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Abstract

The Meteorix mission is a nanosatellite demonstration mission dedicated to the obser-

vation and characterization of meteors and space debris entering into the Earth’s at-

mosphere. The scientific objectives of this mission require a high performance attitude

determination and control system (ADCS). This thesis entails the development of atti-

tude estimation and control algorithms for the Meteorix 3U cubesat. Attitude estima-

tion and control requirements are outlined, given the mission’s scientific objectives and

the power needs of the satellite. A magnetometer-only multiplicative extended Kalman

filter (MEKF) is formulated to estimate the satellite’s attitude and angular velocity. It

is compared to a conventional gyro-based MEKF and uses the derivative of the mag-

netic field and the attitude dynamics model, in place of gyroscope measurements to

update the angular velocity estimate. Results from Monte Carlo simulations show that

the magnetometer-only MEKF outperforms a gyro-based MEKF in low angular veloc-

ity scenarios. A sliding mode controller is developed for attitude control using three

magnetic actuators, while a single flywheel oriented in a momentum bias configuration

provides gyroscopic stability. Using the attitude and angular velocity feedback from

the magnetometer-only MEKF, the sliding mode control law offers better pointing ac-

curacy than a standard proportional derivative (PD) magnetic feedback controller; it is

also shown to be more robust to uncertainties and disturbances in a sensitivity study. The

magnetometer-only MEKF suffers in the presence of model uncertainties such as flywheel

misalignment and residual magnetic moment, and methods to improve the overall ADCS

performance are discussed.
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Abrégé

La mission Meteorix est une mission de démonstration de nanosatellites dédiée à l’observ-

ation et à la caractérisation des météores et des débris spatiaux entrant dans l’atmosphère

terrestre. Les objectifs scientifiques de cette mission nécessitent un système de détermination

d’attitude et de contrôle (ADCS) de haute performance. Cette thèse porte sur le développe-

ment d’algorithmes d’estimation et de contrôle d’attitude pour le cubesat Meteorix 3U.

Les exigences en matière d’estimation et de contrôle de l’attitude sont décrites, compte

tenu des objectifs scientifiques de la mission et des besoins en énergie du satellite. Un

filtre de Kalman étendu multiplicatif (MEKF) est formulé pour estimer l’attitude et la

vitesse angulaire du satellite. Il est comparé à un MEKF conventionnel basé sur un gyro-

scope et utilise la dérivée du champ magnétique et le modèle de dynamique d’attitude, à

la place des mesures du gyroscope pour mettre à jour l’estimation de la vitesse angulaire.

Les résultats des simulations de Monte Carlo montrent que le MEKF à magnétomètre seul

surpasse le MEKF à gyroscope dans les scénarios à faible vitesse angulaire. Un contrôleur

à mode glissant est développé pour le contrôle d’attitude à l’aide de trois actionneurs

magnétiques, tandis qu’un seul volant d’inertie orienté dans une configuration de bi-

ais de momentum assure la stabilité gyroscopique. En utilisant le retour d’information

sur l’attitude et la vitesse angulaire du MEKF à magnétomètre seul, la loi de contrôle en

mode glissant offre une meilleure précision de pointage qu’un contrôleur standard à re-

tour d’information magnétique proportionnel et dérivé (PD) ; il est également démontré

qu’il est plus robuste aux incertitudes et aux perturbations dans une étude de sensibilité.

Le MEKF à magnétomètre seul souffre de la présence d’incertitudes de modèle telles que
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le désalignement du volant d’inertie et le moment magnétique résiduel, et des méthodes

pour améliorer la performance globale de l’ADCS sont discutées.
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Chapter 1

Introduction

Nanosatellites, weighing between 1 and 10 kg, have become increasingly popular in re-

cent years due to the development of the standardized cubesat format [1]. Meteorix is

a cubesat mission in developement by the Centre Spatial Universitaire, CurieSat, at Sor-

bonne University [2]. It is designed for the detection of meteors and space debris entering

Earth’s atmosphere and its primary scientific objective is to estimate the flux density of

these objects autonomously, using a camera and an on-board image processing chain.

Estimating the flux density of extraterrestrial material arriving at Earth is a widely stud-

ied problem [3]. Two recent projects have been developed with the purpose to detect

meteors from space: the S-CUBE cubesat mission and the METEOR experiment aboard

the International Space Station (ISS) [4], [5]. The METEOR experiment focused on deter-

mining the chemical composition of meteors and demonstrated the feasibility to observe

meteors from space. There are also many ground-based facilities dedicated to detecting

meteors from Earth, such as large camera networks in Canada, Australia, and Europe,

and in particular the French Fireball Recovery and InterPlanetary Observation Network

(FRIPON) [6]. The ability to make observations from space offers advantages over these

ground-based systems such as no weather constraints, long recording time, and wide

coverage [2]. Moreover, observations from Earth and space can be combined for stereo-

1



Chapter 1. Introduction 2

scopic measurements of meteors [7]. In fact, one of the main objectives of the Meteorix

mission is to combine the data from Meteorix and FRIPON to form accurate stereoscopic

measurements of meteor and space debris trajectories [7].

The success of the Meteorix mission depends on the reliability of the satellite’s attitude

determination and control system (ADCS). The aim of this thesis is to develop an ADCS

for the Meteorix satellite that can enable the fulfillment of the scientific objectives of the

mission. Specifically, accurate meteor localization and tracking from a satellite require

accurate estimates of the satellite’s attitude [7]. Active attitude control is needed to de-

tumble the satellite after departure from the launch vehicle, align the satellite in a desired

pointing direction, and perform re-orientation maneuvers throughout the mission. As

such, three distinct mission modes are defined: detumbling mode, alignment mode, and

nominal mode. Each mode has specific attitude control and estimation requirements that

must be met. The camera and detection chain require high power consumption and place

a heavy computational burden on the satellite’s on-board computer [2]. For this reason,

the Meteorix ADCS needs to use minimal sensors and actuators and be computationally

efficient. The sensor and actuator configuration of the Meteorix cubesat is based upon

the French EyeSat nanosatellite which was launched in 2019 [8]. EyeSat used a combina-

tion of star-trackers and magnetometers for attitude estimation, and magnetic actuators

and reaction wheels for attitude control. However, due to the power consumption and

computational constraints of the Meteorix mission, it was recommended that a single

three-axis magnetometer should be used for attitude estimation, while attitude control

should be done with three magnetic actuators. In addition, one flywheel oriented in a

momentum bias configuration should provide gyroscopic stability. The Meteorix ADCS

resarched in this thesis is therefore based on this unique sensor and actuator configura-

tion.
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1.1 Related Work

1.1.1 Attitude Estimation

Satellite attitude estimation can be done in many ways and has been studied since the

1960s. One of the earliest methods is an algebraic approach that calculates the attitude

from a set of two vector observations, as for example, magnetometer measurements of

Earth’s magnetic field vector. This is a deterministic method known as the TRIAD algo-

rithm [9]. In 1965, Wahba proposed the famous attitude determination problem which in-

volves finding the optimal rotation matrix between two coordinate frames using a weighted

set of any number of vector observations [10]. There are two notable early solutions to

Wahba’s problem. Davenport’s q-method, reported in [11] solves for the unit quater-

nion parameterization of the attitude instead of the 9-element rotation matrix. How-

ever, this required performing an eigenvalue decomposition of a 4x4 matrix and was

too computationally complex for the computers at the time [10]. The first algorithm

suited to onboard computer processors was Shuster’s Quaternion Estimator, known as

the QUEST method [9]. QUEST was first applied in the MAGSAT mission in 1979 and is

still widely used today [10]. These deterministic formulations do not explicitly account

for the stochastic nature associated with random measurement noise and model uncer-

tainty. As algorithm robustness and accuracy demands increased and computer proces-

sors became more capable, more complex algorithms emerged.

The extended Kalman filter (EKF) became the go-to method for satellite attitude estima-

tion in the early 1980s [12]. In this work, we parameterize Meteorix’s attitude with the

unit quaternion. The quaternion is a four-parameter, singularity-free attitude represen-

tation and is subject to a unit norm constraint. This unit norm constraint presents some

problems in the standard EKF implementation [12]. As a result, several variations of the

EKF have been proposed to better handle quaternions. One of the most popular variations

is known as the multiplicative EKF (MEKF) [13]. Instead of estimating the full quaternion,
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the MEKF estimates a three parameter attitude error and then updates the full estimate

with quaternion multiplication. The attitude kinematics must be propagated to predict

the estimate at each time step. This propagation requires an estimate of the satellite’s an-

gular velocity which can be obtained in one of two ways. The first and most common way

is to measure the angular velocity directly with a gyroscope and estimate the gyroscope

bias to correct the measurement. The second is to estimate the angular velocity directly

with the filter, in which case the attitude dynamics model is used to propagate the esti-

mate. The traditional MEKF, referred to herein as the gyro-based MEKF, uses the former

method and estimates the satellite attitude error and gyroscope bias error [14].

Most satellite attitude estimation techniques use vector measurements from any num-

ber of sensors including star trackers, Sun sensors, and magnetometers. However, we are

more interested in single sensor attitude estimation methods as Meteorix is limited to one

magnetometer. Luckily, the use of minimal sensors that provide sufficiently accurate atti-

tude estimates has become a widely studied problem, particularly for small satellites [15].

One reason for this is that the noise characteristics of MEMS (micro-electromechanical

systems) gyroscopes used in CubeSat applications are 10 - 100 times worse than modern

fiber-optic gyroscopes used in larger satellites, and they are more sensitive to changes in

temperature [16]. Precision pointing cubesats tend to use star trackers for both attitude

and angular velocity estimation when high attitude control accuracy is required [16]. A

comparison of gyroless and gyro-based attitude estimation using star tracker measure-

ments is presented in [17]. It is shown that an MEKF using only star tracker measurements

and the satellite attitude dynamics model performs as well or better than the gyro-based

MEKF. A similar gyroless MEKF using only Sun vector measurements was developed for

application to the O/OREOS 3U cubesat [18].

The magnetometer is a reliable sensor in the context of single sensor attitude estima-

tion. A magnetometer measures the Earth’s magnetic field as experienced by the satellite.
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Unlike star trackers that must point in a specific direction to take measurements, or Sun

sensors that can only take a measurement when the satellite is not in Earth’s shadow, mag-

netometers provide measurements at all times throughout a satellite’s orbit. Furthermore,

modern magnetometers measure Earth’s magnetic field with a high degree of precision.

Magnetometer-only attitude estimation requires the use of highly accurate models of the

Earth’s magnetic field, such as the International Geomagnetic Reference Field (IGRF) [19].

There are several magnetometer-only attitude estimation techniques found in the litera-

ture. One of the earliest methods is DARDMOD, or deterministic attitude and rate de-

termination using magneteomter-only data [20]. This method uses a batch of sequential

magnetometer measurements as well as control law data, such as reaction wheel momen-

tum or magnetic dipole moments. While the solution can be accurate to 10◦, it requires

solving an 8th order polynomial and is therefore inefficient [21]. Furthermore, it assumes

no external disturbances act on the satellite and does not account for uncertainty in the

measurements or the model. Kalman filtering can be used to improve the accuracy of

magnetometer-only attitude estimation [22].

Psiaki et. al proposed a magnetometer-only EKF to estimate the attitude, angular rates,

and disturbance torques for a gravity gradient stabilized spacecraft [22]. More recently,

Ma et al. used an unscented Kalman filter (UKF) with magnetometer measurements to

estimate the satellite attitude and calibrate the magnetometers [23]. An interesting EKF

formulation using magnetometer measurements combined with readings from the satel-

lite’s solar cells to estimate attitude is presented in [24]. Another magnetometer-only EKF

is presented in [25] to estimate a satellite’s attitude and angular velocity and a second-

order model is used to propagate the states. A two-step EKF was implemented in [15].

In the first step, the magnetometer measurement is filtered to provide the magnetic field

derivative vector. This is combined with the magnetic field vector in the second step to

fully resolve the satellite attitude and angular velocity. It was shown that the EKF com-
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bined with an already calibrated filter provides computational efficiency over a UKF and

has comparable accuracy [15].

Two interesting EKF variations using only magnetometer data formulated for simultate-

nous orbit and attitude estimation are presented in [26]. The first variation is an aug-

mented dynamics EKF (ADEKF) in which the attitude dynamics and kinematics mod-

els are augmented with the orbit dynamics and kinematics to build up a single process

model. Two interlaced EKFs (IEKF) working simultaneously are introduced to reduce

the computational burden of dual attitude and orbit estimation. In both filters, the time

derivative of the magnetic field is used to estimate the satellite angular velocity and is ob-

tained by differentiating a cubic polynomial fit of the magnetometer measurements [26].

1.1.2 Magnetic Attitude Control

The use of magnetorquers for attitude control is attractive for small satellite missions due

to their low-cost, simplicity, and power efficiency [27]. The major drawback of using mag-

netorquers for attitude control purposes is that the torques generated are constrained to

lie in the plane perpendicular to the magnetic field. For this reason the satellite is un-

controllable in the direction of the magnetic field. Full three axis controllability can be

achieved only if there is enough variation in the magnetic field direction throughout the

satellite’s orbit [28]. Luckily, the Earth’s magnetic field seen by a satellite on a near-polar

orbit is approximately periodic, exhibiting enough variation on average for three axis

controllability over time [29].

Magnetic actuation is commonly used to detumble a satellite after separation from the

launch vehicle, as this can cause excessive initial angular momentum. The classical B-

dot control law can be applied in this scenario [30]. The B-dot control law relates the

commanded magnetic dipole moment to the measured rate of change of the magnetic

field. Its simplicity and reliability make it the standard method for initial detumbling
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of magnetically actuated satellites [31]. Magnetic attitude control is also often used for

spin stabilization, in which the satellite is controlled to rotate at a high rate abot its major

principal axis. In this case, magnetic actuation can be used to control the direction of the

satellite’s angular momentum. The bang-bang control law proposed in [32] is a popular

scheme still used today, with extensive numerical simulations presented in [33]. The spin

stabilization concept was used in the EyeSat mission for attitude control in safe mode,

in which the satellite must use as few sensors and actuators as possible to limit failures

while the batteries are recharged by the solar panels. To achieve this, a spin control law

using only magnetic feedback was implemented to point EyeSat’s solar panels toward the

sun while maintatining a desired spin rate about its principal axis [34].

Of particular relevance to the Meteorix mission are magnetic attitude control algorithms

used in momentum bias satellites. A momentum bias satellite incorporates a flywheel

spinning at a constant rate to provide gyroscopic stability. Magnetic actuation can be

used to provide any necessary rotation about the flywheel’s spin axis. In many cases the

flywheel’s spin axis is aligned with the orbit normal and in this way the satellite is grav-

itationally stabilized in the orbital plane [31]. This is exactly the configuration of the Me-

teorix cubesat. A simple PD control law using the desired magnetic field and its deriva-

tive was developed for the momentum bias Gurwin-Techsat satellite and was shown to

maintain three-axis stabilization [35]. A similar PD control law was implemented in the

EyeSat mission to correct residual pointing errors about the guidance profile [36]. This is

the same PD control law that was used in previous unpublished work on the Meteorix

attitude control system in [37].

