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Abstract

Automatic guitar transcription has been an active research area for decades. Existing
work in this area has mostly focused on estimating the onset, offset, and pitch of note
events. Another important aspect of expressive guitar performance, the use of playing
techniques, is less studied. The system presented in this thesis is designed to recognize
five common playing techniques performed on the electric guitar: bend, vibrato, hammer-
on, pull-off, and slide.

The system has three steps. For a given audio track, the monophony detector extracts
all the monophonic segments, where most playing technique instances occur. Then, the
note-event separator splits monophonic audio segments into note events. Finally,
machine learning techniques are used to classify their playing techniques using various
audio features such as pitch, spectral centroid, and mel-frequency cepstral coefficients.

The presented system is trained and evaluated on a novel dataset of 379 synthesized
guitar solo recordings, mostly in the genre of rock and metal, generated using publicly
available Guitar Pro files collected from tablature websites. As an extended guitar
tablature format, a Guitar Pro file encodes information about every note event in a guitar
track, such as the timestamp, pitch, fingering position, and playing techniques. Using
the Guitar Pro software, a realistic guitar audio track can be generated from the Guitar
Pro file. Its corresponding annotation can also be obtained by programmatically
decoding the Guitar Pro file. The end-to-end testing experiments showed that the
presented system can effectively recognize the five playing techniques in synthesized
guitar solos, with per-class f1 scores ranging from 71.7% to 89.2%.
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Résumé

La transcription automatique de la guitare est un domaine de recherche actif depuis des
décennies. Les travaux existants dans ce domaine se sont principalement concentrés sur
l’estimation du début, du décalage et de la hauteur des événements de note. Un autre
aspect important de la performance expressive à la guitare, l’utilisation de techniques de
jeu, est moins étudié. Le système présenté dans cette thèse est conçu pour reconnaı̂tre
cinq techniques de jeu courantes exécutées sur la guitare électrique : le bend, le vibrato,
le hammer-on, le pull-off et le slide.

Le système comporte trois étapes. Pour une piste audio donnée, le détecteur de
monophonie extrait tous les segments monophoniques, où se produisent la plupart des
instances de techniques de jeu. Ensuite, le séparateur d’événements de note divise les
segments audios monophoniques en événements de note. Enfin, des techniques
d’apprentissage automatique sont utilisées pour classer leurs techniques de jeu à l’aide
de diverses caractéristiques audio telles que la hauteur, le centroı̈de spectral et les
coefficients cepstraux de fréquence mel.

Le système présenté est formé et évalué à partir d’un nouvel ensemble de données
de 379 enregistrements synthétisés de solos de guitare, principalement dans le genre du
rock et du métal, générés à l’aide de fichiers Guitar Pro accessibles au public et recueillis
à partir de sites Web de tablature. En tant que format étendu de tablature de guitare,
un fichier Guitar Pro encode des informations sur chaque événement de note, telles que
l’horodatage, la hauteur, la position des doigts et les techniques de jeu, dans une piste
de guitare. À l’aide du logiciel Guitar Pro, une piste audio de guitare réaliste peut être
générée à partir du fichier Guitar Pro. Son annotation correspondante peut également
être obtenue en décodant par programmation le fichier Guitar Pro. Les expériences de
test de bout en bout ont montré que le système présenté peut reconnaı̂tre efficacement les
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cinq techniques de jeu dans les solos de guitare synthétisés, avec des scores f1 par classe
allant de 71,7 % à 89,2 %.
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Chapter 1

Introduction

With previous work as early as Moorer (1977), automatic guitar transcription has been
an area of active research for decades (Barbancho, Klapuri, et al. 2012; Wiggins and Kim
2019). In Klapuri (2006), the objective of automatic music transcription (AMT) is defined
as to discover the “recipe” of a music signal. With modern computational methods, there
has been a significant amount of automatic guitar transcription research, most of which
focuses on extracting basic score-related parameters (i.e., pitch, onset time, and offset
time). However, these parameters are only part of the “recipe”. Another important aspect
of expressive guitar performance, the use of playing techniques such as bend, vibrato, and
slide, is less studied.

In a music performance, the performer often shapes the music with their personal
expressions by imposing various playing techniques. These playing techniques,
sometimes referred to as instrumental gestures (Traube, Depalle, and Wanderley 2003) or
guitar articulations (Reboursière et al. 2012), contribute to expressivity via subtle
variation of parameters such as pitch, dynamics, and timbre.

Although the score-related parameters returned by most transcription systems are
adequate in most cases, being able to recognize various playing techniques would be a
valuable supplement to the transcription system. Automatic recognition of the playing
techniques can be considered a step towards a more complete music transcription
system, which not only estimates the pitches played, but also unveils the specific
techniques needed to reproduce the exact sound.

This introductory chapter first introduces the guitar playing techniques studied in this
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thesis. Then, a brief introduction to the Guitar Pro file format is given. Finally, I present
an overview of the project and the organization of this thesis.

1.1 Introduction to Guitar Playing Techniques

In this thesis, I focus on five common playing techniques performed on the electric
guitar: bend, vibrato, hammer-on, pull-off, and slide. These techniques are typically applied
by the guitarist as an expressive gesture after the string is plucked. Conceptually, these
techniques can be divided into two categories based on their characteristics.

Bend and vibrato make up the first category, as they typically occur within an
individual note event and modulate the fundamental frequency in a gradual and
continuous manner. Bend is performed by stretching the string with the fretting hand.
The fretting hand applies a force perpendicular to the fretboard, pushing the string away
from its equilibrium position and continuously increasing the string tension. This results
in a gradual increase in the pitch. Similarly, vibrato is performed by repeatedly bending
the string up and down with the fretting hand in a short period of time. It modulates the
string tension and in turn causes fluctuations in the pitch.

Hammer-on, pull-off, and slide form the other category, as they typically occur in
the transition between two consecutive note events and introduce a sudden frequency
change. Hammer-on refers to pressing the vibrating string down on a higher fret with
another finger of the fretting hand while the previous note is still sounding. As the string,
driven by the second finger, lands on the higher fret, the vibrating length of the string
decreases instantly, causing a sudden rise in the pitch. Pull-off, the opposite process of
hammer-on, is typically performed by pressing the non-vibrating part of the string down
on a lower fret with another finger of the fretting hand, and then pulling the fretting finger
off the string, while the previous note is still sounding. As the string leaves the higher
fret, the vibrating length of the string increases instantly, causing a sudden drop in the
pitch. Slide refers to sliding the fretting finger along the string to a higher or lower fret
while the previous note is still sounding. The fretting finger can slide across one or more
frets, producing a discrete and incremental change of pitch.

Although these playing techniques are fundamentally different, when played on a
guitar, they can sound similar to each other. This is especially true for bend, hammer-
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on, pull-off, and slide, which all produce a “smooth” variation of pitch. However, an
experienced guitar player can often distinguish between these playing techniques by ear.
In this thesis, I explore whether the machine, when trained on a large enough set of data,
can also distinguish between these playing techniques, using audio features.

1.2 Introduction to the Guitar Pro File

The task of playing technique classification aims to identify playing techniques in music
audio signals. To attempt this task using supervised machine learning, it is necessary to
obtain a ground-truth dataset of guitar audio recordings with playing technique
annotations. Manually annotating guitar recordings with respect to the playing
techniques requires a significant amount of time and domain knowledge. This motivates
the compilation of a synthetic dataset using publicly available Guitar Pro1 files.

As an extended guitar tablature format, a Guitar Pro file encodes information about
every note event in a guitar track, such as the timestamp, pitch, fingering position, and
playing techniques. Using the Guitar Pro software, a realistic guitar audio track can be
generated from the Guitar Pro file. Its corresponding ground-truth annotation can also be
obtained by programmatically decoding the Guitar Pro file. The ground-truth generation
process will be detailed in section 3.1.

1.3 Project Overview

Although the guitar playing techniques are mostly universal to all genres. In this thesis,
I focus on the genre of rock and metal. The reasons are twofold: First, these two genres
are the most common in publicly available Guitar Pro files.2 Second, the electric guitar
part in these two genres tends to include large sections of guitar solo, which are typically
expressive and make heavy use of playing techniques.

The guitar part in a typical rock or metal song can be divided into two parts: the

1. https://www.guitarpro.com/
2. As of June 29, 2022, rock and metal are the top two genres on ultimate-guitar.com in terms of the

number of available tablatures. Rock has 85,754 Guitar Pro tablatures and metal has 66,123 Guitar Pro
tablatures.
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rhythm guitar and the lead guitar. The rhythm guitar typically plays polyphonic chord
sequences, emphasizing the chord progression of the song. The lead guitar, on the other
hand, plays mostly monophonic sections including the guitar solos and riffs. It is the
lead guitar that typically makes heavy use of the various playing techniques to add
emotions and expressivity to the song. An example is shown in figure 1.1, which
demonstrates a two-track guitar tablature sampled from the song Back in Black by
AC/DC. The upper track is playing the monophonic solo (the lead guitar part) with
many instances of bend (denoted by arrowed curves) and slide (denoted by slashes),
while the lower track is playing the polyphonic accompaniment (the rhythm guitar
part). Therefore, for the purpose of extracting the playing techniques, it is desirable to
separate the monophonic part from the polyphonic part and focus on analyzing the
former. The scope of this thesis is thus limited to classifying playing techniques in
monophonic guitar solo recordings. This motivates the first component in the proposed
playing technique classification system: the monophony detector.

As presented in section 1.1, the playing techniques studied in this thesis either occur
within a single note event or span across two consecutive note events. Therefore, it is
essential to locate the note events in the audio signal under analysis. This helps locate the
regions of interest (i.e., the signal regions that could potentially correspond to a playing
technique). This motivates the second component of the system: the note-event separator.

Finally, the regions of interest need to be classified as one of the playing technique
classes. This motivates the last component of the system: the playing technique classifier.

The workflow is summarized as follows: 1. Collect the Guitar Pro files; 2. Generate
annotations and synthesized audio; 3. Extract monophonic audio segments; 4. Identify
the regions of interest; 5. Classify the regions of interest into playing technique classes.

1.4 Thesis Organization

This thesis spans a total of five chapters. Chapter 1 gives a brief introduction to the guitar
playing techniques, the Guitar Pro file, and the playing technique classification system
presented in this thesis. Chapter 2 first reviews previous works in the field of instrumental
gesture acquisition. Then, it presents some background on audio features and machine
learning classifiers. Chapter 3 describes the ground-truth generation strategy and the
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Figure 1.1: A segment of a two-track Guitar Pro file corresponding to the guitar solo

section of the song Back in Black. The figure shows a total of four staves (from top to

bottom): Standard music notation for the lead guitar track; Guitar tablature for the lead

guitar track; Standard music notation for the rhythm guitar track; Guitar tablature for the

rhythm guitar track. The arrowed curves on the tablature indicate instances of the bend

technique. The two slashes by the side of the numbers on the tablature indicate instances

of the slide technique.

design of each component in the playing technique classification system presented in this
thesis. Chapter 4 presents the experiments conducted for developing and evaluating the
playing technique classification system. This includes experiments for each individual
component as well as an end-to-end integration test for evaluating the performance of
the system as a whole. Chapter 5 summarizes the contributions and concludes this work.
It also discusses directions for future work.
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Chapter 2

Literature Review

This thesis focuses on recognizing guitar playing techniques in audio signals. Such
study is situated in the domain of instrumental gesture acquisition. This chapter reviews
relevant works in the research area of instrumental gesture acquisition, including guitar
fingering estimation, gestural parameter estimation, and playing technique
classification. Additionally, it gives a brief introduction to audio features and machine
learning classifiers, which are key elements of the methodology used in this thesis.

2.1 Instrumental Gesture Acquisition

Instrumental gesture acquisition is the task of estimating the performer’s physical
interaction with the instrument for producing or modifying the musical sound.
According to the typology established in Cadoz (1988), the instrumental gestures can be
divided into three categories: exciter gestures, modification gestures, and selection
gestures. The guitar is particularly interesting in this context because its gestures often
span across multiple categories. Plucking the string is both a exciter gesture and a
modification gesture, because the plucking action not only produces the vibration, but
also affects the produced timbre. The guitarist’s fingering on the fretboard is both a
modification gesture and a selection gesture, because most pitch can be played at
multiple fingering positions on the fretboard, and different fingering positions would
produce different timbres (Traube, Depalle, and Wanderley 2003).

Over the years, the guitar has been studied extensively for its instrumental gestures.
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For guitars in general, the fretting hand fingering estimation has been a popular task
in automatic transcriptions (Paleari et al. 2008; Barbancho, Klapuri, et al. 2012; Yazawa
et al. 2013). Besides fingering estimation, early works in this area mostly focused on
analyzing the plucking action of the classical guitar and estimating the parameters that
describe the interaction between the string and the plucking hand (Orio 1999; Traube
and Smith 2000, 2001). The electric guitar, however, is mostly studied for the expression
techniques performed by the fretting hand (Kehling et al. 2014; Su, Yu, and Yang 2014;
Chen, Su, and Yang 2015; Su et al. 2019). This might be due to the fact that the electric
guitar is usually played with a plastic pick and is often followed by a chain of audio effects
that diminish the subtle timbre nuances produced by different plucking techniques. The
same set of expression techniques has been studied in bass guitar recordings. Moreover,
the bass guitar has also been studied for its typical plucking technique known as slap

(Abeßer, Lukashevich, and Schuller 2010).
In this section, I review previous works on instrumental gesture acquisition.

Specifically, I present them in three segments: fingering estimation, gestural parameter
estimation, and playing technique classification. Gestural parameter estimation aims to
estimate the value of a continuous output variable representing a certain gestural
parameter such as the plucking point position or bowing angle. This output variable is a
real-value, such as an integer or floating point value. Playing technique classification
aims to distinguish between different predefined gesture classes such as bend, vibrato,
and slide. Its output variable is a discrete categorical value representing a certain gesture
class. In this thesis, the term ”playing techniques” refers to the predefined gesture
classes. Fingering estimation is put into an individual segment because the output of
fingering estimation can either be a numerical variable or a categorical variable,
depending on the specific instrument under study. For the guitar, since the strings and
frets form a discrete, grid-like structure, the estimated fingering is represented by a
string number and a fret number, and they are categorical in nature.

2.1.1 Automatic transcription and fingering estimation

Automatic music transcription (AMT) is the task of automatically converting music
audio signals to music notations. Ideally, a complete AMT system should cover a series
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of subtasks, including pitch estimation, onset and offset detection, instrument
recognition, beat and rhythm tracking, interpretation of expressive timing and
dynamics, and score typesetting (Benetos et al. 2019). Developing such a comprehensive
AMT system is a difficult task. Most existing AMT systems thus focus on a subset or
certain aspects of these tasks. To date, most AMT research focuses on producing the
basic descriptive note-level parameters (i.e., pitch, onset time, and offset time) as the
output. For a comprehensive review on the AMT topic, please refer to Klapuri (2006),
Benetos et al. (2012, 2013), and Benetos et al. (2019).

Although AMT does not seem immediately relevant to the gestural acquisition task
attempted in this thesis, the two research areas find their overlap on the topic of
automatic guitar transcription. In fact, guitar fingering estimation and automatic
transcription are often approached together in existing guitar transcription systems. One
reason for this overlap is the string ambiguity of the guitar. That is, different fingerings
(i.e., string-fret combinations) can produce the same pitch. Since these fingerings often
produce subtle but important timbre nuances, guitar transcription systems try to
discover not only what notes are played, but also how they are played. Despite the fact
that fingering position on the guitar is considered an instrumental gesture, most existing
work have been approaching the fingering estimation in an automatic transcription
context. Therefore, in this section, I present existing automatic guitar transcription
systems with a focus on fingering estimation.

Video-based guitar transcription

Before presenting audio analysis-based transcription systems, I first review several
video-based systems. These systems, although not transcribing musical audio, represent
significant research efforts in leveraging computer vision methods for guitar fingering
estimation. Burns and Wanderley (2006) used a camera mounted on the guitar to capture
a top-down view of the fretting hand. In their proposed system, the finger positions are
tracked via the circular Hough transform. The system assumes that fingertips generally
have a quasi-circular shape and can thus be tracked by tracing circles with a certain
radius in the image. By matching the finger positions with a precomputed string-fret
grid, the system detects and recognizes the left-hand gesture in realtime.

Kerdvibulvech and Saito (2007b) proposed using stereo cameras to capture the guitar
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performance in a three-dimensional space. This makes it easier to distinguish whether
the finger is pressing the string or not. Moreover, they argued that the assumption about
the semicircular shape of the fingertips does not hold from some camera angles and that
the color contrast between the fingertip and the rest of the finger is not strong enough.
To achieve more robust finger tracking, Kerdvibulvech and Saito (2007b) attached
colored markers to the player’s fingertips. Although this approach proved effective, the
colored markers are sometimes obtrusive, making it unnatural for real-world guitar
playing (Kerdvibulvech and Saito 2007a). In their later works, Kerdvibulvech and Saito
(2007a, 2008) removed the colored markers and switched to using artificial neural
networks and the semicircle template model for locating the fingertips.

