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Abstract 

This dissertation investigates how auditory rhythm perception and production affect 

cardiac dynamics. The first hypothesis is that individual differences in biological rhythms 

modulate musicians’ performance rates and cardiac responses during performance. Chapter 1 

describes a study that measures pianists’ cardiac activity while performing simple melodies 

across four times of day (09h, 13h, 17h, 21h), using a novel application of a nonlinear analysis 

technique to cardiac data. Results showed that performance rates were slowest in the morning 

(first session), particularly for pianists with less musical training, while consistent within 

individual across the 12h day. Cardiac activity was most predictable and stable in the morning, 

and melody familiarity also affected cardiac predictability. These findings point to time of day 

and practice effects of auditory rhythms on cardiac activity. The second hypothesis is that 

auditory rhythm production results in more recurrent, more predictable cardiac dynamics than 

auditory rhythm perception. The third hypothesis is that cardiac activity will become more 

recurrent and more predictable for simple rhythms than complex rhythms. Chapter 2 describes a 

study that measures musicians’ behaviour and cardiac rhythms during perception of and 

synchronisation with simple and complex auditory rhythms. Findings indicated that 

synchronisation with complex rhythms was worse than synchronisation with simple rhythms. 

Cardiac recurrence and predictability were greater during rhythm perception than during 

synchronisation, indicating greater potential entrainment of cardiac activity during perception.  

Cardiac dynamics were more recurrent during simple rhythm synchronisation than complex 

rhythm synchronisation, but the opposite was true for perception, suggesting possible roles of 

task difficulty and auditory/motor timing in cardiac dynamics. The final hypothesis is that 

learning, in the form of short-term training, will reduce cardiac recurrence and predictability 
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during auditory rhythm production. Chapter 3 describes a study that tested short-term learning 

effects on complex rhythm synchronisation in individuals with a variety of musical experience. 

Consistent with Chapter 2, synchronisation was better for the simpler of the two rhythms, and 

cardiac dynamics were most recurrent for the simpler rhythm. Individuals’ cardiac recurrence 

and predictability were consistent across training and different rhythms, indicating stable 

individual differences in cardiac dynamics during auditory-motor synchronisation. Overall, the 

findings in this dissertation demonstrate 1) the applicability of nonlinear analysis techniques to 

cardiac data during auditory-motor synchronisation tasks, 2) stable individual differences in 

auditory-motor synchronisation behaviour and cardiac dynamics, and 3) task difficulty and 

rhythm complexity interact to influence cardiac dynamics. These findings contribute to 

understanding the physiological underpinnings of auditory rhythm perception and production. 
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Résumé 

Le but de cette thèse est d’étudier les effets de la perception et la production de rythmes 

auditifs sur le système cardiaque. La première hypothèse stipule que les différences individuelles 

en rythmes biologiques contribuent au tempo de la performance et de la réponse cardiaque des 

musiciens. Le chapitre 1 décrit une étude où l'activité cardiaque des pianistes a été mesurée lors 

de quatre sessions au cours d’une même journée (09h, 13h, 17h, 21h), durant lesquelles ils 

jouaient des mélodies simples. Une nouvelle application d'une technique d'analyse non linéaire a 

été employée pour l'analyse des rythmes cardiaques. Les résultats ont montré que le tempo des 

performances était plus lent le matin (première session), notamment pour les pianistes avec 

moins d'années de formation, mais le tempo des performances de chaque individu était stable au 

cours des 12 heures de la journée. Les rythmes cardiaques étaient plus prédictibles et stables le 

matin, et la prédictibilité des rythmes cardiaques était également influencée par la familiarité des 

mélodies. Dans l’ensemble, ces résultats indiquent qu'il y a un effet de l'heure de la journée et de 

l'entraînement avec les rythmes auditifs sur les rythmes cardiaques. La deuxième hypothèse 

stipule que la production de rythmes auditifs, comparée à la perception des mêmes rythmes, 

entraîne des rythmes cardiaques plus répétitifs et plus prédictibles. Pour la troisième hypothèse, 

il est attendu que les rythmes cardiaques deviendront plus répétitifs et prédictibles pour les 

rythmes simples que pour les rythmes complexes. Le chapitre 2 décrit une étude où le 

comportement et les rythmes cardiaques ont été mesurés chez les musiciens dans une tâche 

d’écoute passive et une tâche de synchronisation avec des rythmes auditifs simples et complexes. 

Les résultats ont montré que la synchronisation était moins bonne avec les rythmes complexes 

qu’avec les rythmes simples. La récurrence et la prédictibilité des dynamiques cardiaques étaient 

plus importantes pendant la perception que pendant la synchronisation, ce qui indique que 
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l’entraînement des rythmes cardiaques est plus important lors de tâches perceptives. Une plus 

grande récurrence dans les rythmes cardiaques était observée quand les musiciens se 

synchronisaient avec les rythmes simples qu’avec les rythmes complexe, mais l'inverse a été 

observée pendant la perception, suggérant que la difficulté d'une tâche et le timing auditif-moteur 

peuvent contribuer aux dynamiques cardiaques. La dernière hypothèse stipule que l'apprentissage 

à court-terme réduit la récurrence et la prédictibilité cardiaque pendant la production de rythmes 

auditifs. Le chapitre 3 décrit une étude dans laquelle les effets de l'apprentissage à court-terme 

sur la synchronisation avec les rythmes complexes ont été testés chez des individus avec 

différents niveaux d'expérience musicale. Comme dans le chapitre 3, une meilleure 

synchronisation et une plus grande récurrence dans les dynamiques cardiaques ont été observées 

pour le rythme le plus simple. Les individus ont montré, pour tous les niveaux d’apprentissage et 

les deux types de rythme, de la stabilité dans la récurrence et la prédictibilité des rythmes 

cardiaques, ce qui indique que les différences individuelles dans les dynamiques cardiaques sont 

stables pendant les tâches de synchronisation auditives-motrices. Dans leur ensemble, les 

résultats de cette thèse démontrent 1) la possibilité d'appliquer les techniques d'analyses non 

linéaires aux données cardiaques pendant des tâches synchronisation auditive-motrice, 2) une 

stabilité dans les différences individuelles en synchronisation auditive-motrice et dans la 

dynamique de l’activité cardiaque, et 3) l’effet d’interaction entre la difficulté d'une tâche et la 

complexité rythmique sur les dynamiques cardiaques. Ces résultats contribuent à notre 

compréhension des bases physiologiques de la perception et de la production des rythmes 

auditifs. 
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Contribution to Original Knowledge 

 A large body of literature has investigated a number of behavioural and physiological 

factors that affect auditory-motor synchronisation in humans. Within this body of literature, how 

cardiac rhythms are related to perception and production of auditory rhythms has received 

relatively little attention. The work presented in this dissertation contributes to this body of 

literature by examining cardiac activity during auditory rhythm perception and production tasks.  

The first manuscript of this dissertation (Chapter 1) investigates how biological rhythms 

are related to spontaneous performance tempo. Specifically, the study probes whether 

performance tempo changes according to time of day, and whether circadian-related effects of 

cardiac activity are related to performance tempo. Important findings from this study include 1) 

slower spontaneous performance rates earlier in the day, a novel finding that is consistent with 

time of day effects on performance rates, 2) stable individual differences in performance tempo 

across a 12h day, which extends previous work examining individual differences in performance 

rates, and 3) time of day and melody effects of music performance on nonlinear cardiac 

dynamics. Notably, this study contains a novel application of a nonlinear analysis technique to 

cardiac data during music performance. 

The second manuscript in this dissertation (Chapter 2) examines how listening to versus 

synchronising with a simple or a complex auditory rhythm affects cardiac activity. Results from 

this study show that cardiac rhythms are affected differently during auditory rhythm perception 

and synchronisation, and that simple and complex rhythms affect cardiac activity in different 

ways during perception and production. These findings are important in establishing a link 

between cardiac activity, task difficulty, and rhythm complexity. 
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The final manuscript in this dissertation (Chapter 3) builds on previous research into 

musical training effects (long-term training) on auditory-motor synchronisation by investigating 

how short-term training on complex auditory rhythms influences performance and cardiac 

activity. The behavioural findings from this study support recent theoretical models of coupled 

oscillators (Kim & Large, 2019); additionally, cardiac-behaviour correspondences are shown to 

occur even with short-term training, and stable individual differences in nonlinear cardiac 

dynamics are shown to exist for the first time in an auditory-motor synchronisation context. 
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General Introduction and Literature Review 

 Auditory and motor rhythms are pervasive in human and non-human animal behaviour. 

Vocalisations in non-human animals display predictable, rhythm-like qualities (De Gregorio et 

al., 2021; James & Sakata, 2017; Roeske et al., 2020). Humans demonstrate precise temporal 

coupling between the auditory and motor systems, known as auditory-motor synchronisation, in 

rhythmic behaviours such as speech, dance, and music performance. Many studies have 

investigated neural mechanisms of successful temporal coordination between the auditory and 

motor systems in humans during passive auditory rhythm perception (Fujioka et al., 2009; 

Fujioka et al., 2012; Nozaradan et al., 2011) and auditory-motor synchronisation with rhythms 

(Gilmore & Russo, 2021; Mathias et al., 2020; Nozaradan et al., 2015; Scheurich et al., 2020) . 

The role of cardiac activity in rhythm perception, rhythm production, and auditory-motor 

synchronisation has received comparatively less attention. The central and peripheral nervous 

systems have extensive bidirectional projections (Benarroch, 2012; Porges, 2007), and higher-

level neural activity can be modulated by cardiac activity (Sandman, 1984); bidirectional 

modulation also occurs between cardiac activity and cognition (Barber et al., 2020; Fairclough et 

al., 2005) and perception (Al et al., 2020; Tanaka et al., 2021). An open question is how cardiac 

activity is influenced during auditory rhythm perception and production. This dissertation 

addresses the relationship between auditory rhythms and cardiac activity during perception and 

action. 

Rhythm Complexity in Perception and Production 

What is a Rhythm? 

 At the most basic level, a rhythm refers to sequences of events that are temporally 

predictable based on the timing of past events in the sequence (Fraisse, 1982). The perception of 
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a rhythm in acoustic signals is multi-faceted and can arise from different acoustic factors. For 

example, systematic changes in pitch, intensity, and/or temporal intervals between tone onsets in 

a sequence of acoustic tones can give rise to a percept of a repeating pattern (Drake, 1993; Drake 

et al., 1991; Huron & Royal, 1996). Tempo and metre are two key components in auditory 

rhythm perception and production (Honing, 2013). Tempo refers to the rate of the elements in a 

sequence and is a key factor in rhythm perception because it can influence whether elements in a 

sequence will be identified as distinct (when the tempo is too fast) or identified as unrelated 

(when the tempo is too slow) (Repp, 2005). Metre refers to the multiple timescales at which 

rhythms are perceived in the same auditory sequence, meaning that a single acoustic stimulus 

can be perceived as rhythmic on several temporal levels (McAuley, 2010). The beat frequency 

level is typically known as the pulse frequency (Large et al., 2015) and is usually the most 

perceptually salient frequency in a rhythm. Hierarchy in temporal structure can be perceived at 

frequencies slower than the beat frequency (they evenly subdivide the beat) and frequencies that 

are faster than the beat frequency (they are integer multiples of the beat frequency) (Large et al., 

2015). Much research in auditory cognitive neuroscience focuses on auditory rhythms that arise 

from predictable temporal relationships between tones or elements in a sequence. These types of 

auditory rhythms will be the focus in this dissertation. 

Theoretical Perspectives on Rhythm Complexity 

 Interval theories of rhythm perception and production posit the existence of an internal 

clock that tracks the duration of events (McAuley, 2010). Single-clock models maintain there is 

one internal timekeeper (Wing & Kristofferson, 1973). In a single clock model, the simplest 

rhythms will be those whose elements form integer multiple ratios with one another (such as 1:1 

or 1:2) because the internal timekeeper does not need to adjust its period to track interval 
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durations. Another approach to defining rhythm complexity has been referred to as a "rule-based 

approach" (McAuley, 2010). In this approach, a hierarchical internal clock (in contrast to a single 

internal clock) is assumed to operate in an individual (Povel & Essens, 1985). This internal clock 

can be modulated by an auditory rhythm. Whether the temporal structure of a rhythm is such that 

events in the rhythm are integer multiples of one another, or can be divided into equal time units, 

known as metrical coding, is key in determining whether it is a simple or a complex rhythm 

(Chen et al., 2008b; Essens & Povel, 1985). In particular, rhythms that are weakly metrical will 

only weakly modulate the internal clock while rhythms that are strongly metrical will strongly 

modulate the internal clock; weakly metrical rhythms are thus considered complex, and strongly 

metrical rhythms are thus considered simple (McAuley, 2010; Povel & Essens, 1985). Indeed, 

behavioural studies in which individuals spontaneously produce or reproduce sequences of tones 

suggest that humans show a production bias towards sequences whose elements are related in 

simple integer multiple ratios typical of meter in Western music (Chen et al., 2008b; Essens, 

1986; Essens & Povel, 1985). 

 Another approach to modelling rhythm complexity comes from nonlinear dynamical 

systems theory. Nonlinear dynamics is the study of change in complex systems, systems whose 

outputs are not necessarily proportional to their inputs (Guastello & Liebovitch, 2009), and of 

which biological organisms are an excellent example (Freeman, 1991). The nonlinear dynamical 

framework defines rhythm complexity by appealing to principles of coupled oscillators. Buzsaki 

(2006) provides an intuitive definition of an oscillator: The motion of a car circling a racetrack is 

repetitive and slightly varied, but ultimately bounded by the limits of the track. An oscillator thus 

shows periodicity (repetition or regularity) in its behaviour. When oscillators are coupled, it 

means they interact to influence one another’s periodic behaviour (Strogatz, 2003). Coupling 
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between two oscillators occurs when the phase or period of those oscillators entrain to create a 

stable phase or period relationship (Guasetello & Liebovitch 2009). 

Whether two oscillators become stably coupled is largely a function of how similar their 

natural frequencies are, and the extent to which one oscillator can drive the other to match its 

phase or period (known as coupling strength; Dotov & Trainor, 2021; Large et al., 2015). From 

these two parameters, the stability of the phase- or period-coupling of the oscillators is 

determined, and a region of stable coupling or synchronisation is established (Treffner & Turvey, 

1993). For oscillators whose natural frequencies form near-simple integer multiple ratios (such 

as 2:1), synchronisation is likely even at relatively low coupling strengths; conversely, oscillators 

whose natural frequencies deviate away from simple integer multiple ratios (such as 3:2) require 

greater coupling strength to achieve stable coupling (Hessler & Amazeen, 2014; Large et al., 

2015; Treffner & Turvey, 1993). 

 Neural resonance theory, proposed by Large & Snyder (2009), makes predictions about 

rhythm perception and production that come from nonlinear dynamical systems theory of 

coupled oscillators. Large and Snyder propose there is resonance, or entrainment, between 

endogenous neural oscillations and exogenous auditory rhythms: Neural oscillations can become 

period and/or phase coupled to auditory rhythms. This coupling is posited to underlie rhythm and 

beat perception (Large & Snyder, 2009; Large et al., 2015). A number of neurophysiological 

studies show that auditory rhythms modulate and entrain neural oscillations (Fujioka et al., 2009; 

Fujioka et al., 2012; Gilmore & Russo, 2021; Nozaradan et al., 2011). According to neural 

resonance theory, neural oscillations will be preferentially entrained by acoustic rhythms when 

tone onsets occur within a certain time window of the neural oscillation (Bauer et al., 2015; 

Large & Palmer, 2002). As the ratio between natural frequencies of oscillators in part governs 



5 

 

the stability of coupled oscillators, it follows that auditory rhythms forming a simple integer ratio 

with neural rhythms will be those that are most easily perceived and produced. This leads to the 

definition of simple rhythms as ones that have a large synchronisation region (ex. 1:1, 1:2) and 

complex rhythms as ones that have a small synchronisation region (ex. 3:2, 2:3). 

Behavioural Evidence of Rhythm Complexity 

Behavioural studies in which participants synchronise their fingers taps with stimulus 

tones support a human bias toward auditory rhythms with simple-integer ratios. Synchronisation 

of finger taps with an auditory rhythm has been shown to be more accurate for simple integer 

ratio rhythms (ex. 2:1) than for non-integer ratio complex rhythms (ex. 3:2) (Deutsch, 1983). 

Participants have shown success in synchronising their finger taps with various 3:2 rhythms at 

fast tempi about 60% of the time, producing mean tapping ratio values of 1.76 (a mean tapping 

ratio of 1.5 would represent perfect synchrony) (Repp et al., 2005). Similarly, Snyder et al. 

(2006) had participants tap to drum patterns with 3:2 interval ratios (long-short-short and short-

short-long patterns) as well as continue tapping the rhythmic pattern in silence. Participants 

showed some tapping synchrony with the 3:2 rhythm pattern as their mean tapping ratio was 

1.679. Participants also showed some ability to continue tapping the 3:2 pattern without the 

auditory cue (mean tapping ratio of 1.732) but tended towards the simpler 2:1 ratio pattern when 

unconstrained by the auditory cue (Snyder et al., 2006). Bimanual tapping accuracy and 

perceptual detection accuracy have been shown to decrease as auditory rhythms deviate further 

from simple integer ratios (Dotov & Trainor, 2021). This study also showed that when 

participants continued tapping auditory rhythms in the absence of a stimulus cue, they were more 

likely to produce simple integer ratios than complex integer ratios (ex. 1:2 more likely than 3:7). 
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Experience is one important factor that influences humans’ perception and production of 

complex rhythms. Cross-cultural work on the production of complex rhythms has yielded some 

evidence for rhythm complexity consistent with the nonlinear dynamics view (Ravignani et al. 

2016) while also emphasising that long-term cultural experience with complex rhythms affects 

synchronisation with complex rhythms (Jacoby & McDermott, 2017). Individuals from cultures 

whose music frequently contains complex 3:2 rhythm structures tend to synchronise finger taps 

more stably with 3:2 auditory rhythms (Polak et al., 2018), switch between tapping 1:2 rhythms 

and 3:2 rhythms more efficiently (Ullal-Gupta et al., 2014), and better detect temporal 

disruptions in 3:2 rhythms (Hannon et al., 2012) compared to individuals whose musical culture 

contains few complex rhythmic structures. Notably, this perceptual advantage does not extend to 

highly complex rhythms (7:4 ratios) that do not correspond to culturally-familiar music (Hannon 

et al., 2012). Short-term experience with complex rhythms can also improve tapping accuracy. 

Individuals show more accurate complex rhythm production after listening to complex rhythms 

compared to listening to simple rhythms or no rhythms (Tillmann et al., 2011), and non-

musicians show improved synchronisation performance with complex polyrhythms (rhythms 

with two tone streams) after 10 training trials (Tajima & Choshi, 2000). 

Together, these behavioural studies constitute support for the nonlinear dynamical 

systems definition of rhythm complexity. Simple, small integer ratio rhythms tend to yield better 

production and synchronisation than larger, non-integer ratio rhythms. Long-term (cultural) and 

short-term experience (training) can modulate complex rhythm perception and production, 

suggesting there is a component of familiarity and experience in rhythm complexity. 
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Connecting Auditory Rhythms and Cardiac Activity 

Neural resonance theory specifically addresses how auditory rhythms influence neural 

oscillations. How auditory rhythms influence other biological oscillations can be investigated 

through a similar nonlinear dynamical systems framework. Of particular interest is how cardiac 

activity is related to perception and production of auditory rhythms. Cardiac activity is 

intrinsically oscillatory: Cardiac cells are autonomous oscillators, meaning they fire in a periodic 

fashion independent of central nervous system input (Shaffer et al., 2014). A number of 

physiological inputs modulate cardiac period and contribute to heart rate variability (HRV), 

intrinsic variability from heartbeat to heartbeat that exists across a wide range of species 

(Heathers, 2014; Paton & Pickering, 2012; Porges, 2007). The sympathetic nervous system 

(SNS) input typically acts to decrease heartbeat periods (increase heart rate) and decrease heart 

rate variability (Shaffer et al., 2014). In contrast, the parasympathetic nervous system (PNS) via 

the vagal nerve typically acts to increase heartbeat periods (slow down heart rate) (Shaffer et al., 

2014).  

Cardiac activity is often measured using linear methods in both a time and a frequency 

domain. Common linear measures of cardiac activity in the time domain include heartbeat 

intervals measured in milliseconds (often called R-R interval which denotes the peak-to-peak 

interval in an electrocardiogram, ECG) and the standard deviation of normal-to-normal heart 

beats (SDNN) or the root mean square of successive differences (RMSSD), which capture HRV 

(Berntson et al., 1997; Camm et al., 1996; Heathers, 2014; Shaffer et al., 2014). The PNS and 

SNS exert influence on the heart at different timescales, with the PNS exerting influence at a 

much faster timescale than the SNS, resulting in cardiac oscillations at different frequencies 

(Berntson et al., 1993). In the frequency domain, heartbeat oscillations linked to the SNS are 
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typically reflected in a low-frequency band between .04 and .15 Hz, although this frequency 

band does not exclusively reflect SNS influence (Berntson et al., 1997; Heathers, 2014). 

Heartbeat oscillations linked to the PNS are typically reflected in a high frequency band between 

.15 Hz and .4 Hz (Laborde et al., 2017; Shaffer et al., 2014).  

Effects of Auditory Rhythms on Cardiac Activity 

Loudness. The sound level (loudness) of auditory and musical rhythms influences 

cardiac activity. Listeners’ heart rates increase when they hear louder passages (greater sound 

intensity) in a complex piece of classical music (Mikutta et al., 2013). do Amaral and de Abreau 

(2015) measured cardiac activity as participants heard a Baroque and a heavy metal piece of 

music at a range of loudness levels (60-70 dB, 70-80 dB, and 80-90 dB); compared to silent 

baseline, listeners had decreased HRV in the loud (80-90 dB) heavy metal condition. Finally, 

cardiac activity is sensitive to changes in loudness in isochronous tone sequences (Chuen et al., 

2016). Baseline tones (65 dB) were suddenly increased in loudness (70 dB, 75 dB, and 80 dB) in 

the middle of the isochronous sequence. Overall, heart rate increased following the sudden 

increase in loudness (Chuen et al., 2016). Together, these studies show that loud musical rhythms 

and increases in loudness levels tend to raise heart rate and decrease heart rate variability. These 

findings are perhaps unsurprising as loud sounds produce an acoustic startle reflex, which puts 

an animal in an alert/defensive mode (Samuels et al., 2007) and results in increased physiological 

arousal (Turpin et al., 1999). 

Tempo. Tempo effects on cardiac activity demonstrate with some consistency that fast 

tempo auditory rhythms lead to increased heart rate and decreased HRV, and slow tempo 

auditory rhythms lead to decreased heart rate and increased HRV during perception; however, 

this effect has not been systematically observed (Koelsch & Jäncke, 2015). Comparing cardiac 
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activity during perception of an excitative song (fast tempo) and a sedative song (slow tempo) 

showed that a fast piece of classical music elicited faster heart rates and a slow piece of classical 

music elicited slower heart rates in listeners (Iwanaga et al., 1996; Iwanaga & Moroki, 1999). A 

similar finding has been reported for fast jazz music compared to slow jazz music (Nomura et al., 

2013). Gomez and Danuser (2007) measured cardiac activity during perception of short noise 

excerpts and short instrumental Western classical music excerpts, finding tempo of auditory 

sequences correlated positively with listeners' heart rates. A series of studies showed how tempo 

(60 BPM vs 80 BPM) of an isochronous tone sequence influences cardiac activity (Watanabe et 

al., 2015). Notably, listeners in these studies also breathed at slow or fast tempi while listening to 

the auditory rhythms. Heart rate was generally faster and high-frequency HRV lower during the 

fast tempo tone sequences, particularly when listeners also breathed at a fast rate (Watanabe et 

al., 2015). Other studies have shown similar effects, with fast tempo during certain musical 

genres leading to decreased HRV compared to slow tempo music of a different genre (da Silva et 

al., 2014). 

Other studies indicate more mixed effects of tempo on heart rate. Ooishi et al. (2017) 

presented listeners with slow classical music (56 BPM) and extremely fast classical music (233 

BPM) and compared cardiac activity to a silent baseline condition. Only the slow tempo 

condition led to a decrease in heart rate and an increase in HRV; listeners' cardiac activity was 

not affected by the fast tempo condition. Bretherton et al. (2019) played participants a familiar 

musical tune ("Baa Baa Black Sheep") in increasing tempo order (60 BPM to 180 BPM in steps 

of 10), decreasing tempo order (180 BPM to 60 BPM in steps of 10), or a tempo-constant 

condition (120 BPM). Compared to a silent baseline, participants showed faster heart rates at the 
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slowest tempo in the tempo decrease condition and greater HRV at the slowest and fastest tempi 

in the tempo decrease and tempo increase conditions, respectively. 

There are large individual differences in cardiac activity (Picard et al., 2009), making 

individual differences an important consideration in how auditory sequences affect cardiac 

activity. One approach (Van Dyck et al., 2017) has been to titrate auditory rhythms to individual 

listener's resting heart rates, so that listeners heard music at the tempo of their resting heart rate, 

then at +- 15%, +- 30%, and +-45% of resting heart rate. Tempi that were 30% and 45% slower 

than a listeners' baseline heart rate tended to decrease the listener's heart rate from baseline, but 

no effects of faster tempi on cardiac activity were observed suggesting asymmetric effects of 

tempo on cardiac activity. Heartbeat entrainment to isochronous beats was tested by presenting 

listeners with simple drumbeat sequences that were 25%, 40%, and 55% faster than their real-

time heart rate (Mütze et al., 2018). Synchronisation between heartbeats and drumbeat onsets 

was measured by comparing heartbeat onsets to inter-tone onsets in the auditory rhythm. There 

was no evidence at the group-level that heartbeats entrained in period or in phase to isochronous 

musical rhythms at varying tempi; instead, there large individual differences in mean heart rate 

and the period and phase relationships between heartbeats and acoustic tones (Mütze et al., 

2018). Finally, Watanabe et al. (2017) showed that fast auditory rhythms tended to accelerate 

heart rates only in listeners’ with slow resting heart rates. 

