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ABSTRACT

Protein-protein interactions represent a crucial source of information for the un-
derstanding of the biological mechanisms of the cell. In order to be useful, high
quality protein-protein interactions must be computationally extracted from the noisy
datasets produced by high-throughput experiments such as affinity purification. Even
when filtered protein-protein interaction datasets are obtained, the task of analyzing
the network formed by these numerous interactions remains tremendous. Protein-
protein interaction networks are large, intricate, and require computational approaches
to provide meaningful biological insights. The overall objective of this thesis is to ex-
plore algorithms assessing the quality of protein-protein interactions and facilitating
the analysis of their networks. This work is divided into four results: 1) a novel
Bayesian approach to model contaminants originating from affinity purifications, 2)
a new method to identify and evaluate the quality of protein-protein interactions
independently in different cell compartments, 3) an algorithm computing the statis-
tical significance of clusterings of proteins sharing the same functional annotation
in protein-protein interaction networks, and 4) a computational tool performing se-
quence motif discovery in 5’ untranslated regions as well as evaluating the clustering

of such motifs in protein-protein interaction networks.
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ABREGE

Les interactions protéine-protéine représentent une source d’information essen-
tielle a la compréhension des divers méchanismes biologiques de la cellule. Cepen-
dant, les expériences a haut débit qui identifient ces interactions, comme la purifi-
cation par affinité, produisent un tres grand nombre de faux-positifs. Des méthodes
computationelles sont donc requises afin d’extraire de ces ensembles de données les
interactions protéine-protéine de grande qualité. Toutefois, méme lorsque filtrés, ces
ensembles de données forment des réseaux tres complexes a analyser. Ces réseaux
d’interactions protéine-protéine sont d’une taille importante, d’une grande complexité
et requierent des approches computationelles sophistiquées afin d’en retirer des infor-
mations possédant une réelle portée biologique. L’objectif de cette these est d’explorer
des algorithmes évaluant la qualité d’interactions protéine-protéine et de faciliter
I’analyse des réseaux qu’elles composent. Ce travail de recherche est divisé en quatre
principaux résultats: 1) une nouvelle approche bayésienne permettant la modélisation
des contaminants provenant de la purification par affinité, 2) une nouvelle méthode
servant a la découverte et I’évaluation de la qualité d’interactions protéine-protéine
a l'intérieur de différents compartiments de la cellule, 3) un algorithme détectant
les regroupements statistiquement significatifs de protéines partageant une méme an-
notation fonctionnelle dans un réseau d’interactions protéine-protéine et 4) un outil
computationel qui a pour but la découverte de motifs de séquences dans les régions
5" non traduites tout en évaluant le regroupement de ces motifs dans les réseaux

d’interactions protéine-protéine.
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CHAPTER 1
Introduction

Most biological processes taking place in the living cell involve protein-protein
interactions (PPIs). This thesis introduces computational tools assessing the quality
of experimentally obtained PPIs. It then presents computational analyses of the
networks formed by these PPIs with the goal of improving the understanding of
various biological mechanisms occurring in the cell. In this chapter, background
information about PPIs, methodologies used to study them, and classic computational

approaches analyzing these interactions are discussed.
1.1 Central dogma of molecular biology

The central dogma of molecular biology states that the biological information of
the cell is stored in three different types of molecules: deoxyribonucleic acid (DNA),
ribonucleic acid (RNA) and proteins [43]. The information is originally stored in the
DNA (genome) of the cell. DNA, with the assistance of certain helper proteins, can
replicate itself in the genome. However, its main purpose in the cell is to be copied,
using a mechanism called transcription, into RNA (Figure 1-1). Transcription is gen-
erally regulated by DNA binding proteins (transcription factors). Some transcribed
RNA molecules called messenger RNAs (mRNAs) are then spliced and finally trans-
lated into proteins (Figure 1-1). mRNAs are also often transported before protein
translation to a given cell compartment by RNA binding proteins (RBPs) recogniz-
ing a specific nucleotide motif in their sequences. Some RNAs (microRNAs) can
regulate other RNAs through degradation, sequestering, or translational repression.
Newly translated proteins then interact with other proteins, RNA, or DNA molecules
to perform their function(s). The major steps in the biological information transfer

described above (transcription, splicing, and translation) are performed by proteins
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sometimes associated with RNAs (e.g. RNA polymerase, spliceosome, and ribosome).
Proteins can also play a regulation role by repressing and degrading both other pro-
teins and RNAs (e.g. proteasome and ribonucleases). Finally, certain proteins such as
methyltransferases and kinases will modify other proteins by adding small molecules

to one of their specific amino acid (post-translational modification (PTM)).

Transcription

Translation

,l'_ll_ll‘ Protein

Figure 1-1: Central dogma of molecular biology (adapted from a figure from an article
by David A. Omahen [167]).

1.2 Protein-protein interactions

In order to perform their various functions in the cell, proteins almost always
interact with each other. Through these PPIs, proteins can for example fold other
proteins, form protein complexes, and perform PTMs. However, even though a large
fraction of yeast and human proteins have been observed in different experimental
setups, very little is known about their respective interactions. Furthermore, the
function of the vast majority of these proteins remains unknown, not to mention that
numerous proteins perform multiple functions. Therefore, proteins that were thought

to be well characterized, are still today associated to novel biological functions. PPIs
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can reveal much about protein functions especially when these are analyzed as a
network. If multiple proteins interact together and accomplish the same function in
the cell and another uncharacterized protein interacts with these, then it is likely that
this uncharacterized protein is involved in the same process (“guilt-by-association”

principle) [166].
1.2.1 Types of protein-protein interactions

There are several several types of PPIs. First are the interactions forming protein
complexes. Protein complexes are groups of two or more proteins interacting together
non-covalently over a certain period of time to perform a certain biological function.
An example of such PPIs are those forming the RNA polymerase II protein complex.
This complex is formed of 12 proteins (subunits) in human and yeast: POLR2A,
POLR2B, POLR2C, POLR2D, POLR2E, POLR2F, POLR2G, POLR2H, POLR2I,
POLR2J (itself formed of three subunits in human), POLR2K, and POLR2L [160]
(see Figure 1-2). These subunits interact directly or indirectly to form the RNA
polymerase II complex. While the main transcriptional role of this complex is well
understood, the mechanisms and co-factors mediating its assembly and import into
the cell nucleus still remain a source of debate [17, 86]. Our own work sheds some

light on this matter [37, 69, 70].

