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Abstract

The Meteorix mission is a nanosatellite demonstration mission dedicated to the obser-
vation and characterization of meteors and space debris entering into the Earth’s at-
mosphere. The scientific objectives of this mission require a high performance attitude
determination and control system (ADCS). This thesis entails the development of atti-
tude estimation and control algorithms for the Meteorix 3U cubesat. Attitude estima-
tion and control requirements are outlined, given the mission’s scientific objectives and
the power needs of the satellite. A magnetometer-only multiplicative extended Kalman
tilter (MEKF) is formulated to estimate the satellite’s attitude and angular velocity. It
is compared to a conventional gyro-based MEKF and uses the derivative of the mag-
netic field and the attitude dynamics model, in place of gyroscope measurements to
update the angular velocity estimate. Results from Monte Carlo simulations show that
the magnetometer-only MEKF outperforms a gyro-based MEKF in low angular veloc-
ity scenarios. A sliding mode controller is developed for attitude control using three
magnetic actuators, while a single flywheel oriented in a momentum bias configuration
provides gyroscopic stability. Using the attitude and angular velocity feedback from
the magnetometer-only MEKF, the sliding mode control law offers better pointing ac-
curacy than a standard proportional derivative (PD) magnetic feedback controller; it is
also shown to be more robust to uncertainties and disturbances in a sensitivity study. The
magnetometer-only MEKEF suffers in the presence of model uncertainties such as flywheel
misalignment and residual magnetic moment, and methods to improve the overall ADCS

performance are discussed.



Abrégé

La mission Meteorix est une mission de démonstration de nanosatellites dédiée a 1’observ-
ation et a la caractérisation des météores et des débris spatiaux entrant dans 1’atmosphere
terrestre. Les objectifs scientifiques de cette mission nécessitent un systéme de détermination
d’attitude et de controle (ADCS) de haute performance. Cette these porte sur le développe-
ment d’algorithmes d’estimation et de controle d’attitude pour le cubesat Meteorix 3U.
Les exigences en matiere d’estimation et de contrdle de l’attitude sont décrites, compte
tenu des objectifs scientifiques de la mission et des besoins en énergie du satellite. Un
filtre de Kalman étendu multiplicatif (MEKF) est formulé pour estimer 1'attitude et la
vitesse angulaire du satellite. Il est comparé a un MEKF conventionnel basé sur un gyro-
scope et utilise la dérivée du champ magnétique et le modele de dynamique d’attitude, a
la place des mesures du gyroscope pour mettre a jour ’estimation de la vitesse angulaire.
Les résultats des simulations de Monte Carlo montrent que le MEKF & magnétometre seul
surpasse le MEKF a gyroscope dans les scénarios a faible vitesse angulaire. Un contréleur
a mode glissant est développé pour le contrdle d’attitude a 1’aide de trois actionneurs
magnétiques, tandis qu'un seul volant d’inertie orienté dans une configuration de bi-
ais de momentum assure la stabilité gyroscopique. En utilisant le retour d’information
sur l'attitude et la vitesse angulaire du MEKF a magnétometre seul, la loi de controle en
mode glissant offre une meilleure précision de pointage qu'un contrdleur standard a re-
tour d’information magnétique proportionnel et dérivé (PD) ; il est également démontré
qu’il est plus robuste aux incertitudes et aux perturbations dans une étude de sensibilité.

Le MEKF a magnétometre seul souffre de la présence d’incertitudes de modele telles que
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le désalignement du volant d’inertie et le moment magnétique résiduel, et des méthodes

pour améliorer la performance globale de I’ADCS sont discutées.
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Chapter 1

Introduction

Nanosatellites, weighing between 1 and 10 kg, have become increasingly popular in re-
cent years due to the development of the standardized cubesat format [1]. Meteorix is
a cubesat mission in developement by the Centre Spatial Universitaire, CurieSat, at Sor-
bonne University [2]. It is designed for the detection of meteors and space debris entering
Earth’s atmosphere and its primary scientific objective is to estimate the flux density of

these objects autonomously, using a camera and an on-board image processing chain.

Estimating the flux density of extraterrestrial material arriving at Earth is a widely stud-
ied problem [3]. Two recent projects have been developed with the purpose to detect
meteors from space: the S-CUBE cubesat mission and the METEOR experiment aboard
the International Space Station (ISS) [4], [5]. The METEOR experiment focused on deter-
mining the chemical composition of meteors and demonstrated the feasibility to observe
meteors from space. There are also many ground-based facilities dedicated to detecting
meteors from Earth, such as large camera networks in Canada, Australia, and Europe,
and in particular the French Fireball Recovery and InterPlanetary Observation Network
(FRIPON) [6]. The ability to make observations from space offers advantages over these
ground-based systems such as no weather constraints, long recording time, and wide

coverage [2]. Moreover, observations from Earth and space can be combined for stereo-
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scopic measurements of meteors [7]. In fact, one of the main objectives of the Meteorix
mission is to combine the data from Meteorix and FRIPON to form accurate stereoscopic

measurements of meteor and space debris trajectories [7].

The success of the Meteorix mission depends on the reliability of the satellite’s attitude
determination and control system (ADCS). The aim of this thesis is to develop an ADCS
for the Meteorix satellite that can enable the fulfillment of the scientific objectives of the
mission. Specifically, accurate meteor localization and tracking from a satellite require
accurate estimates of the satellite’s attitude [7]. Active attitude control is needed to de-
tumble the satellite after departure from the launch vehicle, align the satellite in a desired
pointing direction, and perform re-orientation maneuvers throughout the mission. As
such, three distinct mission modes are defined: detumbling mode, alignment mode, and
nominal mode. Each mode has specific attitude control and estimation requirements that
must be met. The camera and detection chain require high power consumption and place
a heavy computational burden on the satellite’s on-board computer [2]. For this reason,
the Meteorix ADCS needs to use minimal sensors and actuators and be computationally
efficient. The sensor and actuator configuration of the Meteorix cubesat is based upon
the French EyeSat nanosatellite which was launched in 2019 [8]. EyeSat used a combina-
tion of star-trackers and magnetometers for attitude estimation, and magnetic actuators
and reaction wheels for attitude control. However, due to the power consumption and
computational constraints of the Meteorix mission, it was recommended that a single
three-axis magnetometer should be used for attitude estimation, while attitude control
should be done with three magnetic actuators. In addition, one flywheel oriented in a
momentum bias configuration should provide gyroscopic stability. The Meteorix ADCS
resarched in this thesis is therefore based on this unique sensor and actuator configura-

tion.



Chapter 1. Introduction 3

1.1 Related Work

1.1.1 Attitude Estimation

Satellite attitude estimation can be done in many ways and has been studied since the
1960s. One of the earliest methods is an algebraic approach that calculates the attitude
from a set of two vector observations, as for example, magnetometer measurements of
Earth’s magnetic field vector. This is a deterministic method known as the TRIAD algo-
rithm [9]. In 1965, Wahba proposed the famous attitude determination problem which in-
volves finding the optimal rotation matrix between two coordinate frames using a weighted
set of any number of vector observations [10]. There are two notable early solutions to
Wahba'’s problem. Davenport’s q-method, reported in [11] solves for the unit quater-
nion parameterization of the attitude instead of the 9-element rotation matrix. How-
ever, this required performing an eigenvalue decomposition of a 4x4 matrix and was
too computationally complex for the computers at the time [10]. The first algorithm
suited to onboard computer processors was Shuster’s Quaternion Estimator, known as
the QUEST method [9]. QUEST was first applied in the MAGSAT mission in 1979 and is
still widely used today [10]. These deterministic formulations do not explicitly account
for the stochastic nature associated with random measurement noise and model uncer-
tainty. As algorithm robustness and accuracy demands increased and computer proces-

sors became more capable, more complex algorithms emerged.

The extended Kalman filter (EKF) became the go-to method for satellite attitude estima-
tion in the early 1980s [12]. In this work, we parameterize Meteorix’s attitude with the
unit quaternion. The quaternion is a four-parameter, singularity-free attitude represen-
tation and is subject to a unit norm constraint. This unit norm constraint presents some
problems in the standard EKF implementation [12]. As a result, several variations of the
EKF have been proposed to better handle quaternions. One of the most popular variations

is known as the multiplicative EKF (MEKEF) [13]. Instead of estimating the full quaternion,
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the MEKF estimates a three parameter attitude error and then updates the full estimate
with quaternion multiplication. The attitude kinematics must be propagated to predict
the estimate at each time step. This propagation requires an estimate of the satellite’s an-
gular velocity which can be obtained in one of two ways. The first and most common way
is to measure the angular velocity directly with a gyroscope and estimate the gyroscope
bias to correct the measurement. The second is to estimate the angular velocity directly
with the filter, in which case the attitude dynamics model is used to propagate the esti-
mate. The traditional MEKEF, referred to herein as the gyro-based MEKEF, uses the former

method and estimates the satellite attitude error and gyroscope bias error [14].

Most satellite attitude estimation techniques use vector measurements from any num-
ber of sensors including star trackers, Sun sensors, and magnetometers. However, we are
more interested in single sensor attitude estimation methods as Meteorix is limited to one
magnetometer. Luckily, the use of minimal sensors that provide sufficiently accurate atti-
tude estimates has become a widely studied problem, particularly for small satellites [15].
One reason for this is that the noise characteristics of MEMS (micro-electromechanical
systems) gyroscopes used in CubeSat applications are 10 - 100 times worse than modern
tiber-optic gyroscopes used in larger satellites, and they are more sensitive to changes in
temperature [16]. Precision pointing cubesats tend to use star trackers for both attitude
and angular velocity estimation when high attitude control accuracy is required [16]. A
comparison of gyroless and gyro-based attitude estimation using star tracker measure-
ments is presented in [17]. It is shown that an MEKF using only star tracker measurements
and the satellite attitude dynamics model performs as well or better than the gyro-based
MEKE. A similar gyroless MEKF using only Sun vector measurements was developed for

application to the O/OREOS 3U cubesat [18].

The magnetometer is a reliable sensor in the context of single sensor attitude estima-

tion. A magnetometer measures the Earth’s magnetic field as experienced by the satellite.



Chapter 1. Introduction 5

Unlike star trackers that must point in a specific direction to take measurements, or Sun
sensors that can only take a measurement when the satellite is not in Earth’s shadow, mag-
netometers provide measurements at all times throughout a satellite’s orbit. Furthermore,
modern magnetometers measure Earth’s magnetic field with a high degree of precision.
Magnetometer-only attitude estimation requires the use of highly accurate models of the

Earth’s magnetic field, such as the International Geomagnetic Reference Field (IGRF) [19].

There are several magnetometer-only attitude estimation techniques found in the litera-
ture. One of the earliest methods is DARDMOD, or deterministic attitude and rate de-
termination using magneteomter-only data [20]. This method uses a batch of sequential
magnetometer measurements as well as control law data, such as reaction wheel momen-
tum or magnetic dipole moments. While the solution can be accurate to 10°, it requires
solving an 8th order polynomial and is therefore inefficient [21]. Furthermore, it assumes
no external disturbances act on the satellite and does not account for uncertainty in the
measurements or the model. Kalman filtering can be used to improve the accuracy of

magnetometer-only attitude estimation [22].

Psiaki et. al proposed a magnetometer-only EKF to estimate the attitude, angular rates,
and disturbance torques for a gravity gradient stabilized spacecraft [22]. More recently,
Ma et al. used an unscented Kalman filter (UKF) with magnetometer measurements to
estimate the satellite attitude and calibrate the magnetometers [23]. An interesting EKF
formulation using magnetometer measurements combined with readings from the satel-
lite’s solar cells to estimate attitude is presented in [24]. Another magnetometer-only EKF
is presented in [25] to estimate a satellite’s attitude and angular velocity and a second-
order model is used to propagate the states. A two-step EKF was implemented in [15].
In the first step, the magnetometer measurement is filtered to provide the magnetic field
derivative vector. This is combined with the magnetic field vector in the second step to

tully resolve the satellite attitude and angular velocity. It was shown that the EKF com-
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bined with an already calibrated filter provides computational efficiency over a UKF and

has comparable accuracy [15].

Two interesting EKF variations using only magnetometer data formulated for simultate-
nous orbit and attitude estimation are presented in [26]. The first variation is an aug-
mented dynamics EKF (ADEKF) in which the attitude dynamics and kinematics mod-
els are augmented with the orbit dynamics and kinematics to build up a single process
model. Two interlaced EKFs (IEKF) working simultaneously are introduced to reduce
the computational burden of dual attitude and orbit estimation. In both filters, the time
derivative of the magnetic field is used to estimate the satellite angular velocity and is ob-

tained by differentiating a cubic polynomial fit of the magnetometer measurements [26].

1.1.2 Magnetic Attitude Control

The use of magnetorquers for attitude control is attractive for small satellite missions due
to their low-cost, simplicity, and power efficiency [27]. The major drawback of using mag-
netorquers for attitude control purposes is that the torques generated are constrained to
lie in the plane perpendicular to the magnetic field. For this reason the satellite is un-
controllable in the direction of the magnetic field. Full three axis controllability can be
achieved only if there is enough variation in the magnetic field direction throughout the
satellite’s orbit [28]. Luckily, the Earth’s magnetic field seen by a satellite on a near-polar
orbit is approximately periodic, exhibiting enough variation on average for three axis

controllability over time [29].

Magnetic actuation is commonly used to detumble a satellite after separation from the
launch vehicle, as this can cause excessive initial angular momentum. The classical B-
dot control law can be applied in this scenario [30]. The B-dot control law relates the
commanded magnetic dipole moment to the measured rate of change of the magnetic

tield. Its simplicity and reliability make it the standard method for initial detumbling
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of magnetically actuated satellites [31]. Magnetic attitude control is also often used for
spin stabilization, in which the satellite is controlled to rotate at a high rate abot its major
principal axis. In this case, magnetic actuation can be used to control the direction of the
satellite’s angular momentum. The bang-bang control law proposed in [32] is a popular
scheme still used today, with extensive numerical simulations presented in [33]. The spin
stabilization concept was used in the EyeSat mission for attitude control in safe mode,
in which the satellite must use as few sensors and actuators as possible to limit failures
while the batteries are recharged by the solar panels. To achieve this, a spin control law
using only magnetic feedback was implemented to point EyeSat’s solar panels toward the

sun while maintatining a desired spin rate about its principal axis [34].