The findings discussed above indicate that auditory rhythms can affect cardiac activity 

while also demonstrating that tempo is not sufficient to explain auditory rhythm effects on 

cardiac activity during perception. Notably, many studies investigating relationships between 

auditory rhythms and cardiac activity have been purely perceptual. Individual differences in 
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baseline cardiac activity as well responses to auditory rhythm tempo indicate that auditory 

rhythm perception has a nuanced effect on cardiac activity. 

Rhythm. To date, there is little evidence as to how auditory-motor synchronisation 

influences cardiac activity during auditory rhythm production or synchronisation. A number of 

studies have investigated how music performance influences cardiac activity (Chanwimalueang 

et al., 2017; Harmat et al., 2011; Iñesta et al., 2008; Nakahara et al., 2011; Sebastiani et al., 2022; 

Williamon et al., 2013). These studies use highly trained musicians, full musical excerpts, and 

simulated performance conditions. Although informative as to how music performance 

influences cardiac activity, few studies have focused on specific auditory features such as 

rhythmic structure or complexity. Vickhoff et al. (2013) compared singers' respiratory and 

cardiac activity when they read a short text, hummed with self-selected breathing points, sang a 

hymn with musical structure in a group, and sang a group mantra with phrases lasting 10 

seconds. They found the largest peak in spectral density (low-frequency band around .1 Hz) for 

the highly structured mantra condition, suggesting that musical structure and respiratory rhythms 

influenced cardiac activity. However, given that extensive coupling exists between the cardiac 

and respiratory systems (Paton & Pickering, 2012), it is difficult to generalise these findings to a 

non-singing, rhythmic auditory-motor task. Nonetheless, it suggests that there may be important 

coupling that occurs between auditory rhythm structure and cardiac activity. 

Neurophysiological studies show that rhythm complexity modulates neural activity and 

neural oscillations during auditory rhythm perception and production. The neural correlates of 

rhythm perception and reproduction via finger tapping have been investigated using fMRI (Sakai 

et al., 1999). Auditory rhythms formed simple small integer ratios (1:2:4 and 1:2:3) or complex 

integer ratios (1:2.5:3.5). During rhythm reproduction, participants produced the small integer 
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ratio rhythms more accurately than the complex integer ratio rhythm, with the intervals in the 

complex ratio rhythms tending towards simple integer ratios when participants reproduced them 

with finger taps (Sakai et al., 1999). Neural correlates of the simple and complex integer rhythms 

were different during both perception and reproduction tasks: simple integer ratio perception and 

reproduction were correlated with left motor and parietal regions while complex integer ratio 

perception was additionally correlated with right motor, parietal, and prefrontal areas. As Sakai 

et al. (1999) used a rhythm reproduction task, it is possible that memory for rhythms played a 

role in their findings. 

An electroencephalography (EEG) experiment from Mathias et al. (2020) directly 

compared perception and finger tapping performance for a two-part rhythm with a simple inter-

tone interval ratio (1:1), a moderate inter-tone interval ratio (1:2), and a complex inter-tone 

interval ratio (3:2). Musically trained participants were asked to detect omitted tones in a 

perceptual condition and to perform one part of each rhythm in a production condition (the 

second part of the ratio). Participants showed lower accuracy detection of omitted tones in the 

complex 3:2 rhythm compared to the simple 1:1 rhythm condition. Neurophysiological findings 

showed the largest peak in spectral power for perception of the simple 1:1 rhythm. For the 

production task, Mathias et al. (2020) found larger tapping asynchronies for the 3:2 rhythm than 

for the simple 1:1 and moderate 1:2 rhythms. During the simplest rhythm (1:1), the largest peak 

in spectral power at the frequency of the tap and stimulus was observed, suggesting that neural 

oscillations are modulated by rhythm complexity. Finally, the spectral power peak was larger 

during the production task than the perception task, indicating stronger neural responses during 

the production versus perception task. The auditory rhythms as well as the design of the tasks 
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(perception, production) in Mathias et al. (2020) are of particular relevance to the work presented 

in Chapter 2 and Chapter 3 of this dissertation. 

The relationships between cardiac, neural, and auditory rhythms has been investigated in 

one recent study from Zhao and Kuhl (2020). During magnetoencephalography, participants 

listened to isochronous tone sequences differing in the position of strong and weak tones such 

that one sequence had every second tone amplified by 10 dB and the other had every third tone 

amplified by 10 db. This created auditory rhythms with a duple metre (frequency peak at 1.67 

Hz), and auditory rhythms with a triple metre (frequency peak at 1.1 Hz). Entrainment of neural 

activity to the beat and metre of the auditory rhythms was measured by the ratio of the power 

present in neural oscillations at the beat level to the power present at the metre level. Zhao and 

Kuhl (2020) saw that neural activity tended to entrain to the beat rather than the metrical level of 

the auditory rhythms and that participants' HRV was lower (more stable heart period) during 

perception of both rhythms compared to silent baseline. Furthermore, participants' task-specific 

HRV correlated negatively with the beat:metre frequency power ratio while their baseline HRV 

correlated negatively with the beat:metre frequency power ratio only in the duple condition 

(Zhao & Kuhl, 2020). The temporal relationships of tones in the auditory rhythms were not 

manipulated in this study, meaning rhythm complexity was not different across auditory 

conditions. Yet, this study indicates that auditory rhythms may regularise cardiac activity and 

that cardiac and neural activity may interact during auditory rhythm processing. 

Overall, there is some conflicting evidence as to how auditory rhythms influence cardiac 

activity. This may be due, in part, to methodological differences between studies that use a single 

tempo manipulation for all participants, studies that titrate auditory rhythm tempo to a listeners' 

baseline heart rate, or studies that control breathing rates while measuring cardiac rhythms. 
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Tempo remains the most widely investigated parameter of auditory rhythms affecting cardiac 

activity, but it is only one dimension of auditory rhythms, and it has primarily been studied in 

perceptual contexts. In contrast to research investigating how rhythm complexity affects neural 

activity, the effect of rhythm complexity on cardiac activity has received little attention. How 

auditory rhythms, and specifically rhythm complexity, affect cardiac activity is thus open for 

further investigation. 

Individual Difference Factors in Behaviour and Physiology 

Individual differences in movement tempo are a relevant consideration in how cardiac 

activity is affected during auditory rhythm production and synchronisation. Spontaneous motor 

tempo (SMT) refers to a movement rate that an individual produces without external cues 

guiding their movement rate (McAuley et al., 2006). The SMT is thought to represent a state of 

maximal energy efficiency, and individuals have demonstrated SMTs in walking (Hoyt & 

Taylor, 1981), cycling (Moussay et al., 2002), and finger tapping (McAuley et al., 2006). Person-

specific factors observed to affect SMT include age (McAuley et al., 2006), attention (Amrani & 

Golumbic, 2020), and memory (Rabinowitz & Lavner, 2014). 

Spontaneous production rates (SPR) refer to the natural rate at which an individual 

produces a motor sequence, such as an auditory rhythm, corresponding to the rate at which an 

individual shows the least temporal variability in their movement (Zamm et al., 2018). Individual 

differences in SPR are well-documented (Palmer et al., 2019; Scheurich et al., 2018; Zamm et 

al., 2016), and individuals show consistency in their SPR across melodies, limb, and testing 

session (Zamm et al., 2015). There is evidence that SPRs constrain individual rhythm production 

rates (Scheurich et al., 2018) as well as interpersonal coordination (Zamm et al., 2015; Zamm et 

al., 2016; Tranchant et al., 2022), which suggests that SPRs have a critical role in how we 
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successfully coordinate our own actions as well as actions with others. As auditory rhythm 

tempo affects cardiac activity during perception, it is a natural extension to investigate how 

individual differences in movement tempo are related to cardiac activity during auditory rhythm 

production and synchronisation. 

Circadian rhythms are another individual difference factor in cardiac activity and 

behaviour. Circadian rhythms are approximately 24-hour endogenous rhythms in biological 

activity (Roenneberg et al., 2003a). Circadian effects on heart rate show that heart rate increases 

in the morning, plateaus, and decreases in the evening; the inverse is true for HRV (Vandewalle 

et al., 2007). The exact temporal pattern of heart rate and HRV across a 24-hour period is 

modulated by an individual's chronotype (Bonnemeier et al., 2003; Vandewalle et al., 2007), 

which refers to the phase at which an individual's circadian clock is entrained to the light-dark 

cycle, affecting their sleep-wake timing (Roenneberg et al., 2003b). 

Both gross and fine motor performance vary across the day (Dosseville et al., 2002; 

Edwards et al., 2007; Monk, 2005; Moussay et al., 2002; Reilly et al., 2007) and circadian effects 

on cognition have been identified (Dijk et al., 1992; Lehmann et al., 2013). SMT tends to be 

slower earlier in the morning (Hammerschmidt et al., 2021) and, most recently, later chronotypes 

have shown slower SMT in the morning compared to the evening (Hammerschmidt & Wöllner, 

2023). Musicians tend to practice music at times of day that align with their chronotype, 

independent of the previous night’s sleep timing (Wright & Palmer, 2022). Pianists with a later 

chronotype (go to bed and wake up late; night owls) play piano scales more stably in the evening 

while pianists with an earlier chronotype (go to bed early and wake up early; early birds) play 

piano scales more stably in the morning (Van Vugt et al., 2013). Circadian rhythms and time of 
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day thus constitute another potential source of individual differences in cardiac activity and 

behaviour during rhythm perception and production. 

Analysis Techniques for Cardiac Activity during Behavioural Tasks 

Cardiac activity is commonly measured via electrocardiogram (ECG) whereby multiple 

electrodes are placed in different positions on the chest and abdomen. More recently, cardiac 

data collected with consumer-grade heart rate monitors that attach around the chest have been 

validated against traditional ECG (Gilgen-Ammann et al., 2019) and used during behavioural 

tasks (Konvalinka et al., 2011; Luque-Casado et al., 2016; Moussay et al., 2002; Tozman et al., 

2015). R-R interval time series (heartbeat-to-heartbeat intervals) are generated from the heart 

rate monitor and can be analysed using linear and nonlinear methods. 

Linear time-domain statistics such as mean heart rate/R-R intervals and SDNN/RMSSD 

(heart rate variability) and linear frequency spectrum decompositions (Berntson et al., 1997; 

Heathers, 2014; Shaffer et al., 2014) are commonly applied to cardiac data. Linear statistics 

assume at least some degree of stationarity (stable mean and covariance) in a signal (Berntson et 

al., 1997); however, physiological time series' such as cardiac activity are typically non-

stationary, particularly when they are long or task-demands occur (Berntson et al., 1997). Non-

stationarity has been shown to bias linear analyses of cardiac and respiratory data (Weber et al., 

1992). Moreover, heartbeats are affected by a set of inputs (Paton & Pickering, 2012; Porges, 

2007), and the cardiac system is a complex system (Marwan et al., 2002). Linear statistics 

capture only a single snapshot (ex. a mean) of a time-evolving variable, which results in the loss 

of important information about the real-time dynamics of that time-evolving variable. 
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Recurrence Quantification Analysis 

 Nonlinear analysis methods are able to capture nonlinear change and patterns in cardiac 

activity over time. Recurrence, the presence of repeated patterns in a dynamic signal, is 

particularly relevant to the dynamics of physiological systems (Marwan et al., 2007; Webber & 

Zbilut, 2005). Recurring patterns in a system are foundational to recurrence quantification 

analysis (RQA): RQA is a nonlinear analysis technique that captures and quantifies repeating 

patterns in a signal, describing the dynamics of a system (Marwan et al., 2007; Webber & Zbilut, 

2005). Repeating patterns in a signal reflect states that a system often revisits, otherwise known 

as attractor states to which the system is drawn and requires a "kick" to leave (Guastello et al., 

2009). Auto-RQA can be used to detect and quantify the structure of repeating patterns in a 

single cardiac time series signal. 

The first step in RQA is to recover the higher dimensionality of a time series signal. An 

R-R interval time series is a 1-dimensional representation of heartbeat period over time; it does 

not contain the full dynamics of the system because the cardiac signal has been projected from 

higher into lower-dimensional space (Webber & Zbilut, 2005). To recover the dynamics of 

cardiac activity, a multi-dimensional phase space must be reconstructed (Nayak et al., 2018). A 

phase space is an abstract space in which a dynamical system exists: It contains all the possible 

states in which a system could be (Kelso, 1995; Nayak et al. 2018). Within the phase space, 

dynamical systems form trajectories of movement, which are created by vectors denoting the 

current state and the direction of the system's movement; a system's dynamics are thus displayed 

in the phase space trajectory (Webber & Marwan, 2015). The time delay method proposed by 

Takens (1981) can be used to recover the phase space (the lost dimensionality) of a measured 

system and regain information about the original system (Webber & Zbilut, 2005). Takens' 
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theorem holds that for a complex system in which only a single variable has been measured, 

creating time-delayed copies of the 1-dimensional signal allows for reconstruction of the higher-

dimensional system in its phase space (Marwan et al., 2007; Takens, 1981; Webber & Marwan, 

2015; Webber & Zbilut 2005). Conceptually, this reconstruction can be thought of as unfolding 

the system from its 1-dimensional representation to its multi-dimensional representation in the 

phase space. 

 Two critical parameters must be set in order to achieve the reconstruction of phase space 

via the time-delay method. The embedding dimension parameter (m) refers to the dimensionality 

in which the system is thought to exist. Selection of m is key for the correct unfolding of the 

system in higher dimensional space. One common way to choose m is to use the False Nearest 

Neighbours (FNN) method. False nearest neighbours refer to points in a phase space that appear 

to be close to each other, but when the embedding dimension is increased (the system is further 

unfolded), the points do not remain close to each other; the embedding dimension m is thus 

considered optimal when the lowest value of m results in a stable number of false neighbours at 

m and m+1 (Nayak et al., 2018; Webber & Zbilut, 2015). The time delay parameter (tau, τ) 

determines the point in the signal at which a time-delayed copy will be created (Nayak et al., 

2018). Tau corresponds to points in the signal where there is low dependency between 

observations, meaning there is little information shared between xi and xi+τ (Webber & Marwan, 

2015). This method indicates orthogonal points in the signal and the dimensions that will show 

up in the phase space (Marwan et al., 2007; Webber & Zbilut, 2005). 

 Once the system's trajectory in phase space has been reconstructed, recurrent points in the 

system can be identified and recurrence plots can be constructed. As Webber & Zbilut (2015) 

note, recurrent points in a system are often not identical; rather, recurrent points are those 
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deemed sufficiently similar according to a pre-determined radius (ε) that functions as a threshold 

distance. Two points are considered recurrent if the distance between them is smaller than the 

threshold set by ε (Webber & Zbilut, 2015). Recurrence plots are 2-dimensional graphical 

representations of the recurrent states in a multi-dimensional system of interest (Eckmann et al., 

1987; Webber & Zbilut, 2015). When two points xi and xj meet the criterion for being recurrent 

with one another, then a dot is placed in the 2-dimensional recurrence plot (Eckmann et al., 

1987). This process is repeated for all points in the signal, eventually leading to a complete 

recurrence plot. In the case of an auto-recurrence plot, both the x and y axes of the recurrence 

plot contain the same measured time series, so the plot is symmetrical around the line of identity.  

The structures in a recurrence plot reflect important information about the temporal 

relationships between points in a time series signal. Figure 1 demonstrates how recurrence plots 

capture the features of a time series signal. The recurrence plot of a highly periodic signal, such 

as a pure sine wave, contains diagonal line structures in which the temporal interval between 

diagonal lines reflects the period of the signal (Figure 1a). The same sine wave with noise added, 

as shown in Figure 1b, results in recurrence plots containing diagonal line structures with breaks 

(reflecting the noise) as well as off-diagonal recurrent points. When the temporal relationships 

between values in the same time series of Figure 1b are shuffled, as in Figure 1c, the diagonal 

line structures in the recurrence plot disappear and recurrent and non-recurrent points become 

distributed throughout the recurrence plot. Recurrence plots are thus sensitive indicators of the 

temporal structure of time series signals. 

 The recurrence plot is a useful tool for visualising recurrent states in a system. It is, 

however, merely descriptive. The next step in RQA is to use specific metrics to quantify the 

structures that occur in the recurrence plot. Metrics of particular relevance for RQA applied to 
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cardiac activity are recurrence rate, determinism, and laminarity. Recurrence rate is the 

proportion of recurrent points to all possible points (recurrent and non-recurrent) in the 

recurrence plot. Determinism captures the proportion of total recurrent points in the recurrence 

plot that form diagonal lines and is a measure of the sequential predictability of a system 

(Marwan et al., 2007). Greater determinism values mean a more predictable system. Laminarity 

captures the proportion of total recurrent points in the recurrence plot that form horizontal or 

vertical lines (Marwan et al., 2007) and is a measure of the system's tendency to become stuck in 

a particular state. Greater laminarity values mean a system is changing states more slowly or less 

often. 

Applications of Recurrence Quantification Analysis 

 Recurrence plots and RQA have been applied to biological times series data such as 

neural oscillations (Scheurich et al., 2019), repetitive movement and postural sway (Schmit et al., 

2005) and cardiac dynamics. RQA has been applied to cardiac activity in various clinical 

populations (Javorka et al., 2008; Marwan et al., 2007; Schlenker et al. 2016) as well as during 

behavioural tasks. Cardiac dynamics were assessed with RQA during a 30-minute firewalking 

ritual, comparing cardiac activity during a firewalk with a baseline period (Konvalinka et al., 

2011). Firewalkers had greater determinism and laminarity in their cardiac dynamics during the 

firewalk compared to the baseline. Javorka et al. (2009) used RQA to assess cardiac dynamics in 

healthy young adults during an orthostatic challenge (a change from a supine position to a 

standing position). Participants stayed in a supine position for 20 minutes, then transitioned over 

a 5 second period to a standing position which was maintained for 15 minutes. Determinism and 

laminarity were both greater in the standing position compared to the supine position (Javorka et 
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al., 2009). Mental arithmetic led to increased cardiac recurrence, determinism, and laminarity 

compared to a rest condition (Dimitriev et al., 2016). 

Recurrence quantification analysis techniques have been applied to neurophysiological 

activity recorded from EEG during auditory rhythm production. EEG was used to measure neural 

activity of a confederate tapper and a participant who performed a joint rhythmic-tapping task 

(Scheurich et al., 2019). In one condition, the participant tapped twice for every tap the 

confederate made (1:2 condition) and in the other condition, the participant tapped twice for 

every four taps the confederate made (4:2 condition). Participants' neural oscillations were more 

recurrent in the 1:2 condition compared to the 4:2 condition, showing that neural oscillations are 

sensitive to differences in auditory rhythms during auditory-motor synchronisation.  

In sum, nonlinear analysis methods for cardiac activity overcome issues of non-stationary 

time series data. Cardiac activity is known to show nonlinear, patterned behaviour. Recurrence 

quantification analysis is thus an appropriate technique for understanding cardiac activity during 

a complex behavioural task and has been applied in behavioural paradigms. The studies in this 

dissertation draw upon and extend previous work to apply RQA to cardiac dynamics during 

auditory-motor synchronisation. 

Overview of Research 

 The research in this dissertation complements previous behavioural investigations by 

addressing previously-unexamined factors involved in auditory-motor synchronisation. This 

dissertation also investigates nonlinear cardiac rhythms during auditory perception and 

production tasks, a novel approach to understanding how physiological activity relates to 

auditory-motor synchronisation. Chapter 1 investigates individual differences in performance 

rates and asks how biological rhythms are related to performance rates across a 12h day in 
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trained pianists. It applies a nonlinear analysis technique to cardiac data in a novel context, 

demonstrating the usefulness of nonlinear analysis approaches to physiological time series data. 

Chapter 2 examines nonlinear cardiac dynamics during perception and production of simple and 

complex auditory rhythms in trained musicians. This study extends Chapter 1 by directly 

comparing rhythm perception and production, and it draws on nonlinear dynamical systems 

theory to make predictions about how rhythm complexity affects cardiac dynamics. Chapter 3 

extends both Chapter 1 and Chapter 2, investigating short-term training effects on complex 

rhythm synchronisation and nonlinear cardiac dynamics in individuals with a range of musical 

experience. This study examines short-term practice effects, in contrast to long-term musical 

training, on auditory-motor synchronisation; it also compares behavioural and nonlinear cardiac 

measures during synchronisation with two complex rhythms, and probes individual differences 

in nonlinear cardiac activity during an auditory-motor synchronisation task. 
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Figure 1. Time series and corresponding auto-recurrence plots for signals with varying degrees 

of noise. A) Pure 5 Hz sine wave. B) 5 Hz sine wave plus Gaussian white noise. C) Randomly-

shuffled 5 Hz sine wave plus Gaussian white noise. 
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Chapter 1: Physiological and Behavioural Factors in Musicians’ Performance Tempo 
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Abstract 

 

 Musicians display individual differences in their spontaneous performance rates (tempo) 

for simple melodies, but the factors responsible are unknown. Previous research suggests that 

musical tempo modulates listeners’ cardiovascular activity. We report an investigation of 

musicians’ melody performances measured over a 12-hour day and subsequent changes in the 

musicians’ physiological activity. Skilled pianists completed four testing sessions in a single day 

as cardiac activity was recorded during an initial five minutes of baseline rest and during 

performances of familiar and unfamiliar melodies. Results indicated slower tempi for familiar 

and unfamiliar melodies at early testing times. Performance rates at 09h were predicted by 

differences in participants’ alertness and musical training; these differences were not explained 

by sleep patterns, chronotype, or cardiac activity.  Individual differences in pianists’ performance 

tempo were consistent across testing sessions: participants with a faster tempo at 09h maintained 

a faster tempo at later testing sessions. Cardiac measures at early testing times indicated 

increased heart rates and more predictable cardiac dynamics during music performance than 

baseline rest, and during performances of unfamiliar melodies than familiar melodies. These 

findings provide the first evidence of cardiac dynamics that are unique to music performance 

contexts.  

 

Keywords: circadian rhythms; music performance; cardiac dynamics; alertness; recurrence 

quantification analysis; chronotype 
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Introduction 

 The ways in which musical behaviours interact with human cognition and action have 

been of great interest to psychologists.  For example, models of musical rhythm perception have 

posited networks of electrophysiological activity, based on populations of neuronal oscillators 

that fire in synchrony with musical rhythms (Large, Herrera & Velasco, 2015); these proposals 

suggest a tight link between musical behaviors and physiological activity. Several studies have 

focused on the effects of music perception on physiological measures such as heart rate and heart 

rate variability (see Koelsch & Jäncke, 2015 for a review). Less is known about influences of 

music performance on physiological processes that underlie cognition and action. We report an 

investigation of musicians’ melody performances measured over a 12-hour day and subsequent 

changes in the performers’ physiological activity. 

Circadian Effects on Cognitive and Motor Performance 

 Several studies have documented time of day (circadian) effects on motor and cognitive 

performance. Circadian rhythms refer to approximately 24h biological oscillations entrained to 

the light-dark cycle. For example, body temperature is known to fluctuate predictably over a 24h 

cycle (Czeisler & Klerman, 1999), serving as a robust marker of circadian phase, and peaks and 

troughs in alertness tend to follow the body temperature curve (Dijk, Duffy, & Czeisler, 1992). 

Heart rate and heart rate variability (HRV) also fluctuate predictably over a 24h period: Heart 

rate tends to rise in the early morning and decrease in the evening, whereas HRV is typically 

highest at night and lowest during the day (Bonnemeier et al., 2003; Vandewalle et al., 2007). 

Edwards et al. (2007) reported that participants’ improved accuracy on a simple task of flicking a 

counter into a target coincided with their late-afternoon peak in body temperature and alertness. 

A similar finding was reported by Reilly et al. (2007) for soccer-specific motor skills. Rhythmic 
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motor tasks such as pedaling a bike (Atkinson et al., 2005; Moussay et al., 2002) and tapping a 

steady rhythm with one’s finger (Dosseville et al., 2002) have also been shown to have time of 

day effects, with peak rates of movement occurring in the late afternoon. Furthermore, 

Dosseville et al. (2002) found that un-cued rhythmic finger tapping rates increase as heart rate 

increases. Overall, these studies suggest that rhythmic motor performance is influenced by time 

of day effects and cardiac activity, which shows circadian rhythmicity. We address whether 

music performance is influenced by circadian fluctuations in physiology similar to other 

sequential motor activities. 

  Motor performance is also influenced by circadian-linked individual differences in 

chronotype, sleep habits, and alertness (Tamm et al., 2009; Waterhouse et al., 2007; Vitale et al., 

2015). Chronotype, which depends on the phase of entrainment of one's circadian rhythms to the 

light-dark cycle (Roenneberg, Daan, & Merrow, 2003), refers to the timing of one's sleep and 

wake in a 24h period. The commonly-known phenomenon of being an "early bird" or a "night 

owl" (Roenneberg et al., 2003b) refers to differences in the timing of the peaks and troughs of 

one’s circadian rhythms (Baehr et al., 2000): Early birds wake up and go to sleep earlier than 

night owls, and early birds are more alert in the morning and night owls more alert in the 

evening. Van Vugt et al. (2013) found that night owl pianists performed scales with greater 

temporal stability in the evening relative to the morning, while early bird pianists performed 

scales with more stability in the morning relative to the evening. Differences in chronotype, sleep 

habits, and alertness may influence performing musicians, who often work in the evening 

(Gjermunds et al., 2019).  

