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Abstract

Relay networks constitute one of the key technologies that are being developed for use in

next generation wireless systems. In relay networks, the communication between the source

and the destination is aided by dedicated nodes (relays) that convey the source’s message

to the destination. The use of multiple relays makes it possible to implement a distributed

form of spatial diversity. The use of relays improves the coverage, capacity and reliability

in the network.

Relay networks were initially designed to support only unidirectional communication.

However, two-way relay networks (TWRNs) have recently been proposed to support bidi-

rectional communication and have attracted the attention of many researchers because of

their high spectral efficiency. In particular, TWRNs employing the amplify-and-forward

(AF) protocol are appealing because of the minimal processing requirements at the relay.

Effective operation of AF TWRNs requires accurate channel state information for self-

interference cancellation and coherent decoding. This information is also needed in several

important applications such as beamforming, relay selection and power allocation.

The majority of works on channel estimation for AF TWRNs follow the training-based

approach, which requires the transmission of pilots known to both terminals. Despite its

robustness and simplicity, the training-based approach consumes much needed bandwidth

resources, which undermines the spectral efficiency of TWRNs. Blind channel estimation

avoids the costly training burden by relying only on the received data samples to estimate

the channel parameters. Another alternative approach is semi-blind estimation, a hybrid

of blind and training-based approaches. Semi-blind estimation requires fewer pilots than

training-based estimation by utilizing data samples in addition to the pilots.

The main objective of this thesis is to investigate blind and semi-blind channel esti-

mation for AF TWRNs as a means for achieving substantially better tradeoffs between

accuracy and spectral efficiency than possible using the training-based approach.

In the first part of the thesis, we consider blind channel estimation for flat-fading chan-

nel conditions. Using the deterministic maximum likelihood (DML) approach, we propose

new algorithms for blind channel estimation in AF TWRNs that employ constant-modulus

signalling. Assuming M -PSK modulation, we prove that the proposed estimators are con-

sistent and approach the true channel with high probability at high SNR. Using simulations,

we show that the DML estimator offers a superior tradeoff between accuracy and spectral
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efficiency than the pilot-based LS estimator. The corresponding Cramer-Rao bound (CRB)

is also derived.

Still within the context of flat-fading channels, the second part of the thesis focuses on

semi-blind channel estimation. Assuming nonreciprocal channels, we derive the exact CRB

for semi-blind channel estimation in AF TWRNs that employ square QAM. The derived

bound, which has not been reported before in the context of TWRNs, is based on the true

likelihood function that incorporates the exact statistics of the transmitted data symbols.

Using the new bound, we show that the training overhead can be significantly reduced

by employing semi-blind estimation, as even a limited number of data samples can lead

to substantial improvements in estimation accuracy. To demonstrate the achievability of

these gains, we derive an expectation maximization (EM)-based semi-blind algorithm that

performs very closely to the derived CRB and requires only a small number of iterations

to converge.

In the last part of the thesis, we consider semi-blind channel estimation for OFDM-based

TWRNs operating in frequency selective channel conditions. In contrast to previous works,

we focus on nonreciprocal channels as this is a more realistic assumption in the frequency

selective scenario. To assist in the estimation of the individual channels, superimposed

training is adopted at the relay. Our proposed semi-blind estimation algorithm is based

on the Gaussian ML approach. We also derive the CRB, and we design the pilot vectors

of the terminals and relay to optimize estimation performance. Our simulations show that

the proposed method provides significant improvements in estimation accuracy even with

a limited number of OFDM data symbols.

Overall, the work presented in this thesis demonstrates that blind and semi-blind ap-

proaches to channel estimation are viable and practical alternatives to the training-based

approach as they can provide substantially better tradeoffs between accuracy and spectral

efficiency at an affordable computational cost.
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Sommaire

Les réseaux à relais constituent l’une des technologies clé de la prochaine génération des

systèmes de communication sans fil. Dans les réseaux à relais, la communication entre

une source et une destination est assistée par des nœuds dédiés (ou relais) qui relayent le

message de la source jusqu’à la destination. L’usage de plusieurs relais permet de mettre

en œuvre une forme distribuée de diversité spatiale. L’utilisation de relais améliore la

couverture, la capacité et la fiabilité des réseaux.

Bien que les réseaux à relais aient d’abord été conçus pour une communication unidi-

rectionnelle, les réseaux à relais bidirectionnels (two-way relay networks ou TWRNs) ont

été récemment proposés et ont suscité l’intérêt de nombreux chercheurs à cause de leur

grande efficacité spectrale. En particulier, les TWRNs utilisant le protocole de relayage

amplifier-et-transférer (amplify-and-forward ou AF) sont attrayants à cause de leurs faibles

exigences de traitement aux relais. Le bon fonctionnent des AF TWRNs nécessite une étape

d’estimation précise du canal pour la suppression d’auto-interférence et pour le décodage

cohérent. Cette étape est aussi essentielle pour la formation de faisceaux, la sélection de

relais et l’allocation de puissance.

La plupart des travaux sur l’estimation du canal pour les AF TWRNs suivent l’approche

basée sur l’entrainement, ce qui nécessite la transmission de pilotes connus des deux ter-

minaux. Malgré sa robustesse et sa simplicité, cette approche consomme de précieuses

ressources de communication afin de transmettre les pilotes, ce qui compromet l’efficacité

spectrale des TWRNs. L’estimation aveugle évite ce fardeau en se fiant seulement sur les

données reçues pour estimer les paramètres du canal. Une autre option est l’estimation

semi-aveugle, une approche hybride de l’approche aveugle et de celle basée sur l’entrainement.

L’estimation semi-aveugle nécessite moins de pilotes que l’approche basée sur l’entrainement

puisqu’elle utilise aussi des échantillons de données.

L’objectif de cette thèse est d’examiner l’estimation aveugle et semi-aveugle du canal

pour les AF TWRNs afin d’obtenir un meilleur compromi entre l’efficacité spectrale et la

précision que que celui offert par l’approche basée sur l’entrainement.

Dans la première partie de cette thèse, nous considérons l’estimation aveugle du canal

pour des conditions d’évanouissement plat. Employant le principe du maximum de vraisem-

blance déterminée (deterministic maximum likelihood ou DML), nous proposons de nou-

veaux algorithmes pour l’estimation et la détection aveugle et conjointe du canal pour les
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AF TWRNs qui utilisent une signalisation à module constant. Supposant une modulation

M-PSK, nous prouvons que les estimateurs proposés sont consistants et se rapprochent du

vrai canal avec une grande probabilité lorsque le rapport signal sur bruit est élevé. En

utilisant des simulations, nous montrons que le DML offre un meilleur compromis entre

l’efficacité spectrale et la précision que l’estimateur LS employant des pilotes. La borne de

Cramér-Rao (Cramer-Rao bound ou CRB) correspondante est aussi établie.

Toujours en rapport avec l’évanouissement plat, la deuxième partie de cette thèse porte

sur l’estimation semi-aveugle du canal.

En supposant des canaux non-réciproques, nous établissons la CRB exacte pour l’estimation

semi-aveugle du canal pour les AF TWRNs qui utilisent une constellation QAM carrée.

Cette borne n’a jamais été déterminée auparavant dans le contexte des TWRNs. Elle est

basée sur la vraie fonction de vraisemblance qui tient compte des statistiques exactes des

symboles de données transmis. En utilisant cette nouvelle borne, nous montrons que la

complexité attribuable à l’entrainement peut être considérablement réduite en employant

un estimation semi-aveugle car même une quantité limitée de données peut engendrer une

amélioration substantielle de la précision de l’estimation. Afin de montrer que ces gains sont

réalisables, nous concevons un algorithme semi-aveugle basé sur la méthode d’espérance-

maximisation (EM), et nous montrons que cet algorithme se rapproche tout près de la CRB

et qu’il converge en un petit nombre d’itérations.

Dans la dernière partie de cette thèse, nous considérons l’estimation semi-aveugle pour

les TWRNs qui sont basés sur l’OFDM et qui opèrent dans un environnement sélectif en

fréquence. Contrairement aux travaux antérieurs, nous nous penchons sur des canaux non-

réciproques, ceci étant une hypothèse plus réaliste dans un scénario sélectif en fréquence.

Pour faciliter l’estimation des canaux individuels, un entrainement superposé est adopté aux

relais. L’algorithme semi-aveugle que nous proposons est basé sur le principe ML gaussien.

Nous établissons la CRB, et nous concevons des séquences pilotes pour les terminaux et

pour les relais de façon à optimiser la performance de l’estimation. Nos simulations révèlent

qu’en utilisant seulement un nombre limité de symboles de données OFDM, la méthode

proposée fournit une nette amélioration de la précision de l’estimation.

Somme toute, le travail présenté dans cette thèse établit que les approches aveugles et

semi-aveugles de l’estimation du canal sont des solutions de rechange pratiques et viables

pour l’approche basée sur l’entrainement car elles offrent un meilleur compromis entre

l’efficacité spectrale et la précision à un cout de calcul abordable.
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Chapter 1

Introduction

Wireless communications is currently experiencing an unprecedented growth that is driven

by the ever increasing market demand for fast, uninterrupted access to information. The

last few years have witnessed a phenomenal increase in wireless data traffic [1, 2]. This

trend is expected to continue as an 18-fold increase in global data traffic is projected for

the period 2011-2016 [2]. This has placed an immense strain on the currently deployed

wireless infrastructure. In response, intense efforts are currently being made to design the

next generation of wireless systems that will provide high data rates, extended coverage,

enhanced system capacity as well as improved reliability.

Relaying [3, 4] is one of the key technologies currently being developed for use in next

generation wireless systems. In relay networks, the communication between the source and

the destination is aided by specialized nodes (i.e., relays) that convey the source’s message

to the destination. Relay networks are capable of implementing a distributed form of spatial

diversity by recruiting multiple relay nodes that collectively form a virtual antenna array.

It is now widely accepted that the use of relays can improve coverage, throughput and

reliability [4].

Relaying has also been adopted as a key feature in the 3GPP Long Term Evolution

(LTE) standard for next generation wireless systems. Relay nodes (RNs) are used to

support two-hop communication between the base station (eNB) and user equipment (UE).

RNs have a lower transmission power than the eNBs and cover a smaller area, thus providing

a layer of low-power nodes on top of the conventional base stations [5]. The deployment of

RNs can extend the cell range and improve both coverage and capacity, especially at the

cell edge. They can also be used for dead spot mitigation by filling coverage holes in the
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macro network, which may be caused by large obstacles [6]. Relays are well suited for these

purposes because of their deployment flexibility and hardware feasibility. In particular,

they can be deployed without incurring high site acquisition and backhaul costs [7].

1.1 Relay Networks

.......

Source

.

Destination

.

Relays

Fig. 1.1 An example of a relay network with one source, one destination,
and multiple relays.

1.1.1 Basic Concepts

A typical relay network consists of a source terminal, a destination terminal, and one or

more relay nodes that aid the transmission between the source and the destination (see

Fig. 1.1). Relay nodes are commonly assumed to operate in a half-duplex mode, i.e., they

can either transmit or receive at any given time1. Until recently, research has focused on

relay networks that support only unidirectional communication, commonly referred to as

one-way relay networks (OWRNs). In OWRNs, the communication between the source

and the destination occurs in two phases. In the first phase, the source transmits to the

relay, and in the second phase the relay forwards a processed version of the received signal

to the destination. The relay processes the signal it receives according to one of several

protocols. The main two relaying protocols are amplify-and-forward (AF) and decode-and-

forward (DF) [8]. According to the AF protocol, the relay simply amplifies the received

signal and then forwards it to the destination. By amplifying the received signal, both

the information bearing signal component and the noise are amplified. Nonetheless, this

1Although it is possible to use full-duplex relays that can transmit and receive at the same time, their
hardware implementation is much more costly as they require sophisticated signal isolation techniques to
prevent interference between the transmitted and received signals.
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protocol is appealing due to its simplicity and the minimal processing required at the relay

which can be transparent to the modulation and coding employed by the source. In the

DF protocol, the relay decodes the message in the received signal, re-encodes it into a new

codeword and then transmits it to the destination. While the DF protocal avoids noise

amplification, it obviously requires more complex processing at the relay which has to be

aware of the modulation and coding employed by the source.

1.1.2 Two-way Relay Networks

The above-described OWRNs have been specifically developed for the scenario when only

one of the two terminals has a message to transmit and acts as the source while the

other terminal acts solely as a destination. It becomes spectrally inefficient to employ

OWRNs, however, when bidirectional communication is needed, i.e., when both terminals

have messages to transmit to each other. In particular, a single round of bidirectional

exchange between the two terminals requires 4 time slots to be completed using OWRNs.

Two-way relay networks (TWRNs) [9–12], which are the focus of this thesis, have recently

been developed to achieve spectrally efficient bidirectional communication. Using TWRNs,

bidirectional communication can be achieved over only two time slots, i.e., at twice the

communication rate of OWRNs [8]. In the first time slot, both terminals simultaneously

transmit to the relay. Employing either the DF or the AF protocol, the relay then processes

the received signal made up of the superposition of the signals transmitted from the two

terminals. It then broadcasts the processed signal to both terminals in the second time

slot. Since each terminal knows its own transmitted message, it can use this knowledge to

extract its intended message.

Applying the DF protocol in TWRNs requires complicated processing at the relay. The

relay has to decode the received signals from both users and then combine the two decoded

messages using a combining scheme such as superposition coding [8], or XORing [13]. To

achieve this, the relay needs a high processing capacity, knowledge of the coding schemes

employed at the two terminals as well as accurate knowledge of the channels from each

terminal to the relay.

AF TWRNs, on the other hand, do not have such requirements and can be implemented

using minimal processing at the relay. The relay does not have to decode the messages of

the two sources; rather, it just amplifies the overall received signal and then broadcasts it to

the terminals. In this case, the received signal at each terminal at the end of the broadcast
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Fig. 1.2 AF TWRN operating in flat-fading channel conditions.

phase consists of a self-interference term containing the message originally transmitted by

the terminal as well as the term containing the intended message, in addition to noise.

Assuming perfect knowledge of the channel parameters at the terminals, each terminal

can cancel out the self-interference term before decoding the signal of interest. Because

of the simplicity of this approach, it has received the attention of researchers and has

been the subject of many recent studies. For example, power allocation strategies for AF

TWRNs have been developed in [14,15], while relay selection strategies have been proposed

in [16,17]. For AF TWRNs with multiple relays, optimal beamforming strategies have been

derived in [18, 19]. Furthermore, the achievable rates for AF TWRNs have been studied

in [9]. In this thesis, we consider TWRNs that are based on the AF protocol. A TWRN

employing the AF protocol is illustrated in Fig. 1.2, where T1, T2 and R denote the two

terminals and the relay, respectively.

1.2 Two-way Relay Channel Estimation

The self-interference experienced by each terminal in AF TWRNs can be completely can-

celled out when perfect knowledge of the channel parameters is available. In practice,

however, the channel parameters have to be estimated. Hence, their accurate estimation

is essential in order to minimize the impact of the residual self-interference and avoid the

potential performance degradation. Accurate channel estimates are also essential to per-

form coherent decoding. Furthermore, they are needed in several applications such as relay

selection, power allocation and distributed beamforming. In fact, the majority of works

on these applications assume perfect knowledge of the channel [14–19]. While traditional

estimation methods developed for point-to-point systems can readily be applied for chan-
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nel estimation in DF TWRNs, the same does not hold for AF TWRNs because of the

differences in the received signal structure.

The focus of this thesis is the development of highly accurate, spectrally efficient chan-

nel estimation algorithms for AF TWRNs at an affordable computational cost. Before

describing our approach to this problem, we will discuss some assumptions regarding the

AF TWRN channel that affect the formulation of the estimation problem. First there

is the type of fading under consideration. In this thesis we consider two types of fading

channels: 1) flat fading channels which occur when the delay spread of the channel is much

smaller than the symbol period, and 2) frequency selective channels which occur when the

delay spread is greater than the symbol period [20]. In the former case the channel can be

modelled as a complex multiplicative coefficient and in the latter as a linear finite impulse

response (FIR) filter. The two types of fading are discussed in more detail in Chapter 2.

Other considerations that affect the formulation of the estimation problem include whether

we are interested in estimating the end-to-end channel or the individual channels across

each link in the network, as well as whether or not channel reciprocity is assumed to hold.

These two issues are discussed below.

1.2.1 Individual and Cascaded Channels

For the flat-fading scenario, we denote by h1, g1, h2 and g2 the complex coefficients corre-

sponding to the flat-fading channels across the links T1 → R, T2 → R,R → T1 andR → T2,

respectively, as shown in Fig. 1.2. Similarly, for the frequency-selective scenario we denote

by h1, g1, h2 and g2 the complex vectors of the FIR filter coefficients corresponding to the

channels across the same links. As we can see from Fig. 1.2, the self-interference signal com-

ponent in the received signal at T1 at the end of the second transmission phase experiences

an overall fading due to the links T1 → R and R → T1, while the information-bearing com-

ponent experiences an overall fading due to the links T2 → R and R → T1. Hence, in the

flat-fading scenario, the overall self-interference channel is given by the product a , h2h1

and the overall information-bearing channel is given by b , h2g1. In the frequency-selective

scenario, the overall self-interference channel is obtained as2 a , h2 ∗ h1 and the overall

information-bearing channel is b , h2 ∗ g1. The channel parameters across the individual

links are often referred to as individual channels, while the parameters a, b, (or a and b)

are referred to as the cascaded or composite channels. Knowledge of the cascaded channel

2We use x ∗ y to denote the linear convolution between the vectors x and y.
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parameters is sufficient for detection purposes [21]. On the other hand, knowledge of the

individual channels can be useful in other applications such as beamforming.

1.2.2 The Channel Reciprocity Assumption

Most works on TWRNs consider time division duplexing (TDD). In this setting, it is very

common to assume that the channels are reciprocal [15,16,18,21,22], i.e., that the channel

from each terminal to the relay is equal to the channel from the relay back to the same

terminal. The basis for this assumption is a basic principle in antenna theory that the

two channel coefficients across the forward and reverse links between two antennas are the

equal [23]. In practice, however, the mismatch between the RF front ends, including RF

gains and baseband circuitry, ruins the reciprocity of the overall forward and reverse links

despite the reciprocity of the radio propagation channel [23–27]. Factors such as carrier

frequency offset, timing offset, sampling clock deviations, etc... all contribute to making the

channels nonreciprocal [24], and special calibration would be required to restore reciprocity.

Hence, channel reciprocity does not hold in a strict sense but is, in fact, an approximation.

For the flat-fading scenario, our work will cover both reciprocal and nonreciprocal channels.

For the frequency selective scenario, however, we will only consider nonreciprocal channels

since OFDM systems are more vulnerable to the RF front end imperfections that affect the

reciprocity assumption [24].

In the next section we will present an overview of previous works on channel estimation

for AF TWRNs.

1.3 Previous Works

A number of recent works have addressed the problem of channel estimation for AF

TWRNs, covering both the flat-fading and frequency-selective environments [21,22,28–34].

These works have adopted a training-based approach to channel estimation. This approach

requires each terminal to transmit a pilot sequence that is known to the other terminal.

The channel parameters are then estimated using either a maximum likelihood (ML) or a

least squares (LS) based method [35].

Channel estimation for AF TWRNs in flat-fading channel conditions was considered

in [21, 28, 29]. In [21], the training-based ML channel estimator was derived for the esti-

mation of the cascaded channels at the terminals. The corresponding Cramer-Rao Bound
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(CRB) on the variance of unbiased estimators was also derived. The CRB was then em-

ployed as the criterion to design the optimal training sequences. It was shown that the

CRB is minimized when the training sequences transmitted by the two terminals are or-

thogonal to each other. In [28], the ML approach was used to acquire initial estimates of

the individual channels at the relay. The relay used these estimates to denoise the training

signal and to allocate the training power such that channel estimation performance is opti-

mized at the terminals. The case when the relay and the two terminals are equipped with

multiple antennas was investigated in [29], where an algebraic tensor-based method was

proposed to estimate the individual channels at the terminals by exploiting the structure

of the cascaded MIMO channels and appropriate design of an amplification matrix at the

relay.

Channel estimation for AF TWRNs operating in frequency selective fading conditions

was studied in [22,30,31]. In [22], OFDM tranmission was adopted to combat the multipath

effects, and LS estimation was employed to estimate the cascaded channels at the terminals.

The pilot sequences of the two terminals were designed to minimize the MSE of the LS

estimator. It was also demonstrated that, thanks to the channel reciprocity assumption,

the estimates of the individual channels can be acquired up to a sign ambiguity from the

estimates of the cascaded channels using a search over all vectors with length equal to the

number of subcarriers and whose entries take values in the set {±1}. The works in [30]

and [31] considered channel estimation for single carrier cyclic prefix3 (SCCP)-based AF

TWRNs for the single and multiple antenna cases, respectively. In both works, the cascaded

channels were estimated at the terminals using the LS approach and the pilot sequences

were designed to minimize the resulting mean squared error (MSE).

Another problem of interest for OFDM systems is carrier frequency offset (CFO) estima-

tion [37], which is sometimes performed jointly with channel estimation. The CFO, which

results from the mismatch between the local oscillators at the different nodes in the network,

can cause performance degradation by compromising subcarrier orthogonality. A number

of studies have considered joint CFO and channel estimation for AF TWRNs [32–34]. A LS

approach was employed to jointly estimate the cascaded channels as well as the end-to-end

CFO for conventional and zero-padded (ZP) OFDM systems in [32] and [33], respectively.

3Single carrier cyclic prefix (SCCP) transmission with frequency-domain equalization (FDE) was first
proposed in [36]. It delivers very similar performance to OFDM systems in terms of multipath mitigation,
but with a much smaller peak-to-average power ratio (PAPR).
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To facilitate the estimation of the individual channels and the individual CFOs, superim-

posed training [38] at the relay was adopted in [34]. Specifically, the relay superimposes its

own pilots over the received signal carrying the pilots from the two terminals before broad-

casting it back to the terminals. A LS approach was employed to obtain initial estimates

of the channel parameters and the CFO, and an iterative ML-based procedure was then

used to improve the accuracy of the acquired estimates.

1.4 Motivation

The above-mentioned works on channel estimation for AF TWRNs all follow the training-

based approach, i.e., they require each terminal to transmit pilot symbols that are known

to the other terminal in order to estimate the desired channel parameters. Despite the

robustness and simplicity of this approach, the transmission of known pilots consumes

much needed bandwidth resources and thus undermines the spectral efficiency of TWRNs.

Given the high demand for spectrum utilization, it is important to find more efficient

estimation algorithms that can provide the desired accuracy without imposing a heavy

training burden. It is also desired to reduce the impact of channel uncertainties on the

performance of AF TWRNs by developing methods that can achieve superior accuracy to

that provided by the conventional training-based methods developed thus far.

Blind channel estimation [39–42] avoids the use of training pilots and relies only on

the received data samples for the estimation of the desired parameters. This approach has

been widely studied in point-to-point communication systems because of its high spectral

efficiency [39]. To estimate the channel blindly, this approach exploits the structure of

the received signal and the properties of the data symbols, such as their distribution or

their finite alphabet property. Blind methods are usually based either on the ML criterion,

or on exploiting the moments of the received signal, i.e., its second-order or higher order

characteristics [39]. Among the most popular types of blind algorithms are subspace-based

algorithms [43–45], which estimate the channel by exploiting the orthogonality between the

signal and noise subspaces. It should be noted, however, that blind techniques often suffer

from an inherent rotational ambiguity [39], which means that it is not possible to acquire

all the desired information about the channel blindly. Thus, the use of a number of pilots,

albeit small, remains necessary to resolve this ambiguity.

Another alternative to training-based estimation is semi-blind estimation [41, 46–48],
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which is a hybrid of the blind and training-based approaches. Similar to the latter, it uses

pilot symbols, but it also incorporates into the estimation the received data samples as well

as the received training samples. This makes the semi-blind approach more flexible than

the purely blind approach and eliminates the need for separate ambiguity resolution. By

utilizing the data samples in conjunction with the pilots, semi-blind estimation requires

a smaller number of pilots, which makes it more spectrally efficient than training-based

estimation [48]. It is also capable of achieving higher accuracy than that possible using

purely blind or purely training-based estimation [48]. The expectation maximization (EM)

framework provides one of the most popular algorithms that can be employed for semi-blind

estimation [49–51]. The EM algorithm is an iterative method commonly used to avoid the

high complexity of direct ML estimation when the likelihood function incorporates unknown

random parameters (such as the data symbols) in addition to the unknown deterministic

parameters (such as the channel parameters).

Despite being extensively studied in point-to-point communications, little effort has so

far been made to investigate the application of blind and semi-blind approaches for channel

estimation in relay networks. Due to the differences in the received signal structure, the

blind and semi-blind estimation methods developed for point-to-point systems cannot be

directly applied in AF TWRNs. Hence, there is a need to develop new blind and semi-

blind channel estimation algorithms that are specifically tailored for the AF TWRN signal

model. In fact, AF TWRNs constitute a promising candidate for the application of such

techniques because of the presence of the known self-interference symbols embedded in the

received data samples. These self-interference symbols may be perceived as pseudo-pilots

whose knowledge can be used to extract valuable information about the channel.

The development of blind and semi-blind estimation algorithms for AF TWRNs is

still in its early stages. In [52], an algorithm was developed for the estimation of the

cascaded channels blindly in OFDM-based AF TWRNs based on the second-order statistics

of the received signal. However, the proposed algorithm requires a very large number of

OFDM blocks to achieve accurate estimation accuracy. In [53], a semi-blind algorithm was

developed for joint data detection and the estimation of the cascaded channels in MIMO-

OFDM AF TWRNs based on the expectation conditional maximization (ECM) method

with soft interference cancellation.
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1.5 Thesis Organization and Contributions

This thesis proposes new methods for channel estimation in AF TWRNs based on the blind

and semi-blind approaches. The primary goal is to achieve substantial improvements in

spectral efficiency and/or estimation accuracy over the conventional training-based meth-

ods. We will achieve this goal by designing algorithms that not only have a manageable

computational complexity but also require only a limited number of data samples. We

will also provide the appropriate theoretical tools for analyzing the performance of these

algorithms. We will consider both the flat-fading and the frequency-selective environments

as well as both the reciprocal and nonreciprocal channel assumptions.

Throughout this thesis, we will focus on the classical AF TWRN with two single antenna

terminals and one single antenna relay operating in the half-duplex mode. This setting is

sufficient for the purpose of demonstrating the feasibility and high potential of the blind

and semi-blind estimation. Although similar gains may be possible in the multiple antenna

scenario, the generalization from the single antenna case to the multiple antenna case is

not necessarily straightforward and is left for future work.

As our focus is on channel estimation performance, we will assume perfect timing syn-

chronization between the two terminals and the relay. This assumption is very common

in works on channel estimation [21, 22, 28–34]. In practice, synchronization of the timing

offset would be handled by a separate block that precedes the channel estimation block.

Similarly, we also assume perfect frequency synchronization. In practice, frequency syn-

chronization requires estimation and compensation of the CFO. CFO estimation can be

handled by a separate block, although sometimes it may also be handled in conjunction

with channel estimation, as done in [34].

In the rest of this section, we describe the different chapters of this thesis and the

research contributions presented in each one.

Chapter 2 provides a background on some of the important concepts that will be used

in the thesis. In particular, we provide a brief background on ML estimation and discuss

its asymptotic properties. We also discuss different ways of applying the ML criterion

when the received signal involves random nuisance parameters. We then introduce the EM

algorithm which can serve as a low-complexity alternative to ML estimation in the presence

of random nuisance parameters. In addition, we introduce the CRB which will be adopted

as a benchmark on estimation performance. We also discuss the modified CRB (MCRB)
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which is a more tractable variant of the CRB used in the presence of random nuisance

parameters. After a brief discussion on multipath fading, we finally provide an overview of

OFDM transmission, which is commonly employed in frequency selective environments to

prevent the detrimental effects of ISI.

In Chapter 3, we focus on AF TWRNs that employ constant modulus (CM) signalling.

Assuming nonreciprocal flat-fading channels, we propose an algorithm for blind channel es-

timation based on the deterministic maximum likelihood (DML) approach, which treats the

data symbols as deterministic unknowns. Assuming M -PSK modulation, we show that the

resulting estimator is consistent and approaches the true channel with high probability at

high signal-to-noise ratio (SNR) for modulation orders higher than 2. For BPSK (2-PSK),

however, the DML algorithm performs poorly. Motivated by this, we propose an alternative

algorithm that yields much better performance by taking into account the BPSK structure

of the data symbols. For comparative purposes, we also investigate the Gaussian maximum-

likelihood (GML) approach which treats the data symbols as Gaussian-distributed nuisance

parameters. We also derive the corresponding CRB and use Monte-Carlo simulations to

investigate the mean squared error (MSE) performance of the proposed algorithms. By

comparing the symbol-error rate (SER) performance of the DML algorithm with that of

the training-based LS estimator, we demonstrate that the DML offers a superior tradeoff

between accuracy and spectral efficiency than the LS estimator.

In Chapter 4, we consider a very similar problem to Chapter 3, but we focus on reciprocal

channels instead. We derive the corresponding DML channel estimator and prove that it

approaches the true channel with high probability at high SNR but, unlike the nonreciprocal

case, is not consistent. We then propose an alternative estimator which acquires the channel

estimate by minimizing the sample variance of the envelope of the received signal after

self-interference cancellation. This estimator is consistent and has favorable high-SNR

performance, and can be implemented at a low complexity using the steepest descent

algorithm. We also derive the CRB for the reciprocal case.

Still focusing on flat-fading channels, in Chapter 5 we shift our attention to semi-blind

estimation which utilizes both pilots and data samples. Assuming nonreciprocal channels,

we derive the CRB for semi-blind channel estimation in AF TWRNs employing square

QAM. In contrast to the CRBs derived in the previous two chapters, which treated the

data symbols as deterministic unknowns, the CRB derived in this chapter is exact as it is

based on the true likelihood function that takes into account the statistics of the transmitted
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data symbols. The derivation of this bound is a challenging task due to the complicated

nature of the likelihood function when the statistics of the transmitted data symbols are

taken into account, and to the best of our knowledge it has not been reported before for

AF TWRNs. Using this new bound, we show that substantial improvements in estimation

accuracy are possible by exploiting even a limited number of the data samples in addition

to the pilot symbols. These improvements depend on the modulation order: the lower the

order the higher the gain in accuracy. Because of the superior accuracy of the semi-blind

approach, it requires fewer pilots than the training-based approach, thus yielding a better

tradeoff between accuracy and spectral efficiency. Finally, we also derive the more tractable

modified CRB which, for low modulation orders, can be used as an approximation of the

exact CRB at high SNR.

In Chapter 6, we focus on the design of semi-blind algorithms to achieve the accuracy

gains predicted by the CRB analysis in Chapter 5. Direct ML estimation is intractable in

this case due to the high complexity of the true likelihood function. Instead, we implement

semi-blind estimation using the iterative EM approach. We derive semi-blind EM-based

estimators for both nonreciprocal and reciprocal channels. In both cases, the complexity of

the EM steps is linear in the number of data samples for any given modulation order. We use

simulations to show that, for both nonreciprocal and reciprocal channels, the derived EM

algorithms perform very closely to the CRBs and require only a small number of iterations

to converge. We also show that the EM algorithm can provide a significant improvement in

throughput (as high as 27% for QPSK modulation) since a smaller number of pilots would

be needed to achieve the same SER performance as the LS estimator. This confirms the

practicality of the semi-blind approach and the achievability of its predicted gains.

Until this point, we have focused on flat-fading channels. In Chapter 7, we shift our

attention to OFDM-based TWRNs operating in frequency selective channel conditions. To

the best of our knowledge, semi-blind channel estimation has not been considered before

for OFDM-based TWRNs. Moreover, all previous works on channel estimation for OFDM

TWRNs have considered reciprocal channels, which reduces the number of channel vectors

to be estimated from three to two. In contrast to previous works, we consider channel

estimation for the more realistic case of nonreciprocal channels. Semi-blind estimation is

performed using a single OFDM pilot block and a limited number of OFDM data blocks.

