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Abstract 

Schedulers in optical switches are still electronic, the performance of these units has a 

significant impact on the performance of the network and could form a bottleneck in high 

speed networks, such as AAPN. Four time-slotted scheduling algorithms are investigated 

in this study, PIM, iSlip, PHM and Adapted-SRA. The study addresses the performance 

of AAPN for each of the algorithms, and evaluates the hardware complexity, estimat­

ing the running time of the algorithms. Performance measures were collected from an 

OPNET model, designed to emulate AAPN. Furthermore, hardware complexity and tim­

ing constraints were evaluated through hardware simulations, for iSlip, and through analysis 

for the rest of the algorithms. iSlip confirmed it's feasibility by meeting the lOus timing 

constraint set by AAPN. The study revealed the superiority of iSlip and PHM over PIM 

and Adapted-SRA. 
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Sommaire 

Les 'planifiant' dans les commutateurs optiques est toujours lectronique, l'excution 

de ces units a un impact significatif sur la ralisation du rseau et pourrait former un 

goulot d'tranglement dans les rseaux rapides, tels que AAPN. Quatre types d'algorithmes 

d'ordonnancement a rpartition dans le temps sont examins dans cette tude, PIM, iSlip, 

PHM et l'Adapt-SRA. L'tude adresse l'excution de AAPN, l'valuation de la complexit de 

'hardware' et l'estimation du temps courant pour chacun des ces algorithmes. Les mesures 

d'excution ont t recueillies d'un modle de OPNET,. conu pour imiter AAPN. De plus, la 

complexit de 'Hardware' et la synchronisation du system ont t values par des simulations, 

pour iSlip, et par l'analyse pour le reste des algorithmes. La mthode iSlip a affirm sa 

praticabilit en ralisant la lOS contrainte mis par l' AAPN. L'tude a rvlla supriorit de iSlip 

et PHM par comparaison au PIM et l' Adapt-SRA. 
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Chapter 1 

Introduction 

1.1 Introduction Photonic networks: 

The telecommunication world is witnessing an enormous increase on the demand for 

bandwidth due to the emergence and rapid growth of broadband services. The evolution of 

network services is facing challenges ranging from performance reliability, scalability and 

resource utilization, to service provisioning and profitability. The introduction of optical 

networks resolved performance and utilization challenges. N etwork agility on the other 

hand, explores dynamic service provisioning in attempt to maximize profitability. 

Transmission through optical fibers brings about several advantages, like large band­

width, immunity to noise and interference, and low costs per unit bandwidth. Thereby, 

optical networks provide high capacity, supporting high bandwidth services. The definition 

of optical networks refers to the transmission through optical-fibers; the terms optic and 

photonic are used interchangeably in this thesis. Existing networks involve the integration 

of optical networks and electrical switching, which requires conversion between the opti­

cal and electrical domains upon switching. The conversion process forms a bottleneck in 

such hybrid networks. Furthermore, developments in optical technologies introduced opti­

cal switches that are transparent to data format and bit rate, and have greater switching 

capacity than electronic switches. All-optical networks utilize optical switches, where both 

transmission and switching take place in the optical domain, thereby avoiding the conver­

sion bottleneck. However, severa! tasks concerning buffering, addressing and labeling are 

not supported in the optical domain, which complicates the design and implementation of 
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the network. 

The popularity of broadband applications, for example VoD and VoiP, is creating 

unpredictable network environments. Dynamic network configuration and automated ser­

vice provisioning are required to support such environments through a cast-efficient ap­

proach. The term Agile, in Agile All-Photonic Networks (AAPN), refers to the ability to 

optimize network operation in a dynamic fashion,dynamic reconfigurability. 

1.2 AAPN 

AAPN is a research program that targets the exploitation of agility in all-photonic net­

works, as the name implies [1]. The program is structured into three themes: Networks 

and Architecture, Enabling Technologies and System Integration. The research clone in 

this thesis contributes to the first theme, where it investigates the application of scheduling 

techniques that best suit the network requirements. The second theme follows the devel­

opments of optical technologies, and finally the third combines the findings in the first two 

themes. 

Traffic enters and leaves AAPN through edge nades; ingress edges represent source 

nades, while egress edges represent destination nades. Edge nades are connected through a 

crossbar core switch. The switch connects ingress and egress nades to enable transmission 

between networks connected to AAPN. 

The extension of data paths of all-photonic networks, to reach within close distances of 

end-users, comprises the motivation of AAPN's first theme [1]. Network agility refers to 

the ability of the network to perform multiplexing for dynamic allocation of the bandwidth 

to traffic fiows. In AAPN, agility is achieved by employing resource sharing methods; OBS 

or OTDM, to WDM. 

1.3 TDMA and time-slotted scheduling 

Xiao et al. [2] Investigated the performance of AAPN under two modes of resource 

sharing; OBS and two classes of OTDM. Slot-by-slot scheduling and frame based OTDM 



1 Introduction 3 

comprise the two classes of OTDM. The study revealed the superiority of OTDM over OBS 

in terms of performance measures. Slot-by-slot achieved better performance in MANs, 

while frame-based OTDM performs wellin bath MANs and WANs, but requires complex 

signaling. Slot-by-slot scheduling is adopted in the study present in this thesis. 

1.4 Objective of the study 

A scheduler resides in the control unit of the core switch, where it runs a matching 

algorithm to configure the crossbar inter-connects. The scheduling process steers the per­

formance of the network, and could form a bottleneck in such high speed networks. Perfor­

mance attributes of the network, and algorithms' running times, form the basic criteria for 

evaluating schedulers in AAPN. This thesis presents a study of severa! time-slotted algo­

rithms, addressing the criteria mentioned above. Research was first conducted to nominate 

a number of schedulers for the study. The application of each ofthe nominated schedulers 

was further simulated using an OPNET1 madel that emulates AAPN [3], to evaluate the 

effect on the network's performance. Finally the speed of convergence of one of the algo­

rithms was simulated through a hardware madel design. Timing assessment of the rest of 

the algorithms was done through associating results from the simulation madel and those 

reported in the litera ture review. 

Maximum matching algorithms find the maximum number of matches possible in a 

certain event. On the other hand, maximal matching algorithms [4] explore an iterative 

approach, where the number of possible matches increases with the number of iteration 

runs. Maximum matching proved to be optimal in terms of performance but complex in 

comparison to maximal matching algorithms. 

Nonetheless, sorne maximum matching algorithms, like SRA proved to be less complex 

than others, while achieving the same level of performance [5]. PIM was one of the first 

maximal matching algorithms to be considered. The application of PIM [4] to AAPN was 

dernonstrated in previous work [3] [2]. Xiao [3] also proposed a modified version of PIM 

and evaluated its effect on AAPN. RRPM is the basic Round Robin arbitration algorithm. 

The algorithm iSlip [6], a modified version of RRPM, has grown to be a research standard 

in the scheduling literature. Later on, diverse variants of arbitration schedulers started 

1 A networking simulation tool 
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emerging like DRRM [7], RDSRR [8], FIRM [9], offering sorne performance improvements. 

Hierarchical matching forms a third category of maximal matching algorithms, PHM [lü] 
[11] belongs to this category. PIM, iSlip, PHM and SRA were adopted for performance 

evaluation in the AAPN environment, using the OPNET madel. 

Switch controllers utilize ASICs or FPGA chips torun their scheduling algorithms. The 

study of the hardware requirements and actual running time of a scheduler can be achieved 

by implementing its functionality on FPGA chips, due to their applicability and low cast. 

Reference [12] briefly discussed the basic hardware design of iSlip's protocol in embedded 

systems. Moreover, studies conducted by McKeown and Gupta [13] involving the Tiny 

Tera project2 [14] , tackled several aspect of the hardware design of iSlip like algorithms. 

McKeown and Gupta [13] presented the optimal solution proving that the algorithm meets 

the requirements of Tiny Tera. Finally, the running time estimation of PHM was discussed 

in [15] without any design specifications. 

The simulation madel used in this study employs a Cyclone II FPGA chip. It adopts 

a simplified design that improves on the madel in [12] [16] and exploits the results in [13]. 

The results obtained from running the simulation madel for different numbers of nades are 

used as an analysis reference to assess the running time of the rest of the algorithms. 

1.5 Outline of the thesis 

The following chapter provides the reader with the necessary background regarding 

the architecture of AAPN, the slot-by-slot scheduling process and the characteristics of 

the researched scheduling algorithms. Chapter 3 describes the tools utilized in the study, 

presenting a complete madel derivation for bath the performance and hardware complexity 

simulations. Results obtained from bath models are illustrated in chapter 4. The chapter 

provides a comprehensive discussion of the results. The thesis concludes with a summary 

of the basic results and proposais for future work in chapter 5. 

2Tiny Tera is a packet switch with a switching capacity close to 1 Tera bps 
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Chapter 2 

Background 

Network services are developing to keep pace with the booming popularity of broadband 

applications. The development of services is facing challenges ranging from performance 

reliability, scalability and resource utilization, to resource allocation and profitability. Fur­

thermore, the evolution of network technologies is progressively facilitating the resolution 

of such challenges. 

The maturation of optical technologies supports optical networking, which consequently 

opens new doors for networking advancements and architectures. Photonic networks pro­

vide ideal performance, utilization and scalability solutions. Network agility explores ca­

pabilities offered by engineering approaches, to employ dynamic resource allocation in an 

attempt to maximize profitability. An introduction of an agile all-photonic network is out­

lined in this chapter. 

One should note that networking technologies are simply tools, and that their employ­

ment practices have a great influence on their effectiveness. Optical switches comprise a 

good example in the context of our study, where their performance is affected by the net­

work architecture, topology, and scheduling schemes. 

The chapter starts by presenting the AAPN research project, which structures the 

framework of this thesis. The second section briefly discusses time-slotted transmission 

and resource sharing techniques, presenting conclusions drawn from former studies regard-
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ing scheduling in AAPN. The last section provides a detailed description of scheduling 

algorithms, and their adaptation to conform to the AAPN environment. 

