)

1p , α = 1, 2. (4.27)

By repeating this process, there will be 4 modes of N − 1 relative poses between Robots
1 and p, for p = 2, . . . , N . Therefore, the total number of combinations of modes are
M = (4)N−1, collectively denoted as x(i)

geom, i = 1, . . . ,M .
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Figure 4.4: Comparison between the true pose and the ambiguous GI-LS pose estimates in a
system of three robots, each having two tags. The opaque drones denote the true poses. The
lighter shaded drones with their respective covariance plots are the pose estimates and their
corresponding uncertainties.
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4.6.2 Nonlinear Least-Squares Optimization

The geometric estimates x(i)
geom, i = 1, . . . ,M are used to initialize a nonlinear least-squares

algorithm [30] by solving

x̂0 =
1

2
arg min

x
‖e(x)‖2 , where e(x) = g(x)− ȳ.

Here, instead of a single set of inter-tag range measurements, an average of γ ≥ 100 range
measurements, ȳ, are used, which are collected when the robots are static. The averaging
enhances the signal-to-noise ratio and improves estimation accuracy. For i = 1, . . . ,M ,
x ∈ SE(2)N−1 is iteratively updated using the ⊕ operator as,

x̂(i)
t = x̂(i)

t−1 ⊕
(
λ δx(i)

t−1

)
, (4.28)

where λ is the step size, t is the iteration number, and x̂(i)
0 = x(i)

geom. The optimal step δx(i)
t−1

is given by

δx(i)
t−1 = −

(
H(x)TH(x)

)−1 H(x)Te(x)
∣∣∣
x̂(i)t−1

, (4.29)

where H(x) is the measurement model Jacobian. The iterations are repeated until ||δx(i)
t−1|| is

small. In the measurement Jacobian, by taking the measurements between all the tags into
account, the least-squares method produces a far more accurate estimate of the ambiguous
relative poses than the geometric method. It even reduces the number of ambiguities since
it is fed more inter-robot measurement information compared to the geometric method.
However, the geometric method confines the initial guesses to a small and informed state
space, essential for efficient convergence of the least-squares estimator.

The covariance of the least-squares estimate represents the uncertainties associated with
estimating the state using the range measurements. Assuming that the average range
measurements, ȳ, are unbiased, using this matrix as the covariance of state estimates is a
good starting point for any filter initialization. This covariance is given by [43]

P(i)
τ = Σ(i)(H(x̂(i)

τ )TH(x̂(i)
τ ))−1, Σ(i) =

1

L
e(x̂(i)

τ )Te(x̂(i)
τ ),

where L = |E|− (N −2), e(x̂(i)
τ ) = ȳ−g(x̂(i)

τ ), i = 1, . . . ,M , and τ is the last iteration number.
Finally, the relative poses between Robots 1 and p in the state x(i)

τ are transformed from
SE(2) to SE(3) by augmenting them with zero quantities such that the relative roll, pitch
and height are zero, which is a reasonable assumption for the start-up phase, where the
robots are at ground level. These estimates and their covariances, denoted as {x̂(i)

τ , P̂(i)
τ }Mi=1,

are referred to as the geometrically-initialized least-squares (GI-LS) estimates.
This approach is validated in simulation and experiment, as shown in Fig. 4.4, using
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Figure 4.5: The performance of the EKF, GSF and PF on simulated data for two-tag Robots
2 and 3, with Robot 1 as reference robot. The GSF and PF are initialized with 8 GI-LS
estimates and 1500 particles, respectively. The EKF is initialized in a wrong mode among
the 8 GI-LS estimates. The shaded regions represent the ±3σ bounds.

the problem setup in Fig. 4.1. Here, the lighter shaded drones depict the estimates with
their covariances. Using 4 s of noisy range measurements at 50 Hz in simulation and 5 s at
90 Hz in experiment, both with a covariance R = 0.121 m2, the proposed method identifies
all four ambiguities in SE(2) for each robot. The estimates are accurate despite noise and
disturbances. Furthermore, the estimates with lower covariances are more likely to be the
“true” mode, given that the covariance indicates confidence. Note that, since the least squares
method has more measurement information, in Fig. 4.4, it is able to reduce the number of
ambiguities from 16 geometric estimates to 8 final estimates for the three-robot scenario.
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Figure 4.6: GSF trajectory estimation plot for a single run in simulation, shown in 2D. Only
some modes of the GSF and only the relative position between Robot 1 and Robot 2 are
shown for clarity. The ground truth starts at the location the quadcopters are plotted, and
Robot 1 is the reference robot.

4.7 Simulations

The GSF with its proposed initialization features is compared with the PF and EKF in
simulation. The setup is shown in Fig. 4.1, where the three robots have two tags each, and
Robot 1 is the reference robot. The two tags are located at

rτipp =

0.17

0.17

0

 , rτjpp =

 0.17

−0.17

0

 ,
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Figure 4.7: Violin and box plots showing the distribution of the 100-trial attitude and position
RMSEs for simulation in SE(3). The envelope shows the relative frequency of RMSE values.
The white dot is the median, and the lower and upper bound of the black bar represent the
first and third quartile of the data, respectively.

where i and j are the tag IDs, p is the robot ID, and the units are in meters. The robot
velocities are inputs to the process model, and inter-tag range data at 50 Hz, with a covariance
of R = 0.121 m2 are the measurements.

