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Abstract

Regular expression (RE) matching is a computationally intensive task that can benefit
from modern, high-performance and concurrent computing. There have already been re-
lated optimization efforts, such as HyperScan [12], which is based on SIMD instructions
for CPUs, and algorithms like iNFAnt [7] and ASyncAP [23] that target GPUs, improv-
ing performance by exploiting the mapping between REs and their finite state machine
representations. GPU-based RE acceleration methods, however, can suffer from expen-
sive execution costs when an RE has many initial potential state transitions, and perfor-
mance heavily depends on ensuring algorithm parameters properly match GPU capabili-
ties.

In this thesis, we present a novel study that aims to boost performance and broaden ap-
plicability on the GPU side. We introduce a pre-filtering technique that checks the match
of simpler RE parts before proceeding to more complex ones. We also optimize the GPU
parameters, such as thread occupancy, to avoid naive implementation pitfalls and imple-
ment additional optimizations to the state-of-the-art GPU-based algorithm to avoid per-
formance issues caused by edge cases. Our design achieves impressive performance im-
provement, about 40x faster than iNFAnt and up to 1900x faster than ASyncAP in edge
cases, while still maintaining competitive performance in more common cases. The use of
our GPU-based optimizations greatly improves the potential for more efficient and versa-
tile RE matching on modern GPUs.



Abrégé

La correspondance d’expressions régulières (RE) est une tâche informatique intensive
qui peut bénéficier des capacités modernes de calcul haute performance et concurren-
tiel. Il y a déjà eu des efforts d’optimisation liés, comme HyperScan [12], qui est basé
sur des instructions SIMD pour les CPU, et des algorithmes comme iNFAnt [7] et ASyn-
cAP [23] qui ciblent les GPU, améliorant les performances en exploitant la correspondance
entre les RE et leurs représentations en machine à états finis. Cependant, les méthodes
d’accélération des RE basées sur les GPU peuvent souffrir de coûts d’exécution élevés
lorsque l’expression régulière a de nombreuses transitions d’état potentielles initiales, et
les performances dépendent fortement de la correspondance adéquate entre les paramètres
de l’algorithme et les capacités du GPU.

Dans cette thèse, nous présentons une étude novatrice visant à améliorer les performances
et à élargir l’applicabilité du côté GPU.Nous introduisons une technique de préfiltrage qui
vérifie la correspondance de parties de RE plus simples avant de passer à des parties plus
complexes. Nous optimisons également les paramètres du GPU, tels que l’occupation des
threads, pour éviter les écueils d’implémentation naïve, et implémentons des optimisa-
tions supplémentaires à l’algorithme basé sur les GPU de pointe pour éviter les problèmes
de performances causés par des cas particuliers. Notre conception obtient une améliora-
tion impressionnante des performances, environ 40 fois plus rapide que iNFAnt, et jusqu’à
1900 fois plus rapide queASyncAPdans les cas particuliers, tout enmaintenant des perfor-
mances compétitives dans les cas plus courants. L’utilisation de nos optimisations basées
sur les GPU améliore grandement le potentiel pour une correspondance de RE plus effi-
cace et polyvalente sur les GPU modernes.
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Chapter 1

Introduction

Fast regular expression(regex, or RE)matching allows for quick text scanning, identifying
and extracting relevant patterns, and performing complex searches with minimal delay.
This capability is crucial in areas such as DOM search, Javascript application, code search,
and network packet inspection (NPI), where speed and precision directly impact user
experience and system performance. By optimizing regex matching, systems, and appli-
cations can improve interactivity and effectively handle more complex tasks and larger
datasets.

Problem domains like network packet inspection have been the target of optimizing REs
due to their high throughput requirements. Packets need to be filtered based on their
match with a set of regular expressions without slowing down network traffic. For this,
previous studies have shown that GPU-based implementations can achieve high perfor-
mance for RE matching, even though RE matching is inherently sequential [7, 1, 2, 5].
These implementations outperform CPU-based ones by a large margin. However, GPU
designs and resources have improved over time, making naive implementations subop-
timal and leading to low performance due to failing to take full advantage of GPU capa-
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bilities. Moreover, the structure of REs can also affect performance, especially when they
contain wildcards or other complex patterns that cause performance bottlenecks.

In this thesis, we propose a novel approach that addresses these challenges. After we
discovered that most regular expressions contain one or several static strings, we used a
simple pre-filtering technique that allowed us to handle more complex REs without sig-
nificant performance loss. This makes our approach adaptive and suitable for a broader
range of REs. We also optimize our performance by tuning GPU resource usage, such as
register allocation, block size, and memory use. We achieve better GPU saturation and
higher efficiency. For the prefilter stage, we optimized an existing method and proposed
a concurrent, naive method that outperformed the existing one. Through an extensive
evaluation, we show that our approach using Snort [35]’s RE dataset obtained remark-
able performance improvement, about 40x faster than the classic algorithm iNFAnt [7],
and up to 1900x faster than the state-of-art algorithm ASyncAP [23] on a consumer-grade
GPU.Although simple in concept, we show that our approach can leverageGPU resources
effectively and exploit the structure of REs to achieve orders of magnitude speedup.

In this thesis, we augment the process of REmatchingwith an optimizedpre-filtering stage
that eliminates expressive corner cases that otherwise reduce performance. Although
pre-filtering has been applied to CPU-based designs, such as Hyperscan and Snort, it is
relatively novel in GPU-based designs. Our pre-filtering stage uses a simple algorithm,
exploiting the high parallelism available to GPUs. Despite being a naive algorithm, it
outperforms more complex designs. We improve the performance of the state-of-the-art
ASyncAP algorithm, using profiling information to optimize the use of GPU resources.
This adaptation is specific to a family of modern GPU designs, such that the approach
could also be applied to future, enduring designs. We conduct extensive experimenta-
tion, using multiple RE datasets to evaluate our work. This includes a comparison with a
modern CPU-based approach design, as well as the re-implementation of the well-known
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iNFAnt and ASyncAP algorithm.

The rest of the thesis is organized as follows. We introduce fundamental background in the
next chapter 2. Chapter 3 briefly describes related work on implementing REmatching on
GPUs, while chapter 4 discusses details of our algorithms and our optimization strategies.
We present our experimental process and results in chapter 5, and the conclusion and
future work in the last chapter 6.
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Chapter 2

Fundamental background

In this chapter, we will first introduce the concept of SIMD. Then we will briefly introduce
the CUDA architecture based on the documentation [28] from NVidia. Then, we will
present the compilation and benchmark tools we used for this thesis. Last but not least,
we will introduce regular expressions and finite automatons.

2.1 SIMD (Single Instruction, Multiple Data)

SIMD (Single Instruction, Multiple Data) [10] is a parallel computing technique that en-
ables a single instruction to operate simultaneously on multiple data points. In SIMD
architectures, a single instruction is broadcasted to multiple processing elements, each of
which operates on a different data element. This allows for efficient parallelization of tasks
that exhibit data-level parallelism, such as vector and matrix operations.

SIMD is utilized in CPUs to accelerate processing by executing a single instruction across
multiple data points simultaneously. CPUs typically feature a few SIMD execution units,
such as SSE (Streaming SIMD Extensions) or AVX (Advanced Vector Extensions), which
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can process data vectors in parallel. As a result, the SIMD in common desktop CPUs is
currently still limited to operating on at most 512 bits of data at a time (e.g., via AVX512).
However, GPUs (Graphics Processing Units) specialize in parallel computation and fea-
ture numerous SIMD cores organized into massively parallel architectures. While CPUs
prioritize versatility and latency-sensitive tasks, GPUs are good at throughput-oriented
tasks that can leverage thousands of SIMD cores concurrently. Additionally, GPUs of-
ten have more extensive SIMD capabilities, enabling higher parallelism and better perfor-
mance for parallel workloads.

2.2 GPU Architecture and Parallelism

In this section, we will first introduce the architecture of GPUs, followed by a brief intro-
duction of definitions related to CUDA programming.

The CUDA (Compute Unified Device Architecture) architecture enables the efficient uti-
lization of Graphics Processing Units (GPUs) for graphical and general-purpose compu-
tations. Initially developed by NVIDIA, CUDA has become one of the most used parallel
computing platforms. This architecture gives us a handy tool to accelerate various com-
putational tasks. Given that GPUs normally have several orders of magnitude more cores
and threads than CPUs, we can use CUDAwhen the computation is computable in paral-
lel.