2.1 Agile All Photonics Network 

AAPN is a research network funded by the Government of Canada's Natural Sciences 

and Engineering research Council (NSERC), and other Canadian companies and laborato­

ries [1]. The project was launched in 2003 on a five year agenda. 

Communication networks were initially purely electronic, and then evolved to form a 

hybrid of electronics and photonics. Hybrid networks involve optical transmission and 

electronic switching, where domain conversion is required from optical to electrical upon 

switching, and back to optical before transmitting. Finally the increasing demand for 

bandwidth induced the introduction of all-photonic networks, currently a major concern 

in the field of telecommunications. Transmission and switching in all-photonic networks 

take place in the optical domain, eliminating the need for any kind of conversion between 

domains. All-optical networks utilize optical switches that are capable of handling data at 

higher speeds than electronic switches, which indicates that switching1 is faster and the 

conversion bottleneck (OEO) is avoided. Optical switches are transparent to data format 

and bit rate, which facilitates processing and configuration. On the other hand, several 

tasks like buffering, addressing and labeling are not supported in the optical domain, which 

complicates the design and implementation of the network. 

AAPN's main motivation is to extend the data path of all-photonic networks as close as 

possible to the end-users side [1]. Such an objective could be achieved by network agility. 

Network agility refers to the ability of the network to perform multiplexing for dynamic 

allocation of the bandwidth to traffic ftows. In AAPN, agility is achieved by employing 

resource sharing techniques OTDM or OBS to WDM. 

1 Assuming the technology of all-optical-space switches will reach a point to support high capacities, 
high port-count and fast-reconfiguration[17]. 
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2.1.1 Netw.ork Design 

The topology of the network has a significant effect on its implementation and perfor­

mance. Sever al aspects were taken into consideration in designing the layout of AAPN. 

Major concerns are explained below: 

1. Application: 

Being a core network, AAPN requires a robust topology, one that would accommodate 

for the occurrence of faults and continue to distribute traffic loads over a large number 

of switches. Mesh topologies are most suitable for core networks. 

2. Capacity: 

Photonic core switches have huge capacity which could be suppressed by the employ­

ment of a mesh topology. Efficient capacity exploitation would be achieved through 

scalable and less complex topologies, typically tree or star. 

3. Control of All-photonic switches: 

Due to the lack of buffering and other packet switching tasks, meticulous control 

functionality is required to resolve potential contentions among ingress nodes. The 

coordination of the switches would be very complex in a mesh topology. Again star 

topologies are far more appropriate for reducing the cost and complexity of the control 

challenge. 

Vickers and Bashai [18] proved that overlaid star topologies outperform mesh archi­

tectures in all-photonic networks, in a study launched for an earlier all-photonic network 

project, Petaweb. Mason et al.[19] addressed the problem of topological design in AAPN. 

The study investigated an overlaid star network topology, regarding several aspects: cost, 

capacity and traffic demand. Among the conclusions of the study was a confirmation of 

the apt ness of the composite star topology in AAPN. 

An overlaid star topology is depicted in figure 2.1, where a star layer forms the basic 

unit of the structure. The edge nodes in the overlaid stars are logically connected. The 

Logical mesh-like connection targets robustness by compensating for the point of weakness 

in star topologies. 
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Photonic Core 
Switches 

Fig. 2.1 Overlaid Star architecture:[17] 

2.1.2 Network Architecture 

8 

AAPN consists of a multilayer star network refer to figure 2.1, a single star is illustrated 

in figure 3.3. One should note that wavelength conversion is not supported by AAPN. Edge 

nodes form the ingressjegress points to/from the network. Data transmission between two 

nodes takes place through a single star within a single wavelength. Thus a wavelength 

on an outgoing link of a photonic switch is allocated to only one connection through the 

network. As a result, there is no interaction between data amongst the stars, confirming 

the independence of the stars and the distributed control of the core switches. 

In summary, data paths between edge nodes and the core switches are purely photonic. 

Conversion takes place at the edge nodes, from the electrical to optical domain and vice 

versa. Buffering takes place at the edge nodes and will be discussed in the following section. 

2.1.3 Multi-Queue Buffers 

Electrical cross bar switches employ input buffering, output buffering or a combination 

of both with a speed up factor. M. Karol et al. [20] provided a comparison between Input 

Queuing (IQ) and Output Queuing (OQ) in a packet switch. However, optical cross bar 

switches do not support queuing on either side of the switch. Therefore, queuing in AAPN 

takes place at the edge nodes. 
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Fig. 2.2 IQ versus OQ in cross-bar switches 

OQ exhibits sever al advantages over IQ [20], but in volves simultaneous transmission 

of more than one packet through the switch. Figure 2.2 illustrates the requirement of 

transmitting up to N packets to the same output port in OQ, while only one packet could 

be sent in the IQ cross bar. Such a simultaneous transmission requires internai speed-up 

S in the cross bar fabric, 8=4 in the figure. The speed up requirement complicates the 

implementation and memory requirements of the switch. As a result, cross bar switches 

usually employ IQ. 

In a best effort environment, each input port utilizes a FIFO queue to buffer packets 

that are destined to any of the output ports. Head Of Line (HOL) blocking is a consequence 

of FIFO queuing. HOL blocking occurs when a packet destined to a certain free output 

port X is kept waiting because a packet ahead in the queue, destined to another output Y, 

is blocked. HOL blockage contributes to high latency delays and throughput deterioration. 

M. Karol et al. [20] proved that the HOL blockage limits the maximum throughput of a 

single IQ switch to 58%. Several techniques were suggested to mitigate the effect of HOL. 

Virtual output queuing, introduced by Tamir et al.[21] proved to be the most efficient 

approach. Virtual Output Queues (VOQs) form logical separations within a single buffer, 

each separation buffers packets targeting a single output port. By that, N VOQs are 

required in each input port, for an N x N network. 



The term VOQ switch refers to the structure employing VOQ buffering in a cross bar 

switch. VOQ switches became really popular due to their high throughput and cheap 

implementation. The architecture of AAPN exploits the benefits of VOQs by employing 

them in each edge node. Figure 2.3 demonstrates the VOQ cross bar switch model employed 

in the study. 

Scheduler: 
ISIIp,PIM or PHM 

Edge 
Nod es 

r-------~ 

switch 
fa bric 

Fig. 2.3 VOQ cross-bar switch in AAPN 

2.2 Agility through Resource Sharing Mechanisms 

Agility in AAPN is enabled through the network topology and deployment of photonic 

switches. Photonic switches operate in the order of sub-microseconds, providing a huge 

margin for granularity in resource sharing. Moreover, the overlaid star topology supports 

the introduction of various resource sharing techniques, OBS and OTDM are examples of 

such techniques. 

In OBS, traffic is assembled into bursts according to an aggregation technique, before 

being sent to the core switch. Whereas in OTDM, sources are allocated time slots through 

which they can send a specifie amount of traffic. Therefore, the difference between the two 

schemes lies in the assembly and amount of traffic transmitted between the edge nodes and 
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the cross bar switch. The functionality of OTDM entails synchronization among the edges. 

Overlaid star topologies support network synchronization, enabling the application of 

OTDM in AAPN. Moreover, simulations in [2] and others in [19], revealed that OTDM 

techniques are more robust to traffic variations in the network, which induced the adoption 

of OTDM techniques in AAPN. 

Statistical slot-by-slot scheduling and frame based deterministic sèheduling comprise 

two classes of OTDM. In slot-by-slot scheduling, request signais from the ingress nades are 

used to reserve the output ports of the switch on a slot-by-slot basis. The speed by which 

slots are reserved is limited by the delay of signaling required to grant a reservation request, 

which in turn depends on the network coverage. Such a limitation deteriorates the perfor­

mance making the application impractical in WAN topologies. Frame based scheduling is 

preferable in cases of large distance network coverage. In frame based scheduling, multiple 

slots are reserved according to traffic prediction techniques. The scheme is more complex 

thau slot-by-slot scheduling, and so slot-by-slot scheduling is employed in this study. 

2.3 Slot-by-Slot Scheduling Schemes 

Crossbars are configured by electronic controllers that run scheduling algorithms. A 

controller runs the algorithm at the beginning of each time slot to resolve contention be­

tween service requests. The scheduling algorithm examines the set of service requests 

submitted by the N2 VOQs, where N is the number of nades in the network, and then 

forms a matching map between input and output ports. The concept is best described 

by the bipartite matching,as defined below. The algorithm is said to converge when the 

maximum number of outputs is matched to service requests. 

The application of four scheduling algorithms to the AAPN design was studied and 

is presented in this thesis. The algorithms are PIM, as a continuation of a former study 

[3], iSlip, PHM and finally adapted-SRA. The following subsections provide an overview of 

each one of these algorithms. 
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2.3.1 Bipartite matching 

The process of configuring a cross bar switch is equivalent to a matching problem. 

Matching problems involve undirected bipartite graphs. The mathematical definition of 

these graphs is outlined below, as illustrated by [22]. 

The undirected graph is: G (V, E) 

• V: A finite set of nades or vertices 

• E: A finite set of edges 

• Endpoints of an edge: Nades that are attached to an edge M: is a match that 

acquaints a pair of nades and an edge, where edges do not share common nades 

• Matched node: An endpoint of an edge in the matching 

In a bipartite graph, the set of nodes can be divided into two disjoint and independent 

sets: 

V1 and V2, where G:=( V1 + V2, E) 

Condition: None of the edges could have bath endpoints in the same set 

A matching behavior could achieve one of the foliowing: 

1. Maximum Match: 

This is a matching approach that joins the maximum number of nades, and conse­

quently contains the largest possible number of edges in a specifie event. 

2. Maximal Match: 

Matching occurs in stages, where edges are added at every stage, if a match is present. 

An input in a maximal match could have one of two states: it could either be a part 

of a match, or ali the outputs it requested are already matched. It should also be 

noted that every maximum match is maximal. 

3. Complete Match: 

Matching that covers ali the nades in the graph. A complete match is maximal and 

maximum. 
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Application to the Core Switch 

The input nades represent one set of the nades (V1) The output nades represent the other 

set (V2 ) The crossbar interconnections represent the edges. 

