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ABSTRACT

Protein-protein interactions represent a crucial source of information for the un-

derstanding of the biological mechanisms of the cell. In order to be useful, high

quality protein-protein interactions must be computationally extracted from the noisy

datasets produced by high-throughput experiments such as affinity purification. Even

when filtered protein-protein interaction datasets are obtained, the task of analyzing

the network formed by these numerous interactions remains tremendous. Protein-

protein interaction networks are large, intricate, and require computational approaches

to provide meaningful biological insights. The overall objective of this thesis is to ex-

plore algorithms assessing the quality of protein-protein interactions and facilitating

the analysis of their networks. This work is divided into four results: 1) a novel

Bayesian approach to model contaminants originating from affinity purifications, 2)

a new method to identify and evaluate the quality of protein-protein interactions

independently in different cell compartments, 3) an algorithm computing the statis-

tical significance of clusterings of proteins sharing the same functional annotation

in protein-protein interaction networks, and 4) a computational tool performing se-

quence motif discovery in 5’ untranslated regions as well as evaluating the clustering

of such motifs in protein-protein interaction networks.
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ABRÉGÉ

Les interactions protéine-protéine représentent une source d’information essen-

tielle à la compréhension des divers méchanismes biologiques de la cellule. Cepen-

dant, les expériences à haut débit qui identifient ces interactions, comme la purifi-

cation par affinité, produisent un très grand nombre de faux-positifs. Des méthodes

computationelles sont donc requises afin d’extraire de ces ensembles de données les

interactions protéine-protéine de grande qualité. Toutefois, même lorsque filtrés, ces

ensembles de données forment des réseaux très complexes à analyser. Ces réseaux

d’interactions protéine-protéine sont d’une taille importante, d’une grande complexité

et requièrent des approches computationelles sophistiquées afin d’en retirer des infor-

mations possédant une réelle portée biologique. L’objectif de cette thèse est d’explorer

des algorithmes évaluant la qualité d’interactions protéine-protéine et de faciliter

l’analyse des réseaux qu’elles composent. Ce travail de recherche est divisé en quatre

principaux résultats: 1) une nouvelle approche bayésienne permettant la modélisation

des contaminants provenant de la purification par affinité, 2) une nouvelle méthode

servant à la découverte et l’évaluation de la qualité d’interactions protéine-protéine

à l’intérieur de différents compartiments de la cellule, 3) un algorithme détectant

les regroupements statistiquement significatifs de protéines partageant une même an-

notation fonctionnelle dans un réseau d’interactions protéine-protéine et 4) un outil

computationel qui a pour but la découverte de motifs de séquences dans les régions

5’ non traduites tout en évaluant le regroupement de ces motifs dans les réseaux

d’interactions protéine-protéine.
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CHAPTER 1
Introduction

Most biological processes taking place in the living cell involve protein-protein

interactions (PPIs). This thesis introduces computational tools assessing the quality

of experimentally obtained PPIs. It then presents computational analyses of the

networks formed by these PPIs with the goal of improving the understanding of

various biological mechanisms occurring in the cell. In this chapter, background

information about PPIs, methodologies used to study them, and classic computational

approaches analyzing these interactions are discussed.

1.1 Central dogma of molecular biology

The central dogma of molecular biology states that the biological information of

the cell is stored in three different types of molecules: deoxyribonucleic acid (DNA),

ribonucleic acid (RNA) and proteins [43]. The information is originally stored in the

DNA (genome) of the cell. DNA, with the assistance of certain helper proteins, can

replicate itself in the genome. However, its main purpose in the cell is to be copied,

using a mechanism called transcription, into RNA (Figure 1–1). Transcription is gen-

erally regulated by DNA binding proteins (transcription factors). Some transcribed

RNA molecules called messenger RNAs (mRNAs) are then spliced and finally trans-

lated into proteins (Figure 1–1). mRNAs are also often transported before protein

translation to a given cell compartment by RNA binding proteins (RBPs) recogniz-

ing a specific nucleotide motif in their sequences. Some RNAs (microRNAs) can

regulate other RNAs through degradation, sequestering, or translational repression.

Newly translated proteins then interact with other proteins, RNA, or DNA molecules

to perform their function(s). The major steps in the biological information transfer

described above (transcription, splicing, and translation) are performed by proteins

1



2 Chapter 1. Introduction

sometimes associated with RNAs (e.g. RNA polymerase, spliceosome, and ribosome).

Proteins can also play a regulation role by repressing and degrading both other pro-

teins and RNAs (e.g. proteasome and ribonucleases). Finally, certain proteins such as

methyltransferases and kinases will modify other proteins by adding small molecules

to one of their specific amino acid (post-translational modification (PTM)).

Figure 1–1: Central dogma of molecular biology (adapted from a figure from an article
by David A. Omahen [167]).

1.2 Protein-protein interactions

In order to perform their various functions in the cell, proteins almost always

interact with each other. Through these PPIs, proteins can for example fold other

proteins, form protein complexes, and perform PTMs. However, even though a large

fraction of yeast and human proteins have been observed in different experimental

setups, very little is known about their respective interactions. Furthermore, the

function of the vast majority of these proteins remains unknown, not to mention that

numerous proteins perform multiple functions. Therefore, proteins that were thought

to be well characterized, are still today associated to novel biological functions. PPIs
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can reveal much about protein functions especially when these are analyzed as a

network. If multiple proteins interact together and accomplish the same function in

the cell and another uncharacterized protein interacts with these, then it is likely that

this uncharacterized protein is involved in the same process (“guilt-by-association”

principle) [166].

1.2.1 Types of protein-protein interactions

There are several several types of PPIs. First are the interactions forming protein

complexes. Protein complexes are groups of two or more proteins interacting together

non-covalently over a certain period of time to perform a certain biological function.

An example of such PPIs are those forming the RNA polymerase II protein complex.

This complex is formed of 12 proteins (subunits) in human and yeast: POLR2A,

POLR2B, POLR2C, POLR2D, POLR2E, POLR2F, POLR2G, POLR2H, POLR2I,

POLR2J (itself formed of three subunits in human), POLR2K, and POLR2L [160]

(see Figure 1–2). These subunits interact directly or indirectly to form the RNA

polymerase II complex. While the main transcriptional role of this complex is well

understood, the mechanisms and co-factors mediating its assembly and import into

the cell nucleus still remain a source of debate [17, 86]. Our own work sheds some

light on this matter [37, 69, 70].

There are many more protein complexes in the cell performing a vast array of

functions such as splicing (spliceosome), translation (ribosome), proteolysis (protea-

some), transcriptional coactivation (mediator). They also vary in complexity. While

some complexes contain only two subunits (CAP350 and FOP form a centrosomal

complex required for microtubules anchoring [229]), some such as the ribosome can

be much larger (79 subunits) [227].
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molecular replacement with that of S. cerevisae pol II, followed
by alternating rigid body and translation, libration, and screw
rotation displacement (TLS) refinement and manual rebuilding
to a final Rfree of 32.1% (Table 1 and Fig. 1). There were

significant differences between the S. pombe and S. cerevisiae
structures in the cleft between Rpb1 and Rpb2, where down-
stream DNA is located in a transcribing complex (3). On the
Rpb1 side of the cleft, loops !31–"43 and "40–!29 were ordered
in the S. pombe structure. Loop !31–"43 extended far enough

S. pombe RNAP II S. cerevisiae RNAP II

Front

Back

Rpb1

Rpb2
Rpb3

Rpb4

Rpb5
Rpb6

Rpb7

Rpb8
Rpb9

Rpb10

Rpb11
Rpb12

Fig. 1. Structures of pol II from S. pombe (Left) and S. cerevisiae (Right, PDB
ID code 1WCM). Surface representation of front (Upper) and back (Lower)
views shown. Individual subunits are colored as indicated (2).

Top

Rpb1
Rpb2

Template DNA, 2VUM
Non-template DNA, 2VUM

EC, 2VUM

Clamp head

Fork loop 2β7-β8
β9-β10β31-α43

α40-β29

Tip

β4-β5

Fig. 2. Structural differences between S. pombe and S. cerevisiae pol II in the
vicinity of the DNA-binding cleft. (Left) A surface representation of a top view is
shown. (Right) The portion in the dashed window in Left is enlarged. Colors of
Rpb1 and Rpb2 are as in Fig. 1. Template DNA strand in cyan, nontemplate DNA
strand in blue, and Rpb1 and Rpb2 loops in green are from an S. cerevisiae
transcribing complex structure containing "-amanitin (PDB ID code 2VUM), su-
perimposed by aligning C" atoms of Rpb1 by the secondary structure multiple
alignment (SSM) method. Numbering of secondary structure elements in this and
subsequent figures is based on S. cerevisiae structures as described (2, 45).
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Fig. 3. Dock domain and switch regions. (A) Dock domains of S. pombe and S. cerevisiae from a cocrystal structure with TFIIB (PDB ID code 1R5U) aligned on C" atoms
using the least-squares fit (LSQ) method. (B) Switch 1 and 2 regions of S. pombe, an S. cerevisiae transcribing complex containing GTP in the nucleotide addition site
(PDB ID code 2E2H), and an S. cerevisiae cocrystal structure with TFIIB (PDB ID code 1R5U) were aligned on C" atoms using the SSM method. (C) S. pombe switch 1 loop.
A 2Fo ! Fc map with switch 1 omitted, contoured at 0.9 #, is shown in blue mesh. The side chain of bridge helix Tyr-842 in S. pombe is shown in green, and the same
side chain in an S. cerevisiae transcribing complex containing GTP in the nucleotide addition site (PDB ID code 2E2H) is shown in blue. A Fo ! Fc map with the bridge
helix omitted, contoured at 2.2 #, is shown in red mesh. (D) Sequence alignment of the switch 1 loop. Sequences were aligned by using Muscle (46) and colored for
conservation in MACBOXSHADE. Asterisks indicate residues conserved or similar to human that appear to stabilize the switch 1 loop conformation.

9186 ! www.pnas.org"cgi"doi"10.1073"pnas.0903361106 Spåhr et al.

Figure 1–2: Surface representation of the structures of RNA polymerase II in S. pombe
and S. cerevisiae. Each protein (Rpb1, ..., Rpb12) is color-coded and corresponds to
a human protein homolog (from an article by Sp̊ahr et al. [207]).

Another type of interaction occurs when a protein binds very briefly another to

modify one of its specific amino acids by adding or removing a molecule (e.g. phos-

phate, methyl, or acetyl groups). Reactions like methylation, acetylation, phosphory-

lation and their counter parts (e.g. demethylation) are crucial regulation mechanisms.

Such modification on an amino acid may repress the action of a protein, change its

folding, and even make it gain or lose the ability to interact with other proteins. For
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example, kinases are proteins that will bind other proteins to add a phosphate group

on the amino acid of its target. For instance, PKA is a well characterized kinase in-

volved among other things in the regulation of glycogen, sugar, and lipid metabolism

that targets CREB [79]. Such proteins will usually recognize a given sequence motif

on their target in order to bind them and perform their catalytic action.

A protein can also bind to another to transport it to a specific cell compartment.

Some of these proteins are called importins, which are part of a large family of proteins

named karyopherins. They bind temporarily certain proteins in order to transport

them from the cytoplasm of the cell into its nucleus. These importins will bind to the

nuclear localization signal (a specific sequence of amino acids of a protein) of their

targets and will transport the targets to the nucleus [80].

These are only some of the major types of PPIs that can be observed in the

living cell. Often PPI studies will focus on a given type of interactions or on a given

biological process that will involve various types of interactions. Either way, all these

types of PPIs play in one way or another a crucial role in various biological processes

and are often essential to the survival of the cell.

1.2.2 Challenges in protein-protein interaction identification

Still today a large part (80-90%) of the human interactome (i.e. the set of

human PPIs) remains unknown [220]. The intrinsic differences between interaction

types make some harder to identify than others. Obviously, transient interactions

such the ones implicated in PTMs are difficult to map and their detection requires

very sensitive approaches. Similarly, proteins that are part of a protein complex

but only for a brief moment to form an intermediary structure necessary for the

proper complex assembly are also hard to detect. In addition to the short lifespan of

certain interactions, some PPIs are PTM-dependent. Since PTMs are highly dynamic,

identification of such PPIs is challenging [138]. Often the same protein will have
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different PTM isoforms with very different stochiometries. The identification of PPIs

specific to isoforms of lower abundances will therefore also be demanding. Different

experimental methods used to identify PPIs will be introduced in Section 1.3.

1.2.3 Clinical implications

Several PPIs are known to be associated with various diseases [187]. Even though

the exact PPIs involved in a particular disease are often unknown, the lack of expres-

sion, the over-expression, or the mutation of a given protein or set of proteins are

likely to change their PPI profiles and cause this disease. The vast majority of the

time, such abnormality will cause the protein to lose or gain interactions, which will

disrupt the normal mechanisms of the cell. A classic example was the discovery of

the implication of an abnormal interaction between Htt and a GTPase-activating pro-

tein GIT1 [78], which causes Htt to aggregate in insoluble neuronal inclusion bodies

leading to neuronal degeneration and Huntington’s disease [147]. This discovery was

possible thanks to the identification of PPIs taking place in Huntington’s disease

cases. GIT1 was later validated as a potential drug target for Huntington’s patients

[54]. In this example a gain of a PPI was deleterious, but often a loss of a PPI will

result in an abnormal functionality and therefore in a disease status. For example,

our group has recently shown that VCP mutants (R155H, R159G, and R191Q) were

not methylated at Lysine 315 by METTL21D as the wild type normally is [38]. These

mutants are known to cause inclusion body myopathy with Paget’s disease of bone

and frontotemporal dementia and familial amyotrophic lateral sclerosis [38]. These

examples show the importance of PPI identification in human health research. The

discovery of novel disease-associated PPIs remains a very active field of research.

1.3 Identification of protein-protein interactions

Several moderate to high-throughput methods have been proposed to identify

PPIs in a given organism, each with its advantages and its drawbacks. The following
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sections will introduce the most popular approaches mapping PPIs, which are still

being used at the time of submission of this thesis.

1.3.1 Yeast-two-hybrid

A method widely used to identify PPIs is Yeast-Two-Hybrid (Y2H) [64]. The ba-

sic idea behind this approach is to fuse two halves or domains of a transcription factor

onto two candidate interacting proteins typically using yeast as the host organism.

When those two domains come into close physical proximity (i.e. when the two pro-

teins are interacting), the transcription of a reporter gene is activated. The expression

of the reporter gene can be observed by a resistance to a chemical or the emission of

a fluorescence under a certain type of light (see Figure 1–3). More precisely, one of

the candidate interacting proteins (bait) is fused to the DNA binding domain (DBD)

of the transcription factor, while the other (prey) is fused to the activating domain

(AD). The DNA binding domain binds an upstream activating sequence (UAS) in the

reporter gene promoter and if the prey interacts with the bait, the activating domain

will come in close enough proximity that the transcription of the reporter gene will

be induced. Nowadays, assays are built so that for a given bait, thousands of proteins

are tested as potential interactors in a short time and at a low cost. Large scale PPI

networks can therefore be mapped using such technology by repeating the procedure

for multiple protein of interests (baits) [231, 186, 96, 191, 224]. This method however

suffers from several drawbacks including the necessity of the interaction to happen in

the nucleus to be detectable. Moreover, Y2H assays often require the simultaneous

over-expression of the fusion proteins potentially causing interactions not occurring

under normal in vivo conditions. The reporter gene fused to the candidate proteins

can be fairly large and therefore physically inhibit the interactions between the candi-

date proteins by blocking their docking sites or changing their folding conformations.

Finally, testing for candidate PPIs originating from organisms different than yeast

may be problematic, since yeast might be lacking for example the chaperones ensur-

ing the proper folding of the proteins in question and prevent them from interacting.
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Figure 1–3: Graphical representation of the Y2H protocol (from an article by
Brückner et al. [25]).

1.3.2 Protein fragment complementation assay

Protein fragment complementation assay (PCA) [72] is a technology that uses

a idea similar to Y2H. Basically, candidate proteins are each covalently linked to a

fragment of a reporter protein. When the candidates come into close proximity, the

reporter protein becomes functional (see Figure 1–4). This reporter can take several

forms such as: β-lactamase [72], dihydrofolate reductase (DHFR) [215], luciferase

[28], and many more, each with its advantages and drawbacks. For instance DHFR
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confers to its hosts a resistance to an antibiotic called trimethoprim. In this case, if the

interaction occurs, the cells will survive upon treatment. Like Y2H, PCA experiments

can be performed at a genome-wide scale, have low cost, and have been used to map

large scale PPI networks [215]. In addition, PCA can typically identify PPIs with

proteins being expressed at their endogenous level, hence limiting the number of false

positive interactions. It however shares the disadvantage with Y2H that the reporter

gene fragments may prevent the proper binding of the candidate interacting proteins.

Detection of protein–protein interactions using a
simple survival protein-fragment complementation
assay based on the enzyme dihydrofolate reductase
Ingrid Remy, F X Campbell-Valois & Stephen W Michnick

Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7. Correspondence should be addressed to
S.W.M. (stephen.michnick@umontreal.ca).
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Biochemical ‘pathways’ are systems of dynamically assembling and disassembling protein complexes, and thus, much of modern
biological research is concerned with how, when and where proteins interact with other proteins involved in biochemical processes.
The demand for simple approaches to study protein–protein interactions, particularly on a large scale, has grown recently with the
progress in genome projects, as the association of unknown with known gene products provides one crucial way of establishing the
function of a gene. It was with this challenge in mind that our laboratory developed a simple survival protein-fragment
complementation assay (PCA) based on the enzyme dihydrofolate reductase (DHFR). In the DHFR PCA strategy, two proteins of
interest are fused to complementary fragments of DHFR. If the proteins of interest interact physically, the DHFR complementary
fragments are brought together and fold into the native structure of the enzyme, reconstituting its activity, detectable by the survival
of cells expressing the fusion proteins and growth in selective medium. Using the protocol described here, the survival selection can
be completed in one to several days, depending on the cell type.

INTRODUCTION
There has been a growing interest in applications of PCA to a broad
range of problems in molecular and cellular biology, including
expression cloning, protein processing, directed evolution, protein
folding in vitro and in vivo, protein localization and topology
of protein complexes in biochemical networks and organelles
(reviewed in refs. 1–3). In the PCA strategy, two proteins of interest
are fused to complementary fragments of a reporter protein. If the
proteins of interest interact physically, the reporter fragments will
be brought together in space and fold into the native structure, thus
reconstituting the reporter activity of the PCA (Fig. 1).

This strategy is a general approach, both in that it can be used in
any cell type or organism that can be transfected or transformed and
express the fusion proteins (e.g., bacteria, yeast, plants, nematode
worm, mammalian cells) and that it can be used to study interactions
in any subcellular compartment1,3,4. These features are due to the fact
that unlike other protein–protein interaction-based screening stra-
tegies, the fusion proteins themselves represent the entire assay
system, requiring no other endogenous cellular machinery4–16.
Yeast two-hybrid screening strategies have been applied system-
atically across entire genomes and are elegant and robust, but limited
to simply detecting protein interactions17–20. An important feature of
PCA is that interactions can be detected directly and between full-
length proteins expressed in cells in which the bait protein normally
functions, assuring that subcellular targeting, post-translational
modifications and interactions with other proteins needed for
correct functioning of the bait (and prey) can occur (obviously the

PCA fragments themselves must not interfere with targeting or
modification of the proteins and this must be tested).

PCA reporter proteins have been chosen as those producing a
variety of detectable activities, including fluorescent, luminescent
and colorimetric signals4–16. A number of PCAs have been
described, but here we describe protocols for bacterial and mam-
malian survival selection assays using the enzyme DHFR (Fig. 2),
based on previously published methods5,6. Because the DHFR PCA
is a simple survival selection assay, it does not require specialized
reagents or equipment. This assay can easily be expanded for large-
scale study and is inexpensive, and therefore it is most useful for
library selection, whereas luminescence or fluorescence readout
PCAs are best for studies of spatial and temporal dynamics of
protein complexes3.

Bacterial DHFR PCA survival selection assay
DHFR catalyzes the synthesis of tetrahydrofolate, which is neces-
sary in prokaryotic cells for the synthesis of thymidilate, purines,
methionine, serine and panthotenate. This enzymatic activity is
therefore necessary for growth on medium, such as M9 minimal
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Figure 1 | The general PCA strategy. Protein complex dynamics can be studied
by fusing proteins of interest (proteins X and Y) to complementary fragments
of a reporter protein. If the two proteins interact, the reporter fragments are
brought together, fold into the native structure of the reporter protein and its
activity is reconstituted. The PCA strategy requires that unnatural peptide
fragments be chosen that are unfolded (ribbons) before association of fused
interacting proteins X and Y.

2120 | VOL.2 NO.9 | 2007 | NATURE PROTOCOLS

PROTOCOL

Figure 1–4: Graphical representation of the PCA method (from an article by Remy
et al. [182]).

1.3.3 GST fusion protein pull-down

While the last two approaches are of high-throughput, there exist low-throughput

experiments that can very accurately confirm direct PPIs, where the proteins come

into physical contact. These experiments are often required when one wants to con-

firm with high confidence an interaction between two proteins detected to be inter-

acting in a large scale mapping, which may contain several false positives. Indeed,

the use of glutathione-s-transferase (GST) fusion protein pull-downs has been popu-

larized to identify direct interactions [104, 168]. In this setup, a recombinant protein

(bait) is fused to GST and purified. The GST tagged bait is then incubated in vitro

with the highly purified interacting candidate (prey) with glutathione-agarose beads.

The proteins recovered from the beads are then typically analyzed through western
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blotting to assess their putative interaction. Obviously, such approach is of very low-

throughput, but it compensates by being extremely specific and capable of detecting

direct interactions.

1.3.4 Affinity purification coupled to mass spectrometry

Finally, an alternative for performing large scale PPI identifications is affinity

purification coupled to mass spectrometry (AP-MS) [37, 74, 73, 119, 90, 20]. In this

protocol, a molecular tag is fused to a protein of interest (bait) in order to discover

its interactors (preys). Beads binding the tag are then used to purify the bait and

the preys interacting with it directly or indirectly. The preys are then identified using

mass spectrometry (see Figure 1–5).

A
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C F
TAG

A

C

B

D

E F

Bait

Preys

Preys

A B
Figure 1–5: (A) Fictitious protein complex of 6 subunits, where subunit A is tagged.
(B) Interactions obtained upon affinity purification of protein A.
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1.3.4.1 Affinity purification

Different types of tags can be fused to the bait to perform affinity purification

(AP). A commonly used tag is the tandem affinity purification (TAP) protocol [184]

(see Figure 1–6). In a TAP experiment, the bait is fused to a tag consisting of two

parts. A first purification is made with IgG beads binding the exposed part of the tag

constituted of Protein A. Then, the tag is cleaved and a calmodulin binding peptide

is exposed and purified using calmodulin beads. These two sequential purifications

are used to minimize the number of non-specific bait binders obtained in the puri-

fied solution, at the cost of a lower sensitivity. The popular alternative to TAP, the

FLAG-tag, only requires a single purification. FLAG purifications tend to be more

sensitive and are great to detect transient PPIs that can be lost in the two strin-

gent purifications of TAP. However, they are reputed to produce a large fraction of

interactions that are the result of non-specific binding [20, 33].

1.3.4.2 Mass spectrometry

Once the bait and its preys are purified using either tags, mass spectrometry

(MS) is then typically used to accurately identify and sometimes quantify the preys

(see Figure 1–7). In order to process the proteins obtained in AP with the mass

spectrometer, they first need to be enzymatically digested (usually with trypsin) into

small peptides [143] (human tryptic peptide average length is 10 amino acids [158]).

The resulting peptide mixture is then separated with liquid chromatography (LC) to

favorise peptide detection [230]. LC uses various peptide chemical properties such as

hydrophobicity and charge to separate as much as possible the elution times of the

different peptides in the mixture and maximize the sensitivity of peptide detection

at the MS level. An alternative to LC is to perform a gel based separation on one or

two protein properties such as mass and isoelectric point [150]. In this context, in-gel

digestion of proteins is often applied [198]. Tandem mass spectrometry (MS/MS) is

then usually utilized to identify and potentially quantify the peptides present in the
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Figure 1–6: Graphical representation of the TAP procedure (inspired from a figure
of an article by Lukas A. Huber [93]).

peptide mixture. In the first MS phase, the mass of each peptide is resolved. Selected

peptides are then fragmented into smaller ions and analyzed in the second MS phase
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[230]. The resulting spectra can then be associated to a given peptide sequence by

either matching it to theoretical spectra from a database [174, 63, 58] or by using

de novo sequencing if the genome of the organism analyzed is not available [146, 46].

The resulting sequence identification is then assigned a confidence score and proteins

are identified based on their high scoring peptide sequences (technique described in

Chapter 2). Even if protein abundances can be obtained using techniques such as

selected reaction monitoring (SRM) [49, 126], a simple approach using the number

of spectra associated to each peptide can provide a good quantification estimation if

needed [32]. This approach, called spectral counting, makes the assumption that the

number of acquired spectra for a given peptide type will correlate with the abundance

of that peptide [32]. Proteomics pipelines are long and comprise several steps, many

of which become sources of false positive protein identifications. Such sources will

be explored in details in Chapter 2, where we propose computational approaches to

address them.

availability and are usually reduced and alkylated
before digestion.

Proteins are typically enzymatically digested into
peptides before MS analysis (Figure 1). Trypsin is most
commonly used because it produces small peptides that
are amenable to electrospray ionization: trypsin cleaves
C-terminal to basic amino acids, which ensures that there
are two possible basic sites for ionization (N terminus and
C-terminal Lys or Arg). Other enzymes are also used
depending on the desired application but the resulting
peptides might not contain any, or possibly too many,
internal basic residues that can affect peptide identifi-
cation following fragmentation.

After digestion, post-translationally modified peptides
can be subjected to enrichment strategies. For example,
phosphopeptides can be purified using immobilized metal
affinity chromatography (IMAC) [7], whereas glycopep-
tides can be purified using lectins [8]. Before mass
spectrometric analysis, peptide mixtures are sometimes
purified using desalting columns to remove the denatur-
ants used in the digestion.

Peptide mixtures are usually separated using online
reverse phase liquid chromatography and analyzed using
mass spectrometry (LC–MS) with tandem mass spec-
trometry (LC–MS–MS) [9]. Peptide mixtures, created by
digestion of a whole cell lysate, are more complex than the
peak capacity of both the liquid chromatographic separ-
ation and the mass spectrometer. Mixture complexity is

the main problem associated with HTP proteomics
experiments and leads to a reduced detection of peptides.
To increase the number of different peptides and low
abundance peptides that are detected, either whole
protein fractionation (discussed earlier) or additional
peptide fractionation is needed. Peptide mixtures can be
separated, offline, using strong cation exchange before the
reverse phase separation [10]. Multi-dimensional peptide
identification technology (MudPIT) [1], which combines
strong cation exchange and reverse phase separations in
an online LC–MS–MS experiment, is also popular. The use
of two-dimensional peptide separations results in greater
chromatographic peak capacities and protein identifi-
cations but requires more analysis time and results in
greater numbers of MS–MS spectra.

Labeling approaches
Protein expression measurements of two samples are
often needed instead of identification of a particular
protein that is present in a sample. Because mass
spectrometers make measurements of mass-to-charge,
this adds additional complexity to proteomics experi-
ments. To differentiate between identical peptides from
two samples simultaneously, one sample is labeled with
heavy isotopes (2H, 13C, 15N or 18O) to produce a mass
shift [11]. A mass shift of at least 3 Da is desired to
prevent isotope overlaps between the two samples, which
would affect the quantitation. Samples can be grown on
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Even though this is less the case these days, AP-MS remains costly mainly be-

cause of the use of MS. As mentioned before, this approach will detect large numbers

of interactors for a given bait because of its ability to detect indirect interactions

[184, 189]. Some might classify this as a disadvantage as AP-MS will rapidly produce

large datasets making analyses cumbersome. Nevertheless, with proper bioinformat-

ics analysis this feature can prove very powerful. Indeed, to map an entire protein

complex, only the purification of a single complex subunit may be necessary as the

bait’s direct and indirect interactors will be obtained (see Figure 1–5). While on the

other hand, multiple screens would be needed to accomplish this task using PCA or

Y2H. Another advantage of AP-MS is that the experiment can be performed in cell

lines of any organisms. This allows the bait protein to be expressed in its endoge-

nous host with the endogenous chaperones that helps its folding and the PTMs that

normally affects it. Even more, PPIs can be detected in different cell compartments

independently [131, 176, 125, 124, 68, 53].

The methods introduced above all produce PPI datasets containing a large frac-

tion of false positive interactions. However, with proper bioinformatics and statistical

analysis, it is possible to tackle this issue and identify the vast majority of these prob-

lematic interactions. This thesis will introduce among other things a novel innovative

computational approach addressing this issue.

1.4 Protein-protein interaction networks

As mentioned previously, high-confidence PPIs can be viewed as a network. Such

network can provide crucial information for protein function inference, protein com-

plex discovery, and prediction of protein-disease associations. In addition, these net-

works may be useful to distinguish the true interactors of a protein from the false

positives when performing an experiment to discover the interactions of a given pro-

tein. This last aspect will be discussed in more details in Chapter 2. PPI networks
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have grown very large with time. For example, one of the most popular PPI reposi-

tories, BioGRID, contained 130, 292 unique interactions involving 17, 373 proteins at

the time of submission of this thesis. Evidently, to process and extract information

from such large networks, computational approaches quickly became a necessity.

1.4.1 Graph theory representation

A PPI network can be represented as a graph G where the proteins in the network

consist of the set of vertices (nodes) V and the interactions form the set of edges

E. Edges can be unweighted or weighted with a real-value weight representing for

example a MS confidence score. They could also be directed from the bait to the prey

if the experimental setup provides such information.

1.4.2 Properties of PPI networks

There are various graph theory properties that can be evaluated in the context

of PPI networks. These properties often correlate with biological features of proteins.

Some properties can tell much about the importance of certain proteins. These include

the degree and the centrality of a vertex.

1.4.2.1 Vertex degree

We define the degree of a vertex to be |N(v)|, where N(v) is the set of vertices

adjacent to v. An interesting property to study in PPI networks is the degree dis-

tribution. Let Pr[k] be the probability that a randomly selected vertex has a degree

equal to k. In Erdős-Rényi random networks [60], a popular random model, Pr[k] fol-

lows a Poisson distribution [11]. However, biological networks like PPI networks tend

to resemble more like scale-free networks for which the vertex degrees are power-law

distributed: Pr[k] = ck−γ, where c and γ are constants [11].
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Several studies have been performed to verify the essentiality for the cell survival

of different structures in a PPI network. Gene knockout experiments with the yeast

model organism have shown that high degree proteins in the yeast PPI network tend

to be more critical than low degree ones for the survival of the organism [100, 85, 12].

On the other hand, when a protein that possesses a sibling (protein sharing the same

interacting partners) is deleted, it does not tend to be lethal. This can be explained

by the presence of alternative paths, provided by the sibling protein in the network

that might be performing a similar role as the protein suppressed [181].

1.4.2.2 Centrality measures

Other ideas have been proposed to assess the importance of a given vertex. Many

of them revolve around the theme of centrality. A basic centrality measure of a vertex

is its degree [234]. The higher the degree, the more central a vertex is considered to

be in the network. However, it is easy to find an instance of a graph where a very high

degree vertex could be connected with a very long path to a much larger subgraph

and therefore not be central in the network.

A variety of distance-based centrality measures have also been proposed. Among

them we count the betweenness centrality [95], which is defined as:

CB(v) =
∑

s 6=t6=v∈V

ρst(v)/ρst

where ρst(v) is the number of shortest paths from a source s to a target t passing

through v and ρst is the number of shortest paths between s and t. This normalization,

by the number of shortest paths between s and t, avoids that the centrality value of

vertex v is biased by the number of shortest paths between s and t.

Another type of centrality, the feedback-based centrality [103], is based on the

idea that a vertex becomes more central in tandem with the centrality of its neigh-

bours. An example of such centrality is the famous PageRank score [21], which scores
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a vertex based on the score of its neighbouring vertices. This scoring is mainly ap-

plicable in the context of directed networks. This recursive scoring can be written as

follows:

CPR(v) = (1− d) + d(CPR(t1)/C(t1) + ...+ CPR(tn)/C(tn))

where t1...tn are the vertices with a directed edge towards v, while C(v) is the out-

degree of v, and finally d is a damping factor between 0 and 1.

In conclusion, several links have been found between certain vertex properties

and specific biological roles that proteins play in the cell. However, it remains unclear

if all these observations will still hold when PPI network mapping efforts will be

completed. It is quite possible that the degree distribution or the enrichment in hubs

for essential proteins are artifacts of the incompleteness of PPI networks and will

potentially change in the future.

1.4.3 Protein annotation inference

A classic PPI network problem is to infer functions to uncharacterized proteins.

The interactions of a given protein can tell much about its potential functions. These

functions can take the form of disease-associations, molecular functions, biological

processes, or pathways. Various methods have been developed in order to take ad-

vantage of known protein annotations to discover novel ones. A basic principle that is

often shared among these approaches is called “guilt by association”; if two proteins

P1 and P2 are interacting, and the function of P1 is known, but the function of P2 is

unknown, then P2 is likely to be associated to a function related to the one associated

with P1 [166].

Although such annotation inference could seem rather simple to perform, there

are several challenges associated with this task. As it was mentioned before, PPI

networks contain several false positive interactions complicating the annotation pre-

diction by adding noise in the network. Also, proteins can have more than a single
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annotation. For instance, RPAP2 was recently reported to be a phosphatase [57] and

a protein involved in the import of RNA polymerase II [70].

1.4.3.1 Protein-disease association

A strategy being used to discover individual proteins or subset of proteins (path-

ways) associated with a specific disease is to analyze PPI networks using the “guilt

by association” principle described earlier [218]. Some approaches will use the local

network information to infer a disease association to a given protein. For instance,

some will infer a disease association score to a protein based on the disease associa-

tions of its network neighbours [122]. More sophisticated approaches, where disease

information is propagated in the PPI network to infer new disease causing genes,

have now been developed [218]. These approaches all share the common ground that

they highlight the crucial role that PPI data can play in protein-disease association

inference.

1.4.4 Protein complex discovery

Since PPI networks are very large, clustering proteins into smaller components is

essential in order to understand the biological processes represented in them. An in-

teresting question to look at, from both a computational and a biological perspective,

is the discovery of protein complexes in PPI networks. Complexes are represented by

dense subgraphs in a network (i.e. group of vertices with several edges interconnecting

them). Again, identifying such clusters may seem trivial. However, since proteins can

be part of multiple complexes, they sometimes perform several functions. In this sce-

nario, network clusters are expected to be overlapping, causing clustering algorithms

outputting disjoint clusters to fail to identify some protein complexes in such datasets

[234]. Obviously, the important amount of noise in PPI networks also complicates

protein complex identifications.
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1.4.4.1 Clique finding

The most intuitive way to find protein complexes is to find maximal cliques

[234]. A clique is a set of vertices where each vertex is connected by an edge to every

other vertex in the clique. A clique is maximal when no other adjacent vertices can

be added to it while respecting the clique definition. However, finding all maximal

cliques in a graph is NP-hard [132] and as mentioned before, the number of proteins

in the networks analyzed is usually quite large. Also, protein complexes are very

seldom found as cliques. It is often observed that a protein complex will not form a

perfect clique as some of its interactions will not be observed because of the lack of

sensitivity of the experimental protocol [234].

1.4.4.2 Dense subgraph identification

Rather then searching for maximal cliques, one can identify dense subgraphs in

a network. Such subgraphs are often identified by finding the set of vertices of size

n, where n is fixed, that minimizes the sum of all pair shortest paths within it [208].

This permits the identification of protein complexes not completely mapped in PPI

networks. However, identifying all dense subgraphs in a network is computationally

expensive. Approximation approaches have therefore been proposed to address this

problem.

Among them is the Markov Chain Monte Carlo approach. In this context, the

Markov Chain Monte Carlo is used to identify vertex sets with minimum all pair

shortest paths as follows. Starting at time t = 0, a random set P of n vertices is

selected and for each pair of vertices i,j ∈ P the shortest path Lij is computed. The

sum of all initial Lij is L0. At each time step, one of the n vertices is randomly

selected and replaced by one of its randomly selected neighbours letting the sum

of the shortest paths with the new vertex to be L1. If L1 < L0 the replacement

is kept, otherwise the replacement is only kept with probability e−(L1−L0)/T , where
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T is a constant. This process attempts to avoid getting stuck in a local minimum

that could be reached by the deterministic version of the algorithm. In addition, at

every tenth time step, a vertex not connected to any vertices in P is attempted as a

replacement vertex with the same rules. This procedure gives the opportunity to the

algorithm to explore vertex sets in different disconnected graphs. The procedure is

repeated until no vertices are replaced for a certain number of consecutive iterations

or a time limit has been reached. The same Monte Carlo approach can be applied to

optimize another subgraph density measure:

Q(P ) =
2m

n(n− 1)

where m is the number of edges in the subgraph P [208].

1.4.4.3 Molecular complex detection algorithm

An alternative to these approaches is the molecular complex detection (MCODE)

algorithm [8]. It finds densely connected subgraphs by weighting vertices with their

local neighbourhood density. The weight w = kd is computed for a vertex v where

k is the maximal k-core of v and its direct neighbours and d is the edge density of

these vertices. A k-core of a graph is defined as the subgraph created by the removal

of all vertices with degree less than k and their incident edges. Vertices with degree

less than k are iteratively removed, until the k-core definition is satisfied. k-cores are

often used to identify interesting dense subnetworks inside large PPI networks that

are usually associated to functional modules. The vertices with a high weight are

chosen as cluster seeds. Clusters are then expanded by recursively attempting to add

to them the neighbours of the seeds if their respective weights are above a certain

percentage of the weight of the seed. Vertices added to a cluster are marked as visited

and are only explored once. The recursion stops when an explored vertex weight is less

than a certain percentage of the initial weight of the cluster seed. Finally, there is a

post-processing step where clusters that do not contain at least a 2-core are removed.

