
promising TMS features that could account for STN-
DBS. TBS-TMS is supposed to modulate expression of
brain-derived neurotrophic factor or cFOS, increase
GABAergic activity,15 and modulate N-methyl-D-
aspartate receptor activity14; however, the transfer of
these mechanisms to STN-DBS remains hypothetical at
this time.
Findings from a previous study indicate that DBS pat-

tern variations might result in similar clinical results
within interburst time ranges of 0.1 to 0.5 seconds.16

LF-TBS with low intraburst frequencies might have
dropped outside the efficacious window, resulting in
higher required dosages.
In summary, this short-term, randomized, double-

blind, clinical trial represents the first step in the devel-
opment of new, patterned DBS stimulation forms by
demonstrating safety, efficiency, and partial enhance-
ment of therapeutic window width depending on TBS
intraburst frequency.
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the current study was to study longitudinal regional
perfusion in patients with idiopathic rapid eye move-
ment sleep behavior disorder.
Methods: Thirty-seven patients and 23 controls
underwent high-resolution single-photon emission
computed tomography. After 17 months on average,
scans were repeated for idiopathic rapid eye move-
ment sleep behavior disorder patients. We compared
regional cerebral blood flow between groups and
over time.
Results: At baseline, patients showed lower relative
regional perfusion in the anterior frontal and lateral
parietotemporal cortex compared with controls. How-
ever, over time, patients showed an increase in rela-
tive regional perfusion in the anterior frontal, lateral
parietal, and occipitotemporal cortex, reverting toward
normal control levels.
Conclusions: Patients with idiopathic rapid eye move-
ment sleep behavior disorder showed significant areas
of relative regional hypoperfusion, which disappeared
over time to finally return to average levels, suggesting
possible developing compensation in areas affected by
neurodegeneration. © 2020 International Parkinson and
Movement Disorder Society

Key Words: regional cerebral blood flow; REM sleep
behavior disorder; single-photon emission computed
tomography; synucleinopathy

Idiopathic rapid-eye-movement (REM) sleep behavior
disorder (iRBD) is characterized by a loss of muscle
atonia during REM sleep, leading to dream enactment
behaviors.1,2 Most iRBD patients convert to a neurode-
generative synucleinopathy, including Parkinson’s dis-
ease (PD) or dementia with Lewy bodies (DLB).3 iRBD
patients present subtle motor, cognitive, olfactory, color
vision, and autonomic dysfunctions, all of which are
symptoms of α-synucleinopathies.1,3

One neuroimaging biomarker that shows promise in
iRBD is regional cerebral blood flow (rCBF).4,5 Com-
pared with controls, iRBD patients have lower relative
cortical rCBF, as well as increased relative perfusion in
the brain stem, basal ganglia, and hippocampus.5-11 These
rCBF distribution anomalies in subcortical areas have
been shown to predict phenoconversion.6,10 However, the
temporal evolution of cerebral perfusion distribution in
iRBD patients is unclear. One study in 9 patients found a
relative posterior cortical decrease over 23 months,12

suggesting that longitudinal rCBF mapping could show
the progression of neurodegeneration.
Evaluating cerebral activity changes in iRBD may

contribute to our understanding of how prodromal
synucleinopathies evolve and lead to possible disease-
modifying therapies to prevent phenoconversion.13

The aim of this study was to evaluate how regional

cerebral perfusion patterns change over time in iRBD
patients.

