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Abstract

Burning of solid fuels for cooking, heating, and lighting threatens the environment, health,
and development opportunities of one-third of the world’s population. Transitioning to
modern energy sources has been widely recognized as a key solution to these problems
and a crucial step toward achieving sustainable development. This thesis comprises three
manuscripts that examine China’s efforts to promote energy transition in rural households.

In the first manuscript, I analyze the temporal trends and spatial characteristics of
China’s rural household energy transition over the past three decades based on adminis-
trative statistics. The results show a gradual but geographically uneven transition over the
past three decades in China’s rural household sector. A prediction model further illustrates
that, compared to warmer provinces where a complete transition can be expected under a
“business as usual” scenario, most northern provinces with intensive winter heating needs
would see a low share of clean energy by 2050 without policy interventions. This chapter
helps justify the rationale for a large-scale intervention targeting the rural household space
heating energy transition.

To combat severe winter air pollution, Beijing implemented the Clean Heating Policy in
rural areas since 2013, aiming to promote the household energy transition for space heating
by banning coal burning and subsidizing the cost of heating equipment and the use of mod-
ern energy sources. The unaffordability of essential energy services, often termed “energy
poverty,” poses a significant challenge when households transitioning from solid fuels to more
expensive modern energy sources. In the second manuscript, I provide quasi-experimental

evidence on the impacts of the Clean Heating Policy on energy poverty. The analysis couples



primary field survey data on economic and physical measures of energy poverty from over
1,000 rural households in Beijing with difference-in-differences methods to isolate a causal
link. I find that, under the government’s generous subsidies, the Clean Heating Policy signif-
icantly improves the quality of rural households’ space heating in terms of nighttime indoor
temperature, the number of rooms regularly heated, and average heating duration, with
minimal financial challenges. The heterogeneity analysis suggest that the financial burden
was more pronounced for households in high-altitude villages, with poorer prior heating
infrastructure, and lower wealth.

The household energy transition can impact many key aspects of quality of life. In
the third manuscript, I examine the impact of the Clean Heating Policy on participants’
subjective well-being. Using difference-in-differences estimations on the survey data, I find
that the Clean Heating Policy significantly improves life satisfaction, while its impacts on
satisfaction with living conditions and income are less pronounced. Additionally, the results
suggest that younger, wealthier households and those in poorer health experience more
substantial improvements in life satisfaction.

These papers provide new empirical evidence demonstrating the largely positive but
distributed impacts of household energy transitions driven by the targeted intervention.
Notably, these outcomes rely heavily on strict policy enforcement and substantial government

subsidies.
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Résumeé

L’emploi de combustibles solides pour la cuisine, le chauffage et 1’éclairage menace I’environnement,
la santé et les opportunités de développement d’'un tiers de la population mondiale. La tran-
sition vers des sources d’énergie modernes est largement reconnue comme une solution clé

a ces problemes et une étape cruciale vers un développement durable. Cette these com-
prend trois manuscrits qui examinent les efforts de la Chine pour promouvoir la transition
énergétique des ménages ruraux.

Dans le premier manuscrit, j’analyse les tendances temporelles et les caractéristiques spa-
tiales de la transition énergétique des ménages ruraux chinois au cours des trois dernieres
décennies, en me basant sur des statistiques administratives. Les résultats montrent une
transition progressive mais géographiquement inégale pour les ménages ruraux Chinois au
cours des trois derniéres décennies. Un modele de prévision montre en outre que, compar-
ativement aux provinces plus chaudes ou une transition complete peut étre attendue sous
un scénario “statut quo,” la plupart des provinces nordiques, ayant des besoins intensifs en
chauffage hivernal, ne connaitraient qu'une faible part d’énergie propre d’ici 2050 sans inter-
vention politique. Ce chapitre justifie la logique d’une intervention a grande échelle ciblant
la transition énergétique pour le chauffage des ménages ruraux.

Pour combattre la grave pollution atmosphérique hivernale, Beijing a mis en ccuvre la
Politique de chauffage propre dans les zones rurales depuis 2013, visant a promouvoir la tran-
sition énergétique pour le chauffage en interdisant la combustion de charbon et en subven-
tionnant le cotit des équipements de chauffage et 1'utilisation de sources modernes d’énergie.

La “pauvreté énergétique,” décrivant des services énergétiques inabordables, représente un
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défi significatif lorsque les ménages transitionnent des combustibles solides a des sources
d’énergie modernes plus cofiteuses. Dans le deuxieme manuscrit, je fournis des tests quasi-
expérimentaux des impacts de la Politique de chauffage propre sur la pauvreté énergétique.
Cette analyse couple des données primaires d’enquéte de terrain et des mesures économiques
et physiques de précarité énergétique pour plus de 1000 ménages ruraux a Beijing a ’aide
de la méthode des doubles différences pour isoler un lien causal. Nous constatons que, grace
aux généreuses subventions gouvernementales, la Politique de chauffage propre améliore
significativement la qualité du chauffage des ménages ruraux en termes de température in-
térieure durant la nuit, du nombre de piéces régulierement chauffées et de la durée moyenne
de chauffage, avec des défis financiers minimes. L’analyse de I’hétérogénéité suggere que la
charge financiere était plus prononcée pour les ménages dans les villages de haute altitude,
avec une pietre infrastructure de chauffage intérieure et une richesse moindre.

La transition énergétique des ménages peut impacter de nombreux aspects de la qualité de
vie. Dans le troisiéme manuscrit, j'examine 'impact de la Politique de chauffage propre sur
le bien-étre subjectif des participants. En utilisant des estimations issues de la méthode des
doubles différences sur nos données d’enquéte, je constate que la Politique de chauffage propre
améliore significativement la satisfaction de vie, tandis que ses impacts sur la satisfaction des
conditions de vie et des revenus sont moins prononcés. De plus, nos résultats suggerent que
les ménages plus jeunes, plus riches et en moins bonne santé connaissent des améliorations
plus importantes de leur satisfaction de vie.

Cette these fournit de nouvelles preuves empiriques démontrant les impacts largement
positifs, mais aussi distribués, des transitions énergétiques ménageres menées dans le cadre
d’une intervention ciblée. Avant tout, ces résultats dépendent fortement d’une application

stricte des politiques et d’importantes subventions gouvernementales.
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“Green mountains surrounded me, and white clouds embraced me, I have never longed for
silk satin to adorn me. In my humble dwelling, wildflowers bloom in abundance. Regardless
of who prospers or declines, I find contentment in my own modest life. Poverty cannot crush
my spirit, and wealth will not alter my aspirations.”!

— [Yuan dynasty| Fanghu Song Shanpoyang Daoging

!Translated by Xiang.
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istrative statistics, we forecast a counterfactual “business-as-usual” scenario for the Clean
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energy poverty, utilizing primary field survey data. This chapter reveals the one-sidedness
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to inform public policy decisions. Moreover, this chapter introduces mediation analysis, a
method more commonly employed in fields such as psychology and epidemiology, to facilitate
an exploratory discussion on the mechanisms by which household energy transition impacts

life satisfaction.
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Chapter 1

Introduction

1.1 Research objectives

A third of the world’s population still burns solid fuels to meet household energy needs, with
up to 95% of them living in the rural areas of developing countries (Bonjour et al., 2013;
Bruce et al., 2015; Gordon et al., 2014; Hanna et al., 2016). This situation results in a series
of negative impacts, including significant degradation of air quality, severe health damage,
increased greenhouse gas emissions, and worsening gender equality (Beltramo & Levine, 2013;
Boman et al., 2003; Ezzati & Kammen, 2002; M. A. Jeuland & Pattanayak, 2012; J. Liu
et al., 2016; Pachauri & Jiang, 2008; Smith et al., 2004). In response, various interventions
worldwide aim to facilitate transitions to cleaner energy sources. A key objective of these
interventions is to achieve universal and affordable access to clean energy, as highlighted in
Goal 7 of the 2030 Agenda for Sustainable Development (Vera & Langlois, 2007).

In northern China, severe air pollution during winter, primarily caused by atmospheric
particulate matter with a diameter less than 2.5 micrometres (PMs 5), has garnered widespread
public attention in recent years (Huang, 2015; S. Wang et al., 2015). To combat this, the
Clean Heating Policy, which has been in place since 2013, promotes the transition to cleaner
energy sources for rural household space heating. This policy includes a series of measures:
it prohibits the use of coal for space heating and offers subsidies for energy-efficient heating

equipment, as well as for the costs associated with modern energy sources, such as electric-



ity and natural gas (X. Zhang et al., 2019; Z. Zhang et al., 2017). This policy integrates
command-and-control strategies with economic incentives to mandate the energy transition
in rural households.

Beijing was selected as the pilot area to implement the Clean Heating Policy due to
its advanced infrastructure and favorable socioeconomic conditions. By the end of 2022,
the policy had been applied to 1.35 million households across 3,557 villages, covering 90%
of Beijing’s villages and 93% of rural households with clean heating solutions (Cao, 2023).
Several studies have demonstrated that the Clean Heating Policy results in significant pos-
itive social net benefits from avoided health losses, supporting its economic viability at the
regional level (Lin & Jia, 2020; Ma et al., 2023; Xie et al., 2019; X. Zhang et al., 2019).
However, concerns such as environmental suitability, financial burdens on rural households,
and inadequate space heating have impeded its expansion in remote mountain areas (China
National Energy Administration, 2019; He & Li, 2020; L. Zhu et al., 2020).

Energy transition impacts various aspects of people’s living circumstances. An increased
reliance on clean heating often results in higher energy expenditures, which could impose a
significant financial burden on households. Within the mandatory framework of the Clean
Heating Policy, some households may struggle with the trade-off between thermal comfort
and energy costs, potentially exacerbating energy poverty and affecting distributional equity:.
However, transitioning to cleaner fuels is expected to yield considerable benefits, including
improved indoor air quality and health, as well as time savings from reduced fuel preparation.
Despite these potential advantages, the overall perception of the Clean Heating Policy’s
impact on people’s lives remains an area that requires further investigation.

This paper aims to shed light on the current status of the energy transition and explore
transition interventions for rural Chinese households by evaluating the well-being impacts of
the Clean Heating Policy. Taking the Clean Heating Policy in Beijing as a case study, this
dissertation is structured around three research questions:

RQ1: How does rural household energy transition in China unfold in the absence of policy

intervention?



RQ2: How does the intervention in household energy transition impact energy poverty?
RQ3: What are the effects of energy transition on household subjective well-being?

In this dissertation, I explore three research questions in Chapters 2, 3, and 4, respectively.
Chapter 5 discusses the findings, outlines the limitations, and proposes avenues for future
research. Chapter 6 concludes the dissertation. In the remaining sections of this chapter, I

conduct a literature review focusing on two primary subjects of this dissertation.

1.2 Relevant literature

In this section, I review literature relevant to the two main research topics of this dissertation:

household energy transition and human well-being.

1.2.1 Literature on household energy transition

In this section, I will review several key aspects of household energy transitions, including
the definition, contributing factors, and potential outcomes.! Central to this review is the
exploration of the relationship between energy transition and poverty, which serves as a

thematic thread to evaluate the potential impacts of energy transitions on households.

1.2.1.1 Defining patterns of household energy transition

The household energy transition refers to the significant shift from the use of primary fuels
to modern energy sources for domestic purposes (Leach, 1992).? The classic “energy ladder”
theory, as depicted on the left side of Figure 1.1, succinctly describes the progression of
energy transition. It outlines a one-directional shift from primitive fuels — such as firewood,
agricultural waste, and animal waste — toward transitional fuels like charcoal, kerosene,
and coal, and ultimately to more advanced fuels including liquefied petroleum gas (LPG),

electricity, and natural gas, accompanying improvements in socioeconomic status (Masera

! This section is a revised version of my response to a PhD comprehensive exam question.
2This section focuses on the energy transition for basic household energy needs including cooking, space
heating, and lighting. Productive uses are not covered.



et al., 2000). This theory posits two key ideas: (1) households adopt more sophisticated
fuels as their wealth increases, and (2) once households switch to cleaner fuels, they do not
revert to using dirtier fuels.

However, especially regarding — fuel use for space heating — the reality often fails to
validate the two viewpoints proposed by the energy ladder theory. One contributing factor
is the variation in thermal comfort provided by different heating methods. The majority
of households in rural northern China continue to use coal in stoves with radiator systems
for space heating (Y. Chen et al., 2016). In contrast, poorer households may rely solely
on portable electric heaters or electric blankets for bedtime heating, yet still suffer from
low indoor temperatures that hardly constitute a comfortable living environment (Robinson
et al., 2018). This situation results in poorer households potentially appearing higher on
the energy ladder. Meanwhile, a small fraction of wealthier households have voluntarily
abandoned dirty fuels to complete their transition to electric heating (Su et al., 2018). Indeed,
although both the poorest and wealthiest households technically use electricity for heating,
the context and quality of that usage vary significantly, leading to persistent significant

disparities in their socioeconomic profiles.

Energy Ladder

Advanced Fuels
< LPG

¢ Electricity

¢ Biofuels

Advanced Fuels
« LPG
* Electricity
* Biofuels

Transition Fuels
¢ Charcoal
* Kerosene

Transition Fuels

¢ Coal

Primary Fuels

&
&
©
oé‘
<
(o)
O
o
£
(€)
&

* Charcoal
* Kerosene
¢ Coal

Primary Fuels

* Firewood

* Agricultural waste
¢ Animalwaste

* Firewood
* Agricultural waste
* Animalwaste

Energy Stacking

Figure 1.1: Energy ladder and energy stacking. This figure is an adaptation of Figure
2.1 from Van der Kroon et al. (2013).

While the high efficiency and cleanliness of advanced fuels are attractive, nostalgia for

traditional fuels can often impede transitions away from them (Masera & Navia, 1997; Nan-
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saior et al., 2011). A dataset covering 246 households from 1995 to 2015 in Beijing indicates
that although 90% of the sample households adopted clean energy for space heating over the
past 20 years, only 9% completely ceased using solid fuels (Carter et al., 2020). In contrast
to the “energy ladder” theory, the “energy stacking” theory — illustrated on the right side of
Figure 1.1 — has been proposed as an alternative model in discussions of energy transition
in developing countries (Cheng & Urpelainen, 2014; Heltberg, 2005). This theory suggests
that household energy transitions are typically mixed, involving the continuous use of dirty
fuels alongside the adoption of modern energy sources (Shankar et al., 2020; X. Zhu et al.,
2018).

1.2.1.2 Factors influencing household energy transition

Even though the “energy ladder” and “energy stacking” theories concisely summarize the
driving force behind household energy transitions as improvements in socioeconomic status,
this improvement actually encompasses a series of interrelated factors. Van der Kroon et al.
(2013) proposes a conceptual framework categorizing these factors into three layers: (A)
the external socio-cultural and natural environment, (B) the external political-institutional-
market environment, and (C) the households’ internal opportunity set. Using this framework,
this section will explore the factors influencing household energy transitions.

(A) External socio-cultural and natural environment. This layer comprises four
types of factors: nature and ecology, geographic location, history, and the international
economic system. Nature and ecology, along with geographic location, physically determine
the demand for and availability of fuel in a region. For instance, higher latitudes and
altitudes result in colder winter temperatures, thereby increasing the demand for space
heating (Auffhammer & Mansur, 2014; Deroubaix et al., 2021). In regions without district
heating systems, households often rely on individual heating systems that combust fuels
to generate thermal comfort (Pavlovié et al., 2021; L. Zhu et al., 2020). Additionally, the
regional availability of specific fuels — such as natural gas in Russia and biomass in Nordic

countries — naturally influences their adoption (Korppoo & Korobova, 2012; Parikka, 2004).



Historical factors also play a significant role, as they shape cultural traditions and habits in
fuel use. Some household energy intervention programs have failed when new technologies
did not align with local cooking needs and style preferences (Diehl et al., 2018; Jagger &
Das, 2018).

(B) External political-institutional-market environment. This middle layer can
be seen as a social functioning profile, illustrating how macroeconomic factor markets interact
under the influence of government policies and societal values. These interactions ultimately
determine the prices and allocation of energy resources. A key component within this layer
is the consumer goods market, which directly impacts the access, stability, and price of
energy sources. As of 2021, 8.6% of the world’s population lacked access to electricity and
clean cooking fuels,®? respectively (IEA et al., 2023). The majority of these individuals
reside in developing countries within Africa and Asia (Ritchie et al., 2024). Price stability
and reliable supply are paramount concerns even for those with access to modern energy,
influencing their continued use (Hasselqvist et al., 2022; Pattanayak et al., 2019). Recent
events like the COVID-19 pandemic and the Russo-Ukrainian War in 2022 have exacerbated
energy crises, leading to soaring energy prices and shortages, particularly of natural gas
(Guan et al., 2023). This has prompted households in developed nations such as Germany
and Sweden to revert to firewood for heating (Laakso et al., 2024). Government policies
that promote energy transitions often focus on improving access, ensuring stable supply,
and managing prices through infrastructure upgrades and subsidies (Aung et al., 2021; Guta
et al., 2022; Quinn et al., 2018).

(C) Households’ internal opportunity set. The innermost layer concerns the house-
hold’s internal opportunity set. Attributes such as socioeconomic and demographic charac-
teristics shape a household’s preferences, perceptions, and ability to access and afford modern
energy (Aguilera et al., 2024; Ruokamo, 2016). Specifically, the assets a household owns de-

fine the budget constraints for energy decisions, with wealthier households typically having a

3 Access to electricity is defined in international statistics as having a source of electricity that can provide
very basic lighting, charge a phone, or power a radio for 4 hours per day.

4Clean cooking fuels and technologies refer to non-solid fuels such as natural gas, ethanol, or electric
technologies.



broader choice of fuels and technologies (Behera & Ali, 2016; Rahut et al., 2019). Technolog-
ical barriers, such as knowing how to correctly use and maintain new equipment, also pose
significant challenges, particularly for those lacking information or the capacity to process
it (Hanna et al., 2016; Seguin et al., 2018; Steg, 2008). Household internal attributes are a
central focus in empirical studies investigating factors influencing energy transitions. Factors
found to positively affect the adoption of clean energy include having a female household
head, education level of the household head, income, health status, and the presence of chil-
dren at home. In contrast, residing in rural areas, agricultural and forest land area, being
self-employed, the age of the household head, and larger family size are typically associated
with reduced clean energy use (Ekholm et al., 2010; Lewis & Pattanayak, 2012; Mensah &
Adu, 2015; Song et al., 2018; X. Zhu et al., 2022). However, these empirical results are often

mixed and highly context-dependent.

1.2.1.3 The relationship between household energy transitions and poverty

As a fundamental component of basic living needs, the quality of energy services accessible
to households directly affects their overall quality of life. The widely influential Multidimen-
sional Poverty Index (MPI) in policy research explicitly includes access to cooking energy
and electricity services as part of the measurement of a country’s poverty index (Alkire et
al., 2018). In this section, I will discuss some of the anticipated impacts households may
face during the energy transition, noting how poverty may impact decision-making along the
way.

Financial Impacts. The relationship between energy transition and poverty is complex.
On one hand, energy expenditures constitute a substantial portion of a household’s budget,
representing the most direct interaction between energy use and poverty (Boardman, 2013;
Heltberg, 2003). For those overwhelmed by the cost of adequate energy services, an increase
in energy expenditure could significantly threaten their financial stability or their ability
to meet basic energy needs (Wright, 2004). According to Guan et al. (2023), the energy

price increases triggered by the Russo-Ukrainian War are estimated to raise total household



energy costs by between 62.6% and 112.9%, potentially pushing an additional 78 million to
141 million people into extreme poverty. Modern energy sources are typically more expensive
than solid fuels, leading to an inevitable increase in household energy expenditures (Polsky &
Ly, 2012). In rural northern China, a comparison of various heating options reveals that the
annual cost of clean heating methods, such as air source heat pumps or natural gas heaters,
is at least twice that of burning coal in traditional stoves when no government subsidies are
applied (H. Liu & Mauzerall, 2020). Additionally, the initial one-time investment required for
a stove that aligns with energy transitions represents a significant expense (M. A. Jeuland &
Pattanayak, 2012). Consequently, the energy transition could further exacerbate household
poverty (Nguyen et al., 2019).

On the other hand, the multidimensional outcomes of household energy transitions could
potentially enhance family income and alleviate poverty (Andadari et al., 2014; Cabraal
et al., 2005; Heltberg, 2004). The impact of electricity access on reducing household poverty
has garnered significant attention within this field (Kanagawa & Nakata, 2008). Although
many studies have examined the direct impact of electricity access on household income and
poverty reduction through the productive use of electricity, such as enhancing agricultural
production efficiency and creating employment, these topics are beyond the scope of this
section (Khurana & Sangita, 2022; Pueyo & Maestre, 2019; Willcox et al., 2015). Hut-
ton et al. (2006) categorizes the potential positive outcomes of energy transitions for basic
domestic uses into three broad categories: direct health-related impacts (including health
effects, health expenditures, and income effects related to health), direct non-health-related
impacts (such as time impacts and household environment improvements), and indirect
environmental impacts (both local and global). This section will focus on the first two cat-
egories, exploring how household energy transitions can contribute to lifting households out
of poverty.

Health-related impacts. Good health is essential for engaging in agricultural activi-
ties, operating small businesses, or working for wages (Croppenstedt & Muller, 2000; Schulte

& Vainio, 2010). Additionally, medical expenses for treating illnesses significantly contribute



to pushing families into poverty (Y. Liu et al., 2003; Van Doorslaer et al., 2006). The sub-
stantial health hazards associated with the preparation and burning of solid fuels often drive
the pursuit of energy transitions (Ezzati & Kammen, 2002; Rehfuess & World Health Or-
ganization, 2006). The health benefits of transitioning to cleaner energy sources primarily
stem from reduced exposure to household air pollution, fewer accidents from open fires, and
decreased risks associated with fuel collection (Hutton et al., 2006).

Household air pollution from burning solid fuels has become a leading health risk factor
in developing countries (Feigin et al., 2016). Solid fuels burned in traditional stoves emit
complex air pollutants, including particulate matter (PM), carbon monoxide, and volatile
organic compounds (Franklin, 2007). The average 24-hour indoor PM;¢® concentrations in
households using solid fuels in developing countries can exceed WHO recommended stan-
dards by 6 to 66 times (Rehfuess et al., 2011; World Health Organization, 2021). Exposure
to such pollution significantly increases the risk of morbidity and mortality from respiratory
diseases like chronic obstructive pulmonary disease and lung cancer, as well as cardiovascular
diseases (Gordon et al., 2014; Lee et al., 2020). In 2021, household air pollution was respon-
sible for over 3.1 million premature deaths worldwide, with the highest impacts observed in
India, China, and Indonesia (Global Burden of Disease Collaborative Network, 2020). The
large-scale Improved Stove Program, initiated in rural China during the 1980s, represents a
significant health intervention aimed at reducing household air pollution. By 2014, this pro-
gram was estimated to have decreased indoor PM, 5 concentrations by 30% and premature
deaths attributable to residential emissions by 37% (Meng et al., 2021).

Besides the impacts from less exposure to household air pollution, energy transition
could improve people’s health by less accidents with open fire and hazards related to fuel
collection (Johnson & Bryden, 2015). Combustion of solid fuels in open stoves is a major
cause of burn injuries in less developed countries (Albertyn et al., 2012). In India alone, there
are over 700,000 burn admissions annually (Ahuja & Bhattacharya, 2004). The collection

and transportation of biomass fuels can lead to injuries from falls, cuts, and attacks by wild

5Particulate matter of a diameter of up to 10 micrometers.



animals, as well as miscarriages due to carrying heavy fuel loads (Haile, 1991; Oluwole et al.,
2012).

The transition to modern energy sources for cooking, heating, and lighting can signifi-
cantly improve household air quality (T. Li et al., 2016; Sidhu et al., 2017), reduce health
risks (Puzzolo et al., 2024; Quansah et al., 2017; Smith & Pillarisetti, 2017), and decrease
labor loss due to sick days (Stabridis & van Gameren, 2018), as well as medical expendi-
tures (Lin & Wei, 2022; Rahut et al., 2017). Consequently, the health benefits derived from
household energy transitions can enhance productivity, boost family income, and ultimately
assist families in escaping poverty (Schultz, 2005).

Non-health related time impacts. Besides the time-saving impacts from health-
related factors previously discussed, household energy transitions could also free up time for
productive activities due to various non-health-related factors (M. B. Malla et al., 2011).

Energy transition can significantly reduce cooking hours through enhanced efficiency
(Petrokofsky et al., 2021). Rural women in developing countries typically devote 2 to 5
hours per day to cooking with solid fuels, which is the most time-consuming daily activity
apart from sleeping (Chakraborty et al., 2014; Das et al., 2017; Romieu et al., 2009; Zaman,
1995). Switching to modern energy sources, such as LPG, can save about 50% of the time
currently spent on food preparation (Christiaensen & Heltberg, 2014; Jagger et al., 2019;
A. K. Malla et al., 2011). Additionally, replacing biomass with modern energy sources can
also decrease the time burden associated with fuel collection, which can be considerable
depending on local demand and availability of firewood. For instance, a study covering
274 villages in Nepal found that each household spends about 8 hours per week collecting
firewood (Baland et al., 2010). Similar findings have been reported in Sub-Saharan Africa
(Adkins et al., 2012; Brouwer et al., 1997). The time saved through efficient cooking and
reduced fuel preparation not only provides opportunities for engaging in productive activities
but also promotes an increase in household income (Calzada & Sanz, 2018; Martey et al.,

2022).
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Women and children typically bear the responsibility for collecting and using fuel, making
energy transitions critical for improving their health and providing developmental opportu-
nities (Jagger & Shively, 2014; James et al., 2020; Po et al., 2011). For children, access
to electricity and the reduction of housework burdens can significantly enhance their ed-
ucational access and academic performance, addressing key underlying causes of poverty
(Choudhuri & Desai, 2021; Nazif-Munoz et al., 2020; Squires, 2015; Y. Zhang et al., 2023).
In addition to being related to the important sustainable development goals, such as poverty
eradication, health, education, job and gender equality, the household energy transition will
have a profound impact on sustainable development through climate, sustainable cities, food

security and more (Pham-Truffert et al., 2020; Pradhan et al., 2017).

1.2.2 Literature on human well-being measures

To understand the impact of household energy transitions on well-being, it is important to
consider how we can characterize and measure ideas of the human condition. Therefore,
in this section, I review the literature related to human well-being, another research object
of this dissertation, with an emphasis on its various measures.® The discussion will cover
several pivotal issues in the measurement of human well-being. These include interpersonal
comparisons of human well-being, the validity and limitations of using income as a proxy for
well-being, extensions that aim to capture human well-being in multidimensional measures,

and the comparison of these methods with subjective well-being.

1.2.2.1 Interpersonal comparison of human well-being

Well-being, often expressed as a reflection of a good living state, is widely recognized as
a crucial goal across various fields, including development and public policy (Austin, 2020;
Stiglitz et al., 2009). Despite its extensive application, well-being is an abstract concept

lacking a unified, clear definition, leading different disciplines to highlight particular facets

6This section incorporates a revised version of my response to a PhD comprehensive exam question, in
accordance with the supervisory committee’s recommendations.
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(McGillivray & Clarke, 2006). In psychology, well-being is typically associated with positive
mental states such as pleasure, happiness, and satisfaction (Winefield et al., 2012). Health-
related research focuses on comprehensive physical and mental health, while economic studies
often equate well-being with wealth or the satisfaction of preferences (utility) (Alexandrova,
2017; Jarden & Roache, 2023; White et al., 2019). Although these perspectives vary, they all
evaluate individuals’ living conditions. Reflecting the broad scope of this evaluation, which
encompasses the entirety of life rather than isolated aspects, I define well-being as a global
assessment covering all dimensions of a person’s life (Diener, 2009; Gasper, 2007).

Depending on the perspective from which life is evaluated, the definition of well-being
can be categorized into objective well-being and subjective well-being (Sumner, 1996). Ob-
jective well-being is assessed from an external standpoint, focusing on universally desirable
life features regardless of an individual’s personal feelings or experiences (Diener, 2009). It
is grounded in the belief that certain objective conditions are essential for a high-quality life
(Adler & Fleurbaey, 2016). Although it is impractical to enumerate every aspect relevant to
life quality, researchers aim to identify the most critical domains (Alatartseva & Barysheva,
2016; Kammann, 1983; Voukelatou et al., 2021). For example, the OECD’s How'’s Life 2020:
Measuring Well-being report highlights several such domains, including health, environment,
employment, wealth, and safety (OECD, 2020). In contrast, subjective well-being requires
an individual to evaluate their entire life, taking into account personal interests, preferences,
and needs (Diener, 2009; Shin & Johnson, 1978). Diener (1984) summarizes three hallmarks
of subjective well-being: it is inherently subjective as it resides within the individual’s ex-
perience, involves positive evaluations, and typically encompasses a global assessment of all
life aspects.

Interpersonal comparisons of well-being are crucial when utilizing well-being measures
to inform public policy, particularly when considering the distributive effects of resource
allocation (de Boer, 2024). When distributing limited resources, it is essential to priori-
tize groups that would either gain the most from improvements in well-being for efficiency

reasons or those currently experiencing the lowest levels of well-being to uphold principles
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of justice (Elster & Roemer, 1993; Harsanyi, 1990; Rawls, 1971). The essence of interper-
sonal comparability lies in its ability to gauge the differential impacts of policies on the
population’s average well-being, acknowledging that some policies may advantage certain
individuals while disadvantaging others (Mueller, 2003; Ng, 2008). Under the framework
of objective well-being, comparing individuals’ well-being appears straightforward: an indi-
vidual in a more favorable state across key well-being domains is considered better off than
one in a disadvantaged state. For instance, generally, a person in robust health experiences
higher well-being than someone dealing with severe illness. Similarly, an individual with
substantial income or living in an area with pristine environmental conditions typically en-
joys a better quality of life than someone struggling with poverty or residing in a polluted
area. However, when these comparisons involve multiple well-being domains simultaneously,
complexities arise. The challenge lies in developing a unified metric that accurately reflects
well-being across diverse dimensions. Despite these complexities, as long as there is a com-
mon understanding of what constitutes “good” in these dimensions, such comparisons are
generally considered acceptable.

The inclusion of subjective factors such as personal preferences in defining subjective
well-being introduces significant complications in making interpersonal comparisons. For
example, the divergent reactions of optimists and pessimists to the same life events can
vary their perceived well-being significantly. Particularly in economics, where well-being
is equated with utility, most economists contend that inter-personal comparisons of well-
being are impractical due to their inherently introspective nature (Hausman, 1995; Robbins,
2007). Since such subjective judgments cannot be observed or “scientifically” measured,
people often reject making these comparisons and consider them meaningless (Sen, 1997;
Suzumura, 1996). In the context where ordinal utility theory prevails, people can only
infer the ranking of utilities in different scenarios based on observed choices. However, the
magnitude of utility differences between scenarios remains unknowable, and comparisons of

utility between individuals are not even feasible (Gibbard, 1986; Miller, 2008; Ng, 1997).
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This dilemma compromises the interpersonal comparability of subjective well-being,
which holds considerable practical significance for shaping public policy. However, it is
considered meaningless because it cannot be scientifically assessed, particularly in the field
of economics. However, in reality, interpersonal comparisons of welfare are quite common.
For instance, when comforting a friend in despair, people might say, “Your life is still much
better than many people’s.” Although this might simply be intended as consolation, it actu-
ally involves evaluating our friend’s life situation and comparing it with that of others. This
occurs because people are empathetic and share a common understanding of what is well-
being (de Boer, 2024; Harsanyi, 1979). Ferrer-i-Carbonell and Frijters (2004) reviewed two
psychological findings that support the interpersonal comparison of well-being: first is that
to a certain extent, people can perceive the well-being level of others. For example, people
can accurately recognize the emotions of others, and this also holds true across cultures (Ek-
man & Friesen, 2003; Sandvik et al., 1993). Second, within the same cultural context, people
can translate terms that describe well-being states into approximate numerical measures for
communication (Van Praag, 1991).

The consistency in how people perceive situations, such as indicated by the similar per-
ception and expression of physical pain in different individuals, provides a basis for comparing
interpersonal well-being (Kahneman, 2000). Moreover, since empirical research typically fo-
cuses on average well-being at the population level, impacts from personal traits are further
mitigated (Fabian, 2019; Stutzer & Frey, 2010). In fact, subjective well-being, measured in
terms of life satisfaction or happiness measured (thus compared) in a given cardinal inter-
val, has been widely used in psychology and as an indicator of national or regional progress
(Fleurbaey & Blanchet, 2013; MacKerron, 2012). A series of correlation analyses with ob-
jective measurements like suicide rate and physical health provide empirical evidence for
comparability (Frijters et al., 2020; Koivumaa-Honkanen et al., 2001).

In this section, I review several definitions of well-being and discuss the validity of in-
terpersonal comparability of well-being, under both objective and subjective definitions.

Although some economic studies narrowly define well-being as utility and reject interper-
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sonal comparisons under ordinal utility theory, the concept of interpersonal comparison finds

ready acceptance in broader research fields and plays a crucial role in practical applications.

1.2.2.2 Income as a proxy of human well-being

Everyone requires an adequate income to cover essential living expenses, such as food and
housing, highlighting the crucial role of income in determining an individual’s living status
(Chetty et al., 2016). Additionally, income-based measures have commonly served as in-
dicators for assessing personal living conditions or regional development because they are
concise and easy to measure (Brinkman & Brinkman, 2011). In this section, I will explore
the rationality and limitations of using income as a proxy for well-being, considering both its
objective and subjective definitions. Before delving into a detailed discussion, it is crucial to
establish that the validity of using income-based measures as proxies for well-being assumes
a monotonic relationship between the two. This implies that as income — whether indi-
vidual income or GDP at the regional level — increases, the level of well-being should also
continuously increase. If this is not consistently the case, it suggests inherent limitations in
using income as a measure of well-being.

Income growth can enhance people’s “capacity” to attain a better state in key dimen-
sions of objective well-being, especially when their current conditions are deficient (Kuklys
& Robeyns, 2005). The most critical link between increased income and objective well-being
is the fulfillment of basic material needs (Sullivan et al., 2008). Higher incomes improve
the affordability of essential resources such as food and housing, thereby reducing the risk
of hunger and ensuring residential security (Casey et al., 2001; Gundersen & Ziliak, 2018;
Hulchanski, 1995; Veenhoven, 1991). Beyond fulfilling material needs, the literature on objec-
tive well-being and quality of life also extensively discusses the relationship between income
and the satisfaction of other non-material needs (Gasper, 2005). For instance, as incomes
rise, improved nutrition and better living conditions, coupled with more affordable access
to medical care, can significantly enhance people’s health (Ettner, 1996; Marmot, 2002).

Regarding education, an increase in household income can free individuals, particularly chil-
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dren, from domestic labor, thereby enhancing their access to schooling and improving their
academic performance (Bastagli et al., 2019). Moreover, when income is sufficiently high,
individuals can choose their living environments by relocating to areas with better environ-
mental quality and can more easily achieve a work-life balance or even opt not to work at all
(Bridgman et al., 2018; Z. Liu & Yu, 2020; Qin & Zhu, 2018). Bick et al. (2018), based on
an internationally comparable database, indicate that adults in low-income countries work
50% more hours per week than those in developed countries. Within countries, the data also
show that higher incomes correlate with reduced working hours, particularly in the poorest
nations.

The discussion above demonstrates that increases in income play a significant role in
enhancing key aspects of objective well-being. However, evidence suggests that increases in
income do not necessarily lead to continuous improvements: some aspects do not improve
beyond a certain income level, and in some cases, increased income may even have negative
effects. Gasper (2005) notes that after reaching a middle-income level, further income growth
may not lead to substantial improvements in areas such as education and health; after all, one
cannot achieve literacy twice, nor can one live indefinitely. Moreover, the increase in income
may come at the expense of some key areas of well-being. For example, in the pursuit
of higher income, individuals may work longer hours, experience increased mental stress,
compromise their health, and strain their social relationships (Bannai & Tamakoshi, 2014;
Chan, 2009; Cygan-Rehm & Wunder, 2018; Valcour, 2007; F. Zhang et al., 2023). Besides
the individual examples discussed above, the environmental Kuznets curve, demonstrates
that in a region’s early development stages, increases in income often come at the cost of
worsening environmental quality (Dinda, 2004). The cases discussed above challenge the
validity of using income as a proxy for objective well-being.

I will now proceed to examine the relationship between income and subjective well-being.
In reality, the vast majority of people pursue higher incomes; thus, it is reasonable to infer
that they believe an increase in income improves their lives. In economics, utility theory

suggests that as income increases, people can afford more and better options for consumption.
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This moves them to a higher indifference curve, which represents an increased level of utility
or well-being (Ferrer-i-Carbonell, 2005).

The well-known Easterlin Paradox has prompted a significant reevaluation of the rela-
tionship between income and subjective well-being. It suggests that while cross-sectional
data indicate a positive correlation between income and happiness both within and across
countries, this correlation does not persist over the long term as incomes grow within coun-
tries (Fasterlin, 1974; Easterlin et al., 2010). Although some empirical results continue to
support a positive correlation between income and well-being, the consensus among most
studies is that increases in income levels only enhance subjective well-being to the extent
that basic needs are met (Diener & Biswas-Diener, 2002; Gardner & Oswald, 2007; Steven-
son & Wolfers, 2013). Beyond this threshold, the impact of income on well-being becomes
very weak (Mentzakis & Moro, 2009). These findings suggest that income can serve as an
effective proxy for subjective well-being within certain limits, particularly in scenarios where
severe basic needs are unmet.

