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Abstract

DATA STRUCTURES

BINARY SEARCH TREES

A STUDY OF RANDOM WEYL TREES

BY

AMAR GOUDJIL

This thesis cavers the stlldy of a. particular class of binary sea.rch

trees. the Weyl trees fonned by consecutive insertion of lllllubers {8}.

{28}. {JO}..... where 8 is an irrational Ilulnber frorn (0.1). and {x}

denotes the fractional part of x. Various properties of the structure uf

these trees are explored and a relationship with the continued fraction

expansion of lJ is shawn. Among these properties. an a.pproximation

of the lleight H'l of Cl. Weyl tree with n nodes is given when 8 is chosen

at random a.nd unifarnlly on (O. 1). The main re~;ult of this work is

that in probability. Hn "'" (l2/1r:.!) lognloglogn.
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STRUCTURES DE DONNEES

ARBRES DE RECHERCHE BINAIRE

UNE ETUDE DES ARBRES ALEATOIRES DE WEYL

PAR

ANIAR GOUDJIL

Cette thèse est une contributiou à l'important travail de recherche

sur les structures de dOIluées du Prof. Lue Devroye. Elle couvre UIle

classe particulière d'arbres de recherche binaire: Les arbres de Weyl

construits à partir cl 'insertions consécutives des éléments de la suite

{B}. {2B}. {:lB} . .... oü (j est un nombre irrationnel de l'intervalle

[O. 1], et oil {x} désigne la partie fractionnaire de x. Différentes pro­

priétés de la structure de ces arbres sont exploré{~s pt uue relation

a.vec l'expansion cn fractions continues de () est exhibée. Pnnni ces

propriétés. UIle approxiluation de la hauteur Hfl de l'arbre de Weyl

h 'TL noeuds est donnée lorsque f} t~st choisi de facon a.léatoire selon la

loi uniforme de [O. 1J . Le résultat principal de ce trava.il est <[U'CIl

probabilité. Hn ...... (12/1r2 ) log n log log n.

3
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• 1 Introduction.

•

This thesis is based essentially on a work published 1 with rny advisor. Prof. Luc

Devroye. It is a study of binary search trees formed by consecutive insertions

of numbers XL = {B} . .1'2 = {20LX3 = {39}, .... where () E (0.1) is an irra­

tiouai number. and {.r} denotes "nlod l" which is the fractionai part of the

nunlber x. The sequence in question is called the \Veyl sequence for (). after

\Veyl. who showed that for aIl irrationai f) the sequence is equidistributed

(' .g.: for aIl 0 :::; il ::; b ::; 1.

l rl

liln - ~ I.c,E[a.bj = b - CL
'l-xn~

I=L

which rneans that the average nurnber of .L, that fall into [il. !J] is equal ta the

rneasure of the intervai when Tl goes to infinity. (sep [12]. [1-1] or [18]).

The equidistribution property rnakes \Veyl sequences. or suitable gener­

alizations of thern. prime candidates for pseudo-l'andorn numbflr generation.

Of course. varions regularities in the sequence rnake thern ratht'r unsuitable

for rnost purposes. Knllth ([1 ïa] and Sos ([:31]) havp interesting accounts of

r.his. Let 7;1(0) he the binary search tree based upon the tirst Tt numbers in

the \Veyl sequence for (J. This tree. called the \Veyl tree. captures a lot of re­

nned information regarding the pennutation structure of the \Veyl sequence.

and is a fundarnental tool for the analysis of algorithms invoI\'Îng \Veyl se-

quences in the input streanl. Computer scientists are nlOstly concerned with

the following structural quantities:

l Random Structures and Algorithms. Vol 12. Issue 3 1908-.John \Viley & Sons. Ine.
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• The average depth of anode (the depth is the path distance fram a

node ta the l'oot).

• The height (the maxirnal depth).

• The Humber of leaves (the number of nodes with no children).

[n this thesis we will focus on these quantities. The fallowing notation

borrowed from Prof. Luc Devroye's course notes [8b) will he llsed:

• The lleight of ~(f)} is Hn(O).

• The set of leavps of T;l (fJ) is .en (f}).

• The collection of n + 1 possible positions for a ne\\' Hode to he added

to T;l((J} is called the S{lt ofexternal nodes. and is denoted by En(fJ}.

\\"hen f) is undel'stood. dw sutfix (fJ) will 1w dropppd fronl th(' notation. The

collection €n lllay he split into €,~ and €;. where €!( has those nodes that

are l'ight children. and ê,~ eollects aIl ll'ft children in en'

[n this thesis we considel' two cases of \\"eyl trces:

• \V'eyl trees for fixed (J.

• \Veyl trees when f} is il random variable.

In the first case important connections \Vith the eontinued fractions are set­

tied and then sorne algebraic theory of numbers properties are used ta deduce

8
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easily results about Hn and l.enl. In the latter case we are in presence of ran­

dom \Veyl trees. In fact we consider that 8 = C. whcre C is a uniform [o! 1]

random variable. This study allows us to nlake statements that are true for

almost aIl [J. The probabilistic setting cornes in handy for the purpose of

analysis. The nlain result. in this thesis. shows that

H'l 12 . b b'l'
1 1 1

---t -:; ln pro a 1 Ity.
og Tl og og Tl 7("-

This shows that the randorn \Vpyl tree differs greatly fronl th(' standard

l'andOIn binary search tl'pe. Rn. obtained by insertion of an LLd. uniform

[O. 1] sequence .\ l, .... '\rl' The height H~ of Rn satisfies

1
H:l ~ ,L3110ï ... ahuost ~urely
og ft

(Robson [28. 28a], Devroye [8. 8a]. ~[ahnloud [24]).

2 Random binary search trees

Let us consider an iid sequence of random variables .\ l. . ... '\n defined on

a probability space (n. A. P) ~ R. and let's suppose that there are no ties

whic.:h means that

lt is sufficient to have a density for the Ia,w of .\i ta avoid ties since that

kind of measures doesn't charge points, ~ow. briefiy we explain how the

tree is built. For any ,;) E n lefs put .\dw) on the root of the tree. For

i > 1 aH ..\dw) that are Iower( resp. greater) than ..\ dw') are nodes of the left

9
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subtree(resp. right subtree). \Vith the index representing the time of insertion

we repeat this operation recursively for each subtree until aH elements of the

sequence have been processed. ~odes have two possible children. There are

actual children (which are nodes) and potential children (places for future

placenlent of nodes). Potential children are caHed external nocles. :\ binary

tl'ee with Tl nodes has Tl + 1 external norles. ~odes without children are called

leaves. Standard insertion of .r proceeds by finding the unique external Dode

that could accept .1'. given the binary search tree property. and placîng x

t.here..-\ tree constructed in this Iuanner from au i.i.d. spqllencp ,\1, .....\n

(clrawn fronl a llnifonIl distribution on [0: 1]). or frorn a randolIl pprnlutatian

of {1. , . , . Tl} is calleel a l'andaIn binary search tree. and will he denoted by

Rn- ~[ostly everything is known about the behavioul' of 'R Tl (s('e [2-1]), For

f1xample. the depth Dn of .\n (that is. the path distante tu the root) satisfies

Dn 1 ' b b'l'.) l ~ ln pro il 1 1ty_ o~n

(Lynch. 1965. and Knuth. UJï3). In fact. (D'l~flo~n) C. nortnal(O.l). where c
v- O~ll -+ -

<1enotes convergence in distribution(Df~vroye 1988),

8efore starting study of \Veyl trees. wc ueed ta define what is a record.

