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ABSTRACT
A novel parallel robot, dubbed the SDelta, is the subject of this paper. SDelta is a simpler alternative to both

the well-known Stewart-Gough platform (SGP) and current three-limb, full-mobility parallel robots, as it contains
fewer components and all its motors are located on the base. This reduces the inertial load on the system, making
it a good candidate for high-speed operations. SDelta features a symmetric structure; its forward-displacement
analysis leads to a system of three quadratic equations in three unknowns, which admits up to eight solutions, or
half the number of those admitted by the SGP. The kinematic analysis, undertaken with a geometrical method based
on screw theory, leads to two Jacobian matrices, whose singularity conditions are investigated. Instead of using
the determinant of a 6× 6 matrix, we derive one simple expression that characterizes the singularity condition.
This approach is also applicable to a large number of parallel robots whose six actuation wrench axes intersect
pairwise, such as the SGP and three-limb parallel robots whose limbs include, each, a passive spherical joint. The
workspace is analyzed via a geometric method, while the dexterity analysis is conducted via discretization. Both
show that the given robot has the potential to offer both large workspace and good dexterity with a proper choice
of design variables.

Keywords: three-limb parallel robots, hybrid robots, full mobility, cylindrical actuators, singularity, workspace, dexter-
ity, parallel-kinematics machine (PKM)

1 Introduction
A parallel robot, a.k.a. a parallel-kinematics machine (PKM), is defined as a multi-degree-of-freedom (multi-dof) artic-

ulated mechanical system composed of one moving platform (MP) and one base platform (BP), connected by at least two
serial limbs [1]. Compared with their serial counterparts, PKMs offer many attractive features, as per the pertinent litera-
ture [1–3]. On the other hand, PKMs suffer of limited workspace, multiple singularities and coupled motion1, which makes
their control especially challenging. These issues have motivated extensive research on PKMs.

∗Corresponding author.
1This means that pure rotation or pure translation cannot be produced by a subset of the actuators.
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Early works on six-dof PKMs are found mostly around the Stewart-Gough platform (SGP) [4, 5], whose MP and BP
are connected via six limbs. This number, however, results in risk of interference, complex singularity loci and limited
workspace. Despite these shortcomings, most six-dof PKMs in industry still utilize this structure nowadays. Various re-
searchers have proposed different designs with a lower number of limbs and different actuation schemes as alternative
structures. Among these, three-limb, six-dof symmetric PKMs are probably the most promising candidates in applications
where six-dof mobility, homogeneous performance and relatively large workspaces are required [6,7]. Numerous three-limb
robots of this kind can be found in the literature [7–17]; however, when the number of limbs is smaller than six, each limb has
to be actuated by more than one motor, and hence, most of these designs have some motors mounted on moving links, which
increases the inertia of the system, thereby affecting its dynamic performance. In this paper we propose a novel, simple
three-limb symmetric parallel robot with a special 3-CPS topology2, dubbed the SDelta Robot3; more precisely, the robot
bears a hybrid topology. The main structure is a 3-CPS PKM, each limb containing a parallel sub-structure as well, thereby
making all six motors base-mounted, thus realizing a simple structure. This leads in turn to simple analysis and control, a
large workspace, and low inertia, when compared with known three-limb PKMs.

Forward displacement analysis is needed in design and path-planning. According to Merlet [2], methods of analysis
mainly resort to polynomial continuation [18], Gröbner bases [19] and dialytic elimination [20,21]. Polynomial continuation
is capable of providing, numerically, all the solutions of the given problem, which can be used to solve very large systems,
its main disadvantage being its high computational complexity. Gröbner bases offer currently the fastest method to solve the
forward displacement problem in a guaranteed manner [22], but this approach can be applied only when the coefficients of
the equations are rational. Regarding dialytic elimination, the system of algebraic4 equations is reduced to one univariate
polynomial equation upon eliminating one unknown at a time. Elimination methods allow for the study of the properties of
the solutions, even though they generally require ad hoc algebraic manipulations. We adopt an elimination method for the
analysis of the SDelta Robot.

Singularity is one of the major issues arising in PKM analysis and design. Unlike serial robots, PKMs usually possess
extremely complex singularity loci5 within their workspace. At singular configurations, a PKM loses or gains degrees of
freedom locally, while losing either isostaticity or mobility, or encountering extreme internal forces, thereby leading to
uncontrollable motion, poor performance and even damage of the mechanism. There exist four general approaches for
singularity analysis, based on: screw theory [23]; Grassmann geometry [24]; differential geometry [25]; and the singularity
condition of the Jacobian matrices [26,27]. Furthermore, when a six-dof parallel robot produces six actuation wrenches with
axes intersecting pairwise, the singularity condition leads to a straightforward geometrical interpretation, besides a simpler
formulation [28–30]. Many six-dof parallel robots, including most of the three-limb PKMs with limbs including, each, a
spherical joint (see, for example, [29, 31]), are designed with the foregoing feature. Based on this interpretation, we use
a simpler formulation to derive one single, simple expression for the singularity condition. This condition is applicable
to a large class of parallel robots whose six wrench axes intersect pairwise, i.e., most three-limb six-dof PKMs—more
specifically, those with one passive spherical joint somewhere in each limb—and the SGPs whose six limbs have three
attachment points on the MP.