Individual Variability in Music Performance  
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Large individual differences in music performances of the same musical works have been 

documented (Palmer 1996; Repp 2005). One common difference across performing musicians is 

the tempo at which they perform a given piece. Tempo is a factor that differentiates individuals 

as they speak, walk, tap, and perform other rhythmic movements. These natural movement rates 

reflect the rate at which individuals comfortably execute a performance in the absence of 

external stimulus cues. Individual differences in natural movement rates have been observed not 

only in music performance (Loehr et al., 2011; Palmer et al., 2019; Scheurich et al., 2018; Zamm 

et al., 2015, 2016) but also in a wide range of rhythmic movements such as walking (Hoyt & 

Taylor, 1981; Nessler & Gilliland, 2009), speaking (Ding et al., 2017; Jungers et al., 2003), 

biking (Moussay et al., 2002), and finger tapping (Dosseville et al., 2002; Fraisse, 1982). 

Individual differences in musicians’ spontaneous rates for simple melodies tend to be consistent 

within individuals but differ widely across individuals (Loehr & Palmer, 2011; Palmer et al., 

2019; Scheurich et al., 2018; Zamm et al., 2015). Performers tend to drift toward their 

spontaneous rate in solo performances when they are initially cued at different rates (Zamm et 

al., 2018). Moreover, these individual differences in spontaneous rates play an important role in 

coordinating performances with others: pianists with similar spontaneous rates showed more 

synchronous performance in duets than pianists with dissimilar rates, in a variety of novel 

musical works (Zamm et al., 2016). Mechanisms that account for individual differences in 

musicians’ performance rates for the same musical works remain largely unknown; we test 

whether circadian-related variations in physiology can explain some of these individual 

differences. 

Cardiac Activity During Music Behaviours 
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 Both the rhythms of cardiac activity and of musical behaviours form long time series of 

interrelated events; a few studies have addressed how heart rate modulations and musical tempo 

change together over time. For example, passive listening to music has shown decreased heart 

rate in response to slower-tempo music (Van Dyck et al., 2017) and increased heart rate during 

fast-tempo music (Gomez & Danuser, 2007). Heart rate variability during music listening 

changes less predictably; da Silva et al. (2014) found no difference in HRV between rest 

(baseline) and music listening, whereas Bretherton et al. (2019) reported that only some tempo 

manipulations elicited HRV changes relative to a rest condition. Fewer studies have examined 

changes in musicians’ cardiac activity as they perform. De Manzano et al. (2010) found 

increased heart rate as pianists played familiar music for which they reported large amounts of 

"flow". Studies of performance anxiety have shown that musicians’ heart rate increased when 

they performed in front of an audience as compared to alone (Brotons, 1994; LeBlanc et al., 

1997; Vellers et al., 2015). These studies did not, however, compare resting baseline conditions 

to music performance. Moreover, the impact of music performance on cardiac activity may be 

affected by time of day, as cardiac activity shows a circadian rhythm (Bonnemeier et al., 2003; 

Vandewalle et al., 2007). We investigate how cardiac activity is modulated by music 

performance, within and across times of day.  

 Despite the unfolding nature of time series for both cardiac activity and musical 

behaviours, most studies of heart rate and musical tempo tend to rely on linear measures that fail 

to capture the nonlinear dynamics of the cardiovascular system and of human musical 

behaviours. The time series formed by music performances and cardiac activity are plausibly 

more complex than can be captured with a single mean value for beat-to-beat intervals or a 

standard deviation of those intervals. Recent studies have used nonlinear methods of recurrence 
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quantification analysis (RQA) to capture aberrant cardiac activity over time in cardiovascular 

patient populations (for examples, see Arcentales et al., 2011; Javorka et al., 2008; Javorka et al., 

2009). Other studies of cardiac dynamics in healthy control populations during sit-to-stand 

transition tasks show greater cardiac predictability during the more physically demanding 

standing task (Schlenker et al., 2016). Konvalinka et al. (2011) used RQA techniques to measure 

cardiac dynamics during a thirty-minute firewalking ritual during which music was heard. The 

cardiac dynamics became more predictable (recurrent) during the ritual than during a 30-minute 

pre-ritual baseline measure.  Goshvarpour and Goshvarpour (2012) similarly found greater 

predictability in cardiac dynamics during meditation than during a resting baseline state. Based 

on these findings, we expect that the predictability of cardiac dynamics may increase during 

music performance, relative to rest. 

 The current study had three aims. First, we investigated time of day effects on music 

performance rates by measuring musicians' performances of simple melodies across a 12h day 

while measuring their cardiac activity. To disentangle musical familiarity effects from time of 

day effects, performances of both familiar (previously learned) as well as unfamiliar (novel) 

melodies were measured. Second, we examined influences of circadian rhythms on individual 

differences in performance tempo. Based on previous findings, we hypothesised that performers 

with slower spontaneous rates may show slower heart rates and lower alertness than individuals 

with faster spontaneous rates (within the same time of day). Based on Van Vugt et al.'s (2013) 

study, early chronotypes were predicted to show less variable performance rates in the morning, 

whereas late chronotypes should show less variable performance in the evening, respectively. 

Third, we investigated how the time series formed by music performance and the accompanying 

cardiac dynamics changed, by comparing cardiac activity during music performance with cardiac 
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activity during a rest period. We predicted that linear measures of heart rate would be faster and 

HRV would be lower during music performance relative to rest.  Nonlinear measures of 

performers’ cardiac dynamics were expected to show more predictability during music 

performance than during rest. We also examined whether performances of unfamiliar music 

generated more predictable dynamics than performances of familiar music, based on previous 

findings of increased cardiac patterning during more demanding tasks (Javorka et al., 2008; 

Konvalinka et al., 2011) and increased temporal patterning in novices’ (nonmusician) 

productions of musical rhythms than in musicians’ productions (Scheurich et al., 2018).  

Methods 

Participants 

Thirty-two trained pianists with at least 6 years of private piano instruction from the 

Montreal community participated in the study (mean years of private instruction = 10.6; range = 

6-16). Sample size was based on studies of musicians’ spontaneous performance tempo that 

reported moderate effect sizes for comparable samples (Palmer et al., 2019, n = 32 musicians; 

Zamm et al., 2016, n = 40 musicians). Participants’ mean age was 19.5 years (range = 18-27, 

male = 7). 28 participants were right handed. Exclusion criteria included diagnosed hearing 

problems or sleep disorders, doing overnight shift work, habitually drinking more than 3 cups of 

coffee per day, or having taken a transcontinental flight within the 3 week period prior to 

participating in the study. Additionally, participants had normal hearing for the range of 

frequencies used in the music stimuli (<30 dB HL threshold for 125-750 Hz frequencies), as 

determined by audiometry screening, and had to memorise and perform short melodies without 

errors. Six additional participants were excluded from the study due to an inability to perform the 

melodies correctly from memory (3), equipment issues in collecting cardiac data (2), and having 
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fewer than six years of private piano instruction (1). Participants received a small honorarium for 

their participation, and the study was reviewed by the Institutional Review Board of McGill 

University. 

Stimulus Materials and Equipment 

 Two musical melodies, primarily isochronous, were included in the study: Frère Jacques 

(“Twinkle, Twinkle”, C Major) and a Canon by Thomas Tallis (D Major). The Frère Jacques 

theme, composed in the 18th century, was chosen for its familiarity, whereas the Tallis canon, 

composed in the 16th century, was chosen for its unfamiliarity.  Both musical pieces contained 8 

measures composed in binary (4/4) metre with the majority of quarter-note beat durations. Frère 

Jacques contains a few eighth notes and half notes in addition. Pianists performed each melody 

with their right hand, and they were provided with suggested fingerings. 

 Participants performed melodies on a Roland RD-700 keyboard. Participants' auditory 

feedback from the keyboard was received directly through AKG K271 Studio headphones. 

Tones were sounded with a classical piano timbre, and the volume was set by participants to a 

comfortable listening level. MIDI keystroke information from the performances was recorded 

with FTAP (Finney, 2001) on a Dell T3600 PC running Linux (Fedora 16).  

 Cardiac activity was recorded with a Polar H10 heart rate monitor connected via 

Bluetooth to the application Elite HRV (Personal Pro) run on an iPad Mini. Sublingual 

temperature was measured with a digital oral thermometer (Personelle Digital Thermometer), 

following suggestions that sublingual temperature is a reasonable and pragmatic proxy to core 

body temperature under specific guidelines (Taylor, Tipton & Kenny, 2014). The temperature 

measures followed guidelines of a minimum measuring period of 5 minutes as well as ensuring 
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the mouth is closed for the whole duration of the measurement (Pušnik & Miklavec, 2009; 

Taylor et al., 2014). 

Alertness measures included the Psychomotor Vigilance Task (PVT) and a Visual 

Analogue Scale (VAS). The PVT is a computer-based reaction time task in which participants 

are asked to click the mouse button as soon as a visual stimulus appears on the computer screen 

(Dinges & Powell, 1985). The 3-minute version of the PVT was used, which has been previously 

validated (Basner, Mollicone, & Dinges, 2011), and presents visual stimuli at randomly varying 

interstimulus intervals ranging from 1 to 4 seconds. The PVT measures were collected on a Dell 

T5810 computer with a HyperX Pulsefire gaming mouse (1000 Hz polling rate) that recorded 

reaction times. The VAS task (Folstein & Luria, 1973; Monk, 1987) consisted of participants 

indicating their current level of alertness by making a vertical tick mark on a 10 cm line. 

Participants completed a series of questionnaires about their sleep habits, including the 

Epworth Sleepiness Scale (ESS; Johns, 1991), the Pittsburgh Sleep Quality Index (PSQI; Buysse 

et al., 1989), and a sleep diary from Carney et al. (2012). Chronotype was measured with the 

Munich Chronotype Questionnaire (MCTQ; Roenneberg et al., 2003b). All participants 

completed the Edinburgh Handedness Inventory and a musical background questionnaire. 

Participants also completed a short questionnaire about their activities in the hour preceding each 

laboratory session that might affect alertness, body temperature, or cardiac measures. 

Design 

Participants came to the lab for four testing sessions (09h, 13h, 17h, and 21h) in a single 

day. The order of testing sessions remained constant across participants (each pianist’s first 

session began at 9h). Baseline physiological recordings and melody performance tasks were 

completed at each testing session by all participants, making this a within-subjects 4 (Testing 
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Time) by 2 (Task: 5-minute Rest/Music performance) repeated-measures design. The task order 

was always rest first, followed by music performance. Within the music performance task, the 

ordering of the familiar and unfamiliar melody performances was alternated between participants 

and testing sessions: Half of the participants performed the Familiar melody first at the 09h 

testing session, and the other half began with the Unfamiliar melody. At subsequent testing 

sessions, participants alternated which melody they performed first. Each participant performed a 

total of 32 melody performance trials (4 times of day X 2 melodies X 3 trials) over the course of 

the experiment.  

The main behavioural dependent variables from the melody performances were 

spontaneous production rate (SPR, mean interonset interval, IOI in ms) and variability of 

interonset intervals (measured by the coefficient of variation, SD/mean IOI). Primary 

physiological dependent variables included sublingual temperature (C), heart rate (mean inter- 

heartbeat interval, RR), heart rate variability (measured by the standard deviation of normal-to-

normal intervals, SDNN), alertness (PVT reaction times and VAS subjective scores), 

chronotype, and sleep deprivation measures computed from the sleep diary (described below).  

Procedure  

 Participants were first screened for eligibility via e-mail; if eligible, electronic copies of 

the musical notation (without melody titles) for the melodies used in the study were sent to 

participants, and participants were asked to memorise the melodies before their participation in 

the study. Participants also received a sleep diary which they were asked to complete for the 

week preceding the laboratory session. 

 Upon arrival at the lab, participants read and signed a consent form before completing an 

audiometry screening in which pure tones were presented over closed headphones (Maico 
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MA40), to ensure they could hear the range of frequencies involved in the music performance 

task at a threshold of < 30 db. Participants who passed the audiometry screening were invited to 

continue to a melody memorisation task. First, participants were presented with a melody in 

notation. After practicing the first melody (Familiar or Unfamiliar) both with and without 

musical notation, participants were given up to three practice trials to perform the melody from 

memory without pitch errors. Then the participants repeated the task with the second melody. All 

participants performed the melodies without pitch errors in the memorisation phase. 

 Next, participants attached the heart rate monitor around their chest. A 5-minute baseline 

sublingual temperature and heart rate recording was taken during the Rest task while participants 

were seated and completing questionnaires. To ensure correct temperature readings, participants 

were instructed to insert the thermometer under their tongue and breathe normally through their 

nose; they were instructed to keep movement to a minimum and to avoid crossing their legs so as 

not to influence heart rate measures. During this time, participants marked their current alertness 

level in the VAS task. At the end of the 5-minute rest period, participants removed the 

thermometer but kept the heart rate monitor on for the rest of the testing session.  

Participants then completed the Psychomotor Vigilance Task. They were instructed that 

red numbers would appear on a black screen, and they were to click the mouse as soon as, but 

not before, they saw the red numbers appear. If participants clicked the mouse before the red 

numbers appeared, the letters "fs" appeared on the screen to inform the participant they had made 

a false start. A new trial was then begun. Each trial continued until participants clicked the 

mouse. 

 Participants then sat at the piano keyboard and were presented with the first melody in 

music notation. They were instructed to perform a practice trial consisting of four repetitions at a 
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steady, comfortable rate without pauses. The experimenter removed the music notation and 

participants repeated a practice trial of the same length from memory. Once participants were 

comfortable with the task, they moved on to the experimental trials. Each experimental trial 

consisted of 4 repetitions of the melody performed from memory (in the absence of music 

notation) without pauses at a comfortable, steady rate. After completing all trials of the first 

melody, participants filled out a brief questionnaire about their activities prior to the testing 

session; then the same practice and experimental trials were repeated for the second melody. At 

the end of the melody performance task, participants removed the heart rate monitor and 

received a small honorarium. The same procedure was repeated at each testing session with the 

addition of a debriefing period at the end of the final session. The duration of the first testing 

session (which included the audiometric screening and memorisation practice) was 

approximately 45 minutes; subsequent testing sessions took approximately 25 minutes. 

Data Analysis 

Pitch errors in melody performances were identified by comparing the recorded MIDI 

data with the contents of the musical score, using the MIDI Matcher Toolbox in Matlab (Large, 

1993). Repetitions containing a pitch error were excluded from analysis as timing errors are 

likely to co-occur with pitch errors (Drake & Palmer, 2000); 0.03% of all repetitions were 

excluded from analysis. The half-note durations in Frère Jacques were interpolated at the quarter-

note level, and eighth notes that did not align with the quarter-note beat were excluded from the 

analyses. Interonset intervals (IOI), coinciding with quarter-note beats in both melodies, were 

computed.  IOI’s greater or less than 3 standard deviations away from the mean IOI for that trial 

were excluded from behavioural analyses (0.13% of all IOIs).  
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Each participant’s Spontaneous Production Rate (SPR) was computed on the IOIs from 

the middle two of four melody repetitions in each trial, similar to previous studies (Zamm et al 

2016; Palmer et al 2019), as the middle of each trial tends to show more stable tempo due to 

musicians’ tendencies to slow down at phrase boundaries at beginnings and endings of trials 

(Palmer, 1989; Repp 1990).  Participants’ SPR for each melody was then calculated from the 

mean IOI of the middle 2 repetitions of each trial and averaged across trials within melody. 

Similarly, the mean Coefficients of Variation (CV) were calculated from the same IOIs in the 

middle two repetitions and a mean CV was computed across trials. 

 Linear analyses of cardiac data were completed using Kubios (HRV Standard, 3.1.0). 

Mean RR intervals and the SDNN were computed for each five-minute baseline recording as 

well as during the total duration of melody performances, including practice and experimental 

trials, in order to have the longest consecutive measurement period possible.  Recurrence 

quantification analysis (RQA) was also conducted on cardiac data using the CRP Toolbox 5.22 

(Marwan, 2019, run with MATLAB 2018a (v9.4.0)). RQA is a nonlinear analysis technique, 

often used on behavioural and cardiac data (Demos, Frank, & Chaffin, 2011; Javorka et al., 

2008; Marwan et al., 2013), that identifies recurrent states in a dynamical system using Takens’ 

(1981) method of higher-dimensional reconstruction (Webber & Zbilut, 2005; Nayak et al., 

2018). Time-delayed copies of the cardiac signals are generated and projected into 

multidimensional phase space (Konvalinka et al., 2011) with the parameter tau denoting the time 

delay. For each resting period (baseline) and music performance, tau was chosen based on the 

first local minimum of the average mutual information function. Tau therefore varied across 

participants and within participants by testing session and task (Javorka et al., 2009), and the 

resulting range was 2-12. The False Nearest Neighbour (FNN) method was used to select an 
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embedding dimension; FNN values close to zero indicate that the signal is projected into a 

sufficient number of dimensions (Nayak et al., 2018; Webber & Zbilut, 2005). Embedding 

dimensions were chosen on an individual basis and ranged from 4-8. A Theiler window fixed to 

the time delay (Javorka et al., 2009) was applied to the data, as cardiac signals tend to show high 

autocorrelation (Martin-Gonzalez et al., 2018). Recurrence rate, the percentage of recurrent 

points in the system, was fixed to 5% as per previous RQA studies of cardiac signals (Javorka et 

al., 2008; Javorka et al., 2009). 

 Recurrence plots, 2-dimensional representations of the recurrent points in a system, were 

generated to visualise the cardiac dynamics. Each point in the plot represents a system state that 

is recurrent with a previous state (Webber & Zbilut, 2005). The time series signal is plotted 

against itself such that the recurrence plot is symmetric across the diagonal. Two parameters 

were used to quantify the observed recurrence. First, determinism (DET) measured the 

percentage of points in the recurrence plot forming diagonal lines (excluding the line of identity), 

where the minimum number of points required to be considered a line was set to 2 (Eq. 1). 

Determinism is a measure of the predictability of a system over time (Webber & Zbilut, 1994). 

Second, laminarity (LAM) captures the percentage of points forming vertical (or horizontal) 

lines in the recurrence plot (Eq. 2) and is an indicator of the extent to which a system “gets 

stuck” in a specific state (Nayak et al., 2018). 

             (1) 

%𝐷𝐸𝑇 = 100 ∗
∑ 𝑙𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 

             (2) 

%𝐿𝐴𝑀 = 100 ∗
∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
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Chronotype was determined from the MCTQ which estimates an individual’s mid-sleep 

point based on self-reported times of sleep onset and wake for both work and free days 

(Roenneberg et al., 2003b). As imposed social schedules may mask an individual’s natural mid-

sleep point and lead to sleep debt (Wittman, Dinich, Merrow, & Roenneberg, 2006), an adjusted 

value of mid-sleep on work-free (weekend) days (MSF) that accounts for possible sleep debt was 

used to estimate one’s chronotype (Roenneberg et al., 2004). The adjusted value (MSFsc) is 

derived according to the following equation: 

MSFsc =  MSF - .5[TSF – (5(TSw) + 2(TSF)/7)],        (3) 

where TSw is the average total sleep duration (in minutes) on work days and TSF is the average 

total sleep duration (in minutes) on free days. This equation yields a time (ex. 04:00h) 

corresponding to the midpoint of the individual’s sleep cycle. Midpoints earlier than 05:00h 

typically denote an earlier chronotype and later midpoints denote a later chronotype (Roenneberg 

et al., 2003b). 

 Alertness scores were derived for each testing session. Mean reaction times on the PVT 

were calculated per participant for correct response trials. A score from 1-10 on the VAS at each 

testing session per participant was analysed, with higher scores indicating greater alertness. 

Results 

Time of Day Effects in Music Performance. To test for differences in mean SPR values across 

the day, a two-way ANOVA on mean SPR by Time of Day (09h, 13h, 17h, 21h) and Melody 

(Familiar, Unfamiliar) was performed. This analysis indicated significant main effects of Time of 

Day (F(3,93) = 17.42, p < .01, partial eta-squared = .36), and of Melody (F(1,31) = 41.73, p < 

.01, partial eta-squared = .57), and no significant interaction. Shown in Figure 1 (top), mean SPR 
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was significantly slower at 09h than at all other testing sessions, and was slower at 13h than at 

21h (Tukey's HSD = 13.72, p < .05). SPR was faster for the Unfamiliar melody performances 

(mean = 362.61 ms) than the Familiar performances (mean = 397.84 ms); this finding is not 

surprising as the Familiar melody’s rhythm contained half and quarter notes which constrained 

the fastest rate possible, whereas the Unfamiliar melody contained only quarter notes.   

 To test whether the stability of music performance changed over the day, the same 

ANOVA was conducted on mean CV. There were significant main effects of Time of Day 

(F(3,93) = 3.827, p = .012, partial eta-squared = .11) and of Melody (F(1,31) = 9.200, p = .005, 

partial eta-squared = .23), and no significant interaction. Figure 1 (bottom) shows the CV values; 

the CV at 09h was significantly larger than at 17h and 21h, and the CV at 13h was significantly 

larger than at 21h (Tukey HSD = .002, p < .05). Paralleling the findings of mean SPR becoming 

faster across the day, pianists became more stable in their performances across the day. The 

mean CV for Familiar melody performances (mean = .05) was greater than for Unfamiliar 

melody performances (mean = .045), consistent with the varying rhythmic structure of the 

Familiar melody compared with the isochronous rhythm of the Unfamiliar melody. Overall, 

these findings suggest a 09h effect on SPR and CV that diminished over the day. 

 To examine whether performers’ alertness levels varied over the testing sessions, we 

tested participants' reaction times on correct trials in the Psychomotor Vigilance Task in a one-

way ANOVA by Time of Day (09h, 13h, 17h, 21h). Mean reaction times varied significantly 

across the day (F(3,93) = 3.70, p < .01, partial eta-squared = .11).  Mean reaction times at 09h 

were significantly slower (mean = 233.57 ms) than mean reaction times at 21h (mean = 224.50 

ms) (HSD = 7.29, p < .05). No other time of day comparisons were significant. In line with the 

primarily late chronotype sample, these findings suggest that participants were less alert at 09h 
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than at 21h. Mean subjective alertness scores (Visual Analogue Scale, VAS) did not show 

significant effects of time of day. 

 The sublingual body temperatures were assessed with a one-way ANOVA by Time of 

Day (09h, 13h 17h, 21h). There was a significant main effect (F(3,93) = 6.28, p = .001, partial 

eta-squared = .17); post-hoc analyses indicated that body temperature at 09h was significantly 

higher (mean = 36.73 °Celsius) than body temperature at 13h and 17h (HSD = .237, p < .05), 

with no other comparisons differing significantly. Consistent with previous work (Christie & 

McBrearty, 1979; Monk, 2005) participants' sublingual temperature decreased slightly in the 

middle portion of the day and rose again through the evening. 

Individual Differences in Performance Tempo. Next, we examined individual differences in 

spontaneous production rate (SPR). Figure 2 shows the mean spontaneous rates of individuals' 

Familiar melody performances at each testing session, ordered in each graph from fastest to 

slowest individual at 09h. The similarity of the faster-to-slower patterns across the four graphs 

suggests that the individual differences in performance tempo were consistent. To test whether 

the SPR values were stable across times of day, Spearman’s rank order correlations were applied 

to test whether the ordering of individuals at the 09h session matched the ordering at the 13h, 

17h, and 21h sessions. The rank-ordered SPR values held from the 09h session to each testing 

session (13h rho = .87, p < .01; 17h rho = .85, p < .01; 21h rho = .82, p < .01). Figure 3 shows 

the same pattern of individuals’ SPR values across testing sessions for the Unfamiliar melody 

performances, where each graph is again ordered by fastest to slowest individual at 09h. Similar 

to the Familiar melodies, the individual differences at 09h were significantly retained across all 

testing sessions (13h rho = .84, p < .01; 17h rho = .88, p < .01; 21h rho = .81, p < .01). These 
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findings suggest that large individual differences in spontaneous rates existed for both familiar 

and unfamiliar melodies, and the individual differences were consistent across times of day. 

To address whether individual differences in SPR were related to chronotype, we 

computed participants’ chronotype from the Munich Chronotype Questionnaire (MCTQ), 

following Eq. 3. The mean and median midsleep point on free days (MSFsc) were 05h14 and 

05h08, respectively (range = 03h13 to 09h21). Individuals with MSFsc values later than about 

05h are typically considered a late chronotype or night owl (Roenneberg et al., 2003b). The 

present sample MSFsc was positively skewed, with 3 of 32 participants in the < 04h range, 23 of 

32 participants in the 04h-05h range, and 6 of 32 participants in the ≥06h range. Although 

chronotype appears nearly normally distributed in the general population, the overrepresentation 

of night owls in the present sample is consistent with previous findings for this age group 

(Roenneberg et al., 2003b) as well as for musicians (Gjermunds et al., 2019). Due to the lack of 

variability in chronotype and the overrepresentation of night owls, the relationship between 

chronotype and SPR could not be assessed; the 3 earliest chronotypes and the 6 latest 

chronotypes did not show SPR patterns that differed from the remaining cohort. 