Methods
Participants and Protocol

This study is part of a longitudinal research program
that follows patients with polysomnography-confirmed
iRBD.14,15 Briefly, we included a subset of 37 iRBD
patients who had undergone at least 2 single-photon
emission computed tomography (SPECT) examinations.
Patients were evaluated at each visit for potential phe-
noconversion to parkinsonism or dementia according
to standard criteria during an assessment by a movement
disorder specialist and a neuropsychologist.16,17 Twenty-
three healthy controls were also recruited through newspa-
per advertisements or word of mouth and evaluated with
a single SPECT acquisition. The neurological and neuro-
psychological examinations included the assessment of
motor, sensory, and autonomic functions, as well as global
cognition and individual cognitive domains.18 Mild cogni-
tive impairment (MCI) status was determined according to
published criteria.18

The polysomnography protocol was published previ-
ously.19 At the participant’s first visit, polysomnography
to confirm the presence of REM without atonia to diag-
nose RBD was performed. iRBD patients met the diagno-
sis criteria of the International Classification of Sleep
Disorders-III.19,20

Exclusion criteria for all participants at any visit were
the presence of parkinsonism or dementia, major psychi-
atric disorders, other neurological disorders, and other
sleep disorders. In controls, participants with RBD or
MCI were excluded. The protocol was approved by the
Ethics Committee of the centre intégré universitaire de
santé et de services sociaux du Nord-de-l’Île-de-Montréal.
All participants gave their written informed consent.

SPECT Acquisitions and Image Processing
iRBD patients underwent 2 99mTc-HMPAO SPECT ses-

sions with a high-resolution brain-dedicated scanner
(NeuroFOCUS, NeuroPhysics, Shirley, MA), whereas
healthy controls underwent 1 session. All participants were
injected with a dose of 750 MBq of 99mTc-HMPAO
followed by a 30-cc saline flush while lying awake with
their eyes closed. HMPAO is distributed in the brain pro-
portionally to local blood flow, and thus, SPECT scanning
with this tracer estimates CBF distribution.21 This scanner
does not record the whole cerebellum and brain stem,
which were excluded from analyses. Details of the acquisi-
tion procedure and preprocessing of SPECT images were
published previously.22,23 Briefly, individual SPECT images
were registered and spatially normalized to the standard
SPECT template in Statistical Parametric Mapping 8. Nor-
malized images were smoothed using a 14-mm full-width
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half-maximum filter and proportionally scaled for individ-
ual global mean signal, a method limiting intersubject vari-
ability in radiotracer uptake previously used by others in
iRBD populations.6,8,10 Therefore, rCBF results do not rep-
resent absolute perfusion but rather show regional varia-
tions relative to global cerebral perfusion. Note that the
average global signal did not change over time in patients,
with an average of 0.27% difference between scans. To
confirm our findings, analyses were performed again using
the mean white matter signal for proportional scaling as an
alternativemeasure of global mean signal.24,25

Statistical Analysis
Three different designs were used in SPM12 to com-

pare rCBF distribution between: patients and controls at
baseline (independent), patients at baseline and follow-
up (paired), and patients at follow-up and controls at
baseline (independent). A mask covering the gray matter
was applied. Findings were considered significant at
P < 0.05 for clusters corrected for multiple comparisons
using a false discovery rate. When significant findings
were observed, clusters’ values expressed as a percentage
of global signal were extracted, and the average differ-
ence between groups and/or scans was computed.

Results

Characteristics of participants are outlined in Table 1,
and the cohort has been extensively described else-
where.3,14,15 In patients, the average time between SPECT
acquisitions was 16.6 months (median, 12 months; 9–32
months). Of the 36 patients still in active follow-up, 5 devel-
oped parkinsonian symptoms, and 4 developed DLB 1 to
5 years after the second SPECT study.

Areas With Lower Relative rCBF in iRBD
Patients at Baseline

Compared with controls, patients at baseline had
lower relative rCBF in the orbitofrontal cortex extending
to the parietal and temporal cortices (Fig. 1A; −5.7%
and − 4.5% of the global mean for all and frontal clus-
ters, respectively). No regions of higher relative rCBF in
patients were observed. When analyses were scaled to
white-matter signal instead of the global mean, results
remained significant in the exact same areas, although
cluster sizes decreased slightly (4062 voxels).