More recently, Goldstein and Moses (2018) also used a camera mounted on the guitar
to tackle the polyphonic transcription problem. However, instead of tracking the fingers,
they used the camera to directly capture the string vibrations. It was proposed that the
string vibrations can be recovered from the silent video by analyzing the intensity change
at the string pixels. A novel string detection algorithm was developed to locate the string
in the video as well as to obtain the string pixel signals. For each string, the string pixel
signal is segmented in time using its spectrogram. The pitch is then computed for each
segment. Knowing the pitch, the fret position can be calculated for each string.

Audio-based guitar transcription

Compared with their video-based counterparts, audio-based guitar transcription systems
have the advantage of being non-obtrusive. They operate by analyzing the sound signal
only, so they do not rely on any video equipment or extra accessories attached to the
guitar.

Barbancho, Klapuri, et al. (2012) proposed a guitar transcription algorithm that
identifies the chords as well as the corresponding fingerings on the fretboard. The
system starts with a multiple fundamental frequency estimator, which measures the
strength of each candidate frequency in an audio frame. The chord and fingering
configuration (CFC) is then estimated by two trained internal models: the acoustic
model and the musicological model. The acoustic model describes the probability of
observing a certain fundamental frequency combination given a certain CFC. The
musicological model describes the probability of switching between different CFCs.



2. Literature Review 10

These two internal models are formulated as a hidden Markov model (HMM) using
CFCs as its hidden states. The output of this system is selected from a preconstructed
corpus of CFCs.

Barbancho, Tardon, et al. (2012) estimated the pitches and string-fret combinations by
analyzing the inharmonicity relations between the fundamentals and the partials.
Inharmonicity refers to the difference between the observed frequency partials and the
ideal harmonic series. It depends on the radius, tension, and length of the string
(Barbancho, Tardon, et al. 2012). For single notes, the candidate pitches are estimated
using the magnitude spectrum. Then the inharmonicity coefficients are computed for all
possible string-fret combinations of all candidate pitches. The best candidate is found by
using a voting scheme based on matching the partials. For chords with less than four
notes (i.e., open chords), the chord transcription is based on estimating the notes and
iteratively removing estimated fundamental frequencies and partials from the spectrum.
Since the performance of this algorithm degrades as the chord complexity grows, for
chords with more than four notes (i.e., barred chords), a different procedure based on
chord templates is used. Four finger configuration templates are used as chord
templates to address two major and two minor chord positions. For each chord played,
all possible string-fret combinations are considered, and the template producing the
largest number of identified partials is the transcription result.

Burlet and Fujinaga (2013) developed a web-based guitar transcription framework
named Robotaba, which takes an audio file as input and generates a digital guitar
tablature as output. This framework consists of three modules: the polyphonic
transcription module, the guitar tablature arrangement module, and the guitar tablature
engraving module. The polyphonic transcription module is based on the
general-purpose polyphonic transcription algorithm proposed in Zhou and Reiss (2008),
which estimates the onset and pitch for each note present in the polyphonic signal. The
guitar tablature arrangement module features a novel algorithm named A-star-guitar,
which arranges the note tracking results into a meaningful guitar tablature. A-star-guitar
extended the A* path-finding algorithm (Hart, Nilsson, and Raphael 1968) for
application in the specific transcription task. The search for an optimal sequence of
string-fret combinations is modeled by a path-finding problem through a weighted
directed graph. Specifically, each candidate string-fret combination, determined by the
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estimated pitch and user-specified guitar configurations, is represented by a vertex.
Vertices corresponding to a pair of adjacent notes or chords are connected by an edge,
whose weight is determined by the biomechanical difficulty of transitioning between the
two fingerings. As a result, the generated tablature arrangement is the optimal sequence
of string-fret combinations considering the biomechanical difficulty and user-specified
configurations such as tuning and capo position. It is worth noting that, the optimal
tablature arrangement found may not be the same as the arrangement used when
recording the original audio file. Most notes in the guitar’s pitch range can be played at
multiple positions on the fretboard. The same note played at different positions have the
same pitch but different timbres. Therefore, to produce a desired timber, the performer
may choose not to use the biomechanically optimal arrangement as assumed by the
system.

Weighted directed graph was also used in several other audio-based guitar
transcription systems for estimating the optimal fingering configurations. Yazawa
et al. (2013) pointed out that traditional multipitch estimation algorithms such as latent
harmonic allocation (LHA) (Yoshii and Goto 2012) often estimate unrealistic pitch
combinations which can hardly be played due to the physical constraints of the guitar
and human hand. To address this issue, Yazawa et al. (2013) proposed a transcription
system where all fingering candidates pass through a validation process based on the
physical constraints. A fingering configuration is deemed valid if the finger count is less
than or equal to four and the finger spread is less than or equal to four frets. To
determine the optimal fingering configurations, all valid fingering configurations are
enumerated, and three constraints are added to suppress the unrealistic results
estimated by LHA. First, the pitch combination produced by the optimal fingering
configuration must maximize the likelihood estimated by LHA. Second, configuration
changes may happen only at onset times. Third, the same fingering configuration must
last for a certain duration. These three constraints are formulated into a weighted
directed graph. The vertices are candidate fingering configurations at each time frame.
An edge exists between two vertices only when the last two constraints are satisfied. The
weight assigned to each edge is the sum of the likelihood corresponding to the
associated vertices. Using dynamic programming, the longest path found in this graph
corresponds to the optimal fingering sequence. This transcription system works for both
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chords and single notes and does not require any training data.
The system developed in Yazawa et al. (2013) was further extended in Yazawa,

Itoyama, and Okuno (2014), where the player’s proficiency is taken into account. It was
pointed out that in guitar practicing, experts care more about reproducing the piece as
accurately as possible, while beginners may struggle to learn a piece and lose motivation
because its difficulty level exceeds their proficiency. To solve this problem, the player’s
proficiency is quantified as a user parameter and added to the transcription system. The
proficiency parameter controls the trade-off between the accuracy of reproducing the
acoustic signal and the difficulty of performing the corresponding fingering. In Yazawa
et al. (2013), the weight of the edges in the acyclic graph are defined only by acoustical
reproducibility. While in Yazawa, Itoyama, and Okuno (2014), the weights are
determined by a weighted sum (controlled by the proficiency parameter) of acoustical
reproduction accuracy and fingering difficulty.

More recently, TabCNN was proposed in Wiggins and Kim (2019). This system is based
on a deep convolutional neural network (CNN) structure. The CNN model learns a direct
mapping from audio to tablature and makes use of the physical constraints and timbre
nuances between different strings simultaneously. The raw audio data are transformed
into image representations using constant-Q transform before entering the CNN model.
The string-fret combinations are predicted on the frame level as the output.

Multimodal guitar transcription

There have also been multimodal guitar transcription systems, which draw information
from both the video and the audio of the guitar performance to attempt accurate
transcriptions. Paleari et al. (2008) proposed a system that combines computer vision
and audio analysis, aimed to tackle the string ambiguity of guitar transcription. Given
the video of the guitar performance, the fretboard is detected by analyzing the first
frame. After obtaining the corner point coordinates of the fretboard, each fret on the
fretboard is estimated and tracked using a series of computer vision algorithms. A
string-fret grid is constructed by separating the fretboard region. The hand position is
detected by counting the number of skin-colored pixels in the string-fret grid. In the
audio domain, the pitch, onset, and duration of each note are extracted and written into
a Musical Instrument Digital Interface (MIDI) file. Combining the hand position and the
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pitch, the string-fret combination is estimated for each note.
Similarly, Hrybyk and Kim (2010) presented a multimodal approach for guitar chord

transcription. In the audio domain, the chord scale (e.g., C major) is estimated using
Specmurt Analysis (Saito et al. 2008), which suppresses the overtones in the
log-frequency spectrum and reveals the fundamental frequencies in the chord. The
specific chord voicing (i.e., open, barred, or inverted) is determined via video analysis.
Since the camera is not mounted on the guitar, the fretboard could face the camera in
many different orientations and angles. Homography rectification is thus applied to the
image to adjust the observation angle as needed. The fretboard images are decomposed
into eigen-chords using principal component analysis (PCA). Each input video frame is
projected into the chord-space and the closest centroid determines its voicing.

Use of augmented guitars

Hexaphonic guitar has also been used to simplify guitar transcription and fingering
estimation. One major challenge in guitar transcription is the polyphonic nature of the
instrument. When multiple strings are plucked simultaneously, their audio signals are
mixed and captured by microphones (for acoustic guitars) or pick-ups (for electric
guitars). The mixture of multiple notes makes it difficult to separate the fundamental
frequencies from their harmonics. This challenge can be sidestepped by using a special
type of electric guitar named hexaphonic guitar. A standard guitar can be transformed
into a hexaphonic guitar by installing the hexaphonic pick-ups. Unlike regular pick-ups,
which mix the signals from all vibrating strings, hexaphonic pick-ups capture the signal
from each string separately. In other words, hexaphonic guitars output six signals,
corresponding to the six strings, instead of one mixed signal. This allows the signal from
each string to be analyzed individually, changing the polyphonic transcription problem
into a monophonic one.

O’Grady and Rickard (2009) built the necessary equipment for transforming a regular
electric guitar into a hexaphonic one and proposed a hexaphonic guitar transcription
algorithm based on non-negative matrix factorization (NMF). Similarly, Angulo,
Giraldo, and Ramirez (2016) modified a regular acoustic guitar into a hexaphonic guitar
using piezoelectric sensors and went on to transcribe the musical events in the guitar
performance into visual forms instead of musical scores. With hexaphonic guitars, the
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string ambiguity issue in guitar transcription is avoided, as each string is captured
separately. It also makes it easier to go one step further and derive the string-fret
combinations. Once the string is known, only one fret on that string is capable of
producing the given pitch.

In summary, on the topic of automatic guitar transcription and fingering estimation,
most works focus on audio-based approaches. Video-based and multimodal approaches,
accurate as they can be, have serious limitations due to their dependence and strict
requirements on the video. Hexaphonic guitars simplify the transcription problem but
the required special equipment makes them less practical for general guitar players to
use.

2.1.2 Gestural parameter estimation

Apart from fingering estimation, some existing instrumental gesture acquisition research
aimed to estimate low-level gestural parameters represented by a continuous output
variable. Previous audio-based works in this category mainly focused on two
instruments: the violin and the guitar.

Perez-Carrillo and Wanderley (2012, 2015) and Perez-Carrillo (2016) focused on
estimating violin bowing gestures from audio signals obtained using a vibration
transducer at the violin bridge. The proposed systems are based on machine learning
models, which learn a mapping from various audio features to gestural parameters
captured by sensors. Specifically, Perez-Carrillo and Wanderley (2012) used random
forests and multilayer perceptrons trained on a set of spectral features to predict the
played string, bowing force, bowing velocity, bowing point position, and bow tilt.
Perez-Carrillo and Wanderley (2015), improving upon their previous system, used a
series of HMMs with observations parameterized as multivariate Gaussian mixtures.
The features include the fundamental frequency, aperiodicity coefficient, delta of
aperiodicity, delta of mean energy, and five energy coefficients representing the energy
distribution over the frequency bands. The models learn from these features to predict
the played string, bowing force, bowing velocity, and bowing point position.
Perez-Carrillo (2016) proposed a CNN-based system that predicts the played string,
bowing velocity, bowing force, and the bowing point position. Auditory energygrams
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are extracted from the audio signals as features, and time series of the bowing gesture
parameters measured with sensors are used as prediction targets. The CNN model is
trained to predict a value for each gestural parameter from each frame.

The earliest attempts to retrieve guitar gestural information from audio recordings
focused on estimating gestural parameters such as the plucking position (Traube and
Smith 2000, 2001; Traube, Depalle, and Wanderley 2003; Traube and Depalle 2003), finger-
string inclination (Orio 1999), plucking finger tension (Orio 1999), and their relationships
with the produced timbre.

Orio (1999) studied the timbre differences produced by different plucking techniques
on a classical nylon-string guitar. All sound samples analyzed were of the same pitch
and loudness. The plucking position, finger-string inclination, hand-string inclination,
and degree of finger relaxation were varied. Through time-frequency analysis, Orio
(1999) found that the degree of inharmonicity is significantly relevant to the plucking
position along the string. Harmonic amplitudes were found to be affected by all
plucking variations, and the attack time of the fundamental varied with different
hand-string inclination. Additionally, Orio (1999) extracted the irregularity and center of
gravity of the spectrum. The center of gravity of the spectrum was found to be related to
all plucking variations, while the irregularity of the spectrum was found to be relevant
only to plucking positions.

Traube and Smith (2000, 2001) focused on estimating the fingering point and
plucking point positions along the string using signal processing techniques. The
plucking point is estimated by comparing the magnitude spectrum of the recorded note
to the magnitude spectra corresponding to various plucking point positions computed
for an ideal string. The estimated plucking point is the one that minimizes the difference
between the observed spectrum and the ideal spectrum. The plucking point information,
along with the tuning and detected pitch, is then used to estimate the fingering point.
This plucking point estimation task was further explored in Traube and Depalle (2003),
where an autocorrelation-based method is used to give an initial approximation. The
comb filter delay for the physical model is then adjusted iteratively to fit the observed
spectral envelop. This method was also presented in Traube, Depalle, and Wanderley
(2003), where the plucking point estimation task was put in the context of instrumental
gestures and their relationships with verbal timbre descriptors and timbral features.
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More recently, Scherrer (2013) developed a system for automatically extracting the
angle of release from monophonic classical guitar solo recordings. The angle of release
refers to the angle between the string vibration and the guitar top plate after the
plucking finger leaves the string. To extract this gestural parameter, the string vibration
is modeled in both the horizontal axis and the vertical axis, using two digital waveguide
models. The physical models are then incorporated with a signal model to analyze the
velocity signal measured at the bridge of the guitar. Through acoustical analysis, an
equation is established for the relationship between the angle of release and the
frequency, damping, amplitudes, and phases of the velocity signal measured at the
bridge. These signal parameters are retrieved via a series of signal processing
techniques. This estimation system was evaluated on a set of synthetic guitar plucks
produced with various angles of release and plucking point positions.

2.1.3 Playing technique classification

In playing technique classification, the objective is to predict a class label that represents
a certain playing technique (i.e., a predefined gesture class). This task typically requires
a large number of sound samples of the instrument, each represented by a set of audio
features designed to capture the characteristics of the playing techniques. The
classification is performed either by rule-based heuristics or machine learning classifiers
trained to separate these samples in the feature space.

Piano playing technique classification

The classification-based gesture acquisition has been successfully applied to various
instruments. In piano music, the pedaling techniques have been studied extensively in
Liang, Fazekas, and Sandler (2018a, 2018b, 2019). Specifically, they focused on the
sustain pedal, which prolongs the sound by lifting the dampers off the strings. By
controlling the timing and depth of pedal press, the performer can subtly alter the
timbre and duration of the notes. Liang, Fazekas, and Sandler (2018b) proposed a system
for detecting the legato pedaling technique. The system starts with an NMF-based
transcription performed on the piano recording, which converts the audio signal into a
list of note events with estimated pitch, onset time, and offset time. Using the
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transcription results, the partial frequencies of each note are estimated based on the
fundamental frequencies and inharmonicity coefficients. The residual, where the effect
of sympathetic resonance resides, is obtained by subtracting the sinusoidal components
(i.e., fundamentals and partials) from the original signal. As the legato pedaling onset
can only occur between the onsets of two successive note events, the residual signal is
segmented at note onset points. The resulting segments are considered candidates for
the onset of a legato pedaling instance. Finally, legato pedaling detection is modeled as a
segment-level binary classification task. A logistic regression binary classifier is trained
on segment-level features such as the maximum root-mean-square energy of partials
corresponding to the unstruck strings as determined by the preceding notes. The same
strategy was followed by Liang, Fazekas, and Sandler (2019), who used CNN classifiers
to distinguish between the presence or absence of the pedaling technique on each audio
frame. The authors generated a dataset of MIDI-synthesized piano recordings, where
each piece was synthesized twice, once with sustain pedal technique and once without
sustain pedal technique. The pedaled version and unpedaled version audio signals
generated from the same MIDI file are used as a training pair, with the mel-spectrograms
as the audio feature. One CNN classifier is trained on pedal onset frames and another
CNN classifier is trained on the pedaled frames. The two classifiers jointly predict
whether an audio frame is played with the pedaling technique.

Snare drum playing technique classification

Besides piano, the snare drum has also been studied for playing technique classification.
Tindale et al. (2004) developed a classification system that distinguishes between seven
playing techniques: rimshot, brush stroke, center, near-center, halfway, near-edge, and edge.
These techniques are performed by hitting the drum with different types of drumsticks
or at different positions along the radius of the snare drum, producing subtle differences
in the resulting timbre. The system first extracts various temporal and spectral features
from the recorded drum audio and then uses them to train an artificial neural network
model for classification. This system was further improved in Tindale et al. (2005), which
explored four types of classifiers: ZeroR, Gaussian mixture model (GMM), k-nearest
neighbors (k-NN), and artificial neural network. Besides the snare drum, the system was
also experimented for classifying four types of tabla strokes: Na stroke, Ta stroke, Tu
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stroke, and Ga stroke.
A different set of snare drum playing techniques were studied by Wu and Lerch

(2016). As opposed to the timbral nuances produced by single drum strokes, they
focused on classifying four rudimentary techniques: strike, buzz roll, flam, and drag. The
difference between these techniques lies in the presence, velocity and timing of grace
notes preceding or succeeding the main stroke. Instead of classifying the single-source
drum strokes as done in Tindale et al. (2004) and Tindale et al. (2005), Wu and Lerch
(2016) aimed to detect the snare drum rudiments from polyphonic mixtures. The
proposed system uses a support vector machine (SVM) classifier trained on the
activation function and timbral features extracted from the training samples. The system
proved effective in the evaluation performed on a dataset of real-world polyphonic
mixtures.

