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Abstract

The development of harmonic generation microscopy has presented biological scientists

with a novel label-free, high-contrast method of imaging based on structural properties

of a biological sample. However, imaging unexplored systems without engineered flu-

orescence as the source of contrast can be unpredictable, making quantitative methods

an important part of these investigations. This thesis aims to broaden the current scope

of the field by demonstrating nonlinear multimodal microscopy as a viable method of

quantitative imaging in two highly scattering biological tissues. Chapter 1 briefly reviews

the development of biological microscopy leading up to nonlinear harmonic generation

imaging, and introduces the biological context of two distinct tissue structures: the byssal

thread of the sea mussel Mytilus edulis and the developing brain of the tadpole Xenopus

laevis. Chapter 2 gives an in-depth explanation of the physics behind multiphoton scan-

ning microscopy, and introduces image correlation spectroscopy (ICS) as an analytical

technique. In Chapter 3 the microscopy instrumentation, sample preparation methods,

and algorithms employed for data processing are outlined in detail. Chapter 4 contains

the results of multimodal imaging, and the results of the analysis of those images, for

two main components of the byssal thread and for the myelination process as it occurs

during tadpole development. Full discussion of the interpretation of these findings is left

to Chapter 5, which concludes the work with directions for how these techniques can be

incorporated into future research on their respective systems.
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Abrégé

Le développement de la microscopie à génération harmonique a présenté les scientifiques

en biologie avec une nouvelle méthode d’imagerie sans étiquette, basé sur les propriétés

structurelles d’un système biologique. Cependant, l’imagerie de systèmes inconnues

sans fluorescence artificielle comme source de contraste peut être imprévisible, ce qui

fait des méthodes quantitatives une partie importante de ces investigations. Cette thèse

sert à élargir l’état actuel du domaine en démontrant la microscopie multimodale non

linéaire comme une méthode viable d’imagerie quantitative dans deux tissus biologiques

hautement diffusants. Le chapitre 1 passe brièvement en revue le développement de la

microscopie biologique jusqu’a à l’introduction de la microscopie à génération harmonique

non linéaire, et présente le contexte biologique de deux tissus distincts : le fil byssal de

la moule de mer Mytilus edulis et le cerveau en développement du têtard Xenopus laevis.

Le chapitre 2 donne une explication approfondie de la physique de la microscopie à

balayage non linéaire et présente la spectroscopie de corrélation d’images (ICS) comme une

technique analytique. Dans le chapitre 3, l’instrumentation de microscopie, les méthodes

de préparation des échantillons et les algorithmes employés pour le traitement des données

sont décrits en détail. Le chapitre 4 contient les résultats de l’imagerie multimodale, et

les résultats de l’analyse de ces images, pour deux composants principaux du fil byssal

et pour le processus de myélinisation tel qu’il se produit au cours du développement du

têtard. La discussion complète de l’interprétation de ces résultats est laissée au chapitre 5,

qui conclut le travail avec des indications sur la façon dont ces techniques peuvent être

incorporées dans les recherches futures sur leurs systèmes respectifs.
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Chapter 1

Introduction

1.1 The biological microscopist’s toolbox

Since the invention of the light microscope nearly 400 years ago, it has been an integral part

of research in the biological sciences. Far from its humble beginnings, modern microscopy

uses photons from deep infrared [1] through to x-ray wavelengths [2, 3], atomic forces [4],

electrons [5], and even acoustic waves [6] to illuminate contrast in samples and produce

images. These have been supported by advances in stable laser light sources [7, 8] and the

ability of computers to both control hardware and handle vast amounts of digital data [9].

Breaking the limits of conventional optical physics, both live and fixed samples are imaged

with a resolution on the scale of tens of nanometers [7, 10, 11]. Theoretical models can now

be verified experimentally and questions unimaginable one hundred years ago can be

answered with quantifiable evidence.

Often research begins with a hypothesis regarding mechanisms that control a biological

system. Subsequently, there is consideration which experimental method of data collection

best suits the hypothesis. Different techniques have drawbacks and advantages: speed,

resolution, flexibility, and costs vary widely between a simple benchtop polarized light

microscope (<$1000, 10 µm resolution) and a cryogenic electron microscopy system ($7M

+ operating costs, 0.2 nm resolution [12]). Many of the most widely used methods in
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biology and biophysics are classified under the scope of light microscopy, where photons

with wavelengths in or near the visible spectrum are focused through a system of lenses

onto a sample and the emitted signal is analyzed for changes in phase, frequency, or

intensity. In the simplest form, the entire field of view is illuminated with white light and

the transmitted light is observed directly. Bright field (BF) microscopy remains widely

used for clinical histology and low-resolution research applications [13]. Using special

dyes with affinity for certain tissues, features of interest can be made to stand out against a

larger sample [14, 15]. Optical filters and polarizers can also be used to provide additional

contrast [16] by separating photons based on wavelength and polarization. BF microscopy

is ultimately limited by low/imperfect contrast, since unstained features are still visible,

and loosely focused light interacts with sample planes both above and below the focal

point, blurring the image. Estimating the contributions of the out-of-focus planes requires

additional processing [17, 18] and is not straightforward.

Fluorescence microscopy provides a great improvement in contrast over white light by

illuminating samples with narrow-band wavelengths; molecules with the right electronic

properties absorb the photons to enter an excited state, disperse some of the energy

thermally within picoseconds [19], then emit the remaining energy as a photon in an

effectively random, isotropic direction [20]. The likelihood of absorption varies between

fluorophores and is known as the cross section. The fluorescence lifetime, which describes

the duration of the excited state before photon emission, is generally on the nanosecond

timescale, and can be a source of information itself [21–24].

Fluorescence microscopy was first developed on longer-lived (phosphorescent) tran-

sitions observed in endogenous molecules [25]. It has since been improved by the incor-

poration of immunohistochemistry [15, 26] and genetic fluorescent labelling, pioneered

with green fluorescent protein [27], where exogenous fluorophores (as molecules that dis-

play fluorescent behaviour are known) are introduced artificially to label non-fluorescent

features in a sample. Systems employing laser wavelengths from the near-infrared (NIR)

through the visible spectrum to the near-ultraviolet, and corresponding fluorophores, give
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researchers many options to tailor their approach to each application. Even complicating

factors have been put to productive use. Fluorophores can become trapped temporarily

in an excited state where they do not decay (i.e. a dark non-emissive state); this on/off

blinking is the foundation of certain cutting edge super-resolution techniques [28, 29]).

They will also eventually cease to fluoresce altogether due to oxidation in a process known

as photobleaching, which can be used to measure diffusion in cells and artificial lipid

bilayers [30].

These imaging techniques have been further developed to make it possible to image

single µm-thick planes, and to construct three dimensional images of intact samples.

There are three distinct ways that this has been accomplished. Total internal reflection

microscopes take wide field images by exploiting the physics of total internal reflection to

generate a boundary evanescent field, exciting fluorophores only within the first hundred

nanometres of the surface [30]. The trade-off for excellent axial resolution is the limitation

of imaging to only surface features. If 3D reconstruction is required, either plane- or point-

focused scanning microscopy is required. Planar approaches like light sheet microscopy

and selective plane illumination microscopy employ carefully designed lens systems to

produce a two-dimensional sheet of excitation light. This excites a 1-2 µm plane in the

sample that can be scanned in the third dimension, with the detection path located along

this axis [31]. This allows fast 3D imaging but is very technically demanding and systems

often have limited flexibility [32]. Confocal laser scanning microscopy (CLSM) on the

other hand uses one or more lenses to focus light as tightly as possible to a single point

on or within a sample with up to ∼300 nm resolution [33]. The fluorescence is then

focused (either by the objective lens or one located immediately opposite it) through a

pinhole the size of the focal point and onto a detector or eyepiece; photons originating

above or below the beam focus are focused on a spot away from the pinhole and the vast

majority do not reach the detector [34]. The simple design is most significantly limited

by the fact that out-of-focus planes are still subject to photobleaching, and mitigation

requires careful manipulation of the local oxidation/reduction pathways [35, 36]. Visible
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wavelengths are also prone to scattering and absorption in biological samples [37, 38]

which restricts the ability to image at high resolution beyond a depth of a few hundred

microns. Optical clearing methods can extend this depth if chosen correctly, at the risk of

causing unintended changes in sample structure [39].

1.2 Nonlinear methods in microscopy

An alternative to CLSM exists in nonlinear scanning microscopy (NLSM), beginning with

multiphoton fluorescence microscopy (MPF/MPFM) [40]. It is possible for a fluorophore

to absorb two or more photons before emitting one single photon of fluorescence, although

the cross section is much smaller. At low powers the rate of multiphoton fluorescence is

extremely low; the photon flux is only dense enough for a significant rate of MPF in the area

immediately around the focal point of a pulsed laser with high peak power. As absorption

is limited to this small focal volume, optically sectioned imaging and 3D reconstruction of

the imaged slices is possible without the pinhole of CLSM. Only a fraction of the incident

photons are converted via MPF, but this is compensated for by the fact that there is no

out-of-focus fluorescence and all emitted photons can be collected. Detection can then be

done at any angle, making 3D live sample imaging feasible [41]. If using readily available

fluorophores and detectors designed for the visible spectrum, MPF requires excitation

wavelengths are in the NIR, which scatter less than visible light within tissue. This further

reduces photobleaching and photodamage outside of the focal volume and increases

the depth to which imaging can be performed in thick samples, cementing MPFM as an

improvement on CLSM for the imaging of biological tissues.

Two-photon fluorescence (2PF) has been used with existing dyes for calcium ions

[42–44], DNA [44, 45], and generally with immunohistochemical stains, as well as with

autofluorescent endogenous molecules [23, 46]. Three-photon fluorescence (3PF) increases

the penetration depth even further and improves resolution slightly over 2PF [47]. En-

dogenous tryptophan and seratonin have large autofluorescent 3PF cross sections [48], and
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conventional fluorescent stains were recently used with 3PF to image mouse brain struc-

ture through intact bone [49]. New labels have been developed for 2PF and 3PF ranging

from modified existing fluorophores [50], to entirely new ones [51–53], to nanoparticles for

cancer screening [54]. MPF can also be used in other nontraditional ways, such as in pH

sensing [55] and measuring fluorescence anisotropy [56]. The inverse relationship between

wavelength and spatial resolution and the high energies necessary to drive four-plus pho-

ton absorption pose challenges, but four-photon fluorescence (4PF) has been achieved both

with genetically expressed fluorescence [57] and exogenous staining [58]. Challenges invite

further innovations: visible-to-visible 4PF [59], two-step four photon absorption [60], and

five photon absorption [61]) have all been demonstrated. These have limited applications

so far in biology because of their esoteric nature and the risks of damage to specimens at

such high laser powers.

One key innovation was the importation of optical harmonic generation microscopy

(HGM) from materials science, originally to investigate the polar nature of collagen in rat

tail tendons [62]. Unlike fluorescence, harmonic generation is a non-absorptive scattering

effect where the dielectric polarization of molecules caused by a passing electromagnetic

(EM) wave drives the lossless up-conversion of multiple low energy photons into a single

high energy one. This process is largely independent of the frequency of the EM wave

as long as it is reasonably far from the atomic resonance of the material [63]. The rate of

conversion depends on the structure and molecular properties of the medium. Second

harmonic generation (SHG), where two incident photons produce one scattered photon,

occurs in bulk crystals or structures displaying non-centrosymmetric asymmetry. THG

occurs in all bulk media, regardless of symmetry, although the conversion efficiency

spans a range of 15 orders of magnitude between different materials. It also originates

at boundaries where there are large step changes in the nonlinear refractive index [64].

Both processes generally have high conversion rates in birefringent materials, and can be

used to extract information about chirality that is unobtainable with linear optical methods

[65]. Some dyes and nanoparticles also show the electronic characteristics necessary for
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efficient harmonic generation [16, 66–68]; analogously to fluorophores, these are known as

harmonophores.

The birefringent biomaterial most commonly investigated with HGM is collagen, which

produces both SHG and THG [69]. SHG can be used to differentiate the various types of

collagen structures that occur naturally in the extracellular matrix (ECM) [70] and to assess

structural changes resulting from disease [71, 72] and wound healing [73, 74]. It can also

probe the size of individual collagen fibers [75] and the organization of the amino acids in

collagen itself [76]. THG has been applied to imaging lipid bodies [77–79] and hemoglobin

cells [80], as well as detecting malaria [81, 82] and the perimeters of brain tumors [83].

Unlike fluorescence, harmonic generation is not inherently isotropic [67, 84], which makes

it sensitive to the orientation of the harmonophores [85]. This allows for information on

lipid membrane dynamics to be extracted [86] but has also been used to map muscular

tissue [87], the polarity of brain microtubules [88], and the organization of collagen in rat

tails as mentioned previously [89]. A major advantage of these techniques is that they

often do not require any exogenous stain. However, the use of stains can improve contrast

and signal-to-noise ratio (SNR), and labelling dyes can be used for specific detection of

structures.

Nonlinear techniques can also be easily demultiplexed with the wide spectral gaps

between the frequencies involved. SHG from collagen and endogenous autofluorescence

from elastin, another ECM protein, have been used to image a variety of connective

tissues [73, 90]. SHG and THG have been employed simultaneously in imaging the

structure of the eye [66], blood vessels [91], and viral particles [92, 93]. 2PF and THG have

been used effectively to image the nervous system [94], combining tagged fluorescence

with the natural refractive index change of myelin sheaths. The multimodal approach can

be used to distinguish competing features of interest, as with elastin and collagen, or simply

to collect data on multiple aspects of a sample simultaneously. It can also easily cross-

validate the results of imaging systems with novel modalities. Since biological systems are
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often complex, heterogeneous and highly scattering, harmonic and multiphoton imaging

approaches are ideal for studying their structural and molecular makeup.

1.3 Imaging byssal threads in sea mussel Mytulis Edulis

Among biological systems, the field of bio-inspired materials is replete with novel organ-

isms and open questions. Materials scientists are very interested in natural materials that

have been shaped by evolution to display remarkable properties [95]. Organisms have

both diversified and converged towards a variety of molecular and structural motifs, but

their subtleties make them difficult to replicate on useful scales [96]. Simple localization

via fluorescent tagging or proteome characterization explains little about how a natural

system mechanically outperforms synthetic equivalents [97]. Comprehensive genetic and

cellular knowledge about the organisms that create these biomaterials is sparse compared

to human physiology, and hierarchies of less-to-more-complex animal models are nonexis-

tent. These new areas of biomaterials research can benefit greatly from the ultrastructural

contrast of HGM and the complimentary nature of multimodal imaging.

One such organism of interest is the aquatic mussel Mytilus edulis (Figure 1.1a). It is a

typical representative of the multitude of species of bivalves across more than 20 genera

that attach to marine surfaces using filaments known as byssal threads, or simply byssi

(singular: byssus). These threads withstand remarkable stresses, up to 100 MPa under

successive tests while stretching up to twice their length [98], making them a target of

bio-inspired materials research [99]. These threads have three components: a core made

up of long chains of collagen-like proteins (preCols), a protective cuticle of coagulated,

spherical, proteinaceous granules, and a foamy bioadhesive plaque at the distal end that

can adhere to nearly any surface (Figure 1.1b). Each byssus is anchored to a common

structure (the stem) near the anterior opening, at the base of which is an organ known as

the foot. Proteins are stored in vesicles in three distinct glands centred around a groove on

the upper surface (Figure 1.1c).
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Figure 1.1: Physiology of mussel byssal thread system. a) Mytilus edulis adhered to a

surface by byssal threads. b) Cross-sectional diagram of the distal end of a thread thread

showing the cuticle, collagen core, and adhesive plaque. c) Mussel foot with gland regions

colored to indicate the origin of each thread component. Adapted from [100] (a, b, with

permission from Wiley) and [101] (c, licensed under Creative Commons).

