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ABSTRACT 

The dominant term in the damping rate fpp quarks and transverse gluons at 

high mornentum (p»gT) is calculated within the framework of 

perturbative QCD at finite temperature. It 1S shown that the damping rate, 

'Y, takes the foml "(=cg2T log(1/g) with c=N/41t for transverse gluons and 

c=(N2-1 )/(81tN) for quarks where N is the number of colours, 9 is the 

coupling constant, and T is the temperature. The sign and the gauge 

invariance of 'Y are easily verifiable due to the simplicity of the argument. 

This result agrees with the more complicated (unpublished) calculations of 

Pisarski et al. but disagrees with those of Lebedev and Smilga. 
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RESUME 

Le terme dominant dans le taux d'amortage des quarks et des gluons 

transverses à hautes impulsions (p»gT) est calculé à l'aide de la théorie 

perturbative chromodynamique quantiqüe à température finie. Il est 

démontré que le taux d'amortage, y, est de la forme y=cg2T logO/g) avec 

c=N/41t pour les gluons transverses et c=(N2-1 )j(81tN) pour les quarks. Ol! 

N est le nombre de couleurs, 9 est la constante de couplage, et T est la 

température. Le signe et l'invariance de jauge de y sont aisément 

vérifiables grâce à la simplicité de l'argumentation. Ceci est en complet 

accord avec les calculs plus complexes (non-publi~s) de Pisarski et ses 

collègues, mais contradit ceux de Lebedev et Smilga. 
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INTRODUCTION 

The accepted theory of the strong interactions is called quantum 

chromodynamics (QCD). In QCD, the interactions are generated by a non­

Abelian SU(3) gauge theory of coloured quarks and gluons that are 

permanently confined to colour singlet hadronic bound states. A very 

interesting feature of QCD is its high energy behaviour known as 

asymptotic freedom. As one probes short distance scales (high energy 

transfers) the coupling strength 9 decreases to produce an almost 

noninteracting system [1]. This behaviour makes the use of perturbation 

theory possible, since at high energies (short distances) the coupling will be 

small enough so that the terms involving large powers of 9 may be 

neglected. 

The success of perturbative ~CD at short distances has been very 

encouraging. The approximate scaling observed in the deep inelastic 

scattering experiments of leptons off hadrons can be explained using 

asymptotic freedom. Deviations at high energy from this scaling have been 

predicted by QCD and are consistent with the observed scaling, given the 

large error in these measurements [2]. Other predictions :nclude the 

narrow width of charmoniam and the existence of quark and gluon jets. 

QCD is also consistent with much of the phenomenology of the strong 

interactions such as the symmetry patterns of the hadrons. 

Now that we possess a theory of strong interactions it is natural to try 

to test the theory in different environments, in particular al high 

temperatures. The predictions of high temperature QCD could be tested in 

at least three new domains. First, there may exist significant high 

temperature effects within neutron stars where the density is considerably 
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greater than nuclear density. The second possibility is in heavy ion 

collisions at very high energy per nucleon, in which states of high density 

and tempe rature rnight be formed. Finally the standard cosmological 

models allow one to extrapolate back to when the universe was at a 

temperature comparable to nu cleon rest energies in units where c=~=k= 1. 

It is hoped th2t high temperature QCD might provide sorne prediction~ 

conceming the evolution of the universe. Thus new insights into the nature 

of matter at very high temperature and density might be gained by studying 

QCD at high ternperature. 

There is evidence that al sufficiently high temperatures QCD loses 

confinement, and a quark-gluon plasma screening aIl colour-electric flux is 

fonned [3]. There are several theoretical reasons for studying the gluon 

plasma. Early studies of gauge theories at finite ternperature were carried 

out within the framework of QED [4], and it would be interesting lU 

compare the photon plasma to the gluon plasma because QCD, unlike QED, 

includes self interaction of the gauge fields. Furtherrnore, by first 

attempting the calculation of sorne simple amplitudes, the rich mathematical 

structure of QCD should be exposed and the tech.,iques required to deal 

with any difficulties that rnay arise can be developed. This is important 

because in a more complicated calculation the rnathematical difficultle~ 

could he overwhelming and might obscure irnportIDt concepts that need to 

be addressed in hot QCD. The goal of this thesis is to determine the 

dominant contribution to the quark and gluon damping rates within this 

plasma, at mornenta much greater than gT (where 9 is the coupling 

constant and T is the temperature). 

The plasma parameters that we wish to calculate are the plasma 

frequency ro(p), and the damping constant y(p). The plasma frequency is 
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the energy of the propagating quark or gluon, and the damping constant is 

the inv~rse lifetime of the quark or gluon. The gluons and quarks obtain 

effective lifetimes within the QCD plasma because they can be absorbed 

into the ambient heat bath. Both these parameters are determined by the 

position of the pole of the gluon propagator or zero of the inverse 

propagator, E(p)=oo(p) - iy(p), in the complex energy plane. The plasma 

frequency at zero momentum (p=O) has been computed by many authors 

[5] and found to be oo=g -vNT/3 (neglecting quark contributions), where 9 

is the coupling constant, N is the number of colours, and T is the 

temperature. This result is recalculated here as an exercise and to serve as a 

check on our methods. The damping rate (for gluons in the statie limit) 

arises at order g2, however, the results that have been obtained in the 

literature are not consistent with one another [6]. In sorne cases the 

damping is found to be negative indicating an instahility of the plasma and 

other calculations indicate that the darnping rate is a gauge dependent 

quantity. Obviously these calculations cannot he taken seriously since aIl 

physical quantities are gauge independent and there is no reason to believe 

that the quark-gluon plasma is thermodynamically unstable. The problem 

that is common to aH these one loop calculations is that they are aIl 

incomplete in the following way. 

In zero temperature QCD, an order g2n computation requires the 

evaluation of aIl n loop Feynman diagrarns, however, this is not the case at 

finite temperature. At fimLe temperature an infinite number of diagrams 

cao contribute to an)' order in g. The reason for this complication is that 

the iofrared divergences are more severe in hot QCD than in zero 

tem~erature QCD. The source of these severe divergences can he attributed 

to the behaviour of the Bose-Einstein distribution function n(q)=(eq/T-l)-l 
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for small q. At low momentum n(q)=T/q, thus quantities can diverge a!\ 

powers of the infrared cutoff rather than logarithmically as they do at zero 

temperature. Notice that n(q)=~-qtr for q»T ensures there will not be any 

new ultraviolet divergences beyond those at zero tempe rature thus the zero 

temperature renormalization scheme will suffice. ln particular, to compute 

the gluon damping rate at zero momentum to order 92 requires more than 

a one loop ca1culation [7]. A resummation is required ta incIude ail hlgher 

loop diagrams that contribute to order 92. 

A method for resumming aIl the relevant diagrams has been developed 

by Braaten and Pisarski [7]. In their analysis, they show that it is necessary 

to distinguish between hard momenta (of order T) and soft momenta (C'f 

order gT). Ordinary perturbation theory (bare propagators and vertices) 

applies at hard momenta, 'lJltt over soft mornenta, effective propagators and 

vertices are required. They have also proved that to leading order in 9 1 in 

this effective perturbation expansion, the quark and gluon damping rate~ 

are gauge invariant and positive within the Coulomb and covariant gauge~. 

Kobes, Kunstatter, and Rebhan then showed that within an ev en larger cIas~ 

of gauges the damping rate is independent of the choice of gauge [8]. The 

value obtained by Braaten and Pisarski [9] for the gluon damping rate at 

zero momentum is y(p=O)=+a g2NT /241t where the constant a was 

detennined numerically to be a :.:::: 6.63538 . An analytical expression for 

the damping rate COJld not be obtained due to the cornplexity of the 

resummation. 