To better understand the CUDA structure, we will start with an introduction to the struc-
ture of GPUs. GPUs are designed with thousands of small, highly specialized cores, each
capable of independently executing its set of instructions. This design fosters massive
parallelism, allowing GPUs to perform many tasks simultaneously. In contrast to CPUs,
which are optimized for sequential processing and control flow, GPUs are designed for
data-parallel computations, where the same operation is applied to a large dataset. This
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makes it possible to enable developers to design appropriate algorithms, divide tasks into
parallel threads, and launch them on the GPU to get a better performance. Following are
some core architecture and concepts of GPUs:

Streaming Multiprocessors (SMs)

ModernGPUs consist ofmultiple StreamingMultiprocessors (SMs), which are individual
processing units on the GPU chip. Each SM contains a set of CUDA cores, load and store
units, special function units(SFUs), and memory caches. SMs are responsible for execut-
ing the actual parallel processing tasks. The number of SMs for each GPU depends on the
GPUmodel. Different SMs do not necessarily operate in synchrony with each other. Each
SM can execute its own set of warps independently, which aligns with a MIMD (Multiple
Instruction, Multiple Data) architecture. This means that different SMs can execute differ-
ent instructions on different data sets simultaneously. The detailed structure of a steaming
multiprocessor is shown in Figure 2.1.

CUDA Cores

Within each SM are thousands of CUDA cores, also known as shaders or processing cores.
CUDA cores are responsible for executing individual instructions in parallel. They are
highly specialized processors within a GPU that handle parallel computing tasks

Threads and Warps

In the context of CUDA, threads are the smallest units of work that can be scheduled on
the GPU. Thousands of threads can run concurrently on a GPU, taking advantage of the
massive parallelism inherent in the architecture. Different threads can be synchronized
by calling synchronization methods, like __syncthread().

Warps are groups of 32 threads that execute in parallel on an SM. InNVIDIAGPUs, awarp
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Figure 2.1: Illustration of a Streaming Multiprocessor

9



is the basic unit of execution. The SM executes instructions onwarps, which are scheduled
based on available resources. The lock-step execution occurs at the warp level. When a
warp is scheduled for execution, all threads in that warp execute the same instruction
simultaneously, which is the essence of SIMD.

.

Warp Schedulers

Warp schedulers are responsible for selecting which warp to execute on the SM at any
given time. They prioritize ready warps and switch between them to maximize GPU uti-
lization. Schedulers help hide memory latency and keep execution units busy. The archi-
tecture after Kepler (GeForce 600 series) features four warp scheduler units per SM.

Occupancy

Occupancy in CUDA refers to the ratio of active warps to the maximum number of warps
that can be simultaneously executed on a GPU’s streaming multiprocessors (SMs). It es-
sentially measures how effectively the GPU’s resources are utilized. Higher occupancy
indicates better utilization of the GPU’s compute resources, leading to potentially higher
performance.

Thread Blocks

Threads are also organized into groups called thread blocks. Thread blocks provide a way
to group related threads that can cooperate and synchronize within the block. They are
scheduled to run on SMs, and multiple thread blocks can run simultaneously. Each block
is composed of multiple warps, and the scheduler on the GPU manages the execution of
warps on the available SMs.
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The number of threads per block is a key variable in experiments because it directly in-
fluences occupancy. The selection of an optimal block size is crucial for maximizing per-
formance, as it balances the trade-offs between shared memory usage, occupancy, and the
number of threads that can be executed concurrently. We will discuss how to determine
the number of threads per block(block size) later in Section 5.2.

Memory Hierarchy

GPUs have different types of memory: registers, local memory, shared memory, constant
memory, texture memory, and global memory. First, each thread has its own set of reg-
isters for storing data. Registers are fast memory, and efficient code optimizes the use
of these registers to maximize performance. Each thread can also use local memory for
thread-specific data. However, access to local memory is slower than registers. Shared
memory is a fast, on-chipmemory that can be used for data that needs to be shared among
threads within the same thread block. Efficient use of shared memory can significantly
improve performance. Constant Memory is a read-only memory that is shared among all
threads. It is suitable for storing constant values. Texture Memory is optimized for 2D
and 3D texture accesses, commonly used in graphics operations. Global Memory is the
main memory space for the GPU. It is slower than registers but larger and shared across
all threads. The detailed memory hierarchy is shown in Figure 2.2.

GPU memory is separate from CPU memory, and thus, data needs to be transferred be-
tween the two. Data transfer from CPU memory to GPU memory involves several steps.
First, the CPU prepares the data to be transferred by allocating memory and organizing it
into appropriate data structures. Then, the data is transferred from the CPU’s main mem-
ory (RAM) to the GPU’s global memory using specialized data transfer mechanisms such
as PCI Express (PCIe) buses or NVLink interconnects. This transfer process typically in-
volves DMA (Direct Memory Access) operations, where the CPU instructs the system’s
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memory controller to move data directly between the CPU and GPUmemory without in-
volving the CPU itself. Once the data reaches the GPU memory, it can be accessed by the
GPU for processing, such as in parallel computations or rendering tasks. Data transfer
from the GPU to the CPU typically uses APIs such as CUDA’s cudaMemcpy with the cu-
daMemcpyDeviceToHost parameter. The transfer can be synchronous or asynchronous,
with direct memory access (DMA) often facilitating faster transfers by allowing the data
to move without heavy CPU involvement.

While GPUs offer significant advantages for parallel processing, the memory transfer pro-
tocol and associated overhead can pose challenges for high data rate applications. Careful
optimization and design strategies are essential to ensure that the benefits of GPU accel-
eration are realized without being affected by memory bottlenecks.

Parallelism and Data-Parallel Computations

GPUs are optimized for data-parallel computations, where the same operation is applied
to a large dataset. This massive parallelism allows developers to divide tasks into parallel
threads and execute them simultaneously, which leads to significant speedups in various
applications, from scientific simulations to deep learning.

Understanding the architecture and the concept of parallelism is crucial for writing effi-
cient CUDAprograms. Developers need to optimize their code to use the variousmemory
types efficiently, minimize memory transfers between the CPU and GPU, and fully take
advantage of the GPU’s parallel processing capabilities. This can result in substantial per-
formance improvements for various applications when done correctly.
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Figure 2.2: Illustration of the memory hierarchy CUDA devices
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Figure 2.3: CUDA code example

2.3 GPU compilation and Tools

We use the CUDA Compiler Driver NVCC 12.3 [27] provided by NVidia to compile our
project. At the same time,weuseNSight Systems andNSightCompute [26], also provided
by NVidia, to perform performance testing.

2.3.1 NVCC

When compiling CUDA code with NVCC, the process begins with preprocessing, pars-
ing, and segregating the code into host and device sections. The host compiler compiles
host code, usually standard C or C++, into object files. In contrast, NVCC compiles de-
vice code into PTX intermediate representation, which is placed in a ”fatbinary.” Then,
both sections are linked together, with NVCCmanaging GPU runtime libraries and linker
options. Lastly, the host’s compiler takes this adjusted program with the ”fatbinary” and
turns it into a host executable. The compilation steps are shown in Figure 2.4. Figure 2.3
shows a simple CUDA file, where the main function is the host section and the cuda_hello
function is the device section. The identifier ”__global__” indicates that the following
function will run on GPUs. The numbers within the triple angle brackets configure the
number of blocks and block size, respectively.

14



Figure 2.4: Steps of NVCC compilation [27]
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2.3.2 NSightSystems and NSightCompute

Given the complexity of the GPU, it is important to get the performance details. NVidia
provided us with its benchmark tools, NSightSystems and NSightCompute. However,
they have different benchmark scopes. NSightSystems is focused on a higher application
level, while NSightCompute is for more detailed information within a device function.
The workflow first uses NSightSystems to check the code overall to see if there are any
problems. Then, NSightComputewas used to identify the problems in the functions.

A general workflow for NSightSystems and NSightCompute is as follows:

Profiling Configuration: In both tools, users configure the profiling session by specify-
ing the CUDA application they want to analyze and any relevant parameters, such as the
CUDA device to use.