A new thread is formed by secreting the vesicles, which spontaneously assemble in the

salt water environment to form the tripartite structure. Simple inspection with a wide-field

microscope shows clearly that the threads are not uniform, having a rippled/wrinkled

appearance at the proximal end that transitions to a straighter, narrower distal region

comprising roughly 2/3 of the total length. These regions differ both in terms of their

their relative amounts of the two main preCol protein variants [102] and mechanical

behaviour [98], with the proximal region being much less stiff and having a lower tensile

failure point [103]. This composite design allows energy to be dissipated more effectively

under the high cyclical loads experienced in marine conditions [104]. At rest, the proximal

region is generally protected in the shell while the distal region is exposed; the area at the

shell margin where they meet is known as the transition region [103].
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The overall properties of the thread are largely due to the structure and organization of

the preCol molecules, shown in Figure 1.2. They consist of long helical collagen domains

with glycine-rich flanking domains at each end, which differ slightly between the two

variants and stretch during extension [105]. These domains contain metal complexes that

are likely incorporated from the seawater [106] and form sacrificial, reversible cross-links

between the threads [107], previously identified by confocal Raman microspectroscopy

(CRS) [101]. The bonds break during extension, then reform during recovery; the de-

gree of cross-linking is one possible way of controlling stiffness between the macroscopic

regions [97]. Some form of autonomous regulation of protein distribution, metal incor-

poration and cross-linking occurs such that the mechanical properties of a thread are

compromised if it is formed by chemically triggering the release of the proteins [101].

However, this is poorly understood at the level of the structure of the collagen matrix.

The behaviour of the heterogeneous transition zone in particular is a critical piece of this

puzzle, since interfaces are common points of failure in mechanical systems. A quantitative

mesoscale understanding of the structure would be helpful in bridging the gap between

the molecular picture described by CRS and the macroscopic mechanical behaviour deter-

mined empirically.

Figure 1.2: Precol molecule showing collagenous central region and flanking crosslinking

domains in larger matrix of collagens. Adapted from [100] (with permission from Wiley).
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The cuticle appears to serve primarily to protect the thread from abrasion, but also

retains water [108] and exhibits hardness and stiffness up to a magnitude greater than

that of the core [109]. The main protein component, unique to the cuticle, is present in a

gradient along the length of the thread, but is also concentrated in scattered dense, highly

cross-linked granules that may serve to make the cuticle behave like a particle-reinforced

composite [100, 110]. This step-change in density suggests that their size and distribution

may be mapped in intact threads using THG, which should have some correlation with

the bulk mechanical properties of the different thread regions [111]. Changes in the

distribution from the distal to proximal ends may reveal more information about the roles

of their respective interior structures.

HGM has been previously applied to numerous biomaterials based on collagen and/or

highly similar proteins [112–114]. The natural birefringence of these materials it possible

to map their orientation [115, 116] and assess variations across a single sample [117] using

linear methods, although it has been conclusively demonstrated that this is limited to

samples/regions with a common orientation [16]. Collagen-like proteins are also generally

able to bind to the collagen-specific stain picrosirius red (PsR) with high affinity. PsR is

a birefringent histological dye that has been additionally demonstrated to be a strong

harmonophore [93].

Although mussel preCols are not identical to collagen, their molecular structure sug-

gests that they may be imaged using the same approaches [118]. Both SHG from bire-

fringence and THG from PsR staining should identify collagen fibers along the entire

length of the thread, and SHG may give further information about the microstructure in

the different regions through its dependence on ordered orientation. SHG images have

previously been correlated with the mechanical properties of collagen, suggesting that this

approach may be applicable to the collagen-like structure of the byssal threads [119,120]. It

should be possible to image the core through both modalities simultaneously and in whole

threads, which has been a limitation of spectroscopic methods [101]. HGM also avoids the

dominant signal of C-H bonds present in Raman spectroscopy that obscures fine detail

10



when investigating crosslinking [1]. Further, if the density of the granules is achieved

through ordered cross-linking, they should be birefringent, which could be imaged with

both SHG and THG. With 3D multimodal imaging this information can be gathered in

parallel with structural information about the core.

If the qualitative differences in the structure at the proximal and distal ends can be

established, and further distinguished quantitatively, it should be possible to determine

whether the transition between the two occurs gradually or sharply, which would aid in

understanding the physiochemical regulation of thread formation. Quantitative methods

applicable to micron-scale images could also be applied to images of byssal threads

acquired using different modalities, for comparison and validation. Possible candidates

include high-resolution electron microscopy images and Raman spectroscopy [121, 122].

1.4 Observing myelination in the central nervous system

The parallel acquisition of information applies equally well when seeking straightforward

answers to clearly defined questions where fluorescence alone fails. HGM neatly fills an

experimental gap in observing the state of development of an organism’s central nervous

system (CNS). The ability to observe myelination in the CNS in many ways is an important

step towards a mechanistic understanding of the nervous system [123].

The ability of the nervous system to control and regulate an organism’s activities

depends on the transmission of electrical impulses between neurons via their axons, narrow

(sometimes branching) protrusions that connect at their extremities to other neurons or

muscle cells. The impulse signals are known as action potentials and entail ion channels

in the cell membrane being triggered to open by a local threshold voltage. This voltage

propagates as a rapid wave down the axon as adjacent channels are subsequently triggered.

To speed up transmission, axons are often wrapped in a fatty insulating layer provided by

other cells. Insulating the axon allows the signal to travel faster because only channels in

periodic short exposed sections need to open to propagate the signal. In the CNS of nearly
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all vertebrates (and some invertebrates), insulation is accomplished via oligodendrocytes

[124]. These cells populate the ECM around neurons and extend protrusions that are rich

in specialized proteins, such as various forms of myelin basic protein (MBP) [124]. The

protrusions wrap around axons tightly many times, pressing out the cytosol and leaving

on a lipid bilayer sheath. Figure 1.3 shows a diagram depicting this arrangement.

Figure 1.3: Myelination of an axon by protrusions from a nearby oligodendrocyte. Adapted

from [123] (with permission from Elsevier)
.

Myelination is uniform neither across all axons nor along the length of individual axons

[125]. The thickness and total coverage of the sheath determines the speed at which signals

are conducted [126]; improper myelination is a feature of many pathologies affecting the

central nervous system, such as multiple sclerosis [127]. Wrapping is triggered by chemical

signals released by the neuron, after which MBP binds the lipid bilayers together [128]. This

forces out the cytoplasm, creating a continuous volume of phosphonolipids and proteins

between 500 nm and 2.5 um thick in human nervous systems [129]. Oligodendrocytes

migrate and sequentially wrap axons during the development of the nervous system

and throughout its life. There is strong evidence that the fine timing of the circuitry is
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accomplished using feedback from the activity of the nervous system, both during its

formation and at maturity [130], to direct compaction of already-present myelin. In model

systems it should be possible to trace myelination to certain environmental catalysts by

imaging its progression [131, 132].

There are many options available for fluorescent imaging of myelin both with ex-

ogenous probes and autofluorescence [53, 128, 133]. However, these fail to differentiate

between myelin that is simply present around the axon, and myelin that has been com-

pacted. This has instead been accomplished with coherent anti-Stokes Raman spectroscopy

(CARS) [134] and stimulated Raman spectroscopy (SRS) [135], which rely on CH2 bonds in

the lipid bilayer for contrast, as well as recently developed spectral confocal reflectance

(SCoRe) microscopy [136]. The gold standard for myelination detection (and best spatial

resolution) is the use of transmission electron microscopy (TEM) [135]. However, TEM

suffers from a limited field of view for imaging and harsh sample preparation that limits

it to nonliving fixed samples, and Raman techniques and SCoRe both rely on complex

multi-laser instrumentation. The single-laser setup offers a simpler alternative to CARS,

SRS and SCoRe [135].

One feature of note is that the compacted myelin sheath in the human nervous system

is thick enough to produce a THG signal at the interfaces with the cell membrane and

the ECM, while the membrane of a bare axon alone is insufficient. CNS axons produce

a THG signal as shown by Farrar et al. [94], and with the same approach as Lim et

al. [137] myelination in the visual cortex can be correlated with exposure to stimuli during

development. Other aspects of the tissue can add unwanted features to these images:

microtubules display a similar birefringence to myelinated neurons [138], potentially

visible as both SHG and THG; cell nuclei may be visible due to THG reactivity of chromatin

structures [139]; endogenous neurotransmitters tryptophan and seratonin are sources of

3PF [140], which could be generated both in intact synapses and potentially dispersed

around damaged ones. Imaging can be facilitated through selection of transparent models,
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such as Xenopus laevis, an amphibian with sufficiently thick myelin sheaths [141] commonly

used to study biological processes due to its simplicity [142].

Explicit links between exposure to stimuli, neuronal activity, and myelination have

not been conclusively demonstrated because of the difficulty in determining precise cause

and effect [143]. It is significant in itself to be able to track in a quantifiable manner the

emergence of a THG signal from compacted myelin at different developmental stages,

controlled by exposure of the organism to certain stimuli, regardless of the mediating

mechanism between the two. This makes the Xenopus laevis particularly appealing. The

potential to extend it to live imaging with intermediate time points makes this an especially

potent technique.

1.5 Thesis summary

This thesis contains two studies employing multimodal nonlinear microscopy. The first

investigation applies the principles of second and third harmonic generation to the sea

mussel Mytulis edulis with the aim to improve the understanding of the mechanical

properties of the byssal threads explored previously by Harrington et al. [100]. The

structure of their collagen-like cores is examined by correlating statistical analysis with

feature detection algorithms developed by Bredfeldt et al. [72]. The potential for mapping

the dense reinforcing granules on the cuticle is also established. The second study uses

multimodal THG/2PF imaging similar to Farrar et al. [94] to map the development of

axons during brain development in Xenopus laevis. The THG and 2PF signals are also

examined with correlative and algorithmic methods to attempt to quantify the change in

the degree of compact myelination across the time points.

The biological contexts of these two systems have been outlined above in sections 1.3

and 1.4, giving the overall motivation behind the questions at hand as well as explaining

the role that harmonic generation can play in answering them. In Chapter 2, Section 2.1

explains the background theory behind florescence and multiphoton fluorescence, with

14



subsection 2.1.1 expanding the physics that give rise to nonlinear harmonic generation.

Section 2.2 contains a brief overview of the techniques used for quantitative image analysis,

and how they are applied to the two studies presented in Chapter 4.

Chapter 3 contains detailed descriptions of the experimental methods used in the

investigations of these two systems: the custom nonlinear microscope system used to

acquire data in 3.1; the sample preparation protocols for mussels and tadpoles in Sections

3.2 and 3.3 respectively; and the packages and pipelines used for data analysis in 3.4.

Chapter 4 covers the analysis of the data gathered showing the application of quantitative

techniques to multimodal images of both systems. Section 5 discusses the significance

of these results with respect to the broader projects of which they are part, summarizing

the conclusions that can be drawn from this work and what future studies can be done to

make use of them.
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Chapter 2

Theory

2.1 Principles of nonlinear scanning microscopy

The energetic processes that give rise to single-photon excited fluorescence (1PF), described

in Section 1.1, as well as the nonlinear effects described in Section 1.2 are shown graphically

using a Jablonski energy level diagram (Figure 2.1).

Figure 2.1: Jablonski diagram showing energy transitions involved in single-photon

fluorescence, 2PF, 3PF, SHG and THG. Solid black lines indicate excited molecular states of

the fluorophore. Grey lines indicate the manifold of molecular vibrational levels. Dashed

black lines represent virtual energy states involved in harmonic generation. Straight arrows

represent photons; wavy arrows represent internal and vibrational relaxation through

phonons. Arrows are color-coded for the relative energies involved.
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Straight arrows indicate photons being absorbed, emitted, or scattered. Black lines

represent the molecular electronic excitation states starting with the ground state S0, with

grey lines indicating the manifold of molecular vibrational levels that exist immediately

above each electronic state. Molecules excited to these energy levels drop to the pure

electronic excitation state via internal conversion and vibrational relaxation on a picosecond

timescale, much faster than the nanosecond scale of fluorescence, so that the fluorescence

photon has a longer wavelength. This energy loss is called the fluorescent Stokes shift.

The excitation wavelength in fluorescence microscopy is chosen to target the vibrational

excited states so that fluorescent signal can be easily separated from the excitation light.

The dashed lines indicate that the states implicated in HG are virtual, rather than real

molecular states. There is no Stokes shift involved and the scattered photons have exactly

one half or one third the wavelength of the incident photons. The physics of HG are

important for understanding its research applications, and are discussed in more detail

starting in Section 2.1.1.

The absorption cross sections of MPF (and scattering cross sections of HG) are many

magnitudes smaller than those of linear processes. Scanning microscopy with 1PF is

often conducted at powers below 1 mW [35, 144], with artificial fluorophores designed to

have high quantum yield at readily available wavelengths [144–146], or with endogenous

molecules that are well-researched due their accessibility [23, 128, 147, 148]. In contrast,

even media with high nonlinear susceptibilities/large multiphoton cross sections produce

relatively low quantum yields [48, 149]. However, the involvement of multiple photons

means that the rate of conversion scales with a power dependence equal to the number of

incident photons involved [150], and at high intensities the rate of nonlinear conversion

grows rapidly compared to the linear increase of single-photon absorption. NLSM is

performed using femtosecond-pulsed lasers with average powers on the scale of 100 mW,

meaning that the peak power experienced at the focal point is on the scale of kW but total

pulse energy remains on the nJ scale.
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Raster scanning this point across a 2D plane in a sample produces a 1D sequence of

signal-integrated pixel values that are reconstructed into a 2D image. Rastering is accom-

plished by placing scanning mirrors or optical modulators in the path of the unfocused

laser; these control the angle at which the beam is passed through a telecentric scanning

lens into a tube lens, before being focused by a high numerical aperture (NA) objective

lens. The sample is placed in the focal plane of this lens and scanned by making tiny

adjustments to the mirrors. Harmonic generation and/or nonlinear fluorescence occurs in

molecules experiencing the concentrated photon flux at focal point, and scattered/emitted

light is collected with another objective lens and sequentially binned into pixels.

The size of each pixel (or voxel, when scanning in three dimensions) can be as small as

the scanning hardware allows, but the effective spatial resolution is set by the minimum

size of the focal volume. This results from the diffraction of the laser by the objective

lens. It is specifically known as the point spread function (PSF) of an imaging system

and defines a minimum distance between point sources of light below which they will

appear as one continuous object in the reconstructed image. Equation 2.1 gives one way

of defining the PSF in the X-Y plane for two-photon effects driven by a coherent light

source, taken from Latychevskaia [151], with λ representing the wavelength of the laser.

MPF has an inherently lower lateral resolution than 1PF of the same emission wavelength

because of the longer excitation wavelengths involved. However, since both the excitation

and emission profiles can be approximated as Gaussian, and emission intensity has a

nonlinear dependence on excitation power, MPF resolution increases with the degree of

nonlinearity. A PSF measurement based on the full width at half maximum (FWHM) value

of the Gaussian profile for 2PF microscopy, taken from Cox & Sheppard [152], is given in

Equation 2.2.