Several theories attempt to explain the weak correlation between income and subjective
well-being (Wolbring et al., 2013). The first theory, based on Maslow’s hierarchy of needs,
suggests that once basic requirements such as food and housing are satisfied, individuals
develop higher-level, non-material needs related to self-actualization, which are difficult to
fulfill solely through increases in income (Diener, Horwitz, & Emmons, 1985; Maslow, 1943).
The second theory posits that subjective well-being is influenced more by relative income,
due to social comparison effects, than by absolute income (Blanchflower & Oswald, 2004;
McBride, 2001). This is because people often use others as benchmarks when assessing their
own well-being (Diener, 2009). As the economy grows and everyone’s absolute income rises,
subjective well-being may not improve if relative income positions remain unchanged (Diener
& Fujita, 2013; Posel & Casale, 2011). The third theory focuses on adaptation (Di Tella
et al., 2010). Adaptation mechanisms allow individuals to adjust their expectations about

the impact of income on subjective well-being (A. E. Clark, 2016). Once people reach a
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certain income level, maintaining the same level of happiness typically requires continuous
increases in income (Layard, 2011).

In this section, through a review of the relationships between income and both objective
and subjective well-being, it is evident that income can serve as an effective proxy within
certain limits, particularly when basic needs are unmet. However, once these limits are

exceeded, the validity of using income as a proxy becomes questionable.

1.2.2.3 Multidimensional measures of human well-being

An implicit yet unexpressed issue in the previous discussion about using income as a proxy
for well-being is the inherent limitation of relying on a single measure to capture the mul-
tidimensional nature of well-being (Chakravarty, 2017). To overcome this limitation, it has
been proposed to assess well-being through multiple dimensions (Harkness, 2007). In this
section, I will discuss the multidimensional measurement of well-being.

The capability approach, developed by Amartya Sen, provides the theoretical foundation
for measuring well-being in a multidimensional context (Basu, 1987). This approach redefines
the relationship between wealth and well-being by introducing the concepts of “Capability”
and “Functions” (Gasper, 2002). Here, “Functions” refer to the “beings and doings” —
the achievements of an individual manages to be or to do (Robeyns, 2003; Sen, 1999).
“Capability,” on the other hand, represents the set of all potential functionings available to
a person, indicating the opportunities they have to realize these functions (Distaso, 2007;
Gore, 1997). According to this approach, well-being should focus on the extent to which
individuals are able to utilize goods and services to achieve desired functionings, rather
than on the accumulation of wealth itself (D. A. Clark, 2005; Sen, 1990). Wealth is deemed
important not for its own sake, but because it enables individuals to achieve their functionings
(Sen, 1986).

According to Sen’s theory, many efforts have been made to identify key capabilities
that facilitate human functionings, employing multidimensional social indicators (Diener,

2009; Robeyns, 2006). As early as 1990, the annual Human Development Report recognized
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that human development is “a process of enlarging people’s choices” beyond mere wealth
growth (United Nations Development Programme, 1990). It further identified “leading a
long and healthy life, to be educated and to enjoy a decent standard of living” as the three
essential dimensions of human development. Specifically, life expectancy at birth, expected
years of schooling and mean years of schooling, and gross national income per capita are
indicators for these three dimensions (Lind, 2019). Another example of a multidimensional
indicator is the OECD’s Better Life Index, which examines a broad range of dimensions
beyond income, education, and health. It includes housing, work, civic engagement, work-
life balance, community, environment, safety, and even subjective well-being measure of life
satisfaction (Mizobuchi, 2014). Furthermore, various other objective list approaches rooted
in the concept of multidimensional well-being measurement, such as the Social Progress
Index and the Canadian Index of Wellbeing, are utilized to assess well-being and development
(Michalos et al., 2010; Porter et al., 2014).

Comparing the three concise dimensions of the Human Development Index with the
eleven complex dimensions of the Better Life Index highlights two major challenges in mul-
tidimensional well-being measurement: deciding what domains to include and determining
who should make those decisions (Diener, 2009). The determination of which domains to in-
clude inevitably involves a trade-off between covering as many domains as possible (though
not exhaustively) and maintaining practical operability (Martinetti, 2000). This process,
whether it relies on brainstorming or deductive theory-based methods, necessitates subjec-
tive human judgment, which may lead to paternalistic measures that are disconnected from
individual experience (Amendola et al., 2023; Diener, 2009; Engerman, 1997). In addition,
due to varying cultural backgrounds and developmental stages across countries, there are
inherent differences in prioritized domains, making it challenging to establish universal indi-
cators (Harkness, 2007; Kanbur, 2002). In practice, most multidimensional measurements of
well-being involve aggregating indicators from various domains as an index. The selection,

measurement of specific indicators, determination of their weights, and the methods of aggre-
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gation all present operational challenges to this type of measurement approach (Chowdhury

& Squire, 2006; McGillivray, 1991; Srinivasan, 1994).

1.2.2.4 Subjective well-being

While some multidimensional approaches, such as the Better Life Index, incorporate mea-
sures of subjective well-being, they predominantly align with definitions of objective well-
being. The most significant characteristic of subjective well-being is that it is derived from
an individual’s own experiences and evaluations of their life. Therefore, this approach poten-
tially offers a much broader measurement compared to objective indicator methods, which
are limited to domains of life observable by others (Diener, 2009, p.46). As subjective well-
being has been defined in Section 1.2.2.1 as a global evaluation encompassing all aspects of
a person’s living situation, this section will focus on its measurement.

The pursuit of happiness and satisfaction with one’s life is a common goal among the vast
majority of people worldwide (Frey et al., 2010; J. Helliwell, 2012). Higher levels of subjective
well-being not only enhance individuals’ feelings about their lives but also confer several
practical benefits. These include fostering creative thinking, enhancing health, improving
work efficiency, and strengthening social relationships (DiMaria et al., 2020; Frey, 2011;
Lyubomirsky et al., 2005; Maddux, 2025). At the beginning of this paragraph, I used the

)

terms “happy” and “satisfied” to describe subjective well-being, reflecting its multifaceted

structure that encompasses both related yet distinct affective and cognitive components
(Lucas et al., 1996; Schimmack, 2008; Tov & Diener, 2013).

Specifically, the affective components of subjective well-being include positive affects such
as joy and happiness, and negative affects such as sadness and depression. The cognitive
components, on the other hand, encompass life satisfaction — pertaining to past, current, and
future life — and domain satisfaction, including areas like work and finances (Diener et al.,
1999). The difference between affective well-being and cognitive well-being lies in their focus
on distinct aspects of subjective experience. Affective well-being centers on the emotional

aspects of everyday experiences, while cognitive well-being involves an individual’s reflective
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evaluation about their life as whole or within specific life domains (Chamberlain, 1988).
Compared to affective well-being, cognitive well-being relies more on the living circumstances
and is more stable (Diener et al., 2010). Therefore, it can better reflect the overall and
continuous conditions of life, making it more suitable for assessing and informing public
policy (J. F. Helliwell & Barrington-Leigh, 2010). My subsequent discussion of subjective
well-being will focus exclusively on the measurement of cognitive well-being, specifically life
satisfaction.

Most measures of subjective well-being rely on respondents’ self-reported life satisfaction
(Pavot & Diener, 1993). People are asked to evaluate their whole life or a specific domains
(Van Hoorn, 2008). However, compared with the satisfaction with specific life domains, the
overall life satisfaction is much more common (J. F. Helliwell & Barrington-Leigh, 2010).
This phenomenon is caused by similar problems in multidimensional well-being measure-
ment discussed in Section 1.2.2.3, particularly the trade-off between comprehensiveness and
efficiency when selecting which domains to include, and the complexities involved in de-
termining the weights for aggregating satisfaction across various domains (Margolis et al.,
2019).

The overall life satisfaction question is usually framed as “All things considered, how
satisfied are you with your life as a whole these days?” (Diener et al., 2013). Respondents
are asked to rate their satisfaction using integers on various scales, where the lowest number
represents “Completely/Very Unsatisfied” and the highest “Completely/Very Satisfied” (van
Beuningen, 2012). These scales generally include 1-5 (e.g., China Family Panel Survey), 1-
7 (e.g., UK Household Longitudinal Study), 1-10 (e.g., Statistics Canada’s General Social
Survey and World Values Survey), and 0-10 (e.g., Gallup World Poll) (Charles et al., 2019;
Diener & Tay, 2015; Han & Gao, 2020; Ngamaba & Soni, 2018). To enhance data quality,
modern life satisfaction measures typically employ an 11-point scale from 0 to 10, with this
range chosen to enhance data quality (Kroh, 2006; OECD, 2013). Unlike traditional Likert-

style response, this scale does not provide verbal cues for points other than the highest and
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lowest, effectively transforming the measure into a continuous numerical scale (Barrington-
Leigh, 2024).

Although it is a relatively new research area, studies on subjective well-being in China
have been gradually increasing (Abbott et al., 2016). Questions related to life satisfaction
and happiness have also been progressively incorporated into large-scale household surveys
in China (An et al., 2023; K. Zhang et al., 2022). According to the World Happiness Report
powered by Gallup, China’s average happiness index for 2021-2023 was 5.97 on 0-10 scale,
ranking 60th among all countries (J. F. Helliwell et al., 2024). Based on World Values Survey
data, Easterlin et al. (2012) found that life satisfaction in Chinese population exhibited an
inverted U-shape from 1990 to 2010, with a decline from 1990 to around 2000-2005, followed
by an upward trend. In the second decade of the 21st century, W. A. Clark et al. (2019)
observed a continuous increase in life satisfaction and a narrowing gap in life satisfaction be-
tween rural and urban populations based on data from the China Household Finance Survey.
Knight et al. (2009) indicates that for most households living in rural China, the impact of
their relative position in the village’s income distribution on life satisfaction is greater than
that of absolute income, as they tend to limit their reference group to a narrow, village-level
scope. Additionally, expectations regarding future income changes compared to past income,
as well as perceptions of the quality of community public services and infrastructure, play a
significant role in shaping life satisfaction among rural Chinese households.

Since the measurement of subjective well-being is based on self-reports and therefore dif-
ficult to verify, its reliability and validity are major concerns (Diener, 2009, p.67). Reliability
refers to the consistency of measurement results. The reliability of self-reported measures
is assessed in two main ways: first, by evaluating the consistency of outcomes for the same
concept across different items and scales; and second, by determining the stability of results
over time under unchanged conditions (Diener et al., 2013). Measurements based on differ-
ent scales and various life satisfaction wording typically show moderate to high correlation
(Lyubomirsky & Lepper, 1999; Pavot et al., 1991; Taormina & Gao, 2013). Additionally,

life satisfaction exhibits relatively strong consistency over extended periods, spanning several
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months and even years (Diener, Emmons, et al., 1985; Krueger & Schkade, 2008). Krueger
and Schkade (2008) conducted a test-retest analysis on the subjective well-being of 229 fe-
male participants with a two-week interval between measurements. The results revealed a
correlation coefficient of 0.6 for life satisfaction between the two tests. Based on a meta-
analysis of 83 correlation coefficients from 38 independent samples, the retest correlation
coefficients ranged from 0.24 to 0.87. Notably, the correlation coefficients for periods within
five years remained above 0.5 (Schimmack & Oishi, 2005). Over longer periods, the correla-
tion coefficient tends to decrease due to significant changes in life circumstances (Fujita &
Diener, 2005; Steger & Kashdan, 2007).

Reliability is a prerequisite for validity in measurements, but it does not imply validity
(Pavot, 2013). Validity concerns “whether a well-being measure actually assesses well-being”
(Diener, 2009, p.75). Diener (2009) outlined four key aspects to evaluate the validity of sub-
jective well-being measurements: face validity (how closely a measurement appears to assess
what it purports to measure), content validity (the extent to which a measure accurately
represents the full breadth of the concept), convergent validity (how well the results from
one measure of well-being align with results from other measures), and discriminant validity
(the degree to which a measure does not reflect related but different constructs).

I will now provide a brief overview of the empirical evidence concerning content valid-
ity and convergent validity. Many empirical studies have shown that overall life satisfac-
tion is strongly correlated with satisfaction in major life domains, suggesting that overall
life satisfaction is a valid summary of domain-specific satisfaction (McAdams et al., 2012;
Milovanska-Farrington & Farrington, 2022; Pavot & Diener, 2008; Rohrer et al., 2024). Van
Praag et al. (2003) utilized structural models to analyze the relationships between overall
life satisfaction and domain-specific satisfactions, including job, finances, housing, health,
leisure, and environment, using data from the German Socio-Economic Panel which sur-
veyed 20,000 individuals from 1992 to 1997. The results demonstrate that overall satisfac-
tion effectively incorporates various domain satisfactions, with nearly all domain satisfaction

coefficients showing strong significance, particularly financial satisfaction and health satis-

23



faction. In terms of the convergent validity, many studies have shown a moderate to strong
correlation between the self-report subjective well-being measure with alternative measures
(Pavot, 2013; Pavot et al., 1991; Sandvik et al., 1993). Kahneman et al. (2004) observed a
moderate correlation (r = 0.38) between life satisfaction and daily “net affect,” as assessed
using the Day Reconstruction Method. A meta-analysis of 44 independent samples revealed
a moderate correlation (r = 0.42) between self-reported and informant-reported measures
of subjective well-being, encompassing affects, life satisfaction, and happiness — indicating
that close friends and family do reasonably well carrying out the life satisfaction evaluation
on behalf of someone else (Schneider & Schimmack, 2009).

Despite being a reliable and valid measure, the use of subjective well-being measurements
in informing public policy still faces challenges, particularly in capturing the effects of public
policy (Diener, 2009, p.95). On the one hand, since subjective well-being is constructed by
individuals, its measurement inevitably reflects personality or individual traits (DeNeve &
Cooper, 1998). If these traits, which are unaffected by public policy, are decisive in determin-
ing subjective well-being, then efforts to enhance subjective well-being through public policy
may be largely futile. On the other hand, even if public policies successfully alter people’s
living circumstances, changes in subjective well-being may not occur due to adaptation and
social comparison mechanisms, as discussed in Section 1.2.2.2 (Odermatt & Stutzer, 2017).
Although subjective well-being has its limitations, as Diener (2009, p.46) stated, “these lim-
itations are often different from those of economic and social indicators.” Therefore, it can
serve as a complement, playing a significant role in areas where socio-economic indicators

are difficult to apply, such as the valuation of non-market goods (Dolan & White, 2007).

1.3 Study area: geographic and policy context

As Chapters 3 and 4 of this dissertation use the Clean Heating Policy in rural Beijing
as a case study to evaluate the impacts of energy transition, this section provides a brief

introduction to the geographic and policy context to better support the subsequent chapters.
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This introduction helps establish the context for interpreting the results in later chapters and
assessing the external validity of the findings. For example, these insights may be relevant
to other regions in China and even to developing countries with strong heating demand in
Eastern Europe and Central Asia (X. Wu et al., 2004). Some contextual information is also

provided in the respective chapters.

1.3.1 Geographic context: rural households in Beijing

This section provides a brief overview of rural households in Beijing, the sample area of this
dissertation, with a focus on household energy-related characteristics, including demograph-

ics, climate, housing, and energy use.

1.3.1.1 Characteristics of rural Beijing

Beijing, the capital and political center of China, is located on the northern edge of the North
China Plain at coordinates 39°56'N, 116°20’E. It is governed as a municipality under the
direct administration of the central government with 16 districts including two central urban
districts, four suburban districts, and ten rural districts (The People’s Government of Beijing
Municipality, 2024). As of 2023, Beijing had 2.1 million rural households, encompassing a
population of 5.4 million, distributed across 3,768 villages in 178 towns. On average, each
rural household consisted of 2.6 people, with 2.1 of them being part of the labor force (Beijing
Municipal Bureau of Statistics, 2024).

Among the 31 provinces in mainland China, Beijing ranks third in per capita disposable
income for rural households. According to Beijing Municipal Bureau of Statistics (2024), in
2023, the per capita disposable income for rural households in Beijing was 37,400 RMB, with
wage income accounting for 72% and transfer income — such as government pension subsidies
— comprising 13%. More than 70% of rural household income is allocated to consumption
expenditures, with housing (e.g., rent, utilities, and fuel), food (including cigarettes and
alcohol), and transportation and communication accounting for 23%, 20%, and 9% of per

capita disposable income, respectively.
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Despite significant improvements in the economic conditions of rural families in Beijing
due to socio-economic development, many still face economic challenges associated with
aging populations, lower levels of education, and limited livelihood opportunities (J. Chen

et al., 2016).

1.3.1.2 Climate conditions of Beijing

Beijing has a warm temperate, semi-humid, semi-arid monsoon climate with four distinct
seasons, characterized by hot and humid summers and dry, cold winters (W. Liu et al., 2009).
In 2023, the annual average temperature was 14.3°C, with the highest recorded temperature
of 41.1°C on June 22 and the lowest of -16.7°C on January 25 (Beijing Municipal Bureau of
Statistics, 2024). In rural mountainous areas below 800 meters above sea level, the annual
minimum temperature is 2-5°C lower than in the plains.

The long and cold winter in Beijing implies an intensive need for household space heating.
The heating season in Beijing typically lasts for approximately 120 days, from November 15th
to March 15th of the following year (Ji et al., 2019). Beijing’s heating season closely coincides
with periods of heavy air pollution (J. Liu et al., 2016). In January 2013, the North China
Plain, including Beijing, experienced a record-breaking period of severe and persistent air
pollution, with the monthly average PM, 5 concentration reaching nearly 160 ug/m?® (R. Li
et al., 2015). Since then, the recurrence of severe air pollution during nearly every heating
season suggests that residential heating is a significant contributor to air pollution in the

region (Ebenstein et al., 2017; Q. Zhang et al., 2019).

1.3.1.3 Housing and space heating in rural Beijing households

Rural household dwellings in Beijing share typical characteristics of northern China’s rural
areas: the vast majority are self-built, single-story brick-and-tile houses constructed in a
decentralized manner (Shan et al., 2015). With socio-economic development, the per capita
living area of rural households in Beijing has steadily expanded, growing from just 9 m? in

1978 to 53 m? in 2023 (Beijing Municipal Bureau of Statistics, 2024).
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Since most rural dwellings are self-built and lack standardized construction guidelines,
their housing envelopes exhibit poor thermal performance (Yang et al., 2010). In rural north-
ern China, solid clay bricks are the primary wall material, with an average wall thickness
of only 33 cm (Building Energy Research Centre at Tsinghua University, 2012). Most ru-
ral homes use single-glazed windows, and in some economically disadvantaged households,
paper-pasted windows or half-paper, half-glass windows are still in use. The roof, a crucial
component of the building structure, is typically made of bricks and tiles and often lacks
sufficient thickness (J. Xu et al., 2018). In 2016, less than 20% of rural homes in northern
China had any insulation, resulting in space heating energy consumption per unit of floor
area being at least twice that of urban buildings (National Development and Reform Com-
mission, 2017). Therefore, home insulation renovations are a key measure to reduce building
energy consumption and improve heating efficiency in rural homes (Energy Foundation and
Building Energy Conversation Research Center of Tsinghua University, 2022).

Solid fuels, particularly mineral coal, are the primary fuel sources for space heating
in rural northern China (Mestl et al., 2007). In 2014, before the implementation of the
large-scale rural household energy transition intervention, China’s rural household coal con-
sumption reached 197 million tonnes, with the northern region accounting for 81% of this
total (of Tsinghua University, 2020). That same year, rural households in Beijing consumed
approximately 6 million tonnes of coal. Since 90% of rural household coal consumption in
Beijing was used for space heating, this means that Beijing’s coal consumption for space
heating in 2014 was around 5.14 million tonnes (Research group on household energy con-
sumption, 2016). With the implementation of the Clean Heating Policy, rural household coal
consumption in China and Beijing decreased to 159 million tonnes and 0.7 million tonnes,
respectively, by 2018. In addition to coal, biomass fuels play a significant role in China’s ru-
ral household energy consumption. In 2014, rural households in China consumed 114 million
tonnes of firewood and 75 million tonnes of straw for cooking and space heating.

Rural households in northern China use various methods to burn solid fuels for heating.

The most common approach is a combination of a traditional coal stove and hot water
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radiator systems, where the coal stove heats water that circulates through radiators to warm
multiple rooms (of Tsinghua University, 2020). Another common method is directly heating
a single room using the heat from a traditional coal stove (Y. Zhou et al., 2021). The kang,
a hollow brick bed, is also a traditional heating method in rural households. It is typically
connected to a wood-burning stove in the adjacent kitchen, allowing hot air to circulate
within the brick structure and provide heat (Zhuang et al., 2009).

With economic development, small electric heating devices, such as electric blankets and
portable electric heaters, have also become more common in rural households (Research

group on household energy consumption, 2016).

1.3.2 Policy context: the Clean Heating Policy

The Clean Heating Policy, an intervention aimed at reducing and replacing coal used for
rural household space heating, is part of a series of energy transition policies introduced by
the Chinese government since 2013 to combat severe air pollution. This section provides a

brief overview of the key measures and implementation process of the Clean Heating Policy.

1.3.2.1 Implementation process

After severe and persistent air pollution in China in January 2013, which not only threatened
the health of hundreds of millions of people, but also brought issues such as “Haze,” “Air
Pollution,” and “PM, 5" to the forefront of public concern, air quality became a major focus
of public and government attention (Gao et al., 2017; M. Li & Zhang, 2014). In September
2013, China’s State Council issued the Action Plan for Air Pollution Prevention and Control,
describing ten key measures, including “accelerating the adjustment of the energy structure
and increasing the supply of clean energy” and “strengthening comprehensive management
and reducing the discharge of multiple pollutants.” One of the measures explicitly called
for gradually replacing coal with natural gas or electricity through subsidies to expand the

scope of high-polluting fuel prohibition zones. The plan also set clear air quality targets to
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be achieved by 2017, such as limiting Beijing’s annual average PMs 5 concentration to 60
pg/m? (State Council of China, 2013).

Guided by the central government’s approach, local governments developed and imple-
mented their own air pollution mitigation action plans for the period 2013-2017. As a key
region for air pollution control, the Beijing-Tianjin-Hebei region and its surrounding areas
outlined in their action plan a commitment to gradually reducing coal use for cooking and
heating in urban, suburban, and rural areas by enhancing the supply of electricity and nat-
ural gas as alternative energy sources (Beijing Municipal Ecology and Environment Bureau,
2013). From a regional perspective, the Clean Heating Policy has been implemented in
phases, beginning with the Beijing-Tianjin-Baoding-Langfang adjacent areas, then expand-
ing to 43 core cities in Beijing-Tianjin-Hebei and surrounding provinces, and eventually
extending to 16 provinces across northern China (F. Wang, 2024). According to F. Wang
(2024), by the end of 2023, the Clean Heating Policy had reached 39 million rural house-
holds in northern China, reducing bulk coal consumption by more than 80 million tonnes
and synergistically cutting carbon dioxide emissions by nearly 160 million tonnes.

Beijing began adopting clean energy alternatives to coal-fired household heating as early
as the early 2000s, initially targeting aging single-story housing communities in central urban
areas that were difficult to integrate into the district heating system (S. Zhou, 2020). At
that time, the primary technical solution for clean heating was the thermal storage electric
heater. Beijing was also one of the first cities to launch pilot projects under the broader
Clean Heatling Policy targeting coal use for heating in suburban and rural households after
2013. The same year the Action Plan for Air Pollution Prevention and Control was released,
Beijing initiated a pilot project to replace coal with electricity in 14 villages (Xinhua Net,
2017). In the following years, the Clean Heating Policy was rapidly promoted in Beijing’s
plains. By the end of 2018, Beijing had essentially achieved “coal-free” status in these areas,
with a total of 2,963 villages and approximately 1.1 million rural households completing the

Clean Heating Policy (Beijing Association for Sustainable Development, 2021).
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After 2018, the Clean Heating Policy began to be implemented in Beijing’s mountainous
areas. However, due to challenges such as the difficulty of infrastructure renovation in these
regions, the implementation progress slowed down. By the end of 2024, Beijing reported
that it had completed clean heating in 3,595 villages, achieving a clean heating rate of 96.7%
among rural households (Beijing Municiple Bureau of Agriculture and Rural Affairs, 2025).

Compared to other northern provinces, such as Hebei and Shaanxi, which have primar-
ily used natural gas to replace coal for rural household clean heating, about 90% of rural
households in Beijing have achieved clean heating through Coal to Electricity conversions
(Energy Foundation and Building Energy Conversation Research Center of Tsinghua Uni-
versity, 2022). One significant advantage of electricity over natural gas is its relatively stable
supply. During the process of replacing coal with electricity in rural areas of Beijing, the
selection of heating equipment initially involved direct electric heaters and thermal storage
electric heaters during the pilot stage. However, due to challenges such as high costs, in-
adequate heating performance, and incompatibility with rural living habits, air-source heat
pumps were ultimately chosen as the primary technological solution (Xinhua Net, 2017).

Beyond electricity and natural gas, achieving clean heating remains challenging in provinces
with extremely cold climates and underdeveloped economies, such as those in the northeast
and northwest. As a temporary solution, processed biomass pellets have been introduced as

an alternative to coal during the pilot stage in these provinces (Wei et al., 2024).

1.3.2.2 Policy details

The Clean Heating Policy primarily consists of two key aspects: prohibiting the use of bulk
coal for heating in rural households and promoting clean heating through subsidies.

In our sample area, Beijing, clean heating serves as a means of coal reduction and is
actually part of the Coal Reduction and Substitution (JHHMEHIEE) policy. Specifically, the
use of low-sulfur coal briquettes as a substitute for traditional bulk coal is implemented as
a parallel policy alongside clean heating interventions such as Coal to Electricity and Coal

to Natural Gas. By 2017, all villages in Beijing were covered by the Coal Reduction and
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Substitution policy, meaning that households that had not yet transitioned to clean heating
were provided with subsidized low-sulfur coal briquettes by the government. Each autumn,
the village committee submits an order for low-sulfur coal briquettes to the government based
on household needs for the heating season. The government’s partner supplier then delivers
the briquettes directly to rural households. Once a village implements the Clean Heating
Policy, it can no longer request coal briquettes from the government, and households are
prohibited from using coal for heating as the supply is cut off.

Once a village is designated by the government as a target for the Clean Heating Policy,
the State Grid Corporation of China upgrades the village’s infrastructure, such as power
transmission lines. Afterward, households can choose from several brands of clean heating
equipment selected by the village committee.

For air-source heat pumps in Coal to Electricity, the subsidy standard is set at 200
RMB/m? of heating area, funded by both city and district governments, with a total subsidy
cap of 24,000 RMB per household (The People’s Governemnt of Beijing Municipality, 2016).
Given that the average rural household in Beijing has a house area of approximately 120
m?, this means that the vast majority of rural households can receive an appropriately sized
air-source heat pump at no cost. The full subsidies for air-source heat pumps alleviate
the financial burden of high upfront equipment costs during the early stages of the energy
transition. Considering that the air-source heat pumps in rural homes that were among the
first to transition from coal to electricity have reached the end of their service life, the Beijing
municipal government issued an additional subsidy plan in 2024 to support the upgrading
of Coal to Electricity heating equipment (The People’s Governemnt of Beijing Municipality,
2024).

For households in Beijing that transitioned from coal to natural gas, the municipal and
district governments each subsidize one-third of the equipment purchase cost, meaning that
households may need to cover the remaining one-third themselves (The People’s Governemnt

of Beijing Municipality, 2016).
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To reduce the operating costs of clean heating, Beijing provides multiple layers of sub-
sidies for energy prices. Currently, 70% of Beijing’s electricity supply comes from thermal
power generation in neighboring provinces such as Hebei, Shanxi, and Inner Mongolia (Bei-
jing Municipal Bureau of Statistics, 2024). Residential electricity for daily use follows a
fixed-tier pricing system, where rates increase progressively based on consumption. The first
tier, for households consuming less than 240 kWh per month, is priced at 0.488 RMB/kWh
(The People’s Governemnt of Beijing Municipality, 2025).

For rural households in the Clean Heating Policy, during the heating season (November
15th to March 15th of the following year), they benefit from an off-peak electricity rate
of 0.3 RMB/kWh from 8 PM to 8 AM the next day. Additionally, both the municipal
and district governments provide subsidies of 0.1 RMB/kWh each, with a total subsidized
electricity consumption limit of 10,000 kWh per household per heating season (The People’s
Governemnt of Beijing Municipality, 2016). This means that households effectively pay only
about 20% of the regular electricity price for nighttime space heating.

For households that transitioned from coal to natural gas, the government provides a
subsidy of 0.38 RMB/m? on top of the rural residential heating gas price of 2.61 RMB/m?.
The subsidy is capped at 820 cubic meters per household per heating season.

From 2013 to 2020, the municipal and district governments of Beijing allocated 22 bil-
lion RMB in subsidies for clean heating policy equipment, with annual operating subsidies
exceeding 1 billion RMB (Beijing Association for Sustainable Development, 2021).

Such a heavy subsidy burden is difficult for surrounding provinces to sustain, resulting
in lower subsidies for rural households under the clean heating policy compared to those in
Beijing. For example, in some cities in Henan and Hebei provinces that were part of the
first batch of Clean Heating Policy implementation through Coal to FElectricity conversions,
equipment purchase subsidies covered only 70-85% of the cost. In some cities included in the
second batch of implementation, subsidies were even lower, covering only 50% of the cost.

Regarding electricity bill subsidies, the maximum subsidy per heating season ranges from

400 to 2,400 RMB, and in some cities in Henan province, there is no subsidy for operating
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costs at all. Therefore, when interpreting the external validity of the results presented in the
later chapters for other northern Chinese provinces implementing the Clean Heating Policy,
it is essential to consider the significant differences in subsidy levels between these provinces

and Beijing.

1.3.3 Implications for other countries

Despite the high financial costs associated with subsidizing the Clean Heating Policy, the
policy has significant potential to effectively drive the energy transition, enhance household
and regional air quality, and mitigate health risks (Ma et al., 2023; Meng et al., 2023;
X. Zhang et al., 2019). Therefore, it serves as a valuable reference for other countries,
particularly developing nations that rely on coal for household space heating. In this section,
I will provide some context for the external validity of the Clean Heating Policy by briefly
describing the basic conditions of other developing countries that rely on coal for space
heating.

Kerimray et al. (2017) utilized energy balance data from the International Energy Agency
to identify the nine countries with the highest per capita residential coal consumption in
2014: Poland, Kazakhstan, Mongolia, Ireland, South Africa, the Czech Republic, China, the
Republic of Korea, and Hungary. Despite representing only 21% of the global population,
these countries accounted for 86% of the world’s residential coal consumption. Most of them
are major coal producers and are situated in cold regions, resulting in a significant demand
for heating, with South Africa being an exception. Approximately 40-80% of residential coal
consumption in these countries is allocated to space heating. Considering data availability
and national representativeness, we next provide a brief overview of the climate conditions,
space heating practices, energy consumption, and household energy intervention programs
in Poland and Mongolia.

Poland is located in Central Europe and is considered to have a temperate “transitional”
climate, with an average annual temperature of approximately 7°C (Btas & Ojrzynska,

2024). January is typically the coldest month, and the space heating season generally lasts
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from October to the end of April (Canales et al., 2020; Chwieduk & Chwieduk, 2021). A
large number of Polish households rely on solid fuel combustion for space heating, with
this proportion reaching as high as 90% in rural areas by 2018 (Frankowski & Herrero,
2021; Ksiezopolski et al., 2020). In 2013, Polish households consumed 10.77 million Mg
of hard coal, accounting for 14% of the country’s total hard coal consumption (Pyka &
Wierzchowski, 2016). To promote the transition of household heating energy, Poland has
implemented various measures. In addition to the broad prohibition of fossil fuels and solid
fuels as heat sources under the 2016 Anti-Smog Act, financial subsidies have been introduced
through programs such as the “Clean Air” program and “Moje Ciepto (My Heat)” program to
support this transition (Kubiczek et al., 2023). These programs provide financial assistance
for the purchase and installation of advanced heating systems, including replacing outdated
coal stoves in older single-family buildings with compliant boilers and installing ground-
source or air-source heat pumps in new buildings (Jagietto et al., 2022).

Mongolia is a landlocked country in East Asia, bordering northern China. Mongolia
has a harsh temperate continental climate with distinct seasons, but its annual average
temperature is only 0.7°C (Yembuu, 2021). The coldest month, January, has an average
temperature from —15°C to —30°C (Batima et al., 2005). These extreme conditions result
in an extended heating season that lasts for eight months, from September 15 to May 15
(Batsumber & He, 2023). Of Mongolia’s 3 million population, 45% reside in the capital,
Ulaanbaatar, with 60% of them living in the city’s ger districts (Erdenedavaa et al., 2018).
Nearly all households in ger districts rely on raw coal combustion for space heating, with
the city’s 160,000 gers consuming an average of 5 tons of coal and 3 cubic meters of wood
per year for heating (Allen et al., 2013; Tong et al., 2018).

The extensive use of solid fuels for heating makes Ulaanbaatar one of the most severely
air-polluted cities in the world during winter (Amarsaikhan et al., 2014). To address severe
air pollution, Mongolia has implemented stove intervention programs for household heat-
ing and launched pilot projects promoting the use of modern energy sources for heating.

In 2011, the Mongolian government, in collaboration with the U.S. Millennium Challenge
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Account, introduced high-efficiency, low-emission improved stoves to 50,000 households in
ger districts (Hill et al., 2017). With subsidies, households only paid 7-14% of the original
price (Greene et al., 2013). The evaluation report indicates that while the program reduced
household heating-related pollutant emissions and households were satisfied with the heating
performance, it did not significantly reduce household coal consumption (Greene et al., 2013;
Lodoyasamba & Pemberton-Pigott, 2011). A pilot project involving air-source heat pumps
in seven households in Ulaanbaatar demonstrated that, even in the world’s coldest capital,
the heat pump’s efficiency was comparable to that observed in poorly insulated rural homes
in northern China. The operating costs of heat pumps were similar to those of coal stoves
and remained within the household affordability range. However, large-scale implementa-
tion faces challenges related to high upfront costs and the reliability of electricity supply
(Pillarisetti et al., 2019).

Through the discussion of Poland and Mongolia — two countries located in different
regions with distinct political systems and levels of economic development — it becomes clear
that air pollution is a common challenge faced by countries relying on household coal heating.
This challenge also serves as a key driver for policy interventions in household heating. In
terms of intervention pathways and policy approaches, both countries exhibit similarities
with China’s Clean Heating Policy in northern rural areas. For instance, they have adopted
low-pollution coal or high-efficiency stoves as transitional solutions, with the ultimate goal of
achieving high-efficiency electric heating through technologies such as air-source heat pumps.
Therefore, the discussion in this paper on the Clean Heating Policy offers important insights
for energy transitions in developing countries with significant heating demands, including

Poland and Mongolia.
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Chapter 2

Rural household energy transition in

China: trends and challenges

The following chapter has been published on Journal of Cleaner Production as “Zhang X,
Barrington-Leigh C, Robinson B E. Rural household energy transition in China: Trends and
challenges. Journal of Cleaner Production, 2024: 141871.” According to Elsevier’s copyright
policy, authors have the right to reuse their own material in new works without needing

permission or payment, provided they fully acknowledge the original article.
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Abstract

Against the backdrop of both environmental and health issues caused by inefficient com-
bustion of solid fuels in households, the transition to clean energy is a critical development
imperative. This study uses publicly available administrative data spanning nearly 30 years
at the provincial level to characterize the “business as usual” (BAU) energy transition in
China’s rural household sector in order to inform interventions needed to achieve clean
energy goals. We first describe the temporal trends and spatial characteristics of energy
transitions over the past three decades. We then use a simple two-way fixed effects model to
estimate the role that household income growth plays in this transition process. Finally, we
predict the timeline for the BAU rural energy transition with an autoregressive integrated
moving average (ARIMA) model. Our results show that China’s rural household sector has
gradually undergone a consistent but geographically uneven transition over the past three
decades. Compared with warmer provinces without indoor heating, where a 1,000 RMB
increase in per capita income is associated with a 5-10% increase in the share of clean en-
ergy, in provinces with heating needs the predicted effect is less than 2%. ARIMA model
projections suggest that without policy interventions, for most provinces in northern China
the share of clean energy would remain less than 40% by the year 2050. The Clean Heating
Policy implemented in the North China Plain in 2015 has therefore advanced the energy
transition by 10 years in just the 3 years between 2015 and 2018. Together, these results

show the potential for interventions in helping spur energy transitions.
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2.1 Introduction

Approximately one-third of the world’s population relies on solid fuels such as biomass and
coal for their basic energy requirements, such as cooking, heating, and lighting (IEA et al.,
2022). However, the process of burning these fuels contributes significantly to air pollution
and health problems, particularly in low- and middle-income countries (Jeuland et al., 2015;
Kim et al., 2011; Rehfuess & World Health Organization, 2006). Household air pollution, a
consequence of burning solid fuels, has been linked to acute lower respiratory infections in
children, chronic obstructive pulmonary disease, and lung cancer in adults (Rehfuess et al.,
2011). In 2019, household air pollution caused over 2.3 million premature deaths, with over
95% of these deaths occurring in low to medium Socio-demographic Index countries (Global
Burden of Disease Collaborative Network, 2020). The use of solid fuels also results in time
loss for education, rest, and productive activities, particularly for children and women, due
to the time spent collecting and preparing biomass fuel (Biswas & Das, 2022; World Health
Organization, 2016). Furthermore, energy expenditures often represent a significant portion
of low-income households’ budgets (Adkins et al., 2012; Alkon et al., 2016; Sanchez-Guevara
et al., 2015). For these reasons, Sustainable Development Goal 7 focuses on ensuring that
everyone has access to affordable, reliable, sustainable, and modern energy (Villavicencio
Calzadilla & Mauger, 2018).