Figure 2.4 views a bipartite graph demonstration of the crossbar switch, along side its 

matrix presentation. The matrix derived from the graph presents the format of the request 

sent to the scheduler. 

lnputNodes Output Nades 
..... -----, ..... --.., 

1 r l 
1 1 

1 
1 
1 1 1 0 1 
1 
1 1 0 0 0 1 
1 R= 
1 0 0 0 1 
1 

0 0 1 0 1 
1 
1 
1 
1 

1 
j! 

1 
l 

......... , ... 

Fig. 2.4 Bipartite Graph 

2.3.2 Scheduling schemes characteristics 

Different scheduling algorithms acquire different characteristics, ranking their suitability for 

the requirements of a certain design. The following is a set of characteristics that should 

be taken in consideration when choosing a scheduling scheme: 

1. Performance measures: 

(a) Utilization and Throughput 

(b) Delay 

( c) Loss rate 
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2. Scalability: 

The implementation complexity in cross-bar switches is of the arder O(N2
) , N being 

the number of ports. Such a characteristic would be further emphasized by employing 

a scheduler that does not scale well. Scalability is a major concern in the choice of a 

scheduling scheme. 

3. Starvation of nades: 

A node is said to starve for service when none of its submitted requests get served, 

causing the input queues to overflow and subsequently increasing the rate of packet 

loss. Starvation of nades in a crossbar is mainly due to the scheduling behaviour 

4. Fairness of the matching: 

The flow of sorne algorithms tend to discriminate between input/output ports, on the 

service level. Such algorithms impose unfairness in the network. 

5. Computational complexity: 

The computational complexity of a scheduler influences its hardware requirements 

and the speed by which the algorithm runs. While speed is one of the most important 

factors in the AAPN design, the scheduler could form a bottleneck in the core. The 

design assigns up to lOus to the scheduling operation. A scheduler that requires more 

than the allocated interval would not fit the design requirements. 

6. Hardware Requirements: 

Schedulers are implemented in hardware, usually ASICs or FPGAs, the following 

factors should be considered in hardware design: 

(a) Simplicity of implementation: Complex schedulers require off-chip communica­

tion, making it more expensive and complex. 

(b) Speed requirement 

( c) The are a occupied on chip 

( d) Memory requirements 

( e) Power consumption 

(f) Pipelining amendments for better processing utilization 
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2.4 Matching behaviors with respect to the requirement 

characteristics of a scheduling scheme 

2.4.1 Maximum Match 

15 

Achieving a maximum match leads to the highest link utilization and throughput among 

other matches. However, the complexity of finding a maximum match for an N x N cross bar 

is O(N(N+M)), M being the number of edges [4]. Such a high performance complexity 

results in speed deterioration, causing high service delay and starvation of the ports. It 

also indicates that the scheduling algorithm is not scalable. 

More efficient maximum-size bipartite matching algorithms have been proposed in the 

literature. Single Round-Robin Arbitration (SRA)[5] is investigated in this study as a 

. contribution of maximum-size matching algorithms. The original SRA algorithm does not 

suit the AAPN design, for reasons explained in the next section, so an adapted version is 

proposed. 

SRA 

As the name implies, SRA employs a single round-robin arbiter for each of the cross­

bar output ports. Arbiters are used to select inputs that are matched in a time slot. 

There are different arbitration schemes, these are further explored in the maximal matching 

algorithms' section, and are explained in detail below. 

The original SRA algorithm as described in [5], is not iterative and finds up to N matches 

in a single time slot. The algorithm uses a dynamic FIFO queue for each output arbiter. 

Each queue keeps status records of the inputs' corresponding VOQ, so the queues could 

be up to size N. For example, if VOQij has queued cells, output j will have an entry for 

input i in its status queue. An output node chooses the value at the head of its queue. The 

ar biter then grants service to that input and removes it from the head of the queue. If the 

VOQ still has queued packets, it sends a request and gets added to the tail of the queue, 

otherwise it loses its spot in the queue. 

The algorithm could match more than one VOQ within an input, allowing the input 

to send to more than one output in a single time slot. However, a single port in an 

optical switch can not be involved in more than one matching in a time-slot, on a single 

wavelength. Thus the original SRA algorithm should be modified to fit the AAPN design. 
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Adapted SRA is a modified version of SRA and is employed in the AAPN simulation model 

for the performance study. 

Adapted SRA has the same functionality as SRA, except that matching in adapted SRA 

is done between single input/output ports. When an output arbiter sends a grant to an 

input port, it waits for an acceptancejrejection message, if the input has been matched to 

another output, it sends a rejection message. If the output receives an acceptance message 

it follows the original SRA protocol. On the other hand, if it receives a rejection message, it 

adds the port's element to the tail of the queue and grants service to the port that appears 

next in the queue, and the process repeats. 

Properties of the Adapted SRA: 

1. Complexity: 

SRA and adapted SRA are not iterative, but adapted SRA has a complexity of 

O(N2). The Simulations showed that the algorithm is very slow in comparison to 

other matching algorithms explored in this study. 

2. Scalability: 

This property tackles two aspects, the hardware requirements of the algorithm, and 

the amount of signaling or communication messaging involved in the protocol. 

(a) Hardware requirements: only one set of arbiters is involved in the implemen­

tation of SRA, whereas iSlip and PIM require two sets. On the other hand, 

Adapted SRA in volves N queues of a maximum size N, requiring a controller 

with larger memory. 

(b) Communication messages: The original SRA requires fewer messages than th ose 

used in iterative maximal matching algorithms, like iSlip and PIM, discussed 

below. Adapted SRA involves extra messaging between the nodes, but still 

requires less messaging than maximal matching algorithms. 

3. Fairness: 

Adapted SRA is a fair algorithm based on the utilization of the FIFO status queues. 

The technique of adding the status element of a matched port to the end of the FIFO 

queue indicates that the port gets the least priority in the next time slot. 



1 

17 

2.4.2 Maximal Match 

Link utilization of maximal matches is much worse than that of the maximum matches; 

in fact it could get to law of 50% depending on the matching algorithm. 

The complexity of the algorithms vary, but proved to be much less than that exhibited 

by maximum matches. Thus maximal matching algorithms are more flexible. 

A variety of maximal matching algorithms were introduced in the literature. Maximal 

matching is iterative, where the scheduling optimization problem converges to a local max­

imum after running a certain number of iterations. Probabilistic matching algorithms, like 

the Parallel Iterative Matching algorithm, PIM [4], is one of the first maximal matching 

algorithms. RRPM is the basic Round Robin arbitration algorithm that descended from 

PIM. iSlip[6] which is a modified version of RRPM, became a research standard in the 

scheduling literature. Thereafter, different ftavors of arbitration schedulers emerged,such as 

DRRM[7], RDSRR[8], FIRM[9], offering performance improvements and supporting QoS. 

A third scheduling category involves hierarchical matching techniques [10] [23] [24]. 

Xiao et al. proposed a modified version of PIM in [2] [3]. The modifications were based 

on improving the overall performance of the network. Whereas Pan and Yang.[25] and 

McKeown and Gupta [13], proposed amendments on existing maximal matching algorithms 

targeting hardware efficiency and timing constrains. 

Parallel Iterative matching 

Parallel iterative matching is a maximal matching algorithm. It randomly chooses the 

endpoints of each edge in the bipartite graph. The algoi:-ithm employs independent arbiters 

that select nades in a probabilistic fashion. 

Simulations clone in [2], [3], [4], and this thesis illustrate that this algorithm yields link 

utilization in the range of 85% to 100%, depending on the probability function utilized by 

the arbiters, and the number of iterations run by the algorithm. 

It has been claimed that randomness redu ces the number of iterations required to achieve 

the maximal match [26]. That however is dependent on the random generation process. 

For example, if all grants were given to the same input, only one match would be performed 

in that iteration, and N iterations would be required to reach a maximal match. On the 

other hand, if every granted input is unique, the algorithm would converge in one iteration. 

However, on average PIM matches 3/4 of the potential matches in each iteration and thus 
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the algorithm converges to a maximal match in 0 (log2 N) iterations, the mathematical pro of 

is provided in [4]. The algorithm is starvation free, which is also due to and dependent on 

the random generation process. 

Random matching algorithms have sorne drawbacks. The first is that of the hardware 

complexity of the algorithm. Each ar biter is supposed to run a random number generation 

function, which is highly expensive in terms of hardware [26]. According to scheduling 

hardware measures, a tradeoff is usually made between storage elements and processing 

time. Unlike other algorithms, PIM does not require memory elements to hold the state 

of the matches done in the past. However random generation requires a considerable 

amount of time, in hardware. Processing time is more important in the AAPN design, 

making PIM disadvantageous in that field. Furthermore, adding extra nodes to the network 

means adding extra random generators that are already expensive, which indicates that 

the algorithm is not scalable 

Fairness is another concern in PIM [6] [4] [26]. Since the selection process done by each 

node is completely random and independent, nodes will have different admission proba­

bilities, leading to unfairness among nodes, especially when the nodes are oversubscribed. 

Figure 2.5 illustrates an example of unfairness in PIM [26]. The figure demonstrates the 

discrimination between ports. Several solutions were introduced by [3] [4]. Traffic moni­

toring in [3] resolves the matter by limiting the submission of a service request to a certain 

number of packets. While that does not resolve the matter completely, it does mitigate 

unfairness. Weighted matching would be a more effective solution, which requires more pro­

cessing and storage of past connection states, violating the basic properties of PIM. Thus 

applying weighted matching to PIM adds to the hardware complexity while improving its 

overall performance. 

One last problem with PIM is that it does not perform well when running only one 

iteration. For a single iteration, the performance of PIM is comparable to FIFO switches, 

where it achieves a throughput around 63% (refer to the results chapter). As mentioned 

before PIM converges when run for (log2 N) iterations, but that requires a high rate of 

operation. 

The algorithm takes place through three stages: Request, Grant and Accept: 
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Fig. 2.5 Discrimination among ports in PIM 

Request: Each unmatched input submits a service request for each output for which it 

holds queued cells. 