Given and iid sequence .\1.,., ..\n we say that .\,. for i 2:: l is an

np-record (resp. a dawn-record) if.\, = ma.x{.\l .. , ...\"d (resp, .\1 = min{.\1'

, , . _.\, }) and that .\, is a record if it is either an up-record or a dawn-record.

If ~V is the number of up-records. we know from [Sb] that E(.V] == Hn where

Hn stands for the TL-th harmonie e,g. l:~1 ~ and that

log(n+ 1) < E[~Vl < 1 +log(n).

10



• Example

l .\i Cp Record Dawn Record

1 8.5 Yes Yes

2 13.2 l'es

:3 5.1 Yes

9.0

;J 11.1

6 10.9

1 1- .) 't'es1._

S 6.5

9 5.0 't'es

10 18.3 Yes

At time i = 1. .\1 is both au up and clown record. At tinle i = 2..\;! =

13.2 > .\1 := 8.5. Sù. we have an up-record at that tilne.

The records for this \'ery slnall sanlple happen at times 1.2.3.7.9.10. The

binary search tree for this sanlple is obtained by first putting '\1 = 8.5 at the

root. The second value .\;! = 13.2 is greater than .\1 sa it is a right children.

The thinl ntlue .\:~ = ;'j, 1 is lower than .\1 so it is a left childr(lIl. The fourth

value .\.1 = 9.0 is greè:lter than .\1' so it is Cl node of the l'ight subtree of the

tl'ec rooted a .\L' ft is also iuserted immediately after .\:1 = 13.2 which is

greater so .\.1 is a left children of -\3' The process is continued until aIl the

nodes have been introduced. The l'esult is shawn by fig. 1.

•
Il
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18.3

figure 1: Tree obtained by consecutive insertion of data From the sample

above.

\Ve also need souU' inequalities ta llnderstand tll{' tflchnical part where
,",'1

we will use Devrove's dernonstration to show tbat -1'0".:' Cl, -7 l in probabilitv
~ n ug:,! n ~

when 0 is Gauss-Kllsnlin distributed. a reslllt due originally to Khintchine.

• Bonferronïs inequalities: Let A = {Ai. l ~ i ~ ft} hE' a set of events

in sorne probability space (n. A. Pl. and define Sk as

50 = P(fl)

•
12



• then the sunl L~=l (-l)k-lSk satisfies the alternating inequalities

(_l)k [P(Ui=lAd + L:~=l(-l)JSJ] 2: 0, 1 ~ k ~ Tl

(_l)k+l [p(n~~l.-ld+ L:;=o(-l)J+lSj] 2: 0, 1 ~ k ~ n.

• Chebychev!s inequality:

3 Structure of Weyl trees.

[n this section. an irrational f) is fixed. Let

tH' the n~cord tinles, Le., the times at which .L'Tt = {nO} is lnininlunl or maxi­

mum anlong .L'l, .••• •l'Tl' Thp tiIIlflS of o('('urrPIH.'p of a rnillinHllIl or rnaximllm

are denoted by Ln and Rn' and the indices of thesp sequences are synchro-

nized \Vith the TI 's as fo11ows:

if at Tn there is a rnêLxinlunl:

if at Tn there is a minirnUIIl .
(1)

•

.-\5 it turns out. there is a lot of structure in these sequencps. For instance

the next record in a \Veyl sequence is the elelnent \Vith indice equal to the

sunl of previotls up and clown records indices. ~[ore precîsely wc have the

following fundamental property:

13



• Lemma 3.1 (Ellis and Steele, 1981 [10]) . ~Ve have

if at Tn there is amaxirnurn:

if at Tn there is ft rnirL'imuTn.

•

Let k be the smallest integer such that n < Lk + Rk . Then. if .L'( l) < < x(n)

denotes the ordered sequence for .rl ..... J:n • then the indices (1) (ft)

l:uiucide with

{i * L k (mod L k + Rk ) for i ~ l} n {1. .... ft }

Aiso. (Ln. R,l) are relativdy prirne for aH IL

.-\ qllick verifica.tion: if ft = L k + Rk - 1. then the index of the IUëlximum

is (L k + Rk - l)L k (rnad (L k + Rk )) = -L k (nlOd (L k + Rk )) = Rk • as \Vas

pxpectecl. This Lernrna says that at ft = Lk + Rk - 1. the shape of the binary

search tree for .1'1. •••• L'Tl is pntirely deterrnined by thl' two nllnlbers L k

and Rk • In faet. then. there are only O(n:.!) possible \Yeyl search trees \Vith n

elernents. even thou~h there are n~1 C,:l) = 8( --ln / n:I/'!) possible binary scarch

trees on n nodes. .-\S the sinlplest. exaruple. of the fin' binary seareh trees on 3

nodes. t\\'o are inlpossible to obtain as vVeyl trees (the oues in which the root

has une child and the child has one child but of different polarity). Indeed.

let's suppose that one of these trees is a \Veyl tree. \Ve have L'2 + R'2 = 3

which inlplies that tinle TJ is tinle for an extrema but for these two tree~ the

nodes are ordered either as .\1 < .\3 < .\:.! or .\'2 < .\:1 < .\1 which means

that .\:J is not an extrema.

1-1
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1. 2. 3. 4. 5.

•

figure 2: Trees 4 and 5 are impossible to obtain as Weyl trees.

This fnet \Vas llsed by Ellis and Steele to derh'c a uIPthod that \Vauld

sort any \Veyl sequence llsing cOlnparisons only (thus. without heing capable

of BllInerkally inspeeting entries) in ()( log Tl) t'ornparisons. "\,p refer to the

subsection on sorting later on in the paper.

There is a natural way of 100king at the growth of the \\,pyl search tree in

layers. The (i + 1) - .-;t layer consists of all.L· j with T, ~ j ~ T&+l - 1. .-\ special

role is played also by the ancestor tree Tr,-1, .-\ layer l'an be considered as

a ne\\' coat of leavps painted on the ancestor tree. Each layer adds one and

just one coat. as the next new result explains.

Lemma 3.2 AU nodes in the (i + 1) -.st layer CZ're leaves. lLnd aU leaves of

TC+I-1 are in the (i + 1) -st layer. Ali nodes in the (i + 1) - st layer are edher

right children or left chûdren. but not both. ln lact.

15
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and

Proof.

Recall that {,-r.-1 is the collection of leaves of the ancestor tree. and that the

lert and right external nodes of the ancestor tree are collected in sets Ef
i
-1

and f,P.-1 respectively. Fix j E {Ti. Ti + 1. .... Ti+ 1 - l}. so that j is an

index of a point in the eurrent (i + 1)-st laypr. \-\ïthout los5 of generality.

assume T, = RI (the last rpcord \Vas et llluxilllurn). Thus.