Workspace is one of the most important attributes of PKMs. Since the workspace for a six-dof PKM is embedded in a
six-dimensional space that cannot be represented graphically, one usually investigates its 3D subsets by fixing three of the
six Cartesian coordinates of the MP, such as the constant-orientation workspace, reachable workspace, dexterous workspace,
orientation workspace, etc. [2]. Merlet [2] classified the pertinent methods into geometrical [32,33], discretization [13,34–36]
and numerical [37–39]. Geometrical methods are usually much faster, more accurate and simpler to implement for some
applications, such as calculating the workspace volume [2], although they may be difficult to apply when the architecture
of the PKM is complex; discretization methods have been favored for their simplicity and capacity of handling all the
constraints [13, 34–36]. These methods, however, are quite intensive computationally, not applicable to cases involving
voids inside the workspace; numerical methods also suffer of extreme complexity when the number of constraints is large.
A class of such methods, based on either interval analysis or the branch-and-prune technique have been proposed [27, 40],
which are capable of producing the workspace for general architectures, although they are also, in general, computationally
expensive.

Different applications may impose requirements on different aspects, such as workspace volume, dexterity, stiffness and
accuracy; in order to evaluate the performance in these aspects, various indices have been proposed. A comprehensive review
of performance indices appeared recently [41], where the authors reviewed the existing performance indices, discussed their
classification, scope and inherent limitations. The dexterity characterizes the accuracy of the robot and its homogeneity along
different directions of the six-dimensional Cartesian (or joint) space [41,42]; as a result, dexterity analysis is crucial in terms
of robot design and analysis; this analysis is given due attention in this paper.

2R, P, H, C and S denote revolute, prismatic, screw, cylindrical and spherical joints, respectively, underlined symbols denoting an actuated joint.
3A preliminary version of the SDelta robot was disclosed in an oral presentation at the Third International Workshop on Fundamental Issues and Future

Research Directions for Parallel Mechanisms and Manipulators (Parallel 2014), in Tianjin, China.
4i.e., mutivariate polynomials.
5Also referred to as singularity surfaces in the literature.
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Fig. 1: Topology of the SDelta robot
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Fig. 2: Topology of the C-drive

A special 3-CPS robot, dubbed SDelta6, together with its kinematic and singularity analyses, is discussed. The novel
architecture is described in Section 2. Sections 3 and 4 pertain to the forward-displacement and kinematic analyses, respec-
tively. In Section 5, the singularity analysis is provided, which leads to a compact formulation. Sections 6 and 7 pertain to
the workspace and dexterity analyses; Section 8 includes a discussion on the performance, and Section 9 summarizes the
paper and provides concluding remarks.

2 The SDelta Architecture
First and foremost, what distinguishes the SDelta from other three-limb (or three-loop) parallel robots is its topology, as

it is based on three parallel actuation mechanisms, each with a RHHR topology [43], as displayed in Figs. 1 and 2. In these
figures, 0 denotes the BP, while the closed subchain 0-1-2-3-0 denotes one of the three actuation mechanisms, one on each
side of the equilateral triangle of Fig. 1. In these subchains, 2 is the driving link of one limb, 5 and 8 those of the two other
limbs. Moreover, 1 and 3 denote the “left” and the “right” screws driven by corresponding rotary motors. Moreover, 10, 11
and 12 denote the links of the passive C-joints making up each limb, which are coupled to the MP (13) by means of spherical
joints.

PKMs with all actuators located on the base are preferred in some applications, such as those calling for high-speed
operations, and in haptic devices. For this type of PKMs, motor weight will not add to the load on the actuation system, thus
resulting in lower inertial loads, higher load-carrying capacity and better dynamic characteristics. Designers have come up
with different solutions: Sorli et al. [10] used three double-parallelogram mechanisms to realize this goal, but this approach
resorted to many extra components, which led to extra interference. Chen et al. [11] proposed a six-dof haptic device using
two-dof planetary-belt systems, but these systems unavoidably introduce belt slip and flexibility, thus making it unsuitable
for high-speed or high-torque applications. One major problem with these designs is that most of the actuation systems either
are extremely complex or introduce many extra moving parts, thereby exacerbating the link interference, while limiting the
workspace. Many other parallel robots carrying three limbs have been proposed [7,12–16], either failing to have all actuators
mounted on the base or achieving this at the expense of a complex actuation system.

Despite the vast number of designs, several common issues persist: many of the existing designs involve either too many
components or complex actuation systems, which affects their performance in terms of workspace, accuracy, singularity and
stability. Moreover, most of the designs have their motors mounted on moving links, which leads to a waste of installed
power; higher inertia also influences robot performance in high-speed applications and the quality of the system high-
frequency response. Our design, as shown in the graphs of Figs. 1 and 2, departs from current practice.

The SDelta Robot bears a special 3-CPS topology, each C joint being realized with a RHHR mechanism [43], as shown
in Figs. 3 and 4. Most existing three-limb parallel robots employ three serial limbs; moreover, since each limb has to carry
two motors, it is not possible to use a simple limb serial chain to locate all the motors on the base. Hence, we introduce a
parallel substructure in each serial limb, i.e., the two-dof cylindrical actuator. More specifically, we use a two-dof actuator,
dubbed the C-drive [43], as shown in Fig. 4. The C-drive carries a single-loop closed kinematic chain of the RHHR type;

6Abbreviation of Six-dof Delta.
JMR-16-1286, Li, 3
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Fig. 4: An embodiment of the C-drive

the two H joints, of identical pitches but of opposite hands, lead to a 2× 2 isotropic, constant Jacobian matrix of the drive
mechanism, which is the simplest possible. The C-drive operates as a differential: when the two motors turn in the same
sense7 at the same rate, the collar undergoes a pure rotation; when the two motors turn in opposite senses at the same rate,
the collar undergoes a pure translation. Each limb is thus driven in both translation along a given direction and rotation about
an axis parallel to the same direction.