To assist in the estimation of the individual channels, we adopt a superimposed training

strategy at the relay [34]. More specifically, the relay superimposes its own pilot symbols
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over the received pilot OFDM block before broadcasting it. Our proposed semi-blind

estimator is based on the Gaussian ML criterion in which the transmitted data are treated

as Gaussian-distributed. The resulting semi-blind ML estimator reduces to a nonlinear

minimization problem, which we solve numerically. We also design the pilot vectors of the

two terminals and the relay to optimize estimation performance. Furthermore, we derive

the semi-blind and pilot-based CRBs as estimation performance benchmarks. Finally, we

use simulation studies to show that the proposed semi-blind approach provides significant

improvements in estimation accuracy over the conventional pilot-based approach and that

it closely approaches the semi-blind CRB.

The contributions in this thesis have lead to a number of publications in peer-reviewed

journals and refereed conferences, as listed below:

Journal Articles (published)

1. Saeed Abdallah and Ioannis N. Psaromiligkos, “Blind channel estimation for amplify-

and-forward two-way relay networks employing M -PSK modulation”, IEEE Transactions

on Signal Processing, vol. 60, no. 7, pp. 3604 - 3615, Jul. 2012.

2. Saeed Abdallah and Ioannis N. Psaromiligkos, “Partially-blind estimation of reciprocal

channels for AF two-way relay networks employing M -PSK modulation”, IEEE Transac-

tions on Wireless Communications, vol. 11, no. 5, pp. 1649 - 1654, May 2012.

3. Saeed Abdallah and Ioannis N. Psaromiligkos, “EM-based Semi-blind Channel Estima-

tion in Amplify-and-Forward Two-Way Relay Networks”, accepted for publication in IEEE

Wireless Communications Letters, Jun. 2013.

Journal Articles (under review)

1. Saeed Abdallah and Ioannis N. Psaromiligkos, “Semi-blind channel estimation with

superimposed training for OFDM-modulated AF two-way relaying”, submitted to IEEE

Transactions on Wireless Communications, Feb. 2013.
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Peer-Reviewed Conference Papers

1. Saeed Abdallah and Ioannis N. Psaromiligkos, “Semi-blind channel estimation for OFDM-

based amplify-and-forward two-way relay networks”, in Proc. IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, CA, May 2013.

2. Saeed Abdallah and Ioannis N. Psaromiligkos, “Blind channel estimation for MPSK-

based amplify-and-forward two-way relaying”, in Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 2011.

3. Saeed Abdallah and Ioannis N. Psaromiligkos, “Semi-blind channel estimation for amplify-

and-forward two-way relay networks employing constant-modulus constellations”, in Proc.

44th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, Mar.

2010.

Other

1. Saeed Abdallah and Ioannis N. Psaromiligkos, “Exact Cramer-Rao bounds for semi-

blind channel estimation in amplify-and-forward two-way relay networks employing square

QAM modulation”, ArXiv pre-print cs.IT/1207.5483, Jul. 2012.
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Chapter 2

Background

This chapter provides a brief background on several important concepts that will be used

in the thesis. The first concept we cover is the widely employed maximum-likelihood

(ML) criterion for estimation which will be the basis for several of the channel estimation

algorithms proposed in our work. We discuss the intuition behind ML estimation and

some of its appealing asymptotic properties. For the scenario when the received signal

involves random nuisance parameters whose estimation is not strictly required, we discuss

several ways of applying ML estimation, depending on how the nuisance parameters are

treated. We then introduce the Expectation Maximization (EM) algorithm, which can

provide efficient, low complexity estimation in the presence of random nuisance parameters

and which will be employed in Chapter 6.

Another important concept that we cover is the Cramer-Rao bound (CRB) which is

the most commonly employed benchmark on the performance of practical estimators. In

addition to the standard CRB, we discuss several variants of the CRB that can be employed

when the received signal involves random nuisance parameters, such as the modified CRB

(MCRB) [54], a less tight but more tractable variant of the CRB.

Furthermore, this chapter provides a brief overview on the phenomenon of multipath

fading, and introduces the different types of fading channels that will be considered this

thesis, namely flat fading and frequency selective fading channels. Finally, since Chapter 7

considers frequency-selective channels where OFDM transmission is commonly employed to

combat intersymbol interference (ISI), we also provide and overview of OFDM transmission.
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2.1 Maximum Likelihood Estimation

ML estimation [35] is one of the most popular and widely studied approaches to parameter

estimation. The philosophy of ML estimation is simple and intuitive. Given a set of statis-

tically independent observations, say r1, . . . , rN , generated from some known distribution

which is parametrized with respect to an unknown deterministic parameter or set of pa-

rameters, say1 θ , [θ1, . . . , θK ]
T , the ML approach is to estimate θ by the value θ̂ which

most likely generated the observations, i.e.,

θ̂ = argmax
θ

f(r1, . . . , rN ;θ), (2.1)

where f(r1, . . . , rN ;θ) is the joint probability density function of the observations r1, . . . , rN ,

parametrized w.r.t. θ, also known as the likelihood function. Since the observations are

independent, we may rewrite (2.1) as

θ̂ = argmax
θ

f(r1;θ)f(r2;θ) . . . f(rN ;θ). (2.2)

ML estimation has many appealing theoretical properties. Assuming that the obser-

vations are independent and identically distributed (i.i.d.), the ML estimator is consistent

under mild conditions [55], which means that it converges in probability to the true value

of the parameter as the number of observed samples becomes large, i.e.2,

lim
N→∞

P
(
∥θ̂ − θ∥ > ϵ

)
= 0, ∀ϵ > 0. (2.3)

where ∥x∥ denotes the 2-norm of x. Furthermore, for i.i.d. observations, the ML estimator

is also asymptotically unbiased under mild conditions [56], which means that3 lim
N→∞

E[θ̂] =
θ.

2.1.1 ML Estimation in the Presence of Random Nuisance Parameters

A commonly encountered situation in practical estimation problems is when the observa-

tions depend on random nuisance parameters whose estimation is not strictly required, and

1For generality we consider the case of a vector of parameters. The case of a single parameter follows
in a straightforward manner.

2P (E) denotes the probability of the event E.
3E[·] denotes the statistical expectation operator.
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which are only known through their statistical distribution. This is often the case in the

context of channel estimation in wireless communications, where the transmitted signal is

modulated by data symbols that are chosen with a certain probability distribution from

some finite-alphabet constellation.

Suppose that each observation ri depends on an unknown data symbol di, which is

chosen from the set S = {ξ1, . . . , ξM} according to some predefined probability distribution.

Then the likelihood function for the observation ri may be expressed as

f(ri;θ) =
M∑
k=1

f(ri, di = ξk;θ) =
M∑
k=1

f(ri|di = ξk;θ)P (di = ξk). (2.4)

The conditional likelihood terms f(ri|di = ξk;θ) often take a simple form. Specifically,

each would have the standard Gaussian form when the signal is embedded in additive

white Gaussian noise. However, the overall likelihood function in (2.4) is considerably

more complicated since it is a weighted sum of the conditional likelihood terms, which

corresponds to a Gaussian mixture in the case of additive white Gaussian noise. For N

independent observations, the joint likelihood function is given by

f(r1, . . . , rN ;θ) =
N∏
i=1

(
M∑
k=1

f(ri|di = ξk;θ)P (di = ξk)

)
. (2.5)

The likelihood function in (2.5) may be called the true likelihood function since it incorpo-

rates the exact statistics of the data symbols. Unfortunately, the complicated form of (2.5)

makes exact ML estimation (i.e., direct application of (2.1) using the true likelihood func-

tion) very challenging in the presence of random nuisance parameters.

One way to avoid the highly complicated likelihood function associated with exact

ML estimation is to ignore the statistics of the unknown data symbols and treat them as

deterministic instead. This approach is called deterministic maximum-likelihood (DML)

estimation. In this case, the ML criterion can be used to jointly estimate both the original

desired parameters as well as the data symbols:

{θ̂, d̂1, . . . , d̂N} = arg max
θ,d1,...,dN

f(r1, . . . , rN |d1, . . . , dN ;θ)

= arg max
θ,d1,...,dN

f(r1|d1;θ)f(r2|d2;θ) . . . f(rN |dN ;θ).
(2.6)
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In contrast to exact ML estimation, with DML estimation the number of unknown parame-

ters grows linearly with the number of samples. The original parameters (θ) which affect all

the samples are called structural parameters, while the data symbols, each of which affects

a single observation, are called incidental parameters [57]. Since the value of the data sym-

bols can vary between observations, the observations are no longer i.i.d. The estimation of

structural parameters in the presence of incidental parameters has been investigated in the

literature [57–60] and is referred to as the Incidental Parameter Problem. One drawback

of DML estimation is that the asymptotic properties of conventional ML estimators (e.g.,

consistency), which hold under mild conditions when the dimension of the parameter space

is fixed, do not necessarily hold in the presence of incidental parameters [58]. In fact, the

ML estimator may not be consistent even when a consistent estimator exists [57].

Another alternative to exact ML estimation is to approximate the data symbols as

Gaussian distributed [61]. This approach, called Gaussian ML (GML), considerably sim-

plifies the likelihood function without introducing extra parameters. Furthermore, it often

makes it feasible to obtain closed-form estimates of the desired parameters. However, this

simplicity may come at the price of a lower estimation accuracy since the Gaussian approx-

imation is used instead of the true statistics of the data symbols. Since the data symbols

are not Gaussian distributed in reality, some of the asymptotic properties of conventional

ML estimators may not hold.

2.1.2 The Expectation Maximization Algorithm

The EM framework [49–51] provides a convenient low-complexity method for approximat-

ing the true ML solution in the presence of random nuisance parameters, which can be

also perceived as missing information. Starting with arbitrary values of the unknown pa-

rameters, the EM algorithm iterates between calculating the conditional expectation of the

complete-data log-likelihood and maximizing this expectation with respect to the unknown

parameters. The latter maximization is typically easier than maximizing the true likelihood

function.

The basic idea of the EM algorithm is that there is the set d , [d1, . . . , dN ]
T of hidden

or missing data that would make the estimation of θ easier if they were known. The

observation vector r , [r1, . . . , rN ]
T represents incomplete data, while the complete data

is {r,d}. An iteration of the EM algorithm, say the t-th one, consists of two steps. The
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first step, called the expectation step (E-step) consists of evaluating the term

Q(θ;θ(t)) = E
{
log f(r,d;θ)|r;θ(t)

}
, (2.7)

which is the expectation of the log-likelihood of the complete data, log f(r,d;θ), with

respect to the conditional PDF (or PMF) f(d|r;θ(t)) of the hidden data given the obser-

vations and the current estimate θ(t) of θ. The second step of the EM algorithm is the

maximization step (M-step) which consists of maximizing the expectation Q(θ;θ(t)) with

respect to θ in order to obtain an updated estimate θ(t+1), i.e.,

θ(t+1) = argmax
θ

Q(θ;θ(t)). (2.8)

The two steps are repeated until the algorithm converges. The algorithm can be initialized

using an arbitrarily chosen θ(0). Although the EM algorithm does not always converge

to the true ML solution, it produces estimates which monotonically increase in likelihood

and is guaranteed to converge to a stationary point of the likelihood function under fairly

general conditions [62]. However, the choice of the initial point may affect the rate of

convergence of the algorithm as well as the final point of convergence.

2.2 Cramer-Rao Bound

The CRB [35] is a fundamental lower limit on the variance of any unbiased estimator and

is the most widely used benchmark on the performance of practical estimators. The CRB

for the estimation of the parameter vector θ can be obtained by evaluating the Fisher

information matrix (FIM), defined as

I(θ) = E
{
∂L(r;θ)
∂θ

∂L(r;θ)
∂θT

}
= −E

{
∂2L(r;θ)
∂θ∂θT

}
(2.9)

where L(r;θ) , log f(r;θ) is the log-likelihood function. Let C̃ , E
{
(θ̂ − θ)(θ̂ − θ)T

}
be the error covariance matrix for the unbiased estimation of θ, then for any unbiased

estimator of θ, we have that4 [35]

C̃ ≥ I(θ)−1. (2.10)

4For square matrices A and B, the notation A ≥ B means that the difference A − B is positive
semi-definite.
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Hence, the mean-squared error (MSE) for unbiased estimators of θ is bounded as follows

E
{
∥θ̂ − θ∥2

}
≥ tr

(
I(θ)−1

)
. (2.11)

The CRB is thus given by

CRBθ = tr
(
I(θ)−1

)
. (2.12)

The CRB is known to be tight for a wide range of estimators, provided that the number

of observations is sufficiently large and/or SNR is high [54]. An estimator is said to be

efficient if it attains the CRB. One of the attractive properties of ML estimation is that

if an efficient estimator exists then the ML estimator is efficient. Furthermore, even when

an efficient estimator does not exist, the ML estimator is asymptotically efficient for i.i.d.

observations under mild conditions [56], which means that it approaches the CRB as the

number of observations becomes large.

2.2.1 The CRB in the Presence of Random Nuisance Parameters

When the observations involve random nuisance parameters in the form of data symbols

that are known only through their distribution, the standard CRB, which is based on the

true likelihood function (see (2.5)), can be very difficult to evaluate. We will derive such a

bound in Chapter 5 of this thesis. However, due to the considerable analytical derivations

required to obtain such bounds, it is also worth it to consider other, simpler variants of the

CRB which may be used in the presence of random nuisance parameters.

One way to simplify the derivation of the CRB is to ignore the statistics of the nuisance

parameters and treat them as deterministic, as done in DML estimation. In this case, the

CRB can be obtained for the joint estimation of both θ and the data symbols. Letting

θ̃ , [θT ,dT ]T be the augmented parameter vector, the corresponding FIM is given by

I(θ̃) = E
{
∂L(r|d;θ)

∂θ̃

∂L(r|d;θ)
∂θ̃

T

}
. (2.13)

As we can see from (2.13), the size of the FIM increases with the number of observations.

The resulting CRB for the estimation of θ is given by

CRBD =
K∑
i=1

[I(θ̃)−1]ii. (2.14)
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This bound is tight for the class of estimators which ignore the statistics of the data symbols,

such as the ones that will be considered in Chapters 3 and 4. However, estimators that

take into account the statistics of the data may outperform the bound.

Another variant of the CRB that is commonly used in the presence of random nuisance

parameters is the modified CRB (MCRB) [54,63]. In contrast to the previous bound, this

bound takes into account the statistics of the nuisance parameters and it applies to the

general class of estimators for which the standard CRB applies. The MCRB is obtained

using a modified version of the FIM, denoted as the modified FIM (MFIM), given by

IM(θ) = Er,d

{
∂ log f(r|d;θ)

∂θ

∂ log f(r|d;θ)
∂θT

}
= EdEr|d

{
∂ log f(r|d;θ)

∂θ

∂ log f(r|d;θ)
∂θT

}
.

(2.15)

Thus, the FIM for the estimation of θ is first obtained while treating the data symbols as

deterministic unknowns and then averaged using the statistics of the data symbols to yield

the MFIM. It is proved in [64] that

I(θ)−1 − IM(θ)−1 ≥ 0, (2.16)

which shows that the MCRB is a valid bound, though looser than the standard CRB.

2.3 Multipath Fading

Multipath fading [20] refers to the attenuation due to the interference between different

copies of the signal which arrive at the receiver through different paths, with slightly dif-

ferent time delays, amplitudes and phase offsets. The multipath phenomenon can severely

degrade the received signal power, and thus it requires proper compensation at the receiver.

2.3.1 Slow and Fast Fading

The channel coherence time Tc is the period during which the channel remains approxi-

mately unchanged, or in other words the period during which the fading process is highly

correlated [20]. Hence, it characterizes the time varying nature of the wireless channel.

The fading is designated as slow when the symbol period T is small relative to the channel
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coherence time, i.e., T ≪ Tc. Slow fading channels that are static over the duration of

several symbol periods are described as quasi-static within the period Tc. The fading is

considered to be fast when T > Tc. In our work we will focus on quasi-static channels.

2.3.2 Flat-fading and Frequency-selective fading Channels

The maximum delay spread of the channel, denoted as τmax, is the time duration for

the arrival of the multipath components. The maximum delay spread is closely related

to another quantity, the channel coherence bandwidth Bc which measures the frequency

range over which the channel frequency response is nearly flat, i.e., highly correlated. In

particular, we have [20]

Bc ≈
1

τmax
. (2.17)

An important characteristic of fading channels is their frequency selectivity. A wireless

channel is classified as frequency-flat if the signal bandwidth is much smaller than the

coherence bandwidth of the channel, which means that all the spectral components of the

received signal are affected in the same way. In the time domain, this means that the

delay spread τmax is much smaller than the symbol period T , and the different multipath

components cannot be resolved at the receiver. A flat-fading channel can be modelled as a

random complex multiplicative coefficient, whose distribution is chosen depending on the

propagation environment. For instance, when the multipath components of the signal do

not contain a line-of-sight (LOS) component, such as commonly the case in urban areas, the

channel coefficient can be modelled as a noncircular complex Gaussian random variable [65].

On the other hand, when the signal bandwidth is greater than the coherence bandwidth

of the channel, the different spectral components of the signal experience different amplitude

gains and phase shifts, and the channel is called frequency selective. In the time domain, the

multipath delay spread τmax is greater than the symbol period, and the different multipath

components are resolvable at the receiver. The presence of multiple resolvable versions of

the transmitted symbol waveform results in ISI at the receiver. The channel is referred to

as wideband in this case and is commonly modelled in baseband as a linear FIR filter. The

filter coefficients can be modelled as zero-mean circularly complex Gaussian RVs, and their

variance is commonly assumed to follow an exponentially decaying power delay profile [20].

Frequency selectivity requires a more sophisticated form of channel equalization to avoid

the detrimental effects of ISI. The most popular solution for addressing this problem is
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OFDM, which we describe next.

2.4 OFDM Systems

OFDM has emerged as the dominant technology for broadband multicarrier communica-

tion [65]. The basic idea of OFDM is to transform the frequency-selective channel into many

parallel flat-fading subchannels, by converting the serial input data stream into parallel low-

rate streams that are modulated on separate subcarriers and transmitted simultaneously.

This process substantially simplifies the task of channel equalization, which can be per-

formed in the frequency-domain at each subcarrier using a single-tap equalizer. To avoid

interference between consecutive OFDM symbols, a Cyclic Prefix (CP) can be inserted into

each OFDM symbol, at the cost of a small reduction in spectral efficiency. OFDM is also

characterized by its high bandwidth efficiency because the subcarriers are allowed to over-

lap in the frequency domain while maintaining orthogonality between their respective time

domain waveforms. OFDM can be implemented efficiently in hardware by using the In-

verse Fast Fourier Transform (IFFT) block for modulation, and the Fast Fourier Transform

(FFT) block for demodulation, which significantly reduces hardware complexity. Because

of its numerous advantages, OFDM has been adopted in various wireless standards, such

as European digital audio broadcast (DAB) [66], digital video broadcast (DVB) [67], as

well as the 3GPP LTE standards for next generation broadband wireless systems [68].

In what follows, we first describe block-based transmission under frequency selective

channel conditions to illustrate the effects of ISI and then provide a detailed description

of OFDM transmission. Let h , [h1, . . . , hL]
T be the vector of FIR filter coefficients

representing the frequency selective channel. Let x̃(n) be the input sequence, the nth

received sample is given by

y(n) =
L∑
k=1

h(k)x̃(n− k) + v(n), (2.18)

where v(n) is additive White Gaussian noise. Now suppose that transmission occurs in

consecutive blocks of lengthN > L and let x̃0 and x̃1 be two consecutive transmitted blocks.

We focus on the received signal corresponding to the transmission of x̃1 = [x̃11, . . . , x̃1N ]
T .
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..Data
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. S/P. IFFT..
Add CP

.
P/S

. Channel..
Remove
CP.
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. FFT. P/S. Decoder

Fig. 2.1 A typical OFDM transceiver.

The first N received samples corresponding to the transmission of x̃1 are given by5

y = Hx̃1 +H0x̃0 + v, (2.19)

where H and H̆ are the N ×N matrices given by

H =


h1 0 . . . 0

h2 h1 0 . . . 0
...

. . . . . .

0 . . . 0 hL . . . h1

 (2.20)

and

H0 =


hL . . . h2

0N×(N−L+1)
...

. . .

0 . . . 0 hL

0(N−L+1)×(L−1)

 , (2.21)

respectively and v is the additive noise vector. We can see from (2.19) that, in addition to

the ISI, the first L − 1 received samples also experience interblock interference (IBI) due

to the preceding transmitted block x̃0.

We now describe how OFDM operates. An illustration of the OFDM transceiver

is shown in Fig. 2.1. Starting with the N × 1 vector of constellation symbols x̃, we

obtain its inverse discrete Fourier transform (IDFT), given by x = FHx̃, where F is

the N × N normalized discrete Fourier transform (DFT) matrix whose (m,n)th entry is

1/
√
Ne−ȷ2π(m−1)(n−1)/N . Before transmitting x, a cyclic prefix (CP) of length LCP ≥ L− 1

5Although the total number of received samples which bear information about x̃1 is N+L−1, we focus
only on the first N samples since that the last L − 1 samples would contain information from the block
transmitted after x̃1.
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..OFDM block .CP..

N Symbols

.

LCP Symbols

.

copy

Fig. 2.2 OFDM block with CP.

is inserted, as shown in Fig. 2.2. In particular, a copy of the last LCP symbols of the vector

x is inserted at the beginning of x. The resulting vector, x′, is then serially transmitted.

At the receiver side, the received vector is the result of the linear convolution between

the channel impulse response h and the transmitted vector x′, and thus has a length of

N +LCP +L− 1. The receiver discards the first LCP received samples (which are affected

by IBI) and collects N samples of the received signal, resulting in the vector

y = H̆x+ v (2.22)

where H̆ is the N×N circulant matrix with first column h̄ , [hT ,01×N−L]
T . The circulant

structure of H̆ plays an important role in the functionality of OFDM systems. Specifically,

H̆ may be expressed as H̆ = FHH̃F , where H̃ is the diagonal matrix whose diagonal

elements are given by h̃ =
√
NF h̄ = [h̃1, . . . , h̃N ]

T , which is the N -point (non-normalized)

DFT of h. Hence, (2.22) becomes

y = FHH̃x̃+ v. (2.23)

Let ỹ = Fy be the DFT y, then

ỹ = H̃x̃+ ṽ, (2.24)

where ṽ , Fv is the DFT of v. From (2.24), we see that the ith element of ỹ is given by

ỹi = h̃ix̃i+ ṽi, which means that the ith transmitted symbol x̃i is affected by the flat-fading

channel coefficient h̃i which is the ith element in the N -pt DFT of h. Hence, by using a CP

and applying the IFFT and FFT operations at the transmitter and receiver, respectively,

the frequency selective channel has been successfully converted into N parallel flat-fading

subchannels. For each of these subchannels, a single tap equalizer is sufficient to perform

equalization, which can be followed by detection. It is also worth noting that the noise
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statistics are not affected since ṽ is still white Gaussian with the same statistics as v.

OFDM can be easily extended to the context of AF TWRNs, as we shall see in Chapter 7.
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Chapter 3

Blind Channel Estimation for

Nonreciprocal Flat-fading Channels

under MPSK modulation

3.1 Introduction

In this chapter, we consider blind channel estimation for AF TWRNs that employ constant-

modulus (CM) signalling under nonreciprocal flat-fading channel conditions. Because of its

constant envelope, CM signaling permits the use of inexpensive and energy-efficient nonlin-

ear amplifiers. In fact, CM signalling in the form of continuous-phase modulation (CPM)

is used in the well-known GSM cellular standard, while 8-PSK modulation is employed in

the Enhanced Data Rates for GSM Evolution (EDGE) [69]. Moreover, QPSK modulation

is supported in the 3rd Generation Partnership Program (3GPP) Long Term Evolution

(LTE) and LTE-Advanced wireless standards [70].

We propose a deterministic ML (DML)-based algorithm that estimates the cascaded

channel parameters blindly by treating the data symbols as deterministic unknowns. While

the proposed algorithm may be applied to any type of CM signalling, we analyze its asymp-

totic performance assuming that the terminals employ M -PSK modulation. Noting that

consistency is not guaranteed for ML estimators when the data symbols are treated as

deterministic unknowns [58, 59], we prove that our DML estimator is consistent when the

channel parameters belong to compact sets. We also study the asymptotic behavior of

the DML estimator at high SNR and prove that it approaches the true channel with high
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probability for modulation orders higher than 2. For M = 2, however, the DML estima-

tor performs poorly, and we propose an alternative estimator based on the constrained ML

(CML) approach which provides much better performance by explicitly taking into account

the BPSK structure of the data symbols. As a simple alternative to the DML approach,

we also consider the Gaussian ML (GML) estimator which is obtained by treating the data

symbols as Gaussian-distributed nuisance parameters. When CM signalling is employed,

the GML estimator takes the form of a sample average which is consistent and can be

updated online but suffers from an error floor at high SNR. We also derive two CRBs

for our estimation problem. The first bound is obtained by treating the data symbols as

deterministic unknown parameters and the second is the MCRB discussed in Chapter 2.

Monte Carlo simulations are used to investigate the performance of the proposed algo-

rithms. For M > 2, we show that the DML estimator outperforms the GML estimator at

medium-to-high SNR and approaches the CRB at high SNR. For M = 2, we show that the

CML-inspired estimator outperforms the GML estimator except at very low SNR. We also

investigate the tradeoffs of following the blind approach by comparing the symbol-error rate

(SER) performance of the DML estimator with that of the training-based LS estimator.

We show that the DML approach provides a better tradeoff between accuracy and spectral

efficiency.

The work presented in this chapter originally appeared in [71]. A more elaborated

version, including mathematical proofs and new theoretical contributions appeared in [72].

The remainder of this chapter is organized as follows. In Section 3.2, we present our

system model. In Section 3.3, we present the proposed algorithms. In Section 3.4, we

analyze the asymptotic behavior of our estimators and derive the CRB. We show our

simulation results and comparisons in Section 3.5. Finally, our conclusions are discussed in

Section 3.6.

3.2 System Model

We consider the typical half-duplex TWRN with two source nodes, T1 and T2, and a single

relaying nodeR, shown in Fig. 1.2. The network operates in quasi-static flat-fading channel

conditions. Each data transmission period is divided into two phases. In the first phase, T1

and T2 simultaneously transmit to R theM -PSK data symbols s1 and s2, respectively. The

symbols s1 and s2 are of the form s1 =
√
P1e

ȷϕ1 and s2 =
√
P2e

ȷϕ2 , where P1 and P2 are the
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transmission powers of T1, T2, respectively, and ϕ1, ϕ2 are the information-bearing phases

randomly and independently chosen from the set SM = {(2ℓ− 1)π/M, ℓ = 1, . . . ,M}. The
received signal at the relay during the first transmission phase is given by

r = h1s1 + g1s2 + n, (3.1)

where h1 and g1 are the complex coefficients of the flat-fading channels T1 → R and

T2 → R, respectively, modelled as1 CCN (0, γ2), and n is the additive white noise modelled

as CCN (0, σ2). In the second phase, R broadcasts the amplified signal Ar, where A is

the amplification factor, assumed to be known at both terminals as is common practice

(cf. [21, 28]). The amplified signal passes through the channels h2 and g2 to reach T1 and

T2, respectively. The coefficients h2 and g2 are also modelled as CCN (0, γ2). Furthermore,

we assume that h1 and h2 are correlated with a correlation coefficient of ϱ , E {h1h2}.
Similarly, g1 and g2 are correlated with the same correlation coefficient. The complex

channel coefficients h1, h2, g1 and g2 remain fixed during the estimation period. To maintain

an average power of Pr at the relay over the long term, the amplification factor is chosen

as [21]

A =

√
Pr

γ2P1 + γ2P2 + σ2
. (3.2)

Without loss of generality, we consider channel estimation at terminal T1 and assume that

a similar process is taking pace at terminal T2. The received signal at T1 in the second

transmission phase is

z = Ah2h1s1 + Ah2g1s2 + Ah2n+ η

= Aas1 + Abs2 + Ah2n+ η,
(3.3)

where η is CCN (0, σ2) and a , h2h1, b , h2g1 are the cascaded channels parameters whose

knowledge is sufficient for detection purposes. The noise variance σ2 is assumed to be

known at T1. The term Aas1 represents the self-interference at T1. We will focus in this

chapter on the estimation of the cascaded channels a and b. Under the CM assumption,

it is sufficient for detection to know a and ϕb , ∠b. Let τ , |h2|2, we can see from (3.3)

that τ is also identifiable when the noise variance σ2 is known. However, τ is not needed

1The notation CCN (µ, σ2) is used to denote a circularly complex Normal random variable with mean
µ and variance σ2.



30 Blind Estimation for Nonreciprocal Channels under MPSK Modulation

in detection.

3.3 Proposed Channel Estimation Algorithms

Estimation is performed at T1 using N received samples, zi, i = 1, . . . , N, of the form given

by (3.3). The time index i is used to indicate the realizations of s1, s2, ϕ1, ϕ2, n, η, that

gave rise to each sample zi. Let z , [z1, . . . , zN ]
T be the vector of received samples. This

vector can be expanded as

z = Aas1 + Abs2 + Ah2n+ η, (3.4)

where s1 , [s11, . . . , s1N ]
T , s2 , [s21, . . . , s2N ]

T , n , [n1, . . . , nN ]
T and η , [η1, . . . , ηN ]

T .

3.3.1 Deterministic ML Approach

To avoid dealing with a complicated likelihood function, we treat the transmitted symbols

s2i, i = 1, . . . , N as deterministic unknowns. We also ignore the finite alphabet constraint

that restricts the phases ϕ2i to the set SM . Nonetheless, the actual statistics of these

phases will be used in Section 3.4 to analyze the behavior of the resulting estimator. Due

to the above assumptions, the DML approach can be used to blindly estimate the sums

ϕbi , ϕ2i+ϕb, but it cannot be used to obtain separate estimates of ϕb and ϕ2i, i = 1 . . . , N .

However, since M -PSK modulation is assumed, the Viterbi-Viterbi algorithm [73] may be

used to blindly estimate ϕb. A few pilots, however, are still needed to resolve the resulting

M -fold ambiguity in ϕb.

We let θ , [a, |b|, τ, ϕb1, . . . , ϕbN , ]T be the vector of unknown parameters for the DML

algorithm. With s2 assumed deterministic and s1 known, the received vector z is complex

Gaussian with E{z} = Aas1 + Abs2 and covariance E{zzH} = σ2(A2τ + 1)IN where IN

is the N ×N identity matrix. Hence, the log-likelihood function is given by

L(z;θ) = − 1

σ2(A2τ + 1)
∥z − Aas1 − Abs2∥2 −N log

(
πσ2(A2τ + 1)

)
= − 1

σ2(A2τ + 1)

N∑
i=1

∣∣∣zi − Aas1i − A|b|
√
P2e

ȷϕbi

∣∣∣2 −N log
(
πσ2(A2τ + 1)

)
.

(3.5)

Let â, |̂b|, τ̂ , ϕ̂bi be the ML estimates of a, |b|, τ and ϕbi, i = 1, . . . , N, respectively. It
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is straightforward to show that ϕ̂bi = ∠(zi − Aâs1i), which when substituted into L(z;θ)
yields the updated log-likelihood

L′(z; a, |b|, τ) = − 1

σ2(A2τ + 1)

N∑
i=1

(
|zi − Aas1i| − A|b|

√
P2

)2

−N log
(
πσ2(A2τ + 1)

)
.

(3.6)

Maximizing (3.6) with respect to |b|, we get

|̂b| =

N∑
i=1

|zi − Aâs1i|

NA
√
P2

. (3.7)

Substituting |̂b| in place of |b| in (3.6), we obtain

L′′(z; a, τ)=− 1

σ2(A2τ + 1)

N∑
i=1

(
|zi − Aas1i|−

1

N

N∑
k=1

|zk − Aas1k|
)2

−N log
(
πσ2(A2τ + 1)

)
.

(3.8)

Hence, the DML estimate of a is given by2

â = arg min
u∈C

N∑
i=1

(
|zi − Aus1i| −

1

N

N∑
k=1

|zk − Aus1k|
)2

. (3.9)

The objective function in (3.9) does not have a closed-form solution. However, it can be

solved using numerical optimization methods such as the steepest-descent algorithm or

quasi-Newton type methods [74,75]. The computational complexity of the steepest descent

implementation is O(N), i.e., it is linear in the number of data samples (see Appendix B.2).