The validity of this resummation is currently the subject of sorne 

debate [10], however, one can compute the dominant contributions to the 

quark and gluon damping rates at high momenta (p»gT) without 

employing a full resummation. The question is how can one compute the 
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dom:nant contribution to the damping rate when perturbation theory is 

failing? The answer to this question is best surnmarized by Steven 

Weinberg. "When it is infrared effects that invalidate perturbation theory, 

the introduction of a floating eut-off may not restore perturbation theory, 

but it does allow us to say useful things about the infrared effects 

themselves" fIl J. This IS precisely what is required. Perturbation theory 

fails for QCD at finite temperature due to the infrared behaviour of the 

theory at momenta less than or equal to g2T. The introduction of a eut-off 

À > g2T allows us to use perturbation theory above the scale of the cutoff, 

It is then a matter of studying the behaviour of the computed quantites with 

respect to the infrared eut-off. We must also realize that like any physical 

quantity. the damping rate cannot be a function of the eut-off. Thus the 

contribution to the damping rate from the nonperturbative region 

(momenta less than À) must precisely cancel the cutoff dependence from 

the perturbative part of the calculation. This property is sufficient to 

determine the dominant part of the result. These considerations allow us to 

determine the most dominant contributions to the damping rate for 

energetic quarks and gluons in hot QCD. 
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FINITE TEMPERATURE FIELD THEORY 

The purpose of thr following sections is to review sorne important 

aspects of finite temperature field theory that are required in thi~ 

investigation. It is assumed that the reader has a knowledge of both field 

theory and statisical physics. For readers who would like a more rigoumus 

treatment of the following material, references [1 :2.13, 141 ace 

recommended. 

2.1 Quantum Statisical Mechanics 

There are thr(;e types of ensembles that one usually considers in 

equilibrium statistic 1 ~ mechanics. They are the micro-canonical ensemble, 

the canonical ensemble. and the grand canonical ensemble.The micro­

canonical ensembJe is used to describe a system with fixed en~rgy E and a 

fixed volume V. The canonical ensemble is used to describe a system in 

conlact with a heat reservoir at temperature T. The system is free to 

exchange energy with the reservoir thus only T and V are constant. In tlle 

grand canonical ensenble the system is free to exchange particles and 

energy with the heat bath therefore T, V and possible chemical potentials 

Jli are the fixed van ables. 

The ensemble that is best suited for describing the quark-gluon plasma 

IS the grand canonical ensemble. We are assuming the plasma is at 

equilibrium and that quarks and gluons can he emitted from or absorbed 

into the ambient heat bath. In order to start our description of this plasma 

we must introduce an important function in themlOdynamics, the partition 

function. 

The grand canonical partition functic\fl is given by 
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z= l 2. e-~(Ej-IlN) (2.1.1) 
Nj 

where f3=l/kT, k is the Boltzman constant and Ej is the energy of the jth N-

particle state. The partition function can be written in a more compact 

form 

Z=Tr(p) 

in which p is the statistical density matrix given by 

p=e-~(H-lliNi) . 

(2.1.2) 

(2.1.3) 

In this expression H and N are the Hamiltonia.n and conserved number 

operators respectively (sum over i is implied). In relativistic QCD the 

difference between the number of quarks and antiquarks is a conserved 

quantity, not the quark or antiquark number seperately. The reason why 

this is an important function in thermodynamics is that aIl other standard 

thermodynamic properties can be deterrnined from it. For example, the 

pressure, particle number, entropy and energy are related to the partition 

function by 

P=T CJlnZ/"iJV, 

Ni=T CJlnZ/"iJf.1.i, 

S="iJ(TlnZ)/"iJT, 

E=-PV + TS+J.1j Ni. (2.1.4) 

A useful relation is that the ensemble average of any operator 0 is 

given by 
Tr(pO) 

<0>= Tr(p) . (2.1.5) 

Now that we have established the importance of the partition function, 

we must find a method for evaluating the partition function for a given 

system. In order to evaluate the partition function in a nonrelativistic 

system, equation (2.1.1) tells us we must deterrnine the complete set of N-
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particle quantum states and corresponding energies. In principle this 

requires one to solve Schrodinger's equation for an N-particle system. If 

the particles are non-interacting (ideal gas approximation) then one can 

reduce the problem to solving a one-partic1e Schrodinger equation [151. If 

the particles are interacting then one would need the solution to the N­

particle Schrodinger equation. It is a weIl known fact that one cannot solve 

a general two-body quantum mechanics problem, therefore it is useless to 

ev en consider solving a system with ::::1023 particles. What is needed is an 

alteri1ative method for calculating the partition function in systems with 

weakly interacting particles and in relativistic systems where the particle 

num~cr is not conserved. 

2.2 Functional Integral Representation of the Partition Funtion 

From quantum mechanics we know that the transition amplitude for 

going from astate l<I>a) at lime t=O to sorne other state l<I>b) after a time 

t=tf is given by (<I>b 1 e-iHtf l<I>a) . For equilibrium statistical rnechanics, we 

are interested in the case when the system retums to its original state after 

a time tf. We also know that the transition amplitude can be expressed as a 

path integral [16J as 
~a tf 

(<!>a 1 e-iHtf I<»a) = J[d1t] J[d<»] exp(i Jdt Jd3x L(<»,1t» . 
<Pa 0 

(2.2.1 ) 

The symbols [d<l> land [d7t] denote functional integration over the field 

<»(r ,t) and the conjugate momenta 1t(r ,t), L is the Lagrangian of the system 

and the limits of the <1> integration are chosen such that <I>(r ,O)=<I>a(r) and 

<I>(r ,tf)=<I>a(r). Note that the partition funtion Z can he reexpressed as 
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(2.2.2) 

Notice that this expression for Z is very similar to that for the transition 

amplitude given by equation (2.2.1). In fact, Z can be expressed as a 

functional integral over the fields and the conjugate momenta by switching 

to imaginary-time ('t=it) and making use of (2.2.1) [12]. The limits of 

integration on 't become ° and ~. Thus we may write the partition function 

as 
~ 

Z=N I .J[~<p] exp( Jdt Jd3x L) 
penixhc ° (2.2.3) 

where NI is a normalization constant and the integration is over imaginary­

time. The term "periodic" means that the field is constrained so that 

<I>(r ,0)=<I>(r,~) for bosons and that <I>(r ,0)= -<I>(r,~) for fermions. The 

antiperiodicity of the fermions can be understood by recalling that a 

ferrnionic wavefunction changes sign if a rotation of 2x is made about 

sorne axis, Both the angle e and imaginary time tare defined on compact 

intervals, thus the fermionic wavefunction changes sign if t is varied from 

o to ~. If we now define the argument of the exponential to he the action S, 

the partition function can be written in a very compact and useful form. 

Z=N I J[d<l>l eS. 
periOdic 

(2.2.4) 

The functional integral in (2.2.4) can he evaluated in closed form if the 

Lagrangian in S does not contain terms which are more than quadratic in 

the fields. This situation is very similar to that encountered in section (2.1). 

Recall that we could evaluate the partition function for the ideal gas case 

(no interaction), but not for the interacting system. The difference is that 

we can now make the approximation that the interaction is very weak and 
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exp and the partition function in powers of the interaction. To perform this 

expansion first decompose the action into its tlfree" and "interaction" parts. 

S=SO +SI (2.2.5) 

Now substitute (2.2.5) into t2.2.4) and expand eSl in a power series. To 

obtain the free energy, take the 10garithm of both sides and obtain 

00 1 J n L n! [d~l eSO SI 
n=l 

lnZ = In(N'J[d<j>l eSO) + ln( 1 + ------) . 
Jrd~] eSo 

This can he rewritten as 

lnZ = 1nZO + InZI 

(2.2.6) 

(2.2.7) 

which explicitly separates the interaction contribution from the ideal gas 

contribution. 