The SDelta Robot has the advantage that its architecture is simple, with fewer components than other three-limb designs,
which reduces the complexity of its architecture and hence, simplifies its dynamics model and its control. This simplicity
also reduces the potential interference among the limbs, thus resulting in a larger workspace. Moreover, mounting all motors
on the base reduces the inertial load on the system, thereby making it suitable for high-speed operations. A similar topology
(a 3-PRPS structure) was proposed by Behi [8], whose first two joints can be regarded as a C joint, but in this design, the two
prismatic joints in each limb are actuated, and hence, each limb has one floating motor, significantly increasing the inertia of
the system.

3 Geometry: the Forward-displacement Analysis
The architecture of the SDelta Robot is shown in Figs. 3 and 5, where the MP and the BP are represented by equilateral

triangles, of sides a and b, respectively. The elimination method suggested by Nanua et al. [44] is adopted for its forward-
displacement analysis. In the foregoing paper, the authors analyzed a class of Stewart-Gough platform with three pairs of
concurrent limbs, ending up with a 16th-degree resolvent polynomial; in our case, the forward-displacement problem leads
to a simpler model, namely, an octic polynomial. In this vein, the actuators, i.e., the cylindrical joints, are locked, while the
lengths of the limbs, l j for j = 1, 2, 3, are unknown. Let s j denote the position vector of point S j, the center of the spherical
joint of the jth limb, for j = 1,2,3, the relations below readily following:

‖s2− s1‖2 = ‖s3− s2‖2 = ‖s1− s3‖2 = a2 (1)

In the forward-displacement analysis, the sliding r j of the jth C joint and its rotation φ j are prescribed, the pose of the MP
being unknown. The MP pose is found upon locating points S j, which is possible when the limb lengths l j are known, their
computation being outlined below. Proceeding exactly as Nanua et al. did [44], three quadratic equations in the three limb
lengths l j are derived:

7As viewed from the same side of the drive layout.
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Fig. 5: Notation for the kinematic chain of the jth limb of the SDelta Robot

l2
1 + l2

2 −
√

3(b− r1)cosφ2l2 +b2−2br1 + r2
1 + r2

2

+[(cosφ1 cosφ2−2sinφ1 sinφ2)l2−
√

3r2 cosφ1]l1

+r1r2−br2−a2 = 0 (2a)

l2
2 + l2

3 −
√

3(b− r2)cosφ3l3 +b2−2br2 + r2
2 + r2

3

+[(cosφ2 cosφ3−2sinφ2 sinφ3)l3−
√

3r3 cosφ2]l2

+r2r3−br3−a2 = 0 (2b)

l2
3 + l2

1 −
√

3(b− r3)cosφ1l1 +b2−2br3 + r2
3 + r2

1

+[(cosφ1 cosφ3−2sinφ1 sinφ3)l1−
√

3r1 cosφ3]l3

+r3r1−br1−a2 = 0 (2c)

The three foregoing equations thus admit up to 23 = 8 roots. This is half the number of the solutions of the forward-
displacement problem admitted by the SGP with triangular BP and MP.

4 Kinematics
4.1 The Jacobian Matrix of the SDelta Robot

The architecture of the SDelta Robot, whose three cylindrical drives are actuated, is shown in Figs. 3 and 5. Let c be
the position vector of the operation point C on the moving platform8, t = [ωωωT ċT ]T the twist of the MP, with ωωω denoting the
angular velocity of the MP, and ċ the velocity of C. Furthermore, ψ̇̇ψ̇ψ =

[
ψ̇L1 ψ̇R1 ψ̇L2 ψ̇R2 ψ̇L3 ψ̇R3

]T represents the array of
six motor rates, three to the right (R), three to the left (L) of point O j of the C-Drive collar in Fig. 5, for j = 1,2,3. Then
we need to find the mapping between t and ψ̇ψψ. It is known [32] that the array of actuated-joint rates ψ̇ψψ and the MP twist are
related by two Jacobian matrices, J and K, namely,

Kt = Jψ̇̇ψ̇ψ (3)

However, since the C-drive of the SDelta Robot carries, each, two screw pairs, the derivation of its Jacobian matrices is not
as straightforward. We thus introduce a new array:

φ̇̇φ̇φ =
[
φ̇1 ṙ1 φ̇2 ṙ2 φ̇3 ṙ3

]T (4)

where φ̇ j, ṙ j represent the turning and the sliding rates of the collar of the jth C-drive, for j = 1,2,3. Now we can express
Eqn. (3) in the form

Kt = Dφ̇̇φ̇φ, φ̇̇φ̇φ = Jmψ̇̇ψ̇ψ (5)

8Depicted in Fig. 5 as the centroid C of the equilateral triangle S1S2S3.
JMR-16-1286, Li, 5



with matrices D, Jm and K as yet to be displayed. Therefore, the Jacobian matrix J can be expressed as

J = DJm (6)

4.1.1 The K and D Matrices
Firstly we introduce our notation: Vector p j is defined as that joining the jth spherical joint center S j with the operation

point C, while e j and f j, for j = 1,2,3, all shown in Fig. 5, represent the unit vectors associated with the jth C-drive axis
and the jth-limb axis; g j is defined as the direction vector along e j× f j. It is noteworthy that {e j, f j,g j} is an orthonormal,
right-handed triad, as illustrated in Fig. 5.

