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RESUME

Les propriétés d’cquilibre de polymeres grellés par une extrémité i une interface
impénétrable (la “brosse polymérique™) sont étudiées. Les concepts et les techniques
de physique statistique des polymeres pertinents i ce probleme sont diseutés. Lin par-
ticulier, une technique de simulation tres efficace pour étudier les brosses polymériques
est introduite. Cette technique est illustrée par des sitmulations de systemes de brosses
polymériques bien caractérisés. Les résultats des études originales de separation de
phase dauns les systémes de brosses polymériques sont aussi présentés. Une instabilité
dans la densité latérale des monomeres est trouvée dans les conditions de solvant sulli-
samment mauvais. La valeur du seuil d'instabilité est en arvord avec une prédiction
précédente. Une instabilité compositionnelle est trouvée dans les densités latérales
d’une brosse de deux composantes avec des conditions d’immiscibilité suflisante entre
celles-ci. Les effets de conditions diverses du solvant sont considérés. Enfin, la valeur
du seuil de Pinstabilité compositionnelle est trouvée avec une technique de champ

moyen autocohérent, et les résultats sont comparés & des simulations.
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ABSTRACT

e

{

‘I'he equilibrivm properties of polymers end-grafted to an impenetrable interface, the
“polymer brush”, are investigated. Relevant coi..epts and techniques of statistical
polymer physics are discussed; in particular, a stmulation technique that is very ef-
ficient for studying polymer brushes is introduced. This technique is demonstrated
through simulations of a well characterized polymer brush system. The results of
original investigations of phase separation in polymer brushes are also presented. An
instability in the lateral monomer density of a polymer brush is observed under sul-
liciently poor solvent conditions. The onset of this instability is found to agree with
a previous prediction. A compositional instability is found in the lateral densities of
a two-component polymer brush under conditions of sufficient immiscibility between
the two components. The ellects of varying solvent conditions are considered. Finally,
the onset of the compositional instability is determined using the technique of the self

consistent imean field, and the results compared to simulation.



— —
——

ACKNOWLEDGMENTS

S ——
P —————

i
I

I would foremost like to thank Martin Zuckermann and Hong Guo for supervision and
guidance during my studies, and lor collaboration during my research. 1 would also
like to thank Anna Balazs and Ron Dickman {or their generous help, with discussions,
notes, and computer code in our impressionable, formative days at the beginning. |
would like to acknowledge the financial support of the Natural Sciences and Engi-
neering Research Council and the Fonds pour la Fortaation de Chercheurs et I'Aide
a la Recherche.

As | look back to remember the people | want to thank on a more personal level,
[ realize how difficult it is, for I see a crowd of people, friends and acquaintances
past and present, and they’re doing many things. They’re sittinng in chairs, standing
by blackboards, listening to me and explaining things I never understood. Some are
drinking beer, playing guitar, flirting with occasional success and generally reminding
me to have a life. Others confide in me, cook for me, invite me to their parties, take
their coffees with me. They're sometimes challenging and annoying, but there when
I need them. Some believed in me, others put up with me, and some still wait lor
me. These are the people who have done more for me than 1 could ever acknowledge,
And there are others who have helped more than 1 realize. And there are some, some
whom [ owe the most, who can no longer or will never read these words.

I apologize for not mentioning you all by name; trying do so only scems to diminish
all the good I remember. Bul thank you, every one, for your help.



“IU’s like the information superhighway, without the information”

- David Letterman



1

INTRODUCTION

1.1 po’kj-mer n.

replidation DNA

.

mRNA

transcription

trunslation

Protein

Figure 1.1: The central dogma of molecular genetics.

“Modern biochemical research on gene structure and function has bhrought to biology
an intellectual revolution comparable to that evoked over a hundred years ago by
Darwin’s theory on the crigin of species” [48]. This revolution is the development
of the central dogma of molecular genetics, illustrated above in fig. (1.1), em-
bodying the principle of genetic continuity through which life and evolution progress.
It describes the transcription of the hereditary information of DNA into RNA, a
messenger molecule that copies the genetic code of a specific fragment of DNA for
translation into proteins, the building blocks and catalysts responsible for buildihg
and maintaining the cell, ultimately providing the infrastructure for the replication

of DNA. While it is difficult to overemphasize the significance of this process and the

1



l: INTRODUCTION 9

miracle of biology that attends it, this thesis is not about biochemistry, nor about

. genetics, nor the evolution of species. Rather, it is about polymers. Whatever else it
may be, the central dogma of molecular genetics is fundamentally a statement about
polymers. Each element, every molecule of DNA and RNA, each protein, structural
or catalytic, is a polymer, and molecular genetics is the relationship between them,
Life, it would appear, is a creation of polymers, a process of polymers reinventing
themselves and producing life along the way.

A polymer ! is a molecule composed of repeating structural units, known gener-
ically as monomers. The word polymer itself derives from the Greek roots polus,
meaning “many”, and meros, denoting parts, or segments [74]. For example, all the
DNA, or deoxyribonucleic acid, in an organism is formed from only four basic struc-
tural units, the nucleotides, which are the monomers of DNA. Messenger ribonucleic
acid, or mRNA, is very similar to DNA, composed also of four nuclectides which vary
only slightly from those that constitute DNA. In fact, the mRNA molecule is designed
to mirror the information contained in a linear sequence of nucleotides in a section
of DNA. A sequence of three nucleotides in the mRNA code uniquely for an amino
acid, of which there are twenty. The amino acids are the monomers of the proteins.

Another, more operational definition asserts that a polymer is formed when the
conditions for adding the (n 4 1)st monomer become independent of n %, In other
words, there need not be specialized reactions to add subsequent monomers; pro-
vided that certain conditions are maintained, an arbitrary number of monomers can
be added. In consequence, the degree of polymerization, the number of monomers
comprising the polymer, can be very large. Consider that in one human cell, there
are forty six chromosomes, each composed of one continuous, double stranded length
of DNA. The contour length of all this DNA is approximately two metres [48]. This
yields a contour length for a single molecule of human DNA on the order of centime-
tres. That is, each molecule of DNA is of macroscopic size. In fact, a molecule of
DNA has a degree of polymerization on the order of 10%, and is the largest known

macromolecule [32] 3.

! Compound whose molecule is formed {from many repeated units of one or more compounds [3].

See the introduction of reference [22].

3The buse sequence of the human genome has been estimated to require 820,000 pages of fine print,
. where a base is represented by one letter [48]. This means a single molecule of DNA would require
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Polymers can also possess extraordinary physical properties, which has driven an
extraordinary interest in the development of synthetic polymers. A simple exam-

ple of a synthetic polymer is polyethylene, illustrated in fig. (1.2). Polyethylence

H _HT H
H H 1]
C=2¢C —_— C C C e
/7 AN | |
H H
H H H
- -n

Figure 1.2: The synthetic polymer polyethylene is shown on the right, with the constitueut monomer
cthylene shown on the left. Polycthylene can have a high degree of polymerization, with u, the
number of repeat units, on the order of 10°.

is the material used, for example, in plastic bags and some plastic squeeze bottles.
When one or more of the hydrogen side groups in the ethylene monomer are substi-
tuted, polymers with diflerent, useful physical propetties result. If all hydrogens are
replaced by flourines, the resulting polymer, poly(tetrallourocthylene) or “Teflon™,
is a well known non-stick coating useful for frying pans and mechanical bearings.
With similar substitutions one can produce polyvinyl chloride (pipes, raincoats, ...},
polystyrene (packing chips, ...), poly(methyl methacrylate) (“Plexiglas”), among
many others [73, 60]. Because of the low density and high strength of some polymers,

they have become some of the most advanced synthetic materials, Polymers such

Figure 1.3: Poly(paraphenylene benzobisoxazole). This polymer is highly oriented since the only
easy rotation is about the axis. A close variant is Kevlar, poly(paraphenylene terephthalamide).

as poly(paraphenylene benzobisoxazole) (fig. (1.3)) and related materials are highly
oriented, closely packed, and consequently form materials with outstanding tensile

strengths, despite being very light [53]. Still, it is Interesting to compare these most

close to ten thousand pages filled with print much smaller than in this footnote.
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advanced synthetic materials to material produced quietly in our back yards by crea-
. tures often beneath our notice. “Spiders, alded by several million years of evolution,
have succeeded in producing a polymer fiber [major ampullate silk (MAS)] with a
strength-to-weight ratio exceeding that of nearly all synthetic materials. Even the
exceptions - specialty fibers such as carbon, silica, and some variants of Kevlar - pale
in comparison when toughness (energy required to bring about failure) is taken into
account” [72). A single strand of silk can be kilometres in length, giving silk cloth the
characteristic smoothness when woven that makes it much valued as a fabric. It is
nalurally biodegradable, and can be produced under normal conditions in an aqueous
“environment,

The final example of this introduction is a technology developed five millennia ago
in Ancient China and Egypt, where it was discovered that the use of gum arabic !
allows carbon black to mix uniformly in water [59]. This mixture was the earliest form
of ink and was used to write on papyrus, revolutionizing the recording of information.
This is an example of colloidal stabilization, with the gum arabic stabilizing the
dispersion of the carbon particles in solution. A common mechanism of colloidal sta-

bilization is illustrated in fig. (1.4), showing polymers attached through one end onto

S

Figure 1.4: The polymer brush.

the surface of a particle. Provided the monomers are able to mix in the surround-
ings in which they are immersed, the polymers will stretch away from the relatively
high monomer concentrations at the interface, forming a polymer brush. Since the
interpenetration ol brushes is entropically unfavourable, brush-carrying particles can
be kept sufficiently far removed to avoid coagulation 2. The polymer brush will be

the primary focus of this thesis.

A substance obtained from the acacia tree.
A useful example of a failure of stabilization is in milk, where enzymatic removal of natural occurring
. polymer brushes results in the coagulation of milk proteins, producing cheese.
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Polymers, then, come in many forms and serve many functions. Nature has de-
veloped extremely sophisticated materials with polymers to solve very demanding
materials problems, as polymer scientists are learning to do. A deeper understanding
of polymers, their structure and interactions, will lead not only to the creation of new
and important materials, but to a better understanding of processes in all living sys-
tems. Polymers appear in the simplest forms of life, catalyze the most sophisticated
reactions, provide much of the structure of the world around us. And from these

polymers arise automobile sidepanels, bulletproof vests, human beings.

1.2 Polymer physics and universal descriptions

Statistical physics has been described in an insightful way as the “gestalt of physics” [42].
In other words, this part of physics admits that the whole is sometimes greater than
the sum of its parts, that studies the properties emerging from the interactions of
things with as much interest as the things themselves. A model, along with the sta-
tistical theory that elucidates its properties, can explain properties in diverse systems.
It can be of as much interest as a particular material in which it is made manilest.
With this in mind, consider the troubling question of the role of statistical physics
in polymer science, The study of polymers at first seems inextricably tied to ques-
tions of chemistry; i.e., what are the monomers and how are they connected. Indeed,
polymers are named by specifying the chemical monomer and adding the prefix poly,
as in polyethylene or polystyrene, giving the impression that this describes the rel-
evant aspects of the polymer. However, a polymer has properties that could not be
easily predicted from examining one of its monomers. To take one example, the de-
termination of the three dimensional structure of a protein given its lincar sequence,
or primary structure, remains an outstanding challenge {15] !, ecven though the
protein’s tertiary structure is known to be indispensable to its function. Polymer
physics, in contrast, searches for general descriptions to study those properties that
are hopefully common to many polymers. “Here we try to omit the details of the

chain structure as much as possible and to extract simple, universal features which

I Furthermore, there are many indications that it is necessary to understand the dynamics of proleins
in order to understand their function [27].
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will remain true for a large class of polymer chains '". For example, a polymer could
be considered a long, thin, flexible object that doesn’t intersect itsell. Another exam-
ple is a long, thin, flexible object that does intersect itself. Whether or not the object
intersects itself has a significant effect on its large scale structure. That is, we seek
to describe the properties that arise from the interactions between many monomers.
We believe such descriptions are universal, applying to a class of polymers and not
simply to one in particular. Thus, a polymer is more than so many of its constituent

monomers - it is a “gestalt of monomers”.

1.3 About this thesis

This thesis consists of both an introduction to relevant aspects of polymer physics
as well as results of original research conducted in the course of this degree. It
divides naturally into two parts: the next two chapters comprise an overview of
general aspects of polymer theory important for topics to be explored later, while the
chapters following concentrate on the subject of the present work, the polymer brush,
and describe the results of our investigations of these systems.

The important pedagogical task of describing a polymer with the language and
concepts of statistical mechanics will be the focus of chapter 2. It will be argued that
essential aspects of polymers are captured by a self-avoiding random walk model,
which is a conceptually simple and well defined. Unfortunately, its configurational
properties cannot be described analytically, and for this reason, it will be useful
to analyze the self-avoiding walk as a purely random walk, whose configurational
statistics are known, with short range interactions between all segments of the walk
to model the self-avoidance. In the absence of these short range interactions, the
random walk polymer is described energetically as a connected linear sequence of
ideal springs. In this manner, the polymer can be described with a Hamiltonian,
known in the polymer literature as the Edwards Hamiltonian.

Given a Hamiltonian appropriate for systems of polymers, one can access the
techniques of equilibrium statistical mechahics to determine the systems’ equilibrium

properties. In chapter 3, the statistical methods used in this thesis will be described

1Sce reference [17), pg. 25
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within the framework of the Edwards Hamiltonian. Monte Carlo and Langevin sim-
ulation will be discussed in general, as well as the particulars of implementation with
systems of polymers. Mean field theory will be introduced, in which the potential of
interaction between polymer segments is replaced by a self consistently determinesl
average field which is proportional to the average monomer density. Finally, correc-
tions to the mean field theory will be examined assuming that the fluctuations {rom
the mean field solution are Gaussian,

For the remainder of the thesis, discussion will specialize to polymer brushes.
The polymer brush will be re-introduced in chapter 4, along with important results
and representative papers selected from the literature. The method ol simulation
with an Edwards Hamiltonian will be applied to the brush in its canonical form;
i.e.,, a homogeneous brush grafted to a plane interface in good solvent. This will
serve both to demonstrate the method and to illustrate many features typical of the
brush. The next two chapters will report the results of original investigations of phase
separation 12 polymer brushes. If the solvent in which the brush is immersed is made
sufficiently poor; the monomers will phase separate [rom the solvent, Similarly, not all
brushes are homogeneous in composition, leading to the possibility that immiscibility
between polymers of different kinds will drive a phase separation where incompatible
polymers phase separate, The polymeric connections of the monomers, the presence
of a surface, the solvent quality, and the grafting constraint all combine to modifly
phase separation in both cases. The polymer brush in poor solvent will be examined in
in chapter 5, where a predicted density instability will be confirmed with the results
of an extensive simulation. The onset of this instability will be seen to compare
favourably to predictions from a linear stability analysis. A particularly simple form
of heterogeneity, the two component or “binary brush”, will be considered in chapter
6. Simulations of a compositional instability, the demixing ol the two components,
will be combined with a numerical mean field analysis to examine the effects of solvent

quality and immisciBility.
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THE SPHERICAL POLYMER

in the introduction, a polymer was defined as a connected sequence of monomers,
although the precise naturc of the monomer was not specified. However, under rea-
sonable conditions, it is possible to have a generic understanding of polymers, to
elucidate properties that are independent of the precise chemical composition of the
polymer; i.e., there is a level of description in which the exact meaning of “monomer”
is irrelevant. A monomer is therefore understood to be structureless, without internal
features, unlike the chemical monomer from which a real polymer is made. Perhaps
the structureless monomer is coarse-grained, a representation of many neighbouring
cliemical monomers. It could be endowed with particular properties (size, charge, hy-
drophobicity, etc.) as a whole, which could be regarded as an average over the coarse
grained sequence. Presumably, two polymers that at some degree of coarse graining
can be described by the same structureless model should have the same large scale
properties. The term “polymer”, therefore, will from now on refer to this statistical
polymer comprised of structureless monomers, unless otherwise clear in context.

In this chapter, a well defined model of a polymer will be developed and adopted
for the balance of the thesis. A natural point of departure is the description of a
polymer as a random walk, where a bond of the polymer is represented by a step
of the walk. By introducing a particular form of random walk, the Gaussian chain,
the random walk can be described by a Hamiltonian which determines the average
squared bond length. It will afterwards be seen that under typical conditions, the
random walk model is not adequate since self-avoiding interactions between monomers
lar apai‘t along the sequence have a considerable effect on polymer statistics. This
“excluded volume” effect will be accounted for by introducing n-body interactions

between monomers of the Gaussian chain. In this way, the self avoiding walk can be
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described by a Hamiltonian, the Edwards Hamiltonian, which combines the Gaussian
chain and monomer interaction potentials. A polymer will be henceforth couceived

of as a self avoiding walk described by an Edwards Hamiltonian.

2.1 Random walk polymers

I» the random walk model, a linear polymer ! composed of  identical monomers
joined by bonds of length b is considered to be a random walk of N steps, cach with
step length 4. This is illustrated in fig. (2.1) as a walk of N steps on a lattice of lattice

constant b, A random walk polymer is thus specified by two parameters: the step size,

Figure 2.1: A polymer as represented by a random walk on a lattice of latlice constant §.

b, and the degree of polymerization, N. This model determines the manner in
which monomers are connected, or the connectivity, in a simple and useful manner.

With the lattice random walk model, it is straightforward to calculate the possible
number of configurations, or unique random walks. The number of configurations
of a polymer with N monomers is ' = zV, where z is the coordination number of
the lattice. Thus, the number of configurations quickly grows as N increases, and is
large even for moderate values of N. Most descriptions of the polymer will therelore
be statistical; i.e., the result of an average over the ensemble of configurations of the
polymer. For example, one important description is some measure of the size of the

polymer 2, which could be, for example, the absolute value of the displacement vector

1This thesis will deal exclusively with linear polymers in three dimensions. Of course, there are many
other interesting polymer architectures, from linear polymers with a few side branches, to polymers
attached to themselves in a two dimensional network (38, 61].

2All measures of size of a random walk must be simple multiples of each other; thus, any one will
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hetween the two ends of the polymer, the end vector R, averaged over all possible
configurations.
A more general configuration of a random walk, not restricted to lie on a regular

lattice, is shown in fig. (2.2). The configuration is specified by the set of monomer

N

Figure 2.2: A configuration of a random walk polymer, not restricted to a lattice,

coordinates
{RN}E {R11R21"'1RN}7 (2.1)

where R, is the coordinate of nth monomer. A configuration can also be specified by

the set of bond vectors {7,} !, where
T = Rn+l - R-n- (22)

With these definitions, it is straightforward to calculate the “size” of a polymer; for
example, some average of the end vector R. If there is no preferred direction in
space, symmetry demands that the average value of R must vanish; therefore, the
first non-zero moment is (R - R). Since R can be expressed as the vector sum of all

bond vectors, R = ):f;ll Tny

(R-R) = <(~§ T‘) ' (TZ: Tj) >

suffice as a characteristic length scale beyond the monomeric length. This will be shown from
dimensional analysis.
!"To completely specify the configuration, one monomer coordinate must be given in addition to {r4},
although it is usually sufficient to know only the relative monomer positions.
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N=1
= .Z__:l (Ti+ ;)
= §(Te i)+ (T T
=D (Ti-T) (2.3)

where 3;u; (7i - ;) is zero since the steps are uncorrelated. If (7, - 7,) = b* inde-

pendent of n, then the size of the polymer

1
2
’

R = (Nb?) (2.4)

where the scalar & = (|R|2)” 2, the root mean squared (rms) value of the end vector
R. This illustrates an important exponent, £ ~ N*, which specifies how the size of
the polymer scales with the degree of polymerization. For the random walk, v = %
Moreover, the bond length b only appears in this calculation througl its identification
with ({Tn -1',.))1’ 2 suggesting that the important random walk parameter is the
bond variance, b°.