There are many more protein complexes in the cell performing a vast array of
functions such as splicing (spliceosome), translation (ribosome), proteolysis (protea-
some), transcriptional coactivation (mediator). They also vary in complexity. While
some complexes contain only two subunits (CAP350 and FOP form a centrosomal
complex required for microtubules anchoring [229]), some such as the ribosome can

be much larger (79 subunits) [227].
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S. pombe RNAP I S. cerevisiae RNAP Il
Front
Back
mmmm Rpb1 mmmm Rpb4 mmmm  Rpb7 mmmm  Rpb10
mmmm - Rpb2 mmmm  Rpb5 mmms - Rpb8 Rpb11
mmmm  Rpb3 Rpb6 m==m Rpb9 Rpb12

Figure 1-2: Surface representation of the structures of RNA polymerase IT in S. pombe
and S. cerevisiae. Each protein (Rpbl, ..., Rpb12) is color-coded and corresponds to
a human protein homolog (from an article by Spahr et al. [207]).

Another type of interaction occurs when a protein binds very briefly another to
modify one of its specific amino acids by adding or removing a molecule (e.g. phos-
phate, methyl, or acetyl groups). Reactions like methylation, acetylation, phosphory-
lation and their counter parts (e.g. demethylation) are crucial regulation mechanisms.
Such modification on an amino acid may repress the action of a protein, change its

folding, and even make it gain or lose the ability to interact with other proteins. For
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example, kinases are proteins that will bind other proteins to add a phosphate group
on the amino acid of its target. For instance, PKA is a well characterized kinase in-
volved among other things in the regulation of glycogen, sugar, and lipid metabolism
that targets CREB [79]. Such proteins will usually recognize a given sequence motif

on their target in order to bind them and perform their catalytic action.

A protein can also bind to another to transport it to a specific cell compartment.
Some of these proteins are called importins, which are part of a large family of proteins
named karyopherins. They bind temporarily certain proteins in order to transport
them from the cytoplasm of the cell into its nucleus. These importins will bind to the
nuclear localization signal (a specific sequence of amino acids of a protein) of their

targets and will transport the targets to the nucleus [80].

These are only some of the major types of PPIs that can be observed in the
living cell. Often PPI studies will focus on a given type of interactions or on a given
biological process that will involve various types of interactions. Either way, all these
types of PPIs play in one way or another a crucial role in various biological processes

and are often essential to the survival of the cell.
1.2.2 Challenges in protein-protein interaction identification

Still today a large part (80-90%) of the human interactome (i.e. the set of
human PPIs) remains unknown [220]. The intrinsic differences between interaction
types make some harder to identify than others. Obviously, transient interactions
such the ones implicated in PTMs are difficult to map and their detection requires
very sensitive approaches. Similarly, proteins that are part of a protein complex
but only for a brief moment to form an intermediary structure necessary for the
proper complex assembly are also hard to detect. In addition to the short lifespan of
certain interactions, some PPIs are PTM-dependent. Since PTMs are highly dynamic,
identification of such PPIs is challenging [138]. Often the same protein will have
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different PTM isoforms with very different stochiometries. The identification of PPIs
specific to isoforms of lower abundances will therefore also be demanding. Different

experimental methods used to identify PPIs will be introduced in Section 1.3.
1.2.3 Clinical implications

Several PPIs are known to be associated with various diseases [187]. Even though
the exact PPIs involved in a particular disease are often unknown, the lack of expres-
sion, the over-expression, or the mutation of a given protein or set of proteins are
likely to change their PPI profiles and cause this disease. The vast majority of the
time, such abnormality will cause the protein to lose or gain interactions, which will
disrupt the normal mechanisms of the cell. A classic example was the discovery of
the implication of an abnormal interaction between Htt and a GTPase-activating pro-
tein GIT1 [78], which causes Hit to aggregate in insoluble neuronal inclusion bodies
leading to neuronal degeneration and Huntington’s disease [147]. This discovery was
possible thanks to the identification of PPIs taking place in Huntington’s disease
cases. GIT1 was later validated as a potential drug target for Huntington’s patients
[54]. In this example a gain of a PPI was deleterious, but often a loss of a PPI will
result in an abnormal functionality and therefore in a disease status. For example,
our group has recently shown that VCP mutants (R155H, R159G, and R191Q)) were
not methylated at Lysine 315 by METTL21D as the wild type normally is [38]. These
mutants are known to cause inclusion body myopathy with Paget’s disease of bone
and frontotemporal dementia and familial amyotrophic lateral sclerosis [38]. These
examples show the importance of PPI identification in human health research. The

discovery of novel disease-associated PPIs remains a very active field of research.
1.3 Identification of protein-protein interactions

Several moderate to high-throughput methods have been proposed to identify

PPIs in a given organism, each with its advantages and its drawbacks. The following
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sections will introduce the most popular approaches mapping PPIs, which are still

being used at the time of submission of this thesis.
1.3.1 Yeast-two-hybrid

A method widely used to identify PPIs is Yeast-Two-Hybrid (Y2H) [64]. The ba-
sic idea behind this approach is to fuse two halves or domains of a transcription factor
onto two candidate interacting proteins typically using yeast as the host organism.
When those two domains come into close physical proximity (i.e. when the two pro-
teins are interacting), the transcription of a reporter gene is activated. The expression
of the reporter gene can be observed by a resistance to a chemical or the emission of
a fluorescence under a certain type of light (see Figure 1-3). More precisely, one of
the candidate interacting proteins (bait) is fused to the DNA binding domain (DBD)
of the transcription factor, while the other (prey) is fused to the activating domain
(AD). The DNA binding domain binds an upstream activating sequence (UAS) in the
reporter gene promoter and if the prey interacts with the bait, the activating domain
will come in close enough proximity that the transcription of the reporter gene will
be induced. Nowadays, assays are built so that for a given bait, thousands of proteins
are tested as potential interactors in a short time and at a low cost. Large scale PPI
networks can therefore be mapped using such technology by repeating the procedure
for multiple protein of interests (baits) [231, 186, 96, 191, 224]. This method however
suffers from several drawbacks including the necessity of the interaction to happen in
the nucleus to be detectable. Moreover, Y2H assays often require the simultaneous
over-expression of the fusion proteins potentially causing interactions not occurring
under normal in vivo conditions. The reporter gene fused to the candidate proteins
can be fairly large and therefore physically inhibit the interactions between the candi-
date proteins by blocking their docking sites or changing their folding conformations.
Finally, testing for candidate PPIs originating from organisms different than yeast
may be problematic, since yeast might be lacking for example the chaperones ensur-

ing the proper folding of the proteins in question and prevent them from interacting.
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Figure 1-3: Graphical representation of the Y2H protocol (from an article by
Briickner et al. [25]).

1.3.2 Protein fragment complementation assay

Protein fragment complementation assay (PCA) [72] is a technology that uses
a idea similar to Y2H. Basically, candidate proteins are each covalently linked to a
fragment of a reporter protein. When the candidates come into close proximity, the
reporter protein becomes functional (see Figure 1-4). This reporter can take several
forms such as: (-lactamase [72], dihydrofolate reductase (DHFR) [215], luciferase

28], and many more, each with its advantages and drawbacks. For instance DHFR
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confers to its hosts a resistance to an antibiotic called trimethoprim. In this case, if the
interaction occurs, the cells will survive upon treatment. Like Y2H, PCA experiments
can be performed at a genome-wide scale, have low cost, and have been used to map
large scale PPI networks [215]. In addition, PCA can typically identify PPIs with
proteins being expressed at their endogenous level, hence limiting the number of false
positive interactions. It however shares the disadvantage with Y2H that the reporter

gene fragments may prevent the proper binding of the candidate interacting proteins.

