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RÉSUMÉ

Les propriétés d'équilibre de polymères grerrés par une extrémité 1, une intel'face

impénétrable (la "brosse polymérique") sont étudiéŒ. Les conccpts cl les t'~chni'lnes

de physique statistiqne des polymères pertinents il l"C probleme sont discutés. En pal"

tieulier, une technique de simulation très efficace pour étudi,'r les brosses poIYIl1·;l'iqu,'s

est introduite. Celte technique est illnstrée par des simulations de systèmes de brosses

polymériques bien caractérisés. Les résultats des étndes originales de separation de

phase dans les systèmes de brosses polymériques sont aussi prése'ltés. Une instabilité

dan~ la densité latérale des monomères est trouvée dans les conditions de solvant sn Ili­

samment mauvais. La valeur du seuil d'instabilité est en arl'ol'll aveC nne pl'édiclion

précédente. Une instabilité compositionnelle est tronvée dans les (icnsités latérales

d'une brosse de deux composantes avec des conditions d'immiscibilité suffisante entre

celles-ci. Les l'frets de conditions divel'ses dn solvant sont considérés. Enfin, h, valenr

du seuil de l'instabilité compositionnelle est trouvée avec nne techniqne de champ

moyen autocohérent, et les résultats sont comparés 1, d!'s simulations.
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ABSTRACT

Tllc c'lllilibrilllll propcrtics of polymcrs cnd-grafted to ail impcnetrable interf'\ce, the

"polymcr brush", arc investigatcd. Rclcvant co; .•~pts ~nd tcchniqucs of statistical

polymcr' physics arc discussed; in p,•.rticular, a simulation tcchniquc that is vcry ef­

ficic/lt for studying polymcr bl'llshcs is introduccd. This tcchnique is dcmonstrated

through simulations of a wcl1 characterized polymcr brush system. The results of

OI'iginal investigations of phasc scparation in polymcr brushes arc also prcsented. An

instability in thc lateral monomer dcnsity of a polymer brush is observed undcr suf­

ficicntly pOOl' solvent conditions. Thc onset of this instability is found to agree with

a prcvious prcdiction. A compositional instability is found h the lateral d~nsities of

a two-componcnt polymcr bl'llsh under conditions of sufficient immiscibility between

thc two componcnts. The effccts of varying solvent conditions are considcred. Final1y,

t.hc onsct of thc compositional instability is dctermined using the technique of the self

consistcnt mcan field, and the results compared to simulation.

viii
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INTRODUCTION

1.1 po'lY-mel'll.

DNA

rnRNA

lrunshuion

Prolein

Figure 1.1: Thc cC/llral dogma of molecular geuclics.

"Modern biochemical research on gene structure and fundion has brought to biology

an intellectual revolution comparable to that evoked over a hllndred years ago by

Darwin's theory on the crigin of species" [481. This revollition is the development

of the central dogma of molecular genetics, illllstrated above in fig. (l.l), em·

bodying the principle of genetic continllity through which life and evollition progress.

It describes the transcription of the hereditary information of DNA into RNA, a

messenger molcclile that copies the genetic code of a ~pecific fragment of DNA for

translation iuto proteins, the building blocks and catalysts rcsponsible for building

and maintaining the ccli, ultimately providing the infrastructure for the replication

of DNA. While it is difficult to overemphasize the significance of this proccss and the

1



miracle of biology that attends it, this thesis is not about biochemistry, nor about

gcnctics, 1101' the evolution of species. Rather, it is about polymers. Whatever else it

may be, the central dogma of molecular genetics is fundamentally a statement about

polymcrs. Each element, every molecule of DNA and RNA, each protein, structural

or catalytic, is a polymer, and molecular genetics is the relationship between them.

Life, it would appear, is a creation of polymers, a process of polymers reinventing

thcmsc1ves and producing life along the way.

A polymer 1 is a molecule composed of repeating structural units, known gener­

ically as monomers. The word polymer itself derives from the Greek raots po/us,

meaning "many", and mcros, denoting parts, or segments [74]. For example, ail the

DNA, or deoxyribonucleic acid, in an organism is formed from only four basie struc­

turai units, the nucleotides, which are the monomers of DNA. Messenger ribonucleic

acid, or mRNA, is very similar to DNA, composed also of four nucleotides whieh vary

only slightly from those that constitute DNA. In fact, the mRNA molecule is designed

to mirror the information contained in a Iinear sequence of nucleotides in a section

of DNA. A sequence of three nucleotides in the mRNA code uniquely for an amino

acid, of which there are twenty. The amino acids are the monomers of the proteins.

Another, more operational definition asserts that a polymer is formed when the

conditions for adding the (n + l)st monomer become independent of n 2. In other

\Vords, there need not be specialized reactions to add subsequent monomerSj pro­

vided that certain conditions are maintained, an arbitrary number of monomers can

be added. In consequence, the degree of polymerization, the number of monomers

comprising the polymel', can be very large. Consider that in one human cell, there

are forty six chromosomes, each composed of one continuous, double stranded length

of DNA. The contour length of ail this DNA is approximately t\Vo metres [48]. This

yields a contour length for a single molecule of human DNA on the order of centime­

tres. That is, each molecule of DNA is of macroscopic size. In fact, a molecule of

DNA has a degree of polymerization on the order of 109 , and is the largest known

macromolecule [32J 3.

•
J: INTRODUCTION 2

•
1Compound whose molccule is formed from many repeated units of one or more compounds [3].
2Sce the introduction of reference [22].
3The bnse sequence of the human genome hns bccn estimated to require 820,000 pages of fine print,

where a bnse is reprcsented by one letter [48]. This means a single molccule of DNA would require
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1: INTRODUCTION

Polymers can also possess extraordinary physical properties, which has driven an

extraordinary interest in the developmcnt of synthetic polymers. A simple exam­

pIe of a synthetic polymer is polyethylene, illustratcd in fig. (1.2). Pol~'ethylene

Il Il "
"" /" 1 1 1

c=c .. ·c c c
/ " 1 1 1Il Il

Il Il "n

Figure 1.2: The synthetic polymer polyethylene is shown on the right, with the constitnent 11I0nomer
ethylene shown on the left. Polyethylene cnll hnve n high degree of polymeri_ntion, with Il, the
nllmber of repent IInits, on the order of 10'.

is the material used, for example, in plastic bags and some plastic squeeze bottles.

When one or morc of the hydrogen side groups in the ethylcnc monomcr arc substi­

tuted, polymcrs with diffel'Cnt, uscful physical propcrtics ,·csult. If ail hydrogcns arc

rcplaccd by floul'incs, the resulting polymer, poly(tetranolll'octhylcnc) or "'l'cnon»,

is a weil known non-stick coating useful for frying pans and mcchanical bcarÎngs.

With similar substitutions one can produce polyvinyl chloride (pipes, raincoats, ... ),

polystyrene (packing chips, ... ), poly(rnethyl methacrylate) ("Plexiglas"), among

many others [73, 60J. Because of the low density and high strength of some polymers,

they have become some of thc most advanccd synthetic materials. Polymers snell

n

Figure 1.3: Poly(pnraphenylene benzobisoxllZole). This polymer is highly oriented since the only
ensy rotntion is about the nxis. A close vnriant is Kevlar, poly(parnphenylelle terephthalnmide).

as poly(paraphenylene benzobisoxazole) (fig. (1.3)) and related materials are highly

oriented, closely packed, and consequently form materials with outstanding tensile

strengths, despite being very light [53]. Still, it is interesting to compare these most

close to ten thousand pages filled with print much smaller than in this footnote.



advanced synthctic materials to material produced quietly in our back yards by crea­

tures often beneath our notice. "Spiders, aided by several million years of evolution,

have succeeded in producing a polymer fiber [major ampullate silk (MAS)J with a

strength-to-weight ratio exceeding that of nearly ail synthetic materials. Even the

exceptions - specialty fibers such as carbon, silica, and sorne variants of Kevlar - pale

in comparison when toughness (energy required to bring about failure) is taken into

accounL" [72J. A single strand of silk can be kilomctres in length, giving silk cloth the

characteristic smoothness when woven that makes it much valued as a fabric. It is

naLurally biodegradable, and can be produced under normal conditions in an aqueous

. cnvironment.

•
1: INTRODUCTION 4

•

The final example of this introduction is a technology developed five millennia ago

in Ancient China and Egypt, where it was discovered that the use of gum arabic 1

allows carbon black Lo mix uniformly in water [59J. This mixture was the earliest form

of ink and was used Lo write on papyrus, revolutionizing the recording of information.

This is an example of colloidal stabilization, with the gum arabic stabilizing the

dispersion of the carbon particles in solution. A common mechanism of colloidal sta­

bilization is illustrated in fig. (lA), showing polymers attached through one end onto

Figure 1.4: The polymer brush.

the surface of a particle. Provided the monomers are able to mix in the surround­

ings in which they are immersed, the polymers will stretch away from the relatively

high monomer concentrations at the interface, forming a polymer brush. Since the

interpenetration of brushes is entropically unfavourable, brush-carrying particles can

be kept sufficiently far removed to avoid coagulation 2. The polymer brush will be

the primary focus of this thesis.

1A substance obtaincd Crom the acacia trcc.
2A useCul example oC a Cailure oC stabilization is in milk, where enzymatic removal oC natural occurring
polymer brush.. r..ults in the coagulation oC milk proteins, producing cheese.



Polymers, then, come in many forms and serve many functions. Nature has dL~

veloped extremely sophisticated materials with polymers to solve very demanding

materials problems, as polymer scientists arc learning to do. A deeper understanding

of polymers, their structure and interactions, willlead not only to the creation of new

and important materials, but to a better understanding of proccsses in ail living s~'s·

tems. Polymers appear in the simplest fOl'ms of life, catalyze the 1I10st sophisticated

reactions, provide much of the structure of the wodd al'Ound us, And from these

polymers arise automobile sidepancls, bulletproof vests, human beings.

•
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1.2 Polymer pllysics and univel'sal descriptions

Statistical physics has been described in an insightful way as the "gestalt of physics" [42].

In other words, this part of phy&ics admits that the whole is sometimes greater than

the sum of its parts, that studies the properties emerging from the interactions of

things with as much interest as the things themsc1ves. A modc1, along with the sta­

tistical theory that elucidates its properties, l'an explain properties in diverse systems.

It l'an be of as much interest as a particular material in which it is made manifest.

With this in mind, consider the troubling question of the l'Ole of statistical physics

in polymer science. The study of polymers at first seems inextricably tied to ques­

tions of chemistrYi i.e., what arc the monomers and how arc they connected. Indeed,

polymers are named by specifying the chemical monomer and adding the prefix llO/Y,

as in polyethylene or polystyrene, giving the impression that this describes the rcl­

evant aspects of the polymer. However, a polymer has properties that could not be

easily predicted from examining one of its monomers. To take one example, the de­

termination of the three dimensional structure of a protein given its linear sequence,

or primary structure, remains an outstanding challenge [15] l, l'ven though the

protein 's tertiary structure is known to be indispensable to its function. Polymer

physics, in contrast, searches for general descriptions to study those properties that

are hopefully common to many polymers. "Here we try to omit the details of the

chain structure as much as possible and to extract simple, universal features which

1Furthermore, there are many indications that it is nccessnry to understand the dynamics of proteins
in order to understand their function [27) .



will remain true for a large class of polymer chains 1". For example, a polymer could

be considered a long, thin, flexible object that doesn't intersect itself. Another exam­

pie is a long, thin, flexible object that does intersect itself. Whether or not the object

intersects itself has a significant elfect on its large scale structure. That is, we seek

to describe the properties that arise from the interactions between many monomers.

We believe such descriptions are universal, applying to a class of polymers and not

simply to one in particular. Thus, a polymer is more than so many of its constituent

monomers - it is a "gestalt of monomers".

•
1: INTRODUCTION 6
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1.3 About tllis tllesis

This thesis consists of both an introduction to relevant aspects of polymer physics

as weil as results of original research conducted in the course of this degree. It

divides naturally into two parts: the next two chapters comprise an overview of

general aspects of polymer theory important for topics to be explored later, while the

chapters following concentrate on the subject of the present work, the polymer brush,

and describe the results of our investigations of these systems.

The important pedagogical task of describing a polymer with the language and

concepts of statistical mechanics will be the focus of chapter 2. It will be argued that

essential aspects of polymers are captured by a self-avoiding random walk model,

which is a conceptually simple and weil defined. Unfortunately, its configurational

properties cannot be described analytically, and for this reason, it will be useful

to analyze the self-avoiding walk as a pUl'ely l'andom walk, whose configurational

statistics are known, with short range interactions between ail segments of the walk

to model the self-avoidance. In the absence of these short range interactions, the

l'andom walk polymer is described energetically as a connected linear sequence of

ideal springs. In this manner, the polymer can be described with a Hamiltonian,

known in the polymer literature as the Edwards Hamiltonian.

Given a Hamiltonian appropriate for systems of polymers, one can access the

techniques of equilibrium statistical mechanics to determine the systems' equilibrium

properties. In chapter 3, the statistical methods used in this thesis will be described

ISce rcfercncc (17). pg. 25



within the framework of the Edwards Hamiltonian. Monte Carlo and Langevin sim­

ulation will be discussed in general, as weil as the particulars of implemcntation with

systems of polymers. Mean field theory will be introduced, in which the potential of

interaction between polymer segments is replaced by a self consistently determined

average field which is proportional to the average monomer density. Finally, correc­

tions to the mean field theory will be examined assuming that the lluctuations from

the mean field solution are Gaussian.

For the remainder of the thesis, discussion will specialize to polymer bl'llshes.

The polymer bl'Ush will be re-introduced in chapter 4, along with important rcsults

and representative papers selected from the literature. The method or simulation

with an Edwards Hamiltonian will be applied to the brush in its canonical rOrmj

i.e., a homogeneous brush grafted to a plane interface in good solvent. This will

serve both to demonstrate the method and to illustrate many features typical of the

bl'Ush. The next two chapters will report the results or original iuvcstigations of phase

sc,paration hl polymer brushes. If the solvent in which the brush is immersed is made

sufficiently pOOl', the monomers will phase separate rrom the solvent. Similal'Iy, not ail

brushes are homogeneous in composition, leading to the possibility that immiscibility

between polymers of different kinds will drive a phase scparation where incompatible

polymers phase separate. The polymeric connections of the monomers, the presence

or a surface, the solvent quality, and the grafting constraint ail combine to modify

phase separation in both cases. The polymer brush in pOOl' solvent will be examincd in

in chapter 5, where a predicted density instability will be confirmed with the results

or an extensive simulation. The onset of this instability will be seen to compare

favourably to predictions from a !inear stability analysis. A particularly simple form

of heterogeneity, the two component or "binary brush", will be considered in chapter

6. Simulations of a compositional instability, the demixing of the two components,

will be combined with a numerical mean field analysis to examine the effects of solvent

qualityand immiseibility.

•

•
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2

THE SPHERICAL POLYMER

In the introdudion, a polymer was defined as a connected sequence of monomers,

although the precise nature of the monomer was not specified. I-Iowever, under rea­

sOllable conditions, it is possible to have a generic understanding of polymers, to

e1ucidate properties that are independent of the precise chemical composition of the

polymel'; i,e., therc is a level of description in which the exact meaning of "monomer"

is irrelevanL. A monomer is therefore understood to be st7'1lctlt7'c/ess, without intel'llal

features, unlike the chemical monomer from which a real polymer is made, Perhaps

the ~trllcturetess monomer is coarse-grained, a representation of many neighbouring

chemical monomers. It could be endowed with l'articulaI' properties (size, charge, hy­

drophobicity, etc.) as a whole, which coutd be regarded as an average over the coarse

grained sequence, Presumably, two polymers that at sorne degree of coarse graining

can be described by the same structureless model should have the same large scale

properties, The term "polymer", therefore, will from now on refer to this statistical

polymer comprised of structureless monomers, unless otherwise clear in context.

In this chapter, a weil dcfined model of a polymer will be developed and adopted

for the balance of the thesis. A natural point of departure is the description of a

polymer as a random walk, where a bond of the polymcr is repre~ented by a step

of the walk. By introducing a l'articulaI' form of l'andom walk, the Gaussian chain,

the l'andom walk can be describcd by a I-Iamiltonian which determincs the average

'sqllared bond Icngth. It will afterwards be seen that under typical conditions, the

random walk model is not adequate since self-avoiding interactions between monomers

far apm't along the sequence have a considerable effect on polymer statistics. This

"excluded volume" effeet will be accounted for by introducing n-body interactions

between monomers of the Gaussian chain. In this way, the self avoiding walk can be

8



desnibed by a Hamilto)Jian, the Edwards Hamiltonian, which combines the Gaussiau

chain and monomer interaction potentials. A polymer will be henccfol·th concl'ived

of as a self avoiding walk described by an Edwards Hamiltonian.•
2: TIIE SI'IIERICAL POLYMBR 9

•

2.1 Random walk polyme1'8

1" t:le random walk model, a linear polymer 1 composed of N identicalmonomers

joined by bonds of length b is considered to be a l'andom walk of N steps, each with

step length b. This is illustrated in fig. (2.1) as a walk of N steps on a latticc of lattice

constant b. A random walk polymer is thus specified by two paramders: the step size,

~

Figure 2.1: A polymer as represented by a mndom wnlk on a Inttice of Inltice COllstnllt b.

b, and the degree of polymerization, N. This moclel determines the mannel' in

which monomers are connected, or the connectivity, in a simple and useful manner.

With the lattice random walk model, it is straightforward to calculate the possible

number of configurations, or unique ntndom walks. The number of cOllfigurations

of a polymer with N monorners is r = zN, where z is the coordination number of

the lattice. Thus, the number of configurations quickly grows as N increases, and is

large even for moderate values of N. Most descriptions of the polymer will therefore

be statisticalj i.e., the result of an average over the ensemble of configurations of the

polymer. For example, one important description is sorne rneasure of the size of the

polymer 2, which could be, for example, the absolu te value of the displacernent vector

IThis thesis will deal exclusively with linear polymers in three dimensions. Of course, there nre mallY
other interesting polymer architectures, from linear polymers with a few side branches, to polymers
attached to themselves in a two dimensionailletwork [38. 61].

2Ali mensures of size of a random walk must be simple multiples of each other; thus, any one will



between the two ends of the polymer, the end vector R, averaged over ail possible

configurations.

A more general configuration of a l'andom walk, not restricted to lie on a regular

lattice, is shown in fig. (2.2). The configuration is specified by the set of monomer

•
2: TUE SPUERICAL POLYMER

.......'....

N

•

10

Figure 2.2: A configuration of a raudom walk polymcr, not rcstrictcd to a latticc.

coordinates

(2.1 )

whcre Rn is the coordinate of nth monomer. A configuration can also be specified by

the set of bond vectors {Tn } 1, where

(2.2)

•

With these definitions, it is straightforward to calculate the "size" of a polymer; for

example, sorne average of the end vector R. If there is no preferred direction in

space, symmetry demands that the average value of R must vanish; therefore, the

first non-zero moment is (R· R). Since R can be expressed as the vector sum of ail

bonc! vectors, R = E~;II T n ,

suffice 88 a charncteristic length scalc beyond the monomeric length. This will be shown from
dimcnsional analvsis.

ITc completely sp;"ify the configuration, one monomer coordinate must be given in addition to {Tn },
although it is usuaUy sufficient to know only the relative monomer positions.



•
2: THE SPHERICAL POLYMER Il

N-l

= L (Ti' Ti)
i,i=l

= L(Ti' Ti) +L(Ti' Ti)
i~j i

= L (Ti' Ti) (2.3)
1

where Li;o!i (Ti' Ti) is zero since the steps are uncorrelated. If (T.. . T.. ) = b2 inde­

pendent of n, then the size of the polymer

where the scalar R:= (IRI2)1/2, the root mcan squarcd (l'ms) value of the end vector

R. This illustrates an important exponent, R ~ N", which specifics holV the size of

the polymer scales with the degree of polymerization. For the l'andom lValk, v = t.
MOI'eover, the bond length b only appears in this calculation through its idcntilication

with ((T.. ' T..»1/2, suggesting that the important random walk pammeter is the

bond variance, b2•

Sorne important definitions arising from the introduction of the random lValk l1lodei

are summarized in table 2.1.

N degree of polymerization

b2 bond variance

T .. bond vector

R end vector

R l'ms value of the end vector

Rn position of nth monomer

{Rn} set of mon"mer coordinates

1 symbol 1

Table 2.1: Parameters and definitions from the random walk model of a polymer.

•



III this section, dimensional analysis will be u,ed to establish important scaling

properties of a mndom walk 1.