R1PF
xy =

0.82λ

NA
(2.1)
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R2PF
xy =

0.5λ

21/2 ∗NA
(2.2)

For 3PF, the optical calculations become quite complex, but work out to an improvement

of roughly 20% over the resolution of 2PF when using the same excitation wavelength [153].

Since coherent nonlinear scattering is a fundamentally different process, determining the

diffraction limit when imaging with these techniques is slightly more complicated, but has

been determined by Zhilie et al. to be slightly smaller [154]. The effective PSF in harmonic

generation can also be affected by the orientation of the features relative to the laser beam

axis and polarization [155] so the diffraction-limited resolution in HGM can vary slightly

between samples.

Moving the sample relative to the objective lens along the axis of propagation of the

laser between scans allows for z-sectioning. In this case there is also a different limit in the

axial direction based on the z-profile of a focused light source that is slightly larger and is

provided in Equation 2.3, taken from Latychevskaia [151]. Since the mathematical origin

of this criterion is a sinc rather than a Gaussian function, multiphoton microscopy has no

advantage in this dimension.

Rz =
λ

NA2 (2.3)

These limits for the objective lens and excitation wavelength of the microscope system

used in this work (NA 1.05 and 1140 nm) are shown in Table 2.1. Since NLSM constructs

an image by collecting all fluorescence produced at each scan step, if the any dimension of

the voxel is set smaller than the diffraction limit along that axis, photons will be assigned

to that voxel that were generated in the voxels immediately adjacent. The image will

therefore be a blurred convolution of the sample and the diffraction-limited cross-section

of the excitation beam itself. In practice the PSF of a particular microscope setup is slightly

larger due to aberrations present in the optical path, and can be measured by imaging

fluorescent beads with a sub-diffraction limit diameter (see Section 2.3.1).
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Modality
(1140 nm excitation)

Lateral
resolution (nm)

Axial
resolution (µm)

1PF 890 2.07
2PF 384 2.07
3PF 303 2.07
SHG 270 1.3
THG 200 0.5

Table 2.1: Theoretical lateral and axial resolution for 1- ,2- & 3-photon fluorescence and

HG microscopy at 1140 nm excitation, using the Rayleigh limit and the limits as calculated

by G. Cox and C. J. R. Sheppard [152], Latychevskaia [151], and Tang [154] respectively.

2.1.1 Harmonic susceptibility of materials

The physical origin of nonlinear scattering lies in the fact that when the oscillating electric

field of an EM wave passes through a medium, charged components in the medium are

pushed in opposite directions. This causes them to experience a time-dependent dielectric

polarization P (t). Equation 2.4 describes this below, using the usual complex notation to

express an EM wave of amplitude E propagating in time t and assuming a monochromatic

driving frequency ω (which is the case in this work). The χm terms are properties of the

molecules/medium that represent the degree to which they are polarized relative to the

amplitude of the wave, given in terms of the vacuum permittivity ε0. Higher-order terms

indicate the response to polarization by multiple photons simultaneously. The ellipsis

indicates that terms beyond the third order exist but are negligibly small at the laser

powers used in this work.

P (t) = ε0χ1Ee
iωt + ε0χ2(Ee

iωt)2 + ε0χ3(Ee
iωt)3 + c.c.... (2.4)

More precisely, χm are tensors which describe the strength of the coupling between

E-field components in each dimension, and between dimensions. The length of the tensor

in each dimension reflects the number of physical dimensions (in general, 3) while the

rank is determined by the number of photons involved. For example, χ2 is therefore a
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third rank tensor, used in SHG to determine the likelihood of conversion of two incident

photons to a single scattered photon.

This oscillating polarization P (t) then becomes an additional source of EM radiation.

Expanded fully, P (t) has components at the fundamental frequency, as well as at each inte-

ger multiple nω. Expanding the right hand side of Equation 2.4 shows that the contribution

of P (t) can be expressed as a sum of terms at specific frequencies. The following equations

show the components of P (t) arising from two- and three-photon coherent scattering (P2

and P3, respectively).

P2(t) = P (0) + P (2ω) (2.5)

P3(t) =
3

4
P (ω) +

1

4
P (3ω) (2.6)

If the driving frequency is far from the resonant frequencies of the material, and the

medium is therefore lossless (usually valid for optical microscopy of biological specimens

[156]), these tensors can be reduced drastically from the six 3x3 matrices of generalized

χ2(ω1 + ω2, ω1, ω2) to one 2D matrix that is sufficient to describe the SHG response of an

ordered material. This rigorous approach proves a general principle, that SHG only occurs

in non-centrosymmetric materials and χ2 is otherwise zero [63]. This result can also be

found intuitively by inverting the sign of E in Equation 2.4. Assuming inversion symmetry,

the sign of P (t) must also change, giving:

− P2(t) = χ2E
2 = P2(t) (2.7)

Which can only be true if χ2 is zero. However, this is not the case for χ3 effects due to

the odd exponent on E. χ3 is nonzero for all materials (spanning a range of 15 orders of

magnitude), but a full understanding of the conditions under which HG occurs requires

consideration of the fact that in both processes the driving EM wave is propagating not only
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in time, but also in space. This necessitates the inclusion of phase matching (subsection

2.1.2) and polarization dependence (subsection 2.1.3).

2.1.2 Phase matching considerations

A complete description of a travelling EM wave includes both its temporal and spatial

component. Considering only second order effects for simplicity, this changes Equation

2.4 by replacing the constant amplitude E with An. This is modulated by an exponential

term containing z representing the spatial position in the direction of propagation of the

wave, kn being the spatial frequency or wave vector:

P (z, t) = ε0χ2(A1e
−ik1zeiω1t))(A2e

−ik2zeiω2t) (2.8)

If both waves are coming from the same monochromatic source the subscripts can again

be dropped from A and ω. The wave vector kn is roughly proportional to the frequency of

the wave, but also depends on the refractive index of the medium, so photons traveling in

a three dimensional non-isotropic medium are distributed across a variety of wave vectors

and the subscript is necessary. Momentum is conserved in nonlinear scattering processes

via this quantity according to the sum in Equation 2.9, with subscript 2ω denoting the

upconverted photon at double the driving frequency ω.

k2ω = k1 + k2 + δk (2.9)

k1 + k2 represent the theoretical wave vectors of two incident photons in the material.

The rate at which HG occurs is maximized when δk is equal to zero [63]. However, away

from resonance frequencies, refractive index increases slowly and monotonically with

respect to frequency, making δk strictly negative and nonzero and preventing bulk SHG in

most media. Birefringent and ordered non-centrosymmetric materials display strong SHG

(and THG) because the lower refractive index of the fast axis can minimize δk for the right

angle of incidence, and the right combination of photon polarizations. The efficiency of
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HG then depends on the length over which the orthogonal polarizations are coherent, with

the total amount varying in a sinusoidal manner depending on the propagation distance

through the nonlinear medium [63]. If the material is disordered over a shorter length

scale, HG will not occur at all due to destructive interference from out-of-phase radiation

from misaligned dipoles.

In a tightly focused laser setup, the coherence length is large compared to the focal

region where the intensity is high enough for nonlinear conversion. HG is instead limited

by a different effect, the Gouy phase shift, wherein a focused beam experiences a phase

shift of π as it crosses the focal point [20,84]. In this case a nonzero δk is necessary to avoid

destructive interference from upconverted photons originating on opposite sides of the

focal point [63]. Only off-axis wave vectors can accomplish this, so a negative overall δk is

necessary [63, 157], consistent with the propagation patterns of HG radiation [67, 84].

Alternatively, the presence of materials with different refractive indices within the focal

volume can satisfy the phase matching conditions and produce HG. Even two materials

that are individually centrosymmetric will produce weak SHG in this scenario as the

inversion symmetry is broken within the focal volume of the laser [158], producing the

weak backward SHG observed in collagen fibers [76, 87] and nanoparticles [67]. THG

is especially sensitive to boundary conditions because of the nonlinear contribution to a

material’s refractive index dependent on χ3 [63], making phase matching easier to achieve.

2.1.3 Polarization dependence of harmonic generation

In single-photon imaging, polarization is often either the primary focus of the modality or

not considered. Simple polarization microscopy derives contrast from changes in polariza-

tion that occur when light scatters coherently from features in a sample, filtering out either

phase-shifted or unchanged light to form an image. With fluorescence, absorption is more

likely to occur when the laser polarization and dipole axis align, but rotational diffusion

during the fluorescence lifetime produces emission at (usually) uncorrelated angles [20].

Fluorescence emission is generally treated as being effectively isotropic.
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In multiphoton microscopy, this is not always the case. If the fluorophore has an

intermediate absorption state, absorption of the second and third photons becomes more

sharply confined to fluorophores that align with their polarization [159], leading to reduced

fluorescence intensity [160, 161]. Harmonophores also have preferred axes of polarization

which, when in structures, are less free to undergo rotational diffusion. However, as

explained in subsection 2.1.2, efficient HG depends on minimizing phase mismatch. The

processes of coherent scattering of linearly and circularly polarized light are therefore

somewhat different for both SHG and THG.

Under linear polarization where photons experience only one orthogonal pair of refrac-

tive indices, biological materials that are not crystalline over large regions will produce

SHG selectively based on the alignment of the polarization axis with individual fea-

tures [162] and interfaces [158]. This can be used effectively to determine orientation of

dipoles [76, 85, 87, 163] or avoided by using circular polarization, which interacts with all

dipoles equally [70, 73, 88, 164].

THG is much less sensitive to orientation of the polarization axis when using linearly

polarized light [155, 165]. Circular polarization is more complex: at an interface between

two isotropic materials, the components of the nonlinear susceptibility tensor cancel

out [166], suppressing THG from inhomogeneities. At least one of the materials must

be weakly birefringent to produce a THG signal under this condition, and THG from an

anisotropic bulk material will be unaffected [167, 168]. This is the basis previously used to

distinguish heterogeneous from homogeneous birefringent corneal tissue [164] and lipid

ordering in cells [78].

2.2 Image processing in multiphoton microscopy

The particular physical requirements of HG, nonstandard excitation wavelengths of MPFM,

and low conversion rates of both, introduce complications in terms of achieving a high

SNR in the final image. Both random and nonrandom sources contribute to reduced
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SNR in an image. This section gives a brief overview of sources of random noise and

nonrandom aspects of NLSM that appear as artifacts, affecting the quality of the final

output image. It also discusses ways in which the are mitigated, most of which are applied

in some way in this work.

2.2.1 Random noise

Noise in multiphoton microscopy generally takes two forms: Gaussian white noise and

Poisson-distributed shot noise in photon counts. White noise from detection hardware is a

problem encountered in all forms of microscopy and can be addressed by time averaging

or taking multiple samples, but when photon counts are very low (a particular issue in

multiphoton microscopy) they follow a Poisson distribution [169]. Imaging deep into

tissue increases scattering, compounding this issue [169]; the coherent nature of nonlinear

scattering reduces the photon count even more if only one of forward- or backward-

detection is available [162, 170]. The issue of noise is often addressed both in the image

capture software and in post processing.

The most straightforward method of reducing noise is to capture and average multiple

frames for each image. Whether to limit scan time or sample exposure, fewer repetitions are

usually preferred. Given the low Poisson-distributed photon counts involved, probability-

based methods such as variance-stabilized transforms (VSTs) and Kalman filtering [171]

are preferred over simple averaging. This can be done independently for each voxel or

using localized statistics. One drawback of such methods, which are often implemented

directly in image capture software, is that they require some knowledge of the expected

noise statistics, and need to be optimized specifically for the hardware involved.

On home-built or custom systems this may not address all sources of noise. Since

NLSM requires nonstandard wavelengths at relatively high powers, the instrumentation

may link a high power laser through one or more stages of nonlinear frequency conversion.

Electrical, mechanical and thermal artifacts are amplified by the power law dependence of

these processes into variability in the final output and must be taken into consideration
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both while collecting and analyzing data. Even environmental noise sources unnoticed in

linear fluorescence images with low-voltage detectors can appear in NLSM images. These

systematic issues with external origins can be addressed through mathematical approaches

that consider the totality of the image at once, although some can be dealt with using

practical means like isolating the microscope from nearby sources of light.

2.2.2 Spatial filtering

Averaging serves primarily to reduce noise at the single pixel level, which limits it to noise

on the scale of the pixel dwell time (microseconds). Artifacts spread over longer times

or independent of time altogether may be distributed periodically throughout an image.

Localized blurring from the diffraction-limited Gaussian shape of the excitation beam

itself as mentioned in Section 2.1 can be addressed through deconvolution, but periodic

artifacts may only be apparent when images are described in terms of spatial frequency

components instead of spatial pixel values. This section considers filtering in terms of

pixels in 2D, but all of it can be also extended to voxels in a 3D image.

In an extension of the 1D discrete Fourier transform, any 2D image can be Fourier-

decomposed into a superposition of two-term complex exponentials where the x- and

y-axis spatial frequencies map to a matrix with the same dimensions as the original image.

The coefficient of each term in the decomposition defines the value of the pixel; the four

quadrants correspond to the four permutations of positive and negative frequencies in the

two Cartesian directions. In this way, low-frequency contributions that describe large-scale

features in the image populate the centre, and concentric rings correspond to increasingly

finer spatial scales. Indiscriminate high- or low-pass filtering can be applied by setting

pixels either outside or inside of a given radius to zero and transforming back to real space.

Identifying noise in frequency space from an unknown source in a static image is, at

best, unintuitive. A more subtle approach takes a small, carefully selected kernel and

convolves it with the image to create a downsampled transformation. Doing this once

with a kernel rotated along each axis, and once with a diagonal one, creates a set of three
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high-pass filtered approximations. This can be repeated at multiple scales, and at each

where obvious noise is present, it can be easily removed by zeroing pixels either locally

or across the entire image. The original image can then be reconstructed from the filtered

decomposition series. This was originally developed as the wavelet transform [172], but

expanded into different kernels with the curvelet transform [173], and has applications

in microscopy as well as many other fields [72, 174]. Non-local averaging adds to this

approach by comparing small patches of an image and weighing patches based on their

similarity to nearby patches, identifying patches that seem more likely to be highly affected

by noise. These patches can then be singled out for more filtering with a kernel-based

approach [175].

2.3 Quantitative image analysis techniques

While some questions are easily answered qualitatively, or by manual quantitative methods

(such as counting or measuring relatively large, clear objects), others require an approach

that can make use of the indistinct gradients in pixel values inherent to both diffraction-

limited imaging and heterogeneous biological specimens. Specifically, image correlation

spectroscopy (ICS) will be discussed here, because of its ease of implementation and the

longer-range spatial patterns that it can detect. When images contain a great number of

spatial and/or temporal features, which may each measure ten or fewer pixels across,

collective analysis is best done either via statistics or automated segmentation and mea-

surement of distinct, individual features. Both of these methods can produce a large variety

of outputs and can be applied to answer diverse questions.

2.3.1 Image correlation spectroscopy

An early merger of statistics and imaging took the form of fluorescence correlation spec-

troscopy (FCS), where fluorescence fluctuations are recorded from the intensity time trace

of a single excited focal spot as fluorescent molecules diffuse or flow in and out of fo-
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cus [176]. The fluorescence intensity time series is then correlated with itself, and different

models are fit to the resulting decay curve to measure transport modes and/or photophys-

ical dynamics, such as diffusion, flow, and fluorophore blinking. [177]. Similar techniques

have been applied with cosmology, using stars rather than fluorescent molecules as the

source of fluctuating photon counts [178].

