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ABSTRACT 

This thesis presents methods and practical implementations for compensating or sup­

pressing signal distortions induced by fiber nonlinearity in long-distance transmis­

sions. Our methods take advantage of the availability and already wide deployment 

of dispersion-compensating fibers with various choices of dispersions and dispersion 

slopes. The basic principle behind the methods is to choose suitable fibers and to 

arrange them properly into transmission lines manifesting scaled symmetries. Based 

on the nonlinear Schr6dinger equation which describes the nonlinear and dispersive 

signal propagation in optical fibers, we have shown analytically that a scaled symme­

try renders the nonlinear signal distortion by the first part of a transmission line to 

be largely undone by the second part, when an optical phase conjugator is installed 

in the middle of the line. Without a phase conjugator, the most detrimental nonlin­

ear interactions among pulses within a wavelength channel may be significantly sup­

pressed in a scaled symmetric line. We have identified two types of scaled symmetries: 

mirror and translation. Although mirror-symmetric systems have been discussed by 

other authors before, our own proposaIs and designs using high-dispersion fibers in 

conjunction with distributive Raman or erbium-doped amplification could make prac­

tical transmission systems manifesting nearly perfect mirror symmetries in the scaled 

sense and hence excellent nonlinear compensations. Firstly noted and investigated 

thoroughly by us, the concept of scaled translation symmetries in transmission lines 

may weIl spur the adoption of nonlinear compensation methods in practical trans­

mission systems, since distributive ampli fiers are no longer necessary for translation 

symmetries. To support our mathematical analyses, extensive computer simulations 

have been carried out to validate the effectiveness of our proposed systems, most of 

which assume practical system setups and parameters and could therefore serve as 

paradigms for real system designs. 
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RÉSUMÉ 

Méthodes et réalisations pratiques pour compenser ou supprimer des déformations de 

signal induites par la non-linéarité de fibre dans les transmissions de longue distance 

sont présentés dans cette thèse. Nos méthodes se réalisent pour la disponibilité et le 

déploiement des fibres dispersion-compensatrices ayant une variété de dispersions et 

de pentes de dispersion. Le principe de base derrière ces méthodes est de choisir les 

fibres appropriées et de les arranger de manière exacte en lignes de transmission man­

ifestant des symétries mesurées. Basé sur l'équation de Schrodinger non-linéaire qui 

décrit la propagation non-linéaire et dispersive de signal dans les fibres optiques, nous 

avons démontrée de manière analytique qu'une symétrie mesurée rend la déformation 

non-linéaire de signal de la première partie d'une ligne de transmission d'être annulé 

en grande partie par la deuxième partie, quand un conjugateur optique de phase est 

installé au centre de la ligne. Sans conjugateur de phase, les interactions non-linéaires 

les plus nuisibles parmi des impulsions dans un canal de longueur d'onde peuvent 

être sensiblement supprimées dans une ligne symétrique mesurée. Nous avons iden­

tifié deux types de symétries mesurées: miroir et traduction. Bien que des systèmes 

miroir-symétriques sont déjà discutés par différents auteurs, nos propositions et con­

ceptions utilisant des fibres de haut dispersion en même temps que Raman distributif 

ou amplification dopée à l'erbium pourraient faire les systèmes pratiques de trans­

mission manifestant des symétries de miroir presque parfaites dans le sens mesuré 

et par conséquence les excellentes compensations non-linéaires. Nous étions les pre­

miers à observer et investiguer à fond le concept de symétries mesurées de traduction 

dans des lignes de transmission qui peut causer l'adoption des méthodes non-linéaires 

de compensation dans les systèmes pratiques de transmission, puisque les amplifi­

cateurs distributifs ne sont plus nécessaires pour des symétries de traduction. Pour 

prouver nos analyses mathématiques, des simulations extensives sur ordinateur ont 

été effectuées pour valider l'efficacité de nos systèmes proposés. Ces systèmes as­

sument des installations et des paramètres pratiques de système et pourraient donc 

fonctionner comme paradigmes pour des conceptions de systèmes actuels. 
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1 

INTRODUCTION AND STATEMENT OF ORIGINALITY 

1.1 Introduction 

The capability of transmitting high-power optical signaIs over long-distances with 

little distortion is an essential element to the realization of high-capacity optical net­

works that are widely connected over long distances (thousands of kilometers) and 

switched in most places by all-optical means. However, group-velo city dispersion 

(GVD) and optical nonlinearity impose limits to the transmission distance, or more 

precisely, the product of data capacity and transmission distance [1, 2]. Coming 

from the material dispersion and the nonlinear dependence of waveguide propagation 

constant on the signal frequency, fiber GVD leads to different group-velocities for 

different frequency components of a signal pulse, and eventually pulse broadening 

and chirping [1]. The problem of GVD has basically been solved by the development 

of dispersion-compensating fibers (DCFs) with oppositely signed dispersions to offset 

the dispersion effects of transmission fibers over a wide frequency band. The most 

advanced DCFs are even capable of slope-matching compensation, namely, compen­

sating the dispersion and the dispersion slope of the transmission fibers simultaneously 

[3, 4]. A fiber-optic transmission line is a nonlinear channel because of the nonlinear 

response of glass materials to signal electric fields, namely, the nonlinear dependence 

of the induced electric polarization to external excitations [5, 6]. In state-of-the-art 

transmission systems, single-mode fibers may carry tens even more wavelength chan­

nels, each wavelength carries ~1O Gb/s worth of data with over mW optical power, 

and the signaIs may travel sever al thousands of kilometers in the fibers. The opti­

cal nonlinearity of fibers becomes significant with such long transmission distance at 

such high data rate. Indeed, fiber nonlinearity has become one of the major limiting 

1 
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factors in practical transmission systems. Unlike the GVD effect, fiber nonlinearity 

is a much more difficult problem to overcome, because oppositely signed nonlinearity 

is not readily found in natural waveguide materials. That is, there exists no long 

waveguide with opposite nonlinearity to compensate that of a transmission fiber. 

Fortunately, the use of optical phase conjugation (Ope) makes it possible for one 

fiber to compensate the dispersion as weIl as the nonlinearity of another transmission 

fiber [7, 8]. The basic principle is that ope enables one fiber transmission line to 

propagate inversely (thus to restore) an optical signal that is dispersively and nonlin­

early distorted by the other, when the two fiber lines are mirror-symmetric about the 

ope. However, a strict mirror symmetry is rather difficult to realize in practice, as it 

requires opposite loss/gain coefficients for each pair of fiber segments in conjugation. 

In other words, it takes an unusual amplifying waveguide to compensate a conven­

tional fiber with loss. Although amplifying fibers are obtainable through distributed 

Raman pumping [9] or distributed Er-doped fiber amplifiers (EDFAs) [10], the loss 

of pump power makes it difficult to maintain a constant gain over an extended fiber 

length. This difficulty may seriously undermine the effectiveness of nonlinearity com­

pensation in mirror-symmetric systems. We have noted and emphasized the impor­

tance of scaled mirror symmetry (8M8), in particular, the significance and feasibility 

of scaling the dispersion slopes of fibers together with their dispersions, loss/gain and 

nonlinear coefficients [11, 12, 13]. We have shown analytically and verified with com­

puter simulations that practical transmission systems using commercially available 

fibers may be arranged into nearly perfect mirror symmetries in the scaled sense and 

hence enjoy excellent nonlinear compensations. 

A more interesting discovery made by us is that nonlinearity compensation is also 

possible in a transmission system manifesting a translation symmetry in the scaled 

sense [12, 13]. Better yet, we have demonstrated that scaled translation symme­

try (8TS) and ope enable simultaneous compensations of fiber nonlinearities and 

dispersions up to the third-order in dispersion-managed fiber transmission lines em­

ploying slope-compensating fibers [14]. One great advantage of using STS is that a 

pair of conjugating fiber segments are required to have the same sign for the loss/gain 

coefficients, opposite second-order dispersions, and the same sign for the third-order 
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dispersions. Such conditions are naturally satisfied, at least approximately, in conven­

tional fiber transmission systems, where, for example, a standard single-mode fiber 

(SMF) may be paired with a DCF as conjugating counterparts. Another discovery of 

ours is the capability of STS, as weIl as SMS, to suppress the intra-channel nonlinear 

effects even in the absence of OPC [15]. We are able to explain such suppression of 

intra-channel nonlinearities by a unified theory, which uses rather simple mathemat­

ical derivations and points to the heart of the physical mechanism. 

1.2 Previous Methods for Suppressing Nonlinear Signal 

Distortions 

It has been known for sorne time that the nonlinearity of one fiber line may be com­

pensated by that of another with the help of OPC. However, previous demonstrations 

and proposaIs [8, 16, 17, 18, 19, 20] do or would perform unsatisfiably in suppressing 

fiber nonlinearities. They either are tailored to work on only one special aspect of 

the nonlinear effects, or fail to cope with the dispersion slope and even higher-order 

dispersion effects. In reference [8], it is proposed that OPC may be employed in the 

middle of a long transmission line, not only to compensate the fiber dispersion, but 

also to cancel the integrated self-phase modulation (SPM) in the transmission fibers 

on the two sides of OPC. Then reference [16], among others, demonstrates experi­

mentally the compensation of dispersion and integrated SPM using OPC. However, 

signal distortions induced by fiber nonlinearities are distributive in nature, due to 

the interplay between the fiber dispersion and the Kerr (and Raman) nonlineari­

ties. Compensating the integrated SPM merely removes the path-averaged nonlinear 

effects within a single wavelength channel, and the removal of such path-averaged 

nonlinearities represents a rather limited improvement. In reference [17], a lumped 

nonlinear compensator is proposed using a specially designed fiber consisting of many 

segments. The method achieves better suppression to the SPM impairments, but it 

fails to take account of the effect of higher-order dispersions, in particular the disper­

sion slope. Consequently, the method would not work with high-capacity wavelength­

division multiplexing (WDM) systems. The proposed nonlinear compensator is an 

integrated device installed at either the transmission or the receiving end of a point-
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to-point link, which has to be tailor-made for the specifie transmission line. The 

result is a lack of flexibility: an installed nonlinear compensator may cease to work 

when the corresponding transmission line is alteredj it may be prohibitively costly 

and labor-intensive to design and optimize a special nonlinear compensator for each 

transmission line. Moreover, an opticallumped nonlinear compensator may be diffi­

cult to fabricate, as it requires many fiber segments spliced together to approximate 

the distributive dispersions and nonlinearities in the transmission fibers. Ironically, 

due to the other uncooperative aspect of optical nonlinearity, it becomes a challenge 

to generate enough nonlinearities in a lumped nonlinear compensator using short seg­

ments of fibers. In accordance with the periodic power map in a transmission line, 

a lumped nonlinear compensator may need many optical amplifiers between its fiber 

segments, or the fiber segments have to be with changing dispersions or nonlinear 

coefficients. Neither condition is readily fulfilled with even today's technology. In­

deed, it has only been possible to apply and test the proposaI to transmission systems 

using dispersion-shifted fibers (DSFs), and still the method only compensates Kerr 

nonlinearities in the path-averaged sense [17, 18]. Reference [19] suggests to com­

pensate the stimulated Raman scattering (SRS) effect using spectral inversion, i. e. 

OPC, which again, is a compensation method based upon path average. The dis­

tributive nature of fiber nonlinearity defies once more such scheme of path-averaged 

compensation. Indeed, the proposed method of SRS compensation is severely limited 

by the pulse walk-off under an asymmetric profile of signal power about the spectral 

inverter [21]. Finally, the experimental demonstration reported in [20] represents the 

state-of-the-art of nonlinearity compensation using mirror symmetries. The experi­

ment tries to make a fiber line symmetric about the point of OPC. In particular, it 

uses backward Raman pumping to approximate a symmetric power map. The paper 

reported evidences of suppressed four-wave mixing (FWM) , SPM, and cross-phase 

modulation (XPM) individually, only within a narrow system bandwidth. However, 

the Raman pumped fibers are the same as the transmission fibers, which are of­

ten too long for the Raman pump power to stay at a useful level so to maintain 

a constant gain. In other words, it is difficult to achieve a symmetric power map 

by Raman-pumping transmission fibers. Furthermore, higher-order dispersions are 
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not compensated by ope, which could turn into a significant limitation in systems 

with wider bandwidths. Originally unnoticed by us, but brought into our attention 

by a manuscript reviewer during the pro cess of our work being published, Marhic 

et al. in reference [22] noted that two fibers having opposite dispersions and with 

ope in the middle may compensate each other's Kerr nonlinear effects. That may 

be the first attempt of nonlinear compensation using ope and fibers with opposite 

dispersions that does not require mirror-symmetric power maps. However, Marhic 

et al. 's analysis was restricted to FWM and XPM in two fiber spans with ope in 

the middle, and overlooked the effect of dispersion-slope as weIl as the importance 

of scaling fiber dispersions and nonlinearities. Their proposaI did not address the 

practical question of how to optimally design a multi-span transmission line for best 

nonlinear compensations. Furthermore, the assumed pairs of fibers with the same loss 

and nonlinear coefficients but exactly opposite dispersions are not commonly found 

in practical transmission systems. 

1.3 Our Solutions and Similar Schemes of Others 

To overcome the difficulties that have plagued previous schemes, we have proposed 

methods of nonlinear compensations using scaled symmetries [11, 12, 13, 14, 15]. 

BasicaIly, our methods suggest to use recently available specialty fibers with high 

dispersion (HD) values such that a shorter piece of specialty fiber may compensate a 

long transmission fiber. The dispersion, dispersion slope or higher order-dispersions 

of the specialty fiber are set in proportion to those of the transmission fiber, and for 

a mirror symmetry in the scaled sense the specialty fiber may be erbium-doped or 

Raman pumped to have a gain coefficient proportional to the loss of the transmission 

fiber. We have shown both analytically and through computer simulations that in the 

presence of ope and SMS, an HD fiber could reverse the dispersive and nonlinear 

signal propagation in a transmission fiber and vice versa. A distinctive feature of 

our proposaIs is that the mathematical derivations are always made as general as 

possible, while the physical implementations are restricted to using fiber components 

and technologies that are either already commercially available, practically instaIled, 

or at least becoming available soon, namely, the proposed implementations are kept 
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as close as possible to practice. 

Along the same line of thought, we have researched and discovered the possibil­

ity of nonlinear compensations using OPC in a transmission system manifesting a 

translation symmetry in the scaled sense [12, 13, 14], which no longer requires an am­

plifying fiber as conjugate to each lossy transmission fiber. One advantage of using 

STS is to eliminate the necessity of distributive amplification, so that the methods of 

nonlinear compensations are directly applicable to conventional transmission systems 

consisting of transmission fibers and DCFs. We have also discovered the capability 

of STS, as well as SMS, to suppress the nonlinear effects due to the overlap of dis­

persed pulses within a single wavelength channel, even in the absence of OPC [15]. 

Independent of and no earlier than our investigations, Kaewplung et al. proposed 

an OPC-based method for simultaneous suppression of dispersion-slope and sideband 

instability induced by Kerr nonlinearity in single-channel transmissions [23]. Their 

proposaI considered transmission systems using SMFs and the so-called reverse dis­

persion fibers (RDFs) who se dispersion value is approximately -17 ps/nm/km at 

1550 nm (close to the exact opposite of that of the SMFs) , and suggested using 

two types of spans with SMFs and RDFs differently ordered on the two sides of 

OPC respectively. In a theoretical analysis [24] and an experimental demonstration 

[25], Chowdhury et al. studied the suppression of intra-channel nonlinearities using 

OPC in the middle of conventionally configured transmission systems in the so-called 

pseudo-linear regime. In the direction of compensating intra-channel nonlinearities 

without OPC, Striegler and Schmauss discussed a "symmetric fiber link" consisting 

of two types of fiber spans using SMFs and RDFs, one type having an SMF fol­

lowed by an RDF while the other having an RDF before an SMF [26]. They also 

proposed a method of fiber-based compensation of timing jitter due to intra-channel 

XPM, using an extra DCF module and a fiber Bragg grating (FBG) [26, 27]. AlI 

references [23, 24, 25, 26, 27] noted the possibility of reducing nonlinear penalties 

even in systems without a mirror-symmetric power map, using either what is dubbed 

"symmetric dispersion maps" , or OPC in the middle, or both. However, none of these 

contributions has achieved sufficient generality and obtained the optimal while prac­

tical parameter settings for best nonlinear compensations in their discussed systems. 
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The discussion in reference [23] was limited to a single-channel system, considered 

only the suppression of sideband instability as an intra-channel nonlinear effect, and 

did not recognize the importance of scaling the nonlinearity (especially the signal 

power) in different fibers. References [24, 25] did not configure the transmission sys­

tems according to and then take advantage of the STS to improve the performance of 

OPC-based nonlinear compensations. References [26, 27] too, failed to configure the 

transmission systems in compliance with the scaling rules for an STS to the fullest 

extent. In particular, the signal power in fibers is not carefully adjusted according 

to the scaling rules. The suppression of intra-channel nonlinearities is not optimal 

as a consequence. Indeed, the sub-optimality of the system configuration may be re­

sponsible for the finding that the condition for best compensation of amplitude jitter 

differs from that for optimal compensation of timing jitter [26]. Also without using 

OPC, there have been proposaIs for suppressing amplitude and timing jitters due to 

intra-channel nonlinearities in Raman-pumped transmission lines manifesting a loss­

less or mirror-symmetric map of signal power [28, 29]. However, the loss of pump 

power makes it difficult to maintain a constant gain in a long transmission fiber, and 

the significant deviation of signal power map from a desired mirror-symmetric profile 

degrades the result of intra-channel nonlinear compensations [30]. 

1.4 Originality and Contributions 

As mentioned in the introduction section, this thesis concerns problems of nonlinear 

signal propagation in fiber-optic transmission lines and methods of compensating non­

linear distortions to optical signaIs so to increase the transmission distance or system 

capacity. Listed below are sorne of the published and to be published contributions 

as results of this thesis research. 

1) Ref. [13] carefully re-derived the nonlinear Schrodinger equation (NLSE) from 

the first principles, retaining the mathematical exactitude down to details; justified 

each approximation and discussed the scope of its applicability; 

2) Refs. [11, 12, 13] proposed methods of compensating fiber nonlinearities using 

ope and scaled mirror-symmetric configurations of fiber transmission lines; tested the 

methods using computer simulations for systems using negative nonzero dispersion-
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shifted fibers (NZDSFs) and DCFs with high negative dispersions; 

3) Ref. [14] proposed methods of compensating fiber nonlinearities using OPC 

and scaled translation-symmetric configurations of fiber transmission lines; tested 

the methods using computer simulations for several practical systems using deployed 

or commercially available transmission fibers and DCFs; 

4) Ref. [15] proposed and computer-simulated methods of compensating nonlinear 

distortions to signaIs within a single wavelength channel by using STS without OPC; 

5) Ref. [31] proposed and tested methods of using mid-way SPM to suppress 

the generation of "ghost pulses" in scaled symmetric systems without OPC, where 

ghost pulses are generated through intra-channel nonlinear interactions that are not 

suppressed by scaled symmetries; 

6) Ref. [32] proposed and tested methods of packaging DCFs to optimally com­

pensate the nonlinear effects of transmission fibers and to minimize the signalloss at 

the same time (such method should be weIl suited for translation-symmetric systems 

using lumped dispersion-compensating modules (DCMs), with or without OPC); 

7) Generalized the methods of nonlinearity compensation using scaled symmetries 

to "one-for-many" configurations, where a transmission line may consist of two (or 

more) types of fiber spans, one type has stronger nonlinearity and the other weaker, 

each span of st ronger nonlinearity compensates multiple spans of weaker nonlinearity; 

an article on such generalization has been submitted for journal publication [33]; 

8) Analyzed the effect of random fiber birefringence on the effectiveness of nonlin­

ear compensations using a method of orthogonal projection of nonlinearly generated 

fields onto the Jones vectors of unperturbed signal fields; our analysis confirms the ef­

fectiveness of distributed nonlinear compensations under stochastic polarization vari­

ations in practical transmission lines using non-polarization-maintaining (non-PM) 

fibers, so long as the time spread due to polarization mode dispersion (PMD) is kept 

small comparing to the width of signal pulses; a short paper on such method of 

orthogonal projection and applications is in preparation for journal publication [34]. 
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1.5 Outline of Thesis 

The main body of this thesis is organized into three parts. Part l, Motivation and 

Preparation: The Physics and Mathematics of Fiber Nonlinearity, discusses the basic 

physics and mathematical formulations of fiber nonlinearity. Part II. Theory: Scaled 

Symmetries and Nonlinear Compensations, presents theoretical derivations for nonlin­

ear compensations using mirror and translation symmetries in the scaled sense. Part 

III, Practice: Applications, Implementations, and Verifications, describes practical 

implementations of scaled symmetric transmission systems for nonlinear compensa­

tions, verifies the system implementations by numerical simulations, and discusses 

practical realizations of optical phase conjugators as weIl as optimal packaging of 

DCMs. 

Part l consists of Chapters 2 and 3. Chapter 2 discusses the basic physics of fiber 

nonlinearity and its manifestations, and explains from an engineering point of view 

how optical nonlinearity in fibers could become a limiting factor to the design and 

performance of transmission systems. Chapter 3 derives the NLSE from the first 

principles, namely, from the Maxwell equations and the material responses to elec­

tromagnetic excitations. The NLSE shall serve as a fundamental mathematical tool 

in our theoretical analyses, and guide us in searching for suit able designs of trans­

mission lines with nonlinear compensations. The derivation retains the mathematical 

exactitude down to details. Still in compact and convenient forms, the final equa­

tions include the effect of group-velo city dispersion down to an arbitrary order, and 

take into account the frequency variations of the optical loss as weIl as the transverse 

modal function. The chapter also establishes a new formulation of multi-component 

nonlinear differential equations, which is especially suit able for the study of wide-band 

wavelength-division multiplexed systems of optical communications. 

Part II includes Chapt ers 4 and 5. Using the mathematical formulations est ab­

lished in Part l, Chapter 4 presents theories on methods of distributed nonlinear 

compensations using two types of fiber arrangements with respect to an optical phase 

conjugator or a point of zero dispersion (PZD) in a transmission line. In one type of 

arrangement, the fiber parameters and the signal intensity are mirror-symmetric in 

the scaled sense about the phase conjugator or PZD. While the other type is char-
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acterized by a translation symmetry in the scaled sense. It will be shown that OPC 

and a scaled symmetry, either mirror or translation, could reverse the dispersive and 

nonlinear signal propagation, so to undo the distortions due to signal-signal nonlin­

ear interactions in a long-distance transmission line. It is argued that not only the 

dispersion, but also the slope and even higher-order dispersions should be carefully 

chosen, in order for one fiber to compensate the nonlinearity of the other across a wide 

optical bandwidth containing many WDM channels. In particular, the possibility of 

nonlinear compensation between two translation-symmetric fiber lines in the scaled 

sense is our new discovery, which could be a rather interesting method in practice, 

because two fibers do not have to have opposite gain/loss coefficients to form an 

STS: a lossy waveguide can be used to compensate a lossy transmission fiber, or the 

two fibers can be both amplifying. The chapter goes on to demonstrate that, with­

out a phase conjugator, the most detrimental nonlinear interactions among pulses 

within one wavelength channel may be significantly suppressed in a scaled mirror­

or translation-symmetric line. Chapter 5 discusses the advantages and limitations 

of distributed nonlinear compensations using scaled symmetries, and compares them 

with other technologies that deal with nonlinear signal distortions, including lumped 

nonlinear compensation using fibers and other optical components, and digital sig­

nal processing using semiconductor integrated circuits to compensate dispersion and 

nonlinear distortions. The chapter also addresses the question of how effective dis­

tributed nonlinear compensations may be in the presence of stochastic polarization 

variations. 

Part III consists of Chapters 6, 7, and 8. Chapter 6 discusses practical nonlinear 

compensations using STS. The chapter shows how to optimally configure dispersion­

managed fiber transmission lines employing slope-compensating fibers, such that OPC 

may be used to achieve simultaneous wide-band compensations of fiber nonlinearities 

and residual dispersions, without the need of distributive amplification in transmis­

sion fibers. It is demonstrated that when the dispersion slope of transmission fibers 

is equalized by slope-compensating fibers, the residual dispersion and the slope of 

dispersion slope are compensated by mid-way OPC. More importantly, fiber nonlin­

earity may be largely suppressed by arranging the fibers into conjugate pairs about the 
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phase conjugator, where fiber segments of each pair form an STS. The STS is respon­

sible for canceling optical nonlinearities of fibers within each pair up to the first-order 

perturbations, then a mirror-symmetric ordering of the fiber pairs about the conju­

gator linearizes a long transmission line effectively. The chapter discusses practical 

designs of fiber systems for long-distance transmissions, using realistic (commercially 

available) transmission fibers and slope-compensating fibers, where the transmission 

fibers may be standard SMFs, NZDSFs, or even DSFs with dispersion crossing the 

zero point, and the slope-compensating fibers may be any DCFs with dispersion slopes 

opposite to that of the transmission fibers. In addition to analytical derivations, the 

chapter presents numerical simulations to demonstrate simultaneous nonlinearity and 

dispersion compensations over a wide optical band, via mid-way OPC in long-distance 

transmission lines using any of the listed type of transmission fibers. 

Chapter 7 discusses practical nonlinear suppression without OPC. The chapter 

presents detailed design and optimization criteria for constructing a transmission line 

in STS using commercially available fibers, and provides examples of transmission 

systems so-designed, then presents numerical simulations to demonstrate that two 

fiber spans in an STS could indeed cancel out their intra-channel nonlinear effects to a 

large extent without using OPC, and significant reduction of intra-channel nonlinear 

effects may be achieved in a long-distance transmission line consisting of multiple 

pairs of translation-symmetric spans. It is also shown that scaled symmetries are 

insufficient to suppress ghost-pulse generation into empty data slots when ON/OFF 

keying (OOK) is used for data modulation. The chapter proposes a method using 

mid-way SPM to reverse the generation of ghost pulses due to intra-channel four­

wave mixing (IFWM), and presents computer simulations to demonstrate significant 

improvement of signal quality by the combination of scaled symmetries and mid-way 

SPM. 

Chapter 8 discusses practical implementations of OPC and DCMs, as well as 

methods of one-for-many nonlinear compensations using STS. For implementations 

of OPC, the chapter showcases an example of a Kerr medium pumped by a strong 

laser beam, where the nonlinear pro cess of FWM mixes the pump laser and a weak 

signal to generate a phase-conjugated version of the signal. However, it is noted that 
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the same FWM effect results in parasitic pro cesses by generating inter-mixing terms 

among the WDM signaIs. The center frequency of such unwanted mixing terms may 

coincide with sorne of the original or conjugated WDM signaIs to cause significant 

interference. The chapter studies such interference effect by means of theoretical cal­

culation and computer simulations, and shows that the coherent interference effect 

decreases as the pump-power to signal-power ratio (PSR) increases. Unfortunately, 

there cou Id still be strong interference even with a PSR of 20 dB. Sorne guard-band 

in the frequency domain may be necessary to avoid such coherent interference. For 

implementations of DCMs used in scaled translation-symmetric systems, the chap­

ter discusses a method of packaging DCFs achieving optimal nonlinear compensation 

and good optical signal-to-noise ratio (OSNR) simultaneously. An optimally packaged 

DCM may consist of portions of DCFs with higher and lower loss coefficients. Such 

optimized DCMs may be paired with transmission fibers to form lines with STS, so to 

effectively compensate signal distortions due to dispersion and nonlinearity, with or 

without OPC. The remaining of the chapter proposes and tests methods of one-for­

many nonlinear compensations using STS, which realize simultaneous compensations 

of both dispersion and nonlinearity over a wide optical band. When OPC is em­

ployed, a transmission line may consist of many pairs of compensating fiber spans 

mirror-symmetrically ordered about the phase conjugator, where each pair may in­

clude one fiber span of st ronger nonlinearity and several conjugating fiber spans of 

weaker nonlinearity. First-order nonlinearities are weIl compensated between spans 

within each pair, and the mirror-symmetric ordering of conjugating pairs about the 

phase conjugator helps to prevent the accumulation of nonlinearities over a long trans­

mission distance. When there is no OPC in the middle, a transmission line configured 

into a one-for-many STS may still suppress the intra-channel nonlinear effects. 

At the end, Chapter 9 draws conclusions and discusses perspectives of distributed 

nonlinear compensations. 
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2 
OPTICAL FIBER AS N ONLINEAR DISPERSIVE CHANNEL 

GVD and optical nonlinearity are two major limiting factors in high-speed long­

distance fiber-optic transmissions [1, 2]. DCFs have been developed to offset the dis­

persion effects of transmission fibers over a wide frequency band. The most advanced 

DCFs are even capable of slope-matching compensation, namely, compensating the 

dispersion and the dispersion slope of the transmission fiber simultaneously. Unlike 

the GVD effect, fiber nonlinearity is a much more difficult problem to overcome, be­

cause oppositely signed nonlinearity is not readily found in natural waveguide materi­

aIs. That is, there exists no long waveguide with opposite nonlinearity to compensate 

that of a transmission fiber. In the past, there wasn't an effective means to control 

fiber nonlinearity other than passively dodging it by lowering the signal power, thus 

shortening the span distance between optical ampli fiers , or using distributive Raman 

amplification. Here we are concerned with active methods to suppress or compensate 

fiber nonlinearity using OPC and/or scaled symmetries. But firstly, let's try to under­

stand where the nonlinearity cornes from and how it becomes a serious limitation. In 

the traditional subject of nonlinear optics, optical nonlinearity has been notoriously 

known as weak and hard to get. Indeed, classical nonlinear optics has a lot to do 

with the search of materials with high nonlinearities and clever designs to enhance 

nonlinear effects. Still, it is often the case that desired nonlinear products are far 

weaker than pump signaIs. How could, then, optical nonlinearity "suddenly" become 

so strong and turn into a limiting factor in fiber-optic transmission lines? It has to 

do with the small fiber core area, the long distance optical pulses may travel along 

a transmission line, and the high-power needed to battle optical noise accumulated 

over the transmission distance. 

2.1 Amplifier Noise, Signal Power, and Transmission Dis­

tance 
Optical communication systems are actually quieter, that is less noisy, than electronic 

circuits and the radio-frequency counterparts, because of the inherent immunity of 

14 
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fiber-optic components to electromagnetie interferences and the thermal noise that 

plagues electronic circuits, and because of the large energy gap involved in optical 

transitions in the communications infrared band, hl! '" 0.8 eV at À '" 1.55 Mm, com­

paring to the thermal energy kT '" 0.026 eV at the room temperature T '" 300 K. 

However, the large value of hl! enhances the quantum nature of light. As a con­

sequence, the optical systems are susceptible to photon shot noise, and quantum 

noise whenever there is gain or/and loss [35, 36, 37, 38, 39, 40]. Interested readers 

are referred to Appendix A for detailed discussions about quantum noise in optical 

communications. High-loss fiber links without optical ampli fiers are fundamentally 

constrained by the quantum (shot-noise) limit of photo-detection, although the per­

formance of practieal photo-detectors are severely degraded by thermal noise [39,41]. 

By contrast, fiber transmission systems with an optical amplifier before the photo­

detector, and perhaps many optieal amplifiers periodieally repeating the signaIs along 

the transmission lines, are mostly limited by the quantum noise generated by the gain 

or / and loss processes. One of the manifestations is the familiar amplified spontaneous 

emission (ASE) noise generated by optical amplifiers [10]. The quantuII\ nature of 

the electromagnetie field, in partieular the Heisenberg uncertainty princip le between 

the in-phase (coswt) and the quadrature (sinwt) components of any mode of elec­

tromagnetie oscillation, forces any phase-insensitive linear high-gain amplifier to add 

at least a half-photon worth of field fluctuation, namely noise, to each mode of the 

input signal field [35, 39]. When the input signal is in a coherent state [37, 39], which 

has the minimum amount of uncertainty imposed by quantum mechanics, that is 

again a half-photon worth of noise, in both the in-phase and the quadrature fields, 

the best phase-insensitive amplifier adds another half-photon worth of uncertainty to 

each quadrature component of the input signal so to degrade the signal-to-noise ratio 

(SNR) by a factor of two, hence the familiar 3-dB lower bound for the noise figure 

of phase-insensitive linear amplifiers with a high gain. On the other hand, phase­

sensitive amplifiers whieh may amplify the in-phase component while de-amplify the 

quadrature component, are not limited by the 3-dB noise figure [35, 39]. They may 

actually realize noiseless amplification to the in-phase component of a signal with 

high gain, at the priee of de-amplification and a great deal of quantum noise dumped 

to the quadrature component. Lab experiments have demonstrated phase-sensitive 

amplification with sub-3-dB noise figures in parametric pro cesses with second- or 

third-order optieal nonlinearities [42, 43, 44, 45, 46, 47], and great performance im­

provements have been predieted when using phase-sensitive ampli fiers in fiber-optie 

transmission systems [48, 49]. However, phase-sensitive amplifiers are still in their 

infancy, as their operation often involves a complicated optical system and lacks the 



2: OPTICAL FIBER AS N ONLINEAR DISPERSIVE CHANNEL 16 

stability required by practical field deployment. By contrast, EDFAs, as the most 

common phase-insensitive amplifiers in fiber-optic systems, enjoy a much simpler and 

rugged design with exceptional stability, and their noise performance in practice is 

very close to the 3-dB quantum limit, thanks to the inherent physical characteristics 

of erbium ions in glass, and the large amount of capital and research invested by the 

fiber-optic industry. It is rather common to have commercial EDFAs with a noise 

figure of 4 dB, merely one dB away from the quantum limit. 

It should be pointed out though, that phase-insensitive amplifiers do not always 

degrade the SNR of any input signal by 3 dB and more. They do so only when 

the input signal is quantum-limited, having the least possible field fluctuations per­

mitted by the uncertainty principle. Practical signaIs usually carry far more noise 

than electromagnetic coherent states do. Even if the original signal is indeed at a 

coherent state, it will acquire significantly more noise after several EDFA spans with 

loss and gain. No matter how noisy the input signal may be, a quantum-limited 

phase-insensitive amplifier always contributes the same amount of ASE noise, that is 

equivalent to the quantum-limited uncertainty carried by a coherent state. It is the 

ASE noise, not the SNR degradation in dB, that is additively accumulated along a 

transmission line of many EDFA spans with periodic losses and gains. That is why 

M ~ 20 EDFA spans are often cascaded in practicallong-distance transmission lines 

without degrading the SNR by 3M ~ 60 dB. Independent of the input signal, each 

EDFA actually adds a fixed amount of ASE noise whose power totals [10, 50], 

(2.1) 

where the factor 2 is due to the presence of two quadrature components, nsp is the 

so-called spontaneous emission factor, G is the amplifier gain in linear scale, hv is 

the photon energy, and Bo is the optical bandwidth. For an active medium with two 

atomic states relevant to the optical transition, nsp may be calculated as [10], 

N2(Je 
nsp = , 

N2 (Je - NI(Ja 
(2.2) 

where NI, N 2 are the population densities of the lower and higher energy states, and 

(Ja, (Je are the absorption and emission cross sections respectively. Note that nsp is 

minimized to 1 when NI = 0, namely the state population is fully inverted. Also note 

that NF = 2nsp is just the noise figure in linear seale at a large amplifier gain. It is 

convenient to define an optieal SNR, or OSNR in short, as the ratio of the average 

signal power over the total power of ASE noise, 

Po 
OSNR = MNF(G - l)hvBo ' 

(2.3) 
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where Po is the average signal power out of each EDFA, and M is the number of 

EDFA spans. More convenience is often sought in practice by using the Gaussian 

approximation for the distribution of the received optical signal, and it is customary to 

measure the signal quality by the so-called Q factor [41, 50, 51], Q = IJLl-JLol/(O"l +0"0), 
where JLO,l and 0"0,1 are the means and variances of the 0 and 1 levels respectively. 

The Q factor gives an estimate to the bit-error rate (BER), BER = ~Erfc(Q/vI2), if 

the threshold is set optimally. Q ~ 6 is required to get the standard BER ::; 10-9 . 

When ASE is the dominating noise source, which is the case for systems with EDFAs, 

especially an optical pre-amplifier before photo-detection, and the system is free of 

other penalties due to GVD and PMD etc., the Q factor is directly related to the 

OSNR as [52, 53], 
20SNR {B: 

Q = 1 + v'1 + 40SNR Y Be' (2.4) 

where Bo and Be are respectively the optical and electrical bandwidths of the receiver 

for each wavelength channel. Equation (2.4) can be solved analytically to get, 

OSNR= QV!: (1+ QV!J (2.5) 

and 

Po We ( We) M(G -1) = Qy B: 1 + Qy Ho NFhvBo , (2.6) 

by combining (2.3) and (2.5). 

With the Q factor being lower-bounded to ensure a desired low BER, and the 

amplifier NF, hv, Bo, Be an being constants, the essence of transmission-line design 

is to maximize the ratio Po/M(G -1), necessarily beyond the lower limit defined by 

the right side of (2.6), of course under the practical constraints of cost and complexity. 

Given a total transmission distance L in kilometers and the number of EDFA spans 

M, the amplifier gain G should compensate the loss of each fiber span, that is G = 

lOo.laL/M, with a being the loss coefficient of the fiber in dB/km. Besides increasing 

the average signal power Po, minimizing the factor M (G - 1) is desired in order 
to improve the signal quality. As M(lOo.laL/M - 1) is a monotonically decreasing 

function for M ~ 1, the more ampli fiers , or the shorter the length of each EDFA 

span, the better signal quality. The factor M(G - 1) is minimized to O.laLlog 10 

when M --+ 00. The only (but serious) problem is that EDFAs are expensive devices to 

install and to operate. For terrestrial transmission systems, repeater hubs are needed 

to accommodate and shield the optical amplifiers from harsh weather conditions, as 

well as to provide constant power supply and to air-condition the equipments. The 
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design of a 2000-km link, assuming IX = 0.2 dB/km 
1000.--.--.,----.----.----.----.---,----,-----, 

900 

800 

700 

-- 600 
"1 
(!) 

~ 500 

400 

300 

200 

100~--~--~--~--~--~--~--~-~ 
20 30 40 50 60 70 80 90 100 

number of spans M 

Figure 2.1: The variation of M(G - 1) as M increases. 
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cost only goes higher for submarine systems, where EDFAs are accommodated by 

hermetically sealed pressure vessels, and high voltage electricity is carried by a thick 

copper sheath running in parallel to the fibers. The limited amount of space in 

the pressure vessels limit the number of EDFAs, thus the number of fibers in one 

cable to about 10, in contrast to terrestrial cables which often have up to 100 fibers 

inside. There is also practical limitation in transmitting the electrical power along 

the cable [54], so the power consumption of each EDFA and the number of EDFA 

spans should be planned carefully. Furthermore, as the number of EDFAs increases 

to a certain point, or the length of each EDFA span decreases to a certain value, 

the factor M(G - 1) tends to saturate and manifests little further improvement. For 
example, in a 2000-km link, assuming a = 0.2 dB/km, M(G - 1) = M(104o/ M - 1), 

which reaches its minimal 40 log 10 ~ 92 when M -t 00. Fig. 2.1 shows the variation 

of M(G -1) as M increases. It is clearly seen that the variation becomes rather slow 

after M > 40, namely, when the per-span length becomes less than 50 km. With 

M = 80, so per EDFA span length L/M = 25 km, M(G - 1) is about 173, which is 

within a factor of 2 of the minimal. Therefore, it does not make much practical sense 

to have amplifier spans shorter than 25 km, even it could be do ne as in deploying 
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new fiber cables. Mostly limited by the cost and complexity, practical fiber plants 

usually have amplifiers separated by rv 50 km for submarine systems and rv 100 km 

for terrestrial ones. 

Fiber Raman amplifiers [41] may also be employed to repeat the optical signaIs. 