Vertices that do not belong to a cluster (not marked as visited) are added to a cluster
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if their neighbourhood density is not below a certain fluff parameter (a value between

0.0 and 1.0). These vertices are not marked as visited so they can be added to

multiple clusters. The clusters (or complexes) outputted by MCODE, because they

can overlap, are more biologically relevant than those produced by other methods

since protein complexes often share protein subunits. However, this approach is time

consuming and different seeds can lead to the generation of very similar clusters.

1.4.4.4 Socio-affinity index

Another interesting approach for complex detection was proposed by Gavin et

al. [74]. They derived what they called a Socio-affinity index. It quantifies the

tendency for two proteins to purify each other or to be co-purified in an AP experi-

ment. Basically, it computes the log-odds of the number of co-occurrences of the two

proteins in AP experiments against their expected number of co-occurrences based

on their dataset frequency. While this index is useful to identify false positives in

an AP dataset, it is also a good basis for a clustering analysis in order to perform

protein complex discovery. To do so, a matrix of Socio-affinity indices for all pairs

of proteins in the dataset can be given as input to a clustering algorithm [74]. As

it was described before, proteins can be members of numerous protein complexes.

To account for this, the method applies a small penalty to the indices in the matrix

after the initial clustering and then performs another clustering to report a new set of

complexes. This step is iteratively repeated. Again, this approach has the advantage

to have the capability to report overlapping clusters. However, in order to compute

meaningful Socio-affinity indices, a large number of APs is required.

1.4.4.5 Markov clustering algorithm

None of the methods presented above were designed (although some can be

adapted) to take weighted graphs as input. Such weights, which can be derived from
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mass spectrometry data for example, often represent the confidence that a given in-

teraction is a true positive. These confidence scores can help to better partition PPI

networks. The Markov clustering (MCL) algorithm [59] was designed to be applied

on simple weighted graphs. The algorithm takes as input a weighted similarity matrix

of edge weights M , which is transformed in a Markov transition matrix where the di-

agonal is set to neutral values and each column is normalized to 1. The matrix is then

transformed iteratively using two operations: expansion and inflation. The matrix is

first “expanded” by squaring it and then inflated using the following equation

(ΓrM)pq =
(Mpq)

r∑k
i=1(Miq)r

where r > 1 and Γr is the inflation operator. Each operation is performed iteratively

until there is no significant changes in M or after a given number of iterations. Finally,

a threshold value is chosen to remove edges to form connected components. These

connected components correspond to clusters, which in turn map to protein complexes

in the PPI network.

All the above clustering approaches are however limited by the level of unre-

liability of the data and missing connectivity among the different modules in the

network. It is hypothesized that with the growing size of PPI networks, protein

complex connectivity will increase and therefore facilitate the clustering of proteins

[112]. Methods filtering false positive interactions before or after the clustering of

PPI networks are also likely to improve the quality of the clusterings obtained by

computational approaches.

1.5 Thesis roadmap

This chapter introduced the biological background and importance of the ap-

proaches used to map and analyze protein-protein interactions. The four following

chapters describe novel computational approaches for the analysis of PPIs and will
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constitute the research contribution of this thesis. Each chapter corresponds to a spe-

cific project, with the addition of background notions related to the research question

tackled in it. Chapter 2 introduces a novel Bayesian algorithm to model contaminants

in AP-MS experiments. Building from the previous chapter, Chapter 3 describes a

new approach derived from AP-MS to identify and computationally assess PPIs inde-

pendently in three different cell compartments of the cell. With the tools developed

in the last two chapters, the resulting high-confidence PPIs can be analyzed as a

network. Chapter 4 presents an algorithm identifying Gene Ontology (GO) terms

that are clustered in PPI networks. Chapter 5 then pushes the limit of the methods

presented in the previous chapter and poses a novel approach for motif discovery

in 5’ untranslated region (UTR) sequences using PPI network information and links

biological functions to RNA sequence motifs. Finally, Chapter 6 summarizes these

research contributions and presents discussions on future works.

1.6 Publications and author contributions

This thesis comprises the full text and figures of four scientific articles, three of

which have been published and one is in preparation for publication. These articles

are listed below in the order they appear in this thesis. I am the first author of each

of them.

• Chapter 2:

M. Lavallée-Adam, P. Cloutier, B. Coulombe, and M. Blanchette. Modeling con-

taminants in AP-MS/MS experiments. Journal of proteome research, 10(2):886–

895, 2010

The design and implementation of the computational tool in this publication was

performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

supervision and biological discussion was written by Philippe Cloutier and me

under Dr. Benoit Coulombe’s supervision.
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• Chapter 3:

M. Lavallée-Adam, J. Rousseau, C. Domecq, A. Bouchard, D. Forget, D. Faubert,

M. Blanchette, and B. Coulombe. Discovery of cell compartment specific protein-

protein interactions using affinity purification combined with tandem mass spec-

trometry. Journal of proteome research, 12(1):272–281, 2012

The design and implementation of the computational tool in this publication was

performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

supervision. The biological methodology and results were produced by Justine

Rousseau, Céline Domecq, Annie Bouchard, Diane Forget under Dr. Benoit

Coulombe’s supervision, while the mass spectrometry analysis was performed by

Dr. Denis Faubert.

• Chapter 4:

M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of locally over-

represented GO terms in protein-protein interaction networks. Journal of Com-

putational Biology, 17(3):443–457, 2010

The design and implementation of the computational tool in this publication was

performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

supervision.

• Chapter 5:

M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of functional

sequence motifs in human 5’ UTRs based on local enrichments in a protein-

protein interaction network. Manuscript in preparation.

The design and implementation of the computational tool in this manuscript was

performed by me under Dr. Mathieu Blanchette’s and Dr. Benoit Coulombe’s

supervision.



CHAPTER 2
Modeling contaminants in AP-MS/MS experiments

2.1 Preface

AP-MS is among the most popular methods to identify PPIs. Nevertheless,

it still suffers from important specificity issues. Typically, the majority of interac-

tions reported by unfiltered AP-MS experiments are false positives. The AP-MS

experimental pipeline is long and requires several manipulations that create multiple

sources of contamination of the results. These include, among other things, contami-

nation of samples with human keratins, non-specific binding of proteins to purification

antibodies, and carry-over of proteins from one LC run to another. However, such

contamination events, which are discussed in this chapter are not the only ways false

positives are added in AP-MS data.

The other main sources of false positives, which are not described in great de-

tails in this chapter, are misidentifications at the MS level when performing the

database search for peptide-spectrum matches (PSMs). Misidentifications often orig-

inate from MS instrument noise, contamination from non-peptide molecules, peptides

with PTMs not specified in the database search parameters, or incorrect charge-state

determination [82]. Distinguishing correct from incorrect PSMs is not a trivial task.

While some researchers rely on manual verification for small datasets, most turn

themselves to various filtering criteria to process the thousands of spectra produced

by mass spectrometers in AP-MS protocols. However, the latter strategy has unknown

performances and limited portability as it heavily depends on the sample preparation

and the type of MS instrument used [109]. More elegant statistical models have been

developed to address this problem. One of the most popular tools is called Peptide

Prophet [109]. It uses a Bayesian approach to evaluate each PSM by computing a

25
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probability that it is correct using MS database search scores and the number of tryp-

tic termini of matched peptides. It is then possible to compute the probability that

a protein is present in a sample using its corresponding PSM confidence scores [161].

The method presented in this chapter does not (and was not designed to) tackle such

problem. It could however benefit from either pre-processing the dataset analyzed

with tools like Peptide Prophet or use their output as a basis for its input.

The approach introduced in this chapter, Decontaminator, uses a small number

of biological context specific AP-MS negative controls to model the contaminants

present in the AP-MS experimental setup. Soon after Decontaminator was made

publicly available, a generalized version of a piece of software performing a similar

task, Significance Analysis of Interactome (SAINT) 2.0, was published [34]. This

version now addresses problems that are described later in this chapter. SAINT 2.0

can now use control experiments when available and only requires a limited number of

experiments to accurately assess PPIs without any manual labelling of hub proteins

in the input network [34]. Although Decontaminator and SAINT 2.0 are built from

the same principles and achieve similar goals, their methods differ. We noted, after

the publication of SAINT 2.0, that both Decontaminator and SAINT 2.0 slightly

outperformed each other depending on the dataset analyzed. Decontaminator could

be improved in the future by including the use of purification replicates in its model

(a capability of SAINT 2.0 [34]).

In this chapter, Decontaminator was benchmarked against other approaches us-

ing the union of the BioGRID [210] and HPRD [179] databases to maximize the

size of the reference dataset. An alternative approach would have been to compare

approaches using a small but very high quality PPI dataset composed of interac-

tions supported by multiple publications such as the one that can be obtained from

the iRefWeb database [217]. Decontaminator was also benchmarked against other

methods using GO terms [4]. While the GO database may contain false positive an-

notations and that these annotations may be biased towards proteins that have been
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the subject of numerous publications, it remains an interesting validation tool since

it is expected that proteins that are truly interacting are more likely to share a GO

term annotation than those involved in a false positive PPI. Although GO semantic

similarity scores [97] of the PPIs in the predicted sets of valid interactions were not

used to compare each approach, they consist in another interesting benchmarking

method.

On another note, reproducibility of AP-MS experiments is often challenged by

the complexity and high variability of the methods (see Figure 2–1). To address this

issue from a computational perspective, a program, ROCS, was recently developed

to compute reproducibility indices for AP-MS experiments in order to discriminate

reproducible experiments from outliers [48]. Such method could be used in combi-

nation with Decontaminator to identify the most reproducible controls and leave out

the outliers in order to maximize the modeling accuracy of contaminants in a set of

experiments.

Protein expression levels in the biological sample under study may also be used

as complementary data to assess the quality of PPIs. Indeed, proteins with high

expression levels are likely to be contaminants in a certain sample if their affinity for

the antibody used for the AP-MS experiment is reasonably high. Such data could

be obtained from protein expression measurements or from predictions made using

mRNA concentrations and sequence signatures [221].

Lately, a repository of AP-MS control experiments, CRAPome, was launched

[153]. This database contains 343 controls of various types. CRAPome could reveal

to be a great resource for laboratories performing small-scale AP-MS experiments.

Small numbers of controls are often not sufficient to capture the majority of possible

contaminants in a given experimental setup. Since AP-MS controls are typically bait-

independant, CRAPome controls can be used to complement controls from a given

laboratory to better identify contaminants present in this laboratory’s dataset.
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NEWS AND VIEWS

for example, varying the constructs, the cell  
system or the execution of the assay can 
increase the overall sensitivity2,8.

The data obtained by Varjosalo et al.1 suggest 
that similar strategies may work for charting 
the human interactome by AP-MS. Despite the 
standardized experimental workflow, some dif-
ferences remained between the labs, and two-
thirds of the overall variability was introduced 
during sample preparation. Importantly, at least 
some of the interactions detected in only one lab 
were previously documented or biologically very 
plausible. Thus, remaining differences in the 
experimental execution increased the detection 
of reliable interactions. Future experiments may 
systematically evaluate the benefit of different 
AP-MS versions to find protocols that together 
maximize sensitivity without compromising data 
quality. To take this approach, robust data analy-
sis tools to differentiate reliable from spurious 
interaction identifications will be critical, and 
researchers are developing such methods10.

In the past few years, notable progress has 
been made in the technical and conceptual 
understanding of both binary and protein 
complex–based interactome mapping technol-
ogies. Varjosalo et al.’s work1 significantly adds 
to this understanding and sets a high bar for 
the reproducibility of protein complex–based 
interactome analysis that future collaborative 
AP-MS experiments will have to surpass. At the 
same time, the results impressively underscore 
the importance and power of standardization 

and common protocols to tame the complexi-
ties of protein biochemistry. It is an important 
milestone on the way toward a concerted proj-
ect to map the human interactome network.
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Figure 1 | Sources of variation in AP-MS experiments. (a) In a typical AP-MS pipeline, experimental variation at every stage of the complex process can 
originate from reagent differences between batches and suppliers, to even small protocol, instrument, instrument setting and data analysis differences,  
all of which affect which interactors and which contaminants are identified. LC-MS, liquid chromatography–mass spectrometry. (b) By standardizing all  
steps in their AP-MS pipeline (dashed lines), Varjosalo et al.1 achieved a mutual reproducibility of >80%, as compared to that of noncoordinated studies in 
yeast (20%). The strategy opens the door for collaborative large-scale human interactome mapping.
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A revolution coming to a classic 
model organism
David Jonah Grunwald

Classic gene targeting and gene replacement can now be achieved in 
zebrafish after cleaving the genome with engineered nucleases in the 
presence of donor DNA. This simple-to-implement method enables 
new classes of biological study in this important model organism.

David Jonah Grunwald is in the Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA. 
e-mail: grunwald@genetics.utah.edu   

Since George Streisinger introduced the 
zebrafish as a model organism that could 
yield special insights into the genetic and 
cellular basis of vertebrate biology1, work 

with zebrafish has helped provide a unify-
ing  molecular model of tissue origins in the 
vertebrate embryo, brought profound insights 
to our understanding of the evolution of 
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Figure 2–1: Graphical representation of the multiple sources of variation in the AP-
MS protocol (adapted from a figure from an article by Pascal Braun [19]).

Protein MS sensitivity has been dramatically increasing over the last few years.

In the context of AP-MS, this gain does not only allow the detection of less abundant

PPIs, but also results in the observation of less abundant contaminants. This increases

the number of contaminants in the results and demonstrates the need of approaches,

such as Decontaminator, which are capable of modeling contamination events.

The remaining content of this chapter is reprinted with permission from:
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• M. Lavallée-Adam, P. Cloutier, B. Coulombe, and M. Blanchette. Modeling con-

taminants in AP-MS/MS experiments. Journal of proteome research, 10(2):886–

895, 2010

Copyright (2011) American Chemical Society.

2.2 Abstract

Identification of protein-protein interactions (PPI) by affinity purification cou-

pled to tandem mass spectrometry (AP-MS/MS) produces large datasets with high

rates of false positives. This is in part because of contamination at the AP level

(due to gel contamination, non-specific binding to the TAP columns in the context

of tandem affinity purification, insufficient purification, etc.). In this paper, we intro-

duce a Bayesian approach to identify false positive PPIs involving contaminants in

AP-MS/MS experiments. Specifically, we propose a confidence assessment algorithm

(called Decontaminator) that builds a model of contaminants using a small number

of representative control experiments. It then uses this model to determine whether

the Mascot score of a putative prey is significantly larger than what was observed

in control experiments and assigns it a p-value and a false discovery rate. We show

that our method identifies contaminants better than previously used approaches and

results in a set of PPIs with a larger overlap with databases of known PPIs. Our

approach will thus allow improved accuracy in PPI identification while reducing the

number of control experiments required.

2.3 Introduction

The study of protein-protein interactions (PPI) is crucial to the understanding

of biological processes taking place in cells [222]. Affinity purification (AP) combined

with mass spectrometry (MS) is a powerful method for the large scale identification

of PPIs [37, 73, 74, 119, 90, 20]. The experimental pipeline of AP consists in first

tagging a protein of interest (bait) by genetically inserting a small peptide sequence
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(tag) onto the recombinant bait protein. The bait protein is affinity purified, together

with its interacting partners (preys), which are identified using MS. However, this

type of experiment is prone to false positive identifications for various reasons [76],

which can seriously complicate the downstream analyses. In the context of affinity

purification, contamination of manually-handled gel bands, inadequate purification,

purification of specific complexes from abundant proteins, and non-specificity of the

tag antibody used are some of the many ways contaminants can be introduced in the

experimental pipeline before the mass spectrometry (MS) phase. These contaminants,

added to the already large set of valid preys of a given bait, create even longer lists

of proteins to analyze. While common contaminants can be identified easily by a

trained eye, sporadic contaminants can be considered erroneously as true positive

interactions. In addition to contaminants, false positive PPIs can be introduced at

the tandem mass spectrometry phase (MS/MS) step [18]. For example, peptides

of proteins with low abundance or involved in transient interactions can be difficult

to identify because of the lack of spectra. Such peptides can be misidentified by

database searching algorithms such as Mascot [174] or SEQUEST [58]. Although

many approaches have been proposed in order to limit the number of mismatched

MS/MS spectra (e.g. Peptide Prophet [109] and Percolator [105]), the modeling

and detection of contaminants, which is the problem we consider in this paper, has

received much less attention.

2.3.1 Related work

A number of experimental and computational approaches have been proposed

to reduce the rate of false positive PPIs. Several steps in the experimental pipeline

can be optimized to minimize contamination. In-cell near physiological expression of

the tagged proteins is preferred to over-expression to prevent spurious PPIs. Also,

additional purifications could be performed in order to remove contaminating proteins

from affinity purified eluate. The drawback of an increased number of purifications

is a loss of sensitivity, as transient or weak PPIs will be more likely to be disrupted
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[37]. When performing gel-based sample separation methods before MS/MS, manual

gel band cutting can introduce contaminants such as human keratins in the sample.

This can be addressed by robot gel cutting, although this increases equipment cost.

As an alternative, gel-free protocols simply use liquid chromatography to separate

the peptide mixture before MS/MS. However, depending on the complexity of the

mixture, less separation might result in an important decrease in sensitivity. Finally,

liquid chromatography column contamination from previous chromatographic runs

is also important to consider. Although it is possible to wash the column to eluate

peptides from previous chromatographic runs, very limited washing is typically done

because of its time consumption.

Several computational methods have been used to identify the correct PPIs from

AP-MS/MS data [190, 206]. Some involve the use of the topology of the network

formed by the PPIs (e.g. number of times two proteins are observed together in a

purification to assign a Socio-affinity index [74] or a Purification Enrichment score

[39]. Others used various combinations of data features such as mass spectrometry

confidence scores, network topology features and reproducibility data with machine

learning approaches in order to assign probabilities that a given PPI is a true positive

[119, 61, 101, 37]. However, with each of these methods, contaminants would often

be classified as true interactions because of their high database matching scores and

reproducibility. Such sophisticated machine learning procedures can be prone to over-

fitting and the use of small, manually curated, but often biased training set, such as

MIPS complexes [156] as used by Krogan et al. [119] or a manually selected training

set as used by our previous approach [101, 37], can be problematic depending on

the nature of the data analyzed. Finally, Chua et al. combined PPI data obtained

from several different experimental techniques in an effort to reduce false positives

[36]. Although such methods will be very efficient at filtering contaminants, they will

typically suffer from poor sensitivity.
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All of these methods attempt to model simultaneously several sources of false

positive identifications including contamination but also, for example, misidentifica-

tion of peptides at the mass spectrometry level. For instance, scoring methods relying

on the topology of PPI networks will tend to assign low scores to proteins being ob-

served as preys in several experiments because they are likely contaminants, while

also scoring poorly proteins largely disconnected from the network, which are poten-

tial database misidentifications. However, none of these attempt to directly model

and filter out contaminants resulting from AP experiments. Deconvoluting the mod-

eling of false identification into AP contaminants modeling and database matching of

MS/MS spectra will potentially lead to methods identifying PPIs with higher accu-

racy. To date, most computational methods aiming specifically at filtering out likely

contaminants have been quite simplistic. Several groups maintain a manually assem-

bled list of contaminants and then systematically reject any interactions involving

these proteins [76]. However, it is possible that a contaminant for one bait is a true

interaction for another, suggesting that a finer model of contaminant level would be

beneficial. Recently, the Significance Analysis of Interactome (SAINT), a sophisti-

cated statistical approach attempting to filter out contaminant interactions resulting

from AP-MS/MS experiments was introduced [20]. SAINT assesses the significance of

an interaction according to the semi-quantitative peptide count measure of the prey.

It discriminates true from false interactions using mixture modeling with Bayesian

statistical inference. However, the currently available version of SAINT (1.0) lacks

the flexibility to learn contaminant peptide count distributions from available control

data and requires a considerable number of baits (15 to 20) in order to yield optimal

performances. Moreover, although not necessary, manual labeling of proteins as hubs

or known contaminants is required to achieve the best possible accuracy.1

1 It is worth noting that another version of SAINT is currently under development
and promises to address many of these issues.
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Once the tagging has been performed, some affinity purification methods require

the vector of the bait to be induced so that the tagged protein is expressed. An

alternate method to identify likely contaminant PPIs for a given bait is to perform a

control experiment where the expression of the tagged protein is not induced prior to

immunoprecipitation. It is then possible to compare mass spectrometry confidence

scores (e.g. from Mascot [174]) for the preys from both the control and induced

experiments. For example, in Jeronimo et al. [101], only preys with Mascot score

at least 5 times larger in the induced experiment than the control experiment were

retained, the others being considered as likely contaminants. There are limitations

to such false positive filtering procedure. First, this method is expensive in terms of

time and resources, since the cost is doubled for each bait studied. Second, because

of the noisy nature of MS scores for low-abundance preys, comparing a single induced

experiment to a single non-induced experiment is problematic. Pooling results from

several non-induced experiments could be beneficial. Third, some baits will show

leaky expression of the non-induced vector. Depending on the level of leakiness,

several true interactions may be mistakenly categorized as false positives.

Here, we propose a confidence assessment algorithm (Decontaminator) using only

a limited number of high quality controls sufficient to the proper identification of

contaminants obtained from AP-MS/MS experiments without prior knowledge about

neither hubs nor contaminants. By pooling control experiments, one-to-one com-

parisons of induced and non-induced experiment Mascot scores are avoided. Our

fast computational method thus provides accurate modeling of contaminants while

limiting resource usage.

2.4 Methods

We propose a Bayesian approach called Decontaminator that makes use of a

limited number of non-induced control experiments in order to build a model of

contaminant levels as well as to analyze the noise in the measurements of Mascot
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scores. Decontaminator then uses this model to assign a p-value and an associated

false discovery rate (FDR) to the Mascot score obtained for a given prey. We start by

describing the AP-MS/MS approach used to generate the data, and then describe for-

mally our contaminant detection algorithm. Alternate approaches are also considered

and their accuracy is compared in the Results section.

2.4.1 Biological data set

The Proteus database contains the results of tandem affinity purification (TAP)

combined with MS/MS experiments performed for a set E of 89 baits, both in non-

induced and induced conditions [69, 37, 101, 120]. The baits selected revolve mostly

around the transcriptional and splicing machineries. The set of proteins identified as

preys by at least one bait (in either the induced or non-induced experiments) consists

of 3619 proteins. Detailed TAP-MS/MS methodology has been described elsewhere

[37]. Briefly, a vector expressing the TAP-tagged protein of interest was stably trans-

fected in HEK 293 cells. Following induction, the cells were harvested and lysed

mechanically in detergent-free buffers. The lysate was cleared of insoluble material

by centrifugation and the tagged protein complexed with associated factors were pu-

rified twice using two sets of beads each targeting a different component of the TAP

tag. The purified protein complexes were separated by SDS-PAGE and stained by

silver nitrate. The acrylamide gel was then cut in its entirety in about 20 slices that

were subsequently trypsin-digested. Identification of the tryptic peptides obtained

was performed using microcapillary reversed-phase high pressure liquid chromatog-

raphy coupled online to a LTQ-Orbitrap (Thermo Fisher Scientific) quadrupole ion

trap mass spectrometer with a nanospray device. Proteins were identified using the

Mascot software [174] (Matrix Science) (see Appendix for software information). For

some of the baits tested, the promoter was leaky, which resulted in the expression, at

various levels, of the tagged protein, even when it was not induced. These baits were

identified by detection of the tagged protein in the non-induced samples and these

samples were excluded from our analysis. A set B ⊂ E of 14 non-leaky baits was
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selected for this study: B = {b1, ..., b14} = {SFRS1, NOP56, TWISTNB,PIH1D1,

UXT,MEPCE, SART1, RP11− 529I10.4, TCEA2, PDRG1, PAF1, KIAA0406,

POLR1E,KIN}. The set P of preys they detected in at least one of these 28 induced

and non-induced experiments contains 2415 proteins. Out of these, 1067 proteins were

unique to a single non-induced bait and 808 were detected more than once in the set

of 14 controls, while 540 were only observed in induced experiments. We denote by

MNI
b,p the Mascot score obtained for prey p in the experiment where bait b is not

induced, and by M I
b,p the analogous score in the induced experiment. Note that for

most pairs (b, p), where b ∈ B and p ∈ P , p was not detected as a prey for b, in which

case we set the relevant Mascot score to zero.

In the non-induced experiments, the number of preys detected for each bait varies

from 206 to 626, with a mean of 316. These preys are likely to be contaminants,

as the tagged bait is not expressed. In induced experiments, the number of preys

per bait goes from 5 to 516, with a mean of 135. It may appear surprising that

there are on average more preys detected in the non-induced experiments than in the

induced ones. This is likely due to the fact that the presence of high-abundance preys

in the induced experiments masks the presence of lower-abundance ones, including

contaminants. Still, a significant fraction of the proteins detected in the induced

condition are likely contaminants.

2.4.2 Computational analysis

An ideal model of contaminants would specify, for each prey p, the distribution

of the MS scores (in our case, Mascot score [174]) in non-induced experiments, which

we call the null distribution for p. However, accurately estimating this distribution

would require a large number of non-induced experiments and the cost would be

prohibitive. Instead, we use a small number of non-induced experiments and make

the assumption that preys with similar average Mascot scores have a similar null

distribution (this assumption is substantiated in the Discussion section). This allows
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us to pool non-induced scores from different preys (if they have similar Mascot score

averages) in order to build a more accurate noise model. Thus, results from a few

control experiments are sufficient to build a contaminant model that can then be

used to analyze the results of any number of induced experiments performed under

the same conditions. Figure 2–2 summarizes our approach.

Our goal is now to use the data gathered from induced and non-induced AP-

MS/MS experiments in order to build a model of noise in Mascot score measurements

and eventually be able to assess the significance of a given Mascot scoreM I
b,p. Let M̄NI

p

be the unobserved true mean of Mascot scores for prey p in non-induced experiments,

which is defined as the mean of the Mascot scores of an infinite number of non-induced

biological replicates. M̄NI
p can never be observed, but its posterior distribution can

be obtained if a few samples are available. Similarly, define M̄ I
b,p as the average of the

Mascot scores of p of an infinite number of biological replicates of experiments where

b is induced. The essence of our approach is to calculate the posterior distribution

of M̄NI
p , the true mean Mascot score of prey p given our data from non-induced

experiments, and to compare it to the posterior distribution of M̄ I
b,p, the true mean

Mascot score of prey p in an induced experiment, given our observed data M I
b,p. If the

second distribution is significantly to the right of the first, prey p is a likely bona fide

interaction of bait b. If not, p is probably a contaminant and should be discarded.

Before describing our method in details, we give a few examples that illustrate

how it works. Figure 2–3(a) shows an example of an interaction accepted by De-

contaminator. POLR2E obtained a Mascot score of 320 in the induced experiment

of RPAP3 and was only detected twice in control experiments (Mascot scores 38

and 48). From this figure, it can clearly be seen that the resulting posterior dis-

tribution of M̄ I
RPAP3,POLR2E is significantly to the right of the posterior distribution

of M̄NI
POLR2E. Therefore, the RPAP3-POLR2E interaction obtains a small p-value

(0.00018) and FDR (0.013) and is considered a valid interaction. This prediction

is consistent with the literature about this interaction [101], which is present in
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Our proposed Bayesian method shows an improvement in accuracy for the detection of con-

taminant PPIs in our dataset when compared to currently used alternate approaches. We expect

that this decrease in false positive interactions will facilitate the analysis of PPI networks and ease

the characterization of novel biological pathways. At the same time, our approach will greatly

reduce experimental costs by cutting the number of most experimental manipulations almost in

half. This expense reduction is due to the much smaller number of control experiments needed

by our algorithm compared to the methods described in Jeronimo et al,16 where each induced ex-

periment requires a matched non-induced experiment for its interactions to be classified. It is also

worth noting that in theory, the control experiments provided as input to the algorithm could all be

performed with the same bait protein. However, we used non-induced experiments produced from

different baits, by different experimentalists at different time periods. These biological and tech-

nical replicates allow us to factor in the noise resulting from the change of baits in TAP-MS/MS

experiments and technical variation.

Advantages

PPIs are often viewed and studied as a network. Several algorithms (e.g.13,14,16) use the topology

of this network to determine whether an interaction is a likely true or a false positive. The reasoning

is based on the fact that if two putatively interacting proteins also share similar sets of interacting

partners, they are more likely to form a complex and therefore to be truly interacting. However, this
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Figure 2–2: Decontaminator workflow. First, control and induced experiments are
pooled to build a noise model for each. These noise models are then used to assign a
p-value to each prey obtained upon the induction of a bait. Finally, a false discovery
rate is calculated for each p-value.
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databases such as BioGRID [210]. Conversely, Figure 2–3(b) shows the posterior dis-

tribution of M̄ I
RPAP3,SAMD1 of SAMD1 for the induced experiment of RPAP3 (Mascot

score: 102). The distribution is largely overlapping with the posterior distribution of

M̄NI
SAMD1, which obtained Mascot scores of 95, 53, 147 and 164 in control experiments

but was unobserved in 10 other controls. Clearly the RPAP3-SAMD1 interaction is

not very reliable because its Mascot score does not exceed by enough some of the ob-

served non-induced Mascot scores. Decontaminator assigns a large p-value (0.18) and

FDR(> 0.9) and labels the interaction as a contaminant. Of note, this interaction

would often have been incorrectly classified by methods based on a direct comparison

of Mascot scores between matched induced and non-induced experiments (as used,

for example, in Jeronimo et al.[101]), as SAMD1 shows up in control experiments

only four out of 14 times. Finally, Figure 2–3(c) shows the results for the KPNA2-

ACTB interaction. ACTB, like other actin proteins, is a known contaminant for our

experimental pipeline, obtaining Mascot scores varying from 35 to 210 for eight of the

controls. However, the Mascot score observed for this interaction (793) is sufficiently

higher to allow the interaction to be predicted as likely positive (p-value: 0.005, FDR:

0.17). Beta-actin (ACTB) is known to shuttle to and from the nucleus [223], a process

which may directly require karyopherin alpha import protein KPNA2. Beta-actin and

actin-like proteins have been shown to be part of a number of chromatin remodeling

complexes [165] and analysis of the KPNA2 purification revealed a strong presence for

such complexes (TRRAP/TIP60 & SWI/SNF-like BAF complexes). Therefore, it is

possible that these remodelers are assembled in the cytoplasm and imported together

to the nucleus via KPNA2. This example shows how the method can differentiate

specific interactions from classic contamination.

The Decontaminator approach involves four steps (see Figure 2–2):

1. Use non-induced experiments for different baits as biological replicates and ob-

tain a noise model defined by Pr[MNI
b,p |M̄NI

p ] and Pr[M I
b,p|M̄ I

b,p].
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Figure 2–3: Plots of both the posterior distributions of M̄NI
p and posterior distribu-

tions of M̄ I
b,p for three different interactions. The blue curve is the posterior distri-

bution of M̄NI
p and the red curve is the posterior distribution of M̄ I

b,p. Orange X’s
positions on the x-axis are observed Mascot scores of the prey in control experiments.
When the prey was not detected for a given control, an X is drawn on the x-axis
close to the origin. The blue X’s position on the x-axis is the Mascot score of the
prey in the induced experiment for the corresponding bait. (a) The RPAP3-POLR2E
interaction is an example of an interaction considered valid by the algorithm (b) The
RPAP3-SAMD1 interaction is an example of an interaction where the prey is con-
sidered as a contaminant. (c) KPNA2-ACTB is an example of an interaction that
is predicted as positive, even though ACTB is often observed as a contaminant (but
with lower Mascot scores) in control experiments.

2. For each protein p ∈ P , calculate the posterior distribution of M̄NI
p given

MNI
b1,p
,MNI

b2,p
, ...,MNI

b14,p
. Similarly, calculate the posterior distribution of M̄ I

b,p,

given M I
b,p.

3. For each pair (b, p) ∈ B × P , assign a p-value to M I
b,p:

p-value(M I
b,p) = Pr[M̄NI

p ≥ M̄ I
b,p|M I

b,p,M
NI
b1,p
,MNI

b2,p
, ...,MNI

b14,p
]

4. Using the non-induced and full induced data sets, assign a false discovery rate

(FDR) to each p-value.

Each step is detailed further below.



40 Chapter 2. Modeling contaminants in AP-MS/MS experiments

2.4.2.1 Step 1: Building a noise model from non-induced experi-
ments

The set of 14 TAP-MS/MS experiments where the bait’s expression was not

induced can be seen as a set of biological replicates of the null condition. We use

these measurements to assess the amount of noise in each replicate, i.e. to estimate

Pr[MNI
b,p |M̄NI

p ], the probability of a given observation MNI
b,p , given its true mean Mas-

cot score M̄NI
p . This distribution is estimated using a leave-one-out cross-validation

approach on the set of 14 non-induced experiments. Specifically, for each bait b ∈ B,

we compare MNI
b,p to µ 6=b,p, the corrected average (see Appendix) of the 13 Mascot

scores of p in all non-induced experiments except where bait b was used. µ 6=b,p pro-

vides a good estimate of M̄NI
p . Let C(i, j) be the number bait-prey pairs for which

bMNI
b,p c = i and bµ 6=b,pc = j. Then, a straight-forward estimator is

Pr[MNI
b,p = x|M̄NI

p = y] = C(x, y)/
∑
x′

C(x′, y).

Note that C is a fairly large matrix (the number of rows and columns is set to

1000; larger Mascot scores are culled to 1000). In addition, aside from the zero-th

column C(∗, 0), it is quite sparsely populated, as the sum of all entries is 40306.

Thus, the above formula yields a very poor estimator. Matrix C therefore needs

to be smoothed to matrix Cs using a k-nearest neighbors smoothing algorithm [66].

Specifically, let Nδ(i, j) = {(i′, j′) : |i− i′| ≤ δ, |j − j′| ≤ δ} be the set of neighboring

matrix cells to entry i, j, for some distance threshold δ. For each entry (i, j) in the

matrix, we choose δ in such a way that Sδ(i, j) =
∑

(i′,j′)∈Nδ(i,j) C(i′, j′) ≤ k and

Sδ+1 =
∑

(i′,j′)∈Nδ+1(i,j) C(i′, j′) > k. Then, Cs is obtained as:

Cs(i, j) =

∑
(a,b)∈Nδ(i,j)

wa,b · C(a, b)∑
(a,b)∈Nδ(i,j)

wa,b
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where

w(a, b) =

 1 if (a, b) ∈ Nδ(i, j)

k−Sδ(i,j)
Sδ+1(i,j)−Sδ(i,j)

if (a, b) ∈ Nδ+1(i, j) \Nδ(i, j)

In our experiments k = 10 has produced the best results.

Finally, we obtain our estimate of the noise in each measurement as

Pr[MNI
b,p = x|M̄NI

p = y] = Cs(x, y)/
∑
x′

Cs(x′, y). (2.1)

The approach proposed so far is appropriate to model noise in non-induced ex-

periments. However, it does not correctly model noise in induced experiments, for

the following reason. The distributions of Mascot scores observed in non-induced

and induced experiments differ significantly, with many more high scores observed

in the induced experiments. High Mascot scores in non-induced data are rare and,

when they do occur, relatively often correspond to cases where a prey p obtains very

low scores with most non-induced baits, but a fairly high score with one particular

bait, resulting in a large difference between MNI
b,p and M̄NI

p . Large Mascot scores are

thus seen as particularly unreliable, which is the correct conclusion for non-induced

experiments, but not for induced experiments. In a situation where high M̄ I
b,p are

frequent, e.g. when b is induced, this does not properly reflect the uncertainty in the

true Mascot score. To address this problem, a correction factor is computed. Let

I(i) be the fraction of (b, p) pairs such that bM I
b,pc = i and let NI(i) be the fraction

of preys with bM̄NI
p c = i. The I and NI distributions are first smoothed using a

k-nearest neighbor approach, then the corrected matrix Cc for the noise model of

Mascot scores for induced experiments is obtained as:

Cc(i, j) = Cs(i, j) · I(j)

NI(j)

The correction is performed by multiplying each entry (i, j) of Cs by the ratio of the

smoothed probabilities of the induced mascot score i and of the true mean Mascot

score j. This correction allows a better estimation of the noise in induced experiments
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by putting more weight in the matrix Cc for larger Mascot scores. (see Appendix for

correction factor derivation.)

2.4.2.2 Step 2: Posterior distribution of M̄NI
p and M̄ I

b,p.

We are now interested in obtaining the posterior distribution of the mean Mascot

score M̄NI
p , given the set of observations MNI

b1,p
, ...,MNI

b14,p
. This is readily obtained

using Bayes rule and the conditional independence of the observations, given their

means:

Pr[M̄NI
p |MNI

b1,p
, ...,MNI

b14,p
] = Pr[M̄NI

p ] ·
14∏
i=1

Pr[MNI
bi,p
|M̄NI

p ]/ζ, (2.2)

where ζ is a normalizing constant and Pr[M̄NI
p = α] = NI(α).