Grant: Each unmatched output selects one input request, randomly among all the 

requests it receives (if any), and grants service toit. 

Accept: Each input selects one output grant randomly, if it receives any. 

Previous Work 

Xiao studied the performance of PIM in the AAPN environment, and proposed a mod­

ified version of the algorithm, called the Adapted-PIM, that performs better under the 

design constraints [3]. Adapted-PIM tackled performance and fairness aspects . 

The modification was based on improving performance measures in the network. Adapted­

PIM involves a set of memory elements that store requests which are not serviced in an 

iteration run; these are called left-requests. For example, if two service requests out of four 

are serviced in the first iteration, the other two requests gets stored in memory for the sec­

ond iteration. Requests in the left-request registers get submitted in the next iteration. An 

input port kccps on submitting its request until it is scrviced, meaning that in PIM, service 

requests experience the round-trip propagation delay over and over until they are granted 

service. Whereas the introduction of left-request queues saves the need of generating and 

sending new requests, mitigating the propagation delay. 
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Adapted-PIM introduced another modification on PIM's performance measures, mainly 

link utilization, called fill-up matching. Fill-up matching accounts for the possibility of 

missing a potential match after running several iteration runs of the algorithm. Basically 

the algorithm passes over each and every one of the un-matched nades checking for a 

matching possibility. That proved to greatly enhance link utilization and throughput, but 

increases the processing time of the algorithm. 

Adapted-PIM tackled the issue of fairness by set ting a boundary limit on the number 

of packets buffered in the VOQ before a request is sent to the core. The request-boundary 

mitigates the chance of randomly matching an input with only one packet, while other 

inputs' VOQs are full and about to overftow. 

Adapted PIM proved to improve performance measures in the network. However, the 

modifications incur extra hardware and require longer processing time, which does not 

conform to the constraints of AAPN. Therefore, the original version of PIM is used in this 

study with the addition of employing left-request registers. 

iSlip 

iSlip is an iterative matching algorithm derived from the functionality of PIM. Both 

algorithms follow the same three staged protocol and arbitration concepts. However, the 

actual scheduling of input/output differs. iSlip employs rotating priority (Round Robin) 

arbitration instead of randomness in matching ports. Furthermore, the algorithm enhances 

the basic operation of RRM to achieve better performance. The arbitration process will 

be illustrated before discussing the properties of the algorithm. Since iSlip is a variation of 

the RRM algorithm, the scheduling operation of RRM is outlined first. 

RRM devotes an arbiter for every input/output port. The algorithm follows the pro­

tocol outlined in the operation of PIM, but instead of employing randomness in selecting 

the ports, it utilizes a round robin scheduler. A single iteration run of the round robin 

scheduler follows the steps outlined below: 
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Request: Each unmatched input submits a service request for each output for which it 

holds queued cells. 

Grant: If an unmatched output receives requests, it selects the first input that appears 

after the one pointed at by gi and sends it a grant. gi is then incremented (modulo N) 

to one location beyond that of the granted input. 

Accept: if an unmatched input receives any grants, it selects the first one that appears 

after the output pointed at by aj. The pointer is then incremented (modulo N) to one 

location beyond that of the accepted output. 

Key: 

gi: The grant pointer of the arbiter of output[i] 

aj: The grant pointer of the arbiter of input UJ 
i,j: {O, ... ,N} 

The variation between RRM and iSlip lies in the fashion by which gi is updated. In iSlip 

gi is only updated in the first iteration, if and only if requesting input accepts the grant 

from output[i]. aj are updated the same way in both algorithms [6]. The Grant stage is 

the only source of difference between the algorithms. Figure 2.6 presents an example that 

demonstrates the operation of matching through arbitration in iSlip. The figure presents 

the operation of the algorithm's stages for two iterations. 

Grant: If an unmatched output receives any requests, it selects the first input that appears 

after the one pointed at by gi and sends it a grant. If the algorithm is in the first iteration, 

and an accept is received by the granted input, gi is incremented (modulo N) to one 

location beyond that of the granted input. Otherwise the grant pointer would not move. 

The fashion by which pointers are updated in iSlip has the effect of desynchronizing 

the grant arbiters under certain traffic loads. Moreover, the desynchronization of arbiters 

increases the rate by which the algorithm converges, the phenomena was further explored 

by DRR[8]. Figure 2. 7 demonstrates the effect of high traffic loads on the synchronization 

of grant arbiters. 

The behavior of iSlip brings about the following properties[6]: 
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1. The algorithm is starvation free: 

An input i would keep on requesting service until it is granted. Furthermore, an output 

j would serve up to (N-1) inputs before reaching i, where it might need to wait up to 
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Fig. 2.6 Arbitration and matching in iSlip 
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N time-slots to be accepted (since the granting pointer would not select another input 

otherwise). By th at input i will certainly be served in a time frame less th an N2 slots. 

2. The algorithm is fair: 

Connections made in the first iteration have the lowest priority in consecutive time­

slot, which is a consequence of the arbitration regime. The algorithm does not dis­

criminate between input/output ports, since the selection takes place in a fixed arder. 

3. Speed of convergence: 

The speed of convergence in iSlip depends on several factors, mainly the offered load. 

At high offered load the algorithm produces a large amount of matches and might 

even converge in a single iteration, 0(1). However, analytical studies showed that 

iSlip converges in at most N iterations under regular traffic load. 

.... 4 
0 ... 
~ e _, 
= z 
~ 2 
< 

0 10 20 30 40 50 60 70 80 90 100 
Offered Load (%) 

Fig. 2. 7 The Effect of traffic load on the synchronization of arbiters[6] 
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Notes about the hardware requirements of PIM and iSlip 

PIM and iSlip follow the same matching protocol, three-step iterative matching. The 

protocol requires the exchange of about { (N2 + 2 N)log2 N} messages. N2 request messages 

from each VOQ, N grant messages and N accept messages. Furthermore the total number 

of messages is multiplied by the number of iterations by which the algorithm is supposed 

to converge, the equation assumes that it is log2N on average2 . Each of the messages 

contain log2 N bits, which accounts for the hardware requirements of the scheduler, mainly 

the number of the I/0 pins, memory, on-chip area, and power consumption. So far the 

discussion has disregarded the hardware requirements of the implementation of arbitration; 

that is discussed in detail in chapter 4. 

Peng and Yang [25] proposed a hardware efficient two step iterative matching algorithm 

for VOQ switches. The proposed algorithm incorporates arbitration into the request step 

and eliminates the accept step. The arbitration in the request step selects one request 

service from each of input ports, and sends it to the grant ste p. However, it should be noted 

that sending a single request indicates that the number of grants to be received gets limited 

to a maximum of one, eliminating the need for the accept step. Figure 2.8 demonstrates 

the idea of two step matching algorithms. The figure shows a matching problem resolved 

through three step matching (a), and through two step mat ching (b). The algorithm has 

a shorter scheduling time and requires fewer message exchanges. Analytical studies and 

simulations presented in [25] show that the rate of convergence of the proposed algorithm 

is close to that of the three-step algorithm. 

McKeown and Gupta [13] proposed a pipelined implementation of the three-step iter­

ative matching protocol in iSlip. The implementation pipelines the grant step of iteration 

i with the accept step of iteration i + 1. A sequential flow of iterations seems to be the 

only possible approach, due to the dependence of the grant step of one iteration on the 

accept step of the previous iteration. The grant step uses the feedback from the accept step 

to identify the matched inputs, so that it would disregard their requests in the following 

iterations, as seen in 2.6. However, the functionality of the grant step of iteration i could be 

partially governed by the grant step of iteration i+l. To further elaborate, it is known that 

an input will definitely be matched upon receiving at least one grant, so if the grants pro­

duced in one iteration are ORed together and fed to the grant step of the second iteration, 

2Simulations show that this figure is less in iSlip 
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Grant 

(a) Three Step Matching 

0 

vg 
(b) Two Step Matching 

Fig. 2.8 Operation Stages of Iterative PIM/iSlip 

that grant step will disregard further requests from the granted inputs, without the need 

for any further input. The pipelining implementation decreases the number of clock cycles 

required to run a number of iterations of the algorithm. For the study outlined in [13] the 

number of clock cycles were reduced from 4i to 2i+2. The original implementation requires 

four clock cycles per iteration, two clock cycles for each step while joining the request and 

grant steps. 

PHM 

Hierarchical matching algorithms form a different class of schedulers, based on maxi­

mum size guesses [lü]. The algorithms opcratc by dividing the VOQs into N maximum 

throughput groups. Each of the groups is assigned to a unit hierarchy in the system. 

Matching is done with respect to thé hierarchical level of each VOQ, acting as a priority 

measure. 
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2DRR[24], WFA and WWFA[23] are algorithms in that class. The algorithms demon­

strate variations of the basic arbitration matching process. Figure 2.9 below, illustrates the 

operation by which the basic WFA and its enhanced version (WWFA) blend arbitration 

and hierarchical techniques. In WFA, an arbitration wave propagates through a set of 

arbiters, the arder by which these arbiters are traversed sets their level in the hierarchy. 

WWFA follows the same strategy as WFA, but employs a different arbitration wave, as 

depicted by the figure. WWFA converges faster by increasing the number of arbiters in 

each class. Moreover, 2DRR is a generalization of WFA and WWFA, the algorithms follow 

the same arbitration through classes mechanism. However, 2DRR enhances fairness by 

altering the pattern by which the arbiters are categorized, every time slot. 
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2DRR and WWFA require a maximum of O(N) iterations to converge, and so are 
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called sequential hierarchical matching algorithms. A parallel hierarchical matching (PHM) 

scheduler was introduced by [lü] [11]. 

A hierarchy matrix H in PHM is used to divide the VOQs into different levels. The 

matrix is then associated with all the service requests ( arranged in a request matrix) to 

form the matching. Below is presentation of the PHM algorithm along side the definition 

of the variables used, as outlined in [11]. Finally an example demonstrating the matching 

process in PHM is provided. 