The quantity that actually needs to be computed within InZI is SI 

raised to an arbitrary power and averaged over the ideal gas ensemble 

represented by Sa. This can be seen by comparing InZI to equation 

(2.1.5). 

(2.2.8) 

Equation (2.2.8) should look extremely familiar to those acquainted 

with quantum field theory at zero temperature. Proceeding as in regular 

field the ory , we can develop diagrammatic techniques for representing the 

terms in the expansion defined by (2.2.6). The finite temperature Green's 

functions defined by equation (2.2.8) are, in general, not the connected 

Green's functions, since they include completely disjoint pieces. We can, 

however, define the connected Green's functions in a very elegant way 
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related to the generating funetional for the Green's funetions. If Z[J ] is the 

generating funetional for the Green's funetions and W[J ] is the generating 

funetional for the eonnected Green's funetions then they are related by 

[16,17] 

Z[J ] = eiW[J] . (2.2.9) 

Notice that W[J] is proportional to the logarithm of Z[J J. Using these 

faets, one ean show that to compute InZI , we must SUIn only the connected 

diagrams. Given the Lagrangian for any theory, we can now evaluate InZI 

and determine the thermodynamic properties of the system. In fact many 

studies have been performed in both QED and QCD where quantities such 

as the pressure of a photon-electron or quark-gluon gas have been 

computed [12,18]. 

Although lnZI and the partition function will not be explicitly 

evaluated in thIS project, they are closely related to a fWJction that we must 

evaluate, namely, the finite temperature propagator. 

2.3 The Finite Temperature Propagator 

In field theory at zero temperature, the propagator in position space is 

defined by 

(2.3.1) 

where T is the time ordering operator and 10) is the vacuum state. 

Similarly, using equation (2.1.5), the finite temperature propagator is 

defined by 

D(rl ,tl; r2,tû = Z-l Tr{ p T[cp(rbtl) cp(r2,'t2)]} (2.3.2) 

where T is now the imaginary-time ordering operator. For bosons the 

imaginary time ordering operator is given by 
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and for fermions the imaginary-time ordering operator is given by 

Using the fact that T commutes with p, and the cyclic property of the trace 

operation, it is easy to show that 

(2.3.5) 

for bosons, and that 

(2.3.6) 

for the fermions. This implies that <1>(0)=<1>(13) for the bosons and that 

4'(0)= - <1>(13) for the fermions which agrees with our "periodic" limits for 

the <j> integration in the partition fünction. 

The field can he expanded as 
00 

<I>(r ;t) = ..J (J3N) r r ei(p·r+IDn't} <j>(n,p) . (2.3.7) 
n=-ooP 

Since <I>(O)=<j>(~) for bosons, this implies that oon=27tnT for the bosons. 

The constraint that <j>(O)=-<j>(~) for the fermions implies that oon=(2n+ 1 )7tT 

for the fermions. Since this analysis is being perfonned in imaginary-time, 

the zeroeth component of the Minkowski-signature momentum four-vector 

is given by 21tin'1 ~)r bosons and (2n+l)1tiT for the fermions. 

The real-time finite temperature propagator can be obtained from the 

imaginary-time finite temperature propagator by analytic continuation. The 

relationships between the real-time propagator and the imaginary-time 

propagator are given by [12,19] 

DR(oo,p) = D(ioon ~ 00 + ie,p) e~O+, (2.3.8) 

(2.3.9) 
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with DR representing the "retarded" real-time propagator and DA 

representing the "advanced" real-time propagator. The real-time thermal 

propagators are continuous functions of energy ro, and are useful for 

determining physical properties such as the plasma parameters. To 

calculate the plasma parameters, the analytic continuation given by (2.3.8) 

is used. The reason for using the retarded Green's function is explained in 

the chapter on plasma oscillations. 

2.4 Feynman Rules for QCD at Finite Temperature 

We use the Feynman roles in the covariant gauges found in reference 

[ 16]. These mIes will be used in al! subsequent calculations and aIl notation 

and conventions are completely explained in the appendix. 

PropaKators 

gluons 

ghosts 

quarks 

yertjees 

3-gluon 

k a jJ. ... _______ 1 b" 

~k 
a.-------------- .. b 

1 • 
~p 

• J 

a1J. 

! p 

b" 
q ~ 

cÀ. 
~ r 

-1 
Sab k2 

1 
Sij m-p 

-igrabc V jlvÎ.,(p,q,r) 



b\J--..... --dp 

4-gluon cÀ. 

aJ.l. 

~ k J t------- ------

gluon-ghost b c 

gluon-quark 1 J 

Where the following abbreviations have been used. 

2 abcd 
-9 WIlVÂ.P 

_igfabc k 
Il 

a 
9y"T .. ,... IJ 

abcd d db 
W JlvÂ.p = (fac.bd - fad.cb)gJlvgÂP + (rab.c - ra . C)gJlÂgvP 

+ (fac.db - rab.cd)gJlPgÂv 

The expression fab.cd denotes the following combinat ion 

fab.cd = rabx [Cdx (summation over x implied). 

, 
1 4 
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The SU(3) generators of QCD are represented by Ta (a=I,2, ... ,8) and 

generate a closed algebra, 

[Ta,Tb] = ifabc TC , 

with fabc the structure constants. Sorne useful identities are 

facd tbcd = Bab N (for SU(N» , 

fade fbef [Cfd = N/2 rabc , 

a a .... 
Til T1j = Bij CF where CF=(N"'-I)/2N . 

The above rules are identical to those at zero temperature. The only 

difference in the Feynman rules is with the loop integration. At zero 

tempe rature we usually associate the following integral for every loop in a 

diagram. 

J d4k 

(21t)4i 

The integral is over the loop momentum and there is an extra factor of -1 

for each fermion loop and ghost loop within the diagram. Since we are 

using the imaginary-time formalism, the zeroeth component of aIl 

momentum four-vectors is discrete and imaginary. Thus the loop 

integration is replaced with what is known as a thennal sumo 

ooJ d3
k 

T n: (21t)3 

The sum over n is for the zeroeth component of k, where kO=21tinT for 

bosons and ko=(2n+ 1 )7tiT for fermions. When evaluating a Feynman 

diagram with loops, one must also remember to include the symmetry 

factor to correct for overcounting after the above rules have been applied. 
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Methods for detennining symmetry factors can be found in references 

[16,17]. 

2.5 E\'a!uation of Thermal Sums 

A standard method for evaluating the thermal suros is contour 

integration. Suppose the thermal sum (or frequency sum) that we want 10 

evaluate is of the form 
00 

(2.5.1) 

where f me ans any function of po. To evaluate the sam as a contour 

illtegral we need a function that has poles at Po with a residue of one and is 

everywhere else analytic and bounded. Assuming that f(k) is regular along 

the irnaginary axis, we can write 

Tn!:oof(PO) = f!i f(k) g(k) 
c 

(2.5.2) 

where g(k)=l/(exp(k./T)-I) for bosons and g(k)=-1 /(exp(k{f)+ 1) for 

fermions. The contour is shown in the following figure and encloses the 

poles in a counter-clockwise direction. If the integral is split into two line 

integrals from -iOO+E to ioo+E and from +ioo-E to -ioo-E and substituting k ~ 

-k in the second integral, one finds [20] 
00 i 00 i oo+E r. 