Given that the observation of meteors requires accurate attitude estimates, using these es-

timates as feedback to more sophisticated attitude control laws can provide better control

performance. Optimal control is a popular approach used in this regard [31]. Lagrasta

et al. developed an optimal state feedback control law with integral action to reduce
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the effect of external torque disturbances on a LEO satellite with a pitch-axis momentum

wheel [38]. A review of linear and nonlinear control using only magnetic actuation with

an emphasis on optimal periodic control is presented in [39]. Linear Quadratic Regulation

(LQR) is a popular theory applied to magnetic attitude control and is often implemented

in a time-varying fashion by making use of the periodic nature of the Earth’s magnetic

field [29], [40]. Nonlinear control using magnetic actuation has also been studied exten-

sively, particular sliding mode control. Sliding mode control is an attractive choice for

magnetic attitude control as it can be shown to be asymptotically stable, and its nonlin-

earity makes it advantageous over other methods, such as PD control, in the presence

of external disturbances [31]. Classic sliding mode control was first proposed for mag-

netic attitude control of the Orsted satellite in [41]. Several improvements to this control

law can be found in [42], [43], and [44]. In [42] an additional term was introduced to the

sliding mode control law for partial disturbance rejection and in [43] an integral sliding

mode controller was formulated. This was expanded upon in [44] with a adaptive sliding

manifold design including two time-integral terms. Other adaptive sliding mode control

methods are presented in [45] and [46]. Zhou et al. formulated a modified sliding mode

controller for a satellite with uncertain parameters, the BUAA-SAT microsatellite [45].

The control law deals with uncertainty in the principal moment of inertia and achieves

an Earth-pointing attitude with high accuracy and stability. Li et al. proposed an adaptive

fuzzy-logic sliding mode controller for a cubesat with three magnetic actuators and one

pitch-axis reaction wheel and it is shown to have much better tracking performance than

a classic PID controller [46].

Few papers were found that studied magnetometer-only attitude estimation and mag-

netic attitude control in combination. One noteable example is a modified state-dependent

Ricatti equation (MDSRE) control law combined with a magnetometer-only EKF investi-

gated in [47] and applied to EgyptSat-1 as a real test case to evaluate the ADCS per-

formance. In [48], a similar magnetometer-only EKF for attitude and rate estimation



Chapter 1. Introduction 9

is combined with a PD feedback controller for a nadir-pointing magnetically actuated

spacecraft.

1.2 Thesis Objectives

The aim of this thesis is to develop attitude estimation and control algorithms for the Me-

teorix cubesat to satisfy requirements imposed by the scientific objectives of the mission,

given its unique sensor and actuator configuration. Before developing the ADCS, specific

attitude estimation and control requirements must be outlined based on the scientific ob-

jectives, as well as the power needs of the satellite. The ADCS is formulated based on

these requirements and the constraints on the system. For attitude estimation, the goal

is to show that the MEKF using only magnetometer measurements can provide accurate

and reliable estimates of the satellite’s attitude and angular velocity. A comparison of the

magnetometer-only MEKF with the traditional gyro-based MEKF is carried out to evalu-

ate the estimator performance. The main requirement of the attitude controller is to reach

and maintain the necessary pointing accuracy in each mission mode. A nonlinear sliding

mode controller based on the literature is formulated for attitude control of Meteorix. The

objective is to demonstrate that the sliding mode controller using state feedback from the

magnetometer-only MEKF can reliably and sufficiently accurately control the satellite’s

attitude in each mission mode. To further evaluate its performance, it is compared to

the simple PD magnetic feedback controller applied to Meteorix in previous work [37].

It is also shown that the sliding mode controller offers better performance than the PD

controller in the presence of uncertainties in the satellite model.

1.3 Thesis Outline

Chapter 1 introduces the Meteorix project and motivation of this thesis and discusses rel-

evant work in the topics of satellite attitude estimation and control. In Chapter 2, the
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Meteorix mission design and objectives are presented with emphasis on the attitude esti-

mation and control requirements. Chapter 3 details the satellite dynamics and kinemat-

ics models and various aspects of the simulation environment employed to evaluate the

ADCS as developed in subsequent chapters. In Chapter 4, the magnetometer-only MEKF

for attitude and angular velocity estimation is formulated and compared to the tradi-

tional gyro-based MEKF. The perfromance of both estimators is analyzed and compared

with data from Monte Carlo simulations. Chapter 5 details the formulation of the sliding

mode attitude controller and the simple PD magnetic feedback controller. The two con-

trol laws are compared in simulations of each mission mode. Chapter 5 also includes a

sensitivity study to evaluate the ADCS performance in the presence of uncertainties and

disturbances. Finally, Chapter 6 concludes the thesis with recommendations for future

work on the Meteorix ADCS.



Chapter 2

Meteorix Mission

2.1 The Mission

The main objective of the Meteorix mission is to demonstrate that a low-cost nanosatellite

equipped with a camera and an on-board detection chain can autonomously and accu-

rately estimate the flux density of meteors and space debris entering the Earth’s atmo-

sphere. The ability to estimate the flow of meteors and space debris entering Earth’s at-

mosphere is useful for many reasons. This data can be used to constrain existing meteor

models such as the Interplanetery Meteoroids Environment for Exploration (IMEX) [49],

and provide a first classification of the nature of the meteoroids, whether they are of as-

teroidal or cometary origin [2]. Furthermore, the space debris environment in LEO is

becoming increasingly hazardous. It is estimated that there are hundreds of thousands of

space debris 1 to 10 centimeters in size which are undetectable with current observation

facilities on the ground. Objects of this size pose a threat to satellite’s in LEO and can

cause catastrophic damage; thus, it is essential to be able to monitor them. Measurements

from Meteorix will provide information that can improve spatial distribution models of

space debris.

Observations of meteors and space debris entering Earth’s atmosphere can only be made

11



Chapter 2. Meteorix Mission 12

while Meteorix is in Earth’s shadow. With this in mind, careful consideration was taken

when selecting the satellite’s orbit in [2]. It must be in Earth’s shadow long enough to

collect a sufficient amount of data; on the other hand, the satellite must be Sun-lit for long

enough to charge the batteries and power the system. Therefore, the orbit chosen for the

Meteorix mission is quasi-polar and Sun-synchronous at an altitude of 500 km, with an

inclination of 97.4◦, an ascending node fixed at 10:30 local mean solar time (LST), and

a period of 94.7 minutes [2]. In such an orbit, the satellite is eclipsed by the Earth for

approximately 35 minutes and Sun-lit for around 60 minutes.

2.1.1 Satellite Design

Meteorix is a 3U cubesat measuring 30x10x10 cm3 and its preliminary design and body-

fixed reference frame are shown in Figure 2.1. The body-fixed frame, Fb, is fixed at the

satellite’s center of mass. The primary payload is a 3D Plus 3DCM681 micro-camera

integrated with an optical lense that provides a 40◦ field of view. The camera is positioned

at the bottom of the satellite along the zb axis and must point toward the nadir to make

observations. Four deployable solar panels will provide power to the satellite and charge

its batteries while pointing toward the Sun. The attitude control system consists of an ISIS

Magnetorquer Board (iMTQ) which has 3 perpendicular magnetic actuators, one for each

of the satellite’s principal axes and each capable of producing a maximum dipole moment

of 0.2 Am2 [50]. In addition, the satellite is equipped with one Hyperion Technologies

RW210 momentum wheel oriented in a momentum bias configuration along the satellite’s

yb-axis to provide gyroscopic stability. Attitude estimation must be realized with a single

three-axis magnetometer which measures the ambient magnetic field experienced by the

satellite, and a GPS receiver combined with communication between ground stations will

provide position and velocity estimates. The cubesat has an estimated mass of 3.784 kg

and its principal moments of inertia are estimated to be Jxx = 0.0586 kgm2, Jyy = 0.0589

kgm2, Jzz = 0.0482 kgm2. This preliminary design was proposed in the Meteorix mission

feasibility review and details of the mission analysis are described in [2].
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Figure 2.1: Preliminary design of the Meteorix satellite [2].

2.1.2 Modes of Operation

As mentioned in the introduction, the Meteorix mission is separated into three main

modes of operation: (i) detumbling mode, (ii) alignment mode, and (iii) nominal mode,

which as noted earlier, has two sub-modes; Earth-pointing and Sun-pointing. The pur-

pose of detumbling mode is to reduce the satellite’s angular velocity after departure from

the launch vehicle. The departure causes the satellite to spin at an unknown rate, and

in this state the satellite cannot make any observations of the Earth or accurately point

its solar panels toward the Sun. The deployment of the solar panels can partially reduce

the satellite’s angular momentum but active control is required to further detumble the

satellite to an acceptable angular rate. The alignment mode is activated when a near-zero

angular rate is detected. In this mode, the satellite should point its solar panels toward

the sun and align its yb-axis with the orbit normal. Alignment with the orbit normal al-

lows the satellite to take advantage of the gyroscopic stiffness provided by the flywheel

and perform all subsequent maneuvers about this axis. Once good alignment has been

achieved and the batteries have been fully recharged, the nominal mission mode is ac-
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tivated. The satellite must alternate between pointing the camera toward the Earth to

make observations and pointing the solar panels toward the Sun to recharge the batteries.

Thus, two re-orientation maneuvers are to be performed during each orbit. To maximize

the time for observations of meteors and space debris and assuming that ADCS takes 10

minutes to perform the reorientation, the maneuver to point the camera toward the Earth

should be initiated 10 minutes before entering Earth’s shadow. Subsequently, the maneu-

ver to point the solar panels toward the Sun should be initiated only as the satellite exits

Earth’s shadow. This maximizes the time for meteor detection.

2.2 Power and Energy Analysis

It is necessary to verify that the satellite can receive enough power to sustain operation

throughout the mission. The solar cell assembly chosen for the Meteorix mission is the TJ

Solar Cell Assembly 3G30A from Azur Space Solar Power GmbH. The four solar panels

each have six solar cells for a total of ns = 24 solar cells. Each cell has a surface area of

As = 30.18cm2 and an energy efficiency of ηs = 29.3% [51]. Considering the solar constant

to be SR = 1360.8 Wm−2 [52] and the efficiency of the maximum power point tracking

(MPPT) system to be ηm = 90%, the maximum power available from the solar panels is:

Pmax = nsηsηmSRAs ≈ 25.99W (2.1)

The actual power, Ps, generated by the solar panels and supplied to the satellite depends

on the angle, θs, between the outward surface normal of the solar panels (also the zb axis)

and the Sun direction. This is calculated with:

Ps = Pmaxcos(θs) (2.2)

An analysis on the power and energy consumption of the satellite’s subsystems in the

nominal mission mode allows us to determine if the satellite generates enough power
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to sustain full operation in nominal mode. Table 2.1 summarizes the estimated power

consumption of each subsystem’s components in the Earth-pointing and Sun-pointing

modes. The high power consumption in Earth-pointing mode is due to the operation of

the camera and the on-board meteor detection algorithm. Note that the values presented

in Table 2.1 are merely estimates based on information from the EyeSat mission and a

more in depth analysis should be performed prior to launch once the satellite design has

been finalized. It is assumed that the power consumption during detumbling and align-

ment modes is equivalent to that in the Sun-pointing mode, as the camera and meteor

detection chain will not be active.

Table 2.1: Power consumption of Meteorix subsystems during Earth-pointing and Sun-

pointing.

Power Consumption (W)

Subsystem Component Earth-pointing Sun-pointing

Command and Data handling On-board computer 5.00 2.00

Camera 2.00 0.20

ADCS board 1.20 1.20

ADCS Magnetorquers 1.00 1.00

Reaction wheel 0.80 0.80

Magnetometer 0.30 0.30

Communications GPS receiver 0.12 0.12

UHF/VHF 2.0 0.5

S-band transceiver 2.0 0.5

Electrical power system MPPT 0.2 0.2

Thermal control system Thermoelectric cooler 2.0 2.0

Total consumed power (W) 16.62 8.82

The satellite must use the energy stored in the batteries during Earth-pointing mode and

during the attitude re-orientation maneuvers. With this information and using Table 2.1,

the energy drawn from the batteries over one orbit can be estimated. First, let Tep be the
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time spent pointing the camera toward the Earth and let Tm be the time required for each

of the reorientation maneuvers (assumed equal). The energy drawn from the batteries

during one orbit is then:

Eb = PepTep + 2PmTm (2.3)

It is assumed that the power consumed during maneuvers, Pm, is equivalent to that in

Sun-pointing mode as the camera and on-board detection chain will not be active. In Sun-

pointing mode, the solar panels provide power to the satellite’s subsystems and recharge

the batteries in parallel. The energy consumed by the satellite in Sun-pointing mode is

simply:

Esp = PspTsp (2.4)

where Psp, the power consumption in Sun-pointing mode, is obtained from Table 2.1 and

Tsp is the time spent Sun-pointing. For one orbit, it is estimated that Tep = 35 minutes,

Tm = 10 minutes, and Tsp = 40 minutes. The estimated total energy consumed over one

orbit is therefore:

ET = Eb + Esp = 18.52 Wh (2.5)

It is assumed that the satellite’s power distribution system has an efficiency of 90%. Using

D-SPOSE, it was determined that the angle between Meteorix’s orbital plane and the Sun

direction is 22.5◦. Thus, the best Sun-pointing angle that can be acheived while keeping

the yb axis aligned with the orbit normal is θs = 22.5 ◦. Therefore, the maximum energy

generated by the solar panels and supplied to the satellite is estimated to be:

Es = 0.9PsTsp = 14.41 Wh (2.6)

Evidently, with the assumption that the camera and detection chain are active for the en-

tire duration of Earth-pointing mode, the total energy consumed over one orbit is greater

than the energy generated by the solar panels. Thus, to ensure that the energy in the
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batteries is not depleted below a safe threshold, the camera and on-board detection chain

should not be operated for the entire duration of Earth-pointing mode.