R t ::; j < L t + Rt •

Ta cleterrnine the placl1 ~.) occupies in the search tree. it is inlportant tu find

out which points arp the irnrllediate predeeessors and SUl'ccssors of .1')'

Consic.ler first the inuuediate predecessor of J') in {J'l' ...• J:)-d. By

ll'uuua :3.1 on pagp L..!' tlw index of this node is

for sorne integer k ~ n. But

j + R t > j + L t ~ R, + L, .

sa k ruust he O. and thus. the index of the inlnlediate precieepssor il'i j - L1 •

which is in the ancestor tree. as j > Li anù j - Lt < Rt •

Similarly. the imnlediate successor of j has index

16
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for sorne k ~ o. [t cannat have index j + Li as

Thus! it must have index j + Li - (~ + Ld or snlaller. Le.. j - Ri or snlaller.

But

su that j - Ri ueluugs tu the aUt:eslul' tree (il" j - Ri /' 0) ur is llullexbleut

(if j = Rd·

Thus. the imnlediate neighbors in the ordered sequence have indices that

put them in the ancestor tree (the right neighbor nlay not exist if j = Ri)'

.\5 L, < R" it is dear then that j is a right child of its left neighbor. ~ote

also that at the pud of tlw eonstruction of the (i + 1)-st layer. all uodes in

it are leaves. and ar(l right ehildren of oodes in the a.ncpstor trpp. Thus. the

(i + l )-st layer paints il collection of lcaves on the ancestor trel'. lu fact. it

clestroys aIl existing lcaves of the ancestor tree. as we will now pro\·e.

\Ve proye by induction the following:

.-\8

wc verify that indeed. at all times. the number of external nodes is equal

to the tree size plus one. The staternent is quickly \'erified for i = 1 as

L l = R l = 1. T'l = 2. a.nd Tl has one left and one right external node.

.-\ssuming the hypothesis ta be satisfied for j < i. we look at the (i + 1)-st

17
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layer. :\11 nodes in this layer are leaves of r:fl+ 1 -1' and if Ii = Ri (\Vithout

loss of generality: a. symmetric statement for Ti = Li is easily obtained as

weIl). then all these leaves fill right-external nodes of the ancestor tree 'Ffl-l.

But by the induction hypothesis.

T,+1 - T, = R, + Li - Ri = L, .

so that we call condude that aIl right-external Hades of the ancestor tree are

filled in. But then.

which was to be shawn. Because aIl left externals survive fronl the ancestor

tree.

and the Proof is cOluplete.

Example: Let 8 = v'2 ~ L. ..tl--l21 .... T, for i 2:: lare tirIles of records

and Li. for i 2:: L (rflsp. RI' for i 2:: 1) are tinles ofnlininlëls (resp. maxirnas).

18



• Ti n nO Extremas

Tl 1 0...11-121-1 Ll = Ri = 1

T'2 2 0.828427 R'l = L l + R 1 = 2. L'2 = LL = 1

Tl 3 0.242641 L:l = R2 + L2 = 3. R:1 = R'2 = 2

-1 0.65685-1

TI 5 0.071068 L.I = R:1 + La = 5. R.I =R:1 =2

() O.-lR=)2R1

T"1 1 0.899..195 R.~ = R.I + L.I = 7. L;j = L.I = ;j

8 0.313708

9 0.727922

10 0.1-12136

11 0.5563-19

~) 12 0.970563 R() = R!j + Lr) = 12. Lô = L~ = ;j

13 0.:384776

1-1 0.798989

15 0.21:3203

16 0.627-11 ï

T- 17 0.0·11631 Li = Rf) + Lfi = 17. Rj = Rf) = 12j

18 0.-15584--1

Thf' next extremurll is tht' elenlent with index Lj + R j = 17 + 12 = 29.

Furthermore. sorting the sequence .LL- •• · • .L· n needs only the index of the

rninimum which is 5 for T6 :$ n < Tj • The indices of the ordered sequence

19
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• a.re computed according to lerrllna 3,1:

5 * 1 - 5 (rnod 17) = ;) 5*9 =--15

5 * 2 = 10 (mod 17) = 10 5 * 10 = 50

5 * 3 = 15 (mod 17) = 15 5 * Il = 55

5 * -1 = 20 (nlod 17) = 3 5 * 12 = 60

5 * 5 = 25 (rnod 17) = 8 5 * 13 = 65

;) * fi = :10 (nlod 17) = 13 5 * 1-1 = 70

5 * 7 = :35 (rrlod 17) = 5 * 15 = 75

5 * 8 = .to (rnod 17) = 6 5 * 16 = 80

(rnod 1i) = Il

(mad 1i) = 16

(illOcl 17) .t

(rnod li) = 9

(mod 1T) = 1-1

(IHOd 17) = 2

(Inod 1T) 1

(rnod 1T) = 12

•

The ordered spquenee is .L',') < .L'lO < .L'15 < ,,' < .L''1 < .L'-;, < ,Cl:!' Finally if

Tj = Tti and j E {~j, ~i + 1. , " , Tj - 1} we ean compute indkes of inlnlediate

predecessor and successor of .L'J' for instance, if j = 1--1 the index of the

iUlnlediate prpdecessor is j - L'i = 1--1- 5 = 9 and the index of the inlmediate

snccessor is J + Ln - (R'i + L,d = 1-1 + 5 - 1T = :2 and we l'an ('ffpctively check

these results fronl the list abovp. The tree obtained is shawn by fip;,3 beIow:
'1-414

figure 3: Weyl tree from a seed () = J2,.

20
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Lemma 3.3 We have

and

Put differently.

k - l ..;: fI ..;: k_ 11_

if k is the unique integer with Tk ~ Tl < Tk + L'

Proof.

The first staternent is an innuediate corollary of the LenlIuêl 3.2..-\lso. as each

layer destroys aIl the [eaves of the ancestor tree. it is dear by induction that

the height of the tl'ee is exactly equai to the number of [ayers nlinus one.

The study of the' hcig;ht and of the Ilurnber of lcan's rcduc(ls to the study

of the sequence (Li. Rd. For the height. dl(' growth of Tk as Cl function of

k is inlportant. This is dosely relateù to the continlled fraction l'xpansion of

(J. To understand the l'est of the thesis. we n~call a. few basic facts [rorIl the

theol'Y of continued fractions.

4 Continued fractions.

To clefine a continued fraction wc consider the irrationnal nurnber ii = :3.1-1159 ...

The first step is to write rr = 3 + 0.1-1159 .... ~ext we consider thp fractional

part 0.1-1159 ... and rewrite it as l/.r for sorne irratiunal value .r:

21
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rr == 3 + ï.06~5.... The denominator Ina)" be rewritten as 7 + 0.0625 ... and we

l'an repeat this process Tl times for any n 2: 1. The result is:

1 l 1
rr == 3 + _06

1
" == 3 + _ 1 == 3 + _ 1

1 • _.J • • • t + 1.5.996... / + 1. [
::>+ I.UO:l4 ...

Sa. the representation of rr as a. continued fraction will be noteu [3:7.15.1.292....].

Let. now 0 be irrational. and define the \Veyl sequence with Il-th ternl

J~fl == {nO}. Il 2: 1. where {. } denotes the "rnodulo 1" operator: {u} =

u-lIlJ.

