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ABSTRACT

Ambient light level drives the human visual system into three phases: scotopic,

mesopic and photopic vision. In photopic conditions, light level is far above the

visual system activation threshold; cones are mainly responsible for our color vision

and rods are saturated due to their higher sensitivity to light. Mesopic range refers

to the condition where both cones and rods are active and contribute to color vision.

In scotopic vision, the light level is very low such that cones are inactive (i.e. there

is no color vision); however, rods are still able to contribute to our vision.

Low light vision is of high importance in many computer vision and color science ap-

plications such as night time driving, display industry, consumer electronics, virtual

reality devices, image sensors and photography at night mode. However, study of

low light vision is acquainted with several challenges such as: first, the uncertainty

and noise come into play; second, color perception mechanisms of the human visual

system are not fully known; third, the number of existing research and models in

the literature is small; fourth, computer vision field and industry are far behind not

only the current findings, but also the existing well-known perceptual models in the

domain.

The human visual system is driven by photons. The details of the colorful journey

of photons from triggering photoreceptors to the final visual perception stage inside

the visual system is still to a high extent unknown. The methodology of this thesis

involves: studying from first principles the physical rules governing the probabilistic

nature of human vision at low light levels; modeling mesopic color perception using
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the maximum entropy based spectral theory of color vision; and then developing a

real time bidirectional mesopic color appearance model to be used in the image ren-

dering algorithms which are responsible for reproducing colors of the image as they

appear in the original scene.

Several simulations and computational tests on various datasets with real world and

synthetic images are performed, and the methods proposed in this thesis are com-

pared with other existing techniques. The results show the importance of mesopic

color appearance modeling and the vital role of noise at low light levels. Moreover,

the results support the feasibility of spectral modeling for mesopic vision, and this

thesis suggest a bidirectional color appearance model for the purpose of luminance

retargeting of images in the image rendering pipeline.
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ABRÉGÉ

Le niveau de luminance ambiant entraine le système visuel humain dans trois

domaines : la vision scotopique, mésopique et photopique. En condition photopique,

la luminance est de loin supérieure au seuil dactivation des cônes; les cônes sont

principalement responsables de notre perception chromatique et les bâtonnets sont

saturés à cause de leur plus grande sensibilité à la lumire. Le domaine msopique se

rapporte à la condition où les cônes et les bâtonnets sont actifs et contribuent à la

perception chromatique : la luminance est au-dessus du seuil du cône et au-dessous

de la marge de saturation du bâtonnet. Dans la vision scotopique, la luminance est

très basse telle que les cônes sont inactifs; cependant, elle est toujours au-dessus du

seuil de détection des bâtonnets. Cette thèse se concentre sur la vision mésopique

et scotopique et étudie la perception humaine des couleurs en ces deux domaines du

système visuel humain.

La vision en faible luminance est d’une grande importance dans plusieurs applica-

tions de la vision par ordinateur et de la colorimétrie tels que la conduite de nuit,

l’industrie de l’affichage, l’électronique grand public, les dispositifs de réalité virtuelle,

les capteurs d’images et la photographie en mode nocturne. Cependant, l’étude de

la perception chromatique en faible luminance est accompagnée de plusieurs défis

comme : premièrement, l’entrée en jeu de l’incertitude et du bruit; deuxièmement,

la méconnaissance de la plupart des mécanismes de la perception chromatique chez

l’humain; troisièmement, le faible nombre de recherches existantes et de modèles dans

la littérature; quatrièmement, le retard du domaine de la vision par ordinateur et de
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l’industrie non seulement en termes de résultats actuels, mais également au niveau

des modèles perceptuels bien connus du domaine.

Le système visuel humain réagit aux photons qui atteignent la rétine. Les détails

du voyage haut en couleur des photons, du déclenchement des photorécepteurs à

l’étape finale de perception visuelle à l’intérieur du système visuel, sont en grande

partie toujours inconnus. La méthodologie de cette thèse comprend : l’étude des lois

physiques qui régissent la nature probabiliste de la vision humaine en conditions de

faible luminance; la modélisation de la perception mésopique des couleurs en util-

isant la théorie spectrale de la vision chromatique basée sur l’entropie maximale; et

le développement d’un modèle mésopique d’apparence de la couleur bidirectionnel

et temps réel qui peut être utilisé par les algorithmes de rendu d’image qui sont

responsables de la reproduction des couleurs en conditions de faible luminance de

façon fidèle à la scéne originale.

Plusieurs expériences objectives sur divers ensembles de données avec des images

réeles et synthétiques sont exécutes et les méthodes proposées dans cette thèse sont

comparées à d’autres techniques existantes. Les résultats démontrent l’importance

de la modélisation de l’apparence des couleurs (color appearance modeling) en con-

dition de faible luminance et le rôle essentiel du bruit en de telles conditions. Plus

encore, les résultats démontrent la faisabilité de la modélisation spectrale pour la

vision mésopique et cette thèse suggère un modèle bidirectionnel d’apparence des

couleurs à des fins de recalage de la luminance des images dans le pipeline de rendu

d’image.
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CHAPTER 1
Introduction

The human visual system (HVS) is able to work effectively over a wide lumi-

nance range from starlight to sunlight, which can be categorized into the so-called

photopic, mesopic and scotopic ranges. Photopic vision refers to our vision in day

light situations (high light levels, when the luminance is above 10 cd/m2 [1]) in which

only cones are responsible for our vision. As the light level falls off (e.g. at twilight

when the luminance level is in the [0.001 10] cd/m2 range [1]), the visual system

goes smoothly from photopic vision to mesopic vision, in which both cones and rods

contribute to color vision. In the so-called scotopic situations (e.g. at night when

luminance is below 0.001 cd/m2 [1]), vision is only mediated by rods, and we lose

our color perception. The photopic condition has been the main focus of most color

research, and the mesopic and scotopic conditions have not been investigated very

much [8]. It is worth mentioning that throughout the thesis, the term “low light”

will only be used when we refer to both mesopic and scotopic conditions.

1.1 Problem Statement

While the human visual system can adapt itself to a wide range of light levels,

it is desirable to have imaging devices, such as cameras, be able to operate in a

similar range as well. However, the current technology is far behind the capability

of human eye. The fact that the human visual system can accommodate low light

situations necessitates the importance of studying low light levels. However, studying
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the human visual system at low light levels comes with several challenges that will

be discussed briefly in the following.

Most of the theories, measures, models and methods in color science have been

developed for high intensities [8]. These theories, measures, methods, and models

cannot be used for low light situations. For instance, a color difference formulae

which is derived for photopic conditions can not be leveraged in evaluating techniques

developed for assessing dark images [9].

Low light levels usually introduces some noise and uncertainty into the human

visual perception. Furthermore, the issue of noise, which is also a serious concern for

CMOS image sensors, especially at low signal levels, has not been fully addressed in

the literature. The main reason for this is that, to a large extent, the human color

vision mechanisms have not been well understood.

Color appearance models (CAMs) provide a tool to transform tristimulus values

to perceptual attributes of color. Color perception algorithms developed for ma-

chine vision mostly rely on color appearance models. The outcome of an ideal color

appearance model should resemble human color perception in all conditions such as

different adaptation, light levels and viewing conditions. Although there are a couple

of comprehensive color appearance models for the photopic condition, none of them

perform well in the mesopic range. This implies that mesopic color perception mech-

anisms are different from photopic perceptual mechanisms. This difference can be

partly explained by rod intrusion into color perception of mesopic vision. Hence, we

end up with a third problem: to a large extent, the human color vision mechanisms
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have not been well understood. There are only a few currently available color ap-

pearance models suited to the mesopic range, none of which perform well in terms of

resembling human perception. Moreover, these models are ad-hoc empirical models.

In today’s world, every individual spends a lot of time in front of displays in

various applications such as consumer electronic devices (e.g. smart phones, tablets

and laptops), automotive industry [10], and virtual reality interfaces (e.g. head-

mounted displays). Working with bright displays raises power consumption and eye

strain issues which affect customer satisfaction. For example, it has shown that using

e-Readers with backlighting interferes with the human circadian rhythm [11]. Dim-

ming the display is a trivial solution to both issues. The new display technologies,

such as OLED, let the user dim the display to less than 2 cd/m2, which is in the

mesopic range. However, dimming the display to the mesopic range reduces visual

acuity, and especially the perceived quality of colors in images. Hence, a compensa-

tion algorithm should be employed to preserve the color appearance quality of the

original image on the dimmed display [2].

In this thesis, we focus on the following three main problems at low light levels:

1. investigating effects of different types of noise on the cone responses and image

sensor color measurements at low light levels (scotopic and mesopic range);

2. developing a mesopic vision model which is able to take the measurement noise

into account;

3. developing an image compensation algorithm to keep the color appearance of

bright images on a dim display which is viewed in a dark environment.
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Addressing low light level situations has a wide range of applications in photog-

raphy [12],designing biosensors [13], image processing [14], machine vision, and color

science [15]. Working under low light conditions is of particular interest in machine

vision applications such as night vision, tone-mapping techniques, low-light imaging,

photography, and surveillance cameras. We elaborate some of the use cases in more

detail in section 1.3.

1.2 Approach

Human vision is mediated by photons captured by the photoreceptors. Our

research methodology involves understanding color measurements from the primary

level of photon detection. In this regard, using the physical principles, we model

the photon detection process by the photoreceptors or image sensors. This principal

step will help us to extract the basic principles governing the probabilistic nature of

photoreceptors responses and color measurements at low light levels. Achieving this

goal will enable us to attain other objectives of primary concern in machine vision

research e.g. addressing mesopic and scotopic conditions in current digital cameras,

and introducing efficient denoising algorithms.

Moreover, the methodology of this research involves spectral modeling of mesopic

color vision, which gives us a powerful tool for taking noise in color measurements

into account. The “spectral theory of color perception” was proposed by Clark and

Skaff [16]. This technique is a maximum entropy spectral modeling approach, which

has potential for modeling color vision when noise is involved. The Clark and Skaff

model treats the noise as an inherent part of the modeling process, and an estimate

of the noise level sets the trade-off between the consistency of the solution with
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the measurements and the spectral smoothing imposed by the maximum entropy

constraint.

At the final step, our goal is to employ a suitable mesopic color appearance

model in the color retargeting algorithms to be used in the image rendering pipeline

of displays. Color retargeting algorithms aim to adjust the colors of the rendered

image on a display according to the intended luminance level of the original image

and the bright level of the display. An image retargeting algorithm employs an

appropriate color appearance model and the inverse of this color appearance model

at the same time. In this research, the inverse of a color appearance model will be

developed to serve an image retargeting algorithm.

In summary, this thesis has some theoretical contributions to the study of low

signal to noise color measurement and color appearance modeling. During this work,

several computational tests, simulations and experiments are done in order to in-

vestigate the performance of modeling. Furthermore, this work has a wide range of

applications as mentioned in 1.3.

1.3 Applications

1.3.1 Display Technology

Ajito, Obi, Yamaguchi, and Ohyama [17] point out that “The range of the

reproducible color, i.e., color gamut, of the conventional display devices such as CRTs

(cathode ray tubes) and LCDs (liquid crystal displays) is sometimes insufficient for

reproducing the natural color of an object through color imaging systems.” With

emerging new technologies such as quantum dots and organic light emitting diodes

(OLEDs), display technology has been advancing quickly giving users a broader color

5



experience. OLED displays have narrow-band primaries which give rise to a larger

gamut area compared to conventional LCD displays, and they have great potential

for displaying high quality images and saturated colors [18]. Due to their emissive

pixel structure, OLED displays exhibit a high contrast ratio, and a high and constant

color gamut at all luminances. However, there are some perceptual issues that should

be addressed for the wide gamut displays such as observer metameric failure [19],

and gamut mapping between the input image and the display gamut.

Metameric failure refers to having noticeably different color perception by two

observers on a single display at the same time [20]. Displays with narrow-band

primaries are more susceptible to observer metamerism as compared to conventional

displays such as CRTs [21]. All existing color models and standards are developed

based on the mean observer (also called standard observer) color matching functions.

However, studies show that the mean observer may fail to match individual observers

significantly [20]. We can think of two types of solutions for the observer metamerism

failure: hardware solutions [22, 23, 24, 21, 25] and software approaches [26, 27, 20].

Bear in mind that metamerism on dimmed displays would be intensified due to the

increased uncertainties in the visual system and lower signal to noise value of displays

at low light levels.

Gamut mapping algorithms (GMAs) are divided into gamut reduction and

gamut extension algorithms [28, 29, 30, 31, 32]. In contrary to old display tech-

nologies (with smaller gamut than the input image), for which gamut reduction

algorithms (GRAs) were employed to fit the image gamut to the display gamut,

wide gamut displays have a larger gamut than the standard sRGB gamut (i.e. the
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color space which is commonly used to represent captured images from imaging de-

vices). Hence, gamut extension algorithms (GEAs) emerged to be used for wide

gamut displays. However, the number of available GEAs is not large as compared to

available GRAs [33, 28, 33, 34]. Moreover, there are some challenges in the area of

gamut mapping: first, most GEAs output oversaturated images [33], second, GMAs

usually are not good in keeping the perceptual fidelity of the original image on the

rendering medium [35]; third, GMAs usually alter the skin tone and memory colors,

and people are more sensitive to skin tone and memory color changes [36, 37]; fourth,

dark images are more prone to noise and applying gamut extension algorithms may

intensify chromatic noise. Hence, it turns out that GMAs have yet to be improved

to address the mentioned challenges [33, 38].

1.3.2 Tone Mapping and High Dynamic Range Images

Tone mapping refers to the process of mapping high dynamic range image data

to a relatively low dynamic range rendering medium (e.g. displays or printers) in a

way that the reproduced image perceptually matches the original scene. Tone map-

ping algorithms should be informed by accurate color appearance models so that the

perceptual fidelity of the output image is maintained after applying the tone map-

ping transformations. The problem is that existing tone mapping techniques suffer

from lack of good CAMs for mesopic conditions. Current tone mapping techniques

and color appearance models are trying to solve different problems; however, as Erik

Reinhard states in [39], these two are two sides of the same coin (i.e. tone repro-

duction algorithms and color appearance models should unify to predict the correct

appearance of images with a wide range of intensities).
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1.3.3 Image Quality Assessment

Image quality assessment (IQA) aims at measuring the quality of an image

in terms of appearance from different perspectives such as image naturalness, clar-

ity, sharpness, color, noise, contrast and lightness. Assessing image quality may be

achieved by employing a human subject who can tell us how good an image may

look like from a specific quality attribute point of interest. This approach gives us

a subjective quality measure; however, we may desire an objective way of assessing

image quality. The objective approach is defined as a set of mathematical models and

computational techniques to address image quality measurements. Here a question

may arise that what the benefit of such an approach would be? A particular applica-

tion of objective image quality assessment techniques is to replace a human subject

in evaluating the quality of images, and accordingly, gives rise to a less expensive,

more effective, more repeatable and consistent, and more time efficient approach to

achieve this goal [40]. Hence, objective methods are geared to constructing auto-

mated systems to predict the quality of images as they appear to a human observer.

These methods leverage different approaches to achieve the desirable performance,

from the simple computational models to highly complicated models of human visual

system (HVS) [41].

We can determine the precision of each objective image quality measure by

comparing the given results of the measure with those of the human subjective eval-

uations; however, most of the readily available objective metrics are developed based

on simple test patches and can not be used for more complex scenes such as natural

images. Moreover, most IQA techniques employ a color difference formula between
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the test image and reference image [42]. The choice of the color difference formula

is different for various algorithms but the common issue for all of them is that they

fail to comply with the assumptions for which that formula is valid. Lucassen et. al

in [9] mentioned that“These formulae are tuned to an ever increasing number of data

sets obtained from human observers in vision experiments employing specific stimulus

sizes and viewing conditions, the so called reference conditions. When applying such

a color difference equation however, one should be aware of its preferred reference

conditions, and hence its limitations for some practical cases.” Color difference for-

mulas can be used under certain conditions such as a specific viewing condition or

under a limited range of luminance levels (usually photopic conditions).

1.3.4 Color Identification

The micro-array sensor biochip, is a miniaturized laboratory comprised of ar-

rays of sensing elements integrated in a CMOS chip, designed in a way that they

can respond to a specific biological reaction or a biological element such as DNA

hybridization [43]. Some types of biochips, such as colorimetric biosensors or

fluorescence biosensors, use color changes as a salient feature for detecting their

target. To avoid the high workload required for labeling color changes manually, a

color appearance technique which is reliable under low signal to noise ratios, may be

employed to replace humans.

1.3.5 Image Enhancement for Color Deficient People

Color vision deficiency (CVD) refers to a variation in the cone photoreceptors

spectral sensitivity (i.e. a shift in the spectral cone sensitivity functions or lack of

one type of L, M, and S cones or more). CVD can be categorized into three classes:
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anomalous trichromacy (that is a shift in the spectral sensitivity of one cone type),

dichromacy (that is the lack of one cone type), and monochromacy (that is missing

two or three cone photoreceptor types in the retina). The first two groups form 99.9%

of all color-deficiencies and about a quarter of these are dichromats [44]. Dichromats

can be divided into protanopes, deuteranopes, and tritanopes. The first two categories

are close enough in term of their symptoms such that they take a single name as

red-green dichromats. The perceptual color space of dichromats is two-dimensional.

Hence, dichromats can not discriminate colors as well as color normal people do and

consequently, they may occasionally find object recognition or color identification

a harder task as compared to other people in their life. For example in [45], it is

argued that the number of colors used to visualize information in geographical maps

is not optimized for color deficient people. Existing solutions for color-blindness can

be divided into hardware and software solutions. As a hardware solution, color-

blindness glasses use color filters to help color-deficient people to improve their color

discriminability. Although they are able to address the discriminability issue for

some colors, they usually bring about some other color confusions [44]. Software

solutions provide some techniques to take into account color-blindness for electronic

devices.

Techniques for dealing with color deficiency can be classified into the simulation

and recoloring (compensation) approaches [46]. Simulation techniques can help color

normal observers to see how colors may appear to color deficient people. Having a

good color appearance model for color-blind people is deemed necessary for any

recoloring technique. There are many simulation models in the literature and most
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Figure 1–1: Different types of color-blindness

of them are using linear models based on projecting the 3-dimensional color space of

color normal people onto the two dimensional subspace of dichromats. However, it

is reported that the 2 dimensional representation of dichromat’s color perception

space cannot explain the extensive color perception experience of color deficient

observers [47].

Recoloring techniques aim at improving the color contrast for color-blind people.

As a case in point, a real-time temporally coherent recoloring technique is introduced

in [46]. The rational behind this technique is that in a perceptual uniform color space,

if we find the direction in a color space along which the maximum color contrast loss

in the image takes place for a color-deficient observer, then by recoloring the image

we would be able to recover the most possible color contrast loss for that observer.

There are several factors that could be taken into account in proposing a recol-

oring technique:
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1. being real-time,

2. keeping naturalness of colors for color vision deficient people,

3. keeping color contrast,

4. preserving temporal coherence (i.e. the mapped colors should not change a lot

with a small difference in the image content by the recoloring techniques),

5. keeping similar perceptual difference in the images as for trichromats,

6. neutral colors should be kept neutral after mapping

However, none of the available recoloring methods is able to take all of these factors

into account at the same time. Furthermore, Paramei, Bimler, and Cavonius indicate

that luminance is an important factor in the color perception of protanopes [48].

However, to the best of our knowledge, the effect of luminance, especially in mesopic

range, on the color appearance of color deficient people has not yet investigated

completely and not considered in any recoloring technique.

1.3.6 Chromatic Noise Removal

Color noise (or chromatic noise) can be defined as any unwanted distortion or

artifacts that may occur in chromatic channels of an image. Evaluating and removing

color noise will help us to make optimal color measurement and reproduction systems.

Signal to noise ratio (SNR) is one of the conventional and well-known methods of

evaluating noise not only in image processing but also in the general signal processing

field. However, signal to noise ratio is not a suitable measure in the context of color

noise perception and consequently image quality assessment as a whole, because it is

not a perceptual quantity (i.e. it does not necessarily match the human perception).

Much research has been focused on introducing a proper perceptual measure for
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chromatic noise and several metrics have been proposed [49, 50, 51, 52, 53, 54, 55].

Similar to IQA techniques, absolute color noise levels can be measured using a color

difference formula; hence, this shows the necessity of employing appropriate color

difference measures. At the present time, CIE94, CIEDE2000, and CIELab color

difference formulae are mostly used for this purpose [56].

Aside from the effect of noise on the perceptual quality of an image, there are

many well-known image post-processing operators such as image enhancement and

tone mapping which result in boosting noise levels [57]. Hence, it is of high im-

portance to remove noise from the image before displaying it or doing any post

processing operation. While there are many noise removal techniques proposed for

gray-scale images and from the luminance channel, chromatic noise has gained less

attention due to the lower visibility of chromatic noise as compared to achromatic

noise [58, 59, 60, 61, 62]. The higher visibility of achromatic noise as compared to

chromatic noise stems from the visual system spatial and temporal contrast sensi-

tivity functions. The luminance contrast sensitivity function has a band-pass nature

with respect to the spatial and temporal dimensions as compared to the low-pass

shape of the chromatic contrast sensitivity functions. [63]. The importance of re-

moving chromatic noise from dark images will be investigated in this thesis.

1.4 Thesis Contributions

The contributions of this thesis are as follows:

1. Development of a photon-accurate model of cone photoreceptor responses for

use in studying cone signals close to the absolute threshold of the visual system
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(a) It is shown that close to the absolute threshold of the visual system, cone

responses become noisy and the distribution of the chromaticity represen-

tation of cone responses form an elliptical shape over time.

(b) It is demonstrated that the spectral composition of light falling on cones

affects the size and orientation of the ellipses fitted to the distribution of

the chromaticity representation of the cone responses.