Since observed Mascot scores of induced experiments are also noisy, we estimate

the noise of each Mascot score from an induced experiment as:

Pr[M̄ I
b,p = j|M I

b,p = i] = Cc(i, j)/
∑
j′

Cc(i, j′)

2.4.2.3 Step 3: p-value computation

Given an observed Mascot score M I
b,p for prey p, Decontaminator can now assign

a p-value to this score, which represents the probability that M̄NI
p , the true Mascot

score of p in non-induced experiments, is larger than or equal to M̄ I
b,p, the true Mascot

score for the induced experiment:

p-value(M I
b,p)

= Pr[M̄NI
p ≥ M̄ I

b,p|M I
b,p,M

NI
b1,p
,MNI

b2,p
, ...,MNI

b14,p
]

=
∑
x≥y

Pr[M̄NI
p = x|MNI

b1,p
,MNI

b2,p
, ...,MNI

b14,p
] · Pr[M̄ I

b,p = y|M I
b,p], (2.3)

where the required terms are obtained from Steps 1 and 2.
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2.4.2.4 Step 4: False discovery rate estimation

Although our p-values are in principle sufficient to assess the confidence in the

presence of a given PPI, they may be biased if some of the assumptions we make

were violated. A hypothesis-free method to assess the accuracy of our predictions is

to measure a false discovery rate (FDR) for each PPI. For a given p-value threshold t,

FDR(t) is defined as the expected fraction of predictions (interactions with p-values

below t) that are false positives (i.e. due to contaminants). We use a leave-one-

out strategy to estimate the FDR: For every bait b in B, we compute p-value(MNI
b,p )

for all preys p ∈ PbNI (the set of preys detected when b was the control bait) and

p-value(M I
b,p) for all preys p ∈ PbI (the set of preys detected when b was induced),

based on the set of non-induced experiments excluding bait b. Then, we obtain

FDR(t) =

∑
b∈B

∑
p∈P

bNI

1
p-value(MNI

b,p
)<t

|B×P
bNI
|∑

b∈B

∑
p∈P

bI

1
p-value(MI

b,p
)<t

|B×P
bI
|

where 1c = 1 if c is true and 0 otherwise.

2.4.3 Five alternate approaches

We considered five alternate approaches to compare to Decontaminator:

1. Significance Analysis of Interactome (SAINT) [20], without any prior knowledge

about hubs or contaminants. SAINT was executed with abundance, sequence

length and bait coverage normalization and the following parameters: burn-in

period: 2000, iterations: 20000, and empirical frequency threshold: 0.1.

2. SAINT with the same set of parameters except that hubs were manually la-

belled. All 24 tagged proteins in the dataset that were identified as preys in 10

or more other induced bait experiments were labeled as hubs.
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3. The MScore method simply computes

r(b, p) =

 M I
b,p if M I

b,p > 5 ·MNI
b,p

0 otherwise

and reports the interaction as true positive if r(b, p) > t, for some threshold t.

This is the approach that was used as primary filtering by Jeronimo et al. [101]

and Cloutier et al. [37].

4. The MRatio method computes r′(b, p) = M I
b,p/(1+MNI

b,p ). It reports the interac-

tion as true positive if r′(b, p) > t′, for some threshold t′. We note the MScore

and MRatio approaches are only applicable if both induced and non-induced

experiments are performed for all baits of interest.

5. The Z-score method assigns a Z-score to each Mascot score, as compared to

the prey-specific mean M̄NI
p and standard deviation σ(MNI

p ) for prey p across

all baits: Z-score(b, p) = (M I
b,p − M̄NI

p )/σ(MNI
p ). Compared to our Bayesian

approach, the Z-score method may be advantageous if the Mascot score variance

of contaminants with similar averages varies significantly from prey to prey. Our

approach, by pooling all non-induced Mascot score observations from different

preys, makes the assumption that such variation is low. If this is not the case

the modeling accuracy of contaminants will be negatively affected. However,

the Z-score approach works under the assumption that noise in Mascot scores

is normally distributed which is not always the case. In addition, the mean

and variance estimates are obtained from only as many data points as there are

control experiments available, as no pooling is performed.

2.4.4 Implementation and availability

The proposed methods are implemented in a fast, platform independent Java

program. Given a representative set of AP-MS/MS control experiments our software

computes FDRs for all interactions identified in induced experiments as we describe
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here. Note that any protein identification mass spectrometry confidence scores (SE-

QUEST Xcorr, spectral counts, peptide counts, ...) could replace the Mascot scores

used in our software package by applying simple modifications. The Java program is

available at: http://www.cs.mcgill.ca/~blanchem/Decontaminator.

2.5 Results

2.5.1 Contaminant detection accuracy

We start by studying the ability of Decontaminator to tease out contaminants

from true interactions. Because neither contaminants nor true interactions are known

before hand, one way to assess our method and compare it to others is to consider the

number of bait-prey pairs from induced experiments that achieve a p-value at most

t to the number of such pairs in non-induced experiments. The ratio of these two

numbers, the false discovery rate FDR(t), indicates the fraction of predictions from

the induced experiments that are expected to be due to contaminants. One can thus

contrast two prediction methods by studying the number of bait-prey pairs that can

be detected at a given level of FDR. Figure 2–4 shows the cumulative distributions of

FDRs for data from induced experiments, for Decontaminator as well as the Z-score

approach described in the Methods section. Since the MScore and MRatio approaches

require matched induced and non-induced experiments for every bait, FDRs cannot

be computed for them. FDRs comparison is also not possible with SAINT because it

scores the entirety of the input dataset without possibility of leaving out a subset of

the data. It can be observed that at low FDRs, Decontaminator always yield a larger

set of predicted interactions than the Z-score approach. For example, at 1%, 3%,

and 15% FDRs, our approach yields 140%, 74%, and 43% more interactions than the

Z-score approach. Alternatively, for the same number of interactions predicted, say

2000, the FDR of Decontaminator (∼1%) is more than three times lower than that

of the Z-score approach (∼3.4%).
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Figure 2–4: Cumulative distributions of the FDRs obtained from Decontaminator
and the Z-score approaches. Each curve shows the number of interactions that can
be predicted positive, as a function of the false discovery rate tolerated.
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Figure 2–5: Cumulative distributions of the FDRs obtained from Decontaminator
with 14, 12, 10, 8, and 6 controls. For sets of controls of size smaller than 14,
we show the average cumulative distributions over 100 randomly selected subsets of
controls.
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2.5.2 Number of control experiments required

The required number of control non-induced experiments needed to build an ac-

curate model of contaminants is an important issue to consider. So far we used all

14 available controls to filter out contaminants. Figure 2–5 shows the cumulative

distributions of the FDRs obtained from Decontaminator with different number of

controls. It can be observed that there is an increase in the number of high confi-

dence (< 20% FDR) predictions when using a larger number of control baits. For

example at 2% FDR we obtain 2855 interactions using the set of 14 control exper-

iments but only 2440 with 12 controls, 2169 with 10 controls, 1858 with 8 controls

and 1620 with 6 controls. These results show that the more high quality control baits

are available, the better our algorithm will perform. It can also be observed that

the prediction accuracy decreases significantly when fewer than 8 controls are used.

However, this deterioration is not striking and therefore shows that even with very

few control experiments it is possible to use Decontaminator to detect contaminants

in AP-MS/MS experiments reasonably accurately. This aspect is particularly impor-

tant for small scale studies where only a few baits are analyzed and for laboratories

where the number of control experiments that can be performed is limited.

2.5.3 External validation

In order to evaluate the quality of our contaminant detection method we com-

pared it to the five other methods described above on the basis of their ability to

detect known PPIs or PPIs involving pairs of proteins of similar function.

We first used the union of two high-quality PPI databases, BioGRID [210] and

HPRD [179] (both downloaded on Feb 1st 2010), to assess the quality of the pre-

dictions made by each method. Note that BioGRID PPIs that originated from the

curation of our own previously published dataset [101] were excluded from the anal-

ysis. Since a small fraction of all PPIs are known, we do not expect a large fraction
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of our predictions to be found in these databases. However, clearly, the size of the

overlap is a good indication of the accuracy of the methods. Figure 2–6 shows the

fraction of positively predicted PPIs present in the merged database for the six meth-

ods described above, as a function of the number of PPIs predicted. For all six

methods, high-confidence predictions overlap the two databases significantly more

than low-confidence predictions. However, at any high confidence FDR level, the set

of predicted interactions produced by Decontaminator always has a larger overlap

than any of the alternate methods. The Z-score method also outperforms the other

four alternate methods. For example, with a predicted set of 2000 PPIs (FDR of 1%

for Decontaminator), 7.1% of the interactions overlap with the merged database for

Decontaminator, 6.6% for the Z-score approach, 5.8% for SAINT, 5.7% for SAINT

without manual labeling of hubs, 5.8% for the MScore, and only 4.9% MRatio meth-

ods. On average, Decontaminator results in a predicted set of PPIs with ∼ 40%

more overlap with known PPIs than that obtained with the MRatio methods from

Jeronimo et al. [101], ∼ 20% more than both types of runs of SAINT, ∼ 15% more

than the MScore method, and ∼ 5% more than the Z-score method. We assessed

the statistical significance of the differences between the overlaps obtained by each

method using a two sample z-test. Decontaminator’s performance significantly ex-

ceed those of the two SAINT variants, MScore, and MRatio (p-value ≤ 0.05), but is

not significantly better than that of the Z-score approach (p-value = 0.26).

The Gene Ontology (GO) annotation database [4] associates a set of terms to

characterized proteins, describing their functions, localization, and the biological pro-

cesses in which they are involved. We say that a GO term is x%-specific if less than

x% of the proteins in our data set are annotated with this term [37]. We assume

that if two interacting proteins are sharing a x%-specific term (for x relatively small),

they have greater chances to be truly interacting. Therefore, we applied the six fil-

tering methods on our data set and compared the fraction of the positively predicted

interactions for which the proteins were sharing at least one 10%-specific GO term
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Figure 2–6: Fraction of positive predictions present in the HPRD and BioGRID
merged databases (y-axis), for a varying number of predicted interactions (x-axis) by
six filtering methods(MRatio, MScore, Z-score, SAINT without hub labeling, SAINT
with hub labelling and Decontaminator.
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(Figure 2–7). The PPIs predicted by our Bayesian approach are consistently more

supported by shared GO annotations than those made by the five other approaches.

For a set of 2000 positively predicted PPIs, 28.6% of the PPIs predicted by Decon-

taminator had both proteins sharing at least one 10%-specific GO term, compared to

26.7% with the Z-score, 26.3% with the MScore, 23.8% with SAINT and 23.7% with

SAINT without hub labeling and 23.5% with the MRatio. The advantage of Decon-

taminator is statistically significant for all comparisons (p-value < 0.05; two-sample

z-test), except against the Z-score approach, for which the advantage is marginal

(p-value = 0.095). Similar patterns are observed for most other values of GO term

specificity (x). Even though sharing a specific molecular function, biological process

or cellular component does not guarantee that two proteins are interacting, we believe

that this improved enrichment for shared GO terms reflects the higher quality of our

contaminant detection method.

Overall, one might argue that the differences between Decontaminator and the

Z-score approach are not striking. However, when referring back to Figure 2–4, it is

clear that Decontaminator yields a much larger set of predictions for a given FDR

when compared to the Z-score approach. It is possible that the external valida-

tion sets chosen are too small to demonstrate the importance of the improvement of

Decontaminator over the Z-score approach as easily as it can be seen in Figure 2–4.

2.6 Discussion

Decontaminator shows an improvement in accuracy for the detection of contami-

nant PPIs in our dataset when compared to currently used alternate approaches. We

expect that this decrease in false positive interactions will facilitate the analysis of

PPI networks and ease the characterization of novel biological pathways. At the same

time, our approach will greatly reduce experimental costs by cutting the number of

most experimental manipulations almost in half. This expense reduction is due to the

much smaller number of control experiments needed by our algorithm compared to
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Figure 2–7: Fraction of positively predicted PPIs for which the interacting partners
share at least a 10%-specific GO term (y-axis), for a given number of predicted inter-
actions (x-axis) by six filtering methods(MRatio, MScore, Z-score, SAINT without
hub labeling, SAINT with hub labeling and Decontaminator.
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methods such as that described in Jeronimo et al. [101], where each induced experi-

ment requires a matched non-induced experiment for its interactions to be classified.

It is also worth noting that in theory, the control experiments provided as input to

the algorithm could all be performed with the same bait protein. However, we used

non-induced experiments produced from different baits, by different experimentalists

at different time periods. These biological and technical replicates allow us to fac-

tor in the noise resulting from the change of baits in TAP-MS/MS experiments and

technical variation.

2.6.1 On the impact of the protein-protein interaction discovery experi-
mental design

PPIs are often viewed and studied as a network. Different strategies have been

applied in order to decide which proteins should be tagged first in order to build this

network. Some groups use a molecular function centric approach and choose as baits

a set of proteins performing a specific type of molecular functions, such as kinases,

methyltransferases, or phosphatases [20]. Others use a complex-centric approach and

orient their study around specific biological processes and complexes, such as the RNA

polymerase II [159, 101, 37], tagging several interacting partners to obtain a dense,

focussed network. Other impressive projects focused on whole interactome mapping

of particular organisms by tagging most of their known proteins to analyze the protein

complexes present in their interaction networks [119, 74, 61]. The PPIs obtained with

those strategies form networks that have drastically different topologies. Networks

obtained by complex-centric or whole interactome mapping approaches will tend to

be more connected than those obtained by a molecular function centric strategy. This

will largely influence the type of computational analysis that should be used in order

to filter contaminants and assign confidence scores to interactions. Several algorithms

use the topology of PPI networks to determine whether an interaction is a likely true

or false positive [101, 74, 39], reasoning that truly interacting proteins are likely

to interact with similar sets of other proteins. However, this method only applies
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to networks obtained from complex-centric and whole interactome mapping studies,

as molecular function centric approaches yield loosely connected networks, making

shared neighborhood a rarity. Thus, for small or sparse networks, topology is of little

use, making approaches such as SAINT or Decontaminator the only alternative.

2.6.2 Advantages

Decontaminator is an alternative that does not rely on topological data and is not

affected by the type or size of the network being analyzed. Obviously, in cases where

the network topology is informative, our Bayesian FDR scores can be integrated into

more complex predictors such as our Interaction Reliability Scores (IRS) [37], the

Socio-affinity index [74] or the Purification Enrichment score [39]. Even though we

applied our algorithm on a large scale data set in this paper, we showed that it can

be applied to much smaller scale studies since a small number of controls are required

to accurately model contaminants and score interactions.

Another important factor to consider is the need for prior knowledge in training

the prediction program. Methods such as the Interaction Reliability Scores (IRS) [37]

or the machine learning pipeline used by Krogan et al. [119] require a fairly large

training set of examples of true positive and possibly true negative interactions. These

training sets are difficult to assemble, prone to errors, and often not representative of

the set of interactions one is really seeking (e.g. true positive interactions come from

very strong complexes such as RNA polymerase II, whereas interactions of interest are

weaker or more transient). On the other hand, SAINT requires no labeled training

set, but it is reported to perform better when known contaminants and hubs are

manually labeled. Such labeling might be hard to perform on smaller networks where

hubs and contaminants are hard to differentiate. Thus, methods requiring no prior

knowledge, such as Decontaminator, offers significant advantages.
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It should also be noted that Decontaminator can easily be incorporated in a mass

spectrometry analysis computational pipeline. Because it provides, for each predicted

PPI a FDR, which can be interpreted as the probability that the PPI is involving a

contaminant, our method can be added as a contaminant filter at the end of the typical

computational pipelines involving identification of the preys via database searches

(Mascot [174] and SEQUEST [58]) and validation of the identification (Percolator

[105] and Protein Prophet [161]).

2.6.3 Limitations

Our approach works under the assumption that all experiments are performed

using the same protocol, in such a way that the distribution of contaminants does

not change over time (note that this does not mean that the observed levels of con-

taminants are constant, but rather that the true levels are). Clearly, whenever the

experimental pipeline of the approach is modified (e.g. changes to the experimental

protocol, the mass spectrometer, the tag, or the chromatography column used), new

control experiments need to confirm the validity of the model or to build a new one.

Therefore, in a context where the experimental pipeline would be rapidly evolving or

when bait-specific antibodies are used for the pull down, Decontaminator may yield

little or no cost benefit compared to the approach where each induced experiment is

paired with its control counterpart. However, our results indicate that the number of

control experiments required to obtain a good contaminant model is relatively modest,

so unless changes are extremely common, significant benefits should be achievable.

Finally, even when no obvious changes to the experimental pipeline have taken place,

periodic control experiments should be performed in order to ensure that the set of

control experiments used by the Bayesian approach remains representative.

Another limitation is that, Decontaminator cannot differentiate true positive

interactions from contaminants obtained from inefficient purifications. Instead, the

Mascot scores obtained for contaminants that are usually excluded at the purification
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step are likely to be significantly larger than what was observed in control experiments.

However, other approaches can be used to detect such problematic purifications. For

example, typically, the distribution of Mascot scores observed in a faulty purification

is significantly shifted to the right (greater number of high Mascot scores). This can

be explained by the high abundance of various proteins, causing more peptides to be

detected and therefore increasing the overall Mascot score of each protein. Also, a GO

analysis can be performed to accomplish the same goal: preys interacting with a bait

for which the purification was faulty will often not be enriched for specific GO terms.

On the contrary, one would expect that when an efficient purification is performed,

the preys interacting with a given bait will be more likely to share functions, biological

processes or cellular components with it.

Mascot scores, which are used in the current version of Decontaminator, are not

always accurate in the identification of peptides and quantification of their abundance.

Peptide misidentifications will affect the accuracy of our method in several ways. For

example, a contaminant that would have been misidentified in many of the control

experiments may be predicted as a true interaction when correctly identified in an

induced experiment. In addition, Mascot scores, like peptide and spectral counts, are

influenced by the length of the protein and the detectability of its peptides, resulting

in some true interactions obtaining relatively low scores. These problems can be

overcome with the utilization of software like Peptide/Protein Prophet [109, 161]

which give a probability of the protein presence based on database search scores

like Mascot. Other measures like peptide retention time and precursor ion intensity

have also shown to be valuable information and could be used in conjunction with

database search scores in order to yield more accurate protein identifications [211,

108, 87]. These more accurate measures of protein identification/abundance could

easily replace the Mascot score in Decontaminator.

Finally, our approach will work best if different preys with the same true mean

Mascot score have the same Mascot score distribution in the non-induced condition,
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i.e. that the variability in the observed Mascot scores is not dependent on the identity

of the prey. Manual inspection confirms that this is the case for the vast majority

of the preys in our dataset. Should this assumption fail, i.e. if the Mascot score

of a certain protein had a much larger variance than other proteins with the same

mean Mascot score, the consequences would be that its p-value would tend to be

assessed incorrectly (above average Mascot scores would obtain unduly low p-values,

and below average score unduly high p-values). Indeed, some of the errors made by

our approach are due to this type of proteins, such as CKAP5, INF2, and TUBB2A.

This large variability could be in part explained by the large size ( > 1200 a.a.)

of these proteins. These preys could also be suffering of an undersampling by the

mass spectrometer and be masked due to the presence of more abundant proteins.

However, those are rare cases that can be treated separately by flagging, from the set

of non-induced experiments, proteins with unexpectedly high variance, and analyzing

them separately.

2.7 Conclusion

Several methods have been proposed to identify false positive PPIs in AP-MS/MS

experiments. However, very few have considered the modeling of contaminants re-

sulting only from AP experimental pipeline. We hypothesized that a more accurate

model of contaminants would yield higher accuracy of PPI identification. We have

shown here that using Decontaminator, only a few representative control experiments

are necessary to accurately discard the vast majority of contaminants while allowing

the detection of true PPIs involving preys that, in other experiments, may be con-

taminants. These findings will allow significant reductions in expenses and a greater

number of experiments to be conducted with higher accuracy.
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2.9 Appendix

2.9.1 Protein and peptide identification software information

Peaklists were created using extract msn.exe version 2005-02-15 (Thermo Xcal-

ibur) with the following parameters: minimum mass: 600, maximum mass: 6000,

minimum number of fragment ions: 10, no grouping of MS/MS spectra was per-

formed, and precursor charge was set to automatic. Mascot 2.2.04 (Matrix Science)

was used for protein database searching with precursor-ion mass tolerance set to 10

ppm and fragment-ion mass tolerance set to 0.6 Da. The modifications allowed were

carbamidomethylation and oxidation of methionine. Finally, the digestion enzyme

used was trypsin and 2 missed cleavages were allowed. Database searching was per-

formed on the human NCBI nr protein database (version 2009-04-02), which contains

10 427 007 sequences.

2.9.2 Computation of corrected averages for Mascot scores

We note that in most AP-MS/MS applications, preys with Mascot scores below

a certain threshold m (e.g. a fixed value m = 20, or the Mascot Identity Threshold)

are discarded and not reported, as being likely protein identification errors. In our

approach, when a protein p is not reported as a possible partner of bait b, we arbi-

trarily set its Mascot score MNI
b,p to zero. The set of observed Mascot scores for a

given prey thus follow a type I censored distribution [16]. Let B′p be the set of control

experiments for which MNI
b,p < m. Assuming the uncensored M̄NI

p follows a normal

distribution, a better estimate of µ 6=b,p is thus obtained from the Persson-Rootzen

method [175]:

µ 6=b,p =
1

|B′p|
∑
b∈B′p

MNI
b,p − γpσ′,
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where γp = φ(λ|B′p|/|B|)|B|/|B′p|, φ is the probability density function of the standard

normal distribution,

σ′ =
1

2

[
λ|B′p|/|B|

1

|B′
p|
∑
b∈B′p

(MNI
b,p −m)+

{(
λ|B′p|/|B|

1

|B′
p|
∑
b∈B′p

(MNI
b,p −m)

)2

+
4

|B′
p|
∑
b∈B′p

(MNI
b,p −m)2

} 1
2
]
,

and where λ|B′p|/|B| denotes the upper (|B′p|/|B|)th quantile of the standard normal

distribution. If MNI
b,p = 0 ∀b ∈ B for a given p, we set arbitrarily one MNI

b,p to be equal

to m+ 1.

2.9.3 Cc correction factor derivation

In order to correct the Cs matrix for induced experiments noise modeling, we

used the following correction:

Cc(i, j) = Cs(i, j) · I(j)

NI(j)

The above correction was derived the following way. The matrix Cs corresponds

to the joint probability of M̄NI
p and MNI

b,p given that the data was generated from

control experiments.

Cs(i, j) = Pr[M̄NI
p = j,MNI

b,p = i|control] = Pr[M̄NI
p = j|control] · Pr[MNI

b,p = i|M̄NI
p = j, control]

We make the assumption that the noise of a Mascot score is independent of whether

the experiment was induced or not. Therefore:

Pr[MNI
b,p = i|M̄NI

p = j, control] = Pr[MNI
b,p = i|M̄NI

p = j]

Similarly, let Cc correspond to the joint probability of M̄NI
p and MNI

b,p given that

the data was generated from induced experiments.
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Cc(i, j) = Pr[M̄NI
p = j,MNI

b,p = i|induced] = Pr[M̄NI
p = j|induced]·Pr[MNI

b,p = i|M̄NI
p = j]

Following from the above assumption,

Cc(i, j) = Pr[M̄NI
p = j|induced] ·

Pr[M̄NI
p = j,MNI

b,p = i|control]
Pr[M̄NI

p = j|control]

which give us the correction factor for Cs in order to get Cc.

Cc(i, j) = Cs(i, j) · Pr[M̄NI
p = j|induced]

Pr[M̄NI
p = j|control]

or as described in the Methods section:

Cc(i, j) = Cs(i, j) · I(j)

NI(j)



CHAPTER 3
Discovery of cell compartment specific protein-protein interactions using

AP-MS/MS

3.1 Preface

Once the reliability of individual PPI predictions is assessed with a tool such

as the one presented in Chapter 2, it is possible to select a subset of PPIs that

will satisfy a certain confidence score threshold. This high quality dataset can pro-

vide much information on the proteins it contains. Approaches identifying protein

complexes and inferring protein functions benefit from such removal of noisy PPIs.

On the other hand, these methods also gain from an increase in sensitivity of the

experiments identifying PPIs. Sensitivity improvements, in the context of AP-MS,

can be obtained, for example, by performing only a single purification of the bait

(FLAG instead of TAP) [2] to detect more transient interactions, which could be

lost in subsequent purifications. Gains can also be made with the use of MS in-

struments of higher sensitivity that allow the detection of low abundance proteins.

Clearly, sensitivity improvements also lead to an increased number of contaminants

being identified. However, tools like Decontaminator lessen this problem and facili-

tate the implementation of methodologies bringing sensitivity increases to the AP-MS

pipeline.

Another way to improve sensitivity in MS is at the sample preparation stage. As

discussed previously in Chapter 2, separation of the input protein/peptide mixture

with techniques such as gel separation or LC is crucial. Both methods can be per-

formed in a multidimensional system in order to separate proteins/peptides according

to different molecular properties (charge, hydrophobicity, etc.) [113]. This allows the

resolution of complex protein/peptide mixtures and improves detection at the MS

62
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level [143]. In addition to separation, MS sensitivity can be improved at the sample

preparation through fractionation of cells into different compartments (nucleus, endo-

plasmic reticulum, mitochondria, cytoplasm, etc.) [117, 42]. This fractionation leads

to simpler mixtures and therefore, to better detection. Cell fractionation improves

sensitivity simply by allowing the mixture to be analyzed in multiple MS runs (one

run per fraction). As a result, the entire original mixture will be allocated more time

in MS analysis than if it was analyzed as a whole. Moreover, with this scenario, frac-

tions containing low abundance proteins are less likely to be masked and undetected

in MS by fractions with proteins of higher abundances. The methodology presented

in this chapter is inspired by the cell fractionation approach. Basically, it identifies

the PPIs of a given protein independently in three cell compartments (cytoplasm,

chromatin, and nucleoplasm) using a modified AP-MS pipeline. The approach pre-

sented here includes a improved version of Decontaminator, which can make the use

of controls obtained from all three cell compartments to assess the quality of an in-

teraction detected in a given cell fraction. We show in this chapter that this strategy

improved the performances of Decontaminator. Although this behaviour was rarely

observed, it could however have resulted in a loss of sensitivity if an important num-

ber of contaminants had drastically different abundances across the three different

cell compartments.

Interestingly, the approach presented here does not only improve the sensitivity

of AP-MS. It also helps deconvoluting PPI datasets and PPI networks. Such datasets

are often very large, complex, and therefore difficult to analyze. One explanation

for such complexity resides in the fact that PPI datasets include all (or a subset of)

PPIs happening in different cell compartments. More precisely, if a given protein

interacts with a set of proteins in the cytoplasm, then it is possible that the same

protein will interact with a disjoint set of proteins in the nucleus. Nevertheless, the

PPIs reported for such protein would be the union of these two sets without ways to

track the compartment where the interactions take place. The approach introduced
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in this chapter aims, among other things, at deconvoluting PPI datasets using a

spatial dimension. Our methods address this problem by identifying interactions for a

given protein independently from the cytoplasm, the chromatin, and the nucleoplasm.

Using this approach, a PPI network can be built for each cell fraction. These three

networks constitute a precious resource to understand cellular mechanisms that span

multiple cell compartments. They are also an important source of information for the

functional characterization of proteins by providing their localization as well as their

interactions, as it will be demonstrated in this chapter.

The remaining content of this chapter is reprinted with permission from:

• M. Lavallée-Adam, J. Rousseau, C. Domecq, A. Bouchard, D. Forget, D. Faubert,

M. Blanchette, and B. Coulombe. Discovery of cell compartment specific protein-

protein interactions using affinity purification combined with tandem mass spec-

trometry. Journal of proteome research, 12(1):272–281, 2012

Copyright (2013) American Chemical Society.

3.2 Abstract

Affinity purification combined with tandem mass spectrometry (AP-MS/MS) is

a well established method used to discover interaction partners for a given protein

of interest. Because most AP-MS/MS approaches are performed using the soluble

fraction of whole cell extracts (WCEs), information about the cellular compartments

where the interactions occur is lost. More importantly, classical AP-MS/MS often

fails to identify interactions that take place in the non-soluble fraction of the cell,

e.g. on the chromatin or membranes, and, consequently, protein complexes that

are less soluble are underrepresented. In this paper, we introduce a method called

multiple cell compartment affinity purification coupled to tandem mass spectrometry

(MCC-AP-MS/MS), which identifies the interactions of a protein independently in

three fractions of the cell: the cytoplasm, the nucleoplasm, and the chromatin. We
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show that this fractionation improves the sensitivity of the method when compared

to the classical affinity purification procedure using soluble WCE, while keeping a

very high specificity. Using three proteins known to localize in various cell compart-

ments as baits, the CDK9 subunit of transcription elongation factor P-TEFb, RNA

polymerase II (RNAP II)-associated protein 4 (RPAP4), and the largest subunit of

RNAP II, POLR2A, we show that MCC-AP-MS/MS reproducibly yields fraction-

specific interactions. Finally, we demonstrate that this improvement in sensitivity

leads to the discovery of novel interactions of RNAP II carboxyl-terminal domain

(CTD) interacting domain (CID) proteins with POLR2A.

3.3 Introduction

Large-scale mapping of human protein-protein interactions (PPIs) not only leads

to the discovery of new protein functions, but also to a better understanding of

several biological processes. Medium to high throughput PPI detection approaches

are essential for comprehensive network mapping. These include the Y2H method

[96, 224], the PCA [183] and the AP-MS/MS [119, 69, 226, 101, 20, 74]. Of those,

AP-MS/MS has a number of advantages. First, this method accurately detects entire

complexes when tagging only one protein (bait) [184]. PPIs obtained through AP-

MS/MS can be direct or indirect interactions resulting from a co-complex bait-prey

association. Second, it can be used in any organism or cell type of interest. Finally,

since it does not use a heterogeneous host, post-translational modifications necessary

for a given interaction to take place, may occur normally in the cell where the tagged

protein is expressed.

Classical AP-MS/MS experiments, performed using whole cell extracts, purify

proteins present in the soluble fraction of the cell [69, 226, 101], which includes the

cytoplasm and the nucleoplasm, but not proteins tightly bound to chromatin or mem-

branes. Consequently, this approach yields no information about the exact compart-

ment where detected interactions are taking place. Over the years, some purification
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approaches have been proposed to circumvent this limitation. Techniques have been

developed to target interactions of membrane proteins [176]. These are based on

sonication and sedimentation of membranes through differential centrifugation fol-

lowed by solubilization of membrane proteins [176]. Recently, approaches to identify

interactions for chromatin-bound proteins have been developed [125], including the

modified chromatin immunopurification (mChIP) method that purifies protein-DNA

macromolecules in yeast through mild sonication in order to minimize chromatin frag-

ment precipitation [124]. Another way to solubilize chromatin makes use of nucleases.

Foltz et al. used affinity purification on soluble small DNA fragments digested with

a micrococcal nuclease [68], while Du et al. used DNase I, digesting DNA completely

[53]. Lambert et al. addressed the impact of chromatin fragment size on affinity

purification. They have shown that larger DNA fragments will favor indirect protein

interactions [124], thereby complicating the interpretation of the results. Thus, the

method of Du et al., with its complete DNA digestion, seems to be the best approach

to minimize indirect protein interactions through DNA. However, they used the FLAG

affinity purification technique [53], which may be more sensitive to detect transient

interactions, but can also lead to more non-specific interactions when compared to

tandem affinity purification (TAP), because of the number of purifications performed

(i.e. a single affinity purification step for FLAG as opposed to two for TAP [2]).

Although these methods have their respective advantages and disadvantages, there

is a need for a method detecting PPIs occurring on the chromatin, while yielding as

few as possible indirect interactions through DNA and protein contaminants.

Accurate identification of the cellular compartment(s) where an interaction takes

place is often critical to understand the function of that interaction. This information

can also be crucial for the experimentalist as it can guide validation experiments and

speed up discovery. For instance, we recently established a role of the RNAP II-

Associated Protein 3 and 4 (RPAP3 and RPAP4) in assembly and nuclear import of

the RNAP II enzyme [37]. Because the study was initiated on the basis of AP-MS/MS
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data from soluble WCE, educated guesswork followed by laborious experimental work

was required to characterize the role of these two proteins. As we will show, the tech-

nique introduced here localizes the interactions between RPAP3/RPAP4 and RNAP

II to the cytoplasm and nucleoplasm, which would have immediately suggested a pu-

tative role in some cytoplasmic functions such as RNAP II assembly and/or nuclear

import. Similarly, discovering interactions taking place on chromatin could quickly

direct hypotheses to a DNA binding role for the PPIs in question.

We therefore propose a new approach to map and localize PPIs in a more compre-

hensive manner. The method, called multiple cell compartment affinity purification

coupled with tandem mass spectrometry (MCC-AP-MS/MS), can detect PPIs in-

dependently, from the same starting material, through TAP in three different cell

compartments: in the cytoplasm, the nucleoplasm, and on the chromatin based on

several centrifugations and a complete digestion of DNA. We show that separating a

typical WCE into these three fractions yields crucial information about the detected

interactions, as well as an increase in sensitivity through fractionation of the sample.

We show that MCC-AP-MS/MS identifies fraction-specific PPIs and increases the

sensitivity over WCE AP-MS/MS, while keeping high specificity and reproducibil-

ity. Moreover, we report the discovery of novel, compartment-specific, potentially

biologically relevant PPIs for POLR2A.

3.4 Experimental procedures

We propose an approach for performing independent AP-MS/MS on three dif-

ferent cell compartments: cytoplasm, nucleoplasm, and resolubilized chromatin. The

method then distinguishes bait specific interactions from contamination with a new

version of our Decontaminator software [127]. In this section, we describe the MCC-

AP-MS/MS methodology and its associated computational component. Figure 3–1

summarizes the steps of the procedure.
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Figure 3–1: Pipeline of MCC-AP-MS/MS and its associated computational methods.
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3.4.1 Cytoplasmic, nuclear, and chromatin fractions

ORFs encoding human POLR2A, CDK9, PPARG2, RPAP4, KLF14, FTO, IRS1,

RPAP2, RPAP3, and JAZF1 were cloned into the mammalian expression vector pMZI

[233] containing the protein A-Calmodulin Binding Peptide tag at the 3’ end of the

MCS in order to generate a fusion protein with a TAP tag at its C-terminus [184].

EcR-293 (Invitrogen) inducible stable cell lines carrying these constructs were pro-

duced as previously described [102] and selected clones were grown to obtain 2g of

cell pellet. To generate the cytoplasmic, nucleoplasmic, and chromatin fraction, WCE

was prepared as previously described [5] with some modifications. Cells were lysed by

mechanical homogenization in lysis buffer [10 mM Tris-HCl (pH8), 0.34 M sucrose,

3 mM CaCl2, 2 mM MgOAc, 0.1 mM EDTA, 1 mM DTT, 0.5% Nonidet P-40 and

protease inhibitors]. WCE was centrifuged at 3, 500 x g, 15 min and, the supernatant,

which represents the cytoplasmic fraction, was saved. The pellet containing the nuclei

was resuspended, lysed by mechanical homogenization in lysis buffer [20 mM HEPES

(pH 7.9), 1.5 mM MgCl2, 150 mM KOAc, 3 mM EDTA, 10% glycerol, 1 mM DTT,

0.1% Nonidet P-40 and protease inhibitors] and, centrifuged at 15, 000 x g, 30 min.

The supernatant, which corresponds to the nucleoplasmic fraction, was saved. The

chromatin pellet was then minced with a scalpel in nuclease incubation buffer [150

mM Hepes (pH 7.9), 1.5 mM MgCl2, 150 mM KOAc, 10% glycerol, and protease

inhibitors] and disrupted mechanically using a glass homogenizer. Nuclease was then

added and the chromatin fraction was digested overnight [0.15 unit/µL benzonase

(Novagen), 0.44 unit/mL RNase A and 6.25 units/mL DNaseI]. Cytoplasmic and

nucleoplasmic fractions were centrifuged at 124, 000 x g and dialyzed overnight in

dialysis buffer [10 mM Hepes (pH 7.9), 0.1 mM EDTA (pH 8), 0.1 mM DTT, 0.1 M

KOAc and 10% glycerol]. The following day, the three fractions were clarified by cen-

trifugation at 20, 000 x g for 30 min, and the supernatants containing the solubilized

proteins were collected.
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3.4.2 Tandem affinity purification

WCE prepared from induced stable EcR-293 cell lines was subjected to purifi-

cation by the TAP procedure as previously described [102]. The eluates were precip-

itated with trichloroacetic acid and stored at −80oC until analysis by LC-MS/MS.

In parallel for some TAP experiments, part of the eluate (starting material was ad-

justed accordingly) were concentrated, loaded in 4 − 12% bis-Tris gradient PAGE,

and colored by silver staining.

3.4.3 Protein digestion with trypsin

Protein extracts were then re-solubilized in 10 µL of a 6 M urea buffer. Proteins

were reduced by adding 2.5 µL of the reduction buffer (45 mM DTT, 100 mM

ammonium bicarbonate) for 30 min at 37oC, and then alkylated by adding 2.5 µL

of the alkylation buffer (100 mM iodoacetamide, 100 mM ammonium bicarbonate)

for 20 min at 24oC in the dark. Prior to trypsin digestion, 20 µL of water was added

to reduce the urea concentration to 2 M . 10 µL of the trypsin solution (5 ng/µL of

trypsin sequencing grade from Promega, 50 mM ammonium bicarbonate) was added

to each sample. Protein digestion was performed at 37oC for 18 h and stopped with

5 µL of 5% formic acid. Protein digests were dried down in vacuum centrifuge and

stored at −20oC until LC-MS/MS analysis.

3.4.4 LC-MS/MS

Prior to LC-MS/MS, protein digests were re-solubilized under agitation for 15

min in 10 µL of 0.2% formic acid. Desalting/cleanup of the digests was performed

using C18 ZipTip pipette tips (Millipore, Billerica, MA). Eluates were dried down

in vacuum centrifuge and then re-solubilized under agitation for 15 min in 10 µL

of 2% ACN / 1% formic acid. The LC column was a C18 reversed phase column

packed with a high-pressure packing cell. A 75 µm i.d. Self-Pack PicoFrit fused

silica capillary column (New Objective, Woburn, MA) of 15 cm long was packed with
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the C18 Jupiter 5 µm 300 Å reverse-phase material (Phenomenex, Torrance, CA).

