
Critical and Supercritical Scaling
Limits of Random Forests

with Prescribed Degree Sequences

Tao Lei

Doctor of Philosophy

Department of Mathematics and Statistics

McGill University

Montréal, Québec

2018-03-16

A thesis submitted to McGill University in partial fulfilment of
the requirements for the degree of Doctor of Philosophy

©Tao Lei 2018



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis supervisor, Professor Louigi

Addario-Berry, who patiently guided me through my Ph.D. program. He introduced

me to the world of random graphs. Without him, this work will never materialize.

I would also like to thank members of the probability group at McGill University,

in particular, Professor Linan Chen, Professor Luc Devorye and Professor Bruce

Reed. I also appreciate the staffs at department of mathematics and statistics at

McGill. I thank Professor James Martin and Professor Linan Chen for examining

my thesis. They provided many helpful suggestions which improved the quality of

the final version of the thesis.

My study was partially supported by NSERC CGS and by Schulich fellowship.

I thank them for the generous financial support.

I would also like to thank my friends and fellow math students at McGill, in

particular, Xiangwen Zhang, Eslava Laura, Luiz Takei, Siyuan Lu, Yuting Wen,

Xianchao Wu, Shaodong Wang and Brody Causley for enlightening conversations,

baked in everyday life.

I thank my parents for their unconditional love and support. Their support are

critical for me. And finally I would like to dedicate this work to my beloved wife,

Yishu, for her faith and love in me, and our time together at McGill.

In China, twelve years form a cycle (e.g. Chinese zodiac). It has been a cycle

since I came to Canada to pursue graduate studies. I sincerely thank everyone

involved in this cycle of my life and look forward to the next chapter of the journey.

ii



ABSTRACT

In this paper, we consider random plane forests uniformly drawn from all pos-

sible plane forests with a given degree sequence. Under suitable conditions on the

degree sequences, we consider the possible scaling limits, with respect to the Gromov-

Hausdorff-Prokhorov topology, of a sequence of such forests as the number of vertices

tends to infinity. This work falls into the general framework of showing convergence

of random combinatorial structures to certain Gromov-Hausdorff scaling limits, de-

scribed in terms of the Brownian Continuum Random Tree (BCRT), pioneered by

the work of Aldous [6, 7, 8]. We study the scaling limit in two regimes: critical

and supercritical. In the critical regime we identify the limiting random object as a

sequence of random real trees encoded by excursions of some first passage bridges

reflected at their minima. We establish such convergence by studying the associated

Lukasiewicz walk of the degree sequences. In the supercritical regime, where there is

a unique “giant tree” containing all but a vanishing fraction of the nodes, we give a

description of the limit of the forest of “small trees” obtained by removing the giant

tree. We accomplish this by relating plane forests to marked cyclic forests and the

corresponding lattice paths. Our work is closely related to and uses the results from

the recent work of Broutin and Marckert [20] on scaling limit of random trees with

prescribed degree sequences.
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ABRÉGÉ

Dans cet article, nous considérons les forêts planes aléatoires tirées uniformé-

ment de toutes les forêts planes possibles avec une séquence de degrés donnée. Dans

des conditions appropriées sur les séquences de degrés, nous considérons les limites

d’échelle possibles, par rapport à la topologie de Gromov-Hausdorff-Prokhorov, d’une

séquence de telles forêts, lorsque le nombre de sommets tend vers l’infini. Ce travail

s’inscrit dans le cadre général de la preuve de la convergence de structures com-

binatoires aléatoires à certaines limites d’échelle de Gromov-Hausdorff, décrites en

termes de l’arbre aléatoire continu brownien (AACB) introduit par Aldous [6, 7, 8].

Nous étudions la limite d’échelle dans deux régimes: critique et supercritique. Dan-

s le régime critique, nous identifions l’objet aléatoire limitant comme une séquence

d’arbres réels aléatoires codés par des excursions de certains ponts de premier passage

réfléchis à leurs minimas. Nous établissons cette convergence en étudiant la marche

de Lukasiewicz associée aux séquences de degrés. Dans le régime supercritique, où il y

a un «arbre géant» unique contenant tout sauf une fraction disparaissant des nœud-

s, nous donnons une description de la limite de la forêt de «petits arbres» obtenue

en enlevant l’arbre géant. Nous réalisons ceci en reliant les forêts planes aux forêt-

s cycliques marquées et aux processus de codage correspondants. Notre travail est

étroitement lié au travail récent de Broutin et Marckert [20] sur la limite d’échelle des

arbres aléatoires avec des séquences de degrés prescrits, et s’appuie sur ces derniers.
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CHAPTER 1
Introduction

1.1 Introduction

In this thesis, we work on the problem of characterizing the scaling limits of

uniformly random plane forests with prescribed sequences in different regimes.

In a lot of cases, real-world networks can be viewed as graphs. For example,

the world-wide-web (WWW), where vertices are the webpages and edges are the

hyperlinks between webpages. A social network is another example of a graph, where

each person is a vertex and the friendship relation defines the edge between vertices.

All these graphs are of enormous size and keep evolving. Hence an appropriate way

to model these networks is graph-valued random process. This leads to the study of

random graphs, which goes back to the seminal papers [30, 31] by Erdös and Rényi

where they studied the binomial random graph models G(n, p) and G(n,m). Since

then a lot of work has been carried out in this field.

Since we need to understand graphs of large size, it is natural to raise questions

about “limits” of graphs. Convergence of finite graphs is an area at the intersec-

tion of combinatorics and probability. Convergence theorems are results about the

asymptotic structures of sequences of graphs where the size of the graphs tends to

infinity along the sequence. There are several different directions in this area, which

capture different asymptotic properties of the graph. In the “dense” regime, Lovász

and Szegedy [50, 49] introduced the concept of graphons and used the cut metric [19]
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as a key tool to implement the idea of graph limits, making links to Szemerédi’s

regularity lemma. In the “sparse” regime, there is the notion of local weak conver-

gence initiated by Benjamini and Schramm [13]. A third approach is to consider the

Gromov-Hausdorff convergence of the graphs, which is related to the global metric

space structure of the graphs. In this work, we take the last approach to study the

scaling limit of large random forests.

In the field of Gromov-Hausdorff limits of random graphs, one important body

of work is on scaling limits of random trees. Seminal results in this area were proved

in Aldous’s trilogy of papers [6, 7, 8] in 1990’s. Since then, people started considering

the combinatorial structure as a metric space (giving each edge length 1) and tried

finding limit random metric space under suitably scaling. Aldous in particular proved

that if (Tn, n ≥ 1) is a sequence of trees, with Tn uniformly drawn from nn−1 trees

on n labelled vertices, then after scaling by n1/2, the sequence converge in distribu-

tion to a random compact metric space, called Brownian Continuum Random Tree

(BCRT). Since then, a large class of random tree models have been shown to have the

BCRT as scaling limits which showcases the universality of BCRT: e.g. critical mul-

titype Galton-Watson trees [56], unordered binary trees [52], uniformly unordered

trees [36], random trees with a prescribed degree sequences satisfying certain con-

ditions [20] and uniform unlabelled unrooted trees [65]. Moreover, classical random

graph models, such as the famous Erdös-Rényi random graph model, have also been

shown to have Gromov-Hausdorff scaling limits, which can be described in terms of

BCRT. For example, in the works [5, 4] by Addario-Berry, Broutin and Goldschmidt,

they showed that the scaling limit of critical Erdös-Rényi random graph consists of

2



rescaled BCRT’s glued together at a finite number of points. More and more evi-

dence have convinced the central role of BCRT in this field. More universality results

about other random graphs and random discrete structures are also proved, such as

random graphs from sub-critical classes [58], random dissections [25], random pla-

nar maps with a unique large face [41] and random planar quadrangulations with a

boundary [16].

The objective of this thesis is to investigate Gromov-Hausdorff convergence for

combinatorial models of random forests. In particular, my focus is the asymptotic

metric structure of random forests, uniformly drawn from all plane forests with a

prescribed degree sequence. This is motivated by the metric structure of graphs

with a prescribed degree sequence, introduced by Bender and Canfield [12] and by

Bollobás [18] in the form of the configuration model. This model can give rise to

graphs with any particular (legitimate) prescribed degree sequence (e.g. heavy tailed

degree distributions, observed in realistic network, but a feature not grasped by the

Erdös-Rényi random graph model). This flexibility is perhaps why the “degree-

sequence” models have become very popular and found use in diverse areas such as

food webs [64], opinion dynamics [69], economic network effects [66] and academic

career trajectories [51], giving one of the motives to our work. A brief history of the

application of configuration model can be found in Section 1.4 of [35].

More precisely, the work of this thesis is a natural continuation and generaliza-

tion of the work [20] by Broutin and Marckert, where they studied the asymptotic

behavior of a tree chosen uniformly at random amongst the set of rooted plane trees

with a prescribed degree sequence. They showed that under natural assumptions on
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the degree sequences and with suitable scaling, the random trees converge toward

the BCRT. The authors predict that their work is a first step to setting up invariance

principles for critical random graphs with a prescribed degree sequence, and our work

can be viewed as one step in that direction.

The model studied in [20] and hence in this work is related to Galton-Watson

trees [11, 38], (which is closely related to simply generated trees in the combinatorics

literature), by conditioning on observing the prescribed degree sequence. In sec-

tion 1.4.2 we will illustrate the concept of simply generated trees and a few examples

of this class. An excellent survey of existing work, and more examples, can be found

in [40]. The combinatorial approach often involves representing quantities of interest

as coefficients of power series, and applying analytic tools [27, 34] such as singularity

analysis or saddle-point methods to obtain the limit. With the more probabilistic

approach, a lot of related work were done by Pavlov and summarized in [59]. In par-

ticular, he considered a random forest FN,n consisting of N simply generated random

trees and n non-root vertices. He computed [60] the limit behavior of the maximum

size of a tree in FN,n under different assumptions of relationships between N and n.

To do this, he exploited the connection between FN,n and Galton-Watson process

with N initial particles and found integral and local convergence of the distributions

of sums of certain auxiliary independent random variables. We will present related

work in this direction in more detail in Section 1.4.4.

Instead of focusing on random quantities such as the size of the largest tree, we

aim to push the probabilistic approach further and view random forest as random
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metric space and prove certain weak convergence of stochastic processes. The con-

vergence of interesting quantities will then be read off from the convergence of the

processes. Establishing such convergence results often uses some functional encod-

ing of the discrete structure under investigation. We will illustrate several common

coding functions when dealing with limits of graphs in Section 1.2.2.

Other forest models have also been studied in the literature. For example,

Luczak and Pittel [44] studied forest F(n,M), chosen uniformly from the family

of all labelled unrooted forests with n vertices and M edges. They showed that

this model exhibited three regimes of asymptotic behavior: subcritical, nearcritical

and supercritical and the phase transition happened at M = n/2, just like Erdös-

Rényi random graph G(n,M). For each of the phases, they determined the limit

distribution of the size of the k-th largest component of F(n,M). Along this direction

very recently Martin and Yeo [53] gave a full description of the scaling limit of the

largest component of F(n,M) inside the critical window M = n/2 +O(n2/3).

1.2 Notations of trees and forests

1.2.1 Plane trees and forests

We recall the following definition of plane trees (as in e.g. [28]). Let

U =
∞⋃
n=0

Nn,

where N = {1, 2, · · · } and N0 = {∅}. If u = (u1, u2, · · · , un) ∈ U we write u =

u1u2 · · · un for short and let |u| = n be the generation of u, or the height of u. If

u = u1 · · · um, v = v1 · · · vn, we write uv = u1 · · · umv1 · · · vn for the concatenation of

u and v.
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Definition 1.2.1. A rooted plane tree T is a subset of U satisfying the following

conditions:

(i) ∅ ∈ T;

(ii) If v ∈ T and v = uj for some u ∈ U and j ∈ N, then u ∈ T;

(iii) For every u ∈ T, there exists a number kT(u) ≥ 0 such that uj ∈ T if and

only if 1 ≤ j ≤ kT(u). We call kT(u) the degree of u in T.

We denote the lexicographic order on U by < (e.g. ∅ < 11 < 21 < 22). The

lexicographic order on U induces a total order on the set of all rooted plane trees.

We call a finite sequence of finite rooted plane trees F = (T1,T2, · · · ,Tm) a

rooted plane forest. For a forest F, we let F↓ be the sequence of tree components of

F in decreasing order of size, breaking ties lexicographically.

Degree sequence

Definition 1.2.2. A degree sequence is a sequence s = (s(i), i ≥ 0) of non-negative

integers with
∑
i≥0

s(i) <∞ such that c(s) :=
∑
i≥0

(1− i)s(i) > 0. For a plane tree T, the

degree sequence s(T) = (s(i)(T), i ≥ 0) is given by

s(i)(T) = |{u ∈ T : kT(u) = i}|.

For a plane forest F = (T1, · · · ,Tm), the degree sequence s(F) = (s(i)(F), i ≥ 0)

is given by

s(i)(F) =
m∑
j=1

s(i)(Tj).

Note that c(s(T)) = 1 for any plane tree T. In general since

∑
i≥0

is(i)(F) =
m∑
j=1

∑
u∈Tj

kTj
(u) =

m∑
j=1

(|Tj| − 1)
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and
∑
i≥0

s(i)(F) =
m∑
j=1

|Tj|, the number of tree components in F is always c(s(F)). For

any degree sequence s, we adopt the notations

|s| :=
∑
i≥0

s(i), Δ(s) := max{i : s(i) > 0}.

Figure 1–1, below, shows a plane forest with degree sequence s = (7, 2, 2, 1, 0, · · · )

with s(i) = 0 for i ≥ 4.

Figure 1–1: A plane forest (with labels for the first tree) with degree sequence s =
(7, 2, 2, 1, 0, · · · )

1.2.2 Codings of trees and forests

To study the structure of plane trees and plane forests, it is common to instead

study some related coding functions of the discrete structure. In this section, we

introduce several commonly used coding functions of plane trees and plane forests.

Height process

For a rooted plane tree T , list the vertices of T in the lexicographic order as

u1, u2, . . . , u|T |. Define the height process of T as the function H : [0, |T | − 1] → R+

such that for integer k, H(k) = |uk+1| and the process at non-integer times is defined

by linear interpolation. For a forest F = (T1, . . . , Tn), the height process of F will

7



be the concatenated height processes of T1, . . . , Tn. In Figure 1–2 we have the height

process of the first tree component of the forest in Figure 1–1.p g

Figure 1–2: The height process of the first tree in Figure 1–1

Contour process

Let T be a rooted plane tree and view each edge of T as an interval of unit

length. Imagine that a particle moves along the edges of T with unit speed, starting

from the root at time 0. Each time the particle leaves a vertex u, it moves to the

lexicographically next unvisited child of u, if such a child exists; otherwise it moves

back to the parent of u. The exploration concludes the moment the particle has

visited all vertices and returned to the root. Let C(t) be the graph distance between

the particle and the root at time t. Then C : [0, 2(|T | − 1)]→ R+ defines a function

and is called the contour process of T . This is also referred as Harris Walk [37]

or Dyck path [63]. For a forest, the contour process is simply the concatenation of

individual contour processes for each tree. In Figure 1–3 we have the contour process

of the first tree component of the forest in Figure 1–1.

8



Figure 1–3: The contour process of the first tree in Figure 1–1

Depth-first walk

Let T be a finite tree and let u1, u2, . . . , u|T | be the vertices of T listed in lexico-

graphic order. The depth-first walk (or Lukasiewicz path) W(T ) = {Wi(T ) : 0 ≤ i ≤

|T |} of T is defined by setting W0(T ) = 0, and for 0 ≤ i ≤ |T | − 1, letting

Wi+1(T ) =Wi(T ) + kT (ui+1)− 1.

When the context is clear, sometimes we omit the argument T for simplicity. Without

confusion, sometimes we viewW(T ) as a function defined on [0, |T |] where the values

of the function at non-integer values are defined by linear interpolation. In Figure 1–4

we have the depth-first walk of the first tree component of the forest in Figure 1–1.

It is easy to see that for a rooted plane tree T , the depth-first walkW(T ) satisfies

the following properties:

• W0 = 0,W|T | = −1;

• Wi ≥ 0 for every 0 ≤ i ≤ |T | − 1;

• Wi −Wi−1 ≥ −1 for every 1 ≤ i ≤ |T |.

In particular, this implies that

|T | = inf{0 ≤ i ≤ |T | :Wi = −1}.

9



Figure 1–4: The depth-first walk of the first tree in Figure 1–1

In general, for a forest F = (T1, · · · , Tn), we list the vertices of F as u1, . . . , u|F |

by first listing the vertices of T1 in lexicographic order, then the vertices of T2 in

lexicographic order, and so on. Then the same definition gives the depth-first walk

W(F ) of F . We always have W0(F ) = 0,W|F |(F ) = −n and for any integer 1 ≤ j ≤

n,

inf{l :Wl(F ) = −j} = |T1|+ · · ·+ |Tj|.

These coding functions often have similar asymptotic behaviour (with slightly

different scalings), in the setting of random forests. Sometimes one coding function

may be more directly related to the functionals under consideration (e.g. the metric

structure is easily read off from the contour function) while other coding function

(e.g. the depth-first walk) is more suitable for proving convergence theorem by ap-

plying Donsker’s Theorem [17] or martingale techniques. For example, the following

result showed that upon scaling, the concatenated contour processes of a sequence of

infinitely many i.i.d. Galton-Watson trees converges to a reflected Brownian motion.
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Theorem 1.2.3 ([46], Theorem 6.5 in [61]). Let (C(t), t ≥ 0) be the continuous path

obtained by concatenation of the contour processes of an infinite independent and

identically distributed sequence of critical Galton-Watson trees with finite non-zero

offspring variance σ2. Then as n→∞,(
C(2nt)√

n
, t ≥ 0

)
d→

(
2

σ
|Bt|, t ≥ 0

)
in the sense of weak convergence in C[0,∞), where B is a standard Brownian motion.

In [46], Theorem 1.2.3 was proved by using standard results for depth-first walk

and then relating the contour process to the depth-first walk. The height process

was used as an intermediary in this comparison.

1.3 Our forest models and summary of main results

For any degree sequence s = (s(i), i ≥ 0), we let T(s) denote the set of all plane

trees with degree sequence s and F(s) denote the set of all plane forests with degree

sequence s. Let Ps be the uniform measure on T(s) and let T(s) be a random plane

tree with law Ps. Let Qs be the uniform measure on F(s) and let F(s) be a random

plane forest with law Qs. T(s) is called the random tree with degree sequence s.

This model is studied in [20] where it is shown that under reasonable conditions on

degree sequences and suitable scaling, T(s) converges to T , the Brownian continuum

random tree. Similarly, we call F(s) the random forest with degree sequence s. This

is the model we are going to study in this work.

Summary of main results

In this subsection we summarize the main results we obtained to give a better

idea for comparison when reading the works of Janson [40] and Pavlov [59], which
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we are going to introduce in Section 1.4. The introduction of some of the concepts

needed to make these statements rigorous and meaningful is postponed to Chapter 2.

In this work we consider a sequence of degree sequences (sn, n ∈ N), where

sn = (s
(i)
n , i ≥ 0). We assume |sn| = n. We only need this assumption for the

easiness of notation. In general our results are still valid (if the degree sequences are

indexed by κ) as long as |sκ| → ∞ as κ→∞ and with |sκ| in place of n.

For any probability distribution p = (p(i), i ≥ 0) on N0 := N ∪ {0}, let μ(p) =∑
i≥0

ip(i) and σ2(p) =
∑
i≥0

i2p(i) − 1. Let Fn := F(sn) and write F↓n = (Tn,l, l ≥ 1). We

write pn = (p
(i)
n , i ≥ 0) := ( s

(i)
n

n
, i ≥ 0). For F↓n = (Tn,l, l ≥ 1), let Tn,l denote the

measured rooted real tree

Tn,l =
(
Tn,l,

σ(pn)

2n1/2
dgr, ∅n,l, μn,l

)
where μn,l denotes the uniform measure putting mass 1

n
on each vertex of Tn,l, dgr

denotes the graph distance and ∅n,l denotes the root of Tn,l. Let

F↓n = (Tn,l, l ≥ 1).

Let Δn := Δ(sn) = max{i : s
(i)
n > 0}. Later in the work we sometimes write

cn := c(sn), σn := σ(pn) for simpler notations.

Now we are ready to state our main theorems in the case of c(sn) = Θ(n1/2).

Theorem 1.3.1. Suppose that there exists a distribution p = (p(i), i ≥ 0) on N0 such

that pn converges to p coordinatewise. Suppose also that σ(pn)→ σ(p) ∈ (0,∞). If
c(sn)

σ(pn)n1/2 → λ ∈ (0,∞), then

F↓n
d−→ (Tγl , l ≥ 1) as n→∞, (1.3.1)

12



with respect to the product topology for dGHP where (γl, l ≥ 1) are the excursions of

the process (F br
λ (s)− inf

s′∈(0,s)
F br
λ (s′))0≤s≤1, listed in decreasing order of length.

Note that we postpone the rigorous description of Gromov-Hausdorff-Prokhorov

convergence and function encodings of real trees (the construction of Tγl) to Chap-

ter 2. The definition of first passage bridge F br
λ will be given in Section 3.1.

Theorem 1.3.2. Under the conditions of Theorem 1.3.1, suppose additionally that

there exists ε > 0 such that Δn = O(n
1−ε
2 ). Then the convergence (1.3.1) holds in

(L∞, d∞GHP ).

Note that in proving these two theorems, we also prove the following convergence

of the sizes of tree components (Tn,l, l ≥ 1). Let

l↓1 = {x = (x1, x2, · · · ) : x1 ≥ x2 ≥ · · · ≥ 0,
∑
i

xi ≤ 1}

and endow l↓1 with the topology induced by the l1 distance: d(x, y) =
∑
i

|xi − yi|.

Proposition 1.3.3. Under the hypothesises of Theorem 1.3.1, we have

(|Tn,l|/n)l≥1 d→ (|γl|)l≥1 (1.3.2)

in l↓1, where (γl, l ≥ 1) are the excursions of F br
λ (s)− min

0≤s′≤s
F br
λ (s′) ranked in decreasing

order of length.