Household solid fuel use presents critical environmental, health, and development chal-
lenges. A key measure to address this issue is transitioning from solid fuels (e.g., coal and
biomass) to clean energy (e.g., electricity, liquefied petroleum gas (LPG), and natural gas).!
Various programs have been implemented to promote this transition around the world. In
Ecuador, the government has initiated an energy-efficient cooking program, incentivizing 3.5
million households to install and use induction stoves by 2023 (Gould et al., 2018). Nigeria

explored a consumer market for ethanol cookstoves, aiming to cover 0.5 million households

'In this paper, we define “clean energy” primarily based on whether it contributes to air pollution in
households. It is important to note that we do not consider whether the energy used to generate electricity
is “clean,” such as whether it is generated from coal-fired or renewable sources, as a criterion for defining
clean energy.
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in Lagos by 2019 (Quinn et al., 2018). In India, the “Pradhan Mantri Ujjwala Yojana Pro-
gram” distributed 35 million free LPG connections by April 2018 (Dabadge et al., 2018; Kalli
et al., 2022). In Bangladesh, the “Solar Home System Program” installed 5.6 million home
solar panel systems, providing electricity to about 22 million rural populations, increasing
the national electricity penetration rate to 97% in 2020 (Cabraal et al., 2021). China has
undergone a series of rural household energy transition programs to improve the energy qual-
ity as well as infrastructure development for expanding modern energy accessibility (Carter
et al., 2020). Some of the most representative programs are the rural electrification project
that has continued since the 1950s and National Improved Stove Program (NISP) since early
1980s (Bie & Lin, 2015; Sinton et al., 2004). By 2016, 100% of China’s population had access
to electricity (Yang, 2021).

These programs significantly contribute to the energy transition for cooking and light-
ing, yet China still relies on solid fuels for rural heating (Zheng & Wei, 2019). Over 100
million rural households consumed around 200 million tons of coal for space heating in 2015
(Energy Foundation and Building Energy Conversation Research Center of Tsinghua Uni-
versity, 2022). China’s Clean Heating Policy, firstly announced in 2013 in Beijing, bans rural
households from using coal and subsidizes the transition to electricity and natural gas for
clean space heating. By 2021, over 26 million rural households participated in this program
(Energy Foundation and Building Energy Conversation Research Center of Tsinghua Uni-
versity, 2022; He & Li, 2020; X. Zhang et al., 2019). As forecasted by T. Ma et al. (2023), the
integration of electric cooking and air source heat pumps for heating in rural households by
2060, as part of a carbon-neutral pathway, is anticipated to yield substantial health benefits
and positive economic outcomes across the majority of Chinese provinces.

It is widely believed that policies are necessary to accelerate the transition to clean en-
ergy globally. But how much time do these policies “save” in the transition process? If the
transition relied solely on general social and economic development, how long would it take
to occur? The “energy ladder” and “energy stacking” theories propose that households tran-

sition from traditional solid fuels to cleaner sources as their socioeconomic status improves
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(Hosier & Dowd, 1987; Van der Kroon et al., 2013). Empirical studies indicate that this
transition is not always a discrete, one-way shift and that households often continue to use
inferior fuels even as they adopt cleaner ones (Carter et al., 2020; Maina et al., 2017; Masera
et al., 2000; Wu & Zheng, 2022).

Most studies in China on rural household energy transitions focus on describing energy
use in specific administrative areas (e.g., county and province) or comparing differences
across areas using cross-sectional survey data (B.-D. Hou et al., 2017; B. Hou et al., 2019;
Jiang & O’Neill, 2004; R. Wang & Jiang, 2017; Wu et al., 2017). Several recent studies have
also used longitudinal surveys to understand factors related to energy transitions over time
(Carter et al., 2020; Liao et al., 2019; C. Ma & Liao, 2018; Tang & Liao, 2014; Tao et al.,
2018; Wu & Zheng, 2022; Zhou et al., 2009). For instance, Tao et al. (2018) conducted a
nationwide survey in rural China in 2012 that included nearly 35,000 households. Using ret-
rospective self-reported data, they examined the energy mix patterns for cooking and space
heating across all Chinese provinces from 1992 to 2012. They found that, compared with
the rapid transition for cooking, the energy transition for space heating is slow. Using per
capita income, heating demand days, and coal prices at the provincial level, they found that
these explanatory variables had a better degree of explanation for the variation in cooking
energy transition compared to heating. In their follow-up study using data from a 2017
survey, which encompassed approximately 57,000 rural households spanning all provinces of
mainland China, they found that despite a promising decline in the usage of biomass for
both cooking (41%) and space heating (59%) purposes compared to levels observed in 2012,
coal continued to hold a dominant position in fulfilling space heating needs (Shen et al.,
2022). Most of these studies, based on cross-sectional or short-panel field survey data, span
less than five years. This time scale limitation from surveys prevents us from understanding
the temporal trend of BAU energy transition.

The use of administrative data from statistical offices offers an unparalleled advantage in
analyzing national and provincial energy transition trends in this regard. Studies utilizing

administrative statistics from the China Energy Statistical Yearbook and China’s Rural En-
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ergy Yearbook, released by the Ministry of Agriculture, have rigorously analyzed temporal
trends on the national or provincial level (Han et al., 2018; X. Wang & Feng, 1997; Yao et al.,
2012; M. Zhang & Guo, 2013; X. Zhang et al., 2022; Zhou et al., 2008). For instance, Han
et al. (2018) utilized province-level panel data from administrative statistics between 1991
and 2014 to reveal that, during this period, the rural household energy transition in China
followed the “fuel stacking” pattern, with traditional commercial energy and advanced com-
mercial energy having weak substitution effects on biomass energy. However, administrative
data have been largely overlooked in recent studies in this field.

Several factors contribute to this situation. Firstly, the China Energy Statistical Year-
book, which is the most important administrative data in this field, does not include non-
commodity energy (i.e., biomass fuels) quantities. We pursue this issue in the next section.
Second, it is commonly understood that these statistics severely underestimate coal usage
due to the fragmentation and complexity of rural household purchase sources (Cheng et al.,
2017). L. Zhang et al. (2009) detailed the causes of this concern from the perspective of the
different statistical methods of commercial and non-commercial energy data. Specifically,
non-commercial energy data are typically gathered by the Ministry of Agriculture via its
network of offices at the provincial, county, and township levels, while commercial energy
data are typically obtained by the National Statistics Bureau through an annual survey of
rural households (Li et al., 2019). Nevertheless, the unique advantages of administrative en-
ergy statistics include: first, they are the most comprehensive and representative and have
the longest time series among available rural household energy data for China; second, they
are publicly available; third, and perhaps most importantly, they represent the information
that was available to public policy makers designing government intervention.

Our study tackles data concerns regarding incomplete and inconsistency by integrating
all publicly available administrative energy statistical data sources. To shed light on rural
household energy transition in China, we approach the following research questions: (1)
What are the trends and characteristics of rural household energy transition on national

and provincial levels in past decades in China? (2) How would a clean energy transition
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progress based on general economic growth without interventions? (3) What is the timeline
for provinces in different energy use zones to achieve energy transition, and how much can
interventions (like the Clean Heating Policy) accelerate this process? By examining these
questions, we aim to provide insights into the past trends, current state, and future prospects
of China’s rural household energy transition, as well as the potential impact of intervention
programs.

Our study contributes to the existing literature on rural household energy use in China
in the following ways: First, we provide a comprehensive integration of administrative statis-
tics. By combining all publicly available administrative statistics on rural household energy
data in China, we offer an extensive description of past trends in the field. Second, we
present circumstantial evidence of the discrepancies between energy transitions in cooking
and heating within the framework of the Chinese rural domestic energy use zone. Third, em-
ploying a time-series approach, we forecast the timeline of the energy transition, emphasizing

the necessity and timeliness of interventions such as the Clean Heating Policy.

2.2 Data and methods

2.2.1 Data

Our analysis is based on provincial-level rural energy statistics in China from 1991 to 2018,
focusing on data sources that include rural household energy use, population, and per capita
income. By “rural household energy use,” we refer in this paper to the quantities of biomass
fuels (e.g., firewood, straw, and biogas), coal, electricity, and commercial gas fuels (e.g.,
LPG and natural gas) used by rural households for ends such as cooking, space heating and
cooling, lighting, and entertaining. Other energy sources that have not been widely used in

rural China, such as dung and solar, are not included in this study.?

2According to data from the third-round China Agricultural Census (CAC), the proportion of rural
households utilizing solar energy as their primary energy source was only 0.2% in 2016, while the usage of
other sources (including yak dung) stood at 0.5%. Tibet exhibited the highest utilization rates for these
energy sources (solar: 1.2%, other: 48.3%), but we were unable to include it in the main analysis due to
data availability constraints (refer to the footnote in the Data section below).
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Our primary energy use data are from the China Energy Statistical Yearbook (CESY).
It reports the energy use based on a top-down statistical method that starts with a high-
level estimate of the total energy consumption of each energy type and then breaks it down
into specific provinces and sectors. CESY focuses on commercially provided energy.® Exist-
ing studies note that biomass fuels, which are usually sourced locally by rural households,
are often ignored or severely underestimated in the CESY. And while CESY data includes
province-level rural household biomass fuel data based on a bottom-up? statistical method
from the China Rural Statistics Report (CRSR, published by the Chinese Ministry of Agri-
culture between 1991 and 2007 and missing values for 1992-1994 and 1997), neither CESY
nor CRSR have published province-level biomass fuel data past 2008. This has left a consid-
erable gap in data coverage. To reflect the most current fuel use, we adopted datasets from
two research reports: the China Building and Energy Saving Annual Report (CBESAR) for
2014 and 2018 (Building Energy Conversation Research Center, 2016, 2020) and the Typi-
cal Rural Energy Model (TREM) for 2015, published by Ministry of Agriculture and Rural
Affairs as the supplement to the administrative data (Station of Agricultural Ecology and
Resource Conservation, 2019).

We adopted different data strategies for the nation- and province-level analysis for our
distinct research purposes. Our nation-level analysis emphasizes the temporal variation of
various energy uses. We keep energy types consistent across years from the same data source.
That is, the commercial energy data used for nation-level analysis, as well as the biomass
fuel data up to 2008, are all obtained from CESY. As for the province-level analysis, the
key indicator is the share of clean energy in total energy consumption. To guarantee the
comparability of energy types for a province in a year, we adopted the data for a year
of each province from the same source. Since the CESY has missing provincial data for

several years prior to 2000, our data prior to 2000 for province-level analysis are uniformly

derived from CRSR. The data after 2008 are from CBESAR and TREM. To further discuss

3By “commercial energy,” we refer in this paper to the energy that rural households purchase from the
market, which includes coal, electricity, and commercial gas fuels.

4The county agricultural bureaus collect data from rural households using field measurements and sample
surveys, which are then reported to higher levels of agricultural administrative units in a cascading manner.
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energy transition from the perspective of energy structure change, we include the number
of rural households that rely on different fuels as their main domestic fuel source in each
province from the first (1996) and third (2016) rounds of the China Agricultural Census
(CAC) (National Bureau of Statistics of China, 1996, 2016b).> The original data from
CESY, CRSR, CBESAR, and TREM can be found in hard copies.® We manually entered
these raw data to form a database for analysis. Table 2.1 shows the data sources used in the

analysis to follow.

Table 2.1: Data source of nation-level and province-level analysis. Due to the data

constrains, Tibet, Hongkong, Macau, and Taiwan do not within the scope of this study.

Year Nation-level Analysis Province-level Analysis

1991-1999 CESY CRSR

2000-2007 CESY CESY

2014 & 2018 CESY (commercial energy), CBESAR
CBESAR (biomass fuels)

2015 CESY (commercial energy), TERM

TERM (biomass fuels)

The province-level rural population and per capita income for each year are obtained
from the webpage of the National Bureau of Statistics (National Bureau of Statistics of
China, 2024).

To better contextualize our analysis, we situate our province-level analysis within the
framework of China’s rural domestic energy use zones. This zoning approach considers
various factors such as climatic conditions, resource endowments, living habits, and socio-
economic development levels, and groups the 31 provinces/municipalities of mainland China
into seven distinct energy use zones, as indicated by the different colors in Figure 2.1.
Provinces within the same zone exhibit similar rural energy usage patterns, whereas there
is significant variability across zones. One notable fact about household energy use in rural

China is that households in extreme cold and cold zone provinces tend to consume more

®The digital version of the first round CAC data can be found on website of China Statistics Bureau
(1996). Currently, the third round of CAC data are only available in the hard copy version.

6China’s economic and social big data research platform provides a digital version of the CESY and
CRSR (China’s economic and social big data research platform, 2024).
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energy for space heating during the winter months, which generally span from November to
April the following year. Additional detail on energy use zones differences in area, popula-

tion, climate, and biomass resource use can be found in Appendix A.1.

China Rural Domestic Energy Use Zone

Heilongjiang

Xinjiang

Qinghai China Climate Area

s o 5 I Extreme Cold-Northeast
[ Extreme Cold-Northwest
[ Cold-North
[ Cold-Tibet Plateau
[ Cold Winter-Yangtze Plain
[ Warm Winter-South

S G [ Mild-Southwest

s [
Figure 2.1: Seven rural domestic energy use zones in mainland China. The
zoning method uses a layer overlay approach by integrating China’s Agricultural Climate
Zoning, Building Climate Planning, China Rural Energy Comprehensive Zoning, and Rural
Renewable Energy Zoning. In the extremely cold zones, the average temperature is usually
below —10°C in the coldest month, and there are generally more than 145 days with a daily
average temperature below 5°C; in the cold zones, the average temperature in the coldest
month is between 0 and 10°C and days with a daily average temperature below 5°C is

generally between 90 and 145 days.

2.2.2 Methods

To examine the temporal trends and characteristics of the BAU energy transition among
rural households in China, we begin by exploring the relationship between rising per capita
income and the share of clean energy used by rural households (as a proportion of their total
energy consumption) through a two-way fixed effects model. Following this, we employ an

Autoregressive Integrated Moving Average Model (ARIMA) to forecast the future trend of
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BAU energy transition in rural China until 2050, based on historical trends, without any

additional interventions imposed.

2.2.2.1 Two-way fixed effects model

The majority of studies in this area use a discrete choice model (e.g., binary logit or multi-
nomial probit model) to discuss factors related to rural household energy choice based on
household-level survey data (Paudel et al., 2018; Takama et al., 2012; Wu & Zheng, 2022).
Studies based on macro data have used stepwise multiple linear regression (Tao et al., 2018),
double-hurdle (Shen et al., 2022), logarithmic mean Divisia index (M. Zhang & Guo, 2013),
dynamic panel data (Han et al., 2018), and vector error correction models (Hao et al., 2018)
to explore the factors related to rural energy consumption and transition. We use a two-way
fixed effects model to estimate the correlation of per capita income growth on the BAU
energy transition of provinces in the different energy use zones. The two-way fixed effects
model has commonly been used for causal inference with panel data (Imai & Kim, 2021).
Here we use a simple two-way fixed effects model to address bias caused by possible unit-
and time-invariant unobservable factors. We include two fixed effects terms for province and

year. Equation 2.1 shows the two-way fixed effects model we use in this study:

Share; ; , = B,Income;; , + Province; , + Year; + €, (2.1)

where the dependent variable Share;, , is the percentage of clean energy in total rural do-
mestic energy consumption for province ¢ in energy use zone z and year ¢, the independent
variable Income;; , is the rural per capita income for province 7 in energy use zone z and
year ¢ (unit: 1,000 RMB), Province; . is the fixed effect term for province ¢ in energy use
zone z, Year, is the fixed effect term for year ¢, and ¢;, . is the error term. The coefficient
B, represents the share of clean energy changes associated with a 1,000 RMB increase in

rural per capita income for energy use zone z. The coefficient 3, is calculated using the
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within estimation. We conduct this regression analysis separately for each domestic energy
use zone.

Share; ;" is the clean energy fraction, defined in Equation 2.2:

C’clean o CVgas + Celec
C’total C’Coal + Cbiomass + Cgas + C’elec

Share; ; , = (2.2)

where the Ciean, Crotal; Cgass Celec,; Ceoals Cbiomass represents the consumption of clean energy,

total energy, gas fuels, electricity, coal products, and biomass fuels, respectively.

2.2.2.2 Autoregressive integrated moving average (ARIMA) model

Examining the historical association between income and the BAU shift towards energy
sources prior to any policy intervention allows us to predict how an energy transition would
have played out in the absence of such a policy. Predicting the trajectory of the BAU
transitions provides a counterfactual scenario by which we can judge the effectiveness of
attempts to accelerate the process. Among methods for developing such predictions, three
commonly employed methods are regression-based formulation, artificial neural networks,
and time series models (Kuster et al., 2017). In particular, time series models (e.g., ARIMA)
perform well for medium and long-term predictions (Q. Wang et al., 2018).

We use an ARIMA model to predict the BAU rural household energy transition for
provinces in different energy use zones in the future. One advantage of ARIMA is that it only
requires the past values of the predicted variable itself (share of clean energy in this study),
without resorting to exogenous variables (e.g., indicators such as economic development and
energy prices) to carry out prediction (Q. Wang et al., 2018). An ARIMA(p,d, q¢) model
incorporates differencing, autoregression, and moving average models as shown in Equation

2.3:

Yp=ct oyt Oy, t 06+ e e (2.3)

7All energy consumption in Equation 2.2 and are converted to their coal equivalent; detailed estimates
are provided in Appendix A.2.
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In Equation 2.3, y; on the left side is the differenced series which is the change between
consecutive observations in the original series. Differencing helps stabilize the mean of a
time series. The degree of differencing (d) specifies the number of times the data have been
differenced in the ARIMA(p,d, q) model. For example, in an ARIMA(p, 1,¢) model where
d=1,y; =y —y:—1; in an ARIMA(p, 2, q) model where d = 2, y; = (y+ — Y1) — (Yt—1 — Yt—2)-
In practice, it is almost never necessary to go beyond second-order differences (d < 2)
(Hyndman & Athanasopoulos, 2018).

The “predictors” on the right side include both lagged values of 3, and lagged errors. The
autoregression model (¢1y;_; + -+ + ¢py;_,) predicts the future energy transition based on
the lagged values of clean energy share. The order p in the ARIMA(p, d, ¢) model indicates
that the lagged values (y;) of the previous p years are included in the autoregression model.
The moving average model (6161 + - - - +0,€,_,) predicts based on the lagged forecast errors
in a regression-like model. The order g in the ARIMA(p, d, ¢) model indicates that the lagged
forecast errors of ¢ previous years are included in the moving average model. ¢ is the mean
value of the time-series data and ¢, is the error term.

Different choices of the parameters (i.e., p, d, ¢) in the ARIMA(p, d, ¢) model represent
different possible models. We use the “auto.arima” function in the R “forecast” package
(Hyndman & Khandakar, 2008; Hyndman et al., 2018), which determines the optimal pa-
rameters (p, d, ¢) combining unit root tests, minimization of Corrected Akaike’s Information
Criterion (AICc) and Maximum Likelihood Estimation (MLE) after going through differ-
ent parameter combinations. See the Table A.4 in the Appendix for details on ARIMA
parameters for different energy use zones.

To prepare the data for ARIMA analysis, we addressed missing values in the share of
clean energy for each domestic energy use zone between 1994, 1997, and 20082014, which
are 14 missing values for Cold-Tibet Plateau zone (C-T) and 10 missing values for other
zones, using linear interpolation to replace missing values with the “imputeTS” package in

R (Moritz & Bartz-Beielstein, 2017).
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2.3 Results and Discussion

2.3.1 National level rural household energy transition in China

between 1991 and 2018

We begin by examining the historical trends in China’s rural domestic energy sector over the
past 30 years at the national level, as shown in Figure 2.2. In terms of energy consumption,
to prevent optimistic estimates of energy derived from the decrease in total solid fuels due
to rural depopulation accompanying urbanization, we have selected per capita consumption
as an indicator. Concurrently, this metric can capture shifts in the energy mix within
households, thereby offering insights into the health impacts of indoor air pollution. Figure
2.2(a) indicates a continuous increase in per capita energy consumption, reaching 600 kg coal
equivalent (kgce) in 2018, which is twice the amount consumed in 1996. The different colors
in the plot represent various energy sources and reflect the changes in the energy structure.
Notably, commercial energy (i.e., coal, electricity, LPG, and natural gas) consumption has
consistently risen over the past two decades, particularly clean energy (i.e., electricity, LPG,
and natural gas). Of these, electricity consumption has grown the fastest, reaching 325 kgce
per capita in 2018, which is twenty times the amount consumed in 1996. Electricity has
become the dominant source of domestic energy consumption, accounting for more than
50% of total energy consumption in 2018.

While gas consumption has increased tenfold in 20 years, it only accounts for about 5%
of energy consumption. LPG remains the most widely used gas fuel in rural China due
to its efficiency, ease of transport, and affordability. Other gas fuel types, such as natural
gas and biogas, are not as popular due to resource shortages and transmission constraints
(Economides & Wang, 2010). Over the past 20 years, while commercial energy consumption
has been growing rapidly, the share of coal in China’s rural domestic energy mix has remained
low at around 15%. This is primarily because household coal consumption is concentrated

in a few provinces in North China and is mainly used for space heating (Wu et al., 2019).
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Rural Energy Transition in China 1991-2018
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Figure 2.2: Rural household energy transition in China 1991-2018. Each arrow
in Figure 2.2(b) represents the change in these three dimensions (i.e., Biomass, Coal, and
Clean) over a specific timeframe (usually one to several years, based on data availability).
These arrows depict the starting and ending points, with the former showing the share of
each energy type in total consumption at the period’s beginning and the latter indicating
the share at the end. The employed color scheme further categorizes these changes into three
identified transition phases: Phase 1 (gray), Phase 2 (orange), and Phase 3 (green). The
red dot and red dashed lines are to guide interpretation, i.e., to obtain the proportions of
Biomass, Coal, and Clean corresponding to any given arrow. For instance, the red dot in
the figure represents the proportion of Biomass, Coal, and Clean for 10%, 30%, and 60%,

respectively.

Contrary to the rapid growth of commercial energy in the last two decades, the per capita
consumption of biomass fuels has continued to decline. The consumption of firewood and
straw was 122 and 194 kgce in 1991; their consumption reduced to 109 and 59 kgce in 2018,
respectively. The decline in the consumption of biomass fuels is mainly due to the substantial
decrease in straw. In contrast, the absolute value of per capita firewood consumption has
remained stable for thirty years. The share of biomass fuels in per capita energy consumption

has dropped from over 80% in the 1990s to only about 25%.
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The ternary plot (Figure 2.2(b)) reflects the evolution of China’s rural energy mix over
the last three decades. The arrows indicate the direction of the transition, which has moved
from solid fuels (coal and biomass fuels) to cleaner energy (gas and electricity). The colors
of the arrows represent the three phases of the rural household energy transition from 1991
to 2018. We see that an early period, which we call Phase 1 (1991-2002), saw a slow
transition with almost no change in biomass (—1%), a minor decrease in coal (—6%), and
slight increases in clean energy (4+7%). Clean energy only contributed around 10% to rural
domestic energy consumption during this period. Phase 2 (2003-2015) was a “commercial
transition” period, with biomass fuels decreasing by 44% and a rapid increase in commercial
energy. The popularity of clean energy, specifically electricity, drove this transition. The
share of coal in the rural domestic energy mix only increased by about 8% during this
period. Phase 3 (2015-2018) was a “clean transition” period. Around 2012, the Chinese
government turned more attention to combating air pollution, specifically PMs 5 pollution,
leading to a number of energy transition programs for rural households that began in 2015.
These programs, such as the “coal to electricity” and “coal to natural gas” projects in the
North China Plain and the Fenwei Plain, were localized but had a national impact. In only
three years, the share of biomass fuels and coal reduced by 10% and 5%, respectively.

The figure also shows the acceleration of the energy transition rate in China’s rural
household sector. From 1991 to 2015, with no significant intervention project, the transition
to clean energy progressed by only 5% in the first decade and about 40% in the second
decade. The question now is whether this trend will continue at a sustained and rapid pace

or encounter bottlenecks, which we will explore in the following sections.

2.3.2 Provincial level rural household energy transition in China

In the previous section, we discussed the temporal trends in the energy transition of rural
households at the national level. This section investigates geographic differences in that

overall picture.
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Figure 2.3(a) illustrates the energy transition at the province level located in different
energy use zones from 1991 to 2015. The two red dotted lines in the figure provide a reference
for the degree of energy transition. At the base of the arrows, representing the year 1991,
there are significant differences between provinces in per capita total energy consumption.
For instance, provinces in the Extreme Cold-Northeast zone (EC-NE) have a per capita
consumption of solid fuels that is over 500 kgce, approximately double that of provinces in
other zones, while per capita clean energy consumption is less than 50 kgce in almost all
provinces. Between 1991 and 2015, most provinces witnessed an increase in per capita energy
consumption accompanied by a decrease in solid fuel consumption, as indicated by the heads
of the arrows. Per capita consumption of solid fuels only increased in four provinces in 2015,
namely Heilongjiang, Jilin, Hainan, and Hebei, with two provinces in the EC-NE showing
significantly larger increases.

Per capita clean energy consumption increased in all provinces compared with 1991,
particularly in the Cold Winter-Yangtze Plain zone (CW-YP) and Warm Winter-South zones
(WW-S), where clean energy consumption per capita exceeded 200 kgce in Zhejiang and
Guangdong in 2015. In 1991, the share of clean energy in rural domestic energy consumption
was far below 20% in all provinces. However, compared with 1991, this share increased in
all provinces, especially for provinces in CW-YP and WW-S, where it exceeded 50%. In
contrast, the share of clean energy is still lower than 20% for all provinces in EC-NE and
most in EC-NW in 2015.

The extent to which the share of clean energy has increased varies greatly across different
regions, as indicated by the positions of the arrow ends in Figure 2.3(a). The provinces
with the highest and lowest transition degrees between 1991 and 2015 are highlighted with
yellow and green text labels, respectively. Notably, the four provinces (Zhejiang, Fujian,
Guangdong, and Hainan) with the highest transition degree are located in the CW-YP and
WW-S zones, while the four provinces (Jilin, Heilongjiang, Liaoning, and Gansu) with the
lowest degree are situated in the Extreme Cold zones, where intense winter space heating

demands limit energy transition. Consequently, the clean energy transition on a national
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level has been primarily driven by the progress in WW-S and CW-YP provinces, while the
transition in EC-NE and EC-NW provinces has remained largely stagnant for decades.

Rural Household Energy Transition of Provinces 1991-2015 Proportion of Rural Household with Major Domestic Fuel
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Figure 2.3: Province-level rural household energy transition 1991-2015. Each
arrow in Figure 2.3(a) only represents the situation in 1991 and 2015, respectively. The
arrows do not indicate any intermediate years between 1991 and 2015. The pie charts within
Figure 2.3(b) show the share of rural households’ main source of domestic fuels, which is
obtained by dividing the number of households by their primary source of domestic fuel
by the total number of registered households in each province. “Other” in Figure 2.3(b) is
the proportion of households using solar energy and yak dung, etc., as their main source
of domestic energy source. All proportions were calculated based on the household number

after removing households who reported electricity as their primary source.

We use two maps, shown as Figure 2.3(b), to further show the energy transition in major
household fuel at the provincial level. These two maps are based on CAC data.® The upper

figure in Figure 2.3(b) shows that biomass fuel was the dominant fuel for rural households

8To keep the consistency of these two rounds of data, we did not include the number of households that
use electricity as their major energy source since that was only reported in 2016 data.
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in most provinces in 1996, especially for provinces in EC-NE and WW-S. For Hainan and
Guangxi in WW-S, over 95% of rural households took biomass as their primary domestic fuel
in 1996. Only in a few provinces, over 50% of households took coal as the primary domestic
fuel like Shanxi, Ningxia, and Guizhou, which have rich coal resources. A particular case
is Shanghai, which has few rural residents and higher socioeconomic status on average;
about 66% of its rural households used gas fuel as their primary domestic fuel even in 1996.
The bottom figure in Figure 2.3(b) shows the share of rural households relying on different
domestic fuels for provinces in 2016. The primary domestic fuel of each province has changed
considerably; meanwhile, this change varies geographically. Gas fuel has been the primary
domestic fuel for most rural households in southeastern provinces in WW-S and CW-YP.
In a few WW-S and CW-YP provinces in southwestern China, like Chongqing and Yunnan,
even though over half of rural households still use biomass as their major domestic fuel, the
proportion of households that mainly use gas fuels has reached almost 40%. There is also
a greater share of households that use gas fuels as their primary fuel in EC-NW and Cold-
North zone (C-N) provinces; the share of rural households that use coal as their major fuel
also increases significantly in these provinces. Compared with 1996, coal replaced biomass
as the most common fuel in EC-NW provinces except Shaanxi in 2016. As we previously
discussed, the pace of energy transition in EC-NE provinces is slow. The share of rural
households that take solid fuel gas as primary fuel is still 82%, 83%, and 92% in provinces
Liaoning, Jilin, and Heilongjiang, respectively. A notable observation is the prevalence of
electricity as a primary energy source among rural households, a factor not included in our
analysis due to data consistency concerns. According to the third-round CAC data, 59% of
rural Chinese households rely on electricity as one of their primary domestic energy sources
in 2016, with usage rates varying from 3% in Xinjiang to as high as 88% in Guizhou.’

This section delved into the energy transition of rural households at the provincial level,
examining both the quantity and structure of the transition. The significant regional dispar-

ities between provinces with and without heating demand suggest a higher dependence on

9Please refer to Figure A.1 in the appendix, the map illustrating the complete third-round census data
on the “proportion of rural households with primary domestic energy sources,” including electricity.
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solid fuels for heating compared to cooking. As a result, the shift towards clean energy in C
and EC zones poses greater challenges. Moreover, these regional disparities also foreshadow
potential bottlenecks in the nationwide energy transition, as provinces in the EC and C

zones may stall after the warmer provinces have completed their transitions.

2.3.3 Role of income in the rural household BAU energy transition

Apart from the climatic conditions and corresponding energy needs mentioned above, house-
hold income is widely recognized as a critical determinant of the energy transition, clean
energy adoption, and suspension of solid fuel use in existing studies (Guta et al., 2022; Lewis
& Pattanayak, 2012). With more advanced fuels offering benefits such as time-saving, bet-
ter living conditions, and improved health, households gravitate toward improved fuels once
increased income expands their choice set on energy sources. In this section, we examine the
relationship between per capita income and rural household energy transition in different
domestic energy use zones. Our analysis provides insights into whether we can expect a
BAU energy transition in the near future, given the historically high income growth rate of
around 10% per year in rural China.

Figure 2.4 summarizes the regression results from the two-way fixed effect model estimat-
ing the role of per capita income in rural household energy transition. As shown in Figure
2.4, per capita income generally plays a more critical role in rural household energy transi-
tion for provinces without space heating needs in winter, especially for M-SW and WW-S
provinces. Every 1,000 RMB increase in per capita income is associated with about 11% and
5% increase in the share of clean energy in M-SW and WW-S provinces, respectively. The
greater effect size of these coefficients suggests an optimistic scenario of BAU transition in
provinces in these two zones. However, it seems relying on income growth to achieve BAU
energy transition would present a bleak prospect for provinces with space heating needs. In
these provinces yearly low temperatures between —20°C and —10°C and moderate heating
demands (C-N and C-T), a per capita income increase of 1,000 RMB is only correlated with

a modest increase of 0.60-0.77% in clean energy share. In EC provinces with lowest tem-
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peratures below —20°C and intensive heating demands, the magnitude of correlation further
decreases to approximately zero or even negative. The negative confidence interval for EC-
NE can be attributed to the significant heating demand and the traditional heating method
of burning solid fuels, such as the kang, in this zone. As income increases, households tend
to use more solid fuels to achieve better heating effects. As a result, the proportion of clean
energy decreases with rising income, as solid fuel consumption increases faster than that of
clean energy. In other words, within the income range covered in this study, the income

effect on solid fuel demand is greater than the substitution effect towards clean energy.
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Figure 2.4: Coefficients and confidence intervals of two-way fixed effects model.
The sample used in this study is an unbalanced panel of provinces. To report our findings, we
have listed the estimations of coefficients and 95% confidence intervals in descending order
of the winter 2018 minimum temperatures in each domestic energy use zone. The confidence

intervals are based on robust standard errors. We detail the regression results in Appendix
A.3.
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It is worth noting that in most regression models we analyzed, the R? value is less than
0.1, indicating that per capita income explains only a minor portion of the BAU energy
transition in most provinces. Considering the time-sensitive nature of policy objectives and
the current low share of clean energy, the small coefficients in zones with space heating
needs suggest that intervention programs will be necessary to accelerate the transition in

those provinces.

2.3.4 Timelines of BAU energy transition

In the previous section, we discussed the role of per capita income growth in the rural
household BAU energy transition. Based on our results, it appears to be hard for provinces
with space heating needs in rural areas to achieve energy transition solely relying on income
growth. The Chinese government has set up a series of environmental and climatic targets to
“reach carbon peak in 2030, globally reach the air quality target in 2035, and achieve carbon
neutrality in 2060” (Shi et al., 2021). Nevertheless, trajectory the advancement of the social
economy and the widespread adoption of commercial energy sources, China’s rural residential
coal consumption surged from 69 million tons in 1985 to 73 million tons in 2015 (National
Bureau of Statistics of China, 2016a; Zhao et al., 2022). This poses a serious challenge to
the achievement of carbon emissions and air quality objectives. Therefore, achieving a rural
household energy transition, especially a reduction in total coal consumption, in a shorter
period is necessary. As a final way to set up a counterfactual of a world in which no policies
were enacted, we predict the timeline for transition in different energy use zones based on
their historical pre-policy implementation trends.

Figure 2.5 shows the predicted energy transition for different energy use zones from 2018
(2014 for C-N) to 2050, using predictions from the ARIMA models based on historical trends
beginning in the early 1990s. The dotted lines and shaded areas in the figure represent the
BAU scenario, which indicates the share of clean energy without intervention. As our previ-
ous findings suggest, provinces in WW-S, CW-YP, and M-SW which do not require intensive

space heating would have expected to complete a full energy transition earlier. According to
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the prediction results, provinces in CW-YP and WW-S regions would have achieved complete
energy transition in rural households before 2050. Even under the conservative estimates of
the 95% confidence interval, the share of clean energy in these two areas would have reached
about 80%. Although energy transition in M-SW provinces would have occurred a bit later,
it has shown a fast pace in recent years, which may have put it on a path toward an estimated
share of clean energy of around 80% in 2050. In optimistic estimates, all provinces without

intensive space heating demands are likely to complete rural household energy transition.
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Figure 2.5: Predicted timeline of BAU rural energy transition. The ARIMA(p, d, q)
model predicts rural household energy transitions separately for different domestic use zones
in the coming decades, using different parameters. The flat dotted lines in EC-NE and C-T

indicate that no significant temporal patterns were identified in these regions.
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However, for provinces in EC and C zones that require intensive space heating, only
those in C-N would have been expected to make measurable progress in the coming decades,
perhaps approaching around 70% by 2050. This may be attributed to several factors, in-
cluding mild space heating needs compared to other EC and C-T provinces, households
being more affluent, and administrative pressure caused by severe air pollution in the area
(which spurred several small-scale energy interventions in the recent decade like the “Send-
ing LPG to Villages (i~ £)” program in Beijing). The transition to clean energy in
rural households across the EC provinces, especially EC-NE, would have been prolonged
into the coming decades. Even under an optimistic scenario, the proportion of clean energy
in the EC-NE areas is forecasted to remain below 20% by 2050 (at the high end of 95%
confidence interval). Unfortunately, the provinces in C-T have the least favorable outlook.
Limited infrastructure and unfavorable topography make it challenging to transport clean
energy to the region, while low incomes make it difficult for households to afford advanced
clean energy. These factors are slowing down the pace of the energy transition, with the
proportion of clean energy likely to be less than 20% in 2050. These findings highlight the
uneven distribution of energy transition progress across different zones, and suggest urgent
interventions are needed, particularly in provinces with high space heating demands, to meet
the air quality and climate change goals within the government’s announced timeframe.

In 2015, the Beijing-Tianjin-Hebei area, a region with some of the worst air pollution
in the world, implemented a large-scale Clean Heating Policy to promote rural household
energy transition. Figure 2.6 compares the share of clean energy in the rural household sector
between the predicted transition, from the ARIMA results, and observed values in 2018 to
illustrate the potential effects of the heating energy intervention on the energy transition in
C-N. The observed clean energy share in Beijing, Tianjin, and Hebei (shown as red triangles)
was about 40%, 40%, and 27% higher than the predicted values, respectively. In contrast,
the observed values in the other three provinces in C-N (Shanxi, Henan, and Shandong)
without large-scale interventions were similar to the predicted values. These results indicate

that the heating intervention may have a significant impact on promoting clean energy in
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the Beijing-Tianjin-Hebei area. Overall, these findings suggest that large-scale interventions,
such as the Clean Heating Policy, may be necessary to accelerate the energy transition in
highly polluted regions.