The correlation function of a data series is ostensibly produced by superimposing the

data series on itself, recording the normalized sum of the product of each pair of points,

then offsetting the superimposed series and repeating the calculation. This process is

iterated until there is no more periodicity in the sample, generally well before the two

series have been offset by their entire length. The output correlation function is expressed

graphically by mapping the value of the integral at each incremental offset (lag) to the

same axes as the original series. The data in correlation spectroscopy does not have

to be a time series, but the interpretation of the output will vary for different contexts.

Importantly, fluorescence correlation spectroscopy can only get information from a single

point, and only about processes that occur on time scales for which the data series has been

oversampled; the sensitivity of the decay curve increases with increased oversampling.

The FCS concept is extended into the imaging domain with ICS and image cross

correlation spectroscopy (ICCS) and. In diffraction-limited microscopy with a Gaussian

excitation beam profile, the decay of the 2D correlation function will have a Gaussian form

if the pixelated image is oversampled relative to the diffraction limit. ICCS describes the

spatial correlation of fluorescence fluctuations in two images or regions of interest (ROIs)

i(x, y) and j(x, y) by producing an output gij(ξ, η) with dimensions equal to those of the

larger input, with the lag variables ξ and η representing pixel shifts in the spatial variables

x and y [177, 179]. This output is normalized by the product of the mean values of each

input. The discrete mathematical representation of this calculation for a 2D correlation

calculated at all discrete pixel shift lags is given in Equation 2.10, with angular brackets

indicating the average over all spatial coordinates [177].
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gij(ξ, η) =
〈(i(x, y)− 〈i(x, y)〉)(j(x+ ξ, y + η)− 〈j(x, y)〉)〉

〈i(x, y)〉〈j(x, y)〉
(2.10)

Due to the speed of the fast Fourier transform algorithm it is computationally more

efficient to calculate the correlation function in frequency space through the Wiener-

Khinchin theorem, which connects the correlation function of an image and its power

spectrum as a Fourier transform pair. The power spectrum is the product of the Fourier

transform of the image with its complex conjugate. This calculation is shown in Equation

2.11 for a normalized cross-correlation function, where F is the two-dimensional Fourier

transform [177]. The ICCS equation can also easily be applied to a single image by making

j(x, y) equal to i(x, y), which then describes the spatial autocorrelation of fluctuations in

one image.

gij(ξ, η) =
F−1([F (i(x, y))] ∗ [F ∗(j(x, y))])

〈i(x, y)〉〈i(x, y)〉
− 1 (2.11)

Information about the image(s) is extracted using the parameters of the 2D Gaussian fit

of this surface, referred to from here as the autocorrelation function (ACF). The general

mathematical form of this fit, used for ICS in two dimensions, is given in Equation 2.12,

where ω denotes the radius of the Gaussian along the respective lag axes [177] and g∞ is the

vertical displacement of the curve, or offset. Figure 2.2 shows how the width, amplitude,

center and offset map to a perfect 2D elliptical surface. The same parameters identically

describe the cross-correlation function (CCF) produced by ICCS.

gi(ξ, η) = gi(0, 0)e
−
(
( ξ
ωξ

)2+( η
ωη

)2
)
+ g∞ (2.12)

Particularly relevant to this work, the spatial correlation function can give aggregate

information about discrete features in the image. It is frequently evaluated for images of

sub-diffraction sized beads to verify the size of the PSF as part of microscope alignment;

in this case the width of the spatial ACF is directly proportional to the width of the PSF.

However, if imaging features above the diffraction limit, the width of the spatial ACF will
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Figure 2.2: Example of a perfectly Gaussian 2D correlation function surface showing

the physical meaning of the Gaussian fit parameters: (a) three dimensional view of the

amplitude (i) and offset (iv); (b) 2D top-down view showing the major axis width (ii),

minor axis width (iii), x-axis center (v), y-axis center (vi), and rotation angle (vii). Arrows

indicate scalar spatial measurements. Lag variables are given in terms of discrete pixels.

have a dependence on the scale over which the features decorrelate with themselves in

the image [119, 180]. If the features are close to the diffraction limit and therefore exhibit

significant Gaussian blur, it should be possible to extract meaningful information using a

Gaussian fit; if they are much larger than the PSF, the ACF will exhibit a non-Gaussian

plateau, distorting the fit parameters. For highly anisotropic images some difference would

be expected between the major axis (corresponding to the lengthwise dimension) and

the minor axis (corresponding to the widthwise dimension); conversely no significant

difference would be expected if the image was homogeneous and showed no preferred

orientation.

Another parameter of interest is the value of the peak of the ACF, gi,j(0, 0), which is

related to the cluster density (CD) of fluorophores in the image [181]. It can be used to

determine information about membrane receptor clustering and oligomerization [182].

In ICS, the relationship is simply inverse to the density, but in ICCS dividing the CD

of the cross-correlation by the autocorrelation CDi of one of the two images indicates

the percentage of clusters in the other image j that are colocalized with those in image i;
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Equation 2.13 gives this relationship as defined by Petersen [177]. Combining the two gives

the average number of colocalized clusters per beam area independent of non-colocalized

clusters elsewhere (shown in Equation 2.14 from Constantino et al. [183]).

F (i|j) = CDij

CDi

=
gij(0, 0)

gi(0, 0)
(2.13)

〈N12〉 =
gij(0, 0)

gi(0, 0) ∗ gj(0, 0)
(2.14)

2.3.2 Feature classification

In contrast to correlation analysis which averages features over noisy signals or images,

direct feature analysis such as particle counting and fiber fitting is possible if contrast

and resolution are sufficiently high and there is sufficient separation between features.

Thresholds can be set for what qualifies a certain shape or pattern as a target feature in

order to perform segmentation and analysis algorithmically. Automated approaches such

as identification based on probability [161, 184] or machine learning [185] are preferable in

many situations where a data set contains many instances of a feature, especially if output

metrics are more complex than a single measurement. The approach has been applied

repeatedly to study fibrillar structures, analyzing the impact of fibre length, thickness, and

packing density on the Gaussian parameters, as well as connecting these to the effective

pore size of the structure [72, 186]. One caveat to this approach is that automated feature

recognition can be hard to validate manually when looking at images with features that

are too faint or vague to be detected above the background before filtering. Unsupervised

filtering can lead to anomalous results and conclusions; it is often better to cross-validate

the analysis with other approaches first [187].
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2.3.3 Principle Component Analysis

The various outputs produced by ICS and feature classification may themselves answer

biological questions. However, in heterogeneous biological systems where there is often a

large amount of variation both between and within samples, considering any one variable

may not give a statistically significant result. One solution is to run many samples so that

standard deviations are small. If this is not an option, or if there are many competing

metrics that individually do not contain sufficient variance to draw conclusions, a better

option is principle component analysis (PCA) [188]. It can be used both to measure the

significance of various factors in a system [189] and to simply classify samples in a large,

multidimensional dataset [190].

PCA uses linear algebra on a normally distributed dataset of two or more dimensions

to rotate the coordinate system so as to maximize the amount of variance contained along

a single axis. For a 2D dataset, the perpendicular axis then contains the rest of the variance;

if there are additional dimensions, PCA orients and orders them such that each subsequent

axis captures as much of the remaining variance as possible. Each can also be decomposed

to see the relative contributions of each input dimension.

Correspondingly, each input dimension can be described in terms of its contribution to

each principal component; this can be projected into principal component space using a

biplot, which displays each input as a vector with magnitude along each principal axis

equal to the relative weight of the input on that component. This allows for quick, manual

identification of which variables contribute a significant amount of variance to the overall

transformation. It also identifies correlated input variables, which will be close to parallel

in the biplot projection. Plotting the transformed data points in principal component

space can also emphasize or reveal clustering that may not be apparent if only considering

the input variables independently, differentiation subgroups of samples within a larger

dataset [188].
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Chapter 3

Materials and Methods

3.1 Nonlinear microscope instrumentation

Imaging was performed using a home-built multiphoton laser scanning microscope, shown

in schematic form in Figure 3.1.

A 532 nm Verdi V-18 InGaS optically pumped semiconductor laser (Coherent) running

at 11 W output was used to pump a Mira 900F Ti:Sapphire laser (Coherent) which produced

a 200 fs, 86 MHz pulsed 780 nm output. This laser output was fed into a Mira optical

parametric oscillator (OPO) (APE) with a fs-regime periodically-poled crystal, which could

be tuned to produce an output laser with a wavelength between 1050 nm and 1200 nm

at approximately 200 mW. Spectral information was sampled with a 1050-1700 nm beam

sampler (Thorlabs) directed at a Wavescan Laser Spectrometer (APE) connected to an OPO

PP Analyzer (APE), and was used to align the optics in the OPO and select the excitation

wavelength.

A pair of mirrors in the beam path were used to make coarse adjustments to straighten

and center the propagating beam on an achromatic 690-1200 nm half waveplate (Thorlabs).

This was placed immediately before a thick birefringent crystal and was used to control

the excitation power sent to the microscope by rotating the waveplate relative to the fast

axis of the crystal. Excitation power was controlled using a custom Labview program
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Figure 3.1: Nonlinear microscope instrumentation indicating (in sequence): three laser

components; beam sampler (BS) & spectral analysis hardware; half waveplate/birefringent

crystal power control module; optional quarter waveplate; Fluoview laser scanning mi-

croscope; nonlinear excitation objective; three-axis motorized sample stage; collection

objective; 770 nm low-pass IR filter; filter cube containing 425 nm dichroic beam splitter,

600/60 nm band pass filter for 2PF and SHG signal, and 400/40 nm band pass filter for

THG signal; PMTs for signal collection; Fluoview 4.2 software for microscope control.

which read the laser power from a power meter (Thorlabs) placed just before the scanning

hardware. For all experiments, a power at the meter of 100 mW was used, which translated

to 50 mW at the plane of the sample. Following the power control module a 400-1100 nm

achromatic doublet was used to correct for aberration.

Polarization was controlled using an achromatic 690-1200 nm quarter waveplate (Thor-

labs) to switch from linear to circular polarization as necessary, placed several centimeters

after the achromatic doublet. Mussel samples were all imaged with linearly polarized

light and images of tadpole samples were acquired once with linearly polarized light, then

again with circularly polarized light.
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The microscope base was an FV1200MPE (Olympus). Two mirrors at the start of

the beam path provided fine control over beam centering and straightness prior to

two servo-controlled raster scanning mirrors, which directed the beam into a scanning

lens/telecentric tube lens pair. The microscope was equipped with a water-immersion

XL-SLPLN25XWMP2 objective lens (Olympus) with a 1.05 NA, 25x magnification, working

distance of 2 mm and a chromatic correction collar. The collar was adjusted based on the

thickness of the cover slips being used to achieve the highest resolution possible based on

calibration with 0.1 µm red-fluorescent (580/605 nm) Fluospheres (Invitrogen) mounted in

ProLong™ Diamond Antifade Mountant (Invitrogen). The correction depth was increased

for imaging deeper into samples as appropriate.

Forward propagating signal was collected by a 0.9 NA dry top lens condenser (Olym-

pus) and filtered with a 770 nm edge-pass infrared filter (Semrock) to remove excitation

light. A filter cube containing a dichroic beam splitter with a splitting wavelength of

425 nm (Olympus) was used to separate the two- and three-photon signals. The high-

and low-pass directions contained band pass filters with band windows of 600/60 nm

(2PF, SHG) and 400/40 nm (THG), respectively. Each signal was focused on the active

area of separate photomultiplier tubes (PMT). Imaging was conducted using Fluoview

software (Olympus) to control scanning hardware, PMT gain and data pre-processing via

thresholding and pixel-based Kalman filtering. Settings were chosen based on individual

samples to optimize image SNR and contrast and are reported in Chapter 4.

3.2 Mytilus Edulis sample preparation

Mussels (Mytilus edulis) were purchased from Prince Edward Island, Canada (Prince

Edward Aqua Farms, PEI) and kept live in artificial seawater (ASW). Once mussels had

grown threads in the new tank environment the plaque (distal end) was removed from the

tank wall by scraping with a scalpel. The thread was then cut at the proximal end as close
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as possible to the stem. Threads were kept stored in ASW at 5◦ C. Threads were kept for

imaging up to six months after collection.

Thread slices were prepared by freezing individual threads in a cryotome chamber

at -20◦ C, then cutting 4 µm sections and mounting them directly on microscope slides.

The slides were immersed in Boin’s solution overnight, then placed in a 0.1% solution of

Sirius red dye in saturated picric acid (PsR) for 1 hour. After this they were washed in 0.5%

acetic acid and dehydrated through a series of ascending ethanol concentrations. They

were then transferred to a bath of Neo-Clear xylene substitute (Sigma Aldrich). Finally,

they were mounted on standard microscope slides using Neo-Mount (VWR) and covered

with #1.5 coverslips. They were stored at 5◦ C and imaged for up to six months after

preparation. Whole threads were imaged by mounting them on cover slips in their storage

medium (ASW) and sealing the cover slips with nail polish to prevent them from drying

out. Samples were imaged immediately and stored at 5◦ C for future reference or replicate

imaging. Figure 3.2 shows sample slides prepared of whole and sectioned threads.

Figure 3.2: Whole mussel byssal threads prepared on slides: (a) unstained (upper) and

stained with picrosirius red (lower); (b) sectioned and mounted threads stained with

picrosirius red. Scale bars 0.5 cm.

Optical clearing of whole threads was performed using the 3DiSCO protocol, a method

of clearing tissues with solvents to match refractive indices and reduce light scattering
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for volumetric 3D imaging [191]. The refractive index of the cleared specimen is ideal

for imaging with oil-immersion objectives, but collagenous tissues cleared with a similar

method to the same refractive were previously imaged successfully with this microscope

system [73]. Threads were taken from ASW and immersed in a series of increasing

concentrations of tetrahydrofuran (THF) in distilled water: 50%, 70%, 80%, and 100%, for

20 minutes each. They were then transferred to a bath of pure dichloromethane for 15

minutes before being rinsed in a bath of dibenzyl ether (DBE) and transferred to a fresh vial

of DBE for storage. For harmonic hamonic generation imaging, threads were mounted on

glass slides with #1.5 coverslips in DBE as a mounting medium and imaged immediately.

All imaging was performed within 7 days of clearing but samples are expected to be viable

for months after preparation [191].

3.3 Xenopus Laevis sample preparation

Specimens were raised and fixed according to the process described in Chorghay et al. [192].

In brief, Xenopus eggs were raised from birth in normal light conditions to promote normal

development of the optical portions of the nervous system. Specimens were anaesthetized

at stages 51, 52, and 53 of their development and the hindbrain and optic tectum were

extracted from the brain; these stages had previously been identified as the period at which

myelination occurs in these areas in a healthy tadpole. These were chemically fixed in 4%

paraformaldehyde, washed, and cryoprotected in a solution of 20% fish gelatin (Norland

HP-03) with 15% sucrose. 20 µm slices were acquired using a crysostat and mounted on

Superfrost-plus slides (Fisher) using Aqua-Polymount (Polysciences).

Antibody staining for myelin basic protein was performed using rat anti-MBP antibody

(1:200; Abcam [clone 12] ab7349; RRID:AB 305869) and goat anti-rat IgG Cy3 (1:200;

Jackson Immunoresearch 112-165-175; RRID:AB 2338252). Neurons and axons were also

labelled using mouse 3A10 (1:400; DSHB Hybridoma Product 3A10; RRID:AB 531874),

which was counterstained with goat anti-mouse IgG Alexa-647 (1:200; Invitrogen A21236;
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RRID:AB 2535805). Cell nuclei were counterstained with DAPI (1:1000; Invitrogen D-1306;

RRID:AB 2629482). One set of samples was also prepared using only the MBP staining.