Some important definitions arising from the introduction of the random walk model

are summarized in table 2.1,

symbol
N degree of polymerization
b? bond variance
Th bond vector
IR end vector
R rms value of the end vector
R, position of nth monomer
{R.} | set of monumer coordinates

Table 2.1: Parameters and definitions from the random walk model of a polymer.
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2.1.1 Dimensional analysis of the random walk

In this section, dimensional analysis will be v-ed to establish important scaling
properties of a random walk !.

Suppose a chain of N monomers is transformed by grouping together A monomers,
resulting in a chain with N’ = N/) monomers. In particular, the bonds of the

transformed chain connect every Ath monomer, as illusirated in fig. {2.3). The mean

Figute 2.3: A random walk configuration, and its “renormalized” counterpart, after grouping to-
gether monomers in groups of A =2, °

squared bond length of the transformed chain is the mean squared value of the end
vector for the groups of A monomers. If 1 < A << N, then each group is individually

a random walk; therefore,
N = NfA
b = A2, (2.5)
Eqn. (2.5) summarizes an important transformation property of a random walk. It
describes the rescaling of the basic unit of the polymer chain, the coarse-graining of
the monomers.
The coarse-graining process should not affect “macroscopic” properties of the ran-

dom walk, such as the size. This can be explicitly verified for the mean squared value

of the end vector, R% From eqn. (2.4),
(R)* = N'(¥)°
= (N/2) (A?)
= NV,

"This discussion follows reference [22), pg 32.




2: THE SPHERICAL POLYMER 13

which is the size of the original chain. Therefore, coarse graining a random walk
results in another random walk that retains the same macroscopic property.

To this point, the rms value of the end vector has been used to characterize the
size of a random walk polymer. This choice is somewhat arbitrary, as many other
lengths could have been chosen; for example, the radius of gyration. Nonctheless,
dimensional analysis shows that any definition of size can differ from another only by
a simple factor, and will have the same dependence on N and b.

Recall that there are only two parameters in the random walk model, the step size
b, and the number of steps N. Furthermore, the average size of a polymer, regardless
of its definition, must have dimensions of length. Thus, the size of the polymer must

be expressed as

R(N,b) = F(N)b (2.6)

where I is a dimensionless function of its arguments. ' has no dependence on b
because there is no dimensionless combination of parameters involving b. However,
we expect the size of a random walk polymer to be invariant under transformation

eqn. (2.5); thus,
F(N)b = F(NJA)bAE (2.7)

must be independent of A. Assuming that F (z) ~ 2°,
F(N/A)BAT ~ (NJA)® bAT, (2.8)

This is independent of A if @ = 1/2, and so the size R satisfics

L
2

R(N,b) ~ (Nb?) (2.9)

Thus, any scalar quantity with the dimensions of length and which is invariant
under coarse graining is simply a multiple of R. In this sense, there is only one
characteristic macroscopic lengthscale, and one can limil discussion to 1 without

losing generality.

2.1.2 Finite correlations along the chain

Until now, zero correlation between bond vectors has been assumed, although gen-

erally, one would expect a large degree of correlation amongst monomers close in
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sequence. For example, in vie simple polymer polyethylene, there are fixed bond
angles hetween neighbouring monomers, resulting in large correlations amongst near
neighbours on the polymer. Similarly, there are many models with this property
in the hiterature: fixed bond angle models, models with specific bond angle poten-
tials, semi-rigid polymer models, amongst others. All these models are characterized
by finite correlations along the contour of the chain, and as a result, are not truly
random.

Nonetheless, the results dertved for a random walk still apply to models with a
finite correlation length as long as there is the lreedom to coarse grain the polymer
into sections much larger than this correlation length !. These resulting coarse grained
units will be uncorrelated by construction, and according to the basic transformation
property of a random walk, eqn. (2.5), this equivalent polymer is an uncorrelated
random walk with a renormalized bond length. As a consequence, molecular details
that determine the persistence of correlations, though certainly important to physical
properiies, can be viewed as important only at length scales on the order of the
correlation length. The calculation of the correlation length may in general be very
difficult, and may depend sensitively on the microscopic specifics of the model being
considered. However, if only long wavelength properties are of interest, the eflect of
molecular details is only to determine the bond length, which can be considered a

phenomenological parameter to be determined by comparison to experiment.

2.1.3 The Gaussian chain

The random walk has thus far been parameterized by the degree of polymerization,
N, and the bond variance, b2, As the exact nature of the bond only affects the random
walk through rescaling the bond variance, we are [ree to choose a random walk model
for its analytical convenience.

In the Gaussian chain model, the probability for a bond to take a particular
length is assumed to satisfy a Gaussian distribution. Typically, each individual bond

distribution is assumed to have the same variance, ¢2. In three dimensions,

2 2
P(r)= (2-3'-5) exp (—322'1 ) : (2.10)

'This correlation length is also known as the persistence length [32].
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The probability of a configuration, {=;}, is therefore

N-1

P{r.}= 1:[1 P(ri)

3 N

F] 3 )
- (2”2) exp (‘FZIT-'I’). (2.11)

The assumption of a random walk is present in eqn. (2.11) in the independence of the

individual bond distributions. Equ. (2.11) can be written

P{r.} ~exp (—-—IT,H(; {‘r.-}) , (2.12)

ky'l

where
3kgT n
HG {1",‘} = -%2— T
kT X .
= q:z S (Ri = Rioy)t. (2.13)
= =2

Thus, the Gaussian probability is analogous to a Boltzmann factor, where the *Hamil-
tontan” of the Gaussian chain is given by eqn. (2.13). For the remainder of the thesis,
kT will be set to one. The Gaussian chain reproduces our previous fixed bond length
model if 62 = . The Gaussian chain is not identical Lo the previous model, butl
equivalent in that it has the same number of monomers N, the same mean squared
bond length, and preserves the same size f2 of the previous model.

An alternate description of the Gaussian chain specifies Lthe position along the chain
by a continuous index n, rather than discrete indices labelling discrete monomers.
This is the continuous chain, where the polymer is considered to be a continuous
curve. In this description, the contour length is specified along with the chain’s
“flexibility”, which is related to . This limit is sometimes called the functional
integral limit, so-called because in this limit, the polymer partition function is a
functijonal integral.

The continuous chain limit is illustrated in fig. (2.4). It is achieved by increasing
the number of monomers in the discrete case arbitrarily, decreasing the bond length
to zero in such a way that the average size of the polymer is preserved. In the discrete

case, the position of the nth monomer is given by R,,, where n is a discrete index. In
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Figure 2.4: Continuous chain limit of the discrete chain.

the functional integral limit, n becomes a continuous variable, and the set of discrete
monomer positions {R,} becomes a function of n, R(n). If the contour length of the
curve is L, the ratio 22/ L is some parameter, b, which is a measure of the flexibility
of the chain !, Furthermore, any portion of this chain is assumed to be characterized
by the same value b. Thus, if  is the distance along the contour of the curve, then
for any portion of curve Ar, g?/Ar = b, where o? is the mean squared separation of

the ends of the portion. I Ar is the end vector for this portion of chain,

P(Ar) ~ exp [—— Ar)]

= exp ——2]’2—7_ (R(r)-R(r - A'r))g]

won[- 7 (R2=ir=0)

where R (7) is the spatial coordinate of the point along the chain a distance  along

the contour from a chosen end. The Gaussian chain Hamiltonian thus becomes

He = %ZAT (R(T) -l?blr('r—m))2
2bf (aR(T)) | -

where the integral holds in the limit A7 — 0. Finally, eqn. (2.14) can be written in

1This quantity is usually called the Kuhn length, or the statistical segment length, and is related
to the persistence length (see section 2.1.2),
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terms of the dimensionless index n by setting r = nb, in which case

3 (N, (0R@)\?
Ho = o3 fo dn (_aia_) . (2.15)

The Gaussian chain Hamiltonians for the discrete and continuous random walk models

of a polymer are shown here in summary:

3
Ha {Ri} = 55 >~ (Ri = Riy)

He [R (n)] = 2% / Y in (BR("))z. (2.16)

n

Some definitions relating the discrete case and its funciional limit counterpart are

summarized in table 2.2,

discrete continuous

{R,} R(n) polymer configuration

F{R.} SR (n)] configuration functional
d{R,} D[R (n)] | functional measurc

N JNdn integral along polymer contour
R, - R,_; | 9R(n) /On | derivative along contour

Table 2.2: Continuous limit equivalents to the discrete chain.

The Gaussian chain is often called the ideal chain, reflecting the analytical facility
of this model. Unfortunately, the random walk description is very limited in its ability

to describe polymer properties. What has yet to be discussed is the vital contribution

of “non-local interactions”.

2.2 Non-local interactions

Two monomers that are far apart along the contour of the polymer may still be
close enough in space to interact directly. This type of interaction is often called a
long-range interaction in the polymer literature, illustrated in fig. (2.5). In this

context, “long range” refers to the separation of monomers in sequence; however,
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Figure 2.5: An example of a non-local interaction between segments far apart on the sequence of
the polymer.

the interaction itself is typically very short ranged. The unfortunate nature of this
nomenclature has been previously noted [15], and for this reason, the term non-local
will be used in this thesis to refer to this type of interaction, reserving long-ranged
for long-ranged in space. In discussions of random walks, it has been tacitly assumed
that there are no non-local interactions. A walk with finite correlations along the
contour of the polymer can only be renormalized into a random walk if correlations
between monomers disappear as the polymer is coarse-grained. In the presence of
non-local interactions, this is not true, even for a very flexible molecule.

One inescapable non-local interaction, rooted deeply in the language of polymer
physics, is hard-core repulsion, the fact that two monomers may not occupy the
same volume. In fact, non-local interactions are often categorized under the gen-
eral rubric of excluded volume interactions, even though non-local interactions are
rarely plain hard core interactions. The inclusion of non-local interactions has a

dramatic effect on configurational properties.

The great difficulty in the statistical mechanics of polymer chains with
excluded volume is that the position of a link depends on the positions of
all the other links instead of on the position of just the previous one; this

difficulty is reflected by the extensive literature on the subject ... [23]

The excluded volume interaction introduces non-trivial correlations between mono-
mers; the effect of monomer A upon monomer B depends very much on the state of

the.rest of the polymer, on whether or not the configuration brings the two monomers
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close enough to interact. A simple model incorporating excluded volume interactions
is the self-avoiding walk, a random walk that at no point intersects itself. It is
generated on a lattice as a random walk where sites are excluded that were previously
occupied by the walk.

Nonetheless, one can infer broad consequences of an excluded volume interaction,
For example, a dense random walk configuration will more likely violate an excluded
volume constraint (no monomer overlap) than an extended random walk configura-
tion. Thus, extended configurations are favoured in the presence of excluded volume
interactions, and the polymer will be swollen with respect to the ideal polymer. Fur-
thermore, since the probability of excluded volume interactions increases with N,
long polymers are more susceptible than short polymers, Therefore, one would ex-
pect excluded volume effects to change the exponent v, introduced in section 2.1, that
describes how the size of the polymer scales with the degree of polymerization. A
rough estimate of this exponent can be made as follows. The probability distribution
for the size R of a Gaussian chain with N monomers is Gaussian with variance Nb%;
i€,

2
Pg ~ exp (-—%) ) (2.17)

where only the dependence on R and N is made explicit. For a polymer of size R,

the excluded volume energy £ roughly follows
E~ ¢V
N 2
~(m) ®
where ¢ is the monomer density, assumed uniform throughout the volume V ~ R* of

the polymer. Consequently, the probability due to the excluded volume energy is
Pg ~exp(—-FE), (2.18)
giving the total probability of a random walk with excluded volume interaction as

P ~ PgPg

R? N?
~ eXp (*W - ﬁ) .
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The value of R is determined by maximizing P with respect to R, or equivalently,

. minimizing the quantity

R? N?

kR 9

N + ok (2.19)
with respect to R2. This yields

R~ N%, (2.20)

giving the exponent v = 3/5 for the polymer with non-local interactions. As adver-
tised, the exponent is modified from the random walk value of 1/2. Considering the
simplicity of this argument, the value for the exponent turns out to be surprisingly
accurate, Computer simulations [75] with self-avoiding walks give 20 = 1.18, which
is consistent with a renormalization group calculation for the n-vector model [33],
giving v = 0.5880 = 0.0015. Experiments [16] with polymers in solution give the
value v = 0.586 + 0.004. For these reasons, the self-avoiding walk has been called the
minimal model of the polymers in solution . In fact, it is a large part of the truth
Lo say that polymer physics is the physics of self-avoiding walks.

Since any two monomers must minimally interact via a hard core interaction, it
may seem that the concept of an ideal polymer is unrealizable, and therefore of limited
value. In actual fact, the Gaussian chain remains central to developing polymer
models for a number of reasons. In some instances, circumstances conspire to produce
a polymer that is indeed close to being ideal, For example, if polymers are immersed
in solvent, under certain conditions the interaction between solvent and polymer can
mitigate the excluded volume effect. Under this condition, called the © condition,
the polymer is well described as a random walk 2. Another situation where the
excluded volume effect is screened is, counter-intuitively, under conditions of high
polymer concentration, such as in a polymer melt 3.

There is another more subtle, and arguably more important reason to understand
the Gaussian chain. That is, in many polymer models, including ones to be introduced
shortly, there is a rarely stressed, implicit assumption that there is a valid description

of the polymer configuration in terms of a random walk, independent of the excluded

'A minimal model is one that “most economically caricatures the essential physics” [20] of a class of
related phenomena,

2See, for example, the results of reference [76].

3See reference [17), chapter 2.
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volume effect. An example of this is seen in the scaling argument immediately pre-
ceding, where there were assumed to be two independent probabilities contributing to
the total probability, one from a probability of a certain random walk (of size /2), and
one due to excluded volume effects !. For these reasons, the Gaussian chain remains

an important concept and a major influence on the language of polymer physics.

2.2.1 Computer methods

The excluded volume problem outlined in the previous section can be understood as
a problem of characterizing polymer configurations; i.e., finding the average ol some
measurable quantity over only those configurations that do not violale the excluded
volume condition. Not surprisingly, computers are powerful tools in answering such
question, especially since a self avoiding walk is naturally represented on a lattice,
which is easily represented in the computer milieu.

For small polymers, it is possible to generate every random walk configuration
and explicitly check for self avoiding configurations. This technique, known as exact
enumeration, was one of the early computer methods, and is still used currently
due to recent interest in random copolymers as models ol biopolymers [14, 37]). The
problem with this method is that the number of configurations grows as I' = 2V,
where z is the coordination number of the lattice. Exact enumeration is [easible only
for very short polymers.

Since exact enumeration is impractical for most polymer problems, another pos-
sible approach is to sample randomly the configuration space of self avoiding walks.
A brute force method for generating self avoiding configurations is to grow random
walks on a lattice and eliminate any walk that violates the excluded volume condition.
This has the advantage of being straightforward, and of generating uncorrelated self
avoiding configurations. Unfortunately, it has become accepted, largely through com-
puter work of the type described so far, that the ratio of the number of selfl avoiding
configurations to random walk configurations decreases exponentially with N [75]. In

other words, the acceptance ratio, the number of configurations accepted per num-

IThis assumption is the basis of two parameter theory, which assumes, not surprisingly, two
independent parameters: one that describes that random walk configuration, and one that describes
non-lacal interactions,
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ber of configurations generated, quickly falls to zero, making this a very inefficient
scheme for large N. This problem can be mitigated to some extent by decorations to
the basic algorithms, but the underlying problem remains.

A significant improvement is realized by introducing local moves to update poly-
mer configurations. With this method, a new configuration is generated through a
small change from the previous one. This small change is called a local move if it
changes the polymer only locally, perhaps moving one or a small number of connected
monomers. The great advantage of this method is that small changes from a valid
self-avoiding configuration are very likely to generate another valid configuration, im-
proving the acceptance ratio enormously. The drawback of this method is that the
new configuration generated is highly correlated with the previous one. However,
two confligurations will be uncorrelated from one another when encugh configurations
have been generated in between. This method of sampling configurations is the one
of choice for long polymers, and is almost always implemented with the Monte Carlo
method. In fact, a variant of this method will be introduced later in this thesis.

Another approach to generating polymer configurations is molecular dynamics,
where the equations of motion for a model polymer are solved numerically, generating
a dynamic evolution for the polymer. Molecular dynamics and local move Monte

Carlo simulation are the dominant simulation schemes in use currently.

2.2.2 Expansion in density

In order to develop analytical theories, it is convenient to have an expression for the
energy due to excluded volume interactions, Hj.

In principle, H; is a function of configuration of the polymer,

H = Hi {R.}, (2.21)

where {R.,} is the set of all monomer coordinates. If the potential does not distinguish
between monomers, it is natural to frame H; in terms of the local monomer concen-
tration. This transformation between a configuration and density is made formally

explicit with the definition of the microscopic density

$r)=6(c-R.), (2.22)
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where the sum over n is a sum over all monomers, and for all polymers in a many

. polymer system. Hence, H; can be written as a {unctional of the density

Hy = f dr U ($(r)). (2.23)

If there are no long-range interactions and the monomer density is everywhere small,

{/ can be expanded in powers of the local monomer concentration,

Hy = f dr ; (axg* (1)) . (2.24)

This expansion is typically truncated at the lowest nontrivial order,
w
Hi= 2> [dré*(r). (2.25)
The coefficient of the quadratic term, ws, is called the excluded volume parameter.
At this level of approximation, H; is equivalent to summing over all pairwisec
interactions between monomers !. In order to see this, recall that all interactions

are short ranged. Thus, the pairwise potential between monomers ¢ and j can be

approximated
U (Ri,R;) = wié (R; - Ry), (2.26)

and H; becomes

1

Hr= EZU (R, R;)
iJ
=5 L §(Ri-Ry),
25

where the factor of two is to correct for double counting. The delta function can be

written
§(R; - R;) =/dr5(r-R,~)6(r-R,-). (2.27)
Thus, H; becomes :
ff,:‘—”zizfdra(r_m)a(r-n,-). (2.28)
i

Using the expression for the microscopic density, eqn. (2.22), we see that in fact

the above equation is exaculy eqn. (2.25). With this interpretation, wy parameterizes

11n this context, pairwise monomer interactions are assumed to be mediated by the solvent in which
. the monomers are immersed. This point will be discussed in the next section,
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pairwise interactions amongst monomers. If wy < 0, the interaction lowers the system
energy, corresponding to an attractive interaction. Conversely, we > 0 models an

effective repulsion, giving rise to an excluded volume effect.

