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Abstract 

Bicaudal-C (Bic-C) encodes a KR-type RNA binding protein required maternally 

for anterior patteming of the Drosophila oocyte and correct migration of the centripetal 

follic1e cells. In Drosophila, premature translation of the germ-plasm determinant Oskar 

in Bic-C mutant oocytes suggests a function for Bic-C in post-transcriptional gene 

regulation. 

Purification and microarray analysis of Bic-C containing ribonuc1eoprotein 

complexes revealed that Bic-C associates with multiple transcripts encoding functionally­

related components of the WntIFrizzled/Dishevelled signaling pathway that regulate actin 

dynamics, in addition to its own mRNA. Using transgenic reporter constructs, Bic-C was 

demonstrated to destabilize its own mRNA via cis-acting 5' UTR e1ements. When auto­

regulation was bypassed and Bic-C was over-expressed in the female germline, 

premature cytoplasmic streaming was induced, disrupting axial patterning through 

displacement ofboth Gurken (Ork) and oskar. These phenotypes can also be induced by 

disruption of the actin cytoskeleton with pharmacological agents and are similar to those 

described for hypomorphic mutant alle1es of orb, which encodes a CPEB-like protein that 

promotes polyadenylation of target mRNAs. The Bic-C overexpression phenotypes 

require its RNA binding activity, are substantially enhanced by mutations affecting orb 

and poly(A) polymerase, and are suppressed by mutations affecting the deadenylase 

CCR4 and its accessory protein NOT3. Co-immunoprecipitation experiments 

demonstrate that Bic-C associates with components of the deadenylase complex and with 

components of an ER-associated RNP complex that inc1udes Me3l B, P ABP and Trailer-
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hitch. The latter complex is involved in Grk exocytosis. Accordingly, Grk secretion is 

defective in Bic-C mutants. 

Taken together, these results support a model whereby Bic-C antagonizes Orb 

function by negatively regulating the expression of Orb target mRNAs, through 

recruitment of the deadenylase machinery, that are involved in coordinating cytoplasmic 

movements. Furthermore, this work identifies a novel function of Bic-C in dorsal/ventral 

patteming by promoting Grk secretion. 
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Résumé 

Le gène Bicaudal-C (Bic-C) encode une protéine liant l'ARN de type KR. Chez la 

Drosophile, cette protéine doit être contribuée maternellement pour le modelage 

antérieur de l'oocyte ainsi que la migration des cellules folliculaires centripètes. La 

traduction prématurée du déterminant du plasma-germinale, Oskar, dans des oocytes 

mutants Bic-C suggère que Bic-C joue un rôle dans la régulation post-transcriptionelle de 

certains gènes. 

L'analyse par puce d'ADN de complexes ribonucléoprotéiques purifiés contenant 

Bic-C nous a révélé que celle-ci était associée avec son propre ARN messager, ainsi 

qu'avec de multiples ARNms encodants des composantes d'une voie de signalisation 

apparenté à la voie WntlFrizzled/Dishevelled, régulant les dynamiques de l'actine. A 

l'aide de transgènes, nous avons démontré que Bic-C déstabilise son propre ARNm via 

des éléments présents dans la région non-traduite en 5'. Lorsque l'autorégulation fut 

contournée par la surexpression de Bic-C dans les cellules germinales femelles, le 

coulage cytoplasmique fut induit prématurément, perturbant le modelage axial en 

déplaçant Gurken (Grk) et oskar. Ces phénotypes peuvent aussi être induits en perturbant 

le cytosquelette d'actine avec des agents pharmacologiques, et sont similaires à ceux 

décrit pour l'allèle mutante hypomorphique d'orb, qui encode une protéine qui 

s'apparente à CPEB impliqué dans la polyadénylation d'ARNms. Les phénotypes de 

surexpression de Bic-C requières sa capacité de lier l'ARN, sont augmentés par des 

mutations affectant orb et poly(A) polymerase et sont supprimés par des mutations 

affectant la déadénylase CCR4 et sa protéine accessoire NOT3. Des expériences de co­

immunoprécipitation démontrent que Bic-C est associée avec des composantes du 
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complexe de déadénylation et des composantes d'un complexe RNP associé au RE qui 

inclut Me31b, PABP et Trailer Hitch. Ce dernier complexe est impliqué dans l'exocytose 

de Grk et conséquemment, l'exocytose de Grk est défectueux dans les mutants de Bic-C. 

Globalement, ces résultats soutiennent un modèle où Bic-C oppose la fonction 

d'Orb en contrecarrant l'expression des ARNms ciblé par Orb importants pour 

coordonner les déplacements cytoplasmique, en recrutant la machinerie de déadénylation. 

De plus, nous avons identifié un rôle nouveau de Bic-C dans la sécrétion de Grk lors du 

modelage dorsal/ventral. 
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Section 1: Literature Review 

1.1 Overview 

The fundamental goal of deve10pmental biology is to understand the molecular 

processes that transform a single cell into a highly complex and integrated multi-cellular 

organism. The entire genetic blueprint of any multi-cellular organism is contained within 

a single nucleus at sorne point during its development. This blueprint, stored as DNA, 

must be duplicated, transcribed into a more dynamic form (RNA) and ultimately 

translated into proteins, which perform an incredibly diverse array of functions. The 

general questions put forth in developmental biology are not new. However, recent 

advances in molecular biology and biochemical techniques have allowed us to address 

many of these questions in greater detail than ever before but as the limits of our 

knowledge recede, more questions inevitably surface. 

Model organisms, such as the common fruit fly Drosophila melanogaster, have 

been instrumental in our study of deve1opment. The historical evolution of life on this 

planet tells us that all organisms are fundamentally connected. Although humans may 

look very different from a mouse or a fly, many of the molecules and processes that 

underlie our deve10pment are similar. Research on Drosophila has greatly advanced our 

understanding of the genetic pathways that shape life on a cellular and organismalleve1 

and have provided much of the ground work responsible for our current understanding of 

human diseases at the molecular level. 

Drosophila oogenesis has been a particularly fertile (pun intended) area of 

research. Through the study of mutants affecting axial patteming in the oocyte and early 
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embryo, a great deal of information regarding post-transcriptional control of gene 

expression and interceUular signaling has been gathered. Dynamic control of rnRNA 

localization, stability and translation are aU employed to specify both the 

anterior/posterior (AfP) and dorsal/ventral (DN) axes. 

The foUowing literature review will smnmarize sorne of the post-transcriptional 

control mechanisms that govem mRNA translation and stability during metazoan 

development. It will also provide a general description of Drosophila oogenesis, the 

mechanisms that establish axial patterning and the key genes that regulate these 

processes. A synopsis of the literature regarding Bicaudal-C, the subject ofthis thesis, is 

also presented along with a description of the Bicaudal-C homologues that have been 

studied in other model organisms. Finally, a brief smnmary of the KR domain and how it 

functions in sorne extensively studied RNA-binding proteins is included. 

1.2 Post-transcriptional gene regulation in development 

1.2.1 Closed-Ioop model of translation 

As initiation is the rate limiting step of translation, many forms of translational 

control have evolved that target this process. AU eukaryotic mRNAs transcribed in the 

nucleus possess a 5' cap structure consisting of a methylated guano sine (m7GpppN, 

where N is any nuc1eotide). The cap structure is important for a number of aspects of 

mRNA metabolism inc1uding translation initiation. The initiation factor eIF4E binds to 

the 5' cap, where it recruits the 40S ribosomal subunit via an interaction with eIF4G 

(Gingras et al., 1999). eIF4G do es this through an interaction with eIF3, which binds 

directly to the 40S ribosomal subunit (Hinton et al., 2006). eIF4G also binds the RNA 

2 



helicase eIF4A, that, together with eIF4B, is believed to unwind secondary structure in 

the 5' UTR (Hinton et al., 2006). This enables binding and progression of the 40S 

ribosomal subunit along the mRNA until it encounters the first AUG start codon. The 

complex of eIF4E, eIF4G and eIF4A is collectively referred to as eIF4F. Another 

important function of eIF4G stems from its interaction with the poly(A) binding protein 

(P ABP) (Tarun and Sachs, 1996; Imataka et al., 1998). As its name implies, P ABP binds 

to the poly(A) tail present at the 3' end of most eukaryotic mRNAs. The interaction 

between eIF4G and PABP links the 5' cap structure to the 3' end, causing transcripts to 

circularize. Transcript circularization, which has been visualized by electron microscopy 

(Christensen et al., 1987), results in a synergistic enhancement of translational efficiency 

(Gallie, 1991; Iizuka et al., 1994). The exact mechanism underlying this enhancement is 

unclear but it may involve stabilization of the eIF4F complex on the 5' cap by PABP, or, 

as evidence in yeast suggests, P ABP may promo te joining of the 60S ribosomal subunit 

(Wei et al., 1998; Searfoss et al., 2001). Transcript circularization may also promote 

ribosomal "recycling" by guiding terminating ribosomes back to the 5' end of a 

transcript. Since transcript circularization requires that an mRNA be full-length, a 

selective advantage may be gained through this mechanism by discouraging the 

formation of truncated proteins that may pro duce dominant negative effects. 

1.2.2 CPEB and cytoplasmic polyadenylation 

Deve10pmental regulation of poly(A) tail length provides an effective means of 

controlling the stability and translatability of specific mRNAs. This form of control is 

particularly crucial during oogenesis and early embryogenesis when, due to 
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transcriptional quiescence, many developmental events are orchestrated by the products 

of maternally inherited mRNAs. Our picture of developmenta1ly regulated 

polyadenylation has largely been constructed by studies in Xenopus oocytes, where the 

Cytoplasmic Polyadenylation Element Binding protein (CPEB) controls the temporal 

expression of key maternaI determinants through a combination of mRNA silencing and 

poly(A)-mediated activation (Mendez and Richter, 2001). Cytoplasmic polyadenylation 

requires two distinct 3 'UTR sequence elements; the cytoplasmic polyadenylation element 

(CPE; UUUUUAU) that is bound by CPEB, and the AAUAAA hexanuc1eotide which is 

usually found 20-30 nuc1eotides downstream of the CPE (Mendez and Richter, 2001). 

These sequences can vary slightly from their canonical forms. AIso, the relative position 

of these elements, copy number of the CPE, and neighbouring 3 'UTR sequences are all 

variables that influence the regulation of a given transcript. CPEB can repress translation 

of sorne CPE containing mRNAs through an interaction with Maskin, which binds 

simultaneously to eIF4E and CPEB, preventing eIF4F assembly through competitive 

inhibition of eIF4G binding to eIF4E (de Moor and Richter, 1999). Before Xenopus 

oocytes can be fertilized, a process known as oocyte maturation must be initiated by 

exposure to progesterone. This leads to CPEB phosphorylation by Eg2, a member of the 

Aurora family of serine/threonine kinases. CPEB phosphorylation increases its affinity 

for the Cleavage and Polyadenylation Specificity Factor (CPSF) (Mendez et al., 2000b). 

CPSF binds to the AAUAAA element and in turn recruits a poly(A) polymerase, thereby 

promoting polyadenylation and consequently translation of target transcripts such as c­

mos and cye/in B (Mendez et al., 2000a). This form of post-transcriptional regulation is 

not unique to Xenopus, as the mammalian homologue of CPEB performs similar 
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functions in mouse oocytes (Hodgman et al., 2001). Furthermore, a growing body of 

evidence indicates that regulated polyadenylation is not limited to early development, as 

synaptic plasticity and long-term memory have been linked to mammalian CPEB 

function in neurons (Wu et al., 1998; Huang et al., 2002). 

1.2.3 mRNA deadenylation and degradation 

In addition to its role in modulating the rate of translation of its cognate mRNA, 

the poly(A) tail plays a critical role in the control of mRNA stability, as its removal is a 

prerequisite for all general forms of mRNA degradation. Three distinct deadenylase 

complexes have been identified in eukaryotes. The CCR4/Pop2/NOT complex appears to 

be the predominant deadenylase complex in most eukaryotes (Parker and Song, 2004). 

Another complex consisting of the conserved pro teins Pan2p/Pan3p (PAN) can serve as 

the predominant deadenylase complex in yeast when the CCR4/Pop2/NOT complex is 

inactivated by mutation (Parker and Song, 2004), although the initial shortening of 

poly(A) tails during mRNA maturation appears to be the primary function of the PAN 

complex (Uchida et al., 2004). Finally, the poly(A)-specific nuc1ease (P ARN) is required 

for default deadenylation in Xenopus (Komer et al., 1998) and has also been implicated in 

nonsense-mediated decay in mammals (Lejeune et al., 2003). However, these functions 

may be limited to vertebrates, as P ARN is not present in the genomes of S. cerevisiae and 

D. melanogaster (Parker and Song, 2004). 

Once the poly(A) tail is shortened below a critical threshold, mRNAs can be 

degraded by one of two general decay pathways. The first consists of 3'-5' degradation 

by a large multi-protein complex called the exosome (Parker and Song, 2004). The 
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second pathway involves removal ofthe 5' cap structure by DCPlIDCP2 and subsequent 

5'-3' digestion by the exonuc1ease XRNl (known as PacMan in D. melanogaster). In 

yeast, this pathway degrades rnRNA 2-5 fold faster than via the exosome, however, the 

predominant pathway is still unc1ear (Decker and Parker, 2002). It is likely that the 

interplay between cis-acting sequence elements and trans-acting factors govems the 

movement of individual transcripts into a given pathway. The exosome appears to be 

active throughout the cytoplasm, whereas the decapping and 5'-3' degradation factors are 

concentrated in discrete cytoplasmic foci ca1led P bodies (Cougot et al., 2004). 

1.2.4 P bodies 

A major advance in our understanding of rnRNA metabolism has come with the 

recent discovery that rnRNA storage and decay occur in cytoplasmic RNP 

(ribonuc1eoprotein) granules called processing bodies (P bodies). P bodies are uniform 

spheroid partic1es that have been largely conserved from yeast to humans in both protein 

content and function (Cougot et al., 2004). These structures are defined by the absence of 

ribosomes and translation factors (with the exception of eIF4E) and the presence of 

several proteins involved in rnRNA degradation (Anderson and Kedersha, 2006). These 

inc1ude the decapping factors DCPI and DCP2, the 5'-3' exonuc1ease XRNl, the 

deadenylase CCR4 and the DEAD-box RNA helicase RCKlp54 (also known as Me3lB 

in Drosophila and Dhhl p in yeast) (Anderson and Kedersha, 2006). 

P bodies were initially considered as sites of mRNA decay, however recent 

evidence in yeast suggests that intact mRNAs can exit these structures and reinitiate 

translation (Brengues et al., 2005). In metazoans, several lines of evidence have 

6 



implicated P bodies in RNA silencing and degradation by miRNAs (Liu et al., 2005a; 

Behm-Ansmant et al., 2006). miRNAs are short (~2l-23 nucleotides) noncoding single­

stranded RNA molecules that mitigate translational repression when bound to target 

rnRNAs with partial complementarity, or degradation when bound to targets with 

complete complementarity (Ambros, 2004). miRNA function is mediated by the 

Argonaute family of proteins that localize to mammalian P bodies in an miRNA 

dependent manner and physically interact with the P body components DCPl and 

GWl82 (Liu et al., 2005a; Behm-Ansmant et al., 2006). Furthermore, specifie rnRNAs 

have been shown to accumulate in P bodies when targeted by miRNAs (Liu et al., 

2005b). GWl82 is required for silencing and/or degradation of targeted rnRNAs, while 

the activities of the CCR4/NOT deadenylase complex and the decapping factors DCP1I2 

are only required for degradation (Behm-Ansmant et al., 2006). 

One c1ass of rnRNAs that appear to be targeted to P bodies by miRNAs are those 

bearing AU-rich elements (AREs) in their 3' UTRs. AREs are found in a variety of 

short-lived rnRNAs, such as those encoding proto-oncogenes or cytokines (van Roof and 

Parker, 2002). Several ARE-binding proteins, inc1uding tristetraprolin (TIP), have been 

implicated in ARE-mediated rnRNA degradation. This pro cess was believed to occur 

primarily via 3'-5' degradation in the bulk cytoplasm by the exosome, however recent 

evidence suggests that 5'-3' degradation by XRNl in P bodies may play a more 

significant role in this process (Stoecklin et al., 2006). TTP, which mediates ARE­

dependent degradation of TNF-a mRNA and of its own transcript, localizes to P bodies 

where it physically interacts with the Argonaute family members Ago 1 and Ag02 

(Brooks et al., 2004; Jing et al., 2005). In addition to these proteins, ARE-mediated 
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degradation requires the activities of Dicer, which is involved in miRNA processing, and 

miRNAs that display complementarity to the AU-instability element (Jing et al., 2005). 

Such miRNAs have been identified in humans (miRI6) and Drosophila (miR289) (Jing 

et al., 2005). 

1.3 An introduction to Drosophila oogenesis 

Drosophila oogenesis begins in a structure called the germanum, where the 

asymmetric division a stem celI produces another stem cell and a committed cystoblast. 

The cystoblast then undergoes four rounds of mitotic division with incomplete 

cytokinesis, producing a cyst of 16 interconnected celIs. Before exiting the germarium, 

this cyst of germline cells will become encapsulated by a layer of somatically-derived 

follic1e ceUs, producing a mature egg chamber. Oogenesis has been divided into 14 

stages, based on the morphological characteristics of the egg chamber (King, 1970). One 

of the germline celIs in the cyst migrates to the posterior of the egg chamber and becomes 

the oocyte, white the remaining 15 ceUs of the cyst adopt a supportive role as nurse ceUs. 

The nurse ceUs produce most, if not alI, of the RNAs and proteins required by the 

oocyte. These molecules are transferred to the oocyte through a series of cytoplasmic 

bridges calIed ring canals. From stages 1-7, transport into the oocyte is selective and 

dependent upon a polarized microtubule cytoske1eton (Theurkauf, 1994a). During these 

stages, microtubules emanate from a microtubule organizing center (MTOC) located near 

the posterior cortex of the oocyte. The plus-ends of these microtubules extend into the 

nurse celIs through the ring canals, providing a means to transport specific rnRNAs into 

the oocyte (Theurkauf, 1994a). At stage 6/7, a series of signaling events between the 
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oocyte and posterior-most follic1e cells result in disassembly of the MTOC. The 

microtubule cytoskeleton then reorganizes into a gradient with highest concentrations of 

microtubules at the anterior cortex of the oocyte. Since the plus-end directed motor 

protein kinesin-l transiently accumulates at the posterior cortex during stages 9-10 (Clark 

et al., 1994), it was believed that microtubule polarization was aligned with the AJP axis, 

such that their plus-ends extended towards the posterior of the oocyte. However, recent 

evidence suggests that microtubule plus-ends extend into the cytoplasm towards the 

center of the oocyte, driving Kinesin-l and associated cargo es away from the cortex. 

(Cha et al., 2002). These complexes are believed to accumulate at the posterior by 

default, because this region of the cortex is relatively devoid of microtubules. This 

highly regulated cytoskeletal architecture permits posterior accumulation of the pole 

plasm, a specialized form of cytoplasm that ultimately directs abdomen and pole cell (i.e. 

germ ceIl) formation in the early embryo. 

After stage 10, the microtubule cytoske1eton is uniformly concentrated around the 

entire oocyte cortex, while rapid cytoplasmic streaming mixes oocyte cytoplasm with 

incoming nurse cell cytoplasm during bulk cytoplasmic transfer (Theurkauf, 1994a). At 

the onset of embryogenesis, nuc1ear divisions take place without any corresponding 

cytoplasmic division, generating a multinuc1eate syncytial blastoderm. It is at this stage 

that opposing gradients of anterior and posterior morpho gens establish the AJP axis and 

extra-cellular signaling initiates graded uptake of a transcription factor along the 

perpendicular axis to initiate embryonic DN patteming. 
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1.3.1 Axis formation in Drosophila oogenesis 

The dorsal/ventral and anterior/posterior axes of the oocyte and early embryo are 

initially established through the activities of the TGF-a homologue Gurken (Grk) and the 

pole plasm determinant Oskar (Osk) (Gonzalez-Reyes et al., 1995; Roth et al., 1995). 

During oogenesis, osk and grk mRNAs are localized to distinct regions of the oocyte 

cytoplasm in a microtubule-dependent manner, and their localization is dynamic, highly 

regulated, and essential for their developmental functions. Translation from both of 

these mRNAs is also under complex regulation (Wilhelm and Smibert, 2005). 

1.3.2 Oskar 

Oskar (Osk) is the key determinant in both pole plasm assembly and posterior 

somatic patterning as it is the first component of the pole plasm to become localized and 

because Osk can catalyze the assembly of functional pole plasm at ectopic sites (Kim-Ha 

et al., 1991; Ephrussi and Lehmann, 1992). Thus, translational repression of osk prior to 

posterior localization is essential. osk mRNA begins accumulating in the oocyte shortly 

after egg chamber formation. During the cytoskeletal rearrangements at stage 7, osk 

transiently accumulates at the anterior cortex of the oocyte before re-Iocalizing to the 

posterior cortex from stage 8 onward. Upon posterior localization, osk is derepressed 

through a functional interaction between its 5' and 3' UTRs (Gunkel et al., 1998) and 

translation is activated by several factors including the double-stranded RNA-binding 

protein Staufen, the CPEB-like protein Orb, the DEAD-box RNA helicase Vasa and the 

eIF2C-related protein Aubergine (Micklem et al., 2000; Chang et al., 1999; Markussen et 

al., 1997; Harris and Macdonald, 2001). The exact mechanism governing this process is 
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unc1ear but it is believed to involve lengthening of the osk poly(A) tail by Orb 

(Castagnetti and Ephrussi, 2003). Once translated, phosphorylation by the Par-l kinase 

stabilizes Osk protein (Riechmann et al., 2002), which is anchored to the posterior cortex 

through an actin-dependent mechanism (Erdelyi et al., 1995; Jankovics et al., 2002). osk 

rnRNA is in turn anchored to the posterior cortex by Osk protein (Ephrussi et al., 1991; 

Kim-Ha et al., 1991). 

Several observations suggest that translational repression of osk may be mediated 

by miRNA(s) and components of the RNAi machinery during stages 1-6. In mutants of 

armitage (armi), which encodes a putative RNA helicase that is related to the Silencing 

Defective 3 protein of Arabidopsis (Dalmay et al., 2001), Osk protein accumulates 

premature1y (Cook et al., 2004). Premature translation of Osk also occurs in mutants of 

aubergine (aub) and spindle-E (spn-E), which are required for RNAi in the embryo, and 

maelstrom, which is required for proper localization of the RNAi factors Dicer and 

Argonaute 2 (Cook et al., 2004; Kennerdell et al., 2002; Findley et al., 2003). This 

mechanism is consistent with the recent finding that translationally repressed osk rnRNA 

is associated with polysomes (Braat et al., 2004), given that miRNA mediated silencing 

has been shown to block translation elongation but not initiation (Olsen and Ambros, 

1999). 

During stages 6-10, translational repression ofun-Iocalized osk occurs through an 

alternate mechanism involving interactions between factors bound to the 5' and 3' UTRs. 

The RRM-type RNA binding protein Bruno (Bru) binds directly to several cis-elements 

in the osk 3' UTR termed Bruno Response Elements (BREs) and represses Osk 

translation (Kim-Ha et al., 1995; Webster et al., 1997). Bruno has been shown to recruit 
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a 4E-T related protein called Cup to the rnRNP complex where it simultaneously interacts 

with cap-bound eIF4E and Bruno, preventing assembly of the translation initiation 

machinery (Nakamura et al., 2004). This model is attractive because it explains how 

Bruno, bound to the 3' UTR, can influence events at the 5' end of osk, and how Cup can 

be recruited to bind eIF4E on a specific transcript. Bruno may also repress osk through 

another mechanism, as recent evidence indicates that Bruno can direct the assembly of 

osk mRNA into multimeric RNP partic1es, resembling P bodies, that render osk 

inaccessible to the translational machinery (Chekulaeva et al., 2006). Several other 

factors contribute to translational repression of osk, including Apontic, Hrp48, YPS and 

Bicaudal-C but the exact mechanisms by which these proteins suppress Osk production 

are still unc1ear (Lie and Macdonald, 1999; Yano et al., 2004; Mansfield et al., 2002; 

Saffman et al., 1998). Exactly how osk regulation is transferred from the early stage (1-

6) to the late (stage 6-10) regulatory complexes is also an open question, however this 

remodeling may involve the RNA helicase Me31B. Me31B remains associated with osk 

during its transport from the nurse cells to the posterior cortex and forms an RN ase 

sensitive complex with Cup, eIF4E and Bruno. Furthermore, Me31B is required for 

translational repression of osk during stage 6, when the mechanism of osk regulation is 

presumably being transferred (Nakamura et al., 2001; Nakamura et al., 2004). 