Suppose a chain of N monomers is transformed by grouping together Amonomers,

resulting in a chain with N' = NIA monomers. In l'articulaI', the bonds of the

tmnsformed chain connect every Ath monomer, as illustrated in fig. (2.3). The mean

•
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2.1.1 Dimensional analysis of the random wall.

12

•

Figure 2.3: A random wnlk configuration, and iLs "renormalizcd" counterpnrt, after grouping to­
gether monomers in groups of À = 2. '.

squared bond length of the transformed chain is the mean squared value of the end

vector for the groups of A monomers. If 1 < A<< N, then each group is individually

a ralldom walk; therefore,

N -+ NIA

(2.5)

•

Eqn. (2.5) summarizes an important transformation propel'ty of a random walk. It

describes the l'escaling of the basic unit of the polymer chain, the roarse-graining of

the monomers.

The coal'se-graining process should not affect "macroscopic" properties of the l'an­

dom walk, such as the size. This can he explicitly verified for the mean squared value

of the end vector, R~. From eqn. (2.4),

IThis discussion follow8 reference [22]. pg 32.



which is the size of the original chain. Therefore, coarse graining a random walk

results in another random walk that retains the same macroscopic property.

'1'0 this point, the rms value of the end vectol' has been used to c1111l"llcterize the

size of a random walk polymer. This choice is somewhat arbitrary, as many otller

lengths could have been chosen; for example, the radius of gyration. Nonetheless,

dimensional analysis shows that any definition of size can differ from another only by

a simple factor, and will have the same dependence on N and b.

Recall that there are only two parameters in the random walk modcl, the step size

b, and the number of steps N. Flll'thermore, the average size of a polymer, regal'liless

of its definition, must have dimensions of length. Thus, the size of the polymer must

be expressed as

•
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R(N,b) = F(N)b

13

(2.6)

where F is a dimensionless function of its arguments. F has no dependence on b

because there is no dimensionless combination of parameters involving b. However,

wc expect the size of a random walk polymer to be invariant under transformation

eqn. (2.5); thus,

F(N)b= F(N/>')b>J

must be independent of >.. Assuming that F (x) _ xO
,

F(N/>')b>.t - (N/>.n>.t.

This is independent of >. if Cl = 1/2, and so the size R satisfies

(2.ï)

(:.t8)

(2.9)

•

Thus, any scalar quantity with the dimensions of length and which is invariant

under coarse graining is simply a multiple of R. In this sense, I.here is only one

characteristic macroscopic lengthscale, and one can Iimit discussion to Il without

losing generali ty.

2.1.2 Finite correlations along the chain

Until now, zero correlation between bond vectors has been assumed, although gcn­

erally, one would expect a large degree of correlation amongst monomers close in



sequence. For example, in ~;IC simple polymer polyethylene, there are fixed bond

allgles betweell neighbouring monomers, resulting in large correlations amongst near

lIeighbours on the polymer. Similarly, there are many models with this property

in the literature: fixed bond angle models, models with specific bond angle poten­

tials, semi-rigid polymer models, amongst others. Ali these models are characterized

by fini te correlations along the contour of the chain, and as a result, are not truly

random.

Nonctheless, the results derived for a random walk still apply to models with a

fini te correlation length as long as there is the freedom to coarse grain the polymer

illto sections much larger than this correlationlength 1. These resulting coarse grained

units will be uncorrelated by construction, and according to the basic transformatio'l

property of a random walk, eqn. (2.5), this equivalent polymer is an uncorrelated

mndom walk with a renormalized bond length. As a consequence, molecular details

that determine the persistence of correlations, though certainly important to physical

properties, can be viewed as important only at length scales on the order of the

correlation length. The calculation of the correlation length may in general be very

difficult, and may depend sensitively on the microscopic specifics of the model being

considered. However, if only long wavelength properties are of interest, the effect of

molecular details is only to determine the bond length, which can be considered a

phenomenological parameter to be determined by comparison to experiment.

•
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2.1.3 Tlle Gaussian cllain

The random walk has thus far been parameterized by the degree of polymerization,

N, and the bond variance, b2 • As the exact nature of the bond only affects the random

walk through rescaling the bond variance, wc are free to choose a random walk model

fOI' its analytical convenience.

ln the Gaussian chain model, the probability for a bond ta take a particular

length is assumed to satisfy a Gaussian distribution. Typically, each individual bond

distribution is assumed to have the same variance, 0'2. In three dimensions,

•
( 3 ) ~ (3ITI2

)P (T) = 271'0'2 exp - 20'2 •

1This correlation length is also known as the persistence length (32).

(2.10)
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The probability of a configuration. {r;}. is thereforl'

N-l

P {r,} = II P(ri)
i=l

15

(2.11)

The assumption of a random walk is present in eqn. (2.11) in the \ndependence of the

individual bond distributions. Eqn. (2.11) can be written

where

P {7;} - exp (- k~,[, 11(1 {r;}) , (2.12)

(2.13)

•

Thus, the Gaussian probability is analogons to a Boltzmann factor, where the "lhLlnil­

tonian" of the Gaussian chain is given by eqn. (2.13). For the remainder of the thesis,

kaT will be set to one. The Gaussian chain reproduces onr previous lixed bond length

model if (J'2 = b2• The Gaussian chain is not idcntical to the previous model, but

equivalent in that it has the same number of monomers N. the same mean squareJ

bond length, and preserves the same size R of the previous mode!.

An alternate description of the Gaussian chain specifies the position along the chain

by a continuous index n, rather tllan discrete indices labelling discrete monomers.

This is the continuous chain, where the polymer is considered to he a continuous

curve. ln this description, the contour length is specified along with the chain's

"flexibility", which is reIated to R. This Iimit is sometimes called the functional

integral Iimit, so-called because in this Iimit, the polymer partition function is a

functional integral.

The continuous chain Iimit is iIIustrated in fig. (2.4). lt is achieved by increasing

the number of monomers in the discrete case arbitrarily, decreasing the bond length

to zero in such a way that the average size of the polymer is prcserved. ln the discrete

case, the position of the nth monomer is given by Rn, where n is a discrete index. ln
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..........

Figure 2.4: Continuous chain limit of the discrete chain.
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the functional integrallimit, n becomes a continuous variable, and the set of discrete

monomer positions {R,,} becomes a function of n, R(n). If the contour length of the

curve is L, the ratio R2 / L is sorne parameter, b, which is a measure of the flexibility

of the chain 1. Furthermore, any portion of this chain is assumed to be characterized

by the same value b. Thus, if r is the distance along the contour of the curve, then

for any portion of curve Ar, 0'2/Ar = b, where 0'2 is the mean squared separation of

the ends of the portion. If Ar is the end vector for this portion of chain,

P (Ar) ~ exp [- 2:2 (Ar)2]

= exp [-2b~r (R(r) - R(r - AT))2]

_ [_ 3AT (R(T) - R(T - AT))2]
-exp 2b AT '

where R(T) is the spatial coordinate of the point along the chain a distance T along

the contour from a chosen end. The Gaussian chain Hamiltonian thus becomes

il = ~"A (R(T) - R(T - AT))2
G 2bLJ T AT

~ rLd (8R(T))2
-+ 2b Jo T 8T ' (2.14)

whcre the integral holds in the limit AT -+ O. Finally, eqn. (2.14) can be written in

IThis quantity is usually calle<! the Kubn lengtb, or the statistical segment lengtb, and is related
to the persistence length (see section 2.1.2).
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terms of the dimensionless index n by setting T = ub, in which case

Ii = 2. foNd (aR(U))2
G?b2 Il a_ 0 n

17

(2.15)

The Gaussian chain Hamiltonians for the discrete and continuous random walk models

of a j)olymer are shown here in summary:

HG {Ri} = 2~2 4: (R; - Ri_t)2
1

3 rN (aR(U))2
HG [R (n)J = 2b2 Jo dn an (2.16)

Sorne definitions relating the discrete case and its func~ional limit countcrpart are

summarized in table 2.2.

1 continuous

{R,,} R(n) polymer configuration

/{R,,} f[R(n)J configuration functional

d {R,,} D [R(n)) functional measurc

E~ foNdu integral along polymcr contoUl'

R" - R,,-t aR(n)/an derivative along contour

1 discrete

Table 2.2: ConLinuous Iimit equivalents to the diserete chain.

The Gaussian chain is often called the ideal chain, refiecting the analytical faeility

of this model. Unfortunately, the l'andom walk description is very limited in its ability

to describe polymer properties. What has yet to be discussed is the vital contribution

of "non-local interactions".

2.2 Non-local interactions

•
Two lT'onomers that are far apart along the contour of the polymer may still be

close enough in space to interact directly. This type of interaction is often called a

long-range interaction in the polymer literature, illustrated in fig. (2.5). In this

context, "long range" refers to the separation of monomers in sequence; however,
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•

Figure 2.5: An exnmple of n non-Iocnl interaction between segments fnr npnrt on the sequence of
the polymer.

the interaction itself is typically very short ranged. The unfortunate nature of this

nomenclature has been previously noted [15J, and for this reason, the term non-local

will be used in this thesis to refer to this type of interaction, reserving long-ranged

for long-ranged in space. In discussions of random walks, it has been tacit1y assumed

that there are no non-local interactions. A walk with fini te correlations along the

contour of the polymer can only be renormalized into a random walk if correlations

between monomers disappear as the polymer is coarse-grained. In the presence of

non-local interactions, this is not true, even for a very flexible molecule.

One inescapable non-local interaction, rooted deeply in the language of polymer

physics, is hard-core repulsion, the fact that two monomers may not occupy the

same volume. In fact, non-local interactions are often categorized under the gen­

eml rubric of excluded volume interactions, even though non-local interactions are

rarely plain hard core interactions. The inclusion of non-local interactions has a

dmmatic effect on configurational properties.

The great difliculty in the statistical mechanics of polymer chains with

excluded volume is that the position of a link depends on the positions of

ail the other links instead of on the position of just the previous one; this

difliculty is reflected by the extensive literature on the subject ... [23J

The excluded volume interaction introduces non-trivial correlations between mono­

mers; the effect of monomer A upon monomer B depends very much on the state of

the. l'est of the polymer, on whether or not the configuration brings the two monomers



close enough to interact. A simple model incorporating excluded volume interactions

is the self-avoiding walk, a l'andom walk that at no point intersects itself. It is

generated on a lattice as a random walk where sites are excluded that were previously

occupied by the walk.

Nonetheless, one can infer broad consequences of an excluded volnme interaction.

For example, a dense random walk configuration will more likely violate an excluded

volume constraint (no monomer overlap) than an extended random walk configura­

tion. Thus, extended configurations are favoured in the presence of excluded volume

interactions, and the polymer will be swollen with respect to the ideal polymer. Fur­

thermore, since the probability of excluded voh.:me interactions increases with N,

long polymers are more susceptible than short polymers. Therefore, one would ex­

pect excluded volume effects to change the exponent 1/, introduced in section 2.1, that

describes how the size of the polymer scales with the degree of polymerization. A

rough estimate of this exponent can be made as follows. The probability distribution

for the size R of a Gaussian chain with N monomers is Gaussian with variance Nb2 j

i.e.,

•
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Pa 'V exp ( - ~) ,

where only the dependence on Rand N is made explicit.

the excluded volume energy E roughly follows

19

(2.17)

For a polymer of size n,

where 4> is the monomer density, assumed uniform throughout the volume V 'V R3 of

the polymer. Consequently, the probability due to the excluded volume energy is

PE 'V exp (- E) , (2.18)

•
giving the total probability of a random walk with excluded volume interaction as

P'V PaPE

'V exp (-~ - ~:) .
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(2.19)
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The value of R is determined by maximizing P with respect to R, or equivalently,

rninimizing the quantity•
wi th respect to R. This yields

(2.20)

•

giving the exponent v =3/5 for the polymer with non-local interactions. As adver­

tised, the exponent is modified from the random walk value of 1/2. Considering the

simplicity of this argument, the value for the exponent turns out to be surprisingly

accurate. Computer simulations [75] with self-avoiding walks give 2v = 1.18, which

is consistent with a renormalization group calculation for the n-vector model [33],

giving v = 0.5880 ± 0.0015. Experiments [16] with polymers in solution give the

value v = 0.586 ± 0.004. For these reasons, the self-avoiding walk has been cal1ed the

minimal model of the polymers in solution 1. In fact, it is a large part of the truth

to say that polymer physics is the physics of self-avoiding walks.

Since any two monomers must minimal1y interact via a hard core interaction, it

may seem that the concept of an ideal polymer is unrealizable, and therefore of limited

value. In actual fact, the Gaussian chain remains central to developing polymer

models for a number of reasons. In sorne instances, eircumstances conspire to produce

a polymer that is indeed close to being ideal. For example, if polymers are immersed

in solvent, under certain conditions the interaction between solvent and polymer can

mitigate the excluded volume effect. Under this condition, cal1ed the e condition,

the polymer is wel1 describcd as a random walk 2. Another situation where the

excluded volume effect is screened is, counter-intuitively, under conditions of high

polymer concentration, such as in a polymer melt 3.

There is another more subtle, and arguably more important reason to understand

the Gaussian chain. That is, in many polymer models; including ones to be introduced

shortly, there is a rarely stressed, implicit assumption that there is a valid description

of the polymer configuration in terms of a random walk, independent of the excluded

1A minimal model is one that "m08t economically caricatures the essential physics" [29) of a c11188 of
relnted phenomena.

2Soo, for example, the results of reference [76).
'See reference [17J, chapter 2.



volume effect. An example of this is seen in the scaiing argument immediately pre·

ceding, where there were assumed to be two independent probabilities contributing to

the total probability, one from a probability of a certain random waik (of size Il), and

one due to excluded volume effects 1. For these l'casons, the Gaussian chain remains

an important concept and a major influence on the language of polymer physics.

•
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•

2.2.1 Computer methods

The excluded volume problem outlined in the previous section can be understood as

a problem of characterizing polymer configurations; i.e., finding the average of some

measurable quantity over only those configurations that do not violate the excluded

volume condition. Not surprisingly, computers are powerful tools in answering such

question, especially since a self avoiding walk is natumlly represented on a lattice,

which is easily represented in the computer milieu.

For small polymers, it is possible to generate every mndom walk configuration

and explicitly check for self avoiding configurations. This technique, known Ils exact

enumeration, was one of the early computer methods, and is still used currently

due to recent interest in random copolymers as models of biopolymers [14, 37]. The

problem with this method is that the number of configurations grows as r = zN,

where z is the coordination number of the lattice. Exact enumeration is feasible only

for very short polymers.

Since exact enumeration is impractical for most polymer problems, another pos·

sible approach is to sampie randomly the configuration space of self avoiding wallIS.

A brute force method for generating self avoiding configurations is to grow mndom

walks on a lattice and eliminate any walk that violates the excluded volume condition.

This has the advantage of being straightforward, and of generating uncorrelated self

avoiding configurations. Unfortunately, it has become accepted, largely through com­

puter work of the type described so far, that the ratio of the number of self avoiding

configurations to random walk configurations decreases exponentiaily with N [751. In

other words, the acceptance ratio, the number of configurations accepted pel' num­

IThis assumption is the basis of two parwneter tbcory, which assumes, not surprisingly, two
independent parameters: one that describes that random walk configuration, and one that describCll
non-local interactions.



ber of configurations generated, quickly falls to zero, making this a very inefficient

scheme for large N. This problem can be mitigated to sorne extent by decorations to

the basic algorithms, but the underlying problem remains.

A significant improvement is realized by introducing local moves to update poly­

mer configurations. With this method, a new configuration is generated through a

small change from the previous one. This small change is called a local move if it

changes the polymer only locally, perhaps moving one or a small number of connected

monomers. The great advantage of this method is that small changes from a valid

sclf-avoiding configuration arc very likely to generate another valid configuration, im­

proving the acceptance ratio enormously. The drawback of this method is that the

new configuration generated is highly correlated with the previous one. However,

two configurations will be uncorrelated from one another when enough configurations

have been generated in between. This method of sampling configurations is the one

of choice for long polymers, and is almost always implemented with the Monte Carlo

method. In fact, a variant of this method will be introduced later in this thesis.

Another approach to generating polymer configurations is molecular dynamics,

where the equations of motion for a model polymer are solved numerically, generating

a dynamic evolution for the polymer. Molecular dynamics and local move Monte

Carlo simulation are the dominant simulation schemes in use currently.

•
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2.2.2 Expansion in density

ln order to develop analytical theories, it is convenient to have an expression for the

energy due to excluded volume interactions, HI.

ln principie, HI is a function of configuration of the polymer,

where {R.,.} is the set of all monomer coordinates. If the potential does not distinguish

between monomers, it is natural to frame HI in terms of the local monomer concen­

tration. This transformation between a configuration and density is made formally

explicit with the definition oï the microscopic density

• rj>(r) = E 0(r - R.,.),
n

(2.21)

(2.22)



where the sum over n is a sum over ait monomers, and for ait polymers in a many

polymer system. Hence, Hl can be written as a functionai of the density•
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Hl = jdrU(</>(r)).

'23

(2.23)

If there are no long-range interactions and the monomer density is everywhere smalt,

U can be expanded in powers of the local monomer concentration,

Eh = j dl' 'E (ak</l (l')).
k

This expansion is typicalty truncated at the lowest nontrivial order,

tV2 j 2fIl = 2 clr</> (l').

(2.24)

(2.25)

The coefficient of the quadratic term, tV2, is calted the excluded volume pnrnmeter.

At this level of approximation, J'iI is equivalent ta summing over ait pairwise

interactions between monomers 1. In order to see this, recalt that ait interactions

are short ranged. Thus, th~ pairwise potential between monomers i and j can be

approximated

(2.26)

and fIl becomes

1
Jh = - 'EU (Ri,Rj)

2 ..
l,)

where the factor of two is to correct for double counting. The delta function Clin be

written

Thus, Jh becomes

o (Ri - Rj) = j dro (1' - Ri) 0 (1' - Rj).

fIl = ~2 ~jdro(r- Ri)o(r-Rj).
'0.1

(2,27)

(2.28)

•
Using the expression for the microscopic density, eqn. (2.22), we see that in fact

the above equation is exactly eqn. (2.25). With this interpretation, W2 parameterizes

1In this context, pairwise monomer interactions are assumed to be mediated by the solvent in which
the monomera are immersed. This point will be discussed in the next section•



pairwise interactions amongst monomers. If W2 < 0, the interaction !owers the system

energy, corresponding to an attractive interaction. Conversely, W2 > 0 models an

effective repulsion, giving rise to an excluded volume elfect.•
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2.2.3 Potential of tlte mean force

It is important to note that the potentia! of interaction between monomers implicit1y

incllldes the elfect of the solvent. That is, it is the potential between monomers

averaged over ail possible positions of solvent mo!ecules. Specifically, if {Ri} and

{Sj} are the sets of ail monomer coordinates and solvent coordinates respectively,

then the partition function of the whole system, monomers plus solvent particles, is

z= L L exp (IlG {Ri} + Il,,{Ri,Sj},)
{R;} {'J}

(2.29)

where the interaction potential Il.. appears explicit!y as a function of the monomer

coordinates as weil as the solvent coordinates. If we perform the sum over ai! the

solvent coordinates, eqn. (2.29) formally becomes

Z = L exp (HG {Ri} + III {Ri},)
{R;}

(2.30)

where the interaction potential now only depends on the monomers positions. It is

sometimes called the potential of the mean force [15], since it is like a potentiaI

averaged over ail the non-monomer degrees of freedom. Although it will not be

explicitly stated from now on, monomer interaction potentia!s are in fact potentiaIs

of the mean force.

2.3 Tlle Edwm:ds Hamiltonian

The probability of a configuration is assumed to be a combination of two eifects

already discussed: the bond probability modelled by the Gaussian chain, and the

interaction probability that depends on the interaction potentia!, Hl, The Gaussian

chain probability distribution has been derived earlier (eqn. (2.16));

•
(

3 J (aR(n))2)p ~ exp - 2b2 dn an . (2.31)



The probability due to non-local interactions is proportional to e- II " wht're ,li! ex­

pression for the interaction energy Ih has been given above, in cqn. (2.25). Thus,

the total configuration probability becomes•
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(2.:12)

where the concentration q, (1') is also a funetional of the coufiguratiou R (Il).

probability can be rewritten exp(-H [R(n)]), where

3 J (ûR(n))2 'IV2 J 'H[R(n)]=2b2 cin an + 2 cirq,2(r).

The

(2.:13)

This expression is clearly analogous to a Hamiltonian in a Boltzmann facLor. For

this l'eason, expression eqn. (2.33) will be referred to as an Edwards Hamiltonian,

and is an energetic representation of a polymer chain. The connectivity is describcd

through a Gaussian energy, lIa, instead of, for example, a fixed bond length ran­

dom walk. Non-local interactions al'e described energetically, in tel'lUS of a CQiu'se

grained monomer concentration q, (1'), instead of as geometrical constmints, as in a

self-avoiding walk on a lattice. The form of an Edwards Hamiltonian nmy vary, as

indeed it will in this thesis, but it retains these basic characteristics. The Edwards

Hamiltonian is the central result of this chapter. The polymer partition funetion, Z,

is defined

z =JD [R(n)] exp(-lI [R(n)]).