Such ampli fiers take advantage of the fiber nonlinear effect of SRS, that is stimulated 

Raman scattering, between pump lasers and the optical signaIs. The physics of SRS, 

how its effect among WDM channels may distort the signaIs (besides its good deed in 

Raman amplification), and how the impairments may be avoided, shall be discussed 

later in details. In essence, SRS is an inelastic scattering pro cess between light and 

material molecules, where photons of the pump laser collide with the molecules, lose 

sorne of their energy to excite the molecules, and turn themselves into photons of 

another frequencies. Recently, the advancement of compact high-power diode lasers 

makes Raman amplification a practical technology for applications in fiber-optic com­

munications [9, 55, 56]. Unlike EDFAs, Raman amplification do es not require special 

materials, and can take place in regular fibers. In particular, the transmission fibers 

may be Raman pumped to amplify signaIs in a distributed manner, in which lies 

another advantage of Raman amplification, besides the unrestricted bandwidth so 

long as a suit able pump laser is available. A distributed fiber amplifier, EDFA or 

Raman, may be considered as a chain of amplets with tiny gains to compensate the 

fiber loss. Indeed, by carefully arranging the Raman pumps and the length as weIl 

as the type of fibers, the distributed Raman gain may be adjusted to compensate 

the local fiber loss almost exactly, such that a fiber transmission line appears lossless 

[57]. It should be noted though, that the Raman ampli fiers are still phase-insensitive 

ones, which are bound to indu ce noise to the optical signaIs. Lossless the total opti­

cal power may appear to be in a Raman-pumped fiber, the signaIs are still impaired 

gradually by the accumulation of noise, although the distributed configuration leads 

to a lower noise figure than a similar span of the same length of transmission fiber 

followed by a lumped amplifier [9, 10]. The best that distributed amplification can 

do is to materialize the performance limit PojO.1aL log 10 for the left si de of equa­

tion (2.6). Furthermore, the distributed Raman gain enhances the effect of coherent 

multi-path interference of an optical signal to itself due to Rayleigh back-scattering 

[58, 59], which may become a dominating noise source over the ASE. Indeed, the 

so-called double Rayleigh scattering effect limits the optimal OSNR improvement to 

merely 6 rv 7 dB when distributed Raman amplification is introduced to normally 

EDFA-repeated transmission systems [9, 58]. Apart from the fundamental physics 

limitations, Raman amplifiers are currently higher in cost, lower in reliability, and 

less mature than the EDFAs. 
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Either in a new deployment limited by cost, or an installed fiber plant whose 

performance (in bit-rate per channel or transmission distance) is to be upgraded, the 

span distance, the amplifier type and gain are often fixed or constrained, so raising the 

optieal power Po is the only other way to increase the performance factor in equation 

(2.6). In fact, it is a rather efficient means to upgrade the line rate or transmission 

distance by increasing the signal power Po. A 3-dB increase of power will enable 

a previous transmission system to double the bit-rate per channel (thus the total 

capacity), or let the signaIs to reach twice as long a transmission distance without ever 

leaving the optieal domain. The latter is especially meaningful for the envisioned all­

optieal networking technology, where optical signaIs may hop through several point­

to-point transmission links without being terminated by any OIE converter. The 

optical power has to be raised for the signaIs to travel a prolonged distance due to 

all-optical switching. By contrast, it looks less efficient to buy an extra fiber distance 

for each amplifier span with a margin from increased signal power. A 3-dB margin 

would only extend lOO-km terrestrial amplifier spans to 115 km, so to save about 13% 

of the amplifiers. Extending submarine spans from 50 km to 65 km would save about 

23% of the amplifiers. 

Were the fiber transmission lines linear media, increasing the power of the signaIs 

may not be much of a problem. Unfortunately, reality is not so simple. A fiber­

optic transmission line is a nonlinear channel due to the material nonlinear effects. In 

fact, fiber nonlinearity has become one of the major limiting factors in modern optical 

transmission systems [2, 60]. Not only the transmission fibers, but also the EDFAs and 

Raman amplifiers may induce and sometimes enhance the nonlinear impairments [61, 

62, 63]. Our goal is to understand the physics of fiber nonlinearities, mathematically 

formulate the theory of fiber nonlinear optics, and seek possible means to suppress, 

even compensate the nonlinear effects of fiber transmission lines. 

2.2 Fiber Nanlinearity and Nanlinear Impairments ta Op­

tical SignaIs 
Researchers of nonlinear opties know only too weIl the notoriety of optical nonlin­

earities in that they are usually difficuIt to observe and exploit, because the optieal 

response of a material deviates significantly from linearity only when the electrieal 

field of the optical excitation becomes close to the atomie Coulomb field, whieh is 

on the order of 108 VI cm. Such strong field corresponds to an extreme optical in­

tensity on the order of 1013 W Icm2, according to the formula 1 = ~n€oIEI2, n is 

the refractive index of the medium. Under usuaI conditions with normal optieal in-
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tensities, almost aIl materials manifest dominating linear responses, their nonlinear 

responses are nothing but weak. For example, in the optical Kerr effect, which is a 

third-order nonlinearity, the refractive index n of a material depends upon the op­

tical intensity l, as n = no + n2I, where no is the nominal refractive index, and n2 

is the Kerr coefficient. Materials that manifest strong third-order nonlinearity, such 

as semiconductors and sorne polymers, have a Kerr coefficient n2 = 10-14 
I"-.J 10-12 

m2/W [64]. The silica glass fibers, with n2 = 2 I"-.J 3 X 10-20 m2/W [2, 6], have a 

rather weak Kerr nonlinearity. How could, then, fiber nonlinearity become a limiting 

factor to the optical communication systems? The answer lies in the small core area 

of the fibers and the extremely long-distance of nonlinear interaction in long-distance 

all-opticai transmissions. The effective mode area of single-mode transmission fibers 

is usually around or below 80 f-lm2
, and the average power of each WDM channel 

is typically 1 m W, so the optical intensity of just one WDM channel may peak at 

Ipeak I"-.J 2mW /80f-lm2 = 2.5 x 107 W /m2 in the transmission fiber. Due to the at­

tenuation of the optical power, the full length of a 50 or 100 km fiber span does 

not experience the same strength of nonlinear interaction, but the effective length 

of nonlinear interaction can be as long as (1 - e-aLspan )/O! I"-.J 20 km because of the 

extremely low loss coefficient O! = 0.02 log 10 I"-.J 0.5 [2]. A typicallong-distance trans­

mission line of thousands of kilometers may have 20 fiber spans and more, where the 

signal power is repeated periodically by optical amplifiers. So the effective length of 

nonlinear interaction can total Lnlin = 400 km. During the propagation of such a long 

distance, a pulse of one WDM channel may modulate the phase of other signaIs of 

other channels or itself via the Kerr effect by as much as 27rn2IpeakLnlin/ À ~ 7r /3 (if 

taking n2 = 2.6 x 10-20 m2/W, À = 1.55 f-lm), which may cause substantial distor­

tions to the signaIs. Certainly, the above is a worst-case example. In reality, pulse 

walk-off between the WDM channels may reduce the interaction length of any two 

colliding pulses, but make the pulse collision a random pro cess and more difficult to 

deal with. In any case, the nonlinear signal interaction in transmission fibers is indeed 

sufficiently strong to limit the system performance. 

By the underlying physical mechanisms, three nonlinear effects usually take place 

in optical fibers when the signal power is high. The three are stimulated Brilliouin 

scattering (SBS), SRS, and the optical Kerr effects. SBS happens when the beat 

between two counter-propagating optical signaIs, separated by about 10 GHz in fre­

quency, excites acoustic waves at the beat frequency, which in turn forms a dynamic 

optical grating to scatter the optical signaIs from one frequency and one direction 

to the other. Fortunately, SBS has a low effective bandwidth, of 10 MHz approxi­

mately, and a sizable threshold about 1 m W. It is easy to make sure that the spectral 
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power density never reaches the threshold in any frequency interval of 10 MHz, by 

simply imposing on the optical signaIs a phase modulation at hundreds of MHz or 

higher. Furthermore, optical isolators are usually deployed along fiber transmission 

lines to block the backward propagating signaIs. As a result, SBS is almost surely 

prevented in modern optical transmission systems. However, it is much more difficult 

to suppress the SRS and optical Kerr effects. 

In a picture of quantum mechanics, the SRS effect refers to the scattering of a 

photon by material molecules, in which process the incident photon is annihilated, 

while a new photon with lower frequency is created, together with the generation 

of an optical phonon taking up the energy difference. Unlike the SBS effect, the 

SRS pro cess has a very wide bandwidth, weIl in excess of 10 THz, and it can take 

place efficiently with co-propagating signaIs. SRS induces cross-talk among wide-band 

WDM channels co-propagated for a long distance, where a given channel experiences 

random loss or gain that depends upon the intensity of the other channels at lower 

or higher frequencies. The optical Kerr effect originates from the dependence of 

the material refractive index on the optical intensity. The bandwidth of the Kerr 

effect is extremely wide, on the same order of the optical frequency. Within a single 

channel, the Kerr effect manifests as SPM, that is self-phase modulation, which may 

broaden the signal spectrum, and in the presence of group-velocity dispersion, could 

le ad to timing jitter and amplitude fluctuation to the optical pulses. When many 

WDM signaIs are transmitted in a single fiber, the Kerr effect can mediate inter­

channel cross-talks through nonlinear pro cesses called FWM, i.e. four-wave mixing, 

and XPM, i. e. cross-phase modulation. FWM refers to the generation of the fourth 

wave as the product of three waves, while XPM manifests itself as random frequency 

shifts experienced by one channel due to the variation of the total intensity of other 

channels. The random frequency shift is translated into pulse timing jitter by the 

GVD of the transmission line. For WDM channels spaced equally in frequency, the 

fourth wave of FWM may overlap another channel exactly in frequency, so to cause 

amplitude fluctuation in that channel. Fortunately, efficient FWM requires tight 

phase-matching among the waves, which is spoiled in fibers with non-zero GVD. By 

contrast, XPM is not easily dismissed by dispersion. This is probably the reason 

that XPM is taken as the fundamental mechanism limiting the capacity of fiber­

optic channels [60]. Recently, a lot of interests have been generated by the so-called 

"pseudo-linear transmissions" of high-speed short return-to-zero (RZ) pulses [65]. 

Such pseudo-linear transmissions using short RZ pulses may alleviate the nonlinear 

interactions among WDM channels, especiaIlY the inter-channel XPM effect, however, 

they are still subject to the limitation of fiber nonlinearity, which now manifests as 
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various intra-channel nonlinear effects [65]. 

It is interesting to note that the difficulty in the study of nonlinear fiber channels 

lies actually in the interplay between the group-velo city dispersion and the fiber 

nonlinearity. If nonlinearity is absent and there is only dispersion, which does nothing 

other than inducing a nonlinear frequency-dependent phase shift to the signaIs, a 

phase equalizer could compensate the effect of dispersion and conventional co ding 

schemes may be employed to utilize the Shannon capacity of the channel. In practice, 

DCFs are excellent wide-band phase equalizers. On the other hand, if there is only 

Kerr nonlinearity and no dispersion in the transmission fibers, then a transmission 

system may employ the constant-power modulation formats of phase-shift keying 

or frequency modulation, which do not suffer from any degradation from the Kerr 

nonlinearity. Theoretically, the simpleness of a dispersionless nonlinear channel is 

reflected by the existence of analytical formulas for the channel input output transfer 

function, which may be employed to compute or estimate the channel capacity [66, 

67, 68] (although it should be cautioned that sorne specific results in references [66] 

and [67] may be incorrect). 



3 
FUNDAMENTAL EQUATIONS OF FIBER NONLINEARITY 

To understand the dispersive and nonlinear signal propagation in optical fibers and 

consider methods of nonlinearity compensation, it is firstly necessary to establish a 

mathematical formulism that is sufficiently accurate and generic to grasp the essential 

physics of signal dispersion and nonlinear interactions, and at the same time is concise 

and simple enough to facilitate convenient mathematical analyses and derivations. 

For this purpose, the present chapter shaH outline the fundamental physics, model 

assumptions, mathematical approximations, and essentiallogic steps to derive NLSEs, 

namely, nonlinear Schrodinger equations, from the first-principle Maxwell's equations. 

The outline is meant to emphasize the assumptions and approximations that are made 

for the derivations, so to highlight the applicability and limitations of the NLSEs in 

describing the dispersive and nonlinear signal propagation in optical fibers, without 

diving into great mathematical details. Interested readers are referred to Appendix 

B for complete derivations that provide every mathematical step in details. 

To st art , it is firstly necessary to understand the propagation of optical signaIs 

inside a nonlinear and dispersive waveguide. In dielectric optical waveguides, e.g. 

silica glass fibers, there is no source of electric charge, nor source of current, that is able 

to excite electromagnetic waves at the optical frequency. The magnetic response of 

most dielectrics is negligible at optical frequencies. The optics of dielectric waveguides 

is governed by Maxwell's equations [69, 70, 71], 

&H 
\7 x E = -11·0-,.,., &t' 

&E &P 
\7 x H = EO &t + et ' 

\7 . (éoE + P) = 0, 

\7. H = 0, 

and the material equation [5, 6], 

P(r, t) = éo J x(l)(r, s)E(r, t - s)ds 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

+ éO J x(3)(r, t1, t2 , t3):E(r, t - t1)E(r, t - t 2)E(r, t - t3 )dt1dt2dt3 , (3.5) 

24 
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where X(1) and X(3) are the linear and the third-order nonlinear susceptibilities of 

the dielectrie material respectively. In general, X(3) is a tensor and : denotes tensor 

product. Although Maxwell's equations describe all optieal phenomena with the 

most generality and highest accuracy, they appear to be overly complicated if directly 

applied to optieal fibers, in whieh optieal signals are usually weakly guided because the 

index difference between the core and cladding regions is only small [69, 70]. It turns 

out that the weakly guided eigen modes in fibers are weIl approximated by linearly 

polarized (LP) modes [69, 70]. With an LP representation E(r, t) = E(r, t)ê, ê being 

a unit vector of electric field polarization, equations (3.1-3.5) may be simplified and 

combined into a single differential equation of a scalar quantity, 

(3.6) 

from which and with suit able approximations, a single- and a multi-component NLSEs 

may be derived in even simpler forms to describe the dispersive and nonlinear prop­

agation of optical signaIs in fibers. 

Details of the mathematieal derivations have been published in reference [13] and 

are reproduced in Appendix B. This present chapter shall not go to such mathematical 

details. However, it may be beneficial to highlight the theoretical model and analytical 

tools by recapping the assumptions and mathematieal approximations being made in 

the derivations. Such highlight should help to identify the applicability of the NLSEs 

as weIl as their limitations. 

Assumptions 

1) First of aIl, the optical field is believed to obey MaxweIl's equations 

(3.1-3.4); 

2) The waveguide material is assumed to display third-order nonlin­

earity, with the electric response given by (3.5); 

3) The waveguide material is step-wise uniform and isotropic; Namely, 

the waveguide consists of domains of uniform and isotropie materials, 

such that the polarization P (linear response) is always a scalar con­

stant times the electric field E within each domain; 

4) The third-order nonlinearity consists of an instantaneous (Kerr) 

response and a time-delayed (Raman) scattering effect; 
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5) AU signaIs are assumed co-linearly polarized when entering an opti­

cal fiber, and cou pIed into one polarization eigen state when the fiber 

is polarization maintaining; 

6) The fiber parameters may be z-dependent, but their derivatives 

with respect to z are always negligible. 

The above assumptions are responsible for distilling the first-principle equations 

(3.1-3.4) and the material property (3.5) into the single scalar equation (3.6). Note 

that no approximation has been made so far, (3.6) is still mathematicaUy rigorous 

up to the validity of the above assumptions about the physics of optical waves and 

dielectric waveguides. The equation may be further simplified with a few reasonable 

approximations. 

Firstly, when the total signal bandwidth W is not much more than a few THz, 

it satisfies the "narrow band" condition W « wo, as the carrier frequency Wo ~ 193 

THz for lasers in the 1550nm communication window. The frequency dependence of 

the transverse modal function may be neglected, so that a trial solution, 

E(r, t) = Re {F(x, y, z)A(z, t) exp [i JZ (30 (()d( - iwot]} , (3.7) 

with (3o(z) being the optical propagation constant at Wo and position z, may be sub­

stituted into (3.6) to derive a differential equation for the envelope function A(z, t). 
Since the fast variation is absorbed by the factor exp [i r (30 (()d( - iwot], the signal 

envelope A(z, t) is expected to be slow-varying in both z and t. Bear in mind Assump­

tion 6) that the z-dependence of fiber parameters are always slow, or usuaUy change 

only stepwise and remain constant for tens to hundreds of kilometers, so that their 

derivatives with respect to z are always negligible. The transverse modal function 

F(x, y, z) is determined by substituting F(x, y, z)A(z, w - wo) exp [i r (30 (()d(] into 

the Fourier transform of (3.6) with the right side set to zero. Then F(x, y, z) is found 

to solve the eigen-value equation, 

(
82 82 

) w
2 

w
2 

8x2 + 8y2 F(x, y, z) + c2 F(x, y, z) + ~Re[x(l)(x, y, z, w)]F(x, y, z) 

= f32(Z, w)F(x, y, z). (3.8) 

Note that the eigen-value (32 is w-dependent, which may be expanded into a Taylor 

series, 

(32(Z,W) = (3g(z) + 2(30(z) Ë (3ki,z) (w - wo)k, 'V z E R, (3.9) 

with 

(3 ( ) def 1 d
k 

(32 (z, w) l 'V k > 1 'V E R 
k Z 2(3 (z) dwk ' -, z . 

o w=wo 

(3.10) 
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8ubstituting equations (3.7), (3.8), and (3.9) into (3.6), and using the following: 

Approximations 

81) The opticalloss or gain in the materials is regarded as frequency­

independent; 

82) The two-photon absorption effect is neglected in fibers of silica 

glass; 

83) The frequency dependence is neglected for the transverse modal 

function; 

84) The guided modes are treated as linearly polarized; 

85) Nonlinear products out of the signal band are neglected; 

86) The Raman term involving A2(Z, t - s)A*(z, t) is dropped because 

of a large phase-mismatch; 

87) The term fj2 A/OZ2 is neglected in view of the slow-varying nature 

of A(z, t) in z; 

88) Also neglected are terms involving time-derivatives of A(z, t) mul­

tiplied by Im[x(l)] and the nonlinear coefficients X~), X~); 

one obtains an NL8E in the so-called retarded frame [6, 13], 

oA. a(z). . [ ] oz - zD(z)A + -2-A = z1'(z)IAI2 A + z g(z, T) 01AI2 A, (3.11) 

where 

D(z) d,' E f3·:t) (i!)' , (3.12) 

2 

a(z) def C2~O(Z) J Im[x(l) (x, y, z)]IF(x, y, z)12dxdy, (3.13) 

1'(z) def 8C;~5(Z) J X~)(x, y, z)IF(x, y, z)14dxdy, (3.14) 

g(z, T) def 4C2;:(Z) f X~)(x, y, z, T)IF(x, y, z)1 4dxdy, (3.15) 

F(x, y, z) is assumed to be normalized, and 0 denotes the convolution operator such 

that, 

(3.16) 

When the bandwidth of the optical signaIs becomes too large, it may violate 

the w-independent assumptions for the transverse modal function F(x, y, z) and the 
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loss or gain coefficient Im[x(l)]. However, the huge bandwidth is usually shared by 

many WDM channels, each of which, labeled by nEZ, is narrow-band around its 

own center frequency wn . Within each WDM channel, the transverse modal func­

tion Fn(x, y, z) and the loss or gain coefficient Im[x~l)], both subscripted by n, are 
regarded as frequency-independent and valued at W n . In which case, a channelized 

representation may be used for the optical signaIs, 

E(r, t) = Re {~Fn(x, y, z)An(z, t) exp [i JZ {3no(()d( - iWnt]} , (3.17) 

where /3nO(z) def /3(z, wn) is the optical propagation constant at frequency Wn and po­

sition z, An is naturally the slow-varying envelope of the nth channel, and Fn(x, y, z) 
is the transverse modal function, 'V nEZ. A multi-component NLSE may be derived 

to describe the dynamics of signal propagation using the following approximations 

[13]: 

Approximations 
Ml) The optical loss or gain in the materials may vary for different 

channels, however they are treated as frequency-independent within 

each channel; 

M2) The two-photon absorption effect is again neglected in fibers of 

silica glass; 

M3) The transverse modal function may depend on the center fre­

quency of the channels, however no frequency dependence is consid­

ered within each channel; 

M4) The guided modes are treated again as linearly polarized; 

M5) Nonlinear products out of the total signal band are neglected; 

M6) The Raman terms involving A~(z, t - s)A~(z, t), 'V m, nEZ are 
dropped due to large phase-mismatches; 

M7) The terms (j2 Ani 8z2
, 'V nEZ, are neglected in view of the slow­

varying nature of An(z, t) in z; 

M8) Also neglected are terms involving the time-derivatives of An(z, t), 
'Vn E Z, multiplied by Im[x(1)], x~), or x~). 

The transverse modes Fn(x, y, z), nEZ, are determined by the eigen-value equations, 

(::2 + ::2) Fn(x, y, z) + ~; Fn(x, y, z) + ~;Re[x(l)(x, y, z, wn)]Fn(x, y, z) 

= /32 (w)Fn(x, y, Z), 'V nEZ. (3.18) 
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Substituting (3.17) and (3.18) into (3.6), projecting the field into individual transverse 

modes Fn(x, y), nEZ, and similarly, dropping the nonlinear products suffering 

from large phase-mismatches, neglecting 82 A/8z2 and the terms involving the time­

derivatives of A(z, t) multiplied by Im[x(1)), X~), or X~), disregarding the z-derivatives 

of the fiber parameters and Fn, \:;j nEZ, a multi-component NLSE is obtained [13), 

aaAn - iDn(z)An + Ctn(z) An = iL L "Ylmn(z)AIAmA; exp [iBlmn (z)] 
z 2 1 m 

- LLglmn(z)AIAmA;exp[iBlmn(Z)), \:;j nEZ, (3.19) 
1 m 

where p is determined by the condition wp = Wl + W m - Wn , and 

\:;j l, m, nEZ, with 

j3 () 
def 1 ak 

{32 ( Z , w) \..1 k \..1 Z 
nk Z - ( ) k ,v ~ 1, v nE, 

2f3no z 8w W=Wn 

Gr(r,w) def Re [1 x~)(r, t) exp(ws)dt] , 

Gi(r,w) def 1m [1 x~)(r,t)exp(ws)dt]. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

As the Fourier transform of X~)(t), Gr(w) + iGi(w) is basically the Raman gain 

spectrum. Because x~) is real valued, Cr and Ci are even and odd functions of 

w respectively, namely, Gr( -w) = Gr(w), Gi( -w) = -Gi(w). Except for being 

applicable to a wider bandwidth, the multi-component NLSE (3.19) reflects essentially 

the same physics, shares a similar mathematical structure, and predicts mostly the 

same phenomena as equation (3.11). 
For a fiber link stretching from z = 0 to z = L with given input signal A(O, t), 

the NLSE (3.11) or (3.19) may be integrated to obtain the output signal A(L, t). 
Unfortunately, the simultaneous presence of dispersion and nonlinearity makes it 
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difficult to obtain a closed-form analytical solution for either NLSE. So far, an NLSE 

can only be integrated by numerical means. Such theoretical difficulty may be blamed 

for the poor understanding of the dispersive and nonlinear communication channels, 

and consequently the lacking of an effective counter measure to the fiber nonlinearity 

up to date. 



Part II. Theory: Scaled Symmetries 

and Nonlinear Compensations 



4 
SCALED SYMMETRIES AND NONLINEAR COMPENSATIONS 

The ability of transmitting high-power optical signaIs over long-distances with low 

distortion is an essential element to the realization of high-capacity optical networks 

that are widely connected over long distances (thousands of kilometers) and switched 

in most places by all-optical means. However, GVD and optical nonlinearity impose 

limits to the transmission distance, or more precisely, the product of data capacity and 

transmission distance [1, 2]. The problem of GVD has basically been solved by the 

development of DCFs with oppositely signed dispersions to offset the dispersion effects 

of transmission fibers over a wide frequency band. The most advanced DCFs are 

even capable of slope-matching compensation, namely, compensating the dispersion 

and the dispersion slope of the transmission fibers simultaneously [3, 4]. Unlike the 

GVD effect, fiber nonlinearity is a much more difficult problem to overcome, because 

oppositely signed nonlinearity is not readily found in natural waveguide materials. 

That is, there exists no long waveguide with opposite nonlinearity to compensate 

that of a transmission fiber. 

Using the mathematical formulations established in Chapter 3, we shall discuss 

nonlinear compensation using two types of fiber arrangements with respect to the 

OPC, as shown in Fig. 4.1. In one type of arrangement, the fiber parameters and the 

signal intensity are in SMS, that is scaled mirror symmetry, about the OPC. While 

the other type is characterized by STS, that is scaled translation symmetry. We ar­

gue that not only the dispersion, but also the slope and even higher-order dispersions 

should be carefully chosen, in order for one fiber to compensate the nonlinearity of 

the other, across a wide optical bandwidth containing many WDM channels. We also 

emphasize the important notions of scaled nonlinearity and scaled symmetry. Scaled 

nonlinearities and symmetries en able two fibers with a wide range of parameters to 

compensate each other's nonlinearity, as long as their parameters satisfy a set of pro­

portional rules. In particular, a short pie ce of specialty fiber with very high dispersion 

may be used to compensate both the dispersion and the nonlinearity of a long trans­

mission fiber. The dispersion, dispersion slope or higher order-dispersions are set in 

proportion to the parameters of the transmission fiber, and the specialty fiber may 

32 
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signal intensity 

input __ ..:.:W4à"""'''---I OPC I--_~~~~ ___ output 

signal intensity 

input _ .... W4à~""-_-t OPC I--_~~~~ ___ output 

Figure 4.1: Two types of system configurations for nonlinear compensation with ope: mirror­
symmetric (top) and translation-symmetric (bottom). 

be erbium-doped or Raman pumped to have a gain proportional to the loss of the 

transmission fiber. In a mirror-symmetric setup, such specialty fibers may perfectly 

linearize fiber transmission lines. Besides practical applications in fiber transmission 

systems, the method of scaling nonlinearity and nonlinear compensation has a deep 

implication to a fundamental question in information theory. That is, fiber nonlin­

earity does not necessarily impose a limit to the channel capacity. In practice, there 

could be errors in scaling the fiber parameters, so that the nonlinear compensation 

may not be perfecto Nevertheless, excellent performance would still be achieved by 

choosing the parameters carefully according to the scaling rules. The possibility of 
nonlinearity compensation between two translation-symmetric fiber lines is the first 

of such discovery as far as we are aware. It is also a rather interesting scheme, in 

that the two fibers do not have to have opposite gain/loss coefficients: a lossy waveg­

uide can be used to compensate a lossy transmission fiber, or the two fibers can be 

both amplifying. Although the STS setup is only capable of compensating local and 

weak nonlinearity up to the first-order perturbation, it may find wide applications in 

practical transmission systems, especially long-distance ones, where the nonlinearity 
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of each fiber span is indeed only a perturbation, but the accumulation of nonlinearity 

along the distance can significantly distort the signaIs. 

4.1 Dispersion and Nonlinear Compensations Using SMS 
The use of ope has been know to enable one fiber compensating the dispersion as 

well as the nonlinearity of another transmission fiber [7, 8]. The basic principle is that 

ope enables one fiber transmission line to propagate inversely (thus to restore) an 

optical signal that is dispersively and nonlinearly distorted by the other, when the two 

fiber lines are mirror-symmetric about the ope. However, a mirror symmetry may 

be difficult to realize in practice, as it requires opposite loss/gain coefficients for each 

pair of fiber segments in conjugation. In other words, it takes an unusual amplifying 

waveguide to compensate a conventional fiber with loss. Although amplifying fibers 

are obtainable through distributed Raman pumping [9] or distributed EDFAs [10], 

the loss of pump power makes it difficult to maintain a constant gain over an extended 

fiber length. This difficulty may seriously undermine the effectiveness of nonlinear­

ity compensation in mirror-symmetric systems [20, 30]. For a possible solution, we 

have noted the importance of mirror symmetries in the scaled sense, in particular, 

the significance and feasibility of scaling the dispersion slopes of fibers together with 

their dispersions, loss/gain and nonlinear coefficients [11, 12, 13]. Starting from the 

nonlinear Schrôdinger equation, it may be shown analytically that the dispersive and 

nonlinear evolution of optical signaIs may be scaled, such that a short piece of fiber 

with suitably scaled parameters could subject optical signaIs to the same dispersive 

and nonlinear propagation as a long fiber. Therefore, it is possible to form a mirror 

symmetry, albeit in the scaled sense, between a short specialty fiber and a long trans­

mission fiber. Based on this principle, we propose methods of nonlinear compensation 

using SMSs to overcome the difficulties that have plagued previous schemes. Another 

guiding principle for our proposaIs is that the mathematical derivations should be 

made as general as possible, while the physical implementations should be restricted 

to using fiber components and technologies that are either already commercially avail­
able, practically installed, or at least becoming available soon. In other words, the 

proposed implementations should be kept as close as possible to industrial practice. 

Basically, we suggest to use recently available specialty fibers with high disper­

sion values, such that a short pie ce of HD fiber may compensate a long transmission 

fiber. For a mirror symmetry in the scaled sense, the dispersion, dispersion-slope and 

higher order-dispersions of the HD fiber are set in proportion to those of the trans­

mission fiber, then the HD fiber may be erbium-doped or Raman pumped to have 
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a gain coefficient proportional to the loss of the transmission fiber. Because of their 

shorter length and usually being packaged compactly at the transmittingjreceiving 

ends or the power repeater sites, it could be much easier to maintain and control the 

distributive gain profile in the RD fibers. Indeed, it is noted that practical trans­

mission systems using commercially available fibers might be arranged into nearly 

perfect mirror symmetries in the scaled sense and hence enjoy excellent nonlinearity 

compensation. In particular, a pair of commercially available fiber types are identi­

fied for nonlinear compensation with SMS, which is between a negative (in dispersion) 

NZDSF (-NZDSF) and a conventional DCF with high negative dispersion. In a trans­

mission line with transmission and RD fibers arranged into scaled mirror-symmetric 

pairs about an optical phase conjugator in the middle, an SMS about the phase con­

jugator is formed for both the dispersion and the signal power maps, which ensures 

that the two parts, before and after oPC, would propagate and distort optical signaIs 

reversely with respect to each other, so that distortions to signaIs due to nonlinear 

interactions among them would be undone at the end of the transmission line. 

It should be noted that the basic idea of scaling fiber parameters for nonlinear 

compensation using mirror symmetry has been explored before by Watanabe et al. 

[17]. Rowever, the analysis in reference [17] fails to take account of the effect of higher­

order dispersions, in particular the dispersion slope. Consequently, the methods may 

not work weIl with high-capacity WDM systems. Also the proposed implementations 

in reference [17] are limited to transmission lines based on dispersion-shifted fibers, 

and using lumped nonlinear compensators to compensate Kerr nonlinearities in the 

path-averaged sense. The proposed nonlinear compensator is an integrated device 

installed at either the transmission or the receiving end of a point-to-point link, uses 

a specially designed fiber consisting of many segments, and has to be tailor-made for 

the specifie transmission line. The result is a lack of flexibility: an installed nonlinear 

compensator may cease to work when the corresponding transmission line is altered; 

it may be prohibitively costly and labor-intensive to design and optimize a special 

nonlinear compensator for each transmission line. Moreover, an optical lumped non­
linear compensator may he difficult ta fahricate, as it requires many fiber segments 

spliced together to approximate the distributive dispersions and nonlinearities in the 

transmission fibers. Ironically, due to the other uncooperative aspect of optical nonlin­

earity, it becomes a challenge to generate enough nonlinearities in a lumped nonlinear 

compensator using short segments of fibers. In accordance with the periodic power 

map in a transmission line, a lumped nonlinear compensator may need many optical 

amplifiers between its fiber segments, or the fiber segments have to be with changing 

dispersions or nonlinear coefficients. Neither condition is readily fulfilled with even 
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today's technology. 

4.1.1 Theory of nonlinear compensation using ope and 8MS 

A simple scaled mirror-symmetric system may be depicted as in Fig. 4.1, top graph, 

where the curves of signal power form a mirror symmetry in the scaled sense about the 

ope. It will be shown below that the scaling rules, namely, conditions for optimal 

nonlinear compensation, require that the curves of fiber dispersion and gain/loss 

coefficients also follow the same mirror symmetry as the curves of signal power do. 

8uch a scaled mirror-symmetric system may consist of a fiber line on the left stretching 

from z = -LI R to z = 0, L > 0, R > 0, followed by ope, then a fiber li ne on the 

right stretching from z = 0 to z = L. The two fiber lines may carry WDM or optical 

time-division multiplexed (OTDM) signaIs. 80 long as the total optical bandwidth is 

not much more than a few THz, the combined optical signaIs may be represented by, 

E(z, t) = A(z, t) exp [i JZ tJ((, wo)d( - iwot] , V z ~ 0, (4.1) 

E'(z, t) = A'(z, t) exp [i JZ tJ'((, w~)d( - iw~t], V z ~ 0, (4.2) 

on the two si des of ope respectively, where Wo and wb are center frequencies that 

are not necessarily the same due to a possible shi ft of center frequency by ope, 
A(z, t) and A'(z, t) are slow-varying envelopes, while tJ(z,w) and tJ'(z,w) are the z­
and w-dependent propagation constants on the two sides. Being omitted is the trans­

verse modal function. For mathematical simplicity, aIl optical signaIs are assumed 

co-linearly polarized. The dynamics of signal propagation in the two fiber lines is 

governed by two NL8Es respectively, 

~~ - iD(z)A + a~z) A = i-'y(z)IAI 2 A + i [g(z) 01A12] A, - LI R ~ z ~ 0, (4.3) 

~~' - iD'(z)A' + a';z) A' = i-'y'(z)IA'12 A' + i [g'(z) 01A'12] A', 0 ~ z ~ L, (4.4) 

where for the first fiber line, a(z) is the gain/loss coefficient, ')'(z) and g(z) are the 

Kerr and Raman nonlinear coefficients respectively, and the functional operator D(z) 
is defined as in equation (3.12). The parameters a'(z), {tJHz)h~2, ')"(z) , g'(z), and 

the operator D' (z) are similarly defined for the second fiber line. It is an easy exercise 

to show that the complex conjugate of (4.3) reduces to (4.4), when the parameters 

satisfy the following scaling rules, 

a( -z) = -Ra'(Rz), 

tJk(-Z) = (-l)kRj3~(Rz), V k ~ 2, 

(4.5) 

(4.6) 
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1'( -Z) = R1"(Rz)ICI-2
, 

g(-Z) = Rg'(Rz)ICI-2
, 

and the envelope functions are related as, 

A( -z, t) = CA'*(Rz, t), 
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(4.7) 

(4.8) 

(4.9) 

for all z E [0, L/ R], where R > ° and C =1 ° are scaling constants. Physically, it says 
that the two fiber lines compensate each other for both dispersions and nonlinearities. 

An optical signal A( -L/ R, t) entering the first fiber line may be dispersed and non­

linearly distorted to become A(O, t), which are converted into A'(O, t) = A*(O, t)/C* 
by the OPC. The second fiber line will then propagate the optical signal in a re­

versed (mirror-symmetric) manner with respect to the first. The final output signal 

A'(L,t) = A*(-L/R,t)/C* is an exact replica of the initial signal up to complex 

conjugation. It is noted that parts of one fiber line would have to provide gain in 

correspondence to attenuation in parts of the other, and vice versa. An HD fiber may 

be chosen with parameters satisfying equations (4.6-4.8) to be the scaled mirror im­

age of a transmission fiber which usually attenuates light. At the same time, erbium 

doping or Raman pumping should be employed to obtain the proper gain specified 

by equation (4.5). It is noted that the requirements for the third- and higher-order 

dispersions may be relaxed in the scaling rules of equation (4.6), then the two fibers 

may be no longer in strict mirror symmetry across a wide optical band, rather the 

symmetry and nonlinear compensation between them become approximate. Never­

theless, such approximation is often a good one when the values of l,8k/,821, k ;? 3, 

are quite small, so that the percentage change of ,82 is insignificant across the signal 

band, which is exactly the case for standard single-mode fibers in the 1550-nm band. 

Therefore, OPC and a specialty fiber with parameters designed according to (4.5-

4.9) cou Id perfectly compensate the nonlinearity of a transmission fiber, if not for 

the ever-existing noise, especially that incurred when the signal amplitude is low, 

destroying the mirror symmetry. In Fig. 4.1, top graph, for fiber locations not too far 
from the ope, the signal power is relatively high to minimize the effect of the optical 

noise, which usually originates from ASE and quantum photon statistics. However at 

the two ends of the link, the effect of the optical noise cou Id become substantial. A 

simple but fairly accurate model may assume that optical noise is incurred exclusively 

at the two extreme ends of the link, dispersive and nonlinear signal propagation is 

the only effect of the inner part of the link. In this model, the nonlinearity of a 

segment of transmission fiber with Zl :s; z :s; Z2 is fully compensated by the portion 

of the specialty fiber with -Z2/ R ~ z ~ -zd R, 'il Zl, Z2 E [0, Ll. In particular, 
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the entire link from z = - L / R to z = L is equivalent to a linear channel impaired 

by additive noise at the two ends. If W is the total optical bandwidth of the input 

WDM channels, then the OPC should have a bandwidth wider than W to cover the 

extra frequency components generated through wave mixing in the specialty fiber. 

With nonzero dispersion fibers, however, the extra bandwidth due to wave mixing 

may hardly exceed 100 GHz, which is often negligible in comparison to the total 

bandwidth W of several, even tens of THz. Thus the linearized link may be assumed 

to have the same bandwidth limit W throughout, applicable to which is Shannon's 

formula for channel capacity [72], C = Wlog2 (1 + SIN). Obviously, many of such 

linearized links may be cascaded to reach a longer transmission distance, and the 

entire transmission line is stilllinear end-to-end in spite of the nonlinearity existing 

locally in the fibers. 

Figure 4.2: A mirror-symmetric transmission line using -NZDSF and DCF. 

4.1.2 A numerical example 

For a numerical example, we have simulated a scaled mirror-symmetric link as shown 

in Fig. 4.2, which consists of two pieces of DCF, an optical phase conjugator, and a 
200km long -NZDSF as the transmission fiber with loss coefficient a' = 0.2 dB/km, 

dispersion D' = -8 ps/nm/km, dispersion slope S' = 0.08 ps/nm2/km, effective 

mode area A~ff = 50 J.Lm2 , Kerr nonlinear index n~ = 2.6 x 10-20 m2/W. The DCFs 

are also made of silica glass with the same Kerr nonlinear index, but with parameters 

(D, S) = 20 X (D', -S') and Aeff = 12.5 J.Lm2
. One pie ce of DCF, 5 km in length 

and labeled by DCF+ in Fig. 4.2, is erbium-doped or Raman-pumped to maintain a 

constant gain, so that its "loss coefficient" a is negative, a = -20a' = -4.0 dB/km, 
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Figure 4.3: Received signaIs at the end of the simulated SMS link. Top: only the dispersion of the 
transmission fiber is pre-compensated by the RD fiber. Bottom: both dispersion and nonlinearity 
are pre-compensated. 

in or der to form a scaled mirror symmetry with respect to the first 100km -NZDSF. 

The other piece of DCF, also 5 km in length, is used to balance the dispersion, which 

has no gain but a loss coefficient of 1.0 dB/km. The nonlinearity of the DCFs (as HD 

fibers in the system) can be switched on and off. The input consists of four WDM 

channels at 100 GHz spacing, co-polarized, all RZ modulated at 10 Gb/s. Each RZ 

pulse generator consists of a continuous-wave laser followed by a zero-chirp modulator, 

which is over-driven to pro duce a pulse train with the amplitude proportional to 
cos (~ sin 'TrOt), where 0 is the bit rate. Therefore the dut y cycle of the pulses is 

33%, if defined as the ratio of pulse full-width-half-maximum to the time interval 

between adjacent bits. The power of all optical pulses is peaked at 100 m W when 

entering the transmission fiber. ASE noise from amplifiers is added at the two ends of 

the link. More specifically, each optical transmitter sends RZ pulses with peak power 

of 5.0 mW into the first 5km DCF with loss coefficient 1.0 dB/km, followed by a 5dB 

EDFA; then the signaIs propagate through the 5km DCF+ with gain coefficient 4.0 
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dB/km; after being attenuated by a factor of 5.0 in power and phase conjugated, the 

signaIs are transmitted through the 200km -NZDSF, and finally boosted by a 20dB 

EDFA before being demultiplexed and photo-detected. The noise figure is 4.0 dB for 

both EDFAs. The photo-detector is with responsivity 1.0 A/W and thermal noise 10.0 

pA/VRZ. The center frequency is 193.1 THz for the optical band. MUX/DEMUX 

filters are 7th or der Bessel with 3dB bandwidth 25 GHz. The electrical filter is 3rd 

order Bessel with 3dB bandwidth 7.0 GHz. Fig. 4.3 shows the received signaIs of 

the 3rd transmitted channel, with the DCF nonlinearity off and on respectively. The 

eye diagram on the top shows the overwhelming nonlinear distortions in the received 

signaIs, when the DCF has no nonlinearity, but only pre-compensates the dispersion 

of the transmission fiber. When the nonlinearity of the DCF is turned on, the eye 

diagram at the bottom shows no visible nonlinear degradation, but only the effect of 

ASE noise, which clearly demonstrates the effect of nonlinear compensation due to 

OPC and SMS. 