Two-dimensional grid search can also be employed to obtain the solution. Finally, the

estimate of the parameter τ is neither needed for detection nor for estimating a, |b|, but is
2Since a = h2h1 and τ = |h2|2, the parameters a and τ are not completely decoupled. In particular, a

can take any complex value when τ ̸= 0, but a = 0 when τ = 0. However, we have ignored this coupling
between a and τ to simplify the derivation of the DML algorithm, since the case h2 = 0 is not of practical
interest.
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provided for completeness and is given by

τ = max

0,
1

A2

[
1

Nσ2

N∑
i=1

(
|zi − Aas1i| −

1

N

N∑
k=1

|zk − Aas1k|

)2

− 1

] . (3.10)

The DML estimator in (3.9) has the following interpretation. Let z̃i(u) , zi−Aus1i, i =
1, . . . , N be the “cleaned” versions of the received signal samples after self-interference

has been removed using the complex value u as an estimate of a. The signals z̃i(u) are

independently generated realizations of the RV z̃(u) , A(a− u)s1 +Abs2 +Ah2n+ η. The

quantity

WN(u) =
1

N − 1

N∑
i=1

(
|z̃i(u)| −

1

N

N∑
k=1

|z̃k(u)|
)2

(3.11)

which is the objective function in (3.9), scaled by 1
N−1

, also represents the sample-variance of

the envelope of z̃(u). We demonstrate in Section 3.4 that the value u = a which completely

cancels the interference also minimizes the variance of the envelope of z̃(u). Hence, the

variance of the envelope of z̃(u) may be seen as a measure of the level of self-interference.

By treating the transmitted symbols s2i as deterministic unknowns, the estimator

in (3.9) ignores the underlying structure of the phases ϕ2i, i = 1, . . . , N . As we shall

see in Section 3.4, the DML estimator in (3.9) performs poorly for BPSK modulation as

its objective function experiences infinitely many global minima at high SNR. As an al-

ternative, we will consider a constrained ML (CML) approach by solving the likelihood

function in (3.5) subject to the constraint that ϕ2i ∈ SM , i = 1, . . . , N . For higher order

modulations, it is difficult to apply this approach and still obtain a closed-form objective

function. However, as we shall see next, this approach becomes more feasible for BPSK

modulation.

3.3.2 Constrained ML Approach for BPSK

As we will see shortly, a straightforward application of the CML approach for M = 2 is

not feasible as it results in a 3-dimensional search. However, it is possible to obtain a

CML-inspired estimator which possesses a closed-form objective function by utilizing just

a few pilot symbols to estimate the phase ϕb.

Under BPSK modulation, the CML approach maximizes the same objective function
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as in (3.5), but subject to the constraint that s2i = ±
√
P2, i = 1, . . . , N . It is sufficient to

focus on the first term in (3.5).Let

J (z; a, |b|, ϕb, s2) ,
N∑
i=1

∣∣∣zi − Aas1i − A|b|
√
P2e

ȷ(ϕbi)
∣∣∣2 (3.12)

be our objective function. The resulting estimate of s2i is

ŝ2i =
√
P2sgn

(
ℜ{e−ȷϕb(zi − Aas1i)}

)
. (3.13)

Substituting (3.13) back into (3.12), we obtain

J ′(z; a, |b|,ϕb) =
N∑
i=1

|zi − Aas1i|2 +NA2|b|2P2 − 2A|b|
√
P2

N∑
i=1

|ℜ{e−ȷϕb(zi − Aas1i)}|.

(3.14)

From (3.14), we see that the CML estimate of |b| is given by

|̂b|c =
1

NA
√
P2

N∑
i=1

|ℜ{e−ȷϕb(zi − Aas1i)}|. (3.15)

Substituting (3.15) into (3.14), we obtain the updated objective function

J ′′(z; a,ϕb) =
N∑
i=1

|zi − Aas1i|2 −
1

N

( N∑
i=1

|ℜ{e−ȷϕb(zi − Aas1i)}|
)2

(3.16)

which we have to solve for a and ϕb. The CML estimate of ϕb in terms of a is the solution

of the following maximization problem

ϕ̂bc = arg max
ψ∈[0,2π)

N∑
i=1

|zi − Aas1i|| cos(∠(zi − Aas1i)− ψ)|. (3.17)

Unfortunately, the maximization in (3.17) does not have a closed-form solution, which

means that we cannot proceed to obtain an objective function that only depends on a,

like the one in (3.9). Thus, a strict application of the CML approach requires the use of a

3-dimensional search to estimate a and ϕb.
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To get around this problem, we propose to replace ϕb in (3.16) with a pilot-based

estimate of ϕb and then proceed to estimate a. We let t1ℓ, t2ℓ and z̈ℓ, ℓ = 1, . . . , L, be

the L pilot symbols transmitted by T1 and T2 and the corresponding samples received at

T1, respectively. We may thus estimate ϕb by ϕ̂b = ∠
L∑
ℓ=1

(z̄ℓ − Aat1ℓ)t2ℓ. Substituting ϕ̂b

into (3.16), we obtain the following estimate of a:

âc = arg min
u∈C

N∑
i=1

|zi − Aus1i|2 −
1

N

( N∑
k=1

∣∣∣∣ℜ{(zk − Aus1k)e
−ȷ∠

L∑
ℓ=1

(z̄ℓ−Aut1ℓ)t2ℓ
}∣∣∣∣)2

.

(3.18)

We refer to the estimator in (3.18) as the modified CML (MCML) estimator.

3.3.3 Gaussian ML Approach

In deriving the DML and the MCML estimators, we treated the data symbols as deter-

ministic unknowns. Another approach commonly used to deal with nuisance parameters is

Gaussian ML estimation [76]. In this case, the data symbols s2i, i = 1, . . . , N are treated

as i.i.d. complex Gaussian random variables with mean zero and variance P2. Under this

assumption, the total noise variance becomes σ2
g , P2|b|2 + σ2(A2τ + 1). The resulting

log-likelihood function for a is

L(z; a) = − 1

σ2
g

∥z − Aas1∥2 −N log(πσ2
g). (3.19)

Hence, the GML estimate of a is

âg =

N∑
i=1

s∗1izi

N∑
i=1

|s1i|2
=

1

NAP1

N∑
i=1

s∗1izi. (3.20)

Thus, the GML estimate of a has the form of a computationally inexpensive sample-average.

It can be easily updated at run-time by updating the average term as new samples arrive.

The GML estimator will serve as a low-complexity benchmark with which to compare the

performance of the proposed DML and MCML estimators.
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3.4 Asymptotic Behavior Analysis

In this section, we analyze theoretically the asymptotic behavior of the proposed estimators.

Since the parameters |b| and τ are not required for detection, our analysis focuses on the

estimation of a. To simplify our notation, we let C , σ2(A2τ + 1) be the overall noise

variance at T1. Regarding the DML estimator, the fact that we treat the phases ϕbi, i =

1, . . . , N as deterministic unknowns means that the number of real unknown parameters for

N (complex) samples is N+4. Because the dimension of the parameter space grows linearly

with the number of samples, the DML estimator falls within a special class of ML estimators

that are based on “partially-consistent observations” [58]. As discussed in Chapter 2,

the deterministic parameters can be classified into two groups. The first group are the

incidental parameters ϕbi, i = 1, . . . , N . Each incidental parameter affects only one sample.

The other group of parameters, a, |b|, and τ , are the structural parameters which affect all

received samples. As mentioned in Chapter 2, the estimation of structural parameters in the

presence of incidental parameters is referred to as the Incidental Parameter Problem [57–60].

It is well-known that the asymptotic properties of ML estimators, such as consistency,

which hold when the dimension of the parameter space is fixed do not necessarily hold in

the presence of incidental parameters [58]. It thus becomes important to investigate the

asymptotic behavior of the DML estimator. We do this by explicitly taking into account

the fact that ϕ1i and ϕ2i are equiprobably and independently chosen from the set SM .

Regarding the powers P1, P2 and Pr, the most common convention in TWRNs is to set

P1 = P2 = Pr (cf. [22, 28, 77]), even though some works use slightly different setups. For

instance, the authors in [21] choose P2 = 2P1 and Pr = 1
2
(P1 + P2). In our analysis we

consider the general case of P1 = αP2 and Pr = β(P1 + P2) for some α, β > 0.

The first asymptotic property we address is the consistency of the DML estimator. We

are chiefly concerned with the consistency of the estimator of a in (3.9), since |b| is not

required for detection. We will prove that the estimator in (3.9) is consistent when the

parameter spaces of a and b are restricted to compact sets. This is true even for BPSK

modulation. The second aspect we address is how the DML estimator behaves at high

SNR (we will define SNR shortly). We show that the estimator in (3.9) approaches the

true channel with high probability at high SNR forM > 2. However, the objective function

exhibits infinitely many global minima at high SNR for M = 2.

We also analyze the high SNR behavior of the MCML estimator in (3.18), showing that
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it approaches the true channel with high probability for L = 1 (single pilot). For L > 1, the

pilots can be chosen such that the MCML estimator always approaches the true channel

at high SNR.

3.4.1 Consistency of the DML Estimator

In this section, we study the behavior of the DML estimator as N → ∞. We demonstrate

that the DML estimator is consistent when the channel parameters a, b belong to compact

sets.

Before proceeding, we note that the estimator of a in (3.9) belongs to the class of

extremum estimators. An estimator ω̂ is called an extremum estimator (cf. [78], [79]) if

there is an objective function ΣN(ω) such that ω̂ = arg min
ω∈Ω

ΣN(ω), where Ω is the set of

parameter values. The fundamental theorem for the consistency of extremum estimators

can be summarized as follows:

Theoem 1 (Newey & McFadden [79, Ch. 36, Thm. 2.1]). If ω belongs to a compact

set Ω and ΣN(ω) converges uniformly in probability to Σo(ω) as N → ∞, where Σo(ω) is

continuous and uniquely minimized at ω = ωo, then ω̂ converges in probability to ωo.

Thus, we need to establish that, as N → ∞, the objective function WN(u) in (3.11)

converges uniformly in probability to a deterministic function of u which has a unique

global minimum at u = a. Letting v , a− u and VN(v) , WN(a− v), we obtain

VN(v) =
1

N − 1

N∑
i=1

(
|yi(v)| −

1

N

N∑
k=1

|yk(v)|
)2

, (3.21)

where yi(v) , z̃i(a − v). The terms yi(v), i = 1, . . . , N are independently generated

realizations of the RV y(v) , z̃(a − v), and VN(v) is the sample variance of the envelope

of y(v). Let V(v) be the variance of |y(v)|, φk , 2πk
M

, and θk(v) , ϕv − ϕb + φk for

k = 0, . . . ,M − 1. We show in Appendix A.1 that

V(v)=A2|v|2P1 + A2|b|2P2 + C−

(√
πC

4M2

M−1∑
k=0

L1/2 (−λk(v))

)2
, (3.22)
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where L1/2(·) is the Laguerre polynomial [80] with parameter 1/2, and

λk(v)=
1

C

(
A2|v|2P1+A

2|b|2P2+2A2|v||b|
√
P1P2 cos θk(v)

)
. (3.23)

The behavior of V(v) for v = 0, which corresponds to u = a, is described in the following

lemma:

Lemma 1. The variance V(v) of the random variable |y(v)| has a unique global minimum

occurring at v = 0.

Proof. See Appendix A.2.

To apply Theorem 1, it remains to establish that VN(v) converges uniformly in probabil-

ity to V(v). Since VN(v) is the sample variance of |y(v)| and |y(v)| has a finite fourth central

moment, VN(v) converges in probability to V(v) [81]. The following lemma holds regard-

ing uniform convergence in probability which is a stricter requirement than convergence in

probability:

Lemma 2. Assuming a, b and v all belong to compact sets, then VN(v) converges uniformly

in probability to V(v).

Proof. See Appendix A.3.

From Lemma 1 and Lemma 2, we see that all of the conditions of Theorem 1 are met

if the channel parameters a and b belong to compact sets. Hence, the following theorem

holds.

Theorem 2. If the channel parameters a, b belong to the compact sets C1 and C2, then the

following estimator of a:

â = arg min
u∈B1

N∑
i=1

(
|zi − Aus1i| −

1

N

N∑
k=1

|zk − Aus1k|

)2

is consistent.

The compactness assumption for a and b can be satisfied by assuming that the magni-

tudes of g1, h1 and h2 are bounded. If we treat g1, h1 and h2 as complex Gaussian random

variables, there is no upper bound on |a| and |b|, strictly speaking, but we can always

choose a sufficiently large ξ such that Prob(|a|, |b| ≤ ξ) = 1 − ϵ, where ϵ can be made

arbitrarily small.



38 Blind Estimation for Nonreciprocal Channels under MPSK Modulation

3.4.2 High SNR Behavior of the DML Estimator

We now investigate the behavior of the DML estimator at high transmit SNR. The SNR

is defined as γ , P2

σ2 . Let

X(v) =
N∑
i=1

(
|Avs1i + Abs2i| −

1

N

N∑
k=1

|Avs1k + Abs2k|

)2

(3.24)

be the objective funcion in (3.9) in the limit as σ → 0. The following lemma describes the

behavior of the DML estimator as σ → 0.

Lemma 3. For fixed (finite) N, the DML estimator approaches the true channel a as σ → 0,

except when the data symbols are such that the phase differences ϕ1i−ϕ2i, i = 1, . . . , N take

at most two distinct values, in which case the objective function encounters infinitely many

global minima as σ → 0. Therefore, assuming M-PSK transmission, â→ a as σ → 0 with

probability PM,N = 1−
(

2
M

)N−1
(M − 1).

Proof. See Appendix A.4.

As we can see from Lemma 3, the DML estimator approaches the true channel except

in the event that the phase differences ϕ1i − ϕ2i, i = 1, . . . , N happen to take at most

two distinct values. When this event occurs, the objective function of the estimator will

have infinitely many global minima at high SNR. In fact, the occurrence of this event also

results in a singular Fisher information matrix as we shall see in Section 3.4.5. For M > 2,

this event is unlikely for sufficiently large N . For instance, at M = 4, the probability of

this event is less than 5.6 × 10−9 for N ≥ 30. Thus, the DML estimator approaches the

true channel with high probability for M > 2 as long as the sample size is not very small.

In this case, the average MSE performance of the estimator keeps improving with SNR,

and it can effectively achieve arbitrary accuracy for sufficiently high SNR. For M = 2,

however, P2, N = 0 and the estimator always encounters infinitely many global minima at

high SNR because the difference ϕ1i − ϕ2i cannot take more than two distinct values for

i = 1, . . . , N . In fact, for M = 2 and for any non-zero v, b, there are only two possible

values that the terms |vs1i + bs2i|, i = 1, . . . , N can take, and they are |
√
P1v+

√
P2b| and

|
√
P1v −

√
P2b|. Whenever v ⊥ b, these two values are equal, which means that the terms

|vs1i + bs2i|, i = 1, . . . , N are all equal regardless of the values of s1i, s2i, i = 1, . . . , N ,

i.e., X(v) = 0. Therefore, all values of v such that v ⊥ b are global minimizers of the
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objective function X(v), and the estimator is not able to identify the true channel. Hence,

the DML estimator performs poorly for M = 2 and its MSE performance deteriorates at

high SNR. Despite this behavior, the DML estimator is consistent for M = 2 for any fixed

σ > 0, because for σ > 0 only v = 0 minimizes the variance V(v). This explains why, as

we shall see, the DML estimator performs better at low SNR than high SNR for M = 2.

Since the performance of the estimator will also degrade for very low SNR, the MSE for

M = 2 exhibits a U-shaped behavior when plotted versus SNR. This is confirmed by our

simulation results in Section 3.5.

3.4.3 High SNR Behavior of the MCML Estimator (M=2)

We now investigate the high SNR behavior of the MCML estimator and show that it

effectively avoids the problem of infinitely many global minima at high SNR. Let

Y (v) ,
N∑
i=1

|Avs1i + Abs2i|2 −
1

N

( N∑
k=1

|Avs1k + Abs2k| · | cos(∆k)|
)2

(3.25)

be the objective function in (3.18) as σ → 0, expressed in terms of v = a− u, where

∆k = ∠(Avs1k + Abs2k)− ∠(LAbP2 + Av

L∑
ℓ=1

t1ℓt2ℓ). (3.26)

Clearly, Y (v) ≥ 0 and Y (0) = 0. It remains to investigate whether it is possible to have

Y (v) = 0 for v ̸= 0, i.e., whether there could be other global minima besides v = 0. For

this to happen, all terms |Avs1k + Abs2k|, k = 1, . . . , N have to be equal and all terms

| cos(∆k)|, k = 1, . . . , N have to be equal to 1. The first requirement can be met if v ⊥ b

or if the products s1is2i are all equal for i = 1, . . . , N . As for the second requirement, it is

only satisfied when

∠(Avs1k + Abs2k) = ∠(LAbP2 + Av

L∑
ℓ=1

t1ℓt2ℓ) mod π (3.27)

for k = 1, . . . , N . Let H be the event that the requirement in (3.27) is satisfied for k =

1, . . . , N . For L = 1, we have P (H) = 1/2N . For L > 1, however, the occurrence of H can

be completely avoided if the pilots are chosen such that the products t1ℓt2ℓ, ℓ = 1, . . . , L are
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not all equal. If the pilots are randomly chosen, then P (H) = 1/2N+L−1. Hence, depending

on the choice of the pilots, the MCML estimator either always approaches the true channel

or approaches it with a probability of 1−1/2N+L−1. Thus, the MCML estimator effectively

resolves the problem of infinitely many global minima at high SNR even when a single pilot

is used.

3.4.4 MSE Performance of the GML Estimator

The estimator of a in (3.20) can be expanded as

âg =a+
b

N
√
α

N∑
i=1

eȷ(ϕ2i−ϕ1i) +
1

N
√
αP2

N∑
i=1

e−jϕ1ih2ni +
1

NA
√
αP2

N∑
i=1

e−jϕ1iηi. (3.28)

It is straightforward to check that the estimator is unbiased. The resulting MSE is

E{|âg − a|2} =
|b|2

Nα
+

|h2|2σ2

NαP2

+
σ2

NA2αP2

. (3.29)

Since E{|âg−a|2} → 0 as N → ∞, the estimator is consistent. Clearly, as σ → 0, the MSE

performance of this estimator is limited by an error floor of |b|2/Nα.

3.4.5 Cramer-Rao Bounds

In this section, we obtain CRBs for the estimation of a and |b|. The first bound is derived

by treating the data symbols s21, . . . , s2N as deterministic unknowns. We exclude the

parameter τ from our CRB derivation since its Fisher information is decoupled from the

Fisher information of the other parameters. Let θR , [ℜ{a},ℑ{a}, |b|, ϕb1, . . . , ϕbN ]T be

the vector of real unknown parameters (excluding τ), and let I(θR) be the corresponding

Fisher information matrix (FIM). The matrix I(θR) is given by

I(θR) =

[
J1 J2

JT
2 J3

]
, (3.30)

where

J1 =
2A2

C

 NP1 0 ℜ{eȷϕbsH1 s2}
0 NP1 ℑ{eȷϕbsH1 s2}

ℜ{eȷϕbsH1 s2} ℑ{eȷϕbsH1 s2} NP2

 , (3.31)
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J2 =
2A2

C

ℑ{b
∗s11s

∗
21} . . . ℑ{b∗s1Ns∗2N}

ℜ{b∗s11s∗21} . . . ℜ{b∗s1Ns∗2N}
0 . . . 0

 , (3.32)

and

J3 =
2A2

C
|b|2P2IN . (3.33)

The resulting CRBs on the estimation of a and |b| are

CRBa = [I−1(θR)]11 + [I−1(θR)]22, (3.34)

and

CRB|b| = [I−1(θR)]33. (3.35)

Moreover, using the Schur-complement property and letting J̃ , J1−J2J
−1
3 JT

2 , we obtain
3

CRBa = [J̃
−1
]11 + [J̃

−1
]22, (3.36)

and

CRB|b| = [J̃
−1
]33. (3.37)

The bounds CRBa and CRB|b| are obtained by treating the data as deterministic pa-

rameters. Hence, they apply for the class of estimation algorithms that treat the data

as deterministic, such as the proposed DML estimator. The bounds exist whenever J̃ is

invertible. It can be shown that det(J̃) = 0 whenever the data symbols are such that

the differences ϕ1i − ϕ2i, i = 1, . . . , N take at most two distinct values. This is the same

condition that results in an objective function with infinitely many global minima at high

SNR. Hence, the bounds do not exist for BPSK modulation since this condition is always

met for M = 2. Since the bounds in (3.36) and (3.37) are both functions of s1 and s2,

they hold for the particular realizations of s1 and s2 under consideration. In Section 3.5,

we use Monte-Carlo simulations to average CRBa and CRB|b| over many realizations of s1

and s2.

Another variant of the CRB commonly used in the presence of random nuisance pa-

rameters is the MCRB, introduced in Chapter 2. Unlike the previous bound, the MCRB

3Although it is possible to evaluate the expressions in (3.36) and (3.37) and obtain closed-form expres-
sions for CRBa and CRB|b|, the resulting expressions are quite lengthy and are omitted for the sake of
brevity.
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takes into account the statistics of the data symbols, and thus it applies for a wider class

of estimators. The MCRB is obtained using the MFIM matrix (see Chapter 2, Eq. 2.15).

Letting θ′ , [ℜ{a},ℑ{a}, |b|]T , the MFIM is given by

Im(θ
′) , E{J1} =

1

C

 A2NP1 0 0

0 2A2NP1 0

0 0 2A2NP2

 . (3.38)

Hence,

MCRBa =
C

A2NP1

and MCRB|b| =
C

2A2NP2

. (3.39)

The bounds in (3.39) have the advantage of possessing a simple closed form. However, they

are not as tight as the bounds in (3.36) and (3.37) when considering estimators that treat

the data as deterministic. Hence, we will only consider the bounds in (3.36) and (3.37) in

our simulation results.

3.5 Simulation Results

In this section, we use Monte-Carlo simulations to numerically investigate the performance

of the proposed algorithms. Our results are obtained assuming Pr = P1 = P2, and they

are averaged using a set of 300 independent realizations of the channel parameters h1, h2,

g1 and g2. These realizations are generated by modelling h1 and h2 as correlated complex

Gaussian random variables with mean zero, variance 1, and correlation coefficient ϱ = 0.3.

Similarly we model g1 and g2 as correlated complex Gaussian random variables with the

same mean, variance and correlation coefficient, but independent of h1 and h2. To generate

correlated complex Gaussian random variables we follow the approach proposed in [82].

The DML and MCML estimates are obtained using a two-dimensional grid-search with a

step-size of 10−3. Unless otherwise mentioned, MSE results are for the estimation of a.

We begin by comparing the MSE performance of the DML, GML and MCML estimators

for M = 2. We do not show the CRB in this case, since the FIM is singular. The MSE

performance of the three estimators is plotted versus SNR4 for N = 45 in Fig. 3.1 and

versus N for an SNR of 20 dB in Fig. 3.2. For the MCML estimator, 2 pilots are employed

to obtain an estimate of ϕb. Both plots show that the DML estimator performs poorly for

4The SNR is defined as 10 log P2

σ2
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BPSK modulation and is outperformed by the GML and MCML estimators. Fig. 3.1 shows

the U-shaped behavior of the DML estimator for M = 2 described in Section 3.4.2. The

MCML estimator is superior to the GML estimator except at very low SNR. Moreover,

as the SNR increases, the MCML estimator improves steadily while the GML estimator

encounters an error floor. Fig. 3.2 also demonstrates the superiority of the MCML estimator

to the GML estimator.

Next, we study the MSE performance of the DML and GML estimators for M = 4

(QPSK modulation). The MSE performance of the two estimators is plotted versus SNR

for N = 45 in Fig. 3.3 and versus N for an SNR of 20 dB in Fig. 3.4. The bound CRBa

is included as a reference in both plots. As we can see in Fig. 3.3, the DML estimator

outperforms the GML estimator, except at low SNR. Moreover, the MSE performance of

the DML estimator improves steadily with SNR and approaches CRBa, while that of the

GML estimator encounters an error floor at high SNR. In Fig. 3.3, it is also noticed that the

MSE of the GML estimator goes below CRBa at low SNR. This should not be a surprise

since CRBa is derived by treating s2 as deterministic, and the GML estimator is biased in

this case. As we can see in Fig. 3.4, both estimators improve as N increases, but the DML

estimator is much closer to CRBa.

In Fig. 3.5, the MSE performance of the DML and the GML estimators for the esti-

mation of |b| and the associated CRB are plotted versus SNR for M = 4. For the GML

estimator, we obtain an estimate of |b| by substituting âg in (3.7). Fig. 3.5 shows that

the GML estimator is slightly better except at high SNR where it appears to encounter an

error floor and the DML estimator becomes better and approaches CRB|b|.

Our next goal is to compare the SER performance of the DML estimator with that

of the training-based LS estimator in order to investigate the tradeoffs between accuracy

and spectral efficiency that result from following the blind approach. We focus on small

sample sizes since this is more suitable for modern-day cellular systems. We note that,

when channels are nonreciprocal, the training-based LS estimator is an efficient estimator

that coincides with the training-based ML estimator. As a reference, we also plot the SER

performance assuming perfect channel knowledge. The phase ϕb is estimated blindly using

the Viterbi-Viterbi algorithm5 and a small number of pilots is employed to resolve the

resulting M -fold ambiguity using the unique word method [83]. In Fig. 3.6, we show the

5Using the Viterbi-Viterbi algorithm, we estimate ϕb by ϕ̂b , 1
M∠

∑N
i=1 |z̃i(â)|2eȷM∠z̃i(â)+π, where

z̃i(â), i = 1, . . . , N are the resulting N samples after the estimate â is used to remove self-interference.
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SER performance of the two algorithms assuming that the channel is fixed for the duration

of 20 samples. For the DML estimator, 2 pilots and 18 data symbols are transmitted.

The 2 pilots are used to resolve the M -fold ambiguity, and all 20 samples are used to

blindly estimate a. For the LS estimator, we estimate a and b using 4 pilot symbols6 and

we transmit 16 data symbols. As we can see from Fig. 3.6, the SER performance of the

DML estimator is very close to that of the LS estimator (approximately 0.6 dB away). In

Fig. 3.7, we assume that the channel is fixed for the duration of 40 samples. In the DML

case 4 pilots and 36 data symbols are transmitted, and in the LS case 8 pilots and 32 data

symbols are transmitted. The performance of DML estimator is again very close to that

of the LS estimator (approximately 0.4 dB away), and it is only 1.5 dB away from the

performance under perfect CSI. In both examples, for the DML algorithm we use 90% of

the channel coherence time to transmit data and 10% to transmit pilots, while for the LS

algorithm we are use 80% of the coherence time to transmit data and 20% to transmit pilots,

which demonstrates that the DML estimator offers a better tradeoff between accuracy and

spectral efficiency.

3.6 Conclusions

In this chapter, we proposed the DML algorithm for blind channel estimation in AF TWRNs

employing M -PSK modulation. The DML estimator was derived by treating the data

symbols as deterministic unknowns. For comparison, we also derived the GML estimator

by treating the data symbols as Gaussian-distributed nuisance parameters. We showed

that the DML estimator is consistent. For M > 2, we showed that its MSE performance is

superior to that of the GML estimator for medium-to-high SNR and that it approaches the

true channel with high probability as the SNR increases. In contrast, the GML estimator

suffers from an error floor at high SNR. We also compared the SER performance of the DML

estimator with that of the training-based LS estimator and demonstrated that the DML

approach provides a better tradeoff between accuracy and spectral efficiency. For the case

M = 2 where the DML estimator performs poorly, we proposed the MCML estimator which

explicitly takes into account the structure of the BPSK signal. This estimator outperforms

the GML estimator except at very low SNR and approaches the true channel at high SNR.

6For the training-based LS algorithm, the pilots are chosen such that the pilot vectors from the two
terminals are orthogonal to each other.
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Fig. 3.1 Average MSE of the DML, GML and MCML algorithms for the
estimation of a, plotted versus SNR for M = 2 and N = 45.
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Fig. 3.2 Average MSE of the DML, GML and MCML algorithms for esti-
mation of a, plotted versus N for M = 2 and an SNR of 20 dB.
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Fig. 3.3 Average MSE of the DML and GML algorithms for the estimation
of a and the bound CRBa plotted versus SNR for M = 4 and N = 45.
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Fig. 3.4 Average MSE of the DML and GML algorithms for the estimation
of a and the bound CRBa plotted versus N for M = 4 and an SNR of 20 dB.
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Fig. 3.5 Average MSE of the DML and GML algorithms for the estimation
of |b| and the bound CRB|b| plotted versus SNR for M = 4 and N = 45.
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Fig. 3.6 Average SER versus SNR for the DML and LS estimators for M =
4, assuming the channel is fixed for 20 samples. We use 2 pilots to resolve the
M -fold ambiguity in ϕb for the DML estimator, and 4 pilots for LS estimation.
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Fig. 3.7 Average SER versus SNR for the DML and LS estimators for M =
4, assuming the channel is fixed for 40 samples. We use 4 pilots to resolve the
M -fold ambiguity in ϕb for the DML estimator, and 8 pilots for LS estimation.
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Chapter 4

Blind Channel Estimation for

Reciprocal Flat-fading Channels

under MPSK-modulation

4.1 Introduction

In the previous chapter, we considered blind channel estimation under nonreciprocal flat-

fading channel conditions for AF TWRNs that employ CM signalling in the form of M -

PSK modulation. Treating the data symbols as deterministic unknowns, we derived the

DML channel estimator. We also proved that the DML estimator is consistent and that it

approaches the true channel with high probability as SNR increases for M > 2.

In this chapter, we shift our focus from nonreciprocal to reciprocal flat-fading channels.

Assuming CM signalling, we derive the DML estimator for the reciprocal case and investi-

gate its asymptotic behavior. We show that forM > 2, the DML estimator approaches the

true channel with high probability at high SNR. However, in contrast to the nonreciprocal

case, we prove that the DML estimator is not consistent. As an alternative to the DML

estimator, we propose to estimate the channel by minimizing the sample variance of the

envelope of the received signal after self-interference cancellation. This criterion is inspired

by the DML estimator for nonreciprocal channels in Chapter 3. We refer to this estimator

as the minimum sample envelope variance (MSEV) estimator. The asymptotic behavior

of the MSEV estimator is similar to that of the DML estimator in Chapter 3, i.e., it is

consistent and approaches the true channel with high probability at high SNR for M > 2.
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We also derive two CRBs as estimation performance benchmarks for the case of recip-

rocal channels. The first bound is obtained by treating the data symbols as deterministic

unknown parameters while the second is the MCRB. Monte-Carlo simulations are then

used to obtain the mean-squared error (MSE) of the two estimators, demonstrating that

the MSEV estimator outperforms the DML estimator. In summary, the main contributions

of this chapter are: (i) analysis of the high SNR performance of the DML estimator for re-

ciprocal channels; (ii) investigation of the consistency of the DML estimator for reciprocal

channels; (iii) application of the MSEV criterion to reciprocal channels; (iv) derivation of

two CRBs on the variance of unbiased estimators for reciprocal channels.

The work presented in this chapter first appeared in [84]. A more elaborate version

with new theoretical contributions appeared in [85].

The remainder of this chapter is organized as follows. In Section 4.2, we present our

system model. In Section 4.3, we present the DML and MSEV estimators for the case of

reciprocal channels. In Section 4.4, we analyze the high SNR behavior and the consistency

of the two estimators. The CRBs are derived in Section 4.5. Our simulation results are

shown in Section 4.6. Finally, our conclusions are in Section 4.7.

4.2 System Model

The system model considered in this chapter is the same as the one in Chapter 3, with the

exception that the channels are reciprocal, i.e., that h1 = h2 = h and g1 = g2 = g. Hence,

the received signal at T1 during the second phase of transmission is given by

z = Aas1 + Abs2 + Ahn+ η, (4.1)

where a , h2, b , gh, and s1, s2, n and η have the same definitions as in Chapter 3. The

channel coefficients h and g are modelled as CCN (0, γ2). As in Chapter 3, it is sufficient

for detection purposes to know a and ϕb , ∠b.

4.3 Channel Estimation Algorithms

As in Chapter 3, the vectors z , [z1 . . . zN ]
T , s1 , [s11, . . . , s1N ]

T , s2 , [s21, . . . , s2N ]
T ,

n = [n1, . . . nN ], and η = [η1, . . . , ηN ] denote the received vector at T1, the transmitted
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symbol vectors of T1 and T2, the noise vector at R and the noise vector at T1 during N

successive transmissions, respectively.

