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Abstract

Reaching consensus in distributed systems is a fundamental problem. In consensus prob-

lems, we would like all of the nodes of a network to converge to a certain quantity or a

function of their values using only local communications. In the maximum value consen-

sus problem, the objective of these communications is that all the nodes converge to the

maximum of their initial values. There are two existing algorithms for the maximum value

consensus problem in asynchronous networks: random pairwise max and random broadcast

max. In the literature, bounds on the mean convergence time of these algorithms have

been derived. In this thesis, we find tighter bounds on the expected convergence time of

the random pairwise max and random broadcast max algorithms. Furthermore, we modify

the proposed bounds for the cases in which the messages are successfully received proba-

bilistically; e.g., to model packet drops. Performance analysis indicates that the bounds

proposed in this thesis are significantly tighter than the previous state-of-the-art bounds.

Simulation results show improvements of up to 95%.
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Abrégé

Parvenir à un consensus en utilisant des systèmes distribués est un problème fondamental.

Lors d’un problème de consensus, l’idéal serait que tous les nœuds d’un réseau ce convergent,

soit vers une certain quantité ou une fonction de sa valeur en utilisant seulement une

communication locale. Lors d’un problème de consensus de valeur maximale, l’objectif de

ces communications est la convergence de tous les nœuds vers leur valeur initiale maximale.

Il y a deux algorithmes qui parviennent à résoudre le problème de consensus de valeur

maximale: random pairwise max et random broadcast max. Une limite superieure de la

moyenne de temps de convergence de ces deux algorithmes a déjà été dérivée et ces calculs

se retrouvent dans la littérature académique. Cette thèse propose une limite plus stricte

pour la durée de convergence des algorithmes random pairwise max et random broadcast

max. De plus, nous modifions les contraintes suggérées pour les cas où les messages sont

reçus avec succès (par example, si la réception d’un paquet est interrompue). Une analyse

de performance indique que les contraintes suggérées dans cette thèse sont notablement

plus restreintes que dans d’autres contraintes de dernier cri. Les résultats des simulations

effectuées indiquent une amélioration allant jusqu’à 95%.
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Chapter 1

Introduction

1.1 Consensus Problems

Reaching consensus in distributed systems is a fundamental issue due to its various appli-

cations. In a consensus problem, the objective is that all the agents of a network agree

upon a certain quantity or a function of their values using only local interactions (local

information exchange).

In the maximum value consensus problem, the network nodes have initial values, and

the network needs to reach consensus on the maximum of the initial values. This type of

consensus problem has been studied more recently in asynchronous networks [1, 2]. The

focus of this thesis is on the bounds for the expected convergence time of maximum value

consensus algorithms in connected, undirected, and asynchronous networks. Being asyn-

chronous means that the nodes of a network do not have a common clock. Instead, each

node has its own clock and can start a communication with its neighbors at its own clock

ticks [3, 4].

There are several algorithms in the literature proposed for the maximum value consen-

sus problem [1]. The performances of these algorithms are evaluated via three criteria: the

mean convergence time, the convergence time dispersion, and the number of communica-

tions.1 Since the network reaches consensus via local information exchanges, it is expected

that the performance of these algorithms depends on the size of the network, the diameter

of the network, and the degrees of the nodes of the network.

1Formal definitions for these metrics will be given in Chapter 2.
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1.2 Motivation

The maximum value consensus problem is important to study because of its practical uses.

As an example, consider a network in which the nodes use the same medium to send

information. Hence, the network should decide which agent has to transmit information.

To solve this problem, the nodes are asked to draw a number in a common window, and

then reach consensus on the greatest drawn number. Then the node with the maximal

value can use the medium [1].

The previous example is analogous to the leader election problem, which also uses the

max consensus algorithm. The network has to decide who takes the role of the leader.

For example, if each agent has a performance index, then all the nodes will compare their

indices and the node with the greatest performance index will be selected as the leader [5].

Another practical use is when the wireless network has to transmit data on a regular

basis. An intuitive method to achieve this without possible node failure is to choose the

node with the maximum remaining power to perform the communications. Therefore, the

network should be able to identify the agent that has the maximum remaining power. This

will be feasible if the network reaches consensus on the maximal value of the remaining

power of the agents [1].

Minimum time rendezvous is another application of the max consensus problem. As-

sume that a group of agents are supposed to meet each other at a specific time and each

agent needs a minimum time to get to the meeting place. Therefore, the group should

reach consensus on the maximum of the minimum times, in order to arrange the meeting

time [5–7].

1.3 Thesis Contribution

We study algorithms for the maximum value consensus problem in wireless networks. We

derive tight bounds for the expected convergence times of these algorithms. Specifically,

various novel bounds for the mean convergence time of the maximum value consensus

algorithms in asynchronous networks are developed. These bounds are significantly tighter

than the bounds proposed in [1]. We then extend our work to address the possible presence

of link failures. These results are validated via simulations.
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1.4 Thesis Organization

The organization of this thesis is summarized below.

In Chapter 2, we will summarize the essential elements from graph theory that are em-

ployed throughout this document. Then, the asynchronous time model for the distributed

systems is presented. Moreover, the maximum value consensus problem is discussed for-

mally along with its performance measures. The graphs (grids, toruses, and random geo-

metric graphs) on which we study the maximum value consensus problem are also described

in Chapter 2.

In Chapter 3, a general survey of consensus and gossip algorithms is reported. The

chapter is then followed by a review of the existing work in the literature concerning the

maximum value consensus problem.

Novel bounds for the expected convergence time of the random pairwise max algorithm

in reliable networks are presented in Chapter 4.

In Chapter 5, novel bounds for the mean convergence time of the random broadcast

max algorithm in reliable networks are developed.

The probability of link failure is introduced to the analysis in Chapter 6, and the

proposed bounds in Chapters 4 and 5 are generalized to account for the possibility of

messages being dropped.

The performance comparison of our proposed bounds for the mean convergence time

of the maximum value consensus algorithms and the previous state-of-the-art bounds is

presented in Chapter 7.

This thesis is summarized by the concluding remarks and suggestions for future work

in Chapter 8.
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Chapter 2

Problem Formulation and Notation

2.1 Overview

In this chapter, the notation that is required to state the maximum value consensus problem

is introduced. Then, the asynchronous time model for the distributed systems is presented.

We then state the problem formulation and the underlying performance measures. Further-

more, the difference between the maximum value spreading and rumor spreading problems

is summarized. In the last section of this chapter, the different types of graphs that are

used in our study are described.

2.2 Graph Notations

Let G = (V,E) be an undirected graph with N nodes, where V is the set of vertices and

E is the set of edges of the graph. The edges of the graph are represented as an ordered

pair (vi, vj) if there exists a path of length one from node vi to node vj, where vi, vj ∈ V .

In undirected graphs:

(vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E. (2.1)

The set of neighbors of the node vi, denoted by Lvi , consists of the nodes that vertex

vi is connected to:

Lvi = {vj ∈ V : (vi, vj) ∈ E}. (2.2)

For any set M , we denote its cardinality by |M |. Therefore, |V | = N . The degree of

the node vi of a graph, denoted by dvi , is equal to the number of edges that connect vi to
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the other nodes of the graph, i.e., dvi = |Lvi |.
The maximum degree of G, denoted by dmax, and the minimum degree of G, denoted

by dmin, are the maximum and minimum degrees of its vertices, respectively.

The degree matrix of a graph, denoted by D, is a diagonal matrix of size N ×N , which

contains information about the degree of each vertex, i.e.,

di,j =

⎧⎨
⎩dvi if i = j

0 otherwise.
(2.3)

The adjacency matrix of a graph, denoted by A, represents which nodes of the graph

are connected (adjacent) to each other, i.e.,

ai,j =

⎧⎨
⎩1 if there exists an edge between node vi and node vj

0 otherwise.
(2.4)

The Laplacian matrix of a graph, denoted by L, is the difference of the degree matrix

and the adjacency matrix, i.e., L = D − A. From the definition it follows that:

li,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dvi if i = j

−1 if i �= j and vi is adjacent to vj

0 otherwise.

(2.5)

The eigenvalues of the Laplacian matrix have many applications in algebraic graph

theory. The Laplacian matrix has two significant useful properties [8]:

� it is positive semidefinite, and;

� its row sum is null.