2.3 Attitude Control and Estimation Requirements

To fulfill the scientific objectives of the mission, the satellite must be able to meet specific

attitude control and estimation requirements during each mode of operation. In each

mode, the attitude controller needs a desired attitude and angular velocity. The desired

attitude is calculated from the desired body-fixed frame orientation defined by Fd = {xd,

yd, zd}. The main attitude control requirement is defined with a pointing angle, β, be-

tween the satellite’s zb axis and the desired zd direction in the inertial frame. A secondary

pointing angle, γ, defines the alignment of the satellite yb axis with the orbit normal. It

is desired to maintain good alignment with the orbit normal to take advantage of the gy-

roscopic stability provided by the flywheel. The desired angular velocity of the satellite

in each mode is defined by ωd with a desired angular rate of ωd = ||ωd||. The satisfaction

of the attitude estimation requirement in each mode is quantified with the total angular

error, δα, between the satellite’s true attitude and the estimated attitude. Similarly, the

quality of angular velocity estimation is defined with δω, the magnitude of the difference

between the true and estimated angular velocity.

2.3.1 Detumbling Mode

The goal of detumbling mode is to simply reduce the satellite’s angular momentum, so it

does not have a strict attitude pointing requirement. The desired angular velocity passed

to the attitude controller is simply zero. However, the satellite is considered to be detum-

bled and can transition to the alignment mode when its angular rate, ω = ||ω||, meets the

following criteria:

ω < 0.3 ◦/s (2.7)
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The widely used B-dot control only requires knowledge of the magnitude and direction

of the magnetic field to successfully detumble the satellite. If the satellite’s attitude and

angular velocity are estimated, more sophisticated state feedback control laws can be em-

ployed to detumble the satellite with faster response time and more precision than B-dot

control [31]. As stated in the introduction, a magnetometer-only MEKF is envisioned for

attitude and angular velocity estimation which is fedback to a sliding mode attitude con-

troller. The angular velocity estimate must be small enough for the attitude controller to

successfully detumble the satellite. While there is no strict attitude estimation require-

ment in this mode, it is desired that the attitude estimate error be relatively small at the

end of detumbling mode. Therefore, the estimation requirements in the detumbling mode

are set as δα < 5 ◦ and δω < 0.1 ◦/s.

2.3.2 Alignment Mode

This mode requires the attitude controller to point the solar panels toward the sun and

also align the satellite’s yb-axis with the orbit normal. The desired orientation of the body-

fixed frame in this mode is shown in Figure 2.2 and is expressed in the inertial frame as:

zd =
n×o (r×sunno)

||n×o (r×sunno)||
(2.8)

yd =
no
||no||

(2.9)

xd = y×d zd (2.10)

where no is the direction of the orbit normal and rsun is the Sun direction obtained from

the Sun ephemeris data. The orbit normal direction is calculated through the cross prod-

uct of the satellite’s position and velocity vectors:

no = r×v (2.11)
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The pointing angles β and γ are illustrated in Figure 2.2. By aligning the yb axis with the

orbit normal, subsequent maneuvers only need to be performed about the orbit normal

as the flywheel provides gyroscopic stability on the yb axis. Therefore the satellite should

point its solar panels toward the Sun as best as possible while keeping yb well aligned

with the orbit normal, and maintain a near-zero angular rate. The attitude control re-

quirements in this mode are thus β < 1 ◦, γ < 2 ◦ and ω ≈ 0 ◦/s. To achieve this pointing

accuracy, the attitude controller requires good estimates of the satellite’s state. Therefore

the estimation requirements are set as δα < 2 ◦ and δω < 0.01 ◦/s.

r

ZI

XI

YI

zb
yb

no

γ

rsun

β

zd

Figure 2.2: Desired orientation in alignment mode.

2.3.3 Nominal Mode

The desired satellite orientations in nominal mode are illustrated in Figure 2.3. To point

the camera directly toward Earth, the satellite’s zb axis must be aligned with the position

vector, r, and the yb axis must remain aligned with the orbit normal:
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Figure 2.3: Desired orientations in nominal mode.

zd =
r

||r||
(2.12)

yd =
no
||no||

(2.13)

xd = y×d zd (2.14)

The desired orientation in Sun-pointing mode is the same as that in alignment mode, de-

scribed by Equations (2.8) - (2.10). As stated earlier, β defines the angle between zb and

zd. The required pointing angles in Sun-pointing mode are β < 1◦ and γ < 2 ◦. In Earth-

pointing mode, a zb − zd angle of β < 20 ◦ is adequate given that the camera has a 40 ◦
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Table 2.2: Attitude control and estimation requirements of the Meteorix mission.

Mode Control Requirements Estimation Requirements

Detumbling ω < 0.3 ◦/s δα < 5 ◦ δω < 0.1 ◦/s

Alignment β < 1 ◦, γ < 2 ◦ ω ≈ 0 ◦/s δα < 2 ◦ δω < 0.01 ◦/s

Earth-pointing β < 20 ◦, γ < 2 ◦ ω ≈ 0.06 ◦/s δα < 0.5 ◦ δω < 0.01 ◦/s

Sun-pointing β < 1 ◦, γ < 2 ◦ ω ≈ 0 ◦/s δα < 0.5 ◦ δω < 0.01 ◦/s

field of view. The attitude estimation accuracy in Earth-pointing mode greatly impacts

the meteor positioning accuracy [7]. It is shown in [7] that to achieve a desired meteor

positioning accuracy of 1 km through stereoscopic measurements, the attitude estimate

should be accurate to within 0.05◦. However, this assumed that high accuracy sensors

such as a star-tracker are used. As stated earlier, Meteorix will only use one magnetome-

ter for attitude estimation and therefore a desired accuracy of δα < 0.5 ◦ is proposed. This

estimation accuracy should be maintained throughout the nominal mission mode.

In Sun-pointing mode, the desired angular velocity of the satellite is zero. To keep the

camera pointing directly to nadir in the Earth-pointing mode, the satellite should rotate

at a rate equal to its orbital rate, about the orbit normal:

ωd =
2πno
T

(2.15)

where T is the orbital period. Given Meteorix’s orbital period of approximately 94.7 min-

utes and keeping the yb axis aligned with the orbit normal, this represents a desired angu-

lar rate of ωd ≈ 0.06 ◦/s about the yb axis. With this control requirement, required angular

velocity estimate accuracy is set as δω < 0.01 ◦/s. To summarize, the attitude control and

estimation requirements for each mission mode are listed in Table 2.2.
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Meteorix Simulation Model

The Meteorix simulation model is detailed in this chapter, starting with a description of

the simulation environment in Section 3.1. The orbit and attitude dynamics and kinemat-

ics models are presented in Section 3.2, and the magnetic field model is outlined in Section

3.3. The perturbations included in the simulations of Meteorix are outlined in Section 3.4.

3.1 Simulation Environment

The Debris SPin/Orbit Simulation Environment (D-SPOSE) is a high-fidelity propagator

developed by Sagnieres for long-term simulation of space debris [53]. This tool includes

numerical integrator for propagating the satellite’s orbit and attitude equations of motion

and allows for the inclusion of several environmental models and external disturbances.

The D-SPOSE framework, written in C, has been modified for the Meteorix mission to

include the specific satellite model and the attitude estimation and control algorithms.

The orbit and attitude equations of motion for Meteorix, as described in Section 3.2, are

propagated using a fixed timestep, fifth order Runge-Kutta Dormand-Prince numerical

integrator [54].

22
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3.2 Equations of Motion

3.2.1 Orbit Dynamics

Orbital motion of a satellite is most commonly expressed in an Earth Centered Inertial

(ECI) frame. In D-SPOSE, the True-Equator Mean-Equinox (TEME) ECI frame is used

as it corresponds to the reference frame of Two-Line Element sets (TLE) describing the

position with time of space objects which are input into D-SPOSE [53]. Throughout this

thesis the TEME frame is referred to simply as the inertial frame. The orbital motion of

the satellite is described by:

r̈ = − µ
r3

r +
∑
j

aj(r,v,q,ω) (3.1)

where µ is Earth’s gravitational parameter, r is the position of the spacecraft in the inertial

frame and is a function of time, t, r = ||r||, and v is the satellite’s velocity in the inertial

frame. The terms aj represent the accelerations due to orbital perturbations, which are

a function of the satellite’s position, velocity, attitude, and angular velocity. The attitude

is parameterized with a quaternion, q, which describes the orientation of the body-fixed

frame with respect to the inertial frame and ω is the angular velocity of the body-fixed

frame with respect to the inertial frame. The position and velocity are all expressed in the

inertial frame while the angular velocity is expressed in the body-fixed frame.

3.2.2 Attitude Dynamics and Kinematics

The attiude dynamics equation is evaluated in the body-fixed frame and relates the evo-

lution of the satellite’s angular velocity to the sum of external torques about the satellite’s

center of mass. The standard rotational equations of motion are augmented to account

for the angulr momentum of the flywheel on Meteorix as well as the magnetic actuation.
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Thus, the attitude dynamice are defined by:

Jω̇ + ω×(Jω + Hf ) = τmc +
∑
j

τj(r,v,q,ω) (3.2)

where J is Meteorix’s inertia matrix, Hf is the angular momentum of the flywheel, τmc is

the control torque generated by the magnetic actuators, and τj are the perturbing torques

which can be a function of the satellite’s position, velocity, attitude, and angular velocity.

The control torque is produced by the interaction of the magnetic actuators with Earth’s

magnetic field, BB, expressed in the body-fixed frame:

τmc = m×actBB (3.3)

in which mact is the vector of dipole moments produced by the magnetic actuators on

each satellite body axis and is the input from the attitude controller. The control torque is

clearly constrained to lie in a plane perpendicular to the magnetic field and the magnetic

actuators alone cannot provide instantaneous three-axis controllability. With the flywheel

oriented to spin about the satellite yb axis, its angular momentum in the satellite body-

fixed frame is:

Hf =


0

Hf

0

 (3.4)

The flywheel is set to spin at a constant rate with an angular momentum ofHf = 1.5×10−3

Nms. This was chosen by the Meteorix design team and is taken from the Hyperion Tech-

nologies RW210 data sheet [55]. Note that on the real satellite, the magnetic actuators

and flywheel must be calibrated prior to launch to calculate scale factors, misalignment

terms, and any bias in their outputs. For the purposes of this thesis, they are assumed to

be perfectly calibrated with no bias.
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As noted earlier, the satellite’s attitude is parameterized by the unit quaternion defined

with scalar and vector parts as:

q =

q0
qv

 (3.5)

In this work the modern convention for quaternions is used as opposed to the Hamilton

convention. The quaternion is a singularity-free attitude representation and it is subject to

the unit norm constraint: q20 +q>v qv = 1. The rotation matrix representation of the attitude

is computed from the quaternion using:

C(q) = (q20 − q>v qv)13×3 + 2qvq
>
v − 2q0q

×
v (3.6)

where 13×3 is the identity matrix. This matrix transforms components of a vector in the

inertial frame to those in the body-fixed frame. The attitude kinematics are described by:

q̇ =
1

2
q⊗

0

ω

 (3.7)

where the ⊗ operator represents the quaternion product. In this work, the following

definition of the quaternion product is used:

q⊗ p =

 q0p0 − q>v pv

q0pv + p0qv − q×v pv

 (3.8)

For implementation, it is convenient to express the attitude kinematics with an alternative

representation of Equation (3.7) given by:

q̇ =
1

2
Ω(ω)q (3.9)
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where Ω(ω) is a 4x4 matrix formed with components of ω:

Ω(ω) =

0 −ω>

ω −ω×


It is useful to calcuate the Euler angle representation of the attitiude for analysis purposes,

as the quaternion can be difficult to interpret. The 3-2-1 Euler angles are calculated from

the quaternion with:

ψ = atan2(2(q0q3 + q1q2), 1− 2(q22 + q23)) (3.10)

θ = arcsin(2(q0q2 − q3q1)) (3.11)

φ = atan2(2(q0q1 + q2q3), 1− 2(q21 + q22)) (3.12)

where ψ, θ, and φ represent the yaw, pitch, and roll angles, respectively.

3.3 Magnetic Field Model

D-SPOSE uses the 13th Generation International Geomagnetic Reference Field (IGRF) to

model the Earth’s magnetic field [19]. The IGRF provides a 13th order spherical harmonic

expansion of the Earth’s magnetic potential in the Earth-Centered Earth-Fixed (ECEF)

frame [53] and is given by:

V (r, φ, λ, t) = a

k∑
n=1

(
a

r
)n+1

n∑
m=0

(gmn (t)cos(mλ) + hmn (t)sin(mλ))Pm
n [cos(φ)] (3.13)

where r is the radial distance from the center of the Earth, a is the geomagnetic convention

for Earth’s mean reference spherical radius, φ is the colatitude, and λ is the longitude. The

Gauss coefficients, gmn and hmn , are functions of time and are obtained from the IGRF co-

efficients table [56]. A recursive algorithm is included in D-SPOSE to obtain the Schmidt

normalized associated Legendre functions, Pm
n , evaluated at φ [53]. The magnetic field
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vector in the ECEF frame is calculated with:

B = −∇V (3.14)

In D-SPOSE, the magnetic field vector, B, is transformed from the ECEF frame to the

inertial frame to get BI . The details of this transformation as well as the derivation of an

anatytical expression for ḂI , the time rate of change of the magnetic field in the inertial

frame, are given in [53]. The magnetic field vector and its derivative in the body-fixed

frame are calculated with:

BB = C(q)BI (3.15)

ḂB = C(q)ḂI − ω×BB (3.16)

In Chapter 4, Equations (3.15) and (3.16) are reintroduced as the measurement model of

the magnetomter-only MEKF.

3.4 Perturbations

3.4.1 Standard LEO perturbations

In this work, the following environmental perturbations are included in the propagation

of the orbit and attitude dynamics: aerodynamic drag and torque, acceleration due to

non-spherical Earth gravitational terms and torque due to gravity gradient, and solar ra-

diation pressure and torque. These are three of the most prominent perturbations for

nanosatellites in LEO. The models used for these perturbations are listed in Table 3.1 and

the equations describing how these perturbations are calculated in D-SPOSE can be found

in [53]. To model the aerodynamic drag and solar radiation pressure perturbations, a tes-

salated surface geometry model of Meteorix was built by Sagnieres in [37]. The satellite
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is composed of 28 triangular surfaces with its solar panels in their open configuration as

shown in Figure 3.1. A drag coefficient cD = 2.2 is used in the calculation of aerodynamic

drag and torque. The effects of winds arising from co-rotating atmosphere are also con-

sidered. The solar radiation pressure parameters are set as Ap = 2 and F10.7 = 80sfu (1

sfu = 10−22 Wm−2Hz−1). Ap is a planetary index reflecting the amount of geomagnetic

activity, while F10.7 is the solar radio flux at 10.7 cm [37]. The coefficients of absorption

(σa), diffuse reflection (σrd), and specular reflection (σrs) of each surface of the satellite are

needed for calculating the effects of solar radiation pressure. The coefficients are assumed

to be the same for all surfaces with σa = 0.4, σrd = 0.4, and σrs = 0.2, except for the solar

panels which are set to σa = 0.7, σrd = 0.25, and σrs = 0.05 [37]. The Sun direction, rsun, is

obtained from planetary ephemerides provided by the Virtual Observatory of the Institut

de Mécanique Céleste et de Calcul des Éphémérides assuming a starting date of January

5, 2010 [57].