A myriad of genes have been implicated in osk rnRNA localization based on their 

mutant phenotypes but most of these mutants alter osk distribution through indirect 

effects on oocyte polarity. However, Staufen is directly involved in localizing osk to the 

posterior cortex, in addition to its role as a translational activator (St Johnston et al., 

1991; Micklem et al., 2000). This dual role of Staufen may provide an additional 
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mechanism to prevent un-Iocalized osk from being translated. osk localization is also 

linked to processing events in the nucleus, as Mago N ashi and Tsunagi, components of 

the exon-junction complex, remain associated with osk after nuclear export and are 

required for its posterior accumulation (Hachet and Ephrussi, 2001; Mohr et al., 2001). 

The first direct evidence linking translational repression of osk to its posterior localization 

was provided when Cup was shown to recruit Barentsz to the osk mRNP complex 

(Wilhelm et al., 2003). Barentsz is required for posterior accumulation of osk, 

presumably by coupling osk to the plus-end directed motor Kinesin-l, which is also 

required for osk localization (van Eeden et al., 2001; Brendza et al., 2000). 

1.3.3 Me31B 

Me3lB (maternaI expression at 31B) encodes a DDX6-like DEAD-box ATP­

dependent RNA helicase (de Valoir et al., 1991). Homologues of Me31B have been 

identified in S. cerevisiae (Dhhl), C. elegans (CGH-l), X laevis (Xp54) and mammals 

(RCKlp54), where they all associate with mRNA in various classes of mRNP particles 

and contribute to translational silencing of stored mRNAs (Weston and Sommerville, 

2006). 

In Xenopus, Xp54 physically interacts with CPEB and acts as a transiational 

repressor of stored maternaI rnRNAs. during early development, while in yeast, Dhhl p 

increases the efficiency ofmRNA decapping in P bodies (Minshall et al., 2001). Dhhlp 

physically interacts with several pro teins involved in rnRNA degradation, including the 

decapping factor Dcplp, the activators of decapping Lsmlp and Patlp, as well as a 

component of the deadenylation compIex, POP2p (Coller et al., 2001; Fischer and Weis, 
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2002). These interactions appear to be maintained in other species given that human 

RCKlp54 forms a complex with Dcp 1/2 that co-localizes with the deadenylase CCR4 and 

the exonuc1ease Xml in partic1es containing poly(At RNA (Fenger-Gron et al., 2005; 

Ferraiuolo et al., 2005; Brengues et al., 2005; Ingelfinger et al., 2002; Eystathioy et al., 

2003; Cougot et al., 2004; Kedersha et al., 2005). 

In Drosophila, Me31 B is a component of maternaI RNPs called sponge bodies, 

where it is required for translational silencing ofun-Iocalized oskar mRNA (Nakamura et 

al., 2001) and has recently been shown to co-Iocalize with both Dcp1 and Dcp2 in 

cytoplasmic foci resembling P bodies (Lin et al., 2006). Surprisingly, Dcpl is required 

for posterior localization of oskar mRNA and this function do es not require its decapping 

activity (Lin et al., 2006). These findings raise the intriguing possibility that sponge 

bodies and polar granules may be c10sely related to P bodies, yet have adapted certain 

components to carry out novel functions. Me31 B has also been identified as a component 

of the Trailer Hitch mRNP complex, which is required for proper maintenance of ER exit 

sites and normal exocytosis during oogenesis (Wilhelm et al., 2005). Me31B likely plays 

a critical role in this complex, as the Me3lB null phenotypes c10sely resemble those 

described for the exocyst component Sec5. In both mutants, germline cells and ring 

canals aggregate due to collapse of cellular membranes (Nakamura et al., 2001; Murthy 

and Schwarz, 2004). Interestingly, aIl of the homologues of ME31B that have been 

tested associate with the corresponding Trailer Hitch homologue in each species (Weston 

and Sommerville, 2006). Furthermore, the human homologue of Trailer Hitch, RAP55, 

has also been detected in P bodies and has been shown to be a critical factor in their 

assembly (Yang et al., 2006). Similarly, Me31B and its homologues aH share an 
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association with a conserved cold-shock domain RNA binding protein called Ypsilon 

Schachtel (YPS) in Drosophila, FRGY2 in Xenopus and MSY2 in mice (Weston and 

Sommerville, 2006). These striking commonalities suggest that Me31B, and its 

counterparts in other species, serve critical roles as post-transcriptional regulators in 

c10sely related rnRNP complexes. Given its helicase activity, Me31B may contribute to 

rnRNP remodeling by altering the complement of proteins bound to an rnRNA, either 

through removal of bound proteins or by altering RNA structure such that new binding 

sites become accessible. 

1.3.4 Orb 

The Drosophila 0018 RNA binding protein Orb is a maternally contributed RRM 

domain-containing protein with significant homology to Xenopus CPEB (Lantz et al., 

1994; Hake and Richter, 1994). The similarity between Orb and CPEB is greatest in their 

RNA binding domains, suggesting that Orb, like CPEB, can specifically bind CPE-like 

sequences. Unlike CPEB however, Orb do es not posses a Maskin-binding domain or the 

phosphorylation sites that regulate CPEB activity during egg activation (Mendez and 

Richter, 2001). orb activity is required at multiple points during oogenesis, beginning 

very early with the formation of the 16 cell cyst and establishment of the oocyte within 

this c1uster (Lantz et al., 1994; Christerson and McKearin, 1994). In the orb null 

(orbF343
), oogenesis arrests before a 16 cell cyst is formed, while in the strong 

hypomorphic mutant (orbF303
), egg chambers are produced but the oocyte fails to migrate 

to their posterior and they are often incompletely surrounded by follic1e cells (Lantz et 

al., 1994). These pseudo egg chambers degenerate shortly after exiting the germarium. 
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Weaker allelic combinations of orb (orbmel/orbF343 or orbmel/orbmel), produce ventralized 

eggs with fused or missing dorsal appendages, which contain embryos with abdominal 

segment deletions (Christerson and McKearin, 1994). Consistently, these mutants also 

display defects in anterior/dorsal accumulation of grk mRNA and posterior localization of 

osk mRNA during oogenesis (Christerson and McKearin, 1994). These defects are 

accompanied by a substantial decrease in Grk and Osk protein production and a reduction 

in osk poly(A) taillength (Chang et al., 2001; Chang et al., 1999). In conjunction with 

observations that Orb associates with osk mRNA (Chang et al., 1999), these findings 

suggested that Orb may function similarly to CPEB in promoting translation of specific 

mRNAs by stimulating poly(A) taillengthening. However, a recent study suggests that 

the effects on both Grk and Osk expression may be an indirect consequence of 

reorganization of the microtubule cytoskeleton and premature cytoplasmic streaming 

(Martin et al., 2003). Genetic assays and co-immunoprecipitation experiments suggest 

that the RNA binding proteins YPS and Bic-C both associate with Orb and antagonize its 

function (Mansfield et al., 2002; Castagnetti and Ephrussi, 2003). 

1.3.5 Cytoplasmic streaming 

Rapid circular streaming of the oocyte cytoplasm begins in late stage 10 and 

continues to stage 12, during which period the nurse cells transfer their cytoplasm into the 

oocyte (Theurkauf, 1994a). This microtubule-dependent process, driven by the motor 

activity of Kinesin Heavy Chain (KHC), is believed to be important for mixing the oocyte 

cytoplasm with incoming cytoplasm from the nurse cells (Palacios and St Johnston, 

2002). Cytoplasmic streaming has been linked to osk localization, since disruption of this 
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event prevents anterior to posterior translocation of injected osk rnRNA in stage lOb-lI 

oocytes (Glotzer et al., 1997). Furthermore, Kinesin-l mutants, blocked specifica1ly in 

cytoplasmic streaming, display an abnormal persistence of osk in the center of stage 10 

oocytes (Serbus et al., 2005). In stronger Kinesin-1 mutants, osk remains associated with 

the entire cortex where it is translated (Cha et al. 2002), indicating that the entire actin­

rich cortex is capable of supporting Osk translation and demonstrating the importance of 

efficient posterior osk rnRNA localization for proper embryonic patterning. Timing the 

onset of cytoplasmic streaming correctly is critical, since premature initiation disrupts 

local grk and osk accumulation, resulting in dorsaVventral and posterior patterning 

defects. F-actin and the actin-associated proteins Chickadee (a pro filin) , Cappuccino 

(Capu; a forrnin homology protein) and Spire (Spir, a W ASP-homology 2 domain 

containing protein) are aH required to regulate the timing of cytoplasmic streaming 

(Theurkauf, 1994b; Manseau et al., 1996). Mutants in the corresponding genes 

commence cytoplasmic streaming as early as stage 8. Recent evidence indicates that 

Capu and a specific isoform of Spir (Spir C) restrict cytoplasmic streaming during stages 

8-10b by crosslinking the actin and microtubule cytoskeletons together in response to 

Rho 1 signaling (Rosales-Nieves et al., 2006). Mutations in homeless (Spn-E) and orb, 

both of which encode RNA-binding proteins, also initiate cytoplasmic streaming 

prematurely (Martin et al., 2003), suggesting that this process is subject to post­

transcriptional regulation. 
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1.3.6 Gurken 

The anterior/posterior (AIP) and dorsal/ventral (DN) axes of the future embryo 

are both established during Drosophila oogenesis by signaling events between the oocyte 

and the overlying somatic follicle cells. These signaIs are mediated in part by the TGF-a 

homologue Grk, which is secreted from the oocyte to activate the follicle cell-bound EGF 

receptor (Gonzalez-Reyes et al., 1995). This initially occurs at stage 6, when activation 

of EGFR in a posterior group of follicle cells triggers the production of an unknown 

signal that establishes the AIP axis of the oocyte. Consequently, the microtubule 

cytoskeleton reorganizes within the oocyte such that patterning determinants, such as osk 

and bcd, localize to distinct subcellular domains. The oocyte nucleus, which is closely 

associated with grk rnRNA throughout oogenesis, migrates to the anterior cortex in 

response to the cytoskeletal rearrangements at stage 7. Localized production of Grk then 

specifies the dorsal si de of the oocyte through a second round of EGFR activation in the 

anterior/lateral follicle cells that happen to be closest to the oocyte nucleus (Neuman­

Silberberg and Schupbach, 1993). A number ofproteins, including the products of K10 

and squid, work in concert to restrict localization and translation of grk mRNA to the 

anterior/dorsal cortex (Kelley, 1993; Thio et al., 2000). Once translated, Grk is cleaved 

in the ER by the membrane-bound protease Rhomboid 2, producing its active, secreted 

form (Ghiglione et al., 2002; Guichard et al., 2000). Diffusion of the Grk cleavage 

product within the ER is prevented by Cornichon (Cni), a transmembrane protein that 

acts as a cargo receptor, binding to Grk and recruiting it into COP II-coated vesicles for 

rapid export (Bokel et al., 2006). 
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1.4 Patteming of the Drosophila egg and embryo 

1.4.1 Dorsal appendage formation 

EGFR activation in the anterior/dorsal follic1e cells triggers a signaling cascade 

that specifies the fonnation of specialized egg shell structures called dorsal appendages, 

which are believed to mediate gas exchange between the embryo and its environment. 

The dorsal limits of these appendages are established through a self-amplifying/ 

inhibitory mechanism. The protease Rhomboid is expressed in response to EGFR 

activation, leading to autocrine production of Spitz, another activating ligand of EGFR 

(Wassennan and Freeman, 1998). Amplification of EGFR activation induces Argos 

expression along the dorsal mid-line, where the level of EGFR activation is highest. 

Argos antagonizes Spitz function, causing the domain of activated EGFR to split into two 

peaks, ultimately leading to the fonnation of two, symmetrically-positioned, dorsal 

appendages (Wassennan and Freeman, 1998). Positioning of these structures along the 

AIP axis is controlled by the TGF-p homologue decapentaplegic (dpp) (Peri and Roth, 

2000). Dpp emanates from a group offollic1e cells positioned along the nurse celVoocyte 

border and has been proposed to activate expression of the homeodomain transcription 

factor mirror (mirr) in neighboring anterior follic1e cells (Twombly et al., 1996; Atkey et 

al., 2006). Mirr is a critical detenninant of dorsal appendage producing fates, although its 

mode of action is obscure and no specifie transcriptional targets have been identified as 

yet (Zhao et al., 2000; Jordan et al., 2000). The ventral boundaries of the dorsal 

appendages are set by the transcriptional repressor Capicua (Cic), which restricts mirr 

expression to a patch of anterior/dorsal follic1e cells (Atkey et al., 2006). Cic is 
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expressed in the ventral and lateral follicle cells but is excluded from dorsal follicle cells 

by EGFR activity (Goff et al., 2001; Atkey et al., 2006). 

1.4.2 Dorsal/ventral patterning 

EGFR activation also plays a crucial role in specifying the dorsaVventral axis of 

the embryo by limiting pipe expression to the ventral 40% of the egg chamber 

circumference (Nilson and Schupbach, 1998; Sen et al., 1998). pipe encodes a heparin 

sulphate 2-0-sulphotransferase that is believed to modify components of the extracellular 

matrix (ECM) in the space between the oocyte and the follic1e cells (Sen et al., 1998; Sen 

et al., 2000). After egg deposition, these ECM components, located between the embryo 

and the vitelline membrane, trigger a protease cascade that culminates in the activation of 

Spatzle, an activating ligand of the ToU receptor (Morisato and Anderson, 1994; 

Moussian and Roth, 2005). Spatial restriction of Spatzle is important, as ToU is 

uniformly distributed over the surface of the embryo (Hashimoto et al., 1991). Activation 

of ToU triggers a kinase cascade within the embryonic syncytial blastoderm that leads to 

local release of the NF-KB transcription factor Dorsal from Cactus, its cytoplasmic tether 

(Drier et al., 1999). This produces a ventral to dorsal gradient ofnuc1ear Dorsal protein 

which activates multiple patteming genes in a concentration dependent manner 

(Stathopoulos and Levine, 2002). 

1.4.3 Bicoid 

The homeodomain transcription factor Bicoid (Bcd) is an anterior morphogen, 

required for the establishment of head and thoracic structures during Drosophila 
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embryogenesis (Driever and Nusslein-Volhard, 1989). A combination of mRNA 

localization and translational repression pro duces an anterior to posterior gradient of Bcd 

protein in the syncytial blastoderm. This gradient is ultimately translated into positional 

information through the stepwise activation of zygotically-expressed genes that pattern 

the embryo along the AlP axis. bcd mRNA localization is also a stepwise event that 

requires at least three trans-acting factors, Exuperantia (Exu) , Swallow (Swa) and 

Staufen (Stau) (Ephrussi and St Johnston, 2004). Exu is involved in transporting bcd 

mRNA from the nurse cells into the oocyte, while Swa is required to restrict bcd to the 

anterior of the oocyte during oogenesis. Finally, Stau is needed to anchor the bcd 

transcript to the anterior of the egg, where its translation becomes activated by poly(A) 

taillengthening at the onset of embryogenesis (Salles et al., 1994). Bcd performs dual 

roI es as a transcriptional activator of zygotic hunchback (hb), itse1f a transcription factor 

that is also important for specifying anterior fates, and as a translational repressor of the 

posterior determinant caudal (cad). cad repression occurs through a novel mechanism 

involving the cap-binding protein 4EHP, which is recruited to cad mRNA through a 

direct interaction with Bcd (Cho et al., 2005). Bcd binds to elements in the 3' UTR of 

cad, while 4EHP presumably displaces eIF4E from the 5' cap structure, preventing 

assembly of the eIF4F initiation complex (Cho et al., 2005). 

1.4.4 Nanos 

Aside from its role in establishing the germline in each new generation, the pole 

plasm serves a critical role in abdomen formation, as it is required for the establishment 

of a posterior to anterior morphogen gradient of the posterior determinant Nanos (Nos) in 
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the syncytial blastodenn.Nos acts through the RNA-binding protein Pumilio (Pum) to 

repress translation of maternaI hunchback, in part by promoting posterior deadenylation 

of hb mRNA (Wreden et al., 1997). Interestingly, Nos, Pum and a third protein called 

Brain Tumor (Brat) were recently shown to repress hb translation by recruiting 4EHP, 

using a similar mechanism as that employed by Bcd for cad repression (Cho et al., 2006). 

As in the case of Bcd, establishment of the Nos gradient relies on a combination 

of mRNA localization and regulated translation. Posterior accumulation of nos mRNA 

begins at stage 12 of oogenesis, when rapid cytoplasmic streaming brings nos into contact 

with Osk and other pole plasm components that are anchored to the posterior cortex. 

This "local trapping" method of mRNA localization appears to be rather inefficient as 

oruy 4% of nos mRNA is estimated to concentrate at the posterior cortex (Bergsten and 

Gavis, 1999). It is therefore not surprising that unlocalized nos is subject to multiple 

fonns of repression outside of the pole plasm. This repression is mediated in part by 

Smaug (Smg), which binds nos 3'UTR elements via its SAM domain (Aviv et al., 2003; 

Green et al., 2003; Smibert et al., 1996). Unexpectedly, Smg restricts Nos expression 

through two distinct mechanisms. It represses Nos translation through an interaction with 

the eIF4E interacting protein Cup (Nelson et al., 2004), and it promotes nos 

deadenylation and subsequent degradation by recruiting the CCR4/Pop2/NOT 

deadenylase complex (Zaessinger et al., 2006). Despite these mechanisms ofrepression, 

over 50% of nos is associated with polysomes, indicating that a third fonn of translational 

silencing may be at play (Clark et al., 2000). Accordingly, ectopic Nos translation is 

observed in mutants of bicaudal, which encodes a subunit of the Nascent polypeptide 

Associated Complex (NAC), suggesting that the nascent Nos polypeptide may be 
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targeted by Bicaudal in sorne way that stalls translation or prevents release of Nos from 

the ribosome (Markesich et al., 2000). During oogenesis, translational repression of nos 

is mediated by 3' UTR elements that are distinct from those bound by Smg. A protein 

called Glorund, with homology to mammalian hnRNPs F and H, has been shown to bind 

these elements and repress of nos translation late in oogenesis (Kalifa et al., 2006). The 

exact mechanism of nos translational de-repression in the pole plasm remains somewhat 

nebulous. However, it appears to involve displacement of Smg by Osk through a 

competitive interaction with the RNA-binding domain of Smg (Dahanukar et al., 1999; 

Zaessinger et al., 2006) and activation by the DEAD-box RNA-helicase Vasa (Gavis et 

al., 1996). 

1.5 The CCR4 deadenylase complex in Drosophila 

The CCR4/Pop2/NOT deadenylase complex is active during Drosophila 

oogenesis where its components are concentrated in cytoplasmic foci (Temme et al., 

2004). Interestingly, hypomorphic alleles of Drosophila ccr4 (also ca1led twin) disrupt 

oogenesis without producing any obvious defects in the soma (Temme et al., 2004; 

Morris et al., 2005). Early in oogenesis, CCR4 is required to control the number and 

synchronicity of germline cyst divisions through regulation of cyclinA polyadenylation 

(Morris et al., 2005). CCR4 has also been implicated in oskar and cyclinB poly(A) tail 

regulation during oogenesis (Benoit et al., 2005). In early embryogenesis, the CCR4 

complex is required to localize hsp83 and nanas mRNAs to the posterior cortex through a 

combination of bulk cytoplasmic degradation and localized protection in the pole plasm 

(Semotok et al., 2005; Zaessinger et al., 2006). The CCR4 complex is specifically 
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recruited to these transcripts by the RNA-binding protein Smaug, which binds to cis­

elements in their 3' UTRs (Semotok et al., 2005; Zaessinger et al., 2006). In the pole 

plasm, Osk protects nanos from degradation by abrogating the interaction between 

Smaug and nanos mRNA (Zaessinger et al., 2006). Given that Oskar interacts with the 

RNA-binding domain of Smaug, competitive binding is probably the mechanism by 

which nanos and hsp83 are protected (Dahanukar et al., 1999). 

1.6 Bic-C and related RNA binding proteins 

1.6.1 Bic-C 

ln D. melanogaster, the Bicaudal-C (Bic-C) gene is required matemally for 

specifying anterior position during early development and for progression of oogenesis 

beyond stage 10 (Mohler and Wieschaus, 1986; Schupbach and Wieschaus, 1991; 

Mahone et al., 1995). The progeny of heterozygous Bic-C females display a variety of 

anterior patterning defects that are shared by mutants of Bicaudal and Bicaudal-D 

(Mohler and Wieschaus, 1986). These defects range in severity from reduced or missing 

mouth parts to bicaudal embryos, where the anterior half of the embryo is replaced by a 

mirror image duplication of the posterior half (Mohler and Wieschaus, 1986). 

Intermediate phenotypes include headless embryos or embryos possessing a disorganized 

array of denticle bands or segments with longitudinal strips having reversed or 

ambiguous polarity anterior to abdominal segment A4 (Mohler and Wieschaus, 1986). 

Additionally, an abundant class of these embryos fails to cellularize due to a 

developmental block in the later syncytial divisions (Mahone et al., 1995). Females 

heterozygous for chromosomal deIetions that remove Bic-C pro duce similarly affected 

offspring, strongly suggesting that haplo-insufficiency is responsible for the dominant 
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maternal-effect phenotypes observed in Bic-C mutants (Mohler and Wieschaus, 1986). 

Consistent with the observed patterning defects, ectopic anterior accumulation of oskar 

and nanos transcripts have been detected in early cleavage embryos from BicYC33 

heterozygous females (Mahone et al., 1995). Furthermore, a portion of osk mRNA 

remains associated with the anterior cortex of the oocyte in stage 8-10 egg chambers from 

Bic-cAA4 heterozygous females (Mahone et al., 1995). Premature translation of Osk has 

also been observed in stage 7-10 egg chambers of homozygous Bic-C females, where 

ectopic Osk protein accumulates in the anterior and central regions of the oocyte 

cytoplasm (Saffinan et al., 1998). 

In homozygous Bic-C females, oogenesis arrests at approximately stage 10, when 

the vast majority of egg chambers begin to degenerate. The few eggs that are produced 

by these females display an open-ended chorion phenotype because the centripetally 

migrating follicle cells fail to encapsulate the anterior of the oocyte at stage 10 of 

oogenesis. Some of the weaker allelic combinations are capable of producing eggs, many 

ofwhich are flaccid and have fused dorsal appendages (Mahone, 1994). 

The Bic-C gene encodes a 102 kDa protein, containing five KR domains in its N­

terminal half (a.a. 96-524) and a SAM domain close to its C-terminus (a.a. 784-862) 

(Mahone et al., 1995). The KR domain is a single-stranded RNA and DNA binding 

motif, first identified in hnRNP K (Siomi et al., 1993). The SAM (Sterile Alpha Motif) 

domain is a protein interaction motif that, in sorne cases, has been shown to bind other 

SAM domains and SH2 domains (Burd and Dreyfuss, 1994; Schultz et al., 1997). 

However, more recent evidence indicates that some SAM domains can bind RNA as well 

(A viv et al., 2003). Bic-C has been shown to bind RNA homopolymers in vitro and a 
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point mutation causing a glycine to arginine conversion in the third KR domain of the 

protein (G296R), results in substantially decreased RNA binding activity in vitro and a 

strong mutant phenotype in vivo (Saffman et al., 1998), suggesting that the RNA-binding 

activity of Bic-C is required for at least sorne aspects of its function in vivo. 

A yeast two-hybrid screen for Bic-C interacting proteins has recently identified 

several proteins that have been implicated in translation control and/or RNA stability 

(Paliouras, M., Ph.D Thesis, 2005). These include Me31B, NOT3, a component of the 

CCR4 deadenylase complex (Temme et al., 2004), and Giant Nuclei, which has been 

implicated in maternaI rnRNA degradation (Tadros et al., 2003). 

1.6.2 Bic-C homologues 

Recent studies in C. elegans, Xenopus, mice and humans have revealed that Bic-C 

is a member of an evolutionarily conserved family of proteins. This protein family is 

characterized by a common structural architecture, consisting of five KR domains within 

the N-terminal portion and a sterile alpha motif (SAM) domain close to the C-terminus, 

separated by a serine/glycine-ri ch region. The Xenopus, mouse and human Bic-C 

orthologues are 44.7, 44.9 and 43.3% identical to the D. melanogaster Bic-C protein 

respectively; with the KR and SAM domains retaining the greatest degree of homology 

(Wesselyet al., 2001). 

Xenopus Bic-C (xBic-C) was isolated in a screen for maternaI rnRNAs that 

undergo poly(A) tail lengthening upon cortical rotation of the egg (Wessely and De 

Robertis, 2000). Overexpression of xBic-C or of a fragment of the protein containing the 

KR domains induces ectopie endoderm formation, while expression of a dominant-
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negative version of the protein lacking the KR domains blocks both endoderm and 

mesodenn fonnation (Wessely and De Robertis, 2000). Given these observations and the 

fact that xBic-C mRNA is concentrated in the vegetal half of the egglembryo, it was 

proposed that xBic-C may be a translational repressor of animal pole determinants, acting 

to sharpen morphogen gradients between the two hemispheres (Wessely and De Robertis, 

2000). 