Therefore
−→
1 N (the column vector of ones of size N) is an eigenvector associated with

eigenvalue 0, and the eigenvalues of the Laplacian matrix satisfy 0 = λL
1 ≤ λL

2 ≤ λL
3 · · · ≤ λL

N

(see [9], Th. 7.2.1). Since the graphs considered in this thesis are connected, the second

smallest eigenvalue of the Laplacian matrix (λL
2 ) is strictly positive (see [10], Lemma 1.7).

The diameter of a graph G, denoted by ΔG, is the largest number of edges which must

be traversed in order to travel from one vertex to another. Let dist(vi, vj) denote the
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minimum number of edges that connect the node vi to the node vj, then,

ΔG = max{dist(vi, vj) : (vi, vj) ∈ V 2}. (2.6)

2.3 Asynchronous Time Model

In this thesis, we assume that the nodes of the networks update their local estimate of

the maximum value when they receive a message from a neighbor. The order in which

nodes transmit is determined by local clocks. Each node has its own clock and can start

a communication with its neighbors at its own clock ticks (asynchronous time model). We

can assume no collisions happen between communicating nodes since the clock rate at each

node can be chosen such that the communication time is significantly shorter compared to

the time between clock ticks [3, 4].

If each node’s clock ticks is modeled by an independent Poisson process, then a global

clock modeled by a Poisson process with intensity λ =
∑

v λv is obtained , where λv is the

Poisson process intensity of node v.

We assume that the networks are connected, time invariant, and asynchronous.

2.4 Maximum Value Consensus Problem

Using the definition in the previous section for clock ticks, we write xn(v) as the value of

agent v after n global clock ticks. In the maximum value consensus problem, the objective

is that all the nodes of the network converge to the maximum of the initial values, i.e.,

xn(u) = maxv∈V x0(v) as n→∞ for all u ∈ V .

Note that all the algorithms for the maximum value spreading easily generalize to the

minimum value spreading problem.

The convergence time τ is the first time when all the nodes of the network are informed

of the maximum of the initial values. This can be written as:

τ = inf{n ∈ N : ∀v ∈ V xn(v) = max
v∈V

x0(v)}. (2.7)

The performance of the algorithms proposed for the maximum value consensus problem

is evaluated via three criteria:
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� the mean convergence time: E[τ ] where the expectation is with respect to the

random order of clock ticks,

� the convergence time dispersion: for all ε ∈ (0, 1), finding a bound B such that

Pr[τ < B] ≥ 1− ε, gives a general view of the convergence speed, and,

� the number of communications: it is obtained by multiplying the number of

iterations by the number of communications per iteration.

2.5 Maximum Value Spreading Versus Rumor Spreading

There is a difference between the asynchronous maximum value spreading and the rumor

spreading problems which is worth noting [2]. In the rumor spreading problem, the goal is

to spread a local information through the network. Most research papers that are concerned

with the rumor spreading consider push and/or pull transmission methods. In the push

transmission method, information gets transferred from the caller to the called node. In

the pull transmission method, information gets transferred from the called to the calling

node [11].

Generally, the push and pull transmission methods are combined to form the push and

pull algorithms [12–19]. These algorithms are based on one-by-one exchanges between

neighbors in the network and are applicable to wired networks.

There are also some research papers that consider radio medium for the network com-

munications and propose broadcast based algorithms, e.g., [20–23].

Although the maximum value spreading and the rumor spreading problems seem similar,

there is a major difference between them. In the maximum value spreading, no sensor is

aware if it has the maximum value, while in the rumor spreading, the sensors are aware if

they have the rumor or not.

We can consider the maximum value spreading problem as an asynchronous juiciest

rumor spreading problem, where juiciest means that the nodes do not know if they have

the rumor [2].



8 Problem Formulation and Notation

2.6 Graphs of Interest

In this section we describe three types of graphs on which we study the maximum value

consensus problem. Grids, toruses, and random geometric graphs are the network models

that we use in our work. The following subsections provide detailed description of these

models.

2.6.1 Grid networks

Grid structure is widely used since it provides services that cannot be supported with the

traditional structures. Grid networks provide scalable, reliable, and secure mechanisms

for assembling, integrating and utilizing multiple resources. These resources may include

specialized computers, computer clusters, instruments, or sensors. Some of the general grid

characteristics are: resource sharing, flexibility, programmability, and dynamic integration.

Further information on the grid networks is provided in [24].

Assume that you have a network of size N , where N is a power of two. The grid network

that represents this network is a grid of size
√
N ×√N , as illustrated in Figure 2.1.

Fig. 2.1 Grid network of size 100.

2.6.2 Random geometric graphs

Another type of graphs on which we study the maximum value consensus problem is random

geometric graphs. In random geometric graphs, two nodes are connected if the Euclidean

distance between them is smaller than or equal to a predefined radius r [4].
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In wireless networks, two nodes can communicate or are connected to each other if

they are close (in each others’ range of broadcast). If we set the radius r equal to the

wireless network range of broadcast, then random geometric graphs will model the wireless

networks.

To generate a random geometric graph (RGG) with N nodes, N points are chosen

uniformly at random in the unit square [0, 1] × [0, 1] representing the positions of the

nodes. Then, an undirected edge is drawn between any pair of nodes if their Euclidean

distance is less than r.

Note that r represents the communication radius of a node. By choosing r = r0

√
logN
N

with suitable r0, the random geometric graph will be connected with high probability

[25, 26]. A random geometric graph with ten nodes is illustrated in Figure 2.2.

Fig. 2.2 Construction of a RGG.

2.6.3 Torus networks

Torus networks are important to study because they eliminate the border effect of the grid

networks and the random geometric graphs [27]. For instance, in the grid networks and the

random geometric graphs, the node on the upper left corner cannot easily reach the node

in the lower left corner, while in the corresponding torus networks, communication from

the upper nodes to the lower nodes is possible. A gridded torus is shown is Figure 2.3.
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Fig. 2.3 Gridded torus.

2.7 Summary

In this chapter, we introduced the notation that we will use throughout the thesis. We then

described the asynchronous time model for distributed systems. Moreover, the maximum

value consensus problem and the performance measures were formally discussed. Then,

the difference between the maximum value spreading and rumor spreading problems was

explained. Grids, random geometric graphs, and toruses which are the network models

considered in this thesis were also introduced in this chapter.
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Chapter 3

Previous Work

3.1 Overview

In this chapter, we first provide a brief literature review of the consensus problems. Then,

two research papers in the literature analyzing the maximum value consensus problem in the

synchronous and the continuous time models are reviewed. The discussion is then followed

by a detailed review of a paper on the maximum value consensus problem algorithms in

the asynchronous time model and the algorithms’ performance metrics.

3.2 General Survey on the Consensus Problems

There are many research articles in various branches of the literature which study the con-

sensus problems in distributed systems. For instance, in 1974, DeGroot in [28] developed

a model describing how a group of nodes reach consensus by forming a common probabil-

ity distribution for a parameter whilst each of which initially has a different probability

distribution for the unknown value of the parameter.

Another efficient and highly fault-tolerant consensus algorithm, named PAXOS was

devised by Lamport [29] for reaching consensus in a distributed system. An exclusive

survey of early results is provided in [30]. More recent studies concerning the consensus

problem are the research papers on randomized gossip, e.g., [4, 31, 32].

Note that the consensus problem is also known as the agreement problem in social

networks, economics, and signal processing fields. In statistical mechanics, the consensus

problem is called synchronization [33].
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Consensus to the average of the initial values of the agents has been extensively studied

in the past years, due to its practical applications. A simple idea for the average consensus

algorithm would be to wake the agents up randomly and average their values with another

node. After a sufficient time, all the agents will have a close approximation of the average

of the initial values [3, 25, 34–36].

Another type of consensus problem which is being studied more recently is the maximum

value consensus problem [1,5,36]. In the maximum value consensus problem, all the nodes

of the network reach consensus on the exact maximum of the initial values in a finite time.

However, in the average value consensus problem, the network does not converges to the

exact average value in a finite time.

Due to the lack of a finite-time convergence, the distributed average consensus algorithm

cannot be adopted to obtain a unified measurement across all the nodes in real-life situa-

tions. The maximum value consensus algorithms, however, could remedy this problem; the

following hybrid approach can be employed in order to distribute a unified measurement

amongst all the network nodes, in a finite time:

� the distributed average consensus algorithm is forcefully stopped at a predetermined

time-step; when the average consensus algorithm stops, every node possesses an ap-

proximate average value.