Perfusion Renormalization: Areas With Relative
rCBF Increasing Over Time in iRBD Patients
Over time, patients showed increasing relative rCBF,

especially in the orbitofrontal cortex as well as in the parie-
tal, temporal, and occipital cortices (Fig. 1B; +3.3% and
+3.5% over time of the global mean for all and frontal
clusters, respectively). Adjusting for follow-up duration did

not affect the results. No regions of diminishing relative
rCBF were observed.When comparing patients at follow-up
with controls, no significant difference was observed,
suggesting normalization of the rCBF pattern over time.
When scaling with white-matter signal instead of global
signal, results remained significant in the frontal cortex
bilaterally as well as in the right postcentral and fusiform
gyri (3556 voxels).

Secondary Analyses: iRBD Subgroups
We split patients into 2 subgroups: patients with increas-

ing relative rCBF resulting in perfusion pattern normaliza-
tion over time in most significant clusters (n = 19, +4.6%
over time of the global mean, ≥3 clusters with clear
increasing rCBF, ≤1 cluster with decreasing rCBF); and the
remaining patients who showed areas of a mostly stable
rCBF pattern in most clusters (n = 18, +1.9% over time of
the global mean, not meeting criteria described above).
Patients with rCBF pattern normalization over time had
shorter iRBD duration and a higher proportion of MCI at
baseline compared with those without pattern normaliza-
tion (8.9 � 7.3 vs 15.1 � 10.3 years; 43.8% vs. 8.3% of
MCI; P < 0.05). At both baseline and follow-up, patients
with an rCBF pattern showing normalization had poorer
verbal memory performance than those without (immedi-
ate and delayed recall, recognition, P < 0.005). No differ-
ence between subgroups in the phenoconversion rate was
observed.
Compared with controls, patients with rCBF pattern

normalization over time showed initial widespread rela-
tive hypoperfusion in the frontal, temporal, parietal,
and occipital lobes at baseline. Interestingly, they also
displayed higher relative rCBF at baseline in the medial
temporal cortex, hippocampus, and thalamus bilater-
ally. Conversely, patients without observable rCBF pat-
tern normalization over time had only localized relative
hypoperfusion at baseline in the orbitofrontal cortex
compared with controls. When we directly compared
patients with and without normalizing rCBF patterns at
baseline, those with normalizing rCBF patterns had rel-
ative hypoperfusion in the parietal, temporal, and
occipital cortex.

Discussion

We evaluated longitudinal regional cerebral perfusion
patterns in iRBD patients and found that, over
17 months, patients showed increasing relative rCBF in
several cortical regions, especially the orbitofrontal cor-
tex. Interestingly, most of these regions were relatively
hypoperfused compared with controls at baseline, and
those regional hypoperfusions disappeared at follow-
up. This renormalization of their rCBF pattern over
time could suggest compensatory mechanisms in iRBD
patients. Patients with rCBF pattern normalization over
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time showed widespread relative hypoperfusion and
localized relative hyperperfusion at baseline, as well as
more cognitive impairment, suggesting heterogeneity
among patients. In fact, rCBF variations over time
might be especially present in patients with more
markers of phenoconversion. Our findings suggest that
longitudinally mapping cerebral perfusion distribution
in iRBD to evaluate relative rCBF allocations of differ-
ent regions could contribute to understanding how the
brain copes with α-synuclein pathology.
Consistent with our findings, cross-sectional studies

have reported lower relative perfusion over several

frontal, parietal, and temporal regions in iRBD
patients compared with controls.6-8,11,12 Because rCBF
is closely related to neuronal and astroglial activity,
lower relative perfusion might reflect either cellular
dysfunction secondary to α-synuclein pathology or
loss of excitatory inputs in these cerebral structures
compared with others.26,27 In PD and DLB, hypo-
perfusion is observed in the frontal, parietal, and tem-
poral cortices,28-35 somewhat similar to our findings
in iRBD.
Over time, we found widespread relative regional

increases in cerebral perfusion that renormalized

TABLE 1. Sleep, clinical, and neuropsychological characteristics of participants at baseline and follow-up