Protein X Protein Y

DHFR[1,2] DHFRI[3]

Reconstituted

enzyme
activity

Figure 1-4: Graphical representation of the PCA method (from an article by Remy
et al. [182]).

1.3.3 GST fusion protein pull-down

While the last two approaches are of high-throughput, there exist low-throughput
experiments that can very accurately confirm direct PPIs, where the proteins come
into physical contact. These experiments are often required when one wants to con-
firm with high confidence an interaction between two proteins detected to be inter-
acting in a large scale mapping, which may contain several false positives. Indeed,
the use of glutathione-s-transferase (GST) fusion protein pull-downs has been popu-
larized to identify direct interactions [104, 168]. In this setup, a recombinant protein
(bait) is fused to GST and purified. The GST tagged bait is then incubated in vitro
with the highly purified interacting candidate (prey) with glutathione-agarose beads.

The proteins recovered from the beads are then typically analyzed through western
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blotting to assess their putative interaction. Obviously, such approach is of very low-
throughput, but it compensates by being extremely specific and capable of detecting

direct interactions.
1.3.4 Affinity purification coupled to mass spectrometry

Finally, an alternative for performing large scale PPI identifications is affinity
purification coupled to mass spectrometry (AP-MS) [37, 74, 73, 119, 90, 20]. In this
protocol, a molecular tag is fused to a protein of interest (bait) in order to discover
its interactors (preys). Beads binding the tag are then used to purify the bait and
the preys interacting with it directly or indirectly. The preys are then identified using

mass spectrometry (see Figure 1-5).

A B

Figure 1-5: (A) Fictitious protein complex of 6 subunits, where subunit A is tagged.
(B) Interactions obtained upon affinity purification of protein A.
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1.3.4.1 Affinity purification

Different types of tags can be fused to the bait to perform affinity purification
(AP). A commonly used tag is the tandem affinity purification (TAP) protocol [184]
(see Figure 1-6). In a TAP experiment, the bait is fused to a tag consisting of two
parts. A first purification is made with /gG beads binding the exposed part of the tag
constituted of Protein A. Then, the tag is cleaved and a calmodulin binding peptide
is exposed and purified using calmodulin beads. These two sequential purifications
are used to minimize the number of non-specific bait binders obtained in the puri-
fied solution, at the cost of a lower sensitivity. The popular alternative to TAP, the
FLAG-tag, only requires a single purification. FLAG purifications tend to be more
sensitive and are great to detect transient PPIs that can be lost in the two strin-
gent, purifications of TAP. However, they are reputed to produce a large fraction of

interactions that are the result of non-specific binding [20, 33].
1.3.4.2 Mass spectrometry

Once the bait and its preys are purified using either tags, mass spectrometry
(MS) is then typically used to accurately identify and sometimes quantify the preys
(see Figure 1-7). In order to process the proteins obtained in AP with the mass
spectrometer, they first need to be enzymatically digested (usually with trypsin) into
small peptides [143] (human tryptic peptide average length is 10 amino acids [158]).
The resulting peptide mixture is then separated with liquid chromatography (LC) to
favorise peptide detection [230]. LC uses various peptide chemical properties such as
hydrophobicity and charge to separate as much as possible the elution times of the
different peptides in the mixture and maximize the sensitivity of peptide detection
at the MS level. An alternative to LC is to perform a gel based separation on one or
two protein properties such as mass and isoelectric point [150]. In this context, in-gel
digestion of proteins is often applied [198]. Tandem mass spectrometry (MS/MS) is
then usually utilized to identify and potentially quantify the peptides present in the
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Figure 1-6: Graphical representation of the TAP procedure (inspired from a figure
of an article by Lukas A. Huber [93]).

peptide mixture. In the first MS phase, the mass of each peptide is resolved. Selected

peptides are then fragmented into smaller ions and analyzed in the second MS phase
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[230]. The resulting spectra can then be associated to a given peptide sequence by
either matching it to theoretical spectra from a database [174, 63, 58] or by using
de novo sequencing if the genome of the organism analyzed is not available [146, 46].
The resulting sequence identification is then assigned a confidence score and proteins
are identified based on their high scoring peptide sequences (technique described in
Chapter 2). Even if protein abundances can be obtained using techniques such as
selected reaction monitoring (SRM) [49, 126], a simple approach using the number
of spectra associated to each peptide can provide a good quantification estimation if
needed [32]. This approach, called spectral counting, makes the assumption that the
number of acquired spectra for a given peptide type will correlate with the abundance
of that peptide [32]. Proteomics pipelines are long and comprise several steps, many
of which become sources of false positive protein identifications. Such sources will
be explored in details in Chapter 2, where we propose computational approaches to

address them.
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Figure 1-7: LC-MS/MS pipeline with spectral library searching (from an article by
Kolker et al. [114]).
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Even though this is less the case these days, AP-MS remains costly mainly be-
cause of the use of MS. As mentioned before, this approach will detect large numbers
of interactors for a given bait because of its ability to detect indirect interactions
[184, 189]. Some might classify this as a disadvantage as AP-MS will rapidly produce
large datasets making analyses cumbersome. Nevertheless, with proper bioinformat-
ics analysis this feature can prove very powerful. Indeed, to map an entire protein
complex, only the purification of a single complex subunit may be necessary as the
bait’s direct and indirect interactors will be obtained (see Figure 1-5). While on the
other hand, multiple screens would be needed to accomplish this task using PCA or
Y2H. Another advantage of AP-MS is that the experiment can be performed in cell
lines of any organisms. This allows the bait protein to be expressed in its endoge-
nous host with the endogenous chaperones that helps its folding and the PTMs that
normally affects it. Even more, PPIs can be detected in different cell compartments

independently [131, 176, 125, 124, 68, 53].

The methods introduced above all produce PPI datasets containing a large frac-
tion of false positive interactions. However, with proper bioinformatics and statistical
analysis, it is possible to tackle this issue and identify the vast majority of these prob-
lematic interactions. This thesis will introduce among other things a novel innovative

computational approach addressing this issue.
1.4 Protein-protein interaction networks

As mentioned previously, high-confidence PPIs can be viewed as a network. Such
network can provide crucial information for protein function inference, protein com-
plex discovery, and prediction of protein-disease associations. In addition, these net-
works may be useful to distinguish the true interactors of a protein from the false
positives when performing an experiment to discover the interactions of a given pro-

tein. This last aspect will be discussed in more details in Chapter 2. PPI networks
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have grown very large with time. For example, one of the most popular PPI reposi-
tories, BioGRID, contained 130,292 unique interactions involving 17,373 proteins at
the time of submission of this thesis. Evidently, to process and extract information

from such large networks, computational approaches quickly became a necessity.
1.4.1 Graph theory representation

A PPI network can be represented as a graph GG where the proteins in the network
consist of the set of vertices (nodes) V' and the interactions form the set of edges
E. Edges can be unweighted or weighted with a real-value weight representing for
example a MS confidence score. They could also be directed from the bait to the prey

if the experimental setup provides such information.
1.4.2 Properties of PPI networks

There are various graph theory properties that can be evaluated in the context
of PPI networks. These properties often correlate with biological features of proteins.
Some properties can tell much about the importance of certain proteins. These include

the degree and the centrality of a vertex.

