Extending Concern-Oriented Reuse to Existing
Modelling Languages

Yanis Hattab

A thesis submitted to McGill University in partial

fulfilment of the requirements of the degree of

Master of Science

School of Computer Science
McGill University
Montréal, Québec, Canada

April 2020

(© Yanis Hattab, 2020

Abstract

Modern software systems constitute remarkably large and complex entities made up of an intri-
cate web of components and libraries that render their development exclusively with source code
ill-advised. Model-driven engineering promises to alleviate such issues by making models funda-
mental to all development phases. These models are to be specified according to appropriate and
relevant modelling languages with the right level of abstraction while emphasizing a strict separa-
tion of concerns. MDE also emphasizes reusing existing standardized models and modelled design
patterns to simplify the design process and increase productivity. Unfortunately, reuse is far from
common in actual modelling practice, too often development teams will prefer using completely
new models, at the cost of both time and effort, either because they have specific notation needs
or are unaware of the potential benefits of reuse. Existing modelling frameworks and tools do lit-
tle to facilitate this task, lacking intuitive and efficient reuse mechanisms and providing arcane
interfaces to reuse and tune languages from the modelling community. Hence we propose, in the
following thesis, our contribution to improve support for modelling reuse and language tailoring by
extending the Concern Oriented Reuse (CORE) modelling framework to support multiple external
languages and augmenting them with language independent reuse capabilities. Furthermore, with
our proposed concept of perspectives, we would allow a language designer to tailor languages for a
specific purpose. These perspectives also pave the road for concern-oriented multi-view modelling,
as they can be designed to orchestrate the combined use of multiple languages to frame a design
process.

By redesigning and improving the existing reuse oriented CORE modelling framework through
the addition of the language concept, we allow it to support any external abstract syntax, i.e. lan-
guage, defined with a metamodel. Furthermore, CORE languages have a novel manner of describ-

ing their semantics through language actions, enabling our proposed concept of perspectives to

tailor and combine languages for domain-specific usages. To validate the expressiveness and us-
ability of this unified language design approach, we used it to define UML Class Diagrams and
tailor them for specific usages through perspectives. These CORE additions were incorporated
in the implementation by redesigning the associated TouchCORE intuitive modelling tool to be

language agnostic.

il

Abrégé

Les systemes informatiques modernes constituent des entités de taille et de complexité remar-
quables, composés d’un enchevétrement de composants et de librairies qui rend malavisée leur
conception a travers la programmation exclusivement. L’ ingénierie dirigée par les modeles propose
de corriger ces problemes en faisant des modeles le fondement de toutes les phases de développe-
ment. De tels modeles seraient spécifiés avec les langages de modélisation les plus pertinents et
appropriés ainsi qu’avec le bon niveau d’abstraction tout en mettant I’emphase sur la séparation
des préoccupations. L’IDM met aussi en avant la réutilisation de modeles existants standardisés et
de design pattern modélisés pour simplifier le processus de design et augmenter la productivité.
Malheureusement, la réutilisation au niveau des modeles est loin d’€tre une pratique commune en
pratique, les équipes de développement préférant trop souvent créer de nouveaux modeles, au prix
de précieux temps et efforts, car il ont des besoins particuliers ou ne connaissent pas les béné-
fices. Les outils et les cadres de modélisation existants ne font pas non plus grand chose pour
faciliter cette tache car ils n’ont pas de mécanismes de réutilisation intuitifs et efficaces se con-
tentant d’interfaces ésotériques pour réutiliser ou adapter les langages existants de la communauté.
C’est pourquoi on propose, dans la theése qui suit, notre contribution pour améliorer le soutien
a la réutilisation et I’adaptation de langages en étendant la plateforme de modélisation Concern
Oriented Reuse (CORE) afin qu’elle supporte de multiples langages externes et leur ajoute ses
puissantes capacités de réutilisation. De plus, avec le concept de perspective qu’on propose, on
permet au concepteur de langages d’adapter des langages existants pour une utilisation précise au
lieu de partir de zéro. Ces perspectives tracent aussi le chemin pour la modélisation a vues mul-
tiples orientée sur les préoccupations logicielles, étant donné qu’elles peuvent étre utilisées pour
combiner plusieurs langages ensemble afin de construire un processus de design cohérent.

En repensant et améliorant la plateforme CORE existante, qui est orientée pour la réutilisa-

il

tion, avec I’ajout du concept de langage a part entiere, on lui permet de supporter n’importe quelle
syntaxe abstraite (langage) définie par un méta-modele. Par ailleurs, les langages CORE ont une
nouvelle facon de décrire leur sémantique a travers des actions de langage, réalisant ainsi le con-
cept de perspectives qu’on propose pour adapter et combiner des langages a des utilisations spéci-
fiques. Afin de valider I’expressivité et I'utilisabilité de notre approche unifiée pour la conception
de langage, on I’a utilisée pour définir les diagrammes de classes de UML et les adapter pour une
utilisation spécifique avec des perspectives. Ces ajouts a CORE ont été implémentés dans I’outil
de modélisation intuitif TouchCORE afin de réaliser notre approche et le rendre indépendant des

langages de modélisation qu’il supporte.

v

Acknowledgements

To Jorg, whose near-infinite wisdom, knowledge, wholesomeness and enduring patience form the

main reason I was able to carry this project to fruition.

To my dear parents, sister and brother, who stood by my, supported and helped me throughout

all of my studies and projects.

To Mathieu, Mdrton and Adrien, my graduate school comrades for their invaluable help and

support.

Contents

List of Figures ix
List of Tables X
Nomenclature 1
1 Introduction 1
1.1 Problematic e 1

1.2 Motivation o e e e e e e 2

1.3 Contributions e e e e e e 3

1.4 ThesisOutline e 4

2 Background 6
2.1 Model-Driven Engineering 6

2.2 Metamodelling e 7

2.3 Domain-Specific Languages L L oo 8

24 CORE e 9
24.1 ConcernReuse Process oo 10

3 CORE Languages and Perspectives 11
3.1 CORE Languages o i e 11
3.1.1 Previous CORE Metamodel 11

3.1.2 The New Concept of CORE Language 13

3.1.3 Redesigned CORE Metamodel 14

vi

3.2

33

Perspectives L e
3.2.1 Single-Language Perspectiveas DSL
3.2.2 Integrating Perspectives into the CORE Metamodel
3.2.3 Towards Multi-Language Perspectives
Using Languages and Perspectives

Perspectives in Action

4.1
4.2

43

4.4

Class Diagram Language i
Class Diagram Implementation
42.1 Metamodel
422 Language Actions e
Domain Modelling Perspective,
4.3.1 lustrating Example
Design Modelling Perspective o
44.1 DesignExample e

Modelling Tool Implementation

5.1 Technology Stack
5.1.1 Eclipse Modelling Framework
5.1.2 Multitouch forJava Lo
5.2 Language Registry
5.3 TouchCORE Architecture Changes
5.4 Building a Generic Modelling User Interface
Related Work
6.1 Approaches to Multi-View Modelling
6.1.1 Single UnderlyingModel
6.1.2 Vitruvius
6.1.3 Facet-Oriented Modelling
6.2 Approaches for Reuse in Language Design.
6.2.1 COLD. e
6.2.2 Melange. e

vii

22
22
24
24
24
26
30
32
34

36
36
36
37
37
38
40

6.2.3 Reuse in Collaborative Modelling

7 Conclusion & Future Work

7.1 Future Work

Bibliography

A CORE Metamodel

viii

48
49

51

54

2.1

3.1

3.2
33
3.4

4.1
4.2

4.3

5.1

A.l

List of Figures

Distinction Between the Metamodel of the Class Diagrams Language and the In-
stance ModelsitDefines oL 8

Selected Elements from the old CORE Metamodel Illustrating how Concern Fea-
tures are Realizedand Reused L 0L 12

Selected New CORE Metamodel Elements Defining Languages and Perspectives . 15

Highlight of the New CORE Metamodel Defining Languages and Perspectives . . 18
Modelling Workflow in CORE Using Languages and Perspectives 21
Class Diagram Language Metamodel 25

Domain Model of an Online Food Delivery System Designed with a TouchCORE
Perspective e 31
Design Model of an Online Food Delivery System Designed with a TouchCORE

Perspective L 35
TouchCORE Application Architecture 39
CORE Complete Metamodel 55

X

4.1
4.2
43
4.4

List of Tables

Language Actions of Addition Type 27
Language Actions of Editing Type 28
Language Actions of Deleting Type 29
Comparison the Design and Domain Perspectives Respective Language Actions . . 33

Introduction

1.1 Problematic

Software systems nowadays are immensely complex and tightly interconnected while rapidly
growing to form the foundation of many critical services to society. The development process
of such systems at their current scale needs to be, now more than ever, very rigorous and thorough
while being able to meet the market needs and schedules.

Traditionally this development relies mainly on programming languages, which are now more
powerful and versatile than ever, offering robust established libraries for nearly any need. Unfortu-
nately, their extensive sophistication also leads to extraordinary platform complexity with common
middleware and libraries overflowing with countless classes and methods linked in complex de-
pendency hierarchies.

Learning how to use such technology stacks for a new hire on a project requires a lengthy
ramp-up that still won’t guarantee them the skills to fine-tune them properly and understand po-
tential obscure subtle side effects. Add to that the challenge of maintaining or migrating existing
software as it rapidly grows and evolves that often leads to considerable development effort di-
verted from building new systems. Developers relying on programming languages alone to tackle
modern software challenges often leaves them struggling to see the bigger picture and reason
correctly about large software systems. By focusing solely on code, only fragmented views of the
system can be acquired which can lead to implementing suboptimal solutions [28]. This antiquated
approach often leads to duplicated code, violations of key architectural principles and unforeseen
interactions that significantly increase the complexity of testing and maintaining the system as it
grows and evolves [28].

These issues grow worse as the systems mature, getting compounded by the departure of knowl-
edgeable developers and the arrival of ones less familiar with all the inherent intricacies. A 2015
survey of the ramp-up journey of new developers hired to work on 8 majors projects at Microsoft

1.2 Motivation

found that the most commonly cited challenge is the lack of proper documentation [26]. New soft-
ware developers felt that the lack of detailed documentation, often scattered in various locations
and different formats, if not out-dated, strongly increased the time to first commit in the majority
of the projects, and moderately did so in the others [26].

The software industry as a whole is struggling with this complexity ceiling that compels devel-
opers to dedicate years to master APIs and usage patterns, often specializing in a narrow subset of
the platforms [28]. Such specialized skills the developers acquire, alongside varying backgrounds
and seniority, further contribute to their fragmented perceptions of the system they are developing
together. They further complicate identifying portions impacted by new code and potential side
effects while impacting the new hires’ ramp up, the survey showing moderate or strong increased
time to first commit in most Microsoft projects [26].

1.2 Motivation

A growing number of experts believe that the most promising approach to address the tower-
ing complexity of modern software development lies in the widespread adoption of tool-assisted
model-driven approaches. By bringing the focus of development toward models early on rather
than code, we can express concepts independently of the underlying implementation details and
have a higher-level view of the system being built.

Academic surveys empirically showed that the use of models by engineers properly trained
to do so provides significant improvements in design quality and correctness of changes made to
existing complex systems [5]. The benefits of model-driven development aren’t reflected specifi-
cally in one system but emerge holistically in the form of well-articulated designs and architectures
with extensive reuse of high-quality components. More specifically, applying a well designed, tai-
lored and intuitive model-driven approach embedded in the development standards could lead to a
significantly more reusable code base with robust coherent documentation.

Unfortunately, reuse while being common at the programming level remains rarely used at
the modelling level, and even less so in modelling language design. Developers often start from
scratch when they are modelling in established modelling languages or when designing their own
purpose-specific language, at the cost of extensive efforts and time. The reason lies in the near ab-
sence of reusable models openly available, besides token examples, and in the inability of existing
modelling tools to allow creating or importing reusable models.

Existing modelling languages were not designed with model reuse as a priority and they offer
no support for it missing, among other things, standardized model modularization guidelines or
defined reuse interfaces. Reuse, as it is intended for model-driven development techniques, should
also be possible no matter the modelling language used and as such the mechanisms for it should lie

1.3 Contributions

outside the language itself. Modelling approaches that incorporate multiple languages, each well-
tailored to their specific purpose, are thus the most able to leverage the benefits of model reuse
when they are supported with intuitive and powerful modelling tools. There is thus a need for a
reuse oriented modelling framework that allows the combination and customization of modelling
languages to enrich them with reuse functionalities and form a coherent and efficient development
process. The effectiveness of such a framework and the languages it brings together is a measure
of the following success metrics that we aim to maximize [17]:

e Reliability

Usability

Contribution to Productivity

Learnability
e Expressiveness
e Reusability

The work presented here aims to contribute toward the edification of a model-driven develop-
ment ecosystem by developing a framework and its proper tools that enrich any modelling language
with powerful reuse functionalities. We accomplish this by improving on our existing Concern Ori-
ented Reuse (CORE) framework to support any modelling language and offer an intuitive way to
customize or combine them to foster reuse and coherence. Being able to bring newly defined or
existing languages into the CORE framework allows us to leverage its powerful model reuse and
customization features regardless of the language used. Furthermore, we introduce the concept
of a Perspective that offers a way to tailor an existing modelling language without redefining it
completely, adapting it to development needs on the fly. All these changes are implemented in
our TouchCORE modelling tool that is further extended with a language and two perspectives to
showcase the power of this modelling framework.

