
Time-Slotted Scheduling for Agile
All-Photonics Networks: Performance and

Complexity

H ana Bilbeisi

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

September 2007

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Masters of Engineering.

© 2007 Hana Bilbeisi

2007/09/29

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Bran ch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-51448-1
Our file Notre référence
ISBN: 978-0-494-51448-1

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Schedulers in optical switches are still electronic, the performance of these units has a

significant impact on the performance of the network and could form a bottleneck in high

speed networks, such as AAPN. Four time-slotted scheduling algorithms are investigated

in this study, PIM, iSlip, PHM and Adapted-SRA. The study addresses the performance

of AAPN for each of the algorithms, and evaluates the hardware complexity, estimat­

ing the running time of the algorithms. Performance measures were collected from an

OPNET model, designed to emulate AAPN. Furthermore, hardware complexity and tim­

ing constraints were evaluated through hardware simulations, for iSlip, and through analysis

for the rest of the algorithms. iSlip confirmed it's feasibility by meeting the lOus timing

constraint set by AAPN. The study revealed the superiority of iSlip and PHM over PIM

and Adapted-SRA.

ii

Sommaire

Les 'planifiant' dans les commutateurs optiques est toujours lectronique, l'excution

de ces units a un impact significatif sur la ralisation du rseau et pourrait former un

goulot d'tranglement dans les rseaux rapides, tels que AAPN. Quatre types d'algorithmes

d'ordonnancement a rpartition dans le temps sont examins dans cette tude, PIM, iSlip,

PHM et l'Adapt-SRA. L'tude adresse l'excution de AAPN, l'valuation de la complexit de

'hardware' et l'estimation du temps courant pour chacun des ces algorithmes. Les mesures

d'excution ont t recueillies d'un modle de OPNET,. conu pour imiter AAPN. De plus, la

complexit de 'Hardware' et la synchronisation du system ont t values par des simulations,

pour iSlip, et par l'analyse pour le reste des algorithmes. La mthode iSlip a affirm sa

praticabilit en ralisant la lOS contrainte mis par l' AAPN. L'tude a rvlla supriorit de iSlip

et PHM par comparaison au PIM et l' Adapt-SRA.

iii

Acknow ledgments

The work presented in this thesis would not have been done without the aid of many peo­

ple. My supervisor, Prof essor Lorne Mas on, and the staff in the Engineering

Department, provided me with the support, knowledge and guidance that enabled me

to complete this work.

I am particularly grateful for my family for instilling in me confidence and supporting

my educational pursuits, especially my twin sister who has been always there for me. I am

also thankful for all my friends for their encouragement.

Finally, I would like to acknowledge the organizations that funded the AAPN project,

giving me and many other researchers the opportunity to participate in such an emerging

research area.

,~ ..

Contents

1 Introduction

1.1 Introduction Photonic networks:

1.2 AAPN

1.3 TDMA and time-slotted scheduling

1.4 Objective of the study

1.5 Outline of the thesis

2 Background

2.1 Agile Ali Photonics Network

2.1.1 Network Design ...

2.1.2 Network Architecture .

2.1.3 Multi-Queue Buffers .

2.2 Agility through Resource Sharing Mechanisms

2.3 Slot-by-Slot Scheduling Schemes

2.3.1 Bipartite matching

2.3.2 Scheduling schemes characteristics .

2.4 Matching behaviors with respect to the requirement characteristics of a

iv

1

1

2

2

3

4

5

6

7

8

8

10

11

12

13

scheduling scheme 15

2.4.1 Maximum Match 15

2.4.2 Maximal Match

3 Simulation Model

3.1 Performance Simulation Model .

3.1.1 Model Derivation

3.1.2 Simulation Design and previous work

17

30

30

31

38

Contents

3.2 Hardware Simulation iSlip

3.2.1 Choice of hardware: FPGA over ASIC

3.2.2 Design

3.2.3 Black Functionality

3.2.4

3.2.5

Arbiter units utilized in the Grant and Accept blacks

Implementation

4 Results and Analysis

4.1 Performance Results

4.1.1 Basic schedulers .

4.1.2 Performance measures of the adapted schedulers with different input

v

43

43

43

44

44

47

49

50

50

traffic 51

4.2 Hardware complexity results 60

4.2.1 Timing Requirements . 60

4.2.2 Resource utilization .

5 Conclusions and Future work

5.1 Summary and Conclusion

5.2 Future work

5.2.1 Performance .

5.2.2 Hardware Measures

References

61

62

62

63

63

63

65

vi

List of Figures

2.1 Overlaid Star architecture • 0 ••• 8

2.2 IQ versus OQ in cross-bar switches 9

2.3 VOQ cross-bar switch in AAPN .. 10

2.4 Bipartite Graph 13

2.5 Discrimination among ports in PIM 19

2.6 Arbitration and matching in iSlip 22
" ,~, 2.7 The effect of traffic load on the synchronization of arbiters 23

l

• 2.8 Operation Stages of Iterative PIM/iSlip . 25

2.9 WFA vs WWFA ••• 0 ••••••••• 26

3.1 Self Similar behavior of Ethernet traffic [28] 36

3.2 Effect of the H urst parameter on the performance 37

• 3.3 A single layer of an 8x8 AAPN architecture madel . 39

3.4 Performance measures with respect to VOQ sizes, MAN 41

3.5 Performance measures with respect to VOQ sizes, WAN 42

• 3.6 Hardware design of round-robin arbiters 45 l
3.7 iSlip Hardware simulation madel 48

4.1 1-iteration run of each of the scheduling algorithms, MAN 51

4.2 Convergence of the algorithms 52

4.3 Network performance under Poisson, uniformly distributed traffic, MAN 53

4.4 Network performance under Poisson, non-uniformly distributed traffic, MAN 54

4.5 Network performance under Poisson, non-uniformly distributed traffic, WAN 55

4.6 Network performance under Self Similar, uniformly distributed traffic, MAN 57

~

List of vii

4.7 Network performance under Self Similar traffic, uniformly distributed traffic,

WAN. 58

4.8 Network performance under Self Similar, non-uniformly distributed traffic,

WAN. 59

viii

List of Tables

2.1 PHM-Example 29

3.1 Expected Delay values 32

3.2 Priority Encoder 46

3.3 Thermo_ Encoder 46

4.1 Timing Results 61

'
~ 4.2 Resource Utilization Results 61

~
'
1
1
•
t
1

ix

List of Acronyms

2DRR 2Dimentional Round-Robin

AAPN Agile All-Photonic Network.

ASIC Application Specifie Integrated Circuit

Bps Bits per Second

BS Burst Switching

DRRM Desynchronized Round-Robin Matching
,/~, FIFO First In First Out Queues

FIRM First-Come-First-Serve in Robin Matching

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

HOL Head Of Line

IQ Input Queuing

LAN Local Area Network

LRD Long Range Dependence

MAN Metropolitan Area Network

OBS Optical Burst Switching

OQ Output Queuing

OTDM Optical Time Division Multiplexing

OWDM Optical Wave Division Multiplexing

PHM Parallel Hierarchical Matching

PIM Parallel/Pro babilistic Iterative Mat ching

PRRM Probabilistic Round-Robin Matching

RDSRR Rotating Double Static Round-Robin

RRM Round-Robin Matching
/--,---.

List of Terms

SRA

SRD

TDM

VoD

VoiP

WAN

WDM

WWFA

Single Round-Robin Arbitration

Short Range Dependent

Time Division Multiplexing

Video On Demand

Voice Over IP

Wide Are a N etwork

Wave Division Multiplexing

Wrapped wave form arbiter

x

l
~

'

1

Chapter 1

Introduction

1.1 Introduction Photonic networks:

The telecommunication world is witnessing an enormous increase on the demand for

bandwidth due to the emergence and rapid growth of broadband services. The evolution of

network services is facing challenges ranging from performance reliability, scalability and

resource utilization, to service provisioning and profitability. The introduction of optical

networks resolved performance and utilization challenges. N etwork agility on the other

hand, explores dynamic service provisioning in attempt to maximize profitability.

Transmission through optical fibers brings about several advantages, like large band­

width, immunity to noise and interference, and low costs per unit bandwidth. Thereby,

optical networks provide high capacity, supporting high bandwidth services. The definition

of optical networks refers to the transmission through optical-fibers; the terms optic and

photonic are used interchangeably in this thesis. Existing networks involve the integration

of optical networks and electrical switching, which requires conversion between the opti­

cal and electrical domains upon switching. The conversion process forms a bottleneck in

such hybrid networks. Furthermore, developments in optical technologies introduced opti­

cal switches that are transparent to data format and bit rate, and have greater switching

capacity than electronic switches. All-optical networks utilize optical switches, where both

transmission and switching take place in the optical domain, thereby avoiding the conver­

sion bottleneck. However, severa! tasks concerning buffering, addressing and labeling are

not supported in the optical domain, which complicates the design and implementation of

1 Introduction 2

the network.

The popularity of broadband applications, for example VoD and VoiP, is creating

unpredictable network environments. Dynamic network configuration and automated ser­

vice provisioning are required to support such environments through a cast-efficient ap­

proach. The term Agile, in Agile All-Photonic Networks (AAPN), refers to the ability to

optimize network operation in a dynamic fashion,dynamic reconfigurability.

1.2 AAPN

AAPN is a research program that targets the exploitation of agility in all-photonic net­

works, as the name implies [1]. The program is structured into three themes: Networks

and Architecture, Enabling Technologies and System Integration. The research clone in

this thesis contributes to the first theme, where it investigates the application of scheduling

techniques that best suit the network requirements. The second theme follows the devel­

opments of optical technologies, and finally the third combines the findings in the first two

themes.

Traffic enters and leaves AAPN through edge nades; ingress edges represent source

nades, while egress edges represent destination nades. Edge nades are connected through a

crossbar core switch. The switch connects ingress and egress nades to enable transmission

between networks connected to AAPN.

The extension of data paths of all-photonic networks, to reach within close distances of

end-users, comprises the motivation of AAPN's first theme [1]. Network agility refers to

the ability of the network to perform multiplexing for dynamic allocation of the bandwidth

to traffic fiows. In AAPN, agility is achieved by employing resource sharing methods; OBS

or OTDM, to WDM.

1.3 TDMA and time-slotted scheduling

Xiao et al. [2] Investigated the performance of AAPN under two modes of resource

sharing; OBS and two classes of OTDM. Slot-by-slot scheduling and frame based OTDM

1 Introduction 3

comprise the two classes of OTDM. The study revealed the superiority of OTDM over OBS

in terms of performance measures. Slot-by-slot achieved better performance in MANs,

while frame-based OTDM performs wellin bath MANs and WANs, but requires complex

signaling. Slot-by-slot scheduling is adopted in the study present in this thesis.

1.4 Objective of the study

A scheduler resides in the control unit of the core switch, where it runs a matching

algorithm to configure the crossbar inter-connects. The scheduling process steers the per­

formance of the network, and could form a bottleneck in such high speed networks. Perfor­

mance attributes of the network, and algorithms' running times, form the basic criteria for

evaluating schedulers in AAPN. This thesis presents a study of severa! time-slotted algo­

rithms, addressing the criteria mentioned above. Research was first conducted to nominate

a number of schedulers for the study. The application of each ofthe nominated schedulers

was further simulated using an OPNET1 madel that emulates AAPN [3], to evaluate the

effect on the network's performance. Finally the speed of convergence of one of the algo­

rithms was simulated through a hardware madel design. Timing assessment of the rest of

the algorithms was done through associating results from the simulation madel and those

reported in the litera ture review.

Maximum matching algorithms find the maximum number of matches possible in a

certain event. On the other hand, maximal matching algorithms [4] explore an iterative

approach, where the number of possible matches increases with the number of iteration

runs. Maximum matching proved to be optimal in terms of performance but complex in

comparison to maximal matching algorithms.

Nonetheless, sorne maximum matching algorithms, like SRA proved to be less complex

than others, while achieving the same level of performance [5]. PIM was one of the first

maximal matching algorithms to be considered. The application of PIM [4] to AAPN was

dernonstrated in previous work [3] [2]. Xiao [3] also proposed a modified version of PIM

and evaluated its effect on AAPN. RRPM is the basic Round Robin arbitration algorithm.

The algorithm iSlip [6], a modified version of RRPM, has grown to be a research standard

in the scheduling literature. Later on, diverse variants of arbitration schedulers started

1 A networking simulation tool

~·.

1 Introduction 4

emerging like DRRM [7], RDSRR [8], FIRM [9], offering sorne performance improvements.

Hierarchical matching forms a third category of maximal matching algorithms, PHM [lü]
[11] belongs to this category. PIM, iSlip, PHM and SRA were adopted for performance

evaluation in the AAPN environment, using the OPNET madel.

Switch controllers utilize ASICs or FPGA chips torun their scheduling algorithms. The

study of the hardware requirements and actual running time of a scheduler can be achieved

by implementing its functionality on FPGA chips, due to their applicability and low cast.

Reference [12] briefly discussed the basic hardware design of iSlip's protocol in embedded

systems. Moreover, studies conducted by McKeown and Gupta [13] involving the Tiny

Tera project2 [14] , tackled several aspect of the hardware design of iSlip like algorithms.