2. Development of a photon-accurate image sensor model to analyse the color

measurement at low light levels

(a) photon noise, read noise, and quantization error as shown to lead to uncer-

tain measurements distributed around the noise free measurements; and

the chromaticity of these noisy samples are distributed in a cloud that can

be well-fit to an elliptical region in the xy-chromaticity diagram.

(b) It is shown that, even for an ideal image sensor, in scotopic conditions,

obtaining stable measurements of color is impossible due to the physical

limitation imposed by the fluctuations in the photon emission rate

(c) It is demonstrated that, as compared to the chromaticity of noise-free

measurements, dark current shifts the chromaticity of measured samples

towards the chromaticity of the camera black point in the xy-chromaticity

diagram. The amount of this shift depends on the light levels; the lower

the luminance is, the larger the amount of the shift would be.

(d) It is shown that dark current dominates the other sensor noise types in

the image sensor.
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3. Development of a maximum entropy spectral modeling approach to mesopic

vision

(a) Evaluation of existing mesopic vision models

(b) Unification of photopic, mesopic, and scotopic vision models in the spec-

tral theory of color vision

(c) The first mesopic vision model which takes noise into account is presented

(d) Incorporating the recent CIE system for mesopic photometry in a color

vision model

4. Development of a color retargeting approach for mesopic vision to serve image

rendering algorithms

(a) application of the Shin CAM to real world images,

(b) derivation of the inverse of Shin’s mesopic color appearance model,

(c) development of a color retargeting approach based on Shin’s model,

(d) development of a technique for perceptual rendering of images and com-

pensating color deviations imposed by the human visual system while

viewing a dimmed display in the dark.

1.5 Thesis Overview

In this thesis, color measurement and color perception at low light levels are stud-

ied. In this regard, the photon detection processes of photoreceptors/image sensor

is modeled by taking the physical principles underlying photon emission/absorption

into account at low light levels. We divide the low light region into night and twi-

light conditions. These two conditions, which relate to scotopic and mesopic range

of the human visual system, are studied in this thesis respectively.
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The first chapter introduces the problems, their importance from different per-

spectives (applications), and the approaches taken to address the problems. In

Chapter 2, background information is presented and a comprehensive literature

review of the existing theories is done.

Chapter 3 investigates uncertainties in ideal cone responses in the scotopic

range caused by photon emission. In this regard, physical principles are leveraged

to develop a framework to take into account the effects of the probabilistic nature

of photon emission (the photon noise) on the ideal cone responses. Applying this

model results in the observation that the normalized spectral power distribution of

light becomes more uncertain (noisier) at low light levels than at high light levels

which leads to an increase in the uncertainty of cone responses. Furthermore, a col-

ored patch viewed in the scotopic range gives rise to uncertain color measurements

(by ideal cone cells) whose chromaticities are distributed over an area of roughly

elliptical shape centered on the high intensity chromaticity of the color patch. The

size of these elliptical regions is a function of the light intensity and the chromaticity

of color patches; however the orientation of the ellipses depends only on the patch

chromaticity and not on the light level. Moreover, the results of this work indicate

that the spectral composition of light is a determining factor in the size and orien-

tation of the ellipses. The material in this chapter was published and presented in

IEEE Conference on Computer and Robot Vision 2014 [15], for which the candidate

was the first author, and performed the work described therein, and did the writing

of the manuscript.
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Chapter 4 concerns modeling the color measurement performance of image

sensors under low signal-to-noise ratios. Our methodology involves tracking photons

to the moment when they are absorbed and measured by different channels of the

image sensor. In this regard, physical law governing photon emission are employed

to derive an estimate of the low light spectral power distribution of the light coming

to the image sensor. Then, an image sensor model is implemented and used to study

the luminance and noise induced effects on the sensor color measurements. The

methodology and results of this chapter was published as a journal paper in the

Journal of Imaging Science and Technology [64]. The candidate was the first author

of this paper, and developed the method, performed the simulations and wrote the

manuscript.

In Chapter 5, we evaluate some of the most prominent color vision models

available for mesopic range. We introduce a spectral-based color vision model for

mesopic conditions based on the maximum entropy spectral modeling approach of

Clark and Skaff [16], which was developed for photopic range. The extension of this

model can predict the color appearance under mesopic conditions as well as the pho-

topic range. Moreover, this method incorporates the new CIE system for mesopic

photometry, leading to an increased accuracy of the model. In mesopic vision, two

factors come into play as compared with the photopic spectral modeling. First of

all, image noise becomes significant. The Clark-Skaff model treats the noise as an

inherent part of the color vision modeling process, and an estimate of the noise level

sets the trade-off between the consistency of the solution with the measurements and

the spectral smoothing imposed by the maximum entropy constraint. Second of all,
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both the rod and the cone systems are active. The relative contribution of the rod

and cone systems depends on the overall light level in this regime, and our approach

is adaptive in this sense. We perform several computational tests and simulations

to compare the performance of our spectral mesopic color vision model with that of

the existing methods. The results show that the proposed method works very well

in this regard, and also demonstrates the potential of our model to become a part of

the existing tone mapping algorithms. We also propose a color retargeting algorithm

based on Shin’s model [65] to be used in the color rendering pipeline of displays. The

main contributions of this algorithm are as follows:

I- application of the Shin CAM to a real world image,

II- derivation of the inverse of Shin’s model,

III- development of a color retargeting approach based on Shin’s model,

IV- perceptual rendering of dark images and compensation of color deviations im-

posed by the human visual system while viewing a dimmed display in the dark.

Sections 5.1 and 5.2.1 of this chapter were published and presented in the Color

Imaging Conference 2013 [8]. The candidate was the first author of this paper,

performed the work described therein, and did the writing of the manuscript. The

remaining of this chapter represents the research which was done in a collaboration

with our industrial partner, IRYStec Software Inc. In this regards, the develop-

ment of the theories and performing the quantitative evaluation was done mainly by

the candidate. This research was published in the Journal of Imaging Science and

Technology in which the candidate was the first author and wrote the manuscript [7].
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Chapter 6 concludes the thesis and proposes future work according to the

results and contributions of this thesis.
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CHAPTER 2
Literature Review

In this chapter, we will review the literature of mesopic color perception and

scotopic vision. First, a background knowledge of human visual system operation

at low light levels will be presented. Then, we will briefly go over the microscopic

view of how individual photoreceptors respond to the coming photons and what

happens to human vision in the scotopic range. Next, we introduce mesopic vision

and existing mesopic color appearance models. Finally, the chapter will be wrapped

up by reviewing the application of mesopic color vision models in advanced image

rendering and color reproduction techniques.

2.1 Background: Human Visual System

Our visual system is able to adapt to a wide range of light levels from a bright

sunny day (around 105cd/m2) [66] to star-lit scenes (around 10−3cd/m2), [66]. Our

eye can capture a high dynamic range of luminance (around 4 orders of magni-

tude [39]) simultaneously.

According to the light level, the human visual system works in three different

modes called: photopic, mesopic and scotopic vision. Photopic vision refers to our

vision in day light situations (above 10 cd/m2 [1]) in which only cones are responsible

for our color vision. As the light level falls off to a luminance of 10 cd/m2 [67], the

visual system smoothly goes from photopic vision to mesopic vision, in which both

cones and rods contribute to color perception. In the so-called scotopic range (below
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Table 2–1: Different modes of the human visual system [1]
The Visual System Photopic Luminance Responsible Status of the

Mode Range (log cd/m2) Photoreceptors Visual System

Photopic [1 , 6] Cones Good Color Vision
Mesopic [-3 , 1] Cones and Rods Poor Color Vision
Scotopic [-6 , -3] Rods No Color Vision

0.001 cd/m2 [1]), there is no color vision, and human vision is only mediated by rods.

The photopic condition has been the main focus of most color research, and the

mesopic and scotopic conditions have not been investigated extensively [68, 69, 15].

The human visual system has different sensitivities under different lighting con-

ditions, being less sensitive in bright scenes as compared to dark ones. Weber’s law

indicates that the just noticeable difference of the stimulus changes with a constant

ratio of the stimulus intensity. Adjusting this sensitivity is done partly by changing

the pupil size and partly by the cone and rod photoreceptors’ adaptation mechanisms.

Light level plays an important role in the appearance of colors [70]. In mesopic condi-

tions, an increase in rod contributions leads to enhancement of perceived brightness

and a decrease in the saturation of spectral lights. Hue scaling experiments show

that rod contributions to mesopic vision results in monochromatic lights in the range

of 460-520 nm appearing more bluish, and monochromatic lights in the range of 540-

610 nm appearing more greenish [71]. Results of a color identification experiment

performed by Ishida indicates that close to the lower luminance range of mesopic

vision green is mostly confused with blue and“red”, “pink, ”orange“ and ”brown“

are reported interchangeably [70].
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Figure 2–1: The schematic of the visual pathways of the human visual system. This
diagram is reproduced from Fig. 10.3 in [3].

2.1.1 Physiological Background of the Human Visual System at Low
Light Levels

There are several layers in the human visual system working in parallel to trans-

port photoreceptor responses to the visual cortex. Figure 2–1 shows the schematic of

visual pathways of the human visual system. Light falls on the retina and stimulates

four types of photoreceptors: the rods and three different cones sensitive to long

(L-), medium (M-) and short (S-) wavelengths. The output of a rod cell is connected

to a rod bipolar cell and the cone photoreceptor is connected to the cone bipolars

(on-bipolar and off-bipolar cells).

Signals from the rod bipolar cells are transmitted to the ganglion cells through

amacrine cells and cone bipolars [3]. The ganglion cells then feed to the three path-

ways which convey the retinal information to visual cortex: the parvocellular pathway
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(PC pathway) corresponding to the red/green opponency, magnocellular pathway

(MC pathway) corresponding to achromatic signals, and koniocellular pathway (KC

pathway) corresponding to the blue/yellow opponency [67]. According to Hering’s

color opponency theory, there are three pairs of primary colors (and three types of

corresponding opponent cells) in the human visual system: red/green, blue/yellow,

and white/black [72]. Each type of the opponent cells is sensitive to one of these

pairs, and only can respond to one color at a time. For example, the red/green

opponent cells are sensitive to both red and green stimuli, but they can only detect

red stimulus or green stimulus at a time.

In the photopic condition, rod cells are saturated and only cone cells respond. In

the mesopic conditions, a gap junction forms between rods and cone bipolar cells [73,

3]. Rods can contribute to the mesopic color vision through this gap junction[73].

In the scotopic condition, there is no cone contribution to the visual pathways.

However, in this condition, rod photoreceptors are very sensitive to light such that

they can respond to even a single photon. It is worth mentioning that cones are also

able to signal capturing of a single photon, but the resulting response is weaker than

for rods.

2.2 Visual Perception under a Rain of Photons

In this section, we review the literature concerning the visual processes triggered

by photons. The square root, or de Vries -Rose Law holds that at low light levels

(but above the absolute threshold of the visual system) contrast detection thresholds

are inversely proportional to the square root of the background luminance of the

stimulus. This law was discovered by de Vries (1943) and evaluated later by Rose

23



(1948) who showed that, at low light levels, the detection threshold is determined by

quantum fluctuations [74].

The literature can be divided into two different groups: first, rod oriented, and

second, cone oriented works. The former concentrates on investigating rod responses

to single photons [75]. Researchers have recorded cellular responses to single photons

absorbed by rods, a step which opened up a new door to understanding our vision

by answering basic questions such as: how many photons are required for seeing or

detecting a dark adapted stimulus. The physical fact that photon arrival is governed

by a Poisson distribution, together with the rod responses to single photons, led to

powerful models of the photon absorption process [76, 77]. These models are able to

explain the frequency of seeing curve which represents the probability of detecting a

dark adapted light stimulus as a function of intensity. In addition to the randomness

which arises from the Poisson process driven nature of photon emission, there is

another source of fluctuations, which is the internal noise of the visual system. This

internal noise is referred to as dark current. Dark current is described and modelled

in [78, 79]. Reproducibility of the single photon response (i.e. the rod response to

a single photon should not change considerably over time) was another achievement

of earlier research in explaining rods’ ability in counting photons [77]. A complete

review of the research in this area can be found in [4]. Schwartz and Rieke proposed

that, in scotopic conditions, when photons may arrive at a very low rate, adjusting the

adaptation gain of the visual system is performed after absorption of every individual

photon is signalled [80]. This finding indicates a highly reliable and fast adaptation
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mechanism inside our visual system that is able to respond to even a single photon

absorption.

In comparison to rods, less research has been done concerning cones and their

responses to photons. This might be due, in part, to the fact that cone sensitivity

at low light intensities is lower than that of rods. Does it mean that cones are less

capable than rods when it comes to counting photons? Not at all, cones are also

able to count photons similar to rods; however, they are more prone to noise. Cone

responses are recorded from the outer segment of photoreceptors. Superimposing

these responses for dim flashes of light at various wavelengths reveals the Principle

of Univariance, which states that, once a photon with a certain wavelength is ab-

sorbed, the response of the cell is independent of the wavelength of that photon [81].

Other research projects have carried out behavioural experiments to investigate cone

absolute threshold in terms of the number of photons required to activate visual

pigment molecules [82]. A photon accurate model of the human eye was proposed

by Deering [83]. This comprehensive photon absorption and detection model takes

the position, size, shape and orientation of cones into account. This model can be

deployed in simulating the human visual system and evaluating displays and other

image rendering hardware.

2.2.1 What is a single photon able to do?

In 1942, Hecht, Shlaer, and Pirenne performed an experiment to determine what

would be the lowest possible intensity for a normal human observer to see a presented

flash of light, as a function of the wavelength of the light. In this way they estimated

the “frequency of seeing” curve [84]. This pioneering work led to many useful and
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interesting results and inspired much research in this area [85]. Indeed, the result of

frequency of seeing experiments acknowledges the importance of physics of the light

on our vision.

In this subsection, we look at what a single photon is capable of in terms of its

effect on the visual system, and also the perception it may give rise to. Our discussion

will be mostly focused on the inherent randomness of photon emission/absorption,

especially in low light conditions. Photon emission is governed by a Poisson process

whose photon emission rate is set by the light source power and its relative spectral

power distribution.

The probability that K or more photons in a unit of time are absorbed by the

photoreceptors may be obtained as [86]:

P (K, x) =
∞∑

m=K

w(m, x) = 1−
K−1∑
m=0

w(m, x) (2.1)

where the average number of photons absorbed in the unit of time in repeated trials is

represented by x; and for a monochromatic stimulus of wavelength λ, the probability

of absorbing m photons in a unit of time (absorption rate) by photoreceptors is given

by:

w(m, x) =
xm e−x

m!
. (2.2)

The above equations are used for the purpose of modeling the frequency of see-

ing curve. However, the quantity x does not thoroughly represent the entire process

taking place inside the retina, and needs to be modified before it can be used as a

model for the frequency of seeing data. The reason is: not all the absorbed photons

26



contribute to vision; but only those which can initiate the photoisimerization of pho-

toreceptors are involved in that process. Photons reach the cornea with the average

rate of xcornea(λ) = Ecornea(λ)
hν

(photons.mm−2.sec−1) where Ecornea (in W mm−2) is

the flux density of the source at the cornea. The quantity xcornea can be obtained as

follows:

xretina(λ) = xcornea(λ)
Apupil

Aretina

τ(λ) (2.3)

where τ(λ) is the transmission correction coefficient for ocular media and Apupil is the

area of pupil in mm2. We assume no correction for the ocular media transmission, so

τ(λ) = 1. In the next step, the number of absorbed photons is calculated, and this

number depends on the wavelength of the incoming photons and the sensitivity of

photoreceptors. The mean of the number of photons at the cornea can be obtained

as N = xcorneaApupilΔT , where ΔT represents the integration time of the visual

system. However, not all of the photons incident on the retina will be absorbed by

photoreceptors, and moreover, not all the absorbed photons will lead to successful

isomerization. As a result, we can assume that the overall efficiency coefficient α

represents the proportion of successful isomerizations to the total number of photons

reaching the cornea, R∗.

R∗ = αN (2.4)

The term “α” for rods depends on several factors such as: the transmission correction

coefficient for ocular media, τ(λ); the fraction of light penetrating into the outer seg-

ment of the photoreceptor, fguided where fguided ≤ 1; the optical density of rhodopsin
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D(λ) in the outer segment; and the quantum efficiency of successful isomerization,

γ.

α = τ(λ) fguided[1− 10−D(λ)]γ (2.5)

Based on the above discussion, the probability of seeing can be obtained as fol-

lows [82]:

P (see|N) = P (K,R∗(x)) =
∞∑

m=K

w(m,R∗(x)) (2.6)

In the probability of seeing expression, there are two free parameters: first, the detec-

tion threshold, K (i.e. the number of required photons for seeing); and second, the

term α which may vary from person to person. Figure 2–2 shows the effect of these

underlying parameters on the shape of the probability of seeing curve. This curve

is plotted as a function of mean number of photons at the cornea. It is noteworthy

that shape of the curve is independent of the “α” parameter [77].

So far, we have not considered the effect of spontaneous rhodopsin isomerization

leading to generate a dark current. In the following, dark current is introduced and

taken into account in the probability of seeing formulation.

2.2.1.1 Incorporating Dark Current in the Model

In the preceding subsection, we described the photoisomerization process, which

follows photon absorption by a photoreceptor. However, photon absorption is not the

only process which may give rise to isomerization; it might also happen spontaneously

even when no photon is exposed to a photoreceptor. This spontaneous event is called

thermal isomerization and the resulting current in the transduction cascade is known
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Figure 2–2: The probability of seeing curves for different parameters in the Eq. 2.6.
The figure is taken from [4].

as dark current. Dark current limits the performance of the visual system, especially

in the scotopic range; a case in point is hampering visual detectability. A very

well-known model for the probability of seeing experiment taking dark current into

account is proposed by Sakitt [78] as follows

P (see|N) = P (K,R∗ +D) =
∞∑

m=K

w(m, (R∗ +D)) (2.7)

where D represents the additive Poisson noise modeling the dark current in the visual

system.

2.3 Scotopic Vision Models

In the scotopic range, cone photoreceptors are inactive and only rods are re-

sponsible for our vision. It has been known for a long time that rods individually

can not give rise to any color perception; however, recent findings show a blue or

bluish green color perception even in dim conditions [87]. This bluish perception is
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partly explained by the Purkinjie shift effect (i.e. the relative brightness of blue and

red objects changes by moving from daylight to a twilight region [86]).

“Day-for-night” simulation is a term in the movie-making field which refers to

reproducing scotopic scenes from scenes filmed in photopic conditions. The main

reason behind using the day-for-night technique is to avoid the hardships associated

with night-time filming and to get high quality images. In the movie-making industry

day-for-night simulation can be done by adding a bluish effect, a loss of acuity and

desaturation to the photopic image. However, this approach can not completely

address the human scotopic visual experience for an observer viewing a scotopic

scene on a photopic display [88]. A case in point, to be encountered in day-for-

night simulation, is that scotopic visual perception may change according to the

surrounding context of a target object [87]. Moreover, it is reported that binocular

disparity changes in scotopic conditions and this is suggested to be considered in any

realistic scotopic model [88].

Noise is another important factor in scotopic vision modeling, especially when

close to the absolute threshold of the visual system. Thompson, Shirley, and Ferw-

erda proposed that adding noise to day-for-night simulation provides a better quality

of scotopic perception [89]. In this regard, a static noise with a normal distribution

is introduced. Kellnhofer, Ritschel, Myszkowski, Eisemann, and Seidel introduced a

quantal noise model for scotopic vision simulation [90]. This model is more accu-

rate and is plausible when close to the absolute threshold of the visual system. The

proposed method can be deployed in future scotopic displays (i.e. displays which are
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able to reproduce scotopic conditions and have a screen brightness that can go down

to the scotopic range), which have not yet been invented due to technical limitations.

2.3.1 Noise in Visual Systems

For both imaging devices and the human visual system, as the light level goes

down, the effect of noise becomes more significant (see the de Vries-Rose Law in

Section 2.2) [15]. In this situation, an imaging device will acquire a noisy signal with

a low value of signal to noise ratio. In human vision, a lower signal to noise level

results in changes in the appearance of measured colors. Several works discussed the

impact of light level on human color perception [91, 92, 70, 93]. It is unanimously

accepted that reducing the light level gives rise to color shifts (see the Bezold-Brücke

effect in Section 2.4), and this effect is mostly attributed to the rod intrusion into

the mesopic vision (dim light situation in which both rods and cones contribute to

vision) [94, 65]. However, the issue of noise at low light levels is still an ongoing

problem for artificial image sensors.

Low light imaging is a challenging issue for photographers due to the low signal to

noise level. In this situation, a photographer may be faced with a dilemma: keeping

the exposure setting of the camera the same as in regular lighting conditions, which

causes a low signal to noise ratio, or increasing the exposure time, which leads to

motion blur with hand-held cameras. Noise adversely affects the quality or color

appearance of an image taken by an imaging device.

To the best of our knowledge, the effect of noise at low light levels on the color

measurements of imaging devices has not been addressed yet. One of the most recent

works concerning this topic is the work done by Kirk and O’Brien, which proposes a
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perceptual tone mapping approach to convert high dynamic range low light images

to a result perceptually closer to the human mesopic vision experience [95]. However,

the authors did not take into account any noise in their model and left it as future

work. Evaluating color noise will help us in creating optimal color reproduction

systems. Additionally, modern cameras are constructed based on digital imaging

sensors; and nowadays, due to their easy fabrication and low power consumption,

CMOS sensors have become the most prominent imaging sensors. However, the

performance of CMOS cameras has yet to be optimised, especially in terms of noise

in low light photography [12], and capturing high dynamic range scenes.