In Fig. 4.5, the pose-error plots for a single run of the GSF, PF, and EKF in simulation
are shown. The GSF is initialized with 8 equally-weighted GI-LS estimates, {x̂(i)

τ , P̂(i)
τ }8

i=1,
the PF with 1500 particles around the ambiguities, and the EKF is initialized in a wrong
mode among the 8 GI-LS estimates. Note that, the particles in the PF lie in the vicinity
of the ambiguous poses evaluated using the nonlinear least-squares method. From the error
plots alone, for this single run, despite the GSF having far fewer Gaussian components than
the PF’s particles, it is visibly more stable and accurate. The EKF diverges since it is
initialized in a wrong mode. An EKF initialized in the correct mode is not shown, as it is
not practical to know the correct mode in real-world scenarios. Additionally, Fig. 4.6 shows
the GSF trajectory estimation plot in 2D for the same run. For clarity of reading the plot,
only the relative position estimates between Robot 1 and Robot 2 and only some modes of
the EKFs running inside the GSF are shown. The plot clearly shows that the GSF almost
instantaneously converges to the “true” EKF as its highest-weighted mode, which is EKF 5.

The proposed GSF’s performance is assessed over 100 Monte-Carlo trials with varied
initial conditions and noise realizations on random trajectories. Its root-mean-squared error
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Figure 4.8: 100-trial NEES plot for the proposed GSF estimator in simulation.

(RMSE) is compared to 100 EKF and PF trials. The GSF is initialized with 8 GI-LS estimates,
and the PF with 1500 particles, and the EKF is randomly initialized in one of the 8 modes.
In Fig. 4.7, the GSF has a median attitude RMSE of 0.034 rad, which is 70.6% lower than
the PF’s 0.116 rad, and EKF’s 0.305 rad. Similarly, the median position RMSE is 0.090 m

for GSF, 0.242 m for PF and 0.949 m for EKF. Due to the proposed initialization method,
the Gaussian components are highly informative while being far fewer than the particles
in PF. This allows the GSF to converge to the true mode faster than the PF, making it
more accurate, and computationally more efficient. The normalized estimation error squared
(NEES) test in Fig. 4.8 confirms GSF’s consistency within a 99% confidence interval.

4.8 Experimental Results

The filters are tested on three Uvify IFO-S quadcopters to validate their performances in
experiment. The setup of three robots is depicted in Fig. 4.1, with each robot having two
tags, and Robot 1 is the reference robot. The two tags in all the robots are located at

rτipp =

 0.16

−0.17

−0.05

 , rτjpp =

−0.17

0.16

−0.05

 ,
where i and j are the tag IDs, p is the robot ID, and the units are in meters. Each robot
has an onboard IMU and an Intel RealSense D435i stereo camera set. These sensors provide
the translational velocity estimates through VIO using the ROS package Vins-Fusion [44]
at 30 Hz, and the angular velocity readings are taken from the gyroscope at 200 Hz. The
velocity estimates from VIO only serve as interoceptive measurements to validate the proposed
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Figure 4.9: Experimental setup showing the three robots. Two UWB modules or tags and an
Intel RealSense D435i camera are mounted on each robot.

estimation approach. Any other interoceptive measurements can be used in place of VIO as
well. Pose data from the Vicon motion-capture system serve as ground truth. The robots
follow a random 3D trajectory in a 6× 6× 3 m3 space as shown in Fig. 4.9.

The UWB range measurements are provided to all the estimators at 90 Hz, which are
corrected for uncertainties and biases using the works of [45]. The GSF is initialized with
8 Gaussian GI-LS estimates, the PF with 1500 particles, and the EKF is initialized in a
wrong mode among the 8 GI-LS estimates. In this instance, the particles in the PF lie
in the vicinity of the ambiguous poses evaluated using the nonlinear least-squares method,
similar to the simulation setup. In the filters, any measurement that does not pass the
normalized innovation squared NIS test is rejected. Fig. 4.10 displays the pose-error plots
of the filters in experiment. The GSF and PF perform similarly, but the EKF diverges as
expected. Initially, the GSF has large error spikes, but it soon stabilizes once it isolates the
“true” mode. In Python 3.8, the GSF estimates the states at an average rate of 40 Hz, and
the PF does the same at 3.5 Hz, making the GSF many folds faster and strongly eligible for
online implementation.
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Figure 4.10: The performance of the EKF, GSF and PF on experimental data for two-tag
Robots 2 and 3, with Robot 1 as reference robot. The GSF and PF are initialized with 8
GI-LS estimates and 1500 particles, respectively. The EKF is initialized in a wrong mode
among the 8 GI-LS estimates. The shaded regions represent the ±3σ bounds.