4.2 Dispersion and Nonlinear Compensations Using STS 

4.2.1 Basics of dispersive and nonlinear wave propagation in fibers 

As discussed in Chapter 3, the eigenvalue solution of Maxwell's equations in a single­

mode fiber determines its transverse modal function and propagation constant (3(w) 
as a function of the optical frequency w [41, 69, 70]. When a fiber transmission line 

is heterogeneous along its length, the propagation constant could also depend on 

the longitudinal position z in the line, and may be denoted as (3(z,w). Using the 

slow-varying envelope form, 

E(z, t) = A(z, t) exp [i fZ {3o(()d( - iwot] , (4.10) 

with (3o(z) def (3(wo, z), to represent an optical signal, which may be of a single time­

division multiplexed channel or a superposition of multiple WDM channels, the evolu­

tion of the envelope A(z, t) in an optical fiber of length L is governed by the following 
nonlinear NLSE [6, 13], 

8A(z,t) ~ ik-
1
{3k(Z) (~)kA( ) a(z)A( ) = 

8 + L-- k' 8 z, t + 2 z, t 
Z k=2 . t 

i)'(z)IA(z,t)12A(z,t) +i [g(z,t) ® IA(z,t)1 2
] A(z,t), (4.11) 

v z E [0, L], in the retarded reference frame with the origin z = 0 moving along 

the fiber at the signal group-velo city. In the above equation, a(z) is the loss/gain 
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coefficient, 

(3 ( ) def 1 ak 
[(32 ( w, z) ]1 \:;f k > 2 

k Z 2 f-l (z) awk ,- , 
/JO w=Wo 

(4.12) 

are the z-dependent dispersion coefficients of various orders [13], ,(z) is the Kerr 

nonlinear coefficient of the fiber, g(z, t) is the impulse response of the Raman gain 

spectrum, and 0 denotes the convolution operation [13]. It may be noted that all fiber 

parameters are allowed to be z-dependent, that is, they may vary along the length 

of the fiber. Because of the definition in terms of derivatives, (32 may be called the 

second-order dispersion (often simply dispersion in short), while (33 may be called the 

third-order dispersion, so on and so forth. The engineering community has used the 

term dispersion for the parameter D = dV;l / dÀ, namely, the derivative of the inverse 

of group-velo city with respect to the optical wavelength, and dispersion slope for S = 

dD / dÀ [1]. Although (32 and D are directly proportional to each other, the relationship 

between (33 and S is more complicated. More details and numerical examples are 

provided in Appendix C. To avoid confusion, we adopt the convention that dispersion 

and second-order dispersion are synonyms for the (32 parameter, while dispersion slope 

and third-order dispersion refer to the same f33 parameter, and similarly the slope of 

dispersion slope is the same thing as the fourth-order dispersion (34. 

Had there been no nonlinearity, namely ,(z) = g(z, t) - 0, equation (4.11) would 

reduce to, 

aA(z, t) ~ i k-
1
f3k(Z) (~)k A( ) a(z)A( ) = a + ~ k' a z, t + 2 z, t 0, 

Z k=2 . t 
(4.13) 

which could be solved analytically using, for example, the method of Fourier trans­

form. Let F denote the linear operator of Fourier transform, a signal A(z, t) in the 

time domain can be represented equivalently in the frequency domain by, 

A(z, w) def FA(z, t) = J A(z, t) exp(iwt)dt = J E(z, t) exp[i(wo + w)t]dt. (4.14) 

Through a linear fiber, an optical signal A(zI, w) at z = Zl would be transformed into 

A(Z2'W) = H(Zl,Z2,W)A(Zl'W) at Z2 2:: Zl, where the transfer function H(Zl,Z2,W) is 
defined as, 

(4.15) 

In the time domain, the signaIs are related linearly as A(Z2' t) = P(Zl, z2)A(Zl' t), 
with the linear operator P(Zl, Z2) given by, 

(4.16) 
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Namely, P(ZI, Z2) is the concatenation of three linear operations: firstly Fourier trans­

form is applied to convert a temporal signal into a frequency signal, which is then 

multiplied by the transfer fun ct ion H (Zl' Z2, w), finally the resulted signal is inverse 

Fourier transformed back into the time domain. In terms of an impulse response, 

( 4.17) 

P(Zt, Z2) may also be represented as, 

(4.18) 

where ® denotes functional convolution. That is, the action of P(ZI, Z2) on a time­

dependent function is to convolve the function with the impulse response. Alllinear 

operators P(ZI' Z2) with Zl :::; Z2, also known as propagators, form a semigroup [73] 

for the linear evolution governed byequation (4.13). 

However, the existence of nonlinear terms in equation (4.11) makes the equation 

much more difficult to solve. Fortunately, when the signal power is not very high 

so that the nonlinearity is weak and may be treated as perturbation, the output 

from a nonlinear fiber line may be represented by a linearly dispersed version of the 

input, plus nonlinear distortions expanded in power series of the nonlinear coefficients 

[74]. Such representation falls into the general theory of Volterra series expansion 

for nonlinear systems [75, 76]. In practical transmission lines, although the end­

to-end response of a long link may be highly nonlinear due to the accumulation of 

nonlinearity through many fiber spans, the nonlinear perturbation terms of higher 

orders than the first are usually negligibly small within each fiber span. Up to the 

first-order perturbation, the signal A(Z2' t) as a result of nonlinear propagation of a 

signal A(zt, t) from Zl to Z2 ~ Zl, may be approximated using, 

AO(Z2' t) = P(ZI, z2)A(zt, t), (4.19) 

A I (Z2,t) = 1~2 P(Z,Z2) {h(z)IAo(z,t)1 2Ao(z,t) 

+ i [g(z, t) 0IAo(z, t)1 2
] Ao(z, t)} dz, (4.20) 

where A(Z2, t) ~ AO(Z2' t) amounts to a zeroth-order approximation which neglects 

the fiber nonlinearity completely, whereas the result of first-order approximation 

A(Z2' t) ~ AO(Z2' t) + Al (Z2, t) accounts in addition for the lowest-order nonlinear 

products integrated over the fiber length. The term Al (-, t) may be called the first­

order perturbation because it is linearly proportional to the nonlinear coefficients 'Y(') 
and g(., t). As an empirical rule, such approximation of first-order perturbation is 
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generally applicable to a single fiber span of several tens to 100 kilometers with opti­

cal power per WDM channel not much higher than 10 mW. For systems that consist 

of tens of spans to reach thousands of kilometers, the nonlinearity within each span 

has to be controlled at a low level in or der to avoid large accumulated nonlinearity 

of the whole system corrupting optical signaIs. Indeed, such long-distance transmis­

sion systems are often constructed with spans of tens to 100 kilometers in length and 

carrying approximately 10 mW or less per WDM channel. Even when methods of 

nonlinear compensation/suppression discussed in this thesis are employed to increase 

the permissable power by a factor of 2 f"V 5, the nonlinearity of each fiber span may 

still be reasonably approximated by the first-order perturbation theory. 

4.2.2 Principles of dispersion compensation using ope 
Dispersion equalization by OPC may be explained nicely using transfer functions in 

the frequency do main [77]. Optical signaIs at a fixed position in a fiber, possibly 

of many channels wavelength-division multiplexed together, may be described by a 

total electrical field E(t) = A(t) exp ( -iwot) , with the parameter Z oflocation omitted. 

The signaIs are fully represented by the slow-varying envelope A(t), or equivalently, 

by the Fourier transform of the envelope A(w) = FA(t). Leaving aside the loss/gain 

and neglecting the nonlinearities, the linear dispersive effect of a fiber transmission 

line is described by a multiplicative transfer function, 

( 
+00 b wk

) 
H (w) = exp i {; ~! ' (4.21) 

with 

(4.22) 

being the dispersions accumulated along the fiber length, and the dispersion par am­

eters {tJkh~2 being defined as in equation (4.12). A fiber line with such dispersion 

parameters transforms a signal A(w) into H(w)A(w), while OPC acts as a linear op­

erator that changes the same signal into OPC[A(w)] = A*( -w). Consider two fiber 
transmission lines that are not necessarily identical, but nevertheless have accumu­

lated dispersions satisfying the conditions, 

(4.23) 

so that HR(W) = Hd-w), where the super- and sub-scripts L, Rare used to distin­

guish the two fiber lines on the left and right respectively. When OPC is performed 

in the middle of the two fiber lines, the entire setup transforms an input signal A(w) 
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into, 

HR(W)OPC[Hdw)A(w)] = HR(w)Hl(-w)A*(-w) = A*(-w). (4.24) 

If A(w) is the Fourier transform of A(t), then the output signal A*( -w) corresponds 

to A*(t) in the time domain, which is an undistorted repli ca of the input signal A(t) 
up to complex conjugation. This proves that the dispersion of a transmission line with 

OPC in the middle may be compensated over a wide bandwidth, when the dispersion 

coefficients of the odd orders on the two si des of OPC, brk+I and b~k+I with k 2 1, 

in particular the third-order dispersions bf and b:, are bath compensated to zero, or 

they are exactly opposite to each other, while the even-order dispersion coefficients 

are the same on both sides. If a link has b: = -br, or even b: = br = 0, then 

it is compensated at least up to and including the fourth-order dispersion b4 • It is 

worth pointing out that the center frequency of the signal band may be shifted by the 

OPC from w{; on the left side to w{} on the right side, w{; # w{}, and the dispersion 

parameters on the two sides of OPC are defined with respect to the corresponding 

center frequencies. 

4.2.3 Principles of nonlinear compensation using ope and STS 
To compensate the nonlinearity of transmission fibers, our method of using STS 

[12, 13] requires that the conjugating fiber segments have the same sign for the 

loss/gain coefficients, opposite second-order dispersions, and the same sign for the 

third-order dispersions. Such conditions are naturaUy satisfied, at least approxi­

mately, in conventional fiber transmission systems, where, for example, an SMF may 
be paired with a DCF as conjugating counterparts. The symmetry is in the scaled 

sense, because the lengths of the fibers and the corresponding fiber parameters, in­

cluding the fiber loss coefficients and dispersions, as weIl as the Kerr and Raman 

nonlinear coefficients, are aU in proportion, and the proportional ratio may not be l. 

The symmetry is translation, because the curves of signal power variation along the 

fiber keep the similar shape, albeit scaled, when translated from the left to the right 

side of OPC, as depicted in the bottom graph of Fig. 4.1, sa do the curves of any 
above-mentioned fiber parameter if plotted against the fiber length. The shaded areas 

in the graph represent two typical fiber segments that are in STS about the phase 

conjugator. The fundamental discovery is that two fiber lines translation-symmetric 

about the OPC are able to cancel each other's nonlinearities up to the first-order 

perturbation. To understand the principle, imagine two fiber lines with opposite non­

linear coefficients but identicallinear parameters of dispersion and loss / gain. 1 t turns 

out that the nonlinear effects of the two are compensated up to the first-order pertur­

bation, when they are used in cascade as shown in Fig. 4.4. The first fiber stretching 
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from z = -L to z = 0 is a real, physical one with parameters a(z), {,Bk(z)h>2, )'(z), 
g(z, .), so that the signal propagation in which is governed by, 

ôA(z,t) ~ik-l,Bk(Z)(~)kA( ) a(z)A( )= 
ô + L.J kl Ô z, t + z, t z k=2 . t 2 

i)'(z)IA(z, t)1 2 A(z, t) + i [g(z, t) 0IA(z, t)1 2
] A(z, t), (4.25) 

-L ~ z ~ O. The other is a fictitious fiber stretching from z = 0 to z = L, with 

parameters a' (z), {,Bk (z) h~2, )" (z), g' (z, .) satisfying, 

a'(z) = a(z - L), 

,B~(z) = ,Bk(Z - L), V k ? 2, 

)"(z) = -)'(z - L), 

g'(z, t) = -g(z - L, t), V tE (-00, +00), 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

V z E [0, L]. Note that the fictitious fiber may be unphysical because of the oppositely 

signed nonlinear coefficients )" and g' [78, 79]. The signal propagation in this fictitious 

fiber obeys the following NLSE, 

ôA'(z, t) ~ ik-1,Bk(z) (~)k A'( ) a'(z)A'( ) = 
ô + L.J k

' 
Ô z, t + z, t 

z k=2 . t 2 

i)"(z)IA'(z, t)1 2 A'(z, t) + i [g'(z, t) 0IA'(z, t)1 2
] A'(z, t), (4.30) 

o ~ z ~ L. Fig. 4.5 shows the signal power and dispersion maps in the series of 

two fiber lines. It is obvious from equations (4.15-4.20) and (4.26-4.29) that the two 

fiber lines would induce opposite first-order nonlinear distortions to otherwise the 

same linear signal propagation (zeroth-order approximation), because the two linear 

propagators P(ZI - L, Z2 - L) and P(Zl, Z2) are exactly the same, for an Zl E [0, L] and 

an Z2 E [Zl' L], w hile the Kerr nonlinear coefficients )' (z - L) and )" (z), as weIl as the 

Raman coefficients g(z-L,·) and g'(z, '), are exactly opposite-valued, for all z E [0, L]. 
If the overall dispersion of each fiber line is compensated to zero and the signal loss 
is made up by linear optical amplifiers, then the same perturbation argument may be 

applied to the two lines in cascade to show that the fiber nonlinearity is annihilated 

up to the first-order perturbation. The problem is that an optical fiber with negative 

nonlinear coefficients may be only fictitious. It does not exist naturaIly. 

For a fictitious fiber of length Land with parameters as those in equation (4.30), 

the Kerr nonlinear coefficient )" is negative-valued, and the Raman gain 9 is reversed, 

or caIled "negative" as weIl [78], in the sense that it induces optical power flow from 
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(a, D, y, g) (a, D, -y, -g) 

z=-L z=O z=L 

Figure 4.4: The cascade of two fiber lines with opposite nonlinear coefficients but identical linear 
parameters of dispersion and loss/gain. DCG: dispersion compensation and gain. 

P(z) 

z=-L z=O z=L 

Figure 4.5: The signal power and dispersion maps for a series of two fiber Hnes with opposite 
nonlinear coefficients but identicallinear parameters of dispersion and loss/gain. 

lower to higher frequencies, which obviously will not happen normally. Fortunately, 

such fictitious fiber may be simulated by an ordinary fiber with the help of ope, as 

depicted in Fig. 4.6. An ordinary fiber of length LI R may be found with parameters 
a", {,Brh2:2, ,", g" satisfying the following ruIes of scaling, 

a"(z) = Ra'(Rz), 

(3~(z) = (_l)k-l R{3~(Rz), \j k 2: 2, 

1'''(z) = -Q1"(Rz), 

g"(z, t) = -Qg'(Rz, t), \j tE (-00, +(0), 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

\j z E [0, LI R], where R > 0, Q > ° are scaling factors. In this ordinary fiber, the 
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(a, D, -yP, -gP) 

z=O CC)) z=L 

R (a, -D, yP, gP) 

z=O z=L/R 

Figure 4.6: The functionality of a fictitious fiber with negative nonlinearities may be realized equiv­
alently by a conventional fiber with positive nonlinearities with the help of ope. 

NLSE of signal propagation is, 

aA"(z,t) ~ ik-lf3~(z) (~)kA"( ) a//(z) A" ( ) = a + L..,. k' a z, t + 2 z, t 
Z k=2 . t 

h"(z)IA"(z, t)12A"(z, t) + i [l'(z, t) 0IA"(z, t)12] A"(z, t), (4.35) 

v z E [0, Lj R]. That is, with the substitution of parameters according to equations 

(4.31-4.34) , 

aA"(z,t) ~ (-i)k-lf3~(Rz) (~)kA"( ) a'(Rz) A" ( ) = 
Raz + 6 k! at z, t + 2 z, t 

- iQR-1'l(Rz)IA"(z, t)12 A"(z, t) 

- iQR- l [l(Rz, t) 0IA"(z, t)12] A"(z, t), (4.36) 

v z E [0, Lj R]. After a further substitution, 

A"(z, t) = eiO(RjQ)1/2[A'(Rz, t)]*, (4.37) 

with () E R being an arbitrary phase, then a change of variable Rz ~ z, and finally 

taking the complex conjugate of the whole equation, equation (4.36) becomes math­

ematically identical to equation (4.30). Equation (4.37) is actually the scaling rule 

for the signal amplitudes. The physical implication is that, if a signal A'(O, t) is in­

jected into the fictitious fiber and the complex conjugate signal eiO(RjQ)1/2[A'(0, t)]* 
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is fed to the ordinary fiber, then the signal at any point z E [0, L/ R] in the ordinary 

fiber is eill (R/Q)1/2[A'(Rz, t)]*, which is eill (R/Q)1/2 times the complex conjugate of 

the signal at the scaled position Rz in the fictitious fiber. In particular, the output 

signals are A'(L, t) and eill (R/Q)1/2[A'(L, t)]* from the fictitious and the ordinary 

fibers respectively. Except for scaling the signal power by a factor R/Q, the ordinary 

fiber with two phase conjugators installed at its two ends performs exactly the same 

dispersive and nonlinear signal transformation as the fictitious fiber. Such equiva­

lence is illustrated in Fig. 4.6. In practice, the phase conjugator at the output end 

of the ordinary fiber may be omitted, as most applications would not differentiate 

between a signal and its complex conjugate. Replacing the fictitious fiber with neg­

ative nonlinearities in Fig. 4.4 by such scaled ordinary fiber with ope attached at 

the input end, one arrives at a nonlinearity-compensating setup using aU physical 

components/devices: an optical phase conjugator in the middle, an ordinary fiber on 

the left side stretching from z = -L to z = ° with parameters a(z), {,Bk(z)h~2, ,(z), 
g(z, .), and an ordinary fiber on the right side stretching from z = ° to z = L/ R with 
parameters a"(z), {,B~(Z)h~2, ,"(z) , g"(z, .). It follows from equations (4.26-4.29) 

and (4.31-4.34) that the parameters of the two fibers are related as, 

a"(z) = Ra(Rz - L), 

,B~(z) = (_l)k-l R,Bk(Rz - L), 'ri k ~ 2, 

,"(z) = Q,(Rz - L), 

g"(z, t) = Qg(Rz - L, t), 'ri tE (-00, +00), 

(4.38) 

(4.39) 

( 4.40) 

(4.41) 

'ri z E [O,L/R]. Equations (4.38-4.41) are called the scaling rules for two fibers to 

form a translation symmetry in the scaled sense about an optical phase conjugator 

[12, 13]. In or der for two fiber lines in STS to compensate their nonlinearities up to 

the first-order perturbation, it is further required that the input signaIs A( - L, t) and 

A"(O, t) at the beginning of the two fiber lines satisfy the following, 

A"(O, t) = eiB (R/Q)1/2[A( -L, t)]*, ( 4.42) 

where () E R is an arbitrary phase. Equation (4.42) may be regarded as the scaling 

rule for the input signaIs to the fibers. 

The analysis suggests that ope may help to compensate fiber nonlinearities be­

tween two transmission lines that are in STS. It should be emphasized that the fiber 

line on each side of ope does not necessarily consist of only one fiber span, and 

the signal intensity does not have to evolve monotonically either. The simple setup 

used above should only be regarded as an example for illustration and mathematical 
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convenience. The proposed method of nonlinear compensation works fine when each 

si de of the OPC consists of multiple fiber spans with optical amplifiers in between re­

peating the signal power. In which case, each fiber on one side should be paired with 

a scaled translation-symmetric counterpart on the other side, with the parameters 

and input signaIs of the fiber pair satisfying the similar scaling rules as in equations 

(4.38-4.42). Because most fibers do not start or end at z = 0 in a transmission line 

consisting of many spans, the scaling rules for them would be similar to equations 

(4.38-4.42) but with the position coordinates suitably adjusted. Furthermore, the 

scaling ratios may vary from one pair of fibers to another. Put in words, the scaling 

rules for STSs between pairs of fiber segments require that each pair of fiber segments 

have the same sign for the loss/gain coefficients, opposite second-order dispersions, 

the same sign for the third-order dispersions, and the same positive-valued nonlinear 

coefficients [78]. Moreover, a fiber may have its linear parameters scaled by a com­

mon factor and its nonlinear coefficients scaled by another factor, then the length of 

the fiber may be scaled inversely proportional to the linear parameters, and the signal 

power may be adjusted accordingly to yield the same strength of nonlinear interac­

tions. The conditions of "the same sign for loss coefficients and opposite signs for the 

second-order dispersions" are naturally satisfied by the transmission fibers and DCFs 

used in conventional transmission systems. Another fact, simple but crucially impor­

tant for practical applications, is that nonlinear effects are significant only in portions 

of fibers where the signal power is high. Wh en scaling fiber parameters and signal 

amplitudes to have two fiber spans inducing the same or compensating nonlinear ef­

fects, it is only necessary to make sure that the scaling rules of equations (4.38-4.41) 
and (4.42) are fulfilled in portions of fibers experiencing high levels of signal power. 

Elsewhere, the scaling rules may be loosened or neglected when the signal power is low. 

Relaxing the scaling rules in portions of fibers carrying low-power signaIs makes it 

much easier to find practical and commercially available fibers with suitable dispersion 

characteristics to manage the accumulated dispersions of individual spans. 

With such scaling of nonlinearities [12, 13], both the Kerr and Raman nonlinearities 

may be suppressed simultaneously if a proportional relation is maintained between 

the 'Y and 9 parameters as in the scaling rules of equations (4.40) and (4.41). When 

equations (4.40) and (4.41) can not be fulfilled simultaneously, either the Kerr or 

the Raman nonlinearity may be primarily targeted for compensation depending upon 

the actual application. For a translation symmetry between two fibers with opposite 

dispersions, the scaling rule of equation (4.38) requires the same sign for the loss/gain 

coefficients of the two fibers, which is a convenient condition to meet by the natural 

fiber losses. This is in contrast to the mirror symmetry between two fiber segments 
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that requires an amplifying segment correspond to a lossy one and vice versa. Fibers 

may be designed and fabricated with the requirements of scaled symmetry taken 

into consideration. For a given piece of fiber, the loss coefficient may need to be 

intentionally increased to meet the scaling rule. The extra loss may be induced 

by, for example, doping the fiber preform with erbium, or transition metals, or other 

impurities [80, 81], macro-bending [70] the fiber or writing long-period Bragg gratings 

into the fiber for scattering losses. Macro-bending may be built in a lumped fiber 

module having the fiber coiled tightly with a suit able radius. Also discrete fiber 

coils or Bragg gratings for light attenuation may be implemented periodically along 

the length of a fiber to approximate a continuous uniform loss coefficient. More 

sophisticatedly, Raman pumps may be employed to induce gain or loss to the optical 

signaIs depending upon the pump frequencies being higher or lower than the signal 

band, so to alter the effective gain/loss coefficient of the fiber. Even though it is rather 

difficult to change the dispersion of a given fiber, OPC is capable of shifting the center 

frequency of the signal band, which can fine-tune the effective dispersion at the center 

of the signal band, so long as the fiber has a non-zero dispersion slope. Even though 

most fibers are made of similar materials with similar nonlinear susceptibilities, their 

guided-wave nonlinear coefficients measured in W-1km-1 could he quite different due 

to the wide variation of modal sizes. Unless the ratio of nonlinear coefficients matches 

the ratio of dispersions, the signal powers in two conjugate fihers may have to differ 

by several dB as required by the scaling rule of equation (4.42) for STS. Alternatively, 

by taking advantage of the additivity of the first-order nonlinear perturbations, it is 

possible to adjust the signal powers in different fiber spans only slightly, such that 

one span of a highly-nonlinear type may compensate several fiber spans of another 

type with weaker nonlinearity. This method may be called "one-for-many" (in terms 

of fiher spans) nonlinearity compensation. 

It should be noted that the suitability of compensating nonlinearities among lossy 

fibers does not exclu de the method of translation symmetry from applying to sys­

tems with amplifying fibers due to Raman pumping [9, 82, 83, 84, 85] or rare-earth­
element doping [10]. The scaled translation-symmetric method applies to these sys­

tems equally weIl, provided that an amplifying fiber is brought into translation sym­

metry with respect to another fiber with gain. In fact, if two fibers with their intrinsic 

loss coefficients satisfying the scaling rule of equation (4.38), then the power of the 

Raman pumps (forward or backward) to them may be adjusted properly to yield ef­

fective gain/loss coefficients satisfying the same rule of equation (4.38). In particular, 

Raman pumped [86, 87, 88] or rare-earth-element-doped [89] DCFs may be conve­

niently tuned translation-symmetric to Raman pumped or rare-earth-element-doped 
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transmission fibers. For systems suffering considerable nonlinear penalties originated 

from long EDFAs [61], the penalties may be largely suppressed by arranging the 

amplifiers into conjugate pairs with STS about the OPC. The nonlinear and gain 

coefficients as weIl as the signal amplitudes in the amplifying fibers should obey the 

scaling rules. If the dispersions of the amplifying fibers are not negligible, they should 

be designed to satisfy the scaling rules as weIl. FinaIly, it is also necessary to note 

the limitation of nonlinear compensations using STS. That is, the methods cou Id 

only compensate the first-order nonlinear interactions among the optical signaIs. The 

higher-order nonlinear products are not compensated, nor is the nonlinear mixing 

between transmitted signaIs and amplifier noise. The accumulation of uncompen­

sated higher-order nonlinearities and nonlinear signal-noise mixing would eventuaIly 

upper-bound the amount of signal power permitted in the transmission fibers, so to 

limit the obtainable signal-to-noise ratio, and ultimately limit the product of data 

capacity and transmission distance. 

4.3 Dispersion and Nonlinear Compensations w/o OPC 
When there is no optical phase conjugator available, two fiber spans in a translation 

symmetry may still cancel out their intra-channel nonlinear effects to a large extent, 

and a proper arrangement of the pairs of translation-symmetric fiber spans could 

significantly reduce intra-channel nonlinear effects in a long distance transmission 

line. The intra-channel nonlinear effects, namely, nonlinear interactions among opti­

cal pulses within the same wavelength channel, are the dominating nonlinearities in 

systems with high modulation speeds of 40 Gb/s and above [65], where the nonlinear 

interactions among different wavelength channels become less-limiting factors. As a 

result of short pulse width and high data rate, optical pulses within one channel are 

quickly dispersed and overlap significantly so to interact through the Kerr effect. In 

the past a few years, intra-channel nonlinearities have been extensively investigated 

by sever al research groups [28, 29, 90, 91, 92, 93, 94, 95, 96], and a method has been 

identified for suppressing the intra-channel nonlinearity-induced jitters in pulse am­
plitude and timing, using lossless or Raman-pumped transmission lines manifesting 

a mirror symmetry [28, 29]. As mentioned before, the loss of pump power makes it 

difficult to maintain a constant gain in a long transmission fiber. Consequently, the 

significant deviation of signal power variation from a desired mirror-symmetric profile 

degrades the result of intra-channel nonlinear compensation using mirror symmetry 

[30]. Nevertheless, we have found that two fiber spans in a STS could cancel out their 

intra-channel nonlinear effects to a large extent without resorting to OPC, and a sig-
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nificant reduction of intra-channel nonlinear effects may be achieved in a multi-span 

system with translation-symmetric spans suitably arranged. 

z 

z 

z=o z=L z= 2L 

Figure 4.7: The signal power and dispersion maps for a cascade of two fiber spans in scaled translation 
symmetry with scaling ratio R = 1. Top: the variation of signal power along the propagation 
distance. Bottom: the dispersion map, namely, the variation of accumulated dispersion along the 
propagation distance. 

This time the translation symmetry requires that the corresponding fiber segments 

have the same sign for the loss/gain coefficients but opposite second- and higher-order 

dispersions, which are naturally satisfied conditions in conventional fiber transmission 

systems, where, for example, a transmission fiber may be paired with a DCF as 

symmetric counterparts. The STS further requires that the fiber parameters should 

be scaled in proportion and the signal amplitudes should be adjusted to satisfy, 

a(z) 
a'(z') 

f32(Z) f33(Z) 1'(z)IA(z, t)1 2 z' 1 
- --f32-(Z-') - --f3a-(z-') - 1"(z')IA'(z', t)12 - z - R' ( 4.43) 

v z E [0, L] and V t E (-00, +(0), where a(z), f32(Z), f33(Z) , and 1'(z) denote the 

loss coefficient, second-order dispersion, third-order dispersion, and Kerr nonlinear 
coefficient respectively for one fiber stretching from z = 0 to z = L > 0, while the 

primed parameters are for the other fiber stretching from z' = 0 to z' = L / R, R > 0 

is the scaling ratio, A(z, t) and A'(z', t) are the envelopes of optical amplitude in the 

two fiber segments respectively, whose initial values at z = 0 and z' = 0 respectively 

are required to be complex conjugate, 

A*(z = 0, t) -iO [1"(Z' = 0) ]1/2 
A'(z' = 0, t) = e R1'(z = 0) ,V tE (-00, +(0), (4.44) 
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where () E R is an arbitrary phase. Even though the effect of dispersion slope may 

be neglected within a single wavelength channel, the inclusion of the ,83-parameters 
in the scaling rules of equation (4.43) ensures that good dispersion and nonlinear 
compensations are achieved for each wavelength channel across a wide optical band. 

When a pair of such fiber segments in STS are cascaded, and the signal power levels 

are adjusted in accord an ce with equation (4.43), it may be analytically proved that 

both the timing jitter and the amplitude fluctuation due to intra-channel nonlinear 

interactions among overlapping pulses are compensated up to the first-order pertur­

bation of fiber nonlinearity, namely, up to the linear terms of the nonlinear coefficient. 

Since the dispersive and nonlinear transmission response is invariant under the scaling 

of fiber parameters and signal amplitudes as in equations (4.43) and (4.44) [13], it 

is without loss of generality to consider two spans that are in translation symmetry 

with the ratio R = 1 and ')'(z = 0) = ')"(z' = 0). The cascade of such two spans 

would constitute a transmission line stretching from z = 0 to z = 2L, with the fiber 

parameters satisfying, 

a(z) 
a(z + L) 

-
,83(Z) 

,83(Z + L) 
')'(z) = A*(O, t) = 1 

')'(z+L) A(L,t) , 
( 4.45) 

'ri z E [0, L] and 'ri tE (-00, +00). The translation symmetry is illustrated in Fig. 4.7 

with plots of signal power and accumulated dispersion along the propagation distance. 

It is only necessary to consider the Kerr nonlinearity within one wavelength chan­

nel, while the Raman effect may be neglected. The amplitude envelope of a single 

channel may be represented by a sum of optical pulses, namely, A(z, t) = I:k Uk(Z, t), 
where Uk(Z, t) denotes the pulse in the kth bit slot and centered at time t = kT, 
with k E Z and T > 0 being the bit duration. The following NLSE describes the 

propagation and nonlinear interactions among the pulses [65], 

OUk i,82(Z) 02Uk a(z) . "" * 
oz + 2 ot2 + -2-Uk = 'l'}'(z) ~ ~ umunum+n_k' 'ï/ k E Z, ( 4.46) 

where the right-hand si de keeps only those nonlinear products that satisfy the phase­
matching condition. The nonlinear mixing terms with either m = k or n = k con­

tribute to self-phase modulation and intra-channel XPM, while the rest with both 

m i= k and n i= k are responsible for intra-channel FWM [65]. It is assumed that aU 

pulses are initiaUy chirp-free or they can be made so by a dispersion compensator, 

and when chirp-free the pulses Uk(Z = 0, t), k E Z, should aU be real-valued. This in­

cludes the modulation scheme of binary phase-shift keying, where the relative phases 

between adjacent pulses are either 0 or 7r. It is only slightly more general to allow 

the pulses being modified by arithmetically progressive phase shifts <Pk = <Po + k!::l,<p, 
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k E Z, with CPO, ll.CP E [0, 27r), because equation (4.46) is invariant under the multipli­

cation of phase factors exp(icpk) to Uk, V k E Z. The linear dependence of CPk on k is 

in fact equivalent to a readjustment of the frequency and phase of the optical carrier. 

The pulses may be RZ modulated, and non-return-to-zero (NRZ) modulated as weIl, 

for an NRZ signal train is the same as a stream of wide RZ pulses with 100% dut y 

cycle. 

Were there no nonlinearity in the fibers, the signal propagation would by fully 

described by the dispersive transfer function, 

H(Zl,Z2,W) = exp [~b2(Zl,Z2)W2 - ~ 1~2 Œ(z)dz] , (4.4 7) 

with Zl, Z2 E [0,2L] and, 

(4.48) 

or equivalently the corresponding impulse response, 

which is calculated from F-1 [H (Zl' Z2, w)] up to a constant phase factor. The impulse 

response de fines a linear propagator P(Zl, Z2) as in equation (4.18). In reality, the 

signal evolution is complicated by the Kerr nonlinear effects. Nevertheless, the non­

linearity within each fiber span may be sufficiently weak to justify the application of 

the first-order perturbation theory: 

Vk(Z, t) = P(O, Z)Uk(O, t), 

v~(z, t) = i rz L L P(s, z) [')'(s)vm(s, t)vn(s, t)V~+n_k(S, t)] ds, 
Jo m n 

(4.50) 

(4.51) 

V k E Z, where Uk(Z, t) ~ Vk(Z, t) is the zeroth-order approximation which neglects the 

fiber nonlinearity completely, whereas the result of first-order perturbation Uk(Z, t) ~ 
Vk(Z, t) + v~(z, t) accounts in addition for the nonlinear products integrated over the 
fiber length. For the moment, it is assumed that both fiber spans are fully dispersion­

and loss-compensated to simplify the mathematics. It then follows that b(O, Z + L) = 

-b(O, z), ft+ L Œ(s)ds = ft Œ(s)ds, ')'(z + L) = ')'{Z) , V Z E [0, L], and vk(L, t) = 

vk(2L, t) = Uk(O, t), which is real-valued by assumption, V k E Z. It further follows 

that h(O, Z + L, t) = h*(O, z, t), hence P(O, Z + L) = P*(O, z) and P(z + L, 2L) = 

P*(z, 2L), V Z E [0, L]. Consequently, the pulses at Z and z+L are complex conjugate, 

namely, Vk(Z + L, t) = vZ(z, t), V k E Z, V z E [0, Ll. A typical term of nonlinear 
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mixing, 

(2L 
Jo P(Z, 2L) [1'(Z)Vm(Z, t)Vn(Z, t)V~+n_k(Z, t)] ds 

= foL P(Z, 2L) [1'(Z)Vm(Z, t)Vn(Z, t)V~+n_k(Z, t)] ds 

j,2L 

+ L P(z,2L) [1'(Z)Vm(Z, t)Vn(Z, t)V~+n_k(Z, t)] ds 

= foL P(Z, 2L) [1'(Z)Vm(Z, t)Vn(Z, t)V:n+n_k(Z, t)] ds 

+ foL P*(Z, 2L) b(Z)V:n(Z, t)V~(Z, t)Vm+n-k(Z, t)] ds, (4.52) 

is therefore real-valued. It follows immediately that the first-order nonlinear pertur­

bation v~(2L, t) is purely imaginary-valued, which is in quadrature phase with respect 

to the zeroth-order approximation vk(2L, t) = Vk(O, t), V k E Z. When the span dis­

persion is not fully compensated, namely, b2 (0, L) f=. 0, the input pulses to the first 

span at Z = ° should be pre-chirped by an amount of dispersion equal to -~b2(0, L), 
so that the input pulses to the second span at Z = Lare pre-chirped by ~b2(0, L) as 

a consequence. In other words, the input signaIs to the two spans should be oppo­

sitely chirped. Under this condition, the equation Vk(Z + L, t) = Vk(Z, t), V Z E [0, L], 
V k E Z is still valid, so are the above argument and the conclusion that Vk and v~ 

are real- and imaginary-valued respectively when brought chirp-free. 

Mathematically, that Vk and v~ are in quadrature phase implies IUkl2 = IVk + 
v~12 = IVkl2 + Iv~12, where Iv~12 is quadratic, or of second-order, in terms of the Kerr 

nonlinear coefficient. This fact has significant implications to the performance of 

a transmission line. Firstly, it avoids pulse amplitude fluctuations due to the in­

phase beating between signal pulses and nonlinear products of intra-channel FWM, 

which could seriously degrade the signal quality if not controlled [28, 65, 91, 96]. 

The quadrature-phased nonlinear products due to intra-channel FWM lead to the 

generation of "ghost" pulses in the "ZERO" -slots [90, 93, 94] and the addition of noise 

power to the "ONE" -bits. As second-order nonlinear perturbations, these effects are 
less detrimental. Secondly, it eliminates pulse timing jitter due to intra-channel XPM 

up to the first-order nonlinear perturbation. The (remaining) second-order nonlinear 

effects may be quantified by estimating the energy of the signaIs {V~hEZ, which are 

generated by nonlinear interactions and accumulated through the transmission line. 

It follows from equation (4.51) that the energy content of a nonlinearly generated 

pulse at Z = 2L is, 
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= 1+00 

112L I: I: P(z, 2L) [1'(Z)Vm(Z, t)vn(z, t)V~+n_k(Z, t)] dZI
2 

dt 
00 0 m n 

= 1'!axP5 L2TC(0, 2L), (4.53) 

where 1'max def max{ 1'( z) 1 ° :::; Z :::; 2L}, Po is the average optical power out of the 

transmitter, and C(O, 2L) is an integration constant, 

C(O, 2L) def (4.54) 

1:00 ItL ~ ~ P(z, 2L) [1'(Z)Vm (Z, t)vn(z, t)V;'+n_'(Z, t) ]1';;;!"PO-3/2 L-1dZ[' r-1dt, 

which depends on the detailed maps of dispersion and loss/gain coefficient of the 

transmission line under consideration, but is invariant under scaling of pulse power. 

Given the dispersion and power maps of a transmission line, the integration con­

stant C(O, 2L) may be evaluated either analytically or numerically, such that the 

energy of nonlinear pulses may be accurately calculated. To serve our purpose here, 

it is sufficient to grasp the asymptotic behavior of J!";: Ivk(2L, t) 12dt, k E Z. Using 

the "big-O" notation [97], (4.53) may be nicely represented as, 

1:00 

Iv~(2L, t)12dt = PoT x 0 (1'!axP5 L2), V k E Z, (4.55) 

while the energy content of an original pulse is, 

1+00 2 1 
-00 IVI(O, t)1 dt = 2 PoT, (4.56) 

for any lth data slot that is not empty, so long as the data stream is balanced, namely, 

the ZERO- and ONE-bits are equal in probability. It is clear from equations (4.55) 
and (4.56) that the energy of ghost pulses and fluctuations of ONE-bits are second­

order infinitesimals comparing to the nominal energy of a ONE-bit, when 1'maxPoL is 
small. Using the moment method [28, 91], the time of arrivaI for the center of the 

kth pulse, if it is a ONE-bit, may be calculated as, 

rkT+T/2 tlu 12dt rkT+T/2(t - kT) (Iv 12 + Iv'12) dt 
(t) = JkT-T/2 k = kT + JkT-T/2 k k 

k rkT+T/21 12dt rkT+T/2 (1 12 + l '12) dt JkT-T/2 Uk JkT-T/2 Vk Vk 
rkT+T/2(t _ kT)lv 12dt + 0 (T) rkT+T/2 Iv' 12dt = kT + JkT-T/2 k JkT-T/2 k 

[1 + 0 b~axP6L2)] J:r~i/; IVkl 2dt 

= kT + 0 ( 1'!axP5 L2) T, V k E Z. (4.57) 

The timing jitter 0 (1'!axPJ L2) T is a second-order infinitesimal when 1'maxPOL is 

small. It is noted that the bound of timing jitter in equation (4.57) is derived from 

energy calculations, which holds true regardless of the pulse shapes of the original 

and nonlinear signaIs. 



5 
ADVANTAGES, LIMITATIONS, OTHER TECHNOLOGIES 

5.1 Advantages and Limitations, Comparison to Other 

Technologies 
Distributed nonlinear compensations are advantaged approaches that are not only 

theoretically (mathematicaIly) tractable and elegant but also convenient to implement 

in practice, as the physical requirements may be fulfilled by practical transmission 

fibers, DCFs, and other specialty fibers. Based on nonlinear Schrodinger equations 

that describe dispersive and nonlinear signal propagation in optical fibers, it is conve­

nient to analyze the propagation effects of short segments fibers, in particular the com­

pensation of such effects between two segments in conjugation, to identify conditions, 

and to optimize fiber parameters for best nonlinear compensations. Our methods of 

distributed nonlinear compensations with scaled symmetries suggest to use recently 

available specialty fibers with dispersion, dispersion slope or higher order-dispersions, 

and loss/ gain coefficients proportional to those of transmission fibers, where for a 

mirror symmetry in the scaled sense, a specialty fiber needs to be erbium-doped or 

Raman pumped to be amplifying and conjugate to a lossy transmission fiber. Apart 

from the generality of our mathematical derivations ensuring wide applicability, an­

other distinctive feature of our proposaIs is that the physical implementations are 

enabled by fiber components and technologies that are either already commercially 

available, practically instaIled, or at least becoming available soon. In particular, a 

translation symmetry in the scaled sense makes it possible to compensate nonlinearity 
of transmission fibers without requiring an amplifying fiber as conjugate to each lossy 

transmission fiber. Eliminating the necessity of distributive amplification renders the 

methods directly applicable to conventional transmission systems consisting of trans­

mission fibers and DCFs. Even without optical phase conjugation, scaled translation 

symmetries, as weIl as scaled mirror symmetries, are capable to suppress the so-called 

intra-channel nonlinear effects. 