This gives a formai expression for the probability of a configuration

1
P [R(n)] = Z exp (-lI [R(n)]).

(2.34 )

(2.35)

(2.36)

•

Although the Edwards Hamiltonian has been wl'itten for one polymCl" the gener­

alization to a system of [( polymers of the same type is stmightforwardj

II {Rk(n)} = 2~2 ~Jcin (aR;;n)r + ~2 Jcil' </>2 (1')

where

</J (1') = l':,j cin 0 (1' - Rdn)) . (2.37)
k

The density has been written in terms of the continuous chain, R (n), where the sum

over k is over ail different polymers (k = 1,' .. ,[().
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THE HAMILTONIAN WAY

ln the previous chapter, t.he Edwards Hamiltonian was arrived at as a model of

polymer systems,

(3.1)

•

an expression that completely specifies the equilibrium properties of the polymer

system. The task outstanding is to elicit those properties, a task that will involve a

variety of methods familial' in statistical physics.

The objective of this chapter is to develop these techniques in order to determine

the equilibrium properties of a polymer described by an Edwards Hamiltonian, fo­

cussing on the methods to be applied in this thesis. Monte Carlo simulation will

figure prominently in the original investigations described in chapter 5 and chapter

6; therefore, this method will be introduced in sorne detail, concentmting on its im­

plementation for polymer systems described by an Edwards Hamiltonian. The linear

dynamic l'Csponse of these polymer systems will then be described with a stochastic

dilferential equation known as a Langevin equation. This equation, together with

a fluctuation-dissipation relation, can also be used to determine equilibrium proper­

ties, as illustmted in the next chapter. Mean field methods arc very powerful when

applied to polymers in the semi-dilute regime. They describe a Gaussian polymer

in a self-consistent mean field potential, determined using Green function methods.

Corrections to mean field theory will be introduced through the random phase ap­

proximation, described at the end of this chapter. Under this approximation, the

limits of stability of the mean field solution can be found, which will he used in

chapter 6 to determine the onset of a density instability in a heterogeneous brush.

26
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3.1 Monte Carlo simulation

As was argucd in section 2.2.1, thc numbcr of configurations of a polymcr quickly

incrcascs with II' bcyond the possibility of rigorously cnumcrating thcm ail, nlllkiug

it ncccssary to saml'le thc configuration spacc of the polymcr in an ellicicnt mannel·.

Thc Monte Carlo method is a highly successful sampling tcchniquc that has found

widc application in statistical physics [8]. The Monte Carlo method will bc introduced

in gencral tCI'ms in the next section, followcd by thc details of its implemcutationwith

an Edwards Bami!tonian.

3.1.1 A Monte Carlo primer

Suppose a system can cxist in onc of a discrctc number of states, Ui. Supposc also

thcre is somc observablc, A, which can bc cxpresscd as a function of thc statc. The

objectivc of the Montc Carlo method is to cstimate thc average of A

(A) = EA(udp(ui),
;

(3.2)

whcre the states are distributed according to some probabi!ity distl'ibution l' (ud, and

the sum is over ail possible states. If the number of states is tao large to permit direct

evaluation of eqn. (3.2), it can be approximated by a Monte Carlo average over II'

samples,
1 N

(AhlO = NE A (Ui) ,
i=l

(3.3)

where the sequence of configurations {Uio ...,UN} is distributcd according to p(CT;).

This technique, whereby states are sampled according to thcir probabi!ity, is known

as importance sampling.

Consider, therefore, the question of how to generate a sequence of states with a

given probability distribution. Let Pn(i) be the probability of the state CT; after the

nth step of the sequence, and suppose

pn (i) = E WijPn-1 (j),
j

(3.4)

•
where Wij is the conditional probability of transition pel' step from state Ui to Uj.

That is, the probability distribution of states at the nth step depends only on the

probability distribution at the (n-l)st step. Eqn. (3.4) is characteristic of a Markov



process 1. The Markov process is said to be ergodic if transitions between any state

Ui to allY other state Uj is possible in a fini te number of steps.

The distribution p( i) is the stationary distribution of tuij if and only if•
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pli) = Ltuijp(j)
j
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(3.5)

for ail i. That is, pli) is an eigenvector of tu;j with eigenvalue one. lt is remarkable fact

that for allY ergodic Markov operator, convergence to a unique stationary distribution

is guaranteed in the limit of many steps [42).

A sequence of states can therefore be generated with a given probability distri­

bution by appropriately constructing the Markov operator Wij so that the stationary

distribution is the reqllired distribution of states, p(Ui)' The stationary distribution

must satisfy

L (WijP (j) - WjiP (i)) =0,
;

(3.6)

which is eqllivalent to eqn. (3.5), as Ei Wij =1. Eqn. (3.6) will certainly be satisfied

if balance is achieved for every i and j, so that

WijP (i) - WjiP (i) = 0, (3.7)

(3.8)

(3.9)

(3.10)

•

a condition known as detailed balance. Thus, if the Markov operator Wij satisfies

tuij p(Ui)
-=-,
tuji P(Uj)

the stationary distribution will be p(Ui)'

l~r a system in the canonicat ensemble with the Hamiltonian H,

P«Ui)) = exp (-{3 (Hi - Hj )).
p Uj

One standard choice for Wij that satisfies eqn. (3.7) is the Metropolis algorithm,

W
" _ { min{l,exp(-{3(Hi - Hj ))} i =f. j
IJ -

1 - Ei# Wij i = j.

The implementation of the Monte Carlo method with the Metropolis algorithm is

outlined as follows:

1Eqn. (3.4) can be interpreted as a matrix equation; thus, the matrix Wlj ;s 80metime called a Markov
operntor.



• Randomly choose a trial configuration. This is usually accomplished by making

a small change from a previous configuration; e.g., flipping one spin on an Ising

lattice, or moving one monomer on a polymer.•
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(3.11)

•

• Calculate the energy difference between the trial configuration and the initial

configuration, C!.H = H,ri., - l1i"i'i./.

• If C!.Ii < 0, accept the trial configumtion and repeat from step one.

- Otherwise, choose a random number ,. from a unirorm distribution so that

0::;,·<1.

- If ,. < exp (-j3C!./l), accept the trial configuration and repent from step

one.

- Otherwise, reject the trial configuration and repeat from step one.

Monte Carlo averages are then calculated by applying eqn. (3.3) to N configurations

chosen from this sequence.

3.1.2 Monte Carlo with an Edwards Hallliltonian

The Monte Carlo method can be applied to simulate polymer systelTI~ by employing

the Edwards Hamiltonian, eqn. (3.1), in the procedure described in section 3.1.1.

In order to represent the polymer on a computer, it is natural to use the discrete

Gaussian chain mode!. Recall from section 2.1 that a configuration of the discrete

Gaussian chain can be specified by a set of coordinates {R,,}, where n is a discrete

index identifying the monomer, and R.. is a vector specifying the position of the IIth

monomer. Additional indices may be introduced if there is need to rurther distinguish

monomerSj for example, an index k could be introduced for a many polymer system

so that Rk,n identifies the nth monomer on the kth polymer.

The "energy" contribution of the discrete Gaussian chain was discussed in section

2.1.3. The Hamiltonian was given by eqn. (2.13),

3 N 2

Ha = 2b2 L: (R.. - R..-d .
n=2

The discrete Gaussian chain is analogous to mechanical system of N sizeless beads

connected by identical springs, each with spring constant 3/b2 • The calculation of



lIa, the connected energy contribution, is straightforward from eqn. (3.11) given

a configuration {R,.}.•
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lcc/mical _

Care must taken with boundary conditions if periodic boundary conditions

are used. Monomel separations could be artificial1y stretched if a monomer is

wrapped to the opposite side of the simulation volume. One solution is to store

a separate set of monomer coordinates to which periodic boundary conditions

do not apply. This does not affect the value of Ha calculated with eqn. (3.11),

since ~ he exact location of the monomer in the volume is not needed, only the
relative monomer separations.

The non-local energy contribution, fI[, was introduced in section 2.2.2 as an ex­

pansion in terms of the local monomer density, where to the first non-trivial order

fI[ = ~2 Jdrr/} (r), (3.12)

where ,p is given by

,p(r) = :La(r-R,.).
n

(3.13)

,p (r) = ~ (2:q2) 3/2 exp (-2:2 (r - R,.)2) . (3.14)

That is, the delta function is approximated by a Gaussian with a finite variance q2.
This expression is equivalent to eqn. (2.22) in the limit of q2 -+ O. Using eqn. (3.14)

for the density,

The expression for the microscopie density eqn. (3.13) is inappropriate for simula­

tion, since it contains the delta function. However, one can substitute the analytical

representation

= (_3)3~ exp (_~ (R,. _ R".)2) exp (_~ (r _ R,. +R".)2) .
271'q 2 L.J 4q 2 q2 2m.n

•
Substituting this expression into eqn. (3.12), the interaction energy HI becomes

HI = ~2 Jdr,p2 (r)



•
3: THE HAMILTONIAN WAY

102 ( 3 )3~ ( 3 2)= 2 271"(72 ;:;: exp - 4(72 (Rn - R",)

Jd ( 3 ( R., +Rm)2)X l'exp - (72 l' - 2

102 ( 3 )3/2 (3 )
= 2 471"(72 ~ exp - 4(72 (R" - R",)2 •

That is, the interaction energy can be written in the form

in terms of a pair potential U,

( 3 )3/2 (3 2)U (R", - Rn) = 471"(72 exp - 4(72 (RII - R.n) ,
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(3.15)

(3.16)

•

which is a funetion only of the separation of the pair of monomers.

Thus, to second order in the local density expansion, fil call be expressed as

the sum of ail pair interactions between monomers. In the bead-spring model (k~

scribed above, this corresponds to a pair interaction between beads. For this discrete

model, this formulation is very convenient, because instead of evaluating the integrul,

eqn. (3.12), over ail space, calculating the interaction energy reduces to calculating

ail pairwise interactions between beads. Therefore, calculating 1!J in this manner will

be called the pair interaction method.

technical _

The faet that the pair potential is only a funetion of the monomer separa­

tion leads to a great enhancement in program efficiency. Instead of calculating
eqn. (3.16) for all pairs of monomers at each step, the potential U can be cdlcu­

lated once and tabularized in a lookup table indexed by monomer separation.
Evaluating eqn. (3.16) is time consuming, since it involves calculating an expe­
nential, and would be very costly since it occurs in the innermost loop of the

simulation.

The variance (72 is an arbitrary parameter, and so should not influence meaningful

results. The variance should be small, however, sinec it models a short range inter­

action. This provides another practical advantage, for if the range of interaction is



limited, one can introduce a cutoff to the interaction with no significant penalty. The

primary gain in introducing a cutoff is that one can limit the number of pairwise

interactions considered by keeping trar.k of monomers within the certain interaction

radius. Consider a particular monomer, indicated with a cross in fig. (3.1). The circle
•
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Figure 3.1: eutolr radius of pair interaction between monomers. The interaction rndius is equal ta
the laUice constant.

,indicates the cutoff radius, beyond which the interaction is effectively zero; therefore,

one needs only to calculate interactions with monomers that fall within the circle.

One practical way of implementing this restricted pairing is also illustrated. The sim­

ulation volume can be divided into cells with a linear dimension equal to the radius

or the interaction range. If a monomer is found within, say, the central cell, then

it can interact with monomers in nearest neighbour or next nearest neighbour cells,

depending on its position within the central ccli, but no others. Therefore, a list can

be kept of the monomers residing in each box. When interactions with the indicated

monomer are calculated, only monomers within nearest l).nd next nearest neighbour

cells are considered.

lechnical _

One way or keeping these lists is to create a lattice of these cells, and associate
with each cell an array with enough elements to identify ail monomers in the

cell. This is the simplest, most straightforward implementation. However, it
suffers from the drawback of being very memory intensive, since each array

(there could be many for a large simulation volume) must be large enough
to accommodate a possibly large number of monomers in the cell. However,



•
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since most cells will he empty at a given time, this is extremely wasteful of

memorYi unfortunately, it is difficult to know a priori which cells will he empty.

A hetter way, though more complicated to program, is to associate a linked

list of monomer identifiers with each cell. If a monomer is in a particular ccli,

the identifier for that monomer is "linked" to the list associated with the cell.

If the monomer changes cells, the identifier is unlinked from the previous list

and linked to the new list. With linked lists, only one identifier is allocated

for each monomer, drastically reducing the memory requirement. A significant

disadvantage is the greater program complexity entailed 1.
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In situations of high monomer densities, it is often advantageous to use a dif­

ferent method to calculate [Ir, a coarse grained local density method. With

this method, one explicitly measures the local monomer density, then numel'ically

calculates the integral, eqn. (3.12), over the simulation volume. That is,

1I1=Jdrf(,p(r)), (3.17)

where f is sorne function of the local concentration. Numel'ically evaluating the

integral requires the Riemann sum for eqn. (3.17),

HI Rl "L vf (,prJ. (3.18)
ri

In eqn. (3.18), the integration volume is divided into cells, each of volume v, with

centres at the lattice points {ri}. The density at each point ri is calculated frolTl

1
.1.•. = - "on ...'1".. V L.:-' J'-'

J

(3.19)

•

where R j is the coordinate of the jth monomer, and takes the value of the nearest

of the set of points {ri}' The delta function is replaced hy the Kronecker delta..

Eqn. (3.19) is equivalent to the definition ,pr; = Nr./v, where Nr• is the number of

monomers in the sampie volume at point ri.

Certain considerations will help determine the choice of method to calculate the

non-local energy contribution. The pair interaction model is attractive hecause the

only approximation is analytical, replacing the delta function with a Gaussian, and

1Phenomenologically, it seems that any modest increase in program sophistication leads to a dramatic
increase in time needed to implement the algorithm.



therefore seems better controlled. However, it is an order N 2 algorithm when impie­

mented to study a system described by eqn. (3.1). Moreover, in situations at or below

the El point, the monomer density becomes sufficiently large that the third order term

in the density expansion of the interaction Hamiltonian must be retained. In this case,

three-monomer interactions must be also be calculated, increasing the order of the

algorithm to N3, which is prohibitive except for very small systems or very short

interaction range. Furthermore, the method of calculating n-monomer interactions

requires that the potential be expressible as a power series in the local concentration.

There are potentials of interest that are not of this form. In contrast, ca1culations

using the coarse grained local density method are fast and efficient, especially in prob­

lems involving relatively high monomer densities. It is not demanding on memory,

since there is no need to distinguish the monomers within the cells; only the numbers

of monomers within the cells are important. Furthermore, any interaction which can

be expressed as a function of the local monomer density can be easily implemented

without a significant increase in computing time or complexity. However, the space

must be coarse-grained to implement this method, and details finer than the coarse

graining are necessarily not accessible.

The Monte Carlo procedure now follows in a straightforward fashion. A configu­

ration of a polymer, or number of polymers, is chosen. A Markov chain of polymer

configurations is generated by selecting one monomer at random and moving it a trial,

random distance. The magnitude of this trial distance can be chosen to optimize the

acceptance ratio, another factor which improves the efficiency of this algorithm. The

connected energy difference between the trial configuration and the new configuration

is calculated according to eqn. (3.11), the non-local contribution Hl being calculated

with one of the discussed methods. The move is accepted or rejected according to

the Metropolis criterion, discussed in the previous section.

•
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•

3.1.3 Comparison to previous Monte Carlo algorithms

In the current literature, standard polymer Monte Carlo simulations are lattice mod­

els; that is, random walks are generated on a lattice with self avoidance imposed as a

geometrical constraint. A microscopie Hamiltonian is sometimes incorporated, typi­

cally as a nearest neighbour interaction. In order to generate a trial configuration, a



small group of connected monomers are moved and tested for self avoidance. This is

sometimes called a local move algorithm.•
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technical _

It can be shown that algorithms of this sort are "non-ergodic", which in prac­

tieal terms means that pathological configurations can be generated according

to valid rules that cannot be escaped from by the same rules. Also, for allY N
step self avoiding walk, there exist many others that can never be realized with

local moves. There are algorithms involving "non-local moves"; i.e., moves that

involve the simultaneous motion of monomers distant in sequence and space,
and are consequently non-physical. With the incorporation of sorne of these

moves, it is possible to construct algorithms that are ergodic [49]. Be tlmt as

it may, non-ergodic lattice models of the type described above remain in Use.

Whether or not the pathological configurations constitute a sllfficiently large

fraction of the total number of configurations to warrant cOllcern is allothel'

matter, that to my knowledge has not been addressed.

Fig. (3.2) illustrates sorne typical local lattice moves. A powerflll, state of the art

r·......
1----
.......... i/e:...... e____ •

•

Figure 3.2: Sorne cornmon laUiee local update moYes. From left to right: a "crallkshaft". a "twist­
jump" 1 and a "reptation" move.

algorithm which is common in the current literature is the "bond-Ouctuation" algo­

rithm (13). It is variant of the lattice self avoiding walk algorithm. ln this model,

the bonds are not constrained to join monomers at adjacent lattiee vertices, allowing

the bond lengths to "fluctuate". The a1gorithm is constructed so that the only moves

a1lowed automatical1y ensure that the polymer does not intersect itself, although self



avoidance must be checked for at each move. This algorithm has the vil'tue of being

easily vectorized, and l'caches the asymptotic limit of long chains for smaller N than

previous algorithm, perhaps duc to the greater internaI freedom of the polymer.

Simulation based on the Edwards I-iamiltonian has sorne distinct advantages over

these methods. Exduded volume interactions arc accounted for energetically by cal­

clilating, for example, eqn. (3.18), resulting in a much more efficient simulation. Stan­

dard lattice models at high densities are very inefficient because a high percentage of

updates arc rejected, simply due to a lack of open sites on the lattice. Since there is

no hard-core self avoidance in the Edwards approach, the acceptance ratio is much

better. Another advantage is that results can be compared directly to most theol'ies,

since the Edwards simulation is formulated using the same model as most polymer

field theories. This obviates the need fol' the fitting of parameters, since the param­

eters of the simulation arc in direct correspondence with the theory. For a standard

lattice calculation, to take an example, the relation between the exduded volume

parameter and sorne lattice equivalent is not dear. On the other hand, the Edwards

simulation allows unrealistic moves, insofar as there is nothing restricting bonds from

crossing. Therefore, it is not valid fol' studies of polymer dynamics. Furthermore, it

requires an Edwards I-iamiltonian, and will therefore inherit ail the approximations

of that I-iamiltonian.

•
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3.2 Tlle Langevin equation

1 Consider an energy fllnctional H that is a functional of a spatially varying order

parameter field if> (r). If Z denotes the partition functional, then

Z = JD [if> (r)] exp(-H [if>(r)]). (3.20)

If exp (-H [if> (r)]) is strongly peaked about the function if>m (r), then a simple ap­

proximation to the functional integra!, eqn. (3.20), is to replace the integral by the

value of the integrand at its maximum value,

•
Z ::::l exp (-H [if>m (r)]),

1This section fol\olVs reference (29), section 8.3.

(3.21)



oII = 0, (3.22)
or/>",

which gives the spatial distribution of the order parameter in equilibrium.

Sufliciently close to equilibrium, it is reasonable to assume linear responsej i.e.,

the time dependence of the order parameter is proportional to the deviation ft·om

equilibrium ~~. Thus,

•
3: THE HAMILTONIAN WAY

where r/>m satisfies

3i

8r/> _ rOll (:1.23)aï - - or/>·
The relaxational dynamics of eqn. (3.23) describes the deterministic evolution of

the order parameter. I-1owever, there are fluctuations from this deterministic path

due to the influence of microscopie variables. These fluctuations are accounted for

with a noise term, Il (r, t), which is assumed to be a Gaussian random function.

That is, it is a random function chosen from an ensemble of functions satisfying the

distribution

(:1.24)

and satisfies

= °
DO(r- r')o(t - t').

(1] (r,t))

(1] (r, t) 1] (r', t')) -

Therefore, we describe the time evolution of the order parameter as

(3.25)

which is a stochastic differential equation usually called the Langevin equation.

With the Langevin equation, one can show that the time dependence for the

probability distribution of the order parameter is given by

8P", J ' 0 [Oll D OP." ]
aï = dr or/> (r') r ot/J (r') P", + 2 or/> (r') .

(3.26)

This result is the Fokker-Planck equation 1. ln the limit of t -7 00, 8P",/fJt -7 0,

the probability distribution approaches the equilibrium distribution

•
P.q _ (2rII [t/J (r)J)

'" = exp D .