T L f(PO) = 2~i { Jdk f(k) + Jdk f(k)+l( -k) }, 
n=-oo -ioo -iOO+E exp(krr)+1 

(2.5.3) 

the upper sign is for bosons and tt. e lower sign is for fermions. Notice 

how the thennal sum naturally splits into a temperature dependent piece 

(matter part) and a temperature independent piece (vacuum part). AlI the 

ultraviolet divergences associated with zero temperature field the ory are 

found in the vacuum piece. If the singularities of f(k) are simple poles off 
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the imaginary axis, then we can close the contours with infinite semi-circles 

and evaluate the frequency sum by using Cauchy's theorem. 

lm 

~Re 
i 

c 

Note: The singularities in the above 1iagram represent a thermal sum for a 

boson. If the sum was for a fennion, the poles would he shifted along the 

imaginary axis. In either case, the contour remains the same. 

2.6 Infrared Behaviour of QCD at Finite Temperature 

Due to the complexity of the Feynman roles for QCD, the evaluation 

of any diagram can involve a considerable amount of algebra. To study the 

intrared behaviour of the theory, the Feynman rules will be greatly 

simplified so that simple power-counting arguments can be used. The 

diagrams that will be studied are the corrections to Ùle propagator or gluon 

self-energy diagrams. These diagrams have been chosen since it is the self­

energy correction that determines the position of the pole in the full 

propagator from which the plasma parameters cao he obtaioed. 

Consider the following genera~, L-Ioop self energy diagram. 
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The above diagram has V vertices, L loops and P propagators (internai 

lines only). The total number of vertices is given by 

V=V3 +V4 ' (2.6.1 ) 

where V 3 is the number of 3-leg v~rtices and V 4 is the number of 4-1eg 

vertices. The total number of internallines P is given by 

P = (3V 3 + 4 V4 - 2)/2 

by using the "conservation of ends". We also have the relation 

V + L - P = X. 

(2.6.2) 

(2.6.3) 

where X is the Euler number which has the value 1 on a disk. Substitutmg 

(2.6.1) into (2.6.3) and multiplying (2.6.2) by two, we obtain the fol1owing 

V 3 + V 4 + L - P = 1 (2.6.4) 

2P = 3V3 + 4V 4 - 2 (2.6.5) 

The general self-energy diagram will he of the schematic fonn 

n = {T i fd3k}L ( 12)p k V 3 g{V 3+2V 4) . (2.6.6) 
n=-oo k 

Notice that there is a thermal SUffi for each loop and a factor of 1!k2 for 

each propagator in the diagram. A factor of 9 and k has been included for 

every 3-leg vertex and a factor of g2 for each 4-leg vertex. 

Since we are interested in the infrared behaviour of the diagram, we 

only need to consider the n=O part of the sum since a11 other tenns will he 

suppressed. Using equations (2.6.4) and (2.6.5) in (2.6.6), n cao be 

simplified to 
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00 

n = g2L + Jkl-L(lk . (2.6.7) 
À. 

For example, (2.6.7) indicates that a L=l Ioop diagram has a self energy 

correction n=g2T (T -À). The upper Iimit shouid be taken to be T because 

in a complete computation the Bose-Einstein factor will prevent ultraviolet 

divergences. The infrared cutoff À can be set to zero thus n::g2T2. This 

indicates that the self-energy contribution is suppressed by a factor of g2 

compared to the tree-Ievel contribution. 

The infrared behaviour of the self-energy is actually worse than 

equation (2.6.7) indicates. Factors of externai momentum P can be factored 

out of the integral in (2.6.7) because the 3-1eg vertices are functions of 

momentum flowing through all of their legs. If we factor out p2 we can 

compare the self-energy contribution to the tree-Ievel result which is 

proportional to p2. Doing so we find 

n = p2 (g2T/Â.)L (2.6.8) 

where Â is the infrared cutoff. Clearly, higher loop diagrams can 

contribute on the same order as tree-Ievel ones if Â. is on the order of g2T. 

Therefore in order to trust perturbation theory we must choose the 

infrared cutoff such that Â » g2T. The contribution of wavelengths 

kSg2T cannot be computed using perturbation theory, and unless sorne 

assumptions are made concerning the low frequency behaviour of the 

plasma, there is currently no method for calculating their contribution. 
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PLASMA OSCILLATIONS 

The purpose of this chapter is to outline the method used to detem1ine 

the quark and gluon plasma parameters. Expressions relating the plasma 

frequency and the damping rate to the self-energy are derived. These 

expressions are used to detennine the plasma frequency for statie gluons, 

and the damping rates for energetic quarks and gluons in the following 

chapters. 

3.1 Linear Response Analysis 

The basic equation of linear response theory is 

00 

ô(<\>(r,t) = Jdt' Jd3r' J(r',t') nR(r,t ; r',t') (3.1.1) 
-00 

where ô( <\>( r ,t» is the variation of the ensemble average of th~ field in 

response to a small perturbation from an external source J [12,13]. The 

field <\> is coupled to an external source J via the equation 

ôLext(t) = Jd3r' J(r',t) <\>(r',t) . (3.1.2) 

It has been assumed that the change in the ensemble average is smaU, so the 

linear response approximation remains valid. Taking the Fourier transforrn 

of equation (3.1.1) one obtains 

ô(t1>(q,ro» = J(q,ro) nR(q,ro) (3.1.3) 

which has a very simple fOlm. The change in the ensemble average of the 

field is given by the product of the external source and the retarded 

propagator in frequency-mom~ntum space. The physical modes of the 

plasma are given by the positions of the singularities in the retarded 

propagator [12,13]. Since we are working in the covariant gauge, there is 
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one unphysical degree of freedom in the retarded propagator. To 

determine the plasma parameters, we must "project out" only the poles 

corresponding to physical degrees of freedom. The positions of these 

physical "plasmon poles" are gauge invariant [8]. In our analysis we will 

instead determine the positions of the zeroes of the inverse propagator 

which must he identical to the positions of the poles. 

3.2 Physical Modes of the Gluon Plasma 

In order to detennine the physical modes of the gluon plasma, we must 

find the position of the zeroes of the full inverse gluon propagator. The 

most general symmetric tensor that we can construct with two indices Jlv to 

represent the full inverse gluon propagator is 
-1 

D~v = A'~v + B'~~ + C'9,tnv + E'(~rv + 9,t~). (3.2.1) 

The full propagator is constructed from the met rie ~v=diag(1,-l,-l,-l), 

the four-momentum kJl ' a four-vector n~ =( l ,0,0,0) representing the rest 

frame of the plasma and sorne undetermined scalar functions AI, BI, C' and 

E'. Although this expression is correct, it is not very useful for algebraic 

manipulations. The full inverse propagator can be expressed in the 

following more useful fonn. 
-1 T L 

D~v = AP ~v + BP ~v +C~v + E1tv (3.2.3) 
T 

P flv is constructed such that it is transverse to both the four-vector k and 

the three-vector k and is defined in the following manner. 
T T T T T 

T P JlV = {POO=O, POi =PiO=O, Pij= aj+ ~ kj /k2} (3.2.4) 

P flV is constructed to "project out" the two, physical transverse modes.The 
L 

projection operator P flV is constructed such that it is also transverse to the 

four-vector k but it is longitudinal to the three-vector k. It is defined in the 

following manner. 
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L 

L _ ~ 2 T 
P ~ v - 9.t v - ~ ky/k - P ~ v (3.2.5) 

P~v is constructed to "project outil the single, physical longitudinal mode. 

The operator ~v is given by the expression 

S~v = (~lly + ~ky) , (3.2.6) 

where ~ = ('lt - I-uk~/k2) . The final operator is simply ~ v = ~ ky/k 2. 