Of particular relevance to the Meteorix mission are magnetic attitude control algorithms
used in momentum bias satellites. A momentum bias satellite incorporates a flywheel
spinning at a constant rate to provide gyroscopic stability. Magnetic actuation can be
used to provide any necessary rotation about the flywheel’s spin axis. In many cases the
flywheel’s spin axis is aligned with the orbit normal and in this way the satellite is grav-
itationally stabilized in the orbital plane [31]. This is exactly the configuration of the Me-
teorix cubesat. A simple PD control law using the desired magnetic field and its deriva-
tive was developed for the momentum bias Gurwin-Techsat satellite and was shown to
maintain three-axis stabilization [35]. A similar PD control law was implemented in the
EyeSat mission to correct residual pointing errors about the guidance profile [36]. This is
the same PD control law that was used in previous unpublished work on the Meteorix

attitude control system in [37].

Given that the observation of meteors requires accurate attitude estimates, using these es-
timates as feedback to more sophisticated attitude control laws can provide better control
performance. Optimal control is a popular approach used in this regard [31]. Lagrasta

et al. developed an optimal state feedback control law with integral action to reduce
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the effect of external torque disturbances on a LEO satellite with a pitch-axis momentum
wheel [38]. A review of linear and nonlinear control using only magnetic actuation with
an emphasis on optimal periodic control is presented in [39]. Linear Quadratic Regulation
(LQR) is a popular theory applied to magnetic attitude control and is often implemented
in a time-varying fashion by making use of the periodic nature of the Earth’s magnetic
tield [29], [40]. Nonlinear control using magnetic actuation has also been studied exten-
sively, particular sliding mode control. Sliding mode control is an attractive choice for
magnetic attitude control as it can be shown to be asymptotically stable, and its nonlin-
earity makes it advantageous over other methods, such as PD control, in the presence
of external disturbances [31]. Classic sliding mode control was first proposed for mag-
netic attitude control of the Orsted satellite in [41]. Several improvements to this control
law can be found in [42], [43], and [44]. In [42] an additional term was introduced to the
sliding mode control law for partial disturbance rejection and in [43] an integral sliding
mode controller was formulated. This was expanded upon in [44] with a adaptive sliding
manifold design including two time-integral terms. Other adaptive sliding mode control
methods are presented in [45] and [46]. Zhou et al. formulated a modified sliding mode
controller for a satellite with uncertain parameters, the BUAA-SAT microsatellite [45].
The control law deals with uncertainty in the principal moment of inertia and achieves
an Earth-pointing attitude with high accuracy and stability. Li et al. proposed an adaptive
fuzzy-logic sliding mode controller for a cubesat with three magnetic actuators and one
pitch-axis reaction wheel and it is shown to have much better tracking performance than

a classic PID controller [46].

Few papers were found that studied magnetometer-only attitude estimation and mag-
netic attitude control in combination. One noteable example is a modified state-dependent
Ricatti equation (MDSRE) control law combined with a magnetometer-only EKF investi-
gated in [47] and applied to EgyptSat-1 as a real test case to evaluate the ADCS per-

formance. In [48], a similar magnetometer-only EKF for attitude and rate estimation



Chapter 1. Introduction 9

is combined with a PD feedback controller for a nadir-pointing magnetically actuated

spacecraft.

1.2 Thesis Objectives

The aim of this thesis is to develop attitude estimation and control algorithms for the Me-
teorix cubesat to satisfy requirements imposed by the scientific objectives of the mission,
given its unique sensor and actuator configuration. Before developing the ADCS, specific
attitude estimation and control requirements must be outlined based on the scientific ob-
jectives, as well as the power needs of the satellite. The ADCS is formulated based on
these requirements and the constraints on the system. For attitude estimation, the goal
is to show that the MEKF using only magnetometer measurements can provide accurate
and reliable estimates of the satellite’s attitude and angular velocity. A comparison of the
magnetometer-only MEKF with the traditional gyro-based MEKF is carried out to evalu-
ate the estimator performance. The main requirement of the attitude controller is to reach
and maintain the necessary pointing accuracy in each mission mode. A nonlinear sliding
mode controller based on the literature is formulated for attitude control of Meteorix. The
objective is to demonstrate that the sliding mode controller using state feedback from the
magnetometer-only MEKF can reliably and sufficiently accurately control the satellite’s
attitude in each mission mode. To further evaluate its performance, it is compared to
the simple PD magnetic feedback controller applied to Meteorix in previous work [37].
It is also shown that the sliding mode controller offers better performance than the PD

controller in the presence of uncertainties in the satellite model.

1.3 Thesis Outline

Chapter 1 introduces the Meteorix project and motivation of this thesis and discusses rel-

evant work in the topics of satellite attitude estimation and control. In Chapter 2, the
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Meteorix mission design and objectives are presented with emphasis on the attitude esti-
mation and control requirements. Chapter 3 details the satellite dynamics and kinemat-
ics models and various aspects of the simulation environment employed to evaluate the
ADCS as developed in subsequent chapters. In Chapter 4, the magnetometer-only MEKF
for attitude and angular velocity estimation is formulated and compared to the tradi-
tional gyro-based MEKEF. The perfromance of both estimators is analyzed and compared
with data from Monte Carlo simulations. Chapter 5 details the formulation of the sliding
mode attitude controller and the simple PD magnetic feedback controller. The two con-
trol laws are compared in simulations of each mission mode. Chapter 5 also includes a
sensitivity study to evaluate the ADCS performance in the presence of uncertainties and
disturbances. Finally, Chapter 6 concludes the thesis with recommendations for future

work on the Meteorix ADCS.



Chapter 2

Meteorix Mission

2.1 The Mission

The main objective of the Meteorix mission is to demonstrate that a low-cost nanosatellite
equipped with a camera and an on-board detection chain can autonomously and accu-
rately estimate the flux density of meteors and space debris entering the Earth’s atmo-
sphere. The ability to estimate the flow of meteors and space debris entering Earth’s at-
mosphere is useful for many reasons. This data can be used to constrain existing meteor
models such as the Interplanetery Meteoroids Environment for Exploration (IMEX) [49],
and provide a first classification of the nature of the meteoroids, whether they are of as-
teroidal or cometary origin [2]. Furthermore, the space debris environment in LEO is
becoming increasingly hazardous. It is estimated that there are hundreds of thousands of
space debris 1 to 10 centimeters in size which are undetectable with current observation
facilities on the ground. Objects of this size pose a threat to satellite’s in LEO and can
cause catastrophic damage; thus, it is essential to be able to monitor them. Measurements
from Meteorix will provide information that can improve spatial distribution models of

space debris.

Observations of meteors and space debris entering Earth’s atmosphere can only be made

11
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while Meteorix is in Earth’s shadow. With this in mind, careful consideration was taken
when selecting the satellite’s orbit in [2]. It must be in Earth’s shadow long enough to
collect a sufficient amount of data; on the other hand, the satellite must be Sun-lit for long
enough to charge the batteries and power the system. Therefore, the orbit chosen for the
Meteorix mission is quasi-polar and Sun-synchronous at an altitude of 500 km, with an
inclination of 97.4°, an ascending node fixed at 10:30 local mean solar time (LST), and
a period of 94.7 minutes [2]. In such an orbit, the satellite is eclipsed by the Earth for

approximately 35 minutes and Sun-lit for around 60 minutes.

2.1.1 Satellite Design

Meteorix is a 3U cubesat measuring 30x10x10 cm? and its preliminary design and body-
tixed reference frame are shown in Figure 2.1. The body-fixed frame, F;, is fixed at the
satellite’s center of mass. The primary payload is a 3D Plus 3DCM681 micro-camera
integrated with an optical lense that provides a 40° field of view. The camera is positioned
at the bottom of the satellite along the z, axis and must point toward the nadir to make
observations. Four deployable solar panels will provide power to the satellite and charge
its batteries while pointing toward the Sun. The attitude control system consists of an ISIS
Magnetorquer Board (iMTQ) which has 3 perpendicular magnetic actuators, one for each
of the satellite’s principal axes and each capable of producing a maximum dipole moment
of 0.2 Am? [50]. In addition, the satellite is equipped with one Hyperion Technologies
RW210 momentum wheel oriented in a momentum bias configuration along the satellite’s
yi-axis to provide gyroscopic stability. Attitude estimation must be realized with a single
three-axis magnetometer which measures the ambient magnetic field experienced by the
satellite, and a GPS receiver combined with communication between ground stations will
provide position and velocity estimates. The cubesat has an estimated mass of 3.784 kg
and its principal moments of inertia are estimated to be .J,, = 0.0586 kgm?, J,, = 0.0589
kgm?, J,, = 0.0482 kgm?. This preliminary design was proposed in the Meteorix mission

feasibility review and details of the mission analysis are described in [2].
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Solar panels

Camera

Figure 2.1: Preliminary design of the Meteorix satellite [2].

2.1.2 Modes of Operation

As mentioned in the introduction, the Meteorix mission is separated into three main
modes of operation: (i) detumbling mode, (ii) alignment mode, and (iii) nominal mode,
which as noted earlier, has two sub-modes; Earth-pointing and Sun-pointing. The pur-
pose of detumbling mode is to reduce the satellite’s angular velocity after departure from
the launch vehicle. The departure causes the satellite to spin at an unknown rate, and
in this state the satellite cannot make any observations of the Earth or accurately point
its solar panels toward the Sun. The deployment of the solar panels can partially reduce
the satellite’s angular momentum but active control is required to further detumble the
satellite to an acceptable angular rate. The alignment mode is activated when a near-zero
angular rate is detected. In this mode, the satellite should point its solar panels toward
the sun and align its y,-axis with the orbit normal. Alignment with the orbit normal al-
lows the satellite to take advantage of the gyroscopic stiffness provided by the flywheel
and perform all subsequent maneuvers about this axis. Once good alignment has been

achieved and the batteries have been fully recharged, the nominal mission mode is ac-
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tivated. The satellite must alternate between pointing the camera toward the Earth to
make observations and pointing the solar panels toward the Sun to recharge the batteries.
Thus, two re-orientation maneuvers are to be performed during each orbit. To maximize
the time for observations of meteors and space debris and assuming that ADCS takes 10
minutes to perform the reorientation, the maneuver to point the camera toward the Earth
should be initiated 10 minutes before entering Earth’s shadow. Subsequently, the maneu-
ver to point the solar panels toward the Sun should be initiated only as the satellite exits

Earth’s shadow. This maximizes the time for meteor detection.

2.2 Power and Energy Analysis

It is necessary to verify that the satellite can receive enough power to sustain operation
throughout the mission. The solar cell assembly chosen for the Meteorix mission is the TJ
Solar Cell Assembly 3G30A from Azur Space Solar Power GmbH. The four solar panels
each have six solar cells for a total of ny, = 24 solar cells. Each cell has a surface area of
A, = 30.18cm? and an energy efficiency of 7, = 29.3% [51]. Considering the solar constant
to be Sp = 1360.8 Wm ™2 [52] and the efficiency of the maximum power point tracking

(MPPT) system to be 7,, = 90%, the maximum power available from the solar panels is:
Pmax = nsnsnmSRAs ~~ 25.99W (21)

The actual power, P, generated by the solar panels and supplied to the satellite depends
on the angle, §,, between the outward surface normal of the solar panels (also the z;, axis)

and the Sun direction. This is calculated with:
Py = Ppazcos(0s) (2.2)

An analysis on the power and energy consumption of the satellite’s subsystems in the

nominal mission mode allows us to determine if the satellite generates enough power
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to sustain full operation in nominal mode. Table 2.1 summarizes the estimated power
consumption of each subsystem’s components in the Earth-pointing and Sun-pointing
modes. The high power consumption in Earth-pointing mode is due to the operation of
the camera and the on-board meteor detection algorithm. Note that the values presented
in Table 2.1 are merely estimates based on information from the EyeSat mission and a
more in depth analysis should be performed prior to launch once the satellite design has
been finalized. It is assumed that the power consumption during detumbling and align-
ment modes is equivalent to that in the Sun-pointing mode, as the camera and meteor

detection chain will not be active.

Table 2.1: Power consumption of Meteorix subsystems during Earth-pointing and Sun-

pointing.
Power Consumption (W)
Subsystem Component Earth-pointing Sun-pointing
Command and Data handling On-board computer 5.00 2.00
Camera 2.00 0.20
ADCS board 1.20 1.20
ADCS Magnetorquers 1.00 1.00
Reaction wheel 0.80 0.80
Magnetometer 0.30 0.30
Communications GPS receiver 0.12 0.12
UHF/VHF 2.0 0.5
S-band transceiver 2.0 0.5
Electrical power system MPPT 0.2 0.2
Thermal control system Thermoelectric cooler 2.0 2.0
Total consumed power (W) 16.62 8.82

The satellite must use the energy stored in the batteries during Earth-pointing mode and
during the attitude re-orientation maneuvers. With this information and using Table 2.1,

the energy drawn from the batteries over one orbit can be estimated. First, let T¢, be the
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time spent pointing the camera toward the Earth and let T;,, be the time required for each
of the reorientation maneuvers (assumed equal). The energy drawn from the batteries
during one orbit is then:

E, = P,T., + 2P, T,, (2.3)

It is assumed that the power consumed during maneuvers, P, is equivalent to that in
Sun-pointing mode as the camera and on-board detection chain will not be active. In Sun-
pointing mode, the solar panels provide power to the satellite’s subsystems and recharge
the batteries in parallel. The energy consumed by the satellite in Sun-pointing mode is
simply:

E,, = P,T,, (2.4)

where P;,, the power consumption in Sun-pointing mode, is obtained from Table 2.1 and
T, is the time spent Sun-pointing. For one orbit, it is estimated that 7,, = 35 minutes,
T,, = 10 minutes, and T, = 40 minutes. The estimated total energy consumed over one
orbit is therefore:

Er = Ey+ E,, = 1852 Wh (2.5)

It is assumed that the satellite’s power distribution system has an efficiency of 90%. Using
D-SPOSE, it was determined that the angle between Meteorix’s orbital plane and the Sun
direction is 22.5°. Thus, the best Sun-pointing angle that can be acheived while keeping
the y, axis aligned with the orbit normal is , = 22.5°. Therefore, the maximum energy

generated by the solar panels and supplied to the satellite is estimated to be:

E, = 0.9P,T,, = 14.41 Wh (2.6)

Evidently, with the assumption that the camera and detection chain are active for the en-
tire duration of Earth-pointing mode, the total energy consumed over one orbit is greater

than the energy generated by the solar panels. Thus, to ensure that the energy in the
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batteries is not depleted below a safe threshold, the camera and on-board detection chain

should not be operated for the entire duration of Earth-pointing mode.