Definitions in the PHM algorithm: 

• rij i,j={l, ..... ,N} : Indicates the submission of a request from VOQ(i,j) 

=> if riJ=l then VOQ(i,j) is requesting service, otherwise VOQ(i,j)is empty SiJ 

i,j={l, ..... ,N} : indicates that VOQ(i,j) has has been selected for transmission at 

the current time-slot. 

• hij : Hierarchical unit of Sij 

• tiJ : Auxiliary variable used to break the inter-dependence among the groups in 

sequential hierarchical matching. 
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Outline of the PHM algorithm: 

1. Initialization of variables: 

s?J=O AND n=O, where n is the number of 

iterations 

2. DO 

(a) Do in parallel: 

IF: 

riJ = 1 AND 

\ik-/= i, sk1=0 AND 

\ik -/= j, s~=O 

then tij=1 else tiJ=Ü 

(b) Do in parallel 

IF: 

tiJ = 1 AND 

\ik-/= i J hkJ > hiJ, tk1=0 AND 

\ik -/= j 1 hik > hiJ, tiJ=O AND 
sn+l = 1 
t} 

3. n=n+1 

IF: n -/= Number of iterations 

THEN: Go to Step 2 

ELSE: End 

28 

Tabe 2.1 presents a detailed workout through a PHM example, given a hierarchical 

matrix H and a request matrix R. 

The behaviour of PHM depends on the routine by which the hierarchical matrix is 

updated. Severa! routines were suggested in the literature. Updating routines must take 

in consideration the nature of the traffic, and the application of the scheduler. 

Xaio [3] discussed the tapie of scheduling for differentiated services in AAPN. Fur­

thermore, the discussion led to the proposai of additional features to the adapted PIM 

to support a class based implementation. Hierarchical matching algorithms support QoS 
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Table 2.1 PHM-Example 

2 1 0 1 

[ ~ ~]R=[~ t] H= 
1 0 0 1 

for two iterations step1: initialize 8° to a zero matrix 
0 3 1 0 
3 2 1 0 

Iteration 1, n=O Iteration 2, n=1 

[ ~ 
0 1 

t] [ ~ 
0 0 

~] [ ~ 
0 0 

~] [ ~ 
0 0 

tl = 0 1 :::} Sl = 0 0 t2 = 0 1 :::} S2 = 0 1 
1 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 

Output: The Matching Matrix=S2 

through class based implementations in a more natural way, avoiding the need for addi­

tional hardware and software complications in the system, while maintaining high levels of 

performance 

F. J. Gonzlez-Castao et al.[ll] provided an analytical comparison between the timing 

constraints set by PHM and other iSlip-like algorithms. The study in [11] also presented 

timing results obtained from implementing the two classes of algorithms using Ambit ASIC 

technology. Moreover, Soto et al. [15] evaluated the hardware requirements of PHM by 

implementing its functionality on a FPGA chip. The results obtained from both studies 

illustrated faster timing responses in PHM. 

~] 
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Chapter 3 

Simulation Madel 

This chapter presents the study of the proposed schedulers in AAPN. The study branches 

to simulate the performance of the schedulers on one band, and the hardware implementa­

tion, and timing measures on the other band. An OPNET [27] madel was utilized to test 

the performance of each of the schedulers in the AAPN environment. Furthermore, the 

hardware implementation of iSlip was evaluated by implementing its functionality on an 

FPGA chip. An association between the simulated results and the characteristics of iSlip 

is further exploited to evaluate the hardware and timing requirements of the rest of the 

schedulers. 

The first part of the chapter depicts the AAPN performance madel. This part starts 

by outlining performance measures collected from the OPNET madel. It also discusses the 

exploitation of certain traffic patterns in the design. The simulation madel is then described 

in detail. The second part demonstrates the hardware design of the iSlip scheduler. 

3.1 Performance Simulation Madel 

The objective of this part is to evaluate the performance of the network as a result 

of employing different schedulers. The performance of the network is not the only con­

cern, since the actual hardware implementation of sorne scheduling algorithms could be 

impractical. However, this part of the study disregards the practicality of the hardware 

implementation and focuses on the performance of the network. 

In previous work [3], one layer of the AAPN star architecture was modeled in OPNET. 

The madel collects performance measures resulting from the employment of different sched-
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ulers under different traffic patterns. The scheduling algorithms discussed in chapter 2 were 

coded in the simulation model, for evaluation and comparison purposes. 

3.1.1 Model Derivation 

The design of a simulation model is based on three elements: the input injected into the 

model, the processing operation, and the output of the processing. Defining these elements 

is very important in the design process. 

The processing operation is defined by the AAPN networking problem, the main con­

cern at this stage is the scheduler. A set of proposed schedulers were discussed in the 

previous chapter. Moreover, the traffic injected into the network has a significant impact 

on its performance. Consequently, different input traffic patterns and distributions were 

introduced into the model. The performance of the model is evaluated by analyzing its 

output. The design should collect a set of predefined measures that give a complete view 

of the impact of the paramters in the system, which comprise the traffic and scheduling 

algorithms in the context of this study. 

This section provides an overview of the inputs and outputs of the AAPN model. The 

first part discusses the outputs required to evaluate the performance of the network. The 

second part presents input traffic options and their potential effect on the performance. 

Performance Measures 

Below is an outline of the performance measures collected by the simulation model: 

End-to-End Delay 

Packets encounter different kinds of delays while travelling from their source to their 

destination. The total delay illustrates the time difference between the sending instant and 

the reception instant,and is referred to as End-to-End delay. Equation 3.1 illustrates its 

formulation. 

Total Delay = Propagation Delay + Transmission Delay + Queue latency ( 3.1) 
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Propagation Delay : 

The time taken by the packets to travel though the media, optical fiber in this case, is re-

ferred to as propagation delay. It is calculated through the basic formula: Delay = Distance/Speed. 

While all packets travel at the same speed, distance is the variable in the equation. Thus 

the distance between the source node and the switch, and that between the switch and 

the destination sets the propagation delay of the packets. Table 3.1 presents delay val-

ues in different coverage scopes of all-photonic networks. Finally, it should be noted that 

propagation delays affect switching and scheduling time. 

• Speed: Photons travel at a speed that equals tow thirds the speed of light, and is 

approximated to the speed of light in this study. 

• Distances: Generally depends on the area coverage of the network, and specifically 

the location of the nodes in the network. 

Table 3.1 Expected Delay values 

Network Distance Bound Delay 
coverage range (Km) (s) 

LAN 1-10 Maximum 0.5x1o-4 

MAN 10-100 Average 2.4x1o-4 

WAN 2 100 Minimum 4.5x1o-4 

Transmission Delay : 

The time that elapses between sending the first and the last bits in a packet is called the 

transmission delay. This type of delay depends on the length of the packet and the band­

width of the link. Transmission delays are independent of the switching and scheduling 

techniques. An edge node starts transmitting after it receives a grant from the scheduler, 

meaning that the transmission delay effect starts after scheduling and switching take place. 
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Queue Latency : 

The controller in the core switch builds a matching matrix and sends signais to configure 

the switch at the beginning of every time slot. Packets stay idle in the queues during that 

scheduling and configuration time, that is referred to as queue latency. Queue latency 

contributes to the end-to-end delay of the packets and is tot ally dependent on the scheduling 

algorithm and the controller performance . 

Scheduling time could forma bottleneck in a high speed network like AAPN. Moreover, 

OPNET is a DES1 simulator that does not allow the study of the exact time spent by the 

scheduler. That however has been studied using another tool and will be discussed later. 

The simulation design devotes 1 us for switching. 

Loss Rate 

The AAPN design employs a cross-bar switch in its core. Cross-bar switches are non­

blocking, which is crucial in meeting the performance requirements of the network. Con­

sequently, the packet loss rate in the network is mainly due to the overflow of the queues, 

which includes queues storing packets and those storing left-requests. However,left over 

request buffers were made sufficiently large as to recover from lasses in left over requests, 

which could lead to a system deadlock. 

results showed that queues storing left-requests are less likely to overflow and so data 

queues are the main concern of this study. 

That is to say, the rate by which packets are dropped in the network depends on the 

size of the VOQs, and the performance of the scheduling algorithm. Studying the effect of 

a scheduling algorithm on the rate of packet loss requires setting the size of the VOQs to 

a constant value. The VOQ size could cause a performance bottleneck in the network, so 

the effect of the size must form a fair tradeoff between the delay and the packet loss, this 

is further elaborated in the following section. 

1 Discrete Time Event 
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Utilization and Throughput 

The throughput of a network expresses the amount of data delivered from the source to 

the destination per unit time, and is measured by bits/s. Throughput is calculated by elim­

inating the amount of blocked traffic from the offered load, comprising the carried traffic 

in the network. Moreover, the blocking probability in the network is the ratio of dropped 

to offered packets. Finally the utilization of the network is the ratio of the carried traffic 

to the capacity of the links. Equation 3.2 illustrates the formulation of the link utilization 

measure in our design. 

Utilization = Carried traffic/c .t apac1 y 

Carried traffic = Offered load(l- BP), whereBPis the Blocking Probability (3.2) 

BP - Dropped Packets; - N umber of offered packets 

Traffic Patterns and Distributions 

The performance of a scheduling algorithm is highly affected by the nature of the input 

traffic and its distribution among network hasts, as final destinations. Traffic patterns 

are modeled by their arrivai events. The study touches upon two types of arrivai events; 

events that are independent and events that exhibit long range dependence among each 

other. The other aspect of traffic is its distribution among edges, it could be uniform or 

non-uniform. 

Conventional network modelers treat traffic arrivai events as being independent. Poisson 

arrivai processes with exponential holding times form a convenient and easy approach for 

modeling such behavior. Other sophisticated models express the autocorrelation or short­

range dependence (SRD) in bursty traffic. Such models are based on Markov-modulated 

Poisson or Bernoulli processes. 

It was proven in the 1990s[28] that long-range dependence (LRD) is present in many 

types of networking traffic, including Ethernet LAN, WAN and ATM WAN traffic. Traffic 

streams exhibiting LRD are highly correlated at every timing scale and are so called Self 

Similar, refer to figure 3.1. Self-similarity is confirmed by examining the decay of the 
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autocovariance between traffic samples. The function decays exponentially in the case of 

SRD and hyperbolically in the case of LRD. 