Violin playing technique classification

As one of the most popular stringed instruments, the violin is known for its musical
expressiveness. Barbancho et al. (2009) developed a violin transcription system that not
only returns the pitch of the note events but also detects various playing techniques
employed by the performer. The violin playing techniques covered by this system
include détaché, pizzicato, tremolo, spiccato, and flageolett-töne. The authors employed a set
of temporal and spectral parameters to characterize the playing techniques. Based on the
parameterization, the detection system was developed and then evaluated on a dataset
of real-world violin recordings featuring different violins played by different musicians
with different recording qualities. The results suggest that the playing technique
characteristics tend to vary depending on the specific performer and instrument, and it
is difficult to define generalized conditions to predict the playing techniques from audio
recordings. Su, Lin, and Yang (2014) expanded the scope of playing technique detection
from the violin to four bowed string instruments: violin, viola, cello, and contrabass.
Nine types of playing techniques are studied: flageolet, normal, non-vibrato, pizzicato,

sordino, spiccato, sul ponticello, sul tasto, and tremolo. A number of temporal, spectral,
cepstral, and phase-derived features were extracted from single note recordings and
used to train SVM classifiers. The results suggest that sparse-coded magnitude and
phase-derived spectral features are more effective than conventional timbre features in
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playing technique classification.

Guitar Playing technique classification

Abeßer, Lukashevich, and Schuller (2010) is considered the pioneer in bass guitar
playing technique classification. The authors focused on classifying ten playing
techniques from bass guitar audio recordings. The playing techniques were divided into
plucking styles and expression styles, which were then classified in two separate
classification tasks. Plucking styles include fingerstyle, picked, muted, slap-pluck, and
slap-thumb, which are generally executed by the plucking hand of the performer.
Expression styles include normal, vibrato, bending, harmonics, and dead note, which are
generally executed by the fretting hand of the performer. Abeßer, Lukashevich, and
Schuller (2010) pointed out that plucking styles mainly affect the attack period of the
note event. The short attack transient observed in bass guitar recordings motivated the
authors to use the modified covariance method for estimating the power spectral
density. The envelope function is then calculated by tracking the first twenty partials
within the estimated power spectral density. From the envelope functions, a set of audio
features are extracted, which characterizes the sound properties related to each playing
technique, such as spectral crest factor for measuring the percussiveness and spectral
centroid for measuring the brightness. All time-dependent features are aggregated over
the attack and decay period of the note. A series of machine learning classifier models,
including SVM, GMM, naive Bayes, and k-NN, were trained and evaluated on a dataset
consisting of isolated single note recordings. The results suggest that models trained on
audio features designed specifically for this task outperformed the baseline models
trained on general-purpose mel-frequency cepstral coefficient (MFCC) features in both
plucking style classification and expression style classification.

The topic proposed in Abeßer, Lukashevich, and Schuller (2010) was further
explored in Abeßer, Dittmar, and Schuller (2011), which attempted the same play
technique detection problem on the bass guitar with a specific focus on the expression
styles that modulate the fundamental frequency (F0), namely slide, vibrato, and bending.
In the proposed system, the F0 curve corresponding to each single note recording is first
segmented temporally into monotonical F0 segments. The number of segments and the
frequency modulation range are used as part of the features. The other features include
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the autocorrelation of the F0 curve, the first non-zero local maximum of the
autocorrelation function, which indicates the modulation frequency of the F0 curve, and
the segment-level modulation range and modulation frequency, representing the
temporal progression of the features. These segment-level features are aggregated over
the duration of each note using statistic descriptors. On the note level, the F0 difference
between the beginning and the end of the note is calculated as a feature. The
combination of the above features is used to train SVM classifiers that distinguish
between the playing technique classes on two different levels. First, an SVM classifier is
trained to distinguish between the three playing technique classes and a normal class
where no playing techniques are performed. Then, another SVM classifier is trained to
perform more precise classification, where each playing technique class is further
divided into two subclasses. The classifier aims to distinguish between slide up, slide

down, fast vibrato, slow vibrato, semi-tone bending, quarter-tone bending, and the normal class.
The models were trained and evaluated on an extension of the dataset compiled in
Abeßer, Lukashevich, and Schuller (2010). The evaluation results suggest that the
extracted task-specific features can effectively capture the playing technique
characteristics on the subclass level. .

Both being plucked string instruments, the guitar shares many common playing
techniques with the bass guitar. Özaslan et al. (2010) focused on analyzing two types of
left-hand articulations performed on the nylon-string guitar: legato and appoggiatura. The
proposed system starts with a plucking detection module, which performs onset
detection within the guitar audio signal. The onset detection threshold is empirically set
to detect right-hand attacks but ignore the left-hand attacks. The audio segment between
two successive onsets is then analyzed individually by a pitch detection module. If a
change of pitch is detected within the segment, the segment is considered a candidate
for articulations. The appoggiaturas are distinguished heuristically from legatos using
the duration of the signal segment before the change of pitch. A similar strategy was
employed in Özaslan and Arcos (2010). Instead of legato and appoggiatura, this paper
focused on detecting legato and glissando. In the last stage, a classifier is used in place of
the simplistic heuristics used in Özaslan et al. (2010). Specifically, the classifier is trained
on three audio features: amplitude, aperiodicity, and pitch. This system was tested on
both nylon strings and metallic strings and achieved satisfactory results in classifying
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legato and glissando.
Reboursière et al. (2012) proposed a rule-based playing technique detection system

for the classical guitar. The playing techniques covered by this system include
hammer-on, pull-off, slide, bend, harmonic, and palm muting. Based on whether the attack is
performed by the left hand (fretting hand) or the right hand (plucking hand), the playing
techniques are divided into two categories. Left-hand techniques include bend, slide,
hammer-on, and pull-off. Right-hand techniques include normal, muted, and harmonic.
The authors pointed out that, in the signal envelope of plucked notes, a trough can often
be observed before the attack because the plucking finger temporarily stops the existing
vibration when it touches the string. When a note is activated by a left-hand technique,
the legato attack does not stop the vibration and there is thus no significant change in the
amplitude. This property is utilized by the proposed system for distinguishing notes
activated using left-hand techniques and those activated using right-hand techniques.
To distinguish between various left-hand techniques, the proposed system uses a series
of parameters related to the shape of the pitch curve, including the pitch time derivative,
the interval of the note transition, and the maximal pitch slope. As for the right-hand
techniques, the energy envelope slope at the attack is calculated for detecting muted
notes based on the observation that muted notes exhibit logarithmic increase in the slope
over time while normal notes stay relatively flat. Harmonics are detected with a
combination of time-domain and spectral-domain parameters extracted from the attack
period. Time-domain parameters are the attack duration (i.e., for how long the attack
waveform remains positive) and the ratio between maximum amplitude and minimum
amplitude during the attack period. The spectral-domain parameter is the difference in
dB between the amplitude of the first harmonic and the amplitude of the subharmonic.
Empirical thresholds were found for each parameter, and the detection rules operate by
thresholding the parameters associated with each playing technique. For evaluating this
rule-based playing technique detection system, Reboursière et al. (2012) constructed a
dataset of audio samples recorded using a hexaphonic classical guitar. Onset detection
and pitch detection are performed prior to applying the detection rules. The detection
rules involve imposing empirical thresholds to the parameters discussed above. The
results suggest that the system can successfully detect the playing techniques present in
the guitar recordings.
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For detecting playing techniques from electric guitar recordings, Kehling et al. (2014)
proposed a comprehensive transcription system, which estimates both score-related
parameters (i.e., pitch, onset, and offset) and instrument-specific parameters (i.e.,
string-fret combination and playing techniques). Following the previous work of
Abeßer, Lukashevich, and Schuller (2010) and Abeßer, Dittmar, and Schuller (2011), the
system proposed in Kehling et al. (2014) distinguishes between three plucking styles:
finger style, picked, and muted and five expression styles: bending, slide, vibrato, harmonics,
and dead note from isolated clean guitar signals. The system starts with onset detection
and multipitch detection for estimating the score-related parameters. Based on the pitch
estimation results, a partial tracking process is employed, which not only enables offset
detection but also allows for correction of pitch estimation results. Each pair of onset and
offset marks the region for a single note event and the input signal is cut into single-note
segments accordingly. Frame-level audio features are computed and aggregated over the
course of each note using statistic descriptors. A multiclass SVM classifier is then trained
on these features to classify single-note segments into different playing technique
classes. The classifier output and transcription results are postprocessed by plausibility
filters designed based on guitar-specific domain knowledge. The plausibility filters
eliminate improbable playing techniques usage determined by the classifier. This system
was evaluated on the IDMT Guitar dataset, a guitar audio dataset annotated with
respect to both score-related parameters and instrument-specific parameters. The results
suggest that the system proposed in Kehling et al. (2014) can estimate both the
score-related parameters and instrument-specific parameters at a high accuracy. In the
guitar playing technique detection area, Kehling et al. (2014) is the first to attempt this
task on both monophonic and polyphonic guitar recordings. Although expression styles
used in chord playing are relatively limited, all plucking styles may be employed to play
chords. Detecting chord plucking styles is a valuable addition to the playing technique
detection task.

Different types of audio features and their effectiveness in classifying guitar playing
techniques were studied in Su, Yu, and Yang (2014). In this comparative study, the
authors extracted audio features from various representations including the magnitude
spectrum, cepstrum, and phase derivatives. The three categories of features were
processed by sparse coding, a feature learning technique that uses a precomputed
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dictionary learned from training data to encode prominent information of audio
representations. To evaluate the effectiveness of these features, the authors constructed
the Guitar Playing Techniques (GPT) dataset, which consists of single-note electric guitar
recordings with the seven types of playing techniques (normal, muting, vibrato,
hammer-on, pull-off, sliding, and bending) studied in their paper. It is worth noting that the
GPT dataset consists of not only clean-tone recordings, but also the same audio clips
rendered in different guitar tones. The guitar tones differ in their levels of guitar effects
such as distortion, reverb, and chorus. Introducing guitar effects improves the dataset
quality because the audio clips now sound more similar to those found in real-world
guitar performances. In their experiments, Su, Yu, and Yang (2014) trained SVM
classifiers on different sets of features extracted from the GPT dataset and compared
their performance with each other and with baseline models trained on features used in
Abeßer, Lukashevich, and Schuller (2010) and general-purpose MFCC features. The
authors found that sparse-coded features generally perform better than their
non-sparse-coded counterparts, especially for low-level features. Moreover, features
extracted from the cepstra and phase derivatives proved to be particularly helpful for
distinguishing between similar expression styles such as bending, hammer-on, and
pull-off.

While previous works mostly focused on detecting playing techniques from
single-note recordings, Chen, Su, and Yang (2015) aimed to perform this task on entire
tracks of guitar solo recordings. Specifically, they focused on detecting bend, vibrato, slide,
hammer-on, and pull-off. The authors pointed out that the task of recognizing these
frequency-modulating playing techniques can be modeled as a pattern recognition task
on the melody contour. Therefore, the system developed in Chen, Su, and Yang (2015)
starts with extracting melody contour from the entire track of guitar solo recording. It
then selects candidate regions from the melody contour using algorithms designed
specifically for each type of playing technique. Although the candidate selection
algorithms can separate the playing technique candidate regions from the non-playing
technique regions, they cannot successfully distinguish between regions corresponding
to the five playing techniques. To classify between the playing technique classes, three
sets of audio features are extracted from the candidate regions and SVM classifiers are
trained to produce the final output. The audio features span across timbral features,
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pitch-related features, and MFCC features. Five binary SVM classifiers, one for each
playing technique class, are trained on isolated electric guitar solo recordings. The
system was evaluated on isolated guitar tracks and guitar tracks with accompaniment.
The results suggest that candidate selection followed by SVM classifiers can effectively
detect the playing techniques from isolated guitar solo tracks. Exceptionally, when
detecting the bending technique from accompanied guitar tracks, using only the
candidate selection algorithms would yield better results than using the whole system.
The authors attributed this to the fact that the SVM classifier was trained on
unaccompanied guitar tracks and did not generalize well to the guitar tracks with
accompaniment.

Extending the system proposed in Chen, Su, and Yang (2015), Su et al. (2019)
developed an automatic guitar transcription system named technique-embedded note

tracking (TENT). This system is capable of detecting playing techniques and transcribing
note events in monophonic guitar solo recordings. Moreover, TENT uses detected
playing techniques to inform the transcription process, which improved the
transcription accuracy on realistic guitar performances as proved by the experiments (Su
et al. 2019). The playing techniques covered by TENT include bend, release, vibrato,
hammer-on, pull-off, and slide, which all modulate the F0. To recognize these techniques in
the audio signal, TENT first estimates the F0 contour and then segments it into
sub-melodies at the points where the F0 difference between two adjacent frames is
higher than an empirical threshold. After this step, TENT divides the target playing
techniques into two categories, which are addressed separately by two components in
TENT. The first category includes normal instances of bend, release, slide, and vibrato.
They generally do not introduce sudden frequency changes and can thus be captured
within a sub-melody. TENT recognizes these techniques by inspecting the slope of each
sub–melody. The second category consists of playing techniques that cannot be easily
addressed on the sub-melody level. This includes hammer-on and pull-off, which often
introduce a sudden change in F0. Short instances of bend, release, and slide also belong
to this category as they tend to be overlooked due to their short temporal duration or
subtle frequency change (Su et al. 2019). TENT employs CNN classifiers to recognize
these techniques based on timbral features extracted from the audio signal. For an initial
estimate, TENT naively transcribes each sub-melody to estimate the onset, offset, and
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pitch of each note event. Then, it attempts to fix the transcription errors by rectifying the
estimated note attributes using the playing techniques detected within or surrounding
the note event. TENT was evaluated in a transcription task performed on a dataset of
monophonic guitar solo phrases, and it outperformed an existing note tracking method
that does not consider the playing techniques.

As shown by the previous works presented in this section, the qualities of the playing
techniques vary a lot from one instrument to another, due to their specific physical and
acoustic properties. The piano pedaling techniques color the timbre by producing short
overlapping harmonic structures. The snare drum playing techniques produce different
timbres by exciting the instrument using different materials or at different positions. A
larger variety of playing techniques have been explored on the guitar and bass guitar,
including the excitation styles, which produce subtle timbre nuances when exciting the
string, and the expression styles, most of which modulate the frequency of sounding notes
after the excitation of such notes. Despite the fundamental differences between these
instruments, classifying their playing techniques generally involves extracting relevant
audio features from candidate regions and then separating them in the feature space using
either machine learning classifiers or empirical thresholds.

In this thesis, I focus on classifying some of the common playing techniques performed
on the electric guitar. Following the steps of Chen, Su, and Yang (2015) and Su et al. (2019),
the system presented in this thesis aims to classify expression techniques found in guitar
solo recordings.

2.2 Audio Features and Machine Learning

As presented in the previous section, existing works on playing technique classification
generally follow the same workflow. They start with preparing a set of candidates to be
classified. Then, the candidates are represented by a set of audio features extracted from
the audio signals. Finally, the candidates are separated in the feature space by decision
boundaries learned from the data. This section presents some background information
on audio feature extraction and machine learning techniques used in this thesis.
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2.2.1 Audio feature extraction

Audio feature extraction has been an essential step in content-based music information
retrieval (MIR). The objective of audio feature extraction is to convert the raw audio
waveform into meaningful descriptors of various aspects of the sound. The audio
features can be categorized in various dimensions. For example, based on their level of
abstraction, audio features can be divided into low-level features, mid-level features,
and high-level features. Typically, low-level features (e.g., spectral envelop,
zero-crossing rate) are computed directly from the raw waveform, reflecting simple
statistical properties of the signal. Mid-level features (e.g., pitch, onset) are often
computed by combining low-level features and represent certain musical properties.
High-level features (e.g., key, genre) describe music in terms of human perception and
are thus the most musically meaningful features (Knees and Schedl 2016).

As presented in section 2.1.3, classifying between different playing techniques often
involves low- to mid-level features. Here I introduce the extraction process for some
common features used in playing technique classification. For a comprehensive
discussion on audio feature extraction, please refer to Peeters (2004) and Knees and
Schedl (2016).

Framing, windowing, and Fourier transform

Given a digital audio signal, the first step is to concatenate chunks of consecutive samples
into frames. To produce meaningful audio features, the frame needs to be long enough
to be perceivable by the human ear. Typical frame lengths are between 256 and 8,192
samples (Knees and Schedl 2016).