Next we state our result in the regime of c(sn) = o(n1/2). As before we let

Fn = F(sn) be the uniform plane forest with given degree sequence and let F↓n :=

(Tn,l, l ≥ 1) be the decreasing reordering of Fn. Let

Tn,1 =
(
Tn,1,

σ(pn)

2n1/2
dgr, ∅n,1, μn,1

)

13



be the real tree where μn,1 denotes the measure putting mass 1
n

on each vertex of

Tn,1. For l ≥ 2, we let

T̂n,l =
(
Tn,l,

σ(pn)

2cn
dgr, ∅n,l, μn,l

)
be the real tree where μn,l denotes the measure putting mass 1

c2n
on each vertex. Let

F̂n =
(
T̂n,l, 2 ≤ l ≤ cn

)
.

Let F be a forest of real trees encoded by excursions of Brownian motion. The

detailed construction of this limit F will be illustrated in Section 4.1. For standard

Brownian motion B and x ≥ 0, let τ(x) := inf(t : B(t) ≤ −x). We have the following

main theorem.

Theorem 1.3.4. Suppose that there exists a distribution p = (p(i), i ≥ 0) on N0

such that pn converges to p coordinatewise. Suppose also that σ(pn)→ σ := σ(p) ∈

(0,∞). If cn := c(sn) = o(n1/2), then(
Tn,1, F̂n,

n− |Tn,1|
c2n

)
d→

(
T ,F , τ

(
1

σ

))
where the first coordinate of the joint convergence is in the GHP sense, the second

coordinate is in the sense of coordinatewise GHP convergence, and T and F are

independent.

1.4 Motivations – conditioned Galton-Watson trees, simply generated
trees and related works

In this section, we review the concept of Galton-Watson tree and simply gen-

erated tree, both of which are random tree models motivating our work on random
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forests. Then we present existing results on simply generated random forests related

to our work.

1.4.1 Galton-Watson trees

Given any probability distribution (πi, i ≥ 0) on Z≥0 and let ξ be a random

variable with distribution (πi, i ≥ 0). Starting from the root, giving each node an

independent copy of ξ number of children. The realized tree T is called the Galton-

Watson tree (with offspring distribution (πi, i ≥ 0) (or ξ)). Let Eξ =
∞∑
i=0

iπi. We know

that [11] if Eξ ≤ 1 (subcritical or critical), then T is a finite tree with probability 1.

And if Eξ > 1 (supercritical), then T is infinite with positive probability.

The random tree T(s) is related to Galton-Watson tree by a simple conditioning.

Given a degree sequence s = (s(i), i ≥ 0), let T be the Galton-Watson tree with

offspring distribution (πi, i ≥ 0) where for any i ≥ 0, πi > 0 if s(i) > 0. Let T ′ be T

conditioned on s(T ) = s. Then for any fixed tree T with s(T ) = s,

P {T ′ = T} =
∏
i≥0

πs(i)

i ,

which does not depend on T . Hence T ′ is a uniformly random model, which must

be T(s).

1.4.2 Simply generated trees

Simply generated random tree is a random tree model which generalizes the

idea of Galton-Watson tree. This model was first introduced in [55]. Fix a weight

sequence w = (wi, i ≥ 0) of non-negative real numbers. For a finite tree T , the weight

of T is:

w(T ) =
∏
v∈T

wkT (v). (1.4.1)
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Trees with such weights are called simply generated trees. Let Tn be the collection

of all plane trees with n vertices. Let Tn be the random tree given by:

P {Tn = T} = w(T )

Zn

, T ∈ Tn

where Zn =
∑

T∈Tn

w(T ) is called the partition function. We call Tn the simply gener-

ated random tree with weight sequence w.

If w = (wk, k ≥ 0) is a probability distribution, that is,
∞∑
k=0

wk = 1, then if we

let T be the Galton-Watson tree with offspring distribution (wk, k ≥ 0), then for any

finite tree T ,

P {T = T} = w(T ) and Zn = P {|T | = n} .

Hence the simply generated random tree with w is just the Galton-Watson tree T

conditioned to have size n, which we denote as Tn. In fact as pointed out in [40], as

long as
∞∑
k=0

wkz
k < ∞ for some z > 0, the weight sequence w is equivalent to some

probability distribution. Hence simply generated random tree with weight w gives

rise to some conditioned Galton-Watson tree.

In [40] Janson gave a unified treatment of the limit of Tn and summarized the

previous work in detail. In particular, we would like to highlight the main limit

theorem for simply generated random trees there.

First, following Section 3 of [40], we collect a few useful pieces of notation. For

a fixed weight sequence w = (wk, k ≥ 0), we let

Φ(z) :=
∞∑
k=0

wkz
k

16



be the generating function of the given weight sequence and let

ρ := 1/ lim sup
k→∞

w
1/k
k ∈ [0,∞]

be the radius of convergence. For t such that Φ(t) <∞, define

Ψ(t) :=
tΦ′(t)
Φ(t)

=

∑∞
k=0 kwkt

k∑∞
k=0 wktk

.

Ψ(t) is defined and finite at least for 0 ≤ t < ρ and if Φ(ρ) < ∞, then Ψ(ρ) is still

defined with Ψ(ρ) ≤ ∞. Moreover, if Φ(ρ) =∞, we define Ψ(ρ) := limt↗ρ Ψ(t) ≤ ∞.

And we write ν := Ψ(ρ).

Next, following Section 5 of [40], we describe a construction of modified Galton-

Watson tree T̂ , which will be the limit tree of the theorem we are going to present.

Again let N0 = N ∪ {0} and let (πk, k ≥ 0) be a probability distribution on N0

and ξ be a random variable such that P {ξ = k} = πk, k ∈ N0. We assume that

μ := Eξ ≤ 1. Let ξ̂ be a random variable defined as

P
{
ξ̂ = k

}
:=

⎧⎪⎨⎪⎩ kπk, k = 0, 1, 2, · · ·

1− μ, k =∞

Then a modified Galton-Watson tree is defined as following (as in [43] and [42]).

There are two kinds of nodes: normal and special, with the root being special. For

normal nodes, they reproduce with offspring distribution ξ, while for special nodes,

they reproduce with offspring distribution ξ̂. For normal nodes and special nodes

with infinitely many children, their children are all normal. For a special node with

finite number of children, one of its uniformly chosen child is special, with all other
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children being normal. Since each special child has at most one special child, all

special nodes form a path from the root, which we call the spine of T̂ .

There are two cases for T̂ . When μ = 1, almost surely the special node has

finitely many children. Hence T̂ has an infinite spine. The tree T̂ is infinite but

locally finite. When μ < 1, for each special node, it has probability 1 − μ > 0

no special child. So the spine has almost surely finite length L, which follows a

geometric distribution Ge(1− μ). The spine ends with a special node with infinitely

many children, which we call an explosion. There are alternative ways of construction

T , details of which can be found in Section 5 of [40].

Finally we define a notion of (local) convergence for rooted plane trees. Let

(Tn, n ≥ 1) and T be rooted plane trees, which by definition are just certain subsets

of U . We denote Tn → T if for each u ∈ U : if u ∈ T , then u ∈ Tn for n large enough;

conversely, if u /∈ T , then u /∈ Tn for n large enough.

With these notations, definition of T̂ and notion of convergence, we are ready

to state one of the main results in [40].

Theorem 1.4.1 (Theorem 7.1 in [40]). Let w = (wk, k ≥ 0) be any weight sequence

with w0 > 0 and wk > 0 for some k ≥ 2. Let Tn be the simply generated random tree

with weight sequence w.

(i) If ν ≥ 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1.

(ii) If ν < 1, let τ := ρ.

In both cases, 0 ≤ τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
τ kwk

Φ(τ)
, k ≥ 0;
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then (πk, k ≥ 0) is a probability distribution, with expectation

μ = Ψ(τ) = min(ν, 1) ≤ 1

and variance σ2 = τΨ′(τ) ≤ ∞. Let T̂ be the infinite modified Galton-Watson tree

constructed before. Then Tn d→ T̂ as n→∞, in the topology mentioned before..

Furthermore, in case (i), μ = 1 (the critical case) and T̂ is locally finite with an

infinite spine; in case (ii), μ = ν < 1 (the subcritical case) and T̂ has a finite spine

ending with an explosion.

1.4.3 Balls-in-boxes model

In [40], Theorem 1.4.1 is proved by proving limit theorems for a model called

balls-in-boxes (see Section 11 of [40] for details). In this subsection we define this

model and present the limit theorem for this model as in [40].

Given integers m ≥ 0, n ≥ 1, considering the random allocation of m unlabelled

balls in n labelled boxes. The set of all possible allocations is

Bm,n = {(y1, . . . , yn) ∈ Nn
0 :

n∑
i=1

yi = m}.

Here yi is the number of balls in box i. Again we fix a weight sequence w = (wk, k ≥

0) and define the weight of an allocation y = (y1, . . . , yn) as:

w(y) =
n∏

i=1

wyi .

The random allocation Bm,n is chosen from Bm,n with probability proportional to its

weight:

P {Bm,n = y} = w(y)

Z(m,n)
, y ∈ Bm,n,
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where the partition function Zm,n =
∑

y∈Bm,n

w(y). This Bm,n is called the balls-in-boxes

model.

In [40] the author aims to describe the asymptotic distribution of Bm,n as n→

∞. For a weight sequence w, the support is supp(w) := {k : wk > 0}. Let

ω(w) := sup supp(w) = sup{k : wk > 0} ≤ ∞.

Janson considers the case when m/n → λ for some λ. Assume for simplicity that

0 ≤ λ < ω = ω(w). For any allocation y = (y1, . . . , yn) ∈ Nn
0 and any k ≥ 0, let

Nk(y) := |{i : yi = k}|.

Since Bm,n = (Y1, . . . , Yn) is exchangeable, the distribution of Bm,n is completely

determined by Nk(Bm,n) for k ∈ N0. The following theorem gives the asymptotic

behaviour of Nk(Bm,n).

Theorem 1.4.2 (Theorem 11.4 in [40]). Let w = (wk, k ≥ 0) be any weight sequence

with w0 > 0 and wk > 0 for some k ≥ 1. Suppose that n → ∞ and m = m(n) with

m/n→ λ with 0 ≤ λ < ω.

(i) If λ ≤ ν, let τ be the unique number in [0, ρ] such that Ψ(τ) = λ.

(ii) If λ > ν, let τ := ρ.

In both cases, 0 ≤ τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
wkτ

k

Φ(τ)
, k ≥ 0.
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Then (πk, k ≥ 0) is a probability distribution, with expectation μ = Ψ(τ) = min(λ, ν)

and variance σ2 = τΨ′(τ) ≤ ∞. Moreover, for every k ≥ 0,

Nk(Bm,n)
p→ πk.

Next we present the connection between this framework developed in [40] and

our random forest model F(s). This is partly explained as Example 12.8 in [40].

Simply generated forests and Galton-Watson forests. A simply generated

forest is a sequence (T1, . . . , Tn) of rooted trees with weight

w(T1, . . . , Tn) :=
n∏

i=1

w(Ti), (1.4.2)

where w(Ti) is given by (1.4.1), for some fixed weight sequence w. A simply generated

random forest with n trees and m nodes, where m > n are positive integers, is

such a forest chosen at random, with probability proportional to its weight. In the

special case n = 1, this is just the simply generated random tree defined before. In

general, for any n, a simply generated random forest (T1, · · · , Tn), conditioned on the

sizes (|T1|, . . . , |Tn|), is a sequence of independent simply generated random trees (all

defined by the same weight sequence w). And the sizes (|T1|, . . . , |Tn|) is a random

allocation Bm,n defined by the weight sequence (Zk, k ≥ 0), where Zk is the partition

function for simply generated random trees with weight sequence w. Hence the

simply generated random forest can be constructed from a two stage process: simply

generated random trees and balls-in-boxes model. For given n, we define a Galton-

Watson forest with n trees to be the sequence (T1, . . . , Tn) of n i.i.d. Galton-Watson

trees. In the case that the weight sequence w is a probability distribution, (1.4.2) is
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the same as the probability distribution of a Galton-Watson forest. Hence in this case

the simply generated random forest is the same as a Galton-Watson forest with n

trees conditioned on having m vertices.

Our random forest model F(s) can be viewed as a simply generated random

forest (with n nodes and c(s) trees) further conditioned to have degree sequence s.

Let w = (wi, i ≥ 0) be any weight sequence such that wi > 0 ⇐⇒ s(i) > 0. Since

for any forest F with degree sequence s, w(F ) =
∏

{i:s(i)>0}
ws(i)

i , which does not depend

the structure of F . Hence this gives a uniform probability to any forest with degree

sequence s.

We present the following theorem about the size of the largest tree in a simply

generated forest in [40]. The theorem describes the limit behavior of the size of the

largest tree in simply generated random forest with n trees and m vertices. In [40]

this served as an example of application of the general framework and tools developed

there.

For two sequences of random variables Xn and X ′
n, we write Xn

d≈ X ′
n if there

exists a coupling of Xn and X ′
n such that P {Xn = X ′

n} → 1 as n → ∞. This is

equivalent to dTV(Xn, X
′
n) → 0 where dTV denotes the total variation distance. For

any weight sequence w = (wi, i ≥ 0), denote the span of w by span(w), that is,

span(w) = max{l ≥ 1 : l | (i− j) whenever wi, wj > 0}.

Theorem 1.4.3 (Theorem 19.45 in [40]). Consider a simply generated random forest

with n trees and m vertices defined by a weight sequence w, and assume that m =

λn + O(1) where 1 < λ < ∞. Suppose that ν(w) ≥ 1 and span(w) = 1. Let Y(j)
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be the size of the j−th largest tree. Define τ1 > 0 by Ψ(τ1) = 1, and assume that

σ2 := τ1Ψ
′(τ1) <∞ (which is automatic if ν(w) > 1). Define further τ2 > 0 by

Ψ(τ2) = 1− 1/λ

and let

q :=
τ2

Φ(τ2)

Φ(τ1)

τ1
.

Then 0 < q < 1 and

Y(1)

d≈
⌊
log n− 3

2
log log n+ log b+W

log(1/q)

⌋
,

where W has the Gumbel distribution

P {W ≤ x} = e−e
−x

, −∞ < x <∞

and

b :=
τ1 log

3/2(1/q)

τ2

√
2πσ2(1− q).

Furthermore, Y(j) = Y(1) +Op(1) for each fixed j.

Note that this theorem only applied to the case with n trees and m vertices

where m/n → λ for 1 < λ < ∞. In our setting we have cn trees and n vertices, we

deal with the cases cn = Θ(n1/2) and cn = o(n1/2). In particular n/cn → ∞. Now

we mentioned the work of Pavlov (and others) [60, 23] in the case of m/n→∞.

1.4.4 Pavlov’s work

In [59], Pavlov specifically worked with simply generated random forest with N

trees and N + n vertices. Following his notation, he considered the model FN,n

consisting of N simply generated trees with in total n non-rooted vertices. Pavlov’s
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work addresses a wider range of regimes for the relationship between parameters N

and n. In [60], Pavlov studied the limit distribution of the maximum size of a

tree in the forest FN,n. His approach is to exploit the correspondence between FN,n

and some Galton-Watson branching process beginning with N particles and with

offspring distribution (pk, k ≥ 0). Here pk = tkwk

Φ(t)
is a probability weight sequence

equivalent to the original weight sequence w = (wk, k ≥ 0). Let d be the span of

(pk, k ≥ 0) and let ξ be a random variable with probability distribution (pk, k ≥ 0)

and he assumes Eξ = 1,Varξ = σ2. Let η be the size of the largest tree of FN,n.

He proved theorems on distribution of η in different regimes such as (i) n/N → b

for some constant b > 0; (ii) n/N → ∞, n/N2 → 0; (iii) σn/N2 → γ for some

constant γ > 0 and (iv) n/N2 →∞. Our work in the regime that cn = Θ(n1/2) and

cn = o(n1/2) corresponds to the cases (iii) and (iv) respectively. Hence we are going

to only state his results for these two regimes here. In Section 5.3 we will present

Pavlov’s result in case (ii), which relates to potential future works.

Theorem 1.4.4 (Theorem 2.1.4 in [59]). Let N, n→∞ in such a way that n takes

values which are divided by d, σn/N2 → γ where γ > 0 is a constant. Then for any

fixed z > 0,

P {η/n ≤ z} → γ3/2 exp

(
1

2γ

) ∞∑
k=0

(−1)k
k!

Ik(γz, γ),
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where

I0(u, v) =

(
v3 exp

(
1

v

))−1/2
Ik(u, v) =

∫
Xk(u,v)

exp(−1/(2(v − x1 − · · · − xk)))dx1 · · · dxk

(2π)k/2(x1 · · · xk(v − x1 − · · · − xk))3/2

Xk(u, v) = {xi ≥ u, i = 1, . . . , k, x1 + · · ·+ xk ≤ v}, k = 1, 2, . . .

Theorem 1.4.5 (Theorem 2.1.5 in [59]). Let n → ∞ in such a way that n takes

values which are divided by d, n/N2 →∞. Then for any fixed z > 0,

P

{
σ
n− η

N2
≤ z

}
→ 1√

2π

∫ z

0

y−3/2 exp (−1/(2y)) dy

We will see in Section 4.3 that a corollary of Theorem 1.3.4 gives us the same

limit probability distribution for size of the largest tree as Theorem 1.4.5. See the

remark after Corollary 4.3.2 for details.

Similar problems of the random forest are studied in [23] and the following

results on the size of j−th largest tree (for any fixed j) are obtained. For the same

random forest model FN,n, let ν(1) ≤ ν(2) ≤ . . . ≤ ν(N) be the tree sizes listed in

increasing order.

Theorem 1.4.6. Under the conditions of Theorem 1.4.4, for any h ∈ N0,

P
{
ν(N−h)/n ≤ z

}
→ exp

(
1

2γ

)
γ3/2

∞∑
k=0

(−1)k
k!

h∑
g=0

1

g!
Ik+g(γz, γ).

Theorem 1.4.7. Under the conditions of Theorem 1.4.5, for any h ∈ N,

P
{
ν(N−h) ≤ zN2

}
→ exp (−E(z))

h−1∑
g=0

Eg(z)

g!
,
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where E(z) =
√

2/(σπz).
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CHAPTER 2
Relevant Concepts and Tools

In this chapter, we introduce the relevant concepts and useful tools for formu-

lating and proving our results.

2.1 Real trees

To study scaling limits of sequences of random trees/forests, we need a contin-

uous version of the notion of trees. Hence we are going to briefly recall the con-

cepts of real trees of their encodings by continuous functions. This concept can be

thought as a version of the codings of trees and forests introduced in Section 1.2.2. A

more lengthy presentation about the probabilistic aspects of real trees can be found

in [32, 45].

Definition 2.1.1. A compact metric space (T, d) is a real tree if the following hold

for every a, b ∈ T :

(i) There exists a unique shortest path [[a, b]] from a to b (of length d(a, b)), that

is, there is a unique isometric map fa,b from [0, d(a, b)] into T such that fa,b(0) = a

and fa,b(d(a, b)) = b (we denote fa,b([0, d(a, b)]) by [[a, b]]).

(ii) The only non-self-intersecting path from a to b is [[a, b]], that is, if q is a

continuous injective map from [0, 1] into T , such that q(0) = a and q(1) = b, we have

q([0, 1]) = [[a, b]].

For a real tree (T, d), an element v ∈ T is called a vertex. A real tree (T, d) is

rooted if there is a distinguished vertex (the root) ∅ ∈ T ; we denote a rooted real
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tree by (T, d, ∅). The height of a vertex v is d(∅, v), its distance from the root. A

leaf is a vertex v such that v /∈ [[∅, w]] for any vertex w = v. If there is a finite Borel

measure μ on T , then (T, d, ∅, μ) is a measured rooted real tree.

Next we show a way of constructing real trees from continuous functions. One

can think of the continuous function playing the role of contour process for the real

tree. Let g : [0,∞) → [0,∞) be a continuous function with compact support and

such that g(0) = 0. For every s, t ≥ 0, let

d◦g(s, t) = g(s) + g(t)− 2mg(s, t)

where

mg(s, t) = min
s∧t≤r≤s∨t

g(r).

The function d◦g is a pseudometric on [0,∞). Define an equivalence relation ∼

on [0,∞) by setting s ∼ t iff d◦g(s, t) = 0. Then let Tg = [0,∞)/ ∼ and let dg

be the induced distance on Tg. Then

Theorem 2.1.2 (Theorem 2.2 in [45]). (Tg, dg) is a real tree.

As pointed out in [45], any rooted real tree (T, d, ∅) can be represented in the

form Tg for some continuous function g.

To get an intuition of this construction, for a rooted plane tree T with graph

distance dgr, let T̂ be the metric space obtained from T by viewing each edge as

an isometric copy of the unit interval [0, 1]. Let C(t) be the contour function of T

defined in Section 1.2.2, then the metric space TC constructed from C is isometric

to T̂.
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The real tree coded by a continuous function g is naturally endowed with a root

and a Borel measure, as follows. Let ∅g denote the equivalence class of 0. Let pg be

the canonical projection from [0,∞) to Tg and σg = sup{t : g(t) > 0}. Let mg be

the push forward of the Lebesgue measure on [0, σg] ((σg,∞) has measure 0) by pg.

Then Tg = (Tg, dg, ∅g,mg) is a compact measured rooted real tree.

Let e(x) denote Brownian excursion of length x. Recall that Brownian excursions

satisfy the Brownian scaling property:

(
√
λe(x)(t/λ), 0 ≤ t ≤ λx)

d
= (e(λx)(t), 0 ≤ t ≤ λx).

Let e denote the standard Brownian excursion, that is, the Brownian excursion

of length 1. Then Te is called the Brownian continuum random tree (BCRT for

short). Note that this definition is used in works such as [45] whereas in the Aldous’

work [6, 7, 8], it uses the real tree encoded by twice of a standard Brownian motion.

