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ABSTRACT

The dominant term in the damping rate fo- quarks and transverse gluons at
high momentum (p>>gT) is calculated within the framework of
perturbative QCD at finite temperature. It is shown that the damping rate,
v, takes the form y=cgz’l‘ log(1/g) with c=N/4x for transverse gluons and
c=(N2—1)/(81cN) for quarks where N is the number of colours, g is the
coupling constant, and T is the temperature. The sign and the gauge
invariance of vy are easily verifiable due to the simplicity of the argument.
This result agrees with the more complicated (unpublished) calculations of

Pisarski et al. but disagrees with those of Lebedev and Smilga.
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RESUME

Le terme dominant dans le taux d'amortage des quarks et des gluons
transverses a hautes impulsions (p>>gT) est calculé a l'aide de la théorie
perturbative chromodynamique quantigue a température finie. It est
démontré que le taux d'amortage, 7y, est de la forme y=cng log(1/g) avec
c=N/4rn pour les gluons transverses et c=(N2-1)/(8nN) pour les quarks, ou
N est le nombre de couleurs, g est la constante de couplage, et T est la
température. Le signe et l'invariance de jauge de 7y sont aisément
vérifiables griace 2 la simplicité de l'argumentation. Ceci est en complet
accord avec les calculs plus complexes (non-publiés) de Pisarski et ses

collegues, mais contradit ceux de Lebedev et Smilga.
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INTRODUCTION

The accepted theory of the strong interactions is called quantum
chromodynamics (QCD). In QCD, the interactions are generated by a non-
Abelian SU(3) gauge theory of coloured quarks and gluons that are
permanently confined to colour singlet hadronic bound states. A very
interesting feature of QCD is its high energy behaviour known as
asymptotic freedom. As one probes short distance scales (high energy
transfers) the coupling strength g decreases to produce an almost
noninteracting system [1]. This behaviour makes the use of perturbation
theory possible, since at high energies (short distances) the coupling will be
small enough so that the terms involving large powers of g may be
neglected.

The success of perturbative QCD at short distances has been very
encouraging. The approximate scaling observed in the deep inelastic
scattering experiments of leptons off hadrons can be explained using
asymptotic freedom. Deviations at high energy from this scaling have been
predicted by QCD and are consistent with the observed scaling, given the
large error in these measurements [2]. Other predictions include the
narrow width of charmoniam and the existence of quark and gluon jets.
QCD is also consistent with much of the phenomenology of the strong
interactions such as the symmetry patterns of the hadrons.

Now that we possess a theory of strong interactions it is natural to try
to test the theory in different environments, in particular at high
temperatures. The predictions of high temperature QCD could be tested in
at least three new domains. First, there may exist significant high

temperature effects within neutron stars where the density is considerably
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greater than nuclear density. The second possibility is in heavy ion
collisions at very high energy per nucleon, in which states of high density
and temperature might be formed. Finally the standard cosmological
models allow one to extrapolate back to when the universe was at a
temperature comparable to nucleon rest energies in units where c=f=k=1,
It is hoped that high temperature QCD might provide some predictions
concerning the evolution of the universe. Thus new insights into the nature
of matter at very high temperature and density might be gained by studying
QCD at high temperature.

There is evidence that at sufficiently high temperatures QCD loses
confinement, and a quark-gluon plasma screening all colour-electric flux is
formed [3]. There are several theoretical reasons for studying the gluon
plasma. Early studies of gauge theories at finite temperature were carried
out within the framework of QED [4], and it would be interesting to
compare the photon plasma to the gluon plasma because QCD, unlike QED,
includes self interaction of the gauge fields. Furthermore, by first
attempting the calculation of some simple amplitudes, the rich mathematical
structure of QCD should be exposed and the techniques required to deal
with any difficulties that may arise can be developed. This is important
because in a more complicated calculation the mathematical difficulties
could be overwhelming and might obscure important concepts that need to
be addressed in hot QCD. The goal of this thesis i1s to determine the
dominant contribution to the quark and gluon damping rates within this
plasma, at momenta much greater than gT (where g is the coupling
constant and T is the temperature).

The plasma parameters that we wish to calculate are the plasma

frequency w(p), and the damping constant Y(p). The plasma frequency is



the energy of the propagating quark or gluon, and the damping constant is
the inverse lifetime of the quark or gluon. The gluons and quarks obtain
effective lifetimes within the QCD plasma because they can be absorbed
into the ambient heat bath. Both these parameters are determined by the
position of the pole of the gluon propagator or zerc of the inverse
propagator, E(p)=w(p) - iy(p), in the complex energy plane. The plasma
frequency at zero momentum (p=0) has been computed by many authors
[5) and found to be w=g VNT/3 (neglecting quark contributions), where g
is the coupling constant, N is the number of colours, and T is the
temperature. This result is recalculated here as an exercise and to serve as a
check on our methods. The damping rate (for gluons in the static limit)
arises at order g%, however, the results that have been obtained in the
literature are not consistent with one another [6]. In some cases the
damping is found to be negative indicating an instability of the plasma and
other calculations indicate that the damping rate is a gauge dependent
quantity. Obviously these calculations cannot be taken seriously since all
physical quantities are gauge independent and there is no reason to believe
that the quark-gluon plasma is thermodynamically unstable. The problem
that is common to all these one loop calculations is that they are all
incomplete in the following way.

In zero temperature QCD, an order g2 computation requires the
evaluation of all n loop Feynman diagrams, however, this is not the case at
finite temperature. At finne temperature an infinite number of diagrams
can contribute to any order in g. The reason tor this complication is that
the infrared divergences are more severe in hot QCD than in zero
temnerature QCD. The source of these severe divergences can be attributed
to the behaviour of the Bose-Einstein distribution function n(q)=(eq/T -1)-1
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for small q. At low momentum n(q)=T/q, thus quantities can diverge as
powers of the infrared cutoff rather than logarithmically as they do at zero
temperature. Notice that n(q)z*'qfr for @>>T ensures there will not be any
new ultraviolet divergences beyond those at zero temperature thus the zero
temperature renormalization scheme will suffice. In particular, to compute
the gluon damping rate at zero momentum to order g‘2 requires more than
a one loop calculation [7]. A resummation is required to include all higher
loop diagrams that contribute to order g2.

A method for resumming all the relevant diagrams has been developed
by Braaten and Pisarski {7]. In their analysis, they show that it is necessary
to distinguish between hard momenta (of order T) and soft momenta (cf
order gT). Ordinary perturbation theory (bare propagators and vertices)
applies at hard momenta, but over soft momenta, effective propagators and
vertices are required. They have also proved that to leading order in g, in
this effective perturbation expansion, the quark and gluon damping rates
are gauge invariant and positive within the Coulomb and covariant gauges.
Kobes, Kunstatter, and Rebhan then showed that within an even larger class
of gauges the damping rate is independent of the choice of gauge [8]. The
value obtained by Braaten and Pisarski [9] for the gluon damping rate at
zero momentum 1s y(p=0)=+a gzNT/241t where the constant a was
determined numerically to be a = 6.63538 . An analytical expression for
the damping rate coald not be obtained due to the complexity of the
resummation.