2.2.3 Potential of tlhie mean force

It is important to note that the potential of interaction between monomers implicitly
includes the effect of the solvent. That is, it is the potential between monomers
averaged over all possible positions of solvent molecules. Specifically, if {R;} and
{s;} are the sets of all monomer coordinates and solvent coordinates respectively,

then the partition function of the whole system, monomers plus solvent particles, is

Z=73" Y exp(Ho{Ri} + H.s {Ri,55},) (2.29)
{Ri} {s,}

where the interaction potential H,, appears explicitly as a function of the monomer

coordinates as well as the solvent coordinates. If we perform the sum over all the

solvent coordinates, eqn. (2.29) formally becomes

Z =Y exp(Ha {Ri} + Hi {R:},) (2:30)
{Ri}

where the interaction potential now only depends on the monomers positions. It is
sometimes called the potential of the mean force [15], since it is like a potential
averaged over all the non-monomer degrees of freedom. Although it will not be
explicitly stated from now on, monomer interaction potentials are in fact potentials

of the mean [orce.

2.3 The Edwards Hamiltonian

The probability of a configuration is assumed to be a combination of two effects
already discussed: the bond probability modelled by the Gaussian chain, and the
interaction probability that depends on the interaction potential, H;. The Gaussian

chain probability distribution has been derived earlier (eqn. (2.16)};

P~exp( o fd (BR(" ) ) (2.31)
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The probability due to non-local interactions is proportional to e, where an ex-
pression for the interaction energy H; has been given above, in eqn. (2.25). Thus,

the total configuration probability becomes

P[R(n)] ~e'<p( Oizfdn (g%r%l—)-) wzfl ¢ r)) (2.32)

where the concentration ¢(r) is also a functional of the configuration R(n). The

probability can be rewritten exp (—H [R (n)]), where

HIR() = o [dn ("R(")) © [t (). (2.39)

This expression is clearly analogous to a Hamiltonian in a Boltzmann factor. For
this reason, expression eqn. (2.33) will be referred to as an Edwards Hamiltonian,
and is an energetic representation of a polymer chain. The connectivity is described
through a Gaussian energy, Hg, instead of, for example, a fixed bond length ran-
dom walk. Non-local interactions are described energetically, in terms ol a conrse
grained monomer concentration ¢(r), instead of as geometrical constraints, as in a
self-avoiding walk on a lattice. The form of an Edwards Hamiltonian may vary, as
indeed it will in this thesis, but it retains these basic characteristics. The Edwards
Hamiltonian is the central result of this chapter. The polymer partition function, Z,
is defined

Z= [DIR(m) exp(~H R (). (2.34)

This gives a formal expression for the probability of a configuration
PR(n)] = %exp (—H [R(n)]). (2.35)

Although the Edwards Hamiltonian has been written lor one polymer, the gencer-

alization to a system of K polymers of the same type is straightforward;

H{Ru)} = 5 3 [dn (aR“("’) +2 fege) @)
where
é(r) = Zjdn&(r—-Rk (n)). (2.97)
k

The density has been written in terms of the continuous chain, R (n), where the sum

over k is over all different polymers (k= 1,--+, K).
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THE HAMILTONIAN WAY

In the previous chapter, the Edwards Hamiltonian was arrived at as a model of

polymer sysiems,

=2 Zjd (BRIL (n)) %f‘lr¢2 (r}, (3.1)

an expression that completely specifies the equilibrium properties of the polymer
system. The task outstanding is to elicit those properties, a task that will involve a
variety of methods familiar in statistical physics.

The objective of this chapter is to develop these techniques in order to determine
the equilibrium properties of a polymer described by an Edwards Hamiltonian, fo-
cussing on the methods to be applied in this thesis. Monte Carlo simulation will
figure prominently in the original investigations described in chapter 5 and chapter
6; therefore, this method will be introduced in some detail, concentrating on its im-
plementation for polymer systems described by an Edwards Hamiltonian. The linear
dynamic response of these polymer systems will then be described with a stochastic
differential equation known as a Langevin equation. This equation, together with
a lluctuation-dissipation relation, can also be used to determine equilibrium proper-
ties, as illustrated in the next chapter. Mean field methods are very powerful when
applied to polymers in the semi-dilute regime. They describe a Gaussian polymer
in a self-consistent mean field potential, determined using Green function methods.
Corrections to mean field theory will be introduced through the random phase ap-
proximation, described at the end of this chapter. Under this approximation, the
limits of stability of the mean field solution can be found, which will be used in

chapter 6 to determine the onset of a density instability in a heterogeneous brush.

26
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3.1 Monte Carlo simulation

As was argued in section 2.2.1, the number of conligurations of a polymer quickly
increases with N beyond the possibility of rigorously enumerating them all, making
it necessary to sample the configuration space of the polymer in an efficient manner.
The Monte Carlo method is a highly successful sampling technique that has found
wide application in statistical physics [8]. The Monte Carlo method will be introduced

in general terms in the next section, followed by the details of its implementation with

an Edwards Hamiltonian.

3.1.1 A Monte Carlo primer

Suppose a system can exist in one of a discrete number of states, o;. Supposc also
there is some observable, A, which can be expressed as a function of the state. 'I'he

objective of the Monte Carlo method is to estimate the average of A
(4) = 3 A p @), (3.2)

where the states are distributed according to some probability distribution p(e;), and
the sum is over all possible states. Il the number of states is too large to permit direct

evaluation of eqn. (3.2), it can be approximated by a Monte Carlo average over N

samples,

1 N
(Are = N Z A(ai), (3.3)

i=1
where the sequence of configurations {oy,...,on} is distributed according to p(oy).
This technique, whereby states are sampled according to their probability, is known
as importance sampling.

Consider, therefore, the question of how to generate a scquence of states with a
given probability distribution. Let p, (i) be the probability of the state o; after the

nth step of the sequence, and suppose
Pa (1) = 2 wijpn-1 (4), (3.4)
J

where w;; is the conditional probability of transition per step from statle o; to o;.
That is, the probability distribution of states at the nth step depends only on the
probability distribution at the (n—1)st step. Eqn. (3.4) is characteristic of a Markov
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process '. The Markov process is said to be ergodic if transitions between any state
. o; to any other state o; is possible in a finite number of steps.

The distribution p(z) is the stationary distribution of w;; if and only if
p (i) =3 wip (j) (3.5)
1

for all . That is, p() is an eigenvector of w;; with eigenvalue one. It is remarkable fact
that for any ergodic Markov operator, convergence to a unique stationary distribution
is guaranteed in the limit of many steps [42].

A sequence of states can therefore be gencrated with a given probability distri-
bution by appropriately constructing the Markov operator w;; so that the stationary
distribution is the required distribution of states, p(o;). The stationary distribution

must satisly

2 (wisp (7} — wiip (1)) = 0, (3.6)

1

which is equivalent to eqn. (3.5), as 1_; w;; = 1. Eqn. (3.6) will certainly be satisfied
il balance is achieved for every i and j, so that

wyp (5) — wiip (i) = 0, (3.7)
a condition known as detailed balance. Thus, if the Markov operator w;; satisfies

wi; _ ploi) (3.5)

wii  ploy)’

the stationary distribution will be p{a;).
For a system in the canonical ensemble with the Hamiltonian H,
p(ai)
p(o;)
One standard choice for w;; that satisfies eqn. (3.7) is the Metropolis algorithm,

iy = min{l,exp (-5 (H; — H;))} i#j (3.10)

1 - El;é] Wi; i = j.

= exp (—B (H; — H;)). (3.9)

The implementation of the Monte Carlo method with the Metropolis algorithm is

outlined as follows:

'Eqn. (3.4) can be interpreted as a matrix equation; thus, the matrix w; is sometime called a Markov

. operator.
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» Randomly choose a trial configuration. This is usually accomplished by making
a small change from a previous configuration; e.g., flipping onc spin on an Ising

lattice, or moving one monomer on a polymer.

e Calculate the energy diflerence between the trial configuration and the initial

configuration, AH = Hyrjst — Hipitial-
o Il AH < 0, accept the trial configuration and repeat from step one.

— Otherwise, choose a random number r from a uniform distribution so that
0<r<l.

~ If r < exp(—BAH), accept the trial configuration and repeat from step

one.

— Otherwise, reject the trial configuration and repeat from step one.

Monte Carlo averages are then calculated by applying eqn. (3.3) to N configurations

chosen from this sequence.

3.1.2 Monte Carlo with an Edwards Hamiltonian

The Monte Carlo method can be applied to simulate polymer systemns by employing
the Edwards Hamiltonian, eqn. (3.1), in the procedure described in section 3.1.1.

In order to represent the polymer on a computer, it is natural to use the discrete
Gaussian chain model. Recall from section 2.1 that a configuration of the discrete
Gaussian chain can be specified by a set of coordinates {R,}, where n is a discrete
index identifying the monomer, and R, is a vector specifying the position of the nth
monomer. Additional indices may be introduced il there is need to further distinguish
monomers; for example, an index &k could be introduced for a many polymer system
so that Ry, identifies the nth monomer on the kth polymer.

The “energy” contribution of the discrete Gaussian chain was discussed in section
2.1.3. The Hamiltonian was given by eqn. (2.13),

HG=%f:(R,.—R,._|)2. (3.11)
n=2
The discrete Gaussian chain is analogous to mechanical system of N sizeless beads

connected by identical springs, each with spring constant 3/6%. The calculation of
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Hg, the connected energy contribution, is straightforward from eqn. (3.11) given

a configuration {R,}.

lechnical

Care must taken with boundary conditions il periodic boundary conditions
arc used. Monomer separations could be artificially stretched if a monomer is
wrapped to the opposite side of the simulation volume. One solution is to store
a separate set of monomer coordinates to which periodic boundary conditions
do not apply. This does not affect the value of Hg calculated with eqn. (3.11),
since ! he exact location of the monomer in the volume is not needed, only the
relative monomer separations.

The non-local energy contribution, H;, was introduced in section 2.2.2 as an ex-

pansion in terms of the local monomer density, where to the first non-trivial order
_ w2 2
Hy =% j dr 82 (r), (3.12)
where ¢ is given by
b(r) =Y 5(r—Rn). (3.13)

The expression for the microscopic density eqn. (3.13) is inappropriate for simula-
tion, since it contains the delta function. However, one can substitute the analytical

representation

601 =F () exp (~pog (v~ Ra)’). (3.14)

n

That is, the delta function is approximated by a Gaussian with a finite variance o
This expression is equivalent to eqn. {2.22) in the limit of o2 — 0. Using eqn. (3.14)
for the density,

#(6)= (32) T ez (e~ R+ (-~ Ra))}

mmn

- (550 B (- (-3 (- B2}

2
2ma?/ o

Substituting this expression into eqn. (3.12), the interaction energy H; becomes

w

Hy=2 j dr¢? (r)
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2
 fde exp (1 (+- Bt Re) )

_ w3 )“’2 o (- 3 ;
=3 (72 Sewp (- g7 (Ru =R

That is, the interaction energy can be written in the form

Hi =2 3 U(Rn —Ry) (3.15)

mm

in terms of a pair potential U/,

U (R B} = (1) exp (~ 23 (R = R)?), (3.16)

which is a function only of the separation of the pair of monomers.

Thus, to second order in the local density expansion, H; can be expressed as
the sum of all pair interactions between monomers. In the bead-spring model de-
scribed above, this corresponds to a pair interaction between beads. For this discrete
model, this formulation is very convenient, because instead ol evaluating the integral,
eqn. (3.12), over all space, calculating the interaction energy reduces to calculating
all pairwise interactions between beads. Therefore, calculating H; in this manner will

be called the pair interaction method.

lechnical

The fact that the pair potential is only a function of the monomer separa-
tion leads to a great enhancement in program efficiency. Instead of calculating
eqn. (3.16) for all pairs of monomers at each step, the potential U can be calcu-
lated once and tabularized in a lookup table indexed by monomer separation.
Evaluating eqn. (3.16) is time consuming, since it involves calculating an expo-
nential, and would be very costly since it occurs in the innermost loop of the
simulation.

The variance o2 is an arbitrary parameter, and so should not influence meaningful
results. The variance should be small, however, since it models a short range inter-

action. This provides another practical advantage, for if the range of interaction is
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limited, one can introduce a cutoff to the interaction with no significant penalty. The
primary gain in introducing a cutofl is that one can limit the number of pairwise
interactions considered by keeping track of monomers within the certain interaction

radius. Consider a particular monomer, indicated with a cross in fig. (3.1). The circle

O _.f)o

)

9

Figure 3.1: Cutofl radius of pair interaction between monomers. The interaction radius is equal to
the Iatlice constant,

indicates the cutoff radius, beyond which the interaction is effectively zero; therefore,
one needs only to calculate interactions with monomers that fall within the circle.
One practical way of implementing this restricted pairing is also illustrated. The sim-
ulation volume can be divided into cells with a linear dimension equal to the radius
of the interaction range. If a monomer is found within, say, the central cell, then
it can interact with monomers in nearest neighbour or next nearest neighbour cells,
depending on its position within the central cell, but no others. Therefore, a list can
be kept of the monomers residing in each box. When interactions with the indicated
monomer are calculated, only monomers within nearest and next nearest neighbour

cells are considered.

technical

One way of keeping these lists is to create a lattice of these cells, and associate
with each cell an array with enough elements to identify all monomers in the
cell. This is the simplest, most straightforward implementation. However, it
suffers from the drawback of being very memory intensive, since each array
(there could be many for a large simulation volume) must be large enough
to accommodate a possibly large number of monomers in the cell. However,
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since most cells will be empty at a given time, this is extremely wasteful of

. memory; unfortunately, it is difficult to know a priori which cells will be empty.
A better way, though more complicated to program, is to associate a linked
list of monomer identifiers with each cell. Il a monomer is in a particular cell,
the identifier for that monomer is “linked” to the list associated with the cell.
If the monomer changes cells, the identifier is unlinked from the previous list
and linked to the new list. With linked lists, only one identifier is allocated
for each monomer, drastically reducing the memory requirement. A significant
disadvantage is the greater program complexity entailed !,

In situations of high monomer densities, it is often advantageous to use a dil-
ferent method to calculate H;, a coarse grained local density method. With
this method, one explicitly measures the local monomer density, then numerically

calculates the integral, eqn. (3.12), over the simulation volume. That is,

Hy = [dr [ (), (3.17)
where [ is some function of the local concentration. Numerically evaluating the
integral requires the Riemann sum for eqn. (3.17),

Hy =Y o] (d).- (3.18)

ry

In eqn. (3.18), the integration volume is divided into cells, each of volume v, with

centres at the lattice points {r;}. The density at each point r; is calculated from
1
& = ; z Jn,-.r.' (3.19)
i

where R; is the coordinate of the jth monomer, and takes the value of the nearest
of the set of points {r;}. The delta function is replaced by the Kronecker delta. -
Eqn. (3.19} is equivalent to the definition ¢y, = Ny /v, where N, is the number of
monomers in the sample volume at point r;.

Certain considerations will help determine the choice of method to calculate the
non-local energy contribution. The pair interaction model is attractive because the

only approximation is analytical, replacing the delta function with a Gaussian, and

1 Phenomenclogically, it seems that any modest increase in program sophistication leads to a dramatic
. increase in time needed to implement the algorithm.
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therefore seems better controlled. However, it is an order N? algorithm when imple-
mented to study a system described by eqn. (3.1). Moreover, in situations at or below
the © point, the monomer density becomes sufficiently large that the third order term
in the density expansion of the interaction Hamiltonian must be retained. In this case,
three-monomer interactions must be also be calculated, increasing the order of the
algorithm to N3, which is prohibitive except for very small systems or very short
interaction range. Furthermore, the method of calculating n-monomer interactions
requires that the potential be expressible as a power series in the local concentration.
There are potentials of interest that are not of this form. In contrast, calculations
using the coarse grained local density method are fast and efficient, especially in prob-
lems involving relatively high monomer densities. It is not demanding on memory,
since there is no need to distinguish the monomers within the cells; only the numbers
of monomers within the cells are important. Furthermore, any interaction which can
be expressed as a function of the local monomer density can be easily implemented
without a significant increase in computing time or complexity. However, the space
must be coarse-grained to implement this method, and details finer than the coarse
graining are necessarily not accessible.

The Monte Carlo procedure now follows in a sfraightforward fashion. A configu-
ration of a polymer, or number of polymers, is chosen. A Markov chain of polymer
configurations is generated by selecting one monomer at random and moving it a trial,
random distance. The magnitude of this trial distance can be chosen to optimize the
acceptance ratio, another factor which improves the efficiency of this algorithm. The
connected energy difference between the trial configuration and the new configuration
is calculated according to eqn. (3.11), the non-local contribution H; being calculated
with one of the discussed methods. The move is accepted or rejected according to

the Metropolis criterion, discussed in the previous section.

3.1.3 Comparison to previous Monte Carlo algorithms

In the current literature, standard polymer Monte Carlo simulations are lattice mod-
els; that is, random walks are generated on a lattice with self avoidance imposed as a
geometrical constraint. A microscopic Hamiltonian is sometimes incorporated, typi-

cally as a nearest neighbour interaction. In order to generate a trial configuration, a
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small group of connected monomers are moved and tested for self avoidance. This is

sometimes called a local move algorithm.

technical

It can be shown that algorithms of this sort are “non-ergodic”, which in prac-
tical terms means that pathological configurations can be generated according
to valid rules that cannot be escaped from by the same rules. Also, for any N
step self avoiding walk, there exist many others that can never be realized with
local moves. There are algorithms involving “non-local moves”; i.e., moves that
involve the simultaneous motion of monomers distant in sequence and space,
and are consequently non-physical. With the incorporation of some of these
moves, it is possible to construct algorithms that are ergodic [49]. Be that as
it may, non-ergodic lattice models of the type described above remain in use.
Whether or not the pathological configurations constitute a sufficiently large
fraction of the total number of configurations to warrant concern is another
matter, that to my knowledge has not been addressed.

Fig. (3.2) illustrates some typical local lattice moves. A powerful, state of the art

Figure 3.2: Some common lattice local update moves. From left to right: o “crankshaft”, n “twist-
jump”, and a “reptation” move,

algorithm which is common in the current literature is the “bond-fluctuation” algo-
rithm {13}. It is variant of the lattice self avoiding walk algorithm. In this model,
the bonds are not constrained to join monomers at adjacent lattice vertices, allowing
the bond lengths to “fluctuate”. The algorithm is constructed so that the only moves

allowed automatically ensure that the polymer does not intersect itself, although self
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avoidance must be checked for at each move. This algorithm has the virtue of being
easily vectorized, and reaches the asymptotic limit of long chains for smaller N than
previous algorithm, perhaps due to the greater internal freedom of the polymer.
Simulation based on the Edwards Hamiltonian has some distinct advantages over
these methods. Excluded volume interactions are accounted for energetically by cal-
culating, for example, eqn. (3.18), resulting in a much more efficient simulation. Stan-
dard lattice models at high densities are very inefficient because a high percentage of
updates are rejected, simply due to a lack of open sites on the lattice. Since there is
no hard-core sell avoidance in the Edwards approach, the acceptance ratio is much
better. Another advantage is that results can be compared directly to most theories,
since the Edwards simulation is formulated using the same model as most polymer
field theories. This obviates the need for the fitting of parameters, since the param-
eters of the simulation are in direct correspondence with the theory. For a standard
lattice calculation, to take an example, the relation between the excluded volume
parameter and some lattice equivalent is not clear. On the other hand, the Edwards
simulation allows unrealistic moves, insofar as there is nothing restricting bonds from
crossing. Therefore, it is not valid for studies of polymer dynamics. Furthermore, it
requires an Edwards Hamiltonian, and will therefore inherit all the approximations

of that Hamiltonian.