McKeown and Gupta [13] presented the optimal solution proving that the algorithm meets

the requirements of Tiny Tera. Finally, the running time estimation of PHM was discussed

in [15] without any design specifications.

The simulation madel used in this study employs a Cyclone II FPGA chip. It adopts

a simplified design that improves on the madel in [12] [16] and exploits the results in [13].

The results obtained from running the simulation madel for different numbers of nades are

used as an analysis reference to assess the running time of the rest of the algorithms.

1.5 Outline of the thesis

The following chapter provides the reader with the necessary background regarding

the architecture of AAPN, the slot-by-slot scheduling process and the characteristics of

the researched scheduling algorithms. Chapter 3 describes the tools utilized in the study,

presenting a complete madel derivation for bath the performance and hardware complexity

simulations. Results obtained from bath models are illustrated in chapter 4. The chapter

provides a comprehensive discussion of the results. The thesis concludes with a summary

of the basic results and proposais for future work in chapter 5.

2Tiny Tera is a packet switch with a switching capacity close to 1 Tera bps

5

Chapter 2

Background

Network services are developing to keep pace with the booming popularity of broadband

applications. The development of services is facing challenges ranging from performance

reliability, scalability and resource utilization, to resource allocation and profitability. Fur­

thermore, the evolution of network technologies is progressively facilitating the resolution

of such challenges.

The maturation of optical technologies supports optical networking, which consequently

opens new doors for networking advancements and architectures. Photonic networks pro­

vide ideal performance, utilization and scalability solutions. Network agility explores ca­

pabilities offered by engineering approaches, to employ dynamic resource allocation in an

attempt to maximize profitability. An introduction of an agile all-photonic network is out­

lined in this chapter.

One should note that networking technologies are simply tools, and that their employ­

ment practices have a great influence on their effectiveness. Optical switches comprise a

good example in the context of our study, where their performance is affected by the net­

work architecture, topology, and scheduling schemes.

The chapter starts by presenting the AAPN research project, which structures the

framework of this thesis. The second section briefly discusses time-slotted transmission

and resource sharing techniques, presenting conclusions drawn from former studies regard-

6

ing scheduling in AAPN. The last section provides a detailed description of scheduling

algorithms, and their adaptation to conform to the AAPN environment.

2.1 Agile All Photonics Network

AAPN is a research network funded by the Government of Canada's Natural Sciences

and Engineering research Council (NSERC), and other Canadian companies and laborato­

ries [1]. The project was launched in 2003 on a five year agenda.

Communication networks were initially purely electronic, and then evolved to form a

hybrid of electronics and photonics. Hybrid networks involve optical transmission and

electronic switching, where domain conversion is required from optical to electrical upon

switching, and back to optical before transmitting. Finally the increasing demand for

bandwidth induced the introduction of all-photonic networks, currently a major concern

in the field of telecommunications. Transmission and switching in all-photonic networks

take place in the optical domain, eliminating the need for any kind of conversion between

domains. All-optical networks utilize optical switches that are capable of handling data at

higher speeds than electronic switches, which indicates that switching1 is faster and the

conversion bottleneck (OEO) is avoided. Optical switches are transparent to data format

and bit rate, which facilitates processing and configuration. On the other hand, several

tasks like buffering, addressing and labeling are not supported in the optical domain, which

complicates the design and implementation of the network.

AAPN's main motivation is to extend the data path of all-photonic networks as close as

possible to the end-users side [1]. Such an objective could be achieved by network agility.

Network agility refers to the ability of the network to perform multiplexing for dynamic

allocation of the bandwidth to traffic ftows. In AAPN, agility is achieved by employing

resource sharing techniques OTDM or OBS to WDM.

1 Assuming the technology of all-optical-space switches will reach a point to support high capacities,
high port-count and fast-reconfiguration[17].

2 7

2.1.1 Netw.ork Design

The topology of the network has a significant effect on its implementation and perfor­

mance. Sever al aspects were taken into consideration in designing the layout of AAPN.

Major concerns are explained below:

1. Application:

Being a core network, AAPN requires a robust topology, one that would accommodate

for the occurrence of faults and continue to distribute traffic loads over a large number

of switches. Mesh topologies are most suitable for core networks.

2. Capacity:

Photonic core switches have huge capacity which could be suppressed by the employ­

ment of a mesh topology. Efficient capacity exploitation would be achieved through

scalable and less complex topologies, typically tree or star.

3. Control of All-photonic switches:

Due to the lack of buffering and other packet switching tasks, meticulous control

functionality is required to resolve potential contentions among ingress nodes. The

coordination of the switches would be very complex in a mesh topology. Again star

topologies are far more appropriate for reducing the cost and complexity of the control

challenge.

Vickers and Bashai [18] proved that overlaid star topologies outperform mesh archi­

tectures in all-photonic networks, in a study launched for an earlier all-photonic network

project, Petaweb. Mason et al.[19] addressed the problem of topological design in AAPN.

The study investigated an overlaid star network topology, regarding several aspects: cost,

capacity and traffic demand. Among the conclusions of the study was a confirmation of

the apt ness of the composite star topology in AAPN.

An overlaid star topology is depicted in figure 2.1, where a star layer forms the basic

unit of the structure. The edge nodes in the overlaid stars are logically connected. The

Logical mesh-like connection targets robustness by compensating for the point of weakness

in star topologies.

{-~-

2

Photonic Core
Switches

Fig. 2.1 Overlaid Star architecture:[17]

2.1.2 Network Architecture

8

AAPN consists of a multilayer star network refer to figure 2.1, a single star is illustrated

in figure 3.3. One should note that wavelength conversion is not supported by AAPN. Edge

nodes form the ingressjegress points to/from the network. Data transmission between two

nodes takes place through a single star within a single wavelength. Thus a wavelength

on an outgoing link of a photonic switch is allocated to only one connection through the

network. As a result, there is no interaction between data amongst the stars, confirming

the independence of the stars and the distributed control of the core switches.

In summary, data paths between edge nodes and the core switches are purely photonic.

Conversion takes place at the edge nodes, from the electrical to optical domain and vice

versa. Buffering takes place at the edge nodes and will be discussed in the following section.

2.1.3 Multi-Queue Buffers

Electrical cross bar switches employ input buffering, output buffering or a combination

of both with a speed up factor. M. Karol et al. [20] provided a comparison between Input

Queuing (IQ) and Output Queuing (OQ) in a packet switch. However, optical cross bar

switches do not support queuing on either side of the switch. Therefore, queuing in AAPN

takes place at the edge nodes.

9

Output
Queulng

·cross bar
switch
fa bric

l3l112t 1 1
.. oftil..jfjl ---1414121

...... _ 2 2

1112121 3 3

.. 1311121 _
"11.1 1414121

... --· :~ ~
--~-

.... __ 1112121
!

1113121 4 4 ' 1113121

Fig. 2.2 IQ versus OQ in cross-bar switches

OQ exhibits sever al advantages over IQ [20], but in volves simultaneous transmission

of more than one packet through the switch. Figure 2.2 illustrates the requirement of

transmitting up to N packets to the same output port in OQ, while only one packet could

be sent in the IQ cross bar. Such a simultaneous transmission requires internai speed-up

S in the cross bar fabric, 8=4 in the figure. The speed up requirement complicates the

implementation and memory requirements of the switch. As a result, cross bar switches

usually employ IQ.

In a best effort environment, each input port utilizes a FIFO queue to buffer packets

that are destined to any of the output ports. Head Of Line (HOL) blocking is a consequence

of FIFO queuing. HOL blocking occurs when a packet destined to a certain free output

port X is kept waiting because a packet ahead in the queue, destined to another output Y,

is blocked. HOL blockage contributes to high latency delays and throughput deterioration.

M. Karol et al. [20] proved that the HOL blockage limits the maximum throughput of a

single IQ switch to 58%. Several techniques were suggested to mitigate the effect of HOL.

Virtual output queuing, introduced by Tamir et al.[21] proved to be the most efficient

approach. Virtual Output Queues (VOQs) form logical separations within a single buffer,

each separation buffers packets targeting a single output port. By that, N VOQs are

required in each input port, for an N x N network.

The term VOQ switch refers to the structure employing VOQ buffering in a cross bar

switch. VOQ switches became really popular due to their high throughput and cheap

implementation. The architecture of AAPN exploits the benefits of VOQs by employing

them in each edge node. Figure 2.3 demonstrates the VOQ cross bar switch model employed

in the study.

Scheduler:
ISIIp,PIM or PHM

Edge
Nod es

r-------~

switch
fa bric

Fig. 2.3 VOQ cross-bar switch in AAPN

2.2 Agility through Resource Sharing Mechanisms

Agility in AAPN is enabled through the network topology and deployment of photonic

switches. Photonic switches operate in the order of sub-microseconds, providing a huge

margin for granularity in resource sharing. Moreover, the overlaid star topology supports

the introduction of various resource sharing techniques, OBS and OTDM are examples of

such techniques.

In OBS, traffic is assembled into bursts according to an aggregation technique, before

being sent to the core switch. Whereas in OTDM, sources are allocated time slots through

which they can send a specifie amount of traffic. Therefore, the difference between the two

schemes lies in the assembly and amount of traffic transmitted between the edge nodes and

2 11

the cross bar switch. The functionality of OTDM entails synchronization among the edges.

Overlaid star topologies support network synchronization, enabling the application of

OTDM in AAPN. Moreover, simulations in [2] and others in [19], revealed that OTDM

techniques are more robust to traffic variations in the network, which induced the adoption

of OTDM techniques in AAPN.

Statistical slot-by-slot scheduling and frame based deterministic sèheduling comprise

two classes of OTDM. In slot-by-slot scheduling, request signais from the ingress nades are

used to reserve the output ports of the switch on a slot-by-slot basis. The speed by which

slots are reserved is limited by the delay of signaling required to grant a reservation request,

which in turn depends on the network coverage. Such a limitation deteriorates the perfor­

mance making the application impractical in WAN topologies. Frame based scheduling is

preferable in cases of large distance network coverage. In frame based scheduling, multiple

slots are reserved according to traffic prediction techniques. The scheme is more complex

thau slot-by-slot scheduling, and so slot-by-slot scheduling is employed in this study.

2.3 Slot-by-Slot Scheduling Schemes

Crossbars are configured by electronic controllers that run scheduling algorithms. A

controller runs the algorithm at the beginning of each time slot to resolve contention be­

tween service requests. The scheduling algorithm examines the set of service requests

submitted by the N2 VOQs, where N is the number of nades in the network, and then

forms a matching map between input and output ports. The concept is best described

by the bipartite matching,as defined below. The algorithm is said to converge when the

maximum number of outputs is matched to service requests.

The application of four scheduling algorithms to the AAPN design was studied and

is presented in this thesis. The algorithms are PIM, as a continuation of a former study

[3], iSlip, PHM and finally adapted-SRA. The following subsections provide an overview of

each one of these algorithms.

2 Background 12
~~-----------------------~-----

2.3.1 Bipartite matching

The process of configuring a cross bar switch is equivalent to a matching problem.

Matching problems involve undirected bipartite graphs. The mathematical definition of

these graphs is outlined below, as illustrated by [22].

The undirected graph is: G (V, E)

• V: A finite set of nades or vertices

• E: A finite set of edges

• Endpoints of an edge: Nades that are attached to an edge M: is a match that

acquaints a pair of nades and an edge, where edges do not share common nades

• Matched node: An endpoint of an edge in the matching

In a bipartite graph, the set of nodes can be divided into two disjoint and independent

sets:

V1 and V2, where G:=(V1 + V2, E)

Condition: None of the edges could have bath endpoints in the same set

A matching behavior could achieve one of the foliowing:

1. Maximum Match:

This is a matching approach that joins the maximum number of nades, and conse­

quently contains the largest possible number of edges in a specifie event.

2. Maximal Match:

Matching occurs in stages, where edges are added at every stage, if a match is present.

An input in a maximal match could have one of two states: it could either be a part

of a match, or ali the outputs it requested are already matched. It should also be

noted that every maximum match is maximal.

3. Complete Match:

Matching that covers ali the nades in the graph. A complete match is maximal and

maximum.

1
1

f

•

1

13

Application to the Core Switch

The input nades represent one set of the nades (V1) The output nades represent the other

set (V2) The crossbar interconnections represent the edges.

Figure 2.4 views a bipartite graph demonstration of the crossbar switch, along side its

matrix presentation. The matrix derived from the graph presents the format of the request

sent to the scheduler.

lnputNodes Output Nades
..... -----, --..,

1 r l
1 1

1
1
1 1 1 0 1
1
1 1 0 0 0 1
1 R=
1 0 0 0 1
1

0 0 1 0 1
1
1
1
1

1
j!

1
l

......... , ...

Fig. 2.4 Bipartite Graph

2.3.2 Scheduling schemes characteristics

Different scheduling algorithms acquire different characteristics, ranking their suitability for

the requirements of a certain design. The following is a set of characteristics that should

be taken in consideration when choosing a scheduling scheme:

1. Performance measures:

(a) Utilization and Throughput

(b) Delay

(c) Loss rate

••

14

2. Scalability:

The implementation complexity in cross-bar switches is of the arder O(N2
) , N being

the number of ports. Such a characteristic would be further emphasized by employing

a scheduler that does not scale well. Scalability is a major concern in the choice of a

scheduling scheme.