The difference of these two definitions are notational and it only leads to a difference

of extra factor of two in the scalings. In this work we simply write T to denote

BCRT and use the definition of Te.

With the preparation work in this section, we are able to rigorously interpret

the objects of our study, i.e. F↓n, Tn,1 and F̂n in Theorem 1.3.1, Theorem 1.3.2 and

Theorem 1.3.4.

2.2 Gromov-Hausdorff-Prokhorov convergence

To measure the distance between two real trees, or more generally, two rooted

measured metric spaces, we need to use the notion of Gromov-Hausdorff-Prokhorov

distance. We first recall the definition of the Gromov-Hausdorff distance (see for
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example Definition 7.3.10 in [21]), used for measuring the distance between two

compact metric spaces. The idea is to embed two spaces into a common larger

metric space.

For a metric space (Z, dZ), let dZH be the Hausdorff distance between compact

subsets of Z, that is, for non-empty subsets A,B of Z,

dZH(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε},

where Aε is the ε−enlargement of A:

Aε = {z ∈ Z : inf
y∈A

dZ(y, z) < ε}.

Let (X, d) and (X ′, d′) be compact metric spaces. Then the Gromov-Hausdorff

distance between (X, d) and (X ′, d′) is given by

dGH((X, d), (X ′, d′)) = inf
φ,φ′,Z

dZH(φ(X), φ′(X ′)),

where the infimum is taken over all isometric embeddings φ : X ↪→ Z and φ′ : X ′ ↪→

Z into some common Polish metric space (Z, dZ).

Note that strictly speaking dGH is not a distance since different compact metric

spaces can have GH distance zero.

A rooted measured metric space X = (X, d, ∅, μ) is a metric space (X, d) with

a distinguished element ∅ ∈ X and a finite Borel measure μ. (Note that the com-

ing definitions in this subsection work in more general settings, e.g. μ could be a

boundedly finite Borel measure (see [1]), but for the purpose of this paper, the case
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of finite measures μ is enough.) For example, the compact measured rooted real tree

Tg = (Tg, dg, ∅g,mg) defined in Section 2.1 is a rooted measured metric space.

Let X = (X, d, ∅, μ) and X ′ = (X ′, d′, ∅′, μ′) be two compact rooted measured

metric spaces. We say X and X ′ are GHP-isometric if there exists an isometric

one-to-one map Φ : X → X ′ such that Φ(∅) = ∅′ and Φ∗μ = μ′ where Φ∗μ is the

push forward of measure μ to (X ′, d′), that is, Φ∗μ(A) = μ(Φ−1(A)) for A ∈ B(X ′).

In this case, call Φ a GHP-isometry.

Let dZP denotes the Prokhorov distance between finite Borel measures on Z, that

is, for two finite measures μ, ν on Z,

dZP (μ, ν) = inf{ε > 0 : μ(A) ≤ ν(Aε) + ε, ν(A) ≤ μ(Aε) + ε for any closed set A}.

If both X and X ′ are compact, then we define the Gromov-Hausdorff-Prokhorov

distance as:

dGHP (X ,X ′) = inf
Φ,Φ′,Z

(dZ(Φ(∅),Φ′(∅′)) + dZH(Φ(X),Φ′(X ′)) + dZP (Φ∗μ,Φ
′
∗μ
′))

where the infimum is taken over all isometric embeddings Φ : X ↪→ Z and Φ′ :

X ′ ↪→ Z into some common Polish metric space (Z, dZ). Let K denote the set of

GHP-isometry classes of compact rooted measured metric spaces. We often identify

such a metric space X with its GHP-isometry class. For example, for the real tree Tg

constructed in Section 2.1, we have Tg ∈ K. We have the following results from [1].

Theorem 2.2.1 (Theorem 2.5 in [1]). The function dGHP defines a metric on K and

the space (K, dGHP ) is a Polish metric space.
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We next define a distance between sequences of rooted measured metric spaces.

For X = (Xj, j ≥ 1),X′ = (X ′j , j ≥ 1) in KN, we let

d∞GHP (X,X′) = sup
j≥1

dGHP (Xj,X ′j).

If X ∈ Kn for some n ∈ N, in order to view X as a member of KN, we append to X

an infinite sequence of zero metric spaces Z. Here Z is the rooted measured metric

space consisting of a single point with measure 0. Let Z = (Z,Z, · · · ) and

L∞ = {X ∈ KN : lim sup
j→∞

dGHP (Xj,Z) = 0}.

By the definition of GHP distance it is not hard to see that dGHP (X ,Z) = diam(X)
2

+

μ(X), hence X ∈ L∞ if and only if lim sup
j→∞

(diam(Xj) + μj(Xj)) = 0. It is likewise

straightforward to show that (L∞, d∞GHP ) is a complete separable metric space.

We next define coordinatewise GHP convergence of sequences of measured met-

ric spaces. For Xn = (Xn,j, j ≥ 1),X = (Xj, j ≥ 1) in KN, we say that Xn converges

to X in coordinatewise GHP sense if for any j ∈ N,

sup
1≤l≤j

dGHP (Xn,l,Xl)→ 0 as n→∞.

Now we are able to understand the modes of convergence in our main theorems

rigorously.

2.3 Concentration inequalities

Later in Chapter 3 and Chapter 4, in order to prove concentration results for

depth-first walk of random forests, we are going to use the results of McDiarmid [54].
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In [54] McDiarmid provided an excellent exposition on two methods of proving con-

centration inequalities and many application of the inequalities to problems of the-

oretical computer science. The first method is based on the martingale difference

sequences; we will use results from this approach in our work. The second method

in [54] is the more recent work [67, 68] of Talagrand on the concentration inequality

involving convex distance on product spaces.

The paper [54] starts with bounding large deviations of the sums of independent

binary random variables, which is the setting of Chernoff bound [24], and then present

various extensions in this direction, including Hoeffding’s work [39]. We are going to

use the following tail bounds of sums in Section 3.3.2.

Theorem 2.3.1 (Theorem 2.7 in [54]). Let random variables X∗
1 , · · · , X∗

n be inde-

pendent, with X∗
k − EX∗

k ≤ b for each k. Let S∗n =
∑

X∗
k , and let S∗n have expected

value μ and variance V (the sum of the variances of X∗
k). Then for any t ≥ 0, with

ε = bt/V , we have

P {S∗n − μ ≥ t} ≤ exp

(
−V

b2
((1 + ε) ln(1 + ε)− ε)

)
≤ exp

(
− t2

2V + 2bt/3

)
.

In Section 3 of [54], McDiarmid extends the results in more generality by adopt-

ing the martingale framework. In particular, the following theorem extends Theo-

rem 2.3.1; we use this result in Section 3.3.1 and Section 4.4.

Let {Xj}nj=0 be a bounded martingale adapted to a filtration {Fj}nj=0. Let

V =
n−1∑
j=0

Var {Xj+1 | Fj} , where

Var {Xj+1 | Fj} := E
[
(Xj+1 −Xj)

2 | Fj

]
= E

[
X2

j+1 | Fj

]
−X2

j .
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Let

v = ess sup V, and b = max
0≤j≤n−1

ess sup(Xj+1 −Xj | Fj).

Then we have the following bound.

Theorem 2.3.2 ([54], Theorem 3.15). With v and b defined as above, for any t ≥ 0,

P

{
max
0≤j≤n

(Xj −X0) ≥ t

}
≤ exp

(
− t2

2v(1 + bt\(3v))

)
.

For completeness we include a proof of Theorem 2.3.2, which is based on that

given in [54].

Proof. We first prove a weaker inequality: for any 0 ≤ k ≤ n and t ≥ 0,

P {Xk −X0 ≥ t} ≤ exp

(
− t2

2v(1 + bt\(3v))

)
. (2.3.1)

Define a function g by g(x) = ex−1−x
x2 . Then g′(x) = (x−2)ex+x+2

x3 . By taking deriva-

tives of g̃(x) := (x − 2)ex + x + 2 we see that g̃(x) < 0 for x < 0 and g̃(x) > 0 for

x > 0. Hence g is increasing and in particular for x ≤ b, we have

ex = 1 + x+ x2g(x) ≤ 1 + x+ x2g(b).

Since ess sup(Xj+1 −Xj | Fj) ≤ b, for any h > 0 and 0 ≤ j < n, we have

E
[
eh(Xj+1−Xj) | Fj

]
≤ E

[
1 + h(Xj+1 −Xj) + h2(Xj+1 −Xj)

2g(hb) | Fj

]
= 1 + h2g(hb)Var {Xj+1 −Xj | Fj}

= 1 + h2g(hb)Var {Xj+1 | Fj}

≤ exp
(
h2g(hb)Var {Xj+1 | Fj}

)
. (2.3.2)
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Hence for any 1 ≤ j ≤ k, using tower law and the fact eh(Xj−1−X0) is Fj−1−measurable,

we have

E
[
eh(Xj−X0)

]
= E

[
E
[
eh(Xj−X0) | Fj−1

]]
= E

[
eh(Xj−1−X0)E

[
eh(Xj−Xj−1) | Fj−1

]]
≤ exp

(
h2g(hb)Var {Xj | Fj−1}

)
E
[
eh(Xj−1−X0)

]
, (2.3.3)

where we use (2.3.2) in the last line. By Markov’s inequality and using (2.3.3)

recursively for j = k, . . . , 1, it follows that for any h > 0,

P {Xk −X0 ≥ t} ≤ e−htE
[
eh(Xk−X0)

]
≤ e−ht

k∏
j=1

exp
(
h2g(hb)Var {Xj | Fj−1}

)
= e−ht+g(hb)h2v,

which is minimized at h = 1
b
ln

(
1 + bt

v

)
. This gives us the bound

P {Xk −X0 ≥ t} ≤ exp
(
− v

b2
((1 + ε) ln(1 + ε)− ε)

)
where ε = bt/v. It is straightforward to show that, for all x ≥ 0,

f(x) := (6 + 8x+ 2x2) ln(1 + x)− 6x− 5x2 ≥ 0.

This implies that, for all x ≥ 0,

(1 + x) ln(1 + x)− x ≥ 3x2/(6 + 2x),

which gives our desired bound in (2.3.1).
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Next, for any h > 0, let Tj := eh(Xj−X0). Then Tj is a Fj−submartingale. By

Doob’s submartingale inequality (e.g. section 14.6 in [70]), we have for any k ≤ n,

P

{
max
0≤j≤k

(Xj −X0) ≥ t

}
= P

{
max
0≤j≤k

Tj ≥ eht
}
≤ e−htETk = e−htE

[
eh(Xk−X0)

]
.

Since (2.3.1) is proved by bounding the quantity E
[
eh(Xk−X0)

]
, we obtain the same

bound for the maximum.
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CHAPTER 3
Critical case

3.1 Introduction

In this chapter, we aim to prove Theorem 1.3.1 and Theorem 1.3.2. These

theorems tell that, under natural assumptions on degree sequences and after suitable

normalization, large uniformly random forests with given degree sequence converge

in distribution to the forests coded by Brownian first passage bridge, with respect

to the Gromov-Hausdorff-Prokhorov topology. In order to understand these results

rigorously, we need to first introduce the concept of first passage bridge. This chapter

is essentially tailored from the manuscript of [47].

First passage bridge

Recall the following definition of first passage bridge as in [14]. Informally,

for λ > 0, the first passage bridge of unit length from 0 to −λ, denoted F br
λ , is a

C[0, 1]−valued random variable with law

(F br
λ (t), 0 ≤ t ≤ 1)

d
= (B(t), 0 ≤ t ≤ 1 | τ(λ) = 1)

where B is a standard Brownian motion and τ(λ) := inf{t : B(t) < −λ} is the first

passage time below level −λ < 0.

For l ≥ 0, we write Bbr
l for the Brownian bridge of duration 1 from 0 to −l. As

explained in Proposition 1 of [33], the law of the Brownian bridge Bbr
l is characterized
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by Bbr
l (1) = −l and the formula

E
[
f((Bbr

l (t))0≤t≤m)
]
= E

[
f((B(t))0≤t≤m)

p1−m(−l − B(m))

p1(−l)

]
(3.1.1)

for all bounded measurable function f , and all 0 ≤ m < 1, where pa is the Gaussian

density with variance a and mean 0, that is, pa(x) = 1√
2πa

e−
x2

2a . In a similar way the

law of F br
λ can be defined as the law such that

E
[
f((F br

λ (t))0≤t≤s)
]
= E

[
(f(B(t))0≤t≤s)

p′1−s(−λ− B(s))

p′1(−λ)
�{ inf

r≤s
B(r)>−λ}

]
(3.1.2)

for all bounded measurable functions f and all 0 ≤ s < 1 and F br
λ (1) = −λ, where

p′a is the derivative of pa. These formulae set the finite-dimensional laws of the first

passage bridge. In [15] (see Section 5.1 for details) it is shown that it admits a

continuous version, and that F br
λ is the weak limit of F ε

λ as ε→ 0, where (F ε
λ(t), 0 ≤

t ≤ 1) has the law of B conditioned on the event {B(1) < −λ+ε, inf
s≤1

B(s) > −λ−ε},

hence justifying the informal conditioning definition.

We first recall Theorem 1.3.1 and Theorem 1.3.2 below.

Theorem 1.3.1. Suppose that there exists a distribution p = (p(i), i ≥ 0) on N0 such

that pn converges to p coordinatewise. Suppose also that σ(pn)→ σ(p) ∈ (0,∞). If
c(sn)

σ(pn)n1/2 → λ ∈ (0,∞), then

F↓n
d−→ (Tγl , l ≥ 1) as n→∞, (1.3.1)

with respect to the product topology for dGHP where (γl, l ≥ 1) are the excursions of

the process (F br
λ (s)− inf

s′∈(0,s)
F br
λ (s′))0≤s≤1, listed in decreasing order of length.
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Theorem 1.3.2. Under the conditions of Theorem 1.3.1, suppose additionally that

there exists ε > 0 such that Δn = O(n
1−ε
2 ). Then the convergence (1.3.1) holds in

(L∞, d∞GHP ).

We would like to first make the following two comments.

Remark 3.1.1. The assumptions of Theorem 1.3.1 imply that μ(pn) → μ(p) = 1

and that Δn = o(n1/2). We include the proof of these facts as Lemma 3.6.1 in

Section 3.6.

For c > 0, let ce ∈ C[0,∞) denote the Brownian excursion of length c, that is

e(c), as we defined in Section 2.1. For an excursion γ, let |γ| be its length (please

refer to Section 3.1.1 for a careful definition).

Remark 3.1.2. The pair ((γl, l ≥ 1), (Tγl , l ≥ 1)) has the same law as ((γl, l ≥

1), (T|γl|el , l ≥ 1)) where (el, l ≥ 1) are standard Brownian excursions, independent of

each other and of (γl, l ≥ 1). This is true because of the Brownian scaling property

of Brownian excursion.

3.1.1 Key ingredients of the paper

Here we summarize the two key ingredients of this chapter. The first element

is the convergence of the large trees in (1.3.1), which is essentially given by the

following proposition. We first state this result and then give a careful introduction

of the concepts involved. For all l ≥ 1, let Xn,l =
|Tn,l|
n

.

Proposition 3.1.1. Under the conditions of Theorem 1.3.1, for any fixed j ≥ 1,

((Xn,l)l≤j, (Tn,l)l≤j) d→ ((|γl|)l≤j, (T|γl|el)l≤j) (3.1.3)

39



as n → ∞, where (el)l≤j are independent copies of e, and (γl, l ≥ 1) are the excur-

sions of (F br
λ (s)− inf

s′∈(0,s)
F br
λ (s′))0≤s≤1 ranked in decreasing order of length.

There are two parts of the convergence in (3.1.3). One is the convergence of

the normalized sizes of large trees to lengths of excursions. This is given by Propo-

sition 1.3.3, which we recall below. We first introduce more notions which explain

the proposition more rigorously. Let C0(1) = {x ∈ C([0, 1],R) : x(0) = 0} For a

non-negative function g+ ∈ C0(1), an excursion γ of g+ is the restriction of g+ to

a time interval [l(γ), r(γ)] such that g+(l(γ)) = g+(r(γ)) = 0 and g+(s) > 0 for

s ∈ (l(γ), r(γ)). In this case [l(γ), r(γ)] is called an excursion interval of g+. The

length of the excursion is denoted as |γ| = r(γ) − l(γ). For a function g we write

g(s)− min
0≤s′<s

g(s′) to denote (g(s)− min
0≤s′<s

g(s′), 0 ≤ s ≤ 1). For g ∈ C0(1), sometimes

we refer the excursions of g(s)− min
0≤s′<s

g(s′) as excursions of g. Recall that

l↓1 = {x = (x1, x2, · · · ) : x1 ≥ x2 ≥ · · · ≥ 0,
∑
i

xi ≤ 1}

and endow l↓1 with the topology induced by the l1 distance: d(x, y) =
∑
i

|xi − yi|.

Proposition 1.3.3. Under the hypothesises of Theorem 1.3.1, we have

(|Tn,l|/n)l≥1 d→ (|γl|)l≥1 (1.3.2)

in l↓1, where (γl, l ≥ 1) are the excursions of F br
λ (s)− min

0≤s′≤s
F br
λ (s′) ranked in decreasing

order of length.

This proposition will be a corollary of the following theorem, which is the main

result of Section 3.4. For a plane forest F, let u1 < u2 < · · · < u|F| be the nodes

of F listed according to their lexicographic order in U in each tree component, with
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nodes of first tree listed first, then the nodes of second tree and so on. Recall in

Section 1.2.2, the depth-first walk (or Lukasiewicz path) SF is defined as follows.

First set SF(0) = 0 and then let

SF(i) =
i∑

j=1

(kF(uj)− 1) for i = 1, 2, · · · , |F|.

We extend the definition of SF to the compact interval [0, |F|] by linear interpolation.

Theorem 3.1.2. Under the conditions of Theorem 1.3.1, we have(
SFn(tn)

σ(pn)n1/2

)
t∈[0,1]

d→ F br
λ (3.1.4)

in C0(1) as n→∞.

The second part of the convergence of (3.1.3) is the convergence of the large

trees, for which we will rely on the following result about random trees with given

degree sequences from [20].

Theorem 3.1.3 (Theorem 1 in [20]). Let {sn, n ≥ 1} be a degree sequence such

that |sn| = n → ∞,Δn := Δ(sn) = o(n1/2). Suppose that there exists a distribution

p = (p(i), i ≥ 0) on N with mean 1 such that pn = (s
(i)
n /n, i ≥ 0) converges to p

coordinatewise and such that σ(pn) → σ(p) ∈ (0,∞). Let Tn be the random plane

tree under Psn, the uniform measure on the set of plane trees with degree sequence

sn. Let Tn denote the measured rooted metric space (Tn,
σ(pn)

2n1/2 dgr, ∅n, μn) where μn

denotes the uniform measure putting mass 1
n

on each vertex of Tn. Then when

n→∞, Tn d→ T in the Gromov-Hausdorff-Prokhorov sense, where T is BCRT.
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Remark 3.1.3. In fact Theorem 1 in [20] is only stated in the Gromov-Hausdorff

sense, that is, (Tn,
σ(pn)

2n1/2 dgr, ∅n)
d→ (Te, de, ∅e). But the conclusion can be strength-

ened to GHP convergence easily. For completeness, we include a proof of this fact in

Section 3.6.

The following proposition contains the additional ingredient required to prove

Theorem 1.3.2.

Proposition 3.1.4. Under the conditions of Theorem 1.3.2, for all a > 0, we have

lim
j→∞

lim sup
n→∞

P

{
sup
l>j

diam(Tn,l) > a

}
= 0.

The key results leading to Proposition 3.1.4 include a height bound for random

tree with prescribed degree sequence and a variance bound for uniformly permuted

child sequences. The height bound of uniformly random tree with prescribed degree

sequence is given in the following theorem.

Theorem 3.1.5 (Theorem 1 in [3]). Fix a degree sequence s = (s(i), i ≥ 0) such that∑
i≥0

is(i) = |s|− 1, and let T(s) be a uniformly random plane tree with degree sequence

s. Then for all m ≥ 1 we have

P {h(T(s)) ≥ m} ≤ 7 exp
(
−m2/608σ2(s)12s

)
where 1s =

|s|−2
|s|−1−s(1) .

The following probability bound on variances of uniformly permuted integer

sequences allows us to control the variance of degrees of trees in random forests, and

thereby apply Theorem 3.1.5 to prove Proposition 3.1.4.
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Proposition 3.1.6. Fix c = (c1, · · · , cn) ∈ Nn and let π be a uniformly random

permutation of {1, · · · , n}. Set Ci = cπ(i) for 1 ≤ i ≤ n, and let Sj =
∑
i≤j

C2
i for

1 ≤ i ≤ n. Then for all λ ≥ 2 and 1 ≤ k ≤ n, with Δ = max
1≤i≤n

Ci = max
1≤i≤n

ci, and

σ2(c) =
∑
i≤n

c2i = Sn, we have

P

{
Sk ≥ λ

k

n
Sn

}
≤ exp

(
−3σ2(c)

16n
· λk
Δ2

)
.

Now let us prove our main theorems with these key results.

Proof of Theorem 1.3.1 and Theorem 1.3.2. By Skorokhod’s representation theorem,

we may work in a probability space in which the convergence in Proposition 3.1.1 is al-

most sure. Hence Proposition 3.1.1 yields that for any fixed j, sup
l≤j

dGHP (Tn,l, T|γl|el)
d→

0. This establishes Theorem 1.3.1. Now to prove the convergence in (L∞, d∞GHP ), it

suffices to prove that for any a > 0,

lim
j→∞

lim sup
n→∞

P

{
sup
l>j

(diam(Tn,l) + mass(Tn,l) + diam(Tγl) + mass(Tγl)) > a

}
= 0.

