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Abstract

To achieve genuine predictive capability, an algorithm must consistently deliver accurate

results over prolonged temporal integration periods, avoiding the unwarranted proliferation of

aliasing errors that compromise the discrete solution. Provable nonlinear stability bounds

the discrete approximation and ensures that the discretization does not diverge. Nonlinear

stability is accomplished by satisfying a secondary conservation law, namely for compressible

flows; the second law of thermodynamics. For high-order methods, discrete nonlinear stability

and entropy stability, have been successfully implemented for discontinuous Galerkin (DG)

and residual distribution schemes, where the stability proofs depend on properties of L2-norms.

Alternatively, the flux reconstruction method has gained popularity in the research community

as it recovers promising high-order methods, such as DG, through a modally filtered correction

field. Specific correction functions, defined by a class of energy stable flux reconstruction

(ESFR) schemes, allow for larger timesteps than DG while preserving the orders of convergence.

These correction functions require stability proofs to be evaluated in dense broken Sobolev-

norms. This thesis develops nonlinearly stable flux reconstruction (NSFR) schemes for scalar

and vector-valued conservation laws by proving discrete nonlinear stability in dense broken

Sobolev-norms. NSFR differs from ESFR schemes in the literature since it incorporates the

flux reconstruction correction functions on the volume terms through the use of a modified

mass matrix. To arrive at this result, this thesis first derives NSFR for Burgers’ equation in

split form, then linear advection in split form in three-dimensional curvilinear coordinates,

and finally the Euler equations using uncollocated, modal skew-symmetric operators with

entropy conserving two-point fluxes in curvilinear coordinates. This thesis also focuses on

efficiently scalable and low-storage implementations. The NSFR modified mass matrix is

derived in a weight-adjusted form. This form reduces the computational cost in curvilinear

coordinates because the dense matrix inversion is approximated by a pre-computed projection



operator and the inverse of a diagonal matrix on-the-fly. NSFR makes use of tensor product

basis functions to exploit sum-factorization. Additionally, a sum-factorized Hadamard product

is developed allowing the entropy stable two-point flux framework to scale at order O
(
nd+1

)
,

where n = p + 1, with p being the polynomial degree, and d the physical dimension of

the problem. The nonlinear stability properties of the scheme are verified for the unsteady

Burgers’ equation with a shock wave, unsteady linear advection on curvilinear grids, and

the Taylor-Green vortex problem on a coarse non-symmetric curvilinear grid. On a linear

grid, the orders of convergence were obtained for a manufactured solution to the Burgers’

equation. On nonsymmetric, heavily warped curvilinear grids, the orders of convergence

were attained for manufactured solutions to linear advection and the Euler equations. Lastly,

we perform a computational cost comparison between conservative DG, overintegrated DG,

and our proposed entropy conserving NSFR scheme. We find that our proposed scheme is

computationally competitive with the conservative nodal DG scheme per residual evaluation,

and it can take larger timesteps than DG.
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Résumé

Pour obtenir une véritable capacité prédictive, un algorithme doit fournir systématiquement

des résultats précis sur des périodes d’intégration temporelle prolongées, évitant ainsi la

prolifération injustifiée d’erreurs d’alias qui compromettent la solution discrète. La stabilité

non linéaire prouvable limite l’approximation discrète et garantit que la discrétisation ne diverge

pas. La stabilité non linéaire est obtenue en satisfaisant une loi de conservation secondaire,

notamment pour les écoulements compressibles ; la deuxième loi de la thermodynamique.

Pour les méthodes d’ordre élevé, la stabilité non linéaire discrète et la stabilité entropique ont

été implémentées avec succès pour les schémas Galerkin discontinue (DG) et de distribution

résiduelle, où les preuves de stabilité dépendent des propriétés des normes-L2. Alternativement,

la méthode de reconstruction de flux a gagné en popularité dans la communauté des chercheurs

car elle récupère des méthodes prometteuses d’ordre élevé, telles que DG, via un champ de

correction filtré modalement. Des fonctions de correction spécifiques, définies par une classe

de schémas de reconstruction de flux stable en énergie (ESFR), permettent des pas de temps

plus grands que DG tout en préservant les ordres de convergence. Ces fonctions de correction

nécessitent que les preuves de stabilité soient évaluées dans des normes-Sobolev brisées qui

sont denses. Cette thèse développe des schémas de reconstruction de flux non linéairement

stable (NSFR) pour les lois de conservation scalaires et vectorielles en prouvant la stabilité non

linéaire discrète dans des normes de Sobolev denses et brisées. Le NSFR diffère des schémas

ESFR de la littérature car il intègre les fonctions de correction de reconstruction de flux sur

les termes de volume grâce à l’utilisation d’une matrice de masse modifiée. Pour arriver à ce

résultat, cette thèse dérive d’abord le NSFR pour l’équation de Burgers sous forme divisée,

puis l’advection linéaire sous forme divisée en coordonnées curvilignes tridimensionnelles, et

enfin les équations d’Euler utilisant des opérateurs antisymétriques modaux non colocalisés

avec le flux à deux pointes conservation de l’entropie en coordonnées curvilignes. Cette thèse



se concentre également sur des implémentations efficacement évolutives et à faible stockage.

La matrice de masse modifiée NSFR est dérivée sous une forme ajustée en fonction du poids.

Cette forme réduit le coût de calcul en coordonnées curvilignes car l’inversion de matrice

dense est approximée par un opérateur de projection pré-calculé et l’inverse d’une matrice

diagonale à la volée. NSFR utilise des fonctions de base de produit tensoriel pour exploiter la

factorisation par somme. De plus, un produit Hadamard factorisé en somme est développé

permettant au cadre de flux à deux points stable en tropie d’évoluer à l’ordre O
(
nd+1

)
,

où n = p + 1, avec p étant le degré polynomial, et d la dimension physique du problème.

Les propriétés de stabilité non linéaire du schéma sont vérifiées pour l’équation de Burgers

instationnaire avec onde de choc, l’advection linéaire instationnaire sur des grilles curvilignes

et le problème du vortex de Taylor-Green sur une grille curviligne grossière non symétrique.

Sur une grille linéaire, les ordres de convergence ont été obtenus pour une solution fabriquée

de l’équation de Burgers. Sur des grilles curvilignes non symétriques et fortement déformées,

les ordres de convergence ont été atteints pour les solutions fabriquées à l’advection linéaire

et aux équations d’Euler. Enfin, nous effectuons une comparaison des coûts de calcul entre un

DG conservateur, un DG surintégré et notre schéma NSFR proposé pour conserver l’entropie.

Nous constatons que le schéma proposé est compétitif sur le plan informatique avec le schéma

DG nodal conservateur par évaluation résiduelle, et qu’il peut prendre des pas de temps plus

longs que DG.
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Chapter 1

Introduction

The goal of this dissertation is to develop numerical tools that can solve nonlinear partial

differential equations (PDEs) on complex geometry for computational predictive science

applications with large-scale data. A computational tool is truly predictive when it can

accurately measure the impact that initial small perturbations have in the long-term. This

imposes three focuses: accuracy, robustness, and efficiency. Accuracy is achieved with high-

order accurate finite element methods, robustness is guaranteed through discrete nonlinear

stability, and efficiency is optimized through scalable techniques coupled with high arithmetic

intensity and minimum memory strategies.

1.1 High-Order Methods

High-order accurate methods such as discontinuous Galerkin (DG) and flux reconstruction

(FR), result in efficient computations via high solution accuracy and dense computational

kernels, making them an attractive approach for the exascale concurrency on next-generation

hardware. Generally, high-order methods are known to be more efficient than low-order

methods for linear hyperbolic problems [1, 2]. However, despite a prolonged development

effort, their application to industrially relevant simulations of nonlinear PDEs has been limited

due to the absence of nonlinear stability among classes of DG and FR high-order methods.
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The following subsections provide a comprehensive assessment of current advancements in

this field and where applicable research gaps are identified.

1.1.1 Discontinuous Galerkin

The DG method, first proposed by Reed and Hill to solve the neutron transport equation [3],

combines both the key properties of finite volume and finite element schemes. As explained in

the book by Hesthaven and Warburton [4], the high-order scheme provides stability through

a numerical flux function and utilizes high-order shape functions to represent the solution.

There are several attractive qualities of a DG scheme for industrial applications. Firstly, the

scheme allows for arbitrary high-order, endowed with a compact stencil, and easily discretized

over complex geometry. This makes it a very attractive algorithm to use local hp-adaptation

in conjunction with high-order meshes to accurately capture more complicated designs. Also,

its compact stencil allows for the scheme to be effortlessly parallelized making it well-suited

for next generation hardware. Secondly, it can be recast in operator and quadrature-free

form [5] that resembles finite difference and spectral difference schemes, creating efficient

residual solves. Thirdly, the stability of the scheme is controlled by a surface numerical flux

function similar to that used in finite volume codes. A piece-wise constant first-order DG

scheme recovers Godunov’s method [6, 7], while its higher-order DG counterparts preserve the

essence of the Riemann solver across the interfaces. For the convective term, a few common

choices for the surface numerical flux are: to scale the jump in the solution by the maximum

wavespeed for example Lax-Friedrichs [8], to use flux-difference splitting, for example Roe’s

flux [9], or to use flux-vector splitting, for example the convective upwind split pressure

flux [10]. Particularly for the diffusion equation, many numerical flux functions such as the

interior penalty (IP) [11], the Bassi and Rebay II (BR2) [12], the local discontinuous Galerkin

(LDG) [13], the compact discontinuous Galerkin (CDG) [14], and the compact discontinuous

Galerkin 2 (CDG2) [15] have been developed with the use of a penalty term to account for

the discontinuous jump across cells or control volumes, in order to maintain conservation.
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There are several alternative high-order schemes to the DG method. Firstly, there is the

spectral volume (SV) approach proposed by Wang et al. [16] which was derived by subdividing

each cell into smaller control volumes in order to have a high-order, finite volume-type stencil.

There are also finite difference-like schemes based on implementing higher-order operators

mimetic of the differential form. The most promising was that developed by Kopriva and

Kolias [17] where they introduced a staggered grid spectral method. For the staggered grid,

there were two sets of nodes: solution and flux nodes. The solution was interpolated to the

flux nodes and a collocated DG-like spectral element method was implemented on the flux

nodes. Liu, Vinokur and Wang [18] extended it to triangular meshes. These schemes were

proven to be stable by Jameson [19] as they are specific cases of FR. In [20], Wang published

a review of these alternative high-order methods.

1.1.2 Flux Reconstruction

The FR framework, originally proposed by Huynh [21], has emerged as a popular finite element

approach. It is simple since it can be cast in differential collocated form and it affords design

flexibility through the choice of correction functions that alter the properties of the scheme.

Its main attraction is that it allows for the largest timesteps of all high-order methods for

the same polynomial degree. The centralized idea for FR is to “correct” the flux across the

surface with correction functions of one-degree order higher than the scheme, which makes the

approximate flux have both a discontinuous and continuous component. This results in the

ability to take larger time steps while maintaining the correct orders of convergence [21–25].

Wang and Gao [22] later presented an alternate approach to the FR scheme. Deemed the

Lifting Collocation Penalty (LCP) approach, they considered a “correction field” applied to

the surface integral; instead of reconstructing the flux across the surface of the element [22].

In addition, they considered a collocated Lagrange basis for the volume flux, alike the FR

discontinuous flux. Thus, the authors merged both the FR and LCP in a common framework

called Correction Procedure via Reconstruction (CPR) [26, 27]. Now FR and CPR are loosely
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interchangeable since Yu and Wang [28] proved that the FR surface reconstruction is identical

to the CPR correction field.

Importantly, subsets of FR schemes, also known as Vincent-Castonguay-Jameson-Huynh

(VCJH) schemes or Energy Stable Flux Reconstruction (ESFR), have been identified as

provably linearly stable for linear advection [22, 23, 25, 29–35]. This was accomplished by

proving energy stability with respect to a p-th order broken Sobolev-norm. The choice to

prove stability within a dense p-th order broken Sobolev-norm for FR schemes originates

from Jameson’s [19] stability proof for the spectral difference scheme. The spectral difference

scheme, in the FR framework, differs from DG through the lifting operator. To prove stability,

Jameson [19] added a term that is orthogonal to the divergence of the volume flux to the

L2-norm. Then, by scaling the norm by a free parameter, the ESFR stability condition is

realized relating the inner product of the p-th order derivative and the surface lifting correction

functions [24]. The free parameter is the ESFR correction parameter c; with values of cDG,

cSD, cHU , c−, and c+. Each parameter results in the scheme having different properties,

where cDG recovers a DG scheme exactly; while cSD recovers a spectral difference scheme,

and cHU recovers the Hunyh g2 scheme [24]. The stability of the scheme is ensured through

the minimum value c−. Lastly, the value of c+ does not have an analytical value but has

numerically been shown to be the upper limit in a von Neumann analysis of the correction

parameter before the scheme loses an order of accuracy [29] with an L2-error bound obtained

by Lambert and Nadarajah [36]. It is to be noted, that as c increases, the maximum time step

increases up until the value of c+. ESFR exists within a broader class of correction functions

using weighted Jacobi polynomials [37] and that of general stable flux reconstruction [38]

which incorporates all polynomial components for the full Sobolev-norm.

A stability proof was later developed for the diffusion equation in Castonguay et al. [39]

where they showed that stability was ensured for the LDG scheme with a positive correction

parameter. The proof was extended for the BR2, IP, CDG and CDG2 numerical fluxes in

Quaegebeur et al. [40], where it was shown that stability was ensured by choosing a positive
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correction parameter for the primary equation and that it was independent of the correction

parameter used in the auxiliary equation. This proof was later developed for linear triangular

elements [41], where it was also proven that the correction parameter for the primary equation

had to be positive, and an arbitrary correction parameter was needed for the auxiliary equation

to ensure stability using the IP and BR2 numerical fluxes. For Cartesian meshes, Sheshadri

and Jameson [42] showed stability of the ESFR scheme, with the LDG numerical flux, for

the same positive correction parameter used for both the primary and auxiliary equations.

Quaegebeur et al. [43] extended the two-dimensional Cartesian proof for the BR2, IP, CDG

and CDG2 numerical fluxes.

As discussed, the ESFR discretization recovers several popular high-order schemes, specif-

ically DG. Thus, it was imperative to develop a relationship between ESFR and DG such

that: ESFR is easily implemented into pre-existing DG codes and future ESFR research can

refer to the DG literature.

1.1.3 ESFR as a Filtered DG Scheme

Through the close relationship between the ESFR correction field and a DG surface lifting

operator, ESFR has been proven to be equivalent to a filtered DG scheme [44–46]. This

allows for a seamless implementation of ESFR into pre-existing, modal, uncollocated DG

codes through the addition of a symmetric filter matrix to the mass matrix [44–46]. Although

the ESFR filter was originally derived based on the relationship between the ESFR and DG

facet correction fields [44, 45], the filter operator has also been proven to arise naturally from

the norm in which the scheme is stable [46]. The latter formulation allows for the ESFR

filter to be implemented in an arbitrarily modal uncollocated basis [46] without the need to

compute a reference basis alike [44, 45]. Viewing ESFR as a filtered DG scheme allows the

possibility of ensuring nonlinear stability in arbitrarily dense norms.
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1.1.4 Summation-by-Parts Discretization

A discretization agnostic approach for the design and analysis of arbitrarily high-order and

provably stable numerical methods for linear variable coefficient problems is provided by

the Summation-by-Parts (SBP) framework [47–49]. A way of viewing the SBP framework

is through the lens of a quadrature-free DG scheme, alike that presented by Cockburn and

Shu [13]. Then, the SBP differential operator is the derivative of the basis functions, and the

SBP property is equivalent to the p-th order basis functions satisfying discrete integration-by-

parts for quadrature rules of at least 2p− 1 strength. This viewpoint directly allows for a

relationship between the variational DG framework and the SBP community. Thus, similar to

the DG surface lifting operator, the SBP community considers simultaneous approximation

terms (SATs) [47, 49–59] to represent the surface integral. Moreover, discretizations having

the SBP property are straightforward to transition to nonlinearly stable (entropy stable)

schemes for nonlinear conservation laws [47, 49, 56–58, 60–71].

In the SBP literature, the extension of stability proofs for dense-norm SBP operators, to

variable coefficient problems—particularly curvilinear coordinate transformations, has received

little attention as a result of Svärd [72]. In that paper, Svärd proved that, in general, for such

problems a dense-norm, P , when multiplied against the diagonal matrix containing the metric

Jacobian on the mesh nodes, J , does not result in a norm and therefore provable stability is

lost, i.e., PJ is not a norm. However, by recasting dense-norm SBP operators in staggered

form and constructing metrics on the staggered grid, stability can be reestablished for PDEs

in curvilinear coordinates [63]. The incorporation of the metric Jacobian on the flux nodes in

a staggered approach for dense-norm SBP operators [63] is equivalent to considering the DG

discretization in variational form and having the metric Jacobian appear by transforming the

differential volume element within the integral. Alternatively, Ranocha et al. [73] constructed

a dense matrix J , such that PJ = (PJ)T , which resulted in PJ being a norm for modal

based operators. The approach in [73] proved to be stable since the authors only considered

a nodal DG scheme. In a similar fashion, the extension of nonlinear stability proofs to
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curvilinear coordinates for ESFR schemes—to take advantage of larger timesteps, has alluded

the research community as the ESFR norm is dense.

1.2 Nonlinear Problems

Unsteady, discontinuous, and chaotic turbulent flows are common in computational fluid

dynamics (CFD). These properties are the result of the nonlinearity within the PDE. To

tackle the problem of robustness, there exists a discrete nonlinear stability framework [74] to

prove that numerical entropy monotonically decreases. Nonlinear stability proofs ensure that

instabilities do not manifest themselves during long-time integration. Nonlinearities present

themselves both through the governing equation’s flux and the mapping of the space itself for

curvilinear coordinates.

1.2.1 Curvilinear Meshes

Curvilinear meshes are of interest for high-order schemes since they allow for body-fitted

grids [75, 76]. Firstly, since the curvilinear transformation and the mesh itself are nonlinear

polynomials, then the complete discretization is nonlinear; even for a linear flux. For example,

consider a linear covariant flux f transformed to the contravariant basis by the nonlinear

mapping ψ, then the contravariant flux f r = ψf is nonlinear. It has been proven that for

curvilinear elements, the polynomial representation of the grid must be at least the same

order of the scheme [77, 78]. In [77, 78], to demonstrate the correct orders of convergence for

curvilinear meshes, only a polynomial approximation on the contravariant (reference) flux was

considered since the covariant (physical) flux was never explicitly represented as a polynomial.

This also resulted in two different forms for DG schemes on curvilinear grids; conservative

(considering the divergence of the contravariant flux) and non-conservative (considering the

contravariant transformation of the divergence of the flux) [63, 79, 80]. Thus, when the

metric terms are nonlinear, the discretization is fundamentally different from the continuous

formulation. Careful treatment is required for free-stream preservation, conservation, and
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stability.

First presented by Thomas and Lombard [81], then later extended by Kopriva [82] for

DG/high-order spectral schemes, the metric terms for the contravariant transformation must

be computed a priori to satisfy free-stream preservation. The a priori computation recasts

the metric terms in curl form, which results in the Geometric Conservation Law (GCL)

discretely being equivalent to the divergence of the curl. Abe et al. [83] extended the work by

considering two separate sets of points. The first is a continuous set of grid points, or mapping

support points, that ensure well-posed elements [75]. Then, the centralized idea in [83] was to

perform the curl interpolation at the flux points; thus the authors ensured consistent normals

on each element’s surface. Although the metric terms have been derived to satisfy free-stream

preservation, they inherently add nonlinearity to the scheme which requires careful treatment

for stability proofs [63, 70, 79, 84].

1.2.2 Nonlinear Stability and Entropy Stability

Consider a system of conservation laws

∂u

∂t
+∇ ·f(u) = 0, ∀t ≥ 0, x ∈ [xL, xR],

u(x, 0) = g(x),

(1.1)

with appropriate boundary conditions, for example, Dirichlet, Neumann, Robin, mixed or

Cauchy. Smooth solutions of Eq. (1.1) satisfy the entropy equality,

∂U

∂t
+∇ ·F = 0, F = F (u), (1.2)

where U is a convex function of u, while weak solutions satisfy the entropy inequality,

∂U

∂t
+∇ ·F ≤ 0. (1.3)

The foundational step from Lax and Wendroff [85] showed that if the approximation is
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convergent, then for smooth problems, it converges to the strong solution; but for non-smooth

problems, it converges to a weak solution. To identify the physically relevant weak solution,

based on the interpretations from Lax [86] and Harten et al. [87], discontinuous solutions

satisfy Oleinik’s Condition E [88],

f(u)− f(uL)
u− uL

≥ s ≥ f(uR)− f(u)
uR − u

, (1.4)

for all u between uL and uR, and s is the speed of the shock. Oleinik’s Condition E [88] is an

abstraction of the Rankine-Hugoniot condition. Independently, Hopf [89] and, based on the

interpretation of Lax [90], Kružkov [91], showed that if the weak solution u is the limit of

solutions to the parabolic equation,

∂u

∂t
+∇ ·f(u) = α∇ · (β (u)∇ (u)) , β > 0, α→ 0, (1.5)

then the entropy inequality in Eq. (1.3) is satisfied. Eq. (1.5) is known as the vanishing viscosity

mechanism. Hopf [89] recovered Oleinik’s Condition E (Eq. (1.4)) from the entropy inequality

(Eq. (1.3)) for a special set of increasing functions. For general systems of hyperbolic equations,

Lax [90] proved that satisfying the entropy inequality (Eq. (1.3) through a vanishing viscosity

mechanism implies that Oleinik’s Condition E is recovered—resulting in the physically relevant

weak solution.

Discretely, we can mimic the continuous vanishing viscosity mechanism by adding up-

wind numerical dissipation alike von Neumann and Richtmeyer [92]. For linear problems,

Godunov and Bohachevsky [7] explored the concept of monotonicity. Then, Godunov and

Bohachevsky [7] arrived at the minimum artificial viscosity needed to ensure a monotonic

discretization for the linear PDE. Following from the proofs by Hopf [89] and Kružkov [91, 93],

Harten and coauthors [87] were able to show that the monotonicity condition implies that the

entropy inequality is satisfied, and thus conservative monotone finite difference schemes satisfy

Oleinik’s Condition E. Unfortunately, monotone schemes can be at most first-order [87], since
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the monotonicity constraint limits the discretization through Godunov’s barrier theorem [7].

To extend beyond first-order, the monotonicity condition was relaxed and the focus was on

discretely satisfying the entropy inequality.

The physically relevant weak solution satisfies the entropy inequality, thus a crucial first

step is for the numerical scheme to discretely satisfy the entropy inequality. This motivated

the research and development of admissible entropy functions and their properties therein.

Friedrichs and Lax [94] proved that if a purely hyperbolic PDE can be put in symmetric

hyperbolic form, where the conserved entropy function is a convex function of the original

variables and satisfies the entropy equality in Eq. (1.2), then the initial value problem is

well-posed. Godunov [95] showed that if there exists a set of variables that symmetrize the

governing equations, then there exists a convex entropy function with corresponding entropy

fluxes. For nonlinear systems of PDEs of mixed type, Mock [96] proved the converse of

Godunov [95]—if there exists a convex entropy function U(u), then the entropy variables

v = Uu symmetrize the governing equation (1.1). Harten [97] then provided a review of the

general structure of conservation laws with entropy, and their symmetrizability, and laid

the foundation of admissible entropy functions for Euler’s gas dynamics. After analyzing an

entropy stable upper bound on the viscosity coefficient from Enquist and Osher [98], Osher [99]

was the first to use the cell entropy condition to solve for the numerical flux, resulting in

the E schemes. The limiting case for the E schemes was Godunov’s viscosity coefficient [7],

resulting in a first-order restriction on the E schemes. Motivated to expand beyond first-order

for general systems of conservation laws, in the context of finite volume schemes, Tadmor [100]

proved that if the numerical flux satisfies the entropy condition from Harten [97], then the

discretization is entropy stable—this was accomplished by introducing a weak condition on

the numerical flux commonly referred to as the Tadmor shuffle condition. These notions were

extended by LeFloch [101, 102] in the context of high-order finite difference stencils. In the

last decade, these ideas were expanded to bounded domains by Fisher and co-authors [60],

who combined the SBP framework with Tadmor’s two-point flux functions to achieve entropy
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conservation. Extending the flux differencing connection made by Fisher et al. [60] between

the SBP framework and Tadmor’s shuffle condition, entropy conservative and stable methods

have been successfully implemented in DG [70, 103–105], FR [106, 107] for only the DG case,

unstructured methods [47, 67, 69], and extended high-order SBP forms [57, 60, 62, 67, 71].

Unfortunately, for high-order numerical approximations to nonlinear PDEs, entropy stability

only guarantees that the numerical scheme does not diverge, it does not imply convergence.

An alternative to the flux differencing approach to ensure entropy conservation is to add

a design order Laplacian term to correct for the entropy production of the base scheme.

This correction term, developed by Abgrall [108] for residual distribution (RD) schemes, is

numerically obtained from the system’s entropy residual—it adds exactly sufficient diffusion

or anti-diffusion to ensure entropy conservation [108]. The entropy conserving RD framework

allows for extensions to many key finite element frameworks, including DG, FR, continuous

Galerkin with jump stabilization, and streamline upwind Petrov-Galerkin [108, 109] while

preserving the flavour of finite volume schemes. It has been successful for entropy conservation

for the finite element methods [108, 110] and FR in the L2-norm [111]. Through the

general form of the correction term, the framework allows for conservation across multiple

constraints [110]. Concerning its extension for FR, in order for the RD-FR scheme to maintain

the characteristics of larger timesteps by increasing the ESFR correction parameter c, it is

imperative to establish its stability within the p-th order broken Sobolev-norm [21, 24, 29].

The p-th order broken Sobolev-norm allows for oscillations within the L2-norm. To investigate

an equivalent nonlinearly stable RD-FR scheme, the entropy correction term would need to

be envisioned to demonstrate stability in norms other than the L2-norm.

While convergence proofs for unsteady weak solutions are yet to be solved for the high-

order methods considered [4], entropy and nonlinear stability is a great starting point to lead

toward a convergent discretization. Thus, for FR schemes to be adopted for computational

predictive science, it is imperative to develop a provably discrete nonlinearly stable form.
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1.2.3 Nonlinearly Stable Flux Reconstruction (NSFR)

One driving topic developed in this thesis is to prove nonlinear stability for the FR scheme with

entropy stable two-point fluxes. For linear advection, the ESFR stability proof depends on the

p-th order derivative (broken Sobolev-norm) vanishing on the divergence of the discontinuous

flux (order p− 1) [23, 24, 46]. For nonlinear problems, this is not the case since the volume

is a nonlinear polynomial of an order greater than p. For example, consider the chain rule

expression within Burgers’ equation, where u represents the velocity: u∂u
∂x

is order 2p− 1 since

u is approximated by order p and ∂u
∂x

is approximated by order p − 1. Thus, ∂p

∂xp
(u∂u

∂x
) ̸= 0.

This issue was first raised on linear grids for Burgers’ equation by Ranocha et al. [106].

Unfortunately, Ranocha et al. [106] were able to demonstrate stable solutions only when the

ESFR contribution was set to zero; which resulted in the same DG scheme presented in [103].

Ranocha et al. [73] presented a second paper on ESFR in split forms, where they considered

curvilinear elements. Again, similar to the Burgers’ problem, a non-vanishing term arose

due to the contribution of the dense norm on the nonlinear volume terms. Although the

authors [73] solved the curvilinear problem by setting the ESFR contribution to zero, again,

they illustrated that for a vast range of nonlinear problems, the component that prevents

a stability claim is the p-th derivative not vanishing on the nonlinear volume terms, for

example in Burgers’ equation, ∂p

∂xp
(u∂u

∂x
). Abe et al. [107] numerically demonstrated stability

for the “g2 lumped-Lobatto” ESFR scheme, which is identical to the collocated DG scheme

on Gauss-Lobatto-Legendre quadrature nodes, and is the same scheme proven stable by

Gassner et al. [104].

The literature lacked a unifying framework for the SBP and ESFR communities. Similar

to how Del Rey Fernández et al. [63] formulated the curvilinear staggered grid approach to

solve the metric Jacobian issue raised by Svärd [72], the future of nonlinearly stable ESFR

schemes lies in deriving a class of FR schemes for nonlinear problems. Ranocha et al. [73, 106]

and Abe et al. [107] were unable to demonstrate nonlinear stability because they employed the

same ESFR scheme derived for linear problems. The first step is to understand the essence of
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the stability proofs from entropy conserving DG schemes, and then design the FR scheme

to preserve the key property. This step is taken in Chapter 2 to derive nonlinearly stable

flux reconstruction (NSFR) for Burgers’ equation, where the key property is embedding the

split form within the stiffness operator to discretely satisfy integration-by-parts. Then, the

resulting NSFR scheme incorporates the influence of the ESFR correction functions on the

nonlinear volume term. This realization served as the foundation for the fully developed

NSFR solver extending to curvilinear elements in Chapter 3, and the Euler equations in

Chapter 5.

1.3 Scalable Implementation

An important property for exascale computing is that the algorithm scales efficiently and its

performance is not bounded by memory. For high-order solvers, the bulk of the computational

cost is in the evaluation of matrix-vector products.

1.3.1 Sum-Factorization

Sum-factorization, initially proposed by Orszag [112], exploits the tensor product structure

to reduce the computational cost of matrix-vector products. Consider we have a three-

dimensional matrix A (x, y, z) = A (x)⊗A (y)⊗A (z), which is constructed by the tensor

product of one-dimensional basis A (x) of size n. A (x, y, z) is of size nd. Evaluating

wT = AuT takes n2d flops. Instead, sum-factorization performs each direction independently

through pivoting to compute wT = AuT in dnd+1 flops. This is seen by expanding out

w (xi, yj, zk) =
∑n

r=0Ar(zk)
{∑n

q=0Aq(yj)
{∑n

p=0Ap(xi)upqr

}}
[113], where we let x run the

fastest, then y, and z the slowest. We notice in the expansion that each direction is applied

independently. Thus, we have n2 flops in the innermost brackets for the x-direction, times n

flops by the middle y-direction, and multiplied by n flops in the z-direction. For all nodal

values, (xi, yj, zk), this is performed d-times, giving dnd+1 total flops. As prescribed by the

roofline model [114], for arithmetic intensity, A.I. = flops
bytes , with sum-factorization, we do
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not need to load the full matrix, but rather one-dimensional matrices of size n × n. Thus

the memory traffic is loading dn2 for the d one-dimensional matrices, loading nd for the

vector, writing nd output, and loading/writing dnd vectors within the algorithm. Therefore,

A.I.sum-factorization = dnd+1

(d+2)nd+dn2 . This is compared to the arithmetic intensity of a matrix-

vector product without sum-factorization A.I.without sum-factorization = n2d

n2d+2nd < 1. This yields

the added incentive to use sum-factorization for large data since we can push matrix-vector

multiplications to be computationally bound instead of memory bound.

As extensively detailed in Karniadakis and Sherwin [115, Chapters 3, 4], by using quadri-

lateral and hexahedral reference elements, the basis operations can straightforwardly use

sum-factorization. For triangular, tetrahedral, prismatic, and pyramidic-based elements, Kar-

niadakis and Sherwin [115, Chapters 3, 4] derived orthogonal tensor product basis functions to

exploit sum-factorization in high-order codes. Also, for triangular elements, there are different

choices for the location of solution and quadrature points, for example, the α-optimized

nodes [4] are found by minimizing the Lebesgue constant, and further nodal sets are derived

in Witherden and Vincent[116]. Only quadrilateral and hexahedral-based elements are used

in this thesis.

Unfortunately, sum-factorization is only applied for matrix-vector multiplications, and to

achieve discrete nonlinear stability, such as Chan [70], a dense Hadamard product is introduced.

A Hadamard product costs n2d flops to directly evaluate. In Chapter 4, the tensor product

sparsity structure is exploited to derive an algorithm that evaluates Hadamard products in

O
(
nd+1

)
flops, recovering the sum-factorization result. This novel sum-factorized Hadamard

product allows for entropy conserving/stable high-order methods to be computationally

competitive with nodal conservative discontinuous Galerkin, and in Chapter 5 it is shown

that on average, there is an 12% computational wall-time increase per residual evaluation

for discrete nonlinear stability between our NSFR-cDG solver as compared to a conservative

nodal DG scheme.
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1.3.2 Low-Storage Weight-Adjusted Approximations

In curvilinear coordinates, the mass matrix is fully dense in each element, it needs to be

inverted and applied on each residual. There are three approaches: first, build and invert the

dense local mass matrix on-the-fly, which costs O
(
n3d
)
. Second, in the pre-computation stage,

build and invert the dense local mass matrices and store a global mass matrix inverse. This

requires the most memory for large test cases. Third, approximate the mass matrix inverse

with weight-adjusted forms and apply sum-factorization on-the-fly without ever building

or inverting a matrix. In Chapter 5, the third option is chosen. In the work from Chan

and coauthors [117, 118], they approximated the inverse of the dense Galerkin mass matrix

in curvilinear coordinates by L2-projection operators and a diagonal matrix storing the

determinant of the metric Jacobian multiplied by the quadrature weights. This allowed for

the projection operator in the reference element to be pre-computed, and applied on-the-fly

along with the inverse of a diagonal matrix. For NSFR, we follow a similar approach in

Chapter 5, but we derive the projection operator to project onto the broken Sobolev-space.

This projection operator stores all of the influence of the ESFR correction functions, and it

is numerically shown to preserve the orders of convergence up to c+. We exploit the tensor

product structure of the projection operator by only storing its one-dimensional counterpart.

Then, it is applied on-the-fly with a diagonal matrix storing the determinant of the metric

Jacobian multiplied to the quadrature weights, to obtain a high-order approximation to the

inverse of the mass matrix. This implementation capitalizes the use of sum-factorization and

dramatically reduces the computational cost. Comparing the cost of the three options, letting

n = p+ 1, with p the polynomial degree, the first option’s cost would be: having to assemble

an nd × nd sized dense matrix, invert it at O
(
n3d
)

flops, and then perform a matrix-vector

multiplication at n2d flops per element. With the weight-adjusted form, we only store an n2

sized matrix in the pre-computation stage, fetching only an n2 size matrix and nd sized vector

on-the-fly, and performing dnd+1 flops with the transpose of the projection operator, followed

by nd flops multiplying the vector with the inverse of the determinant of the metric Jacobian

15



with quadrature weights, and then another dnd+1 flops applying the projection operator. For

three-dimensions, inverting the mass matrix on-the-fly requires O (n9), then, the general

inverse no longer has a tensor product structure so it requires an additional O (n6) flops to

apply it to the residual. Conversely, if the global inverse is pre-computed, then there would

be O (n9) flops in the pre-computation stage, and O (n6) applied on-the-fly while having to

fetch n6 terms from memory. Comparatively, in our proposed weight-adjusted form, only n2

values for the one-dimensional projection operator and n3 values for the vector storing the

quadrature weights and determinant of the Jacobian need to be fetched from memory, and

O (n4) flops are performed in its application to the residual on-the-fly.

1.3.3 Research Objectives

There are two overarching objectives for this thesis.

1. To have discrete nonlinear stability without upwind dissipation for general, modal,

uncollocated, flux reconstruction schemes, with any choice of ESFR correction function,

applied to compressible flows in arbitrary curvilinear coordinates.

2. To have the implementation be low-storage and efficiently scalable.

1.3.4 Thesis Contributions

The first contribution is the derivation of nonlinearly stable flux reconstruction high-order

schemes. The role of entropy conservation for DG and residual distribution schemes has

been well documented, but its extension to general spaces with dense norms as seen in the

FR framework was unclear. This thesis introduces the novel concept of incorporating the

FR correction functions on the nonlinear volume terms to achieve stability, whereas, in

the literature, the correction functions have only been used on the surface integral. This

concept was successfully extended from Burgers’ equation to the Euler equations, guaranteeing

provable discrete nonlinear stability in broken Sobolev-norms.
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This thesis develops NSFR for curvilinear elements. In curvilinear elements, it is proven

that the DG conservative and non-conservative forms are inherently different, even under exact

integration and analytically exact metric terms. This novel result deems the metric split form

essential for developing provably stable high-order methods, and necessitates metric-dependent

ESFR correction functions. Rigorous attention is also given to the evaluation of the metric

Jacobian and cofactor matrix by following the work from Kopriva [82] to ensure free-stream

preservation, conservation, and stability for the NSFR context.