The validity of this resummation is currently the subject of some
debate [10], however, one can compute the dominant contributions to the
quark and gluon damping rates at high momenta (p>>gT) without

employing a full resummation. The question is how can one compute the



dominant contribution to the damping rate when perturbation theory is
failing? The answer to this question is best summarized by Steven
Weinberg. "When it is infrared effects that invalidate perturbation theory,
the introduction of a floating cut-off may not restore perturbation theory,
but it does allow us to say useful things about the infrared effects
themselves" [11]. This 1s precisely what is required. Perturbation theory
fails for QCD at finite temperature due to the infrared behaviour of the
theory at momenta less than or equal to g°T. The introduction of a cut-off
A > g2T allows us to use perturbation theory above the scale of the cutoff,
It is then a matter of studying the behaviour of the computed quantites with
respect to the infrared cut-off. We must also realize that like any physical
quantity. the damping rate cannot be a function of the cut-off. Thus the
contribution to the damping rate from the nonperturbative region
(momenta less than A) must precisely cancel the cutoff dependence from
the perturbative part of the calculation. This property is sufficient to
determine the dominant part of the result. These considerations allow us to
determine the most dominant contributions to the damping rate for

energetic quarks and gluons in hot QCD.
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FINITE TEMPERATURE FIELD THEORY

The purpose of the following sections is to review some important
aspects of finite temperature field theory that are required in this
investigation. It is assumed that the reader has a knowledge of both field
theory and statisical physics. For readers who would like 2 more rigourous
treatment of the following material, references [12,13,14] are

recommended.

2.1 Quantum Statisical Mechanics

There are three types of ensembles that one usually considers in
equilibrium statistic 1! mechanics. They are the micro-canonical ensemble,
the canonical ensemble, and the grand canonical ensemble.The micro-
canonical ensemble 1s used to describe a system with fixed energy E and a
fixed volume V. The canonical ensemble is used to describe a sysiem in
conact with a heat reservoir at temperature T. The system is free to
exchange energy with the reservoir thus only T and V are constant. In tiie
grand canonical ensenble the system is free to exchange particles and
energy with the heat bath therefore T, V and possible chemical potentials
i are the fixed vanables.

The ensemble that is best suited for describing the quark-gluon plasma
is the grand canonical ensemble. We are assuming the plasma is at
equilibrium and that quarks and gluons can be emitted from or absorbed
into the ambient heat bath. In order to start our description of this plasma
we must introduce an important function in thermodynamics, the partition
function.

The grand canonical partition function is given by



Z=73 5 ¢ B(Ej-uN) 2.1.1)
N j

where B=1/T, k is the Boltzman constant and E;j is the energy of the jth N-

particle state. The partition function can be written in a more compact

form
Z2=Tr(p) (2.1.2)
in which p is the statistical density matrix given by
p=e-B(H-KNj) (2.1.3)

In this expression H and N are the Hamiltonian and conserved number
operators respectively (sum over i is implied). In relativistic QCD the
difference between the number of quarks and antiquarks is a conserved
quantity, not the quark or antiquark number seperately. The reason why
this is an important function in thermodynamics is that all other standard
thermodynamic properties can be determined from it. For example, the
pressure, particle number, entropy and energy are related to the partition

function by
P=T dInZ/dV,
N;=T 9dInZ/dy;,

S=0(TInZ)/dT,

E=-PV +TS+uiNj. (2.14)
A useful relation is that the ensemble average of any operator O is
given by
Tr(pO)
<O>= Tr(p) (2.1.5)

Now that we have established the importance of the partition function,
we must find a method for evaluating the partition function for a given
system. In order to evaluate the partition function in a nonrelativistic

system, equation (2.1.1) tells us we must determine the complete set of N-
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particle quantum states and corresponding energies. In principle this
requires one to solve Schrodinger's equation for an N-particle system. If
the particles are non-interacting (ideal gas approximation) then one can
reduce the problem to solving a one-particle Schrodinger equation [15]. If
the particles are interacting then one would need the solution to the N-
particle Schrodinger equation. It is a well known fact that one cannot solve
a general two-body quantum mechanics problem, therefore it is useless to
even consider solving a system with =1023 particles. What is needed is an
alternative method for calculating the partition function in systems with
weakly interacting particles and in relativistic systems where the particle

numucr is not conserved.

2.2 Functional Integral Representation of the Partition Funtion

From quantum mechanics we know that the transition amplitude for

going from a state |0g) at time t=0 to some other state |dp) after a time
t=ts is given by (0p | e-1Htf [p,) . For equilibrium statistical mechanics, we

are interested in the case when the system returns to its original state after

a time tz. We also know that the transition amplitude can be expressed as a

path integral [16] as

ba tf
(da | e Hi loa) =[[dn] [[do] expG Ojdt fa3x Lomy) . (221)
da

The symbols [dd] and [dr] denote functional integration over the field

¢(r,t) and the conjugate momenta n(r,t), L is the Lagrangian of the system
and the limits of the ¢ integration are chosen such that ¢(r,0)=¢a(r) and

o(r,tr)=0a(r). Note that the partition funtion Z can be reexpressed as



Z=Id¢ (¢ | e"BH-1iN) |o) (2.2.2)

Notice that this expression for Z is very similar to that for the transition
amplitude given by equation (2.2.1). In fact, Z can be expressed as a
functional integral over the fields and the conjugate momenta by switching
to imaginary-time (T=it) and making use of (2.2.1) [12]. The limits of
integration on T become 0 and . Thus we may write the partition function

as

B
Z=N'  [(d¢] exp( [dr [d3x L) (2.2.3)
periodic 0

where N' is a normalization constant and the integration is over imaginary-
time. The term "periodic" means that the field is constrained so that
¢(r,0)=¢(r,B) for bosons and that ¢(r,0)= -¢(r,B) for fermions. The
antiperiodicity of the fermions can be understood by recalling that a
fermionic wavefunction changes sign if a rotation of 27 is made about
some axis. Both the angle 6 and imaginary time 7 are defined on compact
intervals, thus the fermionic wavefunction changes sign if 1 is varied from
0 to B. If we now define the argument of the exponential to be the action S,

the partition function can be written in a very compact and useful form.

Z=N' [[d¢] eS. (2.2.4)
periodic

The functional integral in (2.2.4) can be evaluated in closed form if the
Lagrangian in S does not contain terms which are more than quadratic in
the fields. This situation is very similar to that encountered in section (2.1).
Recall that we could evaluate the partition function for the ideal gas case
(no interaction), but not for the interacting system. The difference is that

we can now make the approximation that the interaction is very weak and
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expand the partition function in powers of the interaction. To perform this
expansion first decompose the action into its "free" and "interaction” parts.