Profiling Execution: After configuring the profiling session, users run the target CUDA
application from within the client application.

DataCollection: During application execution, bothNsight Compute andNsight Systems
collect performance data, including metrics and timeline information.

Analysis and Visualization: Once the profiling session is completed, users analyze the
collected data using the tools’ built-in analysis and visualization features. NSightCom-
pute focuses on detailed metrics specific to GPU kernel execution, while NSightSystems
provides a broader view of CPU and GPU activities.

Identifying Optimization Opportunities: Based on the analysis results, users identify
optimization opportunities, performance bottlenecks, and areas for improvement in their
CUDA application code.
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2.4 Regular Expression and Finite Automatons

A regular language is a type of formal language in theoretical computer science that can be
described by a regular expression or recognized by a finite automaton. It consists of strings
formed from a finite alphabet, following certain rules or patterns. Due to their simplicity
and well-defined mathematical properties, regular languages hold importance in various
computational tasks, such as lexical analysis in compilers, string-matching algorithms,
and text-processing applications. A regular language is typically described by a regular
expression. Regular expressions are symbolic representations of patterns in strings. They
are used to describe sets of strings according to certain rules. Regular expressions typically
include a minimal set of operators that can be combined to form patterns for matching
strings. They can also be used as patterns to find if they belong to a string.

A basic set of RE operators consists of concatenation, alternation, repetition, and grouping.
Concatenation represents the combination of two regular expressions. If r1 and r2 are
regular expressions, then their concatenation r1r2 matches any string that can be formed
by concatenating a string matched by r1 followed by a string matched by r2. Alternation
is represented by the | symbol. If r1 and r2 are regular expressions, then r1|r2 matches
any string that is matched by either r1 or r2. The Kleene star * is a unary operator used
for repetition. If r is a regular expression, then r* matches zero or more occurrences of
the regular expression r. Operator precedence is not always clean, and thus, RE often uses
parentheses, which are used to group parts of regular expressions together, similar to how
they are used in arithmetic expressions.

Regular expressions can also be represented in a BNF (Backus-Naur Form) grammar, an-
other notation for describing nested language constructs. Here is a simple BNF definition
of regular expressions incorporating the four fundamental operations: concatenation, al-
ternation, Kleene closure, and grouping:
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<regex> ::= <term> | <term> "|" <regex>

<term> ::= <factor> | <factor> <term>

<factor> ::= <primary> | <primary> "*"

<primary> ::= <char> | "(" <regex> ")"

where <regex> represents the entire regular expression. <term> represents a sequence
of factors possibly separated by concatenation. <factor> represents a primary expression
possibly followed by the Kleene closure operator. <primary> represents either a single
character <char> or a grouped regular expression. <char> represents a single character
from the alphabet.

Regular expressions are widely used for pattern matching and parsing in various appli-
cations, such as text processing, data validation, and lexical analysis in compilers. When
applied to pattern matching and parsing, regular expressions search for specific patterns
within input strings. One important concept in regex applications for pattern matching is
the idea of "longest match" or "greedy matching." When a regular expression is applied to
an input string, it attempts to find the longest substring that matches the pattern specified
by the regular expression.

We also have syntactic sugar extensions in regular expressions that provide shorthand
notations for common patterns and operations, enhancing readability and writability. Ex-
amples include \d for any digit, \w for any word character, and \s for any whitespace
character. Quantifiers like +, *, and ? match one or more, zero or more, or zero or one
occurrences of the preceding element, respectively.

Another modern extension of regular expressions is the Perl-compatible regular expres-
sion (PCRE) [32], which supports more operators and features, such as lookahead, look-
behind, atomic group, conditional, and recursion. Lookahead and lookbehind in PCRE
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regular expressions overcome the limitations of regular languages by allowing patterns
to be matched based on the context of characters surrounding the current position in the
input string without consuming those characters. This capability enables regex patterns
to express dependencies and conditions that extend beyond the simple concatenation, al-
ternation, and repetition found in regular languages. PCRE also allows different flags to
modify the behavior of the regular expression, such as case-insensitive, multi-line, or un-
greedy. PCRE is widely used in programming languages and tools that work with text.
For example, the PCRE library is a set of functions that implement regular expression pat-
tern matching using the same syntax and semantics as Perl. A full, formal BNF definition
of Perl-style regular expression also exists [6].

Finite automatons and regular expressions are dual representations of regular languages.
Whereas regular expressions are concise patterns that describe strings in a language, finite
automatons are state machines that transition between states based on input symbols. Fi-
nite automatons are pivotal in various areas of computer science, such as formal language
theory, compiler design, and text processing, and provide an efficient way of matching
regular expressions. A finite automaton consists of a set of states, an input alphabet, a
transition function, an initial state, and a set of accepting states. The automaton processes
input strings by transitioning between states in response to characters from the input al-
phabet. Two prominent classes of finite automaton are theDeterministic Finite Automaton
(DFA) and the Non-deterministic Finite Automaton (NFA).

2.4.1 Deterministic finite automaton

ADeterministic Finite Automaton (DFA) is a specific type of Finite Automaton character-
ized by its deterministic behavior. In a DFA, each state and input character has precisely
one defined transition leading to another state. This determinism means that given a spe-
cific input string, a DFA will follow a unique path through its states, ultimately accepting
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or rejecting the input. DFA execution is highly efficient and predictable, making it well-
suited for applications where input patterns have a strict, unambiguous structure. How-
ever, the key drawback of DFAs is their inability to handle non-determinism, making them
less amenable to parallelization and less suitable for handling complex patterns.

2.4.2 Nondeterministic finite automaton

In contrast toDFAs,Non-deterministic Finite automatons (NFAs) exhibit non-determinism
in their state transitions. AnNFA can havemultiple transitions for the same state and input
symbol, offering multiple possible paths for a given input string through the automaton.
This non-deterministic behavior makes NFAs more expressive and adaptable when deal-
ing with complex, ambiguous, or irregular patterns. NFAs are especially useful in regular
expression matching, where patterns may include optional components, repetition, or al-
ternatives. While NFAs offer greater expressive power, their non-deterministic nature can
result in multiple possible outcomes for a given input, making the outcome less obvious
and more challenging for sequential processing. Figure 2.5 shows an equivalent pair of
NFA and DFA.

20



Figure 2.5: Illustration of equivalent NFA and DFA

2.4.3 Regular Expression to Finite Automaton Conversion

A traditional way to solve regular expressions is to convert them to finite state automa-
tons. [1, 46, 24, 31] The conversion involves constructing a finite automaton that can rec-
ognize the same language as the given regular expression. The basic idea is to represent
the regular expression’s structure and operations in terms of states and transitions in the fi-
nite automaton. This process typically involves creating states for different components of
the regular expression (e.g., individual characters, concatenation, alternation, and Kleene
closure) and defining transitions between these states based on the relationships specified
by the regular expression. For instance, concatenation is represented by connecting the ac-
cepted state of the first sub-expression to the start state of the second, denoted as S→S’.
Alternation introduces branching paths, represented as S→S’ or S→S”, where different
paths represent different possibilities. Similarly, the Kleene closure introduces looping
paths, represented as S→S, allowing for repetition.

The resulting NFA can then be used to recognize whether a given input string belongs to
the language described by the original regular expression. We can also convert the NFA to
a DFA using the powerset construction [34] introduced by Rabin and Scott. While NFAs

21



are more expressive and easier to design, DFAs are more efficient for implementation and
evaluation. We simplify the structure by converting an NFA to a DFA, eliminating non-
deterministic transitions and redundant states. Figure 2.6 shows a pair of equivalent NFA
and DFA of a given regular expression P.

Figure 2.6: Illustration of RegEx conversion

In the context of General-Purpose Graphics Processing Unit (GPGPU) acceleration, the
choice between DFA and NFA becomes critical. DFAs, with their deterministic and linear-
time execution, are constrained by their serial nature, making them less suitable for lever-
aging GPU parallelism. On the other hand, NFAs, with their inherent non-determinism
and potential for complex pattern recognition, offer a promising avenue for exploiting the
parallel computing capabilities of GPUs. This research focuses on harnessing the paral-
lelism of NFAs to address the limitations of DFAs and explore innovative approaches for
pattern matching in GPGPU-accelerated environments.
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Chapter 3

Related Work

We have found that some previous works on regular expression matching and literal
string matching exist in different domains. In this chapter, we will provide an overview
of them.