Lastly, this thesis presents implementation strategies for FR high-order methods to attain

low-storage and efficient scaling. A novel sum-factorized Hadamard product is derived. By

using the sum-factorized Hadamard product with sum-factorization for matrix-vector products,

the proposed entropy stable discretization from this thesis is computationally competitive

with conservative DG schemes. For curvilinear coordinates, a weight-adjusted mass matrix

for the broken Sobolev-space is also derived in a way that preserves the orders of convergence

and stability properties of the full system. With all of the considerations taken, the global

memory footprint of the scheme is in storing a global vector for the solution, the updated

solution, and the residual. All local operations are performed in O
(
nd+1

)
flops with the local

memory footprint fetching an nd sized local vector and one-dimensional basis functions of size

n2, with n = p+ 1 and p the local polynomial degree.

1.3.5 Contribution of Authors

My supervisor, Prof. Siva Nadarajah, supervised and guided all the research completed in this

thesis, contributed to the formal analysis, conceptualization, writing and reviewing, software

review and provided valuable insights at all steps. I contributed to the formal analysis,

conceptualization, methodology, software development, validation, numerical validation,

writing and reviewing of all material included in this thesis. David C. Del Rey Fernández

contributed to the validation and writing/review for Chapter 2, and the conceptualization,

formal analysis, methodology, validation and writing/review for Chapter 3. Jesse Chan and
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Mark H. Carpenter both contributed to the validation and writing/review for Chapter 3.
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Chapter 2

Nonlinearly Stable Flux Reconstruction

for Scalar Problems

The first step to developing NSFR is to consider a scalar nonlinear conservation law. Particu-

larly, this section considers the one-dimensional Burgers’ equation. For Burgers’ equation, the

entropy function and the energy function are the same, 1
2
u2, and it has a unique analytical

entropy conserving flux. This makes it an excellent first step to understanding the problem of

ESFR with split forms proposed in the literature [1–3], and the novelty of the NSFR scheme

by incorporating the correction functions on the nonlinear volume terms.
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Abstract

The flux reconstruction (FR) method has gained popularity in the research community as

it recovers promising high-order methods through modally filtered correction fields, such as

the discontinuous Galerkin method, amongst others, on unstructured grids over complex

geometries. Moreover, FR schemes, specifically energy stable FR (ESFR) schemes also

known as Vincent-Castonguay-Jameson-Huynh schemes, have proven attractive as they allow

for design flexibility as well as stability proofs for the linear advection problem on affine

elements. Additionally, split forms have recently seen a resurgence in research activity due

to their resultant nonlinear (entropy) stability proofs. This paper derives for the first time

nonlinearly stable ESFR schemes in split form that enable nonlinear stability proofs for,

uncollocated, modal, ESFR split forms with different volume and surface cubature nodes. The

critical enabling technology is applying the splitting to the discrete stiffness operator. This

naturally leads to appropriate surface and numerical fluxes, enabling both entropy stability

and conservation proofs. When these schemes are recast in strong form, they differ from

schemes found in the ESFR literature as the ESFR correction functions are incorporated on

the volume integral. Furthermore, numerical experiments are conducted for Burgers’ equation

verifying that the new class of proposed ESFR split forms is nonlinearly stable in contrast to

the standard split form ESFR approach. Lastly, the new ESFR split form is shown to obtain

the correct orders of accuracy.



2.1 Introduction

High-order methods such as discontinuous Galerkin (DG) and flux reconstruction (FR), result

in efficient computations via high solution accuracy and dense computational kernels, making

them an attractive approach for the exascale concurrency on current and next generation

hardware. Generally, high-order methods are known to be more efficient than low-order

methods for linear hyperbolic time-dependent problems (e.g., see [4, 5]). However, despite

vigorous efforts by the research community, their application to real world complex problems

governed by nonlinear partial differential equations (PDEs) has been limited due to a lack of

robustness.

FR schemes, first presented by Huynh [6], have proven attractive as they allow for design

flexibility as well as stability proofs for the linear advection problem on affine elements. Wang

and Gao [7] later presented an alternate approach to the FR scheme. Deemed the Lifting

Collocation Penalty (LCP) approach, they considered a “correction field” applied to the surface

integral; instead of reconstructing the flux across the surface of the element [7]. The authors

merged both the FR and LCP in a common framework called Correction Procedure via

Reconstruction (CPR) [8, 9]. Now, FR and CPR are loosely interchangeable since Jameson

et al. [10] proved that the FR surface reconstruction is identical to the CPR correction field.

FR and CPR were merged into a unified framework of provably linearly stable schemes,

in the form of energy stable flux reconstruction (ESFR) schemes [7, 11], also known as

Vincent-Castonguay-Jameson-Huynh (VCJH) schemes. Moreover, ESFR schemes expressed

in a filtered DG form [12, 13], recover other high-order schemes, such as the DG, spectral

difference (SD) [14] and spectral volume, by the use of appropriate correction functions. By

relating the ESFR correction functions to a DG lifting operator, Allaneau and Jameson [12]

presented one-dimensional ESFR schemes as a filtered DG scheme. This was extended and

generalized by Zwanenburg and Nadarajah [13] for up to three-dimensional elements, and

allowed ESFR to be presented in an arbitrarily modal, uncollocated framework in both weak
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and strong forms.

Recently, there has been a concerted research effort to extend classical entropy stability

arguments to high-order methods. The original work of Tadmor [15] laid a foundation enabling

high-order extensions, where Tadmor [15] constructed entropy conservative or stable low-order

finite volume schemes. These notions were extended by LeFloch [16, 17] in the context

of high-order finite difference stencils. In the last decade, these ideas were expanded to

bounded domains by Fisher and co-authors [18], who combined the Summation-by-parts

(SBP) framework with Tadmor’s two-point flux functions. The core notion behind the SBP

framework is to account for discrete integration and construct operators that discretely mimic

integration by parts (see the two review papers [19, 20]). The SBP framework has seen rapid

development and extensions to various schemes including DG [21, 22], FR [1, 3], unstructured

methods [19, 23, 24], as well as extensions enabling entropy stability proofs [15, 18, 22,

23, 25–27]. In the context of FR, the first paper to merge a collocated DG split form and

ESFR was presented by Ranocha et al. [1], for the one-dimensional Burgers’ equation, where

they proved stability for the DG case. The methodology was further expanded for the Euler

equations by Abe et al. [3], where stability with ESFR in split forms was only achieved for a

specific ESFR discretization; Huynh’s g2 lumped-Lobatto scheme [6], which was equivalent to

a collocated DG scheme on Gauss-Lobatto-Legendre nodes [28]. Neither Ranocha et al. [1]

nor Abe et al. [3] have provided a general, nonlinearly stable ESFR scheme.

In this paper we take the first critical step towards developing provably entropy stable

schemes for hyperbolic conservation laws that are broadly applicable to FR schemes, i.e.

they account for discretization design decisions such as: modal or nodal basis, uncollocated

integration, different volume and surface nodes, etc. Specifically, the development of ESFR

schemes in split form that result in entropy stability proofs for Burgers’ equation is considered.

Although the derivation is presented in one-dimension, its extension for three-dimensional

ESFR split forms is straightforward. The first main result is to perform the split form for

uncollocated DG schemes within the discrete stiffness operator, rather than inverting the
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mass matrix and performing chain rule with respect to the differential operator. This allows

the scheme to utilize the summation-by-parts property with dense norms, and results in the

schemes presented by Chan [22]. In Section 2.3, we demonstrate that nonlinearly stable

ESFR split forms are naturally derived when contructing ESFR as a filtered DG scheme alike

Allaneau and Jameson [12], and Zwanenburg and Nadarajah [13]. We propose a new class

of provably nonlinearly stable, uncollocated ESFR schemes in split form by incorporating

the ESFR filter on the non-conservative volume term. We also prove that, in general, no

nonlinear stability claim can be made if the ESFR filter, i.e. the influence of the ESFR

correction functions, is only applied to the surface; differentiating our proposed schemes

from the literature [1, 3, 6, 7, 9–13, 29–31]. The proposed ESFR split form is proven to be

nonlinearly stable (Section 2.3.1.2) and conservative (Section 2.3.1.1). The theoretical proofs

are numerically verified in Section 2.4. The results demonstrate that a split form with the

ESFR correction functions solely applied to the face is divergent, whereas incorporating the

correction functions on the non-conservative volume term ensures entropy stability. Lastly,

the schemes proposed by this paper are shown to achieve the correct orders of accuracy in

the context of grid refinement.

2.2 Preliminaries

2.2.1 DG Formulation

The formulation of ESFR used in this paper follows that shown in [12, 13, 32]. The analysis is

done in one-dimension, but we preserve some of the structure of multi-dimensional curvilinear

approximations to allow a seamless extension to future works. Consider the scalar 1D

conservation law,
∂

∂t
u(xc, t) +

∂

∂x
f(u(xc, t)) = 0, t ≥ 0, xc ∈ Ω,

u(xc, 0) = u0(x
c),

(2.1)

where f(u(xc, t)) stores the flux, while the c superscript refers to the Cartesian coordinates.
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For the rest of the article, row vector notation will be used. The computational domain is

partitioned into M non-overlapping elements, denoted by Ωh,

Ω ≃ Ωh :=
M⋃
m=1

Ωm. (2.2)

The global solution can then be taken as the direct sum of each approximation within

each element,

u(xc, t) ≃ uh(xc, t) =
M⊕
m=1

uhm(x
c, t). (2.3)

On each element, we represent the solution with Np linearly independent modal or nodal

polynomial basis of a maximum order of p; where Np = (p+ 1),

uhm(x
c, t) =

Np∑
i=1

χm,i(x
c)ûm,i(t) = χm(x

c)ûm(t)
T , (2.4)

and

χm(x
c) := [χm,1(x

c) χm,2(x
c) . . . χm,Np(x

c)] (2.5)

holds the basis functions for the element. The elementwise residual is,

Rh
m(x

c, t) =
∂

∂t
uhm(x

c, t) +
∂

∂x
f(uhm(x

c, t)). (2.6)

The physical coordinates are mapped through an affine mapping to the reference element

ξr ∈ [−1, 1] by

xcm(ξ
r) := Θm(ξ

r) = Θm(ξ
r)(x̂cm)

T , (2.7)

where Θm(ξ
r) := [Θm,1(ξ

r) . . .Θm,Nt,m(ξ
r)] are the mapping shape functions of the Nt,m

physical mapping control points x̂cm := [x̂cm,1 . . . x̂
c
m,Nt,m

]. Thus, the elementwise reference

residual is,

Rh,r
m (ξr, t) := Rh

m(Θm(ξ
r), t) =

∂

∂t
uhm(Θm(ξ

r), t) +
1

JΩ
m

∂

∂ξ
f r(uhm(Θm(ξ

r), t)), (2.8)
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where the addition of the r superscript denotes evaluation in the reference space and JΩ
m

represents the determinant of the metric Jacobian; for one-dimension JΩ
m is the volume of cell

m. Following a DG framework, we left multiply the residual by an orthogonal test function,

and integrate over the computational domain. Choosing the test function to be the same as

the basis function, applying integration by parts twice, and evaluating bilinear forms using

cubature rules, we arrive at the following strong form:

Mm
d

dt
ûm(t)

T + Sξf̂
r
m(t)

T +

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)fC,r
T

m = 0T , (2.9)

where the derivation is not restricted to one-dimension. The mass and stiffness matrices are

defined as,

(Mm)ij ≈
∫
Ωr

JΩ
mχi(ξ

r)χj(ξ
r)dΩr →Mm = χ(ξrv)

TWJmχ(ξ
r
v),

(Sξ)ij =

∫
Ωr

χi(ξ
r)
∂

∂ξ
χj(ξ

r)dΩr → Sξ = χ(ξ
r
v)
TW

∂χ(ξrv)

∂ξ
.

We also explicitly express the mass matrix without Jacobian dependence for later reference,

M = χ(ξrv)
TWχ(ξrv). (2.10)

ξrv and ξrf refers to the reference coordinate at the Nvp volume and Nfp facet cubature nodes

respectively; with Nf being the number of faces on the element. Here W and Wf are

diagonal operators storing the quadrature weights of integration at the volume and facet

cubature nodes respectively. Jm is a diagonal operator storing the determinant of the metric

Jacobian evaluated at the volume cubature nodes; while, diag(n̂r) = diag(n̂r) = diag(n̂ξ)

represents the diagonal matrix of the outward pointing normal on the face at the facet

cubature nodes in the one-dimensional reference element. In addition, the modal coefficients

of the reference flux, f̂ rm(t), are equivalent to the discrete L2 projection of the reference flux

constructed at the cubature nodes, f rm; ie f̂ rm(t)T = Π(f rm)
T , where Π = M−1χ(ξrv)

TW .
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Lastly, fC,rTm := f ∗,rT
m − χ(ξrf )f̂ rm(t)T is the reference numerical flux minus the reference flux

across the face f .

After discrete integration by parts once more, provided the cubature rule is exact for at

least 2p− 1, the corresponding weak form is established,

Mm
d

dt
ûm(t)

T − STξ f̂ rm(t)T +

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)f ∗,rT
m = 0T . (2.11)

2.2.2 Corresponding ESFR Scheme

The ESFR scheme is derived using p+ 1 correction functions, gf,k(ξr), specific to face f , facet

cubature node k, such that,

gf,k(ξrfi,kj)n̂
ξ =


1 if fi = f, and kj = k

0 otherwise.
(2.12)

The one-dimensional correction functions are defined by the symmetry condition

gL(ξr) = −gR(−ξr) to satisfy Eq. (2.12), and the fundamental assumption of ESFR [11, Eqs.

(3.31), (3.32)],

∫
Ωr

∂χi(ξ
r)

∂ξ
gf,k(ξr)dΩr − c

∂pχi(ξ
r)T

∂ξp
∂p+1gf,k(ξr)

∂ξp+1
= 0, ∀i = 1, . . . , Np. (2.13)

Here, c represents the correction parameter, with values of cDG, cSD, cHU , and c+. Each

parameter results in the scheme having different properties; where, cDG recovers a DG scheme,

cSD recovers a spectral difference scheme, and cHU recovers Huynh’s g2 scheme [11]. Lastly,

the value of c+ does not have an analytical value, but has numerically been shown to be the

upper limit in a von Neumann analysis of the correction parameter before the scheme loses

an order of accuracy [33]. Note that as c increases, the maximum time step increases.
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As illustrated in [12, 13, 32] the corresponding ESFR strong form is,

(Mm +Km)
d

dt
ûm(t)

T + Sξf̂
r
m(t)

T +

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)fC,r
T

m = 0T , (2.14)

while the corresponding weak form is,

(Mm +Km)
d

dt
ûm(t)

T − STξ f̂ rm(t)T +

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)f ∗,rT
m = 0T . (2.15)

The entire influence of the ESFR correction functions are stored in Km, which we define

as

(Km)ij = c

∫
Ωr

JΩ
m

∂pχi(ξ
r)

∂ξp
∂pχj(ξ

r)

∂ξp
dΩr →Km = c(Dp)TMm(D

p), (2.16)

where the pth degree strong form differential operator [32] is construed as

Dp =
(
M−1Sξ

)p
. (2.17)

Remark 2.2.1. Unlike in [1, 12, 13] where Km was constructed using the Legendre differential

operator then transformed to the basis of the scheme, here, Km in Eq. (3.39) is computed

directly with the differential operator of the scheme; where c must take the value from a

normalized Legendre reference basis [32]. This was proven in [32, Sec. 3.1]

2.3 SBP-ESFR Split Forms for Burgers’ Equation

In this section we analyze a new proposed splitting that enables nonlinear stability proofs

for general FR schemes, where the modal or nodal basis functions can be evaluated on

uncollocated volume and surface cubature nodes. We will consider the Burgers’ equation,

∂

∂t
u+

∂

∂x
(
u2

2
) = 0. (2.18)
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As demonstrated in [1, 21], for a collocated DG strong form scheme, entropy and energy

stablility was ensured if the differential operator is split into a linear combination of the

conservative and chain rule forms. This was achieved by observing that the strong form

differential operator satisfies the SBP property with respect to the metric Jacobian independent

mass matrix,

MGLLD +DTMGLL = B, (2.19)

where B = diag[−1, 0, . . . , 0, 1], with Gauss-Lobatto-Legendre (GLL) quadrature points or

Gauss-Legendre (GL) quadrature points in one-dimension. The proposed splitting in [21] was,

d

dt
uTm =

1

JΩ
m

[
− αD(

1

2
UuTm)− (1− α)UD(uTm)−M−1

GLL

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)fC,r
T

m

]
,

(2.20)

which was achieved using a collocated nodal Lagrange basis, with U = diag(um). This was

further expanded for a classical ESFR scheme in [1] as,

d

dt
uTm

=
1

JΩ
m

[
− αD(

1

2
UuTm)− (1− α)UD(uTm)− (MGLL +K)−1

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)fC,r
T

m

]
,

(2.21)

where K is the metric Jacobian independent ESFR correction operator.

To demonstrate stability, the following broken Sobolev-norm was proposed by [34] for
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ESFR schemes:

Continuous Broken Sobolev-norm:
∫
Ωr

(
χ(ξr)ûm(t)

T
)T
JΩ
m

(
χ(ξr)

d

dt
ûm(t)

T
)
dΩr+∫

Ωr

c
( ∂p
∂ξp

(χ(ξr)ûm(t)
T )
)T
JΩ
m

( ∂p
∂ξp

(χ(ξr)
d

dt
ûm(t)

T )
)
dΩr

=⇒ Discrete Broken Sobolev-norm:
1

2

d

dt
∥u∥2Mm+Km

= ûm(t)(Mm +Km)
d

dt
ûm(t)

T .

(2.22)

Applying the discrete broken Sobolev-norm to Eq. (2.21), and using the property that

KD = 0 since it is the p+ 1 derivative of a pth order basis function, results in,

1

2

d

dt
∥u∥2Mm+Km

=

[
− αumMGLLD(

1

2
UuTm)− (1− α)umMGLLUD(uTm)

−(1− α)umKUD(uTm)−
Nf∑
f=1

umWf diag(n̂
r)fC,r

T

m

]
.

(2.23)

Both [1, 21] used the property that for a collocated nodal Lagrange basis, the mass matrix

is a diagonal operator and therefore commutes with U in the second volume term. This

then allows the use of the SBP property to relate the two volume terms to a face term. The

issue that was illustrated in Ranocha et al. [1] was that for an ESFR scheme, KUD ̸= 0,

nor is it in general positive semi-definite. Thus, when the split form (chain rule) is applied

on the differential operator, no stability claim can be made for an ESFR scheme, unless

K = 0 as used by Ranocha et al. [1] or K is a diagonal operator. In Abe et al. [3], they

used Huynh’s g2 lumped-Lobatto scheme [6] which was equivalent to formulating M +K on

uncollocated Gauss-Legendre nodes, with a value of cHU . By design, KHU (K evaluated with

a value of cHU on GL nodes) was chosen such that MGL +KHU = MGLL, the collocated

lumped DG mass matrix on Gauss-Lobatto-Legendre nodes [6, 11, 28]. Then, the crucial

step was to evaluate the flux on GLL nodes, which results in an equivalent DG collocated

GLL scheme [3, 6, 11, 28]. In a sense, the g2 lumped-Lobatto scheme operates on mixed

nodes (with regards to the volume flux on GLL and correction functions on GL), since in the
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original FR framework [6] no concept of quadrature integration was introduced.

Remark 2.3.1. For consistency, since the ESFR formulation used in this work is completely

general, there is no assumption on the nodes the volume flux is integrated on, other than

being exact for at least 2p − 1. Thus, in the ESFR strong and weak forms presented in

Equations (2.14) and (2.15), Huynh’s g2 lumped-Lobatto scheme is equivalent to using a

collocated basis on GLL nodes and a value of cDG, or using a value of cHU with M +K

evaluated with an integration strength of at least 2p, and the volume flux on GLL nodes.

Huynh’s g2 lumped-Lobatto scheme is not equivalent to computing both M +K and the volume

flux on the same set of nodes, with a value of cHU . We numerically verify this in Section 2.4.

2.3.1 Proposed Splitting with Respect to the Stiffness Operator

The stiffness operator satisfies a discrete integration by parts rule, i.e. an SBP property, for

quadrature rules exact for at least 2p− 1,

∫
Ωr

χi(ξ
r)
∂

∂ξ
χj(ξ

r)dΩr +

∫
Ωr

∂

∂ξ
χi(ξ

r)χj(ξ
r)dΩr =

∫
Γr

χi(ξ
r)χj(ξ

r)n̂ξdΓr

⇔ Sξ + S
T
ξ =

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

ξ)χ(ξrf ).

(2.24)

Since the underlying SBP property results from the fact that the stiffness operator satisfies

discrete integration by parts, Eq. (2.24), and observing the ESFR strong and weak forms

(Eq. (2.14) and (2.15) respectively), we propose to construct the split form based upon the

stiffness operator rather than the differential operator, in contrast to previous works [1, 3, 21,

22].

Returning to the continuous analog of Eq. (2.14), writing it in variational form results in,

∫
Ωr

(
χi(ξ

r)JΩ
mχ(ξ

r) + c
∂pχi(ξ

r)

∂ξp
JΩ
m

∂pχ(ξr)

∂ξp

) d
dt
ûm(t)

TdΩr

= −
∫
Ωr

χi(ξ
r)
∂

∂ξ
(
1

2
u2m)dΩr −

∫
Γr

χi(ξ
r)n̂rfC,rm dΓr, ∀i = 1, . . . , Np.

(2.25)
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Performing chain rule with respect to the reference coordinate gives,

∫
Ωr

(
χi(ξ

r)JΩ
mχ(ξ

r) + c
∂pχi(ξ

r)

∂ξp
JΩ
m

∂pχ(ξr)

∂ξp

) d
dt
ûm(t)

TdΩr

= −α
∫
Ωr

χi(ξ
r)
∂

∂ξ
(
1

2
u2m)dΩr − (1− α)

∫
Ωr

χi(ξ
r)um

∂

∂ξ
(um)dΩr

−
∫
Γr

χi(ξ
r)n̂rfC,rm dΓr, ∀i = 1, . . . , Np.

(2.26)

Here, alike [21], α ∈ [0, 1]. After evaluating at the appropriate cubature nodes, we invert

the ESFR filter operator on the left hand side, and present it in discretized form,

d

dt
ûm(t)

T = −α(Mm +Km)
−1Sξf̂

r
m(t)

T − (1− α)(Mm +Km)
−1χ(ξrv)

TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

−(Mm +Km)
−1

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)fC,r
T

m .

(2.27)

Unless GLL is employed as the volume cubature nodes, the nonlinear flux interpolated

to the face does not generally equal the flux on the face evaluated using the solution in-

terpolated to the face. Therefore, we also split the flux on the face using χ(ξrf)f̂ rm(t)T

as the interpolation of the modal coefficients of the volume flux to the face, and f rTf =

1
2
diag

(
χ(ξrf )ûm(t)

T
)(
χ(ξrf )ûm(t)

T
)

as the flux on face f evaluated using the solution inter-

polated to the face. The final ESFR strong split form is thus,

d

dt
ûm(t)

T = −α(Mm +Km)
−1Sξf̂

r
m(t)

T − (1− α)(Mm +Km)
−1χ(ξrv)

TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

−(Mm +Km)
−1

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − αχ(ξrf )f̂ rm(t)T − (1− α)f rTf

)
.

(2.28)

If one were to consider the general differential operator applied to the entropy conservative

two-point flux in Chan [22], then the face splitting, as used in [1, 2, 35], appears naturally

when grouping the face lifting terms and the DG result of Eq. (2.28) is equivalent to A.14
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in [22]. Additionally, note that for a collocated DG scheme at Gauss-Lobatto-Legendre nodes,

χ(ξrf )f̂
r
m(t)

T = f r
T

f , and hence no interpolation of the flux to the face was required, and thus

face splitting did not appear in [21].

To convert Eq. (2.28) to the weak form, we perform discrete integration by parts, Eq. (2.24),

on the two volume terms. For the first volume term we directly substitute Eq. (2.24). For the

second volume term we first substitute ∂χ(ξrv)
∂ξ

= χ(ξrv)M
−1Sξ, then introduce the discrete L2

projection operator Π and finally Eq. (2.24),

d

dt
ûm(t)

T = α(Mm +Km)
−1STξ f̂

r
m(t)

T + (1− α)(Mm +Km)
−1χ(ξrv)

TUΠTSTξ ûm(t)
T

−(Mm +Km)
−1

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)f ∗,rT
m .

(2.29)

Remark 2.3.2. Eq. (2.29) is not equivalent to performing integration by parts on the

continuous form in Eq. (2.26), and then discretizing.

We will now demonstrate that the proposed ESFR split form is equivalent to the DG split

form with additional volume and surface terms. For this purpose, the following lemma is

necessary.

Lemma 2.3.1. The additional filter term applied to the split form volume term is exactly

equal to (Mm +Km)
−1 =M−1

m − 1
1+c(2p+1)(p!cp)2

M−1
m KmM

−1
m for linear elements.

Proof. After factoring out the Jacobian dependence, consider transforming (M +K)−1

to a normalized Legendre reference basis, χref(ξr), by use of the transformation operator

T = Πrefχ(ξ
r
v), where Πref =M−1

refχref (ξ
r
v)
TW is the L2 projection operator for a normalized

Legendre reference basis.

(M +K)−1 = T−1(Mref +Kref )
−1T−T . (2.30)

To use the Sherman-Morrison formula, we consider Kref = crTs, where
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r = [0 . . . 0
∂pχref,p(ξ)

∂ξp
] and s = [0 . . . 0

∂pχref,p(ξ)

∂ξp

∑Nvp

i=1 W (ξrv,i)], with

χref,p(ξ) =
√

2p+1
2

(2p)!
2p(p!)2

ξp + · · · + c0 =
√

2p+1
2
cpξ

p + · · · + c0 is the pth order normalized

Legendre polynomial. Thus, ∂pχref,p(ξ)

∂ξp
=
√

2p+1
2
cpp!. Utilizing that the mass matrix of a

normalized Legendre reference basis is an identity matrix, and the Sherman-Morrison formula,

(M +K)−1 = T−1
(
I − 1

1 + csrT
Kref

)
T−T

=M−1 − 1

1 + c(2p+ 1)(p!cp)2
M−1KM−1.

(2.31)

Including Jacobian dependence results in,

(Mm +Km)
−1 =M−1

m −
1

1 + c(2p+ 1)(p!cp)2
M−1

m KmM
−1
m . (2.32)

Note that KmM
−1
m Sξ = 0 for linear grids, provided that the flux is not projected to a

higher order basis [13, Appendix A]. If the flux is not projected to a higher order basis, we

can fully express Eq. (2.28) as,

d

dt
ûm(t)

T = −αM−1
m Sξf̂

r
m(t)

T − (1− α)M−1
m χ(ξ

r
v)
TUW

∂χ(ξrv)

∂ξ
ûm(t)

T

+
(1− α)

1 + c(2p+ 1)(p!cp)2
M−1

m KmM
−1
m χ(ξ

r
v)
TUW

∂χ(ξrv)

∂ξ
ûm(t)

T

−(Mm +Km)
−1

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − αχ(ξrf )f̂ rm(t)T − (1− α)f rTf

)
.

(2.33)

We numerically demonstrate that this additional term is design order by obtaining the correct

orders in Section 2.4.
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2.3.1.1 Discrete Conservation

Following the formulation presented in [1, 21] for conservation, we demonstrate here both

local and global conservation using a quadrature of exact integration of at least 2p− 1,

Continuous:∫
Ωr

(χ(ξr)1̂T )TJΩ
m(χ(ξ

r)
d

dt
ûm(t)

T ) + c
( ∂p
∂ξp

(χ(ξr)1̂T )
)T
JΩ
m

( ∂p
∂ξp

(χ(ξr)
d

dt
ûm(t)

T )
)
dΩr

=⇒ Discrete: 1̂(Mm +Km)
d

dt
ûm(t)

T ,

(2.34)

where 1 = [1, . . . , 1] =
(
χ(ξrv)1̂

T
)T

. Alike [1, 10, 32, 36], we prove conservation and stability

in the broken Sobolev-norm, (Mm +Km)-norm, which bounds the L2-norm. In addition, the

ESFR correction functions are defined in the one degree higher Raviart-Thomas space [6, 37].

First, we substitute Eq. (2.28) to show local and global conservation for the proposed split

strong form.

1̂(Mm +Km)
d

dt
ûm(t)

T =− α1̂Sξf̂ rm(t)T − (1− α)1̂χ(ξrv)TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

− 1̂

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − αχ(ξrf )f̂ rm(t)T − (1− α)f rTf

)
.

(2.35)

Discretely integrating the first term by parts yields,

1̂(Mm +Km)
d

dt
ûm(t)

T =α1̂STξ f̂
r
m(t)

T − (1− α)1̂χ(ξrv)TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

− 1̂

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − (1− α)f rTf

)
.

(2.36)
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Note that for the first volume term,

1̂STξ =
(
Sξ1̂

T
)T

=
(
χ(ξrv)

TW
∂χ(ξrv)

∂ξ
1̂T
)T

=
(
χ(ξrv)

TW
∂

∂ξ
1T
)T

= 0, (2.37)

is the derivative of a constant, and hence eliminated. Using W ∂χ(ξrv)
∂ξ

= ΠTSξ on the second

volume term and discretely integrating by parts we obtain,

1̂(Mm +Km)
d

dt
ûm(t)

T = (1− α)1̂χ(ξrv)TUΠTSTξ ûm(t)
T

−(1− α)1̂χ(ξrv)TUΠT

Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)χ(ξrf )ûm(t)
T

−1̂
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − (1− α)f rTf

)
.

(2.38)

Adding a half of Eq. (2.36) and (2.38), and noticing that

1̂χ(ξrv)
TUΠTSTξ ûm(t)

T = (χ(ξrv)1̂
T )TUΠTSTξ ûm(t)

T

= (ΠuTm)
TSTξ ûm(t)

T = ûm(t)S
T
ξ ûm(t)

T =
(
ûm(t)Sξûm(t)

T
)T (2.39)

is a scalar, we can drop the transpose and the volume terms cancel and hence,

1̂(Mm +Km)
d

dt
ûm(t)

T = −(1− α)
2

Nf∑
f=1

ûm(t)χ(ξ
r
f )
TWf diag(n̂

r)χ(ξrf )ûm(t)
T

−1̂
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − (1− α)f rTf

)
.

(2.40)

Finally, if we consider the first term in Eq. (2.40) evaluated at a single facet cubature

node k,

1

2
ûm(t)χ(ξ

r
f,k)

TWf,kn̂
r
f,kχ(ξ

r
f,k)ûm(t)

T =
1

2

(
uf,kWf,kn̂

r
f,kuf,k

)
= 1Wf,kn̂

r
f,k(

1

2
u2f,k) = 1̂χ(ξrf,k)

TWf,kn̂
r
f,kf

r
f,k,

(2.41)
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then we are left with,

1̂(Mm +Km)
d

dt
ûm(t)

T = −1̂
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)f ∗,rT
m , (2.42)

which concludes the proof for the strong ESFR split form’s local and global conservation.

2.3.1.2 Discrete Energy Stability

We consider the broken Sobolev-norm in Eq. (2.22) to demonstrate nonlinear stability.

Analyzing the uncollocated ESFR split strong form, we insert Eq. (2.28) into the energy

balance, and notice that (Mm +Km)(Mm +Km)
−1 = I, the identity matrix. That is, when

incorporating the ESFR filter on the nonlinear volume integral, the dense ESFR norm cancels

off, and we obtain,

1

2

d

dt
∥u∥2Mm+Km

= −αûm(t)Sξf̂ rm(t)T − (1− α)ûm(t)χ(ξrv)TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

−ûm(t)
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)
(
f ∗,rT
m − αχ(ξrf )f̂ rm(t)T − (1− α)f rTf

)
.

(2.43)

Using discrete integration by parts, Eq. (2.24), on the first volume term results in,

1

2

d

dt
∥u∥2Mm+Km

= αûm(t)S
T
ξ f̂

r
m(t)

T − (1− α)ûm(t)χ(ξrv)TUW
∂χ(ξrv)

∂ξ
ûm(t)

T

−ûm(t)
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)(f ∗,rT
m − (1− α)f rTf ).

(2.44)

Note that ûm(t)STξ f̂ rm(t)T = f̂ rm(t)Sξûm(t)
T =

(
χ(ξrv)ûm(t)

T
)T
UΠTSξûm(t)

T is a scalar
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and thus,

1

2

d

dt
∥u∥2Mm+Km

=
1

2
α
(
χ(ξrv)ûm(t)

T
)T
UΠTSξûm(t)

T

−(1− α)ûm(t)χ(ξrv)TUΠTSξûm(t)
T

−ûm(t)
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)(f ∗,rT
m − (1− α)f rTf ).

(2.45)

Choosing α = 2
3

has the volume terms vanish, and we are left with,

1

2

d

dt
∥u∥2Mm+Km

= −ûm(t)
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r)(f ∗,rT
m − 1

3
f r

T

f ). (2.46)

Since our energy balance Eq. (2.46) only incorporates terms evaluated on the surface, we

reuse observations from Gassner [21]. After considering an edge term, assuming all interior

(left) cells’ outward pointing normal is 1, letting w0 represent the solution at the right of

the edge, and vp represent the solution at the left of the face, the surface contribution for

Eq. (2.46) is,

surface contribution = (w0 − vp)2
( 1

12
(w0 − vp)− λ

)
, (2.47)

where the following numerical flux is used,

f ∗,r
m =

1

2

(w2
0

2
+
v2p
2

)
− λ(w0 − vp). (2.48)

This directly leads to the stability criterion of,

λ ≥ 1

12
(w0 − vp). (2.49)

The local Lax-Friedrichs numerical flux ensures energy and entropy stability, since,

λLLF =
1

2
max(|w0|, |vp|) ≥

1

12
(w0 − vp). (2.50)
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As discussed by Tadmor [38] and Gassner [21], for discontinuous solutions, at the continuous

level the mathematical entropy is not conserved and thus the entropy conservative approach

is physically incorrect. The base entropy conservative scheme therefore necessitates some

form of dissipation when considering shocks and here we utilize the above mentioned local

Lax-Friedrichs interface dissipation.

2.4 Numerical Results

In this section, we use the open-source Parallel High-order Library for PDEs (PHiLiP) [39]

and consider similar test cases as used in [21] and [1],

∂

∂t
u+

∂

∂x
(
u2

2
) = q(x, t), x ∈ [0, 2], (2.51)

with periodic boundary conditions. Using values of cDG, c+, and c104 = 104, we first

demonstrate that our proposed strong ESFR split form satisfies the energy/entropy stability

criteria derived in Sec. 2.3 on collocated GLL nodes, uncollocated GL nodes, and uncollocated

GL nodes with overintegration; with q(x, t) = 0 and u(x, 0) = sin(πx) + 0.01. Our basis

functions are Lagrange polynomials constructed on GLL nodes. Next, we verify that we

observe the correct orders of accuracy for the strong ESFR split form by using q(x, t) =

π sin (π(x− t))(1 − cos (π(x− t))), u(x, 0) = cos(πx) and uexact(x, t) = cos (π(x− t)). We

utilize the generality of the scheme by testing both uncollocated Nvp = p + 1 and an

uncollocated overintegration scheme on Nvp = p+ 3; both on GL nodes.

Since our proposed splitting includes the additional filtering of (Mm +Km)
−1 on the

second volume term, which does not occur in the classical ESFR scheme, we verify that

it is needed for stability and that it does not effect the order of accuracy. For readability,

“Cons. DG” refers to the conservative DG scheme Eq. (2.9), “ESFR Split” refers to our

proposed splitting in Eq. (2.28), and “Classical ESFR Split” refers to the strong split form

with a classical ESFR implementation, where (Mm+Km)
−1 is only applied on the face terms.
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Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG ECON No No
Cons. DG LF No No

EFSR Split cDG 1 ECON Yes Yes
EFSR Split cDG 1 LF No Yes

EFSR Split c+ ECON Yes Yes
EFSR Split c+ LF No Yes
EFSR Split c104 ECON Yes Yes
EFSR Split c104 LF No Yes

EFSR Classical Split c+ ECON No No
EFSR Classical Split c+ LF No No

EFSR Classical Split cHU 1 ECON No No
EFSR Classical Split cHU 1 LF No No

ESFR Classical Split cHU Lumped-Lobatto1 ECON Yes Yes
ESFR Classical Split cHU Lumped-Lobatto 1 LF No Yes

Table 2.1: Energy Results p = 4,5 Collocated Schemes Nvp = p+ 1

Note that “ESFR Split” with a value of cDG is the same scheme presented by Chan [22],

and Gassner [21] when it is collocated on Gauss-Lobatto-Legendre nodes. All schemes were

conservative on the order of 1× 10−16.