Matrices K and D relate the end-effector twist with the array of the turning and sliding rates of the collars of the three
C-drives. These Jacobian matrices can be conveniently derived based on screw theory [23, 45]. It is known that every joint
in the robot bears an axis (i.e., a finite line or a line at infinity) associated with a corresponding array of Plücker coordinates;
in this vein, let us assume that the ith joint variable of φφφ is associated with the jth joint of the kth limb; then, the ith row of K
must be a screw9 that is reciprocal [46] to the Plücker coordinates of all the axes in the kth limb, but the one associated with
the ith component of φφφ. Moreover, it is recalled that a finite line can be regarded as a zero-pitch screw, while a line at infinity
as an infinite-pitch screw. Furthermore,

(a) Two zero-pitch screws are reciprocal when they are coplanar.
(b) Two infinite-pitch screws are always reciprocal.
(c) A zero-pitch screw is reciprocal to an infinite-pitch screw when their directions are orthogonal.

Now consider line K j1, associated with the wrench corresponding to the rotational degree of freedom of the jth C-drive.
Since there exists a spherical joint at S j, K j1 must pass through S j; moreover, its direction vector must be normal to the
direction vector of J j2 and J j3. Thus, K j1 passes through S j, with its direction vector normal to e j and f j, i.e., along g j, as
shown in Fig. 5.

Next, consider line K j2, associated with the wrench corresponding to the translational degree of freedom of the jth C-
drive. Since K j2 passes through S j, it is coplanar with J j1, and normal to J j3; we can then conclude that K j2 passes through
S j and is parallel to the axis of the jth C-drive, as shown, again, in Fig. 5. Based on the above analysis, we can obtain the K
matrix as

K =


(g1×p1)

T gT
1

(e1×p1)
T eT

1
(g2×p2)

T gT
2

(e2×p2)
T eT

2
(g3×p3)

T gT
3

(e3×p3)
T eT

3


(7)

Under this notation, g j and e j represent the unit vectors parallel to lines K j1 and K j2, respectively, for j = 1,2,3. We will
henceforth denote K j1 and K j2 as G j and E j, respectively, for simplicity, as shown in Fig. 5, their Plücker arrays being
k j1 =

[
gT

j ,(g j×p j)
T ]T and k j2 =

[
eT

j ,(e j×p j)
T ]T .

Once K is available, D is straightforward to derive as a diagonal matrix, whose ith component is the reciprocal product
of the line corresponding to the ith row of K and that associated with the joint of the ith component of φφφ. D is found to bear
the form

D = diag(l1,1, l2,1, l3,1) (8)

with li representing the length of the ith limb, thereby deriving the two Jacobian matrices, K in Eqn. (7) and D in Eqn. (8).

4.1.2 The Jm Matrix
Matrix Jm relates the array of six motor rates with the array of the turning and sliding rates of the collars of the three

C-drives. The Jacobian matrix JC of the C-drive [43] relates the speeds of the two screws with the turning and sliding rates

9In its ray coordinates

JMR-16-1286, Li, 6



of the collar, namely:

γ̇γγC = JCψ̇ψψC (9)

with

γ̇γγC =

[
φ̇

ṙ

]
, JC =

[
1/2 1/2

p/4π −p/4π

]
, ψ̇ψψC =

[
ψ̇L
ψ̇R

]
(10)

where γ̇γγC and ψ̇ψψC represent the speeds of the collar and of the screws, respectively, ψ̇L, ψ̇R the angular speeds of the left and
right screws of the C-drive, respectively, and hence, of the C-drive motors.

It is noteworthy that the three C-drives are identical, the above relation thus applying to all of them. Apparently, then Jm
is a block-diagonal matrix for the three C-drives:

Jm = diag(JC,JC,JC) (11)

thereby obtaining relation (5).

4.1.3 Redefinition of Jm
If the rates of the C-drive are redefined as γ̇γγC = [φ̇T , 2πṙ/pT ]T , then, we can rewrite Eqn. (9) as

γ̇γγC = JCψ̇ψψC, with JC =

1/2 1/2

1/2−1/2

 , ψ̇ψψC =

[
ψ̇L
ψ̇R

]
(12)

In this vein, we redefine Jm as

Jm = diag(JC,JC,JC) (13)

which is a constant isotropic matrix because JC in Eqn. (12) is isotropic. Correspondingly, D is redefined as

D = diag
(

l1,
p

2π
, l2,

p
2π

, l3,
p

2π

)
(14)

in order to preserve the equality in Eqn. (6). Finally, the J matrix becomes

J = DJm (15)

where D, as displayed in Eqn. (14), is a diagonal matrix whose entries have all units of length, while Jm is a 6× 6 dimen-
sionless block-diaongal isotropic matrix.

5 Singularity Analysis
The singularities of parallel robots pertain to 1) those occurring in the serial Jacobian matrices J j of any of the limbs

and 2) those occurring in matrices K and D. The latter are what are known as type-I (for K) and type-II for (D) singularities,
respectively [32].