S=So +81 (2.2.5)
Now substitute (2.2.5) into (2.2.4) and expand eSlin a power series. To

obtain the free energy, take the logarithm of both sides and obtain

> 1
3 i [ldg] eSos

InZ = In(N'[[d¢] eS0) + In( 1 + ). (2.2.6)

Jido) eSo
This can be rewritten as
InZ = InZg + InZ; (2.2.7)
which explicitly separates the interaction contribution from the ideal gas
contribution.
The quantity that actually needs to be computed within InZj is Sj
raised to an arbitrary power and averaged over the ideal gas ensemble

represented by So. This can be seen by comparing InZ; to equation
(2.1.5).
fido] S0 s

<Sn> =
170 [1de] eSo

Equation (2.2.8) should look extremely familiar to those acquainted

(2.2.8)

with quantum field theory at zero temperature. Proceeding as in regular
field theory, we can develop diagrammatic techniques for representing the
terms in the expansion defined by (2.2.6). The finite temperature Green's
functions defined by equation (2.2.8) are, in general, not the connected
Green's functions, since they include completely disjoint pieces. We can,

however, define the connected Green's functions in a very elegant way
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related to the generating functional for the Green's functions. If Z[J ] is the
generating functional for the Green's functions and W[J ] is the generating
functional for the connected Green's functions then they are related by
(16,17]
Z[J ] =Wl | (2.2.9)
Notice that W[J ] is proportional to the logarithm of Z[J ]. Using these
facts, one can show that to compute InZ; , we must sum only the connected
diagrams. Given the Lagrangian for any theory, we can now evaluate InZ;
and determine the thermodynamic properties of the system. In fact many
studies have been performed in both QED and QCD where quantities such
as the pressure of a photon-electron or quark-gluon gas have been
computed [12,18].
Although InZ; and the partition function will not be explicitly
evaluated in this project, they are closely related to a function that we must

evaluate, namely, the finite iemperature propagator.

2.3 The Finite Temperature Propagator

In field theory at zero temperature, the propagator in position space is
defined by

D(ry.t1; r2,t2) = (0 IT[OGr 1,1) 0(ra,12)] | 0) (23.1)

where T is the time ordering operator and | 0) is the vacuum state.

Similarly, using equation (2.1.5), the finite temperature propagator is
defined by

D(ry,715 r2,72) = Z-1 Tr{p T[¢(r1,71) 0(ra,72)1} (23.2)

where T is now the imaginary-time ordering operator. For bosons the

imaginary time ordering operator is given by
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-

TI9(T1) 0(T2)] = ¢(71) $(T2) 6(T1-T2) + &(T2) (7)) O(T2-T)),  (2.3.3)

and for fermions the imaginary-time ordering operator is given by

T(o(T1) 0(T2)] = (1) 0(T2) 6(T1-T2) - O(T2) D(T1) B(T2-T1).  (2.3.4)
Using the fact that T commutes with p, and the cyclic property of the trace

operation, it 1s easy to show that

D(ry,7; 1r5,0) = D(ry,7; ra,B) (2.3.5)

for bosomns, and that

D(ry,7;r2,0) = - D(ry,7; r2,B) (2.3.6)
for the fermions. This implies that ¢(0)=¢() for the bosons and that
®(0)= - ¢(B) for the fermions which agrees with our "periodic" limits for
the ¢ integration in the partition function.

The field can be expanded as

o) = VBV) 3 T eiertontomp).  (23.7)

=-00P

Since ¢(0)=0() for bosons, this implies that wp=2nnT for the bosons.
The constraint that $(0)=-¢(B) for the fermions implies that wp=(2n+1)nT

for the fermions. Since this analysis is being performed in imaginary-time,
the zeroeth component of the Minkowski-signature momentum four-vector
is given by 2rinl “or bosons and (2n+1)®iT for the fermions.

The real-time finite temperature propagator can be obtained from the
imaginary-time finite temperature propagator by analytic continuation. The
relationships between the real-time propagator and the imaginary-time
propagator are given by [12,19]

DX(w,p) = D(io, = o +ig,p) e—07, (2.3.8)
DA(w,p) = D(iow, = © - ie,p) &-07, (2.3.9)
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with DR representing the "retarded" real-time propagator and DA
representing the "advanced" real-time propagator. The real-time thermal
propagators are continuous functions of energy ®, and are useful for
determining physical properties such as the plasma parameters. To
calculate the plasma parameters, the analytic continuation given by (2.3.8)
is used. The reason for using the retarded Green's function is explained in

the chapter on plasma oscillations.

2.4 Feynman Rules for QCD at Finite Temperature
We use the Feynman rules in the covariant gauges found in reference
[16]. These rules will be used in al! subsequent calculations and all notation

and conventions are completely explained in the appendix.

Propagators

k
ap bV dyv(k
gluons Sab l\(lz( )
— Kk
de----ccc-ccccn- -b -1
ghosts Sab K2
, P :
i * ) 1
quarks %j _If:;
Yertices
ajl
P
bV q < cA
N r
3-gluon -igf25¢ Vi (p.q.r)




¢4

al
bV +— dp
4-gluon cA
a Ll
ek e
gluon-ghost b ¢
al

gluon-quark

Where the following abbreviations have been used.

- 2
d“_v(k) - gp_\l = (1-0.) kukvlk

abcd
UVAp

-igfabe k|

a
gYHTij

Vuna(p.a.r) = (0-q)y8,y + (@-1),8y5, + (-P)y83y

abcd
U
. .cd
+ (fac db _ sab.c )gppglv

The expression f20-¢d denotes the following combination

W vip = (fac.bd . fad°Cb)guvg7Lp + (fab.cd ) fad.bc)gMgVp

fab.cd _ gabx gcdX (symmation over x implied).

14
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The SU(3) generators of QCD are represented by T2 (a=1,2,...,8) and

generate a closed algebra,
[Ta’Tb] = ifabc TC ,

with fabc the structure constants. Some useful identities are

facd bed = Sab N (for SUNN)),

fade gbef (cfd _ N 12 fabc ’

a 4
il ;=

The above rules are identical to those at zero temperature. The only

T 8ij Cp where Cp=(N2-1)/2N .

difference in the Feynman rules is with the loop integration. At zero
temperature we usually associate the following integral for every loop in a

diagram.
d%k
enH

The integral is over the loop momentum and there is an extra factor of -1
for each fermion loop and ghost loop within the diagram. Since we are
using the imaginary-time formalism, the zeroeth component of all
momentum four-vectors is discrete and imaginary. Thus the loop
integration is replaced with what is knowgl as a thermal sum.

> d’k

Tnf (2n)3

The sum over n is for the zeroeth component of k, where ko=2xinT for
bosons and kp=(2n+1)niT for fermions. When evaluating a Feynman
diagram with loops, one must also remember to include the symmetry

factor to correct for overcounting after the above rules have been applied.
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Methods for determining symmetry factors can be found in references
[16,17].

2.5 Evaluation of Thermal Sums
A standard method for evaluating the thermal sums is contour
integration. Suppose the thermal sum (or frequency sum) that we want 10

evaluate is of the form

T 5 f(py) 2.5.1)

Nn=-00
where f means any function of py. To evaluate the sum as a contour
integral we need a function that has poles at py with a residue of one and is
everywhere else analytic and bounded. Assuming that f(k) is regular along

the imaginary axis, we can write

o0 dk
TS fipy) = Jz—nif(k) 8(k) (2.5.2)
C

n=-00

where g(k)=1/(exp(k/T)-1) for bosons and g(k)=-1/(exp(k/T)+1) for
fermions. The contour is shown in the following figure and encloses the
poles in a counter-clockwise direction. If the integral is split into two line
integrals from -ico+€ to ico+€ and from +ico-€ to -ico-€ and substituting k —

-k in the second integral, one finds [20]

100 jco+€
% 1 f(k)+(-k)
T ¥ fipg) =5 { Jdkfk) £ [dk =}, (25.3)
n= -ioo -ico+g exp(k/T)+1

the upper sign is for bosons and tte lower sign is for fermions. Notice
how the thermal sum naturally splits into a temperature dependent piece
(matter part) and a temperature independent piece (vacuum part). All the
ultraviolet divergences associated with zero temperature field theory are

found in the vacuum piece. If the singularities of f(k) are simple poles off
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the imaginary axis, then we can close the contours with infinite semi-circles

and evaluate the frequency sum by using Cauchy's theorem.

| I—1(—1'«.’@.