The mouse orthologue of Bic-C (mBic-C) is also provided maternally to the 

oocyte and is expressed in undifferentiated tissues such as Hensen' s node and the 

developing mesenchyme during embryogenesis. Adult mice express mBic-C most 

abundantly in the heart and kidneys (Wessely et al., 2001). Mutations in mBic-C are 

responsible for both the jcpk and bpk mouse models of polycystic kidney disease 

(Cogswell et al., 2003). Homozygous jcpk mice develop numerous cysts in aIl parts of 

the nephron and die within 10 days of birth, while approximately 30% of jcpk 

heterozygotes develop a late-onset renal cystic disease, affecting only the glomeruli. 

Homozygous bpk mice die by four weeks of age due to cystic dilation of the renal 

collecting ducts and biliary dysgenesis. Polycystic kidney disease accounts for 

approximately 10% of aIl end-stage renal disease cases in humans and the inherited 

autosomal dominant fonn affects 1 in 1000 people (Cogswell et al., 2003). 

Two genes related to Bic-C, GLD-3 (gennline development defective) and BCC-

1, have been identified in Caenorhabditis elegans (Eckmann et al., 2002). Sequence 

comparisons indicate that both of these genes have diverged significantly from the other 

members of the Bic-C family (Eckmann et al., 2002). However BCC-l is more closely 

related to Bic-C than GLD-3, which do es not contain a SAM domain (Eckmann et al., 
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2002). The function of BCC-1 is unknown, however, studies of GLD-3 indicate that it 

co-Iocalizes with P granules (i.e. germ plasm) in early embryos and is required maternally 

for embryogenesis and germline survival (Eckmann et al., 2002). The zygotic 

requirements of GLD-3 have been studied in greater detail (Wang et al., 2002; Eckmann 

et al., 2002; Eckmann et al., 2004; Suh et al., 2006). In conjunction with the cytoplasmic 

poly(A) polymerase GLD-2, GLD-3 promotes a transition from mitosis to meiosis in the 

gonad by stabilizing gld-I mRNA and enhancing translation of GLD-1, which is a 

STAR/Quaking translational repressor (Eckmann et al., 2004; Suh et al., 2006). The gld-I 

and gld-3 transcripts are both targeted by the translational repressor FBF (fem-3 binding 

factor), a member of the PUF family of proteins. As its name implies, FBF also targets 

fem-3 mRNA for translational repression, thereby promoting the switch from 

spermatogenesis to oogenesis in hermaphrodite worms (Zhang et al., 1997). 

Interestingly, the other zygotic function of GLD-3 is to promote spermatogenesis by 

binding directly to FBF and preventingfem-3 repression (Eckmann et al., 2002; Eckmann 

et al., 2004). The region of GLD-3 required for FBF binding is not shared by Bic-C or its 

homologues. The complex regulatory relationships that have been discovered among 

these proteins highlight the importance of integrating multiple genetic pathways to 

achieve coordinated deve10pmental events. 

1.6.3 The KH domain 

The KH-type RNA-binding domain is believed to have emerged relatively early in 

evolutionary history, as it is weIl represented in aIl of life's kingdoms. The 

heterogeneous nuc1ear ribonuc1eoprotein partic1e-K homology (KH) domain was tirst 
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recognized in heterogeneous nuc1ear ribonuc1eoprotein (hnRNP) K, to which it owes its 

name (Siomi et al., 1993). Sequence comparisons of multiple KR domain-containing 

proteins, inc1uding bacterial NusA, suggested that the domain spanned -50 amine acids, 

with an overall ~oo:x.~~ topology. However, with the discovery of more KR proteins 

came the realization that most KR domains are actually -70 amino acids long and consist 

of a ~oo:x.~~a. topology (Adinolfi et al., 1999). These domains are characterized by their 

structure rather than primary sequence homology, of which they share very little. In fact, 

the only sequence within the domain that is absolutely conserved is a GxxG motif, 

located in the loop between the first and second a. helices. Structural studies of the third 

KR domain of the neuronal splicing factor Nova-l, suggest that this loop forms part of 

the RNA-binding surface, acting as one arm of a molecular vice (Lewis et al., 2000). 

This vice brings the RNA bases into contact with amine acids in the fust two a. helices 

and the first ~ strand, providing the basis for sequence-specific RNA-binding (Lewis et 

al., 2000). 

With the notable exception of the STAR (Signal Transduction and Activation of 

RNA) subfamily, most KR proteins contain multiple copies of the domain, which are 

thought to act cooperatively in RNA-binding. This is certainly the case for hnRNPK, 

which contains 3 KR domains that each bind to a short (6-7) stretch of nucleotides 

(Paziewska et al., 2004). Individually, these domains bind RNA promiscuously with 

reduced affinity, however, together they act synergistically to increase the strength and 

specificity of binding (paziewska et al., 2004). This combinatorial effect is thought to 

restrict high-affinity binding to a discrete number of transcripts in vivo. The ability to 

dimerize is believed to be another common, yet not universal feature of KR domains, 
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which may also strengthen sequence-specific binding to RNA (Chen et al., 1997; Ramos 

et al., 2002). 

Members of the STAR group of proteins contain a single KR domain, however 

flanking sequences also contribute to RNA-binding, creating an extended RNA-binding 

region referred to as the GSG (GRP33, Sam68, GLD-l) domain (Adinolfi et al., 1999). 

These proteins are also characterized by the presence of motifs that mediate functional 

regulation by signaling pathways. For example, one of the founding members of this 

group, Sam68 (Src-Associated Substrate during Mitosis of 68 kDa), contains proline-rich 

sequences that mediate binding to SR3 domains and a tyrosine-rich C-terminus that 

inhibits RNA-binding when phosphorylated (Lukong and Richard, 2003). 

KR proteins are involved in virtually all aspects of RNA metabolism. For 

example, ZBP-1 (Zipcode-Binding Protein 1) is required for subcellular localization of fi­

actin mRNA to the leading edge of migrating fibroblasts (Ross et al., 1997), whereas 

Nova-l, the antigen targeted by auto-antibodies in patients with the neurodegenerative 

disease Paraneoplastic Opsoc1onus Myoc1onus Ataxia (POMA), regulates alternative 

splicing of inhibitory neurotransmitter receptor subunit pre-mRNAs (Jensen et al., 2000; 

Dredge and Darnell, 2003). hnRNPK has many functions but is probably best known for 

its role in repressing 15-lipoxygenase translation in erythroid cells (Ostareck et al., 2001). 

The Fragile-X mental retardation protein (FMRP) is probably the most 

extensively studied KR domain protein, although despite considerable efforts, its 

molecular functions remain enigmatic. Mutations affecting this protein or its expression 

in the brain result in the Fragile X Syndrome, the most commonly inherited form of 

mental retardation in humans. Rumans and mice with this disease have an increased 
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number of abnonnally shaped dendritic spines, structures that regulate many of the 

neurochemical events that are involved in synaptic transmission (Comery et al., 1997; 

Irwin et al., 2001). FMRP has been implicated in a variety of post-transcriptional 

processes in neurons inc1uding nuc1ear export, subcellular mRNA transport, translational 

activation and repression and miRNA-mediated post-transcriptional silencing (Bagni and 

Greenough, 2005). A variety of techniques have been employed to identify RNA targets 

of FMRP but there has been relatively little overlap in the resulting candidates (Darnell et 

al., 2005). However, a commonality among putative targets has been mRNAs encoding 

regulators of neuronal maturationlfunction and synaptic plasticity, inc1uding the MAP lB 

mRNA which contains a G-quartet structure important for FMRP binding (Darnell et al., 

2001). Interestingly, the synaptic hyperplasia phenotype observed upon mutating the 

Drosophila homologue of FMRP (dFmrl) can be fully rescued by a concomitant 

mutation infutsch, which encodes the Drosophila homologue of MAPIB (Zhang et al., 

2001). dFmrl is also important for gametogenesis and translational repression of orb 

mRNA (Zhang et al., 2004; Costa et al., 2005). 

1. 7 Research objectives and ration ale for experimental design 

When 1 began my graduate studies in the Lasko Lab, our shared objectives were 

much as they are today; to deepen our understanding of the post-transcriptional 

mechanisms that regulate growth, patterning and germline development in Drosophila. 

These objectives are motivated by a basic curiosity in the fundamental processes that 

shape life and have allowed it to develop into the astonishingly complex fonns that exist 

today. Motivation also cornes from the hope that our work will ultimately help to 
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improve the human condition, through an enhanced understanding of disease and its 

molecular roots. 

At the onset of my work, the Bic-C gene had been identified and many aspects of 

the Bic-C mutant phenotype had been studied and described but very little was known 

about its molecular function. The presence of KR domains in the protein and premature 

translation of osk in the mutant suggested that Bic-C was a translational repressor, 

however, an association with osk or any other mRNA had not been demonstrated. 

Therefore, the initial primary objective of my project was to identify mRNAs that 

specifically interact with Bic-C. A number of techniques were considered for this task; 

however, after sorne experimentation with in vitro approaches, 1 decided to adopt a novel 

Strategy based on a combination of immunoprecipitations and mRNA screening methods 

(first differential-display RT-PCR and later Affymetrix™ microarrays). 1 did not know it 

at the time but similar strategies were being developed independently by others and 

would later be termed Ribonomic Profiling. 

This work identified Bic-C mRNA and several other transcripts, as putative 

regulatory targets of Bic-C. To determine if the association with its own mRNA reflected 

a biological function, 1 engineered a series of reporter constructs. This approach was 

taken because any analysis of endogenous Bic-C could be confounded by primary effects 

of the mutations affecting the gene. When this work suggested that Bic-C mRNA, and 

consequently protein leve1s, are regulated by an auto-repressive mechanism, 1 was struck 

by its implication; over-production of Bic-C must have deleterious consequences. To 

determine what these consequences might be and potentially gain further insight into Bic­

C function, 1 employed the UASP/Gal4 system to overexpress Bic-C in the germline. 
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This inducible system was used because I anticipated (or perhaps just hoped) that it 

would not be feasible to maintain fly stocks constitutively overexpressing Bic-C. 

Phenotypic analysis of Bic-C overexpressing flies indicated, for the first time, that 

Bic-C contributes to the regulation of cytoplasmic movements within the egg chamber 

and oocyte. Concurrent work by a colleague in the lab, Miltiadis Paliouras, suggested 

that Bic-C might physically interact with NOT3, a component of the CCR4 deadenylase 

complex. Bic-C overexpression provided a sensitized genetic background in which to 

test the biological relevance of this and other putative interactions. Co­

immunoprecipitations were then performed to determine if genetic interactions were 

indicative ofphysical associations in vivo. 

As an altemate approach to understanding Bic-C function, I also continued the 

phenotypic analysis of Bic-C mutants that had been initiated by my predecessors. 

Through this work I discovered that Gurken secretion and possibly exocytosis in general, 

is defective in Bic-C mutants. 

In addition to this work, I have performed an initial characterization of Bic-C 

phosphorylation, in the hopes of e1ucidating the post-translational mechanisms regulating 

Bic-C function in vivo. 
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Section 2: Materials and Methods 

2.1 a-Bic-C antibody production 

An EcoRI fragment encompassing nuc1eotides 870-3624 of the Bic-C cDNA, 

containing the entire open reading frame, was subc10ned into pGEX-3X (GE Healthcare) 

to produce a full-length GST-Bic-C fusion protein which was expressed in E. coli BL21 

cells and purified from inclusion bodies as described in method 2 of (Sambrook et al., 

1998). The purified fusion protein was injected subcutaneously into rabbits to generate 

a-Bic-C sera which were then affinity purified against fulllength GST-Bic-C coupled to 

AffiGel (BioRad). 

2.2 Construction, expression and purification of MBP_Bic_C85-462 

To generate the MBP_Bic_C85
-462 construct, a fragment of the Bic-C cDNA was 

amplified using Plu DNA polymerase (Stratagene) using the following forward: 

5'-TTCCGAATTCCTCCACACGGACACCATTCG-3' and reverse: 5'­

CACTCTAGATCATGTGGCCAGGCGCAG -3' primers. These primers contain an 

EcoRI site and an Xbal site respectively. The resulting PCR product was digested with 

EcoRI and Xbal and ligated into the same sites of the pMAL-C2 vector (New England 

Biolabs). The resulting construct was sequenced with the MAL-E primer (New England 

Biolabs) to verify that no mutations were introduced upon amplification. Proteins were 

expressed in E. coli BL21 cells and purified under native conditions as directed by the 

manufacturer (New England Biolabs). 
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2.3 In vitro RNA binding assay 

Approximately 20 J..Lg ofpurified MBP or MBP_Bic_C85
-462 was incubated with 

50J..LI ofpoly-G agarose beads (Sigma) or control agarose beads for 45 min at 4 oC in 1ml 

ofbindingl wash buffer (25 mM Tris pH 7.5, 300 mM NaCI, 0.1 % Triton-X-100). Beads 

were then rinsed five times with 1 ml ofbindingl wash buffer before bound proteins were 

eluted by boiling in Laemmli sample buffer. Approximately 20% of each sample was 

loaded for SDS-P AGE. Proteins were visualized by staining gels with Gelcode reagent 

as instructed by the manufacturer (Pierce). 

2.4 Ovarian mRNP isolation 

Fattened 2-3 day old OreR females were hand-dissected in PBS and their ovaries 

were homogenized on ice in mRNP lysis buffer (20mM Hepes-KOH (pH 7.6), 150mM 

KCL, 1mM DTT, 0.25% NP-40). Extracts were incubated on ice for 5 min. then 

centrifuged at 10,000 rpm for 15 min in a microfuge at 4°C to remove debris. EDTA was 

then added to the cleared supematant to a final concentration of 33mM and the mixture 

was incubated on ice for 20 min to dissociate polysomes. The supematant was added to 

50 J..LI of oligo-dT cellulose (Phamacia Biotech) which had been pre-washed with 

equilibration buffer (i.e. lysis buffer without NP-40). The slurry was incubated over­

night at 4 oC (rotating) and then centrifuged at 3,000 rpm to remove the supernatant. The 

oligo-dT cellulose was then washed three times with 1 ml of equilibration buffer each 

time. Associated proteins were then eluted by boiling in SDS-P AGE (Laemmli) sample 

buffer, resolved by SDS-P AGE and analyzed by Western blotting. 
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2.5 Isolation of Bic-C associated rnRNAs 

Ovaries were hand-dissected from well-fed 2-3 day old Oregon-R females and 

homogenized in an equal volume of 2X lysis buffer (l00mM Tris (pH 7.5), 500mM 

NaCI, 5mM MgClz, 4mM DTT, 2X complete protease inhibitor cocktail (Roche), 2mM 

PMSF, 2 U/J..Ù RNA Guard (GE Healthcare) on ice. Extracts were centrifuged for 20 min 

at 13,000 rpm in a microfuge at 4°C. The supematant was recovered and diluted to a 

final protein concentration of 1 mg/ml with ice-cold IX lysis buffer containing 0.5% 

Triton-X-IOO, then divided into 1 ml aliquots for pre-clearing against 50J..Ù of equilibrated 

protein-A-Sepharose (PAS; GE Healthcare) for 1 h at 4°C (rotating). After a brief 

centrifugation, supematants were transferred to fresh tubes and mixed with 8 J..Ù of either 

a-Bic-C or pre-immune sera and incubated at 4°C for 3 h (rotating). 30 J..Ù of equilibrated 

PAS was then added to each sample and the incubation extended for another 3 h at 4°C. 

The samples were then centrifuged for 2 min (2000 rpm at 4°C) and the pellets were 

rinsed with 1 ml ofice-cold wash buffer (50 mM Tris (pH 7.5), 200-80OmM NaCI, 0.5% 

Triton-X-lOO) and washed for 3X 15 min at 4°C with 1 ml of wash buffer containing 1 

mg/ml heparin. The pellets were then rinsed another 3X with 1 ml of wash buffer, while 

removing as much buffer as possible between rinses with a bent 26 gauge needle, and 

then resuspended in 300 ~l of RNase-free ddH20 before phenollchloroform extraction. 

20 ~g of glycogen and O.lX volume of 3M sodium acetate (pH 5.2) were added to each 

sample before ethanol precipitation overnight at -20 OC. RNA samples were converted to 

single stranded DNA with P(N)6 random primers using SuperScriptII RNase H- reverse 

transcriptase (Invitrogen) as directed by the manufacturer. 10% of each sample served as 

template for Delta™ differential-display PCR reactions, following the manufacturer's 
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proto col (Clontech). Products of interest were excised from dried gels, re-amplified, 

c10ned into the pGEMT vector (Promega) and sequenced. The fragment of Bic-C was 

amplified with a combination of Pl (5'-ATTAACCCTCACTAAATGCTGGGGA-3') 

and T8 (5'-CATTATGCTGAGTGATATCTTTTTTTTTGG-3') primers (Clontech). For 

analysis with transcript-specific primers, RNA was recovered from a-Bic-C and control 

IPs as described above, except the IP/wash buffer was modified (50mM Tris (pH 7.5), 

250mM NaCI, 2.5mM MgCh, 0.5% Triton-X-lOO). Total (input) RNA was isolated from 

the ovarian lysate with Trizol (Invitrogen) following the manufacturer's instructions. 

RNA samples were reverse-transcribed as described above and 10% of each ssDNA 

sample served as template for PCR with Bic-C forward (5'­

GACTTCGACATGAAACGG-3') and reverse (5' -GATACCCAGCTCCATCAG-3') 

primers or cp18 forward (5'-ATCTGCCTCTGCGCCATC-3') and reverse (5'­

CCTAGTTCCTTATTGGCAGG-3') primers. PCR conditions were as follows: 94°C for 

3 min; 30 cycles of 94°C - 1 min, 54°C - 1 min, 72°C - 2 min; with a final extension of 

72°C for 8 min. PCR products were resolved by electrophoresis on a 1.2% agarose gel 

and visualized by ethidium bromide staining. 

2.6 Microarray analysis ofBic-C associated mRNAs 

For microarray analysis, IPs and RNA recovery were performed essentially as 

described ab ove, but with 8.75 ml of eXtract, containing 5 mg/ml of soluble protein, for 

each IP. 300 /-lI of affinity purified a-Bic-C and pre-immune sera (from rabbit 2428) or 

560 j..Ll of a-Bic-C or pre-immune sera (from rabbit 2429) were each pre-coupied to 70 /-lI 

or 200 /-lI of PAS respectively and washed extensively before use in subsequent IPs. For 
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Bruno mRNP isolation, ISO J.11 of a-Bruno sera (rabbit 1683) was coupled to ISO J.11 of 

PAS. IPs were incubated for 6 hrs at 4 oC in IP/wash buffer (SOmM Tris (pH 7.S), 

400mM NaCI, 2.SmM MgCh, 0.5% Triton-X-100 and 1 mM DTT) before beads were 

rinsed twice with lSml of wash buffer and transferred to a 1.S ml tubes. Beads were then 

washed 3 X 10 min with 1 ml ofwash buffer + 1mglml heparin and then rinsed 2 more 

times with 1 ml of wash buffer. A final rinse was performed with wash buffer lacking 

Triton-X-lOO before pellets were resuspended in SO mM NaCI and phenol/chloroform 

extracted. AH of the RNA recovered from each sample was processed and hybridized to 

GeneChipR Drosophila genome arrays (Affymetrix) as described in (Bethin et al., 2003) 

and scanned images were analyzed using dChip analysis software (Zhong et al., 2003). 

2.7 Generation of Bic-C-lacZ reporter constructs 

To generate reporter constructs, the fuH-length Bic-C cDNA was subc10ned into 

pGEX-SX-l using its san and Notl sites. The Bic-C ORF was then completely removed 

by digestion with Kpnl/Sphl, or partially removed with Kpnl/Nhel or Xhol/Nhel and 

replaced with the f3-gal ORF, flanked by the same sites, to produce pBic-C-IacZ-l, pBic­

C-IacZ-2 and pBic-C-IacZ-4, respective1y. The f3-gal ORF inserts were produced by 

PCR amplification using pMC1871 (Pharmacia) as template with combinations of the 

following primers: Forward-Xhol: S' -TACTCGAGGAA TTCCCGGGGATCCC-3', 

Forward-Kpnl: S' -TTGGT ACCATGGGAA TTCCCGGGGATCCC-3', 

Reverse-Sphl:5' -TTGCATGCTT A TTTTTGACACCAGACCAACTG-3', 

Reverse-Nhel: 5'-TTGCTAGCTT A TTTTTGACACCAGACCAACTG-3'. 
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To produce the tub67C-Bic-C-lacZ transgene, pBic-C-lacZ-4 was digested with 

san, blunt-ended, then digested with Notl. The resulting fragment was subc10ned into a 

modified version of pDF313 (pDF313Ll~-gal, (Thio et al., 2000) that was c1eaved with 

Nhe!, blunt-ended, and c1eaved with Not!. To produce the tub67C-Bic-C-lacZ-Ll3 'UTR 

transgene, pBic-C-lacZ-4 was digested with san, blunt-ended, and digested with Nhel. 

The resulting fragment was subc10ned into the Pstl (blunt-ended) and Nhel sites of 

pDF313Ll~-ga1. 

pBic-C-lacZ-2 was c1eaved with SalI/Nhel and the resulting fragment was 

subc10ned into the SalI/Xbal sites of pBluescriptSK- (Stratagene) to pro duce pBic-C­

lacZ-2-Ll3 'UTR, which was then c1eaved with san, blunt-ended, and cleaved with Notl. 

The resulting fragment was subc10ned into the HpaIlNotl sites of pCOG to produce otu­

Bic-C-lacZ-KlO 3 'UTR. pBic-C-lacZ-2 was c1eaved with KpnIlNhel and the resulting 

fragment was subc10ned into the KpnIlSpel sites of pB1uescriptSK- to produce pBic-C­

lacZ-2-Ll5'/3'UTR, which was then cleaved with Kpnl, blunt-ended, and c1eaved with 

Notl. The resulting fragment was subcloned into the HpaIlNotl sites of pCOG to produce 

otu-Bic-C-lacZ-KlO 3 'UTR-Ll5'UTR. 

To pro duce otu-Bic-C-lacZ transgenes containing the Bic-C 3 'UTR, the Ki 0 

3 'UTR was removed from pCOG by digestion with PstIlEcoRI and replaced with a 

portion of the multiple c10ning site from pSL1180 (GE Healthcare) tlanked by 

PstIl EcoRI. 1 named the resulting plasmid pCOGLlKIO. pBic-C-lacZ-l was cleaved with 

san, blunt-ended, then c1eaved with Notl. The resulting fragment was subc10ned into the 

HpaIlNotl sites ofpCOGLlKlO to produce the otu-Bic-C-lacZ transgene. To produce otu­

Bic-C-lacZ-Ll5'UTR, pBic-C-lacZ-l was c1eaved with Kpnl, blunt-ended, then cleaved 
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with NotI and the resulting fragment was subc10ned into the HpaI/NotI sites of 

pCOGM<JO. 

The ~1-196 otu-Bic-C-lacZ-l transgene was generated by digesting pBic-C-lacZ-

1 with PmacI and NotI and then sub-c1oning the resulting fragment into the HpaI/NotI 

sites of pCOGM<.lO. To generate the ~196-515 otu-Bic-C-lacZ-l transgene, pBic-C­

lacZ-l was c1eaved with PmacI and SnaBI and then re-ligated to eliminate the 

intervening sequence. This construct was c1eaved with SalI, blunt-ended, then c1eaved 

with NotI and the resulting fragment was subc10ned into the HpaI/NotI sites of 

pCOGM<.lO. FinaHy, to generate the ~515-789 otu-Bic-C-lacZ-l transgene, pBic-C­

lacZ-l was digested with SnaBI and KpnI, the KpnI site was blunt-ended with the 

Klenow fragment and the construct was re-ligated, eliminating intervening sequences. 

This construct was then c1eaved with SalI, blunt-ended, then c1eaved with NotI and the 

resulting fragment was subc10ned into the HpaI/NotI sites ofpCOGM<.lO. 

2.8 X-gal stainings 

Ovaries were hand-dissected from fattened 2-3 day old wild-type and Bic_CYe33 

homozygous females, each bearing two copies of the respective Bic-C-lacZ transgenes. 