� at this point, a maximum value consensus algorithm starts to distribute the maximum

of the approximate average values. This step does converge in a finite time, and as a

result, all the nodes will ultimately possess an identical approximate average value.

All the following sections provide a general overview of the existing research work study-

ing the maximum value consensus problem.

3.3 Max Consensus in a Max-Plus Algebraic Setting

Nejad et al. [5] study the maximum value consensus problem. They have proposed to use

max-plus algebra to analyze the max consensus algorithms in a synchronous-time model.

They represented the max consensus algorithm by a linear system and studied the conver-

gence conditions and the convergence rates.
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3.4 Distributed Algorithms for Reaching Consensus on General

Functions

Another research paper which presents a method for reaching consensus on the maxi-

mum/minimum value is by Cortes et al. [36]. Necessary and sufficient conditions charac-

terizing any algorithm that achieves consensus asymptotically are obtained in this paper.

They consider continuous consensus functions of the initial state of the network agents,

where the nodes update their values and communicate with the neighbors continuously

over time.

3.5 Analysis of Max-Consensus Algorithms in Wireless Channels

Iutzeler et al. [1, 2] are the first to study the maximum value consensus problem in the

networks with the asynchronous time model. For the rest of this chapter, we will summarize

the findings of these articles.

3.5.1 The Random-Walk-Max Algorithm

The random walk max algorithm considers a simple random walk on the graph, propagating

the maximum encountered value. This algorithm is not asynchronous nor synchronous and

is used as a comparison point. The steps of the random walk max algorithm are summarized

as follows:

1. Node v (randomly selected) wakes up after the nth clock tick.

2. v chooses a neighbor w uniformly random in Lv.

3. xn+1(w) = max (xn (v) , xn (w)).

4. w is the active node for the time n+ 1.

Assume that the random walk algorithm begins from node vi, while node vj has the

maximum initial value. Therefore, the convergence time of the random walk algorithm is

the sum of two times:

� (vi, vj)-hitting time: the time the random walk takes to go from vi to vj, and,
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� vj-cover time: the time that the algorithm takes to go to all other nodes of the

graph starting from vj.

The cover time of the random walk algorithm is well studied in [37,38].

3.5.2 The Random-Pairwise-Max Algorithm

The random pairwise max (RPM) algorithm mimics the random gossip algorithm for av-

eraging introduced in [31]. At each time step, a random node wakes up and exchanges its

value with another node selected uniformly at random among its neighbors. Then both

nodes keep the maximum of their previous and received values. The steps of the RPM

algorithm are summarized as follows:

1. Node v (randomly selected) wakes up after the nth clock tick.

2. v chooses a neighbor w uniformly random in Lv.

3. xn+1(v) = xn+1(w) = max (xn (v) , xn (w)).

This algorithm is particularly suitable for wired networks because it does not need

the network to have broadcasting ability. The random pairwise max algorithm converges

almost surely to a consensus on the maximum value in a finite time. The two performance

metrics (the mean convergence time, and the convergence time dispersion) of this algorithm

are presented in the following subsections.

Expected convergence time

The mean of the convergence time of the random pairwise max algorithm is proportional

to the number of nodes (N), the maximum degree of the graph (dmax), and the harmonic

number of order N − 1, and is inversely proportional to the second smallest eigenvalue of

the Laplacian matrix (λL
2 ). Iutzeler et al. [1] show that:

E[τ ] ≤ Ndmax
hN−1
λL
2

, (3.1)

where hN−1 =
∑N−1

k=1
1
k
is the (N − 1)th harmonic number.

Let us describe the idea of the proof briefly. Consider the set Mk of nodes which

are informed of the maximum value at time k. The probability that a new node will be
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informed of the maximum value at time k + 1, is equal to the probability that one node

in Mk exchanges value with another node in V \Mk. Following this approach until all the

nodes of the network are informed, we will reach consensus on the maximum value.

By finding a bound for the Pr[Xk+1 = Xk + 1|Mk], where Xk = |Mk|, and performing

number of mathematical substitutions, Equation 3.1 is proven.

Figure 3.1 compares the mean convergence time and its bound from Equation 3.1.

Simulations were run on 100 connected random geometric graphs, and 100 times for each

graph, for every reported graph size.

Fig. 3.1 Mean number of communications and associated bound in RPM
algorithm versus N .
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Convergence time dispersion

Iutzeler et al. [1] also prove that for the random pairwise max algorithm, with probability

1− ε,

τ ≤ C(N)

(
1 + log

N

ε

)
, (3.2)

where C(N) is the mean convergence time bound.

If ε = 1
N
, then τ = O (C(N) log(N)) with probability of 1− 1

N
.

3.5.3 The Random-Broadcast-Max Algorithm

The random broadcast max (RBM) algorithm takes advantage of the broadcasting capa-

bility of the wireless network. In this algorithm, at each clock tick, a random node wakes

up and broadcasts its value to all its neighbors. Then the agents which have received

the information, update their values to the maximum between their original and received

values. The steps of the random broadcast max algorithm are summarized as follows:

1. Node v (randomly selected) wakes up after the nth clock tick.

2. v broadcasts its current value to all its neighbors.

3. xn+1(w) = max (xn(v), xn(w)) for all w ∈ Lv.

As expected, this algorithm results in a much faster consensus than the random walk

max and random pairwise max algorithms because it benefits from the broadcasting ability

of the network. This algorithm also converges almost surely to a consensus on the maximum

value in a finite time.

Expected convergence time

Iutzeler et al. [1] prove the following upper bound for the mean of the convergence time:

E[τ ] ≤ NΔG +N(ΔG − 1) log

(
N − 1

ΔG − 1

)
, (3.3)

where ΔG is the diameter of the graph.

While the complete proof can be found in [1], it is beneficial to go over the proof briefly.
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The bound for the mean convergence time is computed on a spanning tree of the graph

G, which is rooted at the node that has the maximum value at time 0, as shown in Figure

3.2. Noting that the agent with the maximum value is located at the root of the tree, the

expected time it needs to inform all its neighbors (called layer one) is counted. Once the

first layer is completely informed, the expected time needed for the first layer to inform the

second layer is calculated.

This course of action continues until the sensors in the last layer of the spanning tree,

which are at the distance of at most ΔG from the root, are informed. Then all these

expected times are added together to form the upper bound given in Equation 3.3.

For a complete graph, where ΔG = 1, the upper bound simplifies to E[τ ] ≤ N since the

time needed for the propagation of the maximum value is equal to the time it takes for the

node with the maximum value to wake up and broadcast its value to all other nodes of the

network, which is N in expectation.

Fig. 3.2 Spanning tree of a graph rooted at the agent with the maximum
value

Figure 3.3 compares the mean convergence time and its bound from Equation 3.3.

Simulations were run on 100 random geometric graphs, and 100 times for each graph, for

every graph size.
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Fig. 3.3 Mean number of communications and associated bound in RBM
algorithm versus N .

Convergence time dispersion

It is proven that in the random broadcast max algorithm, with probability 1− ε,

τ ≤ C(N) +NΔG

(
log(

ΔG

ε
)− 1

)
, (3.4)

where C(N) is the mean convergence time bound.

For complete graphs, where ΔG = 1, if ε = 1
N
, then τ = O (N log(N)) with probability

of 1− 1
N
.

3.5.4 Random-Pairwise-Max Versus Random-Broadcast-Max

The random broadcast max algorithm improves the convergence speed notably by taking

advantage of the broadcasting nature of the network. In Figure 3.4, the percentage of the

informed nodes versus the number of iterations for a graph of size 50 is shown.
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As expected, the random broadcast max algorithm converges faster than the other two

algorithms. It is noticeable that for the first 150 iterations, the random walk algorithm

outperforms the random pairwise max algorithm, but gradually slows down after that and

is the slowest algorithm for higher number of iterations. This behavior can be explained by

the fact that random walk informs a new node very often at first steps, but the last sensors

take a long time to inform (random walk is a local algorithm).

Fig. 3.4 Percentage of informed nodes versus the number of iterations.

3.6 Summary

Several research papers on the maximum value consensus problem were summarized in this

chapter. Furthermore, a detailed review of the random pairwise max and random broadcast

max algorithms was presented.