4.9 Conclusion

Multi-robot systems with non-stationary range sensors suffer from ambiguous poses due to
observability issues. This chapter provides a complete and efficient 3D relative pose estimation
solution for these systems where UWB ranging tags are the only exteroceptive sensors. In
simulations and experiments, the proposed estimator in the form of a Gaussian-sum filter
is shown to be accurate and computationally efficient. The GSF is consistent within a 99%
confidence interval, and it performs comparatively faster than the particle filter. The results
establish that a well-modelled GSF should be the default tool for range-based 3D relative
pose estimation in multi-robot systems. Looking ahead, for larger systems, decentralizing
with multiple reference robots can optimize the number of Gaussian components in the GSF,
thus reducing computational strain while retaining accuracy.
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Chapter 5

Optimal Robot Formations: Balancing
Range-Based Observability and
User-Defined Configurations

5.1 Summary

This chapter introduces a set of customizable and novel cost functions that enable the user
to easily specify desirable robot formations, such as a “high-coverage” infrastructure-inspection
formation, while maintaining high relative pose estimation accuracy. The overall cost function
balances the need for the robots to be close together for good ranging-based relative localization
accuracy and the need for the robots to achieve specific tasks, such as minimizing the time
taken to inspect a given area. The formations found by minimizing the aggregated cost
function are evaluated in a coverage path planning task in simulation and experiment, where
the robots localize themselves and unknown landmarks using a simultaneous localization and
mapping algorithm based on the extended Kalman filter. Compared to an optimal formation
that maximizes ranging-based relative localization accuracy, these formations significantly
reduce the time to cover a given area with minimal impact on relative pose estimation
accuracy.

5.2 Introduction

With the goal of adopting anchor-free localization, the two-tag multi-robot setup, proven to
be locally observable [11, 46], is the chosen setup in this chapter. This is because this setup has
the smallest number of tags required to reliably estimate the relative pose between two robots
by fusing range measurements from the two tags in each robot with inertial measurement
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Robot 1
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Robot 1

(b)

Figure 5.1: Comparing the coverage span of two formations. The circles represent the
camera’s field-of-view of each robot, and the red dots denote the location of the ranging tags.
(a) The robots are clustered together to ensure high relative pose estimation accuracy, as
shown in [21]. (b) The robots are spread apart in a horizontal line to cover a larger area,
which minimizes coverage time.

unit (IMU) data using an extended Kalman filter (EKF) [11, 46]. However, with any range-
measurement based setup, relative pose estimation accuracy is highly dependent on the
robots’ formation. In some formations, there are ambiguities, which can cause the estimator
to diverge [21, 47]. Adding more than two tags may reduce the number of ambiguities in
certain formations, but still does not eliminate them all. The presence of ambiguities causes
the estimator to diverge in certain formations, such as when all the robots are in a straight
line, as shown in Fig. 5.1b [21, 47].

To address this issue, [21] suggests keeping the team of robots in formations where they are
close and clustered together, as shown in Fig. 5.1a, which theoretically maximizes the relative
pose estimation accuracy for two-tagged robots. However, these clustered formations are
not ideal for applications such as infrastructure inspection or surveillance, where maximizing
coverage is beneficial. An example of robot clustering resulting in reduced coverage is shown
in Fig. 5.1.

This chapter addresses the contrasting objectives of determining multi-robot formations
that both (1) maximize coverage and (2) ensure close proximity between robots for good
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relative localization accuracy. Other multi-robot path planning mechanisms have focused on
distributing the robots into different sectors in a large area, where each robot individually
covers its sector to minimize overall coverage time [48–52]. The robots generally localize
themselves using the Global Positioning System (GPS). However, with a UWB ranging-based
approach, the robots cannot be distributed into sectors since they must be in proximity to
each other to achieve high relative pose estimation accuracy, as highlighted in [21].

The key contribution of this chapter is a cost function that brings the robots to any
desirable formation, such as a “high-coverage” straight-line formation, while simultaneously
maintaining high relative localization accuracy. This cost function has a component that
provides the user with the ability to choose the direction and distance between any two
adjacent robots. This feature enables the user to realize different formations for various
applications, such as bridge inspection, as demonstrated in Section 5.6.4. User-defined
formations can be achieved using acceleration inputs [53, 54], but the proposed component
within the cost function is easily customizable and integrable with the formulation of [21].
Another component of this cost function allows the user to allocate a certain amount of
overlap between adjacent robots’ camera views, which is good for image-stitching and in
improving mapping accuracy, as mentioned in [55]. Observability and collision avoidance
terms are also incorporated into the cost function.

The “high-coverage” formations generated by minimizing the proposed cost function are
tested in a planning task in simulation and experiment, where the robots localize themselves
and unknown anchors using a simultaneous localization and mapping (SLAM) algorithm
based on the EKF. In this chapter, the EKF is chosen rather than the GSF since the position
of the robots relative to the global frame is assumed to be known, which allows us to avoid
the ambiguity-related issues addressed in Chapter 4 during the initialization of the SLAM
algorithm. Compared to the current state-of-the-art, the proposed formations significantly
reduce coverage time with minimal impact on localization accuracy.

The remainder of this chapter is organized as follows. The notation and preliminaries are
defined in Section 5.3. The problem is motivated in Section 5.5. The proposed cost functions
are in Section 5.6. The application of the cost function in simulations and experiments is in
Section 5.7.