They were fixed for 10 min in buffered 1 % glutaraldehyde, rinsed twice, and incubated at 

37°C in staining solution (dissection buffer with 3 mM K3Fe(CN)6, 3mM ~Fe(CN)6 and 

0.2% X-Gal) until color developed. In aH cases where comparisons were made, control 

and mutant ovaries were deve10ped for the same amount of time. 
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2.9 Western Blots 

For Western analysis, samples were resolved on SDS-polyacrylamide gels and 

transferred to nitrocellulose membranes. Membranes were blocked overnight at 4°C in 

PBS + 0.1 % Tween-20 + 5% skim milk powder, then probed with primary antibodies for 

1.5 hrs at R.T. in PBS + 0.1 % Tween-20 + 1 % skim milk powder (this buffer was used in 

aH subsequent steps). Membranes were then washed for 3 X 15 min at R.T. before 

probing with secondary antibodies (a-rabbit-HRP 1:5000 or a-mouse-HRP 1:3000, 

Amersham) for 45 min at R.T., followed by three 10 min washes. Proteins were then 

detected by chemiluminescence (NEN). Primary antibodies were used at: a-Bic-C 

1:3000, a-Myst 1:1000, a-~-gal 1:1000 (Sigma), a-Grk 1:1000, a-alpha Tubulin 

1:10,000 (DMIA, Sigma), a-deIF4A 1:2000, a-Orb 1:25 (clone 4H8, Developmental 

Studies Hybridoma Bank), a-NOT3 1:1000, a-HA 1:1000 (Sigma), a-GFP 1:1000 

(clones 7.1113.1, Roche), a-PABP 1:1000, a-Vasa 1:5000, a-Tra11:1000. 

2.10 Northern blots 

Northem blots were prepared as described by (Foumey, 1988), using standard 

techniques. Briefly, total ovarian RNA was isolated using the RNeasy TM RNA extraction 

kit (Qiagen) and 15 J..lg of each sample was resolved on a 1% agarose, formaldehyde 

denaturing gel. RNA was then transferred OIN by capillary action to Hybond-N TM 

membranes (Amersham) and auto-crosslinked in a UV Stratalinker™. The p-gal probe 

was generated by PCR from the pMC1871 plasmid (Pharmacia) using the following 

primers: forward: 5' -AA TGGTCTGCTGCTGCTGAACG-3', reverse: 5'-

ACATCCAGAGGCACTTCACC-3'. otu and RpS15a probes were generated from full-
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length cDNAs. DNA probes were labeled with 32p_dCTP using the Ready-To-Oo DNA 

labeling kit (Amersham Biosciences) and unincorporated nucleotides were removed by 

passage through a 050 Sephadex column. Probes were diluted to a final activity of lxl06 

cprnl ml in express-hyb ™ buffer and aU subsequent steps were carried out as instructed 

by the manufacturer (Clontech). 

2.11 UASP-Bic-C constructs and Bic-C overexpression 

To generate UASP-Bic-C constructs, both wild-type and Bic_CG296R cDNAs were 

digested with EcoRI and the Bic-C ORF was subcloned into pBluescriptSK- , and then 

into pUASP (Rorth, 1998) using flanking KpnI and Not! sites. To achieve germline 

expression, flies were crossed to pro duce trans-heterozygous females bearing one copy of 

a UASP-Bic-C transgene and one copy of the nosGa14::VP16 transgene (Van Doren et 

al., 1998). 

2.12 Antibody stainings and in situ hybridizations 

In situ hybridizations were performed as described by (Kobayashi, 1999) except 

that after initial fixation, samples were permeabilized and re-fixed as described in method 

A (without Proteinase K treatment) of (Nagaso et al., 2001). Antibody stainings were 

performed as described in (Hawkins et al., 1997) for Ork staining, except H202 treatment 

in methanol was omitted. Primary antibodies were used at the following concentrations: 

a-Bic-C, 1:1000; a-Grk, 1:1000; a-~-gal (Sigma), 1:1000; a-Orb (clone 4H8, 

Deve10pmental Studies hybridoma bank), 1:25; a-Osk, 1:1000; a-Vas, 1:2000, a-Arm 

1:1000. Primary antibodies were detected using Alexafluor-488 anti-mouse (1:500) and 
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Alexafluor-596 anti-rabbit (1 :500) (Molecular Probes), after overnight pre-adsorption to 

wild-type ovaries. . DNA was visualized by DAPI staining. Confocal images were 

acquired using a Zeiss LSM-510 microscope. 

2.13 Fly strains and generation of transformants 

Oregon-R (OreR) was the wild-type fly strain used. Transgenic flies were created 

by P-element mediated germline transformation ofyw flies using either pUASP, DF313 

or pCOG vectors, as described in (Spradling, 1986) 

2.14 Genetic assays 

To determine hatching frequencies and dorsal appendage numbers, virgin females 

of the genotypes of interest were mated to OreR males. For the first 36 hours, eggs were 

not counted. Eggs were then collected, counted and scored for dorsal appendage number 

and then allowed to incubate at 25 oc for 48 hours before being re-counted to determine 

the number of unhatched eggs. 

2.15 Immunoprecipitations (co-IPs) 

Immunoprecipitations and RNase treatments were performed essentially as 

described in Wilhelm et al., 2000, except that extracts were pre-c1eared against protein-A 

Sepharose (Pharmacia) for 30-60 min at 4 oC, and after washing, bound proteins were 

eluted by boiling in Laemmli sample buffer. For every 10 mg of soluble ovarian protein 

extract, 80 /-LI of a-Bic-C sera or pre-immune sera (from the same rabbit) was used. For 

a-HA IPs, 30/-LI of a-HA resin (Sigma) was used for each IP. 
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2.16 Orthophosphate labeling and phosphoamino acid analysis 

In vivo 32p labeling of ovarian proteins, extract preparation and 

immunoprecipitations were carried out as described in (Lachance et al., 2002), with the 

exception that 20 ~ of affinity purified a-Bic-C was used for immunoprecipitations. 

Subsequent phosphoamino acid analysis was performed as previously described (van der 

Geer and Hunter, 1994). 

2.17 Generation of Bic-CWT and Bic_CY822F rescue constructs 

To generate the Bic-C mini-gene rescue constructs, a 1.9 Kb fragment of genomic 

DNA, starting at the first Xba 1 site upstream of the Bic-C gene and ending at a unique 

EcoRV in the Bic-C 5' UTR, was ligated to the same EcoRV site in the in the wild-type 

and Y822F Bic-C cDNAs. This sequence was c10ned into the pCasper4 transformation 

vector using theXbaI site at the 5' end of the genomic fragment and the NotI site at the 3' 

end of the Bic-C cDNA. 

2.18 Generation and purification of TAP-Bic-C 

To generate the UASP-TAP-Bic-C construct, sequences encoding the TAP-tag 

were PCR-amplified from pZOME-N (Cellzome) and subc10ned into the KpnI site of 

UASP-Bic-C to pro duce an in-frame fusion with the Bic-C ORF. TAP-Bic-C expression 

was driven in ovaries using the nosGa14::VPI6 promoter and TAP-Bic-C was purified as 

described in Puig et al., 2001. 
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Section 3: Results 

Chapter 1: Identification of Bic-C target mRNAs 

3.1.1 Introduction 

Since Bic-C contains five KR-type RNA-binding motifs and a point mutation in 

the third KR domain disrupts Bic-C function in vivo (Saffman et al., 1998), it is likely 

that the pleiotropic phenotypes observed in Bic-C mutants result from an inability to 

properly identify and regulate RNA substrates. To gain insight into the molecular nature 

of Bic-C function, l have sought to test whether Bic-C associates with mRNA in vivo and 

to identify specifie rnRNA targets. 

3.1.2 The KH domains of Bic-C bind RNA directly and Bic-C is associated 

with ovarian mRNPs 

Previous studies have shown that Bic-C, expressed in mouse tissue culture cells, 

associates with homopolymeric RNA in vitro (Saffman et al., 1998). However, Bic-C 

was not purified from whole cell lysates in these experiments. Therefore, direct binding 

to RNA was not definitively proven as this interaction could have been bridged by other 

RNA binding proteins (Chen et al., 1997). To establish clear evidence of direct RNA 

binding, a purified form of Bic-C is required. A major obstacle in characterizing the 

RNA-binding properties of Bic-C has been the inability to express and purify a soluble, 

recombinant full-Iength Bic-C protein. After experimenting with several different 

expression systems, 1 found that a fusion of the Maltose-Binding-Protein (MBP) to amino 

acids 85-462 of Bic-C (containing aH 5 KR-domains; hereafter referred to as MBP-Bic-
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C85
-462) allowed for sufficient recovery of pure protein from E. coli (EL2]). To determine 

whether the KR domains of Bic-C could bind RNA directly, MBP_Bic_C85
-462 and MBP 

alone were incubated separate1y with either poly-G agarose beads or agarose beads as a 

negative control. After several washes, bound proteins were eluted by boiling in SDS 

sample buffer, resolved by SDS-P AGE and visualized in the gel by Gelcode™ staining 

(Fig. 3.1.1). MBP-Bic-C bound to poly-G agarose but not to agarose alone, indicating 

that binding was via poly-G and not a direct association with the matrix, whereas MBP 

did not demonstrate any binding, indicating that MBP_Bic_C85
-462 binds to poly-G via 

moieties in Bic_C85-462 and not through MBP. 

To determine if endogenous Bic-C associates with rnRNA in vivo, rnRNPs were 

isolated from ovarian lysates using oligo-dT cellulose after treatment with EDTA to 

dissociate polysomes (Spirin, 1986). rnRNA and bound proteins are retained on the 

oligo-dT matrix via an interaction between the poly-A tails of rnRNAs and oligo-dT. 

After several washes, bound proteins were eluted in SDS sample buffer, resolved by 

SDS-PAGE and analyzed by Western blotting (Fig. 3.1.2). This experiment 

demonstrates that Bic-C is enriched in the rnRNP fraction, indicating an association 

(either direct or indirect) with rnRNA in vivo. To ensure that this enrichment was not a 

general phenomenon, caused by non-specific binding, samples were also probed for an 

unrelated protein, CG2950, which we calI Myst. Unlike Bic-C, this protein was not 

enriched in the rnRNP fraction relative to the input sample (Fig. 3.1.2). 
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Figure 3.1.1 MBP_Bic_C85
-462 binds directly to homopolymeric 

RNA. 

Ge1codeTM staining of proteins resolved by SDS-PAGE (10 %) 

illustrate that the MBP_Bic_C85
-462 fusion protein binds homopolymeric 

RNA (poly-G), while MBP alone does not. Agarose beads were used 

as a negative control for poly-G-independent binding to the matrix. 

Input samples are equivalent to the total input added to each sample, 

while approximately 20% of each pull-down was loaded on the gel. 
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Figure 3.1.2 Bic-C co-purifies with ovarian mRNPs. 

Total ovarian proteins (input), the rnRNP fraction (bound to oligo-dT 

cellulose) and a negative control (bound to cellulose alone) were 

analyzed by Western blotting with a-Bic-C and a-MYST antibodies. 

The amount of total protein (input) and of isolated rnRNP samples 

(oligo-dT cellulose) were equivalent for both Western blots, indicating 

that Bic-C and not MYST is specifically enriched in the rnRNP 

fraction. 
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3.1.3 Analysis of Bic-C-associated mRNAs by differential display RT-PCR 

To identify potential mRNA targets of endogenous Bic-C in vivo, complexes 

containing Bic-C were isolated from ovarian extracts by immunoprecipitation (IP) using 

affinity-purified a-Bic-C. Co-precipitating rnRNAs were identified by differential 

display reverse transcription PCR (DD-RT-PCR) with various combinations of primers 

that bind target sequences by chance homology. Pre-immune serum was used in parallel 

IPs as a control for non-specific binding. Through this work l recovered a fragment of 

the Bic-C 3' UTR (nuc1eotides 3640-3937) specifically from the Bic-C IP over a broad 

range of salt concentrations (Fig. 3.1.3-A). The association between Bic-C protein and 

rnRNA was confirmed from independent a-BicC IPs using Bic-C-specific prlmers, while 

primers for the abundant chorion protein 18 (cp18) transcript controlled for non-specific 

binding (Fig. 3.1.3-B). The interaction was resistant to high concentrations ofyeast tRNA 

competitor, and recovery of a PCR product required reverse transcriptase, demonstrating 

that the association was with RNA and not DNA. To ensure that co-precipitation of Bic­

C rnRNA was not a result of immunoprecipitating the nascent chain of Bic-C during 

translation, identical IPs were conducted where EDTA was added to lysates, IP buffers 

and washes, at a sufficient concentration (30 mM) to dissociate polysomes (Spirin, 1986). 

This treatment had no effect on the interaction (Fig. 3.1.4), indicating that this interaction 

is not dependent on an indirect association through the ribosome. 
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Figure 3.1.3 Bic-C protein associates with Bic-C mRNA in vivo. 

(A) Radiolabeled RT-PCR products generated from Bic-C IPs (lanes 1, 3 and 5) 

or from pre-immune sera IPs (lanes 2, 4 and 6) with Clontech™ Pl/T8 primers, 

isolated with 200mM (lanes 1,2), 400mM (lanes 3, 4) or 800mM NaCI (lanes 5, 

6) in the IP wash buffers. The marked band corresponds to nucleotides 3640-

3937 ofthe Bic-C transcript. 

(B) The presence of Bic-C mRNA within the Bic-C mRNP complex was 

confirmed with transcript-specific primers for Bic-C. The absence of cp18 (an 

abundant ovarian transcript) in the complex demonstrates that Bic-C associates 

with a specifie subset of mRNAs in vivo. 
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Figure 3.1.4 The presence of Bic-C mRNA within the Bic-C mRNP 

complex is Dot dependent upon intact polysomes. 

RT-PCR with transcript specifie primers detects Bic-C mRNA in a-Bic-C 

immunoprecipitates (lane 2) but not in control IPs (lane 3). Treatment with 30 

mM EDTA to dissociate polysomes does not disrupt this interaction (lane 4). 

Primers for cp18 were used as a negative control for non-specifie mRNA 

binding. 
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3.1.4 Identification of Bic-C associated mRNAs through interrogation of 

Affymetrix™ microarrays 

A caveat of the differential display RT-PCR approach is that there is no way to be 

certain that the screen has been saturated, as well as the time-consuming and labor-

intensive nature of the technique. Therefore, as the technology became available 1 

expanded this line of experimentation to include a more comprehensive analysis of Bic-

C-associated rnRNAs using Affymetrix TM microarrays. Two independent a-Bic-C 

antibodies were used to isolate Bic-C-containing complexes from ovarian extracts and co-

purifying rnRNAs were identified by interrogating microarrays representing 13,500 

different Drosophila genes. In these experiments, Bic-C rnRNA displayed the highest 

average enrichment over pre-immune controls (93-fold), (Table 3.1.1). Remarkably, 

among the 53 most-highly enriched Bic-C associated mRNAs identified in this 

experiment, 7 have defined roles in the WntIFrizzledIDishevelled signaling pathway 

(listed in bold). All transcripts found to be enriched 4 fold or greater in both 

experimental trials, relative to pre-immune controls, are listed in Table 3.1.1. 

In a parallel experiment, Bruno-containing rnRNP complexes were isolated and 

analyzed by a similar microarray-based comparison to a rabbit sera control IP (Table 

3.1.2). A 5.25-fold enrichment of osk rnRNA, a known target of Bruno (Kim-Ha et al., 

1995), was observed in this experiment, indicating that this technique is suitable for 

detecting biologically relevant interactions. Furthermore, MEME sequence alignments 

(Bailey, 1994) identified Bruno response elements (BREs) in the 3' UTRs of several of 

the Bruno-associated transcripts, suggesting that Bruno may bind to these mRNAs 

directly (Fig. 3.1.5). 
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Table 3.1.1 Bic-C-associated mRNAs identified using Affymetrix microarrays. 

IPIPI exp1 IPIPI exp2 Ave. enrichit over PI Gene Name Functional Data 1 Domains 

73.71 112.47 93.09 BicC anterior patterning determinant, KH-type RNA-binding protein 
45.90 72.73 59.32 CG 10984 NIA 
39.30 36.17 37.73 CG15199 NIA 
10.47 54.47 32.47 CG11737 NIA 
16.58 44.17 30.38 CG13016 NIA 
27.04 27.99 27.52 CG9213 NIA 
32.51 20.54 26.53 CG12112 NIA 
4.37 47.50 25.94 par-1 Dishevelled-associated kinase, Microtubule polarity, Osk stabilization . 

25.43 25.91 25.67 CG3353 NIA 
29.36 14.88 22.12 CG10476 NIA 
38.31 5.75 22.03 diego (CG12342) regulator of dishevelled 
6.12 37.63 21.88 Hil regulator of neuronal cytokinesis and Septin function 
4.70 38.18 21.44 CG 17293 microtubule severing, WD40 domain 
6.83 34.62 20.72 CG3279 vesicle mediated transport, V-snare domain 
19.14 18.07 18.60 CG 13795 neurotransmitter transport, Sodium neurotransmitter symporter domain 
13.36 23.31 18.33 MED17 transcriptional co-activator, component of mediator complex 
4.25 31.75 18.00 Dip21 Sip4 Septin 1 Dorsal interacting protein 1 

21.09 13.95 17.52 Trypsin Protease ! 

5.36 24.97 15.17 CG4646 DUF866 domain 
5.38 24.60 14.99 CG 7082 mRNA-binding, 2 KH and 1 Tudor domain 
7.46 22.52 14.99 PPP4R2r Rho GTPase activation domain 
6.58 21.28 13.93 Rheb G-protein coupled receptor signaling, cell growth 1 division, Ras GTPase domain 
11.72 16.11 13.92 CG18812 NIA i 

5.27 20.60 12.93 isopeptidase-T-3 member of the ubiquitin specifie protease family 1 

5.64 19.99 12.81 CG 13489 NIA 
15.68 9.85 12.76 CG30503 NIA 
9.85 15.46 12.65 Tsp86D cell-cell adhesion, signal transduction 
4.64 19.87 12.25 s/mb regulator of Wnt 1 Frizzled signaling, component of Ubiquitin ligase complex 
6.04 18.27 12.15 CG7912 high affinity sulfate permease activity 
13.70 10.52 12.11 Trxr-2 thioredoxin-disulfide reductase activity 
18.00 5.97 11.99 CG18476 Transcription regulator activity, zinc ion binding i 

11.48 12.23 11.86 Cip4 Rho GTPase binding, CDC42 effector, actin cytoskeleton organization 
13.66 9.95 11.81 CG7646 III Nca calmodulin 1 calcium ion binding, calcium-mediated signaling 
10.15 12.68 11.41 CG17370 NIA 



17.39 5.41 11.40 CG4332 NIA 
4.97 17.00 10.98 CG 7058 NIA 
5.13 16.77 10.95 CG18769 NIA 
6.47 15.26 10.86 CG3860 oxysterol 1 nucleic acid binding, cholesterol metabolism, lipid transport , 

13.23 7.86 10.55 CG 13443 NIA 
6.24 14.82 10.53 staufen ds-RNA binding, required for bicoid / oskar / prospero mRNA localisation 
11.38 9.23 10.30 CG16807 ubiquitin-protein ligase activity, component of ubiquitin ligase complex, nucleic acid binding 
4.21 15.78 9.99 att-ORFB alternative testis open reading frame B 1 

6.37 13.59 9.98 CG2063 NIA 
8.92 11.01 9.96 CG14117 nucleic acid binding, zinc ion binding 
7.13 12.76 9.94 disconnected transcription factor, brain development, circadian 1 eclosion 1 locomotor rythm 
5.67 14.08 9.87 CG40485 oxidoreductase activity 
6.64 12.61 9.62 Cp190 microtubule 1 nucleic acid binding, component of centrosome 
8.66 10.54 9.60 Brf (CG5419) transcription factor binding, component of transcription factor TFIIIB complex 

12.07 7.13 9.60 dishevelled frizzled 1 wnt signaling, component of adherens junction 
8.51 10.13 9.32 CG31150 lipid transporter activity 
13.81 4.59 9.20 CG12314 NIA 
8.11 10.28 9.20 Src42A Tyr kinase, JNK signaling, forms ternary complex wl E-Cadherin 1 Ii-Catenin 
8.57 9.79 9.18 lectin-30A galactose binding 
4.07 14.21 9.14 CdsA (CG7962) CDP diglyceride synthetase, component of ER 
4.77 13.34 9.06 CG31915 procollagen-Iysine 5-dioxygenase activity 
10.68 6.73 8.71 CG3740 NIA 
4.39 12.89 8.64 CG8783 NIA 
7.02 10.21 8.62 Klp10A(CG1453) microtubule motor, mitotic sister chromatid segregation, component of kinesin complex 
11.35 5.17 8.26 CG6444 NIA 
9.41 6.91 8.16 RecQ4 ATP-dependent DNA helicase activity 
8.38 7.69 8.04 CG15645 NIA 
4.63 11.25 7.94 TfIIE transcription factor TFIIE complex 
5.61 9.85 7.73 CG5807 NIA 
5.44 9.67 7.55 phtf ( CG3268) putative homeodomain transcriptional factor 
7.16 7.56 7.36 CG5693 NIA 
5.78 8.52 7.15 CG8281 NIA 
5.35 8.83 7.09 Obp44a Odorant-binding protein 
6.16 7.77 6.97 CG9636 NIA 
8.68 5.22 6.95 CG5366 transcription regulator activity 
5.62 7.46 6.54 CG 7565 chitinase activity 
6.80 5.93 6.37 CG30022 hydrolasellyase activity, oxygen and reactive oxygen species metabolism 
4.83 7.85 6.34 CG 14442 NIA 
5.08 7.33 6.21 CG2843 NIA 



4.33 8.05 6.19 CG9070 transporter activity 
6.26 5.98 6.12 CG33298 phospholipid-translocating ATPase, cation/phospholipid transport, membrane protein 
4.29 7.95 6.12 GstE5 glutathione transferase activity, oxygen and reactive oxygen species metabolism 
5.19 7.03 6.11 CG6138 NIA 
5.55 6.17 5.86 CG4286 NIA 
7.29 4.37 5.83 CG3281 transcription factor 
6.15 5.16 5.65 CG 12728 NIA 
5.60 4.35 4.97 CG4398 NIA 
4.22 5.47 4.84 CG7911 nucleic acid binding 
5.09 4.56 4.82 CG8594 Chloride transport 
4.28 4.82 4.55 RhoGAP18B actin filament organization, GTPase activator 



Table 3.1.2 Bruno-associated mRNAs identified using Affymetrix™ microarrays. 

Enrichment over PI Transcript 
1 42.37 cAMP-dependent protein kinase 2 
2 14.47 CG 13 848 (alpha-tocopherol transfer protein-like) 
3 7.96 CG15575 
4 7.58 CG7823 (Rho GDP-dissociation inhibitor 1-like) 
5 7.27 CG4239 
6 7.12 Calcium! calmodulin-dependent protein kinase 
7 7.06 CG12930 (glutathione transferase) 
8 6.55 CG 1847 (chaperone) 
9 6.53 CG7034 (chaperone) 
10 5.99 CG5568 (luciferase-like) 
11 5.72 CG8102 (NADH dehydrogenase) 
12 5.60 CG13603 
13 5.59 CG3831 
14 5.50 CG3689 
15 5.50 CG15574 
16 S.2S oskar 
17 5.17 CG 14516 (membrane alanine aminopeptidase) 
18 4.94 CG4532 (chaperone) 
19 4.85 GH02974 (FBgn0028503) 
20 4.78 CG3875 (RNA-binding protein) 
21 4.71 CG13323 
22 4.69 rhodopsin 1 
23 4.67 CG8767 (protein serine/threonine kinase) 
24 4.57 CG5272 
25 4.48 CG2264 (cell adhesion j)rotein) 
26 4.30 CG18543 
27 4.24 CG6144 
28 4.15 CG5822 (ankyrin-like protein) 
29 4.12 Mei-91O (CG4249) 
30 4.12 CG4946 
31 4.12 CG8186 
32 4.12 CG8538 (signal transduction protein) 
33 4.11 Porcupine 
34 4.11 CG4658 
35 4.07 par-6 
36 4.00 MAP kinase activated Protein-Kinase-2 
37 4.00 CGl1851 
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Figure 3.1.5 Multiple sequence alignments of Bruno-associated mRNAs 

reveal Bruno Response Elements (BREs). 