Note: The singularities in the above diagram represent a thermal sum for a
boson. If the sum was for a fermion, the poles would be shifted along the

imaginary axis. In either case, the contour remains the same.

2.6 Infrared Behaviour of QCD at Finite Temperature

Due to the complexity of the Feynman rules for QCD, the evaluation
of any diagram can involve a considerable amount of algebra. To study the
intrared behaviour of the theory, the Feynman rules will be greatly
simplified so that simple power-counting arguments can be used. The
diagrams that will be studied are the corrections to the propagator or gluon
self-energy diagrams. These diagrams have been chosen since it is the self-
energy correction that determines the position of the pole in the full
propagator from which the plasma parameters can be obtained.

Consider the following genera!, L-loop self energy diagram.
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The above diagram has V vertices, L loops and P propagators (internal
lines only). The total number of vertices is given by
V=V3+V,, (2.6.1)
where V;is the number of 3-leg vertices and V, is the number of 4-leg
vertices. The total number of internal lines P is given by
P=(3V;+4V,-2)2 (2.6.2)
by using the "conservation of ends". We alsc have the relation
V+L-P=X. (2.6.3)
where X is the Euler number which has the value 1 on a disk. Substituting

(2.6.1) into (2.6.3) and multiplying (2.6.2) by two, we obtain the following

Vy3+V,+L-P=1, (2.6.4)
2P = 3V;3+4V,-2 . (2.6.5)
The general self-energy diagram will be of the schematic form
M= {T 5 [d%}* (1%)? kV3g(V3t2Ve) | (2.6.6)
n=-c0

Notice that there is a thermal sum for each loop and a factor of 1/k2 for
each propagator in the diagram. A factor of g and k has been included for
every 3-leg vertex and a factor of g2 for each 4-leg vertex.

Since we are interested in the infrared behaviour of the diagram, we
only need to consider the n=0 part of the sum since all other terms will be

suppressed. Using equations (2.6.4) and (2.6.5) in (2.6.6), Il can be
simplified to
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n =gttt fkl“-ak . (2.6.7)
A

For example, (2.6.7) indicates that a L=1 loop diagram has a self energy
correction ﬂsng(T-k). The upper limit should be taken to be T because
in a complete computation the Bose-Einstein factor will prevent ultraviolet
divergences. The infrared cutoff A can be set to zero thus HEg?'Tz. This
indicates that the self-energy contribution is suppressed by a factor of g2
compared to the tree-level contribution.

The infrared behaviour of the self-energy is actually worse than
equation (2.6.7) indicates. Factors of external momentum P can be factored
out of the integral in (2.6.7) because the 3-leg vertices are functions of
momentum flowing through all of their legs. If we factor out P? we can
compare the self-energy contribution to the tree-level result which is
proportional to P2, Doing so we find

n = P22t/ (2.6.8)
where A is the infrared cutoff. Clearly, higher loop diagrams can
contribute on the same order as tree-level ones if A is on the order of ng.
Therefore in order to trust perturbation theory we must choose the
infrared cutoff such that A >> g2T. The contribution of wavelengths
ksng cannot be computed using perturbation theory, and unless some
assumptions are made concerning the low frequency behaviour of the

plasma, there is currently no method for calculating their contribution.
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PLASMA OSCILLATIONS

The purpose of this chapter is to outline the method used to determine
the quark and gluon plasma parameters. Expressions relating the plasma
frequency and the damping rate to the self-energy are derived. These
expressions are used to determine the plasma frequency for static gluons,
and the damping rates for energetic quarks and gluons in the following

chapters.

3.1 Linear Response Analysis

The basic equation of linear response theory is

[ 2]

Sorny = far Ja3r o) DRt e (3.1.1)

where &(¢(r,t)) is the variation of the ensemble average of the field in
response to a small perturbation from an external source J [12,13]. The
field ¢ is coupled to an external source J via the equation
SLeyi() = [d3r J(r'1) o(r',1) . (3.1.2)
It has been assumed that the change in the ensemble average is small, so the
linear response approximation remains valid. Taking the Fourier transform
of equation (3.1.1) one obtains
8(®(q,0)) = J(q,0) DR(q,0) (3.13)
which has a very simple form. The change in the ensemble average of the
field is given by the product of the external source and the retarded
propagator in frequency-momentum space. The physical modes of the
plasma are given by the positions of the singularities in the retarded

propagator [12,13]. Since we are working in the covariant gauge, there 1s



21

one unphysical degree of freedom in the retarded propagator. To
determine the plasma parameters, we must "project out" only the poles
corresponding to physical degrees of freedom. The positions of these
physical "plasmon poles" are gauge invariant [8]. In our analysis we will
instead determine the positions of the zeroes of the inverse propagator

which must be identical to the positions of the poles.

3.2 Physical Modes of the Gluon Plasma

In order to determine the physical modes of the gluon plasma, we must
find the position of the zeroes of the full inverse gluon propagator. The
most general symmetric tensor that we can construct with two indices pv to

represent the full inverse gluon propagator is

D}lv = A'%lv + Bl%]g, + C'rhnv + E'(lilr\, + rhK/) . (3.2.1)
The full propagator is constructed from the metric gl\,:diag(l,-l,-l,-l),
the four-momentum ku , a four-vector nu=(1,0,0,0) representing the rest
frame of the plasma and some undetermined scalar functions A', B', C' and
E'. Although this expression is correct, it is not very useful for algebraic
manipulations. The full inverse propagator can be expressed in the
following more useful form.

] D:v = AP;rw + BPtv +C§,, + EL, (3:2.3)
va is constructed such that it is transverse to both the four-vector k and
the three-vector k and is defined in the following manner.