For time-domain features, the resulting frames can be used directly. For
frequency-domain features, Fourier transform is used to convert each frame to a
magnitude spectrum that represents the magnitudes of different frequency components.
Before computing Fourier transform, a windowing function (e.g., Hann function) is
often multiplied to the frame to avoid spectral artifacts. To compensate for the
information loss caused by windowing, consecutive frames often have a certain amount
of overlap. The difference between the frame size and the overlap is referred to as the
hop size. Fourier transform is typically performed on the windowed frame to convert it
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from the time domain to the frequency domain. What is commonly used for audio
feature extraction is a variant of Fourier transform named fast Fourier transform (FFT).
The output of FFT is a series of complex numbers, where the real part and imaginary
part respectively indicate the strength of cosine and sine waves comprising the signal.
Another popular variant of the Fourier transform is the discrete cosine transform (DCT).
DCT uses only the real numbers rather than complex numbers, thus representing the
signal with cosine waves only. To model the temporal evolution of the spectrum,
short-time Fourier transform (STFT) is used. STFT computes the FFTs over consecutive
frames and concatenates the resulting spectra. The output of STFT is referred to as the
spectrogram.

Common audio features

Here I introduce some common audio features used in playing technique classification.
These features are chosen because of their feasibility in playing technique classification
demonstrated in previous works (Kehling et al. 2014; Chen, Su, and Yang 2015; Su et
al. 2019).

Zero-crossing rate: Computed in the time domain, zero-crossing rate measures how
many times the time-domain waveform crosses the horizontal axis within one frame. It
roughly reflects the fundamental frequency for simple periodic signals as high-frequency
signals typically has a higher zero-crossing rate. It has also been applied to distinguish
between percussive sounds and noise (Gouyon, Pachet, and Delerue 2000).

Spectral centroid: As a frequency-domain feature, spectral centroid is defined as the
center of gravity of the magnitude spectrum. It has been associated with the perceived
brightness of the sound. Signals with a higher spectral centroid typically have more
energy in high-frequency components and thus sound brighter. Spectral centroid has
been applied to distinguish between different strings and different plucking techniques
on the electric guitar (Kehling et al. 2014).

Spectral spread: Spectral spread is also referred to as the bandwidth of the
magnitude spectrum. It represents the spread of the spectrum around the spectral
centroid. It is obtained by viewing the magnitude spectrum as a distribution and
calculating its variance.

Spectral flux: Spectral flux is defined as the difference in power spectra between two
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consecutive frames. It measures the change in spectral content between frames. It has
been commonly used for onset detection (Dixon 2006).

Spectral flatness: Spectral flatness measures how flat the spectrum is, which
indicates the degree of similarity between the sound and white noise. White noise has a
flat spectrum while tone-like sound typically has sharp spectral peaks (Dubnov 2004).

Spectral rolloff: Spectral rolloff is the frequency point below which a large portion of
signal energy is contained. It is correlated to the cutting frequency between harmonic and
noise (Peeters 2004).

Mel-frequency cepstral coefficients: Mel-frequency cepstral coefficients (MFCCs) are
the first few coefficients that make up the mel-cepstrum. To obtain the MFCCs, a Fourier
transform is first taken on the windowed frame. The frequency bins of the resulting
spectrum are then mapped to the mel scale. A DCT is then performed on the logarithm
of this intermediate representation (i.e., mel-spectrum), leading to the mel-cepstrum.
Finally, the first few coefficients of the mel-cepstrum are taken as the MFCC feature.
MFCCs are widely used in speech recognition (Rabiner and Juang 1993) and first applied
to music modelling by Logan (2000). In playing technique classification, the MFCCs
have been used as a timbral feature in Chen, Su, and Yang (2015).

All features listed here are computed on the frame level and thus represent only one
frame. However, it is common practice to aggregate these instantaneous descriptors over
a certain period of time (e.g., note event, measure, piece) using statistical values such as
maximum, minimum, or median (Knees and Schedl 2016). When analyzing audio
signals that evolve over time, it is also useful to record the difference in certain features
between consecutive frames. The first- and second-order time derivative of a certain
feature are referred to as the delta feature and delta-delta feature, respectively. For
example, delta-MFCCs and delta-delta MFCCs are among the most used delta features.
They measure the temporal modulations of MFCCs, which proved important in audio
classification (McKinney and Breebaart 2003).

2.2.2 Machine learning classifiers

The abundance of data and computing power has facilitated the development of complex
algorithms that learn from a large set of input data samples (i.e., training set) and make
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predictions on new samples (i.e., test set).
Supervised machine learning is mainly used for solving two types of tasks:

regression and classification. In both tasks, the model aims to learn a mapping from the
input features to the output target. In regression tasks, the output target is a continuous
numerical variable, while in classification tasks, the output target is a discrete categorical
variable.

The playing technique classification task attempted in this thesis is a typical multiclass
classification task. In a classification task, each training sample, typically represented by
a set of features, has a label that represents the class that it belongs to. The features are
typically a set of numerical or categorical attributes that are either hand-crafted using
domain knowledge or automatically chosen by the classifier model. The label is typically
a categorical value indicating the class from which the sample is taken. The objective
of the classification task is, given the features extracted from the test samples, to predict
their class labels.

Classifiers are the models used in classification tasks. In general, machine learning
classifiers try to approximate a mapping function from the features to the class labels. In
the training stage, the classifiers establish a decision boundary in the feature space that
is calculated from a large amount of training data. Based on the decision boundary, new
data samples to be classified can be assigned a label based on its position relative to the
decision boundary in the feature space.

There exist various types of classifiers, each based on its own assumptions and thus
having its own way of calculating the decision boundary. Common classifiers include
logistic regression, naive Bayes, k-nearest neighbors (k-NN), decision tree, random
forest, Gaussian mixture model (GMM), support vector machine (SVM), and artificial
neural network. Here I introduce SVM as it is the main classifier used in this thesis and
other playing technique classification systems (Abeßer, Lukashevich, and Schuller 2010;
Kehling et al. 2014; Su, Yu, and Yang 2014; Chen, Su, and Yang 2015; Wu and Lerch 2016;
Liang, Fazekas, and Sandler 2018a). For a comprehensive review on machine learning
classifiers, please refer to, for example, Alpaydin (2014).

SVM is a type of supervised machine learning model. Mostly used as a classifier, the
objective of SVM is to find an optimal hyperplane that separates the data points belonging
to two classes in a feature space. For instance, given a linearly separable set of data points
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in a 2-dimensional feature space, there may be an infinite number of lines that separate
the two classes perfectly. SVM tries to obtain the optimal separation, while other linear
classification algorithms such as logistic regression would end up with an arbitrary line
among all possible solutions.

SVM finds the optimal hyperplane by maximizing its distance to the closest data
points (i.e., margin) of both classes. The coordinates of these data points in the feature
space are the support vectors. Support vectors influence the position and orientation of
the optimal hyperplane, which is thus “supported” by the support vectors. If any of the
support vectors are removed, the SVM will end up finding a different hyperplane.
Maximizing the margin distance reinforces the separation so that future data points can
be assigned, based on their coordinates in the feature space, to one of the two classes
with more confidence.

For data points that are non-linearly separable, SVM can also perform classification
efficiently using kernel functions (Pradhan 2012). Kernel functions takes
low-dimensional input features and transform them into a higher-dimensional feature
space, in which the data points become linearly separable. The optimal hyperplane
found in the higher-dimensional feature space, when transformed back to the original
feature space, usually gives a non-linear decision boundary.

Basic SVM is typically only applicable to binary classification tasks, where the data
points are associated with only two classes. For multiclass classification, there are various
approaches to break a multiclass classification problem into several binary classification
problems, so that SVM can still be applied. One commonly used approach is the one-
versus-all method, which trains an SVM binary classifier for each class, and each classifier
distinguishes one class from the rest.

As presented in section 2.1.3, SVMs have been successfully applied in playing
technique classification research for the bass guitar (Abeßer, Lukashevich, and Schuller
2010), electric guitar (Kehling et al. 2014; Su, Yu, and Yang 2014; Chen, Su, and Yang
2015), snare drum (Wu and Lerch 2016), and piano (Liang, Fazekas, and Sandler 2018a).
Beyond playing technique classification, SVMs have also been used for automatic
transcription and automatic music tagging tasks. Poliner and Ellis (2006, 2007)
performed classification-based piano transcription, where SVMs trained on spectral
features were used to classify frame-level note instances (i.e., the presence or absence of
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each note in a given frame). 87 one-versus-all linear SVM classifiers were trained to
detect the 87 notes (corresponding to MIDI note numbers 21 to 107). It was shown that
more advanced kernels such as radial basis function (RBF) only gave limited
performance gain while causing significant increase in computational complexity. SVM
has also been used in semantic music retrieval. In Barrington et al. (2008), two acoustic
features (MFCCs and chromagram) and two social context features (social tags and
web-mined tags) were used to predict semantic tags for music pieces. One-versus-all
SVM classifiers were trained for each semantic tag using the four individual feature sets
and their combination. It was shown that the SVMs trained using the combined feature
set yielded superior results on most of the tags.

Following the steps of Chen, Su, and Yang (2015) and Su et al. (2019), this thesis aims
to classify expression techniques found in guitar solo recordings. The proposed playing
technique classification system is based on SVM classifiers trained on various audio
features as presented previously. Additionally, this thesis presents an automated
workflow for generating synthesized guitar recordings and annotations from publicly
available Guitar Pro (GP) files. The objective is to explore the usability of the generated
ground-truth data in developing the playing technique classification system and
compare its performance with those achieved by previous work in this area.
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Chapter 3

Methodology

The proposed playing technique classification system consists of three components: the
monophony detector, the note-event separator, and the playing technique classifier. For
training and testing this system, a ground-truth dataset was compiled using annotations
and audio signals generated from Guitar Pro (GP) files. This chapter presents the process
of ground-truth generation and the design of each component of the proposed system.
Unless otherwise noted, all audio features were extracted using Librosa (McFee et al. 2022).
The classifier models and machine learning routines were implemented using Scikit-learn

(Pedregosa et al. 2011).

3.1 Ground-truth Generation

The task of playing technique classification calls for a dataset of guitar audio recordings
with their corresponding playing technique annotations. A dataset suitable for this task
should satisfy the following two requirements: First, the audio recordings must include
a large number of playing technique instances. Second, the corresponding annotations
must precisely record the type and timing of every playing technique instance present in
the recordings.

As previous automatic guitar transcription research has mostly focused on estimating
the basic note-event parameters and string-fret combinations, most existing guitar
datasets, such as GuitarSet (Xi et al. 2018), do not include annotations about playing
techniques. Therefore, despite their feasibility in training and testing guitar transcription
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models, they are not directly useful for the playing technique classification task.
At the time of writing, there exist two guitar datasets dedicated for playing technique

classification research. The IDMT guitar dataset (Kehling et al. 2014) consists of
single-track electric guitar audio recordings from live performances, covering a series of
plucking techniques and expression techniques. However, this dataset focuses on
classifying playing techniques in single-note recordings, where each audio file contains
only one note event. Expression techniques that typically occur during the transition
between note events (e.g., hammer-on), are thus not covered by the dataset. Similarly,
the Guitar Playing Techniques (GPT) dataset (Su, Yu, and Yang 2014) contains guitar solo
recordings taken from live performances with annotations covering all five types of
playing techniques explored in this thesis. However, the number of instances in each
playing technique class is rather small. In the GPT dataset, each recorded note is
rendered in seven different guitar tones (e.g., clean, distortion, reverb). Bend, the most
frequent playing technique, has 1,281 notes (i.e., 183 distinct notes in each tone). Pull-off,
the least frequent playing technique, has 525 notes (i.e., 75 distinct notes in each tone).

In this thesis, I leverage publicly available GP files to generate ground-truth data for
the playing technique classification task. The goal is to generate audio signals and their
corresponding annotations with minimal human intervention. This section introduces
the GP file format and the ground-truth generation process.

3.1.1 Guitar Pro background

Guitar Pro is a proprietary song-writing software developed by Arobas Music. Its core
functionality is tablature-based score editing for fretted stringed instruments. As its
name suggests, Guitar Pro specializes in tablature editing and playback for the guitar.
Beyond the score editing basics, it allows guitar playing technique notations. Another
key functionality of Guitar Pro is the realistic-sounding audio playback powered by its
Real Sound Engine (RSE), a sound bank comprising a wide variety of guitar tones and
effects. The multitrack tablature can be edited in the Guitar Pro software and then
played back or exported as an audio file, where each track is rendered in audio by the
RSE with customized settings. The score content and synthesizer settings are encoded in
the software’s proprietary file format, often referred to as the Guitar Pro (GP) file. The
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GP file, as the most popular guitar tablature format, is widely accepted by the guitar
player community, and there are vast quantities of GP files hosted online. This makes
the GP files an ideal data source for the playing technique detection task attempted in
this thesis. The synthetic audio files provide the signals for analysis, while the score
information stored in the GP files serves as the corresponding ground-truth annotations.

3.1.2 Data collection

There are a few guitarist community websites that distribute user-contributed GP files
for free. The most popular ones include Ultimate Guitar,1 Songsterr,2 and Guitarprotabs.3

These websites allow contributors to upload GP files transcribed from popular songs and
other users to view, rate, and download them. At the time of writing, Ultimate Guitar
hosts 202,6184 GP files, from which I manually collected the all-time top 100 GP files
(by rating) and the all-time top 100 GP files (by hits), a total of 147 unique files, for this
research. Since most GP files are manually transcribed by the users, they are prone to
errors and inaccuracies. It is expected that, among the large quantity of GP files hosted
on the website, the highest-rated and the most-visited files are of higher quality. The
songs covered by this set of files are mostly in the genre of rock and metal. The tones and
effects used on the guitar tracks range from clean acoustic guitar tone to electric guitar
tone with distortion and other effects. More details about the GP files used in this thesis
can be found in table A.1 and table A.2 in the appendix.

3.1.3 Generating annotations

As a comprehensive digital tablature format, a GP file contains all information about the
tablature content and thus all information needed to generate the ground-truth
annotations for its synthetic audio. To extract this information in an automated manner, I
developed a parser based on PyGuitarPro,5 a python library for reading, writing, and

1. https://www.ultimate-guitar.com
2. https://www.songsterr.com
3. https://guitarprotabs.org
4. Accessed 2021-12-14, 17:36 EST
5. https://pyguitarpro.readthedocs.io/en/stable
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manipulating GP files. In this section, I discuss the process of parsing GP files and
generating annotations.

GP files created by different versions of the Guitar Pro software have slightly different
file structures and different filename extensions. At the time of writing, PyGuitarPro
supports GP3, GP4, and GP5 files, which cover most files collected for this dataset. The
few GP files under unsupported versions were first converted to the GP5 version before
being processed.

The GP file parsing workflow is as follows: Each GP file is read into memory as a
song object, which consists of one or multiple tracks, including guitar tracks and other
instrumental tracks. Each track contains multiple measures, depending on the length of
the song. Each measure contains a certain number of beats. The term beat in the Guitar
Pro file differs from the general musical concept of beat. For example, for a song with a
4/4 time signature, musically, there are four beats in a bar, no matter how many notes are
played. For the excerpt shown in figure 3.1, there are a total of six notes in the first bar.
The first quarter note is on the first beat. The next two eighth notes belong to the second
beat. The next quarter note takes up the third beat, and the last two eighth notes fill up
the fourth beat. However, in a GP file, this same bar has six beats, where each distinct
onset in time is considered one beat. Similarly, the second bar has four musical beats but
six GP beats. In the rest of this thesis, the term beat refers to the GP beat and not the general
musical beat. Each non-empty beat in the GP file can have one note (i.e., a single note) or
multiple notes (i.e., a chord). The attributes needed for the annotations are found on the
beat level and the note level, as shown in figure 3.2.

Figure 3.1: A two-bar excerpt of Guitar Pro file.
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Figure 3.2: Extracting note-level information from a Guitar Pro file.

Before generating annotations from the GP files, a few preprocessing steps are
needed. Most GP files collected are multitrack GP files, which typically consist of one or
multiple guitar tracks, a bass track, a percussion track, and other instruments used in the
song. As the aim is to recognize playing techniques in the guitar solo recordings, on the
track level, the guitar tracks are separated into single-track GP files while the other
tracks are discarded. Within every guitar track, the repetitions, alternate endings, and
tempo changes are disabled in order to simplify the computation of the onset and offset
time of each note.

After the preprocessing stage, the 147 multitrack GP files have been converted to 383
single-track GP files. The increase in the number of files is due to the multitrack nature of
the GP files. The 147 multitrack GP files have a total of 383 guitar tracks, each of which is
converted to a single-track GP file, thus the 383 single-track GP files. For each single-track
GP file, an annotation file is created, which contains a list of note-level annotations. The
process of extracting note attributes from a GP file is illustrated in figure 3.2.

For each note event in the annotations, the pitch is recorded as a MIDI note number.
The onset and duration are converted from relative time to absolute time measured in
seconds. A Boolean value is assigned to each playing technique. For playing techniques
that occur within an individual note event (i.e., bend and vibrato), the value indicates
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class number of instances percentage (%)
normal 235,676 93.20
bend 3,873 1.53

vibrato 3,038 1.20
hammer-on 3,564 1.41

pull-off 4,735 1.87
slide 1,986 0.79
total 252,872 100.00

Table 3.1: Playing technique class distribution in the ground-truth dataset.

whether the technique is present in the current note event. For playing techniques that
occur during the transition between note events (i.e., hammer-on, pull-off, and slide), the
value indicates whether the technique is present in the transition event following the
current note event. Here, a transition event is defined as a short audio segment
surrounding the transitional instant between two consecutive note events, where the
first note event ends and the next begins.