Multiple sequence alignments of the 3' UTRs of Bruno-associated mRNAs 

using MEME software (Bailey, 1994) identified the BRE as a consensus 

sequence. Sequences matching the BRE consensus in individual transcripts 

are boxed. The P-value represents the probability of a random sequence of 

equivalent length having the same match score or higher to the multilevel 

consensus sequence. 
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NAME START 
p-

VALUE 
Oskar 207 4.78e-12 
CG1847 476 3.11e-l0 
CG4532 421 2.46e-09 
CG5568 49 1.14e-08 
CG4532 351 3.16e-08 
porcupine 339 3.57e-08 
CG6144 243 8.0ge-08 
CG4239 321 1.26e-07 
CG4532 382 1.41e-07 
porcupine 395 3.24e-07 
CG5822 45 3.24e-07 
CG7823 651 3.24e-07 
CG5884 1621 5.30e-07 
porcupine 546 6.42e-07 
CG5884 556 7.74e-07 
CG5822 133 1.02e-06 
CG4239 277 1.22e-06 
Oskar 484 1.5ge-06 
Oskar 921 2.85e-06 
CG7034 191 2.85e-06 
porcupine 629 3.35e-06 
porcupine 310 3.35e-06 
CG13848 222 3.93e-06 
CG5884 958 4.25e-06 
CG13603 198 4.5ge-06 
porcupine 114 5.77e-06 
CG5884 594 6.21e-06 
CG5568 11 6.6ge-06 
CG13848 192 7.20e-06 
CG4658 178 9.60e-06 

BRE consensus 

uU GuA U G Uu 
A A G A A 
, , , , , , , , , , , , 

Multilevel 
conseusus 
sequence 

, , , , , , , , , , , , , , 
'=-=:-=:,.."...,.=-==' ITTGTATATT~TTGTTTGTTTTTTGTTTTA 

ACA TAT A A T A T ACGA T AC T 

T G G G G 

TAGTCCATTAITTGTATATTmttTGTGTGTTœTGTGTTCTA TGTTAGATTT 

TTGTCCATAG TCGTA'1IATGTATGTT~GTATTGTATTGTA TATCCCTATA 

ATTTACCCAT Ac1ATATATGTT!:GTGTTTTTTGTGTGCTA TTTAAGTAGT 

TGTATTTTTA TTGTATTTGTATTTGTATTTGTTGTATTT ATCGTAAGCT 

TGTTAAACGT TTTTATATTTGTGTATGTCCTTTTTTTTA TTTTGTTTAA 

TGATTTTTTAIATGTATATnTTTCTTTGTTGTTGGTTTTG TTTTGCTTTT 

CATTGTGTAC lATATATATA!AATGTTTGTATTACGTATTA CGGAGCAATA 

GATTGGTAGG ATTTTTTTGTTGGTTTTTTTTTTTTTTTT GGAGAACAAG 

TTTTTTTATT TTGTTTAATTGTGTGTGTTTTAACTTTTG ATTTACCCAT 

TGTTGGTTGG TTGTTTTCGTTTGTTTGTTTTCTCATTGA GACAAATATT 

TCGTTACGGT TTAAATATCTTTGTTTATTGAGTCTGTTA ACACGTTTTC 

TATTCTAACT ATATATCTCTGTGTATTTTTTGTGTACAA CATACCATAT 

AAAGAAAACC TTATATTTT<lATGTATGTAlrTATTATTTT TTAATAAACC 

CTGTGGCCTA TCGTTTGTGTTTTCATTTACTTTGTTTTT CCGCGCTTAC 

TTTTCCTGGclATATATAjNTATGTGTjTTTAAATTTGTA AGATTTACGT 

GAAATTGCAT ACGTCCTTATTTGTTTGCATTGTGTGCGA GATCGATTGT 

GTGTAAGCCC TCGAAAATTTTAATTTGTTTTGTTTTGGT AATTTGATTG 

ATTGCAATGC TTATAAACTGTTTTTTGTTCTATATACTT TTGTGTGGGT 

TTATTTATTG TCTTGAlATGTATGTTIA.AlTTGTATGTAfrTG ATGGTGATCA 

GACCCGTTGAACGTGTAAAATTGTATTTTGAATTTTTGA TTCTTATGTA 

TGCAATGACAATAAAAATATTTTTATTTACTTTGTTGAA 

GCATACGAAT TTGTTCAAATATTTTTTATTGATTTTTTA ATGTATATTT 

GTTGTGTTAA TCATCAATGTTATCTTTTTTTTTTTGCTT AATAAAGTGT 

CCATTTGTAA TTTTTAACTTTTGTTTTTTCGTCATTGTG TCCAATACTC 

TATGTAATGTIATATATATAmATATGTAT~AATTAATTA TTCCATGTTA 

ATCTATCTAT TCGTATCTTGTAGTCTGTGTGCTGTGTGA GTACTTAATA 

AAGATTTACG TCTTGTTATTATTCTTGCTTGTTGTATTA GACTAGAGTG 

TTTTGCATAT TTAATTATTGTAATGTTTATGTTGTATTT GTATTTTTAT 

CGTTAAACCT TTTTAAAAAAGGTTATTTTCGTTGTGTTA ATCATCAATG 

TTCGGTTTAC TTGTTTTTCTTTCTATTATCAGTGTTTAG TACTCGATTT 



Chapter 2: Auto-regulation 

3.2.1 Introduction 

Several RNA-binding proteins bind to the rnRNA transcripts that encode them. 

Examples include the extensively studied FMR1 and NovaI proteins (Buckanovich and 

Damell, 1997; Ashley et al., 1993). The finding that Bic-C protein associates with its 

own rnRNA suggests that it may regulate its own expression. 

3.2.2 Bic-C negatively regulates its own expression through the Bic-C 

5'UTR 

To determine whether Bic-C regulates its own expression through a post­

transcriptional mechanism, 1 generated several Bic-C-IacZ transgenic tly Hnes that 

express the f3-gal open reading frame (ORF), tlanked by the Bic-C 5' and 3' untranslated 

regions (UTRs) (Fig. 3.2.l). These transgenes employed the lXrtubulin 67C 

transcriptional promoter (Thio et al., 2000). Expression levels of ~-gal protein from 

these transgenes were dramatically higher in homozygous Bic-C mutant ovaries than in 

wild-type (Fig. 3.2.2-A), suggesting that Bic-C negatively regulates its own expression. 

Deletion of the Bic-C 3' UTR did not disrupt Bic-C mediated repression, although 

somewhat higher expression was observed in wild-type, relative to mutant, extracts (Fig. 

3.2.2-A). These results were confirmed by assessing ~-gal activity in whole-mount ovary 

preparations, using a second series of Bic-C-IacZ transgenes under the control of a 

different promoter, ovarian tumor (otu) (Tirronen et al., 1995). 1 found that otu-Bic-C­

lacZ transcripts bearing both Bic-C UTRs were still subject to Bic-C mediated repression 

(Fig. 3.2.2-B), indicating that the effect is promoter-independent. In contrast, transcripts 
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Figure 3.2.1 Schematic of Bic-C-lac-Z reporter constructs. 

Schematic representation of the Bic-C lac-Z reporter constructs used to test 

Bic-C auto-regulation. AlI constructs contain the same ~-galactosidase ORF, 

flanked by complete or partial segments of the Bic-C UTRs. 
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Figure 3.2.2 Bic-C auto-repression is mediated through cis-elements 

within its 5'UTR. 

(A) Immunoblots of ovarian extracts from wild-type and homozygous Bie­

Cye33 females, each bearing two copies of an orTub67C-Bie-C-laeZ reporter 

transgene with the complete Bie-C 5' and 3' UTR (left panel) or with the Bie­

C 5' UTR alone (right panel). P-gal protein is increased in the Bie-C mutant 

extract as compared to wild-type, while eIF4A levels are equivalent. 

(B-E) X-gal staining of wild-type (ab ove dashed Hne) and homozygous Bic­

Cye33 mutant (below dashed Hne) ovaries each bearing two copies of the otu­

Bic-C-lacZ reporter transgenes illustrated. 

(F) Northem blots of 1 0 ~g total ovarian RNA from wild-type and Bic_CYe33 

females show that otu-Bic-C-laeZ reporter transcript levels increase in Bie-C 

mutant ovaries as compared to endogenous otu and RpS15A rnRNAs. 

Note that the a-Tub67C-Bic-C-lacZ reporter transgenes (A) are based on the 

Bie-C-lacZ-4 construct, while the otu-Bic-C-laeZ reporter transgenes (B-F) 

are based on the Bie-C-laeZ-l construct. 
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bearing the Bic-C 3' UTR but lacking the 5' UTR were not overexpressed in Bic-C 

mutant ovaries (Fig. 3.2.2-C). Transcripts containing the Bic-C 5' UTR and thefs(1)KIO 

3' UTR were still overexpressed in Bic-C mutant ovaries, however, deletion of the 5' 

UTR from this transgene abolished this effect (Fig. 3.2.2-D,E). Northern blotting 

indicated that otu-Bic-C-lacZ transcript levels are also elevated in Bic-C mutant ovaries 

(Fig. 3.2.2-C), and that the effect is promoter-independent, given that the level of 

endogenous otu mRNA does not increase in Bic-C mutant ovaries (Fig. 3 .2.2-C). ~-Gal 

activity from otu-Bic-C-lacZ transgenes was similarly elevated in a different Bic-C 

mutant (Bic-cM4
), indicating that second-site mutations are not responsible for this 

overexpression effect (Fig. 3.2.3-A,B). The leve1 of ~-Gal expression from these same 

transgenes was also compared in wild-type and Bic_CYC33 homozygous ovaries by 

Western blotting (Fig. 3.2.3-C). 

1 conc1ude that the Bic-C 5' UTR is both necessary and sufficient to impart Bic-C 

mediated repression, although the increase in ~-gal protein levels in Bic_CYC33 mutant 

ovaries relative to wild-type is greatest when both 5' and 3' UTRs are present. Analysis 

of smaller deletions within the Bic-C 5' UTR indicated that nuc1eotides 291-488 and 515-

789 are dispensable for Bic-C mediated repression, while a de1etion of nuc1eotides 196-

515 abolishes auto-regulation (Fig. 3.2.4) .. These results place potential auto-regulatory 

elements between nuc1eotides 196-291 and/or 488-515. Interestingly, the latter 

nuc1eotides reside within a region of the Bic-C 5' UTR that is highly conserved between 

D. melanogaster and D. psuedoobscura (Fig. 3.2.5) (Frazer et al., 2004). Transgenic flies 

bearing a deletion of nuc1eotides 1-196 were also generated but were uninformative since 
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Figure 3.2.3 B-Gal expression from Bic-C-lac-Z reporter transcripts is 

elevated in multiple. independently generated Bic-C mutants. 

X-gal staining illustrates the level of ~-Gal protein expression from the otu-Bic-C­

lacZ-1 transgene in wild-type (A, top) and Bic-CU4 homozygous egg chambers 

(A, bottom). ~-Ga1 expression from the otu-Bic-C-lac-Z-4 transgene is similarly 

visualized in wild-type (B, top) and Bic-CU4 homozygous egg chambers (B, 

bottom). 

(C) The totallevel of ~-Gal expression from the Bic-C-lacZ-1 and Bic-C-lacZ-4 

transgenes is compared, by Western blotting, in wild-type and homozygous Bic­

Cye33 ovaries. Equivalent levels of eIF4A indicate even loading. 
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Figure 3.2.4 Deletion mapping of cis-acting auto-regulatory elements in 

the Bic-C 5' UTR. 

A schematic of otu-Bic-C-lacZ-l constructs with deleted segments of the 5' 

UTR and accompanying X-gal stains illustrating the potential positions of cis­

acting auto-regulatory e1ements. 

71 



1 

5' UTR 

789 

1
0 

start codon 
1 
1 
1 

, , , , 
" , , , , , , , , , , , , , 

Bic-CcDNA 

, , , 
à 196 - 515 ", , 

__ --'A-------.. "" 
( " ~~II ~ ----', 

à291 - 488 

1------i-----1A~-

3649 
1 
1 
1 
1 
1 

:3' UTR 
1 
1 

3T 4021 

stop codon 

wild-type 

1 
1 
1 
1 
1 
1 
1 

Bic_CYC33 

,à 515 -789 
:~ ~--------~ 

-------1---: ------lit ~'I 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 1 

--: ~ 

196-291 488-515 

Potential Bic-C response elements 



Figure 3.2.5 Sequence alignments reveal regions of the Bic-C 5' UTR 

that are highly conserved between D. melanogaster and D. psuedoobscura. 

Four regions of the Bic-C 5'UTR that are highly conserved between different 

species of Drosophila are highlighted. The third region (nuc1eotides 474-570) 

overlaps potential cis-acting auto-regulatory elements. 
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B-gal expression was below detectable thresholds in all of the Hnes recovered (data not 

shown). 

Taken together, these results strongly suggest that Bic-C regulates its own 

expression through a negative feedback loop by specifically destabilizing its own 

transcript via cis-acting elements within its 5' UTR. 

Chapter 3: Bic-C overexpression 

3.3.1 Introduction 

Reduced maternaI Bic-C activity produces patterning defects, indicating that Bic­

C is highly dosage-sensitive. This is exemplified by the dominant embryonic patterning 

defects that result from decreasing the dose of maternaI Bic-C with chromosomal 

deletions (Mahone et al., 1995). An auto-regulatory mechanism in which "free" Bic-C 

suppresses the production of additional Bic-C could ensure that the correct stoichiometry 

is maintained between Bic-C and its rnRNA targets andlor other interacting proteins. The 

evolution of such a mechanism implies that over-production of Bic-C would have 

negative consequences on the deve10pmental pro gram. 

3.3.2 Overexpression of Bic-C antagonizes pole plasm assembly, posterior 

patterning and pole cell specification. 

To examine the developmental consequences of Bic-C overexpression, 1 

produced transgenic flies carrying UASP-Bic-C transgenes which contained the full Bic-C 

ORF but lacked the 5' UTR and contained thefs(l)K10 3' UTR instead of the Bic-C 3' 

UTR (Fig. 3.3.1). Efficient germline expression was achieved using a nosGaI4:: VP 16 
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Figure 3.3.1 Schematic of UASP-Bic-C expression construct. 

To eliminate the Bic-C UTRs, the Bic-C ORF was first subc10ned into 

pB1uescript using flanking EcoRI sites. The surrounding KpnI and Not! sites 

in the pBluescript poly-linker were then used for directional c10ning of the 

Bic-C ORF into UASP. 
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driver (Van Doren et al., 1998) (Fig. 3.3.2). The consequences of Bic-C overexpression 

were severe. The hatching frequency of eggs produced by Bic-C overexpressing females 

was approximately 2-8%, and 50% of the eggs that were laid did not initiate nuc1ear 

divisions. Most of the remaining embryos produced by Bic-C overexpressing mothers 

(referred to as Bic-C OIE embryos) exhibited fusion and/or loss ofposterior segments, as 

revealed in cutic1e preparations (Fig. 3.3.3) and by in situ hybridization for ftz mRNA 

(Fig. 3.3.4, A-C). Since posterior patterning is linked to pole cell formation, 3-6 hr 

embryos were stained for Vasa (Vas) (Lasko and Ashburner, 1990), to determine if pole 

cell specification is affected by maternaI Bic-C overexpression. 1 found that 67% of the 

Bic-C OIE embryos that survived to gastrulation lacked pole cells, and the remainder 

contained an average of only 10, unlike wild-type controls that contained an average of 

30 (Fig. 3.3.4, D-F). Since posterior accumulation of osk mRNA and protein are 

prerequisites for both pole cell formation and posterior somatic patteming, the 

distribution of osk was analyzed by in situ hybridization in 0-2 hr embryos. In contrast to 

wild-type (Fig. 3.3.4-G), >90% of Bic-C OIE embryos did not detectably localize osk 

(Fig. 3.3.4-H), while the remainder displayed an extremely weak posterior accumulation 

(Fig. 3.3.4-1). In contrast, anterior localization of bcd mRNA was onlY slightly weaker in 

0-2 hr Bic-C OIE embryos (Fig. 3.3.4-K) than in wild-type controls (Fig. 3.3.4-J). 
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Figure 30302 Germline overexpression of Bic-Co 

Confocal immunofluorescence illustrates Bic-C (red) expression in wild-type 

stages 5 and 7 (A) and stage 10 (B) egg chambers. Egg chambers 

overexpressing Bic-C display increased Bic-C in the nurse cells during early 

and mid-oogenesis (C). At stage 10, Bic-C overexpression increases the 

amount of Bic-C (D), however, its distribution is similar to that of the 

endogenous protein. DNA is visualized by DAPI staining (blue). 
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Figure 3.3.3 The progeny of Bic-C overexpressing females display 

patteming defects. 

Cutic1e preparations of a wild-type egg (A), as well as eggs (B, C) and larval 

progeny (D, E) of Bic-C overexpressing femaIes, reveal 10ss or fusion of 

posterior body segments upon Bic-C overexpression in the maternaI gennline. 
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Figure 3.3.4 Overexpression of Bic-C antagonizes posterior patterning 

and pole cell specification. 

(A-C) In situ hybridization with an anti-sense ftz probe illustrates defects in 

posterior patterning in the progeny of Bic-C overexpressing females. (D-F) 

Immunostaining of 3-6 hr embryos with u-V as demonstrates a complete loss 

or severe reduction in pole-cell number in the progeny of Bic-C 

overexpressing females. (G-1) In situ hybridizations indicate that posterior 

accumulation of osk mRNA is reduced or undetectable in 0-2 hr embryos 

produced by Bic-C overexpressing females. (J, K) Bic-C overexpression 

does not substantially affect the anterior accumulation of bcd mRNA in 0-2 hr 

embryos. 
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3.3.3 Bic-C overexpression alters oocyte polarity and initiates premature 

cytoplasmic streaming 

Abdominal patterning defects and reduction or loss of pole cells are both 

indicative of a failure to assemble or maintain pole plasm at the posterior of the oocyte or 

early embryo. To determine if Bic-C overexpression disrupts initiation of pole plasm 

assembly, 1 analyzed the distribution of osk rnRNA in ovaries. In wild-type oocytes, osk 

rnRNA begins accumulating at the posterior cortex during stage 8 (Fig. 3.3.5-A) where it 

remains anchored through stage 10 (Fig. 3.3.5-B) and the remainder of oogenesis. 1 

found that Bic-C overexpression disrupts posterior accumulation of osk from stage 8 

onward (Fig. 3.3.5-C), as weIl as posterior localization of the pole plasm components Vas 

and Aubergine that accumulate downstream of Osk (data not shown). To determine if 

this phenotype reflects a specific defect in osk localization or an underlying defect in 

oocyte polarity, the distribution of a fragment of kinesin heavy chain fused to ~-gal was 

analyzed (Khc:~-gal; Clark et al., 1994). Kinesin heavy chain is a plus-end directed 

motor protein that normally accumulates, in a microtubule dependent manner, at the 

posterior of the oocyte during stages 9-10 (Fig. 3.3.5-D). Posterior accumulation of 

Khc:~-gal was not detectable in >90% of stage 9-10 oocytes overexpressing Bic-C (Fig. 

3.3.5-E), indicating that microtubule polarity is disrupted upon Bic-C overexpression. To 

confirm this observation, the distribution of Tyrosinylated Tubulin (Tyr-Tub) was 

examined using the monoclonal YL1I2 antibody. Unlike wild-type stage 9-10 egg 

chambers, which display a clear anterior to posterior gradient of Tyr-Tub within the 

oocyte (with the lowest concentration at the posterior) (Fig. 3.3.5-F), Bic-C 
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Figure 3.3.5 Bic-C overexpression dis ru pts posterior accumulation of osk 

mRNA during oogenesis, alters oocyte polarity and initiates premature 

cytoplasmic streaming. 

Posterior localization of osk rnRNA is visualized by whole mount in situ 

hybridizations in wild-type (A) stage 8 and (B) stage 10 egg chambers. (C) 

Posterior localization of osk rnRNA is undetectable in equivalently-staged egg 

chambers from Bic-C overexpressing females. (D) In wild-type stage 10 

oocytes the plus-end directed motor kinesin heavy chain:~-gal (green) is 

localized to the posterior cortex where Osk protein (red) is translated. (E) In 

Bic-C overexpressing egg chambers, posterior accumulation of both kinesin 

heavy chain:~-gal and Osk are both undetectable. Bic-C-overexpressing 

oocytes display an abnormal concentration of Tyr-Tub uniformly around the 

cortex (G), unlike wild-type stage 9-10 egg chambers, which display a clear 

anterior to posterior gradient of Tyr-Tub (F). Auto-fluorescing yolk granules 

were visualized at 4-sec intervals for a total of 1 min and the images were 

superimposed to illustrate yolk movement. Y olk particles are relatively static 

in a wild-type stage 9 oocyte (H) but are far more dynamic in a stage 7 Bic-C 

overexpressing oocyte (1). 
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overexpressing oocytes concentrate Tyr-Tub uniformly around the cortex at these stages 

(Fig. 3.3.5-G). 

A rapid phase of cytoplasmic streaming is normally initiated at stage lOb within 

the oocyte, and Osk pro vides a cortical anchor to resist displacement of posterior 

determinants (Vanzo and Ephrussi, 2002). In mutants that initiate this phase pre­

maturely, osk is displaced from the posterior before getting translated, leading to 

defective pole plasm assembly (Theurkauf, 1994b; Manseau et al., 1996; Martin et al., 

2003). These mutants also exhibit redistribution of a-tubulin around the oocyte cortex at 

stage 9, as seen in Bic-C overexpressing oocytes. 

To determine if Bic-C overexpression disrupts posterior patterning through an 

effect on cytoplasmic streaming, time-Iapsed confocal images of auto-fluorescent yolk 

granules were compared in wild-type and Bic-C overexpressing oocytes. A series of 15 

images taken at 4-second intervals were superimposed to generate a single image. In a 

wild-type stage 9 egg chamber the stationary yolk granules appear as dots (Fig. 3.3.5-H), 

while in a stage 7 oocyte overexpressing Bic-C, the yolk granules appear as curved lines 

due to the rapid circular movement of the cytoplasm (Fig. 3.3.5-1). 

3.3.4 Bic-C overexpression attenuates EGFR activation and dorsal 

appendage formation 

In addition to disrupting posterior patterning, mutations that induce premature 

cytoplasmic streaming disrupt grk mRNA localization and dorsal/ventral patterning, 

resulting in dorsal appendage defects (Manseau and Schupbach, 1989; Neuman­

Silberberg and Schupbach, 1993). Consistent with these results, eggs produced by 
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females overexpressing Bic-C also exhibited defects in dorsal appendage morphology. 

Approximately 60% of such eggs completely lacked dorsal appendages, while the 

remaining eggs either had fused dorsal appendages (~25%) or two dorsal appendages that 

were often abnormally short and/or thin (~15%) (Fig. 3.3.6). Reduction of endogenous 

Bic-C (in a Bic_CYe33/+ genetic background) suppressed the dorsal appendage defects 

caused by Bic-C overexpression, increasing the fraction of eggs with two dorsal 

appendages to 34%. This indicates that endogenous Bic-C contributes to the molecular 

events that produce these defects (Fig. 3.3.7). 

Dorsal appendage formation requires activation of the follicIe-cell bound EGFR 

by the TGF-a homologue Gurken (Grk) , which is synthesized at the dorsal-anterior 

corner of the oocyte and locally secreted (Peri and Roth, 2000). The genes mirror (mirr) 

and kekkon (kek) are transcribed in the foIlicle cells in response to EGFR activation. Mirr 

encodes a transcription factor that is required for specification of the dorsal appendage 

producing cells (Jordan et al., 2000), whereas kek encodes a transmembrane protein that 

binds to and down-regulates the activity of EGFR. Since the dorsal appendage defects 

observed upon Bic-C overexpression are consistent with either a defect in the production 

or deployment of Grk, 1 analyzed Grk distribution within the oocyte and the expression of 

mirr and kek within the overlying foIlicIe cells using the estabHshed lacZ reporter Hnes 

1(3)6DJ (Zhao et al., 2000) 15A6 (Ghiglione et al., 1999) respectively. 

In Bic-C overexpressing egg chambers, Grk distribution appeared normal until 

stage 7 (not shown), however, dorsal anterior accumulation of Grk beginning at stage 8-9 

was greatly reduced and often undetectable (Fig. 3.3.8-A,B). Accordingly, mirr was also 

dramatically reduced and often undetectable in the overlying foIlicIe cells. 
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Figure 3.3.6 Dorsal appendage formation is disrupted by Bic-C 

overexpression. 

Unlike wild-type eggs with two dorsal appendages (top), eggs laid by Bic-C 

overexpressing females often lack or have fused dorsal appendages (bottom). 
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Figure 3.3.7 Reduction of endogenous Bic-C suppresses Bic-C 

overexpression defects. 

MaternaI genotypes are listed below the graph. The total number of eggs 

counted for each genotype is Iisted below the X-axis. The Y-axis represents 

the percentage of eggs with the specified number of dorsal appendages. 

Numbers below the X-axis (red) represent the percentage of eggs that have 

hatched 36 hours after deposition. 
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Figure 3.3.8 Bic-C overexpression disrupts anterior-dorsal 

accumulation of Grk and attenuates EGFR activation. 