1.3 Contributions

The detailed contributions we bring forward are stated as follows:

1. Definition of the Language concept within CORE: A CORE language consists of a meta-
model, describing its abstract syntax, as well as a set of Language Actions that specify how
a modeller can create and manipulate models expressed in that language.

1.4 Thesis Outline

2. Restructuring of the CORE metamodel: In order to integrate models expressed in different
languages, CORE’s own inner metamodel had to be significantly restructured to be language
agnostic. In particular, the new CORE Scene is the central unit realizing a concern feature
instead of a model, the latter is now outside of CORE. The scene aggregates artefacts that
act as proxies to model elements and allow their reuse by offering them access to CORE’s
reuse interfaces.

3. Definition of the Perspective concept within CORE: A CORE perspective allows a mod-
elling language developer to tailor a language for a specific use. The perspective can then
be used by a modeller instead of a language. The modelled CORE scene holds a reference
to this perspective, and the perspective itself references the external language it is built on.
As such perspectives are designed in a way that, in the future, they could even be able to
combine multiple languages for a specific use.

4. Validation of languages and perspectives: The TouchCORE modelling tool was updated
to support languages and perspectives creation and edition, adapting it to the new CORE
metamodel. To validate the applicability of languages and perspectives, a new language that
expresses UML Class Diagrams was designed and fully integrated into TouchCORE. To
demonstrate the usefulness of perspectives, two perspectives for Domain and Design mod-
elling were defined, they reuse the Class Diagram language but tailor the allowed modelling
operations to expose only the relevant ones.

1.4 Thesis Outline

In the next chapters, we introduce and explain our proposed approach to streamline multiple mod-
elling languages support, reuse and combination in a consolidated framework and the benefits it
provides. We illustrate the expressivity gains of the approach by describing how it allows us to
define a language and customize it with a perspective straightforwardly and efficiently.

We first state and define in chapter 2 the concepts that serve as the background and founda-
tion of our modelling approach. The contributions 1, 2 and 3 concerning the updates to CORE are
introduced and detailed in chapter 3. We define there the relevant concepts of language, language
action and perspective while explaining their benefits for customizing and maintaining modelling
processes consistent. Then, chapter 4 demonstrates how an existing modelling language can be de-
fined with this updated CORE framework and then tailored for another purpose with a perspective.
Chapter 5 discusses the changes done to our modelling tool implementation to support the new
CORE concepts and describes the actual modelling process using our newly defined language and
perspective through examples. Both these chapters show how we achieve the last contribution of

1.4 Thesis Outline

validating the usability and benefits of our language and perspective concepts. Finally, we discuss
related projects from other research teams and how they compare to CORE in Chapter 6 before
concluding and laying out future ambitions for our framework in chapter 7.

Background

This chapter introduces and defines the necessary preliminary concepts that serve as framing and
foundation for building the modelling framework described in later chapters.

2.1 Model-Driven Engineering

Model-driven software engineering is an approach that promotes modelling to tackle the challenge
of developing modern systems that are characterized by outstanding levels of complexity, size and
scale. MDE combines prescribed architecture and process to structure and facilitate the task of
building, maintaining and adding features to software infrastructures.

It addresses our problematic of growing development complexity by recognizing the need to
abstract from the implementation details when reasoning about a large system, especially for de-
velopers joining an ongoing project. If they start contributing to a code base without first acquiring
a complete understanding of it, they often end up triggering unwanted side effects on other sections
of the code or being themselves a victim of their colleagues’ side effects. The MDE process and
its associated technologies aim precisely at tackling such development challenges by refocusing
the developers’ efforts within a holistic understanding of the system conveyed using models that
abstract away unnecessary details.

Moreover, MDE prescribes modelling using multiple languages that allow the designers to
capture more information about a system and present it more efficiently and meaningfully to each
other and their stakeholders. It coherently combines domain-specific modelling languages along-
side model transformation rules and generators, synthesizing various artefacts (e.g. source code)
used in later steps of the design process. [28]. MDE also advocates and prescribes how creating
domain-specific constraints and model validation rules allow detection and avoidance of errors in
a software project earlier in its life cycle.

One of the main advantages of this approach is the higher level of abstractions that allows
teams to visualize and discuss the system under construction without getting lost in its multiple

2.2 Metamodelling

implementation details and intricacies. Beyond the improved system understanding, a whole new
field of model analysis emerges with MDE, allowing to capture defects and anti-patterns automati-
cally and to generate useful development metrics and documentation. This also fosters developing
a more complete view of the system and foreseeing unexpected side effects upon improvements or
feature addition [28]. Once a system is fully defined and planned, the traditional implementation
process can take over, aided by code and artifacts directly generated from them models besides
their great support as detailed documentation and specifications.

2.2 Metamodelling

A modelling language can be seen as the set of all models that could possibly be expressed in a
way that syntactically respects this language or, in modelling terms, models that conform to the
language metamodel [20]. The metamodel is a way to specify a language structurally in mod-
elling notation whereas the language itself is defined as an instance of the metamodel [20]. An
actual model is then built according to that modelling language’s elements specified in the meta-
model, with the purpose of abstracting a concrete software system. Thus, the metamodel serves as a
blueprint from which one can get the elements and rules deciding how to create and edit an instance
model. We refer to the process of designing modelling languages by defining their metamodel as
metamodelling, that is, we are designing a model of the language itself.

An example to illustrate the relationship between a metamodel and its instance models is shown
in figure 2.1, where a very small subset of the metamodel of UML Class Diagrams is linked to the
model elements it allows to instantiate. The instance model where we see the class Video Game sits
a the modelling layer where we would find for instance all Class Diagram models created, further
down hierarchically and not shown would be instantiations of the classes as objects. On top of that
layer, we have the metamodel layer, where class diagrams concepts like Class and Attribute can be
found, since the metamodel is also a model they are defined as metaclasses, to disambiguate from
the Class concept being modelled. A final layer would sit on top of the language metamodel, where
a meta-metamodel is used to specify the modelling language used to model metamodels. This is
the last layer as the meta-metamodel is reflexive and can be used to describe itself.

The metamodel can also be conceived as the type of its produced model, and this typing is
not transitive which is why we can say that the metamodel is the model of a model [20]. It is
categorized as a linguistic instantiation as it "relates a model with the definition of the language of
which it is an expression" [20]. As opposed to an ontological instantiation that would relate two
models that borrow from the same domain of modelling tokens but are on different logical levels.