1.4.2.1 Vertex degree

We define the degree of a vertex to be |N(v)|, where N(v) is the set of vertices
adjacent to v. An interesting property to study in PPI networks is the degree dis-
tribution. Let Pr[k] be the probability that a randomly selected vertex has a degree
equal to k. In Erdés-Rényi random networks [60], a popular random model, Pr[k] fol-
lows a Poisson distribution [11]. However, biological networks like PPI networks tend
to resemble more like scale-free networks for which the vertex degrees are power-law

distributed: Pr[k] = ck™7, where ¢ and 7 are constants [11].
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Several studies have been performed to verify the essentiality for the cell survival
of different structures in a PPI network. Gene knockout experiments with the yeast
model organism have shown that high degree proteins in the yeast PPI network tend
to be more critical than low degree ones for the survival of the organism [100, 85, 12].
On the other hand, when a protein that possesses a sibling (protein sharing the same
interacting partners) is deleted, it does not tend to be lethal. This can be explained
by the presence of alternative paths, provided by the sibling protein in the network

that might be performing a similar role as the protein suppressed [181].
1.4.2.2 Centrality measures

Other ideas have been proposed to assess the importance of a given vertex. Many
of them revolve around the theme of centrality. A basic centrality measure of a vertex
is its degree [234]. The higher the degree, the more central a vertex is considered to
be in the network. However, it is easy to find an instance of a graph where a very high
degree vertex could be connected with a very long path to a much larger subgraph

and therefore not be central in the network.

A variety of distance-based centrality measures have also been proposed. Among

them we count the betweenness centrality [95], which is defined as:

CB(U) = Z pst(v)/pst

sEtAvEV
where pg(v) is the number of shortest paths from a source s to a target ¢ passing
through v and p; is the number of shortest paths between s and ¢. This normalization,
by the number of shortest paths between s and ¢, avoids that the centrality value of

vertex v is biased by the number of shortest paths between s and ¢.

Another type of centrality, the feedback-based centrality [103], is based on the
idea that a vertex becomes more central in tandem with the centrality of its neigh-

bours. An example of such centrality is the famous PageRank score [21], which scores
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a vertex based on the score of its neighbouring vertices. This scoring is mainly ap-
plicable in the context of directed networks. This recursive scoring can be written as
follows:

CPR(U) = (]_ — d) + d(CpR(tl)/C(tl) 4+ ...+ OPR(tn)/C(tn))

where t;...t,, are the vertices with a directed edge towards v, while C(v) is the out-

degree of v, and finally d is a damping factor between 0 and 1.

In conclusion, several links have been found between certain vertex properties
and specific biological roles that proteins play in the cell. However, it remains unclear
if all these observations will still hold when PPI network mapping efforts will be
completed. It is quite possible that the degree distribution or the enrichment in hubs
for essential proteins are artifacts of the incompleteness of PPI networks and will

potentially change in the future.
1.4.3 Protein annotation inference

A classic PPI network problem is to infer functions to uncharacterized proteins.
The interactions of a given protein can tell much about its potential functions. These
functions can take the form of disease-associations, molecular functions, biological
processes, or pathways. Various methods have been developed in order to take ad-
vantage of known protein annotations to discover novel ones. A basic principle that is
often shared among these approaches is called “guilt by association”; if two proteins
P, and P, are interacting, and the function of P; is known, but the function of P; is

unknown, then P, is likely to be associated to a function related to the one associated

with Py [166].

Although such annotation inference could seem rather simple to perform, there
are several challenges associated with this task. As it was mentioned before, PPI
networks contain several false positive interactions complicating the annotation pre-

diction by adding noise in the network. Also, proteins can have more than a single



18 Chapter 1. Introduction

annotation. For instance, RPAP2 was recently reported to be a phosphatase [57] and
a protein involved in the import of RNA polymerase II [70].

1.4.3.1 Protein-disease association

A strategy being used to discover individual proteins or subset of proteins (path-
ways) associated with a specific disease is to analyze PPI networks using the “guilt
by association” principle described earlier [218]. Some approaches will use the local
network information to infer a disease association to a given protein. For instance,
some will infer a disease association score to a protein based on the disease associa-
tions of its network neighbours [122]. More sophisticated approaches, where disease
information is propagated in the PPI network to infer new disease causing genes,
have now been developed [218]. These approaches all share the common ground that
they highlight the crucial role that PPI data can play in protein-disease association

inference.
1.4.4 Protein complex discovery

Since PPI networks are very large, clustering proteins into smaller components is
essential in order to understand the biological processes represented in them. An in-
teresting question to look at, from both a computational and a biological perspective,
is the discovery of protein complexes in PPI networks. Complexes are represented by
dense subgraphs in a network (i.e. group of vertices with several edges interconnecting
them). Again, identifying such clusters may seem trivial. However, since proteins can
be part of multiple complexes, they sometimes perform several functions. In this sce-
nario, network clusters are expected to be overlapping, causing clustering algorithms
outputting disjoint clusters to fail to identify some protein complexes in such datasets
[234]. Obviously, the important amount of noise in PPI networks also complicates

protein complex identifications.
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1.4.4.1 Clique finding

The most intuitive way to find protein complexes is to find maximal cliques
[234]. A clique is a set of vertices where each vertex is connected by an edge to every
other vertex in the clique. A clique is maximal when no other adjacent vertices can
be added to it while respecting the clique definition. However, finding all maximal
cliques in a graph is NP-hard [132] and as mentioned before, the number of proteins
in the networks analyzed is usually quite large. Also, protein complexes are very
seldom found as cliques. It is often observed that a protein complex will not form a
perfect clique as some of its interactions will not be observed because of the lack of

sensitivity of the experimental protocol [234].
1.4.4.2 Dense subgraph identification

Rather then searching for maximal cliques, one can identify dense subgraphs in
a network. Such subgraphs are often identified by finding the set of vertices of size
n, where n is fixed, that minimizes the sum of all pair shortest paths within it [208].
This permits the identification of protein complexes not completely mapped in PPI
networks. However, identifying all dense subgraphs in a network is computationally
expensive. Approximation approaches have therefore been proposed to address this

problem.