2.4.1 Energy Verification

For the collocated results, we integrate the solution and fluxes on Gauss-Lobatto-Legendre

quadrature nodes. For the uncollocated results, we integrate the solution and fluxes on

Gauss-Legendre quadrature nodes. The solution is integrated in time using RK4 with a

timestep of ∆t = 1e−4 until a final time of tf = 3 s, well past the formation of the shock, and

the grid is partitioned into M = 8 uniform elements. “ECON” refers to the energy conserving

numerical flux (the equality in Eq. (2.49)) and “LF” refers to the Lax-Friedrichs numerical

flux, using the value from Eq. (2.50). Tables 2.1, 2.2, and 2.3 present the energy results.

2.4.2 Orders of Accuracy (OOA)

To compute the L2-error, an overintegration of p + 10 was used in calculating the error to

provide a sufficient strength for the purpose of accuracy.
1Note that the g2 lumped-Lobatto scheme presented by Huynh [6], and used by Abe et al. [3], is equivalent

to a collocated DG scheme on GLL nodes and not equivalent to using cHU with a collocated Km operator [28].
2N/A refers to “Not Available”. The g2 lumped-Lobatto scheme cannot be run on uncollocated volume

nodes since it would not make sense lumping the mode on the boundary.
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Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG ECON No No
Cons. DG LF No No

EFSR Split cDG ECON Yes Yes
EFSR Split cDG LF No Yes
EFSR Split c+ ECON Yes Yes
EFSR Split c+ LF No Yes
EFSR Split c104 ECON Yes Yes
EFSR Split c104 LF No Yes

EFSR Classical Split c+ ECON No No
EFSR Classical Split c+ LF No No

EFSR Classical Split cHU 1 ECON No No
EFSR Classical Split cHU 1 LF No No

ESFR Classical Split cHU Lumped-Lobatto 2 ECON N/A N/A
ESFR Classical Split cHU Lumped-Lobatto 2 LF N/A N/A

Table 2.2: Energy Results p = 4,5 Uncollocated Schemes Nvp = p+ 1

Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG ECON No No
Cons. DG LF No No

EFSR Split cDG ECON Yes Yes
EFSR Split cDG LF No Yes
EFSR Split c+ ECON Yes Yes
EFSR Split c+ LF No Yes
EFSR Split c104 ECON Yes Yes
EFSR Split c104 LF No Yes

EFSR Classical Split c+ ECON No No
EFSR Classical Split c+ LF No No

EFSR Classical Split cHU 1 ECON No No
EFSR Classical Split cHU 1 LF No No

ESFR Classical Split cHU Lumped-Lobatto 2 ECON N/A N/A
ESFR Classical Split cHU Lumped-Lobatto 2 LF N/A N/A

Table 2.3: Energy Results p = 4,5 Uncollocated Schemes Overintegrated Nvp = p+ 3

L2 − error =

√√√√ M∑
m=1

∫
Ω

(um − u)2dΩ =

√√√√ M∑
m=1

(uTm − uTexact)WJm(um − uexact). (2.52)

The L2-errors are shown for the test case described above for Cons. DG and strong ESFR

Split with cDG to provide a direct comparison of the influence of splitting the volume and

face terms on the OOA. Also, strong ESFR Split with c+, and strong ESFR Classical Split

with c+ are tested to give a direct comparison of the influence of (Mm+Km)
−1 being applied

on the non-conservative volume term for accuracy. We use a tf = 1 s, ∆t = 1× 10−4, and

a Lax-Friedrichs numerical flux for the OOA test. We demonstrate the OOA for p = 4
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uncollocated Nvp = p+ 1 in table 2.4 and uncollocated overintegration in table 2.6; similarly

for p = 5 in tables 2.5 and 2.7. All schemes yield the expected convergence rates of p + 1.

Note that “-” in the tables denote that the values have reached machine precision.

dx Cons. DG OOA ESFR Split cDG OOA ESFR Split c+ OOA ESFR Classical Split c+ OOA

2.50e-02 7.82e-06 - 7.72e-06 - 2.22e-04 - 1.42e-04 -

1.25e-02 1.94e-07 5.33 1.93e-07 5.32 6.77e-06 5.04 4.18e-06 5.09

6.25e-03 5.17e-09 5.23 5.17e-09 5.23 1.98e-07 5.10 1.28e-07 5.03

3.13e-03 1.48e-10 5.12 1.48e-10 5.12 6.30e-09 4.97 4.21e-09 4.93

1.56e-03 4.55e-12 5.02 4.55e-12 5.02 1.96e-10 5.00 1.33e-10 4.98

Table 2.4: Convergence Table p = 4 Nvp = p+ 1

dx Cons. DG OOA ESFR Split cDG OOA ESFR Split c+ OOA ESFR Classical Split c+ OOA

2.08e-02 1.65e-07 - 1.57e-07 - 2.25e-05 - 1.24e-05 -

1.04e-02 2.31e-09 6.15 2.31e-09 6.09 4.24e-07 5.73 2.35e-07 5.72

5.21e-03 3.55e-11 6.02 3.56e-11 6.02 8.00e-09 5.73 4.84e-09 5.60

2.60e-03 - - - - 1.54e-10 5.70 9.99e-11 5.60

1.30e-03 - - - - 2.84e-12 5.76 1.88e-12 5.73

Table 2.5: Convergence Table p = 5 Nvp = p+ 1

dx Cons. DG OOA ESFR Split cDG OOA ESFR Split c+ OOA ESFR Classical Split c+ OOA

2.50e-02 7.37e-06 - 7.37e-06 - 2.21e-04 - 9.32e-05 -

1.25e-02 1.91e-07 5.27 1.91e-07 5.27 6.76e-06 5.03 1.16e-06 6.33

6.25e-03 5.15e-09 5.21 5.15e-09 5.21 1.97e-07 5.10 1.94e-08 5.90

3.13e-03 1.48e-10 5.12 1.48e-10 5.12 6.30e-09 4.97 5.05e-10 5.26

1.56e-03 4.55e-12 5.02 4.55e-12 5.02 1.96e-10 5.00 1.52e-11 5.06

Table 2.6: Convergence Table p = 4 Overintegrated Nvp = p+ 3
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dx Cons. DG OOA ESFR Split cDG OOA ESFR Split c+ OOA ESFR Classical Split c+ OOA

2.08e-02 1.56e-07 - 1.56e-07 - 2.24e-05 - 1.46e-06 -

1.04e-02 2.33e-09 6.07 2.33e-09 6.07 4.23e-07 5.72 1.01e-08 7.18

5.21e-03 3.57e-11 6.03 3.57e-11 6.03 8.00e-09 5.72 1.09e-10 6.53

2.60e-03 - - - - 1.54e-10 5.70 1.66e-12 6.04

1.30e-03 - - - - 2.84e-12 5.76 - -

Table 2.7: Convergence Table p = 5 Overintegrated Nvp = p+ 3

2.5 Conclusion

This paper derived dense, modal or nodal, ESFR schemes in both strong and weak forms

that resulted in provable nonlinear stability and conservation by incorporating the ESFR

filter operator on both the volume and surface terms. It was shown that by considering split

forms with respect to the stiffness operator rather than the differential operator, discrete

integration by parts was embedded in the discretization. The stability criteria, conservation,

and convergence orders were numerically verified for a wide range of general ESFR schemes.
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Chapter 3

Provably Stable Flux Reconstruction on

Curvilinear Elements

With the goal of discrete nonlinear stability on complex curvilinear geometries, we first need to

assess the nonlinearity introduced by the curvilinear coordinates. This section considers linear

advection in curvilinear coordinates to derive a provably stable FR scheme. Since the metric

terms are nonlinear, for linear advection, the reference flux becomes a nonlinear function.

Importantly, for curvilinear coordinates, the physical flux is not assumed to be a polynomial,

but rather, for the strong form of the equations, the reference flux is approximated by a

p-th order polynomial in the reference space. This distinction prevents integration-by-parts

from being satisfied in the physical space, which leads to differences between the conservative

and non-conservative DG strong forms—even with analytically exact metric terms. Thus, a

split form for the curvilinear coordinates is necessary to achieve provable stability in general

curvilinear elements. This section also develops metric-dependent FR correction functions,

and similarly to Chapter 2, this section incorporates the correction functions on the nonlinear

volume metric terms to achieve stability. Lastly, this section summarizes the formulation

of the metric Jacobian and cofactor matrix to discretely satisfy the geometric conservation

law that allows for free-stream preservation. We numerically verify free-stream preservation,
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global conservation, stability, and p+ 1 orders of convergence on nonsymmetric curvilinear

elements. After resolving the nonlinearities associated with the curvilinear mesh, then we can

generalize to vector-valued systems of nonlinear PDEs in curvilinear coordinates in Chapter 5.
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Abstract

Provably stable flux reconstruction (FR) schemes are derived for partial differential

equations cast in curvilinear coordinates. Specifically, energy stable flux reconstruction

(ESFR) schemes are considered as they allow for design flexibility as well as stability proofs for

the linear advection problem on affine elements. Additionally, the curvilinear metric split-form

for a linear physical flux is examined as it enables the development of energy stability proofs.

The first critical step proves, that in curvilinear coordinates, the discontinuous Galerkin (DG)

conservative and non-conservative forms are inherently different–even under exact integration

and analytically exact metric terms. This analysis demonstrates that the split form is essential

to developing provably stable DG schemes on curvilinear coordinates and motivates the

construction of metric dependent ESFR correction functions in each element. Furthermore,

the provably stable FR schemes differ from schemes in the literature that only apply the ESFR

correction functions to surface terms or on the conservative form, and instead incorporate the

ESFR correction functions on the full split form of the equations. It is demonstrated that the

scheme is divergent when the correction functions are only used for surface reconstruction

in curvilinear coordinates. We numerically verify the stability claims for our proposed FR

split forms and compare them to ESFR schemes in the literature. Lastly, the newly proposed

provably stable FR schemes are shown to obtain optimal orders of convergence. The scheme

loses the orders of accuracy at the equivalent correction parameter value c as that of the

one-dimensional ESFR scheme.



3.1 Introduction

The Flux Reconstruction (FR) framework, originally proposed by Huynh [1] (also referred

to as lifting collocation penalty [2] or correction procedure via reconstruction (CPR) [3,

4]), has emerged as a popular FEM approach that is both simple as it can be cast in a

differential collocated form and affords design flexibility, where through a choice of the

correction functions, the properties of the scheme can be altered. Importantly, subsets of

FR schemes have been identified as provably linearly stable (see Refs. [5–9]) also known as

Vincent-Castonguay-Jameson-Huynh (VCJH) schemes or Energy Stable Flux Reconstruction

(ESFR). Unfortunately, these proofs are limited to affine elements and hence do not apply to

general curvilinear meshes.

A discretization agnostic approach for the design and analysis of arbitrarily high-order and

provably stable numerical methods for linear variable coefficient problems is provided by the

summation-by-parts (SBP) framework [10–12]. SBP operators are matrix difference operators

that are mimetic to high-order integration by parts and when combined with appropriate

interface coupling procedures, for example simultaneous approximation terms (SATs) [13–20],

lead to provably stable and conservative methods. FR has been cast in SBP form [21–23]

as well in residual distribution schemes [24–27] paving the way for a common framework to

analyze high-order schemes. Moreover, discretizations having the SBP property form the

foundations for nonlinearly stable schemes for nonlinear conservation laws [19, 20, 28–39].

The focus of this article is on the construction of provably stable flux reconstruction

schemes in curvilinear coordinates. Since the publication by Svärd [40], the extension of

stability proofs for dense-norm SBP operators, to variable coefficient problems—particularly

curvilinear coordinate transformations, has received little attention in the SBP literature.

Svärd [40] proved that when dense-norms, M , are multiplied against a diagonal matrix

containing the metric Jacobian on the mesh nodes, J , the result is not a norm, i.e., MJ is not

in general a norm, and therefore provable stability is lost. However, by recasting dense-norm
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SBP operators in staggered form and constructing metrics on the staggered grid, stability can

be recovered for partial differential equations (PDE) in curvilinear coordinates discretized

using dense-norm SBP operators [41]. Alternatively, Ranocha et al. [22] demonstrated in

one-dimension, that for modal based operators the issue with dense-norms can be overcome

by using a dense-matrix, J̃ , such that MJ̃ =
(
MJ̃

)T
. In a somewhat analogous way, the

extension of stability proofs of ESFR schemes to curvilinear coordinates has been unclear

since the ESFR norm is dense. In this paper, taking inspiration from the developments in the

SBP literature and starting from the variational form, we demonstrate how to incorporate

metric Jacobian dependence in dense-norms, specifically those arising in ESFR schemes. In

variational form, it is immediately seen that including metric Jacobian dependence does not

merely correspond to right multiplying the norm matrix, but instead having the determinant

of the Jacobian embedded within the integral; since the metric Jacobian is always built on

the quadrature nodes and arises in the integral by transforming from the physical to the

reference domain. This allows us to formulate the metric Jacobian dependent ESFR filter

and the metric dependent ESFR correction functions.

The overarching objective of this paper is to develop provably stable FR discretizations

on curvilinear coordinates for systems of partial differential equations. As highlighted by the

SBP community [41–43], discrete integration by parts is not satisfied in the physical space for

curvilinear coordinates. This is due to the physical flux never explicitly being represented

by an interpolating polynomial in the physical space [44]. This distinction, to the authors’

knowledge, has not been investigated within the ESFR and DG communities [45–48]. In

the CPR community [49–51] it is common for both the metric Jacobian scaled solution and

physical fluxes to be represented by an interpolating polynomial in the computational space.

This allowed for efficient computations of the Navier-Stokes and Euler equations, but the

drawbacks were that the orders of accuracy in the physical domain suffered. In addition,

the scheme was not provably stable in the dense-norm in the sense of Svärd [40] unless the

physical flux is projected on a sufficiently high polynomial order and the scheme makes use
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of both polynomial exactness and exact integration. In this paper, we consider a linear

physical flux to focus solely on the effect of the nonlinear metric terms. In the curvilinear

split-form literature [41–43, 52], our proposed split-form can be derived through chain rule

on the Geometric Conservation law. We take a more rigorous approach to generalize the

difference between two different ways of deriving the DG strong form. The DG strong form

in reference space can be derived by either an application of integration by parts on the DG

weak form in reference space or in physical space. Since the two strong DG discretizations are

not equivalent [53], we present the split-form in order to mimic integration by parts in the

physical space. A critical result that has not been shown in the SBP literature [41, 42, 52], is

that the two DG strong forms are not equivalent even under exact integration and analytically

exact metric terms, making the split-form essential for curvilinear high-order schemes.

In this article, we derive provably stable FR schemes on curvilinear coordinates and

consider various design decisions: modal or nodal basis, uncollocated integration, different

ESFR correction functions, and different volume and surface quadrature nodes. The first

main insight is that the ESFR stability condition [6, 54–56] must contain metric dependence

in curvilinear coordinates. This result is a consequence of our choice to represent the solution

u as a polynomial rather than the metric Jacobian scaled solution Ju as a polynomial. When

choosing the latter, as shown by Yu et al. [51], the FR scheme needs to be overintegrated

by the order of the solution and mesh to achieve desired results. Then, we demonstrate

that stability cannot be achieved when the ESFR correction functions are solely used to

reconstruct the flux on the surface. This issue has been presented on linear grids for Burgers’

equation by Ranocha et al. [21] and for Euler’s equations by Abe et al. [57], although neither

have found a solution to satisfy stability for general ESFR in split form. In [21], the authors

investigated the issue of the dense ESFR contribution to the split forms, where they proved

stability only for the DG case. In [57], the authors’ numerically demonstrated stability

for the “g2 lumped-Lobatto” ESFR scheme, which is equivalent to a collocated DG scheme

on Gauss-Lobatto-Legendre nodes [58] and previously shown to be stable in split form by
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Gassner [59]. Following the general nonlinearly stable FR framework developed in Cicchino

et al. [60] for Burgers’ equation, the ESFR filter/divergence of the correction functions is

incorporated on the nonlinear volume terms to ensure nonlinear stability within the broken

Sobolev-norm. This differs from the literature where the ESFR correction functions were only

used to reconstruct the flux on the surface [1–3, 6, 54, 57, 61–63]. In addition, the proposed

scheme is in contrast from schemes where the ESFR norm1 was applied to the conservative

discretization; either filtering the strong form surface integral [21, 48, 56, 64], or filtering the

entire weak form [23]; since such stated schemes are only linearly stable.

The remainder of this article is organized as follows: In Section 2, we introduce the

mathematical notations, definitions of metrics, and establish the relationships between the

physical and reference spaces. In Section 3, the DG scheme is derived in both conservative

and non-conservative strong forms. We subsequently prove that the two forms are inherently

different under exact integration and metric terms, and introduce the DG split-form. In

Section 4, the classical ESFR scheme is established, and the proposed novel nonlinearly stable

FR scheme is derived. In subsequent Sections 5 and 6, we provide proofs of the free-stream

preservation, local and global conservation, and stability of the proposed stable FR split-form.

The theoretical results are numerically verified in Sec. 3.7, where the classical ESFR scheme

in split-form (ESFR filter only applied to the facet terms) diverges while, our proposed ESFR

split-form (ESFR filter applied to facet and volume terms) remains stable and maintains the

correct orders of accuracy.

3.2 Math Notation and Definitions

Consider the scalar 3D conservation law,

∂

∂t
u(xc, t) +∇ ·f(u(xc, t)) = 0, t ≥ 0, xc := [x y z] ∈ Ω,

u(xc, 0) = u0(x
c),

(3.1)

1By ESFR norm, we refer to the (M +K) modified Mass matrix form in Allaneau and Jameson [64,
Eq.(13)]
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where f(u(xc, t)) ∈ R1×d stores the fluxes in each of the d directions, and the superscript

c refers to Cartesian coordinates. In this paper row vector notation will be used. For the

purpose of focusing solely on the effect of the curvilinear metric terms, we will consider linear

advection. Although the flux is linear in the physical space, it is soon shown that the nonlinear

metric terms make the flux nonlinear in the reference space. The computational domain Ωh

is partitioned into M non-overlapping elements, Ωm, where the domain is represented by the

union of the elements, i.e.

Ω ≃ Ωh :=
M⋃
m=1

Ωm.

Each element m has a surface denoted by Γm. The global approximation, uh(xc, t), is

constructed from the direct sum of each local approximation, uhm(xc, t), i.e.

u(xc, t) ≃ uh(xc, t) =
M⊕
m=1

uhm(x
c, t).

Throughout this paper, all quantities with a subscript m are specifically unique to the element

m. On each element, we represent the solution with Np linearly independent modal or nodal

basis functions of a maximum order of p; where, Np := (p+ 1)d. The solution representation

is, uhm(xc, t) :=
∑Np

i=1 χm,i(x
c)ûm,i(t), where ûm,i(t) are the modal coefficients for the solution.

The elementwise residual for the governing equation (3.1) is,

Rh
m(x

c, t) =
∂

∂t
uhm(x

c, t) +∇ ·f(uhm(x
c, t)). (3.2)

The basis functions in each element are defined as,

χ(xc) := [χ1(x
c), χ2(x

c), . . . , χNp(x
c)] = χ(x)⊗ χ(y)⊗ χ(z) ∈ R1×Np , (3.3)

where ⊗ is the tensor product.

The physical coordinates are mapped to the reference element
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ξr := {[ξ, η, ζ] : −1 ≤ ξ, η, ζ ≤ 1} by

xcm(ξ
r) := Θm(ξ

r) =

Nt,m∑
i=1

Θm,i(ξ
r)x̂cm,i, (3.4)

where Θm,i are the mapping shape functions of the Nt,m physical mapping control points x̂cm,i.

To transform Eq. (3.2) to the reference basis, as in refs [65–69], we introduce the physical

aj :=
∂xc

∂ξj
, j = 1, 2, 3

and reference

aj := ∇ξj, j = 1, 2, 3

vector bases. We then introduce the determinant of the metric Jacobian as

JΩ := |JΩ| = a1 · (a2 × a3), (3.5)

and the metric Jacobian cofactor matrix as [48, 65, 66, 70],

CT := JΩ(JΩ)−1 =


JΩa1

JΩa2

JΩa3

 =


JΩaξ

JΩaη

JΩaζ

 . (3.6)

The metric cofactor matrix is formulated by the “conservative curl” form from [67, Eq. 36]

so as to discretely satisfy the Geometric Conservation Law (GCL)

3∑
i=1

∂(JΩ(ai)n)

∂ξi
= 0, n = 1, 2, 3⇔

3∑
i=1

∂

∂ξi
(C)ni = 0, n = 1, 2, 3⇔ ∇r · (C) = 0, (3.7)

which is detailed in Sec. 3.5 for a fixed mesh, where ( )ni represents the nth row, ith column

component of a matrix.

Having established the transformations mapping the physical to the reference coordinates
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on each element, the differential volume and surface elements can be defined as,

dΩm = JΩ
mdΩr, similarly dΓm = JΓ

mdΓr. (3.8)

The reference flux for each element m is defined as

f rm = CT
m ·fm ⇔ f rm,j =

d∑
i=1

(CT
m)jifm,i ⇔ f rm = fmCm, (3.9)

where the dot product notation for tensor-vector operations is introduced. The relationship

between the physical and reference unit normals is given as [48, Appendix B.2],

n̂m =
1

JΓ
m

Cm · n̂r =
1

JΓ
m

n̂rCT
m, (3.10)

for a water-tight mesh. Additionally, the definition of the divergence operator derived from

divergence theorem in curvilinear coordinates can be expressed as [65, Eq. (2.22) and (2.26)],

∇ ·fm =
1

JΩ
m

∇r ·
(
fmCm

)
=

1

JΩ
m

∇r ·f rm, (3.11)

and the gradient of a scalar as [65, Eq. (2.21)],

∇χ =
1

JΩ
m

Cm ·∇rχ =
1

JΩ
m

(
∇rχ

)
CT
m. (3.12)

Thus, substituting Eq. (3.11) into Eq. (3.2), the reference elementwise residual is,

Rh,r
m (ξr, t) := Rh

m(Θm(ξ
r), t) =

∂

∂t
uhm(Θm(ξ

r), t) +
1

JΩ
m

∇r ·f r(uhm(Θm(ξ
r), t)). (3.13)

59



3.3 Discontinuous Galerkin

In this section we present a provably stable DG discretization for curvilinear coordinates [41,

42, 52] to act as the cornerstone for our provably stable FR schemes. We derive the DG

strong form for both “conservative” and “non-conservative” formulations, and prove that they

are inherently different for curvilinear coordinates; even with analytically exact metric terms

and exact integration. This difference necessitates a split-form to ensure nonlinear stability

on curvilinear coordinates. Specifically we cover:

1. Deriving the conservative DG strong form by transforming the physical DG weak form

to reference space. Then, projecting the reference flux onto the reference polynomial

basis, and finally, integrating the volume terms by parts in the reference space.

2. Deriving the non-conservative DG strong form by projecting the physical flux onto a

physical basis in the physical DG weak form. Then integrating the volume terms by

parts in the physical space, and finally, transforming the physical DG non-conservative

strong form to the reference space.

3. Comparing the two forms, prove that they are inherently different, even under exact

integration with analytically exact metric terms, and that discrete integration by parts

in the physical space is not satisfied for either form. Then, combining the two forms to

discretely “mimic” integration by parts in the physical space.

3.3.1 DG - Conservative Strong Form

In a Galerkin framework, we left multiply the physical residual Eq. (3.2) by an orthogonal

test function. Choosing the test function to be the same as the basis function, integrating in

physical space, and applying integration by parts in physical space, we arrive at the weak
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form,

∫
Ωm

χm,i(x
c)
∂

∂t
uhm(x

c, t)dΩm −
∫
Ωm

∇χm,i(xc) ·f(uhm(x
c, t))dΩm

+

∫
Γm

χm,i(x
c)n̂m ·f ∗(uhm(x

c, t))dΓm = 0,∀i = 1, . . . , Np

(3.14)

where f ∗(uhm(x
c, t)) represents the physical numerical flux.

Now, we transform the physical DG weak form, Eq. (3.14), to the reference space, by using

the definitions of the differential volume and surface elements, physical gradient operator and

physical unit normals (Equations (3.8), (3.10), (3.12)),

∫
Ωr

χi(ξ
r)JΩ

m

∂

∂t
uhm(Θm(ξ

r), t)dΩr −
∫
Ωr

( 1

JΩ
m

∇rχi(ξ
r)CT

m

)
JΩ
m ·f(uhm(Θm(ξ

r), t))dΩr

+

∫
Γr

χi(ξ
r)JΓ

m

1

JΓ
m

n̂rCT
m ·f ∗(uhm(Θm(ξ

r), t))dΓr = 0, ∀i = 1, . . . , Np.

(3.15)

Notice the change of variables since χm(xc) := χ(Θ−1
m (xc)) are implicitly defined through

polynomial basis functions in the reference space. That is, χ(ξr) are a polynomial basis in the

reference space and the physical basis functions are not polynomial as the physical coordinates

xc are nonlinear functions of ξr, and vice versa for ξr. From the definition Eq. (3.9), the

reference flux is substituted for CT
m ·f(uhm(Θm(ξ

r), t)) in the volume integral. We then project

the reference flux in Eq. (3.15) onto the reference polynomial basis functions, and substitute

the basis expansion for the solution. The variational DG weak form in reference space is thus,

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr −
∫
Ωr

∇rχi(ξ
r) ·χ(ξr)f̂ rm(t)

TdΩr

+

∫
Γr

χi(ξ
r)n̂rCT

m ·f ∗
m(u

h
m(Θm(ξ

r), t))dΓr = 0, ∀i = 1, . . . , Np.

(3.16)

Next Eq. (3.16), the reference DG weak form, is integrated by parts in the reference space
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resulting in,

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr +

∫
Ωr

χi(ξ
r)

(
Np∑
j=1

∇rχj(ξ
r) · f̂ rm,j(t)

)
dΩr

+

∫
Γr

χi(ξ
r)
[
n̂rCT

m ·f ∗
m − n̂r ·χ(ξr)f̂ rm(t)

T
]
dΓr = 0,∀i = 1, . . . , Np.

(3.17)

In the general case, the interpolation of the nonlinear reference flux to the face does not equal

the metric terms evaluated at the face multiplied with the flux on the face.

Next, we introduce Nvp volume and Nfp facet cubature nodes, ξrv and ξrf,k respectively.

We also introduce W and Jm as diagonal operators storing the quadrature weights and

the determinant of the metric Jacobian at the volume cubature nodes. We present the

discretization of Eq. (3.17), the discrete conservative DG strong form, as

Mm
d

dt
ûm(t)

T + Sξf̂
r
1m(t)

T + Sηf̂
r
2m(t)

T + Sζ f̂
r
3m(t)

T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

rCm(ξ
r
f,k)

T ·f ∗
m − n̂r ·χ(ξrf,k)f̂

r
m(t)

T ] = 0T ,
(3.18)

where Nf represents the number of faces on the element. The discrete mass and stiffness

matrices are defined as,

(Mm)ij ≈
∫
Ωr

JΩ
mχi(ξ

r)χj(ξ
r)dΩr →Mm = χ(ξrv)

TWJmχ(ξ
r
v),

(Sξ)ij =

∫
Ωr

χi(ξ
r)
∂

∂ξ
χj(ξ

r)dΩr → Sξ = χ(ξ
r
v)
TWχξ(ξ

r
v),

and similarly for the other reference directions. The equality for the stiffness matrices holds

for quadrature rules of at least 2p− 1 in strength. Note, that since we start at p = 0, Gauss-

Lobatto-Legendre quadrature is exact for polynomials of up to 2p− 1 and Gauss-Legendre

quadrature is exact for polynomials of up to 2p + 1. Furthermore, we introduce the L2

projection operator as Π :=M−1χ(ξrv)
TW , where the metric independent mass matrix is

M = χ(ξrv)
TWχ(ξrv). Thus, the modal coefficients of the reference flux are the L2 projection
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of the reference flux, f̂ rm(t)T = Π(f r
T

m ).

3.3.2 DG - Non-Conservative Strong Form

Returning to the physical DG weak form, Eq. (3.14), as discussed in [44, 71], there is no claim

that the physical flux has a polynomial basis function expansion for curvilinear elements. We

term the scheme “non-conservative” because it does not recover the definition of the reference

divergence operator in Eq. (3.11) [41, 52]. Following the approach in [46, 47], we substitute

the solution expansion and project the physical flux onto the basis functions. Eq. (3.14) is

integrated by parts in physical space and yields the “non-conservative” DG strong form in

physical space,

∫
Ωm

χm,i(x
c)χm(x

c)
d

dt
ûm(t)

TdΩm +

∫
Ωm

χm,i(x
c)
( Np∑
j=1

∇χm,j(xc) · f̂m,j(t)
)
dΩm

+

∫
Γm

χm,i(x
c)n̂m · (f ∗

m − fm)dΓm = 0, ∀i = 1, . . . , Np.

(3.19)

To discretely represent the derivative of the physical flux in the physical space, it must

be represented by the derivative of a basis expansion in the physical space multiplied by

its modal coefficients. Although in the continuous sense the physical divergence operator

could be recovered by commuting the basis functions across the dot product in Eq. (3.19);

doing so would remove the claim that the physical flux has a basis function expansion. Only

in the reference space can the basis function be brought across the dot product since the

derivative of a polynomial basis function on the reference element exists. Thus, discretely

applying integration by parts in the physical space to arrive at Eq. (3.19) would necessitate

that χm(xc) = χ(Θ−1
m (xc)) is a polynomial basis, which cannot be the case since ξr is a

nonlinear function of xc. It is clear when transforming Eq. (3.19) to the reference space,

and substituting the definition of the gradient for curvilinear elements, Eq. (3.12), that it is
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inconsistent with the previous formulation in Eq. (3.17),

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr +

∫
Ωr

χi(ξ
r)

(
Np∑
j=1

(
∇rχj(ξ

r)CT
m

)
· f̂m,j(t)

)
dΩr

+

∫
Γr

χi(ξ
r)n̂rCT

m · (f ∗
m − fm)dΓr = 0, ∀i = 1, . . . , Np.

(3.20)

Explicitly, the metric cofactor matrix appears on the outside of the reference divergence/gradient

operator. Only if the mesh is linear, skew-symmetric, or symmetric with uniform constant

wave speeds for linear advection, will the volume integrals in Equations (3.17) and (3.20) be

equivalent in discrete form.

Lemma 3.3.1. The volume terms in Eq. (3.17) and Eq. (3.20) are inherently different for a

curvilinear mesh; even with exact integration and exact metric terms.

Proof.

Consider just one of the divergence terms in the volume integral,

Conservative DG:
d∑

k=1

∫
Ωr

χi(ξ
r)

Np∑
j=1

∂χj(ξ
r)

∂ξk

[
Π
(
JΩ
m

∂ξk
∂x
fx(u

h
m)
)]

j

dΩr,

Non-Conservative DG:
d∑

k=1

∫
Ωr

χi(ξ
r)JΩ

m

∂ξk
∂x

Np∑
j=1

∂χj(ξ
r)

∂ξk

[
Π
(
fx(u

h
m)
)]

j

dΩr.

(3.21)

If we are to consider both exact integration and exact metric terms (JΩ
m
∂ξk
∂x

), then the two

forms cannot be equivalent for a general fx(uhm).

Remark 3.3.1. Only for the specific case of linear advection with a polynomial representation

of the mesh can the two forms be equivalent through polynomial exactness; provided they are

both exactly integrated and the nonlinear term in the conservative form is projected onto a

sufficiently high polynomial space.
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3.3.3 DG - Split-Form

For the objective of developing provably stable schemes, alike [42, 52, 72], we introduce

the split-form by adding a half of the conservative DG Strong form Eq. (3.17) with the

non-conservative DG Strong form Eq. (3.20) to discretely satisfy integration by parts,

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr +
1

2

∫
Ωr

χi(ξ
r)

(
Np∑
j=1

∇rχj(ξ
r) · f̂ rm,j(t)

)
dΩr

+
1

2

∫
Ωr

χi(ξ
r)

(
Np∑
j=1

(
∇rχj(ξ

r)CT
m

)
· f̂m,j(t)

)
dΩr

+

∫
Γr

χi(ξ
r)T
[
n̂rCT

m · (f ∗
m −

1

2
fm)− n̂r ·

1

2
χ(ξr)f̂ rm(t)

T
]
dΓr = 0, ∀i = 1, . . . , Np.

(3.22)

Note that the surface splitting naturally accommodates arbitrary sets of volume and facet

cubature nodes. Recasting Eq. (3.22) into discrete form by evaluating at volume and facet

cubature nodes, we have the DG split-form,

Mm
d

dt
ûm(t)

T +
1

2
χ(ξrv)

TW∇rχ(ξrv) · f̂ rm(t)
T +

1

2
χ(ξrv)

TW ∇̃rχ(ξrv) · f̂m(t)T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ] = 0T ,
(3.23)

where we introduced ∇̃rχ(ξrv) =


∇rχ1(ξ

r
v,1)Cm(ξ

r
v,1)

T . . . ∇rχNp(ξ
r
v,1)Cm(ξ

r
v,1)

T

... . . . ...

∇rχ1(ξ
r
v,Nvp

)Cm(ξ
r
v,Nvp

)T . . . ∇rχNp(ξ
r
v,Nvp

)Cm(ξ
r
v,Nvp

)T


to store the transformed reference gradient of the basis functions evaluated at volume cuba-

ture nodes. Also, we introduced fC,rm = f ∗
mCm(ξ

r
f,k)− 1

2
fmCm(ξ

r
f,k)− 1

2
χ(ξrf,k)f̂

r
m(t)

T as the

difference between the reference transformation of the physical numerical flux, the physical

flux and the interpolated reference flux on the face. We note that the rigorously derived

split-form in Eq. (3.23) recovers the metric split-form in [35, 41] by considering chain rule on

the GCL.
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3.4 Energy Stable Flux Reconstruction

3.4.1 ESFR - Classical Formulation

Following an ESFR framework, the reference flux is composed of a discontinuous and a

corrected component,

f r(uhm(Θm(ξ
r), t)) := fD,r(uhm(Θm(ξ

r), t)) +

Nf∑
f=1

Nfp∑
k=1

gf,k(ξr)[n̂r · (f ∗,r
m − f rm)]. (3.24)

The vector correction functions gf,k(ξr) ∈ R1×d associated with face f , facet cubature node k

in the reference element, are defined as the tensor product of the p+ 1 order one-dimensional

correction functions (ϕ stores a basis of order p+ 1), with the corresponding p-th order basis

functions in the other reference directions.

gf,k(ξr)

=

[(
ϕ(ξ)⊗ χ(η)⊗ χ(ζ)

)(
ĝf,k1

)T
,
(
χ(ξ)⊗ ϕ(η)⊗ χ(ζ)

)(
ĝf,k2

)T
,
(
χ(ξ)⊗ χ(η)⊗ ϕ(ζ)

)(
ĝf,k3

)T]
=
[
gf,k1 (ξr), gf,k2 (ξr), gf,k3 (ξr)

]
,

(3.25)

such that

gf,k(ξrfi,kj) · n̂rfi,kj =


1, if fi = f, and kj = k

0, otherwise.
(3.26)

Coupled with the symmetry condition gL(ξr) = −gR(−ξr) to satisfy Eq. (3.26), the

one-dimensional ESFR fundamental assumption from [54] is,

∫ 1

−1

∇rχi(ξ
r)gf,k(ξr)dξ − c∂

pχi(ξ
r)T

∂ξp
∂p+1gf,k(ξr)

∂ξp+1
= 0, ∀i = 1, . . . , Np, (3.27)

and similarly for the other reference directions.
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Akin to [6, 55], consider introducing the differential operator,

2D: ∂(s,v) =
∂s+v

∂ξs∂ηv
, such that s = {0, p}, v = {0, p}, s+ v ≥ p,

3D: ∂(s,v,w) =
∂s+v+w

∂ξs∂ηv∂ζw
, such that s = {0, p}, v = {0, p}, w = {0, p}, s+ v + w ≥ p,

(3.28)

with its corresponding correction parameter

2D: c(s,v) = c
( s
p
+ v

p
)

1D ,

3D: c(s,v,w) = c
( s
p
+ v

p
+w

p
)

1D .

(3.29)

Note that the total degree is dim × p for a tensor-product basis that is of order p in each

direction.

For example,

∂(0,p,0) =
∂p

∂ηp
, c(0,p,0) = c1D, ∂

(p,0,p) =
∂2p

∂ξp∂ζp
, c(p,0,p) = c21D, ∂

(p,p,p) =
∂3p

∂ξp∂ηp∂ζp
, c(p,p,p) = c31D.