2.3 Domain-Specific Languages

SN
Type [1..1] type

+ String name I

Class

«enumeration» A > Diagram

VisibilityKind Metamodel
Attribute

*
- Public Class 0.. A
- Private + String name |

+ VisibilityKind visibilty | _J \
|
\

N confor}pSTo
. | \
in$tanceOf instapceOf

Class Diagram

‘ 3 >
~~~~~~~~~~~~~~~~~~~~~~ |

Figure 2.1 — Distinction Between the Metamodel of the Class Diagrams Language and the Instance
Models it Defines

2.3 Domain-Specific Languages

Domain-specific languages (DSL) are computer or modelling languages specifically built and tai-
lored to express a particular application domain [24]. The ability to define purpose-specific mod-
elling languages for a domain is particularly useful as it allows us to raise the level of abstraction
pertaining to a system under design from implementation details to domain concepts. DSLs offer
substantial gains in expressiveness and ease of use in comparison to general-purpose languages
[24] as modelling is best able to capture and analyze pertinent features in the domain vocabulary.
Representing the components of a system with elements familiar to domain insiders also greatly
improves the learning curve when introducing developers and broadens the range of experts that
can contribute to the whole development process. Using metamodels to define, fine-tune and cus-
tomize the DSL can further help precisely match the system domain’s semantics and syntax when
existing general-purpose languages would be inadequate [28].

Unfortunately, designing a DSL for a given domain in a rigorous and thorough way often
proves to be difficult, time-consuming and costly, even more so when starting from scratch rather
than adapting an existing language [14]. That comes as a consequence of the lack of proper tools
and frameworks that would allow rapid DSL definition and prototyping as most of the research and
development effort is currently dedicated to building modelling tools. Even once a fitting DSL is
defined, it then may further require a specialized modelling tool allowing it to be properly used.
The designers thus have to either adapt an existing tool, whose extensibility may be limited and
arcane, or build one completely from scratch. In summary, the task of designing DSLs is suffering
from a lack of reuse that could enable building languages on top of existing ones in a streamlined
way or reusing elements from these existing languages.



2.4 CORE

Although these issues exist for traditional textual DSLs, they are worse for modelling lan-
guages, especially graphical ones, as they cannot be created easily by reusing, extending or trans-
lating them into well established general programming languages or textual DSLs [24].

As the scope of the research presented here focuses on modelling languages, we will not extend
our discussion beyond these to other DSL types. Further on, we will only refer to the modelling
variant, the domain-specific modelling languages, whenever we mention DSLs. Likewise, when
talking about languages we refer to modelling languages.

24 CORE

Concern-Oriented Reuse (CORE) is a software modelling and development paradigm that aims
at tackling the challenges raised by the cross-cutting nature of software development concerns by
promoting high-level reuse [29]. Reuse is critical to modern software but it has yet to be lever-
aged effectively at a higher level of abstraction to allow the modelling of large scale and complex
systems by bringing together smaller, reusable models hierarchically. CORE achieves this by sep-
arating and packaging software development artefacts, in particular models, within reusable units
called concerns. Traditional software reuse is defined as the process of creating new software using
existing software artifacts, and to be beneficial, reusing the artifact should be easier than building
it from scratch. In order to bring similar levels of reuse to the modelling techniques used to de-
velop software, CORE defines intuitive reuse interfaces, at a higher level of abstraction, that remain
concise and formal.

Definition 1: Concern. Configurable and customizable unit of reuse encapsulating the modelling
artifacts related to a singled out domain of interest. The models within a concern are organized
according to features and allow the customization upon reuse to match the context of another
concern.

CORE concepts are laid out in a metamodel whose instance models allow to build systems
composed of a hierarchy of concerns thus intuitively organizing the realizing models. Thus CORE
offers a key advantage from a model building point of view as it allows a modeller to explicitly
declare a reuse interface for the models constructed so they can later be integrated into a higher-
level model. This model interface achieves beneficial modularity with its three distinct parts [1]:

e The Variation Interface: Conveys all the available variations of the concern through a hier-
archy of features and the impact of each variation on stakeholder goals and non-functional
requirements.

e The Customization Interface: Informs on how generic elements of a chosen variation of



2.4 CORE

the concern can be mapped with existing elements of the model that is reusing the concern,
allowing the reuse process to produce a customized composed model.

e The Usage Interface: Describes how the reusing model can access the defined structural
and behavioural elements made available by the reused concern.

In its implementation prior to this paper, a concern in CORE (COREConcern) is specified
structurally with class diagrams while it is specified behaviourally with sequence diagrams and
protocol state machines [29]. These models are COREModel instances in the CORE metamodel
composed of their respective modelling elements (COREModelElement), thus CORE and the de-
fined languages were tightly linked and dependent on each other. Those modelling languages were
previously static and specified using metamodels which were built specifically around the CORE
architecture, adding languages first required a full understanding of CORE. Each concern is imple-
mented through a feature model that structures and aggregates each feature offered by the concern.
The individual features are then realized with one or more models from the defined languages
through a COREModel. A feature represents a configurable characteristic of a concern that is rel-
evant to the developer, they can be mandatory or optional and feature selection will happen when
reusing the concern.

2.4.1 Concern Reuse Process

A Concern in CORE serves as the main unit of abstraction and modularization that allows con-
structing complex systems through the process of reusing other concerns. The reuse process itself
is the workflow a developer follows when selecting a specific solution alongside many relevant
variations offered by a concern that is of interest. The developer can, in a bottom-up approach,
compose a system from intertwined and interacting concerns in a way that maximizes reuse. It
is bottom-up because higher-level concerns end up reusing lower level simpler ones as primitives
[29]. To achieve this, the developer will use the three interfaces of the concern in the following
way:

1. They will choose the desired features they want from a reused concern through its Variation
Interface, which lists all the valid alternatives offered by the concern.

2. They will then adapt how this solution is realized to their specific usage context (their reusing
concern) using the reused concern’s Customization Interface.

3. Then this selected and adapted version of the concern is now accessible with the correct
mappings and through its declared Usage Interface from their reusing concern.

10



CORE Languages and Perspectives

3.1 CORE Languages
3.1.1 Previous CORE Metamodel

One of the main shortcomings we aimed to improve in CORE is the level of entanglement be-
tween modelling languages and CORE as a framework. There was a tight dependency between
CORE and its languages and vice-versa as they were developed together, making the addition of
new languages tricky and time-consuming. It further hampered the flexibility promised by CORE
that it was dependent on in-house languages, preventing its powerful reuse features to be widely
adopted by the modelling community. To appreciate the scale of improvements made to the CORE
architecture, we first need to look back at how CORE concern features were realized by models
before.

Figure 3.1 shows a highlight of the previous CORE metamodel. Features were realized by
models directly, and those models were natively recognized by CORE because they could only
be from a limited set of predefined languages that were built to use CORE. In other words, there
was no separation between languages and CORE. In the previous metamodel, shown in figure
3.1, this translates to features (COREFeature) of a concern (COREConcern) being realized by
a COREModel. The predefined modelling languages in CORE had to subclass the COREModel
class, with their structural modelling elements being subclasses of COREModelElement.

We can additionally notice that the feature model language used to represent the features of
a concern is itself (COREFeatureModel) a model extending COREModel with its COREFeatures
extending COREModelElement.

Reusing models was previously allowed by relying on the metamodels of the predefined lan-
guages to extend the key classes in the CORE metamodel that described its customization and
usage interfaces. Each modelling element that extended COREModelElement had to also prop-
erly use the partiality and visibility fields of that class to identify its elements that needed to be

11



3.1 CORE Languages

. T
‘5 COREModelComposition - COREModeIE!é
[0..*] compositions i} mentC P

|

Y
. 1
«bind T» T
[0..1] extends [1..1] reuse T ‘ ‘ ~ - {1..1] from
‘ ; fttor
— [ & comEModelReuse | | B COREModelExtension | % CORELink
£ COREReuse 5 COREConfiguration ‘ ‘ ‘ ‘ [1.71te
[0..7] selected yiy
S [0.1
[0..*] modelReuses
[1..1] reusefiConcern [/ COREConcernConfiguration|
[1..1]|source
[0.."] reexposed
01 % COREModel
A A [1..1models
[0.7] /modelE\emean
Y
1.k corec B b} % COREModelElement
(1] coreConcern
© partiality : COREPartiality Type = none
. ) = visibility : CORE VisibilityType = concern
EICORE Concarn [0."] realizedBy  reference : EBoolean = false
%" interface : CORElInterface T
«bind T» T
[Q,."] realizes
[ COREFeatureModel [l COREFeature [/ COREMappin
[0..*] features parentRelationship :
7 i ipT) =
[1..1] featureModel ﬁ(?ne o
[1..1] root
0..*] childs 0.." lud
[0..*] children [0..*]|excludes [0.4] requires
[0..1] parent
[0.."] reuses

Figure 3.1 — Selected Elements from the old CORE Metamodel Illustrating how Concern Features

are Realized and Reused

12



3.1 CORE Languages

customized and elements that were re-exposed for usage. The COREModel aggregated as model-
Reuses the declared COREReuses, as well as the model extensions, COREModelExtensions. The
CORE variability interface is specified for a concern through its COREFeatureModel that lists all
configurations, COREConcernConfigurations, of which one could be referred to at reuse time as
the selected configuration.

3.1.2 The New Concept of CORE Language

Scientific literature defines a modelling language as "the set of all models that conform to a mod-
elling language’s abstract syntax, that are represented by some concrete syntax and that satisfy
a given semantics" [27]. An abstract syntax, for a given application domain to model, names all
the identifiable concepts and their respective relations and thus is equivalent to a metamodel [27].
Therefore, CORE is informed of the abstract syntax of a language that it integrates through the
language metamodel that is provided by the creator of the language.

Concrete syntaxes of languages are their notation, they could be for instance the standard pre-
scribed graphical appearance of a modelling language, how its models are read, written or drawn.
CORE does not directly handle how languages’ concrete syntaxes are specified as they not relevant
to its current structure, therefore the separate task of implementing editors and viewers is left for
the language designer.

Finally, the semantics of a language inform us on the meaning of its syntactic elements, they
establish a mapping between the notation and what it represents in the semantic domain we aim
to model [16]. In order to create and manipulate syntactically correct models that are semantically
meaningful, languages offer a set of valid operations that form their structural operational seman-
tics [27]. We decided to express these model construction steps in CORE with the novel concept
of language actions that we bring forward as our contribution.

In CORE, we propose to capture the structural operational semantics of a language by having
it declare a set of operations that can be executed in a meaningful sequence to build a model
while preserving syntactic validity throughout the process. These operations, that we call language
actions, are defined by the language designer and have to be provided alongside the language
metamodel whenever a language is to be used in CORE. Together with the metamodel that specifies
the structure of language, these language actions specify its behaviour and the model construction
semantics, i.e. how one would go about creating and modifying model elements.

Definition 2: Language Actions. Set of actions a modelling language exposes to allow the cre-
ation and editing of models that enforce a consistent use of the metamodel elements.

On top of these and to offer the reuse functionality of CORE, a weaver is also provided for
a language, prescribing the composition mechanisms that allow linking its elements with other

13



3.1 CORE Languages

languages’. To fully reap the reuse benefits offered by CORE, models need to be composable,
hence any modelling language within CORE must define a weaver specifying the composition
rules of its modelling elements. The provided weaver is critical for allowing CORE to weave
the language metamodel elements together, i.e., algorithmically decide which elements should be
replaced, combined or deleted and how it should be done. Although CORE by itself allows defining
mappings between modelling elements that need to be weaved, weavers are still needed to specify
the right combining procedure. Weavers are fully supported in the CORE metamodel but will not
be explored in more detail in this thesis as they are the responsibility of language designers and
fall outside of our research motivations.

3.1.3 Redesigned CORE Metamodel

We redesigned CORE structurally at the metamodel level to introduce the abstract artefact element
that will allow languages to access the three reuse interfaces. As such, a language is brought into
CORE first by referencing its independent metamodel that defines the language abstract syntax.
The language actions provided by the language designer are then loaded into CORE and serve
as proxies to expose the semantics of the language. Lastly, the language weaver is referenced by
CORE and called whenever reused and reusing model elements need to be weaved together.

The new CORE metamodel, thus, fully achieves a complete disentanglement from languages as
it was restructured to allow support for loading externally defined languages and language actions.
We can see this separation in the new CORE in figure 3.2, where elements supporting the three
discussed reuse interfaces now relate to a language-agnostic element, the artefact. Languages are
now represented by CORELanguage which extends COREExternalArtefact that holds a reference
to the root metamodel element of the external language. Language actions are directly accessible
from it, represented as CORELanguageActions.

Definition 3: Artefact. A modelling artefact represents a model created for a specific purpose
in a concern, using an externally defined modelling language. It stands as a language-agnostic
placeholder for models made in languages defined outside of CORE, offering them access to its
customization and usage interfaces without explicit dependencies between CORE and the lan-
guage. Artefacts can then directly be used in CORE compositions and referenced by scenes to