We begin by deriving the DML estimator for the reciprocal case. Similar to Chapter 3,

the DML is derived by treating the data symbols as deterministic unknowns. The unknown

parameters are collected in the vector θ , [a, |b|, ψ1, . . . , ψN ]
T where ψi , ϕ2i + ϕb, i =

1, . . . , N . As before, the DML estimate of ψi is ψ̂i = ∠(zi − Aâs1i) and that of |b| is

|̂b| = 1
NA

√
P2

N∑
i=1

|zi − Aâs1i|. The DML estimator of a is given by

â =argmin
u∈C

{ N∑
i=1

(
|zi − Aus1i| − 1

N

N∑
k=1

|zk − Aus1k|
)2

σ2(A2|u|+ 1)
+N log

(
A2|u|+ 1

)}
.

(4.2)

The structure of the DML estimator of a in (4.2) is clearly different from that of the

DML estimator in the nonreciprocal case (Chapter 3, (3.9)). In particular, the objective

function in (3.9) appears as the numerator of the first term in (4.2), but (4.2) additionally

has a denominator term and a logarithmic term that are not present in (3.9). As pointed

out in Chapter 3, the DML estimator of a in the nonreciprocal case minimizes the sample

variance of the envelope of the received signal after self-interference cancellation. Given

the differences between (3.9) and (4.2), it would be insightful to apply the criterion used

in (3.9) to the case of reciprocal channels and compare the resulting performance with that

of the DML estimator in (4.2). Hence, we will consider the estimator

âv = argmin
u∈C

N∑
i=1

(
|z̃i(u)| −

1

N

N∑
k=1

|z̃k(u)|

)2

(4.3)

where z̃i(u) , (zi − Aus1i) , i = 1, . . . , N . The signals z̃1(u), . . . , z̃N(u) can be viewed as

realizations of the RV z̃(u) = A(a − u)t1 + Abt2 + Ahn + η, and the objective function

in (4.3) can be seen, after scaling it by 1
N−1

, as the sample variance of |z̃(u)|. Since the

above estimator does not retain its DML interpretation in the reciprocal case, we will refer

to it as the minimum sample envelope variance (MSEV) estimator.

The solutions for (4.2) and (4.3) may be obtained using numerical methods such as

the steepest-descent algorithm or quasi-Newton type algorithms [75]. Since the objective

functions in (4.2) and (4.3) are nonconvex, the performance of such methods will depend
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on the availability of good initial estimates. A simple way to obtain an initial estimate is

the sample average estimator employed in Chapter 3 (see Eq. (3.20)). The steepest descent

implementation for (4.2) and (4.3) is detailed in Appendix B.2, and its computational

complexity is O(N), i.e., it is linear in the number of data samples. In Section 4.6, we show

that steepest descent algorithm yields almost identical performance to two-dimensional grid

search, and that it requires only a small number of iterations to converge.

4.4 Asymptotic Behavior Analysis

As we did in Chapter 3, we focus in our analysis on the estimation of a since |b| is not

required for detection under M -PSK modulation. We consider the consistency of the two

estimators and their behavior at high transmit SNR. The transmit SNR is defined as γ , P2

σ2 .

4.4.1 High SNR Behavior of the two Estimators

As the MSEV estimator has the same structure as the estimator in (3.9), the high SNR

behavior in Lemma 3 of Chapter 3 applies to the MSEV estimator as well. Hence, for

fixed N , the MSEV estimator approaches the true channel as σ → 0 with probability

1−
(

2
M

)N−1
(M − 1), i.e., it approaches the true channel with high probability for M > 2.

We now consider the high SNR behavior of the DML estimator in (4.2). We first note

that multiplying the objective function in (4.2) with σ2 does not affect the solution. After

multiplying the objective function in (4.2) with σ2 and taking the limit as σ → 0, we obtain

the objective function

X̃(v) =
X(v)

A2|a− v|+ 1
(4.4)

where, as in Chapter 3, v , a− u and

X(v) =
N∑
i=1

(
|Avs1i + Abs2i| −

1

N

N∑
k=1

|Avs1k + Abs2k|

)2

. (4.5)

From Lemma 3 in Chapter 3, we know that, with probability PM,N = 1−
(

2
M

)N−1
(M − 1),

X(v) has a unique global minimum at v = 0, which corresponds to u = a. Since X(0) = 0,

it is clear from (4.4) that X̃(v) also has a unique global minimum at v = 0 with probability

PM,N . Hence, the DML estimator also approaches the true channel with high probability
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as SNR increases for M > 2.

4.4.2 Consistency of Estimators

In Chapter 3, it was proved that the DML estimator is consistent under the nonreciprocal

channel assumption. It can be easily verified that the proof in Chapter 3 is not affected if

channel reciprocity is assumed. Hence, the MSEV estimator is consistent.

We now investigate the consistency of the DML estimator. Let YN(u) be the objective

function of the DML estimator in (4.2) scaled by 1
N−1

. Thus,

YN(u) ,
WN(u)

σ2(A2|u|+ 1)
+

N

N − 1
log
(
A2|u|+ 1

)
, (4.6)

where

WN(u) ,
1

N − 1

N∑
i=1

(
|z̃i(u)| −

1

N

N∑
k=1

|z̃k(u)|

)2

(4.7)

is the the scaled version of the objective function of the MSEV estimator, which is also the

sample variance of |z̃(u)|. As N → ∞, YN(u) converges in probability to

Y(u) , W(u)

σ2(A2|u|+ 1)
+ log

(
A2|u|+ 1

)
, (4.8)

where

W(u)=A2|a− u|2P1+A
2|b|2P2+σ

2(A2|a|+ 1)− πσ2(A2|a|+ 1)

4M2

(
M−1∑
k=0

L1/2 (−λk(a− u))

)2

(4.9)

is the variance of |z̃(u)| (see Chapter 3, (3.22)) and

λk(v) ,
1

σ2(A2|a|2 + 1)

(
A2|v|2P1 + A2|b|2P2 + 2A2|v||b|

√
P1P2 cos (∠v − ϕb + 2πk/M)

)
.

(4.10)

To find out whether Y(u) has an extremum at u = a, we analyze the behavior of the

partial derivatives Ẏℜ(u) , ∂Y(u)
∂ℜ{u} and Ẏℑ(u) , ∂Y(u)

∂ℑ{u} . Because of the symmetry of Y(u)
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with respect to ℜ{u} and ℑ{u}, it is sufficient to consider Ẏℜ(u). We have

Ẏℜ(u) =
A2ℜ{u}

|u|(A2|u|+ 1)

(
1− W(u)

σ2(A2|u|+ 1)

)
+

1

σ2(A2|u|+ 1)

∂W(u)

∂ℜ{u}
. (4.11)

Moreover, it can be verified that ∂W(u)
∂ℜ{u}

∣∣∣
u=a

= 0. Therefore,

Ẏℜ(a) =
A2ℜ{a}

|a|(A2|a|+ 1)

(
1− W(a)

σ2(A2|a|+ 1)

)
. (4.12)

For the factor
(
1− W(a)

σ2(A2|a|+1)

)
we have the following lemma

Lemma 4. For any a ∈ C,
(
1− W(a)

σ2(A2|a|+1)

)
> 0.

Proof. See Appendix B.1.

Hence, Ẏℜ(a) is zero only when ℜ{a} = 0. Similarly, Ẏℑ(a) is zero only when ℑ{a}
is zero. Since Y(u) is differentiable at u = a (for a ̸= 0) and u = a is not a boundary

point, this implies that Y(u) does not have an extremum at u = a for a ̸= 0. Hence, the

DML estimator is not consistent [79]. The inconsistency of the DML estimator should not

come as a surprise since the data symbols are treated as deterministic unknowns. Due

to this assumption, the number of parameters is not fixed but grows linearly with the

number of samples. Hence, as discussed in Chapter 2, the usual asymptotic properties of

ML estimators, such as consistency, do not necessarily hold in this case.

4.5 Cramer-Rao Bounds

We derive two Cramer-Rao bounds for the estimation problem under consideration. The

first bound is derived by treating the phases ψ1, . . . , ψN as deterministic unknowns. The

vector of unknown real parameters is θR , [ℜ{a},ℑ{a}, |b|, ψ1, . . . , ψN ]
T , and the corre-

sponding FIM is given by

I(θR) =

[
J1 J2

JT
2 J3

]
, (4.13)
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where

J1 =

[
2A2NP1

σ2(A2|a|+1)
+ A4ℜ{a}2N

|a|2(A2|a|+1)2
A4ℜ{a}ℑ{a}N
|a|2(A2|a|+1)2

A4ℜ{a}ℑ{a}N
|a|2(A2|a|+1)2

2A2NP1

σ2(A2|a|+1)
+ A4ℑ{a}2N

|a|2(A2|a|+1)2

]
(4.14)

JT
2 =

2A2

σ2 (A2|a|+ 1)


ℜ{eȷϕbsH1 s2} ℑ{eȷϕbsH1 s2}
ℑ{b∗s11s∗21} ℜ{b∗s11s∗21}

...
...

ℑ{b∗s1Ns∗2N} ℜ{b∗s1Ns∗2N}

 , (4.15)

and

J3 =
1

σ2 (A2|a|+ 1)

[
2A2NP2, 2A

2|b|2P2, . . . , 2A
2|b|2P2

]T
. (4.16)

Assuming I(θR) is invertible, the CRB for the estimation of a is given by the sum of the

first two diagonal entries in the inverse of I(θR), i.e., CRBa = [I−1(θR)]11 + [I−1(θR)]22.

Let J̃ be the 2 × 2 top left submatrix of I−1(θR). Using the Schur-complement property,

we have that J̃ =
(
J1 − J2J

−1
3 JT

2

)−1
, i.e.,

CRBa = tr
((

J1 − J2J
−1
3 JT

2

)−1
)
. (4.17)

Because the symbols s1 are known and the symbols s2 are treated as deterministic un-

knowns, CRBa is a function of s1 and s2, and it thus applies for the particular realizations

of s1 and s2 under consideration.

As we did in Chapter 3, we will also consider the MCRB, commonly used in the presence

of random nuisance parameters. Let θ′ , [ℜ{a},ℑ{a}, |b|]T , the MFIM is given by

Im(θ
′) =


2A2NP1

σ2(A2|a|+1)
+ A4ℜ{a}2N

|a|2(A2|a|+1)2
A4ℜ{a}ℑ{a}N
|a|2(A2|a|+1)2

0
A4ℜ{a}ℑ{a}N
|a|2(A2|a|+1)2

2A2NP1

σ2(A2|a|+1)
+ A4ℑ{a}2N

|a|2(A2|a|+1)2
0

0 0 2A2NP2

σ2(A2|a|+1)

 . (4.18)

The resulting MCRBs on a and |b| are given by

MCRBa = [I−1
m (θ′)]11 + [I−1

m (θ′)]22

=
4σ2P1(A

2|a|+ 1)2 + σ4A2(A2|a|+ 1)

4NA2P 2
1 (A

2|a|+ 1) + 2Nσ2A4P1

,
(4.19)
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and

MCRB|b| = [I−1
m (θ′)]33 =

σ2(A2|a|+ 1)

2NA2P2

. (4.20)

4.6 Simulation Results

In this section, we compare the MSE performance of the DML estimator and the MSEV

estimator using Monte-Carlo simulations. Our results are generated assuming M = 4

(QPSK) and Pr = P1 = P2, and are averaged over the same set of 100 realizations of the

channel parameters g, h which are independently generated from the complex Gaussian

distribution with mean zero and variance 1. The minimizers of the objective functions

in (4.2) and (4.3) are obtained using the steepest descent (SD) algorithm. The initial points

are obtained using the sample average estimator ( (3.20)), while the step size is chosen using

backtracking line search [74]. As a reference, we also show the MSE performance for the

two estimators when the solutions for (4.2) and (4.3) are obtained using grid search (GS)

with a step size of 10−3. We also show the bounds CRBa and MCRBa, where CRBa is

averaged over many realizations of s1 and s2.

Fig. 4.1 shows the average MSE of the two estimators versus SNR for N = 100. The

MSEV estimator outperforms the DML estimator and the performance gap is most signif-

icant at low to medium SNR. At high SNR, both estimators approach the bound CRBa.

We can also see from Fig. 4.1 that, for both algorithms, the MSE performance is almost

identical for the steepest descent implementation and the grid search implementation.

The bar plots in Fig. 4.2 show for both estimators the average number of SD iterations

required for convergence and the average number of line search iterations to find the step

size for a single steepest descent iteration, respectively. The average number of iterations

ranges between 6.7 and 13.3 for the DML estimator and between 5.6 and 7.4 for the MSEV

estimator. Hence, in both cases, only a small number of iterations is needed to achieve

convergence, which shows that the SD algorithm is a reliable and computationally efficient

method for solving (4.2) and (4.3). Moreover, the MSEV estimator on average requires less

SD iterations and less linesearch iterations than the DML and is thus more efficient.

Fig. 4.3 shows the average MSE of the two estimators versus N for an SNR of 15dB. The

MSEV estimator has a superior MSE performance which improves steadily as N increases.

The gap between the MSE performances of the two estimators becomes more significant as

the sample size increases, in accordance with the fact that the MSEV estimator is consistent
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while the DML estimator is not.

4.7 Conclusions

In this chapter, we compared two blind channel estimation algorithms for AF TWRNs

assuming channel reciprocity and M -PSK modulation. The first estimator was the DML

estimator for reciprocal channels obtained by treating the data symbols as deterministic

unknowns. The second was the MSEV estimator which minimized the sample variance of

the envelope of the received signal after self-interference cancellation and was inspired by

the DML estimator for nonreciprocal channels derived in Chapter 3. We showed that both

estimators approach the true channel with high probability as SNR increases. However, the

MSEV estimator is consistent while the DML estimator is not. We also derived two CRBs

on the variance of unbiased estimators. Monte-Carlo simulations were used to compare

the MSE performance of the two estimators, showing that the MSEV estimator performs

better than the DML estimator and that the steepest descent algorithm can be used to

provide accurate low-complexity implementations for both estimators.
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Chapter 5

Exact CRBs for Semi-blind Channel

Estimation under Square QAM

5.1 Introduction

In Chapters 3 and 4, we focused on blind channel estimation for AF TWRNs that employ

M -PSK modulation under flat-fading channel conditions. We showed in Chapter 3 that the

proposed blind DML estimator provides a better tradeoff between accuracy and spectral

efficiency than the training-based LS estimator. However, as we pointed out in Chapter 3,

it is not possible to obtain all the required channel information blindly as pilots are still

needed to resolve the phase ambiguity. Still within the context of flat-fading channel

conditions, in this chapter we shift our focus from blind channel estimation to semi-blind

channel estimation. Semi-blind estimation [41,46–48] is a hybrid of the blind and training-

based approaches. Although it employs pilot symbols, it incorporates into the estimation

the received data samples as well as the received training samples. This makes the semi-

blind approach more flexible than the purely blind approach and eliminates the need for

separate ambiguity resolution. By utilizing the data samples in conjunction with the pilots,

semi-blind estimation requires fewer pilots, which makes it more spectrally efficient than

training-based estimation [48]. It is also capable of achieving higher accuracy than that

possible using purely blind or purely training-based estimation [48].

In order to evaluate the potential of semi-blind channel estimation for AF TWRNs, it is

very useful to know the corresponding semi-blind CRB on achievable estimation accuracy.

For AF TWRNs employing pilot-based channel estimation in flat-fading conditions, the
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CRB has been derived in [21]. In contrast to pilot-based estimation, however, the received

signal in the cases of blind and semi-blind estimation involves random nuisance parameters

in the form of unknown data symbols. As discussed in Chapter 2, the derivation of the

exact CRB is a challenging task in this case because of the complicated nature of the true

likelihood function which takes into account the statistics of the transmitted data symbols.

In Chapters 3 and 4, we avoided dealing with a complicated likelihood function by treating

the data symbols as deterministic unknowns. However, the resulting CRBs apply to the

smaller class of estimators that treat the data symbols as deterministic unknowns, such as

the those derived in Chapters 3 and 4. The MCRB is another alternative bound which

takes into account the statistics of the data symbols, but it is known to be less tight than

the exact CRB.

To the best of our knowledge, the exact CRB based on the true likelihood function that

incorporates the statistics of the transmitted data symbols has not been reported before

for AF TWRNs. In this chapter, we fill this gap and derive the exact CRB for semi-blind

channel estimation1 in AF TWRNs. The derivation of the exact CRB necessarily depends

on the underlying modulation scheme. We focus on square QAM, a commonly used mod-

ulation scheme in high data-rate applications due to its high bandwidth efficiency [86].

Using the derived bounds, we quantify the spectral efficiency advantages of the semi-blind

approach over the pilot-based approach. We show that, by employing even a limited num-

ber of data samples, the semi-blind approach can provide substantially higher accuracy.

Equivalently, the semi-blind approach makes it possible to employ a much smaller number

of pilots to achieve a given level of estimation accuracy, thus providing a better tradeoff

between accuracy and spectral efficiency. The derived CRB also quantifies the effect of the

modulation order on the achievable accuracy and shows that the lower modulation order,

the higher the achievable accuracy. Finally, we also derive the more tractable MCRB. Our

simulations show that the MCRB is significantly looser than the exact CRB for high mod-

ulation orders, but is a reasonable approximation for the exact CRB at high SNR for low

modulation orders.

The rest of the chapter is organized as follows. In Section 5.2 we present the system

model. Our derivations of the exact CRB and the modified CRB are presented in Sec-

tion 5.3. Simulation results are presented in 5.4. Finally, our conclusions are discussed in

Section 5.5.

1The derived bounds also cover the blind and the pilot-based approaches as special cases.
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5.2 System Model

We consider the half-duplex AF TWRN shown in Fig. 1.2, operating in flat-fading nonrecip-

rocal channel conditions. As in the previous chapters, each transmission period is divided

into two phases. In the first phase, T1 and T2 simultaneously transmit to R, and in the

second phase R broadcasts an amplified version of the received signal to both terminals.

The semi-blind approach employs both pilot and data samples to estimate the channel

parameters. More specifically, prior to transmitting data symbols, each terminal transmits

a block of L pilot symbols. We denote by t1 , [t11, . . . , t1L]
T and t2 , [t21, . . . , t2L]

T the

vectors containing the pilot symbols transmitted by T1 and T2, respectively. The corre-

sponding received signal vector at R is r̄ = h1t1 + g1t2 + ω, where ω is CCN (0, σ2IL)).

Then, the relay broadcasts Ar̄, where A > 0 is the amplification factor. The corresponding

received signal vector at terminal T1 is

z̄ = Ah2h1t1 + Ah2g1t2 + Ah2ω + ω1 (5.1)

where ω1 is also CCN (0, σ2IL).

After transmitting the L pilots, T1 and T2 transmit N data symbols each. We denote

by s1 , [s11, . . . , s1N ]
T and s2 , [s21, . . . , s2N ]

T the transmitted data symbol vectors of

T1 and T2, respectively. The received signal vector at R is r = h1s1 + g1s2 + n, and the

corresponding received signal vector at T1 is

z = Ah1h2s1 + Ag1h2s2 + Ah2n+ n1 (5.2)

where n and n1 are CCN (0, σ2IN). The channel coefficients h1, h2, g1 and g2 remain fixed

during the transmission of the L pilot symbols and the N data symbols.

We assume that both terminals employ square QAM. Without loss of generality, we

focus on the derivation of the CRB for channel estimation at terminal T1. The total number

of points in the square QAM constellation employed by T2 isM = 22p, where p = 1, 2, 3, . . .

Denoting by d the intersymbol distance and letting dp , d
2
, the set of constellation points

used by T2 is given by S = {±dp(2i− 1)± ȷdp(2ℓ− 1)}, i, ℓ = 1, . . . , 2p−1 [87]. The average

transmitted power at T2 is P2 = E {|s2k|2} = M−1
6
d2. The noise variance σ2 is assumed to

be known at T1. We are interested in deriving the CRBs for the estimation of the cascaded

channel parameters a , h2h1 and b , h2g1 which are sufficient for detection.
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5.3 Cramer-Rao Bounds

In this section, we derive the exact CRBs for the estimation of a and b. In deriving these

bounds, we also have to take into account the parameter τ , |h2|2 which, though not

required for detection, appears in the likelihood function and thus affects the estimation

performance. The unknown parameters are thus a, b and τ and are collected into the real

vector θ , [ℜ{a},ℑ{a},ℜ{b},ℑ{b}, τ ]T . To simplify our notation, we let aR , ℜ{a},
aI , ℑ{a}, bR , ℜ{b}, bI , ℑ{b}.

5.3.1 Exact Cramer-Rao Bound

To derive the exact CRB for semi-blind channel estimation, we need to consider the joint

likelihood of z̄ and z. Let z̃ , [z̄T , zT ]T , the likelihood of z̃ is given by

f(z̃;θ) =
1

(πσ2(A2τ + 1))N+L
e
− ∥z̄−Aat1−Abt2∥

2

σ2(A2τ+1)

N∏
k=1

1

M

(∑
s2∈S

e
− |zk−Aas1k−Abs2|

2

σ2(A2τ+1)

)
. (5.3)

Let C , σ2(A2τ + 1). The resulting log-likelihood function is

L(z̃;θ) =− (N + L) log(πC)− 1

C
∥z̄ − Aat1 − Abt2∥2 −N logM

+
N∑
k=1

log

(∑
s2∈S

e−
1
C
|zk−Aas1k−Abs2|2

) (5.4)

Let I(θ) be the corresponding FIM, and let Ix,y be the joint Fisher information between

the parameters x and y. The matrix I(θ) is given by

I(θ) = −E
{
∂2L(z̃;θ)
∂θ∂θT

}
=

Iaa Iab Iaτ

ITab Ibb Ibτ

ITaτ ITbτ Iτ,τ

 , (5.5)

where

Iaa =

[
IaR,aR IaR,aI
IaR,aI IaI ,aI

]
, Iab =

[
IaR,bR IaR,bI
IaI ,bR IaI ,bI

]
, (5.6)

Ibb =

[
IbR,bR IbR,bI
IbR,bI IbI ,bI

]
, Iaτ =

[
IaR,τ

IaI ,τ

]
, Ibτ =

[
IbR,τ

IbI ,τ

]
. (5.7)
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The exact CRB is then obtained by taking the inverse of I(θ). In particular, the exact

CRBs for parameters a and b are

CRBa = [I(θ)−1]11 + [I(θ)−1]22, (5.8)

and

CRBb = [I(θ)−1]33 + [I(θ)−1]44. (5.9)

In what follows, we will obtain analytical expressions for all the elements of I(θ).

In summary, the analytical expressions for Iaa, Ibb, Iab, Iaτ , Ibτ and Iττ are given in

Eqns. (5.38), (5.47), (5.58), (5.59), (5.60) and (5.57), respectively.

Before proceeding to obtain analytical expressions for the elements of I(θ), we will first

factorize the likelihood function by taking into account the symmetric structure of square

QAM, following the approach proposed in [87]. We begin by rewriting the likelihood

function in (5.3) as

f(z̃;θ) =
1

(πC)N+LMN
e−

1
C
∥z̄−Aat1−Abt2∥2

×
N∏
k=1

(
e−

1
C
|zk−Aas1k|2

∑
s2∈S

e−
A2

C
|b|2|s2|2+ 2A

C
ℜ{(zk−Aas1k)∗bs2}

)
.

(5.10)

Now, we let

Dk(θ) ,
∑
s2∈S

e−
1
C
A2|b|2|s2|2+ 2A

C
ℜ{(zk−Aas1k)∗bs2}. (5.11)

The inherent symmetry of the constellation set allows us to write (5.11) as a sum over the

symbols in the first quadrant. If Q1 is the set of constellation symbols that lie in the first

quadrant, S can be partitioned as2 S = Q1 ∪ (−Q1) ∪Q∗
1 ∪ (−Q∗

1). Hence, we may rewrite

Dk(θ) as:

Dk(θ) =
∑
s2∈Q1

e−
1
C
A2|b|2|s2|2

(
e

2A
C

ℜ{(zk−Aas1k)∗bs2} + e
2A
C

ℜ{(zk−Aas1k)∗bs∗2}

+ e−
2A
C

ℜ{(zk−Aas1k)∗bs2} + e−
2A
C

ℜ{(zk−Aas1k)∗bs∗2}
)
.

(5.12)

2For a set B = {b1, b2, . . .}, the notations B∗ and −B denote the sets {b∗1, b∗2, . . .} and {−b1,−b2, . . .},
respectively.
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Noting that ℜ{(zk−Aas1k)∗bs2} = ℜ{(zk−Aas1k)∗b}ℜ{s2}−ℑ{(zk−Aas1k)∗b}ℑ{s2} and

that for s2 ∈ Q1, we have ℜ{s2},ℑ{s2} ∈ {(2i− 1)dp, i = 1, . . . , 2p−1}, (5.12) becomes

Dk(θ) = 4
2p−1∑
i=1

2p−1∑
ℓ=1

e−
1
C
A2|b|2((2i−1)2+(2ℓ−1)2)d2p×

cosh

[
2A

C
(2i− 1)dpℜ{(zk − Aas1k)

∗b}
]
cosh

[
2A

C
(2ℓ− 1)dpℑ{(zk − Aas1k)

∗b}
]
.

(5.13)

From (5.13), we can see that, similar to [87], Dk(θ) can be expressed as

Dk(θ) = 4Fθ(uk)Fθ(vk), (5.14)

where

Fθ(t) ,
2p−1∑
i=1

e−
1
C
A2d2p|b|2(2i−1)2 cosh

(
2Adp
C

(2i− 1)t

)
, (5.15)

uk , ℜ{(zk − Aas1k)
∗b} = ℜ{zk − Aas1k}bR + ℑ{zk − Aas1k}bI (5.16)

and

vk , ℑ{(zk − Aas1k)
∗b} = ℜ{zk − Aas1k}bI −ℑ{zk − Aas1k}bR. (5.17)

For convenience, we further simplify our notation by letting βi , Adp
C

(2i − 1) and γi ,
A2d2p
C

(2i− 1)2 for i = 1, . . . , 2p−1. Using the newly defined βi, γi, we can write Fθ(t) as

Fθ(t) ,
2p−1∑
i=1

e−γi|b|
2

cosh (2βit) . (5.18)

Using (5.14), the likelihood function becomes

f(z̃;θ) =
1

(πC)N+L
e−

1
C
∥z̄−Aat1−Abt2∥2

N∏
k=1

1

M

(
e−

1
C
|zk−Aas1k|24Fθ(uk)Fθ(vk)

)
. (5.19)

As we shall see shortly, the RVs uk and vk are independent, a fact that will simplify our

derivation of the FIM. It is also useful to define two new RVs, xk , ℜ{zk − Aas1k} and
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yk , ℑ{zk − Aas1k}. The pair {uk, vk} and the pair {xk, yk} are related through the

following linear transformation [
uk

vk

]
=

[
bR bI

bI −bR

][
xk

yk

]
. (5.20)

Both pairs of RVs will be used in deriving the elements of I(θ). It is easy to see that the

joint PDF of xk and yk is

fX,Y (x, y) =
4

πMC
e−

x2+y2

C Fθ(bRx+ bIy)Fθ(bIx− bRy). (5.21)

Using (5.20) and (5.21), we obtain the joint PDF of uk and vk:

fU,V (u, v) =
4

πMC|b|2
e
−u2+v2

C|b|2 Fθ(u)Fθ(v). (5.22)

It is clear from (5.22) that the RVs uk and vk are i.i.d. with respective PDFs

fU(x) = fV (x) =
2√

MπC|b|2
e
− x2

C|b|2Fθ(x). (5.23)

Going back to the log-likelihood function in (5.4), we may now rewrite it as

L(z̃;θ) =− (N + L) log(πC) +N log
4

M
− 1

C
∥z̄ − Aat1 − Abt2∥2 −

1

C
∥z − Aas1∥2+

N∑
k=1

logFθ(uk) +
N∑
k=1

logFθ(vk).

(5.24)

From (5.24) we see that the main task in obtaining analytical expressions for the elements

of I(θ) is the evaluation of the expectations E
{
∂2 logFθ(uk)

∂θi∂θj

}
and E

{
∂2 logFθ(vk)

∂θi∂θj

}
for i, j =

1, . . . , 5. Letting

B
(ij)
k ,

∂2Fθ(uk)
∂θi∂θj

Fθ(uk)
, G

(ij)
k ,

∂Fθ(uk)
∂θi

∂Fθ(uk)
∂θj

Fθ(uk)2
, (5.25)

and

H
(ij)
k ,

∂2Fθ(vk)
∂θi∂θj

Fθ(vk)
, W

(ij)
k ,

∂Fθ(vk)
∂θi

∂Fθ(vk)
∂θj

Fθ(vk)2
, (5.26)
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we have that
∂2 logFθ(uk)

∂θi∂θj
= B

(ij)
k −G

(ij)
k , (5.27)

and
∂2 logFθ(vk)

∂θi∂θj
= H

(ij)
k −W

(ij)
k . (5.28)

Despite the factorization of the log-likelihood function, the derivation of analytical

expressions for the elements of I(θ) requires tedious calculations. Due to space limitations,

we will provide detailed derivations for only some of these elements. For the remaining

elements we will provide only the resulting analytical expressions.

1) Derivation of Ia,a:

We begin with the submatrix Ia,a of I(θ) and start by finding IaR,aR . We have

E
{
∂2L(z̃;θ)
∂a2R

}
=−2A2

C
tH1 t1−

2A2

C
sH1 s1+

N∑
k=1

E
{
B

(11)
k −G(11)

k

}
+

N∑
k=1

E
{
H

(11)
k −W (11)

k

}
.

(5.29)

We show in Appendix C.1 that

E
{
B

(11)
k

}
=

8A2

√
M

2p−1∑
i=1

β2
iℜ{s∗1kb}2, (5.30)

and

E
{
H

(11)
k

}
=

8A2

√
M

2p−1∑
i=1

β2
iℑ{s∗1kb}2. (5.31)

To obtain E
{
G

(11)
k

}
, we need the first derivative of Fθ(uk) with respect to aR, which is

given by

∂Fθ(uk)

∂aR
= −2Aℜ{s∗1kb}

2p−1∑
i=1

βie
−γi|b|2 sinh[2βiuk]. (5.32)

From (5.32), we see that we can evaluate E
{
G

(11)
k

}
using the PDF in (5.23). We thus
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obtain

E
{
G

(11)
k

}
= ℜ{s∗1kb}2Υ, (5.33)

where

Υ =
8A2√
πMC|b|2

∫ ∞

−∞

P2(t)

Fθ(t)
e
− t2

C|b|2 dt, (5.34)

and

P(t) =
2p−1∑
i=1

βie
−γi|b|2 sinh[2βit]. (5.35)

Moreover, it can be easily verified that E
{
W

(11)
k

}
= ℑ{s∗1kb}2Υ. Hence,

IaR,aR =
2A2

C
tH1 t1 +

2A2

C
sH1 s1 − |b|2sH1 s1

(
8A2

√
M

2p−1∑
i=1

β2
i −Υ

)
. (5.36)

Furthermore, it can be easily shown that IaI ,aI = IaR,aR . Finally, we prove in Ap-

pendix C.2 that

IaR,aI = 0. (5.37)

The resulting analytical expression for Ia,a is

Iaa =

(
2A2

C

(
tH1 t1 + sH1 s1

)
− |b|2sH1 s1

(
8A2

√
M

2p−1∑
i=1

β2
i −Υ

))
I2, (5.38)

where I2 is the 2× 2 identity matrix.

2) Derivation of Ib,b:

We next consider the submatrix Ib,b. Before deriving the elements of Ib,b, we let

q1(xk, yk) ,
∂Fθ(bRxk + bIyk)

∂bR

= −
2p−1∑
i=1

2γibRe
−γi|b|2 cosh[2βi(bRxk + bIyk)] +

2p−1∑
i=1

2βixke
−γi|b|2 sinh[2βi(bRxk + bIyk)].

(5.39)
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and

q2(xk, yk) ,
∂Fθ(uk)

∂bI

= −
2p−1∑
i=1

2γibIe
−γi|b|2 cosh[2βi(bRxk + bIyk)] +

2p−1∑
i=1

2βiyke
−γi|b|2 sinh[2βi(bRxk + bIyk)].

(5.40)

and we also define for i, j = 1, 2

Γij , E
{
qi(xk, yk)qj(xk, yk)

Fθ(uk)

}
=

4

πMC

∞∫∫
−∞

qi(x, y)qj(x, y)Fθ(bIx− bRy)

Fθ(bRx+ bIy)
e−

x2+y2

C dxdy.