5.3 Notation and Preliminaries

The problem setup is a multi-robot system, where each robot is equipped with two ranging
tags, as shown in Fig. 4.1. Therefore, all the notational preliminaries are same as in 4.3 of
Chapter 4. The only difference between the setup in this chapter and the one in Chapter 4
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Figure 5.2: Problem setup for a two-tag multi-robot system, where Robot p is equipped with
tags τi and τj, and a camera with a circular view of radius rp in the up or down direction.
Without loss of generality, the pink robot, defined as Robot 1, is considered to be the reference
robot.

is that the robots are assumed to be equipped with a downward or upward-facing camera
that has a circular field-of-view with a known radius, rp here. The set of radii is denoted
as R = {r1, . . . , rN}. The new setup is shown in Fig. 5.2. Furthermore, in this chapter the
state of the system is defined in 2D and therefore the relative pose between Robots p and q
is Tpq ∈ SE(2).

5.4 Optimization

In this chapter, locally optimal formations are found by minimizing cost functions of
x ∈ SE(2)N−1, J(x) in 2D. All such cost functions are minimized using a momentum-based
gradient descent algorithm. This approach is preferred over a standard gradient descent
method as it allows for faster convergence to a global or local minimum [56]. The state is
updated from xt to xt+1 using a left or right perturbation δxt ∈ R3×(N−1) as

δxt = −
(
α∇J(xt) + βδxt−1

)T
, (5.1)

xt+1 = xt ⊕ δxt, (5.2)

where ∇J(xt) is the gradient of the cost function numerically computed using finite difference
[57], α is the learning rate, and β is the momentum parameter. Throughout the chapter,
the parameters α = 0.001 and β = 0.9 are used. The optimization is terminated when
||δxt|| < 10−4.
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5.5 Motivation

The goal of this chapter is to find multi-robot formations that minimize the coverage
time of a given space, as shown in Fig. 5.1. The challenge is to balance this objective with
the necessity for accurate relative pose estimation using range measurements. To find an
appropriate multi-robot formation with good ranging-based relative pose estimation accuracy,
[21] proposes the minimization of

Jopt(x) = Jest(x) + Jcol(x), (5.3)

where Jest(x) quantifies the relative pose estimation error and uncertainty using the Cramér-
Rao lower bound [21, 58, 59], and Jcol(x) is the collision avoidance term. Note that,

Jest(x) = − ln det
(

H(x)TR−1H(x)
)
, (5.4)

where H(x) is the Jacobian of the measurement model given in (4.17) of Chapter 4, and R is
the measurement covariance. The collision avoidance term is defined as [60]

Jmncol (x) =

(
min

{
0,
||rmn1 ||2 − A2

||rmn1 ||2 − d2

})2

, (5.5)

Jcol(x) =
∑

m,n∈P,
m 6=n

Jmncol (x), (5.6)

where A is the activation radius and d is the collision avoidance radius, set to A = 0.9 m,
and d = 0.5 m throughout this chapter. This collision avoidance term is reused by recent
work [21] on multi-robot formation problems and therefore is considered well-suited for this
work. The multi-robot formations deduced by minimizing (5.3) generally have the robots
clustered together, where the robots have low area coverage as shown in Fig. 5.1a. In fact, [21]
shows that a straight-line formation with high coverage, as shown in Fig. 5.1b, unacceptably
increases the relative pose estimation error. However, in theory, there are many “high-coverage”
formations, possibly near the local minima of Jest(x), where the ranging-based relative pose
estimation accuracy is high. These formations are achievable by minimizing a different cost
function, as presented in Section 5.6.

5.6 Proposed Cost Functions

Two novel cost functions are proposed in this section, which are added to (5.3). The
first one allows any desirable multi-robot formation acquisition suitable for the task, and
the second one ensures a certain degree of overlap between adjacent robots’ camera views.
The final cost function also takes relative localization accuracy and collision avoidance into
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account. Minimizing the final cost function helps the robots adopt “high coverage” formations,
such as a “near” straight-line formation while ensuring consistently high accuracy in relative
localization. The problem is approached in 2D since most robots, such as ground vehicles or
quadcopters, only have heading as a rotational degree of freedom for planning purposes.

5.6.1 Adjacent Robot Formation Cost Function

Let N robots be initially positioned at random locations. The goal of this section is to
allocate the robots into any desired formation, with all formations being relative to Robot 1,
the reference robot. The idea is to minimize the error between the actual and desired position
vector between any two robots, which results in the cost function

Jmnadj (x) =
∣∣∣∣∣∣rmn1 −

m−1∑
k=n

(rk+1 + rk)n(k)
1

∣∣∣∣∣∣2, (5.7)

Jadj(x) =
∑

n,m∈P,
n<m

Jmnadj (x), (5.8)

where rk and n(k)
1 are user-defined parameters that determine the radial distance and direction

between adjacent robots, respectively. n(k)
1 is the desired unit vector associated with the

position of Robot k + 1 relative to its adjacent robot, Robot k, resolved in F1. All the
desired unit vectors, starting with the one from the reference robot, Robot 1, can be written
compactly as,

n1 =
[

n(1)T
1 · · · n(N−1)T

1

]T
∈ R3×(N−1). (5.9)

The desired position vector of Robot m relative to Robot n, resolved in F1 is found using the
summation term in (5.7).