This column was installed on the Easy-nLC II system (Proxeon Biosystems, Odense,

Denmark) and coupled to the LTQ Orbitrap Velos (ThermoFisher Scientific, Bremen,

Germany) equipped with a Proxeon nanoelectrospray ion source. The buffers used for

chromatography were 0.2% formic acid (buffer A) and 100% acetonitrile / 0.2% formic

acid (buffer B). During the first 12 min, 5 µL of sample was loaded on the column to

a flow rate of 600 nL/min and, subsequently, the gradient went from 2−80% buffer B

in 110 min at a flow rate of 250 nL/min and then came back to 600 nL/min and 2%

buffer B for 10 min. LC-MS/MS data acquisition was accomplished using a eleven

scan event cycle comprised of a full scan MS for scan event 1 acquired in the Orbitrap.

The mass resolution for MS was set to 60, 000 (at m/z 400) and used to trigger the

ten additional MS/MS events acquired in parallel in the linear ion trap for the top ten

most intense ions. Mass over charge ratio range was from 380 to 2000 for MS scanning

with a target value of 1, 000, 000 charges and from ∼ 1/3 of parent m/z ratio to 2000

for MS/MS scanning with a target value of 10, 000 charges. The data dependent

scan events used a maximum ion fill time of 100 ms and 1 microscan. Target ions

already selected for MS/MS were dynamically excluded for 25 s. Nanospray and S-

lens voltages were set to 0.9-1.8 kV and 50 V , respectively. Capillary temperature was

set to 250oC. MS/MS conditions were: normalized collision energy, 35 V ; activation

q, 0.25; activation time, 10 ms.

3.4.5 Protein identification

Protein database searching was performed with Mascot 2.2 (Matrix Science)

against the human NCBI nr protein database. The mass tolerances for precursor

and fragment ions were set to 15 ppm and 0.6 Da, respectively. Trypsin was used

as the enzyme allowing for up to 2 mis-cleavages. Carbamidomethylation of cysteine

residues was set as a fixed modification and oxidation of methionine was allowed as

a variable modification.
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3.4.6 Dilution experiments and tandem mass spectrometry

Due to the increasing sensitivity of mass spectrometers, and the fairly low com-

plexity of typical AP-MS/MS or even less complex MCC-AP-MS/MS experiments,

the amount of protein digests injected in the mass spectrometer is now a concern. If a

too large amount is injected in the LC-MS/MS system, peptide saturation is likely to

occur. This could cause very abundant proteins to mask less abundant ones. When

saturation happens, the mass spectrometer sampling frequency is not sufficiently fast

to analyze the entirety of the sample, therefore causing a great variability between

replicated experiments. We therefore tested sample dilutions to ensure accurate mod-

eling of the contaminants present with a reasonable number of controls. Dilution

experiments aimed at verifying saturation of the LC-MS/MS system and were per-

formed by analyzing 6 different dilutions of a protein solution, (1/2, 1/4, 1/8, 1/16,

1/32, 1/64). Upon visual inspection of the results, the highest volume yielding no

saturation was chosen and used for all LC-MS/MS runs. 1/2 of the eluates obtained

from the chromatin and cytoplasmic fractions were used for LC-MS/MS, while the

entirety of the nucloplasmic eluate was kept.

3.4.7 Dataset

A total of 15 MCC-AP-MS/MS experiments have been performed with the fol-

lowing baits: POLR2A (x2), CDK9 (x2), RPAP4 (x2), PPARG2 (x2), KLF14 (x2),

FTO, IRS1, RPAP2, RPAP3, and JAZF1, where (x2) signifies that the experiment

has been done in two biological replicates. A set of 9 MCC-AP-MS/MS experiments

of empty expression vector pMZI were performed as controls (Supplementary Table

3-6). Three of them were excluded from the main training set since they showed an

unexpectedly high variance in both the set of observed proteins and their abundance.
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3.5 Computational analysis

Many tools have been proposed to identify high quality PPIs in AP-MS/MS

data [20, 190, 206, 48]. We elected to use a modified version of our Decontaminator

software [127] to calculate the false discovery rate (FDR) for each individual bait-prey

interaction. The existing version of Decontaminator required matched induced and

non-induced expression vector AP-MS/MS experiments for its training procedure.

We generalized the implementation of Decontaminator so that any number of empty

pMZI vector controls can be used. The only requirement is that both controls and

experiments are performed under the same conditions and that the number of high

quality controls is sufficient (at least 3, but 6 were used in our case) to model the

contaminants.

3.5.1 Control training set

To improve the modeling of contaminants and thus the specificity of our ap-

proach, a number of modifications were made to the Decontaminator algorithm. Pre-

viously, each interaction was assigned a p-value based on the Mascot score [174] ob-

tained by the prey in the pull-down compared to those obtained for the same protein

in control experiments performed under the same conditions (in our case, the same

cellular fraction). Because the set of controls available is sometimes relatively small,

a second set of controls is also considered, which consists of the union of the controls

obtained for each of the three fractions, including the controls with very large variance

mentioned previously. A second p-value is then computed based on this larger set of

controls. The final p-value reported is the largest of the fraction-specific p-value and

the pooled p-value. This approach has the advantage of accurately modeling contam-

inants that are not fraction-specific (based on a large set of pooled controls), while

allowing those that are fraction-specific to also be identified. This approach maxi-

mizes the specificity of the predictions by making the best use of all available control
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experiments. Although this may in theory be at the cost of a loss of sensitivity, this

loss seems to be negligible in our dataset (data not shown).

3.5.2 FDR estimation

For the purpose of estimating FDRs for each cellular fraction, we used a set

of selected baits that are known to be localized to (at least) that fraction, based on

the Gene Ontology [4] (Cellular Component GO terms: cytoplasm, nucleus (used as a

proxy for chromatin), and nucleoplasm). GO electronic annotations were disregarded,

except in the case of the cytoplasm cellular component where too few curated anno-

tations were available. This process ensures an automatic unbiased selection of the

baits used to compute the FDRs in each cell fraction. The baits selected for the FDR

estimation of the chromatin fraction were: CDK9 (x2), POLR2A (x2), PPARG2 (x2),

FTO, and IRS1. Those chosen for the nucleoplasmic fraction were: POLR2A (x2),

CDK9 (x2), and PPARG2 (x2). Finally, the experiments selected for the cytoplasmic

fraction were: RPAP4 (x2), CDK9 (x2), PPARG2 (x2), and IRS1.

3.5.3 Implementation and availability

The proposed computational methods are implemented in a platform-independent

Java program (Decontaminator). Given a set of control MCC-AP-MS/MS experi-

ments, Decontaminator assigns FDRs to all interactions in all cell fractions according

to the methods described previously. Of note, Mascot scores can in principle be in-

terchanged by any other mass spectrometry derived confidence scores (i.e. spectral

counts, SEQUEST Xcorr [58], peptide counts). Also, since the FDR calculation is

performed independently for each p-value, it is possible that the function mapping

p-values to FDRs is not monotonic. This was addressed by setting the FDR asso-

ciated to a given p-value p to the minimum between its calculated FDR and the

minimal FDR of all p-values larger than p. Decontaminator is available for download

at: http://www.cs.mcgill.ca/~blanchem/MCC_Decontaminator.
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3.6 Results

3.6.1 Cell compartment specific interactions

We started by assessing the ability of the MCC-AP-MS/MS method to reliably

identify interactions that are specific to each cell compartment. In order to do so, we

used three proteins with relatively well studied interactions as baits: (i) POLR2A,

a subunit of RNAP II, expected to be present in all three cell compartments, but

mainly in the chromatin fraction [69, 111, 145], (ii) CDK9, a mainly nucleoplasmic

cyclin-dependent kinase that is a subunit of the positive transcription elongation fac-

tor P-TEFb, involved in transcription with potential additional localization to the

cytoplasm and the chromatin [144, 71], and (iii) RPAP4, a mainly cytoplasmic pro-

tein involved in the nuclear import of RNAP II, through a mechanism that involves

RPAP4 shuttling between the nucleus and the cytoplasm, implying its transit in the

nucleoplasm [69]. Interaction partners were identified using the MCC-AP-MS/MS

experimental/computational pipeline for each bait in each of the three fractions, in

biological duplicates (Supplementary Table 3-7). For comparison, interactions were

also detected using soluble WCE to identify interactions taking place in the soluble

fraction. Figure 3–2 shows SDS gels of affinity purifications using a soluble WCE, a

cytoplasmic fraction, a nucleoplasmic fraction, a chromatin fraction, and their asso-

ciated controls for all three baits. Visual inspection revealed dramatic differences in

the band distribution across the different fractions for any given bait. For instance,

the chromatin fraction for RPAP4 is poorly populated when compared to its cyto-

plasmic and nucleoplasmic counterparts, as expected based on the literature [69]. As

for CDK9 and POLR2A, it can be seen that each fraction, excluding the WCE, has

at least one exclusive band, which is not observed in its control. These gels clearly

demonstrate that different interaction partners can be identified in each fraction.
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Figure 3–2: Precast acrylamide 4 − 12% gels of eluates from MCC-AP-MS/MS and
AP-MS/MS using RPAP4, CDK9 and POLR2A. WCE: Whole-Cell Extract, CYT:
Cytoplasm, NUP: Nucleoplasm, CHR: Chromatin. Arrowheads point to bands corre-
sponding to the baits. Full arrows indicate examples of exclusive bands in the various
fractions for each bait.

To further evaluate these differences, we compared the set of high confidence PPIs

found in each fraction for RPAP4, POLR2A and CDK9. Figure 3–3 shows the over-

lap between the sets of high confidence partners identified in each fraction (at least

one replicate with FDR < 10%). Due to an increased sensitivity in the cytoplasmic

fraction (see below), the number of interactors identified in this particular fraction

exceeds that of the other two fractions (see Discussion). However, as expected, of

the three baits, POLR2A has a larger number of interactors in the chromatin frac-

tion (37), as compared to non-chromatin associated CDK9 and RPAP4 (12 and 8

interactors respectively). To further confirm the fraction specificity of our approach,

we analyzed interactions that are well documented and whose localization has been

characterized. Most of the RNAP II subunits were found in the chromatin, but also

in the cytoplasmic and nucleoplasmic fractions (Supplementary Table 3–3). This is

in agreement with the transcriptional function of RNAP II, but also with the find-

ings revealing POLR2A interactions with other RNAP II subunits in the cytoplasm

[69, 163]. Also, for example, 18 of the 26 subunits of the mediator complex were
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found to interact with POLR2A in the chromatin fraction, but almost none were seen

in the other two fractions. This is consistent with the previously documented role of

the mediator complex [214]. Finally, POLR2A interaction partners RPAP3, PIH1D1,

UXT, and WDR92, all members of the RPAP3/R2TP/PFDL complex, were found

to be exclusive to the cytoplasmic fraction and, by the same mean, to match previous

results showing that RPAP3 is involved in the assembly/nuclear import of RNAP II

[69, 37].

On the other hand, the mainly nucleoplasmic protein CDK9 has a large number

of interactors in the nucleoplasmic fraction (50). This is significantly more than

what is observed for the mainly chromatin-bound POLR2A (23) and slightly more

than nucleoplasm-cytoplasm shuttling RPAP4 (35). As for POLR2A, our results

are in agreement with the literature for the bait CDK9 (Supplementary Table 3–4),

which interacts with BRD4, a positive regulator of the P-TEFb complex, with high

confidence on the chromatin [235, 98], but not in the nucleoplasm and cytoplasm.

CDK9 is also found to interact with very high confidence with HEXIM1 and HEXIM2,

LARP7 and MEPCE in the nucleoplasmic and cytoplasmic fractions, but not in the

chromatin fraction. These proteins are known to interact with P-TEFb and the

7SK snRNA to inhibit P-TEFb function, therefore supporting our observations [101,

120]. Even though some interactors of RPAP4 are not well characterized proteins,

our findings that RPAP4 interacts with RNAP II subunits in the cytoplasm and

nucleoplasm, as well as with RPAP3 in the cytoplasm (Supplementary Table 3-7),

are in agreement with our previous results showing that RPAP4 plays a role in the

nuclear import of RNAP II [69].

To confirm that the preys discovered by MCC-AP-MS/MS were indeed specific to

the fraction in which they were identified, we considered the set of all high-confidence

preys identified for at least one bait in a given cellular fraction and calculated the

proportion of those proteins that are known to be localized to a certain GO cellular

compartment (Figure 3–4). High-confidence interactors (FDR < 10%) identified by
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Cytoplasm NucleoplasmChromatin

CDK9

POLR2A

RPAP4

16430 17
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9922 9

40

4 0

Figure 3–3: Number of preys obtained in each cell compartment (FDR < 10% in at
least one of the duplicates) for each bait (CDK9, POLR2A, and RPAP4).
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MCC-AP-MS/MS in the chromatin fractions are indeed generally annotated as being

localized to the nucleus. Similarly, the interactors obtained in the nucleoplasmic frac-

tion are annotated as nuclear, but to a lesser extent (Figure 3–4A). The results for the

nucleoplasm cellular compartment were very similar to those of the nucleus (data not

shown). Finally, those identified in the cytoplasmic fraction are often annotated as

such (Fig. 3–4B). On the other hand, interactors found in the cytoplasmic fractions

are much more rarely localized to the nucleus according to GO, but much more often

in the cytoplasm than those identified in the two non-cytoplasmic fractions. Inter-

estingly, the fraction of proteins obtained by MCC-AP-MS/MS of the nucleoplasmic

fraction that are annotated to be cytoplasmic is also always higher than for the chro-

matin fraction at the same FDR threshold, suggesting that multiple proteins present

in the nucleoplasm are shuttling to the cytoplasm. It is expected that an important

portion of the nucleoplasmic proteins are related to the import or export of proteins

to the nucleus. Shuttling of proteins is also a major way to regulate the activity of

a protein in time and space and the outcome of signaling pathway activation. Also,

as the FDR thresholds are allowed to increase, the level of false positives becomes

higher, resulting in the drop of enrichments to background level.

3.6.2 MCC-AP-MS/MS is reproducible

An important aspect of a PPI detection approach is its reproducibility. We ana-

lyzed biological replicates of MCC-AP-MS/MS for all three baits (POLR2A, CDK9,

and RPAP4) (Table 3–1). We define an interaction as being strictly reproduced if it

obtained a FDR below 10% in both replicates and partially reproduced if it obtained

a FDR below 10% in one replicate and below 20% in the other. A prey that obtains

FDRs above 10% in both replicates is considered a likely contaminant. The data show

very high levels of reproducibility for POLR2A, especially in the chromatin fraction

(92%). However, when a bait is not localized to the fraction under consideration (e.g.

RPAP4 in the chromatin fraction (43%)), we generally detected a smaller number of

interactions, that tend to be less reproducible. We also observed that reproducibility
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Figure 3–4: Proportion of the set of preys identified for the 15 baits in each cellular
fraction (chromatin, cytoplasm, and nucleus) that are annotated with a GO cellular
component term “Nucleus” (panel A) and “Cytoplasm” (panel B). Because “Chro-
matin” is a poorly populated cellular localization annotation in GO, “Nucleus” was
used as a surrogate. The unexpectedly large proportion of preys from the cytoplas-
mic fractions with a “Nucleus” GO cellular component is caused by the important
number of POLR2A interactions that take place in both the nucleus and the cyto-
plasm. Similarly, the sudden decrease of the proportion for all compartments at low
FDRs for the GO term “Cytoplasm” can be explained again by the large number of
POLR2A interactions that take place in both the nucleus and the cytoplasm, but for
which the preys are not annotated to be localized in the cytoplasm in GO.
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is generally lower for the nucleoplasmic fraction. Fewer proteins were identified in

general in that fraction for all three baits when compared to the other fractions (Sup-

plementary Table 3–5). In addition, the abundances of the nucleoplasmic proteins

were also lower than those of the proteins identified in the other cell fractions, as indi-

cated by the peptide counts (Supplementary Table 3–5). This hints towards the fact

that the nucleoplasmic fraction may contain less material, which may therefore affect

mass spectrometry detectability of the proteins contained in it, ultimately leading to

a reduced reproducibility.

Table 3–1: Reproducibility results between duplicate MCC-AP-MS/MS experiments
of POLR2A, CDK9, and RPAP4.†

POLR2A CDK9 RPAP4

Fraction Chromatin Cytoplasm Nucleoplasm Chromatin Cytoplasm Nucleoplasm Chromatin Cytoplasm Nucleoplasm

Strictly Reproduced

Interactions 21 69 6 5 42 9 1 43 7

Partially Reproduced

Interactions 13 28 3 1 16 2 2 11 2

Non Reproduced

Interactions 3 74 14 6 127 39 4 58 26

Reproduced Contaminants

Detected 2057 2274 1901 3142 2722 2165 1802 2271 1684

Fraction of Very High

Confidence Interactions

Strictly Reproduced 0.57 0.40 0.26 0.42 0.23 0.18 0.14 0.38 0.20

Fraction of Very High

Confidence Interactions

Partially Reproduced 0.92 0.57 0.39 0.50 0.31 0.22 0.43 0.48 0.26

† Results are shown for the resolubilized chromatin, cytoplasmic, and nucleoplasmic fractions.

3.6.3 MCC-AP-MS/MS has greater interactome coverage than whole cell
extract AP-MS/MS

Having established the specificity and reproducibility of our method, we com-

pared the sensitivity of the classic AP-MS/MS (based on WCE) and MCC-AP-

MS/MS approaches under the same experimental conditions (see Experimental pro-

cedures). Figure 3–5 shows that the vast majority of the high confidence interactions

obtained through AP-MS/MS are also recovered by MCC-AP-MS/MS. To ensure

that very high confidence interactions were being compared, only proteins found in

each replicate of both protocols were used to produce this figure. Indeed, if one were

to perform AP-MS/MS after MCC-AP-MS/MS, it would only yield an increase in the
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6 11 57

4 8 34

318 9

MCC-AP-MS/MS

AP-MS/MS

Both

POLR2A

CDK9

RPAP4

Figure 3–5: Number of interacting partners found in both replicated experiments
of MCC-AP-MS/MS (FDR < 10%) and AP-MS/MS (FDR < 20%) for each bait
(POLR2A, CDK9, and RPAP4). We allowed a higher FDR threshold for AP-MS/MS
derived interactions to match previous studies [37]. This only advantages AP-MS/MS
over MCC-AP-MS/MS in this comparison.

number of interactors by 9% for POLR2A, 20% for CDK9, and 10% for RPAP4. Con-

versely, MCC-AP-MS/MS yields a 180− 335% increase in the number of interactions

detected when compared to AP-MS/MS alone. This gain in sensitivity is in part due

to the separation of the sample into three fractions, which improves the sensitivity

of MS/MS protein identification for each of the three fractions. In AP-MS/MS using

WCE, low abundance PPIs localized to the nucleoplasm are likely to be masked by

higher abundance cytoplasmic interactions. By separating samples in three differ-

ent fractions, sample complexity is reduced, which improves the performance of the

mass spectrometer, much the same way as sample fractionation through gel or liquid

chromatography improves classical AP-MS/MS sensitivity. Remarkably, the set of 28

interactions detected by both AP-MS/MS and MCC-AP-MS/MS were all found in

(at least) the cytoplasmic fraction by MCC-AP-MS/MS, suggesting that AP-MS/MS

based on WCE is largely confined to identifying cytoplasmic interactions.

To further test the sensitivity of MCC-AP-MS/MS, we calculated the recall val-

ues for each of the three baits against human protein-protein interactions deposited
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in the BioGRID database (Release 3.1.93) [209] that were obtained through affinity

capture methods coupled to mass spectrometry (Figure 3–6). For each bait, MCC-

AP-MS/MS obtains significantly higher recall values than AP-MS/MS at any FDR

threshold, therefore showing that MCC-AP-MS/MS not only detects more PPIs than

AP-MS/MS, but also that these PPIs were found independently by other laborato-

ries. We also measured the recall of both methods using the top X preys for each

bait ranked by their FDRs, for a varying value of X (Figure 3–6). MCC-AP-MS/MS

shows an improvement in recall over AP-MS/MS for any value of X for both POLR2A

and RPAP4, and comparable recall for CDK9. The latter observation may suggest

that the AP-MS/MS FDRs for this bait may have been overestimated. Interestingly,

recall values of MCC-AP-MS/MS for all three proteins keep increasing with the FDR

threshold, reaching almost 1.0 at a very high FDR threshold. This shows that MCC-

AP-MS/MS has the potential for excellent sensitivity, and that the current limitations

are at the level of the experimental and computational filtering of contaminants, and

mass spectrometry detectability.

3.6.4 MCC-AP-MS/MS improved sensitivity leads to discovery of new
protein-protein interactions

The increased sensitivity of MCC-AP-MS/MS and its ability to detect fraction-

specific interactions allow it to discover new potentially biologically important interac-

tions and hint at the mechanisms/processes they may be involved in. Here, we discuss

one such example. Among the interactors of POLR2A in the chromatin fraction are 5

proteins with RNAP II carboxyl-terminal domain (CTD) interacting domains (CID):

RPRD1A, RPRD1B, RPRD2, PCF11, and SCAF4 (Table 3–2). Ni and colleagues

recently reported the discovery of the interaction of the first three with RNAP II

through AP-MS/MS in HEK293 cells [162], but interactions with PCF11 and SCAF4

were not detected. PCF11 was computationally predicted to interact with POLR2A

[151], but this interaction like the one involving SCAF4, had not been detected in

vivo. Strikingly, the 3 proteins that were identified in both the Ni et al. study and our
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Figure 3–6: Recall values of MCC-AP-MS/MS and AP-MS/MS for varying FDR
thresholds and number of top preys (ranked by their FDRs) against human PPIs
listed in BioGRID that were obtained through affinity capture coupled to mass spec-
trometry. Recall values were calculated by taking the union of the preys identified
in each bait replicated experiment. When a prey was detected in both replicates its
smallest FDR was used.

own study were observed in the cytoplasmic fraction of MCC-AP-MS/MS. However,

all 5 proteins were found with high or very high confidence in the chromatin fraction,

with PCF11 and SCAF4 only being detected in this fraction. This may explain why

Ni et al. could not identify PCF11 and SCAF4 as interactors of RNAP II. A clas-

sic AP-MS/MS could potentially simply not reach this space of the interactome for

POLR2A.

3.7 Discussion and conclusion

Over the years, the AP-MS/MS methodology has proven to be successful at

discovering interaction partners for a large number of proteins [119, 69, 226, 101,

20, 74]. To date, large-scale AP-MS/MS-based PPI mapping efforts used the soluble

fraction of the cell, limiting the discovery and interpretation of compartment-specific

interactions. We introduce here the multiple cell compartment AP-MS/MS (MCC-

AP-MS/MS) experimental/computation pipeline to detect interactions occurring in
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Table 3–2: CID proteins found in union of the MCC-AP-MS/MS experiments of
POLR2A.†

Prey Chromatin Cytoplasm Reported by Ni et al.

RPRD1A 0.07 0.00 Yes FDR ≤ 0.1

RPRD1B 0.00 0.00 Yes

RPRD2 0.00 0.37 Yes 0.1 < FDR ≤ 0.2

PCF11 0.00 N/O No

SCAF4 0.12 N/O No FDR > 0.2

† Minimum FDR scores of the preys obtained in the two chromatin and cytoplasmic fraction experiments are color-coded.

the cytoplasmic, the nucleoplasmic, and the chromatin fraction, while using the same

starting material. To minimize the number of contaminants and indirect interactions

that may occur through DNA binding for the chromatin fraction, we performed a

complete DNA digestion combined with tandem affinity purification. We have shown

that MCC-AP-MS/MS generates a significant gain in sensitivity over classical AP-

MS/MS, identifies compartment-specific interactions, and is reproducible. As an

illustration, we demonstrated that MCC-AP-MS/MS reveals novel interactions for

POLR2A, despite the fact that interactions for this protein have been intensively

analyzed in the past [101, 162, 121, 1, 170].

The type of compartment-specific assays performed by MCC-AP-MS/MS would

be impossible to perform in the context of a Y2H system due to the nature of the pro-

tocol. PCA techniques could potentially be modified to localize interactions, but this

would not be scalable to a large-scale study. Therefore, to our knowledge, MCC-AP-

MS/MS is the first PPI mapping technique that can both accurately map interactions

and specify their localization in the cell. Given the fact that cell fractionation always

leads to some cross-contamination of the fractions, which is estimated to be minimal

according to our western blotting analysis (see Supplementary Figure 3–7), MCC-

AP-MS/MS cannot be used to decisively conclude on the presence or absence of an

interaction (or interactor) in any given compartment. However, as described above,
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MCC-AP-MS/MS presents major advantages as compared to classical AP-MS/MS.

When larger scale MCC-AP-MS/MS PPI mapping data become available, the de-

velopment of computational approaches predicting protein complex components in

different cell fractions will be possible.

Another aspect of our results deserves further discussion. One might be surprised

by the fact that a bait such as POLR2A detects more interactors in the cytoplas-

mic than the chromatin fraction. However, a number of recent studies revealed the

complexity of the cellular machinery required for the assembly and nuclear import of

RNAP II [69, 37, 45, 27]. This machinery comprises several proteins that interact with

the RNAP II subunits in the cytoplasm. It is therefore not surprising that an impor-

tant number of high confidence cytoplasmic partners are identified. Moreover, most

newly synthesized proteins are in one way or another present in the cytoplasm where

they critically interact with proteins such as chaperones, transporters, inhibitors or

activators.

Knowing in which compartment an interaction is occurring deconvolutes the

complex PPI networks produced by AP-MS/MS and provides useful information on

the context in which it is taking place. We believe that methods such as MCC-

AP-MS/MS will significantly change the sensitivity and interpretability of future

protein-protein interactions network mapping efforts.
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3.9 Appendix

Table 3–3: FDR obtained for a selected set of interaction partners of POLR2A in the
cytoplasmic, nucleoplasmic, and resolubilized chromatin fractions.†

Prey Chromatin Nucleoplasm Cytoplasm

GTF2B N/O N/O 0.00 FDR ≤ 0.1

GTF2F1 0.06 N/O 0.00

GTF2F2 0.12 N/O 0.00 0.1 < FDR ≤ 0.2

MED1 0.00 N/O 0.73

MED4 0.12 N/O 0.67 FDR > 0.2

MED6 0.12 N/O N/O

MED8 0.12 N/O 0.73

MED10 0.14 N/O N/O

MED11 0.44 N/O N/O

MED12 0.22 N/O N/O

MED14 0.00 0.18 0.04

MED15 0.03 0.59 0.67

MED16 0.00 N/O N/O

MED17 0.00 N/O 0.06

MED18 0.23 N/O N/O

MED19 0.22 N/O N/O

MED20 0.12 N/O N/O

MED23 0.00 N/O 0.67

MED24 0.00 0.33 0.10

MED25 0.20 0.86 N/O

MED26 0.00 N/O N/O

MED27 0.06 0.59 N/O

MED28 0.18 N/O N/O

MED29 0.19 N/O N/O

MED30 0.19 N/O N/O

MED31 0.44 N/O N/O

POLR2A 0.00 0.00 0.00

POLR2B 0.00 0.00 0.00

POLR2C 0.00 0.00 0.00

POLR2D 0.44 N/O 0.02

POLR2E 0.03 0.00 0.00

POLR2F 0.90 N/O 0.08

POLR2G 0.00 0.00 0.00

POLR2H 0.05 0.00 0.00

POLR2I 0.08 0.18 0.01

POLR2J 0.23 N/O 0.16

POLR2K 0.46 N/O 0.67

TAF3 0.92 N/O 0.86

TAF4 0.19 N/O N/O

TAF5 0.39 N/O N/O

TAF6 0.25 N/O N/O

PIH1D1 N/O N/O 0.00

RPAP3 N/O 0.86 0.00

UXT N/O N/O 0.16

WDR92 N/O 0.94 0.01

† Minimum FDR scores of the preys obtained in the two replicates are color-coded.
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Table 3–4: FDR obtained for a selected set of interaction partners of CDK9 in the
cytoplasmic, nucleoplasmic, and resolubilized chromatin fractions.†

Prey Chromatin Nucleoplasm Cytoplasm

BRD4 0.12 N/O N/O FDR ≤ 0.1

CCNT1 0.03 0.00 0.00

CCNT2 0.12 0.00 0.00 0.1 < FDR ≤ 0.2

CDK9 0.03 0.00 0.00

HEXIM1 0.32 0.00 0.00 FDR > 0.2

HEXIM2 N/O 0.00 0.00

LARP7 0.12 0.00 0.00

MEPCE 0.18 0.00 0.00

† Minimum FDR scores of the preys obtained in the two replicates are color-coded.

Table 3–5: Averages of the numbers of proteins and peptides detected in the two
replicate MCC-AP-MS/MS experiments performed for each bait.

POLR2A CDK9 RPAP4

Fraction Chromatin Cytoplasm Nucleoplasm Chromatin Cytoplasm Nucleoplasm Chromatin Cytoplasm Nucleoplasm

Proteins 1345.5 1611.5 1243 1942.5 1806 1392.5 1151 1547 1101.5

Peptides 3546 3949 2782.5 4257 3934.5 3182.5 3020 4199.5 2734.5
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Supplementary Tables 3-6 and 3-7 are available via the Internet at:

http://pubs.acs.org/doi/abs/10.1021/pr300778b

NUP CYT   CHR 

POLR2A 

RPAP4 

CDK9 

Tubulin 

Histone H3 

Figure'S1.'Western'blo2ng'analysis'of'the'three'baits'(POLR2A,'CDK9'and'RPAP4)''
and'two'addiGonal'cytoplasmic'(Tubulin)'and'chromaGnLbound'(Histone'H3)'markers'in''
the'various'fracGons'used'in'our'MS'analysis.'CYT=cytoplasmic,'NUP=nucleoplasmic,''
and'CHR=chromaGn).'

Figure 3–7: Western blotting analysis of the three baits (POLR2A, CDK9, and
RPAP4) and two additional cytoplasmic (Tubulin) and chromatin-bound (Histone
H3) markers in the various fractions used in our MS analysis. CYT=cytoplasmic,
NUP=nucleoplasmic, and CHR=chromatin).



CHAPTER 4
Detection of locally over-represented Gene Ontology terms in

protein-protein interaction networks

4.1 Preface

The approaches presented in Chapter 2 and 3 take as input very complex and

noisy AP-MS data and output a high confidence PPI dataset. Such collections of

PPIs can then be assembled to form PPI networks. As described in the introduction,

such networks can provide much information on various biological mechanisms and

protein functions. Even though these networks contain only high confidence PPIs,

they still remain very large and complex.

For several groups building and studying PPI networks such as ours, an important

aspect of their work consists in characterizing certain proteins or subnetworks in these

networks. There is however often only very little hope that meaningful biological

conclusions will be drawn from manual inspection of large and intricate PPI networks.

Manual analysis of PPI networks is challenging despite good visualization tools such as

Cytoscape [203], VisANT [91], or NAViGaTOR [24]. Computational methods have

been developed to either identify protein complexes or infer protein functions (see

Chapter 1). This chapter introduces a novel computational approach (GoNet) that

detects sets of proteins annotated with the same GO term (e.g. biological process,

molecular function), which are surprisingly clustered in a given PPI network. We are

the first to formalize the problem addressed by GoNet. We also show in this chapter

that the problem tackled by GoNet is reducible to the k-clique problem. Even though

cliques of size k can be found in polynomial time whenever k is a fixed constant, k is

often very large and therefore an approximation method was required to address the

problem presented here.

90
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GO terms are often used to analyze components of PPI networks [101, 7] and even

to apply confidence scores on experimentally obtained or predicted PPIs [97]. The

GO project will be described in further detail later in this chapter. GoNet therefore

outputs the sets of proteins that are significantly clustered and that share a same GO

term. With the overwhelming quantity of data in PPI networks, such sets are useful

when comes the need to target certain regions of interest for smaller scale protein

characterization experiments. GoNet can also help prioritizing regions of the network

that should be studied first for laboratories interested in certain families of biological

processes. In addition, an uncharacterized protein that co-clusters with a protein set

detected by GoNet is likely to be linked with the GO term of this protein set. Such

protein can represent a very interesting target for functional characterization studies.

A preliminary version of the work presented in this chapter was published in the

proceedings of RECOMB 2009.

• M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of locally over-

represented GO terms in protein-protein interaction networks. In Research in

Computational Molecular Biology, pages 302–320. Springer, 2009

As it was discussed in the introduction, edges in PPI networks are often weighted

based on the confidence that an interaction is a true positive (scores from SAINT

[34] or Decontaminator [127]), the estimated abundance (e.g. spectral counts), or

the identification confidence score (e.g. Mascot [174] or Protein Prophet [161]) of the

prey of the interaction. The distance and similarity measures used to evaluate protein

clusterings that were presented at RECOMB were defined on unweighted graphs. We

therefore adapted the approach to allow, if the information is available, the calculation

of weighted distance and similarity measures. The use of weighted measures penalizes

GO terms for which the proteins are connected with low confidence scores and boosts

those where the proteins are connected with large weights.
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The RECOMB publication also argued that even though the proteins associated

to a given GO term may be significantly clustered, it does not mean that all these

proteins belong to a dense cluster. The article presented a greedy strategy to identify

the core of a GO term that was significantly clustered. We replaced this algorithm by

a faster and more adequate hierarchical clustering approach, which generally succeeds

at identifying the various cores of a clustered set of proteins.

The remaining content of this chapter is taken from:

• M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of locally over-

represented GO terms in protein-protein interaction networks. Journal of Com-

putational Biology, 17(3):443–457, 2010

4.2 Abstract

High-throughput methods for identifying protein-protein interactions produce in-

creasingly complex and intricate interaction networks. These networks are extremely

rich in information, but extracting biologically meaningful hypotheses from them and

representing them in a human-readable manner is challenging. We propose a method

to identify Gene Ontology terms that are locally over-represented in a subnetwork of

a given biological network. Specifically, we propose several methods to evaluate the

degree of clustering of proteins associated to a particular GO term in both weighted

and unweighted PPI networks, and describe efficient methods to estimate the statisti-

cal significance of the observed clustering. We show, using Monte Carlo simulations,

that our best approximation methods accurately estimate the true p-value, for ran-

dom scale-free graphs as well as for actual yeast and human networks. When applied

to these two biological networks, our approach recovers many known complexes and

pathways, but also suggests potential functions for many subnetworks.
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4.3 Introduction

Gene ontologies provide a controlled, hierarchical vocabulary to describe various

aspects of gene and protein function. The Gene Ontology (GO) Annotation project [4]

is a literature-based annotation of a gene’s molecular function, cellular component,

and biological processes. GO analyses have become a staple of a number of high-

throughput biological studies that produce lists of genes behaving interestingly with

respect to a particular experiment. For example, a microarray experiment may result

in the identification of a set of genes that are differentially expressed between normal

and disease conditions. A GO term (or category) τ is said to be over-represented in a

given list if the number of genes labeled with τ contained in the list is unexpectedly

large, given the size of the list and the overall abundance of genes labeled with τ in

the species under consideration (see tools like GoMiner [232], Fatigo [3], or GoStat

[15]). Statistical over-representation is an indication that the GO category is directly

or indirectly linked to the phenomenon under study. We say that this kind of set of

differentially expressed genes is unstructured, in the sense that all genes within the

list contribute equally to the analysis. A slightly more structured approach consists

of considering an ordered list of genes, where genes are ranked by their ”interest” with

respect to a particular experiment (e.g. degree of differential expression). There, we

seek GO terms that are surprisingly enriched near the top of the ranked list. This

is the approach taken by the highly popular GSEA method [212], which generalizes

this to include many kinds of gene annotations other than GO.

We propose taking this type of analysis one step further and applying GO term

enrichment analysis to even more highly structured gene sets: biological networks. In

such networks, genes (or their proteins) are vertices and edges represent particular re-

lationships (protein-protein interactions, regulatory interactions, genetic interactions,

etc.). Given a fixed biological network G and a gene ontology annotation database,

our goal is to identify every term τ such that the genes labeled with τ are unexpect-

edly clustered in the network (i.e. they mostly lie within the same “region” of the
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network). This local over-representation indicates that τ is likely to be linked to the

function of that sub-network1 . Indeed, and unsurprisingly, GO term clustering has

been observed to occur in most types biological networks [47, 139], and has been used

as a criterion to evaluate the accuracy of computational complex or module prediction

[154]. However, to our knowledge, the problem of identifying locally over-represented

GO terms in a network has never been formulated or addressed before.

This problem has a number of applications. High-throughput technologies gen-

erate large networks (thousands of proteins and interactions) that are impossible to

analyze manually. Graph layout approaches (reviewed in [213]), integrated in many

network visualization packages such as VisANT [92] and Cytoscape [195], can help hu-

mans extract biological meaning from the data, but revealing all aspects of a complex

data set in a single layout is impossible and, often, key components of the network

remain unstudied because the layout used did not reveal them visually. Various ap-

proaches have been proposed to ease the analysis of biological networks, including

packages performing graph clustering and path analysis (e.g. NeAT [22, 195]). Sev-

eral methods have been proposed to identify pathways [199] within PPIs or combine

expression data with PPI networks to infer signaling pathways [193]. Expression data

was also used to identify functional modules in PPI networks with a solution based

on an integer-linear programming formulation [52]. Another popular strategy starts

by identifying dense subnetworks within the network (using, for example, MCL [59]),

and then evaluates various biological properties of the subnetwork, including GO term

enrichment [194].