It suffices to separately prove

lim
j→∞

lim sup
n→∞

P

{
sup
l>j

diam(Tn,l) > a

}
= 0, lim

j→∞
lim sup
n→∞

P

{
sup
l>j

mass(Tn,l) > a

}
= 0

lim
j→∞

P

{
sup
l>j

diam(Tγl) > a

}
= 0, lim

j→∞
P

{
sup
l>j

mass(Tγl) > a

}
= 0.

For this purpose, we need to control the probability that small trees having

either large diameter or large mass. Note that for a tree its diameter is bounded by

twice of its height.
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In fact the mass of tree is easy to control since for any a > 0 and any n,

P

{
sup
l>j

mass(Tn,l) > a

}
= P

{
sup
l>j

|Tn,l|
n

> a

}
≤ P {|Tn,j| > an} = 0 for j > 1/a

For the diameter we resort to Proposition 3.1.4.

We also need to bound diam(Tγl) and mass(Tγl) for l large. Note that mass(Tγl) =

|γl| and for any a, let j > 1/a, then P

{
sup
l>j
|γl| > a

}
= 0.

For diam(Tγl), diam(Tγl) ≤ 2h(Tγl) = 2max(γl). For 0 ≤ s ≤ 1, let

R(s) = F br
λ (s)− inf

s′∈(0,s)
F br
λ (s′)

and the excursion interval of γl be [gl, dl]. Then

diam(Tγl) ≤ 2 sup
t∈[gl,dl]

R(t) = 2( sup
t∈[gl,dl]

F br
λ (t)− inf

t∈[gl,dl]
F br
λ (t))

≤ 2 sup
(
|F br

λ (t)− F br
λ (s)| : |t− s| ≤ dl − gl

)
and dl − gl = |γl| ≤ 1/l. So for any j ≥ 1/ε,

sup
l>j

diam(Tγl) ≤ 2 sup
(
|F br

λ (t)− F br
λ (s)| : |t− s| ≤ ε

)
→ 0 as ε→ 0

since F br
λ is uniformly continuous. Hence we have the tail insignificance for diameter

of Tγl and the claim is proved.

To conclude this section, we sketch how this chapter is organized. In Section 3.2

we investigate a special rotation mapping, which connects the collection of lattice

bridges corresponding to certain degree sequence s and the set of first passage lattice

bridges corresponding to s. This will be the key starting point of our work using
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depth-first walk process to code the structure of random forests with given degree

sequences. The combinatorial argument in this section will be also useful for our lat-

er work on transferring results such as Proposition 3.1.6 to something similar which

is applicable to random forests. This section will be purely combinatorial and on-

ly deal with fixed degree sequences. In Section 3.3, we collect some concentration

results using martingale methods. These probability bounds will be useful for check-

ing that the assumptions in Theorem 3.1.3 are satisfied for large trees of F↓n. The

second part of this section proves the variance bound in Proposition 3.1.6. Again all

results in this section is non-asymptotic and hence are presented with regards to a

fixed degree sequence. In Section 3.4, we prove Theorem 3.1.2, the convergence of

scaled exploration processes to some random process related to first passage bridge,

using the rotation mapping in Section 3.2. We will then get Proposition 1.3.3 as

a corollary from this weak convergence result. In Section 3.5 we finish the proof of

Proposition 3.1.1 and Proposition 3.1.4 using results from Section 3.3 and Section 3.4.

Finally, we prove Remark 3.1.1 and Remark 3.1.3 in Section 3.6.

3.2 An |s|−to−1 map transforming lattice bridge to first passage lattice
bridge

Given a degree sequence s = (s(i), i ≥ 0), let d(s) ∈ Z
|s|
≥0 be the vector whose

entries are weakly increasing and with s(i) entries equal to i, for each i ≥ 0. For

example, if s = (3, 2, 0, 1, 0, · · · ) with s(i) = 0 for i ≥ 4, then d(s) = (0, 0, 0, 1, 1, 3).

Let D(s) be the collection of all possible child sequences corresponding to degree

sequence s, i.e., all possible result as a permutation of d(s).

A lattice bridge is a function b : [0, k]→ R with b(0) = 0 and b(i) ∈ Z, ∀i ∈ [k],

which is piecewise linear between integers. Here k is an arbitrary positive integer.
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We let

Λ(s) = {b : [0, |s|]→ R : b is a lattice bridge and

∀i ≥ 0, |{j ∈ N : b(j + 1)− b(j) = i− 1}| = s(i)}

and call Λ(s) the set of lattice bridges corresponding to s. Note that if b ∈ Λ(s), then

b(|s|) = −c(s). Furthermore, we have

|Λ(s)| =
(

n

(s(i), i ≥ 0)

)
=

n!∏
i≥0

s(i)!

since to determine b ∈ Λ(s), it suffices to choose the s(0) positions with step size −1,

s(1) positions with step size 0, s(2) positions with step size 1, etc.

We then let

F (s) = {b ∈ Λ(s) : inf
j≤|s|−1

b(j) > −c(s)}

and call F (s) the collection of first passage lattice bridges corresponding to s.

For s > 0, let C0(s) = {x ∈ C([0, s],R) : x(0) = 0}. For u ∈ [0, s], let

θu,s : C0(s)→ C0(s) denote the cyclic shift at u, that is,

(θu,s(x))(t) =

⎧⎪⎨⎪⎩ x(t+ u)− x(u), if t+ u ≤ s;

x(t+ u− s) + x(s)− x(u), if t+ u ≥ s.

For x ∈ C0(s) and y ∈ R−, let t(y, x) := inf{t ∈ [0, s] : x(t) ≤ y} be the first time

the graph of x drops below y. Sometimes we drop the argument x for convenience and

simply write t(y). If y < min
u∈[0,s]

x(u) we set t(y, x) = 0 by convention, so θt(y)(x) = x.

In what follows, for k ∈ N we write [k] − 1 = {0, 1, · · · , k − 1}. And when the

context is clear, we simply drop the subscript s and write θu for θu,s.
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Lemma 3.2.1. For b ∈ Λ(s), and for each j ∈ [c(s)] − 1, we have θt(min(b)+j)(b) ∈

F (s).

Proof. Let m ≤ 0 be the minimum of b. Fix an integer i such that m ≤ i ≤ m+c(s)−1

and u < |s|. We shall prove that θt(i)(b)(u) > −c(s), which proves the lemma. If

0 ≤ u ≤ |s|−t(i), then θt(i)(b)(u) = b(t(i)+u)−b(t(i)) ≥ m−i > −c(s). If |s|−t(i) ≤

u < |s|, then θt(i)(b)(u) = b(t(i)+u−|s|)+b(|s|)−b(t(i)) = b(t(i)+u−|s|)−c(s)− i.

Since u < |s|, t(i) + u − |s| < t(i) and we must have b(t(i) + u − |s|) > i by our

definition of t. Therefore in this case we also have θt(i)(b)(u) > −c(s).

Next, define a function f : Λ(s)× ([c(s)]−1)→ F (s) by f(b, j) := θt(min(b)+j)(b).

Lemma 3.2.2. f is an |s|−to−1 map from Λ(s)× ([c(s)]− 1) to F (s).

Proof. For l ∈ F (s), if size of preimage of l under f is strictly large than |s|, then

we must have b1, b2 ∈ Λ(s), j1, j2 ∈ [c(s)] − 1 such that f(b1, j1) = f(b2, j2) = l and

t(min(b1)+j1) = t(min(b2)+j2), since t can only take values in [|s|]. By the definition

of f we must then have b1 = b2 and hence j1 = j2. Therefore each element in F (s)

can have at most |s| preimages in Λ(s) × ([c(s)] − 1). On the other hand, we have

(see, e.g., [61], page 128)

|F (s)| = c(s)

|s|

(
|s|

(s(i), i ≥ 0)

)
=

c(s)

|s|
|s|!∏

i≥0
s(i)!

. (3.2.1)

Hence |s| × |F (s)| = c(s)× |Λ(s)| = |Λ(s)× ([c(s)]− 1)|, so it must in fact hold that

each l ∈ F (s) has exactly |s| preimages.

Recall the concept of depth-first walk SF of a plane forest F. For a sequence

c = (c1, · · · , cn) ∈ Rn, we write Wc(j) =
j∑

i=1

(ci − 1) for j ∈ [n]. We let Wc(0) = 0
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and make Wc a continuous function on [0, n] by linear interpolation. Note that SF

is precisely Wc where c = (kF(u1), · · · , kF(u|F|)).

For c = (c1, · · · , cn) ∈ Rn and a permutation π of [n], write π(c) = (cπ(1), · · · , cπ(n)).

Also, recall from the beginning of this section that for a degree sequence s, d(s) is a

vector with s(i) entries equal to i for each i ≥ 0.

Corollary 3.2.3. Let s be a degree sequence. Let π be a uniformly random permu-

tation of [|s|] and let ν be independent of π and drawn uniformly at random from

[c(s)]− 1. Then

f(Wπ(d(s)), ν)
d
= SF(s),

and both are uniformly random elements of F (s).

Proof. By definition, (Wπ(d(s)), ν) is uniformly at random in Λ(s) × ([c(s)] − 1). By

Lemma 3.2.2, it follows that f(Wπ(d(s)), ν) is uniformly random in F (s). On the

other hand, the map sending plane forest F to its Lukasiewicz path SF restricts to

an invertible map from F(s) to F (s). Thus, SF(s) is also uniformly distributed in

F (s).

First passage bridges are naturally connected to plane forests. In a similar

way, general lattice bridges are naturally connected to marked plane forests. This

interpretation will be more convenient for some later proofs (Propositions 3.3.4, 3.3.7

and 3.3.8).

A marked forest is a pair (F, v) where F is a plane forest and v ∈ v(F ).

Sometimes we refer v as the mark of (F, v). Recall that F(s) denotes the collec-

tion of all plane forests with degree sequence s. Let MF(s) be the collection of
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all marked forests with degree sequence s and for 1 ≤ i ≤ c(s), let MFi(s) be

the collection of marked forests (F, v) ∈ MF(s) such that the mark v lies within

the i−th tree of F . We define a map g : MF(s) → D(s) which lists the degrees

of vertices of a marked forest starting from the mark in DFS order. Formally, for

(F, v) ∈ MF(s), if the DFS ordering of v(F ) is v1, · · · , v|s| and v = vi, then g((F, v)) =

(kF (vi), · · · , kF (v|s|), kF (v1), · · · , kF (vi−1)). Next define a map h : MF(s)→ F(s) by

h((F, v)) = F . Then we have the following easy fact.

Lemma 3.2.4. g is a c(s)−to−1 surjective map and for each 1 ≤ i ≤ c(s), gi :=

g|MFi(s) is a bijection between MFi(s) and D(s). Also, h is a |s|−to−1 surjective

map.

Proof. For d ∈ D(s), |g−1({d}) ∩ MFi(s)| = 1 for all 1 ≤ i ≤ c(s). In fact, the

element of each g−1({d}) ∩MFi(s) can be obtained by cyclically permuting the tree

components of the element of g−1({d}) ∩MF1(s). This shows that gi is a bijection.

The other two claims are straightforward.

The map g being surjective immediately gives the following result.

Corollary 3.2.5. Let MF(s) be a uniformly random element of MF(s), then g(MF(s))

is a uniformly random element of D(s).

3.3 Concentration results

In the first part of this section, we deal with a martingale concerning the pro-

portion of a fixed degree of uniformly permuted degree sequence. This will be useful

for proving Proposition 3.1.1 in Section 3.5 where we need to first show that the

degree proportions in each large trees of F↓n are more or less in line with the degree

proportion of the given degree sequences. The second part of this section deals with
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the variance bound of uniformly permuted child sequences, which leads to a key

technical proposition on the height of tree components of F(s). For both subsections

we will use concentration results from [54].

Let s = (s(i), i ≥ 0) with |s| = n be a fixed degree sequence and let C =

(C1, · · · , Cn) denote the uniformly permuted child sequence π(d(s)) (recall the no-

tation from Section 3.2), where π is a uniform random permutation of [n]. For each

i ≥ 0, let q(i) = s(i)/n be the degree proportion of degree i of s.

3.3.1 Martingales of degree proportions of uniformly permuted degree
sequence

In this subsection, we introduce some martingales concerning proportions of

particular degree appeared at each step in a uniformly permuted degree sequence and

use them and Theorem 2.3.2 as tools to prove Lemma 3.3.3 and Proposition 3.3.4,

which are useful for eventually proving that the empirical degree distributions of

large trees of Fn behave well (Proposition 3.5.1).

For fixed i, for 0 ≤ j ≤ n − 1, let Y
(i)
j = |{1 ≤ l ≤ j : Cl = i}| and let

X
(i)
j = s(i) − Y

(i)
j . Note that for j > 0

X
(i)
j =

⎧⎪⎨⎪⎩ X
(i)
j−1 − 1, if Cj = i;

X
(i)
j−1, otherwise.

Let Fj be the σ−field generated by C1, · · · , Cj.

Lemma 3.3.1. Let M (i)
j :=

X
(i)
j

n−j − q(i), then

(a) M
(i)
j is an Fj−martingale;

(b) The predictable quadratic variation of M (i)
j+1 satisfies

Var
{
M

(i)
j+1 | Fj

}
:= E

[
M

(i)
j+1

2
| Fj

]
−M

(i)
j

2
≤ 1

4
1

(n−(j+1))2
.
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Proof. (a) Since q(i) is a constant, it suffices to show that X
(i)
j

n−j is an Fj−martingale.

In fact

E
[
X

(i)
j+1 | Fj

]
= X

(i)
j −P {Cj+1 = i | Fj}

= X
(i)
j −

X
(i)
j

n− j
,

so

E

[
X

(i)
j+1

n− (j + 1)
| Fj

]
=

X
(i)
j

n− j − 1
(1− 1

n− j
) =

X
(i)
j

n− j
.

Thus X
(i)
j

n−j is an Fj−martingale.

(b) By definition, we have

Var
{
M

(i)
j+1 | F

(i)
j

}
= E

[
M

(i)
j+1

2
| Fj

]
−M

(i)
j

2

=
E
[
X

(i)
j+1

2
| Fj

]
(n− (j + 1))2

−
X

(i)
j

2

(n− j)2

Now we substitute

E
[
X

(i)
j+1

2
| Fj

]
= (X

(i)
j − 1)2

X
(i)
j

n− j
+X

(i)
j

2
·
n− j −X

(i)
j

n− j
= X

(i)
j

2
−

2X
(i)
j

2

n− j
+

X
(i)
j

n− j

in the above result and obtain

Var
{
M

(i)
j+1 | Fj

}
=

X
(i)
j

2

(n− (j + 1))2
−

X
(i)
j

2

(n− j)2
−

2X
(i)
j

2

(n− j)(n− (j + 1))2
+

X
(i)
j

(n− j)(n− (j + 1))2

=
(2(n− j)− 1)X

(i)
j

2

(n− (j + 1))2(n− j)2
−

2X
(i)
j

2

(n− j)(n− (j + 1))2
+

X
(i)
j

(n− j)(n− (j + 1))2

=
X

(i)
j (n− j −X

(i)
j )

(n− (j + 1))2(n− j)2
≤ 1

4
· 1

(n− (j + 1))2
,
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which gives the claim.

Now we can apply Theorem 2.3.2.

Proposition 3.3.2. For any t > 0 and 0 < s < n, we have

P

{
max

0≤j≤n−s
|q(i) −

X
(i)
j

n− j
| ≥ t

}
≤ exp

(
− 3st2

3 + 2t

)
. (3.3.1)

Proof. Fix s < n, and consider the martingale {M (i)
j }n−sj=0 . By Lemma 3.3.1(b), we

know that

V =
n−s∑
j=1

Var
{
M

(i)
j | Fj−1

}
≤ 1

4

n−s−1∑
j=0

1

(n− (j + 1))2
≤ 1

4

n−1∫
s−1

1

x2
dx ≤ 1

2s
.

Hence v = ess sup V ≤ 1
2s

. Also, for j ≤ n− s− 1, if X(i)
j+1 = X

(i)
j , then

|M (i)
j+1 −M

(i)
j | =

X
(i)
j

(n− j)(n− j − 1)
≤ 1

s
,

and if X(i)
j+1 = X

(i)
j − 1, then

|M (i)
j+1 −M

(i)
j | = |

X
(i)
j − 1

n− (j + 1)
−

X
(i)
j

n− j
| = |

X
(i)
j

(n− (j + 1))(n− j)
− 1

n− (j + 1)
| ≤ 1

s
.

Applying Theorem 2.3.2 to both {M (i)
j }n−sj=0 and {−M (i)

j }n−sj=0 gives

P

{
max

0≤j≤n−s

∣∣∣∣∣q(i) − X
(i)
j

n− j

∣∣∣∣∣ ≥ t

}
≤ exp

(
− t2

1
s
+ 2t

3s

)
,

as claimed.

Now we give a probability bound of proportion of certain degree i deviates from

q(i) by an error of at least ε.
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Lemma 3.3.3. For fixed i ∈ N and ε > 0, let

Bε,i = {∃x ≥ log3 n : |Y (i)
x − q(i)x| ≥ εx}.

Then for any n large enough such that
√
5

logn
< ε < 1,

P
{
Bε,i

}
≤ n−3.

Proof. By symmetry, the event {∃j ≥ log3 n : |Y (i)
j − q(i)j| ≥ εj} has the same

distribution as the event {∃l ≤ n− log3 n : |X(i)
l − q(i)(n− l)| ≥ ε(n− l)}. Hence we

can write

P
{
Bε,i

}
= P

{
max

0≤l≤n−log3 n
|q(i) − X

(i)
l

n− l
| ≥ ε

}
.

Taking s = log3 n, t = ε in (3.3.1), the result follows.

Now we consider how degrees distribute among the tree components of the

random forest F(s). Write F(s)↓ = (Tl, l ≥ 1). Let sl = (s
(i)
l , i ≥ 0) denote the

(empirical) degree sequence of the l−th largest tree Tl. Recall that q(i) = s(i)/n and

let q
(i)
l = s

(i)
l /|sl| be the empirical proportion of degree i vertices of Tl; if F(s) has

fewer than l trees then q
(i)
l = 0. Note that q(i) is deterministic while q

(i)
l is random.

Proposition 3.3.4. For fixed ε > 0 and i, l, let Bε,i
l = {|q(i)l − q(i)| > ε}. Then for

fixed ε > 0, i ∈ N, we have

P

⎧⎨⎩ ⋃
l: |Tl|>n1/4

Bε,i
l

⎫⎬⎭ ≤ nP
{
Bε,i

}
. (3.3.2)

Proof. Let V be a uniformly random vertex of F(s), then (F(s), V ) is uniformly

distributed in MF(s). List the nodes of F(s) in cyclic lexicographic order as V =
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V1, V2, · · · , Vn, and for i ≤ n let Ci be the degree of Vi. By Corollary 3.2.5, the

sequence (C1, · · · , Cn) = g(F(s), V ) is uniformly distributed in D(s); in other words,

it is distributed as a uniformly random permutation of d(s). For any 1 ≤ j ≤ n, let

B̃ε,i
j be the event that there exists m > n1/4 such that

|#{1 ≤ t ≤ m : Cj+t (mod n) = i}
m

− q(i)| > ε.

Since (C1, · · · , Cn) is uniformly distributed in D(s), it is immediate that P
{
B̃ε,i

1

}
=

· · · = P
{
B̃ε,i

n

}
. Suppose a tree T ∈ F(s) with |T | > n1/4 has that

|#{u : kT (u) = i}
|T | − q(i)| > ε.

If V is not a node of T , then there exists m > n1/4, 0 < j ≤ n−m such that

V (T ) = {Vj+1, · · · , Vj+m}, |
#{1 ≤ t ≤ m : Cj+t = i}

m
− q(i)| > ε.

If V is a node of T , then there exists m > n1/4, j > n−m such that

V (T ) = {Vj+1, · · · , Vn, V1, · · · , Vj+m−n}, |
#{t ≥ j + 1 or t ≤ j +m− n : Ct = i}

m
−q(i)| > ε.

In either case we must have B̃ε,i
j true for some 1 ≤ j ≤ n. Therefore

P

⎧⎨⎩ ⋃
l: |Tl|>n1/4

Bε,i
l

⎫⎬⎭ ≤ nP
{
B̃ε,i

1

}
≤ nP

{
Bε,i

}
,

which gives the claim.
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3.3.2 Probability bound of trees of random forest having abnormally
large height

In this subsection, we prove tail bounds on the heights of trees in F(s), by first

proving tail bounds on the sums of squares of the child sequences. This will be used in

proving Proposition 3.1.4 in Section 3.5. To be more specific, let c = (c1, c2, · · · , cn) ∈

D(s) be a child sequence with σ2(s) :=
n∑

i=1

c2i =
∑
i

i2s(i) and write M := σ2(s)/n and

Δ = Δ(s) := max
i

ci. Recall that C1, C2, · · · , Cn are the uniformly permuted child

sequence and let Sj :=
∑
i≤j

C2
i . We will use Theorem 2.3.1. Since C1, C2, · · · , Ck are

sampled without replacement from the population c1, c2, · · · , cn, we may not directly

apply Theorem 2.3.1. We address this issue as follows.

Recall (or see, e.g., [10]) that given real random variables U, V , we say U is a

dilation of V if there exist random variables Û , V̂ such that

Û
d
= U, V̂

d
= V and E

[
Û |V̂

]
= V̂ .

Proposition 3.3.5 (Proposition 20.6 in [10]). Suppose X1, · · · , Xk and X∗
1 , · · · , X∗

k

are samples from the same finite population x1, · · · , xn, without replacement and with

replacement, respectively. Let Sk =
k∑

i=1

Xi, S
∗
k =

k∑
i=1

X∗
i . Then S∗k is a dilation of Sk.

In particular, E [φ(S∗k)] ≥ E [φ(Sk)] for all continuous convex function φ : R→ R.