 We next examined the individual differences in spontaneous rates (mean SPR) in terms 

of amount of musical training and alertness (reaction times on correct trials from the PVT) using 

a multiple regression model that predicted mean SPR from years of musical training and reaction 

time (RT).  The multiple regression fits for the Familiar melody performances, predicting mean 

SPR from RT and Musical Training, were significant at 09h (R = .523, p < .01) and at 13h (R = 

.51, p < .05). Semi-partial correlations indicated significant contributions to the SPR of both RT 

(standardised coefficient = .35, p = .035) and Musical Training (standardised coefficient = -.378, 

p =.02) at 09h. The semi-partial correlations at 13h indicated similar contributions of RT 
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(standardized coefficient = .35, p = .04) and Musical Training (standardized coefficient = -.3305, 

p = .04). At both 09h and 13h, individuals’ slower tempi were associated with longer RT values 

in the PVT (lower alertness) and with less musical training. The same multiple regression model 

did not predict individuals’ SPR values at 17h or at 21h. The same multiple regression model fit 

to mean SPR values for the Unfamiliar melody performances showed similar influences of 

alertness (RT) but not of musical training. The multiple regression fit reached significance at 09h 

(R = .45, p = .04) but not at any other testing session. The semi-partial correlations indicated 

significant contributions of RT at 09h (standardised coefficient = .3958, p = .024). Consistent 

with performances of the Familiar piece, participants with lower alertness scores (higher RT 

values) performed the Unfamiliar melody at a slower tempo at the first session of the day. 

 There was no significant relationship between acute sleep deprivation (average duration 

of sleep in 1 week - duration of single night sleep preceding laboratory session) and individual 

SPR values at any testing session, for Familiar or Unfamiliar melody performances, suggesting 

that individual differences in SPRs were not accounted for by differences in acute sleep 

deprivation. 

Cardiac Dynamics during Music Performance. Linear cardiac measures (RR interval and 

SDNN) were examined to identify whether cardiac activity varied across the day and across 

music and rest. A two-way within-subjects ANOVA on mean RR interval by Time of Day (09h, 

13h, 17h, 21h) and Task (Baseline rest, Music Performance) showed a significant main effect of 

Task (F(1,31) = 13.51, p = .001, partial eta-squared = .30), and no main effect of Time of Day or 

interactions. RR interval was shorter during music performance (mean = 712.57 ms) than during 

baseline rest (mean = 734.12 ms), indicating that pianists’ heart rate increased from baseline to 

music performance. To examine the two melodies performed at each testing session, a follow-up 
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two-way ANOVA on mean RR interval by Time of Day (09h, 13h, 17h, 21h) and Melody 

(Familiar, Unfamiliar) was performed. There was a significant main effect of Melody (F(1,31) = 

6.27, p = .02, partial eta-squared = .17) and a significant Time of Day x Melody interaction 

(F(3,93) = 3.20, p = .03, partial eta-squared = .09). As seen in Figure 4, participants' RR intervals 

were shorter during Unfamiliar melody performances than during Familiar melody performances 

at 09h, 13h, and 17h, but not at 21h (HSD = 4.36, p < .05). Participants' heart rate increased 

during the Unfamiliar melody performance relative to the Familiar melody performance earlier 

in the day but not later in the evening. Similar analyses on mean SDNN values showed no 

significant effects of time of day or type of melody, and no interaction. 

 Nonlinear RQA measures of cardiac activity evaluated the predictability of performers’ 

heart rate measures (R-R intervals, in ms). A two-way ANOVA on mean determinism (%DET, 

measuring predictability) by Time of Day (09h, 13h, 17h, 21h) and Task (Baseline rest, Music 

Performance) showed no main effect of Time of Day, a significant main effect of Task (F(1,31) 

= 4.15, p = .05, partial eta-squared = .12) and a significant Time of Day x Task interaction  

(F(3,93) = 6.48, p < .001, partial eta-squared =  .17). There was greater determinism 

(predictability) during music performance (mean %DET = 45.699) than during baseline rest 

(mean %DET = 42.959). Figure 5 (top) demonstrates that the cardiac activity showed 

significantly greater determinism during music performance at 09h and 13h (HSD = .053, p < 

.05) but not at 17h and 21h.  Recurrence plots for a single participant at 09h in Figure 6 

demonstrate the greater amount of determinism or predictability during music performance than 

during baseline rest.  

A follow-up two-way ANOVA on mean %DET by Time of Day (09h, 13h, 17h, and 21h) 

and Melody (Familiar, Unfamiliar) showed a significant main effect of Melody (F(1,31) = 6.348, 
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p = .017, partial eta-squared = .17), and no main effects or interactions with Time of Day. 

Specifically, %DET values were larger during the Unfamiliar melody performances (mean = 

46.99) than the Familiar melody performances (mean = 44.41). Figure 7 shows a pair of 

recurrence plots illustrating this difference for a single subject, where a greater proportion of 

recurrent points form diagonal lines in the plot on the right (Unfamiliar performance). Thus, 

greater determinism (predictability) in cardiac activity was seen during music performances 

compared to rest, and for Unfamiliar melody performances compared to Familiar melody 

performances.  

 The same analyses were performed to identify whether laminarity in the cardiac system 

(how much the system got stuck in a recurrent state) changed with Time of day and Task 

(Baseline rest and Music Performance). The mean laminarity (LAM) values indicated a 

significant main effect of Task (F(1,31) = 5.415, p = .027, partial eta-squared = .15), no main 

effect of Time of Day, and a significant Time of Day x Task interaction  (F(3,93) = 3.678, p = 

.015, partial eta-squared = .11). Recurrence plots for a single participant in Figure 8 show that a 

greater proportion of points form vertical/horizontal lines during the melody performances (mean 

%LAM = 53.74) than during baseline rest (mean %LAM = 50.25). Post-hoc comparisons of the 

interaction showed that mean laminarity values were significantly greater during music 

performance than baseline only at 09h (HSD = .055, p < .05), also shown in Figure 5 (bottom). A 

follow-up ANOVA on mean LAM value by Time of Day and Melody (Familiar, Unfamiliar) 

showed a significant main effect of Time of Day (F(3,93) = 4.107, p = .009, partial eta-squared = 

.17) and no effects or interactions with Melody. Overall, there was greater laminarity and 

determinism (predictability) in cardiac rhythms during music performance than during baseline 

rest; that difference was larger at earlier testing sessions. In addition, there was greater 
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determinism during Unfamiliar melody performances than during Familiar melody 

performances, controlling for time of day. 

Discussion 

 This study examined time of day effects on musicians’ performance tempo for simple 

melodies, and whether circadian effects on physiology could account for individual differences 

in performance tempo. Trained pianists' performance rates for familiar and unfamiliar melodies 

were recorded at four testing sessions in a single day (09h, 13h, 17h, 21h) while cardiac activity 

was recorded. Resting measures of performers’ cardiac activity, alertness, and body temperature 

were recorded at each testing session. Additionally, this study utilised a nonlinear analysis 

technique (RQA) to investigate cardiac dynamics during music performance both within and 

across times of day. 

 Overall, musicians’ spontaneous performance rates were slower and more variable at 09h 

and became slightly faster and less variable at later testing sessions. The largest difference in 

SPR and variability of performances was between 09h and 21h, similar to previous findings on 

spontaneous motor rates of tapping (Dosseville et al., 2002) and cycling (Moussay et al., 2002), 

which have shown slowest rates in the morning and fastest rates in the evening. These results 

suggest that melody performances increased in tempo and in temporal regularity from the 

morning to the evening, a finding that is somewhat consistent with a sample of largely night-owl 

chronotypes (Van Vugt et al., 2013). Participants completed all testing sessions in the same order 

in this study (to control for sleep differences between testing sessions); therefore, it is possible 

that some changes in melody performance rate and temporal variability were attributable to 

practice effects over the session trials. In the context of motor sequencing, performing repeated 

trials of specific finger sequences in a blocked (rather than randomised) fashion typically results 
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in faster learning rates (Caramiaux et al., 2018; Fogel et al., 2017). The observed changes in 

participants' melody performances across times of day were similar for unfamiliar and familiar 

melodies, which is consistent with practice effects over trials (as opposed to familiarity with the 

musical melodies). 

 Musicians showed large individual differences in spontaneous performance rates (SPR), 

replicating previous studies on natural movement rates in music performance (Palmer et al., 

2019; Zamm et al., 2015) and tapping tasks (Scheurich et al., 2018). Importantly, the individual 

differences in pianists’ performance tempo were consistent across the day for both familiar and 

unfamiliar melodies: Pianists who performed quickly in the morning also performed quickly in 

the evening, and the same was true for pianists with slower rates. These findings are consistent 

with dynamical systems theory predictions that an individual’s natural movement rate, a property 

of a periodic oscillatory system (Kelso, 1997), may serve as an attractor state at which movement 

efficiency is maximised (Hoyt & Taylor, 1981; Zamm et al., 2018). Indeed, neuromuscular 

fatigue has been shown to be minimised at cyclists’ spontaneous (uncued) pedaling rates for a 

given load resistance (Moussay et al., 2002; Takaishi et al., 1996), and reduced kinetic energy 

expenditure in pianists’ finger movements is associated with increased temporal accuracy of 

performance (Goebl & Palmer, 2014). Our finding of consistency across testing sessions in 

individuals’ performance tempo suggests that one's spontaneous production rate may be an 

energy-efficient state for melody performance that transcends time of day effects or familiarity 

with the melody. 

 Alertness measures also showed time of day effects and explained some of the individual 

variability in performance rates; participants who performed melodies at a slower rate at 09h and 

13h had slower reaction times on the PVT task at these times. Lower alertness in the morning is 
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not surprising for the later chronotype sample of musicians tested here (Roenneberg et al., 

2003a).  At early testing times, musicians’ spontaneous performance rates were influenced by 

both physiological (alertness) and behavioural (musical training) variables. Participants with 

faster reaction times in the PVT task and more years of formal piano training tended to show 

faster performance rates at 09h and 13h. Interestingly, neither physiological nor behavioural 

variables predicted performance rates later in the day. Alertness and musical training may have 

greater effects on melody performance when musicians are less comfortable with a musical task 

(for example at the first 09h testing session), an interpretation consistent with the general 

increased temporal stability reported for musicians with increased training (Scheurich et al., 

2018). This hypothesis could be addressed by randomising participants' first testing session to 

begin at different times of day in future studies. 

 Finally, the complexity of musicians’ cardiac activity was compared between 5-minute 

rest periods and music performances, as well as between performances of familiar and unfamiliar 

melodies. Both linear and nonlinear measures of heart rate (R-R intervals) indicated significant 

differences from rest to music performance, with faster and more patterned (deterministic) heart 

rates during music performance than during rest, across times of day. The largest differences 

between music performance and rest were seen at 09h and at 13h.  In addition, heart rates were 

faster during performances of unfamiliar melodies than familiar melodies, and laminarity 

(recurring patterns) of cardiac activity was greater for unfamiliar melodies than for familiar 

melodies. Increased predictability of cardiac signals has been observed during increases in task 

difficulty for both physical (Javorka et al., 2009; Konvalinka et al., 2011; Schlenker et al., 2016) 

as well as cognitive behaviours (Goshvarpour & Goshvarpour, 2012). Overall, the differences in 

cardiac dynamics between rest and music performance, and between performance of familiar and 
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unfamiliar melodies, suggest that increased predictability and stability of cardiac signals may be 

a physiological marker of increased behavioral difficulty.  

 The current findings were limited by the simple musical materials used, and the 

chronotype sample of musicians obtained. Two simple melodies were included to reduce the 

memorisation demands on participants; those melodies had simple but not identical rhythmic 

structures. Future research may examine the roles of musical performance styles and rhythmic 

complexity in performance rates and cardiac rhythms. Furthermore, the chronotype of the 

obtained musician sample was biased toward night owls, in line with previous research 

(Gjermunds et al., 2019). It is possible that decreases in SPR and increases in performance 

stability over the day were specific to the night owl chronotype, as late chronotypes perform 

better on strength tasks (Tamm et al., 2009) and music performance tasks (Van Vugt et al., 2013) 

in the evening relative to the morning. Future research may extend these findings to a more 

diverse sampling of chronotypes. 

 In sum, pianists' rates of melody performances increased and variability decreased across 

the 12h day, similar to circadian influences on other motor skills. Time of day may be an 

important relationship for musicians to consider; there may be ideal times of day to practice or 

perform. Individual differences in performance rates early in the day were predicted by both 

alertness and musical training. In addition, large individual differences in the musicians’ 

performance rates remained consistent across the 12-hour time period. Finally, pianists’ cardiac 

dynamics became more predictable and recurred more during music performance than during a 

baseline rest interval, as well as during performances of an unfamiliar melody than a familiar 

melody. To our knowledge, these findings provide the first evidence that performing music 

affects nonlinearities of cardiac dynamics in specific and replicable ways within individuals. 
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Overall, these discoveries of performers’ cardiac dynamics suggest possible applications to 

music therapy; the time of day at which music is performed, as well as the familiarity of the 

music, may influence music’s ability to modulate physiological systems. 
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Figure 1. Performers’ mean Spontaneous production rates (ms) by Time of Day (top) and mean 

CV by Time of Day (bottom) for all melody performances. 
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Figure 2. Distributions of performers’ mean SPR values (mean IOI in ms) for the Familiar 

melody, ordered at each testing session from fastest to slowest performer according to 09h. Each 

bar = one performer. 
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Figure 3. Distributions of performers’ mean SPR values (mean IOI in ms) for the Unfamiliar 

melody, ordered at each testing session from fastest to slowest performer according to 09h. Each 

bar = one performer. 
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Figure 4. Performer’s mean heartbeat interval (RR interval, in ms) by Time of Day and Melody. 
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Figure 5. Performers’ mean % Determinism (top) and mean % Laminarity (bottom), by Time of 

Day and Task (Baseline rest / Music performance). 
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Figure 6. Recurrence plots for a single participant’s heartbeat series (RR intervals, in ms, plotted 

on x- and y-axes) at 09h. Plots include 5-minute Baseline rest period (left) and Unfamiliar 

melody performance (right).  The melody performance showed greater determinism (%DET = 

58.88) than did the Baseline Rest (%DET = 39.62).  
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Figure 7. Recurrence plots for a single participant’s heartbeat series (RR intervals, in ms, plotted 

on x- and y-axes) at 13h.  Plots include Familiar melody performance (left) and Unfamiliar 

melody performance (right). The Unfamiliar melody performance showed greater Determinism 

(= 53.31%) than did the Familiar melody performance (= 44.04%).  
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Figure 8. Recurrence plots for a single participant’s heartbeat series (RR intervals, in ms, plotted 

on x- and y-axes) at 09h.  Plots include Baseline rest (left) and Unfamiliar melody performance 

(right). The Melody performance showed greater Laminarity (= 51.6%) than did the Baseline 

Rest (= 27.0%). 
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Bridge between Chapter 1 and Chapter 2 

 Chapter 1 tested circadian and time of day effects on spontaneous production rates and 

concurrent cardiac activity in trained pianists. Results showed that spontaneous production rates 

were slower and more variable in the morning compared to the afternoon and evening. Slower 

production rates were also predicted by less musical training and lower alertness in the morning 

only. Large individual differences in spontaneous production rates were replicated and, notably, 

individuals were consistent in their spontaneous production rates across four times of day for 

both a familiar and an unfamiliar melody. Linear cardiac measures showed that heart rate was 

faster during music performance than during a silent baseline, particularly at the morning 

session. This study also applied a nonlinear analysis technique, recurrence quantification 

analysis, to the cardiac data, which is a novel application in a music performance context. 

Nonlinear measures showed time of day and performance effects, with greater cardiac 

predictability and stability during music performance in the morning compared to the afternoon 

and evening. Additionally, cardiac dynamic were more predictable during unfamiliar music 

performances compared to familiar music performances. 

 The study in Chapter 2 builds on Chapter 1 by testing how task difficulty affects cardiac 

dynamics. In Chapter 1, familiar and unfamiliar melodies elicited different cardiac dynamics in a 

manner consistent with task difficulty effects (Fuentes-García et al., 2019; Konvalinka et al., 

2011; Schlenker et al., 2010). It was also difficult to disentangle time of day effects from task 

difficulty as the order of conditions was held constant across individuals, meaning evening 

performances may have been easier as the task was more familiar than in the first morning 

session. Chapter 2 compares behavioural and cardiac effects of rhythm complexity. This tests not 

only task difficulty but it also isolates a single acoustic feature, namely rhythm, whereas Chapter 
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1 involved melody and rhythm. This allows for greater control over which aspects of auditory 

rhythms and performance influence cardiac activity. Finally, Chapter 2 addresses the question: Is 

there something special about music performance that affects cardiac dynamics? It does this by 

directly comparing cardiac activity during rhythm perception and production, building on the 

design of silent baseline vs music performance in Chapter 1. 
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Chapter 2: Auditory rhythm complexity affects cardiac dynamics in perception and 

synchronisation 
 

Wright, S. E., & Palmer, C. (2023). Auditory rhythm complexity affects cardiac dynamics during 

perception and production. [Manuscript submitted for publication]. 
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Abstract 

 Accurate perception and production of auditory rhythms are key for human behaviors 

such as speech and music. Auditory rhythms in music range in their complexity: complex 

rhythms (based on non-integer ratios between successive tone durations) are more difficult to 

perceive and produce than simple rhythms (based on integer ratios). The physiological activity 

supporting this behavioral difference is not well understood. In a within-subjects design, we 

addressed how rhythm complexity affects cardiac dynamics during auditory perception and 

production. Musically trained adults listened to and synchronized with simple and complex 

auditory rhythms while their cardiac activity was recorded. Participants identified missing tones 

in the rhythms during the Perception condition and tapped on a keyboard to synchronize with the 

rhythms in the Synchronisation condition. Participants were equally accurate at identifying 

missing tones in simple and complex rhythms during the Perception condition. Tapping 

synchronisation was less accurate and less precise with complex rhythms than with simple 

rhythms. Linear cardiac analyses showed a slower mean heart rate and greater heart rate 

variability during perception than synchronisation for both simple and complex rhythms; only 

nonlinear recurrence quantification analyses reflected cardiac differences between simple and 

complex auditory rhythms. Nonlinear cardiac dynamics were also more deterministic 

(predictable) during rhythm perception than synchronisation. Individual differences during 

tapping showed that greater heart rate variability was correlated with poorer synchronisation. 

Overall, these findings suggest that linear measures of musicians’ cardiac activity reflect global 

task variability while nonlinear measures additionally reflect stimulus rhythm complexity. 
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Introduction 

Listeners are adept at hearing and reproducing a wide range of auditory rhythms, such as 

those contained in dance steps or in musical melodies. Auditory rhythms are composed of  

sequences of regularly spaced events over time [1]. Some rhythms – those defined by complex 

ratios between the sequential tone durations - are less common and more difficult to perceive and 

produce [2, 3, 4, 5]. Behavioral differences between simple and complex rhythms and the 

physiological activities that support them are not well-understood. Auditory rhythms such as 

musical rhythms are known to influence cardiac activity; previous research has largely focused 

on how acoustic features of musical rhythms, such as tempo or pitch, affect cardiac activity 

during perception [6]. A few studies have shown changes in the periodicities present in cardiac 

rhythms during perception [7] and production [8] of different auditory rhythms. Yet little 

research has addressed the specific relationship between auditory rhythm complexity and 

physiological activity. The current study investigates how auditory rhythm complexity affects 

behavior and cardiac dynamics during perception and production, using a synchronisation 

paradigm. 

Changes in heart rate mean and variability during cognitive-motor tasks are often 

attributed to changes in physiological arousal and task difficulty [9, 10, 11]. Slower heart rate 

and greater heart rate variability tend to correspond to lower arousal states [12]. Both musical 

acoustic features and musical task difficulty influence cardiac rhythms. Some studies show that 

fast-tempo musical rhythms tend to increase listeners’ mean heart rate and decrease their heart 

rate variability, indicative of an arousal effect [6, 13, 14, 15, 16, cf. 17]. Other studies show that 

faster-tempo auditory rhythms tend to elicit faster heart rates without changes in heart rate 

variability [16, 18, 19, 20]. Slow-tempo music has been shown to slow down listeners’ heart 
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rates and increase heart rate variability [21, 22]. Task factors in music performance also 

influence physiological arousal: Performing music in front of an audience compared to 

performing alone increased musicians' heart rates and decreased heart rate variability [23]. 

Musical task familiarity also influences cardiac rhythms: Musicians’ heart rates increased during 

production of unfamiliar musical melodies compared with familiar melodies and a silent baseline 

condition [8]. Together, these studies suggest that auditory rhythms modulate listeners’ arousal 

levels, with task difficulty potentially contributing to this effect. Thus, we expected that changes 

in task difficulty based on auditory rhythm complexity might impact listeners’ heart rate and 

heart rate variability, such that simple rhythms result in slower heart rate and greater heart rate 

variability than complex rhythms. 

Nonlinear dynamical systems theory provides an explanation for the difficulty of tracking 

complex rhythms in music. Oscillators (signals with recurring cyclic patterns with a natural or 

default frequency) are central in this theory: Rhythm complexity depends on the amount of 

coupling or interaction between two oscillators which is determined in part by the ratio of one 

oscillator frequency to the other oscillator frequency. Oscillators whose natural (default) 

frequencies form small integer ratio relationships, such as 1:2, show stronger coupling, compared 

to oscillators whose natural frequencies form non-integer ratios, such as 3:2 [24, 25, 26]. In this 

study, we compare simple rhythms whose tone durations form small integer ratios (1:2) with 

complex rhythms whose tone durations form non-integer ratios (3:2). Neural resonance theory 

extends this nonlinear dynamical systems perspective specifically to auditory rhythm perception, 

holding that rhythm perception is underpinned by internal neural oscillations that couple with 

external auditory rhythms; when neural oscillations and auditory rhythms form simple integer 

ratios, coupling is most likely to occur [24, 25]. The duration ratio distinction of simple and 
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complex rhythms converges with auditory rhythm structures that are most frequently observed 

across musical cultures [27], and recent evidence suggests that small integer ratios primarily 

characterize the structure of certain non-human animal vocalizations [28, 29]. 

Production of auditory rhythms by humans supports the dynamical systems distinction 

between simple and complex rhythms. Individuals reproduced auditory rhythm sequences better 

when the successive tone intervals formed integer ratios such as 2:4 compared with 2:3 [2]. 

When asked to tap one hand in synchrony with non-integer ratio auditory rhythms, individuals 

tended to distort their taps toward simple integer ratios [4, 5, 30]. A similar effect has been found 

when individuals tap both hands with simple and complex polyrhythms (rhythms that are 

composed of more than one tone sequence) [31]. In an iterated learning paradigm in which 

individuals initially heard and reproduced random sequences of tones, individuals produced 

sequences that converged toward small integer ratio relationships between tones [32]. There is 

also some cross-cultural evidence for a bias toward producing simple auditory rhythms [33], 

although cultural familiarity with different musical rhythms may modulate these biases in both 

rhythm production [34] and rhythm perception [35]. 

A few studies directly assess simple and complex auditory rhythms in perception and 

production tasks. Repp et al. [36] measured participants as they listened to and tapped in 

synchrony with simple and complex rhythms that contained temporal perturbations. They found 

evidence of better perception and production for small-integer ratio rhythms (such as 1:1, 1:2 

ratios) than for complex rhythms (such as 4:5, 7:11, 5:13), suggesting similar constraints on 

rhythm perception and production. However, there was no clear advantage across perception and 

production for all of the small integer ratios used in the experiment [36]. As most studies address 
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perception or production tasks but not both, it is unknown whether the tendency toward simple 

over complex rhythms is stronger in perception or production.  

Neurophysiological studies have investigated how rhythm complexity affects oscillatory 

neural activity. Stupacher et al. [37] presented participants with a simple isochronous rhythm 

(4:4) followed by a complex polyrhythm (4:3). After a short period of silence, a tone sounded 

and participants judged whether that tone was early, on time, or late for the polyrhythm.  The 

simple and complex rhythm structures were observed in listeners’ patterns of neural oscillations 

based on steady-state analyses of electroencephalograpy (EEG). Additionally, musicians’ neural 

oscillations better tracked the complex polyrhythm during the silent period compared to 

nonmusicians’ neural oscillations, confirming the musicians’ advantage for complex rhythm 

processing [37]. Mathias et al. [38] directly compared neural oscillations with EEG while 

musicians perceived and produced auditory stimuli containing simple (1:1), moderate (1:2), and 

complex (3:2) rhythms. During perceptual trials, participants detected omitted tones in the 

auditory rhythms; during production trials, participants tapped the second part of the ratio of 

each auditory rhythm to produce the full rhythm. Detection of missing tones was most accurate 

for the 1:1 rhythm with no difference observed between the 1:2 and 3:2 rhythms. Tapping was 

more accurate and precise for the 1:1 and 1:2 rhythms compared to the 3:2 rhythms. Power 

spectral density measures (EEG) were greatest at frequencies that corresponded to the tapping 

frequency in the simple (1:1) rhythm compared to the moderate (1:2) and complex (3:2) rhythms 

[38]. These findings suggest that neurophysiological entrainment is stronger for simple rhythms 

than complex rhythms, particularly during production tasks compared to perceptual tasks.  

One of the goals of the current study is to compare cardiac rhythms during auditory 

rhythm perception and production tasks. Previous studies of cardiac activity during rhythm 
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perception and production tend to employ linear measures of cardiac activity, such as mean heart 

rate or RR interval and heart rate variability. For example, one study reported no difference in 

linear measures of listeners’ heart rate variability during music perception of duple metre 

rhythms (a march) compared to triple metre rhythms (a waltz) [7]. Linear measures such as heart 

rate variability assume that the cardiac signal is stationary, meaning the mean and variance of the 

time series are relatively stable over time [39]. In reality, stationarity in cardiac activity is often 

not the case [40]; behavioral tasks are likely to have different effects on cardiac activity over 

time. Thus, it is possible that nonlinear cardiac measures, which address relationships within a 

single time series, may be more sensitive to rhythmic changes that take place within musical 

stimuli.   