From a timeline perspective, the Clean Heating Policy has advanced the energy transition
by at least 10 years for Beijing, Tianjin, and Hebei compared to the high end of the 95%
confidence interval. Even though there are many debates about the program like increased
financial burden to households from increased electricity expenditures and energy supply
shortages from increased demand on the grid, the Clean Heating Policy has shown great
effectiveness in driving an energy transition in the rural household sector (Hu, 2021). These
results suggest the great potential for interventions to replace the burning of solid fuels for

heating through clean energy in driving the rural household energy transition in EC and C

provinces.
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Figure 2.6: Predicted timeline of BAU rural energy transition for C-N provinces.
The ARIMA(p, d, ¢) model predicts rural household energy transitions separately for different
provinces, using different parameters. The flat dotted lines of Tianjin and Shanxi provinces
indicate no significant temporal patterns, mainly due to the great fluctuation identified in

these provinces.
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2.3.5 Discussion

The household energy transition is crucial for sustainable development in the developing
world. However, the scarcity of high-quality statistical data on rural household energy use,
particularly in China, has severely impeded research in this area (Niu et al., 2019). Several is-
sues plague China’s statistical data on rural household energy use. Firstly, non-commercial
energy sources are omitted. The two primary data sources, the China Energy Statistical
Yearbook and the China Rural Statistics Report, ceased publishing biomass fuel consump-
tion quantities after 2008. Furthermore, energy sources like yak dung and solar energy,
prevalent in northwestern provinces such as Tibet, Xinjiang, and Qinghai, have never been
included in these datasets (Fang & Wei, 2013; Rhode et al., 2007). Consequently, there
is limited understanding of these non-commercial energy sources and their roles in energy
transition within these provinces. Secondly, there is no distinction between energy activi-
ties. Previous studies have highlighted significant disparities in energy use and transition
patterns for cooking and space heating (Shen et al., 2022; Tao et al., 2018). However, ex-
isting administrative statistics fail to differentiate energy consumption quantities between
these activities. To address this issue, we conducted our analysis within the context of the
China Rural Domestic Energy Use Zone, aiming to provide indirect insights into the energy
transition of different activities. Although datasets such as the WHO’s Household Energy
Dataset cover relatively long-time scales and differentiate between cooking and heating en-
ergy consumption, their sample representativeness could be improved. Thirdly, there is
inconsistency in energy indicators. Across the three rounds of the Chinese rural censuses, in-
dicators of domestic energy use varied. The first round excluded electricity as an option, the
second round reported primary and secondary cooking, as well as space heating and cooling
energy separately, while the third round returned to the primary domestic energy source but
also allowed households to select up to two energy sources, including electricity. Such incon-
sistency severely impedes temporal analysis using census data. Given these challenges with

administrative statistics, which are difficult to resolve in the short term, long-term scales
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based on representative extensive sample survey data will continue to play an essential role
in this field.

To address the challenge of data scarcity, we integrated all publicly available admin-
istrative statistics along with data from research reports. Despite employing flexible data
strategies in various analyses to improve data comparability, the complexity of data sources
inevitably introduced uncertainty into our results. However, reassuringly, our diverse data
sources exhibited no significant discrepancies in magnitude, with observed past trends align-
ing with existing studies (Han et al., 2018; Niu et al., 2019; L. Zhang et al., 2009). Neverthe-
less, this uncertainty regarding historical trends inherently influences our future predictions.
Therefore, alongside point estimates, we provide 80% and a more conservative 95% confi-
dence interval. However, it is important to acknowledge that the simple time-series method
used for future predictions based on past data also carries its uncertainties, particularly when
dealing with limited data, as seen in our C-N six-province forecasts. The imperfect differ-
ences in data from different sources result in notably wide confidence intervals; therefore,

caution must be exercised in interpreting the results of future predictions.

2.4 Conclusion

China’s rural household sector has made significant progress toward clean energy over the
past three decades, particularly in the last decade. However, the transition has been uneven
across regions, with the Extreme Cold (EC) and Cold (C) zone provinces lagging behind the
southern provinces. This disparity underscores the challenge of transitioning energy use for
space heating purposes. Our regression analysis suggests that achieving a complete tran-
sition in the short term based solely on general economic development may be unrealistic
for EC provinces. This means that without outside investment and policy intervention, the
environmental, health, climate, and development issues caused by solid fuel combustion will
continue to persist in these provinces. The Clean Heating Policy in Beijing, Tianjin, and

Hebei has demonstrated significant potential to drive the energy transition in EC and C
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provinces. These interventions highlight the importance of investing in clean energy infras-
tructure and implementing large-scale policies to accelerate the transition in heavily polluted
regions. In conclusion, the uneven transition across regions highlights the urgent need for
continued efforts in implementing effective policy interventions for space heating. For China
to meet its promised timeline and ambitious air quality and climate mitigation goals, it is

crucial to accelerate the transition to clean energy in heavily polluted regions.
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Bridging text

Through a series of quantitative analyses of administrative statistics on rural household
energy consumption in China, Chapter 2 highlights the significant challenges associated
with the “business as usual” approach to the energy transition of household space heating in
rural northern China. A natural transition would result in the share of clean energy for most
provinces in northern China, which have intensive winter space heating needs, remaining
below 50% in 2050. Therefore, this underscores the necessity and effectiveness of large-
scale incentives, such as the Clean Heating Policy, in promoting the rural heating energy
transition.

Not only in China, but also in many developing countries, interventions are being imple-
mented to promote the transformation of household energy, focusing on clean cooking energy
and access to electricity. Examples include the “Pradhan Mantri Ujjwala Yojana Program”
in India and the “Solar Home System Program” in Bangladesh. An evaluation of the im-
pacts of the interventions will provide valuable lessons for further promoting sustainable
development in the global household energy transition.

Given that modern energy sources are more expensive than solid fuels and considering
the low income levels of rural households who bear the transition costs, the following chapter
examines how the Clean Heating Policy impacts their energy expenditures and space heating,
and whether it has led to energy poverty. In Chapter 3, we employ the difference-in-
differences method to provide empirical evidence on the impact of the Clean Heating Policy
on energy poverty based on the field survey data collected from over 1,000 households in

Beijing between 2018 and 2022.
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Chapter 3

Expenditure versus comfort:
distributional impacts on household
space heating energy transition

program in rural China

This chapter is being prepared for submission to a journal as: Xiang Zhang, Christopher
P. Barrington-Leigh, Brian E. Robinson et al., “Expenditure versus comfort: distributional

impacts on household space heating energy transition program in rural China.”
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Abstract

The unaffordability of essential energy services, often termed “energy poverty,” poses a sig-
nificant challenge during the transition from solid fuels to more expensive modern energy
sources. We present quasi-experimental evidence of the impacts of household energy transi-
tion on energy poverty by leveraging a natural experiment: the staggered implementation of
the Clean Heating Policy in rural northern China. Between 2017 and 2021, over 36.3 million
rural households were prohibited from using coal and were offered subsidies to offset the costs
associated with adopting modern energy sources, such as electricity or natural gas, and ac-
quiring necessary heating equipment. Our analysis utilizes field survey data on economic and
physical measures of energy poverty from over 1,000 rural households, collected around the
years of the Clean Heating Policy implementation in Beijing. We employed a difference-in-
differences identification strategy to assess the program’s effects. Our findings indicate that,
under the government’s generous subsidy scheme, despite a 14% average increase in winter
energy expenditure, there was a notable improvement in space heating quality, as evidenced
by indoor temperature, the proportion of the house heated, and heating duration. However,
the financial burden was more pronounced for households in high-altitude villages, those with
poorer prior heating infrastructure, and those with lower wealth. A straightforward calcula-
tion suggests that the majority response of “paying slightly more for significantly improved

heating comfort” would have been radically different with lower government subsidies.
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3.1 Introduction

Approximately 3 billion people, predominantly among the world’s poorest, continue to rely
on burning solid fuels such as wood, animal dung, and coal in inefficient and polluting
stoves for cooking and space heating (WHO, 2014). Household air pollution from these fuels
represents a major environmental health risk, contributing to approximately 2.3 million
deaths worldwide in 2019 (95% Confidence Interval (CI): 1.6-3.1 million) and ranking as a
top contributor to disability-adjusted life-years (DALYs) in low- and middle-income countries
(Global Burden of Disease Collaborative Network, 2020; Lee et al., 2020). Beyond the health
impacts, reliance on solid fuels hinders development by reducing labor participation among
women and limiting educational opportunities for children (Biswas & Das, 2022; M. Li &
Zhou, 2023). Transitioning to modern energy sources, such as electricity and gas fuels,
is essential to mitigate these adverse effects and promote sustainable development. This
transition is a key aspect of Sustainable Development Goal 7, which aims to ensure access to
affordable, reliable, sustainable, and modern energy for all by 2030 (Salvia & Brandli, 2020).

Households’ decision to transition to modern energy sources is influenced by a complex
mix of a complex mix of exogenous (external conditions) and endogenous (household char-
acteristics) factors (Kowsari & Zerriffi, 2011). Exogenous factors, such as the physical envi-
ronment, energy supply conditions, policies, and available technologies, significantly affect
the accessibility and affordability of modern energy options. For example, urban households
and those in milder climates often transition to modern energy more easily, whereas ru-
ral households and those in colder regions with higher heating needs face more substantial
barriers (Das et al., 2014; Pachauri & Jiang, 2008; Shen et al., 2022). Challenges such as
unreliable energy supplies and inadequate infrastructure further complicate the transition,
perpetuating dependence on traditional fuels (Masera et al., 2000; Mensah & Adu, 2015;
Van der Kroon et al., 2013). On the other hand, endogenous factors mostly influence energy
choices through household capabilities and preferences. A substantial body of literature has

discussed how financial status (e.g., income), education level, family size, age, gender struc-
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ture, and lifestyle habits relate to household energy transition (Guta et al., 2022; Han et al.,
2018; Lewis & Pattanayak, 2012; Liao et al., 2021).

Despite gradual progress in household energy transitions across developing countries,
driven by enhanced energy access and economic growth, the pace of change remains too slow
to achieve climate and sustainable development goals (IEA et al., 2023; X. Zhang et al.,
2024). In response, many developing nations have launched large-scale household energy
intervention projects (IEA et al., 2021; Quinn et al., 2018). Noteworthy initiatives include
India’s “Pradhan Mantri Ujjwala Yojana Program,” which provided 80 million free liquefied
petroleum gas (LPG) connections to promote clean cooking (Ranjan & Singh, 2020), and
Ecuador’s “Program for Energy Efficient Cooking,” offering consumer credit for induction
stove purchases and free electricity to over 670,000 households (Gould et al., 2018; Shankar
et al., 2020). However, programs specifically targeting clean heating remain limited (World
Health Organization, 2021). A significant exception is China’s Clean Heating Policy (K&}
A ZyE U ), launched in 2013, which has become the world’s largest effort to curtail coal
use for household heating (X. Zhang et al., 2019). From 2017 to 2021, the policy extended
to over 36.3 million rural households in northern China, with further expansion planned to
reach an additional 21 million households by 2025 (Dispersed Coal Management Research
Group, 2023). This government-led initiative employs a comprehensive strategy, including
banning coal supplies to rural areas and subsidizing both clean heating equipment and energy
costs. The transition primarily involves moving from coal-based to electric heating with air-
source heat pumps (Coal to Electricity (S H)), with a smaller segment adopting natural
gas heating systems (Coal to Natural Gas (JER)).

While these interventions are intended to speed up household energy transitions and
address environmental concerns, they also present challenges concerning safety, affordability,
and equitable access (Carley & Konisky, 2020; Feenstra & Clancy, 2020; Hu, 2021; C. Liu
& Wei, 2021; Wu et al., 2017). Modern energy sources, though cleaner, are generally more
expensive than traditional solid fuels, potentially making them unaffordable for low-income

households and exacerbating energy poverty (R. Ma et al., 2022; Nguyen et al., 2019). Energy
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poverty is defined as the inability to afford adequate space heating and other essential energy
services due to high costs (Healy & Clinch, 2004; Howden-Chapman et al., 2012).

The concept of energy poverty is often used interchangeably with fuel poverty in the
literature to describe concerns related to the deprivation of household energy consumption.
However, some studies distinguish between the two concepts based on their context of ap-
plication (developing vs. developed countries), recognition, driving forces, and expression
(Bouzarovski & Petrova, 2015). As K. Li et al. (2014) points out, some cold regions, such
as rural northern China, India, and Nepal, experience both energy poverty and fuel poverty
due to limited access to energy or advanced cooking and heating technologies, as well as
households there struggle to achieve adequate home heating at an affordable cost. Consid-
ering this reality, we adopt the more widely accepted term “energy poverty” in this paper
to represent the challenges that the Clean Heating Policy pose to rural households.

The measurement of energy poverty requires a multi-dimensional approach that consid-
ers economic factors, the adequacy of heating, and the specific needs of vulnerable groups
(Boardman, 2013, p. 23).

The economic measurement of energy poverty is commonly indicated by the proportion
of household income spent on energy (Aristondo & Onaindia, 2018; Hills, 2012; Moore,
2012; Nussbaumer et al., 2012; Okushima, 2017; Riva et al., 2024; Q. Wang et al., 2021).
Historically, the definition proposed by Boardman (1991), suggesting that households expe-
riencing energy poverty spend more than 10% of their income on energy, has been widely
accepted. This benchmark was derived from patterns observed among the lowest-income
30% of households in a 1988 UK survey (Liddell et al., 2012). Another commonly used
method for determining the energy poverty threshold is the “twice-median measure (2M),”
which defines households as experiencing energy poverty if their energy expenditure as a
share of income exceeds twice the median level within the population (Charlier & Legendre,
2021; Debanné et al., 2025; Isherwood & Hancock, 1979). Following the “2M” method, Xie
et al. (2022) rural households in Beijing and Hebei were considered to be in energy poverty

if their heating expenditure to income ratios exceeded 7.3% and 8.0%, respectively.
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Given the limitations of model simulations, which often simplify household energy con-
sumption and neglect the real-world financial constraints impacting fuel use behaviors, field
surveys are crucial for a thorough understanding of the economic effects of energy interven-
tions on energy poverty (Hutton et al., 2007; Jeuland et al., 2015; H. Liu & Mauzerall, 2020;
T. Ma et al., 2023; Pillarisetti et al., 2017; Zhao et al., 2021). For instance, M. Li et al.
(2021) employ a generalized Roy model to analyze data from 88 villages across 11 provinces
in China, spanning the years 2005 to 2008. They find that transitioning to LPG increased
household energy expenditures by 65-80%. Additionally, Xie et al. (2022) conducted a sur-
vey of approximately 4,500 rural households in Beijing and Hebei provinces. They estimated
that by the end of 2017, the implementation of the Coal to Electricity and Coal to Natural
Gas policies resulted in an increase of 46,300 and 353,300 households, respectively, falling
into energy poverty, as their heating expenditure-to-income ratios exceeded the established
energy poverty lines.

Defining energy poverty solely by the proportion of income spent on energy, has a sig-
nificant limitation: it overlooks the intricate balance between energy costs and the actual
fulfillment of energy needs. Vulnerable groups such as rural residents, low-income house-
holds, and the elderly face tough decisions amid rising fuel costs. Common coping strategies
include limiting heating to certain rooms or times, wearing extra clothing, or resorting to
less efficient and potentially harmful practices like burning biomass (Anderson et al., 2012;
Chard & Walker, 2016; Charlier & Legendre, 2019; Harrington et al., 2005; Mottaleb, 2021;
Wright, 2004). To capture a more comprehensive picture of energy poverty, it is essential
to incorporate indicators that measure space heating alongside economic measures (Moore,
2012).

Indoor temperature, for example, is a direct indicator of space heating adequacy and is
critical for physical and mental well-being, especially during winter (Al horr et al., 2016;
Janssen et al., 2023). The World Health Organization (WHO) recommends maintaining a
minimum indoor temperature of 18°C for general populations during the cold seasons (World

Health Organization, 2018). However, a survey in rural Chinese households showed that 40%
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of respondents felt cold or extremely cold during the day and 60% at night, indicating indoor
temperatures well below 15°C (Shan et al., 2015). Additional metrics like heating duration
and the proportion of homes with heating provide deeper insights into the complexities of
energy poverty (Boardman, 2013; Simcock & Walker, 2015). Our pilot study involved 302
rural households across three districts in Beijing and sought to explore the effects of the Coal
to FElectricity policy. By comparing cross-sectional data from households that received the
intervention to those that did not, Barrington-Leigh et al. (2019) find that households that
made the switch experienced improved heating outcomes, such as higher indoor temperatures
and longer heating durations. This occurred even though these households faced higher
energy expenditures during the heating season.

This paper provides empirical evidence on the impact of household energy transition on
energy poverty by addressing the following research questions. First, from both economic
and physical measurement perspectives, does the Clean Heating Policy, on average, alleviate
or exacerbate household energy poverty? Second, beyond these average impacts, how do
the effects persist over time? The impact of energy intervention programs on households
often varies considerably depending on socioeconomic factors and housing characteristics
(Andadari et al., 2014; Giuliano et al., 2020). Considering different household characteristics
and distributional effects, how does the impact of the Clean Heating Policy on energy poverty
vary across different household subgroups? To reduce the financial burden on households,
the government provides substantial subsidies on energy prices. If government subsidies were
to decrease in the future, how might this affect policy impacts?

We find that the Clean Heating Policy has a significant positive impact on rural house-
holds’ space heating in terms of indoor temperature, the number of rooms heated regularly,
and the average duration of heating, alongside a slight increase in winter expenditure. After
the implementation of the Clean Heating Policy, per capita winter energy expenditure in-
creased by approximately 180 RMB. The economic impacts are more pronounced for rural
households living in high-altitude villages; per capita winter energy expenditure increased

by approximately 208 RMB for every 100-meter increase in village altitude. The widespread
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adoption and expansion of the radiator system have significantly contributed to these im-
provements in space heating. Moreover, despite facing greater financial challenges, even less
wealthy households experienced enhanced thermal comfort following the implementation of
the Clean Heating Policy.

The remainder of the paper is organized as follows. In Section 3.2, we describe the
data regarding the study design, sampling strategy, and collection. Section 3.3 lays out the
identification strategy. Section 3.4 presents the baseline results, heterogeneity analysis and
robustness checks. Section 3.5 discusses potential impacts under different policy scenarios.

Finally, Section 3.6 concludes.

3.2 Data

In this section, we detail the study design, sampling strategy, and data collection methods

used to gather first-hand household survey data for our empirical analysis.

3.2.1 Background and study design

Our field research was conducted in Beijing, historically one of the world’s most air-polluted
regions and the initial site for the Clean Heating Policy (X. Zhang et al., 2019; Y.-L. Zhang
& Cao, 2015). In early 2013, during the heating season, Beijing faced a severe haze cri-
sis, with hourly PMy 5 levels sometimes exceeding 1,000 pg/m? — over 40 times the WHO
recommended limit (Q. Zhang et al., 2019). This critical situation led to the implementa-
tion of the 2013-2017 Clean Air Action Plan (JUR{TH 2013-2017 43528 S A78h1R)) in
September 2013, which enforced rigorous pollution control measures across various sectors.
A key element of this legislation was the Clean Heating Policy, aimed specifically at the rural
residential sector (H. Zhang et al., 2016).

Beijing’s heating season, lasting from November 15th to March 15th, experiences tem-
peratures that can plummet to around -15°C, necessitating significant heating efforts. In

rural areas, decentralized heating methods are prevalent, including the use of coal stoves
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with water radiator system, wood-burning kangs (brick beds heated by internal hot smoke),
and traditional coal stoves (Building Energy Research Centre at Tsinghua University, 2012;
X. Li et al., 2022; Zheng & Bu, 2018; Zhuang et al., 2009). According to official statis-
tics from 2012, before the Clean Heating Policy was initiated, approximately 2.86 million
rural residents consumed 2.1 million tonnes of coal in Beijing. However, these figures may
underestimate the actual consumption due to the Yearbook’s top-down approach to com-
piling energy balance statistics (Cheng et al., 2017). Empirical studies have estimated that
emissions from rural household space heating contribute to 70% of PMy 5 and 60% of SO,
emissions during the winter (Cai et al., 2018).

Launched in 2013, the rural Clean Heating Policy in Beijing initially targeted suburban
areas, designating 160 villages as pilot sites for the transition from coal to electricity. By
2018, the policy had significantly expanded to include 2,963 villages in the plains, with
80% of these villages switching to electricity and 20% to natural gas (Xinhua Net, 2019).
That same year, the policy also began pilot initiatives in mountainous villages (Xinhua
Net, 2018). A decade after its inception, by 2023, the Clean Heating Policy has achieved
remarkable coverage, reaching over 90% of villages and 95% of rural households in Beijing
(China Energy News, 2023).

In mountainous regions, where extending natural gas pipelines is challenging, Coal to
FElectricity has become the predominant technological solution for most households (The
People’s Governemnt of Beijing Municipality, 2018). In Beijing’s Coal to Electricity policy,
households received subsidies for new heating equipment based on their heated area (200
RMB/m?) up to 24,000 RMB.! Additionally, they benefit from a discounted winter electricity
tariff of 0.1 RMB/kWh, significantly lower than the regular price of 0.48 RMB/kWh, for up
to 10,000 kWh used between November 15th and March 15th (H. Liu & Mauzerall, 2020).
However, the policy encounters unique challenges in mountainous areas due to the colder

temperatures and significant daily temperature fluctuations, which increase heating demands

!Based on the March 2024 exchange rate, 1 RMB ~ 0.14 US dollars.
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and reduce the efficiency of air-source heat pumps (Xu et al., 2019). These conditions may
exacerbate energy poverty among households.

In addition to altitude, the existing housing conditions within a village significantly in-
fluence the government’s decision to include it in the Clean Heating Policy. The quality
of housing, particularly insulation, directly impacts household energy expenditures and the
effectiveness of the heating program (Besagni & Borgarello, 2018; Riva et al., 2021; Salari
& Javid, 2017). To be eligible, houses must have undergone insulation renovations, and the
village must not be slated for demolition or major renovations within the next five years
according to regional plans. Before making final decisions, village committees assess house-
holds’” willingness to participate in the policy and communicate this information to higher
levels of government for consideration. Thus, the affordability of the policy for households
could indirectly influence the government’s decision-making process.

For villages not yet included in the Clean Heating Policy, the Reduce and Substitute
Coal Program (JUECRATHEXHFE “WEH L") provided comprehensive coverage by 2017.
This initiative mandated the end of low-quality bulk coal burning and promoted the use
of high-quality coal briquettes provided by the government. As a result, for households
incorporated into the Clean Heating Policy after 2017, their counterfactual heating scenario
involved using briquettes supplied through the Reduce and Substitute Coal Program. The
acquisition process for these briquettes entails village committees collecting household orders
in the autumn and forwarding them to higher government authorities. The briquettes are
then purchased at a uniform price within the county and distributed to households before
the heating season starts. In contrast to the relatively low-quality bulk coal, priced at about
800 RMB per tonne, the market price for these high-quality coal briquettes is around 1,300
RMB per tonne. To ease the financial burden on households, municipal subsidies of 200
RMB per tonne, and district and county subsidies ranging from 200 to 500 RMB per tonne,
are provided (Beijing Daily, 2015).

Our field study occurred through three survey rounds spanning four years. The baseline

survey was conducted between December 2018 and March 2019, preceding the implementa-
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tion of the Clean Heating Policy across all sample villages. The first follow-up survey took
place one year later, between November 2019 and January 2020. Due to the COVID-19
pandemic, the second follow-up survey was delayed until November 2021 to January 2022.
This longitudinal data collection approach provides an opportunity to understand the causal

impact of the policy on the sampled villages based on quasi-experimental methods.

3.2.2 Sampling

Our study was conducted across four peri-urban districts of Beijing — Fangshan, Huairou,
Mentougou, and Miyun — known for a high prevalence of rural households using solid fuels
such as briquettes and firewood for heating. We selected 50 villages to represent a diverse
range of socioeconomic and geographic condition that had not yet entered the Clean Heating
Policy at the time of our baseline survey. Figure 3.1 shows the locations and the timing
of treatment for these sample villages. Initially, none of the villages were part of the Clean
Heating Policy. By the time of our first follow-up survey, 10 villages had been incorporated
into the policy. Over the next two years, leading up to the second follow-up survey, an
additional 10 villages joined the policy — seven in 2020 and three in 2021. Thus, by the end
of our study period, 20 out of the 50 villages were participating in the policy.

In each village, we utilized a semi-random selection process to identify approximately 20
households for inclusion in the study. This method was necessary due to lower occupancy
rates during the winter, which made a fully random selection impractical. To ensure data col-
lection from occupied households, we collaborated with village leaders who provided insights
into which households were present at the time of our visits. Then, among the households
that were at home on the day of our visit, we randomly selected 20 households in each vil-
lage. The study commenced with a baseline survey involving 977 households. Anticipating
potential sample attrition due to absenteeism, refusals, or mortality among respondents, we
strategically incorporated new households in each subsequent survey round. As a result,

the first and second follow-up surveys included 1,055 and 1,012 households, respectively. A

83



total of 733 households consistently participated across all three survey rounds. Figure B.1

in Appendix B.1 provides a detailed breakdown of revisited and newly added households.

China
Huairou
JBeiiing | Treated: 8
Untreated: 10
Miyun

& S Treated: 10
Mentougou ~ Untreated: 2
Treated: 2

Untreated: 7

N

O 2019
2020

O 2021

O Not Yet

Fangshan
Treated: 0
Untreated: 11

Figure 3.1: Sampling strategy and treatment status of sample villages.

3.2.3 Data collection

All surveys were conducted on tablet computers running Surveybe and ODK software. Lever-
aging an interdisciplinary collaboration, we conducted a sequence of surveys aimed at con-
structing a comprehensive panel dataset encompassing variables pertinent to fuel consump-
tion, space heating, subjective well-being, health, and air quality. In this section, we provide
a succinct overview of the principal variables examined in this study.

We gathered data on a range of sociodemographic characteristics for each household. This
included details on household composition such as family size, age, and gender of members;
demographics including education level, marital status, employment, and occupation; eco-
nomic factors like income and assets; and consumption patterns, which covered expenditures

on items like meat and communication services.
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To assess winter fuel consumption, our survey posed detailed questions about the types
of fuels used during the heating season, their specific applications (e.g., for cooking, space
heating, or water heating), the quantities consumed, and their market prices.? Given the
difficulties households face in accessing accurate electricity usage data and the complexity of
the tariff system — particularly with subsidies under the Clean Heating Policy — we asked
respondents to estimate their total electricity expenditure for the winter heating season.

Through a series of questions, we systematically gathered data on household space heating
through various measurements. First, we deployed temperature sensors in the room where
people spent the most time each day in winter for a subset of sample households. These
sensors continuously recorded indoor temperatures at regular intervals (every 125 minutes)
throughout the entire heating season, as detailed in our prior research (see Sternbach et al.
(2022) for further information). Additionally, to provide a comprehensive overview of house-
hold space heating practices, we documented the duration of heating, occupancy patterns,
and all heating methods employed, along with the corresponding durations, for each room.

Alongside household data, we assembled village-level information. Treatment status was
gathered through interviews with village leaders. Altitude data for each village was derived
from Google Earth, utilizing GPS coordinates of village committee locations recorded dur-
ing fieldwork. Distances from sampled villages to central Beijing were calculated as linear
distances using Baidu Maps. Socioeconomic data at the village level, including number
of households, population, and per capita income, were sourced from the 2016 statistical
yearbook of the four study districts. This socioeconomic data offers a snapshot of village
characteristics in 2015, prior to the Clean Heating Policy implementation in mountainous

areas.

2This analysis focuses solely on market prices. The time households spend gathering biomass fuels like
firewood and straw is not included in the price calculations.
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3.3 Identification strategy

To assess the impacts of the Clean Heating Policy on energy poverty, we utilize the difference-
in-differences (DiD) method, a well-established approach for policy evaluation. This method
relies on the crucial “parallel trends” assumption, which posits that the treatment and control
groups would have experienced similar changes in their outcomes over time in the absence
of treatment. Consequently, by comparing the before-and-after differences in the control
group, we can estimate the counterfactual outcome for the treatment group. Our analysis
focuses on the relative changes in energy expenditure and space heating indicators, comparing
households that participated in the policy to those that did not, across the pre-treatment

and post-treatment periods.

3.3.1 Two-way fixed effects DiD estimator

Our DiD estimation departs from the conventional two-group, two-period design, leverag-
ing data collected over multiple years and incorporating varying treatment timings. This
staggered implementation of the policy offers the potential for richer insights into its effects
on energy poverty. Specifically, we employ the following two-way fixed effects (TWFE)
regression model:

Yie = B X Treaty + X X v+ p; + Ay + € (3.1)

where the outcome of interest, denoted Yj;, is either the winter energy expenditure or space
heating indicators (i.e., indoor temperature, number of rooms with daily heating, and average
duration of room heating) of household ¢ in year t. The variable Treat;; is the treatment
status for household 7 in year t. Specifically, Treat;; = 1 if the household i is involved in the
Clean Heating Policy in year t, Treat; = 0 if the household i does not get the treatment.?
This equation also includes controls of confounders, X;;, that may affect both treatment

status and, as outcomes, energy expenditure and space heating. Xj;; includes the building

3Since we are dealing with a staggered treatment setting, as shown in Equation 3.1, we use the dummy
variable Treat;; to represent the actual treatment status, where Treat;; = 1 corresponds to Treat; x Posty
= 1 in the traditional DiD definition.
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age and house area, which capture the common housing renovations in rural Beijing in recent
years. Building age serves as a useful indicator of both the likely insulation quality of a
house and potential plans for its future renovation or demolition. The house area determines
the type and power of heating equipment that households can obtain within the scope of
government subsidies. Household fixed effects p; control for all time-invariant factors that
differ across households, year fixed effects A\; control for any unobserved patterns of that
affect all households simultaneously. €; is the error term.

The coefficient of interest in Equation 3.1 is 3, which represents the estimated impact of
the Clean Heating Policy on either economic or space heating outcomes. A positive coefficient
indicates that the policy increases household energy expenditure (or improves space heating),
while a negative coefficient indicates that the policy reduces expenditure (or space heating).
We use the TWFE estimator to estimate the baseline treatment effects.

Besides the average treatment effects, we go beyond the baseline regression and estimate
a dynamic version of the TWFE model as shown in Equation 3.2. This event study helps
us to understand what the temporal trends are in the impacts of Clean Heating Policy as a

function of the year of participation.

3 2
Y, = Z 6_; x Treat; + Z Br x Treaty + Xy X v+ p; + N + €3¢ (3.2)
j=1 k=0

The coefficients #_; measure the difference in the change of outcomes (j = 1 is dropped
to avoid perfect collinearity) between the treatment and control groups before the Clean
Heating Policy. Estimating pre-event trends can provide insight into the parallel trend
assumption. [ are coefficients that measure the persistence of impacts on outcomes years

after households participate in the Clean Heating Policy.
In order to address the distributional impacts, we estimate the heterogeneous treatment

effects of the Clean Heating Policy on subgroups of households by considering a modified
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version of Equation 3.1, as depicted in Equation 3.3:

Yy = B x Treaty + ¢ X Treaty; x C; + Xy X v+ i + N + €3¢ (3.3)

where C; represents the specific dimension of village or household heterogeneity we aim
to examine. The coefficient ( captures the differences in treatment effects between the
various categories of this moderator variable. We explore various factors that contribute to
the heterogeneous treatment effects, including village altitude, baseline household heating
infrastructure, and baseline household wealth status. We do not include the C; in the
regression since these village or household time-invariant “moderators” will be absorbed by

the household fixed effect term ;.

3.3.2 Staggered DiD and heterogeneity-Robust DiD estimators

While the TWFE estimator has been commonly used to estimate average treatment effects
in DiD models, recent theoretical research has revealed potential biases when dealing with
staggered treatment implementations, as is the case with the Clean Heating Policy in our
study (illustrated in Figure 3.2). These biases primarily arise from heterogeneous treatment
effects, where the impact of the policy may vary across time and/or between the treated
units that receive the treatment at different times (De Chaisemartin & d’Haultfoeuille, 2022;
Goodman-Bacon, 2021). The TWFE estimator is equivalent to the variance-weighted av-
erage of all 2 x 2 TWFE estimators (e.g., four 2 x 2 TWFE estimators in three groups of
early treat, late treat, and never treat: early treat vs. never treat, late treat vs. never
treat, early treat vs. late treat before treatment, and late treat vs. early treat after treat-
ment). Among these comparisons, the “late treated vs. early treated after treatment” is
potentially problematic because it involves using the early treated units as the control. The
later-treated group must adjust for the outcome changes of the early treated units, which
already incorporate the treatment effects, potentially biasing the results (Baker et al., 2022).

Consequently, to obtain unbiased estimates using TWFE, additional assumptions regard-
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ing the temporal homogeneity of treatment effects are required in addition to the parallel
trend assumption (De Chaisemartin & d’Haultfoeuille, 2022). However, the assumption of a

constant intervention effect over time is often unrealistic.

District MiYun HuaiRou MenTouGou FangShan
VillageID 1 2 3 4 5 6 7 8 91011121314151617 181920212223 242526272829 30313233 34 3536 37 38 39 4041 42 43 44 45 46 47 48 49 50
2018

Yl Treated [] Untreated

Figure 3.2: Treatment timing of the Clean Heating Policy in sample villages.

To mitigate potential bias of the traditional TWFE estimator, several new heterogeneity-
robust DiD estimators have been proposed. By adopting various strategies to account for
variations in treatment effects and eliminating the problematic 2 x 2 DiD comparisons be-
tween later treated and early treated units, these robust estimators provide consistent es-
timates even in the presence of heterogeneous treatment effects across time and/or treated
units (Wing et al., 2024). To address concerns regarding our baseline TWFE estimation,
we replicated our event study results using robust estimators introduced in recent studies
(Borusyak et al., 2021; Callaway & Sant’Anna, 2021; De Chaisemartin & d’Haultfoeuille,
2024; Gardner, 2022; Sun & Abraham, 2021; Wooldridge, 2021). A comparison of TWFE
and other new heterogeneity-robust DiD estimators for the average treatment effects on all
outcomes is provided in Figure B.2 in the appendix.

A priori, one threat to the parallel trend assumption in our study is the unique situation
in Fangshan district. Notably, during the second follow-up season, the price of coal briquettes
doubled exclusively within the Fangshan district, where no sample village had access to the
Clean Heating Policy throughout the study period. This price increase was due to Fangshan’s
distinct subsidy approach under the Reduce and Substitute Coal Program. Unlike in the other
three districts, where government subsidies offset the market price increases of briquettes,
allowing households to pay a consistent price over time, the Fangshan government provided a

fixed subsidy amount. As a result, when prices increased in 2021, households in Fangshan had
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to cover the additional costs themselves. To maintain a reliable counterfactual for the treated
households and uphold the parallel trend assumption, we chose to exclude observations from
the last season in Fangshan from our analysis. This decision is based on the rationale that
energy expenditures in Fangshan last season would not mirror those treated households in

other districts without the influence of the Clean Heating Policy.

3.4 Results

Our study focuses on evaluating the impacts of the Clean Heating Policy on household
energy poverty. Specifically, we analyze two crucial categories of energy poverty outcomes.
The first category includes economic indicators such as winter energy expenditure and its
proportion of household income. The second category encompasses physical measures like
indoor temperature, the number of rooms heated daily, and the average duration of room

heating.

3.4.1 Descriptive statistics

Table 3.1 presents summary statistics for key variables across three groups: those never
exposed to the Clean Heating Policy, those in treated villages before policy implementation,
and those in treated villages after implementation. Compared to the never-treated group,
households in treatment villages spent slightly less on winter energy before the policy, but
they did not heat as much of their space, as reflected in lower indoor temperatures, fewer
rooms with regular heating, and shorter average heating duration. For households in the
treated villages, winter energy expenditures prior to treatment averaged 1,174 RMB per
person. Even when considering only the energy expenditure during the heating season, which
accounts for 10.8% of family annual income, this figure exceeds the 7.3% threshold of energy
poverty proposed by Xie et al. (2022) for rural households in Beijing. After the adoption
of clean heating, expenditures increased to 1,587 RMB per capita, marking an approximate

1% rise in the proportion of income dedicated to energy expenses. From these descriptive
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statistics, the Clean Heating Policy appears to have marginally worsened household energy
poverty.

The proportion of income spent on winter energy by households in our study (about 11%)
exceeds the figures reported in existing research on energy poverty among rural Chinese
households (R. Wang & Jiang, 2017). For instance, Wu et al. (2019) found that rural
households in provinces with substantial heating needs typically spend about 5% of their
income on energy, with this figure rising to over 6% in Beijing. This discrepancy can primarily
be attributed to the geographical and socioeconomic characteristics of the sample; most of
the villages not yet included in the Clean Heating Policy as of 2018, the start of our study, are
situated in remote, mountainous areas of Beijing. These areas not only have lower incomes
but also higher heating demands, which contribute to the increased proportion of income
dedicated to energy expenditure.