Last but not least, linear transformations are widely used in color science. Lin-

ear transformation can not ideally map the source and destination color matching

functions and this induces some errors in the process of conversion. These errors

are usually deemed negligible for a noise-free system. However, in practice, imaging

devices, displays, and printers employ linear transformations to move between color

spaces and at the same time they are subject to noise which might magnify linear

transformation errors. The induced errors can bring about color shifts and reduce

image quality. The effects of noise and linear transformation on the color gamut

were investigated by us in [96]. In this regard, a typical image sensor is modeled

and employed for this study. A detailed model of noise is considered in the pro-

cess of implementing the image sensor model. Several simulations were performed

over the implemented framework and the results show that the imperfections of lin-

ear transformation combined with the image sensor noise shrinks the gamut of the
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output images. Moreover, in [97], Burns discussed an image noise analysis in multi-

spectral color imaging and pointed out that the underlying error by the color-space

transformation is comparable to the intrinsic noise of the image sensor.

2.4 Mesopic Color Appearance Models

Color appearance models provide a tool to transform tristimulus values to per-

ceptual attributes of color. Color perception algorithms developed for machine vision

mostly rely on color appearance models (CAMs). The output of an ideal color ap-

pearance model should resemble human color perception in all conditions such as

different adaptation, light levels and viewing conditions. However, a comprehen-

sive mathematical model that is able to address all the underlying factors in human

color perception would be very complex and computationally heavy. Moreover, color

perception mechanisms of the human visual system have not yet been identified

completely enough to be incorporated in that hypothetical ideal color appearance

model.

There is an abundant number of models available for photopic conditions such

as: the Hunt model [98], RLAB model [99], CIECAM97 [100] and CIECAM02 [101]

models, most of which are described in [102]. Each of these models are based on some

simplified assumptions and take limited factors underlying human color perception

into account. A case in point is that most color appearance models do not incorporate

the spatial or temporal properties of the visual system.

The Bezold-Brücke effect shows that hue perception depends on the luminance

of the stimulus [86]. In other words, the hue of objects in the mesopic range will be

different than in photopic conditions. At low light levels, two factors come into play as
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compared with high light levels (photopic conditions): first, the signal to noise ratio

decreases (either in the human visual system or in an artificial image sensor); and

second, rods contribute to our vision[103]. Psychophysical evidence shows that cones

and rods interact in the mesopic range [103]; however, the form of this interaction

is controversial. Hence in mesopic vision, the photopic color appearance models will

not work. Aside from the aforementioned limitations of photopic CAMs, there are

only a few currently available color appearance models suited to the mesopic range,

none of which perform well enough in terms of resembling human color perception.

Moreover, these models are ad-hoc and non-physical fitting models to experimental

data. Hunt proposed a color appearance model which considers rod responses [104].

Kwak, MacDonald, and Luo introduced a lightness predictor for mesopic vision to

address the stimulus size effect in their model [105]. The other presented mesopic

models are not CAMs since they do not take the viewing condition into account.

We refer to them as mesopic color vision models. Hence, color vision models cover a

greater number of models, which can be less general -in terms of considering visual

appearance phenomena- and might have more limiting assumptions as compared

with CAMs. Shin, Matsuki, Yaguchi, and Shioiri introduced a mesopic model based

on psychophysical experiments on color patches [65]. Cao, Pokorny, Smith, and Zele

proposed another mesopic vision model [71], which was employed in Kirk’s perceptual

tone mapping operator for low light conditions [95] and in the color retargeting

approach proposed by Wanat and Mantiuk [2]. Rezagholizadeh and Clark proposed

a maximum entropy-based spectral color vision model for mesopic conditions [8].

This work will be presented in Chapter 5. A comparison of four algorithms that
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can realistically simulate the appearance of night scenes on a standard display is

presented in [106]. In the following section, the challenges of studying mesopic vision

will be briefly introduced.

2.4.1 Challenges of Mesopic Vision

As mentioned earlier, the human visual system may work in photopic, mesopic

or scotopic modes and among them mesopic vision is much more complex than the

other two. In this subsection, we briefly review the main challenges of mesopic vision.

According to [1], from physiological point of view, the main reasons behind this

complexity are: first, rod-cone interactions; second, different rod and cone retinal

spatial distributions; third, mixed spectral sensitivities of rods and cones; and fourth,

changes in the spatial and temporal properties of the photoreceptor responses.

Mesopic photometry is one of the main existing challenges of mesopic vision.

Scotopic photometry is obtained from the scotopic luminous efficiency function (V ′(λ)),

which is also known as the rod spectral sensitivity function. Since cones are not ac-

tive in the scotopic region, the scotopic luminous efficiency function solely depends

on the rod sensitivity function. A similar explanation can be given for photopic

photometry, where only cones are responsible for luminance perception and the pho-

topic luminous efficiency function can be determined as a linear combination of cone

spectral sensitivities. In contrast to photopic and scotopic photometry, obtaining

mesopic photometry is more challenging, because the mesopic luminous efficiency

function should be determined by both cones and rods’ spectral sensitivity functions

and their interaction in mesopic vision. This interaction is not necessarily linear and

depends on the light level. Hence, the mesopic luminous efficiency function should
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be adaptively updated with the light level. Several photometry systems have been

proposed in the literature [107, 108, 109, 110]; however, there is still no agreement

on one. A CIE system for mesopic photometry has been recently recommended as

a new model for the transition of the eye spectral sensitivity from the photopic to

scotopic range as a function of luminance for mesopic conditions [111]. This mesopic

photometry system is introduced in the next subsection.

The other challenges of mesopic vision are noise and uncertainty. In mesopic

vision, the impact of noise (photon noise and dark current) on our visual perception

becomes significant. Hence, mesopic vision comes with uncertainties due to the

uncertain cone and rod photon counting. This uncertainty may lead to difficulties in

color identification in the mesopic range as has been reported in some studies [70].

Hence, noise is a crucial part of mesopic vision modeling, though the number of

models considering noise is rare [64].

To sum up, the mentioned factors make mesopic vision challenging, and detailed

models of mesopic vision are to a high extent unknown. Hence, mesopic vision is

still a hot research topic and the current mesopic color appearance models do not

yet completely describe the human visual experience in the corresponding condition.

In the next subsection, we will review the new CIE system for mesopic photometry.

2.4.1.1 CIE System for Mesopic Photometry

CIE has recently recommended a new photometry system for mesopic vision [111].

The new photometry system incorporates the transition of the eye spectral sensitivity

from the scotopic luminous efficiency function V ′(λ) to photopic luminous efficiency

function V (λ) as a function of the photopic and scotopic luminance levels [111]. This
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photometry system introduces a new formulation to derive the normalized mesopic

eye spectral sensitivity, Vmes, and mesopic luminance, Lmes, as follows:

M(m)Vmes(λ) = mV (λ) + (1−m)V ′(λ) 0 ≤ m ≤ 1

Lmes =
683

Vmes(λ0)

∫
Λ

Vmes(λ)Le(λ)dλ
(2.8)

where m is a mesopic measure varying in the range [0 1] (m = 0 corresponds to

the fully scotopic and m = 1 corresponds to the fully photopic conditions); λ0 is

equal to 555 nm; Le is the spectral radiance in W.m−2.sr−1.nm−1; and, M(m) is

a normalizing function leading the maximum of Vmes to be equal to 1. Given the

scotopic and photopic luminance values, the mesopic luminance can be calculated

using the following iterative approach:

m(0) = 0.5

Lmes(n) =
m(n− 1)Lp + (1−m(n− 1))LsV

′(λ0)

m(n− 1) + (1−m(n− 1))V ′(λ0)

m(n) = 0.767 + 0.3334log(Lmes(n)) 0 ≤ m(n) ≤ 1

(2.9)

where n indicates the iteration number, and V ′(λ0) = 683/1699.

2.4.2 Models

In this subsection, we discuss some of the well-known mesopic vision models

currently available in the literature.

2.4.2.1 Hunt’s Model for Mesopic Vision

Hunt proposed a complex color appearance model, which is one of the best-

known and most complex color appearance models [104]. The Hunt model includes
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different viewing components such as the stimulus, the background and the surround-

ings. In this section, we will briefly introduce how this model addresses mesopic

vision in its formulation. This model requires the absolute luminance level of the

reference white and adapting field, together with the scotopic luminance of the scene.

Since the scotopic luminance data is usually unavailable, Hunt proposed a formula

to predict this quantity according to the photopic luminance and the correlated color

temperature of the illuminant as follows

LAS = 2.26LA[(T/4000)− 0.4]1/3 (2.10)

where LAS is the scotopic luminance, LA refers to the photopic luminance and T

is the color temperature of the illuminant. In the Hunt model, rod responses are

incorporated directly into the achromatic signal and then the achromatic signal is

employed in obtaining other color correlates in the model such as chroma and hue.

In this model, the rod responses are derived using the following formula:

AS = 3.05BS[fn(FLSS/Sw)] + 0.3

fn[I] = 40[I0.73/(I0.73 + 2)]

FLS = 3800j2(5LAS/2.26) + 0.2(1− j2)4(5LAS/2.26)
1/6

j = 0.00001/[(5LAS/2.26) + 0.00001]

(2.11)

where S and Sw correspond to the scotopic response of the stimulus and reference

white, respectively; fn[I] represents the photoreceptor response function to the light

level I; and fLS is the scotopic luminance level adaptation factor.
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The total achromatic signal, A, can be obtained by combining rod responses,

AS, and cone achromatic signals, Aa, as follows:

A = Nbb[Aa − 1 + AS − 0.3 + (12 + 0.32)1/2]

Aa = 2ρa + γa + (1/20)βa3.05 + 1

(2.12)

in which ρa, γa, and βa represent the LMS responses in the Hunt model and Nbb

refers to the brightness background induction factor. The above equations describe

how the Hunt model involves rod responses in mesopic vision. This model is complex

and the selection of its parameters is not straightforward.

2.4.2.2 Kwak’s Lightness Prediction Model for Mesopic Vision

Kwak et al. proposed a new lightness predictor for mesopic vision based on the

CIECAM02 lightness operator [105]. It is shown that the new operator improves the

CIECAM02 to be able to better address the mesopic range. This lightness predictor,

Js+p, takes both cone and rod responses into account. Using the same notation

as the Hunt model, the total achromatic signal in Kwak’s model is calculated as a

weighted summation of the cone’s contribution to the achromatic response and the

rode achromatic signal as follows:

A = Aa + αAS

Aa = 2R′
a +G′

a + 0.05B′
a − 0.305

(2.13)

where α is the weighting factor, AS is derived from the Hunt model [104] as shown

in eq. 2.11. (R′
a, G

′
a, B

′
a) are the adapted cone signals, which can be derived from

the normalized cone responses (R′, G′, B′):
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R′
a = 400

(FLR
′/100)0.42

(FLR′/100)0.42 + 27.3
+ 0.1

FL = 0.2k4(5LA) + 0.1(1− k4)2(5LA)
1/3

k = 1/(5LA + 1)

(2.14)

where LA refers to the photopic luminance. Finally, the new lightness predictor is

introduced in the following:

Js+p = 100(
A

Aw

)κz

z = 1.48 +

√
Yb

Yw

.

(2.15)

In the above equation, κ is the surround factor and the subscripts w and b

refers to the reference white and background, respectively. This model has been

claimed to be able to better describe the lightness dependent changes of hue and

the Purkinje shift phenomenon in the mesopic range than the CIECAM02 model.

However, this model does not consider any direct input from rod responses to the

chromatic modelling of mesopic vision.

2.4.2.3 Modeling Blue Shift in Moonlit Scenes

The model proposed by Khan and Pattanaik [73] aims at addressing the “Blue

Shift” in dark scenes. Recent findings show that rod cells contribute to off-bipolar

cells during the scotopic condition by forming chemical synapses (gap junction).

Based on this theory, to explain the blue shift, the authors hypothesize that these

synapses are only established between rods and S cones. Then, they propose the

following steps to derive the mesopic RGB response from the original image RGB
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values (i.e. the image sensor measurements represented in the RGB color space).

1. Given the image RGB values, the scotopic luminance value, Irod, is obtained

when the adaptation intensity is set to 0.03 cd/m2. However, this work does not give

any particular model for obtaining the scotopic luminance from the RGB values.

2. For each pixel, the scotopic luminance is plugged in to the Hunt model [112] to

derive the cone responses at the light intensity I and the rod responses Rrod.

3. In the scotopic condition, cone response values, Rl, Rm, and Rs, are assumed to

be zero, since cone cells do not respond in the scotopic range.

4. The final mesopic simulated image is obtained by adding 20% of the rod response

to the S-cone signal and then projecting the result back into the initial RGB space.

Rs = Rs + 0.2Rrod (2.16)

The way the authors address the blue shift is by adding 20% of the rod response to

the S-cone signals.

2.4.2.4 Cao’s Model of Mesopic Vision

Cao et al. proposed a model for mesopic vision based on experiments they

conducted [71]. The results of the experiments show that rod contributions to the

PC, MC, and KC pathways linearly relate to rod contrast. The essence of the model,

which is only valid for the mesopic range, is summarized in the following:

1. The image RGB values are transformed to the LMSR photoreceptor space

which gives the cone and rod responses.

[EL EM ES ER]
t = ME.[R G B]t

(2.17)
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Table 2–2: The parameters of the Cao model for mesopic vision [2]
Y [cd/m2] κ1(Y ) κ2(Y )

10 0 0
0.62 0.0173 0.0101
0.10 0.173 0.357

where ME is the corresponding transformation matrix.

2. Since rods and cones share their pathway to the visual cortex, rod responses can

be combined with the cone responses according to the following equation:

⎡
⎢⎢⎢⎢⎣
L

M

S

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0 0 κ1(Y )

0 1 0 κ1(Y )

0 0 1 κ2(Y )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

EL

EM

ES

ER

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Mc(Y )

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

EL

EM

ES

ER

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.18)

The coefficients κ1(Y ) and κ2(Y ) are derived by interpolation from the experimental

measurements done by Cao et al. with respect to the original scene’s luminance level,

Y (see table 2–2).

2.4.2.5 Shin’s Color Appearance Model for Mesopic Vision

Shin et al. proposed a modified version of the Boynton two-stage model [113]

with fitting parameters to account for the rod intrusion in mesopic vision [65]. The

parameters of the model are obtained as a function of illuminance based on the

asymmetric color matching experimental data. In their experiment, the observer is

presented with a Munsell color chip under the mesopic condition and is asked to
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match the appearance of that patch with a simulated image, reproduced by this

model in the CRT display under the photopic condition. The model takes in the

cone responses after adaptation and outputs achromatic, red/green, and blue/yellow

opponent responses. This model is described in greater detail in Chapter 5.

2.5 Advanced Image Rendering Techniques for Mesopic Vision

2.5.1 Perceptual Tone Mapping Operators for Mesopic Vision

Handling high dynamic range scenes is challenging for cameras. Capturing high

dynamic range scenes might introduce over/under-exposed regions into the output

image. One way to avoid this problem was introduced by Debevec and Malik [114]

who suggest imaging with multiple exposures and combining them. Currently avail-

able CCD or CMOS image sensors are capable of capturing a wide range of luminance

values; however, most existing displays are not able to display more than two orders

of magnitude. Tone mapping is an approach for solving this problem of mapping the

high dynamic range image intensities to the low dynamic range display outputs to

have the reproduced image perceptually closer to the original scene.

Applying a tone mapping operator to an image may cause changes to the color

appearance of the original image [115, 116]. To address the color changes, a color

correction method should be applied to the tone-mapped image. Pouli et al. pro-

pose a color correction technique in which the image is transformed into the IPT

space and then the ICH space [116]. To find the color corrected image, the light-

ness component of the tone-mapped image is combined with the hue of the original

image and the corrected chroma factor, which is introduced in [116]. However, the

color correction approaches are not perceptual, they are not powerful enough to take
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viewing conditions into account, and they can not address mesopic induced effects

on the color appearance of images.

Reinhard states that “tone mapping techniques and color appearance models

are two sides of the same coin” [39]. In other words, even though tone mapping

operators and color appearance models are supposed to solve the same problem,

they are currently very divergent. On the CAM side, many models are available

such as: the Hunt model, the RLAB model, and the CIECAM97 and CIECAM02

models, most of which are described in [102]. However, none of them are appropriate

to be used in tone mapping algorithms, and among them, models that focus on

mesopic vision appearance are few. We can say that tone mapping techniques suffer

from a lack of a suitable color appearance model for mesopic vision.

From the tone mapping point of view, several perceptual tone mapping oper-

ators have been proposed, including the multi-scale model by Pattanaik, Ferwerda,

Fairchild, and Greenberg [117], the perceptually-based tone mapping by Irawan, Fer-

werda, and Marschner [118], and the iCAM06 tone reproduction technique [119]. A

complete review of the available tone mapping operators can be found in [66]. In the

remainder of this subsection, we review the existing tone reproduction (also known

as tone mapping) operators which take the mesopic range into account.

Pattanaik et al. developed a model of adaptation and spatial vision based on

a multiscale representation of the human visual system, color processing, as well as

luminance [117]. This model accounts for a wide range of changes, such as visual

acuity, colorfulness, and apparent contrast, which varies with illumination. Ferwerda,

Pattanaik, Shirley, and Greenberg proposed a model for visual adaptation in which
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different human visual system phenomena such as threshold visibility, visual acuity,

temporal adaptation, and color correction are involved [93]. Durand and Dorsey

extended the Ferwerda tone mapping operator by adding a blue shift mechanism to

address the mesopic color appearance of night scenes [120]. This blue shift operator

is built on the Hunt data, which shows that white preference changes in very dark

conditions toward the normalized RGB = [1.05, 0.97, 1.27]. However, this model

oversimplifies the complex mesopic vision mechanisms. Krawczyk, Myszkowski, and

Seidel introduced a local contrast compression technique in which they included some

perceptual phenomena related to mesopic vision such as changes in visual acuity and

rod contributions to mesopic vision [121]. Mikamo, Slomp, Tamaki, and Kaneda

decoupled the luminance component from the chromatic content of the image and

then discounted the red content of the image in the CIE LAB color space depending

on the average luminance level of the image [122]. Two of the most recent and

well-known perceptual tone mappers are reviewed in greater detail in the following.

2.5.1.1 iCAM06 Tone Compression Model for Mesopic Vision

This approach is one of the best-known image appearance methods in the liter-

ature. The iCAM06 tone mapping technique accounts for the mesopic condition by

including the rod response in its tone compression operator [119], which is summa-

rized as follows.

1. The chromatic adapted image is input to the tone compression unit. First,

the image is converted to the Hunt-Pointer-Estevez color space. Then, the cone re-

sponses (R′
a, G

′
a, B

′
a) are obtained using the cone response functions introduced by
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Hunt [112] from the (R′, G′, B′) inputs from the previous step.

R′
a =

400(FLR
′/Yw)

p

27.13 + (FLR′/Yw)p
+ 0.1

G′
a =

400(FLG
′/Yw)

p

27.13 + (FLG′/Yw)p
+ 0.1

B′
a =

400(FLG
′/Yw)

p

27.13 + (FLG′/Yw)p
+ 0.1

FL = 0.2k4(5LA) + 0.1(1−K4)2(5LA)
1/3

k = 1/(5LA + 1)

(2.19)

where Yw refers to the luminance of the local adapted white image, p is a user ad-

justable parameter (which determines the steepness of the photoreceptor responses)

and LA is the adaptation luminance.

2. The adapted rod response (AS) is calculated using the Hunt model [112].

As = 3.05Bs[
400(FLSS/Sw)

p

27.13 + (FLSS/Sw)p
] + 0.3

FLS = 3800j2(5LAS/2.26)

+ 0.2(1− j2)4(5LAS/2.26)
1/6

LAS = 2.26LA

j = 0.00001/[(5LAS/2.26) + 0.00001]

BS =
0.5

1 + 0.3[(5LAS/2.26)(S/Sw)]0.3

+
0.5

1 + 5[5LAS/2.26]

(2.20)

where S and Sw are the luminance of the chromatic adapted image and that of the
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reference white, respectively, and LAS is the scotopic luminance value.

3. The tone compression output (RGBTC) is computed as a linear combination of

the cone responses (RGB′
a) and the rod response (AS).

RGBTC = RGB′
a + As (2.21)

It is assumed that rod cells contribute to all cone responses with the same weights;

however, this is questionable based on the recent findings [95].

2.5.1.2 A Perceptual Tone Mapping of Mesopic Vision based on the
Cao Model

Kirk and O’Brien established a perceptually-based tone mapping method ac-

counting for mesopic conditions based on the Cao model [95]. The Cao model can

be summarized in three fundamental steps (we keep the same notations as [95]).

1. Rod responses are involved in setting three regulators: gL, gM , and gS.

gL = 1/(1 + 0.33(qL + κ1qrod))
2

gM = 1/(1 + 0.33(qM + κ1qrod))
2

gS = 1/(1 + 0.33(qS + κ2qrod))
2

(2.22)

where κ1 is a coefficient which adjusts the correct proportion of the rod to cone

response, qi, i ∈ {L, S,M} represent the cone responses, and qrod indicates rod

responses. These three regulators will determine the amount of the color shift in the

opponent color model.

2. Regulators and rod responses determine the amount of shift in each opponent
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channel using the following formulas:

ΔoR/G = xκ1(ρ1
gM

mmax

− ρ2
gL
lmax

)qrod

ΔoB/Y = y(ρ3
gS

smax
− ρ4W )qrod

ΔoLuminance = zWqrod

W = (α
gL
lmax

+ (1− α)
gM

mmax

)

(2.23)

where x, y, and z are free tuning coefficients; lmax = 0.637, mmax = 0.392, and

smax = 1.606 are the maximum values of cone fundamentals [95]; and ρ and α are

fitting parameters set as: ρ1 = 1.111, ρ2 = 0.939, ρ3 = 0.4, ρ4 = 0.15 and α = 0.619.

W is a positive value which can be used as a measure of mesopic level, where W = 0

indicates the fully photopic condition. It is worth mentioning that the color shifts

are nonlinear functions of the gis but linear functions of rod response.