Figure 3.1: Tesselated surface geometry model of Meteorix in the body-fixed frame

An analysis on the effect of the perturbing torques on the Meteorix mission was carried

out in [37]. It was found that the gravity gradient, aerodynamic, and solar radiation pres-

sure torques are all similar in magnitude, on the order of 10−8 Nm. For comparison, the
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Table 3.1: Perturbation models.

Perturbation Model

Aerodynamic drag and torque NRLMSISE-00 [58]

Gravity gradient acceleration and torque EGM2008 [59]

Solar radiation pressure and torque Montenbruck and Gill [60]

magnetic actuators produce torques on the order of 10−6 - 10−5 Nm on average. Sim-

ulation results showed that the baseline PD attitude controller can perform adequately

well against these perturbations [37]. However, the aerodynamic torque is shown to in-

crease with higher solar activity. Additional simulations were performed with Ap = 80

and F10.7 = 250 sfu, resulting in aerodynamic torques to be on the order of 10−6 Nm.

This had an adverse affect on attitude control, causing the ponting errors in Earth- and

Sun-pointing modes to reach approximately 20 ◦ and 40 ◦, respectively [37].

3.4.2 Residual Magnetic Moment

The effect of residual magnetic moment was not studied in [37]. However for small satel-

lites such as Meteorix, the torque caused by the residual magnetic moment is often much

more significant than the three perturbations discussed above. The residual magnetic mo-

ment, mr, interacts with the magnetic field to produce a perturbing torque analogously

to Equation (3.3):

τmr = m×r BB (3.17)

The effect of the residual magnetic moment on the EyeSat mission was studied in [34]. It

was shown that the pointing accuracy of EyeSat’s magnetic attitude control law worsens

with increasing residual magnetic moment. A residual magnetic moment with a mag-

nitude of 0.035 Am2 results in an average pointing accuracy of 40 ◦. This represents a

moment of 0.02 Am2 on each body-fixed frame axis, equivalent to 10 % of the maximum

dipole moment produced by each magnetorquer. The EyeSat team recommended that the
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residual magnetic moment must be lower than 10% of the magnetic actuation capacity in

all directions [34]. In this thesis, the residual magnetic moment is first assumed to be zero

for the formulation of the attitude estimation and control algorithms in Chapter 4 and 5.

Its effect on the ADCS performance is analyzed in a sensitivity study at the end of Chap-

ter 5, and methods for estimation and compensation of the residual magnetic moment are

discussed.



Chapter 4

Attitude Estimation

In this chapter a magnetometer-only MEKF is formulated for attitude and angular veloc-

ity estimation of the Meteorix satellite. First, a general EKF formulation is presented in

Section 4.1 to show the basic algorithm structure for state estimation of nonlinear systems.

The traditional gyro-based MEKF is then detailed in Section 4.2 and its advantages over

the EKF for handling quaternions are highlighted. This provides the basis from which

the magnetometer-only MEKF is derived in Section 4.3. The implementation of the al-

gorithms and the key differences between the gyro-based MEKF and magnetometer-only

MEKF are then discussed in Section 4.4. In Section 4.5, the performance of each estimation

algorithm is evaluated through Monte Carlo simulations.

4.1 Extended Kalman Filter

The EKF is a well established tool for state estimation of nonlinear systems and is known

to deal effectively with uncertainty that arises from noisy sensor data [12]. As such, it is

a commonly used algorithm for sattelite attitude estimation. The EKF operates in a re-

cursive manner, consisting of a predicton step and an update step. It uses the dynamics

model of the system, linearized about the previous state estimate, to predict the current

state. It then updates the state estimate using a weighted average of the predicted state

31
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and measurements from sensors. The weights are calculated from the covariance, a mea-

sure of the uncertainty of the system, and more weight is given to the values with the

least uncertainty. The resulting state estimate is proven to be closer to the true state than

both the predicted and measured values [12].

We start by formulating an EKF for a general nonlinear system described by the following

process and measurement models:

ẋ(t) = f(x,u, t) + w(t) (4.1)

z(t) = h(x, t) + η(t) (4.2)

where x ∈ Rn×1 is the system state, u ∈ Rp×1 is the control input to the system, and

z ∈ Rm×1 is the measurement from the system’s sensors. Uncertainty in the system is

represented by w in the process model and η in the measurement model. These are as-

sumed to be zero-mean white Gaussian processes and therefore have normal probability

distributions with covariances Q ∈ Rn×n and R ∈ Rm×m, respectively:

p(w) ∼ N(0,Q) (4.3)

p(η) ∼ N(0,R) (4.4)

Defining the estimate error as δx = x− x̂, the error covariance, P ∈ Rn×n, defined by:

P = cov(x− x̂) = E{[x− x̂]>[x− x̂]} (4.5)

describes the likelihood of the state estimate. For implementation on a satellite’s flight

computer, it is necessary to formulate the EKF algorithm in discrete-time. The predicted

state estimate at timestep k, defined as x̂−k , is obtained by propagating the state estimate
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from the previous timestep, x̂k−1, using the following discrete prediction model:

x̂−k = x̂k−1 + f(x̂k−1,uk−1)∆t (4.6)

This is simply the first order approximation of the process model in Equation (4.1). The

predicted error covariance is then propagated with:

P−k = Φk−1Pk−1Φ
>
k−1 + Q∆t (4.7)

where Φk−1 is the first-order state transition matrix:

Φk−1 = 1n×n + Fk−1∆t (4.8)

and Fk−1 is the Jacobian of the process model evaluated at the previous state estimate and

control input:

Fk−1 =
∂f

∂x

∣∣∣
x̂k−1,uk−1

(4.9)

In the above, ∆t is the update rate of the estimator and is typically chosen to be equal to

the sampling rate of the system’s sensors or the on board computer. The measurement

residual is defined by:

vk = zk − h(x̂−k ) (4.10)

This signifies the discrepancy between the measurement and the estimated measurement.

The state estimate is updated at every timestep by multiplying the measurement residual

with the Kalman gain, Kk ∈ Rn×m:

Kk = P−k HT
k (HkP

−
k H>k + R) (4.11)

x̂k = x̂−k + Kkvk (4.12)
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In Equation (4.11), the matrix Hk ∈ Rm×n is the Jacobian of the measurement model eval-

uated at the predicted state estimate:

Hk =
∂h

∂x

∣∣∣
x̂−
k

(4.13)

Finally, the error covariance is updated with:

Pk = (1n×n −KkHk)P
−
k (1n×n −KkHk)

> + KkHkK
>
k (4.14)

The general EKF algorithm is summarized in Table 4.1. In the next section a modified

version of the EKF is introduced for application to attitude estimation− the Multiplicative

Extended Kalman Filter (MEKF).

Table 4.1: The EKF algorithm.

Initialize x̂0 = E(x0)

P0 = E{[x0 − x̂0]
>[x0 − x̂0]}

Predict x̂−k = x̂k−1 + f(x̂k−1,uk−1)∆t

P−k = Φk−1Pk−1Φ
>
k−1 + Q∆t

Update Kk = P−k HT
k (HkP

−
k H>k + R)−1

x̂k = x̂−k + Kkvk

Pk = (1n×n −KkHk)P
−
k (1n×n −KkHk)

> + KkHkK
>
k

4.2 Multiplicative Extended Kalman Filter

As shown in Chapter 3, the satellite’s attitude is represented with a unit quaternion, q =

[q0, qv]
>, which must satisfy the unit norm constraint given by: q20 + q>v qv = 1. The

most straight forward way to estimate the quaternion is to treat it like any other vector

state and use Equations (4.6) and (4.12); however, the additive prediction and update
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equations can clearly violate the unit norm constraint and normalization of the quaternion

is required after every update. This can result in larger than necessary estimation errors.

A popular variation of the EKF that properly handles the quaternion is the MEKF and

the formulation presented here is drawn from [14]. The MEKF estimates the quaternion

error of the estimate instead of the quaternion and updates the estimate by multiplying

the error by the predicted quaternion. This is proven to limit the estimation error caused

by the unit norm constraint [14]. The quaternion error is updated with magnetometer

measurements, while the predicted quaternion is obtained by propagating the quaternion

kinematics with measurement from a gyroscope. As such, we refer to this formulation as

the gyro-based MEKF. The attitude quaternion error is defined by:

δq = q⊗ q̂−1 (4.15)

where q is the true quaternion and q̂ is the estimated quaternion, both assumed to be unit

quaternions. The inverse of a unit quaternion is defined through

q−1 =

 q0

−qv

 (4.16)

The quaternion error kinematics can be shown to be [14]:

δq̇ = −

 0

ω̂×δqv

+
1

2
δq⊗

 0

δω

 (4.17)

where δω is the angular velocity estimate error given by:

δω = ω − ω̂ (4.18)

If the estimated quaternion is ”close” to the true quaternion, we can assume δq ≈ [1 0 0 0]>

and obtain the following first-order approximation of the quaternion error kinematics
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[14]:

δq̇ ≈ −

 0

ω̂×δqv

+
1

2

 0

δω

 (4.19)

which can be simplified to:

δq̇0 = 0 (4.20)

δq̇v = −ω̂×δqv +
1

2
δω (4.21)

Thus, the dimension of the system in the MEKF can be reduced by one state by removing

the scalar part of the quaternion error. This reduces the computational complexity of the

algorithm and makes implementation on real systems easier than an EKF that estimates

the full quaternion. As mentioned above, the gyroscope measurement is used to propa-

gate the quaternion estimate in the prediction step. However, any bias in the gyroscope

measurement will accumulate and cause significant drift and error in the state estimate.

Therefore, the gyro-based MEKF estimates the following error state:

δx =

δqv
δbg

 (4.22)

where δbg = bg − b̂g is the gyroscope bias error. A widely used gyroscope sensor model

is:

ω = ω̃ − bg − ηv (4.23)

ḃg = ηu (4.24)

where ω̃ is the measurement, bg is the gyro bias, and ηv and ηu are independent zero-

mean Gaussian noise processes with covariances σ2
v13×3 and σ2

u13×3. In practice, σv and

σu are referred to as the angular random walk and rate random walk, respectively. These

parameters are often provided by the manufacturer. The angular velocity estimate is
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obtained by subtracting the estimated gyroscope bias from the gyroscope measurement:

ω̂ = ω̃ − b̂g (4.25)

and the angular velocity error is therefore:

δω = ω − ω̂ = −(δbg + ηv) (4.26)

It is common practice to assume the gyroscope bias is constant, and thus the process

model of the gyro-based MEKF is defined by the following error dynamics [14]:

δẋ = f =

−ω̂×δqv + 1
2
δω

0

 (4.27)

Although the MEKF estimates the error state, the full state defined by

x =

 q

bg

 (4.28)

is still predicted and updated at each timestep. The gyro-based MEKF predicts the current

state using the previous estimated state and gyroscope measurement as follows:

ω̂−k = ω̃ − b̂g|k−1 (4.29)

q̂−k = q̂k−1 +
1

2
Ω(ω̂−k )q̂k−1∆t (4.30)

b̂−g|k = b̂g|k−1 (4.31)

The error covariance is handled in the same way as in the EKF. It is predicted with Equa-

tion (4.7) and updated with (4.14). However, it does not have the same meaning as in the

EKF. It represents the likelihood of the error state, not the likelihood of the actual state

estimate, and is therefore more difficult to interpret. As such, the measurement residual
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is often used as an indicator of the MEKF performance. The process Jacobian is obtained

by substituting Equation (4.26) into (4.27) and evaluating the following:

Fk−1 =
∂f

∂(δx)

∣∣∣
x̂k−1

=

−ω̂×k−1 −1
2
13×3

03×3 03×3

 (4.32)

Measurement from a single 3-axis magnetometer is used to update the quaternion error

and gyroscope bias error. The magnetometer measures the magnetic field in the body-

fixed frame which is related to the satellite’s attitude with respect to the inertial frame

through:

BB = C(q)BI (4.33)

where C(q) is the true attitude matrix and BI is obtained from the IGRF model, as de-

scribed in Chapter 3. In practice, the magnetometer is modelled with:

Bm = AmBB + bm + ηm (4.34)

where Am is the callibration matrix of scale factors and misalignments terms, bm is the

magnetometer bias vector, and ηm is the sensor noise. It is assumed that the magnetome-

ter is perfectly callibrated, and thus the sensor model is reduced to:

Bm = BB + ηm (4.35)

The measurement model of the gyro-based MEKF is therefore:

h(x) = BB = C(q)BI (4.36)

z = Bm = h(x) + ηm (4.37)
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The measurement Jacobian can be expressed in a simple form. First, the true attitude

matrix is defined by:

C(q) = C(δq)C(q̂) (4.38)

The estimated measurement is defined as h(x̂−) = C(q̂−)BI . Making use of the first-order

approximation of the attitude error matrix given by

C(δq) = 13×3 − 2[δqv]
× (4.39)

the estimation error of the magnetometer measurement is simply:

δh = h(x)− h(x̂−) = 2[C(q̂−)BI ]
×δqv (4.40)

Therefore, the measurement Jacobian of the gyro-based MEKF at timestep k is:

Hk =
∂(δh)

∂(δx)

∣∣∣
x̂−
k

=
[
2[C(q̂−k )BI ]

× 03×3

]
(4.41)

In the update step the Kalman gain is calculated with Equation (4.11) and is partitioned

as Kk = [Kq|k, Kb|k]
>. Then, the quaternion estimate is updated as follows:

δq̂v|k = Kq|kvk (4.42)

δq∗k =

 1

1
2
δq̂v|k

 (4.43)

q̂k = δq̂∗k ⊗ q̂−k (4.44)

Since the quaternion error is assumed to be small, the small angle approximation δq∗k =

[1 1
2
δqv|k]

>, is applied in Equation (4.43). The quaternion estimate must be normalized af-

ter the update step as the approximation still violates the unit norm constraint. However,

since the quaternion error represents a small rotation, the magnitude of the constraint

violation is less than if the full quaternion and additive update equation were used [14].
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Lastly, the gyroscope bias estimate is updated with

δb̂g|k = Kb|kvk (4.45)

b̂g|k = b̂−g|k + δb̂g|k (4.46)

4.3 Magnetometer-only MEKF

The magnetometer-only MEKF derived in this section assumes that a gyroscope is not

used to estimate the satellite’s angular velocity. Instead of using the bias adjusted gyro-

scope measurements to obtain the angular velocity estimate, the calculated time rate of

change of the magnetic field is used to estimate the angular velocity error directly. In ad-

dition, the satellite’s attitude dynamics model is used to propagate the angular velocity

estimate in the prediction step. Therefore, the magnetometer-only MEKF estimates the

following error state:

δx =

δqv
δω

 (4.47)

and the corresponding full state is thus:

x =

q

ω

 (4.48)

The process model of the magnetometer-only MEKF consists of the quaternion error kine-

matics given by Equation (4.21), and the angular velocity error dynamics. To derive the

angular velocity error dynamics, first recall the satellite attitude dynamics from Equation

(3.2) in Chapter 3, written in a slightly different form and excluding any external distur-

bances:

ω̇ = J−1(−ω×(Jω + Hf ) + τmc) (4.49)
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The true magnetic control torque is given by:

τmc = u×BB = u×(C(q)BI) (4.50)

However, since the true attitude matrix C(q) is not known, the filter must use the esti-

mated magnetic control torque in the propagation of the estimated angular velocity. The

estimated magnetic control torque is defined by:

τ̂mc = u×(C(q̂)BI) (4.51)

and the error dynamics are then derived as:

δω̇ = J−1(−ω̂×(Jδω) + (Jω̂)×δω + H×f δω + δτmc) (4.52)

where δτmc = τmc − τ̂mc. The process model of the magnetometer-only MEKF is thus

defined by:

δẋ = f =

 −ω̂×δqv + 1
2
δω

J−1(−ω̂×(Jδω) + (Jω̂)×δω + H×f δω + δτmc)

 (4.53)

and the process Jacobian is calculated by taking the partial derivative of the process model

with respect to the error state, evaluated at the previous state estimate and control input:

Fk−1 =
∂f

∂(δx)

∣∣∣
x̂k−1,uk−1

=

 −ω̂×k−1 1
2
13×3

2J−1(u×k−1[C(q̂k−1)BI ]
×) J−1(H×f − ω̂

×
k−1J + [Jω̂k−1]

×)


(4.54)

It is important to distinguish between the process model that is used to derive the process

Jacobian and the equations used to propagate the full state in the prediction step. The full
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quaternion and angular velocity estimates are propagated with:

q̂−k = q̂k−1 +
1

2
Ω(ω̂k−1)q̂k−1∆t (4.55)

ω̂−k = ω̂k−1 + fω(x̂k−1,uk−1)∆t (4.56)

where fω is given by Equation (4.49) and is evaluated with the previous state estimate and

control input.

To update the angular velocity estimate, the magnetometer-only MEKF takes the rate

of change of the magnetic field in the body-fixed frame, defined by:

ḂB = C(q)ḂI − ω×BB (4.57)

The full measurement model of the magnetometer-only MEKF is therefore:

h(x) =

BB

ḂB

 =

 C(q)BI

C(q)ḂI − ω×BB

 =

 C(q)BI

C(q)ḂI − ω×(C(q)BI)

 (4.58)

and the measurement is:

z =

Bm

˙̃Bm

 = h(x) + η (4.59)

where ˙̃Bm is the filtered finite difference of Bm. This is calculated in two steps. First, Ḃm

is obtained through the following finite difference:

Ḃm|k =
Bm|k −Bm|k−1

∆t
(4.60)

where ∆t is the magnetometer sampling rate. Next, a first-order low pass filter is applied

to reduce the noise resulting from the finite difference. For an input signal X and an

output signal Y , a linear, time-invariant digital filter is described by the transfer function
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H(z) in the frequency domain (z):

H(z) =
Y

X
=
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2 + ...+ bnz

−n

1 + a1z−1 + a2z−2 + ...+ anz−n
(4.61)

where n is the order of the filter and B = [b0, b1, ...bn] and A = [1, a1, ...an] are the

transfer function coefficients. In discrete-time, the filter is implemented as a difference

equation obtained by solving:

Ay = Bx (4.62)

For a first order filter (n = 1) we obtain:

yk = b0xk + b1xk−1 − a1yk−1 (4.63)

This is a recursive filter, known as an infinite impulse response (IIR) filter, that depends on

the current and previous input as well as the previous output. In the magnetomter-only

MEKF, Ḃm is filtered to obtain ˙̃Bm:

˙̃Bm|k = b0Ḃm|k + b1Ḃm|k−1 − a1 ˙̃Bm|k−1 (4.64)

The coefficients b0, b1, and a1 are calculated using Matlab’s butter function. The user de-

fined inputs to this function are the order, n, and normalized cutoff frequency, Wn. In this

work, the normalized cutoff frequency was chosen by comparing the signal generated

by the finite difference (Equation (4.60) to the true derivative of the magnetic field in the

satellite body-fixed frame (Equation (4.57). The Earth’s magnetic field changes relatively

slowly from the perspective of the Meteorix satellite, with a period of approximately 1

orbit. Considering the magnetometer is sampled at 1 Hz (∆t = 1 s), a normalized cutoff

frequency of Wn = 0.01 is shown to filter the signal reasonably well.

The measurement model of the magnetometer-only MEKF is defined in Equation (4.58)
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and it is straight forward to obtain the measurement Jacobian at timestep k as:

Hk =
∂h

∂(δx)

∣∣∣
x̂−
k

=

 2[C(q̂−k )BI ]
× 03×3

2([C(q̂−k )ḂI ]
× − ω̂−×

k [C(q̂−k )BI ]
×) [C(q̂−k )BI ]

×

 (4.65)

The Kalman gain is calculated with Equation (4.11) and is partitioned as Kk = [Kq|k, Kw|k]
>.

The quaternion and angular velocity estimates are then updated as follows:

δq̂v|k = Kq|kvk (4.66)

δq̂∗k =

 1

1
2
δq̂v|k

 (4.67)

q̂k = δq̂∗k ⊗ q̂−k (4.68)

δω̂k = Kω|kvk (4.69)

ω̂k = ω̂−k + δω̂k (4.70)

4.4 Implementation

The two attitude estimation methods are implemented within the DSPOSE framework

and are summarized in Table 4.2. It is important to reiterate some of the differences be-

tween the two methods. One of the main differences is in the measurement model. The

magnetometer-only MEKF estimates the satellite’s angular velocity by taking the deriva-

tive of the magnetometer reading and treating it as a measurement. This requires some

extra computation by means of the finite difference and low pass filter described in Equa-

tions (4.60) and (4.64), respectively. The gyro-based MEKF does not produce the angular

velocity estimate explictly, but only the attitude and gyroscope bias estimates. It uses the

magnetometer measurement only for updating the attitude estimate, and as a result the

measurement model is of smaller size. In particular, the magnetomter-only MEKF has

zk ∈ R6×1, Hk ∈ R6×6, R ∈ R6×6 while the gyro-based MEKF has zk ∈ R3×1, Hk ∈ R3×6,
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Table 4.2: Estimator summary.

Gyro-based MEKF

Measurement zk =
[
Bm

]
State Prediction q̂−k = q̂k−1 + 1

2Ω(ω̂−k )q̂k−1∆t ω̂−k = ω̃k − b̂g|k−1 b̂−g|k = b̂g|k−1

Process Jacobian Fk−1 =

[
−ω̂×k−1 −1

213×3

03×3 03×3

]

Measurement Jacobian Hk =
[
2[C(q̂−k )BI ]

× 03×3

]
State Update δq̂v|k = Kq|kvk δb̂g|k = Kb|kvk

δq̂∗k =

[
1

1
2δq̂v|k

]
b̂g|k = b̂−g|k + δb̂g|k

q̂k = δq̂∗k ⊗ q̂−k

Magnetometer-only MEKF

Measurement zk =

[
Bm

˙̃Bm

]
State Prediction q̂−k = q̂k−1 + 1

2Ω(ω̂k−1)q̂k−1∆t ω̂−k = ω̂k−1 + fω(x̂k−1,uk−1)∆t

Process Jacobian Fk−1 =

[
−ω̂×k−1

1
213×3

2J−1(u×k−1[C(q̂k−1)BI ]
×) J−1(H×f − ω̂

×
k−1J + [Jω̂k−1]

×)

]

Measurement Jacobian Hk =

[
2[C(q̂−k )BI ]

× 03×3

2([C(q̂−k )ḂI ]
× − ω̂−×

k [C(q̂−k )BI ]
×) [C(q̂−k )BI ]

×

]

State Update δq̂v|k = Kq|kvk δω̂k = Kω|kvk

δq̂∗k =

[
1

1
2δq̂v|k

]
ω̂k = ω̂−k + δω̂k

q̂k = δq̂∗k ⊗ q̂−k

R ∈ R3×3. A second key difference between the two methods is in the propagation of

the states. The magnetometer-only MEKF uses the attitude dynamics model to propagate

the angular velocity estimate and is therefore susceptible to uncertainties in the model.

These uncertainties can arise from unmodelled disturbance torques, errors in the satel-
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lite’s moments of inertia, or errors in the flywheel parameters. The gyro-based MEKF

uses the bias adjusted gyroscope measurement to update the angular velocity estimate

which then propagates the quaternion estimate. While it is not as susceptible to the un-

certainties mentioned above, it has it’s own limitations. The first is that the predicted

angular velocity estimate obtained from ω̂−k = ω̃k − b̂g|k−1 can be particularly noisy de-

pending on the characteristics of the gyroscope. Consequently, a low pass filter should

be applied if ω̂ is to be fed back to the attitude controller. Secondly, if the satellite’s angu-

lar velocity is relatively slow and the initial gyroscope bias estimates are far off from the

truth, the gyro-based MEKF may have poor convergence time.

The performance of both attitude estimation methods is affected by many factors includ-

ing the sensor noise parameters, the initial estimate errors, and tunable parameters. The

magnetometer and gyroscope noise parameters are listed in Table 4.3. The values were

obtained from the data sheets of the Honeywell HMC5883L magnetometer [61] and the

Analog Devices ADIS16405 IMU [62], respectively. The tunable parameters for both esti-

mation methods are the initial error covariance, P0, and the process covariance, Q. They

were chosen by running several simulations with fixed initial conditions and varying the

values of P0 and Q. The parameters which provided the best results for each estimator

are used for all simulations presented in this thesis and are summarized in Table 4.4.

Table 4.3: Sensor noise parameters.

σm = 200 [nT] σv = 4.89× 10−4 [rad/s1/2] σu = 3.14× 10−5 [rad/s3/2]

4.5 Simulation Results

The Monte Carlo method is used to compare the two estimation methods by averaging

the performance over 100 simulation runs with a wide range of initial estimates. The
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Table 4.4: Estimator parameters.

Estimator Parameter Value

R diag[σ2
m 13×3, (2σm)213×3]

Magnetometer-only MEKF Q diag[(1× 10−8)13×3, (1× 10−9)13×3]

P0 diag[(1× 10−3)13×3, (1× 10−6)13×3]

R [σ2
m 13×3]

Gyro-based MEKF Q diag[(1× 10−9)13×3, (1× 10−10)13×3]

P0 diag[(1× 10−3)13×3, (1× 10−9)13×3]

attitude estimate error is first initialized with:

δq0 =

 cos(δα0/2)

a0 sin(δα0/2)

 (4.71)

The angle, δα0, and the axis, a0, are selected randomly by a sphere point picking method

as follows:

δα0 = U(0, 30) [◦] (4.72)

a0 =


√

1− v2 cos(φ)
√

1− v2 sin(φ)

v

 (4.73)

where v = U(−1, 1), φ = U(0, 2π), and U represents a uniform random distribution. The

initial attitude estimate is then calculated with q̂0 = δq0 ⊗ q0. The angular velocity esti-

mate is initialized with

ω̂0 = ω0 − δω0 (4.74)
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where the components of δω0 are chosen as δωi,0 = U(−2, 2) [◦/s]. Similarly, for the gyro-

based MEKF the gyroscope bias estimate is initialized with

b̂g|0 = bg|0 − δbg|0 (4.75)

and δbg|i,0 = U(−0.01, 0.01) [◦/s].

Two initial angular velocity scenarios are considered and summarized in Table 4.5. In

each scenario, the satellite’s attitude is initialized in the Earth-pointing orientation. In the

tumbling scenario, the satellite’s angular velocity is initialized to a moderate tumbling

rate of 4 ◦/s on all axes. In the Earth-pointing scenario the satellite is initialized to spin

only about its pitch axis at a rate equal to its orbital rate. This is the desired angular

velocity of the satellite in the Earth-pointing phase of the nominal mode, in which the

performance requirement of the attitude estimation is most strict.

Table 4.5: Initial angular velocity scenarios.

Tumbling ω0 = [4 4 4] ◦/s

Earth-pointing ω0 = [0 0.06341 0] ◦/s

The metrics used to assess the accuracy of each estimator are the root mean square (RMS)

errors in the estimated states. The RMS angular velocity errors are calculated as the RMS

of the difference between the true and estimated angular velocity for each body-fixed

frame component (ωx, ωy, ωz). Specific to the gyro-based MEKF, the RMS gyroscope bias

errors are calculated as the RMS of the difference between the true and estimated gyro-

scope bias, also for each body-fixed frame component. For the attitude estimation ac-

curacy, the quaternion error can be difficult to interpret. Instead, the Euler angle errors

as well as the total angular error are calculated. To calculate the Euler angle errors, the

quaternion error is obtained from Equation (4.15) and then used in Equations (3.10) -
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(3.12) to get δψ, δθ, and δφ. The total angular error is calculated with:

δαk = 2 cos−1(δq0|k) (4.76)

δα =

√√√√ N∑
k=1

δα2
k

N
(4.77)

For both initial angular velocity scenarios, the two estimation methods are analyzed using

data from 100 simulations with the state estimates initialized as described in Equations

(4.71) - (4.75). For all simulations, the satellite dynamics are propagated for 15 orbits -

approximately 1 day - with a timestep of ∆t = 1 s. Estimation with either method is

initialized at t = 0 and is executed with a timestep of ∆t = 1 s. The performance is

assessed without active attitude control, and therefore the control input, u, is zero for all

t.

4.5.1 Tumbling Scenario

The estimation results of the tumbling scenario are summarized in Tables 4.6 - 4.8. It was

found that both estimators converge within 1 orbit. For the Meteorix mission, the long

term accuracy of the estimator is prioritized over convergence time and as such all RMS

errors are calculated starting at t = 1 orbit, rather than t = 0. Table 4.6 shows the average

RMS Euler angle and total angular errors of each estimator with their respective standard

deviations. Tables 4.7 and 4.8 show the angular velocity errors and the gyroscope bias er-

rors, respectively, also with their standard deviations. The estimation errors of the gyro-

based MEKF and magnetometer-only MEKF over the first 30 minutes of each simulation

are shown in Figures 4.1 and 4.2, respectively. The magnetometer-only MEKF was found

to diverge in one out of the 100 Monte Carlo simulations and is not shown. The overall es-

timation accuracy of the magnetometer-only MEKF suffers in the tumbling scenario. The

gyro-based MEKF shows better average RMS attitude estimate errors but the standard

deviations are an order of magnitude higher than those of the magnetometer-only MEKF.
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Furthermore, the average RMS angular velocity estimate error with the magnetometer-

only MEKF is slightly better than with the gyro-based MEKF. These results are explained

by the fact that cubesat-grade gyroscopes typically have poor noise characteristics. Both

estimators meet the attitude estimate requirement of δα < 5 ◦ in detumbling mode, but

not the angular velocity estimate requirement of δω < 0.1 ◦/s. The estimation accuracy is

expected to improve with active attitude control working to detumble the satellite.