Controls (A) iRBD (baseline) (B) iRBD (follow-up) (C) (A) vs (B) (A) vs (C) (B) vs (C)

n 23 37 37
Age (years) 67.5 � 7.0 65.8 � 8.6 67.1 � 8.6
Sex, n (% male) 18 (78.3) 28 (75.7) —

Tonic REM sleep EMG (%) 5.3 � 3.8 58.4 � 32.1 —
c

Phasic REM sleep EMG (%) 14.7 � 5.3 41.9 � 19.7 —
c

iRBD symptom duration (years) — 11.8 � 9.3 —

iRBD diagnostic (years) — 2.5 � 4.4 —

Motor, sensory, and autonomic functions
MDS-UPDRS I 0.4 � 0.7 1.6 � 2.0 1.5 � 2.0 a a

MDS-UPDRS II 0.5 � 0.8 1.3 � 1.5 2.3 � 2.8 a b

MDS-UPDRS III 2.3 � 1.9 5.0 � 4.4 7.4 � 6.2 a c

MDS-UPDRS III-action tremor 1.9 � 1.6 4.3 � 4.0 6.2 � 5.6 a c

Alternate-Tap Test 195.2 � 23.4 181.7 � 26.3 172.1 � 37.7 a

Purdue PegBoard 11.4 � 1.9 11.4 � 2.2 10.9 � 2.1
Brief Smell Identification Test 10.8 � 1.1 7.2 � 2.7 6.6 � 2.6 c c

Farnsworth-Munsell 100-Hue Test 138.1 � 75.4 165.7 � 87.5 168.9 � 137.4
Systolic blood pressure drop (mm Hg) 3.1 � 5.1 10.9 � 11.1 13.7 � 14.0 a b

Orthostatic symptoms, n (%) 3 (14.0) 6 (19.4) 13 (44.8) a a

Urinary dysfunction, n (%) 5 (23.8) 11 (35.5) 10 (34.5)
Erectile dysfunction in men, n (%) 5 (33.3) 14 (60.9) 11 (57.9)
Constipation, n (%) 2 (10.0) 10 (32.3) 7 (24.1)
Neuropsychological performance
MoCA 27.7 � 1.8 25.1 � 3.5 25.4 � 4.4 c a

Forward Digit Span 6.3 � 1.1 5.4 � 0.9 5.8 � 1.1 c

Backward Digit Span 4.6 � 1.4 4.2 � 1.1 4.0 � 1.2
Trail Making Test Part B (s) 75.0 � 32.7 95.5 � 50.6 98.0 � 40.1 a

Stroop III (errors) 4.1 � 11.4 2.6 � 3.7 3.6 � 10.4
Stroop III-I (s) 0.0 � 1.9 -0.04 � 2.9 -0.1 � 2.1
Semantic verbal fluency 39.5 � 6.2 35.2 � 8.4 36.1 � 7.4 a

Phonetic verbal fluency 42.1 � 12.5 35.3 � 11.4 34.7 � 10.6 a

RAVLT – total 1 to 5 48.7 � 6.1 41.1 � 10.7 42.1 � 12.1 b a

RAVLT – list B 4.7 � 1.7 4.1 � 1.6 4.4 � 1.9
RAVLT – immediate recall 11.1 � 2.5 7.8 � 2.6 8.5 � 3.5 c b

RAVLT – delayed recall 10.7 � 2.3 7.6 � 2.9 8.0 � 3.6 c b

RAVLT – recognition 14.4 � 0.7 13.5 � 1.5 13.7 � 1.5 b a

ROCF – copy 30.7 � 3.7 30.1 � 6.3 30.6 � 5.5
Bells Test – omissions 2.2 � 2.2 2.9 � 3.0 2.3 � 2.9
Block design 35.3 � 12.3 34.2 � 12.7 33.5 � 12.7
Mild cognitive impairment, n (%) 0 (0.0) 8 (28.6) 8 (27.7) a a