We also mentioned that the random broadcast max algorithm reaches consensus sub-
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stantially faster than the random pairwise max algorithm and is a more suitable candidate

to be used in the networks with broadcasting capability, such as wireless networks.

The proposed bounds in [1] for the expected convergence time of the random pairwise

max and random broadcast max algorithms were also studied in details in this chapter.
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Chapter 4

Bounds on the RPM Algorithm in

Reliable Networks

4.1 Overview

In this chapter, we propose new upper and lower bounds on the expected convergence time

of the random pairwise max algorithm on grid and torus networks. Note that reliable

networks are the networks in which all the communications are successful (no link failure).

The tightness of the proposed bounds significantly surpass the bounds from [1].

4.2 Random Pairwise Max on Grids

In this section, we derive an upper bound and a lower bound for the mean convergence

time of the random pairwise max algorithm on grid networks. This facilitates the derivation

of the bounds for the mean convergence time of the random broadcast max algorithm on

random geometric graphs in Section 5.2.

Assume we have a grid of size
√
N × √N (N nodes in total) and only one node is

informed of the maximum value in the network at time 0. Let Mk = {vi ∈ V : xk(vi) =

maxv∈V x0(v)} be the set of nodes that are informed of the maximum value at time k. We

denote the cardinality of Mk as Xk, i.e., |Mk| = Xk.

In the random pairwise max algorithm, the only possibility for an uninformed node to be

informed of the maximum is to communicate with an informed neighbor. At each iteration

either one new node is informed or no new node is informed, i.e., Xk ≤ Xk+1 ≤ Xk + 1.
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We find a tight bound for the probability that Xk+1 > Xk.

Let vi and vj be connected nodes exchanging values at time k of the algorithm. If vi is

in Mk and vj is in V \Mk (or vice-versa), then at time k + 1 a new node will be informed.

Thus,

Pr[Xk+1 = Xk + 1|Mk] = Pr[(vi, vj) ∈ ∂Mk|Mk], (4.1)

where ∂Mk is the set of edges with one end in Mk and the other end in V \Mk.

Edge (vi, vj) is selected if node vi is clocked uniformly in V (with probability 1
N
) and

then node vj is chosen uniformly in Lvi (with probability 1
dvi

) or if vj is clocked and then

vi is chosen from its neighbors. Therefore,

Pr[(vi, vj) be selected] =
1

N

(
1

di
+

1

dj

)
. (4.2)

Hence, we can write:

2
1

N

1

dmax

≤ Pr[(vi, vj) be selected] ≤ 2
1

N

1

dmin

. (4.3)

The probability of the edge (vi, vj) being chosen in ∂Mk is:

2
|∂Mk|
Ndmax

≤ Pr[(vi, vj) ∈ ∂Mk|Mk] ≤ 2
|∂Mk|
Ndmin

. (4.4)

Since the second smallest eigenvalue of the Laplacian matrix (λL
2 ) gets very small for

the grids compared to random geometric graphs, the bound in [1] (Equation 3.1) gets

significantly loose for grids.

Let us develop Equation 4.4. For simplicity, we assume that at time 0, only one node

has the maximum value. We define the stopping times τi = inf{k ∈ N : Xk = i} such that

τ1 = 0 and the convergence time τ =
∑N−1

i=1 [τi+1 − τi].

Let the random variable Y k be equal to Xk+1 −Xk given Xk. Therefore:

Y k =
[
Xk+1 −Xk|Xk

]
=

⎧⎨
⎩1 with probability p

0 with probability 1− p.

where |∂Mk|
Ndmax

≤ p ≤ 2 |∂M
k|

Ndmin
.
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Hence, Y k is Bernoulli distributed and its parameter is lower bounded by 2 |∂M
k|

Ndmax
and

upper bounded by 2 |∂M
k|

Ndmin
.

Similarly, the geometrically distributed random variable Y τi is defined as Xτi+1 −Xτi

given Xτi , and τi+1 − τi is the number of trials on Y τi to obtain success (a new node be

informed) when Xτi = i (the number of iterations needed to have Xτi+1 = Xτi + 1).

Hence, the expected value of the random variable τi+1 − τi is equal to
1
p
, the expected

value of the geometrically distributed random variable Y τi . It follows that:

Ndmin

2

1

|∂M τi | ≤ E[τi+1 − τi] ≤ Ndmax

2

1

|∂M τi | . (4.5)

We aim to find bounds for the mean convergence time by finding tight bounds for |∂M τi |.
Note that a lower bound for |∂M τi | leads to an upper bound for the mean convergence time.

4.2.1 Expected convergence time upper bound

Figure 4.1 shows a general positioning of the informed nodes, and the edges that are in

∂M τi are highlighted in red. The perimeter of the polygon shape that the informed nodes

generate has a direct impact on |∂M τi |.

Fig. 4.1 General positioning of informed nodes on a grid. Red lines are the
edges in ∂M τi .

Therefore, to minimize |∂M τi |, the perimeter of the polygon shape that the informed

nodes create should be minimized. Harary et al. [39] state the problem when we are given

s unit squares and we want to build a shape with the minimum perimeter using these
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unit squares. They prove that the minimum perimeter that one can obtain is 2�2√s.
The algorithm which results in a polygon of the minimum perimeter follows spiral polygon

construction, as illustrated in Figure 4.2 [39,40]. This algorithm leads to a close-to-square

polygon shape at every step.

Fig. 4.2 Spiral growth of the shape.

Since the algorithm proposed by Harary et al. [39] considers infinite space dimensions,

it cannot be used in grids which are of the finite dimensions without some modifications.

We use this algorithm to position the informed nodes in the grid, i.e., for every number

of informed nodes, i, we position the nodes usisg the spiral algorithm, then, we place the

obtained shape on one of the corners of the grid, such that the sides with maximum length

are placed on the borders.

Note that putting the polygon shape on the corner decreases |∂M τi | by at least half.

Figure 4.3 shows the positioning of 26 informed nodes using the spiral approach. We name

this approach as building square in this thesis.

Hence, we can write:

|∂M τi | =
{
2
√
i if i is a perfect square (4.6)

2�
√
i�+ n for 1 ≤ n ≤ 2 if i is not a perfect square. (4.7)

Also, consider the case where the number of the informed nodes is greater or equal

to
√
N . Let us position the informed nodes such that they fill up the rows of the grid

(which we call filling up row-by-row). By doing so, |∂M τi | will be bounded by a constant,

(
√
N + 1), for all values of i. Figure 4.4 shows the obtained shape using this algorithm for
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(a) First step (b) Second step

Fig. 4.3 Positioning the informed nodes using spiral approach.

26 informed nodes, and the informed nodes which influence |∂M τi | are depicted in yellow.

Fig. 4.4 Filling up row by row. Yellow dots influence |∂M τi |.

By employing the filling up row-by-row method, we have:

|∂M τi | =
{√

N if the rows are completely filled up (4.8)√
N + 1 otherwise. (4.9)

Therefore, from Equations 4.6, 4.7, 4.8, and 4.9, |∂M τi | is lower bounded as follows:

|∂M τi | ≥ min
(√

N,
√
N + 1, 2

√
i, 2�

√
i�+ n

)
for 1 ≤ n ≤ 2, (4.10)
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which simplifies to:

|∂M τi | ≥ min
(√

N, 2�
√
i�
)
. (4.11)

Now by substituting the bound on |∂M τi | (Equation 4.11) in the right hand side of the

inequality in Equation 4.5, we have:

E[τ ] =
N−1∑
i=1

E[τi+1 − τi)] ≤ Ndmax

�N
2
�∑

i=1

1

min
(√

N, 2�√i�
) . (4.12)

In the previous equation, 2
�N

2
�∑

i=1

1
|∂Mτi | is substituted for

N−1∑
i=1

1
|∂Mτi | . Because when i

becomes greater than N
2
, we can assume that M τi and V \M τi change places, since it has

no impact on |∂M τi |.

4.2.2 Expected convergence time lower bound

Consider the case in which all of the i informed nodes are of the maximum degree and they

are connected to each other through only one edge. This situation leads to the maximum

number of edges that ∂M τi can obtain. Note that we assume that only one node has the

maximum value at time 0.

Fig. 4.5 RPM on grid with max |∂M τi |. Edges with black lines are in ∂M τi .