3. Starvation of nades:

A node is said to starve for service when none of its submitted requests get served,

causing the input queues to overflow and subsequently increasing the rate of packet

loss. Starvation of nades in a crossbar is mainly due to the scheduling behaviour

4. Fairness of the matching:

The flow of sorne algorithms tend to discriminate between input/output ports, on the

service level. Such algorithms impose unfairness in the network.

5. Computational complexity:

The computational complexity of a scheduler influences its hardware requirements

and the speed by which the algorithm runs. While speed is one of the most important

factors in the AAPN design, the scheduler could form a bottleneck in the core. The

design assigns up to lOus to the scheduling operation. A scheduler that requires more

than the allocated interval would not fit the design requirements.

6. Hardware Requirements:

Schedulers are implemented in hardware, usually ASICs or FPGAs, the following

factors should be considered in hardware design:

(a) Simplicity of implementation: Complex schedulers require off-chip communica­

tion, making it more expensive and complex.

(b) Speed requirement

(c) The are a occupied on chip

(d) Memory requirements

(e) Power consumption

(f) Pipelining amendments for better processing utilization

2

2.4 Matching behaviors with respect to the requirement

characteristics of a scheduling scheme

2.4.1 Maximum Match

15

Achieving a maximum match leads to the highest link utilization and throughput among

other matches. However, the complexity of finding a maximum match for an N x N cross bar

is O(N(N+M)), M being the number of edges [4]. Such a high performance complexity

results in speed deterioration, causing high service delay and starvation of the ports. It

also indicates that the scheduling algorithm is not scalable.

More efficient maximum-size bipartite matching algorithms have been proposed in the

literature. Single Round-Robin Arbitration (SRA)[5] is investigated in this study as a

. contribution of maximum-size matching algorithms. The original SRA algorithm does not

suit the AAPN design, for reasons explained in the next section, so an adapted version is

proposed.

SRA

As the name implies, SRA employs a single round-robin arbiter for each of the cross­

bar output ports. Arbiters are used to select inputs that are matched in a time slot.

There are different arbitration schemes, these are further explored in the maximal matching

algorithms' section, and are explained in detail below.

The original SRA algorithm as described in [5], is not iterative and finds up to N matches

in a single time slot. The algorithm uses a dynamic FIFO queue for each output arbiter.

Each queue keeps status records of the inputs' corresponding VOQ, so the queues could

be up to size N. For example, if VOQij has queued cells, output j will have an entry for

input i in its status queue. An output node chooses the value at the head of its queue. The

ar biter then grants service to that input and removes it from the head of the queue. If the

VOQ still has queued packets, it sends a request and gets added to the tail of the queue,

otherwise it loses its spot in the queue.

The algorithm could match more than one VOQ within an input, allowing the input

to send to more than one output in a single time slot. However, a single port in an

optical switch can not be involved in more than one matching in a time-slot, on a single

wavelength. Thus the original SRA algorithm should be modified to fit the AAPN design.

2 16

Adapted SRA is a modified version of SRA and is employed in the AAPN simulation model

for the performance study.

Adapted SRA has the same functionality as SRA, except that matching in adapted SRA

is done between single input/output ports. When an output arbiter sends a grant to an

input port, it waits for an acceptancejrejection message, if the input has been matched to

another output, it sends a rejection message. If the output receives an acceptance message

it follows the original SRA protocol. On the other hand, if it receives a rejection message, it

adds the port's element to the tail of the queue and grants service to the port that appears

next in the queue, and the process repeats.

Properties of the Adapted SRA:

1. Complexity:

SRA and adapted SRA are not iterative, but adapted SRA has a complexity of

O(N2). The Simulations showed that the algorithm is very slow in comparison to

other matching algorithms explored in this study.

2. Scalability:

This property tackles two aspects, the hardware requirements of the algorithm, and

the amount of signaling or communication messaging involved in the protocol.

(a) Hardware requirements: only one set of arbiters is involved in the implemen­

tation of SRA, whereas iSlip and PIM require two sets. On the other hand,

Adapted SRA in volves N queues of a maximum size N, requiring a controller

with larger memory.

(b) Communication messages: The original SRA requires fewer messages than th ose

used in iterative maximal matching algorithms, like iSlip and PIM, discussed

below. Adapted SRA involves extra messaging between the nodes, but still

requires less messaging than maximal matching algorithms.

3. Fairness:

Adapted SRA is a fair algorithm based on the utilization of the FIFO status queues.

The technique of adding the status element of a matched port to the end of the FIFO

queue indicates that the port gets the least priority in the next time slot.

1

17

2.4.2 Maximal Match

Link utilization of maximal matches is much worse than that of the maximum matches;

in fact it could get to law of 50% depending on the matching algorithm.

The complexity of the algorithms vary, but proved to be much less than that exhibited

by maximum matches. Thus maximal matching algorithms are more flexible.

A variety of maximal matching algorithms were introduced in the literature. Maximal

matching is iterative, where the scheduling optimization problem converges to a local max­

imum after running a certain number of iterations. Probabilistic matching algorithms, like

the Parallel Iterative Matching algorithm, PIM [4], is one of the first maximal matching

algorithms. RRPM is the basic Round Robin arbitration algorithm that descended from

PIM. iSlip[6] which is a modified version of RRPM, became a research standard in the

scheduling literature. Thereafter, different ftavors of arbitration schedulers emerged,such as

DRRM[7], RDSRR[8], FIRM[9], offering performance improvements and supporting QoS.

A third scheduling category involves hierarchical matching techniques [10] [23] [24].

Xiao et al. proposed a modified version of PIM in [2] [3]. The modifications were based

on improving the overall performance of the network. Whereas Pan and Yang.[25] and

McKeown and Gupta [13], proposed amendments on existing maximal matching algorithms

targeting hardware efficiency and timing constrains.

Parallel Iterative matching

Parallel iterative matching is a maximal matching algorithm. It randomly chooses the

endpoints of each edge in the bipartite graph. The algoi:-ithm employs independent arbiters

that select nades in a probabilistic fashion.

Simulations clone in [2], [3], [4], and this thesis illustrate that this algorithm yields link

utilization in the range of 85% to 100%, depending on the probability function utilized by

the arbiters, and the number of iterations run by the algorithm.

It has been claimed that randomness redu ces the number of iterations required to achieve

the maximal match [26]. That however is dependent on the random generation process.

For example, if all grants were given to the same input, only one match would be performed

in that iteration, and N iterations would be required to reach a maximal match. On the

other hand, if every granted input is unique, the algorithm would converge in one iteration.

However, on average PIM matches 3/4 of the potential matches in each iteration and thus

18

the algorithm converges to a maximal match in 0 (log2 N) iterations, the mathematical pro of

is provided in [4]. The algorithm is starvation free, which is also due to and dependent on

the random generation process.

Random matching algorithms have sorne drawbacks. The first is that of the hardware

complexity of the algorithm. Each ar biter is supposed to run a random number generation

function, which is highly expensive in terms of hardware [26]. According to scheduling

hardware measures, a tradeoff is usually made between storage elements and processing

time. Unlike other algorithms, PIM does not require memory elements to hold the state

of the matches done in the past. However random generation requires a considerable

amount of time, in hardware. Processing time is more important in the AAPN design,

making PIM disadvantageous in that field. Furthermore, adding extra nodes to the network

means adding extra random generators that are already expensive, which indicates that

the algorithm is not scalable

Fairness is another concern in PIM [6] [4] [26]. Since the selection process done by each

node is completely random and independent, nodes will have different admission proba­

bilities, leading to unfairness among nodes, especially when the nodes are oversubscribed.

Figure 2.5 illustrates an example of unfairness in PIM [26]. The figure demonstrates the

discrimination between ports. Several solutions were introduced by [3] [4]. Traffic moni­

toring in [3] resolves the matter by limiting the submission of a service request to a certain

number of packets. While that does not resolve the matter completely, it does mitigate

unfairness. Weighted matching would be a more effective solution, which requires more pro­

cessing and storage of past connection states, violating the basic properties of PIM. Thus

applying weighted matching to PIM adds to the hardware complexity while improving its

overall performance.

One last problem with PIM is that it does not perform well when running only one

iteration. For a single iteration, the performance of PIM is comparable to FIFO switches,

where it achieves a throughput around 63% (refer to the results chapter). As mentioned

before PIM converges when run for (log2 N) iterations, but that requires a high rate of

operation.

The algorithm takes place through three stages: Request, Grant and Accept:

1

1

• •

1

•

2 19

~Jl = U"

Fig. 2.5 Discrimination among ports in PIM

Request: Each unmatched input submits a service request for each output for which it

holds queued cells.

Grant: Each unmatched output selects one input request, randomly among all the

requests it receives (if any), and grants service toit.

Accept: Each input selects one output grant randomly, if it receives any.

Previous Work

Xiao studied the performance of PIM in the AAPN environment, and proposed a mod­

ified version of the algorithm, called the Adapted-PIM, that performs better under the

design constraints [3]. Adapted-PIM tackled performance and fairness aspects .

The modification was based on improving performance measures in the network. Adapted­

PIM involves a set of memory elements that store requests which are not serviced in an

iteration run; these are called left-requests. For example, if two service requests out of four

are serviced in the first iteration, the other two requests gets stored in memory for the sec­

ond iteration. Requests in the left-request registers get submitted in the next iteration. An

input port kccps on submitting its request until it is scrviced, meaning that in PIM, service

requests experience the round-trip propagation delay over and over until they are granted

service. Whereas the introduction of left-request queues saves the need of generating and

sending new requests, mitigating the propagation delay.

t
l
1

•

2 20

Adapted-PIM introduced another modification on PIM's performance measures, mainly

link utilization, called fill-up matching. Fill-up matching accounts for the possibility of

missing a potential match after running several iteration runs of the algorithm. Basically

the algorithm passes over each and every one of the un-matched nades checking for a

matching possibility. That proved to greatly enhance link utilization and throughput, but

increases the processing time of the algorithm.

Adapted-PIM tackled the issue of fairness by set ting a boundary limit on the number

of packets buffered in the VOQ before a request is sent to the core. The request-boundary

mitigates the chance of randomly matching an input with only one packet, while other

inputs' VOQs are full and about to overftow.

Adapted PIM proved to improve performance measures in the network. However, the

modifications incur extra hardware and require longer processing time, which does not

conform to the constraints of AAPN. Therefore, the original version of PIM is used in this

study with the addition of employing left-request registers.

iSlip

iSlip is an iterative matching algorithm derived from the functionality of PIM. Both

algorithms follow the same three staged protocol and arbitration concepts. However, the

actual scheduling of input/output differs. iSlip employs rotating priority (Round Robin)

arbitration instead of randomness in matching ports. Furthermore, the algorithm enhances

the basic operation of RRM to achieve better performance. The arbitration process will

be illustrated before discussing the properties of the algorithm. Since iSlip is a variation of

the RRM algorithm, the scheduling operation of RRM is outlined first.

RRM devotes an arbiter for every input/output port. The algorithm follows the pro­

tocol outlined in the operation of PIM, but instead of employing randomness in selecting

the ports, it utilizes a round robin scheduler. A single iteration run of the round robin

scheduler follows the steps outlined below:

•

21

Request: Each unmatched input submits a service request for each output for which it

holds queued cells.

Grant: If an unmatched output receives requests, it selects the first input that appears

after the one pointed at by gi and sends it a grant. gi is then incremented (modulo N)

to one location beyond that of the granted input.

Accept: if an unmatched input receives any grants, it selects the first one that appears

after the output pointed at by aj. The pointer is then incremented (modulo N) to one

location beyond that of the accepted output.

Key:

gi: The grant pointer of the arbiter of output[i]

aj: The grant pointer of the arbiter of input UJ
i,j: {O, ... ,N}

The variation between RRM and iSlip lies in the fashion by which gi is updated. In iSlip

gi is only updated in the first iteration, if and only if requesting input accepts the grant

from output[i]. aj are updated the same way in both algorithms [6]. The Grant stage is

the only source of difference between the algorithms. Figure 2.6 presents an example that

demonstrates the operation of matching through arbitration in iSlip. The figure presents

the operation of the algorithm's stages for two iterations.

Grant: If an unmatched output receives any requests, it selects the first input that appears

after the one pointed at by gi and sends it a grant. If the algorithm is in the first iteration,

and an accept is received by the granted input, gi is incremented (modulo N) to one

location beyond that of the granted input. Otherwise the grant pointer would not move.

The fashion by which pointers are updated in iSlip has the effect of desynchronizing

the grant arbiters under certain traffic loads. Moreover, the desynchronization of arbiters

increases the rate by which the algorithm converges, the phenomena was further explored

by DRR[8]. Figure 2. 7 demonstrates the effect of high traffic loads on the synchronization

of grant arbiters.