This cost function places the robots adjacent to each other in ascending order of their IDs
without determining the shortest path the robots should take to form the desired formation,
as shown in Fig. 5.3a. For conciseness, Robot p is referred to as Rp in plot legends of all
the figures. However, this is not ideal, and Algorithm 1 sorts the robot IDs so that the
robots take the shortest path possible to the user-defined formation. This algorithm finds
the permutation of the robot IDs that minimizes the overall distance traveled by the robots
to reach the desired formation using the Hungarian matching algorithm [61], and is faster
than a brute-force approach.

The sorted set of robot IDs and radii are denoted Ps = {s1, . . . , sN} and Rs =

{rs1 , . . . , rsN}, respectively. For conciseness, rsnsmsn is denoted as r̄nmn , the attitude between
robots sn and sm is denoted as C̄nm, and the radius of Robot sn is denoted as r̄n. For this
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(a) Straight-line formation with unsorted IDs. (b) Straight-line formation with sorted IDs.

(c) V-shaped formation with sorted IDs.

Figure 5.3: Formations obtained by minimizing Jadj(x). The contours represent the heatmap
of the cost function Jadj(x), by varying rmnn between all the robots.

sorted set of robot IDs, (5.7) becomes

Jmnadj (x) =
∣∣∣∣∣∣r̄mn1 −

m−1∑
k=n

(r̄k+1 + r̄k)n(k)
1

∣∣∣∣∣∣2. (5.10)

Note that, n1 denotes the desired unit vectors between adjacent robots starting from the
reference robot, Robot 1, and therefore is not affected by the sorting of the IDs.

Fig. 5.3b depicts a straight-line formation acquisition by minimizing Jadj(x) with sorted
robot IDs. With sorted IDs, the robots reach a straight-line formation by traveling a shorter
overall distance compared to the one with unsorted IDs, shown in Fig. 5.3a. In both cases
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Algorithm 1 Sort Robot IDs by Distance To Travel
Input: x, P , R, n1.
Output: Ps, Rs.

1: Let r1 ,
[

r21
1 · · · rN1

1

]T,
2: and p =

[
2 · · · N

]T, where 2, . . . , N ∈ P \ {1}.
3: davg ← 2

N

∑N
n=1 rn.

4: Compute the approximate target locations in the goal formation,

5: r∗1 ←
[ ∑2

k=1 davgn(k)T
1 · · · ∑N

k=1 davgn(k)T
1

]T
6: ,

[
rd2d1T1 · · · rdNd1T1

]T.
7: Create a matrix cost function based on the distance traveled by each robot to the goal

formation,
8: C(i, j)← ||r∗1(i)− r1(j)||2 for i, j ∈ {1, . . . , N − 1}.
9: Let P be a permutation matrix, and tr(·) is the trace operator. Find the permutation

matrix that minimizes the overall distance traveled by the robots using the Hungarian
matching algorithm [61], P∗ ← min

P
tr(CP).

10: Ps ← {1} ∪ {ith element of P∗p} , {s1, . . . , sN}.
11: Rs ← {rsn}.

n(k)
1 = [1 0]T, k = 1, . . . , N − 1.
Another instance of the implementation of this cost function is shown in Fig. 5.3c,

where the robots are in a V-shaped formation. The parameters used for this example are
n(k)

1 = [1 1]T, k = 1, . . . , 4, n(k)
1 = [1 − 1]T, k = 5, . . . , 8, and radii r̄k = 0.5 m.

In the rest of this chapter, unless n1 is stated, the sorted set of IDs is computed using
n(k)

1 = [1 0]T, k = 1, . . . , N − 1, to maximize coverage span in the x-direction.
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Figure 5.4: The formation with adjacent camera overlap after minimizing Joverlap, with
λ = 0.25. The upper plot shows the effects of the heatmap of Joverlap(x) from the perspective
of only Robot 1, and the lower plot shows the effects of the heatmap from the perspective of
all the robots. Only position rmnn is varied between all the robots to generate the heatmaps.

5.6.2 Camera Overlap Cost Function

To simultaneously enable overlap of the camera views of adjacent robots, and to ensure
that no more than two adjacent camera views overlap, which in turn helps in maximizing
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coverage, minimizing the cost function

Jmnoverlap(x) =∣∣∣∣∣∣r̄mn1 − (1− λ)
(

2
m∑
k=n

r̄k − r̄n − r̄m
)

n̄mn1

∣∣∣∣∣∣2, (5.11)

Joverlap(x) =
∑

sn,sm∈Ps,
n<m

Jmnoverlap(x) (5.12)

is proposed, where λ ∈ [0, 1] represents the percentage of the radial distance between the
robots that overlap. The direction vector n̄mn1 is the unit vector pointing from Robot sn to
Robot sm in the body frame of Robot 1 and is given by

n̄mn1 =
r̄mn1

||r̄mn1 ||
. (5.13)

An example formation with λ = 0.25 is shown in Fig. 5.4. From the contours in the left
plot, note that the cost function is designed to create valleys at a distance equivalent to the
summation term in (5.11) scaled by (1− λ) around Robot 1, and similar valleys exist around
all other robots. The intersection of these valleys causes the robots to overlap their camera
views with adjacent robots. The advantage of this cost function is that, regardless of where
the robots are initially located, every robot will end up overlapping its camera’s field-of-view
with adjacent robots. Therefore, this cost function is not limited to any specific formation.