Now introduc.,t; the following four-vectors. 

k~=(ro,O,O,lkl) 

n~=(1 ,0,0,0) 

i\l=(O,lkl,O,O) 

j\l=(O,O,lkl,O) 

m\l=(lkl,O,O,ro ) (3.2.7) 

To detennine the condition for the transverse modes in the plasma 

construct a spacelike vector transverse to k and transverse to k. Such a 

vector is given by V~=ai~+bj~, where a and b are arbitrary constants. Now 

evaluate D-l V and detennine the condition that it he a zero eigenvector. 

We find that 0-1 V = A V with A from equation (3.2.3) , thus the zero 

eigenvalue condition for the transverse modes is A=O. 

Similarly, to determine the longitudinal modes in the plasma, construct 

a vector transverse to k and longitudinal to k. Let this vector be 

W~=ak~+bm\l. Using the same procedure as above, we find that the zero 

eigenvalue condition for the longitudinal modes is 

B + C2k2/E = 0 . (3.2.8) 

It is now a matter of determining the scalar functions A,B,C and E. 

The gluon self-energy I"\tv is defined through the Schwinger-Dy son 

equation 

(3.2.9) 
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-1 
with D (o)IlV being the bare inverse gluon propagator. The bare inverse 

gluon propagator in the covariant gauge is given by 
-1 2 2 1 2 

D(o)llv (k) ::. k ( ~v - ~ ~/k + Cl ~ kv/k ). (3.2.10) 

Thus we can express the functions A, B, C and E in tenns of the gluon self 

energy. Solving for A as a function for the gluon self-energy, and setting 

A=O, we find that the transverse modes s~ti~fy the condition 
2 1 klkJ 

k = -2 (!\i - k2 nij ) . (3.2.11) 

The condition for the longitudinal modes is somewhat more complicated. If 

the self-energy satisfies ~kvnIlV=o (as it does at one loop), then the 

expression can he simplified and reduces to. 
k1kJ 

k 2 = (fbo- k2 nij ) • (3.2.12) 

The conditions for the transverse and longitudianal modes derived 

above agree with those of reference [21]. In order to obtain the plasma 

frequency and the damping constant assume that the solution of equations 

(3.2.11) and (3.2.12) has the fonn, ko= co - iy, with y«m. If we rewrite 

the right hand side of equations (3.2.11) and (3.2.12) in the general fonn 

F( ko,k), then the plasma frequency is obtained from 
2 

(Op = Re (F( ko,k)} + k2 (3.2.13) 

and the damping constant will he given by 
-1 

Y = 2m lm (F( ko,k)} . (3.2.14) 

For the cases we are considering, F( ko,k) is accurate to order g2. To solve 

for co 2 and y to order g2, we must substitute the zeroeth order 

approximation of ko into F( ko,k). In the limit Ikl--+ 0, ko=O is used and in 

the limit Ikl»gT, ko=cop=lkl is used. 

In this study we shaH only consider the transverse modes for the 

following reasons. In the statie limit (k--+O), the transverse and longitudinal 

modes are degenerate due to rotational invariance, therefore only one 
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mode needs to be computed. In the high momentum limit (k»gT), the 

residue of the longitudinal mode is exponentially damped [22], thus only 

the transverse mode survives. 

3.3 Dispersion Law for Quarks within the Quark-Gluon Plasma 

To determine the dispersion relation for a quark travelling through 

the quark-gluon plasma, the position of the zero of the retarded inverse 

quark propagator must be determined. Proceeding in a manner similar to 

the gluon case, the dispersion relation for quarks is defined by the 

condition 

det [p + 1:] = 0 (3.3.1 ) 

where 1: represents the quark self-energy and the quark mass has been 

neglected. Using the fact that the self-energy has the form 
1:l!. 1: = "fo Io - P 1:3 (3.3.2) 

equation (3.3.1) can he solved and the following condition is obtained. 

Po = -1:0 -+ (p + 1:3) (3.3.3) 

Since we are only interested in the damping rate of the quarks, we can take 

the imaginary part of equation (3.3.3) and write 

"( = lm {1:0 ± 1:3} . (3.3.4) 

Expression (3.3.4) for the quark dan\ping rate agrees with that derived in 

reference [23]. Notice that there are two possible modes given in (3.3.4). 

The upper Sigtl ref~rs to a collective excitation ("longitudinal mode") with 

chirality equal to minus the helicity that is special to light fermions in an 

ultrarelativistic plasma [7]. The lower sign refers to the standard excitation 

called the "transverse" mode with chirality equal to helicity. The two 

modes are degenerate at p=O, however, at high momentum (p»gT) the 

residue of the collective excitiation ("longitudinal mode") vanishes 
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exponentially [24]. Thus only the "transverse mode" for the quarks will be 

considered. 
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In this chapter, the gluon plasma frequency (in the statie limit) will be 

computed to order 92. We will also show that the gluon damping rate is not 

computable in this approximation. 

4.1 Gluon Plasma Frequency in the Static Limit 

To compute the gluon plasma frequency to order 92, the one-Ioop 

gluon self-energy must be determined. In the covariant gauges, there are 

three (negleeting the quark-Ioop) one-Ioop diagrams that eontribwe to 

order 92. The three diagrams to be evaluated are the gluon-Ioop, the ghost­

loop and the tadpole diagram. The three diagrams are shown below. 

p 

p+q 

p 

p+q 
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Using the Feynman rules of section 2.4, the contributions from each 

diagram are listed below. The contribution from the gluon loop is given by 

(4.1.1) 

where ~v' ~v and 'ltv are defined in the following way. 

(q2+2pq)2 (q2+2pq_p2) (q2+3pg) 
Bllv = - q2 gllv + q2 qllqv + q2 (q~v+PJ.Lqv) - PJ.LPv 

+ (q~ q+p, p~ -p) 

(p2qJ.L -Pqpll)(p2qv-pqpv) 

CJ.Lv - (q2(q+p)2) 

The contribution for the ghost-Ioop (Faddeev-Popov) is given by 

FP __ 2 00 f d3q (Pllqv+qJ.Lqv) 
TIJ.Lv(p) - 9 NT n=oo (21t)3 q2(q+p)2 . (4.1.2) 

The final contribution from the tadpole dia gram is given by 
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TP 00 f d3q (-3gjJ.v + (l-a)(g/-lv - qjJ.qV/q2» 
TIj.1.V(p) = g2NT n~oo (21t)3 q2 (4.1.3) 

ln aU of the above sums, qO= 21tinT. Although the ghost fields obey 

fermionic statistics, they are periodic rather than antiperiodic in imaginary 

time. This can be unc1erstood by recalling that the Faddeev-Popov 

determinant represents a variatiùn with respect to infinitesimal gauge 

transfonnations and the gauge transformations must be periodic since they 

are proportional to the periodic gauge fields. 

The complete expression for the gluon self-energy at one-Ioop 

(neglecting the quark-Ioop) is 

(4.1.4) 

To detennine the plasma frequency for transverse gluons in the statie limit, 

expression (4.1.4) must be substituted into equation (3.2.11). AIl terms 

proportional to p and p2 may be neglected because we are interested jn the 

limit p ~ O. Terms p"opnrtional to Po and p2 may also be negJected 

because gluons are massless at tree-level. Making the above substitutions 

and simplifications, we find that the terms proportional to the gauge 

parameter a cancel, and we are left with (see Appendix B) 

(4.1.5) 

where e is the angle between p aH~ q. The thermal sums are e~all1ateJ 

using equation (2.5.3) and the plasma frequency is determined using 

• 
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(3.2.13). The plasma frequency for transverse gluons in the statie limit 

then works out to be 

(4.1.6) 

The longitudinal plasma frequency in the static limit cao be computed 

in a similar fashion by using equation (3.2.12). At zero momentum, the 

transverse and longitudinal plasma frequencies must be the same due to 

rotational invariance. Thus the ca1culation of the longitudinal mode can 

serve to test the consistency of our calculations. 