As shown in Figure 4.5, two of the informed nodes are of the degree (dmax− 1) and the

other informed nodes are of the degree (dmax − 2). Therefore, |∂M τi | is upper bounded by

(i− 2)(dmax − 2) + 2(dmax − 1). Substituting this bound on |∂M τi | in the left hand side of
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Equation 4.5, we get:
Ndmin

2[idmax − 2i+ 2]
≤ E[τi+1 − τi]. (4.13)

Finally, we can calculate the mean of the convergence time as:

E[τ ] =
N−1∑
i=1

E[τi+1 − τi] ≥ Ndmin

�N
2
�∑

i=1

1

idmax − 2i+ 2
. (4.14)

The above mean convergence time lower bound works for the random pairwise max

algorithm on all graph types. Since we know that in grids dmax = 4 and dmin = 2, we can

simplify the inequality in Equation 4.14 as:

E[τ ] ≥ N

�N
2
�∑

i=1

1

i+ 1
= N(h�N

2
� − 1), (4.15)

where h�N
2
� is the harmonic number of order �N

2
�.

4.3 Random Pairwise Max on Gridded Toruses

To eliminate the border effect of the grids, we will study the random pairwise max algorithm

on toruses. Assume that N nodes are placed on the surface of a torus instead of a grid.

Divide the surface of the torus into a square grid of size
√
N ×√N such that one node is

placed on every corner of the squares, as shown in Figure 4.6.

Our goal is to find an upper bound for the expected convergence time of the random

pairwise max algorithm on toruses. We will use the same notation as Section 4.2.

Fig. 4.6 Sample nodes are placed on the gridded torus.
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Starting from Equation 4.2 and noting that all the nodes are of degree 4 in the torus,

we have:

Pr[(vi, vj) be selected] =
1

N

(
1

di
+

1

dj

)
(4.16)

=
1

N
(
1

4
+

1

4
) (4.17)

=
1

2N
(4.18)

Therefore, the probability of the edge (vi, vj) being selected in ∂Mk is:

Pr[(vi, vj) ∈ ∂Mk|Mk] =
|∂Mk|
2N

(4.19)

Following the same procedure we take to get from Equation 4.4 to 4.5, we get to:

E[τi+1 − τi] =
2N

|∂M τi | (4.20)

Our target is to find an upper bound for the mean convergence time by finding a tight

bound for |∂M τi |. Note that a lower bound for |∂M τi | leads to an upper bound for the

mean convergence time.

4.3.1 Expected convergence time upper bound

Note that the two ways of minimizing |∂M τi | (filling up row-by-row and building square),

also apply here.

I. Filling up row-by-row (for i ≤ N
2
)

As shown in Figure 4.7, with i informed nodes in a torus, |∂M τi | is bounded by:

|∂M τi | =
{

2
√
N if the rows are completely filled up (4.21)

2
√
N + 1 otherwise. (4.22)
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Fig. 4.7 Filling up row by row in a torus. Red nodes influence |∂M τi |.

II. Building square (for i ≤ N
2
)

As shown in Figure 4.8, for i informed nodes in a torus, |∂M τi | is bounded by:

|∂M τi | =
{

4
√
i if i is a perfect square (4.23)

4�
√
i�+ n for n > 0 if i is not a perfect square. (4.24)

Fig. 4.8 Building square in a torus. Red nodes influence |∂M τi |.

Therefore, from Equations 4.21, 4.22, 4.23, and 4.24, we write,

|∂M τi | ≥ min
(
4�
√
i�, 2

√
N
)
. (4.25)
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Substitution of the bound on |∂M τi | (Equation 4.25) in Equation 4.20, leads to:

E[τ ] =
N−1∑
i=1

E[τi+1 − τi] ≤ 4N

�N
2
�∑

i=1

1

min
(
2
√
N, 4�√i�

) . (4.26)

The above inequality can be simplified as:

E[τ ] ≤ 2N

�N
2
�∑

i=1

1

min
(√

N, 2�√i�
) . (4.27)

The upper bound for the mean convergence time of the random pairwise max algorithm

on gridded torus is half the bound we derived for the random pairwise max algorithm on

grids (Equation 4.12).

4.4 Summary

In this chapter, we proposed upper and lower bounds for the mean convergence time of

the random pairwise max algorithm on grids and toruses. Since the random broadcast

max algorithm is substantially faster than the random pairwise max algorithm, we did not

analyze the random pairwise max algorithm on the random geometric graphs.

The procedure of finding bounds for the mean convergence time of the random pairwise

max algorithm in grids provides us the insights on how to analyze the random broadcast

max algorithm in the random geometric graphs.
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Chapter 5

Bounds on the RBM Algorithm in

Reliable Networks

5.1 Overview

In this chapter, new upper and lower bounds for the random broadcast max algorithm on

random geometric graphs, grids, and toruses are proposed. In terms of their tightness, the

proposed bounds significantly outperform the bounds from [1].

5.2 Random Broadcast Max on Random Geometric Graphs

For analyzing the random broadcast max algorithm on random geometric graphs, we will

divide the unit square into bins. As proven in [41], for constants c > 1 and μ ≥ 1, if

r2 = cμ logN
N

, then with high probability (w.h.p), G(V,E) is μ-geo-dense, that is, any bin

area of size r2

μ
in G(V,E) contains Θ (logN) nodes with high probability.

For our purpose, we choose μ such that any node in a bin is able to communicate with

every node in its four adjacent bins. Without loss of generality, we consider the bins to be

squares.

As we can see in Figure 5.1, r is the longest distance between nodes in adjacent bins.

Let us define A as the area of the squares.

A =
r2

μ
=⇒ square side length =

√
A =

r√
μ
. (5.1)
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Fig. 5.1 Dividing the unit square into bins.

Using the Pythagorean theorem, we can determine the value of μ.

(
2r√
μ
)2 + (

r√
μ
)2 = r2 =⇒ μ = 5. (5.2)

With μ = 5 and c = 2, we determine r:

r =
√
2
√
5

√
logN

N
. (5.3)

Before continuing our analysis, we should make sure that for r0 =
√
10, the random

geometric graphs that we are going to study are connected. Figure 5.2 shows two important

characteristics of the random geometric graphs versus the number of nodes for r0 =
√
10,

which are:

� percentage of connected graphs, which ensures that for r0 =
√
10, the random geo-

metric graphs are connected, and,

� mean percentage of edges, which is the number of edges of the graph over the number

of edges of the complete graph with the same number of nodes, which indicates that

the graphs are adequately far from the complete graphs for r0 =
√
10.

The total number of bins with area r2

μ
is B = N

2 logN
. As shown in Figure 5.1, (�

√
μ

r
�)2

number of bins can be squares.
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Fig. 5.2 Connectivity of RGGs with r0 =
√
10

It is shown in [42] that in the balls-and-bins problem, after throwing m balls indepen-

dently and uniformly at random into n bins, the distribution of the number of balls in a

given bin is approximately Poisson with mean m
n
.

Therefore, in random geometric graphs, after throwing N nodes independently and

uniformly at random into B bins, the distribution of the number of the nodes in a given

bin (b) is approximately Poisson with mean N
B
.

Using this Poisson approximation, we can estimate the minimum (bmin) and maximum

(bmax) number of nodes in each square bin.

We will use bmin and bmax in our equations, when we want to estimate the number of

nodes in each bin, i.e.,

bmin = F−1b (
1

N
), (5.4)
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and

bmax = F−1b (1− 1

N
), (5.5)

where Fb is the Poisson cumulative distribution function (CDF) of b, with mean N
B
.

Before moving on to the calculations, we should note that in this section, we use slightly

different definitions for Mk, Xk, ∂Mk, and |∂Mk|.

Mk: Set of bins that all their nodes are informed of the maximum at time k.

Xk: Number of bins that all their nodes are informed of the maximum at time k.

∂Mk: Set of informed bins which have uninformed adjacent bins.

|∂Mk|: Number of informed bins which have uninformed adjacent bins.

5.2.1 Expected convergence time upper bound

Without loss of generality, we assume that the node with the maximum value is in the

corner square bin. In this case, its bin has less neighboring bins.

Since every node in a square bin is connected to all other nodes in its own bin and

the four adjacent bins, whenever a node in Mk wakes up, it informs all the nodes in the

adjacent bins.