3. The shifted cone responses which account for mesopic color appearance effects

are introduced as a linear combination of the cone responses and the calculated color

opponent shift components.

q̂ = [qL qM qS]
T +Δq̂

Δq̂ = A−1Δo

(2.24)

where A is the transformation matrix between the opponent color space and the

corresponding shifted cone response.

oR/G = q̂M − q̂L

oB/Y = q̂S − (q̂L+q̂M)

oLuminance = q̂L + q̂M

(2.25)
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2.5.2 Color Retargeting Approaches for Mesopic Vision

A typical image processing chain is comprised of a scene, a camera which takes a

picture of the scene, a display which shows the taken picture and a human observer.

The ultimate goal of the display technology is to reproduce the image on the display

such that it visually matches the original scene for the human observer [123]. To

achieve this goal, the display technology needs to be able to physically reproduce

real-world scenes with high dynamic range and different brightness levels (hardware

improvement); on the other hand, visual system mechanisms such as contrast, lu-

minance and color perception have to be taken into account in display rendering

units (software improvement) [93, 83]. For example, the minimum brightness level

of traditional displays was so high that we could only reproduce images in photopic

conditions; however, the new OLED technology can go as dim as 2 cd/m2, which

is in the mesopic range, and now we can think of reproducing photopic images on

mesopic displays as well. Hence, to have perceptual displays, it is vital to know hu-

man color perception mechanisms and to be able to model them. The model should

be comprehensive enough to take into account all aspects of human color vision in

all visual conditions such as different light levels [124].

Color appearance models aim at reproducing color perceptual attributes of a

simple stimulus as the human visual system perceives them. Therefore, by defini-

tion, color appearance models should be very useful in achieving perceptual displays.

However, most color appearance models are valid only under certain limited condi-

tions: first, most of them do not take spatial and temporal properties of the human

visual system into account; second, they model the appearance of simple stimuli such
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as color patches [125]; third, they are developed for photopic conditions [126, 69];

and, fourth, they assume pixels are independent from each other [127].

Image color appearance models (iCAMs) are proposed to fill this gap by in-

corporating the spatial and temporal vision to model the appearance of complex

stimuli [119]. But even these models do not work well in the mesopic range. A case

in point is the iCAM06 model proposed by Kuang, Johnson, and Fairchild [119],

in which the rod contributions are added to the cone responses uniformly. How-

ever, recent studies show that the rod contributions to different channels are not the

same [71, 128]. Hence, the model used for mesopic vision in image appearance models

should be improved. Moreover, existing iCAMs and CAMs are only able to simulate

(i.e. predict the appearance of the original scene as a human observer perceives)

the appearance of stimuli. They are not designed to compensate for (i.e. repro-

duce colors on a rendering medium with a specific viewing condition to match the

original scene colors) appearance changes of stimuli rendered on different mediums

with different viewing conditions. For example, when a bright scene is reproduced

on a dim display, the contrast degradation and the hue and saturation shift due to

mesopic vision will heavily affect the visual appearance of the image content. In this

case, a compensation algorithm should be employed to retrieve the original image’s

appearance.

An image retargeting technique aims to provide a unified framework for both the

simulation and compensation algorithms, and it can be thought of as a bidirectional

image color appearance model. Wanat and Mantiuk proposed a retargeting method

which consisted of global and local contrast retargeting units together with a color
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retargeting block [2]. A perceptual color retargeting method employs a color appear-

ance model (responsible for predicting the color of the original scene) for simulation

purposes and its inverse for compensation purposes. Since, in theory, the scene and

rendering device luminance can be in any of the three photopic, mesopic, or sco-

topic ranges, the color appearance model should be viable for all luminance levels

as well. However, as was mentioned in the preceding sections the number of models

considering the mesopic and scotopic range and rod contributions is small [8, 69].

We only have a handful of color retargeting methods and none of them perform

very well in simulating and compensating images in dark conditions. An eligible

color vision model for perceptual color retargeting algorithms should possess two

main features: first, the model must be applicable to the entire luminance range of

the human visual system (photopic, mesopic and scotopic vision); and second, the

model must be invertible. We can add a third condition, which is that the model

must be computationally inexpensive, if the algorithm is going to be used in real

time applications. Taking these three conditions into account, only the Cao and

Shin model would be qualified to be deployed in a color retargeting framework. The

Cao model, however, has shown a poor performance in reproducing colors in mesopic

conditions over both color patches [8] and complex stimuli [2]. This is mainly due to

the linearity assumption made in Cao’s model between the color and the illuminance,

which oversimplifies the color mechanisms of the human visual system. Two of the

existing color retargeting methods are reviewed in the following.
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2.5.2.1 The Wanat Color Retargeting Approach based on the Cao
Mesopic Model

The luminance retargeting method proposed by Wanat and Mantiuk [2] consists

of tone-curve optimization, spatial contrast processing, and color retargeting. In this

work, the inverse of the Cao mesopic model, which is introduced in 2.5.1.2, is

developed and employed in the color retargeting method [2] and summarized in the

following:

1. The image RGB values are transformed to the LMSR photoreceptor space which

gives the cone and rod responses.

[EL EM ES ER]
t = ME.[R G B]t

(2.26)

where ME is the corresponding transformation matrix.

2. Since rods and cones share their pathway to the visual cortex, the photoreceptor

responses are combined according to the following equation:

⎡
⎢⎢⎢⎢⎣
L

M

S

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0 0 κ1(Y )

0 1 0 κ1(Y )

0 0 1 κ2(Y )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

EL

EM

ES

ER

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Mc(Y )

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

EL

EM

ES

ER

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.27)

The coefficients κ1(Y ) and κ2(Y ) are introduced in 2.5.1.2.
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3. The result of retargeting for a new target luminance value Ỹ can be obtained by:

⎡
⎢⎢⎢⎢⎣
R̃

G̃

B̃

⎤
⎥⎥⎥⎥⎦ =

Ỹ

Y
(Mc(Ỹ )ME)

−1Mc(Y )ME

⎡
⎢⎢⎢⎢⎣
R

G

B

⎤
⎥⎥⎥⎥⎦ (2.28)

2.5.2.2 The Wanat Color Retargeting Approach based on the Color
Saturation Function

In [2], Wanat and Mantiuk proposed a complete Cao-based color retargeting

algorithm; however, they reported that the performance of this method was unsatis-

factory and ended up using a simple color correction formula according to the image

and the target luminance. The color retargeting model of this method is as follows:

R̂i = Ỹ × (
R̃i

Ỹ
)
s(Y )

s(Ỹ )

s(Y ) =
Y

(Y + κ)

(2.29)

where Y and Ỹ are the image luminance and the luminance of the tone-mapped

image, respectively, κ is an adjusting factor and R̃i refers to the ith channel of the

tone-mapped image.

While their tone mapping algorithm showed improved performance compared

to many other methods [2], the color retargeting method did not show a significant

contribution for image reproduction in the mesopic range [7].
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2.6 Concluding Remark

Development of a realistic color appearance model based on the human visual

system functionality which addresses the issue of noise under low luminance levels is

an ongoing problem in color science. Future studies toward developing more realistic

mesopic and scotopic models need to extract the basic principles governing the prob-

abilistic nature of the visual perception at low light levels and incorporate them in

the models. Achieving this goal will facilitate the attainment of other objectives of

primary concern in machine vision research e.g. developing image quality measures,

introducing efficient denoising algorithms, developing realistic color noise perception

models, addressing mesopic and scotopic conditions in current digital cameras and

developing new tone mapping algorithms for rendering color images that can be

perceived more naturally.
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CHAPTER 3
At Night: Photon Detection in the Scotopic Range

According to the de Vries-Rose law, the impact of the probabilistic nature of

photon emission on the contrast sensitivity of the human visual system becomes

more significant at low light levels [74]. This chapter aims to investigate the impact

of photon noise and light level on cone responses close to the absolute threshold of the

visual system (scotopic range) assuming that cones are ideal photodetectors without

any internal noise. In this regard, physical principles are leveraged to develop a

framework for estimating low light spectra at any arbitrary level from their high

intensity spectral power distributions.

The results of this study show that close to the absolute threshold of the visual

system, the chromaticity representation of ideal cone responses (to a color patch

viewed over time) spread around the chromaticity of the high intensity patch; and

the distribution of these chromaticities are mainly confined to an elliptical region in

the xy-chromaticity diagram. The size of these ellipses changes as a function of the

light intensity and chromaticity of the high intensity color patches. The orientation

of the ellipses depends only on the patch chromaticity and not on the light level.

Moreover, the results of this chapter indicate that the spectral composition of light

is a determining factor in the size and orientation of the ellipses.
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3.1 Preliminaries: Physical Aspects of Photons (Photon Emission)

Einstein and Planck hypothesized that photons carry an exact amount of energy

specified by the frequency of the quantum. The energy of the electromagnetic field

with frequency ω is an integer multiple of hω [129]. The word, “photon” was coined

by Lewis in 1926. Photons are the particles that constitute light and each photon

is characterized by two values: frequency and polarization state. The frequency

of photons may be changed using a separate controlled manipulation process [129];

however, the frequency of photons remains unchanged under interaction with mat-

ter [130]. Photon emission follows a Poisson distribution and the probability of emit-

ting n photons per unit time by a monochromatic light source with a wavelength λ

and an average emission rate of x is given by [86]:

P (x, n) =
xn e−x

n!
. (3.1)

For an arbitrary stimulus with a spectral power distribution S(λ), the probability of

emitting k photons for each wavelength can be obtained by [86]:

P (x(λ0), k) =
e−x(λ0)x(λ0)

k

k!

x(λ0) =
Ft

hc

∫ λ0+δλ

λ0

λS(λ) dλ

(3.2)

where x denotes the average number of photons (of particular wavelength λ0) emitted

per unit time, F is the power of light in watts, t is the integration time (i.e. the

sampling time of the photo-detector) in seconds, c = 2.997925 × 108(m.s−1), and

Planck’s constant h = 6.626176× 10−34 (J.s).
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3.2 Preliminaries: Biophysical Aspects of Photons (Photon Absorption)

In this subsection, we will briefly review what is happening from the moment

photons reach the cornea until they are absorbed by the photoreceptors. Assume that

a group of photons reach the cornea and pass through the lens. Some of the photons

(especially those in the ultra-violet region) are absorbed by the pigment molecules

within the lens and the rest take the path to the retina through the watery gel

called vitreous. Cone and rod photoreceptor cells are spread over the retina in a

non-uniform pattern. Cones are concentrated in the fovea, a small spot around the

center of the retina containing no rods. Away from the fovea, rods are the dominant

photoreceptors, and the rod to cone ratio is about 30:1. Photons falling on the

retina will be captured by a photoreceptor depending on the wavelength and the

photoreceptor type [130]. The direction of arrival is another important determining

factor in photon absorption, especially for cones; however, this factor is beyond the

scope of this research. Different photoreceptor types exhibit different sensitivities

to photons with various wavelengths. For instance, L cones are more sensitive to

photons of longer wavelengths, while S cones are more sensitive to short wavelengths.

The wavelength dependency and photoreceptor type can be incorporated in deriving

the mean photon absorption rate, x, as follows

x =
tF

hc

∫
λS(λ)ρi(λ) dλ i = {L,M, S,Rod} (3.3)

where ρi(λ) indicates the spectral sensitivity of a photoreceptor of type i; [F × S(λ)]

is the spectral radiant power distribution and [S(λ)] defines the relative spectral
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radiant power distribution. In the marginal case (i.e. for a monochromatic stimulus),

S(λ) = δ(λ− λ0) and ρi(λ0) = ρ = constant.

3.3 Methods: How Does Spectral Power Distribution Change with In-
tensity?

This section introduces a model to obtain an estimate for the low intensity

spectral power distribution of light from its corresponding high intensity spectral

power distribution. The spectral power distribution of light is usually measured at

high intensities and this measured spectrum can not be extended (or trusted) to

other intensities without modification.

To begin with, the photon emission rate in successive time intervals is a Poisson

random process, which is given by Equation 3.2. This equation is written in the

continuous form; however, since we usually deal with the discrete version of spectral

power distributions, we can convert it to the discrete form as follows:

Sd(λ) =
N∑
i=1

siδ(λ− λi) (3.4)

where si = Sd(λi) and the λis specify the wavelength samples in the discrete spectral

power distribution. Bear in mind that
∑N

i=1 siΔλi = 1. If we assume uniform

sampling, then Δλi = λi − λi−1 is constant along the distribution.

In the remainder of this section, we introduce a spectral power distribution

simulator based on the light intensity level. In this regard, we assume that we are

given the spectral power distribution of a light source at a high intensity (Sh
d ) and

want to derive the power spectral distribution under other intensities (Se
d). It is worth
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mentioning that the intensity of the spectral power distribution might be changed

by altering the power of the light source.

The following equations reveal how the estimated spectrum at an arbitrary in-

tensity level can be derived given the high intensity spectrum power distribution

(Sh
d ). We consider the high intensity spectral power distribution to be the most reli-

able descriptor of the light source (i.e. the high intensity spectral power distribution

shows negligible fluctuation, compared to the absolute number of emitted photons,

during the measurement time.) So, we can obtain the estimated average photon

number per unit time, xe(λ|Sh
d ), emitted by the light source with the given power of

F ′ as follows:

xe(λi|Sh
d ) =

F ′t
hc

(shi λiΔ(λi))

subject to:
N∑
i=1

shi Δλi = 1
(3.5)

where the superscript e in the equations indicates the estimated variable for low

intensity conditions. However, these equations are general and can be used for the

purpose of estimating the high intensity spectral power distribution as well, even

though the estimated spectral power distribution will be close to the Sh
d . Then,

the probability of emitting k photons per unit time by the light source in the low

intensity condition is given by:

P (xe(λi|Sh
d ), k) =

e−xe(λi|Sh
d )xe(λi|Sh

d )
k

k!
. (3.6)

The term xe(λi|Sh
d ) can be obtained for varying source power (F ′). Given the

distribution function (P (xe(λ0), k)) a set of samples [X(λi)]
N
1 are drawn for the entire
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wavelength range and the estimated spectral power distribution can be derived as

follows

Se
d(λi) =

X(λi)hc
λi∑N

j=1
X(λj)hc

λjΔλj

=
X(λi)

λi

∑N
j=1

X(λj)

λjΔλj

. (3.7)

The final step in getting the power distribution function is to compute the energy of

each sample and normalize all such that
∑N

i=1 s
e
iΔλi = 1.

It is worth mentioning that if you change the bin size (i.e. the size of Δλi), the

accuracy and resolution of the estimated spectrum will be changed (the smaller bin

size will give a higher accuracy). Hence, it is up to the user to determine the bin

size according to their required precision. The difference between the high intensity

spectral power distribution and the estimated low intensity one can be obtained as

follows:

D =

√√√√Δλ
N∑
i=1

(Se
d(λ)− Sh

d (λ))
2. (3.8)

A sample calculation of the estimated spectral power distribution for different

light intensities of an arbitrary high intensity spectral power distribution is shown in

Figure 3–1. The parameters of the calculation are set as t = 0.2s, Δλ = 5nm, and F

is depicted at the top of each sub-figure. Figure 3–2 shows the difference between the

estimated spectral power distribution (SPD) and the high intensity SPD in terms of

the formula for Euclidean distance between the distributions given in Eq. (3.8).
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Figure 3–1: The estimated spectral power distribution of a light source with an arbi-
trary spectral power distribution using Equation 3.7 at different intensities. (t=0.2
sec and Δλ = 5nm).
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Figure 3–2: The difference between the estimated spectral power distribution (SPD)
and the high intensity SPD in terms of the Euclidean distance between distributions.
Error bars show the standard deviation of this difference measure in different trials.
The parameters set are the same as in Figure 3–1.

3.4 Results and Discussion

3.4.1 Scenario I: How photoreceptor responses vary under different lu-
minance levels

In the following, we consider a case in which it is assumed that cones are ideal i.e.

cones do not have any internal noise in their responses in very dim light conditions.

It is investigated how cones would respond in such conditions. In this regard, several

light intensities are examined for a given spectral power distribution in Fig. 3–1 and

for each one the estimated spectral power distribution of light (see Eq. 3.7) is used

to obtain cone responses as follows:

Ri =

∫
Se
d(λ)ρi(λ)dλ i = 1, 2, 3 (3.9)
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Hence, we use the estimated spectral power distribution under different intensi-

ties and calculate the cone responses assuming that cones are ideal photodetectors.

Subsequently, we can investigate how the chromaticity representation of the cone

responses to a given stimulus may change with the light intensity. We keep the sit-

uation the same as the estimated spectral power distributions in Fig. 3–1. Ri in Eq.

(3.9) is the ith element of the cone response vector R, and can be transformed to the

XY Z space using a linear transformation as follows:

RXY Z = MR (3.10)

For each intensity level, 100 spectral power distribution samples are drawn; then,

the chromaticity of color for each sample is obtained from the XY Z coordinates

and shown in a chromaticity diagram (see Fig. 3–3(a)). In this subfigure, the lowest

area ellipse surrounding all the samples of the same intensity and centered at the

chromaticity of the highest intensity sample is plotted for each intensity level. The

last step is dedicated to obtaining color differences between trials of the low intensity

estimation and the high intensity response, in which the spectral power distribution

fluctuation is negligible, using the following formula.

Exy(i, j) =
√
Δxc

ij
2 +Δycij

2

Δxc
ij = xc

i(Fj)− xc(Fh)

Δycij = yci (Fj)− yc(Fh)

(3.11)

To avoid confusion with the Poisson distribution factor x, which was introduced

earlier, we name the chromaticity coordinates as xc and yc. In Eq. (3.11), xc
i(Fj)

63



and yci (Fj) refer to the chromaticity coordinates of the ith sample of the jth intensity.

Similarly, xc(Fh) and yc(Fh) refer to the chromaticity coordinates of the high intensity

response. To derive a single measure of chromaticity difference for each intensity, the

mean of Exy(i, j) over all trials of each intensity is obtained.

Exy =
1

T

T∑
i=1

Exy(i, j) (3.12)

The result of this computation is shown in Fig. 3–3 (b). Error bars for each inten-

sity in this figure indicate the standard deviation of chromaticity differences for the

samples of each intensity. Acknowledging our previous discussion, this figure shows

that the mean chromaticity difference and its standard deviation (i.e. fluctuations

among trials of each intensity) decrease as light intensity increases. We wrap up

(a) (b)

Figure 3–3: (a) Chromaticity diagram for different trials (each color represents a
single intensity of light). At each intensity, the smallest ellipse which encloses all
the corresponding samples of that intensity is depicted. The distance between the
consecutive ellipses falls off as light intensity increases, implying that as intensity
reduces fluctuations become more and more severe. (b) The mean chromaticity
difference between trials of the same intensity and the high intensity chromaticity.
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this subsection by pointing out some remarks: first, in the implementation of this

scenario, we did not take into account the dark noise effect; second, the discussion

can be extended to other imaging systems like digital cameras (see Chapter 4); and

third, for the sake of argument, we did not assume any internal noise for cones and

it is shown that cone responses become more uncertain in scotopic conditions, not

due to the limits imposed by the sensory system, but due to the physical limits in-

troduced by the light source and the large fluctuations that appear in the photon

stream in such conditions.

3.4.2 Scenario II: Photon Detection and MacAdam Ellipses

MacAdam published the results of his color matching experiment, which was

done in different points of the chromaticity space in 1942 [131]. The experiment

was performed with a constant luminance of about 48 cd/m2, which is considered

as photopic luminance. The target and test stimuli were created by the same set of

red, green, and blue primaries. The experiment consisted of multiple levels, within

which 25 different central chromaticities were examined, and each level was asso-

ciated with a certain central chromaticity. At each level, the chromaticity of the

test stimulus was fixed at a central point and the chromaticity of the target could

vary along intersecting lines passing through the same selected central point. The

observer (PGN) could adjust the color of the test stimulus by turning a knob. The

standard deviations of different adjustments along different directions for each single

central chromaticity were determined and related to the just noticeable color differ-

ences. For each central point in the chromaticity space, the standard deviations (SD)

corresponding to all the lines along which the color of the test stimulus were changing
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were plotted and an ellipse was fit to the SD points. Ellipses obtained in this way

are known as MacAdam ellipses. This work and further developments of this study

were used as a basis for color discrimination investigation and development of line

elements inside the chromaticity space.

It is worth mentioning that a uniform chromaticity-scale surface and some color

difference formulae have been proposed based on McAdam ellipses; however, none

of them received much interest in color science and they are not being used today.

Moreover, MacAdam ellipses in 1942 were derived based on acquisition of the data

from only one subject and later from two subjects in 1949. Hence, the results are

subject to change when dealing with a broader range of observers. Last but not

least, MacAdam ellipses represent the indistinguishable colors in the chromaticity

space. These ellipses were constructed under photopic conditions and they should

be extended to be appropriate for low light conditions.

Here, we are going to examine the similarity between the results of our test

and McAdam‘s ellipses. In the following, a test similar to that of the previous

scenario is done over several chromaticity values. These chromaticities are repro-

duced under different light levels considering the physical principles stemming from

the Poisson distribution governing the photon emission. Two spectral databases:

Munsell color patches, and the Metacow spectral database are selected to generate

the cone responses and their corresponding chromaticity representations within the

xy-chromaticity diagram. For each spectral power distribution, a number of cone

responses are generated over different light intensities and these samples are plotted

in the chromaticity diagram. In the next step, the PCA algorithm is exploited to find
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Table 3–1: The list of used Munsell color patches
Hue Value Chroma

10 GY 60 10
5 Y 50 4

7.5 YR 50 8
10 R 60 10
10 RP 40 10
2.5 P 60 8
5 PB 40 10
5 B 50 6

7.5 BG 70 6
5 G 70 8

principal vectors along which chromaticity sample points are spread. This procedure

determines the orientation and size of data variance. The result of this test over each

database is reported in the following.

3.4.2.1 Munsell Database

Cone responses are obtained for a set of chosen Munsell patches based on their

given spectral reflectance function and assuming an equi-energy light source. These

color patches are selected according to Shin’s suggestion in [65] to cover various hue

angles. The list of these Munsell color patches used for our test is shown in Table 3–1.