RBD, idiopathic rapid eye movement sleep behavior disorder; EMG, electromyogram; REM, rapid eye movement; MDS-UPDRS, Movement Disorder Society Uni-
fied Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal Learning Test; ROCF, Rey-Osterrieth Complex
Figure.
Results are mean � standard deviation.
aP < 0.05.
bP < 0.01.
cP < 0.005.
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rCBF patterns in patients. Only 1 previous study
evaluated longitudinal perfusion changes in 9 iRBD
patients, and it found lower perfusion over the
medial parietal and cingulate cortices.12 Regional rel-
ative hyperperfusion was previously reported over
subcortical regions in iRBD patients compared with
controls, and this also predicted pheno-
conversion.6-8,10,11 Similarly, in our sample, patients

with normalization of a regional perfusion pattern
over time had higher relative rCBF at baseline in the
medial temporal cortex, hippocampus, and thalamus.
As hypothesized before,5 cerebral activity in iRBD
patients seems to undergo complex modifications
with areas of relative hypoperfusion and hyper-
perfusion varying over time, which could explain dis-
crepancies between studies.

FIG. 1. Relative rCBF changes in iRBD patients (A) compared with controls and (B) over 17 months. Blue-green, lower rCBF; red-yellow, increased
rCBF. Scales show t values in significant regions (P < 0.05 false-discovery rate-corrected for multiple comparisons). rCBF, regional cerebral blood flow;
iRBD, idiopathic rapid eye movement sleep behavior disorder; L, left; R, right.
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Our findings show that the rCBF pattern ren-
ormalizes over time in iRBD patients. Higher relative
rCBF is hypothesized to be an attempt at functional
compensation in cerebral regions potentially affected by
α-synuclein pathology in iRBD,11,36 DLB, and PD
dementia.33,37 iRBD patients with rCBF pattern nor-
malization had corresponding widespread hypo-
perfusions at baseline and more cognitive impairment,
suggesting more severe underlying pathology. In
patients with amnestic MCI, regional transient
hypermetabolism was predictive of conversion to
Alzheimer’s disease,38 suggesting that areas affected by
pathology might attempt functional compensation to
prevent clinical expression. Further studies should eval-
uate whether rCBF pattern normalization over time is
similar between RBD patients with MCI compared with
MCI alone. Moreover, the link between rCBF pattern
normalization over time and phenoconversion should
be clarified.
The limits of this study include few phenoconversion

cases (n = 9) precluding adequately-powered stratifica-
tion analyses, short interscan time, lack of magnetic
resonance imaging–based partial volume correction,
and limited axial coverage of our high-resolution
SPECT system that precluded assessment of the brain
stem. The latter prevented us from fully evaluating the
Parkinson’s disease–related pattern previously
described in iRBD,10,39,40 although our findings are
partially consistent with this pattern (ie, lower relative
parietal rCBF, higher relative thalamic and
precentral rCBF).
In this study with a large iRBD sample investigated

prospectively with perfusion SPECT, we found inter-
play of relative cerebral hypoperfusion at baseline and
normalization over time, which was especially marked
in the orbitofrontal cortex. Relative perfusion normali-
zation in affected brain regions of iRBD patients with a
higher risk of phenoconversion may represent
attempted functional compensation.
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ABSTRACT: Background: Characterization of
patient factors associated with istradefylline efficacy
may facilitate personally optimized treatment.
Objectives: We aimed to examine which patient factors
are associated with favorable istradefylline treatment
outcomes in PD patients with motor complications.
Methods: We performed a pooled analysis of data
from two identical phase 2b and 3 Japanese studies
of istradefylline. Logistic regression models were used
to assess the association of 12 patient characteristics
with favorable outcomes.
Results: Off time reduction and increased good on time
with istradefylline provided a significantly favorable
response in patients aged ≥65 years. Off time reduction
was more favorable in patients with ≥8-hour daily off time
at baseline. Improvement in UPDRS Part III was favorable
in patients with UPDRSPart III baseline score ≥ 20.
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