Recurrence quantification analysis (RQA) is a nonlinear analysis alternative that does not 

make assumptions about stationarity of the signal [41]. In RQA, a time-delayed copy of the 

cardiac time series is produced to reconstruct the signal in a multi-dimensional phase space [42, 

43]. Points in the phase space are then assessed for their closeness; points that are sufficiently 

close to one another in the phase space are deemed to be recurrent [44]. These recurrent points 

are plotted in a 2-dimensional recurrence plot and quantified according to different metrics to 

describe the behavior of the system. RQA has been applied to identify disrupted cardiac 

dynamics in clinical populations such as syncope (fainting) [45, 46], sleep apnea [47], and 

ventricular tachyarrhythmia [48] as well as changes in cardiac rhythms that occur during 

behavioral tasks. Konvalinka et al. [49] reported increased predictability and stability in cardiac 

dynamics of firewalkers during a ritual fire walk compared to spectators’ cardiac dynamics. 

Wright and Palmer [8] reported increased predictability in pianists’ cardiac dynamics when they 

performed simple melodies compared to a silent baseline; furthermore, pianists’ cardiac 
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dynamics were most predictable when they performed novel (unfamiliar) melodies. It is 

unknown, however, how much cardiac rhythms change during perception or production of 

auditory rhythms and whether auditory rhythm complexity affects cardiac dynamics.   

The current study investigated how auditory rhythm complexity affects cardiac dynamics 

during auditory perception and synchronisation tasks. The first aim was to determine whether 

rhythmic complexity, measured by the ratio of tone durations in two simultaneously presented 

rhythms, influences cardiac dynamics. The second aim was to compare how listening to auditory 

rhythms versus actively synchronizing one voice or part with those rhythms affects cardiac 

dynamics. Trained musicians, who have had experience synchronizing their movements to 

rhythmic sound, listened to and tapped in synchrony with simple and complex auditory rhythms. 

Based on previous studies, we expected worse tapping performance for complex rhythms (3:2 

duration ratios) than for simple rhythms (1:2 duration ratios) [4, 5, 30, 38]. In line with Wright 

and Palmer’s [8] findings, we expected greater recurrence and predictability of cardiac dynamics 

during the more difficult synchronisation task compared to perception, and greater predictability 

during the more complex rhythms compared to simple rhythms. 

Methods 

Participants 

 Twenty-five musically trained adults participated in the study (mean age = 22.24 years, 

sd = 3.78, Nfemale = 20). Participants had an average of 13.5 years of private musical instruction 

(range = 6-18 years; sd = 3.88 years). Participants were screened by email for eligibility; eligible 

participants had to be between 18 and 35 years of age and have at least 6 years of private musical 

instruction. Exclusion criteria included a history of cardiovascular, respiratory, neurological, or 

psychiatric disorders, a diagnosed hearing impairment, or having taken a transcontinental flight 
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within 3 weeks of participating in the study. Participants were screened for normal hearing for 

the range of tone frequencies used in the auditory stimuli (< 30 dB HL threshold for 125-750 Hz 

frequencies), as determined by an audiometry screening at the beginning of the experiment. 

Participants were recruited via social media and flyer postings between May and October 2022 ; 

10 participants were recruited for course credit in the Psychology Department at McGill 

University and 15 participants were recruited from the general adult population in Montreal. 

Individual participant identifiers available at the time of testing were removed following their 

participation. The study took place at McGill University and the protocol was reviewed by the 

Research Ethics Board (Ethics protocol #197-1018). 

Stimulus Materials and Equipment 

 The auditory rhythms in all conditions were composed of two isochronous sequences of 

tones that differed in pitch and duration and formed specific temporal ratios with one another 

(Fig 1), similar to Mathias et al. [38]. The high-pitched tones were presented as 660 Hz sine 

tones and the low-pitched tones were presented as 392 Hz woodblock tones produced by a 

Roland Sound Canvas (SC-55) tone generator (timbre = 116). The high-pitched and low-pitched 

tones in the simple rhythm formed a 1:2 ratio such that the high-pitched tone (intertone interval = 

1090 ms) occurred once for every two low-pitched tones (intertone interval = 545 ms). The high-

pitched and low-pitched tones in the complex rhythm formed a 3:2 ratio such that the high-

pitched tone (intertone interval = 363.33 ms) occurred three times for every two low-pitched 

tones (intertone interval = 545 ms). Thus, the low-pitched tone interonset interval (545 ms) was 

constant across both the simple and the complex rhythms; only the high-pitched tone interval 

changed across the rhythms. Each auditory rhythm was sounded for 1 minute and began with 
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four woodblock tones (intertone interval = 545 ms). Each 1-minute auditory rhythm was repeated 

five times with a silent pause of 10 seconds between each repetition. 

 

Fig 1. Simple and complex auditory rhythms used in the Perception and Synchronisation 

tasks. Black and grey tones were sounded in the Perception condition. Black indicates sounded 

tones and grey indicates participants’ instructed taps that produced tones in the Synchronisation 

task. Circles indicate stimulus beats on which asynchronies between sounded tones and produced 

taps were computed. 

 

Auditory stimuli in the Perception condition contained one omitted tone in either the 

high-pitched or low-pitched tone stream on two of the five trials for each rhythm (simple and 

complex) that participants were asked to detect. Tone omissions were placed at either the middle 

or the end of the rhythm sequence; trials with tone omissions were randomized across rhythm 

conditions and participants. Auditory stimuli in the Synchronisation condition contained only the 

high-pitched tone; each auditory rhythm began with four woodblock tones (presented with the 

same timbre as in the Perception condition) that served as the participants’ tempo cue for tapping 

the low-pitched tone part (set to 545 ms). Thus, the participants’ tapping rate in the 

Synchronisation task was constant across all trials of the simple and complex rhythms.  

Sound was delivered through AKG K271 Studio headphones and participants tapped 

their finger on a Roland RD-700 electronic piano keyboard. Auditory stimuli and participants’ 

auditory feedback were generated on the Roland Sound Canvas (SC-55) tone generator using 

MIDI (musical instrument digital interface) with 1-ms temporal resolution. Participant key taps 

were recorded in FTAP v.2.1.07b [50] on a Dell T3600 PC running Linux (Fedora 16). Cardiac 
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activity was recorded with a Polar H10 chest strap heart rate monitor with 1-ms temporal 

resolution connected via Bluetooth to the application EliteHRV running on an iPad Mini. 

Questionnaires included a musical background questionnaire and a short questionnaire about 

participants’ physical activity in the hour prior to the experimental session. 

Design 

Behavioral performance and cardiac activity were measured for all participants in all 

auditory rhythm conditions, making this a within-subjects Task (Perception and Synchronisation) 

by Rhythm (Simple vs Complex) design. In addition, each participant had a 5-minute silent 

baseline measure of cardiac activity collected. The order of conditions in the experiment was 

kept constant across participants, such that all participants first completed the physiological 

baseline measurement followed by auditory rhythm perception, then synchronisation. The 

synchronisation task followed the perceptual task to avoid unintentional motor imagery or motor 

planning during the perceptual task. The simple rhythm condition always preceded the complex 

rhythm condition so that participants began with the easier task. 

Dependent variables for the Perception task were hit rate (% correct detection) and false 

alarm rate (% incorrect detection) for the omitted tones. The dependent variables for the 

Synchronisation task were the mean intertap interval (ITI) and the coefficient of variation (CV, 

standard deviation/mean ITI) as well as the tapping accuracy (participant tap onset time – 

stimulus tone onset time) for participant taps that coincided with stimulus tones, indicated with 

circles in Fig 1. Tapping precision was measured by the standard deviation of the mean signed 

asynchronies. Dependent variables for the cardiac signals included mean R-R intervals (normal 

heart beat-to-heart beat intervals, ms) and the root mean square of successive R-R interval 

differences (RMSSD, ms), a measure of heart rate variability (Schaffer et al., 2014). Nonlinear 
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cardiac measures included Recurrence Rate (% Rec) and Determinism (% Det), described below 

(Data Analysis). 

Procedure 

 Participants were invited to the lab to complete the 1-hour in-person testing session 

between 09h and 17h. Upon arrival at the lab, participants provided written informed consent by 

reading and signing a consent form and then completed an audiometric screening in which pure 

tones were presented over sound-attenuating headphones (Maico MA40). Only participants who 

reported hearing the range of tones used in the experiment (125 Hz – 750 Hz) at an average 

threshold of < 30 dB continued in the experiment. 

 Next, a 5-minute baseline cardiac recording was conducted. Participants attached the 

heart rate monitor around their chest and sat in a comfortable chair with their legs uncrossed. 

During the baseline recording, participants completed written questionnaires with minimal body 

movement. Participants then completed the Perception task. They were told that each rhythm 

they heard would have a high-pitched part and a low-pitched part and were asked to identify 

whether a trial had a missing tone by circling “yes” or “no” on a sheet of paper at the end of each 

trial. Participants listened to an example of a rhythm with and without a missing tone in initial 

practice trials for each rhythm. Participants completed five 1-minute Perception trials of the 

simple (1:2) rhythm followed by five 1-minute perception trials of the complex (3:2) rhythm. 

Participants then completed the Synchronisation task. They were asked to tap the low-

pitched part of the rhythm on a single key of the piano keyboard using their dominant hand, so 

that their taps synchronized with the high-pitched part of the rhythm to form the intended rhythm 

ratio in each condition. Participants heard the high-pitched part of the rhythm as well as their 

own taps (low-pitch part of the rhythm) during the Synchronisation condition. Participants 
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received up to three practice trials tapping the rhythm before completing five 1-minute 

Synchronisation trials for each rhythm condition. At the end of the Synchronisation task, 

participants removed the heart rate monitor and were debriefed. The experimental session took 

approximately 1 hour to complete. 

Data Analysis 

Behavioral Data 

Each participant’s tapping data formed a time series of intertap intervals. Tap ITIs were 

examined for double taps (< 75 ms between two successive taps) and, when present 

(approximately 1.4% of all taps), the second tap was removed. The first 4 taps (indicating initial 

synchronisation) and the last 4 taps were then removed from each trial, similar to Mathias et al. 

[38]. Intertap intervals greater than 3 standard deviations from the mean ITI were removed 

(Simple rhythm = 0.67 % of all intervals; Complex rhythm = 0.65 % of all intervals) and the 

mean ITI and CV were then calculated for each trial using Matlab (version 9.8.0, 2020). The 

mean absolute asynchrony, mean signed asynchrony, and standard deviation of mean signed 

asynchrony were calculated in each trial for each tap that aligned with a stimulus event, as shown 

by the circles in Fig  1. Smaller absolute asynchrony values indicate more accurate tapping; 

negative mean signed asynchrony values indicate participants’ taps anticipated the stimulus tone. 

A smaller standard deviation of the mean signed asynchronies indicates more precise tapping. 

Cardiac Data 

 Cardiac data were processed in Kubios HRV Premium (version 3.5.0). R-R interval series 

were generated for each trial, and mean R-R interval and RMSSD, were calculated in Kubios. 

The RMSSD is primarily a measure of vagally-mediated beat-to-beat heart rate variability [51]. 

It was deemed an appropriate measure of heart rate variability as respiration does not have a 
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large influence on RMSSD [52] and length of the time series being analyzed was short (1 

minute). 

  The R-R values were then converted into beats per minute (BPM) that resulted in values 

every 300 ms (ie. measures faster than the maximal heart rate of all participants), following 

Wallot et al. [53]. Each R-R value in the time series (indicating onset times) was replaced with a 

string of BPM values. The BPM values were then averaged using a non-overlapping moving 

window of 300 ms, and the resultant time series served as input to the recurrence quantification 

analysis (RQA). The result of this transformation is an upsampling of the time series that creates 

a consistent length time series across trials and participants [53]. 

Auto recurrence quantification analysis (RQA) was used as the nonlinear analysis method 

of cardiac activity and was performed in Matlab with the CRP Toolbox 5.22 [54]. In contrast to 

the linear cardiac measures, RQA captures recurring patterns in cardiac activity over time. 

Symmetrical, binary (recurrent, non-recurrent) recurrence plots were generated, which capture 

the recurring patterns in the cardiac signal (see Fig S2). Recurrence plots were generated on 

normalized values of the cardiac timeseries. Two metrics were used to quantify the recurrence 

patterns observed in the recurrence plots. The first was Recurrence Rate, a measure of the total 

proportion of recurrent to non-recurrent points. The second was Determinism: The proportion of 

sequential recurrent points, corresponding to predictability of the cardiac signal. For a detailed 

description of RQA methodology and chosen parameters, see S1 Appendix. 

Statistical tests for the behavioral and physiological measures were conducted in R Studio 

(version 4.2.0). Repeated-measures analyses of variance (using the function ezANOVA from the 

ez package in R) were used to investigate differences between more than two conditions, with a 

p-value below .05 determining statistical significance.  Planned contrasts with the Holm-



85 

 

Bonferroni correction were used to follow-up significant analyses of variance. Trial-level 

participant data was the input for all statistical tests. The number of participants was chosen 

based on previous findings and expected medium to large effect sizes for the within-subjects 

design [8, 38]. 

Results 

Perception of missing beats 

The effect of Rhythm (Simple, Complex) on missing tone identification in the Perception 

condition was tested with paired t-tests. There were no significant differences between Rhythm 

conditions for the hit rate (t(24) = .681, p = .251, Cohen's d = .138). Participants were equally 

good at detecting missing tones in the Simple rhythm (90.4%) and the Complex rhythm (88.0%). 

Similarly, there were no significant differences between rhythm conditions for the false alarm 

rate (t (24) = 0.0, p = .50, Cohen's d = 0.0). Participants did not make more false detections in the 

complex rhythm (7.2%) than the simple rhythm (7.2%). 

Synchronisation of taps 

We tested for differences in tapping variability across Rhythms (Simple, Complex) in the 

Synchronisation condition. Tapping CV was significantly larger for the Complex rhythm (F 

(1,24) = 4.43, p = .046, generalized η2 = .083) indicating participants were less precise in their 

tapping during the Complex rhythm (mean CV = .059) compared to the Simple rhythm (mean 

CV = .048). As expected for the fixed tapping rates across stimuli in the rhythm conditions, 

participants' mean ITIs did not differ significantly between the Simple and Complex rhythms (F 

(1,24) = .522, p = .477, generalized η2 = .009). Thus, the increased variability for the Complex 

rhythm was not a result of changes in tapping rate. 
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 Next, we assessed participants’ tapping synchronisation accuracy in the Synchronisation 

conditions. As shown in Fig 2a, mean absolute asynchrony values were significantly larger for 

the Complex rhythm than the Simple rhythm (F (1,24) = 21.1, p < .001, generalized η2 = .278. 

As shown in Fig 2b, the Complex rhythm yielded significantly larger positive signed asynchrony 

values whereas the Simple rhythm yielded smaller negative values (F (1,24) = 25.46, p < .001, 

generalized η2 = .330). 

 

Fig 2. Behavioral synchrony measures by Rhythm condition in the Synchronisation task. 

A): Mean absolute asynchrony by Rhythm condition (in ms). B): Mean signed asynchrony by 

Rhythm condition (in ms). C): Mean standard deviation of signed asynchrony by Rhythm 

condition (in ms). Circles = individual participants’ values. 

 

Finally, analyses of the synchronisation tapping variability were conducted in the 

Synchronisation condition.  The standard deviation of the signed asynchronies was significantly 

larger for the Complex rhythm than the Simple rhythm (F (1,24) = 18.5, p < .001, generalized η2 

= .255), as shown in Fig 2c. Overall, these results indicate that participants synchronized their 

taps less accurately and less precisely with the Complex rhythm, and they showed greater 

anticipation (ie, their taps preceded the stimulus more) with the Simple rhythm. 

Linear measures of cardiac rhythms 

We first compared the Baseline cardiac activity (at rest) with the cardiac activity during 

the auditory rhythm tasks. A one-way ANOVA on mean R-R intervals by Task (Baseline, 

Perception, Synchronisation) revealed a significant effect of Task (F(2,48) = 5.280, p =.008, 

generalized η2 = .012). The R-R intervals were larger (heart rate was slower) during the 
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Perception condition (mean = 768.335 ms) compared to Baseline (mean = 744.161 ms) (Holm-

Bonferroni corrected t(24) = 3.389, p = .002, Cohen’s d = .26) and during Perception compared 

to Synchronisation (mean = 745.052 ms) (t(24) = 3.332, p = .003, Cohen’s d = .24). There was 

no significant difference between the Baseline and Synchronisation conditions (t(1,24) = -.084, p 

= .934, Cohen’s d = .01). A one-way ANOVA on RMSSD by Task (Baseline, Perception, 

Synchronisation) yielded no significant differences (F(2,48) = 1.360, p = .267, generalized η2 = 

.005). 

To test for auditory rhythm effects, we conducted two-way ANOVAs on the linear 

cardiac measures by Task (Perception, Synchronisation) and Rhythm (Simple, Complex). The 

ANOVA on mean R-R intervals showed a significant main effect of Task (F (1,24) = 11.103, p = 

.003, generalized η2 = .014), confirming that heart rates were slower during Perception than 

during Synchronisation for both Simple and Complex Rhythms.  There were no significant 

effects of Rhythm or Task x Rhythm interaction. The two-way ANOVA on RMSSD indicated a 

significant main effect of Task (F(1,24) = 5.609, p =.026, generalized η2 = .075). There was 

greater heart rate variability during Perception than during Synchronisation for both Simple 

(Perception = 34.78 ms, Synchronisation = 32.17 ms) and Complex rhythms (Perception = 34.49, 

Synchronisation = 31.37). There were no other significant main effects or interactions. Overall, 

the linear cardiac findings indicate that heart rate was faster and less variable during the 

Synchronisation condition compared to the Perception condition. 

Nonlinear measures of cardiac rhythms 

We compared the nonlinear cardiac metrics for the Baseline condition (at rest) with the 

cardiac activity during the auditory rhythm tasks. For Recurrence Rate, there was a significant 

effect of Task (F(1,24) = 10.40, p < .001, generalized η2 = .119), with greater cardiac recurrence 
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during Perception (mean = 3.062%) than Baseline (mean = 1.803%) (pairwise comparisons, 

Holm-Bonferroni corrected t(24) = 4.156, p < .001, Cohen’s d = .96) and during Synchronisation 

(mean = 3.283%) than Baseline (t(24) = 4.286, p < .001, Cohen’s d = .93). Perception and 

Synchronisation conditions did not differ significantly (t(24) = -.546, p = .590, Cohen’s d = .08). 

Determinism values, based on fixed recurrence rates (5%), showed similar main effects of Task 

(F(1,24) = 4.395, p = .018, generalized η2 = .027). Follow-up pairwise comparisons (Holm-

Bonferroni corrected) indicated greater Determinism during Perception (mean = 65.71%) than 

Baseline (mean = 62.51%) (t(24) = 2.862, p = .009, Cohen’s d = .37) and during Perception than 

Synchronisation (mean = 62.85%) (t(24) = 2.486, p = .02 , Cohen’s d = .36). There was no 

significant difference between the baseline and Synchronisation conditions (t(24) = -.267, p = 

.792, Cohen’s d = .04). 

To test for auditory rhythm effects on the nonlinear cardiac measures, a 2-way ANOVA 

on Recurrence Rate was conducted by Task (Perception, Synchronisation) and Rhythm (Simple, 

Complex). This yielded a significant Task x Rhythm interaction (F(1,24) = 11.542, p = .002, 

generalized η2 = .022), and no main effects. There was significantly more recurrence during 

perception of the Complex rhythm than during perception of the Simple rhythm, and 

significantly more recurrence during synchronisation with the Simple rhythm compared to 

synchronisation with the Complex rhythm (HSD = .039, p < .05; Fig 3). Fig 4 shows example 

recurrence plots for the same individual’s trials of Simple and Complex rhythms from the 

Perception and Synchronisation tasks. The recurrence plot for Complex Rhythm-Perception 

contains more recurrent points (black dots, greater Recurrence Rate) than does the plot for 

Simple Rhythm-Perception by the same individual. The Synchronisation condition plots show 



89 

 

the opposite pattern: Synchronisation with the Simple rhythm leads to more recurrent points than 

does Synchronisation with the Complex rhythm. 

 

Fig 3. Mean recurrence rate (%) in the cardiac time series (beats per minute) by Task 

(Perception, Synchronisation) and Rhythm (Simple, Complex). Circles = individual data 

points. 

 

Fig 4.  Sample cardiac time series (in beats per minute) and recurrence plots (in number of 

samples) from one participant for each Auditory Condition and Rhythm condition. A) 

Perception task: Simple rhythm (left) and Complex rhythm (right). B) Synchronisation task: 

Simple rhythm (left) and Complex rhythm (right). Black dots in recurrence plots indicate points 

of recurring heartbeat intervals. 

 

The same two-way ANOVA on Determinism showed a significant main effect of Task 

(F(1,24) = 6.107, p = .021, generalized η2 = .029) with greater cardiac determinism (more 

predictability) during rhythm Perception than during Synchronisation for both Simple 

(Perception = 65.4%, Synchronisation = 63.3 %) and Complex (Perception = 66.0 %, 

Synchronisation = 62.4%) auditory rhythms. There was no significant effect of Rhythm or Task 

x Rhythm interaction. Fig 5 shows example recurrence plots for a single participant during 

individual trials of the Simple rhythm in Perception and Synchronisation conditions. There is 

greater determinism, or proportion of black dots forming diagonal lines (indicating sequential 

runs of recurrence in the time series), in the cardiac patterns during Perception compared to 

Synchronisation. 
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Fig 5. A) Mean % Determinism in the cardiac time series (beats per minute) by Task. Circles = 

individual data points. B) Sample cardiac time series (in beats per minute) and recurrence plots 

(in number of samples) from one participant for each Auditory Condition with the Simple 

rhythm. Left) Perception task. Right) Synchronisation task. Diagonal lines of black dots indicate 

determinism (predictability), sequential recurring heartbeat intervals in the cardiac time series. 

 

Behavior-cardiac correlations 

Simple correlations were used to assess behavior-cardiac relationships in the 

Synchronisation condition at the participant level (collapsed across trials). We compared each 

participant’s mean heart rate variability with mean tapping variability (CV) and two measures of 

asynchrony. Significant moderate-sized correlations were observed between measures of tapping 

synchronisation and RMSSD for the Complex rhythm (Fig 6). In the Complex rhythm condition, 

participants with larger mean absolute asynchrony values (less accurate synchronisation) 

exhibited greater RMSSD values, indicating greater cardiac variability (r = .41, p = .042). Also 

in the Complex rhythm condition, participants with larger standard deviations of signed 

asynchronies (more variable synchronisation) showed larger RMSSD values (r = .40, p = .0499). 

The same correlations for the Simple rhythm were small and did not reach significance (mean 

absolute asynchrony: r = .05, p = .821; standard deviation of signed asynchronies: r = .001, p = 

.998). In sum, these synchronisation-cardiac correspondences indicate that worsened tapping 

accuracy and variability were correlated with greater heart rate variability during the Complex 

rhythms. There were no significant correlations between heart rate variability and tapping CV. 
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Fig 6. Simple correlations. A) Mean Absolute Asynchrony and RMSSD, in ms, and B) Mean 

Standard Deviation of Signed Asynchrony and RMSSD, in ms. 

 

Discussion 

This study demonstrated effects of rhythm complexity on cardiac dynamics during 

perception and production (synchronisation) of auditory rhythms. Musically trained adults 

listened to and tapped with simple rhythms (that formed a 1:2 duration ratio between the two 

rhythms) and with complex rhythms (that formed a 3:2 duration ratio between the two rhythms) 

while their cardiac activity was measured. Linear and nonlinear analysis methods were applied to 

the participants’ cardiac dynamics measured during rhythm perception and production. Listeners 

identified omitted tones accurately in both simple and complex rhythms, indicating successful 

perception. Complex auditory rhythms were more difficult to synchronize with than were simple 

rhythms. Individual differences analyses indicated that more inaccurate and more variable 

synchronisation corresponded to greater heart rate variability. Finally, nonlinear analyses of 

recurring patterns in cardiac dynamics were differentially modulated by both the task (perception 

or synchronisation) as well as by stimulus rhythm complexity. Thus, nonlinear cardiac measures 

of recurrence rate and determinism were more sensitive to rhythm complexity than were linear 

measures. 

Predictions from dynamical systems theory [24, 25, 26] as well as behavioral evidence [2, 

4, 5, 30 38] indicate that synchronizing with complex rhythm ratios (such as the 3:2 rhythms 

used here) is more difficult than with simple ratios (such as the 1:2 rhythms used here). Our 

behavioral findings are consistent with these predictions: Tappers showed larger intertap interval 

variability (CV) and less accurate and less precise synchronisation of taps with the complex 
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rhythm than the simple rhythm. Importantly, tapping rates were held constant between the simple 

and complex rhythm conditions. Thus, motor system demands were equated across the rhythms 

and cannot account alone for the poorer performance on the Complex rhythm task. There was 

also less anticipatory synchrony for the complex rhythm than the simple rhythm, reflected by  

taps that lagged the stimulus tones for the complex rhythm. Notably, there were no rhythm 

complexity effects for the missing tone detection task in the perceptual condition, suggesting that 

the observed production effect is not simply due to differences in perceptual processing of the 

simple and complex rhythms. Repp et al. [36] similarly found no clear advantage of simple over 

complex rhythms in a perceptual task that required detection of a temporal perturbation in an 

auditory rhythm. It may be that rhythm complexity affects production more than perception 

because auditory-motor coupling is required, yielding greater task difficulty. 