Figure 3.1 [28] illustrates self similarity in traffic, presenting packet counts collected from 

monitoring Ethernet traffic for 27 hours. The result is portrayed through five time scales, 

where the time resolution is increased from one plot to the next to show the autocorrelation 

between the samples. The plots demonstrate a similar pattern, distribution. That is, the 

traffic seems to exhibit the same behavior over long (minutes) and short (milliseconds) time 

scales. 

There are levels of self-similarity in time series exhibiting long-range dependence. The 

Burst parameter (B) is a measure of the level of self-similarity. Below is an illustration of 

the effect of the boundary values of B. 

0.5 < B < lwhere: 

B = 0.5 indicates the absence of Self similarity, presenting Poisson traffic 

B = 1 indicates exact Self Similarity 

B = O. 73 real world traffic models 

The effect of LRD on the utilization of the network is demonstrated in figure 3.2. The 

figure displays the utilization of the simulation model (refer to the following section for 

details about the model) employing three iterations of the iSlip scheduler under different 

levels of Burst parameters, with 80% offered load. The graph corresponding to B=0.5 

resembles the utilization under Poisson arrivais, which can be confirmed by the results 

presented later in chapter4. The graphs express the severity of the LRD effect on the 

network, where the graph representing highly self-similar traffic (B=0.9) shows a much 

lower utilization than that representing traffic with B=O. 73. 

The discovery of the self similarity nature of traffic raised doubts about modeling ar­

rival events using conventional Poisson and Markov-modulated processes. Beavily tailed 

distributions are used to model self-similar traffic. The Pareto distribution is the simplest 

heavily tailed distribution that is hyperbolic over its entire range, refer to equation 3.3. 

A random variable X has a heavy tail distribution if: 

Pr [X > x] x-a where x---+ oo, 0 <a < 2 (3.3) 

Stearing the level of Self- Similarity: a= 3- 2H 
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Fig. 3.2 The Effect of different Burst parameter values on an AAPN MAN 
topology. 

Self similar traffic could be modeled through one of the following approaches: 

1. Generating packets with sizes drawn from a .heavily tailed distribution. 
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2. Employing several independent and identical ON/OFF sources, where the period of 

traffic generation follows a heavy tail distribution. OPNET provided models generat­

ing self similar traffic based on this concept [29] [30] 

The simulation design utilized in this study generates two kinds of traffic; independent 

arrivai events and self-similar traffic. The independent arrivai events are modeled using a 

Poisson process, with an exponentially distributed packet size. The self-similar traffic on 

the other hand is modeled through drawing the packet size from a Pareto distribution with 

H=O. 73, the model was t~sted for H=0.5 to confirm the absence of Self-similarity and the 

validity of the approach. 

As for the distribution of traffic among network hosts, two options were followed in the 

simulated design: 

1. Uniform traffic: Generated traffic is uniformly distributed among destinations. 
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2. Non-uniform traffic: Traffic is distributed in a weighted fashion, where more traffic is 

sent to particular destinations than others. Following the approach used in [3],equation 

3.5 is used to genenùe the non-uniform traffic, where Àij represents the traffic intensity 

from ingress i to egress j, refer to equation 3.4. The weight of distribution among 

the nades is determined by w, where 0 S w S 1. 

N-1 N-1 

ÀiJ = 2.: ÀiJ = À [ w + ( N - 1) 1~~] = À = 2.: ÀiJ (3.4) 
j=O i=O 

À;;~ {À 
0 if i = j 

(w + 1-w) if j = (i + 1) mod N (3.5) N-1 

À e-w) otherwise N-1 

3.1.2 Simulation Design and previous work 

An OPNET prototype was designed in previous work [3] to madel the architecture of one 

layer of AAPN. The mo del was employed to simula te the performance of the network 

when PIM is employed as a scheduling algorithm. The reader is advised to refer to [27] [3] 

for details about the actual implementation of the design in OPNET. This section briefiy 

discusses an 8 edge node version of the madel. The choice of performance shaping variables 

is explained in terms of the measures discussed in the previous section. 

Simulation Design 

An 8-edge node madel of the design is illustrated in figure 3.3: 

• Traffic sources: These modules are used to generate traffic according to a given distri­

bution. The traffic is then offered to the ingress nades. 

• Links: Used to deliver packets and control signais (requests and grants) after a certain 

delay from an ingress node to the core switch, and from the core switch to an egress 

node. The delay in the links is set to a value that represents the network coverage. 

• Edge nodes: These nodes form the ingress/egress points of the AAPN network. Traffic 

is passed fromjto these nades to/from the outside networks. Every edge node contains 

(N-1) VOQs for every other edge node in the network. For example edge node 1 in the 

figure, contains a VOQ for the following set of edge nades {2, 3, 4, 5, 6, 7, 8}. When 
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an edge node receives a packet from a source, it stores the packet in its destination 

VOQ and submits a service request on its behalf in the next slot. 

• Core Switch: This is the main module in the network. It contains a cross-bar that 

interconnects the edge nades with each other. It also contains a controller that runs 

a scheduling algorithm to configure the cross-bar interconnections at the beginning of 

every time slot. The controller examines the service requests received from the edge 

nades, does the matching and then configures the interconnections making paths for 

the packets to travel between the edge nades. 

Trallic Source 4 Trllftic Source 8 

Fig. 3.3 A single layer of an 8x8 AAPN architecture madel 

Design Settings and Parameters 

This section applies the concepts outlined in section 3.1 to the OPNET simulation 

madel. The application is clone through setting the design variables to control the process 

of examining the scheduling schemes. 

AAPN Design settings 

Before discussing the choice of parameter settings, the following is a set of design parameters 



3 Simulation Mode! 40 

that are fixed by the architecture of AAPN: 

• Link Capacity= lOGbps 

• Slot-Time= lOus 

• Slot-size= 105 bits this is a consequence of the Slot-Time and Link 

• Switching time= 1 us (guard band) 

Variable Design Parameters : 

Experiment~ and simulations are run to investigate the performance of a system. A system 

could have one or more variable parameters shaping its performance. Examining the effect 

of each of these variables requires setting the rest to constant values, variables that are set 

to constants are called control variables. There are four variable parameters in the AAPN 

madel: The pattern of input traffic, Delay, VOQ size, and Scheduling algorithm. Since the 

scheduling algorithm is the variable under study, the rest become control variables. Control 

variables should be set to values that would leave a good margin for the experimental 

variable to influence the network. 

• Traffic: Set to a single pattern and distribution at each simulation run. 

Two probability distributions were employed to generate traffic: 

1. Poisson arrivais: Packet size drawn from an exponential distributed with a mean 

of lOOObits 

2. Self-similar: Packet size drawn from a Pareto distribution with a mean of lOOObits 

The Hurst parameter, H=0.73, equation 3.3 

• Delay: Dictated by the network coverage,as illustrated in table 3.1 

• VOQ Size: The size of the buffers in a network has a direct prominent effect on the 

amount of dropped packets and the queue-latency delay, which indirectly affects other 

network performance measures like the utilization of the links. It was mentioned pre­

viously that AAPN is based on best effort service, making the choice of the VOQ sizes 

very critical. In other words, to be able to support applications with stringent perfor­

mance constraints, the VOQ size should not form a bottleneck in the design. Taking 

Voice over IP as an example, the service is required to support a delay less than 70ms 

and a packet loss of less than 0.1%. The size of the VOQ is selected by collecting per­

formance measures from each of the schedulers upon sweeping the VOQ size from 800 

packets to 1500 packets. The measures were collected for MAN and WAN topologies 
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with an 80% offered load. The plots are presented in figure 3.4 and 3.5. One should 

note that the PIM and SRA plots coincide in figures 3.4(a) and (c). Moreover, figure 

3.4(d) demonstrates the fact that PIM and SRA do not cause any loss for that range 

of queue size, as they do not appear in the figure. 

Both figures demonstrate the tradeoff between the delay of the packets (b) versus the 

packet loss ( c and d) and the utilization of the links (a). As the queue size increase, the 

delay of the packets increase which is unfavorable. On the other hand, the utilization 
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and the packet loss rate favor such an increase in the queue size. In setting the size of 

the VOQs, one notes the most stringent constraints to be supported by the network, and 

makes a fair trade off between the measures. For example figure 3.4 shows that to support 

Voice over IP, the minimum queue size should be 1200 packets, that is to meet the packet 

loss requirement. Moreover,the delay would also be supported since it is a MAN topology. 
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3.2 Hardware Simulation iSlip 

3.2.1 Choice of hardware: FPGA over ASIC 

3.2.2 Design 

The study of the hardware implementation of iSlip did not get as much attention as the 

study of its performance. Serpanos et al. discussed the basic design of the request-grant­

accept protocol in hardware, and provided examples about the requirements for the FIRM 

scheduler in [12] [16]. Another study by Gupta and McKeown [13] proposed a pipelined 

implementation of iSlip, where the scheduler overlaps the accept phase of one iteration 

with the request-grant of another, saving dock cycles in an iterative run of the algorithm. 

The delay imposed by the arbiters in iSlip has a significant effect on the speed of the 

scheduler, thus the design of fast arbiters is very critical. Reference [13] discussed several 

arbiters' implementations, presenting the tradeoffs between the hardware requirements and 

complexity of each design. The simulation model used in this study adopts a simplified 

model that improves the design in [12] and utilizes the optimal arbiter design proposed in 

[13] . 

iSlip is a distributed scheduler that makes decisions through the handshaking protocol 

described in chapter 2. The protocol was explained in detail and is based on three stages: 

Request, Grant and Accept. The model employed for this study merges the Request and 

Grant phases into a single phase, which enhances the complexity of the design without 

altering the functionality of the system. Figure 3. 7 shows how the requests can be forwarded 

directly to the Grant blacks without passing through intermediate blacks. However,each 

stage receives a set of control signais, processes the signais and generates a set of subsequent 

signais that steer the functionality of the following stage, figure 3. 7. Each phase is realized 

by N identical blacks operating in parallel. An additional block is required to update the 

pointers in the Grant and Accept blacks. Furthermore, a three-state finite state machine 

(FSM) is utilized to trigger the appropriate block at each phase of the protocol. The two 

phases of an iteration take effect in one dock cycle. One should note that merging the 

Request and the Grant phases only involves the hardware units; the data flow however 

takes place in sequence. 
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3.2.3 Block Functionality 

1. Grant Blacks: 

Grant blacks take request signais and arbiters' positions as input. The blacks utilize 

arbiters to generate grants (their output control signais). Granting signais are passed 

to Accept blacks and the arbiter updating black. 