Substituting expression (4.1.4) into the condition for the longitudinal 

mode (3.2.12), taking the same limits as before and simplifying, one 

obtains (see Appendix B) 
2 

00 f d3
q 1 00 f d3q qo 

k2 
= (- 4g2NT L (2 )3"2 + 4g2NT I. (2 )3 4 

n=-oo 1t q n=-oo 1t q 

_ 4 2NT 00 f d3
q q2 cos2(9) ) 

9 !- (21t)3 q4 . 
n--oo 

(4.1.7) 

. \fter performing the thermal sums, and calculating the plasma frequency 

using (3.2.13), we find 

(4.1.8) 

as expected. The quark contribution to the gluon plasma frequency is easily 

determined by considering the quark-Ioop contribution to the gluon self­

energy. By adding the quark-Ioop contribution of the plasma frequency to 

equation (4.1.8), one obtains the well known result 
2 1 2 2 

(Op = 9 9 T (N + Nf/2) , (4.1.9) 

where Nf is the number of massless quarks in the fundamental 

representation. 
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4.2 The Gluon Damping Rate in the Static Limit 

As ShO\\.l in chapter three, the damping rate for gluons in the static 

limit can be deterrnined from equation (3.2.14) which is 
-1 

'Y = 200 lm {F( ko,k)} (4.2.1) 

with ko=O. The function F(ko,k) has been evaluated for both longitudinal 

and transverse gluons and found to be a real function. Thus there is no 

damping constant at the one-Ioop level. The reason why no imaginary parts 

are generated is that aIl terms proportional to p2 h"ve been neglected. Some 

authors have kept these terms in order to generate the imaginary pan, 

however, this makes the çalculation inconsistent. The one-loop 

approximation can be trusted up to order g2, but a simple analysis shows 

this is not sufficient to determine the damping constant at zero momentum. 

If we assume ko= co - i'Y, where ro=gT and y=g2T, then from equation;, 

(3.2.11) and (3.2.12) we obtain 

(4.2.2) 

To determine the damping rate at zero momentum. F(ko,k) must be 

accurate to order g3 which is not the case with a one-loop calculation. 

MuIti-loop diagrams are required to calculated the damping constant 

accurately. Th~ problems encountered in the early attempts to calculate the 

damping constant are not surprising. The appearance of negative and gauge 

dependent damping is simply an indication of an incomplete and 

inconsistent calculation. A deeper reason for not expecting damping at the 

one-Ioop level is due to unitarity. The damping rate (inverse lifetime) is 

generated by the decay of one massless gluon into two. This reaction is 

kinematically forbidden thus the one-loop damping rate should be zero. As 

already disc.ussed in the introduction, to determine the damping rate at zero 

momentum, a resummation of muIti-Ioop graphs is needed, however, there 
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exist sorne physical quantities that can be computed without employing a 

complete resummation. To demonstrate this, the dominant contribution to 

the damping rate for both transverse gluons and quarks at high momenta is 

calculated in the next chapter. 
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THE QUARK AND GLUON DAMPING RATES AT HIGH MOMENTUM 

The damping rate for transverse gluons and quarks with momenta 

p»gT is given by y(p)=cg 2Iog(1/g)T+ O(g2T). ln this chapter, the 

dominant contribution (the logarithmic term) will be calculated for both 

transverse gluons and quarks. It is assumed that the temperature T is the 

largest energy scale ln the problem and that the coupling constant 9 is very 

small. 

5.1 Damping of Energetic Transverse Gluons 

To determine the dominant behaviour of gluons at high momentum, it 

is useful to divide the self-energy into two parts 
soft hard 

nllv(E,p) = n llv (E,p,Â.) + n Ilv (E,p,Â.), (5.1.1 ) 
hard 

where allloop integrations in nllv (E,p,Â.) are eut off in the infrared al À. 
hard 

If À. lS chosen large enough, then n Il
V 

(E,p,À.) is calculable using the loop 
soft 

expansion. In contrast, n IlV (E,p,i..) is not calculable using the loop 

expansion because it involves integration over all momenta less than the 

infrared cutoff and therefore must be obtained by other means. An 

important issue to be addressed is how much any desired quantity depends 
soft 

on the largely undetermined n Il
V 

(E,p,Â.). For the case. of the g21 og (g) 
sott 

ternls, they can be determined with no knowledge of nllv (E,p,Â.) because 

they are completely determined by the infrared divergent part of 
hard . 

n/J.v (E,p,A.). 

If the infrared cutoff Â. is chosen such that Â»gT, then the lowest-
hard 

order contribution to TI Il
V 

(E,p,Â.) arises at order g2 due to the one-loop 

graphs described in chapter four. If, however, the infrared cutoff is chosen 

to satisfy g2T« Â« gT then multi-loop graphs can contribute to the same 

order in 9 as do the one-loop graphs. This behaviour is due to a subc1ass of 
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diagrams that are even more infrared singular than indicated by our simple 

power-eounting argument in ehapter two. The dangerous graphs are those 

such as the "ring" graphs within which multiple self-energy insertions are 

made along a smgle intemalline [12J. In reference [7J Braaten and Pisarski 

argue that these last contributions may be resummed by dressing ail "soft" 

lines Oines earryimg momenta less than or of order gT) by the calculable 

contributions of "hard thermal loops". After resumming these higher-Ioop 
hard 

contributions, n ~v (E,p,A) is given by the same one-loGp diagrams as 

before, with the proviso that eaeh propagator and vertex is to be replaced 

with an "effective" resummed propagator or vertex. These "effective" 

propagators and vertices are relatively complicated functions and can make 

the algebraic manipulations very cumbersome, however, at hard momenta 

the resummed propagators and vertices agree with the usual bare 

propagators and vertiees. Sinee we are interested in eomputing the damping 

rate at "hard" momenta, aIl the vertices in the one-Ioop graph will carry 

hard momenta and therefore the bare vertices ean be used. One of the 

propagators must also carry "hard" momenta and therefore will not need to 

be dressed. 

To compute the damping rate for transverse gluons with momenta 

p-T»gT, we must consider the function (3.2 . .11) 
Fhard(T '1) _ ) (n~ard _ p~ n~ard) 

,p,1\. - 2 11 p2 IJ (5.1.2) 

where A is chosen such that g2T « À« gT. As is established in more 
. hard hard 

detatl below, the contribution of n ~v to F diverges logarithmically 

with the present cutoff. We can therefore write (5.1.2) as 
hard 

F (T,p,A) = g2 [ Alog(À/~hard) + B + O(À!T) J + 0(g3) (5.l.3) 

with A and B being purely functions of p and T. The constant Ilhard is a 

calculable energy scale of the high-frequency part of the theory which is of 
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the arder gT. As already shawn in chapter four, gluons acquire an 

effective mass m = (Ùp(p=O) = t gT~ (N + N f/2) at finite temperature. 

In arder ta extract information about 
, soft hi.Jrd 

P( r,p) = F (T,p,À) + F (T,p,À) (5.1.4) 
soft 

from equation (5.1.2) it is necessary ta place a cO'1straint on F (T,p,À). 

Th 1 h ·· d . psoft 1 1 e on y property t at IS reqUIre of (T,p,/\.) is that ilS /\. dependcnce 

must cancel that of phard(T ,p ,À). This must be true since the infrarcd 

cutoff is introduced artificially and has no physical sigmficance. This 

implies that 
iJpsoft dFhard 

. À dA = - À dÀ 
soft 

and therefore P (T,p,À) must have the form 

(5.1.5) 

soft 
p (T,p,À) == g2 [ Alog(Jlsoft/À) + X + O(À(n l + 0(g3) . (5.1.6) 

Where Jlsoft is the largest mass seale present in the soft part of the problem. 