Denote tlw cOlltinueu fraction expansion of () by

f) == [llO:lLl' (l'l • .•. 1.

whl're the at"s a.re the partial quotients. Cl, ~ l for i > l (see Lang [21] or

L(lVeque [22]). Thus. \\'(1 ha\'f'

l
f) == lln + 1

(lI + f&:.! .....

with

CiO = lBJ.

Tlw i-th convergent of f) is

It l'an be conlputed recursively as
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where gcd(Pi. q;) = 1. and P-'2 = O. P-l = 1. Pi = (liPi-l +- Pi-'2 • i 2: 0 . and

lJ-'2 = 1. lf-l = O. qi = aiCJi-l + C]i-'2 • i 2: 0 .

~ote that ro = CLu and rI = Uo + liaI' The ri.·s alternately underestimate

and overestimate O. The denominators lJi of the eonvergents play a special

role as

and

I
f) - Pi 1 < _1_ . i > 0 .

Cfi 1 - fJiCJi+ 1

Ta study the nunlber of records anù the evolution of the layers. the following

n'suIt is essentiaL It flxtends Cl theorern of Lang [:21].

Theorem 4.1 (Boyd and Steele [5].) ln tL ~Veyl.'ie(tlL~nCt~ for an inntional

(J w-ith pu'rt'ial q'uotient.'i (ln' and convergent." p,t! lin' the (right extT'Erna) oecour

when ni." in the following list

lf-l + qu· (/-1 + '2([0•...• (/-1 + ([.1(/0 = l[l:

CIL +t/'2' (/1+ 2(['2' ..•• fil +fL:',lf2=C/:J:

(h + (t,· (/3 + 2q.,. . .. . lf;~ + ll::/[., = CJ5:

and the (left extrenta) occurs when ft l.'; in the list lfn + (/1. tJo + :2Ql' ...•

([0 + a'2l/1 = lf2:

lJ'2 + lJ3· Q'2 + 2([3•.... lJ'2 + (1.,([:\ = q·t:
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Lemma 4.1 shows that we start with al right extremes. [oltowed by a·! left

extrem
es

. then aa right extremes. and sa [ortho This description. together

with lemrn
a

3.1 and Lemma 3.2 should sulfice ta campletely recanstruct the

shape of the tree (see figure -i).

figure 4: This figure showS the Weyl tree for lJ == .[ft ==\8: 1. 3.2.3.... ].

24



•

•

~ote that qo = 1. ql = 1. CJ2 = -1. q3 = 9. C/4 = 31. Layers are separated by

wiggly lines. Thicker Unes separate layers of different polarity. ~ote that there

are first al layers of right polarity. followed by u']. layers of left polarity. and

sa forth..-\lso note that just before an extremum. aH leaves may be round

in the last layer. The .r-coardinates of the points are geonletrically exact.

ta facilitate interpretation. L"sing lemIna 3.1. can the f(~ader ~uess who the

parent is of point -1l'? The last node is a maxima. hence R = -l0. The next

layer is a set of left nodes. ta find the index i of the parent of tlode j = -lI

Wfl use relation j - L + k(R + L) \Vith L = :31. R = -l0. k = 0:

i = -lI - :31 + 0 x (:31 + -l0) = lO.

5 Height of random Weyl trees.

From tlH' lerulna :3.:3 and lenuna -l.1. Wp easily df'tenuirH' the rPiationship

bf\tween height and partial quotients.

Proposition 5.1 L~t fJ be lt7·ational. L~t k 2: 2. If fi = lfk - 1. then lhere

are e:l:actly
k

Lai -1
I=L

fuLL layers. and the ~Veyl tree T;l has he'ight

k

H - ~(l· _.)
n-~ & _.

I=L

In general. if

rJk ~ Tl < l/k+L •
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then
k kTL

~ ai ::; Hn + 2 ::; ~ ai .

I=L i=L

6 Discrepancy.

There is another fit"'ld in which the hehaviour of the partial surllS Su = 2:~= 1 (li

matters. ln quasi-randorn ntuuber generatioll. the notion of discrepancy lS

irnportant. In general. the discrepancy for a sequence .L·L' .••• .L'tI is

wherp ..\(.) dpIlotes Lebesgue tneaSllre. and A is a suitablp sllbdass of the

Borel spts. For (\xanlplp. if Wf' take the intervals. the11 (SdUllidt [29]: Béjian

[G])

D
0.12 log n

rl ~ ---­
Tl

infinitely often. From ~iederreiter ([26c]. p. :!-!), WP Ilote that for a \Veyl

sequence for irrational ().

l( Il)

0'1 ~ !-~ ai = S(l(n)) .
ft r1

1=1

where l(n) is the unique iIlte~er with the property that

C/l(n) ::; Tl ::; CfI(n)+L •

For exalnple. ~iederreiter's bound implies that if f} is snch that Z::::L al

o(rn) (as when aIl at ' sare bounded). t hen

D. = 0 CO~T1)
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Thus. \Veyl sequences with small partial quotients behave weIl in this sense.

\Ve will see that the sarne is true for randonl search trees baserl on \Veyl

sequences.

7 Partial quotients of random irrationals.

~ow. replace (J by a lluifonn [D. 1] randonl variable. and eonsider its continued

fraction expansion. Spveral results are known about this. and tHost luay be

found in Khintchine [16b]. Philipp [27aj. or the references found therp.

Theorem 7.1 (the Borel-Bernstein theorem.) For alr1Lo.~t aU O. (ln 2:

,:(Tl) infinitely often if lLnd only if Ln l/..p( Tl) = x. (Thu.'i. if Il i.'i unifo'f7rL

[O. 1]. tken with probab'ilit:IJ one. (ln ~ nlog nlog; [o~ Tl infinitely often. fol'

exarrLple. )

This shows that the an's necessarily have la.rge oscillations. The result

('an also he llsed to show that certain subdasses of fFs ha\'(\ zero lueasure.

Exanlples indude:

A. The ffs \Vith bOllnded partial coefficients. The pxtrenlP pxanlp(p here is

fi = (1 + v'5)/2. which has ClO = al = fl'2 = ... = 1.

B. The (}'s that are quadratic irrationals (non-rational solutions of quadratic

~quations). It is known that the ai's are eventually periodic and thus

bounded (in fact. the periodicity characterizes the quadr8tic irrationals.

see (16b]) .
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Lemma 7.1 (Kusmin [19]; Lévy [23]) . Let Zn denote the value of the

continued fraction

(0: CLn + l. an +,! •... ] .

Then. if e i~c; unifolin [0.1]. Zn tends in distribution ta the sQ-callcd Gauss­

Kw;rnin distribution with dist7'ib'Ut'ion function

F(.L·) == log:! (1 + 1:) . 0 ~ .r ~ 1 .