IThe details of this derivation can be found in reference [29) in the appendix to Chapt. 8.

(3.27)



•
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That this must also be the Boltzmann distribution determines D,

D =2rkB T.

38

(3.28)

ln other words, the strength of the noise must be related to the temperature in order

for the solution of the Langevin equation to approach the canonical equilibrium result.

3.2.1 Langevin equation for polymer systems

For a system of polymers, the energy functional of the previous section is taken to

he the Edwards Hamiltonian. In the discrete case, the Edwards Hamiltonian is a

function of the N monomer coordinates {R,.}. Therefore, the Langevin equation,

eqn. (3.25), has the form

(3.29)

which describes the time evolution of Rn (t). Eqn. (3.29) is actua11y three equations

(3.30)
ax~ OH
7ft = -raxk +1),

p

where x~ is the .eth component of the coordinate of the kth monomer. The various

terms of aH/ax~ will be derived in the appendix A.l. Anticipating these results,

for each monomer,

3

3r (k+i 2 k+ k-i) 3rW2 ( 3 ) 'i=-- xp - xp xp +-- -- x
b2 20"2 471"0"2

~ (x~ - x'iJ) exp ( - 4~2 (R,. - Rm)2) +1) (n, t). (3.31 )

(3.32)

This formula is straightforward to implement numerically using the fini te difference

approximation for the time derivative

axk 6.xk----Il. ~ __P
at 6.t .

•
3.3 Mean field theory

In this section, the mean field approximation will be introduced for systems de­

scribed by an Edwards Hamiltonian. In this approximation, an interacting system



of polymers is considered to be a system of independent polymers experiencing an

averaged interaction through the mean field of ail monomers. The independent chain

problem can be solved using Green function methods assuming the mean field is

known. Moreover, the solution tu the independent chain problem itself determines

the average monomer density. This added "constmint" is used to determine the mean

field 1.

•
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3.3.1 Tlle mean field Hamiltonian

Once again, for the sake of explicitness, consider the expansion of the intemction

Hamiltonian in powers of the local density to second order,

Formal1y, the concentraticn can be written

</>(1') = (</>(1')) +0</>(1')

(3.33)

(3.34)

where (</> (l')) is the mean field, and o</> (l') is the fluctuation from the mean field. The

average () is the equilibrium average; if A [R(n)] is sorne functional of the polymer

configuration R (n),

where

(A) = ~JD [R(n)] A [R(n)] exp (-fi [R(n)]) ,

z = JD [R(n)] exp (-Il [R(n)])

(3.35)

(3.36)

•

is the partition functional. The concentration </>(1') is written explicitly as a function

of l', though it is also a functional of the configuration R (n). The equilibrium average

mean field, however, is not a functional of the configuration. With these definitions,

Fli can be rewritten

lThe method of the self consistent mean field was introduced into the polymer literature by Sir Sam
Edwards [26]. It is briefty discussed in the text of Doi and Edwards [22]. Sorne aspects are considercd
in more detai! in the text of Frecd [28] .



Noting that (r/J (r)) is a constant with respect to functional integration, the mean field

interaction becomes•
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W2 Jdr (r/J(r)} ,p(r) ,
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(3.37)

ignoring constants and terms of order (or/Jt lnciuding the connected energy contri­

bution with the mean field interaction, the Edwards Hamiltonian for a single polymer

in the mean field approximation becomes

J (3 (âR(n))2 )Ho = dn 2b2 ân +w2(,p(R(n))} , (3.38)

using the definition of the microscopie density, eqn. (3.13). For a system of many

polymers, eqn. (3.38) is easily generalized, yielding

(3.39)

The mean field Hamiltonian describes a system of independent Gaussian chains un­

der the influence of an external field, which is proportional to the average monomer

density. Far this reason, the mean field approximation is sometimes ealled the inde­

pendent chain approximation, since the chains do not interact explicitly. They

intemct only implicitly through the mean field W2 (,p).

Note that the canonical probability of a configuration R(n) is proportional to

e- llo(R(n)J in the mean field approximation, which in tUl'l1 depends on the mean field

concentration of monomers. However, the mean field concentration couId in principle

be calculated through eqn. (3.35); this is a self consistency requirement that the

mean field must satisfy. In fact, this additional constraint allows the mean field to

be determined. A procedure analogous to this, though somewhat different iu detail,

is described in the next section.

3.3.2 Green function metllOds

If a polymer is described by an Edwards Hamiltonian H, ail equilibrium properties

are specified by the quantity

• ~
R(N)=.

G(r,r'jN} = 'D[R(n}] exp(-H[R(n)]),
R(O)=.'

(3.40)



where the ends of the polymer are fixed at rand l". The functional integra1 is over

all CUl'Ves R(n) of contour length N with R(O) fixed at l" and R(N) fixed at r. The

measure 'D [R(ll)) is defined sueh that•
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rR(N)=r ( 3 j (aR(1I))2)
lR(o)=r' 'D[R(lI)] exp -2b2 cllI an . = 1.

Consider again the mean field Hamiltonian of section 3.3.1,

Iio[R(n)] = jcln (2~2 (a~,;ll)r+ Il (R(ll))) ,
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(3.41 )

(3.42)

where Il (l') = 102 (4) (l')) and can be interpreted as a potential cnergy pel' unit

monomer at the point r. In the same way that Ii [R(lI)] was defined as the functional

integra1 limit of the discrete Hamiltonian Ii {Ri} in section 2.1.3, the distribution

G (l', l"; N), eqn. (3.40), can be defined as the functional integl'alliInit of the disercte

expression

G(r,r';N) =

i!li

(2:b2 ) > jclR1clR2...clRNo(r/ -R.)o(r-RN) x

An important property of G (l', 1"; N) follows from the definition cqn. (3.43),

G (l', 1"; N +f) = j dl''' G (l', l'''; f) G (1''',1''; N).

(3.43)

(3.44 )

•

Loosely interpreted, eqn. (3.44) states that the unnormalized probability of a curvc of

length N +f starting at 1" and ending at l' is equal to the product of the independent

probabilities of two curves: a curve of length N starting at l" aud cnding lot l''', and

another of length f starting at l''' and ending at l", "summed" over all intermediate

positions l'''. Eqn. (3.44) is characteristic (Ji a Markov process, since the probabilities

of the two eurves are independent.

If both the curve R(ll) and the potential V are well behaved, then for sufficiently

small sections of eurve t..N = f, the eurve will not vary greatly and the potelltial will
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be approximately constant across this interval 1. Thus,

J ( 3 (aR(n))2 )U. = dn 2b2 an +V(R(71))

{
:3 (~R)2 }~ C 2b2 -c- + V (r) ,

and from the definition, eqn. (3.40),

(
3 )3/2 (3(r-rll)2 )

G(r.. r"jc)~ 27rcb2 exp 2cb2 -cV(r)
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(3.45)

(3.47)

( 3 )3/2 (3 (r _ r ll )2)
~ (1 - cV (r)) 27rcb2 exp 2cb2 .

Substituting eqn. (3.45) into eqn. (3.44) and changing variables r" = r +"l,

". _J ( 3 )3/2 [3"1
2

] '.G (r, r, N +c) - d"l (1 - cV (r)) 27rcb2 exp - 2cb2 G (r +"l, r, N). (3.46)

The advantage of rewriting eqn. (3.46) in terms of "1 is that Ïùr small values of c, the

ractor exp (-3/12/ (2cb2)) is small except for small values of Il. Therefore, one can

expand G(r +1/) to flnd 2

G(r+ll) ~ G(r) +If' V'G(r) + -2
1 (L"I;"Ija a; .) G(r) +...

iJ XI XJ

Ir the expansion or G (r + If) is kept only to second order in If, the right hand side of

eqn. (3.46) becomes, artel' integration,

(
cb2)(l-f.V(r)) G(r)+G \7i1(r).

Similarly, the lert hand side or eqn. (3.46) can be expanded in powers of c,

aG(N)
G(N+c)~G(N)+c +...

aN

(3.48)

(3.49)

(3.50)

•

l~inally, the Idt hand side, eqn. (3.49), when combined with the right hand side,

eqn. (3.48), yields a partial differential equation fol' G (r, r'; N)

[a b
2

]aN-6"V'2+1/ (r) G(r,r'jN) =0,

lThcre are some subtlc detail& involved in making thesc assumptions. There is discussion on this
point in Freed [28].

2For the sake of c1arity. only the relevant argument will be written explicitly. The meaning should
be c1car in context.



•
3: TUE HAMILTONJAN WAY

for N > 0 with the boundary condition

lim G(r,r';N) =J(r- r').
N_O
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(3.51 )

The boundary condition can be seen, for example, from the expression for G for small

N, eqn. (3.45). Thus, G(r,r'; N) satisfies the diffusion eqllation for a pal'ticle in an

external potentia1 V. lt is a Green function for a Gaussian chain polymer in an

extel'lla1 field. And if occasions when eqn. (3.50) can be solved ana1ytically are 1'l1.re,

a numerica1 solution can a1ways be attempted.

technical _

Eqn. (3.50) can be solved numerically nsing standard finite dilference methods.

One fini te dilfel'ence representation of the Laplacian operator in one dimension

is
<"72f( )~ f(Xi-d- 2f(Xi)+f(xi+l)
v x...... 2 •

(~x)

Similarly, the derivative with respect to N is

a~,:) Rl (f(N +~N) - f(N))~N.

Therefol'e, the Green function G (Xi, N) can be calculated lIsing

G (Xi; N +~N) = G (Xi; N) +~N DOl ({Xi}, N)

where

(3.52)

(3.53)

(3.54)

b2

DOl ({Xi}, N) = 2 (G (Xi_l; N) - 2G (Xi; Ni +G (Xi+l; N)) -v (Xi) G (Xi; N).
5(~x)

(3.55)

Thus, G (Xi; N) is comp1etely specified given the initiai condition

In the polymer case, the Green function is of direct interest; as can be Been from its

definition eqn. (3.40), it is proportional to the probability that a po1ymer of contour

length N starts at the point r and ends at the point r'. For examp1e,

•

G (x;, 0) = II~x.

This method works weil provided ~NI (~X)2 is small.

(A) = 1 Jdr" G (r rIt. N - n) A (r") G (r" r" n)• G(r,r'i N ) , , " .

(3.56)

(3.57)



is the mean field average of sorne quantity A (l'). Recall, howeve:, thal the exter.1al

potential V has the form•
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V (R(n» = W2(</> (R (n)))o.
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(a.58)

Therefore, given the solution to eqn. (3.50) with V = W2(</»0' the .esulting Green

fundion G (1',1"; N) can be used to calculate the mean field

(</>(1'»0 = f dn (0 (1' - R(n)))o,

which in terms of the Green function becomes

(3.59)

(3.60)(</>(1'1/» = G(r'~/;N) fdnG(r,rl/;N - n)G(rl/,r/;n).

Therefore, the extemal potential V can be determined self-consistently; i.e., the two

equations, eqn. (3.50) and eqn. (3.60), arc iterated until (</»0 converges.

technical _

If eqn. (3.50) is solved numerically, G( Xi; N) can be used to numerical1y evalu­

ate the integral, eqn. (3.60), to determine V. Eqn. (3.50) is now solved again

lIsing this V. This iteration proceeds until convergence is reachedj for example,

convergence couId be operationally defined by

(3.61 )

where fis sorne small number, say 10-6 , and where (</1) refers to the value after

the next iteration.

ln practice, convergence is more robust using a linear combination of the new

potential with the potential from the previous iteration [24],

V' -+ aV' +(1 - a) V, 0 < a ~ 1. (3.62)

•
This appears to damp the iteration proceSSj otherwise, the iterative process is

m/,,-.'. Hkely to be unstable.

To conclude 'this section, it is interesting to note that mean field methods have

becn very surcessful in predicting detailed properties of polymer systems in a wide



variety of situations. The success of mean field theory is probably duc, in a large

part, to the nature of the polymer molecule itse1f. It is a very large molecule that

pervades a large amount of space, al10wing a single polymer to interact with a large

number of others. Thus, for polymers, it is often physical1y reasonable to speak of a

mean field.

•
3: THE HAMILTONIAN WAY 45

.3.4 Tl1e random phase approximation

Having described the mean field theory in section 3.3, the effect of second order

fluctuations will be discussed in this section. l~luctuations will be inc1uded in a par­

ticularly simple fashion; i.e., they arc assumed ta be independent Gaussians. Unfor­

tunately, the mean field contribution is not described naturnl1y in this representation.

Therefore, a Gaussian approximation is made for the mean field Hamiltonian. Conse­

quently, the first correction to the correlation function will be rendered transparent.

The correlation function can then be used to determine the stability of the mean field

solution. In the polymer literatt\l'e, this approximation is typical1y referred to as the

random phase approximation 1.

As suggested in section 3.3.1, the Edwards Hamiltonian can be written in terms

of a mean field Hamiltonian plus a contribution from the fluctuations from the mean

field,

(3.G3)

where Ilo is given by eqn. (3.38), and by comparison to to eqn. (3.37), [-[6 is written

as

lh = ~2 Jdrolj>2 (1'). (3.64)

In this representation, Il6 has a particularly simple quadratic form 2; however, it is

difficult to cast Ho in terms of concentration fluctuations. Therefore, one assumes

1Much of this section follows the work of Yeung el.al.; for example, sec reference [80].
2This form is due to the model wc are using, eqn. (3.1). Ir not, 116 could be approximl1ted by

•
(3.65)
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that H. can be approximated by the quadratic form

If. ~ ~Jdl'dl" &4> (l') A;l (1',1") &4> (l") .

46

(3.66)

If the assumption is valid and H. can be approximated byeqn. (3.66), the approxima­

tion reduces to choosing the correct A•. Since the mean field probability is propor­

tional to e-II., eqn. (3.66) gives rise to a Gaussian probability distribution, allowing

us to identify A. (l', 1") with the mean field correlation funetion

A. = (&4> (l') &4> (l")). (3.67)

where (l. is the average with respect to the mean field Hamiltonian. Even if this

average cannot be performed analytically, it may be possible to obtain it numerically

using the methods developed in the previous section. The specifics of calculating the

correlation function given the mean field Green function will be discussed in the next

section.

Combining eqn. (3.67) with eqn. (3.66) and eqn. (3.64), the Hamiltonian in the

random phase approximation, H6, becomes

(3.68)

Since eqn. (3.G8) is quadratic, it gives rise to Gaussian probability distributions for

the concentration fluctuations. Furthermore, one can directly read off the correlation

funetion in the random phase approximation

(3.69)

In many instances, it is of direct interest to calculate the correlation functionj

for example, to calculate the structure factor of a polymer solution. Moreover, the

correlation function also contains information regarding the stability of the mean field

solution. If f!/l" (l')) is a complete, orthonormal set of basis functions, then

•
where

&4>(1') = 'L,&4>"!/I,, (l')
"

(3.70)

(3.71)
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If {1/>" (r)} is chosen to he the set that diagonalizes A o ; i.e.,

1drdr/1/>~(r)Ao(r,r/)1/>p(r/) = (Ao)"."o".P'

then

Ils = ~ Eo4>~ ((Ao)~.~ +102) 84>".
"

4i

(3. i2)

(3.73)

(3.75)

•

Thus, the probability distribution function in the random phase approximation has

the form

exp [-~ ~ 04>~ ((Ao)~.~ +102) 04>".] (3.74)

From eqn. (3.74), it can be seen that the mean field solution becomes unstable if

((Ao)~.~ +102) is negative. This can also be seen from the dynamic response of

fluctuations from the mean field, calculated using the analysis in section 3.2; i.e., the

!inear l'esponse of the modes of fluctuation are govel'l1ed by the Langevin equation,

eqn. (3.25), using the Hamiltonian, eqn. (3.73),

804>" MIs
at = -f0(04),,) +1] (r,t)

= -f ((Ao)~.~+Ul2) 04>" +1] (r, t).

If A;:;.~ > 0, then according to the deterministic part of eqn. (3.75), sman fluctuations

away fl'om the mean field equilibdum will decay back to the mean field solution in

time. The system is linearly stable to sman fluctuations. On the other hand, if

A;:;.~ < 0, then sman fluctuations will grow, and the system is linearly unstable.

Thus, the values of parameters whel'e ((Ao)~.~ +102) = °signais the limit of stability

of the mean field solution within the random phase approximation. This type of

analysis is common in studying instability in polymer brushes [50,65,80, 71J.

3.4.1 Tll(~ mean field correlation function

As can bp. seen fl'om eqn. (3.69), the cOl'1'elation function in the random phase approx­

imation requires the mean field correlation function. If the mean field Green function

is known, then mean field averages can be calculated according to the techniques of

section 3.3.2. In this section, the calculation of the mean field correlation function in

terms of the Green function will be presented 1•

1A similar calculation is summarized in reference [SOl.



The correlation function, A, measures the correlation of fluctuations in the density,•
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A (r, r') = (O'r,b (r) 0'4> (r'))

= (4) (r) 4> (r')) - (4) (r)) (4) (r')) ,
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(3.76)

where 0'4> = 4>-(4)). The mean field correlation function can be obtained by calculating

the averagt'.5 in eqn. (3.76) with respect to the mean field Hamiltonian, eqn. (3.38),

using the Green function "" in section 3.3.2. The mean field (4)(r}). was calculated

in the previous section, eqn. (3.60). Thus, there remains only the calculation of the

first term, (4)(r) 4> (r'))•.

Using the microscopie definition of the density, eqn. (3.13),

(4) (r) 4> (r')). = Jdn dn' (0' (r - R (n}) 0' (r' - R (n'})).. (3.77)

For a polymer of contour length N with ends fixed at r and r', the equilibrium average

with respect to the mean field Hamiltonian H. is

(0' (r - R(n)} 0' (r' - R(n'})). =

1 irR(N)=rN
G( 'N} 1J[R(n)] O'(r-R(n}}O'(r/-R(n'))exp(-H.[R(n}]}.

ro, rN, R(O)=r.

According to the definition of the Green function, eqn. (3.40), and integrating over

the delta functions,

(0' (r - R (n)) 0' (r' - R(n' )}).

_ { G(rN~r.;N) (G(rN,rjN-n)G(r,r/jn-nl)G(r/,rojn')}

G(rN:r.;N) (G (rN, r/j N - n') G (r', rj n' - n) G (r, roj n)}

n > n'

n' > n.

•

Sincc G(rN,r'jn - n') == 0 for n < ni, the average of the two delta functions is

(0' (r - R (n)) 0' (r' - R (n'))). =

G( 1 'N} {G(rN,rjN-n}G(r,r/jn-nl}G(r',rojn'} +
rN,rO,

G(rN,r/jN -n'}G(r/,rjn'-n}G(r,rojn) } .
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Substituting the above result into eqn. (3.7ï),

(t/J(r)t/J(r')). =

G ( 1 . N) [N dll [ndll' G (rN, ri N -11) G(r, r'; Il - Il') G(r', roi Il') +
fN, fa, Jo Jo

G( 1 .N) [Neill [Neill'G(rN,r'iN-Il')G(r',r;II'-Il)G(r,roill)
rN,fo, Jo ln

Interchanging the order of the integration in the second integral yiclds

(t/J(r)t/J(r')). =

49

G( 1 .N) [Nein f"dll'{G(rN,r;N-Il)G(r,r';n-II')G(r',ro;n') +
rN,rO, Jo Jo

G (rN,r'; N - n) G (r', r; Il -11') G (r, roi Il') }.

Thus, eqn. (3.78), together with eqn. (3.60) for the mean field gives the menn field

correlation function

A. (r, r') = (t/J (1') t/J(r')). - (t/J (r)).(t/J (r')).

in terms of the polymer Green function 1.