3.1 Regular Expression matching

We observe that not only GPUs but also the use of SIMD instructions with CPUs can
achieve parallel computation for accelerated computation.

Sitaridi et al.(2016) [38] presented the design and implementation of SIMD vectorized
regular expression matching for filtering string columns, which processes multiple input
strings in a data-parallel way without accessing the input in lockstep. They used the vec-
torization technique to achieve data-parallel processing ofmultiple input instances, where
accelerated database operations are executed on CPUs and Xeon Phi co-processors.

Hyperscan [12] is another CPU SIMD-based high-performance multiple regex matching
library developed by Intel. Its fundamental principle is similar to this study, which can
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be divided into compile-time and run-time. It comes with a regular expression compiler
written in C++. As shown in Figure 3.1, Hyperscan takes regular expressions as input,
transforms them into finite state automatons, and puts them into a database for later use
by the runtime. The Hyperscan run-time is developed in C. Figure 3.2 shows a high-level
block diagram of the main components of the run-time; ”datablocks” is the input corpus,
and users use the compiled database of REs to call Hyperscan’s scan APIs to trigger in-
ternal matching engines (nondeterministic finite automaton (NFA), deterministic finite
automaton (DFA), and so on) to match the corpus. When performing pattern matching,
scratch space is used to store intermediate results and metadata necessary for processing
the input data efficiently. This scratch space is dynamically allocated and managed by the
Hyperscan library as needed during runtime. Hyperscan accelerates these engines with
the help of single instruction, multiple data (SIMD) instructions provided by the Intel
processor, and matches are delivered to the user application for processing via a user-
provided callback function. [12]

In addition to SIMD, Hyperscan incorporates an optimization technique known as reg-
ular expression decomposition. This approach partitions a regular expression into a se-
ries of strings and finite automaton (FA) components. Consequently, regex matching is
restructured into a series of subregex matches. In such a way, string matching is inte-
grated into the regex matching process rather than serving merely as an initial trigger.
This integrated approach, which diverges from prefilter-based designs, ensures continu-
ous tracking of string-matching states, thereby precluding superfluous operations. An-
other benefit is that decomposition typically results in smaller FA components, which are
more amenable to conversion into deterministic finite automaton (DFA) and thus benefit
from fast DFA matching [41]. In the latter part of this thesis, we will compare Hyperscan
with our algorithm and provide a detailed analysis.
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Figure 3.1: Hyperscan compilation process [11]

Figure 3.2: Hyperscan run-time [11]
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Regarding GPU algorithms, a traditional way to solve NFAs is to employ state-level par-
allelism. iNFAnt [7] is a well-known algorithm that turns regex patterns into NFAs and
then solves themwith CUDA. It uses state-level parallelism, whichmeans it splits the tasks
among different threads when it moves from one state to another while reading an input
character. This needs the problem size to be big enough to maximize the GPU’s power.
However, in our experiments, a row in the transition table normally is less than 10 ele-
ments long. This stops it from benefiting from larger block sizes, lowering occupancy. Yu
and Becchi proposed an optimized iNFAnt [44], which clusters NFA states into groups by
certain rules[45] to reduce the size of the problem. However, it still faces the issue of low
occupancy.

To fix iNFAnt’s occupancy problem, Liu et al. (2023) developed ASyncAP [23]. It dis-
tributes the text to different blocks, and each thread tries to solve the current NFA from
different starting points. If it can not find a match at some step, the thread goes on to the
next starting point. For example, in figure 3.3, a nine-thread block is deployed to locate the
sequence "def" within a given string "abcdefghijklmnop." Each column represents the in-
put string for each thread. Gray blocks indicate the termination of a search, and the fourth
column reports a match. More specifically, thread T1 starts from the initial character ’a’,
T2 from the second character ’b’, and this pattern continues sequentially. Upon a failed
attempt by T1, it advances to the tenth character, factoring in the block size (1+9). The
process terminates with thread T4 identifying a match, prompting the kernel to output
the result.

This way, we can improve with a larger thread block size and use the computational re-
sources more efficiently. However, this method also brings problems with computational
overhead. Its theoretical time complexity is O(mn2), wherem is the NFA size, and n is the
string length. Even though, in most cases, it will stop at the first character, if our regex
pattern starts with a wildcard or, worse, a wildcard with a quantifier like *, the time com-
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plexity can get to its worst case, making the computational workload much bigger and
hurting the performance. We also point out that such regex patterns are not rare in differ-
ent databases.

Figure 3.3: Illustration of the ASyncAP [19]

In addition to the software-based regular expression matching mentioned above, we have
also recognized a category of high-performance regularmatchingmethods based on hard-
ware FPGA platforms [20, 43, 3]. The available hardware resources of the design imply
the maximum size (in terms of the amount of states and transitions) of the supported
automata. However, regular expressions may be arbitrarily complex. Therefore, we con-
sider such methods supplementary, akin to the prefilter stage that will be mentioned later
in this thesis, which serves as an accelerator rather than the matching engine.
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3.2 Literal matching

Regex patterns offer powerful ways of expressing complex and flexible matching condi-
tions but have much higher computational complexity than literal matching. Regex en-
gines usually involve complex state transitions within finite automaton, which require a
lot of resources. In contrast, literal matching involves simpler character-by-character com-
parison, a computationally less expensive task. To reduce the computational overhead
of regex pattern matching, researchers and developers have investigated the idea of us-
ing literal matching as an initial "prefilter" stage. In this pre-filtering technique, Xu et al.
(2023) [42] and Qiu et al. (2021) [33] have shown the impressive cost-effectiveness of
literal matching compared to regex matching. The results in this thesis explain that literal
matching, when carefully integrated into pattern-matching pipelines, achieves a perfor-
mance advantage that is two orders of magnitude better than regex matching. This cost-
effective and efficient strategy has been widely applied in Deep Packet Inspection (DPI)
systems, as shown by popular applications such as Snort [35] and Suricata [29]. In this
thesis, wewill implement and compare twowidely acknowledged literal pattern-matching
techniques with linear time complexity using CUDA. Our primary focus is to perform a
detailed performance comparison and analyze the underlying factors contributing to any
observed differences. In this section, we will introduce the algorithms, reserving the com-
prehensive CUDA version implementation discussion for Chapter 4.

3.2.1 KMP

The Knuth-Morris-Pratt (KMP) algorithm [16] is a highly efficient string searching algo-
rithm. The key to its efficiency lies in constructing a "failure function" built-in ComputePre-

fix that helps skip unnecessary character comparisons during the search process. Here is
a brief introduction to the KMP algorithm in the following two pseudo-code blocks:
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Algorithm 1: KMP algorithm

1 Algorithm KMP()

2 next← ComputePrefix()

3 i← 0

4 j← 0

5 while i <len(string) do

6 if string[i] == pattern[j] then

7 i = i+ 1

8 j = j + 1

9 else if j > 0 then

10 j = next[j − 1]
11 else

12 i = i+ 1

13 if j == len(pattern) then

14 return true
15 end

16 end

17 return false

Purpose: This function is designed to find if the substring pattern exists in the given
string.

Parameters:

pattern: The input substring.

string: The given string to be examined.

Returns: A boolean value indicates if the substring pattern exists in the given string.
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When a mismatch occurs between the current character of the string and the current char-
acter of the pattern during the matching process, instead of restarting the comparison
from the beginning of the pattern, the KMP algorithm uses the information stored in the
"next" array returned from the ComputePrefix to determine how far to shift the pattern
before continuing the comparison. This shift allows the algorithm to skip characters in the
pattern that are guaranteed to match the already processed characters in the string.

The ComputePrefix method generates a "next" array that helps the Knuth-Morris-Pratt
(KMP) algorithm efficiently handle mismatches. It calculates the longest proper prefix
of the pattern, which is also a suffix. This information is then used during string match-
ing to determine how many characters can be skipped in the pattern when a mismatch
occurs, thus avoiding unnecessary comparisons and backtracking. Consider the pattern
"ABABAC." The next array for this pattern is computed as follows: start with the first char-
acter ’A,’ which has no proper prefix, so next[0] = 0. No proper prefix for ’B’ matches a
suffix, so next[1] = 0. For the third character ’A’, the proper prefix "A" matches the suf-
fix, so next[2] = 1. For the fourth character ’B’, the proper prefix "AB" matches the suffix,
so next[3] = 2. For the fifth character ’A’, the proper prefix "ABA" matches the suffix, so
next[4] = 3. For the last character ’C’, there’s no matching proper prefix, so next[5] = 0.
Hence, the next array is [0, 0, 1, 2, 3, 0].