Since
∫
Ωr
∂(s,v,w)χ(ξr)T∂(s,v,w)

(
∇rχ(ξr)

)
dΩr composes of the complete broken Sobolev-norm

for each s, v, w [56, 63], the tensor product ESFR fundamental assumption, that recovers the

VCJH schemes exactly for linear elements is defined as,

∫
Ωr

∇rχi(ξ
r) · gf,k(ξr)dΩr−

∑
s,v,w

c(s,v,w)∂
(s,v,w)χi(ξ

r)∂(s,v,w)
(
∇r · gf,k(ξr)

)
= 0, ∀i = 1, . . . , Np,

(3.30)

where
∑

s,v,w sums over all possible s, v, w combinations in Eq. (3.28).

To discretely represent the divergence of the correction functions, we introduce the

correction field
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hf,k(ξr) ∈ P3p(Ωr) associated with the face f cubature node k as,

hf,k(ξr) = χ(ξr)
(
ĥf,k

)T
= ∇r · gf,k(ξr). (3.31)

To arrive at the ESFR strong form, we substitute the ESFR reference flux, Eq. (3.24), into the

elementwise reference residual, Eq. (3.13), project it onto the polynomial basis, and evaluate

at cubature nodes,

χ(ξrv)
d

dt
ûm(t)

T + J−1
m ∇rχ(ξrv) · f̂D,rm (t)T + J−1

m

Nf∑
f=1

Nfp∑
k=1

χ(ξrv)
(
ĥf,k

)T
[n̂r · (f ∗,r

m − f rm)] = 0T .

(3.32)

Since Eq. (3.32) does not mimic integration by parts in the physical domain, as previously

demonstrated in Sections 3.3.2 and 3.3.3, we introduce the split-form in compact form,

χ(ξrv)
d

dt
ûm(t)

T +
1

2
J−1
m ∇rχ(ξrv) · f̂D,rm (t)T +

1

2
J−1
m ∇̃rχ(ξrv) · f̂Dm (t)T

+ J−1
m

Nf∑
f=1

Nfp∑
k=1

χ(ξrv)
(
ĥf,k

)T
[nr ·fC,rm ] = 0T .

(3.33)

Unfortunately, Eq. (3.33), which we will coin as the “Classical ESFR split-form” is not

energy stable since the nonlinearity introduced by both the metric cofactor matrix and

determinant of the Jacobian prevents the volume terms from vanishing within the broken

Sobolev-norm introduced in [73]. Fortunately, there is a modified form of Eq. (3.33) which is

provably stable and recovers the Classical ESFR scheme for linear problems. We will term

the proposed split-form, which we now derive, as the “ESFR split-form”.

To derive the proposed ESFR split-form, we recast ESFR as a filtered DG scheme. To

do so, as shown in [48, 56, 64], we integrate Eq. (3.33) with respect to the basis function as

the test function in the physical domain. Using the definitions of the differential volume and
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surface elements, Eq. (3.8), we integrate the divergence of the correction functions by parts,

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr +
1

2

∫
Ωr

χi(ξ
r)∇rχ(ξr) · f̂D,rm (t)TdΩr

+
1

2

∫
Ωr

χi(ξ
r)∇̃rχ(ξr) · f̂Dm (t)TdΩr +

∫
Γr

χi(ξ
r)
(
n̂r · gf,k(ξr)

)
[n̂r ·fC,rm ]dΓr

−
∫
Ωr

∇rχi(ξ
r) · gf,k(ξr)[n̂r ·fC,rm ]dΩr = 0, ∀i = 1, . . . , Np.

(3.34)

From the ESFR correction functions’ surface condition, Eq. (3.26), the facet integral in

Eq. (3.34) is the exact same as the facet integral in the DG strong split-form Eq. (3.22). Also,

the reference discontinuous flux for the ESFR scheme is the same as the reference flux for a

DG scheme (from definition). Thus, we will drop the D superscript for the flux.

Next, as in the ESFR literature, we apply the differential operator ∂(s,v,w) on Eq. (3.33),

then left multiply and integrate with respect to the ∂(s,v,w) derivative of the basis function

as the test function in the physical domain [1, 5, 8, 48, 56, 73]. Then a scalar c(s,v,w) is

incorporated and the expression is summed over all (s, v, w) combinations. The order of those

steps is extremely important as it ensures a positive-definite broken Sobolev-norm, which

solves the issue presented in [22, 40]. This results in,

∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)χ(ξr)

d

dt
ûm(t)

TdΩr

+
∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)

( 1

JΩ
m

∇r · gf,k(ξr)
)
[n̂r ·fC,rm ]dΩr

+
∑
s,v,w

c(s,v,w)
2

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)

[ 1

JΩ
m

∇rχ(ξr) · f̂ rm(t)
T +

1

JΩ
m

∇̃rχ(ξr) · f̂m(t)T
]
dΩr = 0,

∀i = 1, . . . , Np.

(3.35)
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Adding Eqs. (3.34) and (3.35) together results in,

∫
Ωr

(
χi(ξ

r)JΩ
mχ(ξ

r) +
∑
s,v,w

c(s,v,w)J
Ω
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)χ(ξr)

) d
dt
ûm(t)

TdΩr

+
1

2

∫
Ωr

χi(ξ
r)∇rχ(ξr) · f̂ rm(t)

TdΩr +
1

2

∫
Ωr

χi(ξ
r)∇̃rχ(ξr) · f̂m(t)TdΩr

+

∫
Γr

χi(ξ
r)[n̂r ·fC,rm ]dΓr

+
∑
s,v,w

c(s,v,w)
2

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)

[ 1

JΩ
m

∇rχ(ξr) · f̂ rm(t)
T +

1

JΩ
m

∇̃rχ(ξr) · f̂m(t)T
]
dΩr

−
(∫

Ωr

∇rχi(ξ
r) · gf,k(ξr)dΩr

−
∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)

( 1

JΩ
m

∇r · gf,k(ξr)
)
dΩr

)
[n̂r ·fC,rm ]

= 0, ∀i = 1, . . . , Np.

(3.36)

Note that [n̂r ·fC,rm ] is a constant evaluated on the surface, so it can be factored out of the

last volume integrals [54, 55].

The root of the instability of the classical ESFR in split-form is demonstrated in the

third line of Eq. (3.36). On linear grids, the determinant of the Jacobian and the metric

cofactor matrix are both constants, and render the ∂(s,v,w) derivative of the divergence of

the discontinuous flux to be skew-symmetric [63]. However, for curvilinear elements, the

determinant of the Jacobian and the metric cofactor matrix are both nonlinear polynomials.

Thus, the ∂(s,v,w) derivative of the volume terms does not vanish in Eq. (3.36). Ranocha et al.

in [21] circumvented the issue by setting the ESFR contribution to zero and solving for the

DG case (c(s,v,w) = 0). In the case of Abe et al. [57], the authors showed stability for Huynh’s

g2 lumped-Lobatto scheme. This was expected since Huynh’s g2 lumped-Lobatto scheme is

equivalent to a collocated DG scheme on LGL nodes [58].

An additional issue introduced by ESFR on curvilinear grids is that the aforementioned

ESFR stability condition (fundamental assumption) in Eq. (3.30) (or the 1D analogous
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Eq. (3.27)) only holds true on linear grids. That is, because in Eq. (3.36), if the determinant

of the Jacobian was constant, then it would be factored off in the last integral and the ∂(s,v,w)

derivative of the corresponding mode of the correction functions would then be factored out of

the integral [5, 7–9, 56, 74, 75]. On general curvilinear coordinates, this is not true, even for

analytically exact metric terms and exact integration as per Theorem 3.3.1, and the complete

ESFR fundamental assumption for three-dimensional tensor product curvilinear elements

should be,

∫
Ωr

∇rχi(ξ
r) · gf,k(ξr)dΩr −

∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)

( 1

JΩ
m

∇r · gf,k(ξr)
)
dΩr = 0,

∀i = 1, . . . , Np.

(3.37)

If the grid is constant/linear then Eq. (3.37) simplifies to Eq. (3.30) with a constant scaling

of the volume of the reference element on c(s,v,w). To extend Eq. (3.37) for triangular and

prismatic curvilinear grids, one should change the ∂(s,v,w) derivative with the operator Dp,v,w

presented in [8, 48, 55], and the analysis/result is the same.

Therefore, using the metric dependent ESFR stability criteria, Eq. (3.37) in Eq. (3.36),

and evaluating bilinear forms at cubature nodes results in,

(
Mm +Km

) d
dt
ûm(t)

T +
1

2
χ(ξrv)

TW∇rχ(ξrv) · f̂ rm(t)
T +

1

2
χ(ξrv)

TW ∇̃rχ(ξrv) · f̂m(t)T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ]

+
∑
s,v,w

c(s,v,w)
2

∂(s,v,w)χ(ξrv)
TJmW ∂(s,v,w)χ(ξrv)Π

[
J−1
m ∇r ·χ(ξrv)f̂

r
m(t)

T

+ J−1
m ∇̃rχ(ξrv) · f̂m(t)T

]
= 0T .

(3.38)

Eq. (3.38) is the filtered DG equivalent of the Classical ESFR split-form presented in Eq. (3.33),
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with

(Km)ij ≈
∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)χj(ξ

r)dΩr

→Km =
∑
s,v,w

c(s,v,w)∂
(s,v,w)χ(ξrv)

TWJm∂
(s,v,w)χ(ξrv)

=
∑
s,v,w

c(s,v,w)

(
Ds

ξD
v
ηD

w
ζ

)T
Mm

(
Ds

ξD
v
ηD

w
ζ

)
,

(3.39)

where Ds
ξ =

(
M−1Sξ

)s
is the strong form differential operator raised to the power s, and

similarly for the other reference directions.

Remark 3.4.1. Note the inclusion of Jm within Km in Eq. (3.39). It allows the broken

Sobolev-norm Mm +Km to be symmetric positive definite (for values of c1D > c−). This

naturally arises from the order of applying the differential operator, then integrating in physical

space in Eq. (3.35), and re-defining the resultant curvilinear ESFR fundamental assumption

Eq. (3.37). This varies from the literature where the Jacobian was either a constant [8, 54,

61, 64] or for curvilinear ESFR [45, 48] where the determinant of the Jacobian was left

multiplied to Eq. (3.33). The ∂(s,v,w) derivative was then applied to the entire discretization

(to have the ∂(s,v,w) derivative applied directly on the reference divergence operator), which

would arise in the ∂(s,v,w) derivative of the determinant of the metric Jacobian Jm in the norm.

Explicitly, ∂(s,v,w)
(
Jm

d
dt
uTm

)
̸= Jm∂(s,v,w)

(
d
dt
uTm

)
, and hence ∂(s,v,w)χ(ξrv)TW ∂(s,v,w)

(
Jm

)
is

not a norm.

Remark 3.4.2. The stated approach is unlike what is adopted in [21, 48, 64] where Km

was constructed using the Legendre differential operator then transformed to the basis of the

scheme. Here c(s,v,w) must take the value from a normalized Legendre reference basis.

However, Eq. (3.38) is not provably stable since the final term does not vanish in the

broken Sobolev-norm.

Lemma 3.4.1. Eq. (3.38) is equivalent to a DG scheme with the ESFR filter applied solely

to the facet integral.
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Proof.

Rearranging Eq. (3.38) by substituting Πm =M−1
m χ(ξ

r
v)
TWJm, thus

χ(ξrv)
TW = χ(ξrv)

TWJmJ
−1
m =MmΠmJ

−1
m , and using Chan [52, Theorem 4] results in,

(
Mm +Km

) d
dt
ûm(t)

T +
1

2
MmΠm

[
J−1
m ∇rχ(ξrv) · f̂ rm(t)

T + J−1
m ∇̃rχ(ξrv) · f̂m(t)T

]
+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ]

+
1

2
KmΠm

[
J−1
m ∇rχ(ξrv) · f̂ rm(t)

T + J−1
m ∇̃rχ(ξrv) · f̂m(t)T

]
= 0T ,

(3.40)

which simplifies to

(
Mm +Km

) d
dt
ûm(t)

T +
1

2

(
Mm +Km

)
Πm

[
J−1
m ∇rχ(ξrv) · f̂ rm(t)

T + J−1
m ∇̃rχ(ξrv) · f̂m(t)T

]
+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ] = 0T .

(3.41)

Recalling the definition of Πm = M−1
m χ(ξ

r
v)
TWJm and solving for d

dt
ûm(t)

T in Eq. (3.41)

results in,

d

dt
ûm(t)

T +
1

2
M−1

m χ(ξ
r
v)
TW

[
∇rχ(ξrv) · f̂ rm(t)

T + ∇̃rχ(ξrv) · f̂m(t)T
]

+
(
Mm +Km

)−1
Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ] = 0T ,
(3.42)

which concludes the proof since the ESFR filter is only applied to the facet integral in

Eq. (3.42).

The proof in Lemma 3.4.1 shows that Eq. (3.38) recovers the divergence of the correction

functions applied solely to the face in Eq. (3.42), as seen in the literature [48, 64]. That is,
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from Allaneau and Jameson [64], and Zwanenburg and Nadarajah [48, Eq. 2.19],

ΠJ−1
m χ(ξ

r
v)
(
ĥf,k

)T
=
(
Mm +Km

)−1

χ(ξrf,k)
TWf,k. (3.43)

Explicitly, Eqs. (3.33), (3.38), and (3.42) are all equivalent expressions of ESFR.

3.4.2 ESFR - Proposed Nonlinearly Stable Flux Reconstruction

As shown by Cicchino et al. [60], provable nonlinear stability can be established for FR

schemes by incorporating the ESFR filter/divergence of the correction functions on the volume

integrals. This results in our proposed ESFR split-form,

d

dt
ûm(t)

T +
1

2

(
Mm +Km

)−1

χ(ξrv)
TW

[
∇rχ(ξrv) · f̂ rm(t)

T + ∇̃rχ(ξrv) · f̂m(t)T
]

+
(
Mm +Km

)−1
Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ] = 0T .
(3.44)

Or in equivalent form which simplifies the stability and conservation analysis,

(
Mm +Km

) d
dt
ûm(t)

T +
1

2
χ(ξrv)

TW
[
∇rχ(ξrv) · f̂ rm(t)

T + ∇̃rχ(ξrv) · f̂m(t)T
]

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

r ·fC,rm ] = 0T .
(3.45)

Eq. (3.44) is on design order as proved in Sec. 3.4.3.

Remark 3.4.3. We present the equivalent form of Eq. (3.44) in SBP notation in Sec. 3.A.1

based on [76].

We note that the computational implementation of the proposed ESFR schemes differ

significantly from existing FR implementations in the literature [77]. On general curved

meshes and for general quadrature rules, the FR norm matrix over each element is dense.

Thus, when implementing the proposed energy stable FR scheme, the FR norm matrix must

be constructed and inverted over each individual element. On affine elements, the inverse of
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each elemental norm matrix can be computed through a constant scaling of a single reference

norm matrix, as is typically done in ESFR by solving for the correction functions [6, 55].

However, for a static curved mesh, these matrix inverses can be precomputed and stored. This

increases both storage costs and the number of memory transfers necessary for the proposed

schemes. With regards to the case of curved triangular meshes, a form of sum factorization

for triangular meshes can be adopted based on a transformation onto a quadrilateral element

on which the basis is tensorial (e.g. Proriol, Kornwinder, Dubiner, and Owen (PKDO)

polynomials or Bernstein polynomials); however, the computational cost is higher. In our

numerical results, we use a Gauss-Jordan algorithm to compute (Mm +Km)
−1 on-the-fly.

In comparison, the most common FR schemes [1, 2, 54, 55] avoid introducing a mass/norm

matrix altogether by formulating the main computational steps of the scheme as operations

on the reference element. Collocated DG schemes (and the equivalent FR schemes) on

curved elements yield a trivially invertible diagonal mass (norm) matrix, with values of the

determinant of the metric Jacobian at collocation points appearing as weights for each diagonal

entry. For dense-mass (norm) matrices appearing in high-order DG on curved meshes, it is

possible to approximate the inverse in an efficient, energy stable, and high order accurate

fashion using a weight-adjusted approximation to the mass matrix [52]. However, because the

norm matrices constructed in this work are constructed as the sum of two matrices, it is not

currently possible to directly apply such an approach.

3.4.3 ESFR - Accuracy of Metric Dependent ESFR Schemes

Following the work of [48, 56, 64], we consider a normalized, p-th order Legendre reference

basis

χref(ξ
r) = χref(ξ) ⊗ χref(η) ⊗ χref(ζ) on ξr ∈ [−1, 1]3. The motivation behind using an

orthonormal reference basis rather than an orthogonal reference basis is that it allows Km

to be constructed directly with the differential operator and mass matrix of the scheme [56,

Sec. 3.1]. Thus, we introduce the transformation operator T = Πrefχ(ξ
r
v), where Πref =
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M−1
refχref (ξ

r
v)
TW , such that Km = T TKm,refT .

Next, we explicitly formulate Km,ref to derive the metric Jacobian dependent ESFR filter.

To express Km,ref we introduce the modal differential operators for a normalized Legendre

reference basis D̂s
ξ = (M−1

refSξ,ref )
s, similarly for D̂v

η and D̂w
ζ , to result in,

Km,ref =
∑
s,v,w

c(s,v,w)∂
(s,v,w)χref (ξ

r
v)
TWJm∂

(s,v,w)χref (ξ
r
v)

=
∑
s,v,w

c(s,v,w)

(
D̂s

ξD̂
v
ηD̂

w
ζ

)T
Mm,ref

(
D̂s

ξD̂
v
ηD̂

w
ζ

)
=⇒ (Km,ref )ij ≈

∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χref,i(ξ
r)∂(s,v,w)χref,j(ξ

r)dΩr

(3.46)

Typically when deriving the correction functions [54, 55, 75] or ESFR filter [48, 56, 64],

we would utilize the orthogonality of the reference basis functions. However, for curvilinear

coordinates, the reference basis functions are not orthogonal on dΩm = JΩ
mdΩr. That is,

∫
Ωr

χref,i(ξ
r)χref,j(ξ

r)dΩr = δij, (3.47)

but,

∫
Ωr

JΩ
mχref,i(ξ

r)χref,j(ξ
r)dΩr ̸= αδij, where α = const, unless JΩ

m = const, (3.48)

where the last inequality holds even under exact integration and the analytically exact JΩ
m.

An equality would be present in Eq. (3.48) if and only if χref (Θ−1
m (xc)) is also an orthogonal

polynomial basis; but thus far there is no claim that χref(Θ−1
m (xc)) or χ(Θ−1

m (xc)) are

polynomial in the analysis. Using Eq. (3.48) in Eq. (3.46) directly shows that for a tensor-

product basis, Km,ref is not diagonal for curvilinear coordinates, and is diagonal only under

the constant metric Jacobian case.

To prove the order of accuracy for curvilinear ESFR schemes, we demonstrate which

modes the ESFR filter, Fm,ref , operates on; such that d
dt
ûref (t)

T

∣∣∣∣
ESFR

= Fm,ref
d
dt
ûref (t)

T

∣∣∣∣
DG

.
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Theorem 3.4.1. For general curvilinear coordinates, the ESFR filter operator is applied to

all modes of the discretization, not just the highest order mode; even for triangular/prismatic

elements [55, 78], the 3p-th broken Sobolev-norm considered in [56], and all other cases where

the corresponding Km,ref would be diagonal with a single entry on the highest mode.

Proof. We substitute Eq. (3.48) when constructing the metric Jacobian dependent mass

matrix for a normalized Legendre reference basis,

(Mm,ref )ij ≈
∫
Ωr

JΩ
mχref,i(ξ

r)χref,j(ξ
r)dΩr ̸= αδij, where α = const, (3.49)

that shows the reference mass matrix is dense, even with exact integration and analytically

exact metric terms. Thus, we let Mm,ref =

a b

b c

 and Km,ref =

0 0

0 d

 to consider

the special case where the correction functions are only applied on the highest mode, i.e.

prismatic/triangular curvilinear elements and tensor-product curvilinear elements using the

3p-th broken Sobolev-norm [56]. This implies
(
Mm,ref +Km,ref

)−1

= 1
a(c+d)−b2

c+ d −b

−b a

.

Thus Fm,ref =
(
Mm,ref +Km,ref

)−1

Mm,ref =

1 bd
a(c+d)−b2

0 ac−b2
a(c+d)−b2

. Therefore, considering the

complete case for Fm,ref =
(
Mm,ref +Km,ref

)−1

Mm,ref implies the filter has influence on all

modes, rather than just the highest mode, which varies from the literature for linear grids [48,

56, 64].

Typically in the ESFR literature [1, 2, 54, 55, 61], the scheme is shown to lose at most

one order of accuracy because the divergence of the correction functions corresponds to the

highest mode of the scheme. Unfortunately, this is only true for constant metric Jacobians, or

non-positive-definite norms as discussed in Remark 3.4.1. Theorem 3.4.1 directly proves that

ESFR schemes can lose all orders for general curvilinear coordinates; even without considering

our proposed ESFR split-form and instead considering the classical VCJH schemes with

or without exact integration, and/or with or without analytically exact or discrete metric
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terms. This result is dependent on the metric dependence within the ESFR fundamental

assumption, Eq. (3.37), in curvilinear coordinates. In Section 3.7.1, we numerically show

for three-dimensions that the scheme loses all orders at the approximate location [8, Figure

3.6] that the one-dimensional ESFR/VCJH schemes lose one order of accuracy; at a value of

c≫ c+.

3.5 Discrete GCL

In this section we briefly review how to compute Cm to ensure both the correct orders of

accuracy, free-stream preservation and surface metric terms being consistent between interior

and exterior cells. The main idea from Kopriva [67] was to satisfy the GCL (Eq. (3.7)) a priori

by equivalently expressing the reference vector basis multiplied by the determinant of the

Jacobian in curl form. With the interpolation being within the curl, discrete GCL is satisfied

since it is the divergence of the curl. That is, by expressing the reference transformation

(metric cofactor matrix) as,

(Cross Product Form) JΩai = aj × ak, i = 1, 2, 3 (i, j, k) cyclic,

⇔(Conservative Curl Form) JΩ(ai)n = −êi ·∇r ×
(
xcl∇rxcm

)
,

i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic,

⇔(Invariant Curl Form) JΩ(ai)n = −1

2
êi ·∇r ×

(
xcl∇rxcm − xcm∇rxcl

)
,

i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic,

where ê = [x̂, ŷ, ẑ] is the physical unit vector 2. Then for the conservative curl form, the GCL

can be written as,

3∑
i=1

∂(JΩ(ai)n)

∂ξi
= −∇r ·

(
∇r ×

(
xcl∇rxcm

))
= 0, n = 1, 2, 3 (n,m, l) cyclic,

2this is not to be confused with the previous definition of x̂c which are the mapping support points (grid
points)
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and similarly for the invariant curl form. Thus Kopriva [67] proved that to discretely satisfy

GCL a priori, one must interpolate to the flux nodes (volume or facet cubature nodes) before

applying the curl. That is, the discrete conservative curl form reads as,

JΩ(ai)n = (C)ni = −êi ·∇r×Θ(ξr)
(
xcl∇rxcm

)
, i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic, (3.50)

and similarly for the invariant curl form. For general three-dimensional curvilinear elements,

Kopriva [67] also proved that the cross product form does not discretely satisfy GCL, thus

the conservative or invariant curl forms should always be used.

One of the primary issues raised by Abe et al. [79] was that Eq. (3.50) does not ensure that

the normals match at each facet cubature node. It is to be noted that Abe et al. [79] considered

only the invariant curl form, but the methodology is also consistent for the conservative

curl form. To circumvent the issue, one main result from [79] was to have two separate

interpolation operators, one for the “grid points” (mapping support points) and another for

the cubature (flux) nodes. This distinction was made because in high-order grid generation, it

is typical to have the exact corners of the elements, making them continuous finite elements

at the grid points [80, 81]. Thus, Abe et al. [79, Eqs. (31)-(34), (41) and (42)] evaluated(
xcl∇rxcm

)
in Eq. (3.50) at the grid nodes, and computed the mapping shape functions at

the flux nodes prior to the application of the curl operator [79, Eq. (43)]. By doing so,

consistency is ensured at each face since the grid nodes are continuous; and GCL is satisfied

at each quadrature point because the final interpolation is performed within the curl operator.

Therefore, we have the discrete conservative curl form,

(C)ni = −êi ·∇r ×Θ(ξrflux nodes)
[
Θ(ξrgrid nodes)x̂

cT

l ∇rΘ(ξrgrid nodes)x̂
cT

m

]
,

i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic,
(3.51)
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and similarly for the discrete invariant curl form,

(C)ni = −
1

2
êi ·∇r ×Θ(ξrflux nodes)

[
Θ(ξrgrid nodes)x̂

cT

l ∇rΘ(ξrgrid nodes)x̂
cT

m

−Θ(ξrgrid nodes)x̂
cT

m∇rΘ(ξrgrid nodes)x̂
cT

l

]
,

i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic,

(3.52)

where we assumed the mapping shape functions are collocated on the mapping support points

x̂c. In all numerical results we used Eq. (3.51) with LGL as the grid nodes.

3.6 Free-Stream Preservation, Conservation and Stability

In this section, we prove free-stream preservation, conservation, and stability for our proposed

provably stable FR split-form, Eq. (3.44). For free-stream preservation, we prove that it is

essential to distinguish between grid nodes and flux nodes in Eqs. (3.51) and (3.52). Then, by

satisfying GCL, we demonstrate conservation. Lastly, to illustrate the stability of the scheme,

we show that it is essential to incorporate the divergence of the correction functions on the

volume terms.

3.6.1 Free-Stream Preservation

We first demonstrate that the surface splitting from Eq. (3.44) satisfies free-stream preservation

if the metric terms are computed via Eq. (3.51) or (3.52). We start by substituting

fm = α = constant and d
dt
ûm(t)

T = 0T into Eq. (3.44),

1

2

(
Mm +Km

)−1

χ(ξrv)
TW

[
∇r ·αCm(ξ

r
v) + ∇̃r ·α

]
+
(
Mm +Km

)−1
Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[n̂

rCm(ξ
r
f,k)

T · (α− 1

2
α)− 1

2
n̂r ·χ(ξrf,k)Π(αCm(ξ

r
v))].

(3.53)

Factoring out the constant, utilizing GCL Eq. (3.7), and the divergence of a constant is zero
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we are left with,

=⇒
(
Mm +Km

)−1
Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[

1

2
n̂rCm(ξ

r
f,k)

T ·1− 1

2
n̂r ·χ(ξrf,k)Π(1Cm(ξ

r
v))].

(3.54)

Since the metrics computed in Eq. (3.51) or (3.52) are computed at a continuous set of grid

nodes (included on the boundary), with only the last interpolation performed at the flux

nodes,

(
χ(ξrf,k)Π(1Cm(ξ

r
v))
)
ni

= −êi ·Θ(ξrf,k)Θ(ξrv)
−1Θ(ξrv)∇r ×Θ(ξrgrid nodes)

[
Θ(ξrgrid nodes)x̂

cT

l ∇rΘ(ξrgrid nodes)x̂
cT

m

]
,

i = 1, 2, 3, n = 1, 2, 3 (n,m, l) cyclic,

=
(
1Cm(ξ

r
f,k)
)
ni
,

(3.55)

and similarly for the invariant curl formulation. Note that Θ(ξrv)
−1 is always true and appears

from a change of basis in Eq. (3.55). Thus Eq. (3.54) becomes,

=⇒
(
Mm +Km

)−1
Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,k[

1

2
n̂rCm(ξ

r
f,k)

T ·1− 1

2
n̂r · (1Cm(ξ

r
f,k))] = 0T ,

(3.56)

which concludes the proof since free-stream is preserved.
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3.6.2 Conservation

To prove global and local conservation, we use quadrature rules exact of at least 2p− 1, and

consider the (Mm +Km)-norm,

1̂
(
Mm +Km

) d
dt
ûm(t)

T =− 1

2
1W∇rχ(ξrv) · f̂ rm(t)

T − 1

2
1W ∇̃rχ(ξrv) · f̂m(t)T

−
Nf∑
f=1

Nfp∑
k=1

1Wf,k[n̂
r ·fC,rm ],

(3.57)

where 1̂ is implicitly defined by 1 = [1, . . . , 1] =
(
χ(ξrv)1̂

T
)T

. Discretely integrating both

volume terms by parts yields the following expression for the right-hand-side of Eq. (3.57),

=
1

2
∇r(1)W ·χ(ξrv)f̂

r
m(t)

T +
1

2
(∇r ·1Cm(ξ

r
v))W ·χ(ξrv)f̂m(t)

T

−
Nf∑
f=1

Nfp∑
k=1

1Wf,k[n̂
rCm(ξ

r
f,k)

T ·f ∗
m].

(3.58)

Utilizing the property of GCL from Eq. (3.7) and that the gradient of a scalar is zero, allows

the volume terms to vanish and local conservation is established,

∴ 1̂
(
Mm +Km

) d
dt
û(t)T = −

Nf∑
f=1

Nfp∑
k=1

1Wf,k[n̂
rCm(ξ

r
f,k)

T ·f ∗
m]. (3.59)

From the assumption of a conforming, water-tight mesh, then the interior normal equals

the negative of the exterior normal, provided the surface metrics are computed by Eqs. (3.51)

or (3.52), which concludes the proof for global conservation with periodic boundary conditions.
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3.6.3 Stability

We consider the broken Sobolev-norm W 3p,2
δ =Mm +Km to demonstrate stability,

ûm(t)
(
Mm +Km

) d
dt
ûm(t)

T =
1

2

d

dt
∥u∥2

W 3p,2
δ

=
1

2

d

dt
∥u∥2Mm+Km

= −1

2
umW∇rχ(ξrv) · f̂ rm(t)

T − 1

2
umW ∇̃rχ(ξrv) · f̂m(t)T −

Nf∑
f=1

Nfp∑
k=1

umWf,k[n̂
r ·fC,rm ]

(3.60)

Next, we discretely integrate the first volume term by parts in the reference space,

=
1

2
∇r(um)W ·χ(ξrv)f̂

r
m(t)

T − 1

2
umW ∇̃rχ(ξrv) · f̂m(t)T

−
Nf∑
f=1

Nfp∑
k=1

umWf,k[n̂
rCm(ξ

r
f,k)

T · (f ∗
m −

1

2
fm)].

(3.61)

Since the two volume terms in Eq. (3.61) are equivalent,

∇r(um)W ·χ(ξrv)f̂
r
m(t)

T = ∇r(um)W ·fmCm(ξ
r
v) = ∇r(um)WCm(ξ

r
v)
T ·fm

= fmW ·∇r(um)Cm(ξ
r
v)
T ,

∵ fm = aum =⇒ ∇r(um)W ·χ(ξrv)f̂
r
m(t)

T = umW ∇̃rχ(ξrv) · f̂m(t)T ,

(3.62)

they discretely cancel for linear advection, and we are left with

1

2

d

dt
∥u∥2

W 3p,2
δ

= −
Nf∑
f=1

Nfp∑
k=1

umWf,k[n̂
rCm(ξ

r
f,k)

T · (f ∗
m −

1

2
fm)], (3.63)

which concludes the proof since it is the same stability claim as that for a linear grid. Thus

energy is conserved for a central numerical flux, and energy monotonically decreases for an

upwind numerical flux with periodic boundary conditions [41, 56].

For completeness, we present the operator form of the above stability proof in Appendix 3.B.
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3.7 Results

In this section, we use the open-source Parallel High-order Library for PDEs (PHiLiP,

https://github.com/dougshidong/PHiLiP.git) [82], developed at the Computational Aero-

dynamics Group at McGill University, to numerically verify all proofs. Three tests are used:

the first verifies Thm. 3.4.1 for three-dimensions, the second verifies that the ESFR filter

operator (divergence of the correction functions) must be applied to the volume for stability,

and the third verifies Lem. 3.3.1 and Remark 3.4.1. When we refer to “ESFR Classical

Split”, we are using the split-form with the ESFR correction functions only applied to the

surface, whereas “ESFR Split” refers to our proposed provably stable ESFR split-form with

the correction functions applied on both the volume and surface terms.

For the order of accuracy (OOA) tests, to compute the L2 error, an overintegration of

p+ 10 was used to provide sufficient strength,

L2 − error =

√√√√ M∑
m=1

∫
Ω

(um − u)2dΩ =

√√√√ M∑
m=1

(uTm − uTexact)WmJm(um − uexact). (3.64)

We additionally compute the L∞ error as max(|um(ξrv,i)T − uexact(ξrv,i)T |) as the maximum

pointwise error at cubature node (ξrv,i). In all experiments, our basis functions χ(ξr) are

Lagrange polynomials constructed on LGL quadrature nodes. Our “grid nodes”, or mapping-

support-points, are LGL quadrature nodes. Our “flux nodes” for integration are GL quadrature

nodes. Lastly, all schemes were conservative on the order of 1e− 15. For the energy tests,

schemes that diverge are indicated as non-monotonically decreasing in Tables 3.5-3.6 and 3.15-

3.16.

3.7.1 ESFR Derivative Test

The first numerical test addresses Thm. 3.4.1, where we solve for the divergence of the flux,

∇ ·f . In this test, we only solve for the volume terms. We take the heavily warped grid in

84

https://github.com/dougshidong/PHiLiP.git


Fig. 3.1, defined by Eq. (3.65), and distribute the flux from Eq. (3.66). Then we solve for the

volume terms in Eq. (3.44), that approximate ∇ ·f , for varying values of c.

Figure 3.1: 3D Warped Grid

x = ξ +
1

10

(
cos πη + cos πζ

)
,

y = η +
1

10
exp (1− η)

(
sin πξ + sin πζ

)
,

z = ζ +
1

20
(sin 2πξ + sin 2πη),

[ξ, η, ζ] ∈ [0, 1]3.

(3.65)

f = [exp (−10x2), exp (−10πy3), exp (−10 sin z)],

∇ ·fexact = −10
(
2x exp (−10x2) + 3πy2 exp (−10πy3) + cos (z) exp (−10 sin z)

)
.

(3.66)

The maximum GCL computed for the grid was O(1e-15). First, we demonstrate in

Tables 3.1 through 3.4 that the error levels change as we increase c, but the orders remain

unchanged until c≫ c+. Next, for the polynomial order range, p = 2 through p = 5, we verify
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that applying the ESFR filter operator does not affect the order of accuracy up to a certain

value, and by Thm. 3.4.1, the scheme loses all orders of accuracy at this value. The black star

is the location of c+ in Figures 3.2 through 3.5. The drop off value for c closely resembles the

values obtained by Castonguay [8, Figure 3.6].

dx cDG OOA c+ OOA

3.125e-02 1.949e-02 - 1.860e-02 -

1.563e-02 2.587e-03 2.91 2.467e-03 2.91

7.813e-03 3.285e-04 2.98 3.133e-04 2.98

3.906e-03 4.122e-05 2.99 3.931e-05 2.99

Table 3.1: L2 Convergence Table p = 3

dx cDG OOA c+ OOA

3.125e-02 4.436e-01 - 3.713e-01 -

1.563e-02 7.033e-02 2.66 5.746e-02 2.69

7.813e-03 9.885e-03 2.83 8.056e-03 2.83

3.906e-03 1.309e-03 2.92 1.072e-03 2.91

Table 3.2: L∞ Convergence Table p = 3

dx cDG OOA c+ OOA

2.5000e-02 1.618e-03 - 1.559e-03 -

1.2500e-02 1.070e-04 3.92 1.032e-04 3.92

6.2500e-03 6.784e-06 3.98 6.542e-06 3.98

3.1250e-03 4.256e-07 3.99 4.103e-07 3.99

Table 3.3: L2 Convergence Table p = 4
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dx cDG OOA c+ OOA

2.5000e-02 4.648e-02 - 4.085e-02 -

1.2500e-02 3.388e-03 3.78 3.033e-03 3.75

6.2500e-03 2.296e-04 3.88 2.056e-04 3.88

3.1250e-03 1.496e-05 3.94 1.341e-05 3.94

Table 3.4: L∞ Convergence Table p = 4

10
-6

10
-4

10
-2

10
0

10
2

10
4

c

0

0.5

1

1.5

2

2.5

O
O

A

Figure 3.2: 3D c vs OOA for p = 2 Figure 3.3: 3D c vs OOA for p = 3

10
-8

10
-6

10
-4

10
-2

c

0

0.5

1

1.5

2

2.5

3

3.5

4

O
O

A

Figure 3.4: 3D c vs OOA for p = 4

10
-8

10
-7

10
-6

10
-5

10
-4

c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

O
O

A

Figure 3.5: 3D c vs OOA for p = 5

3.7.2 Nonsymmetric Grid

As illustrated by Lem. 3.3.1, the nonlinear metric terms vanish for both symmetric and

skew-symmetric grids; resulting in a false-positive stable solution. Thus, a nonsymmetric
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grid was chosen to ensure that nonlinear metric terms are present. The warping for the

nonsymmetric grid is similar to that used by Wu et al. [83], defined by Eq. (3.67), and the

grid is illustrated in Fig. 3.6,

Figure 3.6: Warped Grid p = 3

x = ξ +
1

10
cos

π

2
ξ cos

3π

2
η

y = η +
1

10
sin 2πξ cos

π

2
η,

[ξ, η] ∈ [−1, 1]2.