The distribution of the playing technique classes is shown in table 3.1. The normal class
consists of both note events and transition events where no special expression technique
is applied.

3.1.4 Generating audio signals

Now that the annotations have been generated, this section discusses the audio
generation process of the dataset. The Guitar Pro software includes the RSE sound bank,
which serves as an audio synthesis tool supporting the audio playback of the tablature.
RSE supports many types of instruments, but in this thesis, it is only used as a
customizable guitar synthesizer. The synthesizer settings, such as the guitar tone and
effects used, are encoded in the GP files.

The RSE is a built-in part of the Guitar Pro installation package. At the time of
writing, the Guitar Pro software does not support converting GP files to audio in
batches. This motivated a search for alternative solutions. I first experimented with
MuseScore,6 a popular open-source music notation software. Although it did support

6. https://musescore.org/en
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Figure 3.3: Exporting a Guitar Pro file to audio.

reading the GP format, playing techniques other than bend and vibrato were not
interpreted correctly when converted to audio. TuxGuitar7 is another open-source
alternative to Guitar Pro. However, the playing techniques rendered by TuxGuitar
sound much less realistic than their Guitar Pro counterparts.

To make the best effort to generate high-quality synthetic recordings, I chose to
perform the conversion one file at a time, using the graphical interface of the Guitar Pro
software. In preparing data for this thesis, the repetitive conversion process was
automated by a Python script that controls mouse movement and clicks in a
pre-determined pattern. The script is written with PyAutoGUI,8 a Python library that
supports automated interaction with graphical user interface (GUI) applications.

Figure 3.3 shows a series of screenshots, demonstrating the audio generation process
using the Guitar Pro software. First, the GP file is opened using the “Open File” button.
The opened GP file would then be displayed as an editable tablature in the Guitar Pro
window. Next, the GP file is exported to audio via the File – Export – Audio menu. After
clicking on the export button in the audio export window and then selecting the path,
the current GP file would be exported to an audio file in WAV format. This process is
repeated for every preprocessed single-track GP file in the dataset, with the auto clicker
script controlling the mouse based on pre-measured screen coordinates.

7. http://www.tuxguitar.com.ar
8. https://github.com/asweigart/pyautogui
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Figure 3.4: Diagram of the proposed playing technique classification system.

With the audio file and annotations generated from the same GP file, every
monophonic note event present in the audio signal has its pitch, onset, duration, and
associated playing techniques recorded in the corresponding annotations. This lays a
solid foundation for the training and testing of the proposed playing technique
classification system.

3.2 Playing Technique Classification

A summary of the proposed playing technique classification system is illustrated in
figure 3.4. The input guitar audio signal is first processed by the monophony detector,
which extracts the monophonic segments from the signal, where most playing technique
instances occur. Then, the note-event separator estimates the onset and offset of each
note event present in the monophonic segment and splits it into note events and
transition events. Finally, the playing technique classifier recognizes the playing
techniques. In this section, I describe in detail each component of this system.
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3.2.1 Preprocessing: monophony detector

As discussed in 1.3, most playing technique instances occur in the monophonic
segments of the guitar audio signal. Therefore, it is reasonable to focus on the
monophonic segments. The job of the monophony detector is to locate and then separate
the monophonic audio segments from polyphonic ones. Its key component is a
frame-level binary classifier, classifying an audio frame as either polyphonic or
monophonic. Based on the classifier’s output, adjacent monophonic frames are
concatenated into monophonic segments, which are then separated from the input audio
signal for further analysis. This allows the system to operate on input audio without
imposing explicit monophony requirements.

The classifier is trained in a supervised fashion, where each audio frame is labeled as
either polyphonic or monophonic. The audio frames are generated from the guitar audio
signals synthesized from the preprocessed single-track GP files. Those generated from
the polyphonic segments are labeled as polyphonic frames while those generated from
the monophonic segments are labeled as monophonic frames. Each frame is represented
by a feature vector.

Two sets of audio features are extracted for the monophony detector: the mel
spectrum and mel-frequency cepstral coefficients (MFCCs). These features are used to
train a support vector machine (SVM) classifier, which distinguishes between
polyphonic and monophonic frames. For any input audio signal, the trained
monophony detector will serve as a preprocessing step, returning the timestamps of the
beginnings and ends of monophonic segments. The monophonic segments are then cut
out according to these timestamps and serve as the subjects of the downstream
note-event separation and playing technique classification tasks.

3.2.2 Preprocessing: note-event separator

After obtaining the monophonic audio segments using the monophony detector, the
next step is to locate the note events in these segments. Since the playing techniques
covered in this thesis typically occur during a note event or the transition between note
events, the signal regions corresponding to these events are the regions of interest. As
the second component of the proposed playing technique classification system, the
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Figure 3.5: An example showing F0 segmentation-based note-event separation in action.

(a) The raw F0 curve with the frequency axis mapped to MIDI note numbers. (b) The

F0 curve segmented at points where the pitch difference between two consecutive frames

exceeds the pitch difference threshold. Each segment represents a note event. The dots are

spurious note events that last for only one frame. (c) The output note events, represented

by F0 segments, with spurious note events removed.

note-event separator aims to estimate the timing information of the note events in the
monophonic guitar audio signal. This enables the system to locate and analyze the
individual note events and transition events (i.e., the regions of interest). This section
introduces the two note-event separation strategies implemented for this thesis: the F0
segmentation-based strategy and the onset detection-based strategy.

Note-event separation via F0 segmentation

Inspired by Chen, Su, and Yang (2015), I implemented a note-event separator that
directly operates on the F0 curve, referred to as the F0 segmentation-based strategy.
Similar methods have also been employed in Adams, Bartsch, and Wakefield (2006) and
Kong and Yu (2017). To illustrate this note-event separation strategy, a running example
is shown in figure 3.5.

For an input monophonic audio segment, the pYIN algorithm (Mauch and Dixon
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2014) is first applied to extract the F0 curve. A raw F0 curve returned by pYIN is shown
in figure 3.5(a). Next, the continuous F0 curve is cut into note events. Two adjacent
frames are considered the same note event if their pitch difference is smaller than an
empirical threshold set around one semitone, because an instant pitch change of more
than one semitone typically indicates the transition from one note to another.

As shown in figure 3.5(b), the continuous F0 curve has been cut into discrete note
events. It is assumed that a valid note event should have a minimum duration of 46
ms, which corresponds to the duration of a 32nd note at 160 bpm. Note events shorter
than this threshold, denoted by round dots in figure 3.5(b), are considered spurious and
discarded. Six discrete note events are eventually obtained, as shown in figure 3.5(c).

In order to recognize the playing techniques that occur during the transition between
note events, a transition event is defined as a short audio segment surrounding the
cutting point between two adjacent note events. While a note event can have arbitrary
length, a transition event is set to have a fixed length of five frames, with the transition
frame in the center. Using a frame size of 2,048 and a hop size of 1,024 samples, the
five-frame transition event has a duration of 139 ms. This design is consistent with Chen,
Su, and Yang (2015), which also used a fixed-length segment centered at the candidate
frame to characterize the transition event. Figure 3.6 shows the location of note events
and transition events in the original waveform. The note events are highlighted in red,
while the transition events are highlighted in green.

Note-event separation via onset detection

The F0 segmentation-based strategy presented above has the advantage of simplicity. The
note-event separation relies on the F0 estimation algorithm alone. However, in some
cases, it may not recognize the note onsets correctly. For example, if multiple notes of
the same pitch are played consecutively with little rest in between, the F0 segmentation-
based strategy is likely to mistakenly merge them into one longer note, because the pitch
difference between the frames would never exceed the threshold. As an alternative, it
might be more reliable to employ an onset detection algorithm to cut the monophonic
audio signal into individual note events (Brossier, Bello, and Plumbley 2004). This is
referred to as the onset detection-based strategy.

In implementing the onset detection-based strategy, the onset detection algorithm
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Figure 3.6: Note events and transition events localized with F0 segmentation. (a) The

output note events represented by F0 segments. (b) The signal waveform with regions

corresponding to note events highlighted in red. (c) The signal waveform with regions

corresponding to transition events highlighted in green.
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based on spectral flux envelop is used (McFee et al. 2022). It returns the onset time of
each note event detected in the signal. As the analyzed signal (i.e., the monophonic
segment returned by the monophony detector) is strictly monophonic with no silence, it
is assumed that the onset of the current note event marks the offset of the previous note
event. The example signal used in figure 3.6 is shown again in figure 3.7, where the
detected onsets are marked by vertical red lines. Note events are found between the
detected onsets, highlighted in red. The transition events are defined as five-frame
segments centered at the note-event offsets, highlighted in green.

These two note-event separation strategies will be tested and compared in terms of
their ability to identify the onset and offset of note events in the monophonic audio signals
synthesized from the single-track GP files. The test process will be detailed in section
4.2.2.

For the input monophonic signal obtained using the monophony detector, the
note-event separator will produce the signal regions corresponding to note events and
transition events. Audio features are then extracted from these regions of interest and
finally sent to the playing technique classifier.

3.2.3 Playing technique classifier

As discussed in the previous sections, the monophony detector takes as input the guitar
audio signal and produces its monophonic segments. The monophonic segments are then
processed by the note-event separator, which identifies the regions of interest. The final
step is to recognize their playing techniques, using the playing technique classifier.

As presented in 3.1, the note events and transition events have been assigned labels
according to their associated playing techniques. A note event or transition event can be
one of the six classes: normal, bend, vibrato, hammer-on, pull-off, and slide. Note that these
labels are mutually exclusive. That is, any note event or transition event can only belong
to one of the playing technique classes.

In the feature extraction stage, each region of interest is represented by the following
three sets of audio features:



3. Methodology 45

Figure 3.7: Note events and transition events localized with onset detection. (a) The signal

waveform with detected onset represented by red vertical lines. (b) The signal waveform

with regions corresponding to note events highlighted in red. (c) The signal waveform

with regions corresponding to transition events highlighted in green.
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MFCC: The MFCC features include the first 20 MFCCs9 of each frame and their first-
and second-order deltas, producing a 60-dimensional feature vector for each frame.

Timbre: The timbral features include the spectral centroid, spectral bandwidth,
spectral flatness, spectral rolloff , spectral flux, zero-crossing rate and their first- and
second-order deltas, resulting in an 18-dimensional feature vector for each frame.

Pitch: The pitch features include the estimated F0 time sequence and its first- and
second-order deltas, resulting in a 3-dimensional feature vector for each frame.

All three sets of features are concatenated and then aggregated over the duration of
each region of interest, by taking the six statistics: mean, standard deviation, maximum,
minimum, skewness, and kurtosis. Each region of interest is eventually represented by a
486-dimensional feature vector. An RBF-kerneled SVM classifier is trained to distinguish
between the six playing technique classes.

9. In speech and general sound analysis, it is common to use the first 8–13 MFCCs (Peeters
2004). However, music analysis typically requires higher-order coefficients (Mitrović, Zeppelzauer, and
Breiteneder 2010). Here, 20 is chosen empirically after comparing the models trained separately on 8, 13,
20, and 40 MFCCs.
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Chapter 4

Experiments

This chapter first gives an overview of the dataset used in the experiments. Then, the
experiments are presented in two segments. Section 4.2 presents the experiments
conducted for developing each individual component, and Section 4.3 presents the
end-to-end integration test performed on the entire system. In each section, I first
describe the experiment setup and then discuss the results. The source code for the
whole workflow is published online1 for reproducibility.

4.1 Dataset Overview

As presented in section 3.1, the ground-truth dataset used in this thesis was constructed
using publicly available Guitar Pro (GP) files. Specifically, a total of 147 GP files were
collected, most of which are multitrack GP files. A multitrack GP file contains one or
more guitar tracks. After preprocessing, the 147 multitrack GP files became 383 single-
track GP files, which were in turn converted to 383 annotation files and 383 audio files.
This file conversion process is shown in figure 4.1.

To make sure that the system does not overfit to the set of data that it is trained on,
I first split the ground-truth dataset into two subsets: the development set and the test
set. The development set contained 100 multitrack GP files, and the test set contained the
remaining 47 multitrack GP files. This split is illustrated in figure 4.2.

1. https://github.com/jwang44/GuitarPro-Stuff/tree/main/playing%20technique%20detection
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Multitrack GP file Single-track GP files

Audio files

Annotation files

Figure 4.1: Converting multitrack GP files to audio files and annotation files. The guitar

tracks are extracted from the multitrack GP file and saved as single-track GP files. Using

the Guitar Pro software, the single-track GP files are converted to audio files. Using the

PyGuitarPro library, the annotation files are constructed using information extracted from

the single-track GP files.

The development set was used to train the machine learning models (i.e., the
monophony detector and playing technique classifier) and to find appropriate
parameter values for the note-event separator. Once the models and parameters were
finalized, the entire system was tested end-to-end on the test set. Because the test set was
never exposed to the system during training, the results obtained on the test set would
reflect how well the system would generalize to previously unseen data.

4.2 Experiments on Individual Components

In this section, I present the experiment setup and results of each individual component,
namely the monophony detector (4.2.1), the note-event separator (4.2.2), and the playing
technique classifier (4.2.3). Using the development set, the monophony detector and
playing technique classifier were independently trained and tested via nested cross
validation. For the note-event separator, the onset detection-based strategy and F0
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Development set Test set

x 100

x 293

x 47

x 90
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Multitrack GP files

Single-track GP files

Audio files and corresponding
annotation files

Figure 4.2: Overview of the development set and the test set. The development set

consisted of 100 multitrack GP files, which were eventually converted to 293 audio files

and 293 annotation files. The test set contained 47 multitrack GP files, which were

eventually converted to 90 audio files and 90 annotation files.

segmentation-based strategy were compared in terms of their performance achieved on
the development set. These experiments were performed to justify the design of each
component and verify their effectiveness.

4.2.1 Monophony detector

Experiment setup

The core of the monophony detector is a binary classifier. Each input audio frame,
represented by a feature vector, would be classified as either monophonic or polyphonic.

For training and testing the monophony detector, the 293 audio files in the
development set were split into a total of 2,296,608 equal-length frames, using a frame
size of 1,024 at a sampling rate of 44,100 Hz. The frame size was chosen empirically by
running a grid search over different values. For complete grid search results, please see
table 4.1.

Each frame was labeled as either monophonic or polyphonic according to the
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n mfcc frame size clf mean accu (%) var accu (⇤10�3)
8 1024 LR 81.5 1.09

LSVM 81.1 1.10
SVM 88.3 0.73

2048 LR 83.8 0.52
LSVM 83.7 0.46
SVM 89.6 0.25

4096 LR 79.9 0.35
LSVM 79.8 0.30
SVM 88.1 0.23

13 1024 LR 82.0 0.85
LSVM 81.5 0.77
SVM 93.6 0.26

2048 LR 84.5 0.58
LSVM 84.2 0.49
SVM 93.6 0.12

4096 LR 81.8 0.74
LSVM 81.5 0.64
SVM 93.0 0.06

20 1024 LR 82.9 0.91
LSVM 82.5 0.85
SVM 96.0 0.04

2048 LR 84.9 0.62
LSVM 84.6 0.58
SVM 95.8 0.04

4096 LR 82.9 0.81
LSVM 82.5 0.65
SVM 95.3 0.03

40 1024 LR 83.4 0.79
LSVM 82.9 0.78
SVM 97.0 0.02

2048 LR 84.7 0.58
LSVM 84.3 0.53
SVM 96.8 0.03

4096 LR 83.4 0.73
LSVM 82.6 0.60
SVM 96.8 0.05

Table 4.1: Grid search results for the monophony detector. The searched parameters are

the number of MFCCs (n mfcc), the frame size (frame size), and the classifier type (clf).

LR: logistic regression, LSVM: support vector machine with linear kernel. SVM: support

vector machine with radial basis function kernel. The mean accuracy (mean accu) and

variance (var accu) obtained in the five-fold cross validation are shown.
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class number of frames percentage(%)
monophonic 1,170,782 50.98
polyphonic 1,125,826 49.02

total 2,296,608 100.00

Table 4.2: Class distribution of the audio frames in the development set. The audio files

in the development set were split into equal-length frames labeled as either monophonic

or polyphonic. These frames were later used to train and test the binary classifier.

annotations generated from the GP files. If a frame belonged to a single note, it was
labeled monophonic. If it belonged to a chord, it was labeled polyphonic. Silent frames
were discarded. The class distribution of the classified frames is shown in table 4.2.

In the experiments, three types of classifiers were used: logistic regression, support
vector machine (SVM) with linear kernel, and SVM with radial basis function (RBF)
kernel. Both logistic regression and linear SVM are linear models, indicating a linear
decision boundary in the feature space between the classes while the SVM with an RBF
kernel is a nonlinear model, indicating a more complicated, nonlinear decision
boundary. Two sets of features were extracted from the frames: mel spectrum and
MFCCs. Before entering the classifier, all feature vectors were standardized by removing
the mean and scaling to unit variance.