Despite allocating a significant portion of their income to winter energy expenses, house-
holds experienced inadequate space heating prior to the intervention. We assessed space
heating primarily through nighttime indoor temperatures (from 5 pm to 7 am) in January
for two main reasons. Firstly, January is typically the coldest month in Beijing, with eight of
the past ten years (2013-2022) experiencing their lowest average monthly temperatures dur-
ing this period. For instance, January 2021 recorded an average temperature of —3.6°C, with
the year’s lowest temperature, —19.6°C, on January 7th (Beijing Municipal Bureau of Statis-
tics, 2014 — 2023). Secondly, the significant drop in outdoor temperatures after sunset, often
by up to 10°C compared to daytime highs, highlights the critical need for effective heating
during nighttime. Without the Clean Heating Policy, the average indoor temperature in our
sampled households was only 13.1°C, substantially below the WHO-recommended minimum
of 18°C, clearly illustrating the inadequacy of space heating in many rural households.

Before the implementation of the Clean Heating Policy, households in our study typically
heated only 4 out of 8 rooms regularly, indicating that less than half of their living space
was adequately heated. Furthermore, the average heating duration per room was merely 9

hours, severely limiting comfortable living conditions during the winter months. These space
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heating indicators, as outlined by Boardman (2013), suggest that our sample households were
experiencing energy poverty prior to the intervention. However, following the implementation
of the Clean Heating Policy, we observed significant enhancements in space heating across
all indicators. This marked improvement points to a substantial reduction in energy poverty,
significantly enhancing both the adequacy and comfort of heating within these households.

Houses in both the never-treated and treated groups have similar ages, with an average
construction year of around 2005. However, the average house size in the treated group
is notably larger, measuring approximately 135 m?, about 15 m? more than those in the
never-treated group. Geographically, treated villages are located at a slightly lower average
altitude of 280 meters and are positioned an average of 7.5 kilometers farther from Beijing’s
city center than never-treated villages. There are also differences in social characteristics:
treated villages tend to have fewer households and a smaller population, yet they exhibit
a per capita income in 2015 that was 44% higher than that of never-treated villages. This
significant income discrepancy is primarily due to the socioeconomic profile of 11 never-
treated villages located within a town on the border of Beijing and Hebei province, in the
Fangshan district, where per capita income is notably lower than in the villages sampled in

the other three districts.
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Table 3.1: Descriptive statistics. Data on village characteristics are obtained from the 2016 statistical yearbook of the
selected four districts, providing insights into the characteristics of the year 2015, prior to the implementation of the Clean
Heating Policy. These “baseline” statistics do not vary over time. A balance test of the key variables between never-treated

and treated households before the treatment, conducted using two-sample mean t-tests, is presented in Table B.1.

Never Treated Treated

Variable Before Treatment After Treatment

Obs Mean SD Obs Mean SD Obs Mean SD

Economic Outcomes

Per Capita Winter Energy Expenditure

(Exp: RMB/person) 1512 1340 910 578 1170 764 597 1590 939
Share in Family Income (Share: %) 1512 11.0 11.9 578 10.8 11.7 597 11.9 13.0

Space Heating Outcomes
Nighttime Indoor Temperature

(Temp: °C) 730 14.0 3.72 228 13.1 4.13 284 15.9 3.46
Rooms with Regular Heating (Rooms) 1505 4.48 2.62 YU 3.96 2.45 595 5.93 3.12
Average Heating Duration

(Duration: hours - day™! - room™1) 1505 11.0 5.88 577 9.25 5.71 595 12.6 4.87
Controls

Building age (years) 1512 16.5 14.9 o978 14.6 13.1 297 15.3 12.6
Building area (m?) 1512 118.8 50.8 578 134.7 53.4 597 141.2 58.4
Selected Village Characteristics!

Altitude (m) 30 292 130 20 282 58.3 / / /
Distance to Beijing (km) 30 73.6 18.6 20 81.1 114 / / /
Number of households 30 375 401 20 232 172 / / /
Village Population 30 662 678 20 512 423 / / /
Per Capita Income (10*> RMB /person) 30 12.9 5.22 20 18.6 3.39 / / /
Number of Villages 30 20

Number of Households 695 485




3.4.2 Main results

Table 3.2 presents the estimates of the treatment effect of the Clean Heating Policy on
various energy poverty measures across different specifications. We employ TWFE with
fixed effects terms of year and policy expansion timing group in column 1, year and village
fixed effects in column 2, year and household fixed effects in column 3, and household-level
time-varying control variables in column 4. Our baseline estimations are consistency across
these specifications, especially when accounting for village/household and year fixed effects.
These results align with the treatment effects estimated using heterogeneity-robust DiD
estimators, as depicted in Figure B.2 in Appendix B.3.

We first examine the impacts of the Clean Heating Policy on household winter energy
expenditure. Typically, clean energy sources like electricity and gas are more expensive than
solid fuels such as coal and biomass. Therefore, adopting clean energy for heating often
translates to increased costs. This rise in energy expenditures can strain household budgets,
potentially compromising their ability to afford basic energy needs and allocate resources
for other essential goods and services. In this section, we examine the impacts of the Clean
Heating Policy on household winter energy expenses, as well as the share of these expenses in
household income, within the context of the government’s “triple subsidies” shown in Figure
B.3 in the appendix.

The complete baseline specification, as shown in Panel A column 4, indicates that the
Clean Heating Policy leads to an average increase in per capita winter energy expenditure
of 182 RMB (95% CI: 18.4-345.0 RMB). When compared to households not enrolled in
the policy, which spent an average of 1,344 RMB, this represents an approximate 13.5%
increase in per capita winter energy expenditure. Furthermore, this escalation in expenditure
translates to about a 2% increase (95% CI: —0.2-4.1%) in the share of annual household
income dedicated to winter energy, causing households to spend, on average, 12% of their
yearly income to cover these costs.

Due to the high heating costs and an unreliable energy supply, particularly for the Coal

to Natural Gas conversion, there have been repeated controversies each heating season re-
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garding the risk of rural households in North China freezing (Hu, 2021). We explore the
average treatment effects of the Clean Heating Policy on space heating from various perspec-
tives. Initially, we analyze the nighttime indoor temperature of the room where households
spend most of their time during winter. As shown in Panel B column 4 of Table 3.2, the
implementation of the Clean Heating Policy resulted in an increase in nighttime indoor tem-
perature by 1.8°C (95% CI: 0.9-2.7°C), suggesting that treated households could achieve an
average indoor temperature of about 15°C. While this temperature is still below the WHO’s
recommended thresholds, the substantial impact of indoor temperature on health indica-
tors, including blood pressure and respiratory health, highlights the crucial benefits of this
increase for older populations living in cold, rural areas (Saeki et al., 2014; Sternbach et al.,
2022).

In addition to the primary living spaces, the heating of other areas within a home is
crucial for the various activities conducted during winter. Our evaluation of the Clean
Heating Policy considered its impact on the number of rooms receiving regular heating and
the average duration of heating per room. Prior to the policy, less than 50% of the rooms in
a house — typically only 4 — received regular heating. According to Panel B column 4 of
Table 3.2, the policy led to a rise in both the number of rooms with regular heating and the
duration of room heating. Specifically, there was an increase of 1.4 rooms (95% CI: 1.0-1.7
rooms) having daily heating and an extension of 3.2 hours (95% CI: 2.2-4.2 hours) in the

duration of room heating.
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Table 3.2: Baseline results. Each column estimates Equation 3.1 with a unique specification. The difference in observations
between specifications are due to singleton observations (households appearing in only one survey round), some observations
were dropped when including household fixed effects in the analysis. Standard errors in parentheses are clustered at the village

level. * p < 0.1, ¥ p < 0.05, *** p <0.01.

TWFE 1 TWEFE 2 TWFE 3 TWEFE 4

Panel A. Economic Outcomes

Per capita Winter Energy Expenditure (RMB)

Treatment 269.29%** 207 .87F** 175.24%** 181.71%*
(79.83) (77.34) (83.60) (83.31)

Share of Winter Energy Expenditure in Income (%)

Treatment 2.52%% 1.97* 1.98%* 1.99*
(1.01) (1.04) (1.08) (1.09)
Num.Obs. 2687 2687 2497 2497

Panel B. Space Heating Outcomes

Nighttime Indoor Temperature (°C)

Treatment 2.Q2%%* 1.92%** 1.80%** 1.78%**
(0.53) (0.51) (0.46) (0.47)
Num.Obs. 1242 1242 950 950

Rooms with Regular Heating
Treatment 1.67*** 1.42%** 1.36%** 1.38%**
(0.25) (0.22) (0.22) (0.18)

Room Average Heating Duration (hours:room™!)

Treatment 4.16%*+* 3.3k 317k 317k
(0.57) (0.52) (0.54) (0.50)

Num.Obs. 2,677 2,677 2,486 2,486

Std.Errors by: Village by: Village by: Village by: Village

FE: T Timing v

FE: year v v v v

FE: village v

FE: household v v

Controls: v
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The increase in the number of heated rooms and room average heating duration means
an increase in the total number of hours the house is heated. As illustrated in Figure 3.3a,
these enhancements in space heating could be attributed to the expansion of hot water
radiator systems. Firstly, the policy has significantly boosted the adoption of hot water
radiators. Households that previously relied on spot heating practices, such as coal stoves,
wood kangs, and mobile electric heaters, and did not have hot water radiators, underwent
installations facilitated by the policy. For example, in Huairou district, the government
subsidized radiator installations at an approximate cost of 2,000 RMB (Huairou District
People’s Government, 2020). As shown in Figure 3.3b, whereas less than 80% of sample
households had radiator systems at baseline, about 95% of treated households were equipped
with them following the policy’s implementation. Secondly, households that already had
radiators paired with coal stoves at baseline were promoted to expand their radiator systems
to qualify for more powerful, subsidized heat pumps. Specifically, households with a heating
area of less than 120 m? were eligible for subsidies that covered 5 horsepower heating pumps.
However, those requiring more powerful pumps needed to cover the additional cost difference.
Conversely, households with more than 120 m? were eligible to receive 6 horsepower heating
pumps. To meet these requirements, some households chose to increase their heated areas
by installing radiators in additional rooms, thus qualifying for the more powerful heating
solutions. It is important to note that this occurred after a village had been decided to
implement the Clean Heating Policy. Consequently, any space heating outcomes related to
the expansion of radiator use are still influenced by the policy and are thus included in the

overall average treatment effect.
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Figure 3.3: Explanation of the treatment effects on space heating outcomes. Bars
in Figure 3.3a show the composition of total house heating duration. Colors of the bars show
the contributions of different heating practices. The absence of data in the “After” category
of the left plot is attributed to the fact that post-treatment measurements are not applicable
to the untreated group. Bars in Figure 3.3b show the share of households with water radiator
system in different treatment groups and survey years. The single bar in wave 1 is due to

no village under treatment of the Clean Heating Policy in baseline 2018.

Overall, our findings suggest that while the Clean Heating Policy may slightly increase
household winter energy expenditures, it significantly improves space heating. Economi-
cally, cleaner heating raises households’ energy costs and the proportion of income spent on
energy, potentially exacerbating energy poverty. However, from a space heating perspective,
improvements in indoor temperatures, the number of rooms heated, and the average heating
duration indicate a substantial alleviation of energy poverty. To further explore the trade-off
between economic and space heating outcomes, we compared the before-and-after differences
of households in the treatment group. As shown in Figure B.4 in Appendix B.5, the major-
ity of treated households fall into the quadrant of increased expenditure but improved space

heating. This observation suggests a general willingness among households to allocate more
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of their budget to energy if it results in better fulfillment of their energy needs. Field inter-
views support this finding, with most households involved in the intervention stating that
the increase in fuel costs was acceptable in exchange for significant improvements in heating
quality, room cleanliness, time savings, and overall indoor comfort. These insights challenge
the sufficiency of purely economic indicators for assessing energy poverty and underscore
the importance of incorporating measures that reflect the actual satisfaction of energy needs

when evaluating such programs.

3.4.3 Dynamic treatment effects

The dynamic treatment effects of the Clean Heating Policy on winter energy expenditure
and its share in family income are depicted in Figure 3.4. While the key assumption of
our identification strategy, the parallel trend assumption, cannot be directly verified for the
post-treatment period, the pre-treatment estimations from the event study, which are both
minimal and statistically insignificant at the 5% level, support the validity of this assumption
(Rambachan & Roth, 2019). For the post-treatment period, the policy triggers an immediate
increase in winter energy expenditure, with these effects persisting over time. All estimators,
including traditional TWFE and newer heterogeneous DiD estimators, provide relatively
consistent estimations of the dynamic treatment effects after the policy’s implementation
(starting at period 0). The results for the post-treatment periods show that the policy led to
an increase in winter energy expenditure of over 300 RMB in the year of treatment and the
subsequent year. However, two years after the implementation of the policy, the treatment
effects significantly reduce to approximately 100 RMB. These temporal trends in winter
energy expenditure impacts are somewhat mirrored in the changes in the share of expenditure
in income. Yet, due to relatively minor fluctuations in winter energy expenditures, the
variations in share impacts are not especially pronounced. This reduction in winter energy
expenditure is not due to a decrease in energy use by treated households; rather, it is likely

attributable to the effects of subsidies on electricity tariffs provided by the policy.
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Figure 3.4: Dynamic treatment effects on economic outcomes: winter energy
expenditure and its share in family income. Event-study plots constructed using
seven different estimators: a dynamic version of the TWFE model, Equation 3.2, estimated
using OLS (in red with square markers); Borusyak et al. (2021) (in orange with circle mark-
ers); Callaway and Sant’Anna (2021) (in yellow with triangle markers); (Gardner, 2022) (in
light green with line markers); Sun and Abraham (2021)(in dark green with cross mark-
ers); De Chaisemartin and d’Haultfoeuille (2020)(in light blue with diamond markers); and
Wooldridge (2021) (in dark blue with inverted triangle markers). The outcome variable in
Figure 3.4a and Figure 3.4b is per capita winter energy expenditure and share of winter
energy expenditure in family income, respectively. The x-axis is the relative time between
survey year and the year when the Clean Heating Policy firstly implemented in a village. Un-
like other estimators, we specified the “never treated” units as the control group in Sun and
Abraham (2021) estimators. For the De Chaisemartin and d’Haultfoeuille (2020) estimator,
we estimate only one pre-treatment and one post-treatment due to the way it defines the
maximum number of placebo and dynamic effects. The Wooldridge (2021) estimators me-
chanically set the pre-treatment effects to zero. Standard errors are clustered at the village

level.

In the winter of 2021-2022, two years after early-treated households joined the inter-
vention, the COVID-19 pandemic significantly increased the amount of time families spent
at home due to strict government-imposed quarantine measures. This surge in home occu-

pancy led to higher winter electricity bills for all households, attributable to increased usage
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of lighting, entertainment devices, and additional heating appliances such as portable electric
heaters and electric blankets. Figure 3.5 shows that both untreated and treated households
saw a notable rise in their winter electricity expenditures in 2021. However, the increase
was less pronounced in treated households, who benefited from the policy’s electricity tariff
subsidies that were active between 8 pm and 8 am during the heating season. These subsidies
also inadvertently covered the cost of electricity used for non-heating purposes during the
subsidized hours. Despite the government’s efforts to more accurately target these subsidies
specifically towards space heating — such as the installation of a second electricity meter —
over 80% of the sampled households continued to enjoy the reduced tariffs for various uses

by the end of the study period.
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Figure 3.5: Winter energy expenditures of treated and untreated households
in different years. The color of the bar indicates the common types of energy sources
including briquettes, electricity, and LPG. The right plot contains only two bars since there

is no village under treatment of the Clean Heating Policy in baseline 2018.
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Figure 3.6: Dynamic treatment effects on space heating outcomes. This figure
shows the event study results on (a) indoor temperature, (b) rooms with regular heating,

and (c) room average heating duration. See the notes of Figure 3.4 for details.

Figure 3.6 presents the results of the event study on space heating outcomes. The Clean
Heating Policy has a positive impact on rural household indoor temperature, rooms with
regular heating, and average heating duration once the households entered the policy. These
benefits have proven to be sustained, with positive impacts observable up to two years after
the intervention. Additionally, most of the estimated coefficients in the pre-treatment period
are small and not statistically different from zero. Given that the trends of outcomes in the

treatment and control groups are similar prior to the Clean Heating Policy, this supports the
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validity of our identification assumption post-treatment, thereby enhancing the credibility
of our findings.

The consistent positive impact on indoor temperature within the Clean Heating Policy is
possibly bolstered by the government’s guidance on temperature settings for heating pumps.
Official guidelines recommend that the water temperature of end radiators should be set
within the range of 35-45°C. Considering potential barriers to adopting new technologies,
such as the age and education level of the mountain population, households generally com-
ply with government recommendations regarding temperature settings. They maintain a
consistent temperature across the years rather than frequently adjusting the settings of their
heat pumps in response to outdoor temperature changes. Additionally, the government em-
ploys a cloud-based platform to remotely monitor the operating conditions of heat pumps,
enhancing reliability and preventing operational failures (L. Zhang et al., 2022). This sys-
tematic approach helps ensure efficient heating and minimizes the risk of technical issues,

contributing to the sustained effectiveness of the policy.

3.4.4 Heterogeneity analysis

In the preceding section, we discussed the average treatment effects of the Clean Heating
Policy on winter energy expenditure and space heating. Nonetheless, it is crucial to acknowl-
edge that the policy’s impact may vary across households with diverse socioeconomic statuses
and heating infrastructure. To acquire a more nuanced understanding of the policy’s im-
pact, this section examines the heterogeneous treatment effects on households with different
characteristics. We specifically investigate how the policy’s impacts vary among households
living at different village altitudes, with varying heating infrastructure, and different wealth
statuses at baseline.

By village altitude. In mountainous regions, households face distinct financial chal-
lenges under the Clean Heating Policy due to increased heating requirements and fewer
livelihood opportunities. This poses a significant concern for the government’s implemen-

tation of the policy in mountainous regions. The results from Equation 3.3 displayed in
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Panel A of Table 3.3 reveal how the treatment effects vary by village altitude. The coeffi-
cients of the interaction term between the treatment status and village altitude (Treatment
x (altitude =+ 100m)) demonstrate differential impacts of households residing in villages at
different altitudes. Although there is no statistically significant difference in the impacts on
our space heating metrics, we find strong evidence of the heterogeneous treatment effects on
expenditures and share of income spent. It is noteworthy that for every 100 meters of eleva-
tion gain in the village, the impacts of the Clean Heating Policy on per capita winter energy
expenditure and share in income increase by 208 RMB and 1.5%, respectively. Considering
the altitude range within our sample from 118m to 680m, and assuming a linear response
function, this results in a substantial disparity of nearly 1,165 RMB in winter energy costs
between households in the lowest and highest villages. Extending this model, we estimate
that households in Beijing’s highest-altitude villages at 1,400 meters could face winter energy
costs about 2,900 RMB higher than those in the plains. These findings suggest a cautious
approach in promoting the Clean Heating Policy in mountainous regions and the notably
extreme cold winter provinces of the northwestern and northeast (Meng et al., 2023; Zhou
et al., 2022).

By heating infrastructure. Transitioning from point heating methods like coal stoves
and mobile electric heaters to hot water radiator systems represents a significant shift in res-
idential heating practices. Panel B in Table 3.3 displays the heterogeneous treatment effects
for households based on whether they have a water radiator system in the baseline. The
significant magnitude of the coefficients on the interaction term, Treatment x (Radiator
= 1), indicate that the economic and space heating outcomes are substantially more pro-
nounced for households that did not have a radiator system in the baseline. For households
without hot water radiators at baseline, the impact of the Clean Heating Policy on winter
energy expenditure and its share in income, as well as on indoor temperatures, is over five
times greater than that observed in households with radiators. Furthermore, the notable

differences in average heating duration between households with and without radiators at
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baseline underline the significant benefits of radiator systems in extending heating duration,
reinforcing the findings discussed earlier.

By wealth status. For wealthier households, the policy may simply provide a gentle
push towards completing the transition to cleaner heating, whereas for poorer households, it
may pose significant financial challenges and force them to sacrifice adequate space heating.
To provide a comprehensive view of the long-term stable socioeconomic status of the sample
households, we utilized principal component analysis (PCA) to combine various asset profiles
(such as land, vehicles, appliances, and housing) from the baseline into a wealth index
(detailed in our prior study X. Li et al. (2022)). This wealth index serves as a robust
indicator of household socioeconomic status, as evidenced by its strong correlation with a
variety of socioeconomic characteristics, including income and consumption, as Figure B.5
demonstrated in Appendix B.8 .

Panel C in Table 3.3 illustrates the heterogeneous treatment effects of the policy on
households within subgroups of the wealth index. While no statistically significant differences
in energy poverty indicators are observed at the 5% significance level among households in the
top, middle, and bottom wealth index groups, it is noteworthy that households in the lowest
third of the wealth index experience more pronounced economic impacts compared to the
other two groups. One reassuring indication is that despite the greater economic impacts,
as the coefficients of Treat,eerence indicate, the Clean Heating Policy enhanced the space
heating for households in the lowest wealth group. Conversely, the average heating duration
of households in the top third of the wealth index exhibits a smaller increase compared to the
other two groups. This variation may still be attributed to the level of radiator penetration
across different wealth index groups, as depicted in Figure B.6 in the appendix, where the
wealth index demonstrates a positive correlation with the penetration of hot water radiator

systems in baseline.
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Table 3.3: Heterogeneous treatment effect of different subgroups of households. This table provides estimates of
coeflicient [ derived from Equation 3.3. The Treatment,eference €Stimations represent the treatment effects on the reference
group, while estimations involving the interaction term between treatment and “moderators” C; show differences between
these other groups and the reference group. The Treatment,eference in Panel A is the treatment effects at mean altitude

(C; = C). Standard errors are clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Heterogeneous treatment effects on subgroups

Dep. var.: Exp Share Temp Rooms Duration

Panel A. Village altitude

Treatment,eference 195.36** 2.09* 1.79*%* 1.38*** 3.17H%*
(80.21) (1.09) (0.46) (0.18) (0.50)

Treatment x (altitude <+ 100m) 207.89** 1.52%* 0.45 -0.04 0.01
(90.70) (0.74) (0.44) (0.19) (0.57)

Observations 2497 2497 950 2486 2486

Panel B. Radiator in baseline

Treatment,eference 574.19*** 6.85%** 6.18%** 2.65%** 7.02%%*
(147.32) (2.43) (1.56) (0.35) (0.75)

Treatment x (Radiator = 1) -488.30%** -6.04%** -5.09%** -1.58%*% -4.79FHF
(129.95) (2.15) (1.60) (0.36) (0.91)

Observations 2497 2497 950 2486 2486

Panel C. Wealth group

Treatment,eference 317.40** 2.99 1.33 1.34%%* 3.29%%*
(124.41) (1.82) (0.84) (0.22) (0.69)
Treatment x Middle 1/3 Wealth -197.06 -1.79 0.37 -0.11 0.14
(137.80) (1.90) (0.81) (0.25) (0.75)
Treatment x Top 1/3 Wealth -202.18* -1.07 1.06 0.26 -0.49
(118.26) (2.09) (1.12) (0.28) (0.61)
Observations 2,495 2,495 950 2,484 2,484
Std.Errors by: Village by: Village by: Village by: Village by: Village
FE: household v v v v v
FE: year v v v v v
Controls v v v v v
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3.4.5 Robustness check

In this section, we conduct a robustness check of our estimation through placebo tests and

discuss the uncertainty of some of the self-reported data.

3.4.5.1 Placebo test

Placebo tests provide support for the energy expenditure (or space heating) effects we esti-
mated, indicating that they are indeed caused by the treatment, the Clean Heating Policy,
rather than unrelated factors. We perform placebo tests in two ways: (1) on variables that
should not be affected by the implementation of the policy and (2) on a “fake” treatment
status. To assess the impact of the “fake” treatment status, we employed two distinct ap-
proaches: in-time and in-space placebo tests.

We initially conducted the baseline regression on three variables that should not be
impacted by the Clean Heating Policy: the age of our health survey participants, the age at
which current smokers began smoking, and the household farmland area.* Table 3.4 presents
the results from a placebo test concerning three “irrelevant” variables. The treatment effects
of the Clean Heating Policy on these variables are very close to 0 and not statistically
significant at the 5% level. These findings strengthen the argument that the observed positive

impacts on economic and space heating outcomes are not likely due to Type I errors.

4In follow-up surveys, the health survey participant within a household may change if the original
participant is unavailable.
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Table 3.4: Placebo test: treatment effects on “irrelevant” variables. This table
presents estimates of the coefficient S from Equation 3.1, using outcome variables that should
not be affected by the Clean Heating Policy. These include the age of the health participants,
the age at which current smokers started smoking, and the area of farmland. Standard errors,

shown in parentheses, are clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Placebo test: on “irrelevant” variables

Dep. var.: Age Smoke Age Farmland
Treatment -0.03 0.10 0.06
(0.21) (0.62) (0.11)
Num.Obs. 2,493 588 2,491
Std.Errors by: Village by: Village by: Village
FE: household v v v
FE: year v v v
Controls v v v

We conducted an in-time placebo test to assess the robustness of our baseline estimations.
For this test, we constructed a “fake” treatment status by advancing the actual treatment
timing of the Clean Heating Policy by one or two years for the treated households. This
placebo test, carried out on a subsample that excludes all actual treated observations, serves
as a pre-trend test, providing additional support for the parallel trends assumption beyond
the pre-treatment event study results discussed in Section 3.4.3 (Huang & Liu, 2023). Figure
3.7 shows the results of this test. The x-axis represents the years by which the Clean
Heating Policy was hypothetically advanced, with 0 indicating the actual treatment year.
The coefficients and 95% confidence intervals displayed in Figure 3.7 reveal no statistically
significant impacts from the placebo treatments across all five outcomes of interest, further
substantiating the validity of our identification strategy.

Our in-space placebo test involved randomly selecting individuals from the sample to

serve as “fake treatment units,” with no replacement. We then conducted DiD estimations
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to determine the placebo effect. This process was repeated 500 times using Monte Carlo
simulations, facilitated by the newly developed STATA command “didplacebo” (Chen et
al., 2023). Figure 3.8 displays the results with gray bars and orange lines representing the
distribution and kernel density of the in-space placebo estimates across all five outcomes
of interest, based on 500 simulations. The actual estimations from Table 3.2 column 4 are
marked by red vertical lines.

The distributions of the 500 in-space placebo estimates approximate a standard normal
distribution. Notably, for the three space heating outcomes — indoor temperature, number of
heated rooms, and average heating duration — the absolute values of the placebo estimated
coefficients from the 500 simulations are consistently smaller than our main estimations.
For per capita winter energy expenditure, the main estimation lies in the right tail of the
placebo distribution, with only 1% of the placebo estimates exceeding it. Regarding the
share of winter energy expenditure in family income, which was not statistically significant
at the 5% level in our main estimation, there are 7% of the placebo estimators surpass the

main estimation.
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Figure 3.7: In-time placebo test of economic and space heating outcomes. This figure shows the in-time placebo test
results by shifting the actual treatment timing by one or two years in advance. The x-axis indicates the years of the treatment
timing shifted with 0 represent the treatment year in reality. The blue line with the circle markers are the main estimations
while the orange lines with the triangle markers are the in-time placebo estimations. The intervals are the 95 percent confidence

intervals based on standard errors clustered at the village level.
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Figure 3.8: In-space placebo test of economic and space heating outcomes. This
figure shows the in-space placebo test results by randomly determining the treatment status
across households. The gray bars and orange lines illustrate the distribution of 500-time
Monte Carlo analysis on estimation of Equation 3.1. The red vertical lines represent the

main estimation results based on the treatment status in reality.
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3.4.5.2 Robustness of self-reported data

The reliability of self-reported income data from surveys is a perennial concern, especially
when derived from a single question. This issue primarily arises from two factors: first, the
imperfect response rate, as respondents frequently hesitate to disclose income information
due to privacy concerns; and second, the potential for response bias, which may be influenced
by the comprehensiveness of income sources considered and the respondent’s ability to ac-
curately report income figures (Micklewright & Schnepf, 2010). These reliability challenges
can significantly skew the estimation of our outcome variable, the share of winter energy
expenditure in household income.

To enhance the reliability of self-reported income data, our survey design broke down
family annual income into distinct categories: wages, agricultural income, business revenues,
remittances, and government subsidies. This segmentation reflected the diverse income
sources typical within our sample population. The components were then aggregated to
compute the total annual household income. This method reduced the sensitivity often as-
sociated with direct inquiries about total income and helped respondents more accurately
account for various income streams, simplifying the reporting process and promoting consis-
tency in measurement across participants.

Despite these improvements, 0.3% of the observations reported a total household income
of zero, which could indicate a refusal to disclose income details. Additionally, 4.5% of the
observations recorded a per capita annual income below 3,000 RMB, a figure that seems un-
realistically low given the coverage of China’s social security system, including basic pension
insurance for urban and rural residents and rural minimum living security funds. Conse-
quently, we applied a bottom-coding approach for households reporting incomes below this
threshold, setting 3,000 RMB as the minimum per capita income. This decision was informed
by 2017 data indicating that annual per capita food consumption in rural Beijing amounted
to 4,653 RMB, coupled with the fact that our sample districts are among the economically

weaker regions in Beijing. Based on the income sources and consumption levels observed in
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the sample villages, a threshold of 3,000 RMB represents a reasonable estimate for minimum
subsistence income.

To verify the robustness of our processed self-reported income data, we conducted the
baseline regression analysis on the share of winter energy expenditure in household income
using three sub-samples. These sub-samples systematically excluded the bottom and top
2.5%, 5%, and 10% of extreme per capita income observations, respectively. The results,
detailed in Table 3.5, show consistent treatment effect estimations on share of winter energy
expenditure in family income across all sub-samples compared to the baseline. This consis-
tency suggests that extreme income values have a minimal impact on our outcome variable,

affirming the reliability of our findings despite potential variations in reported income levels.

Table 3.5: Robustness of self-reported income data: treatment effects on share
of winter energy expenditure based on subsample. This table presents estimates of
coefficient S from Equation 3.1 on subsample with the share of winter energy expenditure
in income as the outcome variables. We determine the subsets of households by removing
households with 2.5%, 5%, and 10% income extremes. Standard errors, shown in parentheses,

are clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Dep. var.: Share of Winter Energy Expenditure in Income(%)
Subsamples 95% sample 90% sample 80% sample
Treatment 1.71%* 1.87* 1.73*
(0.92) (0.95) (0.88)
Num.Obs. 2,233 2,144 1,819
Std.Errors by: Village by: Village by: Village
FE: household v ve v
FE: year v v v
Controls v v v

Another source of uncertainty in our primary findings arises from the method used to
determine winter energy expenditures. Although both household coal briquette consump-
tion and electricity expenditure were self-reported, the uncertainty in coal expenditure is
significantly lower than that of electricity bill. This is because households ordered their

winter heating coal briquettes in advance through the Reduce and Substitute Coal Program
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by submitting orders to the village committee, which were then coordinated with the dis-
trict government. Additionally, each household received a subsidized coal purchase quota
based on household size, ensuring that they had a clear understanding of their coal con-
sumption during the heating season. Furthermore, within the same township, households
purchased coal briquettes at a standardized price, minimizing the likelihood of uncertainty
or measurement error in self-reported winter coal expenditures.

Regrading the winter electricity bill, our survey, conducted early each winter, requires
households that have recently transitioned to the new heating technology to estimate their
upcoming season’s electricity bills. Figure 3.9 shows the disparity between self-estimated
winter electricity bills and actual bills, the latter retrieved via the “Wangshangguowang (%]
EEM)” mobile application. Not all households have smartphones or use this app, so our
data includes actual winter electricity bills from only about forty households.

Both untreated and treated households tend to misjudge their winter electricity expenses,
but treated households are particularly prone to underestimating them. This tendency sug-
gests that our calculations of the average treatment effects on winter energy expenditure

might be conservative, acting as a lower-bound estimate rather than an overestimation.
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Figure 3.9: Robustness of self-estimated winter electricity bill. This figure il-
lustrates the correlation between self-estimated winter electricity bills and the actual bills
collected through households’ “Wangshangguowang” application. The color of the scatter
points represents the treatment status, while the size of the points represents the ratio
between the actual and self-estimated winter electricity bills. The 45-degree dotted line in-

dicates where the estimated electricity bill equals the actual electricity bill.
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3.4.5.3 Heterogeneity-robust DiD estimators

Although we have thoroughly analyzed the dynamic treatment effects using various heterogeneity-
robust DiD estimators in Section 3.4.3, this section further examines the robustness of the
TWFE estimator on average treatment impacts. The consistent estimation of post-treatment
dynamic effects, as illustrated in Figure 3.4 and Figure 3.6, suggests that the estimates of
average treatment effects, obtained after weighted averaging, also remain consistent. Figure
B.2 in the appendix displays these average treatment effects from various DiD estimators.
The Bacon Decomposition, detailed in Figure B.7 in the appendix, clarifies this con-
sistency. Operating within a staggered DiD setting — where no sample village is covered
by the Clean Heating Policy at baseline and 60% of sample villages remain “never treated”
throughout the study — the weighted average TWFE estimator is primarily influenced by
the “good” 2 x 2 estimators (i.e., treated versus never treated), which contribute about 80%
to the TWFE average treatment effects. In contrast, the problematic “later treated versus
early treated” estimator accounts for only about 10% of the main TWFE estimator. As
shown in Figure B.7, there are only minor discrepancies among the decomposed 2 x 2 esti-
mators, suggesting that the potential biases introduced by staggered treatment are minimal

and do not significantly threaten our main estimation results.
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3.5 Discussion

In this section, we further discuss and perform some robustness checks on our main findings.

3.5.1 Potential financial challenges under different subsidy scenar-
ios

All of our findings thus far regarding the economic and space heating impacts have relied
on the “triple subsidies” provided by the municipality-district-town governments in Beijing.
Given the positive externalities, including enhanced ambient air quality, heightened energy
efficiency for the broader society, and diminished greenhouse gas emissions, governmental
subsidies for cleaner heating hold considerable potential for substantial social benefits (Berk-
ouwer & Dean, 2023). In the 2020-2021 heating season, the Beijing municipality-district
governments provided a tariff subsidy of 0.73 billion RMB for the Clean Heating Policy
(Beijing Association for Sustainable Development, 2021). Even in 2023, a decade after the
inception of the Clean Heating Policy in rural Beijing, electricity tariff subsidies persist, with
the government additionally unveiling a subsidy policy for households proactively replacing
equipment upon reaching the end of its lifespan (The People’s Governemnt of Beijing Munici-
pality, 2023). However, the question about sustainability of such financial support endeavors
raises questions, with households expressing apprehensions during interviews regarding the
potential dwindling or cessation of subsidies.

Given the potential uncertainty surrounding the long-term sustainability of the Clean
Heating Policy, it is crucial to assess its economic implications under various subsidy sce-
narios. Figure B.3 in the appendix outlines three scenarios that consider different levels of
subsidy cancellation: Scenario 1 involves the cancellation of electricity tariff subsidies from
one level of government, either town or district level); Scenario 2 includes the combined
cancellation of tariff subsidies from both town and district governments; Scenario 3 entails
the additional cancellation of nighttime valley tariff subsidies, requiring households to pay

the regular electricity tariff. To assess the economic impact of these scenarios, we simulated
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electricity costs by adjusting current expenditures according to specific multipliers reflective
of each subsidy cancellation scenario.

Table 3.6 presents the estimated economic costs based on these simulations. Even under
Scenario 1, the most moderate case where only one tier of government subsidy is withdrawn,
energy expenditures increase fivefold compared to the current scenario. This increase trans-
lates to an additional cost of approximately 8% of annual household income. In the most
extreme case, Scenario 3, where all electricity subsidies are eliminated, per capita winter
energy expenditure rises by 3,920 RMB, which equates to 32% of family income. While
these simulations do not account for potential adaptive responses, they clearly demonstrate
the substantial economic burden that even minor subsidy adjustments could impose on ru-
ral households. We earlier noted the combination of increased expenditure coupled with
increased quantity of heating at the subsidized prices, suggesting a possibly positive wealth
effect from the policy. It seems likely that under such extreme prices as in these Scenarios,
the policy would have resulted in both less disposable income and less household heating.

Good thermal insulation performance in housing is crucial for reducing energy consump-
tion, alleviating the financial burden of heating for households, and improving space heating
(Yang et al., 2010). Since most rural homes in northern China are self-built and lack uni-
form construction standards, nearly 80% of rural dwellings do not have insulation measures,
resulting in significantly higher per-unit energy consumption compared to urban residences
(National Development and Reform Commission, 2017).