5.1 Singularities of the Serial Jacobian Matrices
Since each limb of the SDelta Robot has a decoupled architecture—i.e., a spherical joint coupling the MP with each

limb—the singularity analysis of their Jacobian matrices is straightforward. The pertinent singularities can be classified into

JMR-16-1286, Li, 7



wrist and shoulder singularities: Wrist singularities occur when the three wrist axes become coplanar. This means that the
axes of the three concurrent revolute joints are coplanar; the shoulder singularity occurs when point C lies in the hyperboloid
defined by the first three limb axes [47]. This condition means that there exists one line L j passing through S j that is coplanar
with J j1, normal to J j2 and J j3. This can only happen when the length of the jth limb is zero, which is physically impossible
for the SDelta architecture.

5.2 Type-I Singularity
Since D is a diagonal matrix, it becomes singular when any of its diagonal entries vanishes. From Eqn. (14) it can be

readily seen that this happens when the length of one of the limbs is zero, which is, again, physically impossible in general.
This condition is the same as that for the shoulder singularity of serial Jacobian matrices, and hence, excluded.

5.3 Type-II Singularity
This occurs when K becomes singular, and the robot gains extra mobility10. The singularity of three-limb PKMs with

one passive S joint at each limb end has been investigated extensively [31, 48–51], based on: instability analysis [31];
screw theory [48]; passive joint velocities [49]; the pure condition [50]; and the characteristic tetrahedron [51]. Moreover,
the singularity of a more general class of PKMs, namely, three-limb PKMs whose limbs, each, includes a passive S joint
somewhere, has also been investigated based on passive joint velocities [28] and Grassmann-Cayley algebra [29, 30]. It has
been shown that the singularity of this class of robots yields a straightforward geometrical interpretation, namely, the four
planes—three planes composed by the three pairs of intersecting wrench axes plus the plane of the MP triangle—share at
least one common point [28–30]. Starting from this geometric condition, we propose a simple formulation for the singularity
condition without involving any determinant calculation [28, 31, 49–51] or passive joint velocities [28, 49].

We have obtained K as shown in Eqn. (7), whose six rows can be regarded as the Plücker coordinates of six actuated
wrenches, intersecting pairwise at the center of the three spherical joints. Since these six wrench lines of K intersect in three
pairs in our case, it has been found that K becomes singular when the four planes—three planes composed by the three pairs
of intersecting wrench lines together with the plane of the MP triangle—share at least one common point [28–31,50,51]. We
denote the plane defined by the intersecting lines E j, G j as Π j, its normal as n j, for j = 1,2,3. It is noteworthy that n j = f j
for the SDelta Robot, but we use n j for generality. Moreover, we denote the MP plane as Π4, its normal as n4. Next we
conduct the singularity analysis based on this geometrical interpretation.

e j

e3

B1

S1

S2S3

O1

O2O3

C(O)
B2

B3

e2

x

y

a

bz′

Fig. 6: The reference posture of the MP

First, denote the intersecting line between Π j and Π4 as L j, for j = 1,2,3; it is noteworthy that L j passes through S j,
and lies in the common plane Π4; the foregoing geometrical condition is then equivalent to requiring that the three lines L j,
for j = 1,2,3, share common points. In this way, we can reduce the analysis to the plane Π4. Furthermore, let us denote
the intersecting point of L1 with L2 and with L3 as R2 and R3, respectively; then, the condition leads to requiring that the
position vectors of R2 and R3 be identical.

Let us denote the direction vector of L j as l j; then, l j must be normal to both n j and n4. We do not require l j to be of
unit norm here, and hence, we can assign

l j = n j×n4 j = 1,2,3 (16)

10In the ensuing derivation, p j denotes the position vector pointing from S j , the jth spherical joint center to the operation point C on the MP, these centers
being the vertices of the MP when the three spherical joints are connected directly to the MP, as in our case.

JMR-16-1286, Li, 8



Furthermore, upon denoting the position vector of the common point as r, we have

r = k1l1−p1 = k2l2−p2 = k3l3−p3 (17)

where k j, j = 1,2,3, are as yet to be determined. From the above relations, we have

k1l1− k2l2 = p1−p2 (18a)
k1l1− k3l3 = p1−p3 (18b)

Next we cross-multiply both sides of Eqn. (18a) with l2, of Eqn. (18b) with l3, which leads to

k1l1× l2 = (p1−p2)× l2 (19a)
k1l1× l3 = (p1−p3)× l3 (19b)

It can be seen that both sides of Eqns. (19a) and (19b) are parallel to the z-axis of the MP frame. Next, upon dot-multiplying
the LHS of Eqn. (19a) with the RHS of Eqn. (19b), then equating this product with that of the corresponding sides of
Eqns. (19a) and (19b), we obtain

(l1× l2) · [(p1−p3)× l3] = (l1× l3) · [(p1−p2)× l2] (20)

where the common factor k1 has been eliminated. Moreover, plugging Eqn. (16) into Eqn. (20), after some manipulations,
leads to

[(n3−n3 ·n4n4) · (p1−p3)][(n2×n1) ·n4] =

[(n2−n2 ·n4n4) · (p1−p2)][(n3×n1) ·n4]
(21)

Furthermore, it is noted that n4 is normal to pi−p j, for i, j = 1,2,3, i 6= j; we can thus simplify Eqn. (21) to