This liInit theorflIIl is Pëtsy to interpret if wc consider COllyergents. lndeed.

rI) = (J. and in general. a'l+l = ll/znJ. Thus.lenlIna ;.1 also gives an accurate

description of the liInit law for (ln' In faet. as a corolla~·. one obtains aI10ther

rpsult of Lt)YY ([:!3]). which states that the proportion of al's taking value

k tpnds for ahuost aU f} to a finite t'onstant only depending npon k. If 0

is unifornl [O. 1]. then (l t = II / f)J is a discretized version of a uniforIn [O. Il
randonl variable. .-\s Tl grows. the distribution gradually shifts to a discretized

version of one over a. Gauss-Kusnlin randaIn varia.ble. :\s the latter law has

a density f(.r) = 1/((1 + .L') log2) on [0.1] which varies nlol~atanically frorn

1/ log:2 to 1/ log -1. for practical pl1rposes. it i5 eonvenient t.o think of the

an's as having a law close to that of I/C. For t'xêlIuple. thl-' Borel-Bernstein

law holds also for the sequence 1jC'l where Ct. C'2' ... are i.i.d. uniform

[O. 1]. There is stability if we start the process \Vith () having the Gauss­

Kusmin law. just if we were firing up a ~Iarkov chain by starting with the

stationary distribution: if fJ has the Galls-Kusmin law. then aH =n's have
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the Gauss-KusnlÎn law. and aH the an!s have the sanIe distribution (however,

they are not independent: in facto Chatterji ([7]) showed that any law \Vith

independent an!s corresponds to a random () \Vith a singula[, distribution.)

Lemma 7.2 (Galambos [13].) Let () have the Ga'Uss-K-usmin Law. Then

1. P {rna'C1<i<n Cli !J} .-l/y
lni < -- = e ' . i} > 0 .

ft_r)Ç Il log 2 .

Galarnbos's result says that the excursions predicted by Borel-Bernstein

are rather rare. as the rllaxirnal ai up to tirne n typically has magnitude

8( Tl). Of course. the ditference is em~ily f'xplained by the different natures

of strong and weak convergence. ~ote that lernnla ï.2 n~nlél.ins valid if fJ has

the unifornl distribution on [0.1]. The inlportant tl'chnical contribution of

Galarnbos is that ill' has mastered the dependencl-' }H'twpen tliP Cl n ·s. \Ve are

raC(~d \Vith the sanIe probleul. and cite the fundarnental result n('(\ded to make

things click.

Lemma 7.3 (Philipp [21a].) Let () hLLve the Gaus.-;-KusTTLin distrib'Ution.

Let ./\1( !l.U be the s'lnCLUe.>;t rr -algebra w'ith respect to which the coefficients

fl,~, ... . at ] are nLt~as'lLrCLb[e. Then for &.ny 8et.'i .-l E JIu and B E J[t+rl.XJ'

IP{.-\B} - P{.-\}P{B}I < cpnp{.-l}P{B} .

where p E (O. 1) and c is a constant.

This result states that in effect the an's are alrnost independeut. with the

dependence decreasing in an exponential fashion. One last LerIlrua concludes

the technical introduction.
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Lemma 7.4 If P and Q ar'e two p7'obability rnea~,;u·re.s and 0 > 0 is a TLurnbe1'

s'Uch thul for alll'ectangular' Borel sets (products of inter'Vals). P ~ nQ. then

P 2: nQ fo'" aU BOl'el sets.

Proof.

This resuit should be standard. Let .-l be a Borel set. For f > 0, wc find .V

and rectangles .-li and BJ • l ~ i. j S; _V. snch that

.\'

(J(A) - L (J(Ad
1:= 1

:v

< f • P(A) - L P(Bd
)=1

< f .

Clearly. theIl.
.V

(J(A) - L Q(A i n B)) < f •

I.}=l

•

and sinlilarly for P. Therefore.

P{A} > L P{A i n B)} - f

l,)

> n L (J{,-\ i n BJ} - f

1.)

> n{Q(A) - d - f

= nQ(.-t) - do + l)

> nQ(.-t) - 2f .

Let f ~ O. and the inequality follows.

8 Partial SUffiS of partial quotients.

Here we consider the behavior of partial SUffiS of the partial quotients of a

random "Veyl sequence. and obtain a limit law. :\Iore precisely. we study the
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• behavior of

when f) is replaced by [~. a uuiforrn [0.1] l'andOIIl variable. The following

Lernma relates bounds for sums of (dependent) partial quotients to bounds

for SUffiS of independent partial quotients.

Lemma 8.1 Let .\1! .... .\n b~ litt:: ji.,...;l ft jJurliul t/uulit::ftl:; whtU 0 i..'i

Ga'U,.;s- Kw,min distributed. a.nd ld } '1.

trib'ution that of .\1' Dejine. fa.,. f > O.

}~ be i. i. d. w'ith corn'TTwn dis-

•

Then there exi.,;l,.; flU depending lLpon f only ,')'uch that for Tl ~ no.

p{I L:~l.\t 1 } -lt'log;.(efl) (lllog(l/P))- - l >:2f <..,: .
fl lo~~ fl - log( 1/p) log( ('n )

Proof.

Let .V he Cl. positive integer and let f > 0 be arbitrary. Let A) denote ct generic

Borel set. Then. if Cl) is replaced by .\) tu denote ÜlP faet that it is Cl random

\·ariable. and if f) has the Gallss-Kusrnin law. then hy l'(lpeatpd application

of lcnlma ï.3. for k ~ 1.

k

p{nJ=L[.\.'/; E .-ls)]} ~ (l + cp·V)k-1 IIp{-\;vJ E .-l.V)}
J=l
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• Let Yb rZ, ... be an Li.d. sequence \Vith the same distribution as X· l . [n

particular. then. by lemma 7.3!

~k \'
L-j=l·\;Vj _ 1

k lag2 k

~ote that :.; is et Ilonincreasing functioll. Clearly. a.ssunling that Tl is a rnultiple

of .V ta avoid Inessy expressions.

~n/.'1 \". "",ni N \"
LJ&=l •.\ 1 LI:;;L • NI

(nf.V) log:! n (uf.V) log2(nl.V)

{
~nlN \" }

+~Vp ~i=L • Ni • - 1 > f

(nf.'J) log:!(nf.v)

VP { I::~'~ .'(Vi f log n}
. (ni ~V) log2 (nf.V) > log.V

+.V (1 + cpS)Il/.v .; (.~.)

.) V (1 ..\') ni N ... (!!.-)_. + cp 'r.V

(as saon as f log n / log;.V > 1 + f) .

{

~ N ~1L /.'1 - 1 \" }
P LJj=l L..1=O . .v'~J _ l > 2f

Tl log2 Tl

,\, {~nlN-L \" • }P L-l-O . .\JI~J _ l > ')f

~ (Tl/.V) log1 l' .. -

{

~fll.v \" }Vp LJI=l· Ni - l .)
. (n.I.V) log:l n > _f

.v"P {<

<

=

<

<
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• NOW, assume that .V is chosen such that

log(cn) < V 2Iog(cn)
log( 1/ p) - - < log( 1/p)

Then

p {IL:~l.\i -11> :2f}
rzlog:! Tl

) :2log(cn) ( 1) l1/N (nlog(l/P))<:. - x 1+- -;
log( 1/p) Il log( en)

< -le log(en) " (Tl log( 1/p) )
log(1/p) "" lug(en ) .

Hecall that this bound is valid under the condition f log ni lo~.V > 1 + f.

This in turn is valid for aIl Tl large enough by our ('huice of .V.