The values and notation for the listed Munsell coordinates come from the Munsell

book of color.

3.4.2.2 MetaCow Database

The MetaCow spectral database is a (4200 × 6000) pixel synthesized spectral

image sampled in 5 nm increments from 380 to 760 nm. The chromaticities spanned
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(a)

Figure 3–4: The chromaticity values spanned by the MetaCow spectral database are
indicated by blue dots. The selected points for the experiment are marked as red
asterisks with designated numeric indices.

by the spectral image are shown in the chromaticity diagram in Fig. 3–4 and among

these points, 32 are selected for the sake of our experiment.

The power of the light source varies in the range of [1 × 100,6 × 10−15] watts

and for each light intensity 200 samples are generated. Sample sets are formed

by including samples generated from the highest intensity F = 1W to a selected

minimum intensity for each set (such as F = 6× 10−15 watts). In this way, four sets

with low intensities: 10−12, 10−13, 10−14, and6 × 10−15 watts are produced for each

database. The results of the experiment for the biggest sample set (which includes

all generated samples) of the Munsell and MetaCow datasets are shown in Figs. 3–5

and 3–7, respectively. As these figures indicate, the chromaticity representation of

the cone responses generated for each color patch in the xy-chromaticity diagram are

distributed over a region which can be well-fit to an elliptical region. These ellipses
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are reminiscent of the MacAdam ellipses. The PCA algorithm gives the estimated

parameters of a fitted ellipse to the samples. The size of semi-major and semi-minor

axes are set to 10 times larger than the standard deviation of the samples around the

primary components derived from the PCA method. Figures 3–6 and 3–8 show how

the size of semi-major and semi-minor axes and the inclination angle for the fitted

ellipses to Munsell and MetaCow samples change with the minimum intensity. The

results depict that: first, the orientation of the ellipses is independent of the light

level; second, the size of ellipses depends on the light intensity and as the light level

decreases the variation in the size of ellipses falls off; third, the bluish patches have

smaller sized ellipses while the ellipses of reddish patches are larger in size, which

is in agreement with the available chromatic discrimination ability curves (e.g. see

Fig. 7. of [16]).

3.5 Concluding Remarks

This chapter investigates the effect of photon noise on the cone responses close

to the absolute threshold of the visual system (i.e. the lowest possible level of light

in which rods get activated by photons [132] ), and points out the importance of

addressing scotopic conditions in machine vision applications. In this regard, the po-

tential of spectral modeling is exploited to reveal the uncertainties of cone responses

due to the physical nature of light. A photon detection framework and the associated

basic physical principles behind photon emission are employed to predict how cone

responses may be affected by the intensity of light. The results of this research in-

dicate that: first, even ideal cone responses in the scotopic range become uncertain;

second, an ellipse fits the chromaticity distribution associated with cone responses
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(a) (b)

(c)

Figure 3–5: The results of scenario II performed over the Munsell database. (a)
MacAdam (1942) ellipses for observer PGN plotted in the chromaticity diagram. (b)
Drawn samples for each color patch and the fitted ellipse to each sample set are
plotted.(c) The results of sub-figure (b) are magnified.
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(a) (b)

(c)

Figure 3–6: The estimated parameters of fitted ellipses to the Munsell samples. (a)
The estimated inclination angles of ellipses obtained from the PCA algorithm for
different minimum low intensities are shown for all color patches.(b,c) The semi-
major and semi-minor size of fitted ellipses for various minimum intensity levels are
shown, respectively.
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(a) (b)

Figure 3–7: The results of scenario study II performed over the MetaCow database.
(a) Brown-MacAdam (1949) ellipses for observer WRJB plotted in the chromaticity
diagram. The image is taken from [5]. (b) Drawn samples for each spectral sample
of the MetaCow database and the fitted ellipse to each sample set are plotted.

(a) (b)

Figure 3–8: The estimated parameters of fitted ellipses to the MetaCow samples.
(a) The estimated inclination angles of ellipses obtained from the PCA algorithm for
different minimum low intensities are shown for all color patches. (b) The size of
fitted ellipses for various minimum intensity levels are shown, respectively.
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to each color patch; third, the size of ellipses depends on the chromaticity of the

color patch, the light level, and the spectral composition of light; and, fourth, the

orientation of ellipses depends on the chromaticity of the color patch and the spec-

tral composition of light. The results of this chapter have implications for modeling

human visual perception close to the absolute threshold, developing a uniform color

space for low light levels, and reproducing (simulating) dim images more accurately.

At the present time, machine vision and computer graphics algorithms underesti-

mate the impact of photon noise on the appearance of dim images, for which the

methodology of this chapter can be leveraged as a practical solution for simulating

scotopic scenes.
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CHAPTER 4
At Night: Image Sensor Modeling

and Color Measurement at Low Light Levels

One of the most important challenges that arises at low light levels is the issue of

noise, or more generally speaking, low signal to noise ratios. In Chapter 3, the effect

of photon noise on cone responses was investigated close to the absolute threshold

of the visual system. In this chapter, effects of different image sensor noises such as

photon noise, dark current noise, read noise, and quantization error are investigated

on low light color measurements (scotopic and mesopic ranges). A typical image

sensor with a detailed model of noise is implemented and employed for this study.

We perform simulations with different scenarios to derive the patterns of behavior

corresponding to each type of noise from the implemented image sensor outputs.

4.1 Image Sensor Modeling

The focus of this section is on modeling and simulating the image sensor of a

digital camera. We consider the image formation model, noise model, and analog to

digital converter (ADC) components in the image sensor model. Figure 4–1 shows

a diagram of an image sensor model, which is the modified version of the Hasinoff

model introduced in [133]. We can think of two main reasons for modeling digital

camera imaging systems. First, it is done to reconstruct hyperspectral images taken

by spectrometers, or to be used in computer graphics applications. Second, it helps

evaluate the camera design, output image quality, or optimize the performance of the
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camera in terms of adjustable parameters (e.g. exposure time or ISO setting) [134,

133].

A typical digital camera is comprised of the following elements: an optical sys-

tem, image sensor, image storage, and image processor [135]. When the shutter of a

camera opens, a stream of photons enters the camera and falls on the image sensor.

A color image sensor consists of three sensor types, which usually are referred to

as R, G, and B sensors. The exposure setting determines the amount of photons

captured by the sensors. Each sensor type has a specific spectral quantum efficiency

(i.e. the proportion of electrons generated as a result of photon catches for an area of

1 (m2) that subtends 1 (sr)). A pixel of an image sensor consists of a photodetector,

a color filter, and a readout circuit. The rain of photons hitting the photodetrector

produces a photocurrent. This photocurrent, together with the photodetector dark

current (which will be described later), is accumulated during the integration time

as far as the sensor capacity allows. The maximum sensor charge capacity is known

as the full well capacity and determines the level of saturation for each sensor. When

the integration time is over, the readout circuit is responsible for measuring the pro-

duced voltage in the pixels. This process is prone to noise known as the readout

noise. The structure of the readout circuit is the main difference between the CCD

and CMOS type image sensors.

4.2 Noise Model

Noise can be defined as any unwanted event which degrades the image quality.

In our simulation framework, we assume an additive model for the noise and the
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Figure 4–1: Image sensor prototype for a single channel is shown.

following noise types are considered as the most significant sources underlying the

image distortion.

-Photon Shot Noise: This can be defined as the variations in the number

of photons emitted from the light source and, consequently, the number of photons

detected in the image sensor at different times. This phenomenon is rooted in the

probabilistic nature of photon emission as described in section 3.1.

-Dark Current Noise: The current produced inside the image sensor in the

absence of light is referred to as the dark current noise. This current is not gener-

ated as a result of photogeneration, but as a result of the impurities that exist in the

silicon wafer [136]. Dark current noise is also known as thermal noise and ambient

temperature has a high influence on its amplitude. Dark current introduces shot

noise to the measurement [136] and can be modeled by a Poisson distribution with

a variance of (σκ
dark)

2 for the κth sensor type. Since the variance of a Poisson distri-

bution is equal to its mean, the parameter (σκ
dark)

2 represents the average number of

generated electrons as a result of dark current for each pixel per unit time.

Nκ
dark(α, β) ∼ Pois((σκ

dark)
2) (4.1)

76



-Read Noise: This refers to the noise in the readout circuit, caused by an

on-chip amplifier, and can be modeled as having a white Gaussian distribution with

standard deviation σread[137]. Readout noise is one of the factors that limits the

dynamic range of image sensors.

Nread ∼ N(0, σread) (4.2)

-Quantization Noise: In the last step of generating the digital image in the

image sensor prototype, the amplified voltage should be quantized into discrete val-

ues. Quantization error introduced in this step is known as quantization noise and

represented as σadc. The induced noise by the amplifier of the analog-to-digital con-

version unit (ADC) is considered negligible.

4.3 Photon Noise Aware Formulation of the Light Spectral Power Dis-
tribution

In this section, we discuss a continuous form of the spectral photon noise model-

ing, which was introduced in section 3.1. Photon emission from a light source follows

a Poisson distribution. For a monochromatic light source of particular wavelength

λ0 and known average number of emitted photons per second x, the probability of

emitting n photons per unit of time can be obtained by Eq. 3.1. Given the spectral

radiance, L(λ), the average emitted number of photons, per unit time, per unit area,

and per unit steradian, for a central wavelength λ0 can be obtained by calculating

the following integral over an infinitely small range of [λ0 − δ/2, λ0 + δ/2]:

x(λ0) =
1

hc

∫ λ0+δ/2

λ0−δ/2

λL(λ) dλ. (4.3)
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The wavelength range of the spectrum, [λmin, λmax], can be discretized into N inter-

vals of the length δ such that {λmax−λmin = Nδ}. Hence, x(λi) of the i
th wavelength

bin can be approximated as:

x(λi) =
1

hc

∫ λi+δ/2

λi−δ/2

λL(λ) dλ ≈ λiL(λi)δ

hc
. (4.4)

Let L(λ) represent the high intensity radiance of a light. Our goal is to derive an

estimate of this spectral radiance at an arbitrary lower intensity. The high intensity

spectral radiance is the most complete description of the light, and this quantity,

at any lower intensity, can be predicted from the given high intensity spectrum, as

follows.

The Poisson distribution, Pois(x(λi)), corresponding to each bin of the high

intensity spectral radiance is fully characterized by knowing the x(λi) values. We

define the intensity factor F ≤ 1, which is a scale factor to change the light level.

The estimated spectral radiance after applying the intensity factor F can be obtained

by drawing samples, {X̃F (λi)}N1 , from {Pois(F × x(λi))}N1 distributions. Hence, the

estimated spectral radiance, L̃F (λ), for the intensity factor F and central wavelength

λi is given by:

L̃F (λi) =
X̃F (λi)× hc

λiδ
. (4.5)

By taking this approach, we can establish the effect of shot noise on low light

spectral radiance estimations. It is worth mentioning that L̃FN(α, β, λ), which de-

notes the quantal number of photons falling on the location (α, β) of the image sensor

in (photons/sec/m2/sr/nm), can be obtained from the radiance quantity L̃F (α, β, λ),
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as

L̃FN(α, β, λ) =
L̃F (α, β, λ)× λ

hc
. (4.6)

4.4 Pixel Measurement Model

The voltage produced by an image sensor can be determined by using the fol-

lowing formula:

V κ(α, β) = GV e− × fsat

(
T ×

∫ λmax

λmin

L̃FN(α, β, λ)Q
κ
e (λ)dλ+ T ×Nκ

dark(α, β)

)
.

(4.7)

In this equation, κ ∈ {R,G,B}, T indicates the exposure time in (sec), GV e− is the

conversion gain in (volts/e−), L̃FN(α, β, λ) represents the number of incident pho-

tons at the location (α, β) of the image sensor obtained from the spectral radiance

L̃F at intensity factor F in (photons /sec /m2 /sr /nm), and Qκ
e (λ) is the quantum

efficiency of the κth sensor in (e− m2 sr/photons), N i
dark(α, β) represents the number

of generated electrons as a result of dark noise in the κth channel for the pixel (α, β),

and fsat(.) indicates the saturation function of the sensor.

The quantum efficiency curve for the κth sensor type is defined as the proportion

of the electrons generated by the sensor, Nκ
e , to the number of incident photons with

the wavelength (λ), Nκ
ph [138].

Qκ
e (λ) =

Ne

Nκ
ph(λ)

(4.8)
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The measured voltage by the readout circuit is found with this equation:

Ṽ κ(α, β) = V κ(α, β) +Nread(α, β) (4.9)

The raw output image of the camera can be obtained after applying the gain factor,

and the quantization process is as follows.

Iκ(α, β) = [G× Ṽ κ(α, β)]nb
(4.10)

In the above equation, [.]nb
represents the “nb-bit” quantization operation that out-

puts the integer part of the given operand G× Ṽ κ(α, β), in the range of [0, 2nb − 1].

Hence, the standard deviation of the quantization noise of the κth channel at the

location (α, β) of the image is given by

σADC(α, β)
κ = Iκ(α, β)−G× Ṽ κ(α, β). (4.11)

Finally, the signal-to-noise ratio (SNR) can be defined as the ratio of the non-

saturated output of the noise free signal to the variance of the noise. The total

variance of noise for each sensor type at each pixel location can be estimated as

follows [139]:

V arκ(α, β) = V κ(α, β)×G2 + σ2
read ×G2 + (σκ

ADC(α, β))
2. (4.12)

For non-saturated pixels in the image, the SNR value of each channel can be obtained

by the following formula [133]:

SNRκ(α, β) =

[
G×GV e− × T × ∫ λmax

λmin
L̃FN(α, β, λ)Q

κ
e (λ)dλ

]2
nb

V κ(α, β)×G2 + σ2
read ×G2 + σ2

ADC

.
(4.13)
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Using the introduced model of the image sensor, we are able to investigate the

effects of different types of noises on the color measurements of image sensors at

various light levels.

4.5 Results and Discussion

4.5.1 Materials and Methods

We designed a set of simulations intended to investigate the effects of different

noise types on the color measurements of image sensors. The simulations were done

using the spectral radiances selected from “A Data Set for Color Research,” prepared

by Barnard et. al [140]. The data set contains the spectral sensor sensitivity curves

of the Sony DXC-930 three chip CCD video camera, and the spectra of 23 of the

Macbeth color patches illuminated by 26 different light sources. The Sony DXC-

930 sensor sensitivity curves are used in the image sensor simulation phase of this

work, and the spectra, which we refer to as the RGB598 spectral database, are

leveraged for our simulations. The sensor quantum efficiency curves are shown in

Fig. 4–3. Each spectrum is sampled in 4 nm steps from 380 to 780. Details about

this database can be found in [140]. The chromaticities spanned by the 598 spectra

of this database are shown in the chromaticity diagram in Fig. 4–2, and among these

points, 20 are selected for the sake of our simulations. First, each spectral radiance

is scaled to have a spectrum with a luminance value of 100 (cd/m2), then to obtain

a lower luminance value, the spectrum is used as L(λ) in Eq. 4.4-4.6 to estimate the

corresponding low intensity spectral radiance L̃F at an intensity factor F. It is worth

mentioning that since the luminances of the scaled spectral radiances are set to 100
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Figure 4–2: The chromaticity values spanned by the RGB598 spectral database are
indicated by blue dots. The selected data points are marked as red asterisks with
designated numeric indices.

(cd/m2) at the intensity factor F = 1, the approximate luminance value of L̃F can

be obtained with the formula: F × 100(cd/m2).

For each data point, the raw output of the image sensor is generated from the

modeled framework at a specific condition defined for each scenario. The parameters

selected for the image sensor model at the temperature of 20◦C are listed in Table 5–3.

The camera black RGB for Sony DXC-930 is provided in the RGB598 database and

this value is scaled to obtain the variance of dark noise (σκ
dark)

2. Full-well capacity,

read noise standard deviation (σread), and the conversion gain (GV e−) are selected

from [135]. Based on these selected values, the parameter G is determined such
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Figure 4–3: The quantum efficiency curves of image sensors in
(e− sr m2/photon/nm).

that the output of sensor best fits the empirical measurements given in the RGB598

database.

To account for uncertainties imposed by noise, 200 measurements are recorded

for each sample in each trial. The measured samples (I) are converted to the XYZ

space (IXY Z), and then to the xy-chromaticity space. This transformation is given

by (assuming that the camera sensitivities can be linearly constructed by the XYZ

color matching functions with good precision):

IXY Z = M × I

M = (TXY Z × T t
XY Z)× (C × T t

XY Z)
−1.

(4.14)

In this formula, TXY Z and C are (3×N) matrices representing the XYZ color match-

ing function and the camera sensitivity curves respectively. The camera sensitivity
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curves can be obtained through the quantum efficiency function, Qκ
e (λi), as follows:

Cκ(λ) = GV e− ×G×Qκ(λ)

Qκ(λi) =
hc

λi

×Qκ
e (λi) κ ∈ {R,G,B}, i ∈ {1, 2, ..., N}.

(4.15)

A question may arise here, asking whether it is correct to use CIE photopic

colorimetry at low light levels. The answer is yes, as long as we are focusing on

the color measurements of the camera and not the color perception of the measured

samples at low light levels. Color measurements can be represented in any color

space. Moreover, CIE photopic colorimetry is commonly used in cameras for the

process of creating the output image. Hence, we record the measurements at low

light conditions and evaluate the photopic appearance of the measured samples.

The simulations were carried out over three scenarios and followed by an SNR

sensitivity analysis. Before demonstrating the results, we state the main assumptions

and considerations of this work.

1. Temperature is assumed constant, and so the dark noise parameters are fixed

in the simulations.

2. The noise model is additive in the image sensor simulation framework.

3. The image sensor linearly responds to light intensity variations before its sat-

uration limit. Sensor linearity is discussed in [141] in more detail. In [141],

Barnard and Funt mentioned that “The Sony DXC-930 camera that we used

for our experiments is quite linear for most of its range, provided it is used

with gamma disabled.”

4. Raw uncompressed output images are considered for our analysis.
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Table 4–1: Parameters of the Model at 20◦C
Sensor Parameters Parameter Value
GV e−(V/e

−) 0.0002
(σκ

dark)
2 (e−/pixel/sec) [195, 230, 218]

σread (e−) 4
G 141.67
Full Well Capacity(e−) 9000
T(sec) 1
nb 8

5. Reset noise, photodetector response nonuniformity (PRNU), and dark signal

nonuniformity (DSNU) are not incorporated in our modeling. For our research,

we assume that their impacts on the introduced model are negligible. For

further details refer to [139].

6. Color measurements are done at low light levels but evaluated in photopic

conditions. Hence, the use of photopic uniform color spaces such as CIE Lab

to analyse the results can be justified accordingly.

We performed the simulations according to three scenarios which will be de-

scribed in the coming subsections. The paradigm of the simulations in each of these

scenarios is depicted in Fig. 4–4. Given the parameters of the image sensor and an

arbitrary high intensity spectral power distribution, a measured sample set of the

input SPD will be generated by the image sensor to take into account the random-

ness in the image sensor or the SPD over time. Then the measured samples are

transformed to the XYZ space. The principal components analysis (PCA) will be

performed over the XYZ samples to find the parameters of an ellipse which can be

best fit to the chromaticity distribution of the measured sample set. At the same

85



time, the XYZ samples are converted to the CIE Lab space to be compared to the

noise free sample using the ΔEab color difference metric.

Figure 4–4: A basic schematic of the simulation procedure is shown. L∗a∗b∗ repre-
sents the noise free measurement from the image sensor in the Lab color space.

4.5.2 Scenario I: Ideal Image Sensor and Light Intensity

In the first scenario, we consider the case where there is no noise corrupting

the output image, and we have a perfect image sensor that is able to detect sin-

gle photon events and the sensor can respond without saturation. We would like

to investigate the effect of photon noise on the color measurements of an ideal

image sensor. In this regard, the 20 data points shown in Fig. 4–2 are consid-

ered for this scenario. The log of the intensity factor is set to values log(F) ∈
{0,−7,−8,−9,−10,−11,−12,−13,−14}. The results of the simulations are shown

in Figs. 4–5 and 4–6. Figure 4–5-a indicates that generated samples form an ellip-

tic shape in the chromaticity diagram. The Principal Components Analysis (PCA)

algorithm is used to find a fitted ellipse for generated samples of each data point [142].

86



Generated samples and the fitted ellipses of the third data point for different

intensity factors, as well as the number of incident photons on the image sensor for

various luminance values are plotted in Figs. 4–5-b and 4–5-c respectively. In Fig. 4–

5-b, the distance between consecutive ellipses grows as the light intensity decreases.

Figures 4–6-a and 4–6-b show the inclination angle and size of the fitted ellipses for

some intensity factors. The approximate size of each ellipse is found with the formula
√
a2 + b2, where a and b represent the size of the semi-major and semi-minor axes of

the ellipse. The inclination angle represents the angle between the semi-major axis

and the x-axis of the xy-chromaticity space. The results indicate that the inclination

angles, with a good approximation, are independent of the intensity level; however,

the size of the ellipses inversely changes with intensity, suggesting that even if we

had an ideal image sensor with no internal noise, we would still have to deal with

the photon noise and uncertainties imposed by physical limitations. Since distances

in the chromaticity diagram do not correspond to the human visual system color

discriminability, the perceptual distance metric ΔEab is used as an index to show to

what extent the effect of noise on color measurement at different intensities would

be noticeable to a human observer from trial to trial. In this regard, for each data

point, the ΔEab measure is derived as follows:

1. The standard D65 illuminant is assumed as the white reference for the calcu-

lations at the luminance of 100 cd/m2 (the Y value of the reference white is

kept constant during the entire simulation).

2. The XYZ values of each sample are scaled to equalize the Y value of the sample

and that of the standard illuminant, in order to compare the color coordinates

87



of the low intensity samples (F < 1) and the high intensity sample generated

at (F = 1).