[n3 · (p1−p3)][(n2×n1) ·n4] =

[n2 · (p1−p2)][(n3×n1) ·n4]
(22)

which is the singularity condition sought. It is observed that, when represented in the MP frame, p j and n4 in Eqn. (22)
become constant, which reduces the computational cost greatly. As a result, we choose to express all the vectors in the MP
frame. Then, we only need to find n j, for j = 1,2,3, in the MP frame. It is noteworthy that, for the SDelta robot, n j is
nothing but f j, and hence, parallel to the axis of the jth limb; moreover, its norm does not affect the relation in Eqn. (22).
Assuming that the perpendicular foot of S j on the axis of the jth C-drive is O j, as shown in Figs. 5 and 6, we can use

−−→
O jS j

to substitute n j in Eqn. (22), where

−−→
O jS j = (1− e jeT

j )
−−→
B jS j = (1− e jeT

j )(
−→
CS j−

−−→
CB j) (23)

which yields

[
−−→
O jS j]M = QT (1− [e j]B [e j]

T
B){[c]B − [

−−→
OB j]B −Q[p j]M } (24)

in which only Q and c are variable. Then we can use
−−→
O jS j to substitute n j in Eqn. (22), for j = 1,2,3.

It can be readily verified that this equality also holds even if some of the four planes Π j are coincident, or when some of
the three intersecting lines L j coincide.
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Fig. 7: The workspace and singularity of the SDelta under the reference orientation (a) Design I (b) Design II
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Fig. 8: The workspace and singularity of the SDelta with the orientation e = [0,0,1]T and φ = 15◦ (a) Design I (b) Design II

5.4 Case Study: the Fixed-Orientation Singularity Locus
Since the singularity locus of a six-dof PKM is impossible to visualize, its fixed-orientation subset has been mostly

investigated in the literature, which means that the orientation, i.e., the Q matrix, is fixed. Further,
−−→
O jS j is linear in c, while

(n j×n1) ·n4 is quadratic in c, for j = 2,3; it then follows that Eqn. (22) yields a cubic surface in c. A numerical example is
given below for illustration.

It is found that the design parameters impact on singularity distribution, workspace and dexterity. Hence, we plot these
three items for two typical sets of design variables, namely, the sides of the MP and the BP are assumed to obey the relation
a/b = 0.3 for Design I and a/b = 1 for Design II, respectively. Furthermore, we define the reference pose of the MP as that
under which the operation point C coincides with O in the BP, while the MP orientation is as shown in Fig. 6, with the BP
and MP planes coincident.

Several typical orientations are selected, under which the singularity loci are plotted as the surfaces shown in Figs. 7 to 9,
with the open and closed surfaces representing the singularity locus and the corresponding workspace boundary, respectively.
In these figures, the orientation is given by axis e and angle φ of the rotation matrix that carries the BP from its reference
to its current attitude. It is observed that, when the MP rotates about the Z-axis, the singularity is characterized by three
vertical planes, which can be analyzed by means of Grassmann geometry: at the reference orientation, the three wrench axes
Ei corresponding to the three C-Drive axes are coplanar, in a horizontal plane; then, when the middle link of the ith limb
is vertical, the wrench line corresponding to gi lies also in the same horizontal plane, these four lines becoming a linear
variety [24] of rank 3, which leads to a singular configuration. Hence, the three planes can be found when the MP translates
to a configuration in which Si lies in the vertical plane that passes through the ith C-Drive axis. Furthermore, when the
MP undergoes a rotation about the Z-axis, the three lines Ei are still in the same horizontal plane, which again, leads to
three vertical singularity planes; this is simple to characterize. However, when the MP rotates about some other axes, the
singularity surface has, generally, a complex shape.

6 Workspace Analysis
In this section we investigate the fixed-orientation position workspace to have a general idea of the workspace volume.

We consider only the limits of the active and passive joints first, then verify whether singularities exist within the workspace
thus obtained.

We propose a geometrical method capable of obtaining the workspace efficiently, and thus, can be used for workspace
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Fig. 9: The workspace and singularity of the SDelta with the orientation e = [0,1,0]T and φ = 15◦ (a) Design I (b) Design II

(a) (b)

Fig. 10: Illustration of the workspace formulation based on the geometric method

optimization. The basic principle of the construction of the fixed-orientation workspace follows: We find the feasible
workspace of the MP under the constraint of only the ith limb (i.e., we assume that the two other limbs are disconnected and
regard the robot as a serial chain), denoted as Wi; then, the workspace of interest will be the intersection of {Wi}3

1. Next, we
explain the procedure for finding Wi.

Since the orientation of the MP is fixed for the fixed-orientation workspace, the center of the spherical joint Si, under-
goes the same motion as the operation point C. Hence, we firstly find the “position workspace” of Si—denoted as WSi.
Considering the stroke of the C-drive, denoted rs, the upper and lower bounds of the telescopic arm, denoted lmin and lmax,
the position of Si is found to lie within the region between two co-axial cylinders of radii lmin and lmax, respectively, whose
height is the stroke rs, as shown in Fig. 10(a).