In wild-type egg chambers (A), mirr (green) is expressed in the 

dorsal/anterior follicle cells in response to EGFR activation by Grk (red). (B) 

Bic-C overexpression strongly reduces dorsal/anterior accumulation of Grk 

within the oocyte, resulting in reduced mirr expression. (C) Grk 

overexpression causes EGFR activation and mirr expression in an expanded 

domain of follicle cells. (D) Overexpression of both Bic-C and Grk prevents 

anterior Grk accumulation and consequent mirr expression. (E) Western blots 

of ovarian extracts demonstrate that co-overexpression of Bic-C and Grk does 

not result in mirr activation despite Grk levels that are substantially higher 

than in control ovaries. 0.-Tubulin was used as a loading control. 
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1 overexpressed both grk and Bic-C using the GAL4IUASP system (Rorth, 1998), 

and examined the resulting effects on mirr activation. As the UASP-grk transgene that 

was used only contains the grk ORF, the nonnal transcriptional and translational 

mechanisms controlling Grk expression were circumvented (Ghiglione et al., 2002). If 

excess Bic-C attenuates EGFR activation by suppressing Grk synthesis, then 

overexpression of both Grk and Bic-C should activate mirr expression. On the other 

hand, should Bic-C affect the distribution of Grk protein, due to premature cytoplasmic 

streaming, then overexpression of both Grk and Bic-C would like1y resemble Bic-C 

overexpression alone and mirr should remain repressed. My observations support the 

latter alternative. hnmunostaining revealed that while grk overexpression alone produced 

a visible enrichment of Grk around the anterior oocyte cortex and an expanded domain of 

mirr expression (Fig. 3.3.8-D), overexpression of both Bic-C and grk led to an overall 

increase in Grk without enriching it specifically at the anterior cortex. Thus minimal 

activation of mirr was observed (Fig. 3.3.8-E). Western blotting of whole ovaries 

confinned these results, revealing that despite Grk levels that were markedly higher than 

in wild-type control ovaries, p-Gal (representative of mirr) was dramatically reduced in 

ovaries co-overexpressing Bic-C and grk (Fig. 3.3.8-F). These results were consistent 

with the dorsal appendage morphology of eggs laid by these females. grk over­

expression alone resulted in an anterior ring of ectopic dorsal appendage material (Fig. 

3.3.9-A), while females co-overexpressing Bic-C and grk produced eggs with no dorsal 

appendages (Fig. 3.3.9-B), fused dorsal appendages (Fig. 3.3.9-C) or with two shortened, 

laterally placed dorsal appendages (Fig. 3.3.9-D). 
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Figure 3.3.9 Bic-C overexpression suppresses the dorsalizing effect of 

Grk overexpression on dorsal appendage formation. 

Grk overexpression results in a ring of ectopie dorsal appendage material 

around the anterior of the egg (A). Co-overexpression of Bic-C and Grk result 

in eggs that lack dorsal appendages (B), have a single, fused dorsal appendage 

(C) or have two, abnormally small dorsal appendages, displaced laterally (D). 
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Since Dpp has also been implicated in transcriptional activation of mirr 

(Twombly et al., 1996; Atkey et al., 2006), it is also possible that Bic-C overexpression 

suppresses mirr expression through attenuation of the Dpp signal. If this is the case, then 

reducing the dosage of dpp in the context of Bic-C overexpression should increase the 

frequency of dorsal appendage defects. This possibility was explored; however, the 

opposite result was obtained, in that reduction of dpp actually suppressed the effects of 

Bic-C over-expression (Fig. 3.3.10). Therefore, the reduction of mirr expression 

observed in Bic-C overexpressing egg chambers is like1y due to reduced EGFR activation 

by Grk and not an inability to transmit or receive the Dpp signal. 

Surprisingly, Bic-C overexpression caused the domain of kek expression to 

expand laterally and towards the posterior in stage 9/10 egg chambers (Fig. 3.3.11). To 

determine if this effect was due to an expanded domain of Grk expression or caused by 

sorne unknown mechanism, independent of EGFR activation by Grk, Bic-C was over­

expressed in a homozygous grJllK mutant background. Relative to wild-type controls, 

kek expression displayed a similar reduction in the grJllK egg chambers with or without 

Bic-C overexpression (Fig. 3.3.12). Therefore, the expansion of kek expression, induced 

by Bic-C overexpression, is dependent on EGFR activation by Grk and although not 

readily detectable by immunofluoresence, Grk must also be expanded along the oocyte 

cortex. 

Since Kek attenuates EGFR activity and overexpression of Kek has been shown 

to suppress dorsal appendage formation (Ghiglione et al., 2003), overexpression of Bic-C 

in a kek null background was uSed to determine the extent that Kek expansion may 
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Figure 3.3.10 Reduction ofDpp suppresses Bic-C overexpression defects. 

MaternaI genotypes are listed below the graph and the total number of eggs 

(n) counted for each genotype is listed below the X-axis. The Y-axis 

represents the percentage of eggs with the specified number of dorsal 

appendages. The percentages of eggs that have hatched 36 hours after 

deposition are listed in red below the X-axis. 
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Figure 3.3.11 Bic-C overexpression results in an expanded domain of 

kekkon expression. 

X-gal staining of control (top) and Bic-C overexpressing (bottom) egg 

chambers illustrates the domain of kekkon expression (represented by ~-Gal) 

in the follicle cells. 
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Figure 3.3.12 The expanded domain of kekkon expression in Bic-C 

overexpressing egg chambers is dependent upon EGFR activation by 

Grk. 

X-gal staining illustrates the domain of kekkon expression in wild-type 

controls (top panels), homozygous grJ!lK (middle panels) and Bic-C 

overexpressing, grJ!lK homozygous egg chambers (bottom panels). 
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contribute to the observed dorsal appendage defects. This was done using overlapping 

deficiencies that converge on the kek locus. Loss of Kek produced a c1ear suppression of 

the phenotype, however 10% of the eggs sti11lacked dorsal appendages and 17% had only 

one (Fig. 3.3.13). Therefore, the presence of Kek enhances these defects through 

attenuation of EGFR activation, however it is not the underlying cause. 

Taken together, these results strongly suggest that Bic-C overexpression causes 

diffusion of Grk rather than a reduction in the amount of Grk produced. As a result, the 

dispersed signal is weakened to an intensity sufficient to activate kek transcription in an 

expanded domain of follic1e cells but insufficient to activate mir transcription. 

3.3.5 Bic-C expression disrupts eye morphology without altering EGFR 

activation 

Bic-C expression is normally restricted to the germline and early embryogenesis, 

however the UASP/Gal4 system permits selective expression in a variety of tissues 

inc1uding the eye (Brand and Perrimon, 1993). Using the GMR-GaI4 driver line 

(Freeman, 1996), Bic-C was expressed in the eye where it appeared to disrupt ommatidial 

organization, generating a rough-eye phenotype (Fig. 3.3.14, A-D). This phenotype was 

specifically caused by Bic-C expression as the eyes of flies bearing either the Gal-4 

driver or UASP-Bic-C transgenes appeared normal. Modifications of several signaling 

pathways, inc1uding those downstream ofEGFR and FrizzledIDishevelled signaling, have 

been shown to induce similar rough-eye phenotypes (Penton et al., 2002; Voas and 

Rebay, 2004). To determine if altered EGFR activity might underlie this phenotype, l 

examined the expression of kek using the 15 A6 reporter line which is also expressed in 
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Figure 3.3.13 Disruption of dorsal appendage formation is suppressed 

but not rescued by loss of kekkon. 

MaternaI genotypes and the total number of eggs counted for each genotype 

are listed below the X-axis. The Y-axis represents the percentage of eggs with 

the specified number of dorsal appendages. The percentage of eggs that have 

hatched 36 hours after deposition is listed below the graph. Note that aIl of 

the genotypes listed are in a Bic-C overexpression background (UASP-Bic-C7/ 

nosGaI4:: VP 16). 
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Figure 3.3.14 Bic-C expression in the eye induces a rough-eye phenotype 

without altering EGFR activation. 

In UASP-Bic-C/+ (A) and GMR-GaI4/+ (B) flies, eye morphology is normal, 

however, when Bic-C expression is driven in the eyes of flies bearing both 

transgenes, they appear rough and the regular distribution of the ommatidia 

are disrupted as seen from overhead (C) and the side (D). (F) kekkon 

expression (represented by ~-Ga1, green) is similar in control and Bic-C 

overexpressing eye imaginai dises. 
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eye imaginaI discs (Ghiglione et al., 1999). 1 found that ~-GaI expression, representative 

of kek, was not substantiaIly altered by Bic-C expression (Fig. 3.3.14-F). Therefore, 

aIteration of EGFR activation do es not appear to be the cause of the rough-eye phenotype 

induced by Bic-C expression. 

3.3.6 RNA binding activity is required for the Bic-C overexpression 

phenotypes 

To determine the relative importance of RNA binding in producing the Bic-C 

overexpression phenotypes during oogenesis, 1 expressed, in the same manner as for 

wild-type Bic-C, a mutant form of the protein (Bic_CG296R) with reduced RNA binding 

activity (Saffman et al., 1998). Despite elevated levels of expression (Fig. 3.3.15-C, D), 

Bic_CG296R failed to disrupt posterior accumulation of Osk (Fig. 3.3.15-C) or to produce 

any dorsal appendage defects (data not shown). This suggests that the induction of 

premature cytoplasmic streaming, which underlies both of these defects, is mediated 

through one or more mRNA targets that are bound by Bic-C and become mis-regulated 

upon its overexpression. 

3.3.7 Bic-C overexpression phenotypes are modified by mutations affecting 

orb and mRNA polyadenylation 

Previous studies have established that Bic-C and Orb physically interact in co­

immunoprecipitation experiments and that orb mutations can dominantly suppress Bic-C 

mutations (Castagnetti and Ephrussi, 2003), suggesting that Bic-C and Orb may act 

antagonistically within a common complex. Consistent with this interpretation, the 
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Figure 3.3.15 RNA binding activity is reguired for the Bic-C 

overexpression phenotypes. 

(A-C) Confocal microscope images of (A) an early stage 10 egg chamber 

from a wild-type female, showing posterior accumulation of Osk (green) and 

endogenous Bic-C expression (red). DNA is visualized by DAPI staining 

(blue). (B) A similarly-staged egg chamber from a Bic-C overexpressing 

female, in which posterior accumulation of Osk is not detectable. (C) A 

similarly-staged egg chamber from a female overexpressing Bic_CG296R, 

shows normal posterior accumulation of Osk. (D) The level of endogenous 

Bic-C protein expression in OreR ovaries (lane 1) is similar to UASP-Bic-C 

expression levels in a homozygous Bic_CYC33 protein-null background (lane 

3), while UASP_Bic_CG296R levels are visibly higher (lane 4). Lane 2 contains 

an equivalent amount of ovarian extract from homozygous Bic_CYC33 females. 
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defects caused by Bic-C overexpression are strikingly similar to those previously 

described for hypomorphic orb mutants (Lantz et al., 1994; Martin et al., 2003). 

To determine if Bic-C overexpression produces orb-like phenotypes by 

antagonizing orb function or through an orb-independent mechanism, 1 investigated 

whether reducing orb activity in the context of Bic-C overexpression would enhance the 

Bic-C overexpression phenotype. A weaker Bic-C overexpression line, derived from an 

independent insertion of the UASP-Bic-C transgene, was employed for these experiments 

to facilitate the detection of potential genetic enhancements. In an orbF343/+ genetic 

background, Bic-C overexpressing females were virtually sterile and produced almost no 

eggs with two dorsal appendages (1.2%). Similar but slightly less extreme results were 

obtained from the hypomorphic orbmel allele (Table 3.3.1). Neither orb allele displayed 

any dominant phenotypes in the absence of Bic-C overexpression. 

Since Orb acts to promote polyadenylation of specific transcripts, 1 asked if a 

mutation in hiiragi (hrg, which encodes poly(A) polymerase; (Murata et al., 2001) would 

also act as a dominant enhancer of the Bic-C overexpression phenotypes. In fact, Bic-C 

overexpression phenotypes were dramatically enhanced in a hrgPAP45/+ genetic 

background (Juge et al., 2002; Table 3.3.1). Given that reductions in orb or hrg activity 

enhanced the Bic-C overexpression phenotype, it seemed plausible that reducing the level 

of CCR4, the major deadenylase in Drosophila oocytes (Morris et al., 2005), might 

pro duce the opposite effect. Indeed the dorsal appendage defects induced by Bic-C 

overexpression were almost completely rescued in a ccr4KG00877/+ genetic background 

(Temme et al., 2004), and survival to hatching also increased dramatically (Table 3.3.1). 
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Table 3.3.1 Bic-C overexpression phenotypes are modified by mutations affecting 

orb and mRNA polyadenylation. 

Bic-C overexpression phenotypes are dominantly enhanced by orb and poly(A) 

polymerase (hiiragi) mutants and dominantly suppressed by a mutation in the 

deadenylase CCR4 (twin). n designates the total number of eggs scored for each 

genotype. 

Maternai Genotype Hatching Frequency % with Specified Dorsal 
Appendage Number 

% n 0 1 2 n 
orb F343/+ . 1 

nosGa/4:: VP16/+ 96.9 803 0 0 100 803 
orbtne'l+ . 

1 

nosGa/4::VP16/+ 98.4 696 0 0 100 696 
hrifap45/+ ; 
nosGa/4:: VP16/+ 93.4 253 0 0 100 253 
+/+ ; 
nosGa/4::VP16/ ccr4KGOO877 86.2 319 0 0 100 319 
UASP-Bic-C/+ ; 
nosGa/4::VP16/+ 36.3 2194 20.9 15.9 63.2 1652 
UASP-Bic-C/ orb~343; 
nosGa/4:: VP16/+ 1.2 692 70.8 28.0 1.2 692 
UASP-Bic-C/ orbme' ; 
nosGa/4::VP16/+ 21.4 822 26.7 42.7 30.6 559 
UASP-Bic-C/ hrifap45; 
nosGa/4::VP16/+ 7.4 586 55.3 15.3 29.4 542 
UASP-Bic-C/+ ; 
nosGa/4::VP16/ ccr4KGOO877 78.0 1371 0.7 1.1 98.2 699 
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Given the apparent need for CCR4 in mediating the Bic-C over-expression phenotypes, 1 

decided to test the same alle1e of ccr4/twin for a dominant interaction with the Bic_CYC33 

mutant alle1e (Fig. 3.3.16). Consistent with the genetic interactions observed in the 

overexpression background, the mutant alleles acted synergistically to enhance dominant 

matemal-effect lethality (Fig. 3.3.16). 

Since NOT3 was identified in a yeast-two hydrid screen as a putative Bic-C­

binding protein (Paliouras, M., Ph.D. Thesis, 2005) and it is a component of the CCR4 

deadenylase complex (Temme et al., 2004), a fly line containing a homozygous lethal P­

element insertion in the not3 5' UTR (1(2)NC136KGl0496); (Myster et al., 2004) was also 

tested for genetic interactions in a Bic-C overexpression background (Fig. 3.3.17). For 

this experiment the stronger Bic-C overexpression line was used. This not3 insertion 

dominantly suppressed the negative effects ofBic-C overexpression (Fig. 3.3.17). 

3.3.8 Bic-C overexpression pro duces a low frequency of oocyte positioning 

and specification defects 

In addition to premature cytoplasmic streaming, Bic-C overexpression produced a 

variety of defects, at a low frequency «5%) in younger egg chambers. These included 

egg chambers in which the oocyte had failed to migrate to the posterior and egg chambers 

containing two oocytes (Fig. 3.3.18). Similar defects in oocyte specification and 

positioning have been reported in orb mutants (Lantz et al., 1994). 
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Figure 3.3.16 Reduction of CCR4 reduces the fertility of Bic_CYe33 

heterozygous females. 

MaternaI genotypes and the total number of eggs counted for each genotype 

are listed below the graph. The Y-axis represents the percentage of eggs that 

have hatched 36 hours after deposition. 
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Figure 3.3.17 Reduction of NOT3 suppresses the Bic-C induced dorsal 

appendage defects and matemal-effect lethality. 

MaternaI genotypes and the total number of eggs counted for each genotype 

are listed below the X-axis. The Y-axis represents the percentage of eggs with 

the specified number of dorsal appendages. The percentage of eggs that have 

hatched 36 hours after deposition is listed below the graph. 
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Figure 3.3.18 Bic-C overexpression pro duces defects in oocyte 

positioning and specification. 

Orb protein (green) marks the position of the oocyte in wild-type (A) and Bic­

C overexpressing egg chambers (B, C). Actin is visualized by rhodamine­

phalloidin (red). 
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When Orb levels were reduced in the context of Bic-C overexpression, both the 

frequency and severity of these early defects appeared to increase, however, these effects 

were not quantified (Fig. 3.3.19). Since the amount of Orb protein is not significantly 

reduced by Bic-C overexpression at these stages, the observed phenotypes may be due to 

a direct repression of Orb-target mRNAs. 

3.3.9 Bic-C overexpression induces orb-like phenotypes before a reduction 

of Orb protein is detectable 

Since Bic-C and Orb proteins associate in vivo, function antagonistically in 

genetic assays, and the RNA binding activity of Bic-C is essential for its function, a 

logical hypothesis would be that Bic-C acts on Orb target rnRNAs to suppress Orb­

mediated increases in polyadenylation. However, given that Orb expression is auto­

regulated through a positive feedback loop involving polyadenylation (Tan et al., 2001), 

the Bic-C overexpression phenotypes could also result from repressing Orb expression. 

To determine if Orb expression is affected by Bic-C overexpression, Orb levels were 

analyzed by Western blotting. When whole ovaries are compared, a slight decrease in 

over-all Orb expression is apparent upon Bic-C overexpression (Fig. 3.3.20-A). 

However, when ovaries are separated by filtration (to isolate separate stages) prior to 

Western blotting, it is evident that Bic-C overexpression does not produce a decrease in 

Orb leve1s before stage 9 (Fig. 3.3.20-B). 

To assess whether the absence of posterior Osk coincides with a reduction in Orb 

leve1s, Orb and Osk were visualized simultaneously by whole-mount 

immunofluorescence. Despite obvious defects in posterior Osk accumulation beginning 
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Figure 3.3.19 Bic-C-induced disruption of egg chamber morphology is 

enhanced by reduction of Orb. 

Orb protein (green) marks the position of the oocyte in heterozygous orbp43 

(A), Bic-C overexpressing (B) and a heterozygous orbp43 egg chamber 

overexpressing Bic-C (C). Actin and DNA are visualized by rhodamine­

phalloidin (red) and DAPI (blue) staining, respectively. 
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Figure 3.3.20 Bic-C overexpression does not reduce Orb expression prior 

to the onset of rapid cvtoplasmic streaming. 

(A) Western blotting of ovarian proteins with a-Orb reveals a slight decrease 

in Orb expression, relative to the a-tubulin loading control, upon Bic-C 

overexpression. (B) Egg chambers were separated by passage through a 100 

/lM filter prior to analysis. Western blotting with a-Orb indicates that Orb 

levels do not faH below wild type levels untillate in oogenesis (stages 9-14). 

Equivalent levels of a-tubulin indicate even loading. 
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at stage 8, Orb levels were similar to wild-type controls at that stage (Fig. 3.3.21-A, B). 

Consistent with the Western analysis, a marked reduction of Orb levels is visible in older 

Bic-C overexpressing egg chambers relative to wild-type controls, however, this may be 

an indirect consequence of premature cytoplasmic streaming, as a similar reduction of 

Orb expression was observed in captlE ovaries (Fig. 3.3.21, C-E). 

It was also evident that stage 8-9 oocytes produced by Bic-C overexpressing 

females were substantia1ly larger than wild-type oocytes (compare Fig. 3.3.21-B with A), 

although the egg chamber as a whole was not. The size differential between Bic-C 

overexpressing oocytes and wild-type oocytes is no longer obvious at stage 10 (compare 

Fig. 3.3.21-D with C). To illustrate this effect more c1early 1 immunofluorescently 

labe1ed wild-type, Bic-C overexpressing and Bic_CYe33 homozygous mutant ovaries with 

a-Armadillo, which marks the border cells (Fig. 3.3.22). The relative position of the 

border cells, along the anterior/posterior axis, serves as a precise temporal marker during 

mid-oogenesis. They begin migrating from the extreme anterior of the egg chamber 

during stage 8 and come to rest at the anterior surface of the oocyte during the transition 

between stages 9 and 10. In a wild-type stage 8 egg chamber, the oocyte occupies 

approximate1y one third of the total volume of the egg chamber (Fig. 3.3.22-A), whereas 

in a Bic-C overexpressing egg chamber (Fig. 3.3.22-B), the oocyte occupies about half of 

the total egg chamber volume. Interestingly, the reciprocal effect is observed in Bic-C 

mutants, where cytoplasmic transfer into the oocyte is often de1ayed relative to wild-type 

controls (Fig. 3.3.22-C). Also note that the posterior migration of the follic1e cells 

overlying the egg chamber is premature in the Bic-C overexpressing egg chamber and 

delayed in the Bic-C mutant. 
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Figure 3.3.21 Bic-C overexpression disrupts pole plasm assembly prior to 

any reduction of Orb expression. 

Confocal immunofluorescence illustrates Orb (green) and Osk (red) 

expression in wild-type (A) and Bic-C overexpressing (B) stage 8 egg 

chambers. Note the substantially larger oocyte in the Bic-C overexpressing 

egg chamber, which was staged by the position of the border cells (white 

arrows). By stage 10, Orb levels decrease in wild-type egg chambers (C), 

however this reduction is more dramatic upon Bic-C overexpression (D) and 

in capuEE homozygotes (E). 
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Figure 3.3.22 Bic-C promotes cytoplasmic transfer from the nurse cells to 

the oocyte 

Confocal immunofluorescence of ovaries labelled with a-annadillo (green) 

illustrates the posteriorly-migrating border cells (marked by white arrows) in 

wild-type (A), Bic-C overexpressing (B) and homozygous Bic_CYC33 mutant 

(C) egg chambers. Actin and DNA are visualized by rhodamine-phalloidin 

(red) and DAPI (blue) staining respectively. 
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3.3.10 Bic-C physically associates with Orb and components of the 

deadenylase machinery 

To detennine if Bic-C fonns a complex with any components of the deadenylase 

machinery, Bic-C was immunoprecipitated from OreR ovarian extracts and from ovarian 

extracts containing an HA-tagged CCR4 (CCR4-HA). Western blotting of co­

precipitating proteins revealed that, in addition to Orb, both CCR4-HA and NOT3 fonn 

an RNase resistant complex with Bic-C (Fig. 3.3.23). To control for non-specifie 

enrichment, these samples were also probed with a-Vasa. Unlike CCR4-HA, NOT3 and 

Orb, Vasa was not enriched in the Bic-C immune complex, demonstrating the specificity 

ofthese interactions (Fig. 3.3.23). 

The interaction between CCR4-HA and Bic-C was confinned by the reciprocal 

experiment, in which CCR4-HA was immunoprecipitated from ovarian extracts with a­

HA (Fig. 3.3.24). Pop2-HA, another component of the deadenylase complex, was also 

immunoprecipitated, while OreR ovarian extract was used to control for direct binding to 

the a-HA resin (Fig. 3.3.24). Western blotting demonstrates that Bic-C, while detectable 

at low levels in the negative control, is specifically and substantially enriched in the 

CCR4-HA and Pop2-HA immune complexes. 
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Figure 3.3.23 Bic-C forms an RNase-resistant complex with CCR4, 

NOT3 and Orb. 

Bic-C immune complexes were isolated from ovarian extracts in the absence 

or presence of RNase A, while pre-immune sera served as a negative control. 

Immunoblotting of co-precipitating proteins indicate that CCR4-HA, NOT3 

and Orb are specifically enriched in the Bic-C immune complex 

(independently of intact RNA), while Vasa is not. 
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Figure 3.3.24 Bic-C is enriched in CCR4-HA and Pop2-HA immune 

complexes. 

Western blotting demonstrates that Bic-C is enriched in CCR4-HA and Pop2-

HA ovarian immunoprecipitates relative to an OreR control. 

Immunoprecipitations were perfonned with an a-HA antibody. 
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Chapter 4: Bic-C may promote exocytosis through an association with the 

Trailer Hitch complex 

3.4.1 Introduction 

Exocytosis is essential for the maintenance of cellular membranes and inter­

cellular communication. Two critical examples during Drosophila oogenesis are the 

secretion of Grk and the Vitellogenin receptor, Y olkless. When these molecules are not 

properly secreted from the oocyte, eggs become ventralized due to a failure to activate 

EGFR and are tlaccid due to a failure in yolk uptake (Murthy et al., 2003). Recently, an 

ER associated RNP complex containing Trailer Hitch (Tral), Me31B, YPS, P ABP and 

Cup among other proteins, has been implicated in the proper maintenance of COPU exit 

sites from the ER and for efficient exocytosis during oogenesis (Wilhelm et al., 2005). 

Similar to mutants of the exocyst component secS, tral mutants are defective in both Grk 

and Yolkless secretion (Murthy et al., 2003; Wilhelm et al., 2005). Interestingly, tlaccid 

stage 14 egg chambers with reduced or missing dorsal appendages are produced by sorne 

of the weaker Bic-C alleles, suggesting a possible defect in exocytosis (Mahone, 1994). 