3.2 The Langevin equation

! Consider an energy functional A that is a functional of a spatially varying order

parameter field ¢(r). If Z denotes the partition functional, then

Z = [DIp()] exp(-H[$(r)). (3.20)

If exp (—H [¢(r)]) is strongly peaked about the function ¢, (r), then a simple ap-
proximation to the functional integral, eqn. (3.20), is to replace the integral by the

value of the integrand at its maximum value,

Z = exp(—H [¢m (v)]) s (3.21)

'This section follows reference [20), section 8.3.
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where ¢, satisfies
§H

Sém

which gives the spatial distribution of the order parameter in equilibrium.

=0, (3.22)

Sufficiently close to equilibrium, it is reasonable to assume linear response; i.e.,
the time dependence of the order parameter is proportional to the deviation from

equilibrium 53 84 Thus,

o SH .
3= "T35 (3.23)

The relaxational dynamics of eqn. (3.23) describes the deterministic evolution of
the order parameter. However, there are fluctuations from this deterministic path
due to the influence of microscopic variables. These {luctuations are accounted for
with a noise term, 5 (r,t), which is assumed to be a Gaussian random function.

That is, it is a random function chosen from an ensemble of functions satisfying the

distribution

P {n(r,1)} ~ exp (—515 f dtdey?(r, z)) . (3.24)
and satisfies

(n(r,t)) =0

(e (1) = Di(r—r)d(—t).
Therefore, we describe the time evolution of the order parameter as

a¢ __8H " o
at FE+ (l‘,t), (J.Zd)

which is a stochastic differential equation usually called the Langevin equation.
With the Langevin equation, one can show that the time dependence for the

probability distribution of the order parameter is given by

Py _[,, & §H D P, ,
= [Paqb(r')” t 3 aqs(r")] ' (3.26)

This result is the Fokker-Planck equation '. In the limit of ¢ = oo, 0P/dt = 0,

the probability distribution approaches the equilibrium distribution

Pt = (-?-F—”}Jﬂ—rll) (3:27)

IThe details of this derivation can be found in reference [29] in the appendix to Chapt, 8.
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That this must also be the Boltzmann distribution determines D,
D =2lkgT. (3.28)

In other words, the strength of the noise must be related to the temperature in order

for the solution of the Langevin equation to approach the canonical equilibrium resuit.

3.2.1 Langevin equation for polymer systems
For a system of polymers, the energy functional of the previous section is taken to
be the Edwards Hamiltonian. In the discrete case, the Edwards Hamiltonian is a
function of the N monomer coordinates {R,}. Therefore, the Langevin equation,
eqn. (3.25), has the form

dR, 6!-[

T 6R,, +7(n,t),
which describes the time evolution of R, (). Eqn. (3.29) is actually three equations

(3.29)

for each monomer,

8.1:}‘; dH
B =Tt (3:30)

where :cf, is the fth component of the coordinate of the kth monomer. The various
terms of 6H/3mﬁ will be derived in the appendix A.1l. Anticipating these results,

Ba:,’g JHG JHI
o= F(a )

3T/ 1 3w, / 3 \%
=~ (a6 = 20f+257") + 55 (4#02) X

5 (s~ 28) exp (~ 17 (R = Ru)?) +1(n,0). (3.31)

This formula is straightforward to implement numerically using the finite difference
approximation for the time derivative
ks - Azk

o (3.32)

3.3 Mean field theory

In this section, the mean field approximation will be introduced for systems de-

scribed by an Edwards Hamiltonian, In this approximation, an interacting system
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of polymers is considered to be a system of independent polymers experiencing an
averaged interaction through the mean field of all monomers. The independent chain
problem can be solved using Green function methods assuming the mean field is
known. Mdreover, the solution to the independent chain problem itself determines

the average monomer density. This added “constraint” is used to determine Lthe mean
field !.

3.3.1 The mean field Hamiltonian

Once again, for the sake of explicitness, consider the expansion ol the interaction

Hamiltonian in powers of the local density to second order,

w

Hi=2 j dr ¢ (r). (3.33)

Formally, the concentraticn can be written

¢ (r) = (¢(r)) + 5¢(r) (3.34)

where (¢ (r)) is the mean field, and é¢ (r) is the fluctuation from the mean field. The

average {) is the equilibrium average; if A[R (n)] is some [unctional of the polymer

configuration R (n),

(4)= 5 [ DIR ()] AIR (W]exp(~H [R ()], (3.35)
where
z= [DR @) exp(~H [R(m)]) (3.36)

is the partition functional. The concentration ¢ (r) is written explicitly as a function
of r, though it is also a functional of the configuration R (n). The equilibrium average
mean field, however, is not a functional of the configuration, With these definitions,

H; can be rewritten

w

Hy="32 [de (6 +2(0 () 5(x) + (86 (1))

1'The method of the self consistent mean field was introduced into the polymer literature by Sir Sam
Edwards [26]. It is briefly discussed in the text of Doi and Edwards [22]. Some aspects are considered
in more detail in the text of Freed [28].
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Noting that {¢(r}} is a constant with respect to functional integration, the mean field

interaction becomes
2wz j dr ($(r)) $(r), (3.37)

ignoring constants and terms of order (Jq’))z. Including the connected energy contri-
bution with the mean field interaction, the Edwards Hamiltonian for a single polymer

in the mean field approximation becomes

2
H,= f dn (% (9%(11)) + wp (¢»(R(n)))), (3.38)

using the definition of the microscopic density, eqn. (3.13). For a system of many

polymers, eqn. (3.38) is easily generalized, yielding

H, = ; [ dn (Q%E (@Bi_n(l)) + wo (@ (Re (n))))] . (3.39)

The mean field Hamiltonian describes a system of independent Gaussian chains un-
der the influence ol an external field, which is proportional to the average monomer
density. For this reason, the mean field approximation is sometimes called the inde-
pendent chain approximation, since the chains do not interact explicitly. They
interact only implicitly through the mean field w, (¢).

Note that the canonical probability of a configuration R (n) is proportional to
e~HolR(m)! in the mean field approximation, which in turn depends on the mean field
concentration of monomers. However, the mean field concentration could in principle
be calculated through eqn. (3.35); this is a self consistency requirement that the
mean field must satisfy. In fact, this additional constraint allows the mean field to
be determined. A procedure analogous to this, though somewhat different in detail,

is described in the next section,

3.3.2 Green function methods

If a polymer is described by an Edwards Hamiltonian H, all equilibrium properties

are specified by the quantity

R(N)=r
Gre'sN) = [ DIR(n)] exp(~H R (n)}), (3.40)

(0)=r"
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where the ends of the polymer are fixed at r and r’. The functional integral is over
all curves R (n) of contour length N with R (0) fixed at ' and R (N) fixed at r. The
measure D [R (n)] is defined such that

R(N)=r 3 R )\ _ ,
fl’l(ﬂ):r' D[R (n)] exp( e jdn (T) ) =1. (3.41)
Consider again the mean field Hamiltonian of section 3.3.1,
_ _ 3 (aRm)\, o
H,[R(n)) —fdn (21)’2 (T) +V(R(n)]|, (3.42)

where V (r) = wy{¢(r)) and can be interpreted as a potential cnergy per unit
monomer at the point r, In the same way that i [R (n)] was defined as the functional
integral limit of the discrete Hamiltonian / {R;} in section 2.1.3, the distribution

G (r,r'; N), eqn. (3.40), can be defined as the functional integral limit of the discrete

expression
G(r,r’;N):
3 \F
(zg) " [RudRadRy S ('~ Ra)§(r = Ri) X
3 ¥ , &
“""{‘ﬁl‘(ﬂf-ﬂa--) -z:vma}. (3.43)
i=2 i=1

An important property of G (r,r’; N) follows from the definition eqn. (3.43),
G(r,tsN +¢) = j dr" G (v, 1" €) G (", s N). (3.44)

Loosely interpreted, eqn. (3.44) states that the unnormalized probability of a curve of
length IV + € starting at r' and ending at r is equal to the product of the independent
probabilities of two curves: a curve of length N starting at r' and ending &t r”, and
another of length ¢ starting at r” and ending at v/, “summed” over all intermediate
positions r”. Eqn. (3.44) is characteristic or a Markov process, since the probabilitics
of the two curves are independent.

If both the curve R (n) and the potential V are well behaved, then for sufficiently

small sections of curve AN = ¢, the curve will not vary greatly and the potential will



3: THE HAMILTONIAN WAY 42

be approximately constant across this interval !. Thus,

3 [OR(n)\?
Ha=fdn (ﬁ( afl")) +V(R(n)))

3 (AR\’ .
~c{-2—b—2 (T) +V(r;},

and from the definition, eqn. (3.40),

3 \¥? 3(r-r")?
1 UL N ——eee e
G(r.r"ie) = (2ﬂb2) exp( b eV (r)

3/2 _ W2
2 (1 = €V (1)) (2:;52) exp (-:-’-("2—6(,?”-)—) (3.45)

Substituting eqn. (3.45) into eqn. (3.44) and changing variables r’ = r + 7,

3/2 2
G(r,r';N+e)=jdq(1—5V(r))(2:;b2) exp[ :bz]G(r+n,r N). (3.46)

The advantage of rewriting eqn. (3.46) in terms of n is that fur small values of ¢, the

factor exp (—3n*/ (2¢t?)) is small except for small values of 7. Therefore, one can

expand G (r + ) to find 2

Gr+9)=G(t)+7-VG(r)+ = (Zn.n,aaa )G(r)+... (3.47)

If the expansion of G (r + 7) is kept only to second order in 7, the right hand side of

eqn. (3.46) becomes, after integration,

2
(1 -V (1)) (G’(r) + b ) VG(r). (3.48)
Similarly, the lelt hand side of eqn. (3.46) can be expanded in powers of ¢,
G(N+e)%G(N)+caGa§VN) o+ (3.49)

Finally, the left hand side, eqn. (3.49), when combined with the right hand side,
eqn. (3.48), yields a partial differential equation for G (r,r'; N)

g ¥,
L _Z 7 LN =
N 6V +V(r)| G(r,t';N)=0, (3.50)

'There are some subtle details involved in making these assumptions. There is discussion on this
point in Freed [28].

2For the sake of clarity, only the relevant argument wili be written explicitly. The meaning should
be clear in context.
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for N > 0 with the boundary condition
fljr_x}o(}'(r,r'; N)Y=d(r-r'). (3.51)

The boundary condition can be seen, for example, from the expression for G for small
N, eqn. (3.45). Thus, G (r,r'; N) satisfies the diffusion equation for a particle in an
external potential V. It is a Green function for a Gaussian chain polymer in an
external field. And if occasions when eqn. (3.50) can be solved analytically are rare,

a numerical solution can always be attempted.

technical

Eqn. (3.50) can be solved numerically using standard finite difference methods.
One finite difference representation of the Laplacian operator in one dimension
is

sz(.'lr)%“u f(ml'-l)_gf(_ms)'*'f(xiﬂ)'

- 3.52
(Az)’ (3.52)
Similarly, the derivative with respect to N is
af (N
—'g(—Nlm(j(N+AN)—f(N))AN. (3.53)
Therefore, the Green function G {z;, N) can be calculated using
Gz ; N+ AN)=G(ziyy N)+ AND, ({z:} ,N) (3.54)
where
b2
Da ({2}, N) = —— ( G(2in1; N) = 26 (2 N) + G (igas M) ) =V (&) G (i V)
5 (Ax)
(3.55)
Thus, G (ai; N) is completely specified given the initial condition
G (z},0) = 1/Ax. (3.56)

This method works well provided AN/ (Az)? is small.

In the polymer case, the Green function is of direct interest; as can be seen from its
definition eqn. (3.40), it is proportional to the probability that a polymer of contour

length N starts at the point r and ends at the point r'. For example,

(A4), = j dr'" G (r,v" N —n) A(r") G (", 1';m) . (3.57)

G(r r’N)
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is the mean field average of some quantity A (r). Recall, howeve:, that the exteraal

potential V has the form
V (R (n)) = wa{d (R (n)))o. (3.58)

Therelore, given the solution to eqn. (3.50) with V = wy(¢)o, the resulting Green

function G {r,r’; N) can be used to calculate the mean field

(®(r)o = [dn(6(r =R (@), (3.59)

which in terms of the Green function becomes

(B (") = m f dn G (r,x"s N —n) G (r",r'sn). (3.60)

Therefore, the external potential V' can be determined self-consistently; i.e., the two

equations, eqn. (3.50) and eqn. (3.60), are iterated until (@), converges.

technical

If eqn. (3.50) is solved numerically, G(z;; N) can be used to numerically evalu-
ate the integral, eqn. (3.60), to determine V. Eqn. (3.50) is now solved again
using this V. This iteration proceeds until convergence is reached; for example,
convergence could be operationally defined by

(ZreEnn)/ (SiweEn) <. (3.61)

where € is some small number, say 10~%, and where (¢') refers to the value after
the next iteration.

In practice, convergence is more robust using a linear combination of the new
potential with the potential from the previous iteration [24],

VisaV' +(1-a)V, 0<a<l. (3.62)

This appears to damp the iteration process; otherwise, the iterative process is
me..- likely to be unstable.

To conclude this section, it is interesting to note that mean field methods have

been very successful in predicting detailed properties of polymer systems in a wide
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variety of situations. The success of mean field theory is probably due, in a large
part, to the nature of the polymer molecule itself. It is a very large molecule that
pervades a large amount of space, allowing a single polymer to interact with a large

number of others. Thus, for polymers, it is often physically reasonable to speak of a

mean field.

3.4 The random phase approximation

Having described the mean field theory in section 3.3, the effect of second order
fluctuations will be discussed in this section. Fluctuations will be included in a par-
ticularly simple [ashion; i.e., they are assumed to be independent Gaussians. Unlor-
tunately, the mean field contribution is not described naturally in this representation,
Therefore, a Gaussian approximation is made for the mean field Hamiltonian. Conse-
quently, the first correction to the correlation function will be rendered transparent.
The correlation function can then be used to determine the stability ol the mean field
solution. In the polymer literature, this approximation is typically referred to as the
random phase approximation !

As suggested in section 3.3.1, the Edwards Hamiltonian can be written in terms
of a mean field Hamiltonian plus a contribution from the fluctuations from the mean
field,

H=H,+ Hj, (3.63)

where H, is given by eqn. (3.38), and by comparison to to eqn. (3.37), H;s is written
as

Hs = 22 f dr 642 (r). (3.64)
In this representation, H; has a particularly simple quadratic form 2; however, it is

difficult to cast H, in terms of concentration fluctuations. Therefore, one assumcs

IMuch of this section follows the work of Yeung el.al.; for example, see reference [80].
*This form is due to the model we are using, eqn. (3.1). If not, /{5 could be approximated by

1 921, (4] . e
Hym g f dr( = )¢=M5¢‘(r). (3.65)
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that /{, can be approximated by the quadratic form
H, =~ % [drdr 68() AS* (v, 8(x). (3.66)

If the assumption is valid and H, can be approximated by eqn. (3.66), the approxima-
tion reduces to choosing the correct A,. Since the mean field probability is propor-
tional to e~ eqn. (3.66) gives rise to a Gaussian probability distribution, allowing

us to identify A, (r,r’) with the mean field correlation function
A, = (64 (r)dd(r'))o (3.67)

where (), is the average with respect to the mean field Hamiltonian. Even if this
average cannot be performed analytically, it may be possible to obtain it numerically
using the methods developed in the previous section. The specifics of calculating the
correlation function given the mean field Green function will be discussed in the next
section.

Combining eqn. (3.67) with eqn. (3.66) and eqn. (3.64), the Hamiltonian in the

random phase approximation, Hs, becomes
1 ' e | ! ¥ !
Hs=3 f drdr' 54 () (AS" (r,¥') + wed (r — ¥')) 6 (r'). (3.68)

Since eqn. (3.68) is quadratic, it gives rise to Gaussian probability distributions for
the concentration fluctuations. Furthermore, one can directly read off the correlation

function in the random phase approximation
A~ (r,r) = A (r,0) +wed (r = 1'). (3.69)

In many instances, it is of direct interest to calculate the correlation function;
for example, to calculate the structure factor of a polymer solution. Moreover, the
correlation function also contains information regarding the stability of the mean field

solution. If {, (r)} is a complete, orthonormal set of basis functions, then

8¢ (r) = D d¢atba (r) (3.70)

where

5= [dr 3 (r) 66 (r). (3.71)
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If {ta (r)} is chosen to be the set that diagonalizes A,; i.e.,

f drdr’ 3 (r) Ao (1, 7') ¥ (1) = (A,), , out (3.72)
then
Hs = 5 3683 ((Ao)zh + 03) 560 (3.73)

Thus, the probability distribution function in the random phase approximation has

the form
1
exp [—3 > " ddy ((A,,);"lﬂr + 102) Jdaa.] (3.74)

From eqn. (3.74), it can be seen that the mean field solution becomes unstable if
((A,,);‘L—i-wg) is negative. This can also be seen from the dynamic response of
fluctuations from the mean field, calculated using the analysis in section 3.2; i.c., the
linear response of the modes of fluctuation are governed by the Langevin equation,

eqn. (3.25), using the Hamiltonian, eqn. (3.73),

O8ba & Hj |
5 =—[‘6(6¢a)+n(r,t)
= I {(A.);5 + ) 8o + 1 (1y2) . (3.75)

If AL > 0, then according to the deterministic part of eqn. (3.75), small fluctuations
away from the mean field equilibrium will decay back to the mean field solution in
time. The system is linearly stable to small fluctuations. On the other hand, if
AL <0, then small fluctuations will grow, and the system is linearly unstable,
Thus, the values of parameters where ((Ao);'la + wg) = 0 signals the limit of stability
of the mean field solution within the random phase approximation. This type of

analysis is common in studying instability in polymer brushes [50, 65, 80, 71].

3.4.1 Thc mean field correlation function

As can be seen from eqn. (3.69), the correlation function in the random phase approx-
imation requires the mean field correlation function. If the mean field Green function
is known, then mean field averages can be calculated according to the techniques of
section 3.3.2. In this section, the calculation of the mean field correlation function in

terms of the Green function will be presented !.

1A similar calculation is summatized in reference [80).
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The correlation function, A, measures the correlation of fluctuations in the density,
A (r,r') = (8¢ (r) 6 (r'))
= (8(r) ¢(r)) — ((r)) (3 (r')), (3.76)

where §¢ = ¢—(¢). The mean field correlation function can be obtained by calculating
the averages in eqn. (3.76) with respect to the mean field Hamiltonian, eqn. (3.38),
using the Green function as in section 3.3.2. The mean field (¢ (r)}, was calculated

in the previous section, eqn. (3.60). Thus, there remains only the calculation of the

first term, (¢ (r) @ (r'))e.
Using the microscopic definition of the density, eqn. (3.13),

$(r) 6 (1)), = j dndn’ {(8(r - R(n)) 8 (' =R (). (3.77)

For a polymer of contour length N with ends fixed at r and r/, the equilibrium average

with respect to the mean field Hamiltonian H, is

(6(r=R(n))s(r' = R(n)))o =

1 R(N)=rn , ,
Glroemi ) ];m,:m D{R(n)] 6 (r ~R(n))6(r' — R(n')) exp (—H, [R(n))).

According to the definition of the Green function, eqn. (3.40), and integrating over

the delta functions,

(§(r—R(n))é(r' = R(n)))o

_ ) ey (Grw,r N = n) G (r,rin — ') G (v, ro;n')) n >0
e (G(tn, r's N =) G (¢, 550" = n) G (r,xo5n)) 7' >n.