).isoft is taken to be of the order g2T, because this is the seale at whieh 

perturbation theory fails and is the seale at which the damping rate appears. 

Ta the best of our knowledge there is no other physies betwecn the seules 

gT and g2T to set the scale of Ilsoft. Notice that A is the same function as 

in equation (5.1.3). Adding equations (5.1.3) and (5.1.6) gives 

F(T,p):: _Ag2 log(~,hard) + g2(B+X) + 0(g3) . (5.1.7) 
.-soft 

Expression (5.1.7) can be written as 
1 

F(T,p) = _Ag2 log(g) + 0(g2) (5.1.8) 

whieh determines the coefficient of the g210g(g) term completely in terms 

of the calculable coefficient A. 

The task is now to detennine the coefficient A. Smee A is determined 

by the infrared divergent part of phard(T,p,À), it is neeessary to find the 

d· hard T ' F' most Iver,gent part of F (,p,Ï\.). There are three eynman dlagrams 

that contrioute to the self energy at one-loop. The most divergent diagram 
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is the graph with a gluon loop. The tadpole and ghost-Ioop diagrams are 

not as divergent as the gluon loop due to the Feynman mIes. The tadpole 

diagram has no external momentum dependence and therefore the thermal 

sum is not infrared divergent. The ghost-Ioop diagram can produce terms 

that have at most one power of extemal momentum mutiplying the thermal 

sumo The gluon-loop can produce terms that have p2 or p2 multiplying the 

thermal sums, thus these are the most divergent thermal sums. Only the 

terms with p2 need to be considered since p2=0 for the extemal gluon line. 

Futhermore, the complete thermal sums do not have to be evaluated 

because the most dive gent part of the sum is due to the n=O terme As 

already mentioned, only one propagator needs to be "dressed" since hard 

momentum flows through aIl other lines. Therefore we must multiply the 

self energy by a factor of two to account for the two possible ways of 

routing the "soft" momenta. 

The expression for the gluon-Ioop contribution to the gluon self­

energy is given by 

G g2N ooJ d3q 
ITllv(p)= 2 T n= (21t)3 V ~Â.p(p,-p-q,q)DÂ.K(p+q)D*PG(q)V VG1c(-p,-q,p+q) 

(5.1.9) 

where V is the bare three-gluon vertex, D is the bare gluon propagator and 

D* is the "dressed" gluon propagator. The dressed gluon propagator can he 

obtained by inverting 
-'-1 -1 

Dilv = D(o)J.1V -Iltv (5.1.10) 

where '"\tv is given by equatjon (4.1.4). Since only n=O contributes to the 

infrared divergent part, ihe resummed propagator has the form (see 

Appendix C) 

(5.1.11) 
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with BPo= diag(O,-1 ,-1 ,-1). Performing the contractions in expression 

(5.1.9) yields 

with 

AIlV = (2q2+2pq+5p2)gllv + 10qllqv + 5(qIlPV+Pllqv) -2PIlPv 

Bllv = .(4p2+4p'q+q2)gllv +(q-p)2BIlV -3PIlPv -3PIlQv - 3Qllqv - 3QIlQv-

3p~v-3QJ.LPv 

Ellv = {(q2_p2)2BIlV + (q2_p2)(PIlPV - qllqv + PIlPv - qllqv ) + 

P·q(qIlPV+Pllqv) - p2PIlPV . (2p2+3p'Q+2q2)qJ..lqv}/{(q+p)2} 

The damping rate for transverse gluons is detennined by substituting 

equation (5.1.12) into (5.1.2). Taking the n=O part of the sum, multiplying 

the self energy by two, and keeping only terms proportional to p2 we 

obtain 
.Jlard - g2NTm2p Joo 1 q-2p+ie 
Fdiv (T,p,À-) = 21t2 dq q(m2+q2) loge Q+2p ) 

1.. 

ig2NTp 
= + 21t log(À-/m). (5.1.13) 

We can set m=Jlhard and read A=ig2NTp/21t . To evaluate the damping 

constant, substitute (5.1.13) into (3.2.14) and use the lowest-order mass 

shell condition ro=p. Doing so, we obtain our final result 
g2NT 

y(p) = + 41t log(l/g) + 0(g2) . (5.1.14 ) 
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Notice that the real part of F is infrared finite so only the damping rate 

acquires a g2l og (g) contribution. There are several aspects of this 

calculation that bear emphasis and will be discussed in the conclusions. 

5.2 Damping of Energetic Quarks 

The technique used to isolate the g210g(g) term in the gluon damping 

rate can be repeated for quarks. The quark self-energy can be determined 

from the following Feynman graph. 

p p+q p 

Using the Feynman rules of section two and the "dressed" gluon propagator 

given by equation (5.1.11), the self-energy of a massless quark is 

OOj d3q a Ôkn b * 
l:(p)= Tn=~ (21t)3 gyJ.L Tik( -p-4) gyv T njÔabD Il

V
(q) . (5.2.1 ) 

The diagram in which the gluon lioe carries "hard" momenta is not as 

divergent as the above graph and cao be neglected. This is a result of the 

fact that the quarks are antiperiodic in imaginary time. Notice that 

(PO+qO)=(2n+ 1 )1tiT is proportion al to T for n=O, whereas qo=2n1tiT equals 

zero for n=O. From this it follows that the diagram with "soft" gluon 

momenta is the mûst divergent. Performing the contractions, keeping the 

n=O part of the sum, and doing the angular integral, equation (5.2.1) 

reduces to 2 00 2.. 2 '? 
9 CFT J (m-roPo+m y-p-2q-p) q-2p+ie 

l:(p)= 81t2p dq q(m2+q2) loge q+2p ). 
Â. 

(5.2.2) 
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Since we are interested in computing the damping rate, only the imaginary 

part of equation (5.2.2) is required. Recalling equation (3.3.2) and using 

expression (5.2.2) we find 

g2CF T 2p (m2_2q2) 
Im{Lo}= S1t fdq ( , ") (5.2.3a) 

l q m-+q-
À 

_g2CF T 2p (m2+2q2) 
Im{r,3}= 81t fdq q(m2+q2) (5.2.3b) 

À 

The damping rate for "transverse" quarks is given by equation (3.3.4) 

which is 

(5.2.4 ) 

Substituting equations (5.2.3a) and (5.2.3b) into equation (5.2.4) and 

performing the integration, the coefficient of the g21og( g) term is found to 

he 

(5.2.5) 

Thus the dominant term in the "transverse" quark damping rate at high 

momentum is 
g2CFT 

y(p) = + 41t log(l/g) . (5.2.6) 
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CONCLUSIONS 

There are several aspects of this calculation that need to be emphasized. 

(i) Pirst of aIl, the dominant behaviour of the damping rate for both the 

quarks and gluons is independent of the gauge parameter a. AlI the terms 

that depend on the gauge parameter contribute only an infrared-finite 

amount. (ii) The sign of the damping rate 'Y is positive in both cases. Thus 

the quark and gluon plasma oscillations are stable. (iii) In order to 

determine the subleading 0(g2) contributions, knowledge of the 

coefficients B of equation (5.1.3) and X of equation (5.1.6) is required. 

Although the coefficient B is calculable using the coniplete resummation 

formalism of Pisarski et al., the coefficient X is not and can only at 

present be determined by making assumptions about the behaviour of the 

plasma in the low-frequency regime Â. = g2T. Thus the coefficient B need 

not be gauge-independent or positive, although calculations by Pisarski et 

al. indicate that it is. Only the sum of the coefficients B and X need be 

gauge-independent and positive. (iv) Since it is a logarithmic infrared­

divergence that is responsibe for the logarithmic dependence on g, its 

coefficent is insensitive to the details of how the cutoff is implemented. 