Our proposed approach identifies subsets of genes that share the same GO anno-

tation and are highly interconnected in the network, thus formulating the hypothesis

1 We note that in cases where the GO annotations themselves may be based on the
PPI network, our analysis would form circular argument. However, GO annotations
are based on a wide range of evidence and are rarely based on PPIs alone.
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that the function of the subnetwork is related to that GO annotation. This reduces

the complexity of the data and allows easier grasp by human investigators. Our

approach could be extended to help function prediction: genes with incomplete func-

tional annotation that are found to be highly interconnected with a set of genes of

known function can be expected to share that function [36, 196].

In this paper, we define formally the problem of identification of locally-enriched

GO categories for unweighted and weighted undirected interaction networks. We start

by defining two measures of clustering of a set of genes within a given weighted or

unweighted network. We then discuss the critical question of assessing the statistical

significance of the local clustering scores using analytical approaches of a given GO

term within the network, under a null hypothesis where vertices are selected randomly

(empirical approaches for shortest path distance significance have been proposed pre-

viously [188]). We show that the exact computation of this probability is NP-hard,

but we provide several efficient approximation methods. These p-value approxima-

tion methods are shown to be accurate on random scale-free graphs, as well as on

large-scale yeast [119] and human [41, 101] protein-protein interaction networks. We

then refine each significant gene sets to core subsets that contribute the most to its

statistical significance. Our analysis identifies regions of these two networks with

known function. It also suggests interesting functions for regions of the network that

are currently poorly understood.

4.4 Methods

We are looking for GO terms whose distribution across a given network is non-

random. In particular, we are interested in finding terms that are tightly clustered

within the network. Let G = (V,E) be an undirected, unweighted graph, where V

is a set of n proteins and E is a set of pairwise interactions between them. The

Gene Ontology project assigns to each gene a set of functional annotations, using a

controlled vocabulary. For a given GO term τ , let V (τ) ⊆ V be the subset of the
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proteins annotated with that term. Our goal is to investigate, for every possible term

τ , whether V (τ) is particularly clustered in G, which would hint to the fact that τ is

particularly relevant to the function of that subgraph. To this end, we introduce in

Section 4.4.1 two measures of clustering, as well as their generalizations to weighted

graph, and show in Section 4.4.2 how to measure their statistical significance.

4.4.1 Measures of clustering in a network

A number of approaches have been proposed to measure the clustering of a set of

vertices within a given graph, and to identify dense clusters (e.g. MCL [59]; see [23]

for a review). We focus on two simple but effective clustering measures, for which

the statistical significance can be accurately approximated analytically.

4.4.1.1 Total pairwise distance

Given two vertices u and v in V , let dG(u, v) be the length of a shortest path

from u to v in G. Since G is undirected, dG is symmetric. The distance matrix dG

can be computed in time O(|V |3) using the Floyd-Warshall algorithm [67, 225]. Let

W be a subset of V . Then, the total pairwise distance (TPD) for W is defined as

TPD(W ) =
∑

u,v∈W,u<v

dG(u, v). (4.1)

If most of the vertices in V (τ) are in the same region of the graph (e.g. the gray

or black vertices in Figure 4–1), then TPD(V (τ)) will be smaller than that of most

random subsets of |V (τ)| vertices and τ will be reported as potentially interesting.

4.4.1.2 Random-walk based similarity

One issue with the TPD clustering measure is that it does not take into consid-

eration the degree of the nodes on the path between the two proteins, in such a way

that, for example, the two sets of proteins shown in black and gray in Figure 4–1 will

get the same total pairwise distance (and, eventually, the same p-value), although
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Figure 4–1: Example of a toy PPI network. The black and gray subsets of vertices
obtain the same Total Pairwise Distance (13), but the gray subset obtains a higher
Probability of Stopping within the Family (PSF).

intuitively the gray cluster appears more interesting. In addition, if the vertices in

W form more than one dense subgraph, and these clusters are far away from each

other, the TPD measure may not reveal anything unusual. We introduce an alter-

native to the total pairwise distance, which we call the Probability of Staying within

the Family (PSF) clustering measure. This random-walk based similarity measure

shares a relationship with diffusion kernels [115]. The PSF for a subset of vertices W

is defined based on the following random process (similar to that modeled by MCL

[59]), parameterized by a user-defined probability p: (i) Randomly select a vertex

from W as a starting point; (ii) when at vertex u, stop with probability p, or, with

probability 1 − p, continue to a vertex v uniformly chosen from the neighbors of u.

Then, PSFp(W ) is defined as the probability that the vertex where the process stops

is an element of W . We note first that this process does make a difference between

the two subsets in Figure 4–1 and will also assign a high score to a subset W that

would consist of several dense but widely separated clusters.

If AG is the adjacency matrix of G and degG(u) is the degree of vertex u, then

the transition probability matrix TG for this random walk is defined as

TG(u, v) = AG(u, v)/
∑
w∈V

AG(u,w), (4.2)
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and the probability Pu,v of stopping at vertex v, starting from vertex u, is given by

Pu,v =
+∞∑
i=0

p(1− p)i((TG)i)(u, v).

Thus,

PSFp(W ) =
∑
u,v∈W

Pu,v/|W | =
∑
u,v∈W

sG(u, v),

and we obtain that, as for the total pairwise distance, the PSF measure is a sum of

pairwise scores, with sG(u, v) = Pu,v/|W |.

4.4.1.3 Generalization to weighted graphs

Edge weights are often used in protein-protein interaction networks to reflect the

confidence that a given interaction is a true positive. Such scores can be provided

by mass spectrometry analysis programs (e.g. Mascot [174] or PeptideProphet [35]).

Both the TPD and PSF clustering measures can be adapted in the context of a

weighted graph. The weighted TPD (WTPD) measure is obviously generalized using

the weighted shortest path distances for dG in Equation 4.1. In this case, edges are

weighted as

w(e) =

 1 + max(0, log10(maxMascot)− log10(mascot(e))) if e ∈ E
+∞ otherwise

where mascot(e) is the Mascot score associated with edge e and maxMascot = 500.

The obtained weighted distance matrix will be referred as dGW . This measure pe-

nalizes paths with low confidence scores, therefore when the vertices in V (τ) are

located in the same region of the graph and edges connecting those vertices have high

confidence, WTPD(V (τ)) will be small.



4.4. Methods 99

A generalization of PSF to WPSF is obtained by replacing the adjacency matrix

AG by the weighted adjacency matrix AGW in Equation 4.2, where

AGW (e) =

 log10(mascot(e)) if e ∈ E
0 otherwise

The resulting weighted similarity matrix will be referred as sGW .

The methods proposed in Section 4.4.2 to assess statistical significance apply to

both TPD and PSF and their respective weighted versions.

4.4.2 Measuring the statistical significance

Given a matrix M|V |×|V | containing pairwise distances (dG or dGW ), or simi-

larities (sG or sGW ), we consider the random variable obtained as follows. Let

R = {r1, r2, ..., rk} ⊆ {1, ..., n} be a randomly selected subset of proteins of cardinality

k. We are interested in the distribution of the random variable Sk =
∑

i,j∈R,i<jMi,j.

When using the weighted or unweighted TPD clustering measure, the p-value for GO

term τ will be obtained as p-valueTPD(τ) = Pr[S|V (τ)| ≤ TPD(V (τ))], whereas when

using the PSF clustering measure, the p-value will be obtained as p-valuePSF (τ) =

Pr[S|V (τ)| ≥ PSFp(V (τ))]. Note that there is no need to adjust the p-values for k

since we are analyzing a different distribution for each Sk.

A note on complexity. We first observe that computing the exact distribution

of Sk when M = dG is NP-hard. Indeed, Pr[Sk =
(
k
2

)
] is non-zero if and only if G

contains a k-clique. Therefore, we cannot expect an exact polynomial time algorithm.

Although more difficult to prove, the same is likely true for PSF. We thus investigate

three approaches that give approximations to the desired probability distributions.
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4.4.3 Normal approximation

Being a sum of
(
k
2

)
random variables, the distribution of Sk should converge to

a normal distribution as k and |V | become large (Central Limit Theorem), if these

random variables were independent. Although these variables are clearly not inde-

pendent (for example, in the case of TPD, they must satisfy the triangle inequality),

it turns out that the normality assumption sometimes yields a useful approximation

to the true distribution. The expectation of Sk can be calculated exactly in time

O(|V |2). Let E[S2] =
∑

1≤a<b≤nMa,b

(n2)
be the average pairwise score in M . Then

E[Sk] =

(
k

2

)
· E[S2]

The variance of Sk is more challenging to obtain. We have V ar[Sk] = E[S2
k ] −

E[Sk]
2, where

E[S2
k ] = E[(

∑
a,b∈R,a<b

Ma,b)
2]

= E[

{ ∑
a,b∈R,a<b

(Ma,b)
2

}
+

{
2

∑
a,b,c∈R,a<b<c

Ma,bMa,c +Ma,bMb,c +Ma,cMb,c

}
+

2

{ ∑
a,b∈R,a<b

∑
c<d∈R,c 6=a,b,d 6=a,b

Ma,bMc,d

}
]

=

(
k
2

)(
n
2

) ∑
1≤a<b≤n

(Ma,b)
2 + 2

(
k
3

)(
n
3

) { ∑
1≤a<b<c≤n

Ma,bMa,c +Ma,bMb,c +Ma,cMb,c

}
+

2

{ ∑
a,b∈R,a<b

Ma,b

∑
c<d∈R,c 6=a,b,d 6=a,b

Mc,d

}

The running time of the variance computation is thus O(n4), which, in many

cases, is prohibitive. However, when a 6= b 6= c 6= d, Ma,b is nearly independent from
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Mc,d, so

E[S2
k ] ≈

(
k
2

)(
n
2

) ∑
1≤a<b≤n

(Ma,b)
2 + 2

(
k
3

)(
n
3

) { ∑
1≤a<b<c≤n

Ma,bMa,c +Ma,bMb,c +Ma,cMb,c

}
+

2

(
k

2

){(
k

2

)
− 2k + 3

}
E[S2]2

We call this approach the normal approximation method.

4.4.4 Convolution-based approaches

Considering again a random subset of vertices R = {r1, r2, ..., rk}, we define the

random variables Zi,j = Mri,rj , for 1 ≤ i < j ≤ n and Yi =
∑i−1

j=1 Mrj ,ri , for i = 2...k

(refer to Figure 4–2) . In this section, we assume that the scores in M are integers.

This will always be the case when M = dG. When M = sG, M = sGW , or M = dGW ,

we assume that elements of M has been appropriately discretized to integers. Observe

that Sk =
∑k

i=1

∑i−1
j=1 Zi,j =

∑k
i=2 Yi. The random variable Sk is a sum of

(
k
2

)
random

but dependent variables. If we ignored the dependencies, the distribution of Sk could

be obtained as the
(
k
2

)
-fold self-convolution of the discrete distribution fG, where

fG(a) =
∑

1≤i<j≤|V | 1a=Mi,j
/
(|V |

2

)
is the fraction of entries in M with value a. This

turns out to produce a very poor approximation of the distribution of Sk, severely

underestimating the correct probability for small values of Sk. We can improve the

situation by modeling some of the dependencies. Again, the family of Y random

variables are dependent: in particular, if Sk−1 =
∑k−1

i=2 Yi is small, i.e. r1, ..., rk−1

form a tight cluster, then the variance of Yk is increased, because the variables Z∗,k

are highly dependent on each other (e.g. if Zi,k is small, then Zi′,k is also likely

to be small, because i and i′ belong to the same tight cluster). We consider two

approaches to the problem: the first calculates nearly exactly the distribution of the

Yi’s but ignores their dependencies, while the second models the dependencies more

accurately but is less accurate at the level of each distribution.
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r1 ri rk-1

rk

Sk =   Σ Σ Zi,j   =   Σ Yii=1

rj

Zi,j = M(ri,rj)

Yk = Σ Zi,ki=1

k

j=1

i-1

i=2

k

k-1

rk'-1 rk' rk-1

rk

r1 r2
Sk-1

Tk',k =  Σ Zi,k   i=1

k' Zk',k

(a) (b)

Figure 4–2: Definition of the variables used in the Convolution approaches.

4.4.4.1 The Y-convolution method

Let gi(a) =
∑n

j=1 1a=Mi,j
/(n− 1) be the fraction of pairs of vertices (i, ∗) with

score a and let g
(l)
i be the l-fold self-convolution of gi. Then, yl(a) = Pr[Yl = a] ≈

1/n
∑n

i=1(g
(l−1)
i )(a) (this is an approximation because the convolution models a situ-

ation where the random subset R would be allowed to repeatedly pick the same pair

of vertices). Assuming the independence of the Yi’s, the distribution of Sk would be

obtained by the convolution y2 ∗ y3 ∗ ... ∗ yk. We will refer to this approximation

as the Y -convolution method. Its running time is O(|V |2k2d2), where d is the di-

ameter of G, although the use of Fast Fourier transforms to compute convolutions

may yield significant improvements. In the context of WTPD, PSF, or WPSF the

running time becomes O(|V |2k2(δ · κ)2), where δ is the discretization factor and κ is

maxu,v∈V,u<v dGW (u, v), maxu,v∈V,u<v sG(u, v), or maxu,v∈V,u<v sGW (u, v) respectively.
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4.4.4.2 The triangle decomposition methods

An alternate approach is to use a dynamic programming algorithm to better

model dependencies (refer to Figure 4–2 (b)):

Pr[Sk = a] = Pr[
k∑
i=2

Yi = a] =

a∑
a′=1

Pr[Sk−1 = a′] · Pr[Yk = a− a′|Sk−1 = a′] if k > 1

0 if k = 1, a 6= 0

1 if k = 1, a = 0

Define Tk′,k =
∑k′

j=1 Zj,k, for 1 ≤ k′ < k, so that Yk = Tk−1,k. The term of the

form Pr[Yk = b|Sk−1 = c] = Pr[Tk−1,k = b|Sk−1 = c] is calculated using another a

convolution-based dynamic programming algorithm.

Pr[Tk′,k = b|Sk−1 = c] =
b∑

d=1

Pr[Tk′−1,k = d|Sk−1 = c] · Pr[Zk′,k = b− d|Sk−1 = c, Tk′−1,k = d] if 2 ≤ k′ < k

Pr[Z1,k = b|Sk−1 = c] if k′ = 1

It is most likely impossible to calculate exactly and in polynomial time Pr[Zk′,k =

b − d|Sk−1 = c, Tk′−1,k = d], as otherwise the derivation above would give the exact

probability distribution for Sk, which we have shown to be an NP-hard problem.

Instead, we boil down the information in the condition (Sk−1 = c, Tk′−1,k = d) to a

simpler condition for which the conditional probability is easier to compute. Notice

that if Sk−1 = c, the average pairwise distance among r1, ..., rk−1 is l1 = c/
(
k−1

2

)
.

Also, if Tk′−1,k = d, then the average pairwise distance between rk and r1, .., rk′−1 is

l2 = d/(k′ − 1).
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4.4.4.3 Rounding approach

We assume that the desired condition can be represented as the condition Z1,k′ =

Z2,k′ = ... = Zk′−1,k′ = [l1], Z1,k = Z2,k = ... = Zk′−1,k = [l2], where [l1] is the rounding

of l1, and similarly for l2 . The information on Zk′,k thus comes in the form of k′ − 1

nearly independent pairs (Zi,k′ = [l1], Zi,k = [l2]). Let t(a, b, c) be the number of

triplets 1 ≤ i < j < k ≤ n such that M(i, j) = a,M(i, k) = b,M(j, k) = c. Assuming

the independence of the k′− 1 conditions, the desired posterior probability of Zk′,k is

obtained as:

Pr[Zk′,k = b− d|Sk−1 = c, Tk′−1,k = d]

= Pr[Sk−1 = c, Tk′−1,k = d|Zk′,k = b− d] · Pr[Zk′,k = b− d]/ζ

≈
(
t([l1], [l2], b− d)

t(∗, ∗, b− d)

)k′−1

· fG(b− d)/ζ,

where ζ is a normalizing constant that does not need to be computed (it is sufficient

to normalize the distribution to make it sum to 1).

4.4.4.4 Interpolation approach

The rounding procedure yields a rather crude modeling of the actual posterior

probability, especially when l1 or l2 are far from [l1] or [l2] respectively. A better

modeling may be obtained as follows. Instead of assuming that all k′ − 1 condition

pairs have the same values [l1] and [l2], we assume N00 = frac(l1) · frac(l2) · (k′ − 1)

pairs have values (bl1c, bl2c), N01 = frac(l1) · (1− frac(l2)) · (k′−1) pairs have values

(bl1c, dl2e), N10 = (1− frac(l1)) · frac(l2) · (k′− 1) pairs have values (dl1e, bl2c), and

N11 = (1 − frac(l1)) · (1 − frac(l2)) · (k′ − 1) pairs have values dl1e, dl2e). We thus

approximate:
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Pr[Zk′,k = b− d|Sk−1 = c, Tk′−1,k = d] ≈(
t(bl1c, bl2c, b− d)

t(∗, ∗, b− d)

)N00

·
(
t(dl1e, bl2c, b− d)

t(∗, ∗, b− d)

)N10

·(
t(bl1c, dl2e, b− d)

t(∗, ∗, b− d)

)N01

·
(
t(dl1e, dl2e, b− d)

t(∗, ∗, b− d)

)N11

· fG(b− d)/ζ

Both triangle convolution approaches run in time O(k6d3 + |V |3) in the case of TPD,

where d is the diameter of G. For WTPD, PSF, or WPSF the running time is

O(k6(δ ·κ)3+|V |3), where δ is the discretization factor and κ is maxu,v∈V,u<v dGW (u, v),

maxu,v∈V,u<v sG(u, v), or maxu,v∈V,u<v sGW (u, v) respectively.

4.4.5 Identification of core subgraphs

If a GO term τ obtains a small p-value from one of the methods described above,

this means that the genes in V (τ) are unexpectedly clustered within G. This does

not, however, mean that every gene in V (τ) belongs to that dense cluster, but only

that a significant subset of V (τ) does. We call the core(τ) ⊆ V (τ) the set of mutually

exclusive subsets of V (τ) that contributes the most to its statistical significance, i.e.

the set of one or more subsets of genes in V (τ) that are the most significantly clustered.

core(τ) may consist of a single dense cluster, or of several dense but distant clusters.

In most situations, it is core(τ), rather than V (τ), that sheds the most light on the

function of a portion of a network. We use a simple partitioning algorithm to reduce

V (τ) to core(τ), by first building a hierarchical clustering tree of the proteins using the

average linkage algorithm and the TPD, PSF, WTPD, or WPSF measures (Algorithm

1). Each node of the tree represents the set of proteins below it in the tree and p-values

can be assigned to each node using one of the approaches proposed in Section 4.4.2.

We then recursively traverse the tree starting from the root exploring, and deciding

to keep the current cluster or to split it into two subclusters corresponding to the left

and right subtrees, based on the p-values at the current node and the two children
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(see Algorithm 2). The construction of the tree with hierarchical clustering runs in

O(|V (τ)|2 · log(|V (τ)|)) and identifying the cores runs in O(|V (τ)|). This heuristic

algorithm does not guarantee optimality but generally succeeds at identifying the key

components of V (τ). The results presented in Section 4.5.2 are the cores of the GO

terms that obtained good p-values.

Algorithm 1 Find Core subgraph

Input: Distance matrix dG (or dGW , or derived from sG or sGW ),
Vertex subset V (τ), maximum p-value of interest mpv
Output: Vertex subset core(τ)

root←HierarchicalClustering(V (τ), dG)
return DivideCluster(root,mpv)

Algorithm 2 DivideCluster

Input: Root r, maximum p-value of interest mpv
Output: A set of subsets of vertices of the subtree rooted at r that form significant
clusters

if p-value(r)> mpv then
return φ

else
if p-value(r) < p-value(leftChild(r)) and p-value(r) < p-value(leftChild(r))
then

return {V (r)} % where V (r) is the set of vertices in the subtree rooted at r.
else

return DivideCluster(leftChild(r), mpv) ∪ DivideCluster(rightChild(r), mpv)
end if

end if

4.4.6 Implementation considerations

The implementation of some of the four approximation schemes described in this

section proves quite technically challenging, with issues of numerical precision arising

for the two triangle convolution. Our crude approach to the problem is to make sure

that, at every step, the intermediate probability distributions are properly normalized

to sum to 1, although more subtle approaches would certainly improve our accuracy.

Another issue is the time and memory required for the computations of the triangle

convolution approaches, which require the storage of numerous large intermediate
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tables, currently limiting their utilization to the computation of p-values for values of

k less than 25. Program optimizations were required to accelerate the running time

for the triangle convolution approaches. They consist in stopping the computations of

a distribution for a given Sk when the only probabilities left to compute are those at

the right tail of the distribution that are smaller than the 64-bit double precision. The

discretization level chosen to be applied for the PSF, WTPD and WPSF methods was

also an important aspect to consider in the implementation. A coarse discretization of

the distributions can accelerate the running time for methods like the Y-convolution

or both triangle convolutions, but provide a rather inaccurate estimation of the final

distributions of Sk. On the other hand, a much finer discretization would require

much more computational time but would yield a more accurate approximation. The

challenge resides in determining the degree at which the distribution will be discretized

in order to compute in reasonable time an accurate distribution approximation.

4.5 Results

4.5.1 Accuracy of p-value approximation methods

The accuracy of our four p-value approximation schemes can be assessed by

Monte Carlo simulations: for a given graph G, repeatedly sample randomly a subset

of k vertices and compute the sum of pairwise scores to eventually obtain an unbiased

estimate of the true distribution. The limit of this approach is of course that the

accuracy of the estimation depends on the number of samples, making small p-values

difficult to estimate quickly.

We have measured the accuracy of our approximation approaches on both simu-

lated and actual biological networks. Protein-protein interaction networks have been

reported to be accurately modeled by scale-free random graphs [11], although geo-

metric random graphs have also been used [180]. We randomly generated scale-free

graphs with 1000 vertices and a number of edges ranging from 1000 to 3000. In
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total, 2100 random graphs were generated. The distributions of the TPD and PSF

scores were estimated empirically, using 106 samples, for each graph and each value

of k = 5, 10, 20, 50. For each combination, critical values Z0.1, Z0.01, and Z0.001 were

estimated as being the value of TPD and PSF that obtains the empirical p-value 0.1,

0.01, and 0.001, respectively. Each of the four analytical approximation methods2

were then used to estimate the p-values for Z0.1, Z0.01, and Z0.001. Figures 4–3 and

4–4 report the accuracy of the p-values produced by each of our methods for the

TPD and PSF clustering measures, for the target p-values 0.1, 0.01, and 0.001, and

for k = 5, 10, 20, 50. We start by observing that although our p-value approximation

methods apply in principle to both the TPD and PSF clustering measures, speci-

ficities of these datasets result in our methods behaving quite differently. This is

due to the fact that the similarity scores that constitute the PSF clustering scores

exhibit much stronger inter-dependencies than the pairwise distances that constitute

the TPD clustering score, resulting in worse approximations when independence in

assumed. Our observations are summarized below.

• Y-convolution. In the case of TPD, this method severely underestimates small

p-values, by a factor ranging from 2 to 100 for k = 5 to more than 104 for k = 50.

This due to the fact that dependencies in the graph are greatly underestimated.

However, the approximation improves with the edge density. On the contrary,

the method works quite well on PSF clustering for graphs with low edge density,

but it severely underestimates p-values of highly connected graphs.

• Normal approximation. This approximation obtains much better results

than the Y-convolution approximation in the case of TPD clustering, producing

p-values that generally slightly over-estimate the correct p-value (1- to 3-fold

for small k, 10- to 50-fold for k=50). Surprisingly, although, for small k, the

2 Note that the triangle decomposition with interpolation approximation was not
performed for PSF because of its high memory and running time requirements.
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quality of the approximation improves with the edge density, the opposite trend

is observed for larger k. However, for PSF clustering, this yields an extremely

poor approximation for all values of k, erring by a factor ranging from 1010 to

1060 for a true p-value of 0.001.

• Triangle decomposition with rounding. We found that this method is an

improvement to the Y-convolution approximation for TPD clustering since it

does not underestimate as much p-values for small k (factor ranging from 2 to 10

for k = 5 and from 10 to 100 for k = 10). However, it behaves more irregularly

for k = 20, underestimating the p-values by a factor greater than 100. This

approach also yield good approximations for PSF clustering, overestimating

small p-values for any k by a small margin. Interestingly, for both clustering

measures, the accuracy of this approximation does not seem to be affected by

the edge density of the network.

• Triangle decomposition with interpolation. The results obtained from this

method on TPD clustering are comparable to the normal approximation esti-

mation. For p-values 0.01 or less, computed p-values are slightly over-estimating

the correct p-values (1- to 4- fold for small k). It sometimes even provides a

tighter upper bound on the correct p-values. Again the accuracy of the p-value

estimation for this method is not influenced by the edge density. We were unable

to use this approximation for PSF because of high running time and memory

requirements of the method.

Notably, all 4 methods behaved extremely similarly in terms of accuracy for both

WTPD and WPSF compared to their respective unweighted version TPD and PSF.

Overall, we conclude that given how quickly it can be computed, the normal approx-

imation approach is the best tradeoff between running time and accuracy for TPD.

However, the quality of that approximation degrades with the edge density, which is

not the case for the two Triangle convolution approaches. This is an important point

since we expect protein-protein interaction networks to gain in edge density as new
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high-throughput assays become available. The Triangle convolution approach is also

the most accurate for PSF. It is the only method providing tight upper bounds on

p-values even for large k in highly connected graphs. However, because of its intensive

use of memory and slow running time, it is hard to obtain p-value approximations for

very large k. Since it produces p-value approximations in a much more reasonable

time, the Y-convolution method can be used in this situation.

k = 5 k = 10 k = 20 k = 50

p-value=

0.1

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000
Number of edges

p
-v

a
lu

e
s

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

Number of edges

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

Number of edges

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

Number of edges

p-value=

0.01

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

p
-v
a
lu
e
s

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

0.00001

0.0001

0.001

0.01

0.1

1

1000 1500 2000 2500 3000

p-value=

0.001

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1000 1500 2000 2500 3000

p
-v
a
lu
e
s

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1000 1500 2000 2500 3000

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1000 1500 2000 2500 3000

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1000 1500 2000 2500 3000

Figure 4–3: p-values predicted by our four approximation schemes (Normal: red; Y-
convolution: blue; Triangle convolution with rounding: yellow; Triangle convolution
with interpolation: green) for the TPD clustering measure. Each data point records
the approximated p-value (y-axis) for the TPD score that obtained the given empirical
p-value (0.001, 0.01, 0.1), on a random scale-free graph with 1000 vertices and the
given number of edges (x-axis). The triangle convolution with rounding method was
too slow to be evaluated for k > 20, and that with interpolation could only be run
for k = 5 and k = 10.

Our results on two larger actual PPI networks in yeast [119] and human [101] (see

Section 4.5.2) largely confirm our observations on random graphs. Figure 4–5 shows

the complete TPD distributions (for k = 10) obtained by Monte Carlo simulations, as
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Figure 4–4: p-values predicted by three approximation schemes (Normal: red; Y-
convolution: blue; Triangle convolution with rounding: yellow) for the PSF clustering
measure. See caption of Figure 4–3. The triangle convolution with rounding method
was too slow to be evaluated for k > 20 and some graphs for k = 20. The triangle
convolution with interpolation was too slow for all k. The Normal approximation
method produced p-value estimates that were too poor to show on these graphs,
usually erring by a factor of 1010 or more.

well as each of our approximation methods, for the Krogan et al.’s yeast PPI network,

which consists of more than 2500 proteins and 7000 interactions.

Of the four approximation methods proposed, the fastest is the normal approx-

imation (Table 4–1). The Y-convolution method is approximately 10-fold slower,

while the two triangle-based convolution approaches are several orders of magnitude

slower. Note that for PSF, Triangle convolution with interpolation runs several order

of magnitude slower than the values presented.
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Figure 4–5: Empirical and approximated TPD distributions for the yeast PPI net-
work, for k=10.

Table 4–1: Approximate running time, in minutes, to calculate one clustering p-value
for a 1000-vertex scale-free graph with 2000 edges, for the TPD clustering measure.

k = 10 k = 20 k = 50

Monte Carlo simulation(a) 2 5 20
Normal 0.3 0.7 1
Y-Convolution 1 5 15
Triangle with rounding 2 300 >1000
Triangle with interpolation 5 600 >1000

(a) 106 samplings were performed for the Monte Carlo simulations.

4.5.2 Biological analyses

We first applied our analysis using TPD to the yeast protein-protein interac-

tion data set produced by Krogan et al. [119]. We analyzed the largest connected
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component of their ”core” network, which consists of 2559 proteins and 7037 inter-

actions. Of the 299 GO terms present more than twice in the network, 91 obtained

a normal approximation (conservative) p-value below 0.05 (corresponding to a FDR

= 299×0.05
91

≈ 16%), and 42 obtain a p-value below 0.001 (FDR = 299×0.001
42

≈ 0.7%).

As seen on Figure 4–6, the GO terms with significant p-values allow the automated

annotation of much of the network. For many of the GO terms reported, our results

reflect known protein complexes (e.g. ribosome, ribonuclease MRP, general pol-II

transcription factors, etc.). Other clusters, often the larger, more diffused ones, do

not correspond to complexes but rather contain proteins that interact with many

of the same partners (e.g. the translation initiation factors or the signal sequence

binding proteins). While most GO terms form a single, dense cluster, some, such as

the structural components of the ribosome, the general RNA pol-II TFs, and the en-

dopeptidases, are broken into two or three dense subgroups. Many of the fundamental

functional interactions between groups of proteins of different function immediately

stand out, for example the interplay between histone deacetylases (yellow), histone

acetyltransferases (in cyan), and ATP-dependent 3’-5’ DNA helicases (in green). The

annotated network is clearly more interpretable and readily allows the formulation

of specific hypotheses about the function of various unannotated proteins and of the

various interactions observed. See Supplementary material for complete results.

Finally, we analyzed a human protein-protein interaction network published by

Jeronimo et al. [41] using PSF and WPSF. The network contains 1053 proteins and

2014 interactions, built from 32 tagged proteins and their interactors in the soluble

fraction of HEK293 cells. The tagged proteins are predominantly proteins related

to the (extended) transcription machinery. As can be seen from Figure 4–7, the

network is quite dense and existing automated layout systems fail to reveal much

of the biological information contained in the graph. We ran our analyses on the

network to identify which of the 135 GO categories present more than twice in the

graph show unexpected clustering. 24 GO categories obtained p-values below 0.05
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Figure 4–6: Yeast PPI network from Krogan et al. [119], annotated with the cores
of some of the GO categories with significant clustering. The p-values given were
obtained using the Normal approximation approach, which is almost always conser-
vative. For readability, not all significant GO categories are shown. Subsets of core(τ)
of size at least 3 are shown.

(FDR = 135×0.05
24

≈ 28.1% for PSF and 19 for WPSF (FDR = 135×0.05
19

≈ 35.5%; see

Supplementary material). Genes belonging to some of these categories are colored

coded in Figure 4–7 (several categories are somewhat redundant; only one represen-

tative per group is shown). When the graph is manually laid out to highlight the

connectivity among the selected protein groups (Figure 4–7), the role of several sub-

networks is clearly revealed. For example, we can easily identify subunits of the RNA

polymerase I, II and III, classified by GO as “DNA-directed RNA polymerase activ-

ity”, which are clustered together. We also notice that RPAP1 is tightly connected

to the POLR2 subunits within that cluster. This corroborates the observation of

Jeronimo et al. where RPAP1, XAB1, C1ORF82, and FLJ21908 (now referred as
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Figure 4–7: (Top) Human PPI network from Jeronimo et al. [101], laid out using
the “relaxed” automatic layout procedure of VisANT [92]. (Bottom) Groups of pro-
tein with a significant PSF and WPSF clustering p-value are highlighted in colors.
The Triangle convolution was used when the group size was small enough; otherwise,
the Y-Convolution was used. Monte Carlo estimated p-values are between parenthe-
ses. Network laid out manually to highlight the connectivity of the proteins within
each GO category reported (to improve readability, proteins that do not belong to
any shortest paths between pairs of proteins of the selected groups are not shown).
GTF2H3 (in orange) is part of both red and yellow groups. GTF2H2 (in khaki green)
is part of both the yellow and blue groups. Subsets of core(τ) of size at least 3 are
shown. Clearly, without the information provided by our GO clustering approach,
the PPI network showed at the top would be hard to interpret.
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RPAP2 and RPAP3 respectively) are forming an interface between the RNA poly-

merase II subunits and some molecular chaperone and prefoldins. We can also see

that our method, by highlighting this GO term, facilitated the visualization of the

interactions between the POLR2 subunits with the XAB1, RPAP2, and RPAP3 pro-

teins. Hexamethylene bis-acetamide inducible (HEXIM) proteins were also found to

be clustered with cyclin-dependent kinase 9 (CDK9) and cyclin T1 (CCNT1), both

members of the P-TEFb complex [172]. All of these are associated with the GO term

“snRNA binding”. Interestingly, HEXIMs are known to be inhibitors of the cyclin-

dependent kinase activity of P-TEFb [13, 26]. In addition, BCDIN3 (also known as

MEPCE) and SART3, which are part of the 7SK snRNP complex, itself containing

P-TEFb, are closely associated with HEXIMs and CDK9 [101, 41]. Finally, numerous

TATA box binding protein (TBP)-associated factors (TAFs) and a general transcrip-

tion factor II (GTF2A1), all sharing the “general RNA polymerase II transcription

factor activity” GO function, were found to be significantly clustered. Many of these

TAFs and GTF2A1 are interacting with TBPL1, another protein playing a key role

in transcription [164].

4.6 Discussion and future work

The idea described in this paper, of seeking gene attributes that cluster within a

given network, can be used to annotate PPI networks with any type of gene or protein

features. Besides gene ontologies, we are currently expanding our tool to use protein

domains from the PFAM database [65], pathways from the KEGG database [106],

and gene expression data. Indeed, any annotation coming in the form of gene sets

can be used to annotate the network, including, for example, those collected through

the laudable efforts of the GSEA [212] team.

In the future, we will try to improve the accuracy and efficiency of our approxi-

mation algorithm. We will also seek provable approximation bounds for the p-value

estimation problem. Currently, one of the main computational issues is that some of
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our best approximation methods are quite slow and require a lot of memory. More

efficient implementations would thus have a significant practical impact.

In this paper, we only studied the simplest version of a family of interesting

problems. A number of extensions will be considered. One important generalization is

to consider directed graphs. In these graphs, the edges directions represent biological

information about the tag experiment that was performed. For instance, an edge

would connect two proteins from the tagged protein to the purified protein. We are

also considering the problem where gene annotations are not in the binary form (i.e.

they belong to a given gene set or not) but are more quantitative measures, such as

gene expression.

As we discussed previously, our method could be used for protein function pre-

diction. For a given set of proteins sharing the same GO term that are surprisingly

clustered, uncharacterized proteins co-clustering with the GO term could be expected

to share the same GO annotation. Another exciting prospect is to use this type of

local over-representation to search for sequence motifs. One would seek motifs that

are locally enriched in a subnetwork of the graph. Locally over-represented motifs

found in protein sequences may correspond to new domains or localization signals.

Those found in the 5’ or 3’ UTRs of genes may contain mRNA localization signals

or post-transcriptional regulatory elements relevant to the subnetwork, while those

found in the regulatory regions (promoters and enhancers) would allow the coordi-

nated transcription of the proteins in the subnetwork.
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4.8 Supplementary material

The Java program used to identify GO terms enriched in subnetworks is available

at: http://www.cs.mcgill.ca/~blanchem/GoNet. All other supplementary files are

available at the same location.



CHAPTER 5
Detection of functional sequence motifs in human 5’ UTRs based on local

enrichments in a protein-protein interaction network

5.1 Preface

In the previous chapter we have shown that GoNet has the capability to identify

sets of proteins annotated with the same Gene Ontology (GO) term that are clustered

in PPI networks. However, protein annotations may take many more forms than GO

terms. For example, GoNet could be used to find proteins known to be involved in

the mechanisms of a certain disease (e.g. from OMIM [84]) and that are clustered

in the network. Many other types of annotations such as gene co-expression or co-

methylation could also be used to perform a GoNet analysis.

One weakness of the use of GO terms as annotations for a GoNet analysis re-

sides in the fact that some GO-protein associations may be derived from PPI networks

themselves. For instance, a GO term may represent a given protein complex that was

discovered using AP-MS. This circularity may hinder the biological discovery power

of GoNet, which may report annotations derived from protein clusterings well charac-

terized in PPI networks. The use of an approach similar to GoNet with annotations

such as gene co-expression, co-methylation, or any annotations derived independently

from PPI network data is likely to show a greater discovery potential. In this con-

text, the relationships found by this approach between the clustered proteins and

their shared annotations may be of greater biological interest as they may not be

as trivial as those identified with GO terms (e.g. protein subunits of the ribosome

that are clustered in the network as well as being annotated with the “ribosome” GO

term.)
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In this chapter, we propose to use a more unconventional type of protein annota-

tion with a computational tool based on GoNet called: Local Enrichment of Sequence

Motifs in biological Networks (LESMoN). We consider a set of proteins in a PPI net-

work to share the same annotation if their sequences contain at least one occurrence

of a given sequence motif.

An alternative approach to both GoNet and LESMoN consists in using a net-

work clustering algorithm such as MCL [59] to identify clusters in an input network

and then testing if those clusters are enriched for a certain annotation (GO term or

sequence motif). The main problem with such strategy resides in the fact that most

clustering strategies like MCL, when used on massive networks such as BioGRID

[210], fail to identify large densely connected subgraphs that are embedded in dense

subgraphs containing even more vertices. MCL, for instance, partitions the network

into several very small clique-like subgraphs, while keeping more than half of the

network as one large cluster.