The different features and classifiers were evaluated using 5*2-fold nested cross
validation (Cawley and Talbot 2010) within the development set. The inner loop
performed a two-fold cross validation with grid search for hyperparameter
optimization. The mean and variance of the test results from the five folds in the outer
loop is reported. The development set was split into folds in a randomized and stratified
manner.

As for the evaluation metrics, accuracy, precision, recall, and f1 score are popular
metrics in classification tasks. In situations where the classes are highly imbalanced, i.e.,
some classes have significantly more samples than the others, precision, recall, and f1
score are preferred because accuracy cannot truly reflect the model performance. In this
dataset, as shown in table 4.2, the numbers of polyphonic and monophonic frames differ
only by a small amount. Therefore, accuracy was used as the evaluation metrics.
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logistic regression linear SVM RBF SVM
Mel spectrum 70.5 (0.91) 71.5 (1.09) 90.3 (0.26)

MFCCs 84.9 (0.62) 84.6 (0.58) 97.0 (0.02)

Table 4.3: Mean accuracies (%) achieved by the monophony detector using different

classifier types and features. These accuracies were obtained from the five-fold cross

validation. Variances (⇤10�3) are shown in parentheses. The highest mean accuracy is

marked in bold.

Experiment results

A total of six models were trained in the experiment. Each model used one of the three
classifier types and one of the two feature sets. The mean and variance of cross validation
accuracy achieved by each model is shown in table 4.3. The RBF-kernel SVM trained on
the MFCCs achieved the best average accuracy at 97.0%.

Discussion

Comparing the performance of different classifiers, it is not surprising that logistic
regression and linear SVM yielded similar performance on either set of features,
considering they are both linear classifiers. The SVM with an RBF kernel achieved
significantly higher accuracies than the linear classifiers, suggesting that in the feature
space established by the mel spectrum and MFCCs, the polyphonic and monophonic
frames were better separated by a non-linear hyperplane as the decision boundary.

The mel spectra and MFCCs are both audio representations inspired by human
perception. Although the results suggest that both features are useful in distinguishing
polyphonic frames from monophonic ones, MFCCs are more suitable for this task as
switching from mel spectrum to MFCC features boosted the performance of all three
types of classifiers. As mentioned in section 2.2.1, MFCCs are the coefficients that
represent the amplitude of the mel-frequency cepstrum, which is obtained by taking a
discrete cosine transform (DCT) on the mel spectrum. Similar to how the spectrum
captures the periodic structure in the signal waveform, the mel frequency cepstrum
reflects information about the periodic structure in the mel spectrum, which corresponds
to the harmonic structure of the time-domain signal. Using the first few coefficients as
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the audio feature, MFCCs fundamentally preserve the most informative macro spectral
structure (i.e., spectral envelop) and discard the noisy micro structure. This may explain
why the MFCCs led to better performance than the mel spectrum.

4.2.2 Note-event separator

Experiment setup

As the second preprocessing step, the objective of the note-event separator is to split
each monophonic audio segment into individual note events. For each monophonic
audio segment, the note-event separator returns a list of time intervals, with each
interval marking the onset and offset time of an estimated note event. Here I compare
two different strategies for note-event separation, namely the F0 segmentation-based
strategy and the onset detection-based strategy.

For the F0 segmentation-based strategy, the pYIN algorithm (Mauch and Dixon 2014)
estimated pitches from C2 (approximately 65 Hz) to G6 (approximately 1,568 Hz). This
range covers the pitch range of most guitars. It used a frame size of 2,048 and a hop size
of 1,024 samples. Two parameters were involved in segmenting the F0 contour estimated
by pYIN: the pitch distance threshold (PDT) and the note duration threshold (NDT). The
pitch difference threshold determines the cutting points along the F0 curve, and the note
duration threshold helps remove spurious notes which often have a very short duration.
Considering the physical constraints of the guitar and the smoothing effect of the
overlapping windows, the pitch difference threshold should be set well below one
semitone, as switching from one note to another on the guitar normally requires a
change of fret, and the pitch difference between two adjacent frets is one semitone. Here
I also explored different values for the note duration threshold. Among all tested values,
the maximum was 75 ms, which corresponds to the duration of a 16th note at 200 bpm.
It was assumed that most note events would last longer than that. For the onset
detection-based strategy, the spectral flux onset strength envelop was computed on the
monophonic audio segment, using a frame size of 1,024 and hop size of 512. In both
strategies, the note duration threshold (NDT) parameter was applied for removing
spurious notes. The frame size and hop size used for both strategies were chosen
empirically using a grid search over various frame size and hop size values. The
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complete results obtained from the grid search can be found in table B.1 and table B.2 in
the appendix.

In testing the note-event separator, the estimated notes and reference notes (i.e., the
ground-truth note events) were matched based on the onset and offset time. The pitch
was not taken into account. There are two reasons behind this: First, most pitch-related
evaluations assume that a note event has a single and constant pitch value, which is no
longer the case considering that the playing techniques modulate the pitch. Second, the
job of the note-event separator as a preprocessing step is merely to separate the
monophonic audio segment into note events for the playing technique classifiers to
operate on. Estimating onset and offset time is sufficient for this purpose.

An estimated note event was deemed correct if its onset fell within a 50-ms tolerance
range of the ground-truth onset. It was also required to have its offset within a tolerance
range of the ground-truth offset, which was defined as 50 ms or 20% of the reference
note’s duration, whichever is larger. The evaluation metrics used were precision, recall,
and f1 score. Precision is the ratio between the number of correctly estimated note events
and the total number of estimated note events. Recall is the ratio between the number of
correctly estimated note events and the total number of ground-truth note events. F1
score is the harmonic mean of precision and recall. The evaluation method and metrics
applied here are adopted from the note tracking task in Music Information Retrieval
Evaluation eXchange (MIREX),2 as implemented in the mir eval library.3

Experiment results

The note-event separator was tested on all monophonic audio segments extracted from
the development set. The results obtained using the two strategies are put in comparison
in table 4.4. The best f1 score achieved by each strategy is marked in bold.

Discussion

It is observed that, for locating note events in the audio signal, the onset detection-based
strategy achieved better performance. Across various parameter settings, F0

2. https://www.music-ir.org/mirex/wiki/2020:Multiple Fundamental Frequency Estimation %26 Tracking
3. https://craffel.github.io/mir eval/#module-mir eval.transcription
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strategy parameters precision recall f1 score
F0 PDT 0.1; NDT 25 40.1 50.5 44.7

PDT 0.1; NDT 50 51.6 55.7 53.5
PDT 0.1; NDT 75 53.4 51.0 52.2
PDT 0.2; NDT 25 69.4 63.2 66.2
PDT 0.2; NDT 50 78.0 64.9 70.9
PDT 0.2; NDT 75 78.1 60.6 68.3
PDT 0.4; NDT 25 74.5 60.4 66.7
PDT 0.4; NDT 50 77.9 60.5 68.1
PDT 0.4; NDT 75 77.4 56.2 65.2
PDT 0.8; NDT 25 65.1 41.2 50.5
PDT 0.8; NDT 50 65.9 40.7 50.3
PDT 0.8; NDT 75 64.6 37.9 47.8

Onset NDT 25 91.1 95.4 93.2
NDT 50 92.1 94.2 93.1
NDT 75 92.6 92.1 92.4

Table 4.4: Note-event separation performance achieved by the two strategies on the

development set. PDT: pitch difference threshold. NDT: note duration threshold. The

best f1 score achieved by each strategy is marked in bold.

segmentation-based strategy generally had a low recall rate, indicating a high number of
false negatives (i.e., missed notes). For the parameters in the F0-based strategy, the most
appropriate value for PDT was 0.2 semitones, and the most appropriate value for NDT
was 50 ms.

For the onset detection-based strategy, as the note duration threshold got lower, the
precision dropped while the recall rose. This behavior is expected because lower duration
threshold would lead to more notes being returned. Among the returned notes, most
were estimated correctly and can be successfully matched to a reference note. The other
notes, however, were resulted from onset detection errors, and these erroneous notes
tend to be short in duration. A high duration threshold tends to eliminate these spurious
notes, resulting in fewer false-positives and potentially more false-negatives (i.e., high
precision, low recall). A low duration threshold tends to preserve the short notes that
are truly part of the recording and to overlook spurious notes with a suspiciously short
duration, leading to fewer false negatives and potentially more false positives (i.e., low
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precision, high recall). An optimal balance was achieved when using a 25-ms threshold,
which achieved the highest f1 score on the development set.

Although the onset detection-based strategy achieved satisfactory performance, the
result can potentially still be improved by combining onset detection and F0
segmentation. Additionally, Adams, Bartsch, and Wakefield (2006) proposed a series of
note segmentation methods, ranging from applying filter functions on the raw pitch
contour to employing HMMs to estimate both pitch and temporal boundaries of the
notes. These strategies can also potentially be incorporated to improve the performance
of the note-event separator. This further exploration on note-event separation is left for
future work.

4.2.3 Playing technique classifier

Experiment setup

Two strategies were used for designing the playing technique classifier. In the first
strategy, two classifiers, namely the note-event classifier and the transition-event
classifier, were trained separately for classifying the note events and transition events. In
the second strategy, one unified classifier was trained to distinguish between all classes,
without first differentiating between note events and transition events. For training the
classifiers, signal segments corresponding to note events and transition events were
extracted from the development set.

The note-event classifier, trained on note-event audio segments, distinguishes
between bend, vibrato, and normal note event. The transition-event classifier, trained on
transition-event audio segments, distinguishes between hammer-on, pull-off, slide, and
normal transition event. The normal note event class consists of note events played
without any special expression technique. The normal transition event class consists of
transition events where no special expression technique is applied. The distribution of
the playing technique classes for note events and transition events in the development
set is shown in table 4.5 and table 4.6, respectively.

The unified classifier, trained on both note-event audio segments and transition-event
audio segments, distinguishes between all playing technique classes (i.e., normal, bend,
vibrato, hammer-on, pull-off, and slide). For the unified classifier, the normal class is a
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number of instances percentage (%)
normal note event 102,070 94.96

bend 3,044 2.83
vibrato 2,370 2.21

total 107,484 100.00

Table 4.5: Playing technique class distribution of note events in the development set.

number of instances percentage (%)
normal transition event 86,316 90.82

hammer-on 2,900 3.05
pull-off 4,016 4.23

slide 1,808 1.90
total 95,040 100.00

Table 4.6: Playing technique class distribution of transition events in the development

set.

combination of normal note events and normal transition events.
The classifiers used in the experiments are multiclass SVMs with RBF kernels. To

alleviate the effect of class imbalance, the SVMs were trained in the “balanced” mode,
where the class weights were set inversely proportional to the class frequencies observed
in the training data. For feature extraction, a frame size of 1,024 and a hop size of 512
were used for the Fourier transform, at a sampling rate of 44,100 Hz. These values were
chosen to stay consistent with the parameter settings that produced the best performance
in the previous steps: monophony detector (4.2.1) and note-event separator (4.2.2). The
note events and transition events were represented by three sets of features: Timber (T),
Pitch (P), and MFCCs (M), as presented in section 3.2.3. Before entering the classifier, all
feature vectors were standardized by removing the mean and scaling to unit variance.

The models were evaluated using 5*2-fold nested cross validation within the
development set. The development set was split into folds in a randomized and
stratified manner. The inner loop used a two-fold cross validation with grid search to
optimize the hyperparameters (i.e., C and gamma for the SVM). The average test result
and the variance from the five folds in the outer loop are reported. As the number of
samples in each class was highly imbalanced, per-class f1 score was used as the



4. Experiments 58

normal note event bend vibrato macro average
T 98.5 (0.02) 87.4 (8.58) 82.0 (23.72) 89.3
P 98.5 (0.02) 89.6 (7.00) 84.0 (7.52) 90.7
M 99.5 (0.06) 87.8 (12.68) 82.7 (28.68) 90.0
TP 99.5 (0.02) 89.8 (6.44) 84.8 (24.86) 91.4
TM 99.6 (0.02) 89.9 (4.98) 84.7 (14.32) 91.4
PM 99.6 (0.02) 89.8 (6.16) 84.5 (15.02) 91.3

TPM 99.6 (0.02) 91.4 (4.18) 84.8 (6.30) 91.9

Table 4.7: Per-class f1 scores (%) of the note-event classifier trained on various feature

sets. These scores were obtained from the five-fold cross validation. For each entry, the

average score over the five folds is shown in percentages, with the variance (⇤10�5) in

parentheses. The highest per-class f1 score for each technique is marked in bold.

evaluation metrics.

Experiment results

To verify the effectiveness of each feature set and their combinations, a model was trained
and tested on each of the seven feature combinations (T, P, M, TP, TM, PM, TPM). The
average per-class f1 scores and variances obtained from nested cross validation are shown
in table 4.7 and table 4.8.

The unified classifier was trained on the combination of all features (TPM) to
distinguish between all playing technique classes. Table 4.9 compares the per-class f1
scores on the five playing technique classes (excluding normal) achieved by the unified
classifier with the combined results of the two separate classifiers.

Discussion

It is observed in table 4.7 that the pitch features seem to be the best-performing
individual feature set for classifying note events. Moreover, combining multiple feature
sets generally led to better results than using a single feature set. For example, the
models trained on the combination of the pitch and MFCC features (PM) could better
recognize bend and vibrato than the models trained on the pitch (P) or MFCC features
(M) alone. The best results in note-event classification were achieved by combining all
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normal transition event hammer-on pull-off slide macro average
T 99.7 (0.02) 92.7 (0.90) 98.2 (0.50) 91.4 (11.6) 95.5
P 99.7 (0.02) 95.9 (0.58) 98.3 (1.74) 91.4 (5.94) 96.3
M 99.8 (0.02) 96.9 (2.18) 98.2 (1.10) 91.0 (8.36) 96.5
TP 99.8 (0.02) 97.6 (0.86) 98.3 (0.98) 91.2 (18.5) 96.7
TM 99.8 (0.02) 97.8 (0.70) 98.3 (0.78) 91.6 (4.26) 96.9
PM 99.8 (0.02) 97.8 (0.42) 98.2 (0.94) 91.4 (6.02) 96.8

TPM 99.8 (0.02) 98.2 (1.58) 98.3 (1.26) 91.6 (3.32) 97.0

Table 4.8: Per-class f1 scores (%) of the transition-event classifier trained on various

feature sets. These scores were obtained from the five-fold cross validation. For each

entry, the average score over the five folds are shown in percentages, with the variance

(⇤10�5) in parentheses. The highest per-class f1 score for each technique is marked in bold.

unified classifier separate classifiers
bend 89.7 (5.50) 91.4 (4.18)

vibrato 82.5 (1.58) 84.8 (6.30)
hammer-on 97.7 (1.38) 98.2 (1.58)

pull-off 98.1 (1.98) 98.3 (1.26)
slide 88.9 (7.78) 91.6 (3.32)

macro average 91.4 92.9

Table 4.9: Per-class f1 scores (%) achieved by the unified classifier and those achieved

by the two separate classifiers. These scores were obtained from the five-fold cross

validation. For each entry, the average score over the five folds are shown in percentages,

with the variance (⇤10�5) in parentheses.
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three feature sets (TPM), which achieved performance superior to or comparable to its
counterparts in recognizing every class.

Similar observations can be made in table 4.8, where better results were generally
obtained by combining multiple feature sets. Exceptionally, combining the timbre and
pitch features (TP) resulted in a drop in the score than using the timber features (T) or
pitch features (P) alone for recognizing slide. The MFCC features (M) proved to be the
best-performing individual feature set for classifying transition events, while it was still
the combination of all feature sets that achieved the best overall performance in transition-
event classification.

Results presented in table 4.7 and table 4.8 suggest that, given pre-segmented note
events and transition events, the playing technique classifiers can effectively recognize
all five playing techniques covered in this thesis. Furthermore, the classifiers seem to
acquire complementary knowledge from the three sets of audio features, as combining
all feature sets helped improve the overall performance.

The note-event classifier, transition-event classifier, and unified classifier all achieved
satisfactory results. Trained on the same set of features, the unified classifier needs to
distinguish between more classes than either one of the separate classifiers. However, as
shown in table 4.9, the per-class f1 scores achieved by the unified classifier are only
slightly lower than those achieved by the separate classifiers. Therefore, for the
simplicity of using one classifier for all classes, the unified classifier was used as the
playing technique classifier in the system. More importantly, using one unified classifier
to distinguish between all playing technique classes is consistent with previous works
on this task (Kehling et al. 2014; Su, Yu, and Yang 2014; Chen, Su, and Yang 2015; Su
et al. 2019), making it more fair to compare the presented system to the ones proposed
by others.

4.3 End-to-end Integration Test

As presented in the previous section, each individual component of the system was tuned
and evaluated on the development set. In order to verify how they would perform when
working together, an end-to-end integration test was conducted. In this integration test,
the components were connected into one workflow, and a designated set of test data was
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number of instances percentage (%)
normal 47,290 93.93
bend 829 1.65

vibrato 668 1.32
hammer-on 664 1.32

pull-off 719 1.43
slide 178 0.35
total 50,348 100.00

Table 4.10: Playing technique class distribution of the test set. The count for each playing

technique is the number of note events or transition events with the corresponding label.