Furthermore, we consider the constraint of the S joint, which we assume to be realized by a ball-and-socket joint, whose
working angle range can be modelled as a cone [2], its maximum denoted δmax. Apparently, the translation of the MP along
the direction ei of the axis of the C-drive, or along the direction fi of the ith limb, will not change the relative orientation of
the two links connected by the spherical joint (i.e. the upper link of the telescopic boom and the MP); only the translation of
the MP in the direction of gi will change the foregoing relative orientation, which corresponds to the rotation of the C-drive.
The motion of the S joint has a limit only on the feasible range of the angle of rotation of the C-drive; this limit remains
constant when Si translates in the direction of ei or fi. This means that, when we further consider the limits of the S joint, we
will no longer have a cylindrical shape, but a pie slice, as shown, again, in Fig. 10(a), whose angular range can be derived
from the projection of the cone onto the plane normal to ei. Until now, we have found Wsi; it is a simple matter to translate
this region by pi to find Wi, the feasible region of the operation point under the constraint of the ith limb, as shown in
Fig. 10(b). Once all the three regions {Wi}3

1 are available, their intersection yields the fixed-orientation workspace sought.
Researchers usually discretize one of the three coordinates, e.g., the Z-coordinate, then find the workspace shape on different
layers. With the aid of computer-algebra, this kind of intersection operation of geometrical objects can be handled directly;
the software in use also provides the workspace volume and the workspace boundary.

6.1 Case Study
The fixed-orientation worksapce is provided for a robot, again, with two sets of design parameters:

a = 0.2b, lmin = 0.45b, lmax = 0.85b

and a = b, lmin = 0.6b, lmax = 1.13b
(25)
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Fig. 11: The workspace of the Sdelta under the reference orientation (a) Design I (b) Design II
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Fig. 12: The workspace of the SDelta with the orientation e = [0,0,1]T and φ = 15◦ (a) Design I (b) Design II
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Fig. 13: The workspace of the SDelta with the orientation e = [0,1,0]T and φ = 15◦ (a) Design I (b) Design II

where lmin and lmax represent the minimum and maximum lengths of each limb; It is noteworthy that we choose different
lmin and lmax values in order to keep the height of the MP similar at the reference pose for the two set of different de-
sign parameters. Moreover, we assume the maximum angle attained by the S joint to be δmax = 45◦; then, the workspace
under the reference orientation is plotted in Fig. 11 for each case, yielding volume values of 0.049d3 and 0.067b3, respec-
tively. The workspace is also evaluated under several other orientations, as shown in Figs. 12 and 13, with the volumes
0.045b3,0.007b3, 0.047b3, 0.042b3, respectively. It is, however, noteworthy that the singularity surface sometimes crosses
the workspace for the given set of design parameters and selected orientation, as shown in Figs. 7 to 9, similar to the case of
the Stewart-Gough platform [52].

Finally, in order to reveal the effect of the ratio a/b on the workspace volume (V ), we plot V vs. a/b, in the range of
0.2 to 1.5, which range we believe to be sufficient in general applications. Moreover, even though we used different lmin
and lmax for Designs I and II in order to make the height of the MP similar at the reference pose, we fix them here in order
to reveal the effect of solely the ratio a/b; more specifically, lmin = 0.55b, lmax = b. Then, the workspace volumes are,
again, plotted under the three different orientations, i.e., the reference orientation, the orientation e = [0,0,1]T with φ = 15◦
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and e = [0,1,0]T with φ = 15◦, respectively, as shown in Fig. 14. Apparently, the workspace volume V under the reference
orientation remains largely unchanged for different values of a/b; however, V decreases significantly when the MP is rotated
about the Z-axis; when the MP is rotated about other directions, the workspace volume can either decrease or increase. It
is noteworthy that the above workspace volume is different from those of Designs I and II, indicating that the range of the
passive limb length affects the workspace as well.

The above result indicates that, when the range of the passive limb length is fixed, the workspace volume generally
decreases as the ratio a/b increases; however, for a larger MP, (e.g., a = b), the robot allows for a larger range of the passive
limb length11, which can end up with a bigger workspace volume.
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Fig. 14: The workspace volume w.r.t. the ratio of a/b, under different orientations

7 Dexterity Analysis
The reciprocal of the condition number of the Jacobian matrix, is adopted here [53] to quantify the dexterity; more

specifically, we use the condition number based on the Frobenious norm because it is analytical. Since D is diagonal, its
condition number can be readily monitored as the ratio of the largest absolute value to the smallest abosolute value of its non-
zero entries, which is well bounded since the limb lengths are designed to be always positive. Moreover, as Jm is orthogonal,
it is isotropic. Hence, we only look at matrix K here, its Frobenius-norm condition number [46], represented as κF , being
defined as

κF(K) =
1
n

√
tr(KKT )tr[(KKT )−1]

=
1
n

√
‖K‖2

F‖K−1‖2
F , n = 6

(26)

Given that the entries of the Jacobian matrices bear different units, we introduce a pertinent characteristic length L [54] to
resolve this dimensional inhomogeneity. To this end, we redefine the twist and K in their dimensionally homogeneous form:

th =

[
ω̇ωω

ċ/L

]
, Kh =


(g1×p1)

T LgT
1

(e1×p1)
T LeT

1
(g2×p2)

T LgT
2

(e2×p2)
T LeT

2
(g3×p3)

T LgT
3

(e3×p3)
T LeT

3


(27)

The characteristic length is defined as the value L that minimizes the condition number of Kh; as reported in a forthcoming
paper, the characteristic length of the SDelta robot can be obtained as the radius of the circle circumscribing the equilateral-
triangular MP, i.e., as L = a/

√
3. Then, the dexterity is analyzed via a numerical algorithm based on discretization. Four

different Z-values are chosen, while the dimensions in the other directions are discretized with an interval of b/100; the
dexterity distribution is plotted in Figs. 15 and 16 for different orientations12. The value log2(1/κF(Kh)), denoted λ for
brevity, is plotted vs. X-Y , those surfaces with higher altitudes representing a layer with smaller Z, i.e., the condition

11In Designs I and II, we assume that lmax ≈ 2lmin and lre f ≈ 1/2(lmax + lmin), where lre f represents the limb length at the reference pose; moreover, the
reference height of the MP was kept similar in Designs I and II to make a reasonable comparison, which ends up with different lmin and lmax.