Pr[Xk+1 ≥ Xk + 1|Mk] = Pr[v ∈ ∂Mk|Mk], (5.6)

=
Number of nodes in a bin

N
|∂Mk|, (5.7)

≥ bmin

N
|∂Mk|. (5.8)

Following the same steps to proceed from Equation 4.4 to 4.5, we obtain:

E[τi+1 − τi] ≤ N

bmin

1

|∂M τ
i |
. (5.9)

We follow the exact same procedure to find a lower bound for |∂M τi | as we did for

random pairwise max algorithm in grids in Section 4.2 (filling up row-by-row and building
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square). The bound in Equation 4.11 will be modified as:

|∂M τi | ≥ min

(
�
√
μ

r
�, 2�

√
i� − 1

)
, (5.10)

where �
√
μ

r
� and 2�√i�−1 correspond to the |∂M τi | in the filling up row-by-row and building

square methods, respectively.

Substituting the bound on |∂M τi | (Equation 5.10) in Equation 5.9, gives:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ 2N

bmin

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2�√i� − 1

) . (5.11)

5.2.2 Expected convergence time lower bound

Starting from Equation 5.7, we can write:

Pr[v ∈ ∂Mk|Mk] ≤ bmax

N
|∂Mk|. (5.12)

Following the same procedure we take to get from Equation 4.4 to 4.5, we get to:

E(τi+1 − τi) ≥ N

bmax

1

|∂M τi | . (5.13)

To find an upper bound for |∂M τi |, consider the case where the node with the maximum

value is in the center of the unit square. In this case, it has the maximum number of adjacent

bins. As we see in Figure 5.3, in every iteration that a node wakes up in ∂M τi , it increases

the size of the boundary (|∂M τi |) by at most 2.

Substituting the bound for |∂M τi | in Equation 5.13, leads to:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≥ 2N

bmax

�B
2
−2�∑

i=4

1

i+ 2
. (5.14)

5.3 Random Broadcast Max on Toruses

Assume that N nodes are positioned on the surface of a torus. Using the same μ and c as

in Section 5.2, we will determine r and divide the torus into bins. Recall that bmin and bmax
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(a) First step (b) Second step (c) Third step

Fig. 5.3 ∂M τi shown in black for the first three steps.

are the minimum and the maximum number of nodes in each square bin, respectively, and

with high probability. Our goal is to find an upper bound for the expected convergence

time of the random broadcast max algorithm on toruses.

5.3.1 Expected convergence time upper bound

Starting from Equation 5.8, we need to find a lower bound for |∂M τi |. The only difference

from Section 5.2 is that on the torus, there are no borders and corners. Therefore, the size

of the boundary will be modified to:

|∂M τi | ≥ min

(
2�
√
μ

r
�, 4(�

√
i� − 1)

)
. (5.15)

By substituting Equation 5.15 in 5.9, we get the mean convergence time upper bound

as:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ 2N

bmin

�B
2
�∑

i=1

1

min
(
2�
√
μ

r
�, 4(�√i� − 1)

) , (5.16)

which simplifies to:

E[τ ] ≤ N

bmin

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2(�√i� − 1)

) . (5.17)

5.4 Random Broadcast Max on Grids

In the previous two sections, we studied the random broadcast max algorithm on random

geometric graphs and torus networks. In this section, we derive an upper bound on the
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mean convergence time of the RBM algorithm on grids. Note that the grids are of size√
N × √N . Mk is the set of nodes that are informed of the maximum value at time k,

Xk = |Mk|, and ∂Mk is the set of informed nodes that have uninformed neighbors.

Starting from Equation 5.6, we get:

Pr[Xk+1 ≥ Xk + 1|Mk] = Pr[v ∈ ∂Mk|Mk], (5.18)

=
1

N
|∂Mk|. (5.19)

Following the same steps to proceed from Equation 4.4 to 4.5, we get:

E(τi+1 − τi) ≤ N

|∂M τi | . (5.20)

The lower bound for |∂M τi | is very similar to what we had for the random broadcast

max algorithm on random geometric graphs, i.e.,

|∂M τi | ≥ min
(√

N, 2�
√
i� − 1

)
, (5.21)

where
√
N and 2�√i�−1 correspond to the |∂M τi| in the filling up row-by-row and building

square methods, respectively.

Substituting the bound for |∂M τi | (Equation 5.21) in Equation 5.20, we get an upper

bound for the mean convergence time as:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ 2N

�N
2
�∑

i=1

1

min
(√

N, 2�√i� − 1
) . (5.22)

5.5 Summary

In this chapter, novel upper and lower bounds for the mean convergence time of the random

broadcast max algorithm on random geometric graphs, grids, and toruses were proposed.

Simulation results in Chapter 7 show that the bounds that we derived for the expected

convergence time of the random broadcast max algorithm are significantly tighter than the

bound proposed in [1].
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Chapter 6

Bounds on the Max Consensus

Algorithms in Unreliable Networks

6.1 Overview

In this chapter, the probability of failure is introduced to the network links and the bounds

proposed in this thesis (in Chapter 4 and 5) as well as the bounds proposed in [1] for the

mean convergence times of the random pairwise max and random broadcast max algorithms

are modified such that they can be used in the presence of link failures.

6.2 RPM Algorithm in Networks With Unreliable Links

Wireless networks do not always operate perfectly due to hardware failures or the envi-

ronmental conditions. In some occasions, the network can experience node or link failure

which has a direct impact on the consensus convergence time. In this section, we will mod-

ify the bound in [1] and the bound we proposed in Section 4.2 for the expected convergence

time of the random pairwise max algorithm, by introducing the probability of failure to

the network links, denoted by Pfail. We use the same notations as in Section 4.2.
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6.2.1 Modifying the bound in [1] for RGGs

To adjust the bound for the cases when link failures happen in the network, the probability

of failure of a link should be inserted in Equation 4.1, i.e.,

Pr[Xk+1 = Xk + 1|Mk] = Pr[(vi, vj) ∈ ∂Mk|Mk] Pr[No link failure], (6.1)

where,

Pr[(vi, vj) ∈ ∂Mk|Mk] ≥ 2
|∂Mk|
Ndmax

, (6.2)

and,

Pr[No link failure] = 1− Pfail. (6.3)

Iutzeler et al. in [1], have used the Cheeger’s inequality to find a bound for |∂Mk|,
which indicates:

|∂Mk| ≥ λL
2X

k(1− Xk

N
). (6.4)

where λL
2 is the second smallest eigenvalue of the Laplacian matrix.

Following the same procedure we take to go from Equation 4.4 to 4.5, we obtain,

E(τi+1 − τi) ≤ N2dmax

2λL
2 (1− Pfail)i(N − i)

. (6.5)

Using the fact that 2
N

N−1∑
i=1

1
i
=

N−1∑
i=1

1
i(N−i) ,

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ Ndmax

λL
2 (1− Pfail)

N−1∑
i=1

1

i
. (6.6)

Equation 6.6 is the modified bound for the mean convergence time of the random

pairwise max algorithm when the network has link failures with probability of Pfail. Note

that this bound is simply the bound proposed in [1] being multiplied by 1
(1−Pfail)

. Therefore,

we do not show extra simulation results for this bound.



40 Bounds on the Max Consensus Algorithms in Unreliable Networks

6.2.2 Modifying the bound in Section 4.2 for grids

In Section 4.2, we proposed bounds for the mean convergence time of the random pairwise

max algorithm on grids. In this subsection we modify our bound in the presence of link

failures with probability of Pfail.

Equation 4.1 is changed by inserting the probability of failure, i.e.,

Pr[Xk+1 = Xk + 1|Mk] = Pr[(vi, vj) ∈ ∂Mk|Mk] Pr[No link failure], (6.7)

where,

Pr[(vi, vj) ∈ ∂Mk|Mk] ≥ 2
|∂Mk|
Ndmax

, (6.8)

and,

Pr[No link failure] = 1− Pfail. (6.9)

Following the same procedure we take to get from Equation 4.4 to 4.5, we have:

E(τi+1 − τi) ≤ Ndmax

2(1− Pfail)

1

|∂M τi | . (6.10)

Note that the bound for |∂M τi | is shown in Equation 4.11, which indicates:

|∂M τi | ≥ min
(
2�
√
i�,
√
N
)

for i ≤ N

2
. (6.11)

By substituting Equation 6.11 in 6.10, the modified bound will be:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ Ndmax

1− Pfail

�N
2
�∑

i=1

1

min
(√

N, 2�√i�
) . (6.12)

Equation 6.12 shows the bound for the mean convergence time of the random pairwise

max algorithm on grids proposed in this thesis being modified for the cases when we have

probability of link failure in the network. Since this modified bound is simply the bound

in the Equation 4.12 being multiplied by the factor 1
1−Pfail

, we will not show simulation

results for it.
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6.3 RBM Algorithm in Networks With Unreliable Links

In this section, we will adjust the bound proposed in [1] as well as the bound proposed in

this thesis (in Section 5.2) for the expected convergence time of the random broadcast max

algorithm in random geometric graphs, when the network suffers from link failures with

probability of Pfail.