(5.41)

We now consider IbR,bR . We have

E
{
∂2L(z̃;θ)
∂b2R

}
= −2A2

C
tH2 t2 +

N∑
k=1

E
{
B

(33)
k −G

(33)
k

}
+

N∑
k=1

E
{
H

(33)
k −W

(33)
k

}
. (5.42)

We show in Appendix C.3 that

E
{
B

(33)
k

}
= E

{
H

(33)
k

}
=

16

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓb
2
I . (5.43)

Moreover, we have that E
{
G

(33)
k

}
= E

{
W

(33)
k

}
= Γ11. Hence,

IbR,bR =
2A2

C
tH2 t2 −

32N

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓb
2
I + 2NΓ11. (5.44)

A very similar approach can be followed to evaluate IbI ,bI , thus obtaining

IbI ,bI =
2A2

C
tH2 t2 −

32N

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓb
2
R + 2NΓ22. (5.45)
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As for the element IbR,bI , it can be shown that (we skip the derivation for brevity)

IbR,bI =
32N

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓbRbI + 2NΓ12. (5.46)

The resulting analytical expression for Ib,b is given by

Ibb =


2A2

C
tH2 t2 − 32N

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓb
2
I + 2NΓ11

32N
M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓbRbI + 2NΓ12

32N
M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓbRbI + 2NΓ12
2A2

C
tH2 t2 − 32N

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓb
2
R + 2NΓ22.


(5.47)

3) Derivation of Iτ,τ :

For the fifth diagonal element of I(θ), Iτ,τ , we have

E
{
∂2L(z̃;θ)

∂τ 2

}
=

(N + L)A4σ4

C2
− 2A4σ4

C3

(
E
{
∥zp − Aat1 − Abt2∥2

}
+ E

{
∥z − Aas1∥2

})
+

N∑
k=1

E
{
B

(55)
k −G

(55)
k

}
+

N∑
k=1

E
{
H

(55)
k −W

(55)
k

}
.

(5.53)

It can be easily shown that E {∥zp − Aat1 − Abt2∥2} = LC and E {∥z − Aas1∥2} =

NA2|b|2P2 +NC. Moreover, we show in Appendix C.4 that

E
{
B

(55)
k

}
= E

{
H

(55)
k

}
=

2p−1∑
i=1

2A4σ4

√
M

(
β4
i |b|4 +

4

C
β2
i |b|2

)
. (5.54)

To obtain E
{
G

(55)
k

}
, we first take the derivative Fθ(uk) with respect to τ :

g(uk) ,
∂Fθ(uk)

∂τ
=

2p−1∑
i=1

A2σ2β2
i |b|2e−γi|b|

2

cosh[2βiuk]−
2p−1∑
i=1

2A2σ2

C
βiuke

−γi|b|2 sinh[2βiuk].

(5.55)
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Letting Λ , E
{
G

(55)
k

}
, we thus get

Λ =
2√

πMC|b|2

∞∫
−∞

g(t)2

Fθ(t)
e
− t2

C|b|2 dt. (5.56)

Clearly, we also have that E {W 55
k } = Λ. Using the above results, we get

Iτ,τ = (N + L)
A4σ4

C2
+

2NA6σ4

C3
|b|2P2 − 4N

2p−1∑
i=1

A4σ4

√
M

(
β4
i |b|4 +

4

C
β2
i |b|2

)
+ 2NΛ. (5.57)

4) Remaining Submatrices of I(θ):

The remaining submatrices of I(θ) can be obtained by following similar approaches to

those used so far. More specifically, it can be shown that

Iab =

[
2A2

C
ℜ{tH1 t2} −2A2

C
ℑ{tH1 t2}

2A2

C
ℑ{tH1 t2} 2A2

C
ℜ{tH1 t2}

]
, (5.58)

Iaτ =

[
0

0

]
(5.59)

and

Ibτ =

8N
2p−1∑
i=1

A2σ2
√
M
β2
i bR + 2N∆1

8N
2p−1∑
i=1

A2σ2
√
M
β2
i bI + 2N∆2

 (5.60)

where ∆i, i = 1, 2 is given by

∆i =
4

πMC

∞∫∫
−∞

g(bRx+ bIy)qi(x, y)

Fθ(bRx+ bIy)
Fθ(bIx− bRy)e

−x2+y2

C dxdy. (5.61)

Having derived the FIM matrix I(θ), the exact CRBs on a and b are given as

CRBa = [I(θ)−1]11 + [I(θ)−1]22, (5.62)
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and

CRBb = [I(θ)−1]33 + [I(θ)−1]44. (5.63)

When the pilot vectors t1 and t2 are orthogonal, CRBa has the following closed-form

expression

CRBa = 2

(
2A2

C

(
tH1 t1 + sH1 s1

)
− |b|2sH1 s1

(
8A2

√
M

2p−1∑
i=1

β2
i −Υ

))−1

. (5.64)

The term Υ in (5.64) is a single integral over the interval (−∞,∞) (see (5.34)). This

integral can be accurately approximated in a numerically efficient way using Gauss-Hermite

polynomials [80]. Moreover, the integrand decays rapidly as |t| increases. Hence, the

integral can be accurately approximated by a finite integral over an interval [−T, T ] for
finite T , where Riemann integration methods can be employed. For modulation orders

M = 4 and M = 16, it is also possible to obtain a closed-form approximation for Υ at high

SNR. In particular, we show in Appendix C.5 that, at high SNR, we may approximate Υ

for M = 4 and M = 16 as

Υ ≈
2A4d2p
C2

(
1 + erf

(√
γ1|b|2

))
(5.65)

and

Υ ≈
A4d2p
C2

(
10 + erf

(√
γ1|b|2

)
+ 9erf

(√
γ2|b|2

))
, (5.66)

respectively.

Substituting (5.65) into (5.64) and noting that
2p−1∑
i=1

β2
i =

A2d2p
6C2 (M − 1)

√
M , we obtain

for M = 4

CRBa ≈ 2

(
2A2

C

(
tH1 t1 + sH1 s1

)
+

2A4d2p
C2

|b|2sH1 s1
(
erf
(√

γ1|b|2
)
− 1
))−1

. (5.67)

Since sH1 s1 = NP1 for M = 4, we may rewrite (5.67) as

CRBa ≈
(
A2

C

[
tH1 t1 +NP1

(
1 + γ1|b|2erf

(√
γ1|b|2

)
− γ1|b|2

)])−1

. (5.68)

Eq. (5.68) relates CRBa to the overall training power (tH1 t1), the overall self-interference
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power NP1 and the effective energy of the received data symbols which is a scaled version

of γ1|b|2. Since 1 + xerf(x)− x > 0 for x > 0, we can see from (5.68) that CRBa decreases

as the number of data samples increases, or in other words, that the estimation accuracy

improves as the number of data samples increases. Assuming all other parameters are fixed,

CRBa decreases with respect to the number of data samples as 1
αN+δ

for α, δ > 0. This is

verified in our simulation results in Section 5.4.

For M = 16, we substitute (5.66) into (5.64), obtaining

CRBa≈
(
A2

C

[
tH1 t1+sH1 s1

(
1+γ1|b|2erf

(√
γ1|b|2

)
+γ2|b|2erf

(√
γ2|b|2

)
−γ1|b|2−γ2|b|2

)])−1

.

(5.69)

Inspecting (5.69) and (5.68), we see that, compared to the denominator for M = 4, the

denominator for M = 16 has the extra term γ2|b|2erf
(√

γ2|b|2
)
− γ2|b|2. As this term is

always negative, we see that CRBa increases as the modulation order M increases from 4

to 16. This trend is supported by our simulation results in Section 5.4 which show that

both CRBa and CRBb increase with M . Noting that for large N sH1 s1 ≈ NP1, we see

that, similar to situation for M = 4, CRBa decreases with respect to N as 1
αN+δ

.

As for CRBb, the closed-form expression is complicated because Ibτ is nonzero and

because the elements of Ibb and Ibτ involve the double integrals Γ11, Γ12, Γ22, ∆1 and

∆2. These integrals can be evaluated using the two-dimensional Gauss Hermite quadra-

ture [88]. Moreover, the integrands of Γ11, Γ12, Γ22, ∆1 and ∆2 decay rapidly as |x| and
|y| increase. Hence, numerical methods for integrations over finite intervals such as the

Gaussian quadrature method [80] can be used to efficiently compute these integrals.

The bounds in (5.62) and (5.63) provide convenient benchmarks for the performance

of estimators of a and b. They yield the bounds for the blind case3 for L = 0 and the

bounds for the fully pilot-based case for N = 0. In Section 5.4, we will use these bounds

to compare the semi-blind and the pilot-based approaches. We next consider the more

tractable MCRB.

5.3.2 Modified Cramer-Rao Bound

Due to its tractability, the MCRB is commonly used in the presence of random nuisance

parameters [54]. As we discussed in Chapter 2, the MCRB is obtained using the MFIM

3Although the parameter b suffers from an inherent ambiguity in the absence of pilots and is only locally
identifiable in this case, the CRB would still be defined, as pointed out in [89].
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matrix (see Chapter 2, Eq. (2.15)). For our case, the MFIM matrix is given by

J =
2A2

C



(
tH1 t1 + sH1 s1

)
0 ℜ{t1Ht2} −ℑ{t1Ht2} 0

0
(
tH1 t1 + sH1 s1

)
ℑ{tH1 t2} ℜ{t1Ht2} 0

ℜ{t1Ht2} ℑ{tH1 t2}
(
tH2 t2 +NP2

)
0 0

−ℑ{t1Ht2} ℜ{tH1 t2} 0
(
tH2 t2 +NP2

)
0

0 0 0 0 (N + L)A
2σ4

2C


(5.70)

Denoting by MCRBa and MCRBb the resulting bounds for a and b, respectively, we have

MCRBa =
C
(
tH2 t2 +NP2

)
A2
(
(tH1 t1 + sH1 s1)(t

H
2 t2 +NP2)− tH1 t2t

H
2 t1)

) (5.71)

and

MCRBb =
C

A2(tH2 t2 +NP2)

(
1 +

tH1 t2t
H
2 t1(

(tH1 t1 + sH1 s1)(t
H
2 t2 +NP2)− tH1 t2t

H
2 t1
)) . (5.72)

The above expressions are much simpler and more tractable than those in (5.8) and (5.9).

However, as we shall see in Section 5.4, they are significantly less tight than the exact

CRBs and do not convey the impact of the modulation order on the achievable estimation

accuracy.

5.4 Simulation Results

In this section, we use MATLAB simulations to investigate the behavior of the derived

CRBs for a and b and to compare the semi-blind and the pilot-based approaches. The

CRBs are evaluated using the Monte-Carlo approach4. All plots are averages over a set

of 100 independent realizations of the channel parameters h1, h2, g1 and g2. As we did in

Chapter 3, we generate these realizations by modelling h1 and h2 as correlated complex

Gaussian random variables with mean zero, variance 1, and a correlation coefficient ϱ = 0.3.

Similarly, we model g1 and g2 as correlated complex Gaussian random variables with the

same mean, variance and correlation coefficient, but independent of h1 and h2. In order

4Although more numerically-efficient approaches are possible, find the best numerical implementation
for CRBa and CRBb is beyond the scope of this thesis.
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to investigate the effect of the modulation order on the CRB, we consider four modulation

orders for the data symbols, M = 4, M = 16, M = 64 and M = 256. The pilot symbols

are always generated using the modulation order5 Mp = 4 and the pilot vectors are chosen

to be orthogonal to each other.

We begin by comparing the CRBs of the semi-blind and pilot-based approaches, assum-

ing that both use the same number of pilots. Our goal is to investigate how substantial

is the improvement in accuracy that results from using the information available in the

data samples. We denote by Lp the number of pilots for the pilot-based CRB. We plot

the semi-blind and the pilot-based CRBs versus SNR6 for parameter a in Fig. 5.1 and for

parameter b in Fig. 5.2. The number of pilots for the two bounds is L = Lp = 8, and the

number of transmitted data symbols is N = 32. We also plot the corresponding MCRB

for M = 4 and M = 256 in both figures. As we can see from the two plots, the semi-blind

CRB is significantly lower than the pilot-based CRB for all modulation orders. Moreover,

the gain in accuracy depends on the modulation order: the lower the modulation order the

higher the gain. At high SNR, the accuracy gain is close to 4-fold for M = 4, M = 16 and

M = 64, and close to 2-fold for M = 256, for both a and b. These gains are available at a

relatively small number of data samples (N = 32), which demonstrates the practical worth

of the semi-blind approach. We can also see from Figs. 5.1 and 5.2 that CRBa and CRBb

behave differently at low SNR: CRBa is significantly lower than the pilot-based CRB while

CRBb approaches the pilot-based CRB. This difference in behavior is due to presence of

known self-interference symbols which make the estimation of a an easier task. In addition,

Figs. 5.1 and 5.2 show that the MCRB is generally loose compared to the true CRB and is

not sensitive to the modulation order. However, the MCRB provides a good approximation

of the exact CRB at high SNR for M = 4 and M = 16.

We next consider the effect of the number of data samples on the semi-blind CRB. In

Figs. 5.3 and 5.4, we plot versus N the ratio of the semi-blind CRB to the pilot-based

CRB for parameters a and b, respectively. The number of pilots for the two bounds is

L = Lp = 8, and the SNR is set at 20 dB. We see from the two plots that, as expected,

the larger the number of samples, the higher the accuracy of the semi-blind approach. At

N = 100, the semi-blind CRB for a is approximately 10 times lower than the pilot-based

5We note that when the pilot symbol vectors are orthogonal, the modulation order of the pilot symbols
has no impact on CRB, and only the overall training power of each terminal matters, as we can see
from (5.38) and (5.47).

6The SNR is defined as 10 log P2

σ2 .
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CRB for M = 4, 5 times lower for M = 16, and 3 times lower for M = 64,M = 256;

the semi-blind CRB for b is approximately 5 times lower than the pilot-based CRB for

M = 4, 3 times lower for M = 16 and 2 times lower for M = 64,M = 256. We note that

the sample size N is constrained by the coherence time of the channel during which the

channel parameters a, b remain fixed. Hence, the longer the channel coherence time the

more attractive the semi-blind approach becomes.

So far we have compared the semi-blind and pilot-based CRBs when both use the same

number pilots to show the superior accuracy of the semi-blind approach. We will next

show that the semi-blind approach can also be employed to improve the spectral efficiency

of the system by providing the same or higher accuracy than the pilot-based approach while

using a much smaller number of pilots. For this purpose, we generate contour plots of the

ratio of the semi-blind CRB to the pilot-based CRB, varying the number of pilots and data

samples for the semi-blind CRB, while fixing number of pilots for the pilot-based CRB at

Lp = 10. The SNR is set at 20 dB. The resulting contour plots for a and b are shown

in Figs. 5.5 and 5.6, respectively. The regions in each plot for which the ratio is lower

than 1 represent the combinations of L and N for which the semi-blind CRB is lower than

the pilot-based CRB. We can see from the two plots that using just 4 pilots and 15 data

samples, the semi-blind CRB becomes lower than the pilot-based CRB, which means that

the semi-blind approach potentially achieves better accuracy while using 60% less pilots,

thus providing a much better tradeoff between accuracy and spectral efficiency. This also

means that the overall power that should be allocated for transmitting pilots is much less

in the semi-blind scenario than in the pilot-based scenario.

5.5 Conclusions

In this chapter, we derived the exact CRB for semi-blind channel estimation in AF TWRNs

that employ square QAM. Using the derived bound, we showed that the semi-blind ap-

proach provides substantial accuracy gains over the pilot-based approach. Only a limited

number of data samples is needed to achieve these gains. Moreover, the accuracy gain de-

pends on the modulation order, the lower the modulation order the higher the gain. Hence,

semi-blind estimation makes it possible to use fewer pilots, resulting in better tradeoffs be-

tween accuracy and spectral efficiency. As a more tractable alternative to the exact CRB,

we derived the MCRB. Although the MCRB has much simpler expressions, it is signifi-
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cantly looser than the exact CRB, and it does not convey the impact of the modulation

order on the achievable estimation accuracy. In the next chapter, we will focus on the

design of of efficient low-complexity semi-blind algorithms whose performance approaches

the exact CRB.
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Fig. 5.1 Semi-blind and pilot-based CRBs for the estimation of a plotted
versus SNR for N = 32 and L = 8. We also plot MCRBa for M = 4 and
M = 256.
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Fig. 5.2 Semi-blind and pilot-based CRBs for the estimation of b plotted
versus SNR for N = 32 and L = 8.
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Fig. 5.3 Ratio of semi-blind CRB for a to the pilot-based CRB for a plotted
versus N . We use 8 pilots for both bounds, and we set the SNR to 20 dB.



78 Exact CRBs for Semi-blind Channel Estimation under Square QAM

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Data Samples

R
at

io
 (C

R
Bb

/P
ilo

t−
C

R
Bb

)
M=4
M=16
M=64
M=256

Fig. 5.4 Ratio of semi-blind CRB for b to the pilot-based CRB for b plotted
versus N . We use 8 pilots for both bounds, and we set the SNR to 20 dB.
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Fig. 5.5 Contour plot of the ratio of the semi-blind CRB for a at M = 16
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to the pilot-based CRB. We set the SNR to 20 dB, and we fix the number of
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Chapter 6

EM-based Semi-blind Channel

Estimation for Flat-fading Channels

6.1 Introduction

In Chapter 5, we derived the CRB for semi-blind channel estimation in AF TWRNs employ-

ing square QAM. This was done assuming nonreciprocal channels and flat-fading channel

conditions. The derived CRB is exact in the sense that it is based on the true-likelihood

function that takes into account the actual statistics of the transmitted data symbols. By

comparing the derived semi-blind CRB with the pilot-based CRB, we showed that the semi-

blind approach can provide substantial improvements in estimation accuracy and can be

employed to significantly reduce the training overhead. These improvements were possible

by incorporating only a limited number of data samples.

While the CRB analysis in Chapter 5 provides a very strong indication of the superior

potential of the semi-blind approach, an equally important task is to design semi-blind es-

timation algorithms that can realize those gains and perform closely to the derived bounds,

preferably at an affordable computational complexity. The focus of this chapter will be

the accomplishment of this task. Unfortunately, the true likelihood function is highly com-

plicated (see Chapter 5, Eq. (5.3)). Unlike the transmitted pilots, the exact values of the

transmitted data symbols are not known beforehand, i.e., they constitute missing infor-

mation and only their distribution (PMF) is known. The part of the likelihood function

corresponding to the unknown data symbols has a mixed-Gaussian structure, instead of the

much simpler Gaussian structure that would result if the transmitted data were known be-
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forehand. Because of this, it is very difficult to perform exact ML estimation by maximizing

the true likelihood function. In such scenarios where there is missing/incomplete data, the

expectation maximization (EM) framework introduced in Chapter 2 provides a convenient

low-complexity method for approximating the true ML solution. Starting with arbitrary

values of the unknown parameters, the EM algorithm iterates between calculating the con-

ditional expectation of the complete-data log-likelihood and maximizing this expectation

with respect to the unknown parameters. Although the EM does not always converge to

the true ML solution, it produces estimates with monotonically increasing likelihood.

In this chapter we derive the semi-blind EM-based channel estimator under flat-fading

channel conditions for both nonreciprocal and reciprocal channels. The derived EM it-

erations have a low computational cost, and only a small number of iterations is needed

to achieve convergence. Furthermore, we describe how the semi-blind CRB can be nu-

merically evaluated for the case of reciprocal channels. Using simulations, we show that

the EM algorithm performs very close to the semi-blind CRB and, even with a limited

number of data samples, provides substantially better accuracy than the training-based

least-squares (LS) estimator. We also show that the EM algorithm provides a significant

improvement in throughput since a smaller number of pilots would be needed to achieve the

same symbol-error rate (SER) as the LS estimator. The proposed EM methods thus com-

bine high accuracy with computational efficiency, illustrating the practicality of semi-blind

channel estimation for AF TWRNs.

The rest of the chapter is organized as follows. In Section 6.2 we present the system

model. In Section 6.3, we derive the EM algorithm for both nonreciprocal and reciprocal

channels. The numerical evaluation of the CRB for the reciprocal scenario is discussed in

Section 6.4. Simulation results are presented in 6.5. Finally, our conclusions are discussed

in Section 6.6. Part of the work presented in this chapter has appeared in [90].

6.2 System Model

The system model for the nonreciprocal scenario is identical to the one considered in Chap-

ter 5, and its description is not repeated here to avoid redundancy. However, since we will

also be considering the reciprocal scenario as well, we will highlight the differences in the re-

ceived signal structure under the two assumptions. These differences will have a significant

impact on the derivation of the EM algorithm.
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6.2.1 Received Signal for Nonreciprocal Channels

In the nonreciprocal scenario, the received signal vector at terminal T1 corresponding to

the L transmitted pilots is given by

z̄ = Ah1h2t1 + Ag1h2t2 + Ah2ω + ω1 (6.1)

and the received vector corresponding to the N transmitted data symbols is

z = Ah1h2s1 + Ag1h2s2 + Ah2n+ n1 (6.2)

where all the terms in (6.1) and (6.2) have the same definitions as in Chapter 5. As before,

the unknown channel parameters are a = h1h2, b = g1h2 and τ = |h2|2.

6.2.2 Received Signal for Reciprocal Channels

In the reciprocal scenario, we have that h1 = h2 = h and g1 = g2 = g. Hence, the received

vector corresponding to the transmitted pilots is

z̄ = Ah2t1 + Aght2 + Ahω + ω1 (6.3)

and the received vector corresponding to the N transmitted data symbols is

z = Ah2s1 + Aghs2 + Ahn+ n1. (6.4)

In this case, the unknown channel parameters are a = h2 and b = gh. There is no need to

define a third parameter since the likelihood function can be expressed in terms of a and b.

Unlike Chapter 5, we do not restrict our attention in this chapter to square QAM.

Rather, we just assume that the data symbols s21, . . . , s2N are equiprobably drawn from

the set of discrete constellation points S = {ξ1, . . . , ξM}, of size M .

6.3 Proposed Channel Estimation Algorithms

In this section, we derive the EM-based channel estimation algorithms for the nonreciprocal

and reciprocal scenarios.



84 EM-based Semi-blind Channel Estimation for Flat-fading Channels

6.3.1 The EM Algorithm for Nonreciprocal Channels

We first derive the EM algorithm for the case of nonreciprocal channels. We will incorporate

both the received pilot samples as well as the received data samples into the EM formula-

tion1. The unknown deterministic parameters are collected into the vector θ = [a, b, τ ]T .

The observed vectors {z̄,z} are the incomplete data, and the data symbols s2 are the hid-

den data. Hence, the complete data is {z̄, z, s2}, and the corresponding likelihood function

is given by

f(z̄,z, s2;θ) =
1

MN
f(z̄, z|s2;θ)

=
1

MN(πσ2(A2τ + 1))N+L
e
− ∥z̄−Aat1−Abt2∥

2

σ2(A2τ+1) e
− ∥z−Aas1−Abs2∥

2

σ2(A2τ+1) .
(6.5)

The resulting log-likelihood function (LLF) is

L(z̄,z, s2;θ)=−N logM−(N + L) log(πσ2(A2τ + 1))− 1

σ2(A2τ + 1)

∥∥z̄−Aat1−Abt2∥∥2
− 1

σ2(A2τ + 1)

∥∥z − Aas1 − Abs2
∥∥2.

(6.6)

We let θ(t) = [a(t), b(t), τ (t)]T be the estimate of θ at iteration t. We also denote by β
(t)
i,j ,

P (s2i = ξj|zi;θ(t)) the posterior PMF of the ith data symbol conditioned on θ(t), given by

β
(t)
i,j =

f(zi|s2i = ξj; θ
(t))

M∑
k=1

f(zi|s2i = ξk; θ(t))

=
e
−

|zi−Aa(t)s1i−Ab(t)ξj |
2

σ2(A2τ(t)+1)

M∑
k=1

e
− |zi−Aa(t)s1i−Ab(t)ξk|2

σ2(A2τ(t)+1)

. (6.7)

The two steps of the EM algorithm for the nonreciprocal scenario are as follows:

E-step

1Another possibility is to formulate the EM using just the data samples and use the pilot samples only
for initialization.



6.3 Proposed Channel Estimation Algorithms 85

We have2

Q
(
θ;θ(t)

)
= E

{
L(z̄,z, s2;θ)|P (s2|z;θ(t))

}
= −(N + L) log(πσ2(A2τ + 1))− 1

σ2(A2τ + 1)
∥z̄ − Aat1 − Abt2∥2

− 1

σ2(A2τ + 1)

N∑
i=1

M∑
j=1

β
(t)
i,j |zi − Aas1i − Abξj|2.

(6.8)

M-step

We now solve for a(t+1), b(t+1) and τ (t+1). We have

{
a(t+1), b(t+1), τ (t+1)

}
= arg max

θ=[a, b, τ ]T
Q
(
θ;θ(t)

)
. (6.9)

It can be verified that the solutions for (6.9) are given by

a(t+1)=

(sH1 z+tH1 z̄)
( N∑
i=1

M∑
j=1

β
(t)
i,j |ξj|2+tH2 t2

)
−
(
tH1 t2+

N∑
i=1

M∑
j=1

β
(t)
i,j s

∗
1iξj
)(
tH2 z̄+

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j zi
)

A(tH1 t1 + sH1 s1)− A
∣∣ N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j s1i + tH2 t1

∣∣2 ,

(6.10)

b(t+1) =

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j zi − A

N∑
i=1

M∑
j=1

β
(t)
i,j a

(t+1)ξ∗j s1i + tH2 z̄ − Aa(t+1)tH2 t2

A
N∑
i=1

M∑
j=1

β
(t)
i,j |ξj|2 + AtH2 t2

, (6.11)

and

τ (t+1) =max

(
0,

1

A2

(
1

(N + L)σ2

( N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣zi − Aa(t+1)s1i − Ab(t+1)ξj
∣∣2

+
∥∥z̄ − Aa(t+1)t1 − Ab(t+1)t2

∥∥2)− 1

))
.

(6.12)

2We ignore the term N logM since it has no impact on the solution.
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The expression for τ (t+1) is obtained by taking into account the constraint τ ≥ 0.

The EM algorithm can be initialized using arbitrary values. However, since L pilot

samples are available, we can speed up the convergence by employing the pilot-based ML

estimates to initialize the EM procedure. The pilot-based ML estimates of a, b, τ are given

by

a(0) =
tH2 t2t

H
1 z̄ − tH2 z̄

A(tH1 t1t
H
2 t2 − tH2 t1)

, (6.13)

b(0) =
tH2 t2t

H
1 t1t

H
2 z̄ − tH2 t1t

H
2 t1t

H
1 z̄

tH2 t2(t
H
1 t1t

H
2 t2 − tH2 t1)

, (6.14)

and

τ (0) = max

(
0,

1

A2

(
1

Lσ2

(∥∥z̄ − Aa(0)t1 − Ab(0)t2
∥∥2)− 1

))
. (6.15)

It is clear from (6.10), (6.11) and (6.12) that the complexity of each EM iteration is O(MN),

i.e., it is linear in the number of data samples for a given modulation order. Moreover, as

we shall see in Section 6.5, the number of EM iterations needed is achieve convergence is

very small, which shows that the overall computational cost of the EM algorithm is low.

6.3.2 The EM Algorithm for Reciprocal Channels

We now derive the EM algorithm for the case of reciprocal channels. Under channel reci-

procity, we have only two parameters to estimate, a = h2 and b = gh, i.e., θ = [a, b]T . As

before, s2 represents the hidden data, and the complete data set is {z̄, z, s2}. As we shall

see, the derivation of the EM algorithm is more involved under the reciprocity assumption.

The likelihood function for the complete data is given by

f(z̄,z, s2;θ) =
1

MN(πσ2(A2|a|+ 1))N+L
e
− ∥z̄−Aat1−Abt2∥

2

σ2(A2|a|+1) e
− ∥z−Aas1−Abs2∥

2

σ2(A2|a|+1) . (6.16)

The resulting LLF is

L(z̄,z, s2;θ)=−(N+L) log(πσ2(A2|a|+ 1))− 1

σ2(A2|a|+ 1)

∥∥z̄−Aat1−Abt2∥∥2
− 1

σ2(A2|a|+ 1)

∥∥z − Aas1 − Abs2
∥∥2. (6.17)
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Furthermore, the posterior PMF of the ith data symbol is given by

β
(t)
i,j =

f(zi|s2i = ξj; θ
(t))

M∑
k=1

f(zi|s2i = ξk; θ(t))

=
e
− 1

σ2(A2|a(t)|+1)
|zi−Aa(t)s1i−Ab(t)ξj |

M∑
k=1

e
− 1

σ2(A2|a(t)|+1)
|zi−Aa(t)s1i−Ab(t)ξk|

. (6.18)

E-step

We have

Q
(
θ;θ(t)

)
=−N logM − (N + L) log(πσ2(A2|a|+ 1))− 1

σ2(A2|a|+ 1)
∥z̄−Aat1−Abt2∥2

− 1

σ2(A2|a|+ 1)

N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣zi − Aas1i − Abξj
∣∣2.

(6.19)

M-step

The derivation of the M-step is more complicated for the reciprocal case because of the

term |a| that appears in logarithmic term and the denominators of the last two terms in

the RHS of (6.19). We need to obtain the values a(t+1), b(t+1) such that

{
a(t+1), b(t+1)

}
= arg max

θ=[a,b]T
Q
(
θ;θ(t)

)
. (6.20)

Regarding b(t+1), it can be easily verified that the value of b that maximizes Q(θ;θ(t)) for

a given value of a is

bo(a) =

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j zi − Aa

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j s1i + tH2 z̄ − AatH2 t2

A
N∑
i=1

M∑
j=1

β
(t)
i,j |ξj|2 + AtH2 t2

. (6.21)

Substituting bo(a) in place of b in (6.19), we obtain the following updated objective function
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that depends only on a:

Q(a;θ(t)) =−N log(πσ2(A2|a|+ 1))− 1

G2σ2(A2|a|+ 1)

∥∥Gz̄−AaGt1−AIt2+A2aX t2
∥∥2

− 1

σ2(A2|a|+ 1)

1

G2

N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣Gzi − AaGs1i − AIξj + A2aX ξj
∣∣2,

(6.22)

where

G = A(
N∑
i=1

M∑
j=1

β
(t)
i,j |ξj|2 + tH2 t2), I =

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
jzi + tH2 z̄, X =

N∑
i=1

M∑
j=1

β
(t)
i,j ξ

∗
j s1i + tH2 t1.

(6.23)

In order to maximize (6.22) with respect to a, we will maximize it first with respect to

the phase ϕa , ∠a and then the amplitude |a|. Maximizing (6.22) with respect to ϕa is

equivalent to minimizing the following term with respect to ϕa

Λ(a;θ(t)) ,
∥∥Gz̄−AaGt1−AIt2+A2aX t2

∥∥2+ N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣Gzi−AaGs1i−AIξj+A2aX ξj
∣∣2.

(6.24)

Moreover, we can expand Λ(a;θ(t)) as

Λ(a;θ(t))=
∥∥Gz̄−AIt2∥∥2+ |a|2

∥∥A2X t2−AGt1
∥∥2+2ℜ

{
a(Gz̄−AIt2)H(A2X t2−AGt1)

}
+

N∑
i=1

M∑
j=1

β
(t)
i,j

(∣∣Gzi−AIξj∣∣2+|a|2
∣∣A2X ξj−AGs1i

∣∣2+2ℜ
{
a(Gzi−AIξj)∗(A2X ξj−AGs1i)

})
.

(6.25)

Minimizing (6.25) with respect to ϕa, we obtain

ϕ(t+1)
a =π−∠

( N∑
i=1

M∑
j=1

β
(t)
i,j

(
Gzi−AIξj

)∗(
A2X ξj−AGs1i

)
+
(
Gz̄−AIt2

)H(
A2X t2−AGt1

))
.