The proof of Theorem 2.3.1, in [54] (which is similar to the proof of Theo-

rem 2.3.2, which we included in Section 2.3), proceeds by bounding the quantity

E [exp(h(S∗n − μ))], where h is any real number. By Proposition 3.3.5, we have

E [exp(h(Sn − μ))] ≤ E [exp(h(S∗n − μ)], which means that the proof applies mutatis

mutandis in the setting of sampling without replacement.
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Corollary 3.3.6. Let X1, · · · , Xk be samples from finite population x1, · · · , xn, with-

out replacement, with X1−EX1 ≤ b. Let Sk =
k∑

i=1

Xi, V =
k∑

i=1

VarXi and μk = ESk.

Then for any t ≥ 0, with ε = bt/V , we have

P {Sk − μk ≥ t} ≤ exp

(
−V

b2
((1 + ε) ln(1 + ε)− ε)

)
≤ exp

(
− t2

2V + 2bt/3

)
.

(3.3.3)

Now we get our probability bound on the deviations of (Sk, k ≤ n).

Proof of Proposition 3.1.6. We apply (3.3.3); we have μk = ESk =
k
n
Sn, b = Δ2,

V =
k∑

i=1

VarC2
i ≤ kE

[
C4

1

]
=

k

n

n∑
i=1

c4i ≤
k

n
Δ2σ2(c) = kΔ2M,

where M = σ2(c)/n. For λ > 1, taking t = (λ− 1) k
n
σ2(c), we obtain

P

{
Sk ≥ λ

k

n
Sn

}
= P {Sk − μk ≥ (λ− 1)kM}

≤ exp

(
− ((λ− 1)kM)2

2kΔ2M + 2
3
Δ2(λ− 1)kM

)
Using the assumption λ ≥ 2 twice, we have

P

{
Sk ≥ λ

k

n
Sn

}
≤ exp

(
− ((λ− 1)kM)2

8
3
(λ− 1)Δ2kM

)
= exp

(
−3(λ− 1)kM

8Δ2

)
≤ exp

(
−3M

16
· λk
Δ2

)
= exp

(
−3σ2(c)

16n
· λk
Δ2

)
,

which finishes the proof.

Using results from Section 3.2, we now have the following estimate on variance

of tree components of F(s). For a tree T , we let σ2(T ) =
∑
u∈T

kT (u)
2.
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Proposition 3.3.7. Let s = (s(i), i ≥ 0) be a degree sequence with |s| = n and

M = σ2(s)/n. Then for λ ≥ 4, α > Δ2(s)/n,

P
{
∃T ∈ F(s) : |T | ≤ αn, σ2(T ) ≥ λασ2(s)

}
≤ 2

α
exp(−3M

16
λ). (3.3.4)

Proof. Let V be a uniformly random vertex of F(s), then (F(s), V ) is uniformly

distributed in MF(s). List the nodes of F(s) in cyclic lexicographic order as V =

V1, V2, · · · , Vn, and for i ≤ n let Ci be the degree of Vi. By Corollary 3.2.5, the

sequence (C1, · · · , Cn) = g(F(s), V ) is uniformly distributed in D(s); in other words,

it is distributed as a uniformly random permutation of d(s). In what follows we omit

some floor notations for readability. For 0 ≤ j ≤ � 1
α
�, let Bj be the event that

(j+2)αn∑
i=jαn+1

C2
i (mod n) ≥ λασ2(s).

Since C1, · · · , Cn is distributed as a uniformly random permutation of d(s), we clearly

have

P {B0} = P {B1} = · · · = P
{
B� 1

α
�
}
.

Suppose that a given tree T ∈ F(s) has |T | ≤ αn and σ2(T ) ≥ λασ2(s). Then there

exist 0 ≤ l < n and m ≤ αn such that V (T ) = {Vl+t (mod n) : 1 ≤ t ≤ m}. Hence

there exists 0 ≤ j ≤ � 1
α
� such that V (T ) ⊂ {Vi (mod n), jαn + 1 ≤ i ≤ (j + 2)αn}.

This implies that
(j+2)αn∑
i=jαn+1

C2
i (mod n) ≥ σ2(T ) ≥ λασ2(s),
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i.e. Bj is true. Hence the probability in question is at most

(1 + � 1
α
�)P {B0} ≤

2

α
P
{
S�2αn� ≥ λασ2(s)

}
≤ 2

α
P

{
S�2αn� ≥

λ

2
· �2αn�

n
σ2(s)

}
≤ 2

α
exp

(
−3M

16
λ

)
,

where we take k = �2αn� in Proposition 3.1.6 and use α > Δ2(s)/n at the last

step.

Now we finish this section by proving a key proposition on probability bound of

F(s) containing trees with unusually large height.

Proposition 3.3.8. ∀ ε, ρ ∈ (0, 1), ∃n0 = n0(ε) ∈ N and β0 > 0 such that the

following is true. Let s be any degree sequence with |s| = n ≥ n0. Suppose that

Δ(s) ≤ n
1−ε
2 , s(1) ≤ (1− ε)|s| and ε ≤ σ2(s)/n ≤ 1/ε, then for any 0 < β < β0,

P
{
∃T ∈ F(s) : |T | < βn, h(T ) > β1/8n1/2

}
≤ ρ.

Proof. Fix β > 0 small, let δ = β1/8, and consider the following four events.

• E1 is the event that there exists a tree T (of F(s)) with Δ2(s) < |T | < βn and

σ2(T ) > ( |T |
n
)1/2σ2(s).

• E2 is the event that there exists a tree T with |T | ≤ n1−ε and σ2(T ) > n1− ε
2 .

• E3 is the event that there exists a tree T with Δ2(s) < |T | < βn and σ2(T ) ≤

( |T |
n
)1/2σ2(s) such that h(T ) > δn1/2.

• E4 is the event that there exists a tree T with |T | ≤ n1−ε and σ2(T ) ≤ n1− ε
2

such that h(T ) > δn1/2.

If there is T ∈ F(s) with |T | < βn, and h(T ) > δn1/2, then one of E1, E2, E3 or E4

must occur, so it suffices to bound P {E1}+P {E2}+P {E3}+P {E4}. For E1, we
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further decompose the interval [Δ2(s), βn] dyadically. In the next sum, we bound

the k−th summand by taking α = β
2k
, λ = 2

k−1
2

β1/2 ≥ 4 in Proposition 3.3.7.

P {E1} ≤
�log2 βn

Δ2(s)
�∑

k=0

P

{
∃T ∈ F(s) : |T | ∈

[
βn

2k+1
,
βn

2k

]
, σ2(T ) >

(
β

2k+1

)1/2

σ2(s)

}

≤
∑
k≥0

2k+1

β
exp

(
−3σ2(s)

16n

2
k−1
2

β1/2

)

= O

(
1

β
exp(− ε

β1/2
)

)
(3.3.5)

where we use that σ2(s)/n ≥ ε in the final line.

Next, note that P {E2} ≤
n1−ε∑
j=1

P
{
∃T ∈ F(s) : |T | = j, σ2(T ) > n1−ε/2}. For any

fixed j, using Corollary 3.2.5, with similar argument as in proof of Proposition 3.3.7,

we have

P
{
∃T ∈ F(s) : |T | = j, σ2(T ) > n1−ε/2} ≤ nP

{
Sj ≥ n1−ε/2} .

For any j ≤ n1−ε, use Proposition 3.1.6 with λ j
n
σ2(s) = n1−ε/2 and Δ(s) ≤ n

1−ε
2 , we

have

P
{
Sj ≥ n1−ε/2} ≤ exp

(
−3σ2(s)

16n
· λj

Δ(s)2

)
≤ exp

(
− 3

16
nε/2

)
.

These give that

P {E2} ≤ n2−ε exp
(
− 3

16
nε/2

)
. (3.3.6)

We bound P {E3} as follows. For k ≥ 0, let E3,k be the event that there

exists T ∈ F(s) with βn
2k+1 ≤ |T | ≤ βn

2k
and σ2(T ) ≤ ( |T |

n
)1/2σ2(s) such that height

h(T ) > δn1/2. Also, let B be the event that there exists T ∈ F(s) with |T | ≥ n1/4
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such that ∣∣∣∣s(1)(T )|T | − s(1)

n

∣∣∣∣ ≥ ε/2.

For n large enough, we have
√
5

logn
< ε/2 < 1. Hence it is immediate from Lemma 3.3.3

and Proposition 3.3.4 that P {B} ≤ n−2 for n large. Also, for n large, if h(T ) ≥ δn1/2

then |T | ≥ h(T ) ≥ n1/4, so

P {E3} ≤ P {B}+
�log2 βn

Δ2(s)
�∑

k=0

P {E3,k ∩Bc} ≤ 1

n2
+

�log2 βn

Δ2(s)
�∑

k=0

P {E3,k ∩Bc} . (3.3.7)

Let m be the number of trees T ∈ F(s) with βn
2k+1 ≤ |T | ≤ βn

2k
and σ2(T ) ≤

( |T |
n
)1/2σ2(s), and list the random degree sequences of these trees as R1, · · · ,Rm.

Then for any degree sequences r1, · · · , rm,

P {E3,k ∩ Bc ∩ {(R1, · · · ,Rm) = (r1, · · · , rm)}} = P {Bc ∩ {(R1, · · · ,Rm) = (r1, · · · , rm)}}

·P {E3,k | Bc ∩ {(R1, · · · ,Rm) = (r1, · · · , rm)}} .

Moreover

P {E3,k | Bc ∩ {(R1, · · · ,Rm) = (r1, · · · , rm)}} = P
{
∃i ≤ m,h(T(ri)) ≥ δn1/2

}
,

where T(ri) is a uniformly random plane tree with degree sequence ri. It follows

from these identities that

P {E3,k ∩ Bc} ≤ supP
{
∃i ≤ m,h(T(ri)) ≥ δn1/2

}
, (3.3.8)

where the supremum is over vectors (r1, · · · , rm) of degree sequences such that

P {E3,k ∩ Bc ∩ {(R1, · · · ,Rm) = (r1, · · · , rm)}} > 0.
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The last condition implies that, for all i ≤ m,∣∣∣∣∣r(1)i

|ri|
− s(1)

n

∣∣∣∣∣ < ε/2, so
r
(1)
i

|ri|
< 1− ε/2,

and that

σ2(ri) ≤ (
|ri|
n

)1/2σ2(s) ≤ (
β

2k
)1/2σ2(s).

Finally we must have |ri| ≥ β
2k+1n for all i ≤ m, so m ≤ 2k+1

β
. Now recall The-

orem 3.1.5, which states that for a degree sequence r = (r(i), i ≥ 0) and for all

h ≥ 1,

P {h(T(r)) ≥ h} ≤ 7 exp
(
−h2/608σ2(r)12r

)
where 1r = |r|−2

|r|−1−r(1) ; note that this is at most 4/ε for all degree sequences under

consideration (for n large enough such that n1/4 ≥ 4/ε). Using a union bound

in (3.3.8), and then applying Theorem 3.1.5, we obtain that

P {E3,k ∩Bc} ≤ 2k+1

β
· 7 exp

(
− ε3δ2

9728
(
2k

β
)1/2

)
where we use the assumption σ2(s)/n ≤ 1/ε. And summing over k in (3.3.7) yields

that

P {E3} ≤
∑
k≥0

2k+1

β
· 7 exp

(
− ε3δ2

9728
(
2k

β
)1/2

)
+

1

n2
≤ C5

1

β
exp

(
− C6

β1/4

)
+

1

n2
(3.3.9)

if we take δ = β1/8, where C5 > 0 is some universal constant and C6 > 0 is some

constant depending on ε.

For P {E4}, similar to the previous treatment of P {E3}, for n large, we have

P {E4} ≤
1

n2
+P {E4 ∩Bc} .
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There are at most n trees in total, so a reprise of the conditioning argument used to

bound P {E3} gives

P {E4 ∩ Bc} ≤ n supP
{
h(T(r)) ≥ δn1/2

}
,

where the supremum is over degree sequences r with n(r) ≤ n1−ε, with σ2(r) ≤ n1−ε/2,

and with r(1) ≤ (1− ε/2)n(r). By Theorem 3.1.5, we obtain that

P {E4} ≤ 1

n2
+ 7n exp

(
− δ2n

608σ2(r)12r

)
≤ 1

n2
+ 7n exp

(
− δ2n

608n1− ε
2
16
ε2

)

=
1

n2
+ 7n exp

(
− ε2

9728
nε/2β1/4

)
; (3.3.10)

recall that we take δ = β1/8. Of the bounds on P {Ei} , 1 ≤ i ≤ 4 in (3.3.5), (3.3.6),

(3.3.9) and (3.3.10), the largest is for P {E3} (provided n is large enough). Hence by

taking β > 0 small enough, we can make the bound less than any prescribed number

ρ > 0, which yields the result.

3.4 Convergence of the Lukasiewicz walk of forest to first passage bridge

In this section, we aim to prove Theorem 3.1.2 and conclude Proposition 1.3.3 as

a corollary of Theorem 3.1.2. Throughout the section, we fix a sequence (sn, n ∈ N)

of degree sequences, with sn = (s
(i)
n , i ≥ 0) and |sn| = n. Recall that pn = (p

(i)
n , i ≥

0) = (s
(i)
n /n, i ≥ 0) and σn = σ(pn) as defined in Section 1.3. Write σ = σ(p) and

cn = c(sn). Recall the notation d as in Section 3.2 and write dn = d(sn). Recall from

Section 3.1 that for l ≥ 0, we write Bbr
l for the Brownian bridge of duration 1 from

0 to −l. Moreover, we simply write Bbr for the case l = 0.
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Proposition 3.4.1. Assume (sn, n ∈ N) satisfies the hypothesis of Theorem 1.3.1,

and in particular that cn = c(sn) = (1 + o(1))λσnn
1/2 as n → ∞ for some λ > 0

and that σn → σ. For each n ∈ N, fix a uniform random permutation πn of [n], and

define a C[0, 1] function W̃n by

W̃n(t) :=
Wπn(dn)(tn)

σnn1/2
.

Then as n→∞,

W̃n
d→ Bbr

λ in C[0, 1].

To prove this theorem, we make use of the following result, which is Corol-

lary 20.10 (a) in [10].

Theorem 3.4.2. Consider a triangular array (Zq,i : 1 ≤ i ≤ Mq, 1 ≤ q) of random

variables satisfying

(a) For each q, the sequence (Zq,1, · · · , Zq,Mq) is exchangeable;

(b) max
i
|Zq,i|

p→ 0 as q →∞.

Define μq =
∑
i

Zq,i, τ 2q =
∑
i

(Zq,i − μq

Mq
)2 and Sq(t) =

�tMq�∑
i=1

Zq,i.

Let X(t) = τBbr(t) + μt where (τ, μ) is independent of Bbr. Then

Sq d→ X in D[0, 1] iff (μq, τq)
d→ (μ, τ).

Proof of Proposition 3.4.1. Let dn,i := πn(dn)i − 1, for 1 ≤ i ≤ n. We apply the

above theorem directly with Zn,i =
dn,i

σnn1/2 . Condition (a) is satisfied since πn is a

uniformly random permutation of [n]. Condition (b) is satisfied since Δn = o(n1/2)

and sup σn <∞.
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Next note that, since
∑
i

dn,i =
∑
i

(πn(dn)i − 1) = −cn,

μn =
∑
i

Zn,i =

∑
i dn,i

σnn1/2
=

−cn
σnn1/2

→ −λ as n→∞, (3.4.1)

the final convergence holding by our assumption on cn. We also have

τ 2n =
∑
i

(
dn,i

σnn1/2
− −cn

σnn1/2n

)2

=
1

σ2
nn

(
∑
i

d2n,i + 2
cn
n

∑
i

dn,i +
c2n
n
) =

1

σ2
nn

(
∑
i

d2n,i −
c2n
n
)

=
1

σ2
nn

∑
i

d2n,i + o(1),

the last equation holding since cn = O(n1/2).

Next note that

∑
i

d2n,i =
∑
i

(πn(dn)i − 1)2 =
∑
i

((dn)i)
2 + n− 2

∑
i

(dn)i

= n(σ2
n + 1) + n− 2(n− cn)

= nσ2
n + 2cn.

It follows that

τ 2n =
1

σ2
nn

(nσ2
n + 2cn) + o(1)→ 1 (3.4.2)

as n→∞ by our assumption on sn.

Using equations (3.4.1) and (3.4.2), by Theorem 3.4.2 we conclude that(
Wπn(dn)(�tn�)

σnn1/2
, 0 ≤ t ≤ 1

)
d→

(
Bbr(t)− λt, 0 ≤ t ≤ 1

)
in D[0, 1].
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For all t, ∣∣∣Wπn(dn)(�tn�)
σnn1/2

− Wπn(dn)(tn)

σnn1/2

∣∣∣ ≤ Δn

σnn1/2
= o(1)

by assumption, so we must also have
(
W̃n(t), 0 ≤ t ≤ 1

)
d→

(
Bbr(t)− λt, 0 ≤ t ≤ 1

)
in D[0, 1]. Since the Skorohod topology relativized to C[0, 1] coincides with the

uniform topology (see page 124 of [17]), the result follows.

Let f : C0(1)× [0,∞)→ C0(1) be defined by

f(b, v) := θu(b) where u = inf{t : b(t) ≤ min
0≤s≤1

b(s) + v}.

Note that since b is continuous, the minimum of b exists. Also, for v ≤ − min
0≤s≤1

b(s),

we have u = inf{t : b(t) = min
0≤s≤1

b(s) + v} and for v ≥ − min
0≤s≤1

b(s) we have u = 0 so

f(b, v) = θ0(b) = b.

Recall from Section 3.1 the first passage bridge (of unit length from 0 to −λ)

F br
λ is

(F br
λ (t), 0 ≤ t ≤ 1)

d
= (B(t), 0 ≤ t ≤ 1 | τ(λ) = 1)

where τ(λ) := inf{t : B(t) < −λ} is the first passage time below level −λ < 0 and B

is the standard Brownian motion. We are going to use the following result from [14].

Theorem 3.4.3 ([14], Theorem 7). Let ν be uniformly distributed over [0, λ] and

independent of Bbr
λ . Define the r.v. U = inf{t : Bbr

λ (t) = inf0≤s≤1 Bbr
λ (s) + ν}.

Then the process θU(B
br
λ ) has the law of the first passage bridge F br

λ . Moreover, U is

uniformly distributed over [0, 1] and independent of θU(Bbr
λ ).
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Remark 3.4.1. Note that [14] considers first passage times above positive levels,

whereas we consider first passage below negative levels. But the two cases are clearly

equivalent.

As preparation we begin with showing the almost sure continuity of the map

f . We first show that for a fixed function b, the closeness of the location where b is

cyclically shifted will guarantee the continuity of the map f .

Lemma 3.4.4. For any b ∈ C0(1), the function gb : [0, 1]→ C0(1) with gb(u) = θu(b)

is uniformly continuous.

Proof. We want to show that ‖θu− θv‖ is small when |u− v| is small. Since θu ◦ θv =

θu+v mod 1, without loss of generality, we can assume that v = 0. In other words

we just aim to bound ‖θu(b) − b‖ for small u. Fix δ ∈ (0, 1/2) and let ε = ε(δ) =

sup
|t−s|<δ

|b(t)− b(s)| be the modulus of continuity of b. Let 0 < u < δ. If t ∈ [0, 1− u],

then |θu(b)(t)−b(t)| = |b(t+u)−b(u)−b(t)| ≤ |b(u)−b(0)|+ |b(t+u)−b(t)| ≤ 2ε(u).

If t ∈ [1− u, 1], then |θu(b)(t)− b(t)| = |b(t+ u− 1) + b(1)− b(u)− b(t)| ≤ |b(t+ u−

1)− b(u)|+ |b(1)− b(t)| ≤ 2ε(u). Since ε(u)→ 0 as u→ 0, the result follows.

Lemma 3.4.5. Given b ∈ C0(1) and 0 ≤ v ≤ −min(b), if f(b, v) = θtv+min(b)
(b) is

not continuous at v, then b attains a local minimum at tv+min(b).

Proof. By Lemma 3.4.4, if f(b, v) is not continuous at v, then tv+min(b) is not continu-

ous at v. The continuity of b clearly implies right-continuity of tv+min(b) as a function

of v. Moreover, for all 0 ≤ v ≤ −min(b), b attains a left-local minimum at tv+min(b).

Letting t+ = lim
v′↑v

tv′+min(b), then it follows that

b(x) ≥ v +min(b) for all x ∈ [tv+min(b), t
+].
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This implies that if tv+min(b) is not continuous at v, then t+ > tv+min(b), so b also

attains a right-local minimum at tv+min(b). This proves the lemma.

For λ > 0, we next collect a few properties of Brownian bridge Bbr
λ and first

passage bridge F br
λ :

Lemma 3.4.6. Brownian bridge Bbr
λ satisfies the following properties:

(a) Let τ+ = inf{t > 0 : Bbr
λ (t) > 0}, τ− = inf{t > 0 : Bbr

λ (t) < 0}, then almost

surely τ+ = τ− = 0;

(b) Given two nonoverlapping closed intervals (which may share one common

endpoint) in [0, 1], the minima of Bbr
λ on these two intervals are almost surely differ-

ent;

(c) Almost surely, every local minimum of Bbr
λ is a strict local minimum;

(d) The set of times where local minima are attained is countable.

Moreover, these four properties also hold for first passage bridge F br
λ .

Proof. First note that the four properties are satisfied by a standard Brownian motion

B (e.g. see Theorem 2.8 and Theorem 2.11 in [57]). Let Cn be the set of functions

f ∈ C[0, 1] such that all four properties in the lemma occur up to time 1− 1/n (i.e.

the restriction of f on [0, 1−1/n] satisfies all four properties). Then P {B ∈ Cn} = 1

for all n ∈ N. By equation (3.1.1) and equation (3.1.2) we know that the law of Bbr
λ

and the law of F br
λ are both absolutely continuous with respect to the law of B up to

time 1−1/n. Hence we must have P
{
Bbr

λ ∈ Cn

}
= P

{
F br
λ ∈ Cn

}
= 1 for any n ∈ N.