Table 4.6: Attitude estimate errors in the tumbling scenario.

Estimator

Average RMS Error [◦]

± Standard Deviation [◦]

δψ δθ δφ δα

Magnetometer-only MEKF 2.3929 2.6858 2.3669 4.3064

0.0074 0.0062 0.0058 0.0108

Gyro-based MEKF 1.4353 1.5745 1.4242 2.5624

0.0678 0.0786 0.0764 0.1274

Table 4.7: Angular velocity estimate errors in the tumbling scenario.

Estimator

Average RMS Error [◦/s]

± Standard Deviation [◦/s]

δωx δωy δωz

Magnetometer-only MEKF 0.0996 0.0669 0.1035

0.0058 0.0190 0.0035

Gyro-based MEKF 0.1811 0.0665 0.1517

0.0012 0.0113 0.0006
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Table 4.8: Gyroscope bias error of the gyro-based MEKF in the tumbling scenario.

Estimator

Average RMS Error [◦/s]

± Standard Deviation [◦/s]

δbg|x δbg|y δbg|z

Gyro-based MEKF 0.0234 0.0334 0.0223

0.0016 0.0138 0.0008

(a) (b)

Figure 4.1: Gyro-based MEKF estimation errors in tumbling scenario from t = 0 to t = 30

minutes. (a) Total angular error, (b) Angular velocity error
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(a) (b)

Figure 4.2: Magnetometer-only MEKF estimation errors in tumbling scenario from t = 0

to t = 30 minutes. (a) Total angular error, (b) Angular velocity error
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4.5.2 Earth-Pointing Scenario

In the Earth-pointing scenario, the gyro-based MEKF diverged in all 100 Monte Carlo

simulations. The signal to noise ratio of the gyroscope is too small to accurately measure

the low angular rate. However, the magnetometer-only MEKF performs quite well in this

scenario and the results are presented in Tables 4.9. There is a significant improvement in

the attitude and angular velocity estimation accuracy compared to the tumbling scenario.

Table 4.9 shows a total angular error of δα = 0.2161 ± 0.0035◦ which meets the Earth-

pointing estimation accuracy requirement of δα < 0.5 ◦. The angular velocity estimate

error also meets the accuracy requirement of δω < 0.02 ◦/s and is sufficiently small for the

attitude controller to maintain the low angular rate required in Earth-pointing mode. The

estimation errors of all 100 Earth-pointing scenario simulations over the first 30 minutes

are shown in Figure 4.3. In all simulations, the attitude and angular velocity estimates

converge in less than 15 minutes. The performance of the magnetometer-only MEKF is

further analyzed in combination with active attitude control in Chapter 5.

Table 4.9: Attitude and angular velocity estimate errors of the magnetometer-only MEKF

in the Earth-pointing scenario.

Average RMS Error [◦] Average RMS Error [◦/s]

± Standard Deviation [◦] ± Standard Deviation [◦/s]

δψ δθ δφ δα δωx δωy δωz

0.1396 0.1021 0.1295 0.2161 0.0057 0.0054 0.0065

0.0026 0.0015 0.0033 0.0035 8e-05 7e-05 9e-05
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(a) (b)

Figure 4.3: Magnetometer-only MEKF estimation errors in Earth-pointing scenario from

t = 0 to t = 30 minutes. (a) Total angular error, (b) Angular velocity error
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Attitude Control

The Meteorix attitude control algorithms are formulated and compared in this chapter.

First, the method for calculating the desired attitude in each operational mode and the

criteria for switching between modes are outlined in Section 5.1. The PD control law

developed for the EyeSat mission and applied to Meteorix in prior work is then presented

in Section 5.2. A nonlinear sliding mode control law is then formulated in Section 5.3

based on the literature with a few modifications. The sliding mode controller uses full

state feedback from the magnetometer-only MEKF while the PD controller only requires

feedback of the rate of change of the magnetic field measurement. Simulation results are

presented to compare the performance of each controller separately in the detumbling,

alignment, and nominal modes in Section 5.4. In simulations of detumbling mode the

PD and sliding mode controllers are also evaluated against the classical B-dot control − a

current standard for cubesat missions. In Section 5.5, the robustness of the sliding mode

controller is highlighted through a sensitivity study that evaluates the ADCS performance

in the presence of several sources of error. The chapter concludes with a discussion on

methods to further improve the magnetometer-only MEKF and sliding mode controller.

55
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5.1 Setting the Desired Attitude

The desired rotation matrix, C(qd), is calculated from the desired orientation of the body-

fixed frame, Fd = {xd, yd, zd}, which depends on the current operational mode as de-

fined in Chapter 2. While the detumbling mode does not have an attitude pointing

requirement, the attitude controllers still need a desired attitude to be defined. There-

fore the desired attitude passed to the attitude controllers in detumbling mode is simply

C(qd) = 13×3. As stated in Chapter 2, the alignment mode and Sun-pointing mode have

the same desired body-fixed frame orientation in the inertial frame defined by:

zd =
n×o (r×sunno)

||n×o (r×sunno)||
(5.1)

yd =
no
||no||

(5.2)

xd = y×d zd (5.3)

where we recall that no is the orbit normal direction and rsun is the Sun direction, both

expressed in the inertial frame. The desired body-fixed frame orientation in the inertial

frame in Earth-pointing mode is defined by

zd =
r

||r||
(5.4)

yd =
no
||no||

(5.5)

xd = y×d zd (5.6)

Then, the desired rotation matrix is calculated as follows:

C(qd) =


x>d

y>d

z>d

 (5.7)
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Recall from Chapter 2 that the angle β defines the angular error between the satellite’s

zb axis and the desired zd pointing direction. In addition, the angle γ defines the angu-

lar error between the satellite’s yb axis and the orbit normal direction no. Particular to

the Sun-pointing orientation, β = 0 ◦ corresponds to the minimum Sun-pointing error of

22.5◦ as the satellite motion is constrained to the orbital plane, and the angle between Me-

teorix’s orbital plane and the Sun direction is 22.5◦.

The criteria for transitioning between modes are set as follows. The satellite transitions

from detumbling to alignment mode once the angular rate has been reduced to ω <

0.3 ◦/s. The transition from alignment mode to nominal-mode occurs when either of β or

γ is reduced below 5◦. In the real mission, the transitions between Earth and Sun-pointing

will be commanded through communication with the ground stations. In simulation, the

transitions are commanded such that for each full orbit of the Earth, the satellite spends

approximately 35 minutes Earth-pointing and approximately 60 minutes maneuvering

and Sun-pointing.

It is important to note that in the subsequent presentation, the satellite’s position, r, and

velocity, v, are assumed to be perfectly known as they are used in the calculation of the

desired attitude. On the real satellite, the position and velocity need to be estimated using

a combination of GPS measurements and an orbital propagator. The uncertainty in these

estimates is not accounted for in this thesis.

5.2 Proportional-Derivative Control

The PD control law presented here was originally developed for the EyeSat mission in [36]

and applied to the Meteorix mission in [37]. The magnetic control input, mc, is calculated

with:

mc =
1

||Bd||2
(KPBd +KD(Ḃd − ˙̃Bm)) (5.8)
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where KP and KD are the proportional and derivative gains, respectively, and Bd is the

desired magnetic field vector in the body-fixed frame given by:

Bd = C(qd)BI (5.9)

Notice that measured magnetic field, Bm, is not included in the proportional part of the

control law as it would disappear in the cross product that gives the resulting torque

(Equation (5.11). The desired rate of change of the magnetic field, Ḃd, is calculated as

a finite difference between the desired magnetic field vector at the current and previous

time steps:

Ḃd =
Bd|k −Bd|k−1

∆t
(5.10)

The magnetic field derivative, ˙̃Bm, is the filtered finite difference of the magnetometer

measurement as defined in Equation (4.64). The components of the control input, mc, are

saturated between +/-0.2 Am2, the limits of Meteorix’s magnetorquers, and normalized

to maintain the original direction of mc. This gives the actual commanded control input,

mact. The magnetic control torque acting on the satellite is therefore:

τmc = m×actBB (5.11)

The PD control law in Equation (5.8) is an extension of the classic B-dot control law. B-dot

control is most commonly implemented in the following form:

mc =
−k
||Bm||

˙̃Bm (5.12)

where k is a constant scalar gain. In this work the B-dot control law is used as a baseline in

the evaluation of the PD and sliding mode controller performance in detumbling mode.
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5.3 Sliding Mode Control

While the PD control law does not require explicit knowledge of the satellite’s attitude

and angular velocity, it is unclear if it can meet the performance requirements in the pres-

ence of uncertainties and disturbances which will be present in the real system. For this

reason, a nonlinear sliding mode control law is proposed. The formulation presented here

is based on [41] and [45] with a few modifications.

For an arbitrary dynamic system, the basic premise of sliding mode control is to define

a sliding surface, s, that depends on the states of interest of the system and design a

control law to bring s to a desired value or trajectory (typically zero). For satellite attitude

control, the sliding surface is commonly defined as a sum of the angular velocity error

and attitude error [41]:

s = ωe +Kqqev (5.13)

where Kq is a positive, constant gain, ωe is the angular velocity error and qev is the vector

part of the quaternion error. These are the attitude tracking errors defined by:

qe = q⊗ q−1d = [qe0 , q>ev ]> (5.14)

ωe = ω −C(qe)ωd (5.15)

where ωd is the desired angular velocity, qd is the desired attitude quaternion, and the

rotation matrix C(qe) brings the desired frame to the body-fixed frame. The sliding mode

control input is separated into an equivalent control torque, τeq, and a reaching control

torque, τrh. The total control torque, τc, is defined as:

τc = τeq + τrh (5.16)
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The equivalent control torque is that which keeps the satellite on the sliding manifold

defined by:

s = 0, ṡ = 0 (5.17)

The time rate of change of s represents the evolution of the sliding surface as a result of

the satellite rotational motion. The evaluation of ṡ requires the definition of the attitude

error dynamics, ω̇e, and kinematics, q̇e. The error dynamics are defined as:

ω̇e = ω̇ −C(qe)ω̇d − Ċ(qe)ωd (5.18)

In the above, we use a reduced version of the satellite attitude dynamics model in which

the angular momentum of the flywheel, Hf , is omitted:

ω̇ = J−1(−ω×Jω + τmc) (5.19)

If Hf were included, the resulting sliding mode control input would negate the stabilizing

effect of the flywheel. The desired angular velocity is zero in all operational modes with

the exception of Earth-pointing mode in which it is constant at ωd = [0, 2π/T, 0]> ◦/s.

Therefore, ω̇d = 0 ◦/s2, and with the identity Ċ(qe) = −ω×e C(qe), the error dynamics

become:

ω̇e = J−1(−ω×Jω + τmc) + ω×e C(qe)ωd (5.20)

The quaternion error kinematics are defined as:

q̇ev =
1

2
qe0ωe −

1

2
ω×e qev , q̇e0 = −1

2
ω>e qev (5.21)

In this thesis, the sliding surface is modified to prevent the quaternion unwinding phe-

nomenon where two quaternions, q and −q, represent the same orientation in space.

This can cause the satellite to make unnecessarily large maneuvers to reach the desired
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attitude. Therefore, we redefine the sliding surface of (5.13) as:

s = ωe +Kqsgn(qe0)qev (5.22)

where multiplication by sgn(qe0) ensures that the satellite is driven to the desired attitude

in the shortest distance. The equivalent control torque is calculated by evaluating ṡ = 0.

With τmc = τeq, the equvalent control torque is solved for as follows:

ṡ = ω̇e +Kqsgn(qe0)q̇ev (5.23)

0 = J−1(−ω×(Jω) + τeq) + ω×e C(qe)ωd +
1

2
Kqsgn(qe0)(qe0ωe − ω×e qev) (5.24)

τeq = ω×(Jω)− J(ω×e C(qe)ωd)−
1

2
Kqsgn(qe0)J(qe0ωe − ω×e qev) (5.25)

Note that in Equation (5.23), the term resulting from the derivative of sgn(qe0) is omitted.

Its inclusion would result in an impulsive control input whenever qe0 = 0, since by defi-

nition d
dt

sgn(qe0) = 2δ(qe0), where δ(·) is the dirac delta function. The value of qe0 is zero

only when there is a 180◦ error between q and qd; however we do not expect the attitude

error to be that large.

The purpose of the reaching control torque is to drive the sliding surface and its time

rate of change to zero. The following reaching control law is used [45]:

τrh = −Kss−Kss tanh(s) (5.26)

where Ks and Kss are positive constant gains. In [45], sgn(s) is used instead of tanh(s).

However, when s is close to zero the value of sgn(s) can switch rapidly between -1 and 1.

This is known as chattering and can cause large, high frequency oscillations in the control

input. Here, tanh(s) is chosen as opposed to sgn(s) as it provides a smoother control input
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when the sign of s changes. To summarize, the total control input is given by:

τc = ω×(Jω)− J(ω×e C(qe)ωd)−
1

2
Kqsgn(qe0)J(qe0ωe−ω×e qev)−Kss−Kss tanh(s) (5.27)

However, as previously stated, the control torque τc cannot be commanded directly to the

magnetic actuators as it is constrained to be perpendicular to the magnetic field. First, the

magnetic actuator dipole moment, mc, required to produced τc is calculated with:

mc =
[BB]×τc
‖BB‖2

(5.28)

As was done with the PD control law, the components of mc are saturated between ±0.2

Am2 and normalized to maintain the original direction, giving mact. The magnetic control

torque acting on the satellite is then calculated with Equation (5.11).

The sliding mode controller was implemented to use the state feedback from the magnetometer-

only MEKF and thus its performance is heavily dependent on the estimation accuracy.

The sliding mode control law with estimated state feedback is now defined as:

τc = ω̂×(Jω̂)− J(ω̂×e C(q̂e)ωd)−
1

2
Kqsgn(q̂e0)J(q̂e0ω̂e− ω̂×e q̂ev)−Ksŝ−Kss tanh(ŝ) (5.29)

where the attitude and angular velocity tracking errors are computed from the estimated

states and the desired states with:

ω̂e = ω̂ −C(q̂e)ωd

q̂e = q̂⊗ q−1d

ŝ = ω̂e +Kqq̂ev
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In addition, Equation (5.28) is modified as:

mc =
[B̂B]×τc

‖B̂B‖2
(5.30)

where B̂B is the estimated magnetic field in the body-fixed frame, calculated with B̂B =

C(q̂)BI .