The behavior of iSlip brings about the following properties[6]:

2 22

1. The algorithm is starvation free:

An input i would keep on requesting service until it is granted. Furthermore, an output

j would serve up to (N-1) inputs before reaching i, where it might need to wait up to

Requests
Input

Nodes t---\
1 1
1 1
1 1
1 1

Output
..-N~d.!!_S

1 \
1 1
1 1

1

Grants
Output
Nod es

(----

1 1
1 1
1 1
1 1

'lts2j: l"' .. 1
1 1
1 4 1

Accepts/Matches
Input Output

Nodes Nodes

:-~-21--":(~~-:
1 1 1

: 1"' 1 :

1' ~1
1 1 ~ \J 1
1 1 1 1

Iteration: 1

1

1

1

1
1

1

1
1
1
1

1

1

1

1
1
1
1

1

1
1

1

1
1
1
1
1
1

l
1

1
1
1
1
1

1

1

1

1 1 1

~~~ 1 

\. ____ 1 
1 1 
1 J 
\._- --" 

(--\ (--\ 
1 1 1 1 

1 0 1 
1.0' 1 1 1 1 

1 1 1 1 
1 1 1 1 

:o: :8: 
1 1 1 1 

Iteration: 2 1 : 1 : 

1 1 1 1 

: 8~{ :8: 
1 ,~ 1 1 
1 ,~, 1 
1 1 "t,.~ 1 

:o~ :vi 
1 1 1 1 

"-·--") "----~ 

1 ~. 1 01 
1 " 1 v 1 

1 1 1 

1 
1 
1 
1 

1 1 1 

:~~4 : : 1 1 ,ol 
l 1 1 ) 
, ____ / '--~ 

., 1 ......_ ___ ,/ 
,..- - -· \ (- - - - ...... ( - - - - ...... 

:o: iQ;"Ji :ru: :: ,e:r:J,,M, 
i (,\ i i ~: .l ts2j· 1 
l
u, , '1 , 

1 1 1 1 1 
1 1 1 1 1 1 

1 11~11 1 '0, 1 ,, 1 

: 'l~ 1 : 1 

!oi 1@: , i ~~2 
1 

1 1 4 1 1 
1 1 1 l '\. __ ...,...,. ......_ ___ .,.., .... ____ .,.., 

,.--- \ 

1 1 

~o: 
1 1 
1 1 
1 1 
1~1 
1 V1 
1 1 
1 1 
1 1 
11'7\1 
tV, 
1 1 
1 1 

1 

1 1 
1 1 

J 
\._- ~ 

Fig. 2.6 Arbitration and matching in iSlip 



2 23 

N time-slots to be accepted (since the granting pointer would not select another input 

otherwise). By th at input i will certainly be served in a time frame less th an N2 slots. 

2. The algorithm is fair: 

Connections made in the first iteration have the lowest priority in consecutive time­

slot, which is a consequence of the arbitration regime. The algorithm does not dis­

criminate between input/output ports, since the selection takes place in a fixed arder. 

3. Speed of convergence: 

The speed of convergence in iSlip depends on several factors, mainly the offered load. 

At high offered load the algorithm produces a large amount of matches and might 

even converge in a single iteration, 0(1). However, analytical studies showed that 

iSlip converges in at most N iterations under regular traffic load. 

.... 4 
0 ... 
~ e _, 
= z 
~ 2 
< 

0 10 20 30 40 50 60 70 80 90 100 
Offered Load (%) 

Fig. 2. 7 The Effect of traffic load on the synchronization of arbiters[6] 



2 24 

Notes about the hardware requirements of PIM and iSlip 

PIM and iSlip follow the same matching protocol, three-step iterative matching. The 

protocol requires the exchange of about { (N2 + 2 N)log2 N} messages. N2 request messages 

from each VOQ, N grant messages and N accept messages. Furthermore the total number 

of messages is multiplied by the number of iterations by which the algorithm is supposed 

to converge, the equation assumes that it is log2N on average2 . Each of the messages 

contain log2 N bits, which accounts for the hardware requirements of the scheduler, mainly 

the number of the I/0 pins, memory, on-chip area, and power consumption. So far the 

discussion has disregarded the hardware requirements of the implementation of arbitration; 

that is discussed in detail in chapter 4. 

Peng and Yang [25] proposed a hardware efficient two step iterative matching algorithm 

for VOQ switches. The proposed algorithm incorporates arbitration into the request step 

and eliminates the accept step. The arbitration in the request step selects one request 

service from each of input ports, and sends it to the grant ste p. However, it should be noted 

that sending a single request indicates that the number of grants to be received gets limited 

to a maximum of one, eliminating the need for the accept step. Figure 2.8 demonstrates 

the idea of two step matching algorithms. The figure shows a matching problem resolved 

through three step matching (a), and through two step mat ching (b). The algorithm has 

a shorter scheduling time and requires fewer message exchanges. Analytical studies and 

simulations presented in [25] show that the rate of convergence of the proposed algorithm 

is close to that of the three-step algorithm. 

McKeown and Gupta [13] proposed a pipelined implementation of the three-step iter­

ative matching protocol in iSlip. The implementation pipelines the grant step of iteration 

i with the accept step of iteration i + 1. A sequential flow of iterations seems to be the 

only possible approach, due to the dependence of the grant step of one iteration on the 

accept step of the previous iteration. The grant step uses the feedback from the accept step 

to identify the matched inputs, so that it would disregard their requests in the following 

iterations, as seen in 2.6. However, the functionality of the grant step of iteration i could be 

partially governed by the grant step of iteration i+l. To further elaborate, it is known that 

an input will definitely be matched upon receiving at least one grant, so if the grants pro­

duced in one iteration are ORed together and fed to the grant step of the second iteration, 

2Simulations show that this figure is less in iSlip 



2 25 

Grant 

(a) Three Step Matching 

0 

vg 
(b) Two Step Matching 

Fig. 2.8 Operation Stages of Iterative PIM/iSlip 

that grant step will disregard further requests from the granted inputs, without the need 

for any further input. The pipelining implementation decreases the number of clock cycles 

required to run a number of iterations of the algorithm. For the study outlined in [13] the 

number of clock cycles were reduced from 4i to 2i+2. The original implementation requires 

four clock cycles per iteration, two clock cycles for each step while joining the request and 

grant steps. 

PHM 

Hierarchical matching algorithms form a different class of schedulers, based on maxi­

mum size guesses [lü]. The algorithms opcratc by dividing the VOQs into N maximum 

throughput groups. Each of the groups is assigned to a unit hierarchy in the system. 

Matching is done with respect to thé hierarchical level of each VOQ, acting as a priority 

measure. 



2 26 

2DRR[24], WFA and WWFA[23] are algorithms in that class. The algorithms demon­

strate variations of the basic arbitration matching process. Figure 2.9 below, illustrates the 

operation by which the basic WFA and its enhanced version (WWFA) blend arbitration 

and hierarchical techniques. In WFA, an arbitration wave propagates through a set of 

arbiters, the arder by which these arbiters are traversed sets their level in the hierarchy. 

WWFA follows the same strategy as WFA, but employs a different arbitration wave, as 

depicted by the figure. WWFA converges faster by increasing the number of arbiters in 

each class. Moreover, 2DRR is a generalization of WFA and WWFA, the algorithms follow 

the same arbitration through classes mechanism. However, 2DRR enhances fairness by 

altering the pattern by which the arbiters are categorized, every time slot. 

,. 
•' . • 

WFA ,• 
·' 

.. ,. 

•' 
,. 

WWFA 
/ 

,/'"'' 

.. ,~" 

Requests 

Cross bar 
switch 

-' ' •' _,/ 
. 

,• / 

•' / . . •' .. •' . .. .. 
.. ' ,• ~JI.,/ . •' ,• 

' ,. / / ,. . •' 

[/< / ,. . 
" 

.. 
•' •' i',l' ,• 

Cro~~.o~~·····.,, 
switcb·'·., ··, 

.,~""' .. ~""/ .... ~.. "' ...... 
,;l ,/ 

.,;,.c~~ ~~"' l' ............ 
.... 

~././ , ....... ' . 
~.,.,," >l 

f(/''•, 

•' •' 

' 

' 

' ' L// l ..... ··· ,/<' / 
•' 1./ • / 

/ /. [ . ..-/ .... /"' •' .... · ,• ,. 
,~1'~~ . ,• . .... 

2N -1 
Steps ... 

N 
Steps ... 

Fig. 2.9 WFA vs WWFA 

Match 

Cross bar 
switch 

Cross bar 
switch 

2DRR and WWFA require a maximum of O(N) iterations to converge, and so are 



2 27 

called sequential hierarchical matching algorithms. A parallel hierarchical matching (PHM) 

scheduler was introduced by [lü] [11]. 

A hierarchy matrix H in PHM is used to divide the VOQs into different levels. The 

matrix is then associated with all the service requests ( arranged in a request matrix) to 

form the matching. Below is presentation of the PHM algorithm along side the definition 

of the variables used, as outlined in [11]. Finally an example demonstrating the matching 

process in PHM is provided. 

Definitions in the PHM algorithm: 

• rij i,j={l, ..... ,N} : Indicates the submission of a request from VOQ(i,j) 

=> if riJ=l then VOQ(i,j) is requesting service, otherwise VOQ(i,j)is empty SiJ 

i,j={l, ..... ,N} : indicates that VOQ(i,j) has has been selected for transmission at 

the current time-slot. 

• hij : Hierarchical unit of Sij 

• tiJ : Auxiliary variable used to break the inter-dependence among the groups in 

sequential hierarchical matching. 



• 

2 

Outline of the PHM algorithm: 

1. Initialization of variables: 

s?J=O AND n=O, where n is the number of 

iterations 

2. DO 

(a) Do in parallel: 

IF: 

riJ = 1 AND 

\ik-/= i, sk1=0 AND 

\ik -/= j, s~=O 

then tij=1 else tiJ=Ü 

(b) Do in parallel 

IF: 

tiJ = 1 AND 

\ik-/= i J hkJ > hiJ, tk1=0 AND 

\ik -/= j 1 hik > hiJ, tiJ=O AND 
sn+l = 1 
t} 

3. n=n+1 

IF: n -/= Number of iterations 

THEN: Go to Step 2 

ELSE: End 

28 

Tabe 2.1 presents a detailed workout through a PHM example, given a hierarchical 

matrix H and a request matrix R. 

The behaviour of PHM depends on the routine by which the hierarchical matrix is 

updated. Severa! routines were suggested in the literature. Updating routines must take 

in consideration the nature of the traffic, and the application of the scheduler. 

Xaio [3] discussed the tapie of scheduling for differentiated services in AAPN. Fur­

thermore, the discussion led to the proposai of additional features to the adapted PIM 

to support a class based implementation. Hierarchical matching algorithms support QoS 



29 

Table 2.1 PHM-Example 

2 1 0 1 

[ ~ ~]R=[~ t] H= 
1 0 0 1 

for two iterations step1: initialize 8° to a zero matrix 
0 3 1 0 
3 2 1 0 

Iteration 1, n=O Iteration 2, n=1 

[ ~ 
0 1 

t] [ ~ 
0 0 

~] [ ~ 
0 0 

~] [ ~ 
0 0 

tl = 0 1 :::} Sl = 0 0 t2 = 0 1 :::} S2 = 0 1 
1 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 

Output: The Matching Matrix=S2 

through class based implementations in a more natural way, avoiding the need for addi­

tional hardware and software complications in the system, while maintaining high levels of 

performance 

F. J. Gonzlez-Castao et al.[ll] provided an analytical comparison between the timing 

constraints set by PHM and other iSlip-like algorithms. The study in [11] also presented 

timing results obtained from implementing the two classes of algorithms using Ambit ASIC 

technology. Moreover, Soto et al. [15] evaluated the hardware requirements of PHM by 

implementing its functionality on a FPGA chip. The results obtained from both studies 

illustrated faster timing responses in PHM. 

~] 



30 

Chapter 3 

Simulation Madel 

This chapter presents the study of the proposed schedulers in AAPN. The study branches 

to simulate the performance of the schedulers on one band, and the hardware implementa­

tion, and timing measures on the other band. An OPNET [27] madel was utilized to test 

the performance of each of the schedulers in the AAPN environment. Furthermore, the 

hardware implementation of iSlip was evaluated by implementing its functionality on an 

FPGA chip. An association between the simulated results and the characteristics of iSlip 

is further exploited to evaluate the hardware and timing requirements of the rest of the 

schedulers. 

The first part of the chapter depicts the AAPN performance madel. This part starts 

by outlining performance measures collected from the OPNET madel. It also discusses the 

exploitation of certain traffic patterns in the design. The simulation madel is then described 

in detail. The second part demonstrates the hardware design of the iSlip scheduler. 

3.1 Performance Simulation Madel 

The objective of this part is to evaluate the performance of the network as a result 

of employing different schedulers. The performance of the network is not the only con­

cern, since the actual hardware implementation of sorne scheduling algorithms could be 

impractical. However, this part of the study disregards the practicality of the hardware 

implementation and focuses on the performance of the network. 

In previous work [3], one layer of the AAPN star architecture was modeled in OPNET. 

The madel collects performance measures resulting from the employment of different sched-



3 Simulation Model 31 

ulers under different traffic patterns. The scheduling algorithms discussed in chapter 2 were 

coded in the simulation model, for evaluation and comparison purposes. 

3.1.1 Model Derivation 

The design of a simulation model is based on three elements: the input injected into the 

model, the processing operation, and the output of the processing. Defining these elements 

is very important in the design process. 

The processing operation is defined by the AAPN networking problem, the main con­

cern at this stage is the scheduler. A set of proposed schedulers were discussed in the 

previous chapter. Moreover, the traffic injected into the network has a significant impact 

on its performance. Consequently, different input traffic patterns and distributions were 