2.3 Attitude Control and Estimation Requirements

To fulfill the scientific objectives of the mission, the satellite must be able to meet specific
attitude control and estimation requirements during each mode of operation. In each
mode, the attitude controller needs a desired attitude and angular velocity. The desired
attitude is calculated from the desired body-fixed frame orientation defined by F, = {x,
Yd, Z4}. The main attitude control requirement is defined with a pointing angle, 3, be-
tween the satellite’s z; axis and the desired z, direction in the inertial frame. A secondary
pointing angle, -, defines the alignment of the satellite y, axis with the orbit normal. It
is desired to maintain good alignment with the orbit normal to take advantage of the gy-
roscopic stability provided by the flywheel. The desired angular velocity of the satellite
in each mode is defined by w, with a desired angular rate of w; = ||wy||. The satisfaction
of the attitude estimation requirement in each mode is quantified with the total angular
error, da, between the satellite’s true attitude and the estimated attitude. Similarly, the
quality of angular velocity estimation is defined with dw, the magnitude of the difference

between the true and estimated angular velocity.

2.3.1 Detumbling Mode

The goal of detumbling mode is to simply reduce the satellite’s angular momentum, so it
does not have a strict attitude pointing requirement. The desired angular velocity passed
to the attitude controller is simply zero. However, the satellite is considered to be detum-
bled and can transition to the alignment mode when its angular rate, w = ||w||, meets the
following criteria:

w<03°/s (2.7)



Chapter 2. Meteorix Mission 18

The widely used B-dot control only requires knowledge of the magnitude and direction
of the magnetic field to successfully detumble the satellite. If the satellite’s attitude and
angular velocity are estimated, more sophisticated state feedback control laws can be em-
ployed to detumble the satellite with faster response time and more precision than B-dot
control [31]. As stated in the introduction, a magnetometer-only MEKF is envisioned for
attitude and angular velocity estimation which is fedback to a sliding mode attitude con-
troller. The angular velocity estimate must be small enough for the attitude controller to
successfully detumble the satellite. While there is no strict attitude estimation require-
ment in this mode, it is desired that the attitude estimate error be relatively small at the
end of detumbling mode. Therefore, the estimation requirements in the detumbling mode

are setas da < 5 °and dw < 0.1 °/s.

2.3.2 Alignment Mode

This mode requires the attitude controller to point the solar panels toward the sun and
also align the satellite’s y;-axis with the orbit normal. The desired orientation of the body-

fixed frame in this mode is shown in Figure 2.2 and is expressed in the inertial frame as:

n(ry,.n,)
Zg = — (2.8)
[ (r,nm,)|
n
Ya = 7 (2.9)
||, ||
X4 =Y, 2Zd (2.10)

where n, is the direction of the orbit normal and r,,,, is the Sun direction obtained from
the Sun ephemeris data. The orbit normal direction is calculated through the cross prod-

uct of the satellite’s position and velocity vectors:

n,=r-v (2.11)
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The pointing angles /5 and + are illustrated in Figure 2.2. By aligning the y; axis with the
orbit normal, subsequent maneuvers only need to be performed about the orbit normal
as the flywheel provides gyroscopic stability on the y; axis. Therefore the satellite should
point its solar panels toward the Sun as best as possible while keeping y; well aligned
with the orbit normal, and maintain a near-zero angular rate. The attitude control re-
quirements in this mode are thus § < 1°, v < 2° and w ~ 0°/s. To achieve this pointing
accuracy, the attitude controller requires good estimates of the satellite’s state. Therefore

the estimation requirements are set as dae < 2 ° and dw < 0.01 °/s.

Figure 2.2: Desired orientation in alignment mode.

2.3.3 Nominal Mode

The desired satellite orientations in nominal mode are illustrated in Figure 2.3. To point
the camera directly toward Earth, the satellite’s z, axis must be aligned with the position

vector, r, and the y, axis must remain aligned with the orbit normal:
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Earth pointing Sun pointing
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Equatorial view

North polar view

Figure 2.3: Desired orientations in nominal mode.

zg=— 2.12)
|||

Vo= 2 (2.13)
|1,

Xd =Y, 2Zd (2.14)

The desired orientation in Sun-pointing mode is the same as that in alignment mode, de-
scribed by Equations (2.8) - (2.10). As stated earlier, 5 defines the angle between z, and
z4. The required pointing angles in Sun-pointing mode are 5 < 1° and v < 2°. In Earth-

pointing mode, a z, — z, angle of 3 < 20° is adequate given that the camera has a 40°
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Table 2.2: Attitude control and estimation requirements of the Meteorix mission.

Mode Control Requirements Estimation Requirements
Detumbling w<03°/s da<b® dw<0.1°/s
Alignment f<l°,y<2° w=0°s da <2°  dw<0.01°/s

Earth-pointing 3 <20°,v<2° w=0.06°/s da<0.5° dw<0.01°/s

Sun-pointing [ <1°v<2° w=0°/s da < 0.5° dw<0.01°/s

field of view. The attitude estimation accuracy in Earth-pointing mode greatly impacts
the meteor positioning accuracy [7]. It is shown in [7] that to achieve a desired meteor
positioning accuracy of 1 km through stereoscopic measurements, the attitude estimate
should be accurate to within 0.05°. However, this assumed that high accuracy sensors
such as a star-tracker are used. As stated earlier, Meteorix will only use one magnetome-
ter for attitude estimation and therefore a desired accuracy of do < 0.5 ° is proposed. This

estimation accuracy should be maintained throughout the nominal mission mode.

In Sun-pointing mode, the desired angular velocity of the satellite is zero. To keep the
camera pointing directly to nadir in the Earth-pointing mode, the satellite should rotate

at a rate equal to its orbital rate, about the orbit normal:

2mn,
Wy = T

(2.15)

where T is the orbital period. Given Meteorix’s orbital period of approximately 94.7 min-
utes and keeping the y; axis aligned with the orbit normal, this represents a desired angu-
lar rate of wy ~ 0.06 °/s about the y; axis. With this control requirement, required angular
velocity estimate accuracy is set as dw < 0.01 °/s. To summarize, the attitude control and

estimation requirements for each mission mode are listed in Table 2.2.



Chapter 3

Meteorix Simulation Model

The Meteorix simulation model is detailed in this chapter, starting with a description of
the simulation environment in Section 3.1. The orbit and attitude dynamics and kinemat-
ics models are presented in Section 3.2, and the magnetic field model is outlined in Section

3.3. The perturbations included in the simulations of Meteorix are outlined in Section 3.4.

3.1 Simulation Environment

The Debris SPin/Orbit Simulation Environment (D-SPOSE) is a high-fidelity propagator
developed by Sagnieres for long-term simulation of space debris [53]. This tool includes
numerical integrator for propagating the satellite’s orbit and attitude equations of motion
and allows for the inclusion of several environmental models and external disturbances.
The D-SPOSE framework, written in C, has been modified for the Meteorix mission to
include the specific satellite model and the attitude estimation and control algorithms.
The orbit and attitude equations of motion for Meteorix, as described in Section 3.2, are
propagated using a fixed timestep, fifth order Runge-Kutta Dormand-Prince numerical

integrator [54].

22
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3.2 Equations of Motion

3.2.1 Orbit Dynamics

Orbital motion of a satellite is most commonly expressed in an Earth Centered Inertial
(ECI) frame. In D-SPOSE, the True-Equator Mean-Equinox (TEME) ECI frame is used
as it corresponds to the reference frame of Two-Line Element sets (TLE) describing the
position with time of space objects which are input into D-SPOSE [53]. Throughout this
thesis the TEME frame is referred to simply as the inertial frame. The orbital motion of

the satellite is described by:

r= —%r + Z a;(r,v,q,w) (3.1)
J

where 41 is Earth’s gravitational parameter, r is the position of the spacecraft in the inertial
frame and is a function of time, ¢, r = ||r||, and v is the satellite’s velocity in the inertial
frame. The terms a; represent the accelerations due to orbital perturbations, which are
a function of the satellite’s position, velocity, attitude, and angular velocity. The attitude
is parameterized with a quaternion, q, which describes the orientation of the body-fixed
frame with respect to the inertial frame and w is the angular velocity of the body-fixed
frame with respect to the inertial frame. The position and velocity are all expressed in the

inertial frame while the angular velocity is expressed in the body-fixed frame.

3.2.2 Attitude Dynamics and Kinematics

The attiude dynamics equation is evaluated in the body-fixed frame and relates the evo-
lution of the satellite’s angular velocity to the sum of external torques about the satellite’s
center of mass. The standard rotational equations of motion are augmented to account

for the angulr momentum of the flywheel on Meteorix as well as the magnetic actuation.
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Thus, the attitude dynamice are defined by:

3o+ w*(Jw + Hy) = 7o + Y 75(r, v, q,w) (32)
J
where J is Meteorix’s inertia matrix, H; is the angular momentum of the flywheel, 7, is
the control torque generated by the magnetic actuators, and 7; are the perturbing torques
which can be a function of the satellite’s position, velocity, attitude, and angular velocity.
The control torque is produced by the interaction of the magnetic actuators with Earth’s
magnetic field, B, expressed in the body-fixed frame:

Tme =M, Bp (3.3)

act

in which m,, is the vector of dipole moments produced by the magnetic actuators on
each satellite body axis and is the input from the attitude controller. The control torque is
clearly constrained to lie in a plane perpendicular to the magnetic field and the magnetic
actuators alone cannot provide instantaneous three-axis controllability. With the flywheel
oriented to spin about the satellite y, axis, its angular momentum in the satellite body-

fixed frame is:
0

H; = Hy (3.4)
0

The flywheel is set to spin at a constant rate with an angular momentum of H; = 1.5x107?
Nms. This was chosen by the Meteorix design team and is taken from the Hyperion Tech-
nologies RW210 data sheet [55]. Note that on the real satellite, the magnetic actuators
and flywheel must be calibrated prior to launch to calculate scale factors, misalignment
terms, and any bias in their outputs. For the purposes of this thesis, they are assumed to

be perfectly calibrated with no bias.
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As noted earlier, the satellite’s attitude is parameterized by the unit quaternion defined
with scalar and vector parts as:
do

q= (3.5)
Q@

In this work the modern convention for quaternions is used as opposed to the Hamilton
convention. The quaternion is a singularity-free attitude representation and it is subject to
the unit norm constraint: ¢? +q, q, = 1. The rotation matrix representation of the attitude

is computed from the quaternion using;:

C(q) = (¢ — q, dv)13x3 + 20,9, — 2909 (3.6)

where 13,3 is the identity matrix. This matrix transforms components of a vector in the

inertial frame to those in the body-fixed frame. The attitude kinematics are described by:

o1 0
4=354® (3.7)
w

where the ® operator represents the quaternion product. In this work, the following

definition of the quaternion product is used:

T
qopo - qfv p’U
qep= (3.8)

qoPv + Podv — 4, P

For implementation, it is convenient to express the attitude kinematics with an alternative

representation of Equation (3.7) given by:

q=;Qw)q (3.9)
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where Q(w) is a 4x4 matrix formed with components of w:

It is useful to calcuate the Euler angle representation of the attitiude for analysis purposes,
as the quaternion can be difficult to interpret. The 3-2-1 Euler angles are calculated from

the quaternion with:

Y = atan2(2(qoqs + 142), 1 — 2(¢5 + q3)) (3.10)
0 = arcsin(2(qog2 — 43q1)) (3.11)
¢ = atan2(2(qoq1 + ¢2q3), 1 — 2(¢; + 43)) (3.12)

where 1, 0, and ¢ represent the yaw, pitch, and roll angles, respectively.

3.3 Magnetic Field Model

D-SPOSE uses the 13th Generation International Geomagnetic Reference Field (IGRF) to
model the Earth’s magnetic field [19]. The IGRF provides a 13th order spherical harmonic
expansion of the Earth’s magnetic potential in the Earth-Centered Earth-Fixed (ECEF)

frame [53] and is given by:

Vir,g,\t) =a Z(%)nﬂ > (g (t)cos(mA) + hyy (t)sin(mA)) Py'[cos(6)] (3.13)

where r is the radial distance from the center of the Earth, a is the geomagnetic convention
for Earth’s mean reference spherical radius, ¢ is the colatitude, and A is the longitude. The
Gauss coefficients, g;* and A", are functions of time and are obtained from the IGRF co-
efficients table [56]. A recursive algorithm is included in D-SPOSE to obtain the Schmidt

normalized associated Legendre functions, P)", evaluated at ¢ [53]. The magnetic field
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vector in the ECEF frame is calculated with:
B=-VV (3.14)

In D-SPOSE, the magnetic field vector, B, is transformed from the ECEF frame to the
inertial frame to get B;. The details of this transformation as well as the derivation of an
anatytical expression for By, the time rate of change of the magnetic field in the inertial
frame, are given in [53]. The magnetic field vector and its derivative in the body-fixed

frame are calculated with:

Bp = C(q)B; (3.15)

Bp = C(q)B; — w*Bjp (3.16)

In Chapter 4, Equations (3.15) and (3.16) are reintroduced as the measurement model of

the magnetomter-only MEKFE.