Thus the discrepancy between the results of Lebedev and Smilga [25] and 

our results which agree with Pisarski et aL, is due to the choice of the scale 

of Jlsoft . We assumed Jlsoft to he of the order g2T because this is the scale 

at which perturbation theory fails and that the damping rate appears. The 

results of Lebedev and Smilga would require that Jlsoft is of the order 

g4/3T. At present we do not understand what physics should choose this 

scale of g4/3T. (v) Finally, the infrared-divergent term in Fhard is explicitly 

proportional to m2 (see equation 5.1.13) thus it only receives contributions 
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from two-Ioop and higher graphs that serve to dress the soft gluon 

propagator. Also the imaginary part arises only from the self energy of the 

internaI Hnes which carry soft loop momenta q< gT since the mass m may 

be neglected for large loop momenta. This agrees with what is expected 

physically from unitarity given the constraints of energy and momentum 

conservation in the plasma. 

Thus we conclude that for sorne quantities in which infrared 

divergences in the perturbative expansion introduce a logarithmic 

dependence on the gauge coupling constant g, it is possible to very simply 

identify the dominant contributions. The simplicity of this method al10ws 

one to check the more complete and involved caIculations employing the 

complete resummation formalism . 
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Throughout this thesis we use the natura! units c=Yt=kB=l, where c is 

the velocity of light, Yt=h/21t where h is Planck's constant, and where kB is 

the Boltzman constant. Our metric in the Minkowski space {xJl:Il=O,1,2,3} 

is given by gJlv with gJlv=gJlv= diag(1,-I,-l,-l). The contravariant vectors 

of the space-time coordinate and energy-momentum are given by xJl=(t,r) 

and pJl=(E,p) where t is the time coordinate, r is the space coordinate, E is 

the energy, and p is the momentum. The covariant vectors are given by 

xJl=gJlV XV =(t,-r) and PJl=gJlV pV =(E,-p). AlI four-vectors are represented 

by plain text characters (ie. p) and aIl three vectors are represented by bold 

characters (ie. p). 

The Dirac gamma matrices satisfy the anticommutation relation 

("f,'Y"}=2gJlv. We use the foIlowing representation of the gamma matrices 

where al are the Pauli matrices given by 

0
1=( ~ ~) a2=( ~ ~) a3=( ~ -~ ). 

From these definitions it follows that (fJ)2=1 and (yi)2=-1. 
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APPENDIX B 

EV ALVA TION OF THE GLUON PLASMA FREQVENCY IN THE 

ST A TIC LI MIT 

Tp petermine the gluon plasma frequency in the static limit, 11ï, noo­
and p;r nij must he evaluated in the limit p~O. Tenns proportional to p 

may be neglected because tree-Ievel gluons are massless. In this 

approximation we find: 

nü is obtained by sununing the above contributions. In doing so, we find 

00 f d3q 6 4q2 nü = g2NT l: (2)3 [-2 + 4]' 
n=-oo 7t q q 

Taking !he same limits as before, we can evaluate P;~ nij as follows. 

~ n9 = 2NT 00 J d3
q [:1 + 5q2cos2(9) + (1-a)(1. + q2cos2(9»] 

p2 IJ 9 n=~oo (21t)3 q2 q4 q2 q4 

~ TP 00 f d3q 3 -1 g2cos2(9) 
2 TIij = g2NT l: (2)3 ['2 + (l-a)('2 - 4 .)] 

P n=-oo 1t q q q 

~ n~P __ 2NT 00 r d3g [g2cos2(9), 
p2 IJ -:- 9 n!:oo J {21t)3 q4 J • 

Taking the sum of the above terms we find 
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~ _ 2 00 f d3q ~ 4q2cos2(8) 
2 nij - 9 NT L (2)3 [ 2 + 4 ] . 

P n=-oo 7t q q 

Substituting the expressions for q. ni- and ~ into equation (3.2.11), P . 
we recover equation (4.1.5) from which we can determine the gluon 

plasma frequency in the statie limit for the transverse modes. 

The thermal sums in equation (4.1.5) can be evaluated using the 

technique described in chapter 2. Performing the thermal sums, and 

subtracting the infinite vacuum contribution, we find 

Using the above thermal sums in equation (4.1.5), the gluon plasma 
2 1 

frequency oop = 9 g2NT2 is obtained. 

To determine the gluon plasma fr\!quency in the statie limit for the 

longituC:~nal mode, Ibo must he evaluated in the limit p~O. 

G 00 f d3q 1 5qo2 -1 qo2 
nOO= g2NT L (2 )3 [2 + -4- + (l-a)( 2 + 4'")] 

n=-oo 1t q q q q 

TP 00 f d3q -3 1 qo2 
n()()= g2NT l (2 )3 [2 + (l-a)( 2 - 4)] 

n=-oo 1t q q q 

FP _ 2 00 J d3q ~02 n()() - -g NT l (2)3 [ 4] 
n=-oo 1t q 
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Summing the above expressions and substituting the values fol' the thennal 

sums, we find that !"bD = O. We can now evaluate the longitu,dinal gluon 
1 J 

plasma frequeney in the statie limit. Substituting 11>0 and ~ n ij into 

equation (3.2.12), the longitudinal plasma frequeney il, the statie limit is 
2 1 

found to he <Op = 9 g2NT2 • 
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The resummed covariant gluon propagator is determined by inverting 

equation (3.2.9) 
-1 -1 

-1 Djlv = D(O)jlV -Iltv 
where D(o)jlV is the bare inverse gluon propagator, and f\tv is the gluon 

self-energy. Since we are interested in the most divergent contribution to 

the gluon damping rate, only the low frequency limit of DJl v is required. 

Using equation (4.1.4) for the gluon self-energy, the zero momentum limit 

of f\tv is determined to be 

nJlV= m2
SIJ.V 

with ôjlv = diag(O,-I,-I,-l). Using equation (3.2.10) for the bare inverse 

gluon propagator and keeping only the n-O contribution, we find 
-1 

D(O)\lV = -k2;..v + A~ky 
1 -1 

with A= (a - 1). Using the above expressions for D (o)JlV and nJlV in 

equation (3.2.9) and inverting, we find the resurnrned gluon propagator tû 

he 

Keeping only the most divergent terms in Djlv ' and since only the n=O 

terms contribute, Dj.1V may be expressed as 
1 m2SJlv 

O*/iV(k)-k2[gJlV - (m2_k2)1 
which agrees with equation (5.1.11). 
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To determine the most divergent term in the gluon self-energy which 

contributes to the damping rate of transverse gluons, note the following 

facts. To determine the transverse gluon modes, we must apply equation 

(3.2.11 ) 
1 ~ 

P2 = .-2 (n .. - ., n .. ) 
A~ p_ 1J 

to the gluon self -energy. The most divergent integrals in equation (5.1.12) 

will have factors of p2 or PIlPV in the ~v ' Bllv • Stv ' and 1tv tenllS. 

Equation (3.2.11) will "kill" any terms proportional to p~pv • thus only 

terms with p2 are important. Since we are trying to determine a damping 

rate, only the imaginary contribution of the integral is required and must 

be of order 92. Imposing these constraints on equation (5.1.12), we find 

that the most divergent term contributing to the damping rate at order 92 is 

In BJlV and is given by -(4p2)g~v . Keeping only this term in equation 

(5.1.12) and applying equation (3.2.11) to determine the transverse modes, 

we obtain equation (5.1.13) after perfonning the angular integration. 
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