12The dexterity for the reference orientation is similar to that in Fig. 15, thus omitted in the interest of brievity.
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Fig. 16: The dexterity of the SDelta on the layers of z = 0.3,0.6,0.9,1.2, with the orientation e = [0,1,0]T and φ = 15◦ (a)
Design I (b) Design II

number generally grows as Z increases. Interestingly, when the normal of the MP triangle is parallel to the Z axis, and the
operation point lies in the plane Z = 0, but not not on the three lines—the intersection of this plane with the three planes
of the singularity loci, displayed in Figs. 7 and 8 for two distinct instances, the condition number does not change. The
corresponding dexterity surface becomes a plane close to the plane λ = 0, with the condition number κF being roughly equal
to 1.06. This means that when the MP moves near the plane of the BP, the condition number is low13.

It is found that the dexterity is generally small as long as the posture is not close to a singularity: For the worst case in
each orientation (i.e., on the surfaces at the bottom of Figs. 15 and 16, corresponding to Z = 1.2), at least 75% of the area has
a condition number smaller than 8.0, at least 93% has a condition number smaller than 32.0, and at least 99% has a codition
number smaller than 256.0.

8 Discussion
From the above figures for which two sets of arbitrarily chosen design parameters are used, it is apparent that the

singularity locus, workspace and dexterity are greatly affected by the ratio a/b and the range of the limb length.
It was found that, when the MP is under the reference orientaion, the singularity locus is the union of three vertical

planes, each corresponding to a set of postures under which one of the three points S j lies in the vertical plane passing
through the axis of the jth C-Drive, for j = 1,2,3. As a result, |a− b/2| must be as large as possible, so that the distance
from S j to the vertical plane passing through the axis of the jth C-Drive is as large as possible, the singularity surface
becoming farther from the desired workspace region. Furthermore, when the MP rotates about the Z axis, the singularity
surface is still the union of three vertical planes. As the MP rotates about an axis other than the Z-axis, the singularity
surfaces generally show the tendency to both rotate about this axis, and deform in such a way that their shapes become more
complex.

Besides the ratio a/b, the workspace volume is greatly affected by the range of the limb length: the workspace volume
increases as the stroke of each limb increases; moreover, as the average of lmin and lmax increases, the “center” of the
workspace region lies higher and the workspace volume generally becomes larger. On the other hand, the dexterity worsens
as the “center” of the workspace region lies higher; however, the condition number is generally small enough as long as the
operation point is not too close to the singularity surface. As these indices do not obey a monotonic relation, a compromise

13This plane is not plotted in order to not to hide the details of the other planes
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is needed during the optimization process, depending on the application.
The singularity locus sometimes crosses the workspace, which is undesirable; we believe that this is due to the three

C-Drive axes becoming coplanar, which yields the three singularity planes at the reference orientation. As a result, other
configurations of the three C-Drives may be explored, such as those with three vertical axes, three intersecting orthogonal
axes or three skew orthogonal axes. These alternatives have the potential to provide a larger singularity-free workspace and
a good dexterity. For example, it can be shown that the layout with three vertical axes can have a larger workspace while
keeping a good dexterity, although this platform is mostly suitable for smaller workspaces, due to the possible interference
among the three guideways and a large workpiece.

9 Conclusions
The subject of this paper is a novel class of parallel robots whose main structure bears a 3-CPS topology, each of its

limbs involving, in turn, a parallel substructure, the C-Drive, thereby making it possible to mount all the motors on the base
for a three-limb PKM, which leads to a simpler structure, a workspace larger than its six-dof counterparts, and lower inertial
load on the system. The actuation scheme realized by the C-drive is symmetric; moreover, the C-drive Jacobian matrix is
constant and isotropic, which decouples the analysis of the motor displacements from the three cylindrical motions. The
forward displacement analysis also simplifies, yielding a system of three quadratic bivariate polynomials.

We derived the two Jacobian matrices J and K for the SDelta Robot, the former as the product of a diagonal matrix D
by a constant isotropic matrix Jm. The latter, composed of the Plücker arrays of six lines, was found geometrically.

Type-I singularity analysis is generally straightforward; as for its type-II counterpart, we have derived a relatively
simple expression for the singularity condition of the SDelta robot. It can be seen from the derivation that this analysis
is applicable to all parallel robots whose six wrench axes per limb intersect pairwise. This simple approach yields one
single simple equation involving only the normals of three relevant planes besides constant position vectors, which obviates
the calculation of any determinant or passive velocities. This analysis is applicable to numerous parallel robots whose six
actuation wrenches bear axes intersecting pairwise, such as three-limb robots that carry a passive spherical joint in each limb,
and several simplified Stewart-Gough architectures.

The workspace and dexterity analyses show that the robot has the potential of achieving a larger workspace without
sacrificing dexterity. Lastly, several alternative layouts of the C-Drive were proposed, which have the potential to provide
a larger singularity-free workspace and good dexterity performance. Further work involves the development of a design
optimization algorithm and the exploration of alternative layouts.
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