3.4 Perturbations

3.4.1 Standard LEO perturbations

In this work, the following environmental perturbations are included in the propagation
of the orbit and attitude dynamics: aerodynamic drag and torque, acceleration due to
non-spherical Earth gravitational terms and torque due to gravity gradient, and solar ra-
diation pressure and torque. These are three of the most prominent perturbations for
nanosatellites in LEO. The models used for these perturbations are listed in Table 3.1 and
the equations describing how these perturbations are calculated in D-SPOSE can be found
in [53]. To model the aerodynamic drag and solar radiation pressure perturbations, a tes-

salated surface geometry model of Meteorix was built by Sagnieres in [37]. The satellite
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is composed of 28 triangular surfaces with its solar panels in their open configuration as
shown in Figure 3.1. A drag coefficient cp = 2.2 is used in the calculation of aerodynamic
drag and torque. The effects of winds arising from co-rotating atmosphere are also con-
sidered. The solar radiation pressure parameters are set as A, = 2 and Fijo7 = 80sfu (1
sfu = 10722 Wm2Hz!). A, is a planetary index reflecting the amount of geomagnetic
activity, while Fy 7 is the solar radio flux at 10.7 cm [37]. The coefficients of absorption
(0,), diffuse reflection (o,4), and specular reflection (o,) of each surface of the satellite are
needed for calculating the effects of solar radiation pressure. The coefficients are assumed
to be the same for all surfaces with 0, = 0.4, 0,4 = 0.4, and 0,5 = 0.2, except for the solar
panels which are set to 0, = 0.7, 0,4 = 0.25, and o0,; = 0.05 [37]. The Sun direction, r,,, is
obtained from planetary ephemerides provided by the Virtual Observatory of the Institut
de Mécanique Céleste et de Calcul des Ephémérides assuming a starting date of January

5,2010 [57].

02 T J«//—/’“""//
0 — ) 0.2
0.2 — -0.2

x-axis (m) y-axis (m)
Figure 3.1: Tesselated surface geometry model of Meteorix in the body-fixed frame
An analysis on the effect of the perturbing torques on the Meteorix mission was carried

out in [37]. It was found that the gravity gradient, aerodynamic, and solar radiation pres-

sure torques are all similar in magnitude, on the order of 10~® Nm. For comparison, the
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Table 3.1: Perturbation models.

Perturbation Model

Aerodynamic drag and torque NRLMSISE-00 [58]
Gravity gradient acceleration and torque EGM2008 [59]

Solar radiation pressure and torque Montenbruck and Gill [60]

magnetic actuators produce torques on the order of 107% - 107 Nm on average. Sim-
ulation results showed that the baseline PD attitude controller can perform adequately
well against these perturbations [37]. However, the aerodynamic torque is shown to in-
crease with higher solar activity. Additional simulations were performed with A, = 80
and Fio; = 250 sfu, resulting in aerodynamic torques to be on the order of 10-® Nm.
This had an adverse affect on attitude control, causing the ponting errors in Earth- and

Sun-pointing modes to reach approximately 20 ° and 40 °, respectively [37].

3.4.2 Residual Magnetic Moment

The effect of residual magnetic moment was not studied in [37]. However for small satel-
lites such as Meteorix, the torque caused by the residual magnetic moment is often much
more significant than the three perturbations discussed above. The residual magnetic mo-
ment, m,, interacts with the magnetic field to produce a perturbing torque analogously
to Equation (3.3):

Tmr = M Bp (3.17)

The effect of the residual magnetic moment on the EyeSat mission was studied in [34]. It
was shown that the pointing accuracy of EyeSat’s magnetic attitude control law worsens
with increasing residual magnetic moment. A residual magnetic moment with a mag-
nitude of 0.035 Am? results in an average pointing accuracy of 40°. This represents a
moment of 0.02 Am? on each body-fixed frame axis, equivalent to 10 % of the maximum

dipole moment produced by each magnetorquer. The EyeSat team recommended that the
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residual magnetic moment must be lower than 10% of the magnetic actuation capacity in
all directions [34]. In this thesis, the residual magnetic moment is first assumed to be zero
for the formulation of the attitude estimation and control algorithms in Chapter 4 and 5.
Its effect on the ADCS performance is analyzed in a sensitivity study at the end of Chap-
ter 5, and methods for estimation and compensation of the residual magnetic moment are

discussed.



Chapter 4

Attitude Estimation

In this chapter a magnetometer-only MEKEF is formulated for attitude and angular veloc-
ity estimation of the Meteorix satellite. First, a general EKF formulation is presented in
Section 4.1 to show the basic algorithm structure for state estimation of nonlinear systems.
The traditional gyro-based MEKEF is then detailed in Section 4.2 and its advantages over
the EKF for handling quaternions are highlighted. This provides the basis from which
the magnetometer-only MEKEF is derived in Section 4.3. The implementation of the al-
gorithms and the key differences between the gyro-based MEKF and magnetometer-only
MEKE are then discussed in Section 4.4. In Section 4.5, the performance of each estimation

algorithm is evaluated through Monte Carlo simulations.

4.1 Extended Kalman Filter

The EKF is a well established tool for state estimation of nonlinear systems and is known
to deal effectively with uncertainty that arises from noisy sensor data [12]. As such, it is
a commonly used algorithm for sattelite attitude estimation. The EKF operates in a re-
cursive manner, consisting of a predicton step and an update step. It uses the dynamics
model of the system, linearized about the previous state estimate, to predict the current

state. It then updates the state estimate using a weighted average of the predicted state

31



Chapter 4. Attitude Estimation 32

and measurements from sensors. The weights are calculated from the covariance, a mea-
sure of the uncertainty of the system, and more weight is given to the values with the
least uncertainty. The resulting state estimate is proven to be closer to the true state than

both the predicted and measured values [12].

We start by formulating an EKF for a general nonlinear system described by the following

process and measurement models:

x(t) = f(x,u,t) + w(t) 4.1)

z(t) = h(x,t) + n(t) (4.2)

where x € R™! is the system state, u ¢ RP*! is the control input to the system, and
z € R™*! is the measurement from the system'’s sensors. Uncertainty in the system is
represented by w in the process model and 7 in the measurement model. These are as-
sumed to be zero-mean white Gaussian processes and therefore have normal probability

distributions with covariances Q € R™*" and R € R™*"™, respectively:
p y

p(w) ~ N(0,Q) (4.3)

p(n) ~ N(O,R) (4.4)

Defining the estimate error as éx = x — X, the error covariance, P € R"*", defined by:

P =cov(x — %) = F{[x —x]"[x — %]} (4.5)

describes the likelihood of the state estimate. For implementation on a satellite’s flight
computer, it is necessary to formulate the EKF algorithm in discrete-time. The predicted

state estimate at timestep £k, defined as X%, , is obtained by propagating the state estimate
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from the previous timestep, X;_1, using the following discrete prediction model:
)A(]; = )A(k,1 -+ f(}A(kfl, uk,l)At (46)

This is simply the first order approximation of the process model in Equation (4.1). The

predicted error covariance is then propagated with:
P, =&, P, 1 ®, | + QAt (4.7)

where ®,_; is the first-order state transition matrix:
D, = 1,4, + Fr1 At (4.8)

and F,_, is the Jacobian of the process model evaluated at the previous state estimate and
control input:

Fr1= - (4.9)

OX I%4 -1 up,1
In the above, At is the update rate of the estimator and is typically chosen to be equal to
the sampling rate of the system’s sensors or the on board computer. The measurement
residual is defined by:
v =z — h(X}) (4.10)

This signifies the discrepancy between the measurement and the estimated measurement.
The state estimate is updated at every timestep by multiplying the measurement residual

with the Kalman gain, K;, € R™*™:
K, = P, H (H,P, H] + R) (4.11)

}A(k = )A(]; + Kkvk (412)
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In Equation (4.11), the matrix H;, € R™*" is the Jacobian of the measurement model eval-

uated at the predicted state estimate:

h
g, - o0 (4.13)
Ox 1%
Finally, the error covariance is updated with:
P). = (Lywn — KeHp) Py (L — KyHy) T + KGHLK (4.14)

The general EKF algorithm is summarized in Table 4.1. In the next section a modified
version of the EKF is introduced for application to attitude estimation — the Multiplicative

Extended Kalman Filter (MEKF).

Table 4.1: The EKF algorithm.

Initialize x, = E(xo)

Py = E{[xo — Xo] " [x0 — %]}

Predict )A(,; = )A(k_l + f()A(k_l, llk_l)At

P, =&, P 1@, + QAL

Update K, =P, H/(H,P,H +R)"!
}A(k = )ACI; + Kka

Pi = (Lnxn — KeHy) Py (L, — KeHy) T + K H K]

4.2 Multiplicative Extended Kalman Filter

As shown in Chapter 3, the satellite’s attitude is represented with a unit quaternion, q =
(90, q.]", which must satisfy the unit norm constraint given by: ¢ + q,q, = 1. The
most straight forward way to estimate the quaternion is to treat it like any other vector

state and use Equations (4.6) and (4.12); however, the additive prediction and update
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equations can clearly violate the unit norm constraint and normalization of the quaternion
is required after every update. This can result in larger than necessary estimation errors.
A popular variation of the EKF that properly handles the quaternion is the MEKF and
the formulation presented here is drawn from [14]. The MEKF estimates the quaternion
error of the estimate instead of the quaternion and updates the estimate by multiplying
the error by the predicted quaternion. This is proven to limit the estimation error caused
by the unit norm constraint [14]. The quaternion error is updated with magnetometer
measurements, while the predicted quaternion is obtained by propagating the quaternion
kinematics with measurement from a gyroscope. As such, we refer to this formulation as

the gyro-based MEKEF. The attitude quaternion error is defined by:
fq=q®q " (4.15)

where q is the true quaternion and q is the estimated quaternion, both assumed to be unit

quaternions. The inverse of a unit quaternion is defined through
q = (4.16)

The quaternion error kinematics can be shown to be [14]:

. 0 1 0
oq=— + -0q® 4.17)

O*oqy| 2 5w

where dw is the angular velocity estimate error given by:
w=w—w (4.18)

If the estimated quaternion is ”close” to the true quaternion, we can assume éq ~ [1 0 0 0] "

and obtain the following first-order approximation of the quaternion error kinematics
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[14]:
0 110
5 ~ — i (4.19)
&*oqy| 2 |dw
which can be simplified to:
5Go = 0 (4.20)
dq, = —w™iq, + %&a (4.21)

Thus, the dimension of the system in the MEKF can be reduced by one state by removing
the scalar part of the quaternion error. This reduces the computational complexity of the
algorithm and makes implementation on real systems easier than an EKF that estimates
the full quaternion. As mentioned above, the gyroscope measurement is used to propa-
gate the quaternion estimate in the prediction step. However, any bias in the gyroscope
measurement will accumulate and cause significant drift and error in the state estimate.

Therefore, the gyro-based MEKEF estimates the following error state:

oq,
sx = |74 (4.22)

5b,

where 6b, = b, — b, is the gyroscope bias error. A widely used gyroscope sensor model

is:

w=w-—b,—mn, (4.23)

b, = 1. (4.24)

where @ is the measurement, b, is the gyro bias, and 7, and 7, are independent zero-
mean Gaussian noise processes with covariances 0213,3 and 0213,3. In practice, o, and
o, are referred to as the angular random walk and rate random walk, respectively. These

parameters are often provided by the manufacturer. The angular velocity estimate is
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obtained by subtracting the estimated gyroscope bias from the gyroscope measurement:
& =& —b, (4.25)
and the angular velocity error is therefore:

dw=w—w=—(db; +n,) (4.26)

It is common practice to assume the gyroscope bias is constant, and thus the process

model of the gyro-based MEKEF is defined by the following error dynamics [14]:

—wX0qy + 30w

5% = f = (4.27)
0
Although the MEKF estimates the error state, the full state defined by
<= |1 (4.28)
b

is still predicted and updated at each timestep. The gyro-based MEKF predicts the current

state using the previous estimated state and gyroscope measurement as follows:

@ =@ — by (4.29)
o | R
qr = qr—1 + 59( k) Ar—1At (4.30)
b, = by (4.31)

The error covariance is handled in the same way as in the EKF. It is predicted with Equa-
tion (4.7) and updated with (4.14). However, it does not have the same meaning as in the
EKE. It represents the likelihood of the error state, not the likelihood of the actual state

estimate, and is therefore more difficult to interpret. As such, the measurement residual
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is often used as an indicator of the MEKF performance. The process Jacobian is obtained

by substituting Equation (4.26) into (4.27) and evaluating the following;:

f _a)X, _ll X
o, = 2 — | Rt 2 (4.32)

(0%) b 0313 Osxs

Measurement from a single 3-axis magnetometer is used to update the quaternion error
and gyroscope bias error. The magnetometer measures the magnetic field in the body-
fixed frame which is related to the satellite’s attitude with respect to the inertial frame
through:

Bp = C(q)B; (4.33)

where C(q) is the true attitude matrix and B; is obtained from the IGRF model, as de-

scribed in Chapter 3. In practice, the magnetometer is modelled with:

B, =A,Bsg+b,+n, (4.34)

where A,, is the callibration matrix of scale factors and misalignments terms, b,), is the
magnetometer bias vector, and 7,, is the sensor noise. It is assumed that the magnetome-

ter is perfectly callibrated, and thus the sensor model is reduced to:

B, =Bgp+ 0, (4.35)

The measurement model of the gyro-based MEKEF is therefore:

h(x) = B = C(q)B; (4.36)

z=B,, =h(x)+n, (4.37)
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The measurement Jacobian can be expressed in a simple form. First, the true attitude
matrix is defined by:

C(q) = C(6q)C(q) (4.38)

The estimated measurement is defined as h(x~) = C(q~)B,. Making use of the first-order

approximation of the attitude error matrix given by

C(0q) = 13x3 — 2[0q,]” (4.39)

the estimation error of the magnetometer measurement is simply:

h = h(x) — h(x") = 2[C(q")B;]*éq, (4.40)