The remaining content of this chapter is taken from:

• M. Lavallée-Adam, B. Coulombe, and M. Blanchette. Detection of functional

sequence motifs in human 5’ UTRs based on local enrichments in a protein-

protein interaction network. Manuscript in preparation.

5.2 Abstract

Protein-protein interaction (PPI) networks are becoming increasingly large and

complex with the accumulation of publications of high-throughput studies. We pre-

viously presented a computational method (GoNet) to identify Gene Ontology terms

that are significantly clustered in PPI networks in order to help the interpretation of

such intricate networks. We now propose to analyze the clusterings in PPI networks of

proteins whose associated 5’ UTR sequences contain a common motif. Specifically, we

introduce a computational approach, LESMoN, to assess the statistical significance
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of the clusterings of large sets of proteins sharing the same 5’ UTR sequence motif in

PPI networks and present several tools to evaluate the biological importance of the

motifs identified. We show that when applied to the human BioGRID PPI network,

our approach identifies several uncharacterized and known 5’ UTR sequence motifs

whose associated proteins are clustered in the network. The vast majority of these

motifs are evolutionary conserved. Finally, we establish that the genes containing

such motifs are significantly enriched with various Gene Ontology terms suggesting

new associations between 5’ UTR motifs and a number of biological processes.

5.3 Introduction

Enrichment analyses, where one identifies properties that are found in a set of

genes of interest more often than expected by chance, have become an almost in-

escapable step in the analysis of high-throughput biological studies. There, sets of

genes of interest may correspond to genes that are differentially expressed between

conditions, cell types, or diseases, targeted by a given transcription factor or miRNA,

or encoding a set of interacting proteins. The properties, or annotations, considered

may originate from the controlled vocabulary functional annotations of the Gene On-

tology (GO) project [4], pathway databases such as Kegg [107], or more comprehen-

sively from gene sets from the MSigDB [140]. However, more generally, any function

that separates genes into two sets - those that have the property and those that do

not - can be used for gene set enrichment analysis. These include, among others, the

presence of a given sequence motif in the protein sequence, in the gene encoding it,

or in the regulatory regions of that gene. Irrespective of the nature of the annotation

considered, a gene set enrichment suggests a direct or indirect relationship between

the annotation and the property or behaviour of the gene set, provided appropriate

controls and statistical approaches are used.

A typical strategy to test for the enrichment of an annotation (originating from

GO or MSigDB) in a given set of genes S taken from the whole set of genes Ω of an
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organism is to perform an hypergeometric or Fisher’s exact test, which contrasts the

proportion of genes with the property of interest in S to that in Ω and assigns a p-

value reflecting the probability that an enrichment equal or greater would be observed

by chance [232, 3, 15, 14]. Sequence motif discovery techniques, especially approaches

that enumerate candidate motifs to identify those that are the most significantly en-

riched in S, fall under a similar umbrella. These include expectation-maximization al-

gorithms (MEME [10]), Gibbs sampling (AlignACE [185]), word statistics approaches

(YMF [202]), or ensemble approaches (SeSiMCMC [62], Amadeus [142]).

We have previously described such gene sets S ⊆ Ω as being “unstructured”,

since each gene in it contributes equally to the annotation enrichment in the analysis

[130]. An extension to this enrichment analysis was explored by the famous Gene

Set Enrichment Analysis (GSEA) computational tool [212]. Instead of separating

genes into those that are “of interest” and those that are not and seeking enriched

annotations in the former, GSEA takes as input a ranked list of genes based on their

“level of interest” with respect to a particular measure (e.g. over-expression in a

given condition) and identifies annotations whose distribution in the ranked list is

non-uniform. In that sense, we could say that GSEA takes advantage of a “weak

structure” defined on Ω by the (single) measure of interest, to identify annotations

that are non-randomly distributed in this structured space.

Another type of annotation that has been considered is the presence of a given

sequence motif (e.g. one represented by a regular expression) in a DNA sequence

associated to a gene (e.g. its promoter). Here, for a given motif m, a gene is said

to have the annotation m if its promoter contains one or more copies of m. Such

approaches have been quite successful at identifying transcription factor binding site

motifs based on ranked lists of differentially expressed genes [135, 136, 56] or sequences

sorted by their affinities to a given transcription factor, as obtained by protein-binding

arrays [31].
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In previous work, we showed that GO enrichment analysis can be applied to much

richer structures such as those defined by biological networks, e.g. PPI networks

[129, 130]. In that case, annotations of interest were those where the genes (or

proteins) with the property were non-randomly distributed in the network, i.e. more

clustered than expected by chance, representing the so-called local enrichment of

the property. In this paper, we introduce the Local Enrichment of Sequence Motifs

in biological Networks (LESMoN) approach, which uses a similar principle for the

detection of local enrichments of a different type of annotation, namely sequence

motifs found in the mRNAs encoding the proteins in the network. In this paper, we

focus on a particularly function-rich portion of the mRNA, the 5’ untranslated region

(UTR). Specifically, given a PPI network G with 5’ UTR sequences associated to all

proteins in G, our objective is to identify all sequence motifs, represented using simple

regular expressions, for which the associated proteins are surprisingly clustered in G.

The motifs identified are expected to be somehow linked to the biological function of

the subnetwork where they reside, and we propose additional analyses that suggest

what role this may be.

In RNAs, 5’ UTR sequences play key roles in post-transcriptional regulation.

Specific primary and secondary structure motifs regulate translation [116, 171, 99,

177, 178]. 5’ UTRs are implicated for example in the translation regulation of ribo-

somal proteins and proteins involved in protein synthesis through a 5’ TOP motif

[169, 157]. Furthermore, 5’ UTRs often contain intracellular localization elements,

which are required for the binding of their mRNAs to certain cell structures such

as membranes [192] and synapses [152]. In addition, riboswitches, a mechanism by

which a section of mRNA adopts a certain structure to regulate the translation of

its encoded protein, are known to be most often located in the 5’ end of 5’ UTRs of

bacterial mRNAs [149]. Also, variations of the transcription start site and alternative

splicing can lead to the production of different 5’ UTR sequences for a gene. These

sequence variations may contain different regulatory motifs affecting the mRNA of
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the gene or protein translation [94]. Obviously, the DNA that encodes 5’ UTRs can

also host transcriptional regulatory regions such as transcription factor binding sites

for which the binding motif may appear enriched in 5’ UTRs; we therefore propose

approaches to separate candidate transcriptional from post-transcriptional regulatory

motifs.

As we show in this paper, LESMoN is capable of identifying a large set of sequence

motifs that associate with specific functional subnetworks, including motifs involved

in transcriptional regulation, translation regulation, splicing, and others. Whereas

LESMoN recovers known functional motifs in 5’ UTRs (e.g. the GGUG binding motif

of the protein FUS or the CG rich binding motif of RBM4), the majority of the motifs

identified appear uncharacterized. For most of them, additional evidences (inter-

species conservation, position and strand biases, GO enrichment of corresponding

proteins, etc.) point to specific functions.

5.4 Methods

The goal of our approach is to find 5’ UTR sequence motifs for which the asso-

ciated proteins are surprisingly clustered in a given PPI network. We enumerate all

possible motifs over a given alphabet (described in Section 5.4.2) and test whether

the motifs are clustered. To this end, we present a measure of protein clustering in

PPI networks and methods to evaluate the clustering statistical significance. Should

a motif be significantly clustered, it would suggest that the motif is linked directly or

indirectly to the biological mechanism causing the clustering of the associated proteins

in the PPI network. We also present in this section various tools and strategies to

evaluate the biological significance of the motifs for which the proteins are clustered.

5.4.1 Protein-protein interaction network

We tested our approach on the human PPI network downloaded from the BioGRID

database (version 3.2.97) [30, 210], one of the most comprehensive human PPI network
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available. The network contains 14,113 proteins forming 127,433 unique interactions.

Even if this network can be treated as directed because of the nature of the experi-

ments used to build it, we decided to consider it as undirected since edge directionality

is only an artefact of experimental procedures and is irrelevant when considering the

real biological data in this context. Only the largest connected component G = (V,E)

of this network (|V | = 14, 021 proteins and |E| = 120, 146 interactions) was used in

the present analysis to facilitate the use of our distance measure described in Section

5.4.3.

5.4.2 5’ UTR motif enumeration

All 5’ UTR exon sequences of the mRNAs of the proteins present in the human

BioGRID PPI network were obtained from the RefSeq gene annotation through the

UCSC Table Browser (28 Feb. 2013). When a protein was associated to multiple 5’

UTR variants, their union was associated to that protein. To avoid the inclusion of a

few misannotated 5’ UTRs spanning over gene exons, which are in fact translated, we

only considered the first 500 nucleotides (at most) of each 5’ UTR. This includes the

full length of more than 90% of 5’ UTRs in our dataset. We then enumerated sequence

motifs of length 8 over the alphabet σ = {A,C,G, U,R, Y,N}, where R = [AG],

Y = [CU ], and N = [ACGU ]. Motifs of length smaller than 8 are represented in

this enumeration with the inclusion of the N character at the beginning or the end

of 8-mer motifs. Motifs of length 6, the typical size of RNA-binding protein motifs,

are therefore considered [89]. A protein was annotated as containing a given motif if

the corresponding 5’ UTR had at least one match to it, considering only the forward

strand (i.e. matches to the reverse complement are not considered).

5.4.3 Clustering measure

We previously used the following method to measure the clustering of a set of

proteins in a PPI network [129, 130]. Let u and v be two vertices from the set of
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vertices V . We define dG(u, v) to be the length of the shortest path in G between u

and v. Floyd-Warshall’s algorithm [67, 225] was used to compute the distance matrix

dG. Now let Vm ⊆ V be the set of all proteins annotated with the motif m. We define

the total pairwise distance (TPD) for Vm as

TPD(Vm) =
∑

u,v∈Vm,u<v

dG(u, v). (5.1)

5.4.4 Clustering statistical significance

We previously showed how to evaluate the statistical significance of a given value

of the TPD [129, 130]. However, that approach only works for small sets of proteins

(|Vm| < 100) and uses a null model that is not appropriate here. The approach pre-

sented here is therefore slightly different. This strategy computes the distribution of

the random variable Sk =
∑

i,j∈R,i<j dG(i, j), where R = {r1, r2, ..., rk} ⊆ {1, ..., |V |}
is a randomly selected subset of k proteins. Contrary to our previous work where

every node in the network was chosen with equal probability, the appropriate null

model here is one where the probability that a given protein is selected in Sk is pro-

portional to the length of its 5’ UTR. To evaluate the statistical significance of the

clustering of the proteins associated to a motif m, a p-value is then calculated as fol-

lows: p-value(m) = Pr[S|Vm| ≤ TPD(Vm)]. In order to compute clustering p-values,

we introduce two methods to calculate the distribution of Sk, one for small protein

sets (≤ 300) and another for larger sets (> 300).

5.4.4.1 Monte Carlo sampling

We proved previously that the exact computation of the distribution of Sk is

NP-hard [129]. We therefore cannot expect to perform this calculation exactly in

polynomial time. Nevertheless, the statistical significance of the level of clustering of

a set of proteins can be estimated using Monte Carlo sampling, where k proteins are

repeatedly sampled and the TPD evaluated, in order to estimate the distribution of
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Sk. Because the time required to compute TPD(Sk) is O(k2) (once the full pairwise

distance matrix dG is computed) and this procedure needs to be repeated a large

number of times (e.g. 106 times to obtain a p-value accuracy of approximately 10−6),

it is only feasible for values of k at most 300. However, for most motifs m, |Vm| > 300,

so a faster approach is required.

5.4.4.2 Normal approximation

In a previous publication, we demonstrated that the distribution of Sk can be

estimated using a normal distribution when k and |V | are large [129]. We therefore

propose to estimate the distribution of Sk when k > 300 with a normal distribution

N (µ, σ2). Although the mean µ can be computed exactly in time O(|V |2), the exact

computation of the variance σ2 has a prohibitive running time (O(|V |4)). This ap-

proach is therefore not applicable. Instead, for each value of k between 2 and 1500,

we estimate µk and σ2
k using a limited amount of Monte Carlo sampling. We assessed

the quality of the p-value estimation of the normal approximation technique by esti-

mating the distribution of Sk using 104, 105, 106, and 107 randomly chosen samples

for k = 300 in the human BioGRID PPI network. We compared the p-values obtained

for the TPDs with these approximations to our gold standard, which consists of the

p-values obtained from the distribution of S300, estimated using the Monte Carlo sam-

pling procedure with 107 samples. Supplementary Figure 5–3 shows that excellent

accuracy can be achieved using only 105 samples. There is practically no gain of using

106 or 107 samples, which would require much more computational time. We therefore

opted to randomly choose 105 samples in order to estimate the mean and variance for

the normal distribution approximation. The estimated normal distributions are then

used to obtain the desired p-values for cases where 300 < k ≤ 1500. The significance

of the clustering of motifs present in more than 1500 5’ UTRs is not assessed, due

to the excessive computational burden. This does not represent a big loss as these

motifs are likely to be mainly composed of degenerate characters (R, Y, N) and yield

very little biological significance. We also use this normal approximation for cases
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where k ≤ 300 and where the p-value estimated by the full Monte Carlo sampling

from the previous section is too small to be estimated accurately (< 10−6).

5.4.5 False discovery rate inference

Since an important number of 5’ UTR motifs (at most 78) are tested for the

clustering significance of their associated proteins, multiple hypothesis testing is a

significant issue. These statistical tests are far from being independent, because

many motifs tested are variants of each other, making a p-value correction such as

Bonferroni correction [55] too stringent. To address this issue, we randomize the 5’

UTR sequences in our dataset to estimate a false discovery rate (FDR) for every

clustering p-values. More precisely, the order of the nucleotides of each 5’ UTR

sequences is permuted within non-overlapping windows of 10 nucleotides, in order to

preserve local sequence properties such as GC content. Motif clustering p-values are

then obtained for this randomized dataset, using the same procedure as described

above. Let M(p) be the number of motifs that obtained a p-value at most p in the

actual set of sequences, and N(P ) be the number of such motifs in the permuted data

set. We then calculate the FDR for a given p-value p as FDR(p) = N(p)/M(p).

5.4.6 Gene Ontology enrichment analysis

To investigate the mechanisms in which the motifs identified by LESMoN may be

involved, we used Ontologizer [14] (with the complete set of proteins V as background)

to determine, for each motif, whether the set of associated proteins is enriched for

particular Gene Ontology categories.

5.4.7 5’ UTR motif conservation

To further explore the biological significance of the motifs detected by LESMoN,

we evaluated their level of evolutionary conservation. For each motif, we obtained the

number of 5’ UTR matching sites whose middle position is contained within a highly
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conserved genomic regions among placentals (phastConsElements46wayPlacental [201]

from the UCSC Genome Browser). We then compared this overlap to the overall pro-

portion of 5’ UTR bases that are conserved among these same placentals and obtained

a p-value using a simple binomial test. To avoid numerical instability, this binomial

distribution was actually approximated using a normal distribution, with little loss

of accuracy given the very large number of sites involved.

5.4.8 5’ UTR motif strand specificity and 5’ UTR positional enrichment
evaluation

In order to evaluate the likelihood of a 5’ UTR motif to play a functional role at

the mRNA level rather than the DNA level, we measured its strand specificity, defined

as the ratio of the number of occurrences of a motif to the number of occurrences of

its reverse complement. One would expect post-transcriptional motifs to have a high

strand specificity (> 1), whereas most transcriptional regulatory elements, whose

function is often independent of strand orientation, may have a strand specificity

close to 1. In addition to a high strand specificity, 5’ UTRs that play a role post-

transcriptionally, are expected to occur more often after the transcription start site

than before (i.e. in promoter). To measure this occurrence bias for a given motif, we

computed the difference between the averages of fractions of positions covered by the

motif in 5’ UTRs and in promoters. We performed then calculated the same difference

for its reverse complement, which should be small for motifs for which the reverse

complement is not functional. We then took the difference of these two calculations

to discriminate motifs likely to be functional post-transcriptionally. A motif was

judged as playing a role predominately in mRNAs if this difference was > 8.0 · 10−4

or > 7.6 · 10−4 and that its strand specificity ratio was > 1.4. These thresholds

were chosen somewhat arbitrarily based on visual inspection of motif occurrences in

promoters and 5’ UTRs.
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5.4.9 5’ UTR motif families

To facilitate the analysis of our motifs, we used a hierarchical clustering approach

to group motifs into families based on the similarity of the sets of proteins they are

associated to. Specifically, let m1 and m2 be two motifs and Vm1 and Vm2 be their

associated sets of protein. We define the similarity between m1 and m2 as

s(m1,m2) =
|Vm1 ∩ Vm2|

min(|Vm1|, |Vm2|)

and turn this into a distance measure between using d(m1,m2) = 1/s(m1,m2) − 1.

A hierarchical clustering tree is then constructed using the average linkage algorithm

[204] (using the “cluster” R package [148]) with that distance measure. The resulting

tree was displayed using the A2R R package: (http://addictedtor.free.fr/packages/

A2R/). A cut in the tree is performed to identify a reasonable number of motif

families. The motif that obtained the best clustering p-value among the members of

its family is selected as the representative member of the family.

5.4.10 Implementation and availability

The proposed computational tools are implemented in a platform-independent

Java program called LESMoN. LESMoN is available for download at:

http://www.cs.mcgill.ca/~blanchem/LESMoN.

5.5 Results

LESMoN is an approach that identifies short sequence motifs that occur in a

set of sequences distributed non-randomly with respect to a given biological network.

Specifically, LESMoN takes as input an undirected biological network G = (V,E),

where each node v ∈ V is assigned to a sequence. In this paper, LESMoN is applied

to a PPI network and the sequences associated to proteins are the 5’ UTRs of the

genes encoding them. However, other networks and types of sequences could also

be considered (see Discussion). LESMoN enumerates all sequence motifs of a given
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length (e.g. 5’ UTR motifs of length 8) to identify those that occur in the sequences

associated to a set of proteins that appears unexpectedly clustered in the network.

Specifically, let Vm ⊆ V be the subset of nodes whose associated sequences contain a

match to m. The level of clustering of Vm in G is measured using the total pairwise

distance TPD(Vm), defined as the sum of the shortest path distances in G between

all pairs of nodes in Vm. The key methodological challenge solved by LESMoN is the

estimation of the statistical significance of TPD(Vm): i.e. under a null model where

matches to m are distributed randomly in the entire set of sequences considered,

with what probability would the TPD of the matching nodes be smaller or equal to

TPD(Vm) (see Methods). An unbiased estimator of this probability can be obtained

using Monte Carlo sampling, but the running time is prohibitive for very small p-

values and large |Vm|. We have previously shown that when |Vm| is sufficiently large,

these p-values can be estimated based on a normal distribution, in time O(|V |4).

Because this remains prohibitive for the size of the network considered and the number

of different protein set cardinalities to be evaluated, we use a Monte Carlo sampling

approach to estimate the mean and variance of this normal distribution, rather than

calculating them analytically. As shown in Supplementary Figure 5–3, this results in

only a minimal loss of accuracy.

5.5.1 Clustering significance of 5’ UTR motifs

We used LESMoN to identify locally enriched motifs in the 5’ UTR sequences of

human genes encoding proteins whose interactions form the network G that structures

the gene space. The PPI network, obtained from the BioGRID database [30, 210],

contains 14,113 proteins and 127,433 unique pairwise interactions identified using

various technologies and experimental protocols.

A set of 3, 363, 621 mRNA motifs of length 8 were evaluated for clustering in G.

Figure 5–1 shows the number of motifs identified, at various p-value thresholds. As a

control and to estimate our false discovery rates, we locally permuted the nucleotides
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Figure 5–1: Number of motifs originating from both actual and locally randomized
5’ UTR sequences (in red) and FDR for a given clustering p-value threshold (in blue,
on the secondary axis).

of each 5’ UTR sequence (see Section 5.4.5). A clustering p-value of 10−8 yields 4277

motifs, at a FDR smaller than 5%. We selected this set of motifs for further analyses.

We note however that 545 motifs obtain a p-value below 10−12, which corresponds to

a FDR ( < 0.0018).

Although this does not affect the correctness of the FDR estimates, we note

that the distribution of p-values obtained in the locally randomized sequences is not

quite uniform (Supplementary Figure 5–4). For example, in these locally randomized

sequences, we found 1642 motifs with p-values below 10−6, whereas only ∼ 3 would

have been expected. This appears to be due to differences in sequence compositions

(most likely GC content) between the 5’ UTRs of genes encoding proteins in different

portions of the network. Indeed, when the procedure is repeated on 5’ UTR sequences

that are completely randomized (equal occurrence probability of each nucleotide), the

distribution of p-values is very close to uniform (Supplementary Figure 5–4).
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To reduce the redundancy in the set of 4277 motifs identified by LESMoN, we

used hierarchical clustering based on the similarity of the sets of proteins for which

the 5’ UTR sequences contain the motifs (Section 5.4.9). Although there was no clear

choice of the number of clusters to be obtained, we selected a similarity threshold that

resulted in the identification of 269 motif families, ranging in size from 273 motifs to

a single one (Figure 5–2). For each family, the motif with the best PPI clustering

p-value was retained as representative.

5.5.2 LESMoN identifies evolutionarily conserved 5’ UTR motifs

Interspecies sequence conservation is generally evidence of function [173, 81, 110]

and functional portions of 5’ UTRs have been mapped based on this principle [133,

118, 134]. To assess the biological relevance of each of the motifs identified, we de-

termined the fraction of matching sequences that overlapped regions that are highly

conserved within placental mammals (PhastCons elements [201]) and compared it

to the overall fraction of 5’ UTR bases that are highly conserved (27%; see Section

5.4.7). More than 83% of our 4277 motifs had a highly significant overlap with Phast-

Cons elements (p-value < 0.0001). For 470 motifs, more than 50% of matching sites

overlapped these elements, suggesting a very strong selective pressure. Notably, the

motifs with the best clustering p-values are often those with the most conserved sites

(Pearson’s correlation coefficient of 0.43 between the two sets of log p-values of the

4277 motifs and of 0.58 for the 269 motif family representatives; see Supplementary

Figure 5–5), suggesting that frequently, the more the proteins associated to a motif

are clustered in the network, the more their associated 5’ UTR motif is evolutionary