3. CIELab coordinates of each sample are obtained.

4. ΔEab is calculated between each sample and the average chromaticity coordi-

nates of corresponding high intensity samples.

5. The average of ΔEab values over the samples of each intensity factor is reported.

The result of ΔEab is shown in Fig.4–6-c indicating that as the light level falls off,

the chromaticity variations among different measurements of the same color patch

(measuring the same color patch over time) become noticeable.

4.5.3 Scenario II: Effects of Dark Current on Image Sensor Responses
at Low Light Intensity

It is shown in the first scenario that photon noise may cause uncertainties in

the measurements in the scotopic range when the image sensor is deemed ideal

and no other noises may disturb the measurement. In this subsection, the effect

of dark current is examined separately from the other intrinsic noise types, when

only photon noise and dark current affect the image sensor, and the sensor satu-

ration function is not considered in the sensor model. The intensity factor is set

to F ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} (corresponding to the luminance values

of {100, 50, 10, 5, 1, 0.5, 0.1} cd/m2 respectively) during each trial of the simulation.

For the sake of this scenario, only the boundary data points (indices 1-13) from the

initial 20 data points are used in order to make the resulting figures more clear.

The results shown in Figs. 4–7 and 4–8 indicate that the dark noise may cause

more significant effects on the color measurement at lower intensities than does the

photon noise. The result is that the dark noise pushes the low intensity measurements
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(a)

(b)

(c)

Figure 4–5: Results of scenario I (part 1): (a) Generated samples for each selected
data point of the RGB598 database. (b) Generated samples and the fitted ellipses
for different intensity factors for the data point number 3. (c) The log number of
incident photons at different luminance levels.
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(a) (b)

(c)

Figure 4–6: Results of scenario I (part 2): (a) The estimated inclination angles of
ellipses obtained from the PCA algorithm. (b) The size of fitted ellipses correspond-
ing to different intensity factors. (c) The average of ΔEab values over the samples of
each intensity factor.
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toward the average chromaticity of the image sensor’s black point and shrinks the

size of the image gamut. This fact is also analytically proven in section 4.5.4. In

comparison to the photon noise, which introduces a more significant effect at a

luminance of 10−11 cd/m2 and lower, this issue starts from a much higher luminance

value of 10 cd/m2 for the dark current. This issue indicates the greater effects of dark

noise in degrading the quality of measurements, as compared to the effects of phtoton

noise. The angle of the ellipses’ inclination, θ, induced by the dark noise, is totally

different from that of the photon noise. The ellipses are aligned more horizontally

for low intensities, and their angles of inclination are separated from each other in

different intensity factors than the results of scenario I. Another interesting point is

the opposite behavior of the ellipse size variations as a function of the color patch

index in different light intensities. In scenario I, the size of the ellipses are more

uniform for lower intensity factors than for higher values of F ; however, in scenario

II, the opposite of this pattern is exhibited, as seen in Fig. 4–8-b, where the size of

lower intensity ellipses are more uniform than high intensity values.

4.5.4 Dark Current Noise Impacts on the Color Gamut of Dark Images

The results of scenario II show that dark current induces some chromaticity

shifts on the measured samples by the camera, which leads to desaturating captured

colors. In this subsection, we provide an analytical rationale to explain the color

desaturation of measured samples resulting from dark current noise in the image

sensor.

The measured sample (noisy sample), I, can be decomposed into the noise free com-

ponent, Δ, and the dark current noise, n.
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(a) (b)

(c)

Figure 4–7: The results of scenario II performed over the RGB598 database when
only photon noise and dark noise are taken into account in the image formation
model. (a) Drawn samples for each selected data point of the RGB598 database and
the fitted ellipse to the samples are plotted. (b) Subfigure in part (a) is regenerated
after removing the samples and specifying the center of ellipses together with the
line of movement of each data point with the light level (c). The result of sub-figure
(a) is magnified for the datapoint number 3.
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(a) (b)

(c)

Figure 4–8: The results of scenario II performed over the RGB598 database when
only photon noise and dark noise are taken into account in the image formation
model. (a) The estimated inclination angles of ellipses obtained from the PCA
algorithm for different intensity factors are shown for all color patches. (b) The
size of fitted ellipses corresponding to different intensity factors for all selected color
patches is compared. (c) The average of ΔEab values over the samples of each
intensity factor.
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I = Δ+ n (4.16)

We transfer the measured sample to the XYZ space by applying the transformation

matrix M:

IM = MI = MΔ+Mn = ΔM + nM . (4.17)

IM =

⎡
⎢⎢⎢⎢⎣
i1M

i2M

i3M

⎤
⎥⎥⎥⎥⎦ ,ΔM =

⎡
⎢⎢⎢⎢⎣
δ1M

δ2M

δ3M

⎤
⎥⎥⎥⎥⎦ , nM =

⎡
⎢⎢⎢⎢⎣
n1
M

n2
M

n3
M

⎤
⎥⎥⎥⎥⎦ (4.18)

Then the xy-chromaticity values corresponding to each component IM , ΔM , nM are

derived.

Ic =

⎡
⎢⎣i

1
c

i2c

⎤
⎥⎦ =

1

i1M + i2M + i3M

⎡
⎢⎣i

1
M

i2M

⎤
⎥⎦ = κ1

⎡
⎢⎣i

1
M

i2M

⎤
⎥⎦

Δc =

⎡
⎢⎣δ

1
c

δ2c

⎤
⎥⎦ =

1

δ1M + δ2M + δ3M

⎡
⎢⎣δ

1
M

δ2M

⎤
⎥⎦ = κ2

⎡
⎢⎣δ

1
M

δ2M

⎤
⎥⎦

nc =

⎡
⎢⎣n

1
c

n2
c

⎤
⎥⎦ =

1

n1
M + n2

M + n3
M

⎡
⎢⎣n

1
M

n2
M

⎤
⎥⎦ = κ3

⎡
⎢⎣n

1
M

n2
M

⎤
⎥⎦

(4.19)

The following equation holds between conversion factors κ1, κ2, and κ3.

1

κ1

=
1

κ2

+
1

κ3

⇒ κ1 =
κ2κ3

κ2 + κ3

(4.20)
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The relation between the chromaticity components can be obtained as follows:

i1M = δ1M + n1
M

i1c = κ1i
1
M =

κ2κ3

κ2 + κ3

i1M =
κ2κ3

κ2 + κ3

δ1M +
κ2κ3

κ2 + κ3

n1
M

=
κ3

κ2 + κ3

(κ2δ
1
M) +

κ2

κ2 + κ3

(κ3n
1
M) =

κ3

κ2 + κ3

δ1c +
κ2

κ2 + κ3

n1
c

(4.21)

If α is selected as α = κ3

κ2+κ3
then,

i1c = αδ1c + (1− α)n1
c

i2c = αδ2c + (1− α)n2
c .

(4.22)

Equation 4.22 can be written in this matrix form:

Ic = αΔc + (1− α)nc

0 ≤ α ≤ 1.

(4.23)

This equation implies that in the xy-chromaticity space the noise free sample, mea-

sured sample, and dark noise lie on a straight line. Moreover, the measured sample

in the chromaticity diagram lies somewhere between the noise free sample and noise

depending on α value. The α factor can be obtained from the noise free signal

intensity κ2 and the dark noise intensity κ3 as follows:

α =
κ3

κ2 + κ3

=
1

1 + κ2

κ3

=
1

1 + noise intensity
signal intensity

(4.24)

where the noise intensity value can be approximated by the mean value of dark

noise.

If we assume that the three channels of the image sensor have similar mean dark

current values, the chromaticity of dark noise would be distributed around the white
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Figure 4–9: The measured samples are pushed toward the white point due to presence
of dark current.

point. Hence, we define a sacred region around the white point, which surrounds

the dark noise samples. As Fig. 4–9 depicts, the noisy sample would lie between the

noise free sample and the white point, implying that the presence of dark noise leads

to desaturating the measured samples.

4.5.5 Scenario III: Real Image Sensor Simulation

A similar scenario to scenario II is obtained with all noise types and the sat-

uration function being active. In this case, only data points indices with 1-13 are

used to perform the simulation. Figures 4–10 and 4–11 depicts the results. In
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Figs. 4–10-a and 4–10-b, some data points make the sensor saturated at high in-

tensity factors. Non-linear effects imposed by these saturated samples are explicitly

revealed in Fig. 4–10-b. Moreover, the quantization level in the model leads to sparse

samples in the chromaticity diagram, since it is not possible to have all chromaticity

values in the output of image sensor. Aside from this, this scenario’s pattern of

results resembles that of scenario II, implying the dominant influence of dark noise

at low light levels.

4.5.6 SNR Sensitivity Analysis

In this subsection, the sensitivity analysis of the SNR value (given in eq. 4.13)

to the parameters of dark current, read noise, and including or excluding the quan-

tization noise is presented. In this regard, only one noise is considered at a time

(the other noises are deactivated in the model) and the parameters corresponding

to that noise are set based on the values given in Table 5–3. For the dark current

and read noise, their corresponding parameters ((σi
dark)

2, and σread respectively) are

incremented by 10%, and the change in the SNR value is averaged over 200 samples

drawn in each trial. In Table 5–3, the dark current parameter is given for the tem-

perature of 20◦C. Based on the dark current versus temperature curve given in [139]

for a CCD image sensor, to increase dark current by 10% at 20◦C, the temperature

should go up approximately by 1◦C−2◦C. The read noise parameter depends on the

the type of image sensor (CCD or CMOS) and the ISO setting of the camera. In Fig.

2 of [143], the read noise value of three image sensors is compared and indicates that

changing the ISO setting of a CCD chip between the consecutive steps may change

the read noise standard deviation by 10%-20%.
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(a)

(b)

(c)

Figure 4–10: The results of scenario III performed over the RGB598 database when
only photon noise and dark noise are taken into account in the image formation
model. (a) Drawn samples for each selected data point of the RGB598 database and
the fitted ellipse to the samples are plotted. (b) Subfigure in part (a) is regenerated
after removing the samples and specifying the center of ellipses together with the
line of movement of each data point with the light level (c) The result of sub-figure
(a) is magnified for the datapoint number 3.
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(a) (b)

(c)

Figure 4–11: The results of scenario III performed over the RGB598 database when
only photon noise and dark noise are taken into account in the image formation
model. (a) The estimated inclination angles of ellipses obtained from the PCA
algorithm for different intensity factors are shown for all color patches. (b) The
size of fitted ellipses corresponding to different intensity factors for all selected color
patches is compared. (c) The average of ΔEab values over the samples of each
intensity factor.
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The SNR change can be obtained by the following formula:

ΔSNR(%) = 100× SNR1 − SNR2

SNR1

. (4.25)

In this equation, SNR1 and SNR2 represent the SNR values before and after in-

crementing the parameters, respectively. Since the noise parameters used for SNR2

are greater than those of SNR1, it is expected to have SNR1 > SNR2, and hence

ΔSNR > 0. A similar procedure is used for evaluating the quantization noise by

comparing the SNR of the measurements with and without quantization noise. To

avoid saturation effects on the results, the intensity factor is set to F ∈ {0.1, 0.05,
0.01, 0.005, 0.001}. This analysis is performed on the boundary color patches with

the following indices: {1, 3, 6, 8, 10, 12} (see Fig. 4–2). The results of the anal-

ysis are reported for the R,G, and B sensor types in Figs. 4–12, 4–13, and 4–14.

The maximum of SNR change happens in the smallest intensity factor for the dark

current and read noise SNR sensitivity curves. However, this pattern is not seen in

the quantization noise SNR sensitivity curves, as the R and G sensors have their

maximum in different intermediate intensities. Figure 4–13 shows that the SNR

change associated with read noise monotonically increases as the light level falls off.

This statement is roughly true for the dark noise curves but does not hold for the

quantization noise sensitivity curves. In general, no consistent pattern can be found

among the SNR sensitivity results of quantization noise implying that this noise does

not highly depend on the intensity value. An interesting point noted in Figs. 4–12

and 4–13 is that for each sensor type, the data points to which the sensor is more

sensitive have lower SNR sensitivities compared to other data points. For example,
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in Figs. 4–12-a and 4–13-a, the reddish color patch (index=6) has the least SNR

sensitivity for almost all intensity factors of the red channel. In Figs. 4–12-b and

4–13-b, for the green sensor, the greenish color patches (index=1,12) have lower SNR

sensitivities compared to the other color samples. This conclusion is only true for

dark current and read noise curves. Comparing the average SNR sensitivity of the

three noise types reveals that read noise variations have the least impact on the SNR

(less than 1%), then dark noise affects SNR between 1-9%, and the quantization

noise has the most significant influence on SNR.

4.6 Concluding Remarks

This chapter investigated the image sensor color measurement close to its ab-

solute sensing threshold. In this regard, a similar approach to the one introduced

in Chapter 3 was used. The results of this investigation are summarized as follows.

First, photon noise, read noise, and quantization error lead to uncertain measure-

ments distributed around the noise free measurements. The chromaticities of these

noisy samples are distributed in a cloud that can be well-fit to an elliptical region in

the xy-chromaticity diagram. Second, even for an ideal image sensor, in very dark

situations, stable measurement of the incoming light to the camera is impossible

due to the physical limitations imposed by the fluctuations in photon emission rate.

Third, dark current noise reveals dynamic effects on color measurements by shifting

their chromaticities towards the chromaticity of the camera black point. Fourth,

dark current dominates the other sensor noise types in the image sensor in terms of

affecting the chromaticity of measurements.
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(a)

(b)

(c)

Figure 4–12: SNR sensitivity curves of the R, G, and B sensor types with respect to
the dark current noise parameters for different color patches are plotted in (a), (b),
and (c) respectively. 102



(a)

(b)

(c)

Figure 4–13: SNR sensitivity curves of the R, G, and B sensor types with respect to
the read noise parameters for different color patches are plotted in (a), (b), and (c)
respectively. 103



(a)

(b)

(c)

Figure 4–14: SNR sensitivity curves of the R, G, and B sensor types with respect
to the quantization noise for different color patches are plotted in (a), (b), and (c)
respectively. 104



The work presented in this chapter demonstrated that spectral methods can

serve as a tool for incorporating photon and dark noise into the image sensor model

for color measurement at low light levels. Moreover, photon noise and dark noise,

which both follow the Poisson distribution, are the dominant noise types and intro-

duce a more significant error to the image sensor measurements in dark conditions.

However, most of the present denoising algorithms assume a Gaussian distribution

for the measurement noise in image sensors. Hence, the denoising algorithms which

serve low light conditions should be revised according to the behaviour of noise. The

results of this chapter can be used to develop a more realistic chromatic denoising

scheme for low light color measurement. Last but not least, the study of to what

extent, and under what conditions these noises become visible to the human subjects

should be investigated in future works.
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CHAPTER 5
At Twilight: Mesopic Color Vision Models

In Chapters 3 and 4, we focused on cone responses and image sensor measure-

ments at low light levels (mainly in the scotopic region). In this chapter, we study

color vision models for simulating and rendering images in mesopic conditions. In

relation to this, we consider two problems: first, simulating a mesopic scene and

displaying it in photopic conditions; and second, rendering photopic scenes to be dis-

played in mesopic conditions. The solution to the first problem would be a mesopic

color appearance model, and an image retargeting algorithm would be a general ap-

proach to address both problems. Mesopic color appearance models are needed in

many advanced image processing algorithms such as tone reproduction techniques

and color retargeting approaches. Many of the existing mesopic color appearance

models do not perform very well (in terms of consistency with psychophysical mea-

surements and reproduction of realistic mesopic colors) and are not able to handle

noisy measurements.

In this chapter, we first compare some of the well-known mesopic vision models

currently available in the literature. Then, we propose a noise-aware spectral color

vision model for the mesopic range. All of these models are implemented, evaluated

and compared to each other in the results section. One of the main purposes of this

study is to illustrate the weaknesses and strengths of well-known mesopic models and
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analyse their similarities and differences. Furthermore, this chapter aims at investi-

gating the quality of tone mapping techniques (especially iCAM06) in reproducing

mesopic scenes. Most of the existing tone mapping techniques do not do well in

mesopic color reproduction.

Image retargeting approaches aim to provide a unified framework for image

rendering in which both the intended scene luminance and the actual luminance of

the display are taken into account. The remainder of this chapter is dedicated to

introducing a new color retargeting approach for the mesopic range to be used in the

image rendering pipeline of displays.

5.1 Proposed Method: Maximum Entropy Spectral Modeling Approach
for Mesopic Vision

We saw in Chapter 3 that ideal cone responses in scotopic conditions become

more uncertain. The spectral theory of color vision developed by Clark and Skaff [16]

provides a tool to address the issues of uncertain measurements and estimating the

spectral power distributions corresponding to these uncertain measurements in the

photopic condition. In this section, this theory is extended to cover the mesopic and

scotopic ranges as well. The flowchart of the proposed spectral color vision model

in this work is shown in Fig. 5–1. The model is comprised of three interconnected

parts: the spectral color appearance model, the CIE system for mesopic photometry,

and the adaptation block, which are introduced in the following subsections.

5.1.1 Maximum Entropy Spectral Modeling Approach for Mesopic Vi-
sion

Clark and Skaff proposed a spectral model for color vision in [16] based on which

we introduce a model for low light situations. We summarize the basic equations in
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Figure 5–1: The flowchart of the proposed spectral mesopic color vision model

the following. We assume that the measurement is given by:

r = β

∫
Λ

f(λ)p(λ)dλ+ ν (5.1)

where f(λ) is the spectral profile of the imaging device, p(λ) is the normalized spectral

power distribution, ν represents the additive noise and Λ specifies the visible light

spectrum range. Taking out the intensity factor, β, the normalized response will be:

η =

∫
Λ

f(λ)p(λ)dλ+
ν

β
. (5.2)

The response is normalized such that
∫
p(λ)dλ = 1. It has been shown that the

maximum entropy estimation of the spectral power distribution, p̂(θ, λ), belongs to
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the exponential family:

p̂(θ, λ) = exp(< f(λ), θ > −ψ(θ)) (5.3)

where <> defines the dot product of vectors f(λ) and θ; additionally, ψ(θ) is a

normalization function to ensure that
∫
p̂(θ, λ)dλ = 1. Then, the normalized mea-

surement estimation can be obtained using the following formula:

η̂(θ) =

∫
Λ

f(λ)p̂(θ, λ)dλ. (5.4)

It is worth mentioning that θ and η̂ are dual coordinate systems for the exponential

family and they relate to each other as follows [144].

η̂(θ) =
∂ψ(θ)

∂θ
(5.5)

Given the noisy measurement η, the parameter θ can be obtained by solving an

optimization problem:

θ̂ = argmin
θ

{(η̂(θ)− η)TA(η̂(θ)− η)− γH(θ)} (5.6)

where A is a positive definite matrix, and H(θ) denotes the entropy function corre-

sponding to p̂(λ). In the case of modeling the human visual system, the term f(λ)

refers to the cone spectral sensitivity functions. However, as mentioned before, the

model for the mesopic condition will be slightly different, and we should modify the

above model to make it appropriate for mesopic vision. In mesopic conditions, the

cone and rod cells are both responsible for our vision. Hence, we modify equation 5.1
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Figure 5–2: Plot of normalized cones and rods’ spectral sensitivities based on the 2◦

data of Table 2 of [6].

to fit the new situation:

ri = βc

∫
Λ

f i
c(λ)p(λ)dλ+ βr

∫
Λ

wifr(λ)p(λ)dλ+ ν i ∈ {L,M, S}. (5.7)

In this equation, βc and βr are coefficients determining the relative contribution of the

cone and rod responses where βc + βr = 1, wi specifies the relative weight of the rod

output to each cone response, fc(λ) and fr(λ) are normalized cone and rod spectral

sensitivity functions, respectively (see Fig. 5–2), and the superscript i specifies the

type of cone cells. The above equation can be simplified as follows:

ri = βc

∫
Λ

[f i
c(λ) + ξwifr(λ)]p(λ)dλ+ ν i ∈ {L,M, S} (5.8)
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where ξ = βr

βc
. So, replacing f(λ) with fmes(λ) = fc(λ)+ξWfr(λ) in equation 5.1 will

give us the spectral model for mesopic vision. In this equation,W = diag(
[
wL, wM , wS

]
)

is a diagonal matrix containing the wi coefficients. The graphical representation of

this model is shown in Fig. 5–3. It is worth mentioning that ξ may vary with the

luminance level. However, one point is still unclear, which is how the γ and ξ should

be defined. We address this issue using the new CIE system for mesopic photometry,

which was presented in 2.4.1.1.

Figure 5–3: The schematic of the spectral theory of color vision for the mesopic range

111



5.1.2 CIE System for Mesopic Photometery

Taking advantage of the new CIE system for mesopic photometry, we can adjust

the parameters of the spectral color appearance model by introducing an adapting

factor as a function of the mesopic measure, m. This model is introduced in Sec-

tion 2.4.1.1.

5.1.3 Adaptation Block

In the spectral mesopic color vision model, γ and ξ are adapting parameters

which depend on the mesopic factor obtained from the CIE system for mesopic

photometry. We can define γ and ξ as follows.

γ = (1−m)× c

ξ(m) =
e1−m − 1

e− 1

(5.9)

where c is a constant term for tuning purposes. Therefore, the CIE system for

mesopic photometry can be employed in mesopic color appearance models; however,

to find the mesopic luminance the major limitation is that the photopic and scotopic

luminance values need to be given.

5.2 Results and Discussion

5.2.1 Materials and Methods

In this section, we simulate a number of well-known mesopic models introduced

in sections 2.4.2.1 to 2.4.2.5 in order to compare them and discuss their performance.