(3.67)

We apply the following linear advection problem in Eq. (3.68),

∂u

∂t
+ 1.1

∂u

∂x
− π

e

∂u

∂y
= 0,

u(x, y, 0) = e−20(x2+y2),

(3.68)

with periodic boundary conditions. We integrate with a Runge-Kutta-4 integrator, using

a timestep dt = 0.05dx, with dx being the average distance between two quadrature nodes.

The grid is partitioned into 82 elements. All results are uncollocated, with the solution built
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Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG Central No No
Cons. DG Upwind No No

EFSR Split cDG Central Yes Yes
EFSR Split cDG Upwind No Yes
EFSR Split c+ Central Yes Yes
EFSR Split c+ Upwind No Yes

EFSR Classical Split c+ Central No No
EFSR Classical Split c+ Upwind No No 1

Table 3.5: Energy Results p = 3, 4 Uncollocated Nvp = (p+ 1)2 Grid 1

Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG Central No No
Cons. DG Upwind No No

EFSR Split cDG Central Yes Yes
EFSR Split cDG Upwind No Yes
EFSR Split c+ Central Yes Yes
EFSR Split c+ Upwind No Yes

EFSR Classical Split c+ Central No No
EFSR Classical Split c+ Upwind No No 1

Table 3.6: Energy Results p = 3, 4 Uncollocated Nvp = (p+ 3)2 Grid 1

on the LGL nodes and integrated on the GL nodes. Since our metrics were computed via

Eq. (3.51) and surface splitting was used, we were able to use GL nodes for both volume and

surface integration without any form of optimization seen in the literature [41]. We first show

energy results for uncollocated integration in Table 3.5, then uncollocated overintegration in

Table 3.6.

An interesting result in Tables 3.5 and 3.6 is the false positive for the ESFR Classical

split with an upwind numerical flux. From the derivation of our proposed curvilinear FR

schemes in Sec. 3.4.1, specifically Eq. (3.35), there is no stability claim for the two terms

Km

(
J−1
m ∇rχ(ξrv)

)
and Km

(
J−1
m ∇̃rχ(ξrv)

)
as they can result in either a convergent or

divergent scheme. The advantage of our proposed FR schemes is that they are provably

stable. In the next test case, it will be shown that the ESFR classical split is divergent for a

skew-symmetric grid.
1Although the energy did not monotonically decrease for this case, it did not diverge either. Instead it

gradually decreased over time giving a false positive.
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To demonstrate the orders of accuracy, we consider the linear advection problem in

Eq. (3.69),

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0,

[x, y] ∈ [−1, 1]2, t ∈ [0, 2]

u(x, y, 0) = sin πx sin πy,

uexact(x, y, t) = sin π(x− t) sinπ(y − t).

(3.69)

We used a timestep of dt = 0.5dx, where again dx is the average distance between two

quadrature nodes. The convergence rates are shown in Tables 3.7 through 3.10 for uncollocated

integration, and Tables 3.11 through 3.14 for uncollocated overintegration.

dx cDG OOA c+ OOA

6.2500e-02 1.4592e-02 - 3.9628e-02 -

3.1250e-02 1.1632e-03 3.65 3.0945e-03 3.68

1.5625e-02 7.4833e-05 3.96 1.7779e-04 4.12

7.8125e-03 4.7374e-06 3.98 1.0851e-05 4.03

3.9062e-03 3.0227e-07 3.97 6.8311e-07 3.99

Table 3.7: L2 Convergence Table p = 3 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 1

dx cDG OOA c+ OOA

6.2500e-02 4.7490e-02 - 1.1192e-01 -

3.1250e-02 5.2854e-03 3.17 1.4510e-02 2.95

1.5625e-02 3.6961e-04 3.84 1.5445e-03 3.23

7.8125e-03 2.5181e-05 3.88 8.0837e-05 4.26

3.9062e-03 1.6401e-06 3.94 5.2672e-06 3.94

Table 3.8: L∞ Convergence Table p = 3 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 1
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dx cDG OOA c+ OOA

5.0000e-02 3.7766e-03 - 8.1107e-03 -

2.5000e-02 1.4876e-04 4.67 2.5675e-04 4.98

1.2500e-02 5.1042e-06 4.87 9.2869e-06 4.79

6.2500e-03 1.6763e-07 4.93 3.1350e-07 4.89

3.1250e-03 5.4776e-09 4.94 1.0345e-08 4.92

Table 3.9: L2 Convergence Table p = 4 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 1

dx cDG OOA c+ OOA

5.0000e-02 1.7943e-02 - 3.4934e-02 -

2.5000e-02 7.1420e-04 4.65 1.8378e-03 4.25

1.2500e-02 2.7883e-05 4.67 6.7414e-05 4.77

6.2500e-03 1.0551e-06 4.72 2.9290e-06 4.52

3.1250e-03 3.4989e-08 4.91 1.0435e-07 4.81

Table 3.10: L∞ Convergence Table p = 4 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 1

dx cDG OOA c+ OOA

6.2500e-02 1.4539e-02 - 3.9565e-02 -

3.1250e-02 1.1594e-03 3.65 3.0883e-03 3.68

1.5625e-02 7.4762e-05 3.95 1.7771e-04 4.12

7.8125e-03 4.7363e-06 3.98 1.0849e-05 4.03

3.9062e-03 3.0074e-07 3.98 6.8243e-07 3.99

Table 3.11: L2 Convergence Table p = 3 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 1
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dx cDG OOA c+ OOA

6.2500e-02 4.7467e-02 - 1.1172e-01 -

3.1250e-02 5.2245e-03 3.18 1.4400e-02 2.96

1.5625e-02 3.6902e-04 3.82 1.5435e-03 3.22

7.8125e-03 2.5167e-05 3.87 8.0826e-05 4.26

3.9062e-03 1.6398e-06 3.94 5.2670e-06 3.94

Table 3.12: L∞ Convergence Table p = 3 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 1

dx cDG OOA c+ OOA

5.0000e-02 3.7361e-03 - 8.0479e-03 -

2.5000e-02 1.4812e-04 4.66 2.5660e-04 4.97

1.2500e-02 5.0980e-06 4.86 9.2793e-06 4.79

6.2500e-03 1.6758e-07 4.93 3.1344e-07 4.89

3.1250e-03 5.4642e-09 4.94 1.0338e-08 4.92

Table 3.13: L2 Convergence Table p = 4 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 1

dx cDG OOA c+ OOA

5.0000e-02 1.7408e-02 - 3.4462e-02 -

2.5000e-02 7.0797e-04 4.62 1.8335e-03 4.23

1.2500e-02 2.7798e-05 4.67 6.7391e-05 4.77

6.2500e-03 1.0549e-06 4.72 2.9288e-06 4.52

3.1250e-03 3.4983e-08 4.91 1.0434e-07 4.81

Table 3.14: L∞ Convergence Table p = 4 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 1

3.7.3 Skew-Symmetric Grid

For further verification, we conduct the same experiments on the skew-symmetric grid from

Hennemann et al. [84], shown in Fig.3.7, with warping defined in Eq. (3.70),
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Figure 3.7: Second Warped Grid p = 3

x = ξ − 0.1 sin 2πη,

y = η + 0.1 sin 2πξ,

[ξ, η] ∈ [0, 1]2.

(3.70)

The sole purpose of using a skew-symmetric grid, is to show that even in the case when the grid

has all the nonlinear metric terms cancel out, as per Lem. 3.3.1, Remark 3.4.1 holds because

the determinant of the metric Jacobian cannot be factored out of the ∂(s,v,w) derivative. That

is, the conservative and non-conservative forms are equivalent for this case as per Lem. 3.3.1,

and this testcase showcases purely the necessity of the metric dependent correction functions.

Thus, the ESFR correction functions must satisfy the metric dependent stability criteria in

Eq. (3.37). We use the same initial condition described in Eq. (3.68) for the energy results,

presented in Tables 3.15 and 3.16.

An interesting result from this grid is that conservative DG without the split form was

stable, due to the skew-symmetry of the grid; while, ESFR classical split form was unstable.
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Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG Central Yes Yes
Cons. DG Upwind No Yes

EFSR Split cDG Central Yes Yes
EFSR Split cDG Upwind No Yes
EFSR Split c+ Central Yes Yes
EFSR Split c+ Upwind No Yes

EFSR Classical Split c+ Central No No
EFSR Classical Split c+ Upwind No No

Table 3.15: Energy Results p = 3, 4 Uncollocated Nvp = (p+ 1)2 Grid 2

Scheme Flux Energy Conserved O(1e-12) Energy Monotonically Decrease
Cons. DG Central Yes Yes
Cons. DG Upwind No Yes

EFSR Split cDG Central Yes Yes
EFSR Split cDG Upwind No Yes
EFSR Split c+ Central Yes Yes
EFSR Split c+ Upwind No Yes

EFSR Classical Split c+ Central No No
EFSR Classical Split c+ Upwind No No

Table 3.16: Energy Results p = 3, 4 Uncollocated Nvp = (p+ 3)2 Grid 2

This highlights the importance of false positives while testing curvilinear grids. To demonstrate

the orders of accuracy, we consider the linear advection problem from Eq. (3.69), and present

the results in Tables 3.17 to 3.24.

dx cDG OOA c+ OOA

6.2500e-02 6.9001e-03 - 2.2205e-02 -

3.1250e-02 4.9929e-04 3.79 2.1666e-03 3.36

1.5625e-02 3.0374e-05 4.04 9.5947e-05 4.50

7.8125e-03 1.9340e-06 3.97 5.6723e-06 4.08

3.9062e-03 1.2339e-07 3.97 3.5426e-07 4.00

Table 3.17: L2 Convergence Table p = 3 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 2
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dx cDG OOA c+ OOA

6.2500e-02 4.0068e-02 - 1.6836e-01 -

3.1250e-02 3.7121e-03 3.43 2.7181e-02 2.63

1.5625e-02 3.0497e-04 3.61 1.2679e-03 4.42

7.8125e-03 2.1527e-05 3.82 6.7106e-05 4.24

3.9062e-03 1.4001e-06 3.94 4.0344e-06 4.06

Table 3.18: L∞ Convergence Table p = 3 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 2

dx cDG OOA c+ OOA

5.0000e-02 1.5174e-03 - 3.7476e-03 -

2.5000e-02 4.8840e-05 4.96 1.0266e-04 5.19

1.2500e-02 1.6575e-06 4.88 3.7381e-06 4.78

6.2500e-03 5.9007e-08 4.81 1.4512e-07 4.69

3.1250e-03 2.1770e-09 4.76 5.2669e-09 4.78

Table 3.19: L2 Convergence Table p = 4 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 2

dx cDG OOA c+ OOA

5.0000e-02 9.6178e-03 - 2.4719e-02 -

2.5000e-02 3.9077e-04 4.62 1.2826e-03 4.27

1.2500e-02 1.5061e-05 4.70 5.5561e-05 4.53

6.2500e-03 6.9115e-07 4.45 2.6736e-06 4.38

3.1250e-03 2.4981e-08 4.79 1.0379e-07 4.69

Table 3.20: L∞ Convergence Table p = 4 Nvp = (p+ 1)2 Upwind Numerical Flux Grid 2
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dx cDG OOA c+ OOA

6.2500e-02 6.8280e-03 - 2.2131e-02 -

3.1250e-02 4.9794e-04 3.78 2.1647e-03 3.35

1.5625e-02 3.0357e-05 4.04 9.5922e-05 4.50

7.8125e-03 1.9337e-06 3.97 5.6719e-06 4.08

3.9062e-03 1.2338e-07 3.97 3.5425e-07 4.00

Table 3.21: L2 Convergence Table p = 3 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 2

dx cDG OOA c+ OOA

6.2500e-02 3.9689e-02 - 1.6899e-01 -

3.1250e-02 3.6977e-03 3.42 2.7110e-02 2.64

1.5625e-02 3.0464e-04 3.60 1.2676e-03 4.42

7.8125e-03 2.1521e-05 3.82 6.7102e-05 4.24

3.9062e-03 1.4000e-06 3.94 4.0343e-06 4.06

Table 3.22: L∞ Convergence Table p = 3 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 2

dx cDG OOA c+ OOA

5.0000e-02 1.5058e-03 - 3.7268e-03 -

2.5000e-02 4.8725e-05 4.95 1.0251e-04 5.18

1.2500e-02 1.6566e-06 4.88 3.7369e-06 4.78

6.2500e-03 5.8997e-08 4.81 1.4511e-07 4.69

3.1250e-03 2.1769e-09 4.76 5.2668e-09 4.78

Table 3.23: L2 Convergence Table p = 4 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 2
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dx cDG OOA c+ OOA

5.0000e-02 9.5289e-03 - 2.4636e-02 -

2.5000e-02 3.8874e-04 4.62 1.2817e-03 4.26

1.2500e-02 1.5046e-05 4.69 5.5551e-05 4.53

6.2500e-03 6.9098e-07 4.44 2.6735e-06 4.38

3.1250e-03 2.4979e-08 4.79 1.0379e-07 4.69

Table 3.24: L∞ Convergence Table p = 4 Nvp = (p+ 3)2 Upwind Numerical Flux Grid 2

3.8 Conclusion

This article proved that discrete integration by parts is not satisfied in the physical space

for DG conservative and non-conservative forms, as well as standard FR forms, even with

analytically exact metric terms and exact integration—provided that the basis functions are

polynomial in the reference space. This leads to the formulation of metric dependent FR

correction functions. Through the construction of metric dependent FR correction functions,

the inclusion of metric Jacobian dependence within arbitrarily dense-norms was derived and

manifested through the FR broken Sobolev-norm. The resultant curvilinear expression had

the correction functions filtering all modes of the discretization. The theoretical findings were

numerically verified with a three-dimensional, heavily warped, non-symmetric grid, where the

orders of convergence were lost at the equivalent correction parameter value c as that of the

one-dimensional ESFR scheme.

We derived dense, modal or nodal, FR schemes in curvilinear coordinates that ensured

provable stability and conservation. This was achieved by incorporating the FR correction

functions (FR filter operator) on both the volume and surface terms. Through a suite

of curvilinear test-cases, one being non-symmetric and the other being skew-symmetric,

the provable stability claim was numerically verified for our proposed FR schemes. The

choice of grids highlighted the importance of assessing false-positives, especially in curvilinear
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coordinates where metric skew-symmetry has the metric cross-terms cancel out, as well as

when metric symmetry combined with equivalent advection speeds in every physical direction

results in an equivalence between the conservative and non-conservative forms. It was also

numerically verified that FR schemes that solely use the correction functions to reconstruct

the surface are divergent in general curvilinear coordinates—in both conservative and in split

form. Lastly, we demonstrate that the proposed FR scheme retains optimal orders of accuracy

in the appropriate range of c values.
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3.A Summation-by-Parts

The proposed algorithm in this paper is inspired by developments in the SBP literature, but

derived using standard techniques and arguments from both the DG and FR communities. In

this section, we make the link to the SBP formalism directly by assembling the relevant SBP

operators.

The stiffness operators satisfy discrete integration by parts for quadrature rules of at least

2p− 1 strength,

∫
Ωr

χi(ξ
r)∇rχj(ξ

r)dΩr +

∫
Ωr

∇rχi(ξ
r)χj(ξ

r)dΩr =

∫
Γr

χi(ξ
r)χj(ξ

r)n̂rdΓr

⇔ χ(ξrv)
TW∇rχ(ξrv) +∇rχ(ξrv)

TWχ(ξrv) =

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWf,kn̂

rχ(ξrf,k).

(3.71)
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3.A.1 SBP - Strong Form FR Split

We introduce the lifting operator,

Lq =M
−1

Nf∑
f=1

χ(ξrf )
TWf , (3.72)

where χ(ξrf) stores the basis functions evaluated at all facet cubature nodes on the face f ,

and Wf is a diagonal matrix storing the quadrature weights on the face f .

We now introduce the SBP operator [76],

Qi =W (M−1Sξ)Π,

to formulate the skew-hybridized SBP operator from Chan [76, Eq. (10)],

Q̃i
p =

1

2

 Qi − (Qi)T Wχ(ξrv)Lq diag(n̂
ξ
f )

−∑Nf

f=1Wf diag(n̂
ξ
f )χ(ξ

r
f )Π

∑Nf

f=1Wf diag(n̂
ξ
f )

 . (3.73)

Next, similar to Chan [76, Eq. (27)], we introduce the metric dependent hybridized SBP

operator as,

Qi
m =

1

2

d∑
j=1

(
diag

Cm(ξ
r
v)ji

Cm(ξ
r
f )ji

Q̃j
p + Q̃

j
p diag

Cm(ξ
r
v)ji

Cm(ξ
r
f )ji

). (3.74)

In equivalent form, we express Eq. (3.44) as,

d

dt
ûm(t)

T +
[
(Mm +Km)

−1χ(ξrv)
T (Mm +Km)

−1

Nf∑
f=1

χ(ξrf )
T
] d∑
j=1

(
2Qi

m ◦ F j
S

)
1T

+
d∑
j=1

(Mm +Km)
−1

Nf∑
f=1

diag (nm,j)(f
∗
j − fj(ũm)) = 0T

(F i
S)jk = f

i
S(ũj, ũk), ∀1 ≤ j + k ≤ Nvp +Nfp,

(3.75)

where nm = n̂rCT
m.
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We would like to emphasize that incorporating the ESFR filter on the volume terms does

not create a new ESFR differential operator, but instead is a modification on the norm that

the DG volume is projected on. That is, we project both the volume and the surface terms to

the p-th order broken Sobolev-space in the nonlinearly stable FR scheme, whereas in DG, the

volume and surfaces are projected onto the L2-space.

3.B Stability Proof - Operator Form

Here we present the stability proof from Sec. 3.6.3 in operator form. We start by applying

the (Mm +Km)-norm, and we quickly see that it cancels off with its respective inverse,

ûm(t)
(
Mm +Km

) d
dt
ûm(t)

T

= −ûm(t)
(
Mm +Km

)(
Mm +Km

)−1
d∑
i=1

d∑
j=1

χ(ξrv)
TW

(
ai
∂χ(ξrv)

∂ξj
Π(JΩ

m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T

+ ai(J
Ω
m

∂ξj
∂xi

)
∂χ(ξrv)

∂ξj
Πχ(ξrv)ûm(t)

T
)

− ûm(t)
(
Mm +Km

)(
Mm +Km

)−1
Nf∑
f=1

χ(ξrf )
TWf diag(n̂

r
f )f

C,rT

m .

(3.76)

Next, consider the volume terms with respect to a single (i, j)-pairing, substitute ∂χ(ξrv)
∂ξj

=

χ(ξrv)M
−1Sξ,j , and swap the metric terms with the quadrature weights in the second volume

term,

ûm(t)χ(ξ
r
v)
TW

(
ai
∂χ(ξrv)

∂ξj
Π(JΩ

m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T + ai(J

Ω
m

∂ξj
∂xi

)
∂χ(ξrv)

∂ξj
Πχ(ξrv)ûm(t)

T
)

=aiûm(t)χ(ξ
r
v)
TWχ(ξrv)M

−1Sξ,jΠ(JΩ
m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T

+ aiûm(t)χ(ξ
r
v)
T (JΩ

m

∂ξj
∂xi

)Wχ(ξrv)M
−1Sξ,jΠχ(ξ

r
v)ûm(t)

T .

(3.77)
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We continue by substituting ΠT =Wχ(ξrv)M
−1, and Πχ(ξrv) =M

−1M = I,

= aiûm(t)χ(ξ
r
v)
TΠTSξ,jΠ(JΩ

m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T + aiûm(t)χ(ξ

r
v)
T (JΩ

m

∂ξj
∂xi

)ΠTSξ,jûm(t)
T

= ai

(
Πχ(ξrv)ûm(t)

T
)T
Sξ,jΠ(JΩ

m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T + aiûm(t)χ(ξ

r
v)
T (JΩ

m

∂ξj
∂xi

)ΠTSξ,jûm(t)
T .

(3.78)

Lastly, we substitute Πχ(ξrv) =M−1M = I once more and then perform integration-by-parts

on the first stiffness matrix to arrive at,

=− aiûm(t)STξ,jΠ(JΩ
m

∂ξj
∂xi

)χ(ξrv)ûm(t)
T + aiûm(t)χ(ξ

r
v)
T (JΩ

m

∂ξj
∂xi

)ΠTSξ,jûm(t)
T

+

Nf∑
f=1

aiûm(t)χ(ξ
r
f )
T diag(n̂ξj)χ(ξf )ûm(t)

T .

(3.79)

The two volume terms are the transpose of each other, thus they cancel out and the resultant

stability claim is the same as Eq. (3.63) in Sec. 3.6.3.
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Chapter 4

Scalable Evaluations

With the intent of the high-order solver being used on next-generation hardware, on both

CPUs and GPUs, we wish that the solver scales at the lowest order possible, and has a

low memory footprint. An approach to reduce the computational cost for matrix-vector

products, with tensor product basis functions, is sum-factorization [1]. The NSFR scheme

was developed with tensor product elements and basis from the beginning to capitlaize on

sum-factorization. With the extension of the NSFR discretization to the Euler equations,

we will have to introduce a dense Hadamard product alike Chan [2]. Thus, the focus of

this chapter is the derivation of a novel sum-factorized Hadamard product, which allows

our entropy stable NSFR discretization to scale at O
(
nd+1

)
, where n = p+ 1 and d is the

dimension of the problem.
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4.1 Introduction

Sum-Factorization techniques were introduced by Orszag [1] to efficiently evaluate spectral

methods. Orszag [1] made use of the tensor product nature of the basis functions to perform

the operations in each direction independently, and result in O
(
nd+1

)
flops for interpolation,

projection and differentiation operations, where n is the size of the one-dimensional basis,

for example the polynomial degree. Unfortunately, a tensor product algorithm resulting in

O
(
nd+1

)
flops for Hadamard products does not yet exist in the literature. The aim of this

technical note is to demonstrate that Hadamard products can be computed in O
(
nd+1

)
flops

with a tensor product basis, provided the basis functions have one additional property that is

common in the spectral and finite element communities.

Entropy stable numerical schemes, initially proposed by Tadmor [3] for finite-volume

methods, guarantee robustness on extremely coarse meshes. Through the application of

summation-by-parts (SBP) operators, and introducing flux differencing techniques, Fisher et

al. [4, 5] made the concepts from Tadmor applicable in a finite-element framework. This led

to the development of provably nonlinearly stable high-order methods in a collocated split-

form discontinuous Galerkin (DG) form [6, 7], collocated split-form flux reconstruction (FR)

framework recovering the DG case [8–10], modal uncollocated entropy stable DG framework [2,

11–13], and modal uncollocated nonlinearly stable FR (NSFR) schemes [14, 15].

In the application of flux differencing [4, Eq. (3.9)], Ranocha et al. [16] numerically

demonstrated that O
(
nd+1

)
flops could be recovered. For modal uncollocated schemes, the

general expression requires the computation of a dense Hadamard product, as seen in Chan [2,

Eq. (58)]. The focus of this short note is on efficiently evaluating a Hadamard product using

a tensor product basis. Specifically, using the tensor product structure, we demonstrate that a

Hadamard product can be assembled and evaluated in O
(
nd+1

)
flops and memory allocation,

rather than O
(
n2d
)
, where d is the dimension. We term the algorithm a “sum-factorized”

Hadamard product because we recover the scaling result of sum-factorization techniques [1] by
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exploiting the tensor product structure in the Hadamard product. This result is dependent on

the basis operators being diagonal operators in at least d− 1 directions—fortunately, this is

always the case for Hadamard products involving interpolation, projection, and differentiation

operators of polynomial basis functions. This is the case because we can use sum-factorization

techniques to project onto a collocated Lagrange basis, evaluate the Hadamard product using

our proposed algorithm, and then project back onto the dense basis. In Section 4.3, we

provide numerical results showing that the Hadamard product scales at O
(
nd+1

)
.

4.2 Hadamard Product

Consider solving (A⊗B) ◦C, with A, B ∈ Rn×n and C ∈ Rn2×n2 .

(A⊗B) ◦C =


A11 [B ◦C11] . . . A1n [B ◦C1n]

...
...

...

An1 [B ◦Cn1] . . . Ann [B ◦Cnn]

 . (4.1)

The computational cost associated with solving the Hadamard product in Eq. (4.1) is O(n4).

Unfortunately, unlike sum-factorization [1], it is not possible to reduce the computational cost

of Eq. (4.1) by evaluating each direction independently. The Hadamard product in Eq. (4.1)

requires evaluating the n2 terms in the square brackets, then multiplying it by a scalar, and

repeating the operations n2d−2 times.

If we add an additional condition, A = diag(a), a ∈ Rn×1, then

(A⊗B) ◦C =


a1 [B ◦C11] 0

. . .

0 an [B ◦Cnn]

 = diag


a1 [B ◦C11]

...

an [B ◦Cnn]


n2×n

. (4.2)

The computational cost to evaluate Eq. (4.2) is O(n3). Similarly, if B = diag(b) with A

dense, then (A⊗B) ◦C costs O(n3) to evaluate by changing the stride through the matrix.
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This can be generalized for an arbitrary d-sized tensor product, (A1 ⊗A2 ⊗ · · · ⊗Ad)◦C,

with

A1, . . . , Ad ∈ Rn×n and C ∈ Rnd×nd . If Ai = diag(ai), a ∈ Rn×1, ∀i = 1, . . . , d− 1, then,

(A1 ⊗A2 ⊗ · · · ⊗Ad) ◦C = diag


(a1)1 . . . (ad−1)1 [Ad ◦C11]

...

(a1)n . . . (ad−1)n [Ad ◦Cndnd ]


nd×n

, (4.3)

and similarly for the other d−1 directions through pivoting. Thus, in each of these d-cases, the

total computational cost is dnd+1 = O(nd+1) ,∀n >> d. In the square brackets, we perform

n2 flops, then perform d− 1 scalar multiplications, and this is repeated for nd−1 rows. The

memory footprint for Eq. (4.3) is comprised of storing and fetching two nd+1-sized matrices,

and writing nd+1 values.

In the context of high-order entropy stable methods, the Hadamard product can always

be computed with the diagonal property above, regardless of the basis functions.

Theorem 4.2.1. If the basis function is represented as a tensor product, then the Hadamard

product involving some α-th order derivative of the basis function costs dnd+1 flops.

Proof.

Consider solving, (
∂αχ (ξrv)

∂ξαj
Π

)
◦C, (4.4)

where χ is some linearly independent, polynomial basis, ξrv are a set of nodes that the basis are

evaluated on in computational space, ξj is a direction that the α-th order derivative is applied

in, and Π is the projection operator corresponding to the basis χ such that Πχ(ξrv) = I. Using

Zwanenburg and Nadarajah [17, Proposition 2.1 and Corollary 2.2], we can always make the

substitution ∂αℓ(ξrv)
∂ξαj

= ∂αχ(ξrv)
∂ξαj

Π where ℓ is the Lagrange basis collocated on the nodes ξrv–that

is ℓ (ξrv) = I. If we let ℓ be a tensor product basis, then ∂αℓ(ξrv)
∂ξαj

= I(ξi<j)⊗ dαℓ(ξj)

dξαj
⊗ I(ξi>j).

Therefore, ∂αℓ(ξrv)
∂ξαj

◦ C recovers the form of Eq. (4.3), where Ai = I ∀i = 1, . . . , d, i ̸= j.
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Similarly, if we have some weight function that is a non-identity diagonal matrix multiplied

to the derivative, then we have,

W (ξrv)

(
∂χ (ξrv)

∂ξαj
Π

)
=W (ξrv)

∂αℓ(ξrv)

∂ξαj
=W (ξi<j)⊗W (ξj)

dαℓ(ξj)

dξαj
⊗W (ξi>j). (4.5)

Eq. 4.5 is of the same form as Eq. 4.3, and thus its Hadamard product costs dnd+1 flops.

This theorem allows us to solve Hadamard products at O
(
nd+1

)
for general uncollocated

modal schemes in curvilinear coordinates since Eq. (4.5) closely resembles the stiffness matrix

that appears in finite element methods.

Remark 4.2.1. The same algorithm can be used in evaluating the Hadamard product with

the surface integral terms in Chan [2, Eq. (58)] by substituting α = 0 and the facet cubature

nodes in Eq. (4.4).

We provide a sample algorithm for implementation in three-dimensions from our in-house

PDE solver PHiLiP “Operators” class that performs the subroutines within the solver. A

similar structure is done for the surface Hadamard products where the one-dimensional basis

matrices are of size m× n, m < n. Let’s assume we want to compute (D ⊗W ⊗W ) ◦Cx,

(W ⊗D ⊗W ) ◦ Cy, and (W ⊗W ⊗D) ◦ Cz, where W = diag (w) stores some weights,

and D is dense. This mimics the Hadamard product to be computed on the quadrature

nodes for entropy conserving schemes alike in Chan [2, Eq. (58)]. For the tensor product,

we let the x-direction run fastest, then the y-direction and the z-direction run slowest. We

will refer to the first term as the first direction, the second term as the second direction,

and subsequently the third. We evaluate it in three steps. First, we create two vectors of

size Rnd+1×d storing a sparsity pattern: one stores the non-zero row indices, and the other

stores the non-zero column indices for each of the d-directions. From these, we then build an

nd × n-sized matrix storing only the non-zero entries of the general nd × nd-sized matrix for

each of the d-directions. Lastly, after the matrices of size Rnd×n for each direction are built,

we evaluate the Hadamard product directly.
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We generate the sparsity patterns by the algorithm 1, then, using the sparsity patterns, we

store only the non-zero entries of the matrices D⊗W ⊗W , W ⊗D⊗W , and W ⊗W ⊗D

by algorithm 2:

Algorithm 1 Sparsity Pattern Algorithm

1: Result: Create rows and columns vectors of size nd+1 × d storing the sparsity pattern of

all indices that correspond to non-zero values in the dense matrices.

2: for i, j, k, l = 0; i, j, k, l < n; i, j, k, l++ do ▷ Loop over the nd+1 indices.

3: Let array_index be the ordering of the nd+1 indices.

4: array_index ← i ∗ n3 + j ∗ n2 + k ∗ n+ l

5: Let row_index correspond to the row index of the non-zero value in the dense matrix.

6: row_index ← i ∗ n2 + j ∗ n+ k

7: rows[array_index][0,1,2] ← row_index

8: Let column_index correspond to the column index of the non-zero value in the dense

matrix.

9: column_index_x ← i ∗ n2 + j ∗ n+ l ▷ Index in x-direction

10: columns[array_index][0] ← column_index_x

11: column_index_y ← l ∗ n+ k + i ∗ n2 ▷ Index in y-direction

12: columns[array_index][1] ← column_index_y

13: column_index_z ← l ∗ n2 + k + j ∗ n ▷ Index in z-direction

14: columns[array_index][2] ← column_index_z

15: end for
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Algorithm 2 Basis Assembly Algorithm
1: Result: Store only the non-zero entries of the tensor product basis in Basis_Sparse of

size d×
(
nd × n

)
.

2: for index=0, counter=0; index< nd+1; index++, counter++ do ▷ Loop over the nd+1

indices.

3: if counter == n then counter ← 0

4: end if

5: Extract the row and column indices of the one-dimensional basis for the given direction.

6: x_row_index ← rows[index][0] % n ▷ We use integer division and % as the mod

operator.

7: x_column_index ← columns[index][0] % n

8: y_row_index ← (rows[index][1] / n) % n

9: y_column_index ← (columns[index][1] / n) % n

10: z_row_index ← rows[index][2] / n / n

11: z_column_index ← columns[index][2] / n / n

12: Create the matrix storing only nd+1 non-zero values.

13: Basis_Sparse[0][rows[index][0]][counter] ← basis[x_row_index][x_column_index] *

weights[y_row_index] * weights[z_row_index]; ▷ x-direction, D ⊗W ⊗W .

14: Basis_Sparse[1][rows[index][1]][counter] ← basis[y_row_index][y_column_index] *

weights[x_row_index] * weights[z_row_index]; ▷ y-direction, W ⊗D ⊗W .

15: Basis_Sparse[2][rows[index][2]][counter] ← basis[z_row_index][z_column_index] *

weights[x_row_index] * weights[y_row_index]; ▷ z-direction, W ⊗W ⊗D.

16: end for

where “basis” refers to D in the given direction, “weights” refers to W , and “Basis_Sparse”

refers to their tensor product storing only the nd+1 non-zero values. We can similarly construct

Cx, Cy and Cz using the sparsity patterns. The third step of evaluating the Hadamard

product doesn’t require the sparsity patterns since it is the Hadamard product of Rnd×n dense
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matrices and is computed directly.

4.3 Results

For numerical verification, we use the open-source Parallel High-order Library for PDEs

(PHiLiP, https://github.com/dougshidong/PHiLiP.git) [18], developed at the Computa-

tional Aerodynamics Group at McGill University. The test is compiled in C++ with gcc

9.4.0, and executed on a single Intel i5-8600 CPU with a maximum of 1GB of DDR4 RAM.

We consider three-dimensions and verify the scaling of our proposed Thm 4.2.1. We let

(C)ij = cicj, C ∈ Rnd×nd , with c = rand([1e−8, 30]). We compare the cost of evaluating

the three-dimensional Hadamard product
∑3

j=1
∂ℓ(ξrv)
∂ξj
◦ C by: directly building the three-

dimensional tensor product basis and applying the Hadamard product, versus using our

proposed algorithm in Thm 4.2.1. The test loops through polynomial degrees n ∈ [3, 19], and

for each polynomial degree, we perform the operations 100 times.
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Figure 4.1: CPU time versus polynomial degree

We store the CPU time by running the test on one processor and we record the clock

time before the algorithm then subtract the clock time after computing
∑3

j=1
∂ℓ(ξrv)
∂ξj
◦C. We

normalized the CPU time by the peak memory bandwidth of 347.23 GB/s. In Fig. 4.1, the

conventional way of computing a Hadamard product in all three directions costs O(n2d),
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whereas our proposed “sum-factorized” form that exploits the tensor product structure costs

O(nd+1).

4.4 Conclusion

We derived and demonstrated a “sum-factorized” technique to build and compute Hadamard

products at O
(
nd+1

)
. With the fast evaluations, the computational cost of entropy conserving

and stable schemes becomes computationally competitive with the classical conservative

modal discontinuous Galerkin method in general three-dimensional curvilinear coordinates.
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Chapter 5

Systems of Nonlinear Conservation Laws

in Curvilinear Coordinates

After successfully establishing a provable nonlinearly stable scheme, implemented within

a scalable numerical architecture, we proceed to expand the framework to accommodate

vector-valued functions. Similar to Chan [1, 2] we formulate the general system with volume-

surface skew-symmetric operators, coupled with Tadmor’s two-point flux [3], to ensure

nonlinear stability with flux differencing [4, 5]. Following the steps to achieve stability in

Chapters 2 and 3, we achieve nonlinear stability for general FR schemes by incorporating

the ESFR correction functions on all nonlinear terms in the discretization. From Chapter 3,

we incorporate the metric split form within the two-point flux, through the transformation

from physical to reference space. This form of the reference flux allows us to exploit the

tensor product structure and use the sum-factorized Hadamard product in Chapter 4. In

addition, this section introduces a weight-adjusted inverse approximation for the NSFR

modified mass matrix, alike the DG form from Chan and Wilcox [6]. The weight-adjusted

approximation allows the scheme to avoid the need to compute and invert a dense matrix,

but rather invert a diagonal operator and use sum-factorization with one-dimensional pre-

computed projection operators on-the-fly. This section proves free-stream preservation, global
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conservation, and discrete nonlinear stability for the weight-adjusted NSFR discretization, for

the Euler equations—with the properties numerically verified. The orders of convergence are

verified with a manufactured solution on a nonsymmetrically warped curvilinear grid. Lastly,

this section demonstrates a computational performance comparison between the proposed

NSFR discretization as opposed to the conservative nodal DG scheme with and without

overintegration. We find that all schemes scale at order O
(
nd+1

)
, and the proposed general

NSFR scheme is computationally competitive with the nodal DG scheme.
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Abstract

To achieve genuine predictive capability, an algorithm must consistently deliver accurate

results over prolonged temporal integration periods, avoiding the unwarranted growth of

aliasing errors that compromise the discrete solution. Provable nonlinear stability bounds

the discrete approximation and ensures that the discretization does not diverge. Nonlinear

stability is accomplished by satisfying a secondary conservation law, namely for compressible

flows; the second law of thermodynamics. For high-order methods, discrete nonlinear stability

and entropy stability, have been successfully implemented for discontinuous Galerkin (DG)

and residual distribution schemes, where the stability proofs depend on properties of L2-norms.