Slides were stored at -20◦ C between imaging sessions.

3.4 Image Processing and Analysis

Image processing and analysis was performed using existing packages in Matlab and

ImageJ and additional custom scripts in Matlab. The Bioformats Reader plugin in ImageJ

[193] was used to read the output images from Fluoview and save them as multi-channel

TIFF images. All images were converted from 32-bit to 8-bit formats before being analyzed.

Control images were created by breaking each image up into evenly sized blocks of 5

to 40 pixels, which were then given a random number of quarter turns and rearranged

randomly to spatially scramble the image as done previously by Aaron et al. [194]. The

size of the blocks was chosen empirically based on the size of the features in the image to

minimize the size of the threads in the shufled blocks.

3.4.1 Image processing for mussel samples

Mussel images were manually segmented to isolate sub-regions containing only the core,

to avoid the strong signal from the thread-water interface and bright spots scattered within

the sectioned threads. Subregions selected were at least 130 pixels in any direction to

minimize random outlying data points during analysis. This specific constraint was also

required by the Matlab package used to perform fiber analysis, CT-FiRE.

CT-FiRE was developed to perform fiber identification and quantification by Bredfeldt

et al. [72]. It was developed for, and has been overwhelmingly applied to, collagen systems,

but has also been implemented with actin fibers [195,196]. It uses a curvelet transform filter

to remove noise without affecting fiber shapes, with improved ability to highlight lines

and edges. It then traces fibers by choosing bright spots in the image as likely nucleation

points and tracing out from them in all directions, selecting two directions in which the
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fiber appears to proceed, and repeating the process until the feature ends (or becomes

indistinguishable from the surrounding region). Thresholds can be set for the maximum

average width and minimum length of recorded fibers, rejecting any full features outside of

these limits. For each image, a list is produced of the length and average width (measured

in pixels) of each fiber within the image. CT-FiRE also measures the straightness (the ratio

of the distance between the start and end points to the total length of the fiber, so that a

value less than 1 indicates increasing curvature) and relative angle (between the vertical

axis and the line formed by connecting the start and ends points) for each fiber.

Correlation analysis was performed using a custom Matlab script which calculated the

2D spatial autocorrelation function for all channels in each image, and the spatial cross-

correlation function between them for two channel images. A rotationally free bivariate 2D

Gaussian function, based on code written by Dave Kolin and incorporating the rotational

component from a script by Diaz [197] was used to fit the correlation surfaces and the

seven parameters (amplitude, standard deviation in x and y, peak location in x and y,

offset at infinity, and angle from the x-axis) were stored with the CT-FiRE output values

for analysis.

3.4.2 Image processing for tadpole samples

Tadpole images were first processed by removing unwanted signal via image subtraction

(see Section 4.5.3). They were then denoised using CANDLE, an ImageJ plugin developed

specifically for volumetric imaging deep in biological specimens where SNR is often

low [198], scattering is high, and photobleaching and phototoxicity are undesirable side

effects of long exposure times [199]. It uses patch-based denoising which has proven useful

in low-count fluorescence applications [175]. Figure 3.3 shows the workflow of the filter.

It first prefilters the image using a median filter, then applies a variance-stabilized

transform to correct the Poisson-distributed noise in photon counts across the image into

Gaussian noise. A map of weighted voxels, produced from the pre-filtered image, is then

used to locally adjust the relative amount of smoothing. The degree of smoothing is also
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Figure 3.3: Workflow diagram of the CANDLE denoising filter (reproduced from [198],

with permission from Elsevier)

adjusted globally by stabilizing the raw image with the same VST and applying a wavelet

transform to extract the highest spatial frequency details. This gives an estimate of the

overall random noise. The map of weightings and overall noise estimate are then applied

to the stabilized, noisy image, and the inverse VST transform is performed to arrive at the

fully denoised image.

Images produced through CANDLE contained periodically spaced NaN artifact pixels

in both channels, which were replaced prior to analysis by the average of the four im-

mediately adjacent pixels. Filtered images were then analyzed using CT-FiRE and the

same Matlab script used to perform spatial correlation analysis on the mussel samples.

Monochromatic images for CT-FiRE analysis were produced by pixelwise multiplication of

the two single-channel 8 bit images to produce 32 bit images, which were then converted

back to 8 bit images.
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Chapter 4

Nonlinear microscopy imaging and

image analysis of tissue samples

The objective of this chapter is to combine the principles of multiphoton contrast generation

and image analysis outlined in Chapter 2 with the biological models and questions dis-

cussed in Chapter 1. It aims to demonstrate that the former can elicit statistically significant

variations between datasets in the biological systems of the latter, namely the proximal,

transition and distal zones of Mytilus edulis byssal threads, and the developmental stages

of Xenopus laevis tadpoles.

Section 4.2 covers the alignment process and determination of the PSF for nonlinear

imaging modalities by imaging diffraction-limited microspheres. Sections 4.3 and 4.4

apply SHG and THG microscopy to the byssal thread system, analyzing simultaneously

acquired two-channel images of the core and cuticle. In the core ICS and fiber fitting are

used to quantify the spatial gradient of structure in the collagen-like core; in the cuticle ICS

is used to demonstrate that NLSM is a viable way to investigate compacted proteinaceous

domains. In Section 4.5 multimodal NLSM is employed to image progressive compaction

of myelin of the axons of optic nerves, and ICS and fiber fitting are examined for their

potential to quantify this change in this and future work.
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4.1 Universal imaging parameters

All work except the acquisition of TEM images was done using the nonlinear microscope

instrumentation and sample preparation methods detailed in Chapter 3. Due to the

varying quality of alignment, as well as sample heterogeneity, brightness varied widely

between images. This informed the decision later to focus on quantitative metrics that

did not depend on the relative intensity between samples. For consistency, pixel dwell

time was set to 12.5 µs with a three-pass Kalman filter, which gave qualitatively good SNR

with reasonable image capture times. Zoom varied depending on the size of the sample

but pixel size was kept roughly constant by changing resolution. PMT signal gain was

adjusted during preliminary scanning of samples (either setting upper and lower limits

in the Z direction, registering tracks for multi-tile captures, or both) so that the brightest

features were at the edge of saturation. SNR values, pixel size ranges, and gain settings

are all reported in their respective sections.

4.2 Verification of microscope alignment and imaging PSF

For a custom built microscope with multiple lasing stages driven by one seed laser, the

system can be highly dependent on the alignment of that initial beam. The Verdi-V18

system uses a temperature-controlled birefringent crystal to double its frequency via SHG,

and required an extended period to thermally stabilize after startup. The inconsistent

stabilization point and highly directional nature of nonlinear processes in the Mira 900-F

meant that the mirrors in its cavity often had to be adjusted on startup to maximize the

output power sent to the Mira OPO. The optics in the OPO were then aligned if necessary

to maximize conversion to the imaging wavelength. Lasing could be achieved across a

window from roughly 1050 nm to 1200 nm by adjusting the length of the OPO laser cavity,

but the alignment had to be repeated iteratively to maintain high output power if changing

the output wavelength by more than 40 nm. Lastly, the adjustable mirrors between the
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OPO and the scanning hardware were used to straighten and centre the beam by centering

it on crosshairs placed at alternating locations along the beam path.

The complete process was verified by acquiring z-stack images of diffraction-limited

fluorescent beads (maximum absorption at 580 nm, maximum emission at 650 nm) and

adjusting the beam angle until the THG signal from the beads was maximized and the

circular THG signal from the glass-mounting medium interface was centered. An example

two-channel calibration image is shown in Figure 4.1.

Figure 4.1: Calibration images of 100 nm diameter carboxylate-modified polystyrene

spheres imaged with SHG (a), THG (b) at 1140 nm excitation. The overlay of the two

images is shown in (c) . Scale bars 50 µm.

These images were used to determine the experimental PSF of the microscope by

performing ICS on each channel and taking the average of the width of the Gaussian

surface along each axis. Table 4.1 compares the theoretical lateral PSFs reported in Table 2.1

to the experimental lateral PSFs for 2PF and 3PF. Axial resolution was not measured since

no analysis was performed in the axial direction, but beads were in general visible across

several 1 µm slices, much greater than the theoretical limit. SNR values were measured

by comparing the standard deviation of the pixels in a background region to the average

value of the bead. SNR values for the SHG channel were extremely high, with almost all

images having the maximum possible value for an 8-bit image of 255. SNR in the SHG

channel ranged from 3 to 36, with an average value of 14.
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Modality Theoretical XY
resolution (nm)

Experimental XY
resolution (nm) Median SNR

2PF 510 740 ± 190 255
3PF/THG 340/200 290 ± 80 (THG) 14

Table 4.1: Theoretical and experimental lateral resolution of the nonlinear scanning mi-

croscope for 2PF and 3PF/THG imaging using 50 mW, 1140 nm excitation of 100 nm

fluorescent beads, with maximum absorption at 580 nm and maximum fluorescent emis-

sion at 605 nm.

The PSF measured by 2PF is consistent with expectations for the high-NA water

immersion objectives used here [200, 201]. The fact that the PSF measured by THG is so

much smaller and appears to be below the diffraction limit altogether is consistent with

both theory [154] and direct measurements of the Gaussian FWHM in other work [202]. In

theory, the 2D projection of the volume within which 2PF is produced in is distorted strictly

by aberration in the optical path causing absorption and emission to occur in a region

larger than a single scanning voxel. On the other hand, coherent nonlinear scattering is

also strongly dependent on alignment, so the response to aberration is not the same. Out-of

focus 2PF caused by aberration will increase the size of the image of diffraction-limited

beads, while interface-dependent THG is only possible at the focal point where the Gouy

phase shift occurs. Consistent with this, during alignment beads would generally grow

from very tiny points to fuller, brighter spots as the alignment was corrected, and beads

towards the edge of the field of view would remain smaller than those at the center.

The large uncertainties are possibly explained by the fact that the images were not

heavily oversampled relative to the diffraction limits. The amount of background noise

also varied between images, which may not always be completely compensated for by

background removal. This is intended as a general measure of how close the system comes

to diffraction-limited imaging rather than a definitive measurement of the PSF.
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4.3 Identifying the transition region in the byssal threads

of Mytilus edulis using harmonic generation

The primary goal of using multimodal scattering microscopy to image the threads was to

demonstrate its utility as an additional method of exploring the structure of the preCol

fibers in the collagen-like core. This can be done with either whole or sectioned threads,

with the former being more representative of the in vivo condition, while the latter of-

fers better resolution and SNR. Additionally, two analytical methods are applied (image

correlation spectroscopy and automated fiber fitting) to see whether the three regions of

the fiber (proximal, transition, and distal) can be distinguished quantitatively. The two

methods are compared both together and independently using PCA, and also by applying

them to TEM images, to see if either one alone is sufficient to do so.

4.3.1 Image acquisition and preparation

Exploratory wide field imaging of whole threads, stained with picrosirius red for visibility,

confirmed that the preCols appeared to form long, fibrillar structures very similar to

mammalian collagens. Figure 4.2 contains sample images showing the rippled surface of

the proximal region, with lateral wrinkles clearly visible, becoming more structured in the

transition region and being well organized in the distal region. This supported the idea

that correlation analysis and fiber fitting using CT-FiRE were both potentially useful tools

to quantify the structure of the thread using HGM.

The first images acquired with the scanning microscope were of whole threads mounted

in ASW to confirm the presence of nonlinear scattering within mussel fibres. Figure 4.3

shows a 3 µm stack of a twisted hairpin in the proximal region of an intact thread. THG is

clearly visible along the wrinkled surface (Figure 4.3a), while SHG is visible from the bulk

(Figure 4.3b), but no internal structure was apparent.

Sectioned threads were then prepared to see if it was possible to acquire clearer images

of the interior structure. Both stained and unstained threads were prepared as described
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Figure 4.2: Wide field images of intact picrosirius red stained whole threads: proximal

region (a), transition region (b), distal region (c). Scale bars 50 µm.

in Section 3.2. Images were captured as tiled sets to cover individual thread slices up to

5 mm long and stitched together for display using the grid stitching plug-in for ImageJ

developed by Preibisch et al. [203]. Figure 4.4 compares the THG (a,b) and SHG (c,d)

channels of one stained (a,c) and one unstained (b,d) thread. Dim areas are clearly visible

at the edges of the stitched components; overlap was minimized to reduce scan times at

the expense of imperfect reconstruction.

Figure 4.3: Sample images of harmonic generation in an intact proximal thread excited at

1140 nm; THG produced at 380 nm (a) and SHG produced at 570 nm (b). Scale bars 50 µm.
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Figure 4.4: Stitched outputs of overlapping images taken of sectioned proximal region

threads, showing THG (a,b) and SHG (c,d) produced at 1140 nm of one picrosirius red

stained (a,c) and one unstained thread (b,d). Scale bars 200 µm.

The staining process clearly improved both the SHG and THG signals qualitatively,

and also made the structure within the threads visibly apparent. Imaging was performed

using the stained, sectioned threads since the high contrast fiber structures showed the

most promise for both ICS and CT-FiRE analysis.

Images were acquired under settings that varied slightly between sessions but used a

consistent excitation power of 100 mW. The voltage gain of the PMT detecting the three-

photon bandwidth was set to between 325 V and 450 V, with a median value of 430 V. The

PMT detecting the two-photon bandwidth was set ranging from 665 V to 750 V with a

median value of 750 V. All images were acquired with a 12.5 µs pixel integration time and

3x line scan Kalman filtering. Pixel sizes varied between 0.254 µm and 0.318 µm depending
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on the magnification and resolution used, which varied from 1.5 to 2 and 1024 by 1024

to 1600 by 1600, respectively. These variations are accounted for in the outputs of both

analysis pipelines. Individual frames were all roughly 350 µm long on each side.

The signal to noise ratio in the was measured by tracing individual threads in each

channel and dividing the average value by the standard deviation along the trace. Forty

threads were measured per region in each channel. SNR varied significantly between

images but was approximately 5 in the THG channel and increased from 2 in the proximal

end to 5 in the distal end in the SHG channel. However, it is important to note the arbitrary

nature of this definition, as staining and biological variability play a significant role here.

SNR comparing the samples to the background generally measured no lower than 15 and

as high as 100.

4.3.2 Analysis using ICS and CT-FiRE

Prior to analysis, strong harmonic signals were observed qualitatively at the edges of the

sectioned threads, in addition to speckling that varied between samples and scattered

dark spots in the threads; it was unclear if these were possibly shear damage from the

microtome or foreign contaminants captured during slide preparation. ICS in theory

would be affected by the bright artifacts, and thread fitting was prone to tracing both the

edges and the perimeters of spots. To avoid having these impact the analysis, rectangular

ROIs covering as much artifact-free signal as possible were manually segmented from each

unstitched frame. These 2-channel sub-images were at least 128 pixels per side due to size

limits of the CT-FiRE algorithm.

These ROIs were run through CT-FiRE to get fiber fitting statistics, which were then

read by a Matlab script that also calculated and fit the ACF for each sub-image. All ROIs

from each individual frame were averaged together and registered as individual data

points (frames with only one ROI were not averaged). Figures 4.5 and 4.6 show each step

of this process in the proximal and distal regions, respectively. Both figures show the

THG image of the subregion (a), the autocorrelation surface of this image to which the
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correlation function is fit (b), the curvelet-filtered image produced by CT-FiRE (c), and the

overlay of the fitted fibers identified by the algorithm (d). The same sequence of images is

given for the SHG image in (e)-(f).

Figure 4.5: Sample images of sectioned proximal threads with respective analytical outputs.