Among them is the Markov Chain Monte Carlo approach. In this context, the
Markov Chain Monte Carlo is used to identify vertex sets with minimum all pair
shortest paths as follows. Starting at time ¢ = 0, a random set P of n vertices is
selected and for each pair of vertices 4,7 € P the shortest path L;; is computed. The
sum of all initial L;; is Lyg. At each time step, one of the n vertices is randomly
selected and replaced by one of its randomly selected neighbours letting the sum
of the shortest paths with the new vertex to be L;. If L; < Ly the replacement

L1—Lo)/T

is kept, otherwise the replacement is only kept with probability e~ , where
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T is a constant. This process attempts to avoid getting stuck in a local minimum
that could be reached by the deterministic version of the algorithm. In addition, at
every tenth time step, a vertex not connected to any vertices in P is attempted as a
replacement vertex with the same rules. This procedure gives the opportunity to the
algorithm to explore vertex sets in different disconnected graphs. The procedure is
repeated until no vertices are replaced for a certain number of consecutive iterations
or a time limit has been reached. The same Monte Carlo approach can be applied to

optimize another subgraph density measure:

2m

where m is the number of edges in the subgraph P [208].
1.4.4.3 Molecular complex detection algorithm

An alternative to these approaches is the molecular complex detection (MCODE)
algorithm [8]. It finds densely connected subgraphs by weighting vertices with their
local neighbourhood density. The weight w = kd is computed for a vertex v where
k is the maximal k-core of v and its direct neighbours and d is the edge density of
these vertices. A k-core of a graph is defined as the subgraph created by the removal
of all vertices with degree less than k£ and their incident edges. Vertices with degree
less than k are iteratively removed, until the k-core definition is satisfied. k-cores are
often used to identify interesting dense subnetworks inside large PPI networks that
are usually associated to functional modules. The vertices with a high weight are
chosen as cluster seeds. Clusters are then expanded by recursively attempting to add
to them the neighbours of the seeds if their respective weights are above a certain
percentage of the weight of the seed. Vertices added to a cluster are marked as visited
and are only explored once. The recursion stops when an explored vertex weight is less
than a certain percentage of the initial weight of the cluster seed. Finally, there is a
post-processing step where clusters that do not contain at least a 2-core are removed.

Vertices that do not belong to a cluster (not marked as visited) are added to a cluster
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if their neighbourhood density is not below a certain fluff parameter (a value between
0.0 and 1.0). These vertices are not marked as visited so they can be added to
multiple clusters. The clusters (or complexes) outputted by MCODE, because they
can overlap, are more biologically relevant than those produced by other methods
since protein complexes often share protein subunits. However, this approach is time

consuming and different seeds can lead to the generation of very similar clusters.

1.4.4.4 Socio-affinity index

Another interesting approach for complex detection was proposed by Gavin et
al. [74]. They derived what they called a Socio-affinity index. It quantifies the
tendency for two proteins to purify each other or to be co-purified in an AP experi-
ment. Basically, it computes the log-odds of the number of co-occurrences of the two
proteins in AP experiments against their expected number of co-occurrences based
on their dataset frequency. While this index is useful to identify false positives in
an AP dataset, it is also a good basis for a clustering analysis in order to perform
protein complex discovery. To do so, a matrix of Socio-affinity indices for all pairs
of proteins in the dataset can be given as input to a clustering algorithm [74]. As
it was described before, proteins can be members of numerous protein complexes.
To account for this, the method applies a small penalty to the indices in the matrix
after the initial clustering and then performs another clustering to report a new set of
complexes. This step is iteratively repeated. Again, this approach has the advantage
to have the capability to report overlapping clusters. However, in order to compute

meaningful Socio-affinity indices, a large number of APs is required.

1.4.4.5 Markov clustering algorithm

None of the methods presented above were designed (although some can be

adapted) to take weighted graphs as input. Such weights, which can be derived from
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mass spectrometry data for example, often represent the confidence that a given in-
teraction is a true positive. These confidence scores can help to better partition PPI
networks. The Markov clustering (MCL) algorithm [59] was designed to be applied
on simple weighted graphs. The algorithm takes as input a weighted similarity matrix
of edge weights M, which is transformed in a Markov transition matrix where the di-
agonal is set to neutral values and each column is normalized to 1. The matrix is then
transformed iteratively using two operations: expansion and inflation. The matrix is
first “expanded” by squaring it and then inflated using the following equation
(O, )y =
Zi:l(Miq)r
where » > 1 and I, is the inflation operator. Each operation is performed iteratively
until there is no significant changes in M or after a given number of iterations. Finally,
a threshold value is chosen to remove edges to form connected components. These
connected components correspond to clusters, which in turn map to protein complexes

in the PPI network.

All the above clustering approaches are however limited by the level of unre-
liability of the data and missing connectivity among the different modules in the
network. It is hypothesized that with the growing size of PPI networks, protein
complex connectivity will increase and therefore facilitate the clustering of proteins
[112]. Methods filtering false positive interactions before or after the clustering of
PPI networks are also likely to improve the quality of the clusterings obtained by

computational approaches.
1.5 Thesis roadmap

This chapter introduced the biological background and importance of the ap-
proaches used to map and analyze protein-protein interactions. The four following

chapters describe novel computational approaches for the analysis of PPIs and will
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constitute the research contribution of this thesis. Each chapter corresponds to a spe-
cific project, with the addition of background notions related to the research question
tackled in it. Chapter 2 introduces a novel Bayesian algorithm to model contaminants
in AP-MS experiments. Building from the previous chapter, Chapter 3 describes a
new approach derived from AP-MS to identify and computationally assess PPIs inde-
pendently in three different cell compartments of the cell. With the tools developed
in the last two chapters, the resulting high-confidence PPIs can be analyzed as a
network. Chapter 4 presents an algorithm identifying Gene Ontology (GO) terms
that are clustered in PPI networks. Chapter 5 then pushes the limit of the methods
presented in the previous chapter and poses a novel approach for motif discovery
in 5’ untranslated region (UTR) sequences using PPI network information and links
biological functions to RNA sequence motifs. Finally, Chapter 6 summarizes these

research contributions and presents discussions on future works.
1.6 Publications and author contributions

This thesis comprises the full text and figures of four scientific articles, three of
which have been published and one is in preparation for publication. These articles
are listed below in the order they appear in this thesis. I am the first author of each

of them.

e Chapter 2:
M. Lavallée-Adam, P. Cloutier, B. Coulombe, and M. Blanchette. Modeling con-
taminants in AP-MS/MS experiments. Journal of proteome research, 10(2):886—
895, 2010
The design and implementation of the computational tool in this publication was
performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s
supervision and biological discussion was written by Philippe Cloutier and me

under Dr. Benoit Coulombe’s supervision.
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e Chapter 3:

M. Lavallée-Adam, J. Rousseau, C. Domecq, A. Bouchard, D. Forget, D. Faubert,
M. Blanchette, and B. Coulombe. Discovery of cell compartment specific protein-
protein interactions using affinity purification combined with tandem mass spec-
trometry. Journal of proteome research, 12(1):272-281, 2012

The design and implementation of the computational tool in this publication was
performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s
supervision. The biological methodology and results were produced by Justine
Rousseau, Céline Domecq, Annie Bouchard, Diane Forget under Dr. Benoit
Coulombe’s supervision, while the mass spectrometry analysis was performed by

Dr. Denis Faubert.