Since G (ry,r'in —n') = 0 for n < n', the average of the two delta functions is
(6 (r—R(n))d(r' - R(n))o =

1

——— - N !, ! ’ ol
G(PN,I'Q;N){G(I‘N'P’N n)G(l‘,r,n n)G(r,ro,n)-i-

G (rn,t's N =) G(r', 50’ — 1) G (r, roin) }
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Substituting the above result into eqn. (3.77),

(@(r)é ()=
1 N n o, \ N , R
G(rN,l‘o;N)L dn/u dn' G (rn,ri N —n) G (r,r'yn — ') G (r', ro; ') +
1 N N ; . t ot .
——G(PN,I‘o;N)/o dnj:‘ dn' G (ry, s N - n) G (r',r;0" — ) G (v, ro; n)

Interchanging the order of the integration in the second integral yiclds
(#(r) ¢(r'))o =
1 N noy . I3 ' P |
G‘(rN,ro;N)fo dnjt; dn {G’(rN,r,N—n)G(r,r,n—n)G(r,rD,n) +
G (en, s N =n) G (r',r;n = n') G (r,ro;n') } .

Thus, eqn. (3.78), together with eqn. (3.60) for the mean field gives the mean field

correlation function

A, (r,r) = (3 (r) ¢ (r'))o — (b (r))o{d (r'))o (3.78)

in terms of the polymer Green function !,

! A similar result was given in reference [80}, although it differs from the result obtained here. It is
probably a small typographic error in reference [80).



“The interaction of adsorbed macromolecules is arguably

the most important process in modern colloid science.”

- attributed to Jacob Israelachvili
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PoLYMERS GRAFTED AT INTERFACES

To this point, important concepts and techniques of polymer physics have been in-
troduced in a general way, requiring at most that the polymers be described by an
Edwards Hamiltonian. For the remainder of the thesis, ~scussion will focus ou a
particular system, the end-grafted polymer layer, or polymer brush. In this chap-
ter, the polymer brush is introduced in its simplest form; the homogeneous polymer
brush grafted to a plane interface in good solvent. Some important results from the
literature are reviewed. Also, the Langevin simulation technique discussed in scction
3.2.1 1s applied to this simple brush, both to demonstrate simulating with an Edwards

Hamiltonian, and to gain an understanding of some equilibrium brush properties.

4.1 The polymer brush

Consider a situation where polymer molecules are attached, or grafted, through one
end to an interface at a sufficiently high grafting density so that the polymers overlap
significantly. In the presence of good solvent, where monomer-monomer contacts
are unfavourable, the polymers will stretch away {rom the relatively high monomer
concentration at the surface, forming a polymer brush, as seen in fig. {1.4). The
primary application of polymer brushes is colloidal stabilization, where the steric
repulsion between brushes on nearby particles helps maintain a suflicient distance
between all particles to prevent coagulation due to attractive long range van der Waals
forces. Apart from direct application, the polymer brush model can be applied in some
abstraction in many situations. Diblock copolymer melts form “brushes” at domain
interfaces under strong segregation conditions, or when localized at high densitics
at domain boundaries between incompatible polymer phases. Polymers localized at

an air-liquid interface can be studied conveniently with a Langmuir trough, where
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interesting conformations have been observed [82, 83]. Brushes at solid-solid interfaces

act as adhesives if the chains are grafted in one phase and extend into the other.

4.2 Brushes in retrospective

An carly attempt to model the stabilization, due to Dolan and Edwards, was to
consider a brush of random walk polymers grafted through one end to an interface,
and confined between two plane surfaces [23]). The plane surfaces were assumed to
be attracted through van der Waals forces. Two types of association between the
planes were found depending on the size of the polymers: a close association for short
polymers, and a loose association if the length exceeded a certain critical length.
Before this critical value of the chain length, the van der Waals attraction dominates
at all separations, and the polymers do not stabilize the suspension. For chains greater
than this value, there is an energy minimum at a larger particle separation. Finally,
for cven longer chains, the energy minimum becomes negligible compared to kpT,
and thus association would not be expected to be observed. This study, however, did
not include excluded volume effects.

In a subsequent work [24], the authors included the excluded volume effect through
the method of a self consistent field, described in section 3.3. They found, not surpris-
ingly, that the excluded volume effect greatly enhances the repulsion between the two
surfaces and is the dominant effect at large plane separations. For small separations,
the decrease in the number of configurations was expected to be the dominant effect.
Since the particles are expected to form a loose association at large distances, the ex-
cluded volume effect was concluded to be an important part of colloidal stabilization.

Some years later, Alexander [1, 2] and de Gennes [18] introduced a new approacis
to the brush problem, seeking only power law dependences of rough measures upon
system paramelers. For example, one can write the energy contribution, per polymer,

of the Gaussian chains in a brush of height A as
h 2
T~ | — E
He ( N) (4.1)

ignoring constants and keeping only the dependences of interest. At the same level
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of description, the excluded volume contribution pet polymer can be written

. H I wy

—[\—. = '51—\: drdf*(r)

where V' = A is the volume of a system with arca A and a grafting density o = K/A,
and A" is the number of polymers. If the total energy per polymer is minitnized with
respect to h, one finds

h ~ N (owy)'’®. (4.2)

Therefore, ki, the typical extent of a polymer in the direction perpendicular to the
surface, varies linearly with the degree of polymerization N. ‘This is qualitatively
different from, say, isolated grafted polymers, which would have an extent that varies
as N3/%, Furthermore, since the lateral extent of a polymer in a brush ! is expected
to vary as N'/2, the polymers in a brush are stretched in the direction perpendicular
to the surface for large N. Alexander came Lo this conclusion based on an energy
balance argument of the type detailed above, while de Genues found the same strong
stretching regime using a scaling picture of densely packed “blobs” filled with sell-
avoiding walk polymers.

A drawback of scaling arguments is that they are unable to predict detailed features
of brush structure. The re-introduction of the self-consistent mean ficld approach of
Edwards allowed for a more detailed description of brush structure. The mean ficld
theory of the strongly stretched polymer brush in good solvent was developed by Mil-
ner el.al. [55, 54], and independently by Zhulina et.al. [86]. The argument, lollowing
Milner, can be bricfly outlined as follows [54). The configuration of a Gaussian chain
in a self consistent potential can be considered analogous to the trajeclory of a par-
ticle in an external field, where the position of the particle at time n is equivalent to
the position of the nth monomer. The most likely configuration of the polymer, the

one that minimizes the configurational free energy, is the one for which the analogous

'n the direction lateral to the surface, the grafling produces monoiner concentrations high enough
. to expect that excluded volume interactions are screened.
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particle follows the classical trajectory. Now consider the polymer brush problem,
where many polymers, each of contour length N, start with the free end at some
value of z perpendicular to the grafting plane and end at the wall at z = 0. Thus,
the potential must have the property that all trajectories, regardless of where they
start, end at z = 0 in the same amount of “time”, N. This potential is the potential

of the harmonic oscillator,
2

U (2} = constant — SiNg-zz' (4.3)
Translational invariance in the (z,y) plane is assumed when writing the potential
as a lunction of z only. The prefactor comes from the fact that the “period” of
the analogous oscillator is four times the contour length of the polymers. In this
approximation, the average monomer density is proportional to the potential I/, Thus,
the density profile of a polymer brush in good solvent is also parabolic. In the work of
Zhulina el.al., on the other hand, the free energy was expressed as a functional of both
the local stretching, E (z,z), at z of a chain with free end at a2/, and the distribution
of frce ends g(z'). The [ree energy was explicitly minimized and expressions lor E
and g were obtained. The resulting expression for the density profile in the same limit
was equivalent to the result discussed above.

Ever since the mean field theory was developed for the good solvent brush, there
have been many numerical confirmations of the basic predictions. The mean field
equations were solved directly using numerical methods [56] and the results compared
to analytical theory [55]. Good agreement was found for the density profile and the
distribution of free chain ends for moderate N. Corrections were calculated and again
found Lo be in agreement with the numerical results. A parabolic profile was found by
simulation in a molecular dynamics study that also calculated the force between two
brush covered parallel surfaces [57]. Using a lattice Monte Carlo simulation [12] of a
self-avoiding walk polymer, density profiles and the free chain end distribution were fit
to the predictions of Milner [55) with the excluded volume parameter as an adjustable
parameter. Good agreement was found, and the fitted values of the excluded volume
parameter were consistent for several simulations. In a similar vein, a polymer brush
simulated with the bond-fluctuation algorithm [44] found agreement with the scaling

of the profiles with the grafting density and the degree of polymerization predicted
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from the mean field theory. The same bond-fluctuation results were compared in
more detail in a following publication [46). Recently, a simulation based on a polymer
system described by the Edwards Hamiltonian again found agreement with mcan field
theory [47].

The first direct experimental evidence of a brush regime was obtained from small
angle neutron scattering experiments of polymers end-grafted to the surfaces of porous
silica [4]. By varying the grafting density ¢ and the molecular weight of the grafted

polymer, they were able to confirm the scaling relations

I~ Nos good solvent (4.4)

No  poor solvent,

where h is some measure of the brush height and N is the degree of polymerization.
This was the first clear experimental evidence of anisotropic stretching normal Lo the
grafting surface.

The subject of polymer brushes has been the locus of much research, and has
gencrated a large literature in recent years. A good overview of polymer brushes,
especially in context of the mean field theories of Milner [55] and Zhulina [86], can be
found in the review of Milner [54]. Scaling arguments as applied to polymer brushes
are reviewed by de Gennes [19]. Results of computer simulations on polymer brushes

can be found in a recent review by Grest [31].

4.3 The “parabolic” brush: an illustration

As the parabolic brush has become a central result in the study of polymer brushes, a
few important results from the self consistent field (SCIF) theory of polymer brushes
in good solvent will be discussed in this section. Although the SCF mean field results
have been tested against simulation on many occasions, to the best of my knowledge
the Langevin formalism has not been used to simulate polymer systems. ‘T'herefore,
this opportunity will be taken to compare the mean ficld theory with results from
a Langevin simulation, which will serve to illustrate both the Langevin method and
the mean field theory. The polymer brush in good solvent was previously studied
using Monte Carlo methods and the Edwards Hamiltonian [47], with results similar

to these Langevin results.
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In this Langevin demonstration, K polymers with N monomers each are randomly
. grafted onto the (z,y) plane at z = 0. The grafting plane of area L x L is considered
impenetrable. The top of the simulation volume is placed far enough away from the
gralting plane to be effectively at infinity. After specifying the initial positions of
all the monomers, the monomer coordinates are updated according to the Langevin
method, detailed in chapter 3. Since the grafting plane is impenetrable, it is necessary
to restrict the monomers to lie in the half space = > 0. After an initial period of
equilibration, the time averages of quantities of interest can be measured. For this
example, L =10, i = 10, and N = 40, unless otherwise stated. Units of length ! are
chosen such that 6* = 3.

The scaling of the height of the brush with the degree of polymerization, NV, is
quite distinet from the case of non-grafted polymers. In a brush, the height A ~ N,
whereas in the [rce case the average polymer extent R ~ N5, This characteristic
lincar scaling is a clear signature of the brush regime; i.e., when polymers are grafted
at sulliciently high density to cause considerable overlap [4]. Furthermore, this scaling
is a robust result. It is predicted from Flory type energy balance argument, from the
scaling arguments of Alexander, and also from the more detailed SCF mean field
calculations., Results {or the brush height are shown in fig. (4.1), where the brush
height has been measured in two separate ways. In one case, the average z value
is used, and in the other, the = component of the radius of gyration. With either
definition, the brush height appears ? to scale linearly with N.

A central result of the SCF mean field theory is a prediction for the density profile;
i.e., the monomer concentration as a function of z, the perpendicular distance away

from the wall, defined by the expression

13 Ly L:
#(z) = L,L,,fo dy/n dz (2, y, ), (4.5)

where L, and L, are the dimensions of the grafting surface in the £ and y directions,

respectively. According to SCF theory [55], the density profile is expected to be

'Units have been chosen in this way in order to conform with previous literature. For the remainder
of the thesis, any quantity with dimensions of length is expressed in units of (69/3)1/‘, though this
is not stated explicitly for notational convenience.

¥The possibility that the dependence on N is weaker than linear cannot be discounted with this dala,

I which may not reach che scaling regime [41, 7).
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Figure 4.1: The brush height as a function of the number of bonds, N — 1. The height has been
measured in two ways: {squares) the average value of 2, and (cireles) the 3 component of the radius
of gyration averaged over all monomers. The height is linear with both definitions. ‘The lines are
guides to the eye only.

parabolic,
8(2) = o [0t - =) 1.6)
T Sw, N2 A (1.6
where the brush height & is ,
120w, \!/?
N( w? 2) ' (4.7)

An example of the SCI density profile and the associated deusity profile obtained
from a Langevin simulation with the same parameters is shown in fig. (4.2). This
figure demonstrates some important features. The density profile lrom simulation is
dramatically lower than the mean field result near the wall, which has a inaximum
at the wall, This region is known as the depletion zone. Also, the simulalion has
a smooth tail at the top edge of the brush, unlike the SCIF result, which becomes
strictly zero at the brush height. Both these effects are well established features of
more realistic brushes, and have been observed in many simulations that followed the
parabolic brush prediction. Besides these two regions, the simulation is consistent
with the SCF prediction.

This “classical path” SCF results relics on the strong stretching approxima-
tion, that the brush height greatly exceeds the typical lateral dimensions of the

polymers. Detailed SCF predictions, such as the density profile, should only be valid
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Figure 4.2: Monomer density profiles as a lunction of the distance perpendicular from the gralting
plane. The line is the prediction from mean field theory. The figure clearly shows a “depletion zone”
near Lhe wall, and a smooth tail at the top of the brush. Away from these two arecas, the agreement
is consislent, The simulation parameters are L = 10, K = 10, N = 40, and w. = 0.5,

to the degree to which the strong stretching approximation is satisfied. According
to SCF theory, energy balance arguments and scaling arguments, the brush height
I should scale as N (awg)'/a; thus, one should be able to achieve “not-so-strong
siretching” by varying these parameters appropriately. If the two variables, ¢ and 2

are rescaled according to
1/3
o

-
-~

-4

N(awg)"""

then eqn. (4.6) becomes indepei.dent of the parameters NV, o, w,. That is, the rescaled
"¢ should be a universal function of the rescaled z. In fig. (4.3), the scaled den-
sity profiles are shown s a function of the perpendicular distance away from the
grafting plane. The concentration ¢' is plotted in units of (wg/az)"” ® and 2 in
units of N (a-wz)” 3, The density profiles we shown for different values of A =
(12/11'2)'/ N (awg)” 3, There is the general trend that for sinaller A, there is greater
deviation from the expected SCF profile. For large A, however, both the depletion
zone and the smooth tail become much less pronounced, and the SCF result fits the

simulation results over a wider range. This accords well with the notion that the
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Figure 4.3: Monomer density profiles as a lunction of the distance perpendicular from the grnfling

plane. The density is plotted in units ol (wg/a")'”n, and = in units of N (a'w-_.)'/". In these units,
the data should collapse onto a universal curve. 'The curve predicted by self-consistent field theory
is shown as a line on Lhe same graph.

mean field theory is valid in the strong stretching limit.

This comparison highlights one ol the advantages of simulations based on the Ed-
wards Hamiltonian. Comparisons can be made between the resulls of the simulation
and the field theory results without the fitting of parameters. This is not possible with
lattice Monte Carlo stimulations, nor with molecular dynamics simulations. In these
cases, there is no direct correspondence between parameters, making it necessary to

fit one or more parameters,
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PoLYMER BRUSH IN POOR SOLVENT

The equilibrium structure of a homogeneous polymer brush is investigated in poor
solvent conditions. Using the Monte Carlo technique developed in section 3.1.2, much
larger systems are simulated than previously possible. When solvent quality becomes
sufficiently poor, lateral inhomogeneities develop in the monomer density in the direc-
tion parallel to the grafting plane. A micro-phase separated conformation is observed
at long times, The length scale characteristic of the micro-phase structure is consis-
tent with a two dimensional random walk. The use of an Edwards Hamiltonian allows
for control of solvent quality, facilitating direct comparison with previous numerical
work which predicted the limits of stability of the laterally homogeneous layer [80].

Cur simulation results are consistent with these findings.

5.1 Introduction

The structure of grafted polymer layers depends strongly on the interaction of the
polymers with the solvent in which they are immersed. In the previous cl:apier, the
homogeneous brush under good solvent conditions was considered. It was seen that
for polvmers grafied onto a plane surface, often assumed for convenience, transia-
tional invariance in the plane paralle] to the grafting plan: can be invoked to reduce
the study of the brush to a one dimensional problem in the direction perpendicular to
the grafting surface. In this instance, the properties of polymer layers are ‘well char-
acterized by one dimensional self-consistent mean field theories, as seen, for example,
from the results of chapter 4.

The study of polymer brushes under poor solvent conditions is also important,
from an applications point of view as well as that of pure theoretical interest. For

example, the application potential of self-assembled monolayers is well known [77]; if
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such a monolayer is formed from a polymer brush, then variations in layer thickness
of order ten are possible by adjusting solvent quality [40). If the brush is used for
colloidal stabilization, it is potentially useful to be able to induce coagulation by
changing the solvent quality [35]. Moreover, under poor solvent conditions, one must
account for the possibility that the polymers will phase separate from the solvent.
In this case, it is no longer obvious that the assumption of translational invariance
is still valid. Nevertheless, the simplification resulting from this assumption remains
very compelling, and indeed early studies of polymer brushes in poor solvent assume
structureless layers in the plane parallel to the grafting surface [35, 66, 85).

In an early attempt to describe the polymer brush in poor solvent without as-
suming translational invariance, Ross and Pincus [65] applied the random phase ap-
proximation to include density fluctuations about a sell consistent mean field solulion
for a brush with a step function profile. They found no instability in the poor sol-
vent regime, and therefore concluded that the standard assumption of uniform and
continuous collapse was indeed correct.

Perhaps the earliest indication that lateral inhomogeneities may in fact be present
under poor solvent conditions was from Monte Carlo simulations of Lai and Binder
using the bond-fluctuation algorithm [45], designed to study the influence of varying
solvent quality. Poor solvent conditions were introduced through an ellective at-
traction between monomers, modelled by an energy reduction if two monomers were
neighbours on the lattice. Strong lateral fluctuations in the monomer density were
indeed found, as the authors ohserved one region of relatively high monomer density.
However, the results in poor solvent conditions were preliminary, by the author’s owsi
admission, as they were unable to simulate a large enough system to characterize
the structure formed in the poor solvent regime. In a similar study, Grest and Mu-
rat [30] investigated the structure of polymer brushes in various solvent conditions
with molecular dynamics in which poo: solvent conditions were introduced through
an attractive pair potential. Similar results were obtained in this study; the au-
thors observed evidence of laterally inhomogeneous phase separation, although with
a limited system size resulting in only one domain of high polymer density, and thus

strongly constrained by finite size effects.
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In a numerical study, Yeung, Balazs, and Jasnow [80] used the random phase
approximation to describe fluctuations in the poor solvent brush, calculating a self-
consistent mean field solution numerically instead of making the step function ansatz,
as had Ross and Pincus. They found that in sufficiently poor solvent conditions, a
laterally homogeneous layer becomes linearly unstable to fluctuations. In the unstable
regime, they found that the polymer layer undergoes a micro~phase separation !
into small domains, or “dimples”, of predictable size and spacing. They also calculated
a stability diagram, showing the limits of stability separating stable, laterally uniform
conformations from inhomogeneous micro-phase separated configurations.