Figure 5.5: Final formation acquisition with coverage in the x-direction without (top) and
with (bottom) the camera overlap cost function, Joverlap(x).
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5.6.3 Overall Cost Function

By encoding user-defined requirements for certain formations, such as a straight-line
formation, and radii overlap mathematically, the proposed cost functions can be added to
(5.3) to achieve a comprehensive solution for formations that accommodate a variety of factors.
These factors include the need for high coverage, the necessity for accurate relative pose
estimation, and the requirement for camera overlap, among others. The overall cost function
is given by,

Jcov(x) = Jadj(x) + Joverlap(x) + Jest(x) + Jcol(x). (5.14)

Fig. 5.5 depicts an example formation with coverage in the x-direction by minimizing Jcov(x).
The plots highlight the importance of Joverlap(x) in preventing the robots from non-uniformly
spreading apart due to the other cost function components, notably Jadj(x). The cost Jcov(x)

serves to design suitable formations for planning problems and therefore the optimization is
done offline before the start of the mission. These formation results can then be stored in
the memory of the robots and used for online planning. Handling online planning initiatives
like real-time non-line-of-sight issues between tags or the need for formation changes in the
presence of obstacles is beyond the scope of this chapter.

5.6.4 Bridge Inspection Example

The usefulness of Jcov(x) is shown in the bridge inspection application in Fig. 5.6a. Here, 5

quadcopters with top-facing cameras inspect the underside of a bridge with no access to GPS,
and two other GPS-enabled quadcopters are placed at an arbitrary angle to the inspection
robots to get good localization accuracy. The desired formation is a straight-line formation of
the inspection robots with some camera overlap, while ensuring that the localization accuracy
is high. For 7 robots, this is achieved by minimizing Jcov(x) with the parameters,

n(1)
1 =

[
1

1

]
,n(6)

1 =

[
1

−1

]
,n(k)

1 =

[
1

0

]
, k = 2, . . . , 5,

Jmkoverlap(x) = 0,∀k ∈ Ps \ {m},m ∈ {1, N}, (5.15)

and there are no inter-tag range measurements between the two GPS-enabled robots. Notice
that, the robots under the bridge have a “near” straight line formation, such that they avoid
unobservable ranging-tag configurations, and are additionally aided by the GPS-enabled
quadcopters to localize themselves. These planning decisions are possible because of the
flexibility in customizing Jcov(x). In contrast, the best formation of 5 robots obtained by
minimizing Jopt(x) is shown in Fig. 5.6b. The two GPS-enabled robots are randomly placed
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(a) Formation acquisition by minimizing Jcov(x).

(b) Formation acquisition by randomly placing Robots 1 and 2 and minimizing Jopt(x) for the rest of
the robots.

Figure 5.6: Comparison of formations obtained by minimizing Jopt(x) and Jcov(x) for a bridge
inspection task.

without the help of Jopt(x), since otherwise, they would be very close to the other robots
under the bridge, and would not receive GPS measurements. Going by visual observation
only, it is clearly evident that the inspection robots are not in a straight line, thus increasing
inspection time.
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Figure 5.7: Three tested formations. The heatmap of Jest(x) identifies that the straight-line
formation has the highest and the cluster formation has the lowest estimation error, as
expected.

5.7 Application: Multi-robot Coverage

A multi-robot coverage path planning task is where the usefulness of the proposed cost
function is demonstrated with mathematical evaluation. The goal is to inspect a large area in
a short amount of time, while ensuring good relative localization accuracy. This is achieved
by minimizing Jcov(x) with the parameters, n(k)

1 = [1 0]T, r̄k = 0.5 m, k = 1, . . . , N − 1,
and λ = 0.25. The resultant formation is compared with a straight-line formation and a
clustered formation in a coverage path planning task. These formations, along with the
heatmap of Jest(x), are shown in Fig. 5.8, and denoted as,

xi , arg min
x

Ji(x), i ∈ {adj, opt, cov}. (5.16)

The high-value regions in the heatmap of xadj already indicate that this formation has low
relative pose estimation accuracy.
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(a) Coverage time comparison. (b) Estimation error comparison.

Figure 5.8: Comparison of the coverage path planning task using the three formations. (a)
Comparison of the coverage time for the three formations. The xcov formation has a 35.5%
time reduction, as compared to the xopt formation, while maintaining good relative pose
estimation accuracy. (b) Various RMSE plots for the three formations over 100 Monte Carlo
trials. The xcov formation has comparable inter-robot position and attitude RMSEs to the
xopt formation.