2. Accept Blacks: 

Accept blacks take grant signais and arbiter's positions as input. Just like grant blacks, 

they utilize arbiters to choose an output from the set of granting outputs. If the 

scheduler is running the final iteration, the output control signais of this black configure 

the switch for that time slot, otherwise the signais are used to black the matched 

inputs/outputs from being considered in the following matching iteration. 

3. Arbiters Updating Black: 

The functionality of this black is dependent on the scheduler. The discipline by which 

arbiters are updated differentiates between arbitration schemes. In other words, this 

black is the only black that should be changed when implementing different arbitration 

schedulers. The black controls the location pointed at by the arbiter after a certain 

stage, corresponding to the output of that stage. Only one arbiter updating black is 

utilized in this madel. The black updates the grant arbiters while the system is in the 

Accept phase, and updates the accept arbiters while the system is in the Grant phase. 

The appropriate functionality of the black is triggered by the FSM, while the values 

to be-updated are fed by the outputs of the Grants and Accepts blacks. 

4. Controller unit: 

The controller synchronizes the operation of the blacks to accomplish an ordered exe­

cution within a single iteration run. The controller utilizes a three-state FSM, which 

generates control signais that" enablejdisable each of the blacks. Additionally it sets 

the mode of operation of the arbiters updating black to Grant or Accept. 

3.2.4 Arbiter units utilized in the Grant and Accept blacks 

The functionality of the arbiters was discussed in chapter 2. The madel utilizes the 

design discussed in [13], which proved to be optimal. The arbiters were implemented using 

two Priority encoders (smpLPE), a thermo decoder (discussed below) and sorne logic gates 

used for selection, refer to figure 3.6 below: 
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Fig. 3.6 Hardware design of round-robin arbiters, proposed in [13] 

Signais: 

Input: 

1. P _enc: The current position pointed at by the ar biter, log2N bits 

2. Req: 

Grant biocks: Input requests ,N bits 

Accept biocks: Output grants,N bits 

Output: 

1. Gnt: Resuits of the arbitration process, N bits 

2. anyGnt: Signais the presence of a grant 
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The figure shows that the Req from all the inputs takes two different paths. The first 

path is the one that indicates the presence of a request from the inputs ( i in Req [ i ]) 

between P _enc and (n-1). The other path indicates the presence of requests from the inputs 
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between 0 and (P _enc- 1). Finally a decision of which request is granted takes place at the 

final block (Mux_Red). 

Block-level explanation of the proposed arbiters' design 

1. Priority Encoders: 

The smpLpe_thermo and the smpLpe are Priority Encoders (PE), their functionality 

is demonstrated by the truth table 3.2, assuming N=4 

Table 3.2 Priority Encoder 

Req(3) Req (2) Req (1) Req (0) Y(1) Y(O) c 
0 0 0 0 x x 0 
x x x 1 0 0 1 
x x 1 0 0 1 1 
x 1 0 0 1 0 1 
1 0 0 0 1 1 1 

Y is output and C is a variable used to indicate the case when none of the inputs send 

a request. In the context of the proposed design, C indicates that there is no requests 

from any of the inputs that lie between the P _enc to (n-1). C is used as a selector for 

the M ux_red block. 

2. Thermo-Decoder: 

As described in [13] the thermo_decoder is used to decode the log2N bit P _enc input 

into a four bit value, to simplify the remaining functionality (more elaborated in the 

following sub-section). The following truth table demonstrates the functionality of the 

decoder: 

Table 3.3 Thermo_ Encoder 

P _enc(1) P _enc (1) Y(3) Y(2) Y(1) Y(O) 
0 0 0 0 0 0 
0 1 0 0 0 1 
1 0 0 0 1 1 
1 1 0 1 1 1 

3. Prog_not_round_with_smpLPE: 

The block exploits the functionality of a thermo_deèoder in conjunction with a negator 

and an AND gate to fil ter out the requests from input 0 to (P _enc - 1). The remaining 
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requests are then fed to the priority encoder to choose among them. 

4. Mux_red: 

The black acts as a selector that chooses among the decisions made by each path using 

the anyGnt_smpLpe_thermo 

Example: 

Input: 

Req="1101" 

P _enc="01" 

Intermediate: 

P _thermo="0001" =} (NOT)P _thermo=" 1110" allowing everything beyond the pointer to 

pass. 

new_Req="llOO" 

new_Req=" 1100" 

Output: 

GnLsmpLpe_thermo=" 01 00" 

3.2.5 Implementation 

The design was implemented in Quartus II 6.1 [31], a hardware CAD tool. Functional and 

timing simulations were run, and these confirmed the desired functionality of the design 

and determine the propagation delays expected in the circuit, respectively. Optimization 

techniques can also be deployed to get the best design for a given technology. 
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Chapter 4 

Results and Analysis 

Four Matching algorithms, PIM, iSlip, PHM and Adapted SRA were discussed in 

section 2.3. A simulation model emulating the AAPN design was discussed in chapter 

3. The first part of this chapter integrates those sections, presenting results obtained 

from coding the schedulers in the simulation model. The model was simulated for an 

8-edge node environment under the control of each of the schedulers. Different input 

traffic patterns were employed to evaluate the model's ability to adapt to various scenarios. 

The results reported in this section were all generated on average basis1. The literature 

reported performance results and properties about each of the schedulers. Reassessing 

these results forms the starting point of our analysis. The modified schedulers were then 

simulated in application to the AAPN model. The first step utilized a conventional Poisson 

arrivai process and uniform destination distribution, structuring a comparison basis for the 

analysis. Afterwards, the effect of more realistic models, with a combination of traffic 

distributions and arrivai behaviors are tested. The second part of the chapter presents 

results obtained from the hardware simulation model. An association between these results 

and others, reported in the literature, is provided to compare the hardware complexity of 

the algorithms. 

1 Results were generated from each of the nod es, and the average of these results was noted 
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4.1 Performance Results 

4.1.1 Basic schedulers 

Performance of a single iteration of each of schedulers 

Figure 4.1 demonstrates the performance of a single iteration of each of the scheduler's 

algorithms under a Poisson uniformly distributed traffic in MAN topology. figure 4.1(a) 

confirms that a single iteration run of PIM achieves a maximum link utilization of 63%, 

even when the network is fully loaded. iSlip does not reach the reported 100% utilization 

at 100% load, which could be due to more than one reason; like synchronization among 

the pointers, VOQ size and the fact that networks start behaving strangely when fully 

loaded. PHM shows superiority among PIM and iSlip in all four measures. Furthermore, 

the performance of the maximum size match (SRA) is very close to that of PHM. 

The figure illustrates the following facts: 

1. The performance of one iteration of PIM is unacceptable 

2. The performances of PHM and the adapted SRA are very similar, while it was proven 

that SRA is very complex in comparison. The slight improvement in performance can 

be traded for the sake of complexity. 

From this point on, the adapted SRA is replaced by PHM and will not be reported in the 

following performance measures. 

Convergence speed of the schedulers 

Figure 4.2 demonstrates the convergence speed of each of the three algorithms, under 

Poisson, uniformly distributed traffic load of 60% in MAN topology. The simulations show 

that PIM exhibit a speed of convergence of 6 iterations for an 8-edge node network; that 

is of the order of O(log2 N), as claimed in [4]. However a rough evaluation would confirm 

the complexity of PIM reported in the literature. iSlip on the other hand shows the speed 

of convergence of 2 iterations. Lastly, PHM confirms the reported facts, stating that the 

algorithm converges in 0(1) time. 
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4.1.2 Performance measures of the adapted schedulers with different input 

traffic 
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Poisson arrivai process, with tra.ffic uniformly distributed among network hosts 

Figure 4.3 demonstrates the performance of the network under a conventional traffi.c model. 

The arrivai process follows Poisson distribution and the traffic is uniformly distributed 

among the edges; w=O in equation 3.4. The model is simulated for a MAN topology and 

three iteration runs, for each of the scheduling algorithms. The results demonstrated in 

figure 4.3 form a comparison base, since they were generated from idealistic traffic. 
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Poisson arrivai process, with traffic non-uniformly distributed among network 

hosts in a MAN topology 

The results presented in figure 4.4 demonstrate the performance of a more realistic network 

model, where the arrivai process is still Poisson but the traffic is not uniformly distributed, 

w=0.3 in equation 3.4. Comparing the graphs in figure 4.4 with the standard results in 

figure 4.3, one would note that the performance difference corresponding to traffic loads 

between 40%-80% is insignificant. The throughput of the network drops when the traffic 

is non-uniformly distributed, which is expected. However figure 4.4(a) shows that the 

throughput under PHM and iSlip increases linearly as compared to the throughput behavior 

in the standard case (figure 4.3(a) ). In the case of PIM, the throughput stabilizes to a 

constant value at about 85% load, which enforces the limitation of the random arbitration 

in PIM as opposed to other the schedulers. The amount of packet loss in low traffic loads of 

non-uniformly distributed traffic is significantly higher than that in uniformly distributed 

traffic (figure 4.4c). Figure 4.3c indicates that packet loss is very low for traffic loads 

below 55%, whereas figure 4.4b indicates that traffic loss starts from a 20%-30% load. The 

delay performance gr a phs in figure 4.4(b) demonstrate the superiority of iSlip and PHM 

over PIM. One would notice a peculiar behavior around 30% load, where the graphs reach 

a maximal point and then ramp down again, with the exception of PIM that keeps on 

increasing. The peak is due to the non-uniform distribution of the traffic. Sorne VOQs 
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get blocked and start losing packets while keeping the delay of the queued packets the 

same 2 , whereas other VOQs queue more packets, ones that will experience larger delays. 