(3.78)

• 1A similar result was given in referenee [80), nlthough it cliffera from the result obtainecl here. IL is
probably a small typographie error in referenee [80).
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"The interaction of adsorbed macl'Omolecules is al'guably

the most impOI'tant process in modem colloid science, "

- attributed to Jacob Israelachvili
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POLYMERS GRAFTED AT INTERFACES

To this point, important concepts and techniques of polymer physics have been in­

troduced in a general way, requiring at most that the polymers be described by lUI

Edwards I-Iamiltonian. For the remainder of the thesis, '!::;cussion will focus on l~

particular system, the end-grafted polymer layer, or polymer brnsh. In this chap­

ter, the polymer brush is introduced in its simplest formj the homogeneons polymer

brush grafted to a plane interface in good solvent. Some important results fl'Om the

literature are reviewed. AIso, the Langevin simulation techniqne discussed in section

3.2.1 is applied to this simple brush, both to demonstrate simulating with an Edwards

Hamiltonian, and to gain an understanding of some equilibrium brush properties,

4.1 TlIe polymer brush

Consider a situation where polymer molecules are attached, or grafted, through one

end to an interface at a sufficient1y high grafting density so that the polymm's ovedap

significant1y. In the presence of good solvent, where monomer-monomer contacts

are unfavourable, the polymers will stretch away from the relatively high monomer

concentration at the surface, forming a polymer brush, as seen in fig, (1.4). The

primary application of polymer brushes is colIoidaI stabillzation, where the steric

repulsion between brushes on nearby particles helps maintain a suHicient distance

between ail particles to prevent coagulation due to attractive long range van der Waals

forces. Apart from direct application, the polymer brush model can be applied in some

abstraction in many situations. Diblock copolymer melts form "brushes" at domain

interfaces under strong segregation conditions, or when localized at high densities

at domain boundaries between incompatible polymer phases. Polymers localized at

an air-liquid interface can be studied conveniently with a Langmuir trough, where

51



inlcrcsling conformations have been observed [82,83]. Brushes at solid-solid interfaces

acl as adhcsives if the chains are grafted in one phase and extend into the other.•
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•

4.2 BruslIes in retrospective

An carly aUcmpt to modcl the stabilization, due to Dolan and Edwards, was to

considcr a brush of random walk polymers grafled through one end to an interface,

and confined bctween lwo plane surfaces [23]. The pianI' surfaces were assumed to

be r.tlractcd lhrough van der Waals forces, Two lypes of association between the

plancs wcrc found depending on the size of lhe polymers: a c10se association fol' short

polymcl's, and a loose association if the length exceeded a certain critical length.

Bcforc lhis critical value of the chain length, the van der Waals attraction dominates

al ail separalions, and thc polymers do not stabilize the suspension, Fol' c1Jains greater

lhan lhis valuc, lhcrc is an cnergy minimum at a larger parlic1e separation, Finally,

rOI' cven longer chains, the energy minimum becomes negligible compared to kaT,

and thus association would not be expected to be observed, This study, however, did

not inc1ude exc1uded volume effects.

ln a subsequent work [24], the authors inc1uded the exc1uded volume effect through

thc method of a self consistent field, described in section 3.3. They found, not surpris­

ingly, that thc exc1uded volume efrect greatly enhances the l'I)pulsion between the two

surfaces and is the dominant effect at large plane sepamtions. For small separations,

the dccrease in the number of configurations was expected to be the dominant effect.

Since the partic1es are expected to form a loose association at large distances, the ex­

c1uded volume effect was conc1uded to be an important part of colloidalstabilization.

Sorne years later, Alexander [l, 2] and de Gennes [18) introduced a new approaC:l

to the bl'llsh problem, seeking only power law dependences of rough measures upon

system parameters. FOI' example, one can write the energy contribution, pel' polymer,

of the Gaussian c1Jains in a brush of llCight il as

(4.1)

ignoring constants and keeping only the dependences of interest. At the same level
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of description, the excluded volume contribution pel' polymcr can be writt.cn

FiI !O2 J 2
1\ = 21\ circ/> (l')

~ !O2\1 (I\N)2
1\ \1
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where \1 = hA is the volume of a system with area fi and a grafting density rr = JI/A,

and 1\ is the number of polymers. If the t.otal energy pel' polymer is minimized with

respect to h, one finds

(4.2)

•

Therefore, h, the typical extent of a polymer in the direction pel'pendiclliar to the

surface, varies linearly with the degree of polymerizalion N. This is qllalitativcly

different from, say, isolated grafted polymers, which would have an extent that varies

as N3/5. Furthermore, since the lateral extent of a polymer in a brush 1 is cxpectcd

to val'y as N 1/2, the polymers in a brush are stretched in the direction 1>CI'pt'lldicular

to the surface for large N. Alexander came to this conclusion based on an energy

balance argument of the type detailed above, while de Gennes found the SlUne stl'Ong

stretching regime using a scaling picture of densely packed "blobs" lilled with self·

avoiding walk polymers.

A drawback of scaling arguments is that they are unable to predict detailed features

of bl'llsh stl'llctUl'C. The re-introduction of the self-consistent mean field approach of

Edwards allowed for a more detfliled description of bl'llsh structlll'e. The lIIean field

theOl'y of the strongly stl'etched polymer brush in good solvent was developed by Mil­

ner el.al. [55,54], and independently by Zhulina eUt!. [86]. The argulTlent, following

Milner, can be brielly outlined as follows [54]. The configuration of a Ganssian chain

in a self consistent potential can be considered analogous to the tmjcctory of a l'ar­

ticle in an external field, where the position of the particle at time n is equivalcnt to

the position of the nth monomer. The most likely configuration of the polymer, the

one that minimizes the configurational free energy, is the one for which the analogous

1In the direction Internl to the surface, the grnfting produccs monomer concentrations high cnough
to expect thnt excluded volume internctions nre screened.



l'article follows the classical trajectory. Now consider the polymer brush problem,

where many polymers, each of contour length N, start with the free end at sorne

value of z perpendicular to the grafting plane and end at the wall at z = O. Thus,

the potential must have the property that all trajectories, regardless of where they

start, end at z = 0 in the same amount of "time", N. This potential is the potential

of the harmonic oscillator,

•
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(4.3)

•

'1'ranslational inval'iance in the (x,y) plane is assnmed when writing the potential

as a function of z only. The prefactor cornes from the fact that the "pel'iod" of

the analogous oscillator is four times the contour length of the polymers. In this

approximation, the average monomer density is proportional to the potential U. Thus,

the density profile of a polymel' brush in good solvent is also parabolic. In the work of

Zhulina ct.ct/., on the other hand, the free energy was expressed as a functional of both

the local stretching, E (x, x'), at x of a chain with free end at x', and the distribution

of fl'ee ends 9 (x'). The free energy was explicitly minimized and expressions for E

and 9 were obtained. The resulting expression fol' the density profile in the same limit

was equivalent to the result discussed above.

Ever since the mean field theory was developed for the good solvent brush, there

h,we been many numerical confirmations of the basic predictions. The mean field

equations were solved directly using numerical methods [56J and the results compared

to analytical theory [55J. Good agreement was found fol' the density profile and the

distl'ibution of free chain ends for moderate N. Corrections were calculated and again

found to be in agreement with the numel'icalresults. A parabolic profile was found by

simulation in a molecular dynamics study that also calculated the force between two

brush covered parallel surfaces [57J. Using a lattice Monte Carlo simulation [12J of a

self-avoiding walk polymer, density profiles and the free chain end distribution were fit

to the predictions of Milner [55J with the excluded volume parameter as an adjustable

parameter. Good agreement was found, and the fitted values of the excluded volume

parameter were consistent for several simulations. In a similar vein, a polymer brush

simulated with the bond-fluctuation algorithm [44J found agreement with the scaling

of the profiles wi th the grafting densi ty and the degree of polymerization predicted
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from the mean field theOl'y, The same bond-fluctuation rcsults wCl'e compared in

more detail in a fol1owing publication [46J. Recent1y, a simulation based on a polymer

system described by the Edwards Hamiltonian again found agl'eement with mcan field

theory [4 7J,

The first direct experimental evidence of a brush regil1lf' was obtained from smal1

angle neutron scattering experiments of polymers end-grafted to the surfaces of P0l'OUS

silica [41. By varying the grafting density a and the molecular weight of the gl'llftcd

polymer, they were able to confirm the scaling relations

{
Nat good solvent

h~

Na pOOl' solvent,

•

where h is some measUl'e of the brush Iwight and N is the degree of polymcrization,

This was the first clear experimental evidencc of anisotropic strctching nornml to the

grafting surface,

The subject of polymer brushes has been the focus of mnch rcsmu'ch, and has

generated a large literature in recent years. A good overvicw of polymcr brushcs,

especial1y in context of the mean field theories of Milner [55J and Zhulina [SCiJ, can bc

found in the review of Milner [54J, Scaling arguments as applied to polymcl' brushes

are reviewed by de Gennes [19J, Results of computcr simulations on polymer brushes

can be found in a recent l'eview by Grest [31J,

4.3 The ''pambolic'' bnzsh: an illustration

•

As the pill'abolic bl'llsh has become a central result in thc study of polymer brushes, a

few important results from the self consistent field (SCF) theOl'y of polymer brushes

in good solvent will be discussed in this section. Although thc SCF mean field results

have been tested against simulation on many occasions, to the best of my knowledge

the Langevin formalism has not been used to simulate polymer systems. 'l'herefore,

this opportunity will be taken to compare the mean field theory with results from

a Langevin simulation, which will serve to il1ustrate both the Langevin method and

the mean field theory. The polymer brush in good solvent was previously studied

using Monte Cado methods and the Edwards I-Iamiltonian [47J. with results similar

to these Langevin results,



ln this Langcvin dcmollstration, J( polymcrs with N monomers each are randomly

graftcd onto thc (x, y) plane at z = O. The grafting plane of area L x L is considered

i/llpcnctrablc. Thc top of the simulation volume is placed far enough away from the

graftillg plane to bc clrectively at infinity. After specifyin[! the initial positions of

ail thc monomers, thc monomer coordinatcs are updated according to the Langevin

IIlcthod, dctailed in chapter 3. Since the grafting plane is impenetrable, it is necessary

to l'cstrict the monomers to lie in the half space z > O. After an initial period of

cquilibration, the time averages of quantities of interest can be measured. For this

cxamplc, L = 10, 1\ = 10, and N = 40, unless otherwise stated. Units of Icngth 1 arc

choscn such that b~ = 3.

Thc scaling of the height of the brush with thc degree of polymerization, N, is

'luite distinct fI'Dm the case of non-grafted polymers. In a brush, the height il ~ N,

whcreas in the free case the average polymer extent R ~ N3/5. This characteristic

lincar scaling is a c1ear signature of the brush regime; i.e., when polYll1ers are grafted

at sulliciently high density to cause considerable overlap [4J. Furthermore, this scaling

is a robust result. It is predicted from Flory type energy balance argument, from the

scaling arguments of Alexander, and also from the more detailed SCF mean field

calculatiolls. Results for the brush IICight are shown in fig. (4.1), where the brush

llCight has been measured in two separate ways. In one case, the average z value

is used, and in the other, the z component of the radius of gyration. With either

dcfinition, the bl'Ush height appears 2 to scale linearly with N.

A central result of the SCF mean field theory is a predirtion fol' the density profile;

i.e., the monomer concentration as a function of z, the perpendicular distance away

from thc wall, defined by the expressiou

•
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1 rL. rL.
</>(z) = L",L

u
Jo c/Y Jo c/x</>(x,y,z) ,
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(4.5)

•

whel'e L", and Lu are the dimensions of the grafting surface in the x and y directions,

respectively. According to SCF theory [55], the density profile is expected to be

1Uni'" have bccn chosen in thi. way in order to conCorm with previou. Iiterature. For the remainder
oC the thesis, any quantity with dimensions oC length is expressed in units oC (b' /3) 1/', though this
is not stated explieiLly Cor notationai convenience.

'The possibility that the dependence on N is weaker than Iinear cannot be discounted with this data,
which may not reach .he scaling regime [41, 7) .
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Figure 4.1: The brush height ns a fundion of the nllmber of bonds, N - 1. The height hns been
mensured in two ways: (squares) the average value of :, nnd (circles) the: eomponent of the rudins
of gyration averaged over ail monolllers. The IlCight is Iinear with bath definitions. The Iines lire
gllides ta the eye only.

parabolic,

(4.6)

•

where the brush IlCight il is

N ('2;:V2)"3 (4.7)

An example of the SeF density profile and the associated dcnsity pl'Ofilc obtaincd

from a Langevin simulatiou with the same parameters is shown in fig. (4.2). This

figure demonstrates some important features. The dcnsity pl'Ofile from silllulation is

dramatically lower than the mean field result near the wall, which has a maximum

at the wall. This region is known as the depletion zone. Also, the simnlation hil.~

a smooth tail at the top edge of the brush, unlike the SCF result, which becomes

strictly zero at the brush hcight. Both these effects are weil established featurcs of

more realistic brushes, and have been observed in many simulations that followed thc

parabolic brush prediction. Besides these two rcgions, thc simulation is consistent

with the SCF prediction.

This "classical path" SCF results relies 011 the strong stretching approxima­

tion, that the brush height greatly exceeds the typical lateral dimensions of the

polymers. Detailed SCF predictions, such as the density profile, shonld only be valid
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Figllre 4.2: Monomer dellsity profiles Ils n fllnction of the distnnce perpendicnlnr from the grnfting
plnlle. The lille is the prediction from mean field theory. The figure c1early shows a "depletion zone"
lIenr the wnll, and n smooth tai! at the top of the brllsh. Awny from these two arellS, the ngreement
is consistent. The simlliation parnmeters arc L = 10, li = 10, N = 40, and W2 = 0.5.

to the degree to which the strong stretc1Jing approximation is satisfied. According

to SCF theory, energy balance arguments and scaling arguments, the brush height

il. should scale as N (CT102)1/3; thus, one should be able to achieve "not-so-strong

stretching" by varying th(~se parameters appropriately. If the tlVO variables, </> and z

are rescaled according to

</> -t </> (;n 1/3

z
~ -t ---7;;;
• N(CT1Od/3'

then eqn. (4.6) becomes indepei.dent of the parameters N, CT, 102. That is, the rescaled

</> should be a universal function of the rescaled z. In fig. (4.3), the scaled den­

sity profiles are shown ..;; a function of the perpendicular distance alVay from the

grafting plane. The concentration </>' is plotted in units of (102/CT2rl/3, and z' in

units of N (CT102)1/3. The density profile~ ;,re shown for different values of h =
(12/7T2)1/3 N (CT102)1/3. There is the general trend that for smaller h, there is greater

deviation from the expected SCF profile. For large h, however, both the depletion

zone and the smooth tai! become much less pronounced, and the SCF result fits the

simulation results over a wider range. This accords well with the notion that the
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l'igure 4.3: Monomer density profiles Ils a runction or the distance perpendicnlllr rrom the grnrting
plane. The density is plotted in units or (W'/(1')-'/", nnd : in nnits or N (1111,)'/". In these units,
the data should collllpse onto a universlll curve. The cnrve predictec1 by selr-consistent field theory
is shown Ils Il line on the sllme graph.

mean field theory is valid in the strong stretching limit.

This comparison highlights one of the advantages of simulations based 011 the Ed­

wards Hamiltonian. Comparisons can be made between the l'esults of the simulation

and the field theory results without the fitting of parametel's. This is not possible with

lattiee Monte Carlo simulations, nor with molecular dynamics simulations. III these

cases, there is no direct col'l'espondence between parametel's, making it lIecessary to

fi t one or more parametel's.
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POLYMER BRUSH IN POOR SOLVENT

The equilibrium structure of a homogeneous polymer brush is investigated in pOOl'

solvent conditions. Using the Monte Carlo technique developed in section 3.1.2, much

larger systems are simulated than previously possible. When solvent quality becomes

sufficiently pOOl', lateral inhomogeneities develop in the monomer density in the direc­

tion parallel to the graft.ing plane. A micro-phase separated conformation is observed

at long times. The length scale characteristic of the micro-phase structure is consis­

tent with a two dimensional random walk. The use of an Edwards Hamiltonian allows

for control of solvent quality, faeilitating direct comparison with previous numerical

work which predicted the limits of stability of the laterally homogeneous layer [SOl.

Our simulation results are consistent with these findings.

5.1 Intl'Oduction

The structure of grafted polymer layers depends strongly on the interaction of the

polymers with the solvent in which they are immersed. In t.he previous cbp,er, the

homogeneous brush under good solvent conditions -.vas considered. It was seen that

for polymers grar';ed C'nto a plane surface, often assumed for convenience, transia­

tional invariance in the plane parallel to the grafting plane can be invoked to reduce

the study of the brush to a one dimensional problem in the direction perpendicular to

the grafting surface. In this instance, the properties of polymer layers are weil char­

acterized by one dimensional self-consistent mean field theories, as seen, for example,

from the results of chapter 4.

The study of polymer brushes under pOOl' solvent conditions is also important,

from an applications point of view as weil as that of pure theoretical interest. For

eXI~mple, the application potential of self-assembled monolayers is weil known [77]; if
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such a monolayer is formed from a polymer brush, then variations in layer thickness

of order ten are possible by adjusting Boivent quality [40J. If the brush is used for

colloidal stabilization, it is potentially useful to be able to induce coagulation by

changing the solvent quality [35]. Moreover, under pOOl' solvent conditions, one must

account for the possibility that the polymers will phase separate from the solvent.

In this case, it is no longer obvious that the assumption of trnnslational invariance

is still valid. Nevertheless, the simplification resulting from this nssulllption remains

very compelling, and indeed early studies of polymer brushes in pOOl' solvent assume

structureless layers in the plane parallel to the grafting surface [35, 66, 85].

In an early attempt to describe the polymer brush in pOOl' solvent without as­

suming translational invariance, Ross and Pincus [65J applied the rnndom phase ap­

proximation to include density fluctuations about a self consistent mean field solution

for a brush with a step function profile. They found no instability in t1h' pOOl' sui­

vent regime, and therefore cOl.cluded that the standard assumption of uniform and

continuous collapse was indeed correct.

Perhaps the earliest indication that (",teral inhomogeneities may in fact be present

under pOOl' solvent conditions was from Monte Carlo ~imulations of Lai and Binder

using the bond-fluctuation algorithm [45J, designed to study the influence of varying

solvent quality. POOl' solvent condi~jons were introduced through an elfective at­

traction between monomers, modelled by an energy reduction if two monomers were

neighbours on the lattice. Strong lateral fluctuations in the monomer d~nsity were

indeed found, as the authors observed one region of relativdy high monomer density.

However, the results in pOOl' solvent conditions were preliminary, by the author's OWli

admission, as they were unable to simulate a large enough system to charncterize

the structure formed in the pOOl' solvent regime. In a similar study, Grest and Mu­

rat [30J investigated the structure of polymer brushes in various solvent conditions

with molecular dynamics in which P001 solvent conditions were introduced through

an attractive pair potential. Similar results were obtained in this studYi the au­

thors observed evidence of laterally inhomogeneous phase separation, although with

a limited system size resulting in only one domain of high polymer density, and thus

strongly constrained by finite size effects.

•
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In a numerical study, Yeung, BaIazs, and Jasnow [&oJ used the random phase

approximation to describe fluctuations in the pOOl' solvent brush, calculating a self­

consistent mean field solution numerically instead of making the step function ansatz,

as had Ross and Pincus. They found that in sufficiently pOOl' solvent conditions, a

laterally homogeneous layer becomes linearly unstable to fluctuations. In the unstable

regime, they found that the polymer layer undergoes a micro-phase separation 1

into small domains, or "dimples", of predictable size and spacing. They also calculated

a stability diagram, showing the limits of stabiHty separating stable, laterally uniform

conformations from inhomogeneous micro-phase sepal'ated configurations.

Since the work ofYeung et.al., more analytical work has supported their conclusion

of micro-phase separation in sufficiently pOOl' solvent conditions. Huang and Bal­

azs [36) performed a two dimensional self consistent field calculation, thus obviating

the need for assuming translational invariance. They also found dimples, in qualitative

agreement with the Yeung picture. More recently, Tang and Szleifer [71J performed

a scaling analysis for the pOOl' solvent brush and found a simi!ar "phase-diagram~

including a laterally homogeneous regime, the micro-phase separated regime, and a

regime where individual grafted polymers form mushroom-like structures. Scaling

analyses have been peformed for the "micelles", or individual polymer aggregates,

formed in sufficiently poor solvent [79, 84). Very recently, a classical limit self­

consistent field analysis determined the equilibrium height profile and its stability

for a melt brush, which is a special case of a brush in a pOOl' solvent [70J.

Lateral instabilities were observed experimentally using atomic force microscopy.

Homogeneous polymer lpyers and islands were observed when the brurh was exposed

to air [81J. A polymer brush was studied using neutron reflectivity in which the

densi ty profile in the direction perpendicular to the surface was determined in various

solvC\nt conditions [39J. There was no attempt to determine structure in the lateral

plane, so microphase separation could not be observed. However, it was clear that

there was no step function like discontinuity in the density profile, even below the e
point, contrary to the assumption of Ross and Pincus. More recently, an atomic force

IThe term miero-phase separation refers to equilibrium separation that ceeurs only "loeally", as
opposed to when individual phases separate eompletely into single domains separated by a single
interface. This latter separation is referred to as macro-phase separation in this eontext.

•
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microscopy study of the same system \Vas published, in \Vhich the lateral structure \Vas

dircctly observed [40]. A polymer brush \Vas synthesized by adsorption of polymcl'

end groups to a surface from pOOl' solvent, the grafting density being detcrmined

by the time aUo\Ved for adsorption. Laterally inhomogeneous structurcs \Vere indeed

found for low grafting density. However, it seems likely that the effcctive attractive

interaction between polymers in pOOl' solvent would affect the pattern of grafting.