5.7.1 Simulation

The robots are initially placed near the origin of a 10 m × 24 m area. They cover the
space using a square-wave pattern often used in optimal coverage path planning problems
[48, 50, 52]. For simplicity, the map of the environment is assumed to be known except for
the position of two static landmarks with ranging tags fitted on them. A list of waypoints is
assigned to an arbitrarily chosen leader, which is Robot 1 here, and the other robots follow
the leader in a formation using the velocity control,

ureach target/g
n = uformation/g

n + uwaypoint/g
n , (5.17)

where each control term is resolved in the robot’s body frame. The components uformation/g
n

and uwaypoint/g
n are given in Section 2.6 of Chapter 2. The trajectory generated using this

control law is shown in Fig. 5.8a. Note that, each corner of the square-wave pattern is treated
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Table 5.1: Percentage reduction in median estimation error with respect to xadj over 100
Monte Carlo simulations.

xopt (Eq.(5.3)) xcov (proposed)

Landmark1 Est. Error 35.4 % 58.8 %

Landmark2 Est. Error 29.6 % 31.6 %

Inter-robot Att. RMSE 47.0 % 40.0 %

Inter-robot Pos. RMSE 66.2 % 59.4 %

as a static waypoint. Once Robot 1 reaches one corner in formation with the other robots, it
moves to the next corner.

The EKF-SLAM algorithm, similar to [24], is used to assess the relative pose estimation
accuracy. This estimation directly impacts the precision of localizing the landmarks within
the context of an inspection task. EKF-SLAM is used over a batch method since it is
computationally less expensive and suitable for online implementation. The interoceptive
measurements are the velocity inputs in the body frame of the robots at 100 Hz as shown
in [47], and the exteroceptive measurements are either inter-tag or tag-landmark range
measurements at 110 Hz with a covariance matrix R = 0.121 m2. It is assumed that the
robots receive range measurements from the static landmarks only when they are within a
2 m radius of the landmark. Additionally, Robot 1 receives GPS measurements at 50 Hz with
a standard deviation of 0.1 m in each component to help localize itself in the global reference
frame Fg.

The xcov (proposed) formation exhibits a 35.5% reduction in coverage time compared
to xopt (clustered formation), with only 17% and 11% loss in relative attitude and position
estimation accuracy, respectively, as shown in Fig. 5.8a and Fig 5.8b. Table 5.1 displays
the percentage reduction in median estimation errors of xopt and xcov with respect to xadj

for 100 Monte Carlo simulations. It highlights that there is a trade-off when using xcov vs
xopt; xcov (proposed) has slightly worse inter-robot attitude and position RMSEs, but either
comparable or lower landmark estimation errors than xopt, indicating Jcov(x)’s effectiveness
in attaining highly observable, and “high-coverage” formations. The median estimation errors
for xcov (proposed) are 0.448 m, 0.088 m, 0.032 rad, and 0.062 m for Landmark1, Landmark2,
inter-robot attitude, and position, respectively. This affirms that the proposed cost function
allows a slight decrease in relative pose estimation accuracy to gain a significant reduction in
coverage time, compared to the clustered formation, xopt.
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(a) Experiment in progress.

Uvify IFO-S
Quadcopters

Simulated
Quadcopters

Landmark1

Landmark2

(b) Visualization (left) and a top graphical view (right) of one of the exp-
eriments.

Figure 5.9: Experimental setup.

5.7.2 Experiment

The EKF-SLAM algorithm is tested with the same formations on real quadcopters to
experimentally validate that the “high-coverage” formations found by minimizing Jcov(x)

(proposed) have good localization accuracy. Due to space limitations, each experiment is
conducted with 3 Uvify IFO-S quadcopters moving back and forth in a 4 m× 6 m space, at a
constant height, while in formation for 47 s. Two landmarks with UWB tags are placed at
the edge of the room. The remaining two robots, with two tags each, are simulated to be in
formation with the other three during the experiment. The Tags i and j in the robots are
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Table 5.2: Percentage reduction in median estimation error with respect to xadj for experi-
mental data.

xopt (Eq.(5.3)) xcov (proposed)

Landmark1 Est. Error 74.1 % 71.1 %

Landmark2 Est. Error 24.2 % 26.9 %

Inter-robot Att. RMSE 32.4 % 32.9 %

Inter-robot Pos. RMSE 64.4 % 62.1 %

placed at

rτipp =


0.17

−0.17

−0.05

 , rτjpp =


−0.17

0.17

−0.05

 , (5.18)

and rp = 0.7, p ∈ P, with units in meters. Since the simulations establish that the xcov

(proposed) formation reduces coverage time, the primary goal is to validate that this benefit
does not significantly compromise the localization accuracy in real-world experiments. The
experimental details are shown in Fig. 5.9.

The process model involves velocity inputs at 10 Hz in the body frame of the robots
as shown in [47], the landmarks are static, and the measurement model involves inter-tag
and tag-landmark range measurements at 80 Hz. For this experiment, DWM1000 UWB
transceivers are used. The ranging protocol and UWB calibration procedure are as in [45].
Any range measurement, which does not pass the NIS test, is discarded. The velocity inputs
with added noise are obtained by performing finite difference on ground truth position
data, extracted from the Vicon motion-capture system. The added noise has a standard
deviation of 0.01 rad and 0.1 m for the angular velocity and translational velocity components,
respectively. A covariance of 0.12 m2 is set for the measurements received by the ranging
tags in the simulated robots. Robot 1 is also given noisy ground truth position data as GPS
measurements at 30 Hz with a standard deviation of 0.1 m in each component.