Distributed nonlinear compensations are rather suitable for new designs and instal-

57 
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lations of fiber transmission systems, or upgrading installed systems without DCMs 

at the sites of optical amplifiers, where types of fibers and their arrangement may 

be optimally chosen to form proper symmetries in the scaled sense. One major 

shortcoming of distributed nonlinear compensations is that the applications are in­

convenient, or limited, in installed fiber plants with fixed fibers and arrangements 

that are not configured in accordance with scaled symmetries, where integrated, or 

lumped compensations may be better suited. Another limitation cornes from stochas­

tic and often time-varying polarization variations of optical signaIs, which lead to 

PMD, polarization-dependent loss (PDL), and polarization-dependent nonlinear in­

teractions. It should be noted though, that such polarization-related effects are not 

specifie to distributed nonlinear compensations, rather, the same polarization effects 

also impose challenges to lumped compensators. PMD and PDL are linear effects, 

which may impose non-negligible limitations to systems using high-speed modulations 

of 40 Gb/s and above. Fortunately, advanced techniques of fabrication and assembly 

could drastically reduce such linear polarization-related impairments in fibers, optical 

amplifiers, optical filters, and optical switches. Furthermore, for systems suffering sig­

nificant PMD, especiaUy those using legacy fiber plants and high-speed modulations, 

dynamic (optical) PMD compensators have been developed or are under development 

[98, 99, 100, 101, 102] to mitigate the effects of pulse broadening and crosstalk due 

to PMD. By using low-PMD transmission fibers and possibly optical PMD compen­

sators, it may be possible and practical to control the random polarization-dependent 

effects, such that the differential group delay (DGD) between the two principal states 

of polarization (P8Ps) [103, 104] is always smaU comparing to the duration of a 

single optical pulse. Consequently, the two polarization components of each optical 

pulse stay pretty close to each other, and the optical pulse remains approximately 

the same as an energy packet. However, nonlinear interactions among optical signaIs 

are polarization-discriminating, namely, the nonlinear coupling coefficients for signaIs 

with different combinations of polarization states may be different [5, 6, 103, 105]. 

80 the stochastic rotations of polarization states of different wavelength channels due 
to random fiber birefringence make the nonlinear interactions among optical chan­

nels stochastic in nature, and may limit the extent and effectiveness of controUed 

nonlinear compensations between pairs of fiber spans. Even within one wavelength 

channel or a few adjacent channels, where the relative polarization states of aU signaIs 

remain the same, the random birefringence and polarization-dependence of nonlinear 

coupling generate nonlinear products that are not "parallel" to the original signaIs in 

terms of polarization states, which may also limit the effectiveness of controlled non­

linear compensations between pairs of fiber spans. Nonlinear signal propagation and 
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distributed nonlinear compensations under random birefringence will be discussed 

in greater details shortly. Here, it may be worthwhile to mention another method 

of distributed nonlinear compensations proposed by Tsang and Psaltis [106), which 

tries to compensate fiber nonlinearity and dispersions of aIl orders by using spec­

tral phase conjugation, as opposed to temporal phase conjugation used in ours and 

previous proposaIs. SpecificaIly, for an optical signal represented by a slow varying en­

velope A(z = Zo, t) with the corresponding Fourier transform A(zo,w) def F[A(zo, t)), 

a temporal phase conjugator at z = Zo transforms the signal into A*(zo, t) with the 

corresponding Fourier transform A*(zo, -w), whereas a spectral phase conjugator at 

z = Zo transforms the signal into A*(zo, -t) with the corresponding Fourier transform 

A*(zo, w). The great advantage of using spectral phase conjugation is that disper­

sions of any orders, both even and odd, may be compensated simultaneously. One 

serious drawback is that a spectral phase conjugator is difficult to implement. An 

operation of spectral phase conjugation, equivalent to time reversaI with complex 

conjugation, is only possible for signaIs within a finite (usually rather narrow) win­

dow of time. A continuous data stream has to be segmented into periodic time slots 

with guard bands in between, and spectral phase conjugation needs to be performed 

before optical pulses breach adjacent time windows due to GVD-induced pulse broad­

ening and walk-off among WDM channels. It appears rather difficult to spectrally 

phase-conjugate multiple WDM channels simultaneously. 

Apart from distributed methods, there have been proposaIs of nonlinear compen­

sations using lumped, or integrated signal processors, which may be either optical, 

based on fiber and other nonlinear optical devices, or electrical, based on semicon­

ductor le chips. Watanabe et al. [17, 18] have actually built an integrated optical 

nonlinear compensator consisting of multiple short fiber segments and amplifiers cor­

responding to a long-distance transmission system based on DSFs. Pare et al. [107] 

proposed to compensate for the dispersion and Kerr nonlinearity using a semiconduc­

tor waveguide with a large negative nonlinear coefficient. Gabitov and Lushnikov [108] 

suggested to compensate the effects of nonlinear transmission fibers using negative 

nonlinearity generated by a nonlinear optical interferometer. Besides the apparent 

that lumped compensators use integrated nonlinear devices that do not contribute to 

the transmission distance, another essential characteristic of lumped nonlinear com­

pensations is that they do not seek to arrange a whole transmission system into any 

scaled symmetry and to have paired differential fiber segments compensating each 

other, rather, they attempt to equalize the lumped nonlinear transfer functionals of 

two sub-systems. In this regard, Minzioni et al.'s proposaI [109] to optimally place 

an optical phase conjugator in a fixed transmission line, often not co-Iocated with an 
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optical amplifier, may be better viewed as a method of lumped nonlinear compen­

sation. However, the proposed optimization is overly constrained by not changing 

any system configuration and operation condition but only varying the position of 

the phase conjugator, and thus un able to best equalize the lumped nonlinear transfer 

functionals. As a consequence, the achievable improvement of transmission perfor­

mance is only marginal [109]. Recent advancements in digital signal processing (DSP) 

le chips have made it possible to digitally pro cess the data stream of a wavelength 

channel at 10, 20, and even 40 Gb/s, once it is down-converted coherently to the 

electrical domain or before the data stream is up-converted to the optical domain 

[110, 111, 112, 113, 114, 115]. Up to now, such semiconductor DSP compensators 

have mainly demonstrated lumped dispersion compensations, although it is readily 

conceivable that such DSP approaches may be extended to the realm of nonlinear 

signal processing, so to achieve lumped nonlinear compensations. To that end, how­

ever, the DSP le chips have to be able to cope with the much increased complexity 

associated with both dispersive and nonlinear transfer functionals. FUrthermore, such 

complexity grows drastically and rapidly, following a square law, when the essential 

bandwidth of a data stream increases, due to either an increase of modulation speed 

or joint signal processing of multiple WDM channels. 

A lumped nonlinear compensator, whether optical or electrical, is an integrated 

device installed at either the transmission or the receiving end of a point-to-point 

link, which has to be tailor-made for the specific transmission line. The result is a 

lack of fiexibility: an installed nonlinear compensator may cease to work when the 

corresponding transmission line is altered; it may be prohibitively costly and labor­

intensive to design and optimize a special nonlinear compensator for each transmis­

sion line. Moreover, an optical lumped nonlinear compensator may be difficult to 

fabricate: due to the other uncooperative aspect of optical nonlinearity, it is often a 

challenge to generate enough nonlinearities in a lumped nonlinear compensator using 

short segments of fibers or other nonlinear waveguides. For electricallumped nonlin­

ear compensators using DSP le chips, sorne fiexibility may be accommodated by their 
programmability. However, it is quite an effort to have such electronics to keep up with 

the high and increasing speed of optical data. AIso, programming the DSP chips for 

different fiber links, or reprogramming them to accommodate changes of transmission 

Hnes or routing paths, could induce extra costs or time delay in network availability. 

And, an installed electronic processor may become obsolete, when its corresponding 

channel changes line rate or modulation format. At a fundamentallevel, lumped non­

linear compensations would require an efficient representation for a lumped nonlinear 

transfer functional and an efficient algorithm calculating such transfer functional of 



5: ADVANTAGES, LIMITATIONS, OTHER TECHNOLOGIES 61 

a given dispersive and nonlinear system, as weIl as an efficient method implementing 

a desired nonlinear transfer functional using a fixed set of operational blocks, which 

may be either physical such as dispersive components and nonlinear devices for opti­

cal compensators, or numerical such as fast Fourier transform (FFT), multiplication 

of frequency-dependent phase factors, and nonlinear DSP operations, for electronic 

compensators. Nonlinear transfer functionals may be represented by Volterra series 

[75, 76], and there have been discussions of using such series to describe the dispersive 

and nonlinear responses of fiber channels [116, 117, 118, 119]. However, it remains to 

be a highly complicated computational task to calculate a Volterra series for a given 

fiber transmission line with known physical parameters. Much worse is to "learn" the 

nonlinear transfer functional of a "black-box" transmission system with aIl physical 

parameters not known, which is a problem of nonlinear system identification. After 

the transfer functional of a nonlinear system being computed or learned, a following 

problem is to calculate the best "inverse" transfer functional that should be realized 

by a lumped compensator for the nonlinear system. Interestingly, the viewpoint of 

distributed nonlinear compensations may be useful for this problem, that is, a ficti­

tious distributed nonlinear compensator may be constructed mathematicaIly, which 

forms a scaled symmetry with respect to the system to be compensated and hence 

optimally undoes the dispersive and nonlinear signal propagation, then a Volterra se­

ries may be computed for the fictitious distributed compensator, which would be the 

best inverse to the lumped transfer functional of the system to be compensated. At 

last, it has not been addressed, and may be an interesting research topic, to answer 

questions as what is theoreticaIly the minimum complexity of a nonlinear transfer 

functional with respect to a given set of operational blocks, and how to practicaIly 

build a lumped nonlinear compensator using the least number of operational blocks 

in the given set. 

5.2 Polarization Effects and Vectorial Nonlinear 

Schrodinger Equations 
In Chapter 3, we have assumed that aIl optical signaIs are co-linearly polarized, based 

on which a scalar slow-varying envelope may be used to represent the signaIs, and 

NLSEs of scalar envelopes have been derived to describe the dispersive and nonlinear 

propagation of signaIs in fiber transmission lines. The NLSEs serve as the bases of 

our mathematical derivations and analyses of distributed nonlinear compensations 

using scaled symmetries. In reality, aIl input WDM signaIs may not be co-linearly 

polarized, even if initially they are, the polarization state of each WDM channel 
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would rotate randomly (on the so-called Poincaré sphere), and the polarization states 

of different WDM channels would gradually walk off, due to random birefringence 

in optical fibers, unless the fibers are polarization-maintaining. Furthermore, differ­

ent polarization components of the same wavelength channel may travel at different 

speeds, leading to DGD, which is the lowest order, and often dominating, effect of 

PMD. Removing the assumption of aIl signaIs being co-linearly polarized, and using 

a two-component slow-varying envelope (Ax, Ayf to represent the arbitrarily polar­

ized optical signaIs, but keeping other assumptions and making the same (or similar) 

mathematical approximations, one could follow the same procedures in Chapter 3 to 

derive the following vectorial NLSE [5, 103], 

8~x + f31x(Z) 8~x _ iDx(z)Ax + ax~z) Ax - iK(Z)Ay exp[+i4>(z)] 

= i1'(z) (IAxI2 + ~IAYI2) Ax + i1'(zHA;A~ exp[+i24>(z)], (5.1) 

88~y + f31y(Z) 8~y - iDy(z)Ay + ay~z) Ay + iK*(z)Ax exp[-i4>(z)] 

= h(z) (IAyI2 + ~IAxI2) Ay + h(zHA;A; exp [-i24>(z)], (5.2) 

where x and y are orthogonal axes that may be arbitrarily chosen but giobally fixed, 

the a, {f3kh::::o, and D parametersjoperators are subscripted by either x or y to 

indicate the association with the corresponding polarization component, K(Z) is a 

random coefficient of coupling between the two polarization modes, 

d f JZ 4>(z) e [f3oy(() - f3ox(()]d(, (5.3) 

is the accumulated phase walk-off between the two polarizations. The vectorial NLSE 

may be simplified as, 

8Ax ( ) 8Ax . () a(z) . ( ) [' ( )] 8z + f31x Z Tt - 2Dx z Ax + -2-Ax - 2K z Ayexp +1,4> z 

= h(z) (IAxI2 + ~ IAyI2) Ax, (5.4) 

8~y + ,81y(Z) 8~y _ iDy(z)Ay + a~z) Ay + iK*(z)Ax exp [-ic/>(z)] 

= i1'(z) (IAyI2 + ~IAxI2) Ay, (5.5) 

when PDL is negligible so that ax(z) = ay(z) = a(z), and the effective length of 

nonlinear interactions is much longer than the birefringence beat length so that the 

integration of the last FWM term in (5.1) and (5.2) vanishes [105]. 
Another model or viewpoint of random fiber birefringence, possibly more pertinent 

to the physical reality and more suit able for computer simulations, does not take a 
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globally fixed coordinate (x, y), rather, it assumes that the principle polarization axes 

of the fiber rotates randomly but continuously and the strength of local birefringence 

is a random variable. However, the model may employa rotating coordinate system 

that follows the continuous rotation of the principle polarization axes of the fiber, 

such that the local axes appear to be invariant and are always labeled by x and y, 

and the random fiber birefringence is incorporated by a continuous unitary rotation 

of the polarization states of signaIs. For numerical simulations, the model may be 

discretized and reduces to a split-step model, which mimi cs a randomly birefringent 

fiber by repeating the following steps, 

A) random but unitary rotation of signal polarization states: 

[ 
Ax ]-+ [ uv] [Ax ] = [ uAx + vAy ], (5.6) 
Ay -v* u* Ay u*Ay - v*Ax 

where u and v are random complex numbers independent of the input 

polarization state (Ax, Ayf and satisfying lul2 + Ivl2 = 1; for a fiber 

segment of length ~z and centered at z, u and v may be related 

to the mode coupling coefficient K(Z) in equations (5.4) and (5.5) as 
u = [1 - IK(z)~zI2l1/2, V = iK(Z)~Z; 

B) nonlinear and birefringent propagation: 

BAx i~fJ _. (1 12 21 12) Bz + -2-Ax - "'''/ Ax + 3 Ay Ax, 

BAy i~fJ _. (1 12 21 12) Bz - -2-Ay - 'l,,/ Ay + 3 Ax Ay, 

(5.7) 

(5.8) 

where fJoy(z) - fJox(z) - ~fJ, and ,,/(z) = ,,/, are constants within each 

such step; 

C) linear dispersive and lossy propagation: 

(5.9) 

(5.10) 

where Dx,y(z) = Dx,y, and Œ(Z) = Œ, are constants within each step. 
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5.3 Effectiveness of Nonlinear Compensations under 

Stochastic Polarization Variations 

64 

When estimating the strength of nonlinear interactions and calculating the amount 

of nonlinear distortions in a given fiber transmission line, our model of co-linear 

polarization for aIl WDM channels leads to a overly pessimistic (upper-bound) es­

timation [2, 103], as nonlinear interactions are the most efficient when aIl signaIs 

are co-polarized. However, when analyzing the performance of distributed nonlin­

ear compensations, the model of co-linear polarizations tends to be overly optimistic 

comparing to what is achievable practically, because uncontrollable random birefrin­

gence spoils a perfect scaled symmetry between two compensating fiber segments. A 

straightforward solution to this problem is to use PM fibers throughout a system, and 

to have PM fibers forming scaled symmetries for matched nonlinear compensations. 

Such PM transmission systems would not only be amenable to weIl controlled nonlin­

ear compensations, but also completely solve the problem of PMD-induced random 

pulse broadening, and further double the capacity per fiber conveniently by means of 

polarization multiplexing [120, 121, 122, 123, 124, 125, 126]. 

However, most optical fibers currently available and in use are not of the PM type. 

Despite aU the efforts of maintaining the circular symmetry during the fabrication 

pro cess , actual non-PM fiber products are always blemished by small but random 

deviations from an ideal circular waveguide, and often perturbed by random stress 

and bending. Such deviations and perturbations cause random birefringence hence 

random coupling between the polarization modes. The manifestations are random 

rotations of polarization states of different WDM channels and even different fre­

quency components of the same wavelength channel, as well as random walk-offs in 

time between different polarization components. The resulted linear pulse broaden­

ing may be controlled by using low-PMD fibers and and/or installing dynamic PMD 

compensators [98, 99, 100, 101, 102] along a transmission line. To achieve distributed 

nonlinear compensations, the DGD between the two PSPs have to be kept always 

much smaller than the duration of a single optical pulse. Still, the effectiveness of 
distributed nonlinear compensations may be seriously limited by the stochastic rota­

tions of polarization states due to random fiber birefringence, which in conjunction 

with the polarization-dependence of fiber nonlinearities [5, 6, 103, 105] makes the non­

linear interactions among optical signaIs essentially stochastic processes, that might 

not be weIl compensated using a fixed, deterministic setup. Nevertheless, our previ­

ous formulations and analyses based on the assumption co-linear polarizations should 

be weIl applicable to wavelength channels individually and WDM systems with high 
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modulation speeds and/or wavelength channels widely separated, where intra-channel 

nonlinear interactions dominate, because the degree of polarization of an individual 

channel is preserved even after a significant distance of propagation in spite of random 

rotations, which is more so when soliton transmissions are used [51, 122, 124]. In the 

model of principle states [102, 103, 127], the first-order and dominating PMD response 

of a fiber transmission li ne may be described as the propagation of two orthogonal 

princip le states at different group velocities, where the orthogonality between the two 

principle states are maintained from the beginning throughout the transmission line. 

The DGD between the two principle states broadens optical pulses, which however 

may be controlled using first-order PMD compensators. 

It may be expected that distributed nonlinear compensations could perform fairly 

weIl even in dense WDM systems based on two considerations. Firstly, the polariza­

tion states of adjacent channels with small wavelength separations may rotate syn­

chronously un der perturbations of small and random fiber birefringence, such that 

their relative polarizations, paraIlel, orthogonal or anything in between, remain the 

same for a significant transmission distance, beyond which higher-order PMD com­

pensators capable of processing multiple wavelength simultaneously may be employed 

to readjust the polarization states [98, 101, 102]. Secondly, the polarization-sensitive 

Kerr nonlinearities among WDM channels, manifested as inter-channel FWM and 

XPM, die out fast when the channel separation increases, whereas the stimulated 

Raman coupling between two channels, though strongly polarization-dependent, is 

effective only if the frequency separation is sufficiently large, much over 1 THz [2, 6]. 

The relative polarizations of largely separated channels are quickly randomized, such 

that the Kerr and Raman interactions may be weIl described by NLSEs with effective 

(averaged) coefficients [6, 103]. 

Within one wavelength channel, even though the relative polarization states of 

aIl signaIs remain the same, the random birefringence and polarization-dependence 

of nonlinear interactions generate nonlinear products that are not parallei to the 

original signaIs in terms of polarizations, in contrast to the perfect alignment of 

the original and nonlinear polarizations predicted by the NLSEs assuming co-linear 

polarizations and neglecting random fiber birefringence. For two actual fiber segments 

in a scaled symmetry but each with random and independent birefringence, how weIl 

they could match and compensate each other's nonlinear effects may be estimated 

by a lower-bound of the degree of parallelism between the original and nonlinear 

polarizations in each segment under random birefringence. In the split-step model 

discussed previously, the non-parallelism between linear and nonlinear polarizations, 

also referred as "nonlinear birefringence", is generated in a typical B) step, where a 
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random input field vector may be, 

E(O, t) = [ Ax(O, t) 1 = A(O, t) [ cos () exp( -i4>/2) 1 ' (5.11) 
Ay(O, t) sin(}exp(+i4>/2) 

with () E [0,71"], 4> E [0,271") being random angles. The statistics of ((},4» is not of 

much concern, rather, it is sought to obtain a worst-case estimation of the parallelism 

between the linear and nonlinear polarizations. The output of the B) step may be 

approximated as, 

E(~z, t) = Elin(~Z, t) + i')'~zEnon(~z, t) 
def [ Aox(~z, t) 1 . A [AIX(~Z' t) 1 = + Z')'uZ , 

Aoy(~z, t) Aly(~Z, t) 
(5.12) 

where 

Elin (.6.z, t) = [ Aox(.6.z, t) ] = A(O, t) [ c~s () exp ( -~ep/2) ] , (5.13) 
Aoy(.6.z, t) sm(}exp(+zep/2) 

with ep def 4> + .6.{3.6.z, and 

E (.6.z t) = [ AIx (.6.z, t) 1 
non, Aly(~Z, t) 

= IA(O, t) 12 A(O, t) [ (cos
2 

(} + ~ sin
2 

(}) COS (} exp( -iep /2) 1 
(sin2 (} + ~ cos2 (}) sin (} exp( +iep /2) 

= IA(0,t)1 2A(0,t) [ (~+ ~C~S2(}) c~s(}exp(-~ep/2) ]. (5.14) o + ~sm2(}) sm(}exp(+zep/2) 

The parallelism between Enon and Elin may be quantified by calculating the cosine 

of the "angle" between the two vectors, 

(5.15) 

which is in generalless than but always close to 1 as shown in Fig. 5.1, indicating 

high parallelism. It may be concluded that, for each individual wavelength channel, 
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so long as the DGD is always controlled well under the bit duration and higher­

order PMD effects are negligible, two fiber segments in a scaled symmetry would well 

compensate each other nonlinearly even under the effect of random birefringence, with 

the intrinsic error due to nonlinear birefringence upper-bounded by 0.5%. This may 

explain the experimentally observed excellent performances of distributed nonlinear 

compensations even under unavoidable random birefringence in actual fibers [17, 18, 

20, 24, 25]. 
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Figure 5.1: Degree of parallelism between Enon and Elin as () varies. 
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6 
PRACTICAL NONLINEAR COMPENSATION USING STS 

6.1 Optimal STS Setups of Fiber Transmission Lines 
Having established the basic princip les of dispersion equalization and nonlinear com­

pensation using OPC and STS, we shall now discuss practical designs of fiber sys­

tems for long-distance transmissions, with realistic (commercially available) DCFs 

and transmission fibers that are optimally configured according to the basic prin ci­

pIes of simultaneous compensation of dispersion and nonlinearity. A long-distance 

transmission line may consist of many fiber spans, each of which may have trans­

mission and dispersion-compensating fibers. Two fibers with opposite (second-order) 

dispersions may be tuned translation-symmetric to each other about a phase con­

jugator. For optimal nonlinear compensation, the fiber parameters and the signal 

amplitudes should be adjusted to meet the conditions of translation symmetry, often 

approximately, not exactly, because of the dispersion slopes [13]. In particular, if one 

fiber span has a positive-dispersion (+D) fiber followed by a negative-dispersion (-D) 

fiber, then the counterpart span has to place the -D fiber before the +D fiber, in order 

to achieve an approximate translation symmetry between the two fiber spans. Even 

though the +D and -D fibers are usually made of similar materials with similar non­

linear susceptibilities, their guided-wave nonlinear coefficients measured in W-1 km- 1 

could be quite different due to the wide variation of modal sizes. Unless the ratio 

of nonlinear coefficients matches the ratio of dispersions, the signal powers in two 

conjugate fibers may have to differ by several dB as required by the scaling rule of 

equation (4.42) for STS. 
Should it be desired to have a similar level of signal powers into the nonlinearity­

compensating +D and -D fibers, one may adjust the signal powers in the +D and-D 

fibers only slightly, such that one span of a type with st ronger nonlinearity generates 

an amount of nonlinearity that is equivalent to an integral multiple of the amount of 

nonlinearity generated in one span of another type with weaker nonlinearity. If each 

span with weaker nonlinearity is dispersion-compensated to have approximately zero 

accumulated dispersion, then each of sever al such spans in cascade may indeed induce 

69 
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approximately the same nonlinear response. And for a reasonably small number of 

such cascaded spans with weaker nonlinearity, the overall nonlinear response may still 

be weIl approximated by a combined first-order perturbation, which is just the sum 

of the first-order perturbations of individual spans. Then one may take advantage 

of the additivity of the first-order perturbations and have one span of the type with 

stronger nonlinearity to compensate several spans of the other type with weaker 

nonlinearity. This method is called one-for-many nonlinear compensation. More 

generally, it is possible to have several spans of the type with weaker nonlinearity 

generating different amounts of nonlinearity, still their combined nonlinearity may 

be compensated by one span of the type with st ronger nonlinearity, so long as all 

nonlinearities remain perturbative and the first-order perturbation of the span with 

stronger nonlinearity is equivalent to the sum of the first-order perturbations of the 

spans with weaker nonlinearity. 

When two fiber spans are translation-symmetric about an optical phase conjugator, 

one span is called the translation conjugate to the other about the OPC. As discussed 

in Chapter 4, OPC is able to equalize dispersion terms of even orders. So the two parts 

of a transmission line with OPC in the middle should have the same amount of b2 and 

b4 but exactly opposite b3 , or both have b3 = 0, where the b-parameters are defined as 

in equation (4.22). In a more restrictive implementation, each fiber span consists of 

+D and -D fibers with the total dispersion slope compensated to zero. The +D and 

-D fibers in each span need not to match their dispersions and slopes simultaneously. 

It is sufficient to fully compensate b3 , while leaving residual even-order terms b2 and 

b4 . Two conjugate spans would be configured as +D followed by -D fibers and -D 

followed by + D fibers respectively. The two conjugate spans may not be exactly the 

same in length, and they may have different integrated dispersion terms of the even 

orders. The two types of fiber spans may be mixed and alternated on each side of the 

OPC, so that the two sides have the same total b2 and b4 . Transmission lines with 

such dispersion map are convenient to plan and manage. However, it is worth noting 

that the present method of simultaneous compensation of dispersion and nonlinearity 

applies to other dispersion maps as well, where the period of dispersion compensation 

may be either longer [65] or shorter [128] than the amplifier spacing, or the fiber spans 

may vary widely in length and configuration. Regardless of the dispersion map, wide­

band dispersion compensation could be achieved in a transmission line with middle­

span OPC so long as the dispersion terms of the two si des of OPC satisfy equation 

(4.23), and pairs of conjugate fiber spans could have their nonlinearities canceled up 

to the first-order perturbation as long as the scaling rules of equations (4.38-4.41) 

and (4.42) are well observed. 
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As a result of power loss, the nonlinear response of a long piece of fiber becomes 

insensitive to the actual fiber length so long as it far exceeds the effective length 

[2] defined as Leff = 1/0'., where a is the loss coefficient in units of km-1 (instead 

of dB/km). So fiber spans consisting of the same types of fibers but with different 

lengths could contribute the same amount of nonlinearity if the input powers are the 

same. That aIl fiber spans contribute the same nonlinearity makes it possible for 

various spans with different lengths to compensate each other's nonlinear effects. It 

is straightforward to extend the same argument to fiber spans with scaled parameters 

and signal powers. The conclusion is that scaled fiber spans could indu ce approxi­

mately the same amount of nonlinear distortion to optical signaIs, which is insensitive 

to the varying span lengths, provided that the length of each fiber span is much longer 

than its own effective length defined by the inverse of the loss coefficient. The main 

advantage is that the fiber spans may be arbitrarily paired for nonlinear compensa­

tion regardless of their actual lengths. This is good news to terrestrial and festoon 

systems, where the span-distance between repeaters may vary according to the geo­

graphical conditions. When the dispersion of each fiber span is not fuIly compensated, 

it is desirable to fine-tune (slightly elongate or shorten) the lengths of transmission 

fibers or DCFs such that aIl spans have the same amount of residual dispersion. As a 

consequence, fiber spans of different lengths and possibly consisting of different types 

of fibers become truly equivalent in two alI-important aspects of signal propagation: 

nonlinearity and accumulated dispersion. Certainly, if the above-mentioned method 

of one-for-many nonlinear compensation is employed, the residual dispersion of the 

highly nonlinear span should also be multiplied by the same integer factor. Last but 

not least, when scaling fiber parameters and signal amplitudes to have two fiber spans 

inducing the same or compensating nonlinear effects, it is only necessary to make sure 

that the scaling rules of equations (4.38-4.41) and (4.42) are fulfiIled in portions of 

fibers experiencing high levels of signal power. Eisewhere, the scaling rules may be 

loosened or neglected when the signal power is low. 

Despite the translation symmetry between the constituent fibers of two conju­
gate spans, it is advantageous to order many conjugate spans in a mirror-symmetric 

manner about the OPC, especiaIly when aIl the spans are not identical. The local 

nonlinearity within each span is usuaIly weak such that the nonlinear perturbations 

of higher orders than the first may be neglected, even though a strong nonlinearity 

may be accumulated through many fiber spans. Within the applicability of first-order 

perturbation for approximating the nonlinearity of each fiber span, it may be argued 

using mathematical induction that the nonlinearity of multiple spans in cascade is 

also compensated up to the first-order perturbation, because of the mirror-symmetric 
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arrangement of fiber spans about the OPC. The spans may be labeled from left to 

right by -N,"', -2, -1, 1,2,"', N, with ope located between span -1 and span 

1. And one may denote by Zo and zb the beginning and end positions of the section 

of ope, while labeling the beginning and end points of span n by Zn and z~, where 

z~ = Zn+b 'ï/ n E [-N, N - 1]. There may be three variations for a mirror-symmetric 

configuration of pairs of fiber spans in ST8, depending upon whether the dispersion in 

each span is compensated to zero, and if not, how the dispersion is managed. In the 

first case, aIl spans are compensated to zero dispersion, as shown in Fig. 6.1 for the 

case of N = 3. It is required that, 'ï/ nE [1, N], spans -n and n should be conjugate, 

that is translation-symmetric, to each other. The first-order nonlinear perturbations 

of spans 1 and -1 cancel each other due to the translation symmetry and the ope, 
so the optical path from Z-l to z~ is equivalent to an ideal linear transmission line 

with ope in the middle, if higher-order nonlinear perturbations are neglected. It 

follows that the signal input to span 2 at Z2 is approximately the complex conjugate 

of that input to span -2 at Z-2, apart from the nonlinear perturbation due to span 

-2. 80 the translation symmetry between spans 2 and -2 about the OPC annihilates 

their nonlinearities up to the first-order perturbation. Using mathematical induction, 

assuming that the optical path from Z-n to z~, 1 < n < N, is equivalent to an ideal 

linear transmission line with ope in the middle, then spans n + 1 and -n - 1 see 

input signaIs at Zn+! and Z-n-l that are approximately complex conjugate to each 

other, so their first-order nonlinear effects cancel each other out due to the translation 

symmetry and OPC. The optical path from Z-n-l to z~+I is linearized and equivalent 

to an ideallinear transmission line with ope in the middle. This inductive argument 

applies as long as the accumulation of nonlinear perturbations of higher-orders than 

the first is still negligible and the nonlinear mixing of amplifier noise into signal hasn't 

grown significantly. 

In the second case, the fiber spans may have non-zero residual dispersion, as shown 

in Fig. 6.2 for the case of N = 3. It is required that, 'ï/ n E [1, N], spans -n and 

n should be in a translation symmetry approximately, while the residual dispersion 
of span n - 1 should be approximately the same as span -n, V n E [2, N]. Pre­

and post-dispersion compensators are employed to equalize the residual dispersion. 

The pre-dispersion may set the total dispersion to zero immediately before ope, 
and a dispersion conditioner at the site of ope ensures that the signal input to 

span 1 is approximately the complex conjugate of that input to span -1, apart from 

the nonlinear perturbation due to span -1. Fig. 6.2 shows a dispersion conditioner 

placed immediately after ope, with the amount of dispersion equal to the residual 

dispersion in span -1. The three thicker line segments in the dispersion map represent 
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Figure 6.1: A mirror-symmetric configuration of pairs of fiber spans in scaled translational symmetry, 
with the dispersion in each span compensated to zero. Top: schematic arrangement of fibers and 
amplifiers with respect to ope. Middle: map of signal power P(z) along the propagation distance 
z. Bottom: map of accumulated dispersion b2 (z) along the propagation distance z. 

the effects of the pre- and post-dispersion compensators as weIl as the dispersion 

conditioner. 80 the transmission line has been designed such that the accumulated 

dispersions from Z-n to Zn, n E [1, N], are fully compensated by virtue of ope, and 

for each n E [1, N], the fiber span from Z-n to z~n is translation-symmetric to the 

fiber span from Zn to Z~, namely, the parameters of the two fiber spans satisfy the 

scaling rules of equations (4.38-4.41), at least approximately. Leaving aside the fiber 

nonlinearity, such dispersion map ensures that the optical signaIs at Ln and Zn are 

complex conjugate to each other, then the signal amplitudes may be properly scaled 

such that equation (4.42) is also satisfied. As a result, aIl conditions are fulfilled 

for the fiber spans from Z-n to z~n and from Zn to Z~ to compensate their fiber 

nonlinearities up to the first-order perturbation, for each n E [1, N). The first-order 
nonlinear perturbations of spans 1 and -1 cancel each other due to the translation 

symmetry and ope, so the optical path from Z-l to z~ is equivalent to an ideallinear 

transmission line with ope in the middle and sorne accumulated dispersion at z~ due 

to span 1. Sinee this amount of dispersion is equal to that of span -2, the signal 

input to span 2 at Z2 is approximately the complex conjugate of that input to span 

-2 at L2, apart from the nonlinear perturbation due to span -2. So the translation 

symmetry between spans 2 and -2 about the ope annihilates their nonlinearities 
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Figure 6.2: A mirror-symmetric configuration of pairs of fiber spans in scaled translational symmetry, 
with non-zero residual dispersion in the spans. There are pre- and post-dispersion compensators 
(DCs), as weIl as a dispersion conditioner immediately after OPC. Top: schematic arrangement of 
fibers and amplifiers with respect to OPC. Middle: map of signal power P(z) along the propagation 
distance z. Bottom: map of accumulated dispersion b2 (z) along the propagation distance z. 

up to the first-order perturbation. Using mathematical induction, assuming that the 

optical path from Z-n to z~, 1 < n < N, is equivalent to an ideallinear transmission 

line with ope in the middle and accumulated dispersion at the right end due to span 

n, which is the same amount of residual dispersion as of span -n - 1, then spans 

n + 1 and -n - 1 see input signaIs at Zn+! and Z-n-l that are approximately complex 

conjugate to each other, so their first-order nonlinear effects cancel each other out 

due to the translation symmetry and ope. The optical path from Ln-l to z~+! is 

linearized and equivalent to an ideallinear transmission line with ope in the middle 

and the dispersion of span n + 1 at the right end. In the third case, the fiber spans 

still have non-zero residual dispersion, but there is no dispersion conditioner placed 
immediately before or after ope to compensate the residual dispersion of span -l. 

Instead, span 1 may play the role of the dispersion conditioner, and V nE [1, N], spans 

n and -n need to have the same amount of residual dispersion, while spans n and 

-n + 1, V n E [2, N], should be in an STS approximately to have their nonlinearities 

compensated up to the first-order perturbation. This is in contrast to the requirement 

of the second case. The configuration is shown in Fig. 6.3 for the case of N = 3, where 

the two thicker line segments in the dispersion map represent the effects of the pre- and 
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Figure 6.3: A mirror-symmetric configuration of pairs of fiber spans in scaled translational symmetry, 
with non-zero residual dispersion in the spans. There are pre- and post-dispersion compensators 
(Des) but no dispersion conditioner at the site of ope. Top: schematic arrangement of fibers and 
amplifiers with respect to ope. Middle: map of signal power P(z) along the propagation distance 
z. Bottom: map of accumulated dispersion b2(z) along the propagation distance z. 

post-dispersion compensators. It may be shown using the same inductive argument 

that the transmission line is largely linearized, except that the nonlinear effects of 

spans 1 and - N, if any, are left uncompensated. 

6.2 Practical Examples of STS Designs Using Commercial 

Fi b ers 
DCFs are widely used in modern fiber-optic transmission systems. A DCF may be 

coiled into a compact module at the amplifier site, or cabled as part of the trans­

mission Hne. The performance of both types of DCFs has been greatly improved 
recently. There are now low-loss DCFs capable of (approximately) slope-matched 

dispersion compensation for various transmission fibers with different ratios of dis­

persion to dispersion-slope [3, 4], although there are always residual second-order and 

fourth-order dispersions after the slope is equalized [129, 130, 131]. For SMFs, namely 

standard single-mode fibers, the ratio of dispersion (D ~ 16 ps/nm/km @1550 nm) 

to dispersion slope (8 ~ 0.055 ps/nm2/km @1550 nm) is large, so that the relative 

change of dispersion is small across the signal band (~ 40 nm in the C-band). The 
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so-called RDFs, namely reverse dispersion fibers, are designed to compensate simul­

taneously the dispersion and dispersion slope of the SMFs. An RDF is not an ideal 

translation conjugate to an SMF, because their dispersion slopes do not obey the 

scaling rule of equation (4.39). However, their dispersions satisfy the corresponding 

scaling rule of equation (4.39) approximately, with only small deviations across the 

entire signal band (C or L). Therefore, a span having an SMF followed by an RDF on 

the left side of OPC may be brought into a translation symmetry, approximately, to 

a span having an RDF followed by an SMF on the right side of OPC, and vice versa. 

The two types of spans may be denoted by SMF+RDF and RDF+SMF respectively. 

The indication is that OPC may be installed in the middle of conventional trans­

mission lines with no or minimal modifications to achieve simultaneous wide-band 

dispersion compensation and nonlinear suppression. The only requirements are that 

the signal power levels should be properly set in the fiber spans, and the SMFsjRDFs 

should be suitably arranged, to meet the scaling rules of equations (4.38-4.41) and 

(4.42) approximately for the translation symmetry between each pair of conjugate 

fiber spans, and to or der the conjugate pairs of spans mirror-symmetrically about the 

OPC. It is noted that a recent paper [23] has independently proposed the combination 

of slope-matching DCF and OPC to suppress simultaneously the third-order disper­

sion and sideband instability due to fiber nonlinearity. However, the work [23] was 

limited to a single-channel system, considered only the suppression of sideband insta­

bility as an intra-channel nonlinear effect, and did not recognize the importance of 

scaling the nonlinearity (especially the signal power) in different fibers. By contrast, 

our method applies to wide-band WDM systems as well and is capable of suppressing 

both intra- and inter-channel nonlinear interactions, being them Kerr- or Raman­

originated. Most importantly, we emphasize the importance of the scaling rules of 

equations (4.38-4.41) and (4.42) for optimal nonlinear compensation. 

Several NZDSFs, namely non-zero dispersion-shifted fibers, have also been devel­

oped for long-distance high-capacity transmissions. These fibers have reduced but 

non-zero dispersions across the operating band (C or L). Depending upon the sign 
of the dispersion (D in units of ps/nm/km), there are positive NZDSFs (+NZDSFs) 

and negative NZDSFs (-NZDSFs), but their dispersion-slopes are always positive. It 

becomes possible to bring a +NZDSF and a -NZDSF into a nearly perfect trans­

lation symmetry [132], because their oppositely signed dispersions and positively 

signed dispersion-slopes meet the exact requirements of the scaling rules of equation 

(4.39). The dispersion-slope of the NZDSFs may be compensated by negative-slope 

DCFs. The DCFs do not have to (could not indeed) compensate the dispersion and 

dispersion-slope simultaneously for both the positive and negative NZDSFs. It is suf-
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ficient to equalize the accumulated dispersion-slope to zero on each side of the OPC, 

then the two si des may cancel their accumulated non-zero dispersions of the second 

and the fourth orders through OPC. To form a nonlinearity-compensating translation 

symmetry between a +NZDSF span and a -NZDSF span, the accumulated dispersion 

should be properly managed to ensure that the input signaIs to the + NZDSF and 

-NZDSF fibers are complex conjugate to each other, which is a necessary condition 

for nonlinear cancelation. As long as these requirements are satisfied, there is really 

no limit as to how much residual (second-order) dispersion may be accumulated in 

each fiber span as weIl as on each si de of the OPC. It may be difficult to find a fiber 

translation-symmetric to the slope-compensating DCF, because of its high negative 

dispersion-slope. However, we note that it is only necessary to have an STS formed 

between portions of fibers carrying high signal power, elsewhere, such as in the slope­

compensating DCFs, the scaling rules may be neglected when the signal power is 

low and the nonlinearity is insignificant. If the slope-compensating DCFs are cabled, 

they may be placed near the end of fiber spans where the signal power is low. Or 

if the DCFs are coiled into modules and co-Iocated with the amplifiers, the signal 

power inside may be controlled at a low level to avoid nonlinearity. To minimize the 

noise-figure penalty in such DCF modules, the DCF may be distributively Raman 

pumped [86, 9, 87, 88], or earth-element doped and distributively pumped [10], or 

divided into multiple segments and power-repeated by a multi-stage EDFA. The con­

clusion is that the method of OPC-based simultaneous compensation of dispersion 

and nonlinearity is perfectly suitable for transmission systems employing NZDSFs, 

and highly effective nonlinear suppression may be expected in such systems due to 

the nearly perfect translation symmetry between the +NZDSFs and -NZDSFs. Fi­

naIly, in the limit of vanishing (second-order) dispersion at the center of the signal 

band, the +NZDSF and -NZDSF converge to the same DSF, that is dispersion-shifted 

fiber, which is translation-symmetric to itself. Two identical DSF spans on the two 

si des of OPC are in perfect translation symmetry to cancel their nonlinearity up 

to the first-order perturbation. Again the dispersion-slope may be equalized by a 
DCF with negative dispersion-slope, and the residual second-order dispersion may 

be arbitrarily valued. Suppressing fiber nonlinearity happens to be highly desired in 

DSF-based transmission lines, as DSFs are arguably the most susceptible to nonlinear 

impairments [2]. 
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Figure 6.4: A transmission Une consisting of SMFs and slope-matching neFs. 