By using the "next" array, the algorithm ensures that it never compares characters that
have already been matched, thereby avoiding redundant comparisons and improving the
overall efficiency of the string-matching process.
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1 Procedure ComputePrefix()

2 next← [0];
3 prefix_len← 0;
4 i← 1;
5 while i < len(pattern) do

6 if pattern[prefix_len]== pattern[i] then

7 prefix_len + = 1;
8 next.append(prefix_len);
9 i + = 1;

10 else

11 if prefix_len == 0 then

12 next.append(0);
13 i + = 1;

14 else

15 prefix_len = next[prefix_len - 1];
16 end

17 end

18 end

19 return next

Purpose: This function is designed to construct a prefix array from a given pattern for use
by the KMP algorithm. It allows pattern matching to continue from the point of failure
without restarting from the beginning of the pattern.

Parameters: pattern: The input pattern, same as KMP’s input.

Returns: The constructed prefix array from the given pattern
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Lin et al. (2013) proposed a parallel approach [21] based on patterns to implement CUDA
KMP, where each thread takes a pattern from the pattern array and executes the KMP
algorithm on the input string. This method works well when there are many patterns to
look for. However, suppose the number of patterns is not enough. In that case, it becomes
difficult to fully utilize the computational power of the GPU, especially in the context of
the current extremely powerful GPUs.

3.2.2 Shift Or

The key idea behind the Shift-Or algorithm [9] is to maintain a 256-row mask table rep-
resenting the pattern’s characters since we are using ASCII encoding. However, this also
means it will be limited by the encoding method. It converts literal matching into bit-
wise SHIFT and OR operations by left-shifting the state mask over the text, one bit per
character, and updates the state mask according to the current character being examined.
Typically, it works fine if the length of the search pattern should be short enough to fit into
one machine word.
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Algorithm 2: Shift Or algorithm

1 m = len(pattern)
2 pattern_mask = [∼ 0]× 256

3 for i← 0 to m do

4 pattern_mask[pattern[i]] & = (1L << i)

5 end

6 R←∼ 1

7 for i← 0 to len(string) do

8 R = R| pattern_mask[string[i]]
9 R <<= 1

10 if (R&(1L << m)) == 0 then

11 return true
12 end

13 end

14 return false

Purpose: This function is designed to find if the substring pattern exists in the given
string.

Parameters:

pattern: The input substring.

string: The given string to be examined.

Returns: A boolean value indicates if the substring pattern exists in the given string.

It initializes amask tablewhere each bit corresponds to a character in the pattern and clears
the bits for characters in the pattern. Then, it iterates through the input string, updating
a bit vector R to represent potential matches. If a potential match is found, it returns true;
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Figure 3.4: Shift or algorithm [42]

otherwise, it returns false. This approach avoids redundant comparisons by leveraging
bitwise operations to track matches efficiently. Consider the example in figure 3.4, where
the input string is ’rsyrry’, with ’rs’ being processed in the previous iteration and ’yrry’ in
the current iteration, and ’rry’ be our pattern:

The mask table has 256 rows and pattern-length columns. Each row vector represents
an ASCII character. For each column in each row, we set it to 0 if the ASCII character
equals the corresponding character in the pattern. For example, row ’r’ is 001 since the
first two characters of the pattern ’rry’ are ’r.’ After constructing themask table, the system
starts processing the input string in chunks called iterations. During each iteration, it
handles a specific number of input characters. For each character c in an iteration, the
corresponding entry from the mask table is loaded into the match table. For instance, if
the system processes 4 characters per iteration, the match table is illustrated in Fig 3.4(B).
To obtain the match results, the Shift-Or algorithm shifts the ith character in the input
string left by i bits to align the bits diagonally. As illustrated in Figure 3.4(C), during the
current iteration, the four vectors are shifted left by 0, 1, 2, and 3 bits, respectively. The
vectors were similarly shifted in the previous iteration. Then, it performs an OR operation
on the shifted vectors to obtain the state mask and check if there is a match, as illustrated
in Figure 3.4(D).
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Chapter 4

Algorithm Details

In this chapter, wewill introduce the limitations of regular expressions and explore how to
optimize these limitations by utilizing pre-filtering techniques. Subsequently, wewill dive
into the specific implementation algorithms for the twomatching types. More specifically,
we will present CUDA-KMP, CUDA-ShiftOr, CUDA naive matching algorithms for literal
matching, and optimized ASyncAP algorithm for regular expression matching.

4.1 Literal matching for prefiltering stage

For this stage, there are existing approaches based on SIMD-CPU algorithms based on the
FPGA (field-programmable gate array) platform [37, 36, 15]. Given the relatively low
algorithmic complexity of string matching and GPUs having more computing resources,
we will implement CUDA-based algorithms. We will extract the longest static sub-string
from each RE pattern for the pre-filtering patterns. For example, "configName="would be
the pre-filtering pattern for RE pattern [?&]configName=[^&]+(script|onload|src). If a
RE only contains special symbols, we will skip the pre-filtering stage.
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Note that all three following algorithms share the same purpose, parameters, and re-
turns:

Purpose: This CUDA function is designed to find if the substring pattern exists in the
given string array parallelly.

Parameters:

strings: The given string array to be examined.

strings_length: The corresponding length of each string in the string array.

threadIdx: The current thread index, which is a 3-D vector. We consider threadIdx.x
the index since we use 1-D thread blocks.

blockDim: The dimensions of the thread block, which is a 3-D vector. We consider
blockDim.x the size since we use 1-D thread blocks.

Built-in keywords and functions:

__shared__: indicates the parameter is shared among the same thread block.

__syncthreads(): threads will be halted until all threads in the same thread block
reach this line.

Returns: A boolean value indicates if the substring pattern exists in the given string.

4.1.1 CUDA-KMP

To address the limitation mentioned in section 3.2.1, we implemented an optimized ver-
sion of CUDA-KMP [21], which is a string-based parallel approach in which each thread
is assigned a segment of the input string for pattern matching. For short inputs, we can
make the strings long enough to use the GPU’s computational power using string buffer-
ing techniques. Each sub-string begins from k × n where k ∈ N and n = pattern length,
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and is 2× pattern length long. This way, we can be sure to catch the parts that straddle
two neighboring sub-strings.

Figure 4.1: Illustration of the string-based task distribution [19]

Figure 4.1 illustrates an example, looking for the pattern “EFG” in the input string. Each
thread will scan the string from a different location, and a thread might fail to spot the
pattern if it is split across sub-string boundaries. For example, if each thread takes 3 char-
acters, ”EFG” would be split by the first and second threads. Each thread’s search has
extra padding based on the pattern length to avoid this. A thread gets a sub-string that
overlaps with its neighbor(s) by the same amount as the pattern length, which is 6 in this
case. This way, we can be sure that a slidingwindow of the same size as the pattern length,
moving from left to right, will always fall within at least one thread’s sub-string. Since our
literal patterns are much tinier than the input strings, the slight redundancy is worth it be-
cause we do not need to worry about finding incomplete pattern instances on sub-string
boundaries. The pseudocode below shows how the algorithm works in detail.
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1 Algorithm CUDAKMP()

2 target← strings[blockIdx.x]
3 m← strings_length[blockIdx.x]
4 stride← blockDim.x
5 next← ComputePrefix()

6 for index← threadIdx.x to m by stride do

7 i← n× index ; j ← n× (index +2) - 1
8 if i > m then

9 return

10 end

11 if j > m then

12 j = m

13 end

14 k ← 0

15 while i < j do

16 if target[i] == pattern[k] then

17 i++; k ++

18 if k == n then

19 return true
20 end

21 else if k > 0 then

22 k = next[k − 1]

23 else

24 i+ = 1

25 end

26 end

27 return false 38



4.1.2 CUDA-Shift Or

First, we implemented the CUDA version of the traditional shift-or algorithm. We used
a state mask of the length of a machine word (64-bit on the machine used in this thesis).
Because we need to shift the state mask to the left by pattern length bits, we can only check
64-pattern length characters simultaneously in each iteration.