Since the work of Yeung et.al., more analytical work has supported their conclusion
of micro-phase separation in sufficiently poor solvent conditions. Huang and Bal-
azs [36) performed a two dimensional self consistent field calculation, thus obviating
the need for assuming translational invariance. They also found dimples, in qualitative
agreement with the Yeung picture. More recently, Tang and Szleifer [71] performed
a scaling analysis for the poor solvent brush and found a similar “phase-diagram™
including a laterally homogeneous regime, the micro-phase separated regime, and a
regime where individual grafted polymers form mushroom-like structures. Scaling
analyses have been peformed for the “micelles”, or individual polymer aggregates,
formed in sufficiently poor solvent [79, 84]). Very recently, a classical limit self-
consistent field analysis determined the equilibrium height profile and its stability
for a melt brush, which is a special case of a brush in a poor solvent [70].

Lateral instabilities were observed experimentally using atomic force microscopy.
Homogeneous polymer layers and islands were observed when the brush was exposed
to air {81). A polymer brush was studied using neutron reflectivity in which the
density profile in the direction perpendicular to the surface was determined in various
solvent conditions [39]. There was no attempt to determine structure in the lateral
plane, so microphase separation could not be observed. However, it was clear that
there was no step function like discontinuity in the density profile, even below the ©

point, contrary to the assumption of Ross and Pincus. More recently, an atomic force

'The term micro-phase separation refers to equilibrium separation that occurs only “locally”, as
opposed to when individual phases separate completely into single domains separated by a single
interface. This lotter separation is referred to as macro-phase separation in this context.
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microscopy study of the same system was published, in which the lateral structure was
directly observed [40]. A polymer brush was synthesized by adsorption of polymer
end groups to a surface from poor solvent, the grafting density being determined
by the time allowed for adsorption. Laterally inhomogeneous structures were indeed
found for low grafting density. However, it seems likely that the effective attractive
interaction between polymers in poor solvent would affect the pattern of grafting.
It is not clear to what extent this facto. aflected their results. Very recently, phase
separated structure were a"ga‘tin observed directly with atomic force microscopy [67).
The polymers were adsorbed from good solvent, and would be expected to have a
random grafting pattern. Regimes with isolated mushrooms, phase separated dimples,
and homogeneous layers were reported.

In this chapter, results are presented from an extensive Monte Carlo simulation
of grafted polymer layers under poor solvent conditions, with particular emphasis on
determining the influence of phase separation on the structure of these layers, Simu-
lation is performed within the Edwards model as described in section 3.1.2, enabling
the investigation of much larger systems than previously possible. We are thus able
to provide detailed structural information, well into the region of micro-phase separa-
tion. We are also able to confirm theoretical predictions based on scaling analysis and
numerical self-consistent field theory. Moreover, since the same Hamiltonian used in
analytical treatments is employed here, results can be compared directly without the
use of fitting parameters. This study is the first demonstration of the utility of this

method in dense polymer conditions. This chapter is adapted from our previously
published work [68].

5.2 Method

We describe a system of K polymers, each having N monomers, with the Edwards

Hamiltonian

H{R, n)}-z,,,z [l (aR"‘“)) FHRM),  (50)

where Ry, (n) is the configuration of the kth polymer. As discussed in chapter 3, the

first term represents a Gaussian chain with mean squared bond lengths b2, The second
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term is an interaction potential that depends on the set of polymer configurations
. {Ri{n)}. Following eqn. (2.24), H; can be expanded in powers of the local monomer
concentration,

Hi{Ri(m} = 2 [drg? (1) + 32 [dr g (n), (5.2
to third order in the expansion. As discussed in section 2.2.2, unfavourable monomer-
solvent interactions are modelled with a negative value of w,. Increasingly negative
values of w, are associated with decreasing solvent quality. The third order term is
retained in this instance since negative values of wa can lead to situations of higher
monomer density. The value of wj is always positive. This form for the potential for
poor solvent in near © conditions is customary in the literature [65, 80], and is the
basis of our simulations. The integrals are over all space, with the local monomer
density, ¢ (r), given by eqn. (2.22).

In this study, the Monte Carlo method developed in section 3.1.2 is implemented
with the Hamiltonian of eqn. (5.1) and eqn. (5.2). The Hamiltonian is approximated
using the coarse grained local density method ! 2. One end of every polymer is
grafted at a random position onto a surface of area A, fixing the grafting density
to be ¢ = K/A. The surface is considered to lie in the (z,y) plane, restricting the
polymers to move in the half space given by z > 0. Periodic boundary conditions are
imposed in the (z,y) directions, and the top of the simulation box is set far enough
away to be effectively at infinity. In particular, the polymer brush consists of K = 655
polymers with N = 64 monomers each, grafted on a plane of area 128 < 128. The
polymers are initially given random walk configurations with step size b. Units of
length are such that b2 = 3. We checked that for all results presented below, different

initial conditions produced qualitatively similar results.

5.3 Results

A typical extended configuration of a grafted layer is shown in fig. (5.1) with the

excluded volume parameter, w,, set to zero, corresponding to a situation with no

'The pair interaction method described in section 3.1.2 has been applied to polymer brushes in good
solvent conditions [47]; however, even in good solvent conditions, the coarse grained local density
method is several times faster, an advantage that is certainly amplified in higher density poor solvent
conditions.

. ¥The cells of eqn. (3.18) are cubic and of linear size | = 2.
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Figure 5.1: The polymer brush in an extended configuration, with wy = 0.0 and wy = 0.5. Other

system parameters are L = 128, K = 655, N = 64. For purposes of presentation, only I = 400
randomly selected polymers are drawn.

effective attraction between the monomers. There is little lateral stiucture evident
in the monomer density; i.c., the monomers are unilormly distributed in the plane
parallel to the grafting surface.

Under poor solvent conditions, the resulting effective attractive force between the
monomers can lead to micro-phase separation. Fig. (5.2) shows a configuration of
a polymer brush where a sufficiently negative value of w; causes the extended con-
figuration of fig. (5.1) to become unstable, resulting in micro-phase separation into
polymer rich regions and solvent rich regions. The phase separated regions are quite
structured, forming almost regularly spaced clusters. Evidence for such inhomogene-
ity was observed in previous lattice Monte Carlo [45] and molecular dynamics [30]
simulations, but not on a scale large enough to show the structure clearly evident
here. Since the grafting points of the polymers are irreversibly fixed onto the surface,
complete macro-phase separation into a single polymer phase is not possible due to
the energy cost involved in stretching a bond. Polymers therefore collapse into clus-
ters locally, giving rise to a length scale that characterizes the structure formed in

the phase separated regime.
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Figure 5.2: The polymer brush in a micro-phase separated configuration, with we = =1.0, w3 = 0.5.
The polymer droplets form a near-regular structure in the lateral plane. Other system parameters
are [, = 128, K = (55, N = 64. For consistency, the same 400 selected polymers as in fig. (5.1) are
shown.

The onset of inhomogeneity in the lateral density which accompanys micro-phase
separation is conveniently observed via the structure factor. The structure factor for
a system of N, = NK monomers can be defined !

No

S(a) = - 3 (expia- (zm = 1) (53)

° m,n

where a monomer n is considered a scattering unit at position r,. We define the

Fourier transform of a function f(r)

fla) = [drf @) exp(=iq-r). (5.4)

Using the micruscopic definition, eqn. (3.13), of the concentration ¢ (r) and the defi-
nition of the Fourier transform, eqn. {5.4), the Fourier transform of the concentration

becomes

No
$(a) = Y exp(~iq-ra). (5.5)

1Sce reference [22], section 2.4.
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With these definitions, the structure factor can be alternately written
I I
S(a)= - (lé@F). (5.6)

In this and the rext chapter, we shall use the form eqn. (5.6) to deline the structure

factor of a function.

Since the density inhornogeneities of interest are in the (,y) plane, we restrict our

attention to the two dimensional structure factor

1 4.
S (aes ) = - (190m (0,0 ') (57)
where :;5,,;, (4= qy) is the Fourier transform of the plane projected monomar density,

a’pp (@erqy) = jd:ndy Ppp (2, 1) e~ilesztany) . (5.8)
and
Ppp (3, y) = fdz ¢(z,y,2). (5‘9)

Examples of plane projected monomer densities are seen in fig. (5.3), corresponding

to the configurations shown in fig. (5.1) and fig. (5.2). The micro-phase structure is

Figure 5.3: The plane projected monomer density ¢p, corresponding to the previously shown config-
urations. Both views are perpendicularly down onto the (z,y) plane, with monomer density shown
in gray-scale: black corresponds to low monomer density, white Lo high monomer density, The
figure on the left corresponds to the extended configuration of fig. (6.1), with wy = 0 and wy = 0.5.
The figure on the right corresponds to the mizro-phase separated configuration of fig. (5.2), with
tg = —1.0 and wa = 0.5. In both cases, L = 128, K = 655, and N = 64.

clearly visible, with high concentrations of monomer showing up as white. We also

define S (¢) as the circular average of the two dimensional structure factor, a function
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Figure 5.4: Two dimensional atructure factors of the plane project monomer density ¢pp, corre-
sponding to the example configurations of fig. (6.1) and fig. (5.2). TFigure a) on top corresponds
to fig. (5.1), with wz = 0 and ws = 0.5. Figure b) on the bottom corresponds to fig. (5.2), with
wy = —1.0 and wy = 0.5. The circularly averaged counterparts are shown to the right in each case.
In both cases, L = 128, K = 655, and N = 64.

only of the magnitude of the wave vector q. Examples of two dimensional structure
factors and corresponding circular averages are shown in fig. (5.4). Circularly av-

eraged structure factors are shown in fig. (5.5) for several values of w; at fixed wa.

The emergence of structure associated with micro-phase separation is marked by
the appearance of a peak at a non-zero value of ¢ in the circularly average structure
lactor. The peak position, gueqk, corresponds to a new length scale which by com-
parison with the real space configuration of fig. (5.2) is found to be consistent with

the average distance between micro-phase separated regions. Furthermore, the peak
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Figure 5.5: Circularly averaged structure factors for the lateral density. The ouset of structure
accompanying the micro-phase separation is seen as a peak at a non-zero value of ¢ develops,
The structure factors for the configurations of fig. (5.1) and fig. (5.2) are shown, as well as two
intermediate configurations. .The lines are guides to the eye only. Other system paramecters are
L =128 K = 06565, N =64 and w3 = 0.5.

height 5(qgpear), which measures the scattering intensity in a scattering experiment,
depends on the values of ws; in particular, the greater the value of |wy|, the larger
the peak height *.

The average distance between clusters, obtained from the peak position of the
structure factor, is in all cases almost twice the end-to-end distance of a two di-
mensional random walk in a ©-solvent. This result agrees with the scaling analysis
of Tang ef. al. [71] and is consistent with the linear stability analysis of Yeung et
al. [80], who suggested that the instability occurs on a finite wavelength on the order
of the radius of gyration for a polymer in a @-solvent. Furthermore, we observe that
this is a robust result; i.e., the average distance between the polymer clusiers is scen
to be independent of the parameters w, and ws; over a wide range, though the cluster
size itself does change with these parameters.

To understand this result, we examined the average end-to-end distance Ry,
of the polymers in the z,y, and z directions, respectively. As w; was made increas-

ingly negative, R, decreased, indicatihg the collapse of the polymers in increasingly

1The system was equilibrated at the fixed value of w3 and wz = 0, after which w2 was gradually
decreased to the desired value.
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poor solvent conditions. On the other hand, R, and R, remained almost constant
with a value close to that of a two-dimensional random walk. Thus, in this dense
polymer regime, the average end-to-end distance of the polymers in the (z,y) plane
does not depend strongly on solvent quality. Since the end-to-end distance measures
the approximate size of a polymer, it is reasonable to expect the distance between
clusters to be of this order when phase separation sets in, and therefore is also inde-
pendent of solvent quality. As phase separation continues, the clusters become more
concentrated, but the average distance between clusters remains unaffected.

Another interesting question is whéther or not the lateral instability in the density
profile ran be restricted to the tip region of the polymer layer. This possibility was
suggested from the analysis of Yeung et. al. [80] when w; takes values near the onset
of the instability for large grafting densities. We therefore varied the grafting density
and the value of ws, in order to find such a situation by calculating the structure
factor S(q) in plane sections parallel to the grafting surface. However, we have not
yet unambiguously observed an instability restricted to the tip region of the brush,
presumably due to the finite length N of each polymer.

Finally, a “phase-diagram” is estimated by varying the system parameters and
searching for the limits of stability of the homogeneous phase. This is carried out
by fixing wy and decrvasing we until the micro-phase separated regime is definitely
reached. This can be compared with a stability diagram obtained using the random
phase approximation !. The stability of the uniform lateral density profile is deter-
mined by investigating the circularly averaged structure factor, 5(g). When S(q)
exhibits a peak at finite g, the system is in the micro-phase separated region where a
uniform lateral density profile is unstable. When such a peak is absent, uniform lat-
cral density profiles are stable. The points in fig. (5.6) are determined from separate

simulations at the indicated values of (w;,w3). Fig. (5.6) shows that our simulation

'n reference [80], the stability is determined as a function of the two independent parameters

whp?

p= &Tiw—g (5.10
R

T= N"w'-._?—b—g. (5.11)

Therefore, the phase diagram is presented in terms of these variables, with b2 = 3.
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Figure 5.6: Simulation results as a function of the two independent parameters 8 = wil/ (o?ui)
and vy = Nwjo?/w3. The line shown is the stability limit obtained with the random-phase approx-
imation [80]. Micro-phase separaled configurations in the unstable regime are represented by open
squares, Configurations with a uniform lateral density profile are represented by crosses,

results are consistent with the random phase approximation prediction [80].
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BINARY BRUSH PHASE SEPARATION

The equilibrium structure of a grafted polymer layer composed of two distinct species
of homopolymers, the “binary brush”, is investigated in various solvent conditions
using the coarse grained local density metliod of section 3.1.2. If the two species
are sufficiently immiscible, lateral binary micro-phase separation occurs over a wide
range of solvent conditions. Due to the presence of solvent, there is a stage where
the brush expands in a laterally homogeneous manner as immiscibility increases.
In this stage, laterally averaged quantities are well described by a single solvent
related parameter: a modified excluded volume parameter, This is followed by lateral
micro—-phase separation in which the brush volume remains relatively constant. In
©-solvent, this phase separation sets in at a degree of immiscibility consistent with
a mean field prediction for melt layers. The onset of phase separation occurs at a
greater value of immiscibility as solvent quality increases. Furthermore, reducing
solvent quality results in a stronger crossover between mixed and phase separated
configurations. Under poor solvent conditions, interesting structural variations result
from the combination of phase separation from solvent as well as phasc separation of
the two species. The limit of stability of the homogeneous phase is determined using

the random phase approximation, and the results compared to simulation results.

6.1 Introduction

The first studies of polymer brushes were focussed on the “classic” brush introduced
in chapter 4; i.e., a monodisperse, homogeneous polymer brush grafted to an infinite,
flat plane. In practice, these idealized conditions are never realized, nor necessarily
desired. In sume instances, one can control the properties of a grafted monolayer

by grafting different types of surfactants on the surface [34]. Furthermore, polymer

72
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brushes may possess some degree of heterogeneity, even if not by design. In either
case, it is desirable to know the effect of heterogeneity on the propertics of the brush.
We therefore consider a very simple example of heterogeneity: the two component

polymer brush, or binary brush. The binary brush is composed of two diflerent

%//////////

Figure 6.1: The binary polymer brush,

types of homopolymers, identical in every respect except for possibly some mutual
interaction between the two binary types, say A and B. Both types are randomly
grafted at a plane surface. The mutual interaction between the types is parameterized
by wy.

Marko and Witten [50, 51] predicted instabilities in a symmeclric binary brush
composed of immiscible chains under melt conditions, and used self-consistent ficld
(SCF) theory to examine the equilibrium properties. They studied two possible or-
dered phases for sufficiently high immiscibility: a “rippled” phase described in terms
of a “density wave” in composition directed along the surface, equivalent to lateral
micro-phase separation, and a “layered” phase rich in one component at the bottom
of the brush and in the second component at the top of the brush. Marko and Witten
showed that lateral micro-phase separation occurs for a value of immiscibility, or w,g,
2,27 times greater than the corresponding value for bulk phase separation in simple
blends, while the layered phase would be observed at four ti'nes the bulk value. Thus,
the lateral instability preempts the layering transition, and is expected to be the one
observed. Marko and Witten corroborated the occurrence of micro-phase transitions
in binary brushes by studying real space correlations [52].

Brown ef.al. [9} performed large scale Monte Carlo calculations with the polymers
represented by self-avciding walks on a simple cubic lattice in a symmetric binary
brush for near melt conditions; i.e., grafting densities of 0.3 and 0.5 on a surface of arca

64 x 64, with N = 100. They observed micro-phase separation after quenching the
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system Lo conditions of strong immiscibility. This was an impressive computational
undertaking, requiring “about one Sparcstation-year” [9] to perform two quenches,
Another simulation by Brown for the same model using simulated annealing confirmed
this result [10]. Analytical work for binary brushes under melt conditions has since
been extended to the strong demixing limit [25}, whereby a self consistent model of the
strongly phase separated brush containing phase separated regions and mixed regions
was characterized. Lai {43) performed bond-fluctuation Monte Carlo simulations of
a binary brush in a good solvent at a lower grafting density of approximately 0.1 on
surfaces of area 32 and 64. N was primarily 20 and 40, with some runs having N
up to 80. In this case, the equilibrium structures were investigated as a function of
immiscibility and varying relative fraction of the binary types. For the symmetric case
of equal [ractions, the laterally separated phase was again observed. For asymmetric
mixtures, layering was observed, with the minority phase segregating to the top of
the brush, away [rom the grafting surface.

In this chapter, we study the two component brush under various solvent con-
ditions. Using the coarse grained local density technique of section 3.1.2, we are
able to investigate large systems, yielding configurations showing unmistakable lat-
eral micro-phase separation. With this algorithm, we are able to go beyond previous
work, providing more quantitative details than before. We are further able to consider
the effect of varying solvent quality on micro-phase separation. We see, in marked
contrast to the incompressible melt layer, that the presence of solvent allows for a
stage of laterally homogeneous volume expansion in the brush as immiscibility in-
creases, well before the onset of micro-phase separation. Moreover, solvent quality
is seen to modulate the lateral micro-phase separation process itself, even though
the binary species are indistinguishable with respect to solvent interactions. Qur
results for the onset of micro-phase separation in a ©-solvent agree with 2 mean
ficld prediction for a melt; however, in good solvent, onset of micro-phase separation
is delayed. Furthermore, we see evidence that decreasing solvent quality produces
a much sharper crossover between mixed configurations and laterally micro-phase
separated configurations. We present a preliminary qualitative examination of the

binary brush in poor solvent conditions. Finally, we determine the limit of stability
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of the homogeneous phase using the random phasc approximation and find it to be
consistent with results of our simulations. This chapter has been adapted from our

previously published article [69).