IL is not dear to what extent this facto.. affected their results. Very reccntly, phasc

separated structure were àgain observed directly \Vith atomic force microscopy [67].

The polymers were adsorbed From good solvent, and \Vould be expected ta have a

random grafting pattern. Regimes with isolated mushrooms, phase separated dimples,

and homogeneous layers were reported.

In this chapter, results are presented from an extensive Monte Carlo simulation

of grafted polymer layers under poor solvent conditions, with particular cmphnsis on

èletermining the influence of phase separation on the structure of these layers. Simu­

lation is performed within the Edwards model as described in section 3.1.2, enabling

the investigation of much larger systems than previously possible. We are thus able

to provide detailed structural information, weU into the region of micro-plulSe sepam­

tion. Wc are also able to confirm theoretical predictions bascd on scaling analysis and

numerical self-consistent field theory. Moreover, since the same Hamiltonian used in

analytical treatments is employed here, results can be compared directly without the

use of fitting parameters. This study i& the first demonstration of the utility of this

method in dense Jlolymer conditions. This chapter is adapted From our pI'eviously

published work [68).

•
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5.2 MetllOd

Wc describe a system of J( polymers, each having N monomers, with the Edwards

Hamiltonian

where Rk (n) is the configuration of the kth Jlolymer. As discussed in chapter 3, the

first term represents a Gaussian chain with mean squared bond lengths b2 • The second•
3 J( N (DR (n»)2

H {Rk (n)} = 2b2f; 10 dn ;n + HI {Rk (n)}, (5.1)



Lcrm is an intcraction potcntial that depends on the set of polymer configurations

{Rk (n)}. Following eqn. (2.24), HI can be expanded in powers of the local monomer

conccntration,•
5: POLYMER BRUSH IN POOR SOLVENT

I!dR;(n)} = ~z Jdr</>z (r) + ~3 Jdr</>3 (r),

64

(5.2)

•

Lo Lhird ordcr in the cxpansion. As discusscd in section 2.2.2, unfavourable monomer­

sol vcnt intcractions arc modeUed with a negative value of Wz. Increasingly negative

valucs of Wz are associated with decrel\l;ing solvcnt quality. The third order term is

rctaincd in t.his instance since negaLive values of Wz can lead to situations of higher

monomcr dcnsity. Thc value of W3 is always positive. This form fol' the potential for

pOOl' solvcnt in ncar El conditions is customary in the literature [65, 80], and is thc

basis of our simulations. Thc integrals arc over aU space, with the local monomer

density, </> (r), given by eqn. (2.22).

ln this sLudy, the Monte Carlo method developed in section 3.1.2 is implemented

with the Hamiltonian of eqn. (5.1) and eqn. (5.2). The Hamiltonian is approximated

using the coarse grained local density method 1 z. One end of every polymer is

grafLed at a l'andom position onto a surface of area A, fixing the grafting density

to be 0' = [(lA. The surface is considered to lie in the, (x,y) plane, restricting the

polymers Lo move in the half space given by z ~ O. Periodic boundary conditions are

imposed in the (x,y) directions, and the top of the simulation box is set far enough

away to be effectively at infinity. In particulaI', the polymer brush consists of J( = 655

polymers with N = 64 monomers each, grafted on a plane of area 128 ;.: 128. The

polymers are initially given random walk configurations with step size b. Unit~ of

Icngth are such that bZ = 3. We checked that fol' allresults presented below, different

initial conditions produced qualitatively similar results.

5.3 Results

A Lypical extended configuration of a grafted layer is shown in fig. (5.1) with the

excluded volume parameter, Wz, set to zero, corresponding to a situation with no

lThe pair interaction lnethod dcscribed in section 3.1.2 hns been applied ta polymer brushes in good
solvent conditions [47J; however, even in good solvent conditions, the coarse grained local density
method is severnl times fllSter, an advantage that is certainly amplified in higher density paal' Boivent
conditions.

zThe cells of eqn. (3.18) arc cubic and of linear size 1= 2.
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Figure 5.1: The polymer brush in an extended configuration, with w. = 0.0 Ilnd w" = O.li. Other
system parameters are L =128, [( =655, N =64. For pnrposcs or presentation, only [( =400
randomly selected polymers are draIVn.

effective attraction between the monomers. There is liLtle lateral sb o.Ictul'e evident

in the monomer densitYi i.e., the monomers al'e unifol'mly distributed in the plane

parallel to the grafting surface.

Under pOOl' solvent conditions, the resulting effective attractive force between the

monomers can lead to micro-phase separation. Fig. (5.2) shows a configuration of

a polymer brush where a sufliciently negative value (If W2 causes the extended con­

figuration of fig. (5.1) to become unstable, resulting in micro-phase sepamtion into

polymer rich regions and solvent rich regions. The phase separated regions are ((uite

structured, forming almost regularly spaced clusters. Evidence fol' such inhomogene­

ity was observed in previous lattice Monte Carlo [45] and molecular dynamics [30]

simulations, but not on a scale large enough to show the structure clearly evident

here. Since the grafting points of the polymers are irreversibly fixed onto the surface,

complete macro-phase separation into a single polymer phase is not possible due to

the energy cost involved in stretching a bond. Polymers therefore collapse into clua­

ters locally, giving rise to a length scale that characterizes the structure formed in

the phase separated regime.



•
5: POLYMEn BnuslI IN Poon SOLVENT

o

66

l'igure 5.2: The polymer brush iUIl micro-phllSe sepnrated coufiguration, with W2 = -1.0, W3 = 0.5.
The l'0lymcr droplcts form a uear-regulnr structure in the lateral plane. Other system pnrameters
Ilrc L =128, J( =655, N =64. l'or cousistency, the same 400 selceted polymers Ils iu fig. (5.1) arc
shawn.

The onset of inhomogeneity in the lateral density which accompanys micro-phase

separation is cOllveniently observed via the structure factor. The structure factor for

a system of No = N J( monomers can be defined 1

1 No

S(q)=: N E(exp[iq. (rm - l'Il)])
o min

(5.3)

where a monomer n is considered a scattering unit at position rn • We define the

l'burier transform of a function f (l')

Î(q) =: Jdl' f(r)exp(-iq. l'). (5.4)

Using the microscopic definition, eqn. (3.13), of the concentration </> (l') and the defi­

llition of the Fourier_transform, eqn. (5.4), the Fourier trr.nsform of the concentration

bccomes

• ISee reference [22]. sectiou 2.4.

No

~(q) = Eexp (-iq. l'Il)'
n

(5.5)
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With these definitions, the structure factor cali be alternately writtcn
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(5.6)

In this and the next chapter, we shaH use the form eqn. (5.6) to dcfine the structure

factor of a function.

Since the density inhornogeneities of interest are in the (x, y) plane, we rcstrict Ola'

attention to the two dimensional structure factor

(5.7)

where ~pp (qr' qu) is the Fourier transform of the plane projected l11onomor density,

and

q,pp(x,y) = Jdzq,(x,y,z).

(5.8)

(5.9)

Examples of plane projected monomer densities are seen in fig. (5.3), corresponding

to the configurations shown in fig. (.5.1) and fig. (5.2). The micro-phase structure is

•

Figure 5.3: The plane projected monomer density .pPP' corresponding to the previously shown config­
urations. Both views are perpendicularly down onto the (:Il, y) plane, with monomer density shown
in gray-scale: black corresponds to low monomer density, white to high monomer density. The
figure on the left corresponds to the extended configuration of fig. (5.1), with W2 = 0 and W3 = 0.5.
The figure on the right corresponds to the mioro-phase separated configuration of fig. (5.2), with
W2 = -1.0 and W3 = 0.5. In both cases, L = 128, [< = 655, and N = 64.

c1early visible, with high concentrations of monomer showing up as white. We also

define S (q) as the circulaI' average of the two dimensional structure factor, a function
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I?igure 5.4: Two dimensionsl structure factors of the plane projcct monomer density q,pp, corre­
sponding to the example configurations of fig. (5.1) and fig. (5.2). Figure a) on top corresponds
to fig. (5.1), with lU2 =0 and lU3 =0.5. Figure b) on the bottom corresponds to fig. (5.2), with
'"2 =-1.0 and lU3 =0.5. The circularly averaged counterparts are shown to the right in each case.
ln both cases, L = 128, /( = 655, llnd N = 64.

only of the magnitude of the wave vector q. Examples of two dimensional structure

factors and corl'esponding circular averages are shown in fig. (5.4). Circularly av­

cmged structure factors are shown in fig. (5.5) for several values of W2 at fixed Wa.

•

The emergence of structure associated with micro-phase separation is marked by

the appearance of a peak at a non-zero value of q in the circularly average structure

factor. The peak position, qp.akt corresponds to a new length scale which by com­

parison with the real space configuration of fig. (5.2) is found to be consistent with

the average distance between micro-phase separated regions. Furthermore, the peak
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•

Figure 5.5: Circularly averaged structure factors for the lateral density. The onset of strncture
accompanying the micro-phase separation is sccn as a peak at a non-zero value of q devolops.
The structure factors for the configurations of fig. (5.1) and fig. (5.2) arc shown, lIB weil Illl two
intermediate configurations..The Hnes are guides to the eye only. Other system pammete", arc
L = 128, J( = 655, N = 64 and W3 = 0.5.

•

height S(qpe.d, which measures the scatte1'Ïllg illtcnsity in a scattc1'Ïng cxpcrimcllt,

dcpends on the values of W2; in particular, the grcatcr the value of IW21, thc lm'gcr

the peak height '.

The average distance between c1usters, obtained from thc pcak position of thc

structure factor, is in ail cases almost twice the end-to-end distancc of a two di·

mensional random walk in a a-solvent. This result agrees with the scaling analysis

of Tang et. al. [71J and is consistent with the lincar stability analysis of Ycung ct.

al. [80J, who suggested that thc instability occurs on a finite wavclength on thc ordcr

of the radius of gyration for a polymer in a a-solvcnt. Furthcrmorc, wc obscrvc that

this is a robust l'esultj i.c., the average distance between the polymer c1usters is sccn

to be independent of the parameters W2 and W3 over a widc rangc, though the c1ustcr

size itself does change with these parameters.

To understand this result, we examined the avcrage end-to-end distance R(",u,.)

of the polymers in the x, y, and z directions, respectively. As tv2 was madc incrca.~­

ingly negative, R. decreased, indicating the collapse of thc polymers in increasingly

'The system was equilibrated at the fixed value of W3 and Wz = 0, after which Wz WllB gradually
decreased to the desired value.



pOOl' solvent conditions. On the other hand, Rz and Ru remained almost constant

with a value close to that of a two-dimensional random walk. Thus, in this dense

polymer regime, the average end-to-end distance of the polymers in the (x,y) plane

does not depend strongly on solvent quality. Sincc the end-to-end distance measures

the approximate size of a polymer, it is reasonable to expect the distance between

clusters to be of this order when phase separation sets in, and therefore is also inde­

pendent of solvent quality. As phase separ..tion continues, the clusters become morc

conccntrated, but the average distance between clusters remains unaffected.

Anothor interesting question is whether or not the lateral instability in the density

profile ".n be restricted to the tip region of the polymer layer. This possibility was

suggested from the analysis of Yeung ct. al. [SOJ when W2 takes values near the onset

of the instability for large grafting densities. We therefore varied the grafting density

and the value of W2, in order to find such a situation by calculating the structure

fador S(q) in plane sections parallel to the grafting surface. However, we have not

yet unambiguously observed an instability restricted to the tip region of the brush,

presumably due to the finite length N of each polymer.

Finally, a "phase-diagram" i~ estimated by varying the system parameters and

searching for the limits of stability of the homogeneous phase. This is carried out

by fixing W3 and decr'lasing W2 until the micro-phase separated regimc is definitely

rcached. This can be compared with a stability diagram obtained using the random

phase approximation 1. The stability of the uniform lateral density profile is deter­

mined by investigating the circularly averaged structure factor, S (q). Whon S (q)

exhibits a peak at finite q, the system is in the micro-phase separated region where a

uniform lateral density profile is unstable. When such a peak is absent, uniform lat­

cml density profiles are stable. The points in fig. (5.6) are determined from separate

simulations at the indicated values of (W2, W3). Fig. (5.6) shows that our simulation
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lIn reference [80], the stability is determined as a function of the two independent parameters

(5.10)

(5.11)

Therefore, the phase diagram is presented in terms of these variables, with b2 = 3.



•
5: POLYMER BRUSH IN POOR SOLVENT

0

'0'
0

0

0 0

0
0 0 0

0
0

'0' + 0

l' 0 0 0

"0 +

~ +.!. 101

'0'

il

'0 '9""
(Nw:ai/(w.'>

'0'

•

Figure 5.6: Simulation results as a function of the two independent paramelers fJ = wU (u'wg)
and 'Y = NW5u2/w~. The line shawn is the stability Iimit obtaincd wil.h the random-phase approx­
imation [80J. Micro-phase separated configurations in the \Instable regime are repr..entcd by open
squares. Configurations with a nniform lateral density profile are represenled by cro......

results are consistent with the random phase approximation prediction [SOl .
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BINARY BRUSH PHASE SEPARATION

The equilibrium structure of a grafted polymer layer composed of two distinct species

of homopolymers, the "binary brush", is investigated in various solvent conditions

IIsing the coarse grained local density method of section 3.1.2. If the two species

are sufficiently immiscible, lateral binary micro-phase separation occurs over a wide

range of solvent conditions. Due to the presence of solvent, there is a stage where

the brush expands in a laterally homogeneous manner as immiscibility increases.

In this stage, laterally averaged quantities are weil described by a single solvent

l'Clated parameter: a modified excluded volume parameter. This is followed by lateral

micro-phase separation in which the brush volume remains relatively constant. In

0-solvent, this phase separation sets in at a degree of immiscibility consistent with

a mean field prediction for melt layers. The onset of phase separation occurs at a

greater value of immiscibility as solvent quality increases. Furthermore, reducing

solvent quality results in a stronger crossover between mixed and phase separated

configurations. Under pOOl' solvent conditions, interesting structural variations result

from the combination of phase separation from solvent as weil as phallo separation of

the two species. The limit of stability of the homogeneous phase is determined using

the mndom phase approximation, and the results compared to simulation results.

6.1 Introduction

The first studies of polymer brushes were focussed on the "classic" brush introduced

in chapter 4; i.e., a monodisperse, homogeneous polymer brush grafted to an infinite,

fiat plane. In practice, these idealized conditions are never realized, nor necessarily

desired. In sorne instances, one can control the properties of a grafted monolayer

by grafting different types of surfactants on the surface [34]. Furthermore, polymer
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brushes may possess sorne degree of heterogeneity, even if not by design. In cither

case, it is desirable to know the effect of heterogeneity on the properties of the brush.

We therefore consider a very simple example of heterogeneity: the two component

polymer brush, or binary brush. The binary brush is composed of two different

•
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Figure 6.1: The binary polymer brush.

types of homopolymers, identical in every respect except for possibly sorne mntual

interaction between the two binary types, say A and B. Both types are randornly

grafted at a plane surface. The mutual interaction between the types is parnmetel'ized

by tvab.

Marko and Witten [50, 51] predicted instabilities in a symmetric binary brush

composed of immiscible chains under melt conditions, and used self-consistent field

(SCF) theory to examine the equilibrium properties. They studied two possible 01'­

dered phases for sufficiently high immiscibility: a "rippled" phase dcscl'ibed in terms

of a "density wave" in composition directed along the surface, equivalent to lateral

micro-phase separation, and a "layered" phase rich in one componcnt at the bot tom

of the brush and in the second component at the top of the bl'Ush. Marko and Witten

showed that lateral micro-phase separation occurs for a value of immiscibility, 0\' Wllb,

2.27 times greatel' than the corresponding value for bulk phase separation in simple

blends, while the layered phase would be observed at four ti'nes the bnlk value. Thus,

the lateral instability preempts the layering transition, and is expected to be the one

observed. Marko and Witten corroborated the occurrence of micl'O-phasc transitions

in binary brushes by studying real space correlations [52].

Brown ct.al. [9) performed large scale Monte Carlo calculations with the polymers

represented by self-a':c;iding walks on a simple cubic lattice in a symmetric binary

brush for near melt conditions; i. c., grafting densities of 0.3 and 0.5 on a surface of area

64 x 64, with N = 100. They observed micro-phase separation aCter quenching the



system to conditions of strong immiseibility. This was an impressive computational

undertaking, reqlliring "about one Sparcslalion-year' [9] to perform two quenches.

Another simulation by Brown for the same model using simulated annealing confirmed

this result [10]. Analytical work for binary brushes under melt conditions has since

been extended to the strong demixing limit [25), whereby a self consistent model of the

strongly phase separated brush containing phase separated regions and mixed regions

was characterized. Lai [43J performed bond-fluctuation Monte Carlo simulations of

n binary brush in a good solvent at a lower grafting density of approximately 0.1 on

surfaces of area 32 and 64. N was primarily 20 and 40, with sorne l'Uns having N

up to 80. In this case, the equilibrium structures were investigated as a function of

immiscibility and varying relative fraction of the binary types. For the symmetric ca.~e

of equal fractions, the laterally separated phase was again observed. For asymmetric

mixtUl'es, layering was observed, with the minority phase segregating to the top of

the brush, away l'rom the grafting surface.

In this chapter, we study the two component brush under various solvent con­

ditions. Using the coarse grained local density technique of section 3.1.2, we are

able to investigate large systems, yielding configurations showing unmistakable lat­

eral micro-phase separation. With this algorithm, we are able to go beyond previous

work, providing more quantitative details than bel'Ne. We are further able to consider

the clrect of varying solvent quality on micro-phase separation. We see, in marked

contrast to the incompressible melt layer, that the presence of solvent allows for a

stage of laterally homogeneous volume expansion in the brush as immiscibility in­

creases, weil before the onset of micro-phase separation. Moreover, solvent quality

is seen to modulate the lateral micro-phase separation process itself, even though

the binary species are indistinguishable with respect to solvent interactions. Our

results for the onset of micro-phase separation in a El-solvent agree with a mean

field prediction for a meltj however, in good solvent, onset of micro-phase separation

is deIayed. Furthermore, we see evidence that decreasing solvent quality produces

a much sharper crossover between mixed configurations and laterally micro-phase

separated configurations. We present a preliminary qualitative examination of the

binary brush in pOOl' solv.::-.t ~onditions. Finally, we determine the limit of stability

•
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of the homogeneous phase using the random phase approximation and find it to be

consistent with results of our simulations. This chapter has been adapted frolll onr

previously published article [69].•
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(6.1 )

6.2 MetllOd

As in section 3.1.2 and chapter 5, we describe a system of 1\ polymers, each with N

monomers with the Edivards I-Iamiltonian

Il {Rk (n)} = 2
3
b2 t {Neill (Da; (11))2 + HI {Rk (n)}.

k=l Jo Il

Again the first term in eqn. (6.1) represents the probability distribution of a GauBsian

chain. The interaction I-Iamiltonian III for a b:nary brush containing two types of

monomers, A and B, is given by

(6.2)

(6,:1)

•

I-Iere r/>a,b (r) is the concentration of monomers at the point r, defined b)'

r/>a,b (r) = L:JellI d (r - R~,b (n)) ,
k

where ';he superscripts and subscripts Cl, b refer to monomers of type A or B, rl..~

spectively, 1<'urthermorc, q,(r) is the total monomer density, eqnal to r/>a (r) +r/>b (r).

For future reference, we define the monomer density dilference at the point r as

<I> (r) = r/>a (r) - r/>b (r).

The coefficient Wab is the immiscibility coefficient. For negative Wab, therc is an

effective attraction between monomers of dilferent types while for positive lO11 b, the

two types of monomer become immiscible. Consequently, within the model deBcl'ibed

above, Wab = 0 describes a monodisperse, homogeneous polymer brush, since poly­

mers of type A and B cannot be distinguished. The excluded volume parameter,

102, determines the interaction of monomers with the solvent, which we take to be

the same for monomers of both types. We reiterate that for positive values Of'JI2,

good solvent conditions prevail, while negative 102 describes pOOl' solvent conditions.