T P,y = (Pgg=0, Pg; =P=0, Pj= g+ k kK2 (324)
Puv is constructed toL"project out" the two, physical transverse modes.The
projection operator PMV is constructed such that it is also transverse to the
four-vector k but it is longitudinal to the three-vector k. It is defined in the

following manner.
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L T
. Puv =8, kK& -Py, (3.2.5)
Puv is constructed to "project out" the single, physical longitudinal mode.
The operator %w 1s given by the expression
SIJV = (lill\, + 1111\,) , (3.2.6)
where Y= ('h - li)ku/kz) . The final operator is simply Luv = ﬁllg,/kz.
Now introduce the following four-vectors.
kH=(®,0,0,Ikl)
nH=(1,0,0,0)
i*=(0,k1,0,0)
j#=(0,0,kl1,0)
mk=(1kl,0,0,w) (3.2.7)
To detennine the condition for the transverse modes in the plasma
construct a spacelike vector transverse to k and transverse to k. Such a
vector is given by VE=ail+bjH, where a and b are arbitrary constants. Now
evaluate D! V and determine the condition that it be a zero eigenvector.
We find that D! V= A V with A from equation (3.2.3) , thus the zero
eigenvalue condition for the transverse modes is A=0.
Similarly, to determine the longitudinal modes in the plasma, construct
a vector transverse to k and longitudinal to k. Let this vector be
WH=akH-+-bmH. Using the same procedure as above, we find that the zero
eigenvalue condition for the longitudinal modes is
B+ C2k%[E=0. (3.2.8)
It is now a matter of determining the scalar functions A,B,C and E.
The gluon self-energy l'lpv is defined through the Schwinger-Dyson

equation
-1 -1
Duv = D(O)HV - er (3.2.9)
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with D;i)uv being the bare inverse gluon propagator. The bare inverse
gluon propagator in the covariant gauge is given by
D;(l,)w k) = k2(g,,, - lilkv/kz +é— 1311\,/1(2 ). (3.2.10)
Thus we can express the functions A, B, C and E in terms of the gluon self
energy. Solving for A as a function for the gluon self-energy, and setting
A=0, we find that the transverselmodes skaitlijfy the condition
k?=-3 (Il - 52 1) (3.2.11)
The condition for the longitudinal modes is somewhat more complicated. If
the self-energy satisfies lillg,H“V=O (as it does at one loop), then the
expression can be simplified and reduces on
k2 = ( I - k;'—2‘—1@].) . (3.2.12)
The conditions for the transverse and longitudianal modes derived
above agree with those of reference [21]. In order to obtain the plasma
frequency and the damping constant assume that the solution of equations
(3.2.11) and (3.2.12) has the form, ko= @ — iy, with y<<o. If we rewrite
the right hand side of equations (3.2.11) and (3.2.12) in the general form

F( kq,k), then the plasma frequency is obtained from

©5 = Re {F(koK)} + k2 (32.13)
and the damping constant will be given by
-1
=355 1M {F(kqo.k)} . (3.2.14)

For the cases we are considering, F( kq,k) is accurate to order g2. To solve
for 2 and yto order g2, we must substitute the zeroeth order
approximation of k, into F( kq,k). In the limit Iki— 0, k,=0 is used and in
the limit IkI>>gT, ko=mp=lkl is used.

In this study we shall only consider the transverse modes for the
following reasons. In the static limit (k—0), the transverse and longitudinal

modes are degenerate due to rotational invariance, therefore only one
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mode needs to be computed. In the high momentum limit (k>>gT), the
residue of the longitudinal mode is exponentially damped [22], thus only

the transverse mode survives.

3.3 Dispersion Law for Quarks within the Quark-Gluon Plasma
To determine the dispersion relation for a quark travelling through
the quark-gluon plasma, the position of the zero of the retarded inverse
quark propagator must be determined. Proceeding in a manner similar to
the gluon case, the dispersion relation for quarks is defined by the
condition
det[p+ X] =0 (3.3.1)
where X represents the quark self-energy and the quark mass has been

neglected. Using the fact that the self-energy has the form

T =73 - Yg’- z (33.2)
equation (3.3.1) can be solved and the following condition is obtained.
Po=-Zo+ (P +Z3) (3.3.3)

Since we are only interested in the damping rate of the quarks, we can take
the imaginary part of equation (3.3.3) and write

Y =Im {Z,+ 23} . (3.34)
Expression (3.3.4) for the quark damping rate agrees with that derived in
reference [23]. Notice that there are two possible modes given in (3.3.4).
The upper siga refers to a collective excitation ("longitudinal mode") with
chirality equal to minus the helicity that is special to light fermions in an
ultrarelativistic plasma [7]. The lower sign refers to the standard excitation
called the “"transverse" mode with chirality equal to helicity. The two
modes are degenerate at p=0, however, at high momentum (p>>gT) the

residue of the collective excitiaticn ("longitudinal mode") vanishes
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exponentially [24]. Thus only the "transverse mode" for the quarks will be

considered.



-

GLUON PLASMA PARAMETERS IN THE ONE-LOOP
APPROXIMATION

In this chapter, the gluon plasma frequency (in the static limit) will be
computed to order g2. We will also show that the gluon damping rate is not

computable in this approximation.

4.1 Gluon Plasma Frequency in the Static Limit

To compute the gluon plasma frequency to order g2, the one-loop
gluon self-energy must be determined. In the covariant gauges, there are
three (neglecting the quark-loop) one-loop diagrams that contribuie to
order g2. The three diagrams to be evaluated are the gluon-loop, the ghost-

loop and the tadpole diagram. The three diagrams are shown below.
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Using the Feynman rules of section 2.4, the contributions from each

diagram are listed below. The contribution from the gluon loop is given by

”uv@) = f )3 qz(q,,p)z [ A, +1-0) B, +1-a)?C ]

4.1.1)
where ‘Ahv , Bhv and q.w are defined in the following way.

Ayy = 2q%+2pq+5p2)gyy + 10g,9y + 5(qPy+Pudy) -2PuPy

(g%+2pq)? (a2+2pq-p?) (a%+3pq)
my ) Buv ¥ ) quqy + ) (Qupv

+Pudy) - PuPy
+ (q— q+p, p— -p)

c (p%q,,-Pqp,)(P%ay-Papy)
W (@¥aHp)?)
The contribution for the ghost-loop (Faddeev-Popov) is given by

(Puav+auqy)
q¥(q+p)?

FP 2
M) = -gNT 3 I(zn)3 4.1.2)

n=-00

The final contribution from the tadpole diagram is given by
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p 2
TP ) d3(l \‘3guv + (l'a)(gpv - quqv/q )
)
Hpv(p) g NTn_E,oo J(zn)3 q2 . (4.1.3)

In all of the above sums, qp= 2minT. Although the ghost fields obey
fermionic statistics, they are periodic rather than antiperiodic in imaginary
time. This can be uncerstood by recalling that the Faddeev-Popov
determinant represents a variation with respect to infinitesimal gauge
transformations and the gauge transformations must be periodic since they
are proportional to the periodic gauge fields.

The complete expression for the gluon self-energy at one-loop

(neglecting the quark-loop) is

G FP TP
I, = I, (p) + I, (p) + T1,,(P) . (4.1.4)

To determine the plasma frequency for transverse gluons in the static limit,
expression (4.1.4) must be substituted into equation (3.2.11). All terms
proportional to p and p2 may be neglected because we are interestec in the
limit p — 0. Terms proportional to py and p2 may also be neglected
because gluons are massless at tree-level. Making the above substitutions
and simplifications, we find that the terms proportional to the gauge

parameter o cancel, and we are left with (see Appendix B)

-1 00 d3 gz
= == 2 —-— 2 a9
(49 NTnEm f P @ THONT T on3gf

q g2 cos?(8)
q4

(4gNT 3 me ), (4.15)

n=-o0o0
where 0 is the angle between p aad q. The thermal sums are evaluated

using equation (2.5.3) and the plasma frequency is determined using
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(3.2.13). The plasma frequency for transverse gluons in the static limit

then works out to be

2_1
©p=59°NT2 . (4.1.6)

The longitudinal plasma frequency in the static limit can be computed
in a similar fashion by using equation (3.2.12). At zero momentum, the
transverse and longitudinal plasma frequencies must be the same due to
rotational invariance. Thus the calculation of the longitudinal mode can
serve to test the consistency of our calculations.