(6.26)
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Substituting ϕ
(t+1)
a into (6.22), we obtain the following function that depends only on |a|:

Q(|a|;θ(t)) = −N log(πσ2(A2|a|+ 1))− Ŭ

σ2(A2|a|+ 1)
− V̆ |a|2

σ2(A2|a|+ 1)
+

2W̆ |a|
σ2(A2|a|+ 1)

,

(6.27)

where

Ŭ =
1

G2

N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣Gzi − AIξj
∣∣2 + 1

G2

∥∥Gz̄ − AIt2
∥∥2, (6.28)

V̆ =
1

G2

N∑
i=1

M∑
j=1

β
(t)
i,j

∣∣A2X ξj − AGs1i
∣∣2 + 1

G2

∥∥A2X t2 − AGt1
∥∥2, (6.29)

and

W̆ =
1

G2

∣∣∣∣ N∑
i=1

M∑
j=1

β
(t)
i,j

(
Gzi − AIξj

)∗(
A2X ξj − AGs1i

)
+
(
Gz̄ − AIt2

)H(
A2X t2 − AGt1

)∣∣∣∣.
(6.30)

The derivative of (6.27) w.r.t. |a| is

d

d|a|
Q(|a|;θ(t)) = − NA2

A2|a|+ 1
+

A2Ŭ

σ2(A2|a|+ 1)2
−A2V̆ |a|2 + 2V̆ |a|

σ2(A2|a|+ 1)2
+

2W̆

σ2(A2|a|+ 1)2
. (6.31)

Setting d
d|a|Q(|a|;θ

(t)) = 0, we obtain the quadratic equation

A2V̆ |a|2 + (2V̆ +NA4σ2)|a|+NA2σ2 − A2Ŭ − 2W̆ = 0. (6.32)

Solving (6.32), we finally get

|a|(t+1) =
−(2V̆ +NA4σ2) +

√
(2V̆ +NA4σ2)2 − 4A2V̆ (NA2σ2 − A2Ŭ − 2W̆ )

2A2V̆
. (6.33)

Similar to the nonreciprocal scenario, we can see from (6.21), (6.26) and (6.33) that the

computational complexity of each EM iterations is O(MN), which confirms the computa-

tional efficiency of the EM approach.



90 EM-based Semi-blind Channel Estimation for Flat-fading Channels

6.4 CRB for the Reciprocal Scenario

The exact CRB for semi-blind channel estimation in the nonreciprocal scenario was derived

analytically in Chapter 5 assuming square QAM. A similar approach may be followed to

derive the semi-blind CRB for the reciprocal scenario. To avoid redundancy, however, we

will only show in this section how the semi-blind CRB for the reciprocal scenario can be

numerically evaluated using the Monte-Carlo approach. As in Chapter 5, we focus on

square QAM.

We let z̃ , [z̄T , zT ]T and denote by θR , [aR, aI , bR, bI ]
T the vector of real channel

parameters, where aR , ℜ{a}, aI , ℑ{a}, bR , ℜ{b}, bI , ℑ{b}. Following the approach

in Chapter 5, the LLF of z̃ may be expressed as

L(z̃;θR) =− (N + L) log(πσ2(A2|a|+ 1)) +N log
4

M
− 1

σ2(A2|a|+ 1)
∥z̄ − Aat1 − Abt2∥2

− 1

σ2(A2|a|+ 1)
∥z − Aas1∥2 +

N∑
k=1

logFθ(uk) +
N∑
k=1

logFθ(vk).

(6.34)

where

Fθ(x) ,
2p−1∑
i=1

e−γi|b|
2

cosh (2βix) , βi ,
Adp

σ2(A2|a|+ 1)
(2i− 1), γi ,

A2d2p
σ2(A2|a|+ 1)

(2i− 1)2,

(6.35)

and

uk = ℜ{(zk − Aas1k)
∗b}, vk = ℑ{(zk − Aas1k)

∗b}. (6.36)

We denote by I(θR) the corresponding FIM, and by Ix,y the joint Fisher information

between the parameters x and y, where x, y ∈ {aR, aI , bR, bI}. Hence,

Ix,y = E
{
∂L(z̃;θ)
∂x

∂L(z̃;θ)
∂y

}
(6.37)

and

I(θR) = E
{
∂L(z̃;θR)
∂θR

∂L(z̃;θR)
∂θTR

}
=

[
Iaa Iab

ITab Ibb

]
, (6.38)
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where

Iaa =

[
IaR,aR IaR,aI
IaR,aI IaI ,aI

]
, Iab =

[
IaR,bR IaR,bI
IaI ,bR IaI ,bI

]
, Ibb =

[
IbR,bR IbR,bI
IbR,bI IbI ,bI

]
. (6.39)

To approximate the expectation in (6.38) using Monte-Carlo simulations, we gener-

ate a large number of realizations of the vectors z and z̄ and then average the product
∂L(z̃;θ)
∂θR

∂L(z̃;θ)
∂θT

R
over all realizations. The CRB can then be obtained by taking the inverse of

IθR
. To do this, however, we need expressions for ∂L(z̃;θ)

∂aR
, ∂L(z̃;θ)

∂aI
, ∂L(z̃;θ)

∂bR
and ∂L(z̃;θ)

∂bI
. We

have

∂L(z̃;θ)
∂aR

=− (N + L)A2aR
(A2|a|+ 1)|a|

− 2A

σ2(A2|a|+ 1)

(
AtH1 t1aR −ℜ{tH1 (z̄ − Abt2)}

)
+

A2aR
σ2(A2|a|+ 1)2|a|

∥z̄ − Aat1 − Abt2∥2 −
2A

σ2(A2|a|+ 1)

(
AsH1 s1aR −ℜ{sH1 z}

)
+

A2aR
σ2(A2|a|+ 1)2|a|

∥z − Aas1∥2 +
N∑
k=1

∂Fθ(uk)
∂aR

Fθ(uk)
+

N∑
k=1

∂Fθ(vk)
∂aR

Fθ(vk)
,

(6.40)

where

∂Fθ(uk)

∂aR
=

2p−1∑
i=1

A2aR
|a|

σ2β2
i |b|2e−γi|b|

2

cosh[2βiuk]

+
2p−1∑
i=1

e−γi|b|
2

sinh[2βiuk]

[
− 2

βiA
2aRuk

σ2(A2|a|+ 1)|a|
+ 2βi

∂uk
∂aR

]
,

(6.41)

∂Fθ(vk)

∂aR
=

2p−1∑
i=1

A2aR
|a|

σ2β2
i |b|2e−γi|b|

2

cosh[2βivk]

+
2p−1∑
i=1

e−γi|b|
2

sinh[2βivk]

[
− 2

βiA
2aRvk

σ2(A2|a|+ 1)|a|
+ 2βi

∂vk
∂aR

]
,

(6.42)

and
∂uk
∂aR

= −Aℜ{s∗1kb},
∂vk
∂aR

= −Aℑ{s∗1kb}. (6.43)
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Similarly, we have

∂L(z̃;θ)
∂aI

=− (N + L)A2aI
(A2|a|+ 1)|a|

− 2A

σ2(A2|a|+ 1)

(
AtH1 t1aI −ℑ{tH1 (z̄ − Abt2)}

)
+

A2aI
σ2(A2|a|+ 1)2|a|

∥z̄ − Aat1 − Abt2∥2 −
2A

σ2(A2|a|+ 1)

(
AsH1 s1aI −ℑ{sH1 z}

)
+

A2aI
σ2(A2|a|+ 1)2|a|

∥z − Aas1∥2 +
N∑
k=1

∂Fθ(uk)
∂aI

Fθ(uk)
+

N∑
k=1

∂Fθ(vk)
∂aI

Fθ(vk)
.

(6.44)

The expressions for ∂Fθ(uk)
∂aI

and ∂Fθ(vk)
∂aI

can be obtained by replacing aR with aI in (6.41)

and (6.42), respectively and noting that

∂uk
∂aI

= −Aℑ{s∗1kb},
∂vk
∂aI

= Aℜ{s∗1kb}. (6.45)

We next consider ∂L(z̃;θ)
∂bR

and ∂L(z̃;θ)
∂bI

. We have

∂L(z̃;θ)
∂bR

=
1

σ2(A2|a|+ 1)

(
2Aℜ{tH2 (z̄ − Aat1)}

)
+

N∑
k=1

∂Fθ(uk)
∂bR

Fθ(uk)
+

N∑
k=1

∂Fθ(vk)
∂bR

Fθ(vk)
, (6.46)

where

∂Fθ(uk)

∂bR
= −

2p−1∑
i=1

2γibRe
−γi|b|2 cosh[2βiuk] +

2p−1∑
i=1

2βiℜ{zk − Aas1k}e−γi|b|
2

sinh[2βiuk)],

(6.47)

and

∂Fθ(vk)

∂bR
= −

2p−1∑
i=1

2γibRe
−γi|b|2 cosh[2βivk]−

2p−1∑
i=1

2βiℑ{zk−Aas1k}e−γi|b|
2

sinh[2βivk)]. (6.48)

Similarly,

∂L(z̃;θ)
∂bI

=
1

σ2(A2|a|+ 1)

(
2Aℑ{tH2 (z̄ − Aat1)}

)
+

N∑
k=1

∂Fθ(uk)
∂bI

Fθ(uk)
+

N∑
k=1

∂Fθ(vk)
∂bI

Fθ(vk)
, (6.49)
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where

∂Fθ(uk)

∂bI
= −

2p−1∑
i=1

2γibIe
−γi|b|2 cosh[2βiuk]+

2p−1∑
i=1

2βiℑ{zk−Aas1k}e−γi|b|
2

sinh[2βiuk], (6.50)

and

∂Fθ(vk)

∂bI
= −

2p−1∑
i=1

2γibIe
−γi|b|2 cosh[2βivk] +

2p−1∑
i=1

2βiℜ{zk −Aas1k}e−γi|b|
2

sinh[2βivk]. (6.51)

Finally, utilizing the expressions in (6.40), (6.44), (6.46) and (6.49), it is possible to

numerically evaluate all the elements of I(θR) via the Monte Carlo approach by generating

a large number of realizations of the vectors z and z̄. The CRB is then obtained by taking

the inverse of I(θR).

6.5 Simulation Results

In this section, we investigate through simulations the MSE performance of the derived

EM algorithm and compare it to the pilot-based LS estimator for both nonreciprocal and

reciprocal channels. Our results are obtained assuming that P1 = P2 = Pr, where P1, P2 and

Pr are the transmission powers at the terminal T1 and T2 and the relay R, respectively. For

the nonreciprocal scenario, the channel parameters are generated exactly as in Chapter 5.

That is, we model h1 and h2 as correlated complex Gaussian RVs with mean zero, variance

1, and a correlation coefficient ϱ = 0.3; we also model g1 and g2 as correlated complex

Gaussian RVs with the same mean, variance and correlation coefficient, but independent of

h1 and h2. For the reciprocal scenario, we model h and g as independent complex Gaussian

RVs with mean zero and variance 1. For both scenarios, we average our results over 100

independent realizations of the channel parameters. As in Chapter 5, the data symbols are

generated using square QAM modulation. To explore the impact of the modulation order

on the performance of the EM algorithm, we consider in our simulations the modulation

orders M = 4, M = 16 and M = 64. Unless mentioned otherwise, the number of pilots

and the number of data symbols are set at L = 8 and N = 32, respectively. In our plots

we consider the total MSE, which is the sum of the MSE for the estimation of a and the

estimation of b.
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In Fig. 6.1, we plot the MSE performance of the derived semi-blind EM algorithm

and the pilot-based LS estimator versus SNR3 for the nonreciprocal scenario. The channel

estimates are obtained after 4 iterations of the EM algorithm. For comparison, we also plot

the MSE of the LS estimator that only uses the pilot samples, as well as the semi-blind

CRB (obtained in Chapter 5). As we can see from Fig. 6.1, the MSE performance of the

EM algorithm is very close to the CRB for the whole SNR range and for all modulation

orders. Moreover, the EM algorithm provides substantially higher accuracy than the LS

estimator. This demonstrates that the improvements in estimation accuracy predicted in

Chapter 5 can indeed be realized at a low computational cost since only 4 EM iterations

were used.

In Fig. 6.2, we plot the MSE performance of the semi-blind EM algorithm and the pilot-

based LS estimator versus SNR for the reciprocal scenario. The EM estimates are again

generated using 4 iterations. We also plot the semi-blind CRB for the reciprocal scenario

whose numerical evaluation was discussed in Section 6.4. Similarly to the nonreciprocal

scenario, the EM algorithm performs very closely to the semi-blind CRB and provides a

significant improvement in accuracy over the LS estimator.

We next consider the effect of the number of data samples on the performance of the

EM algorithm. In Figs. 6.3 and 6.4, we plot the MSE performance of the EM algorithm

versus the number of data samples, normalized w.r.t. the MSE of the LS estimator (which

does not depend on the number of data samples) for the nonreciprocal and reciprocal

cases, respectively. We use 8 pilots and 10 EM iterations, and set the SNR at 15dB. The

(normalized) semi-blind CRB is also plotted as a reference. As we can see in both plots, the

EM algorithm performs close to the CRB even for large data sizes. Moreover, the larger

the number of data samples, the higher the accuracy gain, which shows that, as noted in

Chapter 5, semi-blind estimation becomes more attractive as the channel coherence time

increases.

We next consider the convergence behavior of the EM algorithm. In Fig. 6.5, we plot

the MSE of the EM algorithm versus the number of iterations for N = 32 and N = 100,

assuming 8 pilots and an SNR of 15dB. Fig. 6.5 shows that the number of iterations

needed to achieve convergence is small for all modulation orders. In all cases, convergence

is achieved within at most 12 iterations (as few as 4 iterations are sufficient in some cases).

Convergence becomes slightly slower as the modulation order increases and as the number of

3As before, the SNR is defined as 10 log P2

σ2
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data samples increases. Very similar trends are observed for the case of reciprocal channels

in Fig. 6.6.

In Fig. 6.7, we compare the SER performance of the EM algorithm to that of the LS

estimator, as well as to the SER performance for perfect channel state information (CSI)

assuming reciprocal channels. We assume that the channel is fixed for the duration of

40 samples and employ 4 pilots for the both estimators, and N = 36 data samples for

the EM algorithm. We use QPSK modulation (M = 4). As we can see in Fig. 6.7, the

EM algorithm provides better SER performance than the LS estimator and is much closer

to the performance under perfect CSI. Hence, the higher estimation accuracy of the EM

algorithm also results in an SNR gain, since a lower SNR is required to achieve the same

SER as the LS estimator. Similar results can be obtained for the nonreciprocal case.

Finally, in Table I, we compare the achievable throughput of the proposed EM algorithm

and the LS estimator for the reciprocal case at different SNR and SER values, assuming

that the channel is constant for the duration of 40 data samples and that QPSK modulation

is used. To obtain the achievable throughput, we first determine through simulations the

average number of pilots required by each algorithm to achieve a certain SER performance

at a given SNR. The corresponding number of data symbols that can be transmitted is

then divided by 40 to obtain the throughput. As we can see from Table I, substantial

improvements in throughput (up to 27%) are possible by using the EM algorithm. Similar

results can be obtained for the nonreciprocal case.

6.6 Conclusions

In this chapter, we derived the EM algorithm for semi-blind channel estimation assuming

flat-fading channel conditions. This was done for both nonreciprocal and reciprocal chan-

nels. In both cases, our simulations showed that the derived EM algorithm outperforms

the pilot-based LS estimator even with a limited number of data symbols and performs

very close to the corresponding semi-blind CRB. The proposed algorithms require only

a small number of low-complexity iterations to converge. Hence, the accuracy gains of

semi-blind estimation predicted in Chapter 5 through CRB analysis can indeed be realized

at an affordable computational price. Finally, by virtue of its higher accuracy the EM

algorithm requires a smaller number of pilots compared to the LS estimator, which allows

for transmitting more data symbols, resulting in a significant improvement in throughput
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and spectral efficiency. Equivalently, for the same number of pilots the EM algorithm has

a superior SER performance compared to the LS estimator.

Table 6.1 Data throughput for the EM and LS estimators.
SNR (dB) SER Throughput (EM/LS)

10 3× 10−1 0.88 / 0.78
15 1.5× 10−1 0.8 / 0.68
20 6× 10−2 0.8 / 0.63
25 1.5× 10−2 0.85 / 0.58
30 2× 10−3 0.95 / 0.73
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EM algorithm, M=4
Exact CRB, M=4
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EM algorithm, M=64
Exact CRB, M=64

Fig. 6.1 MSE performance of the EM algorithm for nonreciprocal channels
along with the corresponding semi-blind CRBs versus SNR (N = 32, L = 8,
4 EM iterations).
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Fig. 6.2 MSE performance of the EM algorithm for reciprocal channels along
with the corresponding semi-blind CRBs plotted versus SNR (N = 32 and
L = 8, 4 EM iterations).
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Fig. 6.3 MSE performance of the EM algorithm for nonreciprocal channels
along with the corresponding semi-blind CRBs versusN , normalized w.r.t. the
MSE of the pilot-based LS estimator (L = 8, SNR 15dB, 10 EM iterations).
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Fig. 6.4 MSE performance of the EM algorithm for reciprocal channels along
with the corresponding semi-blind CRBs plotted versus N , normalized w.r.t.
the MSE of the pilot-based LS estimator (L = 8, SNR 15dB, 10 EM iterations).
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Fig. 6.5 MSE performance of the EM algorithm for nonreciprocal channels
plotted versus the number of EM iterations (N = 32, 100, L = 8, SNR 15dB).



6.6 Conclusions 99

2 4 6 8 10 12 14 16 18 20
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Number of EM Iterations

M
S

E

M=4, N=32
M=16, N=32
M=64, N=32
M=4, N=100
M=16, N=100
M=64, N=100

Fig. 6.6 MSE performance of the EM algorithm for reciprocal channels plot-
ted versus the number of EM iterations (N = 32, 100, L = 8, SNR 15dB).
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Chapter 7

Semi-blind Channel Estimation for

OFDM-modulated AF TWRNs

7.1 Introduction

In Chapters 3–6, we developed blind and semi-blind channel estimation algorithms for AF

TWRNs under flat-fading conditions and showed that the proposed methods can provide

substantially better tradeoffs between accuracy and spectral efficiency than the conventional

training-based methods. Motivated by our results for flat-fading channels, in this chapter

we consider semi-blind channel estimation for AF TWRNs in frequency-selective channels.

To avoid the detrimental effects of ISI, we assume that OFDM transmission is employed

(see Chapter 2). Previous works on channel estimation for OFDM-based AF TWRNs have

assumed channel reciprocity [22,34,91,92], which reduces the number of channel parameters

that need to be estimated. In contrast, we will consider nonreciprocal channels as this is

a more realistic assumption due to the sensitivity of OFDM systems to RF front end

imperfections that ruin channel reciprocity [24,26].

We assume that each terminal transmits a single OFDM pilot block followed by a

number of OFDM data blocks. As done in [22, 32, 34], we focus on the estimation of the

individual channels, rather than the cascaded channels. Although the cascaded channels

are sufficient for detection, the individual channels are needed in other applications such

as beamforming [93]. Estimating the individual channels also makes it possible to use

the information in the covariance matrix of the received signal as this matrix cannot be

expressed entirely in terms of the cascaded channels. To assist in the estimation of the
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individual channels, we adopt a superimposed training strategy at the relay during the

broadcast of the OFDM pilot blocks, as done in [34,91]. More specifically, the relay super-

imposes its own pilot symbols over the received OFDM pilot block before broadcasting it.

Our proposed semi-blind estimator is based on the Gaussian ML (GML) approach, i.e., we

treat the transmitted data symbols as Gaussian distributed. The resulting semi-blind GML

channel estimator reduces to a nonlinear minimization problem, which we solve numeri-

cally using an iterative quasi-Newton method. In addition, we derive sufficient conditions

for the optimality of the three pilot vectors (the two at the terminals and the one at the

relay) and provide an example of pilot design that satisfies these conditions. Furthermore,

we derive the semi-blind and pilot-based CRBs which serve as benchmarks on estimation

performance. Using simulation results, we show that the proposed semi-blind estimator

closely approaches the semi-blind CRB and provides substantial improvements in accuracy

over the pilot-based approach while using only a limited number of OFDM data blocks.

This improvement in performance also holds when the data symbols are drawn from dis-

crete constellations. The proposed semi-blind method may also be used to estimate the

cascaded channels which can be obtained by linear convolution after estimating the in-

dividual channels. We show in our simulations that estimating the individual channels

semi-blindly first and then acquiring from them estimates of the cascaded channels pro-

vides superior accuracy over pilot-based estimation of the cascaded channels. Finally, we

also show that semi-blind estimation results in improved SER performance compared to

pilot-based estimation.

The rest of this chapter is organized as follows. In Section 7.2 we present the system

model. The proposed semi-blind channel estimation algorithm and the pilot design are

presented in Section 7.3. The semi-blind and pilot-based CRBs are derived in Section 7.4.

Simulation results are presented in Section 7.5. Finally, our conclusions are discussed in

Section 7.6.

7.2 System Model

We consider a half-duplex AF TWRN with two source nodes, T1 and T2, and a single

relaying node R. The network operates in frequency selective channel conditions. To

compensate for the effects of the frequency selective fading, OFDM transmission with N
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Fig. 7.1 Structure of the OFDM frame transmitted by the terminals.

subcarriers1 is employed. Each round of data exchange between T1 and T2 consists of two

phases. In the first phase, the two terminals simultaneously transmit an OFDM frame to

R. In the second phase, R broadcasts an amplified version of the received frame to both

terminals.

7.2.1 Transmission at the Terminals

Each OFDM frame transmitted by the terminals is composed of one pilot block and K

data blocks. Furthermore, each OFDM block (pilot or data) consists of N time-domain

symbols and a cyclic prefix (CP) of appropriate length which is inserted to avoid inter-

block interference (see Fig. 7.1). We denote by t̃1 = [t̃11, . . . , t̃1N ]
T and t̃2 = [t̃21, . . . , t̃2N ]

T

the N × 1 frequency-domain pilot symbol vectors of T1 and T2 and by s̃1k and s̃2k, k =

1, . . . , K, the N × 1 frequency-domain data symbol vectors of T1 and T2, respectively. The

corresponding time-domain pilot and data symbol vectors are t1 = FH t̃1, t2 = FH t̃2,

s1k = FH s̃1k and s2k = FH s̃2k, k = 1, . . . , K, where F is the N × N normalized discrete

Fourier transform (DFT) matrix whose (p, q)th entry is 1/
√
Ne−ȷ2π(p−1)(q−1)/N . Moreover,

we assume that the average transmission powers of T1 and T2 during pilot transmission

are P1 and P2, respectively, i.e., t̃
H

1 t̃1 = NP1 and t̃
H

2 t̃2 = NP2. For simplicity, we also

assume that the same average transmission powers are employed by the terminals for data

transmission, i.e., E
{
sH1ks1k

}
= NP1 and E

{
sH2ks2k

}
= NP2.

We denote by h1 , [h11, . . . , h1L1 ]
T the L1-tap baseband channel from T1 to R and by

g1 , [g11, . . . , g1J1 ]
T the J1-tap baseband channels from T2 to R. The elements of each

1We note that N is used in this chapter to denote the number of subcarriers, whereas in the previous
chapters it was used to denote the number of data samples.
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Fig. 7.2 OFDM-based two-way relay network with superimposed training
at the relay.

channel vector are modelled as independent circular complex Gaussian random variables

with mean zero and whose variance follows the exponential power decay profile of [94].

More specifically, the variance of the ℓth channel tap is σ2
ℓ = e−(ℓ−1)/10, where ℓ = 1, . . . , L1

for h1 and ℓ = 1, . . . , J1 for g1. We let σ2
h1 =

∑L1

ℓ=1 σ
2
ℓ and σ2

g1 =
∑J1

ℓ=1 σ
2
ℓ . Moreover, we

assume quasi-static channel conditions, such that the channels h1 and g1 are fixed for the

frame duration, which includes 1 pilot block and K data blocks, but may vary between

consecutive frames.

7.2.2 Processing at the Relay

The received vector at the relay corresponding to the transmitted pilot blocks after CP

removal is given by

r = H1t1 +G1t2 + n, (7.1)

where H1 and G1 are N × N circulant matrices with first columns [hT1 ,01×(N−L1)]
T and

[gT1 ,01×(N−J1)]
T , respectively, and n is the circular complex white Gaussian noise vector

with mean zero and covariance2 σ2IN , denoted as CCN (0, σ2IN). Similarly, the received

vectors corresponding to the K data blocks are

rk = H1s1k +G1s2k + nk, (7.2)

2IN denotes the N ×N identity matrix.
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where n1, . . . ,nK are i.i.d. CCN (0, σ2IN).

The relay amplifies the received pilot block using an amplification factor Ap > 0, and

then, to assist channel estimation at the terminals, superimposes over the amplified vector

Apr a time-domain pilot vector t3 = FH t̃3, where t̃3 = [p̃31, . . . , p̃3N ]
T is the corresponding

frequency-domain vector [34]. The resulting signal vector is given by

r̆ = Apr + t3 = ApH1t1 + ApG1t2 + Apn+ t3. (7.3)

The average transmission power of the relay over the long term (i.e., over many OFDM

frames) is set at Pr. In other words, E
{
r̆H r̆

}
= NPr, where the expectation takes into

account both the channel statistics and the noise statistics. This power is divided between

the amplified signal vector Apr and the superimposed vector t3 as follows: P3 = αPr is

allocated to the superimposed pilot and (1−α)Pr is allocated to the amplified term, where

0 < α < 1. Using the statistics of the time-domain channels h1 and g1, it can be shown

that the average power of the received signal at the relay is

1

N
E
{
rHr

}
= σ2

h1P1 + σ2
g1P2 + σ2. (7.4)

Hence, to allocate (1− α)Pr to the amplified signal, the amplification factor should be set

as

Ap =

√
(1− α)Pr

σ2
h1P1 + σ2

g1P2 + σ2
. (7.5)

The relay also amplifies the received data vectors rk, using the amplification factor

Ad > 0, but without superimposing a pilot. In this case, the relay can maintain an average
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transmission power of Pr when broadcasting the amplified data vectors by setting Ad as
3

Ad =

√
Pr

σ2
h1P1 + σ2

g1P2 + σ2
. (7.6)

The processing at the relay, including superimposed training, is illustrated in Fig. 7.3.

Before broadcasting the frame that contains the amplified pilot and information-bearing

vectors, the relay inserts a CP into each block in the frame.

7.2.3 Received Vectors at the Terminal

Assuming nonreciprocal channels, the channel from each terminal to the relay is different

from the channel from the relay back to the terminal. Without loss of generality, we focus

on channel estimation at T1. The baseband channel from R back to T1 is denoted by

h2 , [h21, . . . , h2L2 ]
T . The elements of h2 are modelled in the same way as those of h1 and

g1 and are assumed fixed for the frame duration. We let σ2
h2 =

∑L2

ℓ=1 σ
2
ℓ . The pilot-bearing

received signal block at T1 after CP removal is given by

y = ApH2H1t1 + ApH2G1t2 +H2t3 + ApH2n+w, (7.7)

where H2 is the N ×N circulant matrix with first column [hT2 ,01×(N−L2)]
T , and the noise

vector w is CCN (0, σ2IN). Similarly, the K data-bearing received signal blocks are given

by

zk = AdH2H1s1k + AdH2G1s2k + AdH2nk +wk, (7.8)

where w1, . . . ,wK are also CCN (0, σ2IN), with the difference that they do not contain the

signal component corresponding to superimposed training.

The goal of our work is to accurately estimate the individual channel vectors h1, h2

and g1. We propose to estimate these vectors using a semi-blind approach which provides

enhanced estimation performance by incorporating both the pilot-bearing vector y and the

information-bearing vectors z1, . . . , zK into the estimation process.

3We note that the use of different amplification factors during pilot and data transmission is necessary to
satisfy the power constraint at the relay since superimposed training is only used during pilot transmission.
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7.3 Semi-blind Channel Estimation

In this section, we present the proposed semi-blind channel estimation algorithm. For com-

parison purposes, we also consider fully pilot-based estimation and derive the corresponding

pilot-based least-squares (LS) channel estimator.

7.3.1 Proposed Algorithm

The unknown channel parameters to be estimated are collected into the vector θ ,
[hT1 ,h

T
2 , g

T
1 ]
T . The first step towards the development of the semi-blind estimator is the

derivation of the joint likelihood function of the vectors y,z1, . . . , zK . This likelihood func-

tion depends on the specific constellation from which the frequency-domain data symbol

vectors s̃21, . . . , s̃2K are drawn. Unfortunately, taking into account the discrete statistics

of these vectors would result in an intractable likelihood function. Instead, we obtain a

tractable likelihood function by resorting to the Gaussian approximation, i.e., by mod-

elling the data vectors s̃21, . . . , s̃2K as i.i.d. CCN (0, P2IN). Nonetheless, we will show in

Section 7.5 that the impact of this approximation on the performance of the proposed es-

timator is minimal and that the proposed estimator performs well when the data symbol

vectors are drawn from discrete constellations.

Under the Gaussian assumption, the joint likelihood can be expressed in terms of the

first and second order statistics of the vectors y,z1, . . . , zK . Let us denote by µ and C the

mean and covariance matrix of y, respectively. From (7.7), we see that

µ = E {z} = ApH2H1t1 + ApH2G1t2 +H2t3, (7.9)

and

C = A2
pσ

2H2H
H
2 + σ2IN . (7.10)

Furthermore, let us denote by µk the mean of zk and by Q the corresponding covariance

matrix. From (7.8) we obtain

µk = E {zk} = AdH2H1s1k, (7.11)

and

Q = A2
dP2H2G1G

H
1 H

H
2 + A2

dσ
2H2H

H
2 + σ2IN . (7.12)
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Collecting the data-bearing vectors into a single vector z̆ , [zT1 , . . . , z
T
K ]

T , the joint

likelihood function of y and z̆ is given by4

f(y, z̆;θ) =
1

πN |C|
e−(y−µ)HC−1(y−µ)

K∏
k=1

1

πN |Q|
e−(zk−µk)

HQ−1(zk−µk). (7.13)

Hence, the corresponding joint log-likelihood function is

L(y, z̆;θ) =− (K + 1)N log π − log |C| −K log |Q| − (y − µ)HC−1(y − µ)−
K∑
k=1

(zk − µk)
HQ−1(zk − µk).

(7.14)

Therefore, the semi-blind GML estimates of h1, h2 and g1 are

{ĥ
(s)

1 , ĥ
(s)

2 , ĝ
(s)
1 } = arg min

h1, h2, g1

log |C|+K log |Q|+ (y − µ)HC−1(y − µ)+

K∑
k=1

(zk − µk)
HQ−1(zk − µk).

(7.15)

The objective function in (7.15) is nonconvex, and the solution for the minimization

problem may be obtained using standard numerical techniques [75]. In this work, we use the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [75], which is the most popular quasi-

Newton method and is known for its robustness and efficiency. It avoids the computation of

the Hessian matrix and requires no matrix inversion. To initialize the BFGS algorithm, we

will use the channel estimates provided by the pilot-based LS estimator, which we will derive

next. Backtracking linesearch is used to find the step size at each iteration [74]. While the

BFGS method is known to work well in practice, convergence to the global minimum is not

guaranteed since the objective function is nonconvex. In addition, convergence to a local

minimum requires a sophisticated linesearch5 to be theoretically guaranteed. Nonetheless,

as we shall see in Section 7.5, BFGS with backtracking linesearch coupled with using the

pilot-based LS estimator for initialization results in performance that is very close to the

semi-blind CRB, which indicates that convergence to the global minimum occurs most of

4|A| denotes the determinant of A.
5To guarantee local convergence for the BFGS method, the linesearch has to satisfy the Wolfe condi-

tions [75]. Nonetheless, conventional backtracking linesearch is often used.
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the time.

7.3.2 Pilot-based Least Squares Estimation

In [34], the LS estimator was derived for pilot-based channel estimation with superimposed

training in the context of reciprocal channels. In that case, h1 = h2 and g1 = g2, i.e., only

two channel vectors need to be estimated. In our work, we consider the case of nonreciprocal

channels where all three channel vectors h1, h2 and g1 have to be estimated. Due to the

structure of the received pilot signal block (see (7.7)), the conventional LS approach cannot

be applied directly to estimate the individual channel vectors. Instead, similar to what is

done in [34], we adopt a two-step approach whereby we first obtain LS estimates of the

cascaded time-domain channels6 a , h1 ∗ h2 and b , g1 ∗ h2 and the individual channel

h2, and then extract from them estimates of the individual channels h1 and g1. We let

M1 = L1 + L2 − 1 and M2 = J1 + L2 − 1 be the lengths of a and b, respectively. Eq. (7.7)

can be rewritten in terms of the cascaded channels a and b as

y = ApS1a+ ApS2b+ S3h2 + ApH2n+w

=
[
ApS1 ApS2 S3

]
︸ ︷︷ ︸

Ω

 a

b

h2


︸ ︷︷ ︸

q

+ApH2n+w. (7.16)

where S1 is the N ×M1 circulant matrix with first column t1, S2 is the N ×M2 circulant

matrix with first column t2 and S3 is the N × L2 circulant matrix with first column t3.