6.3.1 Modifying the bound in [1] for RGGs

We went briefly through the proof of the bound for the mean convergence time of the

random broadcast max algorithm proposed in [1] in Subsection 3.5.3. Now we want to

modify that bound for the case when we have communication loss or link failures.

Here, the term E(τi+1 − τi) corresponds to the average time needed to completely fill

up layer (i + 1) given the nodes that are informed of the maximum value at time τi, i.e.,

given that layer i was already filled up (shown in Figure 3.2). Therefore, the expected

convergence time is upper bounded by
ΔG−1∑
i=0

E(τi+1 − τi).

To calculate the term E(τi+1− τi), the same proof framework as in the standard coupon

collector problem [43] is suggested, i.e.,

E(τi+1 − τi) ≤ Nh|Li| (6.13)

where |Li| is the number of nodes in the layer i, and h|Li| is the harmonic number of order

|Li|.
The only difference when we have loss in the network is that we should take the proba-

bility of a successful broadcast into the calculations. Therefore, Equation 6.13 is modified

to:

E(τi+1 − τi) ≤ N
h|Li|

(1− Pfail)dmax
. (6.14)

Note that (1− Pfail)
dmax is the probability of a successful broadcast, where dmax is the

maximum number of neighbors that each node can have. Therefore,

E(τ) ≤
ΔG−1∑
i=0

E(τi+1 − τi) ≤ N

(1− Pfail)dmax

ΔG−1∑
i=0

h|Li|. (6.15)
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By a couple of mathematical simplifications proposed in [1], the bound is simplified as:

E(τ) ≤ N

(1− Pfail)dmax
ΔG +

N

(1− Pfail)dmax
(ΔG − 1) log

(
N − 2

ΔG − 1

)
. (6.16)

Equation 6.16 is the modified bound for the mean convergence time of the random

broadcast max algorithm on random geometric graphs, when the network experiences link

failures. Since (1 − Pfail)
dmax gets small and kills the tightness of the bound, we will not

illustrate the simulation results for this bound.

6.3.2 Modifying the bound in Section 5.2 for RGGs

Before going into the details, we should point out that some of the definitions of the

notations are slightly different from Section 5.2, i.e.,

Mk: Set of bins that at least half of their nodes are informed of the maximum at time k.

Xk: Number of bins that at least half of their nodes are informed of the maximum at time

k.

∂Mk: Set of bins that at least half of their nodes are informed and have uninformed adja-

cent bins.

|∂Mk|: Number of bins that at least half of their nodes are informed and have uninformed

adjacent bins.

Seeing that the network’s communications fail probabilistically, we say that a bin is

almost informed if at least half of its nodes have received the maximum value. Assume

there are b nodes in each bin and the nodes with indices of 1 to b
2
are uninformed while

other nodes are informed.

Throughout the following calculations, we derive the expected time for an almost in-

formed bin to become completely informed when one of its informed nodes broadcasts.

Let Tn be the time it takes for the nth node to successfully receive the maximum value,

where 1 ≤ n ≤ b
2
. Therefore, Tn is geometrically distributed, where Pr(Tn = q) = (1 −

Pfail)(Pfail)
q−1 is the probability that the nth node successfully receive the information at

the qth clock tick.

Hence, the time needed for all the nodes to be successfully informed is equal to T =

max1≤n≤ b
2
(Tn). To get the expected value of T , we should calculateE[T ] = E[max1≤n≤ b

2
(Tn)],



6.3 RBM Algorithm in Networks With Unreliable Links 43

where E[T ] =
∑∞

q=0 Pr(T > q) =
∑∞

q=0 1− Pr(T ≤ q).

The event T ≤ q is the intersection of the independent events Tn ≤ q for 1 ≤ n ≤ b
2
,

where Pr(Tn ≤ q) = 1− (Pfail)
q. Therefore,

E[T ] =
∞∑
q=0

1− Pr(T ≤ q) =
∞∑
q=0

1− Pr(T1 ≤ q)
b
2 . (6.17)

As an example, for N = 100, μ = 5, and c = 2, we have bmax = 18. The expected time

for 0 ≤ q ≤ 100 is 0.7 for Pfail = 0.1, which indicates that after one clock tick, an almost

informed bin becomes completely informed.

To find the bound for the mean convergence time of the random broadcast max al-

gorithm, we introduce the probability of failure into Equation 5.6 to form the following

equation:

Pr[Xk+1 ≥ Xk+1|Mk] = Pr[v ∈ ∂Mk|Mk] Pr[at least half the communications be successful],

(6.18)

where,

Pr[v ∈ ∂Mk|Mk] =
Number of informed nodes in a bin

N
|∂Mk|, (6.19)

≥ bmin

2N
|∂Mk|, (6.20)

and,

Pr[at least half the communications be successful] ≥
(
bmin
bmin

2

)
(1− Pfail)

bmin
2 (Pfail)

bmin
2 .

(6.21)

Following the same steps to proceed from Equation 4.4 to 4.5, we obtain:

E(τi+1 − τi) ≤ 2N

bmin

(bmin
bmin

2

)
(1− Pfail)

bmin
2 (Pfail)

bmin
2

1

|∂M τi | . (6.22)

Substituting the bound on |∂M τi | (Equation 5.10) in Equation 6.22, the derived bound
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is:

E[τ ] =
N−1∑
i=1

E(τi+1 − τi) ≤ 4N

bmin

(bmin
bmin

2

)
(1− Pfail)

bmin
2 (Pfail)

bmin
2

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2�√i� − 1

) .
(6.23)

Equation 6.23 displays the modified bound for the mean convergence time of the random

broadcast max algorithm in random geometric graphs when the network suffers from link

failures.

6.4 Summary

In this chapter, we modified the bounds proposed in the previous two chapters as well as

the bounds in [1] for the situations when the network faces link failure with probability of

Pfail.

In next chapter, we will compare the proposed bounds with the previous state-of-the-art

bounds presented in [1] to see how much improvement is gained by the novel bounds.
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Chapter 7

Experimental Results

7.1 Overview

In this chapter, we provide comparisons of the performance of the proposed bounds on

the mean convergence time of the maximal value spreading algorithms with the previous

state-of-the-art bounds proposed in [1] (which is detailed in Chapter 2). Since the standard

deviation of the proposed bounds are small, error bars are not plotted in the simulations.

Experiments were performed on an Intel 3.40 GHz Core i7-2600 CPU with 16 GB of RAM

and Windows 7 Professional 64-bit Operating System.

7.2 Random Pairwise Max Algorithm on Grids

Let us rewrite the bounds on the expected convergence time of the random pairwise max

algorithm as a reminder. The upper bound which was suggested in [1] is

E[τ ] ≤ Ndmax
hN−1
λL
2

, (7.1)

where hN−1 =
∑N−1

k=1
1
k
is the (N − 1)th harmonic number, and λL

2 is the second smallest

eigenvalue of the Laplacian matrix.

The upper and lower bounds that were derived in this thesis for the random pairwise
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max on grids (Equation 4.15) are

N

�N
2
�∑

i=1

1

i+ 1
≤ E[τ ] ≤ Ndmax

�N
2
�∑

i=1

1

min{√N, 2�√i�} . (7.2)

We simulated the algorithm and compared the proposed bounds to the bound from [1].

The simulations were conducted on grids which sizes were perfect squares between 100 and

625 (i.e., 100, 121, etc.). Note that the simulations were run 100 times for each grid. The

results are shown in Figure 7.1.

Fig. 7.1 Empirical mean of the number of communications and correspond-
ing bounds verses N for the RPM algorithm on grids.