Therefore, the measurement Jacobian of the gyro-based MEKEF at timestep & is:

= [2c@)Ba 05 (441)

k

In the update step the Kalman gain is calculated with Equation (4.11) and is partitioned

as Kj, = [Kg, Ky x] . Then, the quaternion estimate is updated as follows:

OQuir = Kgrvi (4.42)
1
dqk = (4.43)
%5€Iv|k
ar = 0q;, ® q; (4.44)

Since the quaternion error is assumed to be small, the small angle approximation dq; =
[1 30q.x] ", is applied in Equation (4.43). The quaternion estimate must be normalized af-
ter the update step as the approximation still violates the unit norm constraint. However,
since the quaternion error represents a small rotation, the magnitude of the constraint

violation is less than if the full quaternion and additive update equation were used [14].
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Lastly, the gyroscope bias estimate is updated with

5Bg|k = Kb‘kvk (445)

~

by = b, + by (4.46)

4.3 Magnetometer-only MEKF

The magnetometer-only MEKF derived in this section assumes that a gyroscope is not
used to estimate the satellite’s angular velocity. Instead of using the bias adjusted gyro-
scope measurements to obtain the angular velocity estimate, the calculated time rate of
change of the magnetic field is used to estimate the angular velocity error directly. In ad-
dition, the satellite’s attitude dynamics model is used to propagate the angular velocity
estimate in the prediction step. Therefore, the magnetometer-only MEKF estimates the

following error state:

0ty
ox = |4 (4.47)
ow
and the corresponding full state is thus:
W (4.48)
w

The process model of the magnetometer-only MEKF consists of the quaternion error kine-
matics given by Equation (4.21), and the angular velocity error dynamics. To derive the
angular velocity error dynamics, first recall the satellite attitude dynamics from Equation
(3.2) in Chapter 3, written in a slightly different form and excluding any external distur-
bances:

w=J""(~w*(Jw+Hy) + Time) (4.49)
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The true magnetic control torque is given by:
Tme = 0B =u”(C(q)By) (4.50)

However, since the true attitude matrix C(q) is not known, the filter must use the esti-
mated magnetic control torque in the propagation of the estimated angular velocity. The

estimated magnetic control torque is defined by:
Tme = 0 (C(@)B) (4.51)
and the error dynamics are then derived as:
bw = J (=@ (Jow) + (J@)* 0w + HF dw + 67c) (4.52)

where 67,,c = Tpe — Tme- The process model of the magnetometer-only MEKEF is thus

defined by:

—w*iq, + %5(.0

0% = f = (4.53)

I (~@*(J6w) + (J&) 6w + HF 0w + 6T,

and the process Jacobian is calculated by taking the partial derivative of the process model

with respect to the error state, evaluated at the previous state estimate and control input:

P of —wp %]—3><3
k-1 = A =
O00) vt oy 1w, [Clae)By)) I7H(H = &, + [Ja 1))

(4.54)

It is important to distinguish between the process model that is used to derive the process

Jacobian and the equations used to propagate the full state in the prediction step. The full
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quaternion and angular velocity estimates are propagated with:

. 1 ... .
q;, = k-1 + 59(‘«01@71)%71At (4.55)

W, = wp—1 + f(Xp—1, wp_1) At (4.56)

where f,, is given by Equation (4.49) and is evaluated with the previous state estimate and

control input.

To update the angular velocity estimate, the magnetometer-only MEKF takes the rate

of change of the magnetic field in the body-fixed frame, defined by:
Bp = C(q)B; — w*Bp (4.57)

The full measurement model of the magnetometer-only MEKF is therefore:

h(x)= || = | = | (4.58)
BB C(q)BI—wXBB C(q)B[—wX(C(Q)B[>

and the measurement is:

B,

. =h(x)+n (4.59)
where Em is the filtered finite difference of B,,,. This is calculated in two steps. First, B,,
is obtained through the following finite difference:

Bk — Boji—1
At

B,k = (4.60)

where At is the magnetometer sampling rate. Next, a first-order low pass filter is applied
to reduce the noise resulting from the finite difference. For an input signal X and an

output signal Y/, a linear, time-invariant digital filter is described by the transfer function
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H(z) in the frequency domain (z):

B(z)  bo+biz bz 2+ .+ byz"
A(z)  14azt +agz2+... +a,z"

(4.61)

where n is the order of the filter and B = [by, b1, ..b,) and A = [1, a, ...a,| are the
transfer function coefficients. In discrete-time, the filter is implemented as a difference

equation obtained by solving:

Ay = Bx (4.62)

For a first order filter (n = 1) we obtain:
Yr = bozg + b1k1 — a1y (4.63)

This is a recursive filter, known as an infinite impulse response (IIR) filter, that depends on
the current and previous input as well as the previous output. In the magnetomter-only

MEKE, B, is filtered to obtain B, :

B,k = boBm\k + ble|k—1 - G1Bm\k—1 (4.64)

The coefficients by, b1, and a, are calculated using Matlab’s butter function. The user de-
fined inputs to this function are the order, n, and normalized cutoff frequency, W,,. In this
work, the normalized cutoff frequency was chosen by comparing the signal generated
by the finite difference (Equation (4.60) to the true derivative of the magnetic field in the
satellite body-fixed frame (Equation (4.57). The Earth’s magnetic field changes relatively
slowly from the perspective of the Meteorix satellite, with a period of approximately 1
orbit. Considering the magnetometer is sampled at 1 Hz (At = 1 s), a normalized cutoff

frequency of W,, = 0.01 is shown to filter the signal reasonably well.

The measurement model of the magnetometer-only MEKF is defined in Equation (4.58)
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and it is straight forward to obtain the measurement Jacobian at timestep  as:

2|C(q;,. )B|* 03
H, oh _ [C(ay) XI] 3x3 (4.65)

00x) | 2((C(a)Bi)* — @; “[C(a)Bi]*) [C(a;)Bi]*

The Kalman gain is calculated with Equation (4.11) and is partitioned as K;, = K, Ky T

The quaternion and angular velocity estimates are then updated as follows:

1
oqy = (4.67)
%5(11)\]4
Qr = 0q;, ® q; (4.68)
Wp = @f + 66y (4.70)

4.4 Implementation

The two attitude estimation methods are implemented within the DSPOSE framework
and are summarized in Table 4.2. It is important to reiterate some of the differences be-
tween the two methods. One of the main differences is in the measurement model. The
magnetometer-only MEKF estimates the satellite’s angular velocity by taking the deriva-
tive of the magnetometer reading and treating it as a measurement. This requires some
extra computation by means of the finite difference and low pass filter described in Equa-
tions (4.60) and (4.64), respectively. The gyro-based MEKF does not produce the angular
velocity estimate explictly, but only the attitude and gyroscope bias estimates. It uses the
magnetometer measurement only for updating the attitude estimate, and as a result the
measurement model is of smaller size. In particular, the magnetomter-only MEKF has

z;, € R, H;, € R%6, R € R®*¢ while the gyro-based MEKEF has z;, € R**!, H;, € R3S,
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Table 4.2: Estimator summary:.

Gyro-based MEKF

Measurement

State Prediction

Process Jacobian

2 = [Bm}

~ ~

q, = Qr-1+ %Q(w;)qk_lAt W, =W — bg\kfl bg_\k; = Bg\kfl

A X 1
_ 7% —3lsxs
Fr1=
03x3 03x3

Measurement Jacobian Hj = [Q[C(qg)B 1" 03X3}
State Update 5611}|k = Kq‘kvk 6E)g|k = Kb|kvk
1 N “ R
%5(]1,‘]@ gl glk ql
Ar = 0qy ® qp;
Magnetometer-only MEKF
B,
Measurement Zp = | =
B,
State Prediction a, = Qr—1 + sQ(@p_1)ar_1At @y = @y + £ (Rp_1, up_1) At
—wy 3133
Process Jacobian Fooa= |, ! e o
20w}, [Claw1)Br¥) TN (H — &+ [Ty 1]%)
2[C(q, )B;]* 0
Measurement Jacobian Hj = . [X (qkA)f XI] L " AEX?’ 8
2([C(a;, )B1]* —w; [C(q,)B1]™) [C(q,)Bi]
State Update (5(:1U|k = Kq‘kvk (5(2Jk = Kw|ka
1
o = |, .. Wi = W, + 0wy,
Q(sqv\k
Ar = 0qy ® qy;

R € R*3. A second key difference between the two methods is in the propagation of

the states. The magnetometer-only MEKF uses the attitude dynamics model to propagate

the angular velocity estimate and is therefore susceptible to uncertainties in the model.

These uncertainties can arise from unmodelled disturbance torques, errors in the satel-
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lite’s moments of inertia, or errors in the flywheel parameters. The gyro-based MEKF
uses the bias adjusted gyroscope measurement to update the angular velocity estimate
which then propagates the quaternion estimate. While it is not as susceptible to the un-
certainties mentioned above, it has it’s own limitations. The first is that the predicted
angular velocity estimate obtained from & = &, — b,;_1 can be particularly noisy de-
pending on the characteristics of the gyroscope. Consequently, a low pass filter should
be applied if w is to be fed back to the attitude controller. Secondly, if the satellite’s angu-

lar velocity is relatively slow and the initial gyroscope bias estimates are far off from the

truth, the gyro-based MEKF may have poor convergence time.

The performance of both attitude estimation methods is affected by many factors includ-
ing the sensor noise parameters, the initial estimate errors, and tunable parameters. The
magnetometer and gyroscope noise parameters are listed in Table 4.3. The values were
obtained from the data sheets of the Honeywell HMC5883L magnetometer [61] and the
Analog Devices ADIS16405 IMU [62], respectively. The tunable parameters for both esti-
mation methods are the initial error covariance, P, and the process covariance, Q. They
were chosen by running several simulations with fixed initial conditions and varying the
values of Py and Q. The parameters which provided the best results for each estimator

are used for all simulations presented in this thesis and are summarized in Table 4.4.

Table 4.3: Sensor noise parameters.

Om = 200 [nT] o, =4.89 x 10~* [rad/s'/?] o, = 3.14 x 1077 [rad/s*/?]

4.5 Simulation Results

The Monte Carlo method is used to compare the two estimation methods by averaging

the performance over 100 simulation runs with a wide range of initial estimates. The
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Table 4.4: Estimator parameters.

Estimator Parameter Value
R diag[o?, 1543, (20,,,)*13x3]

Magnetometer-only MEKF  Q diag[(1 x 107%) 1343, (1 x 107%)13x3]
PO dlag[(l X 10_3)13><3, (1 X 10_6)13X3]
R [O-gn ]_3><3]

Gyro-based MEKF Q diag[(1 x 107) 1343, (1 x 10719)13,5]
PU dlag[(l X 10_3)13><3, (1 X 10_9)13><3]

attitude estimate error is first initialized with:

Sa cos(day/2)
Qo = (4.71)
ap sin(5a0/2)

The angle, day, and the axis, ay, are selected randomly by a sphere point picking method

as follows:

Sap = U(0,30) 7] (4.72)
V1 —v?cos(¢)
a = |1 —v?sin(¢p) (4.73)
v

where v = U(—1,1), ¢ = U(0,2r), and U represents a uniform random distribution. The
initial attitude estimate is then calculated with qy = dqy ® q¢. The angular velocity esti-
mate is initialized with

(.:)0 = Wy — (5(.00 (474:)
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where the components of dwy are chosen as dw; o = U(—2,2) [°/s]. Similarly, for the gyro-

based MEKF the gyroscope bias estimate is initialized with

~

bg|0 - bg‘g - 5bg|0 (475)

and db,|;0 = U(—0.01,0.01) [°/s].

Two initial angular velocity scenarios are considered and summarized in Table 4.5. In
each scenario, the satellite’s attitude is initialized in the Earth-pointing orientation. In the
tumbling scenario, the satellite’s angular velocity is initialized to a moderate tumbling
rate of 4 °/s on all axes. In the Earth-pointing scenario the satellite is initialized to spin
only about its pitch axis at a rate equal to its orbital rate. This is the desired angular
velocity of the satellite in the Earth-pointing phase of the nominal mode, in which the

performance requirement of the attitude estimation is most strict.

Table 4.5: Initial angular velocity scenarios.

Tumbling wo=1[4 4 4]°/s
Earth-pointing  w = [0 0.06341 0] °/s

The metrics used to assess the accuracy of each estimator are the root mean square (RMS)
errors in the estimated states. The RMS angular velocity errors are calculated as the RMS
of the difference between the true and estimated angular velocity for each body-fixed
frame component (w,, w,,w,). Specific to the gyro-based MEKF, the RMS gyroscope bias
errors are calculated as the RMS of the difference between the true and estimated gyro-
scope bias, also for each body-fixed frame component. For the attitude estimation ac-
curacy, the quaternion error can be difficult to interpret. Instead, the Euler angle errors
as well as the total angular error are calculated. To calculate the Euler angle errors, the

quaternion error is obtained from Equation (4.15) and then used in Equations (3.10) -
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(3.12) to get 6v), 06, and d¢. The total angular error is calculated with:

day, = 2 cos " (0qopr) (4.76)

(4.77)

For both initial angular velocity scenarios, the two estimation methods are analyzed using
data from 100 simulations with the state estimates initialized as described in Equations
(4.71) - (4.75). For all simulations, the satellite dynamics are propagated for 15 orbits -
approximately 1 day - with a timestep of At = 1 s. Estimation with either method is
initialized at ¢ = 0 and is executed with a timestep of At = 1 s. The performance is
assessed without active attitude control, and therefore the control input, u, is zero for all

t.