In this paper, nonlinearly stable flux reconstruction (NSFR) schemes are developed for three-

dimensional compressible flow in curvilinear coordinates. NSFR is derived by merging the

energy stable flux reconstruction (ESFR) framework with entropy stable DG schemes. NSFR

is demonstrated to use larger time-steps than DG due to the ESFR correction functions, at the

cost of larger error levels at design order convergence for equivalent degrees of freedom, while

preserving discrete nonlinear stability. NSFR differs from ESFR schemes in the literature

since it incorporates the FR correction functions on the volume terms through the use of a

modified mass matrix. We also prove that discrete kinetic energy stability cannot be preserved

to machine precision for quadrature rules where the surface quadrature is not a subset of

the volume quadrature. This result stems from the inverse mapping from the kinetic energy

variables to the conservative variables not existing for the kinetic energy projected variables.

This paper also presents the NSFR modified mass matrix in a weight-adjusted form. This form

reduces the computational cost in curvilinear coordinates because the dense matrix inversion

is approximated by a pre-computed projection operator and the inverse of a diagonal matrix

on-the-fly and exploits the tensor product basis functions to utilize sum-factorization. The

nonlinear stability properties of the scheme are verified on a nonsymmetric curvilinear grid for



the inviscid Taylor-Green vortex problem and the correct orders of convergence were obtained

on a curvilinear mesh for a manufactured solution. Lastly, we perform a computational

cost comparison between conservative DG, overintegrated DG, and our proposed entropy

conserving NSFR scheme, and find that our proposed entropy conserving NSFR scheme is

computationally competitive with the conservative DG scheme.
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5.1 Introduction

High-order methods such as discontinuous Galerkin (DG) and flux reconstruction (FR), result

in efficient computations via high solution accuracy and dense computational kernels, making

them an attractive approach for the exascale concurrency on current and next generation

hardware. Generally, high-order methods are known to be more efficient than low-order

methods for linear hyperbolic time-dependent problems (e.g., see [7, 8]). However, despite

vigorous efforts by the research community, their application to real world complex problems

governed by nonlinear partial differential equations (PDEs) has been limited due to a lack of

robustness.

The DG method, proposed by Reed and Hill [9], combines both the key properties of finite

volume and finite element schemes. As explained in the book of Hesthaven and Warburton [10],

the high-order scheme provides stability through a numerical flux function, and utilizes high-

order shape functions to represent the solution. Another variation of the DG method is FR,

initially proposed by H.T. Huynh [11] and later presented as a class of energy stable flux

reconstruction (ESFR) schemes [12–14]. Through the introduction of correction functions,

which is equivalently viewed as a filtered DG correction field [15–17], ESFR recovers various

high-order schemes alike the spectral difference [18] and spectral volume.

There has been a concerted research effort to extend classical entropy stability arguments

to high-order methods. The original work of Tadmor [19] laid a foundation enabling high-

order extensions, where Tadmor [20] proved that if the numerical flux satisfies the entropy

condition from Harten [21], then the discretization is entropy stable—this was accomplished

by introducing a weak condition on the numerical flux commonly referred to as the Tadmor

shuffle condition. These notions were extended by LeFloch [22, 23] in the context of high-order

finite difference stencils. In the last decade, these ideas were expanded to bounded domains

by Fisher and co-authors [4], who combined the Summation-by-parts (SBP) framework with

Tadmor’s two-point flux functions to achieve entropy conservation. Extending the connection
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made by Fisher et al. [4] between the SBP framework and Tadmor’s shuffle condition, entropy

conservative and stable methods have been successfully implemented in DG [1, 2, 5, 24],

FR [25, 26] for only the DG case, unstructured methods [27–29], extended high-order SBP

forms [4, 28, 30–32], and residual distribution schemes [33–36].

Recent developments by Cicchino et al. [37, 38] proved that nonlinear stability for FR

schemes can only be satisfied if the FR correction functions are applied to the nonlinear volume

terms. This paper derives a general nonlinearly stable flux reconstruction (NSFR) framework

for three-dimensional vector-valued problems in curvilinear coordinates. Specifically, we

consider Euler’s equations in this work. The first main contribution follows the works by

Chan [1, 2, 6] and Cicchino et al. [37, 38] to derive NSFR that is free-stream preserving,

globally conservative, and entropy conserving for general modal basis functions evaluated on

quadrature rules with at least 2p − 1 strength, for any ESFR correction function. This is

accomplished by formulating NSFR with the general modal skew-symmetric operators from

Chan [2], then incorporating the ESFR correction functions on both the volume and surface

hybrids terms through the modified mass matrix alike Cicchino and coauthors [37, 38]. Apart

from entropy conservation, kinetic energy conservation is also sought. Unfortunately, the

inverse mapping from the kinetic energy variables to the conservative variables does not exist.

This consequence leads to our proof that discrete kinetic energy stability cannot be preserved

to machine precision for quadrature rules where the surface quadrature is not a subset of the

volume quadrature.

We first introduce the notation used in this paper in Sec. 5.2, where Sec. 5.2.1 presents

entropy conservation and Sec. 5.2.2 presents notation pertaining to computational quantities.

Then, in Sec. 5.3.1 we derive the DG scheme, followed by ESFR in Sec. 5.3.2, and lastly, we

merge the concepts in Sec. 5.3.3. In Sec. 5.6 we prove that NSFR is free-stream preserving,

globally conservative, and entropy conserving. In Sec. 5.6.3 we prove that kinetic energy cannot

be discretely conserved if the surface quadrature is not a subset of the volume quadrature. In

Sec. 5.7.3 we numerically verify all conserved quantities to machine precision for different FR
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correction functions on a non-symmetrically warped curvilinear grid. Lastly, in Sec. 5.7.1,

we verify the orders of convergence for a manufactured solution on a three-dimensional,

nonsymmetrically warped curvilinear grid.

As shown in Cicchino et al. [38], for curvilinear coordinates, the scheme requires that a

dense matrix is inverted for every element. Motivated by the work by Chan and Wilcox [6, 39],

we present NSFR in a low-storage, weight-adjusted inverse form. This is achieved in Sec. 5.4

by introducing an ESFR projection operator, that projects onto the broken Sobolev-space,

and deriving the weight-adjusted mass inverse through it. Then, we demonstrate that the

operation can be further improved through sum-factorization techniques [40] by introducing an

FR projection operator. In Sec. 5.7.1 we numerically verify that NSFR with a weight-adjusted

mass inverse preserves the orders of convergence in curvilinear coordinates for a manufactured

solution. Also, in Sec. 5.7.3, we numerically demonstrate that the weight-adjusted inverse

preserves the stability properties for the weight-adjusted system. In Sec. 5.7.4, we compare

a conservative nodal DG scheme, and overintegrated nodal DG scheme, and our proposed

algorithm. We find that our proposed algorithm is computationally competitive with the

nodal DG scheme, as compared to the overintegrated scheme. This result is dependent on

the weight-adjusted mass matrix inversion, sum-factorization, and the novel sum-factorized

Hadamard product evaluation from Cicchino and Nadarajah [41].

5.2 Preliminaries

In this section, we present the notation that is used throughout the paper. First, we

review concepts on entropy conservation. Then, we introduce notation pertaining to the

computational setup.
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5.2.1 Systems of Equations

Consider the system of 3D conservation laws,

∂

∂t
ui (x

c, t) +∇ ·fi (u (xc, t)) = 0, ∀i ∈ [1, nstate], t ≥ 0, xc := [x y z] ∈ Ω,

ui(x
c, 0) = ui,0 (x

c) ,

(5.1)

where fi (u (xc, t)) ∈ R1×d stores the fluxes in each of the d directions for the i-th equation of

state, nstate represents the number of state variables, and the superscript c refers to Cartesian

coordinates. In this paper row vector notation will be used.

Smooth solutions of Eq. (5.1) satisfy the entropy equality,

∂U

∂t
+∇ ·F = 0, F = F (u), (5.2)

where U is a convex function of u, while weak solutions satisfy the entropy inequality,

∂U

∂t
+∇ ·F ≤ 0. (5.3)

In the context of entropy conservative numerical schemes, from Mock [42] and Harten [21],

it was shown that the symmetrization of the PDE by the entropy variables v = U ′(u), v ∈

R1×nstate , along with the convexity of the entropy function U , leads to the existence of an

entropy flux function F (u) such that in each physical direction k ∈ [1, d],

v
∂fk

∂u

T

=
dF k(u)

du
, where,

(
∂fk

∂u

T
)
ij

=
∂fki (u)

∂uj
, ∀i, j ∈ [1, nstate], (5.4)

Integrating Eq. (5.4) with respect to the conservative variables, and introducing the entropy

potential ψ(v) such that dψk(v)
dv

= fk(u(v)), we have [21, Eq. 1.13b],

ψk(v) = vfk
T − F k(u), ∀k ∈ [1, d]. (5.5)
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Tadmor [20, Eq. 4.5a] demonstrated that a numerical scheme is entropy conservative if,

v∆
(
fk

T
)
= ∆

(
F k
)
. (5.6)

Unfortunately, Eq. (5.6) is a strong condition on the flux. To satisfy Eq. (5.6) in a weak

sense, Tadmor [20] applied the ∆ operator on Eq. (5.5) to retrieve ∆
(
ψk
)
= ∆(v)fk

T
+

v∆
(
fk

T
)
−∆

(
F k
)
, resulting in the equivalent condition [20, Eq. 4.5b],

∆(v)fk
T
= ∆

(
ψk
)
. (5.7)

Eq. (5.7) is known as the Tadmor shuffle condition. We introduce JvK = vi − vj as the

jump, and it has been shown that the two-point flux fks (vi,vj),

JvKfks (vi,vj)
T = JψkK, ∀k ∈ [1, d] (5.8)

is entropy conserving [1, 20] in the sense that the numerical discretization conserves the

equality∫
Ω
∂U
∂t
dΩ+

∫
Γ

(
vfT −ψ

)
· n̂ dΓ = 0 exactly.

In this paper, we consider the three-dimensional unsteady Euler equations,

∂W T

∂t
+∇ ·f (W )T = 0T ,

W =

[
ρ, ρu, ρv, ρw, ρe

]
,

f1 =

[
ρu, ρu2 + p, ρuv, ρuw, (ρe+ p)u

]
,

f2 =

[
ρv, ρuv, ρv2 + p, ρvw, (ρe+ p) v

]
,

f3 =

[
ρw, ρuw, ρvw, ρw2 + p, (ρe+ p)w

]
,

(5.9)

where ρe = p
γ−1

+ 1
2
ρ (u2 + v2 + w2), and ρ, u, v, w, p e γ are the density, velocity, pressure,
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specific total energy, and adiabatic coefficient respectively.

5.2.2 Computational Space

To discretely solve Eq. (5.1), we need to introduce notations with respect to the computational

space and basis functions. Since we discretely represent each equation of state separately, we

will remove the boldface on u to indicate that it is for a single state variable.

The computational domain Ωh is partitioned into M non-overlapping elements, Ωm, where

the domain is represented by the union of the elements, i.e.

Ω ≃ Ωh :=
M⋃
m=1

Ωm.

Each element m has a surface denoted by Γm. The global approximation, uh(xc, t), is

constructed from the direct sum of each local approximation, uhm(xc, t), i.e.

u(xc, t) ≃ uh(xc, t) =
M⊕
m=1

uhm(x
c, t).

Throughout this paper, all quantities with a subscript m are specifically unique to the element

m. On each element, we represent the solution with Np linearly independent modal or nodal

basis functions of a maximum order of p; where, Np := (p+ 1)d. The solution representation

is, uhm(xc, t) :=
∑Np

i=1 χm,i(x
c)ûm,i(t), where ûm,i(t) are the modal coefficients for the solution.

The elementwise residual for the governing equation (5.1) is,

Rh
m(x

c, t) =
∂

∂t
uhm(x

c, t) +∇ ·f(uhm(x
c, t)). (5.10)

The basis functions in each element are defined as,

χ(xc) := [χ1(x
c), χ2(x

c), . . . , χNp(x
c)] = χ(x)⊗ χ(y)⊗ χ(z) ∈ R1×Np , (5.11)
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where ⊗ is the tensor product. Importantly, in curvilinear elements, the basis functions are

not polynomial in physical space, but the basis functions are polynomial in reference space.

This concept was explored in great detail in Cicchino et al. [38, Sec. 3], as well as proofs for

rate of convergence in Botti [43] and Moxey et al. [44].

The physical coordinates are mapped to the reference element ξr := {[ξ, η, ζ] : −1 ≤

ξ, η, ζ ≤ 1} by

xcm(ξ
r) := Θm(ξ

r) =

Nt,m∑
i=1

Θm,i(ξ
r)x̂cm,i, (5.12)

where Θm,i are the mapping shape functions of the Nt,m physical mapping control points x̂cm,i.

To transform Eq. (5.10) to the reference basis, as in refs [45–49], we introduce the physical

aj :=
∂xc

∂ξj
, j = 1, 2, 3

and reference

aj := ∇ξj, j = 1, 2, 3

vector bases. We then introduce the determinant of the metric Jacobian as

J := |J | = a1 · (a2 × a3), (5.13)

and the metric Jacobian cofactor matrix as [15, 45, 46, 50],

CT := J(J)−1 =


Ja1

Ja2

Ja3

 =


Jaξ

Jaη

Jaζ

 . (5.14)

The metric cofactor matrix is formulated by the “conservative curl” form from [47, Eq. 36]
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so as to discretely satisfy the Geometric Conservation Law (GCL)

3∑
i=1

∂(J(ai)n)

∂ξi
= 0, n = 1, 2, 3⇔

3∑
i=1

∂

∂ξi
(C)ni = 0, n = 1, 2, 3⇔ ∇r · (C) = 0, (5.15)

for a fixed mesh, where ( )ni represents the nth row, ith column component of a matrix. The

exact implementation of the metric cofactor matrix is extensively detailed in Cicchino et

al. [38, Sec. 5]

Having established the transformations mapping the physical to the reference coordinates

on each element, the differential volume and surface elements can be defined as,

dΩm = JΩ
mdΩr, similarly dΓm = JΓ

mdΓr, (5.16)

where JΩ
m and JΓ

m are the determinants of the metric Jacobian in the volume Ω and surface Γ

for the element m respectively. The reference flux for each element m is defined as

f rm = CT
m ·fm ⇔ f rm,j =

d∑
i=1

(CT
m)jifm,i ⇔ f rm = fmCm, (5.17)

where the dot product notation for tensor-vector operations is introduced. The relationship

between the physical and reference unit normals is given as [15, Appendix B.2],

n̂m =
1

JΓ
m

Cm · n̂r =
1

JΓ
m

n̂rCT
m, (5.18)

for a water-tight mesh. Additionally, the definition of the divergence operator derived from

divergence theorem in curvilinear coordinates can be expressed as [45, Eq. (2.22) and (2.26)],

∇ ·fm =
1

JΩ
m

∇r ·
(
fmCm

)
=

1

JΩ
m

∇r ·f rm, (5.19)
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and the gradient of a scalar as [45, Eq. (2.21)],

∇χ =
1

JΩ
m

Cm ·∇rχ =
1

JΩ
m

(
∇rχ

)
CT
m. (5.20)

Thus, substituting Eq. (5.19) into Eq. (5.10), the reference elementwise residual can be

expressed as,

Rh,r
m (ξr, t) := Rh

m(Θm(ξ
r), t) =

∂

∂t
uhm(Θm(ξ

r), t) +
1

JΩ
m

∇r ·f r(uhm(Θm(ξ
r), t)). (5.21)

Lastly, since the basis functions are polynomial in the reference space, we introduce χ (ξr),

and they discretely satisfy discrete integration-by-parts for quadrature rules exact for at least

2p− 1 polynomials,

∫
Ωr

∇rχi (ξ
r)χj (ξ

r) dΩr+

∫
Ωr

χi (ξ
r)∇rχj (ξ

r) dΩr =

∫
Γr

χi (ξ
r)χj (ξ

r) n̂rdΓr,∀i, j ∈ [1, Np].

(5.22)

Eq. (5.22) is commonly referred to as the summation-by-parts (SBP) property.

5.3 Nonlinearly Stable Flux Reconstruction

In this section, we will present our nonlinearly stable FR scheme. To arrive at it, we first

present DG, then ESFR. Following the motivation from [37, 38], we then incorporate the

entropy stable framework within the stiffness operator to arrive at NSFR.

5.3.1 Discontinuous Galerkin

The discontinuous Galerkin approach is obtained by multiplying the reference residual

Eq. (3.13) by a test function which is chosen to be the basis function and integrating in

physical space. Then, we apply integration-by-parts in the reference space on the divergence

of the flux. Since the solution and flux are both discontinuous across the face, we introduce a

numerical surface flux f ∗
m to treat the resulting Riemann problem. The continuous weak DG
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is,

∫
Ωr

χi(ξ
r)JΩ

mχ(ξ
r)
d

dt
ûm(t)

TdΩr −
∫
Ωr

∇rχi(ξ
r) ·f rmdΩr

+

∫
Γr

χi(ξ
r)n̂rCT

m ·f ∗
m(u

h
m(Θm(ξ

r), t))dΓr = 0, ∀i = 1, . . . , Np.

(5.23)

The nonlinear reference flux f rm is computed through Eq. (5.17), where the physical flux

fm = f(u(ξrv, t) is evaluated directly from the solution at the integration points ξrv. Discretely,

to evaluate the integrals in Eq. (5.23), we utilize quadrature rules, where ξrv represents

the volume quadrature nodes, and ξrf,k represents the surface quadrature node on the face

f ∈ [1, Nf ] with facet cubature node k ∈ [1, Nfp]. To arrive at the equivalent strong form, we

first need to pay special attention to the nonlinear flux. Since the reference flux is evaluated

directly on the volume cubature nodes, we need to project it onto a polynomial basis with the

order of the number of quadrature nodes. For example, if uh is order p, and it is integrated

on p+ 4 quadrature nodes, the flux basis–ϕ(ξr) needs to be of at least order p+ 3 to avoid

aliasing errors when representing the flux. The easiest choice of basis functions for the flux

basis is to use Lagrange polynomials collocated on the quadrature nodes since a collocated

Lagrange basis has an identity projection operator. By collocated, we mean that the Lagrange

polynomial is evaluated on the same nodes, the quadrature nodes, as the polynomial it is

constructed from, making lij = δij, where i is the polynomial basis number and j the nodal

number.

Thus, applying discrete integration by parts on Eq. (5.23) results in,

Mm
d

dt
ûm(t)

T + χ(ξrv)
TW∇rϕ(ξrv) · f̂ rm(t)

T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·
[
f ∗,r
m − ϕ(ξrfk)f̂ rm(t)T

]
= 0T ,

(5.24)
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where W is a diagonal matrix storing the quadrature weights and the discrete mass matrix is,

(Mm)ij ≈
∫
Ωr

JΩ
mχi(ξ

r)χj(ξ
r)dΩr →Mm = χ(ξrv)

TWJmχ(ξ
r
v), (5.25)

with Jm as a diagonal matrix storing the determinant of the metric Jacobian at quadrature

nodes.

5.3.2 Energy Stable Flux Reconstruction

As initially proposed by H.T. Huynh [11], in an ESFR framework, the reference flux is

composed of a discontinuous and a corrected component,

f r(uhm(Θm(ξ
r), t)) := fD,r(uhm(Θm(ξ

r), t)) +

Nf∑
f=1

Nfp∑
k=1

gf,k(ξr)[n̂r · (f ∗,r
m − f rm)]. (5.26)

For three-dimensions, the vector correction functions gf,k(ξr) ∈ R1×d associated with face

f , facet cubature node k in the reference element, are defined as the tensor product of the

p+ 1 order one-dimensional correction functions (χp+1 stores a basis of order p+ 1), with the

corresponding p-th order basis functions in the other reference directions.

gf,k(ξr)

=

[(
ϕ(ξ)⊗ χ(η)⊗ χ(ζ)

)(
ĝf,k1

)T
,
(
χ(ξ)⊗ ϕ(η)⊗ χ(ζ)

)(
ĝf,k2

)T
,
(
χ(ξ)⊗ χ(η)⊗ ϕ(ζ)

)(
ĝf,k3

)T]
=
[
gf,k1 (ξr), gf,k2 (ξr), gf,k3 (ξr)

]
,

(5.27)

such that

gf,k(ξrfi,kj) · n̂rfi,kj =


1, if fi = f, and kj = k

0, otherwise.
(5.28)

Coupled with the symmetry condition gL(ξr) = −gR(−ξr) to satisfy Eq. (3.26), the
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one-dimensional ESFR fundamental assumption from [12] is,

∫ 1

−1

∇rχi(ξ
r)gf,k(ξr)dξ − c∂

pχi(ξ
r)T

∂ξp
∂p+1gf,k(ξr)

∂ξp+1
= 0, ∀i = 1, . . . , Np, (5.29)

and similarly for the other reference directions. Here, c is the ESFR correction parameter.

Akin to [38, 51, 52], consider introducing the differential operator,

2D: ∂(s,v) =
∂s+v

∂ξs∂ηv
, such that s = {0, p}, v = {0, p}, s+ v ≥ p,

3D: ∂(s,v,w) =
∂s+v+w

∂ξs∂ηv∂ζw
, such that s = {0, p}, v = {0, p}, w = {0, p}, s+ v + w ≥ p,

(5.30)

with its corresponding correction parameter

2D: c(s,v) = c
( s
p
+ v

p
)

1D ,

3D: c(s,v,w) = c
( s
p
+ v

p
+w

p
)

1D .

(5.31)

Note that the total degree is d×p for a tensor product basis that is of order p in each direction.

For example,

∂(0,p,0) =
∂p

∂ηp
, c(0,p,0) = c1D, ∂

(p,0,p) =
∂2p

∂ξp∂ζp
, c(p,0,p) = c21D, ∂

(p,p,p) =
∂3p

∂ξp∂ηp∂ζp
, c(p,p,p) = c31D.

Since
∫
Ωr
∂(s,v,w)χ(ξr)T∂(s,v,w)

(
∇rχ(ξr)

)
dΩr composes of the complete broken Sobolev-norm

for each s, v, w [38, 53], the tensor product ESFR fundamental assumption, that recovers the

VCJH [54] schemes exactly for linear elements is defined as,

∫
Ωr

∇rχi(ξ
r) · gf,k(ξr)dΩr−

∑
s,v,w

c(s,v,w)∂
(s,v,w)χi(ξ

r)∂(s,v,w)
(
∇r · gf,k(ξr)

)
= 0, ∀i = 1, . . . , Np,

(5.32)

where
∑

s,v,w sums over all possible s, v, w combinations in Eq. (5.30).

To discretely represent the divergence of the correction functions, we introduce the
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correction field

hf,k(ξr) ∈ P3p(Ωr) associated with the face f cubature node k as,

hf,k(ξr) = χ(ξr)
(
ĥf,k

)T
= ∇r · gf,k(ξr). (5.33)

To arrive at the ESFR strong form, we substitute the ESFR reference flux, Eq. (5.26), into the

elementwise reference residual, Eq. (5.21), project it onto the polynomial basis, and evaluate

at cubature nodes,

χ(ξrv)
d

dt
ûm(t)

T + J−1
m ∇rχ(ξrv) · f̂D,rm (t)T + J−1

m

Nf∑
f=1

Nfp∑
k=1

χ(ξrv)
(
ĥf,k

)T
[n̂r · (f ∗,r

m − f rm)] = 0T .

(5.34)

For implementation in a pre-existing DG framework, Allaneau and Jameson [16] showed

that ESFR can be expressed as a filtered DG scheme in one-dimension. Zwanenburg and

Nadarajah [15] proved that ESFR can be expressed as a filtered DG scheme for general

three-dimensional curvilinear coordinates on mixed element types. Expanding the reference

ESFR filter in Zwanenburg and Nadarajah [15] allows ESFR schemes to be seen as a DG-type

scheme with a modified norm [17]. Only by viewing ESFR as DG with a modified norm can

a nonlinearly stable form be achieved [37, 38] since the determinant of the metric Jacobian

gets embedded in the norm, and the entropy stability application is embedded in the stiffness

operator. The equivalence to view ESFR through a modified norm is dependent on [38,

Lemma 2], where it was proven that the ESFR correction operator has no influence on the

conservative volume term when the inverse of the mass matrix is applied. To present ESFR
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as a DG scheme with a modified mass matrix, we introduce the ESFR correction operator as,

(Km)ij ≈
∑
s,v,w

c(s,v,w)

∫
Ωr

JΩ
m∂

(s,v,w)χi(ξ
r)∂(s,v,w)χj(ξ

r)dΩr

→Km =
∑
s,v,w

c(s,v,w)∂
(s,v,w)χ(ξrv)

TWJm∂
(s,v,w)χ(ξrv)

=
∑
s,v,w

c(s,v,w)

(
Ds

ξD
v
ηD

w
ζ

)T
Mm

(
Ds

ξD
v
ηD

w
ζ

)
,

(5.35)

where Ds
ξ =

(
M−1Sξ

)s
is the strong form differential operator raised to the power s, and

similarly for the other reference directions.

Therefore, recasting Eq. (5.24) as an ESFR scheme through the modified-norm frame-

work [37, 38] results in,

(Mm +Km)
d

dt
ûm(t)

T + χ(ξrv)
TW∇rϕ(ξrv) · f̂ rm(t)

T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·
[
f ∗,r
m − ϕ(ξrfk)f̂ rm(t)T

]
= 0T .

(5.36)

Comparing Eq. (5.36) with Eq. (5.24), we note that all of the FR contributions arise from the

modified mass matrix.

5.3.3 Nonlinearly Stable Flux Reconstruction

As in Chan [1, 2, 6], we utilize the general differential operator to recast Eq. (5.36) in a

skew-symmetric two-point flux differencing form [2, Eq. (15)],

(Mm +Km)
d

dt
ûm(t)

T +
[
χ(ξrv)

T χ(ξrf )
T
] [(

Q̃− Q̃T
)
⊙ F r

m

]
1T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·f ∗,r
m = 0T ,

(5.37)
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where,

Q̃−Q̃T =

W∇rϕ(ξrv)−∇rϕ(ξrv)
TW

∑Nf

f=1ϕ(ξ
r
f )
TWfdiag(n̂rf )

−∑Nf

f=1Wfdiag(n̂rf )ϕ(ξrf ) 0

 ∈ R(Nv+Nfp)×(Nv+Nfp)×d

(5.38)

is the general hybridized skew-symmetric stiffness operator involving both volume and surface

quadrature evaluations [2] that has each Q̃ satisfying the SBP-like property

Q̃+ Q̃T =

0 0

0 Wfdiag(n̂rf )

 . (5.39)

The hybrid skew-symmetric stiffness operator is constructed solely from the flux basis since

the flux basis discretely satisfies the SBP property on the quadrature nodes. Here, ϕ(ξrf ) be

the matrix storing the flux basis evaluated at all surface quadrature nodes on the surface

f . We let ⊙ represent a Hadamard product with a component-wise dot product on the

d-dimensional tensors. This is accomplished by performing a Hadamard product of size

(Nv +Nfp)× (Nv +Nfp) in each of the d directions, then performing the summation on each

d direction from the dot product. Also, F r
m is the matrix storing the reference two-point flux

values,

(F r
m)ij = fs

(
ũm(ξ

r
i ), ũm(ξ

r
j )
)(1

2

(
Cm(ξ

r
i ) +Cm(ξ

r
j )
))
, ∀ 1 ≤ i, j ≤ Nv +Nfp. (5.40)

We chose to incorporate the splitting of the metric cofactor matrix [38] within forming

the reference two-point flux rather than incorporating it within a “physical” skew-symmetric

stiffness operator [2, 6]. Although both forms are mathematically equivalent, the former allows

us to exploit the tensor product structure of the reference basis stiffness operator to perform

the Hadamard product at order O
(
nd+1

)
[41] whereas the latter does not. We provide a

detailed report on evaluations of Hadamard products at O
(
nd+1

)
using tensor product basis

in the technical report [41].
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The choice of two-point flux fs
(
ũm(ξ

r
i ), ũm(ξ

r
j )
)

dictates the physically relevant conserving

properties of the scheme. For an entropy conserving scheme, we choose a two-point flux that

satisfies the Tadmor shuffle condition Eq. (5.7),

(
v (ξri )− v

(
ξrj
))
fs
(
ũm(ξ

r
i ), ũm(ξ

r
j )
)T

= ψ (v (ξri ))−ψ
(
v
(
ξrj
))
, ∀ 1 ≤ i, j ≤ Nv +Nfp,

(5.41)

with the entropy-projected conservative variables ũm(ξr) [1]. The entropy projected con-

servative variables are computed by interpolating the conservative solution to the volume

quadrature nodes, and evaluating the entropy variables on the quadrature nodes. Then

the entropy variables are projected onto the solution basis to obtain the p-th order modal

coefficients. Lastly, the modal coefficients are then interpolated to the volume and surface

quadrature nodes where the entropy-projected conservative variables are obtained by doing the

inverse of the mapping. This process is critical because, in Eq. (5.41), the entropy potential

ψ is a function of the entropy variables, not of the conservative variables. Thus, we need

to discretely satisfy it with the entropy variables at the quadrature nodes. Also, for the

stability condition, the residual is left multiplied by the modal coefficients of the entropy

variables—thus we need the entropy variables projected on the solution basis. The entropy

projected variables are summarized by,

ũ (ξr) = u
(
χ(ξr)v̂T

)
, v̂T = Π

(
v
(
χ (ξrv) û

T
))
. (5.42)

For Burgers’ equation, there is a unique flux that satisfies the Tadmor shuffle equation [19],

but for the Euler equations, there are different possibilities depending on the variables chosen

for expressing the jumps [55, Sec. 4.5]. Ismail and Roe [56] were the first to introduce a

change of variables to arrive at an explicit form for an entropy conserving flux. Motivated to

conserve both entropy and kinetic energy, Chandrashekar [55] derived an entropy conserving

and kinetic energy preserving flux by considering the variables ρ, u, and β = ρ
2p

= 1
2RT

, where

R is the universal gas constant and T is the temperature. Importantly noted by both Ismail
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and Roe [56] and Chandrashekar [55], for an entropy dissipative flux, the jump in the entropy

variables must be recovered. If the jump in the conservative variables is employed, then

for the Euler equations, the scheme is not purely entropy dissipative [55, Sec. 5]. Lastly,

Ranocha [57] presented a systematic framework to constructing an entropy conserving and

kinetic energy preserving flux from different combinations of thermodynamic variables for the

Euler equations.

5.4 Weight-Adjusted Inverse of Flux Reconstruction Mass

Matrix

By immediate inspection, inverting Mm +Km on-the-fly is costly since they are both fully

dense matrices in curvilinear coordinates. Instead, our goal is to make use of the tensor

product structure and use sum-factorization [40] techniques for efficient, low storage evaluations

on-the-fly.

Similar to Chan and Wilcox [6, Eq. (27)], we let uJ represent the weight-adjusted

polynomial’s modal coefficients. We need to solve the matrix system,

(M1/J +K1/J)u
T
J = (M +K)uT , (5.43)

where

M1/J = χ(ξrv)
TWJ−1

m χ(ξ
r
v),

K1/J =
∑
s,v,w

c(s,v,w)
(
Ds

ξD
v
ηD

w
ζ

)T
M1/J

(
Ds

ξD
v
ηD

w
ζ

)
,

(5.44)

are both dense for the uncollocated case, symmetric and positive definite. Thus, we can

express the respective weight-adjusted system FR mass matrix and inverse of the FR mass
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matrix as,

(Mm +Km) ≈ (M +K)
(
M1/J +K1/J

)−1
(M +K) ,

(Mm +Km)
−1 ≈ (M +K)−1 (M1/J +K1/J

)
(M +K)−1 .

(5.45)

It is important to note that (M +K)−1 has the same local value for each element.

Therefore, computing (Mm +Km)
−1 via Eq. (5.45) only depends on inverting the diagonal

matrix storing the determinant of the Jacobian on-the-fly.

As detailed by Chan and Wilcox [6], the accuracy of the weight-adjusted inverse approx-

imation is solely dependent on the accuracy of the projection. In Cicchino et al. [38], the

ESFR projection operator was demonstrated to maintain the orders of convergence up to the

upper limit found by Castonguay [58, Fig. 3.6]. Thus, we can make further improvements by

introducing the ESFR projection operator in reference space,

Π̃(ξrv) = Π̃(ξv)⊗ Π̃(ηv)⊗ Π̃(ζv),

Π̃(ξv) = (M (ξv) +K(ξv))
−1χ (ξv)

T W (ξv),

(5.46)

where M(ξv) + K(ξv) is the one-dimensional modified mass matrix, χ (ξv) is the one-

dimensional basis function, and W (ξv) stores the 1D quadrature weights.

Therefore, using the reference ESFR projection operator in Eq. (5.46), the weight-adjusted

inverse to the ESFR modified mass matrix is,

(Mm +Km)
−1 ≈ Π̃(ξrv) (WJm)

−1 Π̃(ξrv)
T . (5.47)

Using Eq. (5.47) reduces the computational cost to inverting a diagonal matrix, WJm,

and this form enables sum-factorized expansions through the tensor product structure of the

reference ESFR projection operator. The diagonal elements WJm can either be pre-computed

and stored or computed on-the-fly. Lastly, we need to show that the ESFR weight-adjusted

inverse preserves the orders of convergence.
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Theorem 5.4.1. The weight-adjusted inverse for the ESFR mass matrix in Eq. (5.47)

preserves the order of convergence O(hp+1).

Proof. From Chan and Wilcox [6, Thm 4], the weight-adjusted inverse is of order

hmin(r,p+1)+1 for

u ∈ W r,2 (Ωm). With the choice of ESFR correction functions from Vincent et al. [12], and by

rewriting the correction functions through a filtered DG form [15, 16], the ESFR projection

operator is of the same order as the DG projection operator for values of c ≤ c+. This was

numerically shown by Castonguay [58] for the ESFR correction functions and by Cicchino et

al. [38] for the ESFR projection of the volume split-form divergence in curvilinear coordinates.

Therefore, since the ESFR projection operator is of the same order of accuracy as the DG

projection operator, the ESFR weight-adjusted inverse holds the same order of accuracy as

the DG result in Chan and Wilcox [6].

In Sec. 5.7.1, we demonstrate numerically that the numerical scheme with the weight-

adjusted inverse for ESFR discretizations maintains the correct orders of accuracy for values

c ≤ c+, with the same trends in the error convergence as [12, 38, 58].

5.5 Scalable Evaluations

With the intent of the high-order solver being used on next generation hardware, on both

CPUs and GPUs, we wish that the solver’s flops scale at the lowest order possible, and has

a low memory footprint. In this section, we briefly review sum-factorization techniques to

drastically reduce the memory footprint and flop count for evaluating the NSFR discretization

in Eq. (5.37). For this section, we will let n = p + 1 and d still represent the dimension

of the operators. By observation, the flops in the NSFR discretization Eq. (5.37) are

dominated by dense matrix-vector multiplications, along with a dense Hadamard product.

We resolve the scaling issue for the matrix-vector multiplications with sum-factorization [40],

and the Hadamard product with the sum-factorized Hadamard product from Cicchino and

Nadarajah [41, Thm. 2.1]. Following the roofline model [59], all operations would ideally have
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a large arithmetic intensity (A.I.), A.I. = flops
bytes , with it being a function of n.

Let’s consider interpolating the modal coefficients û to the volume quadrature nodes by

the basis functions χ (ξrv). Since, χ (ξrv) = χ (ξrv)⊗χ (ηrv)⊗χ (ζrv) ∈Mnd×nd (R) is the tensor

product of the n-sized one-dimensional basis function matrices χ (ξrv), then uTv = χ (ξrv) û
T

is evaluated directly in n2d flops. Orszag [40] observed that the tensor product structure

can be exploited, and the matrix-vector multiplication can be evaluated in each direction

independently. The flop count for sum-factorization is dnd+1. As extensively detailed in

Karniadakis and Sherwin [60, Chapters 3, 4], by using quadrilateral and hexahedral reference

elements, the basis operations can straightforwardly use sum-factorization. For triangular,

tetrahedral, prismatic, and pyramidic-based elements, Karniadakis and Sherwin [60, Chapters

3, 4] derived orthogonal tensor product basis functions to exploit sum-factorization in high-

order codes.