In this regard, we designed a prototype that includes all the aforementioned models

together with the proposed spectral mesopic color vision model. Using the prototype,

we can simulate Munsell patches surrounded by a white background viewed under
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different light levels from scotopic conditions to fully photopic situations. The aim of

this prototype is to provide a framework in which we can compare the output of dif-

ferent mesopic models in various light intensities simultaneously. We take advantage

of the new CIE system for mesopic photometry to calculate the mesopic factor and

the mesopic luminance value. The parameters of different models are chosen based

on the settings recommended in the original articles. The parameters of the spectral

model are specified as: W = diag([3 3 5]) and c = 2. The standard D65 illuminant

is selected to render the white point. We should note that in implementing iCAM06,

the surround adjustment and colorfulness adjustment are disabled, because they do

not correspond to the mesopic color appearance performance of this model. A snap-

shot of the implemented prototype is shown in Fig. 5–4. The upper left patch is the

reference color patch in the fully photopic condition. The remaining color patches

depict the appearance of the patch under mesopic vision as displayed in the photopic

condition (i.e. the intensity of the white point is mapped to 255.)

5.2.2 Scenario I: Evaluating Mesopic Color Vision Models on a Single
Patch

In the first test scenario, the outputs of different methods are compared relative

to each other for a single Munsell patch, called “10GY 60/10”, when the light source

has the equi-energy spectrum. Models are evaluated under 14 luminance values

ranging from 0.002 to 1000 cd/m2. Fig. 5–5 shows the examined light intensities

and the corresponding mesopic measures. The chromaticities of the output of each

model under the range of light intensities are shown in Fig. 5–6. The output of

each model shows the photopic-rendered appearance (i.e. the mesopic appearance

of the color patch is simulated on a photopic display) of the original color patch
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Figure 5–4: A snapshot of the implemented prototype for the luminance of 0.3 cd/m2

where the mesopic factor m = 0.6. (Please be advised that the output colors are
represented in the sRGB space and the effect of the display on the appearance of
color patches is not considered here.)

when it is viewed under a given light level by the standard human observer. The

output chromaticity values of the iCAM06, Cao and Khan models vary along a line

in the xy-chromaticity diagram, because these models assume that the rod responses

are linearly added to the cone responses. It should be noted that the Cao model

produces negative chromaticity values, which are not physically plausible, in the far

end of the mesopic region (close to the scotopic range) and the scotopic region. As

we go further through the mesopic region toward the scotopic range, the output

chromaticities of the iCAM06, Shin and spectral mesopic color vision models get

closer to the achromatic region of the chromaticity diagram; however, the Khan

model approaches the bluish region inside the chromaticity diagram.
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Figure 5–5: Luminance values and the corresponding mesopic measure considered in
scenario I

Figure 5–6: Output of different models for the “10GY 60/10” Munsell patch under
different luminance levels.
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Table 5–1: Mean mutual color differences of the mesopic models under given lumi-
nance values

Shin Spectral iCAM Cao Khan

Shin 0 9.14 10.15 256.33 24.75

Spectral 0 15.78 254.48 21.64

iCAM 0 254.07 24.53

Cao 0 240.07

Khan 0

Table 5–1 tabulates the mean mutual ΔEab chromaticity differences computed

for all the model pairs to compare their photopic representation of the simulated

color patch over the range of light intensities. In this regard, we can say that the

Shin, iCAM06, and the spectral models are fairly close to each other. Additionally,

based on the fact that the Cao model generates invalid chromaticity responses (close

to the scotopic range), we may expect large color differences between it and the other

models. If we consider the Shin model as a reference (since it is obtained through

psychophysical experiments), we can say that the spectral model does fairly well in

terms of modeling mesopic vision, because the spectral mesopic color vision model

is closer to the Shin model, from the ΔEab point of view, compared to the other

models. The main difference between both the spectral and Shin models and the

iCAM model is that the former models treat the rod response in a nonlinear way

while the latter assumes a linear contribution of the rod response to the mesopic

vision. Bear in mind that the linear assumption holds for the Cao and Khan models

as well.
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5.2.3 Scenario II: Evaluating the Overall Performance of Mesopic Models

In the second scenario, we carried out the same evaluation process as the first test

over a set of chosen Munsell patches covering various hue angles (as Shin suggested

in [65]). In this scenario, we limit ourselves to the three best models: the Shin model,

the spectral model and iCAM06. The list of the Munsell color patches involved in

this scenario can be found in Table 3–1.

First, we investigate the effect of selecting the mesopic measure as an adaptive

factor in the spectral model. Figure 5–7 shows a case in which a spectral model

without using the mesopic measure in the γ adjustment is compared with the spectral

model introduced in scenario I. This figure shows that without using the mesopic

measure, this model cannot deal with the photopic situations satisfactorily and it

outputs desaturated colors. Mean mutual color differences are calculated for the

three selected models, where the spectral model is substituted with the non-adaptive

version with γ = 2 (see Table 5–2). The results imply that the non-adaptive spectral

mesopic color vision model produces results that are quite different from the other two

models: iCAM and Shin. Second, we compare the performance of the three selected

mesopic models dealing with 10 different patches under 14 different light intensities,

as shown in Fig. 5–5. Fig. 5–8 depicts the results in the xy-chromaticity diagram.

The output chromaticities of the spectral mesopic color vision model reflects the

nonlinearities of mesopic vision better than iCAM06. Bear in mind that in the

scotopic range, our work and the iCAM06 model give rise to, more or less, similar

achromatic perception; however, the Shin model tends towards a greenish percept in

that condition.
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Figure 5–7: Investigating the effect of adaptation term in the spectral model: The red
circles indicate the output of the spectral model when γ = 2 and no adaptation term
is used, while the blue circles depict the spectral model with the same adjustment
as the first experiment.

5.3 A Color Retargeting Approach for Mesopic Vision

Retargeting approaches aim at providing a unified framework for image render-

ing in which both the intended scene luminance and the luminance of the display are

taken into account (read Section 2.5.2). At the core of any color retargeting method,

a color appearance model and its inverse are employed. Such a color appearance

model should therefore be invertible and cover the entire luminance range of the

human visual system. There are not many available models which meet these two

conditions. Moreover, most of these models were developed based on psychophys-

ical experiments on simple color patches, and they are not suitable to be used for

complex images. In this section, a color retargeting approach based on the mesopic

model of Shin et al. [65] is developed to work with complex images. In this regards,
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Table 5–2: Mean mutual ΔEab color differences calculated when the spectral model
does not include the adaptive term as a function of the mesopic measure

Shin Spectral iCAM

Shin 0 17.91 10.15

Spectral (no adaptation) 0 23.24

iCAM 0

Figure 5–8: The output of the iCAM, Shin and Spectral models for 10 different
Munsell color patches under various luminance values.

we derive the inverse for the Shin model to compensate for color appearance changes

on displays dimmed to the mesopic range and viewed in a dark environment. We

evaluate this method using quantitative approaches and the results show a discrimi-

native improvement in the simulated perceived color quality for mesopic vision. The
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proposed method can be incorporated into image retargeting techniques and display

rendering mechanisms.

We made the following assumptions in the proposed algorithm: first, the display

should be viewed with a dark surround and the influence of the surround is not

considered in the color vision model; second, the model does not take the size of

stimuli into account; and third, spatial and temporal properties of the human visual

system are not addressed (i.e. pixels are treated as independent in the image).

Hence, the proposed framework can be combined with image retargeting methods [2]

to model our visual mechanisms more thoroughly.

5.3.1 Shin’s Color Appearance Model for Mesopic Vision

Shin et al. proposed a modified version of the Boynton two-stage model with

fitting parameters to account for the rod intrusion in mesopic vision [65]. The goal

of the model is to find the matching colors in the photopic range for the input col-

ors in the mesopic range. The parameters of the model are obtained as a function

of luminance based on the asymmetric color matching experimental data. In their

experiment, the observer is presented with a Munsell color chip under the mesopic

condition and is asked to match the appearance of that patch with the simulated

image reproduced by this model on the CRT display under photopic conditions. The

model is as follows:

1. The XYZ image (i.e. the linear RGB image which is transformed to the XYZ

color space) is input to the model and is converted to the LMS space.
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[X Y Z]t = Mrgb2xyz · [R G B]t

LMS = [Lp Mp Sp]
t = Mxyz2LMS ·XY Z

(5.10)

2. The LMS signals are then substituted into the opponent channel equations of the

Boynton two-stage model [113]:

A(E) = α(E)Kw((Lp +Mp)/(Lpw +Mpw))

+ β(E)K ′
w(Y

′/Y ′
w)

γ

r/g(E) = l(E)(Lp − 2Mp) + a(E)Y ′

b/y(E) = m(E)(Lp +Mp − Sp) + b(E)Y ′

(5.11)

where E represents the scene photopic luminance, A(E), r/g(E), and b/y(E) are

achromatic, red/green and blue/yellow opponent responses respectively; the indices

p and w indicate “photopic” and “white point”, respectively; Y ′ represents the sco-

topic luminance; α(E), β(E), l(E), a(E),m(E), and b(E) are the fitting functions in-

dicating the relative contribution of the rod’s response to the opponent channels;

and Kw and K ′
w are the maximum responses of the luminance channel at photopic

and scotopic conditions, respectively.

3. Then, the opponent responses, A(E), r/g(E), and b/y(E), are transformed back

to the XYZ space and then to the RGB space.

[Xm Ym Zm]
t = Mopp2xyz · [A(E) r/g(E) b/y(E)]t (5.12)
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Table 5–3: Parameters of the Shin model
Parameter value

Kw 1
K ′

w 78.4
γ 0.77

Table 5–4: Transformation matrices used in the Shin Model
Parameter value

Mrgb2xyz, [145]

⎡
⎣0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤
⎦

Mxyz2LMS, [65]

⎡
⎣ 0.155 0.543 −0.033
−0.155 0.457 0.033

0 0 1

⎤
⎦

Mopp2xyz [65]

⎡
⎣1.008 2.149 −0.212

1 0 0
1 0 −1

⎤
⎦

where Xm, Ym, and Zm represent the mesopic simulated version of the XYZ input to

be viewed in photopic conditions. The parameters of the Shin model are selected ac-

cording to Table 5–3. Functions (α(E), β(E), l(E), a(E), m(E), b(E)) are evaluated

based on interpolation over the given points in Table 1. of [65]. The transformation

matrices used in the model are listed in Table 5–4.

5.3.2 Developing the inverse of Shin’s model

As mentioned earlier, perceptual rendering necessitates involving both a color

vision model and its reverse. Given the intended luminance of the original image,

the forward color appearance model - the Shin model in our case- predicts the color

perceptual attributes for a standard human observer. The goal of the inverse model

is to take the output of the forward model (the simulated perceived original image
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Figure 5–9: Schematic of the color retargeting method

at the intended luminance based on the Shin model) and predict the RGB values

of the compensated image such that the color appearance of this image rendered

on a display with a specific luminance value resembles the perceived original image.

Hence, in order to develop the inverse model, we feed the color perceptual attributes

of the forward model into the inverse model (i.e. the inverse Shin’s model) along

with the luminance of the target display and obtain the compensated image to be

rendered on the display. The schematic of this perceptual model is shown in Fig.5–9.

To develop the inverse of this nonlinear color vision model we carry out the

following steps:

First, the opponent responses of the forward model (A(E), r/g(E), b/y(E)) are fed

to the inverse model. We assume that the compensated image based on the display

luminance, E, produces the same opponent responses as the opponent responses of

the forward model to make a perfect match to the perceived image at the intended

luminance, E.

Second, the functions: α(E), β(E), l(E), a(E),m(E), and b(E) are evaluated for the

123



average display luminance, E.

Third, the computed functions and opponent responses are substituted in the forward

model (Eq. 5.11) and the LMS values of the compensated image can be obtained as

follows:

Lp +Mp = ((Lpw +Mpw)/(α(E)Kw))×

(A(E)− β(E)K ′
w(Y

′/Y ′
w)

γ)

Lp − 2Mp =
(r/g(E)− a(E)× Y ′)

l(E)

Lp +Mp − Sp =
(b/y(E)− b(E)× Y ′)

m(E)
.

(5.13)

Fourth, the left hand side variables of Eq. 5.13 are transformed to Lp, Mp, and Sp

using a simple linear transformation.

⎡
⎢⎢⎢⎢⎣
Lp

Mp

Sp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 1 0

1 −2 0

1 1 −1

⎤
⎥⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎣

Lp +Mp

Lp − 2Mp

Lp +Mp − Sp

⎤
⎥⎥⎥⎥⎦ (5.14)

And finally, a linear transformation is applied to convert the LMS values to XYZ

and subsequently to RGB values. Figure 5–10 depicts the schematic of the proposed

inverse Shin model.

5.4 Results and Discussion

In this section, the proposed color retargeting algorithm is evaluated using quan-

titative experiments.
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Figure 5–10: Schematic of the inverse Shin color retargeting method

5.4.1 Scenario I: Quantitative Evaluation

In the quantitative evaluation, the human subject is replaced by the Shin mesopic

model to predict the human observer’s color perception at low light levels. The eval-

uation procedure is depicted in Fig. 5–11. The forward Shin model is employed to

simulate the perceived image at different luminance levels. This model takes in an

image, the reference white and the light level under which the image is viewed. The

output of the model is the simulated perceived image at photopic conditions in the

XYZ space. To derive the corresponding color perceptual attributes, the XYZ values

and the reference white can be given in the CIELab space.
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Figure 5–11: The procedure for evaluating the proposed Shin color retargeting
method: the simulated perceived image at the intended scene luminance, E, is com-
pared to the simulated perceived image viewed on a dim display (in the mesopic
range) with the luminance E when no processing is done to the image and the simu-
lated perceived image processed by our color retargeting method viewed on the same
display.

This experiment is conducted on 4 images: {Multi-object Scene, Car, Walk

Stones, Red Room} where the images are viewed in a dark surround. The results

are shown in Figs. 5–12-5–15. Each of the figures shows: (a) the simulated perceived

original image on a bright display (Lsrc = 250cd/m2), (b) the simulated perceived

unprocessed image on a dark display (Ldest = 2cd/m2), (c) the simulated perceived

compensated image on a dark display with the same brightness level, (d) the com-

pensated image, (e) the simulated perceived gamut of the image shown in (a), (f)
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the simulated perceived gamut of the unprocessed image on a dark display, (g) the

simulated perceived gamut of the compensated image viewed on a dark display, and

(h) the comparison of the three simulated perceived gamuts depicted in (e), (f), and

(g). It is worth mentioning that the gamut of each image is shown in the LAB space,

which is approximately a perceptually uniform color space.

The results shown in Figs. 5–12 to 5–15 demonstrate that the compensated im-

age has a larger simulated perceived gamut and a better simulated color appearance

at dark conditions as compared to the unprocessed image viewed at the same condi-

tion. For example, in the Multi-object Scene image in Fig. 5–12, you may compare

the checker board colors in Fig. 5–12-(b) and 5–12-(c) to see that the colors in the

simulated perceived compensated image more resemble the colors in Fig. 5–12-(a);

or in the Car image, the blue color of the sky and the car is maintained better as

compared with the unprocessed image on the dark display. The simulated perceived

unprocessed Walk Stone image shows washed out colors while in the simulated per-

ceived compensated image, the blue sky, green grass and brown stones are more

clearly visible. Figure 5–14-(h) demonstrates that the simulated perceived gamut

of the unprocessed image in dark conditions has shrunk to the center of the ab-

chromaticity diagram (achromatic region) and the simulated perceived gamut of the

compensated image brings back a fairly large portion of the lost simulated perceived

color gamut. In Fig. 5–15, the red color of the wall, carpet and the vase, the color of

the cushions and the picture hung on the wall are more vivid in the dark compensated

image compared to the unprocessed image.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 5–12: The reverse Shin model is tested based on the evaluation schematic
shown in Fig. 5–11. (a) Perceived colors in the Original Scene (Lsource = 250cd/m2)
(b) Perceived colors on a dimmed display (Ldest = 2cd/m2) (c) Perceived colors
of the compensated image (Ldest = 2cd/m2) (d) Compensated image (rendered on
the display) (Ldest = 2cd/m2) (e) Gamut of the original scene (f) Gamut of the
simulated perceived image on a dimmed display (g) Simulated perceived gamut of
the compensated image (h) Comparison of simulated perceived gamuts [7]
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(a) Simulated perceived colors in the
Original Scene (Lsource = 250cd/m2)

(b) Simulated perceived colors on a
Dimmed Display (Ldest = 2cd/m2)

(c) Simulated perceived colors of Com-
pensated Image (Ldest = 2cd/m2)

(d) Compensated image (rendered on
the display) (Ldest = 2cd/m2)

(e) Simulated perceived gamut of the
original scene

(f) Gamut of simulated perceived image
on a dimmed display

(g) Simulated perceived gamut of com-
pensated image

(h) Comparison of simulated perceived
gamuts

Figure 5–13: The reverse Shin model is tested based on the evaluation schematic
shown in Fig. 5–11 [7]. 129



(a) Simulated perceived colors in the
Original Scene (Lsource = 250cd/m2)

(b) Simulated perceived colors on a
Dimmed Display (Ldest = 2cd/m2)

(c) Simulated perceived colors of Com-
pensated Image (Ldest = 2cd/m2)

(d) Compensated image (rendered on
the display) (Ldest = 2cd/m2)

(e) Simulated perceived gamut of the
original scene

(f) Gamut of simulated perceived image
on a dimmed display

(g) Simulated perceived gamut of com-
pensated image

(h) Comparison of simulated perceived
gamuts

Figure 5–14: The reverse Shin model is tested based on the evaluation schematic
shown in Fig. 5–11 [7].
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(a) Simulated perceived colors in the
Original Scene (Lsource = 250cd/m2)

(b) Simulated perceived colors on a
Dimmed Display (Ldest = 2cd/m2)

(c) Simulated perceived colors of Com-
pensated Image (Ldest = 2cd/m2)

(d) Compensated image (rendered on
the display) (Ldest = 2cd/m2)

(e) Simulated perceived gamut of the
original scene

(f) Gamut of simulated perceived image
on a dimmed display

(g) Simulated perceived gamut of com-
pensated image

(h) Comparison of simulated perceived
gamuts

Figure 5–15: The reverse Shin model is tested based on the evaluation schematic
shown in Fig. 5–11 [7]. 131



To evaluate the color appearance quality of images quantitatively, a color differ-

ence metric can be employed. A particular application of the quantitative assessment

techniques is to replace a human subject in evaluating the quality of images, and

accordingly, gives rise to a less expensive, more effective, more repeatable and con-

sistent, and more time efficient approach. The metric used for this purpose should

be based on a comprehensive color appearance model. There are several color dif-

ference measures in the literature such as ΔExy, ΔEab, ΔE94, and ΔE00; however,

none of them gives an ideal perceptual measure to be used with complex images. In

spite of the reported limitations and deficiencies of these measures, they are the only

available metrics for quantitative color quality assessment and have been used in the

literature extensively. Hence, the quantitative evaluation of our method is done as

follows.

The chromaticity difference measure, ΔEc
94, is derived from the well-known color

difference metric, ΔE94 by removing the lightness component from the ΔE94 formula.

ΔEc
94 is used to evaluate the chromaticity deviation of simulated perceived uncom-

pensated and compensated images on the dimmed display compared to the perceived

colors of the original scene.

ΔEc
94 =

√
(
ΔC∗

ab

kCSC

)2 + (
ΔH∗

ab

kHSH

)2 (5.15)
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where

C∗
1 =

√
(a∗1)2 + (b∗1)2, C

∗
2 =

√
(a∗2)2 + (b∗2)2

ΔC∗
ab = C∗

1 − C∗
2

Δa∗ = a∗1 − a∗2,Δb∗ = b∗1 − b∗2

ΔH∗
ab =

√
(Δa∗)2 + (Δb∗)2 − (ΔC∗

ab)
2

SC = 1 +K1C
∗
1 , SH = 1 +K2C

∗
1

(5.16)

and where (a∗1, b
∗
1) and (a∗2, b

∗
2) refer to the a∗b∗ values of two CIE 1976 L∗a∗b∗ coor-

dinates, K1 is set to 0.045, K2 = 0.015, and kC = kH = 1 [63].

The results of the perceptual chromaticity difference between the dark and bright

image for both uncompensated and compensated approaches of Figs. 5–12-5–15 are

shown in Table 5–5. The ΔEc
94 measure of compensated images is reduced by almost

a factor of 2 as compared to that of the uncompensated images.

Another quantitative measure, which is introduced in this work, is the percentile

coverage of the simulated perceived gamut of images at dark relative to the simulated

perceived gamut of the bright image (i.e. the proportion of the overlapping area of

the simulated perceived gamut of the dark image to the simulated perceived gamut of

the original bright image.) In the rest of the chapter, we refer to this measure as the

Effective Gamut Ratio (EGR). The EGR index is used to evaluate the performance

of our proposed method on compensating the shrunk gamut area of the simulated

perceived unprocessed image and the results are reported in Table 5–6. The EGR

measure is shown to be almost two times bigger for the compensated images with
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our method as compared to the unprocessed ones; and the EGR of the Walk Stones

image is enhanced by a factor of 4.

Figure 5–16 shows the ΔEc
94 and EGR indices of the four images at different

display luminance values: 1, 2, 5, and 10 cd/m2. We can summarize the results

as follows: first, the perceptual difference of compensated images is smaller than

that of unprocessed images for all examined luminance values; second, the ΔEc
94

measure decreases as the display luminance grows; third, our proposed method covers

a greater portion of the simulated perceived gamut of the original image compared

to the unprocessed one; and fourth, the EGR index increases with respect to the

display luminance.

(a) (b)

Figure 5–16: The ΔEc
94 measure and the EGR index are evaluated for the unpro-

cessed and compensated images at different display luminance levels: 1, 2, 5, and 10
cd/m2.

5.4.2 Scenario II: Comparing with Other Methods

In this scenario, we compare the performance of different algorithms in terms of

their ΔEc
94 and EGR indices. The results are shown in Table 5–5 and Table 5–6.
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5.4.2.1 Experimental Methods

In this scenario, the following methods are evaluated:

Our color retargeting method: is based on the forward and inverse of the Shin

mesopic model introduced in this chapter as a color retargeting approach in Fig. 5–9.