4.5.1 Tumbling Scenario

The estimation results of the tumbling scenario are summarized in Tables 4.6 - 4.8. It was
found that both estimators converge within 1 orbit. For the Meteorix mission, the long
term accuracy of the estimator is prioritized over convergence time and as such all RMS
errors are calculated starting at ¢ = 1 orbit, rather than ¢t = 0. Table 4.6 shows the average
RMS Euler angle and total angular errors of each estimator with their respective standard
deviations. Tables 4.7 and 4.8 show the angular velocity errors and the gyroscope bias er-
rors, respectively, also with their standard deviations. The estimation errors of the gyro-
based MEKF and magnetometer-only MEKF over the first 30 minutes of each simulation
are shown in Figures 4.1 and 4.2, respectively. The magnetometer-only MEKF was found
to diverge in one out of the 100 Monte Carlo simulations and is not shown. The overall es-
timation accuracy of the magnetometer-only MEKF suffers in the tumbling scenario. The
gyro-based MEKF shows better average RMS attitude estimate errors but the standard

deviations are an order of magnitude higher than those of the magnetometer-only MEKF.
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Furthermore, the average RMS angular velocity estimate error with the magnetometer-
only MEKF is slightly better than with the gyro-based MEKF. These results are explained
by the fact that cubesat-grade gyroscopes typically have poor noise characteristics. Both
estimators meet the attitude estimate requirement of o < 5° in detumbling mode, but
not the angular velocity estimate requirement of dw < 0.1°/s. The estimation accuracy is

expected to improve with active attitude control working to detumble the satellite.

Table 4.6: Attitude estimate errors in the tumbling scenario.

Average RMS Error [°]
Estimator + Standard Deviation [°]

i 50 5 sa

Magnetometer-only MEKF 2.3929 2.6858 2.3669 4.3064
0.0074 0.0062 0.0058 0.0108

Gyro-based MEKF 1.4353 1.5745 1.4242 2.5624
0.0678 0.0786 0.0764 0.1274

Table 4.7: Angular velocity estimate errors in the tumbling scenario.

Average RMS Error [°/s]
Estimator + Standard Deviation [°/s]

0wy Oy ow,

Magnetometer-only MEKF 0.0996 0.0669 0.1035
0.0058 0.0190 0.0035

Gyro-based MEKF 0.1811 0.0665 0.1517
0.0012 0.0113 0.0006
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Table 4.8: Gyroscope bias error of the gyro-based MEKF in the tumbling scenario.

Average RMS Error [°/s]

Estimator + Standard Deviation [°/s]
Obgly  Obgy  Obgy.

Gyro-based MEKF 0.0234 0.0334 0.0223
0.0016 0.0138 0.0008

30

Time (minutes)

(a)

dw, [°/s]

Sy [°/9]

10 15 20 25 30
Time (minutes)

(b)

(es]
[

Figure 4.1: Gyro-based MEKF estimation errors in tumbling scenario from ¢ = 0 to ¢t = 30

minutes. (a) Total angular error, (b) Angular velocity error
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Figure 4.2: Magnetometer-only MEKF estimation errors in tumbling scenario from ¢ = 0

to t = 30 minutes. (a) Total angular error, (b) Angular velocity error
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4.5.2 Earth-Pointing Scenario

In the Earth-pointing scenario, the gyro-based MEKF diverged in all 100 Monte Carlo
simulations. The signal to noise ratio of the gyroscope is too small to accurately measure
the low angular rate. However, the magnetometer-only MEKF performs quite well in this
scenario and the results are presented in Tables 4.9. There is a significant improvement in
the attitude and angular velocity estimation accuracy compared to the tumbling scenario.
Table 4.9 shows a total angular error of o = 0.2161 £ 0.0035° which meets the Earth-
pointing estimation accuracy requirement of o < 0.5°. The angular velocity estimate
error also meets the accuracy requirement of dw < 0.02°/s and is sufficiently small for the
attitude controller to maintain the low angular rate required in Earth-pointing mode. The
estimation errors of all 100 Earth-pointing scenario simulations over the first 30 minutes
are shown in Figure 4.3. In all simulations, the attitude and angular velocity estimates
converge in less than 15 minutes. The performance of the magnetometer-only MEKF is

further analyzed in combination with active attitude control in Chapter 5.

Table 4.9: Attitude and angular velocity estimate errors of the magnetometer-only MEKF

in the Earth-pointing scenario.

Average RMS Error [°] Average RMS Error [°/s]
+ Standard Deviation [°] + Standard Deviation [°/s]
01 00 0 da 0w Oy ow,

0.1396 0.1021 0.1295 0.2161 | 0.0057 0.0054 0.0065
0.0026 0.0015 0.0033 0.0035 | 8e-05 7e-05 9e-05
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Figure 4.3: Magnetometer-only MEKF estimation errors in Earth-pointing scenario from

t = 0 to t = 30 minutes. (a) Total angular error, (b) Angular velocity error
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Attitude Control

The Meteorix attitude control algorithms are formulated and compared in this chapter.
First, the method for calculating the desired attitude in each operational mode and the
criteria for switching between modes are outlined in Section 5.1. The PD control law
developed for the EyeSat mission and applied to Meteorix in prior work is then presented
in Section 5.2. A nonlinear sliding mode control law is then formulated in Section 5.3
based on the literature with a few modifications. The sliding mode controller uses full
state feedback from the magnetometer-only MEKF while the PD controller only requires
feedback of the rate of change of the magnetic field measurement. Simulation results are
presented to compare the performance of each controller separately in the detumbling,
alignment, and nominal modes in Section 5.4. In simulations of detumbling mode the
PD and sliding mode controllers are also evaluated against the classical B-dot control — a
current standard for cubesat missions. In Section 5.5, the robustness of the sliding mode
controller is highlighted through a sensitivity study that evaluates the ADCS performance
in the presence of several sources of error. The chapter concludes with a discussion on

methods to further improve the magnetometer-only MEKF and sliding mode controller.

55
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5.1 Setting the Desired Attitude

The desired rotation matrix, C(qq), is calculated from the desired orientation of the body-
fixed frame, F; = {X4, Y4, 24}, which depends on the current operational mode as de-
fined in Chapter 2. While the detumbling mode does not have an attitude pointing
requirement, the attitude controllers still need a desired attitude to be defined. There-
fore the desired attitude passed to the attitude controllers in detumbling mode is simply
C(aa) = 13x3. As stated in Chapter 2, the alignment mode and Sun-pointing mode have

the same desired body-fixed frame orientation in the inertial frame defined by:

n*(r}, n,)

Zg = oS (5.1)
[ (r 0|
n
Yd= (5.2)
||, |
Xd =Y, Zd (5.3)

where we recall that n, is the orbit normal direction and r,,,, is the Sun direction, both
expressed in the inertial frame. The desired body-fixed frame orientation in the inertial

frame in Earth-pointing mode is defined by

Zg= —— (5.4)

|||

n,
Yi= 17 (5.5)

|||
Xq =Y, Zd (5.6)
Then, the desired rotation matrix is calculated as follows
Xg

Clas) = |y, (5.7)
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Recall from Chapter 2 that the angle 3 defines the angular error between the satellite’s
z;, axis and the desired z, pointing direction. In addition, the angle v defines the angu-
lar error between the satellite’s y;, axis and the orbit normal direction n,. Particular to
the Sun-pointing orientation, 5 = 0° corresponds to the minimum Sun-pointing error of
22.5° as the satellite motion is constrained to the orbital plane, and the angle between Me-

teorix’s orbital plane and the Sun direction is 22.5°.

The criteria for transitioning between modes are set as follows. The satellite transitions
from detumbling to alignment mode once the angular rate has been reduced to w <
0.3°/s. The transition from alignment mode to nominal-mode occurs when either of 5 or
7 is reduced below 5°. In the real mission, the transitions between Earth and Sun-pointing
will be commanded through communication with the ground stations. In simulation, the
transitions are commanded such that for each full orbit of the Earth, the satellite spends
approximately 35 minutes Earth-pointing and approximately 60 minutes maneuvering

and Sun-pointing.

It is important to note that in the subsequent presentation, the satellite’s position, r, and
velocity, v, are assumed to be perfectly known as they are used in the calculation of the
desired attitude. On the real satellite, the position and velocity need to be estimated using
a combination of GPS measurements and an orbital propagator. The uncertainty in these

estimates is not accounted for in this thesis.

5.2 Proportional-Derivative Control

The PD control law presented here was originally developed for the EyeSat mission in [36]
and applied to the Meteorix mission in [37]. The magnetic control input, m,, is calculated

with:
1

N HBdH2(KPBd+KD(Bd_]§m)) (5.8)

me.,
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where Kp and K are the proportional and derivative gains, respectively, and B, is the

desired magnetic field vector in the body-fixed frame given by:
By = C(qa)B, (5.9)

Notice that measured magnetic field, B,,, is not included in the proportional part of the
control law as it would disappear in the cross product that gives the resulting torque
(Equation (5.11). The desired rate of change of the magnetic field, B,, is calculated as
a finite difference between the desired magnetic field vector at the current and previous

time steps:

B, = Bd’“_TtB‘“H (5.10)
The magnetic field derivative, ]§m, is the filtered finite difference of the magnetometer
measurement as defined in Equation (4.64). The components of the control input, m,, are
saturated between +/-0.2 Am?, the limits of Meteorix’s magnetorquers, and normalized
to maintain the original direction of m.. This gives the actual commanded control input,

m,.;. The magnetic control torque acting on the satellite is therefore:
Tme =M Bpg (5.11)

The PD control law in Equation (5.8) is an extension of the classic B-dot control law. B-dot
control is most commonly implemented in the following form:

k-

- "B, (5.12)
1B,

me.

where £ is a constant scalar gain. In this work the B-dot control law is used as a baseline in

the evaluation of the PD and sliding mode controller performance in detumbling mode.
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5.3 Sliding Mode Control

While the PD control law does not require explicit knowledge of the satellite’s attitude
and angular velocity, it is unclear if it can meet the performance requirements in the pres-
ence of uncertainties and disturbances which will be present in the real system. For this
reason, a nonlinear sliding mode control law is proposed. The formulation presented here

is based on [41] and [45] with a few modifications.

For an arbitrary dynamic system, the basic premise of sliding mode control is to define
a sliding surface, s, that depends on the states of interest of the system and design a
control law to bring s to a desired value or trajectory (typically zero). For satellite attitude
control, the sliding surface is commonly defined as a sum of the angular velocity error
and attitude error [41]:

s = w, + K,qe, (5.13)

where K, is a positive, constant gain, w, is the angular velocity error and q., is the vector

part of the quaternion error. These are the attitude tracking errors defined by:

A =a®d;" = [¢e, a.,]" (5.14)

we = w — C(qe)wy (5.15)

where wy is the desired angular velocity, q is the desired attitude quaternion, and the
rotation matrix C(q.) brings the desired frame to the body-fixed frame. The sliding mode
control input is separated into an equivalent control torque, 7., and a reaching control

torque, 7,,,. The total control torque, ., is defined as:

Te = Teq + Trn (5].6)
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The equivalent control torque is that which keeps the satellite on the sliding manifold
defined by:
s=0, s=0 (5.17)

The time rate of change of s represents the evolution of the sliding surface as a result of
the satellite rotational motion. The evaluation of s requires the definition of the attitude

error dynamics, w,, and kinematics, g.. The error dynamics are defined as:

W, =w — C(qe>wd - C(qe)wd (518)

In the above, we use a reduced version of the satellite attitude dynamics model in which

the angular momentum of the flywheel, Hy, is omitted:
w=J"1~wJw+ T (5.19)

If H; were included, the resulting sliding mode control input would negate the stabilizing
effect of the flywheel. The desired angular velocity is zero in all operational modes with
the exception of Earth-pointing mode in which it is constant at w, = [0, 27/T, 0] °/s.
Therefore, w; = 0°/s?, and with the identity C(qe) = —w}C(q.), the error dynamics
become:

we = J N (—wJw + 7o) + WS C(qe)wa (5.20)
The quaternion error kinematics are defined as:

1 1 1

qev = §QBowe - §w§qeuv (jeo = _§w;rqev (521)

In this thesis, the sliding surface is modified to prevent the quaternion unwinding phe-
nomenon where two quaternions, q and —q, represent the same orientation in space.

This can cause the satellite to make unnecessarily large maneuvers to reach the desired
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attitude. Therefore, we redefine the sliding surface of (5.13) as:

s = we + K;sgn(ge, ) e, (5.22)

where multiplication by sgn(g.,) ensures that the satellite is driven to the desired attitude
in the shortest distance. The equivalent control torque is calculated by evaluating s = 0.

With 7,,,. = 74, the equvalent control torque is solved for as follows:

S = we + qugn(QEo)qeu (523)
1
0=J"(—w(Jw) + Tey) + wSC(qe)wa + §KngH(Qeo)(Qeowe —wXqe,) (5.24)
1
Teq = wX(Jw) - J(wgc(qe)wd) - §qugn(Qeo>J(qeowe - w:qeu> (525)

Note that in Equation (5.23), the term resulting from the derivative of sgn(q.,) is omitted.
Its inclusion would result in an impulsive control input whenever ¢., = 0, since by defi-
nition &sgn(qe,) = 26(qe,), where 4(+) is the dirac delta function. The value of ¢, is zero
only when there is a 180° error between q and q4; however we do not expect the attitude

error to be that large.

The purpose of the reaching control torque is to drive the sliding surface and its time

rate of change to zero. The following reaching control law is used [45]:
Tn = —Ks — K tanh(s) (5.26)

where K, and K, are positive constant gains. In [45], sgn(s) is used instead of tanh(s).
However, when s is close to zero the value of sgn(s) can switch rapidly between -1 and 1.
This is known as chattering and can cause large, high frequency oscillations in the control

input. Here, tanh(s) is chosen as opposed to sgn(s) as it provides a smoother control input
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when the sign of s changes. To summarize, the total control input is given by:
1
T = w* (Jw) = J(w)C(qe)wq) — 5 S810(geg ) (gepwe — w2 Qe ) — Kgs — Kgs tanh(s) (5.27)

However, as previously stated, the control torque 7. cannot be commanded directly to the
magnetic actuators as it is constrained to be perpendicular to the magnetic field. First, the

magnetic actuator dipole moment, m,, required to produced 7. is calculated with:

[Bp]*T.

As was done with the PD control law, the components of m, are saturated between +0.2
Am? and normalized to maintain the original direction, giving m,.;. The magnetic control

torque acting on the satellite is then calculated with Equation (5.11).