Perception/production differences in cardiac rhythms indicated that cardiac activity was 

modulated by auditory perception and synchronisation tasks, above and beyond the complexity 

of the rhythm. Rhythm synchronisation resulted in faster heart rates (smaller R-R intervals) and 

decreased heart rate variability compared to rhythm perception. These findings are consistent 

with findings showing faster heart rates and decreased heart rate variability when pianists 

performed a complex musical piece compared to when they listened to the same piece [55]. The 

Synchronisation task may have been more difficult and resulted in greater physiological arousal, 

as it required individuals to simultaneously perceive one rhythm while producing another 

auditory rhythm. More difficult cognitive and motor tasks have been reported to result in 

increased autonomic arousal [9], including in the auditory domain [11]. A related interpretation 

is that greater physiological arousal in the Synchronisation condition reflected performance 

anxiety, leading to the observed changes in heart rate and heart rate variability [23]. However, 
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the linear cardiac metrics were similar between the Baseline (no auditory stimulus) and 

Synchronisation conditions suggesting that performance anxiety cannot account for the observed 

differences. 

Nonlinear measures of cardiac rhythms, including recurrence rates and determinism 

(predictability), showed that cardiac dynamics were more predictable during rhythm perception 

than synchronisation. These findings contrast with previous reports of increased cardiac 

predictability accompanying increased task difficulty [45, 49, 56]. Notably, Wright and Palmer 

[8] reported increased cardiac predictability when musicians performed unfamiliar (novel) 

musical rhythms compared to familiar musical rhythms; that study did not compare perception 

and performance conditions. The design of the current study allowed us to dissociate cardiac 

effects of simply perceiving auditory rhythms from perceiving while simultaneously producing 

the same rhythms. In the Perception condition, the timing of the stimulus rhythms was computer-

generated with no variability; in the Synchronisation condition, the timing of the auditory 

rhythms was variable as participants produced one part of the rhythm. These findings suggest 

nonlinear properties of cardiac dynamics may be modulated by stimulus timing and rhythmic 

motor timing. 

Effects of rhythmic timing on cardiac dynamics were also evidenced in the striking Task 

(perception/synchronisation) by Rhythm (simple/complex) interaction observed for cardiac 

recurrence rate (indicating repeating patterns). There was greater cardiac recurrence during 

perception of the Complex rhythm (which presented different temporal intervals between the two 

parts), and greater cardiac recurrence during synchronisation for the Simple rhythm. The order of 

the conditions (Perception, then Synchronisation) and rhythms (Simple, then Complex) was 

constant across participants, suggesting that the Task by Rhythm interaction cannot be explained 
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simply by order effects. It also cannot be explained by participants’ tapping rates between 

conditions, as no tapping rate differences were observed. It is possible that cardiac activity was 

less recurrent during synchronisation with the complex rhythm due to increased motor noise in 

participants’ more variable asynchronies in this condition. The interpretation that cardiac 

rhythms (de)couple from the participant’s tapped rhythms in the presence of motor noise. 

Finally, cardiac recurrence may not reflect the same underlying causes in perception and 

synchronisation/production of auditory rhythms, as motor timing and stimulus timing do not 

individually explain the observed interaction. Future research may disentangle this explanation 

by investigating how tapping rhythms in the absence of auditory feedback affects cardiac 

dynamics. 

Correlations between individuals’ synchronisation performance and linear cardiac 

measures support the interpretation that cardiac dynamics are sensitive to auditory and motor 

timing. Participants’ lower accuracy and more variable synchronisation was correlated with 

increased heart rate variability in the complex rhythm condition only. This is interesting because 

poorer performance indicates that synchronizing with the complex rhythm was more difficult, 

yet heart rate variability increased, the opposite of task difficulty effects [57, 58]. Notably, those 

tasks did not manipulate the sequential stimulus timing, a factor unique to the current design. 

Thus, individual differences in synchronisation and heart rate variability are consistent with the 

interpretation that cardiac activity may reflect increased noise in auditory and motor timing. 

Only nonlinear cardiac analyses were sensitive to rhythm complexity, as expected for 

time series analyses that derive recurrences from successive items in a time series (such as the 

sequential ratios between successive intertap intervals that defined the simple and complex 

rhythms). It is therefore not surprising that the recurrence measures were more sensitive than the 
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linear measures to cardiac differences between the simple and complex auditory rhythms. 

Analysis of musicians’ joint cardiac dynamics also show increased cardiac recurrence and 

predictability during ensemble music performance [59]. Nonlinear analysis methods may be 

strongly suited for detecting changes in cardiac rhythms during temporally patterned tasks such 

as auditory rhythm production. 

There are a few important limitations in the findings to consider. First, musical training 

may influence physiological measures such as cardiac dynamics in response to auditory rhythms. 

Nonmusicians tend to exhibit greater variability in rhythmic tapping performance than musicians 

[60, 61]; comparison of musically trained with untrained individuals may reveal different 

relationships. Second, natural music produced in richer contexts introduces many more acoustic 

features such as pitch, timbre and tempo; cardiac dynamics are likely to be affected by additional 

features of complex musical pieces. Future research may compare simple and complex musical 

rhythms in natural musical settings to complement the constrained basic rhythm complexity 

findings reported here. 

Overall, this study demonstrated that auditory rhythm perception and production 

influence cardiac activity in musically trained individuals. Complex auditory rhythms (those that 

formed non-integer duration ratios) were more difficult to tap than simple auditory rhythms 

(those that formed integer duration ratios). Synchronisation with auditory rhythms resulted in 

faster heart rate, decreased heart rate variability, and more predictable cardiac dynamics than 

perception of the same rhythms. Nonlinear cardiac dynamics showed more recurrence when 

participants synchronized with simple compared to complex auditory rhythms; participants who 

were worse at producing complex rhythms showed decreased heart rate variability. To our 

knowledge, this is the first study to demonstrate altered cardiac dynamics while individuals 
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perceived and synchronized with auditory rhythms. These findings suggest that auditory-motor 

coupling during rhythm production may be an important modulator of cardiac dynamics that 

extends beyond perceptual influences. 
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Supporting Information 

S1 Appendix 

Recurrence quantification analysis (RQA) was used as the nonlinear analysis method of 

cardiac activity. In contrast to the linear cardiac measures, auto-RQA captures cardiac dynamics 

- or changes in the heart’s activity over time. A time-delayed copy of the normalized cardiac 

time series is produced to reconstruct the signal in a multi-dimensional phase space [1, 2]. A time 

delay parameter and an embedding dimension parameter are used to yield the reconstructed 

phase space. In the current study, the time delay was set to the first local minimum of the average 

mutual information function [3]. The time delay values at the trial level ranged from 4-29. The 

embedding dimension parameter, which determines the dimensionality of the phase space, was 

chosen using the False Nearest Neighbours method [3] in which the first local minimum was 

selected as the embedding dimension for each trial. Embedding dimensions ranged from 4-17. 

The time delay and embedding dimension values across trials and participants were fixed to the 

median of the observed values (time delay = 4, embedding dimension = 4). This prevents 

individual- and condition-level differences in the dependent variables from being artefacts of the 

parameters varying across individuals and/or conditions [3]. Figure S1 (top) shows an example 

of a phase space trajectory of a cardiac signal with a time delay = 4 and embedding dimension = 

3. 

Points in the phase space are then assessed for their closeness using a radius threshold 

parameter; points that are sufficiently close to one another in the phase space are deemed to be 

recurrent [3]. Recurrent points are then plotted in a 2-dimensional, binary (black=recurrent, 

white=not recurrent) auto-recurrence plot (Figure S1 bottom). We set the radius to 10% of the 

diameter of the phase space for the recurrence rate analysis [3], which allowed recurrence plots 
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to vary in the proportion of recurrent points. For analyses on cardiac determinism, we held the 

recurrence rate constant at 5% to distinguish determinism effects beyond simple recurrence [4, 

5]. 

Finally, points in the recurrence plot can be quantified according to different metrics to 

describe the behavior of the cardiac system. Those metrics in the current study included 

Recurrence Rate and Determinism. Recurrence rate is the proportion of recurrent points in a time 

series and represents how often the system returns to a previous state [2]. Determinism measures 

the proportion of recurrent points that occur sequentially in the time series (forming diagonal 

lines in the recurrence plot) and represents the predictability of the system [3, 6, 7]. 
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Figure S1. Top: Example of a single participant’s phase space trajectory of cardiac activity for a 

1-minute tapping trial with embedding dimension = 3 and time delay = 4. Bottom: The 
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recurrence plot derived from the phase space. The cardiac time series is plotted on the x- and y-

axes. Each black dot represents a point that was recurrent with another point in the phase space. 

White space represents non-recurrent points. The total proportion of black points in the 

recurrence plot is the Recurrence Rate. Diagonal structures represent sequential points of 

recurrence, signalling cardiac predictability. The proportion of black points that form diagonal 

lines is Determinism (%). 
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Bridge between Chapter 2 and Chapter 3 

 Chapter 2 tested the effects of perception and production as well as rhythm complexity on 

behaviour and cardiac dynamics. Behavioural results indicated that synchronisation with a 

complex rhythm (3:2) was less accurate and more variable than synchronisation with a simple 

rhythm (1:2) whereas simple and complex rhythms were perceived equally well, highlighting a 

distinction between perception and production of complex rhythms. Some linear cardiac findings 

were in keeping with a task difficulty effect: Heart rate increased and heart rate variability 

decreased during synchronisation compared to perception. However, heart rate variability was 

greater when synchronisation performance was worse on the complex rhythm. Nonlinear cardiac 

analyses (RQA) indicated greater cardiac predictability during rhythm perception than 

synchronisation; cardiac dynamics were more recurrent for complex rhythm perception 

compared to simple rhythm perception, and for simple rhythm synchronisation compared to 

complex rhythm synchronisation. These findings suggest that task difficulty does not fully 

explain how auditory rhythm performance affects cardiac dynamics, and that producing auditory 

rhythms affects cardiac dynamics in a particular way. 

 Chapter 3 tests short-term training effects on complex rhythm synchronisation, thus 

building on the previous chapters in two ways. First, Chapters 1 and 2 of this dissertation 

exclusively recruited trained musicians as the tasks involved music performance and 

synchronisation with complex auditory rhythms. This is a reasonable approach as these are both 

difficult auditory-motor synchronisation tasks, and research has demonstrated musicians’ 

advantage in auditory-motor synchronisation tasks such as synchronising finger taps with an 

auditory rhythm (Krause et al., 2010; Repp & Doggett, 2007; Scheurich et al., 2020; Tranchant et 

al., 2022). Chapter 3 expands the sample to investigate behavioural and cardiac responses of a 
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wider range of participants, with and without musical training, in an auditory-motor 

synchronisation task. Second, Chapter 1 findings suggested a possible short-term practice effect 

on music performance and cardiac dynamics; Chapter 3 explicitly tests whether short-term 

training on complex auditory rhythms affects behaviour and cardiac dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

Chapter 3: Short-term training and rhythm complexity affect auditory-motor 

synchronization 

 

Wright, S. E., & Palmer, C. (2023). Short-term training and rhythm complexity affect auditory-

motor synchronization. [Manuscript submitted for publication]. 
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Short-term training and rhythm complexity affect auditory-motor synchronization 

Abstract 

Introduction: Previous findings suggest that long-term musical training and rhythm complexity 

affect performers’ auditory-motor synchrony and their cardiac rhythms. We investigated effects 

of short-term training and rhythm complexity on auditory-motor synchronization and cardiac 

activity as individuals synchronized with auditory rhythms. 

Methods: 42 adult participants synchronized their taps with sounded rhythms to form a 2:3 

duration ratio (stimulus duration:tap duration) or a 3:2 duration ratio (tap rate held constant 

across rhythms). Participants received short training with one rhythm and received longer 

training with the other rhythm. Then participants completed five experimental trials in which 

they synchronized their sounded taps with the stimulus rhythm. Cardiac activity was recorded 

during synchronization. 

Results: Tapping synchronization was more accurate and less variable for the 2:3 rhythm than 

the 3:2 rhythm. Nonlinear measures of cardiac activity showed the greatest cardiac recurrence for 

the 2:3 rhythm. Behavioral-cardiac correspondences emerged with training: Poorer 

synchronization was associated with more variable cardiac activity after long training, but not 

after short training. Finally, there were consistent individual differences in cardiac recurrence 

and predictability across training conditions. 

Discussion: These findings demonstrate both short-term learning effects and rhythm complexity 

effects on behavior and cardiac dynamics during auditory-motor synchronization. 

 

Keywords: learning; synchronization; auditory rhythm; cardiac dynamics; recurrence 

quantification analysis 
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Introduction 

Humans display an impressive ability to synchronize their actions with sound, known as 

auditory-motor synchronization. Successful temporal coordination of action with sound, as seen 

in music performance or dance, requires some amount of practice and/or training. For example, 

long-term musical training increases temporal accuracy and reduces variability in auditory-motor 

synchronization tasks (Krause et al., 2010; Repp & Doggett, 2007; Scheurich et al., 2020). 

Musical training particularly improves synchronization with complex auditory rhythms (Chen et 

al., 2008; Mathias et al, 2020), and musicians’ cardiac activity is differentially affected during 

synchronization with simple and complex auditory rhythms (Wright & Palmer, 2023). Although 

several studies have focused on effects of long-term training (for a review see Koesch & Jancke, 

2015), few address short-term training effects on auditory-motor synchronization and cardiac 

activity. The current study investigates how short-term training affects synchronization accuracy 

and cardiac activity during the production of complex rhythms. In the next sections, we review 

relevant findings on rhythm complexity and short-term training effects on auditory-motor 

synchronization and on simultaneous cardiac activity. 

Auditory Rhythm Complexity 

Simple auditory rhythms are composed of sequences of tone durations that form integer 

multiples such as 2-to-1 (Fraisse, 1982) and can be learned and produced with temporal accuracy 

in relatively short periods of training (Chen et al., 2012; Pfordresher & Chow, 2019; Madison et 

al., 2013). Complex auditory rhythms, composed of tone durations that form non-integer 

multiples such as 2:3 or 3:2, require more practice to be produced accurately (Mathias et al., 

2016; Tajima & Choshi, 2000). 
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These behavioral distinctions between simple and complex auditory rhythms are 

consistent with nonlinear dynamical systems predictions for how people synchronize behaviors 

with sound. According to the dynamical systems perspective, an oscillator (a periodic, recurring 

time series with an associated amplitude and frequency; Pikovsky, 2001) will couple more easily 

with signals such as auditory stimuli when their frequencies (inverse of rate) form small integer 

ratios (such as 2:1) than non-integer ratios (such as 2:3 or 3:2) (Large & Snyder, 2009; Large et 

al., 2015; Treffner & Turvey, 1993). The stability of two coupled oscillators can be described as 

a ratio of their frequencies in what is known as Arnold Tongues (Kelso, 1995). The size and 

shape of the synchronization regions is governed by certain parameters: The winding number 

(the ratio of two oscillator natural frequencies), the coupling strength parameter (k), and the 

symmetry of the frequencies between ratios (for example, 2:3 = 3:2). For certain frequency 

ratios, such as 1:2 (winding number = .5), the stability region is large even for small values of k. 

This means that two oscillators will tend to show stable synchronization (Kelso, 1995; Large et 

al., 2015) for these simple rhythms. Conversely, for other frequency ratios, such as 2:3 (winding 

number = .67) or 3:2 (winding number = 1.5), the stability region is small, even at larger values 

of k, for these complex rhythms. This means that there is a narrower set of conditions under 

which two oscillators will couple when their natural frequencies are at 2:3 or 3:2 (the rhythms 

used in the current study). Notably, the symmetry of the frequencies contained in 2:3 and 3:2 

rhythms suggests that they should have comparable regions of stability (Treffner & Turvey, 

1993). 

The dynamical systems prediction that auditory-motor synchronization will be easier 

when the stimulus and response durations form small integer ratios (Large & Snyder, 2009; 

Large et al. 2015) is supported by behavioral studies. Humans show greater temporal accuracy 
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when synchronizing with small integer ratio rhythms compared to larger, non-integer ratio 

rhythms (Deutsch, 1983; Essens & Povel, 1985; Mathias et al., 2020; Sakai et al., 1999; Snyder 

et al., 2006; Dotov & Trainor, 2021). In an iterative learning paradigm (participants’ output from 

one trial serves as the stimulus input to the next trial), individuals were asked to synchronize 

with auditory tone sequences; over iterations, participants taps tended towards small integer ratio 

rhythms such as 1:1 or 2:1, even when auditory rhythm cues did not always contain small integer 

ratios (Jacoby & McDermott, 2017). Small integer ratios in auditory rhythms tend to dominate 

cross-culturally (Savage et al., 2015), although cultural experience with complex rhythms 

improves synchronization accuracy and precision (Polak et al., 2018). Non-human animal 

vocalisations also tend to show small integer ratios over non-integer ratios (De Gregorio et al., 

2021; Roeske et al., 2020). 

Differences between simple and complex auditory rhythms are also evidenced in 

neurophysiological measures of perception and production. Mathias et al. (2020) showed that 

musically-trained participants tapped auditory rhythms based on simple (1:1), moderate (1:2), 

and complex (3:2) rhythmic structures. Tapping was more accurate and precise for the 1:1 and 

1:2 rhythms compared to the 3:2 rhythms. Power spectral density measures (EEG) were greatest 

at frequencies that corresponded to the tapping frequency in the simple (1:1) rhythm compared to 

the moderate (1:2) and complex (3:2) rhythms (Mathias et al., 2020). These findings suggest that 

neurophysiological entrainment, the period-matching of neural oscillations with auditory 

rhythms, was stronger for simple rhythms than for complex rhythms. How short-term training 

influences synchronization with simple and complex auditory rhythms is addressed in the next 

section. 

Short-term Training Improves Rhythm Production 
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Short-term training effects on auditory rhythm production have been demonstrated in a few 

studies. Musicians with a wide range of experience who practiced a novel piece 10 times show 

significant improvement in rhythmic accuracy from the first to the last performance; musicians 

with less experience tended to show the greatest improvement (Drake & Palmer, 2000). In 

another study, non-musicians synchronized their taps with an auditory rhythm cue, then 

continued tapping the rhythm in the absence of the cue; tapping variability decreased during the 

first 60 minutes of training, and then remained stable (Madison et al., 2013). Another study 

found decreased temporal variability in tapping period as non-musicians were trained to tap with 

isochronous auditory sequences (Nagasaki, 1990). Overall, these findings demonstrate that short-

term training can improve auditory rhythm production for both musicians and non-musicians.  

A few studies have demonstrated short-term learning of complex auditory rhythms in 

production tasks. Tillmann et al. (2011) used an implicit learning paradigm to test whether 

previous perceptual exposure to simple (1:2) and complex (2:3) rhythms improved tapping 

variability during subsequent synchronization. Participants who were previously exposed to 3:2 

ratio rhythms showed less tapping variability with the 3:2 rhythm, compared with those who 

were exposed to a simple rhythm or to no rhythm. Short-term training improved non-musicians’ 

complex (5:3 duration ratios) polyrhythm performance (two simultaneous tone streams forming 

complex duration ratios), although their temporal accuracy was tempo-dependent (Tajima & 

Choshi, 2000). Together, these studies demonstrate that short-term learning of complex auditory 

rhythms is possible, even in individuals who do not have experience with complex rhythms. 

Cardiac Activity during Auditory Rhythm Production 

Production of auditory rhythms can influence cardiac activity. Several studies document changes 

in cardiac activity with musical tempo; as tempo increases, mean heart rate tends to increase 
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(Bernardi et al., 2006; Egermann et al., 2015; Gomez & Danuser, 2007; Nomura et al., 2013; 

Watanabe et al., 2015; Watanabe et al., 2015; cf Mütze et al. 2018) and as tempo decreases, 

mean heart rate tends to decrease (Iwanaga et al., 1996; Van Dyck et al., 2017; Ooishi et al., 

2017). Participants' heart rates increased and their heart rate variability decreased during 

synchronization with a simple isochronous tone sequence compared to a silent condition (Krabs 

et al., 2015). Finally, pianists exhibited faster heart rates when they performed a musical piece 

compared to when they listened to the same piece (Nakahara et al., 2011). 

 Several measures, both linear and nonlinear, address changes in cardiac rhythms during 

auditory perception and production (see Wright et al. 2022 for a review). Linear cardiac 

measures include mean heart rate (or R-R interval, ms) and heart rate variability metrics such as 

the root mean square of successive differences (RMSSD). Linear cardiac measures assume that 

the cardiac signal is stationary, meaning the mean and variance of the cardiac time series are 

relatively stable over time (Manuca & Savit, 1996). In reality, cardiac activity is often not 

stationary (Berntson et al., 1997), and dynamic behavioral tasks are likely to exert different 

effects on cardiac activity over time. Thus, nonlinear cardiac measures are well-suited to 

measure cardiac activity during auditory-motor synchronization tasks, and a number of nonlinear 

analysis techniques have been applied to cardiac rhythms during auditory rhythm production 

(Chanwimalueang et al., 2017; Sebastiani et al., 2022; Williamon et al., 2013; Wright & Palmer, 

2020). 

Recurrence quantification analysis (RQA) is a popular nonlinear method of cardiac 

analysis that identifies recurring patterns over time. The goal of the analysis is to recover higher-

level dynamics of a multidimensional, nonlinear system from a single measured variable (Carello 

& Morena, 2005). Takens's (1981) theorem shows that time-delayed copies of a signal can be 
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used to reconstruct a nonlinear system in multi-dimensional phase space where the trajectory 

(dynamics) of the system is recovered (Webber & Zbilut, 2005). Points in the phase space that 

are sufficiently close together are considered recurrent points (Webber & Marwan, 2015) and are 

plotted in a 2-dimensional recurrence plot, from which the recurrence dynamics of the system 

can be quantified. Auto-recurrence quantification (auto-RQA) identifies recurrence structures 

within a single time series (such as a cardiac rhythm). We apply auto-RQA to the participants’ 

cardiac rhythms as they perform the synchronization task.  

Auto-RQA has been applied to cardiac measures to distinguish healthy populations from 

clinical populations (Javorka et al., 2008; Javorka et al., 2009; Marwan et al., 2002; Naschitz et 

al., 2003; Schlenker et al., 2016; Zbilut et al., 1990), to examine exercise effects (Zimatore et al., 

2020), and to characterize complex behavioral tasks. Auto-RQA analyses showed individuals’ 

greater cardiac predictability during a firewalk ritual compared to a baseline (Konvalinka et al., 

2011). Pianists' cardiac auto-RQA dynamics became more predictable during music performance 

compared to a silent baseline (Wright & Palmer, 2020). Trained musicians’ cardiac auto-RQA 

dynamics also became more recurrent when they synchronized with simple auditory rhythms 

(1:2) compared to complex auditory rhythms (3:2) (Wright & Palmer, 2023). We extend these 

auto-RQA applications to investigate short-term training and rhythm complexity effects on 

cardiac measures during auditory-motor synchronization. 

The current study investigates effects of short-term training on temporal accuracy and 

cardiac activity during an auditory-motor synchronization task with complex rhythms (2:3, 3:2 

stimulus:tap durations). The first aim was to identify behavioral effects of short-term training on 

synchronization performance. In line with previous research (Drake & Palmer, 2000; Madison et 

al., 2013; Tillmann et al., 2011), we expected that greater short-term training would result in 
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more accurate, less variable synchronization. The second aim was to characterize cardiac activity 

during the auditory synchronization task. In line with previous research (Wright & Palmer, 

2020), we expected slower heart rate, greater heart rate variability, and less patterned cardiac 

activity after longer training amounts. Finally, we examined individual differences in 

synchronization behavior and cardiac dynamics, as suggested by previous research (Chen et al., 

2008; Krause et al., 2010; Repp & Doggett, 2007; Scheurich et al., 2020; Wright & Palmer, 

2020). 

Methods 

Participants 

Forty-two participants (mean age = 21.05 years, SD = 2.74 years, female = 39, non-binary = 1) 

with a range of musical experience were recruited for the study. Participants’ mean years of 

private instruction on a musical instrument was 8.57 years (SD = 4.32 years; min = 0, max = 17). 

To be included in the study, participants had to report no history of cardiovascular disease, 

respiratory disorders, or hearing impairments, and had to be between 18 and 35 years of age. An 

audiometry screening was used to confirm normal hearing for the range of tone frequencies in 

the auditory stimuli (< 30 dB HL threshold for 125-750 Hz frequencies). Participants were 

recruited from online postings to social media pages between October and December 2022. 32 

participants were recruited from McGill University’s Psychology participant pool; 8 participants 

were recruited from the general Montreal community. The study took place at McGill 

University, and the protocol was reviewed by the Research Ethics Board (Ethics protocol #197-

1018). 

Stimulus Materials and Equipment 
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Auditory stimulus rhythms were composed of two isochronous sequences of tones that differed 

in pitch and duration and formed specific temporal ratios with one another, as shown in Figure 1. 