Furthermore, the putative protein interaction between Bic-C and Me31B, detected in a 

yeast two-hybrid screen (Paliouras, M., Ph.D Thesis 2005), suggests a possible 

association with the Trailer Hitch complex. 

3.4.2 Homozygous Bic-C phenotypes may reflect a defect in exocytosis 

Visualization of the actin cytoskeleton with rhodamine-conjugated phalloidin 

reveals several morphological defects in Bic-C mutant ovaries that may retlect defects in 

exocytosis. In wild-type ovaries, F-actin is closely associated with cell membranes and is 

138 



not detectable on the oocyte cytoplasm (Fig. 3.4.1-A,B), whereas Bic-C mutant oocytes 

accumulate actin-coated structures (resembling vesicles) beginning at stage 6/7 (Fig. 

3.4.1-C). These actin-coated structures increase in size and number and accumulate 

primarily near the oocyte nucleus at the anterior cortex (Fig. 3.4.1-C,E). In sorne cases 

the oocyte cortex appears highly disorganized (Fig. 3.4.1-C) or to separate from the 

overlying follicle cells (Fig. 3.4.1-D). Also, the oocyte nucleus is sometimes 

mispositioned, having dissociated from the anterior / dorsal cortex (Fig. 3.4.1-D). A 

similar defect has been reported in sec5 mutants and is believed to result from an inability 

to target an unidentified nuclear tethering factor to the plasma membrane (Murthy et al., 

2003). Hypomorphic germline clones of sec5 also result in stage 10 egg chambers where 

the nurse cells appear to protrude into the oocyte (Murthy et al., 2003). Interestingly, this 

is one of the characteristic terminal phenotypes ofhomozygous Bic-C mutants (Fig. 3.4.2; 

(Schupbach and Wieschaus, 1991). 

3.4.3 Grk secretion is disrupted in Bic-C mutants 

To determine whether Bic-C is required for Grk secretion, the distribution of Grk 

protein was visualized by immunofluorescence. In wild-type oocytes, Grk protein begins 

accumulating at the anterior/dorsal cortex, in close association with the nucleus, at stage 7 

(Fig. 3.4.3-A), where it remains through late stage 9 (Fig. 3.4.3-B). At comparable stages 

in Bic_CYe33 ovaries, Grk is abnormallY concentrated in clumps around the entire surface 

ofthe oocyte nucleus and appears diffusely in the oocyte cytoplasm (Fig. 3.4.3-C, D). 
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Figure 3.4.1 Bic-C mutants display defects in actin morphology. 

Phalloidin staining illustrates the nonnal distribution of F-actin in wild-type 

stage 6 and 9 (A) and stage 10 (B) egg chambers. In Bic-C deficient egg 

chambers, actin-coated aggregates accumulate near the anterior of the oocyte 

as early as stage 6 (C) and appear to increase in size and number through stage 

9 (C), until egg chambers degenerate at stage 10 (D). DNA is visualized by 

DAPI staining (blue). 
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Figure 3.4.2 Nurse cells protrude into the oocyte space in Bic-C 

mutants. 

In wild-type egg chambers (A), a subset of follic1e cells migrate centripetally 

between the nurse cells and the oocyte at stage 10. In homozygous Bic-C 

mutants, centripetal migration of the follic1e cells does not occur and the nurse 

cells invade the space normally occupied by the oocyte (B). a-Armadillo 

staining (green) was used to highlight the border cells and follic1e cell 

membranes, while Actin (red) and DNA (blue) were visualized by rhodamine­

pha1loidin and DAPI staining respectively. 
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Figure 3.4.3 Grk accumulates in aggregates in Bic-C mutants. 

Confocal immunofluorescence with Cl-Grk antibodies shows that in wild-type 

stage 7 (A) and late stage 9 (B) oocytes, Grk protein (green) is tightly 

localized between the nucleus and the anterior/dorsal cortex. In comparably 

staged homozygous Bic_CYC33 mutant ovaries (C and D), Grk accumulates in 

large aggregates that are concentrated around the entire nuclear surface. DNA 

is visualized by DAPI staining (blue). Note that A-C consist of single 

confocal sections, while D is composed ofmultiple sections (along the Z-axis) 

that have been compressed into a single image. 
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grk rnRNA localization is a highly regulated process and is a prerequisite for local 

secretion of Grk protein to the anterior/dorsal follicle cells (Herpers and Rabouille, 2004). 

To ascertain whether a defect in grk mRNA localization might underlie the abnormal 

protein distribution observed in Bic-C mutants, grk rnRNA and protein were visualized 

simultaneously by in situ hybridization and immunofluorescence (Fig. 3.4.4). In both 

wild-type (Fig. 3AA-A,B) and Bic-C mutant egg chambers (Fig. 3AA-C,D), grk rnRNA 

is closely associated with the oocyte nucleus. In wild-type oocytes, this localization 

closely mirrors the distribution of Grk protein, whereas in Bic-C deficient oocytes, Grk 

protein appears to diffuse away from the site of transcript accumulation. These results 

imply that grk rnRNA localization is unaffected by the loss of Bic-C and aberrant Grk 

protein accumulation likely results from a subsequent defect in Grk processing or sorting 

through the ER/Golgi complex. 

The level of EGFR activation in the anterior/dorsal follicle cells was compared in 

Bic_CYe33 heterozygotes and Bic-C null ovaries using the mirror lacZ reporter line 

1(3)6DJ (Zhao et al., 2000), to determine if any functional Grk is secreted in the absence 

of Bic-C. Immunofluorescent labeling demonstrates that in Bic-C heterozygotes (Bic­

Cye33/+) Grk and mirr expression are both normal (Fig. 3 A.5-A). However, in Bic-C null 

ovaries (Bic_Cye33
/ Df(2L)RA5), Mirror expression is not activated (Fig. 3A.5-B,C). 

Therefore, the abnormal distribution of Grk observed in Bic-C mutants likely reflects a 

defect in Grk secretion which prevents delivery of the protein to the follicle cells and 

activation of the EGFR. 
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Figure 3.4.4 grk mRNA is properly localized in Bic-C mutants. 

Immunofluorescence and fluorescent rnRNA in situs reveai the distribution of 

Grk protein (green) and grk rnRNA (red) in wild-type (A and B) and Bic-C 

deficient (C and D) ovaries. DNA is visualized by DAPI staining (bIue). 
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Figure 3.4.5 Bic-C is essential for GRK secretion and EGFR activation 

but not for Grk cleavage. 

(A-B) Confocal immunofluorescence illustrates Grk (red) and ~-Gal 

(representative of Mirr, green) expression in wild-type (A) and Bic-C 

deficient ovaries (B and C). Arrows mark the position of the border cells, 

indicating that the egg chambers are equivalently staged. DNA is visualized 

by DAPI staining (blue). (D) Soluble and insoluble fractions were separated 

from ovaries expressing myc-tagged Grk in a wild-type (lane 1) or a Bic_CYe33 

mutant background (lane 2). Proteins were resolved by SDS-P AGE and Grk­

(Myc)6 was visualized by Western blotting with an a-mye antibody. 
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An essential step in Grk secretion is cleavage in the ER by the combined activities 

of Star and Brother ofrhomboid (a.k.a. rhomboid-2) (Ghiglione et al., 2002; Bokel et al., 

2005). To determine if this processing step is impaired by loss of Bic-C, a version of Grk 

bearing six copies of the mye epitope at its C-terminus was expressed in wild-type and 

Bic_CYC33 ovaries using the Ga14/ UASp system (Ghiglione et al., 2002). Uncleaved Grk 

(Fig. 3.4.5-D, top arrow) and the C-terminal cleavage remnant (Fig. 3.4.5-D, bottom 

arrow) were both detectable by western blotting with a-mye, in extracts from wild-type 

and Bic_CYC33 ovaries, indicating that Bic-C is not essential for Grk cleavage. However, 

the ratio of uncleaved Grk to the cleaved C-terminal remnant appears to be higher in the 

absence of Bic-C, suggesting that the efficiency of this process may be slightly reduced in 

Bic-C mutants. A substantial fraction of the Grk-(Myc)6 was detected in the insoluble 

fraction from Bic_CYC33 ovaries but not from wild-type controls (Fig. 3.4.5-D), despite the 

fact that both extracts were prepared in parallel under identical conditions. This suggests 

that in Bic-C mutants, Grk solubility is reduced through vesicular sequestration or the 

formation of protein aggregates. 

3.4.4 Bic-C associates with Me31B-eGFP in vivo 

Ovaries expressing Me31B-eGFP (Nakamura et al., 2001) were fixed and stained 

with a-Bic-C to discern whether Bic-C and Me31B co-localize in vivo. Me31B-eGFP 

accumulates in discrete cytoplasmic foci (Fig. 3.4.6-C), while Bic-C distribution is 

granular but more diffuse than that of Me31B (Fig. 3.4.6-A). However, both proteins 

clearly co-localize in punctate structures within the oocyte cytoplasm of a stage 5 egg 

chamber (Fig. 3.4.6-E). During stage 7, both proteins are enriched in the same regions of 
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Figure 3.4.6 Bic-C and Me31B co-localize during oogenesis. 

Immunofluorescently labeled Bic-C (A, B), shown in red and ME31B-eGFP 

(C, D), shown in green, co-Iocalize in the oocyte during mid-oogenesis (E, F). 
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the anterior/lateral cortices (Fig. 3.4.6-B,D,F). Interestingly, the reported distribution of 

oocyte-Iocalized Trailer Hitch is remarkably similar at both of these stages of oogenesis 

(Wilhelm et al., 2005), where it has also been shown to co-Iocalize with Me31B-eGFP in 

cytoplasmic granules (Boag et al., 2005). 

Co-Iocalization of Bic-C and Me31B suggests that these proteins may interact in 

vivo. To test this possibility, Bic-C was immunoprecipitated from ovarian extracts 

containing Me31 B-eGFP. Western blotting of co-precipitating proteins revealed that 

Me31B-eGFP associates with Bic-C in an RNA-dependent complex (Fig. 3.4.7-A). The 

requirement for RNA stabilization or bridging of this interaction is somewhat unexpected 

given that these proteins interact in the yeast two-hybrid system, which usually reflects 

direct binding. It is possible however, that these proteins also require RNA to interact in 

yeast. Alternatively, this interaction may be direct but unstable in the absence of RNA. 

Interestingly, the association between Me31B and Trailer Hitch is also RNA-dependent, 

suggesting that RNA is a central component of this complex (Boag et al., 2005). 

To determine if Bic-C associates with other components of the Trailer Hitch RNP 

complex, Bic-C immunoprecipitates from OreR ovarian extracts were analyzed by 

western blotting with antibodies specific to P ABP and Trailer Hitch. P ABP was 

specifically enriched in the Bic-C immune complex (Fig. 3.4.7-B). The a-Trailer Hitch 

serum recognized several protein species, aH of which migrated very close to the 

predicted size of Trailer Hitch. The top band was specifically co-precipitated with Bic-C 

in an RNA-dependent manner, while the lower bands were detected in aH samples (Fig. 

3.4.7-C). It is currently unclear ifthese results reflect an interaction between Bic-C and a 

specific isoform of Trailer Hitch or if sorne form of post-translational modification, 
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Figure 3.4.7 Bic-C associates with components of the Trailer Hitch 

complex including Me31B. 

Bic-C immune complexes were isolated from ovaries expressing Me31B­

eGFP (A) or OreR ovarian extracts (B and C), while pre-immune sera served 

as a negative control. Co-precipitating proteins were detected by Western 

blotting with a-GFP (A), a-P ABP (B) or a-Tral (C). The arrow (C) marks 

the band believed to be Trailer Hitch, which migrates slightly higher than an 

unidentified cross-reacting protein. 
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altering the electrophoretic mobility of Trailer Hitch, is required for complex formation 

with Bic-C. Alternatively, it is possible that the 0.-Trailer Hitch serum exhibits cross­

reactivity to an unrelated co-migrating protein. 

Chapter 5: Bic-C phosphorylation 

3.5.1 Introduction 

Phosphorylation is an important mechanism for relaying signaIs and modulating 

protein function in response to external cues. Several RNA binding proteins are 

regulated through phosphorylation. For example, tyrosine phosphorylation of hnRNP K 

by c-Src disrupts its RNA binding activity and leads to de-repression of target transcripts 

(Ostareck-Lederer et al., 2002). Similarly, phosphorylation of the chicken Zipcode 

Binding Protein 1 (ZBP-1) by c-Src causes ZBP-1 to release P.actin rnRNA, allowing 

localized translation of p-actin at actin-rich protrusions in primary fibroblasts and 

neurons (Huttelmaier et al., 2005). 

The SAM domain of Bic-C contains a highly conserved tyrosine residue 

(Tyr822) that appears to mediate SH2 domain binding when phosphorylated in sorne 

members of the EPH receptor tyrosine kinase family of proteins (Stein et al., 1996; Shultz 

et al., 1997). To investigate whether Bic-C may be similarly regulated, Tyr822 was 

mutated and an analysis of Bic-C phosphorylation was performed. 

3.5.2 Bic-C is phosphorylated in vivo 

To assess the phosphorylation state of Bic-C in vivo, OreR ovaries were cultured 

in phosphate-free media containing 32P-Iabeled ortho-phosphate prior to homogenization 

and immunoprecipitation with a-Bic-C. The incorporation of radiolabeled phosphate 
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pennitted detection of Bic-C by auto-radiography, indicating that Bic-C is a phospho­

protein (Fig. 3.5.1). To gauge the importance of Tyr822 in Bic-C phosphorylation, the 

same assay was perfonned on flies expressing a mutant fonn of Bic-C (Bic-C Y822F) where 

Tyr822 was converted to a phenylalanine. This was done in a mutant background where 

endogenous Bic-C was truncated due to a premature stop codon (Bic-CIF34/Df(2L)RA5) 

and thus would not co-migrate with the full-length protein during resolution by SDS­

PAGE. Although both fonns of Bic-C (wild-type and Y822F) were present in equal 

quantities, as detennined by Western blotting (Fig. 3.5.1), the Ieve1 of 32p incorporation 

in the Y822F mutant protein was several-fold Iower than that of the endogenous wild­

type protein (Fig. 3.5.1). 

3.5.3 Tyrosine 822 is essential for Bic-C function 

To assess the importance of Tyr822 in Bic-C function, the Bic_CY822F transgene 

and an equivalent transgene expressing a wild-type version of Bic-C were introduced into 

a homozygous Bic_CYC33 mutant background. F ertility was restored to mutant femaies 

bearing the wild-type transgene but not to females bearing the Bic_CY822F transgene (Fig. 

3.5.2-A), whose ovaries resembled those of homozygous Bic_CYC33 femaies. To verify 

that both transgenes produced comparable amounts of Bic-C protein, a comparison to 

endogenous Bic-C expression was perfonned by immunoblotting. For this experiment, 

transgenic Bic-C expression was assessed in a homozygous mutant background (Bic­

cM4
) that pro duces very little Bic-C protein (Fig. 3.5.2-B, lane 2). 1 found that Bic­

CY822F expression (lane 3) was somewhat lower than the transgenic wild-type Bic-C 

expression (lane 4) but similar to endogenous Bic-C expression (lane 1). 
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Figure 3.5.1 Bic-C is a phosphoprotein and a Y822F mutation in the 

SAM domain substantially reduces phosphorylation in vivo. 

Auto-radiography of Bic-C immunoprecipitates from 32P-ortho-phosphate 

labeled ovaries illustrates the level of 32p incorporation in endogenous Bic-C 

and Bic_CY822F. Western blotting of the same membrane demonstrates that 

equivalent amounts ofboth proteins are present. 
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Figure 3.5.2 The Y822F mutation disrupts Bic-C function. 

(A) Two copies of the transgene expressing wild-type Bic-C restore fertility 

to Bic_CYC33 homozygous females, while two copies of the Bic_CY822F 

transgene do not. (B) Western blotting illustrates the leve1 of transgene­

derived Bic_CY822F and Bic-CWT (wild-type) expression in a Bic_CAA4 

homozygous background. eIF4A was used as a loading control. 

Approximately 25 /lg of total protein was loaded per lane. 
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Therefore, the inability of Bic_CY822F to restore Bic-C function likely results from a 

direct requirement for Tyr822 rather than inadequate levels of expression, although the 

latter possibility has not been definitively exc1uded. 

3.5.4 Bic-C is phosphorylated on one or more serines 

To determine the nature of the amino acid(s) incorporating the 32p label, Bic-C 

was recovered and its peptide bonds were hydrolyzed to reduce the protein to its 

constituent amino acids. These amino acids were then subjected to phosphoamino acid 

analysis through resolution by thin layer chromatography. The 32p label migrated 

exc1usively with the serine standard indicating that Bic-contains one or more phospho­

serines (Fig. 3.5.3-A). The NetPhos (v2.0) phosphorylation prediction software (Blom et 

al., 1999) was used to analyze the Bic-C amino acid sequence (Fig. 3.5.3-B). Bic-C 

contains 99 serine residues, many of which are in a sequence context that is favorable for 

phosphorylation. 
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Figure 3.5.3 Bic-C phosphorylation occurs on one or more serine 

residues. 

(A) After 32p-ortho-phosphate labeling and immuno-precipitation, Bic-C was 

hydrolyzed into its constituent amino acids for phosphoamino acid analysis on 

thin layer chromatography. Co-migration of the 32p isotope with the serine 

standard indicates that phosphorylation occurs on one or more serine 

residue(s). (B) NetPhos 2.0 software predicts multiple phospho-serines in 

Bic-C. 
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Section 4: Discussion and Conclusions 

4.1 Bic-C mRNPs and emerging views of mRNP infrastructure 

In our traditional image of eukaryotic gene expression, transcriptional control has 

occupied center stage white mechanisms controlling translation were wide1y regarded to 

play a supporting role. It is generally accepted that transcription factors can coordinate 

the expression of functionally related genes. However, the technical advances that have 

ushered in the modem genomic era have revealed surprising discrepancies between the 

transcriptome and the proteome (Gygi et al., 1999; Ideker et al., 2001), implying a greater 

degree of post-transcriptional regulation than anticipated. Accordingly, a growing body 

of evidence suggests that coordinated expression of functionally related genes can be 

regulated post-transcriptionally (Hieronymus et al., 2004). Much of this evidence has 

been acquired through a strategy termed ribonomic profiling, whereby an RNA-binding 

protein of interest is used as a molecular "handle" to isolate mRNP complexes. 

Associated mRNAs are then identified en masse, typically using microarray technology. 

This approach do es have sorne caveats as it cannot distinguish which region of an RNA 

mediates binding or whether an RNAiprotein interaction is direct or indirect. However, 

this approach provides the first means by which to perform a comprehensive survey of 

mRNP infrastructure and, as demonstrated for Nanos-mediated regulation of hunchback, 

biologically relevant interactions are not always direct (Sonoda and Wharton, 1999). 

Several ribonomic-based studies have identified multiple mRNAs, encoding 

functionally related proteins, within the same mRNP complex (Keene and Lager, 2005). 

In sorne cases these functional relationships reflect participation in a common pathway or 
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process (Hieronymus and Silver, 2003; VIe et al., 2003; Gerber et al., 2006), while others 

reflect incorporation into a common macromolecular machine, such as the ribosome 

(Intine et al., 2003). Thus, eukaryotic mRNPs may represent a post-transcrlptional 

equivalent of bacterial operons, coordinating spatial and temporal production of 

functionally related proteins (Keene and Tenenbaum, 2002). Vnlike operons, however, 

mRNPs are dynamic structures and multiple combinations of cis-acting elements can 

generate substantial combinatorial power by directing transcripts into a multitude of 

differentially-regulated mRNPs. Various aspects of mRNA metabolism, such as pre­

mRNA splicing (VIe et al., 2003), nuc1ear export (Hieronymus and Silver, 2003), stability 

(Gao et al., 1994; Tenenbaum et al., 2000) and translation (Gerber et al., 2004; Gerber et 

al., 2006) can be coordinated in this fashion. 

Interestingly, ribonomic profiling of Bic-C-containing mRNPs has provided 

additional evidence for the "mRNP operon" model, as 7 of the 53 most highly enriched 

transcripts in the Bic-C immune complex encode proteins that are either directly involved 

in the frizzled/dishevelled signaling pathway (Par-!, DishevelIed, Slimb, Diego) or are 

downstream effectors of the pathway (Cip4, Src42A, Rheb). Frizzled (Fz) is a seven-pass 

transmembrane receptor for the Wnt family of signaling molecules that regulate various 

aspects of development, inc1uding morphogenic cell movements, cell polarization, cell 

adhesion, actin dynamics and transcriptional programs that ultimately guide cell-fate 

decisions (Strutt, 2003). Downstream of Fz, Dishevelled (Dsh) acts at the branch point 

between the canonical pathway, which controls ~-catenin levels, and the Planar Cell 

Polarity (PCP) pathway that regulates actin dynamics. In Drosophila, the PCP pathway 

is critical for orienting wing hairs and for R31R4 cell specification and ommatidial 
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rotation in the eye, whereas, the canonical pathway is essential for maintaining segment 

polarity during embryogenesis (Strutt, 2003). A number of factors, inc1uding Par-1 and 

Diego (Dgo) act on Dsh to determine which branch of the pathway will be active in a 

given cell or tissue. In Drosophila, Par-1 has been shown to promote the canonical 

FzlDsh signaling, while inhibiting the PCP pathway, presumably through 

phosphorylation of Dsh (Sun et al., 2001). In Xenopus, and probably other organisms, 

regulation by Par-1 is more complex; specifie isoforms of Par-1 have opposing effects on 

the branch point decision (Ossipova et al., 2005). The ankyrin-repeat protein Diego 

interacts with multiple components of the PCP pathway, inc1uding the atypical cadherin 

Flamingo, the PCP antagonist Prickle and Dsh. Diego performs at least two PCP-related 

functions, as it promotes initiation of this pathway by preventing Prickle from binding to 

Dsh (Jenny et al., 2005) and it is required for polarized apicallocalization of Flamingo 

(Das et al., 2004). 

The canonical Fz/Dsh pathway is regulated in part by Slimb, a substrate-specific 

adapter for the SCF E3-ubiquitin ligase complex that specifically targets B-catenin and 

several other proteins, for ubiquitin-mediated degradation (Jiang and Struhl, 1998; Bocca 

et al., 2001). In Drosophila oogenesis, Slimb is required for several processes, inc1uding 

cytoplasmic transfer from the nurse cells to the oocyte and down-regulation of Dpp 

activity in the follic1e cells (Muzzopappa and Wappner, 2005). 

CIP4 (Cdc42-interacting protein 4) is an effector protein of the Rho-GTPase 

Cdc42, which regulates actin polymerization and cytoske1etal reorganization (Bishop and 

Hall, 2000). A splice variant of CIP4 that produces a truncated version of the protein has 

been linked to renal cell carcinoma in humans (Tsuji et al., 2006). Truncation of CIP4 
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causes an increase in ~-catenin phosphorylation and induces ~-catenin mistrafficking 

from cell membranes to cytoplasmic aggresomes, disrupting cell-cell adhesion (Tsuji et 

al., 2006). Mammalian CIP4 binds to the Dishevelled-Associated Activator of 

Morphogenesis (DAAM1), which is required for Rho activation by the Wnt/FzlDsh PCP 

pathway during the convergent extension movements of vertebrate gastrulation 

(Aspenstrom et al., 2006; Habas et al., 2001). 

Analysis of DAAM mutants in Drosophila suggest that DAAM does not play an 

essential role in the PCP pathway in flies, possibly due to sorne functional redundancy. 

However, it is required to organize a specialized array of actin cables that are structurally 

important for tracheal system deve10pment (Matusek et al., 2006). Genetic experiments 

indicate that the non-receptor tyrosine kinase Src42A acts in paraUe1 or downstream of 

DAAM in this process (Matusek et al., 2006). Interestingly, Src42A binds to Armadillo 

(Arm; the Drosophila homologue of ~-catenin) and co-Iocalizes with Arm/~-catenin and 

E-cadherin at adherens junctions, which are essential for cell-cell adhesion (Takahashi et 

al., 2005). Src42A is required for Ann/~-catenin phosphorylation, which weakens 

adherens junctions, leading to reduced cell-cell adhesion and increased invasiveness 

(Takahashi et al., 2005). 

Rheb (Ras homologue enriched in brain) is a member of the Ras superfamily of 

proteins that bind and hydrolyze GTP. Mutations in either Tsc1 or Tsc2 (Tuberous 

sc1erosis 112) result in over-activation of GTP-bound Rheb, which is believed to cause 

tuberous sc1erosis complex, a genetic disease causing mental retardation, seizures and the 

formation of benign tumors in various parts of the body (Aspuria and Tamanoi, 2004). 