Substituting expression (4.1.4) into the condition for the longitudinal
mode (3.2.12), taking the same limits as before and simplifying, one

obtains (see Appendix B)

00 3 oo 3, q
K2=-4g2NT 5 [S9 L 4ont 5 (E4 D

neoo J (2T0)° q2 s.Jend
2 2 9)
- 4gNT j q”cos(9) 41,
] n=z-oo (275) q ) 4.1.7)

.ifter performing the thermal sums, and calculating the plasma frequency
using (3.2.13), we find
@3 =5 g>NT? (4.1.8)

as expected. The quark contribution to the gluon plasma frequency is easily
determined by considering the quark-loop contribution to the gluon self-
energy. By adding the quark-loop contribution of the plasma frequency to
equation (4.1.8), one obtains the well known result

0 =592 (N + Ne2) , (4.1.9)

where N; is the number of massless quarks in the fundamental

representation.
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4.2 The Gluon Damping Rate in the Static Limit
As showa in chapter three, the damping rate for gluons in the static

limit can be determined from equation (3.2.14) which is
vy = -2—(13 Im {F( kq,k)) 4.2.1)
with ky=0. The function F(ky,k) has been evaluated for both longitudinal
and transverse gluons and found to be a real function. Thus there is no
damping constant at the one-loop level. The reason why no imaginary parts
are generated is that all terms proportional to p2? huve been neglected. Some
authors have kept these terms in order to generate the imaginary par,
however, this makes the calculation inconsistent. The one-loop
approximation can be trusted up to order g2, but a simple analysis shows
this is not sufticient to determine the damping constant at zero momentum.
If we assume ko= @ — iy, where w=gT and y=g2T, then from equations

(3.2.11) and (3.2.12) we obtain

F(ko.K) = k?=w? - 2ioyy = ag2T?2 - bg3T? . (4.2.2)
To determine the damping rate at zero momentum. F(kgy,k) must be
accurate to order g3 which is not the case with a one-loop calculation.
Multi-loop diagrams are required to calculated the damping constant
accurately. The problems encountered in the early attempts to calculate the
damping constant are not surprising. The appearance of negative and gauge
dependent damping is simply an indication of an incomplete and
inconsistent calculation. A deeper reason for not expecting damping at the
one-loop level is due to unitarity. The damping rate (inverse lifetime) is
generated by the decay of one massless gluon into two. This reaction is
kinematically forbidden thus the one-loop damping rate should be zero. As
already discussed in the introduction, to determine the damping rate at zero

momentum, a resummation of multi-loop graphs is needed, however, there
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exist some physical quantities that can be computed without employing a
complete resummation. To demonstrate this, the dominant contribution to
the damping rate for both transverse gluons and quarks at high momenta is

calculated in the next chapter.
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THE QUARK AND GLUON DAMPING RATES AT HIGH MOMENTUM

The damping rate for transverse gluons and quarks with momenta
p>>gT is given by y(p)=cg2log(1/g)T+ O(g2T). In this chapter, the
dominant contribution (the logarithmic term) will be calculated for both
transverse gluons and quarks. It is assumed that the temperature T is the
largest energy scale in the problem and that the coupling constant g is very
small.

5.1 Damping of Energetic Transverse Gluons

To determine the dominant behaviour of gluons at high momentum, it

is useful to divide the self—energy into two parts

HM(E,p) =11, (Ea[r),k) + I'Im, (E,p,k) (5.1.1)
where all loop integrations in H (E,p,k) are cut off in the infrared at A.
If A 15 chosen large enough, then II (E,p,?») is calculable using the loop
expansion. In contrast, l'I (E,p,?») is not calculable using the loop
expansion because it involves integration over all momenta less than the
infrared cutoff and therefore must be obtained by other means. An
important issue to be addressed is how much any desired quantitv depends
on the largely undetermined l'I (E p.A). For the case of the g2log(g)
terms, they can be determined w1th no knowledge of l'I (E,p,k) because
they are completely determined by the infrared dwergent part of

hf,rd(F,p A).

If the infrared cutoff A is chosen such that A>>gT, then the lowest-
order contribution to Hl;;rd(E,p,k) arises at order g2 due to the one-loop
graphs described in chapter four. If, however, the infrared cutoff is chosen
to satisfy g2T << A<< gT then multi-loop graphs can contribute to the same

order in g as do the one-loop graphs. This behaviour is due to a subclass of
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diagrams that are even more infrared singular than indicated by our simple
power-counting argument in chapter two. The dangerous graphs are those
such as the "ring" graphs within which multiple self-energy insertions are
made along a single internal line [12]. In reference [7] Braaten and Pisarski
argue that these last contributions may be resummed by dressing all "soft"
lines (lines carryimg momenta less than or of order gT) by the calculable
contributions of "hard thermal loops". After resumming these higher-loop
contributions, ﬂti,rd(E,p,k) is given by the same one-locp diagrams as
before, with the proviso that each propagaior and vertex is to be replaced
with an "effective" resummed propagator or vertex. These "effective”
propagators and vertices are relatively complicated functions and can make
the algebraic manipulations very cumbersome, however, at hard momenta
the resummed propagators and vertices agree with the usual bare
propagators and vertices. Since we are interested in computing the damping
rate at "hard" momenta, all the vertices in the one-loop graph will carry
hard momenta and therefore the bare vertices can be used. One of the
propagators must also carry "hard" momenta and therefore will not need to
be dressed.

To compute the damping rate for transverse gluons with momenta

p~T>>gT, we must consider the function (3.2.11)

hard
FTp) = 5 (1 - p;‘_’—j ) (5.1.2)

where A is chosen such that g2T << A<< gT. As is established in more
hard hard

detail below, the contribution of H to F diverges logarithmically
with the present cutoff. We can therefore write (5.1.2) as

Fhurd(T.p,k) =g2 Alog(A/uyarg) + B + OM/T) | + O(g3) (5.1.3)
with A and B being purely functions of p and T. The constant iy, 4 is a

calculable energy scale of the high-frequency part of the theory which is of
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the order gT. As already shown in chapter four, gluons acquire an
effective mass m = 0y(p=0) = % ng at finite temperature.
In order to extract information about

Fp) = B (Tp) + o Tp ) EEREY
from equation (5.1.2) it is necessary to place a constraint on Fson(T,p,K).
The only property that is required of FSOﬂ(T,p,k) is that its A dependence
must cancel that of Fhard(T,p,k). This must be true since the infrared
cutoff is introduced artificially and has no physical sigmficance. This

implies that ] hacd
aFSO t aF ar
Kjx—:—k—gx‘- (5.1.5)
¢
and therefore FSO [(T,p,k) must have the form
soft

F O (T,p.A) =g2 [ Alog(leon /M) + X + OMT) 1+ O(g3) . (5.1.6)
Where L, is the largest mass scale present in the soft part of the problem.
Heof is taken to be of the order g2T, because this is the scale at which
perturbation theory fails and is the scale at which the damping rate appears.
To the best of our knowledge there is no other physics between the scales
gT and g2T to set the scale of Heof - Notice that A is the same function as
in equation (5.1.3). Adding equations (5.1.3) and (5.1.6) gives

F(T,p) = -Ag? 1og(i:zrf‘:) +g2(B+X) + O(g3) . (5.1.7)
Expression (5.1.7) can be written as
F(T.p) = -Ag? log(3) + O(g?) (5.18)

which determines the coefficient of the g2log(g) term completely in terms

of the calculable coefficient A.