During the pilot phase of the Clean Heating Policy, government documents indicated that
villages that had completed insulation retrofitting would be prioritized for policy implemen-
tation. However, during the large-scale implementation phase, despite policy requirements
to integrate insulation improvements, we observed that many villages did not complete
retrofitting either beforehand or concurrently with the Clean Heating Policy. For exam-
ple, in our sample households, only about 30% had insulated all their walls, and only 20%
had completed roof insulation. Thus, our estimated policy impacts reflect conditions where

insulation remains inadequate.
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If comprehensive insulation retrofitting were conducted, the policy could potentially yield
more desirable outcomes. Additionally, for provinces in severely cold regions, even in the
absence of the Clean Heating Policy, improving housing insulation could help reduce coal

consumption while also preparing for future clean heating transitions (Z. Wang et al., 2022).
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Table 3.6: A straightforward calculation of the potential financial challenges
under subsidy scenarios. This table presents estimates of coefficient S derived from
Equation 3.1, with a straightforward calculations of per capita winter energy expenditure
and the share of winter energy expenditure to income under different subsidy scenarios
as outcome variables. We use “Treatment” (in quotes) to distinguish these hypothetical
scenarios from the actual treatment in reality. Standard errors, shown in parentheses, are

clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Scenarios: Current Scenario 1 Scenario 2 Scenario 3

Panel A. Per capita winter energy expenditure (RMB)
“Treatment” 181.71°+* 1145.07%%* 2108.43*** 3919.55%+*
(83.31) (164.46) (250.10) (413.49)

Panel B. Share of winter energy expenditure in family income (%)

“Treatment” 1.99* 0.83%** 17.67%%* 32.41%**
(1.09) (1.91) (2.78) (4.44)

Num.Obs. 2,497 2,497 2,497 2,497

Std.Errors by: Village by: Village by: Village by: Village

FE: household v v v v

FE: year v v v v

Controls v v v v
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3.5.2 Uptake effects of the Clean Heating Policy

One minor challenge in defining treatment status arises from a small subset of households in
treated villages that delayed new heating equipment installation due to ongoing or planned
renovations coinciding with the village-wide Clean Heating Policy implementation. Less than
5% of treated village observations exhibited this behavior. We considered such behavior,
reflecting individual reactions to the treatment, as part of the treatment effects. In this
section, we explored the household-level “uptake” effects instead of the village-level treatment
effects reflected in the main results.

We define “uptake” as whether a household adopts new heating technology. Table B.2 in
the appendix presents the descriptive statistics for energy poverty outcomes among house-
holds in the villages haven been treated by the Clean Heating Policy and those who actually
have taken up the new heating technology. Using this redefined independent variable, we
re-estimate the baseline regression (Equation 3.1). Table 3.7 presents the uptake impacts
on economic and space heating indicators. These “uptake” impacts are more significant and
larger than the treatment effects, particularly on economic outcomes. Specifically, the adop-
tion of the new heating equipment from the Clean Heating Policy resulted in a rise in per
capita winter energy expenditure by 226 RMB, equivalent to a 2.7% increase in its share in
family income. Both coefficients are statistically significant at the 5% level. Moreover, the
uptake impacts on these two outcomes are 24% and 33% higher than the treatment impacts,
respectively. Therefore, our main results provide conservative estimations of the impacts of

the Clean Heating Policy on energy poverty.
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Table 3.7: Uptake effects of the Clean Heating Policy. This presents estimates of

coefficient 8 from Equation 3.1 with whether a household uptake the new heating equipment

from the Clean Heating Policy as the independent variable. Distinguished from “treatment”,

“uptake” requires households to be not only in the treated villages, but also to use clean

heating technologies as a means of space heating. Standard errors, shown in parentheses,

are clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Dep. var.: Exp Share Temp Rooms Duration
Uptake 226** 2.65%* 1.807%* 1.56%%* 3.5k
(88.67) (1.21) (0.47) (0.17) (0.50)
Num.Obs. 2,497 2,497 950 2,486 2,486
Std.Errors by: Village by: Village by: Village by: Village by: Village
FE: household v v v v v
FE: year v v v v v
Controls v v v v v
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3.6 Conclusion

In this paper, we analyze the effects of the Clean Heating Policy in rural northern China,
one of the largest household energy interventions globally, on various aspects of energy
poverty. Our findings reveal significant and enduring positive impacts on both economic
and space heating outcomes among households covered by the Clean Heating Policy. In
comparison to households in villages still reliant on burning coal briquettes for space heating,
those in Clean Heating Policy treated villages expend approximately 180 RMB more on per
capita winter energy expenditure. Nevertheless, they experience a notable improvement in
nighttime indoor temperature by 1.8°C, accompanied by an increase of 1.4 additional rooms
with regular heating and an extended average room heating duration by 3 hours per day.
This underscores the willingness of individuals to invest more in enhancing their energy
services and achieving thermal comfort in their living spaces, when the financial impact of
the intervention policy is relatively minor. Furthermore, our results highlight the significance
of integrating economic impacts with the level of energy demand satisfaction when evaluating
the impacts of intervention programs on household energy poverty.

We also observe heterogeneous treatment effects across village altitude, baseline heating
infrastructure, and household socioeconomic status. While there are no statistically signifi-
cant differences in space heating impacts, households residing in high-altitude villages incur
higher expenditures on winter energy use. Furthermore, although households lacking hot
water radiators before the treatment experience considerable financial strain, they experi-
ence much better heating improvement. The dissemination of water radiator systems also
partially accounts for the finding that households in lower wealth index groups experience
more significant impacts from the policy.

Our straightforward calculation indicates that the observed trend of “paying slightly
more for significantly improved heating comfort” may heavily rely on generous subsidies
from the Beijing government. This implies that if the positive effects of the Clean Heating
Policy on energy transition, health, and air quality improvements are to be sustained, high

government subsidies may need to remain in place for a considerable period. Whether
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households can develop a long-term habit of using clean energy and gradually reduce their
reliance on government subsidies is a key issue for future policy considerations. This analysis
further illustrates that with appropriately designed incentives, households are willing to
increase their energy expenditure to access higher levels of energy services. Consequently,
the energy transition not only benefits individual households but also fosters a win-win
scenario for society by enhancing environmental, health, and economic outcomes from the
individuals’ positive externality. Our findings carry significant policy implications for the
ongoing Clean Heating Policy in rural China, as well as for other countries seeking to promote

household energy transition through heating interventions.
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Bridging text

The findings presented in Chapter 3 help alleviate some concerns regarding the impact
of the Clean Heating Policy on vulnerable rural households, particularly in terms of energy
poverty. The results indicate that households have experienced significant improvements
in space heating with minimal financial burden. However, given that this transition was
mandatory, it raises questions about how households perceive these outcomes.

Beyond economic impacts, the energy transition influences various important domains of
life. In addition to the improvements in indoor temperatures discussed in the previous chap-
ter, the use of clean energy can significantly enhance the living environment. This includes
reductions in indoor air pollution, increased cleanliness within the home, and improved out-
door air quality. Moreover, improvements in temperature and air quality through energy
transition offer substantial health benefits, such as reducing the risk of cardiovascular and
respiratory diseases. Particularly for rural households in northern China, the energy transi-
tion can significantly reduce the frequent incidents of carbon monoxide poisoning caused by
burning solid fuels for heating in winter. Furthermore, the energy transition can markedly
decrease the time households spend collecting and using solid fuels, thereby providing greater
convenience in energy usage. Consequently, the impact of the energy transition on well-being
is multifaceted and significant.

Chapter 4 aims to assess how households experience the Clean Heating Policy’s impact
on overall quality of life. We will evaluate the impact of the Clean Heating Policy on
household subjective well-being and explore the underlying mechanisms of this influence. In
this chapter, we focus on households participating in the Clean Heating Policy as the primary
subjects for policy evaluation, with their self-assessment of well-being serving as the study’s
main objective. This approach offers a new perspective for evaluating the impact of current

household energy transition projects.
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Chapter 4

Household energy transition and
subjective well-being: A
difference-in-differences estimate of

outcomes in rural northern China

This chapter is being prepared for submission to a journal as: Xiang Zhang, Christopher P.
Barrington-Leigh, Brian E. Robinson et al., “Household Energy Transition and Subjective

Well-being: A Difference-in-differences Estimate of Outcomes in Rural northern China.”
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Abstract

Transitioning households from solid fuels to modern energy sources is crucial for improving
living conditions, health outcomes, and achieving sustainable energy futures. However, there
is a noticeable gap in the literature regarding how this energy transition affects the quality of
life from the perspective of affected households. This study leverages a natural experiment —
the Clean Heating Policy in rural northern China — to assess the impact of household energy
transition on subjective self-reports of overall quality of life. Utilizing difference-in-differences
estimations on panel data from a survey of over 1,200 rural households conducted between
2018 and 2022 in Beijing, we find that the transition increases average life satisfaction by
0.36 on a 0 to 10 scale (95% confidence interval: 0.09-0.63). The impacts on satisfaction
with living conditions and income are less pronounced. Additionally, our results suggest
that younger, wealthier households and those in poorer health experience more substantial
improvements in life satisfaction. These improvements are likely due to the ease and safety

of the new energy sources and the enhanced comfort provided by better heating solutions.
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4.1 Introduction

As of 2023, a significant portion of the impoverished population in developing countries
remains afflicted by energy poverty, defined as “the lack of access to modern energy services
and products” (Kumar, 2020). This challenge predominantly affects over 745 million people
in sub-Saharan Africa and developing Asia, who still lack access to electricity (IEA, 2023).
Additionally, approximately one-third of the global population relies on burning solid fuels
for cooking and space heating (IEA et al., 2022).

Adequate domestic energy for cooking, lighting, and heating is essential to enhancing
people’s quality of life. Per capita energy consumption is strongly correlated with various
quality of life indices, such as life expectancy and gross national income (Pasten & Santama-
rina, 2012). According to Modi et al. (2005), individuals require at least 50 kilograms of oil
equivalent per year to satisfy the most fundamental energy needs for cooking and lighting.

Beyond merely fulfilling basic needs with sufficient quantity, the quality of domestic
energy services plays a crucial role in enhancing the overall quality of life. Modern energy
sources such as electricity and liquefied petroleum gas (LPG) are generally preferred by
households due to their superior fuel efficiency (Malakar & Day, 2020). These modern energy
sources offer numerous benefits, including reduced emissions of air pollutants and greenhouse
gases, which enhance human health and advance the rights of women and children (Floess
et al., 2023; Rehfuess & World Health Organization, 2006; Shi et al., 2022; Tibrewal &
Venkataraman, 2021). Transitioning households from solid fuels to modern energy sources is
thus considered a critical step toward sustainable development (IEA, 2023; Kaygusuz, 2007,
2012). This shift aligns with the United Nations’ Sustainable Development Goal 7 (SDG
7), which emphasizes the importance of ensuring accessible, reliable, and affordable modern
energy for all by 2030 as part of its broader 2030 Agenda (Villavicencio Calzadilla & Mauger,
2018).

Despite its critical importance, progress in the global household energy transition has
been slow. The challenges of achieving SDG 7 by 2030 have been exacerbated by the COVID-

19 pandemic and rising energy prices since mid-2021, particularly in vulnerable developing
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countries (IEA et al., 2023). According to the Paris Agreement evaluation report, the rate
of behavioral change toward a clean energy transition has been deemed “not on track”
(IEA, 2023). Targeted interventions may be necessary to accelerate progress (Pachauri
et al., 2021). Several household energy interventions have shown significant impact, such
as the Clean Cooking Alliance (CCA) (Clean Cooking Alliance, 2021; K. R. Smith, 2010),
Ecuador’s National Efficient Cooking Program (NECP) (Davi-Arderius et al., 2023; Martinez
et al., 2017), and Bangladesh’s Solar Home Systems Program (Cabraal et al., 2021). These
programs have significantly promoted universal electricity access and the adoption of clean
cooking technologies.

In the preceding text, we have used the terms “well-being” and “quality of life” inter-
changeably when describing the relationship between domestic energy use and people’s life.
Well-being typically refers to a global evaluation of a person’s life (Diener, 2009). Although
the definition and conceptualization of well-being is sometimes left ambiguous, it is increas-
ingly recognized as a central goal of development, as highlighted by the United Nations
Human Development Index (Jarden & Roache, 2023; Taylor, 2011). Various frameworks
and indices, such as the OECD Framework for Measuring Well-Being and Progress, the Aus-
tralian Unity Well-Being Index, Gross National Happiness, the Canadian Index of Wellbeing,
and the Well-being of Nations, identify common key domains of well-being, which include
health (H), wealth (W), environment (E), time use patterns (T), and social connections (S)
(Cummins et al., 2003; Prescott-Allen, 2001; Smale & Hilbrecht, 2014; L. M. Smith et al.,
2013; Ura et al., 2012). The relationship between key domains such as household economic
status (Cummins, 2000; Diener et al., 1993; Ferrer-i-Carbonell, 2005), environmental fac-
tors including air pollution (Y. Li et al., 2019; Luechinger, 2009; Welsch, 2007; X. Zhang
et al., 2017a), health status (Frijters et al., 2014; Ngamaba et al., 2017; Okun et al., 1984),
and time use (Becchetti et al., 2012; Schmiedeberg & Schroder, 2017; Zuzanek, 1998) with
well-being has been extensively studied.

Subjective measures of well-being, which encompass individuals’ self-assessed evaluations

of their life, are commonly used metrics in empirical studies (Frey et al., 2010). Global
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life satisfaction, a key component of subjective well-being, frequently informs public policy
assessments (Alesina et al., 2005; Layard et al., 2008). The Satisfaction with Life Scale
closely aligns with the construct of well-being, offering a stable reflection of the general and
enduring circumstances of people’s lives (Diener, 2009; Helliwell & Barrington-Leigh, 2010).
Such global evaluations account for the entirety of people’s experiences, comprehensively
quantifying quality of life.

Subjective well-being is particularly relevant when considering the impacts of energy
transitions, which affect people’s lives through multiple channels and across disparate di-
mensions of life. Theoretically, transitioning to clean energy has several positive impacts
across key domains of well-being. Improved living environments (E) are characterized by
better air quality and thermal comfort (Q. Li et al., 2017; J. Liu et al., 2016; J. Zhang
et al., 2000). Enhanced health outcomes (H) result from decreased air pollution and reduced
injury risks associated with the use of solid fuels (Kyayesimira & Florence, 2021; Lee et al.,
2020; Perera, 2017; Zhu et al., 2023). Time savings (T) from more efficient cooking methods
and reduced time spent collecting fuel can be reallocated to leisure, productive activities,
or education, with significant benefits for women and children (Biswas & Das, 2022; Ding
et al., 2014; Feng et al., 2009; Jagger et al., 2019). Moreover, transitioning to clean energy
can boost social capital by enhancing social standing and encouraging pro-environmental
behaviors (S) (Jeuland & Pattanayak, 2012; L. Li et al., 2022).

At the same time, the transition to clean energy could present significant challenges for
households, particularly as many users of solid fuels reside in low-income areas where alter-
native, cleaner energy sources are often more costly. This economic disparity can exacerbate
energy poverty, potentially leaving basic energy needs unmet or diverting funds from other
essentials (Churchill et al., 2020; Igawa et al., 2022; Johnson et al., 2020; Nguyen et al.,
2019; Riva et al., 2023; Xie et al., 2022). Additionally, clean energy technologies may clash
with traditional habits, posing further challenges for adoption (Gould et al., 2022; Hollada
et al., 2017; Lambe & Atteridge, 2012; Ochieng et al., 2020). These challenges can negatively
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impact people’s well-being, as they struggle to integrate new energy sources into their daily
lives.

The practical impact of energy transitions on well-being is thus complex and multifaceted,
significantly influenced by interactions among various domains of well-being. For instance,
while energy transitions can initially increase expenses and strain household budgets, they
may also indirectly enhance wealth by boosting productivity through improved health and
time savings, as well as by reducing medical costs (Duflo et al., 2008). This complexity
is further compounded by variation in the level of household adherence to clean energy
transitions. Field studies indicate that environmental and health benefits often fall short of
expectations due to practices such as energy stacking (the mixing of solid and clean fuels)
and the short-term abandonment of new technologies (Beltramo & Levine, 2013; Gould &
Urpelainen, 2018; Hanna et al., 2016; Liao et al., 2021; Pope et al., 2017). Therefore, the
complex mechanisms at play leave significant gaps in understanding the full effect of energy
transitions on well-being.

Several studies have explored the impact of household energy transitions on subjective
well-being, providing empirical evidence to fill existing knowledge gaps. Ma et al. (2022)
used cross-sectional data from the 2016 China Labor-force Dynamics Survey to analyze how
different cooking fuel types (clean-fuel-only, non-clean-fuel-only, and mixed-fuel) affected
life satisfaction, measured on a five point scale.! They found that transitioning to complete
clean-fuel use significantly increased life satisfaction. Specifically, the increase was 5.8 (+2.9)
percentage points from non-clean-fuels and 3.4 (£2.0) percentage points from mixed-fuels.
The impact of partial transitions (non-clean-fuel to mixed-fuels) was mild and statistically
insignificant. In another study, Xie and Zhou (2021) used data from a cross-sectional field
survey of approximately 4,000 rural households in Beijing to assess how the Coal to Electric-
ity policy influenced subjective evaluations across five welfare dimensions (warmth, indoor

air quality, cleanliness, convenience, and safety) using a 5-point Likert scale describing pos-

!They ask the life satisfaction as “Overall, how satisfied are you about your life? from 1-very unsatisfied,
2—unsatisfied, 3—fair; 4-happy; 5—very happy.”
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itive or negative changes in outcomes.? They reported that over 80% of households saw
improvements in all dimensions post-policy. Instead of the “before and after” comparison,
our pilot study (Barrington-Leigh et al., 2019) compared life satisfaction between treated
and untreated villages in three Beijing districts with varying income levels. Using an 11-
point scale, findings showed life satisfaction was 0.7 points higher in treated villages in the
middle-income district but 1.0 points lower in treated villages in the low-income district,
indicating variable impacts based on economic context.

This study aims to provide rigorous empirical evidence on how household energy tran-
sitions affect individuals’ quality of life. The core research question addressed in this paper
is: Do households living in villages implementing the Clean Heating Policy experience im-
provements in subjective well-being as a result of the energy transition? Under this core
question, we address several related issues. First, on average, how does the Clean Heating
Policy affect subjective well-being, including life satisfaction, satisfaction with living condi-
tions, and satisfaction with income? Second, how does the impact on subjective well-being
evolve over time? Third, which subgroups are more likely to experience improvements or
deterioration in well-being due to the energy transition? Last, through which key domains
does the Clean Heating Policy influence household subjective well-being? Leveraging the
gradual implementation of the Clean Heating Policy in rural northern China, we adopt a
quasi-experimental design to investigate these issues.

Our study makes significant contributions to the literature in four ways: (1) We prioritize
the subjective evaluation of individuals involved in the energy transition, thereby enriching
our understanding of its impact beyond the objective measures traditionally emphasized.
(2) We focus on the less-studied area of energy transition in space heating, distinct from the
more commonly discussed transitions in cooking energy, which involves different economic
and environmental considerations, such as higher costs and impacts on thermal comfort. (3)
This study contributes to the growing body of literature that employs subjective well-being

measures to inform public policy decisions (Diener & Ryan, 2009). (4) Lastly, we conduct

2Point 3 refers to “similar to before”; greater than 3 indicates a better situation while less than 3 indicates
a worse situation than before.
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a rigorous impact evaluation using unique panel data from a large sample, which allows us
to better control for unobservable confounders, a methodological improvement over most
existing studies that rely on single-point comparisons of cross-sectional data.

The remainder of this paper is structured as follows: Section 4.2 provides the background
and details of the Clean Heating Policy in Beijing. Section 4.3 outlines the study design, the
data collected, and the empirical strategy used to evaluate the impacts. Section 4.4 presents
the impacts of the Clean Heating Policy on subjective well-being and the robustness of our
findings. Finally, Section 4.5 discusses the implications of the results and concludes the

study.

4.2 Clean Heating Policy in Beijing

In this section, we introduce the background and the implementation of the Clean Heating

Policy in Beijing.

4.2.1 Background

Despite widespread rural electrification in Beijing since the 1980s, electricity was primarily
used for lighting and appliances up until the end of the 1990s, due to supply instability and
cost (Publicity Committee for Beijing’s Rural Construction Achievements on the Thirty-
fifth Anniversary of the Founding of the People’s Republic of China, 1984). During this
period, coal and biomass remained the primary energy sources for cooking and heating in
rural households (Building Energy Research Centre at Tsinghua University, 2016). After-
2000, gas fuels, especially LPG, rapidly gained popularity. As depicted in Figure 4.1a, LPG
and natural gas consumption steadily increased from 2005, marking a significant shift in
cooking energy sources. According to the Chinese Agricultural Census, the proportion of
rural households in Beijing using gas as their primary cooking fuel rose dramatically from
9% in 1996 to 51% in 2006, and reached 90% by 2016. However, the transition to modern

energy sources for space heating has been slower. Coal continued to be the dominant fuel,
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utilized in various stove types, including simple stoves, high-efficiency stoves, and private
boilers (Tao et al., 2018). Figure 4.1a also shows a continuous increase in coal consumption
by rural households between 1995 and 2013, with a typical household consuming between
2.5 to 3 tonnes of coal each heating season (Jingchao & Kotani, 2012; Yang et al., 2017).
In January 2013, Beijing recorded its worst pollution levels since the inception of PMy 5
monitoring, with the monthly average concentration soaring to 160 ug/m?, surpassing the
WHO’s annual average guideline by more than 30 times (Beijing Municipal Environmental
Protection Bureau, 2014, p.3)(World Health Organization, 2021, p.78). This severe pol-
lution event affected 8 million people and escalated into a significant social issue (Huang
et al., 2014). In response, the Chinese Government and the Beijing Municipal Government
launched the “Action Plan for Prevention and Control of Air Pollution” and the “Beijing
Municipal Clean Air Action Plan 2013-2017,” respectively, in 2013. These initiatives ad-
dress air pollution by facilitating energy transitions across multiple sectors, including power
production, transportation, industry, and residence. Figure 4.1b illustrates a pronounced
correlation between the days of severe air pollution and the heating season, highlighting the

urgent necessity for clean energy transitions away from coal-based space heating in rural

households.

4.2.2 Implementation of the Clean Heating Policy

The Clean Heating Policy, initially piloted in 14 Beijing villages in 2013, aims to replace
rural households’ coal-based space heating with cleaner alternatives through the Coal to
Flectricity and Coal to Natural Gas schemes (Xinhua Net, 2017). Specifically, the Coal
to Electricity policy has been widely adopted, with approximately 80% of Beijing’s villages
implementing this strategy by 2021 (Beijing Association for Sustainable Development, 2021).
Consequently, this paper will primarily focus on this approach. As illustrated in Figure 4.2,
the Coal to Electricity policy expanded rapidly between 2016 and 2018 following a successful

three-year pilot phase and entered its final stage post-2019. The implementation began
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Figure 4.1: Background of the Clean Heating Policy in Beijing. Data source
for Figure 4.1a is China Energy Statistical Yearbook and Beijing Statistical Yearbook. All
energy sources were converted to kilograms of standard coal (kgce), with 1 kgce equaling 29.3
MJ. A consistent conversion factor was used despite variations in energy quality over time.
The 2012 decline in electricity consumption reflects urban/rural reclassification. Biomass
fuels are excluded due to missing data. Figure 4.1b is obtained from 2022 Report on the State
of the Ecology and Environment in Beijing (Beijing Municipal Ecology and Environment
Bureau, 2023, p.4).

in the Six Urban Districts,® extended to the rural plain areas, and eventually reached the
mountainous regions. The heating technology for the transition evolved from direct electric
heaters to thermal storage heaters and ultimately to air source heat pumps (W. Liu, 2019).
By the end of 2022, the policy had reached 1.35 million households across 3,557 villages,
covering 90% of Beijing’s villages and 93% of rural households with clean heating solutions

(Cao, 2023).

3The six urban districts of Beijing encompass both the downtown core and the expanded surrounding
urban areas: Dongcheng, Xicheng, Haidian, Chaoyang, Fengtai, and Shijingshan.
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Figure 4.2: Number of villages implementing the Coal to Electricity policy per
year during 2013—-2023.

The Coal to FElectricity policy consists of two key components: banning coal use and
subsidizing electric heating systems. The ban on coal use was facilitated by the Reduce
and Substitute Coal Program, which was introduced alongside the clean heating pilot. Since
the 2013 pilot of the Clean Heating Policy, the Reduce and Substitute Coal Program has
been gradually rolled out in villages not yet covered by the Clean Heating Policy. By 2017,
all villages had transitioned to using high-quality and low-pollutant briquettes, collectively
procured by district governments. Once a village adopts the Clean Heating Policy, it is
prohibited from ordering coal from the district government, effectively cutting off household
access to coal products.

Regarding subsidies, the government provides financial assistance for both the purchase
of new electric heating systems and electricity consumption. Specifically, households receive
200 RMB/m? of heated area, up to a maximum of 24,000 RMB, for the purchase of air source

heat pumps.*® Additionally, households benefit from a discounted winter electricity tariff of

4As of March 2024, 1 RMB is approximately equal to 0.14 US dollars.

®Generous government subsidies significantly reduce the cost of air source heat pumps for rural households
in Beijing, often making them essentially free for many families. For example, a household with a 120m?
heating area can receive a six-horsepower air source heat pump at no cost. However, depending on the
house size, the selected pump brand, and the desired capacity, some households may need to cover the excess
beyond the maximum subsidy allowed.
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0.1 RMB/kWh (compared to the standard rate of 0.48 RMB/kWh) for up to 10,000 kWh
consumed between November 15th and March 15th annually (H. Liu & Mauzerall, 2020).

4.3 Study design and data

To assess the impact of the Clean Heating Policy on subjective well-being, we conducted three
rounds of household surveys during the heating season across 50 villages in four districts of
Beijing, spanning the period from 2018 to 2022. This section outlines the study’s design,

data collection methods, and the empirical strategy employed in the analysis

4.3.1 Study design and sample selection

Our household survey consisted of three rounds: a baseline survey followed by two rounds of
follow-up surveys. The baseline survey, conducted between December 2018 and March 2019,
collected data before the implementation of the Coal to Electricity policy in any of the sample
villages. The first follow-up survey took place between November 2019 and January 2020,
after the policy had been initiated in ten villages. By the second follow-up survey, conducted
in the winter of 2021, another ten villages had joined the policy, with seven sample villages
receiving the treatment in 2020 and three in 2021. Figure 4.3 illustrates the geographic

distribution and the timing of policy adoption in the sampled villages.
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Figure 4.3: Sampling strategy and treatment status of sample villages.

Our baseline survey, conducted in the winter of 2018, occurred three years after the
widespread implementation of the Clean Heating Policy in rural Beijing. Consequently, find-
ing villages that had not yet adopted the policy for random sampling presented challenges.
The study focused on four remote suburban districts — Fangshan, Huairou, Mentougou,
and Miyun — situated on the northeastern and southwestern borders of Beijing. Within
each district, we selected a varying number of villages from one or two towns, ranging from
nine villages in Mentougou to eighteen in Huairou. Due to the low winter occupancy rates
in rural Beijing, we collaborated with village leaders to semi-randomly select approximately
20 households likely to be present during the baseline survey. For subsequent follow-up sur-
veys, we prioritized revisiting baseline participants. If they were unavailable or declined to

participate, we recruited new participants to maintain the required sample size per village.
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4.3.2 Data

This study collected first-hand survey data through face-to-face interviews conducted by
approximately 15 trained enumerators each season. They used survey software on handheld
tablets — Surveybe for the baseline and first follow-up, and ODK Collect for the second
follow-up. Each household interview lasted approximately 45 minutes.

The primary outcome, subjective well-being, was measured using the standard life sat-
isfaction question: “Taking all things into account, how satisfied are you with life as a
whole these days?” Respondents rated their satisfaction on an 11-point scale, ranging from
0 (completely unsatisfied) to 10 (completely satisfied). Various life satisfaction scales —
such as 3-point, 5-point, 7-point, 10-point, and 11-point — have been employed in surveys
(Barrington-Leigh & Lemermeyer, 2023; Helliwell et al., 2019). Research indicates that odd-
numbered scales with more response categories tend to offer greater reliability (Kroh, 2006),
leading us to adopt the 0-10 scale. Besides overall life satisfaction, we included two other
subjective assessments: satisfaction with living conditions (“How satisfied are you with your
living conditions as a whole?”) and satisfaction with income (“How satisfied are you with
the income of your household?”), both also measured on the same 11-point scale. These
measures enable us to explore impacts on two critical well-being domains: environment and
wealth.

Figure 4.4 illustrates the trends in overall life satisfaction, satisfaction with living con-
ditions, and satisfaction with income for both the control and treatment groups over time.
At baseline, households in the control group reported slightly higher scores across all three
measures compared to those later covered by the Clean Heating Policy. At baseline, life
satisfaction and satisfaction with living conditions in the treatment group both averaged
7.2, while satisfaction with income averaged 5.0 (on a 0-10 scale). Following the policy’s
implementation, the treatment group experienced significant increases in all three subjective
well-being outcomes. By 2021, the final year of the study, life satisfaction, satisfaction with
living conditions, and satisfaction with income in the treatment group had increased by 0.9,

0.9, and 1.0 points respectively, compared to their baseline levels.
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Figure 4.4: Time trends of outcome variables of treat and control groups. This
figure shows the time trends of (a) life satisfaction, (b) satisfaction with living conditions,
and (c) satisfaction with income of different groups over time. Red and blue denote the
control and treatment groups, respectively. The vertical dashed line separates pre- and post-
implementation of the Clean Heating Policy. To the left of the line, “Treat” statistics reflect
baseline conditions for households that later received the treatment. To the right of the line,
“Treat” and “Control” statistics represent post-treatment and not-yet-treated conditions for

that year. Dots show mean satisfaction, and shaded areas indicate 95% confidence intervals.

Strictly speaking, these variables measure the subjective well-being of the individual
within the household who responded to the survey questions. Due to the study design,
the names of the participants who answered the subjective well-being questions were not
recorded. Therefore, we cannot guarantee that the responses were provided by the same

individuals across all survey years. To account for important time-invariant factors that
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significantly influence subjective well-being, we treat the data as a household-level panel.
This approach is based on two key considerations: First, life satisfaction tends to be highly
correlated among family members, particularly spouses (Schimmack & Lucas, 2007). Over
60% of our sample households consisted of a middle-aged or elderly couple, suggesting that
an individual’s response can reasonably represent the “household” level of life satisfaction.
Second, unlike the pronounced gender differences observed in the literature on cooking energy
transitions, gender plays a relatively minor role in coal-based heating practices in rural
northern China. Given the absence of a clear gender division of labor in heating-related
activities within the sample area, it is reasonable to assume that the policy’s impact on
subjective well-being is similar for individuals within the same household.

Given that the Clean Heating Policy is implemented at the village level, the indepen-
dent variable — household treatment status of the Clean Heating Policy — is determined
by whether their village has completed the policy.® Each summer, the Beijing municipal
government publishes a list of villages scheduled for inclusion in the policy. Subsequently,
the power company upgrades the necessary equipment and grid infrastructure in those vil-
lages. In the fall, the village committee selects the brand of air source heat pump to be
installed, and the company completes installations in all village homes before the heating
season begins.

We also collected information on a variety of factors including household sociodemo-
graphic characteristics (e.g., family size, education, marital status, income, and assets),
housing characteristics (e.g., house area, age, and insulation), fuel consumption patterns
(e.g., type, usage, quantity, and price), heating practices (e.g., method and duration), health
status (for health survey participants, including measures like blood pressure and respiratory
symptoms), and living environment conditions (e.g., indoor and outdoor temperature and

air quality). We selected data from these categories to conduct a preliminary exploration of

6Fewer than 5% of households in treated villages opted to postpone their heating pump installation to the
following year due to ongoing house renovations. We consider this postponement part of policy compliance
and include it in the treatment effects.
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the potential mechanisms through which the Clean Heating Policy may have influenced key
domains of subjective well-being.

Table 4.1 presents descriptive statistics for selected village and household sociodemo-
graphic characteristics, grouped by the timing of the Clean Heating Policy implementation.
Panel A illustrates that, compared to treated villages — which average 200 households, 500
people, and a per capita income of approximately 18,000 RMB in 2015 — never-treated vil-
lages tend to have more households and a larger population, but a lower per capita income.
This discrepancy is likely due to the fact that 11 of the 30 never-treated villages are located
in a town in Fangshan district, where the substation was overloaded and thus lacked the
capacity to participate in the Clean Heating Policy during our study period.

The difference between sample villages in Fangshan and the other three districts is also
evident in air pollution levels. Positioned on the Beijing-Hebei border, villages in Fangshan
experienced higher heating-season PMs 5 and black carbon concentrations at baseline, likely
due to pollution transmission from Hebei province (H. Zhang et al., 2016). Additionally,
while briquette prices remained stable in the other districts throughout our study, villages
in Fangshan saw a doubling of prices in the final study year. We address the potential
implications of these Fangshan-specific discrepancies for the robustness of our results in
Section 4.4.4.

Panel B in Table 4.1 presents the sociodemographic and housing characteristics of sample
households, categorized by the timing of treatment. On average, treated households comprise
2.3 family members, with 1.2 labor-force participants aged 16-65, primarily engaged in local
agricultural work. Most households have limited formal education, with only 20% having
completed secondary school or higher. The average weekly meat expenditure per family is 39
RMB, while monthly mobile phone bills average 85 RMB. The average house size is 127 m?,
and the average house age is 19 years. Additionally, we considered factors known to influence
life satisfaction, particularly the age and marital status of the primary respondent to the

household health survey (Palmore & Luikart, 1972). 86% of respondents were married and
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in their early 60s. As shown in the final column, untreated households exhibit characteristics

comparable to those of treated households across all measured variables.
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Table 4.1: Descriptive statistics. Village-level data in Panel A, including household counts, population
figures, and per capita income, were sourced from the 2016 Statistical Yearbook of the four sampled districts,
reflecting conditions prior to policy implementation in 2015. Methods for measuring the average baseline
PM, 5 and BC concentrations are detailed in the supplementary materials (Text S4) of our previous study

X. Li et al. (2022). We treated the data as pooled data to present the descriptive statistics.

Clean Heating Policy Treatment time

Explain 2019 2020 2021 Never
Treat
Panel A. Village characteristics
Households Number of households 250 219 197 375
Population Number of population 572 486 404 662
Capita Income Per capita income (RMB) 19500 18100 17300 12900
Distance Straight-line distance from the vil- 84.4 65.5 82.5 1.7
lage committee to the city center
(kilometers)
Altitude Altitude of the Village (meters) 274 264 338 281
PM, 5 Average PMy5 concentration in 29.6 20.7 31.7 42.7
baseline heating season (ug/m?)
Black carbon Average black carbon concentra- 1.36 1.07 1.13 1.56
tion in baseline heating season
(ug/m?)
Panel B. Selected Household Characteristics
Family size Population resident in winter 2.31 2.21 2.30 2.41
Labor Labor force population aged 16-65 1.27 1.17 1.25 1.38
Middle school Household’s highest level of educa- 0.241 0.260 0.163 0.302
tion is middle school and above (1-
Yes; 0-No)
Meat Average meat expenditure (raw or 377 41.6 36.3 32.6
cooked) per week (RMB/week)
Mobile Mobile phone expenditure last 89.5 84.7 70.6 91.9
month (RMB/month)
House area House area (m?) 127 127 127 127
House age Age of the house (years) 19.0 17.3 21.7 19.6
Married Marital status of health survey par- 0.842 0.843 0.958 0.883
ticipant (1-married; 0-divorced,
widowed, or never married)
Age Age of health survey participant 61.4 63.4 60.9 61.4
Number of villages 10 7 3 30
Number of house- 244 173 70 719
holds
Number of observa- 609 415 166 1760

tions
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4.3.3 Identification strategy

Leveraging the quasi-experiment created by the staggered implementation of the Clean Heat-
ing Policy, we employed a difference-in-differences (DiD) strategy to estimate the impacts of
this household energy transition intervention on subjective well-being. This strategy com-
pares changes in outcomes before and after policy implementation between households in
treatment villages (where the policy was implemented) and control villages (where the pol-
icy had not yet been implemented). Our baseline specification employs a two-way fixed

effects (TWFE) model, which is specified as follows:

}/it = M + )\t + B X Treatit + Xit Xy + €4 (41)

where Yj; represents the measures of subjective well-beings (i.e., life satisfaction, satisfac-
tion with living conditions, and satisfaction with income) of household i who participated
in survey of year t; Treat; is a binary indicator variable that equals 1 if household ¢ par-
ticipated in the Clean Heating Policy (in the village completed the policy) in survey year
t, and 0 otherwise. Xj;; is a vector of time-variant household-level controls. pu; indicates
the household-level fixed effects that control for household’s time-invariant characteristics
to account for various time-invariant factors (e.g., personal traits) that can affect subjective
well-being; A, indicates the survey-year ¢ fixed effects that address concerns regarding the
influence of common trends in life satisfaction across households over time. For instance,
strict enforcement of mandatory home quarantine during the Covid-19 pandemic in China
could impact all people’s life.

Identifying confounding factors, X, in the context of the Clean Heating Policy is chal-
lenging. In the early stages of the policy, several factors were important for village eligibility
as mentioned in government documents. These include village altitude, grid supply capac-

ity, and completion of energy efficiency and insulation retrofits in houses.” Additionally,

"Since 2006, Beijing has implemented an earthquake-resistant and energy-saving retrofitting project for
rural dwellings, offering subsidies or incentives to families who undertake earthquake-resistant reinforcement
and energy-saving and heat preservation retrofits during house renovations. According to some policy doc-
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eligibility criteria stipulated that a village should not be a proposed site for demolition and
renovation in the upcoming five-year regional plan (Beijing Municipal People’s Government,
2016). To our knowledge, the government did not explicitly publish criteria for prioritizing
villages for policy inclusion after the initial phases, especially in mountainous areas. Un-
fortunately, we lack quantitative data on factors such as completion of retrofitting projects
or inclusion in demolition plans for the sample villages. While these criteria might be par-
tially captured by fixed effects, such as village altitude and grid capacity, we also control
for building age (reflecting the likelihood of isolation and demolition) and house area (which
influences the capacity of subsidized heating pumps) in our preferred specification.