6.3 Simulation Results and Discussions 
To verify the proposed method of simultaneous compensation of dispersion and non­

linearity, we have carried out a series of numerical simulations using a commercial 

transmission simulator (VPItransmissionMaker TM, Virtual Photonics Inc.). Reference 

[13] has presented an example of SMFs and DCF modules with nearly perfect match 

of dispersion and slope. Here we consider a practical setup of SMFs and cabled DCFs 

with residual dispersion, as shown in Fig. 6.4. One type of span consists of 50 km 

SMF followed by 50 km DCF. The SMF has loss coefficient Œ = 0.2 dB/km, effective 

mode area Aeff = 80 J-lm2 , and dispersion parameters /32 = -20.5 ps2/km, /33 = 0.12 

ps3/km at 193.1 THz. The corresponding dispersion D = 16 ps/nm/km and slope 

S = 0.055 ps/nm2/km. The DCF mimi cs a commercial RDF product [131], namelya 

reverse dispersion fiber, with parameters (d, A~ff' /3~, /3~) = (0.2,30,18, -0.12), in the 
same units as for the SMF. The Kerr nonlinear index of silica n2 = 2.6 x lQ-20m2/W. 

Practical DCFs often have a loss coefficient that is slightly higher than the SMFs, so 

the optimal design of the DCFs would have a dispersion IDDCFI slightly higher than 

IDsMFI proportionally according to the scaling rules of equations (4.38) and (4.39). 

The conjugate span has 40 km DCF followed by SMF of the same length. Due to 

the smaller modal area, a lower power is injected into the DCF to generate the com­
pensating nonlinearity, in accordance with the scaling rule for signal amplitudes in 

equation (4.42). The shortened span length is to balance the noise figure between the 

two types of spans. The two span types are also intermixed on each si de of the OPC 

to balance the residual dispersions. Alternatively, aIl fiber spans may be the same in 

length, but the signal power injected to the DCF+SMF spans should be 3/8 of that 

injected to the SMF + DCF spans, and the DCF +SMF spans would add more noise 

to the optical signal than the SMF + DCF spans. It is noted that the scaling rules are 
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Figure 6.5: Received eye diagrams of the 2nd DEMUX channel using the setup of Fig. 6.4. Top: 
fiber nonlinearity is OFF, the signal is only impaired by amplifier noise. Bottom: fiber nonlinearity 
is ON, the signal distortion is only increased slightly. 

not obeyed at aIl in the second part of each span, that is, in the DCFs of SMF + DCF 

spans and in the SMFs of DCF +SMF spans. Fortunately, the second part of each 

span experiences low signal power, in which the nonlinear effect is negligible. Back to 

the setup of Fig. 6.4, where aIl EDFAs have the same noise figure of 5 dB, each fiber 

loop recirculates five times, that gives 1000 km worth of fiber transmission on each 

si de of the OPC. The inputs are four 40 Gb/s WDM channels, RZ modulated with 

peak power 20 mW, channel spacing 200 GHz. The RZ pulses have a dut y cycle of 
33%, as described in section 4.1.2. The optical multiplexer (MUX) and demultiplexer 

(DEMUX) consist of Bessel filters of the 7th order with 3dB bandwidth 80 GHz. 

The input data are simulated by pseudo random binary sequences of order 7, and 

the simulation time window covers 256 bits. The photo-detector is with responsivity 

1.0 A/W and thermal noise 10.0 pAl v'HZ. The electrical filter is 3rd order Bessel 

with 3dB bandwidth 28 GHz. Fig. 6.5 shows the received eye diagrams of the sec­

ond channel out of the DEMUX. The bottom diagram shows the effect of nonlinear 
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compensation. For comparison, the top diagram shows the result of a fictitious trans­

mission where no fiber has any nonlinear effect. To confirm that the suppression of 

nonlinearity is indeed due to the translation symmetry of conjugate spans about the 

OPC, two diagrams in Fig. 6.6 show simulation results of altered configurations: one 

setup has the same length of 50 + 50 km and the same input power level to both the 

SMF + DCF and the DCF +SMF spans, the other has on both si des of OPC identical 

lOO-km SMF+DCF spans carrying the same signal power. Both altered setups suffer 

from severe nonlinear impairments. 
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Figure 6.6: Received eye diagrams of the 2nd DEMUX channel when the setup of Fig. 6.4 is modified, 
and the fiber nonlinearity is always ON. Top: fiber lengths of and input powers to the two types of 
spans are exactly the same. Bottom: aIl fiber spans are identical in length and input signal power 
as weIl as the ordering of fibers (SMF followed by DCF). 

To better quantify the improvement of transmission performance due to STS and 

OPC, repeated simulations have been carried out for different transmission distances, 

in order to accumulate data for a plot of the Q value (as discussed in Chapter 2) 

versus transmission distance for three system configurations. The first system is op­

timized, having STS and OPC for nonlinear compensation, which is configured as N 

recirculating loops of (50 km SMF + 50 km DCF + 16 dB EDFA + 40 km DCF + 
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Figure 6.7: The Q value versus transmission distance in number of 180km spans for three system 
setups: squares - baseline system without fiber nonlinearity; circles - optimized system with STS 
and OPC; triangles - conventional system without STS and OPC. The solid horizontal line marks 
the level of Q = 6 for BER S 10-9 . 

40 km SMF + 20 dB EDFA) , followed by OPC, then another N recirculating loops 

of (50 km SMF + 50 km DCF + 16 dB EDFA + 40 km DCF + 40 km SMF + 
20 dB EDFA) , with N = 1,2,"',10. The second system is conventional, without 

STS and OPC, which is simply configured as M recirculating loops of (45 km SMF 

+ 45 km DCF + 18 dB EDFA + 45 km SMF + 45 km DCF + 18 dB EDFA) , 

with M = 2,3,4,5. The third system, serving as a baseline, has the same line con­

figuration as the first system, except that the OPC is removed and nonlinearity is 

turned off for an fibers. So the baseline system is free of nonlinear impairments, but 

only subject to signal degradation due to amplifier noise. An parameters of fibers, 
MUXjDEMUX, transmitters and receivers are the same as in the immediately previ­

ous simulations. Fig. 6.7 plots the Q values versus transmission distance in number 

of 180km spans, where the "square" data points are of the baseline system without 

fiber nonlinearity, the "circle" data points are of the optimized system with STS and 

OPC, and the "triangle" data points are of the conventional system without STS and 
OPC. The solid horizontal line marks the level of Q = 6 for BER:::; 10-9 , which is 

used to cut off the transmission distance. It is seen that the Q-degradation versus 
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transmission distance of the optimized nonlinearity-compensating system follows the 

trend of the baseline system, but always falls under, until reaching Q ~ 6 at 20x 180 

km, which indicates a fairly good nonlinear compensation, with a small amount of 

nonlinear penalty remaining, possibly due to nonlinearity-mediated signal-noise mix­

ing and other uncompensated nonlinear effects. By contrast, the conventional system 

without nonlinear compensation suffers a great deal of nonlinear impairments, which 

barely reaches 5x180 km when Q ~ 6. Nonlinear compensation proves to extend 

the transmission distance by as much as four folds. Furthermore, it may be noted 

that both the baseline and the optimized systems are disadvantaged in terms of total 

optical power expenditure and accumulated amplifier noise, comparing to the con­

ventional system. More specificaIly, the baseline and optimized systems use 30% less 

optical power than the conventional system (1.0 + 0.4 = 1.4 versus 1.0 + 1.0 = 2.0), 

while suffers 40% more amplifier noise. To be fair, the optimized system may have 

the optical power increased 60% everywhere, so to see exactly the same noise figure 

as the conventional system. The total power expenditure becomes 1.6 + 0.6 = 2.2, 

representing a mere 10% increase comparing to 1.0 + 1.0 = 2.0 needed by the con­

ventional system. With noise figure reduced by a factor of 1.6, the optimized system 

would perform even better than that shown in Fig. 6.7. 

Figure 6.8: A transmission line consisting of +NZDSFs, -NZDSFs, and DCFs compensating the 
dispersion slope. 

For an example system using NZDSFs, we simulated a transmission line consisting 

of twenty lOO-km fiber spans with ope in the middle, as shown in Fig. 6.8, where 
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Figure 6.9: Received eye diagrams of the 2nd DEMUX channel using the setup of Fig. 6.8. Top: 
fiber nonlinearity is OFF, the signal is only impaired by amplifier noise. Bottom: fiber nonlinearity 
is ON, no extra penalty is visible. 

each side of the OPC has a fiber loop circulated five times. In each circulation, 

the optical signaIs go through 100 km -NZDSF transmission followed by a two-stage 

EDFA with 10 km DCF in the middle, then 100 km +NZDSF transmission followed 

by the same two-stage EDFA and DCF. The +NZDSF has loss coefficient Œ = 0.2 

dB/km, dispersion D = +4 ps/nm/km and slope S = 0.11 ps/nm2/km at 193.1 THz. 

The effective mode area is Aeff = 70 J.Lm2 • The -NZDSF differs only by D = -4 

ps/nm/km. The Kerr nonlinear index of silica n2 = 2.6 x 1O-2om2/W. The two-stage 
EDFA has 11 + 15 = 26 dB gain in total ta repeat the signal power. The noise figure 

of each stage is 5 dB. The DCF has Œ = 0.6 dB/km, D = -40 ps/nm/km, S = -1.1 

ps/nm2 /km, Aeff = 25 J.Lm2
, but nonlinearity neglected. The transmitting and receiv­

ing ends are the same as in the above SMF /DCF transmission. Input to the system 

are the same four-channel WDM signals, and the peak power of the 40 Gb/s RZ 

pulses is also the same 20 m W. With their nonlinear effects neglected, the DCFs do 

not participate directly in nonlinear compensation. Nevertheless, their compensation 



6: PRACTICAL NONLINEAR COMPENSATION USING STS 84 

[a.u.) Scope 

0.01 

0.008 

0.006 

0.004 

0.002 

0 

lime [ps) 

[o.u.) Scope 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

10 20 40 50 
lime [ps) 

Figure 6.10: Received eye diagrams of the 2nd DEMUX channel when all-NZDSFs are replaced by 
+NZDSFs in the setup of Fig. 6.8. Top: with OPC. Bottom: without ope. 

of the dispersion-slope of the NZDSFs enables the OPC to effectively compensate the 

dispersion over a wide frequency band, and helps to condition the optical signaIs such 

that the inputs to two conjugate NZDSFs are mutually complex conjugate. Note that 

the +NZDSF and -NZDSF spans are alternated on each si de of the OPC to balance 

the accumulated dispersion between the two sides. Aiso note that the first -NZDSF 

span on the right side of OPC is designed to compensate the nonlinearity of the last 

+ NZDSF span on the left side, and the second span on the right (+ NZDSF) is to 

compensate the second last span (-NZDSF) on the left, so on and so forth. It is im­
portant for the + NZDSF spans to be weIl dispersion-compensated, so to ensure that 

the input signaIs to the two conjugate spans of a translation-symmetric pair are com­

plex conjugate to each other, which is a necessary condition for nonlinear cancelation. 

However, there is no limit as to how much residual dispersion may be in the -NZDSF 

spans. Alternatively, each fiber span may be a concatenation of + and -NZDSFs. 

One type of span may have a +NZDSF foIlowed by a -NZDSF, then the conjugate 

span would consist of the same fibers reversely ordered. Consequently, aIl spans may 



6: PRACTICAL NONLINEAR COMPENSATION USING STS 85 

[a.u.) Scope 

0.016 

0.Q16 

0.014 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

0 

lime (ps) 

[a.u.[ Scope 

0.018 

0.Q16 

0.014 

0.012 

0.Q1 

0.008 

0.006 

0.004 

0.002 

0 

lime [ps[ 

Figure 6.11: Scalability and cascadability of the nonlinearity-suppressed NZDSF transmission line 
in Fig. 6.8. Top: the number of circulations on each si de of ope is doubled to ten times and the 
signal power is increased by 3 dB. Bottom: two identical transmission lines as in Fig. 6.8 are in 
cascade all-optically and the signal power is increased by 3 dB. The eye diagrams are still of the 2nd 
DEMUX channel. 

use the same DCF for slope compensation, and an accumulate the same dispersions of 

even orders. The received eye diagrams of the second channel out of the DEMUX are 

displayed in Figs. 6.9 and 6.10, where Fig. 6.9 shows the results of nonlinear trans­

mission and a comparing fictitious transmission without fiber nonlinearity through 

the setup of Fig. 6.8. The effectiveness of nonlinear compensation is remarkable. 

By contrast, Fig. 6.10 shows severe degradations in the transmission performance, 
when an -NZDSFs are replaced by +NZDSFs, so that the transmission li ne consists 

of identical + NZDSF spans with DCFs compensating both the dispersion and the 

dispersion-slope. The highly effective nonlinear compensation is expected as a result 

of the nearly perfect translation symmetry between the +NZDSF and -NZDSF spans. 

Furthermore, a nonlinearity-suppressed transmission line should manifest behaviors 

of a linear system to sorne extent. Typicallinear behaviors include scalability and cas­

cadability. Namely, using the same fiber spans and simply by raising the signal power, 
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it is possible to further the transmission distance by increasing the number of fiber 

spans beforejafter the OPC (scaling up), or by cascading sever al OPC-compensated 

transmission lines all-optically (without optical to electrical and electrical to optical 

signal conversions in the middle). Both the scalability and the cascadability are con­

firmed via numerical simulations, as shown in Fig. 6.11, where one eye diagram is for 

a system with the number of spans doubled to 40 in total, and the other diagram is 

obtained when cascading two identical20-span transmission lines of Fig. 6.8. The eye 

diagrams are still of the second channel out of the DEMUX. 
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Figure 6.12: The Q value versus transmission distance in number of 200km spans for three system 
setups: squares - baseline system without fiber nonlinearity; circles - optimized system with STS 
and OPC; triangles - convention al system without STS and OPC. The solid horizontal line marks 
the level of Q = 6 for BER $ 10-9 • 

To better quantify the effect of STS-based nonlinear compensation, repeated sim­

ulations have been carried out for three systems at different transmission distances 

in number of 200km spans, to accumulate data of the Q value versus transmission 

distance. The first system is optimized, having STS and OPC for nonlinear compen­

sation, which is configured as N recirculating loops of (100 km negative NZDSF + 20 

dB EDFA + 10 km DCF + 6 dB EDFA + 100 km positive NZDSF + 20 dB EDFA + 
10 km DCF + 6 dB EDFA), followed by OPC, then another N recirculating loops of 

(100 km negative NZDSF + 20 dB EDFA + 10 km DCF + 6 dB EDFA + 100 km pos-
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itive NZDSF + 20 dB EDFA + 10 km DCF + 6 dB EDFA), with N = 2,4,6, ... , 16. 

The second system is conventional, without STS and OPC, which is simply config­

ured as M recirculating loops of (100 km positive NZDSF + 20 dB EDFA + 10 km 

DCF + 6 dB EDFA + 100 km positive NZDSF + 20 dB EDFA + 10 km DCF + 
6 dB EDFA) , with M = 4,5,6,7,8. The third system, serving as a baseline, has 
the same line configuration as the second system, except that nonlinearity is turned 

off for aU fibers, and M = 4,8, 12, ... ,32. AU parameters of fibers, MUX/DEMUX, 

transmitters and receivers are the same as in the immediately previous simulations. 

Fig. 6.12 plots the Q values versus transmission distance in number of 200km spans, 

where the squares are of the baseline system without fiber nonlinearity, the circles 

are of the optimized system with STS and OPC, and the triangles are of the con­

ventional system without STS and OPC. The solid horizontal line marks the level 

of Q = 6 for BER :::; 10-9 , which is used to cut off the transmission distance. It 

is seen that the Q value of the optimized nonlinearity-compensating system follows 

closely that of the baseline system, and gets to Q ~ 6 at 28 x 200 km, which indicates 

an excellent nonlinear compensation. By contrast, the conventional system without 

nonlinear compensation suffers a large nonlinear penalty, which barely reaches 7x200 

km when Q ~ 6. An improvement as much as four folds in transmission distance has 

been achieved by STS-based nonlinear compensation. 

Figure 6.13: A transmission Hne consisting of ten fiber spans on each side of ope, each span has 50 
km nSF and a slope-compensating nCF. 

To test the effectiveness of nonlinear compensation for DSFs, we evaluated nu­

merically a transmission line consisting of twenty 50-km DSF spans with OPC in the 

middle, as shown in Fig. 6.13. Each span has 50 km DSF and at the end a two-stage 

EDFA with 5 km DCF in the middle. The DSF has loss Œ = 0.2 dB/km, D = 0 

ps/nm/km and S = 0.08 ps/nm2/km at the center frequency 193.1 THz, Aeff = 50 
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J-tm2. The Kerr nonlinear index of silica is again n2 = 2.6 x 10-20 m2/W. The two-stage 

ED FA has 6 + 7 = 13 dB gain in total to repeat the signal power, and the noise figure 

of each stage is 5 dB. The DCF has a = 0.6 dB/km, D = -100 ps/nm/km, S = -0.8 

ps/nm2/km, Aeff = 25 J-tm2, but nonlinearity neglected. The transmitting and receiv­

ing ends are still the same as in the ab ove SMF /DCF tr~nsmission. However, the 

four channels of 40 Gb/s RZ pulses are transmitted at (-350, -150, +50, +250) GHz 

off the center frequency, and they are received at (-250, -50, +150, +350) GHz off 

the center frequency. Note that the channels are assigned asymmetrically about the 

center frequency to avoid phase-matched FWM, that is four-wave mixing [2]. The 

channels may also be unequally spaced to further reduce the FWM penalty [133, 134]. 

But assigning channels with unequal spacing increases the network complexity and 

may not provide sufficient suppression by itself to the FWM and other nonlinear ef­

fects. In particular, it is ineffective to suppress the effect of XPM, that is cross-phase 

modulation. Nevertheless, when applicable, such legacy methods for nonlinear sup­

pression may be combined with our method of OPC-based nonlinear compensation. 

The legacy methods may work to enhance the effectiveness of our method, in the 

sense that they may render weaker nonlinearity in each fiber span, so that the negli­

gence of higher-order nonlinear perturbations becomes a better approximation. Back 

to the DSF-based transmission system of Fig. 6.13, when the power of the RZ pulses 

is peaked at 2 mW, Figs. 6.14 and 6.15 show the received eye diagrams of the second 

channel out of the DEMUX. The top diagram in Fig. 6.14 is obtained when the fiber 

nonlinearity is turned OFF, so the signal is only impaired by amplifier noise. The 

bottom diagram in Fig. 6.14 is the received eye when the fiber nonlinearity is turned 

ON. The increased penalty due to fiber nonlinearity is visible but not too large. The 

eye diagrams in Fig. 6.15 are obtained when the dispersion of the DCFs changes to 

D = 0 ps/nm/km while the slope remains, with or without OPC in the middle of 

the link. The good transmission performance shown in the top diagram verifies the 

insensitivity of our OPC-based method of nonlinear compensation to the amount of 

residual dispersion in each fiber span, while the bad result in the bottom diagram 
demonstrates the indispensability of ope. 
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Figure 6.14: Received eye diagrams of the 2nd DEMUX channel using the setup of Fig. 6.13. Top: 
fiber nonlinearity is OFF, the signal is only impaired by amplifier noise. Bottom: fiber nonlinearity 
is ON. 



6: PRACTICAL NONLINEAR COMPENSATION USING STS 90 

(a.u.1 Scopa 

0.001 

0.0008 

0.0006 

0.0004 

0.0002 

0 

.0.0002 
0 10 20 30 40 50 

lime (ps) 

(a.u.) Scopa 

0.0008 

0.0007 

0.0006 

0.0005 

0.0004 

0.0003 

0.0002 

0.0001 

0 

50 
lime (psI 

Figure 6.15: Received eye diagrams of the 2nd DEMUX channel when the setup of Fig. 6.13 is 
modified by setting D = 0 ps/nm/km for the DCFs while keeping the dispersion slope. Top: with 
OPC in the middle of the link. Bottom: when OPC is removed. 



7 
PRACTICAL NONLINEAR SUPPRESSION WITHOUT ope 

7.1 Optimal STS Setups for Intra-channel N onlinear Com­

pensation 
Fiber spans for intra-channel nonlinear compensation without OPC may be similarly 

designed and arranged as those described in section 6.1 when OPC is used. A trans­

mission fiber, either SMF or NZDSF, and its corresponding slope-matching DCF [3,4] 

are a perfect pair for compensating intra-channel nonlinearities, as their dispersions 

and slopes of dispersion satisfy the scaling rules of equation (4.43) perfectly, and 

the signal amplitudes may be easily adjusted to fulfil the corresponding scaling rule. 

The so-called RDFs [131], as a special type of DCFs, may be suitably cabled into 

the transmission line and contribute to the transmission distance, since the absolute 

dispersion value and loss coefficient of RDFs are both comparable to those of the 

transmission fiber. Only the smaller modal area requires a lower level of signal power 

for an RDF to compensate the nonlinearity of a transmission fiber. Otherwise the 

one-for-many compensation scheme may be employed, where the signal power may be 

slightly adjusted for an RDF to compensate the nonlinearity of multiple transmission 

fibers. There is usually no power repeater between the transmission fiber and the ca­

bled RDF within one span, so that the signal power decreases monotonically in each 

fiber span, as shown in Fig. 4.7. Note that one fiber span has a transmission fiber 

followed by an RDF, while the other span has an RDF followed by a transmission 

fiber, in accordance with the scaling rules of equation (4.43) for nonlinear compensa­
tion. Alternatively, if distributive Raman amplification, especially backward Raman 

pumping, is used to repeat the signal power, then one span has the transmission fiber 

Raman pumped in accordance with the RDF being Raman pumped in the other span. 

The signal power variation in each span may no longer be monotonie, but the power 

profiles in two compensating spans should still be similar and obey the scaling rules 

of equation (4.43), especially in portions of fibers that experience high signal power. 

For DCFs with absolute dispersion values much higher than the transmission fiber, 

91 
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Figure 7.1: The signal power and dispersion maps for a cascade of two fiber spans in STS with 
lumped dispersion compensators. Top: the variation of signal power along the propagation distance. 
Bottom: the dispersion map, namely, the variation of accumulated dispersion along the propagation 
distance. 

it is suit able to coil the DCF into a lumped DCM, that is dispersion-compensating 

module, and integrate the module with a multi-stage optical amplifier at each repeater 

site. Two fiber spans in STS for intra-channel nonlinear compensation should have 

oppositely ordered transmission fibers and DCFs. As shown in Fig. 7.1, one span 

has a piece of transmission fiber from A to B, in which the signal power decreases 

exponentially, and an optical repeater at the end, in which one stage of a multi-stage 

optical amplifier boosts the signal power up to a suit able level and feeds the signal into 

a lumped DCM, where the signal power also decreases exponentially along the length 

of the DCF from B ta C, finally the signal power is boosted by another stage of the 

optical amplifier. The other span has the same transmission fiber and the same DCM, 

with the signal power in the DCF from C to D tracing the same decreasing curve. 

However, this span has the DCM placed before the transmission fiber. Ironically, the 

efforts of improving the so-called figure-of-merit [1, 4] by DCF vendors have already 

rendered the loss coefficients of DCFs too low to comply with the scaling rules of 
equation (4.43). To benefit from nonlinear compensation enabled by STSs, DCFs, at 

least parts of them carrying high signal power, may be intentionally made more lossy 

during manufacturing or by means of special packaging to introduce bending losses. 

As illustrated in Fig. 7.1, the DCFs from B to C and from C to D are arranged in STS 

to the transmission fibers from D to E and from A to B respectively, such that the 

transmission fiber from A to B is compensated by the DCF from C to D, and the DCF 

from B to C compensates the transmission fiber from D to E, for the most detrimental 
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effects of jittering in pulse amplitude and timing due to intra-channel FWM and XPM. 

In practice, the DCMs from B to D and the multi-stage optical amplifiers may be 

integrated into one signal repeater, and the same super-span from A to E may be 

repeated many times to reach a long-distance, with the resulting transmission line 

enjoying the effective suppression of intra-channel nonlinear impairments. Again, in 

case distributive Raman pumping in the transmission fibers is employed to repeat the 

signal power, the DCFs may also be Raman pumped or erbium-doped for distributive 

amplification to have similar (scaled) power profiles as that in the transmission fibers 

for optimal nonlinear compensation. 

It should be noted that in regions of fibers carrying lower optical power, the scaling 

rules of fiber parameters in equation (4.43) may be relaxed without sacrificing the 

performance of nonlinear compensation, both for systems using cabled DCFs into 

the transmission lines and for systems using lumped DCMs at the repeater sites. 

Such relaxation may be done for practical convenience, or to control the accumulated 

dispersion in a span to a desired value, as weIl as to reduce the span loss so to 

reduce the penalty due to optical noise. As an example and a potentially important 

invention in its own right, a DCM compensating the dispersion and nonlinearity of 

transmission fibers may be so packaged that the first part of DCF experiencing a 

high level of signal power may have a higher loss coefficient satisfying the scaling rule 

of equation (4.43), whereas the second part of DCF may ignore the scaling rule and 

become less lossy such that the signal power at the end of the DCM is not too low 

to be significantly impaired by the amplifier noise. In fact, the low-Ioss part of the 

DCM may even use optical filters other than DCFs, such as fiber Bragg gratings and 

photonic integrated circuits. This method of packaging DCMs achieves the capability 

of nonlinear compensation and good noise performance simultaneously. For instance, 

it takes 10 km DCF with D' = -80 ps/nm/km to compensate 100 km NZDSF with 

dispersion D = 8 ps/nm/km and loss a = 0.2 dB/km. The first 4 km of the DCF may 

be made highly lossy by a special treatment in manufacturing or packaging, with a 

loss coefficient a' = 2 dB/km to form an STS with respect to the first 40 km NZDSF 

for optimal nonlinear compensation. However, the remaining 6 km DCF may ignore 

the scaling rules and have a much lower nominalloss a' = 0.6 dB/km. The totalloss 

is reduced by 8.4 dB as compared to a DCM that complies strictly with the scaling 

rules throughout the length of the DCF. Another important parameter of DCFs is the 

effective modal area, or more directly the nonlinear coefficient. 'Iraditional designs of 

DCFs have always strived to enlarge the modal area so to reduce the nonlinear effects 

of DCFs. However, for DCFs used in our method of nonlinear compensation, there 

exists an optimal range of modal area which should be neither too large nor too small. 



7: PRACTICAL NONLINEAR SUPPRESSION WITHOUT ope 94 

According to the scaling rules of equation (4.43), a DCF with a large modal area may 

require too much signal power to generate sufficient nonlinearity to compensate the 

nonlinear effects of a transmission fiber, while optical amplifiers may have difficulty 

to pro duce that much signal power. On the other hand, when the effective modal 

area is too small, the scaling rules of equation (4.43) dictate a reduced power level 

for the optical signal in the DCF, which may be more seriously degraded by optical 

noise, such as the amplified-spontaneous-emission noise from an amplifier at the end 

of the DCF. 

It is further noted that the nonlinear responses of fiber spans of different lengths 

may be approximately the same so long as each of them is much longer than the ef­

fective length Leff = 1/ Œ. This makes nonlinear compensation possible among spans 

with different lengths, which are commonly seen in terrestrial and festoon systems, 

where the span-distance between repeaters may vary according to the geographical 

conditions. The dispersion of each fiber span may not be always fully compensated, in 

which case it is desirable to fine-tune the fiber lengths such that any pair of compen­

sating spans have the same amount of residual dispersion. The final note is that two 

compensating fiber spans are not necessarily located immediately next to each other 

as drawn in Figs. 4.7 and 7.1. Sometimes, it may be advantageous to order pairs of 

compensating fiber spans in a mirror-symmetric manner similar to that discussed in 

section 6.1, especially when aIl spans are not compensated to zero dispersion. lndeed, 

it is convenient to have the two spans of any compensating pair accumulating the 

same amount of total dispersion including the sign. This would he achieved naturally 

if the two compensating spans consist of exactly the same DCF and transmission 

fiber of exactly the same lengths, with the only difference being the ordering of the 

fibers. When a pair of compensating spans are not the same in span distance, the 

length of either a DCF or a transmission fiher may be fine-tuned, namely slightly 

elongated or shortened, to make sure that the two spans have the same accumu­

lated dispersion. If the spans of a long-distance transmission line are labeled by 

-N, -N + 1,···, -2, -1 and 1,2,···, N - 1, N from one end to the other, N > 1, 
a mirror-symmetric arrangement requires that spans -n and n, n E [1, N] should 

be paired for nonlinear compensation, that is, their fiber parameters should satisfy 

the scaling rules of equation (4.43) approximately and their accumulated dispersions 

should be the same. Note that the scaling rules may only be fulfilled approximately 

if the two spans have the same non-zero accumulated dispersion. Then pre- and 

post-dispersion compensators may be employed at the two ends of the transmission 

line to equalize the total dispersion and importantly, to make sure that the accu­

mulated dispersion from the transmitter to the beginning of span -n is opposite to 
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the accumulated dispersion from the transmit ter to the beginning of span n, for an 

n E [1, N], such that the input signaIs to spans -n and n are complex conjugate, 

that is oppositely chirped, as required for compensating intra-channel nonlineari­

ties. As an example, when aIl spans have the same accumulated dispersion b2 , the 

pre-dispersion compensator should provide - (N - !) b2 , while the post-dispersion 

compensator should contribute - (N + !) b2• Or the amount of post-dispersion com­

pensation may be slightly different from - (N + !) b2 , such that the overall dispersion 

of the transmission line is not zero but within the tolerance of the transmitted pulses. 

More generaIly, if the accumulated dispersions of spans -n and n are B-n and Bn 

respectively, which satisfy the conditions B-n = Bn' V n E [1, N], while Bm and Bn 

are not necessarily the same if m =F n, then the pre- and post-dispersion compensators 

may provide respectively !B1 - 2:;:=1 Bn and -!B1 - 2:;:=1 Bn worth of dispersion, 

approximately up to the tolerance of the transmitted pulses. It is worth pointing out 

that the single-channel nature of intra-channel nonlinear compensation permits the 

use of channelized pre- and post-dispersion compensators. Namely, at each end of the 

transmission line, apart from a corn mon pre- or post-dispersion compensator shared by 

aIl channels, each individual channel may have a channelized dispersive element, or a 

short piece of fiber with the length fine-tuned, to compensate the channel-dependence 

of dispersion if any. FinaIly, it should be noted that a recent paper [135] proposes to 

compensate the timing jitter due to intra-channel XPM in a transmission fiber using 

the nonlinearity of a DCF, which is similar in spirit to our method of intra-channel 

nonlinear compensation using STS. However, the proposaI in [135, 136] is limited to 

the compensation of timing jitter of RZ pulses that are Gaussian-shaped, whereas 

our method could compensate both the amplitude fluctuation and timing jitter due 

to intra-channel nonlinear interactions of arbitrarily shaped pulses, with the only 

condition for suppressing intra-channel FWM that the signal pulses when chirp-free 

should be aIl real-valued upon a suit able choice of frequency and phase for the op­

tical carrier. More importantly, the work presented in [135, 136] did not recognize 

the significance of scaling the dispersion, loss and nonlinear coefficients of the DCF 

with respect to the transmission fiber, which is a necessary condition for optimal 

compensation of nonlinear effects. On the practical side, the proposaI in [135, 136] 

requires fiber Bragg grating dispersion compensators, which are limited in operating 

bandwidth and may suffer problems as thermal instability and group-delay ripples. 
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Figure 7.2: A transmission line consists of 6 pairs of fiber spans, with the first span in each pair 
having 50 km SMF followed by 50 km RDF then 16 dB EDFA gain, and the second span having 40 
km RDF followed by 40 km SMF then 20 dB EDFA gain. 

Figure 7.3: A transmission line consists of 6 pairs of fiber spans, with the first span in each pair 
having 50 km SMF followed by 50 km RDF then 16 dB EDFA gain, and the second span having 40 
km SMF followed by 40 km RDF then 20 dB EDFA gain. 

7.2 Simulation Results and Discussions 
As usual, numerical simulations are carried out to support our theoretical analysis 

and verify the effectiveness of our method of suppressing intra-channel nonlinearity 
using STS. In one test system, as depicted in Fig. 7.2, the transmission Hne consists 

of 6 pairs of compensating fiber spans totaling a transmission distance of 1080 km. 

The first span in each pair has 50 km SMF followed by 50 km RDF then an EDFA 

with gain 16 dB, the second span has 40 km RDF followed by 40 km SMF then an 

EDFA with gain 20 dB. The other test system consists of the same number of spans 

with the same span lengths, which are constructed using the same fibers and ED­

FAs as the first system except that the second span in each span-pair has the 40km 
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Figure 7.4: The transmission results of the 3rd DEMUX channel with 8D = 0 and amplifier noise 
turned off to signify the nonlinear effects. Top: received optical eye diagram of the scaled translation­
symmetric setup in Fig. 7.2. Bottom: received optical eye diagram of the setup in Fig. 7.3 without 
STS. 

SMF placed before the 40km RDF, as shown in Fig. 7.3. The EDFA noise figure is 

4 dB. The SMF has loss Œ = 0.2 dB/km, dispersion D = 16 + 8D ps/nm/km, and 

dispersion slope S = 0.055 ps/nm2/km, effective modal area Aeff = 80 J-lm2 , while 

the RDF has Œ = 0.2 dB/km, D = -16 ps/nm/km, S = -0.055 ps/nm2 /km, and 

Aeff = 30 J-lm2
• Fiber-based pre- and post-dispersion compensators equalize 11/24 

and 13/24 respectively of the total dispersion accumulated in the transmission line. 

Both the SMF and the RDF have the same nonlinear index of silica n2 = 2.6 x 10-20 

m2/W. The transmitter has four 40 Gb/s WDM channels. The center frequency is 

193.1 THz, and the channel spacing is 200 GHz. AlI four channels are co-polarized 

and RZ-modulated with 33% dut y cycle and peak power of 15 m W for the RZ pulses. 

The MUX and DEMUX filters are Bessel of the 7th order with 3dB-bandwidth 80 

GHz. The electrical filter is third-order Bessel with 3dB-bandwidth 28 GHz. The 

results of four-channel WDM transmissions have been compared with that of single­

channel transmissions, with no clearly visible difference observed, which indicates the 
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Figure 7.5: The transmission results of the 3rd DEMUX channel with 8D = 0 and amplifier noise 
turned on. Top: received optical eye diagram of the scaled translation-symmetric setup in Fig. 7.2. 
Bottom: received optical eye diagram of the setup in Fig. 7.3 without STS. 

dominance of intra-channel nonlinearity and the negligibility of inter-channel nonlin­

ear effects. Several trials with various values for 8D have been simulated for each 

test system. The following figures present the eye diagrams of optical pulses of the 

3rd DEMUX channel, in order to signify the nonlinear deformation (timing and am­

plitude jitters) of optical pulses and the generation of ghost-pulses. Fig. 7.4 shows 

the received optical pulses of 8D = a for the two test systems, with the amplifier 

noise being turned off to signify the nonlinear impairments (bottom diagram) and 
the effectiveness of nonlinear compensation (top diagram). Clearly shown is the sup­

pression of nonlinear impairments by using STS, and especially visible is the reduction 

of pulse timing jitter, as seen from the thickness of the rising and falling edges as weIl 

as the timing of pulse peaks. In both eye diagrams, there are optical pulses with 

small but discernable amplitudes ab ove the fioor of zero signal power, which could be 

attributed to ghost-pulse generation [90, 93, 94] due to the uncompensated in-phase 

components of intra-channel FWM. When the amplifier noise is turned back on, as 
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Figure 7.6: The transmission results of the 3rd DEMUX channel with 8D = 0.2 ps/nm/km and 
amplifier noise turned on. Top: received optical eye diagram of the scaled translation-symmetric 
setup in Fig. 7.2. Bottom: received optical eye diagram of the setup in Fig. 7.3 without STS. 

shown in Fig. 7.5, the received signaIs become slightIy more noisy, but the suppres­

sion of nonlinear distortions is still remarkable when there is STS. Then 8D = 0.2 

ps/nm/km was set for the two test systems of Fig. 7.2 and Fig. 7.3 respectiveIy, in 

order to showcase that a mirror-symmetric ordering of pairwise translation-symmetric 

fiber spans is fairly tolerant to the residuai dispersions in individual fiber spans. In 

this setting, each fiber span has 10 or 8 ps/nm/km worth of residuai dispersion, and 

the accumulated dispersion totais 108 ps/nm/km for the entire transmission line. 
Importantly, the pre- and post-dispersion compensators are set to compensate 11/24 

and 13/24 respectively of the total dispersion, ensuring at least approximately the 

complex conjugateness between the input signaIs to each pair of spans in STS. The 

amplifier noise is also turned on. The transmission results, as shown in Fig. 7.6, are 

very similar to that with 8D = 0, which demonstrates the dispersion tolerance nicely. 

In a better optimized design to tolerate higher dispersion mismatch 18DI, either SMFs 

or RDFs may be slightly elongated or shortened in accordance with the value of 8D, 
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Figure 7.7: The transmission results of the 3rd DEMU X channel with 8D = 0.6 ps/nm/km and 
amplifier noise turned on. Top: received optical eye diagram of the scaled translation-symmetric 
setup in Fig. 7.2. Bottom: received optical eye diagram of the setup in Fig. 7.3 without STS. 

such that the same residual dispersion is accumulated in an spans. As an example, 8D 

is set to 0.6 ps/nm/km and each 40km SMF is elongated by about 0.4 km, so that an 

spans have the same residual dispersion of 30 ps/nm/km, and the whole transmission 

line accumulates 360 ps/nm/km worth of dispersion. The pre- and post-dispersion 

compensators equalize 360 x 11/24 = 165 and 360 x 13/24 = 195 ps/nm/km worth of 

dispersion respectively. The amplifier noise is still on. The transmission results are 

shown in Fig. 7.7. 
To test the applicability and effectiveness of STS-based intra-channel nonlinear 

compensations to systems using another modulation format and having more WDM 

channels, we have simulated two comparing systems of multiple WDM channels trans­

mitting NRZ-modulated 40Gb/s signaIs through recirculating loops. One system has 

a conventional configuration without STS, as shown in Fig. 7.8, where each loop of 

recirculation consists of (45 km SMF + 45 km RDF + 18 dB EDFA + 45 km SMF + 
45 km RDF + 18 dB EDFA). With 16 co-polarized and 200GHz-spaced WDM chan-



7: PRACTICAL NONLINEAR SUPPRESSION WITHOUT ope 101 

Figure 7.8: A conventional system transmitting multiple NRZ-modulated WDM channels. 
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Figure 7.9: Received optical eye diagrams by the 9th channel of the system in Fig. 7.8. Top: after 
2 recirculating loopsj Bottom: after 3 recirculating loops. 

nels input to the system, each channel being NRZ-modulated at 40Gb/s, Fig. 7.9 

shows the transmission results of the 9th channel after 2 and 3 recirculating loops. 

The other system is scaled translation-symmetric, as shown in Fig. 7.10, where each 

recirculating loop consists of (50 km SMF + 50 km RDF + 16 dB EDFA + 40 km 

RDF + 40 km SMF + 20 dB EDFA). With the same 16 WDM channels input to 
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Figure 7.10: A scaled translation-symmetric system transmitting multiple NRZ-modulated WDM 
channels. 
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Figure 7.11: Received optical eye diagrams by the 9th channel of the system in Fig. 7.10. Top: after 
2 recirculating loopsj Bottom: after 3 recirculating loops. 

the system, Fig. 7.11 shows the transmission results of the 9th channel after 2 and 

3 recirculating loops. Parameters for fibers, ampli fiers , and MUX/DEMUX in both 

systems are the same as in the previous simulations using SMFs and cabled RD Fs as 

DCFs. The pulse power out of the NRZ transmitters is peaked at 8 m W. The rise and 
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faH time of the NRZ pulses is 6.25 ps, during which the pulse amplitude is between 

10% to 90% of its peak value. It is clearly demonstrated that the conventional sys­

tem without STS suffers a great deal of timing and amplitude jitters, arguably due to 

nonlinear interactions among signal pulses, whereas the scaled translation-symmetric 

system manifests significantly reduced jitters in both timing and amplitudes of "ON" 

pulses. Both systems are also impaired by ghost-pulse generation in "OFF" data 

slots. With either configuration, it may be noted that NRZ pulses seem to be more 

severely affected by fiber nonlinearity than RZ pulses. For a comparison, we have car­

ried out another simulation using exactly the same recirculating loop as in Fig. 7.10, 

but having 16 co-polarized and 200GHz-spaced RZ-modulated WDM channels as in­

put, where the RZ pulses are with 33% dut y cycle and peaked at 15 mW. Fig. 7.12 

shows the received eye diagram of the 9th channel after 6 recirculating loops, which 

manifests much improved signal quality even after twice of the transmission distance. 

This result is consistent with established wisdom that RZ-modulated pulses are more 

nonlinearity-tolerant than NRZ-modulated ones. 