Left to right, from top: (a) THG image of proximal region thread; (b) 2D spatial ACF of

(a); (c) curvelet-filtered CT-FiRE output image; (d) overlay of fitted fibers on (a); (e) SHG

image of the same region as (a), acquired simultaneously; (f) 2D spatial ACF of (e); (g)

curvelet-filtered CT-FiRE output image; (h) overlay of fitted fibers on (e). Contrast in (d)

and (h) has been reduced by CT-FiRE but pixel values are unchanged. Scale bars 50 µm.
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Figure 4.6: Sample images of sectioned distal threads with respective analytical outputs.

Left to right, from top: (a) THG image of distal region thread; (b) 2D spatial ACF of (a);

(c) curvelet-filtered CT-FiRE output image; (d) overlay of fitted fibers on (a); (e) SHG

image of the same region as (a), acquired simultaneously; (f) 2D spatial ACF of (e); (g)

curvelet-filtered CT-FiRE output image; (h) overlay of fitted fibers on (e). Contrast in (d)

and (h) has been reduced by CT-FiRE but the pixel values are unchanged. Scale bars 50

µm.

The combined analysis produces four outputs of interest from fitting the ACF: ampli-

tude (which is converted to cluster density), FWHM width in the x- and y-direction, and

the offset from zero at infinity. Since the assignment of the x and y axis depends entirely

on the orientation of the sample on the slide, the x and y widths of were reassigned as the

major and minor axes based on their relative values. Three more outputs come from the

CT-FiRE data: average fiber straightness, average fiber width, and average fiber length.

The quality of the Gaussian fit was included as an additional parameter, measured as the

sum of the residuals divided by the total number of pixels, as well as two permutations of

other metrics: the cluster density ratios for each channel representing the colocalization
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across channels (as described in Section 2.3.1) and the ellipticity (the ratio of the major axis

to the minor axis in the ACF). This gave a total of nine outputs.

All outputs were considered for their ability to distinguish between the proximal,

transition and distal regions using a one-way parametric Anova test between the three

groups, with post-hoc comparison between each pair of groups. Data was log-transformed

for all metrics involving ICS outputs before performing statistical analysis, which is

standard practice because they are often very small and restricted to non-negative values.

In theory, both analyses should respond to the same features in both channels, and

they should show similar behaviour, but this was not the case in practice. This is under-

standable given that the targets of the two techniques are expected to be co-localized but

are not exactly the same. Table 4.2 summarizes the conclusions of this analysis for all

of the variables that showed a discernible trend, in order of lowest to highest average

p-value. Specifically, metrics were singled out which showed both significant p-values and

monotonic behaviour across the three regions.

The major axis width, ellipticity, fiber straightness, and fitted fiber length showed

consistent, statistically significant behaviour in both channels. The minor axis width and

fitted fiber width were neither consistent nor significant in the THG channel, but both

consistent and significant in the SHG channel. The offset showed a general decrease from

the proximal to the distal end. The goodness of the Gaussian fit as measured by the sum

of the residuals showed significant decrease in the SHG channel only, but this metric is

susceptible to outliers because of the extremely small values (∼ 10-4).

The cluster density showed monotonic behaviour in both channels; however, the THG

value increased going from the proximal to the distal end, while the SHG value decreased

in the same direction. Only the latter was statistically significant. This may be a result of

stain being more evenly distributed in the ordered distal end, whereas SHG from more

organized fibrils is less likely to interfere destructively and therefore appears brighter. The

cluster density of the cross correlation showed no trend or statistical significance, nor did

the cluster density ratios for either channel, indicating that the signals co-localize to the
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Parameter THG SHG Cross-correlation

Fiber
straightness

Increase from
proximal to transition/

distal, p = 1*10-11

Increase from
proximal to transition

to distal, p = 4*10-6
N/A

Fiber
length

Increase from
proximal/transition
to distal, p = 2*10-7

Increase from
proximal/transition
to distal, p = 2*10-12

N/A

Ellipticity
(ACF)

Increase from
proximal to transition/

distal, p = 5*10-5

Increase from
proximal to

distal, p = 4*10-5

Increase from
proximal to transition/

distal, p = 0.0002

Major axis
FHWM

Increase from
proximal to

distal, p = 0.003

Increase from proximal
to transition/

distal, p = 6*10-6

Increase from
proximal to distal,

p = 0.0002

Minor axis
FWHM

Positive linear trend
in mean, no change
in median, p = 0.24

Increase from proximal
to transition/distal,

p = 3*10-6

Increase from proximal
to transition/distal

p = 0.01

Fiber
Width

Transition significantly
less than proximal/

distal, p = 0.002

Increase from
proximal/transition to

distal, p = 0.0002
N/A

Offset
Insignificant decrease from

proximal to transition/
distal, p = 0.05

Decrease from proximal
to transition/distal,

p = 0.008

Decrease from proximal/
transition to distal,

p = 0.006

Sum of
residuals

Insignificant decrease from
proximal/transition to

distal, p = 0.62

Decrease from proximal
to transition/distal,

p = 0.02

No trend
p = 0.46

Cluster
Density

Insignificant decrease
from proximal to

distal, p = 0.61

Increase from proximal
to transition/distal,

p = 0.0009

No trend
p = 0.90

% Colocalization
Parabolic trend, no

post-hoc significance
between regions, p = 0.03

No trend
p = 0.52

No trend
p = 0.25

Table 4.2: Summary of trends and one-way Anova comparison results observed in SHG

and THG imaging of sectioned mussel threads for all output parameters produced using

CT-FiRE and ICS/ICCS.

same degree in all regions. THG signal was however significantly more likely to overlap

with SHG signal than vice versa, consistent with it being generated from non-specifically

bound stain rather than omnipresent collagen fibrils.

PCA was then applied to the THG and SHG data using the entire data set with all nine

variables. The biplots for these are shown below in Figures 4.7a and 4.7c. Only the first four
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principal components (PCs) are necessary to capture at least 85% of the variance in both

channels, and the first two alone captured at least 60% (Figures 4.7b and 4.7d) Parallel lines

in the biplot indicate that metrics correlate closely and have similar weightings in the PCs;

comparing the vectors for the CT-FiRE outputs to those from ICS, it is clear that there is

some correlation between the fitted fiber straightness and ACF ellipticity in both channels,

and that the ACF offset and residual values are unique in terms of their contribution. The

SHG data in particular can be compressed down to one dimension while retaining much

of its variance.

Figure 4.7: 2-axis biplots showing the first two PCs of the entire data set in both channels,

with scree plots showing the variance captured by each PC. THG data shown in (a) and (b),

SHG data shown in (c) and (d). Solid lines in (c) and (d) indicate the cumulative variance

of the PCs; dashed lines indicate the 85% variance threshold.

Plotting the individual data points grouped by region reveals the distribution of the

three datasets in principal component space. Figure 4.8 shows this distribution for the
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first two . Each plot shows the first two PCs, with successive components describing less

variance in the dataset. The thread regions are grouped by colour, and ovals are drawn

to indicate the spread of data points with a radius of two standard deviations in each

component axis centered on the mean value for that region. The data points from frames

belonging to each individual thread are connected to show their movement within their

respective regions.

Figure 4.8: Scatter plots of the first two PCs determined with PCA using (a) all measured

parameters from CT-FiRE and ICS analysis; (b) CT-FiRE parameters only; (c) ICS param-

eters only. Each row shows analysis for one channel: THG (a,b,c) and SHG (d,e,f). Data

points are grouped by colour according to region: proximal (red), transition (magenta),

or distal (blue) regions. Straight lines connect individual points from each fiber. Ovals

indicate the 2σ radius from the mean along each principal axis.

In the two most significant components, the proximal points are often clustered together,

will the distal points form a less concentrated cluster in a distinctly different region of the

plot. The transition region points cross from one terminal region to the other, although
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many threads have too few points to show long-distance trends. In subsequent PCs a

similar pattern of spreading is observed, although the circles are all centered more closely

on the origin (not shown). THG appears to have tighter point distributions, but also more

distant outliers. Additionally, the use of only CT-FiRE outputs identifies the transition

region as being more proximal, while the ICS outputs group those points more closely

with the distal data. The most transitory behaviour is observed for the combination of

both, with the most distinct progression from proximal to transition to distal occurring for

SHG images of PCA using both ICS and CT-FiRE data.

Figure 4.9 shows the first PC values of all data points in box-and-whisker plots, split

by region in box plot. THG (a-c) and SHG (d-f) are compared for the same combinations

of input variables used to produce Figure 4.8. Red lines indicate median values, boxes

indicate the interquartile range, and whiskers indicate the highest and lowest non-outlier

data points. Outliers more than three standard deviations from the median are marked

by red crosses. This more clearly shows that the choice of input parameters has a strong

influence on the conclusion of the nature of the transition region, although it stretches

between the points describing the proximal and distal regions no matter what inputs are

used.

4.3.3 CT-FiRE control validation

To verify that the CT-FiRE outputs were fitting actual image features (or structural metrics)

rather than random variations, control datasets were produced of the distal and proximal

data using the scrambling algorithm and analyzed for statistical significance between the

proximal and distal regions. Scrambling regions of 40, 30, 20, 10 and 5 pixels2 were tested

to observe the impact of scrambling scale on the preservation of statistical significance

between regions for different features. Figure 4.10 shows, for each channel, the ratio of

the experimental p-value for each of the CT-FiRE metrics to the p-value of the metric

in unscrambled images. Error bars show the standard deviation of the mean of five

randomized datasets.
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Figure 4.9: Distributions of the first principal component values in the proximal (red),

transition (magenta), and distal (blue) regions, for THG images (a,b,c) and SHG images

(d,e,f). PCA performed using (a) all measured parameters from CT-FiRE and ICS analysis;

(b) CT-FiRE parameters only; (c) ICS parameters only. Boxes indicate the median and

25th/75th percentile windows.

Although the significance does not disappear completely, particularly for straightness,

it is reduced drastically at all length scales, confirming that the characteristics of the images

are more structural than random.
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Figure 4.10: Ratio of the p-values for CT-FiRE outputs of scrambled to unscrambled mussel

byssus datasets using length scales of 40, 30, 20, 10 and 5 pixels. Red lines show THG data,

green lines show SHG data. Solid, dashed and dotted lines correspond to straightness,

width and length data, respectively.

4.3.4 Application to TEM images

The processing pipeline was also tested on previously-acquired transmission electron

microscopy images of the byssus core. Two images from the proximal and one each from

the transition and distal regions were separated into approximately twenty 1 µm squares

and analyzed individually. Figure 4.11 shows a cropped section from the full images of

these regions, where the fine structure of each is clearly visible. The transition region

appears particularly to be a distinct combination of the proximal and distal motifs.

PCA was conducted using all of the ICS output parameters that were incorporated for

the NLSM analysis: cluster density, major axis width, minor axis width, and ellipticity
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Figure 4.11: Sample regions from TEM images of M. edulis byssal threads used for ICS

analysis showing the fine structure of the proximal (a), transition (b), and distal (c) regions.

Scale bars 1 µm.

(rotation angle, offset and peak location were ignored). The same statistically significant

behaviour as in the NLSM images was observed for major axis width (p << 0.05) and

ellipticity (p < 0.05). Cluster density appeared to be much larger in the transition region,

with no significant difference between the proximal and distal regions. Minor axis width

appeared to increase from the proximal to distal region, but was much higher in the

transition region. These p-values are reported approximately, because different images

may show very different behaviour, and creating large datasets from single images may

bias the Anova results towards significance.

The PCA of all metrics combined consequently shows a similar behaviour to that of

the NLSM data in the second PC (23% of total variance) (Figure 4.12(b)). However, in

the first PC (55% of total variance), the transition region is distinctly removed from the

proximal and distal regions, rather than bridging them (Figure 4.12(b)). The third and

fourth principal components are again similar to the NLSM data in that the proximal points

more concentrated around the origin and the transition and distal regions are spread over

a wider area.

CT-FiRE analysis was performed, but because of the significantly different scales of the

two imaging modalities, it was only used to manually measure the width of individual
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Figure 4.12: Distributions of principal component values in the proximal, transition and

distal regions for TEM images, using ICS parameters only. Box-and-whisker plot (a)

indicates the median and 25th/75th percentile window for each region; scatter plots show

the overall distribution of the first/second and third/fourth PCs. Ovals indicate the 2σ

radius from the mean value along each principal axis.

fibers for reference to the widths as determined from NLSM images. These numbers are

reported and discussed in Section 5.1.2.

4.4 Observing compacted protein domains in the cuticle of

Mytilus edulis byssal threads

When imaging whole threads that had been cleared with 3Disco, bright spots larger

than the diffraction limit and localized on the outer surface of the threads were clearly

visible in the THG channel (see Figure 4.13). However, some spots were very dim in the

SHG channel and some had no visible feature at all. To analyze them quantitatively to

determine whether they could the densely cross-linked proteinaceous granules observed

with CRS [101], smaller ROIs containing between five and twenty of these features were

sectioned and processed with the ICS pipeline. This sectioning was done mainly to allow

for localized background subtraction, as there was nonuniform structural noise arising
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from the thread itself (indicated by the white arrow in Figure 4.13b). This was done by

taking the average value of the brightest uniform background present in a given ROI.

Figure 4.13: Distal region of an optically cleared thread showing sub-micron domains in

the cuticle producing (a) THG and (b) SHG. The superposition of the two channels is given

in (c). The contrast in has been enhanced in (b) only to 0.05% saturation for visibility. Red

arrows indicate granules only visible in the THG channel; yellow arrows indicate granules

visible in both channels. White arrow indicates structural background noise in the SHG

channel. Scale bars 50 µm.

Figure 4.14 shows the size and ellipticity data for the granules imaged using autocorre-

lation of THG and SHG. It shows that the majority of the measured domains are within the

established range of the granule sizes for M. edulis (500 - 1000 nm) regardless of imaging

modality. However, the uncertainty is much larger on the SHG measurements, likely due

to the higher structural background arising from the byssus core.

Since there was both uniform white noise and localized structural noise, SNR was

measured by taking the ratio of the mean intensity of domains traced in the THG channel

to the standard deviation of a similar sized spot adjacent to the domain. Measurements

were taken in the SHG channel using the same size region, even when the feature in

that channel was smaller or not visible at all. There was significance variation between

domains, with the mean SNR being slightly higher in the THG channel compared to the

SHG channel (17 ± 8 vs 13 ± 11, n = 31).
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Figure 4.14: Scatter plot of size vs. ellipticity of domains imaged in the cuticle of M. edulis

measured using THG (red) and SHG (green). Points with error bars indicate the respective

means and standard deviations. Dashed lines indicate the typical size range of these

granules as determined by electron microscopy. Some far outlying SHG points influencing

the large error bars are omitted.

4.5 Measuring progression of myelination in Xenopus lae-

vis optic tectum and hindbrain

Myelination progression was evaluated by capturing images of two retinotectal regions

of X. laevis tadpoles, the hindbrain and the optic chiasm, at stages 51, 52, and 53 of their

development. These had been previously identified empirically as capturing the onset

of myelin compaction, which was observed again in images captured here. CT-FiRE and

spatial ICS and ICCS were applied to assess quantitative changes between the stages in
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both channels. An additional pre-processing method to remove image artifacts based on

nonlinear scattering theory was also quantified and found to be ineffective.