The task is now to determine the coefficient A. Since A is determined
by the infrared divergent part of Fhurd(T,p,k), it is necessary to find the
most divergent part of Fhard(T,p,'A.). There are three Feynman diagrams

that contrioute to the self energy at one-loop. The most divergent diagram
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is the graph with a gluon loop. The tadpole and ghost-loop diagrams are
not as divergent as the gluon loop due to the Feynman rules. The tadpole
diagram has no external momentum dependence and therefore the thermal
sum is not infrared divergent. The ghost-loop diagram can produce terms
that have at most one power of external momentum mutiplying the thermal
sum. The gluon-loop can produce terms that have p2 or p2 multiplying the
thermal sums, thus these are the most divergent thermal sums. Only the
terms with p2 need to be considered since p2=0 for the external gluon line.
Futhermore, the complete thermal sums do not have to be evaluated
because the most divegent part of the sum is due to the n=0 term. As
already mentioned, only one propagator needs to be "dressed" since hard
momentum flows through all other lines. Therefore we must multiply the
self energy by a factor of two to account for the two possible ways of
routing the "soft” momenta.

The expression for the gluon-loop contribution to the gluon self-

energy is given by

ﬂﬁv(p)=9;—NTn§J£%§ Virp(P-P-0.)DA(p+D*PO(Q) V5 (-p.-q.p+)
(5.1.9)
where V is the bare three-gluon vertex, D is the bare gluon propagator and
D* is the "dressed" gluon propagator. The dressed gluon propagator can be
obtained by inverting
Do =Digyuy ~ Ty (5.1.10)
where l'lw is given by equation (4.1.4). Since only n=0 contributes to the
infrared divergent part, ine resummed propagator has the form (see
Appendix C)

pc
D*P9(q)="5 [gp ] (r;28q2)] (5.1.11)
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with 8P%= diag(0,-1,-1,-1). Performing the contractions in expression
(5.1.9) yields

2 3 m?B m2E
Ny 3 (L mByy
I,p= Z (2103 2(q+p)2[ W (m2-q2) +(1- “)(Cuv"’( 2 qz))l
(5.1.12)
with

A,y = (202+2pq+5pAgyy +10q,qy + 5(quPy+P,ay) -2PuPy
B, = -(4p?+4p-q+q)g,y +(a-P)*3yy -3p,Py 3,4y -3q,qy -3G,,9y -

3p“pv -—Squpv
(g2+2pq)? (q2+2pg-p2) (a%+3pq)
C,,W =T Suv + ) q9v + ) (QuPv+Puay) - PuPy

= {(@%-p?)%,yy + (@2-p2)(PyPy - AuGy + PPy — GGy ) +
P'q(q,Py+Puay) - P?PPy - (2P2+3p-q+24%)q,q,)/{(q+p)?)
The damping rate for transverse gluons is determined by substituting
equation (5.1.12) into (5.1.2). Taking the n=0 part of the sum, multiplying
the self energy by two, and keeping only terms proportional to p2 we

obtain

- g?NTm?p J L & 2p+ie)
2n2 1 qmZ+q?) 8" q+2p

d
d?i (Tsp 9?\') -

9——9 log(A/m) . (5.1.13)

We can set m=|p,.4 and read A=ig2NTp/2n . To evaluate the damping

constant, substitute (5.1.13) into (3.2.14) and use the lowest-order mass
shell condition w=p. Doing so, we obtain our final result

Y(p) = +9——— log(1/g) + O(g?) . (5.1.14)
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Notice that the real part of F is infrared finite so only the damping rate
acquires a g2log(g) contribution. There are several aspects of this

calculation that bear emphasis and will be discussed in the conclusions.

5.2 Damping of Energetic Quarks
The technique used to isolate the g2log(g) term in the gluon damping
rate can be repeated for quarks. The quark self-energy can be determined

from the following Feynman graph.

(—-—
q
- - -

p p+q P

Using the Feynman rules of section two and the "dressed" gluon propagator

given by equation (5.1.11), the self-energy of a massless quark is

n 7 5 ket oniane . 62

The diagram in which the gluon line carries "hard” momenta is not as
divergent as the above graph and can be neglected. This is a result of the
fact that the quarks are antiperiodic in imaginary time. Notice that
(Potqp)=(2n+1)miT is proportional to T for n=0, whereas qy=2nmiT equals
zero for n=0. From this it follows that the diagram with "soft" gluon
momenta is the most divergent. Performing the contractions, keeping the
n=0 part of the sum, and doing the angular integral, equation (5.2.1)
reduces to

S(p)= QZCFT = (m270p0+m2’yp-2q*1’)) q-2p+i€

8n2p ldq q(mZ+q?) logC q+2p

). (5.2.2)
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Since we are interested in computing the damping rate, only the imaginary
part of equation (5.2.2) is required. Recalling equation (3.3.2) and using

expression (5.2.2) we find

CFT 2 2
Im{ ZO]— f q%]_—:(l;‘ (5.2.3a)
-g2CyT 2P
g CFT (m2+2q2
Im{Z3)=—5— | qun—g:‘éz—; (5.2.3b)

The damping rate for "transverse” quarks is given by equation (3.3.4)
which is

Y =Im {Z,-Z3). (5.2.4)
Substituting equations (5.2.3a) and (5.2.3b) into equation (5.2.4) and
performing the integration, the coefficient of the g2log(g) term is found to
be

2
A=—7n - (5.2.5)
Thus the dominant term in the "transverse” quark damping ratc at high
momentum is "
g-CFT
Yp) =+ log(l/g) . (5.2.6)
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CONCLUSIONS

There are several aspects of this calculation that need to be emphasized.
(1) First of all, the dominant behaviour of the damping rate for both the
quarks and gluons is independent of the gauge parameter o.. All the terms
that depend on the gauge parameter contribute only an infrared-finite
amount. (ii) The sign of the damping rate 7 is positive in both cases. Thus
the quark and gluon plasma oscillations are stable. (iii) In order to
determine the subleading O(g2) contributions, knowledge of the
coefficients B of equation (5.1.3) and X of equation (5.1.6) is required.
Although the coefficient B is calculable using the coniplete resummation
formalism of Pisarski et al., the coefficient X is not and can only at
present be determined by making assumptions about the behaviour of the
plasma in the low-frequency regime A = g2T. Thus the coefficient B need
not be gauge-independent or positive, although calculations by Pisarski et
al. indicate that it is. Only the sum of the coefficients B and X need be
gauge-independent and positive. (iv) Since it is a logarithmic infrared-
divergence that is responsibe for the logarithmic dependence on g, its
coefficent is insensitive to the details of how the cutoff is implemented.
Thus the discrepancy between the results nf Lebedev and Smilga [25] and
our results which agree with Pisarski et al., is due to the choice of the scale
of pgof - We assumed pgop, to be of the order g2T because this is the scale
at which perturbation theory fails and that the damping rate appears. The
results of Lebedev and Smilga would require that pg s is of the order
g%/3T. At present we do not understand what physics should choose this
scale of g#/3T. (v) Finally, the infrared-divergent term in Fhard js explicitly

proportional to m? (see equation 5.1.13) thus it only receives contributions
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from two-loop and higher graphs that serve to dress the soft gluon
propagator. Also the imaginary part arises only from the self energy of the
internal lines which carry soft loop momenta q< gT since the mass m may
be neglected for large loop momenta. This agrees with what is expected
physically from unitarity given the constraints of energy and momentum
conservation in the plasma.