Power[m\l\l) middle 

Ilme[ps) 

Figure 7.12: Received eye diagram by the 9th channel of 16 RZ-modulated channels after 6 recircu­
lating loops. 

7.3 Reversing intra-channel ghost-pulse generation by 

mid-way self-phase modulation 
In high-speed long-distance fiber-optic transmissions, a major limitation is imposed 

by the intra-channel nonlinear effects, such as the pulse amplitude and timing jit­

ters due to intra-channel cross-phase modulation (IXPM) and IFWM (that is intra­

channel four-wave mixing) respectively [65]. A method has been proposed to suppress 

the intra-channel nonlinearities using Raman-pumped transmission lines manifesting 
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a lossless or mirror-symmetric map of signal power [28, 29]. However, the loss of 

pump power makes it difficult to maintain a constant gain in a long transmission 

fiber. Consequently, the significant deviation of signal power profile from a desired 

mirror-symmetric map degrades the result of intra-channel nonlinear compensation 

using mirror symmetry [30]. The above has shown that transmission lines designed 

with translation symmetries in power and dispersion maps could also effectively com­

pensate the IXPM and one aspect of IFWM, so to greatly reduce the timing and 

amplitude jitters. There have also been recent publications along the similar direc­

tion [135, 136]. In particular, our mathematical formulation in the previous section 

provides a general and unified theory for intra-channel nonlinear compensation using 

translation or mirror symmetry, and more importantly, it emphasizes the necessity of 

scaling dispersion, loss coefficient, as weIl as the product of nonlinear coefficient and 

signal power in fibers, for optimal nonlinear compensation. The one aspect of IFWM 

refers to amplitude fluctuation in the "pulse-ON" slots due to coherent superpositions 

of nonlinearly generated fields onto the original pulses. However, neither the mirror 

nor the translation symmetry could hold back another aspect of IFWM, namely, the 

generation of "ghost-pulses" into the "pulse-OFF" slots where there are originally 

no optical pulses [90, 93, 137, 138]. The growth of ghost-pulses will eventually limit 

the transmission distance. Here we show that SPM (that is self-phase modulation) 

in the middle could make the two parts of a long transmission line generating oppo­

sitely signed ghost amplitudes, such that the ghost-pulses are annihilated or greatly 

suppressed at the end. 

The amplitude envelope of a single channel may be represented by a sum of optical 

pulses, namely, A(z, t) = L:k Uk(Z, t), where Uk(Z, t) denotes the pulse in the kth 

time slot and centered at time t = kT, with k E Z and T > ° being the duration 

of one symbol. Again, the following nonlinear Schrodinger equation describes the 

propagation and nonlinear interactions among the pulses [65], 

(7.1) 

where the right-hand side keeps only those nonlinear products that satisfy the phase­

mat ching condition. The nonlinear mixing terms with either m = k or n = k con­

tribute to SPM and IXPM, while the rest with both m =1 k and n =1 k are responsible 

for IFWM [65]. For a pulse-OFF time slot, for example the kth, the original pulse 

amplitude Uk(O, t) = 0, however the Kerr nonlinearity will generate a ghost amplitude 

into this slot. In the regime of weak nonlinearity where perturbation theory applies, 

the ghost amplitude is approximated by a linear accumulation of nonlinear products 
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over the propagation distance, 

Uk(Z, t) ~ !oz i-'y(s) L L um(s, t)un(s, t)U:n+n_k(S, t)ds. (7.2) 
o m"fk n"fk 

Consider two transmission lines in cascade, one stretching from Z = 0 to Z = L, 

the other from Z = L to z = L + L'. Assuming dispersion is compensated in each 

line such that optical pulses "return" approximately to their original shapes at z = L 

and z = L + L'. Each line may consist of multiple power-repeated and dispersion­

equalized fiber spans which are suitably arranged to form a scaled translation or 

mirror symmetry. Therefore, both lin es are effective for suppressing the timing and 

amplitude jitters in the pulse-ON slots. However, they are not able to prevent the 
growth of ghost amplitudes in the pulse-OFF slots. The two lines are not necessarily 

the same, but assumed to generate approximately the same ghost amplitudes, namely, 

L+L' 1 i'Y(z) L L um(z, t)un(z, t)U:n+n_k(Z, t)dz 
L m#n# 

~ uk(L, t) 

= foL i-'y(z) L L um(z, t)un(z, t)U:n+n_k(Z, t)dz, 
o m"fk n"fk 

(7.3) 

for all pulse-OFF slots labeled by k. So the ghost amplitude will accumulate into 

uk(L+L', t) = 2Uk(L, t) at the end, as long as the perturbation assumption still holds. 

If the transmission lines become too long, the approximation of linear accumulation 

of ghost amplitudes will eventually break down. The ghost amplitudes will actually 

grow exponentially as a result of parametric amplification pumped by the mark pulses. 

A method of ghost-pulse suppression may need to clean the ghost amplitudes or start 

reversing their accumulation before they become too strong. 

Now consider introducing a self-phase modulator for each wavelength channel in 

the middle of the two lines at z = L, and adjusting the signal power such that the 

amount of nonlinear phase shift reaches 7r approximately at the peak of an optical 

pulse. Fig. 7.13 shows such two transmission lines with channelized SPM in the 
middle, where each transmission line is STS configured for intra-channel nonlinear 

compensation. After mid-way SPM, all "originally ON" pulses acquire approximately 

a 7r phase shift, while the ghost-pulses in the "originally OFF" time slots experience 

negligible to small phase shifts due to their low power level. As a consequence, the 

IFWM products generated in the second line from z = L to z = L+ L' would acquire a 

factor ( _1)3 = -1 with respect to when mid-way SPM is absent. For a typical pulse­

OFF slot labeled by k, the following calculation gives the ghost amplitude generated 
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Figure 7.13: Two transmission lines with channelized self-phase modulation in the middle. TSTL: 
scaled translation-symmetric transmission line. DSF: dispersion-shifted fiber for self-phase modula­
tion. 

from start to end through the two transmission lines with SPM in the middle, 

lL 
i')'(z) L L um(z, t)un(z, t)U~+n_k(Z, t)dz + 

o m=fk n=fk 
L+L' 

/, h(z) L L [-um(z, t)][-un(z, t)][-Um+n-k(Z, t)]*dz 
L m=fkn=fk 

= l L 

h(z) L L um(z, t)un(z, t)U~+n_k(Z, t)dz -
o m=#n=# 

L+L' 
/, h(z) L L um(z, t)un(z, t)U~+n_k(Z, t)dz 

L m=fkn=# 
~o, (7.4) 

according to equation (7.3). Instead of adding up constructively, the ghost amplitudes 

generated by the two lines interfere destructively to cancel each other at the end 

z = L+L'. Good transmission performance may be expected from the overall system, 

as a result of the suppression of amplitude and timing jitters for originally ON pulses 

and the elimination of ghost-pulses in the originally OFF time slots. 

For implementations, the self-phase modulator may be based on the fiber Kerr 
nonlinearity [6], cascaded X(2) in LiNb03 waveguides [139, 140], the index change 

induced by carrier density variations in semiconductor optical amplifiers [141], or 

a combination of a photodiode detecting the optical pulses and electro-optic phase 

modulator driven by the generated electrical pulses [142,143]. A fiber-based self-phase 

modulator may be a better choice than others because of its simplicity and capability 

of polarization-insensitive operation. Furthermore, a suitable value of fiber dispersion 

may be chosen such that optical pulses propagate in a soliton-like manner through the 

nonlinear fiber, in order to reduce the pulse spectral broadening due to SPM [6]. If 
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SPM is not properly balanced by dispersion, then only the peak of a pulse receives a 'Tf 

phase shift, the rising and falling edges experience less and varying phase shifts, which 

lead to frequency chirp and spectral broadening. Excessive spectral broadening may 

cause crosstalk among wavelength channels and decrease the spectral efficiency (rate 

of data transmission in bit/s over available optical bandwidth in Hz) of transmission 

systems. A soliton, namely a hyperbolic secant pulse, could propagate invariantly in a 

lossless fiber given the condition - f32 = "Y PoT6, where f32 and "Y are the dispersion and 
nonlinear coefficients of the fiber, Po and To are the peak power and width parameter 

of the pulse [6]. For actual fibers with loss, strict soliton propagation may not be 

possible, but the total fiber dispersion may be adjusted so to minimize the frequency 

chirp of pulses at the end, or to control the chirp at a desired level. An optical filter 

may also be employed after SPM to limit the spectral width of pulses. 

For numerical verifications, we have simulated and compared the performance of 

three transmission lines, aIl of which use SMFs with loss a = 0.2 dB/km, dispersion 

D = 16 ps/nm/km, effective modal area Aeff = 80 J-lm2 , and RDFs, namely reverse 

dispersion fibers, with loss a' = 0.2 dB/km, dispersion D' = -16 ps/nm/km, effec­

tive modal area A~ff = 30 J-lm2
, as weIl as EDFAs with noise figure 4 dB. The first 

setup is a conventional design consisting of 16 fiber spans, each span has 45 km SMF, 

foIlowed by 45 km RDF, and a 18 dB EDFA at the end. The second setup is config­

ured to form an STS, having 8 repetitions of (50 km SMF + 50 km RDF + 16 dB 

EDFA) + (40 km RDF + 40 km SMF + 20 dB EDFA). Note that the EDFA gains 

are set in a way that the signal powers into the 50km SMF and the 40km RDF are 

properly scaled. The third system is the same as the second, except for channelized 

SPM in the middle, using a high-power EDFA, an optical DEMUX/MUX pair, and 

for each channel a 10km nonlinear fiber with effective modal area A~ff = 20 J-lm2 , loss 

a" = 0.3 dB/km, and dispersion D" ~ 3 ps/nm/km. The optical power is boosted 

to 80 m W before entering each SPM fiber, and attenuated back to the nominal level 

for transmissions after the self-phase modulator. AlI fibers are made of silica glass 

with nonlinear index n2 = 2.6 x 10-20 m2/W. Input to aIl three systems are four 
40 Gb/s channels, spaced by 200 GHz, co-polarized, and return-to-zero modulated 

with 33% dut y and peak power 15 m W. The optical filters are of order 7 with band­

width 100 GHz for MUX/DEMUX. The transmission results of the 3rd channel are 

shown in Fig. 7.14. It is evident that the conventional setup suffers a great deal from 

nonlinearity-induced amplitude and timing jitters, which are greatly reduced in the 

system with STS, where, however, the ghost-pulse generation imposes a serious lim­

itation. With both STS and mid-way SPM, the third system enjoys a superb signal 

quality at the end, with small signal fluctuations due to EDFA noise and possibly a 
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little residual nonlinearity. Again, as discussed in section 6.3, it may be noted that 

the scaled translation-symmetric systems are disadvantaged in terms of total optical 

power expenditure and accumulated amplifier noise, comparing to the conventional 

system. If the optical power is increased hence noise figure is reduced, the scaled 

translation-symmetric systems should perform even better. 
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Figure 7.14: Optical eye diagrams of the 3rd channel at the end of transmissions. Top: of a 
conventional design without STS. Middle: of a system with STS. Bottom: of a system with STS 
and mid-way SPM. 
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Figure 7.15: The Q value versus transmission distance in number of 180km spans for three system 
setups: squares - optimized system with STS and mid-way SPM; circles - translation-symmetric 
system without mid-way SPM; triangles - conventional system without STS nor mid-way SPM. The 
solid horizontal line marks the level of Q = 6 for BER:::; 10-9 • 

To better quantify the improvement of transmission performance due to STS and 

mid-way SPM, repeated simulations have been carried out for different transmission 

distances, in or der to accumulate data for a plot of the Q value versus transmission 

distance for the three system configurations, where each system consists of recircu­

lated 180km spans. For the first, conventional setup, each 180km span has (45 km 

SMF + 45 km RDF + 18 dB EDFA) + (45 km SMF + 45 km RDF + 18 dB EDFA); 

while for the second, translation-symmetric configuration, each 180km span consists 

of (50 km SMF + 50 km RDF + 16 dB EDFA) + (40 km RDF + 40 km SMF + 20 dB 
EDFA). The third, fully optimized system has exactly the same span configuration as 

the second system, except that it always consists of an even number of 180km spans 

and employs channelized SPM in the middle. The 3rd channel is monitored, and the 

simulated signaIs are used to estimate a Q value. Fig. 7.15 shows the calculated Q 
values for the three systems as the transmission distances vary from 2 to 14 spans of 

180km each, where the "square" data points mark results of the optimized system with 

STS and mid-way SPM, the "circle" data points indicate results of the translation­

symmetric system without mid-way SPM, and the "triangle" data points are for the 
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conventional system without STS nor mid-way SPM. The solid horizontalline marks 

the threshold level of Q = 6 in order to achieve BER ~ 10-9 , which is used as the 

cutoff level to determine the limit of transmission distance. It is seen that the conven­

tional system could barely reach 5 spans of 180km, while the translation-symmetric 

system without mid-way SPM could readily reach 8 spans of 180km, representing a 

60% increase of transmission distance. The addition of mid-way SPM enables the 

fully optimized system to reach 12 spans, that is another 50% increase of transmis­

sion distance. Therefore, the STS and mid-way SPM in combination have more than 

doubled the transmission distance, comparing to the conventional configuration. 

It should be noted that the present method of ghost-pulse suppression by mid-way 

SPM is not limited to transmission lines with STS. One or both sides, before or/and 

after the channelized SPM, may be configured in mirror symmetry as weIl for intra­

channel nonlinear compensation [28, 29], and ghost-pulse suppression would be just 

as effective, provided that the two sides generate nearly the same ghost amplitudes to 

originally empty data slots. Moreover, one or both sides may be a general transmission 

line that is not optimally designed for intra-channel nonlinear compensation. In which 

case, ghost-pulse generations may still be weIl suppressed due to the cancelation of 

ghost amplitudes generated by the two sides, however the mark pulses in the originally 

ON data slots may suffer significant jitters in amplitude and timing, as a result of 

the transmission system lacking a (scaled) translation or mirror symmetry. 

It is interesting to compare the present method of mid-way SPM and signal reshap­

ing based on nonlinear opticalloop mirrors (NOLMs) [144, 145], both of which are 

able to suppress ghost-pulses, and both are channelized solutions suit able for systems 

with a high modulation speed, because where the number of wavelength channels 

is less and higher optical power is available in each channel for efficient nonlinear 

effects. While a NOLM is often regarded as a lumped signal regenerator, mid-way 

SPM may be viewed as a method of distributive signal regeneration, whose action 

takes place through an entire transmission line. Practically, mid-way SPM would be 

more convenient than NOLMs, as the latter require interferometry stability and are 

sensitive to variations of fiber birefringence [146]. On the other hand, NOLMs are 

capable of "removing" random optical noise due to amplified spontaneous emission 

and loss-induced quantum noise [40], while mid-way SPM is not. 
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When a nonlinear medium is pumped by a strong laser beam, nonlinear interactions 

can mix the pump laser and a weak signal to generate a phase-conjugated version 

of the signal. It has been demonstrated that OPC may be employed to compensate 

the chromatic dispersion and nonlinearity of transmission fibers. It may even serve 

as a parametric amplifier when the pump is sufficiently intense. Furthermore, non­

linear mixing is capable of phase-conjugating and/or amplifying many WDM signaIs 

simultaneously. However, the same nonlinear effect results in parasitic pro cesses by 

generating inter-mixing terms among the WDM signaIs. The center frequency of such 

unwanted mixing terms may coincide with sorne of the original or conjugated WDM 

signaIs to cause significant interference. 

In the following, the first section reviews the state-of-the-art of optical phase conju­

gators, then studies in details the parasitic interference effect by means of theoretical 

calculations and computer simulations. It will be shown that the coherent interfer­

ence effect decreases as the PSR (that is pump-power to signal-power ratio) increases. 

Unfortunately, there cou Id still be strong interference even with a PSR of 20 dB. Sorne 

guard-band in the frequency domain may be necessary to avoid such coherent inter­

ference: if the total bandwidth of the WDM signaIs is W, then the nearest signal 

should be more than W away from the pump frequency. 

The second section discusses a method of packaging DCFs which achieves optimal 

nonlinear compensation and good signal-to-noise ratio simultaneously. An optimally 

packaged DCM may consist of portions of DCFs with higher and lower loss coeffi­
cients. Such optimized DCMs may be paired with transmission fibers to form scaled 

translation-symmetric lines, which could effectively compensate signal distortions due 

to dispersion and nonlinearity, with or without OPC. 

The third section discusses certain linearity of nonlinear perturbations and applies 

the property to nonlinear compensations. It proposes and tests (through numeri­

cal simulations) methods of one-for-many nonlinear compensations using STS, which 

realize simultaneous compensations of both dispersion and nonlinearity over a wide 

optical band. When OPC is employed, a transmission line may consist of many pairs 

111 
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of compensating fiber spans mirror-symmetrically ordered about the phase conjuga­

tor, where each pair may include one fiber span of st ronger nonlinearity and several 

conjugating fiber spans of weaker nonlinearity. First-order nonlinearities are weIl 

compensated between spans within each pair, and the mirror-symmetric ordering of 

conjugating pairs about the phase conjugator helps to prevent the accumulation of 

nonlinearities over a long transmission distance. When there is no ope in the mid­

dIe, a transmission line configured into a one-for-many STS may still suppress the 

intra-channel nonlinear effects. 

8.1 Inter-channel Crosstalk in FWM-based Phase Conju­

gators 
ope proves capable of neutralizing the effect of chromatic dispersion of two fiber 

lines of the same type, and compensating or at least reducing nonlinearity-induced 

impairments. When the pump is sufficiently intense, an optical phase conjugator 

may even serve as a parametric amplifier, boosting the signal level with low, the­

oretically no additive noise [35, 42]. AlI these applications beg a good method to 

physically implement an optical phase conjugator. Recently, there have been a lot 

of successful lab demonstrations of ope, most of which employ a Kerr nonlinear 

medium, such as a highly nonlinear optical fiber [16, 47, 166, 167, 168, 169, 170], a 

LiNb03 waveguide [171, 172, 173, 174, 175, 176, 177], a semiconductor optical am­

plifier [178], or a semiconductor (III-V or silicon) waveguide [179]. There have also 
been experiments of ope in transmission systems to fight dispersion and nonlinear 

impairments [20, 180, 181, 182, 183, 184, 185], as weIl as efforts to commercialize 

such phase conjugators [186]. Given the vast number of successful demonstrations 

and experiments, there is reason to believe that ope has become an obtainable and 

deployable technology. What remains may be only further engineering improvements 

for better performance, higher reliability, and lower cost. It is hoped that this thesis 

research may add to the list of benefits of employing ope in transmission systems, 
so to speed up its adoption in fiber-optic communications. 

When a Kerr medium is pumped by a strong laser beam, the X(3) nonlinear pro­

cess manifested as FWM can mix the pump laser and a weak signal, so to generate 

a phase-conjugated version of the signal. However, the FWM effect results in para­

sitic pro cesses by generating inter-mixing terms among the WDM signaIs. The center 

frequency of such unwanted mixing terms may happen to coincide with the origi­

nal or the conjugated WDM signaIs. Because of the coincidence in frequency, the 

inter-mixing terms are coherently superposed to the desired signaIs and cause serious 
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interference [147, 148]. This section studies such interference effect through theoret­

ical calculations and computer simulations, using FWM in a low-dispersion highly 

nonlinear fiber as an example. Simulation results shall be reported in the form of 

signal eye diagrams. 

It is well known that a zero-dispersion fiber (although the dispersion slope needs 

not to be zero) with a strong optical pump can perform the OPC operation, by 

virtue of the FWM effect. For optimal conversion efficiency, the frequency Wo of the 

pump field Eo should be close to the fiber zero-dispersion frequency, and the pump 

amplitude should be much larger than aIl the signal fields EI(t), E2(t), ... , EN(t), 
which are usually spaced evenly and fall on one side of the pump in the frequency 

domain. Let the WDM signaIs be labeled such that the center frequency of En(t) is 

given by Wn = Wo + nDo., where n > 0 is an integer, Do. E R, and 1 Do. 1 is the channel 

spacing. The pump power is usually dominating, namely, Po = EoEô » EnE~ = Pn, 
for aIl n =1= O. The third-order nonlinearity of the fiber generates new terms like 

X(3) EIEmE~ into the electromagnetic field, which are mixed-product of the signaIs, 

hence the name wave mixing [5, 6]. Among the mixed waves, terms of the form 

X(3) En(t)EoEô and X(3) EoEoE~(t) have the strongest amplitudes. For each n > 0, the 

former term has the center frequency Wn so to superpose coherently onto the original 

signal En(t), while the latter term generates a new frequency at W-n = Wo - nDo., 

and the new signal is a phase-conjugated image of En(t). Both the original and the 

phase-conjugated signaIs start growing in amplitude, the manifestation is of course 

parametric amplification. The strongest mixed-products are usually the desired terms 

in applications. There are other mixed-products with weaker amplitudes, which could 

however coincide with the desired terms in frequency and cause sizable interference 

to them. Analytical tools are of much help to understand the physics better. 

8.1.1 Mathematical analysis 
FWM is a polarization-sensitive process. In general, the electromagnetic signaIs 

should be treated as vectorial fields as aIl signaIs may not be co-polarized. A vecto­
rial description is particularly necessary to understand the operation of polarization­

insensitive OPC or parametric amplification. For the present study of inter-channel 

cross-talk, however, it is sufficient to work with a simplified model, in which aIl signaIs 

are co-polarized and may be treated just as scalars. From Maxwell's equations, the 

following differential equation may be derived for the total electrical field E(x, y, z, t) 
in the nonlinear medium [5, 6], 
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where X{l) is the linear susceptibility of the medium, whose real and imaginary parts 

correspond to the dielectric response and signal loss respectively, while X(3) is real­

valued and represents the Kerr nonlinearity. The Raman nonlinear effect is neglected 

here. The total electric field may be written as, 

E(x, y, z, t) = Re [L: Fn(x, y)An(z, t) exp(i,Bnoz - iwnt)] , (8.2) 
nEZ 

where ,Bno is the optical propagation constant at frequency wn, Fn(x, y) is the trans­

verse modal function, and An is naturally the slow-varying envelope, of the nth WDM 

channel [6]. With nEZ, the set of WDM channels includes the original signaIs as 

weIl as their phase-conjugate images. As discussed in Chapter 3 and detailed in Ap­

pendix B, a muiti-component NLSE may be obtained by substituting equation (8.2) 

into equation (8.1) and reducing factors independent of z, 

a~n _ iDnAn + an An = iL: L: 'YlmnAIAmAi+m-n exp (iOlmnZ) , 'V nEZ, (8.3) 
uZ 2 1 m 

where 

o def ~ ,Bnk (.~)k _ a (.~) 
n ~ k! '/, at fJOI '/, at ' 

2 

an def (3wn 
2 J Im[x~I)(x, y)]IFnI2dxdy, 

nOC 

(3 def _1_ a
k
,B2(w) l 'V k > 1 

nk 2(3 awk ' -, nO W=Wn 

def 3w~ J (3) ( ) D D F* D* d d 'Ylmn - 8,Bnoc2 X X, Y rlrm nr!+m-n X y, 

Olmn def ,BIO + ,BmO - ,BnO - ,B(l+m-n)O, 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

'V l, m, nEZ. Equation (8.3) is a simpler version of (3.19), and is a fundamental equa­

tion governing the propagation of WDM channels and the Kerr nonlinear interactions 

among them. 

Practical implementations often use short low-dispersion fibers, so that dispersion 

effects, represented by Dn and Blmn' may be neglected. Constant a and 'Y may be 

used as variations of the loss and nonlinear coefficients are often negligible across the 

channels. Moreover, the PSR is usually high to avoid pump depletion. With these 

considerations, equation (8.3) may be simplified significantly as, 

aAo a . 1 12 ~ + - Ao = 'l'Y Ao AD, 
uZ 2 

a~n + ~An = i')' L: L: AIAmAi+m_n, V n =1- O. 
uZ 2 1 m 

(8.9) 

(8.10) 
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The right side of equation (8.10) may be written as, 

Ï'"y (21 Ao1 2An + A6A~n) + Ï'"y L (2AoA1A7_n + 2A~A1An-l) 
I#O,n 

+Ï'"y L Al AmA7+m-n , (8.11) 
1#0, m#O, n#l+m 

which is sorted into three groups according to the signal strength: scaled by IAoI3, 
terms in the three groups are on the orders of (PSRt1j2 , (PSRt\ and (PSRt3j2 

respectively. The first, strongest group happens to contain the desired terms for ope 
and parametric amplification. The other two groups are usually unwanted and often 

cause interference to the desired signaIs. Increasing the PSR can obviously suppress 

the unwanted interference. For signal power on the order of mW, which is a common 

signal level in most applications, it is difficult to have a PSR much higher than 30 

dB, because it would th en require a pump laser much more intense than one Watt. 

A reasonable PSR may be around 20 dB, namely, PSR ~ 100. When sorne of the 

desired signaIs are coherently interfered by terms in the third, weakest group, the 

random amplitude fluctuation would not be much higher than one percent, and may 

be ignored for most practical purposes. The second group, however, could be a serious 

source of signal degradation. Even with PSR ~ 100, terms in the second group could 

result in amplitude fluctuations up to 10%, or equivalently power fluctuations as high 

as 20% in the desired signaIs. It is generally necessary to include the mixed-products 

in the second group. Equation (8.10) may be simplified into, 

8~n + ~ An = Ï'"y (21 Ao12 An + A6A~n) 
+ Ï'"y L (2AoAlA7_n + 2A~AlAn_l), V n =f 0, (8.12) 

I#O,n 

without losing much prediction power of the formulism. 

Equations (8.9) and (8.12) are therefore suit able tools for the analysis of FWM­

based ope and parametric amplification of WDM signaIs. However, the presence of 

terms in the second group makes it difficult to solve the equations analytically. The 
problem may be rendered analytically tractable by the perturbation method, which 

is actually a procedure of stepwise approximation. Firstly, terms of the second group 

are dropped altogether, and the much simplified equations are solved analytically 

to provide the familiar result in most theoretical accounts of FWM-based ope and 

parametric amplification [6, 16]. Secondly, the solution is used to calculate the terms 

of the second group in equation (8.12), and the complete differential equations are 

then integrated again, with terms in the second group regarded as known input drive 
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signaIs. Such simple perturbation calculation provides a solution with drastically im­

proved accuracy. It catches nicely the phenomenon of inter-channel cross-talk among 

the WDM channels. If still higher accuracy is desired, the perturbation procedure 

may be repeated: substituting the available solution into equation (8.12) to con­

vert terms of the second group into known drive signaIs, then solving the differential 

equations, and repeating as desired. 

Figure 8.1: The simulation setup of FWM-based ope. 
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Figure 8.2: The input lOGb/s NRZ optical signal. 

The parametric gain to the signaIs may be higher or lower, depending upon the 

intensity of the pump laser, the length and internaI loss of the nonlinear fiber. In 
the case of low parametric gain, the amplitudes of the original signaIs do not expe­

rien ce much variation apart from the effect of the internaI loss of the fiber, and the 

amplitudes of the phase-conjugated signaIs are proportional to A6A~, n > O. At the 
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Figure 8.3: 
frequency. 

Power [oJAI] Channel 1 

160 ~ii~jiiiiipiiiiiiiiijii~~iijEi~iriïïiiiiiii] 160 ~ 
140 

120 

100 

Power[mW] 

1.6 

1.4 

1.2 

0.6 

0.6 

0.4 

0.2 

0.02 

0.02 

0.04 0.06 0.06 

0.04 0.06 0.06 

0.1 0.12 0.14 0.16 0.16 0.2 
lime [n.] 

Channel 1 

0.1 0.12 0.14 0.16 0.2 
lime [ns] 

The phase-conjugated signaIs of channel 1, when it is 100 GHz away from the pump 

other extreme of high gain, which is desired for parametric amplification, both the 

original and the phase-conjugated signaIs grow substantiaUy, and the amplitudes of 

the latter are no longer proportional to A5A~, n > O. The perturbation procedure 

converges very fast and achieves high accuracy in the case of low parametric gain. By 

contrast, high parametric gain makes the perturbation procedure converge slowly and 

good accuracy difficult to achieve, it may also aggravate the effect of inter-channel 

cross-talk. In any case, interference from the mixed-products of the second group 

could distort the desired signaIs badly, and should be avoided. One way of preventing 
such coherent interference is to Ieave sorne guard-band in the frequency domain. For 

applications with a low parametric gain, the interference from the mixed-products 

AoAIAi_n or AôAIAn-l, for aU l > 0, cause negligible amplitude fluctuation to the 

original signal An' for each n > o. However, the mixed-products AoAIAi+n' l > 0, 

cause the amplitude of the phase-conjugated signal A-n' for each n > 0, to fluctuate 

considerably. To avoid such interference, it is necessary to make sure that the original 

signaIs never occupy the pair of frequencies Wl and Wl+n simultaneously, for any l > 0, 
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Figure 8.4: The phase-conjugated signaIs of channel 1, when it is 200 GHz away from the pump 
frequency. 

n > O. If the total bandwidth of the original WDM signaIs is W, then the nearest 

channel to the pump should be more than W away from the pump frequency, so 

that even the mixed product of the pump and the two edge channels of the WDM 

band will not be able to reach into the band of the phase-conjugated signaIs. Even 

with a high parametric gain, the guard-band of W is sufficient to prevent the mixed­

products of the pump and two original signaIs from falling into either the original or 

the phase-conjugated WDM signal band. 

8.1.2 Computer simulations 

Computer simulations are carried out using VPltransmissionMaker ™ , to visualize the 

effect of inter-channel cross-talk as weIl as to demonstrate the effect of a guard-band 

in avoiding the inter-channel interference. Fig. 8.1 shows the simulation setup of an 

FWM-based optical phase conjugator, where the Kerr medium is a zero-dispersion 

fiber with length 1.0 km, material nonlinear index 2.6x 10-20 m2 jW, core area 25 

{tm2• The optical loss is neglected in the fiber. The pump laser is at 193.1 THz, 
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Figure 8.5: The phase-conjugated signaIs of channel 1, when it is 300 GHz away from the pump 
frequency. 

pump power 100 or 300 mW, corresponding to a low parametric gain and a higher 

gain of 2 dB approximately. The WDM inputs are three NRZ signaIs with channel 

spacing 100 GHz, peak power 1 m W. The original signaIs are on the left side of the 

pump, and channel 1 is the nearest. The frequency shift between channel 1 and the 

pump is set to 100, 200, and 300 GHz respectively. Fig. 8.2 shows a typical input 

signal NRZ modulated at 10 Gb/s, and figures 8.3, 8.4, 8.5 show the eye diagrams 

of the phase-conjugated signals of channel 1, with the frequency shift from the pump 

being set to 100, 200, 300 GHz respectively. The two eye diagrams in each figure are 
for the cases of lower and higher parametric gain, with the pump power being 100 

and 300 mW respectively. The higher parametric gain is clearly seen to aggravate the 

inter-channel cross-talk, and such interference is obviously prevented by a suitable 

frequency guard-band. 
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8.2 Optimal packaging of dispersion compensating libers 

for matched nonlinear compensation and reduced op­

tical noise 
Dispersion compensating fibers have become essential components in high-speed long­
distance fiber-optic transmissions. Often they are packaged into compact DCMs and 

integrated with fiber optical amplifiers at the repeater sites. The loss of signal power 

in DCFs requires extra gain from optical amplifiers, and amplifiers introduce noise. 

Because of their small modal area, DCFs cou Id be significant contributors of non­

linearity if the power of signaIs carried is not limited to a low level. In the past, 

DCF manufacturers have strived to reduce the loss of DCFs and to lower their non­

linearity by enlarging the modal area [149]. However, reduced DCF nonlinearity 

does not necessarily translate into improved overall transmission performance. In 

the above, we have demonstrated that the nonlinear response of DCFs may be taken 

advantageously to compensate the nonlinearity of transmission fibers (TFs). Sim ply 

minimizing the loss in such nonlinearity-compensating DCFs is not necessarily aligned 

with the best system performance either. Here we propose and analyze a method of 

packaging DCFs to achieve optimal nonlinear compensation and good SNR simulta­

neously. Simply stated, an optimally packaged DCM may consist of two (or more) 

portions of DCFs with higher and lower loss coefficients. In the first portion that 

experiences high signal power, the loss coefficient may be intentionally increased in 

proportion to the DCF dispersion with respect to a TF. In another portion where 

the signal power is low and nonlinearity is negligible, the loss coefficient may be min­

imized to output st ronger signaIs while compensating the remaining dispersion due 

to the TF. 

Effective nonlinear compensation between DCFs and TFs, with or without OPC, 

relies on careful arrangements of different types of fibers in a transmission line to form 

the so-called STS, that is, scaled translation symmetry. The previous has established 

the analytical theory and numerical simulations verifying nonlinear compensations 
using translation symmetry. Basically, for two fibers to be matched for a translation 

symmetry in the scaled sense about an optical phase conjugator, their parameters 

need to obey the following scaling rules, 

[0/, /3~, /3~, ~/ P~, g'(t)P~] = R [a, -/32, /33, "(Po, g(t)Po] , (8.13) 

where a, /32, /33, "(, and g(t) are the loss, second-order dispersion, third-order dis­

persion, Kerr and Raman nonlinear coefficients respectively for one fiber, while the 
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"primed" parameters are the corresponding parameters of the other fiber, Po and P~ 

are the signal powers input to the two fibers respectively, R > 0 is a scaling factor. 

Such STS proves to en able nonlinear compensation between the two matched fibers up 

to the first-order nonlinear perturbation. The seemingly limited compensation capa­

bility based on perturbation is in fact quite relevant and powerful in practice, because 

the nonlinear response of each fiber segment is indeed perturbative in long-distance 

transmission lines, and matched fiber pairs may be arranged in a mirror-symmetric 

order to effectively undo the nonlinear distortions that may have accumulated far 

beyond the regime of perturbations. In the absence of OPC, a DCF and a TF may 

still be arranged into a translation symmetry in the scaled sense according to the 

following rules, 

(8.14) 

where again (a, (32, (33, "() and (a', (3~, (3~, "(') are parameters of the two types of fibers 

respectively. In both cases of scaling rules of equations (8.13) and (8.14), the require­

ments for the third-order dispersions may be relaxed, then the two fibers are not in 

strict translation symmetry across a band of wavelength channels, rather the symme­

try and nonlinear compensation between them become approximate. Nevertheless, 

such approximation is often a good one when the value of 1(32/(331 is high, so that the 

percentage change of (32 is only small across the band, which is exactly the case for 

SMFs in the 1550-nm band. 

DCF with higher 1055 
obeying scaling rules 

~ 

DCF with minimalloss 
neglecting scaling rules 

~ 

Figure 8.6: Two portions of dispersion-compensating fiber packaged into a compact module or cabled 
into a transmission Hne, where the first portion may have an intentionally increased loss coefficient 
to form an STS with a transmission fiber, while the second portion could have the lowest possible 
10ss coefficient and does not need to satisfy any scaling rule. 

In our methods of compensating fiber nonlinearity using translation symmetry with 

or without optical phase conjugation, dispersion-compensating fibers are brought into 

STS with respect to TFs such a.s SMFs and NZDSFs. As noted before, in regions 

of dispersion-compensating fibers carrying lower optical power, the scaling rules of 
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fiber parameters in equations (8.13) or (8.14) may be relaxed without sacrificing the 

performance of nonlinear compensation, both for systems using cabled DCFs into 

the transmission lines and for systems using lumped DCMs at the repeater sites. 

Such relaxation may be done for practical convenience, or to control the accumulated 

dispersion in a span to a desired value, as well as to reduce the span loss so to reduce 

the penalty due to optical noise. As illustrated in Fig. 8.6, a compact dispersion­

compensating module or a dispersion-compensating transmission line may consist of 

two portions of dispersion-compensating fiber concatenated, where the first portion 

carrying high-power signaIs may have an intentionally increased loss coefficient to form 

an STS with a TF, while the second portion experiencing low signal power could have 

the minimal loss coefficient and does not need to satisfy any scaling rule. The two 

portions of DCF with higher and minimalloss coefficients may be of one whole pie ce 

of fiber coiled with different radiuses, or differently fabricated DCFs with different 

loss coefficients and possibly different dispersions, so long as the first fiber is in STS 

to a target TF. The minimal loss coefficient refers to the lowest fiber loss coefficient 

that is achievable in practical fabrication of dispersion-compensating fibers. The loss 

coefficient of the fiber portion on the left si de of Fig. 8.6 is higher in the sense that 

it is intentionally made higher than what is achievable by practical manufacturing 

processes. 

z 

jD(z)dz 

z 

Figure 8.7: The power map and M-type dispersion map over the transmission distance of two 
traditional fiber spans. 

The great advantage of nonlinear compensation using STS is that a pair of matched 

fiber segments are required to have the same sign for the loss/gain coefficients and 

opposite dispersions. Such conditions are naturally satisfied in conventional fiber 

transmission systems, where a TF, for example an SMF, may be paired with a DCF 

as matched counterparts. However, traditional transmission lines are usually set up 

with the same configuration for all spans, that is, with a TF followed by a DCF. 
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Figure 8.8: The power map and N-type dispersion map over the transmission distance of two matched 
fiber spans for an STS. 

Consequently, the accumulated dispersion in aU spans is single-sided, namely, stays 

always positive or always negative. Such may be caUed an M-type dispersion map, as 

shown in Fig. 8.7, where no two spans could form an STS. Our proposaI is to sim ply 

exchange the ordering of the TF and DCF for sorne spans, which may be paired with 

traditional spans to form an N-type dispersion map, where the accumulated dispersion 

may go both positive and negative and trace an N-like curve, as shown in Fig. 8.8. An 

STS is formed between two matched fiber spans as in Fig. 8.8, in the sense that the 

TF of the first span is scaled translation-symmetric to the DCF of the second span, 

and the DCF of the first span is scaled translation-symmetric to the TF of the second 

span. Such translation symmetry between two matched spans could cancel sorne of 

their intra-channel nonlinearities, or compensate aU nonlinearities up to the first-order 

perturbation if an optical phase conjugator is instaUed in the middle. Furthermore, 

many pairs of matched spans may be arranged into a mirror-symmetric order about 

the point of OPC to form a long-distance transmission line, whose second part could 

undo the nonlinear distortions due to the first part that may have accumulated far 

beyond the regime of perturbations. 
In traditional transmission lines, each fiber span has a TF and a DCM at the end, 

which consists of a conventional DCF with a multi-stage EDFA. Many such conven­

tional fiber spans are cascaded to form a line with the M-type dispersion map, as 

shown on the top of Fig. 8.9, where a conventional DCM is denoted by CDCM_M in 

short. If the order of TF and DCF is switched for every other span, then an N-type 

dispersion map is formed, and two adjacent DCFs may be packaged into one DCM, 

denoted by CDCM_N, as shown in the middle of Fig. 8.9. As a result of the N-type 
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dispersion map, intra-channel nonlinearities may be suppressed to some extent, and 

aIl fiber nonlinearities may be partially compensated at the presence of OPC in the 

middle of the transmission line. However, the compensation of nonlinearity is not op­

timal as the scaling rules of equation (8.13) or (8.14) are not satisfied by conventional 

DCFs paired with TFs. Indeed, DCF manufacturers have succeeded in reducing the 

loss of DCFs, as it was thought to monotonically improve the performance of trans­

mission systems [149]. The dispersion-to-Ioss ratio (DLR) of state-of-the-art DCFs 

is often much larger than that of TFs. From the stand point of matched nonlinear 

compensation, it would be advantageous to (intentionally) raise the loss of DCFs such 

that the DLRs of DCFs and TFs are matched to satisfy the scaling rules, at least 

for portions of fibers carrying high-power signaIs. On the other hand, in regions of 

DCFs experiencing low signal power, the nonlinearity is weak and negligible, then the 

scaling rules may be disregarded and the loss of DCFs may be minimized to enhance 

the optical SNR at the end of dispersion compensation. Therefore, an optimized 

DCM (ODCM), as shown at the bottom of Fig. 8.9, may consist of sections of DCFs 

with higher and lower loss coefficients, as weIl as multiple EDFA stages to repeat the 

signal power and regulate the signal power in the lossier portions of DCFs, according 

to a set of scaling rules with respect to the TFs. Higher DCF loss may be induced by 

impurity-doping during fiber manufacturing [80, 81] or by bending loss during fiber 

packaging [70]. 