The sliding mode controller was implemented to use the state feedback from the magnetometer-

only MEKF and thus its performance is heavily dependent on the estimation accuracy.

The sliding mode control law with estimated state feedback is now defined as:
1
T. =W (Jw) — J(w C(qe)wq) — 3 S80(Geo ) (Gepwe — W Qe ) — K8 — K5 tanh(s) (5.29)

where the attitude and angular velocity tracking errors are computed from the estimated

states and the desired states with:

We =W — C(qe)wd
Qe = q X q;

S = ‘-'A-’e + Kqélev
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In addition, Equation (5.28) is modified as:

N X
m, — [Bsl'Te (5.30)
|Bg|?

where Bj is the estimated magnetic field in the body-fixed frame, calculated with Bz =

C(q)Br.

Initial simulation results showed that the sliding mode controller (5.29) did not perform
adequately for aligning the satellite’s y;, axis with the orbit normal in the alignment mode.
This was attributed to the fact that the control torque has to work against the angular
momentum of the flywheel to align y; with the orbit normal. To remedy this, the scalar
control gains K, and K in Equation (5.29) were replaced with a diagonal matrix of gains,

defined as follows:

K, = K,diag{cy,, ¢g,, g5 }

Ks = stiag{csn Csys 083}

where ¢,,, i = 1,2,3 and ¢,,, @ = 1,2, 3 are the individual weights. Using matrix gains
allows us to give more control authority to different components of the control input.
Since the angular momentum of the flywheel is along the satellite’s y; axis, more control
authority can be given to the x and z components of the control input. This is done by
setting the weights as ¢,, , > ¢, and ¢,, , > ¢,,. The control gain K, is kept scalar as no

benefit was found to replace it with a matrix gain.

5.4 Simulations of Attitude Control

The performance of the PD and sliding mode control laws are compared in simulation of
each mission mode. The PD control gains were defined as in previous work [37], while

the sliding mode control gains were tuned by trial and error until adequate performance
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was observed. The control parameters used for all simulations carried out in this chap-
ter are presented in Table 5.1. The simulations are performed with attitude and angular
velocity estimation by the magnetometer-only MEKF using the same parameters as in
Chapter 4. The estimate errors of the magnetometer-only MEKF are initialized to small
values in order to get a baseline evaluation of the sliding mode controller. The initial atti-
tude estimate error is set to 2° in each of the yaw, pitch, and roll angles while the angular
velocity estimate error is set to 0.2 °/s in each component. Note that the PD controller
is unaffected by attitude and angular velocity estimates as the only variable fedback is
the derivative of the magnetic field measurement. The dynamics, estimation, and control
are all run at a timestep of At = 1 s in all simulations presented in this chapter unless

specified otherwise.

Table 5.1: Attitude control parameters.

PD Control B-dot Control

Kp21><10_6 KDI3X10_4 k=20

Sliding Mode Control

K,=1x102 K,=5x10"* K, =1x10"
Alignment mode only:
Cq = 2 Cg = 0.1 Cqy = 2

cs, =4 csy, = 0.5 Cog = 4

5.4.1 Detumbling Mode

Two detumbling scenarios are simulated; one with a moderate initial tumbling rate and
one with a high initial tumbling rate, as shown in Table 5.2. The satellite is simulated for
3 orbits in both scenarios without transitioning to any of the other operational modes. In

detumbling mode we are only interested in the satellite’s angular velocity and the mag-
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netic control inputs, as there is no strict attitude pointing requirement. The satellite angu-
lar velocity and the magnetic control inputs with each controller are shown in Figures 5.1

and 5.2 for each scenario, respectively.

Table 5.2: Initial conditions for detumbling.

wo =[5, 5, 5]°/s
1/10 == 10060 = 100¢0 - 100

Detumbling scenario 1

wo = [10, 10, 10]°/s
Wo = 10° 0y = 10° ¢ = 10°

Detumbling scenario 2

B-dot
——PD
——SMC [

1 1.5 2 2.5 3 .
Time (orbits) Time (orbits)

(a) (b)

Figure 5.1: Detumbling scenario 1 results. (a) Angular velocity, (b) Magnetic control input

With a timestep of At = 1 s, the B-dot and PD controllers fail to detumble the satellite for
the high tumbling rate scenario (Figure 5.2). This is a result of the finite difference used
to calculate the rate of chang of the magnetic field. The large time-step cannot capture
the fast tumbling rate of the satellite. An additional simulation of scenario 2 was carried
out with At = 0.1 s with each controller and the results are shown in Figure 5.3. In this
case, each controller detumbles the satellite in approximately the same amount of time.

However, the sliding mode controller demonstrates superior performance both in terms
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Figure 5.2: Detumbling scenario 2 results. (a) Angular velocity, (b) Magnetic control input

of control effort and residual angular rates. Figure 5.4 shows the satellite angular velocity
response from ¢ = 1 orbit to ¢ = 3 orbits. The sliding mode controller maintains the
angular rates low while the B-dot and PD controllers oscillate, with particularly large
oscillations in w, up to 0.3 °/s. These results also indicate that the sliding mode controller

is not very sensitive to the timestep.
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Figure 5.3: Detumbling scenario 2 with At = 0.1 s. (a) Angular velocity, (b) Magnetic

control input
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Figure 5.4: Angular velocity response after detumbling, At = 0.1 s.

5.4.2 Alignment Mode

For the alignment mode simulation, the initial attitude with respect to the inertial frame
is the same as in Table 5.2 while the initial angular velocity is set to zero. The satellite is
simulated for 3 orbits under PD and sliding mode control and does not transition to the
nominal mode. Figure 5.5 shows the pointing angles v and 3, and Figure 5.6 shows the an-
gular velocity and magnetic actuator inputs obtained with the two controllers. It is clear
that the sliding mode controller achieves the desired alignment with the orbit normal and
the Sun direction faster than the PD controller. However, it also uses more control effort
as shown in Figure 5.6 (b). Further tuning of the PD controller was attempted, including
a similar matrix gain modification as was done with the sliding mode controller, but this

did not improve its performance in alignment mode.
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Figure 5.6: Alignment mode results. (a) Angular velocity, (b) Magnetic control input

5.4.3 Nominal Mode

A nominal mode simulation of 5 orbits is presented. Meteorix is initialized in the Earth-
pointing orientation with 8 = 0° and v = 0°, and an initial angular velocity of wy, =
[0, 2, 0] °/s. The pointing angles are shown in Figure 5.7 and the angular velocity
and actuator inputs are shown in Figure 5.8. The transition from Earth- to Sun-pointing

requires a =~ 100 ° reorientation and the transition from Sun-pointing to Earth-pointing
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requires a = 75 ° reorientation, as indicated by the initial values of the red and blue lines,
respectively. The PD controller completes the reorientation maneuvers slightly faster but
has more overshoot. Excluding the maneuver time, the sliding mode controller results
in smaller $ in Earth- and Sun-pointing modes. In addition, the sliding mode controller
offers better alignment with the orbit normal as shown in Figre 5.7 (b) and better angular
velocity tracking as shown in Figure 5.8 (a). The z and z components of the magnetic
actuator inputs demonstrate high fluctuations with the PD controller and also saturate

during each transition, while they do not with the sliding mode controller.

100 I _—
— — —PD: Earth-pointing
— — —PD: Sun-pointing
——— SMC: Earth-pointing
— —— SMC: Sun-pointing
= 50 .
Q.
0 N \ hS \ S % s o
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (orbits)
(a)
4 \
—PD
3L ——SMC
S 9l
F\
1
0 | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (orbits)
(b)

Figure 5.7: Nominal mode pointing angles. (a) z; - z; angle (b) y; - n, angle
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Figure 5.8: Nominal mode results. (a) Angular velocity, (b) Magnetic control input

An additional simulation of 1 day (15 orbits) is executed to capture the performance of
each controller across all modes of operation. This is used as the ideal scenario to which
the results of the sensitivity study in Section 5.5 are compared. Meteorix is initialized in
detumbling mode with the initial conditions of detumbling scenario 1 in Table 5.2 and
the same small initial estimate errors. The results from the first 5 orbits are shown in Fig-
ure 5.9 - 5.10. Figure 5.9 shows the pointing angles and Figure 5.10 shows the angular
velocity and magnetic actuator inputs. The angular velocity and control input responses
during the first orbit are similar to the detumbling results shown in Figure 5.1. Figure 5.10
shows the settled response after detumbling, from ¢ = 1 orbit to ¢ = 5 orbits. The attitude
and angular velocity estimate errors over the first 5 orbits are shown in Figure 5.11. The
fast detumbling and alignment time achieved with the sliding mode controller allow it to
enter nominal mode much earlier than with the PD controller. In fact, the sliding mode
controller enters nominal mode before the PD controller has even finished detumbling.
The alignment mode starts significantly later with the PD controller as it takes almost one
full orbit to detumble the satellite. The long detumbling time with the PD controller has
a significant effect on the MEKF estimate errors in the first orbit, as seen in Figure 5.11.

However, once detumbling has completed, the estimate errors are very similar with both
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controllers as shown in Figure 5.12.

Overall, the attitude control and estimation requirements are satisfied in the ideal sce-
nario. After the first 5 orbits, the PD and sliding mode controllers maintain average orbit
normal alignment angles of v = 1.59° and v = 0.97°, respectively. These are within
the v < 2° requirement. In the nominal mode, the sliding mode controller achieves an
average Sun-pointing angle of 5 = 0.50 ° and average Earth-pointing angle of 3 = 1.78°
after the transitions between each orientation have completed. With the PD controller, the
average Sun- and Earth-pointing angles are 3 = 1.84° and 3 = 2.61°, respectively. The
Sun-pointing angle with the PD controller does not quite meet the requirement of 3 < 1°.
The average total angular error of the magnetometer-only MEKEF after the first 5 orbits
is 0 = 0.22° with PD controller and da = 0.23 ° with the sliding mode controller. With
both controllers, the average angular velocity estimate error is éw = 0.008°/s. These esti-

mation errors are within the nominal mode requirements of do < 0.5° and dw < 0.02°/s.
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Figure 5.9: Ideal scenario pointing angles. (a) z; - z; angle (b) y; - n, angle
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Figure 5.10: Ideal scenario ngular velocity and control inputs, from ¢ = 1t to ¢ = 5 orbits.

(a) Angular velocity, (b) Magnetic control input
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5.5 Sensitivity Study

Many possible sources of error exist for the control of the real satellite that will affect the
overall ADCS performance. In this thesis, four sources of error are considered: (i) large
initial estimate errors, (ii) uncertainty in the principal moments of inertia, (iii) misalign-
ment of the flywheel axis, and (iv) residual magnetic moment. It is important to investi-
gate the effect of these sources of error and uncertainties on the ADCS. The effect of each
source of error is first tested indivually in simulations of 5 orbits with each controller,
encapsulating all modes of operation with the initial conditions as given in Table 5.3 and
also used in the ideal scenario in Section 5.4.3. A worst case scenario is then studied with
a 1 day simulation (15 orbits) in which all of the above sources of error are present, and

results are compared to the ideal scenario.

Table 5.3: Initial conditions for sensitivity study.

wo =[5, 5, 5]°/s
Wy = 10°, 0y = 10°, ¢y = 10°

Satellite state

Swo =1[0.2, 0.2, 0.2]°/s
5¢0 = 20,600 = 20,5¢0 = 20

Estimate errors

5.5.1 Large Initial Estimate Errors

Large initial estimate errors can affect both the estimator and controller performance, par-
ticularly the sliding mode controller as it requires full state feedback from the MEKF. The
estimate errors are initialized to d¢y = 60y = ¢y = 20° in attitude and dwy = [2, 2, 2]°/s
in angular velocity. It was found that these large initial estimate errors resulted in a
slighlty longer detumbling time than in the ideal scenario, but the effect on alignment
and nominal modes was negligible once the estimates had converged. Thus, the results

look very similar to those presented in Figures 5.9 to 5.12. This is in agreement with the



Chapter 5. Attitude Control 75

results from Chapter 4, as we saw in the Monte Carlo simulations that the MEKF was able

to converge in less than 20 minutes from large initial estimate errors up to 30°.

5.5.2 Inertia Uncertainty

The satellite’s inertia properties will be estimated prior to launch, however, there will
likely be uncertainty in these estimates. Uncertainties in the principal moments of inertia
affect the attitude estimation accuracy as the magnetometer-only MEKF uses the attitude
dynamics model to propagate the state estimates. The sliding mode controller is also af-
fected as the error attitude dynamics are used in the calculation of the equivalent control
torque. While the PD controller does not explicitely use the satellite’s inertia to calculate
the control input, the chosen PD gains may not provide the same performance as they are

tuned for the particular values of the satellite’s inertia.