4.5.1 Imaging the compacted myelin using THG myelin

The presence of THG signal from myelinated axons at stage 53, and its absence at stage

51, was confirmed by imaging samples stained for axons, MBP, and nuclei. Myelinated

axons in stage 53 were clearly visible in the three-photon detection channel. However,

DAPI (a nuclear stain) also showed strong 3PF signal (highlighting cell bodies) and IgG

Alexa-647 produced a non-zero amount of 2PF. Therefore images were captured using

samples only stained for MBP for quantitative analysis. Since there was no staining to

increase the SNR of the THG signal, it was expected that there would be other sources of

contrast in the image. Features resembling cell nuclei were observed, as well some bright

features too thick or amorphous to be axons. To minimize these signals, all images were

captured twice, once using linear polarization oriented at a 45 degree angle to the principal

axes of the fiber morphologies, and a second time using circular polarization. Since THG

driven by the step-change in refractive index between the myelin sheath and the ECM

should be suppressed in the latter case, this should provide a control image dominated by

birefringence-based THG and 3PF. This showed qualitative improvements, appropriate for

non-quantitative assessment. It was later assessed post hoc by examining its impact on

key quantitative outputs from CT-FiRE and ICCS and found to be ineffective, and possibly

detrimental (see Section 4.5.3).

All 2-channel images were split into two single channel images and pre-processed

with the CANDLE filter plugin in ImageJ [198]. The THg channel was processed further

by subtracting the image captured using circular polarization from the identical image

captured using linear polarization; this was then recombined with the SHG image. Figures

4.15 and 4.16 show sets of three images depicting the progression of myelination in the

optic chiasm and hindbrain, respectively. All images have had contrast increased with

ImageJ to 0.3% saturation in each channel for visual clarity. Beginning at stage 51, fibers
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can be seen clearly to be present above a background signal in the two-photon channel.

This background signal is possibly from unbound fluorescent antibodies or uncompacted

myelin protrusions, and fades as the 2PF signal becomes more concentrated and brighter in

stages 52 and 53. On the other hand, no fibers are visible at all in the THG channel in stage

51, beginning to form in stage 52 and becoming clearly defined in stage 53. Three-photon

artifacts and background also fade as stages progress due to the relatively brighter axonal

THG signal.

Figure 4.15: Sample images of X. laevis optic chiasm sections at stage 51 (a), stage 52 (b),

and stage 53 (c) of its development. Images have been processed with CANDLE filtering

(both channels) and circular polarization subtraction (THG channel). Three-photon signal

appears in blue, two-photon signal appears in magenta. Scale bars 50 µm.
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Figure 4.16: Sample images of X. laevis hindbrain sections at stage 51 (a), stage 52 (b),

and stage 53 (c) of its development. Images have been processed with CANDLE filtering

(both channels) and circular polarization subtraction (THG channel). Three-photon signal

appears in blue, two-photon signal appears in magenta. Scale bars 50 µm.

SNR values of the final images were measured by tracing matching threads in each

image (30 total threads per region) and taking the ratio of the average pixel value over

the standard deviation along the trace. SNR values fell between 3 and 7, with some high

outliers, and were consistent across all three regions, although the highest values were all

measured in the stage 53 images.

4.5.2 Quantification of the progression of myelination

One advantage of cross-correlative methods in multimodal microscopy is that they min-

imize contribution from background signal, non-target features, and other sources that

are only present in one or the other channel. With this in mind, cross-correlation was

chosen as the primary mode of analysis, with fiber fitting applied to a set of equivalent

monochromatic images (see Section 3.4.2). The environment around the hindbrain is

known to be more complex than the optic chiasm, and to vary more between samples

(clearly visible in Figure 4.16), so the quantitative analysis presented here is focused on the

latter. Significance was calculated simultaneously across all three stages.
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All three fiber fitting metrics showed an increase across the stages, although straightness

was not statistically significant. Correlation analysis was less consistent, but did show

significance indicative of progression in three metrics: ellipticity, offset and the goodness of

the Gaussian fit as measured by the sum of the residuals. The major and minor axis widths

both showed slight increasing trends, but were heavily influenced by outliers, particularly

at stage 51. ICS outputs relating to the amplitude of the ACF (cluster and colocalization

densities) showed highly significant, negative parabolic behaviour, which is not consistent

with biological intuition regarding the myelination system, and is not included here.

The erratic nature of the results may indicate that some of the variation is a result

of differences between samples rather than progression of myelination. Since there in

no published research, to the best of our knowledge, on the application of ICCS to non-

periodic, non-diffraction limited features, autocorrelation of the SHG and THG signals was

performed to verify whether the same significant variation was present in autocorrelated

data. This revealed that certain metrics were consistently significant under both analyses,

while others become more or less significant in one or the other. Figure 4.17 shows the

trends from stage 51 to stage 53 of each of the parameters that maintained consistently

small p-values and similar trending behaviour for both.

Despite the large uncertainty, the convergence is significant for the fiber width, offset

and goodness of fit. However, fiber length is significant in diverging instead.

4.3 summarizes the observations of each trend for all of the observables that showed

significance in either analysis, indicating between which stages the most change occurred.

Measured thread widths and lengths for comparison, as well as the p-values for both

cross-correlation and differential comparison.

In general the observations are logically consistent with the expectation that fibers im-

aged with THG would thicken and segments would connect as the axons are progressively

covered in compact myelin. The fiber dimensions as measured by ICCS are significantly

different than CT-FiRE, which is to be expected given the sensitivity of image correlation

to structural characteristics of the image, and the long-range curvature of the optic nerves.
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Figure 4.17: Line plots of selected CT-FiRE and ICCS output metrics showing the change

(or lack thereof) from stage 51 to stage 53 in the THG (red) and SHG (green) images

of the X. laevis optic chiasm. The difference between the two is plotted in black. The

ICCS/monochromatic image analyses are plotted in dark red. Error bars indicate the

standard deviation of the mean at at each time point; differential error bars are the sum of

the THG and SHG error in quadrature. Asterisks next to the lines indicate the significance

of the respective p-values; * ≤ 0.05; ** ≤ 0.005; *** ≤ 0.0005.

Simple quantitative assessment of the hindbrain indicated, as expected, that the analysis

was heavily impacted by sample variation. No metrics showed more significance in ICCS
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Parameter Observations p-Value
(cross-correlation)

p-Value
(convergence)

Fiber
width

Increase from stage 52 to stage 53
(0.8 ± 0.2 µm to 1.2 ± 0.3 µm) 5*10-5 0.002

Fiber
length

Increase from stage 52 to stage 53
(9 ± 3 µm to 16 ± 2 µm) 4*10-4 0 2*10-3

Fiber
straightness Increase from stage 51 to stage 53 0.5 0.007

Ellipticity Increase from
stage 51 to stage 52 9*10-3 0.0005*

Minor axis width Increase from stage 52 to stage 53
(2 ± 2 µm to 3 ± 2 µm) 0.30 3*10-4

Major axis width Increase from stage 52 to stage 53
(4 ± 4 µm to 6 ± 4 µm) 0.61 4*10-4

Offset Increase from
stage 51 to stage 52 0.08 4*10-5

Sum of
residuals Decrease from stage 51 to stage 52 0.014 0.0392

*The difference between THG and SHG showed a parabolic rather than a linear trend

Table 4.3: Summary of trends and one-way Anova comparison results in selected ICCS

and CT-FiRE outputs from optic chiasm images of X. laevis tadpoles.

than they did in the respective autocorrelation functions. Rather, ICCS for many outputs

showed little to no statistical significance. However, there was an indication that the ACF

widths, ellipticities, and goodness of fit might converge. Figure 4.18 shows the progression

of these four metrics for autocorrelation of the SHG and THG data compared to the ICCS

and convergence analyses in the hindbrain, where the convergence clearly shows statistical

significance while even loses the significance arising from sample variations.

4.5.3 Validation of THG polarization filtering

Figure 4.19 shows a set of images contrasting the linear (4.19a) and circular (4.19b) po-

larization versions of an image, along with the differential image they produce (4.19c).

These images are taken from the stage 52 hindbrain samples. The polarization filtering

was primarily performed to improve image quality for publication when quantification

was not required.
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Figure 4.18: Line plots of selected CT-FiRE and ICCS output metrics showing the change

(or lack thereof) from stage 51 to stage 53 in the THG (red) and SHG (green) images

of the X. laevis hindbrain. The difference between the two is plotted in black. The

ICCS/monochromatic image analyses are plotted in dark red. Error bars indicate the

standard deviation of the mean at at each time point; differential error bars are the sum of

the THG and SHG error in quadrature. Asterisks next to the lines indicate the significance

of the respective p-values; * ≤ 0.05; ** ≤ 0.005; *** ≤ 0.0005.

There is a clear distinction in the contrast between the images collected using linear

and circular excitation polarization, and the differential image of the two. The higher back-
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Figure 4.19: Three-photon images of a sectioned stage 52 X. laevis hindbrain sample,

collected with linear (a) and circular (b) polarization, and the differential image a - b (c).

All images have had contrast enhanced to 0.3% pixel saturation. Blue arrows indicate

non-fiber features filtered out in the differential image. Green arrows indicate non-fiber

features observed to become more prominent. Scale bars 50 µm.

ground in the differential image is a result of the lack of overly bright features dominating

the contrast enhancement. Certain bright non-fiber features in the linear image stand out

strongly in the circular image, and are dimmer in the differential image (blue arrows).

However, some other non-fiber features appear to become more prominent (green arrows).

To assess quantitatively whether it was appropriate for this purpose, the linear po-

larization and circular polarization-filtered images of the stage 53 chiasm samples were

compared for changes in their SNR, and the effective SNR of the most predictive ICS/ICCS

outputs (measured as the mean value divided by the standard deviation). CT-FiRE outputs

were also assessed since they were able to qualitatively trace threads, despite not providing

statistical significance. These results are reported in Table 4.4.

In most cases, the output SNR fell after filtering. In nearly all cases, subtracting the

circularly polarized signal did not change the reported value significantly, but the fact that

the effective SNR of the measurements that appear to be the most useful in quantifying

69



Parameter THG Cross-correlation
linear isolated linear isolated

Fiber
straightness 466 686* 140 173*

Fiber
width 48 41* 62 77

Fiber
length 207 90* 22 25*

ACF
width 1.4 1.5* 2.5 2.2

ACF
ellipticity 7 6* 30 15

SNR 4.4 ± 1.6 N/A 3.5 ± 1.5 N/A
* < 5% change from linear mean

Table 4.4: Effective SNR values of cross-correlation and fiber fitting output metrics and

mean image SNR, before and after pre-processing by subtracting THG image produced us-

ing circularly polarized excitation light from THG image produced using linearly polarized

excitation light.

myelination was reduced suggests that this is not a viable approach to improve optic

tectum images for quantitative analysis. Similar comparison in the hindbrain yielded more

consistent improvement, but not enough to make quantitative analysis of those images

possible.
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Chapter 5

Discussion of results, conclusions, and

future work

The aims of this work are twofold: first to apply nonlinear harmonic generation imaging

to biological and biomaterals systems were it has not been used before, and second

to investigate these systems using two different analysis paradigms: image correlation

spectroscopy and algorithmic feature registration. This chapter will review the results of

the analyses from Chapter 4, put them in context with comparable imaging modalities

and analytical techniques, and provide direction for the next steps in the implementation

of these conclusions. The conclusions reached here are limited to the data collected prior

to analysis; at the time of writing, the NLSM system used to acquire these images was

awaiting repair, so no further experiments were possible.

For Mytilus edulis, and sea mussels in general, there have been no previous reports in

the literature of harmonic generation imaging of their byssal threads, and no quantitative

microscopy of their structure has been performed, much less a mesoscale comparison

between the proximal and distal zones. There is more literature exploring the cuticle,

but none offering the multipurpose flexibility of HGM; cuticle imaging in this work is

primarily a proof of concept. Application of CT-FiRE and ICS are entirely novel approaches

to both of these systems.
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For myelination and the compaction of myelin, both THG as a method [94, 137] and

myelination in Xenopus laevis [125, 135] as a subject have been explored, but the two

nonlinear methods have not been combined. Additionally, quantitative analysis has been

limited to manual and semi-automatic feature measurement, limiting its applicability to

either very small scale or very large scale measurements. CT-FiRE and ICS/ICCS, with the

large number of outputs they provide, present novel tools to explore new questions of the

process of myelination in a network of axons.

5.1 Quantification of mussel byssal thread core with ICS

and fiber fitting

The transition region of the mussel byssus is ambiguously defined, only in that at some

point the proximal region of the thread becomes the distal region of the thread. The

relevant question, from a bio-inspired materials standpoint, is how the two regions interact

in a way that optimizes the mechanical properties of the thread. The first step to doing so

is to establish consistent metrics that distinguish one from the other.

5.1.1 Evaluation of the applicability of CT-FiRE and ICS

Previous work on the application of image correlation spectroscopy to collagen fibers

has concluded that all of the parameters of the ACF (excluding the peak location and the

rotation angle) correlate in some way with the properties of either the fibers or their spatial

and angular distribution. The ACF width has been further extended to the macroscopic

mechanical properties of the fibers [119, 120, 204]. However, practical implementation of

ICS is almost always performed on relatively straight collagen fibers with either uniformly

ordered or uniformly disordered morphologies (both simulated and ex vivo). Byssal threads

are somewhere in the middle, having a general direction of orientation but also being

wavy in the proximal region and displaying a significant amount of crosslinking. Notably,
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Mir et al. did explore the impact of the randomness of the orientation of the fibers, and

found that the ACF was more elliptical in more ordered samples [120]; Hall et al. also

demonstrated that increasingly disordered fiber morphologies introduced distortions into

the autocorrelation surface, making it harder to fit with a 2D Gaussian [119].

The implications of these are important, because the waviness and crosslinking of

collagen are the two principal differences between the proximal and distal regions. Trans-

lating the analysis to collagen-like byssal cores is additionally complicated by the fact

that autocorrelation of collagen is generally applied to distinguish diseased or damaged

collagen from a baseline. That can be accomplished by establishing a minimum number

of parameters that are consistent in healthy tissue, and classifying a certain deviation as

’other’. In the case of byssal fibers, to understand the transition region the parameters

need to show a consistent, but statistically distinct behaviour in two separate regions. This

motivated the use of CT-FiRE as a highly developed source of additional variance between

regions.

Casting the net for variance as wide as possible, thread sections were stained with

a harmonophore collagen stain, PsR, so that the byssus core could be imaged using

both SHG and THG. An increase in SNR from the high scattering cross section of PsR

should increase the SNR of the images, improving the quantitative measurements; indeed

this was observed in the proximal end, where less organized collagen fibers result in a

shorter coherence length for SHG. THG is also less dependent on the polarization of the

laser, improving the contrast from more randomly oriented domains, and is less prone to

backscattering than SHG [77, 170]. Finally, it frees up the two photon channel for other

modalities in future explorations. Previous studies have only applied to SHG signal;

autocorrelation has only been applied to THG previously in time domain FCS [205].

With this in mind, imaging was performed simultaneously in both channels, and all

outputs from both analytical techniques were examined for significance (summarized in

Table 4.2). Interestingly, the most statistical significance was achieved when imaging with

SHG, despite the lower signal to noise ratio and generally lower contrast. In the THG im-
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ages, neither fiber width fitted by CT-FiRE nor the minor axis width of the autocorrelation

function were effective at distinguishing the proximal and distal regions; in SHG both

did, although they gave conflicting conclusions about the structure of the transition zone.

The offset and sum of residuals also showed slight trends as expected, moreso in the SHG

channel, but with minimal statistical significance compared to the other metrics.