Evidence gathered in Drosophila indicates that Rheb acts downstream ofTscl (Tuberous 
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sc1erosis 1) and Tsc2 in the TOR (Target Of Rapamycin) signaling pathway to promote 

cell growth (Stocker et al., 2003). Interestingly, Wnt/Fz signaling can regulate Tsc2 

phosphorylation through inhibition of glycogen synthase kinase 3 (GSK3), which in turn 

activates Rheb and the mammalian TOR pathway (Inoki and Guan, 2006). 

Thus, several of the putative mRNA targets of Bic-C are functionally related to 

the canonical and PCP FzlDsh signaling pathways. Many of the other mRNAs found to 

be enriched in the Bic-C immune complex encode uncharacterized proteins, raising the 

intriguing possibility that some of these pro teins may also be regulated by or function in 

FzlDsh signaling. It is interesting that several of the putative Bic-C target mRNAs 

connected to FzlDsh signaling regulate actin dynamics, as the actin cytoskeleton plays a 

pivotaI role regulating cytoplasmic streaming during oogenesis. Although this pathway 

has not been linked to cytoplasmic streaming, overexpression of Bic-C could pro duce 

phenotypes that reflect a simultaneous repression of several functionally related 

transcripts and thus reveal regulatory relationships that would not be easily uncovered by 

conventional mutagenesis screens that target individual genes. 

Both the canonical and PCP Wnt/FzlDsh signaling pathways are essential in 

vertebrates for proper kidney formation. The canonical pathway is required initially for 

the induction of metanephric mesenchyme and for cell proliferation in branching 

morphogenesis (Simons and Walz, 2006). It is believed that urine flow bends primary 

cilia on the surface oftubular epithelial cells in the developing kidney, triggering a signal 

cascade that initiates the production of inversin (Simons et al., 2005). Inversin, a 

vertebrate protein that is re1ated to Drosophila Diego, specifically targets cytoplasmic 

Dishevelled for ubiquitin-mediated degradation but not Dishevelled associated with the 
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plasma membrane, thereby triggering a switch from the canonical to the PCP pathway 

(Simons et al., 2005). The exact role of the PCP pathway in kidney development is not 

yet known, however, it may be required for maintaining tubular geometry later in 

development (Simons and Walz, 2006). Interestingly, constitutive activation of the 

canonical Fz/Dsh pathway in mice causes a form of polycystic kidney disease that is 

strikingly similar to that caused by mutations in the mouse homologue of Bic-C (Saadi­

Kheddouci et al., 2001; Cogswell et al., 2003). It is therefore tempting to speculate that 

Bic-C may perform an evolutionarily conserved role as a post-transcriptional regulator of 

the FzlDsh signaling in both flies and mammals. 

4.2 Auto-regulation 

In addition to the discovery of functional c1ustering within mRNPs, ribonomic 

profiling has also provided additional evidence for widespread auto-regulation by 

mRNA-binding proteins (Hieronymus and Silver, 2003; Waggoner and Liebhaber, 2003). 

However, even without high-throughput methods, several mRNA-binding proteins have 

been demonstrated to bind specifically to their own transcripts. Examples inc1ude Nova­

I, FMR1P, PABP, TIP and Bc1-2 (Dredge et al., 2005; Schaeffer et a1., 2001; de Melo 

Neto, 1995; Brooks et al., 2004; Bevilacqua et al., 2003a). In several cases these 

interactions have been shown to be biologically significant. For instance, Nova-l 

regulates alternative splicing of its pre-mRNA (Dredge et al., 2005) and P ABP can 

repress its own translation via adenine-ri ch sequences in its 5' UTR (Bag, 2001), while 

TTP and Bc1-2 target their own transcripts for degradation through an interaction with 
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AU-rich elements (AREs) located in their 3' UTRs (Brooks et al., 2004; Bevilacqua et 

al., 2003a). 

ln this study, 1 have discovered that Bic-C protein and Bic-C rnRNA are 

associated in the same ovarian rnRNPs. Using reporter transcripts, 1 have also provided 

evidence that this interaction is biologically relevant, acting to destabilize the Bic-C 

transcript. Although sequences in the 5' UTR of Bic-C are both necessary and sufficient 

to impart Bic-C-mediated repression, auto-repression appears to be greatest when both 

the 5' and 3' UTRs are present (see Figure 3.2.2) indicating a certain degree offunctional 

synergy between these two regions. Interestingly, the Bic-C 3' UTR harbors 5 copies of 

the AU-rich element (AUUUA) that has been associated with the rapid turnover of many 

short-lived rnRNAs (Bevilacqua et al., 2003b) and that are involved in mediating TTP 

and Bc1-2 auto-repression (Brooks et al., 2004; Bevilacqua et al., 2003a). 

Surprisingly, when the Bic-C 5'UTR was removed from reporter transcripts, a 

reciprocal effect on protein expression was observed rather than an equalization of ~-Gal 

levels. ~-Gal expression in Bic-C mutants dropped below the level observed in wild-type 

ovaries. This may reflect a general decrease in translational efficiency and/or protein or 

RNA stability in Bic-C mutants, although decreases as such have not been reported in the 

Bic-C literature. Alternatively, the Bic-C and Ki 0 3' UTRs might inhibit translation and 

a certain threshold of Bic-C may be required to overcome these inhibitory effects. 

The fact that post-transcriptional auto-regulatory mechanisms exist is no longer in 

question, although, the exact purpose of such mechanisms and how they may have 

evolved is less obvious. Auto-repression, as observed for Bic-C, may provide a means of 

rapidly adjusting the level of an RNA-binding protein to match the number of mRNA 
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targets that it regulates. Such a mechanism could establish equilibrium between silenced 

and translated mRNAs, particularly if the RNA-binding protein in question acts in an 

additive fashion when regulating mRNA targets. 

4.3 Overexpression of Bic-C reveals a novel function in regulating cytoplasmic 

movements 

Given the existence of an auto-repressive mechanism, a logical assumption is that 

excess Bic-C will have harmful consequences. 1 tested this and found it to be true. 

Overexpression of Bic-C in the female germline induced microtubule rearrangements and 

premature cytoplasmic streaming which in turn produced defects in pole plasm assembly, 

posterior patterning and dorsal appendage formation. 1 used the Gal4-UASP system 

rather than the endogenous Bic-C promoter to perform these experiments since females 

constitutively overexpressing an unregulated Bic-C transcript would not produce viable 

progeny. Although this system do es not recapitulate the normal transcriptional regulation 

of Bic-C, the amount of Bic-C protein produced from this system was comparable to 

endogenous levels (see Figure 3.3.15-D). Therefore, the total amount of Bic-C 

expression needed to initiate premature cytoplasmic streaming, derived from a 

combination of endogenous and transgenic sources, should not exceed twice the amount 

of endogenous Bic-C protein. Since 1 observed a much greater increase in ~-Gal reporter 

protein expression in Bic-C deficient ovaries relative to wild-type, 1 believe that 

abrogation of Bic-C auto-regulation in vivo would generate sufficient levels of Bic-C to 

disrupt axial patteming. 
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Gennline expression of the UASP-Bic-C transgene restored fertility to Bic_Cye33 

homozygous females (data not shown), albeit at a low frequency due to the persistence of 

overexpression phenotypes. This demonstrates that the Bic-C protein produced from 

these transgenes is fully functional. Furthermore, 1 observed a decrease in the frequency 

and severity of dorsal appendage defects induced by Bic-C overexpression through a 

concomitant reduction of endogenous Bic-C dosage. 1 am thus confident that the 

phenotypes observed upon Bic-C overexpression result from an increase in normal Bic-C 

function. 

By analyzing the effects of Bic-C overexpression 1 have discovered a novel 

function of Bic-C in regulating the ons et of rapid cytoplasmic streaming. This function 

could not be uncovered through an analysis of strong Bic-C mutant alleles, since 

oogenesis arrests in homozygous Bic-C females before rapid cytoplasmic streaming is 

normally initiated. Bic-C overexpression also resulted in a transient increase in oocyte 

size from stages 8-9 relative to wild-type controls (Fig. 3.3.22), which is reciprocal to 

what occurs in Bic-C mutant egg chambers where stage 8-9 oocytes are often abnormally 

small (Mahone et al., 1995). These observations provide strong evidence that Bic-C 

promotes cytoplasmic transfer from the nurse cells to the oocyte during stages 8-9. Rapid 

streaming is believed to be required for mixing the oocyte cytoplasm with incoming 

cytoplasm from the nurse cells, thus temporal coordination of these two events is 

essential. Several gene products have been implicated In controlling cytoplasmic 

streaming but mutations affecting these genes have not been reported to result in 

premature cytoplasmic transfer into the oocyte. Therefore, Bic-C overexpression is the 

first context in which cytoplasmic transfer from nurse cells to the oocyte, and 
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cytoplasmic streaming within the oocyte, both occur prematurely, suggesting that Bic-C 

function may be responsible for coordinating these events. The endogenous Bic-C 

expression pattern is consistent with such a role, as there is a dramatic increase in Bic-C 

mRNA and protein levels in the nurse cells beginning at stage 10, just prior to bulk 

cytoplasmic transfer and rapid streaming (Mahone et al., 1995; Saffman et aL, 1998). 

Multiple lines of evidence indicate that the nonmusc1e myosin II heavy chain, encoded by 

zipper, provides the mechanical force that drives rapid transfer of the nurse cell 

cytoplasm into the oocyte, through an actin-based contraction mechanism (Wheatley et 

al., 1995; Edwards and Kiehart, 1996). This activity requires the nonmusc1e myosin II 

regulatory light chain, encoded by spaghetti squash (sqh) (Edwards and Kiehart, 1996), 

which is activated by phosphorylation (Jordan and Karess, 1997). Sqh is also required to 

drive centripetal follic1e cell migration over the anterior surface of the oocyte at stage 10, 

a process that is defective in Bic-C mutants (Edwards and Kiehart, 1996). Interestingly, 

the FzlDsh pathway has been shown to regulate Sqh phosphorylation through the 

Drosophila Rho-associated kinase (Drok) and this phosphorylation event is critical for 

the establishment of planar cell polarity in both the wing and the eye (Winter et al., 

2001). These intriguing connections make it tempting to speculate that Bic-C may 

regulate both cytoplasmic movements and centripetal follic1e cell migration by 

influencing the expression of FzlDsh pathway components. However, Sqh is also 

required for border cell migration (Edwards and Kiehart, 1996), which is unaffected in 

Bic-C mutants, thus any mechanism by which Bic-C might influence Sqh activity is 

like1y to be complex. 
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Overexpression of Bic_CG296R did not affect cytoplasmic transfer or cytoplasmic 

streaming, suggesting that Bic-C acts through RNA substrates in both contexts. orb is 

among the genes that, when mutated, produce the premature cytoplasmic streaming 

phenotype and orb encodes a CPEB-like protein that is believed to promote 

polyadenylation of specific transcripts inc1uding osk (Chang et al., 1999). Since 

reduction of Orb can suppress dominant Bic-C mutant phenotypes and Bic-C and Orb 

have been shown to interact in ovarian extracts by co-immunoprecipitation (Castagnetti 

and Ephrussi, 2003), it seemed likely that premature cytoplasmic streaming induced by 

Bic-C overexpression might occur through post-transcriptional suppression of Orb or Orb 

target mRNAs. Consistent with this hypothesis, 1 observed a remarkable increase in the 

severity of the Bic-C overexpression phenotype in a heterozygous orb mutant 

background. Because Bic-C overexpression disrupts posterior recruitment of pole plasm 

components prior to any detectable effects on Orb leve1s or distribution, 1 conc1ude that 

Bic-C activity must directly regulate the expression of Orb target mRNAs, rather than 

operate solely through an effect on orb mRNA itse1f. Antagonistic effects have already 

been described for Bic-C and Orb on osk mRNA (Saffinan et al., 1998; Castagnetti and 

Ephrussi, 2003). However, orb mutant oocytes differ from Bic-C overexpression oocytes 

in that they do not display an increase in oocyte volume during stages 8-10, implying that 

activation of cytoplasmic transfer by Bic-C is independent of Orb and of Orb target 

mRNAs. 

Mutations affecting poly(A) polymerase and the deadenylase CCR4 enhance or 

suppress the Bic-C overexpression phenotypes respectively. This evidence supports a 

model in which Bic-C acts to destabilize andlor silence mRNA substrates through 
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shortening oftheir poly(A) tails (Fig 4.3.1). This could occur by preventing recruitment 

of poly(A) polymerase by Orb, however, this would require target transcripts to be in a 

constant state flux between elongated and shortened poly(A) tails to explain the 

requirement of wild-type CCR4 levels for producing the Bic-C overexpression 

phenotypes. Altematively, Bic-C could recruit the deadenylase machinery to target 

transcripts, and actively promote deadenylation, or Bic-C could deliver target transcripts 

to another complex, such as P-bodies, where deadenylation and translational silencing or 

degradation would follow. A visual representation of sorne of the various Bic-C­

interacting proteins illustrates their physical and functional relationships (Fig. 4.3.2). 

4.4 Bic-C, exocytosis and the Trailer Hitch complex 

Given the similarities between the Bic-C mutant phenotypes and those described 

in sec5 and traiter hitch mutants, it seems likely that Bic-C regulates sorne aspect of Grk 

exocytosis. It may perform this function through an association with Me31 B and P ABP, 

as a component of the Trailer Hitch complex. If this is the case, Bic-C's role in 

exocytosis is probably not limited to Grk secretion. Accordingly, the pleiotropic nature 

of the Bic-C phenotypes is more consistent with a general defect in protein secretion. 

However, the direct evidence demonstrating an interaction between Bic-C and Trailer 

Hitch is currentIy ambiguous; therefore a clear association between Bic-C and this 

complex has not yet been proven. 

A general defect in protein secretion from the oocyte would result in a 

communication breakdown with the overlying follic1e cells because signaling molecules, 

such as Grk, would not reach their target receptors on the follicle cells, and receptors 
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Figure 4.3.1 The mechanism of Bic-C-mediated induction of rapid 

cytoplasmic streaming 

Bic-C represses a subset of Orb mRNA targets 'by deadenylation, leading to 

reduced mRNA stability and/or translation. When expression of these factors 

falls below a critical threshold, rapid cytoplasmic streaming is initiated, 

displacing Grk from the anterior/dorsal cortex and preventing posterior 

accumulation of Osk. 
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Figure 4.3.2 Schematic of Bic-C protein interactions: bridging the gap 

between P-bodies and deadenylation 

A schematic representation of protein interactions in D. melanogaster and 

other organisms illustrates that Bic-C is physically linked to multiple 

components of P bodies, which regulate deadenylation and mRNA 

degradation. 
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would not reach the surface of the oocyte to convey signaIs back into the gennline. Thus, 

a general requirement for Bic-C in protein secretion may explain the defective centripetal 

follic1e cell migration observed in Bic-C mutants, as Saxophone, the receptor for Dpp, is 

required in the germline for these migratory events to occur (Twombly et al., 1996). 

Abnormal Grk accumulation is readily detectable as early as stage 6/7 in Bic-C 

mutants, providing the first evidence that Bic-C has a function, other than auto­

regulation, prior to stage 8 when it is required to suppress Osk translation (Saffman et al., 

1998). However, Bic-C is not essential for Grk signaling to the posterior follic1e cells at 

stage 6, since nuc1ear migration to the anterior of the oocyte, which depends on this 

event, still occurs in most Bic-C mutant egg chambers. Interestingly, mutant alle1es of 

grk and cornichon, which encodes an integral membrane protein required for Grk 

trafficking through the ER (Bokel et al., 2005), are both strong dominant enhancers of 

matemal-effect lethality when in trans to heterozygous Bic-C mutants (Rother, 1998). 

This suggests that Bic-C levels become a critical factor in Grk deployment when the 

amount of functional Grk is reduced, implying that the efficiency of exocytosis is 

sensitive to Bic-C levels. Therefore, any disruption of exocytosis caused by the 10ss of 

Bic-C probably reflects a genuine requirement for Bic-C in this process rather than an 

indirect consequence of sorne unknown deve10pmental block. 

4.5 Bic-C phosphorylation 

In vivo labe1ing experiments indicate that Bic-C is a phosphoprotein and that 

detectable phosphorylation only occurs on one or more serine residues. Why then should 

the Y822F mutation decrease the level of phosphorylation? There are several 
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possibilities, the first being that Tyr822 is in fact phosphorylated and this event is a 

prerequisite for phosphorylation at other sites. This fonn of sequential phosphorylation 

has been documented (Gingras et al., 2001). If this is the case, phosphorylation of 

Tyr822 may be a transitory event and thus difficult to detect. Another possibility is that 

Tyr822 is not phosphorylated but is specifically required to recroit a kinase that 

phosphorylates Bic-C on other residues. It is also possible that replacement of this 

residue results in structural changes to the protein, possibly due to aberrant folding, that 

indirectly disrupt function and/or phosphorylation. Finally, Bic-C phosphorylation may 

be temporally regulated, occurring primarily after stage 10. In this case, Tyr822 may be 

critical for some aspect of Bic-C function which is unrelated to phosphorylation but since 

the Y822F mutant cannot restore fertility in the Bic_CYC33 mutant background, oogenesis 

remains blocked at stage 10 and high levels of phosphorylation are not achieved. 

A growing number of examples demonstrate the importance of phosphorylation as 

a means of regulating RNA-binding proteins. As previously mentioned, phosphorylation 

causes some proteins, such as ZBP-1 and hnRNP-K, to release their RNA substrates, 

providing a means of spatial and temporal regulation respectively (Huttelmaier et a1., 

2005; Ostareck-Lederer et al., 2002). Alternatively, phosphorylation can alter the 

complement of proteins an RNA-binding protein recruits to a specifie RNA, as in the case 

of Xenopus CPEB (Mendez et a1., 2000b). Regardless of the specific mechanism 

employed to silence maternaI mRNAs, the process must be reversible. Therefore, 

mechanisms must exist to "free" silenced mRNAs from repression at specific times in 

development. Phosphorylation of Bic-C may serve such a purpose in oogenesis by 

promoting release of bound RNAs or exchange of the deadenylase machinery for 
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translational activators. At this point, it is not known if phosphorylation is essential for 

Bic-C function, however, further mapping and mutagenesis experiments should c1arify 

this issue. 

4.6 Future directions 

My hope is that this work has enhanced our understanding of Bic-C function in a 

meaningful way that can be utilized by my successors to continue the ongoing process of 

discovery. To those successors, 1 would propose that a crucial step towards unravelling 

the intricacies of Bic-C function will be identifying the full complement of proteins that 

Bic-C associates with in vivo. To facilitate this task, 1 have produced UASP-TAP-Bic-C 

transgenic fly Hnes that can be used to express a tagged version of Bic-C for Tandem 

Affinity Purification (TAP) of Bic-C-containing rnRNP complexes in ovaries or embryos 

(Fig. 4.6.1; Puig et al., 2001). Germline expression of this transgene can restore fertility 

to homozygous Bic_CYe33 females, indicating that TAP-Bic-C is fully functional and is 

therefore a suitable biochemical "handle" for isolating biologically relevant complexes. 

Preliminary small-scale experiments indicate that large-scale recovery of such complexes 

should be feasible (Fig 4.6.2). 

Another important task will be confirming the microarray-based characterization 

of Bic-C-associated rnRNAs through altemate methods and determining which of these 

associations reflect biologically relevant interactions in vivo. This should facilitate the 

identification of bona fide Bic-C binding sites in targeted transcripts, through multiple 

sequence alignments and ultimately in vitro binding assays. As Bic-C appears to be a 
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Figure 4.6.1 Germline expression of UASP-TAP-Bic-C restores fertility 

to homozygous Bic_CYC33 females. 

(A) Schematic representation of the UASP-TAP-Bic-C construct design. 

(B) Confocal immunofluoresence of ovaries stained with a-Bic-C (green) 

illustrate the distribution of endogenous Bic-C (top) in a stage 10 OreR egg 

chamber and TAP-Bic-C in a homozygous Bic_CYe33 mutant. Centripetal 

follicIe cell migration (marked by the white arrow) is rescued by TAP-Bic-C 

expression and these females lay eggs that pro duce viable offspring. Actin 

and DNA are visualized by rhodamine-phalloidin (red) and DAPI (blue) 

staining respectively. 
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Figure 4.6.2 Small-scale purification ofTAP-Bic-C from ovarian lysates. 

Protein sampI es were collected at various stages during the T AP-Bic-C 

protein purification procedure and resolved by SDS-P AGE (10%) to visualize 

TAP-Bic-C by Western blotting with a-Bic-C. Protein purification was 

performed using the conventional method, by binding to IgG beads first, 

followed by Tev cleavage and then binding to calmodulin (A) or in the reverse 

order, without cleavage by the Tev protease (B). With both methods, Bic-C is 

detected in the final samples (A-lanes 7-9, B-lane 9). 

(A) Lanes: 1 - input; 2 - IgG supernatant after 3 hrs; 3 - IgG supernatant after 

16 hrs; 4 - bound to IgG after Tev cleavage; 5 - supernatant after TEV 

cleavage; 6 - supernatant after calmodulin binding; 7 - bound to calmodulin; 

8 - calmodulin EGTA eluate (fraction 1); 9 - calmodulin EGTA eluate 

(fraction 2). 

(B) Lanes: 1 - input; 2 - pooled calmodulin eluates; 3 - calmodulin eluate 

fraction 1; 4 - calmodulin eluate fraction 2; 5 - calmodulin eluate fraction 3; 6 

- calmodulin eluate fraction 4; 7 - bound to calmodulin after EGTA elution; 8 

- supernatant after IgG binding; 9 - bound to IgG. 
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negative regulator of RNA stability and probably translation, high-throughput methods, 

such as microarray-based comparisons of mRNA abundance and of polysome­

association, may be used to identify which putative target transcripts are affected by 

reductions or increases in Bic-C protein levels. Reciprocal effects on mRNA stability 

and translatability in these two contexts would pro vide strong evidence of specific Bic-C­

mediated regulation. Bic-C overexpression has provided a useful platform for testing 

functional relationships through genetic interactions. Such genetic interaction assays may 

be extended to identify biologically relevant target transcripts, as the relative quantities of 

these transcripts and Bic-C are likely to be critical for normal development. 

Due to the defect in centripetal follicle cell migration in Bic-C mutants, Bic-C has 

long been suspected to influence inter-cellular communication between the germline and 

the soma. This suspicion is supported by observations that germline-specific expression 

of UASP-Bic-C or UASP-TAP-Bic-C, using the nosGaI4::VP16 driver, can rescue the 

centripetal follicle cell migration defect. Furthermore, posterior migration of the follicle 

cells, which precedes centripetal migration, appears to be accelerated upon germline 

overexpression of Bic-C and retarded in Bic-C mutants (Fig. 3.3.22). The discovery that 

Bic-C is required for Grk secretion suggests a possible role for Bic-C in exocytosis, 

which provides a c1ear link to inter-cellular communication. Visualization of various 

secreted proteins in Bic-C mutants should provide sorne insight into how general this 

defect is. AIso, analysis of COPII exit sites and the trans-Golgi network in Bic-C 

mutants, using available molecular markers, should help to identify the point at which 

Bic-C may be required in this process. A future challenge will be identifying the exact 
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role of Bic-C in exocytosis and detennining how this function may relate to putative 

mRNA targets, control of cytoplasmic streaming and anterior/posterior patterning. 
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Section 5: Original Contributions to Knowledge 

1- The KR domains of Bic-C were demonstrated to bind RNA directly and endogenous 

Bic-C was found to co-purify with ovarian mRNPs. 

2- Endogenous Bic-C was demonstrated to preferentially associate with a specific subset 

of ovarian mRNAs, including its own transcript and a biologically coherent set of 

transcripts encoding functionally-related components of the WntIFrizzledIDisheveIled 

signaling pathway. 

3- The stability of a reporter transcript bearing portions of the Bic-C 5' and 3' UTRs was 

shown to increase in the absence of Bic-C and cis-acting auto-repressive elements 

were mapped to the Bic-C 5' UTR. 

4- Bic-C was overexpressed for the first time and found to induce premature 

cytoplasmic streaming, cytoplasmic transfer and follicle cell movements. 

5- Genetic modifiers of the Bic-C overexpression phenotype provided in vivo evidence 

that the mechanism of Bic-C function involves deadenylation of target transcripts. 

6- Biochemical evidence demonstrating that Bic-C specifically associates NOT3, CCR4 

and Pop2 was provided. 

7- An association with the maternaI mRNA silencing factor Me31B was confirmed by 

co-immunoprecipitation and in vivo co-Iocalization ofMe31B-eGFP and Bic-C. 

8- Secretion of Gurken protein was found to be defective in the absence ofBic-C. 

9- In vivo phosphorylation of Bic-C on one or more serine residues was demonstrated. 
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