Assuming that N ≥M1 +M2 + L2, q may be estimated using the LS approach by7

q̂ = Ω†y. (7.17)

The estimates â, b̂ and ĥ2 of a, b and h2 are obtained from the corresponding entries of q̂.

To obtain the estimates for the individual channels h1 and g1, we note that the cascaded

channels a and b may be expressed as

a = B1h1, b = B2g1 (7.18)

6We use x ∗ y to denote the linear convolution between the vectors x and y.
7A† denotes the Moore Penrose pseudo-inverse of A.
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where B1 is the M1 ×L1 circulant matrix with first column [hT2 ,01×(L1−1)]
T and B2 is the

M2 × J1 circulant matrix with first column [hT2 ,01×(J1−1)]
T . We may thus estimate h1 and

g1 as follows:

ĥ1 =
(
B̂1

)†
â, ĝ1 =

(
B̂2

)†
b̂, (7.19)

where B̂1 and B̂2 are formed using the estimate ĥ2. The LS estimator will be also be used

as a reference to demonstrate the performance enhancement provided by the semi-blind

approach.

7.3.3 Design of the pilot vectors

A convenient criterion for designing the pilot vectors t̃1, t̃2 and t̃3 is to choose them such

that they minimize the mean-squared error (MSE) of the LS estimator of q. This criterion

is attractive because the MSE for the estimation of q has a simple closed-form expres-

sion, unlike the MSE for the estimation of the individual channels. The MSE for the LS

estimation of q is given by

E
{
∥q̂ − q∥2

}
= σ2(1 + A2σ2

h2)tr
(
(ΩHΩ)−1

)
, (7.20)

where the expectation takes into account both the noise and the channel statistics. The

problem looks similar to pilot design for channel estimation in 3× 1 MISO systems. How-

ever, the approach used in [95] cannot be directly applied since the two terminals and the

relay have their individual powers. A similar type of minimization was considered in the

context of OFDM-based TWRNs in [22], but it involved the design of only two pilot vectors

since superimposed training was not employed. The following theorem describes sufficient

conditions for the pilot vectors t̃1, t̃2 and t̃3 to be optimal.

Theorem 3. For fixed P1, P2 and P3, the MSE in (7.20) is minimized by any three training

vectors t̃1, t̃2 and t̃3 that satisfy the following conditions:

1. |p̃ji|2 = Pj for j = 1, 2, 3, i = 1, . . . , N .

2.
N∑
i=1

p̃∗1ip̃2ie
ȷ2π(i−1)m1/N = 0, ∀m1 ∈ {1−M2, . . . ,M1 − 1},

3.
N∑
i=1

p̃∗1ip̃3ie
ȷ2π(i−1)m2/N = 0, ∀m2 ∈ {1− L2, . . . ,M1 − 1},

4.
N∑
i=1

p̃∗2ip̃3ie
ȷ2π(i−1)m3/N = 0, ∀m3 ∈ {1− L2, . . . ,M2 − 1}.
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Proof. See Appendix D.2.

The above theorem can be seen as a generalization of Theorem 3.5 in [22] to the case

of 3 pilot vectors. The following is an example of optimal training vectors, inspired by the

pilot design in [22]:

p̃1i =
√
P1, p̃2i =

√
P2e

ȷ2π(i−1)κ/N , p̃3i =
√
P3e

ȷ2π(i−1)δ/N (7.21)

for any values κ, δ that satisfy

κ ∈ {M2, . . . , N −M1}, δ ∈ {L2, . . . , N −M1}

κ− δ ∈ {L2 . . . , N −M2}.
(7.22)

For the existence of integer values κ and δ that simultaneously satisfy the above con-

straints, the number of subcarriers N should satisfy

N ≥ max(M1 +M2,M1 + L2), (7.23)

and

max(L2,M1 +M2 −N) ≤ min(N −M2, N −M1 − L2). (7.24)

We note that pilot-design for OFDM-based AF TWRNS with superimposed training

was also considered in another recent work [96]. However in [96] the pilots are designed

to minimize the Bayesian CRB, which results in different optimality conditions from those

in Theorem 3. In particular, only a single orthogonality condition is required in [96],

SH
1 S2 = 0, whereas optimality in our case also requires SH

1 S3 = 0 and SH
2 S3 = 0. Hence,

pilots that satisfy the conditions of Theorem 3 (as the ones used in the simulations section)

not only minimize the MSE of the LS estimator but also the Bayesian CRB.

7.4 Cramer-Rao Bounds

In this section, we will derive the CRBs for the estimation of the channel parameters h1,

h2 and g1 for both the semi-blind and the pilot-based scenarios. The joint log-likelihood

in (7.14) may be decomposed into the sum of two terms

L(y, z̆;θ) = L(y;θ) + L(z̆;θ), (7.25)
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where

L(y;θ) = −N log π − log |C| − (y − µ)HC−1(y − µ) (7.26)

is the log-likelihood function for the pilot-bearing received vector and

L(z̆;θ)=−KN log π−K log |Q|−
K∑
k=1

(zk−µk)
HQ−1(zk−µk) (7.27)

is the log-likelihood function for the K data-bearing received vectors.

7.4.1 The CRB for Pilot-based Estimation

The Fisher information matrix (FIM) for fully pilot-based estimation is defined as

Γp = E
{
∂L(y;θ)
∂θ∗

∂L(y;θ)
∂θT

}
. (7.28)

From [35], we know that the (i, j)th element of Γp is given by8

[ΓP ]ij =
∂µH

∂θ∗i
C−1 ∂µ

∂θj
+ tr

(
C−1∂C

∂θ∗i
C−1∂C

∂θj

)
. (7.29)

Hence, the FIM may be expressed as

Γp = Λp +Σp, (7.30)

where

Λp =


∂µH

∂h∗
1
C−1 ∂µ

∂hT
1

∂µH

∂h∗
1
C−1 ∂µ

∂hT
2

∂µH

∂h∗
1
C−1 ∂µ

∂gT
1

∂µH

∂h∗
2
C−1 ∂µ

∂hT
1

∂µH

∂h∗
2
C−1 ∂µ

∂hT
2

∂µH

∂h∗
2
C−1 ∂µ

∂gT
1

∂µH

∂g∗
1
C−1 ∂µ

∂hT
1

∂µH

∂g∗
1
C−1 ∂µ

∂hT
2

∂µH

∂g∗
1
C−1 ∂µ

∂gT
1

 , (7.31)

and

[Σp]ij = tr

(
C−1∂C

∂θ∗i
C−1∂C

∂θj

)
. (7.32)

Moreover, we have that ∂µ

∂hT
1

=
[
∂µ
∂h11

, . . . , ∂µ
∂h1L1

]
, ∂µ

∂hT
2

=
[
∂µ
∂h21

, . . . , ∂µ
∂h2L2

]
and ∂µ

∂gT
1

=[
∂µ
∂g11

, . . . , ∂µ
∂g1J1

]
. Denoting by Υ(m)(x) the N ×m circulant matrix with first column x, we

8[A]ij refers to the (i, j)th element of the matrix A.
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may evaluate the terms ∂µ

∂hT
1
, ∂µ

∂hT
2
and ∂µ

∂gT
1
using the following properties [92]:

H2H1t1 = H2ΥL1(t1)h1 = H1ΥL2(t1)h2,

H2G1t2 = H2ΥJ1(t2)g1 = G1ΥL2(t2)h2,

H2t3 = ΥL2(t3)h2.

Using the above, we obtain
∂µ

hT1
= ApH2ΥL1(t1), (7.33)

∂µ

hT2
= ApH1ΥL2(t1) + ApG1ΥL2(t2) +ΥL2(t3), (7.34)

and
∂µ

gT1
= ApH2ΥJ1(t2). (7.35)

In order to evaluate the terms in (7.32), we can use the expression for C in (7.10) to show

that
∂C

∂h1i
= 0N×N ,

∂C

∂g1i
= 0N×N ,

∂C

∂h2i
= A2σ2EiH

H
2 , (7.36)

where Ei is the N ×N circulant matrix with first column9 ei.

Finally, the pilot-based CRB is given by CRB
(p)
θ = tr(Γ−1

p ). In particular,

CRB
(p)
h1

=

L1∑
i=1

[Γ−1
p ]ii, CRB

(p)
h2

=
L1+L2∑
i=L1+1

[Γ−1
p ]ii, (7.37)

and

CRBg1
=

L1+L2+J1∑
i=L1+L2+1

[Γ−1
p ]ii. (7.38)

7.4.2 The CRB for Semi-blind Estimation

The FIM for semi-blind estimation is given by

Γs = Γp + Γd (7.39)

9The vector ei is the N × 1 basis vector with the ith element 1 and the remaining elements 0.
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where

Γd = E
{
∂L(z̆;θ)
∂θ∗

∂L(z̆;θ)
∂θT

}
. (7.40)

We can see from (7.27) that Γd may be expressed as

Γd =
K∑
k=1

Λ
(k)
d +KΣd, (7.41)

where

Λ
(k)
d =


∂µk

H

∂h∗
1
Q−1 ∂µk

∂hT
1

∂µk
H

∂h∗
1
Q−1 ∂µk

∂hT
2

∂µk
H

∂h∗
1
Q−1 ∂µk

∂gT
1

∂µH
k

∂h∗
2
Q−1 ∂µk

∂hT
1

∂µH
k

∂h∗
2
Q−1 ∂µk

∂hT
2

∂µH
k

∂h∗
2
Q−1 ∂µk

∂gT
1

∂µH
k

∂g∗
1
Q−1 ∂µk

∂hT
1

∂µH
k

∂g∗
1
Q−1 ∂µk

∂hT
2

∂µH
k

∂g∗
1
Q−1 ∂µk

∂gT
1

 , (7.42)

and

[Σd]ij = tr

(
Q−1∂Q

∂θ∗i
Q−1∂Q

∂θj

)
. (7.43)

Moreover, since µk = AdH2H1s1k, we have that

∂µk

∂hT1
= AdH2ΥL1(s1k),

∂µk

∂hT2
= AdH1ΥL2(s1k), (7.44)

and
∂µk

∂gT1
= 0N×N . (7.45)

To evaluate the terms in (7.43), we can use the expression for Q in (7.12) to obtain

∂Q

∂h1i
= 0N×N ,

∂Q

∂h2i
= A2

dP2EiG1G
H
1 H

H
2 + A2

dσ
2EiH

H
2 , (7.46)

and
∂Q

∂g1i
= A2

dP2H2EiG
H
1 H

H
2 . (7.47)

Finally, the semi-blind CRB is given by CRB
(s)
θ = tr(Γ−1

s ). In particular,

CRB
(s)
h1

=

L1∑
i=1

[Γs
−1]ii, CRB

(s)
h2

=
L1+L2∑
i=L1+1

[Γs
−1]ii, (7.48)
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and

CRB(s)
g1

=

L1+L2+J1∑
i=L1+L2+1

[Γs
−1]ii. (7.49)

7.4.3 Power Allocation at the Relay

The factor α determines the fraction of the average power, Pr, that the relay allocates to

the superimposed pilot. Given that Pr is fixed, the more power the relay allocates to the

superimposed pilot the less it allocates to the pilots transmitted by the terminals. Both

the superimposed pilot and the pilots transmitted by the terminals are essential for the

estimation process, and it is desired to choose a value of α that optimizes estimation per-

formance. Since the pilot-based estimator is used to initialize the semi-blind estimator, α

should be chosen so that both estimators perform well. One way to choose α is to find

the value that minimizes the average CRB over the channel distribution. Unfortunately,

determining this value analytically is a very challenging task due to the complicated ex-

pressions of the CRBs. In Section 7.5, we plot the CRBs for both estimators versus α at

several SNR values (averaged over many channel realizations). It turns out that it is not

critical to choose the optimal value of α, as the optimal value lies within a flat region of the

CRBs for both estimators. In other words, no fine-tuning with respect to α is required and

it is sufficient to choose α by inspection. Moreover, there is no need to change the value α

according to SNR.

7.5 Simulation Results

In this section, we investigate through simulations the performance of the proposed semi-

blind algorithm and compare it to that of the pilot-based LS estimator. Our results are

obtained using P1 = P2 =
1
2
Pr. We assume that h1 and h2 have 5 taps each, while g1 has

4 taps. We average our results over a set of 300 independent realizations of h1, h2 and

g1. The taps of each channel vector are modelled as independent and zero mean complex

Gaussian random variables whose variances follow the exponential power decay profile.

The variance of the ℓ-th channel tap is σ2
ℓ = e−(ℓ−1)/10 and the vectors h1, h2 and g1 are

assumed independent of each other. The number of subcarriers is set at N = 64. Unless

mentioned otherwise, the number of data symbol blocks is K = 10, and the vectors s1k,

s2k, k = 1, . . . , K are modelled as i.i.d. CCN (0, P2IN). Furthermore, the pilot vectors
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t̃1, t̃2 and t̃3 are chosen according to the example provided in Section 7.3.3, with κ = 20

and δ = 40. As we mentioned earlier, the BFGS algorithm is employed to solve the

minimization problem in (7.15), in conjunction with backtracking linesearch [74] that is

used to find the appropriate step size at each iteration. We initialize the BFGS algorithm

using the channel estimates provided by the pilot-based LS estimator and we assume that

the BFGS algorithm has converged when ∥∇L(y, z̆;θ{n})∥2 < 10−4, where θ{n} is the value

of estimate of θ at the nth iteration. The inverse-Hessian approximation is initialized using

matrix βI where β is set at 0.005.

In Fig. 7.4, we plot the semi-blind and pilot-based CRBs versus the parameter α for

several SNR values (6 dB, 15 dB, 24 dB). As we can see from Fig. 7.4, for both estimators

the CRB curve is relatively flat for a wide range of α (approximately 0.25 ≤ α ≤ 0.6 for the

pilot-based estimator and 0.4 ≤ α ≤ 0.7 for the semi-blind estimator) which includes the

optimal value. Since the pilot-based estimator is used to initialize the semi-blind estimator,

α should be chosen to lie within the intersection of the flat regions of the pilot-based and

semi-blind estimators. However, it is not necessary to choose exactly the optimal value of

α as it is sufficient to choose a value within this region by inspection. In our subsequent

simulations, we use the value α = 0.55, which lies within the flat-region for both estimators.

In Fig. 7.5, we plot the MSE performance of the semi-blind algorithm and the pilot-

based LS estimator versus SNR along with the corresponding semi-blind and pilot-based

CRBs. The MSE performance of the semi-blind estimator is shown for the case where

the symbol vectors s̃1k, s̃2k, k = 1, . . . , K are CCN (0, P2IN) as well as the case where

they are generated using QPSK modulation. As we can see in Fig. 7.5, the performance

of the semi-blind estimator is almost the same for the two cases, which illustrates the

minimal impact of the proposed Gaussian approximation. In both cases, the semi-blind

estimator provides a substantial improvement in accuracy over the pilot-based estimator.

In particular, the semi-blind estimator is approximately 3 times more accurate than the

pilot-based estimator at low SNR and twice as accurate at medium SNR. Furthermore, the

MSE of the semi-blind algorithm closely approaches the semi-blind CRB as SNR increases.

In fact, it almost overlaps with the CRB in the medium-to-high SNR range. At very high

SNR, the performance of the semi-blind estimator overlaps with that of the pilot-based

estimator, which shows that the pilot-based estimator provides highly accurate estimates

in this case and incorporating the data samples no longer provides any substantial gain in

accuracy.
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In Fig. 7.6, we show the average number of iterations needed for the BFGS algorithm

to converge at different SNR values for Gaussian-distributed data symbols. The average

number of iterations ranges from 32 to 44.5, which shows that the performance enhancement

of the semi-blind approach comes at a moderate computational load.

We next consider the effect of the number of data blocks on the performance of the

semi-blind estimator. In Fig. 7.7, we plot the MSE performance of the semi-blind algorithm

versus the number of OFDM data blocks K, along with the semi-blind CRB for Gaussian

data. The SNR is set at 20dB. As expected the accuracy of the semi-blind estimator

improves as K increases, which shows that the longer the coherence time of the channel

the more attractive the semi-blind approach becomes.

In the above simulation results, we investigated the performance of semi-blind estima-

tion for the individual channels h1, h2 and g1. We now investigate whether the proposed

algorithm is also superior to pilot-based estimation when it is only desirable to estimate the

cascaded channels a, b. To answer this question, we apply the semi-blind estimator using

the same settings as in Fig. 7.5 (QPSK data), and then obtain the estimates for a and b

from the estimates of h1, h2 and g1 using linear convolution. For comparison purposes,

we use the LS algorithm to estimate the cascaded channels directly, without employing su-

perimposed training at the relay, while allocating the same training power at the terminals

and the relay as we did in the semi-blind scenario. The resulting MSE performances for the

two algorithms are plotted versus SNR in Fig. 7.8. As we can see, at low-to-medium SNR

the semi-blind approach provides substantial accuracy gains over the LS estimator for the

estimation of cascaded channels.

7.6 Conclusions

In this chapter, we proposed a semi-blind channel estimator for OFDM-based AF TWRNs

based on the Gaussian ML approach. To assist in the estimation of the individual chan-

nels, we employed superimposed training at the relay. The resulting GML estimates were

obtained numerically using the BFGS algorithm. We also derived conditions for the opti-

mality of the training pilots and provided examples of optimal pilot vectors. As performance

benchmarks, we derived the the CRBs for semi-blind and pilot-based estimation. We then

used simulation studies to compare the proposed estimator to the conventional pilot-based

estimator and showed that the proposed estimator provides a substantial improvement in
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accuracy. The MSE performance of the semi-blind algorithm also closely approaches the

derived semi-blind CRB. These performance gains are achieved at a reasonable compu-

tational cost, which clearly establishes the merit and practicality of semi-blind channel

estimation for OFDM-based AF TWRNs.
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Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

In this thesis, we considered the problem of channel estimation in AF TWRNs where

accurate channel state information is essential to avoid performance degradation. The

conventional approach to this problem has been a training-based one that completely relies

on the transmission of known pilots by the terminals, and thus diminishes the spectral

efficiency of TWRNs. In contrast, our work focused on blind and semi-blind approaches to

estimation. Blind estimation relies only on the data samples, while semi-blind estimation

is a hybrid approach that exploits both pilots and data samples. Based on these two

approaches, we developed new channel estimation algorithms for AF TWRNs in both

flat-fading and frequency-selective channel conditions, with the goal of achieving superior

tradeoffs between accuracy and spectral efficiency than the conventional training-based

approach.

In Chapter 3, we focused on the problem of blind channel estimation for AF TWRNs

employing constant modulus signalling. Assuming nonreciprocal flat-fading channels, we

proposed an algorithm for blind channel estimation based on the DML approach, which

treats the data symbols as deterministic unknowns. We showed that, for M -PSK mod-

ulation, the proposed estimator is consistent and approaches the true channel with high

probability at high SNR for modulation orders higher than 2. An alternative algorithm was

proposed for the case of BPSK modulation where the DML algorithm performed poorly. For

comparative purposes, we investigated the GML approach which treats the data symbols as

Gaussian-distributed nuisance parameters. We also derived the corresponding CRB. Using
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simulations, we showed that the DML estimator performs better than the GML estimator

at medium-to-high SNR and approaches the derived CRB at high SNR, unlike the GML

estimator which encounters an error-floor. We also used SER simulations to show that the

DML estimator provides superior tradeoffs between accuracy and spectral efficiency than

the pilot-based LS estimator.

In Chapter 4, we turned our attention to reciprocal channels. In this case, the DML

approach was shown to result in an inconsistent estimator. As an alternative, we proposed

the MSEV estimator which minimized the sample variance of the envelope of the received

signal after self-interference cancellation. This estimator is consistent and approaches the

true channel with high probability at high SNR. The corresponding CRB for the case of

reciprocal channels was also derived. Simulations were used to show that the MSEV esti-

mator outperforms the DML estimator and can be accurately implemented using steepest

descent at a computational complexity that is linear in the number of data samples.

Still within the context of flat-fading channels, we then considered semi-blind channel

estimation which uses both pilots and data samples to estimate the channel parameters. In

Chapter 5, we derived the exact CRB for semi-blind estimation of nonreciprocal channels

in AF TWRNs employing square QAM. Unlike the bounds in the previous chapters which

treated the data symbols as deterministic unknowns, this bound was based on the true

likelihood function that takes into account the statistics of the data symbols. Using the

derived bound, we showed that incorporation into the estimation process of even a limited

number of data samples leads to substantial accuracy gains over the pilot-based approach

and significantly reduces the number of required pilot symbols. These improvements hold

for all modulation orders and are highest at low modulation orders. The MCRB was also

derived as a more tractable alternative for the exact CRB.

In Chapter 6, we showed that the performance gains of semi-blind estimation promised

by the CRB analysis in Chapter 5 were indeed achievable and with an affordable compu-

tational cost. To avoid the high complexity of direct ML estimation based on the true

likelihood function, semi-blind estimation was implemented using the iterative EM ap-

proach. EM-based algorithms were derived for both nonreciprocal and reciprocal channels.

For both cases, the complexity of the EM steps was linear in the number of data samples

for a fixed modulation order. Moreover, the proposed algorithms performed very closely

to the exact CRBs and required only a small number of iterations to converge. Using

SER simulations, we showed the EM algorithm provides a significant improvement in data
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throughput compared to the LS estimator due to its reduced pilot requirements.

Finally, in Chapter 7 we considered semi-blind channel estimation for OFDM-based

TWRNs operating in frequency selective channel conditions. Unlike previous works, we

assumed that the channels were nonreciprocal as this is more realistic for OFDM systems

in frequency selective environments. To assist in the estimation of the individual channels,

we adopted a superimposed training strategy at the relay whereby the relay superimposed

its own pilot symbols over the received pilot-bearing OFDM block before broadcasting it.

Our proposed semi-blind estimator was based on the Gaussian ML approach which assumes

that the data symbols were Gaussian-distributed, and the resulting estimates were obtained

numerically using the BFGS algorithm. The pilot vectors of the two terminals and the relay

were designed to optimize estimation performance, and the corresponding semi-blind and

pilot-based CRBs were derived. Using simulations, we showed that the proposed semi-blind

estimator closely approaches the semi-blind CRB and provides substantial improvements in

accuracy over the pilot-based approach while using only a limited number of OFDM data

blocks. These improvements also hold when the data is drawn from discrete constellations

such as QPSK.

In summary, in this thesis we investigated the application of blind and semi-blind ap-

proaches to channel estimation in AF TWRNs. We developed blind and semi-blind methods

that achieve significantly better tradeoffs between accuracy and spectral efficiency than the

conventional training based approach for both flat-fading and frequency selective channel

conditions. These gains were achieved at an affordable computational cost and with a

limited number of data symbols. We thus demonstrated that the (semi)-blind channel es-

timation approaches are viable and practical alternatives to the training-based approach.

In particular, they are convenient solutions for applications that require high estimation

accuracy and/or highly efficient spectrum utilization.

8.2 Directions for Future Work

The results presented in our work showed that the application of blind and semi-blind

estimation techniques in AF TWRNs is very promising and that significant improvements in

performance are feasible. This motivates us to extend the application of these techniques in

several directions within the context of AF TWRNs. Semi-blind estimation, in particular,

lends itself easily to wide application because of its flexibility and because no separate
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ambiguity resolution is needed.

Like most works on channel estimation for TWRNs, our work has focused on the sin-

gle relay scenario. Channel estimation for TWRNs with multiple relays remains an open

research problem. The use of multiple relays makes it possible to apply beamforming strate-

gies to enhance the quality of the received signal [97]. These strategies require highly accu-

rate channel information, and semi-blind estimation techniques can be employed in order to

achieve the desired estimation accuracy with minimal training costs. In AF TWRNs with

multiple relays, both the effective self-interference channel and the effective information-

bearing channel are sums of channel components corresponding to the different relaying

paths. One way to make the estimation of the channels corresponding to each relaying

path feasible is to allocate a separate training phase for each relay during which the other

relays are silent. Once initial estimates have been acquired for all the channels, all the re-

lays can again be used simultaneously. Semi-blind estimation can be employed to improve

the accuracy of the initial estimates and to reduce the training costs of the first phase. In

fact, the EM approach that we adopted in Chapter 6 may be a convenient way of applying

semi-blind estimation in this scenario at a low computational cost while also taking into

account the statistics of the data symbols.

Another important problem where efficient estimation algorithms are needed is channel

estimation for MIMO AF TWRNs. In MIMO AF TWRNs, both the terminals and the relay

are equipped with multiple antennas and channel estimation is more challenging due to the

large number of channel parameters involved. In this case, a significant training overhead

may be needed if the conventional pilot-based methods are employed. Semi-blind channel

estimation based on the Gaussian ML approach which we applied in OFDM-based AF

TWRNs in Chapter 7 may also be a convenient way of improving the estimation accuracy

and reducing the training overhead for MIMO AF TWRNs. As we did in Chapter 7, we

can use superimposed training to assist in the estimation of the individual channels. The

number of pilot vectors should be chosen to guarantee the identifiability of the channel

parameters. Moreover, an appropriate low-complexity iterative method will be needed to

obtain the ML channel estimates.

Finally, another problem of interest is joint CFO and channel estimation for AF TWRNs

in frequency selective environments. The CFO results from the frequency mismatch be-

tween the oscillators at different nodes in the network. Accurate estimation of the CFO

is necessary to perform frequency synchronization and to avoid a severe degradation in
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the system performance. Several methods for joint CFO and channel estimation in AF

TWRNs have been proposed [32–34], but they all follow the training-based approach. In

fact, the system model in Chapter 7 can be easily extended to account for the presence of

CFO. Given the superior channel estimation performance of the semi-blind Gaussian ML

approach, it is a promising candidate for the joint estimation of both the CFO and the

channel parameters.
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Appendix A

Derivations of Select Proofs and

Results from Chapter 3

A.1 Derivation of Eq. (3.22)

In this appendix, we derive the closed-form expression for the variance V(v) of |y(v)|. We

recall that

y(v) = Av
√
P1e

ȷϕ1 + Ab
√
P2e

ȷϕ2 + Ah2n+ η. (A.1)

The variance of |y(v)| is V(v) = E{|y(v)|2} − E{|y(v)|}2. It can be easily shown that

E{|y(v)|2} = A2|v|2P1 + A2|b|2P2 + C. (A.2)

To evaluate E {|y(v)|}, we first obtain the conditional expectation E {|y(v)| | ϕ1, ϕ2}. We

can see from (A.1) that ℜ{y(v)} and ℑ{y(v)} conditioned on ϕ1 and ϕ2 are Gaussian-

distributed with conditional means

E{ℜ(y(v)) | ϕ1, ϕ2} = A|v|
√
P1 cos(ϕv + ϕ1) + A|b|

√
P2 cos(ϕb + ϕ2),

E{ℑ(y(v)) | ϕ1, ϕ2} = A|v|
√
P1 sin(ϕv + ϕ1) + A|b|

√
P2 sin(ϕb + ϕ2)
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and a conditional variance of C/2. Hence, when conditioned on ϕ1 and ϕ2, |y(v)| is a

noncentral Chi random variable whose mean is [98]

E {|y(v)| | ϕ1, ϕ2} =

√
πC

4
L1/2 (−λ(v;ϕ1, ϕ2)) ,

where

λ(v;ϕ1, ϕ2),
1

C

(
E{ℜ(y(v))|ϕ1, ϕ2}2+E{ℑ(y(v))|ϕ1, ϕ2}2

)
=
A2

C

(
|v|2P1+|b|2P2+2|v||b|

√
P1P2 cos(ϕv−ϕb+ϕ1−ϕ2)

)
,

(A.3)

L1/2(x) = ex/2 [(1− x)I0(x/2) + xI1(x/2)] is the Laguerre polynomial with parameter 1/2,

and Iς(·) is the Modified Bessel Function of the First Kind of order ς [80]. The last equation

shows that λ(v;ϕ1, ϕ2) depends on the difference (ϕ1 − ϕ2) mod 2π, i.e., λ(v;ϕ1, ϕ2) =

λ(v;ϕ1 − ϕ2). The difference, (ϕ1 − ϕ2) takes the values φk =
2πk
M
, k = 0, . . . ,M − 1 with

equal probability. Letting λk(v) , λ(v;ϕ1 − ϕ2 = φk), the unconditional mean E {|y(v)|}
is given by

E{|y(v)|} =
M−1∑
k=0

√
πC

4M2
L1/2 (−λk(v)) , (A.4)

which completes the proof of (3.22).

A.2 Proof of Lemma 1

In this appendix, we show that V(v) has a unique global minimum at v = 0. Let ν ,√
1
C
(A2|v|2P1), ζ ,

√
1
C
(A2|b|2P2), and let

D(ν),ν2+ ζ2− π

4M2

(M−1∑
k=0

L1/2

(
−
[
ν2+ ζ2+2νζ cos θk(v)

]))2

. (A.5)
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It is sufficient to prove that D(ν) has a unique global minimum at ν = 0. It is straightfor-

ward to verify that L1/2(−x) is a strictly concave function. Therefore,

1

M

M−1∑
k=0

L1/2

(
−
[
ν2 + ζ2 + 2νζ cos θk(v)

])
≤ L1/2

(
− 1

M

M−1∑
k=0

[
ν2 + ζ2 + 2νζ cos(θk(v))

])
= L1/2

(
−
[
ν2 + ζ2

])
,

(A.6)

where we have used the fact that
M−1∑
k=0

cos(ϕv − ϕb +
2kπ
M

) = 0. Hence,

D(ν) ≥ ν2 + ζ2 − π

4

(
L1/2

(
−
[
ν2 + ζ2

]))2
. (A.7)

For ζ ̸= 0, the equality holds if and only if ν = 0. Let F (ν) , ν2+ζ2− π
4
(L1/2 (− [ν2 + ζ2]))

2
.

It is sufficient to show that F (ν) has a unique global minimum at ν = 0. We have

d

dν
F (ν) = 2ν − νπL1/2

(
−
[
ν2 + ζ2

])
Z(ν2 + ζ2), (A.8)

where Z(x) , 1
2
e−x/2 (I0(x/2) + I1(x/2)). Since d

dν
F (ν) = 0 for ν = 0, it is sufficient to

show that dF (ν)
dν

> 0 for ν > 0, i.e., that π
2
L1/2 (− [ν2 + ζ2])Z(ν2 + ζ2) < 1 for ν > 0. Let

ρ , ν2 + ζ2 and let

S(ρ) , π

2
L1/2 (−ρ)Z(ρ)

=
π

4
e−ρ
[
(1+ρ)I0

(ρ
2

)
+ρI1

(ρ
2

)] [
I0

(ρ
2

)
+I1

(ρ
2

)]
,

(A.9)

we have to show that S(ρ) < 1 for ρ > 0. We will do this by showing that d
dρ
S(ρ) > 0 for

ρ > 0 and that lim
ρ→∞

S(ρ) = 1. We have

d

dρ
S(ρ) = π

2
e−ρ
[
1

4
I0

(ρ
2

)2
−1

4
I1

(ρ
2

)2
− 1

2ρ
I0

(ρ
2

)
I1

(ρ
2

)]
. (A.10)

Let U(ρ) , ρI0
(
ρ
2

)2 − ρI1
(
ρ
2

)2 − 2I0
(
ρ
2

)
I1
(
ρ
2

)
. Hence d

dρ
S(ρ) = π

8ρ
e−ρU(ρ). Moreover,

d
dρ
U(ρ) = 2

ρ
I0
(
ρ
2

)
I1
(
ρ
2

)
> 0. Thus, U(ρ) is strictly increasing for ρ > 0. Since U(0) = 0,

we have that U(ρ) > 0 for ρ > 0, which implies that d
dρ
S(ρ) > 0 for ρ > 0.
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It remains to show that lim
ρ→∞

S(ρ) = 1. For large arguments, Iς(·) has the following

asymptotic expansion [80]

Iς(x) ≈
ex√
2πx

{
1− ε− 1

8x
+

(ε− 1)(ε− 9)

2!(8x)2
− . . .

}
, (A.11)

where ε = 4ς2. We rewrite S(ρ) as

S(ρ)=π
4
e−ρ
[
(1+ρ)I0

(ρ
2

)2
+(1+2ρ)I0

(ρ
2

)
I1

(ρ
2

)
+ρI1

(ρ
2

)2]
. (A.12)

Using the expansion in (A.11), we obtain

lim
ρ→∞

π

4
e−ρ(1 + ρ)I0

(ρ
2

)2
= lim

ρ→∞

π

4
e−ρρI1

(ρ
2

)2
=

1

4
, (A.13)

and

lim
ρ→∞

π

4
e−ρ(1 + 2ρ)I0

(ρ
2

)
I1

(ρ
2

)
=

1

2
. (A.14)

Therefore, lim
ρ→∞

S(ρ) = 1, which completes the proof.