realize features, regardless of how the external language is defined exactly.

We also see the introduction of the concept of a scene (COREScene) that is now what realizes a
feature of a concern, it serves as the central organizing structure of all related modelling artefacts.
It aggregates all artefacts relating to the realization of its feature except those that pertain to the
concern’s reuse, like the feature model, COREFeatureModel which is the variability interface of

14



3.1 CORE Languages

soAnoadsiod pue seSen3ue Juruyd(q SIUSUWI[H [OPOWRIAA THOD MIN P[RS — '€ 2InT1

saunbai [, 0]
s9pnjoxa [, ] ualpiiyo|[.~o]
seuods [, 0]

juaied 0]

Agpozijeas [T
sozifeas [, 0]

suoN = adA1diysuopejeyaInieasIHOD , | 1004 [1°1]
: diysuopejopiuased =

BuINST : BWRU —
2Inea43400
| =ui3 : punogueddn %, 8u8953500 [ 8 seinjes) [, 0]
i
&

0=1ul3 : punogiamo|

lepopainiee43400 [

8usos [10]

Aureuipreobuiddenayoo [ 7

Aeupreobuddew (o] Buisa : uoisuelxIoly

] Bupiss 0
Bus3 : Aioyoegisidepe
Buins3 : Aojoegaainosar
Bus3 : lgnsu

_ 1apoainieay/ [11]

uipiegeoUIelel [,

O Ow O 0= 0=

sbuiddepjpsousiopei [,

ebenbue13yOD m

walqo3
: Juawiajgiepow
auou
= adALANEed3-HOD — walqoa
: Aupensed : Juswa|3[opoNIo0s

buidden3g00 Buiis3 : ebenbue| — poosios [,

Wewel3103H00 [

15

1WejelyELXITHOO [
sjorjeLe [
1 <L pug» I
\ 3
sweere 1] w190U098109 [1|]
LTS |OPOIORAWITHOD : [BPONIEAWY 4=
EUENEELIN 18R1YIH00 [, wiB0U0D3HO0 [
walqo3:
tuswaigjepow usaouogpesnal [11]
Wawal3INIHOo0 [ damos [L1]
sesndi 0]
suoisuaixgjepow [,0] sesnagjepow [, 0]
sasnay/[,0]
P
sasnayjepow [,~0] asnad [p1]
1:woy F
> [ _[oeewog
101
UOISUBIX3IPPONIHOD [ 7 _ 9sNayIdPONIHOD [ spuaixa [0
HTFHOO [y 0buipreTetof
N * ssnawpapuaxe [1-0]
woy [11] aly uonenbyuoa [1°1]
L <L puig> Av uoenbyuoo3HO0 F
‘SuonISodwoo [,
uoso
duooawerzieponEH00 s uopisodwodjapoNIHOO [, 7
1



3.2 Perspectives

the concern. The COREArtefacts have references to the model they reuse, COREModelReuse, and
the ones they extend, COREModelExtension. They also specify their usage interface elements,
CORLEUIElement, and customization interface elements, CORECIElement, each of which have
references to model elements in the external language metamodels. These references fully separate
CORE reuse from the intricacies of languages, as there is no more inheritance involved and even
CORE (T partiality is controlled in CORE.

Finally, the aforementioned weaver of a language can be specified as an attribute of this CORE-
Language (weaverClassName).

3.2 Perspectives

Notwithstanding how critical standardized general-purpose modelling languages are to MDE, they
are by themselves not enough to cover all modelling domains and purposes efficiently. To ensure
adequate modelling expressiveness for a specific system at a specific stage, custom-built DSLs are
often necessary due to the system’s peculiarities or the specificities of its development. In practice
though, the development of a DSL remains to this day a tedious process that takes considerable
efforts and time to do properly and that can benefit immensely from more reuse.

Thus, in order to alleviate this process, we introduce the concept of perspective to allow the
quick creation of domain-specific modelling languages in an intuitive and flexible reuse-oriented
way. A perspective is, in our vision, an intermediary conceptual layer applied on top of a language
to tailor-make it for a specific purpose. It would encourage and facilitate the reuse of existing
general modelling languages by allowing developers to tweak them to fit more closely to their
development process. These developers could then spend less time defining new languages and
instead quickly tailor existing languages in-house to best match their needs.

Definition 4: Perspective. A redefinition of existing modelling languages through selective re-
exposing and combining to tailor them for a specific purpose or domain. This is accomplished
by choosing which subsets of the languages’ elements and interactions to re-expose, combine
and hide. If it is applied to a single language, we refer to it as a single-language perspective, as
opposed to a multi-language one when applied to multiple languages.

In the future, perspectives can evolve to become full-fledged Multi-View Modelling views but
our main purpose here was to first allow convenient reuse of existing languages rather than offer
viewpoints to separately display the different aspects of a system. Further discussion on Multi-View
Modelling and comparisons between the existing approaches and our perspectives is provided in
the related work chapter.

16



3.2 Perspectives

3.2.1 Single-Language Perspective as DSL

Perspectives, in their simplest form, serve as a way to restrict a language for a more specific usage.
Nowadays, many DSLs are built by starting with a general-purpose language due to the extensive
variety and quality of existing standard modelling notations. The general language’s structure and
behaviour are then limited with the intention of enforcing a targeted modelling process. Specifi-
cally, the DSL designer decides which elements of the language should be kept as-is and which
should be modified or restricted to best capture the target modelling domain. Then this designer
often also has the task of coming up with a modified concrete grammar, or notation, than the one
of the general language.

For example, in class diagrams, we could restrict the creation of operations in a class to em-
phasize domain concepts elicitation in a perspective. The original language is thus said to be typed
by the created perspective that reuses and re-purposes it for a specific usage or purpose that is per-
tinent to the system being developed. A language could cumulate multiple different perspectives it
may have many, allowing a quick language prototyping process with reduced efforts.

In this thesis, our focus was on single-perspective as a means of quickly building a DSL by
reusing an existing CORE language, this constitutes the first step in building more complex per-
spective types. Our contribution consists of defining a structure and the associated process to allow
typing CORE languages with CORE Perspectives to tailor them for a specific usage.

Currently, before being able to use it in a perspective, a language must already be loaded in
CORE, giving us access to its metamodel and its language actions. Then the perspective designer,
the DSL designer role in our approach, decides which elements of the metamodel should be re-
exposed and which language actions are allowed whereas others are restricted. Defining new per-
spectives does not necessarily make existing models of the original languages obsolete, they can
be reloaded in the new perspective and reused to show them from a different angle. This is pos-
sible because instance models created according to a perspective still conform to the modelling
language the perspective is based on and comply with their shared metamodel. Thus, perspectives
offer a way to adjust the structure and behaviour of the language to the precise abstraction level
and expressiveness required by the current development phase while maintaining consistency with
the existing body of models.

3.2.2 Integrating Perspectives into the CORE Metamodel

The first step to introduce the concept of perspectives was to create COREPerspective in the CORE
metamodel, which holds a reference to the root of the external metamodel of the language it is
based on. This led to the refined metamodel shown in 3.3 where now a COREScene can be typed by
a perspective, specifying with which tailored language it is realized. We also decided that to ease

17



3.2 Perspectives

[1."] artefacts % COREATrtefact
[1..1] coreConcern [0..*] artefacts
£ COREConcern
El COREPerspective El COREExternalArtefact

* EObject

8 COlREPerspective = filePrefix : EString = language : EString
Action [0..*] actions [0..1] perspective ., rootModelElement :

S
1
El CORELanguage
7 nsURI : EString
T resourceFactory : EString
T adapterFactory : EString
7 weaverClassName : EString

[1..1] /featureModel

iy A N [0..1] scene
7 fileExtension : EString
El COREFeatureModel .
1 [0.] features £ COREFeature ‘ E COREScene
[1..1] root
[0..] realizes T
[0..*] realizedBy [0..] scenes

Figure 3.3 — Highlight of the New CORE Metamodel Defining Languages and Perspectives

the implementation of the first version of perspectives, they would serve both for their intended
purpose explained above but also as an adaptor for external languages. As such, CORELanguage
now extends COREPerspective allowing the perspective itself to serve as the interface between the
external language metamodel and CORE. We now only have COREPerspectiveActions accessible
from CORE, as they also act as adaptors for external language actions.

Each CORE Scene can then be optionally typed by a perspective that serves as an adaptor for
an existing modelling language, a tailored version of such a language or even a combination of
multiple languages. This adaptor mechanism is how currently we realize a feature with an existing
modelling language, although it is referenced by the COREEXxternalArtefact, in order to be usable
in CORE the language is cast, without changes, as a perspective.

For now, this CORE perspective allows the language to be used in CORE and exposes all
of its language actions as COREPerspectiveActions. The modelling language then becomes fully
usable in CORE as a CORELanguage and can now be used to realize a feature when used as the
perspective of its realizing scene.

An external language can still be brought as is in the form of a COREExternalArtefact, it will

18



3.3 Using Languages and Perspectives

hold a reference to the root of the external metamodel.

3.2.3 Towards Multi-Language Perspectives

Perspectives may also be used to group two or more different modelling languages and prescribe
the relationships between them to achieve a specific purpose, or help with validation and consis-
tency. Such multi-language perspectives could, for instance, one day, provide a way to link one
element of one language to another in a different language to keep them consistent. They would
also create novel perspective actions not defined in the reused languages’ actions could consist of
combining existing language actions in some order. Our long-term vision for such perspectives is
that they allow building on top of their language’s actions more complex perspective actions offer-
ing higher-level composite interactions. Examples of such higher-order perspective actions could
be:

o Enforcing that the lifelines in a sequence diagram correspond to a class in a joint class
diagram.

e Linking the creation of an operation in a class to the automatic mapping to a corresponding
sequence diagram model.

¢ Disallow creating a model element in one language (e.g. class) that doesn’t have an equiva-
lent in another language (e.g. use case actor)

e Infer automatically the states and transitions of a statechart diagram model from a corre-
sponding sequence diagram model.

Currently, such inter-language perspectives aren’t fully supported by our framework and as
such will not be covered in further details for the remainder of this paper. Nonetheless, the meta-
model changes were made while keeping multi-language perspectives in mind to allow their future
full realization. For instance, the CORE Scene was introduced specifically to support the realiza-
tion of a feature by combining multiple models in different languages together in one referenced
perspective.

3.3 Using Languages and Perspectives

First, it is appropriate to identify the three main roles that developers can play when using CORE
as their approach to model-driven engineering, although someone may stack up more than one of
those roles.

19



3.3 Using Languages and Perspectives

The first one is the familiar one of a modeller, in charge of using the modelling tool to realize a
certain feature from a concern of interest, it is assumed they are familiar with the language offered
by the perspective they use to model their solution [4].

Another role that was mentioned previously is the language designer who is in charge of de-
signing a completely new modelling language when existing languages, like those under the UML
family, can’t capture the system being built appropriately [4]. The task of defining a new mod-
elling language with a metamodel can be complex and time-consuming but remains sometimes
necessary if the domain is very peculiar and unexplored, CORE now allows these new languages
to be plugged in as external artifacts seamlessly.

Finally, the third and new role we introduce here is the one of a perspective designer that is in
charge of customizing and combining existing languages through tailored perspectives that allow
the most effective modelling of the targeted section of the system.

The modelling approach we propose involves these roles collaborating in an ecosystem that
begins with language designers defining a language and publishing it for others to use. Then, per-
spective designers could use the published languages to design relevant perspectives they will also
make available for others to use and build with. Modellers thus get access to a vast and heteroge-
neous library of languages and perspectives to suit the needs of their specific project. Linguistic
needs will differ across projects and their different development phases but a mature ecosystem
would consistently offer an appropriate language or perspective.

CORE thus offers a complete language definition and modelling workflow following MDE
principles to satisfy any design requirement. This workflow and the different roles involved as well
as their respective tasks can be seen detailed in figure 3.4 or summarized as follows.

1. Create a CORE Concern that encapsulates the module being built and can be itself reused.

2. Add relevant CORE Features to the concern in the form of an extensive CORE Feature
Model.

3. Each feature can then be realized by a CORE Scene which organizes the models used into
their respective CORE Perspectives.

A perspective can be just an adaptor for an external language, the model is then a CORE
external artefact.

A perspective could also be tailor-made by a perspective designer for a specific purpose,
reusing one or more external languages.

4. The modeller then gets access, through some editor, to the perspective modelling elements
and actions to construct a syntactically correct model that accomplishes the feature’s intent.

20



3.3 Using Languages and Perspectives

Describe Specify
Language Language
Actions Weaver

Define
Language

External Language Language Actions Language Weaver

Language Designer

: Create or

Define Re-expose

Perspective Language Can simply
Actions adapt the

language or
tailor and
enrich it

Perspective

Perspective Actions

S
Q
c
=
0
[
(a]
[
=
£}
o
(]
Q.
(2
B
(4]
o

Create
Concern
Feature Model

Realize Each
Feature

Create
Concern

Modeller

COREConcern COREFeatureModel

COREScene

COREArtefact

Figure 3.4 — Modelling Workflow in CORE Using Languages and Perspectives

21



Perspectives in Action

Although up to now we’ve discussed the addition of language support and perspectives conceptu-
ally, they really take shape in practice and to show so we will now detail the creation of a language
and two perspectives on top of it. Namely, the UML Class Diagram modelling language that was
restricted with two perspectives to be used for Domain Modelling and Design Modelling, respec-
tively.

4.1 Class Diagram Language

A Class Diagram is a type of static model capturing the structure of an object-oriented system.
It is part of the Object Management Group (OMG) standardized modelling notation called Uni-
fied Modelling Language (UML) [18]. The Unified Modelling Language defines Class Diagrams
specifically as a way to describe the structural properties at the level of classes, their attributes
and relationships between each other [13]. Structural elements of a system are the concepts in
its domain alongside the additional internal ones created during development. It is said to be a
static model because it does not capture the time-dependent behaviour of the system but rather
non-dynamic architectural features.

The main modelling elements in a class diagram are classes, their attributes, their operations,