Chapter 4:

M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of locally over-
represented GO terms in protein-protein interaction networks. Journal of Com-
putational Biology, 17(3):443-457, 2010

The design and implementation of the computational tool in this publication was
performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

SUPETVISION.

Chapter 5:

M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of functional
sequence motifs in human 5 UTRs based on local enrichments in a protein-
protein interaction network. Manuscript in preparation.

The design and implementation of the computational tool in this manuscript was
performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

SUPETVISION.



CHAPTER 2
Modeling contaminants in AP-MS/MS experiments

2.1 Preface

AP-MS is among the most popular methods to identify PPIs. Nevertheless,
it still suffers from important specificity issues. Typically, the majority of interac-
tions reported by unfiltered AP-MS experiments are false positives. The AP-MS
experimental pipeline is long and requires several manipulations that create multiple
sources of contamination of the results. These include, among other things, contami-
nation of samples with human keratins, non-specific binding of proteins to purification
antibodies, and carry-over of proteins from one LC run to another. However, such
contamination events, which are discussed in this chapter are not the only ways false

positives are added in AP-MS data.

The other main sources of false positives, which are not described in great de-
tails in this chapter, are misidentifications at the MS level when performing the
database search for peptide-spectrum matches (PSMs). Misidentifications often orig-
inate from MS instrument noise, contamination from non-peptide molecules, peptides
with PTMs not specified in the database search parameters, or incorrect charge-state
determination [82]. Distinguishing correct from incorrect PSMs is not a trivial task.
While some researchers rely on manual verification for small datasets, most turn
themselves to various filtering criteria to process the thousands of spectra produced
by mass spectrometers in AP-MS protocols. However, the latter strategy has unknown
performances and limited portability as it heavily depends on the sample preparation
and the type of MS instrument used [109]. More elegant statistical models have been
developed to address this problem. One of the most popular tools is called Peptide
Prophet [109]. It uses a Bayesian approach to evaluate each PSM by computing a

25



26 Chapter 2. Modeling contaminants in AP-MS/MS experiments

probability that it is correct using MS database search scores and the number of tryp-
tic termini of matched peptides. It is then possible to compute the probability that
a protein is present in a sample using its corresponding PSM confidence scores [161].
The method presented in this chapter does not (and was not designed to) tackle such
problem. It could however benefit from either pre-processing the dataset analyzed

with tools like Peptide Prophet or use their output as a basis for its input.

The approach introduced in this chapter, Decontaminator, uses a small number
of biological context specific AP-MS negative controls to model the contaminants
present in the AP-MS experimental setup. Soon after Decontaminator was made
publicly available, a generalized version of a piece of software performing a similar
task, Significance Analysis of Interactome (SAINT) 2.0, was published [34]. This
version now addresses problems that are described later in this chapter. SAINT 2.0
can now use control experiments when available and only requires a limited number of
experiments to accurately assess PPIs without any manual labelling of hub proteins
in the input network [34]. Although Decontaminator and SAINT 2.0 are built from
the same principles and achieve similar goals, their methods differ. We noted, after
the publication of SAINT 2.0, that both Decontaminator and SAINT 2.0 slightly
outperformed each other depending on the dataset analyzed. Decontaminator could

be improved in the future by including the use of purification replicates in its model

(a capability of SAINT 2.0 [34]).

In this chapter, Decontaminator was benchmarked against other approaches us-
ing the union of the BioGRID [210] and HPRD [179] databases to maximize the
size of the reference dataset. An alternative approach would have been to compare
approaches using a small but very high quality PPI dataset composed of interac-
tions supported by multiple publications such as the one that can be obtained from
the iRefWeb database [217]. Decontaminator was also benchmarked against other
methods using GO terms [4]. While the GO database may contain false positive an-

notations and that these annotations may be biased towards proteins that have been
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the subject of numerous publications, it remains an interesting validation tool since
it is expected that proteins that are truly interacting are more likely to share a GO
term annotation than those involved in a false positive PPI. Although GO semantic
similarity scores [97] of the PPIs in the predicted sets of valid interactions were not
used to compare each approach, they consist in another interesting benchmarking

method.

On another note, reproducibility of AP-MS experiments is often challenged by
the complexity and high variability of the methods (see Figure 2-1). To address this
issue from a computational perspective, a program, ROCS, was recently developed
to compute reproducibility indices for AP-MS experiments in order to discriminate
reproducible experiments from outliers [48]. Such method could be used in combi-
nation with Decontaminator to identify the most reproducible controls and leave out
the outliers in order to maximize the modeling accuracy of contaminants in a set of

experiments.

Protein expression levels in the biological sample under study may also be used
as complementary data to assess the quality of PPIs. Indeed, proteins with high
expression levels are likely to be contaminants in a certain sample if their affinity for
the antibody used for the AP-MS experiment is reasonably high. Such data could
be obtained from protein expression measurements or from predictions made using

mRNA concentrations and sequence signatures [221].

Lately, a repository of AP-MS control experiments, CRAPome, was launched
[153]. This database contains 343 controls of various types. CRAPome could reveal
to be a great resource for laboratories performing small-scale AP-MS experiments.
Small numbers of controls are often not sufficient to capture the majority of possible
contaminants in a given experimental setup. Since AP-MS controls are typically bait-
independant, CRAPome controls can be used to complement controls from a given

laboratory to better identify contaminants present in this laboratory’s dataset.



28 Chapter 2. Modeling contaminants in AP-MS/MS experiments

<\\§ Protocol differences
Instrument differences

\<\\§<x\§ \ Reagent supplier and
batch differences
Cell culture Q&

\i\& + Purification

Lysis and tag
affinity
purification

AR
Affinity
matrix

Protease @
digestion
I3

Data analysis

Figure 2—1: Graphical representation of the multiple sources of variation in the AP-
MS protocol (adapted from a figure from an article by Pascal Braun [19]).

Protein MS sensitivity has been dramatically increasing over the last few years.
In the context of AP-MS, this gain does not only allow the detection of less abundant
PPIs, but also results in the observation of less abundant contaminants. This increases
the number of contaminants in the results and demonstrates the need of approaches,

such as Decontaminator, which are capable of modeling contamination events.