The parameter 103 is taken to be positive or zero: it is not relevant in good solvent

conditions and is set to zero for 102 positive, and for pOOl' Boivent conditions, when

102 is negative, 103 is assigned a fini te, positive value.



ln this study, we consider linear homopolymers with N monomers pel' polymer. K

polymers are randomly and irreversibly grafted by one end to an impenetrable plane

with surface density 0' = KI L2 , where L2 is the area of the plane in the simulation

volume. Half of the K polymers are chosen (randomly) to consist entirely of monomers

of type A, with the remainder consisting of monomers of type B. The grafting plane is

the (x, y) plane plane situated at z = 0 and periodic boundary conditions are imposed

in the directions tangential to this plane. Monomers are confined to the positive blf­

space z ~ 0, and the top of the simulation box is placed at a large enough value of z

to be erfectively at infinity. In particulaI', polymers are grafted at a surface density of

0' = 0.1, on a square plane of area either 128 x 128, or 64 x 64. Each polymer contains

N = 64 monomers and the box size for coarse graining has linear dimensions of 2.

The unit of length is chosen such that b2 = 3.

•
6: BINAitY BRUSH PHASE SEPARATION 76

•

6.3 Results

TWl1 sampIe configurations of the binary brush, obtained from our simulations, are

shown in fig. (6.2) and fig. (6.3). They correspond to different values of the immisci­

bility parameter, Wab, and two views are presented for each configuration. The upper

diagram is the view from above, looking perpendicularly down towards the grafting

plane, while the lower diagram in each case is the "edge on" perspective, viewed par­

allel to the grafting plane, Black lines represent polymers of type A, while grey lines

represent polymers of type B.

Fig. (6.2) is a typical configuration in the absence of immiscibilitYi i.e., Wab = O.

ln this case both the total monomer density and the distribution of monomers of

type A and B should be homogeneous. Indeed, in both views, monomers of types A

and B appear evenly ·distributed. Fig. (6.3) is a typical configuration for Wab large.

Strong immiscibility is expected in this case and the view from above clearly shows

lateral phase segregation, resulting in micro-phase separated domains rich in either

A or B type monomers. Note that the side view gives no iudication of layering as

monomers of different type do not visibly segregate in the vertical direction. As will

be discussed in more detaillater, the average domain width is approximately a quarter

of the Iattice size, which corresponds to twice the lateral end-to-end distance of a
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Figure 0.2: Sampie configurations of the two component polymer brush, for '"2 =0.5, Wab =0.0 (no
immiscibility). The top figure is the view down nlong the: axis towards the top of the ?rush, while
the the bottom figure is an edge view, parallel to the gmfting plane, The system size L = 128 aud
the graftin!!. density Il = 0.1.

polymer in a 0-solvent.

These l'esults are qualitatively simitar to those reported in previous work [9, 43J,

from which the following consistent picture emerges. Fol' small values of Wub, entropie

eifects dominate, favouring the laterally homogeneous state. HOl'lever, fol' sufficiently

large immiscibility, enel'getic eifects dominate th" entropie eifects, causiug the poly­

mers to phase st:parate into A rich and 13 ..ich domains. If the grafting points were

free to move, the phase separation would continue untH macro-phase separation into

single domains of A and B separated by one interface occurred. However, due to

the irrel'ersible end grafting of each polymer onto the grafting surface, macro-phase



•
6: BINARY BRUSH PHASE SEPARATION

y

L,

78

L,

•

Figure 6.3: Sample configurations of the two component polymer l·rush, for W2 =0.5, W.b = 1.5
(stroug immiscibility) for the same system shown in fig. (6.2). The... is marked phase separation
evident in both views. The edge view indicatc.. that phase separation isbter!'!, with no evidence of
"Iayering". The system size L = 128 aad the graftiaF; deasity rr = 0.1.

separation cannnt take place and the equilibrium structure consista of local domains

or single polymer species. Since the polymers f1uctuate laterally over a distance or ap­

proximately twice the polymer end-to-end distanco, it is plausible that the domains

should have this size. If the lateral density is sufficient1y high (as is expected in a

brush), excluded volume interactions will be screened laterally and the end-to-end

distance will be that expected for a El-solvent. This argument for the selection of

domaill size where lateraI patterns are formecl in polymer brushes is quite generaI

and has been observed in such cases as lateraI micro-phase separation in pOOl' sol­

vf;nt [68, SO, 71), binary brush melts [9,51], and binary brushes at lower clensity as
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Figure 6.4: Total monomer density profiles for different vaincs of IVab, with BoIvent quality Iixed at
IV. = 0.5. The line corrcsponds ta an analytical prediction from SCF theory. The cllse of IV.b =0
is indicllted by open cirdcs. Th- inset shows the profilcs for different IVab scnled with nn elfective
good solvent pllrameter, IV••JJ. fhe system size L = 128 and the grnrting density cr = 0.1.

seen in reference [43J and in this chapter.

In order to make contact with previous theoreticalresults fol' end-gmfted polymer

brushes, we next examine monomer density distributions as Il function of z, the

perpendicular distance away from the gmfting surface. The 1\10nOIner density profile

is defined by e~n. (4.5) in chapter 4. The definition is completely analogous fol' the

monomer density difference, <1> (z). Density profiles for the total monomer density are

shown in fig. j,6.4) for various degrees of immiscibility. Small but systematic changes

arc evident as Wab is increased. The particular case of Wab = 0 corresponds to a

binary brush with no differential interactions between A and B type polymers, and

is therefore equivalent to a homogeneous brush. ln this case, therc is an analytical

prediction for the density profile, as was seen in chaptet· 4. The solid line in fig. (6.4)

gives the SOF result of eqn. (4.6). The resulting agreement with the simulation data

is the same as discussed in chapter 4. That is, there is reasonable agreement except

for the depletion zon~ near the wllllllnd the smooth tai! at the top edge of the brush.

Wc note that there are no free parameters to adjust when comparing the data wii.lL

the expected profile. This highlights one of the advantages of the current simulation

method as stated at the beginning of the chapter, that parameters of the simulation



can be formulated directly in terms of polymer field theory.

As Wah is increased from zero, there is a small but distinct tendency for the profile

to "Hatten out», suggesting that the polymers stretch away from the surface as the

repulsion between A and B polymer types increases. Because a more favourable

polymer interaction with the solvent would have qu~litatively the same effect, we

reinterpret the enhanced immiscibility as an increase in solvent quality. An increase

in the value of Wah thus modifies W2, creating an effective value, W2e// > W2. Note

that eqn. (4.6) becomes independent of W2 given the change of variables <p -+ W~/3,1>

and z -+ Z/W~/3. We assume this as a good solvent scaling rarm. Thus, if the data

can be described in terms of varying solvent quality, we expect that a rescaling of the

profile data using <p -+ w~~~/<p and z -+ z/w~~~/ should result in a data collapse onto

a nniversal curve fol' appropriate values of W2e/J' The results are shown in the inset

in fig. (6.4) and we do indeed find a convincing data collapse fol' all values of Wah.

This rescaling does not follow directly from previous work since eqn. (4.6) was

derived assuming a laterally feature1ess brushj in fact, the analysis of Marko and

Witten [51] was rèstrided to the weak segregation Iimit 50 that the classical trajec­

tol'Ïes z(n), where n gives the position of a monomer on a polymer chain, would not

be alrected by segl'egation effects. However, there are clear indications from fig. (6.3)

and the dip~ussion below that phase sepamtion has occurred over the range in which

we fit W2e//l giving rise to dear lateral micro-phase structure. Nonetheless, the brush

appears to remain laterally homogeneous on average, even after the onset of micro­

phase separation, as seen in the profile for the density difference, <1>, shown in fig. (6.5)

for the phase sepamted configuration of fig. (6.3). The total density profile, <p, is a1so

shown in this figure to provide scale. The figure shows that there is negligible varia­

tion in the <Il profile, its value being close to zero, indicating no significant monomer

excess of either type for any value of z. This may help explain why laterally averaged

quantities, such as the density profile, are well described by a single parameter, in

this case the modified excluded volume parameter. In addition, the lack of variation

in the <1> profile shows that there is no vertical phase segregation, snpporting previous

fiudings that micro-phase separation is completely latera!.

The fitted values I)f W2e/J arc shown in fig. (6.6) as a function of Wah. The Încrease

•
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Figure 6.5: Profile of the monomer density difference for tu.b = 1.5, tu. = 0.5, corresl'onding ta the
configuration in fig. (6.3). The total density profile is also shawn ta l'l'ovide scale. l'or Ill1 :, the
density differellce is negligible compured ta the density in the Illyer. The snlllll vllrilltion shows littte
verticlli .egregation. The system size L =128 and the grarting density cr =0.1.

of effective solvent quality with increasing immiscibility can bc clcarly seen for small

values of W.b' For llll'ger values, however, W2_!! becomcs indcpcndcnt of W"b' ln ordcr

to explain why W2_JI saturates, we propose that the process of micro-phasc scpamtion

advances in two stages. As immiscibility is incrcased, we suppose that thcrc is il mnge

of W"b before the onset of micro-phase separation where thc energy added to the bl'llsh

is compensated fol' by an overalliowering of the brush dcnsity achicved by strctching

the polymers away from the surface. Fol' W"b greater than a particular value, micro­

phase separation sets in and any further increase of immiscibility energy will to a

certain extent be compensated by the lateral rearrangemen' of the monomers, Since

this is a 1ateral ordering proccss, it does not necessarily require brush expansion and

therefore no further increase should be seen in W2_Jl' As a morc dircct probe of

the brush expansion, we measured the value of z a\ eraged over ail monomers in thc

system as an indication of brush height. Results are given in fig, (6,7). As a function

of W"b, we see that there is indeed a stage where the height incrcases, implying a

volume expansion, This is foltowed by a stage where the rate of exp:msion is markedly

decreased, suggesting saturation, Fol' W2 = 0,5, the saturation begins at the same

value of W"b where W2_JI begins to saturate in fig, (6,6),
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Figure 6.6: The errective excludcd parameter w2ell determincd from the scaling of the total monomer
density profile (fig. (6.4)) as a function of W.b. w2ell appears ta begin saturating at W.b ", 1.0. The
system size L =128 and the grafting density (f =0.1.

Fol' a more detailed study of the lateral structure, we calculate the structure factor

of the plane pl'Ojected monomer density difference,

where the plane projected density difference, <I>pp, is defined

<I>pp == Jdz<I>(x,y,z),

(6.4)

(6.5)

•

analogous to the discussion in the previous chapter leading to eqn. (5.6).

In fig. (6.8), we show structure factor results circularly averaged fol' different values

of tvab fol' a constant value of W2 corresponding to good solvent. Each structure factor

is the result of averaging over five equilibrium configurations 1. The appearance of a

peak in the structure factur at a non zero value of q suggests that a new length scale

emerges as Wab increases (when the two species become sufficiently immisc1ble) and

becomes more prominent as Wab is increased. This clearly corresponds to structure

tltat develops as micro-phase separation sets in. The value of q associated with

the peak in the structure factor thus corresponds to the length scale determined by

1Wc cannat rule out the possibility of very long time scale motions, which could be present when
domains bugin to form.
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Figure 6.7: Average monolller: vainc, ns a llIensure of the brush IlCight, plotted as Il function of IVab

with triangles for IV, =0.5 and L =128. The dependence of the average: on IVab is '1nlllitativcly
similar ta that of IV,./ / in fig. (6.6). The same plot is shown with drcles for IV, = 0.0, [, = 6~ in
the inset.

this local structure. As in the previous chapter, we expect the peak to correspond

the average separation between domains. This is indeed likely Ils the periodic spadng

between the microdomains seen in fig. (6.3) is consistent with the peak position of the

structure factor observed in fig. (6.8). The average domain spacing is approximately

twiee the end-to-end distance, projected in the (x,y) plane, of a polymer in a 8­

solvent. As mentioned above, this domain size is consistent with results from previous

simulations [9,43). Note, moreover, that the peak position stays at q = 4 for ail highcr

values of tv.b' This implies that, unlike phase sepal'lltion in a binary alloy, almost

no coarsening occurs. In fact, the domains seem to appear at a fixed wavelength,

which remains constant regardless of the degree of immiscibility. Similar rcsnlts were

obtained in a previous study [9) where the peak in the structure factor remained

constant as one configul'ation was quenched. Even so, we cannat resolve simili changes

in the peak position due ta the limit of resolution imposed by the finite system size.

We remark that structure factors for the total monomer density gave no indication

of structure in the total monomer density.

As an indicator for the progress of micro-phase separation, we use the value of

the structure factor at the q value corresponding to the local order formed in the
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Figure 6.8: Structure factors of the laterally projected monomer deusity differeuce, for different
valu,," of IVab. The results shown here are circularly averaged. A peak appears in the structure
fnctor nt Il = 4. corresponding to the average domain separation in the micro-phnse separnted state.
The system size L =128 and the grnfting density Ir =0.1. The solvent quality is fixed at IV2 =0.5.

phase separated regime (i.e. the peak value of S(q)). This is plotted in fig. (6.9)

fol' two cases: a large system with w, = 0.5, and a smaller system with w, = O.

For IV, = 0.5, the peak height grows smoothly, suggesting a graduaI crossover to

micro-phase separated states. For w, =0 the crossover is much sharper, even though

the system size is smaller. In a previous work [43], the absolute value of the density

difference was studied over a wide range of Wab for N = 20 and N = 40. The authors

found no sharpening of the crossover for the case of larger N and thus suggested

that there was no truc phase transition in the thermodynamic limit. However, they

did not vary solvent quality, which, as we have seen, plays an important role. At

present, wc do not have results necessary for a detailed finite-size scaling analysis

of the crossover. Ideally, wc would like to study the behaviour of the crossover by

systematically increasing the area of the grafting plane, keeping the grafting density,

u, fixed. An example of this is shown in the inset to fig. (6.9). The solvent quality

is fixed at IV, = 0.5, and results are shown for two system sizes, L = 128 and

L = 64. When nOl'lnalizcd by L', there is little system size dependence, giving no

evidence for a phase transition. Unfortunately, a proper fini te size scaling anaIysis of

the transition would require a prohibitively large computational effort, sO we cannot
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Figure 6.0: The value of S (q) for q corrcspollding ta the arder formcd in the micro-phase separated
state, S (q",.r), Ils llll indicator of micro-phase separati"n. The fillcd circles corresl>ond ta the case
L =64 and W2 =O. The open squares correspond ta the structure factors shawn ill lig. (6.8). Note
.h.'.t ~he ons~t of arder is mueh sharpcr in the case of 102 =o. Ali values of S (f/rna.l') ure normulizcd
~.) L,'J. The insct shows fi comparison for two system sizcs, L = 64 und L = 1:l8. for fixcd Holvcut
qunlity W2 = 0.5. Note there is :elntivcly little system size dependenœ.

propedy address the question of the existence of a thermodynamic phase transition

al. this time. Since the solvent quality affects the crossover, this mmlysis wonld he

especially interesting in 0-solvent or marginally poor solvent conditions.

As stated in the Introduction 1.0 this chapter, Marko and Witten [511 showed that

lateral micro-phase separation under melt conditions OCCtlrs when t.he imllliscibility,

or W.b, is 2.27 times greater than the bulk phase separation value. Although our

simulations were perf"rmed for a brush in solvent, a comparison with this prediction

is still useful, particulady for the case W2 =O. A simple mean field calcnlation 1 shows

that bulk phase separation occurs when Wab =4il/N2 U , wherc il i, the IlCight of the

brush. From our data, we can l'stimate il using il = 2 (z), whefl' < z > is the z value

iweraged over ail monomers. For the case of W2 = 0, fig. (6.9) and fig. (6.7) indicate

that micro-r>hase separation occurs when Wab ~ 0.4 and < z >~ 7.7, yiclding 2.7 for

the ratio between micro-phase separation in a 0-solvent and bulk phasl' Sl·paration.

This value is reasonably close 1.0 the predicted value for the melt. On the other hand

when a gooù solvent is present sUch as for W2 = 0.5, fig. (6.9) and fig. (6.7) show that

1'l'hi. can be shown from a simple model, assumillg laterally segregated domaias and n step fnnction
profile.
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Figure 6.10: Fluctuations of the dcn!iity dirrcrcncc per monomcr, indicnting micro-phase Hcpnrlltioll ,
shawn as a function of =for different values of U1.b. Micro-l,hase separation is strongest where
the density profile peaks, and is supprcsscd al. the wall, probably dlle ta grnrting. The syst.em size
L = 128 and the grafting density CT = 0.1. The solvent qnality is fixed al. IV, = 0.5.

tv.b ~ 1.0 and < z >~ 11.3 at the instability, giving 4.5 for this ratio. This is further

evidence that the nature of the solvent has a marked influencc on the occurrence of

micro-phase separation.

In fig. (6.10), we show the mean squared density dilferencc fluctuations pel' mo­

nomer as a function of z. Near the grafting plane, the fluctuations in <\> are strongly

suppressed due to the fixing of one end of the polymer on that plane. Othel'\vise, the

tendency for micro-phase separation appea.rs proportional to the density. Therefore,

micro-phase separation first occurs in the middle of the brush where the density is

highest and the brush always remains most strongly separated in this region. This is

c1ear evidence that micro-phase separation does not occur uniformly throughont the

brush, and remains nonuniform for ail values of tv.b' For the mclt case, a "composi­

tion oscillation" as a function of z was indeed predicted [51], although we see c1ear

qualitative differences. The peak of the density difference profile for the "composition

oscillation" was predicted to be very close to the top of the brush in the melt case.

We find that, in the presence of solvent, the peak corresponds to the maximum of

the total monomer density profile, and decreases monotonically toward the t.op of the

brush.



Wc next explore micro-·phase separation III pOOl' solvent conditions (W2 < 0) .

. As is known from previous work [80, 43, 30, 71, 68], a homor;eneous end-grafted

polymer brush will undergo a lateral micro-phase separation or monomers from the

surrollndir.g solvent at a sufficiently negative value of W2, reslllting in the formation of

microdomains of monomer ri ch regions and Illonomer pOOl' regions. In the case of an

end-grafted binary bru~h, two types of micro-phase separation are possible: micro­

phase separation of monomers from the solvent regardless of type, and binary micro­

phase separation due to the immiscibility of the two polymers types. The competition

between these two types of micro-phase separation is expected to produce interesting

phase behaviour and we have investigated sorne of the possibilities in a qualitative

fashion. In our simulations, both typ~s of micro-phase separation were observed

but with very different equilibrium structures depending on the order in which the

micro-phase separations were produced.

ln fig. (6.11) we show two cases. If the solvent is first made increasingly pOOl'

with no immiscibility, micro-phase separation of monomers regardless of type from

the solvent is induced. Thus, clusters of solvent separatcd monomers appear with the

expected average clnster spacing, with types A and B mixed evenly inside ail clusters.

As immiscibility is introduced in this solvent separated state, the types A and B phase

separate completely within each cluster. Immiscibility can also be introduced in good

solvent, then increased until the two types micro-phase separate at fixed W2. Now,

as the solvent qllality is made pOOl', the monomers indeed separate from the solvent,

but in this case, the previously formed binary phase separated domains determine the

nature of the clusters formed as monomers phase separate from the solvent. The result

is the appearance of larger solvent separated clusters of pure A type or pure B type.

Similar structure have been considered in work on grafted AB diblock copolymers,

graftcd to the surface at the junction of each diblock copolymer [5J.

Finally, we can estimate the limits of stability of the laterally homogeneous phase

nsing Green function methods combined with the random phase approximation. As

discussed in chapter 3, a mean field phase transition is expected when the lowest

eigenvalue of A -1 becomes negative, where A is the correlation function calculated

in the random phase approximation. The details of this calculation for the binary

•

•
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(0.0,0.0) (0.0,0.2)

/
(-1.5,0.0) (0.0,1.6)

/
(-1.5,1.2)

,
(-1.2,1.6)

•
Figure 6.11: Samples of configurations for the binary brush in poor solvent. Two different pattern.
ofannealing are shown. They arc, using the notation (W2,Wob): (sequence left) (0,0) -+ (-1.5,0)-+
(-1.5,1.2), and (sequence right) (0,0.2) -+ (0,1.6) -+ (-1.2,1.6). Intermcdiate configurl\tions are
Ilot shown. The system size L =64, the graftillg density t1 =0.1, and W3 =0.4 for both seqaences.
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Figllre 6.12: Lowest eigen\'aille of A -1 shown as a fllnction of q, where q is shown in the same IInits
11.. fig. (6.8). The insct shows the case for w, =0.38 o\'er a larger scale. Note the instability occurs
bctwccn W2 = 0.a8 and 102 = 0040, sincc the lowcst eigenvalue becomcs r,cgativc hctwecn thcse
mlllcs. The \'aille of '1 at the point where the lowest eigen\'alue becomes zero is the wa\'elength of
the instability in the lateral direction.

hrush can he found in section A.4, which implements the techniques introduced in

sect.ion :J.3 and section :3.4. In fig. (6.12), the lowest eigenvalue of A -1 (z, z'; 1/) is

shown as a function of q for a given value of W2 and wa&. The point (w;,w:&) where

the lowest eigenvalue becomes negative is the Iimit of stability of the homogeneous

phase; i.e., where binary phase separation occurs. The wave number q" for the first

negative eigenvalue gives the wavelength of the instability in the direction parallel

to the grafting plane. From fig. (6.12), the "criticaln wave number q" = 0.24 ± 0.02,

aud is the same for ail (w;, w:&) within the precision of our calculations 1. This value

for q" is consistent \Vith the results of our simulations. From fig. (6.8), we find from

simulation that q" =0.22 ± 0.02.