their relationships with other classes which are either associations, of various kinds, or gener-
alizations. The complete definitions of these concepts are found in the official published UML
specifications[25] but we will provide a summary of each below [18].

A class describes a concept from the application domain or its solution, it is identified by
a name and can contain structural attributes as well as methods to define its behaviour. Classes
used to represent more implementation-dependent concepts can be abstract, in which case they
cannot be instantiated either because some of their methods aren’t implemented or because they
are intended solely for specialization. Visibility is also provided for a class, which controls if this
class can only be seen by other classes of the model (private), of inheriting models (protected), of

22



4.1 Class Diagram Language

its parent model organizing unit (package) or by any other class (public).

Associations link two classes together in some direction or bidirectionally, making one of the
association ends or both navigable. Each end of an association points to a class and can have a role
name, a multiplicity defined by a lower and an upper bound and a reference type making it either
a regular, a composition or an aggregation association.

An association of upper bound multiplicity bigger than one can be decorated with two boolean
properties, its ordering and its uniqueness. Ordering is the property of an aggregation or compo-
sition stating if the values contained are ordered or not, by default aggregations are unordered.
Uniqueness is a property of the elements contained in an aggregation or composition that specifies
if duplicate elements are allowed or not and whether it is a bag or set. By default, elements of an
aggregation are unordered and unique.

Associations are said to be n-ary when they link together three or more classes, in opposi-
tion to simpler more common binary associations [18]. Multiplicities of n-ary associations are less
straightforward to use than multiplicities for binary associations. The multiplicity range at one spe-
cific association end represents the minimum and the maximum number of potentially associated
instances when holding all the other n-/ ends’ fixed [18]. Navigability is also challenging to read in
the case n-ary associations, multi-directional navigation being harder to reason about in practical
terms. Aggregation and composition are meaningful only for binary associations and shouldn’t be
allowed for n-ary ones at all.

Association classes make it possible to enrich an association occurrence with all the properties
of a class. They are represented by a class linked to the geometrical centre of an association.

The end of an association can also be decorated with a qualifier, a typed attribute that serves
as a key or an index to accessing a unique element in an aggregation or composition. A qualifier
is used to distinguish and select na object from a set on the other end of an association whose
elements are uniquely identified by some attribute [18]. It is typed by a primitive type or a class
that exists in the model and that can be used to retrieve a specific element.

A relationship could also be of the generalization type, commonly known as an inheritance
in programming. It is always directed from the more specific subclass (child) towards the more
general superclass (parent).

An attribute of a class is a structural feature that holds some relevant identified data and that has
a visibility. Attributes are usually typed by primitive types like Strings or Integers, object attributes
typed by another class defined in the model should be shown with associations.

Classes can also have operations to specify a behaviour, a transformation or a query that this
class or an object that is an instance of this may be called upon to execute. The operations executed
by the class are said to be static. An operation is composed of its name, a visibility, a returned

23



4.2 Class Diagram Implementation

type and a list of typed and identified parameters. The operations that are meant to be executed
by the class and not its instances are identified as static operations. They can also be abstract, in
which case they are meant to be specified by another class inheriting from the one they are defined
in. There are three categories or types an operation can belong to: it can be a regular operation, a
constructor or a destructor.

Finally, a class diagram can contain a note, a textual description that can be linked to any
model element to further inform about it [18]. A note is a modelling element itself and can be
used to present any kind of information about an element, such as a comment, a constraint or some
relevant statistic.

4.2 Class Diagram Implementation

4.2.1 Metamodel

As described in chapter 3, the first step to designing a modelling language for CORE is to come
up with a complete metamodel specifying its modelling elements. The complete metamodel for
class diagrams is shown in figure 4.1, one can find most of the concepts discussed in the previous
section as classes here.

For instance, associations can be n-ary when they have more than two AssociationEnd elements
in their ends aggregation. Specific constraints are applied to the n-ary association ends to make sure
they are all navigable and that the reference type can’t be aggregation or composition.

Association classes are represented by associations that point to a class with their association-
Class reference.

Qualified associations, on their side, are associations that point to a Type with their qualifier
reference.

Notes are full-fledged modelling elements and can annotate any identifiable modelling element
NamedElement.

Finally, a useful special case of a class is shown in ImplementationClass which refers to an
existing class in a programming language that can be brought into the model for convenience.
For spacing and formatting reasons, primitive types such as strings, int, float and double number,
characters, arrays and enumerations have been omitted from the depicted metamodel.

4.2.2 Language Actions

The second step for integrating a language with the new CORE is to specify its language actions.
These language actions encode how models and model elements expressed using the language
are created and edited. As such, language actions can be seen through the prism of the four basic
functions commonly used in persistent storage: Create, Read, Update, Delete or CRUD. They are

24



4.2 Class Diagram Implementation

o.ouﬁo_"_m;m_
00=1e0|43: X

anfen [11]

[opOoweIQIAl 93en3ue | weidel( SSe[D — [ 2In31g

siauiejuod [,-1]
109[q03 - Aoy 3,

JuaWd|JIN0AeT ]

depuswal3

109[q03 : Aoy 3,
depyisureluo) H _

inokeq g

inokey [10]

payiend - abexoed _
Jeinbay _ Jopnisaq — oreaud _
uonebaibby _ J0JoNASU0D pajosjold
uosodwon _ |BWION - oygnd _
adA|sousisjey = adfuonesedo 3 adA Ay A =

S8jou [,"0J

sedfi [, 0]

SUOIfeIo0SSe [, 0]

weibeigssel)

sse|jQuoneloosse 0]

pu3uoneloossy : ()pugsusoddQieb

O~ @~

anJ} = ueajoogq : anbiun

spu3juoleloosse [, 0]

as|e} = uesjoogy

as|e} = ueaj00g3 : PaIdpIo

HELETIEMT] &
buingy : .
sesse|a [, 0] aweNsse|Qasuesul
_ sse|0 g _ _ ssejguonejuswaldwi 5 _
L3
suoyelado [, 0]
layisselo [11] 1

spua [,¢] Jeinbey “
= sanquie [, 0l
= adA] aoualejay : adA) aousiajel
| =3 : punogsaddn 3
0 =1uU|3 : punoguamoj
anJ} = uesjoogq : s|qebineu s
oossg [11] PU3UONEID0SSY [ anquuy 5

Bus3

 Jusjuod

abeyoed

810N H _ _

UOHBIO0SSY [

T A

as|e} = uesjoogq : oNeIS 1

7 ainjea-[einNAS £,

abesoed =

osiey |
= uesjoogq : Joessqge ~

osjey= |
ueajoogy : adAjerep ~

as|e} = uesjoogy :

lew.loN
=adAjuonesado
: adAjuonesado
onels :
olgnd

= uesjoogs : JoeNSqR

asjey

soyIsselD g

uorresado g

adA1o1BUBD [0,

7 sadA1adns [, 0]

sislowp.ed

sisjwesedadAs [, q]

[0]

adfy [1

1]

Juswa|gPadA] E}

adApuinas [11]

Jayenb [1-0]

!

usws|gpsiou 0]

buLis3 : sweu

JuswspoweN g, 7

25



4.3 Domain Modelling Perspective

however higher level CRUD functions that combine more primitive model edits into a coherent
relevant modelling transformation the language designer exposes. Because, as described earlier,
we are interested in language actions as operators allowing to modify a model while maintaining
syntactic correctness, we do not need read operations.

The language actions we defined for the class diagrams modelling language are listed in tables
4.1, 4.2 and 4.3 respectively for addition, editing and deletion actions. The second column of the
tables lists the metamodel elements affected by each language action to highlight the complemen-
tary nature of metamodel elements and language actions. Parameters are specified for the various
actions whenever they are needed. All these actions apply to a loaded Class Diagram model in-
stance and will either add elements to it, modify some elements or delete them, making the current
class diagram an implicit parameter to all actions. For instance, creating a class takes as parameter
the name of the new class and will instantiate a class model element with that name before adding
it to the class diagram. Therefore, typically several lower-level model transformations are with a
language action. For example, the action to add a class combines creating the class, setting its name
attribute and adding it to the class diagram, which are respectively one create and two update prim-
itives. The action allowing the creation of an association, on the other hand, takes as parameters
the classes that the association should link together and a direction if it is not an n-ary association.
The action to create an implementation class can also have a parameter listing the required generic

types.

4.3 Domain Modelling Perspective

During early software development phases, it is a common activity to analyze the structure of
a problem domain by specifying relevant domain concepts alongside their properties and rela-
tionships. While in theory any structural modelling language can be used for domain modelling,
practically most software development processes that incorporate domain modelling use a variant
of class diagrams to express domain models. Most of the time, only a subset of the class diagram
language is used. For example, since in domain models the focus isn’t on behaviour, operations are
typically not used.

Mainly, domain models are composed of classes with attributes, alongside relationships such as
associations with multiplicities, aggregation or composition and inheritance. It can thus be repre-
sented easily with a tailored version of the class diagram language. The adjustments needed would
consist of restricting the use of any behavioural elements of the language as they are irrelevant to
describing the system at the domain modelling phase. A perspective would then be the quickest
and most efficient way to repurpose our class diagram language for the domain modelling use case.
That is why domain models are a great choice in order to showcase the capabilities of perspectives.

26



4.3 Domain Modelling Perspective

Table 4.1 — Language Actions of Addition Type

Language Action

Affected Metamodel Element

Action Parameters

Create Class

Create Association Class
Create Note

Create Inheritance

Create Association

Create N-ary Association
Create Implementation Class
Create Enumeration

Add Enumeration Literal
Add Association Qualifier
Add Attribute

Add Operation

Add Operation Parameter

Class

Class, Association
Note

Class

Association
Association
ImplementationClass
Enum

Enum, Enum Literal
Association, Type

Attribute, Class

Operation, Class

Parameter, Operation

Name, Visibility

Target Association, Name, Visibility
Note Text, Annotated Element
Parent Class, Child Class

Linked Classes, Direction

Linked Classes (3 or more)

Name, Generic Types

Name, Visibility

Name

Target Association, Qualifying Type
Target Class, Name, Type, Visibility
Name, Target Class, Visibility,
Return Type, Parameters

Target Operation, Name, Type

27



4.3 Domain Modelling Perspective

Table 4.2 — Language Actions of Editing Type

Language Action

Affected Metamodel Element

Action Parameters

Move Element

Edit Element Name

Edit Note

Edit Association Multiplicity
Change Association Type
Change Association Direction
Change Attribute Type

Change Operation Return Type
Change Operation Parameter Type
Change Visibility

Toggle Association Ordering
Toggle Association Uniqueness
Toggle Class Abstract

Toggle Operation Abstract
Toggle Association End Static
Toggle Attribute Static

Toggle Operation Static

Any Movable Element

Any Named Element

Note

Association, AssociationEnd
Association, AssociationEnd
Association, AssociationEnd
Attribute, Type

Operation, Type

Parameter, Operation, Classifier
Operation, Class or Attribute
Association, AssociationEnd
Association, AssociationEnd
Class

Operation

Association, AssociationEnd
Attribute, Structural Feature

Operation

New Position

New Name

New Note Text

New Multiplicity

New Reference Type
New Direction

New Type

New Return Type

New Parameter Type
New Visibility

Target Association End
Target Association End
Target Class

Target Operation
Target Association End
Target Attribute

Target Operation

28



4.3 Domain Modelling Perspective

Table 4.3 — Language Actions of Deleting Type

Language Action

Affected Metamodel Element

Action Parameters

Delete Class

Delete Note

Delete Association

Delete Enumeration

Delete Implementation Class
Remove Enumeration Literal
Remove Association Qualifier
Remove Inheritance

Remove Attribute

Remove Operation

Remove Operation Parameter

Class

Note

Association

Enum
ImplementationClass
Enum, Enum Literal
Association

Class

Attribute, Class
Operation, Class

Parameter, Operation

Target Class

Target Note

Target Association

Target Enumeration

Target Implementation Class

Target Enumeration Literal, Owner Enum
Target Association

Target Classes

Target Attribute, Owner Class

Target Operation, Owner Class

Target Parameter, Owner Operation

29



4.3 Domain Modelling Perspective

A domain modelling perspective would disable the class diagram language actions that cre-
ate and manipulate modelling elements irrelevant for domain models. Namely, it would disal-
low adding operations to classes and consequently their modification or edition, the same would
apply to operation parameters. Implementation classes, which are referenced classes of popular
programming languages, would also be disallowed completely. Making attributes static is also
implementation-related and unneeded in a domain modelling use case. Visually, we would also
alter how classes are displayed to always hide the area displaying operations and only show the
attributes container if a class has attributes. Visibility for classes and attributes as well as arrows
indicating the direction of associations also need to be hidden as it is not needed in domain models.
Furthermore, since navigability has no meaning in domain models, associations should be shown
without direction arrows and their navigability should not be editable.

4.3.1 Illustrating Example

To allow us to illustrate how the Class Diagrams language and the Domain Modelling perspective
can be useful in developing a system, we will devise an example to show what the results could
look like. We will first describe a simple system we would like to implement before showing how
one could model the domain of the system using the perspective we just built.

In recent years there was a shift in the urban food delivery market toward the use of independent
online services to provide riders that will deliver the food, like Uber Eats™. These food delivery
services have excelled at harnessing the wide adoption of smartphones and recent technological
advancements to provide convenient and cost-effective delivery for any restaurant. They offer an
unprecedented variety and fast delivery times to users, thus contributing to a recent 20% annual
growth in delivery sales which are expected to reach $365 billion worldwide in 2030 [7].

To implement the backbone system for such a delivery company and quickly bring a reliable
product to market its developers could greatly benefit from employing an approach like CORE.