The results are shown in Fig. 5.10. As expected, the estimator diverges for the straight-line
formation due to observability issues. The landmark position and inter-robot relative pose
estimation accuracy for the xcov (proposed) formation and the clustered one are similar.
Furthermore, the xcov (proposed) formation maintains landmark position estimation error
within the ±3σ bounds, indicating low estimation error uncertainty. In Table 5.2, this
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Figure 5.10: Different error metrics for the three formations in the experiment. The proposed
formation has comparable RMSEs to the clustered formation while swiping a larger area.
The shaded regions in the landmark position estimation error plots represent the ±3σ bounds
of the estimator.

formation also demonstrates a significant reduction in median estimation error compared to
the straight-line formation: at least 26.9% for Landmark1 and Landmark2, and 32.9% and
62.1% for inter-robot attitude and position estimates, respectively, approaching levels seen in
the clustered formation, xopt. These error metrics in values are 0.112 m, 0.073 m, 0.056 rad,
and 0.041 m for Landmark1, Landmark2, inter-robot attitude, and position, respectively.
The experiments again validate the claim of Jcov(x) (proposed) producing “high coverage”
formations with insignificant loss in relative pose estimation accuracy.
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5.8 Conclusion

This chapter presents, in both simulation and experiment, that with the help of a few
geometry-based constraints, “high coverage” formations can be achieved even if they are not
optimal for inter-robot range-based relative pose estimation. The decrease in estimation
accuracy for these formations is negligible. The easy customizability of the proposed cost
function to achieve “high coverage” formations with acceptable relative pose estimation
accuracy is one of its strongest points. It can be used for a variety of applications such as
multi-robot coverage, multi-robot search and rescue, and multi-robot inspection. Future work
includes adopting this cost function for problems in 3D and extending the implementation of
this cost function in online planning initiatives where the robots are tasked to cover a large
area while avoiding obstacles.
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Chapter 6

Concluding Remarks

This thesis presents novel estimators and planning initiatives for multi-robot localization
and planning using small, cheap, and low-power UWB range sensors. The work is motivated by
the realization that the use of range sensors is multi-robot systems gives rise to observability
issues that may result in inconsistent relative pose estimates between the robots using
traditional filtering and planning algorithms. The algorithms and methods presented in this
thesis are analyzed and validated using both simulation and real-world experiments. However,
there are several limitations and future work that can be done to improve the proposed
algorithms and methods.

Chapter 4 gives a detailed account of the possible ambiguities that arise in the range-
based relative pose estimation problem, due to observability issues. The chapter presents
a novel Gaussian-Sum Filter (GSF) that is capable of handling these ambiguities in 3D.
The proposed estimation algorithm has a similar performance to the Particle Filter, but
with a significantly lower computational cost. More specifically, in this chapter, it is shown
that the state of the system, consisting of relative poses between robots in SE(3) has a
multimodal distribution. A geometrically initialized least-sqaures estimator helps model the
state’s multimodal distribution as a Gaussian Mixture Model (GMM). The Gaussian-sum
filter is initialized with the GMM and then coverages to an unimodal distribution once the
robots move sufficiently.

Further improvements can however be made to the GSF for future work. After the GSF
converges and follows the ground truth with good consistency, if the robots come into static
motion, or if the robots maintain a constant formation, there may not be sufficient motion to
disambiguate the multimodal distribution. In such cases, the GSF may not converge to the
ground truth. This is a limitation can be addressed by reinitializing the GSF with a GMM
that models the new ambiguities after a certain period of static motion is detected. Finding
this GMM is a challenging problem and may require a combination of geometrical methods
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and batch optimization methods and is left for future work.
Chapter 5 proposes a cost function, the minimization of which results in optimal multi-

robot formations that balance observability and user-defined configurations. In this chapter,
it is shown that with range-based systems, there are formations, that may be useful for appli-
cations such a fast inspection of a warehouse or an agricultural land, but the observability of
the system is compromised. The proposed cost function is a weighted sum of the observability
of the system and any desirable geometric constraints that the user may have. As such, useful
formations can be found that are both observable and satisfy the user-defined constraints
and can be used for applications such as fast inspection of a factory or bridge.

For future work, the proposed cost function can be used for online planning initiatives,
where the robots can change their formation based on the environment and the task at hand.
The cost function can be used in a fashion, where the robots plan their formation for a short
period of time, execute the plan, and replan based on the new information. A component can
be added to this cost function, which creates a repulsive potential field around obstacles, so
that the robots find a formation that is both observable and avoids obstacles. Additionally,
the gradient of the proposed cost function is computed using finite difference, which can be
replaced with evaluating the gradient analytically. This will result in a faster convergence of
the optimization algorithm, and help make real-time planning possible.
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