8.1 Generalization.

~ote alsu that in Lenuna 8.1. the .\,·s and lis IHay bp rpplacfld by gl.\d

and gOi) for uny ulapping g. In \Vhat follows helow. we fix n. and define

{

o
Y( Il) =

Il

if il 2 n/ log log n.

otherwisp

•

and apply LeUlnU\ 8.1 to the !1( .\,) ·s.

Proposition 8.1 If (J is Gu'uss- K-us'fnin distrib'Uted. thcn

in probability.
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• Proof,

By Bonferroni's inequality, if 9 is as in the remark above,

< p {1L::i 19(X,) -11> 2f} + nP{.\L ~ nloglogn}
n 0K~ n

+ P {tXJ[n/iog log n. nloglognJ(X,) > ~n log2 n}
t=L

1+11+111.

TERM II. If Z is a Gauss-Kusmin random variable,

Il::; nP {l/Z ~ rb~/logn} = nlog" (1 + 1 \ ) < l 40.
- Tl og og Tl - log:! log n

TERM 1. 1 is bounded as above with a. slight change in thE' detinition of .;:

1 ) de f p { L ~= L 9 (} j ) 1 }-p,rn = SUp - > f
n~k~rn k log2 k

Let us compute the nlean Jl and variance (7'2 of g(} '1)'

=

•

E { l(11Z )IL 1Z <Tl/log log n J} < E { (11Z)11/Z <n ;log lù~ Il }

_ ri (l/:)dF(:;)
JIng 1011; nln

(where F(::) = log2(1 + :;))
l j'L l cl::

log2 loglognln :(1 +::)

< log2(nl log log n) .
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Similarly.

1 + E {l(1/Z)I1/Z<n/loglugnj} > E {(1/Z)I1/Z<n/loglogn}

> ri (l/::)dF{.:)
l'og log n/n

1 j'l l d::
log2 loglogn/n .:(1 +::)

- log;l (n / log log Tl) - log;l ( '1 ~ 1)
1 T" og og nI n

> log:?{n/ log log n) - 1 .

Therefore.

III - log:!(ll/ log log n) 1 ~ :2 .

and thus. IlL - log',! ni s :2 + log.! log log n. ~ext. to cornputp an upper bound

for the variance. wc a.rgue sirnply as follows:

< E {(l/Z):! Il/Z<n/log log tl}

= rt

(l/.:'2)dF(.:)
./10'1, IOlt tl,' n

1 il 1
J d::

log:2 lloglogn/n .:'2 (1 + .:)
Tl

<
log:2 log log n .
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vVe are finally ready ta apply Chebyshev~s inequality:

> ~}
2

> :.}.)

• L~=lg(}j) _ 1

k log2 k
>f} < p{ L~=l(g(}j)-J.l)

- klog2 k

+ P {IL~=I(P. -log2 k)
1 k log2 k

4a2

< k 1 ') k ') + 1(2+log.• 1og log u+lug.,(n/k))/ log:! k>t./2. og2 . f- --

-ln
<

k log~ k log 2 f'2 lo~ log; Tl

+ fc2+101!.:! log log r&+lo~:!{n/k))/Iog:!k>t/'2 .

Thus. in Lenlnla 8.1. applilld tu y(.\d ·s. we rHay take

;(fll) = {l
_--.r"~.:.:.:ln~----:-_
ln log~ m log '2t:! log log n

Therefore. by Lernnla 8.1.

if 2(2 + log'2log log n + lo~'2( n/!lI)) > f lo~'2 fil

otherwise.

•

1 < 4(-' log(en) .... (rzlog(1/p) )
logO/pl y log(cn)

(J(n)
(J(log n) x .)

(ni log Tl) log- (Tl.! lo~ Tl) log lo~ n

O( 1/ log log Tl) •

which tends tu zero. Thus. 1 -t 0 as weIl.

TERM III. Define B = [n/loglogn. nloglogn]. vVe bound P{.-l}. where

[

k ]def •
.-l = L .\JX,EB > fn log n .

&=1
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Let ~V be the number of .\'/s in B. Clearly. A ç [JV > flogn/loglogn] .

Note that

p d!J P{-\L ~ n/log log n}

< P {1/Z ~ n/log log Tt }

= log1(l + log log ni n)

<
log1log n

Tl

By Lemmas ï.3 and ï.-l. we have

P{.V ~ u} < P{:l(i L••••• i lt ) ç {l. .... n} : .\1\ E B. .... .\i
l
• E E}

< (1 +cp)UP{:l(iL' .... lu) ç {l. ... . n}: li l E B . .... }i" E B}

(where the }:'s are Li.d. and distributed as the .\i·S)

< (1 +cp)" (::) pupi, E B}

< ( (l + ';;knp ) "

< (( l + CP)'-',:Og21og TI ) "

-* a

if we set lL = r:2( 1 + (p)1-:' log1 log n1. .\s tl = o( f log n/log log Tl). we have

shawn (\Vith raonl to spare) that

III=P{A}-+O.

Proposition 8.1 \Vas praved by analytical rnethods by Khintchine [16]. The

Proof given here provides explicit estimates of rates of convergence as weil.

Proposition 8.1 may be rephrased as follows. if An denotes the collection of
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• aIl O's on [O. 1} \Vith 1L:~~ L ail (n log2 n) - 11 > f:

Hm P {8 E .-ln} = 0 .
Tl-+OC

Theorem 8.1 If 0 has a distribution with a dens'ity on [O. 1}. then

"""'tl~i= L a'i --t l
nlog:? n

in probabHily.

Proof.

If the Gauss-Kusrnin (J is replaced by a unifornl [O. 1] randorH ntriable F.

then. as the density f of fJ decreases monotonicaIly froul 1/ lo~:2 to 11 log-l

on [D. 1]. w(' hav('

=

<

=

-+ 0 .

/ du
.-\'t

j' .)
- du

.-\'1 (1 + il)

j. l
log --l du

.-\,t (1 + lL) log2

log --l P {fJ E An}

•

Thus. Proposition 8.1 remains true for the unifoml distribution and for

any distribution \Vith a. density on [O. 1].
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• 9 The behavior of the denominator of the

convergents.

•

Lemma 9.1 (Khintchine [16] and Lévy [23a]; see Khintchine [16b], p. 15.)

There exists auniuersal constant ""( = tr"2 /121n 2 :::::: 1.186569111 such that for

alrnost aU B.
("'i-+-oll\\n

(111 = t:

Lemma 9.1 is related to the property (Khintchine [1Gb]. p. 101) that

(

rl ) L/t1 X ~
de! l ln!nllj --r t' = n (1 + j( . + 2))

t=L )=1 J

for ahnost aH (). Indeed. to gpt this intuition. recall l'roln tll{' 1'{l{'urrences for

the Cfn's that

so that
tl t1

lIra ~ nO + Cl)} $ :2
fl ncL) •

)=1 )=1

vVe also note that l/n Inust grow raster than a Fibonacd sequen(~e. as

lfn+1 2: CIra +f/n-l' This inlplies that qn 2: pn-L for all n. where p = (1 + V5}/2
is the golden ratio. Another sinlple lower bound is C}n ~ 2(n-1 \/:.! (Khintchine

[16b]. p. 18). Finally, we note that a nornlallimit law for (logllk - ~,k)/v'k

\Vas obtained by Philipp [2;].
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Theorem 9.1 If () has any density on [O. 1], tken

Hu Hn Hn

(1/"() log n log:! log n (12 ln 2/1T2 ) log n log2 log n = (12/ 1T2 ) log n log log n -+ 1

in probability. Note that 12/rr2 ~ 1.2158.54203 and 12ln 2/7r "l. ~ 0.8427659130.