The first step would be to define requirements from the company stakeholders and map out a
vocabulary for the problem domain using our domain modelling perspective. Namely, the system
being developed needs to manage and coordinate drivers subscribed to the service and dispatch
them to the closest restaurant a user has ordered from to allow a quick delivery. After the delivery
is complete the user payment needs to be processed and split between the rider, the restaurant
and the service. An example of a domain model capturing those requirements and built with our
domain modelling perspective can be seen in figure 4.2.

30



4.3 Domain Modelling Perspective

<<datatype>>
Location String username
myCreditCards owner User
| CreditCard |
— 1 |Location address
s|- N
3 3
g £
3
J - a
Order < myRider Rider
float price 1 |Location currentLocation
g 3
a
i ¢
=] ]
7 ol
e =
J L] s
Restaurant
Dish menultems String name
String name 1.* String phoneNumber
Location address

Figure 4.2 — Domain Model of an Online Food Delivery System Designed with a TouchCORE
Perspective

31




4.4 Design Modelling Perspective

4.4 Design Modelling Perspective

Further down the development process of a system, class diagrams are commonly used to prescribe
or document the implementation solutions of a system, this is typically called design modelling.
Design models should be comprehensive abstractions of a system’s implementation. The modeller
is at this phase refining previous domain models by clarifying how certain relationships will be
implemented and by assigning the system’s behaviour to classes.

In our case, we would like a design modelling perspective to restrict our class diagrams lan-
guage by removing any modelling notation that is hard to correlate with implementation solutions,
such as n-ary associations and association classes. It would also encourage the modeller to specify
completely the structure of the system, and do so in a way that better captures the lower level im-
plementation imperatives. A design modelling perspective would, on the other hand, enable class
operations, static attributes, visibility and importing existing implementation classes which were
masked for domain modelling. Visually, everything not shown by the domain modelling perspec-
tive should be shown for design models, attributes and operations areas, visibilities and editable
association end arrows.

Table 4.4, lists which language actions are allowed or restricted for the design modelling per-
spective compared to those of the domain modelling perspective.

32



4.4 Design Modelling Perspective

Table 4.4 — Comparison the Design and Domain Perspectives Respective Language Actions

Language Actions Design Perspective Domain Perspective

Move Element allowed allowed
Create/Delete Class allowed allowed
Create/Edit/Delete Note allowed allowed
Create/Remove Inheritance allowed allowed
Create/Delete Association allowed allowed
Create Association Class allowed allowed
Create N-ary Association disallowed allowed
Create/Edit/Delete Enumeration allowed allowed
Create/Delete Implementation Class allowed disallowed
Add/Remove Association Class disallowed allowed
Add/Edit/Remove Attribute allowed allowed
Add/Edit/Remove Operation allowed disallowed
Add/Edit/Remove Operation Parameter allowed disallowed
Edit Name allowed allowed
Edit Abstract allowed disallowed
Edit Static allowed disallowed
Edit Visibility allowed disallowed
Edit Association Multiplicity allowed allowed
Change Association Type allowed allowed
Change Association Direction allowed disallowed
Change Association Ordering/Uniqueness disallowed allowed

33



4.4 Design Modelling Perspective

4.4.1 Design Example

Going back to our food delivery example, we can now employ our design modelling perspective to
derive from our domain model a more concrete model suitable for implementation. As developers
move to the design phase of the system, it now becomes relevant to specify more precise struc-
tural and behavioural features in the models and thus a more appropriate perspective is required.
Because the design modelling perspective is reusing the same language as the domain modelling
perspective, the developer can open the domain model as a design model to jump start the process,
with the elements that don’t exist in the design model replaced by their equivalent or removed if
none exists.

The ability to transfer models from one perspective to another, if they both share the same
source language, is one novel type of reuse that is offered by perspectives and can serve, for exam-
ple, to simplify a model from one complex perspective into a cleaner more abstract and intuitive
one that can be presented to a less technically fluent stakeholder.

Furthermore, reusable models developed in one perspective can be applied in another perspec-
tive. For instance, the generic observer design pattern from the CORE concern library can be ap-
plied to the Order making it the subject and reusing the existing behavior for informing observers
like the Restaurant or the User.

Figure 4.3 shows one potential model for our system designed using our design modelling per-
spective. We can see for instance the disappearance of the n-ary association that Order was an
association class of, the latter becoming a stand-alone class with all required associations. Multi-
ple attributes are added to classes to capture data that needs to be stored for the implementation,
and corresponding getter and setter operations appear as they are allowed in design models. The
aggregation myDishes of the Menu is also now decorated with an association ordering, the im-
plementation of this ordered list can then reuse an existing concern in CORE for a linked list for
instance. Finally, more concrete enumerations are added to track the status of the delivery and the
rider.

34



4.4 Design Modelling Perspective

<<datatype>> <<enumeration>> <<enumeration>>
+ Location OrderStatus RiderStatus ~ Person
# float latitude gm'vf’d Available : 2:2"9 s
# float longitude relpan.ng Unavailable ing ema’
Delivering Delivering
Delivered lﬁ
i + User
~ CreditCard | nycreditcards owner
e - # Location address
- + Location getAddress()
s~ |-
H |
3 2 %
o| &
Wl a
+ Order + Rider
myOrders |4 fioat price myOrders myRider [# | ocation currentLocation
0.* |# OrderStatus status 0.r 1 |# RiderStatus status
+ void setStatus (OrderStatus status) + void setStatus(RiderStatus status )
+ Location getCurrentLocation()
~ Dish
# String name orderedDishes
# float price 1.
2 |- + Restaurant
o
g = myRestaurant [# String name
Tle 1~ |# Location address
E + Location getAddress()
+ Menu
myMenu
+ void addDish(Dish newDish) |~ 4
+ void removeDish( Dish dish )

Figure 4.3 — Design Model of an Online Food Delivery System Designed with a TouchCORE
Perspective

35




Modelling Tool Implementation

We believe that to encourage broad adoption of MDE as a mainstream software design process,
we need powerful and easy to use modelling tools that can be tailored to the specific needs of a
development team. Implementing these modelling tools is the crucible that transposes MDE into
practice, or in our case that realizes CORE with our TouchCORE modelling application. Thus,
TouchCORE was upgraded to support the foundational changes to the CORE modelling framework
described in previous chapters and reap their language correctness, specialization and efficiency
gains. This section presents an overview of the most important of these changes and how they now
allow TouchCORE to offer support for handling existing external modelling languages, as well as
creating and using perspectives.

5.1 Technology Stack

TouchCORE is built on top of various technologies, the ones needed to understand we improved it
are briefly introduced in the following subsections.

5.1.1 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) [15] is composed of a set of Eclipse plug-ins intended
for modelling and generating various kinds of artefacts from models. It offers a complete toolset
for building extensive models and generating code to manipulate them in order to integrate them
into applications. EMF also distinguishes between the metamodel and the actual model, allowing
us to define languages by specifying a metamodel encoding the abstract syntax of a language. In
order to design the metamodel, EMF comes with its own modelling language, ECore, as a meta-
metalanguage that is a custom version of UML Class Diagrams [21]. ECore is a subset of the
Meta-Object Facility (MOF) specified by the Object Management Group (OMG), behind UML,
and is similar to the Essential MOF (EMOF). ECore allows instantiating EClasses with appropriate
EAttributes and EReferences alongside more primitive types like int or float as EDataTypes.

36



5.2 Language Registry

Once a metamodel is defined in ECore, EMF automatically generates the model code and
associated edit code to control it as per the Model-View-Controller paradigm. Creating models
using the controllers from the edit code ensures that the created models are valid and represent
a concrete instance of the metamodel. Furthermore, EMF provides convenience through adapter
classes for building views and command base editing to facilitate undoing or redoing changes for
instance. The serialization of models is also built-in in the XML Metadata Interchange format
(XMI) which is the OMG standard for serializing models as XML.

5.1.2 Multitouch for Java

Multitouch for Java (MT4j) [12] is an open-source Java framework that offers tools for building
cross-platform applications with an emphasis on multiple-touch enabled interactions. It allows
easy and rapid development of 2D or 3D OpenGL hardware-accelerated graphics for Java-based
applications with a flexible and modular architecture coupled with good performance. The input
system accepts a very broad range of standards on multiple platforms with support for precise
complex multi-point gesture customization as well as mouse and keyboard combinations. There
is support for the Tangible User Interface Objects (TUIO) protocol in addition to the different
operating systems in-house touch and gesture libraries. It runs seamlessly on Windows, Linux
(Ubuntu) and Mac OS machines and defines interfaces that allow easy integration with existing
multi-platform Java applications.

5.2 Language Registry

In order to use external languages in our TouchCORE application, we first had to offer a technical
solution for loading them. We decided to implement a Language Registry that serves as the central
listing of all the currently loaded and supported languages in TouchCORE. Upon starting the ap-
plication, a predefined language folder is scanned and any languages found are loaded, after which
the tool proceeds to register them as EMF extensions to grant access to their metamodels.

Practically, the language registry is a singleton class called CORELanguageRegistry that holds
a hash map linking the language name to its CORELanguage. The registering process upon appli-
cation launch is needed as the languages’ metamodels are stored as serialized XMI eCore models
that need to be decoded and loaded. Each language is uniquely identified by a namespace Uniform
Resource Identifier (URI) that ensures its modelling elements are uniquely identified and acces-
sible. Once the language metamodel is loaded, we get access to the root object of the metamodel
which allows us to start creating instance models.

Perspectives do not need to be loaded like external languages as they are created and stored
within CORE whose metamodel is loaded upon starting TouchCORE.

37



5.3 TouchCORE Architecture Changes

5.3 TouchCORE Architecture Changes

After registering the language in TouchCORE, we had to implement how models created in that
language are modified correctly based on the language actions. Now, when selecting a feature of a
CORE concern to realize, a selection menu appears showing all loaded perspectives. The user then
makes a selection of which perspective he wants to use and that creates a COREScene instance
typed with this perspective. Finally, the appropriate modelling view is opened and the user can
start creating the model.

TouchCORE follows a strict Model-View-Controller (MVC) architecture where the metamodel
of either CORE or the modelling language currently used is the model that is edited using con-
trollers. Figure 5.1 depicts a high-level overview of TouchCORE’s MVC architecture where the
view is the TouchCORE Graphical User Interface (GUI) component.

38



5.3 TouchCORE Architecture Changes

TouchCORE GUI
——————————— >
Handlers - fiandiesievents Views - - ___1 _________ > MT4j
== extends MT4j components
|
T
! [
s
} § = I
\ g Is \
< I3 |
| S Lo |
} S [ |
I g 1§ I
o i i I
| a 2 retrieves model data w.r.t perspective |
[}
} $ 13 I
I Controller g (= !
‘ |z v v
| o
A | @
| =
I 'e
} Controllers sends model r‘lnodification commands w.r.t perspective actions
I ! 1 persp > EMF.edit
|
I | I
I } !
I N —‘F ————————————————————————————— >
|
! i i CORE ! i
o | ! |
! | | ~ Perspective |
} } validates if actions permit edit Actions }
|
| |
! I ? I
|
| |
! \ \
| } Perspective }
|
| |
| T
| | |
! [ | !
| | T |
| ! I I
| ! | |
\ ‘ ! !
|
| e ‘ |
| Model | }
|
|
! v v
| Class Diagram
} Language | =0 @ éf-———-——————————— > EMF
} # generates ¢ generates Metamodel
| | Diagram .
| » ¢ as;lo dae? a Class Diagram
Interfaces < <<implements>> | Model Classes

Figure 5.1 — TouchCORE Application Architecture

The GUI is composed of multiple views that correspond to the modelling elements of the lan-
guage to display, for example, a ClassView specifies how to draw a class on the screen. These
views extend the MT4j visual components and use their interface to properly display model ele-
ments, they act as the language concrete syntax and decide the visual appearance of models created
in TouchCORE. Each view has a handler which is in charge of handling user inputs and application

events before parsing them to decode which language action they correspond to.

39




5.4 Building a Generic Modelling User Interface

These handlers then call the appropriate model controller to validate and execute the requested
model transformation. Controllers are built on top of the Model Edit code generated by EMF from
the language metamodel.

Both views, with their handlers, and controllers depend on the language model classes and
interfaces generated by EMF from the language metamodel. The classes and interfaces implement
the structure specified in the metamodel, or in other words the language’s abstract syntax. The
classes’ instances at runtime represent the model in our MVC architecture, once a model is saved
they are committed to persistent storage as XMI files.

This architecture did change when adapting it to the new CORE metamodel described in chap-
ter 3, that is, it now accesses perspectives and their actions for validation purposes. In order to
implement our vision of perspective actions as described in chapter 4, TouchCORE must only
modify models as specified by the exposed actions. To do so, we introduced validation checks at
the controllers, which query the CORE perspective for valid actions and only execute the model
transformation requested of them if it is allowed.

Similarly, views will query perspective actions to know which modelling elements to show in
the GUI, dynamically adjusting what the user sees. For instance, the class controller has a method
that can be called to verify if adding operations is allowed in the current perspective. Thus, the view
representing a class can call this method when it is being initialized and use its returned boolean
value to either display or not the operations area for a class. When a user interacts with this view,
it will also hide the button to add an operation if the controller method informs it that the current
perspective disallows creating operations.

5.4 Building a Generic Modelling User Interface

The most critical part in the adoption of a modelling tool has to do with its usability both in terms
of what you can do and how you can do it. Now that we support dynamically changing modelling
languages, we needed to rethink the Graphical User Interface (GUI) of TouchCORE to take this
into account. This is a challenge in itself as it goes beyond just defining what keywords to highlight