Averaging the delay over such non-uniform distribution produces higher values than the 

regular case where all nodes block packets, which starts when the percentage of packet 

loss becomes more pronounced (around 30% load). PIM exhibits an increasing delay, one 

that is higher than that reported in figure 4.3(b). Whereas, the network delay imposed by 

employing iSlip and PHM stabilizes after a 50% load. 

2 Packet loss and delay are independent measures 
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Poisson arrivai process, with traffic non-uniformly distributed among network 

hosts in a W AN topology 

Figure 4.5 demonstrates a similar effect on the network performance, as the previous simu­

lation, but in a WAN topology instead of MAN. The gr a phs demonstrate higher dela ys and 

packet loss percent ages. The delay performance in figure 4.5(b) is somewhat different thau 

that displayed in the MAN topology. The figure shows the same peak at 30% load, but the 

behavior of the gr a phs bef ore and after that peak is different than that in figure 4.4 (b). 
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The graphs illustrate a vigorous increase in the delay under traffic loads of 20%-25%, that 

is when packet loss starts in few nades (figure 4.5(c)). For higher loads, the percentage of 

packet loss increases, more nades start blocking packets, and so the delay of each of the 

graphs increases as expected. 
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Fig. 4.5 Network performance under Poisson, non-uniformly distributed 
traffic (w=0.3), WAN topology (200Km), VOQ size=lOOO packets, utilizing 
3-iteration runs 
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Self Similar traHie, unifarmly distributed amang netwark hasts in MAN 

tapalagy 
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Figure 4.6 shows a realistic madel, where traffic samples exhibit LRD. The madel is sim­

ulated for three iteration runs of each of the scheduler algorithms in a MAN topology. 

Generally the behavior of the each of graphs is similar to its equivalent in figure 4.3, in­

dicating that self similar traffic would be supported in the AAPN model. The network 

throughput drops under Self similar traffic, as compared to Poisson arrivais. PIM achieves 

very poor utilization, figure 4.6(a). The increase in packet loss vs offered load is much 

steeper in the case of Self similar traffic versus Poisson, but stabilize at about the same 

load, 80%. It should be noted that for Poisson traffic loads lower than 80%, the packet loss 

is insignificant upon utilizing PHM, refer to figure 4.3. However packet loss in Self similar 

traffic starts from a load of 60%. Moreover, the delay of the network under PHM is greater 

than that imposed by iSlip for traffic loads greater than 70%, which is not the case for 

Poisson traffic. One would conclude that PHM would still meet the stringent performance 

requirements of a MAN network under Self similar traffic, as long as the load is kept below 

75%. 

Self Similar traHie, unifarmly distributed amang netwark hasts in a WAN 

tapalagy 

Figure 4. 7 demonstrates the same effect on the network performance, as the previous sim­

ulation, but in a WAN topology instead of MAN. The gr a phs demonstrate higher dela ys 

and packet loss percentages. One would conclude that the network performance in this 

case would support applications with stringent requirements, only if the traffic load is kept 

below 60%, which would achieve a throughput less than 0.57 in the best case scenario, 

when PHM is employed. 

Self Similar traHie, nan-unifarmly distributed amang netwark hasts in a WAN 

tapalagy 

Figure 4.8 indicates that network with self similar, non-uniformly distributed traffic load 

has a poor performance under the employment of each of three schedulers. The behavior 

of the graphs in Figure 4.8(b) is comparable to the behavior of the graphs in figure 4.5(b). 
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The percentage of packet loss in figure 4.8( c) demonstrates a sudden increase at 80% load, 

which leads to saturation of the utilization graphs and a steep increase in the delay graphs. 
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4.2 Hardware complexity results 

This section presents the results collected from the hardware implementation of iSlip 

on a Cyclone II, EP2C70F89618 deviee [31]. The results agree with the research findings 

reported in the literature, considering the lack of protocol-steps pipelining in our design. 

The main concern of the study is to evalua te the worst timing requirement of iSlip, and when 

that was met, as table 4.1 confirms, there was no need to update any further. Moreover, 

PIM was never implemented in hardware due to its hardware complexity that requires 

large running times, failing to meet AAPN's lOus timing costraint. Whereas, many studies 

showed that PHM is much simpler to implement and requires less running time. 

The results demonstrated in tables 4.1 and 4.2 were collected from running the design 

in a 4x4,8x8 and 16x16 network environments, to investigate the scalability of the design. 

It should be noted that the simulation deviee has a significant impact on these results. The 

layout of a deviee sets a lower limit to the propagation delay of the signais, where signais 

are sent from one unit to another, that contributes to the difference between the results 

obtained in our design and other designs. 

4.2.1 Timing Requirements 

Table 4.1 illustrates the results obtained from running the iSlip implementation into 

the Cyclone II deviee. The dock frequency in the table is set to a value that would support 

the delay of the bottleneck unit in the design, the Grant black. That is, before running 

the operation of the whole design, a timing analysis tool was employed to determine the 

bottleneck and its timing requirement. Moreover, the design accounts for other timing 

requirements, such as the time needed for the circuits to stabilize. One would note that 

the dock frequency decreases as the network expands, since more nades require more logic, 

more memory and higher processing times. 

The table confirms the applicability of iSlip in AAPN up to 16 nodes. Moreover, the 

Tiny Tera project [13] confirmed the applicability of a pipelined version of the algorithm, the 

results reported a running time of 51 ns for three iterations of iSlip in a 32x32 environment, 

on a Xilinx deviee. The results from that study prove the significance of pipelining on the 

running time of the algorithm. 
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Table 4.1 Timing Results 

N Worst-case Clock Frequency Total Time 
propagation delay iterations ti me 

(ns) MHz (ns) 

2 40 
4 8 100 3 80 

8 13 66 3 80 

3 130 
16 22 45 4 180 

4.2.2 Resource utilization 

Table 4.2 outlines the hardware requirements of iSlip in the Cyclone deviee. The re­

quirements obviously change from one deviee to another, but the results give a rough idea 

about the general requirements of the implementation. Moreover, it should be noted that 

the EP2C70F89618 deviee would not support a 32x32 implementation of the design, while 

other industrial deviees would. 

Table 4.2 Resource Utilization Results 

N Totallogic Total combinational Dedicated logic 
elements fun etions registers 

4 265 249 96 
8 1495 1495 374 
16 8777 8477 1432 

The timing constraints of PHM were studied in [11] and [15]. An analytical approach 

was followed by simulations on an ASIC library, lca300k.alf in [11]. The results confirmed 

that PHM has a running timing that is much shorter than that in other arbitration based 

algorithms, such as RDSRR. [15] on the other hand, confirmed the applicability of PHM to 

such high speed networks by synthesizing the algorithm on several deviees. Comparing the 

results obtained by our design and those reported in reference [15], indicates that generally 

PHM is faster than iSlip, but requires more logic units. 
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Chapter 5 

Conclusions and Future work 

The study of time-slotted schedulers in AAPN is presented in this thesis. Four algo­

rithms were researched and employed in the study. The performance of the network under 

each of the proposed schedulers was tested using an OPNET model, one that emulates 

the infrastructure of AAPN. Furthermore, the hardware implementation of the algorithms, 

which concerns hardware requirements and running speed, is evaluated to establish a full 

view of their requirements and compare them to the constraints set by AAPN. This chapter 

provides a summary of the outcomes of the study, and suggests research areas to be further 

exploited for the scheduling pro cess in AAPN. 

5.1 Summary and Conclusion 

The first and most obvious conclusion of the study is the fact that PIM does not meet 

the criteria set for AAPN. The performance of the network, under PIM, fails to meet the 

minimum requirements unless more than log2 N iterations are run, that on the other hand 

consumes so much time, and fails to meet the lOus timing constraint. However, one would 

argue that features of the Adapted-PIM [3] would conform better to AAPN. While it was 

confirmed that Adapted-PIM enhances the performance of the network, the algorithm was 

not investigated in terms of its hardware complexity. Adapted-PIM requires extra control 

over the network queues, to monitor their capacity, which adds to the complexity of PIM, 

making its implementation impractical. 

SRA was disregarded from the simulations due to the fact that PHM was able to 

deliver comparable performance results with much lower complexity. 
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The performance of the network under PHM is better than that under iSlip. Both 

algorithms do not perform so well under non-uniform traffic, load-balancing would resolve 

that issue while adding on the control overhead, and so the complexity of the schedulers. 

The effect of self similar traffic on the network is acceptable for sorne applications 

in MAN topologies. However, the performance would not be acceptable for applications in 

WAN topologies. 

The study revealed that the AAPN scheduler could employ iSlip for a network 

containing up to 64 nodes, while meeting the lOus timing constraint. Furthermore, the 

literature illustrated several studies, utilizing different ASICs and FPGAs, where the im­

plementation of PHM appeared to be more practical than arbitration algorithms. 

Lastly it is worth mentioning that PHM and its variations could be utilized in 

implementing QoS in AAPN. Such an application, along side the algorithms' high running 

speed and high performance, demonstrate the superiority of PHM among the rest of the 

algorithms studied in this thesis. 

5.2 Future work 

5.2.1 Performance 

Load balancing techniques have been adopted in hybrid-networks to mitigate the effect 

of non-uniform traffic. The application of such techniques to AAPN would definitely en­

hance the performance. 

Self-similar traffic is inevitable, and performance measures proved that it is hardly 

supported in MAN topologies in AAPN. Employing a hybrid of distributed scheduling ap­

proaches could resolve that matter. The determination of the level of self-similarity of 

traffic in the edge nodes, followed by an adaptive scheduling approach could achieve better 

performance measures, while increasing the complexity. 

5.2.2 Hardware Measures 

The lack of protocol pipelining in the hardware implementation of iSlip is considered a 

limitation. While the minimum timing requirements were met, pipelining would support 

networks larger than 64 nodes. 

The hardware implementation of PHM is most important step in continuing the 
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