Therefore, a DCM compensating the dispersion and nonlinearity of transmission 

fibers may be so packaged that the first portion of DCF experiencing a high level of 

signal power may have a higher loss coefficient satisfying the scaling rule in equation 

(8.13) or (8.14), whereas the second portion of DCF may ignore the scaling rules and 

become less lossy such that the signal power at the end of the DCM is not too low to 

be significantly impaired by the amplifier noise. In fact, the low-loss portion of the 

DCM may even use optical filters other than DCFs, such as fiber Bragg gratings and 

photonic integrated circuits. This method of packaging DCMs achieves the capability 

of nonlinear compensation and good noise performance simultaneously. For instance, 
it takes 10 km DCF with D' = -80 ps/nm/km ta campensate 100 km NZDSF with 

dispersion D = 8 ps/nm/km and loss a = 0.2 dB/km. The first 4 km of the DCF may 

be made highly lossy by a special treatment in manufacturing or packaging, with a 

loss coefficient a' = 2 dB/km to form an STS with respect to the first 40 km NZDSF 

for optimal nonlinear compensation. However, the remaining 6 km DCF may ignore 

the scaling rules and have a much lower nominalloss a' = 0.6 dB/km [4]. The total 

loss is reduced by 8.4 dB as compared to a DCM that complies strictly with the scaling 

rules throughout the length of the DCF. Another important parameter of DCFs is the 
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Figure 8.9: Three configurations of transmission lines with different dispersion maps and DCMs. 
Top: an M-type dispersion map using conventional DCMs; Middle: an N-type dispersion map using 
conventional DCMs; Bottom: an N-type dispersion map using optimized DCMs. Acronyms: CDCF­
conventional DCF, ODCF - optimized DCF, CDCM_M - conventional DCM in an M-type dispersion 
map, CDCM_N - conventional DCM in an N-type dispersion map, ODCM - optimized DCM. 

effective modal area, or more directly the nonlinear coefficient. Traditional designs 

of DCFs have always strived to enlarge the modal area so to reduce the nonlinear 

effects of DCFs. However, for DCFs used in our methods of nonlinear compensation, 

there exists an optimal range of modal area which should be neither too large nor too 

small. According to the scaling rules of equation (8.13) or (8.14), a DCF with a large 

modal area may require too much signal power to generate sufficient nonlinearity 

to compensate the nonlinear effects of a transmission fiber, while optical amplifiers 

may have difficulty to pro duce that much signal power. On the other hand, when 

the effective modal area is too smaIl, the scaling rules of equation (8.13) or (8.14) 

dictate a reduced power level for the optical signal in the DCF, which may be more 
seriously degraded by optical noise, such as loss-induced quantum noise [40] and the 

amplified-spontaneous-emission noise from an amplifier at the end of the DCF. 

To give an example of ODCM and test its performance in nonlinear compensation, 

we simulated (using VPltransmissionMaker TM) and compared three transmission sys­

tems as shown in Figs. 8.10, 8.11, and 8.12 respectively, aIl of which have an optical 

phase conjugator in the middle and 6 recirculating loops on each side of OPC. For the 

first system, each recirculating loop consists of two identical spans of 100 km SMF 
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Figure 8.10: A test transmission system consisting of 6 recirculating loops with an M-type dispersion 
map on the left side, an optical phase conjugator in the middle, then on the right side another 6 
loops identical to the ones on the left. Each recirculating loop consists of two identical spans of 100 
km SMF followed by a CDCM-M, as shown on the top of Fig. 8.9. 

followed by a CDCM_M, as shown on the top of Fig. 8.9. For the second system, 

each recirculating loop has 100 km SMF followed by a CDCM_N, then 100 km SMF 

followed by a 20dB EDFA, as shown in the middle of Fig. 8.9. For the third and 

optimized system, each recirculating loop consists of 100 km SMF followed by an 

ODCM, then 100 km SMF followed by a 20dB EDFA, as shown at the bottom of 

Fig. 8.9. Each CDCM_M has a 15dB EDFA, 20 km conventional DCF, then a 15dB 

EDFA. Each CDCM_N has a 15dB EDFA, 20 km conventional DCF, then another 

15dB EDFA, 20 km conventional DCF, and finally a lOdB EDFA. By contrast, each 

ODCM consists of a 21dB EDFA, 10 km optimized DCF, 10 km conventional DCF, 

a 15dB EDFA, then 10 km optimized DCF, 10 km conventional DCF, and a 14dB 

EDFA. Note the adjustment of signal power in the optimized DCFs to fulfil the scaling 

rules. The SMF has loss a = 0.2 dB/km, dispersion D = 16 ps/nm/km, dispersion 

slope S = 0.055 ps/nm2/km, effective modal area Aeff = 80 j-tm2• The conventional 

DCF has (a', D', S', A~ff) = (0.5, -80, -0.275, 20) in the same units. The optimized 

DCF differs from the conventional one only by the loss coefficient ail = 1.0 dB/km. 
The same silica nonlinear index n2 = 2.6 x 10-20 m2/W is taken for aU fibers. AU 

EDFAs have the same noise figure of 4 dB. The center frequency is 193.1 THz. The 

inputs are four 40Gb/s channels, spaced by 200 GHz, co-polarized and return-to-zero 

modulated with 33% dut y and pulse peak power 15 m W. The eye diagrams of optical 

signaIs from the 3rd DEMUX channel at the end of transmissions are shown in Fig. 

8.13, where the top diagram displays severe nonlinear distortions for the conventional 

line with the M-type dispersion map, while the middle diagram shows improved but 
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Figure 8.11: A test transmission system consisting of 6 recirculating loops with an N-type dispersion 
map on the left side, an optical phase conjugator in the middle, then on the right side another 6 loops 
identical to the ones on the left. Each recirculating loop has 100 km SMF followed by a CDCM_N, 
then 100 km SMF followed by a 20dB EDFA, as shown in the middle of Fig. 8.9. 

Figure 8.12: A test transmission system consisting of 6 recirculating loops with an optimized N-type 
dispersion map on the left side, an optical phase conjugator in the middle, then on the right side 
another 6 loops identical to the ones on the left. Each recirculating loop consists of 100 km SMF 
followed by an ODCM, then 100 km SMF followed by a 20dB EDFA, as shown at the bottom of 
Fig. 8.9. 

still seriously impaired signaIs of the line with the N-type dispersion map using con­

ventional DCMs. The bottom diagram demonstrates a significant improvement of 

signal quality by using optimized DCMs and STS, where the signal distortions are 

mainly due to EDFA noise and possibly sorne uncompensated nonlinearity. 

Even without oPC, improved transmission performance due to intra-channel non­

linear compensation may be expected in transmission systems manifesting scaled 

translation symmetries using optimally packaged DCMs for matched nonlinear com­

pensation and reduced optical noise simultaneously. Furthermore, the method of 
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Figure 8.13: Optical eye diagrams of the 3rd DEMUX channel at the end of transmissions. Top: of 
a conventionalline with the M-type dispersion map. Middle: of a line with conventional DCMs in 
the N-type dispersion map. Bottom: of a system using optimized DCMs and STS. 

mid-span SPM discussed previously may be employed in such transmission systems 

using ODCMs to suppress the generation of ghost-pulses, which are not controlled 

by scaled translation symmetries alone. Finally, it is noted that the same principle 

for optimally packaging DCMs, namely, obeying scaling roles where the signal power 

is high while disregarding the rules and minimizing the signal loss where the signal 



8: PRACTICAL IMPLEMENTATIONS: oPC, DCM, & MORE 129 

power is low, may be similarly applied to the design of transmission systems with 

cabled DCFs. For a piece of DCF cabled into a transmission line, the first portion 

of the DCF may have a relatively low absolute value of dispersion in proportion to 

its low loss coefficient, according to the scaling mIes of translation symmetry to a 

transmission fiber as in equation (8.13) or (8.14). Whereas in the second portion 

of the DCF, where the signal power becomes sufficiently low, the dispersion may be 

set as high as possible while the loss coefficient should remain minimal, because no 

scaling rules need to be regarded. 

8.3 Linearity of nonlinear perturbations in flber transmis­

sion lines and its applications to nonlinear compensa­

tions 
Our work has helped to recognize the importance of STS for simultaneous compen­

sations of dispersion and nonlinearity in practical transmission systems using con­

ventional fibers and amplifiers [12, 14, 15]. The great advantage of nonlinear com­

pensations using STS is that a pair of matched fiber segments are required to have 

the same sign for the loss/ gain coefficients and opposite dispersions. Such conditions 

are naturally satisfied in conventional fiber transmission systems using transmission 

fibers and DCFs with oppositely signed dispersions. An STS between two matched 

fiber spans could cancel sorne of their intra-channel nonlinearities [15, 26, 27], or com­

pensate all nonlinear effects up to the first-order perturbation if OPC is performed 

in the middle [12, 14,23]. Furthermore, many pairs of matched spans in STS may be 

arranged into a mirror-symmetric order about a mid-point (with or without OPC) to 

form a long-distance transmission line, whose second part could undo or compensate 

the nonlinear distortions due to the first part that may have accumulated far beyond 

the regime of perturbations [14]. 

A transmission line designed for nonlinear compensations may choose pairs of fiber 

segments having linear parameters in proportion with one ratio, i.e., 

[0/ (z'), -(3~(z'), ±(3~ (z')] = R [a(z), (32(Z), (33(Z)] , R > 0, (8.15) 

and nonlinear parameters with another ratio, namely, ')"(z') = Q')'(z) , Q > 0, or 

[')"(z') , g'(z', t)] = Q b(z), g(z, t)] for simultaneous compensations of both Kerr and 

Raman effects with the help of OPC. The two ratios Q and R may be, and usually 

are, different. The scaling rules of linear parameters in equation (8.15) between pairs 

of fiber segments carrying high signal power, in conjunction with proper dispersion 
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and slope adjustments disregarding the scaling mIes in fiber segments experiencing 

low signal power [14, 15], ensures that the high-power signals flowing in each pair of 

matched fiber segments are kept proportional and complex conjugate with respect to 

each other over significant distances along the two fibers. Consequently, the first-order 

nonlinear terms due to Kerr- or Raman-mediated signal mixing are also proportional 
and complex conjugate with respect to each other along the two fibers. It becomes 

possible to adjust the power levels relatively in each pair of matched fibers to make 

the first-order nonlinear perturbations in the two fibers commensurate, so that the 

pair compensate each other's nonlinear effects in the presence of OPC, or cancel the 

most detrimental intra-channel nonlinear effects without OPC. 

Although most fibers are made of similar materials with similar nonlinear sus­

ceptibilities, their guided-wave nonlinear coefficients measured in W-1km-1 could be 

quite different due to the wide variation of modal sizes. Unless the ratio Q of non­

linear coefficients matches the ratio R of linear parameters, the signal powers in two 

conjugate fibers may have to differ by several dB as required by the scaling mIes for 

an STS. However, it may be desired to have a similar level of signal power into all 

fiber spans for a uniform design and similar characteristics of power repeaters as well 

as simpler system management. Here we discuss an alternative method of scaling 

and compensating nonlinear effects, which takes advantage of the linear additivity 

of first-order nonlinear perturbations and adjusts the signal powers in different fiber 

spans only slightly, such that one span of a type with st ronger nonlinearity may 

compensate sever al fiber spans of another type with weaker nonlinearity. A span of 

stronger nonlinearity and a group of spans of weaker nonlinearity corresponding to 

it are said to form a compensating pair. Through both mathematical analysis and 

computer simulations, it will be demonstrated that by arranging many compensating 

pairs mirror-symmetrically about a mid-point of a long transmission line, the two 

parts of the line, before and after the mid-point, could have their nonlinear effects 

compensated in a distributive manner, although each part could accumulate much 

nonlinearity well beyond the regime of perturbations. The nonlinear compensations 
are especially good when the system has an optical phase conjugator installed at 

the mid-point. Even without a phase conjugator, the proposed configuration could 

suppress the so-called intra-channel nonlinear effects. 
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8.3.1 Lin eari t y ofnonlinear perturbations and one-for-many nonlinear 

compensations 

As discussed in Section 4.2.1, had there been no nonlinearity, namely -y(z) = g(z, t) = 
0, Zl S Z S Z2, the slow-varying envelope A(Z2' t) of an optical signal output from 

an optical fiber stretching from z = Zl to z = Z2 > Zl, would be readily calculated 

by applying a linear operator P(zt, Z2), often called propagator, to the input signal 

envelope A(ZI' t). However, the existence of nonlinear terms in an NLSE makes the 

equation much more difficult to solve. Fortunately, when the signal power is not very 

high so that the nonlinearity is weak and may be treated as perturbation, the output 

from a nonlinear fiber line may be represented by a linearly dispersed version of the 

input, plus nonlinear distortions expanded in power series of the nonlinear coefficients 

[65, 74]. In practical transmission lines, although the end-to-end response of a long 

link may be highly nonlinear due to the accumulation of nonlinearity through many 

fiber spans, the nonlinear perturbation terms of higher orders than the first are usually 

negligibly small within each fiber span. Up to the first-order perturbation, the signal 

A(Z2' t) as a result of nonlinear propagation of a signal A(ZI' t) from Zl to Z2 ~ Zt, 
may be approximated using the following expressions, 

AO(Z2' t) = P(zt, z2)A(ZI, t), (8.16) 

Al (Z2, t) = 1~2 P(z, Z2) {i'}'(Z) IAo(z, t) 12 Ao(z, t) 

+ i [g(z, t) 0IAo(z, t) 12] Ao(z, t) } dz, (8.17) 

where A(Z2' t) ~ AO(Z2' t) amounts to a zeroth-order approximation which neglects 

the fiber nonlinearity completely, whereas the result of first-order approximation 

A(Z2, t) ~ AO(Z2' t) + Al (Z2, t) accounts in addition for the lowest-order nonlinear 

products integrated over the fiber length. The term Al (z, t) is called the first-order 

perturbation because it is linearly proportion al to the nonlinear coefficients -y(z) and 

g(z, t). By linearity of nonlinear perturbations, it is referred to the linear accumu­

lation of first-order nonlinear perturbations as in equation (8.17). Furthermore, the 
linear additivity of first-order nonlinear perturbations may still hold for a small num­

ber of repeated fiber spans. 

When a plurality of spans of one type with weaker nonlinearity are scaled sym­

metric to the same span of another type with st ronger nonlinearity according to the 

following, 

[a(n) (z(n)), _;J~n)(z(n)), ±;J~n)(z(n))] = R(n) [a(z), ;J2(Z), ;J3(Z)] , R(n) > 0, (8.18) 

[-y(n) (z(n)), g(n) (z(n) ,t)] = Q(n) [-y(z) , g(z, t)], Q(n) > 0, (8.19) 
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zen) = zIR(n), 0:::; z:::; L, (8.20) 

'V nE [1, N], where the scaling rules for the Raman coefficients {g(n) (z(n) ,t)}~=l may 

be omitted when it is not an option to compensate the stimulated Raman effect. 

The scaling rules of linear parameters in equation (8.18) between pairs of fiber seg­

ments carrying high signal power, in conjunction with proper dispersion and slope 

adjustments disregarding the scaling rules in fiber segments experiencing low signal 
power, ensures that the high-power signaIs {A~n)(z(n) = 0, t)};;=l injected into fiber 

spans of the first type are kept proportional and complex conjugate with respect to 

Ao(z = 0, t) injected into the span of the second type. According to equation (8.17), 

the first-order nonlinear terms due to Kerr- or Raman-mediated signal mixing gen­

erated in spans of the first type are also proportional and complex conjugate with 

respect to that generated in the span of the second type, namely, 

(8.21) 

where "*" denotes complex conjugation, pJn) = (IA~n)(O, t)1 2
) and Po = (IAo(O, t)1 2

) 

are the average signal powers in the beginning of fiber spans. It becomes possible by 

choosing the number N and adjusting the power levels {p(n)}~=l and Po, to render 

the accumulated first-order nonlinear perturbations of the N spans of the first type 

commensurate with that of the span of the second type, that is, 

N 

L Ain) (z(n) = LI R(n) , t) = Ar(z = L, t), (8.22) 
n=l 

so that the single span of the second type compensates the nonlinear effects of the 

group of N spans of the first type in the presence of OPC, or cancel the most detri­

mental intra-channel nonlinear effects without oPC. It is necessary to scale the signal 

powers as, 

N [Q(n) 1 (n) 
; R(n) Po = Po, (8.23) 

in addition to the scaling rules of equations (8.18 -8.20). When it is desired to have 

a similar level of signal power into all fiber spans for a uniform design and similar 

characteristics of power repeaters as well as simpler system management, it is possible 

to adjust the signal powers in different fiber spans only slightly from the same nominal 

power level, and have one span with st ronger nonlinearity to compensate several fiber 

spans with weaker nonlinearity. Such method is called one-for-many (in terms of fiber 

spans) nonlinear compensations. 
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Based on the idea of one-for-many nonlinear compensations, a multi-span long­

haul transmission line may be designed using two types of fiber spans having relatively 

st ronger and weaker nonlinear responses, where fiber segments in the two types of 

spans experiencing high-power signaIs are configured according to the scaling rules of 

an STS, while fiber segments carrying attenuated signaIs manage the dispersion and 

dispersion-slope. In particular, if each span with weaker nonlinearity is dispersion­

compensated to have approximately zero accumulated dispersion, and each of several 

such spans in cascade may indeed induce approximately the same nonlinear response, 

then for a reasonably small number of such cascaded spans with weaker nonlinear­

ity, the overall nonlinear response may still be weIl approximated by a combined 

first-order perturbation, which is just the sum of the first-order perturbations of in­

dividual spans. The overall nonlinear response may be compensated by one span 

with stronger nonlinearity that generates the equivalent amount of nonlinearity. The 

span of stronger nonlinearity and the corresponding group of spans of weaker non­

linearity are said to form a compensating pair. By arranging many compensating 

pairs mirror-symmetricaUy about a mid-point of a long transmission line, the two 

parts of the line, before and after the mid-point, could have their nonlinear effects 

compensated in a distributive manner, although each part could accumulate much 

nonlinearity weIl beyond the regime of perturbations [14, 15]. The nonlinear compen­

sations are especially good when the system has an optical phase conjugator installed 

at the mid-point, in which case nonlinear compensations take place distributively 

between each compensating pair for aU nonlinear mixing terms that are proportional 

to the Kerr or Raman coefficients, both within individual wavelength channels and 

among different channels. Even without a phase conjugator, the proposed one-for­

many configuration in an STS may be able to suppress the so-called intra-channel 

nonlinear effects, e.g., amplitude and timing jitters due to intra-channel nonlinear ef­

fects of IFWM and IXPM,' which are often the dominating nonlinear impairments in 

systems with high modulation speeds of 40 Gb/s and above [65]. With the dominating 

amplitude and timing jitters due to intra-channel nonlinearities being suppressed, an 

ONjOFF-keying system may still suffer from IFWM-induced "ghost-pulses" into the 

"0" slots where there are originally no optical pulses [90,93, 137, 138]. The growth of 

ghost-pulses may eventually limit the transmission distance. An interesting method 

suggests to use channelized SPM in the middle of two parts of a transmission line [31], 

where each part is designed to suppress the dominating amplitude and timing jitters, 

and the two parts would generate ghost-pulses at the same level when operating inde­

pendently. Intriguingly, the mid-way SPM makes the second part of the transmission 

line generating oppositely signed ghost-pulses with respect to, and hence cancel, the 
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ghost-pulses generated by the first part. 

Figure 8.14: A system in one-for-many STS between (RDF + SMF) and (SMF + RDF) spans with 
ope in the middle. 
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Figure 8.15: Optical eye diagram of the 3rd DEMUX channel received at the end of the one-for-many 
scaled translation-symmetric system shown in Fig. 8.14. 

For a practical example, consider a transmission line using standard SMFs and 

the so-called RDFs [129, 131], which are arranged into two types of spans: (SMF + 
RDF) and (RDF + SMF) respectively, where "+" indicates "followed by", so as to 

achieve simultaneous dispersion and nonlinear compensations. RDFs have loss and 

dispersion coefficients comparable to those of SMFs, namely, aRDF ~ as MF ~ 0.2 
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dB/km, DRDF ~ -DSMF ~ -16 ps/nm/km around 1550 nm. But the effective 

modal area of RDFs is usually small, typically about 30 J-Lm2 , which is far less than 

that of SMFs, typically about 80 J-Lm2 . As the fiber nonlinear coefficients are inversely 

proportional to the effective modal area, a typical RDF has Kerr and Raman nonlinear 

coefficients that are approximately 80/30 times of those of SMFs, namely, 'YRDF ~ 

2.7'YSMF, 9RDF(-) ~ 2.79sMF(·). In which case, one may achieve matched nonlinear 
compensations by slightly tuning the signal powers injected into the different spans: 

either raising the input power to the (RDF + SMF) spans (relative to the input 

power to the (SMF + RDF) spans) by only 0.3/2.7 ~ 10% to have one (RDF + 
SMF) span generating the equivalent amount of nonlinearity, hence compensating 

the nonlinear effects, of three (SMF + RDF) spans; or lowering the input power 

to the (RDF + SMF) spans by just 0.7/2. 7 ~ 26% to have one (RDF + SMF) 

span compensating the nonlinear effects of two (SMF + RDF) spans. Alternatively, 

if the same level of signal power is injected into the (RDF + SMF) and (SMF + 
RDF) spans, then one (RDF + SMF) span may compensate approximately 90% of 

the nonlinear effects due to three (SMF + RDF) spans, leaving a little residue of 

nonlinearity uncompensated. These are but sorne examples of using the one-for­

many method for nonlinear compensations. It is noted that the same principle and 

similar fiber arrangements with proper adjustments of signal powers are applicable 

to systems using other types of fibers, such as dispersion-shifted fibers and non-zero 

dispersion-shifted fibers, which are known to be suitable for the design of scaled 

translation-symmetric systems [14]. 

8.3.2 Simulation results and discussions 
A series of numerical simulations have been carried out using a commercial trans­

mission simulator (VPItransmissionMaker TM, Virtual Photonics Inc.), to verify the 

proposed method of simultaneous compensations of dispersion and nonlinearity in 

one-for-many system configurations. Firstly, we have simulated a transmission sys­

tem using (SMF + RDF) and (RDF + SMF) spans, as shown in Fig. 8.14, where the 

DCF is a commercial RDF product. The system has an optical phase conjugator in 

the middle, and on each side of OPC there is a loop recirculating four times. Each 

loop consists ofthree (SMF + RDF) spans each consisting of 40km SMF + 40km DCF 

+ 16dB EDFA, and one (RDF + SMF) span consisting of 40km DCF + 40km SMF 

+ 16dB EDFA. The SMF has loss a = 0.2 dB/km, dispersion D = 16 ps/nm/km, 

dispersion-slope S = 0.055 ps/nm2/km, effective modal area Aeff = 80 J-Lm2 , and the 

DCF has a' = 0.2 dB/km, D' = -16 ps/nm/km, S' = -0.055 ps/nm2 /km, A~ff = 30 

J-Lm2
• The EDFA has noise figure 4 dB. The inputs are four 40-Gb/s channels, RZ 
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Figure 8.16: A comparative system with no one-for-many STS but with ope in the middle. 

modulated with peak power 10 m W and dut y cycle 33%. The channel spacing is 200 

GHz. The optical MUX and DEMUX consist of Bessel filters of the 7th order with 

3-dB bandwidth 100 GHz. The system is configured such that each (RDF + SMF) 

span on the 1eft side corresponds to and compensates the non1inear effects of three 

(SMF + RDF) spans on the right side, and each (RDF + SMF) span on the right 

si de corresponds to and compensates the nonlinear effects of three (SMF + RDF) 

spans on the 1eft side. We have tried both a case with aU spans being injected exact1y 

the same amount of signal power and a case with the (RDF + SMF) spans being 

fed with 10% more power comparing to the (SMF + RDF) spans. No observable 

difference is found in the transmission performance, which indicates robustness of the 

system design against reasonable parameter deviations. Fig. 8.15 shows the optical 

eye diagram of the 3rd DEMUX channel at the end of transmission, which demon­
strates excellent signal quality after 2560km transmissions. We have also simulated 

two comparative systems to see how effective is the method of one-for-many nonlinear 

compensations with STS. One of the comparative systems as shown in Fig. 8.16 has 

aU identical (SMF + RDF) spans on both sides of OPC, the other has neither one­

for-many STS nor OPC. Everything else remains the same. Lacking an STS, both 

comparative systems are seriously impaired by fiber nonlinearities, as shown by the 

optical eye diagrams of the 3rd DEMUX channel in Fig. 8.17. 

For an example of intra-channel nonlinear compensations using one-for-many STS, 
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Figure 8.17: Optical eye diagrams of the 3rd DEMUX channel for the two comparative systems. 
Top: the system with OPC in the middle; Bottom: the system without OPC. 

we have simulated an optimized system using (SMF + RDF) and (RDF + SMF) spans 

as shown in Fig. 8.18, and a comparative system using aIl (SMF + RDF) spans as 

shown in Fig. 8.19. Each system is a cascade of two identical transmission lines. 

Each transmission Hne has a loop recirculating twice, with each loop consisting of 

four spans. In the optimized system, each loop consists of three (SMF + RDF) 

spans having 40km SMF + 40km DCF + 16dB EDFA, and one (RDF + SMF) 

span having 40km DCF + 40km SMF + 16dB EDFA. Each loop in the comparative 

system has aIl four identical (SMF + RDF) spans consisting of 40km SMF + 40km 
DCF + 16dB EDFA. The parameters of fibers, EDFAs, MUX/DEMUX, and input 

signaIs are aIl the same as in the previous simulations for nonlinear compensations 

with OPC. Note that the optimized system is configured such that each (RDF + 
SMF) span corresponds to and compensates the intra-channel nonlinear effects of 

three (SMF + RDF) spans. The comparative system has no one-for-many STS. 

Again we have tried both a case with all spans being injected exactly the same 

amount of signal power and a case with the (RDF + SMF) spans being fed with 
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Figure 8.18: An optimized system using SMF+RDF and RDF+SMF spans configured into a one­
for-many STS. 

Figure 8.19: A comparative system using aH SMF+RDF spans without one-for-many STS. 

10% more power comparing to the (SMF + RDF) spans, and found no observable 

difference. Fig. 8.20 shows the eye diagrams of the 3rd channel at the mid-point of 
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Figure 8.20: Optical eye diagrams of the 3rd channel at the mid-point of transmissions. Top: of the 
optimized system; Bottom: of the comparative system. 

the transmissions, namely, after the first transmission line of 640 km for each system. 

The eye diagram of the optimized system shows significantly reduced amplitude and 

timing jitters than the one of the comparative system, which demonstrates the effect 

of intra-channel nonlinear compensations with a one-for-many STS. At the end of 

the 1280km transmissions, as shown in Fig. 8.21, the comparative system suffers 

from significantly more signal degradations than the optimized system, especially 

in terms of amplitude and timing jitters of the mark pulses. However, it is noted 

that the optimized system is also penalized by the accumulation of noise energy in 
the "originally empty" time slots. A good part of the noise energy may be due to 

the growth of ghost-pulses, which is not suppressed by the one-for-many STS alone. 

Fortunately, when channelized SPM is introduced in the middle of the optimized 

system to result a setup as shown in Fig. 8.22, the ghost-pulses may be substantially 

removed from the signaIs received at the end of the 1280km transmissions, as shown 

in Fig. 8.23, in sharp contrast to the top diagram of Fig. 8.21. 

To better quantify the improvement of transmission performance due to one-for-
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Figure 8.21: Optical eye diagrams of the 3rd channel at the end of transmissions. Top: of the 
optimized system; Bottom: of the comparative system. 

many STS and mid-way SPM, repeated simulations have been carried out for three 

system configurations at different transmission distances, where each system consists 

of recirculated 320km spans. For the first, conventional setup, each 320km span has 

(40 km SMF + 40 km RDF + 16 dB EDFA) repeated four times. The second, one­

for-many translation-symmetric configuration, has always an even number of 320km 

spans, each consists of (40 km SMF + 40 km RDF + 16 dB EDFA) repeated three 

times and then (40 km RDF + 40 km SMF + 16 dB EDFA). The third, fully optimized 

system has exactly the same line configuration as the second system, except employing 
channelized SPM in the middle. The 3rd channel is monitored and Q-quantified. 

Fig. 8.24 shows the simulated Q values for the three systems as the transmission 

distance vary from 1 to 8 span(s) of 320km each, where the squares mark results 

of the optimized system with STS and mid-way SPM, the circles indicate results of 

the translation-symmetric system without mid-way SPM, and the triangles are for 

the conventional system without STS nor mid-way SPM. The solid horizontal line 

marks the threshold level of Q = 6 in order to achieve BER :::; 10-9
, which is used 
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Figure 8.22: An optimized system with one-for-many STS and mid-way SPM. 
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Figure 8.23: Optical eye diagram of the 3rd channel received at the end of the optimized system 
with one-for-many STS and mid-way SPM. 

as the cutoff level to determine the limit of transmission distance. It is seen that the 

convention al system reaches no more than 3 spans of 320 km, while the translation­

symmetric system without mid-way SPM could reach 6 spans of 320 km, and the 

addition of mid-way SPM further improves the Q value at the same reach distance. 
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Figure 8.24: The Q value versus transmission distance in number of 320km spans for three system 
setups: squares - optimized system with one-for-many STS and mid-way SPM; circles - one-for-many 
translation-symmetric system without mid-way SPM; triangles - conventional system without STS 
nor mid-way SPM. The solid horizontal line marks the level of Q = 6 for BER::; 10-9 • 



9 
CONCLUSIONS AND PERSPECTIVES 

In conclusion, it is expected that overcoming nonlinearity could be the next major 

challenge to optical communications. This thesis has tackled related problems of the 

fundamental feasibility and practical embodiments to overcome limitations imposed 

by fiber nonlinearity, from the angle of distributed nonlinear compensations using 

scaled symmetries in transmission lines. The NLSE formulation has been generalized 

and used extensively in our analyses of dispersive and nonlinear signal propagation 

in optical fibers, which provide theoretical guidance in the search, verification, and 

optimization of two types of methods for distributed nonlinear compensations, using 

mirror- and translation-symmetric configurations respectively. For each type, we 

have noted and emphasized the importance of scaled symmetry, in particular, the 

significance and feasibility of scaling the dispersion slopes of fibers together with 

their dispersions, loss/gain and nonlinear coefficients. We have shown analytically 

and verified with computer simulations that practical transmission systems using 

commercially available fibers may be arranged into nearly perfect mirror or translation 

symmetries in the scaled sense so to enjoy excellent nonlinear compensations. 

Nonlinear compensation using scaled mirror symmetry is based on a simple fact 

that the nonlinear Schrodinger equation is invariant under parameter scaling, such 

that a short piece of fiber having properly scaled parameters could subject optical 

signaIs to the same dispersive and nonlinear propagation as a long fiber. In principle, 

OPC and an amplifying specialty fiber could perfectly compensate the nonlinearity 

of a lossy transmission fiber, except for the ever-existing noise destroying the mirror 

symmetry. Nevertheless, noise and nonlinearity may be largely separable, because 

the effect of noise is significant only when the signal power and nonlinearity become 

weak at the two ends of a link consisting of an amplifying specialty fiber and a lossy 

transmission fiber with OPC in the middle. A simple but fairly accurate model may 

assume that optical noise is incurred exclusively at the two extreme ends of the link, 

while dispersive and nonlinear signal propagation is the only effect of the inner part 

of the link. Such link is well approximated by a linearized link with additive noise 

at the ends, and many of such linearized links may be cascaded to reach a longer 

143 
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transmission distance. 

With scaled translation symmetry, it has been shown how OPC may help to 

achieve simultaneous wide-band compensations of the residual dispersion and the 

fiber nonlinearities in dispersion-managed fiber transmission lines employing slope­

compensating fibers. When the dispersion slope of transmission fibers is equalized by 

slope-compensating fibers, the residual dispersion and the slope of dispersion slope 

are compensated by mid-way optical phase conjugation. More importantly, fiber non­

linearity may be largely suppressed by arranging the fibers into conjugate pairs about 

the phase conjugator, where the two fibers of each pair are in scaled translation sym­

metry. The translation symmetry is responsible for canceling optical nonlinearities of 

the two fibers up to the first-order perturbation, then a mirror-symmetric ordering 

of the fiber pairs about the conjugator linearizes a long transmission line effectively. 

One noted merit of this dual-compensation method is that it is applicable to a wide 

variety of transmission fibers and its effectiveness is fairly insensitive to the amount 

of residual fiber dispersion after the slope compensation. The transmission fibers may 

be standard SMFs, NZDSFs, or even DSFs, and the slope-compensating fibers may 

be any DCFs with dispersion slopes opposite to that of the transmission fibers. In 

view of the recent developments of efficient phase conjugation based on highly non­

linear fibers, LiNb03 waveguides, or semiconductor optical amplifiers, optical phase 

conjugators hold the promise of multiple functionalities in fiber-optic transmissions. 

Without using optical phase conjugation, it has been demonstrated that two fiber 

spans in a scaled translation symmetry could cancel out their intra-channel nonlinear 

effects to a large extent, and a significant reduction of intra-channel nonlinear effects 

may be achieved in a long-distance transmission line consisting of multiple pairs of 

translation-symmetric spans arranged into a mirror-symmetric order. It is argued 

that intra-channel pulse interactions are the dominating nonlinear effects in modern 

transmission systems with high modulation speeds, in which scaled symmetries could 

be effective in suppressing amplitude and timing jitters of mark pulses due to non­

linearity, but not for ghost-pulse generation into the empty data slots. For a further 
method of suppressing ghost-pulse generation into empty data slots, we have pro­

posed and tested a method that uses channelized mid-way self-phase modulation to 

reverse the generation of ghost-pulses due to intra-channel four-wave mixing. 

This thesis has also discussed practical implementations of OPC and DCMs, as weIl 

as methods of one-for-many nonlinear compensations using scaled translation sym­

metries. An example of a Kerr medium pumped by a strong laser beam is showcased 

as an example for the implementation of OPC, where it is noted that the same FWM 

effect realizing OPC also results in parasitic pro cesses by generating inter-mixing 
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terms among WDM signaIs, that a high pump-power to signal-power ratio and a cer­

tain guard-band in the frequency domain may be necessary to reduce such parasitic 

effect. For optimal packaging of dispersion-compensating fibers, it is explained that 

a compact dispersion-compensating module or a dispersion-compensating transmis­

sion line may better consist of two portions of dispersion-compensating fiber, where 

the first portion carrying high-power signaIs may have an intentionally increased loss 

coefficient to form a scaled translational symmetry with a transmission fiber, while 

the second portion experiencing low signal power could have the minimal loss coef­

ficient and do es not need to satisfy any scaling rule. For methods of one-for-many 

nonlinear compensations using scaled translation symmetry, it has been proposed and 

tested that a transmission line may consist of many pairs of compensating fiber spans 

mirror-symmetrically ordered about the phase conjugator, where each pair may in­

clude one fiber span of st ronger nonlinearity and several conjugating fiber spans of 

weaker nonlinearity. It has been demonstrated that such one-for-many configuration 

achieves simultaneous compensations of both dispersion and nonlinearity over a wide 

optical band, with or without OPC in the middle. 

In summary, this thesis reports mathematical analyses and practical embodiments 

of nonlinear compensations using scaled symmetries. On the theoretical side, our re­

sults provide a constructive and operational paradigm of distributive nonlinear com­

pensations based on scaled mirror or translation symmetries, which shows how nonlin­

early mixed signaIs may be de-mixed and restored, or how the amplitudes of nonlinear 

signal mixtures may be suppressed. Our paradigm also indicates that nonlinearity 

do es not necessarily or immediately limit the channel capacity, but the nonlinearity­

mediated noise-signal inter-mixing, or viewed as parametric amplification of noise 

pumped by signal power, does impose an ultimate limit to the capacity of a non­

linear channel. On the practical side, many of our proposed methods are readily 

applicable to practically deployed or designed fiber-optic transmission systems using 

commercially available transmission and dispersion-compensating fibers, with little 

or minimum system modification and limited addition of components. For further 

engineering developments, we have demonstrated the technological feasibilities and 

optimization criteria for several required components to fully implement transmission 

systems in scaled symmetries, including specialty fibers, optical phase conjugators, 

distributed EDFA and Raman amplifiers. In particular, our investigations have recog­

nized several new design metrics and methodologies to optimize optical components 

and subsystems for better system performance. For example, the dispersion of an 

RDF may be tuned in proportion to its loss coefficient so to form a scaled translation 

symmetry to a transmission fiber; the loss coefficient of a packaged DCF may be 
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set to an optimal value, which is not necessarily minimized, and its core area may 

be intentionally kept small to enhance nonlinearity, both in considerations of scaled 

symmetries. 



A 
QUANTUM NOISE IN QpTICAL COMMUNICATIONS 

Material in this Appendix has been published in reference [40]. 

A.l Introductory Quantum Fiber Op tics 
In modern fiber transmission lines, the optical signaIs experience alternating loss and 

gain. The ASE of the in-line amplifiers is usually blamed and considered as the sole 

source of noise that corrupts the optical signaIs. However, it should be noted that 

the fiber propagation loss is a random pro cess along the length of propagation. The 

stochastic nature of the loss pro cess induces a random fluctuation to the energy of the 

optical signaIs, namely, an extra source of noise, which could become comparable to 

the commonly blamed ASE noise. It is therefore necessary to understand and include 

this noise in system design and performance evaluation. Fundamentally, the optical 

noise in random loss / gain has a quantum origin, incurred as a result of the corpuscular 

nature of electromagnetic radiation. Such quantum noise is often treated in the 

Heisenberg representation, and interpreted as the result of a Langevin noise operator 

[39], or vacuum field operators [36, 38], added to the Heisenberg field operator of the 

signal. Here we adopt the Schr6dinger representation, and use a density matrix in the 

basis of photon number states to describe the signal field, the medium reservoir, and 

their interactions. When the medium degrees of freedom are traced out, a reduced 

density matrix is obtained in the diagonal form, which describes the total energy of 

the optical signal evolving along the propagation distance. Such formulism is sufficient 

for practical fiber-optic systems with direct intensity detection, because the quantity 
of concern is indeed the number of photons contained in a signal pulse. Furthermore, 

our formulism provides a more intuitive interpretation of the quantum-optical noise 

as the result of a classical Markov pro cess in the space of the photon number states. 

To deal with quantum noise, we naturally need the quantum theory of light 

[38, 150], which was first developed by Dirac in 1927 [151]. The established proce­

dure of the so-called canonical quantization of radiation st arts from a set of classical 

modes of the electromagnetic field, then relates each mode to a quantum-mechanical 

147 
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harmonie oscillator, and associates to whieh two operators, named the annihilation 

and the creation operators respectively. The product of a creation and an annihi­

lation operators has non-negative integers as eigen values. The corresponding eigen 

states are called the number states, and interpreted as having integer numbers of 

photons excited in the mode referred. For the problem of signal transmission in an 

optical fiber, it is convenient to describe the optical signaIs in terms of the eigen 

propagation modes of the fiber waveguide. Especially for a single-mode fiber, there 

is only one guided mode (actually two if counting the different polarizations), optical 

energy in all other spatial modes are not well-confined in the fiber and eventually get 

lost into the environment. With a fixed polarization, it is customary to represent an 

information-carrying optieal pulse by [6, 13], 

E(z, t) = EoRe[A(z, t) exp ( -iwot)] = Eo[Ar(z, t) coswot + Ai(z, t) sinwot], (A.1) 

H(z, t) = Holm[A(z, t) exp ( -iwot)] = Ho [Ai(Z, t) coswot - Ar(z, t) sinwot], (A.2) 

where E and H are the electrie and magnetic fields respectively, Wo is the center 

frequency of the optical signal, and A(z, t) = Ar(z, t) + iAi(z, t) is the so-called slow­

varying envelope of the signal pulse, that is, A(z, t) has small derivatives with respect 

to t. The envelope A(z, t) is found to satisfy an NLSE [6, 13], 

8A 8A i 82 A. . 1 12 
8z + {3I7ft + '2{32 8t2 = z{3oA + z"( A A, (A.3) 

where {3o is the propagation constant at the center frequency, {3I is the inverse of the 

group-velocity, {32 is GVD, and "( is the Kerr nonlinear coefficient of the fiber. The 

term of optical loss in the classical NLSE is not included here, because that term 

is to be treated quantum-mechanically, and derived from the first principles of light­

matter interactions. If neglecting the fiber nonlinearity and the GVD, then the NLSE 

is solved by a space-invariant envelope of the form A(z, t) = A'(t - (3IZ) exp(i{3oz), 

for sorne real-valued function A'(T). The fiber nonlinearity may be neglected for the 

current purpose, because the effect of quantum noise is significant only when the 

signal power becomes low, and that is when the nonlinearity diminishes. The effect 

of the GVD is not usually negligible, when the signal modulation speed is high and 

the propagation distance is long. However, it is believed that the GVD would not 

alter the characteristies of the quantum noise due to the highly localized light-matter 

interactions, as the accumulation of GVD over a short length of fiber is too small 

to change the shape of the signal pulse. We shall proceed to quantize the signal 

field in a single-mode fiber using the space-invariant mode of pulse propagation. Let 
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q(t) = coswot, and p(t) = sinwot, then the electric and the magnetic fields are 

represented as, 

E(z, t) = Eo[Ar(z, t)q(t) + Ai(z, t)p(t)], 

H(z, t) = Ho [Ai(z, t)q(t) - Ar(z, t)p(t)]. 

(A.4) 

(A.5) 

The Hamiltonian, namely the total energy, of the signal field can be calculated as, 

with 

1 j( 2 2) 1 2 1 2 1t = "2 EE + JkH dz = "2Clq + "2C2P , 

Cl = j[EE6A;(z, t) + JkH6A;(z, t)]dz, 

C2 = j[EE5A;(z, t) + JkH6A;(z, t))]dz. 