and how to do indentation in a text editor for a textual modelling language.

Our goal was to implement one single GUI for a language that is designed to automatically
adapt to a chosen perspective. The GUI should show only the views that are relevant to the per-
spective and only offer the user interactions allowed by the re-exposed perspective actions.

The first type of interactions we had to make adaptive relate to constructing models, i.e. the
gestures, buttons and menus that allow a user to create, edit or delete elements. A great example
of such an interaction is the ability to add operations to a class, which is allowed in the design
modelling perspective but disallowed in domain modelling perspective. We implemented at the

40



5.4 Building a Generic Modelling User Interface

model controllers level a verification interface that allows the views from the GUI to check if
certain actions are allowed or not in the current perspective. Because each perspective declares
a set of exposed language actions, we can easily verify if a specific action is allowed or not by
comparing this set to the default one from the external language. If the GUI already has all the
input elements for the language the perspective is built on, then it will now hide the ones that
correspond to non re-exposed language actions. In order to be compliant with our existing code
base, we implemented this verification as optional methods that can be called for most controller
methods that return a boolean informing of its enabled status. The controllers’ action verification
methods are then called by the different view handlers in our application to decide whether to show
specific buttons or react to specific inputs or gestures.

How a Perspective chooses to re-expose the language actions to foster or restrict specific use
cases will define the functionality provided and the resulting tailored GUI. However, some dif-
ferences between perspectives are more subtle than what their respective actions can capture. For
example, in domain modelling, the directionality of associations is irrelevant and thus the direc-
tion parameter used by the create association action needs to be set by default to bidirectional.
Consequently, in domain modelling the user cannot edit the direction of the association but they
should still be able to edit the role names and multiplicities of the association. This level of fine
granularity of the actions represents a challenge in the GUI as all these actions are by interacting
with an association end and a custom solution had to be implemented for this scenario.

The other area where the UI has to be adaptive is in how it displays models, which elements
or text fields should be drawn on the screen and which shouldn’t be for a given perspective. Good
examples of such elements in our case are the Class and Attribute visibility fields, which are rel-
evant as class diagram elements used for design modelling but irrelevant and hidden for domain
modelling. The hiding of visual representations is also implemented using verification methods
mapped to language actions at the model controllers that offer the graphical views the option to
query whether to show or hide an element. This visually achieves one of the important goals of
perspectives, showing the right information on a system at the right development phase.

Referring back to our online food delivery system example, we first devised a domain model us-
ing the TouchCORE domain modelling perspective, to capture only the important concepts needed.
The resulting domain model, shown in figure 4.2, displays only classes for these concepts and their
important attributes while operations, visibilities or other irrelevant elements are hidden by Touch-
CORE. Afterwards, a design model is built from that domain model and shown in figure 4.3, which
displays operations, appropriate visibilities, relevant enumerations and detailed directed associa-
tions.

41



Related Work

To the best of our knowledge, no prior research has focused specifically on augmenting existing
modelling languages with reuse features such as the ones offered by CORE’s reuse interfaces. In
the broader realm of MDE research, though, many other approaches have been proposed to either
provide modelling support with multiple languages or allow language designers to build languages
by using and adapting existing languages. In this chapter, we present the related approaches along
these two dimensions and compare them with our CORE based approach to highlight the differ-
ences.

6.1 Approaches to Multi-View Modelling
6.1.1 Single Underlying Model

Integrating together models in multiple languages to act as different views of a system like our
perspectives do can also be done by relying on one large comprehensive root model as a foundation.
A prominent example of this approach is the Orthographic Software Modelling (OSM) paradigm
proposed by Atkinson et al [6]. By creating a Single Underlying Model (SUM), expressed in
a custom metamodel, they aggregate all modelling elements together and can generate dynamic
views that act like our perspectives by selectively showing relevant elements. This underlying
model also allows embedding consistencies and invariant conditions that span across modelling
languages, one of the goals of our concept of perspective.

This direct approach, unfortunately, has issues when it comes to the evolution of the languages
involved which are all integrated into the single underlying metamodel, making changes difficult.
In comparison, our approach leaves the used languages separate by having the perspective only
refer to their metamodels and tailor allowed elements and language actions. OSM also does not
reuse existing languages and their established editors as everything must be built for the single
metamodel, inhibiting the modularity of the approach.

42



6.1 Approaches to Multi-View Modelling

To address these shortcomings, Meier and Winter propose to reuse existing models and their
metamodels and group them under their MoConseMI approach [23]. They form a SUM and its
metamodel by applying operators and transformations to both the initial models and metamodels
until they arrive at one model and its metamodel that contain everything from all models [22].
This keeps original models and metamodels intact and maintains consistency by back-propagating
changes as the operators and transformations are bidirectional, i.e., they can be executed in both
directions.

Our approach keeps existing languages and models unchanged and achieves consistency not
by propagating changes but instead exposing the appropriate language actions to the modeller
using a perspective. The models are typed by the referenced languages’ metamodels that remain
intact similarly to MoCenseMI, but since modelling is done through the perspective’s interface,
consistency is ensured.

6.1.2 Vitruvius

Building on OSM to improve it, Kramer et al. proposed the Vitruvius approach [19] to support
flexible views built on top of multiple models conforming to different metamodels. These existing
metamodels are brought together but they are not merged by creating a SUM from scratch, in-
stead, they are grouped together as a virtual SUM built in a pragmatic bottom-up fashion through
reuse. The metamodels are bound together through Consistency Preservation Rules (CPR) which
allow the enforcement of consistencies and invariant conditions by explicitly stating inter-language
dependencies.

These CPRs are enforced by three methods, correspondences, consistency rules and response
actions which are independent of the editors used for the original models and metamodels [22].
Correspondences specify one-to-one mappings between two model elements from the same or
differing metamodels. Consistency rules, on the other hand, offer a more advanced way to ensure
coherence through OCL statements. Finally, response actions group the updates to other models
that are triggered by changes in one model to restore consistency between mapped elements.

These methods to keep models consistent require time-consuming specification of mappings
and OCL statements by modellers with the required expertise to do so. In comparison, perspectives
allow maintaining consistency by simply exposing, hiding or combining straightforward language
actions, without writing lengthy and complex OCL expressions. Perspectives thus proactively pre-
vent modifications that break consistency by not allowing them altogether in the editor whereas
Vitruvius reuses the existing permissive editors.

43



6.2 Approaches for Reuse in Language Design

6.1.3 Facet-Oriented Modelling

Another approach exists that is even less intrusive and that intervenes at the modelling level rather
than the metamodelling one, through the use of modelling facets. Facet-Oriented modelling [9]
proposes a lightweight extension to metamodels that makes model objects open, allowing them to
acquire or drop facets. These facets would enrich the object by adding a type, slots and attributes as
well as constraints and they would be used dynamically through declared interfaces. Interactions
between facets are regulated by facet laws, which govern how facets are to be assigned to instances
of a metamodel.

The goal of facets is to be modular and non-intrusive allowing their addition to existing models
or metamodels as a purely additive layer without any dependency from the existing models. Facets
could be automatically assigned to instances of a language metamodel to tailor how they behave,
a facet can even be assigned to multiple objects through a pattern matching rule, to re-purpose
an existing model for instance. The facets enrich the object with slots and attributes that become
transparently accessible from the model object as if they were always part of it. The focus of the
paper is on the usage of typed facets at the model level although they could be used untyped at the
metamodel level.

The main advantage over other approaches is that facets leave original metamodels untouched,
allowing straightforward model evolution. This makes them similar to our perspectives and offers
comparable benefits in the long term maintenance and evolution of models and their metamodels.
Facets, on the other hand, don’t offer similarly strong consistency checks and enforcement in com-
parison. Since they are applied at the model level, they cannot span different modelling languages
like perspectives can to enforce coherence between them, nor can they dynamically tailor language
actions to proactively do so.

6.2 Approaches for Reuse in Language Design
6.2.1 COLD

The other contribution achieved by the new CORE lies in how the new perspectives make it sim-
ple to reuse an existing language by adapting it for a given purpose. Concern-oriented language
development (COLD) [8] was proposed with a similar objective, addressing DSL development
challenges by fostering reuse techniques at the language development phase. It introduces the con-
cept of a language concern as a reusable component of a language that offers the three CORE reuse
interfaces we mentioned earlier, namely the variability, customization and usage interfaces. COLD
first introduced the idea of lifting the concern software reuse techniques up to the meta-level to al-
low their use for facilitating DSL development by offering a library of reusable language concerns.

44



6.2 Approaches for Reuse in Language Design

It addressed a gap in the language research corpora where they were no reuse mechanisms at the
language level that adequately capture the variability of language modules.

Use cases for COLD would include the creation of new languages, the extension and evolution
of existing ones or the contribution to other languages through building modular language con-
cerns. A language designer might need to add a specific feature to an existing language without
breaking legacy support for their models, they could do this with the addition of a well-customized
language concern. Another designer might be interested in extracting a specific interesting feature
from an existing language and repackage it as a reusable concern for the benefit of other designers.

One of the goals that would enable the wide adoption of COLD is the creation of a vast library
of language concerns. Such a library would be a collection of reusable language concerns a lan-
guage designer would have access to, allowing him to compose more complex languages suited to
specific needs from simpler language modules.

Although COLD was developed as a theoretical framework, the authors were already foresee-
ing challenges on its path to adoption. It mainly relies on the process of language concernification
or defining pieces of a language as concerns. Unfortunately, the proper way of breaking down a
language is still an open issue and current strategies either break backwards model compatibil-
ity or require tremendous effort and fundamental changes to the language. Our approach offers a
stepping stone toward the realization of COLD’s goal by making it possible to take existing, fully
functional languages and quickly tailor them for a specific purpose. It doesn’t aim to solve the
issue of breaking down a language into reusable pieces as it assumes a suitable language to reuse
and adapt already exists.

6.2.2 Melange

Another approach focusing on improving the DSL design process by reusing and customizing
existing DSL artefacts is presented in Melange, a meta-language for modular and reusable devel-
opment of DSLs [10]. It uses typing relations to build a layer that allows reasoning about DSL
artefact manipulation to build more complex languages. Operators that allow extensions, restric-
tion and assembling different DSL artefacts are then defined on top of that layer. Extending existing
language artefacts boils down to inheriting them and adding new features to re-purpose legacy ele-
ments for contemporary usage. Restriction, also referred to as slicing, is an operator that focuses on
targeting a specific feature to extract from a legacy language while ignoring the rest. Assembling
or merging entails bringing together two independent languages in order to form a new one, this
combines their respective metamodels into a unified one.

The abstract syntax of the languages is represented by metamodels in Melange, similar to
our approach. The operational semantics, comparable to our language actions, are represented in
Melange as methods added to the metaclasses of the language metamodel. Merging two languages

45



6.2 Approaches for Reuse in Language Design

thus happens by weaving together their metamodels into a single composite one, including their
respective operational semantics.

Because Melange ends up with one single metamodel, challenges appear regarding the future
evolution of such languages just like with SUM approaches. Removing a woven language partially
or completely from the unified metamodel becomes a complex task that requires extensive knowl-
edge of the initial components and their metamodels. It is nonetheless needed as languages, over
time, evolve while others become deprecated, requiring constant updates to the single compos-
ite metamodel without extensive loss of compatibility with legacy models. Furthermore, using the
new composed metamodel first requires substantial efforts dedicated to adapting the corresponding
modelling tools and applications which all rely on its internal structure.

As of right now, perspectives can be used to allow a developer to tailor, specifically to restrict,
an existing modelling language in order for it to be used in isolation for a specific purpose. In
comparison, Melange offers the ability to create a single new language that brings together the
strengths of multiple different languages. Although more powerful, this approach is meant for
language designers conceiving large-scale languages meant for broad usage, perspectives offer
instead a faster more lightweight approach to fine-tune languages for a project. Furthermore, in the
long run, perspectives will grow to be able to combine multiple languages with an emphasis on
reuse, making them powerful language and design process creation tools.

6.2.3 Reuse in Collaborative Modelling