The high-pitched tone was a 660 Hz sine tone, and the low-pitched tone was a 392 Hz 

woodblock tone. Tones were produced by a Roland Sound Canvas (SC-55) tone generator (timbre = 

116). Each stimulus rhythm was a repeated high tone, and the participants’ taps generated a low 

tone repeatedly. In the 2:3 (stimulus tones: response taps) rhythm, the high-pitched tone 

(intertone interval = 817 ms) was intended to occur twice for every three low-pitched tone taps 

(intertone interval = 545 ms). For the 3:2 rhythm, the high-pitched tone (intertone interval = 363 

ms) was intended to occur three times for every two low-pitched tone taps (intertone interval = 

545 ms). Thus, the low-pitched tone interonset interval (545 ms) was constant across both 

rhythms; only the high-pitched tone interval changed across the rhythms, meaning participants’ 

tapping rate in the synchronization task was constant across all trials of the rhythms. 

[Figure 1 here] 

Auditory stimuli and participants’ auditory feedback were generated on the Roland 

Sound Canvas (SC-55) tone generator using MIDI (musical instrument digital interface) with 1-

ms temporal resolution. Sound was delivered through AKG K271 Studio headphones, and 

participants tapped their finger on a Roland RD-700 electronic piano keyboard. Participant key 

taps were recorded in FTAP (v.2.1.07b; Finney, 2001) on a Dell T3600 PC running Linux 

(Fedora 16). Cardiac activity was recorded with a Polar H10 chest strap heart rate monitor with 

1-ms temporal resolution connected via Bluetooth to the application EliteHRV running on an 

iPad Mini. Questionnaires included a musical background questionnaire and a short 

questionnaire about participants’ physical activity in the hour prior to the experimental session. 

Design 
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Tapping performance and cardiac activity were measured from all participants in all 

synchronization conditions. The independent variables were Rhythm (2:3, 3:2) and Training 

(Short, Long). Participants received one level of training on each of the rhythms, making this a 

mixed design with Rhythm and Training as within-subjects variables and the Rhythm-to-

Training assignment as a between-subjects variable (Short vs Long; coded as “Training”). The 

order of the Rhythm and Training variables were counterbalanced across participants. In 

addition, each participant completed a 5-minute silent baseline measure of cardiac activity before 

the start of the synchronization task. 

The dependent variables for the synchronization task were the mean inter-tap interval 

(ITI) and the coefficient of variation (CV, standard deviation/mean ITI) as well as the mean 

absolute asynchrony (|participant tap onset time – stimulus tone onset time|) and mean signed 

asynchrony (participant tap onset time – stimulus tone onset time) for participant taps that 

coincided with stimulus tones, indicated with circles in Fig 1. Synchronization precision was 

measured by the standard deviation of the signed asynchronies. Dependent variables for the 

cardiac signals included mean R-R intervals (normal heartbeat-to-heartbeat intervals, ms) and the 

root mean square of successive normal R-R interval differences (RMSSD, ms), a measure of 

short-term heart rate variability (Schaffer et al., 2014). Nonlinear cardiac measures for auto-RQA 

included Recurrence Rate and Determinism, described below (Data Analysis). 

Procedure 

Participants completed the one-hour in-person testing session between 09h and 17h. Upon arrival 

at the lab, participants provided written informed consent and then completed the audiometric 

screening. Next, a 5-minute baseline (silent) cardiac recording was conducted. Participants 

attached the heart rate monitor around their chest, sat in a comfortable chair with their legs 
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uncrossed, and completed written questionnaires with minimal body movement. Then, 

participants completed the synchronization task. Synchronization trials began with four 

woodblock tones (inter-tone interval = 545 ms) that served as the participants’ tempo cue for 

tapping the low-pitched tones of the rhythm. Then, the high-pitch tones sounded for one minute 

while the participants produced the low-pitch tones of the rhythm with their taps. Each 1-minute 

auditory rhythm was repeated five times with a silent pause of 10 seconds between each 

repetition, in order to give participants a brief rest between productions of the demanding 

complex rhythms. 

Participants were instructed to tap the low-pitched part of the rhythm using their 

dominant hand on a single key of the piano keyboard, so that their taps synchronized with the 

high-pitched part of the rhythm to form the intended rhythm ratio. Participants were first 

familiarized with each rhythm ratio by listening to the intended rhythm ratio in which both parts 

were presented (high tone and low tone) twice at a slow tempo (inter-tap interval = 1090 ms). 

Then participants completed two familiarization synchronization trials at the slower tempo 

(inter-tap interval = 1090 ms). Next, participants listened to the intended rhythm ratio twice at 

the experimental tempo (inter-tap interval = 545 ms) and they completed two 30-second practice 

synchronization trials at that tempo. 

Following the familiarization, participants completed the two rhythm conditions, each 

paired with Short or Long training. In the Short training condition, participants received no 

additional training trials and went on to complete five 1-minute experimental synchronization 

trials of the assigned rhythm. In the Long training condition, participants received two additional 

1-minute practice trials before they completed the five 1-minute experimental synchronization 

trials. After completing the first rhythm condition, participants had a short break to answer a 
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questionnaire about their handedness. Then the procedure was repeated for the second rhythm- 

training condition. Participants heard the high-pitched part of the rhythm as well as their own 

taps (low-pitch part of the rhythm) during all synchronization trials. At the end of the task, 

participants removed the heart rate monitor, and they were debriefed. 

Data Analysis 

Behavioral Data 

One-minute sequences of the inter-tap intervals (ITIs) and asynchrony measures were generated 

for each trial. Double taps (< 75 ms between two successive taps) were corrected by removing 

the second tap (approximately 3% of all taps). The first four and the last four taps in each trial 

were removed from the ITI time series, as they tend to reflect slower tempi and are least accurate 

(Mathias et al, 2020). The mean and standard deviation of the ITIs and asynchrony values for the 

remaining taps in each trial were then computed. Individual ITIs greater than three standard 

deviations from the mean were removed (.68 % of all ITIs), and then the mean ITI and CV were 

re-computed. Behavioral measures were computed in Matlab (version 9.8.0, 2020). 

Cardiac Data 

R-R interval time series were processed in Kubios HRV Premium (version 3.5.0). Artifacts were 

manually corrected in each participant’s time series using Kubios’s threshold-based artefact 

correction method whereby R-R interval values that are greater or smaller than a local R-R 

interval average by a defined threshold value are corrected via cubic spline interpolation 

(Tarvainen et al., 2017). The data were then segmented by task (5-minute baseline, 1-minute 

synchronization trials). Linear measures of mean R-R interval, RMSSD, and HF power were 

calculated for each trial. RMSSD was selected as the time domain measure of heart rate 
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variability as it tends to be minimally influenced by respiration and appropriate for short time 

series (Shaffer & Ginsberg, 2017; Camm et al., 1996). 

 Recurrence quantification analyses (RQA) were performed on the cardiac time series in 

MATLAB using the CRP Toolbox 5.22 (Marwan, 2022). Time series were converted into beats 

per minute (BPM), based on Wallot et al. (2013). For the cardiac data, each R-R value in the 

time series (indicating onset times) was replaced with a string of BPM values, then the BPM 

values were averaged using a non-overlapping moving window of 300 ms. The resultant time 

series served as input to the RQA. The result of this transformation is an upsampling of the time 

series that creates a consistent length time series across trials and participants (Wallot et al., 

2013). Time series with two or more sequential missing taps represent pauses in tapping which 

may artificially affect the nonlinear analyses. Therefore, recurrence quantification analyses were 

performed only on trials that had no sequential missing taps (40 participants met this criterion).  

 Auto-RQA was then applied to participants’ transformed and normalized cardiac time 

series to quantify repeating patterns. Three parameters are used in RQA to reconstruct the 

dynamics of the time series and generate the recurrence plots which are 2-dimensional 

symmetrical plots of binary (recurrent, non-recurrent) values. First, a time delay parameter was 

chosen at the trial level using the first local minimum of the average mutual information function 

(Webber & Marwan, 2015). The time delay values in the current study ranged from 1-12. 

Second, the embedding dimension was chosen at the trial level and was set as the first local 

minimum of False Nearest Neighbors (Webber & Marwan, 2015). Embedding dimensions 

ranged from 2-10. The median time delay and embedding dimension across all trials were then 

used for the analysis (time delay = 4, embedding dimension = 4) to prevent individual- and 

condition-level differences in the dependent variables from being artefacts of the parameters 
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varying across individuals and/or conditions (Webber & Marwan, 2015). Third, a radius value 

was chosen; the radius functions as a threshold value for determining whether two points in the 

phase space are recurrent. Radius values were set to 10% of the maximum diameter of the phase 

space (Webber & Marwan, 2015). 

The metrics used to quantify cardiac auto-recurrence were recurrence rate and 

determinism. Recurrence rate is the proportion of recurrent points relative to all (recurrent and 

non-recurrent) points in the recurrence plot. In auto-RQA, recurrence rate is a measure of how 

often the system returns to a previous state (Webber & Zbilut, 2005). Determinism is the 

proportion of recurrent points that form diagonal lines in the recurrence plot (excluding the line 

of identity in auto-recurrence) and is a measure of sequential predictability within a signal 

(Marwan et al., 2007; Nayak et al., 2018; Webber & Marwan, 2015). In the determinism 

analyses, the recurrence rate was fixed at 6% to distinguish determinism effects above and 

beyond recurrence rate. For both recurrence rate and determinism analyses, a Theiler window 

was fixed to the time delay (4) as cardiac data tends to show strong autocorrelation (Javorka et 

al., 2008) which can inflate RQA metrics (Webber & Marwan, 2015). 

Analyses of variance (ANOVA) on the behavioral and cardiac data were conducted in R 

Studio (version 4.2.0) with the ‘aov_car’ function from the ‘afex’ package. This function 

performs an analysis of variance using type 3 sums of squares. The Huynh-Feldt corrected p-

values are reported when sphericity assumptions were violated. Simple linear correlations tested 

behavior-cardiac correspondences, and Spearman's Rho correlations were used to investigate 

individual differences in cardiac dynamics; correlations were performed with the 'cor.test' 

function in R Studio. 
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Results 

Behavioral Synchronization 

Two-way ANOVAs (Rhythm X Training) were conducted on the mean absolute asynchronies 

and mean signed asynchronies (accuracy), and the standard deviation of the signed asynchronies 

(variability). There was a significant main effect of Rhythm on mean absolute asynchrony 

(F(1,40) = 5.422, p = .025, η2 G=.042). Mean absolute asynchronies were larger for the 3:2 

rhythm (mean = 74.446 ms) than the 2:3 rhythm (mean = 68.201 ms). There was also a 

significant main effect of Rhythm on mean signed asynchronies (F(1,40) = 4.88, p = .033, η2 

G=.051). As shown in Figure 2, participants had larger, more positive (lagging) signed 

asynchronies for the 3:2 rhythm than the 2:3 rhythm. Similarly, there was a significant main 

effect of Rhythm on the standard deviation of signed asynchronies (F(1,40) = 4.106, p = .049, η2 

G=.031). Also shown in Figure 2, the standard deviation of signed asynchronies was larger for 

the 3:2 rhythm than for the 2:3 rhythm. There were no other significant main effects or 

interactions for mean absolute asynchrony, mean signed asynchrony, or the standard deviation of 

signed asynchronies. In sum, participants showed more accurate, more precise tap 

synchronization for the 2:3 rhythm than for the 3:2 rhythm. 

[Figure 2 here] 

Similar two-way ANOVAs assessed the mean and variability of participants’ tapping 

rates (inter-tap intervals). There were no significant main effects or interactions of Rhythm and 

Training on mean inter-tap interval (ITI) (all p’s > .287), indicating participants tapped near the 

prescribed tapping rate for each Rhythm and Training condition. There were also no significant 

main effects or interactions of Rhythm and Training on tap CV (all p’s > .719). Years of musical 

training was generally not related to behavioral measures. A significant negative correlation was 
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observed, however, between years of musical training and tap CV for the 2:3 rhythm after Short 

Training (r = -.68, p < .001). The same correlations were not significant for the 2:3 rhythm after 

Long Training (r = -.34, p = .329) or for the 3:2 rhythm after either Short (r = -.13, p =. 604) or 

Long Training (r = .06, p = .801). 

Linear Cardiac Findings 

Participants’ cardiac measures were first compared during the Baseline (silent) condition (no 

tapping) and the synchronization tasks. A one-way ANOVA on RMSSD by Task (Baseline, 2:3 

rhythm, 3:2 rhythm) showed a significant main effect of Task (F(2,82) = 16.854, p <.001 Huyhn-

Feldt corrected, η2 G=.037). As expected, RMSSD values were significantly larger during the 

Baseline condition (mean = 40.849 ms) compared to the 2:3 condition (mean = 33.478 ms; t(41) 

= -4.032, p < .001, Cohen’s d = -.384) and the 3:2 condition (mean = 32.933 ms; t(41) = -4.621, 

p < .001, Cohen’s d = -.412), indicating greater heart rate variability during Baseline compared 

to the synchronization tasks. There was no significant difference between the 2:3 and 3:2 rhythm 

conditions (t(41) = .66, p = .513, Cohen’s d = .031). There were no significant effects of Task on 

mean R-R interval (F(2,82) = 1.19, p = .309, η2 G=.002). 

 Next, we tested for learning effects on the linear cardiac measures (mean R-R interval, 

RMSSD, HF power) during synchronization using 2 (Rhythm) x 2 (Training) ANOVAs. There 

were no significant main effects or interactions of Rhythm and Training on mean R-R interval or 

RMSSD (all p’s > .052). For HF power, there was a significant main effect of Rhythm (F(1,40) = 

5.473, p = .024, η2 G=.006). As shown in Figure 2, there was more HF power when participants 

synchronized with the 2.3 rhythm compared to the 3:2 rhythm. There were no other significant 

main effects or interactions on HF power. 

Cardiac-Behavior Correlations 
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Simple correlations were conducted to determine correspondences between participants’ linear 

synchronization variability (SD of signed asynchronies) and their linear cardiac variability 

(RMSSD). As shown in Figure 3, Long Training on the 3:2 rhythm resulted in a significant 

positive correlation between participants’ RMSSD and standard deviation of signed tap 

asynchronies (r = .43, p = .043): Participants who showed more variable cardiac activity showed 

less precise tap synchronization. Long Training on the 2:3 rhythm yielded the same 

correspondences between participants’ standard deviation of signed asynchronies and their 

RMSSD (r = .47, p = .042). The same correlations applied to the rhythms in the Short Training 

conditions were not significant (all p’s > .279). 

[Figure 3 here] 

   In sum, there were moderate positive correlations between participants’ cardiac 

variability and the precision and accuracy of their tapping for the rhythm on which they received 

Long Training; correlations were small and non-significant when participants received only 

Short Training. 

Recurrence Quantification Analysis 

Recurrence rates were first examined by Task (Baseline, 2:3 rhythm, 3:2 rhythm). There was a 

significant main effect of Task (F(2,78) = 3.387, p = .039, η2 G=.05). Figure 4 shows cardiac 

auto-recurrence plots from a single participant on a single trial. Cardiac recurrence was greater in 

the 2:3 rhythm condition (mean = 2.519 %) than in Baseline (1.52 %; t(39) = 2.244, p = .031, 

Cohen’s d = .53), but did not differ between the 3:2 rhythm and Baseline  (2.254%; t(39) = -

1.622, p = .113, Cohen’s d = -.36) or between the 2:3 and 3:2 rhythm condition (t(39) = .991, p = 

.328, Cohen’s d = .14). A similar 1-way ANOVA on cardiac determinism by Task (recurrence 

rate fixed to 6%) did not indicate a significant effect of Task (F(2,78) = .706, p = .497, η2 
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G=.002). Finally, we tested for rhythm and training effects using a 2 (Rhythm) x 2 (Training) 

ANOVA on cardiac recurrence rate. There were no significant main effects or interactions (all 

p’s > .321). The same 2 x 2 ANOVA on cardiac determinism indicated no significant main 

effects or interactions (all p’s > .11). 

[Figure 4 here] 

 To examine individual differences in cardiac dynamics, we first rank-ordered the 

recurrence and determinism values (smallest to largest) according to each participant’s 

performance in the Long Training condition (hypothesizing that individual differences should be 

strongest after training). As shown in the top of Figures 5 (recurrence rate) and 6 (determinism), 

large individual differences existed across the participants. We then used the same ordering (by 

Long Training) to plot the recurrence and determinism for each individual’s Short Training 

condition. If participants were consistent in their individual differences, then the ordering in the 

Short Training condition should increase from left to right, similar to the Long Training 

condition. Participants were indeed consistent in their amount of cardiac recurrence between the 

Short Training and Long Training conditions (Spearman’s rho = .43, p = .006). As shown in 

Figure 5, participants with low cardiac recurrence after Long Training had low cardiac 

recurrence after Short Training. Similarly, participants were consistent in their amount of cardiac 

determinism between the Short Training and Long Training conditions (Spearman's rho = .85, p 

< .001): As shown in Figure 6, participants with low cardiac determinism after Long Training 

had low cardiac recurrence after Short Training. Further analyses on recurrence rate and 

determinism documented that the different rhythm conditions (2:3, 3:2) showed the same pattern 

of results as the aggregate data in Figures 5 and 6. 
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[Figure 5 here] 

[Figure 6 here] 

Discussion 

Both rhythm complexity and short-term training influenced behavioral synchrony and cardiac 

activity during auditory-motor synchronization. Individuals with varying levels of musical 

experience synchronized with complex auditory rhythms (2:3 stimulus-to-tap duration ratio, 3:2 

stimulus-to-tap duration ratio) after a short or long training period while their cardiac activity 

was recorded. Behavioral analyses showed that synchronization was more accurate and precise 

for the 2:3 rhythm than the 3:2 rhythm. Training effects were seen in increased correspondence 

between synchronization variability (SD of signed asynchronies) and cardiac variability 

(RMSSD, a linear measure) after Long Training but not Short Training. Finally, nonlinear 

analyses of cardiac dynamics demonstrated the most recurrence during the 2:3 rhythm condition, 

and cardiac dynamics showed large consistencies in individual differences across training 

conditions. We review these effects below. 

Rhythm Effects 

Several behavioral findings indicated participants’ greater difficulty synchronizing with 3:2 

(stimulus:tap) rhythms than with 2:3 rhythms. The 2:3 and 3:2 rhythms were chosen in an effort 

to match complexity across rhythms (Hessler & Amazeen, 2014; Treffner & Turvey, 1993) and 

to keep motor demands similar by keeping the inter-tap interval constant across the rhythm 

conditions. The behavioral findings of more accurate, less variable synchronization with the 2:3 

rhythm than the 3:2 rhythm are consistent with nonlinear dynamical models of coupled 

oscillators in a driver-to-driven relationship (for example, the sounded auditory stimulus as the 

driver rhythm and the participant’s taps as driven by the auditory stimulus). Recent findings 
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indicate that greater regions of stable coupling exist between oscillators when the driver’s 

oscillator period is equal to 2 beats (as in the 2:3 stimulus:tap rhythm) compared to when the 

driver’s oscillator period is equal to 3 beats (as in the 3:2 rhythm) (Kim & Large, 2019). Thus, 

our findings constitute behavioral evidence from an auditory-motor synchronization task for the 

boosted importance of the driver rhythm in the stability of oscillator coupling (Kim & Large, 

2019). 

 Cardiac activity was also affected by rhythm complexity. Linear high-frequency heart 

rate variability was greater for the 2:3 rhythm, suggesting it was a less difficult task than the 3:2 

rhythm, based on findings that high-frequency HRV tends to be higher during easier cognitive 

tasks (Fairclough et al., 2005; Slade et al., 2021) and is interpreted as an indicator of 

parasympathetic activity (Shaffer et al., 2014). Nonlinear measures of cardiac recurrence were 

greatest when participants synchronized with the 2:3 rhythm compared to the silent baseline 

condition. This finding is consistent with previous research showing greater cardiac recurrence 

during synchronization with simple and complex rhythms compared to silent baseline (Wright & 

Palmer, 2023). These findings suggest that both linear and nonlinear measures of cardiac activity 

are sensitive to rhythmic changes during an auditory-motor synchronization task. 

Training Effects 

Short-term training effects were observed at the individual participant level and modulated both 

cardiac activity and tapping behavior. Heart rate variability (RMSSD) was greater when 

participants' synchronization performance was more variable but only after long training. The 

emergence of cardiac-behavior correspondences may require a longer timescale of training, 

especially for the complex rhythms used in this study, in order to detect individual differences. In 
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other words, longer training periods than the 3-minute intervals used in the current study may 

demonstrate larger training effects. 

Individual Differences   

Nonlinear analyses of cardiac activity during synchronization revealed consistency in 

individuals' cardiac dynamics across training conditions. Individuals who showed higher cardiac 

recurrence after long training also showed higher cardiac recurrence after short training. 

Similarly, individuals who showed higher cardiac determinism after long training also showed 

higher cardiac recurrence after short training. These individual differences indicate that cardiac 

activity is affected by auditory-motor synchronization in predictable ways across different 

amounts of training and across rhythms. Thus, these findings extend the individual differences in 

cardiac activity reported in other contexts (Picard et al., 2009; Watanabe et al., 2017). The 

nonlinear recurrence quantification analyses may be particularly well-suited to capture individual 

differences in cardiac activity during auditory-motor synchronization tasks. 

Most studies address long-term training by comparing musicians and non-musicians in 

auditory-motor synchronization tasks. The current study addresses short-term training in 

participants with a broad range of musical experiences. We observed an impact of amount of 

musical training only in its correlation with tapping variability (CV) and only in one Training 

condition (Short) with one rhythm (2:3); there were no other significant correlations between 

tapping behavior and musical training. One possibility is that short-term training effectively 

reduced the disparity between musicians and non-musicians in tapping variability for the easier 

(2:3) rhythm. We also observed large individual differences in consistency of cardiac rhythms in 

the same conditions. An open question is how long-term musical training and individual 

differences in cardiac activity may interact to influence auditory-motor synchronization. 
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Future Directions 

Effects of short-term training in auditory-motor synchrony tasks have been investigated with 

different experimental designs. The majority of studies that found group-level short-term training 

effects on musical auditory-motor tasks (Drake & Palmer, 2000; Madison et al., 2013; Tajima & 

Choshi, 2000; Tillmann et al., 2011) used a larger number of training trials than the current 

study, which may have provided participants with more time for training. Although participants 

in the current study only received two minutes of training in the Long training condition, this 

was comparable in amount to the extra trials in the studies cited above (220 extra practice taps 

than in the Short training condition). It may be that the individual differences observed here in 

cardiac activity, as well as individual differences in synchronization ability and/or rate of 

learning, overshadowed group differences in short-term training. Identifying individual factors 

that contribute to these differences is an important direction for future research to understand 

how behavior and physiology change with expertise and training. 

Conclusion 

Overall, rhythm complexity and short-term training influenced synchronization behavior and 

cardiac activity in individuals with a range of musical experience. Participants showed better 

synchronization with the 2:3 than the 3:2 stimulus-to-tap ratio rhythm; additionally, cardiac 

activity became more patterned during synchronization of the 2:3 rhythm compared to a silent 

baseline. Short-term training effects were largely observed in individual differences: More 

training resulted in correspondences between cardiac activity and behavior that were absent with 

less training. Finally, individuals showed consistent patterns of recurrent and predictable cardiac 

dynamics across training conditions. To our knowledge, this is the first study to demonstrate 

short-term training effects on both behavior and cardiac activity during a rhythmic auditory-
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motor synchronization task. Future studies should determine how much of short- and long-term 

training effects are impacted by the individual differences observed in cardiac rhythms. 
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Figure 1. Participants produced the low tones (gray x’s) to form the intended rhythm ratios in the 

synchronization task. Ovals denote tones that were analyzed in synchronization analyses. 
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Figure 2. Rhythm condition effects on behavioral synchrony and cardiac rhythms. Top = Mean 

signed asynchrony values by Rhythm condition; Middle = Standard deviation of signed 

asynchronies by Rhythm condition; Bottom = Mean high-frequency HRV power by Rhythm 

condition. 
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Figure 3. Correlations between mean heart rate variability (RMSSD, in ms) and mean tap 

synchronization variability (SD of signed asynchronies, in ms) in the Long Training condition. 

Top = 3:2 rhythm (r = .43, p = .043); Bottom = 2:3 rhythm (r = .47, p = .042). 
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Figure 4. Auto-recurrence plots for one participant’s sample trials of cardiac activity. Top = 2:3 

rhythm synchronization (recurrence rate = 2.37%); Middle = 3:2 synchronization (recurrence 

rate = 1.40%); Bottom = silent baseline (recurrence rate = 1.37%). 
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Figure 5. Individual differences in cardiac recurrence rates for Long (top) and Short (bottom) 

training conditions. Participant orderings from smallest to largest values in the Long Training (x-

axis) are maintained from the top graph to the bottom graph. 
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Figure 6. Individual differences in cardiac determinism for Long (top) and Short (bottom) 

training conditions. Participant orderings from smallest to largest values in the Long Training (x-

axis) are maintained from the top graph to the bottom graph. 
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General Discussion 

 Humans perceive and produce a wide range of auditory rhythms, ranging from very 

simple to rather complex rhythms. The ability to rhythmically coordinate our actions with sound 

and to produce auditory rhythms gives rise to human behaviours such as dance and music 

making. These behaviours are not only enjoyable and present across cultures (Mehr et al., 2018), 

but are thought have adaptive significance in social bonding (Savage et al., 2021), group 

cohesion signalling (Hagen & Bryant, 2003), and interpersonal cooperation (Kirschner & 

Tomasello, 2010). The goal of this dissertation was to identify behavioural and physiological 

factors in rhythmic action-sound coordination. This constitutes an important step in 

understanding how auditory-motor synchronisation is achieved. 