introduced into the model. The performance of the model is evaluated by analyzing its 

output. The design should collect a set of predefined measures that give a complete view 

of the impact of the paramters in the system, which comprise the traffic and scheduling 

algorithms in the context of this study. 

This section provides an overview of the inputs and outputs of the AAPN model. The 

first part discusses the outputs required to evaluate the performance of the network. The 

second part presents input traffic options and their potential effect on the performance. 

Performance Measures 

Below is an outline of the performance measures collected by the simulation model: 

End-to-End Delay 

Packets encounter different kinds of delays while travelling from their source to their 

destination. The total delay illustrates the time difference between the sending instant and 

the reception instant,and is referred to as End-to-End delay. Equation 3.1 illustrates its 

formulation. 

Total Delay = Propagation Delay + Transmission Delay + Queue latency ( 3.1) 



3 Simulation Model 32 

Propagation Delay : 

The time taken by the packets to travel though the media, optical fiber in this case, is re-

ferred to as propagation delay. It is calculated through the basic formula: Delay = Distance/Speed. 

While all packets travel at the same speed, distance is the variable in the equation. Thus 

the distance between the source node and the switch, and that between the switch and 

the destination sets the propagation delay of the packets. Table 3.1 presents delay val-

ues in different coverage scopes of all-photonic networks. Finally, it should be noted that 

propagation delays affect switching and scheduling time. 

• Speed: Photons travel at a speed that equals tow thirds the speed of light, and is 

approximated to the speed of light in this study. 

• Distances: Generally depends on the area coverage of the network, and specifically 

the location of the nodes in the network. 

Table 3.1 Expected Delay values 

Network Distance Bound Delay 
coverage range (Km) (s) 

LAN 1-10 Maximum 0.5x1o-4 

MAN 10-100 Average 2.4x1o-4 

WAN 2 100 Minimum 4.5x1o-4 

Transmission Delay : 

The time that elapses between sending the first and the last bits in a packet is called the 

transmission delay. This type of delay depends on the length of the packet and the band­

width of the link. Transmission delays are independent of the switching and scheduling 

techniques. An edge node starts transmitting after it receives a grant from the scheduler, 

meaning that the transmission delay effect starts after scheduling and switching take place. 



• ' 

• 1 

t 

3 Simulation Model 33 

Queue Latency : 

The controller in the core switch builds a matching matrix and sends signais to configure 

the switch at the beginning of every time slot. Packets stay idle in the queues during that 

scheduling and configuration time, that is referred to as queue latency. Queue latency 

contributes to the end-to-end delay of the packets and is tot ally dependent on the scheduling 

algorithm and the controller performance . 

Scheduling time could forma bottleneck in a high speed network like AAPN. Moreover, 

OPNET is a DES1 simulator that does not allow the study of the exact time spent by the 

scheduler. That however has been studied using another tool and will be discussed later. 

The simulation design devotes 1 us for switching. 

Loss Rate 

The AAPN design employs a cross-bar switch in its core. Cross-bar switches are non­

blocking, which is crucial in meeting the performance requirements of the network. Con­

sequently, the packet loss rate in the network is mainly due to the overflow of the queues, 

which includes queues storing packets and those storing left-requests. However,left over 

request buffers were made sufficiently large as to recover from lasses in left over requests, 

which could lead to a system deadlock. 

results showed that queues storing left-requests are less likely to overflow and so data 

queues are the main concern of this study. 

That is to say, the rate by which packets are dropped in the network depends on the 

size of the VOQs, and the performance of the scheduling algorithm. Studying the effect of 

a scheduling algorithm on the rate of packet loss requires setting the size of the VOQs to 

a constant value. The VOQ size could cause a performance bottleneck in the network, so 

the effect of the size must form a fair tradeoff between the delay and the packet loss, this 

is further elaborated in the following section. 

1 Discrete Time Event 



3 Simulation Model 34 

Utilization and Throughput 

The throughput of a network expresses the amount of data delivered from the source to 

the destination per unit time, and is measured by bits/s. Throughput is calculated by elim­

inating the amount of blocked traffic from the offered load, comprising the carried traffic 

in the network. Moreover, the blocking probability in the network is the ratio of dropped 

to offered packets. Finally the utilization of the network is the ratio of the carried traffic 

to the capacity of the links. Equation 3.2 illustrates the formulation of the link utilization 

measure in our design. 

Utilization = Carried traffic/c .t apac1 y 

Carried traffic = Offered load(l- BP), whereBPis the Blocking Probability (3.2) 

BP - Dropped Packets; - N umber of offered packets 

Traffic Patterns and Distributions 

The performance of a scheduling algorithm is highly affected by the nature of the input 

traffic and its distribution among network hasts, as final destinations. Traffic patterns 

are modeled by their arrivai events. The study touches upon two types of arrivai events; 

events that are independent and events that exhibit long range dependence among each 

other. The other aspect of traffic is its distribution among edges, it could be uniform or 

non-uniform. 

Conventional network modelers treat traffic arrivai events as being independent. Poisson 

arrivai processes with exponential holding times form a convenient and easy approach for 

modeling such behavior. Other sophisticated models express the autocorrelation or short­

range dependence (SRD) in bursty traffic. Such models are based on Markov-modulated 

Poisson or Bernoulli processes. 

It was proven in the 1990s[28] that long-range dependence (LRD) is present in many 

types of networking traffic, including Ethernet LAN, WAN and ATM WAN traffic. Traffic 

streams exhibiting LRD are highly correlated at every timing scale and are so called Self 

Similar, refer to figure 3.1. Self-similarity is confirmed by examining the decay of the 



3 Simulation Model 35 

autocovariance between traffic samples. The function decays exponentially in the case of 

SRD and hyperbolically in the case of LRD. 

Figure 3.1 [28] illustrates self similarity in traffic, presenting packet counts collected from 

monitoring Ethernet traffic for 27 hours. The result is portrayed through five time scales, 

where the time resolution is increased from one plot to the next to show the autocorrelation 

between the samples. The plots demonstrate a similar pattern, distribution. That is, the 

traffic seems to exhibit the same behavior over long (minutes) and short (milliseconds) time 

scales. 

There are levels of self-similarity in time series exhibiting long-range dependence. The 

Burst parameter (B) is a measure of the level of self-similarity. Below is an illustration of 

the effect of the boundary values of B. 

0.5 < B < lwhere: 

B = 0.5 indicates the absence of Self similarity, presenting Poisson traffic 

B = 1 indicates exact Self Similarity 

B = O. 73 real world traffic models 

The effect of LRD on the utilization of the network is demonstrated in figure 3.2. The 

figure displays the utilization of the simulation model (refer to the following section for 

details about the model) employing three iterations of the iSlip scheduler under different 

levels of Burst parameters, with 80% offered load. The graph corresponding to B=0.5 

resembles the utilization under Poisson arrivais, which can be confirmed by the results 

presented later in chapter4. The graphs express the severity of the LRD effect on the 

network, where the graph representing highly self-similar traffic (B=0.9) shows a much 

lower utilization than that representing traffic with B=O. 73. 

The discovery of the self similarity nature of traffic raised doubts about modeling ar­

rival events using conventional Poisson and Markov-modulated processes. Beavily tailed 

distributions are used to model self-similar traffic. The Pareto distribution is the simplest 

heavily tailed distribution that is hyperbolic over its entire range, refer to equation 3.3. 

A random variable X has a heavy tail distribution if: 

Pr [X > x] x-a where x---+ oo, 0 <a < 2 (3.3) 

Stearing the level of Self- Similarity: a= 3- 2H 



3 Simulation Model 

-~-~-, 

·~ 100 
p m 

.~ m 
~ olliJ .... ., :20 ...-: 

!;1 0 
llo 

"' 
~ ·-a 15 

p 

.~ 10 

1:: 
"' s .... 

' 
.. 

...-: 
!;1 

llo D 

~ 
Fig. 3.1 

/ 

o 100 2Œ1 311D a &:O 6IHI 1m !llO :uoo 1rm 
Tim.e U:nits,U:nit=lOOsec (a) 

1] 1'D~ 21!0 3011 lOO 500 ml 700 ,900 !iliO !OOD 

Tim.e U:nits,U:nit=lOsec (b) 

[Il ~DD' 21!0 300 0) SDO &!ID 700 aoo 500 10011 

Tim.e U:nits,U:nit=lsec (c) 

0 111~ 2llO 300 ~ 500 ~ 100 800 !iliO 1000 

Tim.e U:nits,U:nit=O.lsec (d) 

0 ~DO :mo 3011· 400 :00 tiOD 7llll ~00 g 10011 

Tim.e U:nits,U:nit=O.Olsec (e) 

Self Similar behavior of Ethernet traffic [28] 

36 



3 Simulation Model 

2000~~~~~-.......,,------...... -7-.....,~--, 
.............. H=0.9 

1800 H=0.73 

1600 

I 1400 

g 1200 
e:. 
CD 
·~ 1000 
CD 
:::l 

~ 800 
0 

600 

400 

200 

--&-H=0.5 

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
Utilization 

Fig. 3.2 The Effect of different Burst parameter values on an AAPN MAN 
topology. 

Self similar traffic could be modeled through one of the following approaches: 

1. Generating packets with sizes drawn from a .heavily tailed distribution. 

37 

2. Employing several independent and identical ON/OFF sources, where the period of 

traffic generation follows a heavy tail distribution. OPNET provided models generat­

ing self similar traffic based on this concept [29] [30] 

The simulation design utilized in this study generates two kinds of traffic; independent 

arrivai events and self-similar traffic. The independent arrivai events are modeled using a 

Poisson process, with an exponentially distributed packet size. The self-similar traffic on 

the other hand is modeled through drawing the packet size from a Pareto distribution with 

H=O. 73, the model was t~sted for H=0.5 to confirm the absence of Self-similarity and the 

validity of the approach. 

As for the distribution of traffic among network hosts, two options were followed in the 

simulated design: 

1. Uniform traffic: Generated traffic is uniformly distributed among destinations. 



3 Simulation Model 38 

2. Non-uniform traffic: Traffic is distributed in a weighted fashion, where more traffic is 

sent to particular destinations than others. Following the approach used in [3],equation 

3.5 is used to genenùe the non-uniform traffic, where Àij represents the traffic intensity 

from ingress i to egress j, refer to equation 3.4. The weight of distribution among 

the nades is determined by w, where 0 S w S 1. 

N-1 N-1 

ÀiJ = 2.: ÀiJ = À [ w + ( N - 1) 1~~] = À = 2.: ÀiJ (3.4) 
j=O i=O 

À;;~ {À 
0 if i = j 

(w + 1-w) if j = (i + 1) mod N (3.5) N-1 

À e-w) otherwise N-1 

3.1.2 Simulation Design and previous work 

An OPNET prototype was designed in previous work [3] to madel the architecture of one 

layer of AAPN. The mo del was employed to simula te the performance of the network 

when PIM is employed as a scheduling algorithm. The reader is advised to refer to [27] [3] 

for details about the actual implementation of the design in OPNET. This section briefiy 

discusses an 8 edge node version of the madel. The choice of performance shaping variables 

is explained in terms of the measures discussed in the previous section. 

Simulation Design 

An 8-edge node madel of the design is illustrated in figure 3.3: 

• Traffic sources: These modules are used to generate traffic according to a given distri­

bution. The traffic is then offered to the ingress nades. 

• Links: Used to deliver packets and control signais (requests and grants) after a certain 

delay from an ingress node to the core switch, and from the core switch to an egress 

node. The delay in the links is set to a value that represents the network coverage. 

• Edge nodes: These nodes form the ingress/egress points of the AAPN network. Traffic 

is passed fromjto these nades to/from the outside networks. Every edge node contains 

(N-1) VOQs for every other edge node in the network. For example edge node 1 in the 

figure, contains a VOQ for the following set of edge nades {2, 3, 4, 5, 6, 7, 8}. When 



3 Simulation Madel 39 

an edge node receives a packet from a source, it stores the packet in its destination 

VOQ and submits a service request on its behalf in the next slot. 

• Core Switch: This is the main module in the network. It contains a cross-bar that 