Modelling reuse is also considered critical in collaborative modelling environments, where mul-
tiple designers model simultaneously one large system and must be able to build on top of their
colleagues’ components across multiple languages. Academic investigations of the challenges in
collaborative modelling highlight the need for an environment flexible enough for designers from
diverse backgrounds to use different notations for their respective specializations while still being
able to collaborate and reuse each other’s work [2, 11].

In collaborative modeling, having a library of reusable models shared by all designers would
also help standardize the system’s components and avoid the lengthy process of starting from
scratch. As such, modelling languages and their environments need to have comprehensive reuse
mechanisms to facilitate their adoption in a collaborative setting [2].

An extension to the CORE framework has already been proposed to allow support for collab-
orative modelling of reusable concerns by relying version control systems [3]. Nonetheless, the
extension would not solve the initial limitation of CORE regarding it’s fixed set of predetermined
languages.

We believe that our approach can be applied to tackle some of the aforementioned lingering
challenges in the context of collaborative modelling. By opening CORE to any language, we make

46



6.2 Approaches for Reuse in Language Design

available its generic reuse capabilities to any potential mix of notations that designers would use in
a collaborative environment. And with perspectives, we offer a tool that can tailor languages to suit
diverse needs and expertises. Although currently TouchCORE only allows collaboration over one
large touchscreen, a web interface is being developed to allow remote collaboration of different
designers working together in their respective languages or perspectives on the same project.

47



Conclusion & Future Work

In order for the Model-Driven Engineering methodology to efficiently tackle the costly complexity
issues many software companies reach it requires powerful tools that best harness its benefits. One
of the most important of those benefits is methodical reuse at the modelling level to avoid labo-
riously creating from scratch common and recurring components and patterns. Fostering intuitive
reuse habits that build on top of existing modelling languages through proper tools and frameworks
is thus critical to alleviating substantial superfluous effort and cost expenditures. Such reuse prac-
tices must be seamlessly embedded in the languages themselves in order to be consistently adopted
and used. Our contribution to achieving this was the definition and implementation of a modelling
framework that uses existing modelling language improving them with the powerful three-pronged
reusability interface of CORE.

Furthermore, to provide appropriate expressiveness at the right abstraction level while main-
taining critical separation of concerns, MDE greatly benefits from tailored and efficient language
development. Specifically, the ability to create easy to learn, reliable, reusable and expressive DSLs
fine-tuned for a project or system with minimal efforts can greatly improve development. We ad-
dress this need with the introduction of Perspectives as a lightweight approach for quickly tailoring
languages for a specific purpose.

These contributions were materialized in the CORE metamodel allowing us to implement them
in TouchCORE, the modelling tool that showcases CORE’s capabilities.

The specific research contributions we bring to the edification of an improved modelling ecosys-
tem can be summarized as follows. CORE now has a full-fledged language support structure that
offers a foundation layer for a future language ecosystem. Whereas it had a limited set of built-in
languages previously, the CORE metamodel has been restructured to be separate of languages,
which are modules it can load. The languages supported by CORE are specified using metamodels
for their abstract syntax as well as with our new concept of language actions for their semantics.
The new notion of perspective offers a whole new tool to tailor or combine languages without

48



7.1 Future Work

altering the original metamodels and still supporting existing models.

All of these concepts have been validated through a proof-of-concept implementation in the
TouchCORE application, where concrete models can be built using our language actions. To the
best of your knowledge, TouchCORE is the first modelling tool with a user interface that can adapt
dynamically to support newly defined languages using their actions. It was also designed to make
challenging modelling editing actions as easy and intuitive as possible, and as such, it excels as a
tool for teaching modelling to undergraduate students.

Thus CORE, with its new multi-language support and perspective enabled specialization abil-
ities, stands as a powerful MDE framework supported by a robust modelling application. It rep-
resents a promising first step towards the wide adoption of reuse as languages can now take full
advantage of CORE’s variability, customization and usage interfaces.

7.1 Future Work

Designing new Languages for CORE. Going ahead, we aim for CORE to become an even more
robust multi-language framework that offers a vast library of languages and perspectives. Stand-
alone languages, such as use cases, state diagrams, and use case maps, are currently being designed
that can integrate seamlessly into CORE to express new modelling concepts.

Harnessing Perspectives for Model Navigation. The next goal for Perspectives, on the other
hand, is to harness the access they have to the language inner structure in order to provide an
adaptable language-agnostic way of navigating models. A dynamic navigation bar could use the
perspective actions to filter specific model elements or offer an option to toggle them in and out
of view in a model editor like TouchCORE. Interactions between perspectives are also a matter of
interest, they could further be combined and have complex dependencies and interactions to allow
navigating to related elements in other languages or perspectives.

Extending into Multi-Language Perspectives. Future research will also be devoted to mak-
ing perspectives able to combine multiple languages and more specifically allow the creation of
complex perspective actions that combine multiple actions from different languages. Perspectives
could then become powerful language combination tools capable of consolidating a whole design
methodology into one reusable coherent unit that can be used just like a single language. The result-
ing CORE ecosystem would then contain various software modelling concerns, language concerns
and perspective concerns all compatible and coherent together. It would offer developers access to
a vast library containing exactly what fits the needs of their development process and would foster
widespread reuse at all levels.

49



7.1 Future Work

Realizing Concern-Oriented Language Design. Ultimately, to realize goals set by theoretical
approaches like COLD, CORE would need to load languages and then decompose and concernify
them in modular units. A language designer could then seamlessly open languages like any concern
software model and use its feature diagram to customize them or create a new one reusing the best
features of existing languages. The whole language design process would happen in CORE and
the resulting language metamodel would be created directly alongside the language actions.

50



[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Bibliography

Omar Alam. Concern driven software development. CEUR Workshop Proceedings,
1115:106-111, 2013. 2.4

Omar Alam, Jonathan Corley, Constantin Masson, and Eugene Syriani. Challenges for
reuse in collaborative modeling environments. CEUR Workshop Proceedings, 2245:277—
283,2018. 6.2.3

Omar Alam, Vasco Sousa, and Eugene Syriani. Towards collaborative modeling using a
concern-driven version control system. CEUR Workshop Proceedings, 2019:155-163, 2017.
6.2.3

Hyacinth Ali, Gunter Mussbacher, and Jorg Kienzle. Towards Modular Combination and
Reuse of Languages with Perspectives. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C), pages 387—
394. IEEE, sep 2019. 3.3

Erik Arisholm, Lionel C. Briand, Siw Elisabeth Hove, and Yvan Labiche. The impact of
UML documentation on software maintenance: An experimental evaluation. /[EEE Transac-
tions on Software Engineering, 32(6):365-381, 2006. 1.2

Colin Atkinson, Dietmar Stoll, and Philipp Bostan. Orthographic Software Modeling: A
Practical Approach to View-Based Development. In Communications in Computer and In-
Sformation Science, volume 69 CCIS, pages 206-219. 2010. 6.1.1

Andria Cheng. Millennials Are Ordering More Food Delivery, But Are They Killing The
Kitchen, Too?, 2018. 4.3.1

Benoit Combemale, Jorg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, Walter
Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich, Jean-Marc Jézéquel, Manuel
Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias Schottle, Misha Strittmatter, and An-
dreas Wortmann. Concern-oriented language development (COLD): Fostering reuse in lan-
guage engineering. Computer Languages, Systems & Structures, 54:139-155, dec 2018. 6.2.1

51



BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Juan de Lara, Esther Guerra, Jorg Kienzle, and Yanis Hattab. Facet-oriented modelling open
objects for model-driven engineering. In SLE 2018 - Proceedings of the 11th ACM SIGPLAN
International Conference on Software Language Engineering, co-located with SPLASH 2018,
2018. 6.1.3

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean Marc
Jézéquel. Melange: A meta-language for modular and reusable development of DSLs. SLE
2015 - Proceedings of the 2015 ACM SIGPLAN International Conference on Software Lan-
guage Engineering, pages 25-36, 2015. 6.2.2

Davide Di Ruscio, Mirco Franzago, Ivano Malavolta, and Henry Muccini. Envisioning the
Future of Collaborative Model-Driven Software Engineering. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Companion (ICSE-C), pages 219-221. IEEE,
may 2017. 6.2.3

Fraunhofer-Institute for Industrial Engineering. MT4; - an open framework to create visually
rich 2D/3D multi-touch applications, dec 2019. 5.1.2

Kirill Fakhroutdinov. UML Class and Object Diagrams Overview - common types of UML
structure diagrams. 4.1

Miguel Gamboa and Eugene Syriani. Improving user productivity in modeling tools by ex-
plicitly modeling workflows. Software & Systems Modeling, 18(4):2441-2463, aug 2019.
2.3

Richard Gronback. Eclipse Modeling Project | The Eclipse Foundation, 2019. 5.1.1

B. Harel, D., and Rumpe. Meaningful Modeling : What > s the Semantics Much confu-
sion surrounds the proper definition of complex modeling. Computer Journal, 37(10):64-72,
2004. 3.1.2

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Domain-Specific Languages in
Practice: A User Study on the Success Factors. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 5795 LNCS, pages 423—437. Springer Publishing, 2009. 1.2

Grady Booch James Rumbaugh, Ivar Jacobson. The Unified Modeling Language Reference
Manual Second Edition. Addison-Wesley, 2004. 4.1

52



BIBLIOGRAPHY

[19] Max E. Kramer, Erik Burger, and Michael Langhammer. View-centric engineering with syn-
chronized heterogeneous models. In Proceedings of the 1st Workshop on View-Based, Aspect-
Oriented and Orthographic Software Modelling - VAO 13, pages 1-6, New York, New York,
USA, 2013. ACM Press. 6.1.2

[20] Thomas Kiihne. Matters of (meta-) modeling. Software and Systems Modeling, 2006. 2.2,
2.2

[21] 2019 vogella GmbH Lars Vogel (c) 2007. Eclipse Modeling Framework (EMF) - Tutorial,
dec 2019. 5.1.1

[22] Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf Reussner,
and Andreas Winter. Single Underlying Models for Projectional, Multi-View Environments.
In Proceedings of the 7th International Conference on Model-Driven Engineering and Soft-
ware Development, pages 119-130. SCITEPRESS - Science and Technology Publications,
2019. 6.1.1,6.1.2

[23] Johannes Meier and Andreas Winter. Model consistency ensured by metamodel integration.
In CEUR Workshop Proceedings, volume 2245, pages 408—415, 2018. 6.1.1

[24] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316-344, dec 2005. 2.3

[25] Omg. UML 2.4.1 Specification. October, 2010. 4.1

[26] Ayushi Rastogi, Suresh Thummalapenta, Thomas Zimmermann, Nachiappan Nagappan, and
Jacek Czerwonka. Ramp-Up Journey of New Hires: Tug of War of AIDS and Impediments.
In International Symposium on Empirical Software Engineering and Measurement, 2015. 1.1

[27] Alberto Rodrigues da Silva. Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems & Structures, 43:139-155, oct 2015. 3.1.2

[28] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39(2):25—
31, feb 2006. 1.1, 2.1, 2.3

[29] Matthias Schottle, Omar Alam, Jorg Kienzle, and Gunter Mussbacher. On the modularization
provided by concern-oriented reuse. In Companion Proceedings of the 15th International
Conference on Modularity - MODULARITY Companion 2016, pages 184—189, New York,
New York, USA, 2016. ACM Press. 2.4,2.4.1

53



54

A

CORE Metamodel



[epoweIRA R[dwo) FYOD — 'V 2In31g

CORE Metamodel

suonnguuoo [,0]
sinokel "0 aniea 1] anje [14] 00=1e0143 :
1021903 : Aox 2, 1001903 : Aoy ;) 0°0=1e0j33: X
w3 : whismannejas depyieurejuoginoke [ depyinoe 5 juswa|Finoke
uoINqUIUODIHOO B
japoioeduwy [}
BubBino [,-0] 19PN v Lol
Buwgouy o] | PPONIOPALIZHOO B
w3,
— - Agpezijeas 0] sezieal [, 0]
apoNIoedw|aINEe3HOO H sousos [L-0] seppioxe [,0
sjoedu
UI9U0D sauros [11] auoN = Emw.ma [0l
adk 01 [1L1]
- hysuoy 09 =
= : diysuonejoyiuared
0°0=180133 : 19510 1, v py—
0°0 = 180]43 : Jojoebuleds 1 Lol S3HO0 B 7 43400 § sainjesy [,0] [9PONRINIESITHOD F
1[.0]
spoNpedw|I”OD [ 1153 T UOISUSIXEON & 100105 [, 0]
aua0s [10] ' Lol
u180U00 Bumisy : [D1oneaM 3 .0
algnd - Buis3 : Aojoeqiedepe 1
- Buiig3 : Aiojoegeoinosal X
PEEER Bumis3 : NSy 1apowainieay [111]
HO - ebenbue13400 [
HOX - 10lqo3 |
Kiorepuepy - : Juawalzepow T |
Jeuondo - Buus3 : euweu euou = 101903 |, | / .
auoN - I =3ui3 : punogieddn edALAueIBdIHOO = © enoadsiad [1+0] UONJE [,70] uonoy
odAL 0=1uI3 1 PUNogIaMo] x, Buins3 : abenbue| BupiSa : xyodaly - anposdsisgon B
diysuopEIOHRINERIIHOO Aueuipreobuidde3H00 F 10BJoLIV[EUIBIXITHOO F anpoadsiedIHOD £ Ueauookieiodws: [10]
syurpelBiom 0] Aueuipreneouaisel 0] L
c U120U0DIHOD
R T N
Buddew [,0] wisouogpesnal[11]
sy Aeiodwbr [.-0]
sioejepe [,0]
1elqo3 in (0] — I80U092109 [1°]1]
13 WBlem 1, : 00 B, L\ L
4 swgjane [
WUrPeBIoMIHOD F 7 i budden3HO0 £ | L WeWeI3INIHOO & \ﬁ
%ozsgs\mfoo «L puig» i 1 <L pug» ) sesney [0l
sBuiddepypaousiaydi [, 0] sasnayjopow [, 0]
L0l B / sasnol/[.70f
L:woy e
L1100 g J # [ [ esmeumoo
HUITIHOO U0ISUBIXTIPPONIHOD [ 7 7 8SNHIGPONIHOO £ oy spua [T
Opulpuepe [,
- i sl -
wouy 11 t - HPapup}a [1°0]
1 <L puig> [
22unos [11]

Dlusuws|3j8pPONIHOO

uopsodwo

-

Lol

uonsodwoDIBPONIHOD [,

Bug3 : aweu 1,

UBWaIIPBWENIHOD F,

55



	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problematic
	Motivation
	Contributions
	Thesis Outline

	Background
	Model-Driven Engineering
	Metamodelling
	Domain-Specific Languages
	CORE
	Concern Reuse Process


	CORE Languages and Perspectives
	CORE Languages
	Previous CORE Metamodel
	The New Concept of CORE Language
	Redesigned CORE Metamodel

	Perspectives
	Single-Language Perspective as DSL
	Integrating Perspectives into the CORE Metamodel
	Towards Multi-Language Perspectives

	Using Languages and Perspectives

	Perspectives in Action
	Class Diagram Language
	Class Diagram Implementation
	Metamodel
	Language Actions

	Domain Modelling Perspective
	Illustrating Example

	Design Modelling Perspective
	Design Example


	Modelling Tool Implementation
	Technology Stack
	Eclipse Modelling Framework
	Multitouch for Java

	Language Registry
	TouchCORE Architecture Changes
	Building a Generic Modelling User Interface

	Related Work
	Approaches to Multi-View Modelling
	Single Underlying Model
	Vitruvius
	Facet-Oriented Modelling

	Approaches for Reuse in Language Design
	COLD
	Melange
	Reuse in Collaborative Modelling


	Conclusion & Future Work
	Future Work

	Bibliography
	CORE Metamodel