The normal class is the combination of normal note events and normal transition events.

used to test the performance of the entire system. The integration test results should
reflect the true performance of the playing technique classification system.

4.3.1 Experiment setup

As presented in section 4.1, the ground-truth dataset collected for this thesis consists of
147 multitrack GP files. Among these files, 100 files (i.e., the development set) were used
for parameter optimization and the other 47 files (i.e., the test set) were reserved for the
end-to-end integration test. Because the test set was never exposed to the parameter
optimization process, the results obtained in the end-to-end integration test should reflect
how well the system would generalize to previously unseen data. For an illustration of
the data split, please refer to figure 4.2. For an overview of the proposed system, please
refer to figure 3.4.

The playing technique class distribution in the test set is shown in table 4.10. Since the
unified classifier was chosen as the playing technique classifier, I no longer differentiate
between normal note events and normal transition events. They are combined into one
normal class.

With each component using the best parameters found in the individual experiments,
the playing technique classification system takes as input the audio signals synthesized
from the single-track GP files in the test set. The audio signals are in turn processed by
the monophony detector, the note-event separator, and the playing technique classifier.
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precision recall f1 score
bend 91.2 87.2 89.2

vibrato 88.2 76.1 81.7
hammer-on 96.4 76.0 85.0

pull-off 92.7 77.4 84.3
slide 88.3 60.4 71.7

Table 4.11: Per-class metrics (%) obtained from the end-to-end integration test.

The final output is a list of timestamps for estimated note events and transition events.
Each entry is accompanied by an estimated class label representing its associated playing
technique.

For bend and vibrato, an estimated note event is considered correct if it temporally
overlaps with a ground-truth note event of the same class. Specifically, they are
considered to overlap if one of the following two conditions is satisfied: 1. The onset of
the estimated note event falls within a 50-ms tolerance window of the onset of the
ground-truth note event. 2. The offset of the estimated note event falls within a tolerance
window of 50 ms or 20% of the reference note’s duration, whichever is larger, of the
offset of the ground-truth note event.

For hammer-on, pull-off, and slide, an estimated transition event is considered
correct if its center falls within a 50-ms tolerance window of the center of a ground-truth
transition event of the same class. In both cases, every ground-truth instance is matched
against at most one estimated instance. Per-class precision, recall, and f1 score are
calculated as evaluation metrics. For instance, the precision for the class bend is the ratio
between the number of correctly recognized bend instances and the total number of
estimated bend instances. The recall is the ratio between the number of correctly
recognized bend instances and the total number of ground-truth bend instances. The f1
score is the harmonic mean of the precision and recall.

4.3.2 Results and discussion

The per-class results of the end-to-end integration test are presented in table 4.11.
As expected, the per-class f1 scores dropped slightly when switching from individual

component tests to the end-to-end integration test. This is explained by the fact that
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during individual component tests, the input to each component was taken directly from
the ground-truth instead of the upstream component. In other words, individual
components did not need to handle erroneous data produced by their upstream
components. Meanwhile, in the end-to-end test, errors made by the monophony
detector would propagate to the downstream note-event separator, whose errors would
in turn affect the playing technique classifier. Therefore, it should be noted that the
metrics obtained from the individual component tests are overly optimistic. The result of
the end-to-end test is a more realistic estimate of the system performance.

In all classes, the recall is considerably lower than the precision, indicating that the
classification system is more prone to false negatives than false positives. In other words,
many playing technique instances were missed, but for those recognized by the system,
the recognition was quite accurate. A potential explanation for this result is that the
playing technique classifier tends to predict the majority class label (i.e., normal) when
the input feature vector does not fit into the feature space occupied by the other playing
technique classes. This is likely to happen when the monophony detector and note-event
separator make mistakes, which would result in feature vectors that look nothing like
the “clean-cut“ note events and transition events that the classifier has seen during the
training stage. Nonetheless, the results of the end-to-end integration test suggest that the
proposed system can effectively recognize the five playing techniques, with bend being
the easiest to recognize and slide being the most difficult.

4.3.3 Comparison to previous works

Comparing the proposed system to those developed in previous works, the per-class f1
scores achieved by different systems are shown in table 4.12. For the system presented in
this thesis, the per-class f1 scores obtained from the end-to-end integration test are
displayed. For the other systems, the displayed scores are those reported in their
respective papers. The results suggest that the system presented in this thesis can better
recognize hammer-on, pull-off, and slide than previous systems, whereas it did not
achieve a higher performance in recognizing bend and vibrato.

However, it is important to note that the scores of different systems were achieved
under different conditions. The systems proposed in Su, Yu, and Yang (2014) operates on
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pre-segmented single-note audio recordings, which gives it the advantage of not having
errors in the note-event separation stage. In contrast, the system presented in this thesis,
as well as the systems proposed in Kehling et al. (2014), Chen, Su, and Yang (2015), and
Su et al. (2019), operates on entire tracks of guitar solo recordings. Potential errors from
note-event separation would have a negative effect on the end result.

Another difference to consider lies in the data. The five systems compared all used
their own datasets for their respective experiments. The datasets vary in many aspects
such as size, genre, guitar tone, and recording conditions. Especially, for the system
presented in this thesis, the audio signals used for training and testing were synthesized
using the Guitar Pro software. Although the synthesized guitar sounds somewhat
realistic, it lacks natural asynchronies and variations in tempo and dynamics that are
often present in recordings taken from a real guitar. This potentially makes it easier to
achieve a good performance on synthesized guitar recordings than on real guitar
recordings.

Despite the differences between the studies listed, the f1 score of slide is lower than
the other classes in most of the studies (i.e., all except Su, Yu, and Yang (2014)). One
potential explanation is that slide can either increase or decrease the pitch, while its
counterparts hammer-on and pull-off can only change the pitch monotonically. This
makes it more difficult to recognize slide from other classes. Besides, slide has the least
amount of training samples among all classes in the datasets used in Kehling
et al. (2014), Su et al. (2019), and this thesis. The lack of training samples tends to make it
more difficult for the classifier to learn the characteristics of the target class.

bend vibrato hammer-on pull-off slide
Kehling et al. (2014) 71.3 66.7 82.4 - 50.9

Su, Yu, and Yang (2014) 89.4 86.9 55.2 52.0 65.0
Chen, Su, and Yang (2015) 87.7 84.0 66.3 74.4 57.7

Su et al. (2019) 76.7 - 68.1 73.0 38.8
proposed system 89.2 81.7 85.0 84.3 71.7

Table 4.12: Per-class f1 scores (%) achieved by previous systems and the system presented

in this thesis. The highest score for each technique is marked in bold.
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Chapter 5

Conclusion

This chapter summarizes the work presented in this thesis, which focused on the
automatic classification of five guitar playing techniques. Specifically, chapter 1
introduced the guitar playing techniques and gave an overview of the presented system.
Chapter 2 presented relevant works on instrumental gesture acquisition and the
background about audio features and machine learning classifiers. A detailed
description of the ground-truth generation workflow and the playing technique
classification system was given in chapter 3. Individual component tests and an
end-to-end integration test were performed to evaluate the system. The experiment
procedures and results were discussed in chapter 4.

In this chapter, I first summarize the contributions of this thesis and then discuss
directions for future work.

5.1 Summary of Contributions

In this thesis, I have presented a playing technique classification system that operates in
three steps. For a given guitar audio signal, the monophony detector extracts the
monophonic segments, where most playing technique instances occur. This step
operates by performing a binary classification, distinguishing between monophonic and
polyphonic frames. Then, the note-event separator estimates the onset and offset
timestamps for every note event present in a given monophonic audio segment. Two
strategies have been tested for this step: the F0 segmentation-based strategy and onset
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detection-based strategy. The regions of interest, found by the note-event separator, are
represented by a set of audio features and finally classified by the playing technique
classifier. The playing technique classifier classifies each region of interest as one of the
six playing technique classes: normal, bend, vibrato, hammer-on, pull-off, and slide.

For constructing the dataset used in this thesis, a ground-truth generation workflow
has been developed. The highest-rated and most-visited Guitar Pro (GP) files were
collected from the Ultimate Guitar website. These raw, multitrack GP files were first
preprocessed into single-track GP files. The Guitar Pro software was used to generate
audio signals from the single-track GP files. The PyGuitarPro library was used to extract
information from the single-track GP files and construct annotations. The guitar playing
technique classification task is still in its early stage, for which the amount of annotated
data remains limited. This thesis is the first to leverage GP files for generating a large
amount of public training data for the playing technique classification task.

To test the presented playing technique classification system, experiments were
conducted for each individual component as well as the entire system.

For the monophony detector, it was found that the SVM classifier trained on MFCCs
gave the best performance, with an f1 score of 97.0% in distinguishing between
monophonic and polyphonic audio frames.

For the note-event separator, the onset detection-based strategy proved to be more
effective than the F0 segmentation-based strategy, with an f1 score of 93.2% over 70.9% in
tracking note events.

For the playing technique classifier, it was found that combining multiple feature sets
(i.e., pitch features, timbral features, and MFCCs) generally led to better performance than
using a single feature set. The classifier seemed to acquire complementary knowledge
from the three sets of audio features. Trained on the combination of all three feature sets,
the SVM classifier achieved per-class f1 scores ranging from 82.5% to 97.7% in the six-
way classification, suggesting that the classifier can effectively distinguish between the
six playing technique classes.

To verify the effectiveness of the entire system, the three components were put
together and an end-to-end integration test was performed. The test samples were in
turn processed by the three components and the result was compared with the
ground-truth annotations. The per-class f1 scores obtained in the end-to-end integration
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test ranged from 71.7% to 89.2%, which proved that the presented three-step system can
effectively locate and identify the five playing techniques in guitar audio signals
synthesized from GP files.

5.2 Future Work

On the topic of playing technique classification, this thesis limited its scope to guitar
recordings synthesized from GP files. The system, trained solely on synthesized
recordings, may end up relying on Guitar Pro sound artefacts instead of true
characteristics of the playing techniques, which are applicable to a wider range of guitar
sound. To overcome this limitation, a promising direction for further exploration is to
train on both real recordings taken from live performances and synthesized recordings
and then test the model on real recordings. As real recordings are more expensive to
obtain and usually require manual annotation, the amount of ground-truth data is often
limited. Augmenting training data with synthesized recordings might facilitate the
training of playing technique classifiers and lead to better performances than training on
real recordings alone.

Additionally, there are more guitar playing techniques beyond the five common ones
studied in this thesis. The GP file format supports a wide variety of other playing
techniques such as palm muting, artificial harmonics, and interactions with the tremolo
bar. These techniques, although less common, also contribute to the expressivity of the
guitar performance. Using GP files as a source of ground-truth data, a more
comprehensive playing technique classification system can potentially be developed to
recognize these playing techniques as well.

One significant contribution of this thesis is the automated workflow for
ground-truth generation. With GP files, it is possible to generate synthesized guitar
signals and corresponding annotations with minimal manual work. Considering the
abundance of publicly available GP files (Sarmento et al. 2021), it is a promising source
of data for audio-based MIR tasks. It is hoped that the wealth of publicly available GP
files and the ground-truth generation workflow developed in this thesis will motivate
and facilitate future research that leverages this particular symbolic music format.
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Limpens, and Nicolas Riche. 2012. “Left and Right-Hand Guitar Playing Techniques
Detection.” In Proceedings of the International Conference on New Interfaces for Musical

Expression, 205–208. Ann Arbor, MI, USA.

Saito, Shoichiro, Hirokazu Kameoka, Keigo Takahashi, Takuya Nishimoto, and Shigeki
Sagayama. 2008. “Specmurt Analysis of Polyphonic Music Signals.” IEEE Transactions

on Speech and Audio Processing 16 (3): 639–650.

Sarmento, Pedro, Adarsh Kumar, C. J. Carr, Zack Zukowski, Mathieu Barthet, and
Yi-Hsuan Yang. 2021. “DadaGP: A Dataset of Tokenized GuitarPro Songs for
Sequence Models.” In Proceedings of the International Society for Music Information

Retrieval Conference, 610–617. Online.

Scherrer, Bertrand. 2013. “Physically-Informed Indirect Acquisition of Instrumental
Gestures on the Classical Guitar.” Doctoral dissertation, McGill University.

Su, Li, Hsin-Ming Lin, and Yi-Hsuan Yang. 2014. “Sparse Modeling of Magnitude and
Phase-Derived Spectra for Playing Technique Classification.” IEEE/ACM Transactions

on Audio, Speech, and Language Processing 22 (12): 2122–2132.

Su, Li, Li-Fan Yu, and Yi-Hsuan Yang. 2014. “Sparse Cepstral, Phase Codes for Guitar
Playing Technique Classification.” In Proceedings of the International Society for Music

Information Retrieval Conference, 9–14. Taipei, Taiwan.

Su, Ting-Wei, Yuan-Ping Chen, Li Su, and Yi-Hsuan Yang. 2019. “TENT:
Technique-Embedded Note Tracking for Real-World Guitar Solo Recordings.”
Transactions of the International Society for Music Information Retrieval 2 (1): 15–28.



Bibliography 75

Tindale, Adam R., Ajay Kapur, W. Andrew Schloss, and George Tzanetakis. 2005.
“Indirect Acquisition of Percussion Gestures Using Timbre Recognition.” In
Proceedings of the Conference on Interdisciplinary Musicology, 9–16. Montréal, QC,
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Appendix A

Lists of Guitar Pro Files

A total of 147 Guitar Pro files were collected for generating the ground-truth dataset used
in this thesis. Table A.1 provides the song title, artist name, and the original filename of
the 100 GP files in the development set. Table A.2 provides the same information for the
47 GP files in the test set. These files were all collected from the Ultimate Guitar website.

Table A.1: The 100 raw GP files in the development set.
ID Title Artist Filename
1 Back In Black ACDC ACDC - Back In Black (ver 4 by GuitarManiac09).gp5
2 Back In Black ACDC ACDC - Back In Black.gp5
3 Highway To Hell ACDC ACDC - Highway To Hell (ver 3).gp5
4 Rolling In The Deep Adele Adele - Rolling In The Deep.gp5
5 Dream On Aerosmith Aerosmith - Dream On (ver 3).gp5
6 Afterlife Avenged Sevenfold Avenged Sevenfold - Afterlife.gp5
7 Beast And The Harlot Avenged Sevenfold Avenged Sevenfold - Beast And The Harlot.gp5
8 Unholy Confessions Avenged Sevenfold Avenged Sevenfold - Unholy Confessions.gp4
9 Iron Man Black Sabbath Black Sabbath - Iron Man (ver 3 by jessew).gp4
10 Paranoid Black Sabbath Black Sabbath - Paranoid.gp5
11 Tears Dont Fall Bullet For My Valentine Bullet For My Valentine - Tears Dont Fall (ver 2 by dannyloughran).gp4
12 Waking The Demon Bullet For My Valentine Bullet For My Valentine - Waking The Demon.gp5
13 Johnny B Goode Chuck Berry Chuck Berry - Johnny B Goode (ver 6).gp5
14 Smoke On The Water Deep Purple Deep Purple - Smoke On The Water.gp4
15 Sultans Of Swing Dire Straits Dire Straits - Sultans Of Swing.gp5
16 Through The Fire And Flames DragonForce DragonForce - Through The Fire And Flames.gp5
17 Hotel California Eagles Eagles - Hotel California.gp3
18 Layla Eric Clapton Eric Clapton - Layla (ver 2).gp4
19 Tears In Heaven Eric Clapton Eric Clapton - Tears In Heaven.gp3
20 Cliffs Of Dover Eric Johnson Eric Johnson - Cliffs Of Dover (ver 2 by lem ian).gp5
21 More Than Words Extreme Extreme - More Than Words (ver 3).gp5
22 Everlong Foo Fighters Foo Fighters - Everlong.gp4
23 The Pretender Foo Fighters Foo Fighters - The Pretender.gp4
24 Still Got The Blues Gary Moore Gary Moore - Still Got The Blues.gp3
25 21 Guns Green Day Green Day - 21 Guns (ver 4 by tangoso).gp5
26 American Idiot Green Day Green Day - American Idiot (ver 2).gp5