Relative errors of +10% in each of .J,,, J,,, and J,, are considered. That is, the true prin-
cipal moments of inertia used in the propagation of the attitude dynamics are 10% larger
than the ones assumed by the MEKF and controllers. The pointing angles are shown in
Figure 5.13, the angular velocity and control inputs are shown in Figure 5.14, and the
MEKEF estimate errors from ¢ = 1 to ¢t = 5 orbits are shown in Figure 5.15. Both controllers
take slightly longer to detumble and align the satellite, which is expected given that the
inertia is higher than what was assumed in the controller design. It takes longer for the
sliding mode controller to achieve good alignment with the orbit normal, as seen in Fig-
ure 5.13 (b), compared to the ideal scenario in Figure 5.9 (b). Nonetheless, the pointing
angles are small in the Earth- and Sun- pointing modes after the transitions. The MEKF
showed very similar response in the first orbit to the ideal scenario. In addition, we can
see in Figure 5.15 that the estimate errors from ¢ = 1 to ¢t = 5 orbits are similar to those in

Figure 5.12 from the ideal scenario simulation.
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Figure 5.14: Angular velocity and control inputs with inertia uncertainty, from ¢ = 1t to
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5.5.3 Flywheel Axis Misalignment

The magnetometer-only MEKE, sliding mode controller, and PD controller are all affected
by misalignment of the flywheel axis as it affects the actual attitude dynamics of the sys-
tem. The effect of the flywheel axis misalignment on the attitude dynamics is calculated
with:

H; = C/h (5.31)

where h is the flywheel angular momentum in the flywheel frame (h = [0, h, 0] 7). The
rotation matrix, C{, rotates components in the flyhweel frame to those in the body fixed

frame and is defined as:

cos(1y) —sin(vy)cos(dy)  sin(vy)sin(oy)
Cj = | sin(y)  cos(yy)cos(dy) —cos(uy)sin(oy) (5:32)
0 sin(¢y) cos(¢y)

Here, the misalignment of the flywheel axis is parameterized by two angles, 1)y and ¢;.
The angle s represents a rotation of the flywheel axis around the satellite’s z, axis and
¢s represents a rotation of the flywheel axis around the satellite’s x; axis. The largest
misalignment on either axis is expected to be 2 °, which allows for the use of the small

angle approximation for C£ :

1 —¢; 0
Cr=lus 1 —o 633
0 ¢ 1

Note that this uncertainty is introduced into the D-SPOSE attitude dyamics propagation
model, and not in the models used by the MEKEF or the sliding mode controller. For the
results presented here, the flywheel misalignment is set to ¢y = 2° and ¢; = 2°. As
before, the satellite is simulated for 5 orbits with each controller, starting with the detum-

bling mode. Figure 5.16 shows the pointing angles and Figure 5.17 shows the satellite
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angular velocity and magnetic control inputs. Figure 5.18 shows the MEKF estimate er-
rors from ¢ = 1 to ¢t = 5 orbits. The PD and sliding mode controller still perform quite
well. However, the estimation accuracy of the magneometer-only MEKEF is significantly
compromised with total angular errors of several degrees persisting after the detumbling
mode is completed. In Figure 5.18 (a), the total angular error follows a similar profile as
the y component of the satellite’s angular velocity in Figure 5.17 (b). This is expected,
as the flywheel misalignment causes the z and z components of its angular momentum
in the body-fixed frame to become non-zero, while the MEKF attitude dynamics model
assumes the flywheel is perfectly aligned.

PD: Alignment PD: Nominal

y

SMC: Alignment |
-, SMC: Nominal

150 : — \ I =
— — —PD: Sun-pointing
— — —PD: Earth-pointing
100 +~ ——SMC: Sun-pointing |
. ———SMC: Earth-pointing
m\ 50 7 \\—\ 7
0 o o e )
| | | | |
0 0.5 . 3 3.5 4 4.5 )
Time (orbits)
(a)
150 T
—PD
——SMC
100 -
?\
o0 -
0 ‘ I = S
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (orbits)
(b)

Figure 5.16: Pointing angles with flywheel misalignment. (a) z; - z, angle (b) y; - n, angle
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Figure 5.17: Angular velocity and control inputs with flywheel misalignment, from ¢ = 1

t to t = 5 orbits. (a) Angular velocity, (b) magnetic control inputs
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Figure 5.18: Estimate errors with flywheel misalignment, from ¢ = 1 to ¢ = 5 orbits. (a)

Total angular error, (b) Angular velocity error

5.5.4 Residual Magnetic Moment

As stated in Chapter 3, the residual magnetic moment interacts with the Earth’s magnetic
tield and produces a perturbing torque on the satellite. This affects the attitude dynam-
ics, estimation, and control. While the residual magnetic moment can be measured before

launch, errors will undoubtedly be present in this measurement. Figure 5.19 - Figure
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5.20 show the effect of a residual magnetic moment of m, = [0.01, 0.01, 0.01]" Am? on
the PD and sliding mode controllers over 5 orbits, starting in detumbling mode. These
values of m, are comparable to measured residual magnetic moments of other 3U cube-
sats. For example, the Space Dart 3U cubesat had a residual magnetic moment strength
of 0.009 Am? [63]. Figure 5.21 shows the attitude estimate errors of the magnetometer-
only MEKF from ¢t = 1tot = 5 orbits. The major differences are seen in the nominal
mode pointing angles and in the estimation errors. The performance of the PD controller
is dramatically worse in this case, with the pointing angle /5 reaching almost 50° in Earth-
pointing mode and showing large fluctuations in Sun-pointing mode. This clearly does
not meet the pointing requirement, recalling that the camera has a 20° field of view. In
contrast, the sliding mode controller performs relatively well and shows robustness to
the residual magnetic moment, with pointing angles 3 < 10° in Earth-pointing mode
and 3 < 5° in Sun-pointing mode, after the transitions are completed. The accuracy of
the magnetometer-only MEKEF is significantly affected by the residual magnetic moment.
The total angular error da oscillates between 2 and 8°, and the oscillations are slightly
larger with the PD controller. There is also a clear oscillation between +0.02°/s in the y

component of the angular velocity estimate error as seen in Figure 5.21 (b).
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5.5.5 All Uncertainties Combined

The ADCS is tested in a worst case scenario including all sources of error as shown in
Table 5.4. Meteorix is simulated for 1 day (15 orbits) starting in detumbling mode. The
results are compared to the ideal scenario which was presented at the end of Section 5.4.3
and are summarized in Table 5.5. The time to detumble, Tjeympe is measured starting
from ¢t = 0 to the time at which w < 0.3°/s. The alignment time, 7};,,, is measured start-
ing at the beginning of alignment mode to the time at which either v < 5° or § < 5°. The
average orbit normal alignment angle, v, is calculated starting from ¢t = 5 orbits. The aver-
age pointing angles in Sun-pointing, sp, and Earth-pointing, 5gp, are calculated starting
10 minutes after the initial transition to each mode, respectively, to allow time for maneu-
vering. The average attitude and angular velocity estimation errors, o and dw, are also

calculated starting from ¢ = 5 orbits.

In the ideal scenario, the sliding mode controller outperforms the PD controller in all
operational modes and the attitude control and estimation requirements are met. The
detumbling time with sliding mode control is more than 4 times faster than with PD
control and the alignment time just less than 3 times faster. The sliding mode controller
achieves an average pointing angle of S5p = 0.5° in Sun-pointing mode which is within
the 3 < 1° requirement. In addition, the average orbit normal alignment angle is well
within the requirement of v < 2°. The MEKEF estimation errors are within the require-

ments of da < 0.5° and dw < 0.02°/s with both the PD and sliding mode controllers.

The worst case scenario results highlight the overall sensitivity of the ADCS to the sources
of error considered. Figure 5.22 and 5.23 show the pointing angles and estimation errors
with the PD controller in the ideal and worst case scenarios. Similarly, Figure 5.24 and
5.25 show compare the results with the sliding mode controller between the ideal and
worst case scenarios. Interestingly, the PD controller has a longer detumbling time in the

worst cases scenario than in the ideal scenario, but a shorter alignment time. However in
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Figure 5.22 we can see that although 3 reaches the < 5° mark earlier in the worst case, as
indicated by the vertical solid line, the subesequent Earth-pointing angle is very poor. The
sliding mode controller still meets the Earth-pointing requriement of 5 < 20 ° but does not
meet the orbit normal alignment requirement of v < 2° nor the Sun-pointing requirement
of 3 < 1°. However, v and (sp are siginificantly smaller with sliding mode control than
with PD control. The total angular error of the MEKF does not meet the requirement of
da < 0.5°, with average errors of o = 3.83 ° with PD control and da = 3.02 ° with sliding

mode control.

Table 5.4: Sources of error in worst case senario.

Swo = [2, 2, 2]°/s
by = 20° 86y = 20° Sy = 20°

Initial estimate errors

Inertia uncertainty +10% in Joy, Jyy, .z

Flywheel misalignment Yy =2°%¢5=2°

Residual magnetic moment m, = [0.01, 0.01, 0.01]" Am?

Table 5.5: Averaged ADCS performance results of 1 day simulations.

Ideal Scenario Worst Case Scenario

PD SMC PD  SMC

Thetumble [Min] 794 188 87.0 245
Totign [min] 89.7 335 77.8 439
Average v [°] 1.59 097 11.06 5.20
Average fsp [°(]  1.84 0.50 6.18 3.31
Average fgp [°]  2.61 178 34.67 1141

Average do [°] 0.22 0.23 3.83 3.02
Average 6w [°/s] 0.008 0.008  0.011 0.010
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Conclusions

6.1 Summary of Research

This research focused on the development of an attitude determination and control sys-
tem for the Meteorix mission, a cubesat mission dedicated to the autonomous detection
of meteors and space debris entering the Earth’s atmosphere. Accurate localization and
tracking of meteors using an on-board camera and image processing chain requires high
power consumption and is computationally expensive. This presented a constraint on
the satellite: to use minimal sensors and actuators for attitude estimation and control.
In particular, the ADCS hardware was constrained to a single magnetometer for attitude
estimaton and three magnetic actuators for attitude control, with a single flywheel for
gyroscopic stability. The mission was separated into three distinct modes of operation;
detumbling mode, alighment mode, and nominal mode. Specific attitude estimation and
control requirements were outlined for each mode based on the scientific objectives and
power needs of the satellite, as well as the ADCS hardware constraints. The Meteorix
satellite model and the ADCS were incorporated into D-SPOSE, a high fidelity orbit and

attitude propagator.

88
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Estimation of the attitude and angular velocity of Meteorix was accomplished with a
magnetometer-only MEKE. Its formulation, as well as its performance, were compared to
a traditional gyro-based MEKF that uses a gyroscope to measure angular velocity. The
magnetometer-only MEKEF relies on the measurements from the magnetometer and the
satellite attitude dynamics model to estimate the attitude and angular velocity. The gyro-
based MEKF estimates the attitude and gyroscope bias, and corrects the angular velocity
measurements with the bias estimates. The performance of both algorithms was evalu-
ated and compared through Monte Carlo simulations of two angular velocity scenarios
with a wide range of initial estimate errors. Simulation results showed that the estimation
accuracy of the magnetometer-only MEKF suffers in the high angular velocity scenario.
However, in Chapter 5 the accuracy was shown to improve as active attitude control
quickly detumbles the satellite. It was found that the gyro-based MEKEF fails to converge
in the low-angular velocity scenario, due to the poor noise characteristics of the gyro-
scope. This highlighted the advantages of the magnetometer only MEKEF as it met the

attitude and angular velocity estimation requirements of Earth-pointing mode.

For attitude control of Meteorix, a nonlinear sliding mode controller was formulated and
implemented to use full state feedback from the magnetometer-only MEKF. The sliding
mode controller was compared to a simpler PD controller based on pure magnetic feed-
back. The performance was first evaluated in simulations of each operational mode. In
simulations of detumbling mode, the two controllers were compared against the tradi-
tional B-dot control law commonly employed to detumble cubesats. The sliding mode
controller outperformed both the B-dot and PD controllers, detumbling the satellite ap-
proximately 4 times faster. The siding mode controller was also superior to the PD con-
troller in the alignment and nominal modes, showing faster alignment with the orbit nor-

mal and better Earth- and Sun-pointing accuracy.
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A sensitivity study was conducted to investigate the overall ADCS performance in the
presence of uncertainties and disturbances. The ADCS was tested against large initial
estimate errors, inertia uncertainty, flywheel axis misalignment, and residual magnetic
moment. The most significant effects on ADCS performance were flywheel misalignment
and residual magnetic moment. In all cases, the sliding mode controller performed better
than the PD controller, demonstrating its robustness. In the worst case scenario with all
sources of error considered, the average Earth-pointing error with the PD controller was
approximately 3 times larger than with the sliding mode controller, and did not meet the
requirement of 3 < 20° imposed by the camera. The sliding mode controller was able to
maintain an average Earth-pointing angle of 5 ~ 11°, which is well within the require-
ment. The sliding mode controller also offered better alignment with the orbit normal and
better Sun-pointing accuracy. However, the estimation accuracy of the magnetometer-
only MEKF was significantly compromised in the worst case scenario, largely due to the
flywheel axis misalignment and residual magnetic moment. Additional work is needed

to improve the estimation accuracy.

6.2 Recommendations for Future Work

Many extensions can be made to the attitude estimation and control algorithms explored
in this thesis to improve their performance and provide a more reliable ADCS for the Me-
teorix mission. First, attention should be given to the calibration of the satellite’s sensors
and actuators. In this work, it was assumed that the magnetometer was perfectly cali-
brated. However, it will have associated scale factors, misalignment terms, and biases in
the signal that should be accounted for. This can be accomplished with online calibration
methods. One such method was implemented in the EyeSat mission, in which an EKF
was formulated to estimate the calibration matrix and bias terms of the magnetometer
by comparing the norms of the magnetometer measurement and the IGRF magnetic field

model. The estimates were fedback to the magnetometer measurement model and im-
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proved the overall attitude estimation accuracy.

The magnetometer-only MEKF can be improved in a number of ways. First, it is recom-
mended to estimate the residual magnetic moment as part of the MEKF state vector. The
estimated residual magnetic moment can be included in the attitude dynamics model of
the MEKF which would improve the overall attitude estimation accuracy. Furthermore,
it can be fedback to the sliding mode controller and included as part of the equivalent
control torque design. This would improve the overal robustness of the ADCS to residual
magnetic moment. Improvements can also be made to account for uncertain parameters
such as the satellite’s inertia and the flywheel properties. There are many adaptive meth-
ods available in the literature to tackle these issues. It is also worth exploring other esti-
mation and control techniques. A magnetometer-only unscented Kalman filter could be
formulated and possibly provide better accuracy in the presence of uncertainties and dis-

turbances. Optimal control formulations, such as LQR control, can also be implemented.

Further work can be done on simulation and validation. For example, the sensitivity
study conducted in this work was limited and only considered one set of values for each
source of error considered. Monte Carlo simulations that evaluate the ADCS performance
over a range of sources of error could provide more conclusive results. Other sources of
error, such as poor calibration of the magnetometer, or errors in the positional estimates
from the GPS should be considered. A more rigorous power and energy analysis should
also be conducted. It is crucial to verify that the proposed operational modes allow the

satellite to generate enough power with the solar panels to sustain operation.
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