(A.6) 

(A.7) 

(A.8) 

The orthogonality between Ar(z, t) and Ai(z, t) has been used in the derivation. Based 

on the quadratic form of the Hamiltonian, and the dynamical equations q = -wop, ft = 
woq, we could draw an analogy between the optical mode and a harmonie oscillator, 

and further the analogy into the quantum world by turning q and pinto operators, 

and introducing commutation relations [151], 

i1iwo 
[q,p] = ..;c;c;' [q,q] = [P,p] = O. (A.9) 

It is customary to make a canonical transformation to the annihilation and creation 

operators, 

a = qJ 2~~o + iPJ 2~o ' 
+ ra;-. rc;­

a =qy~-zPy~' 

which satisfy the commutation relations, 

[a, a+] = 1, [a, a] = [a+, a+] = O. 

The Hamiltonian of the field becomes, 

1t = 1iwo (a+a +~), 
and the electromagnetic fields, now also operators, are represented as, 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

E( ) = E J1iWo [(Ar(Z, t) _ .Ai(z, t)) (Ar(Z, t) .Ai(z, t)) +] (A.14) z,t 0 2 va; Z..;c;. a+ va; +z..;c;. a , 
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H( ) - u Jfi,WO [(Ar(Z, t) .Ai(z, t)) (Ar(Z, t) _ .Ai(z, t)) +] (A.15) 
z, t - no 2 va; + '/, va; a + va; '/, va; a , 

in terms of a and a+. In the standard quantum theory of light [38, 150, 151], the 

modal functions are usually time-independent, and often called the normal modes 

of the field. Here, however, our modal function A(z, t) is time-dependent, albeit 

slowly. The propagating mode A(z, t) is actually a linear superposition of many nor­

mal (time-independent) modes with slightly different oscillation frequencies W around 

the center Wo. By grouping the normal modes together into A(z, t), we have adopted 

an approximation that neglects the energy variation of fi,w from fi,wo. We shall further 

assume that aIl the normal modes participate into the same interactions with the 
same environment, namely, the same material molecules and unguided modes of the 

fiber, and the strength of the interactions is approximately the same for aIl the normal 

modes. Such approximation enables the concise single-mode quantum description of 

the optical signal as in equations (A.12) through (A.15), and it should be applica­

ble to practical WDM communication systems, as the modulation bandwidth of the 

optical signaIs is usually far less than the center carrier frequency. 

The eigen states of n def a+a are the number states ln), nE N = {O, 1,2," '}, and 

the following holds, 

aln) = Vii ln - 1), 't/ n E N, 

a+ln) = vn+ 11n+ 1), 't/ nE N. 

(A.16) 

(A.17) 

For each n E N, the state ln) has the physical interpretation of n photons being 

contained in the single-mode wave packet defined by A(z, t). The wave function of a 

general wave packet may be expanded in the basis of the number states as, 

(A.18) 
n 

from which the expectation value of an operator Q may be calculated as, 

(1/;IQI1/;) = L L c:ncn (mIQln). (A.19) 
m n 

In particular, the average photon number is calculated as, 

(A.20) 
n 

If the wave packet is probed by a photon counter, for example a photo-detector (which 

is totally destructive though), Icn l2 is obviously the probability of n photons being 

detected. 
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A.2 Interaction with the Environment 
The loss or gain to the wave packet of a single pulse is due to interactions with 

the environment, inc1uding molecules in the waveguide, that may absorb photons 

from or emit photons to the wave packet, and other optical modes, which signal 

photons may be scattered into or from. Such interacting molecules and leaky optical 

modes shall be called interaction centers for convenience. The active molecules and 

Rayleigh scattering centers [69] are naturally localized in the waveguide material. 

Light scattering due to waveguide non-uniformities, such as micro-bends and tensile 

stresses [69], may take place within an extended length of fiber. However, the effect 

may still be viewed as localized comparing to the long distance of signal transmission. 

With all interaction centers localized, the following model Hamiltonian [152] may be 

used to describe the interaction between the signal field and the environment, 

U = L n(gka(J't + gZa+ (J'k")<5(z - Zk), (A.21) 
k 

where k E Z labels the interaction centers, Zk is the location of the kth center, 

gk is the coupling strength, (J't and (J'k" are operators to change the state of the 

interaction center after absorbingjemitting a photon respectively. It is assumed that 

the sequence {Zk} kEZ is a realization of a generally inhomogeneous Poisson point 

pro cess [153] with intensity À(z) along the length of the fiber, that is, the probability of 

having an interaction center inside an interval [z, z+dz) is À(z)dz for an infinitesimal 

dz. Although not always true, it is often a very good approximation to model each 

interaction center as a two-state system, because multi-photon pro cesses are usually 

rare events. A general quantum state ofthe kth interaction center is dkll)k +ukl i)k, 
where Idkl2 + IUkl2 = 1, Ilh and 1 i)k are the down and up states of the interaction 
center, which satisfy, 

(J'tl th = 1 i)k, (J'tl j)k = 0, 

(J'k"1 ih = 1 th, (J'k"1 th = o. 
(A.22) 

(A.23) 

Despite the simplicity of the signal field and the individu al interaction centers, 
it becomes rather complicated to describe the whole system in a fully quantum­

mechanical manner, because of the vast Hilbert space of an interacting many-body 

system. To short en the notation, we write the wave function of the whole system in 

a simplified form, 

Iw(t) = L 4>n(t)ln), (A.24) 
n 

where ln) is the nth number state of the signal field, and the coefficient 4>n(t) is <1>­

valued, representing the quantum state of aU interaction cent ers entangled with ln) at 
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time t, <J> is a suit able Hilbert space to accommodate all the possible wave functions of 

the interaction cent ers , or simply called the environment. The Schrodinger equation 

is still of the form, 

iaa Iw(t)) = UIW(t)) = 2:(gkaO"t + gZa+O"k)8(z - zk)lw(t)), 
t k 

(A.25) 

in the interaction picture, although the solution is quite involved. Before going 

further, it is noted that the space-invariance of the wave packet, A(z, t) = A'(t -
1hz) exp(i,8oz), makes the space and time variables inter-changeable, if the space­

time extent of the wave packet is neglected, and the signal pulse is represented by a 

"point particle" at the center of the packet, t - ,8IZ = O. With t substituted by,8IZ, 

equation (A.25) becomes, 

(A.26) 

which describes a quantum dynamics along the z axis. Equations (A.24) and (A.26) 

may be combined to get, 

(A.27) 
n k n 

It is difficult in general to solve the whole system quantum-mechanically. Just the 

initial condition would be hard to specify, with so many interaction centers, each of 

which is randomly located, and may be at any superposition state of the two levels. 

However, we note again that the signal field interacts with the interaction cent ers in 

a highly localized manner. The signal can interact with only one center at any given 

time. The interaction centers that the signal has already passed do not interact with 

the signal any longer in terms of energy exchange. But the spooky quantum entan­

glement [154] still connects the signal to the past interaction centers. Were not for 

the quantum entanglement, a much simpler system of the signal field exchanging en­

ergy with the immediate interaction center would be separated from the complicated 
many-body system. One way to extract a collective system from the whole, somewhat 

forcedly, is to use the density matrix [155] description of the entire system, that is 

Ptot = Iw}(wl, then take the trace over all the unwanted degrees of freedom, leaving 

only those of the signal field and the single chosen interaction center. The reduced 

density matrix is then a complete representation of the collective system, although 

the quantum coherence in the reduced system is also reduced, even totally lost. That 

is, the system is no longer in a pure quantum state, but a statistically mixed one [155]. 

This is the familiar yet hard-to-understand phenomenon of decoherence. Fortunately, 
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decoherence is indeed what happens in reality. In fact, the technique of tracing over 

the environmental degrees of freedom has been used to explain the mysterious phe­

nomenon of decoherence of open quantum systems in general [156, 157]. Furthermore, 

the main goal of optical communications is not to perform any delicate experiments 

of quantum optics where quantum coherence needs to be carefully preserved, but to 

deliver information encoded in the number of photons for which quantum coherence is 

not the first concern. Consequently, we shall assume that the vast number of interac­

tion cent ers and their interactions with the larger environment destroy the quantum 

coherence in a signal wave packet quickly and completely, so that the reduced density 

matrix of the signal field has only diagonal terms, that is, P = En Pnnln) (ni, where 

Pnn ~ 0 is a classical probability of the wave packet being at the number state ln). 
Note that each ln) is still a pure quantum state, but there is no quantum coherence 

among the number states. 80 we need only to consider the reduced system of a wave 

packet at a number state ln) interacting with a single interaction center, as shown 

in Fig. A.1, then mix different initial number states statistically according to the 

input density matrix. An output density matrix is obtained, also in the diagonal 

form, when taking the trace of the resulted density matrix again over the degrees 

of freedom of the interaction center. This leads to a classical Markovian model that 

relates the input/output density matrices. 

1\ :ignal 

/ \UIse 
interaction 

o 
center 

z=z 
k 

z=z 
k+l 

Figure A.l: A signal pulse interacting with an interaction center. 

A.3 A Classical Markovian Madel 
Let us set Zk+1 - Zk = l/À(zk) in Fig. A.1, assume that there is one and only 

interaction center in the interval, which is at a general quantum state dkl !) + ukl j), 
and take ln) as the input state of the signal wave packet. The interaction Hamiltonian 

is l'Je = h(gkaat + g'ka+ak)8(z - Zk), which transforms the input quantum state 
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'lIk+1 = exp[-iJV(t)dtj1i] (dkln)1 1) +ukln)1 j)) 

= exp [-it3l (9ka(Jt + 9ka+ (J;;)] (dkln) 1 1) + ukln) 1 j)) 

~ [1 - it3l(9ka(Jt + 9ka+(J;;)] (dkln)1 1) + ukln)1 j)) 

= dkln)1 1) + ukln)1 j) - it319kdkVn ln - 1)1 j) 

-it319'kukvn + 1 ln + 1)1 1). 
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(A.28) 

By tracing l'li k+ 1) ('li k+ 11 over the interaction-center degrees of freedom, then neglect­

ing the off-diagonal terms, and renormalizing the coefficients, a reduced density matrix 

for the signal wave packet is obtained as, 

(1 - nt3il9kl2 - t3iI9kI2IukI2) In)(nl + nt3il9kl2ldkl2 ln - l)(n - 11 

+ (n + 1)t3iI9kI2IukI2 ln + l)(n + 11. (A.29) 

A mixed state of the signal field P(Zk) = L:n Pnn(Zk) ln) (ni is therefore converted by 

the interaction center into another mixed state, 

P(Zk+1) = L::(1- nt3il9kl2 - t3iI9kI2IukI2)Pnn(Zk)ln) (ni 
n 

+ L::(n + 1)t3iI9kI2IdkI2Pn+1,n+1(Zk)ln) (ni 
n 

+ L:: nt3iI9kI2IukI2Pn_l,n_l (zk)ln)(nl· (A.30) 
n 

By definition, P(Zk+1) = L:n Pnn(Zk+1) ln) (ni. 80 the coefficients of the density matrices 

are related by, 

Pnn(Zk+1) = (1 - nt3il9kl2 - t3iI9kI2IukI2)Pnn(Zk) + (n + 1)t3iI9kI2IdkI2Pn+1,n+1(zk) 

+ nt3iI9kI2IukI2Pn-l,n-l(Zk), V nE N. (A.31) 

The dynamics of the reduced density matrix may be interpreted as a discrete Markov 

chain [158, 159, 160] indexed by k E Z, with N = 0, 1,2, ... being the state space, 

and [Poo (Zk), P1l (Zk), P22(Zk), ... ] being the probability distribution vector at "time" k. 
The compound pro cess of the discrete Markov chain and the Poisson point pro cess of 

interaction centers is a continuous Markov chain along the Z axis, with the transition 

law for the probability distribution given by a continuous version of equation (A.31), 

Pnn(Z) = -Œ(z)[n + f(z)]Pnn(z) + Œ(z)[l - f(z)](n + l)Pn+l,n+1(Z) 

+Œ(z)f(z)npn-l,n-l (z), V nE N, (A.32) 
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where 

a(z) def À(z),Bi Ig(z) 12 , 

f(z) def lu(z)1 2• 
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(A.33) 

(A.34) 

Obviously, a(z) ~ 0 represents a compound interaction strength, which is the spatial 

density of interaction cent ers times their quantum coupling strength to the signal 

field, 0 ::; f(z) ::; 1 is the fraction of interaction cent ers at z that are at the excited 

state, ready to emit a photon. Note that our definition of the interaction centers 

includes both the actual atomic levels of the active molecules, and the passive light 

scattering into/from other optical modes due to fiber non-uniformities, micro-bends, 

and tensile stresses etc. Consequently, the parameters a(z) and f(z) should be de­

termined by counting both the active and the passive interaction centers. The effect 

of the passive interaction centers may become significant in, for example, distributed 

Raman and erbium-doped fiber ampli fiers , where the passive cent ers could induce 

a sizable internaI loss in the fiber. The commonplace case of a transmission fiber 

with no amplification in the middle constitutes an extreme in which the passive light 

scatterers aIl at the "down state" are the only interaction centers. 

80 we have derived, from the first-principles of quantum optics, the fundamental 

equation (A.32) governing the dynamics of photon-number distribution of optical sig­

naIs propagating in a waveguide with loss and/or gain. The mathematical equation 

is essentially the same as appeared in precious studies of photon statistics in optical 

amplifiers [10, 161, 162]. It may be recognized as the forward Kolmogorov equa­

tion [159, 160], and can be solved analytically by using the method of probability 

generating function (PGF) [10, 161, 162]. To simplify the notation, let 

Pn(z) = Pnn(z), V n E N, 

a(z) = a(z)f(z), 

b(z) = a(z)[l - f(z)], 

then equation (A.32) may be re-written as, 

Pn = a[nPn-l - (n + l)Pn] + b[(n + l)Pn+1 - nPn], 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

which is in the same form as appeared in previous works [10]. The established formulas 

[10, 161, 162] can then be adopted with little or no modification. A brief introduction 

to the PGF method seems to be appropriate here. A PGF F(x, z) for the probability 

distribution vector [Po(z), P1(z), P2(z),···] is defined as, 

(A.39) 
n 
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And the inverting formula is, 

Po ( ) =! [onF(x,z)] V n E N. 
n z , !:l n ' n. uX x=o 

(A.40) 

The forward Kolmogorov equation (A.38) may be translated into a differential equa­

tian far the PGF, 
oF oF 
oz = (ax - b)(x - 1) ox + a(x - l)F, (A.41) 

with the initial condition, 

(A.42) 
n 

The differential equation is analytically solved by [10, 161, 162], 

1 [1 + (N - G) (1 - X)] n 

F(x, z) = 1 + N(l _ x) ~ Pn(O) 1 + N(l - x) , (A.43) 

where 

G(z) def exp [foZ [a(() - b(()] d(] , (A.44) 

N(z) def G(z) foz ~~~ d(. (A.45) 

The physical interpretation of G(z) is the overall gain/loss from 0 to z, whereas N(z) 
may be interpreted as the ASE due to the presence of interaction cent ers that are at 

the "up state" . 

A.4 Applications and a Numerical Example 
Our Markovian model is derived rigorously from the first principles of quantum optics, 

and the model is applicable to a wide range of guided-wave systems with arbitrary 

distributions of gain/loss media along the length of the waveguide. The existence 

of analytical solutions enhances further the appeal and prediction power of the es­

tablished model. We expect the model ta find many applications in quantifying the 
quantum noise in fiber-optic systems, such as transmission fibers without gain, doped 

fiber amplifiers, and Raman amplifiers. As an example, we shall work out the quan­

tum noise induced by the pure loss of a transmission fiber. This example is chosen 

not just because of its simplicity, but more importantly due to the fact that such 

noise has largely been neglected by the fiber-optic engineering community. 

Optical signaIs usually start with a high initial power level and high SNR in order 

to reach a long transmission distance. For an practical purposes, the noise of the 

laser transmitter may be neglected, and the starting signal may be madeled by a pure 
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number state lm), which is of course noise-free if detected by an ideal photo-detector. 

The photon number m corresponds to the total energy of a pulse. For example, in a la 

Gb/s system, the peak optical power is often set to approximately a dBm, or 1 mW, 

so a binary "one" is represented by an energy packet of 1 mW x 100 ps = 10-13 J, or 

approximately 106 photons at 1.55 Mm. 80 the input state of the pulse may be set to 

the number stat lm) with m = 106 • The average photon number will be reduced to 

about 104 after a lOO-km fiber propagation with 20 dB loss. Because of the random 

nature of the loss process, the actual photon number at the end will fiuctuate around 

104 , even though the signal starts with exactly 106 photons. We resort to equation 

(A.43) for an exact solution to the probability distribution of the number of signal 

photons at the output of the transmission fiber. There is only loss in this case, 

G = 0.01 and N = 0, therefore, 

F(x) = L Pn(O) [(1 - G) + Gxt = [(1 - G) + Gx]m , (A.46) 
n 

which corresponds to the well-known binomial distribution, 

Pn = ( : ) (1- G)m-nGn, V nE [O,m], (A.47) 

here m = 1, 000, 000 is a very large number. This result agrees exactly with that 

obtained using a Langevin noise operator in the Heisenberg representation [39]. The 

probability distribution is plotted in Fig. A.2, where the horizontal axis is the de­

viation of the photon number n from the mean mG = la, 000, and the vertical axis 

is the normalized probability Pn. Graphically, the signal photon number is seen to 

fiuctuate on the order of ±100 with large probability. To quantify the effect of the 

quantum noise, it is found that the probability distribution is excellently fitted by a 

Gaussian distribution, 

Pn ~ P(n) = Pmaxexp [-2~~(~~~)l ' (A.48) 

here G = 0.01 and mG = la, 000. Indeed, it can be proved by using 8tirling's 
formula that log P(n) is the Taylor expansion of log Pn in power series of (n -
mG)/ VmG(l - G) up to the quadratic term [163]. When the attenuated optical 

signaIs are converted into electrical current by an ideal photo-detector, the level of 

the "1" bits is Gaussian distributed as given ab ove , while that of the "a" bits is free 

of fluctuations, so the Q factor is [39], 

Q def (nh - (n)o = (nh = mG = J mG . 
0"1 + 0"0 0"1 vmG(l - G) 1 - G 

(A.49) 
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For the current example, it predicts Q ~ 100 after one span of lOO-km fiber. However, 

the Q factor will decrease quickly as the transmission distance increases. Even if the 

attenuated signal were boosted back to the lm W power level by a noiseless amplifier, 

and such amplified fiber span were repeated M times to reach a long-distance of 

Mx 100 km, the Q would be degraded to V mG / M (1 - G), based on a model assuming 

that the "effective Gaussian noise" at the end of each fiber span is independent and 

additive. The independency assumption is only natural, while the additivity should 

be a good approximation so long as the accumulated noise remains much lower than 

the signallevel. If taking M = 25 for a 2500km transmission line, the Q would not be 

much better than 20 at the end, even completely neglecting the noise contribution of 

the repeating amplifiers! The problem gets worse when the signal modulation speed 

goes to 40 Gb/s and higher. If the signal power level is fixed, then the number of 

photons contained in one pulse is inversely proportional to the modulation speed. 

Consequently, the Q is inversely proportional to the square-root of the modulation 

speed, so Q ::; 10 for 40 Gb/s, and Q ::; 5 for 160 Gb/s, at the end of 25 fiber spans of 

20 dB loss. The Q factor needs to be higher than 6 in order to guarantee a BER below 

10-9 [39]. Clearly, the quantum noise due to fiber loss could amount to a significant 

source of noise that should be seriously considered in practical fiber transmission 

systems, especially in those with modulation speed of 40 Gb/s and above. 
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Figure A.2: Probability distribution of the number of photons after 100 km fiber transmission. 



B 
FUNDAMENTALS OF N ONLINEAR FIBER QpTICS 

Due to the material nonlinear effects, a fiber-optic transmission line is a nonlinear 

channel. In state-of-the-art transmission systems, a single-mode optical fiber may 

carry tens even more wavelength channels. Each wavelength carries lOGb/s or higher 
data rate, and the signal may travel several thousand of kilometers in the fiber. With 

such long transmission distance at such high data rate, the optical nonlinearity of 

the fiber becomes significant. Indeed, fiber nonlinearity has become one of the ma­

jor limiting factors in practical transmission system [2, 60]. The theory of nonlinear 

guided-wave optics, in particular nonlinear fiber optics, has played and should con­

tinue to play an important role in understanding fiber-optic signal transmissions, the 

generation and propagation of ultra-fast laser pulses in optical fibers, and fiber Ra­

man amplifiers, to name just a few. The available formulations in the literature often 

use a single-component representation of the optical signaIs, treat the effect of GVD 

up to the dispersion slope, and usually neglect the variations of the optical loss, the 

transverse mode function etc. across the signal frequency band [5, 6]. Although these 

approximations simplify the equations and offer sorne convenience, they may have 

already been or will soon be broken down by the rapid growth of the signal band­

width. Indeed, modern transmission systems have already been carrying several tens 

of WDM channels across an optical bandwidth in excess of 30 nm. Sorne pioneering 

systems have even operated with a bandwidth close to 100 nm. With such a wide 

bandwidth and so many WDM channels, it is rather inconvenient to use a single­

component equation to describe the dynamics of aIl signaIs, and the higher-order 

GVD effects start to play important roles in the dynamics of signal propagations, 
especially the nonlinear interaction among the signaIs. Recent advancements in fiber 

technologies have produced DCFs that are capable of compensating simultaneously 

the dispersion and the slope of transmission fibers, leaving the residual dispersion 

dominated by the higher-order derivatives of GVD [3, 87, 130, 131, 164, 165]. 

This Appendix will derive a set of nonlinear differential equations from the first 

principles, namely the Maxwell's equations and the material responses to electro­

magnetic excitations. The derivation retains the mathematical exactitude down to 

159 
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details. Each approximation is justified and the scope of its applicability is dis­

cussed. Still in compact and convenient forms, the final equations include the effect 

of GVD down to an arbitrary order, and take into account the frequency variations 

of the optical loss as weIl as the transverse modal function. Aiso established is a 

new formulation of multi-component nonlinear differential equations, in which the 

total electromagnetic field is represented as a sum of signaIs with different center 

frequencies. The multi-component formulation is especially suitable for the study of 

wide-band wavelength-division multiplexed systems of optical communications. 

In dielectric optical waveguides, e.g. silica glass fibers, there is no source of electric 

charge, nor source of current, that is able to excite electromagnetic waves at the 

optical frequency. The magnetic response of most dielectrics is negligible at optical 

frequencies. The op tics of dielectric waveguides is governed by MaxweIl's equations 

[71], 

BH 
'\1 x E = -11.0-

t" Bt' 
BE BP 

'\1xH=Eo Bt + Bt' 
'\1. (EoE+P) = 0, 

'\1. H = 0, 

and the material equation [5, 6], 

P(r, t) = EO J x{l)(r, s)E(r, t - s)ds 

(B.1) 

(B.2) 

(B.3) 

(BA) 

+ EO J x(3)(r, tI, t2 , t3):E(r, t - tl)E(r, t - t2)E(r, t - t3 )dt1dt2dt3 , (B.5) 

where X(l) and X(3) are the linear and the third-order nonlinear susceptibilities of the 

dielectric material respectively. Although MaxweIl's equations describe the optical 

phenomena with the highest accuracy, they seem to be rather complicated when 

directIy applied to optical waveguides, which usually consist of regions with different 

dielectric properties. Within each region, however, the material is often uniform and 

isotropic, so that the vector P is always proportional and parallel to E, if neglecting 

the nonlinear polarization for the moment. Then equation (B.3) is reduced to '\1. E = 
O. By applying '\1x to (B.1), using (B.2) and the identity, 

(B.6) 

it is obtained, 

(B.7) 
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with 1/c2 = Eo/10' Both X(l) and X(3) may be complex quantities. The real part 

of X(1) represents the position- and frequency-dependent dielectric constant, while 

the imaginary part reflects the optical loss or gain in the materials, which may be 

regarded as frequency-independent, as the total signal bandwidth W is usually much 

sm aller than the center optical frequency Wo of the band. The imaginary part of X(3) 

represents the two-photon absorption effect, which is negligible in fibers of silica glass. 

The real part of X(3) cornes from two contributions, Re[x(3)] = X~) + X~), where X~) 
is responsible for the optical Kerr effect, which may be regarded as an instantaneous 

one, while X~) is tied to the Raman scattering effect, which is a time-delayed pro cess 

[5, 6]. 80 the material equation (B.5) may be simplified as, 

P(r, t) = Eo / Re[x(l)(r, s)]E(r, t - s)ds + iEoIm[x(l)(r)]E(r, t) 

+ Eox~)(r):E(r, t)E(r, t)E(r, t) 

+ EO / x~)(r, srE(r, t - s)E(r, t - s)E(r, t)ds. (B.8) 

Now the guided-wave optics is described fairly accurately by equations (B.7) and 

(B.8), in addition to the proper boundary conditions [71] connecting the fields in 

different dielectric materials. But there is still too much complexity, due to the 

vectorial nature of the electromagnetic field and the involved boundary conditions. 

Fortunately, optical fibers are designed to guide a few dis crete modes, even just one 

mode, and the difference in the dielectric constant is small between the core and the 

cladding, which makes the guided modes very close to linearly polarized [69]. In most 

fibers, the optical birefringence is either vanishingly weak to avoid the effect of PMD, 

or sufficiently strong to render the fiber polarization maintaining. For mathematical 

simplicity, it is assumed that aIl signaIs are co-linearly polarized when entering an 

optical fiber, and coupled into one polarization eigen state when the fiber is polariza­

tion maintaining. In case the signaIs are not co-linearly polarized, the mathematical 

description should be slightly modified to deal with the complication. However, the 

same physics remains to govern the nonlinear signal propagation in optical fibers. 

With the linear polarization representation E(r, t) = E(r, t)el, equations (B.7) and 

(B.8) are simplified and combined as, 

182E 182
/ i 82 

\72 E - -- - -- Re[x(l)(s)]E(t - s)ds = -Im[x(l)]-E + 
c2 8t2 c2 8t2 c2 8t2 

1 (3) 82 
3 1 82 

/ (3) 2 
C2XK 8t2E + c2 8t2 XR (s)E (t - s)E(t)ds. (B.9) 

When the total signal bandwidth W is not much more than a few THz, it satisfies 

the condition W « Wo, as Wo ~ 200 THz. The frequency dependence of the transverse 
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modal function may be neglected, so that a trial solution, 

E(r, t) = Re[F(x, y)A(z, t) exp(i,8oz - iwot)], (B.lO) 

with,8o being the optical propagation constant at wo, may be substituted into (B.9) to 

derive a differential equation for the envelope function A(z, t). Since the fast variation 

is absorbed by the factor exp(i,8oz - iwot), the signal envelope A(z, t) is expected to 

be slow-varying in both z and t. The transverse modal function F(x, y) is determined 

by substituting F(x, y)A(z, w -wo) exp(i,8oz) into the Fourier transform of (B.9) with 

the right side set to zero. F(x, y) is found to solve the eigen-value equation, 

( 
82 82 ) w2 w2 

8x2 + 8y2 F(x, y) + ~F(x, y) + ~Re[x(l)(x, y, w)]F(x, y) = ,82(w)F(x, y). 

(B.ll) 
Note that the eigen-value ,82 is w-dependent, which may be expanded into Taylor 

series, 

(./2 ( ) (./2 f3, ~ ,8k( )k' h (./ def 1 d
k
,82(W) 1 

fJ w = fJO + 2 0 ~ k! w - Wo , wIt fJk = 2,80 dwk w=wo' (B.12) 

When transformed back into the time domain, equation (B.ll) leads to, 

82 E 82 E 1 82 E 1 82 J - + - - -- - -- Re[x(l) (s)]E(t - s)ds = 
8x2 8y2 c2 8t2 c2 at2 

,86E + 2,8oF(x, y) exp(i,8oz - iwot)BA(z, t), (B.13) 

where B is a differential operator defined as, 

B def f ,8k (i~) k 
k=l k! 8t 

(B.14) 

Substituting (B.I0) and (B.13) into equation (B.9) in full, and multiplying both sides 

by F*(x, y) then integrating over the transverse plane, it is obtained the NLSE, which 

governs the propagation dynamics of the signal envelope in optical fibers, 

8aA - iBA + ~A = i'YIAI2 A + i(g 0IAI2)A, 
z 2 

(B.15) 

where 
2 

Œ def ,8:~2 J Im[x(l) (X, y)]IF(x, y)12dxdy, (B.16) 

def 3W5 J (3)( )IF( )14d d 'Y = 8,8oc2 XK X, Y x, Y x y, (B.17) 

2 

g(S) def 4;00c2 J X~)(x, y, s)IF(x, y)14dxdy, (B.18) 
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assuming that F(x, y) is normalized, and ® denotes the convolution operator such 

that, 
(B.19) 

In deriving equation (B.15), nonlinear products out ofthe signal band around Wo, and 

the Raman term involving A2(Z, t-s)A*(z, t), are dropped because the corresponding 

nonlinear processes are prevented by large phase-mismatches, the term a2 Ajaz2 is 

neglected in view of the slow-varying nature of A(z, t) in z, also neglected are terms 

involving the time-derivatives of A(z, t) multiplied by Im[x(I)], X~), or X~), hence the 

name slow-varying envelope approximation. A long transmission link may use fibers 

of different types. Sometimes the fiber parameters may vary along a single piece of 

waveguide. So the quantities (B, a", g) are z-dependent in general. However, the 

corresponding derivatives with respect to z may be neglected, as the z-dependence is 

usually step-wise, or extremely slow if continuous. A more general NLSE reads, 

~~ - iB(z)A + a~z) A = h(z)IAI2 A + i [g(z) ® IAI2] A. 

With a change of variables, 

z = z', 
z' 

t=t'+ J /31(()d(, 

such that, 

[ 
~z 1 = [g:, g:, 1 [ 8;' 1 = [1 -/31 (z) 1 [ 8;' 1 ' 
8t 8t 8t 8t' 0 1 8t' 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

equation (B.20) takes a simpler form in the so-called "retarded frame" [6], which after 

the primes in the variables being dropped reads, 

~~ - iD(z)A + a~z) A = i,(z)IAI2 A + i [g(z) ® IAI2] A, (B.24) 

with 

D(z) def ~ /3k(Z) (i~)k 
k=2 k! at (B.25) 

When the bandwidth of the optical signaIs becomes too large, it may violate the 

w-independent assumptions for the transverse modal function F(x, y) and the loss or 

gain coefficient Im[x(I)]. However, the huge bandwidth is usually shared by many 

WDM channels, each of which, labelled by nEZ, is narrow-band around its own 

center frequency wn . Within each WDM channel, the transverse modal function 
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Fn(x, y) and the loss or gain coefficient Im[x~l)], both subscripted by n, are regarded 

as frequency-independent and valued at Wn . So the trial solution would be, 

(B.26) 

where f3nO(z) def f3(z, wn) is the optical propagation constant at frequency Wn and po­

sition z, An is naturally the slow-varying envelope of the nth channel. The transverse 

modes Fn(x, y), nEZ, are determined by the eigenvalue equations, 

(::2 + ::2) Fn(x, y) + ~; Fn(x, y) + ~;Re[x(I)(x, y, wn)]Fn(x, y) 

= f32(w)Fn(x, y), V nEZ, (B.27) 

whose time-domain equivalents are, 

8
2 
En 82En _ ~ 82 

En _ ~~J [(1)()] (_ _ 2 

8 2 + 8 2 2 8 2 2 8 2 Re X s En t s )ds - f3no En 
X y etc t 

+ 2f3noFn(x, y) exp [i JZ f3no(()d( - iwnt] BnAn(z, t), V nEZ, (B.28) 

where 

(B.29) 

and 

(B.30) 

V k 2: 1, V nEZ. Substituting (B.26) and (B.28) into (B.9), projecting the field into 

individual transverse modes Fn(x, y), nEZ, and similarly, dropping the nonlinear 

products suffering from large phase-mismatches, neglecting 82 Aj8z2 and the terms 

involving the time-derivatives of A(z, t) multiplied by Im[x(I)], X~), or X~), disre­

garding the z-derivatives of the fiber parameters and Fn, V nEZ, a multi-component 
NLSE is obtained, 

88
An 

- iBn(z)An + Œn(Z) An = iL L 1'lmn(z)AIAmA; exp [i01mn (z)] 
z 2 1 m 

- L L 9Imn(z)AIAmA; exp [i01mn (z)], V nEZ, (B.31) 
1 m 

where p is determined by the condition, 

(B.32) 
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and 

V l,m,n E Z, with 

def 1 ak (J2 (z, w) 1 

f3nk(Z) = 2f3nO(z) awk W=Wn' 'V k ~ 1, 'V nEZ, 

Gr(r, w) def Re [J x~)(r, t) exp(ws)dt] , 

Gi(r,w) def Im [J x~)(r,t)exp(ws)dt]. 
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(B.33) 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

(B.39) 

As the Fourier transform of X~)(t), Gr(w) + iGi(w) is basically the Raman gain 

spectrum. Because X~) is real valued, Gr and Gi are even and odd functions of w 
respectively, namely, Gr( -w) = Gr(w), Gi( -w) = -Gi(w). By a change of variables 

(z, t) -t (z, t + r f301(()d(), (B.31) may be rewritten as, 

aa
An - iDn(z)An + G n2(z) An = iL L "Ylmn(z)AIAmA; exp [iBlmn (z)] 
z 1 m 

- LL9Imn(z)AIAmA;exp[iBlmn(Z)], V nEZ, (BAD) 
1 m 

with 

(B.41) 

After some tedious mathematical derivations, it is rather satisfying to see that 

the complicated phenomena of group-velo city dispersion and nonlinear interactions 
among optical signaIs are fully captured by the NLSE (B.24) or (BAD) in a simple and 

appealing form. At this point, it may be beneficial to highlight the theoretical model 

and analytical tools by recapping the assumptions and mathematical approximations 

being made in the above derivations. Such highlight should help to identify the 

applicability of the NLSEs as weIl as their limitations. 

Assumptions 
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1) First of aIl, the optical field is believed to obey MaxweIl's equations 

(B.1-B.4); 

2) The waveguide material is assumed to display third-order nonlin­

earity, with the electrie response given by (B.5); 

3) The waveguide material is step-wise uniform and isotropic; Namely, 

the waveguide consists of domains of uniform and isotropie materials, 

such that the polarization P (linear response) is always a scalar con­

stant times the electric field E within each domain; 

4) The third-order nonlinearity consists of an instantaneous (Kerr) 

response and a time-delayed (Raman) scattering effect; 

5) AlI signaIs are assumed co-linearly polarized when entering an opti­

cal fiber, and coupled into one polarization eigen state when the fiber 

is polarization maintaining; 

6) The fiber parameters may be z-dependent, but their derivatives 

with respect to z are always negligible. 
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These assumptions are responsible for distilling the first-principle equations (8.1 -

B.4) and the material property (B.5) into the single scalar equation (B.9). Then the 

following approximations have been made in order to derive the single-component 

NLSE (B.24): 

Approximations for the single-component NLSE 

Sl) The opticalloss or gain in the materials is regarded as frequency­

independent; 

S2) The two-photon absorption effect is neglected in fibers of silica 

glass; 

S3) The frequency dependence is neglected for the transverse modal 

function; 
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84) The guided modes are treated as linearly polarized; 

85) Nonlinear products out of the signal band are neglected; 

86) The Raman term involving A2(Z, t - s)A*(z, t) is dropped because 

of a large phase-mismatch; 

87) The term 82 AI8z2 is neglected in view of the slow-varying nature 

of A(z, t) in z; 

88) Also neglected are terms involving time-derivatives of A(z, t) mul­

tiplied by Im[x(1)] and the nonlinear coefficients X~), X~); 
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The above approximations 81) and 83) are good when the total optical bandwidth 

W is less than or on the or der of a few THz. For systems with an optical bandwidth 

weIl exceeding the THz bandwidth limit, a channelized representation (B.26) may be 

used for the optical signaIs, and the foIlowing approximations may be made to derive 

a multi-component NL8E (BAD): 

Approximations for the multi-component NLSE 

Ml) The optical loss or gain in the materials may vary for different 

channels, however they are treated as frequency-independent within 

each channel; 

M2) The two-photon absorption effect is again neglected in fibers of 

silica glass; 

M3) The transverse modal function may depend on the center fre­

quency of the channeIs, however no frequency dependence is cons id­

ered within each channel; 

M4) The guided modes are treated again as linearly polarized; 

M5) Nonlinear products out of the total signal band are neglected; 

M6) The Raman terms involving A~(z, t - s)A~(z, t), \;f m, nEZ are 
drapped due ta large phase-mismatches; 

M7) The terms 82 Ani 8z2 , \;f nEZ, are neglected in view of the slow­

varying nature of An(z, t) in z; 

M8) Also neglected are terms involving the time-derivatives of An(z, t), 
\;f nEZ, multiplied by lm[x(l)], X~), or X~). 
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FIBER PARAMETERS 

Using the D and S parameters carelessly could lead to confusion. For instance, the 

values D = 16 ps/nm/km and S = 0.08 ps/nm2/km are often cited for the standard 

single-mode fiber. We note that it is necessary to use the D and S values at the 

same wavelength for the same fiber to avoid confusion. At 1550 nm, the SMF has 

D ~ 16 ps/nm/km and S ~ 0.055 ps/nm2/km instead of 0.08 ps/nm2/km, which 

is the approximate dispersion slope at 1310 nm. Regarding the use of D and S in 

simulations, our scaling rules are for f32 and f33, not directly D and S. The relations 

are given by, 

Conversely, 

cD 
f32 = - 27f J2 ' 

c2S f32 c2S cD 
f33 = 47f2 f4 - 7f f = 47f2 f4 + 27f2 j3 . 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

The speed of light c = 2.9979 X 108 rn/s. For the optical frequency f = 193.1 THz, 

.À = c/ f = 1552.5 nm. The standard single-mode fiber has, 

D = 16 ps/nm/km = 16 x 10-6 s/m2, 

S = 0.055 ps/nm2/km = 0.055 x 103 s/m3
, 

therefore, 

2.9979 X 108 x 16 X 10-6 2 

f32 = - 2 x 3.14159 x 1.9312 x 1028 s /m 
= -2.047 x 10-26 s2/m 

= -20.47 ps2/km, 
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(C.5) 

(C.6) 

(C.7) 
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and, 

2.99792 X 1016 x 0.055 X 103 2.047 X 10-26 3 
{33 = 4 X 3.141592 X 1.9314 X 1056 + 3.14159 x 1.931 x 1014 s /m 

= 0.09006 x 10-39 + 0.03374 X 10-39 S3/m 
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= 0.1238 ps3/km. (C.8) 

For convenience, the parameters (D, S) and ({32' (33) may be converted numerically 

as, 

D = -0.78163 {32, 

S = 0.610704 {33 + 0.0010066 {32, 

and conversely, 

{32 = -1.279375 D , 

{33 = 1.637455 S + 0.00210875 D, 

(C.9) 

(C.lO) 

(C.11) 

(C.12) 

where D, S, {32, {33 are in units of ps/nm/km, ps/nm2/km, ps2/km, ps3/km respec­

tively. 

With a scaling factor R = 1, a mirror-symmetric compensating fiber would have, 

{3~ = {32 = -20.47 ps2/km, 

{3~ = -{33 = -0.1238 ps3/km, 

correspondingly, 

D' = _ 271' P {3~ = _ 271' P {32 = D = 16 ps/nm/km, 
c c 

S' = 471' P {3~ + 471'2 j4 {3~ = 471' P {32 _ 471'2 j4 {33 
c2 c2 c2 c2 

= S _ 871'2j4{33 = S _ 871'2j4 ( c
2
S +~) 

c2 c2 471'2 f4 271'2 J3 

= -S - 4f D = -0.055 X 103 - 0.04122 X 103 s/m3 
c 

= -0.09622 ps/nm2/km, 

whereas a compensating fiber in translational symmetry would have, 

{3; = -{32 = 20.47 ps2/km, 

{3~ = {33 = 0.1238 ps3/km, 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(0.18) 
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correspondingly, 

D" = - 21fPf3~ = 21fPf32 = -D = -16 ps/nm/km, (C.19) 
c c 

S" = 41f P f3~ + 41f
2 14 

f3g = _ 41f P f32 + 41f
2 r f33 = _ (41f P f32 _ 41f

2 14 
f33 ) 

& & & & & & 

= S + 41 D = 0.09622 ps/nm2/km. (C.20) 
c 

By contrast, for perfect direct (without OPC) dispersion compensation, the compen­

sating fiber should have parameters -(f32' (33), and correspondingly -(D, S). When 

the scaling factor is not one, the parameters of the compensating fibers should mul­

tiply whatever the ratio R> 0, for aH the three cases. 

Another important parameter is the effective modal area Aeff' often specified al­

ternatively by the modal field diameter (MFD). The MFD is defined as the diameter 

of the circle where the optical intensity decays to l/e of the peak value. If the modal 

field is approximated as Gaussian, then there is the relation, 

d f (Xl 
Aeff e Jo exp[-4r2/(MFD?121frdr = 1f(MFD? /4. (C.21) 
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