As we can see in Figure 7.1, the proposed bound is significantly tighter than the bound

in [1]. Figure 7.2 only demonstrates the upper and lower bounds that are proven in this

thesis.

Table 7.1 compares the mean convergence time and its corresponding upper bound
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Fig. 7.2 Empirical mean of the number of communications and proposed
bounds verses N for the RPM algorithm on grids.

from [1] and the upper bound which is proposed in this thesis. A significant improvement

of 85% to 95% is obtained.

This notable improvement is due to the fact that λL
2 is very small for grids and that

makes the bound from [1] loose.

7.3 Random Pairwise Max Algorithm on Toruses

In this section, we will show the simulation results for the random pairwise max algorithm

on gridded toruses. The upper bound that we proved in Section 4.3 is

E[τ ] ≤ 2N

�N
2
�∑

i=1

1

min
(√

N, 2�√i�
) . (7.3)
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Grid size E[τ ] Upperbound from [1] Proposed upperbound Improvement
100 1118 21157 3057 85%
121 1629 32075 4117 87%
144 1974 46855 5314 88%
169 2541 66350 6808 89%
196 2812 91508 8464 90%
225 3984 123373 10467 91%
256 4622 163087 12656 92%
289 5211 211890 15239 92%
324 6587 271122 18033 93%
361 7342 342226 21271 93%
400 8641 426745 24743 94%
441 9761 526327 28707 94%
484 11247 642724 32931 94%
529 13801 777792 37695 95%
576 15229 933496 42743 95%
625 16091 1111906 48379 95%

Table 7.1 Performance comparison of upper bound in [1] and proposed up-
per bound for the RPM algorithm on grids.

Simulations were performed on gridded toruses whose sizes are perfect squares between

100 to 625 (i.e., 100, 121, 144, etc.). The results shown in Figure 7.3, indicate that the

proposed bound is significantly tighter that the bound in [1].

7.4 Random Broadcast Max Algorithm on RGGs

Before going through the simulation results, it will be more convenient if we take a look at

the bounds which we are going to compare.

The upper bound which was offered in [1] for the random broadcast max algorithm is

E[τ ] ≤ NΔG +N(ΔG − 1) log

(
N − 1

ΔG − 1

)
, (7.4)

where ΔG is the diameter of the graph.

The upper and lower bounds that are proposed in this thesis on the expected convergence



7.4 Random Broadcast Max Algorithm on RGGs 49

Fig. 7.3 Empirical mean of the number of communications and correspond-
ing bound verses N for RPM algorithm on toruses.

time of the random broadcast max algorithm in random geometric graphs are

2N

bmax

�B
2
�−2∑

i=2

1

i+ 2
≤ E[τ ] ≤ 2N

bmin

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2�√i� − 1

) . (7.5)

The results of the simulations indicate that the proposed upper bound is much tighter

than the bound in [1]. The simulations were conducted on 100 different random geometric

graphs for every N(number of nodes), and 100 times for every graph, as shown in Figure

7.4.

The upper bound from Iutzeler et al. [1] and the proposed upper bound are compared

in Table 7.2. Notable improvement of 58% to 82% is observed.
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Fig. 7.4 Empirical mean of the number of communications and correspond-
ing bounds verses N for the RBM algorithm on RGGs.

Graph size E[τ ] Upperbound from [1] Proposed upperbound Improvement
100 97 744 311 58%
150 158 1743 466 73%
200 222 2440 788 67%
250 274 3277 986 69%
300 304 5270 1333 75%
350 369 6394 1166 81%
400 433 7468 1333 82%
450 478 8561 1740 79%
500 550 11036 1933 82%

Table 7.2 Performance comparison of upper bound in [1] and the proposed
upper bound for the RBM algorithm on RGGs.
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7.5 Random Broadcast Max Algorithm on Toruses

The bound that was derived in Section 5.3 is

E[τ ] ≤ N

bmin

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2(�√i� − 1)

) . (7.6)

Figure 7.5 displays the simulation results performed for the random broadcast max

algorithm on toruses. Simulations were run on random geometric graphs of sizes 100 to

280 with steps of 10. Results of the simulations show great improvement in the tightness

of the proposed bound compared to the bound from [1].

Fig. 7.5 Empirical mean of the number of communications and correspond-
ing bound verses N for RBM in torus.
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7.6 RBM Algorithm on RGG With Link Failure

In this section we compare the bound on the expected convergence time of the random

broadcast max algorithm in the presence of link failures to the bound in loss-less networks

in random geometric graphs. The modified bound from Subsection 6.3.2 is as follows.

E[τ ] ≤ 4N

bmin

(bmin
bmin

2

)
(1− Pfail)

bmin
2 (Pfail)

bmin
2

�B
2
�∑

i=1

1

min
(
�
√
μ

r
�, 2�√i� − 1

) . (7.7)

Since in the random broadcast max algorithm, each node broadcasts its value to all its

neighbors, it is expected that a small probability of failure does not affect the convergence

speed much. Hence, for the simulation results to be more readable, we set the probability

of failure to 70%. Note that in real networks, the probability of failure is much less than

70%. Figure 7.6 represents the simulation outcomes.

As illustrated in Figure 7.6, the mean of the number of communications for the random

broadcast max algorithm even in the presence of 70% probability of link failure is almost

the same as the case when the network is error free.

7.7 Summary

In this chapter, the performances of the proposed bounds were compared to the previous

state-of-the-art bounds in [1].

A remarkable improvement of 58% to 82% was observed for the expected convergence

time bound of the random broadcast max algorithm on random geometric graphs. Also,

85% to 95% enhancement was obtained for the bound on the mean convergence time of the

random pairwise max algorithm on grids.

The simulation results for both the random pairwise max and random broadcast max

algorithms on toruses indicated that the proposed bounds are remarkably tighter compared

to the bounds in [1].

In last section of this chapter, simulation outcome for the random broadcast max al-

gorithm on random geometric graphs under the assumption of the presence of link failures

was displayed.
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Fig. 7.6 Empirical mean of the number of communications and correspond-
ing bound verses N for RBM in RGG with link failure.
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Chapter 8

Conclusion and Future Work

8.1 Concluding Remarks

In this thesis we reviewed several research articles analyzing the maximum value consensus

algorithms and their corresponding bounds on the mean convergence time. The bounds that

were proposed in [1] did not demonstrate significant tightness for the expected convergence

time of the random pairwise max and random broadcast max algorithms.

Therefore, we aimed to find tighter bounds on the mean convergence time of these

algorithms by tackling the problem from a different point of view.

First, we derived bounds for the random pairwise max algorithm on grids, which showed

85% to 95% improvement in comparison to the bounds in [1]. This substantial improvement

is due to the fact that the bound on the expected convergence time of the random pairwise

max algorithm in [1] is inversely proportional to the second smallest eigenvalue of the

Laplacian matrix (λL
2 ), is relatively small for grids in comparison to random geometric

graphs.

Then, we derived bounds for the random broadcast max algorithm in random geometric

graphs by dividing the unit square into bins. The random pairwise max algorithm in grids

provided us the insights on how to analyze the random broadcast max algorithm in random

geometric graphs. Simulation results revealed an improvement of 58% to 82% in comparison

to the bounds in [1].

The random pairwise max and random broadcast max algorithms were also analyzed

on the networks whose nodes were located on the surfaces of toruses. Torus networks

are important to study because they eliminate the border effect of the grids and random
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geometric graphs (unit square). Simulations indicated that the proposed bounds for the

random pairwise max and random broadcast max algorithms in toruses are significantly

tighter than the bounds in [1].

Finally, we enhanced the bounds to account for link failure. We know that due to the

environmental conditions or hardware failures, the networks may occasionally encounter

communication failures. Therefore, the bounds that we proved in Chapters 4 and 5 were

modified such that they could be used in the presence of link failures.

8.2 Future Work

Since the maximum value consensus is not widely studied yet, there is a number of research

topics in this area that have not been fully explored so far. As an example, our suggestion

is to further develop the geographic gossip algorithm proposed in [25, 44] by combining it

with the random broadcast max algorithm. The geographic gossip algorithm for averaging

consensus problem computes the average faster than the random pairwise algorithm. We

suspect that the combined algorithm will result in a lower convergence time compared to the

random broadcast max algorithm by taking advantage of the geographic gossip algorithm.
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