interconnects the edge nades with each other. It also contains a controller that runs 

a scheduling algorithm to configure the cross-bar interconnections at the beginning of 

every time slot. The controller examines the service requests received from the edge 

nades, does the matching and then configures the interconnections making paths for 

the packets to travel between the edge nades. 

Trallic Source 4 Trllftic Source 8 

Fig. 3.3 A single layer of an 8x8 AAPN architecture madel 

Design Settings and Parameters 

This section applies the concepts outlined in section 3.1 to the OPNET simulation 

madel. The application is clone through setting the design variables to control the process 

of examining the scheduling schemes. 

AAPN Design settings 

Before discussing the choice of parameter settings, the following is a set of design parameters 



3 Simulation Mode! 40 

that are fixed by the architecture of AAPN: 

• Link Capacity= lOGbps 

• Slot-Time= lOus 

• Slot-size= 105 bits this is a consequence of the Slot-Time and Link 

• Switching time= 1 us (guard band) 

Variable Design Parameters : 

Experiment~ and simulations are run to investigate the performance of a system. A system 

could have one or more variable parameters shaping its performance. Examining the effect 

of each of these variables requires setting the rest to constant values, variables that are set 

to constants are called control variables. There are four variable parameters in the AAPN 

madel: The pattern of input traffic, Delay, VOQ size, and Scheduling algorithm. Since the 

scheduling algorithm is the variable under study, the rest become control variables. Control 

variables should be set to values that would leave a good margin for the experimental 

variable to influence the network. 

• Traffic: Set to a single pattern and distribution at each simulation run. 

Two probability distributions were employed to generate traffic: 

1. Poisson arrivais: Packet size drawn from an exponential distributed with a mean 

of lOOObits 

2. Self-similar: Packet size drawn from a Pareto distribution with a mean of lOOObits 

The Hurst parameter, H=0.73, equation 3.3 

• Delay: Dictated by the network coverage,as illustrated in table 3.1 

• VOQ Size: The size of the buffers in a network has a direct prominent effect on the 

amount of dropped packets and the queue-latency delay, which indirectly affects other 

network performance measures like the utilization of the links. It was mentioned pre­

viously that AAPN is based on best effort service, making the choice of the VOQ sizes 

very critical. In other words, to be able to support applications with stringent perfor­

mance constraints, the VOQ size should not form a bottleneck in the design. Taking 

Voice over IP as an example, the service is required to support a delay less than 70ms 

and a packet loss of less than 0.1%. The size of the VOQ is selected by collecting per­

formance measures from each of the schedulers upon sweeping the VOQ size from 800 

packets to 1500 packets. The measures were collected for MAN and WAN topologies 



3 Simulation Model 

0.81,----~-~-~-~--.----~--, 

0.79 

0.78 

0.77 

0.76 

0.75 

0.7 

--A-- PIM-3iter 

· " ' iSJip-3iter 
--e- PHM-3iter 

-SRA 
0 '7~oL0--9~00-~10~00--11~00--1~20-0--13J::00==1::o:40=0 =::J1500 

Queue size(Packets} 

~5 

L 
~ 3 

(a) Utilization 

-A-- PJM-3iter 
1Siip-3iter 

800 900 1000 1100 1200 1300 1400 1500 
Queue Size(Packets) 

( c) Packet Loss, linear scale 

8 x 10-4 

_.,._ PIM-3iter 

7.5 iSiip-3iter 
-.- PHM-3iter 

7 --SRA 

6.5 

.m ,,. 
0 5.5 

4.5 

3 ~too=~==~=~=::12:':oo==1~3o=o =~140~o=:1 
Queue Size(Packets) 

(b) Delay(s) 

_.,._ PIM-31ter 
1Siip-3ner 

-a- PHM-3iter 
-SRA 

10:oLo--9~00,----1~oo,-,-o---,-11~oo--1~2oc:-o -c-:13t:oo==1:r:4o=o =1=:15oo 

Queue Size(Packets) 

( d) Packet Loss, Log scale 

Fig. 3.4 Performance measures with respect to VOQ sizes, MAN topology 
and 80% offered load 

41 

with an 80% offered load. The plots are presented in figure 3.4 and 3.5. One should 

note that the PIM and SRA plots coincide in figures 3.4(a) and (c). Moreover, figure 

3.4(d) demonstrates the fact that PIM and SRA do not cause any loss for that range 

of queue size, as they do not appear in the figure. 

Both figures demonstrate the tradeoff between the delay of the packets (b) versus the 

packet loss ( c and d) and the utilization of the links (a). As the queue size increase, the 

delay of the packets increase which is unfavorable. On the other hand, the utilization 



3 Simulation Model 

0.81 ,--~-~-~--~-~-~------, 

c 
0 

~ 0.77 

s 
0.76 

0.75 

0.74 

.......... PIM~3iter 

="<>"= iSiip-3iter 
-e-- PHM-3iter 

--sRA 
07~1-too:_--:-go~o---,1-:':ooc:-o--,-11~oo--1~2o_o __ 13J:o=o==1.;::oo=:=J1500 

Queue size(Packet&) 

(a) Utilization 

Queue Size(Packets) 

._...,.,__ PIM-31ter 

iStip-3iter 
-&- PHM-3iter 
--SRA 

( c) Packet Loss, linear scale 

1500 

x 10..) 
1.4f;:::===:::::;---r----:--~--,-~ 

.......... PIM-3iter 
""' "~0-w iSiip-3iter 

1·35 --PHM-3ner 
--+-SRA 

1.3 

1.25 

1.1 

1.1 

1 0ijoLo--9..:':oo--1o~oo--1--'1o~o--1..:':2o-,..o --,.,13~oo--1~4o'.'o_.-cc:'15oo 
Queue Size(Packets) 

(b) Delay(s) 

10° 

._...,.,__ PIM-3iter 
10.3 iSiip-3iter 

-a- PHM·3iter 
--sRA 

800 900 1000 1100 1200 1400 1500 
Queue Size(Packets) 

(d) Packet Loss, Log scale 

Fig. 3.5 Performance measures with respect to VOQ sizes, WAN topology 
and 80% offered load 

42 

and the packet loss rate favor such an increase in the queue size. In setting the size of 

the VOQs, one notes the most stringent constraints to be supported by the network, and 

makes a fair trade off between the measures. For example figure 3.4 shows that to support 

Voice over IP, the minimum queue size should be 1200 packets, that is to meet the packet 

loss requirement. Moreover,the delay would also be supported since it is a MAN topology. 



• • 

3 Simulation Model 43 

3.2 Hardware Simulation iSlip 

3.2.1 Choice of hardware: FPGA over ASIC 

3.2.2 Design 

The study of the hardware implementation of iSlip did not get as much attention as the 

study of its performance. Serpanos et al. discussed the basic design of the request-grant­

accept protocol in hardware, and provided examples about the requirements for the FIRM 

scheduler in [12] [16]. Another study by Gupta and McKeown [13] proposed a pipelined 

implementation of iSlip, where the scheduler overlaps the accept phase of one iteration 

with the request-grant of another, saving dock cycles in an iterative run of the algorithm. 

The delay imposed by the arbiters in iSlip has a significant effect on the speed of the 

scheduler, thus the design of fast arbiters is very critical. Reference [13] discussed several 

arbiters' implementations, presenting the tradeoffs between the hardware requirements and 

complexity of each design. The simulation model used in this study adopts a simplified 

model that improves the design in [12] and utilizes the optimal arbiter design proposed in 

[13] . 

iSlip is a distributed scheduler that makes decisions through the handshaking protocol 

described in chapter 2. The protocol was explained in detail and is based on three stages: 

Request, Grant and Accept. The model employed for this study merges the Request and 

Grant phases into a single phase, which enhances the complexity of the design without 

altering the functionality of the system. Figure 3. 7 shows how the requests can be forwarded 

directly to the Grant blacks without passing through intermediate blacks. However,each 

stage receives a set of control signais, processes the signais and generates a set of subsequent 

signais that steer the functionality of the following stage, figure 3. 7. Each phase is realized 

by N identical blacks operating in parallel. An additional block is required to update the 

pointers in the Grant and Accept blacks. Furthermore, a three-state finite state machine 

(FSM) is utilized to trigger the appropriate block at each phase of the protocol. The two 

phases of an iteration take effect in one dock cycle. One should note that merging the 

Request and the Grant phases only involves the hardware units; the data flow however 

takes place in sequence. 



3 Simulation Model 44 

3.2.3 Block Functionality 

1. Grant Blacks: 

Grant blacks take request signais and arbiters' positions as input. The blacks utilize 

arbiters to generate grants (their output control signais). Granting signais are passed 

to Accept blacks and the arbiter updating black. 

2. Accept Blacks: 

Accept blacks take grant signais and arbiter's positions as input. Just like grant blacks, 

they utilize arbiters to choose an output from the set of granting outputs. If the 

scheduler is running the final iteration, the output control signais of this black configure 

the switch for that time slot, otherwise the signais are used to black the matched 

inputs/outputs from being considered in the following matching iteration. 

3. Arbiters Updating Black: 

The functionality of this black is dependent on the scheduler. The discipline by which 

arbiters are updated differentiates between arbitration schemes. In other words, this 

black is the only black that should be changed when implementing different arbitration 

schedulers. The black controls the location pointed at by the arbiter after a certain 

stage, corresponding to the output of that stage. Only one arbiter updating black is 

utilized in this madel. The black updates the grant arbiters while the system is in the 

Accept phase, and updates the accept arbiters while the system is in the Grant phase. 

The appropriate functionality of the black is triggered by the FSM, while the values 

to be-updated are fed by the outputs of the Grants and Accepts blacks. 

4. Controller unit: 

The controller synchronizes the operation of the blacks to accomplish an ordered exe­

cution within a single iteration run. The controller utilizes a three-state FSM, which 

generates control signais that" enablejdisable each of the blacks. Additionally it sets 

the mode of operation of the arbiters updating black to Grant or Accept. 

3.2.4 Arbiter units utilized in the Grant and Accept blacks 

The functionality of the arbiters was discussed in chapter 2. The madel utilizes the 

design discussed in [13], which proved to be optimal. The arbiters were implemented using 

two Priority encoders (smpLPE), a thermo decoder (discussed below) and sorne logic gates 

used for selection, refer to figure 3.6 below: 



'~ 

3 Simulation Model 

Fig. 3.6 Hardware design of round-robin arbiters, proposed in [13] 

Signais: 

Input: 

1. P _enc: The current position pointed at by the ar biter, log2N bits 

2. Req: 

Grant biocks: Input requests ,N bits 

Accept biocks: Output grants,N bits 

Output: 

1. Gnt: Resuits of the arbitration process, N bits 

2. anyGnt: Signais the presence of a grant 

45 

The figure shows that the Req from all the inputs takes two different paths. The first 

path is the one that indicates the presence of a request from the inputs ( i in Req [ i ]) 

between P _enc and (n-1). The other path indicates the presence of requests from the inputs 



3 Simulation Madel 46 

between 0 and (P _enc- 1). Finally a decision of which request is granted takes place at the 

final block (Mux_Red). 

Block-level explanation of the proposed arbiters' design 

1. Priority Encoders: 

The smpLpe_thermo and the smpLpe are Priority Encoders (PE), their functionality 

is demonstrated by the truth table 3.2, assuming N=4 

Table 3.2 Priority Encoder 

Req(3) Req (2) Req (1) Req (0) Y(1) Y(O) c 
0 0 0 0 x x 0 
x x x 1 0 0 1 
x x 1 0 0 1 1 
x 1 0 0 1 0 1 
1 0 0 0 1 1 1 

Y is output and C is a variable used to indicate the case when none of the inputs send 

a request. In the context of the proposed design, C indicates that there is no requests 

from any of the inputs that lie between the P _enc to (n-1). C is used as a selector for 

the M ux_red block. 

2. Thermo-Decoder: 

As described in [13] the thermo_decoder is used to decode the log2N bit P _enc input 

into a four bit value, to simplify the remaining functionality (more elaborated in the 

following sub-section). The following truth table demonstrates the functionality of the 

decoder: 

Table 3.3 Thermo_ Encoder 

P _enc(1) P _enc (1) Y(3) Y(2) Y(1) Y(O) 
0 0 0 0 0 0 
0 1 0 0 0 1 
1 0 0 0 1 1 
1 1 0 1 1 1 

3. Prog_not_round_with_smpLPE: 

The block exploits the functionality of a thermo_deèoder in conjunction with a negator 

and an AND gate to fil ter out the requests from input 0 to (P _enc - 1). The remaining 



3 Simulation Model 47 

requests are then fed to the priority encoder to choose among them. 

4. Mux_red: 

The black acts as a selector that chooses among the decisions made by each path using 

the anyGnt_smpLpe_thermo 

Example: 

Input: 

Req="1101" 

P _enc="01" 

Intermediate: 

P _thermo="0001" =} (NOT)P _thermo=" 1110" allowing everything beyond the pointer to 

pass. 

new_Req="llOO" 

new_Req=" 1100" 

Output: 

GnLsmpLpe_thermo=" 01 00" 

3.2.5 Implementation 

The design was implemented in Quartus II 6.1 [31], a hardware CAD tool. Functional and 

timing simulations were run, and these confirmed the desired functionality of the design 