6.2 Method

As in section 3.1.2 and chapter 5, we describe a system of K polymers, cach with NV
monomers with the Edwards Hamiltonian

) 2 |
H{Ri(n)} = 2—:23 E LN([il (a;n—gn(-i)-) + Hy {Ry (n)}. (6.1)

Again the first term in eqn. (6.1) represents the probability distribution of a Gaussian
chain. The interaction Hamiltonian H; for a binary brush containing two types of

monomers, A and B, is given by

Hi(r) = 2247 (r) + =26° (r) + =2, (1) dy (1) . (6.2)
2 3 2

]

Here ¢, (r) is the concentration of monomers at the point r, defined by
as(1) =3 f dné (v - RE* (n)), (6.3)
k

where the superscripts and subscripts ¢,b refer to monomers ol type A or B, re-
spectively. Furthermore, ¢ (r) is the total monomer density, equal to ¢, (r) + ¢ (r).
For future refcrence, we define the monomer densily difference at the point r as
O (r) = ¢ (r) — &5 (r). |

The coefficient w,; is the immiscibility coefficient. For negative wy, there is an
effective attraction between monomers of different types while lor positive wy, Lhe
two types of monomer become immiscible. Consequently, within the model described
above, w,, = 0 describes a monodisperse, homogencous polymer brush, since poly-
mers of type A and B cannot be distinguished. The excluded volume paramecter,
w,, determines the interaction of monomers with the solvent, which we take to be
the same for monomers of both types. We reiterate that for positive values of us,
good solvent conditions prevail, while negative w, describes poor solvent conditions.
The parameter wa is taken to be positive or zero: it is not relevant in good solvent
conditions and is set to zero for w; positive, and for poor solvent conditions, when

wy is negative, ws is assigned a finite, positive value, . -
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In this study, we consider linear homopolymers with N monomers per polymer. K
polymers are randomly and irreversibly grafted by one end to an impenetrable plane
with surface density ¢ = K/L?, where L? is the area of the plane in the simulation
volume. Half of the /" polymers are chosen (randomly) to consist entirely of monomers
of type A, with the remainder consisting of monomers of type B. The grafting plane is
the (z,y) plane plane situated at z = 0 and periodic boundary conditions are imposed
in the directions tangential to this plane. Monomers are confined to the positive h:lf-
space z 2 0, and the top of the simulation box is placed at a large enough value of z
to be effectively at infinity. In particular, polymers are grafted at a surface density of
o = 0.1, on a square plane of area either 128 x 128, or 64 x 64. Each polymer contains
N = 64 monomers and the box size for coarse graining has linear dimensions of 2.

The unit of length is chosen such that 6% = 3.

6.3 Results

Two sample configurations of the binary brush, obtained from our simulations, are
sh;)wn in fig. (6.2) and fig. (6.3). They correspond to different values of the immisci-
bility parameter, wy, and two views are presented for each configuration. The upper
diagram is the view from above, looking perpendicularly down towards the grafting
plane, while the lower diagram in each case is the “edge on” perspective, viewed par-
allel to the grafting plane, Black lines represent polymers of type A, while grey lines
represent polymiers of type B.

Fig. (6.2) is a typical configuration in the absence of immiscibility; i.e., w, = 0.
In this case both the total monomer density and the distribution of monomers of
type A and B should be homogeneous. Indeed, in both views, monomers of types A
and B3 appear evenly distributed. Fig. (6.3) is a typical configuration for w,y large.
Strong immiscibility is expected in this case and the view from above clearly shows
lateral phasc segregation, resulting in micro-phase separated domains rich in either
AorB typé monomers. Note that the side view gives no indication of layering as
monomers of different type do not visibly segregate in the vertical direction. As will
be discussed in more detail later, the average domain width is approximately a quarter

of the lattice size, which corresponds to twice the lateral end-to-end distance of a
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Figure 6.2: Sample configurations of the Lwo component polymer brush, for wy = 0.5, wy, = 0.0 (no
immiscibility). The top figure is the view down along the z axis Lowards the top of the Hrush, while
the the bottom figure is an edge view, parallel to the grafting plane, The system size L = 128 and
the grafting density o = 0.1.

polymer in a ©-solvent.

These results are qualitatively similar to those reported in previous work [9, 43),
from which the following consistent picture emerges. For small values of w,;, entropic
effects dominate, favouring the laterally homogeneous state. However, for sufficiently
large immiscibility, energetic eflects dominate the entropic effects, causing the poly-
mers to phase separate into A rich and B rich domains. If the grafting points were
free to move, the phase separation would continue until macro-phase separation into
single domains of A and B separated by one interface occurred, However, due to

the irreversible end grafting of each polymer onto the grafting surface, macro-phase
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Figure 6.3: Sample configurations of the two component polymer Lrush, for wa = 0.5, wy = 1.5
(strong immiscibilily) for the same system shown in fig. (6.2). There is marked phase separation
evident in both views. The edge view indicales Lthat phase separation is 1ater=!, with no evidence of
“Jayering”. The system size L = 128 and the grafting density ¢ = 0.1.

separation cannnt take place and the equilibrium structure consists of local domains
of single polymer species. Since the polymers fluctuate laterally over a distance of ap-
proximately twice the polymer end-to-end distancz, it is plausible that the domains
should have this size. If the lateral density is sufficiently high (as is expected in a
brush), excluded volume interactions will be screened laterally and the end-to-end
distance will be that expected for a ©-solvent. This argument for the selection of
domain size where lateral patterns are formed in polymer brushes is quite general
.and has been observed in such cases as lateral micro-phase separation in poor sol-

vent [68, 80, 71], binary brush melts [9,-51], and binary brushes at lower density as
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Figure 6.4: Total monomer density profiles for different values of wge, with solvent quality fixed at
wz = 0.5. The line corresponds to an analytical prediction [rom SCF theory. The case of wqp = 0
is indicated by open circles. Thr inset shows the profiles for different wyy scaled with an elfective
good solvent parameter, wacsy. he system size L = 128 and the grafting density o = 0.1.

seen in reference [43] and in this chapter.

In order to make contact with previous theoretical results for end-grafted polymer
brushes, we next examine monomer density distributions as a [unction of z, the
perpendicular distance away from the grafting surface. The monoiner density profile
is defined by egn. (4.5) in chapter 4. The definition is completely analogous lor the
monomer density difference, @ (z). Density profiles for the total monomer density are
shown in fig. 6.4) for various degrees of immiscibility. Small but systemalic changes
are evident as wy is increased. The particular case of w,, = 0 corresponds to a
binary brush with no differential interactions between A and B Lype polymers, and
is therefore equivalent to a homogeneous brush. In this case, there is an analytical
prediction for the density profile, as was seen ir chapter 4. The solid line in fig. (6.4)
gives the SCI result of eqn. (4.6). The resulting agreement with the simulation data
is the same as discussed in chapter 4. That is, there is reasonable agreement except

for the depletion zone near the wall and the smooth tail at the top edge of the brush.

We note that there are no free parameters to adjust when comparing the data wiih. _

the expected profile. This highlights one of the advantages of the current simulation

method as stated at the beginning of the chapter, that parameters of the simulation
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can be formulated directly in terms of polymer field theory.

As wq is increased from zero, there is a small but distinct tendency for the profile
to “flatten out”, suggesting that the polymers stretch away from the surface as the
repulsion between A and B polymer types increases. Because a more favourable
polymer interaction with the solvent would have qualitatively the same effect, we
reinterpret the enhanced immiscibility as an increase in solvent quality. An increase
in the value ol w,; thus modifies wy, creating an effective value, wo. sy > w,. Note
that equ. (4.6) becomes independent of w2 given the change of variables ¢ — wé/ 3
and z — z/w;/:’. We assume this as a good solvent scaling rorm. Thus, if the data
can be described in terms of varying solvent quality, we expect that a rescaling of the
profile data using ¢ — w;ﬁ 1@ and z = zf w;ﬁ 7 should result in a data collapse onto
a universal curve for appropriate values of ws.rs. The results are shown in the inset
in fig. (6.4) and we do indeed find a convincing data collapse for all values of ws.

This rescaling does not follow directly from previous work since eqn. (4.6) was
derived assuming a laterally featureless brush; in fact, the analysis of Marko and
Witten [51] was restricted to the weak segregation limit so that the classical trajec-
tories z(n), where n gives the position of a monomer on a polymer chain, would not
be aflected by segregation effects. However, there are clear indications from fig. (6.3)
and the disrussion below that phase separation has occurred over the range in which
we fit wy. sy, giving rise to ciear lateral micro-phase structure. Nonetheless, the brush
appears lo remain laterally homogeneous on average, even after the onset of micro-
phase separation, as seen in the profile for the density difference, ®, shown in fig. (6.5)
lor the phase separated configuration of fig. (6.3). The total density profile, ¢, is also
shown in this figure to provide scale. The figure shows that there is negligible varia-
tion in the ¢ profile, its value being close to zero, indicating no significant monomer
excess of either type for any value of z. This may help explain why laterally averaged
quantities, such as the density profile, are well described by a single pérameter, in
this case the modified excluded volume parameter. In addition, the lack of variation
in the ¢ profile shows that there is no vertical phase segregation, supporting previous
fudings that micro -phase separation is completely lateral.

The fitted values of wy,s; are shown in fig. (6.6) as a function of wys. The increase
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Figure 6.5: Profile of the monomer density difference for wy, = 1.5, wa = 0.5, correspouding to the
configuration in fig. (6.3). The total density profile is also shown to provide scale. PFor all £, the
density difference is negligible compared to the density in the layer. ‘The small variation shows little
vertical segregation. The system size L = 128 and the grafiing density o = 0.1.

of effective solvent quality with increasing immiscibility can be clearly seen for small
values of wg;. For larger values, however, wy.s becomes independent of w,s. In order
to explain why wq. s saturates, we propose that the process of micro-phase separation
advances in two stages. Asimmiscibility is increased, we suppose that there is a range
of wap before the onset of micro-phase separation where the energy added to the brush
is compensated for by an overall lowering of the brush density achieved by stretching
the polymers away from the surface. For wq greater than a particular value, micro-
phase separation sets in and any further increase of immiscibilily energy will to a
certain extent be compensated by the lateral rearrangemen* of the monomers. Since
this is a lateral ordering process, it does not necessarily require brush expansion and
therefore no lurther increase should be seen in wy.py. As a more direct probe of
the brush expansion, we measured the value of z averaged over all monomers in the
system as an indication of brush height. Results are given in {ig. (6.7). As a function
of wys, we see that there is indeed a stage where the height increases, implying a
volume expansion. This is followed by a stage where the rate of expunsion is markedly
decreased, suggesting saturation. For wp = 0.5, the saturation begins at the same

value of w,, where ws.s; begins to saturate in fig. (6.6).
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Figure 6.6: ‘The effective excluded parameter wa. s delermined from the scaling of the total monomer
density profile (fig. (6.4)) as a function of wgs. waery appears to begin saturating at wep = 1.0. The
system size L = 128 and the grafling density e = 0.1.

For a more detailed study of the lateral structure, we calculate the structure factor

of the plane projected monomer density difference,

54y qy) = Nia <|(i)pp (9o, 0) |2> (6.4)

where the plane projected density difference, @,,, is defined

0 = [dz(3,3,2), (6.5)

analogous to the discussion in the previous chapter leading to eqn. (5.6).

In fig. (6.8), we show structure factor results circularly averaged for different values
of wy; for a constant value of w, corresponding to good solvent. Each structure factor
is the result of averaging over five equilibrium configurations !. The appearance of a
peak in the structure factor at a non zero value of ¢ suggests that a new length scale
cmerges as w, increases (when the two species become sufficiently immiscible) and
becomes more prominent as w, is increased. This clearly corresponds to structure
that develops as micro-phase separation sets in. The value of g associated with

the peak in the structure factor thus corresponds to the length scale determined by

'We cannot rule out the possibility of very long time scale motions, which could be present when
domains begin to form.
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Figure 6.7: Average monomer z value, as a measure of the brush height, plotted as a function of tway
with triangles for w2 = 0.5 and L = 128. The dependence of the average & on wyy is qualitatively

similar to that of waess in fig. (6.6). The same plot is shown with circles for wy = 0.0, L = 64 in
the inset.

this local structure. As in the previous chapter, we expect the peak to correspond
the average separation between domains. This is indeed likely as the periodic spacing
between the microdomains seen in fig. (6.3) is consistent with the peak position of the
structure factor observed in fig. (6.8). The average domain spacing is approximately
twice the end-to-end distance, projected in the (z,y) plane, of a polymer in a O-
solvent. As mentioned above, this domain size is consistent with results from previous
simulations [9, 43]. Note, moreover, that the peak position stays at ¢ = 4 for all higher
values of wg. This implies that, unlike phase separation in a binary alloy, almost
no coarsening occurs. In fact, the domains seem to appear at a fixed wavelength,
which remains constant regardless of the degree of immiscibility. Similar results were
obtained in a previous study [9] where the peak in the structure factor remained
constant as one configuration was quenched. Even so, we cannot resolve small changes
in the peak position due to the limit of resolution imposed by the finite system size.
We remark that structure factors for the total monomer density gave no indication
of structure in the total monomer density.

As an indicator for the progress of micro-phase separation, we use the value of

the structure factor at the g value corresponding to the local order formed in the
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Figure 6.8: Structure factors of the laterally projected monomer density diiference, for dilTerent
values of wyy,. The results shown here are circularly averaged. A peak appears in the structure
fuctor at ¢ = 4, corresponding to the average domain separation in the micro-phase separated state.
The system size L = 128 and the gralting density & = 0.1, The solvent quality is fixed at wa = 0.5.

phase separated regime (i.e. the peak value of S{g¢)). This is plotted in fig. (6.9)
for two cases: a large system with wa = 0.5, and a smaller system with w, = 0.
For w, = 0.5, the peak height grows smoothly, suggesting a gradual crossover to
micro-phase separated states. For ws = 0 the crossover is much sharper, even though
the system size is smaller, In a previous work {43], the absolute value of the density
difference was studied over a wide range of wy; for N = 20 and N = 40. The authors
found no sharpening of the crossover for the case of larger N and thus suggested
that there was no true phase transition in the thermodynamic limit. However, they
did not vary solvent quality, which, as we have seen, plays an important role. At
presenl, we do not have results necessary for a detailed finite-size scaling analysis
of the crossover. ldeally, we would like to study the behaviour of the crossover by
systematically increasing the area of the grafting plane, keeping the grafting density,
o, fixed. An example of this is shown in the inset to fig. (6.9). The solvent quality
is fixed at w; = 0.5, and results are shown for two system sizes, L = 128 and
L = 64. When normalized by L?, there is little system size dependence, giving no
cvidence for a phase transition. Unfortunately, a proper finite size scaling analysis of

the transition would require a prohibitively large computational effort, so we cannot
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quality ws = 0.5. Note there is relatively little system size dependence.

properly address the question of the existence of a thermodynamic phase transition
at this time. Since the solvent quality affects the crossover, this analysis would be
especially interesting in ©-solvent or marginally poor solvent conditions.

As stated in the Introduction to this chapter, Marko and Witten [51] showed that
lateral micro~phase separation under melt conditions occurs when the immiscibility,
or Wy, is 2.27 times greater than the bulk phase separation value. Although our
simulations were performed for a brush in solvent, a comparison with this prediction
is still useful, particularly for the case wy = 0. A simple mean field calculation ! shows
that bulk phase separation occurs when wy, = 4h/N*o, where b is the height of the
brush. From our data, we can estimate b using h = 2(z), where < z > is the z value
averaged over all monomers. For the case of w,; = 0, fig. (6.9) and fig. (6.7) indicate
that micre-phase separation occurs when wyp ~ 0.4 and < z >~ 7.7, yielding 2.7 for
the ratio between micro-phase separation in a ©-solvent and bulk phasc separation,
This value is reasonably close to the predicted value for the melt. On the other hand

when a good solvent is present such as for wp = 0.5, fig. (6.9) and fig. (6.7) show that

VThis can be shown from a simple model, assuming laterally segregated domains and a step fuuction

. profile.
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Figure 6.10: Fluctuations of the density difference per monomer, indicating micro-phase separation,
shown as a function of = for different values of wap. Micro-phase separation is strongest where
the density profile peaks, and is suppressed at the wall, probably due to grafting. The system size
L =128 and the grafting density o = 0.1. The solvent quality is fixed at wy = 0.5.

wes >~ 1.0 and < z >~ 11.3 at the instability, giving 4.5 for this ratio. This is further
evidence that the nature of the solvent has a marked influence on the occurrence of
micro-phase separation.

In fig. (6.10), we show the mean squared density difference fluctuations per mo-
nomer as a function of z. Near the gralting plane, the fluctuations in ¢ are strongly
suppressed due to the fixing of one end of the polymer on that plane. Otherwise, the
tendency for micro-phase separation appears proportional to the density. T'hercfore,
micro-phase separation first occurs in the middle of the brush where the density is
highest and the brush always remains most strongly scparated in this region. This is
clear evidence that micro-phase separation does not occur uniformly throughout the
brush, and remains nonuniform for all values of w,;. For the melt case, a “composi-
tion oscillation” as a function of z was indeed predicted [51], although we see clear
qualitative differences. The peak of the density difference profile for the “composition
oscillation” was predicted to be very close to the top of the brush in the melt case.
We find that, in the presence of solvent, the peak corresponds to the maximum of

the total monomer density profile, and decreases monotonically toward the top of the
brush.
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We next explore micro-phase separation in poor solvent conditions (w2 < 0).
“As is known from previous work (80, 43, 30, 71, 68], 2 homogeneous end-grafted
polymer brush will undergo a lateral micro-phase separation of monomers from the
surrounding solvent at a sufficiently negative value of w,, resulting in the formation of
microdomains of monomer rich regions and monomer poor regions. In the case of an
end-grafted binary bruch, two types of micro-phase separation are possible: micro-
phase separation of monomers from the solvent regardless of type, and binary micro-
phase separation due to the immiscibility of the two polymers types, The competition
belween these two types of micro-phase separation is expected to produce interesting
phase behaviour and we have investigated some of the possibilities in a qualitative
lashion. In our simulations, both types of micro-phase separation were observed
but with very different equilibrium structures depending on the order in which the
micro-phase separations were produced.

In fig. (6.11) we show two cases. If the solvent is first made increasingly poor
with no immiscibility, micro-phase separation of monomers regardless of type from
the solvent is induced. Thus, clusters of solvent separated monomers appear with the
expected average cluster spacing, with types A and B mixed evenly inside all clusters.
As immiscibility is introduced in this solvent separated state, the types A and B phase
separate completely within each cluster. Immiscibility can also be introduced in good
solvent, then increased until the two types micro-phase separate at fixed w,;. Now,
as the solvent quality is made poor, the monomers indeed separate from the solvent,
but in this case, the previously formed binary phase separated domains determine the
nature of the clusters formed as monomers phase separate from the solvent. The result
is the appearance of larger solvent separated clusters of pure A type or pure B type.
Similar structure have been considered in work on grafted AB diblock copolymers,
grafted to the surface at the junction of each diblock copolymer [5).