The remaining content of this chapter is reprinted with permission from:
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e M. Lavallée-Adam, P. Cloutier, B. Coulombe, and M. Blanchette. Modeling con-
taminants in AP-MS/MS experiments. Journal of proteome research, 10(2):886—
895, 2010

Copyright (2011) American Chemical Society.
2.2 Abstract

Identification of protein-protein interactions (PPI) by affinity purification cou-
pled to tandem mass spectrometry (AP-MS/MS) produces large datasets with high
rates of false positives. This is in part because of contamination at the AP level
(due to gel contamination, non-specific binding to the TAP columns in the context
of tandem affinity purification, insufficient purification, etc.). In this paper, we intro-
duce a Bayesian approach to identify false positive PPIs involving contaminants in
AP-MS/MS experiments. Specifically, we propose a confidence assessment algorithm
(called Decontaminator) that builds a model of contaminants using a small number
of representative control experiments. It then uses this model to determine whether
the Mascot score of a putative prey is significantly larger than what was observed
in control experiments and assigns it a p-value and a false discovery rate. We show
that our method identifies contaminants better than previously used approaches and
results in a set of PPIs with a larger overlap with databases of known PPIs. Our
approach will thus allow improved accuracy in PPI identification while reducing the

number of control experiments required.
2.3 Introduction

The study of protein-protein interactions (PPI) is crucial to the understanding
of biological processes taking place in cells [222]. Affinity purification (AP) combined
with mass spectrometry (MS) is a powerful method for the large scale identification
of PPIs [37, 73, 74, 119, 90, 20]. The experimental pipeline of AP consists in first

tagging a protein of interest (bait) by genetically inserting a small peptide sequence
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(tag) onto the recombinant bait protein. The bait protein is affinity purified, together
with its interacting partners (preys), which are identified using MS. However, this
type of experiment is prone to false positive identifications for various reasons [76],
which can seriously complicate the downstream analyses. In the context of affinity
purification, contamination of manually-handled gel bands, inadequate purification,
purification of specific complexes from abundant proteins, and non-specificity of the
tag antibody used are some of the many ways contaminants can be introduced in the
experimental pipeline before the mass spectrometry (MS) phase. These contaminants,
added to the already large set of valid preys of a given bait, create even longer lists
of proteins to analyze. While common contaminants can be identified easily by a
trained eye, sporadic contaminants can be considered erroneously as true positive
interactions. In addition to contaminants, false positive PPIs can be introduced at
the tandem mass spectrometry phase (MS/MS) step [18]. For example, peptides
of proteins with low abundance or involved in transient interactions can be difficult
to identify because of the lack of spectra. Such peptides can be misidentified by
database searching algorithms such as Mascot [174] or SEQUEST [58]. Although
many approaches have been proposed in order to limit the number of mismatched
MS/MS spectra (e.g. Peptide Prophet [109] and Percolator [105]), the modeling
and detection of contaminants, which is the problem we consider in this paper, has

received much less attention.
2.3.1 Related work

A number of experimental and computational approaches have been proposed
to reduce the rate of false positive PPIs. Several steps in the experimental pipeline
can be optimized to minimize contamination. In-cell near physiological expression of
the tagged proteins is preferred to over-expression to prevent spurious PPIs. Also,
additional purifications could be performed in order to remove contaminating proteins
from affinity purified eluate. The drawback of an increased number of purifications

is a loss of sensitivity, as transient or weak PPIs will be more likely to be disrupted
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[37]. When performing gel-based sample separation methods before MS/MS, manual
gel band cutting can introduce contaminants such as human keratins in the sample.
This can be addressed by robot gel cutting, although this increases equipment cost.
As an alternative, gel-free protocols simply use liquid chromatography to separate
the peptide mixture before MS/MS. However, depending on the complexity of the
mixture, less separation might result in an important decrease in sensitivity. Finally,
liquid chromatography column contamination from previous chromatographic runs
is also important to consider. Although it is possible to wash the column to eluate
peptides from previous chromatographic runs, very limited washing is typically done

because of its time consumption.

Several computational methods have been used to identify the correct PPIs from
AP-MS/MS data [190, 206]. Some involve the use of the topology of the network
formed by the PPIs (e.g. number of times two proteins are observed together in a
purification to assign a Socio-affinity index [74] or a Purification Enrichment score
[39]. Others used various combinations of data features such as mass spectrometry
confidence scores, network topology features and reproducibility data with machine
learning approaches in order to assign probabilities that a given PPI is a true positive
[119, 61, 101, 37]. However, with each of these methods, contaminants would often
be classified as true interactions because of their high database matching scores and
reproducibility. Such sophisticated machine learning procedures can be prone to over-
fitting and the use of small, manually curated, but often biased training set, such as
MIPS complexes [156] as used by Krogan et al. [119] or a manually selected training
set as used by our previous approach [101, 37], can be problematic depending on
the nature of the data analyzed. Finally, Chua et al. combined PPI data obtained
from several different experimental techniques in an effort to reduce false positives
[36]. Although such methods will be very efficient at filtering contaminants, they will

typically suffer from poor sensitivity.
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All of these methods attempt to model simultaneously several sources of false
positive identifications including contamination but also, for example, misidentifica-
tion of peptides at the mass spectrometry level. For instance, scoring methods relying
on the topology of PPI networks will tend to assign low scores to proteins being ob-
served as preys in several experiments because they are likely contaminants, while
also scoring poorly proteins largely disconnected from the network, which are poten-
tial database misidentifications. However, none of these attempt to directly model
and filter out contaminants resulting from AP experiments. Deconvoluting the mod-
eling of false identification into AP contaminants modeling and database matching of
MS/MS spectra will potentially lead to methods identifying PPIs with higher accu-
racy. To date, most computational methods aiming specifically at filtering out likely
contaminants have been quite simplistic. Several groups maintain a manually assem-
bled list of contaminants and then systematically reject any interactions involving
these proteins [76]. However, it is possible that a contaminant for one bait is a true
interaction for another, suggesting that a finer model of contaminant level would be
beneficial. Recently, the Significance Analysis of Interactome (SAINT), a sophisti-
cated statistical approach attempting to filter out contaminant interactions resulting
from AP-MS/MS experiments was introduced [20]. SAINT assesses the significance of
an interaction according to the semi-quantitative peptide count measure of the prey.
It discriminates true from false interactions using mixture modeling with Bayesian
statistical inference. However, the currently available version of SAINT (1.0) lacks
the flexibility to learn contaminant peptide count distributions from available control
data and requires a considerable number of baits (15 to 20) in order to yield optimal
performances. Moreover, although not necessary, manual labeling of proteins as hubs

or known contaminants is required to achieve the best possible accuracy.