This behaviour may simply be consistent with the coherent nature of harmonic gen-

eration. SHG depends on the organization of collagen, whereas THG from PsR simply

detects its presence. Adjacent bundles of fibers would then be detected as single large

fibers by THG, whereas SHG emanating from them may interfere destructively. This

would degrade the distinction of fiber widths if the proximal region is comprised mostly

of smaller bundles, which aggregate in an ordered fashion in the distal region. This also

affects the forward/backward scattering ratio, reducing the SNR in smaller fibers [206].

This would also be reflected in the goodness of fit of the correlation function, which is

worse for highly disordered regions; THG would see a more uniform signal from closely

packed threads that were in fact disordered relative to each other [120].

From the analysis of individual variables, there is no clear consensus as to whether

the transition region is structurally more similar to the proximal or distal region, or a

distinct combination of the two. This motivated the use of PCA to try to establish distinct

low-dimensional morphospaces for each region, using the many available input metrics.

As a general result (see Figure 4.8), images from the disordered proximal region are very

similar to each other, while the distal points occupy a distinctly different region and are

spread over a much larger area. Tracing the threads and looking only at the first PC does

give a strong argument that the transition region is in fact a gradual mixing of the two

regions, but without multiple images of full, unsectioned threads this remains a speculative

interpretation.

To streamline future research, one important question is whether autocorrelation can

be considered to be as effective as CT-FiRE at mapping structural differences in collagen-

like fiber systems, as opposed to applying both together, and whether SHG or THG is
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the preferable imaging modality. Regarding the first, the distinct modes of analysis do

not correlate with each other (Figures 4.7a and 4.7c); comparing PCA with the CT-FiRE

outputs classifies the transition region with the proximal one, while PCA based on ICS

groups it more closely with the distal region. Fiber fitting also produced more consistent

results across images in the distal region; in the proximal region ICS was marginally

better. Complete separation between proximal and distal data was only achieved for

SHG imaging using both analyses. Given the complexity of performing both analyses in

parallel, it may be appropriate to choose one or the other, knowing in advance the bias of

the conclusions. The analysis could also be chosen based on the desire to see more or less

variance in a particular region, if for example an experiment was being performed on the

distal section of threads grown under different conditions.

The variation between channels is more likely due to SHG being more sensitive to the

organization of collagen. This would then imply that the decision of which modality to

use depends again on the experimental conditions. Comparing the p-values as presented

in Table 4.2, SHG is a better choice when looking for changes in the effective width and

length of fiber bundles, while THG is better for measuring straightness through with

CT-FiRE, and equivalent if measuring it with ICS. Given that under extension threads

both straighten [107] and unfold their flanking domains [105], this may still be a matter of

preference and/or convenience.

5.1.2 Comparison of NLSM images to TEM images

Applying the two modes of analysis to images taken in a different modality at a very

different length scale presents another way to assess whether they are appropriate for the

byssal thread system. There is no history of CT-FiRE being applied to nanometer-resolution

images, and it was unclear what it would identify as a thread. In total, six independent

measurements of thread width were made in this work: both spatial autocorrelation and

CT-FiRE fiber fitting for each of the two µm-scale HGM imaging channels and nm-scale
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Method Proximal (µm) Transition (µm) Distal (µm)
THG

autocorrelation 1.8 ± 1.1 2.1 ± 1.0 2.3 ± 1.9

THG
fiber fitting 1.6 ± 0.2 1.5 ± 0.2 1.74 ± 0.08

SHG
autocorrelation 0.21 ± 0.14 1 ± 1.5 1.2 ± 0.9

SHG
fiber fitting 1.2 ± 0.1 1.3 ± 0.3 1.6 ± 0.2

TEM
autocorrelation 0.0041 ± 0.0039 0.051 ± 0.016 0.02 ± 0.01

TEM
fiber fitting 0.010 ± 0.002 0.016 ± 0.004 0.015 ± 0.004

Manual
fiber measurement 0.04 ± 0.01 0.12 ± 0.07 0.28 ± 0.12

Table 5.1: Comparison of thread widths as measured by autocorrelation, CT-FiRE fiber

fitting, and manual tracing of NLSM and TEM images.

TEM images. These measurements are given in Table 5.1, along with average thread widths

as measured manually from TEM images using ImageJ.

The most obvious difference is in the thousandfold gap between widths as measured

by NLSM and TEM. Referring to the images in Figure 4.11, in particular Figure 4.11b, the

reason for this is quite obvious. The width of fibers, which are in fact bundles composed

of many fibrils, will vary depending on whether resolution is at the scale of individual

fibrils or of bundled fibers. This is true both for feature registration and autocorrelation.

Measuring manually, the question of what constituted a fiber was often arbitrary decision,

as there were distinct features across a range of widths that could rightly be labeled as

individual fibers. It is particularly evident here that SHG is measuring a changing fiber

size, while the THG fiber size is consistent across all regions.

There is no literature measuring fibril sizes specific to the mussel byssus, but the TEM

results are consistent with previous measurements of fibrils of mammalian collagens [207].

Autocorrelation is not expected to return the exact fiber widths, but the widths as measured

by both TEM and SHG autocorrelation follow approximately the same linear increase as

the manual fiber measurements. The small datasets (particularly for the TEM images) and
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large uncertainties suggest that autocorrelation of TEM and SHG images may further be

a useful, high throughput indicator of the width of the aggregated collagen fibers. The

most obvious analysis to corroborate this would be to measure the forward/backward

scattering ratio and compare it to these results to those of Williams et al. [75] and Légaré et

al. [208].

5.2 Exploratory imaging of granules in the mussel byssus

cuticle

The role of the granules in the mechanical behaviour of the cuticle has been a focus of

considerable research because of the significance of polymeric thin films in materials and

bio-inspired materials science. This is complicated by several factors, such as lack of

appropriate fluorescent labels and the fact that the mechanical behaviour of the thread

is strongly affected by whether it is wet or dry (problematic for microscopy requiring

intensive sample preparation). An ideal imaging modality would therefore be label-free

and involve minimal technical intervention. So far only resonance-based CRS has been

used to image intact samples, a time-intensive method relying on metal-protein complexes

specifically localized within the granules [121]. Although this elucidates the functional

difference between the granules and the surrounding matrix and makes it possible to map

their distribution, it is limited in its ability to probe mechanical changes unless they are

accompanied (or driven) by molecular ones. Andersen et al. have demonstrated through

electron microscopy and atomic force microscopy that these domains deform under strain,

and have postulated the ways in which this affects the stress/strain behaviour of the

cuticle (and therefore the thread) [109], but these methods are unable to image in real time

or across large areas. Harmonic generation is both relatively straightforward to implement

and is able to image intact 3D samples mounted in water, their natural in situ environment.

Based on the domain widths measured with autocorrelation in the THG channel, it is

likely that the features are cuticle granules. Further, the autocorrelation metrics of these
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features have the same relationships in both the SHG and THG signals, and the THG signal

forms a solid feature rather than a ring at the granule-matrix interface. This establishes

that the features generate harmonic signal because they display ordered birefringence, as

expected from a granule with a high degree of cross-linking. The SNR in images acquired

with THG was effectively the same as for SHG, but the uncertainty measurements is

much larger due to the dependence of SHG on the polarization of the laser relative to the

scattering feature.

One important observation in some whole threads, specifically ones that had been

stained with picrosirius red, was of domains that were visible only in the SHG channel.

These had a size similar to the other features measured by autocorrelation, but displayed a

very different correlation function amplitude and no THG signal. Principal component

analysis of datasets containing these features behaved erratically depending on back-

ground subtraction, suggesting that they were quantitatively very different than the THG

domains. The source of these features is unclear, but their observation reinforces the case

for proceeding specifically with THG imaging.

Two immediate applications are well-served by HGM combined with ICS. First, the

fact that birefringence is dependent on the presence of cross-links suggests that it may

be used to measure the extent of that crosslinking, without the steady background in

Raman spectroscopy images observed by Harrington et al. [121]. This gives a better

approach with which to quantify the influence of external conditions on the formation

of the cuticle between the molecular and the macroscopic level, and consequently the

mechanical properties of the byssus. The gap may possibly be bridged completely by

using ICS to measure the eccentricity of granules across an image series which, with HGM,

can be captured in real time during a stress-strain test. Andersen et al. have proposed

mechanical models based on certain deformation behaviour of the granules under stress,

but they have not been tested to the necessary degree [109]. Beyond that, the question of

whether this behaviour is uniform along the whole thread is a question that appears to

not have been asked in the literature thus far; here the simple sample preparation and
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large field of view of harmonic generation give it a further advantage over other forms of

microscopy.

5.3 Quantitative imaging of myelination during Xenopus

laevis development

Label-free imaging methods for studying myelination are particularly valuable for their

ability to distinguish compacted from uncompacted myelin, an important quality when

researching the dynamic nature of myelination in the nervous system. The demonstration

of quantitative THG imaging applied to Xenopus laevis tadpoles is motivated by the

advantages that technical simplicity, µm-scale model neural systems, and potential new

analytical pathways have for the future of research into the process of myelination,

5.3.1 Demonstration of quantifiable, simultaneous THG and 2PF imag-

ing of unmyelinated vs fully myelinated axons

Of the label-free techniques that have been demonstrated, third harmonic generation is

easily the least technically complex, requiring no more than a single high-power NIR laser

and a scanning confocal microscope equipped with a high-NA multiphoton objective.

However, it has been applied primarily to fully-grown mouse models, where nervous

tissues are already immensely complex, and huge relative to the size of individual neurons.

Even large scale imaging like that accomplished by Redlich et al. [209] only captures a

tiny µm-scale region of a mm-scale organ. An ideal system for exploring this fundamental

aspect of nervous system during its development would be small and well understood; to

this end only stimulated Raman spectroscopy has been demonstrated on the µm-scale X.

laevis model system [135].

The first step to establishing THG as a viable method for imaging in X. laevis is simply to

demonstrate that its small-diameter axons are large enough (after the compaction of myelin)
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to generate THG images at a practical resolution. As expected from previous electron

microscopy measurements, properly myelinated fibers in the optic nerve and hindbrain

are clearly visible using THG microscopy. Qualitatively, these signals are colocalized with

fluorescent signal from myelin basic protein, and emerge across the tadpole development

periods during which most compaction of myelin is expected to occur.

Regarding quantitative measurements, there was a strong desire to demonstrate a novel

alternative to the established techniques using colocalization matrices and coefficients [194]

or signal density [209]. These approaches to measuring density and colocalization in ner-

vous systems look at an aggregate scale and obscure any more subtle pattern information,

while approaches for measuring the characteristics of individual nerve fibers focus on

individual features and miss the forest for the trees. More fully automated methods with

more nuanced output parameters are an opportunity to improve both throughput and the

richness of information that can be extracted from images.

In practice, however, both CT-FiRE and ICCS struggled to demonstrate differences

between unmyelinated and fully myelinated axons. The only parameters that showed

significant change between the time points that could reasonably be attributed to structural

change, rather than variation between the samples, were the correlation function offset,

the goodness of fit, and the fitted fiber width. Other parameters that showed significance

under ICCS behaved erratically when verifying whether the correlative characteristics

of the THG and SHG images appeared to converge as well. ICCS was expected to have

difficulty in measuring structural features through the ACF and CCF widths, because the

curved morphology of fibers in the optic chiasm does not change with time. It performed

better than expected, although it is unclear whether that was a result of sample variation

and merits further investigation.

That the offset decreases as myelination progresses speculatively indicates that it is

measuring an increase in the feature density of the image consistent with increasing THG

signal. In the hindbrain, the convergence of the THG and SHG ACF widths suggests

that autocorrelation alone may be sufficient to quantify the thickening of fibers in regions
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dominated by straight morphologies even if they are oriented perpendicular to each

other. This thickening is more clearly observed in the optic chiasm by CT-FiRE, and the

widths measured by fiber fitting agreed with those measured previously in developing

and mature X. laevis, considering that the nerve structures in the tadpoles are likely to

be slightly smaller than in adults [125]. The observed increase in fitted fiber length was

expected in the THG and cross-correlation images, although the parallel observation in

the SHG autocorrelation data casts doubt on what exactly was being measured. It is also

worth noting that despite the lack of significance of CCF width in the chiasm, the mean

values did trend in the right direction with a similar magnitude.

It is also possible that both CT-FiRE and ICCS are appropriate methods, and they

simply quantify not only the refractive index boundary of compacted myelin but also the

general coalescence of the myelin signal as compaction brings it closer together. This ap-

proach would require validation with either simulation of explicit morphologies different

than those of collagen, or simple and well-established biological models of myelination,

or both. If it turns out to work for both modalities and can be replicated in vivo with

transparent tadpoles, it clears the way for research into the intricate process of nervous

system development in relation to external stimuli.

The largest factor that may be distorting these quantitative results is the application of

the CANDLE non-local means filter. As a carefully engineered method of noise removal, it

may have removed some of the localized fluctuations that would have distinguished the

behaviour of the emergent THG signal from that of the already-present fluorescent myelin.

It could also have connected and padded under-myelinated fibers, affecting the CT-FiRE

measurements.

Since real-time imaging of a single sample in which myelination occurs on an appropri-

ate timescale (as opposed to the days/weeks between X. laevis is of great interest, testing

the analyses on this sort of data may be another useful test for validity. This would elimi-

nate the varying background signal and test strictly for structural change over time; it may
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also be possible to extract more information, such as the rate at myelination/compaction

expands from an initial point, by analyzing temporal behaviour.

5.3.2 Polarization-dependent signal filtering nonlinear scattering im-

ages of heterogeneous highly scattering tissues

The immediate observation that section X. laevis neural tissue contained many features that

showed THG contrast makes it clear that coherent scattering has less feature specificity

than SRS. Based on nonlinear optical theory, a straightforward method of removing these

features was tested using circular polarization. This was done on spec, since THG imaging

is generally performed with circular polarization to even out the THG produced by all

fiber orientations. However, the increased signal from non-fiber features may be more

problematic in very heterogeneous samples; addressing this by exploiting the physics of

nonlinear scattering has not been explored previously in the literature.

Assessing the manipulation in terms of the most useful CT-FiRE and autocorrelation

outputs, it provided no benefit and potentially reduces signal to noise ratio when used in

the optic chiasm. When applied to the hindbrain, it performed better, improving signal to

noise ratios particularly in the underdeveloped structures at stage 51 and 52. These results

should be taken with a grain of salt, since the manipulated images were still not useful for

quantitative analysis.

It is possible that for images containing many scattering features other than those

of interest, there is some benefit to be gained from filtering based on polarization. The

method would benefit from better refinement based on a more rigorous understanding of

the nonlinear theory, and would likely require a detailed understanding of the sample being

imaged beyond the features of interest. However, it is ultimately better to select regions

for analysis that show minimal nonlinear scattering without additional manipulation.
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5.4 Summary of Key Conclusions

In sum, the unorthodox pairing of multimodal NLSM and correlation analysis generally

shows promise for quantitative imaging of highly scattering biological tissues. It is able

to distinguish features larger than the diffraction limit when the behaviour of its outputs

are understood correctly. When applied alongside established feature fitting algorithms, it

provides a large set of outputs that can be used to reach quantitative conclusions about

collagen-like structures in natural biomaterials, and provide quantitative measurements

of high-contrast granular features. CT-FiRE can also be applied with consistent results,

extending it beyond its typical context of mammalian collagens. ICS and CT-FiRE may

have some applicability to other fibrillar structures as well, such as systems of neurons,

but in a much more limited way that prompts additional research into their use in exotic

fibrillar structures.

The usage of both NSLM and these analytical techniques depends heavily on the exact

question being asked, so clear experimental design is particularly important. Future work

in each area will be specific to the system in question, but can be undertaken with some

expectation of useful results.
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