The key assumption of our DiD approach is the parallel trends assumption, which assumes
that in the absence of the Clean Heating Policy, the life satisfaction — as well as satisfaction
with living conditions and income — of households in both treatment and control groups
would have followed the same trajectory over time. Under this assumption, and assuming
that the average treatment effects are consistent across treated households and over time,
the coefficient of interest, 5, on Treat;; identifies the average treatment effect of the Clean
Heating Policy on household subjective well-being.

We estimate Equation 4.1 using ordinary least squares (OLS). In regression analyses
where subjective well-being indicators, such as life satisfaction, serve as the dependent vari-
able, there is ongoing debate about whether these measures should be treated as ordinal
or cardinal (Schroder & Yitzhaki, 2017). Ordinal comparability assumes only a valid and
unique ranking, whereas cardinal comparability additionally assumes equal intervals between
scale points. Given concerns such as larger gaps at scale extremes (Ng, 2008) — empirical
economics studies often favor the more conservative ordinal assumption. Under this ap-
proach, ordered latent-response models (e.g., ordered logit or probit) are typically employed
when the response categories are discrete (e.g., very unsatisfied, unsatisfied, fair, satisfied,

very satisfied) (Angelini et al., 2012; Litchfield et al., 2012; Zhou & Yu, 2017).

uments, the completion of these programs may be an early criterion for identifying villages for inclusion in
the Clean Heating Policy (Beijing Association for Sustainable Development, 2021).
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However, recent research has increasingly adopted the cardinal comparability assumption
for numeric measures of subjective well-being, primarily for statistical convenience. This ap-
proach allows for the straightforward inclusion of fixed-effect terms to control for unobserved
factors and facilitates intuitive interpretation of results (Kristoffersen, 2017). Plant (2024)
investigates whether life satisfaction scales can be considered cardinal by examining the ex-
tent of their deviation from cardinality. Their findings suggest that any such deviations are
minimal, if present at all, thereby justifying the treatment of subjective well-being scales
as cardinal in empirical analysis. Moreover, Ferrer-i-Carbonell and Frijters (2004) demon-
strated that the choice between cardinal and ordinal treatment has relatively little impact
on results, while the inclusion of time-invariant fixed effects for personality traits is crucial.
Consequently, we use OLS to estimate our TWFE regression model, with standard errors
clustered at the village level.

Although the parallel trends assumption is fundamental to the DiD approach, it is in-
herently untestable, as we cannot observe counterfactual outcomes for the treatment group.
To assess its plausibility in our context, we go beyond the baseline regression and conduct
an event study (Equation 4.2) to examine pre-treatment trends. The post-treatment results
from this event study also provide insights into the dynamic effects of the Clean Heating

Policy on subjective well-being.

3 2
Y, = Z 6_; x Treat,;; + Z B x Treaty, + Xie X v+ i + A\t + €3 (4.2)

j=1 k=0
The Clean Heating Policy is implemented in year 0, while j leads and k lags are included.
0; and Bj correspond to pre-trends and dynamic effects j or k periods from the policy
implementation (Clarke & Tapia-Schythe, 2021; Cunningham, 2021).8

While TWFE regressions, as specified in Equation 4.1, are commonly used for DiD mod-
els, recent literature points out that they may produce biased estimates of treatment effects

in staggered adoption designs (De Chaisemartin & d’Haultfoeuille, 2023). Goodman-Bacon

80ur baseline TWFE event study regression omits the first Pre (one period prior to the policy) to reflect
the baseline difference, where j = 1. This could vary for other heterogeneity-robust estimators, which is
detailed in the figure notes.
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(2021) demonstrates that the TWFE estimator represents a weighted average of all possible
2 x 2 DiD comparisons between groups treated at different times in staggered DiD settings.
This estimator consistently captures the average treatment effect on the treated (ATT) only
if the treatment effects are uniform across treated groups and over time. However, the as-
sumption of homogeneous treatment effects is rarely met in practice, which raises concerns
about the validity of classic TWFE estimation in staggered DiD designs.

Given the gradual implementation of the Clean Heating Policy, we replicated our analysis
using various heterogeneity-robust DiD estimators introduced by Sun and Abraham (2021),
Gardner (2022), Callaway and Sant’Anna (2021), De Chaisemartin and d’Haultfoeuille (2020),
Borusyak et al. (2021), and Wooldridge (2021) to address potential biases in our baseline
TWFE estimation. Additionally, we applied the Bacon Decomposition method to assess
heterogeneity across different 2 x2 DiD comparisons (Goodman-Bacon, 2021). This de-
composition allows us to diagnose any variation in treatment effects and quantify how the
staggered implementation of the Clean Heating Policy may have influenced the TWFE esti-
mates of average treatment effects. The results of the bacon decomposition are presented in
Appendix C.1

It is conceivable that the policy’s impact varying according to household’s preexisting
characteristics, such as the differences in economic and space heating outcomes for house-
holds with or without pre-existing radiator systems noted in the previous chapter. Addi-
tionally, individual perceptions of the policy’s effects may differ. For example, those with
pre-existing respiratory conditions might report a more pronounced improvement in quality
of life, attributable to the policy’s beneficial effects on indoor air quality. To investigate
these heterogeneous treatment effects, we estimate a modified version of Equation 4.1 by
incorporating an interaction term between treatment status Treat; and baseline character-
istic groups C; (e.g., wealth index, age, and self-reported health status of the health survey

participant) for household ¢, as shown in Equation 4.3.

Y;t = ﬁ X Treatit X CZ + Xit X v+ u; + >\t + €t (43)
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Assuming that certain subpopulations, based on their baseline characteristics, are more
likely to be affected by the Clean Heating Policy and exhibit greater impacts in specific
domains, this heterogeneity analysis provides insights into the mechanisms underlying the
policy’s well-being effects (Braghieri et al., 2022). For example, if improved health is a key
mechanism through which the policy affects subjective well-being, we would expect to see a
larger impact on households reporting poor health at baseline.

We also preliminarily explore mechanisms through Bootstrapped Mediation analysis, a
technique more commonly used in epidemiology and psychology, which relies on information
from three mediation equations (i.e., the baseline regression in Equation 4.1, and Equations
4.4 and 4.5, Judd & Kenny, 1981; MacKinnon et al., 2007).° Mediation analysis allows us
to understand how households subjectively experience the impact of energy transitions on
their life through key dimensions of well-being. Therefore, further aiding our understanding
of the pathways through which energy transition contributes to improvements in subjective
well-being.

Yii = 8 x Treaty + Xi X v + OMy + p; + M + €, (4.4)

My = Xy X " + 0 Treaty + p; + A\ + € (4.5)

The “indirect effect,” calculated either as 5 — 5’ or 06, represents the treatment effect
mediated by the variable M. We use bootstrap estimation to determine the statistical
significance of the mediation effects and to provide confidence intervals for the “indirect
effects,” 00, through repeated randomized sub-sampling with replacement (Hayes, 2017;
Mallinckrodt et al., 2006; Shrout & Bolger, 2002).

Due to the complex generation process of observational data, concerns regarding the
endogeneity of mediators make the use of mediation analysis to explore mechanisms less
common in economic studies. For instance, if we include a health indicator as a mediator
of the policy’s impacts on subjective well-being in our baseline estimate, omitting factors

like indoor air quality (which influences both health and subjective well-being) could lead

9We consider here only scenarios with a single mediator.
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to inconsistent coefficient estimates in Equation 4.4. From a causal inference perspective,
adding the mediator M in Equation 4.4 is analogous to introducing a confounding variable
in Equation 4.2, resulting in biased estimates of 3’ (Jiang, 2022). Therefore, our mechanism
analysis using mediation should be interpreted as an exploratory investigation of correlations

rather than a definitive establishment of causal pathways.

4.4 Results

In this section, we first examine the average treatment effects of the Clean Heating Policy
on three subjective well-being indicators: life satisfaction, satisfaction with living condi-
tions, and satisfaction with income. We then discuss the dynamic treatment effects ob-
served through the event study. Finally, we explore heterogeneous treatment effects among
subgroups of sample households to identify those likely to experience greater benefits or

detriments to their well-being from the household space heating intervention.

4.4.1 Main results

Table 4.2 presents the TWFE estimates of § from Equation 4.1, illustrating the average
impact of the Clean Heating Policy on household life satisfaction (columns 1-3), satisfaction
with living conditions (columns 4-6), and satisfaction with income (columns 7-9). The
first column for each dependent variable (columns 1, 4, and 7) shows the results of the
TWEFE estimator with village and year fixed effects, without control variables. The second
column for each dependent variable (columns 2, 5, and 8) includes household and year fixed
effects, but no control variables. The final column for each dependent variable (columns
3, 6, and 9) includes both household and year fixed effects, as well as control variables.
To further address potential endogeneity arising from unobserved time-varying household
characteristics, we also introduce interactive fixed effects for household and year, allowing
the impact of unobserved household factors to evolve over time. This serves as a robustness

check for our main results (Bai, 2009), with findings detailed in Table C.1 in Appendix C.2.
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We first discuss the average effect of the Clean Heating Policy on life satisfaction. Across
various model specifications (columns 1-3), the results are consistent. Our preferred specifi-
cation (column 3) shows that policy implementation increased life satisfaction by 0.36 points
on a 0-10 scale, representing a 5% increase compared to the average life satisfaction of 7.67
in households not yet enrolled. This average impact aligns with the range observed in our
previous cross-sectional pilot study, where treated villages in low-income districts experi-
enced a 1.0-point decrease, while those in middle-income districts saw a 0.7-point increase
(Barrington-Leigh et al., 2019). This result is also comparable to findings from other stud-
ies on the impact of rural household energy transitions in China (Ma et al., 2022). N. Li
(2023), leveraging the “Solar Energy for Poverty Alleviation Program (SEPAP)” as a quasi-
experiment, found that clean energy use increased life satisfaction by 0.35 (£0.22) points on
a 0-10 scale.'® The substantial increase in R? between columns (1) and (2) highlights that a
most portion of the variation in life satisfaction is explained by time-invariant fixed effects.

To provide context for the magnitude of our main estimations, we offer several bench-
marks. First, a simple regression of life satisfaction on family income shows that a 1-unit
increase in the logarithm of family income (equivalent to an increase by a factor of e, or
2.718) predicts a 0.44-point increase in life satisfaction. Thus, our estimated Clean Heating
Policy impact of 0.36 points is comparable to a 126% increase in family income. When
replicating this model using TWFE regression with household and year fixed effects, the
income effect reduces to 0.16, making the policy’s impact equivalent to an even larger in-
come increase. Given the policy’s primary objective of improving air quality, we benchmark
our estimates against relevant studies. Specifically, the policy’s impact on life satisfaction
is approximately equivalent to a decrease of 290 ug/m? in outdoor PMy 5 concentrations

(X. Zhang et al., 2017b)," and similarly, to a 22.5 ug/m? reduction in outdoor SO, concen-

0Converted from 1-5 to 0-10 life satisfaction scale. The SEPAP deploys distributed solar photovoltaic
(PV) systems to more than 2 million households in 35,000 villages in impoverished areas from 2014 to 2020.
On top of meeting the household’s own electricity needs, additional power generation will be connected to the
grid thereby increasing income for rural households (Geall et al., 2018). The original results are in column
(6) of Table 7.2 on page 127.

HConverted from a 0-4 to a 0-10 life satisfaction scale. The original results are presented in column (1)
of Table 2.
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trations(Ferreira et al., 2013).'? Considering the predominance of elderly residents in rural
areas, we also compare our estimates to determinants of elderly life satisfaction in China.
Relative to W. Zhang and Liu (2007), the policy’s impact is about 12% of the effect of
receiving adequate medical services and 58% of the effect of having a pension.'?

Unlike global life satisfaction, satisfaction with key well-being domains has received less
attention in empirical studies. As shown in Column (6), the Clean Heating Policy increased
household satisfaction with living conditions by 0.26 points on a 0-10 scale. We did not
define “living conditions” in the survey question to allow respondents to consider any rel-
evant factors, such as indoor and outdoor cleanliness, air quality, noise, thermal comfort,
and safety. Our previous chapter demonstrated that the Clean Heating Policy significantly
increased indoor temperatures, while our forthcoming analysis reports a reduction in air
pollution — both of which support the positive impact on satisfaction with living condi-
tions. Additionally, survey respondents frequently cited improved house cleanliness, reduced
risk of carbon monoxide poisoning, and the convenience of no longer handling coal as key
benefits of the policy. Similarly, Xie and Zhou (2021) found that over 80% of rural Beijing
households reported improvements in warmth, indoor air quality, cleanliness, convenience,
and safety following the implementation of the Clean Heating Policy. However, the policy
also has some drawbacks regarding living conditions. For instance, approximately 25% of
treated households in the final wave of the survey reported being somewhat annoyed by the
noise from air-source heat pump operation.

Given that using clean energy for space heating generally costs more than solid fuels,
households with constant income may allocate less to other goods and services, potentially
reducing satisfaction with income. As shown in Column (9) of Table 4.2, the Clean Heating
Policy increased satisfaction with income by 0.1 points on a 0-10 scale, equating to a 2% in-
crease for households not covered by the policy — though this effect is small and statistically

insignificant. This finding seems to contradict our previous observation of a slight increase

12The original findings are documented in column (2) of Table 3.
13Converted from a 1-4 to a 0-10 life satisfaction scale. The original results are in column “Model II” of
Table 4.
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in winter energy expenditure as a proportion of household income. Potential explanations
include satisfaction with the goods and services that income affords, rising absolute income,
increased marginal benefit due to the extra heat pump capital, and complex relationships
between expenditure and satisfaction with income.

In the previous chapter, we excluded observations from Fangshan during the final season
to avoid the confounding effects of an unexpected briquette price increase, which could
threaten the parallel trends assumption for economic outcomes. When we replicate the
regression of satisfaction with income using the same sample as the previous chapter, the
estimated impact of the Clean Heating Policy on satisfaction with income further decreases
to 0.05 (£0.41). Additionally, using per capita income as the dependent variable in a TWFE
regression shows that the policy results in a non-significant increase of 602 RMB (with a
standard error of 1,707 RMB). Decomposing income sources reveals small, non-significant
increases in wage and government subsidy income, the latter reflecting additional government
subsidies for impoverished households to offset increased energy costs. Moreover, given that
heating is a basic necessity, a slight increase in heating costs, accompanied by a significant
improvement in heating quality, might not necessarily lead to reduced satisfaction with
income.

When we further include the interaction term for household and year fixed effects in the
regression (as shown in Table C.1 in Appendix C.2), the point estimate of the policy’s average
impact on satisfaction with income becomes negative (—0.174+0.8) but remains small and
statistically insignificant. Overall, despite raising household energy costs, the Clean Heating
Policy has no significant adverse effect on satisfaction with income.

Furthermore, we estimated the average treatment effects using various heterogeneity-
robust DiD estimators as a robustness check. The results, presented in Figure C.2 in the
appendix, demonstrate consistency with the baseline regression results obtained with TWFE

estimator.
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Table 4.2: Baseline regression results: average treatment effects of the Clean Heating Policy.
Each column of estimate is from a separate regression based on the identical dataset but with different com-
binations of fixed effect terms and controls. Due to singleton observations (households appearing in only one
survey round), 160 observations were dropped when including household fixed effects in the analysis. Standard

errors in parentheses are clustered at the village level. * p < 0.1, ** p < 0.05, *** p <0.01.

Life Satisfaction Satisfaction with Living Conditions Satisfaction with Income
(1) (2) (3) 4 ) (6) (7 (®) (9)
Treatment 0.38*** (0.35%* 0.36** 0.34** 0.26* 0.26* 0.19  0.11 0.10
(0.12)  (0.14) (0.14) (0.14) (0.15) (0.14) (0.20) (0.20)  (0.20)
Num.Obs. 2949 2,789 2,789 2949 2,789 2,789 2,949 2,789 2,789
R? 0.06 0.56 0.56 0.06 0.53 0.54 0.09  0.58 0.58
Mean Dep.Var.  7.71 7.70 7.70 7.50 7.50 7.50 5.56 5.5 5.55
Village FE v v v
Household FE v v v v v v
Year FE v v v v v v v v v

Controls v v ve




Figure 4.5 presents event study plots to assess the parallel trends assumption and examine
the dynamics of treatment effects over time. In this analysis, indicators for leads and lags,
in years, the implementation of the Clean Heating Policy were included. To account for
potential heterogeneity in treatment effects across time and units, event study figures were
generated using a set of recently developed heterogeneity-robust estimators, alongside the
traditional TWFE estimator. However, caution is warranted when comparing results from
different estimation methods, particularly regarding pre-treatment effects, as these methods
handle staggered settings and construct control groups differently (Roth, 2024; Wing et al.,
2024).

The right side of the vertical dotted line in Figure 4.5 depicts the post-treatment effects
of the Clean Heating Policy on subjective well-being. Both the traditional TWFE and
heterogeneity-robust estimators yield similar results, indicating relatively consistent impacts
over time. However, event study figures (Figures 4.5a, 4.5b, and 4.5c¢) reveal subtle variations
in impacts across years. Life satisfaction and satisfaction with living conditions follow an
inverted U-shaped pattern, while satisfaction with income exhibits an inverted J-shape.
Considering our fieldwork typically began in early winter, households in the policy’s first year
(period 0 in Figure 4.5) had limited exposure to its full effects. As a result, initial impacts
may reflect concerns such as financial anxiety over increased electricity bills, which could
explain the negative point estimate for period 0 in Figure 4.5¢. The positive point estimates
for subjective well-being in subsequent years likely reflect households’ full experience of the

lifestyle changes brought about by the policy.
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Figure 4.5: Dynamic treatment effects of the Clean Heating Policy on subjec-
tive well-being. This figure shows the event-study plots constructed using seven different
estimator on (a) life satisfaction, (b) satisfaction with living conditions, and (c) satisfaction
with income. Each color of the points and error bars signifies results obtained from DiD
estimators. See the note of Figure 3.4 for some details. Borusyak et al. (2021) and Callaway
and Sant’Anna (2021) not taking fixed reference period like other estimators of pre-treamtent
estimation. This issue of reference period for pre-treatment estimations in event studies has

been discussed in detail Roth (2024). Standard errors are clustered at the village level.

The slight decline in life satisfaction and satisfaction with living conditions in the second
year may be attributed to adaptation, a key mechanism explaining changes in subjective

well-being over time (Luhmann et al., 2012). However, given the study’s short duration
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and missing data due to the year gap, the observed changes in the event study could also
reflect cohort effects. We explore this possibility using group-time-specific estimations from
Callaway and Sant’Anna (2021) and Wooldridge (2021). As shown in the first row of Figure
4.6, the Callaway and Sant’Anna (2021) estimator suggests cohort effects across all three
well-being indicators. Households that received the Clean Heating Policy in 2021, during the
COVID-19 outbreak, experienced lower initial impacts compared to those treated in 2019.

The Wooldridge (2021) estimator similarly shows cohort effects for satisfaction with living
conditions and satisfaction with income (Figures 4.6e and 4.6f), though the effect on life
satisfaction is less pronounced. Furthermore, a comparison of the impacts in year 0 and year
2 for the 2019 cohort (Figures 4.6¢ and 4.6f) reveals that satisfaction with income significantly
increased two years after treatment, exceeding the initial “prediction” effect observed in year
0. Due to data limitations, we cannot provide extensive insights into the policy’s long-term
impact, which warrants further investigation in future studies.

The pre-treatment estimations of satisfaction with living conditions and satisfaction with
income impacts, as shown in the left panels of Figures 4.5b and 4.5¢, support the parallel
trends assumption. Results from all estimators are statistically indistinguishable from zero,
with modest magnitudes and no discernible time trends. However, life satisfaction shows
some pre-treatment variation. While no clear trend emerges, certain estimators (e.g., TWFE
OLS and Borusyak et al. (2021)) detect statistical significance at the 5% level two years before
treatment (year —2). Although other estimators (e.g., Callaway and Sant’Anna (2021) and
De Chaisemartin and d’Haultfoeuille (2020)) do not, and the significance of a single period
in a short pre-treatment span might not necessarily violate the no anticipation assumption.

We discuss this issue in greater detail in a later section.
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Figure 4.6: Group specific dynamic treatment effects of the Clean Heating Policy on subjective well-being. Figures in the first row are

the group-time specific estimates stimated with Callaway and Sant’Anna (2021)(CS), while figures in the second row are estimated with the method of

Wooldridge (2021)(W). Different colors of the dots and lines represent different cohorts that got the treatment of the Clean Heating Policy in varying

years with red (2019), green (2020), and blue (2021). The intervals are the 95 percent confidence intervals based on standard errors clustered at the

village level.




4.4.2 Heterogeneity analysis

Households with varying characteristics may experience different impacts from the Clean
Heating Policy on subjective well-being. This section analyzes heterogeneous treatment
effects to explore how specific groups benefit or are disadvantaged by the intervention. We
categorize households based on baseline characteristics (e.g., age of the survey participant,
wealth index) and estimate the heterogeneous treatment effects using Equation 4.3. Figure
4.7 illustrates these effects on life satisfaction and satisfaction with living conditions across
different subgroups. Naturally, splitting up estimated effects across sample subgroups can
reduce the precision of each estimate, as compared with the pooled results presented earlier.

By age of the health survey participant. Given the demographic composition
of rural Beijing households, the age of the health survey participant can serve as a proxy
for household characteristics. Figure 4.7a presents the heterogeneous impacts of the Clean
Heating Policy on life satisfaction across age groups. Younger households exhibit signifi-
cantly greater positive impacts compared to those aged 70 or older, who experience a non-
significant negative impact. Limited income sources and reliance on government pensions
among older adults may exacerbate the financial burden of increased heating costs, poten-
tially outweighing the policy’s environmental and health benefits. Additionally, adapting to
new technologies associated with clean heating may disrupt traditional lifestyle habits for
this demographic, such as sleeping on a kang.*

By wealth index. Figure 4.7b illustrates the heterogeneous impacts of the Clean Heat-
ing Policy on life satisfaction across baseline wealth index groups. The wealth index, con-
structed using principal component analysis of socioeconomic characteristics (e.g., housing,
appliances, land), provides a more comprehensive measure of household economic status
than income alone (X. Li et al., 2022). While there is a weak positive correlation between
the wealth index and life satisfaction impacts, only the top wealth quintile shows a substan-
tial and statistically significant positive effect (0.58). Lower wealth quintiles exhibit smaller,

non-significant impacts. This suggests that households with higher socioeconomic status,

14 A kang is a brick bed heated by internal hot smoke from burning firewood or coal.
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facing less financial pressure and potentially having greater aspirations for improved living
conditions, are more likely to perceive the benefits of the policy.

By self-reported health status. We categorized households into three health groups
based on the self-reported health status of health survey participants at baseline, relative
to their peers: excellent/good, fair, and poor. Due to a limited number of responses in
the “excellent” category, we combined it with the “good” category. A negative correlation
emerged between self-reported health and life satisfaction impacts as shown in Figure 4.7c.
Households with a family member reporting fair or poor health experienced significantly
positive gains in life satisfaction from the Clean Heating Policy, while those in good health
showed likely smaller effects. The policy’s provision of a healthier living environment (e.g.,
air source heat pumps offering stable indoor temperatures and cleaner air) and the reduction
in physical burdens associated with solid fuel use (e.g., collecting firewood and frequently
adding briquettes to stoves) likely contributed to an improved quality of life for those in
poorer health.

By baseline indoor temperature. Figure 4.7d reveals a U-shaped relationship be-
tween baseline indoor temperature and the impact of the Clean Heating Policy on satisfaction
with living conditions. Households with middle-range temperatures experienced minimal
effects, whereas those with the lowest and highest baseline temperatures exhibited greater
positive impacts. However, the drivers of these impacts may differ. Households with initially
low indoor temperatures likely benefited primarily from improved space heating, leading to
higher indoor temperatures. In contrast, households with high baseline temperatures, often
achieved through burning more solid fuels, may have experienced greater improvements in
environmental quality, such as increased indoor cleanliness and better air quality, due to
reduced solid fuel combustion.

By baseline personal exposure to PM, ;. Figure 4.7e reveals a weak positive cor-
relation between baseline personal 24-hour PMs 5 exposure and the impact of the Clean
Heating Policy on satisfaction with living conditions. While households in the top two PM, 5

exposure quartiles exhibit slightly larger positive effects, those in the bottom two quartiles
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show minimal impact. However, this relationship may be confounded by factors influencing
personal PM, 5 exposure beyond fuel use, such as smoking, activity patterns, and outdoor
air quality. Studies have shown that natural gas users can experience higher PMs 5 exposure
compared to coal users (X. Li et al., 2021). Consequently, higher personal PM; 5 levels do
not necessarily indicate greater reliance on solid fuels or greater improvement in air quality

as a result of the Clean Heating Policy.
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Figure 4.7: Heterogeneous treatment effects of subgroup of households.



4.4.3 Mediation analysis of life satisfaction impacts

To further explore the mechanisms underlying the policy’s impact on subjective well-being,
we conducted a bootstrap mediation analysis. This involved constructing 500 bootstrap
subsamples through random resampling with replacement and estimating indirect effects
for each subsample (Dumitrache et al., 2015; Preacher & Hayes, 2008). The 95% confi-
dence intervals for the mediation effect were established by identifying the 2.5th and 97.5th
percentiles of these estimates (Wen & Liu, 2020, p.92).

Figure 4.8 presents the results of the bootstrap mediation analysis for life satisfaction.
The left and right panels display 95% confidence intervals for indirect and direct effects, re-
spectively. Mediators include household winter energy expenditure, winter nighttime indoor
temperature, 24-hour personal PMs 5 exposure, sleep hours of health survey participants,
and weekly guest visits, representing well-being domains such as wealth status, living envi-
ronment, health, and social capital. Apart from indoor temperature, the indirect effects of
other mediators are negligible and statistically insignificant, suggesting a weak relationship
between these variables and the overall treatment effect. The mediation effect of indoor
temperature contributes to only about 5% of the total impact on life satisfaction.

We further included satisfaction with well-being domains — specifically, satisfaction with
living conditions and satisfaction with income — as additional mediators. As shown in the
last two rows of Figure 4.8, although not statistically significant at the 95% level, the indirect
effect through satisfaction with living conditions is numerically substantial, accounting for
approximately 30% of the total treatment effect on life satisfaction. This suggests that
improvements in living conditions play a key role in policy’s impact on overall well-being.

The observed weak mediation effects warrant careful interpretation. While the selected
mediators represent key well-being domains, their limited explanatory power does not di-
minish the importance of these domains in the overall well-being impacts. For example,
sleep hours, a proxy for health, may still significantly influence well-being despite the non-
significant mediation effect, given the study’s short timeframe, which limits our ability to

capture long-term impacts, especially in health. The policy likely affects well-being through
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improvements in other health outcomes as well. Moreover, the substantial direct effect sug-

gests that unmeasured factors, such as time savings and increased safety, may significantly

contribute to the policy’s influence on life satisfaction.
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Figure 4.8: Mediation analysis of life satisfaction impacts. The indirect and direct

effects in a row were derived from a single bootstrapping analysis for each mediator. Please

note that the scale of the x-axis differs between indirect and direct effect plots. Differences

in the total treatment effects,

i.e., the sum of indirect and direct effects, across separate

mediation analyses are due to differences in the samples. For example, we have only about

1300 observations for indoor temperature and personal exposure to PMs 5 mediators.
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4.4.4 Robustness analysis

In this section, we assess the robustness of our estimates through placebo tests and address

potential uncertainties stemming from the observations in Fangshan district.

4.4.4.1 Placebo test

The placebo tests aim to verify the causal interpretation of our estimated subjective well-
being effects, ensuring they are attributable to the Clean Heating Policy rather than con-
founding factors. We conducted two types of placebo tests: (1) In-space placebo test: The
full sample of N households was divided into G groups according to the timing of their
treatment (t,), with N, households in each group. First, N; households were randomly
selected as “treated” at t;. Then, from the remaining N — N; households, N, households
were randomly selected as “treated” at t,, and so forth. The main regression analysis was
conducted using this modified dataset. We repeated the in-space placebo test 500 times.
(2) In-time placebo test: For treated households, the treatment timing was artificially ad-
vanced by one or two years, and post-treatment observations were excluded. Both tests were
implemented using the “didplacebo” Stata package (Chen et al., 2023). Additionally, we
conducted a “mixed” placebo test, combining the in-space and in-time placebo tests, also
with “didplacebo” package. The results are available in Figure C.3 in the appendix.

Figure 4.9 displays the results of 500 in-space placebo tests, which approximate a normal
distribution centered around zero. This suggests that our baseline life satisfaction estimate,
significant at the 5% level, is unlikely to be driven by confounding factors. As visualized by
the red vertical line in Figure 4.9a, the estimate falls within the right tail of the distribution,

with only 10% of placebo estimates exceeding its absolute value.
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Figure 4.9: In-space placebo test of subjective well-being impacts. This figure
shows the in-space placebo test results on (a) life satisfaction, (b) satisfaction with living
conditions, and (c¢) satisfaction with income by randomly determining the treatment status
across households. The gray bars and blue lines illustrate the distribution of 500 estimates of
Equation 4.1 using Monte Carlo analysis draws for “fake” treatment status. The red vertical

lines represent the main estimation results based on the treatment status in reality.

Figure 4.10 displays the results of the in-time placebo test, where the treatment timing
is artificially advanced by one or two years. For satisfaction with living conditions (Figure
4.10b) and income (Figure 4.10¢), the resulting estimates are small and statistically insignif-
icant. However, life satisfaction shows a significant in-time placebo effect (Figure 4.10a),
potentially indicative of anticipation effects, where the treatment impacts well-being before

its actual implementation (Roth et al., 2023). Specifically, the findings suggest that house-
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holds experience a negative impact on life satisfaction two years prior and a positive impact
one year prior to receiving the Clean Heating Policy.

Rather than reflecting true anticipation, the observed pre-treatment effects on life sat-
isfaction may be due to response patterns. The cognitive challenge of quantifying life sat-
isfaction on a short-term basis might lead respondents, particularly among older and less
educated individuals, to simplify their answers into a three-point scale (top, medium, and
bottom) (Barrington-Leigh, 2024). As shown in Figure C.4 in the appendix, the distribu-
tion of life satisfaction among untreated households is severely left-skewed, with over 40%
of respondents in the final wave selecting the top option. This unusually high proportion
of “completely satisfied” in the final wave might be exacerbated by the sensitive nature of
the life satisfaction question during COVID-19 restrictions or the anticipation of a lifting of
strict quarantine policies.

To address potential response bias, we re-estimated the main regression and in-time
placebo tests, excluding all observations with “ten out of ten” as the response to the life
satisfaction question. As demonstrated in Figure C.5 in the appendix, the main effect remains
consistent (0.34, 95% CI: 0.01-0.67), while in-time placebo tests become insignificant. The
less pronounced in-time placebo effects observed for satisfaction with living conditions and
satisfaction with income, which were asked subsequent to life satisfaction in the survey,

further support the hypothesis of response bias affecting the life satisfaction measure.
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Figure 4.10: In-time placebo test of subjective well-being impacts. This figure
shows the in-time placebo test results on (a) life satisfaction, (b) satisfaction with living
conditions, (c) satisfaction with income by shifting the actual treatment timing by one or
two years in advance. The x-axis indicates the years of the treatment timing shifted with 0
represent the treatment year in reality. The blue line with the circle markers to the left of
the dashed vertical line is the main estimations while the yellow lines with the circle markers
to the right of the dashed vertical line are the in-time placebo estimations. The intervals are

the 95 percent confidence intervals based on standard errors clustered at the village level.
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Given the event study and in-time placebo test findings on life satisfaction, we conducted
a formal sensitivity analysis using “HonestDiD” (Rambachan & Roth, 2023), as suggested
by Roth et al. (2023), to assess the robustness of our results to potential parallel trend
violations. Figure 4.11 presents “HonestDiD” estimates using both TWFE and Callaway
and Sant’Anna (2021) estimators. The breakdown value (M) of approximately 0.1 indicates
that the statistical significance of our main life satisfaction estimate is robust to parallel trend
violations only up to 10% of the maximum pre-treatment deviation. Given the sensitivity of

the average life satisfaction impact to the parallel trend assumption, its statistical significance

should be interpreted cautiously.
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Figure 4.11: “Honest DiD” of the average treatment effects on life satisfaction.

181



4.4.4.2 Uncertainty of Fangshan observations

Due to the unique characteristics of observations in Fangshan district, their inclusion might
impact the robustness of our findings. First, lack of implementation of the Clean Heating
Policy in Fangshan sample villages during the study period due to inadequate capacity of
the electrical infrastructure renders all its observations control units in DiD analysis. Sec-
ond, a substantial briquette price increase occurred only in Fangshan during the final wave,
potentially affecting the parallel trend assumption. To assess this, we replicated the baseline
regression excluding Fangshan observations entirely (NFS) or only those from the final wave
(NFS4). Table 4.3 presents the results. Despite these sample variations, the estimated treat-
ment effects remain consistent in magnitude and statistical significance, particularly between
the full sample and NFS results. This suggests that including Fangshan observations has

limited impact on our overall findings.
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Table 4.3: Robustness check of observations of Fangshan. Each column of estimate is from a separate regres-
sion based on the different dataset. Specifically, the “Baseline” columns are identical to our preferable specification
with the full observations as shown in Table 4.2. The “NFS4” columns are based on the subset of the dataset by
removing observations of Fangshan in the last season. The “NFS” columns are based on the subset of the dataset

by removing all observations from Fangshan. Standard errors in parentheses are clustered at the village level. * p <
0.1, ** p < 0.05, *** p <0.01.

Life satisfaction Satisfaction with living conditions Satisfaction with income
(1) 2 (4) (5) (6) (7) ® )
Baseline NFS4 NFS Baseline NFS4 NFS Baseline NFS4  NFS
Treat 0.36*%*  0.28% 0.38%*  0.26* 0.18 0.28 0.10 0.05  0.11
(0.14)  (0.15) (0.15)  (0.14)  (0.17) (0.17) (0.20)  (0.21) (0.21)
Num.Obs. 2789 2555 2185 2789 2555 2185 2789 2555 2185
R? 0.56 0.58 0.56 0.54 0.56 0.54 0.58 0.60  0.59
Household fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v

Controls v v v v v v v v v




4.5 Conclusion and discussion

This paper evaluates the impact of China’s Clean Heating Policy, a large-scale intervention
aimed at transitioning rural households to cleaner heating solutions, on subjective well-being.
By leveraging firsthand survey data from over 1,000 households across 50 Beijing villages
from 2018 to 2021, we estimate the average treatment effects on life satisfaction, satisfaction
with living conditions, and satisfactions with income. In addition to assessing aggregate
impacts, we explore heterogeneity in effects based on baseline socioeconomic characteristics
and environmental conditions. Our findings reveal that the policy significantly increased life
satisfaction by 0.36 (95% CI: 0.09-0.63) points on a 0-10 scale, with comparatively smaller
effects on satisfaction with living conditions and satisfaction with income. Notably, the
greater gains in life satisfaction were observed among younger households, those with higher
wealth status, and those including members in poor health.

Our simple mediation analysis reveals weak treatment effects associated with quantified
mediating variables like energy expenditures, air quality, indoor temperature, and sleep du-
ration. This suggests that the policy’s impact on well-being likely stems from unmeasured
factors, such as time and labor savings from reduced fuel use and enhanced safety. Our pre-
liminary exploration sheds light on the potential gap between the intervention objectives and
the household’s priorities. The study did not allow for a deeper identification of mediation
pathways. Future research should investigate household-prioritized energy transition im-
pacts to inform policy and improve the current dismal situation where the global household
energy transition is seriously lagging behind.

Our study has several limitations. First, the focus on Beijing, a relatively affluent region
with substantial clean heating subsidies, might limit the generalizability of our findings to
other rural areas. Reports of households reverting to solid fuel use or suffering freezing
due to insufficient supply or affordability underscore the potential heterogeneity of policy
impacts. Second, the two-year study period might not fully capture long-term well-being
effects, which are crucial for assessing the policy’s sustainability. Finally, shock impacts

of the COVID pandemic on people’s subjective well-being warrant further investigation.

184



The COVID pandemic hit the entire world midway through our study. The consequences
of epidemics such as quarantine and health damages are thought to have a large effect on
people’s subjective well-being (O’Connor et al., 2021). Our study design assumes that factors
other than the Clean Heating Policy affect the subjective well-being of the sample families in
the different treatment groups in the same way, but how a major shock such as an epidemic

interferes with such an assumption is difficult to quantify.
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Chapter 5

Discussion

5.1 Overview

This dissertation explores the issue of rural household energy transition in China from an
interdisciplinary perspective. I start by examining the temporal trends and spatial charac-
teristics of the transition at the national and provincial level over the past three decades, and
forecast a “business as usual” scenario up to 2050 using administrative statistics (Chapter
2). Subsequently, employing first-hand survey data from over 1000 rural households col-
lected between 2018 and 2022 in Beijing, I evaluate the impacts of the Clean Heating Policy
on household energy poverty (Chapter 3) and subjective well-being (Chapter 4). This
dissertation is a quantitative study that primarily employs methods such as causal inference
based on quasi-natural experiments, time series analysis, and mediation effect analysis. In
this discussion chapter, I synthesize the key findings from each chapter in Section 5.2, dis-
cuss further thoughts and the limitations of this study in Section 5.3, and propose several

directions for future research in Section 5.4.