This immediately implies that properties (a), (c) and (d) hold for Bbr
λ and F br

λ . It

also implies (b), except for the case where one of the intervals has the form [s, 1] and

the minimum on [s, 1] is reached at 1. For F br
λ , by definition the global minimum −λ
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is uniquely achieved at 1, hence the minimum on [s, 1] will not be the same as the

minimum on any nonoverlapping interval. For Bbr
λ , consider B̃λ(t) = −Bbr

λ (1−t)−λ,

then B̃λ
d
= Bbr

λ , so B̃λ almost surely takes positive values on any interval [0, ε] by

property (a). It follows that min
t∈[s,1]

Bbr
λ (t) is almost surely achieved at some t = 1.

This completes the proof.

Lemma 3.4.7. Let ν be Unif[0, λ]−distributed and independent of Bbr
λ . Then the

function f : C0(1)× [0,∞)→ C0(1) satisfies P
{
f is continuous at (Bbr

λ , ν)
}
= 1.

Proof. By Lemma 3.4.5, we have

P
{
f is not continuous at (Bbr

λ , ν)
}
≤ P

{
Bbr

λ attains a local minimum at tν+min(Bbr
λ )

}
Let M = {u ∈ [0, 1] : Bbr

λ attains local minimum at u} and let M̃ = {Bbr
λ (u) :

u ∈M}. By Lemma 3.4.6, M is countable, hence M̃ is countable.

Next note that

P
{
Bbr

λ attains a local minimum at tν+min(Bbr
λ )

}
≤ P

{
ν +min(Bbr

λ ) ∈ M̃
}
.

Moreover, ν is a continuous random variable, independent of Bbr
λ , so the last proba-

bility equals zero.

Now we are ready to give the proof of Theorem 3.1.2.

Proof of Theorem 3.1.2. For each n ≥ 1 let νn be a uniformly random element of

[cn] − 1 independent of πn, and let ν be Unif[0, λ] and independent of Bbr
λ . By
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Corollary 3.2.3,

f(W̃n,
νn

σnn1/2
) = f

(
Wπ(dn)(tn)

σnn1/2
,

νn
σnn1/2

)
d
=

(
SFn(tn)

σnn1/2

)
t∈[0,1]

.

By Proposition 3.4.1, we have W̃n
d→ Bbr

λ , and clearly we have σ−1n n−1/2νn
d→ ν. By

independence we have (W̃n, σ
−1
n n−1/2νn)

d→ (Bbr
λ , ν). Since by Lemma 3.4.7 we have

P
{
f is continuous at (Bbr

λ , ν)
}
= 1,

we can apply the mapping theorem (e.g. Theorem 2.7 in [17]) to conclude that

f(W̃n, σ
−1
n n−1/2νn)

d→ f(Bbr
λ , ν).

By Theorem 3.4.3, F br
λ

d
= f(Bbr

λ , ν), hence we conclude that(
SFn(tn)

σnn1/2

)
t∈[0,1]

d→ F br
λ ,

as required.

Now we begin with the preparation work to prove Proposition 1.3.3. We define

the map h : C0(1)→ l↓1 such that for g ∈ C0(1), h(g) equals to the decreasing ordering

of excursion length of g(s)− min
0≤s′<s

g(s′). (we append at most countably many zeros

to make h(g) an element of l↓1). Define hk : C0(1) → Rk as hk = πk ◦ h where

πk : l↓1 → Rk is the projection onto the subspace spanned by the first k coordinates.

To prove Proposition 1.3.3, we use the following result from [22].
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Lemma 3.4.8. [Lemma 3.8 and Corollary 3.10 in [22]] Suppose ζ : [0, 1] → R is

continuous. Let E be the set of non-empty intervals I = (l, r) such that

ζ(l) = ζ(r) = min
s≤l

ζ(s), ζ(s) > ζ(l) for l < s < r.

Suppose that for all intervals (l1, r1), (l2, r2) ∈ E with l1 < l2, we have

ζ(l1) > ζ(l2). (3.4.3)

Suppose also that the complement of ∪I∈EI has Lebesgue measure 0. Fix functions

(ζm,m ≥ 1) such that ζm → ζ uniformly on [0, 1], and real numbers (tm,i, m, i ≥ 1)

which satisfy the following:

(i) 0 = tm,0 < tm,1 < · · · < tm,k = 1;

(ii) ζm(tm,i) = min
u≤tm,i

ζm(u);

(iii) limm maxi(ζm(tm,i)− ζm(tm,i+1)) = 0.

Then the vector consisting of decreasingly ranked elements of {tm,i− tm,i−1 : 1 ≤

i ≤ k} (attaching zeroes if necessary to make the vector an element in R|E|) converges

componentwise and in l1 to the vector consisting of decreasingly ranked elements of

{r − l : (l, r) ∈ E}.

Lemma 3.4.9. Let E be the set of excursions γ of F br
λ (s) − min

0≤s′<s
F br
λ (s′). Then

almost surely for all γ1, γ2 ∈ E with l(γ1) < l(γ2), we have F br
λ (l(γ1)) > F br

λ (l(γ2)).

Proof. Suppose to the contrary that for some γ1, γ2 ∈ E with l(γ1) < l(γ2), we have

F br
λ (l(γ1)) ≤ F br

λ (l(γ2)), then since γ1, γ2 are excursions of F br
λ (s)− min

0≤s′<s
F br
λ (s′), we

must in fact have F br
λ (l(γ1)) = F br

λ (l(γ2)). In this case then we can find a, b, c ∈ Q

such that a < l(γ1) < b < l(γ2) < c, and F br
λ achieves the same minima (at l(γ1) and

70



l(γ2) respectively) on [a, b] and [b, c]. This has probability zero by Lemma 3.4.6 (b).

To prove the next lemma, we introduce the following notation. Let (S1/2(λ), 0 ≤

λ < ∞) denote a stable subordinator of index 1/2, which is the increasing process

with stationary independent increments such that

E
[
exp (−θS1/2(λ))

]
= exp (−λ

√
2θ), θ, λ ≥ 0,

P
{
S1/2(1) ∈ dx

}
= (2π)−1/2x−3/2 exp (− 1

2x
)dx, x > 0.

Lemma 3.4.10. Almost surely, the coordinates of h(F br
λ ) sum to 1, and are all

strictly positive.

Proof. By Proposition 5 of [14], h(F br
λ ) has the law of the vector of ranked excursion

lengths of |Bbr| conditioned to have total local time λ at 0, which in turn has the

same law as ranked excursion lengths of Brownian bridge conditioned to have total

local time λ at 0 (this vector has the same law as the random vector Y (λ) in [9],

see equation (36) there). The latter is distributed as the scaled ranked jump sizes of

the stable subordinator S1/2(·) conditioned to be 1
λ2 at time 1 (e.g. see Theorem 4

in [9]). By Lemma 10 in [9], the coordinates of h(F br
λ ) almost surely sum to 1.

This immediately implies that the stable subordinator almost surely has infinitely

many jumps, so almost surely all coordinates of h(F br
λ ) are strictly positive. Indeed,

suppose to the contrary that the excursion intervals are (l1, r1), · · · , (lk, rk), where

ri ≤ li+1, 1 ≤ i ≤ k − 1. Then since
k∑

i=1

(ri − li) = 1, we must in fact have ri =

li+1, ∀1 ≤ i ≤ k − 1 and l1 = 0, rk = 1. But this implies that 0 = F br
λ (l1) =
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F br
λ (r1) = F br

λ (l2) = · · · = F br
λ (lk) = F br

λ (rk) = F br
λ (1), contradicting to the fact

F br
λ (1) = −λ < 0.

Proof of Proposition 1.3.3. We first prove that for any fixed j ≥ 1, as n→∞,

(|Tn,l|/n)1≤l≤j d→ (|γl|)1≤l≤j. (3.4.4)

Let ζn =
(

SFn (tn)

σnn1/2

)
t∈[0,1]

and let ζ =
(
F br
λ (t)

)
t∈[0,1]. By (3.1.4) and by Skorokhod’s

representation theorem, we may work in a probability space in which ζn
a.s.→ ζ. Let E

be the set of excursion intervals of ζ. Then Lemma 3.4.9 guarantees equation (3.4.3)

in Lemma 3.4.8 is true and Lemma 3.4.10 guarantees that the complement of ∪I∈EI

has Lebesgue measure 0, as required by Lemma 3.4.8. For each n let tn,0 = 0 and

for 1 ≤ j ≤ cn let tn,j be such that ntn,j is the time the depth-first walk SFn finishes

visiting the j−th tree of Fn. Then almost surely, condition (i) of Lemma 3.4.8 is

clearly true and condition (iii) is also true since for each 1 ≤ j ≤ cn, ζn(tn,j) =

ζn(tn,j−1) − 1
σnn1/2 . The definition of Lukasiewicz walk guarantees that the times at

which SFn (tn)

σnn1/2 hits a new minimum coincide with the times at which the walk finishes

exploring the trees of the forest. Hence almost surely condition (ii) of Lemma 3.4.8 is

also satisfied. Also note that the vector consisting of decreasingly ranked elements of

{tn,j − tn,j−1, 1 ≤ j ≤ cn} is simply the scaled decreasing ordering of tree component

sizes (|Tn,l|/n)1≤l≤cn . Hence by Lemma 3.4.8 we know that

(|Tn,l|/n)1≤l≤j a.s.→ hj(F
br
λ )
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which immediately implies weak convergence. Lemma 3.4.10 guarantees that this

is true for any positive integer j. We also have hj(F
br
λ )

d
= (|γl|)1≤l≤j by definition,

and (3.4.4) follows.

To prove (1.3.2) from (3.4.4), we only need to prove that for any ε > 0, there

exists I0 ∈ N such that lim sup
n→∞

P

{∑
l>I0

|Tn,l|
n

> ε

}
< ε. Since by Lemma 3.4.10 we

have
∑
l

|γl| = 1 almost surely, in particular, lim
I→∞

P

{∑
l>I

|γl| > ε

}
= 0. So there

exists I0 such that P
{∑

l>I0

|γl| > ε

}
< ε/2. Let An be the event that

∑
l≤I0

|Tn,l|
n

< 1− ε

and A be the event that
∑
l≤I0

|γl| < 1 − ε (which has probability less than ε/2 by

our choice of I0). By (3.4.4), we have |P {An} − P {A} | < ε/2 for n large enough.

Therefore

lim sup
n→∞

P

{∑
l>I0

|Tn,l|
n

> ε

}
= lim sup

n→∞
P {An}

≤ P {A}+ lim sup
n→∞

|P {An} −P {A} | ≤ ε/2 + ε/2 = ε,

as required.

3.5 Proof of Proposition 3.1.1 and Proposition 3.1.4

We assume that we have the conditions of Theorem 1.3.1 hold. In particular,

we have a probability distribution p on N. Recall that σ = σ(p), σn = σ(pn). Let

sn,l = (s
(i)
n,l, i ≥ 0) denote the degree sequence of Tn,l. Recall that p

(i)
n = s

(i)
n /n and

let p
(i)
n,l = s

(i)
n,l/|sn,l| be the empirical proportion of degree i among all vertices of the

l−th largest tree Tn,l. Note that p
(i)
n is deterministic while p

(i)
n,l is random.
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First, we are going to prove Proposition 3.1.1 by using Theorem 3.1.3. To do

so, we will have to first show that the assumptions of Theorem 3.1.3 are satisfied in

our setting.

Proposition 3.5.1. Under the assumption of Theorem 1.3.1, for all l ≥ 1, as n→∞

we have

(a) pn,l
p→ p coordinatewise, that is, p(i)n,l

p→ p(i) for all i ≥ 1.

(b) σ(pn,l)
p→ σ(p).

Proof. For (a), we know that by Lemma 3.3.3 and Proposition 3.3.4, for fixed ε >

0, i, l ∈ N and n large enough, we have

P
{
|p(i)n,l − p(i)n | > ε

}
≤ 1/n+P

{
|Tn,l| ≤ n1/4

}
. (3.5.1)

For any ε′ > 0, there exists δ > 0 such that P {|γl| < δ} < ε′/2 and by (3.4.4)

we can find n0 such that for all n ≥ n0 we have P
{
|Tn,l|
n

< δ
}
≤ P {|γl| < δ}+ ε′/2

and n−3/4 < δ. Hence P
{
|Tn,l| ≤ n1/4

}
= P

{
|Tn,l|
n
≤ n−3/4

}
≤ P

{
|Tn,l|
n
≤ δ

}
< ε′.

Hence P
{
|Tn,l| ≤ n1/4

}
= o(1) as n → ∞. Therefore by (3.5.1) we know that

|p(i)n,l − p
(i)
n | p→ 0 as n→∞, which implies (a) since by assumption of Theorem 1.3.1

we have pn converges to p coordinatewise.

Now we proceed to prove (b). Fix l ≥ 1 and δ > 0, and let ε > 0 be small

enough that

lim sup
n→∞

P {|Tn,l| < εn} < δ.

Such ε exists by (3.4.4).

Then let M be large enough that σ2
n,>M :=

∑
i>M

i2 s
(i)
n

n
< ε2 for all n (such M

exists since under the assumption of Theorem 1.3.1 σ2
n converges). And let σ2

n,l,>M =
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∑
i>M

i2
s
(i)
n,l

|sn,l| similarly. Note that

σ2
n,l,>M ≤

∑
i>M

i2
s
(i)
n

|Tn,l|
= σ2

n,>M

n

|Tn,l|
,

so if σ2
n,l,>M > ε then |Tn,l| < εn. By the triangle inequality, we have

|σ2(pn,l)− σ2(pn)| ≤
∑
i≤M

i2|p(i)n,l − p(i)n |+
∑
i>M

i2p
(i)
n,l +

∑
i>M

i2p(i)n .

Since |p(i)n,l − p
(i)
n | → 0 in probability for all i by part (a), and

∑
i>M

i2p
(i)
n < ε2 < ε, and

σ(pn)→ σ(p) by assumption of Theorem 1.3.1, this yields that

lim sup
n→∞

P
{
|σ2(pn,l)− σ2(p)| > 4ε

}
≤ lim sup

n→∞
P

{∑
i>M

i2p
(i)
n,l > ε

}
≤ lim sup

n→∞
P {|Tn,l| < εn} < δ,

which proves part (b).

Lemma 3.5.2. Let Δn,l be the largest degree of a vertex of Tn,l. For any fixed l, we

have
Δn,l√
|Tn,l|

p→ 0 as n→∞.

Proof. For any δ > 0, we need to prove lim
n→∞

P

{
Δn,l√
|Tn,l|

> δ

}
= 0. For any ε > 0, by

Lemma 3.4.10 we can choose ε′ > 0 such that P {|γl| < ε′} ≤ ε/2. Then choose n0

such that when n ≥ n0 we have

Δ2
n

n
· 1
δ2

< ε′ and P

{
|Tn,l|
n

< ε′
}
≤ P {|γl| < ε′}+ ε

2
.
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This is possible since Δn = o(n1/2) by Remark 3.1.1 and |Tn,l|/n d→ |γl| by (3.4.4).

Therefore

P

{
Δn,l√
|Tn,l|

> δ

}
≤ P

{
Δn√
|Tn,l|

> δ

}
= P

{
|Tn,l|
n

<
Δ2

n

n
· 1
δ2

}
≤ P

{
|Tn,l|
n

< ε′
}
≤ ε,

hence the claim.

With Proposition 3.5.1 and Lemma 3.5.2, we are now ready to give the proof of

Proposition 3.1.1.

Proof of Proposition 3.1.1. Let sn,l be the random degree sequence of the l−th largest

tree in the forest Fn. Then by Proposition 1.3.3, we have(
|sn,1|
n

, · · · , |sn,j|
n

)
d→ (|γ1|, · · · , |γj|) .

By Proposition 3.5.1 and Lemma 3.5.2, we know we can apply Theorem 3.1.3 to Tn,l

to conclude that for each fixed l ≤ j,

n1/2

|sn,l|1/2
Tn,l d→ Tel

where (el)l≤j are independent copies of e. Since the trees (Tn,l, l ≤ j) are conditionally

independent given their degree sequences, it follows that(
n1/2

|sn,l|1/2
Tn,l, l ≤ j

)
d→ (Tel , l ≤ j) .

The result follows by Brownian scaling.

Finally, we give the proof of Proposition 3.1.4 based on Proposition 3.3.8, with

the assumptions of Theorem 1.3.2.

76



Proof of Proposition 3.1.4. By assumption we have σn → σ ∈ (0,∞) and s
(1)
n /|sn| →

p(1) < 1. Fix ρ > 0 and let ε > 0 be such that 2ε < σ2 < 1
2ε

. Then let β0 = β0(ρ, ε)

be as in Proposition 3.3.8, so that for all n sufficiently large, if a degree sequence s

satisfies |s| = n,Δ(s) ≤ n
1−ε
2 , s(1) ≤ (1 − ε)|s| and ε ≤ σ2(s)/n ≤ 1/ε, then for any

0 < β < β0,

P
{
∃T ∈ F(s) : |T | < βn, h(T ) > β1/8n1/2

}
≤ ρ.

For n sufficiently large, sn satisfies these conditions. Hence for any 0 < β < β0,

P
{
∃T ∈ F(sn) : |T | < βn, h(T ) > β1/8n1/2

}
≤ ρ. (3.5.2)

Finally, taking β = (a/σn)
8 in (3.5.2), since Tn,l = σn

2n1/2Tn,l and for all j > 1/β we

have |Tn,j| < βn, it follows that for all n sufficiently large,

P

{
sup
l>j

h(Tn,l) >
an1/2

σn

}
≤ P

{
∃T ∈ F(sn) : |T | < βn, h(T ) > β1/8n1/2

}
≤ ρ.

Since diam(Tn,l) ≤ 2h(Tn,l), the result now follows easily.

3.6 Proof of Remark 3.1.1 and Remark 3.1.3

Let’s restate Remark 3.1.1 as the following lemma and we want to emphasize

that the following lemma applies to the settings of both Chapter 3 and Chapter 4.

Lemma 3.6.1. Suppose distributions pn converges to p coordinatewise and σ(pn)→

σ(p) ∈ (0,∞) and c(sn)

n1/2 → x ∈ [0,∞), then μ(pn) → μ(p) = 1 and Δn/n
1/2 → 0 as

n→∞.
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Proof. We write cn = c(sn). First, since

0 ≤ μ(p) =
∑

ip(i) ≤
∑

i2p(i) = σ2(p) + 1 <∞,

we have μ(p) ∈ (0,∞). And we can compute the limit of μ(pn) explicitly:

μ(pn) =
∑

ip(i)n =
∑

i
s
(i)
n

n
=

n− cn
n

→ 1

by our assumption of the magnitude of cn.

Next, since pn → p coordinatewise, for all M ∈ N we have

lim
n→∞

|
∑
i≤M

ip(i)n −
∑
i≤M

ip(i)| = 0.

It follows that

lim sup
n→∞

|
∑

ip(i)n −
∑

ip(i)| = lim
M→∞

lim sup
n→∞

|
∑
i≥M

ip(i)n −
∑
i≥M

ip(i)|

≤ lim
M→∞

lim sup
n→∞

(∑
i≥M

ip(i)n +
∑
i≥M

ip(i)

)

≤ lim
M→∞

lim sup
n→∞

(∑
i≥M

i2p(i)n +
∑
i≥M

i2p(i)

)
= 0,

where the final equality holds since σ(p) < ∞ and σ(pn) → σ(p). Hence μ(pn) →

μ(p).

Since pn → p coordinatewise, it follows that for any integer N ,

lim sup
n→∞

|
∑
i≥N

i2p(i)n −
∑
i≥N

i2p(i)| = lim sup
n→∞

|σ2(pn)− σ2(p)| = 0.
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Now let ε > 0 and let N be large enough that 0 <
∑
i≥N

i2p(i) < ε. Then for all n

sufficiently large, 0 <
∑
i≥N

i2p
(i)
n < ε. But

∑
i≥N

i2p
(i)
n ≥ ε�Δn≥(εn)1/2 , so this implies that

lim sup
n→∞

Δn

n1/2 ≤ ε1/2. Since ε > 0 was arbitrary, the result follows.

Next we proceed to prove Remark 3.1.3. The following proposition will be useful

for our justification of Remark 3.1.3 (see Lemma 2.4 in [45] for a version dealing with

Gromov-Hausdorff distance instead of Gromov-Hausdorff-Prokhorov distance):

Proposition 3.6.2 (Proposition 2.9 in [2]). Let f, g be two compactly supported

non-negative continuous functions with f(0) = g(0) = 0. Then

dGHP (Tf , Tg) ≤ 6||f − g||∞ + |σf − σg|.

Now we prove the following result.

Proposition 3.6.3. The GH convergence in Theorem 1 in [20] can be strengthened

to GHP convergence as in Theorem 3.1.3.

Proof. Let Cn be the contour function of Tn, define Ĉn : [0, 1] → [0,∞) by letting

Ĉn(t) =
σ(pn)

2n1/2 Cn(2(n−1)t), then it is shown in [20] (see Theorem 3 there) that Ĉn
d→ e

in the space C([0, 1],R), equipped with the supremum distance. By Proposition 3.6.2

and Skorokhod’s representation theorem, it follows that TĈn

d→ Te in the GHP sense.

Next, metrically we may realize Tn as the subspace of TĈn
consisting of the set

U of points whose distance from the root is an integer multiple of σ(pn)

2n1/2 . With this

identification

dH(Tn, TĈn
) =

1

2
· σ(pn)

2n1/2
.
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Moreover, the measure μ̂n on TĈn
is the (normalized) length measure, and the mea-

sure μn on Tn is the uniform measure on its points. It follows that

dP (μ̂n, μn) ≤
1

n
+

σ(pn)

2n1/2
.

To see this, for each u ∈ U which is not the root of Tn, let eu be the parent edge

of u, which we view as a closed line segment of length ε = σ(pn)

2n1/2 in TĈn
. For any

non-empty set S ⊂ U , we have μn(S) = |S|/n. Hence

μ̂n(S
ε) ≥ |S| − 1

n− 1
≥ μn(S)−

1

n
,

where the first inequality is because for non-root u ∈ S, we have eu ⊂ Sε. On the

other hand, let A be a closed set in TĈn
and let l = |{e ∈ E(Tn) : A ∩ e = ∅}|. Then

Aε contains at least l vertices of Tn since no cycle exists, so

μn(A
ε) ≥ l

n
=

l

n− 1
− l

n(n− 1)
≥ μ̂n(A)−

1

n
.