and determine the propagation delays expected in the circuit, respectively. Optimization 

techniques can also be deployed to get the best design for a given technology. 



3 Simulation Madel 48 

r ,_ .__.,, 
1 

r----· J.:.______ :-- Accettlng ___ : 
: Grantln9 Arbltera 1 Arblten 

1 
1 ~~-r------~ 1 
1 1 

Fig. 3. 7 iSlip Hardware simulation model 



49 

Chapter 4 

Results and Analysis 

Four Matching algorithms, PIM, iSlip, PHM and Adapted SRA were discussed in 

section 2.3. A simulation model emulating the AAPN design was discussed in chapter 

3. The first part of this chapter integrates those sections, presenting results obtained 

from coding the schedulers in the simulation model. The model was simulated for an 

8-edge node environment under the control of each of the schedulers. Different input 

traffic patterns were employed to evaluate the model's ability to adapt to various scenarios. 

The results reported in this section were all generated on average basis1. The literature 

reported performance results and properties about each of the schedulers. Reassessing 

these results forms the starting point of our analysis. The modified schedulers were then 

simulated in application to the AAPN model. The first step utilized a conventional Poisson 

arrivai process and uniform destination distribution, structuring a comparison basis for the 

analysis. Afterwards, the effect of more realistic models, with a combination of traffic 

distributions and arrivai behaviors are tested. The second part of the chapter presents 

results obtained from the hardware simulation model. An association between these results 

and others, reported in the literature, is provided to compare the hardware complexity of 

the algorithms. 

1 Results were generated from each of the nod es, and the average of these results was noted 



4 Results and 50 

4.1 Performance Results 

4.1.1 Basic schedulers 

Performance of a single iteration of each of schedulers 

Figure 4.1 demonstrates the performance of a single iteration of each of the scheduler's 

algorithms under a Poisson uniformly distributed traffic in MAN topology. figure 4.1(a) 

confirms that a single iteration run of PIM achieves a maximum link utilization of 63%, 

even when the network is fully loaded. iSlip does not reach the reported 100% utilization 

at 100% load, which could be due to more than one reason; like synchronization among 

the pointers, VOQ size and the fact that networks start behaving strangely when fully 

loaded. PHM shows superiority among PIM and iSlip in all four measures. Furthermore, 

the performance of the maximum size match (SRA) is very close to that of PHM. 

The figure illustrates the following facts: 

1. The performance of one iteration of PIM is unacceptable 

2. The performances of PHM and the adapted SRA are very similar, while it was proven 

that SRA is very complex in comparison. The slight improvement in performance can 

be traded for the sake of complexity. 

From this point on, the adapted SRA is replaced by PHM and will not be reported in the 

following performance measures. 

Convergence speed of the schedulers 

Figure 4.2 demonstrates the convergence speed of each of the three algorithms, under 

Poisson, uniformly distributed traffic load of 60% in MAN topology. The simulations show 

that PIM exhibit a speed of convergence of 6 iterations for an 8-edge node network; that 

is of the order of O(log2 N), as claimed in [4]. However a rough evaluation would confirm 

the complexity of PIM reported in the literature. iSlip on the other hand shows the speed 

of convergence of 2 iterations. Lastly, PHM confirms the reported facts, stating that the 

algorithm converges in 0(1) time. 



4 Results and 

0.9 

0.8 

0.7 

0.6 

~ 0.5 

.!! 
"l 0.4 

0.3 

0.2 

0.1 

40 

35 

0 

25 

20 

15 

10 

--PIM 
!Slip 

--PHM 
--+- Adapted SRA 

20 40 60 
offered Load(%) 

(a) Utilization 

_...,_PIM 
1 ···> ·iSiip f' 
--PHM 
--sRA 

;1. " 

J 
,;1 .• 

V" i: 
~ U U M U M ~ U U 

Utillzation 

( c) Packet Loss, li~ear scale 

0o~--~2~o----~.o~--~6o----~8o----~1oo 
offered Load(%) 

(b) Delay(s) 

(d) Packet Loss, linear scale 

Fig. 4.1 1-iteration run of each of the scheduling algorithms, MAN topology 
with Qsize=lOOOpackets 

4.1.2 Performance measures of the adapted schedulers with different input 

traffic 

51 

Poisson arrivai process, with tra.ffic uniformly distributed among network hosts 

Figure 4.3 demonstrates the performance of the network under a conventional traffi.c model. 

The arrivai process follows Poisson distribution and the traffic is uniformly distributed 

among the edges; w=O in equation 3.4. The model is simulated for a MAN topology and 

three iteration runs, for each of the scheduling algorithms. The results demonstrated in 

figure 4.3 form a comparison base, since they were generated from idealistic traffic. 



4 Results and 

O.st---=---------.----+ 
0.55 

~ 0.5 

~ 
]j 0.45 
'!l 

0.4 

0.35 -PIM 
iSJip 

--6-PHM 
0.311.\; =~=-~--'4-~S _ ___.. _ __._ _ _J 

Number of Iterations 

(a) Utilization 

x 10-4 
2.3r--,..-----.~---.~---..----..-;::=:::::::::=i1 

-PIM 

22 

2.1 

iSiip 

--6-PHM 

,.er-------------+ 
1.5,~..-___.._____, _ ___,4 __ 5 _ ___.. _ __._ _ _J 

Number of Iterations 

(b) Delay(s) 

Fig. 4.2 Convergence of the algorithms 

52 

Poisson arrivai process, with traffic non-uniformly distributed among network 

hosts in a MAN topology 

The results presented in figure 4.4 demonstrate the performance of a more realistic network 

model, where the arrivai process is still Poisson but the traffic is not uniformly distributed, 

w=0.3 in equation 3.4. Comparing the graphs in figure 4.4 with the standard results in 

figure 4.3, one would note that the performance difference corresponding to traffic loads 

between 40%-80% is insignificant. The throughput of the network drops when the traffic 

is non-uniformly distributed, which is expected. However figure 4.4(a) shows that the 

throughput under PHM and iSlip increases linearly as compared to the throughput behavior 

in the standard case (figure 4.3(a) ). In the case of PIM, the throughput stabilizes to a 

constant value at about 85% load, which enforces the limitation of the random arbitration 

in PIM as opposed to other the schedulers. The amount of packet loss in low traffic loads of 

non-uniformly distributed traffic is significantly higher than that in uniformly distributed 

traffic (figure 4.4c). Figure 4.3c indicates that packet loss is very low for traffic loads 

below 55%, whereas figure 4.4b indicates that traffic loss starts from a 20%-30% load. The 

delay performance gr a phs in figure 4.4(b) demonstrate the superiority of iSlip and PHM 

over PIM. One would notice a peculiar behavior around 30% load, where the graphs reach 

a maximal point and then ramp down again, with the exception of PIM that keeps on 

increasing. The peak is due to the non-uniform distribution of the traffic. Sorne VOQs 



4 Results and 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

........... PIM 
y !Slip 

----PHM 

40 60 
offered Load(%) 

(a) Utilization 

80 100 

x10-4 
10rr===~~--~----~----~-----, 

--PIM 
'i:,,.w,, iSiip 

--PHM 

\~--~2-0----~40~--~60~--~80~--~100 
offered Load(%) 

(b) Delay(s) 

( c) Packet Loss 

Fig. 4.3 Network performance under Poisson, uniformly distributed traffic, 
MAN topology, VOQ size=lOOO packets, utilizing 3-iterations runs 

53 

get blocked and start losing packets while keeping the delay of the queued packets the 

same 2 , whereas other VOQs queue more packets, ones that will experience larger delays. 

Averaging the delay over such non-uniform distribution produces higher values than the 

regular case where all nodes block packets, which starts when the percentage of packet 

loss becomes more pronounced (around 30% load). PIM exhibits an increasing delay, one 

that is higher than that reported in figure 4.3(b). Whereas, the network delay imposed by 

employing iSlip and PHM stabilizes after a 50% load. 

2 Packet loss and delay are independent measures 



4 Results and 

0.6 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

......,.__PIM 

!Slip 
--PHM 

20 40 60 
offered Load(%) 

(a) Utilization 

60 100 

..........._PIM 

!Slip 
--a-PHM 

1o~--~20~--~40----~B~0----~80~--~100 
offered Load(%) 

(b) Delay(s) 

30 40 50 60 70 60 90 100 
Offered Load(%) 

( c) Packet Loss 

Fig. 4.4 Network performance under Poisson, non-uniformly distributed 
traffic (w=0.3), MAN topology, VOQ size=lOOO packets, utilizing 3-iteration 
runs 

54 

Poisson arrivai process, with traffic non-uniformly distributed among network 

hosts in a W AN topology 

Figure 4.5 demonstrates a similar effect on the network performance, as the previous simu­

lation, but in a WAN topology instead of MAN. The gr a phs demonstrate higher dela ys and 

packet loss percent ages. The delay performance in figure 4.5(b) is somewhat different thau 

that displayed in the MAN topology. The figure shows the same peak at 30% load, but the 

behavior of the gr a phs bef ore and after that peak is different than that in figure 4.4 (b). 



4 Results and 55 

The graphs illustrate a vigorous increase in the delay under traffic loads of 20%-25%, that 

is when packet loss starts in few nades (figure 4.5(c)). For higher loads, the percentage of 

packet loss increases, more nades start blocking packets, and so the delay of each of the 

graphs increases as expected. 

O.Sf"i""'--==PIM""i"--....,....--~--......----, 
x 10"3 

1.aF~=~--...----....----....----, 
--PIM 

O. 7 """"ii""""" iSiip 
--PHM 

0.6 

0.5 

0.4 

0.3 

40 60 
offered Load(%) 

(a) Utilization 

80 100 
1 · 1 o~---:2':-0 ---:4':-o ---=a'=""o ---=ao:---~100 

offered Load(%) 

(b) Delay(s) 

( c) P acket Loss 

Fig. 4.5 Network performance under Poisson, non-uniformly distributed 
traffic (w=0.3), WAN topology (200Km), VOQ size=lOOO packets, utilizing 
3-iteration runs 



4 Results and 

Self Similar traHie, unifarmly distributed amang netwark hasts in MAN 

tapalagy 

56 

Figure 4.6 shows a realistic madel, where traffic samples exhibit LRD. The madel is sim­

ulated for three iteration runs of each of the scheduler algorithms in a MAN topology. 

Generally the behavior of the each of graphs is similar to its equivalent in figure 4.3, in­

dicating that self similar traffic would be supported in the AAPN model. The network 

throughput drops under Self similar traffic, as compared to Poisson arrivais. PIM achieves 

very poor utilization, figure 4.6(a). The increase in packet loss vs offered load is much 

steeper in the case of Self similar traffic versus Poisson, but stabilize at about the same 

load, 80%. It should be noted that for Poisson traffic loads lower than 80%, the packet loss 

is insignificant upon utilizing PHM, refer to figure 4.3. However packet loss in Self similar 

traffic starts from a load of 60%. Moreover, the delay of the network under PHM is greater 

than that imposed by iSlip for traffic loads greater than 70%, which is not the case for 

Poisson traffic. One would conclude that PHM would still meet the stringent performance 

requirements of a MAN network under Self similar traffic, as long as the load is kept below 

75%. 

Self Similar traHie, unifarmly distributed amang netwark hasts in a WAN 

tapalagy 

Figure 4. 7 demonstrates the same effect on the network performance, as the previous sim­

ulation, but in a WAN topology instead of MAN. The gr a phs demonstrate higher dela ys 

and packet loss percentages. One would conclude that the network performance in this 

case would support applications with stringent requirements, only if the traffic load is kept 

below 60%, which would achieve a throughput less than 0.57 in the best case scenario, 

when PHM is employed. 

Self Similar traHie, nan-unifarmly distributed amang netwark hasts in a WAN 

tapalagy 

Figure 4.8 indicates that network with self similar, non-uniformly distributed traffic load 

has a poor performance under the employment of each of three schedulers. The behavior 

of the graphs in Figure 4.8(b) is comparable to the behavior of the graphs in figure 4.5(b). 



/'~ / .. 

0.8r;====o;----.--~---..-----, 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

_._PIM 
,iSiip 

-e--PHM 

0o~-~2~o----4o _____ 60--~so--_j1oo 

offered Load(%) 

(a) Utilization 

ISiip 
12 --PHM 

10 

2~:!:E:~~____.__j 
0 20 40 60 80 100 

offered Load(%) 

(b) Delay(s) 

( c) P acket Loss 

Fig. 4.6 Network performance under Self Similar, uniformly distributed 
traffic, MAN topology, VOQ size=lOOO packets, utilizing 3-iteration runs 

57 

The percentage of packet loss in figure 4.8( c) demonstrates a sudden increase at 80% load, 

which leads to saturation of the utilization graphs and a steep increase in the delay graphs. 



~'· 

4 Results and 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

--PIM 
t,,.,, iSiip 

-e-PHM 

20 40 60 80 
offered Load(%) 

(a) Utilization 

100 

Offered Load(%) 

x 10-J 2.5F=:::='ï--...---....---....,....--Ï 
--PIM 

iSiip 
-e-PHM 

2 

1.5 

1L-----------~----_. ______ ~----J 
0 20 40 60 80 100 

offered Load('k) 

(b) Delay(s) 

( c) Packet Loss 

Fig. 4. 7 Network performance und er Self Similar, uniformly distributed 