conserved and therefore likely to be biologically functional.
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TYCCGR
TYYCGG
TYYCGG
TYYCGR
TYYCGR
TTYCGR
TTCCGG
TTYCGG
TTNCGR
TTYCGG
TTYCGR
TTNCGG
TTNCGR
TTNCGG
TTNCGG
TTNCGN
TTCCGN
TTYCGN
TTYCGN
TTYCGN
TTCCGN
TTCCGN
TCCGGN
TYCGGY
TYCGRY
NTYCGG
TYCGGY
TYCGGY
YTYCGG
YTYCGG
YTYCGG
YTYCGR
YTYCGR
YTCCGG
YTCCGR
YTYCGR
YTCCGR
YTCCGR
TYYGGC
NTYYGG
NTYCGR
TYCGRC
TYCGRC
TYCGGC
TYCGGC
NTYCGG
NTYCGG
TCCGRC
TCCGRC
NTCCGR
NTCCGR
TCCGRY
NTCCGR
TCCGGY
TCCGGY
NTCCGG
NTCCGG
YTYCRR
YTYYGR
YTYNGG
CGGCYT
CGGCNT
GRNTTN
RNYTTC
GNNTTC
GNYTTC
GNYTTY
RRYTYC
RRNTTC
RRNTTY
RRYTTC
RRYTTY
GGYCTN
RGCYTN
GGYYTN
GGCCTN
GGCYTN
RRCNTC
RRCYTY
RRCTTC
RRCYTC
RGYNTC
GGYNTC
GRYNTC
RGYYTC
RGYYTY
GRYYTY
GGYYTC
GGYYTY
GRYYTC
RRYYTC
RGCNTY
GGYNTY
GGCYTY
GGCNTY
GRCYTN
GRCYTC
GRCYTY
GRCNTC
GRCNTY
YTTCCG
YTTCCG
YTTNCG
YTTNCG
YTTYCG
YTTNCG
ANTTYC
AYNTYC
ANNTYC
ANTTNC
AYTNNC
AYTTYC
AYTTNC
TYCCGN
TTNCGN
TTCCGN
TTCCGN
TYNCGG
YTNCGG
YTNCGR
RCTTCC
RYTTCC
RCYTYC
RCNTYC
RCTTNC
RCTTYC
RCTTYC
RCTTNC
RCYTNC
NCYTCC
CYTCCG
RCYTCC
RYYTCC
RYYTCC
RCYTCC
RCNTCC
RCNTCC
RYNTCC
RCTTYC
RCTTCC
RCTTCC
NRCTTC
NRCTTY
NRYTTC
RYTTCC
RYTTCC
RYTTCC
NCTTNC
CTTNCG
CTTNCG
CTTYCG
CTTYCG
CTTYCG
CTTYCG
NCTTYC
NCTTYC
NCTTCC
NCTTCC
CTTCCR
RCTTCC
NNCTTC
CTTCCG
CTTCCG
CTTCCG
CTTCCG
NCTTCC
NCTTCC
GCYTCC
NGCYTC
NGCTTC
GCTTNC
GCTTCC
GCTTYC
NGCTTY
NGCTTN
GYNTYC
GNYTCC
RYTYCC
GYTYYC
GYTYYC
NGNTTC
GNTTCC
GNTTCC
GNTTCC
GYTTYC
GYTTCC
GYTTCC
NGYTTC
NGYTTY
GYTTNC
GYYTNC
RYYTYC
RYTTYC
RYTTYC
RYTTNC
RYTTNC
GYTTNC
GYTTYC
GYTTYC
RNTTCY
RNTTCC
RNTTCC
GNTTNC
RNTTYC
RNTTYC
GNTTYC
GNTTYC
TYCCGG
NTYCCG
YTNCCG
YTYCCG
YTYCCG
YTYYCG
YTYCCG
YTYYCG
CTNCCG
CTYYCG
CTYYCG
TYCCGR
TYYCGG
TTNCGG
TTNCGR
TTYCGR
TTCCGR
TTCCGG
TTCCGG
TTYCGG
TTYCGG
CTTCCG
CTTYCG
CTTYCG
YTTYCG
TTCCGN
YTTCCG
NTTCCG
YTCCGG
NYTCCG
YYTCCG
YYTCCG
YYTYCG
YYTYCG
YYTYCG
NTTNCG
TTNCGG
TTNCGG
YTTNCG
CTTYCG
CTTNCG
YTTNCG
YTTNCG
YTTNCG
YTTCCG
YTTCCG
YTTCCG
YTTCCG
YTTCCG
YTTCCG
YTTCCG
NYTTCC
NYTTCC
NYTTYC
YTTYCG
YTTYCG
YTTYCG
TTCCRG
NTTCCR
TTCYGG
NTTCYG
TTYCGR
TTCCGR
TTCCGR
NTTCCG
NTTCCG
NNTTCC
TTCCGG
TTCCGG
TTCCGG
NTTCCG
NTTCCG
NTTCCG
NTTYCG
YTTYCG
YTTYCG
TTYCGG
TTYCGG
NTTYCG
NTTYCG
TTYCGR
NTTYCG
CCGNTT
CGNTTC
NCGNTT
CGYTTC
NCGYTT
CGNYTC
RNTTYC
CGNTTN
CGYTTN
CGYTTN
YNYTTC
CNCTTN
CNYTTY
YGNTTY
YRNTTC
CRNTTY
YRNTTY
YGYTTY
YGYTTN
YRYTTY
NRYTTY
YRYTTN
CRCTTN
CRYTTN
YNCTTY
YRCTTY
YRCTTN
CGGNGT
YCNGGY
YCNGRC
TYCGRY
TNCGGN
RGCCGR
RGYCGR
RRYCGG
RRCCGG
RRCCGR
RCCGGR
GCCGRR
GYCGRR
GCCGRN
GCCGGN
GYCGGN
ARNCGN
ANNCGG
AGYCGN
ANYCGG
ANCCGG
ANYCGG
AGNCGR
ARNCGG
AGNCGG
AGNCGG
RYYCGG
GNNCGG
RNCCGG
RNYCGG
YCGGAR
CCGGAA
CCGGAR
YCGGAA
YCGRAA
YCGGRA
YCGGRA
CCGRRA
CCGGRA
CCGGRA
NCCGGA
CCGGAR
CCGGAR
YCGGAR
YCGRAR
CCGGAR
CCGGAN
YCGGAN
CCGGAN
CCGGAN
CYGRAA
NCYGGA
CYGGAA
CYGGAA
NYCGRA
YCGRAA
YCGRAA
YCGGAA
YCGGAA
YCGGAA
YCGGAA
NYCGGA
NYCGGA
CCGGAA
CCGGAA
CCGGAA
CCGGAA
CCGGAA
NNCCGG
NCCGGA
NCCGGA
NCCGGA
CCGRAA
CCGRAA
CCGRAA
NCCGRA
NCCGRA
NCCGNA
CCGNAA
CCGNAA
YCGNAA
NCGRAA
CCGRAA
YCGRAA
YCGRAA
CCGRAA
CCGGAA
CCGGAA
CCGGAA
YCGGAA
YCGGAA
YCGGAA
GNYGGA
GNYGRA
GNCGRA
GNCGGA
GNCGGA
GNCGRA
GNCGNA
RYCGRA
RCCGRA
RCCGRA
RYCGRA
RNCGRA
RYCGGA
RCCGGA
RCCGGA
RCCGGA
NRCCGG
NRYCGG
NRYCGR
RRCCGR
NRCCGR
NGCCGR
RYCGRA
RCCGRA
GCCGRA
GCCGRA
GCCGRA
GYCGRA
GYCGRA
NGCCGG
GCCGGA
GCCGGA
GCCGGA
RCCGGA
RYCGGA
RYCGGA
RYCGGA
RYCGGA
GGAANY
NGGAAG
GGAAGY
GGAAGY
CCGGRN
YCGGRN
YCGGNA
YCGGNR
YCGNRA
YCGNNA
YGGRAG
CGGRAG
CGGRAG
CGRRAG
CGGRAR
CGRRAR
CRGAAG
CRGAAN
YNGAAG
YRRAAG
YRGAAG
YRGAAR
CGNAAG
CGGAAN
CGGAAG
CGGAAR
CGRAAG
CGRAAR
CGNAAG
CGNAAG
CGGAAR
CGGAAG
CGGAAG
CGGAAG
CGRAAG
CGRAAG
CGRAAG
CGNAAR
CGRAAR
CGRAAR
CGRAAR
CGNAAR
CGNAAR
CGRAAN
CGGAAN
CGGAAR
CGGAAR
CGGAAR
CGRAAN
CGGAAR
CGGAAN
YGNAAR
CGRAAR
CGNAAR
YGNAAG
YGRAAG
YGRAAR
YGGAAG
YGGAAG
YGGAAR
YGGAAN
CGGRNG
CGGRRG
CGRRRG
NCGGAN
YCGGAR
YCGGAN
YCGGAN
NCGGAN
CGNARG
CGNANG
CGNANG
CGRANG
CGRANG
CGGANR
CGRANR
CGRARR
CGRANR
CGGARR
CGGANR
CGRANG
CGGANG
CGGANG
CGGANG
NCGRAR
CGRARG
CGRARG
CGRARG
CGGANR
CGGARR
CGGARG
CGGARG
NCGRAR
NCGGAR
NCGGAR
CGNAAN
CGNAAN
CGRAAN
CGRAAN
CGGARN
CGGAAN
CGGAAN
CGGARN
CGGANN
NCGRRA
CGRRAR
CGRRAG
CGRRAG
CGRRAG
CGGNAR
CGGRAR
CGGRAG
CGGRAG
CGGRAG
NCGGNA
NCGGRA
NCGGRA
NYGGRA
NYGGAA
NCGGAA
YGGAAG
YGGRAG
CGRAAN
CGGAAN
CGGAAR
CGGAAG
CGGAAG
CGGAAG
NCGGAA
NCGGAA
NCGNAA
CGNAAR
CGNAAG
CGNAAG
CGNAAG
CGRARR
CGRAAR
CGRAAG
CGRAAG
CGRAAG
NCGNAA
NCGRAA
NCGRAA
YGGNAG
NCGGNA
CGGNAG
CGGNAG
CGGNAG
CGRNAR
CGGNAR
CGGNAR
CGRNAG
CGRNAG
CGGNAN
CGGRAN
CGGRAR
CGGRAR
CGGRAN
CGRRAN
CGNRAR
CGNRAR
CGRRAR
CGRRAR
CGNNAG
CGNRAG
CGNRAG
CGGANG
CGGANR
YNGCGR
YRNCGG
CRNCGR
CNNCGG
CGRAAG
CGRAAG
NCGRAA
NCGRAA
NCGGAA
CGRAAR
CGGAAR
CGGAAG
CGGAAG
NCGGAA
NCGGAA
CGGAAR
CGGAAN
NCGGAA
NCGGAA
CGRAAR
NCGRAA
CGRAAR
CGRAAN
CGGAAR
CGGAAN
CGRAAR
CGGAAR
CGGAAG
CGGAAG
CGRAAG
CGRAAG
CGNARG
CGGANG
CGRARG
CGGARG
CGGARR
CGRARR
CGRARR
RNCGGA
ANCGGA
RNCGGA
RRYGGA
RNYGGA
RRCGNA
RRCGRA
RRCGRA
NRRCGG
RRCGGA
RRCGGA
RRCGGA
RGCGRA
RGCGNA
RGCGRA
RGCGGA
RGCGGA
NRGCGG
NRGCGR
GRCGNA
NGGCGG
NGGCGG
NGNCGG
GNCGGA
GRCGGA
GRCGGA
GRCGRA
GGCGGA
GGCGRA
NGRCGG
NGRCGR
RGNCGG
RGNCGR
RNRCGG
RRRCGG
RRNCGG
GYGGRA
RCGGRA
RCGGRA
RCGGRA
GCGRRA
GCGGRA
GCGGRA
GCGRRA
RCGRRA
NGCGNA
GCGNAA
GCGNAA
RCGNAA
GCGNAA
RCGNAA
RCGRAA
GCGRAA
GCGGAA
GCGGAA
RCGGAA
RCGGAA
RCGGAA
RCGRAA
RCGRAA
NRCGRA
RCGRAA
RCGRAA
RCGGAA
RCGGAA
RCGGAA
NRCGGA
NRCGGA
NGCGRA
GCGRAA
GCGRAA
GCGGAA
GCGGAA
GCGGAA
NNGCGG
NGCGGA
NGCGGA
RYGGNA
GYGGNA
GNGGNA
GCGRNA
GCGNNA
RCGRNA
RCGGNA
GCGGNA
GCGGNA
RCGGNA
RCGRNA
GCGGRA
GCGGNA
GCGRRA
RCGRRA
RCGGRA
RCGGRA
RCGNRA
GCGNRA
RCGNRA
NCGRRA
RCGRRA
RCGRRA
RCGRAA
NCGRAA
RCGRAN
RCGGAN
RCGRAN
RCGRAR
RCGGAA
RCGGAR
GCGGAR
GCGGAN
GCGNAR
GCGRAA
GCGRAR
CGGNRR
CGGNRG
CGGNRG
CGGRAG
CGNRAG
CGNNAG
CGRNAG
CGRNAR
CGNRAG
CGNNAG
CGRNAR
CGGRAN
CGRRAN
CGNGAN
CGGRAN
CGGNAN
CGRRAN
CGRRAN
RGTRTY
NRGTRT
GGTNYC
RGTNYC
CGGTNY
YGGTYN
YGGTNY
TGGYGY
NTGGYG
GTNRCR
RTNGCR
GTNGCR
GTNGYR
GTNRYG
RTNGYG
RTNGCG
RTNGCG
YTRNGC
YTNRGC
GTYGRN
GTYGNR
GTYRNG
GTCRNG
RTCRNG
TYCGNR
TYYGNG
GYGCGT
NGTRCG
NNGTRC
CGCRGT
NCGCRG
GYCGNR
RNCGYG
GNCGYR
GNCGCR
RNCGCR
CGCRGT
CGYRGT
CGYNGT
YGCNGT
CGCNGT
CGYNGT
GRCGYN
RRCGYR
RGCGYN
RRCGCN
GCGYRN
RCGCRN
GYGCNG
GCGCNG
GCGYNG
RCGYNG
RYGCNG
RCGCNG
RCGCNG
YGYGCN
NRYGCG
GYGCGG
RYGCGG
RCGCRG
NRCGCR
GCGCRG
GYGCRG
NGCGCR
NGYGCR
GYGCGC
YGCGCR
GYGCGY
NGYGCG
RCGCGY
GCGCRY
NGCGCR
YRGCGY
YRGCGC
YRGCGC
ANYGCG
AGYGCG
NAGYGC
GNAGYG
AGYGCG
YAGYGC
NCAGYG
NYAGYG
GNYTRC
GNYTGC
GNCTRC
GNCTRC
YNTGCG
CNTRCG
CNTGCG
CNTGCG
GCNTGC
GCNTRC
RYNTGC
GCNTRC
GYNTRC
GYNTGC
GYNTGC
GCNTRC
GCNTGC
GCNTGC
RCNTRC
RCNTGC
RCNTGC
GCGCNT
GCGCNT
RCGCNT
RCGCNT
RCGCNT
RCGYNT
GCGCNT
GCGYNT
YRCNTG
YGYNTG
YGCNTG
YGCNTR
CRYNTG
CGYNTR
CGYNTG
CGYNTG
CRCNTR
CRCNTG
CRCNTG
CGYNTG
CGCNTG
CGCNTR
CGCNTG
CGCNTG
CGCNTG
CGCNTR
CGCNTR
YGYYTR
GCYTRC
NGCYTR
GYYTGC
NGYYTG
CGCYTN
CGCYTG
CGCYTR
CGYYTR
CGYYTR
CGYYTR
CGYYTG
CGYYTG
CGYYTG
GCRYNC
TGCGNR
TNCGCR
TGCGYR
TRCGCR
YNYGTG
CNCGTR
CNCGTG
CNCGTG
CNCGTR
CNCRTR
CNCRTG
CNYRTG
YNCGTR
YNCRTG
YGCRYG
CGCRYG
CGYRYG
CRCRYG
CGCRTR
CGCRYR
CGCRYG
CGCRYG
CGYRTN
CRCRTN
RCRTRC
YGCRTN
YRCRTR
GCRTRC
YGCRTR
CGCRCG
RGCGCR
GCGCGC
NGCGCG
GYGCRC
GYRCGC
GYGCGY
GYGCRY
GYRCGY
GCGCGY
GCGYGC
RCGYRC
RCGCGY
RCGYGC
GYRYGC
GCRYGC
RCRYGC
GCRYRC
GCRYGY
GCRYGC
GCRYGC
GCGYRY
RCGCRY
GCRCRY
GCGCRY
GCGCRY
GCRCGY
GCRCGC
GCRCGC
GCGYRC
RCGCRC
GCRCRC
GCGCRC
GCGCRY
CGNACG
GCGNAY
GYGNAC
TGCGNA
NTGCGN
TGYGCR
TRCGCR
NTRCGC
NTGCGY
TGCGCR
TGCGYR
TNCGYR
TGCGYN
TGCGYN
TRCGCN
TRCGYN
GYRGGC
CGYAYG
CGYAYG
CGNAYR
CGNAYG
CGNAYG
GYANRC
GCANGC
GYANGC
GYAYGC
GYANGC
GCAYGC
GCANGC
YGYANG
YGCANG
YGCANR
CGCANR
CGYANR
CGCANG
CGCANR
CGYANG
CGYANG
CGYANG
CGCANG
CGCANG
CRCANG
CRYANG
CGCARN
CGYAGN
CGYAGN
CGYARN
CGCARN
CGCAGN
CGCARN
YRCGCA
YGCGCA
YGCGYA
NYGCGC
NYGCGC
YGCGCA
YGCGCA
YRCGYA
YRCGCA
YRCGCA
YRCGYA
YRCGYA
NYRCGC
YRCGCA
YRCGCA
YRCGCA
GCGCRR
GYGCRG
GCGCRG
GCGYRG
GCGYAN
GCGCAN
GCGCAN
GCGYAN
GCGYAN
RCGCAN
RCGYAN
RCGCAN
RCGCAN
RCGYAG
RCGYAR
RTTRNC
TTRNCG
TTGNCG
NTTGNC
TNGGYC
TNGRYC
GTNRNC
RTYGYY
GTYGNY
RTYGNY
GCCGCC
CGYCRC
CGYCGY
CRYCGC
CGCCGC
CGCYGC
YGCCGC
YGCCGY
CRCCGT
CCGCYN
YCGCYR
YCGYYR
YCRCYG
YCGYYG
YCGCYG
YCGCYR
GYNGCC
GCNGCC
GCNRCC
GYYRYC
GYNGYC
GYNRCC
RNCGCY
GNCRCY
GNCGCY
GNCGYY
GYYGYY
RYCGYY
GYCGYY
GYCGNY
RCCGYN
RYCGCN
GYCGCN
GYCGYN
GCCGCY
RYCGYC
RYCGCC
RYCGCY
GYCRCY
GYCGCY
GYCGCN
GYCGYC
GYCGYY
GCCGYY
GCCGNY
GCCRCN
GCCGCN
GCCGYN
RCCGYY
RCCGCY
RCCGCN
GYCGNC
GYCRNC
GNYGCC
GNCRCC
RNCGCC
GNCGYC
GNCGCC
GNCGCY
GNCRYC
RYCRYC
RNCRCC
GNYGYC
RNCGYC
TCGCNG
TCGCNR
TYGNCG
TYGYCG
TYRCCG
CGTCRN
YGTCRN
CGTYRN
CRTCRN
CGTCRN
CGTCRN
YGTYGN
CRTYGN
CGTYGN
CGTYGN
CGTYGN
CGTCGN
CGTCGN
CGTYRY
YGTYGY
CGTCRC
CGTCRY
CGTYRC
CGTYGY
YGTCGC
YGTCGY
YGTYGC
GTNRCC
GTNGYC
RTNGCC
YGTNGY
YGTNRC
GTYGNC
GTYRNC
RTYGNC
GTYGNC
GTYGNC
GTCGNY
GTCGNC
GTCRNC
RTCGNC
RTCGCY
NRTCGC
GTCGYY
NGTCGY
GTCGCY
GTCGCY
NGTCGC
NGTCGC
GTYGYC
NGTYGY
RTYRCC
GTYRCY
GTYRYC
GTYGCY
GTYGYY
NGTYGC
GTYGCY
GTYGCY
RTYGCY
RTYGYC
GTCGCY
RTCGCY
GTCRCN
GTCRCN
RTCGCY
GTCGYY
GTCGCY
GTCGCN
RTCGCN
GTYGCN
GTCGCN
GTCGYN
GTYGYN
GTYGCN
GTCGCN
GTCGYN
GYCNTY
GYCGTY
NGYCGT
GCNRTY
GCNGTY
GCNGTY
GYNRTC
GCNRTC
GCNRTC
RYNGTC
GYNGTY
GYNGTC
GYNGTC
GNYGTC
GNYRTC
RNYGTC
GNCGTC
GNCGTY
CGYYGT
YGCYGT
CGYYRT
YGYYGT
YGYNGT
YGCNGT
CGCNRT
CGYNGT
CGCNGT
CGCNGT
CGYCRT
YGNCRT
CGNYGT
YGNCGT
CRNCGT
CGNCGT
CGNCRT
TYGCYG
RGTCGN
RRTCGN
RGTCGC
NGGTCG
RGTCGC
NRGTCG
CNGTCG
NNTCGC
TCGCTG
NTCGCT
NNGTCG
GTCGCT
NGTCGC
RNTRCC
GNTGYC
GNTRCC
CGYTNC
CRCTNC
CGYTRY
CGNTRC
CGNTRY
CGNTRC
CGNTRC
CGYTGN
CGYTRY
CGCTGY
CGYTGC
ANGNCG
ANGNCG
RNGCCG
RNGYCG
RGYCGY
NRGYCG
RGYCGC
RGYCGC
RNYCGC
RRYCGC
RRYCGC
RRYCGY
GRYCGY
RRYCGY
GGYCGY
NGGYCG
GRYCGN
GGYCGN
GGYCGN
GCCGNT
RYCGCT
RYCGYT
GYCGCT
GYCGYT
GYCGYT
GYCGNT
YGYCGY
GCCGYT
NGCCGY
GCCGCT
NGCCGC
GYCGCT
NGYCGC
RYCGCT
RYCGYT
GYCGCT
GYCGYT
GNCGNT
RYCGNT
TCNNTC
TNCGYC
TYCGNY
TCCGNC
TCCGNY
TCCGNC
TCCRNC
CTYCGN
YTCCGN
YTCCRN
TYCGYY
TCCGYC
TYCGYC
TYCGCY
TCCGCY
TCCGYY
YTYCGY
YTYCGY
TCTNCG
NTCTNC
GYCTNC
GCYTNC
GCCTNC
RCCTNC
GYYTYC
RYYTCC
RYYTYC
TCCGCN
TCCGNN
TYCGCY
TYCGCN
TCCGCC
TYCGCC
TYCGCC
CYTCCG
YYTYCG
CNTYCG
YNTCCG
ACGNCR
RCGNCA
CGYCAN
CGNCAN
CGCCRN
CGYCRY
CGCCRY
NCGCCR
CGCCRT
CGCCRT
NCGCCR
NCGCCR
CGCYRT
CGCNRT
NCGCYR
NCGYYR
CGYCRT
CGYYRT
NCGYCR
NCGNCR
CGCNRT
YCGCNR
NCGCNR
CGCNGT
NCGCNG
GNCGYC
RYCGYY
GYCGCN
RCCGCN
CGCYRT
CGYCRT
CGCCRT
CGCCRT
CGNYRT
CGCNRT
CGCNAT
CGYYRT
CGCYAT
CGCYRT
CGYCAT
CGCCAT
CGCCAT
NCGYCA
NCGCCA
NCGCCA
NNCGCC
NNCGYC
CGYCAT
NCGYCA
CGCYAT
CGYYAT
NCGCYA
NCGYYA
NCCRCC
CCRCCR
CCRCCR
CCGCYA
NCCGCY
NCCGCC
CCGYCR
CCGCCA
CCGCCR
NCCGCC
NCCGYC
YCRCCR
YCGYCR
NYCGCC
YCGCCR
YCGCCR
CCGNCR
CCGCCR
CCGCCN
CCGCYR
CCGCNR
CCGYCR
CCGYYR
CGCYYC
CGNYTC
CGNNAY
CGNNRT
CGCNRY
CGYNRY
CGYYRY
CGNYRY
CGCCNN
CGYCNY
CGCNNC
CGCYNY
CGYYNC
CGYTRR
CGYTGR
CGCTRR
CGCTGR
CGCTGR
RCGYTG
CGCTGN
CRYTGN
CGYTRN
CGCTRN
CGCTGN
CGCTGN
CGYTGN
CGYTGN
CGCYGR
YRCYGA
YRYYGA
YGYYGA
YGCYGA
YGCYGA
YGCYGA
YGCYGA
YGYYGA
YGYYGA
CGCYRA
CGCYGA
CGCYGA
CGYYGA
CGYYGA
CGCYRA
CGCYGA
CGCYGA
CGCYGA
CGYYGA
CGYYGA
CGCNGA
CGCNGA
CGNTRA
CGNTRA
CGNTNA
CGCTNA
CGYTNA
RGCCGY
GGYCGC
GGCCGY
GRCCGC
RNCGCY
GNCGCY
GNCGYY
GCCGYN
RCCGCN
RCCGYN
GYCGCN
GYCGYN
RYCGYY
RYCGCY
RYCGCN
GYCGCN
GYCGCY
GYCGCY
RYCGYY
GYCGYY
GYCGYY
GNCGYT
GNCGNT
RNCGNT
GNGAGG
RNGAGG
CGANGY
YGANGY
YGAGGY
NYGAGG
GGAGNY
ARNYCG
ANRCCG
ANGCCG
ANGYCG
ANGYCR
ANRYCG
ANGYCG
ANGYCG
ARRYYG
ANGYYG
ANRCYG
ANGCYG
ANGCYR
RGGCCG
RRGGCC
ARGYCG
GAGNYC
GAGNCC
GAGNYC
RAGNCC
RAGRYC
RAGNYC
RANGYC
GANGYC
GANRYC
RANGCC
GANGCC
GANGYC
RANRCC
GANRCC
GARRCC
GARRCC
RARRCC
RARRCC
RARGYC
RARRYC
GARRYC
GARGYC
GARGYC
GARRYC
GARNYC
NAGRYC
NAGGYC
RAGGYC
AGGYCG
AGRYCG
NAGGCC
AGGYCG
AGGCCG
AGGCCG
NAGGCC
NAGGYC
NAGRCC
NAGRCC
AGRCCG
AGRCCG
ARRYCG
NARRCC
ARRCCG
ARRCCG
NARGYC
ARGYCG
ARGYCG
RARGCC
RARGYC
NARGCC
NARGCC
RARGCC
GARGCC
ARGCCG
ARGCCG
RRARGY
GRARGY
GRARRY
GNAGGY
GNARGC
AGGCCG
NGARGC
GARGCC
GARGCC
RAGGCC
NRAGGC
GAGGYC
NGAGGY
GANNCG
RRRGYC
RNGGCC
CCGARG
NCCGAR
NCCGAR
GCCGAR
NGCCGA
GTYGYN
GTYGNY
TNGNGT
TRGNGY
TGRNGY
TRRNGT
TRNGGY
TNRGGY
GTCGYY
YGNGGT
CGNRGT
YGNRGT
CGGNRT
CGRNGT
CRGNGT
YGRNGT
YRGNGT
GNRAGT
GRAGTC
GNAGTC
NGRAGT
NGNAGT
AGTCGN
AGTCGN
NAGTCG
AGTCGY
NAGTCG
RNGTCG
GNRGTC
GNRGTY
RNRGTC
GRNGTC
RRNGTC
YCGTRN
CGTGRG
NCGTGR
TYCGNY
TYNRGC
TYNGRC
TYNGGC
TYNGGC
TYYGRC
TYYGNC
GTNCGR
RTNCGG
GTNYRG
GTNYGG
GTNYGR
GTCNGG
GTCNGR
GTYNGR
RTYNGG
GCGRRT
NGCGRR
RCGGNT
RCGRNT
GYNGRT
YNGRTC
YNCGRG
NYGRGT
CGGGYY
NCGGGY
GTNRRG
GTNRGG
GTNRGG
GTCGNG
GTYGNG
GTCRNG
GTYRNG
GTYGNG
GTCGNG
GTYGNG
RGTYGN
GTYGRG
NGTYGR
GTYRGG
NGTYRG
RRTCGG
GTYNGG
RGTCNG
RGTCNG
RGTCNG
RGTYNG
GGTYNG
GGTCNG
GGTCNG
GGTYNG
GGTYNR
CGGTTN
NCGGTT
YCGGTN
CGGTNR
CGGTYG
CGGTYG
NCGGTY
CGGTYR
NCGGTY
CGTNRG
CGTNRR
CGTNGG
CGTNGR
CGTYRR
NCGTYR
CGTYRG
CGTYRG
CGTYRG
CGTYNG
CGTYNG
YGTYNG
GYCGGY
YYGGCG
TYNGCG
TYNGCG
TYNRCG
RTCNGC
RTYNGC
GTYNGC
GTYNRC
GTYNGC
GTYNGC
TCGGNR
GTCGNY
GTCGNY
RTYGGC
RTCGGY
GTCGRY
GTCGGY
GTCGGY
GTCGGY
GTYGGN
GTNGGY
GTYRGY
GTYRGY
GTYGGY
GTYGGY
RNGTCG
GGTNGG
RGTNGG
GNTYGG
RNTCGG
RTYGGC
NRTYGG
GTYGGC
GTYGGC
NGTYGG
NGTYGG
NGTYGR
GTYGRC
GTYGRC
RTYRGC
GTYRRC
GTYRRC
NGTYRG
GTYRGC
GTYRGC
RRTYGG
RGTYGG
RGTYGR
RRTYGR
RNTYGG
RGTYGR
RGTYGN
RRTYRG
RGTYRG
RGTYRR
RGTCGG
RGTCRR
NGTCRR
GTCRRC
RGTCRR
NGTCRG
NGTCRG
GTCRGC
GTCRGY
RGTCGR
RGTCGR
RGTCGG
NRGTCG
RRTCGR
NRTCGG
RTCGGY
RRTCGG
NGTCGG
NGTCGG
RGTCGG
GTCGGY
GTCGGY
GTCGRC
GTCGRY
NGTCGR
NGTCGR
TYGRCG
NTYGRC
TYGGCG
NTYGGC
GTNRRC
RTNGRC
GTNGRC
GTNGRC
GTYNRC
RTYRRC
RGYNGT
GYRGTC
NGYRGT
YRGTYG
RGTYGG
NRGTYG
YRGTCG
NYRGTC
CRGTCG
CRRTCG
AGTNRN
ANTRGN
ANTNGR
GTRRCC
NGTRRC
GNTRRC
RNTGGY
RNTRGC
CGGNYR
CRGYNG
CGRYNG
CGGYNG
CGGYNG
CGGCNR
CGGYNR
CGGYYR
CGGYYR
CGNYYG
YGGYYG
CGGYYN
CGGYCN
CGGYCN
CGGCYR
CGGYCR
TYRGNC
TYGGYN
TYRGCN
GTNCGG
GTNCGR
RGTNCG
GTYCGG
NGTYCG
TNCGGY
TNCGRC
TCCGGY
TYCGGC
TYCGGY
CGYCTC
NCGYCT
YTCGGY
GNTTCG
GNYTCG
RNTTCG
RNTTCG
RCNTCG
RYYTCG
NCGGNT
NCGGNT
CGGNTG
CGGNTR
CGNCYG
CGNCTG
NCGNCT
GGYCGN
GCCGGY
RYCGGN
CCGGYT
NCCGGY
YCGGCT
NYCGGC
YCGGYT
NYCGGY
YNGGYC
YGRYCG
GGYCGT
NGGYCG
YCGRYY
YCGGYY
YCGGYN
CCGGNY
CCGGNC
CCGGNY
CCGRNC
CCGRNY
YCGRNC
YCGGNC
YCGGNY
CGRNYG
YGGYNG
CGRYNG
CGGYNG
CGGYNG
CGRCNG
CGRYYG
GYYGTR
GCYGTR
NGCYGT
RCYGTN
GYYGTN
GCYGTN
GCYGTN
RCCGTN
GYCGTN
RYCGTN
CGGNYG
CGRNYG
CGRNCG
CGGNCG
CGGNYG
CGRYYG
CGGYYG
CGGYNG
YGGCNG
YGGCNG
CGRYNG
CGGYNG
CGGYNR
CGGCNR
CGGCNG
CGGCNG
CGRCNR
CGRCNG
CGRCNG
NCGGCY
NCGGCY
CGGCYG
CGGCYR
NCGRCY
NCGRCC
CGRCCG
CGRCYG
NCGRYC
NCGGYC
CGGYCG
CGRYCG
NYGGYC
NYGGCC
YGGCCG
YGGYCG
YGRCCG
NYGRCC
RCGNCY
GCGNCY
GCGNYY
GYRNCC
RYGNCC
GYGNCC
GYGNCY
GYRRYC
GYGRYC
GYGNYC
GNRGYC
GNRRCC
RRCCGT
GGYCGT
GRYCGT
GRCGGT
NGCGGT
GRNGCG
RNGCGG
ANNCGG
RGNCGG
TNCGGT
NTNCGG
RTNCGG
NRTNCG
RYNCGG
RNYCGG
CGNTRG
NCGNTR
CGGTGN
NCGGTG
CGGYGY
NCGGYG
CGGCNN
CGGYNN
CGNYNG
CGRNNG
CGGNNG
CGGNNR
CNGAAN
RCYGCG
GNCGYG
GCCGNG
GYCGNG
AYYCGG
AYCCGG
RAYCCG
RAYYCG
ARYCGG
ANYCGG
ANCCGG
ANCCGG
GGNCGG
RGGNCG
GRNCCG
RNGCCG
RRGCCG
RRGYCG
RRRYCG
RRRCCG
RRRCCG
GGCCGR
NGGCCG
RRCCGG
RGCCGR
RGYCGR
RGGCCG
GGCCGN
GGYCGN
CGGARY
CGGARN
GCGGAG
RCGGAG
GYGGAG
GCGRAG
GCGGAG
GCGGAR
GCGGAN
GCGRAN
GCGGAN
RCGGAN
GNCGGA
RRCGGA
RRCGGA
GGANYC
GANCCG
GANYCG
GAGYCG
GARCCG
RAGNCG
RRAGCC
RRARCC
RRAGYC
GRARYC
GRAGYC
GRAGYC
CCGGAR
CNGARC
CGGAGN
CGRAGN
CGGANC
CRGANC
YGGANC
CGRANC
YGRANC
CGNARC
CGNAGY
CGNARY
YGRAGY
YGGARY
YGRARY
CRGARY
CRRARY
CGGANY
CGRANY
CGGARY
CGGARY
CGRARY
CGRAGY
CGRARY
YGGGGC
CGRGGC
CRRGGC
RGGCGG
GGGCGG
GGRCGG
GRGCGG
RGGGGC
GGGGYG
GGGGCR
RGGGCG
GGRGCG
GGGGCG
GGGRCG
GGGGCG
GGGGCG
CGGRGY
CGGRRC
CGRRGC
CGRGRC
YGRGGC
GRCGGG
GGCGGG
GGCGGG
RGCGGG
RRCGGG
GRCGGG
GRCGRG
GGCGRG
GGCGRG
GCGGRG
RCGGRG
GCGGGG
GYGRGG
RCGRGG
GCGRGG
GCGRGG
GYGGGR
GCGRGR
RCGGGR
GNCGRG
GNCGGG
GNCGGR
GGCGNR
GRCGNG
GRCGGN
GGCGRN
GGCGGN
GGCGGN
GRCRGR
GRCGRR
GRCGGR
GRCGGR
GRCGRG
GRCGRR
GCGNNA
RCGRNA
RCGGRA
GCGRNA
RCGGNA
GCGGNA
GCGGNA
GCGNGA
GCGNRA
GCGGGA
GCGRRA
GCGGRA
RCGGRA
GCGGGA
RGCGGR
RRCGGR
GRCGRR
GGCGGR
GGCGRR
GRCGGR
GRCGGR
GGGCRG
GRGCRG
GRRCGG
GRGCGG
GRGYGG
GNGCGR
RNGCGG
GNGCGG
GNGCGG
RGNCGG
GGRCGG
GGNCGG
GRCGGG
NGRCGG
GGCGGG
GGCGRG
NGGCGG
NGGCGR
RGGCGN
RGRCGR
RRRCGG
RRGCGG
RRGCGG
RGRCGG
RGRCGG
RGGCGR
RGGCGG
RGGCGG
RGGCGG
TNRANG
GTGGNG
GTGGNR
GTGNRG
GTGRNG
GTGRRG
GTGRRR
GTNRGG
GTGNGG
GTGNGR
TGRGNC
TGNGGY
TGNRGC
TGNGGC
TGNGRC
TRNGGC
TGNGGC
TGNGGC
TNRGGC
TGRNGC
TGRRGC
TRRRGC
TGRRRC
TGRGRC
TGRGGC
TGRGGC
TRRGRC
TRRGGC
TRRGGC
YTNANG
YTNARG
YTNARR
CTNARN
YTNAGR
YTNAGN
TNAGGC
NTNAGG
TNARGC
TNAGRC
TNARRC
TRANGC
TNANGC
TGARRC
TGANRC
NTGANG
TRANGC
TGANGC
TGANGC
TRAGRC
NTRAGR
NTRARR
TRARRC
TGAGRC
TGARRC
NTGAGR
NTGARR
YTRANR
YTRARR
YTRARN
YGAGGN
YGAGNC
YNAGGC
YGANGC
YGAGGY
NYGAGG
YGAGGC
YGAGGC
YGAGGC
YRAGRC
YRAGGC
YRAGGC
YRAGRC
YRAGRY
YGARRC
YRARRC
YGARRC
YGAGRC
YGAGRC
YGARGC
YRARGC
YNGAGG
YYRAGR
YYNAGG
GCGNNG
GGCGNG
GGCGGR
GGCGRR
RANGGC
ARGRCG
ARGGCG
NARGGC
AGGNCG
ANGNCG
ARRGGC
RARAGN
CGNCGG
GYGNCG
NCGGCG
NCRGCG
YRRCGG
YRGCGR
YRRCGR
YGGCGR
YGRCGR
NYGGCG
YGGCGG
YGGCGG
YGRCGG
YRRCGG
YRGCGG
YRGCGR
GYNGCG
RCNGCG
GCNRCG
GCNGCG
GCNGCG
RYGGCG
RYGGYG
RYGRCG
RYGRCG
GYRRCG
RYRRCG
RYRGCG
RYRGCG
RCRGCG
RCRRCG
GCRRCG
GYRRCG
GYRGCG
GYRGYG
GANGCG
AGGCGR
NAGGCG
AGGCNG
AGGYGN
ARGCGN
AGGCGN
AGRCGN
AGRYRG
AGRYGR
ARRYGG
ARGCRR
ARGYRG
ANGYGG
ANGCGR
ANGCRG
ARNCGG
ANGCGG
ARGCGR
ARRCGR
AGRCGG
ARRCGG
AGCGGA
GCGRAR
GCGNAG
GYGNAG
GCGNAR
RCGNAG
GCGNAG
GCGNAG
CGGARG
NCGGAR
GYGGAN
GYGRAR
GYGGAR
GYGGAR
GCGRAR
RCGRAR
GCGGAR
GCGGAR
RCGGAR
GCGRAR
RCGRAR
GCGGAN
RCGGAN
GCGRAN
GCGGAN
GCGGAN
CGNAGG
YGNAGG
CGNARG
CGNAGR
CGNAGG
CGNAGG
YGRARG
YGGARR
YGRARR
CGGARR
CGRARG
CGGARG
CGGARG
YGGANG
CGGANR
CGGANG
CGGANG
GNRAGG
GRARGC
GAGGCG
RAGGCG
RAGGCG
RAGRCG
AGGCGR
NAGGCG
GAGGYG
GARGCG
GANGCG
RAGRCG
RAGGCG
RAGGCG
GAGRCG
GAGGCG
GAGGCG
GAGRCG
GARRCG
ARGCGR
ARGCGG
AGGCGR
AGRCGG
NAGGCG
AGGCGG
AGGCGG
RAGNCG
RAGNCG
AGNCGR
NAGNCG
AGNCGG
AGNCGG
GAGNCG
GAGNCG
GARGCG
GARNCG
GARNCG
RARNCG
GANGCG
GANGCG
RARGCG
RARGCG
RARGCG
RANGCG
ARRCGR
ANGCGR
ARGCGR
ARGCGN
ANGCGG
ANGCGG
NARRCG
ARRCGG
ARRCGG
ARGCGR
ARGCGG
ARGCGG
NARGCG
NARGCG
ANGCGN
AGRCGN
AGGCGN
NAGGCG
RGRCGG
RGGCGR
NRGGCG
RGGCGG
RGGCGG
GNGRCG
RNGGCG
GNGGCG
GNGGCG
GRRRCG
RRRGCG
GRRGCG
GRRGCG
RRGRCG
RRGGCG
RRGGCG
GRGGCG
GRGGYG
GRGGYG
RRGGYG
GCGGAG
NGCGGA
NGGCGG
GGCGGA
GGCGGA
GRCGRA
GGCGRA
GGCGRA
RRCGRA
RRCGGA
RGCGGA
RGCGRA
GRYGGA
GGYGGA
GGYGGA
GRCGRA
GGCGRA
GGCGNA
GGCGGA
GGCGGA
GGCGGA
GRCGGA
GRCGGA
GRCGGA
GGCGGA
GGCGRA
TNGTNG
GTGGYN
GTGGCG
GTRGCG
TGTRNC
NTGTRN
TRTGNC
NTRTGN
TNTRGC
NTNTRG
NTGTNG
NTRTNG
TGTNGC
TRTNGC
CYGTNR
YYGTNG
CGTNRC
YGTNGY
YRTNGC
YGTNRC
YGTNGC
YGTNGC
YGTNGC
YGTGRC
NYGTGR
YRTGGC
NYRTGG
YRTRGC
NYGTRG
YGTRGC
YGTRGC
YRTRRC
YNTRGC
YNTGRC
YNTGGC
YNTGGC
GGCGGY
GCGGYG
NGCGGY
GCGGNR
RCGGNG
RCGGYN
GCGRYN
GCGGYN
GCGGYN
RCGRYR
NCGGYR
NNCGGT
CGGTGA
CGGTRA
NNCGGT
NCGGTG
NCGGTR
RCGRTR
NRCGRT
NRCGGT
NRCGGT
RCGGTR
RCGGTN
GCGNTG
NRCGNT
RCGNTG
NGCGNT
NGCGNT
GCGNTG
GCGNTR
YGCGNY
YNCGGY
TGNCGR
TRNCGG
TRNCGG
TGNCGG
TGNCGR
TNGCGG
TNRCGG
TNRCGG
TNGCGR
TNGCGG
TNGCGG
TRRCGG
TGRCGG
TGGCGG
TGGCGR
TRRCGG
TRGCGG
TRGCGG
GNGTRG
GRGTRR
GNGTGR
ANTRRC
ANTNRC
ARTNGC
NARTNG
AGTNGC
AGTNRC
NAGTNG
NAGTNR
ARTGNC
NARTGN
AGTRNC
NAGTRN
ANTGRC
NANTGR
ARTRRC
NARTRR
TNGCGR
YCGCGR
YCGCGR
YYGCGR
YGCGGY
NYGCGG
YGCGGC
YGCGNY
CGGYGR
CGGYRG
CGGCRR
CGRCRG
CGGCYG
CGGCYG
YGGCYG
CGGCTN
CGGYTN
CGRYTN
CGRCTN
CGGCTN
CGGCTN
YGNYTG
YGNCTG
YGNCTR
CRNCTR
CRNYTG
CGNCTR
CGNCTG
CGNCTG
CGNCTG
CGNCTR
CGNCTR
CGNYTR
CGNYTG
CGNYTG
CGGYTG
CGRYTG
CGRCTR
CGGCTR
CGGYTR
CGRNTG
CGGYTR
CGGNTR
CGRYTR
CGRCTR
CGRCTR
CGRYTG
CGGCTR
CGGYTR
CGGYTG
CGGNTG
GNCGGC
GNCGRC
GCGNYT
GCGGCT
RCGGNT
GCGGNT
GCGGNT
RCGGYT
RCGRYT
GCGRYT
GCGRYT
CGCYGY
CGYYGC
CGCYRC
CRCYGC
YNYTGC
CNYTRC
CNYTGC
CNYTGC
YGCTGY
YGYTGY
YRNTGC
YGNTGC
YGNTRC
TGCGGN
CTRCGG
YTRCGG
YTRCGG
YTGCGG
YTGCGG
CTGCGG
CTGCGG
CTGCGR
CTRCGR
NGCTGC
GCTGCG
GCTRCG
RCTGYG
RYTGYG
RCTGYG
RYTGYG
RYTGCG
RYTRCG
RNTGCG
RNTGCG
CTNCRR
CTNYRG
YTNYGG
CTNYGG
CTNYGR
YTNCGR
YTNCGG
YTNCGG
YTNCGG
CTNCGG
CTNCGR
CTNCGG
CTNCGG
CTNCGG
CTNCGR
CTNCGR
CTGNRG
CTRNGR
CTGNGG
CTGNGR
YTGNGG
CTRNGG
YTRNGG
YTRYRG
YTGYRR
CTRYRR
CTGYRR
CTGYNR
YTRCNG
CTGYNG
CTRYNG
TRYGGC
NTRYGG
TGYGGC
TGYGGC
NTGYGG
NTGYGG
TRYGRC
NTGYGR
TGYGRC
TGYGRC
NTGCGR
NTGCGR
TRCGRC
NTRCGR
TGCGRY
NTGCGR
TRCGGY
NTRCGG
TGCGGY
TGCGGY
NTGCGG
NTGCGG
YTGYGN
CTGYGN
CTGYRN
CTRYGR
CTRYGN
YTGCGN
YTRCGN
YTGCGN
YTGCGN
CTGCGR
CTGCGN
CTGCGN
CTRCGN
NCTGCG
CTGCGR
CTGCGR
YTRCGR
YTGCGR
YTGCGR
YTGYGR
YTRCGR
CTGYGR
CTGYGG
CTGYGG
CTGYGG
CTRYGR
CTGYGR
CTGYGR
YTGYGG
YTGYGG
YTGYGG
YTRYGG
YTRYGG
YTRYGR
YTGYGR
YTGYGR
TRCNGC
TRYNGC
TGYNGC
TGYNGC
TGYRRC
NTGYRG
TGYRGC
TGYRGC
TNYRGC
TRYRRC
TRYRGC
TRYRGC
TNCRRC
TNYGGC
TNYGRC
TNYGGC
TNYGGC
TNCGGC
TNCGGC
TNCGRC
TNCGRC
TNCGGY
TNCGRY
TNCGGY
TNCGGY
TGCGNY
TGYGNC
TGYGGC
TGYGGC
TGCGRC
TGCGRY
TGCGGY
TRCGGY
AGYGNG
ANYGCG
ANYRCG
TNAYNG
AYNGCG
AYNGYG
AYNRCG
AYNGCG
AYNGCG
ACNRCG
ACNGCG
ACNGYG
ACNGCG
ACNGCG
ACNRCG
ACNRCG
ARYNGC
GGCRGY
GGYRGC
GGCRRC
GGCRGC
GGCRGC
RGCGGY
RRCGGC
RGCGGC
RGCGRC
GGYGGY
GRCGGY
GGCGRY
GGCGGY
GGCGGY
RGYGGC
GGYGRC
GRYGGC
GGYGGC
GGYGGC
GGYGGC
GRCGGC
GGCGRC
GGCGGC
GGCGGY
GGCGRC
GGCGRC
RGCGGC
GGCGGC
GGCGGC
GRCRGC
GRCGRC
GRCGGC
GRCGGC
GCRGYG
GCRGCG
GYRGCG
RCRGCG
GCRRCG
GCRGCR
GCRGCG
GCRGCG
GCGGYG
GYGGYG
RCGGYG
GCGRYG
GCGGYR
GCGGYG
GCGGYG
GYGGCG
GCGRCG
RCGGCG
GCGGCG
GCGGCG
RCGGCG
RCGGCR
RYGGCG
GYGGCR
GYGGCG
GYGGCG
GCGRCR
GYGRCG
GGYGCG
YRGCGC
CRGCGC
CRRCGC
CGRYGC
YGGYGC
YGGCGY
YGGCGC
YGRCGC
YGGCCG
GCGGYY
GCGGCY
GCGGYC
GYGGYC
GYGGCC
GYGRCC
GCRGYC
GYRGCC
GCGRYC
GCGRCC
GYGGCC
RCGGCC
GCGGCC
GCGGYC
GGCGGC
GGYRGC
GGYGGY
GGYGRC
GRYGGC
GGYGGC
GGYGGC
RGYGGC
RGCGRC
RRCGGC
RGCGGC
RGCGGC
GRCGGY
RGCGGY
GGCGGY
GGCGRY
GGCGGY
GGCGGC
GGCGGC
GGCGRC
GGCGRC
GRCGRC
GRCGGC
GRCGGC
CGGCGR
CGRCGG
CGGCGG
CGGCGG
CGGCGR
CGGCRR
CGGYGG
CGGYGR
CRGCGG
CGRCGG
CRRCGG
YGGCGR
YGRCGR
YGRCGG
YGGCGG
YGGCGG
YRGCGG
YGRCGG
YRRCGG
CYGCGG
CYGYGG
CYRYGG
CYGCGR
CYRCGG
CYGCGG
CYGCGG
YCRCGG
YCRCRG
YCGCGG
YCGYGG
YCGCGR
YYGCGG
CCRCGR
CCRCGR
CCRCGR
CCGYGR
CCGYGR
CCGYRR
CCRYRG
CCRYGG
CCRYGR
GGCYGC
GGYCGY
RGCCGY
RGYCGC
GGYCGC
GRCCGC
GGCCGC
GGCCGY
RGCCGC
GGCCGY
GRCCGC
GGYCGC
GGCCGC
GGCCGC
YCGCGG
GCYGCG
GCCGCG
GCCGCR
RCCRCG
RCCGCG
RCCGCG
RYCGCG
GYCRCG
GYCGCG
GYCGCG
GYCGCG
GYCGYG
RCCGYG
GCCGYG
GCCGYG
GCCGYG
GYGCGG
GYGCGR
GYGYGG
GCGCRG
RCGCGG
RCGCGR
YGCGGY
YGCGGC
YRCGGC
YGCGRC
YGCGGC
YGCGGC
CRCRGC
CGYRGC
CGCRRC
CGCRGC
CGCRGC
CGYGGY
CRCGGY
CGCGGY
CGCRGY
YGYGGC
CGYGRC
CGYGGC
CGYGGC
CGCGRC
CGCGGC
CGCGGY
CRYGGC
CRCGRC
CRCGGC
CRCGGC
CGRYGR
CGGCGG
GCGGCG
GYGGCG
RYGGCG
RGTANC
NRGTAN
CGRTAN
CGGTAN
NCGGTA
YNGTAG
YGRTAN
YGGTAG
YGGTAN
RAGYRG
RAGYRR
GARYRR
GAGYRG
GAGYRR
GARYRG
RARYRG
YAGYGN
ARCGGN
AGCGNY
ARCGNC
AGCGNC
AGCGNC
ARYRGC
AGYRGC
AGYRRC
AGCRRY
AGCRNC
ARCRRC
AGCRRC
AGCRRC
ARYGGC
AGYGGC
AGYGRC
ANCGRC
ANYGGC
ARCGGY
ARCGRC
ARCGRC
ARCGRY
ARCGRY
AGCGRY
AGCGRC
AGCGRY
ARYGGY
ARYGRY
AGYGGY
AGYGRY
ARYGRC
AGYGRC
AGYGGC
AGYGGC
ARYGGC
ARYGGC
ARYGRC
AGYGRC
AGYGNC
GCGGNA
GCGGYA
GCGRYA
GCGRCA
GCGGCA
GCGGYA
RYGGYA
GYGGYA
GYGGYA
GCGNYA
GCGRYA
GCGGYA
GCGGYA
GGCGGN
GNCGGY
GGCGRY
GRCGGY
NGGCGG
GGCGGY
GGCGGY
CGNYGG
CGGYRG
CGGYRR
CGRCNG
CGGCNG
CGGYNG
CGRYGN
CGGYGN
CGGYRN
CGGYGR
CGGYGN
CGRYGG
CGRYGR
YGGCGR
YGGCGN
YGGCGN
YGRCGN
CRGCGN
CGGCRN
CGGCGN
CGGCGN
CGRCGN
CGRCGN
YGGCGG
YGGCGG
CRGCGG
CGGYGG
CGGYGG
CGGCRG
CGRCGG
CGGCGG
CGGCGR
CRGYGG
CRRYGG
YGGYGG
YRGYGG
CNRCGG
CNGCGG
CNGCGR
YGRCGG
YRRCGG
YRGCGG
YNGCGG
RGYARC
RYARCG
YGNYAG
GGNAGC
CGRNAG
CGGNAG
CGGNAR
GNGGCR
GNRGCG
GNGRCG
RNGGCG
GNGGYG
GNGGCG
GNGGCG
GCRGNG
GYGGNG
GCGRNG
RCGGNG
GCGGNG
GCGGNR
GCNGCR
GCNGYG
RCNGYG
RYNGCG
GYNGCG
GYNGCG
RCNRCG
RCNGCG
RCNGCG
GCNRCG
GCNGCG
GCNGCG
GCNRCG
GYNRCG
GCGRYG
GCGNYG
RCGNYG
GCGNYG
GCRNYG
GYRNCG
RYGNCG
GYGNCG
GYGNCG
RCRNCG
GCRNCG
GCRNCG
GCGNCR
GCGNCG
GCGNCG
RCGNCG
RCGNCG
RCGNCR
GCGNCR
GCRNCR
GYGGCN
RYGGCN
RCGGCR
RCGGCN
RCGRCR
GCGRCR
GCGRCN
GCGRCN
RCGRCN
RCGGCN
RCGGYN
GCGGYN
GCGGCN
GCGGCN
GCGGYN
GCGRYN
RYGRCR
GYGRCR
GYGRCG
GYGRCG
GYGRCR
GYGNCR
GYGGYR
GYGGCR
GYGGCR
RYGGCR
RYGGCR
RYGGYR
GYGGYR
GYGRYR
NCGRCR
RCGRCR
CGRCRG
GCGRCR
RCGGCR
GCGGCR
CGGCRG
CGGYRG
NCGGCR
NCGGYR
GCGRYR
GCGGYR
GCGGYR
RCGGYR
RCGGYR
RCGRYR
GCGRYR
GCGNYR
NCGRYG
RCGRYG
CGRYGG
GCGRYG
NCGGYG
NCGGYG
RCGGYG
GCGGYG
CGGYGG
CGGYGR
CRRCGG
NCRRCG
CRGCGG
CRGYGG
NCRGCG
NCRGYG
NCGGCG
RCGGCG
CGGCRR
CGGCGG
CGGCGR
NCGGCG
NCGGCR
NCGRCG
NCGRCG
RCGRCG
GCGRCG
CGRCGG
CGRCGR
NYGRCG
YGRCGG
YGRCGG
YGGCRG
NYGGCR
NYGGCG
NYGGCG
YGGCGR
YGGCGG
YGGCGG
YRRCGG
YRGCGR
NYRGCG
YRGCGG
YRGCGG
GYGRCG
GYGGCG
GYGGCG
GYGGCG
RYGGCG
RYGGCG
RYGGCG
RYGRCG
RYGRCG
GCGRYG
GCGGYG
GCGGYG
RCGRYG
RCGGYG
RCGGYG
GCGGYR
GCGGCR
GCGGCR
RCGGCG
RCGGCR
GCGRCR
GCGRCG
GCGRCG
RCGRCG
RCGRCG
RYRGYG
GYRGYG
GYRGYG
GYGRYG
GYGGYG
GYGGYG
RYGGYG
RYGGYG
RYGRYG
GYGRYG
GYRRYG
GCRGCR
GCRGCN
GCRRCR
GYRRCR
RYRGCR
GYRGCR
GYRGYR
GCRGYR
GCRGYG
GCRGYG
RCRGYR
GCRGYR
GCRRYR
RCRRYG
RCRGYG
RCRGYG
GCRRYG
GCRRCG
GCRRCG
GCRRYG
GCNRYG
GCRRCG
GCRGCG
GCRGCG
RCRGCG
RCRGCG
RCRGCG
RCRRCG
RCRRCG
GYRGCR
GYRGCG
GYRGCG
GYRRCG
GYRRCG
RYRRCG
RYRGCG
RYRGCG
YGGCGN
YGRCGN
YGRCGR
YGGCGR
YGGCGN
CGGCRN
CGGCGN
CGGCGN
CGRCGN
CGRCGN
CRRCGN
CRGCGN
CRGCGN
CGRYGR
CGGYGR
CGGYGN
CGRYGN
CGGYGN
CGGYRN
YNGCGG
YNGCGG
CGNYGG
YRGYGG
YGRYGG
YGGYGG
YGGYRG
YGRCRG
CGGNRG
CGRYRG
CGGYRG
CGGYRR
TGRNGG
TGGNGR
TRGNGG
TRRYRG
TGGYNG
TGRCNG
TGRYGN
TRGYGN
TGGYGN
TGGYRN
TRGCGN
TRGCGN
TRGCGN
TGGCGN
TGRCGN
TRRCGN
TGRCGN
TGRCGN
TNRCGG
TNGCGG
TNGCGR
TNGCGR
TNGCGG
TNGCGG
TNGCGR
TNGYGR
TNGYGG
TNGYGG
TNRYGG
TNRCGR
TNRCGG
TNRCGG
TGGCGG
TGGCGG
TRGCGG
TGRCGG
TGGCGG
TGGCGR
TGRCGG
TGNCGG
TGGCGR
TGGCGN
TRRCGG
TRGCGG
TRGCGR
GTNGCR
RTNGYG
GTNGYG
GTNRYG
GTNRCG
GTNRCG
GTNRCG
GTNGCG
GTNGCG
GTNGCG
GTNGCG
GTNGYG
NTRGCG
TRGCGG
RTRGCG
NTGGCG
NTGGCG
RTGGCG
TGGCGG
TGGCGG
NTGRCG
TGRCGG
RTGRCG
TGGCGR
TGRCGR
NTGGCG
NTGRCG
RTRGCR
RTRGCG
RTRGCG
NRTGGC
RTGGCG
RTGGCG
RTGGCG
RTGGCG
RTGGCG
RTGRCG
RTGRCG
RTRRCG
RTRGCG
RTRGCG
RTNGCG
RTNGCG
RTNGCG
RTNRCG
RTRRCG
RTRRCG
GTGGCR
GTRGCR
RTGGCR
RTGGCR
GTGGYR
GTGRYR
GTRRCR
GTGRCR
GTGRCR
GTGRYR
GTRRYR
GTRGYR
GTRGCR
GTRGCR
GTRGYR
RTRGYR
GTRGCR
GTRRCR
GTRRCR
RTRRCR
GTGNCR
GTGNYG
GTRNYG
RTGRCG
RTGNCG
RTGNCG
RTGNCG
GTGNCG
GTGRCG
GTGRCG
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NGGCGR
RGCGGT
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NRGYGT
YRGYGT
NGRCGT
YRRCGT
RGCGTY
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TNRCGT
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Figure 5–2: LESMoN identified 4277 motifs represented in a hierarchical clustering tree