Proof.

By Theorenl 8.1. as k .-7 :'C.

k

L (li ~ k log2 k
1=1

in probability. ~ext. log l/k ,.."., "",k in probability. The latter fact inlplies that in

probability. k ,.."., (1/ "'{) log n if k is the unique iutt'ger such that l/k :::; Tl < (/k+ 1.

But Theorenl 8.1 and Proposition 5.1 then inlply that

Hn Hn,.."., .-71
k log.) k (1/,,:,) log Tt log2log TL

in probability.

This theorem cloes not clescribe the behavior as Tl ~ x for a single f) (the

"stron~( behavior). Rather. it refers to a rnetrïc pruperty and takes for Pëlch

n il cross-section uf ()'s that give a height in the desired range. and confirms

that the measure (probability) of these fFs tends to one. For oscillations and

strong behavior. a bit nlore is required. By the Bord-Bernstein theorem. with

probability one.

(ln 2: n log Tl log log Tl

infinitely orten. Since \Vith probability one. q~/k ~ p-f as k .-7 x. we see from

Lemma 5.1 that with probability one.

Hn 2: (1/~,) log n log log Tl log log log n
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infinitely orten. Thus. Theorem 9.1 cannot be strengthened to alnlost sure

convergence~ as the oscillations are too \Vide.

It is of interest to bound the oscillations in the strong behavior as weil.

Also. again by the Borel-Bernstein theorem. \Vith probability one. for aIl but

finitely many n.

(ln ~ Tl log Tt log 1+t log Tl

for f > U. This iUlplies that \,,"ith probability one. for aH but tinitely TIlallY n.

TlLa) :s n:! log Tl logh-t log Tl .

)=1

But thel}' by Theorelll 5.1 and lemuH\ 9.l. \Vith probability one. for ail but

finitely Tnany ft.

.)

Hn ~ ..~:! log:! n lo~ log nlogl-t
ot

log; nlog; Tl .

9.1 Very good trees.

FrOUl the inequality of Theorenl :2. we recaIl that Hn =()(lop; Tl) if L:~ L (li =
O( n). Snch irrationals haVf~ zero probability..-\s the most pronlinent f[wulber

\Vith the smallest partial surus of partial quotients. we have the golden ratio

(an == l for n ~ 0). [nde~d. as for these sequencl's. l[n :s n:~l (l + ad ~

exp(E:~ 1 ad = pxp(O( fl)). we have the claimed result on Hu without further

ado. In fact. for the golden ratio. we have qn .",-, cpn. where p = (1 + 15) /2

and c > 0 is a constant. .-\s 2:7=1 ai =fl. wc see that

H ~ logn
n log p .

..11
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The "Veyl tree is simply not high enough compared to typical random "Veyl

trees. and also \Vith respect ta true random binary search trees.

If an = a for ail TL then qn = aCZn-l + lJn-"2 for aIl n. From this. qn ~

C ( a+~) Tl for sorne constant c, :\s L:~l ai = an. we see that

a

~ote that the coefficient cau be ruade as large ~ desired by picking il large

enough,

9.2 Very bad trees.

\Ve first show that \Veyl trees can be almost of arbitral")' height.

Theorem 9.2 Let hll be tl rrUJnotone sequence of fLu'fnbe.,.,.; dec'rew;ing froln

l to 0 al fL'nY ,,,[O'lU rate. Then therp existH an irrational fJ .O;1lch lltat for' the

~Veyl tTee. Hu ~ nhn infinitely often.

Proof.

\Ve exhibit a monotonicaHy increasing sequence (ln of partial quotients to

describe O. The inequulity will be satisfied at instants when the tree size

n = fJk for sorne k. Thus. we will have for aH k large enough.

~ow. for k ~ 2. Hqk 2: L~==L ai - t ~ ak. and

k

flk ::; qk ::; 2kIl ai ~ 2kak(ak_dk-L .

i=l

-12



flu ~ (1 + 0(1))
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•

Thus.

Hqk > l
k k ~ hak ~ hqkC/k - 2 (ak-d '-L

by choosing ak large enough (note that k and Clk- Lare fixed) .

.-\ few examples suffice to drive our point honle. Take Clk = "2 k • Then

,)k(k+L)(J. < il < .)k+k(k+L)/:l
- _ k_- .

sa that k = J21og',! Tl - I{ + 0(1). where 1\ E [1/2. 3/2]. As L:~=L ni =

2k+ L- 1. we have at those tinles when Tl = C/k for SOIlle k.

H - ,)k+L _ l - E~ (,)J:!LOg:.! TL)
ft - - - "7 - •

This grows mllch l'aster than any powpr of the logarithnl.

IfWf\ set CLk = 2:!k. theu C/k ~ '2krr~=lllt ~ 2k+:!k+l_L ~ IOJ.?;:!(ak)ai/2.

Conlbine this with Hfll.: ~ (lk. and note that when Tl = (lk for sortlP k.

and therefore.

-lll

log:! n .

By considering flk = bbk for integer b, the height incrNLSes at lea.."it as (ni log:! n)1-L/b.

9.3 Trees for a few selected transcendental numbers.

The partial quotients are known for j ust a few transcendental nllrnbers. For

example

tan( 1/2} = [0: 1. 1. -l. 1. 8. 1. 12. 1. 16. , .. ] .

-13



•

•

Thus~ a2k = 11 a2k+ l = --Ik. k ~ 1. From q2k+ l = --Ikq2k + CJ2k-l and q2k ­

Q'2k-l + lJ2k-'2' one cam sho\\" (see Boyd and Steele [5]. p. 57) that

and

for sorne eonstant c. In fact. then. we see that the k for TheoreIIl :!. satisties

k "" log Tl

log log n

But then
kl'2 ., ')

k- log- Tl
Hn ~ ~ ( --Ij) "" - ~ .) .

L..J 2 2 log- log Tl
J=l

The \Veyl tree is [Iluch higher than that of a typical randorn \Veyl tree.

In a second example. <,onsider

f' = [2: 1. 2. 1. 1..1. 1. 1. 6. 1. 1. 8.... ]

so that au = 2. ll:Jm = fl:Jm-'2 := 1 and ll:\m-l = "lnl for fTl ~ 1. Thl'n (Lang.

1966. p. 7-!) there exist constants C\ and C',! snch that

This shows that k "" log ni log log fL. ThllS.

H "" log:.! Tl

fl 9 log'2 log Tl

.-\gain. the \Veyl tree has an excessive height .