Initial simulation results showed that the sliding mode controller (5.29) did not perform

adequately for aligning the satellite’s yb axis with the orbit normal in the alignment mode.

This was attributed to the fact that the control torque has to work against the angular

momentum of the flywheel to align yb with the orbit normal. To remedy this, the scalar

control gains Kq and Ks in Equation (5.29) were replaced with a diagonal matrix of gains,

defined as follows:

Kq = Kqdiag{cq1 , cq2 , cq3}

Ks = Ksdiag{cs1 , cs2 , cs3}

where cqi , i = 1, 2, 3 and csi , i = 1, 2, 3 are the individual weights. Using matrix gains

allows us to give more control authority to different components of the control input.

Since the angular momentum of the flywheel is along the satellite’s yb axis, more control

authority can be given to the x and z components of the control input. This is done by

setting the weights as cq1,3 > cq2 and cs1,3 > cs2 . The control gain Kss is kept scalar as no

benefit was found to replace it with a matrix gain.

5.4 Simulations of Attitude Control

The performance of the PD and sliding mode control laws are compared in simulation of

each mission mode. The PD control gains were defined as in previous work [37], while

the sliding mode control gains were tuned by trial and error until adequate performance
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was observed. The control parameters used for all simulations carried out in this chap-

ter are presented in Table 5.1. The simulations are performed with attitude and angular

velocity estimation by the magnetometer-only MEKF using the same parameters as in

Chapter 4. The estimate errors of the magnetometer-only MEKF are initialized to small

values in order to get a baseline evaluation of the sliding mode controller. The initial atti-

tude estimate error is set to 2◦ in each of the yaw, pitch, and roll angles while the angular

velocity estimate error is set to 0.2 ◦/s in each component. Note that the PD controller

is unaffected by attitude and angular velocity estimates as the only variable fedback is

the derivative of the magnetic field measurement. The dynamics, estimation, and control

are all run at a timestep of ∆t = 1 s in all simulations presented in this chapter unless

specified otherwise.

Table 5.1: Attitude control parameters.

PD Control B-dot Control

KP = 1× 10−6 KD = 3× 10−4 k = 20

Sliding Mode Control

Kq = 1× 10−2 Ks = 5× 10−4 Kss = 1× 10−5

Alignment mode only:

cq1 = 2 cq2 = 0.1 cq3 = 2

cs1 = 4 cs2 = 0.5 cs3 = 4

5.4.1 Detumbling Mode

Two detumbling scenarios are simulated; one with a moderate initial tumbling rate and

one with a high initial tumbling rate, as shown in Table 5.2. The satellite is simulated for

3 orbits in both scenarios without transitioning to any of the other operational modes. In

detumbling mode we are only interested in the satellite’s angular velocity and the mag-
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netic control inputs, as there is no strict attitude pointing requirement. The satellite angu-

lar velocity and the magnetic control inputs with each controller are shown in Figures 5.1

and 5.2 for each scenario, respectively.

Table 5.2: Initial conditions for detumbling.

Detumbling scenario 1
ω0 = [5, 5, 5] ◦/s

ψ0 = 10 ◦ θ0 = 10 ◦ φ0 = 10 ◦

Detumbling scenario 2
ω0 = [10, 10, 10] ◦/s

ψ0 = 10 ◦ θ0 = 10 ◦ φ0 = 10 ◦

(a) (b)

Figure 5.1: Detumbling scenario 1 results. (a) Angular velocity, (b) Magnetic control input

With a timestep of ∆t = 1 s, the B-dot and PD controllers fail to detumble the satellite for

the high tumbling rate scenario (Figure 5.2). This is a result of the finite difference used

to calculate the rate of chang of the magnetic field. The large time-step cannot capture

the fast tumbling rate of the satellite. An additional simulation of scenario 2 was carried

out with ∆t = 0.1 s with each controller and the results are shown in Figure 5.3. In this

case, each controller detumbles the satellite in approximately the same amount of time.

However, the sliding mode controller demonstrates superior performance both in terms
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(a) (b)

Figure 5.2: Detumbling scenario 2 results. (a) Angular velocity, (b) Magnetic control input

of control effort and residual angular rates. Figure 5.4 shows the satellite angular velocity

response from t = 1 orbit to t = 3 orbits. The sliding mode controller maintains the

angular rates low while the B-dot and PD controllers oscillate, with particularly large

oscillations in ωy up to 0.3 ◦/s. These results also indicate that the sliding mode controller

is not very sensitive to the timestep.

(a) (b)

Figure 5.3: Detumbling scenario 2 with ∆t = 0.1 s. (a) Angular velocity, (b) Magnetic

control input
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Figure 5.4: Angular velocity response after detumbling, ∆t = 0.1 s.

5.4.2 Alignment Mode

For the alignment mode simulation, the initial attitude with respect to the inertial frame

is the same as in Table 5.2 while the initial angular velocity is set to zero. The satellite is

simulated for 3 orbits under PD and sliding mode control and does not transition to the

nominal mode. Figure 5.5 shows the pointing angles γ and β, and Figure 5.6 shows the an-

gular velocity and magnetic actuator inputs obtained with the two controllers. It is clear

that the sliding mode controller achieves the desired alignment with the orbit normal and

the Sun direction faster than the PD controller. However, it also uses more control effort

as shown in Figure 5.6 (b). Further tuning of the PD controller was attempted, including

a similar matrix gain modification as was done with the sliding mode controller, but this

did not improve its performance in alignment mode.
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(a) (b)

Figure 5.5: Alignment mode pointing angles. (a) yb - no angle, (b) zb - zd angle

(a) (b)

Figure 5.6: Alignment mode results. (a) Angular velocity, (b) Magnetic control input

5.4.3 Nominal Mode

A nominal mode simulation of 5 orbits is presented. Meteorix is initialized in the Earth-

pointing orientation with β = 0 ◦ and γ = 0 ◦, and an initial angular velocity of ω0 =

[0, 2π
T
, 0]> ◦/s. The pointing angles are shown in Figure 5.7 and the angular velocity

and actuator inputs are shown in Figure 5.8. The transition from Earth- to Sun-pointing

requires a ≈ 100 ◦ reorientation and the transition from Sun-pointing to Earth-pointing
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requires a ≈ 75 ◦ reorientation, as indicated by the initial values of the red and blue lines,

respectively. The PD controller completes the reorientation maneuvers slightly faster but

has more overshoot. Excluding the maneuver time, the sliding mode controller results

in smaller β in Earth- and Sun-pointing modes. In addition, the sliding mode controller

offers better alignment with the orbit normal as shown in Figre 5.7 (b) and better angular

velocity tracking as shown in Figure 5.8 (a). The x and z components of the magnetic

actuator inputs demonstrate high fluctuations with the PD controller and also saturate

during each transition, while they do not with the sliding mode controller.

(a)

(b)

Figure 5.7: Nominal mode pointing angles. (a) zb - zd angle (b) yb - no angle
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(a) (b)

Figure 5.8: Nominal mode results. (a) Angular velocity, (b) Magnetic control input

An additional simulation of 1 day (15 orbits) is executed to capture the performance of

each controller across all modes of operation. This is used as the ideal scenario to which

the results of the sensitivity study in Section 5.5 are compared. Meteorix is initialized in

detumbling mode with the initial conditions of detumbling scenario 1 in Table 5.2 and

the same small initial estimate errors. The results from the first 5 orbits are shown in Fig-

ure 5.9 - 5.10. Figure 5.9 shows the pointing angles and Figure 5.10 shows the angular

velocity and magnetic actuator inputs. The angular velocity and control input responses

during the first orbit are similar to the detumbling results shown in Figure 5.1. Figure 5.10

shows the settled response after detumbling, from t = 1 orbit to t = 5 orbits. The attitude

and angular velocity estimate errors over the first 5 orbits are shown in Figure 5.11. The

fast detumbling and alignment time achieved with the sliding mode controller allow it to

enter nominal mode much earlier than with the PD controller. In fact, the sliding mode

controller enters nominal mode before the PD controller has even finished detumbling.

The alignment mode starts significantly later with the PD controller as it takes almost one

full orbit to detumble the satellite. The long detumbling time with the PD controller has

a significant effect on the MEKF estimate errors in the first orbit, as seen in Figure 5.11.

However, once detumbling has completed, the estimate errors are very similar with both
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controllers as shown in Figure 5.12.

Overall, the attitude control and estimation requirements are satisfied in the ideal sce-

nario. After the first 5 orbits, the PD and sliding mode controllers maintain average orbit

normal alignment angles of γ = 1.59 ◦ and γ = 0.97 ◦, respectively. These are within

the γ < 2 ◦ requirement. In the nominal mode, the sliding mode controller achieves an

average Sun-pointing angle of β = 0.50 ◦ and average Earth-pointing angle of β = 1.78 ◦

after the transitions between each orientation have completed. With the PD controller, the

average Sun- and Earth-pointing angles are β = 1.84 ◦ and β = 2.61 ◦, respectively. The

Sun-pointing angle with the PD controller does not quite meet the requirement of β < 1 ◦.

The average total angular error of the magnetometer-only MEKF after the first 5 orbits

is δα = 0.22 ◦ with PD controller and δα = 0.23 ◦ with the sliding mode controller. With

both controllers, the average angular velocity estimate error is δω = 0.008 ◦/s. These esti-

mation errors are within the nominal mode requirements of δα < 0.5 ◦ and δω < 0.02 ◦/s.
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PD: Alignment PD: Nominal

SMC: Alignment

SMC: Nominal

(a)

(b)

Figure 5.9: Ideal scenario pointing angles. (a) zb - zd angle (b) yb - no angle

(a) (b)

Figure 5.10: Ideal scenario ngular velocity and control inputs, from t = 1 t to t = 5 orbits.

(a) Angular velocity, (b) Magnetic control input
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(a) (b)

Figure 5.11: Estimate errors in ideal scenario. (a) Total angular error, (b) Angular velocity

errors

(a) (b)

Figure 5.12: Estimate errors in ideal scenario from t = 1 to t = 5 orbits. (a) Total angular

error, (b) Angular velocity errors
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5.5 Sensitivity Study

Many possible sources of error exist for the control of the real satellite that will affect the

overall ADCS performance. In this thesis, four sources of error are considered: (i) large

initial estimate errors, (ii) uncertainty in the principal moments of inertia, (iii) misalign-

ment of the flywheel axis, and (iv) residual magnetic moment. It is important to investi-

gate the effect of these sources of error and uncertainties on the ADCS. The effect of each

source of error is first tested indivually in simulations of 5 orbits with each controller,

encapsulating all modes of operation with the initial conditions as given in Table 5.3 and

also used in the ideal scenario in Section 5.4.3. A worst case scenario is then studied with

a 1 day simulation (15 orbits) in which all of the above sources of error are present, and

results are compared to the ideal scenario.

Table 5.3: Initial conditions for sensitivity study.

Satellite state
ω0 = [5, 5, 5] ◦/s

ψ0 = 10 ◦, θ0 = 10 ◦, φ0 = 10 ◦

Estimate errors
δω0 = [0.2, 0.2, 0.2] ◦/s

δψ0 = 2 ◦, δθ0 = 2 ◦, δφ0 = 2 ◦

5.5.1 Large Initial Estimate Errors

Large initial estimate errors can affect both the estimator and controller performance, par-

ticularly the sliding mode controller as it requires full state feedback from the MEKF. The

estimate errors are initialized to δψ0 = δθ0 = δφ0 = 20 ◦ in attitude and δω0 = [2, 2, 2] ◦/s

in angular velocity. It was found that these large initial estimate errors resulted in a

slighlty longer detumbling time than in the ideal scenario, but the effect on alignment

and nominal modes was negligible once the estimates had converged. Thus, the results

look very similar to those presented in Figures 5.9 to 5.12. This is in agreement with the
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results from Chapter 4, as we saw in the Monte Carlo simulations that the MEKF was able

to converge in less than 20 minutes from large initial estimate errors up to 30 ◦.

5.5.2 Inertia Uncertainty

The satellite’s inertia properties will be estimated prior to launch, however, there will

likely be uncertainty in these estimates. Uncertainties in the principal moments of inertia

affect the attitude estimation accuracy as the magnetometer-only MEKF uses the attitude

dynamics model to propagate the state estimates. The sliding mode controller is also af-

fected as the error attitude dynamics are used in the calculation of the equivalent control

torque. While the PD controller does not explicitely use the satellite’s inertia to calculate

the control input, the chosen PD gains may not provide the same performance as they are

tuned for the particular values of the satellite’s inertia.

Relative errors of +10% in each of Jxx, Jyy, and Jzz are considered. That is, the true prin-

cipal moments of inertia used in the propagation of the attitude dynamics are 10% larger

than the ones assumed by the MEKF and controllers. The pointing angles are shown in

Figure 5.13, the angular velocity and control inputs are shown in Figure 5.14, and the

MEKF estimate errors from t = 1 to t = 5 orbits are shown in Figure 5.15. Both controllers

take slightly longer to detumble and align the satellite, which is expected given that the

inertia is higher than what was assumed in the controller design. It takes longer for the

sliding mode controller to achieve good alignment with the orbit normal, as seen in Fig-

ure 5.13 (b), compared to the ideal scenario in Figure 5.9 (b). Nonetheless, the pointing

angles are small in the Earth- and Sun- pointing modes after the transitions. The MEKF

showed very similar response in the first orbit to the ideal scenario. In addition, we can

see in Figure 5.15 that the estimate errors from t = 1 to t = 5 orbits are similar to those in

Figure 5.12 from the ideal scenario simulation.
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PD: Alignment PD: Nominal

SMC: Alignment

SMC: Nominal

(a)

(b)

Figure 5.13: Pointing angles with inertia uncertainty. (a) zb - zd angle (b) yb - no angle

X 3.53075

Y 0.0073055

(a) (b)

Figure 5.14: Angular velocity and control inputs with inertia uncertainty, from t = 1 t to

t = 5 orbits. (a) Angular velocity, (b) magnetic control inputs
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(a) (b)

Figure 5.15: Estimate errors with inertia uncertainty, from t = 1 to t = 5 orbits. (a) Total

angular error, (b) Angular velocity error
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5.5.3 Flywheel Axis Misalignment

The magnetometer-only MEKF, sliding mode controller, and PD controller are all affected

by misalignment of the flywheel axis as it affects the actual attitude dynamics of the sys-

tem. The effect of the flywheel axis misalignment on the attitude dynamics is calculated

with:

Hf = Cf
bh (5.31)

where h is the flywheel angular momentum in the flywheel frame (h = [0, h, 0]>). The

rotation matrix, Cf
b , rotates components in the flyhweel frame to those in the body fixed

frame and is defined as:

Cf
b =


cos(ψf ) − sin(ψf ) cos(φf ) sin(ψf ) sin(φf )

sin(ψf ) cos(ψf ) cos(φf ) −cos(ψf )sin(φf )

0 sin(φf ) cos(φf )

 (5.32)

Here, the misalignment of the flywheel axis is parameterized by two angles, ψf and φf .