with clustering p-values < 10−8 in the BioGRID network. Clustering, conservation, and

GO enrichment p-values for each motif are colour-coded. GO enrichment p-values were

computed with Ontologizer [14] using a Fisher’s exact test. The 30 GO terms shown here

are those that are significantly (p-value < 10−6) associated to the most motifs, considering

only terms that include ≤ 1000 human genes. 12 family representative motifs chosen based

on the criteria described in Section 5.4.8 are shown as sequence logos (generated by Weblogo

[44]), where nucleotide heights are proportional to their frequencies in 5’ UTRs. For these

12 motifs, the motif and its reverse complement occurrences in promoters, 5’ UTRs and

coding exons in actual and locally randomized sequences are shown.
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5.5.3 Proteins associated to the 5’ UTR motifs detected by LESMoN are
often enriched for specific biological functions

To further investigate the biological significance of each motif identified by LESMoN,

we asked if GO terms were surprisingly enriched in the set of associated proteins. Fig-

ure 5–2 shows a subset of the GO terms that were found to be enriched in the set

of genes associated to the 4277 motifs identified (see Supplementary material for a

full list of results). Slightly more than half of the motifs selected in Figure 5–2 are

associated to proteins enriched for at least one GO term (corrected enrichment p-

value < 0.001). As expected, motifs within the same family are generally enriched for

the same GO terms. Again, motifs with the strongest clustering in the PPI network

are often those with strongest enrichment for GO terms. Many of these results are

discussed in more details below.

5.5.4 5’ UTR motifs involved in transcriptional and post-transcriptional
regulation

We next attempted to separate motifs that may be involved in transcriptional

regulation from those involved in post-transcriptional regulation. Indeed, even though

motifs found by LESMoN are present in 5’ UTRs, their primary function may still

be as transcriptional regulators at the DNA level. We posit that motifs that possess

high strand specificity (i.e. many more occurrences than their reverse complement)

and whose density is higher in 5’ UTRs than in flanking promoters (see Figure 5–

2) are more likely to be involved in post-transcriptional regulation. Figure 5–2 and

Table 5–1 show 12 such motifs, while motifs with a more likely involvement at the

transcriptional regulation level are listed in Table 5–2. While the post-transcriptional

implication of a few motifs shown in Figure 5–2 might be difficult to judge from their

occurrence profiles, their strand specificity ratios provide a better evidence (Table

5–1). The 12 putative post-transcriptional motifs show positional enrichment, often

very near the start of the 5’ UTRs, but sometimes near its end, together with strong

strand specificity.
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5.5.5 Conserved motifs with potential post-transcriptional roles are sig-
nificantly associated to multiple GO terms

Each of the 12 motifs that are conserved and occur more frequently in 5’ UTRs

than in promoters and coding exon sequences show enrichments for specific GO terms

for their associated proteins (Table 5–1). It is worth noting that for the majority of the

GO terms reported the fraction of the occurrences of the motif that overlap highly

conserved regions within placental mammals (PhastCons elements [201]) improves

when only the occurrences of the motif in the 5’ UTRs of the gene annotated with

the GO term are considered (Table 5–1). This represents another evidence of the

potential functionality of the motifs discovered by LESMoN. Complete results for all

12 motifs of all GO term enrichments computed by Ontologizer are provided in the

Supplementary material.

The motif CGGANGYG is enriched in the first 36 bases of 5’ UTRs (Figure 5–2).

Genes whose 5’ UTRs contain this motif are enriched, among others, for GO terms

related to “Ubiquitin-ubiquitin ligase”. The genes annotated with this GO term share

a more specific and longer version of this motif in their 5’ UTRs: CGGARGUGR.

All occurrences of this motif in the 5’ UTRs of these genes are significantly conserved

among placentals. Interestingly, CGGANGYG is very similar to the motifs SCG-

GAAGY and VCCGGAAGNGCR (where S = [GC] and V = [ACG]) that are bound

respectively by ELK1 and GABPA [140], which are well characterized transcription

factors of the ETS family [200, 197]. This may argue against a post-transcriptional

role of this motif, for which the 5’ UTR enrichment of the motif versus that in the

promoter was moderate, but the strand specificity of the motif (1.41) was much higher

than 1. The motif is also enriched for proteins annotated with GO terms related to

the transcription elongation process. It is worth mentioning that among the 12 se-

lected motifs figures a variation of the one presented here: CGGYNGUR. The main

difference between the two resides at the fourth position where a Y replaces the A.

This motif also appears to be linked to transcription, but in a different fashion, since
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Table 5–1: Result summary for a set of 5’ UTR motifs with putative biological
interest† and potential post-transcriptional involvement.

5’ UTR
motif

Clustering
p-value

Conservation
p-value

Conservation
ratio‡

Strand
specificity

GO enrichment
summary

Enrichment
p-value

GO
conservation

ratio‡

CGGANGYG 3.5 · 10−17 7.4 · 10−115 0.54 1.41
Transcription elongation 1.0 · 10−4 0.67

Ubiquitin-ubiquitin ligase 7.9 · 10−4 1.00
Preassembly of GPI anchor 0.001 0.57

RUNGCGGY 4.3 · 10−19 6.5 · 10−57 0.45 1.34
Serine/threonine

phosphatase inhibitor
0.001 0.33

Negative regulation
insulin secretion

2.8 · 10−4 0.38

YNGURGCG 6.4 · 10−19 4.9 · 10−16 0.37 1.42

K48-linked ubiquitination 6.1 · 10−5 0.63

DNA repair 2.8 · 10−4 0.41

RNA polymerase complex 1.3 · 10−4 0.40

MCM complex 2.3 · 10−4 0.21

GAGYCGRR 9.2 · 10−10 4.2 · 10−15 0.35 1.46

Wnt receptor signaling
pathway

9.3 · 10−6 0.49

Heat shock protein binding 9.8 · 10−5 0.65

Chromatin disassembly 4.8 · 10−4 0.77

RCGRCNGU 1.0 · 10−19 6.3 · 10−16 0.37 1.48
Cell cycle 1.6 · 10−4 0.40

Kinetochore 6.3 · 10−4 0.50

CGGYNGUR 6.7 · 10−17 1.4 · 10−4 0.31 1.65
Transcription regulation

response to oxidative stress
0.001 0.80

GCGGARYY 1.1 · 10−13 4.5 · 10−28 0.40 1.51

Proton-transporting two-
sector ATPase complex

0.001 0.38

Lung morphogenesis 1.3 · 10−4 0.54
Response topologically

incorrect protein
6.6 · 10−4 0.54

GGAGNYCG 2.5 · 10−9 3.2 · 10−15 0.36 1.26

Cell leading edge 5.3 · 10−6 0.45

Sexual reproduction 5.9 · 10−4 0.50

Actin filament 9.4 · 10−4 0.35
Hormone-mediated
signaling pathway

9.6 · 10−4 0.45

Cell projection organization 0.002 0.51
Locomotory behavior 0.001 0.36

UGNGGCGR 3.0 · 10−17 1.2 · 10−27 0.40 1.38
Catalytic step 2 spliceosome 0.003 0.64

Cell cycle 7.0 · 10−7 0.43

CGNNRUUU 3.2 · 10−10 2.7 · 10−10 0.36 1.52

Cell division 3.8 · 10−4 0.36
Chromosome segregation 0.001 0.47

Spindle 0.001 0.32

Microtubule cytoskeleton 1.1 · 10−4 0.36

RUYNGCGG 1.8 · 10−14 4.5 · 10−5 0.32 1.43
Endosome to lysosome

transport
8.4 · 10−5 0.50

Vacuolar transport 1.3 · 10−4 0.45

RNGCGGUG 2.2 · 10−10 8.1 · 10−9 0.35 1.34
Iris morphogenesis 3.4 · 10−4 0.60
Activation innate
immune response

6.8 · 10−4 0.50

Regulation of interleukin-8
biosynthetic

5.0 · 10−4 0.00

† GO terms in the table were chosen based on their enrichment significance and level of biological interest.
‡ Conservation ratios are the fraction of the occurrences of the motif that overlap with regions that are highly conserved
within placental mammals (PhastCons elements [201]) over the total number of occurrences of the motif. GO conservation
ratios represent the same fraction but only for the occurrences of the motifs in the 5’ UTRs of the genes annotated by the
GO term specified on the same line in the table.
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the proteins associated to it are enriched for “regulation of transcription from RNA

polymerase II promoter in response to oxidative stress” (p-value = 0.001).

The motif YNGURGCG is also enriched at the beginnings of 5’ UTRs. The

proteins associated to that motif are overrepresented among others by the “K48-

linked ubiquitination” and “DNA repair” GO terms. This motif resembles the binding

motifs of the poorly characterized RBP ZC3H10 and of the RNA biding factor RBM4

according to the CISBP-RNA Database (in press). RBM4 is known to be implicated

in the alternative splicing of 5’ UTRs and in the exon selection of reporter pre-

mRNAs [141, 123]. This strengthens our belief of the biological functionality of the

YNGURGCG motif in 5’ UTRs. Among the proteins associated to the CGNNRUUU

motif, a surprisingly large number of proteins are linked to the cell cycle and cell

division. Unlike the previously presented motifs, CGNNRUUU occurs more often in

the second half of the 5’ UTRs than at the beginning. It shares similarities with the

motif KCCGNSWTTT (where K = [GT] and W = [AT]), which was found to be

enriched within +/-2000 bases of transcription start sites but not associated to any

transcription factors [140].

Another motif, RNGCGGUG shows similarities with a number of RBP binding

motifs. Among those figure RBM4 again, but also SAMD4A, a translational repressor

[9], and RBM8A, a splicing related factor [205]. The last 4 characters of this motif

match exactly a FUS binding motif reported by Cook et al. [40]. FUS is a multi-

functional RBP that is involved in (but not exclusively) RNA splicing and genome

maintenance [88]. These similarities argue in favour of a post-transcriptional role of

the motif.

Among the other motifs presented in Table 5–1, some motifs occur at both ends

of 5’ UTRs such as GGAGNYCG and GAGYCGRR (Figure 5–2). The latter is

particularly interesting since for the proteins associated to it and that are annotated

with the “chromatin disassembly” GO term, the motif seems to be extending at the
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5’ end with a G rich region (Supplementary Figure 5–6). Others are present towards

the 5’ end of 5’ UTRs. These include RUNGCGGY and RCGRCNGU (Figure 5–2).

On the other hand, the motif RUYNGCGG seems to occur mainly at the 3’ end

of 5’ UTRs (Figure 5–2). Finally, GCGGARYY and UGNGGCGR appear to occur

somewhat uniformly along 5’ UTR sequences (Figure 5–2). More details about all of

these motifs are provided in the Supplementary material.

5.5.6 Biological significance of motifs with potential transcriptional im-
plications

The 12 motifs presented above were selected among other things because of their

likelihood to play a role post-transcriptionally. Nevertheless, LESMoN identified mo-

tifs that are well conserved, but show no strand preference (strand specificity ≈ 1.0),

which is expected for transcription factor binding sites. Examples of such motifs

are reported in Table 5–2. Again it can be observed that for the vast majority of

the GO terms described in Table 5–2 there are more occurrences of the motif that

are conserved within the genes annotated with the GO term. When inspecting the

occurrence profile of RNCGGAAR in promoters and 5’ UTRs, it can be seen that

it occurs mainly before and after the transcription start site of genes and that the

occurrences of its reverse complement follow the same pattern (see Supplementary

Figure 5–7). However, the 3’ end of this motif is very similar to the RBP eukaryotic

translation initiation factor 4B (EIF4B) biding motif “RGAM”, where M denotes a

A or a C [40]. EIF4B is known to bind the 5’ cap of mRNAs to unwind their RNA

secondary structure and promote the ribosome binding to perform translation [155].

This argues against a transcriptional role of the motif. Nevertheless, it also resem-

bles the motif SCGGAAGY that is bound by the transcription factor ELK1 [140],

this time arguing for a transcriptional role. Another similar motif with analogous

properties is NCGRAARY (see Supplementary Figure 5–7). Its associated proteins

are overrepresented among other things for protein transport GO terms. Finally, the

motif YUUYCGGN putatively appears also to play a role transcriptionally and shows
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Table 5–2: Result summary for a set of 5’ UTR motifs with putative biological
interest† and potential transcriptional involvement.

5’ UTR
motif

Clustering
p-value

Conservation
p-value

Conservation
ratio‡

Strand
specificity

GO enrichment
summary

Enrichment
p-value

GO
conservation

ratio‡

RNCGGAAR 2.7 · 10−21 3.6 · 10−128 0.57 0.97
Establishment protein localization 5.4 · 10−7 0.67

Cellular response to stress 6.3 · 10−10 0.62

Pos regulation viral transcription 1.4 · 10−6 0.72

YUUYCGGN 1.4 · 10−21 3.7 · 10−90 0.51 1.14

RNA polymerase complex 1.5 · 10−5 0.42

Structural constituent ribosome 1.5 · 10−4 0.75

Translation 1.4 · 10−5 0.58

Spliceosomal complex 2.1 · 10−4 0.60

NCGRAARY 1.9 · 10−21 1.0 · 10−159 0.56 0.96

Establishment of
protein localization

1.5 · 10−5 0.69

Protein transport 2.0 · 10−5 0.67

Golgi vesicle transport 2.1 · 10−4 0.76

† GO terms in the table were chosen based on their enrichment significance and level of biological interest.
‡ Conservation ratios are the fraction of the occurrences of the motif that overlap with regions that are highly conserved
within placental mammals (PhastCons elements [201]) over the total number of occurrences of the motif. GO conservation
ratios represent the same fraction but only for the occurrences of the motifs in the 5’ UTRs of the genes annotated by the
GO term specified on the same line in the table.

many significant enrichments of GO terms (see Supplementary Figure 5–7 and Table

5–2). Table 5–2 presents the complete computational results for these three motifs

and GO enrichments complete results are provided in the Supplementary material.

5.6 Discussion and conclusion

Several computational approaches have been developed to identify sequence mo-

tifs with biological implications. Some, like the one presented by Xie et al. [228] rely

on motif recurrence and evolutionary conservation. These techniques may be capable

of identifying some of the motifs found by LESMoN. It is however much more likely

that an important fraction of the motifs identified by LESMoN could not be discov-

ered by such approaches. Indeed, a motif occurring with a high frequency but with

only a few evolutionary conserved instances is most likely going to be ignored these

approaches. However, LESMoN will report this motif if these instances are in the 5’

UTRs of the RNAs of proteins forming a protein complex.

5.6.1 Limitations

Even though our method seems sensitive enough to detect numerous 5’ UTR

sequence motifs of potential biological interest, it could be improved. In the present
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state, the approach only explores motifs constituted with 8 characters. With such

length, random occurrences in 5’ UTRs of motifs are fairly likely, making the set of

proteins associated to it noisy. By increasing this length, longer 5’ UTR motifs with

a biological role may emerge from this noise, by being associated to a smaller set of

proteins that possesses a clustering of greater significance in the network. The main

drawback of such modification and the reason why we opted not to follow this direc-

tion is the amount of computational time required to test for the clustering of the

important number of motifs with length larger than 8. Nevertheless, we are currently

exploring approaches to accelerate this process such as methods evaluating the clus-

tering of the motifs of size larger than 8 containing motifs of size 8 or subsequences

thereof already known to be significantly clustered in the network.

Another aspect that could improve the sensitivity of LESMoN resides in the use

of degenerate characters such as K, W, and S, which were neglected in this article.

This could once again improve our sensitivity as some biologically functional motifs

whose associated proteins are clustered in the network may be mainly composed of

these omitted degenerate characters. Nevertheless, increasing the alphabet size of our

motifs also increases the running time of LESMoN.

The discovery potential of our approach is largely affected by the quality and

coverage of the PPI network analyzed. The approach is more likely to produce a

significant number of discoveries when applied to large networks composed of PPIs of

high quality. If the network is too small, few significant clusterings will be present. In

addition, if the network contains a large number of noisy interactions, the clusterings

identified by LESMoN may have little biological significance. Finally, PPI networks

often contain hub proteins, which have sometimes hundreds if not thousands of protein

interactions. These cause the majority of pairwise distances of proteins in the network

to be small. When all pairwise distances in a network are relatively small, only very

tight protein clusterings in such network will be judged significant by LESMoN, while

slightly clustered proteins will not be considered as statistically significant. This
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could therefore potentially limit our ability to detect 5’ UTR motifs regulating the

localization in the cells of their corresponding mRNAs, since the proteins associated

to these motifs are likely to only be slightly clustered in the network.

While a more comprehensive PPI network such as the one extracted from the

iRefWeb database [217] could have been used with LESMoN, we chose to performed

our analysis on the curated BioGRID PPI network [210]. We opted for such network

since its quality may be greater than some of the automated databases included in

the iRefWeb network. Furthermore, at this time, the BioGRID network consisted in

the major part of the iRefWeb network and therefore no great gain are expected from

the use of iRefWeb. We do however acknowledge that the use of iRefIndex (i.e. the

number of publications supporting an interaction) allows the extraction of a dataset

of high quality from iRefWeb.

5.6.2 Extensions

RNA molecules are known to form various secondary structures in order to per-

form their functions, which often consist in binding proteins or other RNAs. In this

article, we opted to only consider the primary structure of 5’ UTRs, but our ap-

proach could be extended to study RNA secondary structure motifs. More precisely,

LESMoN could evaluate the clusterings of all proteins in a PPI network for which

their respective 5’ UTRs contains a given secondary structure motif, such as a 6 nu-

cleotide hairpin loop or a bulge of 2 nucleotides. This approach could be beneficial

since RNA sequences may differ but still form similar RNA secondary structures,

which are, for example, necessary for their binding to a regulatory protein.

Our method could also be extended to perform protein function prediction. Of-

ten, several proteins among those found by LESMoN to be clustered and associated

to the same 5’ UTR motif are uncharacterized. LESMoN provides crucial pieces of
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information to infer the function of these uncharacterized proteins and brings an addi-

tional dimension to the “guilt by association” approach for protein function prediction

[166, 196, 219, 51]. A strategy could be implemented to compute likelihoods for such

uncharacterized proteins to perform a certain function based on their co-clusterings

with already functionally annotated proteins and the occurrence of a given 5’ UTR

motif.

This manuscript only explored one of the many applications of LESMoN. Ob-

viously, besides 5’ UTRs, 3’ UTRs could also be analyzed in the same fashion. In

addition, we could, in the future, analyze different types of sequences, such as coding

exons, promoters, and amino acid sequences. The latter could be interesting especially

for the discovery of transcription factor binding sites regulating the transcription of

proteins interacting in the cell.

Finally, another interesting extension of LESMoN is to study clusterings of se-

quence motifs in biological networks other than PPI networks (e.g. co-methylation,

co-expression, gene regulation networks, etc.). For instance, our method could be

applied to gene co-expression networks, where nodes represent genes and edges link

genes whose expressions are correlated. LESMoN could be used to identify various

types of sequence motifs (in promoters, UTRs, coding exons, etc.) associated to these

genes that are clustered in the network. One could expect that for example, binding

sites of transcription factors regulating the expression of a set of genes present (and

therefore clustered) in the network could be identified using this approach. It could

also be used to find DNA sequence motifs that are clustered in co-methylation net-

works, where nodes correspond to methylation sites and edges connect sites whose

methylation patterns are correlated. A node could be annotated with a given motif

if the motif occurs within a certain window size around the methylation site. In this

context, applying LESMoN to such network could allow the discovery of DNA motifs

that are linked directly or not to the mechanisms causing the associated sites to be

clustered in the co-methylation network.
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5.8 Supplementary material

Complete result tables and all GO enrichment results for the 4277 motifs with

clustering p-values < 10−8 can be downloaded at:

http://www.cs.mcgill.ca/~blanchem/LESMoN.

Figure 5–3: p-values of TPDs for 300 proteins using the normal distribution approx-
imation with 104, 105, 106 and 107 samples and the Monte Carlo approach with 107

samples. Of note, curves of the normal distribution approximation with 105, 106, and
107 are hard to distinguish because they are heavily overlapping.
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Figure 5–4: Cumulative distributions of clustering p-values computed by LESMoN
for motifs obtained from completely randomized, locally randomized, and unmodified
5’ UTR sequences compared to a theoretical uniform distribution.

Figure 5–5: Evolutionary conservation p-value and clustering p-value of each of the
269 motif family representatives.
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Figure 5–6: Extended sequence logo of the 5’ UTR motif of proteins involved in
chromatin disassembly, which were associated by LESMoN to the GAGCCGRR motif.
Information content is plotted as a function of nucleotide position. The sequence logo
was generated using Weblogo [44].
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CHAPTER 6
Conclusion

6.1 Contributions

The study of PPIs is critical to the understanding of the various mechanisms

defining the behaviour of the cell. However, the poor specificity of the high-throughput

experiments used to build PPI datasets has proved to be a real challenge. A strin-

gent filtering is required to extract from these datasets the biologically relevant PPIs.

Besides the difficulty of obtaining high-quality PPIs, one objective remains: the devel-

opment of experimental pipelines allowing for a more sensitive detection of PPIs for a

given protein. Moreover, with the accumulation of high-throughput PPI studies, PPI

networks of organisms such as human and yeast have expanded to the point where

sophisticated computational approaches are necessary to draw forth relevant biologi-

cal information. This thesis is comprised of four significant contributions addressing

these issues that hinder the analysis of PPI data.

AP-MS is among the most popular approaches to identify PPIs. It however

produces datasets that are largely composed of false positives [20, 48, 34]. Chapter 2

presented a Bayesian approach (Decontaminator) to model contaminants in PPI data

produced by AP-MS. The approach uses a limited number of AP-MS controls to assess

the likelihood of a PPI to be originating from a contamination event. At the time of

publication, this method was the only one that utilized a Bayesian inference to detect

contaminants in AP-MS datasets when provided a small number of controls. Whereas

other methods tended to confuse proteins co-purified in many AP-MS experiments

(hub proteins) with contaminants because of their multiple interacting partners if not

provided a list of user-defined list of hub proteins, ours does not. This represented

a clear advantage over the other approaches published at the time especially when

148
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performing AP-MS on uncharacterized proteins. A similar approach is now used in

SAINT 2.0 [34], which uses spectral counts to assess the quality of PPIs.

Since we demonstrated our capability to filter out contaminants from AP-MS

datasets using Decontaminator, we explored ways to improve the sensitivity of AP-

MS experiments. A large number of interactions that are known to occur in the cell

are very difficult to recover using a classic AP-MS protocol on whole cell extracts.

One reason explaining this lack of coverage consists in the fact that typically, not all

cell compartments are analyzed in AP-MS experiments. For example, PPIs occurring

on the chromatin or the cell membrane often remain undetected with this method

[124, 6]. Chapter 3 introduced a novel method to identify and computationally assess

the quality of PPIs of a given protein independently in three different cell compart-

ments (cytoplasm, nucleoplasm, and chromatin). Our approach produces a dataset

of cell compartment specific PPIs. It provides significant coverage improvements by

accessing the chromatin, but also by fractionating the samples analyzed into three

fractions to maximize peptide detection at the mass spectrometry level. Furthermore,

the computational approach associated to this pipeline (based on the methods pre-

sented in Chapter 2) allows for a greater flexibility in terms of the number of AP-MS

experiments and controls needed for the training of the Bayesian procedure. In ad-

dition, it permits, if needed, the use of controls obtained in experimental conditions

other than the one for which it assesses PPIs. This is particularly useful when there

are very few controls available for a given experimental condition. Such approach was

also recently taken in a publication by Mellacheruvu et al. [153].

High quality PPIs obtained using tools such as Decontaminator are typically

analyzed and visualized as a network. PPI networks are often very large, extremely

complex, and hard to investigate by visual inspection. Numerous strategies have been

implemented to help the visualization of these networks [203, 91, 24]. Chapter 4 pro-

posed a novel approach to efficiently identify subgraphs in a PPI network that are
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overrepresented with a certain GO annotation. It introduced a distance and a simi-

larity measure evaluating the clustering of a set of proteins in a PPI network. It also

presented four computational strategies to assess the statistical significance of such

protein clusterings. These four methods include a normal distribution approximation

as well as three different approaches using convolution of probability distribution,

each with its benefits and drawbacks. The results of our program (GoNet) helped

the organization and visualization of yeast and human PPI networks. GoNet is, to

our knowledge, the only available computational approach that identifies annotations

that are significantly clustered in protein-protein interaction networks.

Nucleotide sequence motif discovery is a classic problem of computational biology.

A common version of the problem is to find sequence motifs that are significantly

overrepresented in a set of nucleotide sequences. In Chapter 5, we proposed to tackle

a modified version of this problem with the help of PPI networks. Our method

identifies 5’ UTR sequence motifs for which the associated proteins are significantly

clustered in a given PPI network. Our approach (LESMoN) is inspired by GoNet. It

uses sequence motifs rather than Gene Ontology to define gene sets. Computationally,

it improves on GoNet by allowing for the statistical assessment of clusterings of large

protein sets in PPI networks. Chapter 5 also presented a set of statistical tests to

evaluate the biological relevance of the 5’ UTR motifs highlighted by LESMoN. Our

approach discovered several previously uncharacterized 5’ UTR motifs and associated

them to biological processes taking place in PPI networks. We hope that this novel

approach for sequence motif discovery will set a new basis for the analysis of not only

5’ UTR sequences, but also 3’ UTR, promoter, and coding sequences.

These four contributions have different applications: assessing the quality of PPIs

obtained from AP-MS, increasing the sensitivity of the AP-MS protocol, highlighting

regions of PPI networks that are of potential biological interest, and discovering

sequence motifs and associating them with biological processes represented in such

networks. However, they share the same goal, which is the deconvolution of large
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and noisy PPI datasets. As discussed previously, each of these chapters contributed

significantly to the field by providing novel algorithms yielding results with important

biological implications. Networks formed by PPI datasets are commonly compared

to hairballs because of their noisy and intricate nature [77]. The techniques presented

here are one step forward to untangle these balls.

6.2 Perspectives on future work

The technologies leading to the discovery of PPIs have evolved at a fast pace

in the last decade. This period saw the appearance of sophisticated computational

tools, more sensitive and specific purification methods, specialized sample prepara-

tion techniques, and mass spectrometers with high resolution and speed. The last

two aspects of this list are of particular interest because they might be the ones,

in combination with the development of appropriate computational tools, where the

most progress can be accomplished in the future for the mapping and deconvolution

of PPI datasets.

6.2.1 Deconvolution of PPI networks based on time

As it was discussed in Chapter 3, PPI datasets produced by most studies rep-

resent the union of the interactions occurring in the different cell compartments of

the cell. However, they also contain the union of all PPIs in a population of cells,

which are at different phases of the cell cycle. PPI datasets are therefore constituted

of the union of PPIs over the entire cell cycle. More precisely, if a protein interacts

with a set of proteins in G1 phase, then it is quite possible that this protein will

interact with disjoint sets of proteins in S and G2 phase. However, the union of these

interactions would be reported for that protein without distinction of the phase in

which each interaction happens. This inclusion of a hidden time component causes

PPI datasets to be very large and complicated. A decomposition of networks over

the different phases of the cell cycle would be desirable. One could imagine that for
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a given organism, a PPI network could be built for each phase of the cell cycle. Still

today, to our knowledge, and as reported by Levy et al. [137], a large-scale approach

mapping PPIs independently in different cell cycle phases has not been presented. In

order to simplify and understand PPI networks, several groups have combined them

with time series of mRNA expression data [50, 85, 29]. The basic idea is that co-

expressed proteins sharing the same interaction partners are likely to interact at the

same time (cell cycle phase) with those partners. It is however widely accepted that

the correlation of mRNA and protein expression varies significantly [83] since several

biological mechanisms may alter the translation of mRNAs into functional proteins.

Integrative algorithms using time series of mRNA expression and protein quantifica-

tion data from mass spectrometry might yield better results and are an alternative

that I believe should be explored in the future.

6.2.2 PPI quantification

Chapter 2 and 3 introduced the notion of modeling the abundance of contami-

nants in PPI datasets. Their modeling procedures used Mascot scores as proxies to

measure the abundances of prey proteins. Even if Mascot scores or spectral counts (a

correlated scoring method) are sufficient to accurately estimate protein abundances,

they still suffer from a very important issue. The Mascot score of a peptide depends

on the abundance of all peptides analyzed at the same period (elution time) in the

mass spectrometer. Peptides with low abundance are often masked out when an-

alyzed at the same time as much more abundant peptides. Improvements to the

peptide detection dynamic range of mass spectrometers have been made in the last

years, but not to the point where this issue is resolved. The dynamic range of pro-

tein abundances in certain protein mixtures can be much greater than that of mass

spectrometers. Nevertheless, very recently, improvements to the spectral acquisition

speed and resolution of mass spectrometers made data independent acquisition of

peptide spectra more accessible. This strategy, instead of randomly selecting pep-

tide ions in the ion population for the analysis, allows to analyze all peptide ions
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within a given mass window [75, 216]. This removes the sampling bias towards highly

abundant peptides that exists in classic mass spectrometry approaches. Such data

independent approaches are promising and show the potential to provide unbiased

Mascot scores and spectral counts yielding better protein abundance estimates. Data

independent approaches could therefore provide accurate PPI quantification when

used in combination with AP-MS. It is clear that Decontaminator would benefit from

more accurate protein abundance measurements, which would allow for a more pre-

cise modeling of contaminants. The spectra produced by such technique are however

much more convoluted than the ones acquired with classic mass spectrometry anal-

yses. The computational approaches that should be used to correctly analyze and

associate properly each spectrum to their corresponding peptide remain unclear and

leave several interesting open problems.

6.2.3 Protein function inference

Achieving a more accurate PPI quantification can help solving another impor-

tant computational biology problem: the inference of the function of uncharacterized

proteins. Indeed, as it was mentioned previously, the function of an uncharacterized

protein is often predicted based on the known functions of its interacting partners

[166]. However, with PPI quantification, the contribution of the functions of the

interacting partners in the function prediction model, can be weighted by the PPI

abundances. Such approaches would be likely to produce more accurate protein func-

tion predictions, which often suffer from low specificity. PPI quantification could also

be beneficial to the approaches presented in Chapter 4 and 5. We explained previ-

ously that GoNet can use as input a weighted PPI network. Such edge weights often

represent the confidence that we have that an interaction is a true positive. However,

these could also consist in measures of PPI absolute abundances. PPI abundances are

likely to help to the identification of protein clusterings. GoNet could therefore eval-

uate clusterings of proteins sharing the same annotation in abundance weighted PPI
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networks. We believe that such network input is likely to help GoNet and LESMoN

to produce results with greater biological significance.

Protein mass spectrometry is a young field and analysis of protein-protein in-

teractions remains in its infancy. Even at such young age, the latter has already

revolutionized the way we think about biological mechanisms in the cell. It has been

evolving at a breathtaking speed and its progression has shown no signs that it will

slow down in the near future. It has demonstrated that it possesses a tremendous

potential for protein functional inference and biomarker discovery. The technology

improvements that are yet to come will only make these discoveries more impressive.

I truly believe that the path toward a better understanding of cell biology and human

health must inevitably pass through protein-protein interaction studies. The future

of this field is full of promises. Several fascinating problems remain to be tackled in

order to transform these protein-protein interaction hairballs into complex but well

organized and understood knittings.
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