Hence dGHP (Tn, TĈn
)

d→ 0. By the triangle inequality, it follows that Tn d→ Te in the

GHP sense.
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CHAPTER 4
Supercritical case

4.1 Introduction

The goal of this chapter is to study the asymptotic structure of large random

forests with a given degree sequence, in the “supercritical”, finite variance regime.

That is, let n be the number of nodes of the forest, we consider the case where the

number of trees of uniformly random forests is o(n1/2). This setting is a natural gen-

eralization of [20], where the uniformly random tree is studied (see Theorem 1.3.4).

In this “supercritical” setting, the forest typically consists of a single, large tree con-

taining all but a vanishing fraction of the nodes. The scaling limit of this tree is T ,

the Brownian Continuum Random Tree (BCRT) introduced by Aldous in [6, 7, 8].

The remaining nodes form another random forest, which may be expected to have its

own scaling limit (with an appropriate rescaling, which should be different from that

of the large tree; In fact, the remaining trees behave like a forest which is critical,

this behaviour is also observed in the random forest model studied in [44]). The

contributions of this chapter confirm that the above picture is correct, and yield

a pleasingly straightforward description, which we now provide, for the joint scal-

ing limit of the large tree and the small trees. This chapter is essentially derived

from the manuscript of [48]. We now first give the construction of the limit F in

Theorem 1.3.4.
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Let B = (B(t), t ≥ 0) be a linear Brownian motion. For t ≥ 0 let R(t) =

B(t) − inf(B(s), s ≤ t); the process R = (R(t), t ≥ 0) is Brownian motion reflected

at its running minimum. Let Z = {t ≥ 0 : R(t) = 0} be the zero set of R. By

definition, this is also the set of times at which B is equal to its running minimum.

Now let τ(x) = inf(t : B(t) ≤ −x) for x ≥ 0, and let Z(x) = Z ∩ [0, τ(x)]. For

σ > 0, the relative complement [0, τ( 1
σ
)]\Z( 1

σ
) is almost surely a countable collection

of intervals with distinct lengths, and with total length τ( 1
σ
). List these intervals in

decreasing order of length as ((gi, di), i ≥ 1).

For i ≥ 1 let Ti be the continuum random tree coded by Bi, where

Bi = (B(gi + t)− B(gi), 0 ≤ t ≤ di − gi) = (R(gi + t)−R(gi), 0 ≤ t ≤ di − gi).

Then the scaling limit of the small trees has the law of the sequence F = (T ↓i , i ≥ 1),

which is a decreasing reordering of (Ti, i ≥ 1) according to (di − gi, i ≥ 1).

Now we recall Theorem 1.3.4, the main goal of this chapter.

Theorem 1.3.4. Suppose that there exists a distribution p = (p(i), i ≥ 0) on N0

such that pn converges to p coordinatewise. Suppose also that σ(pn)→ σ := σ(p) ∈

(0,∞). If cn := c(sn) = o(n1/2), then(
Tn,1, F̂n,

n− |Tn,1|
c2n

)
d→

(
T ,F , τ

(
1

σ

))
where the first coordinate of the joint convergence is in the GHP sense, the second

coordinate is in the sense of coordinatewise GHP convergence, and T and F are

independent.
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Fix a critical, finite variance offspring distribution ν, and let Fn be a forest

of cn independent Galton-Watson(ν) trees with offspring distribution ν, conditioned

to have total progeny n. It is not hard to check, as in [20], that with high prob-

ability the degree sequence of Fn satisfies the conditions of Theorem 1.3.4, so the

distributional convergence of the theorem also applies to Fn. The convergence of

the third coordinate, in the Galton-Watson setting, appears as Theorem 1.4.5, and

provides a new proof and different perspective on that result; the convergence of the

second coordinate strengthens and generalizes and removes a moment assumption

from Theorem 1.7 of [23] (part of Theorem 1.4.7).

Outline of the section

In the remainder of this section, we first describe the key ingredients of the proof

of our main theorem in Section 4.1.1. Next in Section 4.1.2 we explain how to deduce

Theorem 1.3.4 from the results of Section 4.1.1, and outline the remaining sections

of the chapter.

4.1.1 Functional convergence and proof of Theorem 1.3.4

Given a degree sequence s = (s(i), i ≥ 0) with |s| = n, recall that we let d(s) ∈

Zn
≥0 be the vector whose entries are weakly increasing and with s(i) entries equal

to i, for each i ≥ 0. Suppose we have a sequence of degree sequences (sn)n∈N,

with sn = (s
(i)
n , i ≥ 0), |sn| = n, cn := c(sn) = o(n1/2) and n−1 · sn → p in L2 for

some distribution p = (p(i), i ≥ 0) with mean 1 and finite variance σ2 on N. Let

Cn,1, · · · , Cn,n be a uniformly random permutation of d(sn). For 1 ≤ k ≤ n, let

Xn,k = Cn,k − 1, and set Sn,k =
∑k

j=1 Xn,j. Our proof makes use of the following

functional convergence theorem.
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Theorem 4.1.1. We have the following convergence of processes:(
1

cn
Sn,�tc2n�, t ≥ 0

)
d→ (σB(t), t ≥ 0) (4.1.1)

where (B(t), t ≥ 0) is standard Brownian Motion.

Theorem 4.1.1 will yield a description of the asymptotic behaviour of the sizes

of all but the largest tree of Fn.

Corollary 4.1.2. We have(
|Tn,i+1|

c2n
, i ≥ 1

)
d→ (di − gi, i ≥ 1) in L1

where ((gi, di), i ≥ 1) are the excursion intervals of (R(t), t ≤ τ( 1
σ
)) in decreasing

order of length.

Corollary 4.1.2 is equivalent to the assertions that

1

c2n

∑
i≥2
|Tn,i| d→ τ(

1

σ
) =

∑
i≥1

(di − gi) (4.1.2)

and that for any fixed j ∈ N,(
|Tn,2|
c2n

,
|Tn,3|
c2n

, . . . ,
|Tn,j|
c2n

)
d→ (d1 − g1, d2 − g2, . . . , dj−1 − gj−1). (4.1.3)

We will prove this corollary in Section 4.3. To describe the limit structure of

each tree, we again appeal to Theorem 3.1.3. And we recall it here.

Theorem 3.1.3. Let {sn, n ≥ 1} be a degree sequence such that |sn| = n→∞,Δn :=

Δ(sn) = o(n1/2). Suppose that there exists a distribution p = (p(i), i ≥ 0) on N

with mean 1 such that pn = (s
(i)
n /n, i ≥ 0) converges to p coordinatewise and such

that σ(pn) → σ(p) ∈ (0,∞). Let Tn be the random plane tree under Psn, the
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uniform measure on the set of plane trees with degree sequence sn. Let Tn denote

the measured rooted metric space (Tn,
σ(pn)

2n1/2 dgr, ∅n, μn) where μn denotes the uniform

measure putting mass 1
n

on each vertex of Tn. Then when n → ∞, Tn d→ T in the

Gromov-Hausdorff-Prokhorov sense, where T is BCRT.

To apply Theorem 3.1.3 to each Tn,i, we also need to verify that the assumptions

of Theorem 1.3.4 hold. For fixed integers i ≥ 0 and l ≥ 1, let

p
(i)
n,l :=

|{v ∈ Tn,l : k(v) = i}|
|Tn,l|

and pn,l = (p
(i)
n,l, i ≥ 0).

In Section 4.4 we prove the following assertions:

for any fixed i ≥ 0 and l ≥ 1, p
(i)
n,l − p(i)n

p→ 0, as n→∞, (4.1.4)

and

for any l ≥ 1, σ2(pn,l)− σ2(pn)
p→ 0, as n→∞. (4.1.5)

Note that once these two conditions are verified, it follows that for any fixed

l ≥ 1,

max{i : p(i)n,l = 0} = op(|Tn,l|1/2) as n→∞;

as in Lemma 3.6.1.

4.1.2 Proof of Theorem 1.3.4

Now we are ready to give the proof of Theorem 1.3.4, assuming the results of

Section 4.1.1.

Proof. It suffices to prove that for any fixed j ∈ N,(
σ(pn)Tn,1

2n1/2
,

(
σ(pn)Tn,l

2cn
, 2 ≤ l ≤ j

)
,
n− |Tn,1|

c2n

)
d→

(
T , (T ↓1 , · · · , T

↓
j−1), τ

(
1

σ

))
.
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The convergence of the third coordinate is simply (4.1.2). This in particular implies

that |Tn,1|
n

p→ 1. Since pn → p in L2, it straightforwardly follows that with probability

1 − o(1), Tn,1 satisfies the conditions of Theorem 3.1.3; this yields the convergence

of the first coordinate. With (4.1.4) and (4.1.5), we can also apply Theorem 3.1.3 to

each Tn,l with l ≥ 2 and conclude that

σ(pn,l)

2|Tn,l|1/2
Tn,l

d→ T .

Since the trees (Tn,l, l ≥ 1) are conditionally independent given their degree se-

quences, it follows that(
σ(pn,l)

2|Tn,l|1/2
Tn,l, 2 ≤ l ≤ j

)
d→

(
T̃l−1, 2 ≤ l ≤ j

)
,

where (T̃l)l∈N are independent copies of T . Using (4.1.5) again, together with (4.1.3)

and Brownian scaling, the convergence of the second coordinate then follows.

Outline of the rest of the chapter

In Section 4.2 we describe a combinatorial construction which associates a

marked cyclic forest with the concatenation of a sequence of first passage lattice

bridges, followed by one lattice bridge. This construction is what links Theorem

4.1.1 with random forests. In Section 4.3 we give the proof of Theorem 4.1.1 and

Corollary 4.1.2. Finally in Section 4.4 we prove (4.1.4) and (4.1.5) using martingale

concentration inequalities.
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4.2 Coding marked cyclic forests by lattice paths

We call a sequence of integers b = (b(0), b(1), . . . , b(n)) a 1−lattice bridge if

b(0) = 0, b(n) = −1 and ∀0 ≤ i ≤ n− 1, b(i+ 1)− b(i) ≥ −1.

If b is a lattice bridge and min
i
{i : b(i) = −1} = n, then we call b a 1−first passage

lattice bridge. Given a 1−lattice bridge b and a positive integer k ≤ n, we define a

1−lattice bridge b(k) as follows. First, for 1 ≤ i ≤ n, let b(n + i) = b(n) + b(i) =

−1 + b(i). Then for 0 ≤ i ≤ n, let b(k)(i) = b(k + i) − b(k). Let [n] = {1, · · · , n}.

We have the following elementary lemma as a variant of the classical ballot theorem,

which is a special case of Lemma 3.2.1.

Lemma 4.2.1 (Lemma 6.1 in [61]). Fix a 1−lattice bridge b = (b(i), 0 ≤ i ≤ n),

and let r = r(b) ∈ [n] be minimal so that b(r) = min(b(i), i ≤ n). Then b(r) is a

1−first passage lattice bridge, and r is the only such value in [n].

Lemma 4.2.1 is illustrated by Figure 4–1(a) and Figure 4–1(b). In Figure 4–1(a)

we have a 1−lattice bridge b = (0,−1,−1,−2,−1, 1, 0,−1). The vertical dashed line

shows the position of b attaining its minimum for the first time, hence the unique

position for the cyclic shift to transform b to a 1−first passage lattice bridge, as

claimed by Lemma 4.2.1. The resulting 1−first passage lattice bridge, with steps

b(3), is shown in Figure 4–1(b).

Recall that for a plane tree T and a node v ∈ v(T ), we write kT (v) to denote

the degree of v in T . We also write lex(T ) = (kT (u1), . . . , kT (u|T |)) where (ui, 1 ≤

i ≤ |T |) = (ui(T ), 1 ≤ i ≤ |T |) are nodes of T listed in lexicographic order.
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Figure 4–1: (a): a 1−lattice bridge; (b) the corresponding marked 1−first passage
lattice bridge; (c) the corresponding marked tree.

For any sequence c = (c1, · · · , cn) ∈ Rn, as in Section 3.2, we write Wc(j) =
j∑

i=1

(ci − 1) for j ∈ [n], let Wc(0) = 0 and make Wc a continuous function on [0, n]

by linear interpolation. A classical bijection between plane trees and 1−first passage

lattice bridges associates to a tree T its depth-first walk (Wlex(T )(i), 0 ≤ i ≤ n), see,

e.g. Chapter 6 of [61]. We build on this bijection below.

For a plane tree T and v ∈ v(T ), we call the pair (T, v) a marked tree and call v

the mark. The bijection between 1−first passage lattice bridges and plane trees also

leads to a bijection between 1−lattice bridges and marked trees. This bijection,

depicted in Figure 4–1, is specified as follows. For a 1−lattice bridge b, let r = r(b)

as in Lemma 4.2.1, let b′ = b(r) be the 1−first passage lattice bridge corresponding
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to b, and let T be the plane tree with depth-first walk b′. Then the marked node is

v = u|T |−r+1(T ), the (|T | − r+1)’st node of T in lexicographic order. The mark v is

denoted by a red square in Figure 4–1.

Recall that in Section 3.2, a marked forest is a pair (F, v) where F is a plane

forest and v ∈ v(F ). We refer v as the mark of (F, v). A marked cyclic forest is a

marked forest with its mark in its last tree; the name is because we can equivalently

view such a forest as having its trees arranged around a cycle.

Fix an integer sequence W = (Wi : 0 ≤ i ≤ n) with W0 = 0,Wn = −k, and

Wi −Wi−1 ≥ −1 for all 1 ≤ i ≤ n. The bijections described above allow us to view

W as a marked cyclic forest (F, v) = (F (W ), v(W )) consisting of k − 1 trees and

one marked tree, as follows. For integer b < 0, let τ(b) = inf{t ∈ N : Wt ≤ b}. For

1 ≤ j ≤ k− 1, let Tj be the tree whose depth-first walk is (Wi−Wτ(−(j−1)) : τ(−(j−

1)) ≤ i ≤ τ(−j)). Let (Tk, v) be the marked tree corresponding to 1−lattice bridge

(Wi −Wτ(−(k−1)) : τ(−(k − 1)) ≤ i ≤ n). Then (F (W ), v(W )) = ((T1, . . . , Tk), v).

We call W the coding walk of the forest, and note that the coding is bijective: W can

be recovered from (F (W ), v(W )) as the concatenation of the 1−first passage lattice

bridges which code T1, . . . , Tk−1 and the 1−lattice bridge which codes (Tk, v). This

bijection is illustrated in Figure 4–2 and Figure 4–3. In Figure 4–2 the whole sequence

is decomposed into three segments (divided by vertical dashed lines). The first two

segments are 1−first passage lattice bridges, hence correspond to plane trees T1, T2.

The last part is a 1−lattice bridge, hence corresponds to a marked tree (T3, v) and

the node v is again depicted by a square mark. These trees are shown in Figure 4–3.
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Figure 4–2: A lattice walk W = (Wi : 0 ≤ i ≤ 17).

Figure 4–3: The marked forest (F (W ), v(W )) = ((T1, T2, T3), v).

Given a degree sequence s = (s(i), i ≥ 0) with
∑

i≥0 s
(i) = n, recall that d(s) ∈

Zn
≥0 is the vector whose entries are weakly increasing and with s(i) entries equal to i,

for each i ≥ 0. Let D(s) be the set of sequences d ∈ Zn
≥0 which are permutations

of d(s) (there are n!/(
∏

i s
i!) of them). Let MCF(s) be the set of all marked cyclic

forests with degree sequence s. By the correspondence we developed previously, the

following is lemma is immediate.
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Lemma 4.2.2. Fix a degree sequence s = (s(i), i ≥ 0) with
∑

i≥0 s
(i) = n. Let π be a

uniformly random permutation of [n], and let W = Wπ(d(s)). Then the marked cyclic

forest (F (W ), v(W )) coded by W is uniformly distributed on MCF(s).

In particular, we have the following corollary.

Corollary 4.2.3. Let s = (s(i), i ≥ 0) with
∑

i≥0 s
(i) = n. Let (F, v) be a uniformly

random element of MCF(s), and let M be the total number of nodes in the non-

marked trees of (F, v). Let π be a uniformly random permutation of [n] and let

S : [0, n]→ R, S(t) = Wπ(d(s))(t). Then

M
d
= inf{t : S(t) = −c(s) + 1}. (4.2.1)

We will also need the following easy fact connecting linear forests with marked

cyclic forests.

Lemma 4.2.4. Fix a degree sequence s = (s(i), i ≥ 0) with |s| = n, and let F be a

uniformly random linear forest with degree sequence s, and let (F ∗, v) be the marked

cyclic forest obtained from F by marking a uniformly random node and applying the

requisite cyclic shift of the trees of F . Then (F ∗, v) is a uniformly random element

of MCF(s).

Proof. Let F(s) be the set of all plane forests with degree sequence s. The operation

of marking a node induces an n-to-c(s) map from F(s) to MCF(s), from which the

lemma is immediate.

The preceding lemma allows us to relate the random forest Fn from Theo-

rem 1.3.4 with the lattice path Sn = (Sn,k, 0 ≤ k ≤ n) from Theorem 4.1.1. Let

(F ∗n , vn) = ((Tn,k, 1 ≤ k ≤ cn), vn) be obtained from Fn by marking a uniformly
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random node and applying the requisite cyclic shift of the trees of Fn. Then we may

couple Fn and Sn so that Sn = (Sn,j, 0 ≤ j ≤ n) is the coding walk of (F ∗n , vn). We

work with such a coupling for the remainder of the paper.

4.3 Convergence of the coding processes

The goal of this section is to prove Theorem 4.1.1 and Corollary 4.1.2. To achieve

that, we decompose the walk process into two random processes. To be precise, let

dn := n1/2

cn
and fix a sequence (tn)n∈N, such that tn = o(dn) and tn = ω(1). This is

possible since dn →∞ as n→∞ by our assumption that cn = o(n1/2). We consider

the following two processes. Let (Mn,k, k ≤ n) be as follows, Mn,0 = 0 and for k ≥ 1,

Mn,k −Mn,k−1 = Xn,k�|Xn,k|<tn .

Similarly, let (Rn,k, k ≤ n) be given by Rn,0 = 0, and for k ≥ 1,

Rn,k −Rn,k−1 = Xn,k�|Xn,k|≥tn .

Then clearly we have Sn,k = Mn,k+Rn,k for all k ≤ n. Define the following quantity:

μ+
n :=

∑
j≥tn+1

(j − 1)
s
(j)
n

n
.

Theorem 4.1.1 is an immediate consequence of the following two results:(
1

cn
(Mn,�tc2n� + μ+

n �tc2n�), t ≥ 0

)
d→ (σB(t), t ≥ 0) (4.3.1)

and (
1

cn
(Rn,�tc2n� − μ+

n �tc2n�), t ≥ 0

)
d→ 0, (4.3.2)
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where 0 denotes a process Z such that P {Z(t) = 0, ∀t ≥ 0} = 1. For (4.3.1), we are

going to use the following theorem from [26].

Theorem 4.3.1 (Theorem 4 in [26]). Suppose an urn U contains n balls, each marked

by one or another element of the set S, whose cardinality c is finite. Let HUk be the

distribution of k draws made at random without replacement from U , and MUk be the

distribution of k draws made at random with replacement. Then the two probabilities

on Sk satisfy

||HUk −MUk|| ≤ 2ck/n,

where || · || denotes the total variation distance.

Proof of (4.3.1). Let (X̃n,k, k ≤ n) be i.i.d. with the law of Xn,1�|Xn,1|<tn , set M̃n,0 =

0 and for k ≥ 1, let

M̃n,k =
k∑

j=1

X̃n,j.

Now apply Theorem 4.3.1 with urn U containing n balls, with s
(j)
n balls marked

by j − 1 for 0 ≤ j ≤ tn, j = 1, and s
(1)
n +

∑
j>tn

s
(j)
n balls marked by 0, with S =

{−1, 0, 1, . . . , tn − 1}, and with k = k(n) = n/dn. This yields that

||(Xn,j�|Xn,j |<tn , j ≤ k)− (X̃n,j, j ≤ k)|| ≤ 2tn(n/dn)

n
= 2

tn
dn

,

so for all Borel B ⊂ Rk,∣∣∣P {(Mn,j, j ≤ k(n)) ∈ B} −P
{
(M̃n,j, j ≤ k(n)) ∈ B

}∣∣∣ ≤ 2tn
dn

.
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Since tn = o(dn) and k(n) = n/dn = dn · c2n = ω(c2n), this implies that to estab-

lish (4.3.1) it suffices to prove that(
1

cn
(M̃n,�tc2n� + μ+

n �tc2n�), t ≥ 0

)
d→ (σB(t), t ≥ 0) . (4.3.3)

Note that

EX̃n,1 =
∑
j≤tn

(j − 1)
s
(j)
n

n
=

1

n

∑
j

(j − 1)s(j)n −
∑

j≥tn+1

(j − 1)
s
(j)
n

n
= −cn

n
− μ+

n .

Define σ−n by setting

(σ−n )
2 := Var

{
X̃n,1

}
= E

[
X̃2

n,1

]
− E

[
X̃n,1

]2
=

∑
j≤tn

(j − 1)2
s
(j)
n

n
− (−μ+

n −
cn
n
)2. (4.3.4)

Applying Donsker’s theorem to the process
(
M̃n,k + k(μ+

n + cn
n
), k ≥ 0

)
, we ob-

tain that(
1

a
(M̃n,�ta2� + μ+

n �ta2�) +
cn�ta2�
na

, t ≥ 0

)
d→

(
σ−nB(t), t ≥ 0

)
, (4.3.5)

as a→∞.

By our assumption that n−1 · sn → p in L2 in Theorem 1.3.4, we have
∑
j

(j −

1) s
(j)
n

n
→ 0 as n→∞. Hence for any prescribed δ > 0, we can find L large such that∑

j>L

(j − 1) s
(j)
n

n
< δ. Since tn →∞, we must have μ+

n ≤
∑
j>L

(j − 1) s
(j)
n

n
< δ for n large

enough, i.e.