• 10 Sorting Weyl sequences

•

Ellis and Steele [la] have shown that the first Tl eleulents of any \Veyl sequence

Lan be sorted with the aicl of O(log(n)) comparisons only. (lvell though these

sequences too are equidistributed for any irrational b. This shows that such

sequences possess Cl. lot of structure. Of course. the fact that discrt"'te randonl

\Veyl sequences and ranclorn Lehmer sequences are imperfect is hecause they

('an be ,odescribed" n'l'Y sinlply by a. snlall nunlber of bits. The random­

ness of a sequence has been related by several allthors to the length of the

descriptors (sep (-l.g. ~Iartin-Lof [25]. Knuth [1 ï]. Bennett [3]). For sllrveys

and discussions on the tapie of unifornl random variate generation. one l'ould

consuit ~iederrpitpr (26. 26a. 26b] or L'Ecuyer [20. :20a]).

It is well-kuown that the nunlber of comparisons needed in quicksort is

equal ta the SUITl of thfl depths of aH the nodes in ttH' binary spareh trpp

eonstrueted l'rom tllP data hy ordinary insertion . .-\S this ~llnl is nounli(ld

frorn helow by HTl (Hn + l) /2 (just by summing o\"er the path leading ta

thp furthest node). Wll SP{' t hat the number of comparisons in qllicksort is

infinitely aften at lcast pqual to

nhn (nh n + 1)

:2

for any sequence hn decreasing ta zero. and SOIne irrational f}. Yet. for

i.i.d. data drawn froIIl the same nonatornic distribution. the pxpected nunl­

ber of comparisons is asymptotic to :2n log n (Sedgewick [30]). Thel'efore.

\Veyl sequences are not appropriate for generating test data for sortinp; algo­

rithms. \Vith a llniform [O. 1] 8. the expected nunlber of comparisons grows

as n log n log log n. In facto we have the following.

-15
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Proposition 10.1 Let f) be unifo'lm [0, 1]. For any con.stant C. w'ith prob­

ab'ility one. the nurnber of cornparisons for qu'icks01t-ing the fir..,t n nlJ.rnbers

of a random Weyl sequence exceeds

C 11 log n log log n log log log 11

infin'itely often.

Proof.

Consider only Tl = C/k for Salue k. ~ote that the sunl of tht, depths of the nodes

in the \Veyl tree is at lea~t f/k-l (the Humber of lcaves) times ((lk + 1)uk/2

(as each leaf is the l'nd of a path of (lk ail-Ieft or ail-right ('dges and these

paths art' thus disjoint). Bllt (lk(/k-l = C/k - C/k-'1 ~ f/k/2 = n.1'!.. because

2ljk-'1 ~ (/4:-'1 + C/k-l :::; fJk' Tlwrefore. the nUlllber of cOlllparisons in quicksort

is at ll'ast
n(CLk+ 1)

-l

But by the Borel-Bernstein Theorenl.

(lk ~ -lC'''',k log k log log k

infinitel:v orten alrllost surely. while by lenlma 9.1. k ....... (1 /~. ) l()~ Tl allllOst

surely. Conlbining aU this gives the result.

Il The number of leaves.

For a random binary search tree. the expected number of leaves is a.sYlllptotic

to n/3 (see ~Iahmolld [24]). However. for \-Veyl trees. the behavior of the

-16
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number of leaves is nluch Ulore erratic. \-Ve refer to Lenuna 3.3. and note

that at time qk - L. the nUIuber of leaves is exactly qk-l:

Thus, at that instant in the tree construction (the last Ilode to cornplete a

layer). the proportion of lcaves is

(J;.;- i fjJ.;- i
--~--

CJk - 1 (lA:

.Just to show how this inten!sting reiatiollship pxplains the ('rratic hehavior

of typical \Veyl trees. consider the recurrence Clk = llklfk-l + l/k-o!.. and observe

that
lJk-l 1--<- .

'lA: - Clk

The behavior of (LA: \Vas discussed in an earlier sectioll. lt suffices ..0 note that

CLk > k log k infinitely often \Vith probability one. so that. \Vith probability

one. the proportion of leaves is infinitely orteIl less than 1/ lo~ Tl. for pxanlple.

12 The fill-up level.

The fill-up level Fu of a sean:h tl'ee is the rnaxinlal Humber of fullievels. For a

random hinary search tree. this is kno\vn to he asyrnptotic to 0.3i11 ... log n

in probability (Devroye [8]). Again. randoin \Veyl trces deviate l'rorn this

substantially. \Vhile we will not study Fn in detail. we would like to note one

inequality:
Fr.

IT ai ~ qF,. ~ n .
i=l

-li
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Indeed. ta get a path in the tree of polarity + - + - + - ... of lellgth k, by

the way layers are painted on. we must have Tt ~ (jk· But qk ~ rr~=Lai. \vhich

proves the inequality.

13 Examples

13.1 Example 1

By lemrna 9.1. we have without further work

Fu ~ (1/"'1 + 0(1)) logn

in prabability when 0 is llnifornl [O. 1]. In faeL then, WP havp for aIl f > 0,

Iirn P {HF,u ~ (1 - f) log:! log ft} = 0 .
r1-tX ri

13.2 Example 2

If (lk == k. then Fn ! ~ n. sa that

~ _ 0 ( log rl )
11 - log log Tl

This n'suIt applies also when (J = tan( 1/2). and f) = l-'. twa exanlples cited

ea.rlier.

-t8
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13.3 Example 3

\Vhen ak = 21.. simple calculations show that

In fact. for uny slowly increusing sequence bn. it is possible ta find a () such

that Fn ~ bn for aU Tl large enaugh.

14 Other characteristics.

Let the left height of a tree bp the ma.ximal nUlllber of Ipl't (ldges seen on

any path frorn a. node ta the root. Let the right lwight he defined sirnilarly.

Clearly. the left height is one less than the number of layers of lert polarity

and this grows as L~~~ fL:!i where k is the solution of n = lJk.~·~iÏng argunu~nts

as in Theorenl 9.1. it is eétsy tn provp that if H; and H,~ an' dU' Ipft and

right heights of 7;1' t hen

H,; G
-----~-

lo~ n log log Tl ;r2

and
HR 6___n__ ~_

log Tl log log n iT:.!

in probability.

The distance l'rorn the root ta the rninimuul is equai to H;. aud is thus aisa

eovered by the result ubove. In random binary search tre(~s. these quantities

are 8(lag n) in probability: the left height grows as e log fl. while the distance

froni the minimum ta the root grows as log n in probability (D~vroye [8a]).

-19



• 15 Conclusion

•

\Vorking on this thesis led nIe to investigate clata structures. algebraic theory

of numbers. cliscrepancy and technical computations involving bounding of

expressions in probability theory.

In addition to the new rpsults. particular attention is given to link to

continued fraetions of irrational Illlulbers. which is not obvions at first sight.

This has suggested to go fllrther and design \Veyl tr(-les starting no\\' froul

given values for partial quotients. For instance. WP l'an fix for (lach step the

nunlber of layers of right and lcft polarity. .-\150. wc realized that there are

[Hany structures in the continued fractions pxpansion of Ulllubers and that

the field is \Vide open to research.

The investigations in this thesis are ilnportant and worthwhile as the

new rpsults are based on ideas of Ellis and Steele. Bayd and Steele. Levy.

and Galarnbus. These results \Vere not easy ta tind and to lluderstand.

Finally. this thesis was of prime interest for nle sinel1 it strengthened

nlY theoretical background on data structurps. In addition. aU the nw.terial

cornes in handy for further research.
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