 There were a number of behavioural aims in this dissertation. First, this dissertation 

tested individuals’ consistency in rhythmic auditory sequence production. It was hypothesised 

that spontaneous production rates would increase and decrease in a manner consistent with 

circadian and cardiac activity influences, in line with previous research showing circadian and 

cardiac effects on rhythmic motor behaviour (Dosseville et al., 2002; Moussay et al., 2002). 

Second, this dissertation investigated synchronisation with simple and complex auditory 

rhythms. A direct comparison between perception and production of simple and complex 

rhythms was made; it was expected that synchronising with auditory rhythms would be more 

difficult than perceiving auditory rhythms, and effects would be further dependent on the 

complexity of the rhythm. This dissertation also tested the effects of short-term training (as 

opposed to long-term musical training) on synchronisation with complex auditory rhythms. The 

hypothesis was that synchronisation would be improved with short-term training for both 

musicians and non-musicians. 
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 This dissertation also tested how cardiac activity is related to auditory rhythm perception 

and synchronisation. A large body of literature has investigated the neurophysiological 

underpinnings of auditory-motor synchronisation; equally, many studies have examined how 

music listening and performance of musical excerpts affect peripheral physiology, often with a 

focus on emotion (for example, see Swaminathan & Schellenberg, 2014) or how musical tempo 

affects cardiac activity during perception (see Wright et al., 2022). This dissertation examined 

basic questions of how listening to and synchronising with auditory rhythms affects cardiac 

activity. Guided by nonlinear dynamical systems principles of coupled oscillators (Large et al., 

2015), a nonlinear analysis technique (recurrence quantification analysis, RQA) was used to 

capture cardiac dynamics while individuals listened to and produced rhythmic auditory 

sequences. It was hypothesised that cardiac dynamics would be differentially modulated by 

individual differences in auditory rhythm production, by perception and synchronisation, by the 

complexity of a rhythm, and by short-term experience/training with auditory rhythms. 

 The next section covers key findings and contributions of the experiments in this 

dissertation. Then, research themes will be highlighted and situated within the broader body of 

scientific literature. Finally, future research directions will be discussed with an eye to both basic 

and applied research contexts. 

Key Findings and Research Contributions 

Study 1: Circadian Rhythms and Music Performance 

Chapter 1 was grounded in research showing influences of time of day and individual 

differences in circadian rhythms on motor and cognitive performance. Trained pianists 

performed simple melodies at a comfortable rate across four testing sessions in a 12h day. 

Cardiac activity was measured during a silent baseline and during melody performance. Pianists 
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had slower and more variable natural performance rates in the morning compared to the 

afternoon and evening, yet remained relatively stable in their performance rate across times of 

day. Lower alertness and less musical training predicted slower production rates in the morning. 

Cardiac activity showed time of day and melody effects. Heart rate was faster during music 

performance, particularly when pianists performed unfamiliar melodies in the morning. 

Nonlinear measures of cardiac dynamics showed that cardiac activity was more predictable when 

pianists performed a familiar melody compared to an unfamiliar melody. Cardiac dynamics were 

also more predictable and changed more slowly during music performance compared to silent 

baseline in the morning. 

 The finding that auditory sequence production varies over the day, with mornings being 

slightly detrimental to performance, complement previous research showing optimal times of day 

for cognitive-motor performance (Edwards et al., 2007; Reilly et al., 2007; Van Vugt et al., 

2013). Pianists who had fewer years of formal musical training and were less alert in the 

morning showed the slowest production rates, suggesting that the effect of time of day also 

depends on individual difference factors. Previous research has shown time of day effects on 

skilled motor performance (Reilly et al., 2007; Van Vugt et al., 2013), but has not considered the 

role of individual differences such as expertise in these effects. The current findings thus extend 

previous research by considering the influence of time of day and individual differences on 

auditory rhythm production. 

These findings also contribute to previous research on individual differences in 

spontaneous production rates (Palmer et al., 2019; Scheurich et al., 2018; Tranchant et al., 2022; 

Zamm et al., 2018) by demonstrating that individual rates are relatively stable over the 12-hour 

day, independent of familiarity with a musical piece. Performances of familiar pieces, expected 
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to elicit smaller practice effects, showed the same patterns as performances of unfamiliar pieces. 

This supports the nonlinear dynamical systems perspective that there are attractor rates for motor 

production to which an individual will converge (Kelso, 1995) and that natural production rates 

are optimally efficient states (Bereket et al., 2005; Hoyt & Taylor, 1981; Nessler et al., 2009). 

Chapter 1 provides evidence that music performance impacts cardiac activity, with roles 

of familiarity and time of day. Given that all participants completed the same order of testing 

sessions (09h, 13h, 17h, 21h), it is difficult to disentangle whether the effects of music 

performance on cardiac activity were attributable to practice/experience effects, true time of day 

effects, or some combination of both. Faster heart rate (Fuentes-Garcia et al., 2019) and 

increased cardiac predictability and stability (Konvalinka et al., 2011; Schlenker et al., 2016) 

have been reported during more difficult behavioural tasks. The cardiac changes observed during 

music performance are consistent with an increase in physiological arousal when pianists 

performed an unfamiliar melody and when they performed at earlier times of day, possibly 

because it was a more difficult task under these conditions. Chapters 2 and 3 of this dissertation 

sought to disentangle effects of task difficulty and experience on cardiac dynamics during 

auditory rhythm performance. 

Finally, these cardiac findings show that the nonlinear analysis technique of recurrence 

quantification analysis can be used to capture changes in cardiac dynamics during an auditory-

motor synchronisation task, extending previous work that employed linear measures. This is 

significant because cardiac activity is known to show nonlinearities (Marwan et al., 2002). 

Employing an analysis technique that adequately captures this nonlinear behaviour helps to 

better “carve nature at its joints”, providing a more nuanced reflection of cardiac activity during 

behavioural tasks. 
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Study 2: Task and Rhythm Complexity Effects on Cardiac Dynamics 

 Chapter 2 of this dissertation built on Chapter 1 by focusing on task difficulty and testing 

the behavioural and cardiac effects of rhythm complexity. Chapter 2 also added an explicit test of 

perception and action on cardiac activity. Musically trained participants listened to and 

synchronised taps with a simple (1:2 duration ratio) and a complex (3:2 duration ratio) rhythm. 

In the perception condition, participants indicated whether they heard a missing tone in the 

rhythm; in the synchronisation condition, participants synchronised their taps (the “2” part of the 

1:2 and 3:2 rhythm) with the stimulus tones (the “1” part of the 1:2 rhythm and the “3” part of 

the 3:2 rhythm) to form the intended rhythms. Cardiac activity was measured during the auditory 

rhythm tasks and an initial silent baseline. First, participants perceived the simple and complex 

rhythms equally well; synchronisation was more accurate and less variable with the simple 

rhythm than the complex rhythm. Second, heart rate was slowest and most variable during 

rhythm perception, and participants with greater heart rate variability had worse synchronisation 

performance for the complex rhythm. Nonlinear cardiac activity was more predictable during 

perception than synchronisation. Finally, nonlinear cardiac activity was more patterned during 

complex rhythm perception compared to simple rhythm perception, and during simple rhythm 

synchronisation compared to complex rhythm synchronisation. 

 The behavioural findings in Chapter 2 align with previous research showing better 

production of (Dotov & Trainor, 2021; Essens & Povel, 1985; Snyder et al., 2006) and 

synchronisation with (Mathias et al., 2020) simple vs complex auditory rhythms. These findings 

support the nonlinear dynamical systems perspective on simple and complex rhythms (Large et 

al., 2015; Large & Snyder, 2009; Treffner & Turvey, 1993). They also provide evidence that 

differences in synchronisation between simple and complex rhythms are not driven by 
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differences in perception, as participants were equally good at perceiving missing tones in the 

simple and complex rhythms. This is important because it suggests that the difficulty of 

synchronising with complex auditory rhythms truly lies in the increased difficulty of coupling 

behaviour with sound, as predicted by coupled oscillator models in nonlinear dynamical systems 

theory. 

 The cardiac findings in Chapter 2 complement and extend those in Chapter 1 by showing 

that listening to and producing an auditory rhythm differentially affects cardiac activity. Chapter 

2 thus disentangles the effects of rhythm perception and production on cardiac activity, 

demonstrating that cardiac activity is affected by rhythm synchronisation above and beyond the 

mere presence of an auditory rhythm. Recurrence quantification analysis also demonstrated for 

the first time that cardiac dynamics are sensitive to both perception/synchronisation and rhythm 

complexity, demonstrating the usefulness of applying nonlinear analysis techniques to cardiac 

data. Previous research has tied neural oscillations during complex rhythm perception (Stupacher 

et al., 2017) and production (Mathias et al., 2020) to behavioural performance. The findings in 

Chapter 2 are a first step towards identifying a potential role for oscillatory peripheral 

physiological activity in rhythm perception and synchronisation. 

Study 3: Cardiac Dynamics with Short-term Training on Complex Rhythms 

 Chapter 3 investigated how short-term training on complex auditory rhythms affects 

behaviour and cardiac activity. Individuals with a range of musical experience synchronised 

finger taps with complex auditory rhythms (2:3 and 3:2 duration ratios). Participants received 

extra training on one rhythm (2 minutes), and their cardiac activity was recorded during a silent 

baseline as well as during the synchronisation task. Rhythm complexity effects were observed 

for synchronisation, with better synchronisation during the 2:3 rhythm than the 3:2 rhythm. 
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Overall heart rate variability was greater during silent baseline compared to rhythm 

synchronisation, and high-frequency heart rate variability was greater during the 2:3 rhythm than 

the 3:2 rhythm. After training, heart rate variability was also greater when participants showed 

more variable synchronisation with the rhythms. Nonlinear analyses showed more cardiac 

recurrence during the 2:3 rhythm synchronisation compared to silent baseline, but not compared 

to the 3:2 rhythm; large, stable individual differences were observed in cardiac recurrence and 

predictability that transcended training and rhythm. 

 Many studies address the role of long-term musical training on auditory-motor 

synchronisation, demonstrating that trained musicians tend to show more accurate, less variable 

synchronisation (Krause et al., 2010; Repp & Doggett, 2007; Scheurich et al., 2020), particularly 

with complex rhythms (Chen et al., 2008b). The general absence of a short-term training effect in 

Chapter 3 was somewhat surprising as previous research has indicated that both musicians and 

non-musicians can improve on auditory-motor synchronisation tasks after short practice (Drake 

& Palmer, 2000; Madison et al., 2013; Tajima & Choshi, 2000; Tillman et al., 2011). 

Nonetheless, testing short-term training effects on behaviour is an important contribution to 

understanding the timescale of practice and training effects. 

 In complement to Chapter 2, Chapter 3 refined our understanding of rhythm complexity 

effects on behaviour and cardiac activity. Whereas Chapter 2 compared a simple and a complex 

rhythm, Chapter 3 compared two complex rhythms (2:3 and 3:2). Better synchronisation with the 

2:3 than the 3:2 rhythm was slightly unexpected, but is evidence in favour of recent nonlinear 

dynamical systems models of stable coupling between and a driver (stimulus) and a driven 

(human tapper) oscillator (Kim & Large, 2019). Similar to Chapter 2, there was greater heart rate 

variability and cardiac recurrence during the rhythm that was performed better (2:3). These 
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behavioural and cardiac findings show that it is useful to conceptualise rhythm complexity in 

auditory-motor synchronisation tasks as a continuum rather than as discrete ‘simple’ or 

‘complex’ rhythms. This conceptualisation fits with research showing that respiratory-motor 

coupling is easier for some complex rhythms (5:2) compared to others (5:3) after short-term 

training (Hessler & Amazeen, 2014), and is important to rhythm stimulus choices in future work. 

 Finally, RQA captured large individual differences in cardiac recurrence and 

predictability. Linear measures of cardiac activity have shown individual differences in response 

to musical tempo (Watanabe et al., 2017). This is the first evidence using a nonlinear analysis 

technique to show that individuals differ in their cardiac response during an auditory-motor 

synchronisation task and that individual responses are predictable and stable across rhythms and 

training. Greater recurrence and predictability in behaviour have been tied to less flexible, less 

temporally-adaptive behaviour (Schmit et al., 2005), particularly for non-musicians’ compared to 

musicians’ tapping behaviours (Scheurich et al., 2018; Tranchant et al., 2022). The finding that 

some individuals are consistently high in cardiac recurrence and predictability while others are 

consistently low raises an important question as to how these individual differences in cardiac 

dynamics contribute to auditory-motor synchronisation. Effects of long-term musical training 

and cardiac dynamics on auditory rhythm production have not been tested together. The findings 

in Chapter 3 suggest an additional source of individual variability in auditory-motor 

synchronisation that should be considered. 

Research Themes and Key Concepts 

Task Difficulty and Rhythm Complexity in Cardiac Dynamics 

Task difficulty and rhythm complexity effects on behaviour and cardiac dynamics were 

central components of the three studies in this dissertation. Before delving into the ways in which 
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this dissertation addressed task difficulty and rhythm complexity, consideration of the overlap 

between task difficulty and rhythm complexity is due. 

This dissertation took a nonlinear dynamical systems perspective on rhythm complexity: 

Simple rhythms were defined as rhythms whose duration ratios form small integer ratios (ex. 

1:2) whereas complex rhythms were rhythms whose duration ratios form large, non-integer ratios 

(ex. 3:2) (Large et al., 2015; Large & Snyder, 2009; Treffner & Turvey, 1993). For simple 

rhythms, stable temporal coupling is more likely to occur than for complex rhythms, which 

predicts better synchronisation with simple rhythms (Large et al., 2015). Implicit in this 

definition of rhythm complexity is task difficulty: Certain rhythms should be easier to 

synchronise with than others. It is thus a difficult task to distinguish separate influences of task 

difficulty from purely rhythm complexity and timing influences on behaviour and cardiac 

activity. One way to do this in the context of this dissertation is to consider how changes in 

cardiac activity were consistent with previous research on task difficulty. 

There is some evidence of a shift towards greater sympathetic activation during more 

difficult cognitive and behavioural tasks (Richter et al., 2008), which corresponds to the “fight or 

flight” system: heart rate tends to increase (Fairclough et al., 2005) and heart rate variability 

tends to decrease (Fuentes-Garcia, 2019; Slade et al., 2020). Nonlinear measures of cardiac 

activity show that more difficult behavioural tasks (Konvalinka et al., 2011) and postures 

(Schlenker et al., 2016) produce more predictable, slowly changing cardiac activity. Chapter 1 

provided evidence that auditory sequence production may be more difficult in the morning, and 

heart rate was faster and cardiac dynamics were more predictable for unfamiliar melodies in the 

morning. Similarly, cardiac dynamics were more predictable and stable during music 

performance compared to baseline rest in the morning. These changes in cardiac activity are 
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consistent with the effect of music performance on cardiac dynamics being a result of task 

difficulty. However, given the complex nature of music as an acoustic stimulus, it seems unlikely 

that task difficulty could provide a full explanation of cardiac changes during music perception 

and production. 

Chapters 2 and 3 of this dissertation built upon the findings of Chapter 1 by painting a 

more nuanced picture of the factors that may be driving cardiac changes during music perception 

and production. They did this by isolating a single acoustic feature, rhythm, and testing the 

effects of rhythm complexity on cardiac activity. Chapters 2 and 3 showed that more complex 

rhythms reduced synchronisation accuracy and precision, demonstrating that more complex 

rhythms are more difficult to synchronise with than simple rhythms, but cardiac activity was not 

modulated by rhythm complexity and synchronisation in a manner uniquely consistent with task 

difficulty. In contrast to the more difficult task in Chapter 1 (music performance) resulting in 

greater cardiac predictability and stability, Chapters 2 and 3 showed that cardiac activity was 

more predictable during rhythm perception than production, and more recurrent during simpler 

rhythm synchronisation than more complex rhythm synchronisation. Additionally, individuals 

with poorer synchronisation performance had greater heart rate variability. 

Together, these findings suggest that task difficulty cannot fully explain the effects of an 

auditory-motor synchronisation task on cardiac dynamics. It is of course possible that the solo 

music performance task in Chapter 1 was more difficult than the rhythm synchronisation tasks in 

Chapters 2 and 3. This is however unlikely in the current context, as participants in Chapter 1 

were trained musicians and melodies were very simple. Another possibility is that auditory 

rhythm and motor timing have a role in cardiac effects during perception and synchronisation. 

Notably, the unfamiliar melody in Chapter 1 showed lower tapping variance compared to the 
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familiar melody, likely due to its fully isochronous structure. Across all three experiments in this 

dissertation, the auditory rhythm conditions that contained the least variability resulted in more 

recurrent and/or predictable cardiac dynamics. The complex interplay of how task difficulty and 

rhythmic structural complexity interact is highlighted by the set of studies in this dissertation and 

deserves further research attention. 

Individual Differences 

Temporal Stability in Behaviour and Cardiac Dynamics. A number of individual 

differences related to behaviour and cardiac activity were investigated and observed in this 

dissertation. Individual differences contributing to perception and action have a long history of 

investigation in psychology and provide a refined picture of human capacities (Revelle et al., 

2011). In line with previous literature (McAuley et al., 2006; Palmer et al., 2019; Scheurich et 

al., 2018; Tranchant et al., 2022; Zamm et al., 2018), large, stable individual differences in 

spontaneous production rates were observed in Chapter 1 of this dissertation. Stability in 

behavioural individual differences are important to identify as individual differences in natural 

frequencies have been shown to shape how we coordinate actions with others (Nessler et al., 

2009; Richardson et al., 2007; Tranchant et al., 2022; Zamm et al., 2016). Importantly, action 

coordination extends beyond music performance; basic communicatory behaviours like 

conversational speech require precise temporal coordination between partners, and moving in 

time with others affects perceptions of group cohesion (Fessler et al., 2016; Lakens, 2010; 

Lakens & Stel, 2011) and feelings of social affiliation (Hove & Risen, 2009). Identifying stable 

individual differences in natural production rates may ultimately help researchers understand 

variability in complex group behaviours. 
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Chapter 3 also revealed for the first time stable individual differences in nonlinear cardiac 

dynamics in an auditory-motor synchronisation context. These findings complement previous 

work showing large individual differences in respiratory rate during music performance 

(Sakaguchi et al., 2016). Individuals tend to show stable individual differences in neural activity 

over time, and these individual differences are related to performance on perceptual tasks 

(Charest et al., 2014). Stable individual differences in linear cardiac measures during behavioural 

tasks have been observed for a long time (for example, see Manuck et al., 1989), and age-related 

changes in nonlinear cardiac dynamics, as captured by RQA, have also been reported (Giuliani et 

al., 1998). Fluctuations in cardiac activity have been tied to neural activity patterns during music 

perception (Zhao & Kuhl, 2020). Identifying stable individual differences in cardiac dynamics is 

an important step towards understanding whether and how cardiac dynamics are related to 

auditory rhythm perception and production. 

Circadian Rhythms. Chapter 1 tested circadian and time of day effects on spontaneous 

production rates and cardiac activity. Behavioural research paradigms that seek to tie circadian 

rhythms to behaviour and physiology present a particular challenge as daily confounding factors 

can prevent sound conclusions about circadian effects. In order to conclude that there is a true 

circadian effect on something, influences on circadian rhythms such as light-dark cycles, food, 

and social demands must be removed so that daily external factors can be uncoupled from true 

circadian rhythm effects (Golombek & Rosenstein, 2010). This is best achieved by placing 

individuals in constant conditions, meaning no light-dark cycle or predictable social or meal 

schedules that may entrain or mask an individual’s rhythm (Golombek & Rosenstein, 2010). 

Constant condition experiments with humans are extremely costly in time and financial resources 

as they require specialised laboratory set-ups in which individuals spend many days. The study 
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in Chapter 1 follows established methods in the literature for investigating circadian and time of 

day effects in humans while compromising on the ability to draw a definitive conclusion about 

circadian effects on human behaviour. Rather, behavioural findings from Chapter 1 provide 

evidence that auditory production rates vary by time of day, which is inherently but not 

exclusively linked to circadian rhythms, and that individuals’ natural production rates are 

relatively stable in the face of time of day and sleep influences. 

Nonlinear Analysis Tools Applied to Cardiac Activity during Auditory-Motor Tasks 

 Cardiac data has an inherent time component – heartbeats unfold in time. Linear methods 

for analysing cardiac data, such as heart rate and heart rate variability, are aggregate snapshots of 

the cardiac signal, meaning they fail to capture the dynamic nature of cardiac activity. How 

heartbeats unfold in time contains important information about cardiac functioning (Marwan et 

al., 2002). The three studies contained in this dissertation applied a nonlinear analysis technique 

(recurrence quantification analysis) to cardiac data. 

As noted in the General Introduction, nonlinear analysis approaches are well-suited to 

time series data for a number of reasons. They do not make assumptions about stationarity, they 

capture change or drift over time, and they are typically robust to outlier values (Webber & 

Marwan, 2015). For studying physiological systems, nonlinear analysis techniques also provide 

an accurate reflection of the type of system at hand. Research has demonstrated that biological 

activity can be modelled using nonlinear dynamical systems theory, from small-scale cellular 

activity to higher-level cognition and perception (Guastello et al., 2009). Cardiac activity is 

equally known to show nonlinear behaviour (Webber & Zbilut, 2005; Zbilut et al., 2002); the 

exclusive application of linear techniques to cardiac data limits information as to how the cardiac 

system behaves in a given context. The application of nonlinear analysis methods to cardiac 
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activity in this dissertation is thus a step towards providing richer information on cardiac 

dynamics during behavioural tasks. 

 Recurrence quantification analysis (RQA), a nonlinear analysis technique applied to 

cardiac dynamics in this dissertation, was compared with traditional linear measures such as 

mean R-R intervals (heart rate) and heart rate variability (SDNN, RMSSD). RQA describes and 

quantifies the nonlinear repeating patterns in a signal of interest. There is a variety of nonlinear 

analysis techniques that have been used to capture cardiac activity during music performance 

(Chanwimalueang et al., 2017; Sebastiani et al., 2022; Williamon et al., 2013). RQA is a 

particularly strong approach for analysing cardiac signals during auditory rhythm perception and 

production tasks because these tasks involve periodic, oscillatory stimuli and behaviour, meaning 

there is strong repetition in the signals in time. This repetition in time is lost in linear cardiac 

metrics but accounted for in RQA. Chapter 1 showed that RQA was sensitive to differences in 

cardiac activity between performance of two simple melodies as well as time of day when a 

traditional measure of heart rate variability (SDNN) was not. Chapter 2 demonstrated that RQA 

was sensitive to rhythm complexity effects when linear cardiac measures of heart rate (mean R-R 

interval) and heart rate variability (RMSSD) were not. This dissertation showed that RQA is a 

useful analysis tool that is sensitive to different factors affecting cardiac activity during rhythm 

perception and production tasks. 

Future Directions 

Cross-Recurrence Quantification Analysis 

 Cross-RQA is an extension of auto-RQA that captures shared dynamics between two 

different time series and is particularly useful in characterising temporal coupling between two 

time series (Shockley, 2005). One potential use of cross-RQA is to capture the temporal coupling 
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between physiological signals within an individual during auditory rhythm perception and 

production. The heart is embedded within a larger physiological system, meaning it receives 

input from various other physiological processes. One major connection is between the heart and 

the respiratory system: The respiratory sinus arrhythmia is the key example of this coupling, 

where changes in respiration rate and depth result in changes in heart rate and heart rate 

variability (Berntson et al., 1993; Marwan et al., 2013). RQA has previously shown that 

respiration rate affects cardio-respiratory coupling (Censi et al., 2002; Marwan et al., 2013). 

During perception, rhythm tempo can affect respiration rate (Mütze et al., 2018) and cardio-

respiratory coupling (Wright et al., 2022); during production, trained musicians show individual 

differences in respiration rate changes when performing music (Sakaguchi et al., 2016). Given 

the close coupling between cardiac activity and respiration, future research should (1) 

incorporate measures of respiration rate to identify how auditory rhythms influence respiration 

and (2) utilize cross-RQA to capture the degree of coupling between the heart and respiration to 

understand interactions between cardiac and respiratory activity. This will provide a fuller 

picture of physiological effects of auditory rhythms.  

 A second future application of cross-RQA is to investigate how physiological signals 

couple to behavior during auditory-motor synchronization tasks. The research in this dissertation 

showed that there are changes in cardiac activity during rhythm perception and synchronization; 

cross-RQA can extend these findings when applied to tapping and cardiac time series to identify 

whether temporal coupling between rhythms and cardiac activity occurs. This would be a step 

towards further testing entrainment between physiological oscillators and behavior, as predicted 

by nonlinear dynamical systems theory, and how this supports auditory-motor synchronization. 
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Interpersonal Physiological Synchrony 

 Another novel direction for future research is to examine behavioural and physiological 

synchrony between individuals during music production. Nonlinear dynamical systems theory 

holds that oscillatory physiological activity underpins behavioural synchrony when oscillators 

entrain to one another; this has been investigated for neural activity where synchronised tappers 

show coupling in neural oscillations (Scheurich et al., 2019). RQA has also been used to 

demonstrate coupling between individuals’ cardiac activity during live theatre performances 

(Ardizzi et al., 2020) and between musicians during live music performance (Høffding et al., 

2023), but these studies have yet to link interpersonal cardiac coupling to behavioural synchrony. 

Future research could investigate interpersonal cardiac coupling during joint simple and complex 

rhythm performances. 

General Conclusion 

This dissertation provides evidence that auditory rhythms influence cardiac dynamics. 

Individual difference factors as well as rhythm complexity and practice/training were shown to 

have roles in how cardiac dynamics are affected during rhythm perception and production. These 

findings contribute to our understanding of how oscillatory peripheral physiology may influence 

successful auditory-motor synchronisation. 
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