The Wanat color retargeting approach [2] is proposed by Wanat and Mantiuk.

In this algorithm, the Cao algebraic model and its inverse are employed in the re-

targeting method. This algorithm is implemented and used for processing images as

described in [2].

iCAM06 is one of the most well-known image appearance methods in the lit-

erature [119]. The input parameters of this model are set as: maximum lumi-

nance, maxL = 2 (cd/m2); overall contrast, p = 0.7; and surround adjustment,

gammavalue=1.

A set of 5 images is added to our image set for this test, shown in column (a)

of Fig. 5–17. The images are selected such that they span a range of colors: red,

green, blue, yellow, purple, orange, and brown. Figure 5–17 depicts the output of the

different models. Columns (b), (c), and (d) show the result of applying the Wanat

color retargeting model, iCAM06, and our method, respectively.

5.4.2.2 Discussion

In this subsection, we compare the quantitative performance of the introduced

methods on the image set based on the ΔEc
94 and EGR indices. Table 5–5 and

Table 5–6 summarize the quantitative results of the methods. The two tables show

the superiority of our proposed method over the other discussed techniques. Table 5–

6 shows that the gamut coverage of our method varies over the images, since the
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(a) Original Image (b) Wanat (c) iCAM06 (d) Our Method

Figure 5–17: The original images and the results of different approaches applied to
each image are shown. Images are processed for Lsrc = 250 cd/m2 and Ldest = 2
cd/m2 [7].
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Table 5–5: Mean ΔEc
94 measure between a test image viewed at Ldest = 2 cd/m2 and

the perceived original image at Lsrc = 250 cd/m2

Test Image Unprocessed Our Method Wanat iCAM06

Multi-object Scene 5.0 2.80 4.37 5.62
Car 5.05 2.23 4.36 7.23
Walk Stones 5.22 2.65 4.54 5.74
Red Room 7.79 4.39 7.09 7.42
Blue Room 6.19 3.36 5.43 8.26
Horse 6.58 3.45 7.17 10.93
Flower 23.61 21.17 24.15 31.13

Table 5–6: The EGR index (the percentile coverage of the perceived gamut (%))
between a test image viewed at Ldest = 2 cd/m2 and the perceived original image at
Lsrc = 250 cd/m2

Test Image Unprocessed Our Method Wanat iCAM06

Multi-object Scene 10.3 25.9 12.0 9.9
Car 9.2 22.1 10.2 10.0
Walk Stones 9.1 43.0 14.8 20.5
Red Room 7.6 14.3 7.7 9.9
Blue Room 13.5 36.3 14.8 17.7
Horse 9.7 25.8 9.92 14.2
Flower 7.2 15.8 7.6 15.3

performance of our model is content dependent and the images in our database span

different chromaticities.

The ΔEc
94 index of our algorithm is significantly smaller than other methods

over all the images except the Flower image, in which our method is the best but

its difference from the Wanat and Unprocessed algorithms is not significant. In the

Flower image, the three approaches: Wanat’s, Unprocessed and our method all have

similar performances. This similarity may be due to the dominant yellow color of

this image. As described in [16], the yellow hues appear less saturated than other
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monochromatic colors. Hence, in dark conditions, yellow is more subject to losing its

colorfulness. Moreover, the comparison of perceived gamuts in scenario I (see Figs. 5–

12-5–15) shows that the compensated gamut is not extended towards the yellowish

region of the chromaticity diagram very much. Furthermore, the results show that

iCAM06 underperformed compared with other algorithms because iCAM06 is not

designed for compensation purposes and is only able to predict the appearance of

the image for an intended luminance.
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CHAPTER 6
Conclusion and Future Work

In this thesis, the importance of addressing low-light situations in the area of

color science is pointed out. Most of the theories and techniques of image processing

and color science do not employ detailed models of human visual perception mecha-

nisms, and moreover, are developed under the basic assumption of photopic viewing

conditions. However, through the rapid advancement of technology and by intro-

ducing the night mode capturing/rendering possibilities in recent cameras/displays,

users can achieve their goals of preserving the high perceptual fidelity of images

while capturing/rendering images. Hence, the importance of having viable models

and solutions for the mesopic and scotopic range of the human visual system to be

deployed in these technologies becomes more and more clear.

One of the objectives of this thesis was to answer the question of how different

types of noise may affect photoreceptor responses and image sensor color measure-

ments at low light levels. Moreover, we highlighted two specific problems correspond-

ing to, first, a lack of a good mesopic color appearance model, and second, employing

perceptual color appearance models in real world image processing techniques. The

spectral mesopic color vision model was proposed as an approach that can take into

account the effects of noise at low light levels and rod intrusion in the mesopic range.

In Chapter 3, a photon detection modeling of photoreceptors and associated

basic physical principles were used to investigate how photoreceptor responses are
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affected by the photon noise and the intensity of light. We showed that the spectral

power distribution of light is more prone to fluctuations when the light intensity

goes low and lower. The result of this research highlights the significance of photon

noise close to the detection threshold of the human visual system and even in the

mesopic range. We suggest that photon noise should be incorporated into the visual

appearance modeling of not only scotopic vision, but also mesopic vision. However,

in the photopic range, the photon noise’s effect on the mesopic color appearance

phenomenon is negligible.

In Chapter 4, we examined the effects of different types of noise on color mea-

surements of image sensors at low light levels. In this regard, a typical image sensor

with a detailed noise model was implemented. The image sensor model was em-

ployed in several computational tests to investigate the color measurements at low

light intensities, close to the detection threshold of the sensor, in the presence of

noise. Results of this chapter can be summarized as follows: first, even an ideal

image sensor without any device noise cannot measure consistent colors in the sco-

topic range due to the photon noise; second, in contrast to the photon noise and

read noise, which make the generated samples at low light levels distributed around

the high intensity samples, the dark current noise pushes the measurements towards

the center of the chromaticity diagram (lower saturation values); third, dark current

induces a much more severe impact on color measurements in comparison to photon

noise, read noise and quantization error.

The first part of Chapter 5 discussed different mesopic color vision models, in-

cluding the maximum entropy spectral model for mesopic vision, and studied them
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from two different points of view: feasibility, and performance. Additionally, this

chapter evaluated one of the well-known tone reproduction methods, iCAM06, in

terms of the mesopic color reproduction quality. The results showed that only the

Shin model and the spectral model are able to reflect the inherent nonlinearities of

mesopic vision. The Cao model leads to infeasible chromaticity values near the sco-

topic region. The iCAM06 model exhibits a behaviour closer to the Shin and spectral

models rather than the Khan or Cao models. However, iCAM06 has a clear weakness

in its tone compression operator. This model assumes that an equally weighted rod

response is added to the cone responses, which turns out to be incorrect. On the

other hand, the proposed spectral mesopic model is inspired by current theories on

mesopic vision, is intuitive, and works under scotopic and photopic situations as well

as in the mesopic region. The spectral model is one of the first mesopic vision models

to take advantage of the recently proposed CIE system for mesopic vision. Likewise,

the spectral model gives us an estimated power spectrum for the light incident on

photoreceptors, which can be exploited for obtaining the scotopic luminance value.

Obtaining the scotopic luminance is necessary for most color appearance models,

which involves rod-cone interaction; however, without knowing the power spectrum

of the light, computing the exact amount of this quantity is not possible. Hunt

proposed an approximate formula calculating the scotopic luminance of illuminants

based on their photopic luminance values [149]. It is shown that for the equi-energy

stimulus, Ls = 2.26L, where L and Ls are the photopic and scotopic luminance re-

spectively. In the real world we are never faced with the perfect equi-energy stimulus,
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and so most of the non-spectral models for mesopic vision rely on this approximate

formula to get the scotopic luminance.

In the second part of Chapter 5, a color retargeting technique based on the

Shin mesopic model was implemented. In this regard, the inverse of the Shin model

was derived for use in compensating for color deviations on dimmed displays (to

the mesopic range). The proposed method is a practical approach for perceptually

rendering dark images and compensating for color deviations imposed by the human

visual system while viewing a dim display. This algorithm was assessed quantita-

tively. Our method was able to roughly reduce the ΔEc
94 measure and expand the

gamut area of simulated perceived images by the factor of two, compared to the

unprocessed images.

To sum up, the results of this study will enable us to attain other objectives

of primary concern in the machine vision research, e.g. developing image quality

measures, introducing efficient denoising algorithms, developing realistic color noise

perception models, addressing mesopic and scotopic conditions in current digital

cameras and developing new tone mapping algorithms for rendering color images

perceived more naturally.

6.1 Contributions

The contributions of this thesis are as follows:

1. Development of a photon-accurate model of cone photoreceptor responses for

use in studying cone signals close to the absolute threshold of the visual system
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(a) It is shown that close to the absolute threshold of the visual system, cone

responses become noisy and the distribution of the chromaticity represen-

tation of cone responses form an elliptical shape over time.

(b) It is demonstrated that the spectral composition of light falling on cones

affects the size and orientation of the ellipses fitted to the distribution of

the chromaticity representation of the cone responses.

2. Development of a photon-accurate image sensor model to analyse the color

measurement at low light levels

(a) photon noise, read noise, and quantization error as shown to lead to uncer-

tain measurements distributed around the noise free measurements; and

the chromaticity of these noisy samples are distributed in a cloud that can

be well-fit to an elliptical region in the xy-chromaticity diagram.

(b) It is shown that, even for an ideal image sensor, in scotopic conditions,

obtaining stable measurements of color is impossible due to the physical

limitation imposed by the fluctuations in the photon emission rate

(c) It is demonstrated that, as compared to the chromaticity of noise-free

measurements, dark current shifts the chromaticity of measured samples

towards the chromaticity of the camera black point in the xy-chromaticity

diagram. The amount of this shift depends on the light levels; the lower

the luminance is, the larger the amount of the shift would be.

(d) It is shown that dark current dominates the other sensor noise types in

the image sensor.
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3. Development of a maximum entropy spectral modeling approach to mesopic

vision

(a) Evaluation of existing mesopic vision models

(b) Unification of photopic, mesopic, and scotopic vision models in the spec-

tral theory of color vision

(c) The first mesopic vision model which takes noise into account is presented

(d) Incorporating the recent CIE system for mesopic photometry in a color

vision model

4. Development of a color retargeting approach for mesopic vision to serve image

rendering algorithms

(a) application of the Shin CAM to real world images,

(b) derivation of the inverse of Shin’s mesopic color appearance model,

(c) development of a color retargeting approach based on Shin’s model,

(d) development of a technique for perceptual rendering of images and com-

pensating color deviations imposed by the human visual system while

viewing a dimmed display in the dark.

6.2 Future Work

In this section, some prospective extensions of the proposed research in this

thesis are introduced.

6.2.1 Applying the Spectral Mesopic Color Vision Model to Real World
Images

The spectral theory of color vision for mesopic vision has several benefits over

the empirical models of mesopic vision, as we mentioned in Chapter 5. However,

this method is proposed and evaluated for color patches, and it should be extended
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according to the image appearance modeling framework for spatially complex stimuli

to be appropriate for real world images [127]. Moreover, the adapting white point

and the background and surround adaptation mechanisms should be incorporated in

the model.

6.2.2 Spectral Color Appearance Model and Spectral Color Difference
Metric for Image Quality Assessment

It is indicated in [127] that, so far, color difference measurement and color

appearance modeling are treated separately; however, these two subjects should

be unified because the color difference between two samples should be measured

according to their perceptual attributes, which should be given by color appearance

models.

As mentioned before, existing color difference formulae are not appropriate for

low light levels. As an example, assume that two Munsell color patches of green and

blue hues with the same Value (lightness) and Chroma are viewed under photopic

conditions, and any of the introduced color difference formulae are able to distinguish

between the perception of the two patches. When the luminance value falls off, the

perceptual difference between the two becomes less noticeable, although the outputs

of the color difference formulae remain still the same as those of the photopic situa-

tion. We may address this problem in two ways: first, the spectral color appearance

model can be leveraged to take the luminance-induced effects on color perception

into account; second, developing a new spectral color difference formula.

In the first approach, which is the simplest way of addressing the problem, given

an image at any arbitrary light level, we can derive its perceived simulated image for

photopic conditions using the color appearance model. After deriving the perceived
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simulated images (for photopic conditions) from the reference and test image, we can

apply the normal color difference formula based on the CIE Lab color space. The

same procedure can be used for evaluating color noise in images and single patches.

In the second approach, a perceptual spectral color difference metric should

be developed. This approach will introduce a new metric for calculating the color

difference assuming that the spectral power distribution associated with each pixel

is available or it can be estimated somehow. In this regards, we can use the spectral

model introduced in Section 5.1.1, which is capable of taking the luminance-induced

perceptual effects on the color difference formula into account.

The spectral power distribution can be estimated using the maximum entropy

based spectral theory of color perception introduced in Section 5.1.1. Then, a color

difference formula should be introduced based on the obtained spectral representation

of color patches. Such a color difference formula can be superior over conventional

color difference metrics in terms of precision, because in the process of projecting a

high dimensional quantity into a lower dimensional space, we may lose considerable

information. Using spectral estimation, we can retrieve a part of the lost information

and base our prospective color difference measure in the high dimensional estimated

spectral power distribution. The main assumption of this theory is that a metameric

estimation of the true spectra can be obtained using the maximum entropy approach.

Two possible choices for the color difference formula (based on the true spectra

or estimated spectra) are the Kullback-Leibler divergence, which is non-symmetric,

or the Jeffreys divergence, which is a symmetric measure. The Kullback-Leibler
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divergence is given by:

DKL(p̂(θtest, λ)||p̂(θref, λ)) =
∫
Λ

p̂(θtest, λ) ln(
p̂(θtest, λ)

p̂(θref, λ)
)dλ (6.1)

where p̂(θtest, λ) and p̂(θref, λ)) are the estimated spectral power distribution of the

test and reference image, respectively. The Jeffreys divergence can be defined as the

sum of two divergences: one between p̂(θtest, λ) and p̂(θref, λ)) and the other between

p̂(θref, λ)) and p̂(θtest, λ).

DJeffreys(p̂(θtest, λ)||p̂(θref, λ)) = DKL(p̂(θtest, λ)||p̂(θref, λ)) +DKL(p̂(θref, λ)||p̂(θtest, λ))
(6.2)

However, the introduced divergences need to be modified to meet all the required

specifications of a perceptual color difference metric. After defining a spectral color

difference formula, such a measure can be substituted for the CIEDE2000 color

difference in the S-CIELab method, and gives rise to a more promising image quality

assessment metric that works for different lighting conditions.

We believe that this approach will provide a better framework for addressing

the concept of perceptual color difference metric, because it is capable of taking

luminance and noise into account in the color appearance modelling, while most of

conventional CAMs are only valid for noise free photopic situations.

6.2.3 Image Sensor Modeling

Chapter 4 can be further extended by incorporating the exposure time and ISO

setting parameters into the model and then a set of optimal adjustments for the
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camera can be derived for different lighting conditions. These optimal adjustments

will enable photographers to get output images with the highest SNR values.

6.2.4 The Mesopic Color Retargeting Approach

Plans for future extensions of the color retargeting approach in Chapter 5 in-

clude: first, to incorporate the proposed framework into the existing image retar-

geting techniques such as [2]; second, evaluating our algorithm in a subjective ex-

periment and comparing it with a larger set of existing methods; third, addressing

limitations of this model by taking into account the chromatic adaptation and sur-

round effect in the human visual system.

6.2.5 Noise-aware Perceptual Tone Mapping Operator for Dark Images

It is pointed out in [146] that most of the existing tone mapping operators may

amplify noise in the images, and dark regions of images are more prone to noise.

Hence, tone mapping operators should also be aware of noise in the images and

avoid boosting noise in the process of tone mapping. On the other hand, a tone

mapping operator is expected to preserve the perceptual fidelity of the image, i.e.

the output of the tone mapping technique should resemble the original scene as

it is perceived by a human observer. Usually tone mapping operators are applied

to the achromatic channel of images, but they also may impose some unwanted

color changes to the output image. These color changes should be corrected using a

separate color correction algorithm.

Getting a realistic output image from a tone mapping operator is contingent to

bringing the three topics of CAM, tone mapping techniques and denoising algorithms
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together. We quote again from Reinhard: “Color appearance models and tone map-

ping operators are the two sides of the same coin.” Most tone mapping operators

can not perform very well over low light images. Moreover, most color appearance

models are developed for photopic conditions. A thorough color appearance model

that can cover the entire range of the human visual system can help tone mappers to

avoid imposing unwanted color changes. We could also combine our spectral mesopic

color vision model, which is able to address measurement noise, with a tone mapping

operator or be integrated with a tone mapper such as iCAM06.

6.2.6 Chromatic Denoising and Image Enhancement Operator for Low
Light Images

The human visual system is shown to be more sensitive to achromatic noise

compared with chromatic noise. However, the results of Chapters 3 and 4 depict

the significance of chromatic noise in dark images. The chromatic noise at low light

conditions can be captured by the image sensor, and it will be noticeable when the

captured image is viewed in photopic conditions. This issue highlights the importance

of removing chromatic noise from dark images.

Dark noise pushes the original chromaticity of the image toward the white point.

Equation 4.23 indicates that the chromaticity of the noise-free sample, measured

sample and dark current are aligned along the line connecting the noise free sample

to the noise. The measured sample’s amount of deviation from the noise free sample

is determined by the α factor in Eq. 4.23 which is a function of the signal to noise

ratio.

Dark noise is bounded in a region that encapsulates the white point in the

chromaticity diagram, as shown in Fig. 4–9. However, other noise types do not
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necessarily lead to physically realizable chromaticity values. Image noise can be

estimated as the sum of expected values of four temporal noises: dark noise, photon

shot noise, read noise and quantization noise. Among these forms of noise, the first

two are of non-zero mean, and the last two have zero mean.

Chromatic denoising methods are few in number in the literature; among them,

the Lucchese and Mitra chromatic filter for color images has gained the most atten-

tion [61]. This filter can work either in the u’v’Y or xyY space, and is based on the

center of gravity law of additive color mixtures. However, this model presumes the

noise in the image has zero mean and therefore cannot address noises with Poisson

distribution. Hence, the work presented in Chapter 4 can be extended by introducing

a chromatic denoising operator for low light images.

150



References

[1] A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of
mesopic vision and luminous efficiency,” Ophthalmic and Physiological Optics,
vol. 26, no. 3, pp. 225–239, 2006.

[2] R. Wanat and R. K. Mantiuk, “Simulating and compensating changes in ap-
pearance between day and night vision,” Proceedings of SIGGRAPH 2014,
vol. 33, pp. 147:1–147:12, 2014.

[3] D. Cao, “Color vision and night vision,” Retina, pp. 285–299, 2012.

[4] W. Bialek, Biophysics: searching for principles. Princeton University Press,
2012.

[5] W. Brown and D. MacAdam, “Visual sensitivities to combined chromaticity
and luminance differences,” JOSA, vol. 39, no. 10, pp. 808–823, 1949.

[6] A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle-
and long-wavelength-sensitive cones derived from measurements in observers
of known genotype,” Vision research, vol. 40, no. 13, pp. 1711–1737, 2000.

[7] M. Rezagholizadeh, T. Akhavan, A. Soudi, H. Kaufmann, and J. J. Clark,
“A retargeting approach for mesopic vision: Simulation and compensation,”
Journal of Imaging Science and Technology, vol. 60, no. 1, pp. 10 410–1, 2016.

[8] M. Rezagholizadeh and J. J. Clark, “Maximum entropy spectral modeling ap-
proach to mesopic tone mapping,” in Color and Imaging Conference, no. 1.
Society for Imaging Science and Technology, 2013, pp. 154–159.

[9] M. P. Lucassen, P. Bijl, and J. Roelofsen, “The perception of static colored
noise: detection and masking described by CIE94,” Color Research & Appli-
cation, vol. 33, no. 3, pp. 178–191, 2008.

[10] K. Blankenbach, A. Sycev, S. Kurbatfinski, and M. Zobl, “Optimizing and
evaluating new automotive hmi image enhancement algorithms under bright

151



152

light conditions using display reflectance characteristics,” Journal of the Society
for Information Display, vol. 22, no. 5, pp. 267–279, 2014.

[11] A.-M. Chang, D. Aeschbach, J. F. Duffy, and C. A. Czeisler, “Evening use
of light-emitting ereaders negatively affects sleep, circadian timing, and next-
morning alertness,” Proceedings of the National Academy of Sciences, vol. 112,
no. 4, pp. 1232–1237, 2015.

[12] D. Wueller, “Low light performance of digital still cameras,” in Proc. SPIE,
vol. 8667. International Society for Optics and Photonics, 2013, pp. 86 671H–
86 671H–9.

[13] A. Agah, A. Hassibi, J. D. Plummer, and P. B. Griffin, “Design requirements for
integrated biosensor arrays,” in Proc. SPIE, vol. 5699. International Society
for Optics and Photonics, 2005, pp. 403–413.

[14] M. Nuutinen, O. Orenius, T. Saamanen, and P. Oittinen, “A reduced-reference
method for characterizing color noise in natural images captured by digital
cameras,” in Color and Imaging Conference. Society for Imaging Science and
Technology, 2010, pp. 80–85.

[15] M. Rezagholizadeh and J. J. Clark, “Photon detection and color perception
at low light levels,” in Computer and Robot Vision (CRV), 2014 Canadian
Conference on. IEEE, 2014, pp. 283–290.

[16] J. J. Clark and S. Skaff, “A spectral theory of color perception,” JOSA A,
vol. 26, no. 12, pp. 2488–2502, 2009.

[17] T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut
reproduced by six-primary projection display,” in Electronic Imaging. Inter-
national Society for Optics and Photonics, 2000, pp. 130–137.

[18] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic voltage scal-
ing of oled displays,” in Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE. IEEE, 2011, pp. 53–58.
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