We will present the sum-factorization operations as a sequence of matrix-matrix multipli-

cations alike Cantwell et al. [61] to leverage optimizations in the BLAS subsystem. We let the

ξ-direction run the fastest, then η, and ζ running the slowest. First, we rearrange the modal

coefficient’s of û → ûnξ:nηnζ ∈Mnξ×nηnζ
(R), where nξ is the one-dimensional basis size in

the ξ-direction, similarly for nη and nζ . The transformation makes ûnξ:nηnζ a matrix where

its rows vary in the ξ-direction, and its columns vary in η and ζ. This allows us to perform a

one-dimensional matrix-vector multiplication in ξ, at n2 flops, and perform it nd−1 times for

the η and ζ combinations in the columns. Alike Cantwell et al. [61, Sec. 2.3.1], following the

same steps for the other directions arrives at,

q
nξ:nηnζ

0 = χ (ξrv) û
nξ:nηnζ ,

q
nη :nζnξ

1 = χ (ηrv) q0
nη :nζnξ ,

q
nζ :nξnη

2 = χ (ζrv) q1
nζ :nξnη ,

uv = q
nξnηnζ :1
2 .

(5.48)

Each line in Eq. (5.48) has n2nd−1 = nd+1 flops, and then it is repeated for the d-
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lines, arriving at dnd+1 flops. The memory footprint involves loading the d one-dimensional

basis operator matrices of size n2, loading the nd vector, writing the final nd vector, and

writing/loading the nd sub-vectors d-times. Thus, the arithmetic intensity for Eq. (5.48) is

A.I. = dnd+1

(d+2)nd+dn2 . A detailed analysis of the strong scaling and roofline model for high-order

methods, such as continuous Galerkin, DG, and hybrid DG, while exploiting sum-factorization

on quadrilateral/hexahedral meshes is found in Kronbichler and Wall [62] and Moxey et

al. [63] for triangular based elements.

For the evaluation of the mass inverse, and other multi-step operators, each step is

evaluated consecutively. For example, let’s consider applying the weight-adjusted mass matrix

inverse approximation, Eq. (5.47), on the right-hand-side. We would first use sum-factorization

on multiplying Π̃ (ξrv)
T to the right-hand-side at dnd+1 flops. Then we multiply the inverse of

a diagonal operator storing the determinant of the Jacobian multiplied with the quadrature

weights at nd flops. Lastly, we use sum-factorization to multiply Π̃ (ξrv) for an additional

dnd+1 flops. Rather than building a mass matrix at n2d flops, inverting it at n3d flops, and

performing one matrix-vector operation at n2d flops, we used the matrix-free sum-factorization

approach to evaluate it in three separate steps, at a total of 2dnd+1 + nd flops.

For the Hadamard product in Eq. (5.37), we use the sum-factorized Hadamard product

from Cicchino and Nadarajah [41, Thm. 2.1]. The volume-volume Hadamard product from

the upper left block of Eq. (5.38) is evaluated in dnd+1 flops. The surface-volume Hadamard

products from the upper right and lower left blocks in Eq. (5.38) are each evaluated in

dnd flops. Since sum-factorization evaluates a matrix-vector product in dnd+1 flops, the

computational cost difference between the divergence of the flux in conservative strong DG

and the Hadamard product in NSFR is in the evaluation of the two-point flux.

In Sec. 5.7.4, for the Taylor-Green vortex problem on a nonsymmetrically warped curvilinear

mesh, we numerically verify the scaling at order O
(
nd+1

)
for the NSFR discretization in

Eq. (5.37) as compared to the conservative DG scheme in Eq. (5.24) with and without

overintegration. We also numerically compare the wall clock time for the flow simulation.
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5.6 Conserved Properties of NSFR

In this section we provide the three main theorems of this work: free-stream preservation,

global conservation, and entropy stability for NSFR in a weight-adjusted framework.

5.6.1 Free-stream Preservation

The first conserved quantity that NSFR preserves is free-stream preservation. If the free-

stream is not preserved, then the nonlinear metric terms would introduce cross-wind into the

flow that drastically destroy the fidelity of the solver [47, 64]. Thus, for curvilinear coordinates,

it is necessary that the discretization is provably free-stream preserving.

Theorem 5.6.1. The NSFR discretization in Eq. (5.37) with the weight-adjusted low-storage

mass matrix inverse from Eq. (5.47) is free-stream preserving.

Proof. Similar to Cicchino et al. [38, Sec. 5.1], we substitute fm = α = constant and
dûm(t)
dt

= 0 into Eq. (5.37),

[
χ(ξrv)

T χ(ξrf )
T
] [(

Q̃− Q̃T
)
⊙ F r

m

]
1T +

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·αCm(ξ
r
fk). (5.49)

Substituting the SBP property Eq. (5.39) for Q̃T into Eq. (5.49) results in,

[
χ(ξrv)

T χ(ξrf )
T
] [

2Q̃⊙ F r
m

]
1T +

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·
[
αCm(ξ

r
fk)−αCm(ξ

r
fk)
]
, (5.50)

where the surface integral cancels off. For the Hadamard product, we note that the physical

flux is constant, rendering the reference flux (F r
m)ij =

1
2
α
(
Cm(ξ

r
i ) +Cm(ξ

r
j )
)

equal to the

central flux with respect to the metric cofactor matrix. Using Fisher and Carpenter [4, Thm
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3.1 and 3.2] and Gassner et al. [5, Eq. (3.5)], we can expand the Hadamard product as,

[
χ(ξrv)

T χ(ξrf )
T
] [

2Q̃⊙ F r
m

]
1T = χ(ξrv)

TW∇rϕ (ξrv) · (αCm (ξrv))

− χ(ξrv)T
Nf∑
f=1

Nfp∑
k=1

[
ϕ(ξrfk)

TWfkn̂
r ·ϕ(ξrfk) (αCm(ξ

r
v))−

1

2
ϕ(ξrfk)

TWfkn̂
r ·
(
αCm(ξ

r
f,k)
)]

+
1

2

Nf∑
f=1

Nfp∑
k=1

χ(ξrf,k)
TWfkn̂

r ·ϕ(ξrfk) (αCm(ξ
r
v)) .

(5.51)

The volume term on the right-hand side vanishes if the GCL in Eq. (3.7) is satisfied discretely.

In Cicchino et al. [38, Sec. 5], we provided a detailed review to construct the metric terms to

discretely satisfy GCL with consistent surface normals. The review in Cicchino et al. [38, Sec.

5] first summarized Kopriva’s [47] derivation of the conservative and invariant curl forms, then

followed the work by Abe et al. [65] to ensure consistency on the surfaces for different flux and

grid nodes. By using the consistency condition from the mapping shape functions from the

grid nodes to the flux nodes, then ϕ(ξrfk) (αCm(ξ
r
v)) = αCm(ξ

r
f,k), and ϕ(ξrfk)χ(ξrv) = χ(ξrfk),

which sees the surface terms eliminated. Therefore, the NSFR discretization is free-stream

preserving for vector-valued conservation laws.

5.6.2 Global Conservation

A crucial property for discretizations that approximate weak solutions to conservation laws is

that they discretely satisfy conservation. Continuously, the conservation property is obtained

by performing divergence theorem on the flux,
∫
Ω
∂u
∂t
dΩ = −

∫
Ω
∇ ·fdΩ = −

∫
Γ
f · n̂dΓ.

Theorem 5.6.2. The NSFR discretization in Eq. (5.37) with the weight-adjusted low-storage

mass matrix inverse from Eq. (5.47) is locally conserving.
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Proof. For each equation of state we left multiply Eq. (5.37) by 1̂, such that χ(ξrv)1̂T =

1T ,

1̂ (Mm +Km)
d

dt
ûm(t)

T + 1
[(
Q̃− Q̃T

)
⊙ F r

m

]
1T +

Nf∑
f=1

Nfp∑
k=1

Wfkn̂
r ·f ∗,r

m . (5.52)

Akin to [1, 2, 5, 24, 28, 31, 66–70],
(
Q̃− Q̃T

)
⊙ F r

m is skew-symmetric, so the volume

terms vanish. Also, we substitute 1̂Km
d
dt
ûm(t)

T = 0 because 1̂Km = 0. Therefore,

1̂ (Mm +Km)
d

dt
ûm(t)

T = 1̂Mmûm(t)
T = −

Nf∑
f=1

Nfp∑
k=1

Wfkn̂
r ·f ∗,r

m , (5.53)

recovers the local conservation result for discontinuous Galerkin schemes and the scheme is

locally conservative.

After summing across all of the elements and using a telescopic flux, the scheme is globally

conservative.

5.6.3 Nonlinear Stability

The last theorem of this section pertains to nonlinear stability. When a scheme is provably

discretely nonlinearly stable, then, based from the work of Lyapunov, the approximate solution

in bounded within a norm to the true solution. Hence, the discrete solution remains stable

provided the positivity of density and pressure. It is important to note that stability does not

imply convergence.

Theorem 5.6.3. The NSFR discretization in Eq. (5.37) with the weight-adjusted low-storage

mass matrix inverse from Eq. (5.47) is discretely entropy conserving if the two-point flux

satisfies the Tadmor shuffle condition. Thus, the NSFR discretization in Eq. (5.37) is

nonlinearly stable.
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Proof. We left multiply Eq. (5.37) by the modal coefficients of the entropy variables

evaluated at the quadrature nodes, and sum over all of the states,

nstate∑
n=1

[
v̂n (Mm +Km)

d

dt
ûm,n(t)

T + v̂n
[
χ(ξrv)

T χ(ξrf )
T
] [(

Q̃− Q̃T
)
⊙ F r

m,n

]
1T

+ v̂n

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·f ∗,r
m,n

]
.

(5.54)

It is important to note that Eq. (5.54) is not the same as only applying the (Mm +Km)
−1 on

the surface as commonly used in the FR literature [12, 15, 16, 25, 26, 71–73]. To demonstrate

this, consider comparing the stability condition for NSFR,

NSFR Stability:
nstate∑
n=1

[
v̂n (Mm +Km)

d

dt
ûm,n(t)

T

+ v̂n (Mm +Km) (Mm +Km)
−1 [χ(ξrv)T χ(ξrf )T ] [(Q̃− Q̃T

)
⊙ F r

m,n

]
1T

+ v̂n (Mm +Km) (Mm +Km)
−1

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·f ∗,r
m,n

]
,

(5.55)

versus a classical ESFR scheme in a flux differencing form,

ESFR Flux Differencing Stability:
nstate∑
n=1

[
v̂n (Mm +Km)

d

dt
ûm,n(t)

T

+ v̂n (Mm +Km) (Mm)
−1 [χ(ξrv)T χ(ξrf )T ] [(Q̃− Q̃T

)
⊙ F r

m,n

]
1T

+ v̂n (Mm +Km) (Mm +Km)
−1

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·f ∗,r
m,n

]
.

(5.56)

By considering FR as DG with a modified mass matrix Mm+Km, we directly incorporate

the influence of the FR correction functions through Km on the non-conservative volume

terms. This allows Eq. (5.54) to implicitly have (Mm +Km) (Mm +Km)
−1 cancel on the

153



volume-surface hybrid term as seen in Eq. (5.55). That was not observed in Ranocha et al. [25,

73] nor Abe et al. [26] since the ESFR flux differencing volume term does not have the Km

operator vanish, which renders it unstable, as seen by KmM
−1
m in Eq. (5.56).

The next step highlights the importance of using the entropy-projected variables. As in,

Chan [1], we will denote ṽ = χ (ξr) v̂T , then the volume-surface hybrid term becomes,

nstate∑
n=1

v̂n
[
χ(ξrv)

T χ(ξrf )
T
] [(

Q̃− Q̃T
)
⊙ F r

m,n

]
1T

=
nstate∑
n=1

Nv+NfNfp∑
i,j=1

(
Q̃
)
ij

· (ṽn,i − ṽn,j)f rs,n
(
ũm(ξ

r
i ), ũm(ξ

r
j )
)
.

(5.57)

Chan [1] arrived at Eq. (5.57) by expanding the volume hybrid term in a flux differencing

form that sums over all quadrature nodes [1, Eq. (71)]. Then the Tadmor shuffle condition

was substituted for the change of entropy variables and two-point flux to recover the entropy

potential on the surface through integration-by-parts [1, Eq. (72) and (73)]. The substitution

for the Tadmor shuffle condition by Chan [1, Eq. (72) and (73)] was only possible because the

two-point flux was constructed by the entropy projected variables. Since the Tadmor shuffle

condition is a function of the entropy variables in Eq. (5.41), the two-point flux has to satisfy

fs,n =
ψn,i−ψn,j

ṽn,i−ṽn,j
, and thus the conservative variables used to construct fs need to be mapped

from ṽ. Making the substitution renders,

nstate∑
n=1

v̂n (Mm +Km)
d

dt
ûm,n(t)

T =
nstate∑
n=1

Nf∑
f=1

Nfp∑
k=1

(
ψn
(
ξrfk
)
− vn

(
ξrfk
)
f ∗,r
m,n

)
· n̂r. (5.58)

Using appropriate boundary conditions, and the choice of f ∗,r
m,n

(
ũleft(ξ

r
fk), ũright(ξ

r
fk)
)

as an

entropy conserving flux based on entropy projected variables from the left and right of the

face, completes the proof for discrete entropy conservation within the (Mm +Km)-norm.

To incorporate entropy dissipation, as extensively detailed by Chandrashekar [55, Sec. 5

and 6], careful treatment needs to be considered. By directly considering the jump in the

conservative variables with a positive scalar does not provably guarantee entropy dissipation
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because the jump in energy is not entropy dissipative [55, Sec. 5.2]. Thus, we make use of the

Roe dissipation [74] which can provably be recast with the jump of the entropy variables to

provably add entropy dissipation [55, 56].

An important consequence of the need for projected entropy variables to satisfy the Tadmor

shuffle condition in the volume is that a scheme cannot be discretely kinetic energy preserving

if the surface quadrature is not a subset of the volume quadrature. For example, if the scheme

is integrated on Gauss-Legendre quadrature nodes it cannot be exactly discretely kinetic

energy preserving, whereas if it is integrated on Gauss-Legendre-Lobatto volume quadrature

it can be kinetic energy preserving.

Lemma 5.6.1. An uncollocated high-order discretization cannot be exactly discretely kinetic

energy preserving if the surface quadrature nodes are not a subset of the volume quadrature

nodes.

Proof.

We begin by considering the kinetic energy as K.E. = 1
2
ρ (u2 + v2 + w2). Similarly to

entropy, the kinetic energy variables are,

vK.E. =
∂K.E.

∂u
=

[
−u

2 + v2 + w2

2
, u, v, w, 0

]
, (5.59)

and the kinetic energy potential is ψk = 0, ∀k ∈ [1, d]. Since the fifth value of vK.E. is 0, an

inverse mapping from vK.E. → u does not exist. Considering we have a two-point flux that

satisfies kinetic energy preservation, we need the surface numerical flux evaluated with the

entropy projected variables on the face f facet cubature node k, ũ
(
ξrfk
)
= u

(
χ
(
ξrfk
)
v̂TK.E.

)
.

Although we can evaluate the interpolation of the kinetic energy variable to the face, we cannot

perform the inverse mapping to extract the conservative variables. If the surface quadrature

nodes are a subset of the volume quadrature nodes, then the interpolation and projection

operators become an identity, and the inverse mapping is never needed to evaluate ũ
(
ξrfk
)
,

allowing for discrete kinetic energy conservation only for the case when the surface quadrature

155



nodes are a subset of the volume quadrature nodes (for example Gauss-Lobatto-Legendre).

We numerically verify Lemma 5.6.1 in Sec. 5.7.3, where kinetic energy is conserved to

machine precision when integrated on Gauss-Lobatto-Legendre quadrature nodes, and it is

dissipated when integrated on Gauss-Legendre quadrature nodes.

5.7 Results

In this section, we use the open-source Parallel High-order Library for PDEs (PHiLiP) [75].

We first perform a grid study to verify the orders of convergence with the weight-adjusted

framework. Then, we numerically verify the nonlinear stability properties from Section 5.6.

For all tests, we use a 4-stage, fourth-order Runge-Kutta timestepping scheme with an

adaptive timestep based on the maximum wavespeed in the domain with a CFL= 0.1. We let

the adiabatic constant γ = 1.4 for all tests. For the NSFR-EC schemes, “EC” refers to entropy

conserving, we use Chandrashekar’s [55] entropy conserving flux with Ranocha’s [76] pressure

fix for kinetic energy preservation for the two-point flux; while “GL” refers to integrating on

Gauss-Legendre nodes and “LGL” refers to integrating on Lobatto-Gauss-Legendre quadrature.

All schemes have the conservative solution modal coefficients on LGL nodes. We use the

weight-adjusted mass matrix inverse for all schemes except the conservative DG. For the

curvilinear case, the metric terms are constructed by p + 1 order polynomials detailed in

Cicchino et al. [38]. Lastly, when the scheme is “overintegrated”, the number of quadrature

nodes is (p+ 1) + overintegration.

For the curvilinear grid, it is important to use a non-symmetric mapping in every direction

to ensure that none of the nonlinear metric terms implicitly factor off, as discussed in
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Cicchino et al. [38]. The three-dimensional mapping is

[x, y, z] ∈ [xL, xR]
3, [a, b, c] ∈ [xL, xR]

3, l =
xR − xL

2π
,

x = a+ β sin
(a
l

)
sin

(
b

l

)
sin

(
2c

l

)
,

y = b+ β sin

(
4a

l

)
sin

(
b

l

)
sin

(
3c

l

)
,

z = c+ β sin

(
2a

l

)
sin

(
5b

l

)
sin
(c
l

)
.

(5.60)

A cross-section for Eq. (5.60) is presented in Figure 5.1.

Figure 5.1: 3D Nonsymmetrically Warped Curvilinear Grid Cross-Section.
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5.7.1 Manufactured Solution Convergence

In this subsection we consider the manufactured solution for Euler’s equations from Gassner

et al. [5],

ρ = 2 +
1

10
sin (π (x+ y + z − 2t)),

u = 1,

v = 1,

w = 1,

ρe = ρ2,

(5.61)

with the unsteady source term,

q =



c1 cos (π (x+ y + z − 2t))

c2 cos (π (x+ y + z − 2t)) + c3 sin (2π (x+ y + z − 2t))

c2 cos (π (x+ y + z − 2t)) + c3 sin (2π (x+ y + z − 2t))

c2 cos (π (x+ y + z − 2t)) + c3 sin (2π (x+ y + z − 2t))

c4 cos (π (x+ y + z − 2t)) + c5 sin (2π (x+ y + z − 2t))


, (5.62)

with c1 = π
10

, c2 = −π
5
+ π

20
(1 + 5γ),

c3 =
π
100
, (γ − 1), c4 = π

20
(−7 + 15γ), and c5 = π

100
(3γ − 2). The domain is [x, y, z] ∈ [−1, 1]3,

and we use β = 1
50

and l = 2 in the warping Eq. (5.60). The ∆x is taken as the average

distance between two quadrature points, l
M1D(p+1)

, where M1D is the total number of elements

in one-dimension. We simulate for one cycle to a final nondimensionalized time of tf = 2. For

the surface numerical flux, we add Roe dissipation [74] to the entropy conserving baseline flux.

We integrate on Gauss-Legendre quadrature nodes with an uncollocated Lagrange modal

basis. We used the weight-adjusted mass inverse approximation from Eq. (5.47) with an

adaptive timestep of ∆t = 0.2 ∆x
λmax

, where λmax is the maximum eigenvalue in the domain.

The L2-error is computed as,
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L2− error ≈

√√√√ M∑
m=1

∫
Ωm

(um − u)2 dΩm =

√√√√ M∑
m=1

(uTm − uTexact)WJm (um − uexact). (5.63)

The orders are presented in Fig. 5.2 for both density and pressure for the NSFR entropy

conserving (EC) scheme with cDG and c+.
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Convergence.

0.01 0.02

 x

10 -10

10 -8

10 -6

10 -4

10 -2

L
2

 E
rr

o
r

NSFR-EC-c
DG

 density, 

NSFR-EC-c
+

 density, 

NSFR-EC-c
DG

 pressure, p

NSFR-EC-c
+

 pressure, p

Slope = 5

(b) 3D Manufactured Solution p = 4 Orders of
Convergence.

0.005 0.01 0.015 0.02

 x

10 -10

10 -5

L
2

 E
rr

o
r

NSFR-EC-c
DG

 density, 

NSFR-EC-c
+

 density, 

NSFR-EC-c
DG

 pressure, p

NSFR-EC-c
+

 pressure, p

Slope = 6

(c) 3D Manufactured Solution p = 5 Orders of
Convergence.

Figure 5.2: 3D Manufactured Solution Orders of Convergence

From Fig. 5.2, we observe that the NSFR discretization converges at p+ 1 for both cDG

and c+ variants in curvilinear coordinates. The error levels obtained with c+ were slightly

larger than those obtained with cDG for the same grid level and polynomial order as expected.

The larger error levels are a trade-off for larger maximum timesteps offered by c+.
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5.7.2 Maximum CFL

In this subsection we compare the maximum CFL numerically obtained for different NSFR

schemes. We consider the manufactured solution from Sec. 5.7.1 and run it for different NSFR

correction parameter choices, different integration nodes, and different polynomial degrees.

The manufactured solution is integrated until a final time tf = 1.0s for each combination

of parameters with a CFL= 0.1. Then, we increase the CFL by 0.01 and rerun the test

until the computed pressure error at tf = 1.0 exceeds seven significant digits as compared

to the solution obtained with a CFL= 0.1. GL implies that the scheme was integrated on

Gauss-Legendre quadrature nodes, and LGL signifies that the scheme was integrated on

Gauss-Legendre-Lobatto quadrature nodes.
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Scheme Quadrature Max CFL

NSFR cDG GL 0.18

NSFR c+ GL 0.21

NSFR cHU GL 0.22

NSFR cDG LGL 0.16

NSFR c+ LGL 0.24

(a) Max CFL for p = 3, 43 elements.

Scheme Quadrature Max CFL

NSFR cDG GL 0.17

NSFR c+ GL 0.29

NSFR cHU GL 0.24

NSFR cDG LGL 0.14

NSFR c+ LGL 0.28

(b) Max CFL for p = 4, 43 elements.

Scheme Quadrature Max CFL

NSFR cDG GL 0.17

NSFR c+ GL 0.22

NSFR cHU GL 0.23

NSFR cDG LGL 0.16

NSFR c+ LGL 0.20

(c) Max CFL for p = 5, 43 elements.

Table 5.1: Max CFL for p = 3, p = 4 and p = 5, 43 elements.

Table 5.1 shows an increase in CFL from cDG to c+ as that found for linear advection
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by Vincent et al. [54], but the difference in CFL values is not as large as the linear case

from Vincent et al. [54]. In the NSFR implementation Eq. (5.37), this increase in CFL

comes without additional runtime computational cost. Unlike the results from Gassner and

Kopriva [77], we did not find an increase in CFL by using LGL nodes as compared to GL

nodes, except only for p = 3 and c+. We believe this was due to the loss of integration

strength with LGL nodes as compared to GL nodes. Gassner and Kopriva [77] considered

a linear flux on a linear grid, where LGL nodes would integrate the volume divergence of

the flux exactly, whereas, for our cases, the flux is rational on a curvilinear mesh. For the

nonlinear case, to replicate the filter obtained in Gassner and Kopriva [77] we also ran a value

of cHU. When integrated on GL nodes with a value of cHU and a Lagrange basis with LGL

solution nodes, the modified mass matrix is exactly the LGL collocated mass matrix [11, 12,

78]. Thus, the nonlinear extension for the CFL increase from Gassner and Kopriva [77] would

be using NSFR with cHU.

For p = 3 and p = 5, cHU gave a slightly larger CFL than c+. The value of c+ used

was numerically obtained from the von Neumann analysis for linear advection by Vincent

and coauthors [54]. This case considers a rational flux, and due to the nonlinearities, the c

value that corresponds to the maximum timestep might be slightly lower than the c+ value

for one-dimensional linear advection. A full conclusion on the value of c+ for nonlinear and

rational fluxes cannot be drawn until a von Neumann analysis for nonlinear problems is

performed for the cases.
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5.7.3 Inviscid Taylor Green Vortex

We consider the inviscid Taylor-Green vortex problem, initialized on the periodic box as,

ρ = 1,

u = sinx cos y cos z,

v = − cosx sin y cos z,

w = 0,

p =
100

γ
+

1

16

(
cos 2x cos 2z + 2 cos 2x+ 2 cos 2y + cos 2y cos 2z

)
,

xc ∈ [0, 2π]3, t ∈ [0, 14].

(5.64)

We consider both a Cartesian mesh and the heavily warped, periodic grid defined by

Eq. (5.60) with β = 1
5
. We use 4 elements in each direction and verify that the discrete

change in entropy, v̂ (Mm +Km)
d
dt
û(t)T , is conserved on the order of 1× 10−13 for p = 4, 5.

These polynomial orders and mesh size correspond to 203 and 243 degrees of freedom to

simulate under-resolved turbulence. This test showcases the strength of the entropy conserving

framework because a conservative DG scheme, without the entropy stable framework, diverges.

All schemes were globally conservative and free-stream preserving on the order of 1× 10−16.

In Fig. 5.3, for a polynomial degree of 4, we plot the discrete change in entropy for cHU and

c+ with the weight-adjusted inverse, and c+ without using a weight-adjusted inverse on the

curvilinear grid to demonstrate the discrete entropy conservation.
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Scheme Overintegration Discrete Entropy Conserved O(1e-13)

Cons. DG-GL 0 No

NSFR-EC-LGL cDG 0 Yes

NSFR-EC-LGL cDG 3 Yes

NSFR-EC-GL cDG 0 Yes

NSFR-EC-GL cDG 3 Yes

NSFR-EC-LGL c+ 0 Yes

NSFR-EC-LGL c+ 3 Yes

NSFR-EC-GL c+ 0 Yes

NSFR-EC-GL c+ 3 Yes

Table 5.2: Change in Entropy Results p = 4,5 Cartesian Mesh.

Scheme Overintegration Discrete Entropy Conserved O(1e-13)

Cons. DG-GL 0 No

NSFR-EC-LGL cDG 0 Yes

NSFR-EC-LGL cDG 3 Yes

NSFR-EC-GL cDG 0 Yes

NSFR-EC-GL cDG 3 Yes

NSFR-EC-LGL c+ 0 Yes

NSFR-EC-LGL c+ 3 Yes

NSFR-EC-GL c+ 0 Yes

NSFR-EC-GL c+ 3 Yes

Table 5.3: Change in Entropy Results p = 4,5 Curvilinear Mesh.
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Figure 5.3: Change in Entropy. Red line cHU with weight-adjusted, black line c+ with weight-
adjusted, and blue line c+ without weight-adjusted mass matrix.

As we can see from Tables 5.2 and 5.3, for both a Cartesian and curvilinear mesh, the

weight-adjusted NSFR entropy conserving discretization discretely conserves the change in

entropy on the order of 1e-13 for arbitrary quadrature integration—provided the integration

strength is exact for at least 2p−1 polynomials. The imperative of showing varying quadrature

rules is that, as shown by Winter et al. [79], the integration strength affects the polynomial

dealiasing for turbulent flows. Since the application for NSFR will be in predicting turbulent

flows, Tables 5.2 and 5.3 demonstrate the promising flexibility that the scheme offers.

We additionally plot the change in kinetic energy for the LGL and GL DG cases in Fig. 5.4

to verify Lemma 5.6.1. We first verify that the kinetic energy conserving flux discretely

satisfies

nstate∑
n=1

v̂K.E.,nχ (ξrv)
T
[(
W∇rϕ (ξrv)−∇rϕ (ξrv)

T W
)
◦
(
F̃ r
m,v − P̃ r

m,v

)]
1T =

d∑
k=1

ψkK.E. = 0

on the volume quadrature nodes. In Fig. 5.4, this is demonstrated to machine precision for
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both GL and LGL nodes. Here F̃ r
m,v is the two-point flux for only the volume nodes,

(
F̃ r
m,v

)
ij
= fs

(
ũm(ξ

r
i ), ũm(ξ

r
j )
)(1

2

(
Cm(ξ

r
i ) +Cm(ξ

r
j )
))
, ∀ 1 ≤ i, j ≤ Nv,

and P̃ r
m,v is the volume pressure work,

(
P̃ r
m,v

)
ij
=

1

2
(pi + pj) Id

(
1

2

(
Cm(ξ

r
i ) +Cm(ξ

r
j )
))
, ∀ 1 ≤ i, j ≤ Nv

with Id the d× d identity matrix.
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Figure 5.4: Volume Change in Kinetic Energy without Pressure Work for LGL and GL Nodes.
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Figure 5.5: Change in Kinetic Energy without Pressure Work.

Next, we compute the total change in kinetic energy by v̂K.E. (Mm +Km)
d
dt
û(t)T −Pwork,

where Pwork is the global pressure work by integrating the volume and surface terms. From

Fig. 5.5a, we see for LGL nodes, the total change in kinetic energy is conserved on the order of

1e-12 since it does not require the inverse mapping of kinetic energy variables to the surface,

whereas in Fig. 5.5b, for GL nodes, it is not conserved. Although a kinetic energy conserving

numerical flux was used, from Lemma 5.6.1, the LGL case discretely conserved kinetic energy

to machine precision, whereas the GL case did not. This verifies Lemma 5.6.1 that global

kinetic energy cannot be conserved for uncollocated schemes when the surface nodes are not

a subset of the volume nodes because the inverse mapping from vK.E. → u does not exit.

5.7.4 NSFR versus DG Conservative with and without Overintegra-

tion

Next, using our proposed sum-factorized Hadamard product from Cicchino and Nadarajah [41],

we wish to compare the performance of the entropy conserving scheme with the conservative

DG scheme using sum-factorization techniques. We solve the three-dimensional inviscid TGV

problem, with Gauss-Legendre quadrature nodes on the curvilinear grid defined in Eq. (5.60),
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with 43 elements and β = 1
5
. We solve it in six different ways. First, with the conservative DG

scheme that does not require a Hadamard product in Eq. (5.24). Second, the conservative DG

scheme overintegrated by 2(p+1) quadrature points, to exactly integrate polynomials of order

4p+ 3 with GL nodes, and resemble exact integration for a cubic polynomial on a curvilinear

grid. We consider overintegration because it is another tool used for stabilization [79] through

polynomial dealiazing. Lastly, with our NSFR entropy conserving scheme that requires an

uncollocated Hadamard product along with entropy projection techniques. We then, in dashed

lines, run the same tests with an FR correction value of c+ [54] to compare the additional

cost of FR versus its DG equivalent. For the test, we evaluate the residual and apply the

inverse of the weight-adjusted mass matrix 10 times sequentially and record the total CPU

time. The test was run in parallel with 4 Intel i5-8600 CPUs with 4GB of DDR4 RAM. The

CPU time presented is the sum across ranks of the CPU times on each processor.

0 0.5 1 1.5 2 2.5

log(Polynomial Degree)

0

1

2

3

4

5

6

7

lo
g
(C

P
U

 T
im

e
)

c
DG

c
+

c
DG

 EC

c
+

 EC

c
DG

 Overintegration

c
+

 Overintegration

Slope=4

Figure 5.6: CPU time versus polynomial degree TGV.

From Figure 5.6, all three methods have the solver scale at order O
(
pd+1

)
in curvilinear

coordinates because they exploit sum-factorization [40] for the matrix-vector products, and the

NSFR-EC scheme uses our proposed sum-factorized Hadamard product evaluation [41]. The

blue line representing the overintegrated conservative DG scheme took the most amount of CPU

time and was run until p = 20 due to memory limitations. The conservative DG and NSFR-EC

schemes took a comparable amount of CPU time in Fig. 5.6. This result is dependent on the

168



sum-factorized Hadamard product from Cicchino and Nadarajah [41]—the sum-factorized

Hadamard product is evaluated in the same number of flops as the DG divergence of the

flux with sum-factorization for the matrix-vector product. The computational cost difference

between the DG conservative scheme and the NSFR-EC cDG is in the evaluation of the

two-point flux as compared to the convective flux at a single quadrature node. Also, there was

a negligible computational cost difference between all cDG versus c+ schemes since the mass

matrix inverse was approximated in a weight-adjusted form. From Fig. 5.6, it appears that

using the algorithm in Cicchino and Nadarajah [41, Sec. 2], the entropy conserving scheme’s

cost is more comparable to the conservative DG scheme rather than an overintegrated/exactly

integrated DG scheme.

To further demonstrate the performance differences between the NSFR-EC-cDG scheme

using the “sum-factorized” Hadamard product evaluations detailed in Cicchino and Nadara-

jah [41, Sec. 2] and the conservative DG scheme in curvilinear coordinates, we run the inviscid

TGV on a non-symmetrically warped curvilinear grid and compare the wall clock times. All

schemes use an uncollocated, modal Lagrange basis, and are integrated on Gauss-Legendre

quadrature nodes. The conservative DG scheme overintegrated by 2(p+ 1) to resemble exact

integration for a cubic polynomial on a curvilinear grid. We integrate in time with a 4-th

order Runge-Kutta time-stepping scheme with an adaptive Courant-Friedrichs-Lewy value of

0.1 until a final time of tf = 14 s. For NSFR-EC cDG we use Chandrashekar’s flux [55] in the

volume and surface with Ranocha’s pressure fix [76]. For the DG conservative scheme, we use

the Roe [74] surface numerical flux. All of the tests were run on 1 node with 8 AMD Rome

7532 processors with 4GB of RAM on each CPU provided by the Digital-Alliance of Canada.

Each test was run 4 times and we present the average of the 4-tests’ max wall clock time for

a single processor and the average of the 4-tests’ total CPU time across the 8 processors.
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p Number of Elements Scheme Max Wall Clock (hours) Total CPU Time (hours)

3 43 NSFR-EC-cDG 0.1111 0.8713

DG-cons 0.09416 0.7376

DG-cons-overint 0.5033 3.816

83 NSFR-EC-cDG 1.530 12.06

DG-cons 1.520 11.64

DG-cons-overint 5.740 44.42

4 43 NSFR-EC-cDG 0.2756 2.170

DG-cons 0.2669 2.053

DG-cons-overint 0.9977 7.767

83 NSFR-EC-cDG 3.873 30.55

DG-cons 3.115 24.59

DG-cons-overint 12.68 100.3

5 43 NSFR-EC-cDG 0.5964 4.470

DG-cons Crashed Crashed

DG-cons-overint 2.013 15.10

83 NSFR-EC-cDG 7.052 52.58

DG-cons Crashed Crashed

DG-cons-overint 23.41 185.2

Table 5.4: TGV Comparison for CPU and Wall Clock Times.

From Table 5.4, averaging all of the tests, the NSFR-EC-cDG scheme took about a 13%

longer CPU time and 12% longer wall clock time as compared to conservative DG. On average,

the overintegrated conservative DG scheme took 364% longer CPU time and 365% longer

wall clock time than the NSFR-EC-cDG scheme. This small percentage difference between

DG conservative and NSFR-EC-cDG demonstrates how the sum-factorized Hadamard product
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algorithm in Cicchino and Nadarajah [41] has drastically reduced the computational cost

of computing a two-point flux. The p = 5 DG conservative scheme diverged at t = 9.06 on

the 43 mesh, and at t = 6.70 on the 83 mesh. This further demonstrates the advantage of

the NSFR-EC scheme since it has provable guaranteed nonlinear stability for a reasonable

computational cost trade-off. From both Fig. 5.6 and Table 5.4, it is clear that with the

proposed sum-factorized Hadamard product, entropy conserving and stable methods are

computationally competitive with classical DG schemes.

5.8 Conclusion

We demonstrated a novel, low-storage, weight-adjusted approach for NSFR schemes in

curvilinear coordinates. In the context of an uncollocated case, both theoretical proof and

numerical validation have demonstrated the attainability of discrete entropy conservation.

Conversely, the preservation of discrete kinetic energy is achievable only for the collocated

case on Gauss-Legendre-Lobatto quadrature nodes.

Additionally, in curvilinear coordinates, a unique, dense Gram matrix needs to be inverted

within every element. This issue was circumvented by a weight-adjusted approach, where the

operation cost was reduced to inverting a unique diagonal matrix storing the determinant

of the metric Jacobian at each quadrature node. Coupled with sum-factorization, and the

sum-factorized Hadamard product, our proposal greatly accelerates the run-time. For different

FR schemes, the weight-adjusted framework maintained nonlinear stability for the inviscid

Taylor-Green vortex problem on an extremely coarse, heavily warped curvilinear grid, making

it an attractive implementation for FR in the high-performance computing context.