Due to the limitation of the traditional Shift-Or algorithm, the 64-pattern length restriction
in each iteration greatly reduced the GPU’s occupancy, which means limiting the use of
GPU hardware performance, especially when the pattern length is too long. To solve this
problem,we proposedCUDA-ShiftOr-Optimized. Weuse five 64-bit numbers to represent
the current state mask, the smallest number sufficient for all the cases in our database.
It greatly increases the amount of parallel computation in each iteration. It also greatly
increases the upper limit of the pattern length. The following pseudocode only provides
the traditional version of the CUDA-ShiftOr algorithm, and the Optimized version is only
to change its state mask to a 64-bit word array. Note that __syncthreads() is used for
syncing the shared memory variables to prevent race conditions.
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Algorithm 3: Shift-Or Matching

1 target← strings[blockIdx.x]
2 m← strings_length[blockIdx.x]
3 stride← blockDim.x
4 __shared__ unsigned long long prev

5 __shared__ unsigned long long curr_mask

6 if threadIdx.x == 0 then

7 prev ← 0

8 end

9 __syncthreads()
10 curr_pos← threadIdx.x
11 while curr_pos < str_len do

12 curr_mask ← prev >> (65− pat_len)
13 curr_mask| = mask_table[string[curr_pos]] << threadIdx.x
14 __syncthreads()
15 prev ← 0

16 __syncthreads()
17 atomicOr(&prev, curr_mask)
18 __syncthreads()
19 if (prev&(1 << threadIdx.x)) then

20 return true
21 end

22 curr_pos+ = stride

23 end
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4.1.3 CUDA naive matching

As a control group, we set up a naive matching algorithm. The task distribution is simi-
lar to CUDA-KMP, and in each thread, we start from the corresponding starting position
and try to match the pattern. If it fails, we increment the starting position by blockDim.x
characters. The detailed logic is shown in the pseudocode below:

Algorithm 4: CUDA Naive Matching

1 target← strings[blockIdx.x]
2 m← strings_length[blockIdx.x]
3 stride← blockDim.x
4 for index← threadIdx.x to m - pat_length by stride do

5 counter← 0
6 while index < pat_length and target[index + counter] == pattern[counter] do

7 counter += 1
8 end

9 if counter == pat_length then

10 return true
11 end

12 end

13 return false

4.2 Regular expression matching

We introduce an optimization technique for the performance issue that occurs when RE
starts with wildcard elements. This technique consists of annotating regex patterns that
greatly affect performance. For example, when the NFA derived from the regex pattern
has many transitions from the initial state to other states, we eliminate the first or some
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of the easily reachable states and set a more challenging state as the initial one. Then we
validate if the part we eliminated can bematched after obtaining a successful match.

Consider theworst casewhen the RE startswith a ”.*”. Unlike instanceswhere threads ter-
minate after inspecting the initial characters, thiswildcard scenario compels each thread to
persist in a matching loop until the text corpus is fully scanned, potentially escalating the
computational load significantly. Our preliminary trials indicated that this issue negates
the performance benefits of the ASyncAP method, making it worse than the performance
of CPU single-thread matching.

While compiling an RE into a Non-Deterministic Finite Automaton (NFA), we record the
in-degree for each state. States with an in-degree surpassing a predetermined threshold
(100 in our study) are classified as easy-to-reach states. We introduce the concept of a
"skip state" for any easy-to-reach states that is in one of the following two situations:

1. Connected to the initial state 0

2. Connected to another skip state

Here is a simple example of two skip states (marked as green) in Figure 4.2:

Figure 4.2: Skip state example. State 0 is the initial state, and states 1 and 2 (in green) are
identified as skip states
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Subsequently, we derive a reduced NFA from the original, ensuring the initial state is
disconnected from any easy-to-reach states. The sub-NFA, extracted from the original
NFA, is responsible for the final screening after the reduced NFA finds a match.

For instance, take the regex pattern: [^abc]+https?://t.com. We first examine if it can
match https?://t.com. If it does, we will continue to look for other matches if the char-
acter before it is one of abc or report a match found if it is not.

Regarding the data structure representation of NFA, ASyncAP [23] opted for a simple
transition table. This table might be sparse and inefficient in memory usage, and Blaß
and Philippsen [4] suggest sparse representations, such as COO, ELL or others as better
alternatives to represent such graphs. Other works [22, 25] proposed another per-node
structure similar to Compressed Sparse Rows (CSR). However, it cannot handle large-
scale problems with many states. In the specific case of regular expression matching, the
situation is distinct. Assuming a simple ASCII representation, we have a constant number
of nodes, the (at most) 256 characters in the ASCII table. Hence, we still select an alpha-
betical representation similar to the transition table, but we only store the edges, which
represent transitions among different states that exist in the array. This is clearly not suit-
able when patterns contain characters from various alphabets, but it has the benefit of
ensuring efficient access in the many cases when ASCII is adequate.
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Chapter 5

Dataset, methodologies, and

experiments

In this chapter, we will introduce the methods employed for data acquisition, the charac-
teristics of the data, the experimental approach, and the results obtained. Furthermore,
we will delve into the implications conveyed by the experimental results.

The following describes the primary experimental machine we used to test the perfor-
mance differences between various algorithms.

CPU Intel Core i5-10500H
Memory DDR4 8GB x 2
GPU NVidia GeForce RTX 3060 Laptop
Table 5.1: Primary hardware specifications

Additionally, to compare the potential impact of different hardware on performance, we
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also utilized the machine listed below for comparison. Note that RTX 3080s share the
same Ampere architecture and memory size as our primary experimental machine but
with more computing power (SM count, tensor core count, etc).

CPU Intel Core i5-9400F
Memory DDR4 8GB x 2
GPU NVidia GeForce RTX 3080

Table 5.2: Comparison hardware specifications

OS Ubuntu 22.04.3 LTS
Driver NVIDIA Display Driver version 535.104.05
SDK CUDA 12.2
Tool NSight Compute 2023.2.2 [26]

Table 5.3: Software specifications

5.1 Dataset and its summary statistics

The hardware and software specs are in Tables 5.1, 5.2, and 5.3. We could not use the test
suite that iNFAnt picked for the dataset because it is no longer available. The corpus [39]
that ASyncAP used are also binary files incompatible with our tests. To compare our work
with other approaches of REmatching onGPUs for deep packet inspection, we used regex
patterns from Snort [35, 40], as ASyncAP did, and made a synthetic corpus with mostly
HTTP code, SQL queries, as input using the ChatGPT API [17]. In addition, we have
generated random strings of the same length to serve as a control group to investigate the
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potential impact of different types of corpora on the experimental results. We tested how
each algorithm performed using NSight Compute 2023.2.2 [26].

5.1.1 Regex Patterns

To explore the impact of different regex patterns on experimental results, we categorized
the regex patterns based on the number of transitions in their compiled representations
into S (fewer than 100 transitions), M (100 to 500 transitions), L (500 to 1000 transitions),
and XL (more than 1000 transitions). Noting that whether a pattern begins with a wild-
card symbol (or a regex element similar to a wildcard, such as [^a], significantly affects
the performance ofASyncAP,we also classified regex patterns based onwhether they have
more than 100 transitions from the initial state to the next state to determine if they begin
with a wildcard.

Furthermore, to investigate the potential effects of different regular expressions, we also
employed regular expressions from ClamAV [8] and Dotstar [2]. Although all three reg-
ular expression datasets are designed for deep packet inspection, the regular expressions
within them exhibit different characteristics. For instance, we consider the two most im-
portant features to be the average size of each regular expression in the datasets and the
average in-degree per node. We will investigate the impact of these features on perfor-
mance.