Continued on next page
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ID Title Artist Filename
27 Wake Me Up When September Ends Green Day Green Day - Wake Me Up When September Ends (ver 3).gp5
28 Dont Cry Guns N’ Roses Guns N’ Roses - Dont Cry.gp3
29 Knockin On Heavens Door Guns N’ Roses Guns N’ Roses - Knockin On Heavens Door (ver 8).gp4
30 November Rain Guns N’ Roses Guns N’ Roses - November Rain (ver 2).gp5
31 Sweet Child O Mine Guns N’ Roses Guns N’ Roses - Sweet Child O Mine (ver 2).gp4
32 Welcome To The Jungle Guns N’ Roses Guns N’ Roses - Welcome To The Jungle (ver 3).gp4
33 Fear Of The Dark Iron Maiden Iron Maiden - Fear Of The Dark.gp4
34 The Trooper Iron Maiden Iron Maiden - The Trooper (ver 5).gp5
35 The Trooper Iron Maiden Iron Maiden - The Trooper.gp4
36 Im Yours Jason Mraz Jason Mraz - Im Yours (ver 3 by Maitinin).gp5
37 Canon Rock JerryC JerryC - Canon Rock.gp4
38 Are You Gonna Be My Girl Jet Jet - Are You Gonna Be My Girl.gp4
39 All Along The Watchtower Jimi Hendrix Jimi Hendrix - All Along The Watchtower (ver 2).gp3
40 Hey Joe Jimi Hendrix Jimi Hendrix - Hey Joe (ver 2).gp3
41 Little Wing Jimi Hendrix Jimi Hendrix - Little Wing.gp3
42 Dust In The Wind Kansas Kansas - Dust In The Wind.gp5
43 Laid To Rest Lamb of God Lamb of God - Laid To Rest.gp5
44 Black Dog Led Zeppelin Led Zeppelin - Black Dog.gp5
45 Stairway To Heaven Led Zeppelin Led Zeppelin - Stairway To Heaven.gp5
46 Free Bird Lynyrd Skynyrd Lynyrd Skynyrd - Free Bird.gp5
47 Sweet Home Alabama Lynyrd Skynyrd Lynyrd Skynyrd - Sweet Home Alabama.gp5
48 Sweet Dreams Are Made Of This Marilyn Manson Marilyn Manson - Sweet Dreams Are Made Of This (ver 2).gp5
49 Symphony Of Destruction Megadeth Megadeth - Symphony Of Destruction (ver 6 by Hanger.18).gp5
50 Battery Metallica Metallica - Battery (ver 2).gp3
51 Creeping Death Metallica Metallica - Creeping Death.gp5
52 Enter Sandman Metallica Metallica - Enter Sandman (ver 5).gp4
53 Enter Sandman Metallica Metallica - Enter Sandman.gp5
54 Fade To Black Metallica Metallica - Fade To Black (ver 4).gp5
55 For Whom The Bell Tolls Metallica Metallica - For Whom The Bell Tolls.gp3
56 Master Of Puppets Metallica Metallica - Master Of Puppets (ver 4 by DUDERMAN).gp5
57 Master Of Puppets Metallica Metallica - Master Of Puppets.gp3
58 Nothing Else Matters Metallica Metallica - Nothing Else Matters (ver 5).gp5
59 Nothing Else Matters Metallica Metallica - Nothing Else Matters (ver 6).gp3
60 Nothing Else Matters Metallica Metallica - Nothing Else Matters (ver 7).gp4
61 One Metallica Metallica - One (ver 2).gp5
62 Orion Metallica Metallica - Orion (ver 5).gp4
63 Seek And Destroy Metallica Metallica - Seek And Destroy (ver 2).gp5
64 The Day That Never Comes Metallica Metallica - The Day That Never Comes.gp4
65 Welcome Home Sanitarium Metallica Metallica - Welcome Home Sanitarium.gp4
66 Beat It Michael Jackson Michael Jackson - Beat It.gp4
67 Beat It Michael Jackson Michael Jackson - Beat It.gp5
68 Super Mario Brothers Theme Misc Computer Games Misc Computer Games - Super Mario Brothers Theme (ver 2 by nay-palm).gp5
69 Pirates Of The Caribbean Misc Soundtrack Misc Soundtrack - Pirates Of The Caribbean - Hes A Pirate (ver 5 by jariss).gp5
70 Pirates Of The Caribbean Misc Soundtrack Misc Soundtrack - Pirates Of The Caribbean - Hes A Pirate (ver 9 by ccb51310).gp5
71 Ace Of Spades Mötorhead Mötorhead - Ace Of Spades.gp5
72 Hysteria Muse Muse - Hysteria.gp4
73 Knights Of Cydonia Muse Muse - Knights Of Cydonia.gp5
74 Come As You Are Nirvana Nirvana - Come As You Are.gp3
75 Smells Like Teen Spirit Nirvana Nirvana - Smells Like Teen Spirit (ver 2).gp5
76 Wonderwall Oasis Oasis - Wonderwall.gp4
77 Crazy Train Ozzy Osbourne Ozzy Osbourne - Crazy Train.gp5
78 Cemetery Gates Pantera Pantera - Cemetery Gates (ver 4).gp5
79 Cowboys From Hell Pantera Pantera - Cowboys From Hell (ver 2).gp3
80 Another Brick In The Wall Part 2 Pink Floyd Pink Floyd - Another Brick In The Wall Part 2.gp4
81 Comfortably Numb Pink Floyd Pink Floyd - Comfortably Numb.gp3
82 Wish You Were Here Pink Floyd Pink Floyd - Wish You Were Here (ver 5).gp5
83 Wish You Were Here Pink Floyd Pink Floyd - Wish You Were Here.gp4
84 Bohemian Rhapsody Queen Queen - Bohemian Rhapsody.gp5
85 Californication Red Hot Chili Peppers Red Hot Chili Peppers - Californication (ver 3).gp5
86 Cant Stop Red Hot Chili Peppers Red Hot Chili Peppers - Cant Stop (ver 5).gp4
87 Scar Tissue Red Hot Chili Peppers Red Hot Chili Peppers - Scar Tissue.gp4

Continued on next page
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ID Title Artist Filename
88 Snow Hey Oh Red Hot Chili Peppers Red Hot Chili Peppers - Snow Hey Oh.gp5
89 Under The Bridge Red Hot Chili Peppers Red Hot Chili Peppers - Under The Bridge (ver 6 by dorissie).gp5
90 Under The Bridge Red Hot Chili Peppers Red Hot Chili Peppers - Under The Bridge.gp5
91 Europa Santana Santana - Europa.gp3
92 Rock You Like A Hurricane Scorpions Scorpions - Rock You Like A Hurricane (ver 2).gp5
93 Still Loving You Scorpions Scorpions - Still Loving You (ver 3).gp5
94 Raining Blood Slayer Slayer - Raining Blood (ver 3).gp4
95 Chop Suey System Of A Down System Of A Down - Chop Suey (ver 6 by Benzie101).gp5
96 Toxicity System Of A Down System Of A Down - Toxicity.gp4
97 Yesterday The Beatles The Beatles - Yesterday.gp5
98 Reptilia The Strokes The Strokes - Reptilia.gp5
99 Seven Nation Army The White Stripes The White Stripes - Seven Nation Army.gp3
100 Got To Give It Up Thin Lizzy Thin Lizzy - Got To Give It Up.gp5

Table A.2: The 47 raw GP files in the test set.
ID Title Artist Filename
1 Hells Bells ACDC ACDC - Hells Bells.gp5
2 You Shook Me All Night Long ACDC ACDC - You Shook Me All Night Long.gp5
3 Faded Alan Walker Alan Walker - Faded.gpx
4 War Pigs Black Sabbath Black Sabbath - War Pigs.gp3
5 12 Bar Blues Blues Blues - 12 Bar Blues.gp5
6 Sunshine Of Your Love Cream Cream - Sunshine Of Your Love (ver 2 by joshscus).gp5
7 Hotel California Eagles Eagles - Hotel California.gp5
8 Layla Eric Clapton Eric Clapton - Layla (ver 3).gp3
9 Layla Eric Clapton Eric Clapton - Layla (ver 5 by roadiekill).gp5

10 Gymnopedie No 1 Erik Satie Erik Satie - Gymnopedie No 1 (ver 2).gp3
11 Mad World Gary Jules Gary Jules - Mad World (ver 6 by Krystof).gp
12 Hallelujah Jeff Buckley Jeff Buckley - Hallelujah (ver 2).gpx
13 Hallelujah Jeff Buckley Jeff Buckley - Hallelujah (ver 7 by mandelstamdavid).gpx
14 Canon Rock JerryC JerryC - Canon Rock.gp4
15 Canon In D Johann Pachelbel Johann Pachelbel - Canon In D (ver 6 by Ezechiel).gp5
16 Hurt Johnny Cash Johnny Cash - Hurt (ver 5 by Lemmers).gp5
17 Breaking The Law Judas Priest Judas Priest - Breaking The Law (ver 8 by Manowarrior).gpx
18 Babe Im Gonna Leave You Led Zeppelin Led Zeppelin - Babe Im Gonna Leave You.gp4
19 Since Ive Been Loving You Led Zeppelin Led Zeppelin - Since Ive Been Loving You.gp5
20 Whole Lotta Love Led Zeppelin Led Zeppelin - Whole Lotta Love.gp4
21 Blues Lessons Lessons - Blues - 12 Killer Blues Licks.gp3
22 Moonlight Sonata Ludwig van Beethoven Ludwig van Beethoven - Moonlight Sonata - 1St Movement Op 27 No 2 (ver 3 by Gameguy327).gpx
23 Simple Man Lynyrd Skynyrd Lynyrd Skynyrd - Simple Man (ver 3).gp4
24 Classical Gas Mason Williams Mason Williams - Classical Gas (ver 4).gp3
25 Holy Wars The Punishment Due Megadeth Megadeth - Holy Wars The Punishment Due (ver 5 by emad).gp4
26 The Unforgiven Metallica Metallica - The Unforgiven (ver 12 by DUDERMAN).gp5
27 Twinkle Twinkle Little Star Misc Children Misc Children - Twinkle Twinkle Little Star.gp5
28 Silent Night Misc Christmas Misc Christmas - Silent Night (ver 4 by Paulicz).gp5
29 A Star Is Born Misc Soundtrack Misc Soundtrack - A Star Is Born - Shallow.gp
30 Harry Potter Misc Soundtrack Misc Soundtrack - Harry Potter - Hedwigs Theme.gp5
31 Inception Misc Soundtrack Misc Soundtrack - Inception - Time (ver 5).gpx
32 Game Of Thrones Theme Misc Television Misc Television - Game Of Thrones Theme (ver 8 by LewtElune).gp5
33 Happy Birthday Misc Traditional Misc Traditional - Happy Birthday (ver 3 by luhudroid).gp5
34 Spanish Romance Misc Traditional Misc Traditional - Spanish Romance (ver 3 by GuiTaR ChOppER).gp5
35 The Star-Spangled Banner Misc Traditional Misc Traditional - The Star-Spangled Banner (ver 4 by Euclid47).gp5
36 Comfortably Numb Pink Floyd Pink Floyd - Comfortably Numb.gp5
37 Is There Anybody Out There Pink Floyd Pink Floyd - Is There Anybody Out There (ver 3).gp3
38 Money Pink Floyd Pink Floyd - Money (ver 2 by patrick guitar).gp4
39 Time Pink Floyd Pink Floyd - Time (ver 4 by Rock Glenn).gp5
40 Love Of My Life Queen Queen - Love Of My Life.gpx
41 Creep Radiohead Radiohead - Creep (ver 8 by Rock Glenn).gp5

Continued on next page
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ID Title Artist Filename
42 Black Magic Woman Santana Santana - Black Magic Woman (ver 2).gp4
43 House Of The Rising Sun The Animals The Animals - House Of The Rising Sun (ver 7 by mandelstamdavid).gpx
44 Blackbird The Beatles The Beatles - Blackbird (ver 4 by James McLeod).gpx
45 Blackbird The Beatles The Beatles - Blackbird.gp4
46 Seven Nation Army The White Stripes The White Stripes - Seven Nation Army (ver 12 by gerusbel).gp5
47 La Grange ZZ Top ZZ Top - La Grange (ver 2).gp5
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Appendix B

Grid search results of the note-event
separator

For developing the note-event separator, two strategies were implemented and tested:
the F0 segmentation-based strategy and the onset detection-based strategy. The frame
size and hop size used for both strategies were chosen empirically using a grid search
over various frame size and hop size values. The complete results obtained from the grid
search are presented in table B.1 and table B.2.

Table B.1: Grid search results of the note-event separator using the F0 segmentation-

based strategy. PDT: pitch difference threshold. NDT: note duration threshold.
frame size hop size PDT NDT precision (%) recall (%) f1 (%)

1024 256 0.1 25 28.5 32.4 30.3
50 38.0 36.1 37.0
75 40.7 33.4 36.7

0.2 25 60.0 38.2 46.6
50 64.0 38.8 48.4
75 63.8 37.5 47.3

0.4 25 56.3 30.4 39.5
50 57.4 30.5 39.8
75 56.7 29.3 38.6

0.8 25 41.3 16.7 23.8
50 41.8 16.8 23.9

Continued on next page
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frame size hop size PDT NDT precision (%) recall (%) f1 (%)
75 41.4 16.4 23.5

512 0.1 25 32.2 34.7 33.4
50 38.4 36.0 37.2
75 39.5 32.4 35.6

0.2 25 57.1 37.2 45.1
50 61.0 37.9 46.7
75 60.1 35.6 44.7

0.4 25 57.0 32.9 41.7
50 58.6 32.9 42.2
75 57.1 30.6 39.9

0.8 25 49.9 24.5 32.9
50 50.1 24.4 32.8
75 48.5 22.8 31.1

768 0.1 25 30.5 35.4 32.8
50 37.4 37.9 37.7
75 40.1 32.7 36.0

0.2 25 56.3 41.5 47.8
50 64.3 43.7 52.1
75 63.2 39.0 48.2

0.4 25 61.3 40.3 48.7
50 64.5 41.1 50.2
75 63.0 37.0 46.6

0.8 25 59.9 35.6 44.6
50 61.1 35.7 45.1
75 59.5 32.7 42.2

2048 512 0.1 25 37.5 47.8 42.0
50 51.7 55.4 53.5
75 54.1 51.8 52.9

0.2 25 67.1 57.0 61.6
50 77.8 60.7 68.2
75 77.6 57.6 66.1

0.4 25 70.3 51.2 59.2
50 73.6 52.0 60.9
75 73.4 49.2 59.0

0.8 25 52.4 25.6 34.4
50 52.7 25.4 34.2

Continued on next page
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frame size hop size PDT NDT precision (%) recall (%) f1 (%)
75 51.9 24.2 33.0

1024 0.1 25 40.1 50.5 44.7
50 51.6 55.7 53.5
75 53.4 51.0 52.2

0.2 25 69.4 63.2 66.2
50 78.0 64.9 70.9
75 78.1 60.6 68.3

0.4 25 74.5 60.4 66.7
50 77.9 60.5 68.1
75 77.4 56.2 65.2

0.8 25 65.1 41.2 50.5
50 65.9 40.7 50.3
75 64.6 37.9 47.8

1536 0.1 25 14.3 25.2 18.2
50 41.5 46.1 43.6
75 46.4 42.3 44.3

0.2 25 29.1 38.2 33.0
50 66.3 58.5 62.2
75 69.9 54.4 61.2

0.4 25 40.0 43.3 41.6
50 74.3 60.5 66.7
75 75.8 55.8 64.3

0.8 25 56.1 42.0 48.0
50 67.1 45.4 54.1
75 65.8 40.7 50.3

4096 1024 0.1 25 13.2 20.9 16.2
50 23.8 28.4 25.9
75 27.4 28.6 28.0

0.2 25 29.7 33.9 31.7
50 57.0 51.3 54.0
75 61.5 51.6 56.1

0.4 25 42.6 35.2 38.6
50 50.1 37.2 42.7
75 53.8 37.2 44.0

0.8 25 44.5 29.7 35.7
50 48.1 30.6 37.4

Continued on next page
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frame size hop size PDT NDT precision (%) recall (%) f1 (%)
75 50.5 30.7 38.2

2048 0.1 25 9.8 20.0 13.2
50 18.3 21.2 19.6
75 18.3 21.2 19.6

0.2 25 19.4 29.0 23.2
50 34.4 33.6 34.0
75 34.4 33.6 34.0

0.4 25 28.4 29.4 28.9
50 37.3 29.9 33.2
75 37.3 29.9 33.2

0.8 25 31.9 27.7 29.7
50 37.5 28.1 32.1
75 37.5 28.1 32.1

3072 0.1 25 8.5 15.3 11.0
50 8.5 15.3 11.0
75 17.7 16.3 17.0

0.2 25 14.2 20.9 16.9
50 14.2 20.9 16.9
75 25.4 22.1 23.6

0.4 25 22.4 23.8 23.1
50 22.4 23.8 23.1
75 34.9 25.3 29.3

0.8 25 25.4 23.8 24.6
50 25.4 23.8 24.6
75 35.1 24.8 29.1

Table B.2: Grid search results of the note-event separator using the onset detection-based

strategy. NDT: note duration threshold.
frame size hop size NDT precision (%) recall (%) f1 (%)

1024 256 25 86.4 95.2 90.6
50 89.5 95.2 92.0
75 92.3 93.2 92.7

512 25 91.1 95.4 93.2
50 92.1 94.2 93.1

Continued on next page
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frame size hop size NDT precision (%) recall (%) f1 (%)
75 92.6 92.1 92.4

768 25 78.2 84.7 81.3
50 80.9 84.6 82.7
75 83.6 80.7 82.1

2048 512 25 85.9 95.1 90.3
50 89.4 94.7 92.0
75 92.1 91.2 91.7

1024 25 74.8 79.0 76.8
50 75.5 78.1 76.8
75 77.1 73.1 75.0

1536 25 30.6 32.5 31.5
50 31.1 32.5 31.8
75 29.6 27.6 28.6

4096 1024 25 59.8 75.4 66.7
50 66.4 76.5 71.1
75 70.5 76.5 73.4

2048 25 47.8 54.7 51.0
50 52.7 56.3 54.5
75 52.8 56.3 54.5

3072 25 11.5 11.1 11.3
50 11.5 11.1 11.3
75 11.5 11.1 11.3
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