traffic, WAN topology, VOQ size=lOOO packets, utilizing 3-iteration runs 

58 



/'· 

.~. 

4 Results and 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

__._PIM 
· ISiip 

--PHM 

20 40 60 BD 
offered Load(%) 

(a) Utilization 

100 

x 10.3 

1.2fr'==~-----------..-----, 
--4-PIM 
'""'"-+··,·~!Slip 

1 --PHM 

0.8 

ro o.e 
~ 

0.4 

0o~----20---.~o--~60~---B~0--~100 
offered Load(%) 

(b) Delay(s) 

Offered Load{%) 

( c) P acket Loss 

Fig. 4.8 Network performance under Self Similar, non-uniformly distributed 
traffic, WAN topology, VOQ size=lOOO packets, utilizing 3-iteration runs 

59 



60 

4.2 Hardware complexity results 

This section presents the results collected from the hardware implementation of iSlip 

on a Cyclone II, EP2C70F89618 deviee [31]. The results agree with the research findings 

reported in the literature, considering the lack of protocol-steps pipelining in our design. 

The main concern of the study is to evalua te the worst timing requirement of iSlip, and when 

that was met, as table 4.1 confirms, there was no need to update any further. Moreover, 

PIM was never implemented in hardware due to its hardware complexity that requires 

large running times, failing to meet AAPN's lOus timing costraint. Whereas, many studies 

showed that PHM is much simpler to implement and requires less running time. 

The results demonstrated in tables 4.1 and 4.2 were collected from running the design 

in a 4x4,8x8 and 16x16 network environments, to investigate the scalability of the design. 

It should be noted that the simulation deviee has a significant impact on these results. The 

layout of a deviee sets a lower limit to the propagation delay of the signais, where signais 

are sent from one unit to another, that contributes to the difference between the results 

obtained in our design and other designs. 

4.2.1 Timing Requirements 

Table 4.1 illustrates the results obtained from running the iSlip implementation into 

the Cyclone II deviee. The dock frequency in the table is set to a value that would support 

the delay of the bottleneck unit in the design, the Grant black. That is, before running 

the operation of the whole design, a timing analysis tool was employed to determine the 

bottleneck and its timing requirement. Moreover, the design accounts for other timing 

requirements, such as the time needed for the circuits to stabilize. One would note that 

the dock frequency decreases as the network expands, since more nades require more logic, 

more memory and higher processing times. 

The table confirms the applicability of iSlip in AAPN up to 16 nodes. Moreover, the 

Tiny Tera project [13] confirmed the applicability of a pipelined version of the algorithm, the 

results reported a running time of 51 ns for three iterations of iSlip in a 32x32 environment, 

on a Xilinx deviee. The results from that study prove the significance of pipelining on the 

running time of the algorithm. 



4 Results and 61 

Table 4.1 Timing Results 

N Worst-case Clock Frequency Total Time 
propagation delay iterations ti me 

(ns) MHz (ns) 

2 40 
4 8 100 3 80 

8 13 66 3 80 

3 130 
16 22 45 4 180 

4.2.2 Resource utilization 

Table 4.2 outlines the hardware requirements of iSlip in the Cyclone deviee. The re­

quirements obviously change from one deviee to another, but the results give a rough idea 

about the general requirements of the implementation. Moreover, it should be noted that 

the EP2C70F89618 deviee would not support a 32x32 implementation of the design, while 

other industrial deviees would. 

Table 4.2 Resource Utilization Results 

N Totallogic Total combinational Dedicated logic 
elements fun etions registers 

4 265 249 96 
8 1495 1495 374 
16 8777 8477 1432 

The timing constraints of PHM were studied in [11] and [15]. An analytical approach 

was followed by simulations on an ASIC library, lca300k.alf in [11]. The results confirmed 

that PHM has a running timing that is much shorter than that in other arbitration based 

algorithms, such as RDSRR. [15] on the other hand, confirmed the applicability of PHM to 

such high speed networks by synthesizing the algorithm on several deviees. Comparing the 

results obtained by our design and those reported in reference [15], indicates that generally 

PHM is faster than iSlip, but requires more logic units. 



62 

Chapter 5 

Conclusions and Future work 

The study of time-slotted schedulers in AAPN is presented in this thesis. Four algo­

rithms were researched and employed in the study. The performance of the network under 

each of the proposed schedulers was tested using an OPNET model, one that emulates 

the infrastructure of AAPN. Furthermore, the hardware implementation of the algorithms, 

which concerns hardware requirements and running speed, is evaluated to establish a full 

view of their requirements and compare them to the constraints set by AAPN. This chapter 

provides a summary of the outcomes of the study, and suggests research areas to be further 

exploited for the scheduling pro cess in AAPN. 

5.1 Summary and Conclusion 

The first and most obvious conclusion of the study is the fact that PIM does not meet 

the criteria set for AAPN. The performance of the network, under PIM, fails to meet the 

minimum requirements unless more than log2 N iterations are run, that on the other hand 

consumes so much time, and fails to meet the lOus timing constraint. However, one would 

argue that features of the Adapted-PIM [3] would conform better to AAPN. While it was 

confirmed that Adapted-PIM enhances the performance of the network, the algorithm was 

not investigated in terms of its hardware complexity. Adapted-PIM requires extra control 

over the network queues, to monitor their capacity, which adds to the complexity of PIM, 

making its implementation impractical. 

SRA was disregarded from the simulations due to the fact that PHM was able to 

deliver comparable performance results with much lower complexity. 



5 Conclusions and Future work 63 

The performance of the network under PHM is better than that under iSlip. Both 

algorithms do not perform so well under non-uniform traffic, load-balancing would resolve 

that issue while adding on the control overhead, and so the complexity of the schedulers. 

The effect of self similar traffic on the network is acceptable for sorne applications 

in MAN topologies. However, the performance would not be acceptable for applications in 

WAN topologies. 

The study revealed that the AAPN scheduler could employ iSlip for a network 

containing up to 64 nodes, while meeting the lOus timing constraint. Furthermore, the 

literature illustrated several studies, utilizing different ASICs and FPGAs, where the im­

plementation of PHM appeared to be more practical than arbitration algorithms. 

Lastly it is worth mentioning that PHM and its variations could be utilized in 

implementing QoS in AAPN. Such an application, along side the algorithms' high running 

speed and high performance, demonstrate the superiority of PHM among the rest of the 

algorithms studied in this thesis. 

5.2 Future work 

5.2.1 Performance 

Load balancing techniques have been adopted in hybrid-networks to mitigate the effect 

of non-uniform traffic. The application of such techniques to AAPN would definitely en­

hance the performance. 

Self-similar traffic is inevitable, and performance measures proved that it is hardly 

supported in MAN topologies in AAPN. Employing a hybrid of distributed scheduling ap­

proaches could resolve that matter. The determination of the level of self-similarity of 

traffic in the edge nodes, followed by an adaptive scheduling approach could achieve better 

performance measures, while increasing the complexity. 

5.2.2 Hardware Measures 

The lack of protocol pipelining in the hardware implementation of iSlip is considered a 

limitation. While the minimum timing requirements were met, pipelining would support 

networks larger than 64 nodes. 

The hardware implementation of PHM is most important step in continuing the 



/~ 
1 

5 Conclusions and Future work 

work done in this thesis. 

64 



65 

References 

[1] http: / /www .aapn.mcgill.ca. 

[2] X. Liu, A. Vinokurov, and L. Masan, "Performance Comparison of OTDM and OBS 
Scheduling for Agile All-Photonic Network," IFIP 2005 Conference on Metropolitan 
Area Networks, April 2005. Vietnam. 

[3] X. Liu, "Time Slotted Scheduling For Agile All-Photonic Networks," Master's thesis, 
Department of Electrical and Computer Engineering, McGill University, 2005. 

[4] T. Anderson, S. S. Owicki, J. B.Saxe, and C. P.Thacker, "High-Speed switch scheduling 
for Local-Area networks," ACM Transactions on Computer Systems, pp. 319-352, Nov 
1993. 

[5] F. C. Kevin, E. H.-M. Sha, and S. Q. Zheng, "A Fast Noniterative Scheduler for 
Input-Queued Switches with Unbuffered Crossbars," 8th International Symposium on 
Parallel Architectures,Algorithms and Networks, pp. 230-235, 2005. 

[6] N. McKeown, "The iSLIP Scheduling Algorithm for Input-Queued Switches," 
IEEE/ACM Trans. Networking. 

[7] L. Yihan, S. Panwar, and H. Chao, "On the performance of a dual round-robin switch," 
INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and 
Communications Societies. Proceedings. IEEE. 

[8] Y. Jiang and M. Hamdi, "A fully desynchronized round-robin matching scheduler 
for a VOQ packet switch architecture," Proceedings of the IEEE High Performance 
Switching and Routing Conference, Dallas, U.S.A, pp. 407-411, 2001. 

[9] D. N. Serpanos and P. I. Antoniadis, "FIRM: A class of distributed scheduling al­
godthms for high..:speed ATM switches with multiple input queues," Proc. of IEEE 
Infocom 2000, pp. 548-555, 2000. 

[lü] F. J. Gonzlez-Castao, R. Asorey-Cacheda, C. Lpez-Bravo, P. S. Rodrguez-Hernndez, 
and J. M. Pousada-Carballo, "On the behavior of PHM distributed schedulers for 
input buffered packet switches," IEEE Trans. Commun., vol. 51, pp. 1057- 1060, July 
2003. 

[11] F. J. Gonzlez-Castao, R. Asorey-Cacheda, C. Lpez-Bravo, P. S. Rodrguez-Hernndez, 
and J. M. Pousada-Carballo, "Analysis of Parallel Hierarchical Matching Schedulers for 

http://www.aapn.mcgill.ca


References 66 

Input-Queued Switches under Different Traffic Conditions," Eighth IEEE Symposium 
on Computers and Communications, p. 527, 2003. 

[12] D. Serpanos, P. Mountrouidou, and M. Gamvrili, "Evaluation of Hardware and Soft­
ware Schedulers for Embedded Switches," A CM Transactions on Embedded Computing 
Systems {TECS), vol. 3, pp. 736- 759, 2004. 

[13] P. Gupta and N. McKeown, "Design and Implementation of a Fast Crossbar Sched­
uler," IEEE Micro, vol. 19, pp. 20-28, Jan. 1999. 

[14] http:/ /klamath.stanford.edu/tiny-teraj. 
[15] E. Soto, E. Lago, and J. Rodrguez-Andina, "FPGA implementation of high­

performance PHM / DPHM schedulers," Field Programmable Logic and Applications, 
2006. FPL '06. 

[16] D. Serpanos, P. Mountrouidou, and M. Gamvrili, "Evaluation of Switch Schedulers for 
Embedded Systems," Eighth IEEE Symposium on Computers and Communications, 
pp. 541, 2003. 

[17] G. Bochmann, T. Hall, O. Yang, M. Coates, L. Masan, and R. Vickers, "The Agile 
All Photonic Network: An Architectural Outline," Queen's Biennial Conference on 
Communications, Feb 2004. 

[18] R. Vickers and M. Beshai, "PetaWeb Architecture," Networks 2000 Symposium, 
Canada, 2000. 

[19] L. Mason, A. Vinokurov, N. Zhao, and D. Plant, "Topological Design and Dimen­
sioning of Agile All Photonic Networks," Computer Networks, Special issue on Optical 
Networking. 

[20] M. Karol, M. Hluchyj, and S. Morgan, "Input versus Output Queueing on a Space 
Division Switch," IEEE Trans. Commun. 

[21] Y. Tamir and G. Frazier, "High-performance multi-queue buffers for VLSI communi­
cations switches," ACM Special Interest Group on Computer Architecture, pp. 343-
354, 1988. 

[22] Douglas Brent, 'Introduction to Graph Theory', 2nd edition, Prentice Hall,1996. 
[23] Y. Tamir and H. Chi, "Symmetric cross bar arbiters for VLSI communication switches," 

Parallel and Distributed Systems, IEEE Transactions. 

[24] R. O. LaMaire and D. N. Serpanos, "Two-dimensional round-robin schedulers for 
packet switches with multiple input queues," IEEE/ACM Trans. Networking. 

[25] D. Pan and Y. Yang, "Hardware efficient two step iterative matching algorithms for 
VOQ switches," Parallel and Distributed Systems, 2006. ICPADS 2006. 

[26] N. McKeown and T. E. Anderson, "A quantitative comparison of iterative scheduling 
algorithms for input-queued switches," Computer Networks and ISDN Systems. 

[27] OPNET, http:/ jwww.opnet.com. 
[28] W. E. Leland, W. Willinger, D. V. Wilson, and M. S. Taqqu, "On the Self-Similar 

Nature of Ethernet Traffic(extended version)," IEEE/ACM Trans. Networking. 

http://klamath.stanford.edu/tiny-tera/
http://www.opnet.com


References 67 

[29] J. Potemans, B. V. den Broeck, Y. Guan, J. Theunis, E. V. Lil, and A. V. de Capelle, 
"Implementation of an advanced traffic model in OP NET modeler," Opnet Work 2003, 
Washington D.C., USA, August 2003. 

[30] P. Leys, J. Potemans, B. V. den Broeck, J. Theunis, E. V. Lil, and A. V. de Capelle, 
"Use of the Raw Packet Generator in OPNET," OpnetWork 2002, Washington D.C., 
USA, 2002. 

[31] http:/ /www.altera.com. 

http://www.altera.com