Thus we conclude that for some quantities in which infrared
divergences in the perturbative expansion introduce a logarithmic
dependence on the gauge coupling constant g, it is possible to very simply
identify the dominant contributions. The simplicity of this method allows
one to check the more complete and involved calculations employing the

complete resummation formalism.
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APPENDIX A
NOTATION AND CONVENTIONS

Throughout this thesis we use the natural units c=h=kg=1, where c is
the velocity of light, h=h/21t where h is Planck's constant, and where kg is
the Boltzman constant. Qur metric in the Minkowski space {xH:u=0,1,2,3}
is given by gV with ghv=g,,\= diag(l,-1,-1,-1). The contravariant vectors
of the space-time coordinate and energy-momentum are given by xH=(t,r)
and pH=(E,p) where t is the time coordinate, r is the space coordinate, E is
the energy, and p is the momentum. The covariant vectors are given by
Xu=8uv X¥ =(t,-r) and p,=g,y p¥ =(E,-p). All four-vectors are represented
by plain text characters (ie. p) and all three vectors are represented by bold
characters (ie. p).

The Dirac gamma matrices satisfy the anticommutation relation

{M.y}=2ghv. We use the following representation of the gamma matrices

70=( (1) (I ) 7i=( -o? i; )

where ol are the Pauli matrices given by

0L 38) @{%%) #{33)

From these definitions it follows that (Y0)2=1 and (yi)2=-1.
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APPENDIX B
EVALUATION OF THE GLUON PLASMA FREQUENCY IN THE
STATIC LIMIT

T? determine the gluon plasma frequency in the static limit, I, I1,.
and P_gf Hij must be evaluated in the limit p—0. Terms proportional to p
may be neglected because tree-level gluons are massless. In this
approximation we find:

2 3
P=GINT 3 j(z LS+ 3 s axg ¢

S

o )]

i = 2NT 1- q
g 2 f(z )3[q2 + ( a)( - q4)]

FP_ q
Iy NT 2 ,[(2%)3[ 7] -

IT; is obtained by summing the above contributions. In doing so, we find

2
=9 NT,,_S:OO J n )3[ ]
zp_’

l'l-- as follows.

gzcoszge })]

Taking the same limits as before, we can evaluate

G o 43 5q2cos2(0
ngnij=92NT I (—2—‘)13-[ —q—?i—l (1- a)(—2-+

q2cos2(
p_p_’ TP gNT z j(z )3[ +(1-a)q12- C(c); e)')]

p'p _F J q_ q%cos(8),
pzﬂ,gNT}: (2)3[ q4 .

Taking the sum of the above terms we find
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p'p’ 00 g _2_ chosdeg
p? = _z a2 * J-

Substituting the expressions for Epg I'Ii.. and IL; into equation (3.2.11),

we recover equation (4.1.5) from which we can determine the gluon
plasma frequency in the static limit for the transverse modes.

The thermal sums in equation (4.1.5) can be evaluated using the

technique described in chapter 2. Performing the thermal sums, and

subtracting the infinite vacuum contribution, we find
-T2
j 3 [ z]
,,__w (2n)” q

2 T2
oo I @2m)3 'q* g

 d3q q2c0s2(9) T2
f(zn)” =72

Using the above thermal sums in equation (4.1.5), the gluon plasma
frequency mrz, = % g2NT2 is obtained.
To determine the gluon plasma frequency in the static limit for the

longitud:nal mode, I}y, must be evaluated in the limit p—0.

5q0° .1 9°
Moo= g2NT 3 j(mg[ o 0 + gl
2
TP qo0
Moo= g?NT 3§ f 13 3 +a a)( Y
FP o rd3q 4
Moo= -g°NT 3 on )3[_]

n=-cc
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Summing the above expressions and substituting the values for the thermal

sums, we find that I)p = 0. We can now evaluate the longitudinal gluon
15)

plasma frequency in the static limit. Substituting I}y, and "—pj?,; I'lij into
equation (3.2.12), the longitudinal plasma frequency i the static limit is

found to be mg = %gzNT2 .
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APPENDIX C
EVALUATION OF THE GLUON DAMPING RATE AT HIGH
MOMENTUM

The resummed covariant gluon propagator is determined by inverting

equation (3.2.9)
-1

Dy D(o)uv r{w
where D(o)uv is the bare inverse gluon propagator, and I'L is the gluon

self-energy. Since we are interested in the most divergent contribution to
the gluon damping rate, only the low frequency limit of Duv is required.
Using equation (4.1.4) for the gluon self-energy, the zero momentum limit
of nuv is determined to be
= m23,,,

with 8, = diag(0,-1,-1,-1). Using equation (3.2.10) for the bare inverse
gluon propagator and keepmg only the n=0 contribution, we find

D(o)uv —&?2 8iv + Akh]&'
with A= (— - 1). Using the above expressions for D(o)p.v and I'I
equation (3.2.9) and inverting, we find the resummed gluon propagator to
be

1
-1 @ - Dkyky mzsuv

uv = k2 8uv T (m24k2)(m2+k2/a) ~ (m2+kDK2 -

D

Keeping only the most divergent terms in Dpv , and since only the n=0
terms contribute, Duv may be expressed as
1
D*HV(k)=5(gh" -
which agrees with equation (5.1.11).

m23HV
242
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To determine the most divergent term in the gluon self-energy which
contributes to the damping rate of transverse gluons, note the following

facts. To determine the transverse gluon modes, we must apply equation
(3.2.11)

p2=-3 (Tl _P?:g_’ 1)
to the gluon self-energy. The most divergent integrals in equation (5.1.12)
will have factors of p? or PuPy in the Ahv , Buv , Cuv , and Euv terms.
Equation (3.2.11) will "kill" any terms proportional to p,p,, . thus only
terms with p2 are important. Since we are trying to determine a damping
rate, only the imaginary contribution of the integral is required and must
be of order g2. Imposing these constraints on equation (5.1.12), we find
that the most divergent term contributing to the damping rate at order g2 is
in Bp.v and is given by -(4p2)g,Lw . Keeping only this term in equation
(5.1.12) and applying equation (3.2.11) to determine the transverse modes,

we obtain equation (5.1.13) after performing the angular integration.
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