5.1.2 GPT Corpus Generator

We observed a lack of practical, universally applicable corpora for string matching testing
at present. The manual collection of extensive corpus materials is both time-consuming
and impractical. Therefore, we developed a simple tool called the GPT Corpus Generator,
which is a Python script utilizing the API provided byOpenAI for ChatGPT[30]. This tool
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enables us to issue instructions for the desired content of the corpus. In practice, we set the
background as ’You are a helpful assistant who understands data science and computer
science’ and the instruction as ’Give me 20 SQL query command code blocks for string
matching testing purposes.’ ’Give me 20 HTML code blocks for string matching testing
purposes.’ and so on. Then, save the contents of the code blocks from the response locally.
This way, we can obtain corpus content of any desired type. It is important to note that
due to the length limitation of GPT-generated responses, excessive text content should not
be requested in instructions. This limitation can be addressed by running more iterations.
The generated corpus is around 20 Megabytes and can be found in the repository of this
work [18].

5.2 Tuning Compilation Configurations and Running Set-

tings

This sectionwill present the optimal configurations for the algorithm’s performance, which
depends on some compilation and runtime parameters. Wewill also explain howwe used
NSight Compute [26] to profile the algorithm and find the optimal configurations. The
following subsections will discuss the details of each parameter.

5.2.1 Register Counts per Thread

One important parameter is the number of registers per thread. More registers per thread
means less memory access, as more data can be stored in registers. However, more regis-
ters per thread means fewer threads can run simultaneously on each streaming multipro-
cessor (SM) because each SM has only 65,536 32-bit registers.

For example, on our experimental machine (see table 5.1), the default number of registers
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per thread is 74. If we use 1024 threads per block, then 1024 * 74 > 65,536, so we do not
have enough registers to run the kernel, and the program will crash.

So, wemust find the best number of registers per thread that maximizes occupancy. Occu-
pancy is the ratio of active threads to themaximumpossible threads on each SM.Although
we can calculate the occupancy, we can also use the profiler NSightCompute to see how
the register count affects occupancy conveniently. Figure 5.1 (top) shows the “Impact of
Varying Registers Per Thread” section, where we can see the highest number of registers
still giving us the highest occupancy.

5.2.2 Block Size

Another parameter that affects occupancy and performance is the block size. If the block
size is too small, we may waste some threads on the SM because the shared memory size
limits the number of blocks that can run simultaneously. If the block size is too large, we
may have some idle threads because the blocks may not fit well on the SM. But if the block
size is right, we may get a theoretical occupancy of 100%.

To understand this, imagine filling a big 2m x 2m square with smaller squares. If we use
0.5m squares, we can fill it exactly. If we use 0.6m squares, we will have some gaps. If we
use 1m squares, we can fill it exactly again. Figure 5.1 (middle) shows our algorithm’s
best block size in the “Impact of Varying Block Size” section.

5.2.3 Shared Memory Usage per Block

The last parameter we will discuss is the shared memory usage per block. As we said
before, each SM has a limited amount of shared memory. So, the more shared memory
each block uses, the fewer blocks can run simultaneously. Whenwe design algorithms, we
need to balance the block size and the shared memory usage per block. Figure 5.1 (bot-
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tom) shows the optimal configuration in the “Impact of Varying Shared Memory Usage
per Block” section.

Figure 5.1: NSight Compute [26] Occupancy Analysis

All three y-axes in figure 5.1 represent the warp occupancy. The x-axes of the three dia-
grams represent register count per thread, block size, and shared memory, respectively. It
shows how the occupancy changes while the other three factors change.

5.3 Methodologies and Results

This section will introduce each part of the experiment in detail and explain how we de-
signed the experiment to achieve its purpose.

5.3.1 Literal pattern matching

Weobtain the longest stringwithout special symbols from the regex pattern as the prefilter
pattern in the regex compilation process, as stated in section 4.1. This is independent of
the length of the regex pattern. Also, the length of the string, not the length of the pattern,

49



determines the time complexity of KMP. Hence, we do not perform experiments with the
length and type of regex as variables.

The pattern-based and string-basedmethods differmainly in that the string-basedmethod
can employ a buffer to secure a large enough block size, whereas the pattern-basedmethod
cannot ensure it when the number of patterns is small. Thus, we only examine the effect
of different block sizes on occupancy under the same text.

Figure 5.2: CUDA-KMP performance over #threads/block
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Figure 5.3: CUDA-KMP occupancy over #threads/block

The experimental results shown in figures 5.2 As figures 5.2 and 5.3 demonstrate, the block
size of the pattern-based method is insufficient when the number of regex patterns is less
than or equal to 64, and only a limited number of blocks can be executed on the same
SM, leading to a low occupancy. The pattern-based method can only reach the maximum
occupancy when the number of regex patterns is at least 128. Hence, our method has a
remarkable benefit of about 2x-40x acceleration compared to the pattern-based method
when the number of regex patterns is below 128 (varying with the different number of
regex patterns).
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CPU-KMP 1823.25ms
CUDA-KMP 3.45ms
CUDA-Naive 2.05ms
CUDA-ShiftOr 41.03ms
CUDA-ShiftOrOptimized 21.02ms

Table 5.4: CPU vs CUDA

We also conducted a CPU version experiment to emphasize the benefits of CUDA compu-
tation. Since we could not independently assess the CPU version of the KMP algorithm
using NSight Compute [26], we depended on the runtime measurements from the code
for both the CPU and CUDA versions. For the CUDA version, this also involves the ex-
tra overhead of calling GPU methods. As shown in table 5.4, all CUDA algorithms still
achieve about a 44x to 900x speedup compared to the CPU version.

5.3.2 Regular expression matching

For the regular expressionmatching part, to showhowwe can benefit from the parallelism
of GPU-based algorithms, we used a CPU single-thread version as a control group to eval-
uate the performance of iNFAnt, ASyncAP, and ASyncAP-Optimized, where ASyncAP-
Optimized is our proposed method. For this experiment, we classified the regex patterns
into three groups: small (less than 100 edges), medium (between 100 and 500 edges),
and large (more than 500 edges), where edges denote transitions between different states.
The experimental results are displayed in the tables 5.5, 5.6, and 5.7. Moreover, we split
them into two categories based on whether the initial state is 0 (indicating it begins with
a wildcard) or not. These results are presented for the larger RE patterns in tables 5.8
and 5.9. The time consumption in the tables refers to the average time for each regex
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pattern to match the corpus among 100 regex patterns to get a more accurate and stable
performance metric that is less likely to be skewed by anomalies or outliers. Note that we
did not apply NSight Compute [26] to measure their performance for Table 5.9, because
NSight Compute [26] demandsmultiple iterations to average test performance, andASyn-
cAP performed so badly in this set of tests that the use of NSight Compute [26] became
impractical.

CPU 5028ms
iNFAnt 768ms
ASyncAP 18ms
ASyncAP-Optimized 20ms

Table 5.5: Performance with small regex patterns

CPU 5523ms
iNFAnt 810ms
ASyncAP 25ms
ASyncAP-Optimized 26ms

Table 5.6: Performance with medium regex patterns
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CPU 7223ms
iNFAnt 1660ms
ASyncAP 39ms
ASyncAP-Optimized 42ms

Table 5.7: Performance with large regex patterns

CPU 7523ms
iNFAnt 1301ms
ASyncAP 38ms
ASyncAP-Optimized 40ms

Table 5.8: Performance not starting with wildcard regex patterns (large size)

CPU 7334ms
iNFAnt 1218ms
ASyncAP 71946ms
ASyncAP-Optimized 38ms

Table 5.9: Performance starting with wildcard regex patterns (large size)
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RE_ID ASyncAP ASyncAP_Optimized
184 59886ms 24ms
1637 129885ms 36ms
2421 33456ms 65ms
19 123289ms 36ms
2416 33453ms 65ms
1584 153479ms 59ms
266 128636ms 26ms
1815 525ms 27ms
197 536ms 27ms
1802 56307ms 15ms

Table 5.10: Detailed ASyncAP vs ASyncAP_Optimized

iNFAnt 983ms
ASyncAP 12ms
ASyncAP-Optimized 12ms

Table 5.11: Performance with large regex patterns, 3080

In our research, we added different groups to test how well the pre-filtering technology
works and compare the overall performance with Hyperscan [12]. We tested the perfor-
mance of Hyperscan [12] according to the Hyperscan Guide [13] and used hsbench [14]
as the benchmark.
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S M L
iNFAnt 84.6ms 113.5ms 149.8ms