! Tt is worth noting that another version of SAINT is currently under development
and promises to address many of these issues.
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Once the tagging has been performed, some affinity purification methods require
the vector of the bait to be induced so that the tagged protein is expressed. An
alternate method to identify likely contaminant PPIs for a given bait is to perform a
control experiment where the expression of the tagged protein is not induced prior to
immunoprecipitation. It is then possible to compare mass spectrometry confidence
scores (e.g. from Mascot [174]) for the preys from both the control and induced
experiments. For example, in Jeronimo et al. [101], only preys with Mascot score
at least 5 times larger in the induced experiment than the control experiment were
retained, the others being considered as likely contaminants. There are limitations
to such false positive filtering procedure. First, this method is expensive in terms of
time and resources, since the cost is doubled for each bait studied. Second, because
of the noisy nature of MS scores for low-abundance preys, comparing a single induced
experiment to a single non-induced experiment is problematic. Pooling results from
several non-induced experiments could be beneficial. Third, some baits will show
leaky expression of the non-induced vector. Depending on the level of leakiness,

several true interactions may be mistakenly categorized as false positives.

Here, we propose a confidence assessment algorithm (Decontaminator) using only
a limited number of high quality controls sufficient to the proper identification of
contaminants obtained from AP-MS/MS experiments without prior knowledge about
neither hubs nor contaminants. By pooling control experiments, one-to-one com-
parisons of induced and non-induced experiment Mascot scores are avoided. Our
fast computational method thus provides accurate modeling of contaminants while

limiting resource usage.
2.4 Methods

We propose a Bayesian approach called Decontaminator that makes use of a
limited number of non-induced control experiments in order to build a model of

contaminant levels as well as to analyze the noise in the measurements of Mascot
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scores. Decontaminator then uses this model to assign a p-value and an associated
false discovery rate (FDR) to the Mascot score obtained for a given prey. We start by
describing the AP-MS/MS approach used to generate the data, and then describe for-
mally our contaminant detection algorithm. Alternate approaches are also considered

and their accuracy is compared in the Results section.
2.4.1 Biological data set

The Proteus database contains the results of tandem affinity purification (TAP)
combined with MS/MS experiments performed for a set E of 89 baits, both in non-
induced and induced conditions [69, 37, 101, 120]. The baits selected revolve mostly
around the transcriptional and splicing machineries. The set of proteins identified as
preys by at least one bait (in either the induced or non-induced experiments) consists
of 3619 proteins. Detailed TAP-MS/MS methodology has been described elsewhere
[37]. Briefly, a vector expressing the TAP-tagged protein of interest was stably trans-
fected in HEK 293 cells. Following induction, the cells were harvested and lysed
mechanically in detergent-free buffers. The lysate was cleared of insoluble material
by centrifugation and the tagged protein complexed with associated factors were pu-
rified twice using two sets of beads each targeting a different component of the TAP
tag. The purified protein complexes were separated by SDS-PAGE and stained by
silver nitrate. The acrylamide gel was then cut in its entirety in about 20 slices that
were subsequently trypsin-digested. Identification of the tryptic peptides obtained
was performed using microcapillary reversed-phase high pressure liquid chromatog-
raphy coupled online to a LTQ-Orbitrap (Thermo Fisher Scientific) quadrupole ion
trap mass spectrometer with a nanospray device. Proteins were identified using the
Mascot software [174] (Matrix Science) (see Appendix for software information). For
some of the baits tested, the promoter was leaky, which resulted in the expression, at
various levels, of the tagged protein, even when it was not induced. These baits were
identified by detection of the tagged protein in the non-induced samples and these

samples were excluded from our analysis. A set B C E of 14 non-leaky baits was
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selected for this study: B = {by,...,b14} = {SFRS1, NOP56, TWISTNB, PIH1D1,
UXT, MEPCE,SART1, RP11 — 529110.4, TCEA2, PDRG1,PAF1, K1 AA0406,

POLRIE,KIN}. Theset P of preys they detected in at least one of these 28 induced
and non-induced experiments contains 2415 proteins. Out of these, 1067 proteins were
unique to a single non-induced bait and 808 were detected more than once in the set
of 14 controls, while 540 were only observed in induced experiments. We denote by
MY the Mascot score obtained for prey p in the experiment where bait b is not
induced, and by Mbl , the analogous score in the induced experiment. Note that for
most pairs (b, p), where b € B and p € P, p was not detected as a prey for b, in which

case we set the relevant Mascot score to zero.

In the non-induced experiments, the number of preys detected for each bait varies
from 206 to 626, with a mean of 316. These preys are likely to be contaminants,
as the tagged bait is not expressed. In induced experiments, the number of preys
per bait goes from 5 to 516, with a mean of 135. It may appear surprising that
there are on average more preys detected in the non-induced experiments than in the
induced ones. This is likely due to the fact that the presence of high-abundance preys
in the induced experiments masks the presence of lower-abundance ones, including
contaminants. Still, a significant fraction of the proteins detected in the induced

condition are likely contaminants.
2.4.2 Computational analysis

An ideal model of contaminants would specify, for each prey p, the distribution
of the MS scores (in our case, Mascot score [174]) in non-induced experiments, which
we call the null distribution for p. However, accurately estimating this distribution
would require a large number of non-induced experiments and the cost would be
prohibitive. Instead, we use a small number of non-induced experiments and make
the assumption that preys with similar average Mascot scores have a similar null

distribution (this assumption is substantiated in the Discussion section). This allows
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us to pool non-induced scores from different preys (if they have similar Mascot score
averages) in order to build a more accurate noise model. Thus, results from a few
control experiments are sufficient to build a contaminant model that can then be
used to analyze the results of any number of induced experiments performed under

the same conditions. Figure 2-2 summarizes our approach.

Our goal is now to use the data gathered from induced and non-induced AP-
MS/MS experiments in order to build a model of noise in Mascot score measurements
and eventually be able to assess the significance of a given Mascot score M, bI - Let Mév I
be the unobserved true mean of Mascot scores for prey p in non-induced experiments,
which is defined as the mean of the Mascot scores of an infinite number of non-induced
biological replicates. M;V I can never be observed, but its posterior distribution can
be obtained if a few samples are available. Similarly, define J\7[bI , as the average of the
Mascot scores of p of an infinite number of biological replicates of experiments where
b is induced. The essence of our approach is to calculate the posterior distribution
of ]\7[;\7 I the true mean Mascot score of prey p given our data from non-induced
experiments, and to compare it to the posterior distribution of J\Zfbl > the true mean
Mascot score of prey p in an induced experiment, given our observed data Mbl - 1 the
second distribution is significantly to the right of the first, prey p is a likely bona fide

interaction of bait b. If not, p is probably a contaminant and should be discarded.

Before describing our method in details, we give a few examples that illustrate
how it works. Figure 2-3(a) shows an example of an interaction accepted by De-
contaminator. POLR2E obtained a Mascot score of 320 in the induced experiment
of RPAP3 and was only detected twice in control experiments (Mascot scores 38
and 48). From this figure, it can clearly be seen that the resulting posterior dis-
tribution of M}y Ap3.poLrzr 18 significantly to the right of the posterior distribution
of MJ2, pop- Therefore, the RPAP3-POLR2E interaction obtains a small p-value
(0.00018) and FDR (0.013) and is considered a valid interaction. This prediction

is consistent with the literature about this interaction [101], which is present in
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