5.2 Key findings

This section synthesizes the key findings from each manuscript.
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5.2.1 Spatial disparities of China’s rural household energy transi-
tion

In addressing environmental, health, and other social challenges associated with household
solid fuel use, transitioning to modern energy sources has emerged as a global development
goal (McCollum et al., 2017). However, the sluggish pace of this transition in most develop-
ing countries significantly jeopardizes the feasibility of achieving SDG 7 — ensuring access
to affordable, reliable, sustainable and modern energy for all — by 2030 (IEA, 2023). Accel-
erating this transition through targeted interventions has become a prevalent international
effort (Quinn et al., 2018). In North China, once known for its severe winter air pollution,
targeted interventions aimed at reducing coal-burning for space heating in rural households
are crucial (J. Liu et al., 2016). A pivotal question arises before exploring potential inter-
ventions: what would the situation look like without any interventions? This question is
essential as it not only justifies the necessity of any planned interventions but also provides
a counterfactual to assess their effectiveness. In Chapter 2, I address this by analyzing
historical administrative statistics on rural household energy consumption, setting the stage
for evaluating the impact of the Clean Heating Policy in subsequent chapters.

The results show that at the national level, China’s rural household sector has under-
gone a gradual energy transition over the past 30 years. Socio-economic developments have
spurred a rapid increase in per capita energy consumption in rural Chinese households, par-
ticularly electricity. By 2013, China was providing all 1.4 billion people access to electricity
for daily use (IEA, 2023). The rise in modern energy’s share within total energy consumption
signals an ongoing transition from traditional biomass and coal to modern energy sources.
Between 1991 and 2018, China’s rural household energy transition experienced a decade
of stagnation, followed by a decade of rapid commodification marked by a swift decline in
biomass fuel use, and a clean transition phase since 2015.

This transition, however, displays significant spatial disparities. While national-level
analysis shows a rapid decline in biomass fuel consumption accompanied by a surge in

modern energy use, an alarming trend is the rising per capita coal consumption, mainly
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used for heating, suggesting an inconsistent transition between cooking and heating in ru-
ral households. A provincial-level analysis within the China Rural Domestic Energy Use
Zone framework sheds further light on this hypothesis. Results indicate that provinces in
the WW-S and CW-YP zones, which have less intense winter heating needs, have advanced
more in the energy transition compared to those in the EC-NE and EC-NW zones, where
heating demands are more substantial. Moreover, a simple two-way fixed effects model
using per capita income as an independent variable reveals a weak correlation between in-
come increases and clean energy share in colder regions. These findings highlight significant
challenges associated with energy transitions in rural household space heating.

Considering these challenges, what would the future timeline look like for energy transi-
tion under a “business as usual” scenario? Using an autoregressive integrated moving average
(ARIMA) model, our forecasts show that while provinces with less intensive heating needs
might achieve a complete transition, the share of clean energy in colder regions will likely
remain below 50% by 2050. Thus, implementing a large-scale intervention targeting rural
household energy use for space heating is imperative to meet China’s air quality and climate
goals. An analysis comparing actual and predicted clean energy proportions in three North
Chinese provinces from 2015 to 2018 highlights the significant impact of the Clean Heating

Policy in accelerating the rural heating energy transition.

5.2.2 Significant enhancements in rural household heating via the

Clean Heating Policy with minimal financial impact

The Clean Heating Policy, while facilitating the transition, is estimated to generate positive
net benefits for northern China by improving air quality and reducing health damages (Ma
et al., 2023; X. Zhang et al., 2019). However, an important concern in implementing the
Clean Heating Policy is the financial burden it places on economically disadvantaged rural
households. This raises the question of whether the Clean Heating Policy might render ade-
quate heating unaffordable for these households, thereby creating or worsening a condition

of energy poverty. In Chapter 3, we apply the difference-in-differences method to our first-

202



hand survey data to evaluate the impact of the Clean Heating Policy on various measures of
energy poverty.

The baseline regression results suggest that the Clean Heating Policy markedly improves
space heating for rural households with minimal financial impacts. Prior to the implemen-
tation of the Clean Heating Policy, the majority of sampled households could be considered
to be in energy poverty, as over 10% of their family income was allocated to winter en-
ergy expenses. Furthermore, the space heating — indicated by indoor temperature and the
proportion of houses with regular heating — was inferior. The Clean Heating Policy has
effectively raised the average nighttime indoor temperature by 1.8°C and added 1.4 more
rooms with regular heating, while only adding approximately 2% to the family’s annual
income dedicated to winter energy expenditure. These findings underscore the crucial role
of government “triple” subsidies on electricity tariffs in alleviating the financial burden of
rural households during the energy transition. Additionally, the widespread adoption and
expansion of the central water radiator system, as facilitated by the Clean Heating Policy,
has significantly enhanced space heating. The contrasting results obtained from economic
measurements and space heating measurements of energy poverty underscore the limitations
of traditional economic indicators, which rely solely on energy expenditure as a percentage
of household income. This highlights the importance of focusing on the degree of satisfaction
of energy needs when addressing energy poverty.

We further explore the heterogeneity in treatment effects, taking into account the du-
ration of treatment exposure and household baseline characteristics. The results from the
event study suggest that the positive impacts of the Clean Heating Policy on economic and
space heating outcomes are sustained for at least two years post-treatment. These constant
impacts are likely dependent on ongoing government subsidies and guidance regarding the
use of air source heat pumps. Moreover, the treatment effects vary among households based
on their characteristics. Those residing in high-altitude villages, lacking radiator systems,
and with lower wealth at baseline experience greater financial challenges under the Clean

Heating Policy. Consequently, additional support is essential for economically disadvantaged
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households in colder climates, especially when the Clean Heating Policy is implemented in
less developed extreme cold provinces.

Our simulations under various government subsidy scenarios reveal that future reductions
in the government’s subsidy could impose significant financial burdens to rural households.
This aligns with observations from other provinces, where lower subsidies and income levels
contribute to inadequate heating, eventually leading to the abandonment of clean heating
solutions and a resurgence in the use of solid fuels (S. Xu & Ge, 2020). In provinces outside
Beijing, the Clean Heating Policy is currently caught in a bind: the government struggles
to sustain subsidies, and residents find clean heating unaffordable (Z. Zhang et al., 2021).
Between 2017 and 2018, local governments expended over 50 billion RMB in a year on subsi-
dies for clean heating, yet the issue of affordability persists (Y. Zhu & Yu, 2019). Developing
subsidy policies that support sustainable clean heating without financially burdening both
government and households remains a significant challenge (M. Li et al., 2021; Meng et al.,

2023).

5.2.3 The Clean Heating Policy has improved overall life satisfac-
tion

Spontaneous energy transitions occur when the perceived benefits of clean energy, includ-
ing improved health, better environmental aesthetics, and less work time lost, outweigh the
marginal costs of time, materials, and knowledge investments (Greenstone & Jack, 2015;
Hanna & Oliva, 2015; Pattanayak & Pfaff, 2009). Thus, it is reasonable to infer that a
household’s decision to make such transitions would likely enhance its welfare. Although re-
sults from Chapter 3 show that households in the Clean Heating Policy incur slightly higher
expenses for significantly improved space heating, the mandatory nature of the transition
and its extensive impacts on aspects beyond economics and thermal comfort leave the effect
on quality of life unsolved. To further explore this, Chapter 4 presents empirical evidence

of the Clean Heating Policy’s impacts on subjective well-being.
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We use the difference-in-differences method to examine the overall impact on subjective
well-being through life satisfaction measurements, as well as the impacts on two important
domains of satisfaction, the satisfaction with living conditions and satisfaction with income.
Our baseline regression results indicate that the Clean Heating Policy significantly enhances
life satisfaction by approximately 0.36 (95% CI: 0.09-0.60) on a 0-10 scale, an effect com-
parable to more than doubling family income. However, the effects on living conditions
satisfaction and family income satisfaction are less pronounced. Specifically, the negligi-
ble impact on income satisfaction aligns with the minimal financial burdens observed in
Chapter 3.

The analysis of heterogeneous treatment effects identifies which households are better
or worse off from the Clean Heating Policy, providing some insights into the mechanisms
affecting well-being. Results indicate that wealthier households, as well as those with younger
or less healthy members, tend to feel they benefit more from the Clean Heating Policy. These
observations suggest that financial and health aspects may be crucial in how the Clean
Heating Policy influences subjective well-being. Our preliminary exploration of mechanisms
through mediation analysis indicates that the indirect effects mediated by selected factors
such as winter energy expenditure, nighttime indoor temperature, PMy 5 exposure, sleep
duration, and guest visits contribute minimally to the overall effects.

It should be emphasized that these results depend heavily on the choice of mediators,
which means that the lack of a significant mediation effect of certain selected factors does
not mean that the Clean Heating Policy will not affect people’s well-being through these
domains. For instance, although sleep duration, which we selected as a health indicator,
was not a significant mediator, the Clean Heating Policy might still enhance well-being by
improving other health outcomes. However, in the context of the Clean Heating Policy, the
impact on subjective well-being through improved air quality might be less substantial than
expected. This underscores a crucial policy insight: while the primary goal of most household
energy transition interventions is to enhance air quality and reduce health risks, households

may prioritize other factors in their energy use decisions, rather than perceiving significant
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improvements in their quality of life through these targeted benefits. Understanding user
priorities in household energy decisions and promoting clean technologies that meet these
needs is essential for a sustainable transition (M. Jeuland et al., 2015; Urmee & Gyamfi,

2014).

5.3 Further thoughts

In this section, I discuss some further thoughts on topics that were not covered in detail in

the dissertation, as well as some limitations of the survey data used in the previous chapters.

5.3.1 Role of biomass fuels in household energy transition

This dissertation focuses on the coal-reducing space heating intervention in rural North
China, with a lesser emphasis on other energy sources such as biomass fuels. However, it is
crucial to recognize that biomass is the primary source of household energy in less developed
countries, due to its unparalleled nature of being freely and easily available (Karekezi et al.,
2006). Therefore, addressing the substitution or efficient utilization of biomass fuels is a
critical aspect of the global household energy transition (Sagar & Kartha, 2007). In this
section, we discuss the role of biomass fuels in household energy transition.

As we discussed in Chapter 2, the availability of information on non-commodity energy
sources such as biomass (e.g., firewood and cow dung) in Chinese statistics is severely limited.
Both the China Energy Statistics Yearbook and the China Rural Statistics Report, which are
pivotal sources for domestic rural energy data in China, ceased publishing national /provincial
level data on biomass fuels after 2008. Moreover, they never included energy sources like
yak dung, which is crucial for rural households in the pastoral areas of Northwest China
(Rhode et al., 2007). The primary challenge lies in the difficulty of accurately measuring the
quantity of biomass fuel collected by households, unless it is done through a fuel-weighing
campaign (Shen et al., 2022). Due to the lack of reliable statistical data, research on the

energy transition in rural Chinese households face a significant challenge: biomass energy is
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widely used, yet its exact contribution to the energy mix remains unclear. In Chapter 2,
we attempt to compensate for the lack of official statistics on biomass fuels by integrating
data from various sources, yet there remains a risk that its share of total energy consumption
is underestimated. A recent study utilizing a machine-learning-based geospatial model pre-
dicted that approximately 6.9 + 2.6 giga-tons of coal equivalent in rural household biomass
consumption were unaccounted for in China’s energy statistics, representing about 15.9 +
6.0 percent of China’s final energy consumption (S. Wu et al., 2024).

The significant underestimation of biomass consumption carries important policy impli-
cations. First, considering that the emission factors of several pollutants from burning raw
biomass fuel are higher than those from coal (Shen et al., 2010), it suggests that if the Clean
Heating Policy focuses solely on reducing coal use, the expected improvements in both house-
hold and ambient air quality might be much lower than anticipated. Therefore, one issue is
whether the Clean Heating Policy should also address biomass fuel use. In Chapter 3, we
briefly explored the role of biomass in the Clean Heating Policy. On one hand, burning more
biomass could be a coping strategy for households facing energy poverty under the policy.
On the other, traditional heating practices like wood-burning kang are deeply ingrained,
raising questions about their replacement by new clean heating technologies. Preliminary
results shown in Figure 3.3a suggest that the Clean Heating Policy on average reduced the
use of kang for heating, indicating that households could achieve adequate heating without
additional biomass burning. This observation also suggests that coal-reduction policies could
also substitute biomass fuel consumption, altering traditional energy use habits. However,
interviews with village leaders suggest that completely replacing biomass burning without
a further ban is unrealistic. Indeed, imposing further bans on biomass fuels could maxi-
mize the reduction of pollutant emissions from rural residents, but it would push low-income
families into a more vulnerable situation. Should there be an unstable supply or price in-
crease of modern energy sources, these families would have no alternative but to endure the

cold. Therefore, managing the use of biomass fuels through education and guidance, rather
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than outright prohibition, could be a better approach in balancing policy effectiveness and
household energy security.

Second, given the widespread use of biomass fuels, it is worth considering whether efficient
utilization of biomass fuels could serve as another technological pathway for clean heating, in
addition to electricity and natural gas, in some regions. In addition to Beijing-Tianjin-Hebei
and surrounding areas, the Chinese government also has piloted the Clean Heating Policy
in other northern provinces around 2018, particularly in the extremely cold regions of the
Northeast and Northwest (Liang, 2019; The People’s Government of Qinghai Province, 2018).
Based on the significant discrepancies observed in households at different altitudes discussed
in Chapter 3, a heavier financial burden can be expected for those living in provinces
with extremely cold climates and less wealth. In recent years, technological approaches to
clean heating in these provinces have expanded beyond simple Coal to Natural Gas and
Coal to Electricity conversions. They now include locally adapted explorations of various
clean energy sources such as biomass fuels, geothermal energy, and solar energy (National
Development and Reform Commission & National Energy Administration, 2022). In areas
rich in biomass resources, such as the northeast provinces, burning biomass pellets, which
significantly reduce the pollutant emissions than raw biomass, can be used as a short-term
transitional solution for households that cannot obtain or afford electricity or natural gas for

heating (Carter et al., 2018; L. Zhang et al., 2024).

5.3.2 Field survey data limitations

Two chapters of this dissertation rely on survey data collected in the field. In this section,
we will discuss the limitations associated with the survey data used.

Our observational data involve two levels in which selection occurs and bias may be in-
troduced: the government’s selection of villages to receive the Clean Heating Policy and the
determination of the sample villages in the study design. Due to the government’s lack of
transparency in the criteria for implementing the Clean Heating Policy in villages, we face a

significant challenge in causal inference. We are unable to fully control for confounding fac-
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tors that influence both the treatment status of villages and the outcomes of interest in our
DiD regressions. This dissertation tackles the challenge using a two-way fixed effects model
that accounts for both time-invariant factors and time trends, supplemented by additional
control variables to address potential time-varying confounding factors. The consistent re-
sults across various model specifications indicate that the government’s selection criteria
have minimal influence on our estimates.

Regarding the sampling strategy, conducting random sampling at the village level was
impractical due to the challenge of fully assessing the policy’s implementation across all
villages in Beijing at the baseline. Although these 50 sample villages vary in terms of
population size, per capita income, and other factors, the DiD identification strategy does
not depend on baseline similarity. The pre-treatment results from the event study support
the critical parallel trend assumption, which is foundational to the DiD analysis. However,
concerns about the external validity of the results remain. The baseline survey, conducted
in 2018 — three years after the Clean Heating Policy’s extensive implementation in Beijing
— exclusively included villages that had not yet received the policy. Therefore, the results
predominantly reflect conditions in Beijing’s mountainous areas, rather than those of rural
families in the plains of Beijing, who were among the early recipients of the policy.

The limited time span of our data restricts our ability to discuss the long-term impacts
of the Clean Heating Policy. Continuous clean heating is a prerequisite for long-term effec-
tiveness of the Clean Heating Policy. While this dissertation relies on panel data spanning
four years from 2018 to 2022, our study design only allows us to examine the impacts of the
Clean Heating Policy up to two years post-treatment. Even though the event study results
suggested that the positive effects of the Clean Heating Policy persist in our study period,
this duration is insufficient for understanding the sustained effects of the policy. This sit-
uation highlights the inherent challenges of causal inference in quasi-experimental studies.
Quasi-experimental designs that rely on observational data often encounter difficulties in
clearly defining interventions while also accommodating extended time scales. For instance,

our dataset, which targets a specific policy, effectively identifies particular interventions
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but is constrained by its narrow temporal scope. Further efforts are needed to integrate
complementary techniques to triangulate a long-run causal picture.

Additionally, the interruption of the data collection in 2021 due to COVID-19 complicates
our ability to evaluate continuous dynamic treatment effects from cohorts treated early in the
Clean Heating Policy. As a result, the dynamic treatment effects we estimate are based on
different treatment cohorts, which makes it difficult to discern whether the temporal trends
observed in the event study reflect actual dynamic treatment effects or merely cohort effects.
This issue is particularly pronounced in the analysis presented in Chapter 4. The short
coverage period also limits our ability to provide more robust support to the parallel trend
assumption, as it restricts our capacity to evaluate pre-treatment estimates over extended
time frames.

Many key variables in this study were self-reported by households, inevitably introduc-
ing measurement errors into the results. A significant concern in Chapter 3 was the lack
of accurate electricity expenditure data for all households. The households get the Clean
Heating Policy treatment encountered a complex pricing structure of electricity, with a reg-
ular daytime price and a subsidized night-time valley price, complicating the estimation of
electricity costs. Given that our survey participants are generally elderly, and some have
their electricity bills managed by their children, this further complicates the estimation of
expenditures. Efforts to gather electricity consumption data directly from household meters
provided limited information, as the data did not cover the entire heating season, contribut-
ing little to improving data quality. Additionally, the “focal value rounding” phenomenon
observed in the life satisfaction data in Chapter 4 suggests cognitive challenges among the
elderly rural population with limited formal education. The impact of these uncertainties on
the results is discussed separately in the relevant chapters. After accounting for the impact

of self-reported data on result uncertainty, the findings remained robust.
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5.4 Future research

Building on the findings of this dissertation, I propose several ideas for future research.

5.4.1 Different types of policy instruments

Our results indicate that the Clean Heating Policy in Beijing, which combines command-
and-control and price-type instruments, has effectively facilitated the energy transition for
space heating at a cost that households could afford. However, this campaign-style energy
transition, reliant on tight cooperation across various government levels and high subsidy
rates, is underpinned by China’s unique political context. For instance, ensuring that lower
levels of government adhere to directives from higher authorities to fully implement a coal ban
may prove challenging in other countries; in addition, the high financial subsidies involved
may be unsustainable for other provinces in northern China or other developing countries.
Considering the rise in briquette prices we observed in Fangshan District last season as
an example: what are the differences between a purely price-based approach and the Clean
Heating Policy in terms of their impact on the household energy mix and economic outcomes?
More broadly, designing incentives to efficiently achieve household energy transitions across

different political contexts remains a critical area for further exploration.

5.4.2 Household behavior in energy transitions

The outcomes of the Clean Heating Policy discussed in this dissertation reflect, to some ex-
tent, behaviors related to household heating, such as achieving better heating effects through
the temperature settings of heat pumps. However, this dissertation provides less direct dis-
cussion of the broader behavioral impacts of the Clean Heating Policy. Has the energy
transition prompted other behavioral changes? For instance, does the intervention in heat-
ing energy encourage a spontaneous transition in cooking energy? Will younger populations
actively increase their labor supply to offset the financial burdens of the energy transition?

The behavioral impacts resulting from the energy transition are still worth exploring.
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5.4.3 Justice in energy transitions

Justice and equity issues are increasingly recognized as critical components of the energy
transition. Carley and Konisky (2020) outlined four tenets of energy justice within this con-
text: distributional justice, procedural justice, recognition justice, and restorative justice.
This dissertation provides preliminary empirical evidence concerning distributional justice.
For example, through the Clean Heating Policy, low-socioeconomic households gained ac-
cess to modern, clean heating but also faced greater financial challenges compared to other
treated households. Focusing solely on distributional justice, several unresolved issues re-
main. Questions arise regarding the equity of the current uniform subsidy approach and
whether a more refined subsidy mechanism could improve the distributional justice. Ad-
ditionally, the issue of distributional justice between urban Beijing beneficiaries and rural
cost-bearers in the Clean Heating Policy warrants further exploration. Concerning other
dimensions of justice, for example, how could households participate in the decision-making
process of the Clean Heating Policy through the village committee is crucial for ensuring
procedural justice. Future studies should examine these other dimensions of energy justice

to promote a just and sustainable energy transition.
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Chapter 6

Conclusion

The primary objective of this dissertation is to gain a better understanding of the impacts
of household energy transitions driven by large-scale interventions. Through the analysis
of administrative statistics on rural households’ energy consumption in China, Chapter 2
revealed that as socioeconomic conditions improve, households in regions with better socioe-
conomic status and mild energy demands tend to make progress in transitioning to cleaner
energy sources. However, in areas with high energy demands, such as cold regions with
intensive space heating needs, natural energy transitions without incentives are particularly
challenging.

To address the developmental obstacles caused by solid fuel combustion and to meet
the urgent need for climate change mitigation, large-scale interventions targeting household
energy transitions are essential. While transitioning to modern energy sources can benefit
households in various ways — such as improving their living environment, enhancing health,
and saving time — it may also impose financial burdens and disrupt long-established habits.

Using the Clean Heating Policy in rural northern China as a case study, Chapters 3
and 4 employed difference-in-differences methods to evaluate the impact of household energy
transition interventions on energy poverty and subjective well-being. Our findings suggest
that the Clean Heating Policy effectively facilitates the energy transition by improving house-

hold space heating with minimal financial costs and enhanced life satisfaction.
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The Clean Heating Policy has achieved positive outcomes through a series of government
regulations and economic incentives. The findings of this dissertation underscore the signifi-
cant potential of well-designed interventions, which by providing long-term, sustained, and
multifaceted support — ensuring the availability of new technology, affordability of mod-
ern energy, stability of energy supply, and reliable equipment operation — could effectively
address the challenges of household energy transition faced by many developing countries

today.
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Appendix A

Appendix to Chapter 2

A.1 Characteristics of China for rural domestic energy
use zones

The 31 provincial administrative regions of mainland China, including provinces, autonomous
regions, and municipalities, have been divided into seven domestic energy use zones us-
ing a layer overlay approach (Station of Agricultural Ecology and Resource Conservation,
2019).This approach integrates China’s Agricultural Climate Zoning, Building Climate Plan-
ning, China Rural Energy Comprehensive Zoning, and Rural Renewable Energy Zoning. For
uniformity, we will refer to all provincial administrative units as “provinces” throughout this
text. Table A.1 shows the components, land area, population, climate characteristics, and
heating durations of these seven rural domestic energy use zones.

Among the seven zones, the Cold Winter-Yangtze Plain (CW-YP) encompasses the
largest number of provinces, with nine, while the Cold-Tibet Plateau zone (C-T) only has
two provinces. Significant differences in population density exist among these seven zones.
The Cold-North (C-N) zone has the highest population density of 921 people/km?, while the
C-T zone has the lowest population density of 5 people/km?. This is mainly due to the high

altitude of the plateau area, which is largely unsuitable for living and production activities.
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Except for C-N, the urbanization rates of the other districts are similar, with the shares of
rural population in the total population ranging between 38% and 58%.

The most significant differences among these zones are the climate conditions and corre-
sponding heating duration. Provinces in the Extreme Cold and Cold zones have long winter
days below 0°C for at least two months, resulting in a long heating duration. The heating
season can last for half a year in Extreme Cold provinces. Only a few provinces in CW-YP
have mild heating needs around January. As for the Warm Winter-South (WW-S) provinces,
there is no need for space heating in winter.

The difference in climate conditions and heating needs determines the energy use pattern
for different domestic energy use zones. The difference in the proportion of rural household
energy used for cooking and heating in the north (EC and C provinces) and south (CW,
WW-S, and M-SW provinces) of China is significant. Specifically, the proportion of heating
use in north China is as high as 63.1%, while in south China, it is only 22.6% (Zheng & Wei,
2019).
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Table A.1: Characteristics of rural domestic energy use zones. The data were sourced from the Station of Agricultural Ecology
and Resource Conservation (Station of Agricultural Ecology and Resource Conservation, 2019) and the Energy and Environment Research
Department of the National Engineering Research Center for Housing and Living Environment of China (Energy and Environment Research
Department, National Engineering Research Center for Housing and Living Environment of China, 2012). The population and rural population

data are on the 2016 level.

Accumulated
Rural Heating
Land Area Population Temperature
Zone Abbreviation Provinces Population Duration Other
(10,000 km?)  (million) greater than 0°C
(million)  (months)
(°C)
Extreme Cold-
EC-NE Heilongjiang, Jilin, Liaoning 79.18 109.47 42.32 5~6 <3600 <0°C, 130~190 days
Northeast
Extreme Cold- Inner Mongolia, Ningxia,
EC-NW 347.19 119.31 57.66 4~5 2100~5700 <0°C, 120~160 days
Northwest Xinjiang, Gansu, Shaanxi

Beijing, Tianjin, Hebei,
Cold-North C-N 69.61 641.34 150.94 2~4 3900~5300 <0°C, 50~130 days
Shandong, Shanxi, Henan

Cold-Tibet
C-T Qinghai, Tibet 191.96 9.12 5.27 3 <500 <0°C, 80~200 days
Plateau
Shanghai, Jiangsu, Anhui,
Cold Winter- Mild heating needs
CW-YP Zhe‘]lang7 JlangXl7 Hunan7 149.15 392.74 159.7 2~3 5500~7000
Yangtze Plain around January
Hubei,Sichuan, Chongqing
Warm Winter- Fujian, Guangdong, Guangxi,
WW-S 57.67 203.95 77.78 0 >7000 Basically no winter
South Hainan
Minimum temperature
Mild- -5 ~ 0°C,
M-SW Yunnan, Guizhou 55.93 194.92 102.03 0 5900~6500
Southwest heating needs in

alpine regions




A.2 Descriptive statistics of variables used in the two-
way fixed effects model

Supplementary Table A.2 presents descriptive statistics of the dependent variable, which
is the share of clean energy in rural household energy consumption, and the independent
variable, which is per capita income, for seven different rural domestic energy use zones.
However, due to only having two provinces in the C-T zone and missing values for Tibet,
we were only able to obtain 14 observations, which may introduce some uncertainty in the
following regression model. Over the 1991-2018 period, the proportion of clean energy in
rural household energy consumption varied across the different zones, with an average range
of 7.3% to 22.4%. The C-T zone had the lowest clean energy rate among all zones. Notably,
significant progress in the rural household energy transition was observed in CW-YP, WW-S,
and C-N zones during this period, where the dependent variable ranged from a minimum of
1% to a maximum of over 80%. Conversely, the process was comparatively slower in the C-T
zone, where the maximum value of the dependent variable was less than 20%. In the last 30
years, per capita annual income has experienced significant growth in line with socioeconomic
development, ranging from 2,500 to 5,000 RMB across distinct domestic energy use zones. In
addition, there were observable differences in social development levels between regions, with
CW-YP and C-N zones exhibiting higher per capita income levels, while C-T and M-SW
zones had lower per capita incomes. Importantly, even between 1991-2018, the maximum
per capita income for C-T and M-SW was only about 10,000 RMB per year (approximately
2,386 US dollars).
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Table A.2: Descriptive statistics of variables used in the two-way fixed effects model

Dependent Variable:

Independent Variable:

Zone obs
Share of Clean Energy (%) Per Capita Income (1,000 RMB)

Mean Std.Dev. Min Max Mean Std.Dev. Min Max
EC-NE 54 10.742 5.632 1.770 25.345 3.992 3.834 0.728 14.656
EC-NW 86 7.756 6.383 0.658 35.569 3.001 3.236 0.428 13.803
C-N 107 16.596 13.809 1.641 81.305 4.933 5.141 0.479 26.490
C-T 14 7.304 5.222 0.114 19.567 3.163 3.024 0.855 10.393
CW-YP 151 21.685 23.240 1.045 95.834 4.958 5.602 0.374 30.375
WW-S 69 22.378 21.116 0.919 84.333 4.409 4.166 0.541 17.821
M-SW 36 9.130 10.833 0.749 43.336 2.486 2.797 0.359 10.768




A.3 Detailed regression results of two-way fixed effects

model

Table A.3 presents the detailed regression results shown in Figure 2.4.

Table A.3: Detailed regression results of two-way fixed effects model. The greater

R? of C-T and M-SW may reflect the small samples in these two domestic energy use zones.

All regressions control for the year and province fixed effects. Standard errors in parentheses

are robustness standard errors obtained from R “clubSandwich” package developed by James

E. Pustejovsky (Long & Ervin, 2000). These estimates use an unbalanced province-year level

panel.

Dependent Variable: Share of Clean Energy (%)

EC-NE EC-NW C-N C-T CW-YP WW-S M-SW

-1.333 0.304 0.599 0.767 1.897 5.232 10.556
Per Capita Income

(0.390) (0.682) (0.897) (0.448) (0.318) (1.022) (0.074)
Observations 54 86 101 14 150 69 36
R-Squared 0.003 0.002 0.018 0.742 0.152 0.097 0.769
Province

Yes Yes Yes Yes Yes Yes Yes
Fixed-Effect
Year

Yes Yes Yes Yes Yes Yes Yes

Fixed-Effect
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A.4 Parameters of ARIMA(p,d,q) models

To determine the parameters of ARIMA models, we utilized the auto.arima() function in
R. This function employs a variant of the Hyndman-Khandakar algorithm, which combines
unit root tests, maximum likelihood estimation, and minimization of the corrected Akaike’s
Information Criterion (AICc) to obtain an “optimal” ARIMA model (Hyndman & Khan-
dakar, 2008). In section “8.7: Arima modelling in R,” Hyndman et al. (2018) provide a
detailed explanation of the auto.arima() function.

The algorithm proceeds in the following manner: first, it determines the d(0 < d < 2) in
the model using repeated Kwiatkowski—Phillips—Schmidt—Shin (KPSS) tests for testing a null
hypothesis that an observable time series is stationary around a deterministic trend against
the alternative of a unit root (Kwiatkowski et al., 1992). Next, it selects the values of p and q
by minimizing the AICc after differencing the data d times (e.g., in an ARIMA(p, 1, ¢) model
when d = 1, y, = y;—y,_1; in an ARIMA(p, 2, q) model where d =2, v, = (y; —yi—1) — (ys—1—
Yi—2). The algorithm starts with four initial models (i.e., ARIMA(0,d,0), ARIMA(2,d,2),
ARIMA(1,d,0), and ARIMA(0, d, 1)), and uses a stepwise search to traverse the model space.
The “best” model with the minimum AICc value among these four is set as the current model.
The algorithm then varies the current model by incrementing or decrementing the p and/or
q of the current model by 1 and including or excluding the constant from the current model.
The best model considered thus far is selected as the new current model. This process is
repeated until no further decrease in AICc can be obtained.

The program uses some approximations to speed up the search process, which may result
in missing the minimum AICc. In order to enlarge the set of models, we use the approxima-
tion=FALSE and stepwise=FALSE options within the auto.arima() function. To avoid any
missing of the “optimal” model, we also run several manual searches using arima() function
as a double-check. Table A.4 and Table A.5 present the detailed parameters of the ARIMA

models described in the main text, respectively.
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Table A.4: Parameters and outcomes of the ARIMA (p,d, q) model in Figure 2.5. In the C-N region we only use the

observations before the Clean Heating Policy to predict the business-as-usual rural household energy transition.

Area Obs ARIMA(p,d,q) Coefficients Sigma2 log likelihood AICc BIC drift
arl: -0.110(0.17);

EC-NE 28 ARIMA(2,1,0) 2.335 -48.93 104.9 107.74  No
ar2: -0.429(0.17)

EC-NW 28 ARIMA(0,1,0) drift: 0.561(0.28) 2.211 -48.51 101.52 103.62  Yes

C-N 24 ARIMA(0,1,0)  drift: 0.933(0.28)  1.874  -30.34 83.20  84.96  Yes
arl: 0.856(0.09);

C-T 28 ARIMA(1,0,0) 10.05 -71.65 150.31  153.3 No
mean: 11.745(3.44)

CW-YP 28 ARIMA(0,1,0) drift: 2.136(0.72) 14.68 -74.07 152.63  154.73  Yes
arl: -0.537(0.16);

WW-S 28 ARIMA(1,1,0) 20.27 -78.06 163.17 166.02 No
drift: 2.082(0.55)

M-SW 28 ARIMA(0,1,0)  drift: 1.321(0.70)  13.69  -73.13 150.76  152.85  Yes
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Table A.5: Parameters and outcomes of ARIMA(p,d,q) model in Figure 2.6.

Province Obs ARIMA(p,d,q) Coefficients Sigma2 log likelihood AICc¢  BIC drift
Beijing 24  ARIMA(0,1,0) drift: 1.356(0.71) 121  -60.8 126.19 127.86 Yos
Tianjin 24  ARIMA(0,1,0) / 18.95  -66.47 135.12 136.07 No
Hebei 24 ARIMA(011) T OO0 00 g 70.84 7298  Yes
drift: 1.017(0.33)
arl: 0.637(0.18);
Shanxi 24 ARIMA(2,00) ar2 0470(0.18); 502  -52.17 11444 117.05 No
mean: 6.783(0.53)
Henan 24  ARIMA(0,1,0) drift: 0.784(0.28) 1.83  -39.1 828 8447  Yes
arl: 0.019(0.31);
ar2: 0.548(0.27);
Shandong 21 ARDMA(L12) 0 PHBOLT 0o bse 158.85 159.33 No

ard: 0.355(0.19);
mal: -0.16(0.29);
ma2: -0.81(0.28)




A.5 Proportion of rural households with primary do-
mestic energy in 2016

To maintain consistency between the first and third rounds of the China Agricultural Census
data, we opted not to include the number of rural households using electricity as their
primary domestic energy source in Figure 2.3(b). Figure A.1 displays the map illustrating
the complete third-round census data on the “proportion of rural households with primary

domestic energy sources,” encompassing electricity as well.

Proportion of Rural Household with Primary Domestic Energy

50°N
40°N+
Fuel
™ coal
30°N 1 Gas
I Biomass
ELEC
B other
20°N+
10°N+

80°E 90°E 100°E 110°E 120°E 130°E

Figure A.1: Proportion of rural households with primary domestic energy in
2016.
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Appendix B

Appendix to Chapter 3

B.1 Sample: revisited households across waves

Figure B.1 illustrates the seasonal composition of the sample households, detailing the num-
ber of baseline households, those successfully revisited in each follow-up round, households

with unsuccessful revisits, and newly recruited sample households.

+49 households

| |

977 866 782
households households households
- 111 households - 133 households
First follow-up
households
- 27 households
68
households
Baseline First follow-up Second follow-up

Figure B.1: Sample households of each wave.
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B.2 Two-sample means t-test of key variables

Although the DiD strategy does not require the treatment and control groups to have similar
pre-treatment outcomes, we assess balance in pre-treatment key variables between never-
treated and treated households using two-sample mean t-tests in the descriptive statistics.

Table B.1 presents the results.
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Table B.1: Two-sample means t-test of key variables. * p < 0.1, ** p < 0.05, *** p <0.01.

Never Treated Treated Diff

Variable Before

Obs Mean SD Obs Mean SD Obs Dift Std.

Error

Economic Outcomes
Per Capita Winter Energy Expenditure
(Exp: RMB/person) 1512 1340 910 578 1170 764 2000  170%** 42.6
Share in Family Income (Share: %) 1512 11.0 11.9 578 10.8 11.7 2090  0.218 0.577
Space Heating Outcomes
Nighttime Indoor Temperature
(Temp: °C) 730 14.0 3.72 228 13.1 4.13 958  0.824***  (.290
Rooms with Regular Heating (Rooms) 1505 4.48 2.62 577 3.96 2.45 2082 0.524*FFF  0.126
Average Heating Duration
(Duration: hours - day™* - room™1) 1505 11.0 5.88 577 9.25 5.71 2082 1.72%**  0.286
Controls
Building age (years) 1512 16.5 14.9 578 14.6 13.1 2090 1.85**F  0.706
Building area (m?) 1512 118.8 50.8 578 134.7 53.4 2090 -15.9%** 2.52
Number of Villages 30 20
Number of Households 695 485




B.3 Average treatment effects from different DiD esti-

mators

Figure B.2 illustrates the average treatment effects of the Clean Heating Policy on eco-
nomic and physical measures of energy poverty, as estimated using a series of difference-in-
differences (DiD) estimators. The results across these various estimators demonstrate a high

degree of consistency.
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Figure B.2: Average treatment effects from various DiD estimators.
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B.4 Electricity tariff subsidies: “triple subsidies”

Figure B.3 illustrates the nighttime electricity tariffs for households participating in the
Clean Heating Policy under the government’s triple subsidies, alongside several scenarios

discussed in Section 3.5.1.

Scenario 3
|
[ \
Scenario 2

| . 1

Scenario 1

l_‘_\

Current

District I

\ ]
I

0.488 CNY/kW-h

Figure B.3: Electricity subsidy scenarios.
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B.5 Trade-off between energy expenditure and space

heating
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