A.3 Proof of Lemma 2

In this appendix, we prove that VN(v) converges uniformly in probability to V(v) when

a, b and v belong to compact sets. Suppose that v ∈ C. By definition, VN(v) converges

uniformly in probability to V(v) when supv∈C
∣∣VN(v) − V(v)

∣∣ converges in probability to

zero as N → ∞. Since yi(v) = z̃i(a − v) = zi − A(a − v)s1i, VN(v) is a function of the

parameter v, the observations z and known data symbols t1. According to Lemma 2.9

in [28, Ch. 36], a sufficient condition for uniform convergence in probability when C is

compact is the existence of a function FN(z, s1) with bounded expectation E{FN(z, s1)}
such that for all v1, v2 ∈ C,

∣∣VN(v1)− VN(v2)
∣∣ ≤ FN(z, s1)

∣∣v1 − v2
∣∣.
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Using the triangular inequality, we obtain

∣∣VN(v1)−VN(v2)∣∣ ≤ 1

N − 1

N∑
i=1

∣∣∣∣∣∣
(
|yi(v1)|−

1

N

N∑
k=1

|yk(v1)|

)2

−

(
|yi(v2)|−

1

N

N∑
k=1

|yk(v2)|

)2
∣∣∣∣∣∣

=
1

N − 1

N∑
i=1

(∣∣∣∣∣|yi(v1)| − |yi(v2)| −
1

N

N∑
k=1

|yk(v1)|+
1

N

N∑
k=1

|yk(v2)|

∣∣∣∣∣
×

∣∣∣∣∣|yi(v1)|+ |yi(v2)| −
1

N

N∑
k=1

|yk(v1)| −
1

N

N∑
k=1

|yk(v2)|

∣∣∣∣∣
)
.

(A.15)

For i = 1, . . . , N, let

Υi(v1,v2),
∣∣∣∣|yi(v1)|−|yi(v2)|−

1

N

N∑
k=1

|yk(v1)|+
1

N

N∑
k=1

|yk(v2)|
∣∣∣∣ (A.16)

and

Λi(v1,v2),
∣∣∣∣|yi(v1)|+|yi(v2)|−

1

N

N∑
k=1

|yk(v1)|−
1

N

N∑
k=1

|yk(v2)|
∣∣∣∣. (A.17)

Using the triangular inequality again, we get

Υi(v1, v2) ≤ |yi(v1)− yi(v2)|+
1

N

N∑
k=1

|yk(v1)− yk(v2)|

= 2AP1|v1 − v2|,

(A.18)

and

Λi(v1,v2) ≤ |yi(v1)|+ |yi(v2)|+
1

N

N∑
k=1

|yk(v1)|+
1

N

N∑
k=1

|yk(v2)|. (A.19)

Noting that |yi(v)| ≤ |zi|+ A|a|P1 + AP1|v|, we further obtain

Λi(v1, v2) ≤ 2|zi|+
2

N

N∑
k=1

|zk|+ 4AP1|a|+ 2AP1(|v1|+ |v2|). (A.20)

Since the set C is compact, there exists U > 0 such that |v| ≤ U , ∀v ∈ C. Hence, we obtain
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the following upper bound on Λi(v1, v2):

Λi(v1, v2) ≤ 2|zi|+
2

N

N∑
k=1

|zk|+ 2AP1|a|+ 4AU . (A.21)

Combining (A.18) and (A.21), we obtain

∣∣VN(v1)− VN(v2)
∣∣ ≤ 8AP1

N − 1

[
ANP1U + ANP1|a|+

N∑
i=1

|zi|

]
|v1 − v2|. (A.22)

Noting that zi = yi(a), we have from (A.4) that

E{|zi|} ≤
√
πC

4
L1/2

(
− 1

C
(A|a|P1 + A|b|P2)

2

)
. (A.23)

Since both a and b belong to compact sets, there exists M1 > 0 and M2 > 0 such that

|a| ≤ M1 and |b| ≤ M2. Hence,

E{|zi|} ≤
√
πC

4
L1/2

(
− 1

C
(AM1P1 + AM2P2)

2

)
. (A.24)

Letting, G ,
√

πC
4
L1/2

(
− 1
C
(AM1P1 + AM2P2)

2), we obtain

E
{

8AP1

N − 1

[
ANP1U + ANP1|a|+

N∑
i=1

|zi|
]}

≤ 16A2(U +M1) + 16AG, (A.25)

which completes the proof.

A.4 Proof of Lemma 3

In this appendix, we prove Lemma 3. It is obvious from (3.24) that X(v) ≥ 0 with equality

if and only if the terms |Avs1i+Abs2i|, i = 1, . . . , N are all equal. Because of the constant

modulus nature of the data symbols, this occurs at v = 0 for any M , which means that

there is always a global minimum at v = 0 (i.e., at u = a). To see whether we also have
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X(v) = 0 for some v ̸= 0, we rewrite |Avs1i + Abs2i| as

|Avs1i + Abs2i| = |A|v|
√
P1e

ȷϕv+ϕ1i + A|b|
√
P2e

ȷϕb+ϕ2i|

= |A|v|
√
P1e

ȷϕv−ϕb+ϕ1i−ϕ2i + A|b|
√
P2|.

(A.26)

Let χi , cos(ϕv − ϕb + ϕ1i − ϕ2i), i = 1, . . . , N . It is clear from (A.26) that X(v) is zero

whenever the terms χi, i = 1, . . . , N are all equal. We denote by E the event that the

terms χi, i = 1, . . . , N are equal. Let ψi , ϕ1i − ϕ2i, then the values ψi, i = 1, . . . , N are

i.i.d. realizations of the discrete uniform random variable Ψ which takes values from the

set SΨ =
{

2ℓπ
M
, ℓ = 0, . . . ,M − 1

}
. We will now show that the event E occurs if and only if

the values ψi, i = 1, . . . , N are chosen from the same size 2 subset of SΨ. Suppose that ψ1

is fixed, and that we are choosing the remaining phases such that cos(ψi+ϑ) = cos(ψ1+ϑ)

for i = 2, . . . , N . If ψκ is different from ψ1 for some index κ, then cos(ψκ + ϕv − ϕb) =

cos(ψ1+ϕv−ϕb) can only be satisfied if 2(ϕv−ϕb) = (−ψ1−ψκ). For the remaining phases

with indices i = 2, . . . , N, i ̸= κ, the equality cos(ψi + ϕv − ϕb) = cos(ψ1 + ϕv − ϕb) holds

only if ψi = ψ1 or ψi = ψκ. Therefore, the terms χi, i = 1, . . . , N are equal if and only

if the phases ψi, i = 1, . . . , N take at most two distinct values, i.e, the probability that E
occurs is

P (E) =
(
M

2

)
2N

MN
=

(
2

M

)N−1

(M − 1), (A.27)

where
(
M
2

)
is the number of distinct subsets of size 2 that can be chosen from a set of size

M . Suppose that E occurs and that ψΣ is the sum of the two distinct phase values, then

X(v) = 0 for all the values of v that satisfy 2(ϕv − ϕb) = −ψΣ, which means that there are

infinitely many global minimizers of X(v). Hence, the probability that X(v) has a unique

minimum at v = 0 is PM,N = 1−
(

2
M

)N−1
(M − 1).
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Appendix B

Derivations of Select Proofs and

Results from Chapter 4

B.1 Proof of Lemma 4

We have(
1− W(a)

σ2(A2|a|+ 1)

)
=
π

4

(
L1/2

(
− A2|b|2P2

σ2(A2|a|+ 1)

))2

− A2|b|2P2

σ2(A2|a|+ 1)
. (B.1)

Let Q(x) , π
4

(
L1/2 (−x)

)2 − x, it is sufficient to show that Q(x) > 0 for x > 0. We know

from Appendix A.2 that Q(x) is strictly decreasing for x > 0. Using this fact, we will

establish that Q(x) > 0 for x > 0 by showing that lim
x→∞

Q(x) = 1
2
. We can expand Q(x) as

Q(x) =
π

4
e−x
[
(1 + x)2I0

(x
2

)2
+ 2x(1 + x)I0

(x
2

)
I1

(x
2

)
+ x2I1

(x
2

)2 ]
− x. (B.2)

Using the expansion in (A.11), we obtain the following approximations for large x

π

4
e−x(1 + x)2I0

(x
2

)2
≈ x

4
+

5

8
, (B.3)

π

4
e−x2x(1 + x)I0

(x
2

)
I1

(x
2

)
≈ x

2
+

1

4
, (B.4)

π

4
e−xx2I1

(x
2

)2
≈ x

4
− 3

8
. (B.5)
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Substituting these approximations into (B.2), we have lim
x→∞

Q(x) = 1
2
, which completes the

proof.

B.2 Steepest Descent Implementation

In this appendix, we provide the details of the steepest descent implementation for the

objective functions of the DML estimator in (4.2) and MSEV estimator in (4.3). Let

B(u) ,

N∑
i=1

(
|zi − Aut1i| − 1

N

N∑
k=1

|zk − Aut1k|
)2

σ2(A2|u|+ 1)
+N log

(
A2|u|+ 1

)
(B.6)

and

D(u) ,
N∑
i=1

(
|zi − Aut1i| −

1

N

N∑
k=1

|zk − Aut1k|

)2

, (B.7)

be the DML and MSEV objective functions, respectively. The steepest descent algorithm

follows the direction of the negative gradient. Thus, for the DML estimator, the update

equation is

â(k+1) = â(k) − µ(k)∇B(â(k)), (B.8)

where µ(k) is the step size and ∇B(u) is the gradient of B(u), given by

∇B(u) = ∂B(u)
∂ℜ{u}

+ ȷ
∂B(u)
∂ℑ{u}

. (B.9)

The partial derivatives ∂B(u)
∂ℜ{u} and ∂B(u)

∂ℑ{u} are given by

∂B(u)
∂ℜ{u}

=
1

σ2

[
|u|(A2|u|+ 1) ∂D(u)

∂ℜ{u} − A2D(u)ℜ{u}
|u|(A2|u|+ 1)2

]
+

A2ℜ{u}
|u|(A2|u|+ 1)

(B.10)

and

∂B(u)
∂ℑ{u}

=
1

σ2

[
|u|(A2|u|+ 1) ∂D(u)

∂ℑ{u} − A2D(u)ℑ{u}
|u|(A2|u|+ 1)2

]
+

A2ℑ{u}
|u|(A2|u|+ 1)

. (B.11)
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For the MSEV estimator, the update equation is

â(k+1)
v = â(k)v − δ(k)∇D(â(k)v ), (B.12)

where δ(k) is the step size and ∇D(u) is the gradient of D(u), given by

∇D(u) =
∂D(u)

∂ℜ{u}
+ ȷ

∂D(u)

∂ℑ{u}
. (B.13)

The partial derivatives ∂D(u)
∂ℜ{u} and ∂D(u)

∂ℑ{u} are given by

∂D(u)

∂ℜ{u}
=2

N∑
i=1

(
|zi − Aut1i| −

1

N

N∑
k=1

|zk − Aut1k|

)
×[

−ℜ{At∗1i(zi − Aut1i)}
|zi − Aut1i|

+
1

N

N∑
k=1

ℜ{At∗1k(zk − Aut1k)}
|zk − Aut1k|

] (B.14)

and

∂D(u)

∂ℑ{u}
=2

N∑
i=1

(
|zi − Aut1i| −

1

N

N∑
k=1

|zk − Aut1k|

)
×[

−ℑ{At∗1i(zi − Aut1i)}
|zi − Aut1i|

+
1

N

N∑
k=1

ℑ{At∗1k(zk − Aut1k)}
|zk − Aut1k|

]
.

(B.15)

To determine the convergence of the steepest descent algorithm, we test the difference in the

value of the objective function between consecutive iterations. We assume that convergence

is achieved for when the difference is below 10−5. It is clear from (B.6)–(B.7), (B.10)–(B.11)

and (B.14)–(B.15) that the number of required operations to implement the steepest descent

algorithm for both estimators is O(N), i.e., it is linear in the number of received samples.

The step sizes µ(k) and δ(k) are found using backtracking line search [74], describedd in the

following pseudo-code.

Given the descent direction ∇B(â(k)) and some α ∈ (0, 0.5), β ∈ (0, 1)
µ(k) := 1
while B

(
â(k) − µ(k)∇B(â(k))

)
> B(a(k))− αµ(k)|∇B(â(k)))|2

µ(k) := βµ(k)

end
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Appendix C

Derivations of Select Proofs and

Results from Chapter 5

C.1 Proof of Eqs. (5.30) and (5.31)

In this appendix, we prove (5.30) and (5.31). Recalling that uk = ℜ{zk − Aas1k}bR +

ℑ{zk − Aas1k}bI , the second derivative of Fθ(uk) with respect to aR is given by

∂2Fθ(uk)

∂a2R
= 4A2ℜ{s∗1kb}2

2p−1∑
i=1

β2
i e

−γi|b|2 cosh[2βiuk]. (C.1)

Thus,

E
{
B

(11)
k

}
= 4A2ℜ{s∗1kb}2

2p−1∑
i=1

β2
i e

−γi|b|2E
{
cosh[2βiuk]

Fθ(uk)

}
. (C.2)

Using the PDF for uk in (5.23), we obtain:

E
{
cosh[2βiuk]

Fθ(uk)

}
=

2√
πMC|b|2

∞∫
−∞

cosh[2βit]e
− t2

C|b|2 dt. (C.3)

Moreover, for α > 0, it can be verified that∫ ∞

−∞
e−αt

2−2δtdt =

√
π

α
e

δ2

α . (C.4)
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Hence,

E
{
cosh[2βiuk]

Fθ(uk)

}
=

2√
M
eγi|b|

2

(C.5)

and

E
{
B

(11)
k

}
=

8A2

√
M

ℜ{s∗1kb}2
2p−1∑
i=1

β2
i . (C.6)

Using very similar steps, we can also show that

E
{
H

(11)
k

}
=

8A2

√
M

ℑ{s∗1kb}2
2p−1∑
i=1

β2
i . (C.7)

C.2 Proof of Eq. (5.37)

In this appendix, we show that E
{
∂2L(q;θ)
∂aR∂aI

}
= 0. We have

E
{
∂2L(q;θ)
∂aR∂aI

}
=

N∑
k=1

E
{
B

(12)
k −G

(12)
k

}
+

N∑
k=1

E
{
H12
k −W

(12)
k

}
. (C.8)

We can prove that E
{
∂2L(q;θ)
∂aR∂aI

}
= 0 by showing that E

{
B

(12)
k

}
= −E

{
H

(12)
k

}
and

E
{
G

(12)
k

}
= −E

{
W

(12)
k

}
. We have

∂2Fθ(uk)

∂aR∂aI
= 4A2ℜ{s∗1kb}ℑ{s∗1kb}

2p−1∑
i=1

β2
i e

−γi|b|2 cosh[2βiuk] (C.9)

and

∂2Fθ(vk)

∂aR∂aI
= −4A2ℜ{s∗1kb}ℑ{s∗1kb}

2p−1∑
i=1

β2
i e

−γi|b|2 cosh[2βivk]. (C.10)

Hence,

E
{
B

(12)
k

}
=4A2ℜ{s∗1kb}ℑ{s∗1kb}

2p−1∑
i=1

β2
i e

−γi|b|2E
{
cosh[2βiuk]

Fθ(uk)

}
, (C.11)
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and

E
{
H

(12)
k

}
=− 4A2ℜ{s∗1kb}ℑ{s∗1kb}

2p−1∑
i=1

β2
i e

−γi|b|2E
{
cosh[2βivk]

Fθ(vk)

}
. (C.12)

Since uk and vk are i.i.d., it is clear that E
{
B

(12)
k

}
= −E

{
H

(12)
k

}
. It can be shown in a

similar manner that E
{
G

(12)
k

}
= −E

{
W

(12)
k

}
.

C.3 Proof of Eq. (5.43)

In this appendix, we prove (5.43). The second derivative of Fθ(uk) with respect to bR is

given by
∂2Fθ(uk)

∂b2R
= T1 + T2 + T3 (C.13)

where

T1 ,
2p−1∑
i=1

(4γ2i b
2
R − 2γi)e

−γi|b|2 cosh[2βi(bRxk + bIyk)]

T2 ,−
2p−1∑
i=1

8βiγibRxke
−γi|b|2 sinh[2βi(bRxk + bIyk)]

T3 ,
2p−1∑
i=1

4β2
i x

2
ke

−γi|b|2 cosh[2βi(bRxk + bIyk)].

(C.14)

We next find E
{

T1
Fθ(uk)

}
, E
{

T2
Fθ(uk)

}
, and E

{
T3

Fθ(uk)

}
. Using (C.3), we obtain

E
{

T1
Fθ(uk)

}
=

1√
M

2p−1∑
i=1

(8γ2i b
2
R − 4γi). (C.15)

We next consider E
{

T2
Fθ(uk)

}
. We have

E
{

T2
Fθ(uk)

}
= −

2p−1∑
i=1

8βiγibRe
−γi|b|2E

{
xk sinh[2βi(bRxk + bIyk)]

Fθ(bRxk + bIyk)

}
(C.16)
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Using the PDF fX,Y (x, y) in (5.21), we obtain

E
{
xk sinh[2βi(bRxk + bIyk)]

Fθ(bRxk + bIyk)

}
=

4

πMC

∞∫∫
−∞

xsinh[2βi(bRx+ bIy)]Fθ(bIx− bRy)e
−x2+y2

C dxdy

=
1

πMC

2p−1∑
ℓ=1

e−γℓ|b|
2

∞∫∫
−∞

x
(
e2βi(bRx+bIy)−e−2βi(bRx+bIy)

)(
e2βℓ(bIx−bRy)+e−2βℓ(bIx−bRy)

)
e−

x2+y2

C dxdy

=
1

πMC

2p−1∑
ℓ=1

e−γℓ|b|
2

[ ∞∫
−∞

xe−
x2

C
+(2βibR+2βℓbI)xdx

∞∫
−∞

e−
y2

C
+(2βibI−2βℓbR)ydy

+

∞∫
−∞

xe−
x2

C
+(2βibR−2βℓbI)xdx

∞∫
−∞

e−
y2

C
+(2βibI+2βℓbR)ydy

−
∞∫

−∞

xe−
x2

C
−(2βibR−2βℓbI)xdx

∞∫
−∞

e−
y2

C
−(2βibI+2βℓbR)ydy

−
∞∫

−∞

xe−
x2

C
−(2βibR+2βℓbI)xdx

∞∫
−∞

e−
y2

C
−(2βibI−2βℓbR)ydy

]
.

(C.17)

In the above expression, the single integrals in x can be evaluated using the following result

which holds for α > 0 [80]:

∞∫
−∞

te−αt
2−2δtdt = −

√
π

α3
δe

δ2

α (C.18)

while the single integrals in y can be evaluated using (C.4). After evaluating all the single

integrals in (C.17), we finally obtain

E
{
x sinh[2βi(bRx+ bIy)]

Fθ(bRx+ bIy)

}
=

4C

M
2p−1eγi|b|

2

βibR. (C.19)

Therefore

E
{

T2
Fθ(uk)

}
= − 16√

M

2P−1∑
i=1

γ2i b
2
R. (C.20)
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We next consider E
{

T3
Fθ(uk)

}
. We have

E
{

T3
Fθ(uk)

}
=

2p−1∑
i=1

4β2
i e

−γi|b|2E
{
x2k cosh[2βi(bRxk + bIyk)]

Fθ(bRxk + bIyk)

}
. (C.21)

To evaluate (C.21), we can follow the same approach that we used in (C.17). However,

instead of using (C.18), we would use the following result, which holds for α > 0 [80]:

∞∫
−∞

t2e−αt
2−2δtdt =

√
π

α5
δ2e

δ2

α +
1

2

√
π

α3
e

δ2

α . (C.22)

After some calculations (the details are skipped for brevity) we obtain

E
{
x2k cosh[2βi(bRxk + bIyk)]

Fθ(bRxk + bIyk)

}
= eγi|b|

2

(
C√
M

+
2C√
M
γib

2
R +

4C

M

2p−1∑
ℓ=1

γℓb
2
I

)
. (C.23)

Hence,

E
{

T3
Fθ(uk)

}
=

4√
M

2p−1∑
i=1

γi +
8√
M

2p−1∑
i=1

γ2i b
2
R +

16

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓℑ{b}2. (C.24)

Adding (C.15), (C.20) and (C.24), we finally obtain

E
{
B

(33)
k

}
=

16

M

2p−1∑
i=1

2p−1∑
ℓ=1

γiγℓℑ{b}2. (C.25)

Following very similar steps, it can be shown that E
{
H

(33)
k

}
= E

{
B

(33)
k

}
.
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C.4 Proof of Eq. (5.54)

In this appendix, we prove (5.54). Taking the derivative of Fθ(uk) twice with respect to τ ,

we obtain:

∂2Fθ(uk)

∂τ 2
=

2p−1∑
i=1

(
A4σ4β4

i |b|4 − 2
A4σ4

C
β2
i |b|2

)
× e−γi|b|

2

cosh[2βiuk]

+
2p−1∑
i=1

(
4
A4σ4

C2
βi − 4

A4σ4

C
β3
i |b|2

)
uke

−γi|b|2 sinh[2βiuk] + 4
2p−1∑
i=1

A4σ4

C2
β2
i u

2
ke

−γi|b|2 cosh[2βiuk].

(C.26)

Since B
(55)
k =

∂2Fθ(uk)

∂τ2

Fθ(uk)
, it is clear from (C.26) that we need to evaluate E

{
cosh[2βiuk]
Fθ(uk)

}
,

E
{
uk sinh[2βiuk]

Fθ(uk)

}
and E

{
u2k cosh[2βiuk]

Fθ(uk)

}
. The first term is found in (C.5). For the second

term, we have

E
{
uk sinh[2βiuk]

Fθ(uk)

}
=

2√
πMC|b|2

∞∫
−∞

t sinh[2βit]e
− t2

C|b|2 dt. (C.27)

The above integral can be evaluated using the result in (C.18), thus obtaining

E
{
uk sinh[2βiuk]

Fθ(uk)

}
=

2√
M
C|b|2eγi|b|2βi. (C.28)

For the third term, we have

E
{
u2k cosh[2βiuk]

Fθ(uk)

}
=

2√
πMC|b|2

∞∫
−∞

t2 sinh[2βit]e
− t2

C|b|2 dt. (C.29)

We evaluate the above integral using (C.22), obtaining

E
{
u2k cosh[2βiuk]

Fθ(uk)

}
=

1√
M
eγi|b|

2

(2C2|b|4β2
i + C|b|2). (C.30)
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Using (C.5), (C.28) and (C.30), we finally see that

E
{
B

(55)
k

}
=

2p−1∑
i=1

2A4σ4

√
M

(
β4
i |b|4 +

4

C
β2
i |b|2

)
. (C.31)

The above derivation can be replicated by replacing uk with vk to show that E
{
H

(55)
k

}
=

E
{
B

(55)
k

}
.

C.5 Derivation of Eqs. (5.65) and (5.66)

In this appendix, we derive closed-form approximations for the integral Υ in (5.34) in the

high SNR regime for modulation orders M = 4 and M = 16. We have

Υ =
8A2√
πMC|b|2

Ξ (C.32)

where

Ξ =

∫ ∞

−∞

P2(t)

Fθ(t)
e
− t2

C|b|2 dt =

∫ ∞

−∞

2p−1∑
i=1

(
βie

−γi|b|2 sinh(2βit)
)2

2p−1∑
i=1

e−γi|b|2 cosh(2βit)

e
−t2

C|b|2 dt

= 2

∫ ∞

0

2p−1∑
i=1

(
βie

−γi|b|2 sinh(2βit)
)2

2p−1∑
i=1

e−γi|b|2 cosh(2βit)

e
−t2

C|b|2 dt.

(C.33)

Since βi > 0, the following approximation holds at high SNR for t > 0

cosh(2βit) ≈ sinh(2βit) ≈
1

2
e2βit. (C.34)
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Using (C.34), we can approximate Ξ at high SNR as

Ξ ≈ 2

∫ ∞

0

2p−1∑
i=1

(
1
2
βie

−γi|b|2e2βit
)2

2p−1∑
i=1

1
2
e−γi|b|2e2βit

e
−t2

C|b|2 dt. (C.35)

The integral in (C.35) depends on the modulation order M , which determines the

number of terms in the numerator and denominator of the integrand. As we shall see

next, the integral can be evaluated in closed-form for M = 4, and it can be accurately

approximated for M = 16. For M = 4, (C.35) becomes

Ξ ≈ 2

∫ ∞

0

1

2
β2
1e

−γ1|b|2e2β1te
−t2

C|b|2 dt. (C.36)

Moreover, for α > 0 we have∫ ∞

0

e−αt
2+2δtdt =

1

2

√
π

α
e

δ2

α

(
1 + erf

(√
δ2

α

))
. (C.37)

We thus obtain

Ξ ≈ 1

2
β2
1

√
πC|b|2

(
1 + erf(

√
γ1|b|2)

)
, (C.38)

hence

Υ ≈
2A4d2p
C2

(
1 + erf

(√
γ1|b|2

))
. (C.39)

We now consider the case M = 16. In this case, (C.35) becomes

Ξ ≈2

∫ ∞

0

(
1
2
β1e

−γ1|b|2e2β1t + 1
2
β2e

−γ2|b|2e2β2t
)2

1
2
e−γ1|b|2e2β1t + 1

2
e−γ2|b|2e2β2t

e
−t2

C|b|2 dt

=
A2d2p
C2

∫ ∞

0

(
e−γ1|b|

2
e2β1t + 3e−γ2|b|

2
e2β2t

)2
e−γ1|b|2e2β1t + e−γ2|b|2e2β2t

e
−t2

C|b|2 dt

=
A2d2p
C2

∫ ∞

0

[
e−γ1|b|

2

e2β1t + 5e−γ2|b|
2

e2β2t +
4e−2γ2|b|2e4β2t

e−γ1|b|2e2β1t + e−γ2|b|2e2β2t

]
e

−t2

C|b|2 dt.

(C.40)



C.5 Derivation of Eqs. (5.65) and (5.66) 147

As t increases, the term e−γ2|b|
2
e2β2t dominates the term e−γ1|b|

2
e2β1t, and we may use the

approximation
4e−2γ2|b|2e4β2t

e−γ1|b|2e2β1t + e−γ2|b|2e2β2t
≈ 4e−γ2|b|

2

e2β2t. (C.41)

to obtain

Ξ ≈
A2d2p
C2

∫ ∞

0

(
e−γ1|b|

2

e2β1t + 9e−γ2|b|
2

e2β2t
)
e

−t2

C|b|2 dt

=
A2d2p
2C2

√
πC|b|2

(
10 + erf

(√
γ1|b|2

)
+ 9erf

(√
γ2|b|2

)) (C.42)

Hence,

Υ ≈
A4d2p
C2

(
10 + erf

(√
γ1|b|2

)
+ 9erf

(√
γ2|b|2

))
. (C.43)
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Appendix D

Derivations of Select Proofs and

Results from Chapter 7

D.1 BFGS Method

The BFGS method for optimization belongs to the class of quasi-Newton optimization

methods [75]. The classical Newton method [74] requires the evaluation of the inverse

of the Hessian matrix at each iteration. The BFGS method avoids the high complexity

of evaluating the inverse Hessian by approximating it using rank-two updates that only

require the the evaluation of the gradient. The following pseudo-code describes the steps

of the BFGS method.

Starting with an initial estimate x0

and an approximation R0 of the Hessian matrix

the following steps are repeated until convergence:

1. Obtain the search direction: pk = −R−1
k ∇f(xk)

2. Use linesearch to find the step size αk.
3. Update the estimate: xk+1 = xk + αkpk.
3. Set uk = αkpk, vk = ∇f(xk+1)−∇f(xk)
4. Update the inverse Hessian approximation:

R−1
k+1 = R−1

k +
(uT

k vk+vT
k R−1

k vk)uku
T
k

(uT
k vk)

2 − R−1
k vku

T
k +ukv

T
k R−1

k

uT
k vk
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D.2 Proof of Theorem 3

We let

D , ΩHΩ =

A
2SH

1 S1 A2SH
1 S2 ASH

1 S3

A2SH
2 S1 A2SH

2 S2 ASH
2 S3

ASH
3 S1 ASH

3 S2 SH
3 S3

 . (D.1)

Assuming that Ω is full-column rank, D is positive definite, and the MSE of the LS

estimator is given by tr(D−1). Applying the Cauchy-Schwartz inequality, we can lower-

bound this MSE as follows [99]

tr
(
D−1

)
≥

M1+M2+L2∑
i=1

1

[D]ii
(D.2)

where the equality holds if and only if D is diagonal. Furthermore, using the circulant

property of the matrices S1, S2 and S3, we may express them as

S1 =
√
NFHS̃1FM1 ,

S2 =
√
NFHS̃2FM2 ,

S3 =
√
NFHS̃3F L2 ,

where Fm is the N × m matrix that has the first m columns of F and S̃1, S̃2, S̃3 are

the N × N diagonal matrices with diagonal elements t̃1, t̃2 and t̃3, respectively. Hence,

SH
1 S1 = NFH

M1
S̃
H

1 S̃1FM1 , SH
2 S2 = NFH

M2
S̃
H

2 S̃2FM2 , and SH
3 S3 = NFH

L2
S̃
H

3 S̃3F L2 .

Moreover, it can be easily verified that the diagonal elements of the matrix SH
1 S1 are

all equal to tr(S̃
H

1 S̃1) = NP1. Similarly, those of SH
2 S2 are equal to tr(S̃

H

2 S̃2) = NP2

and those of SH
3 S3 are equal to tr(S̃

H

3 S̃1) = NP3. We can thus rewrite the RHS of the

inequality in (D.2) as

M1+M2+L2∑
i=1

1

[D]ii
=

M1

NA2
pP1

+
M2

NA2
pP2

+
L2

NP3

. (D.3)

Clearly, the MSE of the LS estimator is smallest when the inequality in (D.2) holds with

equality, i.e., when D is diagonal. This happens if and only if the following conditions
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hold:

SH
1 S2 = 0, SH

1 S3 = 0, SH
2 S3 = 0, (D.4)

FH
M1

S̃
H

1 S̃1FM1 = NP1IM1 , (D.5)

FH
M2

S̃
H

2 S̃2FM2 = NP2IM2 , (D.6)

FH
L2
S̃
H

3 S̃3F L2 = NP3IL2 . (D.7)

The conditions (D.5), (D.6) and (D.7) are satisfied when all the individual frequency domain

symbols within each pilot vector have the same power, i.e., when

|t̃ji|2 = Pj, for i = 1, . . . , N, j = 1, 2, 3. (D.8)

Moreover, the conditions in (D.4) are equivalent to the following three conditions:

N∑
i=1

t̃∗1it̃2ie
ȷ2π(i−1)m1/N = 0, ∀m1 ∈ {1−M2, . . . ,M1 − 1}, (D.9)

N∑
i=1

t̃∗1it̃3ie
ȷ2π(i−1)m2/N = 0, ∀m2 ∈ {1− L2, . . . ,M1 − 1}, (D.10)

N∑
i=1

t̃∗2it̃3ie
ȷ2π(i−1)m3/N = 0, ∀m3 ∈ {1− L2, . . . ,M2 − 1}. (D.11)

The following is an example of training vectors t̃1, t̃2 and t̃3 that satisfy the conditions

in (D.8)–(D.11), which is inspired by the proposed pilot design for the case of two pilot

vectors in [22]. We let t̃1i =
√
P1, t̃2i =

√
P2e

ȷ2π(i−1)κ/N , t̃3i =
√
P3e

ȷ2π(i−1)δ/N , where κ and

δ satisfy the following constraints

κ ∈ {M2, . . . , N −M1} (D.12)

δ ∈ {L2, . . . , N −M1} (D.13)

κ− δ ∈ {L2 . . . , N −M2}. (D.14)

For the existence of integer values κ and δ that simultaneously satisfy the above constraints,
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the number of carriers N should satisfy

N ≥ max(M1 +M2,M1 + L2), (D.15)

and

max(L2,M1 +M2 −N) ≤ min(N −M2, N −M1 − L2) (D.16)

We can always find a sufficiently large N to satisfy these two constraints.
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