Finally, we can estimate the limits of stability of the laterally homogeneous phase
using Green function methods combined with the random phase approximation. As
discussed in chapter 3, a mean field phase transition is expected when the lowest
cigenvalue of A~! becomes negative, where A is the correlation function calculated

in the random phase approximation. The details of this calculation for the binary
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Figure 6.11: Samples of configurations for the binary brush in poor solvent. Two different patterns
of annealing are shown. They are, using the notation (wz, was): (sequence left) (0,0) = (—1.5,0) -
(-1.5,1.2), and (sequence right) (0,0.2) = (0,1.6) = (—1.2,1.6). Intermediate configurations are
not shown. The system size L = 64, the grafting density ¢ = 0.1, and w, = 0.4 for both sequences,
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Figure 6.12: Lowest cigenvalue of A~? shown as a function of ¢, where ¢ is shown in the same units
as fig. (6.8). The inset shows the case for w2 = 0.38 over a larger scale. Note the instability occurs
between we = 0.38 and we = 0.40, since the lowest eigenvalue becomes negative between these
values. The value of ¢ at the point where the [owest eigenvalue becomes zero is the wavelength of
the instability in the lateral direction.

brush can be found in section A.4, which implements the techniques introduced in
section 3.3 and section 3.4. In fig. (6.12), the lowest eigenvalue of A~'(z,2';¢) is
shown as a function of ¢ for a given value of w; and w,s. The point (w},w],) where
the lowest cigenvalue becomes negative is the limit of stability of the homogeneous
phase; i.e., where binary phase separation occurs. The wave number ¢° for the first
negative cigenvalue gives the wavelength of the instability in the direction parallel
to the grafting plane. From fig. (6.12), the “critical” wave number ¢* = 0.24 4+ 0.02,
and is the same for all (w},w],) within the precision of our calculations !. This value
for ¢ is consistent with the results of our simulations. From fig. (6.8), we find from
simulation that ¢* = 0.22 £ 0.02.

The degree ol immiscibility, was, at the mean field limit of stability was calculated
over a range of w,. The results determine a “phase boundary” in the (ws, wa) plane,
belween homogeneous configurations and laterally micro-phase separated configura-
tions. The results arc shown in fig. (6.13). We can compare our simulations with -
this stability diagram. The simulation results shown in fig. (6.9) were used to charac-

terize configurations for given values of (ws, wy;) as stable or microphase-separated.

'The uncertainty quoted for ¢* is from the precision to which we calculate this number.
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Figure 6.13: Stability diagram, showing the limit of stability of the homogencous phase, caleulated
in the random phase approximation. The plus (+} signs are the limits of stability, aud therefore
demarcate the phase boundary. The line is a guide to the eye only. Based on the results shown in
fig. (6.9), the configurations from the previous Monte Carlo simulations are tentatively identified na
stable (squares) and unstable, or phase separated (circles).

The crossover point on fig, (6.9) was tentatively identified, and the results shown as
points on fig. (6.13). As can be seen, the Monte Carlo results are consistent with the
stability limit calculated with the random phase approximation. These results are

stiil preliminary, but the agreement is encouraging.
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CONCLUSION

Using 2 Monte Carlo technique based on an Edwards Hamiltonian, we have con-
vincingly demonstrated laterally inhomogencous micro-phase separation in grafted
polymer layers in poor solvent conditions. This was marked by the emergence of a
peak in the struclure factor at a wave number corresponding to the average distance
hetween micro-domains, which is approximately twice the end vector distance of the
random walk parallel to the grafting plane. Furthermore, the peak position was found
to be approximately independent of the interaction parameters w; and w; over a wide
range, consistent with previous theoretical considerations [80, 71]. Our estimate of
the onset of the lateral density instability from the behaviour of the structure factor
agreed with a prediction using the randomn phase approximation.

We have also observed micro-phase separation in a binary brush due to immiscibil-
ity interactions under various solvent conditions. We found that the brush response
Lo increasing immiscibility proceeds in two stages: an cverall expansion stage, and a
micro-phase separation stage. In the expansion stage where the immiscibility coef-
ficient 1,y is relatively small, the brush relaxes by expanding in a laterally uniform
fashion away from the grafting plane. The role of w,; is largely to “renormalize” the
excluded volume parameter w,, and polymers of diflerent type mix very well laterally.
The total density profile in the direction perpendicular to the grafting plane (the z-
direction) is the same as that of a homogeneous polymer brush if the “renormalized”
wy-parameter is used. At larger values of wy, it is energetically more advantageous
for the two polymer species to undergo micro-phase separation, and clear micro-
phase separation in the lateral direction was indeed observed. This separation is
strongly affected by the solvent quality: good solvent conditions delay the onset of

separation, and the crossover is sharper in poorer solvent conditions. We also found

9
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clear evidence of = dependence in the micro-phase separation, in that the demixing
of the two types of monomers is non-uniform along the : direction. We have also in-
vestigated, in a qualitative manner, the phase behaviour of the binary brush in poor
solvent conditions. We found different conformations depending on the detailed path
for micro-phase separation. In particular, pure domains of the two different polymer
types or mixed domains were observed depending on whether wy or w,s was changed
first. Finally, using a self consistent field analysis, we constructed a “phase-diagram”
showing the limits of stability of the homogeneous phase. ‘I'his was consistent with
the results of our simulations.

These studies convincingly demonstrate the effectiveness of the algorithm devel-
oped in this thesis, far surpassing other simulation techniques currently being applied
to the polymer brush. This opens up many interesting possibilities for future research,
In the binary brush study, we assumed that the solvent interaction for both types
was identical. In general, this is certainly not the case, and differential interactions
could be easily studied with the above method. Besides questions of phase separa-
tion, there are important effects that could be studied that would involve only minor
modification to the algorithms presented in this thesis. For example, the assumption
of a plane grafting surface could be relaxed and the case of more realistic curvature
could be studied, for which there are analytical results in the literature [6). The sta-
bilizing forces between realistic colloidal particles could then be determined through
simulation [£9]. Another interesting possibility is to use this Monte Carlo Lechnique
self consistently to determine the propeities of ionomeric colloids (62, 63], which ex-
hibit many interesting phenomena and have important applications, such as colloid
control in aqueous environments (waste-water treatment, oil recovery, cte.) [64].

Indeed, there are many outstanding questions on the cquilibrium properties of
polymer brushes to be addressed. The ideas and techniques introduced or reviewed in
this thesis should be central to developing a deeper understanding of these important

systems.



APPENDICES

A.1 Langevin functional derivatives

In this appendiy, the various terms of dH /dzx} are derived for the Langevin equation

eqn. (4.31).

A.1.1 GGaussian chain functional derivative

He = ‘z%fdn (aRaf:n)) . (A.1)

We want the functional derivative § Hg /R (n'),
. . 2
dHe _ § ijdn JdR. (n)
SR(n') OR(n'} |20? n

3 dR § JR
—'?_):b—-;_[d ( )JR(n")an

fi IR 9 R (n)
&n 9n R (n')

Recall that

=1 fdr aRi&(n—n)

2
-——/i IR n) §(n—n")

__imnmq

2 an?
using an integration by parts. Thus,

dHe __3 o
e R Al (A2)

93
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A.1.2 The discrete Gaussian derivative

Recall the discrete form for He.

3
He = 2?FZ;((R R;-1)%)
=-—3—§(JJI -2t p- '+z-"'r-’“')
252j=2 oo ava M

where a7 is the ath component of the jth monomers. There is an inplicit sum over
repeated component indices, whereas the sum over monomers is explicit.

We want the partial derivative of /I with respect to ¥,

N
{Sz? -)izZa (wiad — 200207 4 7).
8

We need to calculate,

= 21}, 8;484,4

‘)Ea JL

and

d Q! ot
—_— Fod pd=1 = =2 | =2
A( 2ax]) ) (1: 0:’:}; + il ok )

= -2 (m;';csa,nts'-l.k -+ 33{.-'&7.[161., k)

= -2 (wiﬂsj-l.k + ' 8j, k)

and finally

0 j=1.3-1 = Ja J-
dxk (m" Fo ) 2 dxf;
= 2x£¢_15,'_|,k-
Therefore,
8 3 Ny : - - (AL
f = o (e — TGk — 2 S+ 25 i) (A.d)
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Since k can take any value integral between 1 and N,

2t — 2k + 257, k#£O,N

SHe (b2
—-ﬁ (T) =1 z} -l k=0 (A.4)
g -1 .rﬁN, k=N

Not surprisingly, this result is identical to what would be obtained from a finite dif-
ference approximation to the continuous result, eqn. (A.2), being careful t¢ account

for the chain ends.

A.1.3 The discrete interaction derivative
Recall from the Edwards Monte Carlo discussion, that the interaction Hamiltonian
I} can be written, for discrete monomers and a Gaussian approximation to the delta

function,

Hy =2 (_3_2) Y exp (—% (R, — R,,,)2) . (A.5)

2 \dre mn

We want to calculate the partial derivative 9H; /3:1:5. Proceeding as in last section,

oy _ _ 3 w_z(m;az) S exp (~ 2o (Ra - Rm.))%g(m.—ftm)’-

dz}, 402 2 eyred

Again, implicitly summing over repeated component indices,

a

2
g (R —Ru) = ﬁ(:c:'.wz = 2aqay + )
3 f
o dzg xnazg* __mOzy +o m Ozl
“gzf "° dzk * dxf Ta dz},

2 (2h6nk = 2hm s — T bk + 26 )

Therefore,

OH; _ 3wy ( 3
duh T 40% \Ano?

)’):e(n,,,nm) (230ns = Tpbms — 258k + T4 6mi)  (AG)

n,n

where

¢ (Ra, R) = exp (=75 (Ro = Ra)?). (A7)
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Noting that ¢ (R,..R,,) = ¢ (R, . R,).

S e (RuuRon) (whnk = 250m = 20 8s + 75 S

n,m

/
~2(Te(RuRo) s}~ Se(RuRa) o).

" ™

IFinally,

(.)[I[ _ 3102 3 } x m ] 3 ) ‘
drz T T 92 ( ) z ('rﬂ - wﬁ) exp (_1_' (Rn ~ Ru) ) (A.8)

i7o?/) % 10!
A.2 Mean fieid brush sclution

The self consistent mean field solution was discussed in a general way in section 3.3.
In this appendix, the particulars of determining the Green function for polymers
grafted to an impenetrable interface will be discussed. For explicitness, the polymers
are considered to be grafted to a plane at z = 0, and to be excluded from the half
space z < 0. ' This method has been used widely and with much success. For some
selected examples, see references [78, 53]

Recall from section 3.3.2 that the Green function obeys ?

2
(6,1 - %-03. +V (:)) G(r,v';n) =8 (r—r)8(n). (A.9)

where G (r,r';0) = 0 for n < 0. In the lollowing, 5 = 3, as is customary in the rest

of the thesis, It can be shown [80] that G is separable,
G(r,v'sn) =G, (x,x;n) F'(z,2;n), (A.10)
where x = (z,y). In consequence [80],

(6,, - %8;‘:) G, (x,x'in) =d(x = x") 8 (n)

(3,,—%33+V(:-:)) F(z,zn)=d8(z-2)8(n), (A.1l1)

1 As in section 3.4, this section [ollows reference [80]. 1 have also benefitted greatly from notes provided
by C. Yeung and A. Balazs.
?In this appendix, we will use thz notation
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where 92 = 92 + 2. We recognize G, (X, x;n) as the propagator for free diffusion ?,

12

Go (%, x'in) = #j\—rex (—l-)—(%j\—f—l—) . (A.12)
The one dimensional Green function £ (z,z';n) can be solved for numerically as
discussed in section 3.3.2, using the adsorbing boundary condition F (z,:;n) =0 for
2,2 =0 [21).

As in section 3.3.2, a sell consistent solution is obtained by setting V (z) =
wy{d (2)}o using the resulting Green function to solve for (¢ (z)},, then iterating until
convergence is attained. Note, however, that eqn. (A.11) yields the Green function
for one polymer in a sell consistent field. The brush concentration is obtained simply

by multiplying the one polymer density by the grafting density o,

ofdz [Ndn F(z,0;n) F(<',z;N = n)
¢(z) = 45 F (7.0, ) : (A.13)
"T'hus, one determines the Green function for one polymer in a self consistently deter-

mined field of all polymers in the brush.

A.3 Mean field brush correlation function

A general calculation of the correlation function irr the mean field approximation
was presented in section 3.4.1. In this appendix, the details of this calculation for
the polymer brush is discussed. As in the previous section, much of this section’s
discussion deals with treating the x direction analytically and separately from the =
direction.

As in section 3.4.1, we need to calculate the mean field correlation function A,

Ao (r,r) = (6(r) #(r'))o — (6 (r))o(d (r'))o, (A.14)

where (), is the mean field average, calculated with the mean field Green function.

Note that the concentration can be written

Br) = T i (x), (A15)

1See, for example, reference {11], section 7.7.
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where ¢; is the concentration due to the ith chain at r. Thus.

A, {r.r) = Z{ (o (£) 0, (")) — (& (1)), (), } (A.16)

12

In the mean field approximation, the chains are independent. Therefore, for § # J,

(@i (1) o, ('))o = (& (r))u{0, (). (A.17)

and equ. (A.16) becomes

Ao (I‘. I") = Z { (‘3. (l‘) 0l (l"))., - (Ql (r))n(d’l’ (l"))‘, }

= A; = A

Similar to eqn. (3.78) for the average iu terms of the Green Munction, the first term

on the right hand side becomes

A= Z -lé-jdr,v LNd’n l[)“dn'

{ Gry.t; N =n)G(r,v'sn-0')G (r',xi; n') +
Glry, e N =G (t,rin - ") G (r,xf,; n') } ,

where
zZ= fdr,v G (ry,ro; N) (A.18)

and x! = (xi,1,0), the grafting point of the ith chain. Replacing the sum by an

integral over the grafting surface,

Z:a/dxo, (A.19)

we find

A;=~Z,— X, /drw foNdn fondn'

{ G(rn,i; N —n)G(r,t'sn =) G (r,x37') +

G(ry, ;N —n)Gir',r;n - n') G(r,x,;n') } )
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The Green function is separated as in the previous section;
o N n
A= —fx,, ]dXNdsz dnj dn’ { Go(xnyX; N —n) F(zn,z; N —n) X
Z 0 0
G, (%, %"in—n') F(z,2in —n'") G, (X', x030") F (2, 0;n') +
Go (XN X5 N =) Fzn, 2y N =n) G, (X, x;n = n) F(2', z;n — n') x
G, (%, %o; ) F (2,0;1") } .

From eqn. (A.12), we see that G, (x,x'; V) is normalized. Performing the integrals

over xy and X, therefore gives
N n
Ay = %fd-‘-::v fo dn f_ dn' G, (x,x';n - n') x
{ Flen, 5N —n) F(z,2'yn —n') F(,0;n") +
F(zn, 2"y N =n) F (2, z;n - n') F(z,0;n") } , (A.20)

using the fact that G, (X', x;n - n’) = G, (x,x';n — n'). Similar considerations show

that
A —"f"dd' deydzly { Gy (x,x'sn+ 1/
=gz J, enan zydzy o (X, Xsn 4+ n') x
F(znyz; N =n) F(z,0;n) F(zh,2'; N =n') F (2,0;n") } (A.21)

These equations, eqn. (A.20) and eqn. (A.21), give the mean field correlation func-
tion for a polymer brush, in terms of the one dimensional Green function F'(z, z'; N),
whose determination was discussed in the previous appendix. Diagonalization of the
correlation function is also simpler in this form; the correlation A, is seen to be a
function A, (x — x', 2, 2'). Translational invariance in the x direction means that the
cigenmodes are the Fourier modes in this direction. A, can be easily Fourier trans-
formed analytically, so for every g of interest, only the matrix (A.), (z,z’) needs be

diagonalized numerically.



A: APPENDICES 100

A.4 Mean field stability of binary brush

The interaction Hamiltonian for the binary brush in good solvent is given by equ. (6.2)

H;=fdr(%2¢2( )

where ¢ = ¢, + ¢. The mean field approximation to eqn. {A.22) can be derived with

with ws set to zero,

(r) (r)) , (A.22)

the definitions
¢ (r) = ($(r)) + d¢(r)
¢a (1) = (¢ (r)) + bu (1)
¢ (r) = (B (r)} + S (r)

where the average () denotes the equilibrium average. Substituling these expressions
into eqn. (A.22) and ignoring terms of second order in the concentration fluctuations
gives

'wg

Wab j drd (r

Since the average concentration {¢;) is a constant with respect to functional integra-

drg? (x) der(<¢(r))*+-2<¢(r))6¢(r))

(r)) + (¢ (r)} ¢y (v) + (s (r)) 86bu (r)).

tion, the terms involving only averages can be set to zero without loss of generality.

The concentrations can be defined microscopically;

fdms (c — Rq(n)),
IEA
where the sum Y ;e x is a sum over all polymers of type X. Consequently,

o drd? (1)~ 5 f s (3 (R ()

Lo [ drga (r) o (r) 52 [ e (,GB #e (Ri(m)) +Z(¢"(R“'(")»)’

i€

where Y; = Yica + Liepn. Using the Gaussian chain energy contribution

Hg = wz_[d (3R(n) ,
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the Edwards Hamiltonian in the mean field approximation hecomes

I, =

S [ dn (;,’, (20" o s + 2 0 R (n)»)

ieA

Z/ dn (2::,2 (3—R,f—n)) + w2 (¢ (Ri(n))) + w"” {%a (R (n)))) (A.23)

eB

Thus, in the mean field approximation, all chains are independent, only interacting
through the self consistently determined mean fields {¢), (¢a) and {¢s). In the fully
symmetric case, where the number of A type polymer equals the number of B type

polymers, (@) = (¢s) = (@) /2, and the mean field Hamiltonian becomes

=3 [ dn (2",’) (aR,f”)) + 4+ 22) (s (n)))) (A21)

Equilibrium averages for this system can be calculated using Green function methods,

as discussed in section 3.3.2 and section A.2,
if the concentration fluctuations are retained to all orders, then the full Hamilto-

nian is written

H = H, + Hs, (A.25)
where f, is given by eqn. (A.24), and

H = | dr[ ) +ﬁ£6¢u()6¢b(r)]. (A.26)

In order to be sensitive to binary phase separation, it behooves us to rewrite eqn. (A.26)

in terms of the total density and the density difference
¢ (r) = ¢a (r) + ¢ (r)
¢ (r)=¢a(r) =5 (r).

In terms of these new variables, eqn. (A.26) becomes

Hy= [ar [(52+52) (660 - 22 5o ()] (A.27)
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As an approximation, assume that there are no fluctuations in the total density; i.c.,
d¢ = 0. Therefore, fluctuations are assumed to be purely compositional. In this case,

the Auctuation Hamiltonian is

Hs = — f dr"’s“" (5 (r))?. (A.28)

Following section 3.3.2, the correlation function in the random phase approximation
is written
Whab

Ale,t) "' =A, (r,¢)} = —0(r=r), (A.29)

where the correlation function is the correlation of fluctuations in the density differ-

ence
A(r,r') = (80 (r) 5 (r')). (A.30)

The mean field correlation A, is calculaied with respect to the mean field Hamiltonian
H,, eqn. (A.24). The details of this calculation.are discussed in section A.3. The mean
field solution is unstable when the lowest eigenvector of A becomes negative. Duce to
translation invariance in the plane parallel to the grafting plane, the cigenvectors are

the Fourier modes; thus,

fdz'fdx'Ao (r,r)exp(i(q- %)) = d(q+ q) Aa (2,25 q) (A.31)

Here, r = (x,2) and q is a vector in the (x,y) planc. The Fourier transform can
be performed analytically with respect to x. Then, for cach value of q, one can
numerically diagonalize A, (2,2'; q) to obtain the eigenvalues. Eqn. (A.29) can then

be used to determine the eigenvalues of A.
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