5.9 Acknowledgements

We would like to gratefully acknowledge the financial support of the Natural Sciences and

Engineering Research Council of Canada (NSERC) Discovery Grant Program, NSERC

171



Postgraduate Scholarships – Doctoral program, and McGill University.

References

[1] Jesse Chan. “On discretely entropy conservative and entropy stable discontinuous

Galerkin methods”. In: Journal of Computational Physics 362 (2018), pp. 346–374.

[2] Jesse Chan. “Skew-symmetric entropy stable modal discontinuous Galerkin formula-

tions”. In: Journal of Scientific Computing 81.1 (2019), pp. 459–485.

[3] Eitan Tadmor. “Numerical viscosity and the entropy condition for conservative differ-

ence schemes”. In: Mathematics of Computation 43.168 (1984), pp. 369–381.

[4] Travis Calob Fisher. “High-order L2 stable multi-domain finite difference method for

compressible flows”. PhD thesis. Purdue University, 2012.

[5] Gregor J Gassner, Andrew R Winters, and David A Kopriva. “Split form nodal

discontinuous Galerkin schemes with summation-by-parts property for the compressible

Euler equations”. In: Journal of Computational Physics 327 (2016), pp. 39–66.

[6] Jesse Chan and Lucas C Wilcox. “On discretely entropy stable weight-adjusted discon-

tinuous Galerkin methods: Curvilinear meshes”. In: Journal of Computational Physics

378 (2019), pp. 366–393.

[7] Heinz-Otto Kreiss and Joseph Oliger. “Comparison of accurate methods for the inte-

gration of hyperbolic equations”. In: Tellus 24.3 (1972), pp. 199–215.

[8] Blair Swartz and Burton Wendroff. “The relative efficiency of finite difference and

finite element methods. I: Hyperbolic problems and splines”. In: SIAM Journal on

Numerical Analysis 11.5 (1974), pp. 979–993.

[9] William H Reed and Thomas R Hill. Triangular mesh methods for the neutron transport

equation. Tech. rep. Los Alamos Scientific Lab., N. Mex.(USA), 1973.

172



[10] Jan S. Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods algo-

rithms, analysis and applications. Springer, 2008.

[11] H. T. Huynh. “A flux reconstruction approach to high-order schemes including discon-

tinuous Galerkin methods”. In: American Institute of Aeronautics and Astronautics,

2007.

[12] Peter E Vincent, Patrice Castonguay, and Antony Jameson. “A new class of high-order

energy stable flux reconstruction schemes”. In: Journal of Scientific Computing 47.1

(2011), pp. 50–72.

[13] Antony Jameson. “A proof of the stability of the spectral difference method for all

orders of accuracy”. In: Journal of Scientific Computing 45.1-3 (2010), pp. 348–358.

[14] Zhi Jian Wang and Haiyang Gao. “A unifying lifting collocation penalty formulation

including the discontinuous Galerkin, spectral volume/difference methods for con-

servation laws on mixed grids”. In: Journal of Computational Physics 228.21 (2009),

pp. 8161–8186.

[15] Philip Zwanenburg and Siva Nadarajah. “Equivalence between the energy stable flux re-

construction and filtered discontinuous Galerkin schemes”. In: Journal of Computational

Physics 306 (2016), pp. 343–369.

[16] Yves Allaneau and Antony Jameson. “Connections between the filtered discontinuous

Galerkin method and the flux reconstruction approach to high order discretizations”. In:

Computer Methods in Applied Mechanics and Engineering 200.49–52 (2011), pp. 3628–

3636.

[17] Alexander Cicchino and Siva Nadarajah. “A new norm and stability condition for

tensor product flux reconstruction schemes”. In: Journal of Computational Physics

(2020), p. 110025.

173



[18] Yen Liu, Marcel Vinokur, and Zhi J. Wang. “Spectral difference method for unstructured

grids I: Basic formulation”. In: Journal of Computational Physics 216.2 (2006), pp. 780–

801.

[19] Eitan Tadmor. “Skew-self adjoint form for systems of conservation laws”. In: Journal

of Mathematical Analysis and Applications 103.2 (1984), pp. 428–442.

[20] Eitan Tadmor. “The numerical viscosity of entropy stable schemes for systems of

conservation laws. I”. In: Mathematics of Computation 49.179 (1987), pp. 91–103.

[21] Amiram Harten. “On the symmetric form of systems of conservation laws with entropy”.

In: Journal of Computational Physics 49.1 (1983), pp. 151–164.

[22] Philippe G LeFloch, Jean-Marc Mercier, and Christian Rohde. “Fully discrete, entropy

conservative schemes of arbitrary order”. In: SIAM Journal on Numerical Analysis

40.5 (2002), pp. 1968–1992.

[23] Philippe G LeFloch and Christian Rohde. “High-order schemes, entropy inequali-

ties, and nonclassical shocks”. In: SIAM Journal on Numerical Analysis 37.6 (2000),

pp. 2023–2060.

[24] Gregor J Gassner. “A skew-symmetric discontinuous Galerkin spectral element dis-

cretization and its relation to SBP-SAT finite difference methods”. In: SIAM Journal

on Scientific Computing 35.3 (2013), A1233–A1253.

[25] Hendrik Ranocha, Philipp Öffner, and Thomas Sonar. “Summation-by-parts operators

for correction procedure via reconstruction”. In: Journal of Computational Physics 311

(2016), pp. 299–328.

[26] Yoshiaki Abe, Issei Morinaka, Takanori Haga, Taku Nonomura, Hisaichi Shibata, and

Koji Miyaji. “Stable, non-dissipative, and conservative flux-reconstruction schemes in

split forms”. In: Journal of Computational Physics 353 (2018), pp. 193–227.

174



[27] David C Del Rey Fernández, Jason E Hicken, and David W Zingg. “Review of

summation-by-parts operators with simultaneous approximation terms for the nu-

merical solution of partial differential equations”. In: Computers & Fluids 95 (2014),

pp. 171–196.

[28] Jared Crean, Jason E Hicken, David C Del Rey Fernández, David W Zingg, and

Mark H Carpenter. “Entropy-stable summation-by-parts discretization of the Euler

equations on general curved elements”. In: Journal of Computational Physics 356

(2018), pp. 410–438.

[29] David C Del Rey Fernández, Jared Crean, Mark H. Carpenter, and Jason E. Hicken.

“Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on

curvilinear coordinates”. In: Journal of Computational Physics 392 (2019), pp. 161–186.

[30] Travis C Fisher and Mark H Carpenter. “High-order entropy stable finite difference

schemes for nonlinear conservation laws: Finite domains”. In: Journal of Computational

Physics 252 (2013), pp. 518–557.

[31] Lucas Friedrich, Gero Schnücke, Andrew R Winters, David C Del Rey Fernández,

Gregor J Gassner, and Mark H Carpenter. “Entropy stable space–time discontinuous

Galerkin schemes with summation-by-parts property for hyperbolic conservation laws”.

In: Journal of Scientific Computing 80.1 (2019), pp. 175–222.

[32] Matteo Parsani, Mark H Carpenter, and Eric J Nielsen. “Entropy stable wall boundary

conditions for the three-dimensional compressible Navier–Stokes equations”. In: Journal

of Computational Physics 292 (2015), pp. 88–113.

[33] Rémi Abgrall, Elise le Meledo, and Phiipp Öffner. “On the connection between residual

distribution schemes and flux reconstruction”. In: arXiv preprint arXiv:1807.01261

(2018).

175



[34] Rémi Abgrall. “A general framework to construct schemes satisfying additional conser-

vation relations. Application to entropy conservative and entropy dissipative schemes”.

In: Journal of Computational Physics 372 (2018), pp. 640–666.

[35] Rémi Abgrall, Philipp Öffner, and Hendrik Ranocha. “Reinterpretation and extension of

entropy correction terms for residual distribution and discontinuous Galerkin schemes:

Application to structure preserving discretization”. In: Journal of Computational

Physics 453 (2022), p. 110955.

[36] Rémi Abgrall, Jan Nordström, Philipp Öffner, and Svetlana Tokareva. “Analysis of

the SBP-SAT stabilization for finite element methods part II: Entropy stability”. In:

Communications on Applied Mathematics and Computation (2021), pp. 1–23.

[37] Alexander Cicchino, Siva Nadarajah, and David C. Del Rey Fernández. “Nonlinearly

stable flux reconstruction high-order methods in split form”. In: Journal of Computa-

tional Physics (2022), p. 111094.

[38] Alexander Cicchino, David C Del Rey Fernández, Siva Nadarajah, Jesse Chan, and Mark

H Carpenter. “Provably stable flux reconstruction high-order methods on curvilinear

elements”. In: Journal of Computational Physics 463 (2022), p. 111259.

[39] Jesse Chan, Russell J Hewett, and Timothy Warburton. “Weight-adjusted discontinuous

Galerkin methods: Curvilinear meshes”. In: SIAM Journal on Scientific Computing

39.6 (2017), A2395–A2421.

[40] Steven A Orszag. “Spectral methods for problems in complex geometrics”. In: Numerical

methods for partial differential equations. Elsevier, 1979, pp. 273–305.

[41] Alexander Cicchino and Siva Nadarajah. “Scalable Evaluation of Hadamard Products

with Tensor Product Basis for Entropy-Stable High-Order Methods”. In: Accepted

with minor modifictaions to the Journal of Computational Physics, arXiv preprint

arXiv:2306.11665 (2023).

176



[42] Michael S Mock. “Systems of conservation laws of mixed type”. In: Journal of Differ-

ential equations 37.1 (1980), pp. 70–88.

[43] Lorenzo Botti. “Influence of reference-to-physical frame mappings on approximation

properties of discontinuous piecewise polynomial spaces”. In: Journal of Scientific

Computing 52.3 (2012), pp. 675–703.

[44] David Moxey, Shankar P Sastry, and Robert M Kirby. “Interpolation error bounds

for curvilinear finite elements and their implications on adaptive mesh refinement”. In:

Journal of Scientific Computing 78.2 (2019), pp. 1045–1062.

[45] Gregor J Gassner, Andrew R Winters, Florian J Hindenlang, and David A Kopriva.

“The BR1 scheme is stable for the compressible Navier–Stokes equations”. In: Journal

of Scientific Computing 77.1 (2018), pp. 154–200.

[46] Juan Manzanero, Gonzalo Rubio, David A Kopriva, Esteban Ferrer, and Eusebio

Valero. “Entropy–stable discontinuous Galerkin approximation with summation–by–

parts property for the incompressible Navier–Stokes/Cahn–Hilliard system”. In: Journal

of Computational Physics 408 (2020), p. 109363.

[47] David A Kopriva. “Metric identities and the discontinuous spectral element method

on curvilinear meshes”. In: Journal of Scientific Computing 26.3 (2006), p. 301.

[48] Patrick D Thomas and Charles K Lombard. “Geometric conservation law and its

application to flow computations on moving grids”. In: AIAA journal 17.10 (1979),

pp. 1030–1037.

[49] Marcel Vinokur and HC Yee. “Extension of efficient low dissipation high order schemes

for 3-D curvilinear moving grids”. In: Frontiers of Computational Fluid Dynamics 2002.

World Scientific, 2002, pp. 129–164.

[50] David A Kopriva, Florian J Hindenlang, Thomas Bolemann, and Gregor J Gassner.

“Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous

177



Galerkin Spectral Elements”. In: Journal of Scientific Computing 79.3 (2019), pp. 1389–

1408.

[51] Patrice Castonguay, Peter E Vincent, and Antony Jameson. “A new class of high-order

energy stable flux reconstruction schemes for triangular elements”. In: Journal of

Scientific Computing 51.1 (2012), pp. 224–256.

[52] D. M. Williams and A. Jameson. “Energy stable flux reconstruction schemes for

advection–diffusion problems on tetrahedra”. In: Journal of Scientific Computing 59.3

(2014), pp. 721–759.

[53] Abhishek Sheshadri and Antony Jameson. “On the stability of the flux reconstruction

schemes on quadrilateral elements for the linear advection equation”. In: Journal of

Scientific Computing 67.2 (2016), pp. 769–790.

[54] Peter E Vincent, Patrice Castonguay, and Antony Jameson. “Insights from von Neu-

mann analysis of high-order flux reconstruction schemes”. In: Journal of Computational

Physics 230.22 (2011), pp. 8134–8154.

[55] Praveen Chandrashekar. “Kinetic energy preserving and entropy stable finite volume

schemes for compressible Euler and Navier-Stokes equations”. In: Communications in

Computational Physics 14.5 (2013), pp. 1252–1286.

[56] Farzad Ismail and Philip L Roe. “Affordable, entropy-consistent Euler flux functions II:

Entropy production at shocks”. In: Journal of Computational Physics 228.15 (2009),

pp. 5410–5436.

[57] Hendrik Ranocha. Generalised summation-by-parts operators and entropy stability of

numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig, 2018.

[58] Patrice Castonguay. “High-order energy stable flux reconstruction schemes for fluid

flow simulations on unstructured grids”. In: Diss. Stanford University (2012).

178



[59] Tzanio Kolev, Paul Fischer, Misun Min, Jack Dongarra, Jed Brown, Veselin Dobrev, Tim

Warburton, Stanimire Tomov, Mark S Shephard, Ahmad Abdelfattah, et al. “Efficient

exascale discretizations: High-order finite element methods”. In: The International

Journal of High Performance Computing Applications 35.6 (2021), pp. 527–552.

[60] George Karniadakis and Spencer Sherwin. Spectral/hp element methods for computa-

tional fluid dynamics. Oxford University Press, 2013.

[61] Chris D Cantwell, Spencer J Sherwin, Robert M Kirby, and Paul HJ Kelly. “From h to

p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral

elements”. In: Computers & Fluids 43.1 (2011), pp. 23–28.

[62] Martin Kronbichler and Wolfgang A Wall. “A performance comparison of continuous

and discontinuous Galerkin methods with fast multigrid solvers”. In: SIAM Journal on

Scientific Computing 40.5 (2018), A3423–A3448.

[63] David Moxey, Roman Amici, and Mike Kirby. “Efficient matrix-free high-order finite

element evaluation for simplicial elements”. In: SIAM Journal on Scientific Computing

42.3 (2020), pp. C97–C123.

[64] Miguel R Visbal and Datta V Gaitonde. “On the use of higher-order finite-difference

schemes on curvilinear and deforming meshes”. In: Journal of Computational Physics

181.1 (2002), pp. 155–185.

[65] Yoshiaki Abe, Takanori Haga, Taku Nonomura, and Kozo Fujii. “On the freestream

preservation of high-order conservative flux-reconstruction schemes”. In: Journal of

Computational Physics 281 (2015), pp. 28–54.

[66] David C Del Rey Fernández, Mark H Carpenter, Lisandro Dalcin, Stefano Zampini, and

Matteo Parsani. “Entropy stable h/p-nonconforming discretization with the summation-

by-parts property for the compressible Euler and Navier–Stokes equations”. In: SN

Partial Differential Equations and Applications 1.2 (2020), pp. 1–54.

179



[67] Magnus Svärd and Hatice Özcan. “Entropy-stable schemes for the Euler equations

with far-field and wall boundary conditions”. In: Journal of Scientific Computing 58.1

(2014), pp. 61–89.

[68] Sigrun Ortleb. “A Kinetic Energy Preserving DG Scheme Based on Gauss-Legendre

Points.” In: J. Sci. Comput. 71.3 (2017), pp. 1135–1168.

[69] Nail K Yamaleev and Mark H Carpenter. “A family of fourth-order entropy stable

nonoscillatory spectral collocation schemes for the 1-D Navier–Stokes equations”. In:

Journal of Computational Physics 331 (2017), pp. 90–107.

[70] Mark H Carpenter, Matteo Parsani, Eric J Nielsen, and Travis C Fisher. “Towards an

entropy stable spectral element framework for computational fluid dynamics”. In: 54th

AIAA Aerospace Sciences Meeting. 2016, p. 1058.

[71] Patrice Castonguay, David M Williams, Peter E. Vincent, and Antony Jameson.

“Energy stable flux reconstruction schemes for advection–diffusion problems”. In:

Computer Methods in Applied Mechanics and Engineering 267 (2013), pp. 400–417.

[72] H. T. Huynh. “A reconstruction approach to high-order schemes including discontinuous

Galerkin for diffusion”. In: American Institute of Aeronautics and Astronautics, 2009.

[73] Hendrik Ranocha, Philipp Öffner, and Thomas Sonar. “Extended skew-symmetric form

for summation-by-parts operators and varying Jacobians”. In: Journal of Computational

Physics 342 (2017), pp. 13–28.

[74] Philip L Roe. “Approximate Riemann solvers, parameter vectors, and difference

schemes”. In: Journal of computational physics 43.2 (1981), pp. 357–372.

[75] Doug Shi-Dong and Siva Nadarajah. “Full-Space Approach to Aerodynamic Shape

Optimization”. In: Computers & Fluids (2021), p. 104843.

[76] Hendrik Ranocha and Gregor J Gassner. “Preventing pressure oscillations does not

fix local linear stability issues of entropy-based split-form high-order schemes”. In:

Communications on Applied Mathematics and Computation 4.3 (2022), pp. 880–903.

180



[77] Gregor Gassner and David A Kopriva. “A comparison of the dispersion and dissipation

errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods”.

In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2560–2579.

[78] D. De Grazia, G. Mengaldo, D. Moxey, P. E. Vincent, and S. J. Sherwin. “Connections

between the discontinuous Galerkin method and high-order flux reconstruction schemes”.

In: International Journal for Numerical Methods in Fluids 75.12 (2014), pp. 860–877.

[79] Andrew R Winters, Rodrigo C Moura, Gianmarco Mengaldo, Gregor J Gassner,

Stefanie Walch, Joaquim Peiro, and Spencer J Sherwin. “A comparative study on

polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved

turbulence computations”. In: Journal of Computational Physics 372 (2018), pp. 1–21.

181



Chapter 6

General Discussion

For computational predictive science, discrete nonlinear stability serves as the bedrock that

other powerful tools, such as overintegration, limiting, upwind dissipation, filtering, and

artificial viscosity can be added to extend the field of flow regimes. The overarching goals of

obtaining provably discretely nonlinearly stable flux reconstruction schemes, for any ESFR

correction function, implemented in a low-storage and efficiently scalable manner was achieved

for compressible flows on curvilinear meshes.

6.1 NSFR Modified Mass Matrix

The first research question addressed in Chapter 2 was: how can discrete nonlinear stability

be achieved for flux reconstruction schemes with general ESFR correction functions? The

challenge in this question was, that for ESFR correction functions other than the DG correction

function, ESFR introduces a dense broken Sobolev-norm with influence on the nonlinear

volume terms. In the linear setting, this term would vanish [24] but for a nonlinear flux in split

form, it does not [73, 106, 107]. The paper from Cicchino et al. [119] in Chapter 2 re-envisioned

FR specifically for the nonlinear setting. The successful result was to incorporate the ESFR

correction functions on the nonlinear volume terms. This was accomplished by viewing ESFR

as a DG scheme with a modified mass matrix [44, 45], recasting the discretization in variational
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form, and embedding the split form within the stiffness operator. In this expression, a design

order volume term was implicitly added to the discretization through the application of the

ESFR filter operator. This additional term was derived in Lemma 2.3.1 and numerically

shown to be design order in Sec. 2.4. The additional term can be viewed as a filter on the

highest mode of the nonlinear flux in one-dimension.

In the final NSFR form in Chapter 5, this concept was abstracted to store all of the

influence of the ESFR correction functions in the modified mass matrix. Then, by inverting

the modified mass matrix and applying it to the residual, we are again applying a filter on the

highest mode of all parts of its uncollocated, skew-symmetric DG entropy stable equivalent.

The heart of ESFR and NSFR is that, by increasing the correction parameter c, from cDG to

c+, there is a larger allowable timestep [21, 29]. We provide an analytical reasoning for the

increased timestep here.

Consider the NSFR modified mass matrix,

(Mm +Km)ij ≈
∫
Ωr

JΩ
mχi (ξ

r)χj (ξ
r) +

∑
s,v,w

c(s,v,w)J
Ω
m∂

(s,v,w)χi (ξ
r) ∂(s,v,w)χj (ξ

r) dΩr,

∀i, j = 1, . . . , Np.

(6.1)

Increasing c, with c(s,v,w) as its three-dimensional tensor product parameter from Chapters 3

and 5, improves the conditioning of the system matrix. In Chapters 2, 3, and 5, the NSFR

spatial discretization at every timestep arrives at a system of ordinary differential equations

(ODEs) for the modal coefficients of the solution in time,

(Mm +Km)
d

dt
ûm(t)

T = Lûm(t)T +N (ûm(t))
T , t ∈ [tn, tn +∆t], (6.2)

where we split the system of ODEs into a linear component L and a nonlinear component

N with respect to the modal coefficients of the solution ûm(t) at time tn. The solution to
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Eq. (6.2) is,

ûm(tn +∆t)T =e((Mm+Km)−1L∆t)ûm(tn)
T

+

∫ ∆t

0

e((Mm+Km)−1L(∆t−τ)) (Mm +Km)
−1N (ûm(tn + τ))T dτ,

(6.3)

via the matrix exponential. Letting Am = (Mm +Km)
−1 L, then by Taylor series expansion

the matrix exponential e(Am∆t) can be approximated by

e(Am∆t) ≈ 1 +
(
∆t (Mm +Km)

−1 L
)
+

1

2!

(
∆t (Mm +Km)

−1 L
)2

+
1

3!

(
∆t (Mm +Km)

−1 L
)3

+
1

4!

(
∆t (Mm +Km)

−1 L
)4

+O (∆t)5 ,

(6.4)

for the 4-stage, 4-th order RK44 scheme.

In a von Neumann analysis, the maximum timestep corresponds to the largest value ∆t

while ensuring the spectral radius of the system matrix is less than 1, ρ
(
e(Am∆t)

)
< 1. By

observation of Eq. 6.4, the eigenvalues of e(Am∆t) are inversely proportional to the eigenvalues

of (Mm +Km). Therefore, by increasing the value of c, the eigenvalues of (Mm +Km)

increase as shown by Allaneau and Jameson for one-dimension [44] and Zwanenburg and

Nadarajah for three-dimensions [45], and this results in a larger permissible timestep ∆t with

the same spectral radius ρ
(
e(Am∆t)

)
. The maximum value of c corresponds to a numerically

found value c+ and not c∞ → ∞, because for values beyond c+, the spatial discretization

loses an order of accuracy for the linear setting and all orders of accuracy for the nonlinear

setting [36]. Beyond c+ we are no longer filtering the approximation, but rather altering

the spatial discretization through the application of the Green’s function on the nonlinear

component N .
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6.2 NSFR Performance - Extension

From Chapter 5, in the low-storage weight-adjusted form, we capitalized on the increased

timestep using c+ without any additional computational cost. NSFR was developed to

efficiently approximate the solution while maintaining free-stream preservation, conservation,

and discrete nonlinear stability within a p-th order broken Sobolev-space. The trade-off for the

increased timestep with c+ was a larger error in the solution as compared to cDG. Importantly,

they both converged at the same high-order of p+ 1. The last question that remains to be

addressed in this thesis, is if the NSFR c+ variant predicts the same flow features as the

NSFR cDG scheme in L2-space? Up to this point, the NSFR discrete nonlinear properties

were always demonstrated within the p-th order broken Sobolev-norm, and conservation in

the p-th order broken Sobolev-norm allows for oscillations within the L2-norm [24]. The

extension is to consider a viscous problem with isotropic turbulent decay. The case highlights

that there does not appear to be a significant difference within the flow features between

the NSFR cDG and c+ variants thanks to the discrete nonlinear stability, conservation and

free-stream preservation properties.
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6.2.1 Viscous Problems: The Navier-Stokes Equations

The natural extension from Chapter 5 is to numerically solve the Navier-Stokes equations,

∂W T

∂t
+∇ ·fc (W )T −∇ ·fv (W ,∇W )T = 0T ,

W =

[
ρ, ρu, ρv, ρw, ρe

]
,

fc1 =

[
ρu, ρu2 + p, ρuv, ρuw, (ρe+ p)u

]
,

fc2 =

[
ρv, ρuv, ρv2 + p, ρvw, (ρe+ p) v

]
,

fc3 =

[
ρw, ρuw, ρvw, ρw2 + p, (ρe+ p)w

]
,

fv1 =

[
0, τxx, τxy, τxz, uτxx + vτxy + wτxz + κ∂T

∂x

]
,

fv2 =

[
0, τyx, τyy, τyz, uτyx + vτyy + wτyz + κ∂T

∂y

]
,

fv3 =

[
0, τzx, τzy, τzz, uτzx + vτzy + wτzz + κ∂T

∂z

]
,

(6.5)

where ρe = p
γ−1

+ 1
2
ρ (u2 + v2 + w2), and ρ, u, v, w, p e γ are the density, velocity, pressure,

specific total energy, and adiabatic coefficient respectively. Letting −→u = [u, v , w], the viscous

stress tensor is given by,

τ = µ

(
∇−→u +∇−→u T − 2

3

(
∇ ·−→u

)
Id

)
. (6.6)

Here, µ is the dynamic viscosity, which is obtained using Sutherland’s law [120]. The thermal

conductivity is determined by κ = µcp
Pr

, with Pr = 0.72 the Prandtl number and cp is the

specific heat coefficient at constant pressure.

To obtain the NSFR discretization for the Navier-Stokes equations in Eq. 6.5, alike

Chapter 5, we let ûm represent the modal coefficients of the solution for a single state in the
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element m, and we introduce the auxiliary variable,

qm = ∇um ∈ Rd×Np . (6.7)

To solve for the auxiliary variable, we integrate Eq. 6.7 with respect to the basis function

as the test function. Then, we apply integration-by-parts twice, and evaluate bilinear forms

with quadrature rules to arrive at the strong form [13, 121]. For the primary equation, we use

the NSFR discretization derived in Chapter 5 for the convective portion. For the primary

equation’s diffusive terms, we perform integration-by-parts twice, evaluate bilinear forms with

quadrature rules, and arrive at the strong form. We let the subscript “c” refer to the convective

portion and “v” refer to the viscous portion. The NSFR discretization for convective-viscous

problems is,

Auxiliary Equation:
(
Mm + K̃m

)
qTm =χ(ξrv)

TW∇rϕ (ξrv) û
r
m(t)

T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r
(
u∗,r
m − ϕ

(
ξrfk
)
ûrm(t)

T
)
,

Primary Equation: (Mm +Km)
d

dt
ûm(t)

T =−
[
χ(ξrv)

T χ(ξrf )
T
] [(

Q̃− Q̃T
)
⊙ F r

m,c

]
1T

−
Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·f ∗,r
m,c

+ χ(ξrv)
TW∇rϕ (ξrv) · f̂ rm,v(t)

T

+

Nf∑
f=1

Nfp∑
k=1

χ(ξrfk)
TWfkn̂

r ·
(
f ∗,r
m,v − ϕ (ξf,k) f̂

r
m,v(t)

T
)
.

(6.8)

For Eq. 6.8, we introduced an ESFR correction operator matrix K̃m in the auxiliary equation

to denote that it does not have to have the same correction parameter value as the primary

equation’s operator Km [122]. Note that for the auxiliary equation, there are no dot products

in the volume or surface integrals because qm is a matrix of size d by Np. Also, for the auxiliary
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equation, ûrm(t) are the modal coefficients of the reference solution obtained by multiplication

with the metric cofactor matrix, urm = umCm, spanned by the flux-basis functions ϕ.

We consider the viscous TGV problem at Reynolds’s number Re∞ = 1600 from Chapter 5

with periodic boundary conditions in [x, y, z] ∈ [0, 2π]3. We use the entropy conserving flux

from Ismail and Roe [123] for the convective portion, and the interior penalty (IP) numerical

flux [11] for the viscous terms. The penalty value for the IP flux used is p(p+1)
Hd , where Hd

is the Hausdorff measure of the surface. The scheme uses a 4-th order Runge-Kutta time

integrator, with a CFL = 0.1 and an adaptive timestep based on the maximum wavespeed

in the domain. The solution nodes are Gauss-Lobatto-Legendre (LGL) quadrature nodes,

the scheme is integrated on Gauss-Legendre quadrature nodes, and the basis functions are

spanned by uncollocated Lagrange functions constructed on the LGL nodes. A Cartesian

mesh is considered. For the cases below, K̃m uses cDG for the auxiliary equation [40, 41].

The physical quantities under investigation are the nondimensional kinetic energy K∗,

dissipation rate ε, and enstrophy ζ∗,

K∗ =
1

|Ω|
M⊕
m=1

∫
Ωr

1

2
JΩ
mρ

∗−→u ∗ ·−→u ∗dΩr,

ε = −dK∗

dt∗
,

ζ∗ =
1

|Ω|
M⊕
m=1

∫
Ωr

1

2
JΩ
mρ

∗ω∗ ·ω∗dΩr,

(6.9)

where |Ω| = (2π)3 is the total domain volume, ε is computed from K∗ using finite-difference,

and ω∗ is the vorticity vector. The “*” superscript refers to the values being nondimensionalized

with respect to free-stream values. The computed quantities are compared to a reference

spectral direct numerical simulation (DNS) data from Dairay [124] that used 5123 DOFs.

The results were obtained with the help of my colleague in the research group Julien

Brillon. Julien implemented the viscous stress tensor for the viscous flux, implemented the

manufactured solution for the Navier-Stokes equations to verify the orders of accuracy, setup

the viscous TGV test case, computed the unsteady quantities and the post-processing of
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results. My contribution to this test was the implementation of the spatial discretization and

evaluation for the auxiliary and primary equations in Eq. 6.8, and the subroutines therein.

The goal of this test case is to evaluate the predictive performance of the spatial solver for a

physically relevant turbulent problem.

Firstly, we are interested in ensuring that the entropy conserving discretization recovers

the physical quantities of the DNS result. For this, we ran the NSFR discretization with a

value of cDG with 2563 DOFs. We used p = 3 and 643 elements.
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Figure 6.1: Viscous TGV at Re∞ = 1600 using cDG NSFR with 2563 DOFs.

From Fig. 6.1, using 1
23

the number of DOFs as compared to the reference DNS result, we

obtained very reasonable results for the three physical quantities in all regions of the flow.

This verifies that the spatial discretization recovers the expected turbulent quantities under

high-resolution. It is to be noted that the conservative DG scheme with upwind dissipation
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and overintegration also recovered the DNS result for this number of DOFs. For under-resolved

turbulent flows, the conservative DG scheme fails without overintegration, and it passes with

overintegration depending on the overintegration strength, final time of the simulation, and

number of DOFs.

Next, we considered under-resolved turbulent flow, using 963 DOFs, and analyzed the

difference between cDG and c+. We used p = 5 and 163 elements.
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Figure 6.2: Viscous TGV at Re∞ = 1600 using cDG and c+ NSFR with 963 DOFs.

From Fig. 6.2, both cDG and c+ gave almost identical results in the laminar stage, then

after the transitional stage, they differed for the isotropic turbulent decay. The c+ variant

was more dissipative than cDG due to the filter it imposes on the highest mode of the scheme.

There does not appear to be a clear disadvantage to using c+ rather than cDG for a viscous
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turbulent problem, but rather an advantage with the increased timestep.

Importantly, this test case demonstrates that the NSFR c+ scheme recovers the physically

relevant flow properties for viscous isotropic turbulence. From the analysis in Sec. 6.1 and

Equations (6.3) and (6.4), up to the limit of c+, the correction functions act as a low-pass

filter improving the conditioning of the system matrix, and after c+, they alter the nonlinear

properties of the scheme. Thus, by achieving discrete nonlinear stability through the modified

mass matrix, we were able to exploit the timetsep improvement with c+ without corrupting

the physical flow properties.
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Chapter 7

Conclusion

The overarching goal of obtaining provable discrete nonlinearly stable flux reconstruction

schemes, for any ESFR correction function, implemented in a low-storage and efficiently

scalable manner was achieved for compressible flows on curvilinear meshes. Discrete nonlinear

stability was achieved without the need for upwind dissipation. NSFR has the additional

timestep benefit from the ESFR correction functions when compared to entropy stable

schemes in the literature. By using sum-factorization for the matrix-vector products, and

our proposed sum-factorized Hadamard product, NSFR is computationally competitive with

the conservative DG scheme. NSFR was able to recover physically relevant quantities for

compressible turbulent problems accurately.

The first novelty to NSFR was the incorporation of the ESFR correction functions on the

nonlinear volume terms to achieve discrete nonlinear stability. This framework allowed for

discrete entropy stable extensions from a scalar one-dimensional nonlinear PDE, to curvilinear

coordinates, and finally to vector-valued systems of PDEs in curvilinear coordinates. To our

knowledge, NSFR was the first to develop discrete nonlinearly stable schemes in dense norms

beyond the L2-norm.

This thesis also had original contributions to the scalability and performance of high-order

schemes. We developed a sum-factorized Hadamard product that scales at order O
(
nd+1

)
.
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This sum-factorized Hadamard product resolves the additional computational cost associated

with entropy conserving two-point fluxes in high-order frameworks, and resulted in the

NSFR discretization being computationally competitive with traditional high-order schemes.

Additionally, we presented a novel weight-adjusted mass matrix inverse approximation for

the NSFR modified mass matrix. The weight-adjusted approximation preserved the orders of

convergence via the projection operator, that projects to the broken Sobolev-norm, and it

effectively used sum-factorization in its application.

From the final form of NSFR, we concluded with an analytical reasoning as to why c+

allowed for larger timesteps than cDG—by improving the conditioning of the system matrix.

The advancements in computational performance, with low memory and efficiently scalable

techniques, coupled with the discrete nonlinear stability properties concluded in accurate

high-order predictions for isotropic turbulent decay.

7.1 Future Work

This section will identify future topics that would extend the NSFR scheme to simulate a

wider class of flow regimes as well as identify limitations in the current development.

7.1.1 Natural Extensions

Having established the NSFR scheme, natural extensions would include developing an equiva-

lent entropy correction term for the p-th order broken Sobolev-norm, fully discrete implicit

temporal integrators, and the application of NSFR to diffusive turbulent flows and shock-waves.

To investigate an equivalent NSFR-residual distribution scheme, the entropy correction term

would need to demonstrate stability in norms other than the L2-norm. This framework would

allow for seamless extensions to the other finite element methods residual distribution schemes

encompass.

For turbulent problems, high-order schemes excel in their application to implicit large

eddy simulation. The strength that NSFR provides is that it disassociates stability from
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dissipation. The removal of the upwind dissipation raises the prospect of developing novel

dissipation mechanisms to model the dissipation range of isotropic turbulence. The role

of classical turbulence models can be investigated in the absence of filtering and upwind

dissipation to ensure stability.

The current computational limitation for large-scale test cases is the severe timestep

restriction of explicit temporal integrators. For more industrially relevant problems, an

implicit timestepping scheme is critical. Pairing an implicit timestepping scheme with a fully

discrete entropy conserving framework could see significant improvements in total runtime.

Another powerful extension of discretely nonlinearly stable methods is their application to

shock-waves on extremely coarse meshes. For steep pressure gradients, a positivity-preserving

limiter is essential to guarantee the positivity of density and pressure.

Novel approaches to establish positivity while accurately resolving shocks for high Reynolds

turbulent flows would secure the future of nonlinearly stable schemes.

7.1.2 Limitations

One remaining open research question is whether entropy stability is sufficient to accurately

capture the entropic solution. For linear problems, from the celebrated Lax–Richtmyer

Theorem [125] or more popularly known as the Lax Equivalence Theorem, linear stability

is sufficient for convergence. Unfortunately, for nonlinear problems, nonlinear stability is

inadequate to imply convergence. The entropic solution satisfies the entropy inequality, but it

is not necessarily the only discrete approximation that satisfies the entropy inequality [126].

While the entropy inequality enables the scheme to recover the correct shock speed [90], it does

not guarantee that bounded spurious growth of errors does not corrupt the approximation.

This is precisely the issue that motivated the development of total variation diminishing [127–

129], total variation bounded [130], essentially non-oscillatory [128, 131], weighted essentially

non-oscillatory [132–134], and maximum-principle preserving [135] schemes—to prove con-

vergence [136]. NSFR as it is presented does not have a convergence proof to the entropic
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solution.

We are also interested in the role anti-diffusive terms have on the discretization and we

believe that there is a relationship to be established with convergence. The local energy

stability problem introduced by Gassner and coauthors [137] explored the bounded growth of

perturbations within entropy conserving schemes. The perturbation growth corrupted the

solution approximation for smooth problems. This phenomenon is particularly of interest for

turbulent and chaotic flows—it acts as a means to separate noise from the data.

A convergence proof and a discrete bound on the spurious growth of perturbation errors

would provide chaotic problems with a quantification of the prediction’s uncertainty—rendering

the algorithm truly predictive.
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