μ+
n → 0 as n→∞. (4.3.6)
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Similarly the assumption that n−1 · sn → p in L2 implies that

σ2
n :=

∑
j

j(j − 1)
s
(j)
n

n
→ σ2 <∞,

so

(σ+
n )

2 → 0 as n→∞, (4.3.7)

where we let (σ+
n )

2 :=
∑

j≥tn+1

j(j − 1) s
(j)
n

n
. Using (4.3.4),(4.3.6) and (4.3.7), we have

σ2
n − (σ−n )

2 = (σ+
n )

2 − (μ+
n +

cn
n
)(1− μ+

n −
cn
n
)→ 0 as n→∞, (4.3.8)

so σ−n → σ as n → ∞. Taking a = cn in (4.3.5), then letting n → ∞, now yields

that (
1

cn
(M̃n,�tc2n� + μ+

n �tc2n�) +
�tc2n�
n

, t ≥ 0

)
d→ (σB(t), t ≥ 0) .

Since c2n = o(n), (4.3.3) follows.

To prove (4.3.2), we will again use Proposition 3.3.5.

Proof of (4.3.2). We prove that for all ε > 0, we have

lim sup
n→∞

P

{
max
i≤c2n/ε

∣∣∣∣Rn,i − iμ+
n

cn

∣∣∣∣ > ε

}
≤ ε,

this immediately implies (4.3.2). Fix n and let c1, . . . , cn be such that |{1 ≤ k ≤ n :

ck = j}| = s
(j)
n . Let C1, . . . , Cn be a uniformly random permutation of c1, . . . , cn.

Fix tn ∈ N. Define (Ri, 0 ≤ i ≤ n) as follows: let R0 = 0, and for i ≥ 0, let

Ri+1 =

⎧⎪⎨⎪⎩ Ri + Ci − 1, if Ci ≥ tn + 1;

Ri, if Ci ≤ tn.
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For 0 ≤ i ≤ n, let Fi = σ(C1, . . . , Ci). Since Rn = nμ+
n and the process (Ri, 0 ≤ i ≤

n) has exchangeable increment,

E [Ri+1 | Fi] = Ri +
nμ+

n −Ri

n− i
. (4.3.9)

Now let Ki =
nμ+

n−Ri

n−i . Then using (4.3.9), we have

E [Ki+1 | Fi] =
nμ+

n −Ri

n− (i+ 1)
− nμ+

n −Ri

(n− i)(n− i+ 1)
= Ki.

Hence Ki is an Fi−martingale.

Since for any 0 ≤ i ≤ s,

nμ+
n −Ri

n− i
= μ+

n +
iμ+

n −Ri

n− i
,

and μ+
n is a constant, if we define K̃i =

iμ+
n−Ri

n−i , then K̃i is also an Fi−martingale. It

follows that for any ε > 0,

P

{
1

cn
max
i≤s

|iμ+
n −Ri| > ε

}
≤ n2

ε2c2n
E

[(
max
i≤s

|iμ+
n −Ri|
n− i

)2
]

≤ 4n2E [(sμ+
n −Rs)

2]

ε2c2n(n− s)2
, (4.3.10)

where in the first line we use Markov’s inequality and in the last line we use the L2

maximal inequality for martingales (see, e.g. Theorem 5.4.3 in [29]).

Since the process (Rs, 0 ≤ s ≤ n) has exchangeable increments, we have ERs =

sμ+
n . Let R∗s =

∑
i≤s

Ji where J1, . . . , Js are i.i.d. random variables with J1
d
= R1. Then
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Proposition 3.3.5 gives

E
[
R2

s

]
≤ E

[
R∗s

2
]
= E

[
(J1 + · · ·+ Js)

2
]

= sE
[
J2
1

]
+ s(s− 1)(EJ1)

2

= s(σ+
n
2 − μ+

n ) + s(s− 1)μ+
n
2

Therefore,

E
[
(sμ+

n −Rs)
2
]
= E

[
R2

s

]
− s2μ+

n
2 ≤ s(σ+

n
2 − μ+

n )− sμ+
n
2 ≤ sσ+

n
2
.

Now take s = s(n) = c2n/ε in (4.3.10). For n large this is less than n/2, so (n− s)2 >

n2/4 and we obtain

P

{
1

cn
max
i≤c2n/ε

|iμ+
n −Ri| > ε

}
≤ 16sσ+

n
2

ε2c2n
=

16σ+
n
2

ε3
≤ ε,

the last inequality holding for n large since σ+
n → 0 as n → ∞. This completes the

proof.

Recall that in Section 4.1 we let τ(x) = inf(t : B(t) ≤ −x) for x ≥ 0. By (4.2.1)

if we let τn =
∑

1≤i<cn
|Tn,i| = n − |Tn,cn | be the total size of non-marked trees of

(F ∗n , vn), then since Sn is the coding process of (F ∗n , vn) we have

τn = inf{k : Sn,k = −(cn − 1)}.

From this we immediately get the following corollary of Theorem 4.1.1.

Corollary 4.3.2. Given the assumptions in Theorem 1.3.4, we have

τn
c2n

d→ τ(
1

σ
), (4.3.11)

where (B(t), t ≥ 0) is standard Brownian Motion.

97



Remark 4.3.1. Note that the right-hand side of (4.3.11) has density

1

σ
√
2πt3

exp

(
− 1

2tσ2

)
dt ;

see, e.g., Theorem 6.9 in [62]. This coincides with what we have in Theorem 1.4.5.

The corollary above in fact tells us something about the size of the largest

tree Tn,1.

Corollary 4.3.3. For a marked cyclic forest (F, v), let MT (F, v) denoted the marked

tree, i.e. the tree of F containing v. Then

P {MT (F ∗n , vn) = Tn,1} → 1

as n→∞.

Proof. It is clear that

P {MT (F ∗n , vn) = Tn,1} ≤ P {|MT (F ∗n , vn)| < n/2}

= P {τn > n/2} = P

{
τn
c2n

>
n

2c2n

}
→ 0

where in the last line, the first equation is by Lemma 4.2.4 and the final convergence

is by Corollary 4.3.2 and the assumption c2n = o(n).

Now we are ready to prove Corollary 4.1.2.

Proof of Corollary 4.1.2. As noted, it suffices to prove (4.1.2) and (4.1.3). Corol-

lary 4.3.2 and Corollary 4.3.3 together imply (4.1.2).

For (4.1.3), first note that by Lemma 4.2.2, the process Sn = (Sn,k, 0 ≤ k ≤ n)

has the same law as the coding walk W (Fn) of Fn. Applying Corollary 4.3.3 then

98



yields that the law of (|Tn,2|, . . . , |Tn,j|) is asymptotically equivalent to the law of

(dn1 − gn1 , . . . , d
n
j−1 − gnj−1), the first j − 1 ranked excursion lengths of Sn above its

running minimum before time τn. Using this equivalence, (4.1.3) now follows from

Theorem 4.1.1 by the Portmanteau Theorem ([57], Theorem 12.6), since the vector

(d1 − g1, . . . , dj−1 − gj−1) has a density.

4.4 Empirical degree sequences of trees

In this section we aim to prove (4.1.4) and (4.1.5).

For i ≥ 0 and x ≤ n, let

Qi
n(x) := |{1 ≤ j ≤ x : Cn,j = i}|

where (Cn,1, · · · , Cn,n) is a uniformly random permutation of d(sn) and that Sn,k =∑k
j=1(Cn,j − 1). Let Fj = σ(Cn,1, . . . , Cn,j). Since Qi

n(n) = s
(i)
n = np

(i)
n and the

process (Qi
n(j), 0 ≤ j ≤ n) has exchangeable increments,

E
[
Qi

n(j + 1) | Fj

]
= Qi

n(j) +
np

(i)
n −Qi

n(j)

n− j
.

Setting Kj =
np

(i)
n −Qi

n(j)
n−j for 0 ≤ i ≤ n, then

E [Kj+1 | Fj] =
np

(i)
n −Qi

n(j)

n− (j + 1)
− np

(i)
n −Qi

n(j)

(n− (j + 1))(n− j)
= Kj,

so Kj is an Fj−martingale. If we let K̃j =
jp

(i)
n −Qi

n(j)
n−j , then K̃j = Kj − p

(i)
n , so K̃j is

also an Fj−martingale.

We now use the martingale bound Theorem 2.3.2. We shall apply this theorem

to bound the fluctuations of Qi
n(s).
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Proposition 4.4.1. For any 0 < t < 1, we have

P

{
∃s > cn :

∣∣∣∣p(i)n − Qi
n(s)

s

∣∣∣∣ ≥ t

}
≤ exp

(
−3t2cn

5

)
. (4.4.1)

Proof. It is not hard to show that for any 0 ≤ j ≤ n− 2,

Var
{
K̃j+1 | Fj

}
≤ 1

4
· 1

(n− (j + 1))2
;

see Lemma 3.3.1. Thus, for 1 ≤ x ≤ n− 2,

V =
x−1∑
j=0

Var
{
K̃j+1 | Fj

}
≤ 1

4

x−1∑
j=0

1

(n− (j + 1))2

≤ 1

4

∫ n−1

n−x−1

1

m2
dm =

x

4(n− 1)(n− x− 1)
.

On the other hand, for 0 ≤ j ≤ x− 1, if Qi
n(j + 1) = Qi

n(j), then

|K̃j+1 − K̃j| =
∣∣∣∣∣ np

(i)
n −Qi

n(j)

(n− (j + 1))(n− j)

∣∣∣∣∣ ≤ 1

n− x
,

while if Qi
n(j + 1) = Qi

n(j) + 1, then

|K̃j+1 − K̃j| =
∣∣∣∣∣ np

(i)
n −Qi

n(j)

(n− (j + 1))(n− j)
− 1

n− (j + 1)

∣∣∣∣∣ ≤ 1

n− x
.

Applying Theorem 2.3.2 to both {K̃j}xj=0 and {−K̃j}xj=0 with x = n− cn, we have

v ≤ 1

2cn
, b ≤ 1

cn
.

Hence, for t ≤ 1,

P

{
max

0≤j≤n−cn

∣∣∣∣∣p(i)n − np
(i)
n −Qi

n(j)

n− j

∣∣∣∣∣ ≥ t

}
≤ exp

(
− t2

1
cn

+ 2t
3cn

)
≤ exp

(
−3t2cn

5

)
.

100



Using the exchangeability of Cn,1, . . . , Cn,n, it follows that

P

{
∃s > cn : |p(i)n − Qi

n(s)

s
| ≥ t

}
= P

{
max

0≤j≤n−cn

∣∣∣∣∣p(i)n − np
(i)
n −Qi

n(j)

n− j

∣∣∣∣∣ ≥ t

}

≤ exp

(
−3t2cn

5

)
.

We next give the proofs of (4.1.4) and (4.1.5). In both proofs we use the coupling

between Fn, (F ∗n , vn) and Sn explained at the end of Section 4.2.

Proof of (4.1.4). Fix i ≥ 0 and l ≥ 2. By Corollary 4.3.3, with high probability

Tn,1 = Tn,cn , i.e., Tn,1 is the last tree of (F ∗n , vn), in which case Tn,l = Tn,j for some

j < cn. Recall that τn =
∑

1≤k<cn
|Tn,k|.

Let 1 ≤ j < cn, and suppose |{v ∈ Tn,j : k(v) = i}|/|Tn,j| ∈ [p
(i)
n − δ, p

(i)
n + δ].

Suppose that |Tn,j| > δc2n > cn and τn < c3n. Then there must exist m > cn and

1 ≤ u ≤ τn −m such that∣∣∣∣ |{t ∈ [m] : Cn,u+t = i}|
m

− p(i)n

∣∣∣∣ > δ.

By union bound and the exchangeability of (Cn,1, . . . , Cn,n), the probability of this is

bounded above by τnP
{
∃m > cn :

∣∣∣Qi
n(m)
m

− p
(i)
n

∣∣∣ > δ
}

. Thus, for l ≥ 2, for n large

enough that δc2n > cn, we have

P
{∣∣∣p(i)n,l − p(i)n

∣∣∣ > δ
}
≤ P

{
τn > c3n

}
+P

{
|Tn,l| < δc2n

}
+P {Tn,1 = Tn,cn}+ c3nP

{
max
s>cn

∣∣∣∣p(i)n − Qi
n(s)

s

∣∣∣∣ > δ

}

101



For any ε > 0,P {τn > c3n} < ε/3 by Corollary 4.3.2 for n large enough, and

P {|Tn,l| < δc2n} < ε/3 by Corollary 4.1.2. The second last probability tends to zero

by Corollary 4.3.3. And for the last probability, for n large enough,
√

5
3
c
−1/3
n < δ,

hence Proposition 4.4.1 gives upper bound c3n exp
(
−c1/3n

)
, which tends to zero. Thus,

P
{∣∣∣p(i)n,l − p

(i)
n

∣∣∣ > δ
}
< ε for n large; this proves (4.1.4) for i ≥ 0 and l > 1.

Finally, since |Tn,1|/n→ 1, the fact that
∣∣∣p(i)n,1 − p

(i)
n

∣∣∣→ 0 in probability for each

i ≥ 0 is immediate.

Proof of (4.1.5). Fix ε > 0. By Corollary 4.3.2, we can pick M > 0 large enough

such that for n large enough,

P
{
τn > Mc2n

}
< ε. (4.4.2)

By Corollary 4.3.3, we have that for n large enough,

P {Tn,cn = Tn,1} < ε . (4.4.3)

For this ε > 0, there exists δ > 0 such that P {gl−1 − dl−1 ≤ δ} < ε/2, so by Corol-

lary 4.1.2, for n large

P

{
|Tn,l|
c2n

≤ δ

}
< ε. (4.4.4)

Next we fix t > 0 large enough such that

E
[
C2

n,1�Cn,1≥t
]
<

ε2δ

M
and

∑
i>t

i2p(i)n < ε ; (4.4.5)
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this is possible since pn = (p
(i)
n , i ≥ 0) → p = (p(i), i ≥ 0) in L2. For fixed l ≥ 2 we

have

|σ2(pn,l)− σ2(pn)| ≤ |
∑
i≤t

i2(p
(i)
n,l − p(i)n )|+

∑
i>t

i2p(i)n +
∑
i>t

i2p
(i)
n,l

≤ |
∑
i≤t

i2(p
(i)
n,l − p(i)n )|+ ε+

∑
i>t

i2p
(i)
n,l (4.4.6)

where we use (4.4.5) in the second line.

Let Ln =
∑

j≤Mc2n
C2

n,j�Cn,j≥t. If Tn,cn = Tn,1 and τn ≤ Mc2n then
∑
i>t

i2p
(i)
n,l ≤

Ln/|Tn,l|. Hence

P
{
|σ2(pn,l)− σ2(pn)| ≥ 3ε

}
≤ P

{
|σ2(pn,l)− σ2(pn)| ≥ 3ε, τn ≤Mc2n, Tn,cn = Tn,1,

|Tn,l|
c2n

> δ

}
+ P

{
τn > Mc2n

}
+P {Tn,cn = Tn,1}+P

{
|Tn,l|
c2n

≤ δ

}
≤ P

{
|
∑
i≤t

i2(p
(i)
n,l − p(i)n )| ≥ ε

}
+P

{
Ln

|Tn,l|
> ε,

|Tn,l|
c2n

> δ

}
+ 3ε (4.4.7)

where we use (4.4.2), (4.4.3), (4.4.4), (4.4.6) and the aforementioned stochastic dom-

inance in the last line.

Since t is fixed, we can use (4.1.4) to conclude that the first summand of (4.4.7)

can be made arbitrarily small by taking n large enough. For the second summand,

note that by exchangeability and (4.4.5),

ELn = Mc2nE
[
C2

n,1�Cn,1≥t
]
< c2nε

2δ ,
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so

P

{
Ln

|Tn,l|
> ε,

|Tn,l|
c2n

> δ

}
≤ P

{
Ln

c2n
> εδ

}
≤

E
[
Ln

c2n

]
εδ

< ε.

This completes the proof of (4.1.5) for l ≥ 2. Again since |Tn,1|/n → 1, (4.1.5) is

immediate for l = 1 case.
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CHAPTER 5
Conclusions

5.1 Summary of Main Results

In this thesis, we study the scaling limits of a sequence of uniformly random

plane forests Fn with given degree sequences sn. For the convenience of notation

simpleness, we assume that |Fn| = |sn| = n. In general we can have degree se-

quence sκ depending on some index κ (as in [20]). Then as long as |sκ| → ∞ as

κ→∞, if we replace n by |sκ|, our conclusions still hold as we consider the limit as

κ→∞. Under reasonable conditions on (sn)n≥1, we explicitly prove the convergence

of Fn in two different regimes.

In the case that the number of trees cn satisfies cn
σnn1/2 → λ > 0, we show that

the ranked forest F↓n, viewed as a measured metric space, converges to the real trees

coded by the ranked excursions of first passage bridge F br
λ reflected at its minima,

in the sense of coordinatewise GHP convergence. With a stronger condition on the

maximum degrees Δn, the result can be strengthened to the the convergence in the

sense of (L∞, d∞GHP ).

In the case that the number of trees cn = o(n1/2), we confirm the picture that

there is a giant tree Tn,1 containing all but a negligible fraction of all vertices (hence

naturally has scaling limit T ). Moreover, for the forest F̂n containing all small trees,

we give a finer calculation of the limit of size of F̂n and under a different scaling,

105



prove the convergence of F̂n to a sequence of real trees coded by the excursions of

Brownian motion reflected at its minima, run until the local time at zero reaches 1/σ.

5.2 Summary of Methodologies

The first technical aspect is based on using the depth first walk to show the

walk convergence and, as a corollary, proving the convergence of the sizes of the tree

components. This is achieved by first proving certain combinatorial bijection results,

which couple uniformly permuted degree sequences with random forests. Namely, in

Chapter 3, the coupling is via a random rotation map; and in Chapter 4, we connect

the depth first walk with random forests using the concept of marked cyclic forests.

The second component of our work is to show that for each tree component of the

forest, the empirical degree sequences behave well, i.e. is close to the “expected”

degree sequence governed by the sequence sn/n. For this part, we use concentration

inequalities proved via the martingale difference method from [54].

5.3 Potential Future Works

There are a few possible future research directions following this work. First, it

would be nice to get rid of the extra maximum degree condition in Theorem 1.3.2.

This condition is used in Proposition 3.3.8, where we proved a technical proposition

of bounding the probability of F(s) containing trees with unusually large height. The

second natural direction is to work in the subcritical regime that the number of trees

cn = ω(n1/2). In this regime we would expect no trees of linear order. But the

detailed picture of scaling limits is not very clear. In fact, the possible behaviours

are more complex in this case. A natural guess is that the largest tree will have

size of order
(

n
cn

)2

log c2n
n

. This guess arises from the following heuristic. The search
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process for the forest Fn should look roughly like a random walk with drift −cn/n,

run for n steps. At time t, the expected position of such walk is −tcn/n, and the

fluctuations of its position have order
√
t. Thus, the random walk typically hits a

new local minimum in O((n/cn)
2) steps. Since new running minima corresponding

to the times when tree explorations conclude, this suggests that most trees are not

larger than O((n/cn)
2). The logarithmic factor arises because an interval of length n

may be divided into c2n/n intervals of length (n/cn)
2, and at some point one expects

to see an “exceptional” run of O(log c2n
n
) consecutive intervals of length (n/cn)

2 on

which the walk does not reach a new running minimum. This heuristic is correct in

some cases (e.g. Theorem 2.1.3 in [59], see below), but the full story will necessarily

be more complicated. To see this, consider for example a binary forest with n nodes

and with cn ∼= n5/6 trees. If we add a single node of degree �n2/5� to such a degree

sequence, then we obtain a random forest with cn+1−�n2/5� ∼= n5/6 trees. However,

the size of the largest tree will be at least n2/5, whereas the heuristic would suggest

a largest tree of size O(n1/3 log n).

Finally, we would like to include Pavlov’s result in the subcritical regime and

an example to showcase that the aforementioned heuristic gives the same result as

his result. Let F (z) =
∞∑
k=0

pkz
k be the probability generating functions and recall as

in Section 1.4.4 that η denotes the size of the largest tree of FN,n.

Theorem 5.3.1 (Theorem 2.1.3 in [59]). Let F ′′′(1) <∞, N, n→∞ in such a way

that n takes values which are divided by d. Assume n/N → ∞, n/N2 → 0, let λ be

defined by
λF ′(λ)
F (λ)

=
n

N + n
.
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Then

P {βη − μ ≤ z} → e−e
−z

where β = β(λ) = − ln(λ/F (λ)) and u = u(λ) is chosen so that

Nβ1/2u−3/2e−u =
√
2πσ2.

Example 5.3.1 (Poisson case). Let n be number of non-rooted vertices and m be

number of vertices. Assume cm = m5/6 so n = m−m5/6.

For simplicity of calculation, suppose ξ ∼ Poisson(1) so pk =
e−1

k!
. Then F (z) =

ez−1 hence F ′(z) = ez−1. So

λ =
λF ′(λ)
F (λ)

=
n

m
= 1−m−1/6.

Let ε = m−1/6, then

F (λ) = F (1− ε) = e−ε ≈ 1− ε+
ε2

2
.

Then

β = − ln(λ/F (λ)) = − ln

(
1− ε

1− ε+ ε2

2

)
= − ln

(
1− ε2/2

1− ε+ ε2/2

)
≈ ε2/2.

So β ≈ m−1/3.

By the definition of u:

m5/6 ·m−1/6 · u−3/2e−u =
√
2π.

So m2/3 ≈ eu, that is,

u ≈ logm2/3 = log(
c2m
m

).
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P {βη − u ≤ z} → e−e
−z implies η ∼ (z + u)β−1, uβ−1 gives order

log(
c2m
m

) ·m1/3 = log(
c2m
m

) · (m
cm

)2.
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