The degree of immiscibility, wa&, at the mean field limit of stability was calculated

over a range of W2. The results determine a "phase boundaryn in the (W2, W a&) plane,

between homogeneous configurations and laterally micro-phase separated configura­

t.ions. The results are shown in fig. (6.13). We can compare our simulations \Vith

t.his stability diagram. The simulation results shown in fig. (6.9) were used to charac­

terize configurations for given values of (w~,W a&) as stable or microphase-separated.

IThe uncertainty quotcd for q" is from the precision to which we calculate this number.
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Figure 6.13: Stability diagram, showiug the Iimit of stability of the homogeucous phl~.e, calculatcd
in the rnndom phase approximation. The plus (+) sigus nre the Iimits of stability, and thcrcfore
demarcate the phase boundary. The line is a guide to the cye only. Oascd ou the r""nlts shawn iu
fig. (6.9), the coufigurntions from the previons Montc Cnrlo simulntionsarc tentatively identificd as
stnble (squares) nnd unstnble, or phase sepnrnted (drdes).

The crossover point on fig. (6.9) was tentatively identified, and the resnlts shown as

points on fig. (6.13). As can be seen, the Monte Cado resn\ts arc consistent with the

stability limit calculated \Vith the random phase approximation. These rcsnlts ilre

stiil preliminary, but the agreement is cncoUl'agillg.
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CONCLUSION

Using a Monte Carlo technique bas"d on an Edwards Hamiltonian, wc have con­

vincingly demonstrated laterally inhomogeneous micro-phasc' separation in grafted

polymer layers in pOOl' solvent conditions. This was marked by the emergence of a

peak in the structure factor at a wave number corresponding to the average distance

hetween micro-domains, which is approximately twice the end vector distance of the

random walk parallel to the grafting plane. Furthermore, the peak position was found

to he approximately independent of the interaction parameters W2 and W3 over a wide

range, coOlsistent with previous theoretical considerations [80, 11]. Our estimate of

the onset of the lateral density instability from the behaviour of the stl'Ucture factor

agreed with a prediction using the l'andom phase aplJ~·oximation.

Wc have also observed micro-phase separation in a binary brush due to immiscibil­

ity interactions under various solvent conditions. We found that the brush response

to increasing immiscibility proceeds in two stages: an C'verall expansion stage, and a

micro-phase separation stage. In the expansion stage where the immiscibility coef­

ficient W.b is relatively small, the brush relaxes by pxpanding in a laterally uniform

fashion away from the grarting plane. The role of W.b is largely to "renormalize" the

excluded volume parameter W2, and polymers of different type mix very welliaterally.

The total density profile in the direction perpendicular to the grafting plane (the z­

direction) is the same as that of a homogeneous polymer brush if the "renormalized"

w2-parameter is used. At larger values of W.b, it is energetically more advant.age0115

for the two polymer species to undergo micro-phase separation, and clear micro­

phase separation in the lateral direction was indeed observed. This separation is

strongly aflècted by the solvent quality: good solvent conditions delay the onset of

separation, and the crossover is sharper in poorer solvent conditions. We also found

91



clear evidence 'lf z depend<'nce in the micro-phase separation. in lhal lhe d,'mil'inll:

of lhe two types of monon1<'rs is non-uniform along the z dir.'clion. W" ha\'<' also in­

v<,stigaled, in a qualitative manner, the phase bduwionr of th., binary brush in pOOl'

solv<'nt conditions. Wc found diITerent conformations d"pending on the detaibl path

for micro-phase separation. ln l'articulaI', pure domains of tlll' two diffl'l'('nt polynll'r

types or mil'ed domains were observed depending on whether 11'2 or W"b was chang,'d

first. Finally, using a sclf consistent field analysis, w<' constructed a "phasc-diagram"

showing the limits of stability of the homog<'neous phase. This was consist<'llt with

the results of our simulations.

These studies convincingly demonstrate the elfectivel1l'ss of the algorithm devel­

oped in this thesis, far surpassing other simulation techniques cnrrently being applied

to the polymer brush. This opens up many interesting possibilities for fntnre research.

ln the binary brush study, we assumed that the solvent interaction for both types

was identicaI. ln general, this is certainly not the case, and differential interactions

could be easily studied with the above method. Besides questions of phase separa­

tion, there are important eITects that could be studied that would involv<' only minor

modification to the algorithms presented in this thesis. For el'ample, the assnmption

of a plane grafting surface could be relal'ed and the case of more realistic curvature

could be studied, for which there are analytical results in the literature [6J. The .ta­

Lilizing forces between realistic colloidal l'articles could then be detel'lllined throngh

simulation [~~]. Another interesting possibility is to use this Monte Cado techniqne

self consistently to determine the propelties of ionomeric colloid. [62, 63], which ex­

hibit many interesting phenomena and have important applications, such as colloid

control in aqueous environments (waste-water treatment, oil recovery, de.) [641.

lndeed, there are many outstanding questions on the equilibrium properties of

polymer brushes to be addressed. The ideas and techniques introduced or reviewed in

this thesis should be central to devûloping a deeper understanding of these important

systems.

•

•
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ApPENDICES

Langevin flll1ctiollal derivatives

III this apPclldix, thc varions tcrms of aIl / aJ'~ are derived fol' the Langevin eqllatiou

"'In. (:1.:11).

A.l.i Gaussiall c1Jaill [ullctiollal del'i"ati,'e

Rccall that

•

lla=~Jdn (aR(n))2
2b2 an

Wc waut thc flluctional dcrivative alla/JR(n'),

Jila _ a [~Jdn (aR(n))2]
JR(n') - aR(n') 2b2 an

3 (aR) a 8R--Jdn? -- 2b2 - an aR(n') an

3 J aR a OR(n)
= b2 dn an 8n JR (n')

3J aRa ,
= b2 dn 8n an a(n - n )

3 J a2R(n) ,
=-b2 dn an2 a(n-n)

3 82R (n')
= - b2 8n'2 '

nsing an iutegration by parts. Thus,
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.4.1.2 The cliscrctc Gilllssiélll cleriwltil'C'

Hecall the discrete fonn for /la.

9·'

where J'~ is the "th component of the jth Illononwrs. 'l'hl'n' is an illlplirit SUIll OVl'r

repeated component indices, whereas the snlll over Illonolllers is explicit.

VVe want the partial derivative of /la with respect 1.0 ;r~,

oHa :.l LN a ( .. .' ")-_ = _ -- J,J xJ - ')xJ r J - 1 + rJ-1rJ-1
\' k ')b2 a k ("1 0 - Il' Il • Il '., •
UX{J - j=2 ;r{J

Wc need to calculate,

-')rj<k- _. {J0j,.

and

a ( ")__ _')xJ xJ - 1

ax~ -""
- ') (xj «. +J,j-I < '<J' 1.)- -- . QUo,(lUJ-l.k '0 0n,/J J ,f\,

- 2(x·j <· +xj-I<J'/')- - {JUJ-I,k {J U,"

and finally

D a j-I

(
j-I j-I) _ 2 j X a

a k X a X a - X a - a k
X{J X{J

2 j-I r= X{J Uj_l,k·

•
Therefore,

OHG 3 ~ ( j r j r j-I r j-I r )o = b2 ~ X{JUj.k - X{JUj-l.k - X{J Uj.k +X{J Uj_I,k'
X{J j=2

(A.3)
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Since k can Lake any value inLegral beLween 1 and N,

k f. 0, N

k=O

k= N
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(/1.4)

NoL surprisingly, Lhis result is identical to what would be obtained from a finite dif­

ference approximation to the continuous result, eqn. (/1.2), being carefultG account

for the chain ends.

A.l.3 The c1iscrete interaction c1erivative

Recall fmm the Edwards Monte Carlo discussion, that the interaction Hamiltonian

If1 can be writlen, for discrete monomers and a Gaussian approximation to the delta

function,

lV2 ( 3 ) ~ " ( 3 2)Ifl ="7) A2 L..J exp -:1""2 (Rn - R m) .
... 'l'ira m,n '10'

(/1.5)

We want to calculate the partial derivative aIfriax~. Proceeding as in last section,

DiiI 3 lV2 ( 3 ) ~ " ( 3 2) a 2
D k = -:1""2"7) A"""""""2 L..J exp -:1""2 (Rn - Rn,) D k (Rn - R",) .
~ 'la... ~rrO' n~ 'lU Xp

Again, implicitly summing over repeated component indices,

D D_ (D _ R, )2 = _ (XnX n _ ?Xn • m +X'"X'")
~} k.&."n n D k a 0 ... 0 ..... 0 0 a
UXIJ XIl

Therefore,

•
a1 · ~
II 3tv2( 3 )'" (R R)( nr n< ,"r m<)

!:J . k = -72 A"""""""2 L..J e n, '" XIJUn,k - XIJU,",k - XIJ Un,k +XIJ U,",k
XIJ 'lU 'I1t'O' n,m

where

(A.6)

(A.7)
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Noting that e(R".Rm ) = c(Rn .R,,) .

'""' (R R,) ( "1 .'" .m' m')L... e TI' TI .ra( n,k - .1 JUm,k - .1 ~I 01l,A.- + ,r.1 o""k
n,m

= 2 (Le(Rk.R".)J'~ - Le(Rk,R",).r~I).
\ III ni

Final1y.

ÜIf1 . 3W2 ( 3 ) ~ '""' (k m) (:1 2)
Ü k =. -.) 2 :---12 L".r~ -.r~ exp --;--12 (R" - R m ).r{3 _u rru m (1'

A.2 Meall field bl'llsh solutioll

(A.S)

(I\.!))

The self rDnsistent mean field solntion was discussed in a general way in section :1.:1.
lu this appendix, the particulars of determining the Green l'unclion 1'01' polymers

grafted ta an impenetrable interl'ace will be discussed. Fol' explicitness, the po\ymers

are considered to be grafted to a plane at :: = 0, and ta be exc1nded l'rom the hall'

space :: < O. 1 This method has been used widely and with much success. For saille

seleded examples, see referent'Cs [iS, 5S1

Recal1 1'1'0111 section 3.3.2 that the Green l'unct.ion obeys 2

(
b2 )a" - 6ü~+ V(::) G(r,r';Il) = .1(1'- r').I(lll.

wherc G (l', l"; 0) = 0 1'01' Il < O. ln the 1'0110wing, b2 = :1, as is customary in the l'est

or the thesis. It can be shown [SOJ that G is separable,

G (l', l"; Il) = Go (x, x'; Il) F (::, ::'; Il) ,

where x = (x,y). ln consequence [SOl,

(an - ~Ü~) Go (x, x'; Il) = .I(x- X').I(Il)

(an - ~a~ +V (::)) F (z, ::'; Il) = .1 (:: - ::') .1 (Il) ,

(1\.10)

(1\.11)

•

1As in section 3.4, this section rollows rererence [Bol. 1h"ve al50 benefittcd greaUy rrolll notes providc'<1
by C. Yeung and A. Balnzs.

21n this appendix, wc will nse th, notation

o
O. =Oz:

IJ'l)• - - etc
Z - {)Z2' .



where ü~ = iJ; + i)~. We recognize Go (x, X'j n) as the propagator for free diffusion 1,

•
1\: AI'I'ENDICES

• , 1 (IX - X'1 2
)

Go(x,xjn)=2rrNexp -- 2N .
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(A.12)

The one dilllensionai Green function F (z, z'; n) can be solved for nUlllerically as

discussed in section 3.3.2, using the adsorbing boundary condition F (z, Z'j n) = °for

z, z' = °[21].
As in section 3.3.2, a self consistent solution is obtained by setting V (z) =

1/J2(.p(Z)}o nsing the resulting Green function to solve for (c;I>(z))o, then iterating unti!

convergence is attained. Note, however, that eqn. (A.ll) yields tht> Green function

for one JlolYlller in a self consistent field. The brush concentration is obtained simply

by lIIultiplying the one polymer density by the grafting density u,

</>(.) _ ufdz' ftclnF(z,O;l1)F(z',z;N -11)
- - fdz' F(z',O;N) .

(A.13)

Thus, one deterlllines the Green function for one polymer in a self consistently deter­

mined field of ail polymers in the brush.

A.3 Mean field brus1l correlation function

A general calculation of the correlation function il! the mean field approximation

was presented in section 3.4.1. In this appendix. the details of this ca1culation for

the JlolYlller brush is discussed. As in the p.evious section, much of this section 's

discussion deals with trcating the x direction analytically and sepal'ately from the z

direction.

As in section 3.4.1, we need to ca1culate the mean field correlation function A o

A o(l', l") = (c;I> (l') </> (1"))0 - (c;I> (r))o(</> (1"))0' (A.14)

where 00 is the mean field average, calculated with the mean field Green function.

Note that the concentration can be written

•
c;I> (l') =L c;l>i (l'),

i

'Sec, ror eXllmple, r.rerence [11), section 7.7.

(A.l5)
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where Oi is the concentration due to thl' ith chain at r. Thus.

A" (r. r') = L { (0, (r) 0) (r'))" - (l'i (r)),,(Q) (l"))" }
'.)

!)S

(A.I(j)

ln tlll' II1l'an field appl'OXill1at ion. t hl' chains ilrl' indl·pl·nl!l'nt. Tht'rl-forl'. for i ~ j,

(Oi (r) 0) {r'))o = (<p, (r)) .. (eb) {r')) ...

and l''In. (A.16) becoll1l's

A" (r. r') = L { (0, (r) Oi (r'))" - (<Pi {r)) .. (<J>i (r')) .. }
,

= .-\1 - .-\1/.

{A. li)

•

Similar to l''In. (:l.iS) for the average in terrilS of the Green function, the first tenll

on the right hand side becoll1l's

1 J f'v ["
AI =L "i clrN lo clll ln clll'

i ...., 0 0

{ c: (rN, r; N - Il) G (r, l"; Il - ,,') G (r', x~; Il') +

G(rN,r';N -1I)G(r',r;n -n')G(r,x~;II') },

where

z =JdrNG{rN,ro; N) (A.18)

and x~ = (Xi, Yi, 0), the grafting point of the ith chain. Rl'placing the sum by an

integral over the grafting surface,

L = q Jdxo , (A.19)
1

wc find

AI = ; J X o J drN fuNdll [<In'
{ G(rN,r; N - n) G(r,r'i n - n') G(r',x.i n') +

G(rN,r';N - n)G{r',r;n -n')G(r,x.;n') } .
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The Green fnnction is separated as in the previons sectionj

Go (x, x'; n - n') F (z, Z'j n - n') Go (x', Xoj n') F (z', Oj n') +

Go(xN,x';N -n) F(ZN,Z';N - n)Go(x',xjn -n') F(z',zjn -n') x

Go (x, X o; n') F (z, 0; n') }.
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From eqn. (A.12), we see that Go (x, x'; N) is normalized. Performing the integrals

over XN and Xo thcrefore gives

0' J lN r"AI =? dZN dn dn' Go (x, x'; n - n') x
-'J 0 J.

{F(ZN,z;N-n)F(Z,z'jn-n')F(z',O;n') +

F(ZN, Z'j N - n) F (z', z; n - n') F (z,O; n') }, (A.20)

lIsing the fact that Go (x', Xj n - n') = Go (x, x'; n - n'). Similar considerations show

that

Ali = ;2 faN dn dn' JdZNdz~ { Go (x, x'; n +n') x

F(ZN, z; N -n) F(z,O; n) F(z~, z'; N - n') F (z', 0; n') }. (A.21)

•

These eqllations, eqn. (A.20) and eqn. (A.21), give the mean field correlation func­

tion for a polymer brush, in terms of the one dimensional Green function F (z, z'; N),

whose determination was discussed in the previous appendix. Diagonalization of the

cOlTelation function is also simpler in this form; the correlation Ao is seen to be a

function Ao(x - x', z, z'). Translational invariance in the x direction means that the

eigcnmodes are the Fourier modes in this direction. Ao can be easily Fourier trans­

formcd analytically, so for every q of interest, only the matrix (Ao)q (z, z') needs be

diagonalized numerically.



The interaction Hamiltonian for the binary brnsh in good solvent is given byeqn. (6.2)

with lOa set to zero,•
A: ApPENDICES

A.4 Mean field stability of binaz:v b1'llsh
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(A.22)

•

where cP = cP. +cPb' The mean field apjJl"Oximation to eqn. (A.22) can he derived with

the definitions

cP(r) = (cP (r)) +ocP(r)

cP. (r) = (cP. (r)) +0cP. (r)

cPb (r) = (cPb (r)) +OcPb (r)

where the average () denotes the equilibrium average. Substituting thesc expressions

into eqn. (A.22) and ignoring terms of second order in the conccntration fluctuations

gives

lO21 2 lO21 (2 )2" drcP (r) ~ 2" dr (cP (r)) +2 (cP (r)) 0cP (r)

t~b1clrcP. (r) cPb (r) ~ t~b1dr ((cP. (r)) (cPb (r)) + (cPa (r)) OcPb (r) + (</>b (r)) 0</>" (l')).

Since the average concentration (</Jz) is a constant with respect to functional integra­

tion, the terms involving only averages can be set to zero without loss or genemlity.

The concentrations can be defined microscopicallYi

where the sum I:iex is a sum over ail polymers of typc X. ConscCIucntly,

~2f dr</J2 (r) ~ 2;,1drlO2 (</J(R;(n)))
1

lO;b 1dr</J. (r) </Jb (r) ~ lOt1dr (~ (</J. (Ri (n))) +~ (</>dRï (n)))) ,

where I:i =I:ieA +I:ieB' Using the Gaussian chain cncrgy contribution

3"1 (8Rï (n))2
liG = 2b2 7 cln 8n '
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the Edwards Hamiltonian in the mean field approximation becomes

Il. =

101

Thus, in the mean field approximation, ail dJains are independent, only interacting

through the self r.onsistently determined mean fields (</J), (</Ja) and (</Jb). In the fully

symmetric case, where the number of A type polymer equals the number of B type

polymers, (</Ja) = (</Jb) = (</J) /2, and the menn field Hamiltonian becomes

(A.24)

Equilibrium averages for this system can be calculated using Green function methods,

as discussed in section 3.3.2 and section A.2.

If the concentration fluctuations are retained to ail orders, then the full Hamilto­

nian is written

H=H.+Hs,

where Il. is given by eqn. (A.24), and

(A.25)

(A.26)

ln order ta be sensitive ta binary phase separation, it behooves us ta rewrite eqn. (A.26)

in tenus of the total density and the density difference

</J (r) = </Ja (r) +</Jb (r)

cI! (r) = </Ja (r) - </Jb (r).

ln terms of these new variables, eqn. (A.26) becomes

•
J [(W2 Wab) ( 2 Wab 2]Ils = dr "2 +"'8 <5</J(r)) -"'8 (<5cI! (r)) . (A.27)



As an approximation, assumc that thcrc are no fluctuations in thc total dcnsitYi j.".,

a</> = O. Thcrefore, fluctuations arc assumcd to bc purely cOI1l/Josj/jonal. In this casc,

thc fluctuation Hamiltonian is•
A: ApPENDICES

Il J1 Wob r '2
• = - Gr 8 (0<1> (r)) •
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(A.28)

Following scction 3.3.2, thc corrclation function in thc random phasc approximatiou

is writtcn

A ( ')-1 _ A ( ')-1 Wob r ( ')r,r - or,r -Tur-r, (A.29)

whcrc the corrclation function is thc co\'\'clation of fluctuations in thc dcnsity dilfcr-

cnce

A(r,r') = (a<l>(r)S<I>(r' )). (A.30)

The mcan field correlation Ao is calculated with rcspcct to thc mean field Hamiltonian

Ho, cqn. (A.24). The details ofthis calculation are discusscd in scction A.3. Thc I11can

field solution is unstable when the lowest eigenvector of A becomcs ncgativc. Dnc to

translation invariance in the plane parallel to the grafting planc, thc cigcllvcctors l1.rc

the Fourier modes; thus,

Jdz' Jdx'Ao (r, ri) cxp (i (q. x')) = a(q +q') Ao (z, z'; q) (A.:H)

•

Here, r = (x, z) and q is a vector in the (x, y) planc. Thc Fouricr transform can

he performed analytically with respect to x. Then, for cach value of q, onc can

numerically diagonalize Ao (z, z'; q) to obtain the eigenvalucs. Eqn. (A.2!J) can thcn

be used to determine the eigenvalues of A .



•

•
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