The angle ψf represents a rotation of the flywheel axis around the satellite’s zb axis and

φf represents a rotation of the flywheel axis around the satellite’s xb axis. The largest

misalignment on either axis is expected to be 2 ◦, which allows for the use of the small

angle approximation for Cf
b :

Cf
b =


1 −ψf 0

ψf 1 −φf

0 φf 1

 (5.33)

Note that this uncertainty is introduced into the D-SPOSE attitude dyamics propagation

model, and not in the models used by the MEKF or the sliding mode controller. For the

results presented here, the flywheel misalignment is set to ψf = 2 ◦ and φf = 2 ◦. As

before, the satellite is simulated for 5 orbits with each controller, starting with the detum-

bling mode. Figure 5.16 shows the pointing angles and Figure 5.17 shows the satellite
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angular velocity and magnetic control inputs. Figure 5.18 shows the MEKF estimate er-

rors from t = 1 to t = 5 orbits. The PD and sliding mode controller still perform quite

well. However, the estimation accuracy of the magneometer-only MEKF is significantly

compromised with total angular errors of several degrees persisting after the detumbling

mode is completed. In Figure 5.18 (a), the total angular error follows a similar profile as

the y component of the satellite’s angular velocity in Figure 5.17 (b). This is expected,

as the flywheel misalignment causes the x and z components of its angular momentum

in the body-fixed frame to become non-zero, while the MEKF attitude dynamics model

assumes the flywheel is perfectly aligned.

PD: Alignment PD: Nominal

SMC: Alignment

SMC: Nominal

(a)

(b)

Figure 5.16: Pointing angles with flywheel misalignment. (a) zb - zd angle (b) yb - no angle
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(a) (b)

Figure 5.17: Angular velocity and control inputs with flywheel misalignment, from t = 1

t to t = 5 orbits. (a) Angular velocity, (b) magnetic control inputs

(a) (b)

Figure 5.18: Estimate errors with flywheel misalignment, from t = 1 to t = 5 orbits. (a)

Total angular error, (b) Angular velocity error

5.5.4 Residual Magnetic Moment

As stated in Chapter 3, the residual magnetic moment interacts with the Earth’s magnetic

field and produces a perturbing torque on the satellite. This affects the attitude dynam-

ics, estimation, and control. While the residual magnetic moment can be measured before

launch, errors will undoubtedly be present in this measurement. Figure 5.19 - Figure
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5.20 show the effect of a residual magnetic moment of mr = [0.01, 0.01, 0.01]> Am2 on

the PD and sliding mode controllers over 5 orbits, starting in detumbling mode. These

values of mr are comparable to measured residual magnetic moments of other 3U cube-

sats. For example, the Space Dart 3U cubesat had a residual magnetic moment strength

of 0.009 Am2 [63]. Figure 5.21 shows the attitude estimate errors of the magnetometer-

only MEKF from t = 1 to t = 5 orbits. The major differences are seen in the nominal

mode pointing angles and in the estimation errors. The performance of the PD controller

is dramatically worse in this case, with the pointing angle β reaching almost 50◦ in Earth-

pointing mode and showing large fluctuations in Sun-pointing mode. This clearly does

not meet the pointing requirement, recalling that the camera has a 20◦ field of view. In

contrast, the sliding mode controller performs relatively well and shows robustness to

the residual magnetic moment, with pointing angles β < 10 ◦ in Earth-pointing mode

and β < 5 ◦ in Sun-pointing mode, after the transitions are completed. The accuracy of

the magnetometer-only MEKF is significantly affected by the residual magnetic moment.

The total angular error δα oscillates between 2 and 8 ◦, and the oscillations are slightly

larger with the PD controller. There is also a clear oscillation between ±0.02 ◦/s in the y

component of the angular velocity estimate error as seen in Figure 5.21 (b).
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PD: Alignment PD: Nominal
SMC: Alignment

SMC: Nominal

(a)

(b)

Figure 5.19: Pointing angles with residual magnetic moment. (a) zb - zd angle (b) yb - no

angle
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(a) (b)

Figure 5.20: Angular velocity and control inputs with residual magnetic moment, from

t = 1 t to t = 5 orbits. (a) Angular velocity, (b) magnetic control inputs

(a) (b)

Figure 5.21: Estimate errors with residual magnetic moment, from t = 1 t to t = 5 orbits.

(a) Total angular error, (b) Angular velocity errors
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5.5.5 All Uncertainties Combined

The ADCS is tested in a worst case scenario including all sources of error as shown in

Table 5.4. Meteorix is simulated for 1 day (15 orbits) starting in detumbling mode. The

results are compared to the ideal scenario which was presented at the end of Section 5.4.3

and are summarized in Table 5.5. The time to detumble, Tdetumble is measured starting

from t = 0 to the time at which ω < 0.3 ◦/s. The alignment time, Talign, is measured start-

ing at the beginning of alignment mode to the time at which either γ < 5 ◦ or β < 5 ◦. The

average orbit normal alignment angle, γ, is calculated starting from t = 5 orbits. The aver-

age pointing angles in Sun-pointing, βSP , and Earth-pointing, βEP , are calculated starting

10 minutes after the initial transition to each mode, respectively, to allow time for maneu-

vering. The average attitude and angular velocity estimation errors, δα and δω, are also

calculated starting from t = 5 orbits.

In the ideal scenario, the sliding mode controller outperforms the PD controller in all

operational modes and the attitude control and estimation requirements are met. The

detumbling time with sliding mode control is more than 4 times faster than with PD

control and the alignment time just less than 3 times faster. The sliding mode controller

achieves an average pointing angle of βSP = 0.5 ◦ in Sun-pointing mode which is within

the β < 1 ◦ requirement. In addition, the average orbit normal alignment angle is well

within the requirement of γ < 2 ◦. The MEKF estimation errors are within the require-

ments of δα < 0.5 ◦ and δω < 0.02 ◦/s with both the PD and sliding mode controllers.

The worst case scenario results highlight the overall sensitivity of the ADCS to the sources

of error considered. Figure 5.22 and 5.23 show the pointing angles and estimation errors

with the PD controller in the ideal and worst case scenarios. Similarly, Figure 5.24 and

5.25 show compare the results with the sliding mode controller between the ideal and

worst case scenarios. Interestingly, the PD controller has a longer detumbling time in the

worst cases scenario than in the ideal scenario, but a shorter alignment time. However in
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Figure 5.22 we can see that although β reaches the < 5 ◦ mark earlier in the worst case, as

indicated by the vertical solid line, the subesequent Earth-pointing angle is very poor. The

sliding mode controller still meets the Earth-pointing requriement of β < 20 ◦ but does not

meet the orbit normal alignment requirement of γ < 2 ◦ nor the Sun-pointing requirement

of β < 1 ◦. However, γ and βSP are siginificantly smaller with sliding mode control than

with PD control. The total angular error of the MEKF does not meet the requirement of

δα < 0.5 ◦, with average errors of δα = 3.83 ◦ with PD control and δα = 3.02 ◦ with sliding

mode control.

Table 5.4: Sources of error in worst case senario.

Initial estimate errors
δω0 = [2, 2, 2] ◦/s

δψ0 = 20 ◦ δθ0 = 20 ◦ δφ0 = 20 ◦

Inertia uncertainty +10% in Jxx, Jyy, Jzz

Flywheel misalignment ψf = 2 ◦, φf = 2 ◦

Residual magnetic moment mr = [0.01, 0.01, 0.01]> Am2

Table 5.5: Averaged ADCS performance results of 1 day simulations.

Ideal Scenario Worst Case Scenario

PD SMC PD SMC

Tdetumble [min] 79.4 18.8 87.0 24.5

Talign [min] 89.7 33.5 77.8 43.9

Average γ [◦] 1.59 0.97 11.06 5.20

Average βSP [◦] 1.84 0.50 6.18 3.31

Average βEP [◦] 2.61 1.78 34.67 11.41

Average δα [◦] 0.22 0.23 3.83 3.02

Average δω [◦/s] 0.008 0.008 0.011 0.010
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(a)

(b)

Figure 5.22: Pointing angles with PD control, ideal vs worst case scenario. (a) zb - zd angle

(b) yb - no angle

(a) (b)

Figure 5.23: Estimate errors with PD control, ideal vs worst case scenario. (a) Total angu-

lar error, (b) Angular velocity errors
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(a)

(b)

Figure 5.24: Pointing angles with sliding mode control, ideal vs worst case scenario. (a)

zb - zd angle (b) yb - no angle

(a) (b)

Figure 5.25: Estimate errors with sliding mode control, ideal vs worst case scenario. (a)

Total angular error, (b) Angular velocity errors
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Conclusions

6.1 Summary of Research

This research focused on the development of an attitude determination and control sys-

tem for the Meteorix mission, a cubesat mission dedicated to the autonomous detection

of meteors and space debris entering the Earth’s atmosphere. Accurate localization and

tracking of meteors using an on-board camera and image processing chain requires high

power consumption and is computationally expensive. This presented a constraint on

the satellite: to use minimal sensors and actuators for attitude estimation and control.

In particular, the ADCS hardware was constrained to a single magnetometer for attitude

estimaton and three magnetic actuators for attitude control, with a single flywheel for

gyroscopic stability. The mission was separated into three distinct modes of operation;

detumbling mode, alignment mode, and nominal mode. Specific attitude estimation and

control requirements were outlined for each mode based on the scientific objectives and

power needs of the satellite, as well as the ADCS hardware constraints. The Meteorix

satellite model and the ADCS were incorporated into D-SPOSE, a high fidelity orbit and

attitude propagator.

88
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Estimation of the attitude and angular velocity of Meteorix was accomplished with a

magnetometer-only MEKF. Its formulation, as well as its performance, were compared to

a traditional gyro-based MEKF that uses a gyroscope to measure angular velocity. The

magnetometer-only MEKF relies on the measurements from the magnetometer and the

satellite attitude dynamics model to estimate the attitude and angular velocity. The gyro-

based MEKF estimates the attitude and gyroscope bias, and corrects the angular velocity

measurements with the bias estimates. The performance of both algorithms was evalu-

ated and compared through Monte Carlo simulations of two angular velocity scenarios

with a wide range of initial estimate errors. Simulation results showed that the estimation

accuracy of the magnetometer-only MEKF suffers in the high angular velocity scenario.

However, in Chapter 5 the accuracy was shown to improve as active attitude control

quickly detumbles the satellite. It was found that the gyro-based MEKF fails to converge

in the low-angular velocity scenario, due to the poor noise characteristics of the gyro-

scope. This highlighted the advantages of the magnetometer only MEKF as it met the

attitude and angular velocity estimation requirements of Earth-pointing mode.

For attitude control of Meteorix, a nonlinear sliding mode controller was formulated and

implemented to use full state feedback from the magnetometer-only MEKF. The sliding

mode controller was compared to a simpler PD controller based on pure magnetic feed-

back. The performance was first evaluated in simulations of each operational mode. In

simulations of detumbling mode, the two controllers were compared against the tradi-

tional B-dot control law commonly employed to detumble cubesats. The sliding mode

controller outperformed both the B-dot and PD controllers, detumbling the satellite ap-

proximately 4 times faster. The siding mode controller was also superior to the PD con-

troller in the alignment and nominal modes, showing faster alignment with the orbit nor-

mal and better Earth- and Sun-pointing accuracy.
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A sensitivity study was conducted to investigate the overall ADCS performance in the

presence of uncertainties and disturbances. The ADCS was tested against large initial

estimate errors, inertia uncertainty, flywheel axis misalignment, and residual magnetic

moment. The most significant effects on ADCS performance were flywheel misalignment

and residual magnetic moment. In all cases, the sliding mode controller performed better

than the PD controller, demonstrating its robustness. In the worst case scenario with all

sources of error considered, the average Earth-pointing error with the PD controller was

approximately 3 times larger than with the sliding mode controller, and did not meet the

requirement of β < 20◦ imposed by the camera. The sliding mode controller was able to

maintain an average Earth-pointing angle of β ≈ 11◦, which is well within the require-

ment. The sliding mode controller also offered better alignment with the orbit normal and

better Sun-pointing accuracy. However, the estimation accuracy of the magnetometer-

only MEKF was significantly compromised in the worst case scenario, largely due to the

flywheel axis misalignment and residual magnetic moment. Additional work is needed

to improve the estimation accuracy.

6.2 Recommendations for Future Work

Many extensions can be made to the attitude estimation and control algorithms explored

in this thesis to improve their performance and provide a more reliable ADCS for the Me-

teorix mission. First, attention should be given to the calibration of the satellite’s sensors

and actuators. In this work, it was assumed that the magnetometer was perfectly cali-

brated. However, it will have associated scale factors, misalignment terms, and biases in

the signal that should be accounted for. This can be accomplished with online calibration

methods. One such method was implemented in the EyeSat mission, in which an EKF

was formulated to estimate the calibration matrix and bias terms of the magnetometer

by comparing the norms of the magnetometer measurement and the IGRF magnetic field

model. The estimates were fedback to the magnetometer measurement model and im-
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proved the overall attitude estimation accuracy.

The magnetometer-only MEKF can be improved in a number of ways. First, it is recom-

mended to estimate the residual magnetic moment as part of the MEKF state vector. The

estimated residual magnetic moment can be included in the attitude dynamics model of

the MEKF which would improve the overall attitude estimation accuracy. Furthermore,

it can be fedback to the sliding mode controller and included as part of the equivalent

control torque design. This would improve the overal robustness of the ADCS to residual

magnetic moment. Improvements can also be made to account for uncertain parameters

such as the satellite’s inertia and the flywheel properties. There are many adaptive meth-

ods available in the literature to tackle these issues. It is also worth exploring other esti-

mation and control techniques. A magnetometer-only unscented Kalman filter could be

formulated and possibly provide better accuracy in the presence of uncertainties and dis-

turbances. Optimal control formulations, such as LQR control, can also be implemented.

Further work can be done on simulation and validation. For example, the sensitivity

study conducted in this work was limited and only considered one set of values for each

source of error considered. Monte Carlo simulations that evaluate the ADCS performance

over a range of sources of error could provide more conclusive results. Other sources of

error, such as poor calibration of the magnetometer, or errors in the positional estimates

from the GPS should be considered. A more rigorous power and energy analysis should

also be conducted. It is crucial to verify that the proposed operational modes allow the

satellite to generate enough power with the solar panels to sustain operation.
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