ASyncAP 10.1ms 14.2ms 16.8ms
ASyncAP_Optimized 10.2ms 14.2ms 17ms

Hyperscan 3.2ms 3.8ms 5.3ms
Table 5.12: RE matching with pre-filtering

For the experimentswith different regular expressions, we randomly selected a total of 300
regular expressions from three groups—Snort, ClamAV, and Dotstar—evenly distributed
in three different size categories: S, M, and L. We then calculated the average size and
average in-degree per state for regular expressions of different categories. Table 5.13 shows
the statistics of the regular expression groups and the experimental result:

average size average in-degree performance
ClamAV 107 7.12 24ms
Snort 296 20.60 32ms
Dotstar 242 7.71 29ms
Teakettle 57 12.64 18ms
Table 5.13: Stats of different RE groups and performance

5.4 Summary and Discussion

This chapter will summarize the above experimental results, identify numerical patterns,
and discuss the underlying causes.
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In the Literal patternmatching part, we can see that although all the CUDA algorithms far
outperform the CPU version, naivematching is the best performing algorithm, with about
40% performance improvement compared to the CUDA-KMP algorithm. It has about 10x
to 20x speedup compared to the two shift-or algorithms. As mentioned in 4.1.2, the tradi-
tional shift-or algorithm performs poorly due to its low occupancy, which has a theoretical
maximum of 33% and only reaches about 30% in practice, meaning that we only used 30%
of the computing power. Shift-or optimized greatly increases the number of simultane-
ous computations in each iteration, reaching a theoretical occupancy value of 100% and
achieving about 90% in practice, but because we need to check the state of the state mask
in memory to determine whether the result has been found, more memory read andwrite
becomes its performance bottleneck. The KMP and the naive algorithms, while achieving
90% occupancy, only need to check whether the current matching position has reached
the pattern length without performing memory read and write. Let m be the length of
the pattern, and n be the length of the string, here we find that the theoretically higher
time complexity O(mn) naive algorithm performs better than the lower time complexity
O(n) KMP algorithm, because when the hit rate is low, the 6th to 8th lines of the naive
algorithm 4 are rarely executed, making the algorithm more converged to O(n), and due
to the simplicity of the algorithm, it only needs to execute fewer instructions, thus obtain-
ing better performance. If the 6th to 8th lines of the naive algorithm 4 are executed a lot,
consider the following situation, in which a pattern almost matches a string:

pattern: abcdeabcdeabcde

string: abcdabcdacbdabcd

In this worst-case scenario, every time a is checked, the naive algorithm will try to match
to d and then fail. Thus, its time complexity is O(mn). We designed a control group
with a modified corpus according to the patterns to reach the worst-case scenario. We
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obtained the results shown in table 5.14 to verify our conclusion. Even though the worst-
case scenario would slow the performance, we observed that this situation rarely occurred
and never happened in our experiments. Therefore, we consider the CUDA-Naive as a
better method in the pre-filtering stage, at least for our dataset.

CUDA-KMP 3.45ms
CUDA-Naive 2.05ms
CUDA-Naive-WorstCase 5.03ms

Table 5.14: CPU vs CUDA

In the regular expressionmatchingpart, inmost cases, ASyncAPandASyncAP-Optimized
both achieve about 200x and 30x to 40x performance optimization for the CPU version
and iNFAnt respectively. However, when the regex starts with a wildcard, ASyncAP will
have serious performance issues, more than 10 times worse than the CPU version. Ta-
ble 5.10 shows a detailed ASyncAP vs ASyncAP_Optimized with RE IDs. At the same
time, ASyncAP-Optimized solves this problem, and its performance is unaffected. We
found that the traditional method of using state-level parallelism, such as the iNFAnt al-
gorithm, has a smaller theoretical time complexity of O(n) (because for each character,
at most 256 transitions need to be traversed). However, the recently proposed ASyncAP
has a worst-case time complexity of O(n2). Still, it has better utilization of GPU comput-
ing power based on different positions as the beginning of the string; when the regular
expression does not start with a wildcard, the time complexity of ASyncAP converges to
O(n). Therefore, in most cases, ASyncAP performs better than iNFAnt. For its worst case,
our optimization can eliminatemost situations thatmake the time complexity of ASyncAP
converge to O(n2).
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As shown in table 5.12, we found that applying pre-filtering removes most of the work-
loads needed for matching regular expressions, making the time taken by different algo-
rithms andRE sizesmore similar. Thismeans algorithms that usually do not performwell,
like iNFAnt, get a bigger speed boost—about 10 times faster. The speed increase for ASyn-
cAP and its optimized version is smaller but still about 8 times faster than iNFAnt.

In table 5.12, we also noticed that Hyperscan [12] performed very well and outperformed
all GPU algorithms, including our optimized ASyncAP with pre-filtering. According to
NSight Compute, the reason why we underperformed Hyperscan and the bottleneck of
our algorithm is the bank conflict, which caused an 80% performance decrease. In CUDA,
a bank conflict occurs when multiple threads in a warp access data from the same mem-
ory bank in shared memory simultaneously. Since each memory bank can only service
one request per clock cycle, if multiple threads need data from the same bank, they must
wait in line, which causes a delay. For fast visiting, however, we stored the state vector
in shared memory, and all the threads were reading/writing from/to it simultaneously.
Since the space of shared memory is limited, we do not have extra space to use to avoid
the bank conflict. In addition to bank conflicts, since NSightCompute only accounts for
the algorithms’ own execution time, another performance discrepancy not reflected here
is that our GPU algorithm requires approximately 8ms of overhead per regular expression
to launch the kernel, memory transfer, etc.

We have also observed that in the control group of random string corpora, referred to in
Section 5.1, there is no significant performance variance among the algorithms compared
to the experimental group. Consequently, we have omitted the repetition of their exper-
imental results data here. From this, we infer that the corpus length is the sole variable
influencing the algorithms’ time consumption.

For different hardware, we observed a 2-3 times faster performance for RTX 3080 from
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table 5.11.

As for different regular expression groups shown in table 5.13, we found that the perfor-
mance shows a significant difference when the average in-degree is similar, but the aver-
age size is significantly different, as with the ClamAV and Dotstar groups. Conversely, the
performance is much closer when the average size is similar, but the average in-degree is
significantly different, as with the ClamAV and Snort groups. Based on the data in table
5.13, we believe that the average size has a greater impact on performance within different
groups of regular expressions. In contrast, the average in-degree is a factor that can be
disregarded, especially after our optimized version of ASyncAP has addressed the issue
with the leading wildcard.
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Chapter 6

Conclusion and Future work

In the thesis presented, we comprehensively analyzed multiple methods employed for
literal and regular expression pattern matching. The optimization techniques applied re-
sulted in a marked enhancement of these methods, notably in their resilience and flexi-
bility across diverse search contexts. Our empirical assessment substantiates the superior
efficacy of CUDA programming over traditional GPU-based and sequential approaches
in addressing pattern-matching challenges. Concurrently, our findings indicate that spe-
cific compilation and execution parameters considerably influence algorithmic efficiency.
This observation underscores the need for meticulous parameter tuning to leverage per-
formance gains fully.

To advance the field of regular expression (RE) matching, future research could benefit
from deploying our methodologies on cutting-edge hardware to assess their robustness
and transferability. Although NFAs can offer more parallelism, they also cause bank con-
flict, as we need a state vector to keep track of the states. Breaking the finite automaton and
converting theNFAs toDFAs likeHyperscan could avoid the problem. Applying these op-
timizations and exploring DFA-based methods may be worthwhile. Delving into the de-
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velopment of self-adjusting mechanisms for fine-tuning parameters may reveal methods
to augment the flexibility of our system. The success of literal pre-filtering suggests that
we can include simpler sub-patterns in our searches, making the matching process more
efficient. Enriching our experimental scope to encompass REs from disparate sectors, in-
cluding those employed in web engine Document Object Model (DOM) searches, might
show the full extent of our methodology’s adaptability. Moreover, given that this thesis
has only identified regular expression datasets in the field of Internet packet inspection,
it is valuable to explore datasets from other domains. Changing the algorithm from exe-
cuting each regular expression individually to transferring all regular expressions to the
GPU at once may significantly reduce the overhead caused by kernel launches and mem-
ory transfers. Finally, embedding our systemwithin actual applications and evaluating its
real-world performance could provide invaluable practical insights.
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